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Abstract

Biotechnology production plants offer a wealth of information in recorded bioprocessing
data through modern data logging and archiving systems. This rich amount of data
allows to optimize single bioprocesses, conduct quality control, and characterize processes.
Due to the variety of different data logging systems, the resulting recorded bioprocess
data is stored in different document formats, storage and database systems, and largely
unstructured shapes. State of the art methods of bioprocess data alignment include the
development of specific extraction scripts and manual data alignment. A large part of
the analytical process is thus put into time-consuming manual data alignment processes.
Machine Learning (ML) techniques can uncover hidden patterns in these seemingly
unstructured shapes and thus allow for the automatic alignment of bioprocess data,
independent of different storage formats and shapes. It is thus potentially advantageous
to apply ML techniques in order to ease the time-consuming effort put into the data
alignment process.

The aim of this thesis is to develop a bioprocess data extraction and alignment framework
based on different Machine Learning techniques for data preprocessing and classification.
The data set used in the scope of this thesis consists of different online- and offline-
recorded batch processes collected from six different companies in the pharmaceutical,
bioreactor, and biosensor industry (see appendix). All data sources were anonymized and
recorded values replaced by random values prior to any processing steps. Each recorded
batch is partitioned into a vectorized grid, where every data entry is represented by a
single cell on the grid. Features for the classification process are built from cell properties
and their surrounding cell neighborhood information for a given radius. Due to the
high-dimensionality of the resulting feature space and to ensure maximum variability, the
input dimension is reduced using Principal Component Analysis (PCA). The processed
feature set is tested on two different classifiers, Stochastic Gradient Descent (SGD) with
L2 regularization (Support Vector Machine) and Gradient tree Boosting. Tests were run
using different neighborhood distances, different training/testing ratios, and different
sets of hyperparameters for the chosen classifiers.

The variation in training/testing ratios showed that the variance between the highest
and lowest test result steadily decreased for an increasing number of training samples.
Based on the resulting averaged classifier F-scores for different neighborhood radii tests,
a neighborhood distance radius of 2 demonstrated a good agreement between specificity
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and sensitivity for the model learning curve without overfitting the prediction models.
Between the two classifiers, the Gradient tree Boosting method achieved an overall
higher prediction accuracy than the Support Vector Machine. The results of the feature
importance tests for the cell features showed that the features data type and string
similarity contributed the most during the training phase. The results for the feature
importances for different neighborhood directions indicated a strong bias towards the
cell information below each cell. The final prediction model achieved an average F-score
of 86.27 with a low standard deviation of only 0.0477.

A machine-learning based extraction method for bioprocess data proved to be succesful,
but with limitations. Improvements in the parsing process of the bioprocess data, the
addition of new cell features, and a higher information content in the cell neighborhood
features would greatly refine the accuracy of the prediction models. Future opportunities
to expand the work done in this thesis would be an extension of the hyperparameter
optimization for the Gradient Boosting classifier, improved sampling methods to reduce
the class label imbalance in the training set, and a comparison of different nearest neighbor
metrics in relation to the respective feature importance.

Figure 1: Bioprocess data extraction and prediction framework with the three building
blocks data gathering, feature selection, and evaluation.
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CHAPTER 1
Introduction

1.1 Motivation

Modern biotechnology production plants utilize data recording and archiving systems
to log every change in system parameters, sensor data, or environmental factors over
time [9]. This wealth of information in recorded bioprocess data is used in the analysis
of process outcome, process prediction, and error tracking [10]. Time series of bioprocess
are stored into standard tabular file formats that contain a time axis, process variable
columns, parameter settings, and recorded environment variables. Performing process
analysis on the resulting recorded tabular data sheets requires careful extraction of
the data and domain-based knowledge of the underlying recorded processes and their
respective structure. Standard methods of data extraction for bioprocess sheets often
require manual conversion, data interpretation by engineers and bioinformaticians or
further process knowledge. These techniques are time consuming and prone to hu-
man error. Specific extraction algorithms may be applied to interpret the data sheet
structure, but often fail to capture variations in the recording process or tabular structure.

The transformation of bioprocess sheets into multi-dimensional arrays represents the
vectorized basis for the application of Machine Learning (ML) algorithms to the extrac-
tion problem. Machine Learning algorithms can infer the complex tabular structures in
different bioprocess sheets by learning patterns on the transformed, multi-dimensional
arrays in a supervised manner. Features can be built using a mixture of domain-specific
knowledge, e.g common terms for bioprocess variables and parameters, and exploration
of local and global neighborhood relations on the array structure. Discriminative models
like Support Vector Machines (SVM) and Gradient Boosting can estimate predictions for
new and unseen structures based on the learned feature structure. Given a sufficiently
large amount of diverse sheet structure, a data extraction framework can be trained to
ease the time-consuming effort and knowledge put into traditional extraction methods.
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1. Introduction

The development of an automatic method for the extraction of bioprocess data would
thus be highly benefitial for bioprocess engineers, bioinformaticians, and researchers.

1.2 Aim of the Thesis
The aim of this thesis is to develop an automatized framework for data mining of
complex bioprocess data structures collected from different systems through the use of
Machine Learning (ML) techniques. Principal Componenten Analysis (PCA) is used to
reduce the high-dimensional input space. Support Vector Machines (SVM) and Gradient
Boosting are used as classifiers to establish a self-learning framework in order to learn
typical structures of bioprocess data sheets. The resulting structure is then analyzed and
statistically evaluated. As a result, new bioprocess data consisting of various structures
can be automatically labeled.

1.3 Methodological Approach
The bioprocess data for this study is acquired from six different bioprocess reactor types.
The implementation of the thesis is performed in the Python environment to analyze the
provided data and create evaluation plots and results. All data sheets for training and
testing are manually labeled by an experienced bioprocess engineer. A pipeline object is
used to stack the preprocessing and prediction models into a single chain and ease the
control of hyperparameters. The pipeline object is then placed into a grid object that
allows for training and evaluation using different sets of hyper-parameter ranges. Every
subset of hyper-parameters that is drawn from a given parameter range distribution is
evaluated using 10-fold cross validation to prevent overfitting. All predicted labels are
compared and evaluated against the manually labeled ground truth data. Preprocessing
models, predictive models, the pipeline framework, and the grid search object are built
using the python scikit learn library [40].
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1.4. Structure of the Thesis

1.4 Structure of the Thesis
Chapter 1: Introduction
The first chapter of this thesis introduces the topics of Bioprocessing and the use of
Machine Learning as a method of exploring and learning the input structure of bioprocess
data. The motivation for the work and the methodology are briefly explained.

Chapter 2: Background
The background chapter presents the results of the literature research conducted during
the course of this thesis. The principles of Machine Learning, preprocessing methods,
supervised classification, predictive models, and evaluation measures are introduced.
Furthermore, the structure of bioprocess data sheets is presented and explained in detail.

Chapter 3: Methods
The methods chapter describes in detail how different Machine Learning techniques are
applied in a full framework and evaluated using different scoring metrics on the given
test and training data.

Chapter 4: Results The results of the evaluation analysis are presented in chap-
ter four. A comparison between different radii in feature building, classifiers, sets of
hyperparameters, and preprocessing methods is visualized in error plots with different
metrics, confusion matrices, and tables.

Chapter 5: Discussion
In the discussion chapter, the results in chapter four are analyzed and interpreted. Ad-
ditionally, limitations of different methods and statistical significance are further discussed.

Chapter 6: Conclusion
The conclusion chapter provides a review of the used approach and outcome of this
work. A brief examination of the achieved results and encountered challenges are further
analyzed. Finally, future improvements and suggestions are given.
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CHAPTER 2
Background

This chapter provides a basic overview on the underlying Machine Learning basics,
dimensionality reduction, kd-trees, string similarity metrics, and classifiers in the context
of this thesis. Due to decades of research in the field of Machine Learning, this chapter
is limited to the necessary basics that are used in the final framework. The first part
presents a gentle introduction to general learning approaches, under -and over-fitting,
the bias-variance-tradeoff, and the usage of model parameter and hyper-parameters in
section 2.1. Section 2.2 introduces the concept of the Principal Component Analysis
(PCA) for dimensionality reduction. Section 2.3 describes the theory of kd-trees and the
concept of nearest neighbor search. Section 2.4 introduces the Jaro-Winkler distance for
string similarity estimation. Section 2.5 and 2.6 introduce the two predictive models that
are used throughout the context of this thesis, the Gradient Boosting classifier and the
Support Vector Machine.

2.1 Machine Learning in General

The goal of Machine Learning [35] can be understood as the process of gaining and
using experience from data to improve computational methods without being explicitly
programmed. Given a data set X of n observations and a set of corresponding labels
Y , one might seek to learn a mapping from input to output in order to predict newly
observed data. The sample set X can have many shapes, for instance images, videos,
voice recordings or text data. In general, Machine Learning algorithms can be classified
by the level of human supervision that the respective model requires [31].

Types of algorithms:
Supervised learning features a set of training observations xi with labels yi that is
trained on a learning algorithm h(x) to map the input space X to the output space Y by
learning a function h : X → Y . Supervised learning tasks can be further categorized into
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2. Background

continuous (regression) and discrete (classification) problems. For instance, a typical
classification task is the training of a spam filter on a set of emails and their corresponding
text content together with the respective labels, e.g ’spam’ or ’no spam’. Based on the
trained classifier, new emails can be categorized by using a probabilistic approach or
simple distance metrics. Unlike discrete predictions in classification, regression models
do not quantize the data into different bins, but predict continuous values. Popular
supervised learning approaches include k-Nearest Neighbors (kNN), Linear and Logis-
tic Regression, Support Vector Machines (SVM), Neural networks (NN), and Decision
Trees/Random Forests. The supervised learning approaches used in this thesis are the
Support Vector Machine (SVM) and Gradient Boosting (Ensemble Learning).

In unsupervised learning the learning algorithm h receives an unlabeled set of training
observations x to make predictions on unlabeled sets of data by modeling the underlying
structure of the data. A prominent unsupervised learning task is clustering. For instance,
one seeks to group visitors of a website into different clusters to draw sufficient inference
for future content. Given a set of features, e.g age or location, the input data can be
clustered into different visitor groups or visualized into hierarchies of groups.
Another common task in unsupervised learning is dimensionality reduction as described
in the following section. The primary goal of dimensionality reduction is to find a more
compact representation of the input data while preserving enough information to draw
statistical inference from the data. This can be further grouped into feature selection
and feature extraction. In feature selection the original feature space is reduced to return
a subset of the original data. This allows for simplification of the model interpretation,
shorten the training time, and reduce the risk of overfitting. Feature extractions seeks
to rebuild the original feature space by using subsets of old features to construct a new
feature set.

The category of algorithms that processes partially labeled training sets is referred to
as semi-supervised learning. A prominent example are deep belief networks (DBN),
a mixture of supervised and unsupervised learning algorithms. A DBN is a multi-layer
network that consists of several layers of Restricted Boltzmann Machines (RBM), a type
of stochastic feature extractor. In a first step, these feature extractors are trained by
reconstructing the original input given a set of probabilistic constraints. By training
the whole network from the bottom to the top, complex features are built upon simple
shapes. These feature extractors are trained in an unsupervised fashion by minimizing
the reconstruction error between the original input and the reconstructed feature. The
whole network is then trained again in a supervised manner by fine-tuning each layer
based on the previous layer using labeled training data.

Reinforcement Learning is based on a so-called learning agent. The agent inter-
acts in a trial and error manner with its environment where suitable actions are rewarded
and negative actions penalized. The assignment of rewards and penalties is drawn from
a policy configuration, comparably to a set of rules in law. A strategy is then learned
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by maximizing the amount of rewards over time until the agent acts according to the
given policy. A typical application of reinforcement learning is the area of robotics, where
robots are trained to walk using reinforcement learning algorithms [45].
An overview of different Machine Learning methods and their respective input/output
structure is shown in Figure 2.1. Learning algorithms can also be categorized by the

Figure 2.1: Basic learning structures of the three machine learning branches: supervised
learning, reinforcement learning, and unsupervised learning [46].

way that data is fed into a learning system. A learning problem is defined by a given
space X and a set of labels Y with the goal of assigning a label in Y to every instance
of the given space X . A statistical assumption that can be made is that there exists a
probability distribution over this product space of X × Y and that there exists a training
set that is i.i.d from this distribution. A function that maps the instances of X to target
labels in Y is called a hypothesis h. In Batch learning the training set that is i.i.d
drawn from a certain distribution is used to generate a hypothesis h [5]. This hypothesis
is expected to generalize well on unseen instances sampled from the distribution. If
no statistical assumptions about the underlying distribution of the data is made, in-
stances of data are sequentially processed by feeding chunks of examples to the learning
algorithm. After every iteration, the algorithm corrects a previously learned hypothesis
by adjusting weights based on new instances. This is referred to as Online Learning [5].

Model parameters & Hyperparameters
When modeling data using a learning algorithm, a model utilizes a set of internal variables
to construct a certain hypothesis. A learning algorithm is referred to as non-parametric if
the complexity of functions that it is capable of learning is increasing with the amount of
processed training data. Examples of nonparametric models include k-nearest neighbors,
decision trees, and Support Vector Machines (SVM). If the complexity of functions is
restricted to a certain set and thus independent of the amount of training observations,
the model is referred to as a parametric model. Examples of parametric models include
Logistic Regression, Linear Discriminant Analysis (LDA), and Naive Bayes classifiers.
When there is insufficient prior knowledge about the target function it is thus advanta-
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2. Background

geous to apply non-parametric learners on a set of observations to adjust the hypothesis
to the complexity of the data.
Unlike model parameters, hyperparameters are external configuration parameters of a
model that are not inferred from the data set itself. These values are set prior to the
training process and govern the way that the algorithm will behave when trained on
different types of data. For instance, in neural networks hyperparameters can control the
number of layers, input neurons, output neurons, and further regularization settings.
When trained in a supervised manner, input data in neural networks is forwarded and
processed through the network to predict values. These predicted values are then com-
pared with the the desired output and the error is back-propagated through the model
to adjust the weights of the network.
Figure 2.2 shows a so-called autoencoder structure, a type of neural network that tries to
learn an approximation of the identity function and thus reconstruct the input signal.
This is achieved by applying certain constraints on the network structure, e.g limiting the
number of hidden nodes in the hidden layer to force a compressed representation of the
original input. Similarly to a Principal Component Analysis, an autoencoder can therefore
output a lower-dimensional reconstruction of the input data if the hyperparameters are
set in a way that enforce a compressed processing of data. Instead of reconstructing the
input data, the neural network structure in Figure 2.3 seeks to predict a target vector
y from input vectors x by constructing a hypothesis h(x) based on the processed input
data through different layers. This demonstrates well, how different hyperparameter
settings that control layers and nodes, can influence the way data is processed and output.
The goal of finding an optimal combination of hyperparameters for a certain problem

Figure 2.2: Autoencoder with six
input neurons, three hidden nodes,
and six output neurons [39].

Figure 2.3: Neural Network model
with three input neurons, three hid-
den nodes, and one output node in
the output layer [39].

is referred to as hyperparameter optimization. In order to compare different sets of
hyperparameters, a suitable metric has to be chosen first to rank different combinations
based on their ability to maximize the chosen matric. Given a modelM, a loss function
L, a set of test data Xtest, a set of training data Xtrain, and a set of hyperparameters λ

8



2.1. Machine Learning in General

we can formulate the goal of finding the optimal set of hyperparameters λ∗ as

λ∗ = arg min
λ

L
(
Xtest;A(Xtrain;λ)

)
(2.1)

where the modelM is constructed by a learning algorithm A. The search for the optimal
set of hyperparameters is often strongly linked to the level of model complexity. If
the model is too complex, it will fit well on the training data, but fail to generalize
on the unseen test data. If in turn the model complexity is too low, the model will
fail in learning to capture the structure of the training data. This is referred to as the
bias-variance-tradeoff.
Given a target variable Y , the input data X, and a model estimation ˆf(X), a simple
squared error prediction can be defined as

Err = E
[
(Y − ˆf(x))2] (2.2)

which can be further decomposed into

Err =
(
E[f̂(x)]− f(x)

)2
+ E

[(
f̂(x)− E[f̂(x)]

)2
]

+ σ2
e (2.3)

where the first term is the squared bias, the second term represents the variance of the
model, and the third term is an irreducible noise error. The error due to bias is the
difference between the correct (target) value of our data and the predicted values of the
model based on the training data. Assuming that the model is trained repeatedly using
different hyperparameters, shuffled training data or given general randomness in the data
set itself, the bias is a measure of how wrong in general the algorithms predictions are
compared to the true target values of the data set.
The error due to variance is the variability of the models prediction for a given obser-
vation. Thus, variance is a measure of how much the predictions of a model vary for
a given observation or the algorithm’s tendency to capture random information while
disregarding the real, underlying structure of the data.
A high bias in a predictive model is a sign of underfitting the training data and thus
having a low model complexity. A high variance indicates overfitting, thus the model’s
complexity is too high and fits the model too closely to randomness and noise in the
training set. Figure 2.4 shows a simple two class separation tasks and the possible model
complexities underfitting, overfitting, and a bias-variance tradeoff between high and low
complexity.
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2. Background

Figure 2.4: Different model complexities on a two-class separation problem [22].

2.2 PCA
The aim of the Principal Component Analysis (PCA) is to apply an orthogonal trans-
formation to a possibly correlated set of data, so that the principal component of the
transformed system carries the largest possible variance [34]. Thus, each component of
the transformed system carries the highest possible variance given its orthogonal position
to the prior component. A high-dimensional, noisy data set can therefore be represented
using a lower-dimensional subspace transformation by computing a meaningful basis to
re-express the noisy data.
Given two m× n data matrices X and Y and their linear transformation P , where X is
the original data set and Y corresponds to the transformed presentation of X, so that

PX = Y (2.4)

we try to find a suitable transformation P to represent X using the principal components
p1, ..., pm. Finding a suitable basis P is coherently linked to the type of features that are
needed in Y , that is low noise and less redundancy. The noise ratio can be expressed by
the signal-to-noise ratio (SNR)/variance ratio

SNR =
σ2
signal

σ2
noise

(2.5)

where σ2
signal and σ2

noise are the respective variances of the data set. SNR values � 1
express low-noise data, while values � 1 are linked to noisy data. A simple way to
quantify the redundancy between the variables in the data set is to express the correlation
between all possible combinations of pairs. By computing the covariances of all possible
variable combinations, we obtain the relationships between all the measurements in the
given data set. The covariance matrix for a given m× n matrix X is defined as

SX = 1
n− 1XX

T (2.6)

where 1
n−1 is the unbiased estimator of X. A covariance value of zero corresponds to

an uncorrelated pair of variables, while a covariance 6= zero expresses the magnitude of
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2.3. Nearest neighbor search and kd-trees

correlation. Rewriting the covariance matrix in terms of the orthonormal matrix P gives

SY = 1
n− 1PAP

T (2.7)

with A = XXT . Given a diagonal matrix D and an eigenvector matrix E of A, a
symmetric matrix A can be expressed as A = EDET . Using the eigenvectors of XXT

to fill the rows of the matrix P , A can be defined as A = P TDP with P = ET .
Using equation 2.7 and the new definition for the matrix A it can be seen that SY =

1
n−1P (P TDP )P T simplifies to

SY = 1
n− 1D (2.8)

proving that P diagonalizes SY . The eigenvectors of XXT are the principal components
of X and the variance of X along vector pi is the i-th diagonal value of SY . Figure
2.5 shows the first two principal components of the iris data set, a collection of 150
observations with four different features from three different types of Irises, after the
transformation. The compressed representation using the first two principal components
captures 95 % of the variance of the original data set.

Figure 2.5: Principal Component Analysis (PCA) on the iris dataset. [40]

2.3 Nearest neighbor search and kd-trees

The nearest neighbor structure is defined as follows: Given a set of P points in an
n-dimensional space Rn, we seek a structure that can be queried for any point q on the
space to find the nearest point P ∗ to q in the set P [3]. The nearest neighbor search
requires a distance metric that computes the vectorial distance between a query point q
and possible nearest neighbors in P . Common distance metrics are the ls norms between
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2. Background

two points q and p as ||p− q||s, so that

||x|| = (
d∑
i

|xi|)
1
s (2.9)

The distance metric must be symmetric, non-negative, and fulfill the triangle inequality.
A tree structure is constructed by first assigning all available points to the so-called root
node and then recursively partitioning the points into child nodes. Depending on the
chosen tree structure, a termination criteria is defined, so that the partitioning process
stops once the criteria is met. Common criteria include the maximum leaf size, defining
the maximum amount of points per leaf, and the maximum leaf radius, depending on a
given radius within the hyperball of the leaf.
A tree search or query is defined by the underlying condition that is applied to the search:

• ε-close neighbor search (range search): Return the set of points Pc ⊂ P , so that
pi ∈ Pc and d(pi, q) ≤ ε

• k−nearest neighbor search (k-NN): Return the set of k points Pc ⊂ P , so that
∀pi ∈ Pc and ∀pj 6∈ Pc → d(pi, q) ≤ d(pj , q)

Different types of queries using a kd-tree structure can be seen in Figure 2.6. A ε-NN
search is performed by traversing the tree from the root and recursively exploring the
child nodes in the intersection the hyperball created from a given radius ε around the
query point q. If a leaf node is found, each data point of the respective node must be
checked for the given radius criterion. This is necessary to avoid leaf nodes that are
fulfilling the triangle equality but might contain points that do not fulfill the radius
criterion. A k-NN search is performed by first locating the leaf node that contains the
query point and then filter all adjacent leaf nodes until k points are found. Once k points
have been found, all surrounding points outside of the maximum radius of k points are
excluded and sorted again by decreasing distances until the k-nearest points are found.
A simple and fast tree construction is the so-called kd-tree structure. Data points are
recursively partitioned for every node, so that two sets are created by splitting along a
single dimension of the input data. The construction algorithm runs until the termination
criteria are met. The performance of kd-tree queries depends on the splitting criteria.
In contrast to kd-trees, ball trees structure the data points based on a pre-defined
distance metric. Each point of a sample node is assigned to the closest center of the
node’s children, which have the maximum possible distance between them. In a first
step, the center of the data points is calculated and the center point is chosen as the
point with the maximum distance to the first node child. The center of the second node
child is then chosen to be the point with the maximum distance to the first center point.
This construction allows for significantly faster queries if the underlying distribution of
the points is captured by the node construction.
A set of different variations for the shape parameters radius r and Minkowski distance p
can be seen in Figure 2.7.
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2.4. Jaro-Winkler distance

Figure 2.6: Rectangle and ball point query on a set of points using a kd-tree structure
[43].

Figure 2.7: Unit circle for different Minkowski distances pi [29].

Given a partitioned ball tree structure, a Minkowski distance of 2, and a radius r, the
resulting number of possible neighbor cells N(r) around a certain query point q for r > 0
inside of a ball query can be determined by the Gauss circle problem

N(r) = {(x, y) ∈ Z2|x2 + y2 ≤ r2} (2.10)

with N(r) = 1, 5, 13, 29, 49, 81, 113, 149, 197, 253, 317 for r = 0, ..., 10. The exact solution
for the gauss circle problem of any radius r and infinitely large values of i is given by the
series

N(r) = 1 + 4 ∗
∞∑
i=0

(∣∣ r2

4i+ 1
∣∣− ∣∣ r2

4i+ 3
∣∣) (2.11)

where i is the number of iterations that controls the approximation

2.4 Jaro-Winkler distance
Given two strings s1 and s2 and their respective string lengths |s1| and |s2|, the character
window size W is given by

Wi,j = min(|s1|, |s2|)
2 (2.12)
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This defines the maximum allowed distance for two characters ci and cj to be considered
as matching characters. The Jaro distance dj between the two strings is given by

dj(s1, s2) =

0 if m = 0
1
3
(
m
|s1| + m

|s2| + m−t
m

)
if m 6= 0

(2.13)

where t is half of the number of transpositions, and m is the number of matched characters.
Given a character c1 of s1 and a character c2 of s2 and their maximum distance given by
equation 2.12, the characters are considered as matching if they are identical and have a
distance that is equal or below the character window size of the respective strings. The
number of transpositions is given by the number of matching characters with different
sequence order divided by 2.
To add an extra weight to matching prefixes, the Jaro-Winkler distance metric utilizes a
prefix factor p. This allows for higher similarity scores to strings that match in substring
regions of a given length lij . Given two strings s1 and s2, the Jaro-Winkler distance
metric is defined as

JW (s1, s2) = dj(s1, s2) + pli,j(1− dj(s1, s2)) (2.14)

where dj(s1, s2) is the Jaro distance between the two strings, p is a predefined prefix
factor, and li,j is the number of matching prefix characters in s1 that match the prefix
characters in s2 [13]. A similarity score of 1 indicates an exact similarity, and a score of
0 indicates no similarity between two strings. The Jaro-Winkler algorithm procedure for
an array c of string tuples can be seen in algorithm 1.

Algorithm 1 Jaro-Winkler string similarity algorithm
Initialization:
Input: text array c with n pairs of strings

1: procedure
2: for each string pair si, sj in c do
3: Compute Jaro distance estimation dj(s1, s2)
4: Compute the Jaro-Winkler distance estimation given by JW (s1, s2) =

5:

{
dj(s1, s2) + pli,j(1− dj(s1, s2)) if tuple contains no empty string(s)
0 if tuple contains empty string(s)

6: end for
7: end procedure

2.5 Gradient Boosting for classification tasks
Domain-specific problems often require additional expert-level knowledge to capture the
underlying relationship of the observed data set and adjustment of the applied predictive

14
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model. Non-parametric models, like support vector machines (SVM) and neural networks
pose a way to adjust the model to the training data in a supervised fashion without
explicitly constraining to a certain probability density. Instead of training a single
predictive model on the data set, a series of weak predictive models can be chosen to
average different votes on the training sample. This is referred to as Ensemble Learning
[14]. In the scope of this thesis, the following subsections are reduced to boosting and
bagging techniques.

Ensemble Learning

Ensemble Learning aims to find the combined predictive solution of a set of different or
identical learners, e.g classifiers or experts. The primary intention behind the usage of
multiple learners is to average multiple predictions and thus draw a collective decision.
This has several statistical, computational, and representational advantages over using a
single classifier.
Finding the ideal solution for a given classification task can be challenging in terms of
choosing the appropriate classifiers and finding an adequate set of hyper-parameters for
the given data set (model selection). Utilizing ensemble methods is not guaranteed to
deliver a better classification result, but reduces the risk of choosing a poor estimator by
averaging the ensemble results. A fundamental requirement for successful model selection
using ensemble learning is a sufficient level of diversity for the chosen learners to ensure
variability in prediction errors. Ensembles can either be constructed by using a series of
different classifiers or a series of similar classifiers with different sets of hyper-parameters.
This allows for different error estimations that can be combined and averaged, so that
the overall ensemble error can be determined as

Ê = Ē −D (2.15)

where Ē is the average error of the single classifiers and D is a ratio expressing the level
of diversity among the single components. An ensemble of single learners trained on
weighted subsets of a dataset can be seen in Figure 2.8. At each step of the algorithm,
a series of weights w1, ..., wi is applied to the training data (xi, yi) and readjusted after
every iteration. Depending on the results of each learner Gi(x) of the ensemble, weights
are then increases or decreased. Thus emphasis is put on difficult observations that
induce misclassification, while easier observations are decreased. The final predictor G(x)
is the weighted sum of the single predictors, so that

G(x) = σ
( M∑
m=1

αmGm(x)
)

(2.16)

where σ is the sign function, αm the weights assigned by the Boosting algorithm to adjust
the power of different learners, and Gm the series of weak classifiers in the ensemble.
Final predictions are then processed by a majority voting of the single classifiers.
Majority voting using multiple learners solves a common problem in the application of
single prediction models. Given a small data set and a comparitively large hypothesis

15



2. Background

Figure 2.8: Schematic flow of Adaptive Boosting (AdaBoost) (from elements of statistical
learning) [18].

space H, ensemble methods can successfully cast votes that are sufficiently distributed
over the solution space. An averaged hypothesis is thus a good approximation to the
underlying true function f [15]. A sample sketch of a solution space H with different
hypotheses hi by ensemble learners and the true function f can be seen in Figure 2.9.

Figure 2.9: Multiple hypotheses by different learners on the hypothesis space H [15].

Similarly, single learning algorithms may get stuck in local optima due to a limited local
search scope.

Bagging

Bagging, an abbreviation for bootstrap aggregating, is a type of ensemble learning
method that aims to improve unstable estimations [36]. Bagging can be seen as a
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variance reduction method for a set of given base estimators, e.g decision trees for
classification and regression. It can also be seen as a method to increase and stabilize the
predictive power of classifiers and regression trees. Bagging consists of multiple uniform
sampling steps with replacement from a given training set. A series of base classifiers is
then fit iteratively on the subsets of the training set. The final prediction decision is a
so-called majority-voting. Figure 2.10 shows a series of bagging predictors on a set of

Algorithm 2 Bootstrapping algorithm
Initialization:
Input data set (X,Y ) with (x, y)Ni observations
Ensemble D = {}
Number of chosen base-learners L = (Mi, ...,Mk)

1: procedure Bootstrapping majority prediction
2: for k = 1 to L do
3: Draw a bootstrap sample Sk from X
4: Fit a classifier/base learner Mk with training data Sk
5: Add the classifier to the initialized ensemble, so that D = D ∪Dk

6: end for
7: for i = 1 to D do
8: Predict the target observation using Di

9: end for
10: Chose the prediction using a weighted majority-vote over all trained classifiers
11: end procedure

ozone data. The prediction result of the final estimator is the weighted average of the
single bagging predictors (red).

Figure 2.10: Different bagging estimator predictions (gray) on ozone data. The final
averaged, weighted predictor is marked in red [40].
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Gradient Boosting

Problem statement
We consider another supervised classification problem with a dataset (x, y)Ni , where
x1, ..., xi is the set of input variables and y1, ..., yi is the set of corresponding target
variables. The aim is to reconstruct a function f(x) that holds the dependence x→ y by
approximating a function ˆf(x), so that a loss function L(y, f) is minimized

f̂(x) = arg min
f(x)

L(y, f(x)) (2.17)

The approximated function can also be expressed in terms of the conditioned expected
loss function, so that

f̂(x) = arg min
f(x)

Ex
[
Ey(L(y, f(x)))|x

]
(2.18)

where Ey(L(f, f(x))) is the expected target variable loss and Ex
[
.
]
is the expectation

over the entire data set. The loss function can take different forms depending on the
type of classification tasks, the nature of the data set, and the type of features. For
a simple binary classification task, the loss function can be binomial. For continuous
distributions, the L2 squared or Huber loss function can be chosen. The different types
of loss functions are later on described in detail.
In order to provide a computationally tractable explanation of the Gradient Boosting
algorithm, the search space of the target function is parameterized, so that

f̂(x) = f(x, θ) (2.19)

with the parametric function family f(x, θ) and thus

θ̂ = arg min
θ

Ex
[
Ey(L(y, f(x, θ)))|x

]
(2.20)

where θ̂ is the set of approximated parameter estimations for the model. The parameter
estimations are normally obtained by iterative numerical optimizations, where a chosen
loss function is minimized on a given grid space. Numerical optimization of such loss
functions is performed iteratively by

θ̂ =
N∑
i

Ψ(θ̂i) (2.21)

where N is the maximum number of iterations and ψ an iterative minimization method.

Gradient Descent
A common iterative minimization method in machine learning is the steepest gradient
descent algorithm. The Gradient Descent (GD) algorithm is an optimization algorithm
that aims to find the local minimum of a given function space. Given a certain loss
function L, the goal is to find the point of minimum error as it can be seen in Figure
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2.5. Gradient Boosting for classification tasks

Figure 2.11: Steepest Gradient Descent over function space [47].

2.11. For instance, we would like to fit a linear function f(x) = mx+ b through a set of
points (xi, yi) and thus find the best coefficients m and b. In order to find the best set of
coefficients, an error function has to be defined in order to provide a function space to
be minimized. For the given problem, the average sum of squared differences (SSD) is
chosen as the error function. The SSD function is defined as

E(m, b) = 1
N

N∑
i

(yi − f(xi))2 (2.22)

where yi is the set of target variables and f̂(x) is the approximated function. Starting
on a random point on the function surface area, the GD algorithm seeks to find the
global minimum point (b∗,m∗). The gradient at a certain point is defined as the partial
derivative and its direction represents the largest rate of increase of the function. Since
we seek to find the minimum of the error function, we would like to move in the negative
direction of the gradient. The gradient descent algorithm can be summarized in the
following three steps

1. Error calculation E(mi, bi) by estimation of parameters (mi, bi)

2. Calculation of the partial derivatives ∂E
mi

and ∂E
bi
.

3. Adjustment of estimations mi+1 = mi − γ ∂Emi
and bi+1 = bi − γ ∂Ebi

where γ is the learning rate that controls the speed of convergence. Given the error
function in equation 2.20, the partial derivatives w.r.t the SSD error function are

∂E

mi
= − 2

N

N∑
xi(yi − f(xi))

∂E

bi
= − 2

N

N∑
(yi − f(xi))

(2.23)
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When an appropriate learning rate is chosen and a convex error function is used, the
algorithm will converge to the local minimum.

Gradient Boosting algorithm
To fully comprehend the gradient boosting algorithm, a base learner h(x, θ) has to be
defined first. Base learners can be drawn from different families, e.g decision trees or
splines [19]. Given a base learner h(x, θ), a function estimate f̂(x), and step size (learning
rate) γ, a function optimization step can be defined as

f̂t ← f̂t−1 + γh(x, θt) (2.24)

where γt is the variable learning rate at step t, θt the set of parameters at step t, and f̂t−1
the function estimate at the previous step. The minimization objective can be formulated
as

(γt, θt) = arg min
θ,γ

N∑
L(yi, f̂t−1) + γh(xi, θ) (2.25)

where L(.) is the chosen loss function, and (xi, yi) the i-th observation of the training set.
The prediction results of a gradient boosting regression algorithm of multiple observations
of the function x sin(x) can be seen in Figure 2.12.

Figure 2.12: Gradient boosting regression prediction of noisy observations of the function
x sin(x) [40].

Given a loss function L(y, f) and a base learner h(x, θ), the model parameter estimation
can be simplified by choosing a new base learner h(x, θt) that is parallel to the negative
gradient on the training set. The negative gradient can be obtained by

gt(x) = Ey
[∂L(y, f(x))

∂f(x) |x
]
f(x)=f̂ t−1(x) (2.26)

where ∂L(y,f(x))
∂f(x) is the partial gradient of the loss function L w.r.t to the previous ap-

proximation f̂ t−1 of the target function f(x). The complete Gradient boosting algorithm
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can be seen below in Algorithm 3.

Algorithm 3 Gradient Boosting algorithm [7]
Initialization:
Input data set (X,Y ) with (x, y)Ni observations
Chosen loss function L(y, f)
Chosen base-learner h(x, θ)
Maximum number of iterations M or manual stopping criterion

1: procedure Initialization of function approximation(f̂0)
2: for t = 1 to M do
3: Computation of negative gradient gt(x)
4: Fitting of new base-learner h(x, θt based on gradient
5: Estimate gradient step size: γt = arg minγ

∑N
i L(yi, f̂t − 1(xi) + γh(xi, θt))

6: Update of function approximation: f̂t ← f̂t−1 + γth(x, θt)
7: end for
8: end procedure

Loss functions
The selection of a particular loss function L(y, f) is often influenced by the desired
properties of the conditional distribution, e.g outlier robustness. Loss functions can be
categorized by the underlying type of target variable y of the respective classification
problem. For continuous target variables, one seeks to solve a regression problem. One
of the most common continuous loss functions in regression tasks is the squared L2-loss,
which is defined as

L(y, f) = 1
2(y − f)2 (2.27)

with the derivate y−f . The L2 loss function penalizes large deviations between prediction
and target variable, but disregards small deviations.
The Laplacian loss function (L1)-loss is the median of the conditional distribution, so
that

L(y, f) = |y − f | (2.28)

The L1 loss function minimizes the absolute differences between predicted values and
target variable. As it can be seen, the L2 error is much larger for outliers compared to
the L1 loss. A combination of the two previously described loss functions is the so-called
huber loss function. The Huber loss function is a parameterized loss function that is
defined as

L(y, f) =
{1

2(y − f)2, if |y − f | ≤ δ.
δ(|y − f | − δ/2), if |y − f | > δ.

(2.29)

where δ is a robustness factor that controls the outlier sensitivity. The huber function
thus incorporates L1 and L2 characteristics. The three described continuous loss functions
can be seen in Figure 2.13.
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Figure 2.13: L1, L2, and Huber loss functions [17].

2.6 Support Vector Machines for classification tasks

Support Vector Machines (SVM) are a class of non-probabilistic supervised learning
algorithms that were first introduced in 1964 by Vapnik and Chervonenkis for classification
and regression tasks. The SVM is a so-called maximal margin classifier. Every object
in the input space is represented by a vector in a vector space. This vector space
can be effectively divided by constructing a hyperplane around the respective class
objects. By maximizing the distance of the separating hyperplane to the training data,
only the nearest vector points are chosen as the support vectors. This signifies that
the mathematical description of the hyperplane only requires the surrounding support
vectors. Thus, training data with a large distance to the hyperplane does not influence
the shape of the separator.

Linear SVM

Given a set of n training observations xi with x ∈ Rd and i = 1, .., n and their correspond-
ing class labels yi ∈ {+1,−1}, we seek to learn a classifier f(x) for a binary classification
task, so that

f(xi) =
{
≥ 0 yi = +1
< 0 yi = −1

(2.30)

A linear classifier can be described in the general form by

f(x) = wTx+ b (2.31)
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where w is a normalized weight vector and b the bias term. The linear classifier f forms
the basis for the SVM algorithm and the separating hyperplane spanned by the SVM
can thus by described by H(x) = wTx+ b. The output of the linear SVM is given by

g(wTx+ b) (2.32)

where g(.) is a threshold function that regulates the class membership of each observation
xi. The threshold function for the linear SVM has the following properties:

g(z) =
{
z ≥ 0 y = 1
z < 0 y = −1

(2.33)

The threshold function properties fulfill the desired characteristics of the binary classifi-
cation task in equation 2.28. The threshold function of the SVM is also referred to as
the step function. Figure 2.14 shows a linear SVM with maximum-margin hyperplane for
a binary classification task.

Figure 2.14: Linear SVM with maximum-margin hyperplane for a two class separation
problem [18].

Margin estimation

The distance between the hyperplane and any observation xi in the vector space can be
inferred from the weight vector w. This is achieved by normalizing the weight vector
w
||w|| = 1, so that for any observation xi, there is a point F given by

xi − di
w

||w||
(2.34)
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where di is the distance of observation xi to the hyperplane h. Since the weight vector
is perpendicular to the decision boundary, F is on the decision boundary and fulfills
wTx+ b = 0, so that

wT (xi − di
w

||w||
) = 0

di = wTxi + b

||w||

= 1
||w||

(wTxi + b)

(2.35)

computes the distance to the hyperplane h given any observation xi. Recalling equation
2.28, the class label yi can be used to extend equation 2.33, so that

di = yi
1
||w||

(wTxi + b) (2.36)

where d = arg min1,..,n di is the margin that spans the hyperplane. The hyperplane is
therefore the center of the minimum distances of each class. Observations that fulfill the
minimum distance and are on the margin are so-called support vectors as it can be seen
in Figure 2.15.

Figure 2.15: Maximum margin linear SVM on a binary classification problem with
two support vectors on the + class and one support vector on the − class side of the
hyperplane h.

Optimal hyperplane & dual form

Among all possible hyperplanes, we seek the hyperplane with the maximum distance d
to any class y, so that:

arg max
w,b

( 1
||w||

min
i=1,...,n

(yi(wTxi + b))
)

(2.37)
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Since the problem formulation is non-convex and the minimization of 1
||w|| is equal to the

maximization of 1
2 ||w||

2 w.r.t w and b the optimization problem can be reformulated as

arg min
w,b

1
2 ||w||

2 with yi(wTxi + b) ≥ 1 (2.38)

The optimization problem is now strictly convex using only linear constraints and can
thus be solved using a simple quadratic solver. Instead of applying a quadratic solver to
equation 2.36, the optimization problem can be solved in a way that allows the usage
of kernel functions (see subsection xxx). By applying the rule of Lagrange multipliers,
the constraints in equation 2.36 can be included into the optimization term. Given an
optimization problem

min
w
f(w) (2.39)

with the linear constraints gi(w) ≤ 0 for i = 1, ..., k and hi(w) = 0 for i = 1, ..., l we can
rewrite equation 2.37, so that

L(w,α, β) = f(w) +
k∑
i

αigi(w) +
l∑
i

βihi(w) (2.40)

and the optimization problem becomes minw maxα,β L(w,α, β). This is referred to as
the primal problem. The primal problem can be reformulated as the dual problem
by switching the constraints, so that maxα,β minw L(w,α, β). Applying the Lagrange
multipliers in equation 2.38 on the SVM problem in equation 2.35, the Lagrange equation
yields

L(w, b, α) = 1
2 ||w||

2 −
n∑
i

αi
(
yi(wTxi + b))

)
(2.41)

where L needs to be minimized w.r.t w and maximized w.r.t α. The corresponding dual
problem is

n∑
i

αi −
1
2αiαjyiyj〈xi, xj〉 (2.42)

where 〈xx〉 is the scalar product xTx. The scalar product is later replaced by the kernel
function K.
The decision boundary for an unknown observation x can now be computed by

y = σ
( n∑

i

αiyi〈x, xi〉+ b
)

(2.43)

where σ(x) is the sign function and y the predicted class label of observation x.
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Nonlinear SVM & Kernel methods

Figure 2.14 and 2.15 show linearly separable classification cases. In the case of linearly
inseparable data the Support Vector Machine fails to find an optimal solution given the
linear constraints in the previous subsection, that do not allow any observations inside
the margin region. This is referred to as the hard margin form of the SVM.
In order to soften the harsh constraints of the hard margin form, a so-called slack variable
ζi ≥ 0 for the linear constraints is introduced. Correctly classified observations thus fulfill
ζi = 0, observations inside the margin ζ > 0, and observations that are on the wrong
side of the hyperplane ζ ≥ 1. The constraint are thus changed to

yi(〈w, xi〉+ b) ≥ 1− ζi (2.44)

where ζi is the newly introduced slack variable. This is referred to as the soft-margin
form of the SVM. Misclassifications are now allowed, but punished by an error term
Cζi. The error weight C adjusts the relation of a low error rate and a maximum margin
classification. Figure 2.16 shows the soft-margin form of the SVM on a linearly inseparable
classification task for different values of the error rate term C.

Figure 2.16: Soft-margin SVM on linearly inseparable classification task for different
values of C [18].

Instead of balancing the relation between misclassification and maximum margin in
the same feature space as the data set, observations can be mapped into a new set of
quantities. These quantities, the so-called input features, are obtained by a feature
mapping φ(x). Using the inner product rule of equation 2.40 and 2.41, these inner
products can be replaced with the Kernel function K if we have data x, z ∈ X and a
mapping table φ(x, z)→ RN :

k(x, z) = 〈φ(x), φ(z)〉 (2.45)

where K(x, z) is the Kernel mapping of observation x and z. Kernels can map the input
data into a possibly higher-dimensional feature space to discover new linear relations
between the observations in the given data set. These linear relations can then be divided
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by a linear algorithm. The data set does not have to explicitly embedded into the new
feature space, because the Kernel function solely relies on the inner product of the two
vectors. This can be shown on a simple two-dimensional input space example X ⊆ R2

with the feature mapping

φ : x = (x1, x2)→ φ(x) = (x2
1, x

2
2,
√

2x1, x2) ∈ F (2.46)

where F is the new feature space with F ∈ R3. Given the inner product of x and z

〈φ(x), φ(z)〉 = 〈(x2
1, x

2
2,
√

2x1x2), (z2
1 , ...)

...
= 〈x, z〉2

(2.47)

it can be seen that k(x, z) = 〈x, z〉2. Figure 2.17 shows a kernel mapping scheme for
Support Vector Machines for a linearly inseparable classification task using a polynomial
kernel of degree 3 and a radial basis function kernel (RBF).

Figure 2.17: Left: An SVM with a polynomial kernel of degree 3 is applied to a non-linear
data set. Right: An SVM with a radial kernel is applied [18].

The polynomial kernel used on the right-hand site in Figure 2.17 is defined as

K(x, y) = (xT y + c)d (2.48)

where x and y are input vectors, d is the dimension of the target mapping, and c is a
free parameter that controls the balance between high and low order polynomial terms
in the Kernel mapping.
The RBF kernel used on the left-hand site of Figure 2.17 is defined by

K(x, y) = exp
(
− ||x− y||

2

2σ2

)
(2.49)
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where ||x− y||2 is the squared Euclidian distance between the feature vectors x and y,
and σ is a free parameter with the relation γ = 1

2σ2 , so that

K(x, y) = exp(−γ||x− y||2) (2.50)

As it can be seen from equation 2.49, the Kernel value decreases with increasing distance
between the feature vectors with values between zero and one. The parameter γ controls
the misclassification ratio of the predictions [27]. As γ increases, the model tries to
avoid misclassifications by defining increasingly tighter hyperplanes around the different
observations. While this effectively reduces the number of misclassifications, the model
fails to generalize well and overfits the training data as it can be seen on the right hand
site of Figure 2.18.

Figure 2.18: SVM classification with an RBF kernel on a two class problem for different
settings of the control parameters γ (Left: γ = 0.1, Middle: γ = 1, Right: γ = 10) [40].

The scalar product in the dual form of the SVM in equation 2.40 can now be replaced by
the Kernel function, so that

w(x) =
n∑
i

αi −
1
2

n∑
i,j

αiαjyiyjK(xi, yi) (2.51)

where K(xi, xk) is the Kernel mapping for input vectors xi and xj .
For classification problems that involve more than two classes of labels, a one-versus-all
classification is applied [16]. Given a classification problem with N different classes, N
different SVMs are fit to the data set, where each SVM compares a single class to the
leftover N − 1 classes. For a series of resulting parameters β0n, ..., βpn, where the n− th
class is compared to the leftover n− 1 classes and β0n + β1nx

∗
1 + ...+ βpnx

∗
p is the series

of SVM results for a specific class n∗, the winning class is picked by choosing the largest
series. This effectively equals to the highest confidence that a certain observation belongs
to the n− th class, given n trained SVM models.
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CHAPTER 3
Methods

This chapter provides an overview of the methodology used during the scope of this thesis.
The structure of the bioprocess data used for training and testing, the concept of local
and global neighborhoods on the sheet structure, the model architecture and pipeline
concept, and different statistical validation measures are described in this chapter. Figure
2.6 shows an overview of the processing pipeline.

3.1 Data set structure
The training and testing data set consists of six different, labeled bioprocess data sheets.
The sheets were gathered from different bioreactor types to ensure a high diversity in
the training and testing process. Each cell on the training and testing sheet has been
manually labeled by expert bioprocess engineers before further computational processing
was applied. The respective labels are categorized as following and can be seen in a
sample structure in Figure:

• Numerical variables: Measured values, control values, and offset values

• Time variables: Time indices, process starts and stops, and reference times

• Empty cells: Cells that do not contain valuable information for the classification
process or indicate a boundary on the sheet

• Variable headers: Cells indicating the start of a measurement process

• Time headers: Cells indicating the time index of a measurement

• Parameter headers: Cells indicating a header for an offset or control value

• Units: All cells that contain a unit of measurement
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3.2 Feature-set structure
Cell-based features: For each cell on the grid structure, a local feature set is built
from a set of simple data properties. The algorithm used to compute the string similarity
measures is described in detail in section 2.4. The set consists of the following features:

• Data type: Vectorized feature for the respective data type, e.g (string, int, float,
bool). To ensure the data type, each cell is casted to the respective data types to
avoid data type mismatches, e.g float values in string format.

• String header similarity: averaged estimated similarity between the respective
cell and a dictionary containing common bioprocess variables names

• Unit similarity: averaged estimated similarity between the respective cell and a
dictionary containing common unit structures

• Cell length: Number of characters in the respective cell content

• Digit ratio: The ratio of digits found in the cell content given the overall length
of the cell content.

• Center of mass distance to numerical values: Manhattan distance between
the respective cell coordinate and the center of mass of numerical values on the
respective sheet structure

As it can be seen from the list of cell-based features, the local feature set allows the
classifier to differentiate between string based and empty, numerical or time based content,
but is still limited in its predictive power for different header classes (see section 3.1). To
increase the predictive power for each cell on the grid, the final feature set includes the
local cell-based feature sets of the surrounding neighbor cells, given a certain radius r as
described in section 2.3.

3.3 Model Architecture
The model architecture is divided into three main blocks, a data gathering block, a
feature building/selection block, and the classification and evaluation block as it can
be seen in Figure 3.1. The data gathering and feature building block are iteratively
called and executed by the classification and evaluation block, given a set of different
parameters to test. Given a subset of the parameters, the bioprocess sheets are first
parsed, vectorized, and then concatenated into a single array. During the feature phase,
a local feature set is first built on each cell on the array grid and extended in a second
step by the feature sets of n neighboring cells depending on the size of the circle radius
and the chosen minkowski metric in the parameter set (see section 2.3). After applying
the dimensionality reduction on the resulting feature set, the data set is then split into a
test and training fraction according to the split ration in the parameter subset. Finally,
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3.3. Model Architecture

Figure 3.1: Model architecture with the three building blocks, data gathering, feature
selection, and evaluation.

the test set is evaluated on the trained classifier on a chosen metric, e.g micro F1-scores.
This process is then iteratively repeated with different subsets of the parameter grid.
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CHAPTER 4
Results

This chapter presents the feature importance results for cell-based and global features,
predictions results of training/test split variations, radius variations, and the classifier
comparison. The feature importance results show the average feature importance value,
the respective standard deviation, minimum and maximum value, and the relative
standard deviation over 100 runs for each feature.
The training/test split comparison shows the classification results and confusion matrix
using a split ratio of 0.1, 0.3, 0.5 for each classifier respectively.
The radius variation test results are obtained by alternating the neighborhood circle
radius for the input data between 1 and 3 and show the learning curve and macro/micro-
averaged ROC results for each classifier.
The final classifier comparison results are obtained by 100 different test runs, each using
a 10-fold cross validation using the macro-averaged F score. The final averaged training
and testing results are shown row by row for each respective parameter subset.

4.1 Bioprocess data set statistics
The data set is comprised of six different bioprocess sheets, annotated by an expert
bioprocess engineer. The overall cell content of the combined data set is 2334. The cell
count is divided into seven different class labels and contains

• 1037 cells (44.4 %) for class numerical variables

• 83 cells (3.5 %) for class time variables

• 924 cells (39.6 %) for class empty cells

• 125 cells (5.4 %) for class variable headers

• 12 cells (0.514 %) for class time headers
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• 25 cells (1.07 %) for class parameter cells

• 128 cells (5.48 %) for class units

4.2 Feature importance

digit ratio num. center dtype dheader cell length dunit

avg. 0.027 0.015 0.337 0.301 0.131 0.188
σ 0.006 0.006 0.013 0.025 0.024 0.023
min 0.017 0.003 0.312 0.251 0.093 0.142
max 0.041 0.029 0.373 0.366 0.183 0.233
σrel(%) 23.527 39.417 3.996 8.333 18.644 12.171

Figure 4.1: Averaged feature importance statistics of the Gradient Boosting classifier
after 100 runs using a 10-fold split ratio for all cell-based features. Indices on the very left
indicate the respective average, standard deviation, minimum value of all runs, maximum
value of all runs, and the relative standard deviation in %. Columns from left to right
indicate the feature digit ratio, numerical center, data type, string similarity for headers,
cell length, and string similarity for units.

right above left below

avg. 0.253 0.065 0.230 0.453
σ 0.016 0.008 0.030 0.027
min 0.218 0.052 0.169 0.403
max 0.283 0.085 0.290 0.510
σrel(%) 6.194 12.424 12.867 6.000

Figure 4.2: Averaged feature importance statistics of the Gradient Boosting classifier
after 100 runs using a 10-fold split ratio for the four directions of the concatenated global
feature sets. Indices on the very left indicate the respective average, standard deviation,
minimum value of all runs, maximum value of all runs, and the relative standard deviation
in %. Columns from left to right indicate the neighborhood features to the right, above,
left, and below the target cell.
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4.3 Prediction results for different train/test splits

Figure 4.3: Normalized confusion matrix of the lowest prediction result for the Support
Vector Machine after 100 different runs using a training/testing data split ratio of 10 %.

class f_score precision recall support

empty value 0.98 0.96 1.00 842
numerical value 0.99 1.00 0.98 932
time value 0.00 0.00 0.00 78
parameter 0.00 0.00 0.00 23
variable header 0.00 0.00 0.00 108
time header 0.00 0.00 0.00 10
unit 0.00 0.00 0.00 108

Figure 4.4: Classification report of the lowest prediction result for the Support Vector
Machine after 100 different runs using a training/testing data split ratio of 10 %.
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Figure 4.5: Normalized confusion matrix of the highest prediction result for the Support
Vector Machine after 100 different runs using a training/testing data split ratio of 10 %.

class f_score precision recall support

empty value 0.98 0.96 1.00 842
numerical value 0.99 1.00 0.99 932
time value 1.00 1.00 1.00 78
parameter 0.69 0.52 1.00 23
variable header 0.90 0.99 0.83 108
time header 0.41 0.33 0.55 10
unit 0.85 0.99 0.75 108

Figure 4.6: Classification report of the highest prediction result for the Support Vector
Machine after 100 different runs using a training/testing data split ratio of 10 %.
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4.3. Prediction results for different train/test splits

Figure 4.7: Normalized confusion matrix of the lowest prediction result for the Gradient
Boosting classifier after 100 different runs using a training/testing data split ratio of 10
%.

class f_score precision recall support

empty value 0.94 0.89 1.0 842
numerical value 1.00 1.00 1.0 932
time value 0.00 0.00 0.0 78
parameter 0.00 0.00 0.0 23
variable header 0.00 0.00 0.0 108
time header 0.00 0.00 0.0 10
unit 0.00 0.00 0.0 108

Figure 4.8: Classification report of the lowest prediction result for the Gradient Boosting
classifier after 100 different runs using a training/testing data split ratio of 10 %.
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Figure 4.9: Normalized confusion matrix of the highest prediction result for the Gradient
Boosting classifier after 100 different runs using a training/testing data split ratio of 10
%.

class f_score precision recall support

empty value 0.98 0.96 1.00 842
numerical value 0.99 1.00 0.98 932
time value 0.92 0.86 1.00 78
parameter 0.74 0.93 0.61 23
variable header 0.86 0.98 0.77 108
time header 0.26 0.19 0.40 10
unit 0.93 0.99 0.87 108

Figure 4.10: Classification report of the highest prediction result for the Gradient Boosting
classifier after 100 different runs using a training/testing data split ratio of 10 %.

38



4.3. Prediction results for different train/test splits

Figure 4.11: Normalized confusion matrix of the lowest prediction result for the Support
Vector Machine after 100 different runs using a training/testing data split ratio of 30 %.

class f_score precision recall support

empty value 0.94 0.92 0.97 652
numerical value 0.96 0.95 0.97 726
time value 0.38 1.00 0.23 60
parameter 0.43 0.36 0.53 17
variable header 0.85 0.98 0.75 88
time header 0.45 0.38 0.56 9
unit 0.86 0.87 0.86 82

Figure 4.12: Classification report of the lowest prediction result for the Support Vector
Machine after 100 different runs using a training/testing data split ratio of 30 %.
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Figure 4.13: Normalized confusion matrix of the highest prediction result for the Support
Vector Machine after 100 different runs using a training/testing data split ratio of 30 %.

class f_score precision recall support

empty value 0.94 0.90 0.99 652
numerical value 0.98 1.00 0.96 726
time value 0.85 0.84 0.85 60
parameter 0.94 1.00 0.89 17
variable header 0.82 0.97 0.71 88
time header 0.25 0.50 0.17 9
unit 0.89 0.95 0.83 82

Figure 4.14: Classification report of the highest prediction result for the Support Vector
Machine after 100 different runs using a training/testing data split ratio of 30 %.
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4.3. Prediction results for different train/test splits

Figure 4.15: Normalized confusion matrix of the lowest prediction result for the Gradient
Boosting classifier after 100 different runs using a training/testing data split ratio of 30
%.

class f_score precision recall support

empty value 0.96 0.92 1.00 652
numerical value 1.00 1.00 1.00 726
time value 1.00 1.00 1.00 60
parameter 0.30 0.60 0.20 17
variable header 0.88 0.99 0.79 88
time header 0.00 0.00 0.00 9
unit 0.86 1.00 0.76 82

Figure 4.16: Classification report of the lowest prediction result for the Gradient Boosting
classifier after 100 different runs using a training/testing data split ratio of 30 %.
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Figure 4.17: Normalized confusion matrix of the highest prediction result for the Gradient
Boosting classifier after 100 different runs using a training/testing data split ratio of 30
%.

class f_score precision recall support

empty value 0.98 0.96 1.00 652
numerical value 1.00 1.00 1.00 726
time value 0.99 0.98 1.00 60
parameter 0.87 1.00 0.76 17
variable header 0.96 0.93 0.98 88
time header 0.46 0.75 0.33 9
unit 0.88 1.00 0.78 82

Figure 4.18: Classification report of the highest prediction result for the Gradient Boosting
classifier after 100 different runs using a training/testing data split ratio of 30 %.
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Figure 4.19: Normalized confusion matrix of the lowest prediction result for the Support
Vector Machine after 100 different runs using a training/testing data split ratio of 50 %.

class f_score precision recall support

empty value 0.98 0.98 0.99 470
numerical value 1.00 1.00 1.00 518
time value 1.00 1.00 1.00 39
parameter 0.89 0.89 0.89 13
variable header 0.94 0.97 0.91 62
time header 0.00 0.00 0.00 4
unit 0.95 0.91 0.98 61

Figure 4.20: Classification report of the lowest prediction result for the Support Vector
Machine after 100 different runs using a training/testing data split ratio of 50 %.
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Figure 4.21: Normalized confusion matrix of the highest prediction result for the Support
Vector Machine after 100 different runs using a training/testing data split ratio of 50 %.

class f_score precision recall support

empty value 0.99 0.99 1.00 470
numerical value 1.00 1.00 1.00 518
time value 0.99 0.98 1.00 39
parameter 1.00 1.00 1.00 13
variable header 0.97 0.98 0.96 62
time header 0.67 0.75 0.60 4
unit 0.98 0.99 0.97 61

Figure 4.22: Classification report of the highest prediction result for the Support Vector
Machine after 100 different runs using a training/testing data split ratio of 50 %.
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4.3. Prediction results for different train/test splits

Figure 4.23: Normalized confusion matrix of the lowest prediction result for the Gradient
Boosting classifier after 100 different runs using a training/testing data split ratio of 50
%.

class f_score precision recall support

empty value 0.99 0.97 1.00 470
numerical value 1.00 1.00 1.00 518
time value 1.00 1.00 1.00 39
parameter 0.92 1.00 0.85 13
variable header 0.95 0.98 0.92 62
time header 0.00 0.00 0.00 4
unit 0.96 1.00 0.92 61

Figure 4.24: Classification report of the lowest prediction result for the Gradient Boosting
classifier after 100 different runs using a training/testing data split ratio of 50 %.
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Figure 4.25: Normalized confusion matrix of the highest prediction result for the Gradient
Boosting classifier after 100 different runs using a training/testing data split ratio of 50
%.

class f_score precision recall support

empty value 0.99 0.98 1.00 447
numerical value 1.00 1.00 0.99 536
time value 1.00 1.00 1.00 43
parameter 0.96 1.00 0.92 12
variable header 0.96 0.97 0.95 61
time header 0.62 0.67 0.57 7
unit 0.97 0.98 0.95 61

Figure 4.26: Classification report of the highest prediction result for the Gradient Boosting
classifier after 100 different runs using a training/testing data split ratio of 50 %.
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4.4 Prediction results for different neighborhood radii

Figure 4.27: Averaged ROC curves for the Support Vector Machine using a radius of 1
and a split ratio of 0.25 for the prediction of the data set.

Figure 4.28: Averaged training and cross-validated prediction learning scores for the
Support Vector Machine using a radius of 1 and a split ratio of 0.25.
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Figure 4.29: Averaged ROC curves for the Gradient Boosting classifier using a radius of
1 and a split ratio of 0.25 for the prediction of the data set.

Figure 4.30: Averaged training and cross-validated prediction learning scores for the
Gradient Boostint classifier using a radius of 1 and a split ratio of 0.25.
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4.4. Prediction results for different neighborhood radii

Figure 4.31: Averaged ROC curves for the Support Vector Machine using a radius of 2
and a split ratio of 0.25 for the prediction of the data set.

Figure 4.32: Averaged training and cross-validated prediction learning scores using a
radius of 2 and a split ratio of 0.25.
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Figure 4.33: Averaged ROC curves for the Gradient Boosting classifier using a radius of
2 and a split ratio of 0.25 for the prediction of the data set.

Figure 4.34: Averaged training and cross-validated prediction learning scores for the
Gradient Boosting classifier using a radius of 2 and a split ratio of 0.25.
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4.4. Prediction results for different neighborhood radii

Figure 4.35: Averaged ROC curves for the Support Vector Machine using a radius of 3
and a split ratio of 0.25 for the prediction of the data set.

Figure 4.36: Averaged training and cross-validated prediction learning scores using a
radius of 3 and a split ratio of 0.25.
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Figure 4.37: Averaged ROC curves for the Gradient Boosting classifier using a radius of
3 and a split ratio of 0.25 for the prediction of the data set.

Figure 4.38: Averaged training and cross-validated prediction learning scores for the
Gradient Boosting classifier using a radius of 3 and a split ratio of 0.25.
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4.5 Classifier comparison

η depth estimators Ftest,avg Ftrain,avg Ftrain,std Ftest,std ranking

0.1 1 10 0.728877 0.739840 0.005306 0.044683 27
0.1 1 50 0.821078 0.827516 0.002472 0.033478 8
0.1 1 100 0.830091 0.846798 0.005213 0.038917 2
0.1 2 10 0.805951 0.816956 0.004575 0.028032 22
0.1 2 50 0.821028 0.872385 0.007328 0.042269 9
0.1 2 100 0.825910 0.915540 0.004764 0.044989 4
0.1 3 10 0.825404 0.842885 0.004832 0.037655 5
0.1 3 50 0.827876 0.920707 0.005289 0.031066 3
0.1 3 100 0.816168 0.974813 0.005809 0.042574 13
0.2 1 10 0.778612 0.783473 0.002767 0.047110 26
0.2 1 50 0.832119 0.847677 0.005464 0.042176 1
0.2 1 100 0.817433 0.876813 0.005012 0.044340 11
0.2 2 10 0.812676 0.824155 0.003010 0.021854 17
0.2 2 50 0.822501 0.920173 0.007662 0.042477 7
0.2 2 100 0.811013 0.970183 0.003654 0.045663 19
0.2 3 10 0.820218 0.860378 0.005740 0.034861 10
0.2 3 50 0.815976 0.978333 0.004689 0.035189 14
0.2 3 100 0.814464 1.000000 0.000000 0.037569 16
0.3 1 10 0.803676 0.805208 0.007804 0.033552 25
0.3 1 50 0.823957 0.866244 0.004700 0.044302 6
0.3 1 100 0.808879 0.890701 0.005846 0.032456 20
0.3 2 10 0.817078 0.842035 0.001999 0.034965 12
0.3 2 50 0.804294 0.950916 0.007094 0.048924 24
0.3 2 100 0.804329 0.990185 0.004227 0.045144 23
0.3 3 10 0.815028 0.886372 0.009846 0.052584 15
0.3 3 50 0.812484 0.994815 0.001995 0.038288 18
0.3 3 100 0.807526 1.000000 0.000000 0.035470 21

Figure 4.39: Grid search results for the Gradient Boosting classifier using 10-fold cross
validation and the averaged macro F -score metric for evaluation on the test predictions.
Each row represents a subset of the parameters learning rate η, maximum leaf depth,
and number of estimators for 10 different splits. For each subset of parameters, the
macro-averaged training and testing F scores and the respective standard deviations are
shown. The right column shows the final ranking of the parameter subsets according to
the respective test scores.
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η depth estimators Ftest,avg Ftrain,avg Ftrain,std Ftest,std ranking

0.01 1 100 0.726397 0.743705 0.005224 0.041209 20
0.01 2 100 0.807748 0.813666 0.003191 0.030916 18
0.01 3 100 0.825021 0.844302 0.006925 0.040798 14
0.01 4 100 0.822545 0.896986 0.004977 0.060533 15
0.01 5 100 0.854355 0.929146 0.005036 0.058463 4
0.03 1 100 0.785174 0.798331 0.006944 0.037260 19
0.03 2 100 0.812037 0.841453 0.007277 0.032017 17
0.03 3 100 0.828470 0.894862 0.008846 0.049284 12
0.03 4 100 0.846232 0.946434 0.007196 0.054294 5
0.03 5 100 0.859284 0.977772 0.006147 0.051861 3
0.05 1 100 0.820955 0.829317 0.005213 0.036730 16
0.05 2 100 0.842658 0.890628 0.004255 0.043813 8
0.05 3 100 0.840853 0.937545 0.007336 0.047594 10
0.05 4 100 0.846020 0.972024 0.006063 0.060839 6
0.05 5 100 0.859434 0.997407 0.002062 0.045412 2
0.07 1 100 0.827907 0.839814 0.005448 0.034610 13
0.07 2 100 0.841186 0.910325 0.006696 0.040484 9
0.07 3 100 0.839156 0.959237 0.004471 0.048677 11
0.07 4 100 0.844290 0.990555 0.003925 0.051956 7
0.07 5 100 0.862734 1.000000 0.000000 0.047708 1

Figure 4.40: Grid search results for the Gradient Boosting classifier using 10-fold cross
validation and the averaged macro F -score metric for evaluation on the test predictions.
Each row represents a subset of the parameters learning rate η, maximum leaf depth,
and number of estimators for 10 different splits. For each subset of parameters, the
macro-averaged training and testing F scores and the respective standard deviations are
shown. The right column shows the final ranking of the parameter subsets according to
the respective test scores.
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C degree kernel Ftest,avg Ftrain,avg Ftrain,std Ftest,std ranking

0.35 2 linear 0.788309 0.818807 0.004946 0.044012 7
0.35 2 rbf 0.740166 0.872734 0.008754 0.070338 19
0.35 2 poly 0.768830 0.861666 0.007619 0.049686 10
0.35 4 linear 0.788309 0.818807 0.004946 0.044012 7
0.35 4 rbf 0.740166 0.872734 0.008754 0.070338 19
0.35 4 poly 0.737990 0.993518 0.002652 0.034766 22
0.35 6 linear 0.788309 0.818807 0.004946 0.044012 7
0.35 6 rbf 0.740166 0.872734 0.008754 0.070338 19
0.35 6 poly 0.719359 1.000000 0.000000 0.045828 25
0.70 2 linear 0.790192 0.818311 0.006743 0.042389 4
0.70 2 rbf 0.750339 0.906553 0.006202 0.051456 13
0.70 2 poly 0.761812 0.880111 0.005741 0.056906 11
0.70 4 linear 0.790192 0.818311 0.006743 0.042389 4
0.70 4 rbf 0.750339 0.906553 0.006202 0.051456 13
0.70 4 poly 0.733834 0.998333 0.000556 0.035838 23
0.70 6 linear 0.790192 0.818311 0.006743 0.042389 4
0.70 6 rbf 0.750339 0.906553 0.006202 0.051456 13
0.70 6 poly 0.719359 1.000000 0.000000 0.045828 25
1.00 2 linear 0.793316 0.820292 0.006887 0.046530 1
1.00 2 rbf 0.741039 0.924691 0.004206 0.057536 16
1.00 2 poly 0.761063 0.887378 0.004415 0.070433 12
1.00 4 linear 0.793316 0.820292 0.006887 0.046530 1
1.00 4 rbf 0.741039 0.924691 0.004206 0.057536 16
1.00 4 poly 0.723245 1.000000 0.000000 0.039594 24
1.00 6 linear 0.793316 0.820292 0.006887 0.046530 1
1.00 6 rbf 0.741039 0.924691 0.004206 0.057536 16
1.00 6 poly 0.719359 1.000000 0.000000 0.045828 25

Figure 4.41: Extended parameter grid search results for the Support Vector Machine
using 10-fold cross validation and the averaged macro F -score metric for evaluation on
the test predictions. Each row represents a subset of the parameters C, kernel type, and
kernel degree for 10 different splits. For each subset of parameters, the macro-averaged
training and testing F -scores and the respective standard deviations are shown. The
right column shows the final ranking of the parameter subsets according to the respective
test scores.
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C kernel class weight Ftest,avg Ftrain,avg Ftrain,std Ftest,std ranking

1 linear balanced 0.814688 0.840291 0.004703 0.038386 1
10 linear balanced 0.806111 0.839749 0.005764 0.041497 2
100 linear balanced 0.804468 0.839378 0.005989 0.041943 4

1000 linear balanced 0.804482 0.840118 0.005174 0.037526 3

Figure 4.42: Extended parameter grid search results for the Support Vector Machine
using 10-fold cross validation and the averaged macro F -score metric for evaluation on
the test predictions. Each row represents a subset of the parameters C, kernel type, and
kernel degree for 10 different splits. For each subset of parameters, the macro-averaged
training and testing F -scores and the respective standard deviations are shown. The
right column shows the final ranking of the parameter subsets according to the respective
test scores.
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CHAPTER 5
Discussion

This chapter gives a detailed interpretation and analysis of the results shown in the
previous chapter and considers the drawbacks of utilizing a machine learning based
method for the automatic extraction of bioprocess data.
The feature engineering section 5.1 analyzes the effect of the chosen cell-based features on
the results of the classification task and discusses the influence of the global features that
are drawn from surrounding cells. Different settings for the radius distance parameter
and their effect on possible overfitting and underfitting results are discussed in section
5.3. The influence of different training/testing split ratios and their respective prediction
results are discussed in section 5.2. In Section 5.4 the results of the chosen classifiers and
their respective sets of hyperparameters is discussed. The last two sections discuss the
overall model architecture and possible applications to bioprocess data.

5.1 Feature engineering

The feature set used for the resulting predictions is built in a hierarchical manner by first
constructing a set of local cell-based features and then gathering the neighboring cells to
stack all surrounding information into a single feature set. Thus, in order to analyze the
influence of cell-based and neighborhood features separately, the feature test results are
split into two different experiments.
The first part of section 4.2 shows the averaged feature importances for the cell-based
features, their respective standard deviations, and the lowest and highest obtained valued
for 100 different test runs and both classifiers. The second part of section 4.2 shows the
feature importances of the combined neighborhood cell-based feature sets in relation to
their location relative to the center cell for both classifiers.
Table 4.1 shows the resulting feature importance statistics for the Gradient Boosting
classifier over 100 different prediction runs using a training/testing split ratio of 10 %.
The mean value for the feature importance of feature data type is 0.337 with a standard
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deviation of 0.013 a lowest score of 0.312 and a highest score of 0.373. In comparison
with the averaged feature importances of the remaining cell-based features, the data
type feature shows the lowest relative standard deviation of 3.996%. This shows that the
feature adds a consistent value over different data set splits and runs, independent of the
cell type distribution of the respective split. A fraction of the standard deviation was
found to be caused by wrongly parsed cell types while building up the data set.
The averaged feature importance for the feature string header similarity is 0.301 with
a standard deviation of 0.025, a lowest score of 0.251 and a highest score of 0.3666. The
highest score of the 100 runs show that the feature importance contributes almost as
much as the data type feature for splits with a high proportion of header cells. The
addition of domain-specific string greatly aids in the prediction process as reported by
Zelikovitz et. al. in [48] and Jiang et. al. in [28]
The feature unit similarity has an averaged feature importance of 0.188 with a standard
deviation of 0.023, a lowest score of 0.142, and a highest score of 0.233. The result for
the mean feature importance is only 62 % of the header similarity and shows a relative
standard deviation of 12.171%. The lower score is partially caused by special characters
appearing in the header variables that are common in unit cells, a lower overall appearance
of the unit label in the dataset, and parsing errors during the setup of the feature matrix.
The feature cell length shows an average feature importance of 0.131 with a standard
deviation of 0.024, a lowest score of 0.093, and a highest score of 0.183. For cell type
distributions with large numerical values the feature becomes almost redundant because
of the interfering lengths of numerical values and strings, which is also shown in the high
relative standard deviation of 18.644%. The feature contributes for cell type distributions
with numerical values that have a digit length below the length of the string cells and
thus shows a good average maximal value of 0.183.
The feature importance results for the feature digit ratio showed the second highest
relative standard deviation of 23.527%, a lowest score of 0.017, and a highest score of
0.041. The average score of 0.027 with a standard deviation of 0.006. Due to the high
imbalance between class labels, the feature becomes redundant for testing splits where
the string similarities and the data type cover most of the discriminative information for
the classification.
The feature importance results for the feature center of numerical values showed
the lowest average value of 0.015 with a standard deviation of 0.006, a lowest score
of 0.003, and a highest score of 0.0029. The feature calculates the normalized Man-
hattan distance of a cell w.r.t the coordinates of the center of numerical values. This
easily results in misclassification when cells are wrongly parsed as string cells and thus
receive a low distance value compared to high distance values of most string cells on
a bioprocess sheet. In turn, the feature contributes information if numerical cells are
parsed correctly. The feature replaced an earlier feature that calculated the normalized
cell type value for each row, describing the amount of strings, bools, floats, and inte-
gers in each row by normalized type count. As it can be seen in the resulting average
and standard deviation values, the feature delivered a higher overall feature importance
but resulted in overfitting for cell type distributions where class labels were unevenly split.
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5.2. Training/Testing size variation

Table 4.2 shows the feature importances for the concatenated neighborhood features in
relation to the respective direction on the grid structure. The highest directional feature
importance is achieved by the neighborhood features that are located below the target
cell. The majority of content on the bioprocess sheet is located under the header, time,
and unit cells, thus explaining the high average feature importance of 0.453 and the
lowest relative standard deviation of 6%.
The average feature importance results for the left and right neighborhood direction
differ only by 10% and thus contributing almost equally to the prediction results. The
left neighborhood features show a much larger relative standard deviation because of the
tighter boundary structure on the left side of the sheets in contrast to the right side that
often has a layer of empty cells between the sheet boundary and the last data entries.
The feature importance results for the neighborhood features that are located above
the target cells show the smallest contribution with an average score of 0.065 and a
large relative standard deviation of 12.4%. The variable header, time, and unit cells can
be detected by their location relative to the numerical and time content on the sheet
structure and are thus not relying on the cell neighborhood on top of the sheet.

5.2 Training/Testing size variation

The classification reports in Figure 4.4 and Figure 4.6 show that a training/testing split
ratio of 10% delivered a high variance in prediction results due to the variability of the
features in different splits and runs. As it can be seen, the prediction of the class labels
empty value and numerical value are independent of the random splits during the
testing phase and deliver an average f-score of > 0.98 over all runs. As shown in the
confusion matrices in Figure 4.3 and 4.5, the high variation in f-scores for other class
labels and their lowest respective scores of 0 are due to misclassification errors between
class labels with similar feature sets. For instance time and header cells, parameter and
empty cells, and unit and time value cells for splits where either class is dominating
during the training phase and a correct prediction cannot be inferred due to overlapping
string similarities.
The corresponding classification report results in Figure 4.8 and Figure 4.10 for the
Gradient Boosting classifier show a lower average f-score for the class label empty value
in the lowest run and lower scores for time, variable header, and time header labels in
the highest run. Since both classifiers were applied with the standard hyper-parameters,
the Support Vector Machine showed a better out-of-the-box performance for a low train-
ing/test ratio of 10% as it can be seen in Figure 4.7 and 4.9. This contradicts the results
in [6] where the Gradient Boosting classifier and the Support Vector Machine show an
inverse behavior for data sets with imbalanced class labels. A possible reason for this
behavior can be the difference in training data set during the 10-fold cross-evaluation.
As it can be seen in Figure 4.11 and 4.12, the Support Vector Machine shows much a
better performance for the split ratio using 30% in the lowest run for all class labels,
but overfits the data towards the majority class empty value. This results in a lower
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recall for the class label time value and parameter. The results of the highest run in
Figure 4.13 and Figure 4.14 still show a misclassification tendency towards the empty
value label which is limited to the minority class time header, but accurate results for
the leftover class labels. This is due to the fact that the standard settings of the SVM
classifier internally shuffle the data at the beginning of every run and thus create a large
variance in prediction results for imbalanced data sets.
The prediction scores of the lowest run for the Gradient Boosting classifier and a split
ratio of 30% in Figure 4.15 and 4.16 show that the class labels with the fewest samples are
completely dismissed in favor of the majority classes, due to the low amount of samples
in the training/testing splits. The prediction scores of the highest run for the Gradient
Boosting classifier and a split ratio of 30% in Figure 4.17 and 4.18 show highly accurate
predictions for all class labels with a lowest recall value of 0.33 for the class label time
header due to the small number of samples in the training/test splits.
In a final run with an even split ratio of 50% for the training and testing sets, the Support
Vector Machine shows highly accurate results for the lowest run, but also completely
dismisses the time header class label as it can be seen in Figure 4.19 and Figure 4.20. The
highest run in Figure 4.21 and Figure 4.22 shows accurate predictions for all class labels.
The split ratio of 50% shows that the variance between the lowest run and the highest
run is only minimal and class imbalances can be compensated by applying resampling
techniques as described in [20].
Figure 4.23 and Figure 4.24 show that the lowest run for the Gradient Boosting classifier
obtains similar results, dismissing the minority clsss unit. The scores of the highest run
in Figure 4.25 and Figure 4.26 show that the difference to the lowest run is only minimal
for a split ratio of 50%.

As it can be seen from the prediction results for different splits, the variance between
the lowest and highest scores constantly reduces for higher split ratios. The difference in
prediction results between the two classifier is only minimal using the standard hyper-
parameter settings as described in section 4.1. For the subsequent experiments and the
results sections, the class imbalance is reduced by resampling the minority classes for
both classifiers.

5.3 Radius variation

Figure 4.27 shows that the micro-averaged and macro-averaged ROC curve for a neigh-
borhood radius of 1 are close to random guesses. This is the result of the limited
neighborhood information on the data structure and thus resulting in a high bias. The
corresponding learning curve in Figure 4.28 shows that the model underfits the data due
to the lack of sufficient feature information in the training phase. The averaged ROC
curve results for the Gradient Boosting classifier in Figure 4.29 shows similar results due
to the underfitting of the model as it can be seen in Figure 4.30.
After increasing the gauss circle radius to 2, both models show a high specificity and
sensitivity for the micro and macro-averaged ROC curves in Figure 4.31 and 4.33 due to
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the increased information content of the feature set. The respective training curve validate
the previous statement and show a good agreement between training and cross-validation
progress as it can be seen in Figure 4.32 and 4.34.
A last increase in radius showed that the feature content overfit both models as it can
be seen in the learning curve progress in Figure 4.36 for the Support Vector Machine
and Figure 4.38 for the Gradient Boosting classifier. For each case, the learning curves
diverge with a score difference between 0.5 and 1.5 over the validation progress, showing
the resulting high variance of the trained model. The corresponding micro and macro-
averaged ROC curves in Figure 4.35 and 4.37 support the high variance result of the
trained model by showing decreased area results.
As a result of the ROC and learning curve analysis, a radius of 2 proved to be an accurate
fit between a high bias and a high variance model for the last set of experiments using
different subsets of hyper-parameters. This is in good agreement with the findings of
Singh et. al. in [44], where large window sizes for the extraction of neighborhood content
overfit the model with high false positive ratios and lower F1 scores.

5.4 Classifier comparison
Figure 4.39 shows that the Gradient Boosting classifier achieves a top score of 0.83 with
a training rate of 0.2, 50 estimators, and a maximum estimator depth of 1. A lower
learning rate results in a smaller number of estimator corrections for each additional tree
in the model, but consequently also requires more trees to be added during the training
process. Since we seek to achieve a high macro F-score, the performance decrease due
to the increased number of trees is neglectable. From the results it can be seen that
the high training score of 1 indicates an overfitted model once too many estimators are
used. The number of sequential trees should thus be kept at a 100 estimators. From
the results it can be seen that we can still improve on the learning rate and estimator
depth of the classifier, without overfitting the model. Figure 4.40 shows a detailed grid
search for the specific estimator setting of 100 and a variation of the learning rate and
the maximum estimator depth. As it can be seen the model achieves even higher micro F
score using a lower learning rate and a higher maximum depth for each tree. The highest
ranked model run indicates an overfitted model with zero variance in the training scores.
The optimal hyperparameters for the Gradient Boosting classifier are thus chosen from
model rank 4, which delivers a high macro-averaged F score of 0.854 while showing a
close average training score of 0.92 with a small learning rate of 0.01 and a maximum
tree depth of 5. The combination of a high tree depth and a relatively small learning
rate eliminate the risk of overfitting in the model, since the choice of a low learning rate
allows the model to generalize well on unseen data and provides robustness. The results
are consistent with the findings of Ganjisaffar et. al. in [21], Zhang et. al. in [49], and
Rosset et. al. in [42] for Gradient Boosting classifiers, where the model generalizes well
for decreasing learning rates and increasing number of samples.

As it can be seen in the macro-averaged F1 score results for the grid search using the
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Support Vector Machine in Figure 4.41, the data set does not require an additional kernel
mapping on the bioprocess data set. Since the parameter degree has no influence on
the linear kernel mapping, the same score results for the linear kernel are shown multiple
times for different settings of the parameter degree. As a result, the linear kernel in
combination with an error weight of 1 shows the highest macro-averaged score of 0.79.
Since the corresponding training score of 0.82 is still relatively low compared to the test
score, we can still tweak the parameters in a more specific grid search. Furthermore, the
grid search results show that the error weight parameter (see section 2.6 for a detailed
description of the error weight in SVM) can still be increased without overfitting the
data and thus further reducing the error rate. The results of the specific kernel mappings
for the rbf and polynomial kernel are not further tested due to the high gap between the
training and testing scores for the respective parameter subsets and possible overfitting.
Figure 4.42 shows the specific grid search using four different values for the error weight
and a balanced class weight. This results in a balanced usage of the error weight by
multiplying the error term for each class label with the number of samples for the
respective class and thus reducing the influence of the class imbalance in the data set. As
it can be seen, the gap between the training and test score is minimized with increasing
values of C, resulting in a more stable model. The final hyperparameters for the SVM
are thus set to an error weight of 10, a balanced class weight, and the linear kernel. The
combination of a relatively high error weight and a weighted scaling of the error term for
each class ensures a reduction of the data set imbalance.
The choice of the linear kernel prevents additional overfitting of the model and further
increase in model complexity for the given data set. The usage of kernel mappings results
in infinite-dimensional feature spaces and thus in an equally infinite Vapnik-Chervonenkis
dimension. This infinite VC-dimension does not always guarantee generalization of the
learned model. Similar behavior is seen in [25, 8] where the resulting kernel mapping
worsens the prediction results.
The opposite behavior can be seen in [33, 26, 23] where the number of samples for
each class is much larger than the number of features and thus showing a significant
improvement for kernel-based SVM results in comparison with the linear SVM.

5.5 Model architecture/novelty

State of the art model architectures and methods in mining and classification of tabular
data include conditional random fields [1, 12, 41], hierarchical trees [30], and cell similarity
measures [11]. These methods work well on datasets that require little to no a priori
domain-knowledge and do not require additional, local neighborhood information for the
classification of single cells. However, these state of the art methods fail to capture the
global structure of the underlying data set due to the lack of domain-specific a priori
knowledge and local neighborhood information. Nearest-neighbor feature extraction
methods have been successfully applied to classification tasks across different research
domains on images [37, 50], EEG signals [32], and text documents [24, 4].
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A novel model architecture based on the combination of simple cell-based features,
nearest neighbor methods for feature extraction, and domain-specific information in the
document classification process is therefore proposed in the context of this thesis. The
feature set was extracted in a hierarchical manner, where simple cell-based features like
data type and string length represent the smallest building blocks as described in section
3.2. Additionally, a-priori domain knowledge is added by computing string similarities to
a collection of bioprocess specific terms (see subsection 2.4). Building blocks were then
concatenated into a single numerical feature. To capture the relational neighborhood
information of each cell, concatenated building clocks were then extended using the
kd-tree nearest neighbor structure as described in section 2.3.
As it can be seen from the results in Figure 4.27 and 4.32 for the Support Vector Machine
and Figure 4.30 and 4.34 for the Gradient Boosting classifier, the additional neighborhood
information from the nearest neighbor algorithm greatly boosts the prediction results
until the model overfits the data. Without this information, the classifier fails to learn a
meaningful structure on the given bioprocess data set and fails to predict unseen data
due to poor generalization power. To the authors knowledge, this model architecture has
not yet been used in the context of document/tabular data classification.
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CHAPTER 6
Conclusion

In conclusion, the development of a machine-learning based extraction method for
bioprocess data sheets proved to be succesful, but requires a careful choice of model
hyper-parameters and feature extraction settings. Modifications in the parsing of features
would greatly improve the prediction results and thus lower the amount of misclassifica-
tions due to falsely parsed cells in the training data set. These improvements include a
detection algorithm for time formats, string cleaning methods to remove redundant char-
acters for the header cells, and a refactoring of the domain-specific keyword dictionaries
to avoid overlapping string matching results. These changes would be essential for the
training process of the predictive model in order to learn a meaningful structure given
the correct feature sets for the respective cells.

The selection of cell features showed that the features digit ratio and numerical cen-
ter distance were almost completely dismissed during the training phase. A possible
improvement would thus be to test the permutations of existing features and their
respective feature importances over multiple runs to detect possible improvements in the
classification process as described in [2]. Additionally, existing features that show no
significant contribution to the classifier training after running the feature importance
permutation tests can be replaced by new features. The highly unbalanced feature
importances for the different directions neighborhood features indicate that cell neigh-
borhood features strongly depend on the structure of the data set. It would thus be
of interest how information content of diagonal cells can contribute to the training process.

The evaluation of different training/testing split ratios showed expected prediction
results and proved to converge to a minimum variance between the lowest and the
highest test run scores for sufficiently large amounts of training data. Interestingly,
the Gradient Boosting classifier showed a lower performance for test cases with highly
imbalanced class labels contrary to the results in [6]. Further investigation with different
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sets of hyper-parameters for different training/test split rations would be of interest to
analyze the class imbalance behavior for the two classifiers. The prediction results for
the neighborhood radius variation indicate that the training of the classifier might profit
from different neighborhood shapes during the construction of the feature set. These
shapes can influence the information content for each cell while preserving the radius
and reduce the risk of overfitting the model. An investigation of different neighborhood
shapes and their impact on the resulting feature importance and classification result
would be a logical next step to this thesis.

The grid search results for the respective classifiers showed expected scores, but still leave
room for improvements of the hyper-parameter settings. Since the hyper-parameter opti-
mization was only carried out on the most important settings due to the sheer complexity
of the testing space, it would be of interest to conduct further parameter optimization
tests. Due to the knowledge that Gradient Boosting machines are highly customizable
[38] prediction models, it would be valuable to further explore the hyper-parameter space
of the model, for instance by introducing new loss functions and customized base learners.
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Appendix

Table 6.1: Batch source table by industry type for the training and testing data set.

company type batch
pharmaceutical online & offline data
pharmaceutical online data
pharmaceutical offline & offline data
bioreactors online data
gas sensors online data
biosciences offline data
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