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Kurzfassung

Künstlich erzeugte elektrische Signale in Retina Implantaten unterschei-

den sich signifikant von den Signalen, die auf natürlichem Wege zustande

kommen, was dazu führt, dass sie schwer vom Gehirn interpretiert wer-

den können. Generell können Computer Modelle, insbesonders das für diese

Arbeit entwickelte, das Verhalten von neuronalen Netzwerken simulieren.

Zum Beispiel um die Auswirkungen von verschiedenen Größen von Elek-

trodenkonfigurationen zu vergleichen. Allerdings sind bessere Simulations-

methoden erforderlich, um diese Mechanismen besser zu verstehen und die

medizinischen Anwendungen zu verbessern. Ziel dieser Arbeit ist es, den

optimalen Elektrodenabstand eines Retina Implantats zu ermitteln. Damit

können Implantate an Patienten, die an degenerativen Retinaerkrankungen

leiden, sicher eingesetzt werden.

Der Energieverbrauch einer Säugetier-, Amphibien- und Kopffüßer- (Tin-

tenfisch) Neuronalmembranen wurde verglichen. Die Membran des Säugetieres

wurde nach dem Fohlmeister et al 2010 Modell modelliert, die Membran der

Amphibien nach dem Fohlmeister et al 1997 Modell und die Membran des

Tintenfisches nach dem Hodgkin und Huxley Modell. Des weiteren wurde

der Energieverbrauch der Membranen analysiert, einschließlich gleichzeiti-

ger stimulierenden und hemmenden Eigenschaften. Für diese Arbeit wur-

de ein Computermodell mit MATLAB und der Finite-Elemente-Software

Comsol Multiphysics implementiert, um die Aktivierung von retinalen Gan-

glionzellen während der epi-retinalen Stimulation vorauszuberechnen. Die

neuronale Aktivierung, mathematisch dargestellt durch das Membranmo-

dell von Fohlmeister et al 2010 wurde an verschiedenen Teilen des Neurons

(elektrisch sensible Natrium Band und proximal gelegene Axon) mit ver-

schiedenen Elektrodenabständen simuliert.

Der Vergleich zwischen den Membranen verschiedener taxonomischer

Klassen zeigt einen teilweise erhöhten Energieverbrauch in Natrium- und

Kaliumkanälen der weiterentwickelten Säugetiermembran im Vergleich zur
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Amphibienmembran. Dieser wird aber durch eine verbesserte Synchronisati-

on zwischen den verschiedenen Ionenkanaltypen kompensiert und ergibt eine

bessere Gesamteffizienz der Säugetiermembran. Die Simulation verschiede-

ner Elektrodenabstände zeigte einen Zusammenhang zwischen dem Elek-

trodenabstand und der benötigten Stimulationsenergie. Weiters wurde ein

idealer Elektrodenabstand gefunden, bei dem niedrige Energien benötigt

werden, und dabei kein wertvoller Platz auf dem Implantat verschwendet

wird.

Die gewählten Membranmodelle und das Aktivierungsmodell zusammen

mit den oben erklärten Methoden und den durchgeführten Simulationen er-

wiesen sich als passend, um das Ziel dieser Arbeit zu erreichen. Aus dem

Wissen über die Beschaffenheit des Nervensystems und aus den Fortschritt

der heutigen Wissenschaft profitieren die Patienten, die an retinalen Dege-

nerationskrankheiten leiden. Sie bekommen die Chance auf eine teilweise

Wiederherstellung ihres Sehvermögen.
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Abstract

The artificially generated electrical signal, in retinal prostheses is very differ-

ent from the natural neuronal signal and difficult for the brain to interpret.

Computer models in general -the present one in particular- have the ability

to simulate the behaviour of the neuronal network in ways such as compar-

ing different sizes of stimulating electrode configuration. However, better

simulation methods are needed to fully understand these neuronal mecha-

nisms and improve their medical applications. The objective of this thesis

is to identify the optimal electrode spacing of a retinal implant that can be

safely used, so that patients suffering from retinal degenerative diseases can

profit from better-constructed implants.

For this purpose, the energy consumption of mammalian, amphibian and

cephalopodal (squid) neuronal membranes have been compared. The mam-

malian membrane was modelled after the Fohlmeister et al 2010 model, the

amphibian membrane after Fohlmeister et al 1997 model and the squid mem-

brane after Hodgkin and Huxley. Furthermore, their detailed energy usage

was analysed, including simultaneous stimulating and inhibiting properties.

Especially for this thesis, a computer model has been implemented using

MATLAB and the finite element software Comsol Multiphysics in order to

predict the activation of retinal ganglion cells during epi-retinal stimulation.

The activation, driven by the membrane model of Fohlmeister et al 2010 was

simulated on different parts of the neuron (sodium channel band and distant

axon) with various electrode spacings.

The comparison between the membranes of different taxonomic classes

showed a partially increased energy consumption in sodium and potassium

channels of the higher developed mammalian membrane compared to the

amphibian membrane, which was compensated by improved synchronization

between the different ion channel types, allowing for better cross efficiency.

The simulation of various electrode spacings showed a dependency between

the stimulating energy on the neuron and the electrode spacing. Further-
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more, an ideal electrode spacing was identified, where the neuron was able

to stimulate with least amount of energy, without wasting valuable space on

the electrode carrier.

The chosen membrane models and activating model, together with the

methods and the performed simulations, proved to be the right combination

needed in order to reach the objective of this thesis.

Benefiting from the knowledge of the characteristics of the nervous sys-

tem and from the capacity of today’s science, patients suffering from retinal

degeneration diseases are given the chance to have their sense of vision re-

stored.
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Chapter 1

Introduction

1.1 Motivation

About 1.5 million people worldwide suffer from degenerative disease of pho-

toreceptor cells [Palanker et al., 2005]. While the outer photoreceptor cells

degenerate from diseases like age-related macular degeneration (AMD) and

retinitis pigmentosa (RP), a significant amount of the inner Retinal Gan-

glion Cells (RGC) and the optical nerve might remain intact. We know that

the retina is a complex network containing a vast amount of cell types with a

clear structure. This structure allows us to identify functional vectors which

can be simulated in computer models, and apply these results in electri-

cally stimulated clinical applications. This innovation raises the possibility

to generate meaningful vision for blind patients, significantly improving the

lives of affected individuals. The overall goal is to enable visual perception

in the blind, perception which is comparable to our natural sense of vision.

While visual prostheses have been available in the field for over a decade,

the above-mentioned goal is still far from reach [Yue et al., 2015].

A key factor for meaningful stimulation is a high amount of parallel stim-

ulation channels on the comparably small region of retinal tissue [Zrenner

et al., 2011]. Based on well-known histological properties [Karwoski et al.,

1985] and experience of neuronal stimulation in other fields [Merrill et al.,

2005], the simulation concept developed by Greenberg and co-workers led to

a better understanding of the entire retinal network [Greenberg et al., 1999].

Aside from more detailed anatomical data cell membrane models for

mammals also became available [Fohlmeister et al., 2010]. Relatively new

findings regarding a sodium channel band (SOCB) which is sensitive to

extracellular electric stimulation [Fried et al., 2009, Jeng et al., 2011], com-
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CHAPTER 1. INTRODUCTION

bined with better understanding of electrodes in retinal prosthesis [Wilke

et al., 2011], allow the development of more precise computational models,

resulting in more realistic simulations.

This thesis analyses different electrode distance configurations in the

context of space demand, energy consumption and selectivity at tissue-level.

This is examined in two circumstances: the stimulation of the plane axon

[Resatz, 2005] and the more sensitive sodium channel band [Fried et al.,

2009]. Furthermore the energy consumption was evaluated on cell-level.

1.2 Implementation

In order to achieve a dynamic way of simulating different parameters, a

simulation software framework was developed, using MATLAB 8.5.0.197613

(R2015a)1 and Comsol Multyphysics 4.4.0.1502. Plots were generated by

matlab2tikz 0.6.03 and compiled by LuaTeX 0.804. All simulations were

optimised for consumer computers working on Linux with Intel core-i7 ar-

chitecture and 8 GB memory. If not explicitly mentioned otherwise, each

calculation was completed within a maximum of a few minutes.

Moreover, the above-mentioned program tries to provide ways for further

neuronal simulations on different fields. To allow other people to work with

or modify this new software, all sources are available online (Chapter A).

Additionally, a very common approach from computer science, ‘plug-ins’

has been applied. Only very basic concepts of neuronal stimulation, e.g.

the activating function and the electrical exchange between compartments,

have been implemented in the core of the system. Other parts which are

more specific to the simulation, like the ion channel densities, the membrane

model or the stimulation electrode position, were added by the use of plug-

ins.

The newly developed software with these precise plug-ins forms the envi-

ronment necessary to see separate variations either by using different mem-

brane models (like Hodgkin and Huxley compared to Fohlmeister and Miller

[Fohlmeister and Miller, 1997a, Hodgkin and Huxley, 1952]) on identical

nerve structures or the use of the same membrane model on different neu-

ronal morphologies.

1http://de.mathworks.com/products/matlab/
2https://www.comsol.com/
3http://www.mathworks.com/matlabcentral/fileexchange/22022-matlab2tikz
4http://www.luatex.org/
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Chapter 2

Background

2.1 Human Eye

To provide the necessary physiological background for this thesis, the follow-

ing anatomy of the human eye description reviews the ‘Atlas der Anatomie’

[Kahle, 1991] and “The Organization of the Retina and Visual System”

[Kolb et al., 1995]. The focus is set on neuronal and visual aspects, but

histological and muscular properties have been left out.

Figure 2.1: Cross section of a human eyeball [Kolb et al., 1995]
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CHAPTER 2. BACKGROUND

Optical System

On the front face of the eyeball, as light’s entry point, the transparent

cornea is placed. It has the optical effect of a convex collecting lens. The

cornea covers the anterior chamber (or anterior segment), which contains

the aqueous humour and covers both the iris and the pupil. The cornea has

an optical power of over 40 dioptre and is the highest focusing factor in the

human optical pathway.

Directly behind the anterior chamber is located the iris, which serves

as aperture. The iris consists of 2 layers, where the first layer (stroma)

contains blood vessels and nerves, and the second layer holds the pigmented

cells. These cells are responsible for the appearance of colour, ranging from

blue (low pigment level) to brown (high pigment level). The centrally placed

opening of the iris -the pupil- controls the amount of light entering into the

eye by changing the size.

The light passing through the pupil is focused by the crystalline lens. The

curvature of the lens and therefore the focus on objects of various distance,

is adapted by the ciliary muscle.

The next stop on the light’s journey is the inner volume of the eye, the

vitreous body. It is filled with an aqueous gel, the vitreous humour.

Between the vitreous body and the choroid, the retina is placed. The

retina adjoins the choroid, a thin skin which contains many blood vessels

and provides the majority of blood flow to the eye

The outermost layer of the eye is the sclera, a thick collagen skin which

maintains the spherical form of the eye and is responsible for the white eye.

Neuronal System

Continuing from the vitreous body at the back of the eye, the light passes

through the transparent (and between 80µm and 320µm thick) retina until

it is perceived by photoreceptor cells [Kolb et al., 1995]. This arrangement,

where the light passes through the retina before getting detected by the

photoreceptor cells, is called “inverted retina”. It can be found in all ver-

tebrae retinas, while verted retinas can be found in invertebrates such as

squids. The process of passing through the retina layers however, does not

significantly disturb the light.

The neuronal cell is formed by the soma (cell body), axon and dendrite

and will be described in detail in Chapter 2.2. The innermost cells in the

retina are the multipolar RGC in the ganglion cell layer. They have rather
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CHAPTER 2. BACKGROUND

short dendrites, reaching out to the plexiform layer, but their long axons

form the optical nerve. These RGC are the main target cells in this study.

The dendrites of the RGC are connected in the inner plexiform layer to

the axons of the bipolar cells. The bipolar cells’ somas are located in the

inner nuclear layer and aim with their dendrites towards the photoreceptor

cells. Within the inner nuclear layer, the somas of the horizontally connected

amacrine cells are located. Their dendrites reach out to the photoreceptor

cells and connect to neurons in the inner plexiform layer. On the other hand,

the dendrites of the bipolar cells are connecting to the photoreceptor cells.

Figure 2.2: Schematic connection of retinal neurons and retinal layers.
Modified from [Resatz, 2005]

Connected to the choroid, the outermost layer is the retinal pigment

epitelium, which has important functions in maintaining the metabolism of

photoreceptor cells.

The retina is far more than a simple sensor. As part of the central

nervous system, its complex connections, multiple neuron types and total of

10 layers all process the images perceived by the eye. Also noticed in the

retina, is some functional clustering, where cells can inhibit the activation of

neighbour cells. This influence on neighbour cells is important for perception

of contrasts, for instance.
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The retina has 2 regions worth mentioning:

1. Fovea centralis

The fovea centralis is the region in the retina with the best vision.

The pigment epithelium and the photoreceptor layers are thickened

in this region, hence the plexiform layers are thinned. This leads

to less attenuation and further, to the best access for light to the

photoreceptor cells. Additionally, the photoreceptor layer contains

only cones (for colour vision) in this region, and as a result contains

the highest concentration of cones in the entire retina. Contrary to

other regions, each cone is connected to only one single bipolar cell.

Only mammals have this region, as amphibian retinas lack a fovea

centralis.

2. Optic disc

The optical nerve, which is formed on the inner surface of the eye from

RGC axons, needs to exit the eyeball through the retina. This spot

at which it exits, has no photoreceptor cells, therefore no light can be

perceived. This is why it is commonly referred to as the ”blind spot”.

The optical nerve transmits the perceived information to the visual

cortex in the back side of the brain.

It should be mentioned, that, unlike most other neuronal networks, this

is a ‘one-directional’ system, which means that there is no feedback from

the brain.

2.2 Neuronal Cells

The cell physiology is reviewed from ”Anatomy and Physiology” [Betts,

2013] and ”Electrical Nerve Stimulation” [Rattay, 1990].

Neurons are the most important cells of the nervous system, because

they are responsible for generating, propagating and processing electrical

signals. They consist in general of the soma, axon and dendrite, but appear

in many other different morphologies. Still, they can be classified according

to their structure, function or neurotransmitter. An information signal (in

the form of action potentials -AP-), flows only in one direction. It arrives in

the neuron through the dendrites, passes through the soma, further down to

6



CHAPTER 2. BACKGROUND

the axons, and exits at the synapses. A neuron’s polarity, describe how many

processes it has. Unipolar neurons, like the photoreceptor cells, have only

an axon, while bipolar neuron possess an axon and a dendrite. Multipolar

neurons have one axon and two or more dendrites. Since the RGCs have

multiple dendrites which connect to bipolar cells and amacrine cells, RGC

are multipolar cells.

Besides the neurons which simply transmit signals to other neurons (in-

terneurons), there are two types of specialized neurons in the central nervous

system (CNS). First, there are the sensory neurons, which connect to recep-

tors cells. These receptor cells can be stimulated by chemical or physical

energy such as pressure, heat or light. Taste receptors, inner hair cells and

photoreceptor cells can all be found in this category. Second, there are the

motoneurons (or motor neurons), which control muscle movement.

Figure 2.3: Neuron with dendrites, soma and non-mylenated axon.
Adapted from [Betts, 2013].

Neurons are not the only cell type in neuronal tissue. There is a second

group, the ‘glial cells’ (or non-neuronal cells). Cells of this type do not

carry electrical signals, but support the neurons, e.g. the Oligodendrocyte

and Schwann cells build the myeline sheat. Latest research shows that the

human brain consists of about 8.6 · 1010 neurons and 8.4 · 1010 non-neurons

(glial cells) [Azevedo et al., 2009].

2.2.1 Soma

Each neuron has a soma (also known as ‘cell body’). This soma contains

most of the organelles including the nucleus. Inside the membrane is a liquid

called cytoplasm, as well as a cytoskeleton which maintains stability (among

other functions). The soma extends the processes, which are either dendrites

7



CHAPTER 2. BACKGROUND

or axons. All these parts are then covered by the cell membrane. The size

of the soma varies in different neuronal cells.

2.2.2 Dendrite

Dendrites (rarely dentrite) act as the input region for signals of other cells,

and form a dendritic tree with up to 5.000 branches. Dendrites possess a

wide network of cytoplasmic processes which allow them to receive signals

from a wide range of different cells. This high amount of connections is

possible because of the 3D structure of the tree. The RGC, for instance,

receive through their dendrites the signals of the bipolar cells and amacrine

cells. Like axons, dendrites are processes that originate from in the cell

membrane of the soma.

2.2.3 Axon

The axon is a nerve fibre which emerges from the cell body. It is filled with

axoplasm, the cytoplasm of axons. Axons start with the axon hillock (also

known as initial segment), which tapers from soma to distal axon. The main

purpose of axons is to carry electrical potential from soma to synapses. In

the case of vertebrates, both myelinated and non-myelinated axons can be

found. In contrast to non-myelinated cells, myelinated cells have a faster

propagation speed, even on small axon diameters. Since the RGC axons are

not covered by a myelin sheath, this subsection focuses on non-myelinated

axons.

The length of an axon varies between a few micrometers and several

meters, among different neuron types. Some axons, especially RGC axons,

have a region with a SOCB. In this region there is a highly increased number

of sodium channels, which significantly increases the sensitivity to electrical

stimulation. While this finding is relatively new, the fact that axons are

the most excitable part of the neuron has been known since the late 1970s

[Nowak and Bullier, 1998]. There are however, other neuronal parts that

are also excitable by extracellular stimulation. Due to the SOCB being part

of the axon, the part furthest from the SOCB is in this thesis referred to as

distal axon (DA). Axons are responsible for delivering electrical signals to

distant neurons or muscles.
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CHAPTER 2. BACKGROUND

Synapses

At the ending of a single axon, up to 200.000 synapses are found. These

synapses are the connections to other cells, and can be based on chemical

signals, so-called neurotransmitters, or electrical signals. Synapses for con-

trolling muscles, the neuromuscular synapses, have only excitatory potential,

while other synapses can have either inhibitory or excitatory interfaces. The

junction between the synapse and the targeting cell is formed as a tiny gap,

namely the synaptic cleft, which is usually about 20nm in electric synapses

and 100nm in chemical synapses [Betts, 2013, Pfützner, 2012].

2.2.4 Retinal Neurons

The retina contains a vast amount of different neuron types, but in general

they can be divided into the following five classes, as depicted in Figure 2.2:

photoreceptor cells (rod and cones), amacrine cells, bipolar cells, horizontal

cells and RGC [Seung and Sümbül, 2014].

Photoreceptor Cells

Photoreceptor cells are aligned as an array and can be categorised into rods

(for brightness) and cones (for colour). Cones, which are responsible for

vision in well-lit areas (photopic vision) allow humans to see light over a

wavelength spectrum from 380nm to 720nm. The vision of brightness is

often referred as scotopic vision [Betts, 2013, Kolb et al., 1995].

Rods The light-sensitive side of rods contains a stack of membrane-bound

discs. These discs contain the light-sensitive protein rhodopsin. The in-

coming light passing through this stack allows the rod an extremely high

light sensitivity. A single photon can trigger an action potential in a rod’s

corresponding RGC. Rhodopsin has its highest sensitivity to a wavelength

around 500nm, and therefore the low-light vision is in greyscale. The human

retina has around 120 million rods [Betts, 2013].

Cones In humans, three subgroups of conical shaped cones called opsins,

and ten types of cones are known. Each type is sensitive to light of a particu-

lar wavelength, which allows the brain to identify concentrations of different

wavelengths and therefore perceive colours. The body of a cone is slightly

longer than the rod’s cell body, reaching out to the pigment epithelium.

There are around 6 million of these cells in the human eye [Betts, 2013].
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Amacrine Cells

The most diverse class of cells in the retina are the amacrine cells, with

29 known subtypes. These cells interconnect with the photoreceptor cells,

bipolar cells and ganglion cells, and are essential for early image processing

before the AP is produced by the RGC. The structure and function of these

cells are manifold: some types of amacrine cells are horizontally directed,

while some are vertically directed; some are part of ON, while others are

part of OFF pathways. This derives if the cell is activated by light onset

(ON-cell) or by light offset (OFF-cell). [Betts, 2013, Kolb et al., 1995].

Horizontal Cells

In the mammalian retina, three different types of horizontal cells are known,

where two types connect exclusively to cones and one, to rods. They play an

important role in signal processing: Horizontal cells average and feedback

photoreceptor signals [Resatz, 2005].

Bipolar Cells

Bipolar cells connect on their dendrite side to photoreceptor cells and on

their axon side, to ganglion cells. While a special type of bipolar cell-the

‘rod bipolar cell’-connects only to rods, 10 to 12 different bipolar cell types

were identified, which connect only to cones. On average, 15 to 45 rods share

one rod bipolar cell. Bipolar cells also have ON and OFF types, and have

a high influence on the greater image processing activity of RGC [Baden

et al., 2013].

Retinal Ganglion Cells

RGC are the innermost retina cells, and are responsible for generating the

output signal of the retina by evaluating the signals from bipolar cells, as

well as the inhibitory synapses from amacrine cells. The axons of RGCs

merge at the optic disc and exit the eye as the optic nerve. In mammals,

between 13 and 17 different types have been discovered [Fohlmeister et al.,

2010]. Like in amacrine and bipolar cells, RGC can be found in both the

ON and OFF pathways [Betts, 2013, Kolb et al., 1995].
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2.3 Action Potential

2.3.1 Membrane Potential and Gating

The action potential originates in the cell membrane. When unexcited,

the cell membrane stays in a resting potential which is not 0, but around

−70mV relative to the extracellular space. Varying concentrations of ions

in the cytosol (inner neuron) and in the extracellular fluid are responsible

for this potential difference. These concentration gradients are maintained

by ion channels in the cell membrane. The cell membrane is a lipid double-

layer, with active and passive pores. The active pores ATP (adenosine

triphosphate) serve as an energy source, pumping sodium and potassium

ions through the membrane.

Figure 2.4: Scheme of a cell membrane [Betts, 2013]

Ion channels can be distinguished between mechanical, chemical, volt-

age and random gated channels. There are voltage gated sodium channels

and mechanically gated calcium channels. A-type potassium channels are

chemically or ligand gated, and the leakage is randomly gated. Mechanically

gated ion channels can be found in sensory neurons. The Goldmann equa-

tion (Equation 2.1) can be used to estimate the resting potential according

to the intracellular and extracellular ion concentrations [Fohlmeister and

Miller, 1997a, Goldman, 1943, Pfützner, 2012].

Em =
RT

F
· lngK · [K+]e + gNa · [Na+]e + gCl · [Cl−]i

gK · [K+]i + gNa · [Na+]i + gCl · [Cl−]e
(2.1)

−70mV = 58mV · ln 40 · 5.5 + 1 · 150 + 0 · 9
40 · 150 + 1 · 15 + 0 · 125

(2.2)

As shown in Equation 2.2, during resting state, the concentration of K+

ions is higher inside the cell than outside, while the concentration of Na+

ions is higher outside the cell than inside.
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2.3.2 Action Potential

A neuronal cell can be excited if the stimulus overcomes a specific threshold

(mostly around −50mV ). If this threshold is not reached, the potential

will fall back to the resting potential, without initiation and consequent

propagation of an AP. This is the so-called all-or-none or all-or-nothing law.

Figure 2.5: Time response of an action potential. The dotted line denotes
the approximate threshold [Betts, 2013].

If this threshold is exceeded, the sodium channels open, which causes an

inflow of Na+ ions across the membrane. Because of the positive charge of

Na+ ions, the voltage in the cell rises, and the neuron becomes depolarized.

With a short delay, potassium channels open to let K+ ions flow out of the

cell while Na+ channels start to close again, decreasing the positive charge

in the cell and causing repolarisation.

The width of AP varies on the temperature, but in vertebrates is usu-

ally between 0.3ms and 2ms [Betts, 2013, Fohlmeister and Miller, 1997a,

Pfützner, 2012, Rattay and Danner, 2014].

2.3.3 Refractory Period

During the AP, the neuron cannot be excited to create another AP. This is

called the absolute refractory period. After the repolarisation phase passes

the threshold, the Na+ ion channels close and further stimulation becomes

possible. This however, would require a higher stimulation energy in order to

overcome the open K+ ion channels and the time needed for the inactivation

variable h to come back to its resting value is known as relative refractory

period. At the end, when the membrane is back to its resting potential, the

refractory period is over.
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2.3.4 Graded Potential

The AP is used for information transmission by RGCs. Other cell types, like

the bipolar cells and amacrine cells, have subtypes which do elicit AP and

subtypes which do not [Baden et al., 2013]. Most sensory neurons, like pho-

toreceptor cells, do not elicit action potentials. In general, if the neuronal

packing is dense enough to have processes which are only a few 100µm long,

a transmission of information without AP amplification is possible. This

communication without AP works through graded potentials, thereby al-

lowing transmission through the synapses of potentials below the threshold

of other cells. Depending on whether the potential is inhibiting (hyperpo-

larizing) or excitatory (depolarizing), it can be distinguished between:

• EPSP (excitatory postsynaptic potential): positive potential

• IPSP (inhibitory postsynaptic potential): negative potential

The potential of all connected synapses will be summed (summation) in

the dendritic tree of the postsynaptic neuron. If the result of the summation

is sufficient to uplift the intracellular potential in the initial segment from

approximately −70mV (resting potential) to −55mV , the threshold of the

neuron would have been reached, and an AP will be elicited [Betts, 2013].

2.4 Retinal Prosthesis

The perception of light can not only be caused by natural sense, but can also

be generated by electrical impulses. This phenomenon is called phosphenes.

All modern visual prosthesis are based on this effect. The only requirement

is an intact optic pathway from the retina to the visual cortex, in a best-

case scenario, without rewiring. Based on the location of the electrode

array, the prosthesis can be differentiated between sub-retinal, epi-retinal

and suprachoroidal.

Today, epi-retinal and sub-retinal prostheses achieve a comparable per-

formance in clinical tests on human subjects, while suprachoroidal is in

early-stage development [Zrenner, 2014].
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Figure 2.6: Possible implantation sites for a retinal prosthesis, adapted
from Resatz [Resatz, 2005].

2.4.1 Sub-retinal Stimulation

The most advanced implant of sub-retinal stimulation is the prosthesis de-

veloped by Zrenner et al. in Tübingen, Germany. A sub-retinal implant

is placed close to the region formerly occupied by photoreceptor cells. The

main target neurons during sub-retinal stimulation are bipolar cells close

to the stimulating electrodes. Therefore, a thin foil with electrode arrays

is implanted under the retina. The residual visual pathway remains intact

and processes the signal. The light-detecting photodiode can be placed di-

rectly on the implanted foil. These diodes record the incident light which

passes through the lens and the iris of the eye. This technique does not

require external cameras and allows correct interpretation of the eye move-

ment and target finding. External amplification however, and thus a power

source, is still required, because the current generated by the photodiodes

is insufficient to create vision [Chow et al., 2004]. The implanting process

is invasive, but it is not a surgical problem for trained surgeons [Zrenner

et al., 2011]. Current applications are still for temporary use only, but al-

low restoring vision for daily tasks like recognizing pattern, reading 8cm big

letters and identifying crockery. These results were achieved by an array of

1500 electrodes [Zrenner et al., 2011].
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2.4.2 Epi-retinal Stimulation

A different approach directly stimulates the axons of the RGC on their reti-

nal output pathway before they form the optical nerve. Especially when cells

for image analysis are damaged by the disease suffered, epi-retinal stimu-

lation can achieve vision restoration, while the other methods presented

rely on these cells. To generate the pattern for perception, external image

capturing (usually with a head-mounted camera) is required. The signals,

generated by an external video processing unit, have to be converted to a

variation of pulse pattern and stimulation intensity. Since each axon is car-

rying signals from many connected cells of presynaptic neurons (neurons of

lower cell layers)- where different image-processing steps happen, implants

with higher resolution would require more sophisticated image processing

[Zrenner et al., 2011]. In present-day implants, the number of electrodes

is small compared to sub-retinal stimulation. The two commercially devel-

oped prosthesis Argus1 I (2004) and II (2009) have 16 and 60 electrodes,

respectively. Consequently, the maximal resolution is lower than in sub-

retinal implants with 1500 electrodes. The fixation of the implant, which is

achieved by a tack, remains a problem. It can, for example, cause fibrosis

around the direct area of the tack [Yue et al., 2015].

A remaining obstacle, which is also present in other approaches, is the

selective stimulation of desired single cells or cell-groups, which are required

to generate an image. Additionally, the electrode location does not neces-

sarily correlate with the point of perception, since the RGC have different

courses to the optical nerve. Chapter 4.3 analyses this problem in more

detail.

2.4.3 Supra-choroidal Stimulation

A third, but less developed approach, is to place a micro-electrode-array

between sclera and choroid. This method is less surgically invasive for the

patient. The problem with supra-choroidal stimulation is the high resis-

tivity of the pigmented epithelium and the comparably far distance to the

targeted bipolar cells, which makes high currents necessary to achieve neu-

ronal activation. Due to of a lack of clinical studies in this approach, it

remains unclear if the spatial resolution is sufficient to restore vision. Like

in the epi-retinal stimulation, external image capturing is necessary for this

approach.

1http://www.secondsight.com/
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2.5 Subtypes of Computational Retina Models

Its clear structure and the lack of feedback from the brain allow sophis-

ticated modelling approaches of the retina. According to the categorisa-

tion of Guo and coworkers (2014), the models can be separated as follow

(listed in order of increasing abstraction level): single-compartment mod-

els, morphologically-realistic models, block-compartment models, contin-

uum models and discrete neuronal network models [Guo et al., 2014]. These

different abstraction levels can be combined. Not all of these models are

used in this thesis, but if a concept is applied, the corresponding chapter is

mentioned.

2.5.1 Single-Compartment Models

Single-Compartment models describe specific points of a neuronal cell, usu-

ally derived from space clamp experiments. The models which are presented

further on in this thesis: Fohlmeister & Miller and Hodgkin & Huxley, all

belong to this group [Fohlmeister and Miller, 1997a, Hodgkin and Huxley,

1952]. They give a mathematical model for the current in a single compart-

ment, but fail in more complex tasks like AP propagation. The analysis of

membrane properties in Chapter 3 uses this type of model.

2.5.2 Morphologically-Realistic Models

Models of this type consider the morphological structure as well as the elec-

trical properties of neighbouring regions. This is usually implemented by

multiple interconnected compartments applying cable theory. The influence

of the external potential, which can be calculated by the activating func-

tion, can also be applied in this model type. Later models of Fohlmeister

and coworkers use detailed morphologies for the modelling and belong to

this group [Fohlmeister et al., 2010, Fohlmeister and Miller, 1997b]. The

neuron in Chapter 4 is modelled in a semi-morphologically-realistic way.

2.5.3 Block-Compartment Models

More complex structures of neurons make too detailed modelling imprac-

tical and computationally expensive. This approach tries to simplify each

neuronal part like the soma and the axon, to one single compartment, each

with homogeneous properties.
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2.5.4 Continuum Models

Continuum models consider the retina as an infinite, homogeneous bulk

volume. Single neurons or their properties are not considered anymore,

hence their membrane behaviours are averaged and extrapolated to the en-

tire volume. This model is suitable for simulating the current flowing in

the extracellular space or across membranes. A common tool for filling the

bulk material and applying the equations for the macro-property is the fi-

nite elements analysis. The first and still important continuum model was

presented by Dokos and coworkers (2005), who modelled the active RGC

layer [Dokos et al., 2005].

2.5.5 Block-Structured Models

The block model does not follow a biological approach, but tries (similar

to electrical engineering) to find functional units according to statistical be-

haviour like filters and transformations. These units combined, can model

effects from motion detection to vision. Since they are not biologically mo-

tivated, they are not suitable for finding conclusions on the neuronal level,

but can give statements about the interaction of neuronal blocks, and lead

to a better understanding of the connections in the visual system. Using

this model, Keat and coworkers (2001) were able to create a model which

is able to simulate a wide range of spike trains and different response types

[Keat et al., 2001].

2.5.6 Discrete-Neuronal Network Models

Discrete-Neuronal network models try to use morphologically-realistic mod-

els to integrate neurons in high quantities in one model, in order to simulate

retinal structures (or part of structures). The physiological accuracy can

vary between different models, because structures which are not investi-

gated can be left out. One of the largest retina models, the ‘Virtual Retina’

with 100.000 neurons, is part of this category and can process biologically

plausible images [Wohrer and Kornprobst, 2009].
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2.6 Basics of Electrical Stimulation

2.6.1 Electrical Network Model

In order to simulate the complex geometry of neurons, a mechanism based on

an RC compartment model (resistor-capacitor model) is used to calculate the

electrical properties in the neuron. This way, the neuron is divided into small

compartments (usually between 1µm and 40µm) and each compartment is

represented by an RC circuit. This allows calculation of the (static) voltage

in the center of each compartment [Rattay, 1999].

Figure 2.7: Equivalent circuit diagram of a neuron [Rattay et al., 2002]

Ve represents the external (extracellular) voltage, which can either be

calculated by analytical methods like ideal point sources and idealized sur-

face electrodes, or by numerical methods. These numerical methods are

finite elements, finite differences, boundary element or Galerkin methods.

Anyway, Ve is considered independent by the compartment. Vi is the mean

value of the inner voltage in a specific compartment. Cm is the membrane

capacity. R the axial (electrical) resistance of each compartment. Gm is the

passive membrane conductance. In active models, the membrane current

Iion is calculated by gating mechanisms. Gating variables mathematically

describe the complex interplay of opening and closing ion channels.
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Because there are no current sources within compartments, the sum of

all currents is zero, and the application of Kirchhoffs Law leads to:

d(Vi,n − Ve,n)

dt
·Cm,n+ Iion,n+

[
Vi,n − Vi,n−i

Rn/2 +Rn−1/2
+

Vi,n − Vi,n+i

Rn/2 +Rn+1/2

]
= 0

(2.3)

This representation where n is the compartment number allows us to see

the three types of current in every single compartment:

Membrane Current

Ic =
d(Vi,n−Ve,n)

dt · Cm,n describes the current which is needed to load and

unload the electrical capacity created by the cell membrane.

Ionic Current

Depending on the model, a passive approach Iion = gm · V or an active

approach, for instance Iion = INa + IK + Ileak by Hodgkin Huxley (Chapter

2.7.1), is used to calculate the ionic current. Iion can consist of multiple ion

channel types, as proposed in recent membrane models [Fohlmeister et al.,

2010, Fohlmeister and Miller, 1997a].

Ohmic Current

Between each compartment and its neighbouring compartments arises a

potential difference, which leads to an ohmic current over the axoplasmic

resistance between the compartments:
(

Vi,n−Vi,n−i

Rn/2+Rn−1/2
+

Vi,n−Vi,n+i

Rn/2+Rn+1/2

)
2.6.2 Activating Function

Taking into consideration that the reduced membrane voltage V (the po-

tential difference between the interior and exterior of the membrane) is cal-

culated by

V = Vi − Ve − Vrest (2.4)

leads to a set of differential equations which describe the time dependence

of the potential in every compartment n:
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d(Vn)

dt
=

1

Cm,n

[
−Iion,n +

Vn − Vn−i

Rn−1/2 +Rn/2
+

Vn+1 − Vn

Rn+1/2 +Rn/2
+ . . .

+
Ve,n−1 − Ve,n

Rn−1/2 +Rn/2
+

Ve,n+1 − Ve,n

Rn+1/2 +Rn/2
+ . . .

]
(2.5)

This allows the isolation of the extracellular voltage Ve, in order to set

up an equation that describes the effect of a virtual stimulation current on

a compartment n:

fn =
1

Cm,n
·

[
Ve,n−1 − Ve,n

Rn−1/2 +Rn/2
+

Ve,n+1 − Ve,n

Rn+1/2 +Rn/2
+ . . .

]
(2.6)

In other words, when Vi = Vrest (the neuron in resting state), the ac-

tivating function fn describes the voltage change of the membrane of one

compartment. This is used to calculate the stimulating influence of an ex-

ternal electric field on the potential of each neuron [Rattay, 1999].

2.7 Membrane Models

2.7.1 Hodgkin Huxley Model (1952)

Alan Lloyd Hodgkin and Andrew Fielding Huxley found in 1952, in exper-

iments with the nonmyelinated axons of the giant squid, a mathematical

description for the currents passing through a cell membrane [Hodgkin and

Huxley, 1952]. The squid axon was used because of its extremely large di-

ameter. This was important to perform the space clamp method, where

electrodes are inserted into the cell. This finding describes the total ionic

current as a sum of 3 single currents carried by sodium ions INa, potassium

ions IK , and a leakage current Il made up of chloride and other ions.

Iion = INa + IK + Ileak (2.7)

These currents arise from different ions inside and outside of the cell

membrane. Electrically speaking, the cell membrane itself acts as a capacitor

while the ion channels, because of their active ion transportation, act as a

battery or current source. [Gerstner and Kistler, 2002]
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Figure 2.8: Schematic diagram for the Hodgkin-Huxley model [Gerstner
and Kistler, 2002].

Each of these currents is expressed by a conductance g, the membrane

potential E and a specific ionic equilibrium potential ENa, EK , El. E is

the absolute potential and V is a relative potential, relative to the resting

potential. This leads to the well known form of the Hodgkin Huxley equation

for ion currents:

INa = ḡNa ·m3 · h · (V − VNa) (2.8)

IK = ḡK · n4 · (V − VK) (2.9)

Il = ḡl(V − Vl) (2.10)

ḡNa ḡK and ḡl are a constant for conductance per cm2. The so-called

gating variables n, m and h are statistical (dimensionless) variables between

0 and 1 and evolve according to these differential variables [Rattay et al.,

2002]:

dm

dt
= [−(αm + βm) ·m+ αm] · k (2.11)

dh

dt
= [−(αh + βh) · h+ αh] · k (2.12)

dn

dt
= [−(αn + βn) · n+ αn] · k (2.13)

k = 30.1(T−0.63) (2.14)

Figure 2.9 shows the steady state gating variables presented as a function

of voltage. The inhibiting character of h can be seen very clearly, contrary

to the exciting character of m and n ion gating variables.

T represents the temperature. The original temperature was 6.3 ℃ and

a temperature coefficient k for temperatures up to 31.2 ℃ was introduced.
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Figure 2.9: The two sodium (m, h) and one potassium (n) variables,
adapted from Galbraith [Galbraith, 2011].

At higher temperatures, a so-called heat block will set in, which means the

axon stops AP propagation [Rattay et al., 2002]. α and β are called rate

constants and are gained by fitting curves on experimental data. α describes

the transfer rate of ions from outside, in and β is the transfer from inside,

out [Hodgkin and Huxley, 1952].

Including the capacity property of the membrane, we get the total mem-

brane current density i as a function of time and voltage, which is according

to Kirchhoff’s laws 0:

i = cm · d(V )

dt
+ ḡK ·n4 ·(V −VK)+ ḡNa ·m3 ·h ·(V −VNa)+ ḡl ·(V −Vl) = 0

(2.15)

For applications where an intracellular stimulation is simulated, a stim-

ulus current in the cell is needed. In this case, a stimulation current Istim

is added to the existing currents (ionic current and the capacitive current)

[Rattay et al., 2002]

I = Ic + Iion + Ileak + Istim (2.16)

22



CHAPTER 2. BACKGROUND

d(V )

dt
=

[
−ḡNa·m3·h·(V−VNa)−ḡK ·n4·(V−VK)−ḡl·(V−Vl)+istim

]
/cm

(2.17)

Equation 2.17 describes the membrane voltage over time for an active

single compartment model in current clamp mode. Figure 2.10 shows two

action potentials during a 25ms, 10µA/cm2 pulse.

Figure 2.10: 25ms and 10µA/cm2 input pulse (green), noticeable Hodgkin
Huxley spikes (blue) with refractory period between the spikes [Galbraith,
2011]

2.7.2 Fohlmeister and Miller Model (1997)

Jurgen Fohlmeister and Robert Miller developed in their space-clamp experi-

ments on retinal ganglion cells (RGC) of the tiger salamander, an extension

to the gating mechanism model of Hodgkin and Huxley (Chapter 2.7.1).

This model consists of 5 non-linear ion channel types which gate the cur-

rents INa, IK , ICa, IK,A and IK,Ca, and 1 linear leakage channel IL. While

this model is one of the most important models for retinal simulation, it is

derived from amphibian tissue and is not fully representative of the human

retina. The basic concept of the membrane current consisting of these 5

ionic currents was already published by Lipton and Tauck in 1987 [Lipton

and Tauck, 1987].
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Sodium Current

The non-linear sodium channels are voltage gated and consist of activating

αm and βm and inactivating αh and βh channels. The corresponding INa is

the fastest reacting current and is calculated by:

iNa = ḡNa ·m3 · h · (V − VNa) (2.18)

VNa and ḡNa are, like in Hodgkin & Huxley, the constant equilibrium po-

tential VNa = +35mV for sodium and channel density ḡNa 50 mS/cm2.

Delayed Rectifier Potassium Current

Being activated by the influence of Na, the IK (or delayed rectifier) might

also play a role in stabilizing the behaviour of the cell, without any inacti-

vating component. The equilibrium potential VK of potassium is −75mV ,

while channel density ḡK is 12 mS/cm2.

iK = ḡK · n4 · (V − VK) (2.19)

A-type Potassium Current

A transient A-type (rapidly inactivating) potassium current IK,A is calcu-

lated by:

iK,A = ḡA · a3 · hA · (V − VK) (2.20)

IK,A, with its activating αA and βA and inactivating αhA and βhA chan-

nels, plays an important role in stabilizing the cell (i.e. inhibits spontaneous

firing). It behaves similarly to a delayed rectifier, but with an additional in-

activating behaviour. The corresponding potassium activated channels have

a channel density ḡA of 36 mS/cm2 [Fohlmeister and Miller, 1997a].

Calcium Current

The voltage-dependent calcium current ICa is gated without inactivating

channels and plays an important role in controlling impulse frequency, by

removing the cytoplasmic calcium. This is caused by the lack of inactivation

kinetics, therefore the reduction of calcium in the cell happens through the

concentration difference between inner and outer cell after an action poten-

tial. The current is driven by calcium channels (ḡCa = 2.2mS/cm2) αc and
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βc. The Ca channels have no inactivating kinetics, but appear inactivating

because of increasing intracellular calcium concentration.

iCa = ḡCa · c3 · (V − VCa) (2.21)

As previously mentioned, VCa is not defined as an equilibrium potential

constant like the other potentials, but modelled according to the Nernst

equation (Equation 2.22). R is the gas constant (8.31441 J ·K−1 ·mol−1),

T is the temperature in Kelvin and in this case 295.15 K (22℃), z is valence

and in case of [Ca2+] 2, F is the Faraday constant (96485 C/mol), [Ca2+]i is

the internal calcium concentration, derived by equation 2.26 and [Ca2+]e is

the external calcium concentration (fixed to 1.8 mM) [Rattay et al., 2002].

VCa =
RT

zF
· ln [Ca2+]e

[Ca2+]i
(2.22)

Ca-Activated Potassium Current

Calcium activated potassium current IK,Ca is modelled to respond to influx

through the calcium channels. This type of potassium channel is not directly

dependent on voltage and has only activating characteristics.

iK,Ca = gK,Ca · (V − VK) (2.23)

The channel density gK,Ca is, contrary to the other gating types, not

constant, but derived from the ionic concentration in the RGC. It depends

on the influx of Ca2+ in the cell, the cell size and changes in the internal

calcium Ca2+i concentration [Fohlmeister and Miller, 1997a] :

gK,Ca = ḡK,Ca ·
([Ca2+]i/Ca2+diss)

2

1 + ([Ca2+]i/Ca2+diss)
2

(2.24)

ḡK,Ca = 0.05 mS/cm2 (2.25)

Ca2+diss is the calcium dissociation constant 10−6M(mol/dm3). [Ca2+]i

describes the inner cellular Ca2+ concentration and is, in case of no Ca2+

influx, equal to the residual concentration [Ca2+]res = 10−7M , otherwise it

can be calculated (for spherical compartments with the radius r) [Fohlmeis-

ter et al., 1990, Fohlmeister and Miller, 1997a]:

d[Ca2+]i
dt

=
3

r
· −iCa

2F
− [Ca2+]i − [Ca2+]res

τCa
(2.26)
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3
r is the surface-area-to-volume ratio of a sphere. For compartment

shapes other than spherical compartments, a generic form of Equation 2.26

can be used, where A is the surface area and V the volume of the compart-

ment:

d[Ca2+]i
dt

=
A

V
· −iCa

2F
− [Ca2+]i − [Ca2+]res

τCa
(2.27)

The calcium time constant is set in all Fohlmeister models to τCa =

1.5ms. IK,Ca has been suspected of playing a role in stabilizing the be-

haviour of the cell, controlling the impulse frequency and determining the

duration of the action potentials [Fohlmeister and Miller, 1997a].

Capacitive Current (Membrane Current)

The capacitive current or cell membrane current is modelled like in Hodgkin

and Huxley (Figure 2.8) and uses a membrane capacity cm = 1µF/cm2,

which has been found in neuronal cells of squid, mice and other vertebrae

[Gentet et al., 2000].

IC = Cm · d(V )

dt
(2.28)

Leakage Current

The leakage current iL is the only linear leakage current in this model and

represents the input resistance of the stimulating input. The constant equi-

librium potential VL = −60mV and channel density ḡL = 1 mS/cm2 vary

on different studies. The input resistance Rn of 1GΩ has been assumed.

IL = ḡL(V − VL) (2.29)

Ion Channel Stimulation

Like in the Hodgkin Huxley case, the 5 ionic currents and the membrane

current follow Kirchoff’s law and equal the stimulating current if present,

otherwise being zero:

Istim = Cm · d(V )

dt
+ INa + ICa + IK + IK,A + IK,Ca + IL (2.30)
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Gating Dynamics

Due to lack of detailed knowledge about the gating dynamics of membrane

channel molecules, the gating stoichiometry is modelled by the variables m,

h, c, n, hA and a (in equation 2.31 mentioned as x), according to the first

order kinetic equation by Hodgkin and Huxley.

dx

dt
= [−(αx + βx) · x+ αx] (2.31)

The resting state for a gating variable can be computed by:

x0 =
αx

(αx + βx)
(2.32)

The detailed parameter (α and β for each channel type) were scaled to

fit the experimental data and can be found in Table 2.1.

channel type α β

Na+ channel activation αm = −0.6·(E+30)

e−0.1·(E+30)−1
βm = 20 · e−(E+55)/18

Na+ channel inactivation αh = 0.4 · e−(E+50)/20 βh = 6
e−0.1·(E+20)+1

Ca2+ channel activation αc =
−0.3·(E+13)

e−0.1·(E+13)−1
βc = 10 · e−(E+38)/18

K+ channel activation αn = −0.02·(E+40)

e−0.1·(E+40)−1
βn = 0.4 · e−(E+50)/80

A channel activation αA = −0.006·(E+90)

e−0.1·(E+90)−1
βA = 0.1 · e−(E+30)/10

A channel inactivation αAh
= 0.04 · e−·(E+70)/20 βAh

= 0.6
e−0.1·(E+40)+1

Table 2.1: Rate constants for Na, Ca, K and A channels of Fohlmeister et
al. 1997 [Fohlmeister and Miller, 1997a].
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2.7.3 Fohlmeister, Cohen and Newman Model (2010)

Further research of Fohlmeister, Cohen & Newman regarding the spiking be-

haviour of rat and cat RGCs at different temperatures enabled the gathering

of more detailed information of ion channels in mammals. Different parts of

the retinal cell consist of a distinct density and distribution of ion channels.

Apart from the ion channels, the temperature2 was also found to influence

the electric behaviour of ganglion cells in a non-linear way [Fohlmeister et al.,

2010].

This model can be assumed as a modification of the Fohlmeister & Miller

Model (Chapter 2.7.2) and therefore, it consists of the same five channel

currents, namely:

INa, ICa, IK , IK,A, IK,Ca (2.33)

IK,A, however, was found to be very small in comparison to IK and was

therefore excluded ( IK,A = 0 ). ICa was also found to be very small, but

plays an important role in balancing the potassium current at the falling

action potential.

The mathematical structure of the currents is equal to Fohlmeister &

Miller Model (1997) 2.7.2 and described by the equations 2.18 (INa), 2.19

(IK), 2.21 - 2.22 (ICa). The calcium activated potassium current IK,Ca is

gated like in equations 2.24 to 2.26, because of the more complex calcium

equilibrium. In contrast to Hodgkin & Huxley, in both Fohlmeister Models

(Fohlmeister & Miller (1997) and Fohlmeister Cohen Newman (2010)), there

is almost no temporal overlap at sodium and potassium currents (Figure

2.11).

Again, in the absence of any other current sources and sinks, the elec-

trotonic current can be calculated by applying Kirchoff’s law:

Istim = Cm · d(V )

dt
+ INa + ICa + IK + IK,Ca + IL (2.34)

The equilibrium potentials and the channel densities are different from

the previous model. The channel densities depend as well, on the re-

gion of the cell, but remain unchanged througout wide temperature ranges.

2This thesis is especially focused on comparability to Fohlmeister & Miller model 1997
and Hodgkin & Huxley model, and therefore uses a temperature between 20℃ and 23℃ .
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Figure 2.11: Estimated membrane currents during action potential
[Fohlmeister et al., 2010]

cat rat

ḡNa ḡK ḡCa ḡNa ḡK ḡCa

Soma 69.40 32 1.39 72.00 50.40 1.20

initial segment
/ axion hillock

100 50.10 0.836 141.10 67.80 0.753

Axon 124 50 04 124 50 0

Table 2.2: G-bar conductances [mS/cm2] for different channel types (Cat
Beta, Rat Type I) and different neuron parts (Fohlmeister et al. 2010)
[Fohlmeister et al., 2010].

cat rat

ḡNa ḡK ḡCa ḡNa ḡK ḡCa

Sodium Band 1240 50 1.5 1240 50 1.5

Table 2.3: Modified G-bar conductances [mS/cm2] for sodium channel
band (Cat Beta, Rat Type I). Sodium conductance has been increased 10-
fold, compared to Table 2.2. [Fohlmeister et al., 2010, Jeng et al., 2011].
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VNa VK VL

58.34 -97.56 -62.17

Table 2.4: Equilibrium potentials [mV] for different channel types and
23.5℃ [Fohlmeister et al., 2010].

A leakage current IL was also found, but with 0.1mS/cm2 ( 10.000Ω/cm2),

only a relatively small effect was measured.

The gating kinetics as well as the calculation of the resting state, is equal

to the gating Hodgkin Huxley and to Fohlmeister et al. 1997 (Equations 2.31

and 2.32). The structure of the standard gating rates αx and βx is equal,

but the parameters are different from the gating rate constants compared

to Fohlmeister et al. 1997, see Table 2.5.

channel type α β

Na+ channel
activation

αm = −2.804·0.463·(V+35)

e−0.1·(V +35)−1
βm =

93.46 · 0.463 · e−(V+60)/18

Na+ channel
inactivation

αh =
1.869 · 0.463 · e−(V+55)/20

βh = 28.04·0.463
e−0.1·(V +25)+1

Ca2+ channel
activation

αc =
−1.4·0.463·(V+15)

e−0.1·(V +15)−1
βc =

46.68 · 0.463 · e−(V+40)/18

K+ channel
activation

αn = −0.0984·0.478·(V+32.5)

e−0.1·(V +32.5)−1
βn =

1.969 · 0.478 · e−(V+58.5)/76

Table 2.5: Rate constants for Na+, Ca2+, and K+ channels for temper-
atures of 23.5℃. The “Kinetic Q10 Factors” are for Na+ and Ca2+ 0.463
and for K+ 0.478, respectively [Fohlmeister et al., 2010]
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Comparison of Membrane

Properties

3.1 Ionic Current Flow

The membrane current and current density of an intracellular stimulated

cylindrical soma were simulated. Additionally, these simulated currents were

integrated over time to determine the absolute charge and relative charge

density of an AP through the ionic channels of a neuron. For the simula-

tions, the soma was chosen, because the Fohlmeister model was originally

developed to simulate somas and, then extended for other neuronal parts.

The simulated soma has a radius of 5µm (diameter 10µm) and a length of

30µm (which leads to a surface area of 1099.56µm2, including lateral sur-

faces) and was simulated using a single compartment model. By convention,

the inflow of current is marked by a negative sign, while the outflow has a

positive sign.

In preparation for the current flow experiments, the minimal stimula-

tion threshold was evaluated. A minimal stimulation threshold is the single

current density which, when injected in the neuron for a stimulation time

of 0.5ms, initializes an AP within 5ms (listed in Table 3.1a) ). If not ex-

plicitly stated otherwise, the double of the highest imin has been used, in

order to assure a spike without low-stimulus artefacts. A higher stimula-

tion current density in the stimulus has little effect, because the membrane

dynamics causes the ionic currents after the stimulus overcomes the thresh-

old. For instance, Hodgkin-Huxley model stimulated at a threshold level of

36µA/cm2 instead of 118µA/cm2, increases the sodium-charge density from

−338.34nC/cm2 to −338.98nC/cm2, which is much less than 1%.
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Fohlmeister
1997

Fohlmeister
2010

Hodgkin-
Huxley

a) imin[µA/cm2] 59 53 36

b) istim[µA/cm2] 118 118 118

c) istimDP [µA/cm2] 177 159/236 /

Table 3.1: a) Minimal current density to initiate an AP by a 0.5ms pulse
in soma of a specific membrane. b) stimulated current density with a 0.5ms
pulse for power consumption experiments, c) stimulated current density with
a 0.5ms pulse for double-pulse experiment (Chapter 3.2)

The simulation was performed at 20℃ for Hodgkin & Huxley and Fohlmeis-

ter et al. 1997 model and 23℃ Fohlmeister et al. 2010 model, respectively,

to obtain comparable results between amphibian and mammalian electro-

physiology. The HH model does not generate APs at mammalian body

temperature (heat block) [Fohlmeister et al., 2010, Fohlmeister and Miller,

1997a, Greenberg et al., 1999, Hodgkin and Huxley, 1952].

Fohlmeister 1997 Fohlmeister 2010 Hodgkin-Huxley

Na -79.042 (-0.869) -123.826 (-1.551) -338.98 (-1.362)

K 143.056 (1.573) 191.846 (2.612) 374.73 (2.110)

K(A) 75.750 (0.833)

K(Ca) 3.103 (0.034) 0.270 (0.003)

Ca -119.556 (-1.316) -36.823 (-0.405)

Leak 3.729 (0.040) 3.233 ( 0.035) -10.72 (-0.11785)

Table 3.2: Ion charge density through the membrane, used up by the
neuron to fire an AP in [nC/cm2]. Absolute charge for this specific neuron
in parenthesis [pC].

The results in Table 3.2 show an increased energy efficiency in higher

developed neurons. The cat soma, simulated by Fohlmeister et al. 2010

model, needs therefore only 50.86% of the energy to spike an action potential

(AP), than the total energy used by the squid axon, modeled by Hodgkin

and Huxley [Fohlmeister et al., 2010, Hodgkin and Huxley, 1952]. This

behaviour can be explained by the simultaneous (activating) sodium current

and (deactivating) potassium current in Hodgkin & Huxley membrane: the

sodium current has to overcome the counteracting potassium current in

order to spike an AP and has to remain high during the AP (Figure 3.2).
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In Fohlmeister et al. 2010 (Figure 3.4), the potassium current starts to

work against the sodium current with a much higher delay, which reduces

the time because these currents are counterparts, therefore increasing the

energy efficiency. All currents found to be monophasic, so they kept their

polarity during the impulse.

Na K K(A) K(Ca) Ca Leak absolut
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Fohlmeister 1997 Fohlmeister 2010

Hodgkin-Huxley

Figure 3.1: Power consumption comparison of individual ion types in dif-
ferent membrane models. Stimulation current density of i = 118µA/cm2

(Table 3.1 b) )

An interesting finding is that the more sophisticated cat soma from

Fohlmeister et al. 2010 has a more increased energy demand on sodium (Na)

and potassium (K) channels than the tiger-salamandar soma in Fohlmeister

et al. 1997, despite the low sodium conductance of gNa = 39.29mS/cm2 in

the cat-cell, compared to the tiger salamanders gNa = 50mS/cm2 [Fohlmeis-

ter et al., 2010, Fohlmeister and Miller, 1997a]. This increased energy con-

sumption is compensated by a reduction of the calcium current and the

absence of an A-type potassium current (iK(A)) in the cat soma. These

optimizations in the membrane lead to 15.76% overall improvement of en-

ergy efficiency of the feline neuron, compared to the tiger salamandar soma.

This energy efficiency advantage might allow for a faster reaction time of

the more developed cat soma (Figure 3.3 and 3.4).
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Figure 3.2: Current diagram of Hodgkin and Huxley [Hodgkin and Hux-
ley, 1952]: Intercellular stimulation with a stimulation. The negative INa

double-peak is not an artefact, but a typical behaviour for Hodgkin-Huxley.
Model properties: Morphology: Single compartment; Channels: Hodgkin
and Huxley; Temperature: 20℃; Pulse: monophasic 0.2ms; Stimulus cur-
rent density: i = 118µA/cm2
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Figure 3.3: Current diagram of Fohlmeister et al. 1997 [Fohlmeister and
Miller, 1997a]. Model properties: Morphology: Single compartment; Chan-
nels: Fohlmeister et al. 1997 (gl = 0.05mS/cm2); Temperature: 20℃; Pulse:
monophasic 0.2ms; Stimulus current density: i = 118µA/cm2
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Figure 3.4: Current diagram of Fohlmeister et al. 2010 [Fohlmeister et al.,
2010]. Morphology: Single compartment; Channels: Fohlmeister et al. 2010;
Temperature: 23℃; Pulse: monophasic 0.2ms; Stimulus current density:
i = 118µA/cm2
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3.2 Double-Pulse Experiment

Methods

To compare the inter-peak times of both Fohlmeister models in a soma, a

double-pulse experiment with a variation of inter-pulse time was performed.

The stimulation in both models was applied in an intra-cellular manner,

in a single compartment, and with a current density of triple the minimal

threshold, which is 177µA/cm2 for Fohlmeister et al. 1997 and 159µA/cm2

for Fohlmeister et al. 2010 (Table 3.1c) ). Additionally, as a third mea-

surement, the more sensitive Fohlmeister et al. 2010 was stimulated by

4-fold threshold 236µA/cm2. The factor 3 is necessary to keep the spiking

delay low and the second spike within the parameters of this simulation.

Fohlmeister et al 2010 does not show a second spike within the following

parameters when stimulated with a current density of below 115µA/cm2

(4ms inter-pulse time).

An AP was counted as successful stimulation if membrane voltage crossed

0mV within 10ms after start of the simulation. The inter-peak time was

measured on the voltage peak of each AP [Fohlmeister et al., 2010, Fohlmeis-

ter and Miller, 1997a].

Figure 3.5: Input function for intracellular stimulation: t1 = 0.5ms is
the starting time, t2 = 0.2ms is the first pulse, t3 is the inter-pulse-time,
t4 = 0.2ms is the second pulse and t5 is the cool-down time, until end of
simulation. t3 and t5 are not in scale; t1+t2+t3+t4+t5 = 10ms (constant).

Inter-pulse time

Figure 3.6 shows the relation between inter-peak-time (i.e. duration between

two APs) and inter-pulse time (i.e. t3 in Figure 3.5). At higher inter-pulse

times t3 > 3ms, the curve ascends at an angle of 45° because after the

refractory period, the two AP do not affect each other. At shorter inter-

pulse times t3 < 3ms, the second AP interferes with the refractory time

of the first AP, which leads to different behaviours of the three depicted

simulations.

At inter-peak times below 3ms, the Fohlmeister et al. 2010 model shows

quite a surprising effect of a second pulse, which does not answer the expec-
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Figure 3.6: Relation of inter-peak-time to inter-pulse-time.

tations in time behaviour, but can be explained by charging the capacitive

part of the membrane during the relative refractory time after the first spike.

This charge of the second pulse reduces the time needed for self-stimulation,

and therefore the second spike which can be seen after 2ms, is an early

self-stimulation. Self-stimulation happens in a 236µA/cm2 stimulated or

unstimulated Fohlmeister et al. 2010 as well, but not within the simulation

time of 10ms.

Furthermore, it can be seen that in Fohlmeister et al. 2010 a higher

stimulation pulse (236µA/cm2) can overcome the relative refractory time

from 1.5ms inter-pulse time on, similar to the Fohlmeister et al. 1997.

Please note that the Fohlmeister et al. 1997 is stimulated much closer to

the minimal threshold and a second AP is not elicited when stimulated
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in refractory time. Fohlmeister et al. 1997 however, does not show self-

stimulation. The AP caused by the three different models is illustrated at

an inter-pulse time of 2.25ms (Figure 3.7) and 4ms (Figure 3.8). Fohlmeister

et al. 1997 has a more menial peak than Fohlmeister et al. 2010, which is a

side-effect of the already shown higher energy efficiency [Fohlmeister et al.,

2010, Fohlmeister and Miller, 1997a].
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Figure 3.7: Comparison of the inter-peak-time of Fohlmeister et al. 2010
and Fohlmeister et al. 1997 [Fohlmeister et al., 2010, Fohlmeister and Miller,
1997a] with 2 stimuli and an inter-pulse-time t3=2.25ms. Model proper-
ties: Morphology: Single compartment; Channels: Fohlmeister et al. 2010
and Fohlmeister et al. 1997; Temperature: Fohlmeister et al. 1997: 20℃/
Fohlmeister et al. 2010: 23℃; Pulse: 2x monophasic 0.2ms;
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Figure 3.8: Comparison of the inter-peak-time of Fohlmeister et al. 2010
and Fohlmeister et al. 1997 [Fohlmeister et al., 2010, Fohlmeister and Miller,
1997a] with 2 stimuli and an inter-pulse-time t3=4ms. Model properties:
Morphology: Single compartment; Channels: Fohlmeister et al. 2010 and
Fohlmeister et al. 1997; Temperature: Fohlmeister et al. 1997: 20℃/
Fohlmeister et al. 2010: 23℃; Pulse: 2x monophasic 0.2ms;
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Self-Stimulation

At standard configuration, self-stimulation only occurs in Fohlmeister et al.

2010 model. Hodgkin & Huxley and Fohlmeister et al. 1997 do not show any

instabilities which compel these models to require higher activation energies.

The self-stimulation is only present in single compartment models. In more

biologically realistic geometries that include soma, axon and dendrites, the

current of the soma gets discharged to other cell parts and therefore stabilizes

the electrical system in the neuron. In single compartment, this effect can

be reached by increasing the leakage conductance gL, which leads to an

increased iL. Without these discharging mechanisms and any other input,

the Fohlmeister et al. 2010 simulated cat soma spikes after 55ms.
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Figure 3.9: Self-stimulation of Fohlmeister 2010, without applying any
current. Model properties: Morphology: Single compartment; Channels:
Fohlmeister et al. 2010 ( gL = 0.1mS/cm2 ); Temperature: 23℃; Pulse:
none;
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Electrode Configuration

Study

4.1 Methods

All simulations were generated in a 2-step procedure:

Step 1: Finite Element Solution

As the first step, an external potential profile is generated in Comsol Multi-

physics using the finite element method (FEM). Hence, a three dimensional

model of a small part of a mammalian retina has been generated as a volume

conductor, under consideration of various material and geometric properties

-as can be found in the literature. This model consists of:

• a block of retinal tissue, size 3x4 cm, formed by 5+2 distinct layers.

(Chapter 4.1.1)

• a four-segmented RGC, placed in the retinal tissue to provide exact

position for potential measurement, but excluded from FEM calcula-

tions (Chapter 4.1.2)

• an electrode carrier consisting of six grounded and one stimulating

elements (Chapter 4.1.3)

A tetrahedral mesh was used to compute the electrical potential at each

point of the geometry with regards to different electrical properties of the

retinal layers. For simplification, this simulation uses a static profile, where
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effects like time-dependent change of the potential caused by neuronal ac-

tivation, electrode impedance, tissue permittivity, and isotropic conductiv-

ity are neglected. As border conditions between the electrodes and the

nearby tissue, Neumann conditions are used. The presented volume con-

ductor model represents a sufficient method for modelling many simulation

tasks.

Step 2: Calculating Membrane Potential

In the second step, the computed external voltages are imported in MAT-

LAB and used to calculate the membrane potentials of the RGC over time.

A compartment model was used considering specific ion channel densities

for each cell section. The current flow through the cell membrane (Chapter

4.1.2) was calculated following the Fohlmeister et al. 2010 model [Fohlmeis-

ter et al., 2010]. The differential equations of the membrane potential were

solved by the (non-stiff) ode113 solver included in the MATLAB software

bundle.

The procedure to determine activation threshold included increasing the

input voltage on the stimulating electrodes, starting from 0mV at −1mV

increments, until a propagating AP starts to show.

4.1.1 Retinal Tissue Model

The retinal tissue is simulated in a static model by a volume conductor

consisting of a passive model of 5 inner layers and 2 border layers (vitreous

and choroid). This volume conductor is defined according to physiological

criteria. Each layer averages the microscopic tissue properties to a single

macroscopic parameter, the specific electric conductivity sigma which is as-

sumed to be isotropic. Real tissue was found to be inhomogeneous and

anisotropic, as well as with variations in the thickness of the layers [Kar-

woski et al., 1985]. Previous simulations showed a time dependence of the

potential distribution, which was neglected in this simulation [Dokos et al.,

2005].
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thickness [µm] σ [S/m] ρ [Ω· m]

Vitreous layer 25 1 1

RGC layer 20 0.014 70.60

Inner Plexiform layer 35 0.0549 18.2

Outer / Inner nuclear layer 60 0.0167 60

Sub-retinal space (Rods & Cones) 55 0.0787 12.70

Retinal Pigmented epithelium 20 8.13e-4 1230

Choroid [Joarder et al., 2011] 100 0.4348 2.30

Table 4.1: Layers, size, conductivity σ and resistivity ρ of retina model
(top-down) [Karwoski et al., 1985]

The electrical and geometric properties are based on experiments in frogs

[Karwoski et al., 1985]. On top of the retinal structure, a thin vitreous layer

has been placed to achieve a distance of 30µm between the RGC-layer and

the electrodes (Chapter 4.2). The electrode carrier used in clinical appli-

cations is an electric insulator such as polyamide foil (used in experiments

of Zrenner and coworkers (2010) ), and electrically shields the rest of the

vitreous body against the retina. Thus, the carrier and the upper vitrous

body have no electrical effect and, therefore haven’t been modelled. At the

bottom of the structure, a choroid layer was added, which delimits the retina

and acts as an electrical insulator [Zrenner et al., 2011].

4.1.2 Retinal Ganglion Cell

In the upper area of the RGC layer, a multi-segment neuron was placed,

based on a model derived from the tiger salamander RGC [Fohlmeister and

Miller, 1997b]. The neuron was inserted into a volume conductor to derive

the exact positions where to calculate the membrane potential. This cell

was excluded from all FEM solving steps. The neuron was composed of 4

unmyelinated neuronal segments (Table 4.2): the soma was modelled as a

sphere with the highest distance to the electrode and partly placed in the

inner plexiform layer. Attached to the soma at a 26 degree angle, the axon

hillock (AH) is placed. For simplification, the AH is modelled as cylinder and

uptakes the entire slope, where morphological studies showed a continuation

of the AH aligned to the axon. The 26 degrees were derived by passing the

40µm segment on a height-difference of 25µm between sodium channel band

(SOCB) and soma. This means that the axon bend is the starting region of

the SOCB.
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diameter [µm] length [µm] compartments

Soma 16 / 1

axon hillock 1 40 3

SOCB 1 40 3

DA 1 1500 93

Table 4.2: Geometric properties of the multi-compartment RGC model

Because of the electro-physiological and geometric properties of the SOCB,

stimulation at electrode locations close to he SOCB results in the lowest

threshold. Since the AP is initiated in the axon and in the SOCB first, the

active membrane behaviour of dendrites has no impact on the membrane

potential during cathodic stimulation from the epi-retinal space. According

to the activating function, the passive properties can influence the neuron,

but this influence is rather small. As a result of this, the dendrites have

been neglected in this simulation to minimize computational effort.

Figure 4.1: Modelled neuronal parts, y-z view

Complementary to the morphological structure, a mathematical model

for calculating the membrane potential was added. The neuron was there-

fore divided into 100 compartments; each between 13.34µm and 16.13µm

long, which is coarser than in previous studies where 1µm slices were used

[Greenberg et al., 1999]. This decreased precision does not show signifi-

cantly different results and has subsequently been used for all simulations.

The compartments are connected to each other using the electrical network

model and the intracellular resistivity was set for all compounds to 1.1Ωm

[Coleman and Miller, 1989, Fohlmeister et al., 2010, Rattay, 1999].

The stimulation spot of the RGC was either directly above the sodium

channel band (Chapter 4.2.3) or at the center of the axon (Chapter 4.2.2),

where the center electrode stayed during distance variations on a constant

spot above the neuron.
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Figure 4.2: Neuron placed in retinal tissue beneath electrode, y-z view

4.1.3 Electrode Model

In order to stimulate the target neuron, 40µm diameter, disc-shaped plat-

inum electrodes are used. Electrodes of this kind have been used in previous

studies [Margalit et al., 2002]. They are modelled as cylinders, embedded in

insulating substrate, and have been arranged in a hexagonal configuration

in the vitreous body for epi-retinal stimulation. The guard-to-center spacing

varies from 3.3µm to 248.6µm (minimal distance between center electrode

border and guard electrode border, see Table 4.3). Other representations are

center-to-center spacing (P), where the distance (y-axis) between the center

of the guards is measured. Additionally, at the border-to-border spacing

(B) the x-axis the most outer points (left and right) is measured.

For simplification, only one set of electrodes (seven stimulation channels)

are simulated. The effect of crosstalk -especially at small electrode spacings-

between enabled and disabled stimulating electrodes, can not be simulated

on this small setup [Wilke et al., 2011].
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1 2 3 4 5 6 7 8

S 3.3 17.73 46.6 75.47 104.33 133.25 190.94 248.675

P 75 100 150 200 250 300 400 500

B 126 155 213 270 328 386 501 617

Table 4.3: Overview of electrode-distances 1-8 in µm: Space between 2
electrodes (S) (further called guard-to-center spacing), Center-To-Center
Spacing (P), border-to-border Spacing (B)

In order to achieve the stimulation of a pattern in the retina, electrodes

ideally should inject current in a limited spatial region, which enables focal

stimulation of target neurons without interfering with adjoining neurons. To

limit the effect of the applied potential on distant parts of the retina, each

stimulating electrode is guarded by six grounded electrodes (guards), I - VI

in a hexagonal shape (Figure 4.3).

The computation of the finite element model could be massively im-

proved by using symmetry axes. The neuron was only a representation of a

single cell in the RGC-layer where its electrical properties are already con-

sidered in the macroscopic layer parameters. It therefore, has no influence

on the properties of the RGC layer and can be ignored for the finite element

solution. Further to this, the geometry could be divided into 6 electrically

equal parts, and solving one of these parts is sufficient. This would reduce

the computational effort by nearly factor 6. On the other hand, this finite-

element model is relatively simple and can be calculated within a decent

time.1

1meshing: 8s, solving 126s
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Figure 4.3: Hexagon shaped electrode configuration: electrodes I - VI are
grounded (0V) and on the surface of electrode (C) an electric potential is
applied. Electrodes with index a show the maximal distance of 248.6µm
to center (guard-to-center spacing), while b indexed electrodes denote elec-
trodes with the minimal distance of 3.3µm to center (all distances in scale)
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4.1.4 Stimulation Pulse

The basic criteria for designing a stimulation pulse for biological purposes,

formulated by Merrill et al, reads as follows: The electrode potential must be

kept within a potential window where irreversible Faradaic reactions do not

occur at levels that are intolerable to the physiological system or the electrode

[Merrill et al., 2005] Applying this rule in clinical applications is inevitable,

but it is still often ignored in simulations. Therefore, the influence of charge

balanced pulse compared to monophasic pulse has been analysed in one

simulation.

If not explicitly stated otherwise, the simulation was driven by a monopha-

sic pulse profile of 200µs length (Figure 4.4a), with a negative (cathodic)

potential (relative to the grounded return electrode) applied on the center

electrode. In general, negative pulses have lower thresholds than positive

ones [Dokos et al., 2005, Rattay and Resatz, 2004]. Without any stimulating

voltage, the Fohlmeister et al. 2010 neuron spikes after 14 ms, independent

of the guard-to-center spacings [Fohlmeister et al., 2010]. All simulations

were running for 5ms, and an AP was taken into consideration only if the

AP occurred and reached its maximum within this time span. Because of

these short simulation times, the previously described self-stimulation does

not significantly influence the results.

Figure 4.4: Function of input potential over time. t1 to t4 are in
scale. t1=0.5ms, t2=0.2ms, t3=0.5, t4=0.2ms, t5=3.5ms (not in scale) a)
monophasic pulse b) Cathodic-Anodic pulse: charge balanced input pulse

Destructive stimulation effects can be caused by two reasons: one of

which is exceeding the charge and current density limits, the other being

charge accumulation. While current and charge density will be topics in

the following pages, an adaptation of the stimulation pulse can avoid charge

accumulation. An additional discharging pulse needs to be added in or-

der to achieve a charge balanced stimulation. This pulse will prevent net

charge accumulation by unloading the capacitive properties of the tissue
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in the chemical surrounding of the electrode. A disadvantage of this dis-

charging pulse is its stimulation-inhibiting effect. To weaken this effect, the

inter-pulse intervall (t3) is used to prevent the AP suppression. If ignored,

destructive effects like electrolysis, harm the tissue and also the implanted

electrodes. Furthermore, dissolving of the electrode can occur whereby some

metal ions have a toxic effect on neural tissue.

Since previous simulations have shown a small threshold-decreasing effect

of the second pulse in Fohlmeister et al. 1997 model, the influence was found

nearly negligible [Fohlmeister and Miller, 1997b, Jeng et al., 2011]. The re-

sponse of a biphasic pulse on Fohlmeister 2010 has not yet been documented

in literature. In previous experiments on feline retinas, cathodic-first stim-

ulation has been found to be more effective than anodic-first stimulation

[Dokos et al., 2005, Schanze et al., 2002]. Therefore, the voltages carry a

negative sign.

The second pulse however, can also elicit an undesired AP. Due to this, a

bipolar pulse- where the second pulse had double the pulse length, but half

of the pulse size (and therefore an equal charge) (Figure 4.4b ), separated by

0.5ms inter-pulse separation time [Jensen and Rizzo, 2008]- has been used

as stimulation pattern on the SOCB region.

Interestingly enough, the activation threshold increased an average of

18% in comparison to the monophasic pulse, but the sensitivity towards

sharpness of the voltage profile decreased. Figure 4.16 shows the effect of

a biphasic pulse on the minimal stimulation potential (red dashed line), in

comparison to a monophasic pulse (blue solid line).

4.1.5 Finite Element Method (FEM)

Errors and Validation

The finite element method is a powerful tool for analysing complex physical

problems. For laymen especially, it is tempting to trust results based on

predefined settings and automatic configuration, since it can lead to fast

results and impressive images. These simulations might, however, miss the

actual point of acquiring realistic results and become worthless. Therefore

Verification and Validation (V&V) is an important part of finite element

analysis (FEA) [Pointer, 2004].

In the present simulation, the numerical error was reduced from several

thousand percent at automatic settings and simple geometry, to less than

1%, by a bundle of optimizations. All numbers are generated by SOCB
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stimulation, center-to center spacing: 190µm and 1V input potential. Fur-

thermore, it has to be kept in mind that an error which is caused by insuffi-

cient geometry will propagate, and will amplify any future errors that occur

further on in the process.

In general, the errors in FEA can be divided in 3 categories [Shah, 2002]:

• User Error

Error caused by incorrect use of the FEA-software.

• Modeling Error

Error caused by incorrect or insufficient geometry, boundary condi-

tions, solver settings and physical model.

• Discretization Error

Error caused by meshing method.

It is difficult to verify the accuracy of the solution, especially if there

is no experimental data to compare with. There is no exact procedure to

measure the accuracy of the FEA solution, since different physics require

different methods. Two distinctive tools for investigating the error rate are

used for the present simulation, and both criteria must be satisfied:

1. Error Norm

The model has to follow the basic law of energy conservation. This

means that for a stationary (time-independent) solution, all currents

entering the model will need to exit as well. To measure the error

norm of the entire model, the percentage of incoming and outgoing

current has been calculated. As a rule of thumb, these values have

to be below 15% for the entire model, and below 10% for the region

of interest [Shah, 2002]. If not explicitly mentioned otherwise, all

numerical error rates in this simulation were calculated by this method

and improvements were regarding the final solution.

2. Convergence Plot

The convergence plot (Figure 4.5) is one of the most important indica-

tors of an accurate solution. It describes the relative difference between

the last two iteration steps. This curve needs to be verified graphically

and must provide at least 3 iterations. Moreover, the error rate has to

be continuously decreasing. Still, even with a promising convergence

curve, the solution might contain significant errors [Pointer, 2004].
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Figure 4.5: Convergence plot of SOCB stimulation, guard-to-center spac-
ing: 190µm. Please note: y-axis is logaritmic

Solver Optimization

The solver tolerance is the allowed difference (in magnitude) between two

iterations in the final solution. If this value is reached, the solver accepts

the solution and does not run further iterations. This tolerance has been

reduced from 10−4 (default settings) to 10−6. The default values are hardly

applicable to electrical simulations and can usually be reduced with up to

10−8. Lower values would increase the error rate again, because of the

numerical limitation in double precision floats in the underlying computer

hardware. The current flowing through the isolated BC (30 · 10−12A) might

also be caused by this numerical limitation. This solver customization de-

creased the numerical error rate from 31.88% to 0.03%, but increased the

number of iterations from 15 to 64, as well as doubling the calculation time.
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Geometrical Adaptation

FEM models can be imported from CAD software, and these models are

to a great extent detailed. And so, they often contain structures which

have no influence on the physical behaviour in the region of interest. Still,

these structures need to be meshed and calculated. This leads to a highly

increasing number of mesh elements and various other problems, further on.

The convergence analysis, where the numerical difference between each mesh

refining step is compared, is then hardly possible. Therefore, an accurate

geometry is only needed in critical sections of the model [Kurowski, 1994].

For the model in the current simulation, this rule implies that the RGC

has been excluded from meshing and all further calculations, because the

diameter of 1µm is much less than even the smallest mesh element size

(6µm).

In constructional engineering as well as in FEA, sharp corners should

be avoided. Meshing these corners can lead to singularities where with

decreasing element size, the local error in the mesh-element increases. The

FEA tools usually have built-in methods to deal with these situations and

try to minimize the global error in the entire model, but the singularity

must not be in the point of interest. Avoiding these singularities however,

improves the accuracy and decreases the number of mesh elements. Here,

cylindrical disc electrodes were used instead of cornered cubic electrodes.

This replacement increased the precision by reducing the amount of mesh

elements.

Another step taken to reduce the number of mesh elements was removing

electrically irrelevant parts. Therefore, the vitreous layer above the element-

carrying foil has been removed, because this tissue cannot receive any current

through the electrically insulated foil.

All these steps of geometrical optimization combined, were able to reduce

the numerical inaccuracy by over 40, 000%.
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Physics

A foible of Comsol Multiphysics is that it has a higher precision of ‘Terminal’

node boundary conditions than ‘Electrical Potential’ boundary conditions,

on coarse and standard mesh. For infinite fine mesh, the results would be

equal2. Since the individual mesh for the regions of interest is very fine, the

final result could not be improved by switching from ‘Electrical Potential’ to

‘Terminal’. For other problems however, this information might be useful.

Meshing

Meshing can be considered a sampling method for the model. It divides

the geometry into small pieces for subsequent use in solving the physical

equation, by the solver. This way, the physical equations are evaluated indi-

vidually for each of these elements. These elements are used for presenting

the solution as well. Theoretically, in a perfect mesh, adjacent mesh ele-

ments would have continuous solution. In practice, there is no ‘ideal’ mesh

for the entire model. A too-fine mesh acquires too much computational

effort, while a too-coarse mesh might not be able to simulate the physical

questions properly. Therefore, the mesh should be very fine in the region

where the physical activity is taking place, and in the regions of interest

and coarse in other regions. For distinguishing where these places of in-

terests are, the experience and intuition of the engineer is needed. Solving

the entire model with a coarse mesh can help find these regions of interest,

but should not be trusted unquestionably. A too-coarse mesh might miss

important regions if, for instance, the current source and drain is inside one

single mesh element.

As a rule of thumb, each 90°arch should have at least eight meshing

elements. Therefore, the amount of mesh elements along each electrode

edge has been increased to a fixed number of 50 elements, because this is

the region where the highest currents are expected.

For the present simulation, the adopted values, compared to an auto-

matic generated mesh, can be found in Table 4.4. As meshing element, free

tetrahedra is used (second-order element).

2http://www.comsol.com/community/forums/general/thread/32552/
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auto mesh electrodes RGCl/vl rest

max. element size [µm] 220 140 140 320

min. element size [µm] 16 6 6 40

max. element growth rate 1.4 1.35 1.35 1.45

resolution over curvature 0.4 0.3 0.3 0.5

resolution over narrow regions 0.7 0.85 0.85 0.6

number of mesh elements 499157 813090

solution time [s] 63 126

numerical accuracy 98.3% 99.97%

Table 4.4: Mesh configuration compared: automatic generated mesh, size
‘Fine’ for the entire model, compared with adopted mesh for different regions
of the model. The Retinal Ganglion Cell layer (RGCl) and the vitreous layer
(vl) are meshed with the same properties (RGCl/vl).
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4.2 Electrode Distance Optimization

The main goal of electrode spacing optimization is to determine the config-

uration containing the highest amount of electrodes on the implant, consid-

ering counteractive electrical effects.

Complex vision requires several hundreds or thousand electrodes [Mar-

galit et al., 2002, Wilke et al., 2011]. Despite some research which suggests

increasing the resolution without increasing the number of electrode channels

by pulse modulation, like from Behrend and coworkers (2011), the number

of electrodes on a prosthesis remains a key limitation [Behrend et al., 2011].

To place the maximum amount of electrodes on the limited size of retinal

tissue, minimal distances between electrodes are aspired to, while respect-

ing the limits of charge density and keeping an eye on selectivity. This

simulation demonstrates the relation between center-to-guard spacing and

energy consumption. Table 4.5 shows the theoretical maximum amount of

electrodes for each configuration on a human retina. Considering an average

diameter of the human retina of 22mm and 72% of the interior globe taken

up by the retina, the human retina has a size of 1094mm2 [Kolb et al., 1995],

compared to the maximum which could be deployed on the 9.3mm implant

used by used by Zrenner and co-workers (Supplementary) (2010) [Zrenner

et al., 2011].
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(a) center-
guard spacing
[µm]

(b) configura-
tions area
area [mm2]

(c) configura-
tions per
retina

(d) configura-
tions
per implant

3.30 0.01 99,817 849

17.73 0.02 56,153 477

46.60 0.04 24,954 212

75.47 0.08 14,036 119

104.33 0.12 8,983 76

133.25 0.18 6,234 53

190.94 0.31 3,509 30

248.68 0.49 2,245 19

Table 4.5: Maximal number of electrodes on a retina with a space of
1094mm2 [Kolb et al., 1995] (a) guard-to-center spacing of the electrode
configuration; (b) the area, taken up by one configuration, including a gap
to neighboring configurations; (c) amount of electrode configurations which
can be deployed (d) amount of configurations which can be deployed on a 3
x 3.1 mm implant, such as used by Zrenner and co-workers (Supplementary)
(2010) [Zrenner et al., 2011];

4.2.1 Potential Shape on Various Spacings

To visualize the effects of the electric field on different guard-to-center dis-

tances, the electrode configuration (Figure 4.3) has been placed on top of

the volume conductor, which leads to a distance of 55µm from the RGC

layer. A potential of 1V has been applied and the potential reaching the

RGC at the steady state has been captured. The distribution is linear to

the applied voltage, therefore the potential is denoted in percent.

Small spacing

The electrodes generate an electric field, which arouses an electric current.

On very small guard-to-center pixel spacings, these high currents occur on

the same plane between the stimulating, and the guarded electrodes and the

penetration depth is comparably small. A higher stimulation potential for

generating a stronger field (therefore higher currents) is required to overcome

this problem, which has a lot of disadvantages like; tissue heating, increased

chance of crosstalk, chance of eliciting an AP in underlying dendritic tissue,

increased size of electrodes, and possible harmful effects to the underlying

tissue over a specific threshold [Greenberg et al., 1999].

56



CHAPTER 4. ELECTRODE CONFIGURATION STUDY

0 20 40 60 80 100 120 140 160 180 200 220 240 260
10

20

30

40

50

60

electrode ”guard-center” distance [µm]

p
ot
en
ti
al

[%
]

Figure 4.6: Relative potential arriving at RGC layer, guard-to-center spac-
ing varying
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Large spacing

A larger distance between the guards and the center lead to an increased

spatial volume of stimulation, while injecting a minimum of current, but it

also reduced the possible resolution of the implant, because of the limited

size of the retina. Additionally, the potential gradients in large spacings

are lower. This means that the potential difference between the neuron and

the surrounding extracellular medium is less than in smaller spacings. This

causes an increasing current demand for eliciting an AP.

Potential contours

Responsible for variations in the potential, are different conductivities among

the retinal layers. A higher electric resistance in a layer leads to a stronger

curvature of the electric field, and further, to the extracellular potential pro-

file. Also, sharper contours cause higher values in the activating function

[Resatz, 2005].

Figures 4.7 - 4.10 picture the focal potential gradient of the electric

field beneath the stimulating electrode, including the increasing penetra-

tion depth, and widening of the potential contours. For demonstrative and

comparative reasons, a stimulating voltage of +1 V has been applied to all

configurations. These values are comparable to medical application: In the

neuronal prosthesis by Zrenner and co-workers (2010) a voltage between

0.5V and 2.3V was applied [Zrenner et al., 2011](Supplementary).

Figure 4.7: electric potential through retinal tissue, guard-to-center spac-
ing: 3.3µm, center stimulus: 1V (red), guards grounded
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Figure 4.8: electric potential through retinal tissue, guard-to-center spac-
ing: 46.6µm, center stimulus: 1V (red), guards grounded

Figure 4.9: electric potential through retinal tissue, guard-to-center spac-
ing: 133.25µm, center stimulus: 1V (red), guards grounded

Figure 4.10: electric potential through retinal tissue, guard-to-center spac-
ing: 248.675µm, center stimulus: 1V (red), guards grounded
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4.2.2 Axon Stimulation

Given the fact that the effects limiting the spatial excitation have been

previously described, the following simulation shows the optimized guard-

to-center electrode spacing for low-sensitivity distal axon of the RGC. This

means the combination of the soma, SOCB and axon was simulated accord-

ing to Figure 4.1 and 4.2, but the center electrode of the stimulation was

above the distant axon, 403µm away from the special sodium channel band.

To find the optimal distance of the guards to the center, the distance has

been varied and the minimal electrode voltage for starting an AP has been

measured. The vertical distance between the neuron and the electrodes was

kept constant at 30µm to the axon and 55µm to the soma.

This minimum was found at a guard-to-center spacing of 46µm, which

results in the ideal guard-to-center spacing for axonal stimulation. This

means that a voltage of −65mV is sufficient to start an AP in the 46µm

configuration, while the required electrode voltage for stimulation in differ-

ent spacings is higher. The least efficient point has been reached at 248µm,

where −86mV is required to start an AP. However, the electrode config-

uration can easily increase the guard-to-center distance and even become

smaller than 3.3µm (Figure 4.3). These are not the limits of the highest

threshold, but of the lowest.
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Figure 4.11: Minimal electrode voltage for eliciting an AP on varying
guard-to-center spacings; computational FEM error rate (max): 0.186%
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Action Potential

Figure 4.12 illustrates the corresponding AP on various guard-to-center

spacings, measured on the compartment directly underneath the center-

electrode (compartment 56). The stimulation potential was set to −86mV

for all electrode spacings, which is sufficient to start an AP at highest thresh-

olds. This is important to ensure a stimulation at the same time and remain

comparable. In comparison, Figure 4.13 shows the activating functions for

all guard-to-center sizes of this simulation. Clearly visible is that the acti-

vating function has higher values at small guard-to-center sizes, despite the

smaller penetration depth.

The time between the stimulus and the peak of the AP differs - configu-

rations with lower threshold excite earlier than those with higher thresholds,

while lower threshold configurations on the other hand, spike slightly higher

(37.90mV for 248µm compared to 36.02mV for 46µm spacing). Clearly vis-

ible is the stimulation time of (0.5 ms - 0.7 ms). In the configurations where

the stimulation potential was closer to the lower threshold, the AP did not

spike immediately. However, the different AP shapes seem to be caused

by a variation in the potential difference between threshold and stimulation

potential.
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Figure 4.12: AP elicited by −86mV for each guard-to-center spacings, DA
stimulation

61



CHAPTER 4. ELECTRODE CONFIGURATION STUDY

0 20 40 60 80 100 120 140 160 180 200 220 240 260
0

200

400

600

800

electrode ”guard-center” distance [µm]

ac
ti
va
ti
n
g
fu
n
ct
io
n
[m

v
/m

s]

Figure 4.13: Activating function for stimulation potential of −86mV for
each guard-to-center spacings
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Safe Charge Density

Previous experiments showed a decreasing threshold current with decreas-

ing electrode diameter [Sekirnjak et al., 2006]. Since the voltage and the

current form a linearly connected system with only ohmic resistance (like

the retinal tissue), the key feature for limiting small disc sizes is the current

density. Current density and charge density are linked: the charge density is

derived from a uniform current density distribution over the electrode sur-

face [Greenberg et al., 1999]. Therefore, the charge density and the current

density graph show an equal shape (Figure 4.15 and 4.17).

Exceeding the safe charge density limits is one of the destructive effects

which has to be avoided. If not, the high charge might destroy the tissue,

as well as the electrode. To stimulate the distant axon, the charge den-

sity of 960µC/cm2 for the smallest configuration exceeds the 800µC/cm2

limit (Figure 4.15), while including the SOCB does not exceed the critical

limit (Figure 4.17). 800µC/cm2 is assumed as the lowest threshold for safe

stimulation in human and rabbit retinal tissue, using platinum electrodes

[Margalit et al., 2002, Weiland et al., 1999]. In physical applications, the

charge density is not equally distributed over the electrode (like in this simu-

lation), but slightly concentrated in the edges, which would need even lower

safe charge limits. Clinical applications tried therefore, to stay significantly

below this threshold, like 600µC/cm2 for platinum electrodes [Zrenner et al.,

2011].
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Figure 4.14: Threshold current for the center electrode at distant axon
stimulation
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Figure 4.15: Charge densities for threshold stimulation of distant axon
stimulation at each electrode spacing

A common approach to increase the electrode area is to roughen the

electrode surface, obtaining a granular surface. Especially in platinum, this

effect can significantly increase the electrode area (up to factor 100) [Math-

ieson et al., 2004, Oh et al., 1996].
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4.2.3 Sodium Channel Band Stimulation

The SOCB is a short (about 40 µm in length), highly sensitive segment of

RGCs, with an increased number of voltage gated sodium channels. This

high channel density occurs adjoining to the axon hillock, around 40µm in

distance from the soma [Fried et al., 2009]. The length, position and the

conductance of the SOCB differ on various cells, as does the threshold. In

this section, the sodium conductance ḡNa is assumed to be up to 40 times

higher than in the distal axon. In RGC, the SOCB is assumed to be in a

range up to 2800mS/cm2, compared to 124mS/cm2 in axon [Jeng et al.,

2011, Jensen et al., 2003]. For the present simulation, the channel density

was set to 1240mS/cm2, 10-fold higher than the channel density of the distal

axon and within the range of previous work, which is sufficient to see the

SOCB behaviour of recent studies in the simulation.

Minimal Electrode Spacings

The minimal electrode voltage for a successful stimulation is −10.5mV for a

guard-to-center spacing of 104.33µm using a monophasic pulse, and −14mV

for 75.47µm using a biphasic pulse, respectively. The low stimulating thresh-

old remains nearly constant on higher guard-to-center spacings, which does

not allow specifying an optimal distance, but a worse spacing which is 3.3µm.

Considering the goal of a small radius, the best distance is 104.33µm using a

monophasic pulse, and 75.47µm using a biphasic pulse. Furthermore, these

results suggest that the sharp potential contours only play a minor part in

the SOCB stimulation, and no role at all in a biphasic pulse stimulation.

Previous studies found the excitability of the SOCB to be two to five

times higher than in distal axon segments, which is similar to the factor

found in this simulation [Jeng et al., 2011]. Comparing Figure 4.11 and Fig-

ure 4.16, both at a guard-to-center spacing of 46µm, the axonal stimulation

requires 4.5 times higher stimulation voltage than the SOCB stimulation (

−63mV vs. −14mV ).
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Figure 4.16: Minimum electrode voltage for eliciting an AP on varying
guard-to-center spacings; computational FEM error rate (max): 0.179%
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Figure 4.17: Charge densities for the lowest threshold stimulation at
each electrode spacing: none of the shown electrode spacings reaches the
safe charge density threshold of 800µC/cm2 at SOCB stimulation [Margalit
et al., 2002]
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Action Potential

The SOCB has the lowest threshold among the entire neuron, and is also

responsible for the lowest stimulation thresholds closest to the stimulat-

ing electrode [Fried et al., 2009]. The stimulating potential therefore, was

adopted for measuring the influence of the guard-to-center spacings directly

above the SOCB, from −80mV in previous simulations to −40mV . An equal

stimulus was applied for all geometries, and the responding AP measured.

However, the action potential does not show any significant change in shape

or duration on different guard-to-center spacings (Figure 4.18). As an ex-

ception, both of the smallest electrode configurations need longer to arise an

AP, which can be explained by their higher demand on stimulation energy.

Therefore, the −40mV is close to the minimum threshold for the smallest

configuration. Surprising is the difference to Figure 4.12, where the axon

does show different AP behaviour on variation of the electrode spacing.
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Figure 4.18: AP elicited from a −40mV stimulation potential for each
guard-to-center spacings, SOCB stimulation. The AP for guard-to-center
spacings of 46.6µm, 75.47µm, 104.33µm, 133.25µm , 190.94µm and 248.6µm
overlap entirely.
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Ion Channel Gating

As previously described, different guard-to-center spacings require different

stimulation voltages, which raises the question whether this different volt-

age (and subsequently the different current) leads to any changes in the

behaviour of the ion channels. Therefore, three gating kinetics of Fohlmeis-

ter, Cohen and Miller 2010 have been compared with each other. These are

kinetics of the smallest (3.3µm), the kinetics of the electrode configuration

which first reached minimum threshold (46.6µm) and the kinetics of the

configuration with the highest guard-to-center spacing. For stimulation, the

threshold electrode voltages of −12mV , −14mV and −39mV , respectively,

were applied.
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Figure 4.19: Gating dynamics of SOCB stimulation −15mV (1mV above
threshold), 46.6µm guard-to-center spacing

The first notable difference in Figure 4.20 is the fastest reaction time

during stimulation at the electrode geometries with higher guard-to-center

spacing. This can be explained by the resolution using 1mV steps, in order

to find the threshold voltage. An increase of 1mV can cause a 0.9ms faster

elicitation (measured at the point where sodium channels reach 50%), as

illustrated in Figure 4.19: the effect of a 1mV increased input voltage on

46.6µm guard-to-center spacing (Figure4.20 (b) )

Furthermore, a small spike of the sodium channels m(t) at 0.7ms oc-

curs in the smallest geometry Figure 4.20 a), which exceeds the potassium

channels n(t) for a short timespan. This is attended by a partially closing

inactivating sodium channel h(t). As Figure 4.20 c) illustrates, this sodium

channel spike is not correlated with the faster elicitation. The timespan

in which the channels are open seems to be independent of the electrode

spacing: 0.34ms the calcium channel, 0.44ms the sodium channel, and the

potassium channel 0.65ms(measured at 50% of gating activity).
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Figure 4.20: Gating dynamics of an SOCB compartment: (a) SOCB stim-
ulation−39mV (lower threshold), 3.3µm guard-to-center spacing; (b) SOCB
stimulation −14mV (lower threshold), 46.6µm guard-to-center spacing; (c)
SOCB stimulation −12mV (lower threshold), 248µm guard-to-center spac-
ing;
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4.3 Selective Stimulation

To generate complex images, it is necessary to excite specific neurons exclu-

sively by stimulation, which is generally understood as selectivity. If only

specific neurons are stimulated, the brain is able to interpret these stim-

ulations as a pattern and consequently generate the desired image. The

unsolicited co-stimulation of adjoining neurons can occur either by stim-

ulating bypassing RGC, or by stimulating bipolar cells which are placed

underneath the superficial RGC (z-axis). A possible way to reduce this co-

stimulation and increase selectivity would be to stimulate the SOCB just

above the threshold potential. This would cause the generation of AP in

a single region, while passing axons originating from distant RGC remain

unaffected. Neurons underneath the SOCB would obtain an insufficient po-

tential to excite. A different approach would be the adoption of the pulse

length and form, to achieve selectivity.

There have been between 13 and 17 different RGC types discovered in

mammalian retinas [Fohlmeister et al., 2010], however it remains unclear if

all types have an SOCB. Among the cells where an SOCB have been found,

the sodium channel density is varying in different RGC types. The length

and channel density of SOCB has also been found to be a governing factor of

activation threshold [Jeng et al., 2011]. This suggests different stimulation

thresholds among these RGC, which is an additional hurdle in stimulating

single cells. While the threshold difference between SOCB and distal axon

stimulation was according to previous simulations of factor 2 to 3 (Chapter

4.2, Figure 4.11 and 4.16), this factor seems to depend on the guard-to-center

spacing as well.

In epi-retinal experiments of Sekirnjal and coworkers (2006) on mam-

malian retinas, a link between electrode size and selective stimulation has

been found [Sekirnjak et al., 2006]. Electrodes with a diameter of 10−15µm

are suggested to be the optimal size for selective single cell stimulation, be-

cause of the high spatial resolution. By varying this parameter, an undesired

stimulation of underlying neurons can be limited.

Despite all these difficulties, it seems to be possible-by choosing an ap-

propriate electrode size spacing-to increase the selectivity to stimulate single

neurons, or tiny groups of neurons [Resatz, 2005, Sekirnjak et al., 2006].
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4.3.1 Activation Map

Causes of Co-Stimulation

As previously mentioned, the neuronal part closest to the stimulating elec-

trode is not necessarily the part with the lowest stimulation threshold. The

most important reason for this is based on the activating function which says

that the key factor for elicitability is foremost, a keen potential difference of

the electric field. The absolute intensity of this field is a minor point. If the

potential difference of the external voltage between 2 compartments is too

small, the occurring currents between the compartments are not sufficient

for striking an AP [Resatz, 2005].

A second effect which causes the stimulation of a different neuron than

expected, is that by convention, the soma marks the start of a neuron, while

the soma is not the region which gets elicited; the SOCB region is. With a

size of 40µm to 80µm and a clearance of 40µm to the soma, the SOCB low

threshold region is significantly bigger than the soma itself (Chapter 4.2.3)

and in average 100µm remote. This influence therefore, has to be considered

for stimulating specific regions. The distant axon was found to have a lower

stimulation threshold than the soma. This distribution of elicitability makes

it difficult to estimate the threshold for a soma on a specific location [Fried

et al., 2009, Nowak and Bullier, 1998].

A third obstacle in generating meaningful vision is the path of the neu-

rons. In this simulation, the neurons were represented in a simplified form

where they were assumed to have a straight and homogeneous structure,

and multiple neurons are strictly parallel to each other. In human retinas

the size and shape (curvature) were found to depend on the distance to the

fovea, and in complex morphology. This leads to a significant difference

between the stimulated vs. the perceived pattern, if multiple electrodes are

used and stimulation occurs close to the fovea. Figure 4.21 depicts an exam-

ple correlation between the stimulated pattern and the perceived pattern.

In long-term applications of visual prosthesis, a learning effect to the new

pattern has been reported [Rizzo et al., 2003].

Methods

In order to eliminate the first two obstacles, stimulation maps for different

electrode spacings have been generated.

To derive the elicitability of each neuron, the soma was moved under-

neath each square. An incrementally rising stimulating potential was set on
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Figure 4.21: Down: 2D map of a human retina with an adjacent sub-retinal
electrode array. The small white circle is the fovea centralise, the larger is
the optic disc; Up: Perception caused by different stimulation pattern[Rizzo
et al., 2003]

the electrodes, starting from 0V to −5V , in 100mV steps. The first iteration

which raises a membrane potential to 40mV above the resting potential, is

registered as activation. All these activations are visualized for each neu-

ron, which is represented by one pixel (Figure 4.22, 4.23 and 4.23). This

means that one picture represents 256, 896 and 3828, independent neurons,

respectively.

The soma lies 55µm beneath the pixel under the electrode and the RGC

is oriented upwards (in decreasing y direction). In Figure 4.22, one neuron

is printed in light-blue (first column) to show the location applied in Figure

4.22 - Figure 4.24. Each pixel represents a tissue (spatial resolution) of

10x10µm. Therefore, the SOCB of each neuron is 4 pixels long, which is the

same size as the electrode diameter.

All calculations were done for independent neurons, which means that an

activated neuron does not influence its adjoining neurons. The black rings

show the position of the electrodes, while the center electrode stimulates,

and the outer electrodes are grounded (“guards”). The electrodes have a

diameter of 40µm and are printed in scale and on the corresponding position.

Dark-blue areas are areas without a solution, either by timeout or reach-

ing the maximum voltage. The highest simulated potential was −5V and
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the timeout was set to 20 seconds per pixel3. For computational reasons,

only the left half of the image was calculated and mirrored to the right.

Stimulation potential which is significantly above the lower stimulation

threshold, will stimulate a high amount of neurons in a large radius around

the center electrode, and in addition, all passing electrodes where the axon

is in the vicinity. All adjacent neurons which get stimulated by a specific

potential have the same color.

Activation Map

The activation maps (Figure 4.22 - Figure 4.24) can provide 3 kinds of

information.

Figure 4.22: Stimulation map for 3.3µm electrode spacing, 2*128 neurons,
potential resolution: 100mV For the neuron on position 1-14, the soma and
axon have been visualized as well. (axon not in scale)

3Calculation time per image: Figure 4.22: 2.5 hours; Figure 4.23: 9.5 hours; Figure
4.24: 32 hours
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Firstly, if a specific cluster of neurons is desired for stimulation, possible

places for placing the electrode configuration in order to stimulate the least

amount of adjoining neurons can be found. Therefore, the optimized center

for the stimulated cluster is between the lower electrodes (x-axis) and amid

the electrode borders of center and lower electrodes (y-axis). However, the

previously mentioned effect that the most elicitable region is not directly

underneath the stimulation electrode, gets stronger with increasing electrode

spacing.

Figure 4.23: Stimulation map for 75.5µm electrode spacing, 2*448 neu-
rons, potential resolution: 100mV

Secondly, the map provides information about the number, form and

size of the stimulated neuron cluster. The largest cluster of neurons which

gets stimulated with low potential, is the goblet-shaped cluster (902 neurons

for 248.7µm electrode spacing and −200mV ) under the central electrode.

Additionally, there are 3 smaller clusters (around 15-20 neurons each) above

the central and outer left/right electrodes. These areas can be shown best

in configurations with large electrode spacings. In smaller configurations,

these areas unite to form a single field. Furthermore, the SOCB shifts the

region of highest elicitability beneath the lowest electrodes, but leaves it

independent of the configuration, starting from the center electrode.
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Figure 4.24: Stimulation map for 248.7µm electrode spacing, 2*1914 neu-
rons, potential resolution: 100mV

Thirdly, these maps also show which regions are likely to become stim-

ulated on a risen potential. In the 248.7µm electrode spacing, 904 neurons

get stimulated with a small potential of −200mV . An increase to −400mV

can reach an additional 518 neurons. However, since the retina has 10 kinds

of RGC, the minimal threshold might not be sufficient in all cases, otherwise

additional neurons from the ones shown, might become stimulated.

All potential maps have in common, the fact that the upper electrodes

might only have negligible effects on the stimulation.
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Chapter 5

Discussion

In this part of the thesis, the previous results are reviewed, seen in the their

full background framework.

5.1 Membrane Potential

Chapter 3 is focused on the different energy efficiencies of mammalian and

amphibian RGC. Using the models of Fohlmeister et al. 1997, Fohlmeister

et al. 2010 and Hodgkin & Huxley helped to capture results of intracellu-

larly stimulated neurons. These simulations were performed using Comsol

Multiphysics and MATLAB. In this chapter the two main experiments were:

the energy efficiency experiment and the double-pulse experiment. In the

energy efficiency experiment, the above-mentioned three models were used

to calculate and compare the results. Each model simulated and analysed

the absolute charge and charge density generated by the excited membrane.

The main conclusion, as described in detail in Chapter 3, is: the more so-

phisticated mammalian soma has a partially increased energy demand than

the amphibian soma. However, the overall efficiency of the mammalian cell

is higher than the amphibian cell. This energy efficiency advantage might

allow a faster reaction time of the more developed mammalian RGC. The

second main observation of the Chapter 3 is, the double-pulse experiment

with a variation of inter-pulse time. More precisely, two impulses were in-

jected into a neuron, with varying inter-pulse time. The stimulation in

both models was applied in an intra-cellular manner, within a single com-

partment, and with a current density of triple the minimal threshold. The

purpose was to compare the inter-peak times of both Fohlmeister models in

a soma. It was observed how long a neuron needs to generate an AP, after
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the second injected pulse. As seen in more detail in Chapter 3, the result

shows that in mammals, at small inter-pulse times and when the activating

energy is not too high, there are very long inter-peak periods between the

APs.

5.2 Electrode Configuration Study

In Chapter 4 the optimized center-to-center distance between stimulated

electrodes was obtained. This optimization was achieved through a com-

puter simulation in Comsol and MATLAB. More precisely, a static volume

model of the retina was created in Comsol using a finite element method and

afterwards this model was added into the author’s framework in MATLAB.

The neuronal calculation method was a compartment model where the mem-

brane potential was derived by Fohlmeister et al. 2010. The compartments

were interconnected and activated by Rattay’s activating function. So, an

applied potential was able to be tested to determine if sufficient to raise and

propagate an action potential through the neuron. The scope of this set of

calculations was to identify the maximum amount of electrodes in a retina

implant, without violating the safe charge limits. The essential advantage of

this set of calculations is that around a center-to-center spacing of 46.6µm,

an efficiency optimum appears. As shown in the above-named chapter, it

is worth mentioning that a number of smaller spacings require much more

energy for a proper stimulation of the neuron. A value higher than 46.6µm

enlarges the system and reduces the number of potential electrodes, without

adding any benefit.

Further on in Chapter 4.3, is shown which neurons are to be stimulated

beneath each set of electrodes, either at minimal or higher threshold. As

the main observation from this part of the thesis is that, given the position

of the sodium band, the most intense stimulation happens in the triangle

between the center electrode and the guarding electrodes, furthest from the

optic disc.
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Appendix A

Resources

While this section can only contain a few important classes of the code, all re-

sources and source codes, used in this thesis, are available on GitHub https:

//github.com/plejaden/RGC_Stimulation . The sourcecode of this the-

sis comprising 6965 written and additionally 6172 Comsol-generated lines of

code in 61 files1. It is entirely written in MATLAB, but a connected Comsol

Multiphysics software is necessary to run it, despite the fact that the finite

element model is created in Comsol and exported to MATLAB. Anyway,

this exported files can be found on GitHub too.

A.1 Sourcecode

1counted by cloc http://cloc.sourceforge.net
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1 classdef mySimulationBuilder
2     % Author: Watzinger Anton
3     % Last edited: 2017-02-11 
4     
5     %% Start with:
6     % clear; mySimulationBuilder

('fcn2010_cat_20deg',1,'2electrodes_epiretinal',100);
7     methods
8         % class constructor
9         function this = mySimulationBuilder(simulationModelName, 

potentialMultiplicator, electrodeConfiguration,compartmentNumbers)
10            
11             global error;
12             error = ''; % no error occured
13             starttime=datestr(now, 'yyyy-mm-dd HH:MM:SS');
14             display(' ');
15             display([ 'Simulation started at ' starttime]);
16             close all;
17             warning ('off','all');
18             
19             tic;
20             numberOfParameters=nargin();
21             
22             if(numberOfParameters <= 3)
23                 display('Quick-guide for using this system');
24                 display('mySimulationBuilder

(''fcn2010_cat'',1,''2electrodes_epiretinal'',100)');
25                 display(' ');
26                 display('#1 parameter: used model for calculation. 

Implemented models are:');
27                 dir('membraneModels/*.m')
28                 display(' ');
29                 display('#2 parameter: voltage multiplier. use 1 to use the 

exact volatge from the comsol model');
30                 display(' ');
31                 display('#3 parameter: Geometry. Implemented geometries 

are:');
32                 this.displayPhysicModels();
33                 display(' ');
34                 display('#4 parameter: Number of compartments. use a value 

from 10 to 70');
35                 return;
36             end % if(numberOfParameters <= 3)
37             
38             
39             display('available Geometries:');
40             this.displayPhysicModels();
41             
42             if(numberOfParameters == 4)
43                 
44                 % create retina, nerve and electrode geometry, mesh, run 

physics %
45                 if (isempty (error))
46                     display('## calculate finite element potentials ##'); toc;
47                     geometryProperties=this.organizeModel

(this,electrodeConfiguration,compartmentNumbers,potentialMultiplicator);
48                     geometryProperties.filename=[ simulationModelName,'+', 

num2str(potentialMultiplicator),'+', electrodeConfiguration,'+',num2str
(compartmentNumbers),'+',datestr(now, 'yyyy-mm-dd_HH:MM:SS') ];

49                 end
50                 
51                 % envokes the nerve model for calculating the membrane 

potential
52                 if (isempty (error))
53                     simulationModel = this.envokeSimulationModel

(simulationModelName, geometryProperties);
54                 end %  if (isempty (error))
55                 
56                 %Calculate the model
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57                 if (isempty (error))
58                     display(' '); display('## solveing ode ##'); toc;
59                     [T, Y] = simulationModel.run(geometryProperties);
60                 end % if (isempty (error))
61                 
62                 if (isempty (error))
63                     % check if there are some differences in the resulting 

matrix, which may be an AP %
64                     if (max(max(Y(:,1,:)))<min(min(Y(:,1,:)))+50)
65                         display('WARNING: No AP spike detected!'); toc;
66                     end % if (max(max(Y(:,1,:)))<min(min(Y(:,1,:)))+50)
67                 end % if (isempty (error))
68                 
69                 %Plot the results
70                 global currentObserver;
71                 global activation;
72                 filename=['output/',geometryProperties.filename,'.mat'];
73                 save (filename);
74                 
75                 sliderPlot(T,Y,geometryProperties);
76                 
77             elseif (numberOfParameters > 4)
78                 %disp('checkpoint');
79                 fprintf('%d parameters, which is too much (3 parameters 

needed: Model, impulse Type and electrodeConfiguration)',nargin);
80             end %if (nargin == 3)
81             display(' '); toc;
82             display(' ');
83             display(' ');
84         end %function myModelBuilder
85         
86     end %methods
87     
88     
89     methods (Static)
90         function geometryProperties=organizeModel

(this,modelType,compartmentNumbers,potentialMultiplicator)
91         
92             geometryProperties.potMultiplicator=potentialMultiplicator;
93             geometryProperties.numberOfCompartments=compartmentNumbers;
94             geometryProperties.iStim=0;
95             geometryProperties.rho = 70.6/1000; % 70.6 Ohm/um => Ohm/m
96             geometryProperties.rhoLayer=18.2/1000; % 18.2 Ohm/um => Ohm/m
97             
98             %% Values, generated without geometry.
99             % stimulate with already measured values

100             if strfind(modelType, 'prestored')
101                 display(' %% Using stored geometry results');
102                 load (['retinaElectrodeModels/' 'preRenderedModels/' 

modelType '.mat'])
103                 

geometryProperties.externalVoltages=geometryProperties.externalVoltages*potentialMultiplicator;
104                 geometryProperties.compFeatures = [ repmat({'Soma'},1,1) ; 

repmat({'IS'},3,1); repmat({'SOCB'},3,1); repmat({'Axon'},93,1) ];
105                 geometryProperties.compartmentRadius=[ repmat(10*10^-6,1,1) ; 

repmat(10^-6,3,1); repmat(10^-6,3,1); repmat(10^-6,93,1) ];
106                 return;
107             end
108             
109             %stimulate with dirac
110             if strcmpi(modelType,'testPointStimulation')
111                 display('TEST-MODE: Using Point function');
112                 geometryProperties.model='noModel-precalculated Values only';
113                 geometryProperties.numberOfCompartments=compartmentNumbers;
114                 geometryProperties.electrodeDistance=1e-04;
115                 geometryProperties.compartmentRadius=5e-03; 
116                 geometryProperties.compartmentRadius=1e-05; % = 10um % 

usually 0.2-20um
117                 geometryProperties.nerveLength=3e-3;
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118                 
geometryProperties.distanceBetrweenCompartments=geometryProperties.nerveLength/
compartmentNumbers; %m

119                 
120                 geometryProperties.compartmentRadius=5e-05; %m
121                 
122                 oneComp=zeros(geometryProperties.numberOfCompartments,1);
123                 oneComp(6)=1;
124                 geometryProperties.externalVoltages=oneComp;
125                 

geometryProperties.externalVoltages=geometryProperties.externalVoltages*1000; 
%convert volts to mV

126                 
127                 return;
128             end
129             
130             % no external stimulation
131             if strcmpi(modelType,'noStimulation')
132                 display('TEST-MODE: Disabled all stimulus');
133                 geometryProperties.model='noModel-precalculated Values only';
134                 geometryProperties.rho = 0.0706;
135                 geometryProperties.numberOfCompartments=compartmentNumbers;
136                 
137                 geometryProperties.compartmentRadius=[ repmat(10^-6,100,1) ];
138                 geometryProperties.electrodeDistance=6*10^-5;
139                 geometryProperties.nerveLength=3e-3;
140                 

geometryProperties.distanceBetrweenCompartments=geometryProperties.nerveLength/
compartmentNumbers; %m

141                 
142                 geometryProperties.externalVoltages=zeros

(1,geometryProperties.numberOfCompartments);
143                 return;
144                 
145             end % if strcmpi(modelType,'noStimulation')
146             
147             % no external stimulation
148             if strcmpi(modelType,'intercellularStimulationOnly')
149                 display('_-_-_-_-_-_-')
150                 display('INTERCELLULAR-STIMULATION:');
151                 display('Disabled all stimulus but the 

"potentialMultiplicator" [ua/cm^2] at the first compartment');
152                 geometryProperties.model='noModel-virtual soma stimulaton 

only';
153                 geometryProperties.rho = 50.5;
154                 geometryProperties.numberOfCompartments=compartmentNumbers;
155                 geometryProperties.iStim=potentialMultiplicator;
156                 
157                 geometryProperties.compFeatures = [ repmat({'Soma'},1,1) ; 

repmat({'IS'},3,1); repmat({'SOCB'},3,1); repmat({'Axon'},93,1) ];
158                 geometryProperties.compartmentRadius=[ repmat(10*10^-6,1,1) ; 

repmat(10^-6,3,1); repmat(10^-6,3,1); repmat(10^-6,93,1) ];
159                 geometryProperties.electrodeDistance=6*10^-5;
160                 geometryProperties.nerveLength=3e-3;
161                 

geometryProperties.distanceBetrweenCompartments=geometryProperties.nerveLength/
compartmentNumbers; %m

162                 
163                 geometryProperties.externalVoltages=zeros

(1,compartmentNumbers);
164                 return;
165  
166             end % if strcmpi(modelType,'intercellularStimulationOnly')
167             
168             
169             % no external stimulation
170             if strcmpi(modelType,'intercellularSinglecompStimulationOnly')
171                 display('_-_-_-_-_-_-')
172                 display('INTERCELLULAR-STIMULATION (SINGLE COMP):');
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173                 display('Disabled all stimulus but the 
"potentialMultiplicator" [ua/cm^2] at the first compartment');

174                 geometryProperties.model='noModel-virtual soma stimulaton 
only';

175                 geometryProperties.rho = 50.5;
176                 geometryProperties.numberOfCompartments=1;
177                 geometryProperties.iStim=potentialMultiplicator;
178                 
179                 geometryProperties.compFeatures =  {'Soma'} ;
180                 geometryProperties.compartmentRadius= (5*10^-6) ;
181                 geometryProperties.electrodeDistance=6*10^-5; % not used
182                 geometryProperties.distanceBetrweenCompartments=30*10^-6; %m
183                 
184                 geometryProperties.externalVoltages=zeros(1,1);
185                 return;
186             end %   if strcmpi

(modelType,'intercellularSinglecompStimulationOnly')
187             
188             %% Usage of real geometry
189             geoFuncName=['geometry_' modelType ];
190             gdescName=['description_' modelType ];
191             
192             if (exist(geoFuncName, 'file') && exist(gdescName, 'file') )
193                 gmodel=str2func(geoFuncName);
194                 gdesc=str2func(gdescName);
195             else
196                 display('Geometry: no correct geometry specified, using a 

very simple geometry');
197                 gmodel=simple2ElectrodeConfiguration();
198                 gdesc=description_simple2ElectrodeConfiguration();
199             end % if (exist(geoFuncName, 'file') && exist(gdescName, 'file') )
200             
201             % envoking the gmodel and gdesc functionpointers.
202             geometryProperties.model=gmodel();
203             geometryProperties.desc=gdesc(); toc;
204             
205             geometryProperties.numberOfCompartments=compartmentNumbers;
206             geometryProperties=this.getExVoltages(geometryProperties); % add 

most of the properties
207         end % geometryProperties=organizeModel

(this,modelType,compartmentNumbers,potentialMultiplicator)
208         
209         %% get the external Voltages form the geometry
210         function geometryProperties=getExVoltages(geometryProperties)
211             
212             retinaModel=geometryProperties.model;
213             compartmentNumbers=geometryProperties.numberOfCompartments;
214             geometryProperties.distanceBetrweenCompartments=4; % ??
215             
216             import com.comsol.model.*
217             import com.comsol.model.util.*
218             
219             %% Step 1: get the names of all retinal geometries
220             nerveGeometryNames=cellstr

( geometryProperties.desc.neuronPartNames(:,1) );
221             

electrodeGeometryNames=geometryProperties.desc.electrodeGeometryNames;
222             
223             % get variable definition, if there are any
224             if max(strcmp(fieldnames(geometryProperties.desc),'variables'))
225                 for i=1:length(geometryProperties.desc.variables)
226                     evalc(char(geometryProperties.desc.variables(i)));
227                 end
228             end
229             
230             %% Step 2: get the coordinates from the geometries
231             numberOfNeuronparts= size(nerveGeometryNames(:,1),1);
232             neuronCoords.x=zeros(numberOfNeuronparts,1);
233             neuronCoords.y=zeros(numberOfNeuronparts,1);
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234             neuronCoords.z=zeros(numberOfNeuronparts,1);
235             neuronCoords.h=zeros(numberOfNeuronparts,1);
236             neuronCoords.r=zeros(numberOfNeuronparts,1);
237             neuronCoords.name=cell(numberOfNeuronparts,1);
238             
239             for i=1:numberOfNeuronparts
240                 neuronPartName=nerveGeometryNames(i,:);
241                 propertiesNerve=mphgetproperties(retinaModel.geom

('geom1').feature(neuronPartName));
242                 display(['reading neuronal part: ',neuronPartName]);
243                 neuronCoords.name{i}=neuronPartName;
244                 neuronCoords.x(i)=eval(propertiesNerve.x);
245                 neuronCoords.y(i)=eval(propertiesNerve.y);
246                 neuronCoords.z(i)=eval(propertiesNerve.z);
247                 
248                 cylPresent = find(cellfun('length',regexp

(neuronPartName,'cyl')) == 1);
249                 if (cylPresent)
250                     neuronCoords.r(i)=eval(propertiesNerve.r);
251                     neuronCoords.h(i)=eval(propertiesNerve.h);
252                 end %if (cylPresent)
253                 
254                 sphPresent = find(cellfun('length',regexp

(neuronPartName,'sph')) == 1);
255                 if (sphPresent)
256                     neuronCoords.r(i)=eval(propertiesNerve.r);
257                     neuronCoords.h(i)=eval(propertiesNerve.r);
258                 end %if (sphPresent)
259                 
260             end % for i=1:numberOfNeuronparts
261             
262             xNeuronStart = max(neuronCoords.x);  yNeuronStart = max

( neuronCoords.y); zNeuronStart = max(neuronCoords.z);
263             radiusNerve = neuronCoords.r; heightNerve=sum( neuronCoords.h);
264             geometryProperties.nerveLength=heightNerve;
265             
266             % extract the electrode geometry
267             numberOfElectrods=size(electrodeGeometryNames);
268             numberOfElectrods=numberOfElectrods(1,1);
269             electrodeCoords.x=zeros(numberOfElectrods,1);
270             electrodeCoords.y=zeros(numberOfElectrods,1);
271             electrodeCoords.z=zeros(numberOfElectrods,1);
272             electrodeCoords.radius=zeros(numberOfElectrods,1);
273             electrodeCoords.height=zeros(numberOfElectrods,1);
274             
275             for i=1:numberOfElectrods
276                 electrodeName=electrodeGeometryNames(i,:);
277                 propertiesElectrode=mphgetproperties(retinaModel.geom

('geom1').feature(electrodeName));
278                 electrodeCoords.x(i)=eval(propertiesElectrode.x);
279                 electrodeCoords.y(i)=eval(propertiesElectrode.y);
280                 electrodeCoords.z(i)=eval(propertiesElectrode.z);
281                 if (cell2mat(strfind(electrodeName,'cyl')))
282                     electrodeCoords.radius(i)=eval(propertiesElectrode.r);
283                     electrodeCoords.height(i)=eval(propertiesElectrode.h);
284                 end %(cell2mat(strfind(electrodeName,'cyl')))
285             end % i=1:numberOfElectrods
286             
287             %% Step 4:
288             % find out how the geometry is arranged (how many parallel 

nerves) %
289             nrOfNerveStrains=1; % default: 1
290             
291             %% Step 5:
292             % Calculate the pointes of measurement
293             geometryProperties.electrodeDistance=abs(zNeuronStart-min

(electrodeCoords.z));
294             compartmentPerStrain=compartmentNumbers/nrOfNerveStrains;
295             delta=heightNerve/(compartmentNumbers-1);
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296             measurementPoints=zeros(compartmentPerStrain*nrOfNerveStrains,4);
297             
298             thisZ=zNeuronStart;
299             for i=1:length(measurementPoints)-1
300                 thisX = xNeuronStart;
301                 thisY = min(neuronCoords.y)+(i-1)*delta;
302                 thisZ = findZinGeometry(thisX,thisY, neuronCoords,thisZ);
303                 
304                 measurementPoints(i,:)=[1,thisX,thisY,thisZ];
305             end %for i=1:length(measurementPoints)-1
306             measurementPoints(compartmentNumbers,:)=[1,xNeuronStart,min

(neuronCoords.y)+(compartmentNumbers)*delta,zNeuronStart];
307             
308             % multi-neuron in row 1, but currently not supported.
309             measurementPoints(:,1)=[];
310             
311             %% Step 6
312             %get the corresponding values from the FEM model
313             
314             %Syntax: 3xn => 1xn
315             % x1 x2 ...
316             % y1 y2 ... => V1 v2
317             % z1 z2 ...
318             voltageArray=mphinterp

(retinaModel,'V','coord',measurementPoints');
319             if  (isempty (voltageArray))
320                 error='can not load external potential. Abort.';
321                 disp(error);
322                 return;
323             end % (isempty (voltageArray))
324             
325             geometryProperties.distanceBetrweenCompartments=delta;
326             voltageArray=voltageArray*geometryProperties.potMultiplicator;
327             geometryProperties.externalVoltages=voltageArray *1000; %V => mV
328             
329             %% Step 7: identify feature for each compartment
330             geometryProperties.compFeatures=createCompNeuronTypeVector

(geometryProperties,measurementPoints,neuronCoords);
331             geometryProperties.compartmentRadius=createNeuronRadiusVector

(geometryProperties,radiusNerve);
332             
333         end
334         
335         %% Chose and start a membrane model (e.g. hodgkin huxley)
336         function thismodel=envokeSimulationModel(simulationModel, 

geometryProperties)
337             if (~exist(simulationModel, 'file'))
338                 error='Model not implemented';
339                 disp(error);
340                 return;
341             end % if (~exist(simulationModel, 'file'))
342             
343             % Create a model-Handler of parametered simulation-model
344             modelFunctionhandler = str2func(simulationModel);
345             thismodel=modelFunctionhandler(geometryProperties);
346             
347             % Check if model is an isa (InStAnce of) the abstract model
348             if (~isa(thismodel,'basicModel'))
349                 error='No model loaded. exiting';
350                 disp(error);
351                 return;
352             else
353                 display(['Using ',simulationModel, ' model']);
354             end %if (~isa(thismodel,'abstractModel'))
355             
356         end % function envokeSimulationModel
357         
358         %% display all available physical imput geometries on console
359         function displayPhysicModels()
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360             
361             listOfImplementedModelsStruct=dir('src/retinaElectrodeModels/

geometry*.m');
362             for i=1:length(listOfImplementedModelsStruct)
363                 listOfImplementedModelsStruct(i).geoName=strrep

(listOfImplementedModelsStruct(i).name,'geometry_','');
364                 listOfImplementedModelsStruct(i).geoName=strrep

(listOfImplementedModelsStruct(i).geoName,'.m','');
365                 display(listOfImplementedModelsStruct(i).geoName);
366             end
367             display(' ');
368             display('or in addition, the following test parameters are 

available: ');
369             display('testValues');
370             display('testPointStimulation');
371             display('NoStimulation');
372             display('somaStimulationOnly');
373             display(' ');
374         end %function displayPhysicModels()
375         
376     end %methods (Static)
377 end %classdef
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1 classdef basicModel
2     % Author: Watzinger Anton
3     % Last edited: 2017-02-11
4     
5     %% Abstract model for definition of MembraneModels
6     properties (Abstract)
7         iPause;
8         iStim; %(uA/cm^2) amount of current stimulation for iStimTime
9         iStimTime; %(ms) time of current stimulation

10         simulationTime; %(s)
11         startParameters;
12         numberOfStateVariables;
13         Ve; r; area; volume;
14         ohmAx;
15         
16         %performance analysis
17         t0;
18         timeout;
19     end % properties (Abstract)
20     
21     properties (Abstract = false)
22         % define the properties of the class here, (like fields of a struct)
23         
24     end %(Abstract = false)
25     
26     methods (Abstract=true)
27         
28         [result] = h0(this);
29         [result] = m0(this);
30         [result] = n0(this);
31         
32         [result] = differentialEq(this,t,y);
33         
34         [T, Y] = postProcessing(this,T,Y);
35         
36     end %methods (Abstract=true)
37     
38     %%
39     methods (Abstract = false)
40         function [T, Y] = run(this,geometryProperties)
41             clear 'currentObserver'; global currentObserver;
42             
43             % timing analysis
44             this.t0=clock;
45             
46             %% current analysis
47             currentObserver.compartment=1; currentObserver.time = 0; 

currentObserver.INa = 0; currentObserver.IK = 0; 
currentObserver.externalVoltage=geometryProperties.externalVoltages;

48             currentObserver.IKA = 0; currentObserver.IKCa = 0; 
currentObserver.ICa = 0; currentObserver.IL = 0; 
currentObserver.stimulusCurrent = 0; currentObserver.externalCurrentSet=false;

49             
50             % rotate the external voltages, if they are not in array shape
51             voltageForm=size(geometryProperties.externalVoltages);
52             if (voltageForm(1)<voltageForm(2))
53                 

geometryProperties.externalVoltages=geometryProperties.externalVoltages';
54             end
55             global activation;
56             activation.current=zeros(max(voltageForm),1);
57             activation.activatingFunction=0;
58             activation.time=0;
59             activation.activatingFunctionCompartment=56;
60             
61             % rho = R * q / l => R = L * rho / q
62             rhoFiber = this.rhoFiber*10^-3; %[Ohm*mm]
63             compLength=geometryProperties.distanceBetrweenCompartments; % [m]
64             compRad=geometryProperties.compartmentRadius; % [m]
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65             compNumb=geometryProperties.numberOfCompartments;
66             thisSurface=2.*compRad.*pi().*compLength+2.*compRad.*compRad.*pi

();
67             display(['compLength:', num2str(compLength)]);
68             display(['compSurface (first cmp): ', num2str(thisSurface(1)), ' 

m^2']);
69             display(['compSurface (first cmp): ', num2str(thisSurface(1)*

(1000*1000)), ' mm^2']);
70             display(['compSurface (first cmp): ', num2str(thisSurface(1)*

(1000*1000*1000*1000)), ' um^2']);
71             
72             l_a=(compLength * 2); % [m]
73             A_a=(compRad .* 1000).^2*pi; % [mm^2]
74             
75             this.ohmAx= rhoFiber*l_a./A_a; % ( [Ohm*mm] ) * m / (mm^2) = 

[kOhm]
76             
77             % save the geometry Properties to external file: very useful for 

debugging %
78             geometryProperties.modelproperties=this;
79             
80             simTime=[0 this.simulationTime];
81             
82             try
83                 %% solve the equation
84                 % preferred solver: ode113
85                 %            [T, Y] = ode15s(@(t,y) differentialEq(this, t, y 

), simTime, this.startParameters); % stiff
86                 %            [T, Y] = ode23(@(t,y) differentialEq(this, t, y 

), simTime, this.startParameters); % non stiff
87                 %            [T, Y] = ode23s(@(t,y) differentialEq(this, t, y 

), simTime, this.startParameters); % stiff
88                 %            [T, Y] = ode45(@(t,y) differentialEq(this, t, y 

), simTime, this.startParameters);% non stiff
89                 [T, Y] = ode113(@(t,y) differentialEq(this, t, y ), simTime, 

this.startParameters);% stiff
90             catch
91                 display('EXCEPTION: ');
92                 display('Error: No solution detected');
93                 global exceptionValue;
94                 
95                 Y=exceptionValue;
96                 T=zeros(compNumb);
97                 
98             end
99             

100             %%
101             if (~isreal(Y))
102                 disp('Y is complex, this should not happen!!!');
103                 return;
104             end
105             
106             if (size(Y,2) <=compNumb)
107                 disp('Y does not contain gating information, this should not 

happen!!!');
108                 return;
109             end
110             
111             % Y is an Array (Timesteps x (compartments * variables) e.g. 4612 

x 88 %
112             % But we want: Timesteps x variables x compartments e.g. 4612 x 8 

x 11 %
113             % slice up the array
114             calcPointsPerTime=max(size(Y(1,:))); % hols: |comparment| * |

statvariables|%
115             compL=calcPointsPerTime/(this.numberOfStateVariables+1);
116             timeSlices=length(T);
117             tempY=zeros(timeSlices,this.numberOfStateVariables+1, compL);
118             
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119             for i=1:this.numberOfStateVariables+1;
120                 tempY(:,i,:)=Y(:,(i-1)*compL+1:i*compL);
121             end % for i=1:this.numberOfStateVariables+1;
122             Y=tempY;
123             
124             % do some post-processing
125             [T, Y]=this.postProcessing(this,T,Y);
126             
127         end %function [T, Y] = run(this)
128     end %methods (Abstract = false)
129     
130     methods (Static)
131         
132         %% numberOfCompartments [1]; Ve [mV]; pulseMagnification [1]
133         function stimulusCurrentExtracomp = compartmentStim

(this,numberOfCompartments, Ve, pulseMagnification)
134             global currentObserver
135             stimulusCurrentExtracomp=zeros(numberOfCompartments,1);
136             if (pulseMagnification~=0)
137                 
138                 %first compartment
139                 if (this.iStim==0 )
140                     deltaVEfirst=Ve(1)-Ve(2); % mV
141                     firstOhmAx=(this.ohmAx(1)+this.ohmAx(2))./2;
142                     stimulusCurrentExtracomp(1) = deltaVEfirst./

(firstOhmAx.*2);  % mV / kOhm = uA
143                 end % (iStim~=0)
144                 
145                 % middle compartments
146                 deltaVE1=Ve(1:numberOfCompartments-2)-Ve

(2:numberOfCompartments-1);
147                 deltaVE2=Ve(3:numberOfCompartments)-Ve

(2:numberOfCompartments-1); % the delta values, shifted at once.
148                 centerOhmAx=(this.ohmAx(1:numberOfCompartments-2)+this.ohmAx

(2:numberOfCompartments-1))/2';
149                 stimulusCurrentExtracomp(2:numberOfCompartments-1) = 

(deltaVE1 + deltaVE2)./(centerOhmAx');  % mV / kOhm = uA ; the vector is 
rotated automatically %

150                 
151                 % last compartment
152                 deltaVElast=Ve(numberOfCompartments-1)-Ve

(numberOfCompartments);
153                 lastOhmAx=this.ohmAx(numberOfCompartments-1)+this.ohmAx

(numberOfCompartments);
154                 stimulusCurrentExtracomp(numberOfCompartments) = deltaVElast./

(lastOhmAx);  % mV / kOhm = uA
155                 stimulusCurrentExtracomp = 

stimulusCurrentExtracomp.*pulseMagnification;
156                 
157                 if (currentObserver.externalCurrentSet==false)
158                     currentObserver.externalVoltage=Ve;
159                     currentObserver.externalCurrent=stimulusCurrentExtracomp;
160                     currentObserver.externalCurrentSet=true;
161                 end
162                 
163             end % if (pulseMagnification~=0)
164             
165         end % function compartmentStim
166         
167         
168         function X = rStim(pause,current)
169             %function X = rStim(time, pulsl,pauseBeforeStim, current)
170             % X = (time>pauseBeforeStim) & (time<(pauseBeforeStim+pulsl)); % 

0 or 1
171             % X=X*current;
172             if (pause~=0)
173                 X=current;
174             else
175                 X=0;
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176             end
177             
178         end % function rStim
179         
180         
181         %% current calculations
182         function stimulusCurrent = linkCompartments

(this,compL,time,V,stimulationDesc,iStim,Ve,C)
183             
184             global activation;
185             stimulusCurrentIntercomp=zeros(compL,1);
186             stimulusCurrentExtracomp=zeros(compL,1);
187             
188             pulsTime1 = stimulationDesc(1,1);           pulseMagnif1 = 

stimulationDesc(1,2);
189             pulsTime2 = stimulationDesc(2,1)+pulsTime1; pulseMagnif2 = 

stimulationDesc(2,2);
190             pulsTime3 = stimulationDesc(3,1)+pulsTime2; pulseMagnif3 = 

stimulationDesc(3,2);
191             pulsTime4 = stimulationDesc(4,1)+pulsTime3; pulseMagnif4 = 

stimulationDesc(4,2);
192             
193             %% Apply somatic current, if enabled
194             % The first compartment gets the stimulus from Istim, all other
195             % compartments get the stimulus from their neighbor comp %
196             %
197             % istim->[Soma][][][][][]
198             %
199             if (iStim~=0)
200                 % stimulusCurrentIntercomp(1)=this.rStim(time,pulsTime1, 

pulsTime2, iStim);
201                 if (time < pulsTime1)
202                     %stimulusCurrentExtracomp = this.compartmentStim

(this,compL,Ve, pulseMagnif1);
203                     stimulusCurrentIntercomp(1)=pulseMagnif1.*iStim;
204                 elseif (time < pulsTime2)
205                     %stimulusCurrentExtracomp = this.compartmentStim

(this,compL,Ve, pulseMagnif2);
206                     stimulusCurrentIntercomp(1)=pulseMagnif2.*iStim;
207                 elseif (time < pulsTime3)
208                     %stimulusCurrentExtracomp = this.compartmentStim

(this,compL,Ve, pulseMagnif3);
209                     stimulusCurrentIntercomp(1)=pulseMagnif3.*iStim;
210                 elseif (time < pulsTime4)
211                     %stimulusCurrentExtracomp = this.compartmentStim

(this,compL,Ve, pulseMagnif4);
212                     stimulusCurrentIntercomp(1)=pulseMagnif4.*iStim;
213                 elseif (time > pulsTime4)
214                     %stimulusCurrentExtracomp = this.compartmentStim

(this,compL,Ve, 0);
215                     stimulusCurrentIntercomp(1)=0;
216                 end % if (time < pulsTime1)
217                 
218             else
219                 stimulusCurrentIntercomp(1)=0;
220                 deltaVfirst=-V(1)+V(2);
221                 lastOhmAx=(this.ohmAx(compL-1)+this.ohmAx(compL))/2;
222                 stimulusCurrentIntercomp(1) = deltaVfirst./(lastOhmAx); % 

mV / kOhm = ?A
223                 stimulusCurrentIntercomp(1) = stimulusCurrentIntercomp(1)/2;
224             end % (iStim~=0)
225             
226             %% link the compartments
227             % calculate the current between compartments
228             % [][mV]-[mV][][]
229             if (compL>1)
230                 % middle compartments
231                 deltaV1=V(1:compL-2)-V(2:compL-1);
232                 deltaV2=V(3:compL)-V(2:compL-1); % the delta values, shifted 
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at once.
233                 centerOhmAx=(this.ohmAx(1:compL-2)+this.ohmAx(2:compL-1))/2;
234                 stimulusCurrentIntercomp(2:compL-1) = (deltaV1 + deltaV2)./

(centerOhmAx.*2); % mV / kOhm
235                 
236                 %last compartment
237                 deltaVlast=V(compL-1)-V(compL);
238                 lastOhmAx=(this.ohmAx(compL-1)+this.ohmAx(compL))/2;
239                 stimulusCurrentIntercomp(compL) = deltaVlast/(lastOhmAx); % 

mV / kOhm
240                 
241             end % if (compL>1)
242             
243             %% Apply the external activating current
244             % Use the Ve for getting the influence of the external voltage on 

the core of the compartment
245             %
246             % ----Ve---
247             % [ ][Vi][]
248             if (compL>1)
249                 if (time < pulsTime1)
250                     stimulusCurrentExtracomp = this.compartmentStim

(this,compL,Ve, pulseMagnif1);
251                 elseif (time < pulsTime2)
252                     stimulusCurrentExtracomp = this.compartmentStim

(this,compL,Ve, pulseMagnif2);
253                 elseif (time < pulsTime3)
254                     stimulusCurrentExtracomp = this.compartmentStim

(this,compL,Ve, pulseMagnif3);
255                 elseif (time < pulsTime4)
256                     stimulusCurrentExtracomp = this.compartmentStim

(this,compL,Ve, pulseMagnif4);
257                 elseif (time > pulsTime4)
258                     stimulusCurrentExtracomp = this.compartmentStim

(this,compL,Ve, 0);
259                 end
260             end % if (compL>1)
261             %stimulusCurrentExtracomp=0;
262             
263             %% Sum up the results
264             stimulusCurrent=stimulusCurrentExtracomp+stimulusCurrentIntercomp;
265             if(C~=0)
266             % some loging
267                 activatingFunction=max(stimulusCurrentExtracomp)/

C;               
268                 activation.activatingFunction=[activation.activatingFunction; 

activatingFunction];
269                 activation.time = [activation.time; time];
270             end
271             
272             if (activation.current==0)
273                 activation.current=stimulusCurrent;
274                 if (activation.current~=0) display(['Current measured at ms: 

' num2str(time) ]); end
275             end % if (activation.current==0)
276         end % function linkCompartments
277         
278         function X = surfaceToVolumeRatio(r,l)
279             thisVolume=r.*r*pi()*l;
280             surface=2.*r.*pi().*l+2.*r.*r.*pi();
281             X=surface./thisVolume;
282         end %function
283     end % methods (Static)
284 end % classdef basicModel
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1 classdef fcn2010_cat_20deg < basicModel
2     % Author: Watzinger Anton
3     % Last edited: 2017-02-11
4     
5     properties
6         simulationTime=5; %ms
7         t0; timeout=20; %s
8         
9         gasConstant=8.31441; % (J/mol*K)

10         Faraday=96485.3365; %c/mol
11         RTdivF; %mV
12         area;
13         volume; Temp;
14         gNa; gK; gCa;
15         T0=35; T=23.5;
16         
17         %% Temperature dependent factors
18         factor_Q10_Na_kin; factor_Q10_K_kin; factor_Q10_Ca_kin
19         factor_Q10_Na_gBar; factor_Q10_K_gBar; factor_Q10_Ca_gBar;
20         
21         %% channel densities soma
22         gNaSoma=69.4;%(mS/cm^2)
23         gKSoma=32;% (mS/cm2)
24         gCaSoma=1.39;% (mS/cm2)
25         
26         %% channel densities initial segment
27         gNaIS=100;%(mS/cm^2)
28         gKIS=50.10;% (mS/cm2)
29         gCaIS=0.836;% (mS/cm2)
30         
31         %% channel densities axon
32         gNaAxon=124;%(mS/cm^2)
33         gKAxon=50;% (mS/cm2)
34         gCaAxon=04;% (mS/cm2)
35         
36         gKCa=0.05;% (mS/cm2)
37         gL=0.1; % (mS/cm2)
38         
39         
40         %% elibrium potentials
41         VNa = 60.60; %(mV)
42         VK = -101.34; % (mV)
43         VL= -65; %(mV)
44         
45         %% Calcium properties
46         CaRes=10^-7*10^3; % in M/dm3 => mM/cm3
47         CaDiss=10^-6*10^3; % in M/dm3 => mM/cm3
48         Cao=1.8; % mM
49         
50         %% misc properties
51         Vrest= -70; % (mV)
52         Rn = 150*10^6; %(ohm) = 150 MOhm, input resistance
53         r;compartmentLength;
54         C = 1; %(mF/cm2)
55         TauCA=1.5; %
56         
57         %% simulation
58         iPause=0.5; % ms
59         iStimTime=0.120;
60         % would be; [0.5,0.12,0,0; 0,1,0,0]
61         
62         % soma stimulation
63         iStim=0; %(uA/cm^2) Amount of current stimulation
64         
65         % biphasic stimulation: time which the mentioned multiplyer will be 

applied %
66         % format: (time in [ms], pot multiplicator [1] ; )
67         % [ puls1,pot1 ; puls2,pot2  ; puls3,pot3 ; puls4,pot4]
68         % exmaple: [0.5,0.15,0.2,0.1; 0,-1,0,+1]
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69         
70         % intracellular stimulation:
71         stimulationDescInt=[0.5,0; 0.2,1; 4,0; 0.2,0];
72         
73         % extracellular stimulation:
74         % stimulationDescExt=[0.5,0; 0.2,1; 0.5,0; 0.4,-0.5]; % with 

electrode uncharge
75         stimulationDescExt=[0.5,0; 0.2,1; 1,0; 0.4,0]; % without electrode 

uncharge
76         
77         startParameters;
78         numberOfStateVariables=5; % h m n c Cai
79         Ve=0;
80         rhoFiber = 1.1; %[Ohm*m]
81         stimulationDesc; ohmAx;
82         
83     end %properties
84     
85     methods
86         
87         %% The standard constructor sets the temperature of the model.
88         function this = fcn2010_cat_20deg(geometryProperties)
89             
90             global currentObserver;
91             global temperature;
92             
93             this.Temp=273.15+this.T;
94             temperature = this.T;
95             
96             %% Temperature dependent factors
97             this.factor_Q10_Na_kin=1.95^((this.T-this.T0)/10);
98             this.factor_Q10_K_kin=1.9^((this.T-this.T0)/10);
99             this.factor_Q10_Ca_kin=1.95^((this.T-this.T0)/10);

100             
101             this.factor_Q10_Na_gBar=1.64^((this.T-this.T0)/10);
102             this.factor_Q10_K_gBar=1.49^((this.T-this.T0)/10);
103             this.factor_Q10_Ca_gBar=1.64^((this.T-this.T0)/10);
104             
105             %% channel densities soma
106             this.gNaSoma=this.gNaSoma*this.factor_Q10_Na_gBar;%(mS/cm^2)
107             this.gKSoma= this.gKSoma*this.factor_Q10_K_gBar;% (mS/cm2)
108             this.gCaSoma=this.gCaSoma*this.factor_Q10_Ca_gBar;% (mS/cm2)
109             
110             %% channel densities initial segment
111             this.gNaIS=this.gNaIS*this.factor_Q10_Na_gBar;%(mS/cm^2)
112             this.gKIS=this.gKIS*this.factor_Q10_K_gBar;% (mS/cm2)
113             this.gCaIS=this.gCaIS*this.factor_Q10_Ca_gBar;% (mS/cm2)
114             
115             %% channel densities axon
116             this.gNaAxon=this.gNaAxon*this.factor_Q10_Na_gBar;%(mS/cm^2)
117             this.gKAxon=this.gKAxon*this.factor_Q10_K_gBar;% (mS/cm2)
118             this.gCaAxon=this.gCaAxon*this.factor_Q10_Ca_gBar;% (mS/cm2)
119             
120             
121             this.Ve=geometryProperties.externalVoltages;
122             this.iStim=geometryProperties.iStim;
123             this.r=geometryProperties.compartmentRadius*100; % m => cm
124             

this.compartmentLength=geometryProperties.distanceBetrweenCompartments*100; % 
m => cm

125             this.area=this.r.^2*pi;   % area in cm2
126             this.volume=(this.compartmentLength)*this.area;
127             
128             if (this.iStim==0)
129                 display('using extracellular stimulation function');
130                 this.stimulationDesc=this.stimulationDescExt;
131             else
132                 display('using intercellular stimulation function');
133                 this.stimulationDesc=this.stimulationDescInt;
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134             end % (this.iStim~=0)
135             
136             % channel densities vector
137             this.gNa = densityVectorFactory(geometryProperties.compFeatures,

{'Soma' 'IS' 'SOCB' 'Axon'},
[this.gNaSoma,this.gNaIS,this.gNaAxon.*10,this.gNaAxon]);

138             this.gK = densityVectorFactory(geometryProperties.compFeatures,
{'Soma' 'IS' 'SOCB' 'Axon'},[this.gKSoma,this.gKIS,this.gKAxon,this.gKAxon]);

139             this.gCa = densityVectorFactory(geometryProperties.compFeatures,
{'Soma' 'IS' 'SOCB' 'Axon'},
[this.gCaSoma,this.gCaIS,this.gCaAxon,this.gCaAxon]);

140             
141             % get the number of compartments from the voltage array%
142             numberOfCmp=geometryProperties.numberOfCompartments;
143             
144             %% current analysis
145             currentObserver.compartment=1; currentObserver.time = 0; 

currentObserver.INa = 0; currentObserver.IK = 0;
146             currentObserver.IKA = 0; currentObserver.IKCa = 0; 

currentObserver.ICa = 0; currentObserver.IL = 0;
147             
148             V0=repmat(this.Vrest,1,numberOfCmp)';
149             this.startParameters=[V0 this.h0(numberOfCmp) this.m0

(numberOfCmp) this.n0(numberOfCmp) this.c0(numberOfCmp) this.Cai0
(numberOfCmp)];

150             this.RTdivF=(this.gasConstant*this.Temp)/this.Faraday;
151             
152         end
153         
154         %% the differential equations
155         function X = differentialEq(this,time,x)
156             compL=length(x)/(this.numberOfStateVariables+1);
157             
158             global currentObserver;
159             
160             %prevents error if t0 is not initialized
161             if (isempty(this.t0)) this.t0=clock; end
162             
163             ms = round(etime(clock,this.t0) * 1000);
164             if(ms>this.timeout*1000)
165                 display(['Timeout, maxPotential:',num2str(max(x(1:compL)))]);
166                 global exceptionValue; exceptionValue=x(1:compL);
167                 return;
168             end
169             
170             % slice up the column vector to a 'compL'x6 array
171             
172             V=x(1:compL); h=x(compL+1:2*compL); m=x(2*compL+1:3*compL); n=x

(3*compL+1:4*compL);
173             c=x(4*compL+1:5*compL); Cai=abs(x(5*compL+1:6*compL));
174             thisVe=this.Ve;
175             
176             %% get the stimulus power for each compartment, if the neuron 

gets stimulated in first compartment
177             stimulusCurrent=this.linkCompartments

(this,compL,time,V,this.stimulationDesc,this.iStim, thisVe, this.C); % 
current in mA %

178             
179             %% allocate memory
180             X=zeros(compL,6);
181             
182             %% Main equation
183             thisINa=zeros(compL,1); thisIK=zeros(compL,1); thisIKCa=zeros

(compL,1);
184             thisICa=zeros(compL,1); thisIL=zeros(compL,1);
185             
186             % to disable single currents, just comment the according line
187             thisINa=this.INa(V,m,h);
188             thisIK=this.IK(V,n);
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189             thisIKCa=this.IKCa(V,Cai);
190             thisICa=this.ICa(V,c,Cai);
191             thisIL=this.IL(V);
192             
193             currentObserver.time = [currentObserver.time; time]; 

currentObserver.INa = [currentObserver.INa; thisINa
(currentObserver.compartment)];

194             currentObserver.IK = [currentObserver.IK; thisIK
(currentObserver.compartment)];

195             currentObserver.IKCa = [currentObserver.IKCa; thisIKCa
(currentObserver.compartment)]; currentObserver.ICa = [currentObserver.ICa; 
thisICa(currentObserver.compartment)];

196             currentObserver.IL = [currentObserver.IL; thisIL
(currentObserver.compartment)];

197             
198             X(:,1)=(-thisINa-thisIK-thisIKCa-thisICa-thisIL+stimulusCurrent)./

this.C;%Vm [mV];
199             
200             X(:,2)=(-(this.alpha_h(this,V)+this.beta_h(this,V)).*h

+this.alpha_h(this,V)).*this.factor_Q10_Na_kin; %h
201             X(:,3)=(-(this.alpha_m(this,V)+this.beta_m(this,V)).*m

+this.alpha_m(this,V)).*this.factor_Q10_Na_kin; %m
202             X(:,4)=(-(this.alpha_n(this,V)+this.beta_n(this,V)).*n

+this.alpha_n(this,V)).*this.factor_Q10_K_kin; %n
203             X(:,5)=(-(this.alpha_c(this,V)+this.beta_c(this,V)).*c

+this.alpha_c(this,V)).*this.factor_Q10_Ca_kin; %c
204             X(:,6)=(this.surfaceToVolumeRatio(this.r,this.compartmentLength).*

(-this.ICa(V,c,Cai)./(this.Faraday*2)) * 10^-3)-((Cai-this.CaRes)./
this.TauCA);%Cai

205             
206             %create a column vector
207             X=X(:);
208         end
209         
210         %% Helper functions
211         function X=INa(this,V,m,h) % check
212             X=this.gNa.*m.^3.*h.*(V-this.VNa);
213         end %function INa
214         
215         function X=IK(this,V, n)
216             X=this.gK.*n.^4.*(V-this.VK);
217         end %function IK
218         
219         function X=IKCa(this,V,Cai)
220             X=this.gKCaBar(this,Cai) .* (V-this.VL);
221         end %function IKCa
222         
223         function X=ICa(this,V,c,Cai) % check
224             relative_VCa=this.VCa(Cai);
225             X=this.gCa.*c.^3.*(V-relative_VCa);
226         end %function ICa
227         
228         function X=VCa(this, Cai)
229             RTdivF2=(this.gasConstant*this.Temp)/(this.Faraday.*2);
230             X=RTdivF2.*log(this.Cao./Cai); % in volt
231             X=X*10^3; % V => mV
232         end %function VCa
233         
234         % Leak current
235         function X=IL(this,V)
236             X=this.gL *(V-this.VL);
237         end %function IL
238         
239         %% start Values
240         function X = h0(this,l)
241             X=this.alpha_h(this,this.Vrest)./(this.alpha_h(this,this.Vrest)

+this.beta_h(this,this.Vrest));
242             X=repmat(X,1,l)';
243         end %function
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244         
245         function X = m0(this,l)
246             X=this.alpha_m(this,this.Vrest)./(this.alpha_m(this,this.Vrest)

+this.beta_m(this,this.Vrest));
247             X=repmat(X,1,l)';
248         end %function
249         
250         function X = n0(this,l)
251             X=this.alpha_n(this,this.Vrest)./(this.alpha_n(this,this.Vrest)

+this.beta_n(this,this.Vrest));
252             X=repmat(X,1,l)';
253         end %function
254         
255         function X = c0(this,l)
256             X=this.alpha_c(this,this.Vrest)./(this.alpha_c(this,this.Vrest)

+this.beta_c(this,this.Vrest));
257             X=repmat(X,1,l)';
258         end %function
259         
260         function X = Cai0(~,l)
261             X=1.0000e-04;
262             X=repmat(X,1,l)';
263         end %function
264         
265     end %methods
266     
267     methods (Static)
268         function X = alpha_h(this,V)
269             temperature = this.T;
270             X=0;
271             if (temperature<24)
272                 X=this.factor_Q10_Na_kin*1.869.*exp(-(V+55)/20);
273             elseif(temperature>30)
274                 X=this.factor_Q10_Na_kin*1.817.*exp(-(V+52)/20);
275             end
276         end %function
277         
278         function X = beta_h(this,V)
279             temperature = this.T;
280             X=0;
281             if (temperature<24)
282                 X=this.factor_Q10_Na_kin*28.04./(1+exp(-0.1*(V+25)));
283             elseif(temperature>30)
284                 X=this.factor_Q10_Na_kin*27.25./(1+exp(-0.1*(V+22)));
285             end
286         end %function
287         
288         function X = alpha_m(this,V)
289             temperature = this.T;
290             X=0;
291             if (temperature<24)
292                 X=(this.factor_Q10_Na_kin*-2.804*(V+35))./(exp(-0.1*(35

+V))-1);
293             elseif(temperature>30)
294                 X=(this.factor_Q10_Na_kin*-2.725*(V+35))./(exp(-0.1*(35

+V))-1);
295             end
296         end %function
297         
298         function X = beta_m(this,V)
299             temperature = this.T;
300             X=0;
301             if (temperature<24)
302                 X=this.factor_Q10_Na_kin*93.46*exp(-(V+60)/18);
303             elseif(temperature>30)
304                 X=this.factor_Q10_Na_kin*90.83*exp(-(V+60)/20);
305             end
306         end %function
307         
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308         function X = alpha_n(this,V)
309             temperature = this.T;
310             X=0;
311             if (temperature<24)
312                 X=(this.factor_Q10_K_kin*-0.0984*(V+32.5))./(exp(-0.1*(V

+32.5))-1);
313             elseif(temperature>30)
314                 X=(this.this.factor_Q10_K_kin*-0.09575*(V+37))./(exp(-0.1*(V

+37))-1);
315             end
316         end %function
317         
318         function X = beta_n(this,V)
319             temperature = this.T;
320             X=0;
321             if (temperature<24)
322                 X=this.factor_Q10_K_kin*1.969*exp(-(V+58.5)/76);
323             elseif(temperature>30)
324                 X=this.factor_Q10_K_kin*1.915*exp(-(V+47)/80);
325             end
326         end %function
327         
328         function X = alpha_c(this,V)
329             temperature = this.T;
330             X=0;
331             if (temperature<24)
332                 X=(this.factor_Q10_Ca_kin*-1.4*(V+15))./(exp(-0.1*(V+15))-1);
333             elseif(temperature>30)
334                 X=(this.factor_Q10_Ca_kin*-1.362*(V+13))./(exp(-0.1*(V

+13))-1);
335             end
336         end %function
337         
338         function X = beta_c(this,V)
339             temperature = this.T;
340             X=0;
341             if (temperature<24)
342                 X=this.factor_Q10_Ca_kin*46.68*exp(-(V+40)/18);
343             elseif(temperature>30)
344                 X=this.factor_Q10_Ca_kin*45.41*exp(-(V+38)/18);
345             end
346         end %function beta_c
347         
348         function X = gKCaBar(this,Ca2i)
349             X = this.gKCa*((Ca2i./this.CaDiss).^2)./(1+(Ca2i/this.CaDiss).^2);
350         end % function gKCaBar
351         
352         function [T, Y] = postProcessing(this,T,Y)
353             h.figure = figure;
354             plotaxis.Xmin=0; plotaxis.Xmax=this.simulationTime; 

plotaxis.Ymin=-90; plotaxis.Ymax=50;
355             plot(T,Y(:,1,1));
356             axis([plotaxis.Xmin plotaxis.Xmax plotaxis.Ymin plotaxis.Ymax]);
357             
358             filename=[  '/tmp/membranPotential/'  'fcn2010_cat20' '+' num2str

(this.stimulationDesc(3,1)) 'ms' '+0uA'];
359             filename=strrep(filename, '.', '_');
360             
361             if ~isequal(exist('/tmp/membranPotential', 'dir'),7) % 7 = 

directory.
362                 mkdir('/tmp/membranPotential');
363             end %  if ~isequal(exist('/tmp/membranPotential', 'dir'),7)
364             
365             close all;
366         end %function postProcessing
367         
368     end %method static
369 end %classdef
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A.2 Ca-Kinetics Correction factor

Basic equation for iCa dependant Ca-Kinetics, equal to Equation 2.26:

d[Ca2+]i
dt

=
A

V
· −iCa

2F
− [Ca2+]i − [Ca2+]res

τCa
(A.1)

d[Ca2+]i
dt

=
A

V
· −iCa ·

1

2F
− [Ca2+]i − [Ca2+]res

τCa
(A.2)

A conversion factor x is needed to fit the different input units into the

Ca-Kinetics equation. The equation is solved for x which represents the

correction factor:

d[Ca2+]i[mM ]

dt[ms]
= x·A[cm2]

V [cm3]
·−iCa[µA]

[cm2]
· 1

2F [C ·mol−1]
− [Ca2+]i[mM ]− [Ca2+]res[mM ]

τCa[ms]
(A.3)

Defined Conversions:

M =
mol

l
(A.4)

C = A · s (A.5)

Values removed, only units used to evaluate the unit-correction factor:

[mM ]

[ms]
= x · 1

[cm]
· [µA]

[cm2]
· 1

[C ·mol−1]
− [mM ]− [mM ]

[ms]
(A.6)

[mM ]

[ms]
= x · 1

[cm]
· 10

−6[A]

[cm2]
· [mol]

[C·]
− [mM ]

[ms]
(A.7)

[mM ]

[ms]
= x · 1

[cm3]
· 10−6[A] · [M · l]

[C]
− [mM ]− [mM ]

[ms]
(A.8)

[mM ]

[ms]
= x · 1

[cm3]
· 10−6[A] · [M · l]

[A · s]
− [mM ]

[ms]
(A.9)

[mM ]

[ms]
= x · 1

[cm3]
· 10−6[A] · [M · dm3]

[A · s]
− [mM ]

[ms]
(A.10)

[mM ]

[ms]
= x · 1

[cm3]
· 10−6[A] · [M · cm3 · 103]

[A · s]
− [mM ]

[ms]
(A.11)
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[mM ]

[ms]
= x · 10−6 · [M · 103]

[s]
− [mM ]

[ms]
(A.12)

[mM ]

[ms]
= x · 10−3 · [M ]

[s]
− [mM ]

[ms]
(A.13)

[mM ]

[ms]
= x · 10−3 · [mM ]

[ms]
− [mM ]

[ms]
(A.14)

103 = x (A.15)
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Appendix B

FEM Mesh

B.1 FEM Mesh of Bulk Volume

Figure B.1: Complete mesh of the volume conductor consists of 604213
domain elements, 204264 boundary elements, and 3570 edge elements. Ex-
ported from Comsol Multiphysics.
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