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Kurzfassung

Die Analyse qualitativer Eigenschaften von nichtlinearen partiellen Differentialgleichungen

(PDEs) durch Methoden aus der Theorie dynamischer Systeme ist ein aktives Forschungsge-

biet. Ein wichtiges Thema dabei ist die Analyse der Existenz, Stabilität und Verzweigung

von speziellen Lösungen, die wesentliche Merkmale der zu untersuchenden PDE enthal-

ten. Insbesondere für PDEs mit singulären Störungen oder Singularitäten hat sich dabei

eine Kombination aus Methoden aus der Theorie dynamischer Systeme, Methoden der

singulären Störungstheorie und numerischen Berechnungen als sehr effektiv erwiesen.

Dieses Projekt befasst sich mit zwei Problemen dieser Art, die neuartige Multiskalen-

merkmale aufweisen. Im ersten Problem untersuchen wir die Euler-Lagrange-Gleichung

der Regularisierung eines nichtkonvexen Variationsproblems, das als einfaches mathema-

tisches Modell für Mikrostrukturen in Formgedächtnislegierungen auftritt. Für dieses sin-

gulär gestörte Hamiltonische System beweisen wir die Existenz einer Klasse von periodis-

chen Lösungen und untersuchen ihre Abhängigkeit von den wesentlichen Parametern durch

asymptotische Methoden und numerische Fortsetzung. Das Ziel ist ein besseres Verständnis

der Struktur von minimierenden Lösungen und ihres ungewöhnlichen Skalierungsverhaltens.

Mittels numerischer Pfadverfolgung werden zusätzlich neue Typen von Lösungen gefunden.

Das zweite Problem betrifft die Asymptotik und Verzweigung von stationären Lösungen

eines Modells für mikroelektromechanische Systeme (MEMS). Dieses Modell wurde kürzlich

als Regularisierung eines einfacheren Modells vorgeschlagen, von dem bekannt ist, dass es

in endlicher Zeit Singularitäten entwickelt. Für dieses Problem wird das numerisch berech-

nete Verzweigungsdiagramm erklärt, indem die Interaktion des Regularisierungsterms mit

der für das Touchdown-Phänomen verantwortlichen Singularität im Detail untersucht wird.

Dabei wird die Blow-up-Methode verwendet, um die Dynamik in der Nähe der Singularität



zu analysieren und rigorose Ergebnisse zu erhalten, welche die bereits existierende formale

Asymptotik und Numerik beweisen und ergänzen. Ein zentraler Aspekt dabei ist die Un-

tersuchung einer speziellen Sattel-Knoten Verzweigung, deren numerische Untersuchung

aufgrund ihres singulären Charakters sehr schwierig ist.

Diese neuartige Erweiterung der Blow-up-Methode zur Analyse von Randwertproblemen

und singulären Grenzenwerten in Verzweigungsproblemen hat das Potential auch in anderen

Zusammenhängen von Nutzen zu sein.
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Abstract

The analysis of qualitative properties of nonlinear PDEs by dynamical systems methods

is an active area of research. A major issue is the analysis of the existence, stability and

bifurcation of special solutions which capture crucial features of the PDE. In particular for

PDEs involving singular perturbations or singularities a combination of dynamical systems

methods, singular perturbation methods and numerical computation has proven to be very

effective.

This project is concerned with two problems of this kind exhibiting novel multi-scale fea-

tures. In the first problem we study the Euler-Lagrange equation of the regularization of a

non-convex variational problem arising as a toy model for microstructures in shape memory

alloys. For this singularly perturbed Hamiltonian system we prove the existence of a class

of periodic solutions and study their dependence on the main parameters by asymptotic

methods and numerical continuation. The goal is to obtain a better understanding of the

structure of minimizers and their unusual scaling behavior. Novel solutions via numerical

path following are also discovered.

The second problem is concerned with the asymptotics and bifurcations of steady state

solutions of a model for Micro-Electro Mechanical Systems (MEMS). This model has re-

cently been proposed as a regularization of a more basic model, that is known to develop

singularities in finite time.

We analyze the structure of steady state solutions close to touchdown and their bifurca-

tion diagram as the regularization parameter tends to zero. By means of geometric singular

perturbation theory and blow-up techniques, we give a rigorous analysis of the bifurcation

curve and its singular limit. The numerically computed bifurcation diagram is explained

by resolving the interaction of the regularizing term with the main singularity leading to



the touchdown phenomenon. In particular, we use the blow-up method to analyze the dy-

namics in proximity of the singularity and obtain rigorous results complementing existing

formal asymptotics and numerics. An important part of the analysis deals with a special

saddle-node bifurcation point which, due to its singular nature, is very hard to obtain even

numerically.

This novel extension of the blow-up method to the analysis of boundary value problems

and singular limits in bifurcation diagrams is expected to be useful in other contexts as

well.
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Christian, your book was the first taste of multiple time scale systems I had, and it was the

best I could have possibly had. Our discussions and our work together have always been

extremely stimulating, and I’m happy we kept our collaboration even after your successful

transfer. Nikola, you made my stay in Edinburgh the best I could have possibly imagined.

You have been and still are a great teacher and friend to me. Your expertise and support

helped me through the good (mostly) and the bad (just a few) times :)
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1 Introduction

1.1 Fast-Slow Systems

Most of the results presented in this thesis rely on the geometric theory of multiple time

scale dynamical systems. These systems are characterized by the fact that the dynamics

occur on several (usually two) time-scales, fast and slow ; hence their definition as “fast-

slow systems”. They play a crucial role for example in asymptotic anaylsis, in particular in

the field of matched asymptotic expansions. In the last few decades, geometric techniques

to analyze these systems have developed increasingly, leading to Geometric Singular Per-

turbation Theory (GSPT) [35]. In the following, we give a more precise definition of their

general structure and show how GSPT leads to the analysis of their solutions.

1.1.1 Terminology

A general formulation of fast-slow systems can be given as follows.

Definition 1.1.1. A (m,n)-fast-slow system is a system of ordinary differential equa-

tions of the form

εẋ = f(x, y, η, ε),

ẏ = g(x, y, η, ε),
(1.1)

where ˙= d
dτ , f : Rm×Rn×Rp×R→ Rm, g : Rm×Rn×Rp×R→ Rn, η ∈ Rp are system

parameters and 0 < ε � 1. Moreover, x ∈ Rm are defined as the fast variables, while

y ∈ Rn are defined as the slow variables.

1



1 Introduction

Introducing t = τ/ε, ′ = d
dt leads to the equivalent formulation

x′ = f(x, y, η, ε),

y′ = εg(x, y, η, ε).
(1.2)

As for the time variables, t and τ are referred to as fast time scale and slow time scale,

respectively.

A key role is played by a small parameter 0 < ε � 1, involved in the equations as well

as in the time rescaling. Considering in fact the limit ε→ 0 in (1.1) yields

0 = f(x, y, η, 0),

ẏ = g(x, y, η, 0),
(1.3)

i.e., a differential-algebraic equation (DAE) called slow subsystem or equivalently re-

duced problem. This represents the flow of the slow variables y (“slow flow”) on

the geometric object (called critical manifold) determined by the algebraic constraint

0 = f(x, y, η, 0).

Letting ε→ 0 in (1.2) leads instead to

x′ = f(x, y, η, 0),

y′ = 0,
(1.4)

called fast subsystem or layer problem. This corresponds to the flow of the fast variables

x (“fast flow”) on “layers” of constant y-values.

The idea on which Geometric Singular Perturbation Theory is based is the following:

investigating the reduced and the layer problem, a singular orbit for the full problem can be

constructed. Important tools such as Fenichel Theory [22] and the Exchange Lemmas [71,

72] can then guarantee, under some conditions, the persistence of these results for 0 < ε�

1. In the following, we examine them in more detail.

1.1.2 Fenichel Theory

In its broadest sense, Fenichel’s theory includes a variety of results regarding the pertur-

bation of normally hyperbolic invariant manifolds. As our main focus relies on fast-slow

2



1 Introduction

systems, however, we are going to focus our attention on its application in this field. The

main theorem we are going to present is in fact concerned with perturbations of the critical

manifold arising in the study of the reduced problem.

We briefly recall some basic definitions and assumptions:

• The critical manifold C0 is defined as (cf. (1.3))

C0 =
{

(x, y) ∈ Rm+n : f(x, y, η, 0) = 0
}
. (1.5)

• A subset S ⊂ C0 is called normally hyperbolic if the m×m matrix (Dxf)(p, η, 0)

of first partial derivatives with respect to the fast variables has no eigenvalues with

zero real part for all p ∈ S, or equivalently, if and only if for each p = (x∗, y∗) ∈ S we

have that x∗ is a hyperbolic equilibrium point of x′ = f(x, y∗, η, 0).

• The minimum requirement for S is compactness; usually we will deal with smooth

manifolds.

• A normally hyperbolic subset S ⊂ C0 is called attracting if all eigenvalues of

(Dxf)(p, 0) have negative real part for p ∈ S; similarly, S is called repelling if all

eigenvalues have positive real part. If S is normally hyperbolic and neither attracting

nor repelling, it is said to be of saddle-type.

• The Hausdorff distance between two nonempty sets V,W ⊂ Rm+n is defined as

follows:

dH(V,W ) := max

{
sup
v∈V

inf
w∈W
‖v − w‖, sup

w∈W
inf
v∈V
‖v − w‖

}
.

The main result of GSPT is the following:

Theorem 1.1.2 (Fenichel’s theorem [22]). Suppose S = S0 is a compact normally hyper-

bolic submanifold (possibly with boundary) of the critical manifold C0 of (1.1) and that

f, g ∈ Cr(r <∞). Then for ε > 0 sufficiently small, the following hold:

(F1) There exists a locally invariant manifold Sε diffeomorphic to S0. Local invariance

means that trajectories can enter or leave Sε only through its boundaries.

(F2) Sε has Hausdorff distance O(ε) (as ε→ 0) from S0.

3



1 Introduction

(F3) The flow on Sε converges to the slow flow as ε→ 0.

(F4) Sε is Cr-smooth.

(F5) Sε is hyperbolic and has the same stability properties with respect to the fast variables

as S0 (attracting, repelling, or saddle-type).

(F6) Sε is usually not unique. In regions that remain at a fixed distance from ∂Sε, all

manifolds satisfying (F1)-(F5) lie at a Hausdorff distance O(e−K/ε) from each other

for some K > 0,K = O(1).

Note that all asymptotic notation refers to ε→ 0. Similar conclusions as for S0 hold locally

for its stable and unstable manifolds:

W s
loc(S0) =

⋃
p∈S0

W s
loc(p), W u

loc(S0) =
⋃
p∈S0

W u
loc(p),

where we view points p ∈ S0 as equilibria of the fast subsystem. These manifolds also

persist for ε > 0 sufficiently small: there exist local stable and unstable manifolds W s
loc(Sε)

and W u
loc(Sε), respectively, for which conclusions (F1)-(F6) hold if we replace Sε and S0 by

W s
loc(Sε) and W s

loc(S0) (or similarly by W u
loc(Sε) and W u

loc(S0)).

Theorem 1.1.2 is at the core of Geometric Singular Perturbation Theory, which how-

ever comprises also another large variety of geometric methods. It is often known also as

Tikhonov theorem [74]; he proved in addition that every solution starting sufficiently close

to a compact attracting normally hyperbolic submanifold S ⊂ C0 approaches S in a slow

time O(ε| log ε|) and then stays O(ε)-close to S. The manifold Sε cited in Theorem 1.1.2 is

called a slow manifold; often it is referred to also as “the” slow manifold Cε as, although

formally incorrect, all possible choices lie O(e−K/ε)-close, hence making it irrelevant which

choice is made.

It is finally important to indicate that the dynamics of a fast-slow system near a critical

manifold can be significantly simplified through a certain coordinate change:

Theorem 1.1.3 (Fenichel Normal Form [22]). Suppose the origin 0 ∈ C is a normally

hyperbolic point with ms stable and mu unstable fast directions. Then there exists a smooth

4



1 Introduction

invertible coordinate change (x, y) 7→ (a, b, v) ∈ Rms+mu+n so that a fast-slow system (1.2)

can be written as:

a′ = Λ(a, b, v, ε)a,

b′ = Γ(a, b, v, ε)b,

v′ = ε (m(v, ε) +H(a, b, v, ε)ab) ,

(1.6)

where Λ,Γ are matrix-valued functions and H is bilinear and given in coordinates by

Hi(a, b, v, ε)ab =

ms∑
r=1

mu∑
s=1

Hirsarbs. (1.7)

1.1.3 Exchange Lemma

In the following, we are often going to face the issue of tracking invariant manifolds in

phase space. A crucial tool to perform this task is the Exchange Lemma, initially proved

by Jones and Kopell [36]: roughly speaking, it guarantees that some parts of a manifold

which enters a neighbourhood of the slow manifold by intersecting its stable foliation will

exit along its unstable foliation after the slow drift. This tool is extremely useful in many

situations, such as the persistence of periodic orbits constructed with both fast and slow

pieces in the singular limit ε = 0 after ε is activated. Suppose for example (as we will see

in Chapter 2) that a periodic orbit in the singular limit is found by connecting two slow

pieces with two heteroclinic orbits of the fast subsystem. As the heteroclinic connections

in the singular limit occur by means of a transversal intersection between the stable and

unstable manifolds of the slow pieces, the persistence of the periodic orbit for 0 < ε � 1

is guaranteed not only when the transversality condition is preserved (result guaranteed

by Fenichel’s theorem 1.1.2), but also when the fast flow approaching the slow manifold

close to its stable foliation leaves it along its unstable foliation. This is where the Exchange

Lemma plays its fundamental role. Its importance applies however not only to periodic

orbits, but also to more general scenarios, as we see in Chapter 3. There, we obtain a

global transversal intersection as follows: a boundary manifold is proved to intersect the

stable foliation of the slow manifold transversely. As the flow leaves again the slow manifold

close to its unstable foliation thanks to the Exchange Lemma, and as the unstable foliation

5



1 Introduction

intersects the other boundary manifold again transversely, we have an overall transverse

intersection.

We illustrate the main statements of the Exchange Lemmas in the following. To this

aim, we first need to recall some important concepts.

Definition 1.1.4. Two manifolds M1 and M2 are transversal (or intersect trans-

versely) in RN if the tangent spaces TpM1 and TpM2 span TpRN ∼= RN at each point

p ∈M1 ∩M2.

The general framework we consider here is the fast-slow system

εẋ = f(x, y, ε),

ẏ = g(x, y, ε),
(1.8)

where we included the eventual parameters η ∈ Rp of the system in the slow variables

(it suffices to include the equations η̇ = 0 and relabel the variables to suitably-indexed

y coordinates). Assume S0 is a compact normally hyperbolic submanifold of the critical

manifold C0. According to Theorem 1.1.3, we can apply a change of variables to convert

System (1.8) near S0 into Fenichel normal form:

a′ = Λ(a, b, y, ε)a,

b′ = Γ(a, b, y, ε)b,

y′ = ε(h(y, ε) +H(a, b, y, ε)(a, b)),

(1.9)

with a ∈ Rk, b ∈ Rl, y ∈ Rn and k+ l = m; H is a bilinear-form valued function which can

be explicitly written as

y′i = ε

(
hi(y, ε) +

k∑
u=1

l∑
s=1

Hiusaubs

)
;

Λ and Γ are matrix-valued functions defined by separating the fast unstable and stable

directions. The manifold S0 is now represented by {a = 0, b = 0} and, as it is normally

hyperbolic by assumption, there exist λ0 > 0, γ0 < 0 such that for any λi eigenvalue of

Λ(0, 0, y, 0) or any γi eigenvalue of Γ(0, 0, y, 0) the following holds:

Re λi > λ0 > 0, Re γi < γ0 < 0

6



1 Introduction

in a region

B = {(a, b, y) : ‖a‖ < δ, ‖b‖ < δ, y in a compact region} (1.10)

with δ sufficiently small. For ε positive and small Equation (1.9) still applies; λε > 0

and γε < 0 correspond now to the weak unstable and weak stable eigenvalues near Sε

respectively. The stable and unstable manifolds of Sε are hence given by

W s(Sε) = {a = 0}, W u(Sε) = {b = 0}, (1.11)

respectively. Equation (1.9) can be furtherly modified with the non-restrictive assumption

that the slow flow is pointing in the y1-direction1:

a′ = Λ(a, b, y, ε)a,

b′ = Γ(a, b, y, ε)b,

y′ = ε(U +H(a, b, y, ε)(a, b)),

(1.12)

with U = (1, 0, . . . , 0)T .

We introduce now the invariant manifold M we aim to track: we assume it is (k + 1)-

dimensional for sake of simplicity, but the following results can be extended to the general

case as well. Suppose M intersects the boundary {b = δ} of region B at some point q; if q

is sufficiently close to the stable manifold W s(Sε), a trajectory starting at q will stay close

to Sε for a time O(1/ε) with respect to the fast time scale t. In particular, the following

lemma provides estimates on the fast coordinates (a, b):

Lemma 1.1.5 ([46]). Let us consider System (1.12). There exist constants ca, cb,K > 0

such that for s ≤ t the following results hold:

(R1) ‖b(t)‖ ≤ cb‖b(s)‖eγ0(t−s)

(R2) ‖a(t)‖ ≤ ca‖a(s)‖eλ0(t−s)

(R3) ‖
∫ t
s a(σ)dσ‖ ≤ K (independent of ε, s, t)

as long as a trajectory remains in B.

1This hypothesis applies particularly to the contexts we deal with later, as we often have n = 1.

7



1 Introduction

To follow a trajectory inside B, we use the following observation: as M is invariant,

trajectories that start at q ∈ M ∩ {‖b‖ = δ} have to remain inside M . Therefore, a

neighbourhood of q in M can be followed under the flow in (1.12) as shown by the C0-

Exchange Lemma:

Theorem 1.1.6 (C0-Exchange Lemma [36, 46]). Let us consider System (1.12). Let M

be a (k + 1)-dimensional invariant manifold, q̄ ∈ M ∩ {‖a‖ = δ} be the exit point of a

trajectory starting at q ∈ M ∩ {‖b‖ = δ} that spends a time t that is O(1/ε) in B. Let V

be a neighborhood of q in M . If V is sufficiently small then the image of V under the time

t map is close to

{‖a‖ = δ, yi − yi(0) = 0, i > 1}

in the C0-norm where yi(0) denotes the y-coordinates of q.

a = 0

b = 0

q

q̄

V

Sε

φt(V )

a

b

y

Figure 1.1: Schematic representation of the situation described in the C0-Exchange

Lemma 1.1.6: φt(V ) (light cyan) indicates the image of region V (light

cyan) near the exit point q̄, which is very close to the unstable manifold

W u(Sε) = {‖b‖ = 0} (magenta). All coordinates yi with i > 1 have been

here suppressed.

If we aim to use the C0-Exchange Lemma to prove the persistence of a transversality

condition between two manifolds for ε > 0 small, however, we soon realize that this is not

8



1 Introduction

possible: we have in fact no information about the part of the tangent spaces of M in the

center directions, as every trajectory exits near q̄ almost tangent to the unstable manifold

W u(Sε). That’s where the C0 label comes from: Theorem 1.1.6 gives accurate information

about the location of the manifold M itself, but does not provide enough details about its

tangent spaces. This “C1”-information is instead given by the following:

Theorem 1.1.7 (C1-Exchange Lemma [36, 46]). Let us consider System (1.12). Let M

be a (k + 1)-dimensional invariant manifold. Assume M ∩ {‖b‖ = δ} intersects {a = 0}

transversely. Let q̄ ∈ M ∩ {‖a‖ = δ} be the exit point of a trajectory starting at q ∈

M ∩ {‖b‖ = δ} that spends a time t = O(1/ε) in B. Let V be a neighborhood of q in M .

The image of V under the time t map is close in the C1-norm to

{‖a‖ = δ, yi − yi(0) = 0, i > 1},

where yi(0) denotes the y-coordinates of q. In particular M is C1-close to {‖a‖ = δ, yi −

yi(0) = 0, i > 1} near q̄.

1.2 Blow-up Method

Another powerful tool we are going to use is the blow-up method. This technique was

introduced to singular perturbation problems by Dumortier and Roussarie [20, 21]; further

details on weighted blow-ups can be found in [11, 61, 10, 9]. Other important results

concerning the blow-up analysis of the fold point have been reached by Krupa, Szmolyan,

and van Gils [44, 45, 80]. Interesting overviews of the method are available in [4, 46].

The method allows us to analyze the dynamics of a system close to degenerate equilibria

by constructing a vector field with hyperbolic singularities out of the original one. A

degenerate equilibrium is an equilibrium with a nilpotent linearization, i.e., with a zero

eigenvalue of multiplicity greater than two. Such degenerate equilibria arise if hyperbolic

directions are split off by means of a center manifold reduction. They also appear as points

of critical manifolds where normal hyperbolicity is lost.

The idea behind this method is to “blow” the degenerate equilibrium “up” to a higher

dimensional structure and then study the dynamics in blown-up space. This procedure

9



1 Introduction

can be repeated as long as non-hyperbolic points are present; Dumortier [21] has shown

that, in the case of planar systems, the number of blow-ups necessary to desingularize a

non-hyperbolic point is finite if the vector field satisfies the Lojasiewicz inequality.

We focus our attention here on the quasihomogeneous blow-up, which we use in

the second part of the thesis. For more background on other types of blow-up, we refer

to [46, 20].

Definition 1.2.1. Consider a C∞-vector field F on Rn. Without loss of generality, let

us assume that the origin is a degenerate equilibrium point (F (0) = 0). Let ai ∈ N for

i = 1, . . . , n. The quasihomogeneous blow-up ϕ with weights a1, . . . , an corresponds to

the coordinate transformation:

ϕ : Sn−1 × I −→ Rn,

(z̄1, . . . , z̄n, r) 7−→ (ra1 z̄1, . . . , r
an z̄n),

(1.13)

where I is an interval in R with 0 ∈ I and
∑n

k=1 z̄
2
k = 1. The quasihomogeneous

blow-up F̂ of the vector field F is defined by

F̂ (z̄1, . . . , z̄n, r) = (Dϕ−1
(z̄1,...,z̄n,r)

◦ F ◦ ϕ)(z̄1, . . . , z̄n, r) (1.14)

for r 6= 0 and by the continuous extension of (1.14) to r = 0. From a geometric viewpoint,

the quasihomogeneous blow-up can be interpreted as follows: the nonhyperbolic point is

replaced by the sphere in blown-up space. ϕ−1(0) = Sn−1 × {0} is also known as the

singular locus. Since F̂ vanishes for r = 0, it is necessary to divide out a suitable factor of

rk (i.e., suitably rescale time) to obtain a nontrivial flow on the sphere Sn−1. We define

the (rescaled) quasihomogeneous blow-up by F̄ = 1
rk
F̂ .

The weights a1, . . . , an in the blow-up transformation have to be chosen such that dividing

out such a factor rk is i) possible and ii) leads to a flow on the sphere which captures the

essential dynamics. The dynamics in blown-up space can be conveniently studied in charts

Ki, i = 1, . . . , n, where one of the blow-up variables ·̄ is kept fixed and equal to 1. A

new coordinate system is then introduced on each chart through local maps µi such that

ϕ = Ki ◦ µi. For sake of clarity, we introduce the normal form of a fold in planar fast-slow

10
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systems as an example. For the analysis of the generic fold in planar fast-slow systems we

refer to Krupa and Szmolyan [44, 45].

Example 1.3 ([46]). Let us consider the following fast-slow system:

x′ = x2 − y,

y′ = −ε,

ε′ = 0,

(1.15)

which has been extended to a three-dimensional system by adding the trivial equation for ε.

The origin is a degenerate equilibrium of this system. The vector field defined by (1.15) will

be denoted by F . Introducing the space B0 := S2 × [0, r0] for some r0 > 0, we can define

the blow-up map ϕ : B0 → R3 as the map which induces a vector field F̄ by ϕ∗(F̄ ) = F .

Denoting the coordinates on S2 with (x̄, ȳ, ε̄) and the one on [0, r0] by r̄ and applying

Definition 1.2.1, the quasihomogeneous blow-up in (1.13) corresponds to

ϕ(x̄, ȳ, ε̄, r̄) = (r̄a1 x̄, r̄a2 ȳ, r̄a3 ε̄), (1.16)

where the coefficients (a1, a2, a3) need to be determined. Typically the weights can be

determined efficiently if one considers the ε-dependent rescaling of x and y which is obtained

by setting ε̄ = 1 in (1.16). This gives

x = ra1 x̃, y = ra2 ỹ, ε = ra3 .

Plugging this into (1.15) gives

ra1 x̃′ = r2a1 x̃2 − ra2 ỹ,

ra2 ỹ′ = ra3 .

It is easy to see that the choice

a1 = 1, a2 = 2, a3 = 3

leaves a common factor r on the right-hand side, which can then be divided out. Hence

the blow-up transformation has the form

ϕ(x̄, ȳ, ε̄, r̄) := (r̄x̄, r̄2ȳ, r̄3ε̄). (1.17)

11
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The blow-ups induced from the charts Ki and the blow-up ϕ are then

for K1 (ȳ = 1) : x = r1x1, y = r2
1, ε = r3

1ε1, (1.18a)

for K2 (ε̄ = 1) : x = r2x2, y = r2
2y2, ε = r3

2, (1.18b)

for K3 (x̄ = 1) : x = r3, y = r2
3y3, ε = r3

3ε3. (1.18c)

A schematic representation can be found in Figure 1.2.

r3

ε3

y3

K3

r2

x2
y2

K2

r1

x1

ε1

K1

x̄ ȳ

ε̄

B0

Figure 1.2: Homogeneous blow-up of a nonhyperbolic point in R3; charts Ki, i = 1, . . . , n

are also displayed.

For illustration, we work out the equations in chart K2 to show how System (1.15) can

be desingularized by dividing out a power of r. Rewriting Equations (1.15) by means of

the coordinate transformation in (1.18b) we have

x′2 = r2(x2
2 − y2),

y′2 = −r2,

r′2 = 0.

(1.19)
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Dividing out the common factor r2 from the right-hand sides we finally get the desingular-

ized system:

x′2 = x2
2 − y2,

y′2 = −1,

r′2 = 0,

(1.20)

which plays a key role in the analysis of the generic planar singularly perturbed fold point.

To summarize, the main steps to follow when analyzing the dynamics close to a degen-

erate point with the blow-up method are the following:

1. Determine a suitable map ϕ to desingularize the degenerate point, i.e., find the “right”

weights in (1.13);

2. Use suitable charts to express the blow-up in local coordinates;

3. Investigate the local dynamics in the charts and their overlap by using the transition

maps κij ;

4. Combine the results from the charts to analyze the full dynamics in the blown-up

space;

5. “Blow-down” to the original phase space via the blow-up map ϕ in (1.13).

The third and the fourth step can be carried out only if one obtains a desingularized problem

on the sphere, which both captures the essential behaviour and can be analysed. In simple

scenarios, finding the weights is often straightforward (as we have seen in Example 1.3),

but in general this is a highly nontrivial problem.

1.4 Thesis Overview

1.4.1 Structure

The results presented in this Thesis are concerned with the two main projects I have been

working on during my Ph.D. Though the main definitions are presented in this introductory

Section, some basic definitions might be repeated throughout the text, as both Chapters 2

13



1 Introduction

and 3 are meant as independent readings; we hope, however, the reader might consider this

mostly helpful.

1.4.2 Main Results

Here we present the main results of the thesis:

1. Chapter 2 is devoted to the analysis of a nonconvex variational problem by means of

GSPT. We prove the existence of a class of periodic solutions and study their depen-

dence on the main parameters by asymptotic methods and numerical continuation.

In particular, the Hamiltonian structure of the fast-slow system corresponding to the

Euler-Lagrange equation associated to the minimization functional allows us to prove

existence of periodic solutions on hypersurfaces with fixed Hamiltonian value. Nu-

merical continuation with respect to the main system parameters is then carried out

with AUTO [18], after having constructed a starting orbit with the Slow-Manifolds-of-

Saddle-Type (SMST) algorithm [27]. The results confirm the analytical predictions

and open up new possible scenarios.

2. Chapter 3 is focused on the analysis of a model arising in Micro-Electro-Mechanical-

Systems (MEMS). In particular, we investigate the multi-scale structure of the steady-

state solutions to a second order PDE and perform a detailed asymptotic resolution of

the structure of the corresponding bifurcation diagram. Rewriting the boundary value

problem in a dynamical system formulation and applying a combination of of GSPT

and blow-up methods allows us to explain the numerically computed bifurcation

diagrams by resolving the interaction of a regularizing term with the main singularity

leading to the touchdown phenomenon. The existence of a new bifurcation branch,

observed in the original model formulation, is here explained and resolved both in

the singular limit ε = 0 and for ε positive and sufficiently small. This extended use

of the blow-up method also leads to the analytical computation of a the saddle-node

bifurcation point, so far accessible only numerically.
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2 Geometry and numerical continuation of

multiscale orbits in a nonconvex variational

problem

2.1 Introduction

The minimization problem we consider is to find

min
u∈U

{
Iε(u) :=

∫ 1

0

(
ε2u2

XX +W (uX) + u2
)

dX

}
, (2.1)

where U is a space containing all sufficiently regular functions u : [0, 1]→ R of the spatial

variable X ∈ [0, 1], 0 < ε � 1 is a small parameter, uX = ∂u
∂X , uXX = ∂2u

∂X2 , and the

function W is a symmetric, double well potential; in particular, here W is chosen as

W (uX) =
1

4
(u2
X − 1)2. (2.2)

This model arises in the context of coherent solid-solid phase transformation to describe

the occurrence of simple laminate microstructures in one-space dimension. Simple lam-

inates are defined as particular structures where two phases of the same material (e.g.,

austenite/martensite) simultaneously appear in an alternating pattern [59]. This situation

is shown schematically in Figure 2.1(a). These and related structures have been intensively

studied both in the context of geometrically linear elasticity [38, 39, 69] and in the one of

fully nonlinear elasticity [1, 2, 5, 6, 8, 19, 62, 65, 75, 76]. A comparison between these two

approaches is given by Bhattacharya [7]. We focus here on the one-dimensional case start-

ing from the work of Müller [58], but a 2D approach has also been proposed [40, 25, 33].

An alternative choice of the functional W which sensibly simplifies energy calculations for
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2 Geometry and numerical continuation of multiscale orbits in a nonconvex variational problem

equilibria has been recently adopted by Yip [83]. The same functional with more general

boundary conditions has been treated by Vainchtein et al [79]. In all these cases, very

significant theoretical and experimental advances have been reached. Nevertheless, many

interesting features concerning the asymptotics and dynamics of these problems can still

be explored.

We start from the one-dimensional model (2.1)-(2.2) analyzed by Müller and introduce

a different approach based on geometric singular perturbation theory [35, 46] which allows

us to better understand the critical points of the functional Iε and to obtain an alternative

method eventually able to handle more general functionals.

(a)

(b)

O(ε) O(εα)

AA AMM

uX

X

1

−1

Figure 2.1: Schematic representation of simple laminates microstructures as periodic solu-

tions. (a) Microstructures in one space dimension: austenite (A) and martensite

(M) alternate, while the transition area is shown in gray. (b) Structure in space

of the variable uX , whose values ±1 represent the two different phases of the

material of width of order O(εα), with α = 1/3 for minimizers (as shown in [58])

and α = 0 for other critical points. The width of the transition interval is of

order O(ε).

In [58] minimizers are proven to exhibit a periodic multi-scale structure (Figure 2.1): a

fast scale of order O(ε) describes the “jumps” between the two values of the derivative uX ,

and a slow scale of order O(ε1/3) represents the distance between two points with equal

value of uX . From a physical viewpoint, the two values of the derivative uX = ±1 model the

two different phases of the material. The jumps describe the transition between the phases

and the regions with almost constant values of uX correspond to parts of the material

16



2 Geometry and numerical continuation of multiscale orbits in a nonconvex variational problem

occupied by the same phase. One of the key results in [58] consists in an asymptotic

formula for the period of minimizing solutions, when the solution space U is chosen as the

set of all u ∈ H2(0, 1) subject to Dirichlet boundary conditions. For ε→ 0, the period P ε

behaves as

P ε = 2(6A0ε)
1/3 +O(ε

2
3 ), (2.3)

where A0 = 2
∫ 1
−1W

1/2(w) dw.

The approach based on fast-slow analysis of the Euler-Lagrange equation applied here

allows us to identify geometrically certain classes of periodic orbits. These orbits are used

as starting solutions for numerical continuation using the software package AUTO [18]. This

powerful tool has been adopted for example by Grinfeld and Lord [26] in their numerical

analysis of small amplitude periodic solutions of (2.1). We provide here a detailed study

of periodic solutions based upon one-parameter continuation in the parameters ε and µ.

It turns out that several fold bifurcations of periodic orbits structure the parameter space.

A numerical comparison with the law (2.3) will be presented, by means of a minimization

process of the functional Iε along certain families of periodic orbits. Our work also leads

to new insights into the dependence of the period on the parameters ε and µ for non-

minimizing sequences of periodic orbits.

The paper is structured as follows: Section 2.2 introduces the approach based on geomet-

ric singular perturbation theory using the intrinsic multi-scale structure of the problem. We

describe the transformation of the Euler-Lagrange equation associated to the functional Iε

into a multiscale ODE system, along with the decomposition of periodic orbits into slow and

fast pieces using the Hamiltonian function. We identify a family of large amplitude singular

periodic orbits and prove their persistence for ε small. A crucial point is the construction

of an initial periodic orbit for ε 6= 0 in order to start numerical continuation: the strategy

we use is illustrated in Section 2.3, where the continuation of the orbits with respect to the

main parameters is also performed. This section includes also the comparison between the

analytical expression of the period given by Müller and our numerical results as well as the

general parameter study of periodic solutions. Section 2.4 is devoted to conclusions and an

outline for future work.
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2 Geometry and numerical continuation of multiscale orbits in a nonconvex variational problem

2.2 The Euler-Lagrange equation as a fast-slow system

In this section, the critical points (not only the minimizers) of the functional Iε are ana-

lyzed. A necessary condition they have to satisfy is the Euler-Lagrange equation [14]. The

Euler-Lagrange equation associated to Iε is the singularly perturbed, fourth order equation

ε2uXXXX −
1

2
σ(uX)X + u = 0, (2.4)

where σ(uX) = W ′(uX) = u3
X − uX . Equation (2.4) can be rewritten via

w := uX ,

v := −ε2wXX +
1

2
σ(w),

z := εwX ,

as an equivalent system of first order ODEs

u̇ = w,

v̇ = u,

εẇ = z,

εż =
1

2
(w3 − w)− v,

(2.5)

where d
dX = ˙ . Equations (2.5) exhibit the structure of a (2,2)-fast-slow system, with u, v

as slow variables and w, z as fast variables. We recall that a system is called (m,n)-fast-

slow [22, 35, 46] when it has the form

εẋ = f(x, y, ε),

ẏ = g(x, y, ε),
(2.6)

where x ∈ Rm are the fast variables and y ∈ Rn are the slow variables. The re-formulation

of system (2.6) on the fast scale is obtained by using the change of variable ξ = X
ε , i.e.

dx

dξ
= x′ = f(x, y, ε),

dy

dξ
= y′ = εg(x, y, ε).

(2.7)
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2 Geometry and numerical continuation of multiscale orbits in a nonconvex variational problem

On the fast scale, system (2.5) has the form

u′ = εw,

v′ = εu,

w′ = z,

z′ =
1

2
(w3 − w)− v,

(2.8)

which for ε > 0 is equivalent to (2.5).

The system possesses the unique equilibrium

p0 = (0, 0, 0, 0) , (2.9)

which is a center, since the eigenvalues of the Jacobian are all purely imaginary. An

important property of system (2.5) is stated in the following result:

Lemma 2.2.1. Equations (2.5) and (2.8) are singularly perturbed Hamiltonian systems

u̇=−∂H
∂v

v̇= ∂H
∂u

εẇ=−∂H
∂z

εż= ∂H
∂w ,

ξ = X
ε⇔

u′=−ε∂H∂v

v′= ε∂H∂u

w′= −∂H
∂z

z′= ∂H
∂w ,

(2.10)

i.e., they are Hamiltonian systems with respect to the symplectic form dz ∧ dw+ 1
εdv ∧ du

and with Hamiltonian function

H(u, v, w, z) =
1

8
(4u2 − 8vw − 2w2 + w4 − 4z2). (2.11)

Proof. The result follows by differentiating (2.11) with respect to the four variables. For

more background on fast-slow Hamiltonian systems of this form see [24].

Since the Hamiltonian (2.11) is a first integral of the system, the dynamics take place

on level sets, defined by fixing H(u, v, w, z) to a constant value µ ∈ R. This allows us to

reduce the dimension of the system by one, which we use both in analytical and numerical

considerations.
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2 Geometry and numerical continuation of multiscale orbits in a nonconvex variational problem

One main advantage in the use of geometric singular perturbation theory is that the

original problem can be split into two subsystems by analyzing the singular limit ε → 0

on the slow scale (2.6) and on the fast scale (2.7). The subsystems are usually easier to

handle. Under suitable conditions the combination of both subsystems allows us to obtain

information for the full system when 0 < ε � 1. In particular, if one can construct a

singular periodic orbit by combining pieces of slow and fast orbits, then the existence of a

periodic orbit O(ε)-close to the singular one for small ε 6= 0 can frequently be proven under

suitable technical conditions by tools from geometric singular perturbation theory [22, 35,

46, 73].

The slow singular parts of an orbit are derived from the reduced problem (or slow sub-

system), obtained by letting ε→ 0 in (2.6)

0 = f(x, y, 0),

ẏ = g(x, y, 0),
(2.12)

which describes the slow dynamics on the critical manifold

C0 := {(x, y) ∈ Rm × Rn : f(x, y, 0) = 0.} (2.13)

Considering ε→ 0 on the fast scale (2.7) yields the layer problem (or fast subsystem)

x′ = f(x, y, 0),

y′ = 0,
(2.14)

where the fast dynamics is studied on “layers” with constant values of the slow variables.

Note that C0 can also be viewed as consisting of equilibrium points for the layer problem.

C0 is called normally hyperbolic if the eigenvalues of the matrix Dfx(p, 0) ∈ Rm×m do not

have zero real parts for p ∈ C0. For normally hyperbolic invariant manifolds, Fenichel’s

Theorem applies and yields the existence of a slow manifold Cε. The slow manifold lies

at a distance O(ε) from C0 and the dynamics on Cε is well-approximated by the reduced

problem; for the detailed technical statements of Fenichel’s Theorem we refer to [22, 35, 46].

In our Hamiltonian fast-slow context, we focus on the analysis of families of periodic

orbits for system (2.5) which are parametrized by the level set parameter µ. The first
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2 Geometry and numerical continuation of multiscale orbits in a nonconvex variational problem

goal is to geometrically construct periodic orbits in the singular limit ε = 0. The reduced

problem is given by

u̇ = w,

v̇ = u,
(2.15)

on the critical manifold (see Fig. 2.2)

C0 =

{
(u, v, w, z) ∈ R4 : z = 0, v =

1

2
(w3 − w)

}
. (2.16)

The equations of the layer problem are

w′ = z

z′ =
1

2
(w3 − w)− v̄,

(2.17)

on “layers” where the slow variables are constant (u = ū, v = v̄). Note that for Hamiltonian

fast-slow systems such as (2.10), both reduced and layer problems are Hamiltonian systems

with one degree of freedom.

2.2.1 The Reduced Problem

Equations (2.15) describe the reduced problem on C0, if w is considered as a function of

(u, v) on C0.

Lemma 2.2.2. C0 is normally hyperbolic except for two fold lines

L− =
{(
u,
(
w3
− − w−

)
/2, w−, 0

)
∈ R4

}
,

L+ =
{(
u,
(
w3

+ − w+

)
/2, w+, 0

)
∈ R4

}
,

(2.18)

where w± are defined by σ′(w±) = 0, i.e., w± = ±1/
√

3. For p ∈ L±, the matrix Dxf(p, 0)

has a double zero eigenvalue.

The lines L± naturally divide C0 into three parts

C0,l = C0 ∩ {w < w−} , C0,m = C0 ∩ {w− ≤ w ≤ w+} , C0,r = C0 ∩ {w > w+} ,

as shown in Figure 2.2. The submanifolds involved in our analysis are only C0,l and C0,r,

which are normally hyperbolic. More precisely, C0,l and C0,r are of saddle-type, since the
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2 Geometry and numerical continuation of multiscale orbits in a nonconvex variational problem

matrix Dxf(p, 0) along them always has two real eigenvalues of opposite sign. We remark

that saddle-type critical manifolds have played an important role in the history of fast-slow

systems in the context of the travelling wave problem for the FitzHugh-Nagumo equation,

see for example [37, 43, 28].

w

v

u

Figure 2.2: Critical manifold C0 in (w, u, v)-space. The magenta dashed lines are the fold

lines L±. The blue solid curves correspond to Cµ0,l and Cµ0,r, i.e., the intersection

of C0,l and C0,r and the hypersurface H(u, v, w, z) = µ for µ = 0.

Lemma 2.2.3. On C0−L±, the flow of the reduced system is, up to a time rescaling, given

by

u̇ = (3w2 − 1)w,

ẇ = 2u.
(2.19)

Proof. We differentiate v = 1
2(w3 − w) with respect to X, re-write the equation in (u,w)-

variables and apply the time rescaling corresponding to the multiplication of the vector field

by the factor (3w2 − 1) (cf. [46, Sec.7.7]). On C0,m this procedure changes the direction of

the flow, but it does not affect the parts of the critical manifold involved in our analysis.

The Hamiltonian function allows us to restrict our attention to two subsets of Cµ0,l and
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2 Geometry and numerical continuation of multiscale orbits in a nonconvex variational problem

Cµ0,r by fixing the value of µ. Analyzing the slow flow on these two normally hyperbolic

branches, we see that u decreases along C0,l and increases along C0,r as shown in Figure 2.3.

−1.5 −1 −0.5 0 0.5 1 1.5
−1.5

−1

−0.5

0

0.5

1

1.5

w

u

Figure 2.3: Cµ0,l and Cµ0,r in (w, u)-space with µ = 0; cf. Figure 2.2.

2.2.2 The Layer Problem

The layer problem is obtained by setting ε = 0 in (2.8). We obtain a two-dimensional

Hamiltonian vector field on “layers” where the slow variables are constant (u = ū, v = v̄)

w′ = z,

z′ =
1

2
(w3 − w)− v̄.

(2.20)

The two branches Cµ0,l and Cµ0,r are hyperbolic saddle equilibria for the system (2.20) for

every value of ū, v̄. To construct a singular limit periodic orbit we are particularly interested

in connecting orbits between equilibria of the layer problem.

Lemma 2.2.4. The layer problem (2.20) has a double heteroclinic connection if and only

if v̄ = 0. These are the only possible heteroclinic connections of the layer problem (2.20).

Proof. System (2.20) is Hamiltonian, with v̄ as a parameter and Hamiltonian function

Hf (w, z) = −z
2

2
+
w4

8
− w2

4
− v̄w.

The lemma follows easily by discussing the level curves of the Hamiltonian; for the conve-

nience of the reader we outline the argument.
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Figure 2.4: Fast flow in the (w, z)-space for (2.20). Equilibria are marked with blue dots

and the stable and unstable manifold trajectories in green. The heteroclinic

fast connections are indicated with double arrows.

Indexing the level set value of Hf as θ, the solutions of (2.20) are level curves {Hf (w, z) =

θ}. The equilibria of (2.20) are {z = 0, w = w−, wm, w+}; here w−, wm, w+ are the three

solutions of

2v̄ − w3 + w = 0 (2.21)

which depend upon v̄. We only have to consider the case where there are at least two real

equilibria w− and w+ which occurs for v̄ ∈ [−1/(3
√

3), 1/(3
√

3)]. Let

Hf (w−, 0) =: θl, Hf (w+, 0) =: θr

and note that since (2.21) is cubic we can calculate θl,r explicitly. To get a heteroclinic

connection we must have θl = θr and by an explicit calculation this yields the condition

v̄ = 0. Hence, heteroclinic connections of (2.20) can occur only if v̄ = 0. For v̄ = 0

one easily finds that the relevant equilibria are located at w− = −1 and w+ = 1 so that

θl = −1/8 = θr. The double heteroclinic connection is then explicitly given by the curves

{z = ±1
2(1− w2)} (see also Figure 2.4).

The next step is to check where the relevant equilibria of the layer problem are located

on the critical manifold Cµ0 for a fixed value of the parameter µ since we have a level set
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2 Geometry and numerical continuation of multiscale orbits in a nonconvex variational problem

constraint for the full system. Using Lemma 2.2.4 one must require w = ±1, v = 0 while

z = 0 is the critical manifold constraint, hence

H(u, 0,±1, 0) =
1

2
u2 − 1

8

!
= µ.

Therefore, the transition points where fast jumps from C0,l to C0,r and from C0,r to C0,l are

possible are given by

Cµ0 ∩ {v = 0, w = ±1} =

{
u = ±

√
2µ+

1

4
, v = 0, w = ±1, z = 0

}
. (2.22)

Observe that fast orbits corresponding to positive values of u connect Cµ0,r to Cµ0,l, while the

symmetric orbits with respect to the u = 0 plane connect Cµ0,l to Cµ0,r.

Recall that w = ±1 represent the two phases of the material. Hence, the heteroclinic

orbits of the layer problem can be interpreted as instantaneous transitions between these

phases.

2.2.3 Singular Fast-Slow Periodic Orbits

The next step is to define singular periodic orbits by combining pieces of orbits of the

reduced and layer problem. Figure 2.5 illustrates the situation. The entire singular orbit

γµ0 is obtained connecting two pieces of orbits of the reduced problem with heteroclinic

orbits of the fast subsystem for a fixed value of µ, see Figure 2.5(a). The configuration

of the two-dimensional critical manifold and the singular periodic orbit is indicated in

Figure 2.5(b).

Here we are only interested in singular periodic orbits which have nontrivial slow and

fast segments. Therefore, we do need transitions points from the fast subsystem to the slow

subsystem. This requirement implies, by using the result (2.22), the lower bound µ > −1
8 .

A second requirement we impose is that the slow subsystem orbits lie inside the normally

hyperbolic parts Cµ0,l and Cµ0,r. The u-coordinate of the slow segment closest to the lines L±

is located at u = 0. Hence, we calculate the value of the Hamiltonian under the condition

that the slow trajectory is tangent to L± which yields

H

(
0,

1

2
(w3
± − w±), w±, 0

)
=

1

24
. (2.23)
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Figure 2.5: Singular periodic orbit γµ0 for a fixed value of µ (µ = 0), obtained by composition

of slow (blue) and fast (green) pieces. (a) Orbit in (w, z, u)-space. (b) Orbit in

the (w, u, v)-space. The fast pieces are indicated via dashed lines to illustrate

the fact we are here considering their projection in (w, u, v), while they actually

occur in the (w, z)-plane. Consequently, they do not intersect C0,m.

Combining these considerations with the results from Sections 2.2.1-2.2.2 gives the following

result on the existence of singular periodic orbits (ε = 0):

Proposition 2.2.5. For ε = 0, the fast-slow system (2.5),(2.8) has a family of periodic

orbits {γµ0 }µ consisting of precisely two fast and two slow subsystem trajectories with slow

parts lying entirely in C0,l and C0,r if and only if

µ ∈ Iµ, Iµ :=

(
−1

8
,

1

24

)
. (2.24)

The persistence of these periodic orbits for 0 < ε� 1 on each individual surface level of

the Hamiltonian can be proven by using an argument based on the theorem introduced by

Soto-Treviño in [73].

Theorem 2.2.6. For every µ ∈ Iµ and for ε > 0 sufficiently small, there exists a locally

unique periodic orbit of the fast-slow system (2.5),(2.8) that is O(ε) close to the correspond-

ing singular orbit γµ0 .

26



2 Geometry and numerical continuation of multiscale orbits in a nonconvex variational problem

Proof. The Hamiltonian structure of the system suggests to study the individual levels as

parametrized families by directly applying the Hamiltonian function as a first integral to

reduce the dimension of the system. At first sight, a convenient choice is to express v as a

function of the variables (u,w, z) and µ

v =
4u2 − 8µ− 2w2 + w4 − 4z2

8w
. (2.25)

Consequently, equations (2.5) transform into a (2, 1)-fast-slow system

u̇ = w,

εẇ = z,

εż =
1

2
(w3 − w)− 4u2 − 8µ− 2w2 + w4 − 4z2

8w
.

(2.26)

Theorem 1 in [73] for a Cr (r ≥ 1) (2, 1)-fast-slow system guarantees the persistence of

periodic orbits consisting of two slow pieces connected by heteroclinic orbits for 0 < ε� 1

when the following conditions hold:

• The critical manifolds are one-dimensional and normally hyperbolic (given by Lemma 2.2.2).

• The intersection between W u(C0,l) (resp. W u(C0,r)) and W s(C0,r) (resp. W s(C0,l)) is

transversal (confirmed by Lemma 2.2.4, see Fig. 3.12).

• The full system possesses a singular periodic orbit and the slow flow on the critical

manifolds is transverse to touch-down and take-off sets, which reduce to 0-dimensional

objects in this case as we explicitly obtained in (2.22).

However, system (2.26) appears to be nonsmooth at w = 0 and the fast orbits necessarily

cross w = 0. To overcome this (apparent) difficulty we use other charts for the manifold

H(u, v, w, z) = µ for parts of the singular orbit close to w = 0. Instead of (2.25) we now

express u as a function of the other variables, i.e.

u = ±1

2

√
8vw + 2w2 − w4 + 4z2 + 8µ. (2.27)

This leads to the following description of the dynamics:

• System (2.26) describes the dynamics on the slow pieces away from w = 0;
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Figure 2.6: Transversal intersection in the (w, z, v) space between Wu(C0,l) (in orange) and

Ws(C0,r) (in magenta). The blue line represents the critical manifold C0.

• The heteroclinic connection corresponding to u > 0 is expressed by

v′ = +
ε

2

√
8vw + 2w2 − w4 + 4z2 + 8µ,

w′ = z,

z′ =
1

2
(w3 − w)− v.

(2.28)

• The heteroclinic connection corresponding to u < 0 is expressed by

v′ = −ε
2

√
8vw + 2w2 − w4 + 4z2 + 8µ,

w′ = z,

z′ =
1

2
(w3 − w)− v.

(2.29)

If we consider system (2.5) as a smooth dynamical system on the manifold defined byH = µ,

the proof given in [73] (based on proving the transversal intersection of two manifolds

obtained by flowing suitably chosen initial conditions forward and backward in time) goes

through without being affected by the fact that we have to work with several coordinate

systems, as described above.

System (2.26) has two parameters µ, ε, which naturally leads to the question how periodic

orbits deform and bifurcate when the two parameters are varied. Furthermore, the fast-

slow structure with orbits consisting of two fast jumps and two slow segments as shown
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in Figure 2.5 and the three-dimensional form (2.26) provide analogies to the travelling

wave frame system obtained from the partial differential equation version of the FitzHugh-

Nagumo [23, 60] (FHN) equation. The three-dimensional fast-slow FHN system has been

studied in great detail using various fast-slow systems techniques (see e.g. [12, 28, 37, 43]).

One particular approach to investigate the FHN parameter space efficiently is to employ

numerical continuation methods [29, 13]. In fact, numerical approaches to FHN have

frequently provided interesting conjectures and thereby paved the way for further analytical

studies. Adopting this approach, we are going to investigate the problem (2.26) considered

here using numerical continuation to gain better insight into the structure of periodic orbits.

2.3 Numerical Continuation

This section is devoted to the numerical investigation of the the critical points of the

functional Iε via the Euler-Lagrange formulation (2.26). A powerful tool for such com-

putations is AUTO [18]. AUTO is able to numerically track periodic orbits depending upon

parameters using a combination of a boundary value problem (BVP) solver with a numer-

ical continuation algorithm. Using such a framework for fast-slow systems often yields a

wide variety of interesting numerical and visualization results; for a few recent examples

we refer to [15, 16, 27, 30, 31, 78].

The first task one has to deal with is the construction of a starting orbit for fixed ε 6= 0.

For (2.26) this is actually a less trivial task than for the FHN equation as we are going to

explain in Section 2.3.1. In Section 2.3.1, we are also going to construct a starting periodic

orbit based upon the geometric insights of Section 2.2.

Once the starting periodic orbit is constructed, we use AUTO to perform numerical con-

tinuation in both parameters µ and ε. This yields bifurcation diagrams and the solutions

corresponding to some interesting points on the bifurcation branches. Then, the connection

between the parameters in the minimization process is investigated, in order to numerically

determine the correspondence that leads to the functional minimum. Finally, a comparison

with the period law (2.3) predicted by Müller [58] is performed.
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2.3.1 Construction of the starting orbit

As indicated already, the construction of a starting periodic orbit is not trivial:

• The singular orbit itself, obtained by matching slow and fast subsystem orbits for a

fixed value of µ and for ε = 0, cannot be used owing to re-scaling problems (the fast

pieces would all correspond to x = 0).

• The computation of a full periodic orbit using a direct initial value solver approach

for 0 < ε� 1 is hard to perform since the slow manifolds are of saddle type and an

orbit computed numerically would diverge from them exponentially fast [27].

• Matching slow segments obtained with a saddle-type algorithm [27, 42] and fast parts

computed with an initial value solver may cause problems at the points where the

four pieces should match.

• In contrast to the FitzHugh-Nagumo case [29, 13], the periodic orbits we are looking

for cannot be detected as Hopf bifurcations from the zero equilibrium. In that case,

we could use AUTO to locate such bifurcations and then find a periodic orbit for

0 < ε � 1 fixed by branch-switching at the Hopf bifurcation point. In our case,

however, the origin p0 is a center equilibrium, and an infinite number of periodic

orbits exist around it in the formulation (2.5).

• Starting continuation close to the equilibrium p0 is difficult due to its degenerate

nature (w = 0).

Our strategy is to use the geometric insight from Section 2.2 in combination with a slow

manifolds of saddle-type (SMST) algorithm and a homotopy approach. We construct an

approximate starting periodic orbit using a value of µ which leads to a short “time” spent

on the slow parts of the orbits, so that the saddle-type branches do not lead to numerical

complications. Then we use an SMST algorithm to find a suitable pair of starting points

lying extremely close to the left and right parts of the slow manifolds Cµε,l and Cµε,r. In

the last step we employ numerical continuation to study the values of µ we are actually

interested in; this is the homotopy step.
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The value µ = −1
8 is peculiar, since in this case the singular slow segments for (2.26)

reduce to two points

C−1/8
0,l = {(0,−1, 0)} , and C−1/8

0,r = {(0, 1, 0)} , (2.30)

i.e., touch-down and take-off sets for the fast dynamics coincide in this case. The range (2.24)

we are considering does not include µ = −1
8 ; however, this property makes it an excellent

candidate for the first step of our strategy. Indeed, we know already from the geometric

analysis in Section 2.2 that the time spent near slow manifolds is expected to be very short

in this case.

Although it is still not possible to compute the full orbit using forward/backward in-

tegration, we can compute two halves, provided we choose the correct initial condition.

We aim to find a point on the slow manifolds Cµε,l and Cµε,r as an initial value. The SMST

algorithm [27] helps to solve this problem. The procedure is based on a BVP method to

compute slow manifolds of saddle-type in fast-slow systems. Fixing ε and µ, we select

manifolds Bl and Br, which are transverse to the stable and unstable eigenspaces of Cµ0,l
and Cµ0,r, respectively (Figure 2.7). The plane Bl and the line Br provide the boundary

conditions for the SMST algorithm.

C
µ

l
Bl

Br

Figure 2.7: Schematic representation of the SMST algorithm applied to Cµ0,l (an analogous

situation occurs for Cµ0,r). The critical manifold is indicated by a dotted blue

line, while the red line represents the slow manifold for ε = 0.001. The orange

point corresponds to (0, wL, 0), which actually belongs to both manifolds.
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Implementing the algorithm for µ = −1
8 and ε = 0.001 for (2.26) shows that there are

actually two points (0, wL, 0) and (0, wR, 0) which are contained in the slow manifold even

for ε 6= 0 as well as in the critical manifold C0. From the geometric analysis in Section 2.2

we know that at µ = −1
8 the take-off and touch-down points coincide and a singular double-

heteroclinic loop exists for v = 0. This motivates the choice of (u, v, w, z) = (0, 0, wL, 0)

and (u, v, w, z) = (0, 0, wR, 0) in the following algorithm: a numerical integration of the

full four-dimensional problem (2.5) forward and backward in x is performed, imposing the

Hamiltonian constraint using a projective algorithm. The computation is stopped once the

hyperplane {w = 0} is reached. The full periodic orbit is then constructed by matching

two symmetric pieces together.

In principle, there are different ways how one may arrive at a useful construction of a

highly accurate starting periodic orbit. In our context, the geometric analysis guided the

way to identify the simplest numerical procedure, which is an approach that is likely to be

successful for many other non-trivial fast-slow numerical continuation problems.

2.3.2 Continuation in µ

A detailed analysis of the critical points’ dependence on the Hamiltonian is performed.

The value of µ can be arbitrarily chosen only in the interval Iµ, while ε is fixed to 0.001.

Continuation is performed on system (2.26) using the initial orbit obtained numerically in

Section 2.3.1. Starting at µ = −1
8 , AUTO is able to compute the variation of the orbits up

to µ = 1
24 . The bifurcation diagram of the period P with respect to the parameter µ is

shown in Figure 2.8(a).

The first/upper branch of the continuation displays fast-slow orbits corresponding per-

turbations of the singular ones {γµ0 }µ∈Iµ for fixed ε 6= 0. As predicted by the geometric

analysis we observe that decreasing µ reduces the length of the slow parts, so that the orbits

almost correspond to the double heteroclinic one analytically constructed at µ = −1
8 ; see

Figure 2.8. Near µ = −1
8 the bifurcation branch has a fold in (µ, P )-space leading to the

second/lower bifurcation branch. The difference between the orbits on the two branches

for a fixed value of µ is shown in Figure 2.8(b). Along the second branch, periodic solu-
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Figure 2.8: Continuation in µ: (a) bifurcation diagram in (µ, P )-space, where two periodic

solutions corresponding to µ = −0.124 are marked by crosses; (b) corresponding

solutions in (w, z, u)-space: the one on the lower branch (magenta) is almost

purely fast, while the one on the upper branch (purple) contains long non-

vanishing slow pieces.

tions around the center equilibrium appear, which collapse into it with increasing µ (Figure

2.9(b)).

Furthermore, numerical continuation robustly indicates that the upper branch has an-

other fold when continued from µ = 0 to higher values of µ as shown in Figure 2.9(a). The

orbits obtained by fixing a value of µ on the upper branch and its continuation after the

fold differ only because of the appearance of two new fast parts near the plane {u = 0}

as shown in Figure 2.9(a). We conjecture that these parts arise due to the loss of normal

hyperbolicity at L±; see also Section 2.4.

2.3.3 Continuation in ε

We perform numerical continuation in ε by fixing three values of µ in order to capture the

behavior of the solutions for the range Iµ from Proposition 2.2.5. We consider µl ≈ −1
8

with µl > −1
8 , µc ≈ 0, and µr ≈ 1

24 with µr <
1
24 ; or more precisely µl = −0.12489619925,

µc = 1.5378905702 · 10−5, and µr = 0.04100005066. For each of these values, we find two

bifurcation branches connected via a fold in (µ, P )-space; see Figure 2.10.

The bifurcation diagrams and the associated solutions shown in Figure 2.10 nicely illus-
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Figure 2.9: Continuation in µ. (a) Zoom on the upper part of the bifurcation diagram in-

(µ, P ) space, where two periodic orbits corresponding to µ = 0.0025 are marked

by crosses. (a1)-(a2) The orbits are shown in (w, z, u)-space. The periodic orbit

on the bottom part of the upper branch (purple) corresponds to analytical

expectations with two fast and two slow segments. The periodic orbit on the

top part of the upper branch (magenta) includes two new fast “homoclinic

excursions”. (b) Zoom on the lower part of the bifurcation diagram in (µ, P )-

space, where three solutions are marked. (b1) The solutions in phase space all

correspond to periodic orbits around the center equilibrium p0; note that the

scale in the u-coordinate is extremely small so the three periodic orbits almost

lie in the hyperplane {u = 0}.

trate the dependence of the period on the singular perturbation parameter ε. When ε→ 0

there are two very distinct limits for the period P = P (ε) (Figure 2.10(a)-(b)) depending

whether we are on the upper and lower parts of the main branch of solutions. In the case

with µr ≈ 1
24 when orbits come close to non-hyperbolic singularities on C0, we actually
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seem to observe that P (0) seems to be independent on whether we consider the upper or

lower part of the branch (see Figure 2.10(c)). Furthermore, functional forms of P (ε) are

clearly different for small ε so the natural conjecture is that there is no universal periodic

scaling law if we drop the functional minimization constraint.

The deformation under variation of ε of the periodic orbits in (w, z, u)-space is also

interesting. For µ = µl (Figure 2.10(a)), we observe that the upper branch corresponds to

the solutions that we expect analytically from Proposition 2.2.5 consisting of two fast and

two slow segments when approaching ε = 0. A similar scenario occurs also for the other

values of µ (Figure 2.10(b) and Figure 2.10(c)). When the ε value is too large, or when we

are on a different part of the branch of solutions, the orbits closed to the equilibrium of the

full system or additional pieces resembling new fast contributions appear.

2.3.4 Period scaling

So far, no boundary conditions have been imposed; moreover, all the computed solutions

are not necessarily minimizers of the functional, but only critical points. Our conjecture

is that the interaction between the two main parameters of the system µ and ε should

allow us to obtain the true minimizers via a double-limit. In other words, for every value

of ε there is a corresponding orbit which minimizes the functional Iε, and since along this

orbit the Hamiltonian has to constantly assume a certain value µ̄, the minimization process

should imply a direct connection between the parameters. Consequently, it is interesting

to investigate this ansatz from the numerical viewpoint.

A first possibility is to establish a connection between the two parameters ε and µ via

a direct continuation in both parameters, starting from certain special points, such as the

fold points detected in Sections 2.3.2-2.3.3. However, it turns out that this process does

not lead to the correct scaling law for minimizers of Iε as shown in Figure 2.11.

Another option is instead to check if among the critical points of the Euler-Lagrange

equation (2.4) we have numerically obtained there are also the minimizers of the functional

Iε respecting the power law (2.3). In [58], boundary conditions on the interval [0, 1] are also

included in the variational formulation, and from the results obtained from the continuation
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Figure 2.10: Continuation in ε: on the left side bifurcation diagrams in (ε, P ) are shown,

on the right the corresponding solutions in (w, z, u)-space are displayed. (a)

µ = µl, (b) µ = µc, (c) µ = µr.
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Figure 2.11: Illustration of two-parameter continuation. (a) Three different bifurcation

diagrams have been computed, each starting from a solution at µ = 0 for

three different values of ε = 0.1, 0.01, 10−5 (red, green, blue). It is already

visible and confirmed by the computation that the sequence of leftmost fold

points on each branch converges to µ = −1/8 as ε → 0. However, the period

scaling law of the orbits precisely at these fold points, which is shown in (b) as

three dots corresponding to the three folds in (a) and a suitable interpolation

(black line), does not converge as O(ε1/3) (grey reference line with slope 1
3).

in ε, one may expect that high values of µ would not be able to fit them, since the period is

always too high. Lower values of µ, instead, seem to have sufficiently small period. Hence,

one could fix one of those (for example, µl) and look at what happens as ε→ 0. The hope

is that the O(ε1/3) leading-order scaling for the period naturally emerges. Unfortunately,

this does not happen, as we can see in Figure 2.12; the lower branch seems to give a linear

dependence on ε, while the upper branch gives a quadratic one.

The reason why from this naive approach the O(ε1/3) leading-order scaling does not

emerge lies in the lack of connection with the minimization process. However, Figure 2.12

demonstrates that there are several nontrivial scalings of natural families of periodic orbits

as ε→ 0.

So far, we have just assumed that the Hamiltonian value of the minimizers should be

“low”, but indeed there is a strict connection between the values of ε one is considering
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Figure 2.12: Possible fits of the form P ' εα for the numerical data computed with µ = µl

(black line): α = 2, blue; α = 1/3, green; α = 1, red.

and the value of µ of the minimizers. In other words, there is not a unique value of µ given

by the minimizers for every ε small but minimizers move over different Hamiltonian energy

levels as ε → 0. Starting from this consideration, another option, which turns out to be

the correct one to recover the scaling (2.3), is to use the periodic orbits from numerical

continuation to compute the numerical value of the functional Iε as a function of the period

P fixing different values of ε in a suitable range, such as:

Iε =
[
10−7, 10−1

]
. (2.31)

Then, we obtain different parabola-shaped diagrams where we can extract the value of

the period minimizing the functional (Figure 2.13). When plotting these values related

to the value of ε for which they have been computed, one obtains the results shown in

Figure 2.14. The values numerically extracted from our solutions match the analytical

results on the period proven by Müller (2.3) when the value of ε is sufficiently small. As ε

increases, the period law is less accurate, as one would expect.

2.4 Conclusion & Outlook

In summary, we have shown that geometric singular perturbation theory and numerical

continuation methods can be very effective tools to understand nonconvex multiscale vari-

ational problems via the Euler-Lagrange formulation. We have proven the existence of a
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Figure 2.14: Comparison between the values of P minimizing Iε for several discrete values

in the range Iε (red circles) and the period law (2.3) (black line). (a) Zoom

on the range
[
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]
, where it is expected that large values of ε tend to

deviate from the O(ε1/3) leading-order scaling, while for low values the scaling

the scaling agrees. (b) The same plot as in (a) on a log-log scale.
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class of singular periodic orbits based upon a fast-slow decomposition approach and we

have shown that these orbits persist for ε small.

The geometric insight was used to determine a starting solution for numerical contin-

uation in the context of a reduced three-dimensional fast-slow system. Then we studied

the dependence of periodic orbits on the singular perturbation parameter as well as the

Hamiltonian energy level set parameter arising in the reduction from a four- to a three-

dimensional system. The parameter space is structured by several fold points. Furthermore,

we were able to study the shape of non-minimizing periodic orbits for very broad classes

of parameters. Finally, we showed that several natural scaling laws for non-minimizing se-

quences of periodic solutions exist and also confirmed numerically the leading-order scaling

predicted by Müller for minimizing sequences.

Based upon this work, there are several open problems as well as generalizations one

might consider. In particular, it would be desirable to extend the persistence result to

the general class of singularly-perturbed Hamiltonian fast-slow systems (2.10); this is the

subject of ongoing work.

Another important observation of our numerical study are the intricate orbits that seem

to arise when parts of the slow segments start to interact with the singularities L± where the

critical manifold is not normally hyperbolic. The natural conjecture is that the additional

small fast loops that we observe numerically could correspond to homoclinic “excursions”

in the fast subsystem anchored at points close to L±. The blow-up method [21] is likely to

provide an excellent tool to resolve the non-normally hyperbolic singularities; see e.g. [41,

47] where the existence of complicated fast-slow periodic orbits involving loss of normal

hyperbolicity is proven.

The construction of an initial orbit has been one of the hardest problems to tackle. It

was solved using analytical and numerical tools, after discarding several other plausible

approaches. The SMST algorithm [27] has been a helpful tool to determine good starting

points on the slow manifolds and then use an initial value solver to obtain segments of

a complete whole orbit. Although our approach works well in practical computations,

there are interesting deep numerical analysis questions still to be answered regarding the
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interplay between certain classes of fast-slow “initial guess” starting orbits and the success

or failure of Newton-type methods for the associated BVPs. In particular, can one prove

certain geometric conditions or restrictions on ε to guarantee the convergence for the first

solution?

Another highly relevant direction would be to extend our approach to more general

classes of functionals. There are many different singularly-perturbed variational problems,

arising e.g. in materials science, to which one may apply the techniques presented here. In

this context, it is important to emphasize that we expect that particularly other non-convex

functionals could be excellent candidates for future work.

From the viewpoint of applications, it would be interesting to study the practical rele-

vance of non-minimizing sequences of periodic solutions. Although we expect the long-term

behavior to be governed by minimizers, it is evident that non-minimizing periodic orbits

can have a high impact on time-dependent dynamics, e.g., either via transient behavior,

via noise-induced phase transitions, or as dynamical boundaries between different regimes.
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3 Singular perturbation analysis of a

regularized MEMS model

3.1 Introduction

Micro-Electro Mechanical Systems (MEMS) are very small structures that combine elec-

trical and mechanical components on a common substrate to perform various tasks. In

particular, electrostatic-elastic devices find important applications in drug-delivery [77],

micro pumps [34], optics [17] and micro-scale actuators [81]. Such devices are structured

as follows: an elastic membrane is allowed to deflect above a ground plate under the ac-

tion of an electric potential V , where the diameter of both objects is assumed to be much

smaller than their distance. When a critical threshold V ∗ (“pull-in voltage”) is reached, a

phenomenon called touchdown or snap-through can occur, i.e., the membrane enters into

contact with the ground plate and the system undergoes a short circuit. The physical forces

acting between the elastic components of the device – which can, e.g., be of Casimir or

Van der Waals type – lead to stiction, which causes complications in reverting the process

in order to return to the original state. In the canonical mathematical models proposed in

the literature [32, 50, 63, 64], this situation is described by a parabolic partial differential

equation (PDE) with a singular source term. The touchdown phenomenon leads to non-

existence of steady states and/or blow-up of solutions in finite time. Hence, no information

on post-touchdown configurations can be captured.

Recently, an extension of the model has been proposed, where the introduction of a

potential mimicking the effect of a thin insulating layer above the ground plate prevents

physical contacts between the elastic membrane and the substrate [54]. Mathematically,
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3 Singular perturbation analysis of a regularized MEMS model

this corresponds to the addition of a nonlinear source term to the PDE that depends on

a small “regularization” parameter ε. For devices whose deflecting surface is represented

by either a membrane or a beam, the resulting regularized models have been studied in

relevant works by Lindsay et al.. The first case is modeled by a second-order PDE [54, 55],

while the case of a beam [54, 51, 57, 55, 53] is described by a fourth-order PDE. In one

space dimension, these correspond to:

Membrane: (3.1)

ut = uxx −
λ

(1 + u)2
+

λεm−2

(1 + u)m
for x ∈ [−1, 1], with u = 0 when x = ±1; (3.2)

Beam: (3.3)

ut = −uxxxx −
λ

(1 + u)2
+

λεm−2

(1 + u)m
for x ∈ [−1, 1], with u = ∂nu = 0 when x = ±1.

(3.4)

Physically speaking, the variable u denotes the (dimensionless) deflection of the surface,

while the parameter λ is proportional to the square of the applied voltage V . The regular-

izing term λεm−2(1 + u)−m with m > 2 accounts for several physical effects of particular

relevance in proximity of u = −1. In the following we will consider m = 4, correspond-

ing to a Casimir effect; alternative choices describe other physical phenomena and can be

studied in a similar fashion. This term induces a potential which simulates the effect of an

insulating layer above the ground plate, whose nondimensional width is proportional to ε.

In this work, we focus our attention on the steady states solutions of the Laplacian case

corresponding to Equation (3.2):

uxx =
λ

(1 + u)2

[
1− ε2

(1 + u)2

]
, for x ∈ [−1, 1], with u = 0 when x = ±1. (3.5)

For the literature concerning the bi-Laplacian case (3.4) we refer to [54, 55, 52].

Due to the symmetry of the boundary value problem (3.5) under the transformation

x → −x, all solutions of (3.5) are even. We could not find a coincise reference for this

result and therefore include a proof for completeness.
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Lemma 3.1.1. Let us consider generic equations of the type

u′′ = f(u), x ∈ [−a, a], a > 0, (3.6a)

u(±a) = u0, u0 ∈ R, (3.6b)

where f ∈ C1. Then, all functions u which solve (3.6) are even and satisfy u′(0) = 0.

Proof. Equation (3.6) can be rewritten as the system

u′ = w, (3.7a)

w′ = f(u), (3.7b)

u(±a) = u0. (3.7c)

System (3.7) is Hamiltonian, with the energy function given by

H(u,w) =
w2

2
− F (u), (3.8)

where F is the primitive of f , i.e., F ′ = f . This implies that the energy H(u, u′) associated

to a solution (u, u′) of (3.7) stays constant on the interval [−a, a].

Let us consider (u, u′) solution of (3.7). Then, there exists µ ∈ R such that H(u, u′) = µ

∀x ∈ [−a, a], i.e.,
(u′(x))2

2
− F (u(x)) = µ ∀x ∈ [−a, a]. (3.9)

In particular H(u(−a), u′(−a)) = H(u(a), u′(a)), i.e.,

(u′(−a))2

2
− F (u(−a)) =

(u′(a))2

2
− F (u(a)). (3.10)

Thanks to the boundary conditions (3.7c) we have F (u(−a)) = F (u(a)). Hence, Equa-

tion (3.10) implies

(u′(−a))2 = (u′(a))2. (3.11)

Let us now consider v(x) := u(−x). If u is a solution, so is v, thanks to the invariance of

System (3.7) under the transformation (u,w, x) 7→ (u,−w,−x). Hence, there exists ν ∈ R

such that H(v, v′) = ν ∀x ∈ [−a, a], i.e.,

(v′(x))2

2
− F (v(x)) = ν ∀x ∈ [−a, a]. (3.12)
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3 Singular perturbation analysis of a regularized MEMS model

Our goal is to prove that µ = ν. On every level curve of H there can in fact be only one

solution of (3.7), so if u and v lie in the same level curve, it must be u(x) = v(x), i.e.,

u(x) = u(−x) ∀x ∈ [−a, a].

From (3.12) it follows that at x = a:

(v′(a))2

2
− F (v(a)) = ν. (3.13)

Thanks to (3.11) and (3.7c) we have

(v′(a))2 = (−u′(−a))2 = (u′(−a))2 = (u′(a))2,

F (v(a)) = F (u(−a)) = F (u(a)).
(3.14)

Combining (3.13) and (3.14) it hence follows

ν =
(v′(a))2

2
− F (v(a)) =

(u′(a))2

2
− F (u(a)) = H(u(a), u′(a)) = µ, (3.15)

as we wanted to prove.

Finally, the result u′(0) = 0 straightly follows from even functions’ properties.

In order to understand the novelties of the regularized model, we briefly summarize

the main properties of the non-regularized case corresponding to ε = 0, which are well

understood [63, 64]. The bifurcation diagram associated to (3.5) shown in Figure 3.1(a)

contains two branches of equilibria, the lower one consisting of stable steady states and

the upper one of unstable steady states, separated by a fold point located at λ = λ∗. For

λ > λ∗, steady-state solutions of (3.2) cease to exist and the transient dynamics lead to a

blow up of the solutions in finite time. Some solutions along these two branches are plotted

in Figure 3.1(b). In addition, a piecewise linear singular solution existing for λ = 0 is also

shown. For the singular solution, touchdown occurs at x = 0.

The inclusion of the ε-dependent regularizing term, where 0 < ε � 1, considerably

changes the structure of the bifurcation diagram. The main difference is the development of

a third branch of stable equilibria which leads to the S-shaped curve shown in Figure 3.2(a).

Additionally to the fact that the fold point λ∗ is now depending on ε, there exists an

additional fold point λ∗ (also ε-dependent) such that for λ∗ < λ < λ∗ three equilibria

exist, while for λ < λ∗ and λ > λ∗ there is a unique stable equilibrium. In contrast to
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Figure 3.1: (a) Bifurcation diagram of the membrane model, Equation (3.5), for ε = 0.

The lower and upper branch correspond to stable and unstable equilibrium

solutions, respectively. The point d corresponds to (0, 2
3) and represents the

singular solution for λ = 0. (b) Corresponding solutions in (x, u) space.

the non-regularized case, numerical computations indicate that a stable equilibrium exists

for every value of λ > 0 [54]. Solutions on the newly emerged branch in the bifurcation

diagram are in fact bounded below by u = −1 + ε. For increasing λ, the solution has an

increasing “flat” portion close to u = −1 + ε; cf. solution d in Figure 3.2(b).

Remark 1. Figures 3.1, 3.2 correspond to numerical computations performed with the

algorithm developed by Lindsay in [54].

For very small values of ε, the diagram is difficult to resolve, even numerically, due to

its highly singular character. The singular nature of the bifurcation diagram, as well as

the influence of the regularization parameter ε on the structure thereof, are the principal

features of interest. In this chapter, we focus on a detailed analysis of the singular depen-

dence of the bifurcation diagram for Equation (3.5) on ε. To this aim, we first reformulate

the problem in a dynamical systems framework and identify two main parameters in the

equations, which leads to a 2-parameter singular perturbation problem. A detailed asymp-

totic resolution of the structure of the corresponding (λ, ‖u‖22)-bifurcation diagram – both
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Figure 3.2: (a) Numerically computed bifurcation diagram of the one-dimensional mem-

brane model, Equation (3.5), for ε = 0.05. (b) Corresponding solutions in

(x, u) space.

in the singular limit of ε = 0 and for ε positive and sufficiently small – is accomplished

through separate investigation of three distinguished (overlapping) regions. This will allow

us to show how the third branch emerges from the singular limit ε = 0 and to identify the

corresponding limiting solutions.

In all scenarios, we show existence and uniqueness of solutions close to the corresponding

limiting solutions and prove the validity of the corresponding part of the bifurcation dia-

gram. While the three regions share some common features, we argue that they need to

be investigated separately for their dynamics to be fully resolved. Our analysis is based

on a variety of dynamical systems techniques, principally, on geometric singular perturba-

tion theory [22, 35, 46] and the blow-up technique [20, 21]. In particular, a combination

of these methods allows us to perform a detailed study of the saddle-node bifurcation at

λ∗ and to calculate its asymptotic expansion in (3.5), which has been studied by Lind-

say by the method of matched asymptotic expansions [54]; cf. Figure 12 therein, as well

as Figure 3.2(a). The coefficients of the leading order terms of the expansion are explic-

itly computed. In the process, it is shown that the occurrence of logarithmic switchback

terms in the steady-state asymptotics for Equation (3.5), which has also been observed via
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matched asymptotic expansions in [54], is due to a resonance phenomenon in one of the

coordinate charts after blow-up [66] (cf. Section 3.5).

In summary, our principal result can be expressed as

Theorem 3.1.1. For ε ∈ (0, ε0), with ε0 positive and sufficiently small, and λ ∈ [0,Λ],

with Λ = O(1) positive and fixed, the bifurcation diagram for Equation (3.2) is as illustrated

in Figure 3.2(a).

Without loss of generality we fix Λ = 1. The proof of Theorem 3.1.1 follows from a

combination of Propositions 3.4.2, 3.4.5, and 3.4.6 below, each of which pertains to one of

the three regions which have been mentioned above.

This chapter is structured as follows: in Section 3.2, we reformulate Equation (3.5)

as a dynamical system, and we state our main result. In Section 3.3, we introduce the

principal blow-up transformation on which our analysis of the dynamics of (3.5) close to

the touchdown singularity is based. In Section 3.4, we describe in detail the structure of

the corresponding bifurcation diagram by separately investigating three main regions, as

illustrated in Figure 3.8. In Section 3.5, we derive the logarithmic switchback terms as a

consequence of a resonance phenomenon. Finally, in Section 3.6, we discuss our findings,

and present an outlook to future research.

3.2 Dynamical Systems Formulation

We consider the steady state equation for the regularized membrane model, Equation (3.5),

as introduced by Lindsay et al. in [54] for m = 4.

To allow for an application of the various techniques from the theory of dynamical sys-

tems on which our analysis is based, we rewrite (3.5) as a first-order system of ordinary

differential equations (ODEs) by introducing the new variable w = u′, and by including

the trivial dynamics of both the regularizing parameter ε and the spatial variable x, which
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we relabel as ξ:

u′ = w, (3.16a)

w′ =
λ

(1 + u)2

[
1− ε2

(1 + u)2

]
, (3.16b)

ξ′ = 1, (3.16c)

ε′ = 0; (3.16d)

here, the prime denotes differentiation with respect to x. Next, we multiply the right-hand

sides in Equation (3.16) with a factor of (1 + u)4, which allows us to desingularize the

corresponding flow near the touchdown singularity at u = −11. Finally, we define a shift

in u via ũ = 1 + u, which translates that singularity to ũ = 0.

Omitting the tilde and still denoting differentiation with respect to the new independent

variable by a prime, as before, we obtain the system

u′ = u4w, (3.17a)

w′ = λ(u2 − ε2), (3.17b)

ξ′ = u4, (3.17c)

ε′ = 0, (3.17d)

in (u,w, ξ, ε)-space with parameter λ subject to the boundary conditions

u = 1 for ξ = ∓1. (3.18)

Since ε � 1, it is a natural idea to use perturbation methods to construct solutions

of (3.17), (3.18). Despite the apparent simplicity of the equations, this turns out to be a

nontrivial task. For ε = 0, System (3.17) can be solved explicitly and admits degenerate

equilibria at u = 0, which corresponds to the touchdown singularity u = −1 in the original

model. We denote this manifold of equilibria as

S0 =
{

(0, w, ξ, 0)
∣∣w ∈ R, ξ ∈ R

}
. (3.19)

1The multiplication corresponds to a transformation of the independent variable which leaves the phase

portrait of (3.16) unchanged for u > −1, since in that case the factor (1 + u)4 is positive throughout.
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Figure 3.3: Projection of the ε = 0 flow for Equations (3.17) into the (u,w)-space for λ 6= 0.

The solid black line corresponds to the invariant manifold S0 defined in (3.19).

In view of the boundary conditions in (3.18), we consider solutions starting from

u = 1. All solutions stay to the right of S0; those with initial large w-value get

arbitrarily close to it, but still never reach it. Hence, singular orbits are not

transverse to S0.

One complication is introduced by the fact that, for λ 6= 0, the singular flow of (3.17)

in the (u,w)-space that is obtained for ε = 0 is not transverse to S0, cf. Figure 3.3. As

outlined in Chapter 1, transversality is a necessary requirement to build solutions of (3.5)

by means of geometric tools [22, 46]. Therefore, we need to find a way to remedy this lack

of transversality.

For λ = 0 in (3.17), the singular flow changes and becomes even more degenerate (see

Figure 3.4). Furthermore, the set

M0 :=
{

(u, 0, ξ, 0)
∣∣u ∈ R+, ξ ∈ R

}
(3.20)

now also represents a set of equilibria for Equations (3.17a), (3.17b).

As it turns out, a good strategy is to first introduce the following rescaling of w:

w =
w̃

δ
, (3.21)

where

δ =

√
ε

λ
(3.22)
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Figure 3.4: Singular flow for Equations (3.23) in (u,w)-space for λ = 0. The solid black lines

corresponds to the invariant manifolds S0 andM0 defined in (3.19) and (3.20),

respectively. Orbits with w 6= 0 in the (u,w)-space are now transverse to S0.

For w < 0, they tend to S0, while for w > 0 they move away from it. All

these equilibria are nonhyperbolic, the corresponding linearizations of the u,w

equations (3.17a), (3.17b) have a double zero eigenvalue.

is a nonnegative parameter.

Remark 2. The scaling of w by
√
λ in (3.21) moves λ from (3.17b) to the equation for

ξ (3.17c) (after a rescaling of time). The scaling by 1/
√
ε in (3.21) reflects the fact that,

for λ = O(1), w = O(ε−
1
2 ) (in agreement with numerical computations and asymptotic

analysis performed in [54]).

Remark 3. Some parts of our analysis are more conveniently carried out by using the

parameters ε and λ, while others by using parameters ε and δ. Hence, we will often switch

between these two descriptions.

Substituting (3.21) into (3.17), multiplying the right-hand sides in the resulting equations

with a factor of δ, omitting the tilde and retaining the prime for differentiation with respect
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to the new independent variable, as before, we find

u′ = u4w, (3.23a)

w′ = ε(u2 − ε2), (3.23b)

ξ′ = δu4, (3.23c)

ε′ = 0, (3.23d)

still subject to the boundary conditions in (3.18).

Equations (3.23) with boundary conditions (3.18) will form the basis for the following

analysis.

Solutions of the boundary value problem will be constructed by the following two strategies.

The first one consists of considering two sets of boundary conditions corresponding to a

suitable interval of w values for x = −1 and x = 1. Following the set of boundary conditions

given at x = −1 by the flow forward and the set of boundary conditions given at x = 1

backwards, we obtain two sets at x = 0 and we check the transversality of their intersection.

Each initial w-value w0 for which these two manifolds intersect gives a solution of the

boundary value problem (3.23), (3.18).

Since all solutions of the boundary value problem (3.23), (3.18) are even (cf. Lemma 3.1.1),

another possible strategy consists of considering the boundary value problem (3.23) on

the interval [−1, 0] with boundary conditions u(−1) = 1 and w(0) = 0. The intrinsic

symmetry of the problem is also clearly visible in Figure 3.2(b). We track the flow of

a manifold of initial conditions with ξ = −1 and u = 1 but arbitrary initial w-value

w0 up to the hyperplane {w = 0}. We parametrize this manifold by u(w, ε, δ, w0) and

ξ(w, ε, δ, w0). The unique “correct” value w0(ε, δ) leading to a solution of the boundary

value problem (3.23), (3.18) is then obtained by solving ξ(w0, ε, δ) = 0 when w(w0, ε, δ) =

0. More details will be presented in the individual proofs. Because of Lemma 3.1.1, all

solutions of the boundary value problem (3.23), (3.18) can be obtained with this strategy.

Equation (3.23) constitutes a two-parameter fast-slow system in its fast formulation (for

an overview on fast-slow systems, we refer to Chapter 1). The parameter ε� 1 is the main

singular perturbation parameter, while the case δ → 0 is also singular. For δ = O(1), the

variables u and ξ are fast, while w is slow. For δ small, however, the variable ξ is also slow.
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The manifold S0 defined in (3.19) is still invariant under the flow of (3.23). Furthermore,

for δ = 0 the manifoldM0 defined in (3.20) now also represents a set of equilibria for (3.23).

We remark that the same scenario occurs for λ = 0 in (3.17).

Setting ε = 0 in Equation (3.23), we obtain the so-called “layer problem”

u′ = u4w, (3.24a)

w′ = 0, (3.24b)

ξ′ = δu4, (3.24c)

ε′ = 0. (3.24d)

See Figure 3.4 for an illustration of the corresponding phase portrait in (u,w)-space and, in

particular, of transversality of orbits of the layer problem to S0. Rescaling the independent

variable in (3.23) by multiplying it by ε yields the slow formulation

εu̇ = u4w, (3.25a)

ẇ = u2 − ε2, (3.25b)

εξ̇ = δu4, (3.25c)

ε′ = 0. (3.25d)

The “reduced” problem, which is found by taking ε→ 0 in (3.25), is

0 = u4w, (3.26a)

ẇ = u2, (3.26b)

0 = δu4, (3.26c)

ε′ = 0. (3.26d)

The manifolds S0 in (3.19) andM0 in (3.20) for δ = 0 now represent two branches of the

“critical manifold” for Equation (3.23); however, neither branch is normally hyperbolic, as

the Jacobian of the linearization of the layer flow about both S0 andM0 is nilpotent. More-

over, as is obvious from (3.26), the reduced flow on S0 vanishes, hence is very degenerate.

Therefore, standard GSPT does not apply directly (cf. Chapter 1).

The underlying non-hyperbolicity can be remedied by means of the blow-up method, or

“geometric desingularization” [20, 21, 44, 45]. A blow-up with respect to ε will allow us to
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describe the dynamics of (3.17) in a neighbourhood of the manifold S0 (cf. Section 3.3).

Additionally, a blow-up including δ is needed to desingularize the flow in the vicinity of

M0 (cf. Section 3.4.3 below). Our analysis relies on a number of dynamical systems tech-

niques, such as classical GSPT [22], normal form transformations [82], and the Exchange

Lemma [72, 46], the combination of which will result in precise and rigorous asymptotics

for Equation (3.23).

To find the appropriate blow-up transformation, we focus on Equations (3.23a), (3.23b),

which for ε > 0 has two saddle equilibria (±ε, 0). As we focus our attention on u ≥ 0, we

consider the positive equilibrium only. The scaling u = εũ transforms Equations (3.23a),

(3.23b) into

ũ′ = ε3ũ4w,

w′ = ε3(ũ2 − 1),

which turn into the integrable system

ũ′ = ũ4w, (3.27a)

w′ = ũ2 − 1, (3.27b)

after dividing out the common factor ε3. The saddle equilibrium (1, 0) together with its

stable and unstable manifolds will play a crucial role in the following. The line ũ = 0 is

invariant, with w decreasing on it. The corresponding phase portrait is shown in Figure 3.5.

3.3 Geometric Desingularization (“Blow-Up”)

In this section, we apply the blow-up method (described in more details in Chapter 1)

to our problem. In particular, we define the blow-up transformation that will allow us

to desingularize the flow of Equation (3.23) near the non-hyperbolic manifold S0. The

arguments at the end of Section 3.2 suggest the blow-up:

u = r̄ū, w = w̄, ξ = ξ̄, ε = r̄ε̄, (3.28)

where (w̄, ξ̄) ∈ R2 and (ū, ε̄) ∈ S1, i.e., ū2 + ε̄2 = 1. Note that the singularity (u, ε) = (0, 0)

is blown up to the circle r̄ = 0. We emphasize that we do not blow up the variables w or ξ.
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ũ

w

0
1

Figure 3.5: The saddle point (1, 0) of System (3.27) and its stable and unstable manifolds.

The vector field that is induced by (3.23) on the cylindrical manifold in (ū, w̄, ξ̄, ε̄, r̄)-

space is best described in coordinate charts. We require two charts here, K1 and K2, which

are defined by ū = 1 and ε̄ = 1, respectively:

K1 : (u,w, ξ, ε) = (r1, w1, ξ1, r1ε1), (3.29a)

K2 : (u,w, ξ, ε) = (r2u2, w2, ξ2, r2). (3.29b)

Remark 4. The phase-directional chart K1 describes the “outer” region, i.e., the part of

the orbits approaching S0 – which corresponds to the transient from u = 1 to u = 0 – while

the rescaling chart K2 (also known as scaling chart) covers the “inner” region u ≈ 0 in the

context of Equation (3.23). In particular, in chart K2 we recover Equation (3.27).

The transition map κ12 between chartsK1 andK2, i.e., the change of coordinates between

them can be written as

κ12 : (u2, w2, ξ2, r2) =
(
ε−1

1 , w1, ξ1, r1ε1

)
, (3.30)

while its inverse κ21 is given by

κ21 : (r1, w1, ξ1, ε1) =
(
r2u2, w2, ξ2, u

−1
2

)
. (3.31)

Finally, we define various sections for the blown-up vector field, which will be used through-
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w

u

ε

S0

(a) Flow in (u,w, ε)-space; the thick gray line repre-

sents the critical manifold S0.

ū

w̄

ε̄

S0

(b) Geometry in blown-up (ū, w̄, ε̄)-space; S0 is

now represented by the cylinder corresponding to

ū2 + ε̄2 = 1.

Figure 3.6: Flow of Equation (3.23) for ε = 0 before and after the blow-up in (3.28).

out the following analysis: in K1, we will require the entry and exit sections

Σin
1 :=

{
(ρ, w1, ξ1, ε1)

∣∣w1 ∈ [w−, w+], ξ1 ∈ [ξ−, ξ+], and ε1 ∈ [0, σ]
}
, (3.32a)

Σout
1 :=

{
(r1, w1, ξ1, σ)

∣∣ r1 ∈ [0, ρ], w1 ∈ [w−, w+], and ξ1 ∈ [ξ−, ξ+]
}
, (3.32b)
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where 0 < ρ < 1 and 0 < σ < 1 are appropriately defined constants, while wl,r and ξl,r are

real constants. Similarly, in chart K2, we will employ the section

Σin
2 :=

{
(σ−1, w2, ξ2, r2)

∣∣w2 ∈ [w−, w+], ξ2 ∈ [ξ−, ξ+], and r2 ∈ [0, ρσ]
}

; (3.33)

here, we note that Σin
2 = κ21

(
Σout

1

)
.

Remark 5. In the following, we will index a general variable z in blown-up space with z̄.

In charts Ki, i = 1, 2 it will instead be labeled with the corresponding subscript zi.

3.3.1 Dynamics in chart K1

To obtain the equations in K1, we substitute the transformation from (3.29a) into Equa-

tion (3.23). A short computation gives

r′1 = r4
1w1, (3.34a)

w′1 = r3
1ε1(1− ε2

1), (3.34b)

ξ′1 = δr4
1, (3.34c)

ε′1 = −r3
1ε1w1. (3.34d)

Since ε = r1ε1, the singular limit ε = 0 corresponds to the restriction of the flow of (3.34)

to one of the invariant planes {r1 = 0} or {ε1 = 0}. In order to obtain a non-vanishing

vector field for r1 = 0, we desingularize Equation (3.34) by dividing out a factor of r3
1 from

the right-hand sides, which again represents a rescaling of the independent variable:

r′1 = r1w1, (3.35a)

w′1 = ε1(1− ε2
1), (3.35b)

ξ′1 = δr1, (3.35c)

ε′1 = −ε1w1. (3.35d)
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3.3.2 Dynamics in chart K2

The equations in K2 are obtained by substituting the transformation in (3.29b) into (3.23),

which yields

u′2 = r3
2u

4
2w2, (3.36a)

w′2 = r3
2(u2

2 − 1), (3.36b)

ξ′2 = δr4
2u

4
2. (3.36c)

r′2 = 0. (3.36d)

Desingularizing as before, by dividing out a factor of r3
2 from the right-hand sides in (3.36),

we find

u′2 = u4
2w2, (3.37a)

w′2 = u2
2 − 1, (3.37b)

ξ′2 = δr2u
4
2, (3.37c)

r′2 = 0. (3.37d)

Note that Equations (3.37a),(3.37b) correspond to System (3.27).

3.4 Analysis of the Bifurcation Diagram

In this section, we establish the bifurcation diagram in Figure 3.2(a) by analyzing existence

and uniqueness of solutions to Equation (3.23) subject to the boundary conditions (3.18) for

ε positive and sufficiently small. All solutions of the boundary value problem arise as per-

turbations of certain limiting solutions obtained from various limiting ε = 0 problems. We

denote these limiting solutions as singular solutions, as usual in GSPT (see Chapters 1, 2).

The approach adopted thereby is the following: first, singular solutions are constructed

by analyzing the dynamics in charts K1 and K2 separately in the limit ε → 0. Then,

the persistence of singular solutions for non-zero ε is shown via the shooting argument

outlined in Section 3.2 that relies on the transversality of the geometric objects involved.

This translates to the existence of solutions of the boundary value problem along the curve

shown in the bifurcation diagram (cf. Figure 3.2(a)).

58



3 Singular perturbation analysis of a regularized MEMS model

Definition 3.4.1. We distinguish three types of singular solutions of Equation (3.23) (See

Figure 3.7):

Type I. Solutions of type I satisfy u = 0 for x ∈ I, where I is an interval centered at

x = 0. Consequently, the slope must initially satisfy |w| > 1 (in terms of the original

w-variable). Type I-solutions will henceforth be depicted in blue. Type I-solutions

occur in two forms. The ones corresponding to λ = O(ε) have constant finite slope w

outside of I. The others corresponding to λ = O(1) vanish on I = (−1, 1) and hence

the original w is infinite at the boundary.

Type II. Solutions of type II are those of slope w ≡ ∓1 (in terms of the original w- variable)

that exhibit “touchdown” u = 0 at one point only, namely at ξ = 0. Type II-solutions

will be indicated in green in all subsequent figures.

Type III. Solutions of type III never reach {u = 0}; hence, no touchdown phenomena

occur. These solutions correspond to solutions of the non-regularized problem.

Remark 6. The use of plural in the definition of type II-solutions needs some additional

comment. For System (3.17) there exists just one singular solution of type II for λ = 0

with slope w = ∓1 (see Solution d in Figure 3.1). However, in our blow-up analysis this

singular solution corresponds to a one-parameter family of type II-solutions.
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1−1

u

x 1−1

u

x

(a) Illustration of type I-solutions for λ = O(ε) (left

panel) and λ = O(1) (right panel).

1−1

u

x

(b) Type II-solutions.

1−1

u

x

(c) Type III-solutions.

Figure 3.7: Singular solutions corresponding to Definition 3.4.1.

For ε > 0, we divide the bifurcation diagram in λ, ‖u‖22 into three overlapping regions,

as shown in Figure 3.8.

Remark 7. From now on, in the context of the bifurcation diagram we refer to the norm

‖u‖22 in terms of the original variable u in order to be able to compare our analysis with

Lindsay’s (see Figures 3.1, 3.2).

Region R1 is defined as

R1 := [0, 1]×
[

2

3
+ ν1, 2

]
, ν1 > 0. (3.38)

This region covers the upper part of the bifurcation diagram where we find the newly

emerged bifurcation branch by perturbing from singular solutions of type I. Region R2,
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defined as

R2 := [0, ελ2]×
[

2

3
− ν2,

2

3
+ ν2

]
, λ2, ν2 > 0, (3.39)

(with ν2 > ν1 and λ2 large but fixed) is a small neighbourhood of the point (0, 2
3) shown

as a rectangle in Figure 3.8. This region shrinks as ε decreases and collapses to the line

{0} ×
[

2
3 − ν2,

2
3 + ν2

]
as ε → 0. The bifurcation curve contained in this transition region

is constructed by perturbing from singular solutions of type I and II. Finally, region R3 is

defined as

R3 := [0, 1]×
[
0,

2

3
+ ν2

]
\ [0, ελ3]×

[
2

3
− ν3,

2

3
+ ν2

]
, λ3, ν3 > 0, (3.40)

where ν3 < ν2 and λ3 again large but fixed, λ3 < λ2. This region covers the lower part

containing the bifurcation curve which is obtained by perturbing from type II and type

III-solutions.

The true meaning of these regions is clearer when we blow-up the bifurcation diagram in

parameter space, i.e., with respect to λ and ε, as illustrated in Figure 3.9. (This procedure

will also be needed in parts of the following proofs.) To this aim, we first embed the

bifurcation diagram in (λ, ‖u‖22) into R3 by including the third variable ε. Then, we blow-

up the line {(0, 0)} × R by introducing r, λ̄ and ε̄ such that

λ = rλ̄, ε = rε̄, (3.41)

with λ̄2 + ε̄2 = 1, i.e., (λ̄, ε̄) ∈ S1. In the blown-up space S1 ×R×R, the line {(0, 0)} ×R

is hence blown up to a cylinder S1 × {0} × R.

In the blown-up space, the singular (ε = 0) bifurcation curve consists of three parts

corresponding to type I–III singular solutions (cf. Figure 3.7) shown in blue, green, and

black. The black (type III) curve lies in ε̄ = 0, the green curve (type II) lies on the cylinder

(r = 0) with constant value ‖u‖22 = 2
3 . The blue curve (type I) has a part on the cylinder

(corresponding to λ = O(ε)) and a part in the plane {ε̄ = 0} (corresponding to λ = O(1)).

In the first case, the structure of type I-solutions resembles the one shown in the left panel of

Figure 3.7(a). In the second case, type I-solutions are as in the right panel of Figure 3.7(a).

These two parts of the bifurcation branch respectively correspond to B1 and B2 defined in

Figure 3.8.
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λ

‖u‖
2

2

R1

R2

R3

B1

B2

B3

Figure 3.8: The bifurcation diagram is covered by three overlapping regions R1 (brown),

R2 (pink) and R3 (magenta) for ε positive (for visibility purposes, the regions

have been slightly extended below ‖u‖22 = 0, above ‖u‖22 = 2 and to negative

λ). (Recall Remark 7 concerning the interpretation of ‖u‖22 in this context.)

The bifurcation curves corresponding to Equations (3.23), (3.18) for ε = 0.01

(dotted curve) and ε = 0 (solid curve) are also displayed. In R3 these curves

overlap almost completely. For ε = 0, the blue bifurcation branch is given by

the union of a vertical part B1 corresponding to λ = O(ε) and a horizontal

part B2 corresponding to λ = O(1). The green dot at
(
0, 2

3

)
corresponds to the

singular solution of type II for λ = 0 labeled by d in Figure 3.1(a). The black

curve, corresponding to the bifurcation curve for the non-regularized model, is

labeled with B3. In the limit ε→ 0, R2 shrinks to a segment on the ‖u‖22 axis

containing the point
(
0, 2

3

)
(cf. (3.39)). In the limit ε → 0 region R3 grows to

a rectangle minus a slightly smaller segment again on the ‖u‖22 axis containing

the point
(
0, 2

3

)
(cf. (3.40)).
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Loosely speaking, in the blown-up space a neighbourhood of the green curve is covered

by region R2 and parts of R3, more precisely by the preimage of R2 × [0, ε0] and parts

of the preimage of R3 × [0, ε0] under the blow-up map. Similarly, we use the preimage

of R1 × [0, ε0] in the blown-up space. For sake of simplicity, we will just talk about Ri,

i = 1, 2, 3 in this context, always keeping in mind the above meaning. Hence, the green

curve is covered by both R2 and R3. The blue curve is mostly covered by R1, with a small

part (close to δ = 2√
3
) covered by R2. Region R3 covers the remainder of the green curve

(close to δ = 0) and the black curve. In the blown-up space, the bifurcation curve for

0 < ε� 1 lifts off from the singular bifurcation curve (corresponding to the limit ε = 0).

ε̄

λ̄

‖u‖2

2

Figure 3.9: Bifurcation diagram corresponding to Equations (3.23), (3.18) in blown-up pa-

rameter space. The bifurcation curve in the singular limit ε = 0 is represented

by the union of the blue, green and black solid curves, covered by R1, R2, and

R3, respectively. The part of the blue curve on the cylinder corresponds to the

line B1 and the part contained in the plane {ε̄ = 0} corresponds to the line B2.

The red curve which lifts off from the ε = 0 curve corresponds to solutions of

the boundary value problem for the case 0 < ε� 1 .

As stated in Theorem 3.1.1, we consider λ ∈ [0,Λ], with Λ = 1 for sake of simplicity. In

region R3, away from the point
(
0, 2

3

)
the perturbation by ε is regular. In regions R1 and

R2 we will see that singular solutions exist only for λ ≥ 3
4ε (i.e., δ ≤ 2√

3
; cf. Sections 3.4.1
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and 3.4.2). Hence, in these regions we need to consider λ ∈
[

3
4ε, 1

]
, i.e.,

δ ∈
[√

ε,
2√
3

]
, (3.42)

which corresponds to the gray area in Figure 3.10.

0

δ

ε

B2 ∪ B3

B1

2
√

3

ε0

Figure 3.10: Region considered in our analysis in (ε, δ)-space. This region is shaded in

gray. It is bounded from below by {δ =
√
ε} (light blue curve) and from

above by {δ = 2√
3
} (dashed horizontal line; cf. (3.42)). The dark blue line for

ε = 0 corresponds to the union of the two parts of the blue bifurcation branch

in Figure 3.8, 3.9. The vertical line corresponds to the line B1 and the dot

corresponds to the curves B2 ∪ B3.

As evidenced in Figure 3.10, δ = 0 occurs only when ε = 0 (this case is represented by

the blue dot therein). This very degenerate situation gives the singular orbit of type I,

right panel in Figure 3.7(a) with a very singular structure. Hence, the whole line B2 in the

bifurcation diagram for ε = 0 shown in Figure 3.8 corresponds to this one singular solution.

3.4.1 Region R1

Region 1 of the bifurcation diagram deals with solutions whose singular limit are solutions

of type I (cf. Definition 3.4.1). For ε positive and sufficiently small, solutions on that branch

come very close to {u = ε} and the length of the interval I where u is close to ε grows
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with λ. In the singular limit ε = 0, the slope of the respective solutions is moderate for

λ = O(ε) (corresponding to 0 < δ < 2√
3
) and tends to infinity for λ = O(1) (i.e., as δ → 0)

along the two segments where u changes from u = 0 to u = 1. This is confirmed by the

rescaling of w in (3.21): for λ = O(ε) that rescaling translates into w = O(1), while for

λ = O(1) that rescaling gives w →∞ (cf. Figure 3.7(a)). Interestingly, the proof for these

different λ regimes is very similar.

We have the following result:

Proposition 3.4.2. For fixed δ1 with 0 < δ1 <
2√
3
, δ1 close to 2√

3
, there exists ε0 > 0

sufficiently small such that in region R1 the boundary value problem (3.23), (3.18) for

ε < ε0 has a unique branch of solutions for λ ∈
[
ε
δ21
, 1
]

which limit on a singular solution

Γ of type-I as ε→ 0.

Remark 8. The singular solution Γ depends on λ (equivalently, on δ). If interpreted

in terms of δ, the range for which these solutions exist corresponds to δ ∈ [
√
ε, δ1] (re-

call (3.22)).

To prove Proposition 3.4.2, we construct the solutions corresponding to the bifurcation

branch contained in region R1 for fixed λ in the regime considered here.

For fixed δ, a unique suitable singular orbit Γ is constructed in the blown-up space by

investigating the dynamics of Equations (3.23),(3.18) separately in charts K1 and K2, and

then combining them. This singular orbit is shown to persist for 0 < ε� 1. The singular

orbit is essentially determined by the dynamics in chart K2, which we consider now.

Dynamics in chart K2

The flow of Equation (3.23) from the section Σin
2 back to itself, whereby w changes its sign

from negative to positive, is naturally described in chart K2 (cf. Figure 3.11).

Recalling that r2 = ε, we observe that Equation (3.37) constitutes a fast-slow system in

the standard form of geometric singular perturbation theory [22, 35, 46], with (u2, w2) the

fast variables and ξ2 the slow variable. The fast system is (3.37), whence the corresponding
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slow system is obtained by rescaling the independent variable by r2 which gives

r2u̇2 = u4
2w2, (3.43a)

r2ẇ2 = u2
2 − 1, (3.43b)

ξ̇2 = δu4
2, (3.43c)

ṙ2 = 0. (3.43d)

The associated layer and reduced problems (obtained by setting r2 = 0 in (3.37) and (3.43))

are given by

u′2 = u4
2w2, (3.44a)

w′2 = u2
2 − 1, (3.44b)

ξ′2 = 0, (3.44c)

r′2 = 0 (3.44d)

and

0 = u4
2w2, (3.45a)

0 = u2
2 − 1, (3.45b)

ξ̇2 = δu4
2, (3.45c)

ṙ2 = 0, (3.45d)

respectively. Note that System (3.44a)-(3.44b) is precisely System (3.27). The critical

manifold for Equation (3.45) is given by the line

S0
2 :=

{
(1, 0, ξ2, 0)

∣∣ ξ2 ∈ [ξ−, ξ+]
}
. (3.46)

Remark 9. While steady states are also found for u2 = −1 in (3.37), these states are

irrelevant since u2 and r2 are both non-negative and {u2 = 0} is an invariant hyperplane

for (3.37), which the flow cannot cross.

Linearization of (3.44) about the critical manifold S0
2 shows that any point Q2 =

(1, 0, ξ2, 0) ∈ S0
2 is a saddle, with Jacobian 4u3

2w2 u4
2

2u2 0

∣∣∣∣∣∣
(u2,w2)=(1,0)

=

 0 1

2 0


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and eigenvalues ±
√

2. Hence, the manifold S0
2 is normally hyperbolic. The reduced flow

thereon is described by ξ̇2 = δ, which corresponds to a constant drift in the positive

u2-direction with speed δ.

To describe the integrable layer flow away from S0
2 , we introduce u2 as the independent

variable, dividing (3.44b) formally by (3.44a):

dw2

du2
=

u2
2 − 1

u4
2w2(u2)

.

Solving the above equation, with w2(1) = 0, we find

w∓2 (u2) = ∓

√
4

3
− 2

u2
+

2

3u3
2

. (3.47)

In particular, it follows from (3.47) that, for any fixed choice of ξ2, the stable and unstable

manifolds of Q2 can be written as graphs over u2:

Ws
2(Q2) =

{
(u2, w

−
2 (u2), ξ2, 0)

∣∣u2 ∈ [1,∞)
}
, (3.48a)

Wu
2 (Q2) =

{
(u2, w

+
2 (u2), ξ2, 0)

∣∣u2 ∈ [1,∞)
}
. (3.48b)

We have the following result.

Lemma 3.4.3. Let r2 ∈ (0, r0), with r0 positive and sufficiently small. Then, the following

statements hold for System (3.37):

1. The normally hyperbolic critical manifold S0
2 becomes a slow manifold

Sr22 =
{

(1, 0, ξ2, r2)
∣∣ ξ2 ∈ [ξ−, ξ+]

}
,

where ξ− and ξ+ are appropriately chosen constants. In particular, we emphasize that

(u2, w2) = (1, 0) on Sr22 .

2. The corresponding stable and unstable foliations F s
2(Sr22 ) and Fu

2 (Sr22 ) are identical

to F s
2(S0

2 ) and Fu
2 (S0

2 ) except for their constant r2-component. For r2 ∈ [0, r0) fixed,

these foliations may be written as

F s
2(Sr22 ) =

{
(u2, w

−
2 (u2), ξ2, r2)

∣∣u2 ∈ [1,∞], ξ2 ∈ [ξ−, ξ+]
}
, (3.49a)

Fu
2 (Sr22 ) =

{
(u2, w

+
2 (u2), ξ2, r2)

∣∣u2 ∈ [1,∞], ξ2 ∈ [ξ−, ξ+]
}
. (3.49b)
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Proof. Both statements follow immediately from standard GSPT [22], in combination with

the preceding analysis; in particular, the fact that the plane {(u2, w2) = (1, 0)} is invariant

for Equation (3.37) irrespective of the choice of r2 implies that the restrictions of Sr22 and

S0
2 to (u2, w2, ξ2)-space do not depend on r2.

Remark 10. The fast-slow structure of System (3.37) is very simple, since Equations (3.37a)

and (3.37b) decouple from Equation (3.37c). Even for ε > 0, the fast dynamics is just the

integrable planar system (3.37a)–(3.37b), controlled by the saddle point and its stable and

unstable manifolds. The slow flow on the slow manifold is just the drift ξ̇ = δ.

In the limit u2 → ∞, w∓2 (u2) converges to w∓2 (∞) = ∓ 2√
3
. If we transform the stable

manifoldWs
2(Q2) and the unstable manifoldWu

2 (Q2) to chart K1 by the coordinate change

κ21 in (3.31) these manifolds limit on the points
(

0,∓ 2√
3
, ξ1, 0

)
(see Figure 3.11).

Dynamics in chart K1

The parts Γ∓1 of the singular orbit, corresponding to the flow between two sets of boundary

conditions at ξ = ∓1 and the section Σout
1 , are here determined based on Equation (3.35)

in connection with the results obtained in chart K2. These parts in chart K1 must in fact

match with the manifolds Ws,u
2 (Q2) in chart K2 (see Figure 3.11).

To this aim, we analyze the flow induced by Equation (3.23) in the singular limit as

ε→ 0. The dynamics in K2 will define the boundary values of w for the singular orbit we

aim to describe.

A simple calculation reveals that Equation (3.35) admits a line of steady states at

S0
1 :=

{
(0, 0, ξ1, 1)

∣∣ ξ1 ∈ [ξ−, ξ+]
}
, (3.50)

as well as a plane of steady states

π1 :=
{

(0, w1, ξ1, 0)
∣∣w1 ∈ [w−, w+] and ξ1 ∈ [ξ−, ξ+]

}
; (3.51)

here, w∓ and ξ∓ are defined as in (3.32). Another set of equilibria, with ε1 = −1, is

irrelevant to us due to our assumption that r1 and ε1 are both non-negative. The line S0
1

corresponds to the saddle (ũ, w) = (1, 0) of System (3.27) and coincides with the critical

manifold S0
2 introduced in chart K2 (cf. Equation (3.46)).

68



3 Singular perturbation analysis of a regularized MEMS model

In chart K1 the singular limit ε = 0 corresponds to either r1 = 0 or ε1 = 0 in Equa-

tion (3.35), which yields the following two limiting systems in the corresponding invariant

hyperplanes

r′1 = 0, (3.52a)

w′1 = ε1(1− ε2
1), (3.52b)

ξ′1 = 0, (3.52c)

ε′1 = −ε1w1 (3.52d)

and

r′1 = r1w1, (3.53a)

w′1 = 0, (3.53b)

ξ′1 = δr1, (3.53c)

ε′1 = 0, (3.53d)

respectively. System (3.52) on the hyperplane r1 = 0 is precisely System (3.44) from K2

after the transformation κ21 in (3.31). These equations describes the portion of Γ−1 between

Σout
1 and ε1 = 0. On the other hand, System (3.53) (corresponding to the dynamics on

the hyperplane ε1 = 0) determines the part of the singular orbit which connects with the

boundary conditions. Hence, we first focus our attention on this case.

The value of w1 in Equations (3.53) is constant: w1 ≡ w0, for some constant w0. Since it

must match with the w2-value obtained in the limit u2 →∞ in (3.47), it must be w1 ≡ ∓ 2√
3

on the hyperplane {ε1 = 0}. The orbits of (3.53) are then easily computed by dividing

(3.53c) formally by (3.53a) and using the above result on w1: dξ1
dr1

= δ
w0

. For any initial

condition ξ1(1) = ξ0, the solution to that equation reads

ξ1(r1) =
δ

w0
(r1 − 1) + ξ0. (3.54)

The boundary conditions (3.18) imply ξ0 = ∓1. Hence we obtain

ξ∓1 (r1) = ∓
√

3

2
δ(r1 − 1)∓ 1. (3.55)
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Any orbit of (3.53) can hence be written as{(
r1,∓

2√
3
, ξ∓1 (r1), 0

)
| r1 ∈ [0, 1]

}
. (3.56)

For the integrable Equation (3.52), a representation of all orbits can be found by in-

troducing ε1 as the independent variable: dividing formally (3.52b) by (3.52d), we obtain

dw1
dε1

= − 1−ε21
w1(ε1) , which can be solved explicitly with w1(0) = ∓ 2√

3
to yield

w∓1 (ε1) = ∓
√

4

3
− 2ε1 +

2

3
ε3

1, (3.57)

where the sign in (3.57) equals that of the initial w1-value. (This corresponds to Equa-

tion (3.47) in K1-coordinates.) The value of ξ1 on each Γ∓1 is constant and corresponds to

the respective value of ξ∓1 (r1) in (3.55) at r1 = 0, i.e.,

ξ∓1 (0) = ±
√

3

2
δ ∓ 1. (3.58)

Remark 11. For δ = 2√
3

this implies ξ∓1 (0) = 0, i.e., we obtain a singular orbit of type

II, see Figure 3.7(b) and Figure 3.14. This explains why we need the assumption δ < 2√
3

in Proposition 3.4.2.

Any orbit of (3.52) can be hence represented as{
(0, w∓1 (ε1), ξ∓1 (0), ε1)

∣∣ ε1 ∈ [0, σ]
}
, (3.59)

where σ is as in the definition of the section Σout
1 ; recall (3.32).

Concatenation of the two orbit segments defined in Equations (3.56) and (3.59) with the

respective signs will yield the singular orbits Γ−1 and Γ+
1 , which are shown in Figure 3.11 in

blue between the sections V−10 and Σout
1 and between the sections Σout

1 and V+
10

, respectively.

Singular orbit Γ

A singular orbit Γ for Equation (3.23) can now be constructed based on the dynamics

in charts K1 and K2 by taking into account the corresponding boundary conditions in

Equation (3.18).

The manifolds Ws,u
2 (Q2) transformed to K1 and the parts of Γ∓1 in ε1 = 0 given by (3.59)

meet in the points

P∓1 =

(
0,∓ 2√

3
,±
√

3

2
δ ∓ 1, 0

)
. (3.60)
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These points belong to the two lines

`−1 =
{

(0,− 2√
3
, ξ1, 0)

∣∣ ξ1 ∈ [ξ−, ξ+]
}
, (3.61a)

`+1 =
{

(0,
2√
3
, ξ1, 0)

∣∣ ξ1 ∈ [ξ−, ξ+]
}
, (3.61b)

both located in the plane of steady states π1 (cf. (3.51)). The part Γ1 of the singular orbit

can hence be finally written as

Γ−1 =
{

(r1,− 2√
3
,−
√

3
2 δ(r1 − 1)− 1, 0)

∣∣ r1 ∈ (0, 1]
}
∪ P−1

∪
{

(0,−
√

4
3 − 2ε1 + 2

3ε
3
1,
√

3
2 δ − 1, ε1)

∣∣ ε1 ∈ (0, σ]
}
,

(3.62a)

Γ+
1 =

{
(r1,

2√
3
,
√

3
2 δ(r1 − 1) + 1, 0)

∣∣ r1 ∈ (0, 1]
}
∪ P+

1

∪
{

(0,
√

4
3 − 2ε1 + 2

3ε
3
1,−

√
3

2 δ + 1, ε1)
∣∣ ε1 ∈ (0, σ]

}
.

(3.62b)

It remains to identify the portion of Γ that is located in chart K2; we denote the correspond-

ing singular orbit by Γ2. We note that for r2 = 0, Equation (3.44) implies ξ2 ≡ constant

on Γ2. Given the definition of Γ1 and the fact that ξ2 = ξ1, we hence define the points

Q∓2 =

(
1, 0,±

√
3

2
δ ∓ 1, 0

)
∈ S0

2 . (3.63)

Therefore, we may write

Γ2 =Ws
2(Q−2 ) ∪Q−2 ∪

{
(1, 0, ξ2, 0)

∣∣ ξ2 ∈ (

√
3

2
δ − 1,−

√
3

2
δ + 1)

}
∪Q+

2 ∪W
u
2 (Q+

2 ), (3.64)

recall Equation (3.48), with u2 now varying in the range [1, σ−1]. This corresponds to

the union of three pieces: the first one is the stable manifold of Q−2 , the second piece

corresponds to the slow drift in ξ2 from Q−2 to Q+
2 (shown in the inset of Figure 3.11) and

finally the third piece is the unstable manifold of Q+
2 . The sought-after singular orbit Γ

corresponding to the singular (ε = 0) solution of the boundary value problem (3.23), (3.18)

is hence given by the union of Γ−1 , Γ2, and Γ+
1 in the blow-up space, i.e.

Γ := Γ−1 ∪ Γ2 ∪ Γ+
1 . (3.65)

A visualization of the singular orbit Γ is given in Figure 3.11.
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Figure 3.11: Geometry of the singular orbit Γ = Γ−1 ∪Γ2 ∪Γ+
1 (in blue) for Equation (3.23)

in blown-up space, corresponding to a singular solution of type I. The inset

shows more details of the fast-slow structure in (u2, w2, ξ2)-space in chart K2,

e.g., the critical manifold S0
2 and the resulting singular connection between

Q−2 and Q+
2 .

Persistence of the singular orbit – Proof of Proposition 3.4.2

The proof of Proposition 3.4.2 is based on the shooting argument outlined in Section 3.2,

This method is implemented by approximating the dynamics of (3.23) for ε small in the
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two coordinate charts K1 and K2. We begin by defining the two manifolds

V∓1ε :=
{

(1, w,∓1, ε)
∣∣w ∈ I∓} for ε ∈ [0, ε0), (3.66)

which represent the boundary conditions in (3.18) in chart K1, with r1 = 1 for ξ1 = ∓1;

hence, it also follows that ε1 = ε
r1

= ε there. The intervals I−, I+ represent neighbourhoods

of the points w−0 = − 2√
3

and w+
0 = 2√

3
, respectively.

We note that the manifolds V∓1ε are mapped onto each other by the transformation

(r1, w1, ξ1, ε1) 7→ (r1,−w1,−ξ1, ε1), in accordance with the symmetry properties of Equa-

tion (3.23). It is thus sufficient to consider the transition from V−1ε to Σout
1 under the flow

of (3.35), as its counterpart, the transition between Σout
1 and V+

1ε
, can be obtained in a

symmetric fashion.

We now introduce ε1 as the independent variable in Equation (3.35), whence

dr1

dε1
= −r1

ε1
, (3.67a)

dw1

dε1
= − 1− ε2

1

w1(ε1)
, (3.67b)

dξ1

dε1
= −δ r1(ε1)

ε1w1(ε1)
. (3.67c)

Here, we remark that w1(ε1) remains non-zero for ε sufficiently small, as we know that

w1 = ∓ 2√
3

+ O(ε1) 6= 0 in the singular limit, i.e., when ε = 0. Solving Equations (3.67a)

and (3.67b), with initial condition (1, w,−1, ε) in V−1ε , we find

r1(ε1) =
ε

ε1
and w−1 (ε1) = −

√
w2 + 2(ε− ε1)− 2

3
(ε3 − ε3

1). (3.68)

Substituting the expressions in (3.68) into (3.67c) and expanding the result for ε1 small,

we find

dξ−1
dε1

= δ
ε

ε2
1

1√
w2 + 2(ε− ε1)− 2

3(ε3 − ε3
1)

= δ
ε

ε1

1√
w2 + 2ε− 2

3ε
3

[
1

ε1
+

1

w2 + 2ε− 2
3ε

3

]
+O(1),

which can be solved to the order considered here and evaluated in Σout
1 – i.e., for ε1 = σ –

to yield

ξout−
1 = −1− δ

w
+

δ

w3
ε ln ε+O(ε). (3.69)
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Similarly, evaluating (3.68) in Σout
1 , we find

(
rout−

1 , wout−
1 , ξout−

1 , εout−
1

)
=
( ε
σ
,−
√
w2 + 2(ε− σ)− 2

3
(ε3 − σ3),−1− δ

w
+O(ε ln ε), σ

)
,

which defines a curve (wout−
1 , ξout−

1 )(w) that is parametrized by the initial w1-value w in

V−1ε . That curve, which we denote by Vout−
1ε

, is located in a two-dimensional subset of Σout
1

– specifically, the (w1, ξ1)-plane, with (r1, ε1) fixed:

Vout−
1ε

:=

{(
−
√
w2 + 2(ε− σ)− 2

3
(ε3 − σ3),−1− δ

w
+O(ε ln ε)

)
| w ∈ I−

}
. (3.70)

It remains to study the stable foliation F s
2(Sr22 ) in coordinate chart K2, and to show that

the intersection thereof with Vout−
1ε

is transverse for ε sufficiently small. To that end, we

recall the definition F s
2(Sr22 ) in (3.49a), which we evaluate in the section Σin

2 = κ12(Σout
1 ).

Taking r2(= ε) fixed, as before, and evaluating F s
2(Sr22 ) at u2 = σ−1 defines a curve F in−

2

in Σin
2 which is parametrized by ξ2 ∈ [ξ−, ξ+] via

(uin
2 , w

in
2 , ξ

in
2 , r

in
2 ) =

(
σ−1,−

√
4
3 − 2σ + 2

3σ
3, ξ2, r2

)
,

for any r2 ∈ [0, ρσ] (cf. (3.33)). Transforming F in−
2 into chart K1 , we obtain the corre-

sponding curve F in−
1 given by

F in−
1 := (wout

1 , ξout
1 ) =

{(
−
√

4

3
− 2σ +

2

3
σ3, ξ1

)
| ξ1 ∈ [ξ−, ξ+]

}
. (3.71)

Comparing Equations (3.70) and (3.71) and expanding

−
√
w2 + 2(ε− σ)− 2

3(ε3 − σ3) = w +
ε− σ
w

+O[(ε− σ)2],

and

−
√

4
3 − 2σ + 2

3σ
3 = − 2√

3
+

√
3

2
σ +O(σ2),

we see that Vout−
1ε

and F in−
1 intersect in some point

P out−
1 =

(
− 2√

3
+O(ε),−1− δ

w
+O(ε ln ε)

)
,

as the corresponding tangent vectors in the (w1, ξ1)-plane are given by (1, δ
w2 ) and (0, 1) to

leading order.
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This intersection is transversal for any ε small. The transversality between Vout−
1ε

and F in−
1

occurs already for ε = 0 (i.e., r1 = 0), which is sufficient for the Exchange Lemma to apply

in chart K2 (cf. Figure 3.12). As these sets smoothly perturb, the transversality of their

intersection persists for ε 6= 0 as well.

-1.3 -1.2 -1.1 -1

-1

-0.5

0

ξ1

w1

P
out−

1

V
out−

10

F
in−

1

Figure 3.12: Transversal intersection of the sets Vout−
10

and F in−
1 in the (w1, ξ1)-space.

As stated above, the symmetry of Equation (3.35) implies the existence of a point

P out+
1 =

(
2√
3

+O(ε), 1− δ
w +O(ε ln ε)

)
in Σout

1 in which the curves

Vout+
1ε

=

{(√
w2 + 2(ε− σ)− 2

3
(ε3 − σ3), 1− δ

w
+O(ε ln ε)

)
| w ∈ I+]

}

and

Fout+
1 =

{(√
4

3
− 2σ +

2

3
σ3, ξ1

)
| ξ1 ∈ [ξ−, ξ+]

}

intersect transversely.

So far, we constructed a connection between the two manifolds of boundary conditions V−1ε
and V+

1ε
in the singular limit ε = 0 as follows: in Σout

1 , the forward flow of V−10 (corresponding

to Vout−
10

) transversely intersects the transformation of the stable manifold Ws
2(Q2) under

the change of coordinates in chart K1 (namely Fout−
1 ). Then, the slow drift occurs along

the critical manifold S0
2 until the flow leaves along the unstable manifoldWu

2 (Q2). In Σout
1 ,

this manifold (corresponding to Fout+
1 after the transformation in K1-coordinates) again
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intersects the backward flow of the boundary value manifold V+
10

(i.e., Vout+
10

) transversely.

This construction persists for small ε 6= 0 small. The above argument guarantees in fact

that the transversality between Vout∓
1ε

and Fout∓
1 persists for 0 < ε� 1. The fact that the

perturbed orbit approaching the stable foliation of the slow manifold Sr22 will leave along

its unstable foliation is finally guaranteed by the Exchange Lemma (cf. Section 1.1.3).

The above argument allows us to obtain the part of the bifurcation curve which perturbs

from B1 for δ > 0 (see Figure 3.9). The part of the bifurcation curve perturbing from

the remainder of B1 and from B2 can be obtained analogously. However, as this regime

involves the limiting case δ = 0, it needs further consideration. The limit δ = 0 does not

affect our construction in chart K1 but destroys the slow drift on S0
2 in chart K2 for ε = 0

(cf. Equation (3.45)).

The branch B2 is associated to the regime λ = O(1). Singular solutions in this regime are

of type I with infinitely steep boundary layers; see Figure 3.7(a), right panel. To deal with

this scenario, we recall that δ = 0 occurs only for ε = 0 (cf. Figure 3.10) and is bounded

below by
√
ε. Hence, it is convenient to introduce the rescaling

δ =
√
εδ̃, (3.72)

with δ̃ ≥ 1, and plug it into Equations (3.35) and (3.37) for chart K1 and K2, respectively.

In chart K1, this rescaling yields the same dynamics we would have obtained by setting δ =

0 into (3.35): the singular limit ε = 0 leads to ξ1 ≡ ∓1 in the invariant hyperplane {ε1 = 0}

(cf. Equation (3.53)). This implies that the value of x in the transition from u = 1 to u = 0

does not change, exactly as we see in the corresponding type I-solution (Figure 3.7(a), right

panel). In chart K2, introducing the scaling in (3.72) yields again a fast-slow system

u′2 = u4
2w2, (3.73a)

w′2 = u2
2 − 1, (3.73b)

ξ′2 = δ̃r
3/2
2 u4

2, (3.73c)

r′2 = 0. (3.73d)

The only difference with the previous case δ 6= 0 is that the slow dynamics are now slower,

as the small perturbation parameter in (3.37) is now r
3/2
2 rather than just r2. This, however,
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does not affect the global construction we illustrated in this section, as the methods we

have relied on (such as, e.g., the Exchange Lemma) still apply. As δ̃ grows up to O( 1√
r2

),

the transition between the two regimes occurs.

Remark 12. The presence of an ε ln ε-term in the expansion for ξout
1 in (3.69) is due to res-

onance between the eigenvalues −1, 0 (double), and 1 of the linearization of Equation (3.35)

about the steady states P ∗1 =
(

0,− 2√
3
, ξ∗1 , 0

)
∈ π1. The proof is based on a sequence of

near-identity normal form transformations about that state which reduces (3.35) to the

system of equations

r′1 = −r1,

ŵ′1 = O(3),

ξ̂′1 =
3
√

3

8
δε+O(3),

ε′1 = ε1,

where O(3) denotes here terms of order 3 and higher in (ŵ1, ξ̂1). One easily sees that

the resonant 3
√

3
8 δε-term cannot be removed from the ξ̂1-equation, resulting in logarithmic

switchback after integration. Details can be found in Section 3.5.

Remark 13. We emphasize that the restriction on δ in the statement of Proposition 3.4.2

is due to the fact that we require Q−2 6= Q+
2 (cf. also Remark 11). Specifically, for the

Exchange Lemma to apply, we need that
√

3
2 δ− 1 < −

√
3

2 δ+ 1 holds, which is equivalent to

δ < 2√
3
. The case where that condition is violated is studied in Section 3.4.2, which covers

region R2. In particular, it is shown there that Equation (3.23) then locally admits a pair

of solutions which limit on a type I and a type II-solution, respectively.

3.4.2 Region R2

For ε > 0, this region covers a small neighbourhood of the point
(
0, 2

3

)
in (λ, ‖u‖22)-space

(see Figure 3.8). According to its definition in (3.39), the size of this region depends on

ε and in particular collapses onto a line as ε → 0. This region contains the part of the

bifurcation curve which corresponds to solutions limiting on type I and type II-solutions

and it connects with the bifurcation curves obtained in regions R1 and R3.
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We will show that for 0 < ε � 1 a saddle-node bifurcation occurs in region R2 at λ = λ∗

as defined in [54] (see Fig. 3.13).

0 0.1 0.2 0.3 0.4 0.5

0

0.5

1.0

1.5

2

λ

‖u‖2

2

λ
∗ λ

∗

Figure 3.13: Numerical bifurcation diagram showing solutions of (3.5) for ε = 0.01. Saddle-

node bifurcations occur at λ∗ and λ∗.

Due to the singular nature of λ∗, an accurate numerical approximation is tricky to obtain

for small values of the regularization parameter ε. Using matched asymptotics, it was shown

in [54] that λ∗ = O(ε), with an expansion of the form

λ∗(ε) = λ∗0ε+ λ∗1ε
2 ln ε+ λ∗2ε

2 +O(ε3).

However, the coefficients λ∗i remained undetermined there. Here, we confirm rigorously the

structure of the above expansion, and we determine explicitly the values of the coefficients

λ∗i therein for i = 0, 1. Moreover, we indicate how higher-order coefficients may be found

systematically, and we identify the source of the logarithmic (‘switchback’) terms (in ε) in

the expansion for λ∗ (cf. Proposition 3.4.5 below).

Remark 14. While a saddle-node bifurcation is equally observed in the fourth-order Equa-

tion (3.4), Lindsay’s work [52] shows that the asymptotics of the associated λ-value λ∗ is

far less singular in that case, allowing for a straightforward and explicit determination of

the corresponding coefficients.

At leading order, λ∗ is equal to the above mentioned critical value 3
4ε, which corresponds
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to δ∗ = 2√
3

in terms of δ. This critical value for δ was not covered in the analysis of R1 in

the previous section, as the argument applied in that region failed there (cf. Remark 13).

Hence, a further argument needs to be used in order to analyze the local dynamics around

this saddle-node bifurcation point.

Before dealing in more details with the local dynamics around the saddle-node bifurcation

point located at δ∗, we deal with the existence of singular solutions as δ varies. In particular,

the existence of type II-solutions in region R2 is guaranteed by the following

Lemma 3.4.4. Let 1√
λ2
≤ δ ≤ δ1, with δ1 <

2√
3
. Then, a singular solution of type II

exists if and only if w1 = ∓δ at ξ1 = ∓1.

Proof. In the original model, the type II (“touchdown”) solution satisfies w = ∓1 at x = ∓1

(cf. Definition 3.4.1). Recalling the w-rescaling in (3.21), this is equivalent to w̃ = ±δ at

ξ = ∓1. The dynamics close to the boundary sets are studied in our analysis in chart K1.

Consequently, this constraint becomes w1 = ∓δ at ξ1 = ∓1 (cf. (3.29a)). For 1√
λ2
≤ δ ≤ δ1

these orbits can be fully studied in chart K1, as they stay away from the slow manifold S0
2

(cf. Equation (3.46)) previously studied in K2 (unlike type I-solutions; cf. Section 3.4.1).

The connection between the two pieces w1 = −δ and w1 = δ on the blow-up cylinder is

automatically satisfied (see Figure 3.14, upper panel).

Remark 15. For δ = 0, the type II-solution collapses onto the line {w1 = 0}. This case,

which needs further consideration, is studied in region R3 (cf. Section 3.4.3). As previously

mentioned, in fact, it takes both R2 and R3 to cover the green curve in Figure 3.9.

79



3 Singular perturbation analysis of a regularized MEMS model

1−1

δ <
2

√

3

ε̄
w̄

u

ū
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Figure 3.14: Saddle-node bifurcation at the singular level ε = 0 in Equation (3.23) upon

variation of δ. In the respective insets, the corresponding singular solutions of

type I (blue) and II (green) are shown. In particular, for δ > 2√
3

solutions of

type I and type II do not exist.
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Lemma 3.4.4 guarantees the existence of a type II-solution for every δ ∈
[

1√
λ2
, δ1

]
, with

δ1 < δ∗. For the same range of δ (i.e., where regions R1 and R2 overlap), Proposition 3.4.2

implies the local existence of type I-solutions. Hence, we can conclude that Equation (3.23)

admits a pair of singular solutions for δ < δ∗; one of these is of type I, while the other is of

type II. At δ = δ∗, the two singular solutions coalesce in a type II-solution. Finally, for δ >

δ∗, no singular solution exists. The resulting three scenarios are illustrated in Figure 3.14.

In particular, we note that solutions of type I satisfy w1 = ∓ 2√
3

– or, equivalently, w =

∓ 2√
3δ

in the original formulation – for ξ1 = ∓1, while those of type II are characterised by

w1 = ∓δ at ξ1 = ∓1, as proved in Lemma 3.4.4 (see Figure 3.14).

The main result of this section is the following:

Proposition 3.4.5. There exists ε0 > 0 sufficiently small such that in region R2 the

boundary value problem (3.23), (3.18) has a unique curve of solutions for ε < ε0. The

curve consists of two branches of solutions which limit on singular solutions of type I and

type II, respectively, as ε→ 0.

These two branches are connected at a point λ∗(ε) in a saddle-node bifurcation. The saddle-

node point has the expansion

λ∗(ε) =
3

4
ε−

(√3

2
+

9

8

)
ε2 ln ε+O(ε2). (3.74)

Proof. The proof of the Proposition consists of two parts: in the first part, we have to

consider a small neighborhood of δ∗ = 2√
3
, i.e., λ = 3

4ε, where the saddle-node bifurcation

occurs. We define a suitable bifurcation equation, which describes the transition from

solutions which limit on type I-solutions to solutions which limit on type II-solutions. Based

on this bifurcation equation, we conclude the occurrence of the saddle-node bifurcation and

we compute the expansion of the saddle-node bifurcation. The branch of solutions limiting

on solutions of type I connects to the branch already constructed in Proposition 3.4.2. In

a second easier step we continue the branch of solutions limiting on type II-solutions for

the remaining values of λ in R2. Later, this branch will be shown to connect to solutions

treated in R3.

We start by constructing the bifurcation equation. Since w ≈ − 2√
3

and δ ≈ 2√
3
, we also
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write

w0 = − 2√
3

+ ∆w and δ =
2√
3

+ ∆δ. (3.75)

in chart K1.

Using the shooting argument outlined in Section 3.2 , we first track the corresponding

orbit from the initial manifold V−1ε defined in (3.66) through K1 and into the section Σout
1 .

We denote that orbit by γ−1 . In chart K2, the point of intersection of the equivalent orbit

γ−2 with the section Σin
2 is then given by (σ−1, win

2 , ξ
in
2 , ε), for appropriately defined win

2 and

ξin
2 .

K1

K2

∆2

Σ
out
1

Σ
in
2

u2

w2

w
in

2

w0 = −
2

√

3
+ ∆w

−
2

√

3

at “time” X
out

Figure 3.15: Sketch of the shooting argument underlying the proof of Proposition 3.4.5.

Next, we consider the evolution of the orbit γ−2 through K2. Let Xout denote the “time”

at which γ−2 reaches the hyperplane ∆2 = {w2 = 0}, viz. w2(Xout) = 0. (By symmetry, it

then follows that the reflection γ+
2 of γ−2 under the map (u2, w2, ξ2, r2) 7→ (u2,−w2,−ξ2, r2)

will satisfy the boundary condition at V+
1ε

, with w0 = 2√
3
− ∆w, after transformation to

K1.) Clearly, Xout depends on win
2 and, in particular, on ∆w, i.e., on the initial deviation

of the orbit from its singular limit Γ−1 in chart K1.

Our usual shooting argument gives the constraint ξ2(Xout) = 0. Dividing Equation (3.37c)

by Equation (3.37a) and recalling that r2 = ε in chart K2 we find dξ2
du2

= δε
w2

and, therefore,

ξ2(u2) = ξin
2 + δε

∫ uout2

uin2

1

w2(u2)
du2. (3.76)
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Here, uin
2 = σ−1 as in the definition of Σin

2 in (3.33), while uout
2 denotes the value of u2 such

that w2(uout
2 ) = 0 (cf. again Figure 3.15).

The sought-after bifurcation equation now corresponds to a relation between ∆w, ε, and

δ that is satisfied for any solution of the boundary value problem (3.23), (3.18) close to the

saddle-node bifurcation in (3.23). To derive such a relation, we must first approximate uout
2 :

recalling the explicit expression for w1(ε1) on γ−1 , as given in Equation (3.68), substituting

the Ansatz in (3.75), and rewriting the result in the coordinates of chart K2, we find

w2(u2) = −

√(
− 2√

3
+ ∆w

)2
+ 2
(
ε− 1

u2

)
− 2

3

(
ε3 − 1

u3
2

)
(3.77)

on γ−2 . Next, we write uout
2 = 1 + ∆u in (3.77), where ∆u is assumed to be sufficiently

small due to the fact that we stay close to the saddle-node equilibrium at (u2, w2) = (1, 0)

in K2. Then, we solve the resulting expression for ∆u to find three roots; two of these

are complex conjugates and are hence irrelevant due to the real character of our problem.

Expanding the third root, which is real independent of the value of ∆w, in a series with

respect to ∆w and ε, we find

uout
2 = 1 +

13
√

3

9
∆w − 13

6
ε+O(2) (3.78)

to first order.

It remains to determine the leading-order asymptotics of the integral in (3.76). To that

end, we expand the integrand therein as

1

w2(u2)
= −

√
3u3

2

2(u2 − 1)2(2u2 + 1)
+O(∆w, ε), (3.79)

which can be shown to be sufficient to the order of accuracy considered here. (The inclusion

of higher-order terms in (3.76) would yield a refined bifurcation equation, and would hence

allow us to take the expansion for λ∗(ε) in (3.74) to higher order in ε.)

Combining (3.79) and (3.78) and noting that uin
2 only enters through higher-order terms

in ∆w, which are hence neglected, we finally obtain the expansion∫ uout2

uin2

1

w2(u2)
du2 = −

√
2

2
ln ∆w + C +O(∆w) (3.80)
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where C is a computable constant. (The above expansion reflects the fact that, as ∆w → 0,

i.e., as the point (σ−1, win
2 , ξ

in
2 , ε) tends to the stable manifoldWs

2(Q2), the “time” required

for reaching ∆2 tends to infinity. Moreover, it agrees with the observation that expansions

of solutions passing close to equilibria or slow manifolds of saddle type frequently involve

logarithmic terms.)

Next, we substitute ξin
2 (= ξout

1 ) = −1 − δ
w0

+ δ
w3

0
ε ln ε + O(ε) from (3.69) into (3.80) to

obtain

ξ2(uout
2 ) = −1− δ

w0
−
√

2

2
δε ln ∆w +

δ

w3
0

ε ln ε+O(ε)
!

= 0. (3.81)

Shifting w0 and δ to ∆w and ∆δ (cf. (3.75)) and solving (3.81) for ∆δ, we obtain the

following bifurcation equation in (∆w,∆δ, ε)

∆δ = −∆w +
2
√

2

3
ε ln ∆w +

√
3

2
ε ln ε+O(ε). (3.82)

The last step consists in finding the ∆w-value ∆w∗ at which the bifurcation equation

in (3.82) attains its minimum, corresponding to the approximate location of the saddle-node

bifurcation in (3.23), and in reverting to the original scalings. To that aim, we differentiate

(3.82) and solve d∆δ
d∆w = 0 to leading order, which yields ∆w∗ = 2

√
2

3 ε (see Figure 3.16).

Substituting into (3.82), we hence obtain the corresponding value of ∆δ∗, which implies

λ∗ = ε
δ2∗

= ε(
2√
3

+∆δ∗
)2 , by Equation (3.75). Hence, we obtain the desired asymptotic

expansion for λ∗, viz.

λ∗(ε) =
3

4
ε−

(√3

2
+

9

8

)
ε2 ln ε+O(ε2), (3.83)

as claimed. Finally, since

d2∆δ

d(∆w)2

∣∣∣∣
∆w=∆w∗

= −2
√

2

3

ε

(∆w∗)2

is negative, the function ∆δ(∆w) is locally concave, which implies that the unfolding of

solutions to Equation (3.23) for |λ− λ∗| small is as claimed in the statement of the propo-

sition (see Figure 3.16(a)).

The last part of the proof deals with the existence of solutions of the boundary value prob-

lem (3.23), (3.18) which limit on type II-solutions as ε → 0 for the remaining values of λ
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in R2, i.e., for δ ∈
(

1√
λ2
, δ1

)
. For this range, the existence of singular solutions of type II

is ensured by Lemma 3.4.4. For singular solutions (i.e., for ε = 0) we have transversality

at ξ1 = 0 with respect to the variation of the boundary values of w1 at ξ1 = ∓1 around

∓δ. Hence, these singular solutions perturb to solutions of the boundary value problem for

0 < ε� 1.

Remark 16. The branch of solutions derived in the last part of the proof is described by

the bifurcation equation (3.82) without the ln ∆w term. These solutions in fact stay away

from the saddle-node, which is responsible for the logarithmic term in ∆w.

Remark 17. The above proof also implies that ∆δ must be larger than O(ε). In fact,

Lindsay’s work shows that ∆δ = O(ε ln ε).
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∆δ

∆w

∆δ
∗

∆w
∗

(a) Local view.

ε̄

λ̄

‖u‖2

2

(b) Global view.

Figure 3.16: Illustration of the saddle-node bifurcation in (3.23). The red curve corresponds

to the case of ε 6= 0, while the singular limit of ε = 0 is represented in blue

(type I), green (type II) and black (type III). The point of intersection of

the two singular segments corresponds to the critical δ-value δ∗. A small

neighbourhood of the point where the transition between the green and the

blue curve occurs is treated in the first part of Proposition 3.4.5. The rest of

the green curve up to an arbitrary small fixed distance from the intersection

with the black curve is studied in the second part of Proposition 3.4.5. The

transition between the green and the black segment is finally described in

Section 3.4.3.
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The asymptotic expansion for λ∗ in (3.74) shows excellent agreement with the numerical

values obtained using the continuation software package AUTO [18] (see Figure 3.17). In

particular, the distance between the two curves is of higher order in ε, i.e., O(ε2), as

postulated.

0.05 0.10 0.15 0.20

0.05

0.10

0.15

0.20

0.25

0.30

λ
∗

ε

Figure 3.17: Comparison between the asymptotic expansion for λ∗(ε) in (3.74) (continuous

line) and numerical values obtained with AUTO (dashed line).

3.4.3 Region R3

It remains to analyze region R3, which contains the bifurcation branch of solutions per-

turbing from type III-solutions corresponding to the non-regularized problem:

u′′ =
λ

u2
, x ∈ [−1, 1]

u(±1) = 1

(3.84)

Type III-solutions (cf. Definition 3.4.1) differ from type I-II solutions as they do not

exhibit touchdown phenomena. Regularization affects them only weakly (regularly), the

effect becoming slightly more pronounced as λ → 0 (cf. Figure 3.18). Thus, most of the

bifurcation curve contained in region R3 perturbs from B3 in a regular way and is hence

easy to obtain. The limit λ → 0, i.e., the transition from R3 to R2, needs to be treated

more carefully.
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λλ∗λ̂

‖u‖2

2

u

w

0

a

a

b

b

c

c

d

d

e

e

−1

1

1

(a) (b)

B3

Figure 3.18: (a) Bifurcation branch B3 covered by regionR3 for ε > 0 and (b) corresponding

singular solutions in the original (u,w)-space. The green solution is of type II

and corresponds to the limit λ→ 0. Recall that for ε→ 0 R3 approaches the

line λ = 0 near the point labeled e =
(
0, 2

3

)
. Singular solutions corresponding

to λ > 0 are of type III and do not exhibit touchdown phenomena. The

orange solution at the fold point λ = λ∗ is the one where the two parts of the

bifurcation branch B3 meet.

Type III-solutions are contained in the branch B3 in the limit δ = 0 (see Figure 3.10).

This case was not covered in region R2, as the approach used there needed the assumption

δ ≥ 1√
λ2

. The limit δ → 0 leads to singular dynamics in chart K1, as the type II-solution

(green) – corresponding to w1 = ∓δ at ξ1 = ∓1 – collapses onto the line

M0
1 :=

{
(r1, 0, ξ1, 0)

∣∣ r1 ∈ R+, ξ1 ∈ R
}

(3.85)

(see Figure 3.4 and the upper panel of Figure 3.14). Clearly,M0
1 constitutes a line of non-

hyperbolic equilibria for Equation (3.35) which corresponds to the manifold M0 in (3.20),

after blow-down. This issue is related to the rescaling of w introduced in (3.21). That

rescaling (which corresponded to “zooming out”) turned out to be particularly useful to

carry out the analysis in regions R1 and R2. However, it cannot provide a good description
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of region R3. To study R3, we would have to perform another blow up involving δ, w1,

and ε1 in chart K1 in order to basically undo this rescaling. It is much simpler to deal with

the range of δ covered by R3 by returning to the original system without the w-rescaling

(cf. (3.17)).

The main result of this section is the following:

Proposition 3.4.6. There exists ε0 > 0 sufficiently small such that in region R3 the

boundary value problem (3.23), (3.18) has a unique curve of solutions for ε < ε0. Outside

of a fixed neighbourhood of the point
(
0, 2

3

)
the curve smoothly converges for ε → 0 to the

curve B3, along which solutions of the non-regularized boundary value problem exist. In the

ε-dependent region overlapping with R2 the transition from solutions limiting on type III

singular solutions to solutions limiting on type II singular solution occurs.

Proof. The original system is

u′ = u4w,

w′ = λ(u2 − ε2),

ξ′ = u4,

ε′ = 0.

Because of Equation (3.22), we express ε = δ2λ and obtain the equivalent system

u′ = u4w, (3.86a)

w′ = λ(u2 − δ4λ2), (3.86b)

ξ′ = u4, (3.86c)

δ′ = 0. (3.86d)

Here, the parameter δ plays the role of the small perturbation parameter. The range of δ

corresponding to R3 is

δ ∈
[
0,

1√
λ3

]
(cf. (3.40)). Working with λ and δ rather than with λ and ε turns out to be more convenient

in this regime.

For δ = 0 and λ > 0, the projection of the flow for System (3.86) is as in Figure 3.3. In
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region R3, however, we are also interested in covering a small neighbourhood of λ = 0,

which gives again the singular dynamics shown in Figure 3.4. In (u,w)-space, the singu-

lar solution for λ = 0 consists of [0, 1] × {−1} and [0, 1] × {1}, i.e., the singular solution

approaches the degenerate line of equilibria (0, w) forward/backwards in x (see Figure 3.19).

u

w

0

−1

1

1

Figure 3.19: Singular solution of System (3.86) for (δ = 0, λ = 0) in (u,w)-space (in green).

This solution is of type II (cf. Figure 3.7(b)). The solid black line represents

the degenerate line of equilibria (0, w).

To analyze the dynamics close to this manifold, we have to introduce a blow up of

(u, λ) = (0, 0). For the blow-up involving λ we append the trivial equation λ′ = 0 to (3.86):

u′ = u4w, (3.87a)

w′ = λ(u2 − δ4λ2), (3.87b)

ξ′ = u4, (3.87c)

λ′ = 0, (3.87d)

δ′ = 0. (3.87e)

The blow-up is

u = rū, λ = rλ̄, (3.88)

where (ū, λ̄) ∈ S1, i.e., ū2 + λ̄2 = 1. We define the chart corresponding to ū = 1 as κ1. The
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analysis in this chart turns out to be sufficient to prove Proposition 3.4.6. In chart κ1 the

blow-up transformation (3.88) reads

u = r1, λ = r1λ1. (3.89)

In chart κ1, System (3.87) is described by

r′1 = r1w, (3.90a)

w′ = λ1(1− δ4λ2
1), (3.90b)

ξ′ = r1, (3.90c)

λ′1 = −λ1w, (3.90d)

δ′ = 0, (3.90e)

where δ is the small regular perturbation parameter. We can analyze the existence of

solutions of System (3.90) for every λ ∈ [0, 1] using the shooting argument based on sym-

metry outlined in Section 3.2. To this aim, we consider a set of initial conditions at

(r1, ξ) = (1,−1):

Vλ =
{

(1, w0,−1, λ, δ)
∣∣w0 ∈ I

}
, (3.91)

where I is a neighbourhood of w = −1. We remark that the initial value λ of λ1 results

from the fact that λ = r1λ1 (cf. (3.89)) and the initial value of r1 is 1. We can introduce

w as the independent variable in System (3.90), whence

dr1

dw
=

r1w

λ1(1− δ4λ2
1)
, (3.92a)

dξ

dw
=

r1

λ1(1− δ4λ2
1)
, (3.92b)

dλ1

dw
= − w

1− δ4λ2
1

, (3.92c)

dδ

dw
= 0, (3.92d)

with the initial conditions

r1(w0) = 1, ξ(w0) = −1, δ(w0) = 0, λ1(w0) = λ. (3.93)

We follow Vλ by the flow given by System (3.92), (3.93) up to the hyperplane {w = 0} (see

Figure 3.20). There, we obtain a point (rout
1 , 0, ξout, λout

1 , δ) in (r1, w, ξ, λ1, δ)-space. Our
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shooting argument implies that we have to solve the equation

ξout(w0, λ, δ) = 0. (3.94)

Vλ

r1

w

λ1

−1

Figure 3.20: Dynamics of System (3.90) in (r1, w, λ1)-space. The gray section at r1 = 0

corresponds to Vλ (cf. (3.91)), which is flown up to {w = 0}. The green

orbit corresponds to the singular solution for λ = 0, i.e., a singular solution

of type II, satisfying w = −1 at ξ = −1. The black orbit corresponds to

a solution of System (3.90) with initial conditions in Vλ for a fixed value of

λ > 0 and δ = 0. This solution is of type III. The dashed curve contained in

Vλ corresponds to the set of w0 = w0(λ) solving Equation (3.96). This set is

defined by Equation (3.97) for δ = 0. The orange line indicates Vλ for fixed

λ > 0.

At this point we split R3 into two subregions and we apply two separate arguments to

prove the existence of the bifurcation curve in regionR3. For λ ≥ λ̃ with λ̃ fixed and positive

and δ = 0, Equations (3.92), (3.93) can be solved explicitly and solutions w0 = w0(λ) of

Equation (3.94) are proved to exist for λ ≤ λ∗. At λ = λ∗, transversality breaks down,

as Equation (3.94) does not admit a solution for λ > λ∗. The corresponding singular

solutions are of type III (cf. Definition 3.4.1). Thanks to the regularity of Equation (3.94)

with respect to δ, these δ = 0 solutions perturb regularly to solutions of the boundary

value problem for δ small and positive, in particular for δ ≤ 1√
λ3

with λ3 large, cf. (3.40).
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Individual solutions for λ close to λ? do not perturb regularly. However, the structurally

stable saddle-node bifurcation as a whole will persist as a regular perturbation giving rise

to a slightly perturbed value λ?(δ) for the perturbed saddle-node point. Since this regular

perturbation is not our main concern we do not consider it in more detail.

The second subregion of R3, which includes the overlap with region R2, corresponds to a

small neighbourhood of (λ, δ) = (0, 0) given by

(λ, δ) ∈
[
0, λ̃
]
×
[
0,

1√
λ3

]
. (3.95)

To study the bifurcation curve in this region, we solve Equations (3.92) with initial val-

ues (3.93) by expanding around (w0, λ, δ) = (−1, 0, 0) and by using the fact that the

equations can be solved explicitly for δ = 0. A computation with Mathematica gives the

following expanded form of Equation (3.94):

w0 + 1− (4 + 3w0) λ lnλ+
1

288
(1 + w0) δ8 lnλ+ h.o.t. = 0. (3.96)

Equation (3.96) shows again logarithmic terms due to a resonance phenomenon realized

in chart κ1 between the eigenvalues −1, 0 (double), and 1 of the linearization of Equa-

tion (3.90) about the steady state (0,−1,−1, 0). We note that for λ = 0 Equation (3.96)

becomes the trivial equation w0 +1 = 0, which is solved for w0 = −1 independently from δ.

These singular solutions correspond to type II solutions, shown as the part of the green

curve in the blown-up bifurcation diagram in Figure 3.9 corresponding to ε̄ small. In line

with this observation, Equation (3.96) is identical to Equation (3.81) up to O(δ2λ) terms

after the rescaling of w in (3.21). For δ = 0 and λ > 0, on the other hand, we match with

the branch obtained in the part of region R3 corresponding to λ ≥ λ̃.

Solving Equation (3.96) for w0 gives

w0 = −1 + λ lnλ+ λ O(δ8) +O(λ2). (3.97)

This equation is regular in δ, as expected.

The results obtained in these two subregions prove existence and uniqueness of a curve of

solutions of the boundary value problem (3.23), (3.18) in R3 as stated in Proposition 3.4.6.

Region R3 in (λ, δ)-space corresponds to

[0, 1]×
[
0,

1√
λ3

]
\ [0, ελ3]×

[
1√
λ2
,

1√
λ3

]
. (3.98)
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In (λ, δ)-space, R2 covers the area

[0, ελ2]×
[

1√
λ2
, δ1

]
, (3.99)

where δ1 <
2√
3

is defined in Proposition 3.4.2.

Hence, in this space regions R3 and R2 overlap in the rectangle

[ελ3, ελ2]×
[

1√
λ2
,

1√
λ3

]
(3.100)

(see Figure 3.21), which is the area where the transition between the two regions occurs.

This finishes the proof of Proposition 3.4.6.

Theorem 3.1.1 is hence proved.
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λ

δ

δ1

1√
λ2

1√
λ3

0 1

ε/δ
2

1

}

}

√
ε

ελ2ελ3 λ̃

R2

R3

Figure 3.21: Regions R2 (pink) and R3 (magenta) in (λ, δ) parameter space (cf. (3.98)

and (3.99)). The dashed vertical magenta line at λ = λ̃ delimits the two

subregions considered in the proof of Proposition 3.4.6. The dashed horizontal

magenta line at δ = 1√
λ3

indicates that the argument applied in the second part

of the proof of Proposition 3.4.6 is valid in the whole rectangle in (3.95), but

region R3 excludes the area [0, ελ3]×
[

1√
λ2
, 1√

λ3

]
by construction (cf. (3.40)).

Regions R2 and R3 overlap in the light pink shaded rectangle given by (3.100).

The black curve corresponds to δ2λ = ε, for given 0 < ε� 1.

3.5 Logarithmic switchbacks

In Lindsay’s work [54], logarithmic terms in ε, as well as fractional powers of ε, arise in

the asymptotic expansions of solutions to Equation (3.5) as “switchback” terms that need

to be included during matching in order to ensure the consistency of these expansions [56].

In this section, we provide a geometric interpretation of these logarithmic terms, hence

establishing a connection between our dynamical systems approach and the method of

matched asymptotic expansions. That connection has already been observed in various
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classical singular perturbation problems, such as in Lagerstrom’s model equation for low

Reynolds number flow [49, 48, 67, 68] and in the Evans function for degenerate shock

waves [70]. As described more generally in [66], a geometric singular perturbation analysis

can show how the occurrence of these terms is caused by a resonance phenomenon in the

blown-up vector field.

3.5.1 Dynamics in chart K1

The occurrence of logarithmic switchback is necessarily studied in chart K1, as the small

parameter ε has to appear as a dynamic variable for resonances to be possible between

eigenvalues of the linearization about an appropriately chosen steady state, namely P∓1 (cf.

Equation (3.60)). Hence, we reiterate the definition of the corresponding vector field in

that chart, cf. Equation (3.35):

r′1 = r1w1,

w′1 = ε1(1− ε2
1),

ξ′1 = δr1,

ε′1 = −ε1w1.

In particular, we intend to describe the transition under the flow of (3.35) past the resonant

saddle points at P∓1 . We recall that the ξ1-value in the definition of P∓1 = (0,∓ 2√
3
, ξ∓1 , 0)

is ξ∓1 = ±
√

3
2 δ ∓ 1 (cf. Equation (3.60)). Finally, we emphasize that, due to the symmetry

properties of the corresponding vector field, it again suffices to restrict to the transition

past P−1 only.

Normal form transformation

In a first step, we perform a sequence of near-identity transformations in a neighbourhood

of P−1 that will allow us to derive the normal form for Equation (3.35). To that end, we

shift P−1 to the origin, introducing the new variables w̃1 and ξ̃1 via w1 = − 2√
3

+ w̃1 and

ξ1 = ξ−1 + ξ̃1. Then, we divide out a positive factor of 2√
3
− w̃1(= −w1) from the right-hand

sides in the resulting equations, which corresponds to a transformation of the independent
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variable that leaves the phase portrait unchanged:

r′1 = −r1, (3.101a)

w̃′1 =
ε1(1− ε2

1)
2√
3
− w̃1

, (3.101b)

ξ̃′1 = δ
r1

2√
3
− w̃1

, (3.101c)

ε′1 = ε1. (3.101d)

The eigenvalues of the linearization of (3.101) about the origin are now −1, 0 (double), and

1, in accordance with the fact that there must be potential for resonance (for more details

on the topic, the reader is referred to [66]).

Next, we expand

( 2√
3
− w̃1

)−1
=

√
3

2

(
1−
√

3

2
w̃1

)−1
=

√
3

2

(
1 +

√
3

2
w̃1 +

3

4
w̃2

1 +O(w3
1)
)

in (3.101b) and (3.101c), whence

w̃′1 =

√
3

2
ε1

[
1 +

√
3

2
w̃1 +

3

4
w̃2

1 − ε2
1

]
+O(4),

ξ̃′1 =

√
3

2
δr1

[
1 +

√
3

2
w̃1 +

3

4
w̃2

1

]
+O(4).

Since none of the terms in the w̃1-equation above are resonant, they can be removed by a

sequence of near-identity transformations. For instance, setting w̃1 = ŵ1 +
√

3
2 ε1, we may

eliminate the linear ε1-term from that equation, whence

ŵ′1 =
3

4
ε1ŵ1 +

3
√

3

8
ε2

1 +
3
√

3

8
ŵ2

1ε1 +
9

8
ŵ1ε

2
1 −

7
√

3

32
ε3

1 +O(4).

Similarly, we can eliminate the linear r1-terms in the ξ̃1-equation by introducing

ξ̃1 = ξ̂1 −
√

3

2
δr1.

The equation for ξ̂1 then reads

ξ̂′1 =
3

4
δr1ŵ1 +

3
√

3

8
δε+

3
√

3

8
δr1ŵ

2
1 +

9

8
δεŵ1 +

9
√

3

32
δεε1 +O(4).

The term 3
√

3
8 δε in the above equation is now resonant, as (−1) + 1 = 0 for the eigenvalues

corresponding to the monomial r1ε1 therein. Hence, that term cannot be eliminated in
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general. (Here, we note that any factor of ε contributes a quadratic term to the asymptotics

when considered in (r1, ŵ1, ξ̂1, ε1)-coordinates, as ε = r1ε1.)

A final sequence of near-identity transformations allows us to eliminate any second-order

terms from (3.101), as well. Specifically, introducing W1 and Ξ1 such that

ŵ1 = W1 +
3

4
W1ε1 +

3
√

3

16
ε2

1,

ξ̂1 = Ξ1 −
3

4
δr1W1,

we finally have

r′1 = −r1, (3.102a)

W ′1 =
3
√

3

8
W 2

1 ε1 +
27

16
W1ε

2
1 −

5
√

3

64
ε3

1 +O(4), (3.102b)

Ξ′1 =
3
√

3

8
δε+

27

16
δεW1 +

3
√

3

8
δr1W

2
1 +

27
√

3

64
δεε1 +O(4), (3.102c)

ε′1 = ε1. (3.102d)

Remark 18. The truncation of Equation (3.102b) which is obtained by disregarding O(4)-

terms is a standard Riccati equation [3] which can be solved in terms of special (Kummer)

functions.

Expansion for ξ1

In this subsection, we calculate an expansion for ξ1 – or, rather, for the value ξout
1 thereof

in the section Σout
1 , as defined in (3.32b). As indicated already in Section 3.4.1, that

expansion is distinguished by the presence of logartihmic (“switchback”) terms that arise

in the transition from Σin
1 to Σout

1 under the flow of Equation (3.35). In the process, we

will refine the approximation for ξout
1 that was derived in the proof of Propositions 3.4.2;

recall Equation (3.70).

Lemma 3.5.1. Consider the point V −1 = (1, w,−1, ε) ∈ V−1ε, with w in a small neighbour-

hood of w−0 = − 2√
3
, and denote the orbit of Equation (3.35) initiating in V −1 by γ1. Then,

γ1 intersects the section Σout
1 in a point ( εσ , w

out
1 , ξout

1 , δ), with

ξout
1 = −1 +

√
3

2
δ − 3

√
3

8
δε ln ε+O(δε). (3.103)
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Proof. Equations (3.102a) and (3.102d) can be solved explicitly for r1 and ε1, which gives

r1(x̃) = ρe−x̃ and ε1(x̃) =
ε

ρ
ex̃; (3.104)

here, x̃ denotes the rescaled independent variable that was introduced in the derivation of

(3.102). Hence, the transition ‘time’ X̃ between the sections Σin
1 and Σout

1 under the flow

of Equation (3.102) is given by

X̃ = ln
ρδ

ε
. (3.105)

For sake of simplicity, we will henceforth only consider terms of up to order 2 in Equa-

tions (3.102b) and (3.102c), which gives

W ′1 = 0 and Ξ′1 =
3
√

3

8
δ (3.106)

to that order. Hence, solving Equation (3.106) for W1 and Ξ1 in forward time gives

W1 ≡W0 and Ξ1 = Ξ0 +
3
√

3

8
δεx̃, (3.107)

where W0(= W1(0)) and Ξ0(= Ξ1(0)) are constants that remain to be determined.

Undoing the above sequence of near-identity transformations – i.e., reverting to the

‘shifted’ variable ξ̃1 – we obtain

ξ̃1 = Ξ1 −
√

3

2
δr1 −

3

4
δr1W1 = Ξ0 +

3
√

3

8
δεx̃−

√
3

2
δr1 −

3

4
δr1W1. (3.108)

Hence, we also need to undo the transformation for W1. Solving Equation (3.102b) for W1,

we find W1 ≡ constant = W0. Inverting the successive transformations for the variable w1,

we have

w1 = − 2√
3

+
(

1 +
3

4
ε1

)
W1 +

√
3

2
ε1 +

3
√

3

16
ε2

1. (3.109)

Since w1 → − 2√
3

in the singular limit as ε1 → 0, it follows that W0 = 0 to the order con-

sidered here. In fact, expanding the expression for w1(ε1) in Equation (3.68) and retracing

the above sequence of normal form transformations w1 7→ w̃1 7→ ŵ1 7→ W1, we may infer

from (3.107) that W0 = w̃0 + O(ε), where we have written w0 = − 2√
3

+ w̃0 in (3.68). As

w̃0 = O(ε), by the proof of Proposition 3.4.2, we may conclude that W1(≡W0) = O(ε).
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Next, substituting into (3.108) and noting that Ξ0 = ξ̃0 +
√

3
2 δρ + O

(
δε
)

due to r1 = ρ

in Σin
1 , we obtain

ξ̃1 = ξ̃0 +

√
3

2
δ(ρ− r1) +

3
√

3

8
δεx̃+O(δε). (3.110)

Reverting to the original variable ξ = ξ−1 + ξ̃1, we then conclude that in Σout
1 ,

ξout
1 = ξ1(X̃) = ξ0 +

√
3

2
δρ− 3

√
3

8
δε ln ε+O(δε). (3.111)

Here, we emphasize that the error estimate in (3.111) is again due to the fact that W1 =

O(ε) throughout.

It remains to approximate ξ0. To that end, we consider Equation (3.101c), rewritten

with r1 as the independent variable: solving

dξ̃1

dr1
=

dξ1

dr1
= − δ

2√
3
− w̃1

= −
√

3

2
δ
[
1 +O(w̃1)

]
with ξ1(1) = −1 and noting that w̃1 = O(ε), by Equation (3.107), we find

ξ1(r1) = −1−
√

3

2
δ(r1 − 1) +O

(
δε
)

and, hence, ξ0 = ξ1(ρ) = −1 −
√

3
2 δ(ρ − 1) + O

(
δε
)

which, in combination with (3.111),

yields Equation (3.103), as claimed.

Remark 19. The independence of Equation (3.101c), in combination with the structure

of the above sequence of normal form transformations w̃1 7→ ŵ1 7→W1 – which depends on

ε1 only – implies that no resonances will occur in the corresponding expansion for wout
1 . In

fact, such an expansion can immediately be derived from (3.109).

Remark 20. We emphasize that the results obtained in Lemma (3.5.1) perfectly agree

with Lindsay’s, as can be shown by converting the variables involved. The quantity ξout
1

corresponds in fact to the point −xc in [54], where λ0c = 3
4 as m = 4 in our case:

− xc = −1 + ε1/2x̄c = −1 +

√
3

2
δ − 3

√
3

8

√
ε

λ
ε ln ε+O(δε). (3.112)
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3.5.2 Dynamics in chart K2

In this subsection, we continue the expansion for ξout
1 in Equation (3.103) into chart K2.

To that end, we recall the definition of the governing equations in that chart; cf. (3.37):

u′2 = u4
2w2,

w′2 = u2
2 − 1,

ξ′2 = δr2u
4
2,

r′2 = 0.

Our aim is to show that the expansion in (3.103), when interpreted as an initial condition

for (3.37) in Σout
1 , can be matched to a corresponding expansion that is valid throughout

chart K2. By symmetry, it again suffices to restrict to the scenario considered before, with

negative w2.

Expansion for ξ2

We make the following Ansatz for the variable ξ2, which is now interpreted as a function

ξ2(u2, r2) ≡ ξ2(u2, w2(u2), r2) of (u2, r2). (Here, we recall the explicit expression

w2(u2) = −

√
4

3
− 2

u2
+

2

3u3
2

for w2 quoted in Equation (3.47), which corresponds to the stable foliation F s
2(Q2) of the

slow manifold Sr22 in chart K2.) We postulate the following series expansion for ξ2 in powers

of r2, with u2-dependent coefficients aj(u2):

ξ2(u2, r2) =

∞∑
j=0

aj(u2)rj2. (3.113)

The coefficients aj can be determined as solution of a recursive system of ordinary differen-

tial equations, as follows: rewriting (3.37c) with u2 as the independent variable, substituting

for w2(u2), by (3.47), and expanding about u2 =∞, we find

dξ2

du2
=

∞∑
j=0

daj
du2

rj2
!

= δr2
1

w2(u2)
= −δr2

1√
4
3 −

2
u2

+ 2
3u32

= −δr2

[√3

2
+

3
√

3

8

1

u2
+

19
√

3

64

1

u2
2

+O
(
u−3

2

)]
.
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Comparing coefficients of like powers in r2, we find that, to the order in u2 considered here,

O(r2) :
da1

du2
= −δ

[√3

2
+

3
√

3

8

1

u2
+

19
√

3

64

1

u2
2

+O
(
u−3

2

)]
, (3.114a)

O(rj2), j 6= 1 :
daj
du2

= 0 (3.114b)

Solving, we obtain

a1(u2) = A1 −
√

3

2
δu2 −

3
√

3

8
δ lnu2 +

19
√

3

64

δ

u2
+O(u−2

2 ), (3.115a)

aj(u2) = Aj (j 6= 1), (3.115b)

where Aj are coefficients that are to be determined by matching with the previously derived

expansion for ξout
1 . In sum, we find

ξ2(u2, ε) = A1ε−
√

3

2
δεu2 −

3
√

3

8
δε lnu2 +

19
√

3

64

δε

u2
+

∞∑
j=0
j 6=1

Ajε
j . (3.116)

In particular, evaluating (3.116) in Σin
2 , i.e., at u2 = σ−1, we obtain

ξin
2 = A0 +A1ε−

√
3

2

δε

σ
+

3
√

3

8
δε lnσ +

19
√

3

64
δεσ +

∞∑
j=2

Ajε
j . (3.117)

A direct comparison of the above expression with (3.103) yields

A0 = −1 +

√
3

2
δ,

A1 −
√

3

2

δ

σ
+

3
√

3

8
δ lnσ +

19
√

3

64
δσ = −3

√
3

8
δ ln ε+ Ã1δ,

where Ã1 now cannot be determined to the order considered here. This in particular implies

A1 = −3
√

3
8 δ ln ε.

The fact that A1 in (3.117) has to contain an ln ε-term in order for that expansion to

match the one in (3.103) is due to the resonances found in chart K1. The inclusion of such

a term a posteriori is akin to the logarithmic switchback that is performed classically, in

asymptotic matching. We emphasize that no logarithmic terms (in r2) may appear in the

series in (3.113), as that expansion is valid in chart K2, where no resonances occur, and

that it must hence be regular in r2. A more comprehensive study of the phenomenon from
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a geometric point of view would require us to transform Equation (3.113) to chart K1,

whence

ξ1(r1, ε1) =
∞∑
j=0

aj(ε
−1
1 )(r1ε1)j =:

∞∑
j=0

ãj(ε1)rj1, with ãj(ε1) = aj(ε
−1
1 )εj1. (3.118)

In a second step, and motivated by the fact that aj can be seen to depend on ε1 and

ln ε1 when rewritten in the coordinates of K1, cf. (3.116), we would then rewrite (3.118) –

considered as a double expansion in (r1, ε1) – as a series with respect to the basis (ε1, ln ε1),

with r1-dependent coefficients bj . Substitution into the governing equations in chart K1,

as given in Equation (3.35), then yields a recursive system of ODEs for {bj}∞j=0 which can

be solved to any desired order. Details can be found in [68], where an analogous procedure

was performed in the context of the Lagerstrom model problem for low-Reynolds-number

flow.

3.6 Discussion and Outlook

In this chapter, we have investigated stationary solutions of a second-order parabolic PDE

that arises in the modelling of Micro-Electro Mechanical Systems (MEMS). In particular,

we have unveiled the complex structure of the bifurcation diagram that arises after reg-

ularization of the underlying canonical model under the assumption that the regularizing

parameter is sufficiently small; recall Figure 3.2(a). In the process, we have proven that

the additional branch which appears in the bifurcation diagram of the regularized model

derives from a singular structure that had not, to date, been elucidated in the relevant

literature [54]. Applying tools from dynamical systems theory and, in particular, geomet-

ric singular perturbation theory and the blow-up technique, we have considered separately

three principal regions in the bifurcation diagram; cf. Figure 3.8. Combination of the

resulting local asymptotics has then allowed us to describe in detail the global dynamics of

the boundary value problem defined by Equations (3.23), (3.18).

One of the most interesting features of the regularized model considered here is the

presence of a highly singular saddle-node bifurcation point. While Lindsay et al. [54] were

able to derive a formal leading-order asymptotic expansion in the regularization parameter
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at that point, the coefficients therein had remained undetermined thus far. Our approach,

on the other hand, allows us to obtain the fold point as the minimum in an appropriately

defined bifurcation equation and then explicitly determine the coefficients in the expansion.

As confirmation, a comparison with the numerical data obtained with the continuation

package AUTO has been performed, showing very good agreement with our analytical results.

Finally, the asymptotic expansion proved in [54] for the solutions to the steady-state

problem exhibits logarithmic switchback terms. While there their presence was justified by

means of a matching procedure, here we have been able to reveal their nature as a natural

consequence of a resonance phenomenon in the eigenvalues of chart K1.

The procedure applied here to the second-order model could be similarly applied to the

fourth-order model arising in the beam case (3.4) and comprehensively studied in [54, 55,

52]. Our aim in the future is to establish analogous results in this case as well, as the

singular nature of the bifurcation diagram presents some similarities, while new features

can be again possibly enlightened by means of geometric singular perturbation theory and

the blow up method.
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