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Kurzfassung

Wir betrachten ein zweidimensionales kanonisches System, das ist eine Diffe-
rentialgleichung einer gewissen Gestalt auf einem Intervall, die durch eine lokal
integrierbare Funktion H, den Hamiltonian, gegeben ist. Dieser nimmt reelle,
positiv semidefinite 2 × 2 Matrizen als Werte an.

Im Grenzkreisfall, d.h. wenn H bis zum rechten Intervallrand integrierbar
ist, kann die Fundamentallösung eines kanonischen Systems dort ausgewertet
werden. Man erhält die sogenannte Monodromiematrix, eine Nevanlinna Matrix
bestehend aus 4 ganzen Funktionen mit identischem Wachstum.

Wissen über das Wachstum dieser Funktionen liefert das asymptotische Ver-
halten des Spektrums von selbstadjungierten Realisierungen des kanonischen
Systems. Es stellt sich die Aufgabe, das Wachstum für einen gegebenen Ha-
miltonian möglichst exakt zu bestimmen.

Der Exponentialtyp kann mithilfe der Krein-de Branges Formel als das In-
tegral von der Wurzel der Determinante von H berechnet werden. Falls dieses
Integral jedoch Null ist, d.h. falls die Determinante von H fast überall verschwin-
det, liefert die Krein-de Branges Formel keine signifikante Information.

Nach einem einführenden Teil beschäftigen wir uns zunächst mit allgemeinen
kanonischen Systemen und verfeinern zwei Sätze von Roman Romanov. Im zwei-
ten Teil studieren wir den wichtigen Spezialfall eines Hamburger Hamiltonians.
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Preface

In this thesis we present some recent results estimating the growth of Nevanlinna
matrices, which appear as monodromy matrices of canonical systems on a finite in-
terval [a, b], i.e., as the fundamental solution of the system at the right end point b.
Obtaining knowledge of the growth of the monodromy matrix has operator theoretic
relevance: it translates to knowledge of the asymptotic behaviour of the spectrum of
selfadjoint realisations of the system.

Classical theorems fully solve the question for exponential type. However, for a given
Hamiltonian H with detH = 0 a.e. on [a, b], this does not lead to significant assertions
about spectral distribution. For such systems more sophisticated results measuring
growth with respect to general growth functions rather than exponential type are neces-
sary. However, already determining the order (less than 1) and type of the monodromy
matrix is in general a difficult task for which no full solution is known.

We shall mainly focus on the subclass of Hamburger Hamiltonians, i.e. trace-normed
Hamiltonians with detH = 0 a.e. on [a, b] which are piecewise constant on a sequence
of intervals accumulating only at the right end point. In other words, a Hamburger
Hamiltonian is given by two sequences, its lengths and its angles. Hamiltonians of this
form are in a one-to-one correspondence with Hamburger moment problems.

Let us outline the content of this thesis. In the introductory chapters 1 and 2, we re-
peat the definitions of growth functions, Nevanlinna matrices and canonical systems.
We recall the classical Hamburger power moment problem and discuss the one-to-one
correspondence to Jacobi matrices on the one hand, and (maybe less known) to Ham-
burger Hamiltonians on the other hand. Moreover, we survey a selection of known results
concerning the order of such systems.

In Part I, consisting of chapters 3 and 4, we discuss results for general Hamiltonians.
Chapter 3 is devoted to a theorem by R.Romanov, cf. [Rom17, Theorem 1], which gives
an upper bound for the order of a general Hamiltonian. We present a refined version
of this theorem, which is formulated for growth functions, cf. Theorem 3.3. Some parts
of this chapter present ongoing (currently unpublished) research with R.Romanov and
H.Woracek.

In Chapter 4 we present another result by R.Romanov, cf. [Rom17, Theorem 2], which
determines the order of a diagonal Hamiltonian. We use this result mainly as a tool to
construct examples.

In Part II, which is the core of the thesis, we focus on results for Hamburger Hamiltoni-
ans. In Chapter 5 we begin with a direct application of the refined version of Romanov’s
Theorem 1. This yields Theorem 5.1, which is an upper estimate for the λ-type of a
Hamburger Hamiltonian. Unfortunately, like Romanov’s Theorem 1, it can be difficult
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Preface

to apply. Next, we introduce measures for the decay of lengths and angle-differences of
a Hamburger Hamiltonian H, i.e. ∆l(H) and ∆φ(H), respectively, and a measure for
the quality of possible convergence of angles, i.e. µ(H). These quantities can easily be
read of the parameters of H. The knowledge of only these three quantities enables us to
apply Theorem 5.1, which gives rise to an accessible upper bound of the order of H, cf.
Theorem 5.10. Moreover, we present a lower estimate for the order, see Proposition 5.17.

In Chapter 6 we compare the upper and lower estimates developed above. Roughly
speaking the situation is as follows: If the parameters of the Hamburger Hamiltonian
behave regular, then the upper and lower estimates for the order of H coincide, see
Theorem 6.5. On the other hand, the construction of a class of irregular examples, cf.
Theorem 6.11, shows that both the upper and lower estimates do not coincide with the
actual order in general. On the way we answer a question formulated in [BS14, p.32],
whether the lower estimate of the order of a moment sequence by M.S.Livšic, cf. [Liv39],
can be strict or not. The answer is no, cf. Corollary 6.14. The content of chapters 5 and
6 has already been published in [PRW16]. Note that the present form is stronger since
we use the refined version of Romanov’s Theorem 1.

Chapter 7, which has been published in [PW17], contains a completely different ap-
proach. We employ the so-called square transform which can be thought of a diagon-
alisation of a given Hamburger Hamiltonian: The transformed ”Hamiltonian” is indeed
diagonal, but it is not anymore positive semidefinite. By removing the negativity using
another transformation and by keeping track of the order, we get another upper estim-
ate, cf. Theorem 7.18. Combining this result with Kac’s formula for the order of a string,
i.e. [Kac90, Theorem 1], yields Theorem 7.22.

In the last chapter, which has been submitted in [Pru18], we consider the order of
Jacobi matrices with parameters having a power asymptotics. We study asymptotics
of solutions of the difference equation by employing, e.g., recent work of R.-J.Kooman
[Koo07]. The main result in this chapter is Theorem 8.1.

There are still many question that wait to be answered. A collection of open problems
can be found at the end of this thesis.
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1. Introduction

1.1. Growth functions

The growth of an entire function f can be measured on different scales. Set

M(f,R) := max
|z|≤R

|f(z)| = max
|z|=R

|f(z)| .

The order of an entire function f is given by

ρ(f) := inf
{
d > 0 : ∃c1, c2 > 0 :M(f,R) ≤ c1 exp(c2R

d) for all R > 0
}
∈ [0,∞].

A finer measure for the growth is the type of f with respect to the order ρ ∈ (0,∞),
which is defined as

τρ(f) := lim sup
R→∞

ln+M(f,R)

Rρ
.

We write τ(f) if the order is clear from the context. If τρ(f) = 0, then the function f
is said to be of minimal type, if 0 < τρ(f) < ∞ of normal type, and if τρ(f) = ∞ of
maximal type. Instead of τ1(f), we write et(f) and speak of the exponential type of f .

For functions of order zero some authors refine the scale further by considering
(double-)logarithmic order and type, cf. [BP07]. The next definition subsumes all these
notions.

1.1 Definition. A function λ : R+ → R
+ is called a growth function if the following

conditions hold:

(i) The limit ρ := limR→∞
log λ(R)
logR exists, is non-negative and finite.

(ii) For sufficiently large values of R, the function λ is differentiable and

lim
R→∞

(
R
λ′(R)

λ(R)

/ log λ(R)

logR

)
= 1. (1.1)

(iii) logR = o(λ(R)).

♦

1.2 Remark. For ρ > 0, condition (1.1) is equivalent to limR→∞
Rλ′(R)
λ(R) = ρ, which is

more convenient to check. ♦
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1. Introduction

For an entire function f and a growth function λ, we set

τλ(f) := lim sup
R→∞

ln+M(f,R)

λ(R)
,

and speak of the λ-type of f .
Typical examples of growth functions are functions of the form λ(R) = Ra(lnR)1+b,

with a > 0 and b ∈ R, or a = 0 and b > 0. For b = −1 we recover the classical notion of
type with respect to order a, whereas for a = 0 and b > 0 the expression τλ(f) is known
as the logarithmic type with respect to logarithmic order b.

For more details on growth functions see [LG86, Section I.6] or [Lev80, Section I.12].
Note here that growth functions are exponentials of proximate orders.

1.2. Nevanlinna matrices

Let us introduce the main object of this thesis.

1.3 Definition. A 2× 2-matrix valued function W (z) = (wij(z))
2
i,j=1 consisting of real

(i.e. wij(z̄) = wij(z)) entire functions is called a Nevanlinna matrix if detW (z) = 1 for
all z ∈ C and if the following matrix is positive semidefinite,

1

i

(
W (z)JW (z)∗ − J

)
≥ 0, (1.2)

for all z ∈ C
+ := {z ∈ C : Im z > 0}. ♦

1.4 Remark. A matrix valued entire function W (z) is called iJ-inner, if the following
reproducing kernel is positive semidefinite,

W (z)JW (w)∗ − J

z − w̄
, z, w ∈ C \R. (1.3)

By choosing z = w we get (1.2). In fact, it can be shown that a Nevanlinna matrix W (z)
is automatically iJ-inner. ♦

In Definition 1.3 it is equivalent to replace (1.2) by the property that for each z ∈ C
+

the Möbius transformation,

w 7→ w11(z)w +w12(z)

w21(z)w +w22(z)
,

maps the closed upper plane into itself. This argument has been carried out in [Win93] or
[Win95], where this notion has been studied under the name ρ-matrix. Clearly, another
equivalent replacement is

Im

(
w11(z)t+ w12(z)

w21(z)t+ w22(z)

)
≥ 0, z ∈ C

+, t ∈ R ∪ {∞}. (1.4)
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1. Introduction

In [BP95] the authors showed that, under the assumption that one (and hence all) entries
of W (z) are not polynomials, (1.4) can be replaced by the slightly stronger condition

Im

(
w11(z)t+ w12(z)

w21(z)t+ w22(z)

)
> 0, z ∈ C

+, t ∈ R ∪ {∞}. (1.5)

Entire 2 × 2-matrix valued functions with this property probably first appeared in the
description of all solutions of an indeterminate Hamburger power moment problem by
Nevanlinna, cf. Theorem 2.1.

We denote by N0 the set of all Nevanlinna functions, i.e., the set of all function f
which are analytic on C\R, satisfy f(z̄) = f(z) and Im f(z) ≥ 0 for z ∈ C

+.
By (1.4) we have that (w11t + w12)/(w21t + w22) is a Nevanlinna function for each

t ∈ R ∪ {∞}. In particular w11/w21 ∈ N0 and w12/w22 ∈ N0. Note that if W (z) is a
Nevanlinna matrix, then so is

(
w22(z) w12(z)
w21(z) w11(z)

)
.

Hence, also w22/w21 and w12/w11 are Nevanlinna functions. These properties actually
characterise Nevanlinna matrices: A matrix W (z) = (wij(z))

2
i,j=1 consisting of real

entire functions is a Nevanlinna matrix if and only if the quotients w11/w21, w12/w22

and w22/w21 are Nevanlinna functions, cf. [Sod96].
Regarding the growth of the entries of a Nevanlinna matrix we have the following

result, which generalises [BP95, Theorem 4.7].

1.5 Lemma. Let W (z) be a Nevanlinna matrix, and let λ be a growth function. Then
all entries of W (z) have the same λ-type. In particular, they have the same order and
type.

Proof. Just note that for entire functions A and B with A/B ∈ N0, [BW06, Proposi-
tion 2.3] implies τλ(A) = τλ(B). ❑

1.3. Canonical systems

Let H be a 2×2-matrix valued locally integrable function on an interval [a, b) whose
values are almost everywhere real and positive semidefinite matrices. The canonical
system with Hamiltonian H is the differential equation

y′(x) = zJH(x)y(x), x ∈ [a, b), (1.6)

where J is the symplectic matrix J :=
(
0 −1
1 0

)
, and z is a complex parameter. After a

reparametrisation, we may assume trH = 1 a.e. on [a, b), cf. [WW12]. The fundamental
solution of the system is the solution of the initial value problem





d
dxW (x, z)J = zW (x, z)H(x), x ∈ [a, b),

W (a, z) = I.
(1.7)
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1. Introduction

In the literature, this equation is sometimes written in the form




J d
dxW̃ (x, z) = zH(x)W̃ (x, z), x ∈ [a, b),

W̃ (a, z) = I.
(1.8)

This is just a question of notational convention; the relation between these notations
is W̃ (x, z) = W (x,−z)T . By classical theory of differential equations it is well-know
that the fundamental solution W (x, z) exists, is unique and depends analytically on z
for all x ∈ [a, b), see, e.g., [Atk64, Chapter 9] or [GK67, Chapter VI]. Differentiating
W (t, z)JW (t, w)∗ with respect to t and integrating over [a, x] for x ∈ [a, b) gives

W (x, z)JW (x,w)∗ − J = (z − w̄)

∫ x

a
W (t, z)JW (t, z)∗ dt.

This yields (1.3) and we conclude that W (x, z) is a Nevanlinna matrix. The exponential
type of any entry of W (x, z) = (wij(x, z))

2
i,j=1 is given by the Krein-de Branges formula

et(wij(x, .)) =

∫ x

a

√
detH(t) dt,

cf. [Kre51], [Bra61, Theorem X].

In the limit circle case (lcc), i.e. if
∫ b
a trH(t) dt <∞, the limit

W (b, z) := lim
x→b

W (x, z)

exists locally uniformly on C and is called the monodromy matrix. Clearly, it is again
a Nevanlinna matrix. When we do not want to emphasize the right end point of the
interval, we only write W (z) =W (b, z).

1.6 Definition. Let H be a Hamiltonian in the lcc and let W (z) be its monodromy
matrix.

We denote by ρ(H) the order of any entry of W (z), and call it the order of the
canonical system. For a growth function λ, we write τλ(H) for the λ-type of any entry
of W (z), and speak of the λ-type of the canonical system. ♦

If the limit point case (lpc) takes places, i.e. if
∫ b
a trH(t) dt = ∞, then for each function

τ ∈ N0 ∪ {∞} the limit

QH(z) := lim
x→b

w11(x, z)τ(z) +w12(x, z)

w21(x, z)τ(z) +w22(x, z)

exists locally uniformly on C \ R and does not depend on τ , cf. [HSW00, The-
orem 2.1(2.7)]. The function QH is a Nevanlinna function and is called the Titchmarsh-
Weyl coefficient of H. Except for chapter 7, we will only consider Hamiltonians in the
lcc. It is possible to define the order of H also in the lpc, cf. Definition 7.3.
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1. Introduction

With H there is associated a Hilbert L2(H) consisting of 2-vector valued measurable
functions satisfying a usual L2-condition and a constancy condition on indivisible inter-
vals, cf. [Kac85; Kac86a] or [HSW00] 1. In this space a linear relation Tmax(H) is given
by the differential expression f ′ = JHg on its natural maximal domain. The adjoint
Tmin(H) := Tmax(H)∗ is a completely nonselfadjoint symmetry in L2(H). There is a rich
spectral theory for canonical systems. See, e.g., [GK67] or [HSW00] for the Weyl limit
disk construction and the direct spectral problem.

In the lpc, Tmin has defect index (1, 1) and the spectrum of selfadjoint extensions may
be discrete, continuous, or be composed of different types.

In the lcc, Tmin has defect index (2, 2). The symmetric extension

S(H) :=
{
(f ; g) ∈ Tmax(H) : (1, 0)f(0) = 0, f(L) = 0

}

has defect index (1, 1) and is entire in the sense of M.G. Krĕın. In particular the spectra
of canonical selfadjoint extensions of S(H) are discrete and interlace with the zeros of
w21(z), cf. Section 7.1 for more details. Let (ω±

n )n denote the sequences of positive and
negative, respectively, eigenvalues of a selfadjoint extension of S(H) arranged according
to increasing modulus. By the Krein-de Branges formula we have

lim
n→∞

n

|ω±
n |

=
1

π
et(W (L, .)) =

1

π

∫ b

a

√
detH(t) dt. (1.9)

If detH > 0 on a set of positive measure, then ρ(H) = 1, C := et(W (L, .)) > 0 and
(1.9) gives

|ω±
n | =

π

C
n+ o(n), n ∈ N.

If detH = 0 a.e. on [a, b), then the entries of the monodromy matrix are of minimal
exponential type. Thus ρ(H) ≤ 1 and (1.9) only says that limn→∞ n/|ω±

n | = 0. Heurist-
ically, this means that the eigenvalues are sparser than integers. They may behave, for
instance, like nγ for some γ > 1, and it is a fundamental question to determine the actual
asymptotic behaviour of the eigenvalues. This can be done via growth estimates, since
knowledge of the growth of the Nevanlinna matrix leads to knowledge of the asymptotic
behaviour of the spectrum.

Let nσ(R) := #{ω±
n : |ω±

n | < R} denote the counting function of the spectrum, and
set ρ := ρ(H). By [Boa54, Theorem 2.5.12] we have nσ(R) = O(Rρ+ǫ) for all ǫ > 0, and
consequently

lim
n→∞

n
1
ρ
−ǫ

|ω±
n |

= 0.

In other words, the eigenvalues are sparser than n
1
ρ
−ǫ

for all ǫ > 0. Additionally, if the
type of H with respect to the order ρ is finite, then [Boa54, Theorem 2.5.13] gives

lim sup
n→∞

n1/ρ

|ω±
n |

<∞.

1One word of caution concerning notation: In [HSW00] the space we call L2(H) is denoted as L2
s(H).
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1. Introduction

The following inverse spectral theorem is due to L.de Branges: The assignment H 7→W
is a bijection between the set of all lcc Hamiltonians (modulo reparameterization) and the
set of all Nevanlinna matrices W (z). Moreover, the assignment H 7→ QH is a bijection
between the set of all lpc Hamiltonians (modulo reparameterization) and the set of all
Nevanlinna functions QH(z). This result follows from [Bra68], an explicit deduction
from this source in the lpc is given in [Win95].
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2. The power moment problem

2.1. Hamburger moment problem vs. Jacobi matrix vs.

Hamburger Hamiltonian

We introduce an important object of this work: A subclass of Hamiltonians, which
corresponds one-to-one to Hamburger moment problems and Jacobi matrices.

2.1.1. Hamburger moment problem

Recall the formulation of the classical Hamburger moment problem: Given a sequence
of real numbers (sn)

∞
n=0, does there exist a positive Borel measure µ on R such that for

all n ∈ N0 := N ∪ {0}
sn =

∫

R

xn dµ(x)?

Set Dn := det((sj+k)
n
j,k=0) for n ∈ N0. If Dn ≥ 0 for all n ∈ N0, then the answer to

the above question is yes, and (sn)
∞
n=0 is called a moment sequence. If Dn = 0 for some

n ∈ N0, then the moment problem has a unique solution µ, which is a discrete measure
with only finitely many mass points. We will always assume that the sequences (sn)

∞
n=0

is positive, i.e. Dn > 0 for all n ∈ N0. By normalizing the measure to a probability
measure, we may assume s0 = 1.

A positive sequence (sn)
∞
n=0 induces an inner product on C[z] by (p, q)s :=∑∞

k,l=0 pk q̄lsk+l for p(z) =
∑∞

k=0 pkz
k, q(z) =

∑∞
l=0 qlz

l ∈ C[z]. Clearly, the inner

product (., .)s coincides with the standard L2(µ)-inner product on polynomials for each
solutions µ of the Hamburger moment problem. The Gram-Schmidt process applied to
the sequence 1, z, z2, . . . generates polynomials Pn(z), n ∈ N0, called the orthonormal
polynomials of the first kind. Those of the second kind are given by

Qn(z) :=
(
w 7→ Pn(z)− Pn(w)

z − w
, 1
)
s
, n ∈ N0.

We say that the moment problem is determinate if it has a unique solution. This is the
case if and only if

∑∞
n=0 Pn(0)

2 +Qn(0)
2 = ∞.

In the indeterminate case, this series converges and we have more than one solutions,
in fact, infinitely many. A classical result of R.Nevanlinna describes how they can be

12



2. The power moment problem

parametrized. Consider the following four entire functions,

A(z) := z

∞∑

k=0

Qk(0)Qk(z), B(z) := −1 + z

∞∑

k=0

Qk(0)Pk(z),

C(z) := 1 + z
∞∑

k=0

Pk(0)Qk(z), D(z) := z
∞∑

k=0

Pk(0)Pk(z).

2.1 Theorem ([Nev22]). Let (sn)
∞
n=0 be an indeterminate moment sequence.

A measure µ is a solution of the Hamburger power moment problem if and only if

∫

R

1

x− z
dµ(x) = −A(z)φ(z) − C(z)

B(z)φ(z) −D(z)
, (2.1)

for some Nevanlinna function φ.

From (2.1) it follows that for t ∈ R ∪ {∞}

Im

(
−A(z)t− C(z)

B(z)t−D(z)

)
= Im

(
C(z)(−1

t ) +A(z)

−D(z)(−1
t )−B(z)

)
> 0, z ∈ C

+.

Furthermore, we have A(z)D(z) − B(z)C(z) = 1 for all complex z, cf. [Akh61,
(2.29), p.54]. Hence with our notation, which differs from the traditional one,

(
C(z) A(z)

−D(z) −B(z)

)

is a Nevanlinna matrix.
The first results about the growth of Nevanlinna matrices arising in this situation is

due to M.Riesz, who showed that all four entries are of minimal exponential type, cf.
[Rie23]. Much later, it was noted that these four functions have the same order and
type, cf. [BP94, Theorem 3.3, Theorem 4.2]. In fact, by Lemma 1.5, all four functions
have the same growth, i.e. the same type with respect to any growth function.

We denote by ρ((sn)
∞
n=0) this common order, and speak of the order of the moment

problem.

2.1.2. Jacobi matrix

A Jacobi matrix J is a tridiagonal symmetric semi-infinite matrix

J =




q0 ρ0 0
ρ0 q1 ρ1

ρ1 q2
. . .

0
. . .

. . .


 ,
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2. The power moment problem

with real qn and positive ρn. There is a one-to-one correspondence between Jacobi
matrices and positive moment sequences, cf. [Akh61] for the classical reference. Let us
recall this relation. For a given positive moment sequence (sn)

∞
n=0 set

D′
n := det




s0 s1 . . . sn−1 sn+1

s1
...

...
...

...
...

sn sn+1 . . . s2n−1 s2n+1



, for n ∈ N,

and D′
0 := s1. With the conventions D′

−1 := 0 and D−1 := 1, we define for n ∈ N0

ρn :=

√
Dn−1Dn+1

Dn
, qn :=

D′
n

Dn
− D′

n−1

Dn−1
.

Obviously qn is real and ρn is positive, and one can show that the orthogonal polynomials
of the first and second kind satisfy the three-term recurrence relation (ρ−1 := 1)

zUn = ρn−1Un−1 + qnUn + ρnUn+1, n ∈ N0, (2.2)

with initial conditions P−1 = 0, P0 = 1 and Q−1 = −1, Q0 = 0. Clearly, (2.2) determines
a Jacobi matrix with diagonal (qn)

∞
n=0 and off-diagonal (ρn)

∞
n=0.

On the other hand, for given (qn)
∞
n=0 and (ρn)

∞
n=0 one can recover all orthogonal

polynomials Pn(z) by solving (2.2) starting with the appropriate initial values. In the
sequel, it is possible to find the corresponding positive moment sequence (sn)

∞
n=0 by

using the orthogonality (Pn(z), 1)s = 0 for n ∈ N.
Looking at (2.2) reveals that the leading coefficient of Pn(z) =

∑n
k=0 bk,nz

k is equal
to

bn,n =

(
n−1∏

k=0

ρk

)−1

, n ∈ N0. (2.3)

There occurs an alternative, cf. [Akh61, Theorem 1.3.2.]: Either all solutions (Un)
∞
n=0

of (2.2) are square summable for one (and hence all) non-real z (one speaks of the limit
circle case, or, in the language of [Akh61], type C ), or there are non-summable solutions
of (2.2) for one (and hence all) non-real z (called the limit point case, or, synonymously,
type D).

The Jacobi matrix is of type C if and only if the corresponding moment problem is
indeterminate, cf. [Akh61, Theorem 2.1.2, Corollary 2.2.4]. We will use the notation
ρ(J) for the order of the corresponding moment problem.

In general it is difficult to decide from the parameters ρn, qn whether J is of type C
or D. Two classical necessary conditions for type C are Carleman’s condition which says
that

∑∞
n=0 ρ

−1
n = ∞ implies type D, cf. [Car26], and Wouk’s theorem that a dominating

diagonal in the sense that either supn≥0(ρn+ρn−1−qn) <∞ or supn≥0(ρn+ρn−1+qn) <
∞ implies type D, cf. [Wou53]. A more subtle result by Yu.M.Berezanskĭı, which gives
a sufficient condition for type C and ρ(J), will be presented below as Theorem 2.5.

14



2. The power moment problem

Each Jacobi matrix induces a closed symmetric operator TJ on ℓ2(N), namely the closure
of the natural action of J on the subspace of finitely supported sequences, see, e.g.,
[Akh61, Chapter 4.1].

Note that TJ is selfadjoint if and only if J is of type D. In this case the spectrum
of TJ may be discrete, continuous, or be composed of different types. There is a vast
literature dealing with Jacobi matrices of type D, whose aim is to establish discreteness
of the spectrum and investigate spectral asymptotics, e.g., [BZ12; Dei+99; JM07; JN04;
Tur03].

If J is of type C, then TJ has defect index (1, 1) and is entire in the sense of Krein.
In particular the spectra of all selfadjoint extensions of TJ are discrete, and any two are
interlacing.

2.1.3. Hamburger Hamiltonian

We consider the class of Hamiltonians which consist only of indivisible intervals (i.e.
intervals on which H is a.e. equal to a constant singular matrix), which accumulate only
at the right end point. The definition is due to [Kac99, §3].

2.2 Definition. Let ~l = (ln)
∞
n=1 and ~φ = (φn)

∞
n=1 be sequences of real numbers with

ln > 0 and φn+1 6≡ φn mod π, n ∈ N. Set

x0 := 0, xn :=

n∑

k=1

lk, n ∈ N, L := x∞ :=

∞∑

k=1

lk ∈ (0,∞], (2.4)

ξφ :=
(
cos(φ), sin(φ)

)T
.

Then we call H~l,~φ : [0, L] → R
2×2 which is piecewise defined as

H~l,~φ(x) := ξφnξ
T
φn , x ∈ [xn−1, xn), n ∈ N,

the Hamburger Hamiltonian with lengths ~l and angles ~φ. ♦

H~l,~φ
:

x0 x1 x2 x3 L

ξφ1
ξT
φ1

ξφ2
ξT
φ2

ξφ3
ξT
φ3

︸ ︷︷ ︸

l1

︸ ︷︷ ︸

l2

︸ ︷︷ ︸

l3

The set of all Hamburger Hamiltonians corresponds (up to normalization) one-to-one
with the set of all Hamburger moment problems, cf. [Kac99, Theorem 3.1]. Thereby, the
Hamburger moment problem is indeterminate if and only if the corresponding Hamburger
Hamiltonian is in the lcc. In this case, the Nevanlinna matrix, which describes all
solutions of the Hamburger moment problem, coincides with the monodromy matrix. In
particular ρ(H~l,~φ) = ρ((sn)

∞
n=0) = ρ(J).
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2. The power moment problem

The connection between the parameters of the Hamburger Hamiltonian, the Jacobi mat-
rix and the moment sequence is given by the formulae (φ0 :=

π
2 )

ρn =
1√

lnln+1| sin(φn+1 − φn)|
, n ∈ N, (2.5)

qn =
−1

ln

[
cot(φn+1 − φn) + cot(φn − φn−1)

]
, n ∈ N, (2.6)

cf. [Kac99, (3.16),(3.17)], and [Kac99, (3.22)]

ln = Pn(0)
2 +Qn(0)

2, n ∈ N. (2.7)
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2. The power moment problem

2.2. Theorems on growth

We present some known results regarding the growth of Nevanlinna matrices.

2.2.1. Livšic’s Theorem

The probably first result dealing with growth properties of canonical systems other than
the exponential type is due to M.S.Livšic back in 1939.

2.3 Theorem ([Liv39]). Let (sn)
∞
n=0 be an indeterminate moment sequence, and set

L(z) :=

∞∑

n=0

z2n

s2n
.

Then the order of the Hamburger power moment problem is greater than or equal to the
order of the entire function L(z), i.e.

ρ((sn)
∞
n=0) ≥ ρ(L) = lim sup

n→∞

2n log n

log s2n
.

For a long time it was apparently unclear whether there exist moment problems for
which the order actually is different from its Livšic estimate, cf. [BS14, p.32].

By constructing a class of examples, we show that equality does not hold in general.
In fact, we shall see that the gap between the actual order and its Livšic estimate can
be arbitrarily close to 1, cf. Corollary 6.14.

2.2.2. Berezanskĭı’s Theorem

The following result about Jacobi matrices goes back to Yu.M.Berezanskĭı, cf. [Ber56]
or [Ber68, VII,Theorem 1.5]. The extension to the log-convex case is due to C.Berg and
R.Szwarc, cf. [BS14, Theorem 4.11].

First, let us recall the following classical notion.

2.4 Definition. Let ~z = (zn)
∞
n=0 be a sequence of non-zero complex numbers with

limn→∞ |zn| = ∞. Then

c. e.(~z) := inf
{
p > 0 : (|zn|−1)∞n=1 ∈ ℓp

}
,

is called the convergence exponent of ~z. ♦

2.5 Theorem. Let ρn > 0, qn ∈ R be the parameters of a Jacobi matrix. Assume that

∞∑

n=1

1

ρn
<∞ (Carleman condition)

ρ2n ≥ ρn−1ρn+1 or ρ2n ≤ ρn−1ρn+1 (log-concave/convex)

∞∑

n=1

|qn|
ρn

<∞ (small diagonal)

17



2. The power moment problem

Then J is of type C, i.e. the corresponding moment problem is indeterminate, and the
order of J is equal to the convergence exponent of (ρn)

∞
n=1, i.e. ρ(J) = c. e.((ρn)

∞
n=1).

2.6 Remark. Note that the order is always zero in the log-convex case:
Log-convexity translates to σn := ρn/ρn−1 being monotonically increasing. Due to

the Carleman condition, σn cannot be bounded from above by 1. Therefore, there exists
b > 1 and N ∈ N such that σn ≥ b for all n > N , i.e.

ρn ≥ bρn−1 ≥ . . . ≥ bn−NρN , n > N.

This implies that the convergence exponent of (ρn)
∞
n=1 is zero. By Theorem 2.5, the

order of the corresponding system is zero. ♦

Below, we prove some results which can be viewed, to some extent, as generalisations
of Berezanskĭı’s theorem, cf. Theorems 7.22 and 8.1.

2.2.3. Valent’s Conjecture

A birth-and-death process is a particular type of stationary Markov process having the
non-negative integers as state space, see [KM57; BV94]. The parameters (λn)

∞
n=0 and

(µn)
∞
n=0 which determine the transition probabilities are called the rates of the birth-

and-death process, and satisfy λn, µn > 0 for n ∈ N, λ0 > 0 and µ0 = 0.
Associated to a birth-and-death process is the Jacobi matrix with parameters

qn = λn + µn, ρn =
√
λnµn+1, n ∈ N0.

For an integer p ≥ 3 consider polynomial rates of the form

λn = (pn+B1) · . . . · (pn+Bp),

µn = (pn+A1) · . . . · (pn+Ap), n ∈ N0.

It is known that the corresponding Jacobi matrix J is in type C if and only if 1 <
1
p

∑p
j=1Bj−Aj < p−1. In this case, Valent formulated in [Val99] the following conjecture

regarding the order and type of J :

ρ(J) =
1

p
, τ(J) =

∫ 1

0

du

(1− up)2/p
.

The conjecture about the order was verified in [Rom17, Corollary 6]. Regarding the
type, it was shown in [BS17] that π

p sin(π/p) ≤ τ(J) ≤ π
p sin(π/p) cos(π/p) . More recently, the

type-conjecture has been proved in recent work involving R.Romanov.
In Chapter 8, we consider the situation that ρn and qn are not necessarily polynomi-

als of the special form described above, but have, more generally, the following power
asymptotic

ρn = nβ1
(
x0 +

x1
n

+O(n−2)
)
, qn = nβ2

(
y0 +

y1
n

+O(n−2)
)
.

In Theorems 8.1 and 8.2 we show that, under certain conditions, still ρ(J) = 1
β1
.
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2. The power moment problem

2.2.4. Berg-Szwarc’s Theorems

We present two theorems of C.Berg and R.Szwarc. The first one is essentially [BS14,
Theorem 1.2] formulated in the setting of Hamburger Hamiltonians using (2.7). It con-
tains an upper bound for the order, which depends on the sequence of lengths only.

2.7 Theorem. Let H be a Hamburger Hamiltonian in the lcc with lengths ~l and angles
~φ. Then the order of H does not exceed the convergence exponent of (l−1

n )∞n=1, i.e.
ρ(H) ≤ c. e.((l−1

n )∞n=1).

The next theorem is [BS14, Theorem 3.1], which evaluates the order of an indeterminate
moment problem in terms of its orthonormal polynomials.

2.8 Theorem. Let (sn)
∞
n=0 be an indeterminate moment sequence, let Pn(z) =∑n

k=0 bk,nz
k, n ∈ N0, be the orthonormal polynomials of the first kind, and set

Φ(z) :=

∞∑

n=0

( ∞∑

k=n

b2n,k

)1/2

zn.

Then Φ is entire, and the order and type of Φ coincide with the order and type of the
Hamburger power moment problem.

Since the order and type of an entire function can be calculated from its power-series
coefficients, the applicability of this theorem depends heavily on the availability of the
sequence

(∑∞
k=n b

2
n,k

)∞
n=0

.
Knowing this sequence means, however, to know all orthonormal polynomials Pn(z).

In other words, one has to solve the direct problem (2.2) for all z ∈ C, and needs to be
able to handle all series

∑∞
k=n b

2
n,k. This makes it hard to apply Theorem 2.8 in practice.
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3. Romanov’s Theorem 1

This chapter is devoted to [Rom17, Theorem 1] which provides an upper bound for the
growth of the monodromy matrix of a general Hamiltonian. We give a refined version,
cf. Theorem 3.3, and formulate the original version of Romanov’s Theorem in a variant
for growth functions λ(R) instead of powers Ra, cf. Theorem 3.8.

3.1. Refined version

The next lemma is an elementary fact which enables us to work with the λ-type of a
monodromy matrix using matrix norms.

In the subsequent computations we use the following practical notation:

f(x) ≍ g(x) :⇐⇒ ∃ c1, c1 > 0∀x : c1f(x) ≤ g(x) ≤ c2f(x).

The notation f(x) . g(x) and f(x) & g(x) refers to the corresponding one-sided prop-
erties.

3.1 Lemma. Let W (z) be a 2× 2-matrix consisting of four entire functions, let λ be a
growth function and let ‖.‖ be a matrix norm on C

2×2.
If all entries of W (z) have the same λ-type τ , then τλ(‖W‖) = τ .

Proof. For two equivalent norms ‖.‖1 and ‖.‖2 we have M(‖W‖1, R) ≍ M(‖W‖2, R)
and, hence, τλ(‖W‖1) = τλ(‖W‖2). Since all matrix norms on C

2×2 are equivalent, we
may assume ‖W (z)‖ = maxi,j∈{1,2} |wij(z)|. Then

M(‖W‖, R) = max
|z|=R

max
i,j∈{1,2}

|wij(z)| = max
i,j∈{1,2}

max
|z|=R

|wij(z)| = max
i,j∈{1,2}

M(wij , R).

Applying ln+, dividing by λ(R) and taking the limes superior on both sides yields

τλ(‖W‖) = lim sup
R→∞

ln+M(‖W‖, R)
λ(R)

= lim sup
R→∞

max
i,j∈{1,2}

ln+M(wij , R)

λ(R)
= τ.

Note that the maximum of finitely many functions which have limes superior τ , has
again the same limes superior. ❑

The next result uses the multiplicative structure of fundamental solutions together with
Grönwall’s1 Lemma.

1Thomas Hakon Grönwall, *1877 Dylta Bruk in Sweden, emigrated to the U.S. in 1904
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3. Romanov’s Theorem 1

3.2 Lemma. Let H be a lcc Hamiltonian on [a, b]. Let N be a natural number, let
a = y0 < y1 < . . . < yN = b be a partition of [a, b], and let Ωj be real invertible
2× 2-matrices for j = 1, . . . , N .

Denote by W (z) the monodromy matrix of H, and let ‖.‖ be a submultiplicative matrix
norm. Then

‖W (z)‖ ≤ exp

(
|z|

N∑

j=1

∫ yj

yj−1

‖ΩjJH(t)Ω−1
j ‖ dt

)
‖Ω1‖‖Ω−1

N ‖
N−1∏

j=1

‖Ωj+1Ω
−1
j ‖. (3.1)

Proof. Because of notational reasons, we work in this proof with monodromy matrices
as in (1.8). Note that ‖W (x, z)‖ = ‖W̃ (x,−z)‖. Denote by W̃j(z) = W̃j(yj, z) the
monodromy matrix of H|[yj−1,yj ], j = 1, . . . , N . Then,

W̃ (z) = W̃N (z)W̃N−1(z) · . . . · W̃1(z).

We insert matrices Ωj and get

W̃ (z) = Ω−1
N

(
ΩNW̃N (z)Ω

−1
N

)
ΩNΩ

−1
N−1

(
ΩN−1W̃N−1(z)Ω

−1
N−1

)
· . . . ·

(
Ω1W̃1(z)Ω

−1
1

)
Ω1

Applying Grönwall’s Lemma to the differential equation

d

dx
ΩjW̃j(x, z)Ω

−1
j = −zΩjJH(x)Ω−1

j ΩjW̃j(x, z)Ω
−1
j , x ∈ [yj−1, yj],

yields for j = 1, . . . N

‖ΩjW̃j(z)Ω
−1
j ‖ ≤ exp

(
|z|
∫ yj

yj−1

‖ΩjJH(t)Ω−1
j ‖ dt

)
,

and the assertion follows. ❑

The main idea is as follows: For a given Hamiltonian, cut the interval [a, b] into pieces
and find on each piece a matrix Ωj such that the upper bound in (3.1) is small.

3.3 Theorem (Romanov’s Theorem; refined). Let H be a lcc Hamiltonian on [a, b], let
‖.‖ be any submultiplicative matrix norm and let λ be a growth function.

Let N(R), R > 1, be a family of natural numbers, let

a = y0(R) < y1(R) < . . . < yN(R)(R) = b, R > 1,

be a family of partitions of [a, b], and let
(
Ωj(R)

)N(R)

j=1
, R > 1, be a family of sequences

of invertible 2× 2-matrices. Set

A1(R) :=

N(R)∑

j=1

∫ yj(R)

yj−1(R)

∥∥Ωj(R)JH(t)Ω−1
j (R)

∥∥ dt

A2(R) :=

N(R)−1∑

j=1

ln
∥∥Ωj+1(R)Ω

−1
j (R)

∥∥

A3(R) := ln ‖Ω1(R)‖+ ln
∥∥Ω−1

N(R)(R)
∥∥.

22



3. Romanov’s Theorem 1

Then we have the following upper bound for the λ-type of the canonical system

τλ(H) ≤ lim sup
R→∞

1

λ(R)

[
RA1(R) +A2(R) +A3(R)

]
.

Proof. Fix R > 1. An application of Lemma 3.2 with the choice N(R), yj(R) for
j = 0, . . . , N(R) and Ωj(R) for j = 1, . . . , N(R) gives, for z ∈ C,

ln ‖W (z)‖ ≤ |z|
N(R)∑

j=1

∫ yj(R)

yj−1(R)

∥∥Ωj(R)JH(t)Ω−1
j (R)

∥∥ dt+
N(R)−1∑

j=1

ln
∥∥Ωj+1(R)Ω

−1
j (R)

∥∥

+ ln ‖Ω1(R)‖+ ln
∥∥Ω−1

N(R)(R)
∥∥.

For |z| = R we get ln ‖W (z)‖ ≤ RA1(R) + A2(R) + A3(R), and the statement follows
from Lemma 3.1. ❑

In order to apply Theorem 3.3 we have to choose a family of natural numbers N(R),
of partitions (yj(R)), of sequences of matrices (Ωj(R)), and a submultiplicative matrix
norm. We get a better estimate of the λ-type of H if our choice leads to smaller A1, A2

and A3. The best estimate which we can achieve this way can be described as follows.

3.4 Corollary. Let H be a lcc Hamiltonian and let λ be a growth function. Denote by
Ξ the set of all families of tuples

(
N(R), (yj(R))

N(R)
j=0 , (Ωj(R))

N(R)
j=1

)
, R > 1,

where N(R) is a natural number, (yj(R))
N(R)
j=0 is a partition of [a, b], and (Ωj(R))

N(R)
j=1 is

a sequence of invertible matrices.
For each ξ ∈ Ξ and each submultiplicative matrix norm ‖.‖ we denote the upper bound

of the λ-type of H arising from Theorem 3.3 by

C(ξ, ‖.‖) := lim sup
R→∞

1

λ(R)

[
RA1(R) +A2(R) +A3(R)

]
.

Then, the λ-type of H is not larger than

τλ(H) ≤ inf
{
C(ξ, ‖.‖)

∣∣ ξ ∈ Ξ, ‖.‖ is a submultiplicative norm
}
.

It is an open question whether the upper bound in Corollary 3.4 is always equal to the
λ-type of the canonical system.

Certainly, this upper bound enables us to determine the order for a large class of
examples, namely for fairly reasonable Hamburger Hamiltonians, cf. Theorem 6.5.
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3. Romanov’s Theorem 1

3.2. Original version

Next, we introduce matrices Ω(a, b, ψ) and calculate the spectral norm of expressions,
which we encounter frequently.

3.5 Definition. Denote for a, b ∈ (0,∞) and ψ ∈ R

D(a, b) :=

(
a 0
0 b

)
, Ω(a, b, ψ) := D(a, b) exp(−ψJ).

Note that J :=
(
0 −1
1 0

)
and

exp(ψJ) =

(
cosψ − sinψ
sinψ cosψ

)
.

♦

3.6 Lemma. Let ‖.‖ denote the spectral norm. For a, b, a1, b1, a2, b2 ∈ (0,∞) and
φ,ψ, ψ1, ψ2 ∈ R, we have

(i)
∥∥Ω(a, b, ψ)

∥∥ = max{a, b},
∥∥Ω(a, b, ψ)−1

∥∥ = max
{1
a
,
1

b

}
,

(ii)
∥∥Ω(a, b, ψ)JξφξTφΩ(a, b, ψ)−1

∥∥ =
b

a
cos2(φ− ψ) +

a

b
sin2(φ− ψ),

(iii)
∥∥Ω(a2, b2, ψ2)Ω(a1, b1, ψ1)

−1
∥∥ ≤

≤ | cos(ψ1 − ψ2)|max

{
a2
a1
,
b2
b1

}
+ | sin(ψ1 − ψ2)|max

{
b2
a1
,
a2
b1

}
.

Proof. Since exp(−ψJ) is orthogonal, (i) amounts to finding the largest singular value,
which can easily be read of the diagonal.

In order to show (ii) we use J exp(φJ) = exp(φJ)J and ξφξ
T
φ =

exp(φJ)( 1 0
0 0 ) exp(−φJ), which can easily be verifed. This gives

B := Ω(a, b, ψ)Jξφξ
T
φΩ

−1(a, b, ψ) = D(a, b) exp(−ψJ)JξφξTφ exp(ψJ)D
(
a−1, b−1

)

= D(a, b)J exp(−ψJ) exp(φJ)
(
1 0
0 0

)
exp(−φJ) exp(ψJ)D

(
a−1, b−1

)

= D(a, b)J exp(σJ)

(
1 0
0 0

)
exp(−σJ)D

(
a−1, b−1

)
= D(a, b)Jξσξ

T
σD
(
a−1, b−1

)
,

with σ := φ− ψ, i.e.

B =

(− cos(σ) sin(σ) −a
b sin

2(σ)
b
a cos

2(σ) cos(σ) sin(σ)

)
.

A direct computation shows

BTB =

(
b2

a2
cos4(σ) + cos2(σ) sin2(σ) ∗

∗ a2

b2 sin
4(σ) + cos2(σ) sin2(σ)

)
,
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and tr(BTB) =
(
b
a cos

2(σ) + a
b sin

2(σ)
)2
. SinceB is singular, we have ‖B‖ =

√
tr(BTB).

Now turning to (iii), we have

Ω(a2, b2, ψ2)Ω(a1, b1, ψ1)
−1 = D(a2, b2) exp((ψ1 − ψ2)J)D(a−1

1 , b−1
1 ) =

=

(
a2
a1

cos σ −a2
b1

sinσ
b2
a1

sinσ b2
b1
cos σ

)
= cos σ

(
a2
a1

0

0 b2
b1

)
+ sinσ

(
0 −a2

b1
b2
a1

0

)
,

with σ := ψ1 − ψ2, and the triangle inequality gives

∥∥Ω(a2, b2, ψ2)Ω(a1, b1, ψ1)
−1
∥∥ ≤ | cos σ|max

{
a2
a1
,
b2
b1

}
+ | sinσ|max

{
b2
a1
,
a2
b1

}
.

❑

The original version of Romanov’s theorem follows from Theorem 3.3 when we take
Ωj(R) of the form Ω(a−1, a, ψ) for a ∈ (0, 1] and ψ ∈ R, and rewrite the expressions by
employing the triangle inequality. For this choice, Lemma 3.6 reads as follows:

3.7 Lemma. Let ‖.‖ denote the spectral norm. For a, a1, a2 ∈ (0, 1] and φ,ψ, ψ1, ψ2 ∈ R,
we have

(i)
∥∥Ω(a−1, a, ψ)

∥∥ =
∥∥Ω(a−1, a, ψ)−1

∥∥ =
1

a
,

(ii)
∥∥Ω(a−1, a, ψ)Jξφξ

T
φΩ(a

−1, a, ψ)−1
∥∥ = a2 cos2(φ− ψ) +

1

a2
sin2(φ− ψ),

(iii)
∥∥Ω(a−1

2 , a2, ψ2)Ω(a
−1
1 , a1, ψ1)

−1
∥∥ ≤

≤ max
{a1
a2
,
a2
a1

}∣∣ cos(ψ1 − ψ2)
∣∣+ 1

a1a2

∣∣ sin(ψ1 − ψ2)
∣∣.

3.8 Theorem (Romanov’s Theorem 1; [Rom17]). Let H be a lcc Hamiltonian on [a, b],
let ‖.‖ be the spectral norm and let λ be a growth function.

Let N(R), R > 1, be a family of natural numbers, let

a = y0(R) < y1(R) < . . . < yN(R)(R) = b, R > 1,

be a family of partitions of [a, b], and let (ψj(R))
N(R)
j=1 and (aj(R))

N(R)
j=1 , R > 1, be two
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families of sequences of real numbers with aj(R) ∈ (0, 1]. Set

B1(R) :=

N(R)∑

j=1

1

a2j(R)

yj(R)∫

yj−1(R)

∥∥H(x)− ξψj
ξTψj

∥∥ dx

B2(R) :=

N(R)∑

j=1

a2j(R)(yj(R)− yj−1(R))

B3(R) :=

N(R)−1∑

j=1

ln

(
1 +

∣∣ sin
(
ψj+1(R)− ψj(R)

)∣∣
aj+1(R)aj(R)

)

B4(R) :=
∣∣ ln a1(R)

∣∣+
∣∣ ln aN(R)(R)

∣∣+
N(R)−1∑

j=1

∣∣∣ ln
aj+1(R)

aj(R)

∣∣∣.

Then we have the following upper bound for the λ-type of the canonical system

τλ(H) ≤ lim sup
R→∞

1

λ(R)

[
R
(
B1(R) +B2(R)

)
+B3(R) +B4(R)

]
.

Proof. In order to apply Theorem 3.3 set Ωj(R) := Ω(a−1
j (R), aj(R), ψj(R)) for j =

1, . . . , N(R), cf. Definition 3.5. We need to look at the quantities A1,A2 and A3.
Inserting ξψj(R)ξ

T
ψj(R)

and applying the triangle inequality give

‖Ωj(R)JH(t)Ω−1
j (R)‖ ≤ ‖Ωj(R)J

(
H(t)− ξψj(R)ξ

T
ψj(R)

)
Ω−1
j (R)‖+

+ ‖Ωj(R)Jξψj(R)ξ
T
ψj(R)

Ω−1
j (R)‖. (3.2)

Using the submultiplicativity of the norm and Lemma 3.7, (i), the first summand on the
right-hand side of (3.2) can be estimated from above by

‖Ωj(R)J
(
H(t)− ξψj(R)ξ

T
ψj(R)

)
Ω−1
j (R)‖ ≤ 1

a2j (R)
‖H(t)− ξψj(R)ξ

T
ψj(R)

‖.

The second summand in (3.2) is equal to a2j(R), by Lemma 3.7, (ii). Integrating over t ∈
(yj−1(R), yj(R)) and taking the sum from j = 1 to N(R) yields A1(R) ≤ B1(R)+B2(R).

Item (iii) of Lemma 3.7 gives

‖Ωj+1(R)Ω
−1
j (R)‖ ≤

≤ max
{ aj(R)

aj+1(R)
,
aj+1(R)

aj(R)

}∣∣ cos(ψj+1(R)− ψj(R))
∣∣ +

∣∣ sin(ψj+1(R)− ψj(R))
∣∣

aj+1(R)aj(R)

≤
(
1 +

∣∣ sin(ψj+1(R)− ψj(R))
∣∣

aj+1(R)aj(R)

)
max

{ aj(R)

aj+1(R)
,
aj+1(R)

aj(R)

}
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Passing to logarithms and taking the sum from j = 1 to N(R)− 1 yields

A2(R) ≤ B3(R) +

N(R)−1∑

j=1

lnmax
{ aj(R)

aj+1(R)
,
aj+1(R)

aj(R)

}
= B3(R) +

N(R)−1∑

j=1

∣∣∣ ln
aj+1(R)

aj(R)

∣∣∣

Together with the remaining term, which is, by Lemma 3.7, (i), equal to

A3(R) = ln ‖Ω1(R)‖+ ln ‖Ω−1
N(R)(R)‖ =

∣∣ ln a1(R)
∣∣+
∣∣ ln aN(R)(R)

∣∣,

we get A2(R)+A3(R) ≤ B3(R)+B4(R), and the assertion follows from Theorem 3.3. ❑

3.3. Optimal choice of Ωj(R)

Calculating the infimum in Corollary 3.4 for a given Hamiltonian H can be very difficult.
Clearly, the task gets easier when we show that the infimum is already obtained in a
smaller subset of Ξ.

In this subsection we want to focus on the choice of Ωj(R).

3.9 Lemma. Let the notation be as in Theorem 3.3. Additionally assume that the
matrix norm ‖.‖ is unitarily invariant, i.e. ‖A‖ = ‖UAV ‖ for arbitrary matrices A and
orthogonal matrices U, V .

Let (µj(R))
N(R)
i=1 , R > 1, be a family of sequences of non-zero real numbers, and let

(Uj(R))
N(R)
i=1 , R > 1, be a family of sequences of orthogonal 2× 2-matrices.

Then, replacing the original family
(
Ωj(R)

)N(R)

j=1
, R > 1, with

(
µj(R)Uj(R)Ωj(R)

)N(R)

j=1
, R > 1,

does not change the value of both A1(R) and A2(R)+A3(R). In particular, Theorem 3.3
gives the same estimate for the λ-type of H.

Proof. Multiplying from the left by orthogonal matrices does not change the expressions
since the norm is unitarily invariant.

Let A′
i(R) denote those quantities which correspond to the new family. The scalars

µj(R) cancel out immediately in the first expression, i.e. A′
1(R) = A1(R). Regarding the

second one, we have

A′
2(R) =

N(R)−1∑

j=1

ln
∥∥µj+1(R)µ

−1
j (R)Ωj+1(R)Ω

−1
j (R)

∥∥

=

N(R)−1∑

j=1

ln
∥∥Ωj+1(R)Ω

−1
j (R)

∥∥+
N(R)−1∑

j=1

ln |µj+1(R)| − ln |µj(R)|

= A2(R) + ln |µN(R)(R)| − ln |µ1(R)|.
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Since

A′
3(R) = ln ‖µ1(R)Ω1(R)‖ + ln

∥∥µ−1
N(R)(R)Ω

−1
N(R)(R)

∥∥ =

= A3(R)− ln |µN(R)(R)|+ ln |µ1(R)|,
we see A′

2(R) +A′
3(R) = A2(R) +A3(R). ❑

Formally, the restriction to unitarily invariant norms is a transition to the infimum over
a smaller subset in Corollary 3.4, and it is not clear if this affects the infimum. But this
restriction allows us to further reduce the size of the set:

3.10 Corollary. Let H be a lcc Hamiltonian, let λ be a growth function and recall the
notation from Corollary 3.4.

Denote by Ξ0 ⊆ Ξ the set of all families of tuples
(
N(R), (yj(R))

N(R)
j=0 ,

(
Ω(a−1

j (R), aj(R), ψj(R))
)N(R)

j=1

)
, R > 1,

where N(R) is a natural number, (yj(R))
N(R)
j=0 is a partition of [a, b], (ψj(R))

N(R)
j=1 is a

sequence of real numbers, and (aj(R))
N(R)
j=1 satisfies aj ∈ (0, 1]. Recall Definition 3.5 for

the definition of Ω(a−1
j (R), aj(R), ψj(R)).

Then,

τλ(H) ≤ inf
{
C(ξ, ‖.‖)

∣∣ ξ ∈ Ξ, ‖.‖ is a unitarily invariant norm
}

= inf
{
C(ξ, ‖.‖)

∣∣ ξ ∈ Ξ0, ‖.‖ is the spectral norm
}
.

Proof. Let ‖.‖ denote the spectral norm. For all 2×2 matrices A and all unitarily invari-
ant norms ‖.‖∗, we have ‖A‖ ≤ ‖A‖∗, cf. [Bha97, (IV.38), p.93]. Thus, choosing among
all unitarily invariant norms the spectral norm leads to potentially smaller quantities
Ai(R) and, consequently, to a better upper bound C(ξ, ‖.‖).

For each R > 1 and j ∈ N with j ≤ N(R) let

Ωj(R) = Uj(R)D(sj,1(R), sj,2(R))Vj(R)
T

be a singular value decomposition of Ωj(R). Multiplying Ωj(R) by the scalar µj(R) :=
(sj,1(R)sj,2(R))

−1/2 gives, with aj(R) := (sj,2(R)/sj,1(R))
1/2 ∈ (0, 1],

µj(R)Ωj(R) = Uj(R)D(aj(R)
−1, aj(R))Vj(R)

T .

To achieve detUj(R) = detVj(R) = 1 we replace, if necessary, Uj(R) and Vj(R) by
Uj(R)

(
1 0
0 −1

)
and Vj(R)

(
1 0
0 −1

)
, note

(
1 0
0 −1

)
D(a, b)

(
1 0
0 −1

)
= D(a, b).

Then Vj(R) is a rotation and can be written as Vj(R) = exp(ψj(R)J) for some ψj(R) ∈ R.
So

µj(R)Uj(R)
TΩj(R) = D(aj(R)

−1, aj(R)) exp(−ψj(R)J) = Ω(a−1
j , aj , ψj),

and the statement follows form Lemma 3.9. ❑
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Corollary 3.10 shows that the choice made by R.Romanov is (among other choices)
optimal if the norm is unitarily invariant.

Another obstacle is the following. If we want to compute A2 precisely, we have to know
the spectral norm of Ωj+1Ω

−1
j . By Corollary 3.10, we may assume Ωj = Ω(a−1

j , aj , ψj).

3.11 Lemma. Let aj ∈ (0, 1] and ψj ∈ R for j = 1, . . . N , and consider Ωj :=
Ω(a−1

j , aj , ψj). Let ‖.‖ denote the spectral norm and set

tj := cos2(ψj+1 − ψj)
(aj+1

aj
+

aj
aj+1

)
+ sin2(ψj+1 − ψj)

(
aj+1aj +

1

aj+1aj

)
.

Then

‖Ωj+1Ω
−1
j ‖ =

√
1

2

(
tj +

√
t2j − 4

)
.

Proof. Direct computation. ❑

It turned out that the exact expressions for ‖Ωj+1Ω
−1
j ‖ are too bulky for later usage.

To avoid them we use the upper bound given in Lemma 3.6, (iii). Potentially, this will
produce larger upper bounds for the λ-type of H.

To recall this upper bound, let Ωj := Ω(aj , bj, ψj) and set σj := ψj+1 − ψj . By
Lemma 3.6, (iii), we have

A2 =

N(R)−1∑

j=1

ln
∥∥Ωj+1Ω

−1
j

∥∥ ≤

≤
N(R)−1∑

j=1

ln

(
| cos(σj)|max

{
aj+1

aj
,
bj+1

bj

}
+ | sin(σj)|max

{
bj+1

aj
,
aj+1

bj

})
. (3.3)

Let Ã2 denote the right-hand side of the inequality (3.3). By Lemma 3.9 we know that
normalizing Ωj , e.g. to the form Ω(a−1, a, ψ), does not change A2+A3. But does it have

an influence on Ã2 +A3? The short answer is no. More precisely, we have the following

3.12 Lemma. Let aj, bj ∈ (0,∞) and ψj ∈ R for j = 1, . . . N be given, and consider
Ωj := Ω(aj, bj , ψj).

We can find αj ∈ (0, 1] and φj ∈ R for j = 1, . . . N with the following property:

Replacing Ωj by Ω(α−1
j , αj , φj) does not change the value of both A1 and Ã2 +A3.

Proof. Interchanging aj with bj and simultaneously replacing the corresponding ψj by
ψj+

π
2 does not change A1. In fact, this is just a multiplication of Ωj from the left by the

orthogonal matrix
(

0 1
−1 0

)
. Also Ã2 and A3 do not change, which can be seen directly

form (3.3) and Lemma 3.6, (i). Thus, it is possible to assume aj ≥ bj.
Multiplying Ωj by µj := (ajbj)

−1/2 we obtain

µjΩj = D

(√
aj/bj ,

√
bj/aj

)
exp(−ψjJ) = Ω(α−1

j , αj , ψj),
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with αj :=
√
bj/aj ∈ (0, 1]. We denote by Ã2 and A3 the original expressions, and by

Ã′
2 and A′

3 the new ones. Then

Ã′
2 = Ã2 +

N−1∑

j=1

ln
µj+1

µj
= Ã2 + lnµN − lnµ1,

A′
3 = lnµ1

∥∥Ω1

∥∥+ lnµ−1
N

∥∥Ω−1
N

∥∥ = A3 − lnµN + lnµ1.

Hence, Ã′
2 +A′

3 = Ã2 +A3. ❑

30
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4.1. Formulation of the Theorem

A particular class of canonical systems is given by Hamiltonians which are almost every-
where a diagonal matrix, and we refer to such as diagonal Hamiltonians.

We present another theorem by R.Romanov which characterises the order of a diagonal
Hamiltonian. Observe that, since the real and symmetric 2×2-matrix H(x) satisfies
trH(x) = 1, it holds that detH(x) = 0 and H(x) is diagonal if and only if

H(x) =

(
1 0
0 0

)
or H(x) =

(
0 0
0 1

)
.

4.1 Definition. Consider a nonempty interval [a, b). We denote by Cov[a, b) the set
of all coverings Ω of [a, b) by finitely many pairwise disjoint left-closed and right-open
intervals contained in [a, b). ♦

Moreover, we denote by #F the number of elements of a finite set F and by λ the
Lebesgue-measure on R. A confusion with growth functions λ is not likely, since we do
not talk about growth functions in this chapter.

4.2 Theorem (Romanov’s Theorem 2; [Rom17]). Let H be a trace normed Hamiltonian
on a finite interval [a, b) with

detH(x) = 0, H(x) is diagonal, (4.1)

for a.e. x ∈ [a, b). Set

M1 :=
{
x ∈ [a, b) : H(x) =

(
1 0
0 0

)}
,

M2 :=
{
x ∈ [a, b) : H(x) =

(
0 0
0 1

)}
.

(4.2)

Then ρ(H) is equal to the infimum of all numbers d ∈ (0, 1] for which there exists a
family of coverings Ω(R) ∈ Cov[a, b), R > 1, such that

#Ω(R) = O
(
Rd
)
, (4.3)

∑

ω∈Ω(R)

√
λ(ω ∩M1) · λ(ω ∩M2) = O

(
Rd−1

)
. (4.4)

For later usage, we formulate a version of this theorem for Hamburger Hamiltonians.
Clearly, the sequence of angles of a diagonal Hamburger Hamiltonian has to alternate
between the values 0 and π/2. The statement of Theorem 4.2 remains true when we
restrict ourselves to the following subclass of coverings.
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4.3 Definition. Let H be a diagonal Hamburger Hamiltonian in the lcc with lengths ~l,
and set xn, for n ∈ N0 ∪ {∞}, as in (2.4). We write Ω ∈ Cov(H), if

(i) Ω ∈ Cov[0, L),

(ii) ∀ω ∈ Ω ∃n−, n+ ∈ N0 ∪ {∞} : ω = [xn− , xn+).

♦

4.4 Lemma. Let H be a diagonal Hamburger Hamiltonian. Then ρ(H) is equal to the
infimum of all numbers d ∈ (0, 1] for which there exists a family of coverings Ω(R) ∈
Cov(H), R > 1, such that (4.3) and (4.4) hold.

Proof. It is enough to show that for each number d ∈ (0, 1] and family Ω(R) ∈ Cov[0, L),
R > 1, with (4.3) and (4.4), there exists a family Ω̃(R) ∈ Cov(H), R > 1, such that
(4.3) and (4.4) still hold.

The coverings Ω̃(R) are constructed by modifying Ω(R) in the following way. For each
ω ∈ Ω(R), we make a case distinction:

Case 1: Assume that there exists n ∈ N0 such that ω ⊆ [xn, xn+1). Then we include the
interval [xn, xn+1) into Ω̃(R).

Case 2: Assume that Case 1 does not take place. Then there exists n ∈ N with xn ∈ Intω
(here Intω denotes the interior of ω). Set

n− := min
{
n ∈ N : xn ∈ Intω

}
, n+ := sup

{
n ∈ N : xn ∈ Intω

}
∈ N ∪ {∞}.

In the case n+ = ∞ we include the intervals

[xn−−1, xn−), [xn− , xn+),

into Ω̃(R), note x∞ = L. For n+ <∞ we take

[xn−−1, xn−), [xn−−1, xn+), [xn+ , xn++1),

where the middle interval only appears if n− < n+.

Then, obviously, Ω̃(R) ∈ Cov(H) and #Ω̃(R) ≤ 3 ·#Ω(R). In particular, (4.3) holds
for Ω̃(R), R > 1. Consider the sum in (4.4) for the covering Ω̃(R). Then, only intervals
of the form [xn− , xn+) constructed from some ω ∈ Ω(R) contribute a possibly nonzero
summand. However, [xn− , xn+) ⊆ ω and hence

λ
(
[xn− , xn+) ∩Mi

)
≤ λ(ω ∩Mi), i = 1, 2.

We see that

∑

ω̃∈Ω̃(R)

√
λ(ω̃ ∩M1) · λ(ω̃ ∩M2) ≤

∑

ω∈Ω(R)

√
λ(ω ∩M1) · λ(ω ∩M2),

and conclude that (4.4) holds. ❑
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4.2. Restricting and extending Hamiltonians

We present two results which follow from Romanov’s Theorem 2. Both give an answer
to the following type of question: How does the order of a canonical system change when
we modify the Hamiltonian?

Intuitively, “removing parts of a Hamiltonian” should not increase the order. First,
let us make precise what we mean with “removing parts of a Hamiltonian”.

4.5 Definition. Let L ∈ (0,∞), let H be a trace normed Hamiltonian on [0, L], let
B ⊆ [0, L] be Lebesgue measurable with

∀0 < x− < x+ < L :
(
λ
(
B ∩ [x−, x+]

)
= 0 ⇒ B ∩ [x−, x+] = ∅

)
(4.5)

and set
τ(x) := λ

(
[0, x] ∩B

)
, x ∈ [0, L].

Moreover, choose a right inverse τ̃ : [0, λ(B)] → [0, L] of τ . Then we denote

HB(y) := (H ◦ τ̃ )(y), y ∈ [0, λ(B)],

and speak of the restriction of H to B. ♦

Some remarks are in order. The listed facts follow, e.g., from the arguments in [WW12,
Remark 3.3,(ii)] and [WW12, Lemma 3.5,(ii, iii)].

First, the function τ̃ is Lebesgue-to-Lebesgue measurable, hence HB is a trace normed
Hamiltonian on [0, λ(B)]. When we choose a different right inverse τ̃ , HB changes only
on τ(Bc), which is a set of measure zero.

Second, requiring (4.5) is no loss in generality. Given any Lebesgue measurable subset
B of [0, L], one can choose B0 ⊆ B such that λ(B \B0) = 0 and B0 satisfies (4.5). Using
B0 instead of B does not change τ , and HB changes only on a set of zero measure.

4.6 Proposition. Let L ∈ (0,∞), let H be a trace normed diagonal Hamiltonian on
[0, L] with detH(x) = 0 for a.e. x ∈ [0, L], and let B ⊆ [0, L] be a Lebesgue measurable
set with (4.5). Then

ρ(HB) ≤ ρ(H).

Proof. It is enough to show that for each number d ∈ (0, 1] and family Ω(R) ∈ Cov[0, L),
R > 1, with (4.3) and (4.4) for H, there exists a family Ω̃(R) ∈ Cov[0, λ(B)), R > 1,
such that (4.3) and (4.4) still hold for HB.

Let ω ∈ Ω(R) and write ω = [x−, x+). If τ(x−) = τ(x+), do not consider ω further.
If τ(x−) < τ(x+), include the interval [τ(x−), τ(x+)) into Ω̃(R). Then it is obvious that
Ω̃(R) ∈ Cov[0, λ(B)) and that #Ω̃(R) ≤ #Ω(R). In particular, (4.3) holds for Ω̃(R),
R > 1.

Let M̃1 and M̃2 be the sets (4.2) forHB. Let ω = [x−, x+) ∈ Ω(R) with τ(x−) < τ(x+),
and let ω̃ = [τ(x−), τ(x+)). If x ∈ [0, L] with τ(x) ∈ Int ω̃, then x ∈ Intω. Hence,

1Int ω̃ ◦ τ ≤ 1Intω ≤ 1ω.
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For a point x ∈ B ⊆ [0, L], (4.5) ensures τ̃(τ(x)) = x. Then τ(x) ∈ M̃1 if and only if
x ∈M1, since

HB(τ(x)) = (HB ◦ τ̃)(τ(x)) = HB(x).

Hence, we see that
1B(1M̃1

◦ τ) = 1B1M1 ≤ 1M1 .

Now we can estimate

λ(ω̃ ∩ M̃1) =λ
(
(Int ω̃) ∩ M̃1

)
=

∫

[0,λ(B)]
1Int ω̃(y)1M̃1

(y) dy

=

∫

[0,L]
(1Int ω̃ ◦ τ)(x)(1M̃1

◦ τ)(x) τ ′(x)︸ ︷︷ ︸
=1B(x) a.e.

dx

≤
∫

[0,L]
1ω(x)1M1(x) dx = λ(ω ∩M1).

The same argument applies with M̃2 and we obtain

∑

ξ∈Ω̃(R)

√
λ(ξ ∩ M̃1) · λ(ξ ∩ M̃2) ≤

∑

ω∈Ω(R)

√
λ(ω ∩M1) · λ(ω ∩M2).

This shows that (4.4) holds, and the statement follows from Theorem 4.2. ❑

Another intuition is that inserting sufficiently small intervals into a Hamiltonian should
not affect its order. For diagonal Hamburger Hamiltonians we can confirm this, and
quantify what “sufficiently small” means.

4.7 Proposition. Let H be a diagonal Hamburger Hamiltonian in the lcc and let (ln)
∞
n=1

and (φn)
∞
n=1 be its lengths and angles. Moreover, let (εn)

∞
n=1 be a sequence of nonnegative

numbers with
∞∑

n=1

εn
min{ln, ln+1}

<∞, (4.6)

and let H̃ be the Hamburger Hamiltonian with parameters

lengths: ( l1 , ε1, ε1 , l2 , ε2, ε2 , l3 , . . . )
angles: (φ1 , φ2, φ1 , φ2 , φ3, φ2 , φ3 , . . . )

︸︷︷︸
if ε1 6=0

︸︷︷︸
if ε2 6=0

Then H̃ is again in the lcc and
ρ(H̃) = ρ(H).

Proof. In view of Proposition 4.6 and Lemma 4.4 it is enough to show that for each
number d ∈ (0, 1] and family Ω(R) ∈ Cov(H), R > 1, with (4.3) and (4.4) for H, there
exists a family Ω̃(R) ∈ Cov(H̃), R > 1, such that (4.3) and (4.4) still hold for H̃.

Before we give the construction, we introduce another notation. Define a map
ι : N0 ∪ {∞} → N0 ∪ {∞} such that (x̃n as in (2.4) for H̃) x̃ι(n) is the left endpoint of the

interval in H̃ which comes from the interval [xn, xn+1) in H. Moreover, set ι(∞) := ∞.
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H :
x0 x1 x2 x3 x∞

H̃ :

x̃0 x̃ι(1) x̃ι(2) x̃ι(3) x̃∞

ε1 ε1 ε2 ε2 ε3 ε3
︸ ︷︷ ︸

if ε1 6=0

︸ ︷︷ ︸

if ε2 6=0

︸ ︷︷ ︸

if ε3 6=0

Let ω ∈ Ω(R) and write ω := [xn− , xn+). We set

ñ− := ι(n−), ñ+ := ι(n+)−
{
0 , n+ = ∞, or εn+ = 0,

2 , else,

and include the intervals

[x̃ñ− , x̃ñ+), (4.7)

[x̃ñ+ , x̃ñ++1), [x̃ñ++1, x̃ñ++2),
(
only if n+ <∞, εn+ > 0

)
(4.8)

into Ω̃(R). Then, clearly, Ω̃(R) ∈ Cov(H̃) and

#Ω̃(R) ≤ 3 ·#Ω(R).

In particular, (4.3) holds for (Ω̃(R))R>1. We need to estimate the sum

∑

ω̃∈Ω̃(R)

√
λ(ω̃ ∩ M̃1) · λ(ω̃ ∩ M̃2) (4.9)

where M̃1 and M̃2 are the sets (4.2) for H̃.
The intervals in (4.8) do not contribute to the sum (4.9). Moreover, an interval from

(4.7) contributes only if n+ > n− + 1. For an interval ω̃ of this kind we have

λ(ω̃ ∩ M̃i) = λ(ω ∩Mi) +
∑

n−<j<n+

εj , i = 1, 2.

However,
λ(ω ∩Mi) ≥ min{lj , lj+1}, n− < j < n+, i = 1, 2,

and hence

λ(ω̃ ∩ M̃i) = λ(ω ∩Mi)
(
1 +

∑

n−<j<n+

εj
λ(ω ∩Mi)

)

≤ λ(ω ∩Mi)
(
1 +

∞∑

j=1

εj
min{lj , lj+1}

)
.
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Thus (4.9) does not exceed

(
1 +

∞∑

j=1

εj
min{lj , lj+1}

)
·
∑

ω∈Ω(R)

√
λ(ω ∩M1) · λ(ω ∩M2),

and we conclude that (4.4) holds. ❑

36



Part II.

Results for Hamburger Hamiltonians
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5. Estimates for the order

5.1. General upper estimate

We apply Theorem 3.3 to Hamburger Hamiltonians. In this case there is a natural
choice for the partition, namely by taking the first n− 1 indivisible intervals of H, and
the remaining part as the last interval.

5.1 Theorem. Let H~l,~φ be a Hamburger Hamiltonian in the lcc, let ‖.‖ denote the
spectral norm and let λ be a growth function.

Let N(R), R > 1, be a family of natural numbers, let (aj(R))
N(R)
j=1 , R > 1, be a family

of sequences of real numbers with aj(R) ∈ (0, 1], and let ψ ∈ R. We introduce the
notation ǫj := φj+1 − φj for j = 1, . . . , N(R)− 2 and ǫN(R)−1 := ψ − φN(R)−1 and set

C1(R) :=

N(R)−1∑

j=1

lja
2
j(R)

C2(R) :=
∞∑

j=N(R)

lj

(
a2N(R)(R) cos

2(ψ − φj) + a−2
N(R)(R) sin

2(ψ − φj)
)

C3(R) :=

N(R)−1∑

j=1

ln
(
max

{aj+1(R)

aj(R)
,
aj(R)

aj+1(R)

}∣∣ cos(ǫj)
∣∣+ | sin(ǫj)|

aj+1(R)aj(R)

)

C4(R) := ln a−1
1 (R) + ln a−1

N(R)(R).

Then, we have the following upper bound for the λ-type of the canonical system

τλ(H) ≤ lim sup
R→∞

1

λ(R)

[
R
(
C1(R) + C2(R)

)
+ C3(R) + C4(R)

]
.

Proof. Recall the notation

x0 := 0, xn :=

n∑

k=1

lk, n ∈ N, L :=

∞∑

k=1

lk ∈ (0,∞).

In order to apply Theorem 3.3, we take for R > 1 the partition yj := xj for j =
0, . . . , N(R) − 1 and yN(R) := L. Further, set Ωj(R) := Ω(a−1

j (R), aj(R), φj) for j =

1, . . . , N(R)− 1 and ΩN(R)(R) := Ω(a−1
N(R)(R), aN(R)(R), ψ).
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By Lemma 3.7, (ii), the first part of A1(R) coincides with

N(R)−1∑

j=1

∫ yj(R)

yj−1(R)

∥∥Ωj(R)JH(t)Ω−1
j (R)

∥∥ dt =

=

N(R)−1∑

j=1

lj
∥∥Ω(aj(R), φj)JξφjξTφjΩ(aj(R), φj)

−1
∥∥ dt = C1(R).

Concerning the remaining summand of A1(R) we have
∫ yN(R)

yN(R)−1

∥∥ΩN(R)(R)JH(t)Ω−1
N(R)(R)

∥∥ dt =

=
∞∑

j=N(R)

lj
∥∥Ω(aN(R)(R), ψ)Jξφj ξ

T
φjΩ(aN(R)(R), ψ)

−1(R)
∥∥ = C2(R),

again due to Lemma 3.7, (ii). This shows A1(R) = C1(R) +C2(R).
By the same means Lemma 3.7, (i), gives A3(R) = C4(R), and Lemma 3.7, (iii), gives

A2(R) ≤ C3(R). The assertion follows from Theorem 3.3. ❑

5.2 Remark. If the sequences (aj(R))
N(R)
j=1 are nondecreasing for large enough R, we can

write the expression C3(R) as

C3(R) =

N(R)−1∑

j=1

ln
(aj+1(R)

aj(R)

∣∣ cos(ǫj)
∣∣+ | sin(ǫj)|

aj+1(R)aj(R)

)

=

N(R)−1∑

j=1

ln
aj+1(R)

aj(R)

(∣∣ cos(ǫj)
∣∣+ | sin(ǫj)|

a2j+1(R)

)

= ln a−1
1 (R) + ln aN(R)(R) +

N(R)−1∑

j=1

ln
(∣∣ cos(ǫj)

∣∣+ | sin(ǫj)|
a2j+1(R)

)
.

A similar simplification can be made for nonincreasing (aj(R))
N(R)
j=1 . ♦

5.2. An upper estimate via power-growth assumptions

We introduce the following measures for the decay of sequences on the power scale.

5.3 Definition. Let ~a = (an)
∞
n=1 be a bounded sequence of positive real numbers. Then

we set

∆∗(~a) := sup
{
τ ≥ 0 : an = O(n−τ )

}
,

∆(~a) := sup
{
τ ≥ 0 :

1

n

2n−1∑

k=n

ak = O(n−τ )
}
.

♦
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5.4 Remark. (i) Since ~a is bounded, τ = 0 belongs to the sets in the definitions of
∆∗(~a) and ∆(~a). Thus these expressions are elements of [0,∞].

(ii) It is easy to see ∆∗(~a) ≤ ∆(~a), cf. Lemma 6.1.

(iii) Let ~a = (an)
∞
n=0 be a bounded sequence of positive numbers, let α ≥ 0, and set

bn := aαn. Then ∆∗(~b) = α ·∆∗(~a).

(iv) Let ~a = (an)
∞
n=0 and ~b = (bn)

∞
n=0 be bounded sequences of positive numbers. Then

∆∗
(
(an · bn)∞n=1

)
≥ ∆∗(~a) + ∆∗(~b).

If bn ≍ 1n−τ , then equality holds.

(v) Clearly, an ≍ bn implies both ∆∗(~a) = ∆∗(~b) and ∆(~a) = ∆(~b).
♦

Next, we introduce measures for the decay of lengths and angle-differences, and a meas-
ure for the quality of possible convergence of angles.

5.5 Definition. Let H be a Hamburger Hamiltonian with lengths ~l and angles ~φ. Set

∆l(H) := ∆∗(~l ), ∆+
l (H) := max{1,∆l(H)},

∆φ(H) := ∆((| sin(φn+1 − φn)|)∞n=1).

Provided that ∆+
l (H) <∞, set

µ(H) := sup
ψ∈[0,π)

sup

{
τ ≥ 0 :

∞∑

j=n

lj sin
2(φj − ψ) = O(n1−∆+

l
−τ )

}
∪ {0} ∈ [0,∞].

When no confusion is possible, we drop explicit notion of H. ♦

5.6 Remark. When φn modulo π has a limit, say φ∗ ∈ [0, π), it is optimal to choose
ψ := φ∗ in the definition of µ.

If the angles do not converge, a good choice would be an angle ψ such that φj ≈ ψ
for those j which belong to the most or the largest lengths lj . ♦

5.7 Lemma. Let H be a Hamburger Hamiltonian in the lcc. Then

2(∆φ − 1) ≤ µ.

Proof. The inequality is true if ∆φ ≤ 1. Thus, assume ∆φ > 1. For any τ ∈ (1,∆φ) we
have

∞∑

n=j

| sin(φn+1 − φn)| =
∞∑

k=0

2k+1j−1∑

n=2kj

| sin(φn+1 − φn)| .
∞∑

k=0

(2kj)1−τ . j1−τ

1Recall that fn ≍ gn if there are constants c, d > 0 s. t. cgn ≤ fn ≤ dgn for n large enough.
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Adding multiples of π to any φj does not change both ∆φ and µ. Thus, we can assume
without loss of generality |φj+1−φj | ≤ π

2 such that | sin(φj+1−φj)| ≍ |φj+1−φj |. Then
∞∑

n=j

|φn+1 − φn| . j1−τ ,

and ~φ has a limit, ψ, such that

| sin(φj − ψ)| ≤ |φj − ψ| ≤
∞∑

n=j

|φn+1 − φn| . j1−τ .

If ∆+
l = 1, ~l ∈ ℓ1 gives

∞∑

j=n

lj sin
2(φj − ψ) .

∞∑

j=n

ljj
2(1−τ) . n−2(τ−1).

In the case 1 < ∆+
l = ∆l, we have for all ǫ > 0

∞∑

j=n

lj sin
2(φj − ψ) .

∞∑

j=n

j−∆l+ǫ · j2(1−τ) . n1−∆l−2(τ−1)+ǫ.

In both cases, this shows 2(τ − 1) ≤ µ. ❑

In view of Lemma 5.7 there arises the following question: For fixed ∆φ, is it possible
that µ is arbitrary large, or is there some natural upper bound?

Example 5.8 shows that µ can indeed be arbitrary large, whereas Example 5.9 demon-
strates that, in a very regular situation, we have µ ≤ 2∆φ. In fact, as we shall see later
in Corollary 6.10, the case µ > 2∆φ occurs only in somehow irregular situations.

5.8 Example. Let α, β > 1 and γ, δ > 0, and set

ln :=

{
n−α, n ∈ 2N,

n−β, n ∈ 2N− 1,
φn :=

{
n−γ , n ∈ 2N,

n−δ, n ∈ 2N − 1.

It is not hard so see ∆+
l = min{α, β} and ∆φ = min{γ, δ}. Since the angles converge to

zero, we should take ψ := 0 in order to determine µ. The calculation

∞∑

j=n

lj sin
2(φj − ψ) ≍

∞∑

j=n

ljφ
2
j = O(n1−α−2γ) + O(n1−β−2δ)

results in
µ = min{α+ 2γ, β + 2δ} −min{α, β}.

Let us assume α > β and γ < δ such that ∆+
l = β, ∆φ = γ and µ = min{α−β+2γ, 2δ}.

By choosing α and δ large enough, µ will be arbitrary large for fixed ∆φ and ∆+
l . ♦
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5.9 Example. Let α > 1, β > 0 and let (σn)
∞
n=1 be a sequence of signs, i.e. σn = ±1.

Set ln := n−α, φ1 := 0 and φn+1 := φn + σnn
−β for n ∈ N. Then ∆+

l = α and, due to
|φn+1 − φn| = n−β, ∆φ = β.

First consider the case σn = 1 for n ∈ N. We claim µ = max{0, 2(∆φ−1)}. If ∆φ ≤ 1,
the angles modulo π do not converge, and one can show µ = 0. For ∆φ > 1 the angles
do converge to the limit

ψ := lim
n→∞

φn =
∞∑

j=1

(φj+1 − φj) =
∞∑

j=1

σjj
−β =

∞∑

j=1

j−β .

Moreover, we have

ψ − φn =
∞∑

j=n

(φj+1 − φj) =
∞∑

j=n

j−∆φ = O(n1−∆φ),

which results in µ = 2(∆φ − 1), i.e. equality prevails in Lemma 5.7.
Secondly consider the other extreme case in which the signs alternate, i.e. σn = −σn+1

for n ∈ N. By Leibniz criterion, φn converges to the limit

ψ :=
∞∑

j=1

(φj+1 − φj) =
∞∑

j=1

σjj
−β = ±

∞∑

j=1

(−1)jj−β .

In fact,

|ψ − φn| =
∣∣∣

∞∑

j=n

(−1)jj−∆φ

∣∣∣ = O(n−∆φ),

which shows µ = 2∆φ. ♦

5.10 Theorem. Let H be a Hamburger Hamiltonian in the lcc with lengths ~l and angles
~φ. Assume that (∆+

l ,∆φ, µ) 6= (1, 1, 0).

(i) If µ ≤ 2∆φ, then

ρ(H) ≤





1

∆+
l +∆φ

, for ∆+
l +∆φ ≥ 2 (generic region)

1−∆φ +
µ
2

∆+
l −∆φ + µ

, for ∆+
l +∆φ < 2 (critical triangle).

Note that, for µ = 2∆φ, this reduces to ρ(H) ≤ 1
∆+

l
+∆φ

.

(ii) If µ > 2∆φ, then

ρ(H) ≤ 1

∆+
l + µ

2

.

5.11 Remark. (i) The case µ > 2∆φ only occurs if the data is somehow irregular. We
will discuss this in more detail in Corollary 6.10.
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(ii) It is easy to verify that larger values of ∆+
l , ∆φ or µ do lead to better (in the sense

of lower) upper estimates in Theorem 5.10.
♦

Proof of Theorem 5.10. If ∆+
l = 1, set ∆′

l := 1. Otherwise let ∆′
l ∈ (1,∆+

l ) be arbitrary,
and note

ln = O(n−∆′
l).

For all ∆+
l we have

∞∑

j=n

lj = O(n1−∆′
l). (5.1)

If ∆φ = 0, set ∆′
φ := 0. Otherwise let ∆′

φ ∈ (0,∆φ) be arbitrary. For all ∆φ we have

1

n

2n−1∑

j=n

|sin(φj+1 − φj)| = O(n−∆′
φ). (5.2)

If µ = 0, set µ′ := 0 and ψ := 0. Otherwise let µ′ ∈ (0, µ) be arbitrary. Then there
exists ψ ∈ [0, π) such that

∞∑

j=n

lj sin
2(φj − ψ) = O(n1−∆+

l −µ′).

For all µ we have
∞∑

j=n

lj sin
2(φj − ψ) = O(n1−∆′

l−µ
′
). (5.3)

We will choose γ > 0 and apply Theorem 5.1 with the choice N(R) := ⌊Rγ⌋ and

a2j (R) :=




R−γ(∆′

l−1+µ′

2
)j∆

′
l−1, j = 1, . . . , N(R)− 1

R−µ′γ
2 , j = N(R).

Note that aj(R) ≤ 1, since

a2j(R) ≤ a2N(R)−1(R) ≤ R−γ(∆′
l−1+µ′

2
)+γ(∆′

l−1) = R− γµ′

2 ≤ 1.

We need to estimate expressions C1(R), . . . , C4(R). By (5.1)

C1(R) =

N(R)−1∑

j=1

lja
2
j (R) . R−γ(∆′

l
−1+µ′

2
)

⌊Rγ⌋∑

j=1

j−∆′
l
+∆′

l
−1 = O

(
R−γ(∆′

l
−1+µ′

2
) log(R)

)
.

(5.4)
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Relation (5.1) and (5.3) give

C2(R) =

∞∑

j=N(R)

lj

(
a2N(R)(R) cos

2(ψ − φj) + a−2
N(R)(R) sin

2(ψ − φj)
)

≤ R−µ′γ
2

∞∑

j=N(R)

lj + R
µ′γ
2

∞∑

j=N(R)

lj sin
2(ψ − φj) =

. R−µ′γ
2 Rγ(1−∆′

l) +R
µ′γ
2 Rγ(1−∆′

l−µ
′) = O

(
R−γ(∆′

l−1+µ′

2
)
)
. (5.5)

Note that C4(R) = O(logR), since both a1(R) and aN(R)(R) are just a power of R. So
far, we have

R(C1(R) + C2(R)) + C4(R) = O
(
R1−γ(∆′

l−1+µ′

2
) logR

)
. (5.6)

Finally, consider C3(R). The last summand in this expression is an element of O(logR).

For the remaining part of the sum we can use Remark 5.2 since (aj(R))
N(R)−1
j=1 is non-

decreasing. This gives

C3(R) ≤
N(R)−2∑

j=1

ln
(∣∣ cos(ǫj)

∣∣+ | sin(ǫj)|
a2j+1(R)

)
+O(logR)

≤
N(R)−2∑

j=1

ln
(
1 +Rγ(∆

′
l−1+µ′

2
)| sin(φj+1 − φj)|j1−∆′

l

)
+O(logR). (5.7)

First consider the case µ ≥ 2∆φ where we have to show ρ(H) ≤ (∆+
l +

µ
2 )

−1. We continue

in (5.7) by estimating | sin(φj+1 − φj)|j1−∆′
l ≤ 1, which gives C3(R) = O

(
Rγ logR

)
.

In view of (5.6), we choose γ to be the solution of 1− γ(∆′
l − 1 + µ′

2 ) = γ, i.e.

γ := d′ :=
1

∆′
l +

µ′

2

,

which gives
R(C1(R) + C2(R)) + C3(R) + C4(R) = O

(
Rd

′
logR

)
.

Theorem 5.1 implies that the type of H w.r.t. the growth function λ(R) := Rd
′
logR

is finite. In particular, the order of H is at most d′. Passing to the upper bounds in
∆′
l → ∆+

l and µ′ → µ, shows ρ(H) ≤ (∆+
l + µ

2 )
−1.

Finally, consider the case µ < 2∆φ. We continue to estimate C3(R) by splitting the
sum in (5.7) into two parts. Let s ∈ [0, γ). First we use a rough estimate for the sum
from j = 2 to j = ⌈Rs⌉ − 1,

⌈Rs⌉−1∑

j=1

ln
(
1 +Rγ(∆

′
l
−1+µ′

2
)| sin(φj+1 − φj)|j1−∆′

l

)
= O

(
Rs logR

)
. (5.8)
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For the remaining part of the sum we employ ln(1+ x) ≤ x, and get the upper estimate

⌊Rγ⌋−2∑

j=⌈Rs⌉

ln
(
1 +Rγ(∆

′
l−1+µ′

2
)| sin(φj+1 − φj)|j1−∆′

l

)
≤

≤ Rγ(∆
′
l−1+µ′

2
)

⌊Rγ⌋−2∑

j=⌈Rs⌉

| sin(φj+1 − φj)|j1−∆′
l

≤ Rγ(∆
′
l−1+µ′

2
)

⌈(γ−s) log2R⌉−1∑

k=0

2k+1⌈Rs⌉−1∑

j=2k⌈Rs⌉

| sin(φj+1 − φj)|j1−∆′
l

The fact that j1−∆′
l is nonincreasing and (5.2) give

≤ Rγ(∆
′
l−1+µ′

2
)+s(1−∆′

l)

⌈(γ−s) log2R⌉−1∑

k=0

(2k)1−∆′
l

2k+1⌈Rs⌉−1∑

j=2k⌈Rs⌉

| sin(φj+1 − φj)|

≤ Rγ(∆
′
l−1+µ′

2
)+s(1−∆′

l)

⌈(γ−s) log2R⌉−1∑

k=0

(2k)1−∆′
l(2k⌈Rs⌉)1−∆′

φ

. Rγ(∆
′
l−1+µ′

2
)+s[2−(∆′

l+∆′
φ)]

⌈(γ−s) log2R⌉−1∑

k=0

(
2[2−(∆′

l+∆′
φ)]
)k
. (5.9)

Setting q := 2[2−(∆′
l
+∆′

φ
)] and combining (5.7) with (5.8) and (5.9) yields

C3(R) = O
(
Rs logR

)
+O

(
Rγ(∆

′
l−1+µ′

2
)+s[2−(∆′

l+∆′
φ)]
) ⌈(γ−s) log2R⌉−1∑

k=0

qk. (5.10)

First, consider the sub-case ∆+
l +∆φ > 2. By taking ∆′

l,∆
′
φ and µ′ sufficiently close to

∆+
l ,∆φ and µ, it is possible to assume ∆′

l +∆′
φ > 2 and ∆′

φ >
µ′

2 . Thus, q < 1 and he
sum on the right-hand side of (5.10) converges.

Our estimate of C3(R) is now optimal if s and γ satisfies s = γ(∆′
l − 1 + µ′

2 ) + s[2 −
(∆′

l +∆′
φ)]. Balancing with (5.6) yields

s := d′ :=
1

∆′
l +∆′

φ

, γ :=
∆′
l +∆′

φ − 1

(∆′
l +∆′

φ)(∆
′
l − 1 + µ′

2 )
.

Note that s < γ and ∆′
l − 1 + µ′

2 > 0. The case (∆′
l, µ

′) = (1, 0) does not appear here,
since Lemma 5.7 would imply ∆′

φ ≤ ∆φ ≤ 1. Thus, we have

R(C1(R) + C2(R)) + C3(R) + C4(R) = O
(
Rd

′
logR

)
,
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and Theorem 5.1 implies that the type of H w.r.t. the growth function λ(R) := Rd
′
logR

is finite. In particular, the order of H is at most d′. Passing to the upper bounds in
∆′
l → ∆+

l and ∆′
φ → ∆φ, leads to ρ(H) ≤ (∆+

l +∆φ)
−1.

Secondly, assume ∆+
l +∆φ ≤ 2. If ∆+

l = 1 and ∆φ = 0, obviously ∆′
l +∆′

φ = 1 < 2.

In any other case, we have ∆′
l + ∆′

φ < ∆+
l + ∆φ ≤ 2. Thus, q > 1 and the size of the

sum in (5.10) can be estimated by

⌈(γ−s) log2R⌉−1∑

k=0

qk =
q⌈(γ−s) log2R⌉ − 1

q − 1
. q(γ−s) log2R =

= 2[2−(∆′
l+∆′

φ)](γ−s) log2R = O
(
R(γ−s)[2−(∆′

l+∆′
φ)]
)
.

Therefore, (5.10) reduces to

C3(R) = O
(
Rs logR

)
+O

(
Rγ(1−∆′

φ+
µ′

2
)).

In this case set s := 0. In view of (5.6), we define γ as the solution of γ(1−∆′
φ +

µ′

2 ) =

1− γ(∆′
l − 1 + µ′

2 ), i.e. set

γ :=
1

∆′
l −∆′

φ + µ′
, d′ :=

1−∆′
φ +

µ′

2

∆′
l −∆′

φ + µ′
.

The assumption (∆+
l ,∆φ, µ) 6= (1, 1, 0) assures that ∆+

l −∆φ+µ > 0 and 1−∆φ+
µ
2 > 0.

Choosing ∆′
l,∆

′
φ and µ′ close enough to their original values ensures that γ and d′ are

well-defined and positive. So,

R(C1(R) + C2(R)) + C3(R) + C4(R) = O
(
Rd

′
logR

)
,

and Theorem 5.1 implies that the type of H with respect to the growth function λ(R) :=
Rd

′
logR is finite. In particular, the order ofH is at most d′. Passing to the upper bounds

in ∆′
l → ∆+

l , ∆
′
φ → ∆φ and µ′ → µ gives ρ(H) ≤ (1−∆φ +

µ
2 )/(∆l −∆φ + µ). ❑

Let us mention the following direct corollary of Theorem 5.10.

5.12 Corollary. Let H be a lcc Hamburger Hamiltonian with lengths ~l and angles ~φ.
If at least one of the quantities ∆+

l ,∆φ or µ is infinite, then the order of H is zero.

We close this section with a comparison between Theorem 5.10 and its initial version,
cf. [PRW16, Theorem 2.7]. The new result has improved in two ways: First, the case
µ > 2∆φ has now been treated properly. Secondly, the quantity which measures the
quality of possible convergence of angles is now larger. The initial version used instead
of µ(H) the quantity Λ(H):
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5.13 Definition. Let H be a Hamburger Hamiltonian with lengths ~l and angles ~φ.
Provided that ∆+

l (H) <∞, set

Λ(H) := sup
ψ∈[0,π)

sup

{
τ ≥ 0 :

∞∑

j=n

lj | sin(φj − ψ)| = O(n1−∆+
l −τ )

}
∪ {0} ∈ [0,∞].

♦

The new quantity µ(H) is up to two times larger than Λ(H), which improves the upper
bounds for the order of H significantly. This stronger result enables us to determine the
order for a new class of examples, cf. Theorem 6.5, (ii). This improvement was possible
due to the refinement of Romanov’s Theorem 1.

5.14 Lemma. We have the inequality

Λ(H) ≤ µ(H) ≤ 2Λ(H).

Proof. The first inequality is clear. For the second one, take ψ ∈ [0, π) and τ ≥ 0 such
that

∞∑

j=n

lj sin
2(φj − ψ) = O(n1−∆+

l
−τ ).

By the Cauchy-Schwarz inequality, we have for ǫ > 0

∞∑

j=n

lj| sin(φj − ψ)| ≤
( ∞∑

j=n

lj

)1/2( ∞∑

j=n

lj sin
2(φj − ψ)

)1/2

=

= O
(
n

1
2
(1−∆+

l
+ǫ+1−∆+

l
−τ)
)
= O

(
n1−∆+

l
+(ǫ−τ)/2

)
,

since ln = O(n−∆l+ǫ) implies
∑∞

j=n lj = O(n1−∆+
l +ǫ). Taking ǫ → 0 and taking the

supremum over τ ≥ 0 and ψ ∈ [0, π) gives µ(H) ≤ 2Λ(H). ❑

5.3. A Lower estimate

We begin with a result which is formulated in terms of moment sequences and contains
the lower bound ρ((sn)

∞
n=0) ≥ ρ(F ). The order of F (z) is quite accessible due to (2.3)

and is potentially larger than the Livšic bound ρ((sn)
∞
n=0) ≥ ρ(L), cf. Theorem 2.3.

5.15 Corollary. Let (sn)
∞
n=0 be an indeterminate moment sequence, and set

F (z) :=

∞∑

n=0

bn,nz
n, L(z) :=

∞∑

n=0

z2n

s2n
.

Then,
ρ((sn)

∞
n=0) ≥ ρ(F ) ≥ ρ(L). (5.11)

Moreover, when the order of the moment sequence ρ is not zero and coincides with the
order of F (z), we have τρ((sn)

∞
n=0) ≥ τρ(F ). Similarly, 0 6= ρ(F ) = ρ(L) =: ρ gives

2τρ(F ) ≥ τρ(L).
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It is convenient to prove this result using Theorem 2.8, as it has been done already in
[BS14, Theorem 7.1]. For the sake of completeness we include it here.

Let us mention that it is also possible to show the substantial inequality ρ((sn)
∞
n=0) ≥

ρ(F ) directly, using the multiplicative structure of monodromy matrices. This has been
carried out in [PRW15, Proposition 2.15].

Proof of Corollary 5.15. Entire functions g(z) =
∑∞

n=0 anz
n with non-negative an satisfy

M(g,R) = g(R). The rough estimate (
∑∞

k=n b
2
n,k)

1/2 ≥ bn,n shows Φ(R) ≥ F (R), and,
hence, M(Φ, R) ≥ M(F,R). Theorem 2.8 gives the first inequality in (5.11) and the
corresponding statement about the type.

The orthonormality of Pn and the Cauchy-Schwarz inequality give

1 = (Pn(z), Pn(z))
2
s = b2n,n(Pn(z), z

n)2s ≤ b2n,n(z
n, zn)s = b2n,ns2n,

i.e. bn,n ≥ s
−1/2
2n . Together with the standard formula which calculates the order of an

entire function from its Taylor coefficients, cf. [Boa54, Theorem 2.2.2], we get

ρ(F ) = lim sup
n→∞

n log(n)

log(b−1
n,n)

≥ lim sup
n→∞

n log(n)

log
(
s
1/2
2n

) =

= lim sup
n→∞

2n log(2n)

log(s2n)
= ρ(L).

Assume ρ(F ) = ρ(L) 6= 0 and denote this value by ρ. Then the corresponding formula
for the type with respect to order ρ gives

2τρ(F ) = 2
[
lim sup
n→∞

(
n

1
ρ b

1
n
n,n

)]ρ 1

eρ
≥
[
lim sup
n→∞

(
(2n)

1
ρ s

− 1
2n

2n

)]ρ 1

eρ
= τρ(L).

❑

Let us formulate this result in the language of Hamburger Hamiltonian.

5.16 Definition. For a Hamburger Hamiltonian H in the lcc with lengths ~l and angles
~φ, set

δl,φ(H) := lim inf
n→∞

−1

n lnn
ln

(
√
ln

n−1∏

k=1

lk| sin(φk+1 − φk)|
)

∈ [0,∞].

♦

5.17 Proposition. Let H be a Hamburger Hamiltonian in the lcc with lengths ~l and
angles ~φ. Then

ρ(H) ≥ 1

δl,φ(H)
.

48



5. Estimates for the order

Proof. By (2.3) and (2.5), we have

ρ(F ) = lim sup
n→∞

n lnn

− ln bn,n
= lim sup

n→∞

n lnn

− ln
(∏n−1

k=0 ρ
−1
k

)

= lim sup
n→∞

n lnn

− ln
(√

ln
∏n−1
k=1 lk| sin(φk+1 − φk)|

)

=

[
lim inf
n→∞

−1

n lnn
ln

(√
ln

n−1∏

k=1

lk| sin(φk+1 − φk)|
)]−1

=
1

δl,φ(H)
.

Thus, the statement follows from Corollary 5.15. ❑

Obviously δl,φ contains joint information about the lengths and the angles. An attempt
can be made to separate this quantity into one part depending only on the lengths and
another one depending only on the angles. Unfortunately, this procedure requires certain
regularity assumptions, cf. Corollary 5.21.

5.18 Definition. Let ~a = (an)
∞
n=1 be a sequence of positive real numbers, and let β ≥ 0.

Then we define

δ(~a, β) := lim inf
n→∞

G(n;~a, β), where G(n;~a, β) :=
−1

n lnn
ln

(
aβn

n−1∏

k=1

ak

)
.

Moreover, for a Hamburger Hamiltonian H with lengths ~l and angles ~φ set

δl(H) := δ(~l, 12 ), δφ(H) := δ((| sin(φk+1 − φk)|)∞k=1, 0).

♦

5.19 Remark.

(i) A priori, δ(~a, β) is an element of [−∞,∞], but for bounded sequences ~a we have

G(n;~a, β) ≥ −1

n lnn
ln
(
Cn+β−1

)
−→ 0, for n→ ∞,

i.e. δ(~a, β) ≥ 0.

(ii) Changing finitely many elements of a sequence ~a has no influence on δ(~a, β).

(iii) Let ~x = (xn)
∞
n=1 be a sequence of positive real numbers, α ∈ R, and set an := xαn.

Then for β ≥ 0
G(n;~a, β) = α ·G(n; ~x, β).

In particular, δ(~a, β) exists as a limit if and only if δ(~x, β) has this property. In
this case δ(~a, β) = α · δ(~x, β).
Otherwise δ(~a, β) = α · δ(~x, β) holds if α > 0.
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(iv) Let ~x = (xn)
∞
n=1, ~y = (yn)

∞
n=1 be sequences of positive real numbers and set

an := xn · yn. For β ≥ 0 we have

G(n;~a, β) = G(n; ~x, β) +G(n; ~y, β),

which gives
δ(~a, β) ≥ δ(~x, β) + δ(~y, β).

Equality holds if at least one of δ(~x, β) and δ(~y, β) exists as a limit.

(v) Observe that an . bn gives

G(n;~a, β) ≥ G(n;~b, β) + o(1),

and hence δ(~a, β) ≥ δ(~b, β).

Consequently an ≍ bn yields

G(n;~a, β) = G(n;~b, β) + o(1).

In particular δ(~a, β) = δ(~b, β), and δ(~a, β) exists as a limit if and only if δ(~b, β)
does so.

♦

5.20 Example. Let ~a = (an)
∞
n=1 be a sequence of positive real numbers with an ≍ n−α

for α ∈ R. Then δ(~a, β) = α for all β ≥ 0, and δ(~a, β) exists as a limit.
To verify this, consider at first xn := n. By Stirling’s formula we have

ln

(
nβ

n−1∏

k=1

k

)
= ln(n!nβ−1) = n lnn+O(n),

i.e. δ(~x, β) = −1 as a limit. Remark 5.19, (iii), gives δ((n−α)∞n=1, β) = α. The statement
follows from Remark 5.19, (v). ♦

Coming back to δl,φ(H), note that

δl,φ(H) = lim inf
n→∞

(
G(n;~l, 12) +G(n; (| sin(φk+1 − φk)|)∞k=1, 0)

)
,

which gives δl,φ(H) ≥ δl(H)+ δφ(H). In general (δl(H)+ δφ(H))−1 is not a lower bound
for the order of H.

5.21 Corollary. Let H be a Hamburger Hamiltonian in the lcc with lengths ~l and angles
~φ. Assume that at least one of δl(H) and δφ(H) exists as a limit. Then

ρ(H) ≥ 1

δl(H) + δφ(H)
.
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6. Regularly vs. irregularly distributed data

6.1. Regular behaviour

The goal of this section is to compare the upper bound for the order of a Hamburger
Hamiltonian from Theorem 5.10 with the lower bound from Corollary 5.21, and describe
classes where these bounds coincide, cf. Theorem 6.5.

We need to overcome the obstacle that the decay of the sequences ~l and
(| sin(φn+1 − φn)|)∞n=1 is measured in different ways. Hence, we begin with a comparison
of these measures for a bounded sequence ~a = (an)

∞
n=0.

To recall the notions ∆(~a) and ∆∗(~a) see Definition 5.3; δ(~a, β) is defined in Defini-
tion 5.18.

6.1 Lemma. For a bounded sequence of positive real numbers ~a = (an)
∞
n=1 and for

β ≥ 0, we have
∆∗(~a) ≤ ∆(~a) ≤ δ(~a, β).

Proof. The inequality ∆∗(~a) ≤ ∆(~a) is clear. We have to show ∆(~a) ≤ δ(~a, β), which is
not trivial for ∆(~a) > 0. Multiplying the whole sequence ~a by a positive constant does
not change both ∆(~a) and δ(~a, β). Thus, we can assume an ≤ 1, n ∈ N.

Let τ ∈ (0,∆(~a)) be arbitrary. Then 1
n

∑2n−1
k=n ak ≤ cn−τ , n ∈ N, for some c ≥ 1. Set

r(n) := n− 2⌊log2 n⌋ ≤ n/2. The Inequality of arithmetic and geometric means gives

aβn

n−1∏

k=1

ak ≤
n−1∏

k=2⌊log2 n⌋

ak ·
⌊log2 n⌋−1∏

j=0

2j+1−1∏

k=2j

ak

≤
(

1

r(n)

n−1∑

k=2⌊log2 n⌋

ak

)r(n)
·
⌊log2 n⌋−1∏

j=0

(
1

2j

2j+1−1∑

k=2j

ak

)2j

≤
(
c2⌊log2 n⌋

r(n)
2−τ⌊log2 n⌋

)r(n)
·
⌊log2 n⌋−1∏

j=0

(
c2−jτ

)2j
.

Taking logarithms results in

ln

(
aβn

n−1∏

k=1

ak

)
≤ r(n) ln

(
c2⌊log2 n⌋

r(n)

)
− τr(n) ln

(
2⌊log2 n⌋

)
+ (6.1)

+ ln c

⌊log2 n⌋−1∑

j=0

2j − τ ln 2

⌊log2 n⌋−1∑

j=0

j2j . (6.2)
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In the first term in (6.1), use 2⌊log2 n⌋ ≤ n. It is easy to see that the maximum of the
function x 7→ x ln (cn/x) for x ∈ [1, n/2] is attained at x = min{c/e, 1/2}n, and its value
is an element of O(n).

By standard calculations we get the following expressions for the two sums in (6.2),

⌊log2 n⌋−1∑

j=0

2j = 2⌊log2 n⌋ − 1 = O(n),

⌊log2 n⌋−1∑

j=0

j2j = 2⌊log2 n⌋(⌊log2 n⌋ − 2) + 2 = 2⌊log2 n⌋(log2 n) + O(n).

In sum, this yields

ln

(
aβn

n−1∏

k=1

ak

)
≤ −τ

(
r(n) ln

(
2⌊log2 n⌋

)
+ 2⌊log2 n⌋ lnn

)
+O(n)

= −τ lnn
(
r(n) + 2⌊log2 n⌋

)
+O(n) = −τn lnn+O(n).

Finally, we get

lim inf
n→∞

−1

n lnn
ln

(
aβn

n−1∏

k=1

ak

)
≥ lim inf

n→∞

−1

n lnn
(−τn lnn+O(n)) = τ,

which shows δ(~a, β) ≥ ∆(~a). ❑

The following rather weak regularity assumption ensures that equality holds in
Lemma 6.1, which is essential for the comparison between the upper and lower bound
of ρ(H).

6.2 Definition. We call a sequence ~a = (an)
∞
n=1 of positive real numbers regularly

distributed if
an(∏n

k=1
ak

)1/n = O(1).

♦

6.3 Remark. Each monotonically decreasing sequence is regularly distributed. In addi-
tion, if ~a is regularly distributed and an ≍ bn, then ~b is regularly distributed. ♦

6.4 Lemma. For a bounded and regularly distributed sequence of positive real numbers
~a = (an)

∞
n=1 and for 0 ≤ β ≤ 1, we have

∆∗(~a) = ∆(~a) = δ(~a, β).
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Proof. By Lemma 6.1 it is enough to show δ(~a, β) ≤ ∆∗(~a). If δ(~a, β) = 0, this is trivial.
Otherwise, let τ ∈ (0, δ(~a, β)) be arbitrary. Since δ(~a, β) is the limes inferior of G(n;~a, β)
there exists N ∈ N such that

τ ≤ G(n;~a, β) =
−1

n lnn
ln

(
aβn

n−1∏

k=1

ak

)
, n ≥ N.

It follows that

n−τ ≥
(
aβn

n−1∏

k=1

ak

) 1
n

= a
β−1
n

n

(
n∏

k=1

ak

) 1
n

& a
β−1
n

n an.

Since an is bounded and β − 1 ≤ 0, we conclude an . n−τ . ❑

6.5 Theorem. Let H be a lcc Hamburger Hamiltonian with lengths ~l and angles ~φ.
Assume that ~l is regularly distributed, and that at least one of δl or δφ exists as a limit.
Furthermore, assume that at least one of the following conditions hold true:

(i) (| sin(φn+1−φn)|)∞n=1 is regularly distributed, δl+ δφ ≥ 2, and (δl, δφ, µ) 6= (1, 1, 0).

(ii) (| sin(φn+1 − φn)|)∞n=1 is regularly distributed, and µ = 2δφ.

(iii) δφ = 0.

Then,

ρ(H) =
1

δl + δφ
.

Proof. By Lemma 6.4, we have δl = ∆l = ∆(~l). The fact that ~l is summable leads to
∆(~l) ≥ 1, i.e. ∆l = ∆+

l .
If δφ = 0, Lemma 6.1 implies ∆φ = 0. Otherwise (| sin(φn+1 − φn)|)∞n=1 is regularly

distributed, and Lemma 6.4 gives δφ = ∆φ.
In case (i) Theorem 5.10 yields ρ(H) ≤ (δl + δφ)

−1. If (ii) holds, this theorem gives

ρ(H) ≤ 1

δl +
µ
2

=
1

δl + δφ
.

In case (iii) we get ρ(H) ≤ (δl + µ/2)−1 ≤ δ−1
l .

In all cases, the upper bound of the order of H coincides with the lower bound from
Corollary 5.21. ❑

Next we demonstrate how Theorem 6.5 can be applied in a regular example. In there,
one can observe the phenomenon that for δl + δφ < 2 our lower and upper bounds do
sometimes not coincide. This is the reason why we speak of this region as the critical
triangle. The example also contains a case inside the critical triangle where the order
can still be determined.
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6.6 Example. We come back to Example 5.9. Consider ln := n−α, φ1 := 0 and φn+1 :=
φn + σnn

−β for n ∈ N.
As we already mentioned, we have ∆+

l = α and ∆φ = β. Moreover, ~l and
(| sin(φn+1 − φn)|)∞n=1 are regularly distributed, cf. Remark 6.3, and δl exists as a limit,
cf. Example 5.20.

First, assume that σn = 1 for all n ∈ N, which results in µ = max{0, 2(∆φ−1)} ≤ 2∆φ.
If α + β ≥ 2 or β = 0, then the assumptions of Theorem 6.5 (namely (i) or (iii),
respectively), are satisfied, and we get

ρ(H) =
1

α+ β
.

Inside the critical triangle α+ β < 2 for β > 0, we have β < 1 and µ = 0. In this case,
the lower bound form Corollary 5.21 and the upper bound from Theorem 5.10 do not
coincide. We know that

ρ(H) ∈
[ 1

α+ β
,
1− β

α− β

]
,

but the actual order of H is not known in this case.
Secondly, assume σn = (−1)n for n ∈ N, which gives µ = 2∆φ. Independent of α+ β

being greater or less than 2, Theorem 6.5, (ii), yields that the order is equal to 1
α+β .

♦

Another frequently-used measure for the growth of a sequence is the convergence expo-
nent, cf. Definition 2.4. Note that

1

c. e.
(
(a−1
n )∞n=1

) = sup{p > 0 : ~a ∈ ℓ1/p},

where this expression is understood to be 0 if ~a /∈ ℓ1/p for all p > 0.

6.7 Lemma. For a sequence of positive real numbers ~a = (an)
∞
n=1 with limn→∞ an = 0,

and for β ≥ 0, we have

(i) In general we have the inequality,

∆∗(~a) ≤
[
c. e.

(
(a−1
n )∞n=1

)]−1 ≤ δ(~a, β).

(ii) Regarding ∆(~a), it holds that

∆(~a) ≤ max
{ [

c. e.
(
(a−1
n )∞n=1

)]−1
, 1
}
.

(iii) If ~a is regularly distributed, then we have

∆∗(~a) = ∆(~a) =
[
c. e.

(
(a−1
n )∞n=1

)]−1
= δ(~a, β). (6.3)
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Proof. add (i): If ∆∗(~a) = 0, then the first inequality is clear. Otherwise, let τ > 0 be
arbitrary with an = O(n−τ ), and take p > 0. Then

∞∑

n=1

a1/pn .

∞∑

n=1

n−τ/p <∞,

if p < τ . This gives τ ≤
[
c. e.

(
(a−1
n )∞n=1

)]−1
, and hence ∆∗(~a) ≤

[
c. e.

(
(a−1
n )∞n=1

)]−1
.

The other inequality is clear if
[
c. e.

(
(a−1
n )∞n=1

)]−1
= 0. So let p > 0 be arbitrary such

that ~a ∈ ℓ1/p. The inequality of arithmetic and geometric means gives

(
n∏

k=1

a
1/p
k

)1/n

≤ 1

n

n∑

k=1

a
1/p
k ≤ C

1

n

for a constant C > 1. Thus
∏n
k=1 ak ≤ Cnpn−np, and together with aβn+1 ≤ 1 we get

G(n+ 1;~a, β) ≥ −1

n lnn
ln
(
Cnpn−np

) n→∞−→ p.

This gives p ≤ δ(~a, β), and hence
[
c. e.

(
(a−1
n )∞n=1

)]−1 ≤ δ(~a, β).

add (ii): The inequality holds trivially in the case ∆(~a) ≤ 1. Otherwise, let τ > 1
be arbitrary such that n−1

∑2n−1
k=n ak = O(n−τ ), and take p ∈ (1, τ). Jensen’s inequality

(note that x 7→ x1/p is concave) yields

∞∑

n=1

a1/pn =
∞∑

k=0

2k+1−1∑

n=2k

a1/pn ≤
∞∑

k=0

2k
(

1

2k

2k+1−1∑

n=2k

an

)1/p ∞∑

k=0

2k(2k)−τ/p =
∞∑

k=0

(
21−

τ
p
)k
.

This geometric series converges since 1 − τ
p < 0, and we note p ≤

[
c. e.

(
(a−1
n )∞n=1

)]−1
.

Because p ∈ (1, τ) was arbitrary, we get τ ≤
[
c. e.

(
(a−1
n )∞n=1

)]−1
, and taking the su-

premum over τ gives ∆(~a) ≤
[
c. e.

(
(a−1
n )∞n=1

)]−1
.

add (iii): This follows from (i) and Lemma 6.4. ❑

Next we present an example of a sequence which is not regularly distributed such that
all 4 quantities in (6.3) are distinct. Moreover, this example shows that the maximum
in Lemma 6.7, (ii), is necessary.

6.8 Example. Let q and α be two positive real numbers with q ∈ (0, 1), and set

an :=

{
k−α n = 2k, k ∈ N0,

qn else.

We are going to see (β ≥ 0)

∆∗(~a) = 0,
[
c. e.

(
(a−1
n )∞n=1

)]−1
= α,

∆(~a) = 1, δ(~a, β) = ∞.
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6. Regularly vs. irregularly distributed data

In particular for α < 1 [
c. e.

(
(a−1
n )∞n=1

)]−1
< ∆(~a).

To verify this, let τ ≥ 0 and assume a2k = k−α . 2−τk. Clearly this forces τ = 0, and
we see ∆∗(~a) = 0.

Now let p > 0. Clearly q1/p < 1, and thus
∑∞

n=0 q
n/p < ∞. Hence

∑∞
n=0 a

1/p
n <

∞ if and only if
∑∞

k=1 k
−α/p < ∞. This is equivalent to α/p > 1 and we conclude[

c. e.
(
(a−1
n )∞n=1

)]−1
= α.

Next let τ ≥ 0 and assume n−1
∑2n−1

j=n aj = O(n−τ ). Then

2−kk−α = 2−ka2k ≤ 1

2k

2k+1−1∑

n=2k

an ≤ C2−kτ ,

for a constant C > 0. Since 2k(τ−1)k−α can only be bounded if τ ≤ 1, we conclude
∆(~a) ≤ 1.

To show the other inequality, let n ∈ N be arbitrary. Since {n, n + 1, . . . , 2n − 1}
contains exactly one power of two, we have

1

n

2n−1∑

j=n

aj ≤
1

n

(
(log2 n)

−α +

2n−1∑

j=n

qj
)

= O(n−1),

which shows ∆(~a) ≥ 1.
Finally, let Mn denote the set of those natural numbers in {1, 2, . . . , n− 1} which are

not of the form 2k for k ∈ N0. Using aj ≤ 1 for all j ∈ N, we have

−1

n lnn
ln

(
aβn

n−1∏

j=1

aj

)
≥ −1

n lnn
ln

( ∏

j∈Mn

aj

)
=

− ln q

n lnn

∑

j∈Mn

j &
− ln q

n lnn
n2

n→∞−→ ∞.

Hence, δ(~a, β) = ∞. ♦

6.2. Irregular behaviour

First, we look at the case µ > δφ or µ > ∆φ. A comparison of the upper and lower
bound reveals occurrence of some irregularity. More precisely, we have the following
statements.

6.9 Theorem. Let H be a Hamburger Hamiltonian in the lcc with lengths ~l and angles
~φ. Assume that µ > 2δφ.

Then, either ~l is not regularly distributed or both δl and δφ do not exist as a limit.

Proof. Assume on the contrary that ~l is regularly distributed and that at least one of δl
and δφ does exist as a limit.
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6. Regularly vs. irregularly distributed data

By Lemma 6.4, we have δl = ∆l = ∆(~l). The summability of ~l gives ∆(~l) ≥ 1, i.e.
∆l = ∆+

l . The upper bound from Theorem 5.10 (note µ > 2δφ ≥ 2∆φ) and the lower
bound from Corollary 5.21 give

1

∆+
l + δφ

=
1

δl + δφ
≤ ρ(H) ≤ 1

∆+
l + µ

2

,

which leads to the contradiction δφ ≥ µ
2 > δφ. ❑

6.10 Corollary. Let H be a Hamburger Hamiltonian in the lcc with lengths ~l and angles
~φ. Assume that µ > 2∆φ.

Then, either ~l or (| sin(φn+1 − φn)|)∞n=1 is not regularly distributed, or both δl and δφ
do not exist as a limit.

Proof. The statement is trivial if (| sin(φn+1 − φn)|)∞n=1 is not regularly distributed.
Otherwise it follows directly from Theorem 6.9. ❑

In the rest of this section, we construct a class of examples which shows that both the
lower bound established in Proposition 5.17 and the upper bound from Theorem 5.10
do not necessarily coincide with the order when lengths and/or angle-differences are
not regularly distributed. Such examples can already be found in the class of diagonal
Hamburger Hamiltonians.

6.11 Theorem. Let ρ ∈ (0, 1), and let δ and ∆ be positive real numbers with

1

δ
< ρ <

1

∆
, ∆ ≥ max

{
1,

1

ρ
− 1
}
.

Then there exists a summable sequence ~l of positive numbers, such that the diagonal
Hamburger Hamiltonian H with lengths ~l (and angles φn := nπ2 ) satisfies

ρ(H) = ρ, δl(H) = δ, ∆+
l (H) = ∆.

The conditions 1/δ < ρ < 1/∆ and ∆ ≥ 1 are necessary, since we are looking for
examples where both the upper and the lower bound are different from the order.

The additional condition ∆ ≥ ρ−1 − 1 is a constraint only in the case ρ < 1/2.
In this case the upper estimate is at most 1/∆ ≤ ρ/(1 − ρ), which is for small order
asymptotically correct. Hence our method does not produce examples with very small
order such that 1/∆ is really bad, say close to one.

The proof uses some general results on the one hand, namely Propositions 4.7 and 4.6,
which are corollaries of [Rom17, Theorem 2], and some elementary construction of se-
quences on the other, namely Lemma 6.12 and Lemma 6.13 below.

6.12 Lemma. Let α and ∆ be positive real numbers with

α > 1, max{1, α − 1} ≤ ∆ < α,
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6. Regularly vs. irregularly distributed data

and set ln := n−α, n ∈ N. Then there exists a function β : N0 → 2N and a sequence of
natural numbers (nj)

∞
j=1 with

nj+1 > nj + β(nj) + 1, j ∈ N,

such that the sequence (l̃n)
∞
n=1 defined by (n0 := −1)

l̃n :=





l
n+

∑j−1
i=1 β(ni)

for n = nj−1 −
∑j−2

i=1 β(ni) + 2, . . . , nj −
∑j−1

i=1 β(ni)

β(nj)+1∑
k=1
k odd

lnj+k for n = nj −
∑j−1

i=1 β(ni) + 1
, j ∈ N,

satisfies
δ
(
(l̃n)

∞
n=1,

1
2

)
≤ α, ∆∗

(
(l̃n)

∞
n=1

)
= ∆.

Let H and H̃ be the diagonal Hamburger Hamiltonians with lengths (ln)
∞
n=1 and (l̃n)

∞
n=1,

respectively. The construction of (l̃n)
∞
n=1 is done in such a way that H̃ is obtained

from H by removing some intervals, namely those corresponding to lnj+k with k =
2, 4, . . . , β(nj), and gluing the contiguous ones to one long interval.

( l1,..., ln1 , ln1+1,..., ln1+β(n1)+1︸ ︷︷ ︸
, ln1+β(n1)+2,..., ln2 , ln2+1,..., ln2+β(n2)+1︸ ︷︷ ︸

, ln2+β(n2)+2, . . . )

( l1,..., ln1 , l̃n1+1 , ln1+β(n1)+2,..., ln2 , l̃n2−β(n1)+1 , ln2+β(n2)+2, . . . )

Observe here that β(nj) is even, and hence angles alternate in H̃.

Proof. Set γ := α − ∆, then 0 < γ ≤ 1. For n ∈ N0 let β(n) be the smallest integer
larger than nγ .

We are going to define a sequence (nj)
∞
j=0 recursively. Set n0 := −1. Assume that

j ≥ 1 and that n1, . . . , nj−1 are already defined. Consider the sequence (l
(j−1)
n )∞n=1

defined as

l(j−1)
n :=





l̃n for n ≤ nj−1 −
j−2∑
i=1

β(ni) + 1

l
n+

∑j−1
i=1 β(ni)

for n > nj−1 −
j−2∑
i=1

β(ni) + 1

Note here that l̃n is already well-defined for n ≤ nj−1 −
∑j−2

i=1 β(ni) + 1. We have

lim inf
m→∞

G
(
m; (l(j−1)

n )∞n=1,
1
2

)
= lim inf

m→∞
G
(
m; (ln)

∞
n=1,

1
2

)
= α.

Therefore, we can choose nj ∈ N sufficiently large so that

nj > nj−1 + β(nj−1) + 1,

nj > 2

( j−1∑

i=1

β(ni)− 1

)
, (6.4)

G
(
nj −

j−1∑

i=1

β(ni); (l
(j−1)
n )∞n=1,

1
2

)
≤ α+

1

j
. (6.5)
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6. Regularly vs. irregularly distributed data

Consider the sequence (l̃n)
∞
n=1 constructed with this choice of nj, j ∈ N0. First,

l̃n = l(j−1)
n , n ≤ nj −

j−1∑

i=1

β(ni), j ∈ N,

and hence by (6.5)

G
(
m; (l̃n)

∞
n=1,

1
2

)
= G

(
m; (l(j−1)

n )∞n=1,
1
2

)
≤ α+

1

j
, m = nj −

j−1∑

i=1

β(ni), j ∈ N.

We conclude δ
(
(l̃n)

∞
n=1,

1
2

)
≤ α.

Second, we estimate the length of the “glued” interval,

l̃
nj−

∑j−1
i=1 β(ni)+1

=

β(nj)+1∑

k=1
k odd

lnj+k ≍
∫ nj+β(nj)

nj

x−α dx ≍ β(nj)n
−α
j ≍ n−∆

j .

Note that nj+β(nj) ≍ nj+n
γ
j ≍ nj, since γ ≤ 1. Furthermore, nj ≍ nj−

∑j−1
i=1 β(ni)+1

due to (6.4). Since the other intervals are by construction smaller, we conclude
∆∗
(
(l̃n)

∞
n=1

)
= ∆. ❑

6.13 Lemma. Let (ln)
∞
n=1 be a summable sequence of positive real numbers, and let

δ > 0 be a positive real number with δ > δ((ln)
∞
n=1,

1
2 ).

Then there exists a strictly monotonically increasing sequences of natural numbers
(nj)

∞
j=0 and a sequence of positive real numbers (εj)

∞
j=1 with

∞∑

j=1

εj
min{lnj−1 , lnj−1+1}

<∞, (6.6)

such that the sequence (n−1 := 0)

(l̃n)
∞
n=1 :=

(
l1, . . . , ln0 , ε1, ε1 , ln0+1, . . . , ln1 , ε2, ε2 , ln1+1, . . .

)

=

{
ln−2j , nj−1 + 2j < n ≤ nj + 2j,

εj+1 , nj + 2j < n ≤ nj + 2j + 2
, j ∈ N0,

satisfies

δ
(
(l̃n)

∞
n=1,

1
2

)
= δ,

∆∗
(
(l̃n)

∞
n=1

)
= ∆∗

(
(ln)

∞
n=1

)
.

Proof. If ∆∗
(
(ln)

∞
n=1

)
= 0, set βj := 0, j ∈ N. Otherwise, let (βj)

∞
j=1 be an increasing

sequence of positive numbers with βj < ∆∗
(
(ln)

∞
n=1

)
and limn→∞ βj = ∆∗

(
(ln)

∞
n=1

)
.

Choose in both cases a sequence of natural numbers (̊nj)
∞
j=0 such that for all j ∈ N,

ln ≤ (n+ 2j)−βj , n > n̊j−1, (6.7)
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6. Regularly vs. irregularly distributed data

which is possible since

lim
n→∞

lnn
τ = 0, τ ∈

[
0,∆∗((ln)

∞
n=1)

)
.

Now we construct inductively a sequence of natural numbers (nj)
∞
j=0 and a sequence of

positive real numbers (εj)
∞
j=1 such that

nj ≥ n̊j, j ∈ N0, (6.8)

nj > nj−1, j ∈ N, (6.9)

εj ≤ min

{
min{lnj−1 , lnj−1+1}

j2
, (nj−1 + 2j)−βj

}
, j ∈ N, (6.10)

G
(
m; (l(j)n )∞n=1,

1
2

)
{
≥ δ , n0 ≤ m < nj + 2j

= δ , m = nj + 2j
, j ∈ N. (6.11)

where
(l(j)n )∞n=1 :=

(
l̃1, . . . , l̃nj−1+2(j−1), εj , εj , lnj−1+1, lnj−1+2, . . .

)
,

depends on n0, . . . , nj−1 and ε1, . . . , εj .

Induction base “j = 0”: Set n0 := n̊0. Then (6.8) holds. The conditions (6.9)–(6.11) are
void.
Induction step “j − 1 7→ j”: Assume that j ∈ N and that n0, . . . , nj−1 and ε1, . . . , εj−1

are already constructed such that (6.8)–(6.11) hold up to j − 1.

(a) Choose ε̊j > 0 sufficiently small such that

ε̊j ≤ min

{
min{lnj−1 , lnj−1+1}

j2
, (nj−1 + 2j)−βj

}
,

G
(
m; (̊l(j)n )∞n=1,

1
2

)
≥ δ, nj−1 + 2j − 1 ≤ m ≤ max{̊nj , nj−1}+ 2j,

where
(̊l(j)n )∞n=1 :=

(
l̃1, . . . , l̃nj−1+2(j−1), ε̊j , ε̊j , lnj−1+1, lnj−1+2, . . .

)
.

Observe here that the numbers l̃1, . . . , l̃nj−1+2(j−1) involve only the already defined data.

(b) The set
Kj :=

{
m ≥ n0 : G

(
m; (̊l(j)n )∞n=1,

1
2

)
< δ
}

is nonempty since

lim inf
m→∞

G
(
m; (̊l(j)n )∞n=1,

1
2

)
= lim inf

m→∞
G
(
m; (ln)

∞
n=1,

1
2

)
= δ((ln)

∞
n=1,

1
2) < δ.

Moreover, by the inductive hypothesis and our choice of ε̊j , we have

Kj ⊆ (max{̊nj , nj−1}+ 2j,∞). (6.12)

Observe here that l̃n = l
(j−1)
n , n ≤ nj−1 + 2(j − 1). Set

nj := minKj − 2j.
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In particular nj + 2j ∈ Kj , which means G
(
nj + 2j; (̊l

(j)
n )∞n=1,

1
2

)
< δ.

(c) Choose εj > 0 such that εj ≤ ε̊j and

G
(
nj + 2j; (l(j)n )∞n=1,

1
2

)
= δ.

Let us check that (6.8)–(6.11) hold for j. From (6.12) we obtain nj > max{̊nj, nj−1},
which gives (6.8) and (6.9). The condition (6.10) is satisfied by ε̊j and hence also by εj .
To see (6.11) note that

G
(
m; (l(j)n )∞n=1,

1
2

)
{
= G

(
m; (̊l

(j)
n )∞n=1,

1
2

)
≥ δ , n0 ≤ m ≤ nj−1 + 2(j − 1),

≥ G
(
m; (̊l

(j)
n )∞n=1,

1
2

)
, nj−1 + 2j − 1 ≤ m.

Moreover, m ≤ nj + 2j − 1 implies m /∈ Kj , which means G
(
m; (̊l

(j)
n )∞n=1,

1
2

)
≥ δ. This

completes the inductive construction.

The required properties of the sequence (l̃n)
∞
n=1 follow easily. First, remembering that

l̃n = l
(j)
n if j is large enough such that n ≤ nj + 2j, we find

G
(
m; (l̃n)

∞
n=1,

1
2

)
≥ δ, m ≥ n0,

G
(
nj + 2j; (l̃n)

∞
n=1,

1
2

)
= δ, j ∈ N,

and therefore lim infm→∞G
(
m; (l̃n)

∞
n=1,

1
2

)
= δ. Second, by (6.10) the series in (6.6)

converges. This also implies
∑∞

n=1 l̃n <∞.
Since (ln)

∞
n=1 is a subsequence of (l̃n)

∞
n=1 in such a way that at least every third

element of (l̃n)
∞
n=1 belongs to (ln)

∞
n=1, the inequality ∆∗

(
(l̃n)

∞
n=1

)
≤ ∆∗

(
(ln)

∞
n=1

)
holds.

If ∆∗
(
(ln)

∞
n=1

)
= 0, then equality follows immediately. Assume that ∆∗

(
(ln)

∞
n=1

)
> 0

and let τ ∈
(
0,∆∗

(
(ln)

∞
n=1

))
. Choose j0 ∈ N such that βj > τ for j ≥ j0. It holds that

l̃n =

{
εj , n ∈ {nj−1 + 2j − 1, nj−1 + 2j}
ln−2j , nj−1 + 2j < n ≤ nj + 2j

}

≤n−βj ≤ n−τ , j ≥ j0,

where we used (6.10) to bound εj , and (6.7) to bound ln−2j in the case nj−1+2j < n ≤
nj + 2j, note that n− 2j > nj−1 ≥ n̊j−1. Hence, ∆

∗
(
(l̃n)

∞
n=1

)
≥ ∆∗

(
(ln)

∞
n=1

)
. ❑

We have collected all necessary ingredients for the proof of Theorem 6.11.

Proof of Theorem 6.11. Set l
(1)
n := n−

1
ρ , n ∈ N. Then

δ
(
(l(1)n )∞n=1,

1
2

)
= ∆∗

(
(l(1)n )∞n=1

)
=

1

ρ
,

cf. Example 5.20. The diagonal Hamburger Hamiltonian H(1) with lengths (l
(1)
n )∞n=1 has

order ρ by Theorem 6.5.
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Lemma 6.12 with α = 1
ρ provides us with a sequence (l

(2)
n )∞n=1 such that

δ
(
(l(2)n )∞n=1,

1
2

)
≤ 1

ρ
, ∆∗

(
(l(2)n )∞n=1

)
= ∆,

and so that the diagonal Hamburger Hamiltonian H(2) with lengths (l
(2)
n )∞n=1 is obtained

by removing certain intervals from H(1). By Proposition 4.6, we obtain

ρ ≤ 1

δ
(
(l
(2)
n )∞n=1,

1
2

) ≤ ρ
(
H(2)

)
≤ ρ
(
H(1)

)
= ρ,

and, thus, ρ(H(2)) = ρ and δ
(
(l
(2)
n )∞n=1,

1
2

)
= 1

ρ .

Now we apply Lemma 6.13 with (l
(2)
n )∞n=1 and δ > δ

(
(l
(2)
n )∞n=1,

1
2

)
, which gives a se-

quence (l
(3)
n )∞n=1 such that

δ
(
(l(3)n )∞n=1,

1
2

)
= δ, ∆∗

(
(l(3)n )∞n=1

)
= ∆.

Let H(3) be the diagonal Hamburger Hamiltonian with lengths (l
(3)
n )∞n=1. Then (6.6)

implies (4.6), and Proposition 4.7 gives ρ(H(3)) = ρ(H(2)) = ρ. ❑

As a corollary, we get that Livšic’s lower bound for the order of an indeterminate
moment problem, i.e. ρ((sn)

∞
n=0) ≥ ρ(L), is not always equal to the order. In fact, the

gap between ρ(L) and the actual order of the moment sequence can be arbitrarily close
to 1.

6.14 Corollary. Let ρ, ρ′ ∈ (0, 1) with ρ > ρ′. Then there exists an indeterminate
moment sequence (sn)

∞
n=0 such that

ρ
(
(sn)

∞
n=0

)
= ρ, ρ′ ≥ ρ(L).

Proof. By Lemma 6.4, we can choose a diagonal Hamburger Hamiltonian H with
ρ(H) = ρ and δl(H)−1 = ρ′. Consider the corresponding moment sequence (sn)

∞
n=0.

By Corollary 5.15,
ρ
(
(sn)

∞
n=0

)
≥ ρ(F ) ≥ ρ(L),

and Proposition 5.17 gives ρ(F ) = δl,φ(H)−1 = δl(H)−1 = ρ′. ❑
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7. Square Transform and the indefinite

method

We establish another upper estimate for the order of a Hamburger Hamiltonian, cf.
Theorem 7.18 which is the first main result in this chapter. The proof is achieved by
associating with the given Hamburger Hamiltonian a certain (singular) Krein-string.
During this process, several different types of arguments come into play. Our method
relies on an operator theoretic limiting argument (Proposition 7.6), some purely algebraic
computations and transformations (Section 7.2), and estimates for canonical products by
means of the density of their zeroes. Moreover, on the way, we leave the positive definite
scheme and encounter Hamiltonians which may take negative semidefinite matrices as
values.

The estimate in Theorem 7.18 is incomparable with the one obtained in Theorem 5.10;
in some cases it is better and in some others it is worse, cf. Proposition 7.23 and Ex-
ample 7.25.

Our second main result in this chapter is Theorem 7.22, where we discuss a class of
Hamiltonians whose order can be determined. Consider a Hamburger Hamiltonian H
whose angles φn (up to a small deviation) walk on the grid Arccot(Z). By this we mean
that | cot φn − cotφn−1| is constant equal to 1:

φn

n

A
rc
co
t(
Z
)

π
2

0

π

Further, assume that the lengths ln and angles together decay sufficiently rapidly (the

series
∑∞

n=1[ln sin
2 φn]

1
2 lnn should converge) and regularly (the sequence ln sin

2 φn
should be nonincreasing). The conclusion then is that the order of H is equal to the
convergence exponent of ([ln sin

2 φn]
−1)∞n=1. The proof is obtained by evaluating the up-

per estimate Theorem 7.18 with help of [Kac90], and by combining this with the lower
estimate Proposition 5.17.

Theorem 7.22 can be seen as a generalisation for orders ≤ 1/2 of a theorem of
Yu.M.Berezanskĭı. In the language of Hamburger Hamiltonians the essence of Berez-

63



7. Square Transform and the indefinite method

anskĭı’s theorem can be phrased as follows: Consider a Hamburger Hamiltonian H whose
angles alternate between two values:

ψ1

ψ2

n

φn

If lengths decay regularly (the sequence ln−2/ln should be monotone), then the order of
H is equal to the convergence exponent of (l−1

n )∞n=1.
A detailed discussion of the connection with Berezanskĭı’s theorem is given in sub-

section 7.3.3, where we shall also see that the present result actually goes far beyond
Berezanskĭı’s result, cf. Example 7.26.

7.1. Schatten-class properties and the order

Let H : [0, L) → R
2×2 be a positive semidefinite Hamiltonian. As mentioned in the

Introduction, the fundamental distinction whether H stays integrable towards L or not
is of importance for the study of the corresponding operator.

Recall the construction of the Titchmarsh-Weyl coefficient associated with a lpc
Hamiltonian:

7.1. The Weyl-construction: Let H be a Hamiltonian in the lpc. Then for each para-
meter τ ∈ N0 ∪ {∞} the limit

QH(z) := lim
x→L

w11(x, z)τ(z) + w12(x, z)

w21(x, z)τ(z) + w22(x, z)
(7.1)

exists locally uniformly on C \ R and does not depend on τ , cf. [HSW00, The-
orem 2.1(2.7)]. The function QH is called the Titchmarsh-Weyl coefficient of H. It
belongs to the Nevanlinna class and is the Q-function of the canonical selfadjoint exten-
sion of Tmin(H) given as

A(H) :=
{
(f ; g) ∈ Tmax(H) : (1, 0)f(0) = 0

}
.

This means that the Nevanlinna-kernel Q(z)−Q(w)
z−w of Q is given as the scalar product of a

family of defect elements of Tmin(H) generated byA(H), cf. [HSW00, Theorem 4.3, (4.8)].
♦

Let us turn to the case that H is integrable up to L:

7.2. Limit circle case: In this case W (x, z) converges locally uniformly to the mono-
dromy matrix W (L, z). Therefore, the right side of (7.1) can be evaluated as

QH/τ (z) :=
w11(L, z)τ(z) + w12(L, z)

w21(L, z)τ(z) + w22(L, z)
, z ∈ C \ R.
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7. Square Transform and the indefinite method

When τ runs through N0 ∪ {∞}, the functions QH/τ parameterise the family of regu-
larised 1-resolvents of all selfadjoint exit space extensions of the symmetric extension of
Tmin(H) given as

S(H) :=
{
(f ; g) ∈ Tmax(H) : (1, 0)f(0) = 0, f(L) = 0

}
.

Thereby constant parameters correspond to canonical extensions. This is due to the
interpretation of W (L, z) as a resolvent matrix in the sense of M.G.Krein, which follows
from [HSW00, Proposition 4.4].

If τ ∈ R∪{∞}, then set φ := Arccot τ and append an indivisible interval with angle φ
and infinite length to H. For the resulting lpc Hamiltonian H̃ we have that QH̃ = QH/τ
is the Q-function of Tmin(H̃) induced by its extension

Aτ (H) :=
{
(f ; g) ∈ Tmax(H) : (1, 0)f(0) = 0, ξ∗φf(L) = 0

}
. (7.2)

♦

Now we can define the order of a Hamiltonian, which is not necessarily in the lcc.

7.3 Definition. Let H be a positive semidefinite Hamiltonian defined on the finite or
infinite interval [0, L).

If H is lpc and QH is not meromorphic throughout C, set ρ(H) := ∞. Otherwise,
let (ωn)n=1,2,... be the sequence of non-zero poles of QH (or QH/0 if H is lcc) arranged
according to nondecreasing modulus, and define ρ(H) as the convergence exponent of
(ωn)n=1,2,..., i.e.

ρ(H) := inf
{
α > 0 :

∑

n=1,2,...

|ωn|−α <∞
}
.

We call ρ(H) the order of H. ♦

7.4 Lemma. Let H be a positive semidefinite Hamiltonian in the lcc.
Then he poles of QH/τ and the zeroes of w21(L, z) are interlacing. Thus Definition 7.3

is consistent with Definition 1.6.

Proof. The entries wij(L, z) are entire functions of bounded type in both half-planes C+

and C
− and are real along the real axis. Hence, they are canonical products and their

order is equal to the convergence exponent of their zeros, cf. [Lev80, Theorem 7].
Let τ ∈ R ∪ {∞} be arbitrary. Next we show that the poles of QH/τ , i.e. the zeros of

f(z) := w21(L, z)τ + w22(L, z), are interlacing with the zeroes of g(z) := w21(L, z):
The entire functions f(z) and g(z) are not identically zero and have no common zeros,

because of detW (x, z) = 1. Moreover,

f(z)

g(z)
=
w21(L, z)τ +w22(L, z)

w21(L, z)
= τ +

w22(L, z)

w21(L, z)

is a Nevanlinna function, as we already mentioned in section 1.2. By [BP95, Corol-
lary 1.2], the zeros of f(z) and g(z) are real, simple and interlace.

Hence the corresponding convergence exponents coincide, which means that both
definitions are equivalent in the lcc. ❑

65



7. Square Transform and the indefinite method

We use an operator theoretic interpretation of ρ(H). For p > 0 denote by Sp the
Schatten-von Neumann ideal of all compact operators whose sequence of s-numbers
belongs to ℓp, see, e.g., [GK69].

7.5 Remark. Let H be a positive semidefinite Hamiltonian which is either lcc or lpc with
QH meromorphic throughout C. Then the spectrum of A(H) (or Aτ (H), respectively)
coincides with the set of poles of QH (or QH/τ , respectively). Therefore A(H) (or
Aτ (H), respectively) has compact resolvents and, for arbitrary z in the resolvent set of
the operator

ρ(H) = inf
{
p > 0 : (A(H) − z)−1 ∈ Sp

}
,

or ρ(H) = inf
{
p > 0 : (Aτ (H)− z)−1 ∈ Sp

}
, respectively.

Assume now that H is lpc with QH meromorphic throughout C. There exists a
unique canonical selfadjoint extension of Tmin(H) having 0 in its spectrum, and hence
as an eigenvalue. This means that there exists some constant ξφ(H) belonging to L2(H).
Since we are in lpc, the angle φ(H) is uniquely determined (modulo π). It is related to
QH by

QH(0) = − tanφ(H), (7.3)

cf. [HSW00, Theorem 2.1(2.8)]. ♦

In our present considerations, we employ the following result which is interesting in its
own right.

7.6 Proposition. Let H : [0, L) → R
2×2 be a positive semidefinite Hamiltonian in lpc

such that (0, L) is not indivisible. Assume that QH is meromorphic in C, QH(0) = 0,
and

∑
n

1
|ωn|

< ∞, where (ωn)n=1,2,... is the sequence of poles of QH arranged according
to nondecreasing modulus. Then the following statements hold.

(i) Denote by J the set of all points x ∈ (0, L) such that x is not inner point of an
indivisible interval and (0, x) is not indivisible. The limits

b(z) := lim
x→supJ
x∈J

w12(x, z), d(z) := lim
x→supJ
x∈J

w22(x, z),

exist locally uniformly on C.

(ii) The functions b and d are real along the real axis, have no common zeroes, are of
Polya class and of order ρ(H) (with zero type if ρ(H) = 1).

(iii) For each ε > 0 there exists a constant Cε > 0 such that

∀x ∈ J : |wij(x, z)| ≤ Cε exp
(
|z|ρ(H)+ε

)
, z ∈ C, (i, j) ∈ {(1, 2), (2, 2)}.

In the proof we exploit the connection Remark 7.5 and use a standard estimate for
canonical products1.

1Probably an alternative proof could proceed using [Bra68, Theorem 41, Problem 154] and the “revers-
ing direction transformation” [KW11, Definition 2.6]. However, we did not try to work out details of
this approach since we believe that the operator theoretic argument is simple and elegant.
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Proof. For x ∈ J we can consider L2(H|[0,x]) as a subspace of L2(H), namely by identi-

fying a function f from L2(H[0,x]) with its extension f̂ defined by f̂(y) = 0, y ∈ (x,L).
We shall always tacitly apply this identification.

Set Px : f 7→ 1[0,x]f , where 1[0,x] denotes the indicator function of the interval [0, x].
Then Px is the orthogonal projection of L2(H) onto L2(H|[0,x]). Moreover, set

T := A(H)−1, Tx := A0(H|[0,x])−1, x ∈ J.

Note here that 0 ∈ ρ(A(H)) by assumption and 0 ∈ ρ(A0(H|[0,x])) by the boundary con-
dition in the definition (7.2). The spectrum of T equals (ω−1

n )n=1,2,... with all eigenvalues
being simple. Hence, T ∈ S1.

The crucial observation is that

Tx = PxT |ranPx, x ∈ J.

To see this, let g ∈ ranPx be given and set f := Tg. Then f ′(x) = JH(x)g(x), x ∈ [0, L)
a.e., and (1, 0)f(0) = 0. Since g(y) = 0, y ∈ (x,L), the function f |[x,L) is constant. It

follows from (7.3) that f |[x,L) ∈ span{
(1
0

)
}, which implies (0, 1)f(x) = 0. We see that

Txg = 1[0,x]f = PxTg.
We proceed with establishing the required properties of the right lower entries

w22(x, z). Since Px → I in the strong operator topology when x ր supJ and T ∈ S1,
we have PxTPx → T in the norm of S1. This implies that

lim
x→supJ
x∈J

det(I − zPxTPx) = det(I − zT )

locally uniformly on C. We have

ker(PxTPx − λ) = ker(PxT |ranPx − λ), λ 6= 0,

and hence det(I − zPxTPx) = det(I − zPxT |ranPx) = det(I − zTx).
Let ωn(x) be the zeroes of w22(x, ·) arranged according to nondecreasing modulus.

The spectrum of Tx equals {1/ω1(x), 1/ω2(x), . . .}, and all eigenvalues of Tx are simple.
Using that w22(x, ·) is of bounded type in C

+ and real along the real axis we obtain

w22(x, z) =
∏

n

(
1− z

ωn(x)

)
= det(I − zTx) = det(I − zPxTPx).

Thus the limit in (i) exists, in fact d(z) = det(I−zT ). Since det(I−zT ) =∏n

(
1− z

ωn

)
,

the properties of d listed in (ii) follow.
For the proof of the uniform estimate in (iii) consider the counting functions

n(x, r) := #{n : |ωn(x)| ≤ r}, n(r) := #{n : |ωn| ≤ r}.

Denote by sn(·) the n-th s-number of an operator, then

|ωn(x)|−1 = sn(Tx) = sn
(
PxT |ranPx

)
= sn(PxTPx) ≤ sn(T ) = |ωn|−1,
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whence n(x, r) ≤ n(r), x ∈ J , r > 0. Using [Lev80, Lemma I.4.3] we obtain the required
bound.

We turn to the function w12(x, z). Let ω̃n(x) be the nonzero zeroes of w12(x, ·) ar-
ranged according to nondecreasing modulus, and let ñ(x, r) be the counting function for
ω̃1(x), ω̃2(x), . . .. Since the zeroes of w12(x, ·) interlace with the zeroes of w22(x, ·) and
w12(x, 0) = 0, we have

ñ(x, r) ≤ n(x, r) ≤ n(r), x ∈ J, r > 0.

Again [Lev80, Lemma I.4.3] applies and yields a uniform estimate for the canonical
product

∏
n

(
1− z

ω̃n(x)

)
. The function w12(x, ·) is of bounded type in C

+ and real along

the real axis, hence admits the representation (a prime denotes differentiation with
respect to z)

w12(x, z) = w′
12(x, 0) · z

∏

n

(
1− z

ω̃n(x)

)
.

However,

w′
12(x, 0) =

∫ x

0

(
1

0

)∗

H(y)

(
1

0

)
dy ≤

∥∥∥
(
1

0

)∥∥∥
2

L2(H)
<∞,

and the bound required in (iii) for w12(x, ·) follows.
We have w12(x, ·)w22(x, ·)−1 → QH locally uniformly on C \ R, in particular,

w12(x, z) → d(z)QH(z) pointwise on C \ R. Since the functions w12(x, ·) form a normal
family of entire function and b := dQH is entire, this limit is actually assumed locally
uniformly on all of C. Using the product representation of QH and the fact that the
zeroes of d are exactly the poles of QH , we obtain

b(z) =
∥∥∥
(
1

0

)∥∥∥
2

L2(H)
· z ·

∏

n

(
1− z

ω̃n

)

where ω̃n denote the nonzero zeroes of QH . Thus b has all the properties listed in
(ii). ❑

In Proposition 7.6 we assume the normalisation QH(0) = 0, equivalently, that φ(H) = 0.
Passing to arbitrary angles φ(H) is easily possible by performing a rotation (see, e.g.,
[KW11, Definition 2.4, Lemma 3.29]). Due to the (annoying) fact that different sources
of literature use different normalisations, we need the corresponding result obtained after
a rotation by π/2.

7.7 Corollary. Assume in Proposition 7.6 that QH has a pole at 0 instead of the value 0.
Then the assertion remains true when the functions w12(x, z) and w22(x, z) are replaced
by w11(x, z) and w21(x, z).

7.8 Remark. Proposition 7.6 is a natural generalisation of the lcc.

— Assume that H is lcc: The limits wij(L, z) = limxրLwij(x, z), i, j = 1, 2, exist, and
the functions wij(L, z) are real along the real axis and have no common zeroes.
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7. Square Transform and the indefinite method

— Assume in addition that detH = 0 a.e.: The functions wij(L, z), i, j = 1, 2, are of
Polya class and of order ρ(H) (with zero type if ρ(H) = 1).

— Uniform estimate: For each ε > 0 there exists a constant Cε > 0 such that

∀x ∈ [0, L] : |wij(x, z)| ≤ Cε exp
(
|z|ρ(H)+ε

)
, z ∈ C, i, j = 1, 2.

To see the uniform estimate just append an indivisible interval of infinite length and
type π/2 (type 0 for the first column), and apply Proposition 7.6 (Corollary 7.7 for the
first column)2. ♦

7.2. Signed Hamburger Hamiltonians

For an equation (1.6) where H is not anymore positive semidefinite, no comprehensive
theory corresponding to what we mentioned in 7.1 and 7.2 is known. Generalisations
to some particular indefinite situations have been undertaken in [KL79; KL80; KL85],
[Fle96], [LW98], [KW06; KW11; KW10]. Except for [Fle96] all papers deal with a
Pontryagin space situation (i.e., finite negative index).

We deal with a class of possibly indefinite Hamiltonians having the very simple form
analogous to Hamburger Hamiltonians.

7.9 Definition. Let ~l = (ln)
∞
n=1 and ~φ = (φn)

∞
n=1 be sequences of real numbers with

ln 6= 0 and φn+1 6≡ φn mod π, n ∈ N, and set

x0 := 0, xn :=
n∑

k=1

|lk|, n ∈ N, L :=
∞∑

k=1

|lk| ∈ (0,∞]. (7.4)

Then we call the function H~l,~φ : [0, L) → R
2×2 defined as

H~l,~φ(x) := sgn(ln)ξφnξ
T
φn , x ∈ [xn−1, xn), n ∈ N,

the signed Hamburger Hamiltonian with lengths ~l and angles ~φ. The points xn are called
the nodes of H~l,~φ.

H~l,~φ
:

x0 x1 x2 x3 L

sgn(l1)ξφ1
ξT
φ1

sgn(l2)ξφ2
ξT
φ2

sgn(l3)ξφ3
ξT
φ3

︸ ︷︷ ︸

|l1|

︸ ︷︷ ︸

|l2|

︸ ︷︷ ︸

|l3|

♦

A signed Hamburger Hamiltonian H~l,~φ is a.e. positive semidefinite if and only if all
lengths ln are positive. A signed Hamburger Hamiltonian is associated with an indefinite
power moment problem as in [KL79; KL80] if and only if all but finitely many lengths
are positive.

2A direct proof can be given repeating some of the arguments from the proof of Proposition 7.6.
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7.10 Remark. The fact mentioned above that a fundamental solution exists and is entire,
depends only on local integrability of H and not on definiteness properties.

For a signed Hamburger Hamiltonian H~l,~φ the fundamental solution W~l,~φ
can easily

be computed explicitly. Denote

wφ(x, z) :=

(
1− xz sinφ cosφ xz cos2 φ

−xz sin2 φ 1 + xz sinφ cosφ

)
= I − zxξφξ

∗
φJ,

x ∈ R, z ∈ C, φ ∈ R,

then

W~l,~φ
(x, z) = wφ1(l1, z) · . . . · wφn−1(ln−1, z) · wφn

(
sgn(ln)(x− xn−1), z

)
,

x ∈ [xn−1, xn), n ∈ N.

♦

Analogously to the positive definite case, we call a signed Hamburger Hamiltonian di-
agonal if H is almost everywhere a diagonal matrix, which is the case if and only if
φn ∈ {0, π2 } (modulo π), n ∈ N. Diagonal Hamiltonians (in the positive semidefinite
situation) are in many ways easier to treat and a variety of symmetry properties is
present, see, e.g., [Bra68, Chapter 47].

Square-root and square transform

The Stieltjes class S is the subclass of N0 consisting of all Nevanlinna functions Q which
are analytic in C\ [0,∞) and satisfy Q(x) ≥ 0, x ∈ (−∞, 0). If Q ∈ S, then the function
Qd(z) := zQ(z2) also belongs to the Nevanlinna class, cf. [KK68, Lemma S1.5.1]. Hence,
for Q ∈ S, de Branges’ inverse theorem gives two positive semidefinite Hamiltonians H
and Hd, namely those having Q and Qd as corresponding Titchmarsh-Weyl coefficients.
Since Qd(−z) = −Qd(z), Hd is a diagonal Hamiltonian. These two Hamiltonians can
be transformed into each other by explicit formulae, see, e.g., [KWW07]. We speak of
the square-root transform turning Hd into H, and its converse, the square transform.
These transformations can also be carried out on the level of fundamental solutions. A
systematic discussion on this level including certain indefinite cases is given in [KWW06].

For a positive semidefinite Hamburger Hamiltonian the mentioned transformations
are established by explicit algebraic formulae. We use the same formulae to define
corresponding transforms for signed Hamburger Hamiltonians.

First, let us introduce a practical abbreviation: for two sequences of real numbers
~x = (xn)

∞
n=1 and ~y = (yn)

∞
n=1, we denote by ~x : ~y the mixed sequence

~x : ~y := (x1, y1, x2, y2, x3, . . .).

Moreover, we set for the rest of the chapter

~δ :=
(
0,
π

2
, 0,

π

2
, 0, . . .

)
.
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7.11 Definition. Let H be a diagonal signed Hamburger Hamiltonian, and assume (for
normalisation) that its first angle is equal to 0. Denote by ~m and ~h the sequences of
odd and even lengths of H, respectively. That just means that we write H in the form
H = H~m:~h,~δ:

H = H
~m:

~h,~δ
:

x0 x1 x2 x3 L

sgn(m1)ξ0ξ∗0 sgn(h1)ξ π
2

ξ∗π
2

sgn(m2)ξ0ξ∗0

︸ ︷︷ ︸

|m1|

︸ ︷︷ ︸

|h1|

︸ ︷︷ ︸

|m2|

Set

ln := hn

(
1 +

( n∑

k=1

mk

)2)
, φn := Arccot

( n∑

k=1

mk

)
, n ∈ N. (7.5)

Then we call H~l,~φ the square-root transform of H. ♦

The converse transformation is obtained by simply inverting the relations (7.5).

7.12 Definition. Let H~l,~φ be a signed Hamburger Hamiltonian, and assume that φn 6≡ 0

mod π, n ∈ N. Set (with φ0 :=
π
2 )

mn := cot(φn)− cot(φn−1), hn := ln sin
2(φn), n ∈ N.

Then we call H
~m:~h,~δ

the square transform of H~l,~φ. ♦

Inductively applying the computation [KWW06, Proposition 3.6(i)] yields the following
fact.

7.13 Lemma. Let H~l,~φ be a signed Hamburger Hamiltonian with φn 6≡ 0 mod π, n ∈ N,

and let Hd be its square transform. Denote by W~l,~φ
(x, z) and Wd(y, z) the corresponding

fundamental solutions, and let xn and yn be the nodes of H~l,~φ and Hd, respectively. Then

for all n ∈ N (a prime denote differentiation with respect to z)

W~l,~φ
(xn, z

2) =

(
wd,11(y2n, z)

wd,12(y2n,z)
z − w′

d,12(y2n, 0)wd,11(y2n, z)

zwd,21(y2n, z) wd,22(y2n, z)− w′
d,12(y2n, 0)zwd,21(y2n, z)

)
. (7.6)

Let us now state some immediate properties of these transformations.

7.14 Remark.

(i) The square-root transform of a diagonal signed Hamburger Hamiltonian Hd is
positive semidefinite if and only if all even lengths of Hd are positive. The square
transform of a signed Hamburger Hamiltonian H~l,~φ is positive semidefinite if and
only ifH~l,~φ itself is positive semidefinite and the sequence of angles is monotonically

decreasing when considered modulo π as a sequence in (0, π).
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(ii) Assume that H~l,~φ and its square transformHd are both positive semidefinite. Then

ρ(Hd) = 2ρ(H~l,~φ).

To see this, let Qd be the function QHd
or QHd/∞ depending whether Hd is lpc or

lcc, and let Q~l,~φ be defined analogously for H~l,~φ. Lemma 7.13 shows that Qd(z) =

zQ~l,~φ(z
2).

(iii) Assume again that H~l,~φ and Hd are both positive semidefinite. If H~l,~φ is lcc and

Hd is lpc, then φ(Hd) =
π
2 . This follows since (denote L̂ :=

∑∞
n=1(mn + hn))

∫ L̂

0

(
0

1

)∗

Hd(y)

(
0

1

)
dy =

∞∑

n=1

hn ≤
∞∑

n=1

ln <∞.

♦

The modulus transform

A signed Hamburger Hamiltonian can be transformed into a positive semidefinite one
simply by taking absolute values of its lengths.

For a sequence ~l of real numbers, we denote

|~l| := (|ln|)∞n=1.

7.15 Definition. Let H~l,~φ be a signed Hamburger Hamiltonian. Then we call H
|~l|,~φ

the

modulus transform of H~l,~φ. ♦

The next result shows that the fundamental solution of a diagonal signed Hamburger
Hamiltonian can be estimated from above by the fundamental solution of its modulus
transform. Recall that ~δ = (0, π/2, 0, π/2, 0, . . .).

7.16 Proposition. Let ~l be a sequence of nonzero real numbers, and consider the Ham-
burger Hamiltonians H~l,~δ and H

|~l|,~δ
with corresponding fundamental solutions W~l,~δ

and

W
|~l|,~δ

, respectively. Then (note that the sequences (xn)
∞
n=1 defined in (7.4) for ~l and |~l|

coincide)

∣∣∣(1, 0)W~l,~δ
(x2n, z)

(
1

0

)∣∣∣ ≤ (1, 0)W
|~l|,~δ

(
x2n, i|z|

)(1
0

)
, n ∈ N, z ∈ C. (7.7)

The proof follows from a purely algebraic and explicit formula for (the first row of)
the fundamental solution of a diagonal signed Hamburger Hamiltonian. We define for
each n ∈ N and k ∈ {0, . . . , n} polynomials an,k and bn,k in variables v1, v2, . . . by the
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recursions

a1,0(~v) := 1, a1,1(~v) := v1v2,

b1,0(~v) := v1, b1,1(~v) := 0,

an+1,k(~v) :=





1 , k = 0,

an,k(~v) + v2n+1v2n+2an,k−1(~v) + v2n+2bn,k−1(~v) , k = 1, . . . , n,

v2n+1v2n+2an,n(~v) , k = n+ 1,

bn+1,k(~v) :=

{
bn,k(~v) + v2n+1an,k(~v) , k = 0, . . . , n,

0 , k = n+ 1.

Observe that an,k and bn,k have nonnegative integer coefficients. The polynomial an,k in-
volves only the variables v1, . . . , v2n, and bn,k only the variables v1, . . . , v2n−1. Moreover,

an,0(~v) = 1, an,n(~v) =

2n∏

k=1

vk, bn,0(~v) =

n∑

k=1

v2k−1, bn,n(~v) = 0,

for all n ∈ N.

7.17 Lemma. Let ~l be a sequence of nonzero real numbers, and let W~l,~δ be the funda-
mental solution of H~l,~δ. Then

(1, 0)W~l,~δ
(x2n, z) =

n∑

k=0

(z
i

)2k(
an,k(~l), zbn,k(~l)

)
, n ∈ N. (7.8)

Proof. We use induction on n where the computation is based on the formula

w0(l, z)wπ
2
(h, z) =

(
1 +

(
z
i

)2
lh zl

−zh 1

)
. (7.9)

For n = 1 this formula already establishes the required representation of W~l,δ
(x2, z).

Assume (7.8) holds for some n ∈ N. Then (7.9) yields

(1, 0)W~l,~δ(x2n+2, z) = (1, 0)W~l,~δ(x2n, z)

(
1 +

(
z
i

)2
l2n+1l2n+2 zl2n+1

−zl2n+2 1

)

=

n∑

k=0

(z
i

)2k(
an,k(~l) + (zi )

2l2n+1l2n+2an,k(~l)− z2l2n+2bn,k(~l),

zl2n+1an,k(~l) + zbn,k(~l)
)

=

n∑

k=0

(z
i

)2k(
an,k(~l), z[l2n+1an,k(~l) + bn,k(~l)]

)

+

n+1∑

k=1

(z
i

)2k(
l2n+1l2n+2an,k−1(~l) + l2n+2bn,k−1(~l), 0

)

=

n∑

k=0

(z
i

)2k(
an+1,k(~l), zbn+1,k(~l)

)
.
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❑

The estimate (7.7) is now nearly obvious.

Proof of Proposition 7.16. We use the representation from Lemma 7.17 and the fact that
the polynomials an,k have nonnegative coefficients to estimate

∣∣∣(1, 0)W~l,~δ
(x2n, z)

(
1

0

)∣∣∣ ≤
n∑

k=0

|z|2k
∣∣an,k(~l)

∣∣

≤
n∑

k=0

|z|2kan,k(|~l|) = (1, 0)W
|~l|,~δ

(x2n, i|z|)
(
1

0

)
.

❑

7.3. An estimate for order

7.3.1. Formulation and proof of our two main theorems

The next statement is the first main theorem of this chapter. In order to keep the
notation as clean as possible, we assume that φn 6≡ 0 mod π for all n ∈ N. Note
that any Hamburger Hamiltonian can be transformed into one with nonzero angles by
adding a certain constant offset to the angles, i.e., by performing a rotation as discussed
before the statement of Corollary 7.7. The form of the rotation transformation [KW11,
Definition 2.4] ensures ρ(H~l,(φn+α)) = ρ(H~l,~φ).

7.18 Theorem. Let H~l,~φ be a positive semidefinite Hamburger Hamiltonian in lcc, and

assume that φn 6≡ 0 mod π, n ∈ N. Set (with φ0 :=
π
2 )

mn := cot(φn)− cot(φn−1), hn := ln sin
2(φn), n ∈ N,

~δ :=
(
0,
π

2
, 0,

π

2
, . . .

)
, |~m : ~h| :=

(
|m1|, |h1|, |m2|, |h2|, . . .

)
.

Then

ρ(H~l,~φ) ≤
1

2
ρ
(
H|~m:~h|,~δ

)
.

The main point here is that the Hamiltonian appearing on the right side is diagonal. This
implies that ρ(H

|~m:~h|,~δ
) can in principle be determined using R.Romanov’s Theorem 2

for the order of a diagonal Hamiltonian, cf. Theorem 4.2, or using Kac’s formula [Kac86b,
Theorems A–C] for the order of a string (unfortunately, a quite bulky expression).

Proof of Theorem 7.18. Starting from H := H~l,~φ build the following successive trans-
forms:

— Hd = H~m:~h,~δ is the square transform of H;

— H+
d = H

|~m:~h|,~δ
is the modulus transform of Hd;
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— H+ is the square-root transform of H+
d .

The Hamiltonian Hd will in general carry signs, whereas H+
d and H+ are positive semi-

definite, cf. Remark 7.14, (i).
Denote by xn the nodes of H, by yn the common nodes of Hd and H

+
d , and by x+n the

nodes of H+. Denote by W,Wd,W
+
d ,W

+ the fundamental solutions of the respective
Hamiltonian H,Hd,H

+
d ,H

+, let Q+ be either the function QH+/∞ if H+ is in the lcc

or the Titchmarsh-Weyl coefficient QH+ if H+ is in the lpc, and let Q+
d be defined in

the same way for H+
d , respectively. Then Q+

d (z) = zQ+(z2) and ρ(H+
d ) = 2ρ(H+), cf.

Remark 7.14, (ii).
Hence the assertion of the theorem is equivalent to ρ(H) ≤ ρ(H+). This is trivially

true when ρ(H+) ≥ 1. Hence, assume throughout the following that ρ(H+) < 1. In
particular, Q+ is meromorphic throughout the plane, and the sequence (ωn)n=1,2,... of
its nonzero poles satisfies

∑
n

1
|ωn|

<∞.

If H+
d is in the lcc, then the function Q+

d has a pole at 0 by its definition. If H+
d is in

the lpc, then we have (denoting L̂ :=
∑∞

n=1(mn + hn))

∫ L̂

0

(
0

1

)∗

H+
d (y)

(
0

1

)
dy =

∞∑

n=1

hn ≤
∞∑

n=1

ln <∞,

i.e.
(0
1

)
∈ L2(H+

d ). Again it follows that Q+
d has a pole at 0. From the relation Q+

d (z) =
zQ+(z2) we see that also Q+ has a pole at 0.

Corollary 7.7 and Remark 7.8 provide estimates (ε > 0 arbitrary)

∣∣w+
11(x

+
n , z)

∣∣ ≤ Cε exp
(
|z|ρ(H+)+ε

)
, n ≥ 2, z ∈ C,

and (7.6) and Proposition 7.16 yield

|w11(xn, z
2)| = |wd,11(y2n, z)| ≤ w+

d,11(y2n, i|z|)
=w+

11(x
+
n ,−|z|2) ≤ Cε exp

(
|z2|ρ(H+)+ε

)
, n ≥ 2, z ∈ C.

Passing to the limit n → ∞ in the leftmost term, which is possible since H is lcc,
we obtain that the same estimates hold for w11(L, z

2). We conclude that the order of
w11(L, ·), which equals ρ(H), does not exceed ρ(H+). ❑

For the case of a Stieltjes string (translated to the language of Hamiltonians this means
for a diagonal Hamburger Hamiltonian) Kac’ formula [Kac86b, Theorems A–C] takes
the form [Kac90, p.31 (15)]. Still, a complicated expression which hardly allows expli-
cit evaluation. Under some regularity assumptions on the involved data, however, it
was shown in [Kac90] that it can be handled. We recall this result in the language of
Hamiltonians. The following statement is the direct translation of [Kac90, Theorem 1].

7.19 Theorem ([Kac90], Theorem 1). Let ~M = (Mn)
∞
n=1 and ~L = (Ln)

∞
n=1 be sequences

of positive real numbers such that ~M is nonincreasing and ~L is nondecreasing. Set

~M : ~L :=
(
M1, L1,M2, L2, . . .

)
, ~∆ :=

(π
2
, 0,

π

2
, 0, . . .

)
,
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and consider the positive definite diagonal Hamburger Hamiltonian H ~M :~L,~∆. Then the
following statements hold.

(i) If α ∈ (0, 12 ) and
∑∞

n=1(LnMn+1)
α <∞, then ρ(H ~M :~L,~∆) ≤ 2α.

(ii) If
∑∞

n=1(LnMn+1)
1
2 lnn <∞, then ρ(H ~M :~L,~∆) ≤ 1.

(iii) If α ∈ (12 , 1) and
∑∞

n=1(LnMn+1)
αn2α−1 <∞, then ρ(H ~M :~L,~∆) ≤ 2α.

Proof. The Hamiltonian H ~M :~L,~∆ is related to the Stieltjes string with masses (Mn+1)
∞
n=0

and lengths (Ln)
∞
n=1, cf. [KWW07, (4.4),(4.6)].

With the notation from [Kac90], this string is an element of Sα, by definition, if
ρ(H ~M :~L,~∆) ≤ 2α. The statement follows from [Kac90, Theorem 1]. ❑

Concerning [Kac90, Theorem 1] one word of caution is in order. This statement contains
the a priori assumption that the string under consideration is of trace class, i.e. that

∞∑

n=1

(
∞∑

k=n+1

Mk

)
Ln <∞

or, equivalently,
∑∞

n=1

(∑n
k=1 Lk

)
Mn+1 < ∞. It is said without a proof on p.31 right

after Theorem 2 that this assumption is superfluous: convergence of this series can be
deduced from convergence of the respective series in (i), (ii), or (iii). In the next result
– which is the second main theorem of this chapter – we use this fact for the cases (i)
and (ii). Let us give a proof for these cases.

7.20 Lemma. Let ~M = (Mn)
∞
n=1 and ~L = (Ln)

∞
n=1 be sequences of positive real numbers

such that ~M is nonincreasing and ~L is nondecreasing, and let α ∈ (0, 12 ]. If

∞∑

n=1

(LnMn+1)
α <∞,

then also
∞∑

n=1

( n∑

k=1

Lk

)
Mn+1 <∞.

Proof. Set rn := 1
Mn+1

, n ∈ N, then rn is positive, nondecreasing and unbounded. Let µ

be the positive measure (δr denotes the unit point mass at r)

µ :=

∞∑

n=1

Lnδrn ,

and choose a decreasing C∞-function f : [0,∞) → (0,∞) with f(rn) = Lα−1
n , n ∈ N.

We have ∫ ∞

0
t−αf(t) dµ(t) =

∞∑

n=1

r−αn f(rn)Ln =

∞∑

n=1

(Ln
rn

)α
<∞.
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Integrating by parts yields that for each T > 0

∫ T

0
t−αf(t) dµ(t) =T−αf(T )µ([0, T ]) −

∫ T

0

d

dt

[
t−αf(t)

]

︸ ︷︷ ︸
<0

·µ([0, t]) dt

≥T−αf(T )µ([0, T ]),

and, choosing T = rn, we obtain the estimate

1 & r−αn f(rn)µ([0, rn]) = r−αn Lα−1
n

( n∑

k=1

Lk

)
.

Since 1− α ≥ α and Ln

rn
≤ 1 for large n, it follows that

1

rn

( n∑

k=1

Lk

)
.
(Ln
rn

)1−α
.
(Ln
rn

)α
.

❑

Combining Theorem 7.18 with Theorem 7.19 leads to the following corollary.

7.21 Corollary. Let H~l,~φ be a positive semidefinite Hamburger Hamiltonian in lcc, and

let notation ~m,~h, etc. be as in Theorem 7.18. Assume that |~m| is nondecreasing and ~h
is nonincreasing. Then the following statements hold.

(i) If α ∈ (0, 12 ) and
∑∞

n=1(hn|mn|)α <∞, then ρ(H~l,~φ) ≤ α.

(ii) If
∑∞

n=1(hn|mn|)
1
2 lnn <∞, then ρ(H~l,~φ) ≤ 1

2 .

(iii) If α ∈ (12 , 1) and
∑∞

n=1(hn|mn|)αn2α−1 <∞, then ρ(H~l,~φ) ≤ α.

Proof. Theorem 7.18 gives

ρ(H~l,~φ) ≤
1

2
ρ(H|~m:~h|,~δ).

Set ~m1 := (mn+1)
∞
n=1. Removing the first interval of a Hamburger Hamiltonian does

not change the order, i.e. ρ(H
|~m:~h|,~δ

) = ρ(H
|~h:~m1|,~∆

). Apply Theorem 7.19. ❑

7.22 Theorem. Let H~l,~φ be a positive semidefinite Hamburger Hamiltonian in lcc, and

assume that φn 6≡ 0 mod π, n ∈ N. Set φ0 :=
π
2 , and assume that (| cot φn−cotφn−1|)∞n=1

is nondecreasing and bounded, (ln sin
2 φn)

∞
n=1 is nonincreasing, and

∞∑

n=1

[ln sin
2 φn]

1
2 lnn <∞. (7.10)

Then
ρ(H~l,~φ) = c. e.

(
([ln sin

2 φn]
−1)∞n=1

)
,

i.e. the order of H~l,~φ equals the convergence exponent of ([ln sin
2 φn]

−1)∞n=1.
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Observe that, when φn perform a walk on the grid Arccot(Z), the assumption on angles
is clearly satisfied.

Proof of Theorem 7.22. Let ~m and ~h be as in Theorem 7.18, set Mn :=
∑n

k=1mk, and
set γ := c. e.

(
(h−1
n )∞n=1

)
. We have to show that ρ(H~l,~φ) = γ.

By our assumptions ~h is nonincreasing, and |~m| is nondecreasing and convergent (say
m∞ := limn→∞ |mn|) whence |mn| ≍ 1 and Mn . n.

We start with showing ρ(H~l,~φ) ≤ γ. Corollary 7.21, (ii), yields ρ(H~l,~φ) ≤ 1/2. If

γ = 1/2 (note that by (7.10) certainly γ ≤ 1/2), then we are done. For γ < 1/2, we can
apply Corollary 7.21, (i), to obtain the desired inequality.

To establish the other inequality, we use the lower bound established in Proposi-
tion 5.17,

ρ(H~l,~φ) ≥
1

δl,φ(H~l,~φ)
= lim sup

n→∞

−n lnn

ln
(√

ln
n−1∏
i=1

li| sin(φi+1 − φi)|
) .

To evaluate the product, remember (7.5), which yields

li| sin(φi+1 − φi)| = hi · (1 +M2
i )
∣∣ sin(ArccotMi+1 −ArccotMi)

∣∣.

Now, supi∈N |Arccot(Mi+1) − Arccot(Mi)| < π since |Mi+1 −Mi| = |mi| ≤ m∞, and
hence

sin
(
|Arccot(Mi+1)−Arccot(Mi)|

)
≍ |Arccot(Mi+1)−Arccot(Mi)|.

The mean value theorem provides ξi ∈ (min{Mi,Mi+1},max{Mi,Mi+1}) with

|Arccot(Mi+1)−Arccot(Mi)| =
1

1 + ξ2i
. (7.11)

Since the length of the written interval is at most m∞, it follows that 1 + ξ2i ≍ 1 +M2
i .

All together we get li| sin(φi+1 − φi)| ≍ hi, whence

ρ(H~l,~φ) ≥ lim sup
n→∞

−n lnn

ln
(√

ln
n−1∏
i=1

hi

) ≥ lim sup
n→∞

−n lnn

ln
(√

hn
n−1∏
i=1

hi

) =
1

δ(~h, 12)
.

Since ~h is nonincreasing, it is regularly distributed in the sense of Definition 6.2, and
Lemma 6.7, (ii), gives

1

δ(~h, 12)
= γ.

In particular, the lower estimate of ρ(H~l,~φ) coincides with the upper estimate, i.e.

ρ(H~l,~φ) = γ ❑
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7.3.2. Relation with previous estimates

Theorem 5.10 states an upper estimate for the order of a Hamburger Hamiltonian H~l,~φ,
which coincides with the order when lengths and angle-differences are regularly behaving,
cf. Theorem 6.5. In Theorem 7.22 we obtained a formula for ρ(H~l,~φ) when lengths and
angles commonly behave regularly, angle-differences are never too large, and the order
is at most 1/2. This theorem, however, allows that lengths and angles separately are
very irregular. In this subsection we show that these two results are incomparable.

First, we show that for a large class of Hamiltonians Theorem 7.22 is applicable
whereas the upper estimate Theorem 5.10 does not coincide with the order.

7.23 Proposition. Let ~h be a nonincreasing sequence of positive real numbers which
satisfies

∞∑

n=1

h
1
2
n lnn <∞, (7.12)

and denote by γ the convergence exponent of (h−1
n )∞n=1. Let δ◦φ > 0 and δ◦l ≥ 1 be given

such that

δ◦φ <
1

γ
− δ◦l < 2.

Then there exists a sequence of angles ~φ performing a walk on Arccot(Z), such that
the Hamburger Hamiltonian H~l,~φ with lengths ln := hn sin

−2 φn, n ∈ N, and angles ~φ
satisfies

ρ(H~l,~φ) = δl,φ(H~l,~φ)
−1 = γ,

as well as (recall Definitions 5.16, 5.18, and 5.5)

δl(H~l,~φ) = ∆l(H~l,~φ) = δ◦l , δφ(H~l,~φ) = ∆φ(H~l,~φ) = δ◦φ, µ(H~l,~φ) =
1

γ
− δ◦l .

In particular, the upper bound for the order of H~l,~φ given in Theorem 5.10 is strictly
larger than the order.

The proof is based on the following elementary construction.

7.24 Lemma. Let α ∈ (0, 1). Then there exists a sequence of signs εα,n ∈ {+1,−1},
such that the partial sums

sα(n) :=

n∑

i=1

εα,i, n ∈ N,

satisfy

lim
n→∞

sα(n)

nα
= 1. (7.13)

Proof. We simply make sα(n) oscillating around nα as close as possible: Define induct-
ively

εα,1 := 1, εα,n+1 :=

{
+1 , sα(n)

nα ≤ 1

−1 , sα(n)
nα > 1

The sequence σn := sα(n)
nα can be handled easily.
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(i) Monotonicity behaviour: Assume first σn ≤ 1. Then (with appropriate ξn ∈ (n, n+1))

σn+1 − σn =
−σn[(n + 1)α − nα] + 1

(n+ 1)α
=

1− σnαξ
α−1
n

(n+ 1)α




≥ 1−α

(n+1)α > 0

≤ 1
(n+1)α

Second, if σn > 1, then sα(n+ 1) < sα(n) and hence trivially σn+1 < σn.

(ii) Convergence: Let nk be those indices (arranged in increasing order) where εα,n
changes its sign, i.e., where either σn ≤ 1 < σn+1 or σn > 1 ≥ σn+1. Note that the first
of these cases occurs for all odd k and the second for all even. Then lim supn→∞ σn =
lim supk→∞ σn2k−1+1 and lim infn→∞ σn = lim infk→∞ σn2k+1. By the previous estimate,

σn2k−1+1 ≤ σn2k−1
+

1

(n+ 1)α
≤ 1 +

1

(n+ 1)α
→ 1,

whence lim supk→∞ σn ≤ 1.

In particular, σn ≤ 2 for large n. Now we estimate for all (sufficiently large) n with
σn > 1

σn − σn+1 =
1 + σnαξ

α−1
n

(n+ 1)α
≤ 1 + 2α

(n+ 1)α
.

This shows that

σn2k+1 ≥ σn2k
− 1 + 2α

(n+ 1)α
≥ 1− 1 + 2α

(n+ 1)α
→ 1,

whence lim infk→∞ σn ≥ 1.

❑

Proof of Proposition 7.23. For α ∈ (0, 1) we have sα(n) ≍ nα due to relation (7.13).
From Example 5.20 we know that for β ≥ 0

δ( ~sα, β) = lim
n→∞

G(n; ~sα, β) = −α.

Set

α :=
1

2
δ◦φ, α′ :=

1

2

( 1
γ
− δ◦l

)
,

and denote by ~sα and ~sα′ the partial sums defined in Lemma 7.24. We construct another
sequence of signs whose sequence ~s = (sn)

∞
n=1 of partial sums alternates between ~sα and

~sα′ .
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n

n0 n1 n2 n3 n4 n5 n6 n7

n′2 n′6

n
sα′(n)

sα(n)

sn

For a strictly monotonically increasing sequence of natural numbers (nk)
∞
k=0, we define

the sequence ~s as follows (here [xmod 2] denotes the element of {0, 1} with the same
parity as x)

sn :=





sα(n) , 1 ≤ n ≤ n0

sα(n) , nk < n ≤ nk+1, k ≡ 0 mod 4

sα(nk) + (n− nk) , nk < n ≤ nk+1, k ≡ 1 mod 4

sα′(n) , nk < n ≤ nk+1, k ≡ 2 mod 4

sα′(nk) +
[
(n− nk) mod 2

]
, nk < n ≤ nk+1, k ≡ 3 mod 4

The switching indices (nk)
∞
k=0 will be constructed inductively.

To start with, choose n0 > 1 such that sα′(n) > sα(n), n ≥ n0, and define sn, for
1 ≤ n ≤ n0, by the first line of the above formula. Now let k ∈ N0 and assume that nk
has already been defined (and with it sn for n ≤ nk).

(i) k ≡ 0 mod 4: Consider the auxiliary sequence

b0,n :=

{
sn , n ≤ nk

sα(n) , n > nk

Then G(n; ~b0, 0) = G(n;~s, 0), n ≤ nk, and limn→∞G(n; ~b0, 0) = −α. Choose
nk+1 > nk such that

G(nk+1; ~b0, 0) ≥ −α− 1

k
,

b0,nk+1

nαk+1

≤ 2. (7.14)

(ii) k ≡ 1 mod 4: Set

nk+1 := min
{
n > nk : sα(nk) + (n− nk) = sα′(n)

}
.

This is well-defined since sα(nk) < sα′(nk) and sα′(n) = o(n).
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(iii) k ≡ 2 mod 4: Consider the auxiliary sequence

b2,n :=

{
sn , n ≤ nk

sα′(n) , n > nk

Then G(n; ~b2,
1
2) = G(n;~s, 12), n ≤ nk, and limn→∞G(n; ~b2,

1
2) = −α′. Choose

n′k > nk such that for all n ≥ n′k

G(n; ~b2,
1
2 ) ≤ −α′ +

1

k
,

b2,n
nα′ ≥ 1

2
. (7.15)

Since ~h is nonincreasing, and hence regularly distributed in the sense of Defini-
tion 6.2, we have lim infn→∞G(n;~h, 12) = ∆∗(~h) = 1

γ by Lemma 6.7, (ii). Hence

we can choose nk+1 > n′k such that

∃n ∈ [n′k, nk+1] : G(n;~h,
1
2 ) ≤

1

γ
+

1

k
, (7.16)

∃n ∈ [n′k, nk+1] : hn ≥ n−
1
γ
− 1

k . (7.17)

(iv) k ≡ 3 mod 4: Set

nk+1 := min
{
n > nk : sα′(nk) + [(n− nk) mod 2] = sα(n)

}
.

This is well-defined since sα′(nk) > sα(nk) and limn→∞ sα(n) = ∞.

Set φn := Arccot sn and ln := hn sin
−2 φn. Then Theorem 7.22 is applicable and yields

ρ(H~l,~φ) = γ = δ~l,~φ(H~l,~φ).

Remembering (7.11) and the formulae before and after, we have

| sin(φn+1 − φn)| ≍
1

s2n
(7.18)

and therefore

G
(
n; (| sin(φn+1 − φn)|)∞n=1, 0

)
= −2G(n;~s, 0) + o(1),

cf. Remark 5.19, (iii) and (v). For k ≡ 0 mod 4 it holds that

G(nk+1;~s, 0) ≥ −α− 1

k
= −1

2
δ◦φ −

1

k
,

and we conclude that

δφ(H~l,~φ) = lim inf
n→∞

G
(
n; (| sin(φn+1 − φn)|)∞n=1, 0

)
≤ δ◦φ.

However, sn ≥ sα(n) for all n ∈ N, whence

−2G(n;~s, 0) ≥ −2G(n; ~sα, 0) → 2α = δ◦φ,
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7. Square Transform and the indefinite method

and this shows δφ(H~l,~φ) ≥ δ◦φ.

Since limn→∞ sn = ∞, we have limn→∞ φn = 0 and hence sin2 φn ≍ s−2
n . Thus

ln ≍ hn · s2n, and Remark 5.19, (iii) – (v), gives

G(n;~l, 12 ) = G(n;~h, 12) + 2G(n;~s, 12) + o(1).

Let k ≡ 2 mod 4 and choose n ∈ [n′k, nk+1] according to (7.16).

G(n;~l, 12 ) ≤
( 1
γ
+

1

k

)
+
(
− 2α′ +

2

k

)
+ o(1) = δ◦l + o(1),

which gives δl(H~l,~φ) ≤ δ◦l . However, sn ≤ sα′(n) for all n ∈ N, and hence

G(n;~s, 12 ) ≥ G(n; ~sα′ , 12) → −α′ = −1

2

(1
γ
− δ◦l

)
.

This shows that δl(H~l,~φ) ≥ δ(~h, 12) + 2δ(~s, 12 ) ≥ 1
γ − 2α′ = δ◦l .

By construction sn & nα. This gives ∆∗
(
(s−1
n )∞n=1

)
≥ α, whereas the right-hand side

of (7.14) results in ∆∗
(
(s−1
n )∞n=1

)
≤ α. Together with (7.18) this yields ∆∗(| sin(φn+1 −

φn)|) = 2α = δ◦φ, and Lemma 6.1 gives ∆φ(H~l,~φ) = δ◦φ.

Note that we have sn . nα
′
, which results in ∆∗(~s ) ≥ −α′. Due to ln ≍ hns

2
n we can

use Remark 5.4, (iv) and (v), to get

∆∗(~l) ≥ ∆∗(~h) + 2∆∗(~s ) ≥ 1

γ
− 2α′ = δ◦l .

Let k ≡ 2 mod 4 and choose n ∈ [n′k, nk+1] according to (7.17). Then we have hn ≥
n
− 1

γ
− 1

k and, by the right-hand side of (7.15), sn ≥ 1
2n

α′
. Together ln & n

− 1
γ
− 1

k
+2α′

which yields ∆∗(~l) ≤ δ◦l , i.e. ∆l(H~l,~φ) = δ◦l .

Next we calculate µ(H~l,~φ). Since φj converges to zero, set ψ := 0. The calculation

∞∑

j=n

lj sin
2 φj =

∞∑

j=n

hj . n1−∆∗(~h) = n
1−

1
γ ,

shows µ(H~l,~φ) =
1
γ − δ◦l .

Finally, we are able to apply Theorem 5.10. First assume that µ ≤ 2∆φ, which is
equivalent to 1

γ − δ◦l ≤ 2δ◦φ. If ∆l +∆φ ≥ 2, then the upper bound from Theorem 5.10

is (∆l +∆φ)
−1, which is strictly larger than the order, since

γ <
1

δ◦l + δ◦φ
⇔ δφ <

1

γ
− δ◦l .

In the critical triangle ∆l +∆φ < 2, the upper estimate is even larger.
Secondly consider the case µ > 2∆φ, which takes places if 1

γ − δ◦l > 2δ◦φ. Here

Theorem 5.10 gives the upper bound 2/(δ◦l +
1
γ ), which is again strictly larger than γ,

since

γ <
2

δ◦l +
1
γ

⇔ 0 <
1

γ
− δ◦l .

❑
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Next, we show that (for arbitrary small orders) it might be possible to compute ρ(H~l,~φ)

with help of Theorem 6.5, but ρ(H~l,~φ) is not equal to the convergence exponent of

([ln sin
2 φn]

−1)∞n=1.

7.25 Example. Let α > −1 and β > 3 + 2α, set

Mn :=
n∑

k=1

kα, ln := n−β(1 +M2
n), φn := ArccotMn,

and consider the Hamiltonian H~l,~φ.

Since α > −1, we have Mn ≍ nα+1 and hence ln ≍ n2(α+1)−β . The assumption on β
just says that 2(α+ 1)− β < −1, i.e., that H~l,~φ is lcc.

By Example 5.20 we obtain δl = β − 2(α+1) and this expression exists as a limit. In
order to compute δφ, we use the identity

∣∣ sin(Arccot x−Arccot y)
∣∣ =

∣∣∣ sin
(
Arccot

(xy + 1

x− y

))∣∣∣ =
[(xy + 1

x− y

)2
+ 1
]− 1

2
,

which holds for arbitrary x, y ∈ R, x 6= y. Clearly, Mn+1 −Mn = kα, and we find

| sin(φn+1 − φn)| ≍ n−(α+2),

whence δφ = α+2. Since δl + δφ = β −α > 2, we can apply Theorem 6.5, (i), to obtain

ρ
(
H~l,~φ

)
=

1

β − α
.

We have sin−2 φn = 1 +M2
n and hence ln sin

2 φn = n−β. The convergence exponent of
([ln sin

2 φn]
−1)∞n=1 thus equals 1

β . For α < 0 this is larger than the order, for α > 0 it is
smaller.

It is interesting to observe which hypothesis of Theorem 7.22 are violated in this
example. Of course, if β < 2, then already (7.10) fails. If α ∈ (−1, 0), then the sequence
(| cot φn− cotφn−1|)∞n=1 is decreasing, and if α > 0, then it is increasing but unbounded.

♦

7.3.3. Connection to Berezanskĭı’s theorem

Recall Berezanskĭı’s theorem which we formulated already in Theorem 2.5:
Let J be a Jacobi matrix with diagonal (qn)

∞
n=0 and off-diagonal (ρn)

∞
n=0. Assume

that
∑∞

n=0 ρ
−1 < ∞, that

∑∞
n=0 |qn|/ρn < ∞, and that the off-diagonal parameters are

log-concave or log-convex, i.e. ρ2n ≥ ρn−1ρn+1 or ρ2n ≤ ρn−1ρn+1 respectively. Then, J is
of type C, and the order is equal to the convergence exponent of (ρn)

∞
n=0.

In this subsection we explain the relation between this Theorem and the main res-
ults of this and previous chapters. To this end recall the connection of Jacobi matrices
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7. Square Transform and the indefinite method

and Hamburger Hamiltonians outlined in the Introduction. In particular, the paramet-
ers of a Jacobi matrix are related to the parameters of the corresponding Hamburger
Hamiltonian via

1

ρn
= | sin(φn+1 − φn)|

√
lnln+1,

qn = − 1

ln

[
cot(φn+1 − φn) + cot(φn − φn−1)

]
.

The essence of Theorem 2.5 is the case of a zero-diagonal; adding a small diagonal can
be achieved with a perturbation argument. Let us therefore focus on this case, where
the above formulae are easy to handle.

First, we see that qn = 0 for all n if and only if the angles φn alternate between two
fixed values. Due to common normalisation, these are 0 and π

2 . However, multiplying a
Jacobi matrix with a positive scalar or adding an offset to the sequence of angles of a
Hamburger Hamiltonian does not influence the respective order. Hence, we are free to
choose those two values and work with different ones interchangeably.

Plugging the above formula for ρn (with alternating angles) log-concavity or convexity
means that

ln+1

ln−1
≤ ln+2

ln
or

ln+1

ln−1
≥ ln+2

ln
resp., (7.19)

or equivalently,
ln
ln−1

≤ ln+2

ln+1
or

ln
ln−1

≥ ln+2

ln+1
resp.. (7.20)

Monotonicity of the quotients (7.19) leads to the distinction of three cases.

(I) ln+1

ln−1
≥ 1 for large n: Then ρn ≥ ρn+1 for those n, which contradicts Carleman’s

condition.

(II) ln+1

ln−1
≤ t < 1 for large n: Then ln,

1
ρn

. tn, whence the convergence exponent of

(ρn)
∞
n=1 is zero, and the order is zero by Corollary 5.12, since ∆+

l = ∞.

(III) ln+1

ln−1
ր 1: This is the nontrivial case concerning order (note that it appears only

when ρn are log-concave), and requires some further analysis.

First, since ln+1

ln−1
< 1, the sequence ~l splits into two decreasing subsequences (l2k−1)

∞
k=1

and (l2k)
∞
k=1. The quotients

(
l2k/l2k−1

)∞
k=1

and
(
l2k+1/l2k

)∞
k=1

are nondecreasing by

(7.20), and hence have limits t0, t1 ∈ (0,∞]. However, since ln+1

ln−1
tends to 1,

1

t0
= lim

k→∞

l2k−1

l2k
= lim

k→∞

l2k+1

l2k
= t1,

in particular, t0, t1 <∞. Now we pass to the sequence

l′n :=

{
t0ln , n odd

ln , n even
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Then the quotient sequences
(
l′2k/l

′
2k−1

)∞
k=1

and
(
l′2k+1/l

′
2k

)∞
k=1

are still nondecreasing

and both tend to 1. Thus ~l′ is nonincreasing. Monotonicty implies that the convergence
exponents of (l′n

−1)∞n=1 and ([l′nl
′
n+1]

− 1
2 )∞n=1 coincide. Since l′n ≍ ln, these are the same

as the convergence exponents of (l−1
n )∞n=1 and of (ρn)

∞
n=1, respectively. Moreover, ~l is

regularly distributed in the sense of Definition 6.2, cf. Remark 6.3.
Now we can compute the order from Theorem 6.5, (iii). Since angles alternate, we

have δφ = 0 as a limit, and hence the order equals δ−1
l . By Lemma 6.7, (ii), δ−1

l coincides
with the convergence exponent of (l−1

n )∞n=1 and hence with the convergence exponent of
(ρn)

∞
n=1.

If the convergence exponent of (ρn)
∞
n=1 is less than 1/2, we also can compute the order

from Theorem 7.22. To this end we pass to the Jacobi matrix (1/
√
t0 )J and add an offset

−π/4 to the sequence of angles. This leads to the Hamburger Hamiltonian with lengths
(l′n)

∞
n=1 and angles alternating between ±π/4. Thus the order equals the convergence

exponent of (
√
2/l′n)

∞
n=1 which is equal to the convergence exponent of (ρn)

∞
n=1.

Having seen that Berezanskĭı’s theorem (for orders < 1/2) can be deduced from The-
orem 7.22, we shall now show that Theorem 7.22 actually goes far beyond the Berezanskĭı
case.

7.26 Example. We revisit the Hamiltonians constructed in Proposition 7.23 (so to make
sure that order cannot be computed already from Theorem 5.10), and consider the
associated Jacobi matrices. To this end let ~h be a decreasing sequence with (7.12) which

has the property that limn→∞ hn/hn+1 = 1. For instance use hn = n−
1
α (ln n)−5 where

α ∈ (0, 1/2]. Let ~s,~l, ~φ be the sequences constructed in the proof of Proposition 7.23.
Then we know that

lim
n→∞

sn = ∞, | sin(φn+1 − φn)| ≍
1

s2n
, ln ≍ hn · s2n,

and hence

|qn|
ρn

=

√
lnln+1

ln︸ ︷︷ ︸
→1

·
∣∣∣∣ cos(φn+1 − φn)︸ ︷︷ ︸

→1

+cos(φn − φn−1)︸ ︷︷ ︸
→1

sin(φn+1 − φn)

sin(φn − φn−1)

∣∣∣∣.

Since sn is unbounded but |sn+1−sn| = 1, we find a subsequence (φnk
)∞k=1 with φnk−1 >

φnk
> φnk+1, or equivalent snk−1 + 1 = snk

= snk+1 − 1. Along this subsequence

inf
k∈N

sin(φnk+1 − φnk
)

sin(φnk
− φnk−1)

> 0,

and we conclude that lim supn→∞ |qn|/ρn > 1. This shows that the Jacobi matrix
associated with H~l,~φ is far from being a small perturbation of the corresponding zero-
diagonal matrix in the sense of Theorem 2.5. ♦
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In this section we study the spectrum of Jacobi matrices of type C, whose parameters
have a power asymptotics. More precisely, we consider the upper density of the spectrum
with respect to a power Rα, i.e.

lim sup
R→∞

nσ(R)

Rα
∈ [0,∞],

where nσ(R) denotes the counting function, i.e. the number of spectral points of a
selfadjoint extension of TJ in the interval [−R,R].

Studying the upper density is natural, since this quantity is accessible via the growth
of the canonical product having the spectrum as its zero-set. Passing to a canonical
product and applying the theory of entire functions is a common tool in the theory of
operators with compact resolvents, e.g., [GK69]. It was applied in various instances to
investigate the asymptotic behaviour of the spectrum, e.g., [Fre05].

Once more we recall Berezanskĭı’s theorem, cf. Theorem 2.5: Assume that
∑∞

n=0 ρ
−1 <

∞, that
∑∞

n=0
|qn|
ρn

< ∞, and that the off-diagonal parameters are log-concave, i.e.

ρ2n ≥ ρn−1ρn+1. Then, J is of type C, and the order is equal to the convergence exponent
of (ρn)

∞
n=0. Equivalently one could say that τα(H) = 0 for all α greater than the

convergence exponent of (ρn)
∞
n=0, and τα(H) = ∞ for α smaller than the convergence

exponent of (ρn)
∞
n=0. It is the same to say that the upper density of the zeros of any entry

of the monodromy matrix W (z) is zero or infinity, respectively, cf. [Lev80, Theorem 14].
Since the zeros of w2,1(z) interlace with the spectrum of TJ , we get

lim sup
R→∞

nσ(R)

Rα
=

{
0, for α > convergence exponent of (ρn)

∞
n=0,

∞, for α < convergence exponent of (ρn)
∞
n=0.

(8.1)

8.1. The generic case

In this section we study the upper density of the spectrum for Jacobi matrices J whose
parameters have the power asymptotics

ρn = nβ1
(
x0 +

x1
n

+O(n−2)
)
, qn = nβ2

(
y0 +

y1
n

+O(n−2)
)
, (8.2)

with x0 > 0, y0 6= 0. We assume β1 > 1, δ := β1 − β2 ≥ 0, and |y0| ≤ 2x0 if
δ = 0. These conditions are necessary for J being of type C by Carleman and Wouk, cf.
subsection 2.1.2.
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Having (8.2) implies that (ρn)
∞
n=0 is log-concave. Hence, if δ > 1, Berezanskĭı’s theorem

applies and yields (8.1). Observe that the convergence exponent of a sequence (ρn)
∞
n=0

with (8.2) is 1
β1
.

Our main result is the following theorem which, roughly speaking, says that (8.1)
remains valid for δ ∈ (0, 1], and even in some cases where δ = 0, i.e. where diagonal and
off-diagonal parameters are comparable.

8.1 Theorem. Let J be the Jacobi matrix with parameters ρn, qn, let T be a selfadjoint
extension of TJ in ℓ2(N), and let nσ be the counting function of the spectrum of T .
Assume that ρn and qn have the asymptotics (8.2) where x0 > 0, y0 6= 0, β1 > 1 and
δ := β1 − β2 ∈ [0, 1]. If δ = 0, assume further that |y0| < 2x0.

Then J is of type C and the order is equal to 1
β1
. Moreover, the upper density of the

spectrum of T is finite and not zero,

lim sup
R→∞

nσ(R)

R1/β1
∈ (0,∞). (8.3)

In the proof of this theorem we use the already mentioned fact that the growth of
the counting function nσ relates to the growth of the corresponding canonical product,
pass from the Jacobi matrix to the corresponding Hamburger Hamiltonian, and apply
Theorem 5.1 to estimate the growth of the monodromy matrix of this system. A crucial
step is to establish that the power asymptotics (8.2) of the Jacobi parameters give rise
to similar power asymptotics for the data determining the canonical system. To achieve
this we use recent work of R.-J.Kooman [Koo07] and a discrete Levinson type theorem.

Proof of Theorem 8.1. Let a Jacobi matrix J whose parameters ρn and qn have an
asymptotic expansion (8.2) be given, and assume that x0 > 0, y0 6= 0, β1 > 1, δ ∈ [0, 1],
and that |y0| < 2x0 if δ = 0.

In order to apply Theorem 5.1, we need knowledge about the lengths and angles of the
Hamburger Hamiltonian associated with J . Since Pn(0) and Qn(0) form a fundamental
system of solutions of the difference equation

ρn+1un+2 + qn+1un+1 + ρnun = 0, (8.4)

we start with studying asymptotics of solutions of this equation.

Step 1: Growth of solutions, δ ∈ [0, 1)

In the case δ ∈ [0, 1), we begin with rewriting (8.4). Setting ri :=
−qi
2ρi

and dividing by

ρn+1
∏n+1
i=1 ri gives

un+2∏n+1
i=1 ri

− 2
un+1∏n
i=1 ri

+
ρn

ρn+1rnrn+1

un∏n−1
i=1 ri

= 0.

Introducing the new variable vn := un
(∏n−1

i=1 ri
)−1

and setting Cn := 1 − ρn
ρn+1rnrn+1

gives
vn+2 − 2vn+1 + (1− Cn)vn = 0. (8.5)
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A computation shows

Cn = 1− 4n2δ
(
z0 +

z1
n

+O(n−2)
)

with

z0 :=
(x0
y0

)2
, z1 :=

x0
y30

(
2(x1y0 − x0y1)− β2x0y0

)
.

Clearly, we have

lim
n→∞

n−2δCn =

{
−4z0 δ ∈ (0, 1)

1− 4z0 δ = 0
.

Our assumptions ensure that this limit is always negative.
We can apply [Koo07, Theorem 1 (i)], and get two linearly independent solutions of

(8.5), denote them by (v
(j)
n )∞n=1 for j = 1, 2, such that

v(1)n = v
(2)
n = (1 + O(1))n−

δ
2

n−1∏

k=1

(
1 + i

√
−Ck

)
.

The absolute value of each factor is equal to

∣∣∣1 + i
√

−Ck
∣∣∣ =

√
1− Ck =

√
4k2δ

(
z0 +

z1
k

+O(k−2)
)

= 2
√
z0k

δ

√
1 +

z1
z0k

+O(k−2),

and we get

∣∣∣∣∣

n−1∏

k=1

(
1 + i

√
−Ck

)
∣∣∣∣∣ = (2

√
z0)

n−1
[
(n− 1)!

]δ
√√√√

n−1∏

k=1

(
1 +

z1
z0k

+O(k−2)
)

=
(2x0
|y0|

)n−1[
(n− 1)!

]δ
(c1 + o(1))n

z1
2z0 ,

for some c1 > 0, due to [Koo07, Lemma 4] adding a summable perturbation. Thus

∣∣v(1)n
∣∣ =

∣∣v(2)n
∣∣ = (c1 + o(1))

(2x0
|y0|

)n−1[
(n− 1)!

]δ
n

z1
2z0

− δ
2

= (c1 + o(1))
(2x0
|y0|

)n−1[
(n− 1)!

]δ
n

x1
x0

−
y1
y0

−
β1
2 . (8.6)

Substituting back via un = vn
∏n−1
i=1 ri produces two solutions of (8.4), (u

(j)
n )∞n=1 for
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j = 1, 2. At first note

n−1∏

k=1

rk =

n−1∏

k=1

−qk
2ρk

=

n−1∏

k=1

−1

2
k−δ

y0 +
y1
k +O(k−2)

x0 +
x1
k +O(k−2)

=

n−1∏

k=1

−1

2
k−δ

(
y0
x0

+
1

k

y0
x0

(y1
y0

− x1
x0

)
+O(k−2)

)

=
(−y0
2x0

)n−1[
(n− 1)!

]−δ n−1∏

k=1

(
1 +

1

k

(y1
y0

− x1
x0

)
+O(k−2)

)

=
(−y0
2x0

)n−1[
(n− 1)!

]−δ
(c2 + o(1))n

y1
y0

−
x1
x0 , (8.7)

for some c2 6= 0, again by [Koo07, Lemma 4]. Combining (8.6) and (8.7) gives the
asymptotic behaviour

∣∣u(1)n
∣∣ =

∣∣u(2)n
∣∣ =

∣∣v(1)n
∣∣
∣∣∣∣
n−1∏

k=1

rk

∣∣∣∣ = (c3 + o(1))n−
β1
2 , (8.8)

where c3 = c1 |c2| > 0. Since these solutions are square-summable, J is of type C.

Step 2: Growth of solutions, δ = 1

The case δ = 1 is not covered by [Koo07, Theorem 1], but can be handled with direct
computations reduced to Levinson’s theorem.

Dividing (8.4) by ρn+1 and shifting the index by 1 gives

un+1 +
qn
ρn︸︷︷︸
=:an

un +
ρn−1

ρn︸ ︷︷ ︸
=:bn

un−1 = 0. (8.9)

Clearly an = y0
x0
n−1+O(n−2) and bn = 1−β1n−1+O(n−2). By setting ~un = (un, un+1)

T

and

An :=

(
0 1

−bn −an

)
=

(
0 1
−1 0

)
+

1

n

(
0 0
β1 − y0

x0

)
+O

(
n−2

)
,

we write (8.9) as the difference system

~un = An~un−1. (8.10)

The idea is to diagonalise An modulo summable terms. To this end, we set

Rn :=

(
in (−i)n
in+1 (−i)n+1

)
,

and introduce the variable ~vn := R−1
n ~un. This leads to the difference system

~vn = R−1
n AnRn−1~vn−1.
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Set z := β1 + i y0x0 . A calculation shows,

R−1
n AnRn−1 =

(
1− 1

2n z̄ 0

0 1− 1
2nz

)
+

(−1)n

2n

(
0 z

z̄ 0

)
+O

(
n−2

)
.

In order to get rid of off-diagonal terms which are not summable we perform one more
transformation:

Sn := I − 1

2

∞∑

k=n+1

(−1)k

k

(
0 z

z̄ 0

)

Note that Sn is invertible for sufficiently large n, say n ≥ n0. Then ~wn := S−1
n ~vn satisfies

~wn = S−1
n R−1

n AnRn−1Sn−1 ~wn−1, (8.11)

with

(RnSn)
−1AnRn−1Sn−1 =

(
1− 1

2n z̄ 0

0 1− 1
2nz

)
+O

(
n−2

)
.

Note that the diagonal entries are complex conjugated numbers which converge to 1.
The discrete version of Levinsons’s Fundamental Theorem [BL15, Theorem 3.4] gives a
fundamental solution of (8.11) with

Wn = (I +O(1))
n∏

k=n0

(
1− 1

2k z̄ 0

0 1− 1
2kz

)

= (I +O(1))

(∏n
k=n0

(1− 1
2k z̄) 0

0
∏n
k=n0

(1− 1
2kz)

)
.

Substituting back yields that

RnSnWn = (I +O(1))Rn

(∏n
k=n0

(1− 1
2k z̄) 0

0
∏n
k=n0

(1− 1
2kz)

)

= (I +O(1))

(
in
∏n
k=n0

(1− 1
2k z̄) (−i)n∏n

k=n0
(1− 1

2kz)

in+1
∏n
k=n0

(1− 1
2k z̄) (−i)n+1

∏n
k=n0

(1− 1
2kz)

)

is a fundamental solution of (8.10). By inspecting the first row we get two solutions

u
(1)
n , u

(2)
n of (8.9), or equivalently (8.4), with

|u(1)n |, |u(2)n | ≍
∣∣∣∣

n∏

k=n0

(1− 1

2k
z̄)

∣∣∣∣ ≍ n−
Re z
2 = n−

β1
2 . (8.12)

In particular, J is of type C.
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Step 3: Conclusions concerning the spectrum

We have seen in the first and second step, cf. (8.8) and (8.12) respectively, that the

difference equation (8.4) has a fundamental system of solutions u
(1)
n , u

(2)
n with |u(j)n | ≍

n−
β1
2 for j ∈ {1, 2}.

Recall that also Pn(0) and Qn(0) are linearly independent solutions of (8.4). The

quotient
(
|Pn(0)| + |Qn(0)|

)/
n−

β1
2 is bounded from above since Pn(0) and Qn(0) can

be written as linear combinations of u
(1)
n and u

(2)
n . It is also bounded away from zero,

since u
(1)
n is a linear combination of Pn(0) and Qn(0) and

∣∣u(1)n
∣∣/n−

β1
2 is bounded away

from zero. Thus, we obtain Pn(0)
2 +Qn(0)

2 ≍ n−β1 .
Consider the canonical system related to J . By (2.7) and (2.5), the lengths and angles

of the corresponding Hamburger Hamiltonian H satisfy

ln = Pn(0)
2 +Qn(0)

2 ≍ n−β1 ,
∣∣ sin(φn+1 − φn)

∣∣ =
(
ρn
√
lnln+1

)−1 ≍ nβ1−β1 = 1.

The lengths and angle-differences are regularly distributed in the sense of Definition 6.2,
also note Remark 6.3. Moreover, δl = β1, δφ = 0 and both expressions exist as a limit,
cf. Example 5.20. Theorem 6.5, (iii), states that the order of the canonical system is
equal to β−1

1 . We take a closer look at the growth by considering the type of the system,
τ1/β1(H).

First, Corollary 5.15 gives that the type of the entire function F (z) :=
∑∞

n=0 bn,nz
n

does not exceed τ1/β1(H). Note that the order of both F (z) and the canonical system

is equal to β−1
1 . Recall that bn,n = (ρ1ρ2 . . . ρn−1)

−1 denotes the leading coefficient of
Pn(z), cf. (2.3). The asymptotics of ρn yields

bn,n = (c+O(1))
[
n!
]−β1nβ1−

x1
x0 x−n+1

0 ,

for a constant c > 0. Using the standard formula for the type of a power series, [Lev80,

Theorem 2], we get that the type with respect to the order β−1
1 is equal to β1x

−1/β1
0 . In

particular, we get
0 < τ1/β1(F ) ≤ τ1/β1(H). (8.13)

Secondly we show that τ1/β1(H) is finite by applying Theorem 5.1 to H and λ(R) :=

R1/β1 . To this end, set N(R) := ⌊λ(R)⌋, ψ := 0 and

a2j(R) :=

{
jβ1
R j = 1, . . . , N(R)− 1

1 j = N(R).

Note that the sequence aj(R) is increasing and bounded from above by 1. We need to
estimate the quantities C1(R), . . . , C4(R).

C1(R) =

N(R)−1∑

j=1

lja
2
j(R) .

1

R

N(R)−1∑

j=1

j−β1+β1 ≤ λ(R)

R
.
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Concerning C2(R), we have

C2(R) =
∞∑

j=N(R)

lj
(
a2N(R)(R) cos

2(ψ − φj) + a−2
N(R)(R) sin

2(ψ − φj)
)

.

∞∑

j=N(R)

j−β1
(
cos2(ψ − φj) + sin2(ψ − φj)

)

=

∞∑

j=N(R)

j−β1 = O
(
R(1−β1)/β1

)
= O

(λ(R)
R

)
.

Due to ln a−1
1 (R) = lnR and ln a−1

N(R)
(R) = 0, we get C4(R) = O(logR). Regarding

C3(R), we use the simplification for increasing sequences aj(R) mentioned in Remark 5.2,

N(R)−1∑

j=1

ln
(∣∣ cos(ǫj)

∣∣+ | sin(ǫj)|
a2j+1(R)

)
≤

N(R)−1∑

j=1

ln
(
1 +

1

a2j+1(R)

)

≤
N(R)−1∑

j=1

ln
( 2

a2j+1(R)

)
=

N(R)∑

j=2

ln
(
2Rj−β1

)
.

Writing the sum as an integral and substituting y−β1 = Rx−β1 gives,

N(R)∑

j=2

ln
(
2Rj−β1

)
≍
∫ N(R)

2
ln
(
2Rx−β1

)
dx ≤ R

1
β1

∫ 1

0
ln
(
2y−β1

)
dy,

i.e. C3(R) = O(λ(R)). Theorem 5.1 yields that the type of the canonical system with
respect to the order β−1

1 is finite.
Together with (8.13) we get 0 < τ1/β1(H) <∞, i.e. all four entries of the monodromy

matrix are of normal type. By [Lev80, Theorem 14], the upper density of the zeros of
the entry w2,1(z) is finite and not zero, i.e.

lim sup
R→∞

nw2,1(R)

λ(R)
∈ (0,+∞),

where
nw2,1(R) = #{z ∈ C : w2,1(z) = 0, |z| < R}.

Because the spectrum of T interlaces with the zeros of w2,1, we conclude that the upper
density of the spectrum is also finite and not zero. ❑

8.2. The exceptional case

In this section, we consider the exceptional case δ = 0, i.e. β1 = β2, and |y0| = 2x0. Set
β := β1 = β2. The asymptotics of ρn and qn give

ρn + ρn−1 − sgn(y0)qn = nβ
(
d0 +

d1
n

+O(n−2)
)
,
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where
d0 := 2x0 − |y0| = 0, d1 := 2x1 − sgn(y0)y1 − βx0.

If d1 < 0, J is of type D due to Wouk’s theorem, which is formulated in subsection 2.1.2.
Hence, we assume d1 ≥ 0.

8.2 Theorem. In the situation of Theorem 8.1, assume that δ = 0, |y0| = 2x0 and
d1 = 2x1 − βx0 − sgn(y0)y1 > 0.

If β ∈ (1, 32 ], then J is of type D. In the case β > 3
2 we state that J is of type C.

Concerning the order of J , we have

ρ(J)

{
∈ [ 1β ,

1
2(β−1) ],

3
2 < β < 2

= 1
β , β ≥ 2.

(8.14)

Furthermore, the upper density of the spectrum of T is not zero in the case β ≥ 2, i.e.

lim sup
r→∞

nσ(r)

r
1
β

∈ (0,∞].

8.3 Remark. In the case 3
2 < β < 2, we do not know the exact order of J . Another open

question is whether the upper density of the spectrum can be infinity for β ≥ 2. ♦

Proof of Theorem 8.2. We start, exactly as in the proof of Theorem 8.1, with the differ-
ence equation,

ρn+1un+2 + qn+1un+1 + ρnun = 0. (8.15)

Step 1: Growth of solutions

As in the proof of Theorem 8.1, we write (8.15) in the form

vn+2 − 2vn+1 + (1− Cn)vn = 0, (8.16)

with Cn := 1− ρn
ρn+1rnrn+1

. This time we get the following asymptotic expansion of Cn,

Cn =
z1
n

+O(n−2), z1 := −2x1
x0

+
2y1
y0

+ β,

in particular limn→∞ nCn = z1. Due to

z1 =
−1

x0

(
2x1 −

2x0
y0

y1 − βx0

)
=

−d1
x0

,

and due to the assumption d1 > 0, we get that z1 is negative.
We apply [Koo07, Theorem 1 (i)], and get two linearly independent solutions of (8.16),

denote them by (v
(j)
n )∞n=1 for j = 1, 2, such that

v(1)n = v
(2)
n = (1 + O(1))n1/4

n−1∏

k=1

(
1 + i

√
−Ck

)
.
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The absolute value of each factor is equal to

∣∣∣1 + i
√

−Ck
∣∣∣ =

√
1− Ck =

√
1− z1

k
+O(k−2),

and we get

∣∣∣∣∣

n−1∏

k=1

(
1 + i

√
−Ck

)
∣∣∣∣∣ = (c1 + o(1))n

−z1
2 = (c1 + o(1))n

x1
x0

−
y1
y0

−β
2 ,

for some c1 > 0, due to [Koo07, Lemma 4] adding a summable perturbation. Thus

∣∣v(1)n
∣∣ =

∣∣v(2)n
∣∣ = (c1 + o(1))n

1
4
+

x1
x0

−
y1
y0

−β
2 . (8.17)

Substituting back via un = vn
∏n−1
i=1 ri produces two solutions of (8.4), denoted by

(u
(j)
n )∞n=1 for j = 1, 2. The calculation made in (8.7) yields in our situation

∣∣∣∣
n−1∏

k=1

rk

∣∣∣∣ = (c2 + o(1))n
y1
y0

−
x1
x0

for some c2 > 0. Together with (8.17) this results in the asymptotic behaviour

∣∣u(1)n
∣∣ =

∣∣u(2)n
∣∣ =

∣∣v(1)n
∣∣
∣∣∣∣
n−1∏

k=1

rk

∣∣∣∣ = (c3 + o(1))n
1
4
−β

2 ,

where c3 = c1c2 > 0. In particular, J is of type C if and only if β > 3
2 .

Step 2: Conclusions concerning the spectrum

Let ~l, and ~φ denote the lengths and angles of the corresponding Hamburger Hamiltonian.
The argument carried out in the beginning of the 3rd step in the proof of Theorem 8.1
yields that

ln = Pn(0)
2 +Qn(0)

2 ≍ n
1
2
−β,

∣∣ sin(φn+1 − φn)
∣∣ =

(
ρn
√
lnln+1

)−1 ≍ n−
1
2
+β−β = n−

1
2 .

The lengths and angle-differences are regularly distributed in the sense of Definition 6.2,
note Remark 6.3. Moreover, δl = β − 1/2, δφ = 1/2 and both expressions exist as a
limit, cf. Example 5.20.

In the case 3/2 < β < 2 we apply Theorem 5.10 (with µ = 0, since we have no
knowledge about convergence of angles) and get that the order of the canonical system
does not exceed

1−∆φ − µ
2

∆l −∆φ + µ
=

1

2(β − 1)
.
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By Corollary 5.21, ρ(J) is bounded from below by (δl + δφ)
−1 = β−1. These bounds do

not coincide.
For β ≥ 2 the conditions of Theorem 6.5, (i), are satisfied, and we get that the order is

equal to β−1
1 . In this case it is possible to consider the type of the system, τ1/β1(H). In

contrary to the situation in Theorem 8.1, we will only show that the type is not zero by
employing Corollary 5.15. As we have already seen there, the order of F (z) is β−1

1 and

the type with respect to this order is equal to βx
−1/β
0 > 0. As a result, τ1/β1(H) > 0.

[Lev80, Theorem 14] yields that the upper density of the zeros of the entry w2,1(z)
is not zero. The proof is finished, since the spectrum of T interlaces with the zeros of
w2,1. ❑

The case d1 = 2x1 − sgn(y0)y1 − βx0 = 0 is not covered in Theorem 8.2, since then
Cn = O(n−2), and the essential condition of Kooman’s theorem, the existence of a real
number a such that

lim
n→∞

n−aCn = C 6= 0

is not guaranteed.
In order to handle this case, it is necessary to start with longer asymptotics,

ρn = nβ1
(
x0 +

x1
n

+
x2
n2

+O(n−3)
)
, qn = nβ2

(
y0 +

y1
n

+
y2
n2

+O(n−3)
)
.

Then Cn = z2
n2 + O(n−3) for some real z2, and we can start the above argument once

more. Note that the next exceptional case emerges in the form of z2 = 0.
In fact, there will always be exceptional cases, regardless of the length of the asymp-

totics of ρn, qn: If m ∈ N and ρn, qn have an asymptotic up to O(n−m) and satisfy
ρ2n = (1 + 1

n)
β2q2n, then Cn = O(n−m).
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Open problems

1. Is it always possible to compute the λ-type of a lcc Hamiltonian with Theorem 3.3,
the refined version of Romanov’s Theorem 1? In other words, does equality hold
in Corollary 3.4 for all H?

2. Is it always possible to compute the order of a lcc Hamiltonian with Theorem 3.3?

3. Consider a Hamburger Hamiltonian in the critical triangle, i.e. ∆l+∆φ < 2. Even
if the data is regularly distributed, the upper bound for the order in Theorem 5.10
and the lower bound from Corollary 5.21 do not coincide, cf. Example 6.6.

Either the lower or the upper bound should be improved in this case.

4. For an indeterminate moment sequence, Corollary 5.15 gives

ρ
(
(sn)

∞
n=0

)
≥ ρ(F ) ≥ ρ(L).

By Corollary 6.14 the first inequality can be strict. Is there a moment sequence
such that ρ(F ) > ρ(L)?

5. Proof Proposition 4.6 for general Hamiltonians.

6. Find a direct proof of Theorem 6.9 and Corollary 6.10, without using Theorem 5.10
and Corollary 5.21.

7. Is it possible to formulate an analogue of Theorem 7.18 for general Hamiltonians?
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In: Beiträge Anal. 15 (1980), 27–45 (1981).

[KL85] M.G. Krein and H. Langer. ‘On some continuation problems which are
closely related to the theory of operators in spaces Πκ. IV. Continuous ana-
logues of orthogonal polynomials on the unit circle with respect to an indef-
inite weight and related continuation problems for some classes of functions’.
In: J. Operator Theory 13.2 (1985), pp. 299–417.

[KM57] S. Karlin and J. McGregor. ‘The differential equations of birth-and-death
processes, and the Stieltjes moment problem’. In: Trans. Amer. Math. Soc.
85 (1957), pp. 489–546.

100



BIBLIOGRAPHY

[Koo07] R.-J. Kooman. ‘An asymptotic formula for solutions of linear second-order
difference equations with regularly behaving coefficients’. In: J. Difference
Equ. Appl. 13.11 (2007), pp. 1037–1049.

[Kre51] M.G. Krein. ‘On the theory of entire matrix functions of exponential type’.
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