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Preface

It was during the work on my bachelor thesis with the topic “Der Holomorphiebegriff für Clifford-Algebra-
wertige Funktionen” that I first got into contact with non-commutative analysis. I discovered that the
notion of Cauchy-Fueter-regularity allowed to generalize most of the classical results on holomorphic
functions to the higher-dimensional case of quaternion- or Clifford-algebra-valued functions. The associ-
ated function theory had been well developed for a long time and played a fundamental role in the field
of Clifford-analysis.

After the course “Functional analysis 2” I was fascinated by the idea of a functional calculus: the
fact that it was possible to extend functions from a complex to an operator argument. I wondered
whether it was possible to define an analogue theory for operators on “Banach spaces” over quaternions
or Clifford-numbers and I chose this question to be the topic of my master thesis.

Defining a functional calculus in the quaternionic setting had been an open problem for a long time.
Several mathematicians had considered it over the years without achieving satisfactory results. Fortu-
nately, the discovery of the notion of slice hyperholomorphicity gave new impact to this field and hence,
during the last decade, mathematicians have made great progress in answering the related questions.
When I started to work on my master thesis, the foundations of the theory of slice hyperholomor-
phic functions and the associated S-functional calculus were well established. Many related results had
been developed by Fabrizio Colombo and his collaborators at the Politecnico di Milano. Encouraged
by Michael Kaltenbäck, my supervisor at Vienna, I contacted Fabrizio Colombo and we started a very
interesting and fruitful cooperation.

The aim of my master thesis is to give an overview on the fundamentals of the theory of quaternion-
valued slice hyperholomorphic functions and the S-functional calculus for quaternionic linear operators.
The analogue of the classical resolvent equation, Theorem 4.16, was found during my cooperation with
Fabrizio Colombo. The presented proofs of the product rule and the existence of Riesz-projectors, which
are based on this equation, were also developed in this period.

To keep my master thesis within reasonable bounds, I expect the reader to be familiar with the
fundamentals of complex analysis and functional analysis, as they are taught in introductory courses at
university.
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Chapter 1

Introduction

In the 1930s, Birkhoff and von Neumann showed that the Schrödinger equation can be written using
either complex- or quaternion-valued functions [5]. Since then, many attempts have been made to develop
a quaternionic version of quantum theory. However, in contrast to the complex case, the mathematical
foundations of quaternionic quantum mechanics have been an open question for a long time. In particular,
the identification of the correct notion of spectrum of a quaternionic linear operator and the definition
of a functional calculus that is useful in applications caused difficulties for mathematicians [1]. As a
consequence, it was also not possible to formulate the spectral theorem for quaternionic linear operators
precisely. The theory of slice hyperholomorphic functions and the related S-functional calculus, which
are presented in this master thesis, answer these questions.

In order to explain the difficulties in the quaternionic case, we give a short overview on the situation
in the complex case. This overview is not a complete discussion. It is rather meant to be a motivation
of the approach in the quaternionic case. The proofs of the presented results can be found for instance
in [16, Chapter VII].

1.1 The Riesz-Dunford functional calculus

The most basic functional calculus is the polynomial functional calculus for linear operators on a finite
dimensional Banach space. For a linear operator A on Ck and any p(z) =

∑N
n=0 anz

n in the set of
complex polynomials C[z], we define

p(A) =

N∑
n=0

anA
n,

where A0 = I and I denotes the identity operator as usual.
This polynomial functional calculus is consistent with algebraic operations such as addition and

multiplication and gives a lot of useful information about the operator A. For instance, we may consider
the minimal polynomial mA of A, that is, the polynomial with leading coefficient 1 of lowest degree such
that mA(A) = 0. Then a ∈ C is an eigenvalue of A if and only if a is a root of mA as it is well known from
linear algebra. Moreover, for any p ∈ C[z] there exist polynomials q, r ∈ C[z] with 0 ≤ deg(r) < deg(mA)
such that p(z) = q(z)mA(z) + r(z). Hence, we obtain p(A) = q(A)mA(A) + r(A) = r(A). It is even
possible to specify this observation.

Lemma 1.1. Let A be a linear operator on Ck, let σ(A) = {λ1, . . . , λN} be the set of eigenvalues of A

and let ν1, . . . , νN ∈ N be such that mA(z) =
∏N
n=1(z − λn)νn . A polynomial p ∈ C[z] satisfies p(A) = 0

if and only if p has a zero of order at least νn at λn for any n = 1, . . . , N .
In particular, p(A) = q(A) for two polynomials p, q ∈ C[z] if and only if p− q has a zero of order at

least νn at λn for any n = 1, . . . , N , that is, if and only if

p(λn) = q(λn), p′(λn) = q′(λn), . . . , p(νn)(λn) = q(νn)(λn) for n = 1, . . . , N.

It is possible to extend this polynomial calculus to functions that are analytic on an open set that
contains σ(A). For such a function f , we can choose a polynomial pf ∈ C[z] such that

pf (λn) = f(λn), p′f (λn) = f ′(λn), . . . , p
(νn)
f (λn) = f (νn)(λn) for n = 1, . . . , N

1



and set f(A) = pf (A). Lemma 1.1 implies that this calculus is well defined and independent of the choice
of the polynomial pf . Note that the set, on which f is holomorphic, does not have to be connected because
f(λn), f ′(λn), . . ., f (νn)(λn) only depend on the values of f on a neighborhood of λn. Nevertheless, the
essential information is given by the polynomials of degree lower or equal to deg(mA).

If we consider a bounded linear operator T on an infinite dimensional complex Banach space V ,
then T does not necessarily satisfy a polynomial equation p(T ) = 0. Therefore, the set of polynomials
is too small to provide a complete picture of the operator T . A natural approach to enlarge the class
of admissible functions would be to consider power series of the form P (z) =

∑∞
n=0 anz

n and to define
P (T ) =

∑∞
n=0 anT

n. However, this method is not satisfactory because it requires additional assumptions
on the radius of convergence of P , which are often too restrictive, in order to ensure the convergence of
the series

∑∞
n=0 anT

n. Moreover, this series does not converge at all if the operator T is unbounded.
Therefore this approach can not be generalized to the case of unbounded operators.

To find a different approach, we first recall that, in the finite dimensional case, f(A) depends only on
the values of the function f on a neighborhood of the set of eigenvalues of A. In the infinite dimensional
case, the set of eigenvalues is not sufficient to characterize an operator, as it is well known. It must be
replaced by its spectrum, which coincides with the set of eigenvalues in the finite dimensional case.

Definition 1.2. Let T be a bounded operator on a complex Banach space V . The set ρ(T ) of all
λ ∈ C such that (λI − T )−1 exists as a bounded operator on V is called the resolvent set of T . The set
σ(T ) = C \ ρ(T ) is called the spectrum of T .

Lemma 1.3. Let T be a bounded operator on a complex Banach space V . The spectrum σ(T ) is a
nonempty, compact set that is contained in the ball B‖T‖(0).

Let U ⊂ C be an open set such that its boundary ∂U consists of a finite number of rectifiable Jordan
curves. If f is a function that is holomorphic on an open set that contains U , then Cauchy’s integral
formula states that

f(z) =
1

2πi

∫
∂U

f(ξ)

ξ − z
dξ

for any z ∈ U . The idea of the Riesz-Dunford-functional calculus is to replace the variable z in this
formula by the operator T and to define

f(T ) =
1

2πi

∫
∂U

(ξI − T )−1f(ξ) dξ. (1.1)

The question is whether this procedure makes any sense.

Lemma 1.4. Let T be a bounded operator on a complex Banach space V . The function µ 7→ Rµ(T ) =
(µI − T )−1 is holomorphic on ρ(T ). It is called the resolvent of T .

This lemma and Cauchy’s integral theorem imply that the integral in (1.1) does not depend on the
set U .

Let us consider the Cauchy kernel 1
ξ−z . For |z| < |ξ| it allows the expansion

1

ξ − z
=

1

ξ

1

1− ξ−1z
=

1

ξ

∞∑
n=0

(ξ−1z)n =

∞∑
n=0

znξ−n−1 (1.2)

because the geometric series
∑∞
n=0 q

n = 1
1−q converges for |q| < 1. Now recall that the Neumann series∑∞

k=0 T
k = (I − T )−1 converges for ‖T‖ < 1. Thus, for ‖T‖ < |λ|, we obtain the analogous series

expansion of the resolvent operator, namely

(λI − T )−1 =
1

λ
(I − λ−1T ) =

1

λ

∞∑
n=0

(λ−1T )n =

∞∑
n=0

Tnλ−n−1. (1.3)

Let f(z) = zm with m ∈ N0 = N ∪ {0} and let U be a ball Br(0) with radius ‖T‖ < r. Then the
series (1.3) converges uniformly on ∂U . Hence,

1

2πi

∫
∂U

(ξI − T )−1ξm dξ =
1

2πi

∫
∂U

∞∑
n=0

Tnξ−n−1ξm dξ =

∞∑
n=0

Tn
1

2πi

∫
∂U

ξ−n+m−1 dξ = Tm (1.4)
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because

1

2πi

∫
∂Br(0)

ξ−n+m−1 dξ =

{
1 if n = m

0 otherwise.

Therefore, replacing the variable z by the operator T in Cauchy’s integral formula is consistent with the
polynomial functional calculus, which justifies the following definition.

Definition 1.5 (Riesz-Dunford functional calculus). Let T be a bounded operator on a complex Banach
space and let f be holomorphic on an open set O with σ(T ) ⊂ O. Then we define

f(T ) =
1

2πi

∫
∂U

Rξ(T )f(ξ) dξ,

where U is an arbitrary open set such that σ(T ) ⊂ U and U ⊂ O and such that ∂U consists of a finite
number of rectifiable Jordan curves.

Lemma 1.6. Let T be a bounded operator on a complex Banach space. Let f and g be holomorphic
functions on an open set O with σ(T ) ⊂ O and let α and β be complex numbers. Then (αf + βg)(T ) =
αf(T ) + βg(T ) and (fg)(T ) = f(T )g(T ).

Moreover, if fn is a sequence of holomorphic functions on O that converges uniformly to f , then
fn(T ) converges to f(T ) in the uniform operator topology.

An important application of the Riesz-Dunford-functional calculus is that it allows to identify invari-
ant subspaces. Let us assume that σ(T ) = σ1(T ) ∪ σ2(T ) with dist(σ1(T ), σ2(T )) > 0. Then we can
choose open sets U1 and U2 such that σi(T ) ⊂ Ui, i = 1, 2 and U1 ∩U2 = ∅. Since the indicator functions
1Ui are holomorphic on U1∪U2, we can apply the functional calculus and define Pi = 1Ui(T ) for i = 1, 2.
We obtain

P 2
i = 1Ui

(T )1Ui
(T ) = (1Ui

· 1Ui
)(T ) = 1Ui

(T ) = Pi (1.5)

and

PiT = 1Ui
(T )z(T ) = (1Ui

z)(T ) = (z1Ui
)(T ) = z(T )1Ui

(T ) = TPi, (1.6)

where z denotes the identity function z 7→ z. Thus, the operators Pi are projections and they commute
with T . Therefore, the subspaces Vi = P (V ), i = 1, 2 of the Banach space V are invariant under T .
Indeed, for any v ∈ Vi, we have

T (v) = TPi(v) = PiT (v) ∈ Vi.

The operators P1 and P2 are called the Riesz-projections associated with σ1(T ) and σ2(T ).
We conclude our discussion with two important properties of the spectrum of an operator.

Theorem 1.7 (Spectral Radius Theorem). Let T be a bounded operator on a complex Banach space.
The spectral radius of T is defined as r(T ) = sup{|λ| : λ ∈ σ(T )}. It satisfies

r(T ) = lim
n→∞

n
√
‖T‖n.

Note that r(T ) ≤ ‖T‖ because of Lemma 1.3. Moreover, the resolvent of T is holomorphic on
{λ ∈ C : r(T ) < |λ|} ⊂ ρ(T ) by Lemma 1.4. Since limλ→∞Rλ(T ) = 0, the Taylor series expansion of
the resolvent at infinity, that is, the series Rλ(T ) =

∑∞
n=0 T

nλ−n−1, converges in the uniform operator
topology not only for λ with ‖T‖ < |λ| but even for λ with r(T ) < |λ|.

Theorem 1.8 (Spectral mapping theorem). Let T be a bounded operator on a complex Banach space
and let f be holomorphic on an open set O with σ(T ) ⊂ O. Then

f(σ(T )) = σ(f(T )).

Theorem 1.9. Let T be a bounded operator on a complex Banach space, let f be holomorphic on an
open set O with σ(T ) ⊂ O and let g be holomorphic on an open set that contains f(σ(T )). Then

g(f(T )) = (g ◦ f)(T ).

3



1.2 Difficulties in the quaternionic setting

We introduce the quaternions, quaternionic vector spaces etc. in the next chapter. For the moment it is
enough to know that the quaternions H are the 4-dimensional real vector space with basis {1, e1, e2, e3}
that is endowed with a non-commutative product such that e2

i = −1 for i = 1, 2, 3 and eiej = −ejei
for i 6= j and 1 ≤ i, j ≤ 3. We shall not be too much concerned about the details of the definitions
of quaternionic vector spaces, quaternionic linear operators etc. since these details are not essential to
understand the following discussion.

When we want to generalize the Riesz-Dunford-functional calculus to the quaternionic setting, we
meet several problems. As in the complex case, we can consider the finite-dimensional case and try
to generalize it to the infinite dimensional one. However, since the quaternionic multiplication is not
commutative, we have to distinguish whether we multiply a vector v with a scalar a ∈ H from the left
or from the right. This leads to two different notions of eigenvalues.

Definition 1.10. Let T be a right linear operator on a quaternionic vector space V , that is, an operator
that is linear with respect to the multiplication with scalars from the right. A quaternion λ ∈ H is called
a left eigenvalue of T if there exists a vector v ∈ V \ {0} such that

T (v) = λv.

It is called a right eigenvalue if there exists a vector v ∈ V \ {0} such that

T (v) = vλ.

We denote the set of left and right eigenvalues of T by σL(T ) and σR(T ), respectively.

When one tries to generalize these notions of eigenvalues to a notion of spectrum, one is faced with
a paradoxical situation.

It is the notion of right eigenvalues that is relevant in applications such as quaternionic quantum
theory [1]. Moreover, it allows to prove the spectral theorem for quaternionic matrices [17]. However, the
mapping Rλ(T ) : v → T (v)− vλ is not right linear because

Rλ(T )[va] = T (va)− vaλ 6= T (v)a− vλa = Rλ(T )[v]a

if λ and a do not commute. Therefore, it is not possible to associate a right linear resolvent operator to
the set of right eigenvalues and to define a generalized notion of right spectrum as Colombo and Sabadini
point out in [9].

On the contrary, the operator Lλ(T ) : v → T (v)−λv is right linear. Therefore, one can consider the
left resolvent operator L−1

λ (T ) = (T −λI)−1 and define the left spectrum σL(T ) as the set of quaternions
λ ∈ H such that Lλ(T ) = T − λI is not invertible. Unfortunately, the left spectrum does not seem to be
of any relevance in applications.

It is therefore not at all clear how to generalize the notion of eigenvalues of a quaternionic linear
operator to a meaningful notion of spectrum if one starts from the finite dimensional case.

Another approach to define a quaternionic functional calculus is to consider a notion of generalized
holomorphicity and to directly replace the quaternionic variable by an operator in the respective Cauchy
formula. The most successful notion of holomorphicity in the quaternionic setting was the notion of
Cauchy-Fueter-regularity, which is discussed for instance in [20].

Cauchy-Fueter-regularity is based on the observations of the Wirtinger calculus. Let us identify the
complex plane C with R2 and let f(z) = u(z0, z1) + iv(z0, z1) be a real differentiable function from an
open set U ⊂ C to C, where z = z0 + iz1 for any z ∈ C. For small h = h0 + ih1, we have

f(z + h)− f(z) =df(z)h+ o(‖h‖) =
∂f

∂z0
(z)h0 +

∂f

∂z1
(z)h1 + o(‖h‖) =

=
1

2

(
∂f

∂z0
(z)h0 − i

∂f

∂z1
(z)ih1

)
+

1

2

(
∂f

∂z0
(z)h0 + i

∂f

∂z1
(z)(−ih1)

)
+ o(‖h‖) =

=
1

2

(
∂f

∂z0
(z)h0 − i

∂f

∂z1
(z)h0 +

∂f

∂z0
(z)ih1 − i

∂f

∂z1
(z)ih1

)
+

+
1

2

(
∂f

∂z0
(z)h0 + i

∂f

∂z1
(z)h0 +

∂f

∂z0
(z)(−ih1) + i

∂f

∂z1
(z)(−ih1)

)
+ o(‖h‖).

4



Hence,

f(z + h)− f(z) =
1

2

(
∂f

∂z0
(z)− i ∂f

∂z1
(z)

)
h+

1

2

(
∂f

∂z0
(z) + i

∂f

∂z1
(z)

)
h+ o(‖h‖). (1.7)

This observation justifies the following definition.

Definition 1.11 (Wirtinger derivatives). The differential operators

∂z =
1

2

(
∂

∂z0
− i ∂

∂z1

)
and ∂z̄ =

1

2

(
∂

∂z0
+ i

∂

∂z1

)
are called the Wirtinger derivatives with respect to the complex and the complex conjugate variable,
respectively.

With this definition, the equation (1.7) turns into

f(z + h)− f(z) = ∂zf(z)h+ ∂z̄f(z)h+ o(‖h‖).

Since a function f is complex differentiable at z if and only if there exists a complex number f ′(z), the
derivative of f at z, such that

f(z + h)− f(z) = f ′(z)h+ o(‖h‖),

we obtain the following lemma.

Lemma 1.12. A real differentiable function f : U ⊂ C → C is holomorphic if and only if ∂z̄f ≡ 0 on
U . Moreover, in this case, we have f ′(z) = ∂zf(z) for any z ∈ U .

The idea of Cauchy-Fueter-regularity is to generalize the Wirtinger derivatives and to consider the
operator ∂ = ∂

∂x0
+
∑3
k=1

∂
∂xi

ei instead.

Definition 1.13. For a real differentiable function f : U ⊂ H→ H, we define

∂f(x) =
∂f

∂x0
(x) +

3∑
k=1

ei
∂f

∂xi
(x).

A function f : U ⊂ H→ H is called is called Cauchy-Fueter-(left)-regular on U , if ∂f ≡ 0 on U .

Cauchy-Fueter-regularity allows to generalize a huge part of the classical theory of holomorphic
functions. In particular, Cauchy-Fueter-regular functions allow a series expansion based on Fueter-
polynomials and they satisfy a version of Cauchy’s integral formula. Thus, it is actually possible to
define a functional calculus based on this notion of generalized holomorphicity, if one follows the ideas
in [21]. Nevertheless, this functional calculus has several disadvantages. We just want to point out the
most obvious one: the class of Cauchy-Fueter-regular functions is very specific and does not contain
many of the most important functions in mathematics. In particular, it does not contain polynomials
and power series of the form

∑∞
n=0 x

nan with an ∈ H. Indeed, not even the identity function x 7→ x is
Cauchy-Fueter-regular since

∂ x =
∂

∂x0

(
x0 +

3∑
i=1

xiei

)
+

3∑
j=1

ej
∂

∂xj

(
x0 +

3∑
i=1

xiei

)
= 1 +

3∑
i=1

e2
i = −2 6= 0

because e2
i = −1 for i = 1, . . . , 3. For this reason, the theory of Cauchy-Fueter-regular functions was not

the appropriate starting point for the development of a quaternionic functional calculus that is useful in
applications either.

The development of a useful functional calculus for quaternionic linear operators required a new
notion of generalized holomorphicity, so-called slice hyperholomorphicity. Actually, special cases of slice
hyperholomorphic functions were already considered in the 1930s by Fueter in [18] and [19], who used
them to generate Cauchy-Fueter-regular functions, and later for instance by Cullen in [15]. Nevertheless,

5



it took more than 70 years until their potential to define an associated functional calculus was understood;
see [10].

Slice hyperholomorphic functions satisfy an integral formula of Cauchy-type with a modified kernel.
This kernel naturally leads to a new notion of spectrum, the S-spectrum, which coincides with the
set of right eigenvalues in the finite-dimensional case. The associated S-functional calculus for slice
hyperholomorphic functions can be considered as the most natural generalization of the Riesz-Dunford-
calculus to the quaternionic setting since it shares almost all its properties. We point out that, although
only bounded operators are considered in this master thesis, the S-functional calculus can also be defined
for unbounded operators [12].

Moreover, the class of slice hyperholomorphic functions contains polynomials and power series in the
quaternion variable. In particular, it contains the exponential function exp(x) =

∑∞
n=0

1
n!x

n. Thus, the
S-functional calculus allows to define the quaternionic evolution operator and to generalize the classical
Hille-Yoshida-theory of strongly continuous semi-groups [4, 11]. Moreover, recently, a proof of the spectral
theorem for unitary operators on quaternionic Hilbert spaces based on the S-spectrum has been provided
in [3].

We point out that slice hyperholomorphicity can even be defined in a more general setting for functions
defined on the real space Rn+1 with values in the Clifford-algebra that is generated by n imaginary units.
The theory of these functions is then analogue to the quaternionic case and it allows to define a functional
calculus for n-tuples of not necessarily commuting operators. In the literature, slice hyperholomorphic
functions defined on the space Rn+1 are also called slice monogenic, whereas slice hyperholomorphic
functions of a quaternion variable are referred to as slice regular. We follow this convention in this
master thesis.

6



Chapter 2

Fundamentals of quaternions

In this chapter, we introduce the algebra of quaternions and discuss their main algebraic properties.
Then we consider vector spaces and linear mappings in a quaternionic setting and extend certain results
of classical linear algebra. The proof of these results follow the lines of the classical case, but since usually
only vectors spaces over a field are considered in introductory linear algebra courses at university, we
give the proofs for the sake of completeness. Finally, we introduce several well-known objects studied in
classical functional analysis in the quaternionic setting. In particular, we proof the quaternionic version
of the Hahn–Banach theorem.

Most of the results presented in this section can be found in [24]. They can also be found for a more
general setting in [7] and [6]. For basic considerations on quaternionic two-sided vector spaces and on
quaternionic Banach spaces see [23]. Note that therein, quaternionic two-sided vector spaces are referred
to simply as “quaternionic vector spaces”.

2.1 The algebra of quaternions

Definition 2.1. The algebra of quaternions H is defined as the 4-dimensional real vector space with
basis 1, e1, e2 and e3, that is,

H = {x0 + x1e1 + x2e2 + x3e3 : xi ∈ R},

endowed with the associative R-bilinear product with unity 1 that satisfies

e2
1 = e2

2 = e2
3 = −1, (2.1)

e1e2 = e3 = −e2e1, e2e3 = e1 = −e3e2 and e3e1 = e2 = −e1e3. (2.2)

Sometimes, when it is more convenient, we will write e0 instead of 1. Moreover, note that (2.2) is
equivalent to

e1e2e3 = −1. (2.3)

As in the complex case, we will identify the subalgebra span{1} with the field of real numbers R.
Moreover, we will identify R3 with span{e1, e2, e3}. The following definitions are formulated in analogy
to the case of complex numbers.

Definition 2.2. Let x = x0 +
∑3
i=1 xiei ∈ H.

(i) We call Rex = x0 the real part of the quaternion x and Imx = x =
∑3
i=1 xiei the imaginary or

vector part of the quaternion. We call a quaternion x real, if Imx = 0 and we call it (purely)
imaginary if Rex = 0.

(ii) We call x = x0 −
∑3
i=1 xiei the conjugate of x.

(iii) The norm or absolute value of x is defined as |x| =
√∑3

i=0 x
2
i .
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Proposition 2.3. (i) The quaternionic conjugation is an R-linear involutive antiautomorphism, that
is, for all x, y ∈ H and all λ ∈ R, we have

x+ y = x+ y, λx = λx, x = x, and xy = y x.

Moreover, x = x if and only if x ∈ R and x = −x if and only if x is purely imaginary.

(ii) Let x, y ∈ H. Similar to the complex case, the following identities hold true:

• Rex = 1
2 (x+ x) and Imx = 1

2 (x− x),

• xx = xx = |x|2,

• |xy| = |x| |y|.

Proof. From the definition, it is clear that the quaternionic conjugation is R-linear and an involution.
Moreover, we have

1ei = ei = ei 1 = ei 1, i = 1, . . . , 3,

and
e1e2 = e3 = −e3 = e2e1 = (−e2)(−e1) = e2 e1.

Similarly, we get e2e3 = e3 e2 and e1e3 = e3 e1. Thus, xy = y x holds if x and y are elements of the basis
of H. Hence, it holds for any x, y ∈ H because of the R-bilinearity of the quaternionic product.

It is also clear that x = x if and only if Imx = 0, that is, if and only if x is real, and that x = −x if
and only if Rex = 0, that is, if and only if x is purely imaginary. Therefore, (i) holds true.

The identities in (ii) are also easy to show. We have

x+ x = Rex+ Imx+ Rex− Imx = 2Rex

and
x− x = Rex+ Imx− (Rex− Imx) = 2Imx.

Since eiej = −ejei for i 6= j ∈ {1, 2, 3}, we get

xx =

(
x0 −

3∑
i=1

xiei

)x0 +

3∑
j=1

xjej

 = x2
0 −

3∑
i=1

xix0ei +

3∑
j=1

x0xjej −
3∑

i,j=1

xixjeiej =

= x2
0 −

3∑
i=1

∑
j>i

(xixj − xjxi)eiej −
3∑
i=1

x2
i e

2
i = x2

0 +

3∑
i=1

x2
i = |x|2.

Similarly, we obtain xx = |x|2. Finally,

|xy|2 = xyxy = xyy x = |y|2xx = |y|2|x|2.

Hence, |xy| = |x| |y|.

Corollary 2.4. Every quaternion x ∈ H \ {0} has an multiplicative inverse, namely

x−1 =
1

|x|2
x.

In particular, the quaternions form a skew field.

Although the quaternionic multiplication is not commutative, if x or y is real, then xy = yx. As the
next Lemma shows, reals are the only quaternions that commute with any other quaternion. We will
specify this result later.

Lemma 2.5. A quaternion commutes with every other quaternion if and only if it is real. That is, the
center of H is the real line R.
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Proof. Since 1 is the multiplicative neutral element of H, it commutes with every quaternion. Moreover,
as the multiplication is R-bilinear, any x ∈ R = span{1} commutes with every other quaternion, too.

Now, let x = x0 +
∑3
i=1 xiei ∈ H be such that xy = yx for all y ∈ H. In particular, xe1 = e1x. But

since

e1x = x0e1 + x1e
2
1 + x2e1e2 + x3e1e3 = x0e1 − x1 + x2e3 − x3e2

and

xe1 = x0e1 + x1e
2
1 + x2e2e1 + x3e3e1 = x0e1 − x1 − x2e3 + x3e2,

this implies x2 = 0 and x3 = 0. Similarly xe2 = e2x together with

xe2 = x0e2 + x1e1e2 = x0e2 + x1e3 and e2x = x0e2 + x1e2e1 = x0e2 − x1e3

yields x1 = 0. Thus, x is real.

Lemma 2.6. Let x, y ∈ H \ {0}. Then x and y satisfy xy = −yx if and only if Rex = Re y = 0 and x
and y are orthogonal as vectors in R3.

Proof. Suppose that x = x0 +
∑3
i=1 xiei and y = y0 +

∑3
j=1 yjej belong to H\{0} and satisfy xy = −yx.

Then

xy = x0y0 +

3∑
i=1

xiy0ei +

3∑
j=1

x0yjej +

3∑
i,j=1

xiyjeiej (2.4)

and

yx = y0x0 +

3∑
j=1

yjx0ej +

3∑
i=1

y0xiei +

3∑
i,j=1

yjxiejei (2.5)

give

0 = xy + yx = 2x0y0 + 2

3∑
i=1

xiy0ei + 2

3∑
j=1

x0yjej +

3∑
i,j=1
i6=j

xiyj(eiej + ejei) + 2

3∑
i=1

xiyie
2
i .

From e2
i = −1 for i ∈ {1, 2, 3} and eiej = −ejei for 1 ≤ i, j ≤ 3 with i 6= j, we conclude

0 = 2

(
x0y0 −

3∑
i=1

xiyi

)
+ 2

3∑
i=1

(xiy0 + x0yi)ei, (2.6)

which implies x0y0 −
∑3
i=1 xiyi = 0 and xiy0 + x0yi = 0 for i = 1, 2, 3. If x0 6= 0 and y0 6= 0, then we

have yi = −y0
xi

x0
for i = 1, 2, 3. Hence,

0 = x0y0 −
3∑
i=1

xiyi = x0y0 +

3∑
i=1

y0
x2
i

x0
= x0y0

(
1 +

3∑
i=1

x2
i

x2
0

)
,

which is a contradiction because 1 +
∑3
i=1

x2
i

x2
0
> 0. Therefore, x0 and y0 cannot both be unequal to zero.

If on the other hand y0 = 0, then (2.6) simplifies to

0 = −2

3∑
i=1

xiyi +

3∑
i=1

2x0yiei. (2.7)

Since y 6= 0, there exists an index 1 ≤ i0 ≤ 3 such that yi0 6= 0. But (2.7) implies 2x0yi0 = 0.
Hence, x0 = 0. Similarly, x0 = 0 implies y0 = 0. Therefore, we get x0 = y0 = 0 and (2.6) turns into

0 = −2
∑3
i=1 xiyi. Hence, x and y are orthogonal vectors in R3.
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If on the other hand x and y are orthogonal vectors in R3, then
∑3
i=1 xiyi = 0 = −

∑3
i=1 xiyi. Since

e2
i = −1 for i ∈ {1, 2, 3} and eiej = −ejei for 1 ≤ i, j ≤ 3 with i 6= j, we obtain

xy =

3∑
i,j=1

xiyjeiej = −
3∑
i=1

xiyi +

3∑
i,j=1
i 6=j

xiyjeiej =

=

3∑
i=1

xiyi −
3∑

i,j=1
i 6=j

yjxiejei = −
3∑

i,j=1

yjxiejei = −yx.

Finally, we show that the quaternions do not only form a real vector space. They can also be
considered as a 2-dimensional complex vector space. Indeed, this fact is fundamental for the theory that
we establish.

Definition 2.7. A purely imaginary quaternion with absolute value 1 is called an imaginary unit. We
denote the set of all imaginary units by S, that is,

S =

{
3∑
i=1

xiei ∈ H :

3∑
i=1

x2
i = 1

}
.

The name imaginary unit is justified by the fact that, for any I ∈ S, we have

I2 = −I I = −|I|2 = −1.

Corollary 2.8. For I ∈ S, the plane CI = {x0 + x1I : x0, x1 ∈ R} is isomorphic to the field of complex
numbers C.

Lemma 2.9. Let I, J ∈ S with I ⊥ J and set K = IJ . Then K is an imaginary unit and {1, I, J,K}
is a basis of H that satisfies the defining relations of the quaternionic product, that is

I2 = J2 = K2 = IJK = −1.

Proof. As I and J are orthogonal, they satisfy IJ = −JI by Lemma 2.6. Hence, K = J I = JI =
−IJ = −K. Therefore, K is purely imaginary by Proposition 2.3. Because of |K| = |I| |J | = 1, it is
even an imaginary unit.

Since IK = IIJ = −IJI = −KI and JK = JIJ = −IJJ = −KJ , the quaternions I, J and K form
an orthogonal basis of R3 by Lemma 2.6. Hence, {1, I, J,K} is a basis of H.

Finally, as I, J and K are imaginary units, we obtain I2 = J2 = K2 = −1 and IJK = IJIJ =
−IIJJ = −1.

Note that the previous lemma states that the basis 1, e1, e2 and e3 is not canonical. In fact, each
triple I, J and K forms, together with 1, a generating basis of H.

Now let x ∈ H and let us write x in terms of the basis defined in the previous lemma. Then we have

x = x0 + x1I + x2J + x3K = x0 + x1I + (x2 + x3I)J = z1 + z2J, (2.8)

where z1 = x0 + x1I and z2 = x2 + x3I are in CI . Moreover, since −K = JI, we also have

x = x0 + x1I + x2J − x3(−K) = x0 + x1I + J(x2 − x3I) = z̃1 + Jz̃2, (2.9)

where z̃1 = x0 + x1I and z̃2 = x2 − x3I are in CI .

Corollary 2.10. Let I ∈ S. The operations

〈·, ·〉L :

{
CI ×H → H
(a, x) 7→ ax

and 〈·, ·〉R :

{
CI ×H → H
(a, x) 7→ xa
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define complex scalar multiplications on H, i.e., H is a complex vector space over CI if it is endowed either
with 〈·, ·〉L or with 〈·, ·〉R. In these cases, we call H a left and right vector space over CI , respectively.

Moreover, H is isomorphic to the two-dimensional complex vector space C2
I . For any J ∈ S with

I ⊥ J , the mappings

ιL :

{
CI × CI → H
(z1, z2) 7→ z1 + z2J

and ιR :

{
CI × CI → H
(z1, z2) 7→ z1 + Jz2

are isomorphism from C2
I to (H, 〈·, ·〉L) and (H, 〈·, ·〉R), respectively.

Proof. It is straight forward to check that 〈·, ·〉L and 〈·, ·〉R are actually vector space scalar multiplications.
Moreover, we saw in (2.8) and (2.9) that the mappings ιL and ιR are bijective.

Let 〈·, ·〉CI
denote the usual scalar multiplication on C2

I , that is, 〈a, z〉CI
= (az1, az2)T for any

z = (z1, z2)T ∈ C2
I and any a ∈ CI . For two vectors z = (z1, z2) and z̃ = (z̃1, z̃2) in C2

I and a ∈ CI , we
have

ιL(〈a, z〉CI
+ z̃) = az1 + z̃1 + (az2 + z̃2)J = a(z1 + z2J) + z̃1 + z̃2J = 〈a, ιL(z), 〉L + ιL(z̃).

Therefore, ιL is an isomorphism from C2
I to (H, 〈·, ·〉L). Similarly,

ιR(〈a, z〉CI
+ z̃) = az1 + z̃1 + J(az2 + z̃2) = (z1 + Jz2)a+ z̃1 + Jz̃2 = 〈a, ιR(z)〉R + ιR(z̃).

Therefore, ιR is an isomorphism from C2
I to (H, 〈·, ·〉R).

We will omit the notation 〈·, ·〉L and 〈·, ·〉R and simply write ax and xa instead of 〈a, x〉L and 〈a, x〉R
whenever we consider H as a vector space over CI . However, we have to keep in mind that the vector
space structures do not coincide. The following corollary clarifies their relation.

Corollary 2.11. Let I, J ∈ S with I ⊥ J and let z ∈ CI . Then zJ = Jz. Moreover, the identity

ιL((z1, z2)T ) = ιR((z1, z2)T )

holds true for any z1, z2 ∈ CI .

Proof. Let z = x0 + Ix1 ∈ CI . Then

zJ = x0J + IJx1 = Jx0 − JIx1 = J(x0 − Ix1) = Jz

because IJ = −JI by Corollary 2.6. Hence,

ιL((z1, z2)T ) = z1 + z2J = z1 + Jz2 = ιR((z1, z2)T ).

We can now specify Lemma 2.5.

Corollary 2.12. Let x, y ∈ H. Then x an y commute if and only if they belong to the same complex
plane CI .

Proof. If x or y is real, then x and y commute by Lemma 2.5 and obviously they lie in the same complex
plane. Thus, we assume x, y /∈ R. Let I ∈ S such that x = x0 + Ix1 and let J ∈ S with I ⊥ J . Then,
there exist y1, y2 ∈ CI such that y = y1 + y2J because of Corollary 2.10. Hence,

xy = x(y1 + y2J) = y1x+ y2xJ = y1x+ y2J x and yx = y1x+ y2Jx,

where we used that xJ = Jx ; see Corollary 2.11. Thus, x and y commute if and only if y2 = 0, that is,
if and only if y ∈ CI .
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2.2 Quaternionic vector spaces

We establish now some aspects of the theory of quaternionic vectors spaces. The fact that the quaternionic
multiplication is not commutative requires some modifications of the classical theory. In particular, we
have to distinguish between left and right vector spaces over H. Nevertheless, much of the classical
theory of vector spaces extends to the quaternionic setting.

Definition 2.13. A quaternionic right vector space is an additive group (V,+) together with a right
scalar multiplication V × H → V, (v, a) 7→ va such that, for any u,v ∈ V and for any a, b ∈ H, the
identities

(u + v)a = ua+ va u1 = u

u(a+ b) = ua+ ub (ua)b = u(ab)

hold true. A quaternionic left vector space is an additive group (V,+) together with a left scalar multi-
plication H× V → V, (a,v) 7→ av such that for any u,v ∈ V and any a, b ∈ H the identities

a(u + v) = au + av 1u = u

(a+ b)u = au + bu a(bu) = (ab)u

hold. A quaternionic two-sided vector space is an additive group (V,+) together with a left and a right
scalar multiplication such that (V,+) together with the left scalar multiplication is a quaternionic left
vector space and (V,+) together with the right scalar multiplication is a quaternionic right vector space
and such that av = va for all a ∈ R.

Remark 2.14. Note that any quaternionic right, left or two-sided vector space is a real vector space if
we restrict the scalar multiplication to R. Moreover, any quaternionic right or left vector space is also a
complex vector space if we restrict the scalar multiplication to the complex plane CI for some I ∈ S. In
general, the restrictions to different complex planes CI do not lead to the same complex vector spaces.
Moreover, note that a quaternionic two-sided vector space V is not a complex vector space if we restrict
the left and the right scalar multiplication to a complex plane CI because in general av 6= va for v ∈ V
and a ∈ CI . Therefore, the complex scalar multiplication is not well defined. We have to consider either
the left or the right vector space structure to obtain a complex vector space.

Starting from a real vector space VR, it is easy to construct a quaternionic two-sided vector space.
Let us consider the space V 4

R formally written as

V 4
R =

{
v =

3∑
i=0

vi ⊗ ei : vi ∈ VR

}
.

This space is an additive group if we define the addition componentwise by (u+v) =
∑3
i=0(ui+vi)⊗ei.

Moreover, we can define a right and a left scalar multiplication on V 4
R by

va =

3∑
i,j=0

(ajvi)⊗ (eiej) and av =

3∑
i,j=0

(ajvi)⊗ (ejei)

for a =
∑3
j=0 ajej . These expressions can be written more compactly as

va =

3∑
i=0

vi ⊗ (eia) and av =

3∑
i=0

v ⊗ (aei), (2.10)

where the terms in the brackets have to be understood as multiplications within H and where v ⊗ (eiα)
is identified with (vα)⊗ ei for α ∈ R.

It is easy to check that V 4
R is actually a quaternionic left resp. right vector space with these scalar

multiplications. Moreover, for a ∈ R, we have av =
∑3
i=0 v⊗ (aei) =

∑3
i=0 vi ⊗ (eia) = va. Altogether,

we even obtain a quaternionic two-sided vector space.
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Definition 2.15. Let VR be a real vector space. We denote the quaternionic two-sided vector space V 4
R

endowed with the left and right scalar multiplications (2.10) by VR ⊗H.

Example 2.16. Let us consider the set of n-tuples of quaternions Hn. It is easy to show that Hn is a
quaternionic two-sided vector space if we define the addition, the left and the right scalar multiplication
componentwise, that is,x1

...
xn

+

y1

...
yn

 =

x1 + y1

...
xn + yn

 , a

x1

...
xn

 =

ax1

...
axn

 and

x1

...
xn

 a =

x1a
...

xna


for (x1, . . . , xn)T , (y1, . . . , yn)T ∈ Hn and a ∈ H.

As a two-sided vector space, Hn is isomorphic to Rn ⊗ H. If v = (v1, . . . , vn)T ∈ Hn with vi =∑3
j=0 vi,jej ∈ H for i = 1, . . . , n, then

v =

v1

...
vn

 =


∑3
j=0 v1,jej

...∑3
j=0 vn,jej

 =

3∑
j=0

v1,j

...
vn,j

 ej =

3∑
j=0

vjej ,

where vj = (v1,j , . . . , vn,j)
T ∈ Rn. For a ∈ H, we have

va =

v1a
...
vna

 =


∑3
j=0 v1,jeja

...∑3
j=0 vn,jeja

 =

3∑
j=0

v1,j

...
vn,j

 eja =

3∑
j=0

vj(eja)

and

av =

av1

...
avn

 =


∑3
j=0 v1,jaej

...∑3
j=0 vn,jaej

 =

3∑
j=0

v1,j

...
vn,j

 aej =

3∑
j=0

vj(aej),

because the real components vi,j commute with a. The mapping

ψ :

{
Hn → Rn ⊗H∑3
j=0 viei 7→

∑3
j=0 vi ⊗ ei

is a two-sided vector space isomorphism. It is obviously bijective and satisfies ψ(u + v) = ψ(u) + ψ(v)

and ψ(αv) = αψ(v) for u,v ∈ Hn and α ∈ R. For a =
∑3
k=0 akek ∈ H, we have

ψ(va) = ψ

 3∑
j=0

vj(eja)

 = ψ

 3∑
j=0,k=0

akvjejek

 =

3∑
j=0,k=0

akψ (vjejek) =

=

3∑
j=0,k=0

akvj ⊗ (ejek) =

 3∑
j=0

vj ⊗ ej

 a = ψ(v)a

and

ψ(av) = ψ

 3∑
j=0

vj(aej)

 = ψ

 3∑
j=0,k=0

akvjekej

 =

3∑
j=0,k=0

akψ (vjekej) =

=

3∑
j=0,k=0

akvj ⊗ (ekej) = a

 3∑
j=0

vj ⊗ ej

 = aψ(v).

The following result, Lemma 1.5 in [23], implies that any quaternionic two-sided vector space is
isomorphic to a quaternionic two-sided vector space of the form VR ⊗H for some real vector space VR.
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Lemma 2.17. Let V be a quaternionic two-sided vector space and let VR = {v ∈ V : av = va ∀a ∈ H}.
Then VR is a real vector space, called the real part of V , and

Re(v) =
1

4

3∑
i=0

eivei

defines an R-linear mapping from V onto VR that satisfies Re ◦ Re = Re. Moreover, any v ∈ V satisfies
the polarization identity

v =

3∑
i=0

Re(eiv)ei =

3∑
i=0

eiRe(eiv). (2.11)

Proof. It is clear that VR is a real vector space and that Re is R-linear. Obviously, for v ∈ V , we have
e0Re(v) = Re(v) = Re(v)e0. Moreover,

e1Re(v) = e1
1

4
(v − e1ve1 − e2ve2 − e3ve3) =

1

4
(e1v + ve1 − e3ve2 + e2ve3)

and

Re(v)e1 =
1

4
(v − e1ve1 − e2ve2 − e3ve3)e1 =

1

4
(ve1 + e1v + e2ve3 − e3ve2).

Hence, e1Re(v) = Re(v)e1. Analogous calculations show that e2Re(v) = Re(v)e2 and e3Re(v) = Re(v)e3.

Thus, for a =
∑3
i=0 aiei ∈ H, we have

aRe(v) =

3∑
i=0

aieiRe(v) =

3∑
i=0

Re(v)aiei = Re(v)a,

that is, Re(v) ∈ VR. Moreover, if v ∈ VR, then

Re(v) =
1

4

3∑
i=0

eivei =
1

4

3∑
i=0

veiei =
1

4

3∑
i=0

v = v.

Therefore, Re : V → VR is onto and Re ◦ Re = Re.
Finally, we have

3∑
i=0

Re(eiv)ei =

3∑
i=0

1

4

3∑
j=0

ej eivejei =
1

4

3∑
i=0

ei
2ve2

i +
1

4

3∑
i,j=0
i6=j

ej eivejei.

For the second sum S2 =
∑
i 6=j ej eivejei, we obtain

S2 =− e1ve1 − e2ve2 − e3ve3 − e1ve1 + e1e2ve1e2 + e1e3ve1e3−
− e2ve2 + e2e1ve2e1 + e2e3ve2e3 − e3ve3 + e3e1ve3e1 + e3e2ve3e2 =

=− e1ve1 − e2ve2 − e3ve3 − e1ve1 + e3ve3 + e2ve2−
− e2ve2 + e3ve3 + e1ve1 − e3ve3 + e2ve2 + e1ve1 = 0.

Thus,
3∑
i=0

Re(eiv)ei =
1

4

3∑
i=0

ei
2ve2

i =
1

4

3∑
i=0

v = v.

Since Re(eiv) ∈ VR, it commutes with any scalar. Hence, we also obtain

v =

3∑
i=0

Re(eiv)ei =

3∑
i=0

eiRe(eiv)
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Corollary 2.18. Let V be a quaternionic two-sided vector space and let VR be the real part of V . Then
V is isomorphic to VR ⊗H.

Proof. Let v ∈ V . The polarization identity (2.11) implies v =
∑3
i=0 viei, with vi = Re(eiv) ∈ VR. The

mapping

ψ :

{
V → VR ⊗H
v 7→

∑3
j=0 vi ⊗ ei

is obviously R-linear. For a =
∑3
k=0 akek ∈ H, we have

ψ(va) = ψ

 3∑
j=0

vj(eja)

 = ψ

 3∑
j=0,k=0

akvjejek

 =

3∑
j=0,k=0

akψ (vjejek) =

=

3∑
j=0,k=0

akvj ⊗ (ejek) =

 3∑
j=0

vj ⊗ ej

 a = ψ(v)a

and

ψ(av) = ψ

 3∑
j=0

vj(aej)

 = ψ

 3∑
j=0,k=0

akvjekej

 =

3∑
j=0,k=0

akψ (vjekej) =

=

3∑
j=0,k=0

akvj ⊗ (ekej) = a

 3∑
j=0

vj ⊗ ej

 = aψ(v).

Hence, ψ is a two-sided vector space homomorphism. It is surjective because for any vector v⊗ =∑3
i=0 vi ⊗ ei in VR ⊗ H, the vector v =

∑3
i=0 viei belongs to V and satisfies v⊗ = ψ(v). It is even

bijective, and therefore an isomorphism, since ψ(v) = 0 implies vi = 0, i = 0, . . . , 3, and in turn,

v =
∑3
i=0 viei = 0.

In the following, we identify any tow-sided vector space V with VR ⊗H. We also omit the symbol ⊗
and write v =

∑3
i=0 vjej instead of v =

∑3
i=0 vi ⊗ ei.

We show now that certain well known results from linear algebra also hold true for quaternionic
vector spaces. We will mainly restrict our discussion to the case of quaternionic right vector spaces, but
it will be clear that all results are also true for quaternionic left vector spaces if we replace the word
”right” by the word ”left” and vice versa.

The following definitions are similar to those for vector spaces over a field known from linear algebra.

Definition 2.19. Let V be a quaternionic right vector space.

• Let v1, . . . ,vn be a finite number of vectors in V with vi 6= vj for i 6= j. A vector of the form
v =

∑n
i=1 viai with ai ∈ H is called a right linear combination of v1, . . . ,vn.

• Let A ⊂ V . A vector v ∈ V is called right linearly dependent on A, if it can be represented as a
right linear combination of vectors in A. Otherwise, v is called right linearly independent of A.

• A set A ⊂ V is called right linearly independent, if every v ∈ A is not right linearly dependent on
A \ {v}.

As in classical linear algebra, we have the following characterization of right linear independence.

Corollary 2.20. Let V be a quaternionic right vector space. A set A ⊂ V is right linearly independent
if and only if every right linear combination of the zero vector is trivial, that is,

∑n
i=1 viai = 0 with

vi ∈ A and ai ∈ H implies ai = 0 for all i = 1, . . . , n.
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Proof. Let v1, . . . ,vn ∈ A and let
∑n
i=1 viai = 0 with aj 6= 0 for some j ∈ {1, . . . , n}. Then we have

vj = −
∑
i∈{1,...,n}\{j} viaia

−1
j . Thus, the set A is not right linearly independent. On the other hand,

if the set A is linearly dependent, then there exist v0, . . . ,vn ∈ A with vi 6= vj for i 6= j, such that
v0 =

∑n
i=1 viai. But then 0 =

∑n
i=1 viai−v0. Hence, the zero vector can be represented as a non-trivial

right linear combination of vectors in A.

Let v =
∑n
i=1 viai be a right linear combination of vectors vi ∈ A, where the set A is right linearly

independent. Then the previous corollary implies that the coefficients ai and the vectors vi are unique.

Definition 2.21. Let V be a quaternionic right vector space.

• A subset U ⊂ V is called a quaternionic right vector subspace if it is closed under addition and
right scalar multiplication, that is, if for any u,v ∈ U and any a ∈ H the vectors u+ v and va are
in U , too.

• Let A ⊂ V . The right linear span of A is the set of all right linear combinations of vectors in A,
that is, spanR(A) = {

∑n
i=1 viai : vi ∈ A, ai ∈ H, n ∈ N}.

• A right linearly independent set A with spanR(A) = V is called a right basis of V .

Similar to the classical case, every right vector space has a right basis.

Corollary 2.22. Let V be a quaternionic right vector space and let A be a right linearly independent
subset of V . Then there exists a right basis B of V such that A ⊂ B. In particular, every quaternionic
right vector space has a basis.

Proof. Let B be the set of all right linearly independent supersets of A. The set B is nonempty as it
contains A itself and it is partially ordered by the set inclusion ⊂. Moreover, for every chain Bi, i ∈ I, in
B, we can consider B∗ =

⋃
i∈I Bi. This set must be right linearly independent. Otherwise there would

exist right linearly dependent vectors v1, . . . ,vn ∈ B∗. But since Bi, i ∈ I, is totally ordered with respect
to ⊂, there would exist an index i0 such that v1, . . . ,vn ∈ Bi0 , which is a contradiction because Bi0 ∈ B.
Thus, B∗ is a right linearly independent superset of A and of every set Bi, i ∈ I, that is, B∗ is an upper
bound of the chain Bi, i ∈ I, in B.

Therefore, we can apply Zorn’s lemma to obtain a maximal element B ∈ B. The set B is right linearly
independent because it belongs to B.

Let us assume that there exists a vector v0 ∈ V \ spanR(V ). Then the set {v0} ∪B is a right linearly
independent superset of B. But this is a contradiction to the maximality of B. Hence, spanR(B) must
already be the entire space V , that is, B is a right basis of V .

Remark 2.23. As pointed out before, all these definitions and results can be obtained for quaternionic
left vector spaces by analogous arguments. Nevertheless, when we are working with a quaternionic two-
sided vector space, it is important to keep in mind that the left linear and the right linear structure of
this space do not coincide. Thus, a left linear subspace is not necessarily a right linear subspace, a right
basis of the space is not necessarily a left basis etc. For imaginary units I, J and K as in Corollary 2.9,
let us consider the vectors u = (1, I)T in H2 and v = (J,K)T ∈ H2. Then u = vJ . On the other hand
au+ bv = 0 implies a+ bJ = 0 and aI + bK = (a− bJ)I = 0. Consequently, a = b = 0 and u and v are
left linearly independent but right linearly dependent. Therefore, not even the left and the right linearly
independent subsets of a two-sided quaternionic vector space coincide.

The next lemma specifies the relation between the left and the right vector space structure of a
quaternionic two-sided vector space.

Lemma 2.24. Let V = VR ⊗H be a two-sided quaternionic vector space, where VR is the real part of V
as in Corollary 2.18.

(i) A quaternionic right subspace of U is a left subspace of V if and only if there exists a real subspace
UR of VR such that U = UR ⊗H.
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(ii) Let B be a left and a right basis, that is, any vector v ∈ V can be represented uniquely as a right
linear combination v =

∑n
i=1 biai and as a left linear combination v =

∑n
i=1 ãibi of vectors bi ∈ B.

The coefficitents ai and ãi coincide for any vector v ∈ V if and only if B is a basis of the real
vector space VR. Moreover, any basis of the real vector space VR is a left and a right basis of V .

Proof. If U ⊂ V is a left and a right subspace of V , then it is a quaternionic two-sided vector space.
Therefore, by Lemma 2.17 and Corollary 2.18, the set UR = {u ∈ U : au = ua ∀a ∈ H} is a real vector
space and U = UR ⊗H. It is obvious that UR is a subspace of VR = {v ∈ V : av = va ∀a ∈ H}.

Conversely, if UR is a subspace of VR, then U = UR ⊗H is a left and a right subspace of V = VR ⊗H
by definition. Hence, (i) holds true.

To prove (ii), we assume that the coefficients ai and ãi coincide for any v ∈ V . Then ab = ba for any
a ∈ H and any b ∈ B. Hence, B ⊂ VR. Let v be a vector in VR and let v =

∑n
i=1 aibi =

∑n
i=1 biai be

its representation as a left linear combination of vectors in B. Then βv = vβ for any β ∈ H. Hence,

n∑
i=1

βaibi = βv = vβ =

n∑
i=1

biai.β

Since the coefficients of any left or right linear combination of vectors in B are unique, we obtain
βai = aiβ, i = 1, . . . , n, for any β ∈ H. Therefore, the coefficients ai are real by Lemma 2.5, and in turn,
B is a basis of the real vector space VR.

If on the other hand B is a basis of VR, then B is right linearly independent in V . Indeed, if∑n
i=0 biai = 0 with ai =

∑3
i=0 ai,jej ∈ H and bi ∈ B, i = 1, . . . , n, then 0 =

∑n
i=1 bi

(∑3
j=0 ai,j

)
ej =∑3

j=0 (
∑n
i=1 biai,j) ej . Since

∑n
i=0 bai,j ∈ VR, this implies

∑n
i=0 bai,j = 0 for j = 0, . . . , 3, and we

obtain ai,j = 0, i = 1, . . . , n, j = 0, . . . , 3 because the vectors bi, i = 1, . . . , n are linearly independent in
VR. Hence, ai = 0, i = 1, . . . , n and Corollary 2.20 implies that B is right linearly independent in V .
Similarly, we obtain that B is left linearly independent in V .

Let v ∈ V . Then we can apply the polarization identity (2.11) to obtain v0, . . . ,v3 ∈ VR such

that v =
∑3
i=0 viei. Since B is a basis of VR, there exist bj ∈ B, j = 1, . . . , n, and real coefficients

ai,j , i = 0, . . . , 3, for any j = 1, . . . , n such that vi =
∑n
j=1 bjai,j . Hence,

v =

3∑
i=0

viei =

3∑
i=0

n∑
j=1

bjai,jei =

n∑
j=1

bj

3∑
i=0

ai,jei =

n∑
j=1

bjaj

with aj =
∑3
i=0 ai,jei ∈ H. Therefore, v ∈ spanR(B) and B is a right basis of V . Moreover, since

B ⊂ VR, the vectors bj , j = 1, . . . , n commute with the coefficients aj and we obtain v =
∑n
j=1 ajbj .

Thus, B is also a left basis of V and the coefficients of the representation as a left and as a right linear
combination of vectors in B coincide for any v ∈ V .

Remark 2.25. Note that not any left and right basis of a quaternionic two-sided vector space V is
of the type considered in (ii) of Lemma 2.24. Let for instance I, J and K be imaginary units as in
Lemma 2.9 and consider the vectors (1, I)T and (I, 1)T , which form a left and a right basis of H2. Then
the coefficients of the representation of (J,K)T as a left and as right linear combination of this basis do
not coincide because(

J
K

)
=

(
1
I

)
J +

(
I
1

)
0 but

(
J
K

)
= 0

(
1
I

)
+K

(
I
1

)
.

Lemma 2.26. Let V be a quaternionic right vector space, let B = {b1, . . . , bn} be a finite subset of V
such that spanR(B) = V and let A be a right linearly independent subset of V . Then A is finite and its
cardinality satisfies #A ≤ #B.

Proof. By induction, we replace k elements bi1 , . . . bik of B by k elements a1, . . . ,ak of A such that
the resulting set Bk still satisfies spanR(Bk) = V . For k = 0, we can choose B0 = B. Assume that
Bk = {a1, . . . ,ak}∪(B \{bi1 , . . . bik}) is defined for some k ≤ #B. If A\Bk = ∅, then A = {a1, . . . ,ak},
which implies #A = k ≤ #Bk. Otherwise there exists ak+1 ∈ A \Bk. Since spanR(Bk) = V , we have

ak+1 =

k∑
i=1

aiαi +
∑

i∈{1,...,n}\{i1,...,ik}

biβi
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with αi, βi ∈ H. Moreover, there exists an index ik+1 ∈ {1, . . . , n} \ {i1, . . . , ik} such that βk+1 6= 0
because the set A is right linearly independent. In particular, the set {1, . . . , n}\{i1, . . . , ik} is nonempty
if A \Bk 6= ∅.

We set Bk+1 = {a1, . . . ,ak+1} ∪ (B \ {bi1 , . . . bik+1
). Since

bik+1
= ak+1β

−1
ik+1
−

k∑
i=1

aiαiβ
−1
ik+1
−

∑
i∈{1,...,n}\{i1,...,ik+1}

biβiβ
−1
ik+1

,

we can transform any right linear combination of vectors in Bk into a right linear combination of vectors
in Bk+1. Hence, spanR(Bk+1) = V .

Since A \Bk 6= ∅ implies that {1, . . . , n} \ {i1, . . . , ik} is nonempty, this algorithm stops after at most
n steps and we obtain #A ≤ n = #B.

Corollary 2.27. Let V be a quaternionic right vector space and let B be a finite right basis of V . Then
any right basis B′ of V satisfies #B′ = #B.

Proof. Since spanR(B) = V and since B′ is right linearly independent, we can apply Lemma 2.26 and
obtain #B′ ≤ #B. In particular, B′ is finite. Moreover, spanR(B′) = V and since B is right linearly
independent. Thus, we can apply Lemma 2.26 again and obtain #B ≤ #B′. Hence, #B′ = #B.

Definition 2.28. Let V be a quaternionic right vector space and let B be a right basis of V . If B is
finite, then we call #B the dimension of V over H. We say that V has infinite dimension if B is infinite.

The dimension of a quaternionic left vector space is defined analogously. If V is a quaternionic two-
sided vector space, let VR be the real part of V as in Lemma 2.17 and let B be a basis of VR. Then B is
a left and a right basis of V by Lemma 2.24. Hence, the dimension of V as a left and as a right vector
space coincide.

Moreover, if B is a right basis of a quaternionic right vector space, then the set {bei : b ∈ B, 0 ≤ i ≤ 3}
is a basis of V as real vector space. Thus, the dimension of V as a quaternionic right vector space and
the dimension of V as a real vector space satisfy

dimR(V ) = 4 dimH(V ).

Corollary 2.29. Let V be a quaternionic right vector space of dimension n. Any right linearly indepen-
dent subset B of V with #B = n is a right basis of n.

Proof. Let B ⊂ V with #B = n be right linearly independent. By Corollary 2.22, there exists a right
basis B′ of V with B ⊂ B′. But Corollary 2.27 implies #B′ = n, and therefore, B′ = B.

Definition 2.30. Let V and W be quaternionic right vector spaces. A mapping T : V → W is called
quaternionic right linear if T (u + v) = T (u) + T (v) and T (va) = T (v)a for all u,v ∈ V and all a ∈ H.
We will denote the set of quaternionic right linear mappings from V to W by LR(V,W ).

As in usual linear algebra, the two conditions for right linearity can be written more compactly as

T (ua+ v) = T (u)a+ T (v)

for all u,v ∈ V and all a ∈ H.

Remark 2.31. Note that, in general, for two quaternionic right linear vector spaces V and W , the set
LR(V,W ) is not a right linear vector space. Indeed, if T : V → W is a right linear mapping, we can
define the multiplication of T with a scalar a ∈ H from the right pointwise by [Ta](v) = T (v)a for all
v ∈ V . But if a, b ∈ H do not commute and T (v) 6= 0, then

[Ta](vb) = T (vb)a = T (v)ba 6= T (v)ab = [Ta](v)b.

Thus, the mapping Ta is not right linear.

18



On the other hand, if W is a quaternionic two-sided vector space—in particular, if W = H—we can
define a left scalar multiplication pointwise. Then, we have

[aT ](vb) = aT (vb) = aT (v)b = [aT ](v)b (2.12)

for all a, b ∈ H and all v ∈ V . Therefore, aT is still right linear and LR(V,W ) is a quaternionic left
vector space.

Finally, if V and W are both two-sided quaternionic vector spaces, then we can define the multipli-
cation of a mapping T ∈ LR(V,W ) with a scalar a ∈ H on the left and on the right by

[aT ](v) = aT (v) and [Ta](v) = T (av). (2.13)

Then the mapping aT is right linear because of (2.12). Moreover, for any u,v ∈ V and any b ∈ H, we
have

[Ta](ub+ v) = T (aub+ av) = T (au)b+ T (av) = [Ta](u)b+ [Ta](v).

Thus, the mapping Ta is right linear, too. For a ∈ R, we have

[aT ](v) = aT (v) = T (v)a = T (va) = T (av) = [Ta](v).

Hence, LR(V,W ) is a two-sided vector space over H.
Note that the identity mapping I : v 7→ v on a quaternionic two-sided vector space V commutes

with any scalar a ∈ H. Indeed, due to the definition of the scalar multiplications in (2.13), we have

[aI](v) = aI(v) = av = I(av) = [Ia](v) (2.14)

for any v ∈ V and any a ∈ H.

As in the classical case, a right linear mapping is uniquely determined by its values on a basis of the
space.

Corollary 2.32. Let V and W be quaternionic right vector spaces, let B be a basis of V and let f be a
function from B to W . Then there exists a unique quaternionic right linear mapping T : V → W with
T |B = f .

Proof. Let v ∈ V . Then there exist unique v1, . . . ,vn ∈ B and a1, . . . , an ∈ H such that v =
∑n
i=1 v1ai.

Let us define T (v) =
∑n
i=1 f(vi)ai. Obviously, T is a quaternionic right linear mapping from V to W

that extends f .
On the other hand, if S is an arbitrary quaternionic right linear mapping that extends f , we have

T (v)− S(v) =
n∑
i=1

T (vi)ai −
n∑
i=1

S(vi)ai =
n∑
i=1

f(vi)ai −
n∑
i=1

f(vi)ai = 0.

Thus, the mapping T is unique.

Note that, as a consequence of this corollary, any right linear mapping defined on a subspace U of a
quaternionic right vector space V over H can be extended to a right linear mapping on V .

Corollary 2.33. Let V be a quaternionic right vector space of finite dimension. A right linear mapping
T : V → V is injective if and only if it is surjective.

Proof. If T (u) = T (v) for u 6= v, then T (u− v) = 0. Therefore, the mapping T is injective if and only
if the pre-image of {0} is trivial, that is, T−1({0}) = {0}.

Let b1, . . . , bn be a right basis of V . If
∑n
i=1 T (bi)ai = 0, then

0 =

n∑
i=1

T (bi)ai = T

(
n∑
i=1

biai

)
.

Therefore, the vectors T (b1), . . . , T (bn) allow a nontrivial right linear combination of the zero, if and
only if the pre-image of the zero is non-trivial, that is, if and only if T is not injective. Hence, by
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Corollary 2.20, the mapping T is injective if and only if the vectors T (b1), . . . , T (bn) are right linearly
independent.

If T is injective, then the vectors T (b1), . . . , T (bn) are right linearly independent. Therefore, by
Corollary 2.29, they form a right basis of V . Hence, for any v ∈ V , there exist a1, . . . , an ∈ H such that
v =

∑n
i=1 T (bi)ai and we deduce v = T (

∑n
i=1 biai). Thus, T is surjective.

If on the other hand T is surjective, then spanR({T (b1), . . . , T (bn)}) = T (V ) = V . In particular, the
set {T (b1), . . . , T (bn)} contains a right basis B of V . Since Corollary 2.27 and Definition 2.28 imply
#B = n, we obtain B = {T (b1), . . . , T (bn)}. Therefore, the vectors T (b1), . . . , T (bn) are right linearly
independent, which implies that T is injective.

Finally, we show that any right linear mapping between two quaternionic two-sided vector spaces V
and W allows a representation in terms of R-linear mappings from VR to WR, where VR and WR are the
real parts of V and W , respectively, as defined in Lemma 2.17.

Lemma 2.34. Let V and W be quaternionic two-sided vector spaces. A mapping T : V → W is
quaternionic right linear if and only if, there exist R-linear mappings Ti : VR → WR, i = 0, . . . , 3, such
that

T (v) =

3∑
i,j=0

Ti(vj)eiej , (2.15)

where v = v0 +
∑3
j=1 vjej with vj ∈ VR, j = 0, . . . , 3 as in (2.11).

Proof. Let T : V → W be quaternionic right linear and let ReW : W → WR be the projection onto the
real part of W as defined in Lemma 2.17. If we set Ti(v) = ReW ( ei T (v)) for any v ∈ VR and i = 0, . . . , 3,

then the mappings Ti are R-linear and the polarization identity (2.11) implies T (v) =
∑3
i=0 Ti(v)ei for

v ∈ VR. For v = v0 +
∑3
j=1 vjej ∈ V with vj ∈ VR, we obtain

T (v) =

3∑
i=0

T (vj)ej =

3∑
i,j=0

Ti(vj)eiej .

If on the other hand T has the form (2.15), then T is R-linear. For two vectors u = u0 +
∑3
j=1 ujej and

v = v0 +
∑3
j=0 vjej ∈ V and a ∈ R, we have ua+ v = u0a+ v0 +

∑3
j=1(uja+ vj)ej . Hence,

T (ua+ v) =

3∑
i,j=0

Ti(uja+ vj)eiej =

3∑
i,j=0

Ti(uj)eieja+

3∑
i,j=0

Ti(uj)eiej = T (u)a+ T (v),

because the mappings Ti are R-linear.

Moreover, ve1 = v0e1 − v1 − v2e3 + v3e2 implies

T (ve1) =− T0(v1)e0e0 + T0(v0)e0e1 + T0(v3)e0e2 − T0(v2)e0e3−
− T1(v1)e1e0 + T1(v0)e1e1 + T1(v3)e1e2 − T1(v2)e1e3−
− T2(v1)e2e0 + T2(v0)e2e1 + T2(v3)e2e2 − T2(v2)e2e3−
− T3(v1)e3e0 + T3(v0)e3e1 + T3(v3)e3e2 − T3(v2)e3e3.

If we factor out e1 on the right, we obtain

T (ve1) = [ T0(v1)e0e1 + T0(v0)e0e0 + T0(v3)e0e3 + T0(v2)e0e2+

+T1(v1)e1e1 + T1(v0)e1e0 + T1(v3)e1e3 + T1(v2)e1e2+

+T2(v1)e2e1 + T2(v0)e2e0 + T2(v3)e2e3 + T2(v2)e2e2+

+T3(v1)e3e1 + T3(v0)e3e0 + T3(v3)e3e3 + T3(v2)e3e2 ] e1 = T (v)e1.

Similar computations show T (ve2) = T (v)e2 and T (ve3) = T (v)e3. Thus, for a ∈ H with a =
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a0 +
∑3
j=1 ajej , we have

T (va) =

3∑
j=0

T (vajej) =

3∑
j=0

T (v)ajej = T (v)a.

Hence, T is quaternionic right linear.

Lemma 2.35. Let V and W be quaternionic two-sided vector spaces. Then

LR(V,W ) ∼= LR(VR,WR)⊗H,

where VR and WR are the real parts of V and W defined in Lemma 2.17, respectively, and LR(VR,WR)
denotes the set of R-linear mappings from V to W .

Proof. Because of Lemma 2.34, we have LR(V,W ) ∼= LR(VR,WR)4 ∼= LR(VR,WR) ⊗ H as real vector

spaces. Let T ∈ LR(V,W ) and let a =
∑3
j=0 ajej ∈ H. By the definition of the right scalar multiplication

on LR(V,W ) in Remark 2.31 and by (2.15), we have

[Ta](v) = T (av) = T

(
3∑

j,k=0

ajvkejek

)
=

3∑
j=0

ajT

(
3∑
k=0

vkej

)
ek =

3∑
i,j,k=0

ajTi(vk)eiejek

for any v =
∑3
k=0 vkek ∈ V , where vk ∈ VR, k = 0, . . . , 3.

If on the other hand we identify T with
∑3
i=0 Tiei ∈ LR(VR,WR) ⊗ H by Lemma 2.34 and multiply

it with a =
∑3
j=0 ajej ∈ H from the right, we obtain

Ta =

3∑
ij=0

Tiajeiej =

=T0a0e0e0 + T1a0e1e0 + T2a0e2e0 + T3a0e3e0+

+ T0a1e0e1 + T1a1e1e1 + T2a1e2e1 + T3a1e3e1+

+ T0a2e0e2 + T1a2e1e2 + T2a2e2e2 + T3a2e3e2+

+ T0a3e0e3 + T1a3e1e3 + T2a3e2e3 + T3a3e3e3 =

=(a0T0 − a1T1 − a2T2 − a3T3)e0 + (a1T0 + a0T1 + a3T2 − a2T3)e1+

+ (a2T0 − a3T1 + a0T2 + a1T3)e2 + (a3T0 + a2T1 − a1T2 + a0T3)e3

by the definition of the right scalar multiplication on LR(VR,WR)⊗H in (2.10). If we apply this operator

to v =
∑3
k=0 vkek ∈ V , we get

[Ta](v) =

3∑
k=0

(
(a0T0(vk)− a1T1(vk)− a2T2(vk)− a3T3(vk))e0ek+

+ (a1T0(vk) + a0T1(vk) + a3T2(vk)− a2T3(vk))e1ek+

+ (a2T0(vk)− a3T1(vk) + a0T2(vk) + a1T3(vk))e2ek+

+ (a3T0(vk) + a2T1(vk)− a1T2(vk) + a0T3(vk))e3ek

)
,

and hence,

[Ta](v) =

3∑
k=0

(
a0T0(vk)e0e0ek + a1T1(vk)e1e1ek + a2T2(vk)e2e2ek + a3T3(vk)e3e3ek+

+ a1T0(vk)e0e1ek + a0T1(vk)e1e0ek + a3T2(vk)e2e3ek − a2T3(vk)e3e2ek+

+ a2T0(vk)e0e2ek + a3T1(vk)e1e3ek + a0T2(vk)e2e0ek + a1T3(vk)e3e1ek+

+ a3T0(vk)e0e3ek + a2T1(vk)e1e2ek + a1T2(vk)e2e1ek + a0T3(vk))e3e0ek

)
=

=

3∑
i,j,k=0

ajTi(vk)eiejek.
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Thus, the two right scalar multiplications coincide. A similar computation shows that the left scalar
multiplications coincide, too. Hence, we obtain LR(V,W ) ∼= LR(VR,WR) ⊗ H even as quaternionic
two-sided vector spaces.

A result analogue to Lemma 2.35 holds for the space LL(V,W ) of quaternionic left linear mappings

from V to W . Hence, LL(V,W ) ∼= LR(VR,WR)⊗H ∼= LR(V,W ). Let T =
∑3
i=0 Tiei ∈ LR(VR,WR)⊗H.

If we consider T as a right linear operator, then Lemma 2.34 states that

T (v) =

3∑
i,j=0

Ti(vj)eiej

for any v =
∑3
j=0 vjej ∈ V . The analogous result for left linear operators states that

T (v) =

3∑
i,j=0

Ti(vj)ejei

for any v =
∑3
j=0 vjej ∈ V . A comparison of these two formulas with the product of two quaternions

x =
∑3
i=0 xiei and y =

∑3
j=0 yjej , that is,

xy =
3∑

i,j=0

xiyjeiej ,

suggests the following notation.

Definition 2.36. Let V and W be two-sided quaternionic vector spaces and let T = T0 +
∑3
i=1 Tiei

belong to LR(VR,WR) ⊗ H. If we consider T as a quaternionic right linear operator, then we say that
T acts on the right and we denote T (v) by the formal multiplication of T by v on the right, that is,
T (v) = Tv. If we consider T as a left linear operator, we say that T acts on the left and we denote T (v)
by the formal multiplication of T by v on the left, that is, T (v) = vT .

If T =
∑3
i=0 Tiei and S =

∑3
j=0 Siei belong to LR(VR, VR) ⊗ H, then we can consider their formal

product TS =
∑3
i,j=0 TiSjeiej . As in the classical case, we can interpret this product as the composition

of T and S. However, note the convention introduced in Definition 2.36 implies that

TSv =

3∑
i,j,k=0

TiSjvkeiejek =
∑
i,j,k

Ti(Sj(vk))eiejek

and

vTS =

3∑
i,j,k=0

vkTiSjekeiej =

3∑
i,j,k=0

Sj(Ti(vk))ekeiej .

Thus, TS denotes T ◦ S if we consider T and S as right linear operators, but it denotes S ◦ T if we
consider them as left linear operators.

2.3 Quaternionic functional analysis

In this section, we extend certain basic results of classical functional analysis to the quaternionic case.
Again, results for right linear operators also hold for the left linear case with obvious modifications.

Definition 2.37. Let V be a quaternionic two-sided vector space. A function ‖ · ‖ : V → [0,∞) is called
a norm on V , if it satisfies

(i) ‖v‖ = 0 if and only if v = 0

(ii) ‖av‖ = ‖va‖ = |a|‖v‖ for all v ∈ V and all a ∈ H
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(iii) ‖u + v‖ ≤ ‖u‖+ ‖v‖ for all u,v ∈ V .

If V is complete with respect to the metric induced by ‖ · ‖, we call V a quaternionic Banach space.

Corollary 2.38. Let V be a quaternionic Banach space. Then V is a real Banach space, if we restrict
the left and the right scalar multiplication to R. Moreover, if we restrict either the left or the right scalar
multiplication to the complex plane CI for some imaginary unit I ∈ S, then V is a complex Banach space
over CI .

Proof. We know from Remark 2.14 that V is a real vector space if we restrict the left and the right scalar
multiplication to R. In this case, the norm ‖ · ‖ on V satisfies the axioms of a norm on a real vector
space and V is complete with respect to the induced metric. Hence, it is a real Banach space.

Similarly, we know form Remark 2.14 that V is a complex vector space over CI if we restrict either
the left or the right scalar multiplication to CI . Then, the norm ‖ · ‖ on V satisfies the axioms of a
norm on a complex vector space. Since V is complete with respect to the induced metric, it is a complex
Banach space.

Note that we only consider spaces with a left and a right vector space structure. We are interested in
(right or left) linear operators on a quaternionic Banach space. Hence, it is of minor interest to consider
only left or right vector spaces over H and endow them with a norm. As we pointed out in Remark 2.31,
in this case, the set of right linear operators does not have the structure of a quaternionic vector space.

Definition 2.39. Let V and W be two quaternionic Banach spaces. We denote the space of all contin-
uous right linear mappings from V to W by BHR(V,W ) and also by BR(V,W ) if there is no possibility of
confusion. We will denote the space of all quaternionic left linear operators by BHL(V,W ) resp. BL(V,W ).

Let V and W be two real Banach spaces. Then we denote the space of all continuous linear mappings
from V to W by BR(V,W ) and we endow it with the usual operator norm.

Finally, if V = W , we will write BHR(V ), BHL(V ) and BR(V ) instead of BHR(V,W ), BHL(V,W ) and
BR(V,W ), respectively.

Remark 2.40. By Corollar 2.38, a quaternionic Banach space is also a real Banach space if we restrict
the scalar multiplication to the real numbers. Moreover, any quaternionic right linear mapping is also
R-linear. Thus, as a real vector space, BHR(V,W ) is a subspace of BR(V,W ). Moreover, the limit of
a sequence of quaternionic right linear operators in BR(V,W ) must be quaternionic right linear, too.
Hence, BHR(V,W ) is a closed subspace of BR(V,W ), and therefore, a Banach space over R. Finally, the
operator norm satisfies the axiom (ii) in Definition 2.37, because

||aT || = sup
v 6=0

‖aT (v)‖W
‖v‖V

= |a| sup
v 6=0

‖T (v)‖W
‖v‖V

= |a| ‖T‖

and

‖Ta‖ = sup
v 6=0

‖T (av)‖W
‖v‖V

= |a| sup
v 6=0

‖T (av)‖W
‖av‖V

= |a| ‖T‖

for any a ∈ H and any T ∈ BHR(V,W ). Therefore, BHR(V,W ) is a quaternionic Banach space if it is
endowed with the usual operator norm.

We conclude this chapter with the proof of the quaternionic Hahn–Banach theorem, Theorem 4.10.1
in [12], which was first proved by Suchomlinov in [27]. For a linear functional φ and a vector v, we use
the notation 〈φ,v〉 := φ(v).

Theorem 2.41 (Hahn–Banach). Let V be a quaternionic right vector space and let V0 be a right subspace
of V . Let p : V → [0,∞) satisfy p(u + v) ≤ p(u) + p(v) and p(ua) = p(u)|a| for all u,v ∈ V and all
a ∈ H. Moreover, let φ : V0 → H be a quaternionic right linear functional on V0 such that |〈φ,v〉| ≤ p(v)
for all v ∈ V0. Then there exists a right linear functional Φ : V → H such that Φ|V0 = φ and such that

|〈Φ,v〉| ≤ p(v), for all v ∈ V. (2.16)
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Proof. Let I, J ∈ S with I ⊥ J . Then V is a complex vector space over CI by Remark 2.14, the space
V0 is a complex linear subspace of V and p is a seminorm on V . Moreover, H is a complex left vector
space over CI by Corollary 2.10. Therefore, we can consider the coordinate functions z1, z2 : H → CI
with respect to the basis {1, J} as they are defined in (2.8), such that x = z1(x) + z2(x)J for all x ∈ H.
Since xJ = −z2(x) + z1(x)J , we obtain z2(x) = −z1(xJ).

Let φ1 = z1 ◦ φ and φ2 = z2 ◦ φ. Then φ = φ1 + φ2J , and hence,

〈φ,v〉 = 〈φ1,v〉+ 〈φ2,v〉J = z1(〈φ,v〉) + z2(〈φ,v〉)J =

= z1(〈φ,v〉)− z1(〈φ,vJ〉)J = 〈φ1,v〉 − 〈φ1,vJ〉J.

Moreover, for any a ∈ CI and any u,v ∈ V0, we have

〈φ1,ua+ v〉+ 〈φ2,ua+ v〉J = 〈φ,ua+ v〉 = 〈φ,u〉a+ 〈φ,v〉 =

= 〈φ1,u〉a+ 〈φ2,u〉Ja+ 〈φ1,v〉+ 〈φ2,v〉J = 〈φ1,u〉a+ 〈φ1,v〉︸ ︷︷ ︸
∈CI

+ 〈φ2,u〉Ja+ 〈φ2,v〉J︸ ︷︷ ︸
∈CIJ

.

Since 1 and J are linearly independent over CI , we obtain 〈φ1,ua+ v〉 = 〈φ1,u〉a+ 〈φ1,v〉. Thus, φ1 is
CI -linear. By the classical Hahn–Banach theorem, there exists a CI -linear functional Φ1 : V → CI that
extends φ1 and satisfies |〈Φ1,v〉| ≤ p(v) for all v ∈ V . If we set

〈Φ,v〉 = 〈Φ1,v〉 − 〈Φ1,vJ〉J for all v ∈ V,

then Φ extends φ to V and satisfies 〈Φ,u + v〉 = 〈Φ,u〉 + 〈Φ,v〉 for all u,v ∈ V . Moreover, for any
a = a1 + a2J ∈ H, we have aiJ = J ai by Corollary 2.11 because ai ∈ CI . Therefore,

〈Φ,va〉 = 〈Φ1,va〉 − 〈Φ1,vaJ〉J = 〈Φ1,v(a1 + a2J)〉 − 〈Φ1,v(a1J − a2)〉J =

= 〈Φ1,v〉a1 + 〈Φ1,vJ〉a2 − 〈Φ1,vJ〉Ja1 + 〈Φ1,v〉a2J =

= 〈Φ1,v〉a1 − 〈Φ1,vJ〉Ja2J − 〈Φ1,vJ〉Ja1 + 〈Φ1,v〉a2J =

= (〈Φ1,v〉 − 〈Φ1,vJ〉J)(a1 + a2J) = 〈Φ,v〉a.

Hence, Φ is a quaternionic right linear functional on V .
Finally, if v ∈ V with 〈Φ,v〉 6= 0, then set x = 〈Φ,v〉. Let Ix ∈ S and x0, x1 ∈ R be such that

x = x0 + Ixx1. If we set xI = x0 + Ix1, then |x−1xI | = 1 and 〈Φ,vx−1xI〉 = 〈Φ,v〉x−1xI = xI belongs
to CI . Therefore, 〈Φ,vx−1xI〉 = 〈Φ1,vx

−1xI〉 and we obtain

|〈Φ,v〉| = |〈Φ,v〉x−1xI | = |〈Φ,vx−1xI〉| = |〈Φ1,vx
−1xI〉| ≤ p(vx−1xI) = p(v)|x−1xI | = p(v).

Definition 2.42. Let V be a quaternionic Banach space. We define V ′R = BR(V,H) and call V ′R the
right dual space of V . Similarly, we define V ′L = BL(V,H) and call V ′L the left dual space of V .

Corollary 2.43. Let V be a quaternionic Banach space. Then the right dual space and the left dual
space of V separate points.

Proof. For u,v ∈ V with u 6= v, we set w = v − u and f(w) = ‖w‖. Because of Lemma 2.32, there
exists a unique quaternionic right linear functional φ on the right subspace spanR{w} = {wa : a ∈ H}
that extends f . Moreover, we have

|〈φ,wa〉| = |〈φ,w〉| |a| = ‖w‖ |a| = ‖wa‖.

Thus, we can apply the quaternionic Hahn–Banach theorem to obtain a quaternionic right linear func-
tional Φ that extends φ to V and satisfies |〈φ, t〉| ≤ ‖t‖ for all t ∈ V . We have found Φ ∈ V ′R such that
〈Φ,v〉 − 〈Φ,u〉 = 〈Φ,w〉 = ‖w‖ 6= 0. Hence, V ′R separates points.
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Chapter 3

Slice regular functions

We introduce now the notion of slice regularity and develop the theory of slice regular functions as far
as it is necessary to define the associated functional calculus. We follow Chapters 2 and 4 of [12], except
for the discussion of Runge’s Theorem, which can be found in [13].

3.1 The definition of slice regular functions

Let I ∈ S be an imaginary unit. By ∂I and ∂̄I , we denote the Wirtinger derivatives with respect to the
complex and the complex conjugate variable on the plane CI , that is, the operators

∂I =
1

2

(
∂

∂x0
− I ∂

∂x1

)
and ∂̄I =

1

2

(
∂

∂x0
+ I

∂

∂x1

)
.

In accordance with Definition 2.36, they act as follows: Let U ⊂ CI be an open set and let f : U → H
be a real differentiable function. If ∂I and ∂̄I act on the right, then

∂If(x) =
1

2

(
∂

∂x0
fI(x0 + Ix1)− I ∂

∂x1
fI(x0 + Ix1)

)
and

∂̄If(x) =
1

2

(
∂

∂x0
fI(x0 + Ix1) + I

∂

∂x1
fI(x0 + Ix1)

)
for x = x0 + Ix1 ∈ U . If they act on the left, then

(f∂I)(x) =
1

2

(
∂

∂x0
fI(x0 + Ix1)− ∂

∂x1
fI(x0 + Ix1)I

)
and

(f∂̄I)(x) =
1

2

(
∂

∂x0
fI(x0 + Ix1) +

∂

∂x1
fI(x0 + Ix1)I

)
.

Recall from Corollary 2.10 that H is a left and a right vector space over the complex plane CI for any
I ∈ S. In accordance with Lemma 1.12, the characterization of holomorphicity in the Wirtinger calculus,
we give the following definition.

Definition 3.1. Let I ∈ S, let U ⊂ CI be open and let f : U → H be real differentiable. The function
f is called left holomorphic, if ∂̄If = 0 on U , that is, if f is a holomorphic function with values in H,
where H is considered a left vector space over CI . It is called right holomorphic, if f∂̄I = 0 on U , that
is, if f is a holomorphic function with values in H, where H is considered a right vector space over CI .

Definition 3.2. Let U ⊂ H be open and let f : U → H be a real differentiable function. For I ∈ S, we
denote the restriction of f to the set U ∩ CI by fI , that is, fI = f |U∩CI

. The function f is called left
slice regular on U if fI is left holomorphic for any I ∈ S, that is, if

∂̄IfI = 0
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on U ∩ CI for all I ∈ S. It is called right slice regular if fI is right holomorphic for any I ∈ S, that is,

fI ∂̄I = 0

on U ∩ CI for all I ∈ S. We will denote the set of left slice regular and right slice regular functions on
an open set U by ML(U) and MR(U), respectively.

Moreover, we say that f is left slice regular on a closed set C ⊂ H, if there exists an open set O with
C ⊂ O, such that f is left slice regular on O. We say that f is right slice regular on C, if there exists
an open set O with C ⊂ O, such that f is right slice regular on O.

The theory of right slice regular functions is analogous to the one of left slice regular functions. We
will state the results for both cases, but we will only give the proofs for the left slice regular one, because
the results for right slice regular functions follow with obvious modifications from these proofs.

Corollary 3.3. Let U be an open subset of H. The setML(U) of left slice regular functions on U endowed
with the pointwise addition (f + g)(z) = f(z) + g(z) and the right scalar multiplication (fa)(z) = f(z)a
for a ∈ H is a quaternionic right vector space.

The set MR(U) of right slice regular functions on U endowed with the pointwise addition and the left
scalar multiplication (af)(z) = af(z) for a ∈ H is a quaternionic left vector space.

Proof. Let f, g ∈ML(U) and a ∈ H. Then, for x = x0 + Ix1 ∈ U , we have

∂̄I(fI + gI)(x) =
1

2

(
∂

∂x0
fI(x) +

∂

∂x0
gI(x) + I

∂

∂x1
fI(x) + I

∂

∂x1
gI(x)

)
= ∂̄IfI(x) + ∂̄IgI(x) = 0

and

∂̄I(fIa)(x) =
1

2

(
∂

∂x0
fI(x)a+ I

∂

∂x1
fI(x)a

)
=

1

2

(
∂

∂x0
fI(x) + I

∂

∂x1
fI(x)

)
a = (∂̄If(x))a = 0.

Thus, ML(U) is closed under the pointwise addition and the multiplication with scalars from the right.

Note that ML(U) is not closed under multiplication with scalars on the left because, in general,
a ∈ H and ∂̄I do not commute as the following example shows.

Example 3.4. One important difference between the notion of slice regularity and the notion of Cauchy-
Fueter-regularity considered in Definition 1.13 is that polynomials of a quaternionic variable are slice
regular. Indeed, any monomial of the form xna with n ∈ N and a ∈ H is left slice regular as

∂̄Ix
na =

1

2

(
∂

∂x0
xna+ I

∂

∂x1
xna

)
=

1

2

(
nxn−1a+ I2nxn−1a

)
= 0

for x = x0 + Ix1. By Corollary 3.3, also polynomials of the form
∑N
n=0 x

nan with an ∈ H are left slice
regular. On the contrary, monomials of the form axn are in general not left slice regular. If x = x0 + Ix1

and a /∈ CI , then a and I do not commute because of Corollary 2.12. Hence,

∂̄Iax
n =

1

2

(
∂

∂x0
axn + I

∂

∂x1
axn

)
=

1

2

(
anxn−1 + IaInxn−1

)
6= 1

2

(
anxn−1 + I2anxn−1

)
= 0.

Similarly, polynomials of the form
∑N
n=0 anx

n, an ∈ H are right slice regular, but not left slice regular.
Furthermore, as in the case of Cauchy-Fueter-regularity, the product and the composition of two left

slice regular functions are in general not left slice regular and the product and the composition of two
right slice regular functions are in general not right slice regular. An easy counterexample is the function
f(x) = xaxa with a ∈ H\R. Then f(x) can either be considered as the left slice regular function x 7→ xa
multiplied by itself or as the composition of the left slice regular functions x 7→ xa and x 7→ x2. But for
x = x0 + Ix1 and a /∈ CI , a and I do not commute, and we obtain

∂̄IfI(x) =
1

2

(
∂

∂x0
xaxa+ I

∂

∂x1
xaxa

)
=

1

2

(
axa+ xa2 + I2axa+ IxaIa

)
=

=
1

2

(
xa2 + IxaIa

)
6= 1

2

(
xa2 + I2xa2

)
= 0.

Hence, f itself is not left slice regular.
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3.2 Representation formulas and extension theorems

By definition, a function is slice regular, if it is holomorphic on every complex plane CI in H. The
following Lemma specifies this idea.

Lemma 3.5 (Splitting Lemma). Let U ⊂ H be an open set and let f : U → H be real differentiable.
Then f is left slice regular if and only if, for any I, J ∈ S with I ⊥ J , there exist holomorphic functions
f1, f2 : U ∩ CI → CI such that

fI(x) = f1(x) + f2(x)J for all x ∈ U ∩ CI .

Similarly, f is right slice regular if and only if, for any I, J ∈ S with I ⊥ J , there exist holomorphic
functions f1, f2 : U ∩ CI → CI such that

fI(x) = f1(x) + Jf2(x) for all x ∈ U ∩ CI .

Proof. Let f be left slice regular and let I, J ∈ S with I ⊥ J . By Corollary 2.10, there exist functions
f1, f2 : U ∩ CI → CI such that fI(x) = f1(x) + f2(x)J for all x ∈ U ∩ CI . Since f is real differentiable,
f1 and f2 must be real differentiable, too. Moreover, if f is left slice regular, it satisfies ∂̄If = 0. Thus,
for x = x0 + Ix1, we have

0 =
1

2

(
∂

∂x0
fI(x) + I

∂

∂x1
fI(x)

)
=

1

2

(
∂

∂x0
f1(x) + I

∂

∂x1
f1(x)

)
+

1

2

(
∂

∂x0
f2(x) + I

∂

∂x1
f2(x)

)
J,

which implies

1

2

(
∂

∂x0
f1(x) + I

∂

∂x1
f1(x)

)
= 0 and

1

2

(
∂

∂x0
f2(x) + I

∂

∂x1
f2(x)

)
= 0.

Hence, f1 and f2 are holomorphic by Lemma 1.12.

On the contrary, if fI = f1 + f2J , where f1 and f2 are holomorphic functions from U ∩ CI → CI ,
then ∂̄If1 = 0 and ∂̄If2 = 0, and in turn,

∂̄IfI = ∂̄If1 + ∂̄If2J = 0.

Hence, if such a decomposition of fI exists for any I, J ∈ S with I ⊥ J , then f is left slice regular .

Slice regular functions allow the development of a rich function theory, if their domains of definition
satisfy certain regularity assumptions.

Definition 3.6. Let U be an open subset of H. Then U is called slice domain if U ∩R is nonempty and
if U ∩ CI is a domain in CI , that is an open and connected subset of CI for all I ∈ S.

Corollary 3.7. Let U ⊂ H be a slice domain. Then U is a domain in H.

Proof. The set U =
⋃
I∈S(U ∩CI) is the union of connected sets, whose intersection is nonempty because⋂

I∈S(U ∩ CI) = U ∩ R 6= ∅. Hence, it is connected itself. Since it is also open by definition, it is a
domain.

The condition U ∩R 6= 0 in Definition 3.6 is essential as can been seen from the proof of the following
theorem.

Theorem 3.8 (Identity Principle). Let U ⊂ H be a slice domain, let f : U → H be a left or right slice
regular function and let Z = {x ∈ U : f(x) = 0}. If there exists an imaginary unit I ∈ S such that
Z ∩ CI has an accumulation point in U ∩ CI , then f ≡ 0 on U .
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Proof. Let f be left slice regular on U , let I ∈ S be an imaginary unit such that Z ∩ CI has an
accumulation point in U ∩ CI and let J ∈ S with I ⊥ J . By applying the Splitting Lemma, Lemma
3.5, we obtain holomorphic functions f1, f2 : U ∩ CI → CI such that fI(x) = f1(x) + f2(x)J. Since
Z1 = {x ∈ U ∩CI : f1(x) = 0} and Z2 = {x ∈ U ∩CI : f2(x) = 0} are supersets of Z ∩CI , they have an
accumulation point in U ∩CI , too. Thus, from the identity theorem for holomorphic functions, it follows
that f1 ≡ 0 and f2 ≡ 0. Hence, f ≡ 0 on U ∩ CI . In particular, we obtain that f ≡ 0 on U ∩ R.

Now let K ∈ S be an arbitrary imaginary unit. Then the set of zeros of fK has an accumulation point
in CK as fK |R ≡ 0. Therefore, we can repeat the above arguments to show that fK ≡ 0 on U ∩CK , and
in turn, f ≡ 0 on U .

By applying the Identity Principle to f − g, we can easily deduce the following corollary.

Corollary 3.9. Let U ⊂ H be a slice domain, let f, g ∈ ML(U) or f, g ∈ MR(U) and let Z =
{z ∈ U : f(z) = g(z)}. If there exists an imaginary unit I ∈ S such that Z ∩ CI has an accumulation
point, then f ≡ g on U .

The second important regularity assumption on the domain of definition of slice regular functions is
axial symmetry.

Definition 3.10. For a quaternion x ∈ H, we set

Ix =


x

|x|
if x 6= 0

any element of S otherwise,

where x denotes the vector part of x as in Definition 2.2.

Corollary 3.11. Let x ∈ H. Then Ix ∈ S and x ∈ CIx . More precisely, x = x0 + Ixx1 with x0 = Re[x]
and x1 = |x|.

Proof. Let x ∈ R. Then x ∈ CI and x = x0 + Ix1 with x0 = Re[x] = x and x1 = 0 = |x| for any I ∈ S.
Otherwise, if x /∈ R, then |x| 6= 0 and we have Re[Ix] = Re[x ]/|x| = 0 and |Ix| = |x|/|x| = 1. Hence,
Ix ∈ S. Moreover, we have

x = Re[x] + x = x0 +
x

|x|
|x| = x0 + Ixx1.

Definition 3.12. For x = x0 + Ixx1 ∈ H, we define

[x] = x0 + Sx1 = {x0 + Ix1 : I ∈ S}.

The set [x] is a 2-sphere of radius x1 = |x| centered at the real point x0, which reduces to the point
x = x0 if |x| = 0. In particular, when we refer to a 2-sphere in the following, we always include the
degenerated case of a single point.

Definition 3.13. A set Ω ⊂ H is called axially symmetric if, for any x ∈ Ω, the entire 2-sphere [x] is
contained in Ω.

It is an important fact, that any slice domain can be extended to a larger slice domain that is axially
symmetric.

Definition 3.14. Let Ω ⊂ H. We call [Ω] =
⋃
x∈Ω[x] the axially symmetric hull of Ω.

Example 3.15. Let x = x0 + Ixx1 ∈ H and let ε > 0. We determine the axially symmetric hull of the
ball Bε(x) ⊂ H. Note that Bε(x)∩CIx = {y0 + Ixy1 : (y0, y1) ∈ Bε(x0, x1)}, where Bε(x0, x1) is the ball
of radius ε centered at (x0, x1) in R2. Hence,

[Bε(x)] ⊃ {y0 + Iy1 : (y0, y1) ∈ Bε(x0, x1)}. (3.1)
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For I ∈ S, set xI = x0 + Ix1 ∈ [x]. If y = y0 + Iyy1 ∈ H, then we can choose J ∈ S with Iy ⊥ J such that

I ∈ span{Iy, J}. Then xI = x0 + x̃1Iy + x̃2J , where x1 = |xI | =
√
x̃2

1 + x̃2
2 by Corollary 3.11. Hence,

‖(x0, x1)− (y0, y1)‖2 = (x0 − y0)2 + (x1 − y1)2 = (x0 − y0)2 + x2
1 − 2x1y1 + y2

1 =

= (x0 − y0)2 + x̃2
1 + x̃2

2 − 2
√
x̃2

1 + x̃2
2 y1 + y2

1 ≤

≤ (x0 − y0)2 + x̃2
1 + x̃2

2 − 2x̃1y1 + y2
1 = (x0 − y0)2 + (x̃1 − y1)2 + x̃2

2 = |y − xI |2.

If I = Iy, then x̃1 = x1 and x̃2 = 0 and we obtain a chain of equalities. Hence,

‖(x0, x1)− (y0, y1)‖ ≤ dist(y, [x]) = inf
xI∈[x]

|y − xI | ≤ |y − xIy | = ‖(x0, x1)− (y0, y1)‖,

and in turn
dist(y, [x]) = |y − xIy | = ‖(x0, x1)− (y0, y1)‖. (3.2)

This implies ‖(x0, x1) − (y0, y1)‖ = dist(y, [x]) < |y − x| < ε for any y = y0 + Iyy1 ∈ Bε(x). Hence, in
(3.1), the reverse inclusion also holds true. Altogether, we obtain

[Bε(x)] = {y0 + Iy1 : (y0, y1) ∈ Bε(x0, x1)} = Bε([x]),

where Bε([x]) = {y ∈ H : dist(y, [x]) < ε}.

We denote the closed upper half plane in R2 by R2
+, that is R2

+ = {(x0, x1) ∈ R2 : x1 ≥ 0}, and we
define the function

Ψ :

{
H → R2

+

x = x0 + Ixx1 7→ (x0, x1)
, (3.3)

which is a very useful tool for investigating the relation between the topological properties of a a set Ω
and its axially symmetric hull [Ω].

Corollary 3.16. Let Ω ⊂ H. Then [Ω] = Ψ−1(Ψ(Ω)).

Proof. We have Ψ(Ω) = {(x0, x1) ∈ R2
+ : x = x0 + Ixx1 ∈ Ω for some Ix ∈ S} and Ψ−1(x0, x1) =

{x0 + Ix1 : I ∈ S} = [x0 + Ixx1]. Hence,

Ψ−1(Ψ(Ω)) =
⋃

(x0,x1)∈Ψ(Ω)

[x0 + Ixx1] =
⋃
x∈Ω

[x] = [Ω].

Example 3.17. Let us again consider the case of a ball Bε(x), where x = x0 +Ixx1 as in Corollary 3.11.
Since

Bε(x) ∩ CIx = {y0 + Ixy1 : (y0, y1) ∈ Bε(x0, x1)}, (3.4)

we have Bε(x0, x1)∩R2
+ ⊂ Ψ(Bε(x)). If on the other hand we write y ∈ Bε(x) as y = y0 +Iyy1 according

to Corollary 3.11, then ‖(x0, x1) − (y0, y1)‖ < ε as we have seen in Example 3.15. Since y1 = |y| ≥ 0,

this implies (y0, y1) ∈ Bε(x0, x1) ∩ R2
+. Hence,

Ψ(Bε(x)) = Bε(x0, x1) ∩ R2
+.

The equation (3.4) implies that even Ψ(Bε(x) ∩CIx) = Bε(x0, x1) ∩R2
+. As a consequence, we obtain a

more precise description of the axially symmetric hull of Bε(x) from Corollary 3.16, namely

[Bε(x)] = Ψ−1(Ψ(Bε(x))) = {y0 + Iy1 : (y0, y1) ∈ Bε(x0, x1) ∩ R2
+}.

Moreover, for the imaginary unit Ix, we have

[Bε(x) ∩ CIx ] = Ψ1(Ψ(Bε(x) ∩ CIx)) = {y0 + Iy1 : (y0, y1) ∈ Bε(x0, x1) ∩ R2
+} = [Bε(x)].
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Lemma 3.18. The function Ψ defined in (3.3) is continuous, open and closed. Moreover, for any I ∈ S,
the restriction of Ψ to the plane CI is continuous, open and closed, too.

Proof. By Corollary 3.11, we have Ψ(x) = (Re[x], |x|) for x ∈ H. Hence, Ψ is continous. Consequently,
its restriction to a complex plane CI is continuous, too.

Let O ⊂ H be open. For (x0, x1) ∈ Ψ(O) ⊂ R2
+, there exists Ix ∈ S such that x = x0 + Ixx1 belongs

to O. Since O is open, there exists ε > 0 such that Bε(x) ⊂ O. In Example 3.17 we have seen that
Ψ(Bε(x)) = Bε(x0, x1) ∩ R2

+, which is a neighborhood of (x0, x1) in R2
+. Since Ψ(Bε(x)) ⊂ Ψ(O), the

set Ψ(O) is open, and in turn, Ψ is an open map. We also have Ψ(Bε(x) ∩ CI) = Bε(x0, x1) ∩ R2
+ for

any x = x0 + Ix1 ∈ CI . Hence, the same argument shows that the restriction of Ψ to a complex plane
CI is open, too.

Finally, assume that C ⊂ H is closed and let (x0,n, x1,n), n ∈ N, be a sequence in Ψ(C) such that
(x0, x1) = limn→∞(x0,n, x1,n) exists. Then there exists a sequence of imaginary units In, n ∈ N such
that xn = x0,n + Inx1,n belongs to C for any n ∈ N. Since the sequence (x0,n, x1,n) is convergent, it is
bounded in R2. The identity |xn|2 = x2

0,n + x2
1,n = ‖(x0,n, x1,n)‖2, implies that the sequence xn, n ∈ N

is bounded in H. Hence, it contains a convergent subsequence xnk
, k ∈ N. The limit x = limk→∞ xn,k

belongs to C because C is closed, and the continuity of Ψ implies that (x0, x1) = limk→∞(x0,nk
, x1,nk

) =
limk→∞Ψ(xnk

) = Ψ(x) belongs to Ψ(C). Hence, Ψ(C) is closed and Ψ is a closed map. Since the
restriction of a closed map to a closed set is closed again, Ψ|CI

is closed for any I ∈ S.

Lemma 3.19. If Ω ⊂ H is open (closed, compact), then [Ω] is open (closed, compact). Moreover,
sup{|x| : x ∈ Ω} = sup{|x| : x ∈ [Ω]}.

If I ∈ S and ΩI ⊂ CI is open (closed, compact) in CI , then [ΩI ] is open (closed, compact).

Proof. The function Ψ defined in (3.3) is open, closed and continuous by Lemma 3.18. Hence, the set
Ψ(Ω) is open (closed), if Ω is open (closed), and in turn, by Corollary 3.16, [Ω] = Ψ−1(Ψ(Ω)) is open
(closed).

By the Heine-Borel-Theorem a subset of Rn is compact if and only if it is closed and bounded. The
identity |x| =

√
x2

0 + x2
1 = ‖(x0, x1)‖ for x = x0 + Ixx1 ∈ H implies

sup{|x| : x ∈ Ω} = sup{‖(x0, x1)‖ : (x0, x1) ∈ Ψ(Ω)} = sup{|x| : x ∈ Ψ−1(Ψ(Ω))} = sup{|x| : x ∈ [Ω]}.

Hence, if Ω is compact, then it is closed and bounded, and in turn, the set [Ω] is closed and bounded,
too. Therefore, it is compact.

Since Ψ|CI
is open, closed and continuous by Lemma 3.18, the same arguments show that ΩI is open

(closed, compact) if [ΩI ] is open (closed, compact) in CI .

Lemma 3.20. Let U ⊂ H be a domain in H with U ∩ R 6= ∅ or let U ⊂ CJ be a domain in CJ with
U ∩R 6= ∅ for some imaginary unit J . Then [U ] is a slice domain and there exists a domain D[U ] in R2

that is symmetric with respect to the x0-axis such that x0 + Ix1 ∈ [U ] if and only if (x0, x1) ∈ D[U ]. In
particular, [U ] = {x0 + Ix1 : (x0, x1) ∈ D[U ], I ∈ S}.

Proof. The axially symmetric hull [U ] of U is open by Lemma 3.19 because U is open in H (resp. CJ).
Consequently, the set [U ] ∩ CI is open in CI for any I ∈ S.

As [U ] = Ψ−1(Ψ(U)) = {x0 + Ix1 : (x0, x1) ∈ Ψ(U), I ∈ S}, a quaternion x belongs to [U ] ∩ CI if
and only if x = x0 + Ix1 or x = x0 + (−I)x1 with (x0, x1) ∈ Ψ(U). Since x0 + (−I)x1 = x0 + I(−x1),
this is equivalent to x = x0 + Ix1 with (x0, x1) ∈ D[U ], where we set D[U ] = Ψ(U) ∪ −Ψ(U) with
−Ψ(U) = {(x0,−x1) : (x0, x1) ∈ Ψ(U)}.

The set Ψ(U) is open in R2
+ because U is open and because Ψ resp. Ψ|CJ

are open mappings by
Lemma 3.18. Consequently, D[U ] is open in R2 because it is the preimage of Ψ(U) under the continuous
mapping (x0, x1) 7→ (x0, |x1|) from R2 to R2

+. Since U is connected and Ψ is continuous, the set Ψ(U) is
connected, and in turn, −Ψ(U) is connected, too. The set Ψ(U)∩−Ψ(U) = {(x0, x1) ∈ Ψ(U) : x1 = 0} =
Ψ(U ∩ R) is nonempty. Therefore, D[U ] = Ψ(U) ∪ −Ψ(U) is connected because the union of connected
sets with nonempty intersection is again connected. Altogether, we obtain that D[U ] is a domain in R2

that is symmetric with respect to the x0-axis such that [U ] = {x0 + Ix1 : (x0, x1) ∈ D[U ], I ∈ S}.
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Finally, since τ : (x0, x1) 7→ x0 + Ix1 is a homeomorphism from R2 to CI , the set [U ] ∩ CI =
{x0 + Ix1 : (x0, x1) ∈ D[U ]} =τ(D[U ]) is a domain in CI for any I ∈ S and [U ] ∩R ⊃ U ∩R 6= ∅. Hence,
[U ] is a slice domain.

Theorem 3.21 (Representation Formula). Let U ⊂ H be an axially symmetric slice domain and let f
be a left slice regular function on U. If we write x ∈ U as x = x0 + Ixx1 according to Corollary 3.11,
then the identity

f(x) =
1

2
[1− IxI] f(x0 + Ix1) +

1

2
[1 + IxI] f(x0 − Ix1) =

=
1

2

[
f(x0 + Ix1) + f(x0 − Ix1) + IxI[f(x0 − Ix1)− f(x0 + Ix1)]

] (3.5)

holds true for any I ∈ S and any x ∈ U . Moreover, the quantities

α(x0, x1) =
1

2
[f(x0 + Ix1) + f(x0 − Ix1)] and β(x0, x1) =

1

2
I[f(x0 − Ix1)− f(x0 + Ix1)] (3.6)

do not depend on the imaginary unit I.
If on the other hand g : U → H is right slice regular on U , then the corresponding identity

g(x) =
1

2
g(x0 + Ix1) [1− IIx] +

1

2
g(x0 − Ix1) [1 + IIx] =

=
1

2

[
g(x0 + Ix1) + g(x0 − Ix1) + [g(x0 − Ix1)− g(x0 + Ix1)]IIx

] (3.7)

holds for any I ∈ S and any x ∈ U . Moreover, the quantities

α̂(x0, x1) =
1

2
[g(x0 + Ix1) + g(x0 − Ix1)] and β̂(x0, x1) =

1

2
[g(x0 − Ix1)− g(x0 + Ix1)]I

do not depend on the imaginary unit I.

Proof. Let I ∈ S. Writing x = x0 + Ixx1 according to Corollary 3.11, we define the function

ϕ(x) =
1

2
[1− IxI] f(x0 + Ix1) +

1

2
[1 + IxI] f(x0 − Ix1)

for x ∈ U . Since U is axially symmetric, this function is well defined. Moreover, it is left slice regular
because

2∂̄Ixϕ(x) =
1

2
[1− IxI]

∂

∂x0
f(x0 + Ix1) +

1

2
[1 + IxI]

∂

∂x0
f(x0 − Ix1)+

+
1

2
Ix [1− IxI]

∂

∂x1
f(x0 + Ix1) +

1

2
Ix [1 + IxI]

∂

∂x1
f(x0 − Ix1).

Since f is left slice regular, we have ∂
∂x0

f(x0+Ix1) = −I ∂
∂x1

f(x0+Ix1) and ∂
∂x0

f(x0−Ix1) = I ∂
∂x1

f(x0−
Ix1). Hence,

2∂̄Ixϕ(x) =
1

2
[1− IxI] (−I)

∂

∂x1
f(x0 + Ix1) +

1

2
[1 + IxI] I

∂

∂x1
f(x0 − Ix1)+

+
1

2
Ix [1− IxI]

∂

∂x1
f(x0 + Ix1) +

1

2
Ix [1 + IxI]

∂

∂x1
f(x0 − Ix1) =

=
1

2
[−I − Ix]

∂

∂x1
f(x0 + Ix1) +

1

2
[I − Ix]

∂

∂x1
f(x0 − Ix1)+

+
1

2
[Ix + I]

∂

∂x1
f(x0 + Ix1) +

1

2
[Ix − I]

∂

∂x1
f(x0 − Ix1) = 0.

Furthermore, for x ∈ U ∩ CI , we have either Ix = I, and in turn

ϕ(x) =
1

2

[
1− I2

]
f(x0 + Ix1) +

1

2

[
1 + I2

]
f(x0 − Ix1) = f(x0 + Ix1) = f(x),
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or we have Ix = −I, which yields

ϕ(x) =
1

2

[
1 + I2

]
f(x0 + Ix1) +

1

2

[
1− I2

]
f(x0 − Ix1) = f(x0 − Ix1) = f(x).

Thus, from the Identity Principle, Theorem 3.8, it follows that ϕ ≡ f .
To show that α and β do not depend on the imaginary unit I, let J ∈ S be an arbitrary imaginary

unit. Applying (3.5), we obtain

α(x0, x1) =
1

2
[f(x0 + Ix1) + f(x0 − Ix1)] =

=
1

2

[
1

2
[f(x0 + Jx1) + f(x0 − Jx1)] + I

1

2
J [f(x0 − Jx1)− f(x0 + Jx1)] +

+
1

2
[f(x0 − Jx1) + f(x0 + Jx1)] + I

1

2
J [f(x0 + Jx1)− f(x0 − Jx1)]

]
=

=
1

2
[f(x0 + Jx1) + f(x0 − Jx1)]

and similarly

β(x0, x1) =
1

2
I [f(x0 − Ix1)− f(x0 + Ix1)] =

=
1

2
I

[
1

2
[f(x0 − Jx1) + f(x0 + Jx1)] + I

1

2
J [f(x0 + Jx1)− f(x0 − Jx1)] −

− 1

2
[f(x0 + Jx1) + f(x0 − Jx1)]− I 1

2
J [f(x0 − Jx1)− f(x0 + Jx1)]

]
=

=
1

2
J [f(x0 − Jx1)− f(x0 + Jx1)] .

Corollary 3.22 (Representation Formula II). Let U ⊂ H be an axially symmetric slice domain and
let DU be the domain in R2 such that U = {x0 + Ix1 : (x0, x1) ∈ DU , I ∈ S} as in Lemma 3.20 with
[U ] = U . A function f : U → H is left slice regular if and only if there exist two differentiable functions
α, β : D → H that satisfy the conditions

α(x0, x1) = α(x0,−x1) and β(x0, x1) = −β(x0,−x1) (3.8)

and the Cauchy-Riemann system {
∂
∂x0

α = ∂
∂x1

β
∂
∂x1

α = − ∂
∂x0

β
(3.9)

such that
f(x) = α(x0, x1) + Iβ(x0, x1) (3.10)

for all x = x0 + Ix1 ∈ U .
The function f is right slice regular if and only if there exist two differentiable functions α̂, β̂ : DU → H

satisfying the conditions (3.8) and (3.9) such that

f(x) = α̂(x0, x1) + β̂(x0, x1)I

for all x = x0 + Ix1 ∈ U .

Proof. If f is left slice regular, we can apply Theorem 3.21 and define α(x0, x1) and β(x0, x1) as in (3.6).
Obviously, these functions satisfy (3.8). Furthermore, as f is left slice regular, we have ∂

∂x0
f(x0 +Ix1) =

−I ∂
∂x1

f(x0 + Ix1) and ∂
∂x0

f(x0 − Ix1) = I ∂
∂x1

f(x0 − Ix1). Hence,

∂

∂x0
α(x0, x1) =

1

2

[
∂

∂x0
f(x0 + Ix1) +

∂

∂x0
f(x0 − Ix1)

]
=

=
1

2
I

[
− ∂

∂x1
f(x0 + Ix1) +

∂

∂x1
f(x0 − Ix1)

]
=

∂

∂x1
β(x0, x1)
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and

∂

∂x1
α(x0, x1) =

1

2

[
∂

∂x1
f(x0 + Ix1) +

∂

∂x1
f(x0 − Ix1)

]
=

= −1

2
I

[
− ∂

∂x0
f(x0 + Ix1) +

∂

∂x0
f(x0 − Ix1)

]
= − ∂

∂x0
β(x0, x1).

If on the other hand α and β satisfy (3.8), the function f(x) = α(x0, x1)+Iβ(x0, x1) for x = x0+Ix1 ∈ U
is well defined on the open set U . In fact, if x = x0 +Ix1 ∈ U with (x0, x1) ∈ D[U ], then (x0,−x1) ∈ D[U ]

because D[U ] is symmetric with respect to the x0-axis, and x = x0 − I(−x1) where −I ∈ S. However,
the value f(x) does not depend on the chosen representation as

f(x0 − I(−x1)) = α(x0,−x1)− Iβ(x0,−x1) = α(x0, x1) + Iβ(x0, x1) = f(x1 + Ix1).

Finally, because of (3.9), f is left slice regular as

∂̄If(x0 + Ix1) =
∂

∂x0
α(x0, x1) + I

∂

∂x0
β(x0, x1) + I

∂

∂x1
α(x0, x1) + I2 ∂

∂x1
β(x0, x1) =

=
∂

∂x0
α(x0, x1)− ∂

∂x1
β(x0, x1) + I

[
∂

∂x0
β(x0, x1) +

∂

∂x1
α(x0, x1)

]
= 0.

Corollary 3.23. Let U ⊂ H be an axially symmetric slice domain, let f : U → H be left slice regular
and let x = x0 + Ix1 ∈ U . Then there exist a, b ∈ H such that

f(x0 + Ix1) = a+ Ib,

for all I ∈ S. In particular, the image of the 2-sphere [x] under f is the set {a+ Ib : I ∈ S}.
Similarly, if f is right slice regular, then there exist â, b̂ ∈ H such that

f(x0 + Ix1) = â+ b̂I,

for all I ∈ S. In particular, the image of the 2-sphere [x] under f is the set {â+ b̂I : I ∈ S}.

An important consequence of Theorem 3.21, the Representation Formula, is the fact that any holo-
morphic function defined on a suitable domain can be uniquely extended to a slice regular function.

Lemma 3.24 (Extension Lemma). Let I ∈ S and let D be a domain in CI that is symmetric with respect
to the real axis and such that D ∩ R 6= ∅. Then, the axially symmetric hull [D] of D is a slice domain.
Moreover, if f : D → H is left holomorphic in the sense of Definition 3.1, then the function extL(f),
which is defined by

extL(f)(x) =
1

2

[
f(x0 + Ix1) + f(x0 − Ix1)

]
+ Ix

1

2
I
[
f(x0 − Ix1)− f(x0 + Ix1)

]
for x ∈ [D], where x = x0 + Ixx1 as in Corollary 3.11, is the unique left slice regular extension of f
to [D]. Similarly, if g : D → H is right holomorphic, then the function extR(g), which is defined by

extR(g)(x) =
1

2

[
g(x0 + Ix1) + g(x0 − Ix1)

]
+

1

2

[
g(x0 − Ix1)− g(x0 + Ix1)

]
IIx

for x = x0 + Ixx1 ∈ [D], is the unique right slice regular extension of g to [D].

Proof. By Lemma 3.20, the axially symmetric hull [D] of D is a slice domain. The fact that extL(f) is
left slice regular, follows in the same way as the left slice regularity of the function ϕ at the beginning of
the proof of Lemma 3.5. Moreover, if x ∈ CI , we have

extL(f)(x) =
1

2

[
f(x0 + Ix1) + f(x0 − Ix1)

]
− 1

2

[
f(x0 − Ix1)− f(x0 + Ix1)

]
= f(x0 + Ix1) = f(x)
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if Ix = I and

extL(f)(x) =
1

2

[
f(x0 + Ix1) + f(x0 − Ix1)

]
+

1

2

[
f(x0 − Ix1)− f(x0 + Ix1)

]
= f(x0 − Ix1) = f(x)

if Ix = −I. Therefore, extL(f) extends f . Furthermore, for any other left slice regular extension f̃ of

f , we have extL(f)|D = f = f̃ |D. Theorem 3.8, the Identity Principle, implies extL(f) = f̃ . Therefore,
extL(f) is the unique left slice regular extension of f to [D].

Remark 3.25. Note that in particular any holomorphic function f : D ⊂ CI → CI is both left and
right holomorphic as a function from D to H. Thus, there exist a left and a right slice regular extension
of f . However, it is possible, that these two extensions do not coincide. For instance take I ∈ S and
consider the function f(z) = Iz, which is holomorphic on CI . For x = x0 + Ixx1 ∈ H, we have

extL(f)(x) =
1

2

[
I(x0 + Ix1) + I(x0 − Ix1)

]
+ Ix

1

2
I
[
I(x0 − Ix1)− I(x0 + Ix1)

]
= Ix0 + IxIx1 = xI,

but

extR(f)(x) =
1

2

[
I(x0 + Ix1) + I(x0 − Ix1)

]
+

1

2

[
[I(x0 − Ix1)− I(x0 + Ix1)]I

]
Ix = Ix0 + Ix1Ix = Ix.

If we consider J ∈ S with J ⊥ I, then extL(f)(J) = JI 6= IJ = extR(f)(J). Hence, extL(f) 6= extR(f).

In the following, we will only consider slice regular functions that are defined on axially symmetric
slice domains. As we will see in the next lemma, this is no significant restriction because any slice regular
function on a slice domain can be uniquely extended to the axially symmetric hull of this domain. To
prove this lemma, we need the following generalization of the Representation Formula.

Corollary 3.26. Let U ∩ H be an axially symmetric slice domain, let I, J ∈ S with I ⊥ J and let us
write x ∈ U as x = x0 + Ixx1 according to Corollary 3.11. If f ∈ ML(U) and g ∈ MR(U), then the
following identities hold true for any x ∈ U :

f(x) = (I − J)−1[If(x0 + Ix1)− Jf(x0 + Jx1)] + Ix(I − J)−1[f(x0 + Ix1)− f(x0 + Jx1)] (3.11)

g(x) = [g(x0 + Ix1)I − f(x0 + Jx1)J ](I − J)−1 + [g(x0 + Ix1)− g(x0 + Jx1)](I − J)−1Ix. (3.12)

Proof. If we apply Corollary 3.22, we obtain

f(x0 + Ix1) = α(x0, x1) + Iβ(x0, x1) and f(x0 + Jx1) = α(x0, x1) + Jβ(x0, x1). (3.13)

If we subtract these equations and multiply the result by (I − J)−1 from the left, we obtain

β(x0, x1) = (I − J)−1[f(x0 + x1I)− f(x0 + Jx1)].

If we multiply the equations in (3.13) by I and J from the left, subtract them and multiply the result
by (I − J)−1 from the left, we obtain

α(x0, x1) = (I − J)−1[If(x0 + x1I)− Jf(x0 + Jx1)].

Plugging these expressions back into (3.10), we obtain the desired representation.

Lemma 3.27 (Extension Lemma, II). Let U be a slice domain in H and let f : U → H be left slice
regular. Then there exists a unique left slice regular extension of f to the axially symmetric hull [U ] of
U . Similarly, for any g ∈MR(U), there exists an unique right slice regular extension of g to [U ].

Proof. Since U is a slice domain, there exists a point c ∈ U ∩R. Furthermore, as U is open, there exists
an open Ball Br(c) ⊂ U . If f is left slice regular on U , then the restriction of f to Br(c) is a left slice
regular function defined on an axially symmetric slice domain.

Let us consider the set F of all left slice regular functions ξ defined on an axially symmetric
slice domain V such that Br(c) ⊂ V ⊂ [U ] and ξ|V ∩U = f |V ∩U . This set is nonempty because
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(Br(c), f |Br(c)) ∈ F . It is partially ordered by the set inclusion, that is, (V1, ξ1) � (V2, ξ2) if V1 ⊂ V2.
For a chain (Vk, ξk)k∈K in F , we can define

V ∗ =
⋃
k∈K

Vk and ξ∗(x) = ξkx(x) for x ∈ V ∗, (3.14)

where kx is an arbitrary k ∈ K such that x ∈ K. The Identity Principle, Theorem 3.8, implies ξ2|V1 = ξ1
if V1 ⊂ V2. Hence, ξ is a well defined left slice regular function on V ∗ that extends f . Moreover, it is
easy to check that V ∗ is an axially symmetric slice domain such that Br(x) ⊂ V ∗ ⊂ [U ]. Therefore,
(V ∗, ξ∗) belongs to F and it is an upper bound of the chain (Vk, ξk)k∈K . By Zorn’s lemma, there exits
a maximal element (U∗, f∗) in F .

In order to show that U∗ = [U ], we assume the converse, U∗ ( [U ]. In this case, there exists
y = y0 + Iyy1 ∈ [U ] ∩ ∂U∗. Since y ∈ [U ], there exists I ∈ S such that yI = y0 + Iy1 ∈ U . Since U is
open, there exists a ball Br0(yI) ⊂ U . Thus, we can find another imaginary unit J and ε < r0 such that
Bε(yJ) ⊂ U , where yJ = y0 + Jy1. In particular, the discs Bε(yI) ∩ CI and Bε(yJ) ∩ CJ are contained
in U .

As an easy consequence of Example 3.15, we get [Bε(y)] = [Bε(yI) ∩ CI ] = [Bε(yJ) ∩ CJ ]. Thus, for
x = x0 + Ixx1 ∈ [Bε(y)], we can define

φ(x) = (I − J)−1[If(xI)− Jf(xJ)] + Ix(I − J)−1[f(xI)− f(xJ)],

where we set xI = x0 + Ix1 and xJ = x0 + Jx1. Then

2∂̄Ixφ(x) =(I − J)−1

[
I
∂

∂x0
f(xI)− J

∂

∂x0
f(xJ)

]
+ Ix(I − J)−1

[
∂

∂x0
f(xI)−

∂

∂x0
f(xJ)

]
+

+ Ix(I − J)−1

[
I
∂

∂x1
f(xI)− J

∂

∂x1
f(xJ)

]
− (I − J)−1

[
∂

∂x1
f(xI)−

∂

∂x1
f(xJ)

]
.

Since f is left slice regular, we have ∂
∂x0

f(xI) = −I ∂
∂x1

f(xI) and ∂
∂x0

f(xJ) = −J ∂
∂x1

f(xJ) and in turn

2∂̄Iφ(x) =(I − J)−1

[
∂

∂x1
f(xI)−

∂

∂x1
f(xJ)

]
+ Ix(I − J)−1

[
−I ∂

∂x1
f(xI) + J

∂

∂x1
f(xJ)

]
+

+ Ix(I − J)−1

[
I
∂

∂x1
f(xI)− J

∂

∂x1
f(xJ)

]
− (I − J)−1

[
∂

∂x1
f(xI)−

∂

∂x1
f(xJ)

]
= 0.

Hence, φ is left slice regular. Moreover, φ(x) = f∗(x) for all x ∈ U∗∩[Bε(y)] by Corollary 3.26. Therefore,
the function

h(x) =

{
f∗(x) if x ∈ U∗

φ(x) if x ∈ [Bε(y)] \ U∗

is a well defined left slice regular extension of f to U∗ ∪ [Bε(y)].
The set U∗ ∪ [Bε(y)] is obviously axially symmetric. Moreover, the union of two open and connected

sets is open and connected, if their intersection is nonempty. Hence, U∗ ∪ [Bε(y)] is open and connected
because U∗ and [Bε(y)] are open and connected and [y] ⊂ U∗ ∩ [Bε(yI)]. Furthermore, for any K ∈ S,
we have {yK , yK} ⊂ U∗ ∩ CK , where yK = y0 + Ky1. The sets (U∗ ∩ CK) and (Bε(yK) ∩ CK) are
open and connected subsets of CK whose intersection is nonempty because it contains yK . Hence,
(U∗ ∩ CK) ∪ (Bε(yK) ∩ CK) is open and connected in CK . The intersection of Bε(yK) ∩ CK and
(U∗ ∪ CK) ∪ (Bε(yK) ∩ CK) contains yK and is therefore not empty either. Consequently, the set

(U∗ ∪ [Bε(y)]) ∩ CK = ((Bε(yK) ∩ CK) ∪ [(U∗ ∪ CK) ∪ (Bε(yK) ∩ CK)]

is open and connected in CK and [U ] ∪Bε(y) is an axially symmetric slice domain.
Since Br(c) ⊂ U∗ ∪ [Bε(y)] ⊂ [U ], we have (U∗ ∪ [Bε(y)], h) ∈ F which contradicts the maximality

of U∗ because U∗ is a proper subset of U∗ ∪ [Bε(y)]. Therefore, [U ] ∩ ∂U∗ = ∅ and, in turn, [U ] = U∗.
Hence, f∗ is a left slice regular extension of f to [U ].

Finally, it follows from Theorem 3.8, the Identity Principle, that the slice regular extension of f to
[U ] is unique.
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3.3 Power Series

A power series in the quaternion variable centered at c ∈ H is a series of the form

∞∑
n=0

an(x− c)n or

∞∑
n=0

(x− c)nan (3.15)

with coefficients an ∈ H. Power series in the quaternion variable are more complicated than complex
power series because of the noncommutativity of the quaternionic multiplication. Nevertheless, some
of the classical theory holds also in the quaternionic case. In particular, the same arguments as in the
complex case show that for any series of the form (3.15), there exists a unique R ∈ [0,∞], its radius
of convergence, such that the series converges uniformly on any closed ball Br(c) with 0 < r < R and
diverges for any x ∈ H with |x− c| > R. Moreover, the classical formula

R =
1

lim supn→∞
n
√
|an|

also holds true in the quaternionic case.
Before we consider power series expansions of slice regular functions, we need to introduce a new type

of derivative for slice regular functions. It is the analogue of the usual derivative ϕ′ in complex analysis.

Definition 3.28. Let U ⊂ H be an open set and let f be a left slice regular function on U . Then we
define its slice derivative ∂sf as

∂sf(x) = ∂If(x) if x = x0 + Ix1 ∈ U.

If f is a right slice regular function on U , then we define its slice derivative ∂sf as

∂sf(x) = (f∂I)(x) if x = x0 + Ix1 ∈ U.

Remark 3.29. Note that the slice derivative is well defined, because it is only applied to slice regular
functions. Indeed, if f is left slice regular, we have ∂

∂x0
fI(x) = −I ∂

∂x1
fI(x) for x = x0 + Ix1 ∈ U and

therefore

∂sf(x) =
1

2

(
∂

∂x0
fI(x)− I ∂

∂x1
fI(x)

)
=

∂

∂x0
fI(x) =

∂

∂x0
f(x). (3.16)

Since the derivative with respect to x0 does not depend on the imaginary unit I, the slice derivative is
independent of the representation x = x0 + Ix1 = x0 − I(−x1) if x /∈ R and of the imaginary unit I if
x ∈ R.

The identity (3.16) corresponds to the fact that ϕ′(z) = ∂
∂z0

ϕ(z) for any holomorphic function ϕ and

z = z0 + iz1 ∈ C.

Recall that the derivative ϕ′ of a holomorphic function ϕ is holomorphic itself. The analogue result
is true for the slice derivative of a slice regular function.

Corollary 3.30. The slice derivative ∂sf of a left slice regular function f is left slice regular and the
slice derivative ∂sg of a right slice regular function g is right slice regular.

Proof. Let f be left slice regular on U and let x = x0 + Ix1 ∈ U . Then we have ∂sf(x) = ∂
∂x0

fI(x) by
(3.16), which implies

∂̄I∂sf(x) =
1

2

(
∂

∂x0

∂

∂x0
fI(x) + I

∂

∂x1

∂

∂x0
fI(x)

)
=

1

2

∂

∂x0

(
∂

∂x0
fI(x) + I

∂

∂x1
fI(x)

)
= 0.

Remark 3.31. As we have seen in Example 3.4, polynomials of the the form
∑N
n=0 x

nan with an ∈ H are
left slice regular. If we consider a power series of the form p(x) =

∑∞
n=0 x

nan with radius of convergence

R > 0, then the series converges uniformly on any closed ball Br(0) with 0 < r < R. In particular, the
restriction pI(x) =

∑∞
n=0 x

nan, x ∈ CI , of p to CI converges uniformly on Br(0)∩CI for any imaginary
unit I ∈ S if 0 < r < R . Therefore, if x = x0 + Ix1 ∈ BR(0), we can choose r with |x| < r < R, and

36



since the series pI converges uniformly on Br(0) ∩ CI , we can exchange summation and differentiation
and obtain

∂IpI(x) = ∂I

∞∑
n=0

xnan =

∞∑
n=0

∂Ix
nan = 0.

Hence, p is left slice regular on BR(0). Similarly, any power series of the form
∑∞
n=0 anx

n is right slice
regular.

However, a polynomial or a power series centered at an arbitrary point c ∈ H is in general not
slice regular. Consider for instance the monomial x2. If we center it at c ∈ H, we obtain (x − c)2 =
x2 − xc− cx+ c2. For x = x0 + Ix1 ∈ H, we have

∂̄I(x− c)2 = ∂̄Ix
2 − ∂̄Ixc− ∂̄Icx+ ∂̄Ic

2 = ∂̄Icx.

Thus, (x − c)2 is left slice regular if and only if ∂̄I and c commute for all I ∈ S. By Lemma 2.5, this
implies c ∈ R.

Therefore, we can not wish to find a power series expansion
∑∞
n=0(x − c)nan of a left slice regular

function at an arbitrary point c. Nevertheless, at least at any real point, a slice regular function can be
expanded into a power series.

We start with the case c = 0.

Theorem 3.32 (Power Series Expansion). Let Br(0) ⊂ H be the open ball with radius r centered at 0.
A function f : Br(0)→ H is left slice regular if and only if it has a power series expansion of the form

f(x) =
∞∑
n=0

xn
1

n!

∂n

∂xn0
f(0) (3.17)

converging on Br(0). In particular, if f(x) =
∑∞
n=0 x

nan, then an = 1
n!

∂n

∂xn
0
f(0).

It is right slice regular if and only if it has a power series expansion of the form

f(x) =

∞∑
k=0

(
1

n!

∂n

∂xn0
f(0)

)
xn

converging on Br(0). In particular, if f(x) =
∑∞
n=0 anx

n, then an = 1
n!

∂n

∂xn
0
f(0).

Proof. If a function admits a series expansion as in (3.17), it is left slice regular on its ball of convergence
as we have seen in Remark 3.31. To prove the converse, we use Lemma 3.5, the Splitting Lemma. Let
I, J ∈ S with I ⊥ J and let f1, f2 : Br(0) ∩CI → CI be holomorphic functions such that fI = f1 + f2J .
Since the functions f1 and f2 are holomorphic, they permit a Taylor series expansion on Br(0) ∩ CI .
Thus, for x ∈ CI , we have

fI(x) =

∞∑
n=0

f
(n)
1 (0)

n!
xn +

∞∑
n=0

f
(n)
2 (0)

n!
xnJ =

∞∑
n=0

xn
(
f

(n)
1 (0)

n!
+
f

(n)
2 (0)

n!
J

)
.

Furthermore, for any holomorphic function ϕ on CI , the identity ϕ′(x) = ∂
∂x0

ϕ(x) holds true. Hence, we
obtain

fI(x) =

∞∑
n=0

xn
(

1

n!

∂n

∂xn0
f1(0) +

1

n!

∂n

∂xn0
f2(0)J

)
=

∞∑
n=0

xn
1

n!

∂n

∂xn0
fI(0) =

∞∑
n=0

xn
1

n!

∂n

∂xn0
f(0).

In particular, if f(x) =
∑∞
n=0 x

nan there exist an,1, an,2 ∈ CI for any n ∈ N0 such that an = an,1 +an,2J ,
cf. Corollary 2.10. Since

f1(x) + f2(x)J = fI(x) =

∞∑
n=0

xnan =

∞∑
n=0

xnan,1 +

∞∑
n=0

xnan,2J

for x ∈ CI and since 1 and J are left linearly independent over CI , we obtain fk(x) =
∑∞
n=0 x

nan,k, k = 1, 2.

Hence, an,k = 1
n!f

(n)
k (0) = 1

n!
∂n

∂xn
0
f

(n)
k (0), k = 1, 2, and

an = an,1 + an,2J =
1

n!

∂n

∂xn0
f1(0) +

1

n!

∂n

∂xn0
f2(0)J =

1

n!

∂n

∂xn0
f(0).
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Corollary 3.33. Let U ⊂ H be a slice domain and let f be a function on U with values in H. Let c ∈ U
be a point on the real axis and let Br(c) be the largest ball centered at c that is contained in U . If f is
left or right slice regular, then it allows the power series representation

f(x) =

∞∑
n=0

(x− c)n 1

n!

∂n

∂xn0
f(c) or f(x) =

∞∑
n=0

(
1

n!

∂n

∂xn0
f(c)

)
(x− c)n (3.18)

on Br(c), respectively.

Proof. Let f be left slice regular and let tc(x) = x+ c. Then x and tc(x) lie in the same complex plane
because c is real. Hence,

∂If(tc(x)) =
∂

∂x0
fI(x+ c) + I

∂

∂x1
fI(x+ c) = 0

for any x = x0 + Ix1 ∈ H with tx(c) ∈ U . In particular, f ◦ tc is left slice regular on Br(0). Thus, from
Theorem 3.32, we get

f(x+ c) = f ◦ tc(x) =

∞∑
n=0

xn
1

n!

∂n

∂xn0
(f ◦ tc)(0) =

∞∑
n=0

xn
1

n!

∂n

∂xn0
f(c),

or

f(x) =
∞∑
n=0

(x− c)n 1

n!

∂n

∂xn0
f(c).

Corollary 3.34. Let f(x) =
∑∞
n=0(x − c)nan and g(x) =

∑∞
n=0 an(x − c)n be a left and a right slice

regular power series, respectively. Then

∂sf(x) =

∞∑
n=1

(x− c)n−1nan and ∂sg(x) =

∞∑
n=1

nan(x− c)n−1

and ∂sf and ∂sg have the same radius of convergence as f and g, respectively.

Proof. The proof follows the lines of the complex case. Let f(x) =
∑∞
n=0(x − c)nan. The radius of

convergence of this series is R = (lim supn→∞
n
√
|an|)−1. For x = x0 + Ix1 ∈ BR(x), we can choose r

such that |x−c| < r < R. Then f converges uniformly on Br(c). Therefore, we can exchange summation
and differentiation and obtain

∂sf(x) =

∞∑
n=0

∂

∂x0
xnan =

∞∑
n=1

xn−1nan

because ∂sf(x) = ∂
∂x0

f(x) by (3.16).
For the radius of convergence ρ of ∂sf , we have

ρ =
1

lim supn→∞
n
√
|(n+ 1)an+1|

=
1

limn→∞
n
√
n+ 1

1

lim supn→∞
n
√
|an+1|

= R.

We continue this section with some properties of a privileged class of slice regular functions. The
following corollary will be useful to characterize them.

Corollary 3.35. Let U ⊂ H be a slice domain and let f : U → H be left or right slice regular. If there
exists an imaginary unit I ∈ S such that f(U ∩ CI) ⊂ CI , then the power series expansion of f at any
point c ∈ U ∩ R has all its coefficients in CI . In particular, if there exist two different imaginary units
I, J ∈ S, J 6= ±I, such that f(U ∩ CI) ⊂ CI and f(U ∩ CJ) ⊂ CJ , then the coefficients are real.
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Proof. Let f ∈ ML(U). If I ∈ S such that f(U ∩ CI) ⊂ CI , then we have f(x) = fI(x) ∈ CI for any
x ∈ U ∩ R. Therefore, ∂n

∂xn
0
f(c) ∈ CI for any n ∈ N0 and any c ∈ U ∩ R and the conclusion follows from

Corollary 3.33.
If J ∈ S is another imaginary unit with f(U ∩CJ) ⊂ CJ , then the coefficients belong to CI ∩CJ = R.

Note that for power series with real coefficients
∑∞
n=0 anxn =

∑∞
n=0 xnan holds true because the

coefficients an commute with the quaternionic variable x. Therefore, they are left and right slice regular.
Moreover, recall that the compositions and the products of slice regular functions are in general not slice
regular as we have seen in Example 3.4. However, for power series with real coefficients, the situation is
different.

Lemma 3.36. Let f, g, h : Br(0)→ H be the power series

f(x) =

∞∑
n=0

xnan, g(x) =

∞∑
n=0

xnbn and h(x) =

∞∑
n=0

cnx
n, (3.19)

where an ∈ R and bn, cn ∈ H for n ∈ N0. Then the product fg is left slice regular and the product hf is
right slice regular.

Proof. Since the coefficients an are real, they commute with the quaternion variable x and we obtain

f(x)g(x) =

( ∞∑
n=0

xnan

)( ∞∑
n=0

xnbn

)
=

∞∑
n=0

n∑
k=0

xkakx
n−kbn−k =

∞∑
n=0

xn

(
n∑
k=0

akbn−k

)
,

which is again a left slice regular power series.

Lemma 3.37. Let f : Br(0) → H and g, h : BR(0) → H be power series as in (3.19) such that an ∈ R
and bn, cn ∈ H for n ∈ N0 and such that f(Br(0)) ⊂ BR(0). Then g ◦f is a left slice regular power series
and h ◦ f is a right slice regular power series on Br(0).

Proof. Let I, J ∈ S with I ⊥ J . By Corollary 2.10, there exist bn,1, bn,2 ∈ CI such that bn = bn,1 + bn,2J
for any n ∈ N0. Hence, gI(z) =

∑∞
n=0 z

nan,1 +
∑∞
n=0 z

nan,2J , where g1(z) =
∑∞
n=0 z

nan,1 and g2(z) =∑∞
n=0 z

nan,2 are complex power series that converge on BR(0) ∩ CI . Moreover, the restriction fI of f
to CI is also a complex power series on CI because its coefficients are real. It converges on Br(0) ∩ CI
and satisfies fI(Br(0) ∩ CI) ⊂ BR(0) ∩ CI . Hence, the compositions g1 ◦ fI and g2 ◦ fI are complex
power series that converge on Br(0) ∩CI . Let dn,1 ∈ CI and dn,2 ∈ CI be the coefficients of g1 ◦ fI and
g2 ◦ fI , respectively, that is, gk ◦ fI(z) =

∑∞
n=0 dn,kz

n for any z ∈ Br(0) ∩ CI and k = 1, 2. If we set
dn = dn,1 + dn,2J , then

gI ◦ fI(x) = g1 ◦ fI(x) + g2 ◦ f2(x)J =

∞∑
n=0

dn,1x
n +

∞∑
n=0

dn,2x
nJ =

∞∑
n=0

xndn.

In particular, gI ◦ fI(x) is left holomorphic on Br(0) ∩ CI , and since I was arbitrary, g ◦ f is left slice
regular. Moreover, the left slice regular extension of a left holomorphic function is unique by Lemma 3.24,
and hence,

g ◦ f = extL(gI ◦ fI) = extL

( ∞∑
n=0

zndn

)
=

∞∑
n=0

xndn.

The preceding results motivate the following definition.

Definition 3.38. Let U ⊂ H be a slice domain. By N (U) we denote the set of all left slice regular
functions f such that f(U ∩ CI) ⊂ CI for every I ∈ S .
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Remark 3.39. By Corollary 3.35, the power series representation of a function f ∈ N (U) at a point
c ∈ R has real coefficients. Conversely, if f is a left slice regular function on a slice domain U and there
exists a point c ∈ U ∩ R such that the power series representation of f at c has real coefficients, then
f ∈ N (U). Indeed, if f(x) =

∑∞
n=0(x−c)nan on Br(c) with an ∈ R, then, for any I ∈ S, we can consider

J ∈ S with I ⊥ J and write an = an,1 + an,2J with an,1, an,2 ∈ CI . We can apply Lemma 3.5, the
Splitting Lemma, to obtain holomorphic functions f1, f2 : U ∩ CI → CI such that fI = f1 + f2J , where
f1(z) =

∑∞
n=0(z− c)nan,1 and f2(z) =

∑∞
n=0(z− c)nan,2 on CI ∩Br(c). But since the coefficients an are

real, we have an,1 = an and an,2 = 0. The identity theorem for holomorphic functions implies f2 ≡ 0.
Therefore, fI = f1 and f(U ∩ CI) = f1(U ∩ CI) ⊂ CI .

Corollary 3.40. Let U be a slice domain and let f ∈ N (U).

(i) The function f is left and right slice regular. Moreover, if U is axially symmetric and we write
f(x) = α(x0, x1) + Iβ(x0, x1) for x = x0 + Ix1 according to Corollary 3.22, then the functions α
and β have values in R.

(ii) If g ∈ML(U), then fg is left slice regular. If h ∈MR(U), then hf is right slice regular.

(iii) If g ∈ ML(O), where O an open set with f(U) ⊂ O, then g ◦ f is left slice regular. Similarly, if
h ∈MR(O), then h ◦ f is right slice regular.

Proof. By definition, f is left slice regular and satisfies fI(U ∩ CI) ⊂ CI for every I ∈ S. Therefore,

(f∂̄I)(x) =
1

2

(
∂

∂x0
fI(x) +

∂

∂x1
fI(x)I

)
=

1

2

(
∂

∂x0
fI(x) + I

∂

∂x1
fI(x)

)
= ∂̄If(x) = 0

for evey x = x0 + Ix1 ∈ U , and in turn, f is right slice regular. Moreover, if x0, x1 ∈ R are such
that x = x0 + Ix1 ∈ U for I ∈ S, then we have α(x0, x1) = 1

2 (f(x0 + Ix1) + f(x0 − Ix1)) ∈ CI and
β(x0, x1) = I 1

2 (f(x0 − Ix1) − f(x0 + Ix1)) ∈ CI for any I ∈ S. Consequently, α(x0, x1) and β(x0, x1)
are real and (i) holds true.

Let g ∈ML(U) and let x = x0 + Ix1 ∈ U . Since I and fI(x) lie in CI , they commute and we obtain

∂̄IfI(x)gI(x) =
1

2

(
∂

∂x0
[fI(x)gI(x)] + I

∂

∂x1
[fI(x)gI(x)]

)
=

=
1

2

((
∂

∂x0
fI(x)

)
gI(x) + fI(x)

∂

∂x0
gI(x) +

(
I
∂

∂x1
fI(x)

)
gI(x) + fI(x)I

∂

∂x0
gI(x)

)
=

= (∂̄IfI)(x)gI(x) + fI(x)(∂̄IgI)(x) = 0.

To show (iii), we consider g ∈ ML(O), an arbitrary point x = x0 + Ix1 ∈ U and J ∈ S with I ⊥ J .
By applying Lemma 3.5, the Splitting Lemma, we obtain holomorphic functions f1, f2 : U ∩ CI → CI
and g1, g2 : f(U) ∩ CI → CI such that fI = f1 + f2J and gI = g1 + g2J . The fact that f(U ∩ CI) ⊂ CI
implies f2 ≡ 0. Hence, fI = f1 and

∂̄I(gI ◦ fI)(x) = ∂̄I(g1 ◦ f1)(x) + ∂̄I(g2 ◦ f1)(x)J.

Since g1, g2 and f1 are holomorphic, the functions g1 ◦ f1 and g2 ◦ f1 are holomorphic, too. Hence,
∂̄I(g1 ◦ f1) = 0 and ∂̄I(g2 ◦ f1) = 0 and, in turn, ∂̄(gI ◦ fI) = 0. Therefore, g ◦ f is left slice regular.

Corollary 3.41. Let U be an axially symmetric slice domain and let f ∈ N (U). Then f(x) = f(x) for
any x ∈ U .

Proof. Let f ∈ N (U) and let us write f(x) = α(x0, x1) + Iβ(x0, x1) according to Corollary 3.22. Then
Corollary 3.40 implies that α and β are real-valued, and hence,

f(x) = α(x0,−x1) + Iβ(x0,−x1) = α(x0, x1)− Iβ(x0, x1) = f(x).
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Note that, although f ∈ N (U) implies that f is left and right slice regular, the converse is not true
as the easy example f(x) = x− a with a ∈ H \ R shows. Obviously, f is left and right slice regular, but
if x and a do not lie in the same complex plane, then f(x) and x do not lie in the same complex plane
either. Nevertheless, any function that is left and right slice regular can be characterized by means of a
function in N (U).

Lemma 3.42. Let U ⊂ H be a slice domain and let f : U → H be left and right slice regular. Then there
exists a constant a ∈ H and a function f̃ ∈ N (U) such that f = a+ f̃ .

Proof. Let I ∈ S and let x = x0 + Ix1 ∈ U ∩ CI . Since ∂̄If(x) = 1
2

(
∂
∂x0

fI(x) + I ∂
∂x1

fI(x)
)

= 0 and

(f∂̄I)(x) = 1
2

(
∂
∂x0

fI(x) + ∂
∂x1

fI(x)I
)

= 0, we have

I
∂

∂x1
f(x) = − ∂

∂x0
f(x) =

∂

∂x1
f(x)I.

Thus, ∂
∂x1

f(x) ∈ CI by Lemma 2.12 and ∂
∂x0

f(x) = −I ∂
∂x1

f(x) ∈ CI , too. Since the imaginary unit I
was arbitrary, the slice derivative ∂sf satisfies ∂sf(U ∩ CI) ⊂ CI for all I ∈ S. Moreover, it is left slice
regular by Corollary 3.30. Thus, ∂sf belongs to N (U).

For c ∈ U ∩ R, set a = f(c) and f̃ = f − a. On a ball Br(c), the function ∂sf allows the power
series representation ∂sf(x) =

∑∞
n=0(x − c)nan with an ∈ R for all n ∈ N0. Since an = 1

n∂
n
s ∂sf(c) by

Corollary 3.33, we obtain

f̃(x) =

∞∑
n=1

xn
1

n!
∂ns f(c) =

∞∑
n=1

xn
1

n!
∂n−1
s ∂sf(c) =

∞∑
n=1

∂sx
n 1

n
an−1

for x ∈ Br(c). Thus, the power series expansion of f̃ at c has real coefficients and hence, by Remark 3.39,
the function f̃ belongs to N (U).

3.4 The slice regular product and Runge’s Theorem

We are now going to generalize Runge’s Theorem to the slice regular setting. In the classical case, it
reads as follows (see Theorem 13.6 in [26]).

Theorem 3.43 (Runge’s Theorem, complex). Let K ⊂ C be a compact set and let A be a set that
contains one point in each connected component of (C∪{∞}) \K. If f is holomorphic on an open set Ω
with K ⊂ Ω, then, for any ε > 0, there exists a rational function r(z) whose poles lie in the set A such
that

sup{|f(z)− r(z)| : z ∈ K} < ε.

As we pointed out before, in general, the pointwise product of two left slice regular functions is not
left slice regular. Therefore, it is not clear how to define a slice regular rational function because the
pointwise quotients p−1(x)q(x) or q(x)p−1(x) of two left slice regular polynomials p(x) and q(x) are not
necessarily slice regular. Indeed, we need a different product to give a meaningful definition of rational
slice regular functions.

We start with an observation. The standard multiplication of polynomials over a skew field

(

N∑
n=0

xnan)(

N∑
n=0

xnbn) :=

N∑
n=0

xn
n∑
k=0

akbn−k,

as it is discussed for instance in [22], extends naturally to power series. If we apply it to the left slice
regular power series

∑∞
n=0 x

nan and
∑∞
n=0 x

nbn with an, bn ∈ H, we define( ∞∑
n=0

xnan

)
·

( ∞∑
n=0

xnbn

)
:=

∞∑
n=0

xn

(
n∑
k=0

akbn−k

)
, (3.20)
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which is again a left slice regular power series. To generalize this product, we express it in terms of the
complex component functions obtained by Lemma 3.5, the Splitting Lemma.

Let I, J ∈ S with J ⊥ I and let p(x) =
∑∞
n=0 x

nan and q(x) =
∑∞
n=0 x

nbn with an, bn ∈ H.
By Corollary 2.10, we can write an = an,1 + an,2J with an,1, an,2 ∈ CI and bn = bn,1 + bn,2J with
bn,1, bn,2 ∈ CI for n ∈ N0. Moreover, if we apply Lemma 3.5, we obtain holomorphic functions p1, p2 and
q1, q2 on CI such that pI(x) = p1(x) + p2(x)J and qI(x) = q1(x) + q2(x)J if x ∈ CI . Since

p1(x) + p2(x)J = pI(x) =

∞∑
n=0

xnan =

∞∑
n=0

xnan,1 +

∞∑
n=0

xnan,2J

and

q1(x) + q2(x)J = qI(x) =

∞∑
n=0

xnbn =

∞∑
n=0

xnbn,1 +

∞∑
n=0

xnbn,2J

and since 1 and J are left linearly independent over CI , the component functions are nothing but the
complex power series p`(x) =

∑∞
n=0 x

nan,` and q`(x) =
∑∞
n=0 x

nbn,` for ` = 1, 2. Therefore, we have

∞∑
n=0

xn
n∑
k=0

akbn−k =

∞∑
n=0

xn
n∑
k=0

(ak,1bn−k,1 + ak,1bn−k,2J + ak,2Jbn−k,1 + ak,2Jbn−k,2J) =

=

∞∑
n=0

xn

(
n∑
k=0

ak,1bn−k,1

)
+

∞∑
n=0

xn

(
n∑
k=0

ak,2Jbn−k,1

)
+

+

∞∑
n=0

xn

(
n∑
k=0

ak,1bn−k,2J

)
+

∞∑
n=0

xn

(
n∑
k=0

ak,2Jbn−k,2J

)
.

Note that x and the coefficients an,1, an,2, bn,1 and bn,2 commute because they lie in the same complex
plane CI . Moreover, for any x ∈ CI , we have Jx = xJ by Corollary 2.11. Hence,

∞∑
n=0

xn
n∑
k=0

akbn−k =

∞∑
n=0

xn

(
n∑
k=0

ak,1bn−k,1

)
−
∞∑
n=0

xn

(
n∑
k=0

ak,2bn−k,2

)
+

+

[ ∞∑
n=0

xn

(
n∑
k=0

ak,1bn−k,2

)
+

∞∑
n=0

xn

(
n∑
k=0

ak,2bn−k,1

)]
J =

=

( ∞∑
n=0

xnan,1

)( ∞∑
n=0

xnbn,1

)
−

( ∞∑
n=0

xnan,2

)( ∞∑
n=0

xnbn,2

)
+

+

[( ∞∑
n=0

xnan,1

)( ∞∑
n=0

xnbn,2

)
+

( ∞∑
n=0

xnak,2

)( ∞∑
n=0

ak,2bn,1

)]
J =

= p1(x)q1(x)− p2(x)q2(x) +
(
p1(x)q2(x) + p2(x)q1(x)

)
J.

Definition 3.44. Let U ⊂ H be an axially symmetric slice domain and let I, J ∈ S with I ⊥ J . Let
f, g : U → H be left slice regular and let f1, f2, g1, g2 : U ∩ CI → CI be the holomorphic functions such
that fI = f1 + f2J and gI = g1 + g2J obtained by Lemma 3.5. Then we define

fI L©gI(x) = f1(x)g1(x)− f2(x)g2(x) +
(
f1(x)g2(x) + f2(x)g1(x)

)
J for all x ∈ U ∩ CI .

This function is left holomorphic on U ∩ CI with values in H. Hence, by Lemma 3.24, we can define

f L©g = extL(fI L©gI)

as the unique left slice regular extension of fI L©gI . The function f L©g is called the left slice regular product
of f and g.
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On the other hand, if f, g : U → H are right slice regular, let f1, f2, g1, g2 : U ∩ CI → CI be the
holomorphic functions such that fI = f1 + Jf2 and gI = g1 + Jg2 obtained by Lemma 3.5. Then we set

fI R©gI(x) = f1(x)g1(x)− f2(x)g2(x) + J
(
f1(x)g2(x) + f2(x)g1(x)

)
for all x ∈ U ∩ CI .

This function is right holomorphic on U ∩ CI with values in H. Hence, by Lemma 3.24, we can define

f R©g = extR(fI R©gI)

as the unique right slice regular extension of fI R©gI . The function f R©g is called the right slice regular
product of f and g.

Note that at the first glance f L©g and f R©g depend on the chosen I, J ∈ S. We will see in Lemma 3.46
that f L©g and f R©g are in fact independent of I and J .

Remark 3.45. By the considerations before Definition 3.44, the slice regular product is consistent with
(3.20). Moreover, if f(U ∩ CI) ⊂ CI , then fI = f1 and f2 = 0. Therefore, if g is left slice regular, we
have

fI L©gI(x) = f1(x)g1(x) + f1(x)g2(x)J = fI(x)gI(x).

In particular, if f ∈ N (U), the product fg is left slice regular by Corollary 3.40 and therefore f L©g =
extL(fIgI) = fg, that is, the slice regular product of f and g is nothing but the their pointwise product.
Similarly, if f ∈MR(U) and g ∈ N (U), then f R©g = fg.

Nevertheless, if f and g are both left and right regular but f, g /∈ N (U), then their left and right
slice regular products do not coincide. Consider for instance the functions f(x) = x+a and g(x) = x+ b
with a, b,∈ H \ R. Then f and g are obviously left and right slice regular but if a + b /∈ R, then there
exists x ∈ H such that (a+ b)x 6= x(a+ b) because of Lemma 2.5. Hence, by (3.20),

f L©g(x) = x2 + x(a+ b) + ab 6= x2 + (a+ b)x+ ab = f R©g(x).

Lemma 3.46. Let U ⊂ H be an axially symmetric slice domain and let f and g be left slice regular
functions on U . Moreover, let α and β resp. γ and δ be functions as in Corollary 3.22, such that
f(x) = α(x0, x1) + Iβ(x0, x1) and g(x) = γ(x0, x1) + Iδ(x0, x1) for all x = x0 + Ix1 ∈ U . Then

f L©g = αγ − βδ + I(αδ + βγ). (3.21)

If on the other hand f and g are right slice regular functions on U and α and β resp. γ and δ are
functions on D as in Corollary 3.22, such that f(x) = α(x0, x1) + β(x0, x1)I and g(x) = γ(x0, x1) +
δ(x0, x1)I for all x = x0 + Ix1 ∈ U . Then

f R©g = αγ − βδ + (αδ + βγ)I.

In particular, the left and the right slice regular product are well defined as they do not depend on the
elements I, J ∈ S.

Proof. We consider again the left slice regular case. First of all note that η = αγ − βδ and µ = αδ + βγ
satisfy

η(x0,−x1) = α(x0,−x1)γ(x0,−x1)− β(x0,−x1)δ(x0,−x1) =

= α(x0, x1)γ(x0, x1)− (−β(x0, x1))(−δ(x0, x1)) = η(x0, x1)

and

µ(x0,−x1) = α(x0,−x1)δ(x0,−x1) + β(x0,−x1)γ(x0,−x1) =

= α(x0, x1)(−δ(x0, x1))− β(x0, x1)γ(x0, x1) = −µ(x0, x1).

Since the functions α and β and the functions γ and δ satisfy the Cauchy-Riemann system (3.9),

∂η

∂x0
=

∂α

∂x0
γ + α

∂γ

∂x0
− ∂β

∂x0
δ − β ∂δ

∂x0
=

∂β

∂x1
γ + α

∂δ

∂x1
+

∂α

∂x1
δ + β

∂γ

∂x1
=

∂µ

∂x1
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and
∂µ

∂x0
=

∂α

∂x0
δ + α

∂δ

∂x0
+

∂β

∂x0
γ + β

∂γ

∂x0
=

∂β

∂x1
δ − α ∂γ

∂x1
− ∂α

∂x1
γ + β

∂δ

∂x1
= − ∂η

∂x1
.

Therefore, by Corollary 3.22, the right-hand side of (3.21), that is, the function

ξ(x) = η(x0, x1) + Iµ(x0, x1)

for x = x0 + Ix1, is a left slice regular function on U .

Let I ∈ S be an arbitrary imaginary unit and let x ∈ U ∩CI . Moreover, let J ∈ S with J ⊥ I and let
f1, f2, g1, g2 : U ∩ CI → CI be holomorphic functions such that fI = f1 + f2J and gI = g1 + g2J . Since
zJ = Jz for any z ∈ CI , we have

fI L©gI(x) = f1(x)g1(x)− f2(x)g2(x) +
(
f1(x)g2(x) + f2(x)g1(x)

)
J

= f1(x)g1(x) + f2(x)Jg2(x)J + f1(x)g2(x)J + f2(x)Jg1(x).

By adding and subtracting the terms 1
2f1(x)g1(x) and 1

2f1(x)g2(x)J and the terms 1
2f2(x)Jg1(x) and

1
2f2(x)Jg2(x)J , we obtain

fI L©gI(x) =
1

2
f1(x)g1(x) +

1

2
f1(x)g2(x)J +

1

2
f2(x)Jg1(x) +

1

2
f2(x)Jg2(x)J+

+
1

2
f1(x)g1(x) +

1

2
f1(x)g2(x)J +

1

2
f2(x)Jg2(x)J +

1

2
f2(x)Jg1(x)+

− 1

2
f1(x)g1(x)− 1

2
f1(x)g2(x)J +

1

2
f2(x)Jg2(x)J +

1

2
f2(x)Jg1(x)−

+
1

2
f1(x)g1(x) +

1

2
f1(x)g2(x)J − 1

2
f2(x)Jg1(x)− 1

2
f2(x)Jg2(x)J.

If we group the terms in each line, we get

fI L©gI(x) =
1

2

(
f1(x) + f2(x)J

)(
g1(x) + g2(x)J

)
+

+
1

2

(
f1(x) + f2(x)J

)(
g1(x) + g2(x)J

)
+

+
1

2

(
− f1(x) + f2(x)J

)(
g1(x) + g2(x)J

)
+

+
1

2

(
f1(x)− f2(x)J

)(
g1(x) + g2(x)J

)
=

=f(x)
1

2

(
g(x) + g(x)

)
+
(
− f1(x) + f2(x)J

)1

2

(
g(x)− g(x)

)
Due to (3.6), we have f(x) = α(x0, x1) + Iβ(x0, x1), γ(x0, x1) = 1

2

(
g(x) + g(x)

)
and δ(x0, x1) =

1
2I
(
g(x)− g(x)

)
. Hence,

fI L©gI(x) = f(x)γ(x0, x1) + (f1(x)− f2(x)J)Iδ(x0, x1) =

= f(x)γ(x0, x1) + I(f1(x) + f2(x)J)δ(x0, x1) =

= f(x)γ(x0, x1) + If(x)δ(x0, x1) =

= α(x0, x1)γ(x0, x1)− β(x0, x1)δ(x0, x1) + I
(
β(x0, x1)γ(x0, x1) + α(x0, x1)δ(x0, x1)

)
.

Therefore, ξI = fI L©gI and, since the left slice regular extension is unique, we obtain ξ = f L©g. Moreover,
as the imaginary unit I was arbitrary and α, β, γ and δ do not depend on I by Theorem 3.21, the slice
regular product is independent of the imaginary units I and J used in its definition.

Corollary 3.47. The left and the right slice regular product are associative and distributive over the
pointwise addition.
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Proof. Let f = α + Iβ, let g = γ + Iδ and h = η + Iµ be left slice regular functions on an axially
symmetric slice domain U . Then

f L©(g + h) = α(γ + η)− β(δ + µ) + I(α(δ + µ) + β(γ + η)) =

= αγ − βδ + I(αδ + βγ) + αη − βµ+ I(αµ+ βη) = f L©g + f L©h

and

(f + g) L©h = (α+ γ)η − (β + δ)µ+ I((α+ γ)µ+ (β + δ)η) =

= αη − βµ+ I(αµ+ βη) + γη − δµ+ I(γµ+ δη) = f L©g + f L©h.

Furthermore, we have

(f L©g) L©h = (αγ − βδ + I(αδ + βγ) L©h =

= αγη − βδη − αδµ− βγµ+ I(αγµ− βδµ+ αδη + βγη) =

= f L©(γη − δµ+ I(γµ+ δη) = f L©(g L©h).

Note that in general the left and the right slice regular product are not commutative—except if one
of the functions belongs to N (U).

Corollary 3.48. Let U ⊂ H be an axially symmetric slice domain and let f ∈ N (U) and g ∈ ML(U).
Then

fg = f L©g = g L©f.

Similarly, if f ∈MR(U) and g ∈ N (U), then

fg = f R©g = g R©f.

Proof. Let f ∈ N (U) and g ∈ ML(U). By Remark 3.45, fg = f L©g. For c ∈ U ∩ R, let f(x) =∑∞
n=0(x − c)nan and g(x) =

∑∞
n=0(x − c)nbn be the power series representation of f and g on a ball

Br(c) centered at c. Then an ∈ R because of f ∈ N (U). By the considerations before Definition 3.44,
we obtain

f L©g(x) =

∞∑
n=0

xn
n∑
k=0

akbn−k =

∞∑
n=0

xn
n∑
k=0

bn−kak = g L©f(x)

for any x ∈ Br(c). By Theorem 3.8, the Identity Principle, we obtain f L©g = g L©f .

The slice regular product is the proper tool to define slice regular rational functions and to prove
Runge’s Theorem in a slice regular setting.

Definition 3.49. Let U ⊂ H be an axially symmetric slice domain and let f = α+ Iβ : U → H be a left
slice regular function as in Corollary 3.22. We call the function

f c = α+ Iβ

the left slice regular conjugate of f and the function f c L©f the symmetrization of f .
If f = α+ βI : U → H is right slice regular, then the function

f c = α+ βI

is called the right slice regular conjugate of f and the function f R©f c is called the symmetrization of f .

Remark 3.50. Let f = α+ Iβ : U → H be left slice regular. Then we have

α(x0,−x1) = α(x0, x1) and β(x0,−x1) = −β(x0, x1) = −β(x0, x1).

Moreover, we have

∂

∂x0
α(x0, x1) =

∂

∂x0
α(x0, x1) =

∂

∂x1
β(x0, x1) =

∂

∂x1
β(x0, x1)
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and
∂

∂x1
α(x0, x1) =

∂

∂x1
α(x0, x1) = − ∂

∂x0
β(x0, x1) = − ∂

∂x0
β(x0, x1).

Hence, according to Corollary 3.22, the function f c is actually left slice regular.

Remark 3.51. Let again f = α + Iβ : U → H be left slice regular and let x = x0 + Ix1 ∈ U . Since
α(x0, x1) = 1

2 (f(x) + f(x)) and β(x0, x1) = 1
2I (f(x)− f(x)), we have

f c(x) =
1

2
(f(x) + f(x)) + I

1

2
I (f(x)− f(x)) =

1

2

(
f(x) + f(x)− If(x)I + If(x)I

)
.

If we choose J ∈ S with J ⊥ I and apply Lemma 3.5, the Splitting Lemma, to obtain holomorphic
functions f1, f2 : U ∩ CI → CI such that fI = f1 + f2J , then we have f2(z)J = J f2(z) = −f2(z)J for
z ∈ U ∩ CI . Hence,

f c(x) =
1

2

(
f1(x)− f2(x)J + f1(x)− f2(x)J − If1(x)I + If2(x)JI + If1(x)I − If2(x)JI

)
=

=
1

2

(
f1(x)− f2(x)J + f1(x)− f2(x)J + f1(x) + f2(x)J − f1(x)− f2(x)J

)
.

Therefore,
f c(x) = f1(x)− f2(x)J, (3.22)

and in turn

fs(x) = f c L©f(x) = f1(x)f1(x) + f2(x)f2(x) +
(
f1(x)f2(x)− f2(x)f1(x)

)
J.

But since f1 and f2 both have their values in the complex plane CI , they commute and we obtain

fs(x) = f1(x)f1(x) + f2(x)f2(x). (3.23)

Furthermore, we also have

f L©f c(x) = f1(x)f1(x) + f2(x)f2(x) + (−f1(x)f2(x) + f2(x)f1(x))J = f1(x)f1(x) + f2(x)f2(x).

Consequently,
fs(x) = f c L©f = f L©f c. (3.24)

Corollary 3.52. Let c ∈ R and let f(x) =
∑∞
n=0(x− c)nan be left slice regular power series centered at

c that converges on Br(c). Then f c(x) =
∑∞
n=0(x− c)nan for any x ∈ Br(c).

Similarly, if f(x) =
∑∞
n=0 an(x− c)n is a right slice regular power series centered at c that converges

on Br(c), then f c(x) =
∑∞
n=0 an(x− c)n for any x ∈ Br(c).

Proof. Let f =
∑∞
n=0(x − c)nan be a left slice regular power series centered at c and let I, J ∈ S with

I ⊥ J . Then, for each coefficient an, there exist an,1, an,2 ∈ CI such that an = an,1 + an,2J . Moreover,
f1(x) =

∑∞
n=0(x − c)nan,1 and f2(x) =

∑∞
n=0(x − c)nan,2 for any x ∈ Br(c) ∩ CI , where f1 and f2 are

the holomorphic component functions obtained by Lemma 3.5, the Splitting Lemma. By Corollary 2.11,
we have an,2J = Jan,2 = −an,2J . Hence, because of (3.22), we obtain

f c(x) = f1(x)− f2(x)J =

∞∑
n=0

(x− c)nan,1 −
∞∑
n=0

(x− c)nan,2J =

=

∞∑
n=0

(x− c)nan,1 +

∞∑
n=0

(x− c)nan,2J =

∞∑
n=0

(x− c)nan

for any x ∈ CI . Since I was arbitrary, the statement is verfied.

Corollary 3.53. Let U ⊂ H be an axially symmetric slice domain and let f be a left or right slice regular
function on U . Then fs ∈ N (U).
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Proof. Let f be left slice regular and let us write it in the form f = α+ Iβ, according to Corollary 3.22.
Then

f c L©f = αα− ββ + I(αβ + βα) = |α|2 − |β|2 + I(αβ + αβ).

But |α|2 − |β|2 and 2Re(αβ) = αβ + αβ are obviously real. Hence, f(U ∩ CI) ⊂ CI for any I ∈ S.

Definition 3.54. A zero x of f is called isolated, if there exists ε > 0 such that the ball Bε(x) contains
no other zero of f . A two-sphere [x] of zeros is called isolated, if there exists ε > 0 such that [Bε(x)]\ [x]
contains no zero of f , where [Bε(x)] is the axially symmetric hull of Bε(x), cf. Example 3.15.

Theorem 3.55. Let U ⊂ H be an axially symmetric slice domain and let f : U → H be a left or right
slice regular function.

(i) If f(x) = 0, then fs(x) = 0. Moreover, fs vanishes identically if and only if f vanishes identically.

(ii) Let fs 6≡ 0. If the set of zeros of fs is nonempty, it consists of the union of isolated 2-spheres of
the form [x] = {x0 + Ix1 : I ∈ S}.

(iii) Let f 6≡ 0. If the set of zeros of f is nonempty, it consists of the union of isolated 2-spheres of the
form [x] and of isolated points.

Proof. Let f be left slice regular and let us write it in the form f = α+ Iβ according to Corollary 3.22.
Assume that

f(x) = α(x0, x1) + Iβ(x0, x1) = 0

for some x = x0 + Ix1 ∈ U . If β(x0, x1) = 0, then α(x0, x1) = 0, which implies that f(x̃) =
α(x0, x1) + Ĩβ(x0, x1) = 0 for any x̃ = x0 + Ĩx1 ∈ [x]. If on the other hand β(x0, x1) 6= 0, then
α(x0, x1) 6= 0 and therefore I = −α(x0, x1)β(x0, x1)−1. Recall from Theorem 3.21 that α and β do
not depend on the imaginary unit I. Hence, x = x0 + Ix1 is the unique solution of f(x) = 0 in the
2-sphere [x]. Therefore, if f(x) = 0, then either f(x̃) = 0 for any x̃ ∈ [x] or f(x̃) 6= 0 for all x̃ ∈ [x] \ {x}.

As we have seen in the proof of Corollary 3.53, fs = αs+Iβs, where αs = |α|2−|β|2 and βs = αβ + αβ
are real-valued. Therefore, fs(x) = 0 implies αs(x0, x1) = 0 and βs(x0, x1) = 0. Consequently, the set
of zeros of fs consists of 2-spheres of the form [x]. Moreover, if f(x) = 0 then either α(x0, x1) =
β(x0, x1) = 0, which implies αs(x0, x1) = βs(x0, x1) = 0 and therefore also fs(x0, x1) = 0, or α(x0, x1) =
−Iβ(x0, x1). But in this second case we have

αs(x0, x1) = |α(x0, x1)|2 − |β(x0, x1)|2 = | − Iβ(x0, x1)|2 − |β(x0, x1)|2 = 0

and

βs(x0, x1) = α(x0, x1)β(x0, x1) + β(x0, x1)α(x0, x1) = β(x0, x1)Iβ(x0, x1)− β(x0, x1)Iβ(x0, x1) = 0,

because αs(x0, x1) = βs(x0, x1) (−I) = βs(x0, x1)I. Thus, f(x) = 0 always implies fs(x) = 0.
Let us assume that fs ≡ 0. Let I, J ∈ S with I ⊥ J and let f1, f2 : U ∩CI → CI be the holomorphic

functions such that fI = f1 + f2J obtained by Lemma 3.5, the Splitting Lemma. As U is a slice domain,
there exists a point c ∈ U ∩ R. By Corollary 3.18, f allows a power series representation of the form
f(x) =

∑∞
n=0(x − c)nan on a ball Br(c). Moreover, by Corollary 2.10, there exist an,1, an,2 ∈ CI such

that an = an,1 + an,2J for each n ∈ N0. For any x ∈ Br(c)∩CI , we have f1(x) =
∑∞
n=0(x− c)nan,1 and

f2(x) =
∑∞
n=0(x− c)nan,2. According to (3.23),

fs(x) = f1(x)f1(x) + f2(x)f2(x) =

=

∞∑
n=0

(x− c)nan,1
∞∑
n=0

(x− c)nan,1 +

∞∑
n=0

(x− c)nan,2
∞∑
n=0

(x− c)nan,2 =

=

∞∑
n=0

(x− c)nan,1
∞∑
n=0

(x− c)nan,1 +

∞∑
n=0

(x− c)nan,2
∞∑
n=0

(x− c)nan,2 =

=

∞∑
n=0

(x− c)n
n∑
k=0

(ak,1 an−k,1 + ak,2 an−k,2) .
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If we set cn =
∑n
k=0 (ak,1 an−k,1 + ak,2 an−k,2) = 0, then fs ≡ 0 yields cn = 0 for all n ∈ N0. For n = 0,

c0 = a0,1 a0,1 +a0,2 a0,2 = |a0,1|2 + |a0,2|2 = 0 yields a0 = 0. Assume, that ak = 0 for all k = 0, . . . , n−1.
Then we have

0 = c2n =

2n∑
k=0

(ak,1 a2n−k,1 + ak,2 a2n−k,2) = an,1an,1 + an,2an,2 = |an|2,

because ak,1 = ak,2 = 0 for k = 0, . . . , n− 1 and a2n−k,1 = a2n−k,2 = 0 for k = n+ 1, . . . , 2n. Thus, we
obtain an = 0 for all n ∈ N0. But f ≡ 0 on Br(c) yields f ≡ 0 by Theorem 3.8, the Identity Principle.
Therefore, (i) holds true.

We have already seen, that the set of zeros of fs is the union of 2-spheres of the form [x]. To prove
that they are isolated, we assume the converse. As [Bε(x)] = Bε([x]) (see Example 3.15), there exists a
sequence xn = xn,0 + Inxn,1, n ∈ N with dist(xn, [x]) = inf{|x̃− xn| : x̃ ∈ [x]} → 0 as n→∞ such that
f(xn) = 0 for all n ∈ N. But this implies fs(xn,0 + Ixn,1) = 0 for any I ∈ S and any n ∈ N. Thus, in
each complex plane CI , we can find an accumulation point of zeros of fs. Hence, fs ≡ 0 by Theorem
3.8, the Identity Principle. Therefore, (ii) holds true.

Finally, we show (iii). We have already seen that f(x) = 0 implies either f(x̃) = 0 for all x̃ ∈ [x]
or f(x̃) 6= 0 for all x̃ ∈ [x] \ {x}. Assume that x is the only zero of f in [x] and that it is not isolated.
Then there exists a sequence xn ∈ U \ [x], n ∈ N of zeros of f with limn→∞ xn = x. But [x] and [xn] are
2-spheres of zeros of fs and [x] is not isolated. Hence, fs ≡ 0 by (ii), which implies f ≡ 0 by (i).

If on the other hand [x] is a 2-sphere of zeros of f and it is not isolated, there exists a sequence
(xn)n∈N of zeros f with dist(xn, [x]) = inf{|x̃ − xn| : x̃ ∈ [x]} → 0 as n → ∞. Then [x] and [xn] are
again 2-spheres of zeros of fs and [x] is not isolated. Hence, fs ≡ 0 by (ii), which implies f ≡ 0 by (i).

Thus, if f 6≡ 0, then its zero set consists of isolated points and isolated 2-spheres.

Lemma 3.56. Let U ⊂ H be an axially symmetric slice domain and let f : U → H with f 6≡ 0 be left
or right slice regular. If we set Zfs = {x ∈ U : fs(x) = 0}, then the function x 7→ fs(x)−1 belongs to
N (U \Zfs).

Proof. Let f ∈ ML(U), let I, J ∈ S with I ⊥ J and let fs1 , f
s
2 : U ∩ CI → CI be the holomorphic

functions obtained by the Splitting Lemma, Lemma 3.5, such that fsI = fs1 + fs2J . By Corollary 3.53,
we have fs(U ∩ CI) ⊂ CI for I ∈ S, which implies fs2 ≡ 0. Therefore, fsI (x) = fs1 (x) is holomorphic
on U ∩ CI . Moreover, because of (ii) in Theorem 3.55, the zero set of fsI , that is, the set Zfs ∩ CI =
{x ∈ U ∩ CI : fsI (x) = 0}, consists of isolated points. Therefore, the function 1

fs
I

is holomorphic on

(U \Zfs) ∩ CI . Hence,

∂̄If
s
I (x)−1 =

1

2

(
∂

∂x0

1

fsI (x)
+ I

∂

∂x1

1

fsI (x)

)
= 0

for all x ∈ (U \ Zfs) ∩ CI . Moreover, fs(U ∩ CI) ⊂ CI implies fs((U \ Zfs) ∩ CI)−1 ⊂ CI .
Since I was arbitrary, x 7→ fs(x)−1 belongs to N (U \Zfs).

Definition 3.57. Let U ⊂ H be an axially symmetric slice domain. For any function f : U → H, we
define Zfs = {x ∈ U : fs(x) = 0}. If f is left slice regular, then the function

f− L© = (fs)−1f c,

which is defined on U\Zfs , is called the left slice regular inverse of f . If f is right slice regular, then the
function

f− R© = f c(fs)−1,

which is defined on U \Zfs , is called the right slice regular inverse of f .

Remark 3.58. Let f ∈ N (U). Then f(x) = f(x) for x ∈ U by Corollary 3.41. Moreover, if
we apply Lemma 3.5, the Splitting Lemma, and write fI = f1 + f2J with holomorphic functions
f1, f2 : U ∩ CI → CI , then we have f1(x) = fI(x) = f(x) and f2(x) = 0 for any x ∈ U ∩ CI . From
(3.22) and (3.23), we get

f c(x) = f1(x)− f2(x)J = f(x) and fs(x) = f1(x)f1(x) + f2(x)f2(x) = f(x)2.
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Hence,
f− L©(x) = f(x)−2f(x) = f(x)−1.

Similarly, we obtain f− R©(x) = f(x)−1.

Corollary 3.59. Let U ⊂ H be an axially symmetric slice domain and let f be a left slice regular function
on U . Then

f− L©
L©f = f L©f− L© = 1 on U \ Zfs .

Similarly, if f is a right slice regular function on U , then

f− R©
R©f = f R©f− R© = 1 on U \ Zfs .

Proof. Since (fs)−1 ∈ N (U \ Zfs), Corollary 3.47, Corollary 3.48 and (3.24) imply

f− L©
L©f =

(
(fs)−1f c

)
L©f =

(
(fs)−1

L©f c
)

L©f = (fs)−1
L© (f c L©f) = (f c L©f)−1(f c L©f) = 1

and
f L©f− L© = f L©

(
(fs)−1f c

)
= f L©

(
f c L©(fs)−1

)
= (f L©f c) L©(fs)−1 = (f c L©f)(f c L©f)−1 = 1.

Example 3.60. Let a ∈ H and let us consider f(x) = x + a as a left slice regular function. If we
write f = α + Iβ according to Corollary 3.22, we have α(x0, x1) = 1

2 (f(x) + f(x)) = x0 + a and
β(x0, x1) = I 1

2 (f(x)− f(x)) = x1 for x = x0 + Ix1. Hence,

f c(x) = α(x0, x1) + Iβ(x0, x1) = x+ a

and

fs(x) = f c(x) L©f(x) =

= α(x0, x1)α(x0, x1)− β(x0, x1)β(x0, x1) + I(α(x0, x1)β(x0, x1) + β(x0, x1)α(x0, x1)) =

= (a+ x0)(a+ x0)− x2
1 + I((a+ x0)x1 + x1(a+ x0)) =

= |a|2 + ax0 + x0a+ x2
0 + Iax1 + Ix0x1 + Ix1a+ Ix1x0 =

= |a|2 + 2Re[a](x0 + Ix1) + x2
0 + 2x0x1I − x2

0 = x2 + 2Re[a]x+ |a|2.

and
(x+ a)− L© = (x2 − 2Re[a]x+ |a|2)−1(x+ a).

On the other hand, if we consider f(x) = x+a as a right slice regular function and if we write f = α+βI
according to Corollary 3.22, then we obtain again α(x0, x1) = 1

2 (f(x) + f(x)) = x0 + a and β(x0, x1) =
1
2 (f(x)− f(x))I = x1 for x = x0 + Ix1. Thus, as before,

f c(x) = α(x0, x1) + β(x0, x1)I = x+ a

and

fs(x) = f(x) R©f c(x) =

= α(x0, x1)α(x0, x1)− β(x0, x1)β(x0, x1) + (α(x0, x1)β(x0, x1) + β(x0, x1)α(x0, x1))I =

= (a+ x0)(a+ x0)− x2
1 + ((a+ x0)x1 + x1(a+ x0))I =

= |a|2 + x0a+ ax0 + x2
0 + ax1I + x0x1I + x1aI + x1x0I =

= |a|2 + 2Re[a](x0 + Ix1) + x2
0 + 2x0x1I − x2

0 = x2 + 2Re[a]x+ |a|2.

Hence,
(x+ a)− R© = (x+ a)(x2 − 2Re[a]x+ |a|2)−1.

In particular, we see (x+ a)− L© 6= (x+ a)− R© if a /∈ R. Hence, the left and the right slice regular inverse
of a function that is left and right slice regular on an axially symmetric slice domain U but does not
belong to N (U) do not coincide in general.
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Definition 3.61. A left slice regular function f is called left rational if there exist two left slice regular
polynomials p and q such that f = q− L©

L©p.
A right slice regular function f is called right rational if there exist two right slice regular polynomials

p and q such that f = p R©q− R©.
A left rational function defined on an axially symmetric slice domain U is called real rational if it

satisfies f(U ∩ CI) ⊂ CI for all I ∈ S.

Theorem 3.62. Let U ⊂ H be a slice domain. A left slice regular function f : U → H is left rational
if and only if there exist I, J ∈ S with I ⊥ J and rational functions r1, r2 : U ∩ CI → CI such that
fI = r1 + r2J . In this case, the holomorphic component functions obtained by Lemma 3.5, the Splitting
Lemma, are rational functions on CI for any I, J ∈ S.

A right slice regular function f : U → H is right rational if and only if there exist I, J ∈ S with
I ⊥ J and rational functions r1, r2 : U ∩CI → CI such that fI = r1 +Jr2. In this case, the holomorphic
component functions obtained by Lemma 3.5, the Splitting Lemma, are rational functions on CI for any
I, J ∈ S.

A function f is real rational if and only if there exist two polynomials p and q with real coefficients
such that f(x) = p(x)−1q(x). This is equivalent to the fact that f is left slice regular and that fI is a
rational function with real coefficients on CI for one (and therefore for any) imaginary unit I ∈ S.

Proof. Let f be left rational. Then there exist left slice regular polynomials p(x) =
∑N
x=0 x

nan and

q(x) =
∑M
n=0 x

nbn, such that f = q− L©
L©p = (qs)−1qc L©p = (qs)−1(qc L©p). For I, J ∈ S with I ⊥ J ,

there exist an,1, an,2 ∈ CI such that an = an,1 + an,2J for n = 0, . . . , N , and bn,1, bn,2 ∈ CI such that
bn = bn,1 + bn,2J for n = 0, . . . ,M . Moreover, the holomorphic component functions of p and q obtained

by Lemma 3.5, the Splitting Lemma, satisfy p`(x) =
∑N
n=0 x

nan,` and q`(x) =
∑M
n=0 x

nbn,` for ` = 1, 2.
Thus, they are complex polynomials on CI .

Because of (3.23), we have
qsI(x) = q1(x)q1(x) + q2(x)q2(x).

Hence, qs(x) is a complex polynomial on CI , too. Moreover, qcI(x) =
∑M
n=0 x

n an,1−
∑M
n=0 x

n an,2J , and
therefore, its holomorphic component functions

qc1(x) =

M∑
n=0

xn an,1 and qc2(x) =

M∑
n=0

xn(−an,2)

are also complex polynomials on CI . Thus, for x ∈ U ∩ CI , we obtain

fI(x) = (qsI(x))−1(qcI(x) L©pI(x)) =
qc1(x)p1(x)− qc2(x) p2(x)

qsI(x)
+
qc1(x)p2(x) + qc2(x) p1(x)

qsI(x)
J,

with rational component functions

f1(x) =
qc1(x)p1(x)− qc2(x) p2(x)

qsI(x)
and f2(x) =

qc1(x)p2(x) + qc2(x) p1(x)

qsI(x)
.

Since I, J ∈ S were arbitrary, the holomorphic component functions obtained by Lemma 3.5, the Splitting
Lemma, are rational functions for any I, J ∈ S with I ⊥ J .

Conversely, assume that fI(z) = a(z)
b(z) + c(z)

d(z)J , where a, b, c and d are complex polynomials on CI .
Then

fI =
a

b
+
c

d
J =

1

bd
(da+ bcJ) =

1

bd(bd)c
(bd)c(da+ bcJ),

where (bd)c(x) = bd(x). Since bd has values in CI ,

fI =
1

bd L©(bd)c
L©(bd)c L©(da+ bcJ)

by Remark 3.45. Hence,

f =
(
extL(bd) L©extL(bd)c

)−1
L©extL

(
(bd)c

)
L©extL(da+ bcJ).
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If we define p = extL(da + bcJ) and q = extL (bd), then p and q are left slice regular polynomials and
qc = ext ((bd)c). Thus, we obtain

f = (q L©qc)−1
L©qc L©p = q− L©

L©p.

Finally, we consider the case of a real rational function. Let f be left slice regular and let I ∈ S. If
fI(x) = qI(x)/pI(x) is a rational function, where pI and qI are polynomials with real coefficients on CI ,
then their left slice regular extension p = extL(pI) and p = extL(qI) are polynomials with real coefficients
on H. In particular, they belong to N (H). Therefore, p−1 = p− L© is left slice regular by Remark 3.58. It
even belongs to N (H \ Zp), where Zp denotes the zero set of p, because x ∈ CI implies p(x) ∈ CI and,
in turn, p(x)−1 ∈ CI . Hence, the pointwise product of p−1 and q is left slice regular by Corollary 3.40.
Since the slice regular extension is unique by Lemma 3.24, we obtain f = extL(fI) = extL(p−1

I qI) = p−1q.
If on the other hand f(x) = p(x)−1q(x), where p and q are polynomials with real coefficients then

x ∈ CI implies p(x), q(x) ∈ CI and, in turn, also f(x) = p(x)−1q(x) ∈ CI . For any I ∈ S, the functions
pI and qI are polynomials with real coefficients on CI . Hence, fI(x) = pI(x)−1qI(x) = qI(x)/pI(x) is
a rational function on CI with real coefficients. Consequently, fI is holomorphic for any I ∈ S and f
is left slice regular. Since x ∈ CI implies p(x) ∈ CI , we have f(x) = p(x)−1q(x) = p(x)− L©

L©q(x) by
Remark 3.45 and Remark 3.58. Hence, f is real rational.

Finally, if f = q− L©
L©p is a real rational function, then let I, J ∈ S with I ⊥ J . Since f is left rational,

we have fI = r1 + r2J where r1 and r2 are rational functions on CI . But x ∈ CI implies fI(x) ∈ CI .
Hence, r2 ≡ 0 and fI = r1 is a rational function on CI . Since it satisfies fI(x) = fI(x) by Corollary 3.41,
its coefficients are real.

Definition 3.63. Let I ∈ S and let r = r1 + r2J , where r1 and r2 are rational functions on CI . We call
x ∈ CI ∪ {∞} a pole of r, if x is a pole of r1 or r2.

Theorem 3.64 (Runge’s Theorem). Let K ⊂ H be an axially symmetric compact set and let A be an
axially symmetric set such that A∩C 6= ∅ for any connected component C of (H∪ {∞}) \K. If f is left
slice regular on an axially symmetric slice domain U with K ⊂ U , then, for any ε > 0, there exists a left
rational function r such that the poles of rI lie in A ∩ (CI ∪ {∞}) for any I ∈ S and such that

sup{|f(x)− r(x)| : x ∈ K} < ε. (3.25)

Similarly, if f is right slice regular on an axially symmetric slice domain U with K ⊂ U , then, for
any ε > 0, there exists a right rational function r such that the poles of rI lie in A∩ (CI ∪ {∞}) for any
I ∈ S and such that (3.25) holds true.

Finally, if f ∈ N (U) for some axially symmetric slice domain U with K ⊂ U , then, for any ε > 0,
there exists a real rational function r such that the poles of rI lie in A ∩ (CI ∪ {∞}) for any I ∈ S and
such that (3.25) holds true.

Proof. Let f ∈ ML(U) where U is an axially symmetric slice domain with K ⊂ U , let ε > 0 and let
I, J ∈ S with I ⊥ J . By applying Lemma 3.5, the Splitting Lemma, we obtain holomorphic functions
f1, f2 : U ∩ CI → CI such that fI = f1 + f2J . The complex Runge’s Theorem implies the existence of
two rational functions r1 and r2 with poles in A ∩ (CI ∪ {∞}) such that

sup{|f1(z)− r1(z)| : z ∈ K ∩ CI} <
ε

4
and sup{|f2(z)− r2(z)| : z ∈ K ∩ CI} <

ε

4
.

We set P = {x ∈ CI : x or x is a pole of r1 or r2} and apply Lemma 3.24 to define the function r =
extL(r1 + r2J) on the axially symmetric slice domain [CI \ P] = H \ [P], where [ · ] denotes the axially
symmetric hull as in Definiton 3.13. By Theorem 3.62, r is left rational. For any I ∈ S, the restriction
rI of r to the complex plane CI is left holomorphic on CI \ [P]. Therefore, any pole of rI that lies in CI

belongs to CI ∩ [P]. Since A is axially symmetric, this is a subset of CI ∩A because P ⊂ A∩CI implies
[P] ⊂ [A∩CI ] = A. Moreover, if∞ /∈ A, then∞ is no pole of rI and the limit a = lim|z|→∞ rI(z) exists.
If we set xI = x0 + Ix1 for x = x0 + Ix1 ∈ CI, the Representation Formula, Theorem 3.21, implies

lim
|x|→∞

rI(x) =
1

2
(1− II) lim

|x|→∞
rI(xI) +

1

2
(1 + II) lim

|x|→∞
rI(xI) =

1

2
(1− II)a+

1

2
(1 + II)a = a.
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Hence, ∞ is no pole of rI if ∞ /∈ A, and in turn, the poles of rI belong to A∩ (CI ∪{∞}) for any I ∈ S.
Moreover, for x ∈ K ∩ CI , we have

|fI(x)− rI(x)| = |f1(x) + f2(x)J − r1(x)− r2(x)J | ≤ |f1(x)− r1(x)|+ |f2(x)− r2(x)| < ε

2
.

For x = x0 + Ixx1 ∈ K, we set again xI = x0 + Ixx1. Since K is axially symmetric xI and xI belong to
K. From the Representation Formula, Theorem 3.21, we deduce

|f(x)− r(x)| = 1

2
|(1− IxI)fI(xI) + (1 + IxI)fI(xI)− (1− IxI)rI(xI)− (1 + IxI)rI(xI)| ≤

≤ 1

2
|(1− IxI)fI(xI)− (1− IxI)rI(xI)|+

1

2
|(1 + IxI)fI(xI)− (1 + IxI)rI(xI)| ≤

≤ |fI(xI)− rI(xI)|+ |fI(xI)− rI(xI)| < ε.

The case f ∈MR(U) works analogously.
If f ∈ N (U), then the holomorphic component functions obtained by Lemma 3.5, the Splitting

Lemma, satisfy f1 = fI and f2 = 0. Hence, we can choose r2 = 0 when we approximate f1 and f2

by rational functions r1 and r2 on CI , whose poles belong to A ∩ (CI ∪ {∞}). The function R1(z) =
1
2 (r1(z)+r1(z)) is a rational function on CI , whose poles are contained in the set {x, x : x is a pole of r1}.
Since A ∩ (CI ∪ {∞}) is symmetric with respect to the real line, this is a subset of A ∩ (CI ∪ {∞}).
Moreover, R1 has real coefficients because R1(z) = R1(z), and hence, by Theorem 3.62, the function
R = extL(R1) is real rational. Lemma 3.41 implies f(x) = f(x), and in turn,

|fI(x)−R1(x)| = 1

2
|f1(x) + f1(x)− r1(x)− r1(x)| ≤ 1

2
|f(x)− r1(x)|+ 1

2
|f(x)− r1(x)| < ε

2

for x ∈ K ∩ CI . Thus, as before, we see that the poles of RI belong to A ∩ (CI ∪ {∞}) for any I ∈ S
and that the Representation Formula, Theorem 3.21, implies |f(x)−R(x)| < ε for any x ∈ K.

3.5 The Cauchy formula

We develop now the analogue of the Cauchy integral formula in the slice regular setting. If we consider
the classical Cauchy formula

f(z) =
1

2πi

∮
∂Br(w)

f(ζ)

z − ζ
dξ for z ∈ Br(w),

and try to generalize it to the quaternionic situation, we find that the quaternionic function x 7→ (x−ζ)−1

for x ∈ H\{0} and fixed ζ ∈ H is in general neither left nor right slice regular. In fact, for a differentiable
function f : U ⊂ H → H and a point x ∈ U with f(x) 6= 0, the directional derivative of f−1 at x along
v ∈ H is

∂

∂v
f−1(x) = lim

h→0
h∈R

1

h
(f−1(x+ hv)− f−1(x)) =

= lim
h→0
h∈R

f−1(x+ hv)
1

h

(
f(x)− f(x+ hv)

)
f−1(x) = −f−1(x)

(
∂

∂v
f(x)

)
f−1(x),

(3.26)

because the quaternionic multiplication is not commutative. Therefore, if x = x0 + Ix1 and ξ /∈ CI , then
ξ and I do not commute by Corollary 2.12. Hence, we obtain

∂̄I
1

x− ξ
=

1

2

(
∂

∂x0

1

x− ξ
+ I

∂

∂x1

1

x− ξ

)
=

1

2

(
−(x− ξ)−2 − I(x− ξ)−1I(x− ξ)−1

)
6= 0

and

1

x− ξ
∂̄I =

1

2

(
∂

∂x0

1

x− ξ
+

∂

∂x1

1

x− ξ
I

)
=

1

2

(
−(x− ξ)−2 − (x− ξ)−1I(x− ξ)−1I

)
6= 0.
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We will choose a different starting point for developing the Cauchy formula for slice regular functions.
Recall that the complex Cauchy kernel allows the power series representation

1

z − ζ
=

∞∑
n=0

ζnz−n−1 (3.27)

for |z| > |ζ| as we have seen in (1.2). In the classical case, this property of the complex Cauchy
kernel was crucial when we showed in (1.4) that the Riesz–Dunford functional calculus is consistent with
polynomials. This motivates the following definition.

Definition 3.65. Let x, s ∈ H. We call

∞∑
n=0

xns−n−1 and

∞∑
n=0

s−n−1xn

the left and right noncommutative Cauchy kernel series, respectively.

Remark 3.66. From ∣∣xns−n−1
∣∣ =

∣∣s−n−1xn
∣∣ = |x|n |s|−n−1

we get
∞∑
n=0

|xns−n−1| ≤ 1

|s|

∞∑
n=0

(
|x|
|s|

)n
and

∞∑
n=0

∣∣s−n−1xn
∣∣ ≤ 1

|s|

∞∑
n=0

(
|x|
|s|

)n
.

Therefore, the left and the right noncommutative Cauchy kernel series are convergent for |x| < |s|.

Theorem 3.67. On the set {(s, x) ∈ H2 : |x| < |s|}, the functions

SL(s, x) = −(x− s)−1(x2 − 2Re[s]x+ |s|2)

and

SR(s, x) = −(x2 − 2Re[s]x+ |s|2)(x− s)−1

are the multiplicative inverses of the left and right noncommutative Cauchy kernel series, respectively.

Proof. We want to show that

SL(s, x)

∞∑
n=0

xns−n−1 = −(x− s)−1(x2 − 2Re[s]x+ |s|2)

∞∑
n=0

xns−n−1 = 1,

which is equivalent to

(x2 − 2Re[s]x+ |s|2)

∞∑
n=0

xns−n−1 = s− x.

As 2Re[s] = s+ s and |s|2 = ss are real, they commute with x and we get

(x2 − 2Re[s]x+ |s|2)

∞∑
n=0

xns−n−1 =

∞∑
n=0

xn+2s−n−1 −
∞∑
n=0

xn+1(s+ s)s−n−1 +

∞∑
n=0

xnsss−n−1 =

=

∞∑
n=0

xn+2s−n−1 −
∞∑
n=0

xn+1s−n −
∞∑
n=0

xn+1ss−n−1 +

∞∑
n=0

xnss−n =

=

∞∑
n=0

xn+2s−n−1 −
∞∑
n=0

xn+2s−n−1 − x−
∞∑
n=0

xn+1ss−n−1 +

∞∑
n=0

xn+1ss−n−1 + s = s− x.
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Corollary 3.68. Let x, s ∈ H such that |x| < |s|. Then

∞∑
n=0

xns−n−1 = −(x2 − 2Re[s]x+ |s|2)−1(x− s)

and
∞∑
n=0

s−n−1xn = −(x− s)(x2 − 2Re[s]x+ |s|2)−1.

Remark 3.69. Note that the functions defined by the closed forms of the left and right noncommutative
Cauchy kernel series are defined on the set {(s, x) ∈ H2 : x2 − 2Re[s]x + |s|2 6= 0}, which is larger than
the domain of convergence of the Cauchy kernel series. In order to determine this set, we observe that
x2−2Re[s]x+|s|2 depends only on the real part and the absolute value of s. Hence, x2−2Re[s]x+|s|2 = 0
implies x2−2Re[s̃]x+|s̃|2 = 0 for any s̃ ∈ H with Re[s̃] = Re[s] and |s̃| = |s|. Since s̃ satisfies Re[s̃] = Re[s]
and |s̃| = |s| if and only if s̃ ∈ [s], the set Dx of all s ∈ H such that x2 − 2Re[s]x + |s|2 = 0 is axially
symmetric for any x ∈ H.

If x and s lie in the same complex plane CI , they commute and we obtain

x2 − 2Re[s]x+ |s|2 = x2 − (s+ s)x+ ss = (x− s)x− s(x− s) = (x− s)(x− s),

which implies Dx ∩ CI = {x, x} = [x] ∩ CI . Since Dx is axially symmetric, Dx = [x]. Therefore,
x2 − 2Re[s]x+ |s|2 = 0 if and only if s ∈ [x], which is equivalent to x ∈ [s].

Definition 3.70. We call the functions

S−1
L (s, x) = −(x2 − 2Re[s]x+ |s|2)−1(x− s)

and
S−1
R (s, x) = −(x− s)(x2 − 2Re[s]x+ |s|2)−1,

which are defined on the set DS = {(s, x) ∈ H2 : x /∈ [s]} the left and right noncommutative Cauchy
kernel, respectively.

Corollary 3.71. Let (s, x) ∈ DS. Then the equation

−(x2 − 2Re[s]x+ |s|2)−1(x− s) = (s− x)(s2 − 2Re[x]s+ |x|2)−1 (3.28)

holds true, that is,
S−1
L (s, x) = −S−1

R (x, s).

Proof. We have

(x2 − 2Re[s]x+ |s|2)(s− x) = (x2 − xs− xs+ ss)(s− x) =

= x2s− xs2 − xss+ ss2 − x2x+ xsx+ xs x− ssx =

= x(xs− s2 − xx) + s(s2 − sx)− xss+ xsx+ xs x.

But from
xss = x |s|2 = |s|2 x = ssx

and
xsx+ xs x = x2Re[s]x = 2Re[s]xx = 2Re[s] |x|2 = |x|2 s+ s |x|2 = xxs+ s xx,

it follows that

(x2 − 2Re[s]x+ |s|2)(s− x) = x(xs− s2 − xx) + s(s2 − sx)− ssx+ xxs+ s xx =

= x(xs− s2 − xx+ xs) + s(s2 − sx− sx+ xx) =

= x(−s2 + 2Re[x]s− xx) + s(s2 − 2Re[x]s+ xx) =

= −(x− s)(s2 − 2Re[x]s+ |x|2).

If we multiply this equation by (s2−2Re[x]s+ |x|2)−1 from the right and by (x2−2Re[s]x+ |s|2)−1 from
the left, we obtain (3.28).
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Remark 3.72. If we compare Definition 3.70 to the formulas in Example 3.60, then we find that
S−1
L (s, x) and S−1

R (s, x) are nothing but the left and right slice regular inverse of the function x 7→ s−x,
respectively.

Moreover, if x and s are elements of the same complex plane CI , they commute and the left and right
noncommutative Cauchy kernels reduce to the standard Cauchy kernel. In this case, we have

(x2 − Re[s]x+ |s|2)−1 = (x2 − (s+ s)x+ ss)−1 = ((x− s)x− s(x− s))−1 = (x− s)−1(x− s)−1.

Therefore, we get

S−1
L (s, x) = −(x− s)−1(x− s)−1(x− s) = (s− x)−1

and

S−1
R (s, x) = −(x− s)(x− s)−1(x− s)−1 = (s− x)−1.

One could think that the left and the right noncommutative Cauchy kernel can always be simplified.
The next theorem shows that this is not possible.

Theorem 3.73. The left and the right noncommutative Cauchy kernel S−1
L (s, x) and S−1

R (s, x) are
irreducible. In case of the left kernel S−1

L (s, x), this means that, for any s ∈ H \ R, it is impossible to
find a polynomial Ps(x) such that

x2 − 2Re[s]x+ |s|2 = (x− s)Ps(x), (3.29)

which would allow the simplification

S−1
L (s, x) = P−1

s (x)(x− s)−1(x− s) = P−1
s (x).

Proof. Assume that a there exists a polynomial Ps(x) such that (3.29) holds true. Comparing the degree
of the highest power, we see that Ps(x) has to be a monic polynomial of degree one, i.e.,

Ps(x) = x− r (3.30)

with r ∈ H. Then the equation (3.29) turns into

x2 − 2Re[s]x+ |s|2 = (x− s)(x− r)

which gives

x2 − sx− sx+ ss = x2 − sx− xr + sr.

Hence,

−s(x− s) = −(x− s)r.

Solving for r, we finally obtain

r = (x− s)−1s(x− s). (3.31)

If we chonsider x ∈ H that belongs to the same complex plane as s, then x and s commute. Therefore,

r = (x− s)−1s(x− s) = (x− s)−1(x− s)s = s. (3.32)

But, as s /∈ R, there exist elements x ∈ H that do not commute with s, which implies

r = (x− s)−1s(x− s) 6= (x− s)−1(x− s)s = s. (3.33)

Hence, a polynomial Ps(x) satisfying (3.29) cannot exists.

Proposition 3.74. The left noncommutative Cauchy kernel S−1
L (s, x) is left slice regular in the variable

x and right slice regular in the variable s on its domain of definition.
The right noncommutative Cauchy kernel S−1

R (s, x) is right slice regular in the variable x and left
slice regular in the variable s on its domain of definition.
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Proof. By Remark 3.72, x → S−1
L (s, x) is the left slice regular inverse and x → S−1

R (s, x) is the right
slice regular inverse of the function x → s − x. Hence, S−1

L (s, x) is left slice regular and S−1
R (s, x) is

right slice regular in the second variable. Consequently, since S−1
L (s, x) = −S−1

R (x, s) by Corollary 3.71,
S−1
L (s, x) is right slice regular and S−1

R (s, x) is left slice regular in the first variable.

Lemma 3.75. Let s = s0 + Iss1 ∈ H \ R and I ∈ S. Then the functions{
CI → H
x 7→ S−1

L (s, x)
and

{
CI → H
x 7→ S−1

R (s, x)

have two singularities at the points s0 ± Is1 if I 6= ±Is. If I = Is or I = −Is, they have only one
singularity at the point s.

Proof. The singularities of the function x 7→ (x2 − 2Re[s]x+ |s|2)−1(x− s) are given by the roots of

x2 − 2Re[s]x+ |s|2 = 0. (3.34)

As we have seen in Remark 3.69, these are exactly the points in CI ∩ [s], i.e., x = s0 ± Is1.
If I = Is or I = −Is, then x and s commute and the singularity s̄ = s0− Is1 is removable as we have

seen in Remark 3.72.

Although the restrictions of S−1
L (s, ·) and S−1

R (s, ·) to the plane CIs have a removable singularity at
s, the kernels themselves can not be extended continuously to s.

Lemma 3.76. For any s ∈ H the limits limx→s S
−1
L (s, x) and limx→s S

−1
R (s, x) do not exist.

Proof. To prove that the limit limx→s S
−1
L (s, x) does not exist, we consider S−1

L (s, s + ε) with ε =

ε0 +
∑3
j=1 εjej ∈ H. Since 2Re[s] = s+ s and |s|2 = ss, we have

S−1
L (s, s+ ε) = ((s+ ε)2 − 2(s+ ε)Re[s] + |s|2)−1(s+ ε− s) =

= (s2 + sε+ εs+ ε2 − ss− s2 − εs− εs+ ss)−1ε =

= (sε− εs+ ε2)−1ε =

=
(
ε−1(sε− εs+ ε2)

)−1
=

=
(
ε−1sε− s+ ε

)−1
.

For s ∈ R this expression simplifies to

S−1
L (s, s+ ε) =

(
ε−1εs− s+ ε

)−1
= ε−1

and, in turn, the limit limx→s S
−1
L (s, x) does not exist.

If we have s /∈ R the expression does not converge either because the term ε−1sε has no limit. In
fact, choosing ε = ε0 ∈ R, we obtain

lim
ε→0

ε−1
0 sε0 = lim

ε→0
ε−1

0 ε0s = s.

On the other hand, if ε = εiei with ei 6= Is, then s and ei do not commute and

lim
ε→0

ε−1sε = lim
ε→0

1

εi
(−ei)sεiei = lim

ε→0
−eisei 6= −eieis = s.

Finally, we prove the Cauchy formula for slice regular functions. We start with the slice regular
version of the Cauchy integral theorem.

Recall that any quaternionic Banach space V is a real Banach space by Corollary 2.38. In particular,
the quaternions themselves are a real Banach space. Hence, if φ : [a, b] → V is piecewise continuous,

then
∫ b
a
φ(t) dt is defined in the sense of the integral of a function with values in a real Banach space.
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Recall also that a function φ : [a, b]→ V is called piecewise continuously differentiable, if

(i) φ is continuous and

(ii) there exist a = t0 < t1 < . . . < tn = b such that φ|(ti,ti+1) is continuously differentiable and the
one-sided limits limt→t+i−1

φ′(t) and limt→t−i
φ′(t) exist for any i = 1, . . . , n.

Definition 3.77. Let V be a quaternionic Banach space, let U ⊂ H and let f : U → V and g : U → H or
f : U → H and g : U → V be continuous. For a piecewise continuously differentiable path γ : [a, b]→ U ,
we define the quaternionic path integral

∫
γ
f(s) ds g(s) as∫

γ

f(s) ds g(s) =

∫ b

a

f(γ(t)) γ′(t) g(γ(t)) dt.

If I ∈ S and γ has values in CI , then we define dsI = −I ds, that is,∫
γ

f(s) dsI g(s) = −
∫
γ

f(s)I ds g(s).

Corollary 3.78. Let V be a quaternionic Banach space, let U1, U2 ⊂ H and let f , g and h be continuous
functions on U1 × U2 ⊂ H2 such that one of them has values in V and the other two have values in H.
If γs : [a, b]→ U1 and γp : [c, d]→ U2 are piecewise continuously differentiable paths, then∫

γs

∫
γp

f(s, p) ds g(s, p) dp h(s, p) =

∫
γp

∫
γs

f(s, p) ds g(s, p) dp h(s, p),

where the indices s and p of γs and γp indicate the respective variable of integration.

Proof. To avoid case analysis, we denote the absolute value of a quaternion and the norm on V both by
‖.‖. The definition of the quaternionic path integral implies∫

γs

∫
γp

f(s, p) ds g(s, p) dp h(s, p) =

=

∫ b

a

[∫ d

c

f(γs(t), γp(u)) γ′s(t) g(γs(t), γp(u)) γ′p(u)h(γs(t), γp(u)) dt

]
du.

The functions ‖f‖, ‖g‖ and ‖h‖ are bounded on γs([a, b])× γp([c, d]) because they are continuous and
γs([a, b])× γp([a, b]) is compact. Since γs and γp are piecewise continuously differentiable, the absolute
values of the derivatives ‖γ′s‖ and ‖γ′p‖ are bounded on [a, b] resp. [c, d], too. Consequently,∫ b

a

∫ d

c

‖f(γs(t), γp(u)) γ′s(t) g(γs(t), γp(u)) γ′p(u)h(γs(t), γp(u))‖ dt du <∞

and we can apply Fubini’s theorem, which yields∫
γs

∫
γp

f(s, p) ds g(s, p) dp h(s, p) =

=

∫ d

c

[∫ b

a

f(γs(t), γp(u)) γ′s(t) g(γs(t), γp(u)) γ′p(u)h(γs(t), γp(u)) du

]
dt =

=

∫
γp

∫
γs

f(s, p) ds g(s, p) dp h(s, p).

Remark 3.79. Note that, although we can exchange the order of integration, in general∫
γs

∫
γp

f(s, p) ds g(s, p) dp h(s, p) 6=
∫
γs

[∫
γp

f(s, p) g(s, p)h(s, p) dp

]
ds 6=

6=
∫
γp

[∫
γs

f(s, p) g(s, p)h(s, p) ds

]
dp,

because ds and dp do not commute with the function f , g and h.
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Theorem 3.80 (Cauchy integral theorem). Let U ⊂ H be open, let I ∈ S and let f ∈ ML(U) and
g ∈ MR(U). Moreover, let DI ⊂ U ∩ CI be an open and bounded subset of the complex plane CI with
DI ⊂ U ∩CI such that ∂DI is a finite union of piecewise continuously differentiable Jordan curves. Then∫

∂DI

g(s) dsI f(s) = 0.

Proof. Let J ∈ S with I ⊥ J . By applying Lemma 3.5, the Splitting Lemma, we obtain holomorphic
functions f1, f2, g1, g2 : U ∩ CI → CI such that fI = f1 + f2J and gI = g1 + Jg2. Then we have∫

∂DI

g(s) dsI f(s) =

∫
∂DI

g1(s) dsI f1(s) +

(∫
∂DI

g1(s) dsI f2(s)

)
J+

+ J

(∫
∂DI

g2(s) dsI f1(s)

)
+ J

(∫
∂DI

g2(s) dsI f2(s)

)
J.

Let γ : [a, b] → CI be a parametrization of a Jordan curve, that belongs to ∂DI . Then f(γ(t)),
g(γ(t)), γ′(t) and I belong to CI . Therefore, they commute and we get∫

γ

gi(s) dsI fj(s) = −
∫ b

a

gi(γ(t)) I γ′(t) fj(γ(t)) dt = −I
∫ b

a

gi(γ(t)) fj(γ(t)) γ′(t) dt.

Hence,
∫
γ
gi(s) dsI fj(s) is nothing but the complex path integral of gi(s)fj(s) along γ multiplied by

−I and, in turn,
∫
∂DI

gi(s) dsI fj(s) is nothing but the complex path integral of gi(s)fj(s) along ∂DI

multiplied by −I.

For i, j ∈ {1, 2}, the function gi(s)fj(s) is holomorphic because it is the product of two holomorphic
functions. Hence, the usual complex Cauchy integral theorem implies

∫
∂DI

gi(s) dsI fj(s) = 0 and we
obtain ∫

∂DI

g(s)dsIf(s) = 0.

Theorem 3.81 (Cauchy formula). Let U ⊂ H be an axially symmetric slice domain and let O ⊂ H be
an axially symmetric open set such that O ⊂ U and such that ∂(O ∩ CI) is the finite union of piecewise
continuously differentiable Jordan curves for every I ∈ S.

If f ∈ML(U) and x ∈ O, then the identity

f(x) =
1

2π

∫
∂(O∩CI)

S−1
L (s, x) dsI f(s) (3.35)

holds true for any I ∈ S.

If g ∈MR(U) and x ∈ O, then, for any I ∈ S, we have

g(x) =
1

2π

∫
∂(O∩CI)

g(s) dsI S
−1
R (s, x).

Proof. Let I ∈ S. If x ∈ CI , then S−1
L (s, x) = (s− x)−1 is nothing but the usual complex Cauchy kernel

for s ∈ CI . We can choose J ∈ S with I ⊥ J and apply Lemma 3.5, the Splitting Lemma, to obtain
holomorphic functions f1, f2 : O ∩ CI → CI such that fI = f1 + f2J . Therefore, by applying the usual
complex Cauchy formula, we obtain

1

2π

∫
∂(O∩CI)

S−1
L (s, x) dsI f(s) =

1

2π

∫
∂(O∩CI)

(x− s)−1 dsI f1(s) +
1

2π

∫
∂(O∩CI)

(x− s)−1 dsI f2(s)J =

=
1

2πI

∫
∂(O∩CI)

f1(s)

x− s
ds+

(
1

2πI

∫
∂(O∩CI)

f2(s)

x− s
ds

)
J = f1(x) + f2(x)J = f(x).
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For x = x0 + Ixx1 with I 6= Ix, the function s 7→ S−1
L (s, x) has the two singularities xI = x0 + Ix1

and xI = x0 − Ix1 on CI , cf. Lemma 3.75. If ε > 0 is small enough, then Bε(xI) ⊂ O and Bε(xI) ⊂ O.
Thus, with Oε = O \ (Bε(xI) ∪Bε(xI)), we get

1

2π

∫
∂(O∩CI)

S−1
L (s, x) dsI f(s) =

1

2π

∫
∂(Oε∩CI)

S−1
L (s, x) dsI f(s)+

+
1

2π

∫
∂(Bε(xI)∩CI)

S−1
L (s, x) dsI f(s) +

1

2π

∫
∂(Bε(xI)∩CI)

S−1
L (s, x) dsI f(s).

Since f(s) and S−1
L (s, x) are left and right slice regular on Oε in the variable s, respectively, it follows

from Theorem 3.80 that the integral over ∂(Oε ∩ CI) equals zero. Hence,

1

2π

∫
∂(O∩CI)

S−1
L (s, x) dsI f(s) =

=
1

2π

∫
∂(Bε(xI)∩CI)

S−1
L (s, x) dsI f(s)︸ ︷︷ ︸

= Iε+

+
1

2π

∫
∂(Bε(xI)∩CI)

S−1
L (s, x) dsI f(s)︸ ︷︷ ︸

= Iε−

.

If we parametrize ∂Bε(xI) by s(θ) = x0 + Ix1 + εeIθ with θ ∈ [0, 2π], we obtain

Re[s] = x0 + ε cos θ

s = x0 − Ix1 + εe−Iθ

dsI = (εIeIθdθ)(−I) = εeIθdθ

and

|s|2 = x2
0 + 2x0ε cos θ + ε2 + x2

1 + 2εx1 sin θ.

Hence,

2πIε+ =

∫
∂(Bε(s+,I))

−(x2 − 2Re[s]x+ |s|2)−1(x− s) dsI f(s) =

=

∫ 2π

0

−(x2 − 2(x0 + ε cos θ)x+ x2
0 + 2x0ε cos θ + ε2 + x2

1 + 2εx1 sin θ)−1·

· (x− x0 + Ix1 − εe−Iθ)εeIθf(x0 + Ix1 + εeIθ) dθ.

As

x2 − 2(x0 + ε cos θ)x+ x2
0 + 2x0ε cos θ + ε2 + x2

1 + 2εx1 sin θ =

= x2
0 + 2x0x1I − x2

1 − 2x2
0 − 2x0x1I − 2ε cos θx+ x2

0 + 2x0ε cos θ + ε2 + x2
1 + 2εx1 sin θ =

= −2εx cos θ + 2x0ε cos θ + ε2 + 2εx1 sin θ,

we get

2πIε+ =

∫ 2π

0

−(−2εx cos θ + 2x0ε cos θ + ε2 + 2εx1 sin θ)−1·

· (x− x0 + Ix1 + εe−Iθ)εeIθf(x0 + Ix1 + εeIθ) dθ =

=

∫ 2π

0

−(−2x cos θ + 2x0 cos θ + ε+ 2x1 sin θ)−1·

· (x− x0 + Ix1 + εe−Iθ)eIθf(x0 + Ix1 + εeIθ) dθ.
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For ε→ 0, we get

lim
ε→0
Iε+ =

∫ 2π

0

−(−2x cos θ + 2x0 cos θ + 2x1 sin θ)–1(x− x0 + Ix1)eIθf(x0 + Ix1) dθ =

=

∫ 2π

0

(2Ixx1 cos θ − 2x1 sin θ)–1(x− x0 + Ix1)eIθf(x0 + Ix1) dθ.

Since p−1 = 1
|p|2 p for any quaternion p ∈ H, we have

(2Ixx1 cos θ − 2x1 sin θ)−1 =
1

2
(Ixx1 cos θ − x1 sin θ)−1 =

1

2x2
1

(−Ixx1 cos θ − x1 sin θ),

and in turn

(2Ixx1 cos θ − 2 sin θx1)–1(x− x0 + Ix1) =
1

2x2
1

(−Ixx1 cos θ − sin θx1)(Ixx1 + Ix1) =

=
1

2x2
1

(−Ixx1 cos θIxx1 − sin θx1Ixx1 − Ixx1 cos θIx1 − sin θx1Ix1) =

=
1

2x2
1

(
x2

1 cos θ − x2
1 sin θIx − x2

1 cos θIxI − x2
1 sin θI

)
=

=
1

2x2
1

x2
1 (cos θ(1− IxI)− sin θ(Ix + I)) =

1

2
[cos θ(1− IxI)− sin θ(IxI − 1)(−I)] =

=
1

2
(1− IxI)(cos θ − I sin θ).

Therefore,

lim
ε→0
Iε+ =

1

2π

∫ 2π

0

1

2
(1− IxI)(cos θ − I sin θ)eIθf(x0 + Ix1) dθ =

=
1

2π

∫ 2π

0

1

2
(1− IxI)(cos θ − I sin θ)(cos θ + I sin θ)f(xI) dθ =

=
1

2π

∫ 2π

0

1

2
(1− IxI)(cos2 θ + sin2 θ)f(xI) dθ =

=
1

2
(1− IxI)f(xI).

With analogous computations, we get

lim
ε→0
Iε− =

1

2
(1 + IxI)f(xI).

By Theorem 3.21, the Representations Formula, we finally obtain

1

2π

∫
∂(O∩CI)

S−1
L (s, x)dsIf(s) = lim

ε→0
Iε+ + lim

ε→0
Iε− =

1

2
(1− IxI)f(xI) +

1

2
(1 + IxI)f(xI) = f(x).

Corollary 3.82. Let U ⊂ H be an axially symmetric slice domain such that ∂(U ∩CI) is a finite union
of piecewise continuously differentiable Jordan curves for every I ∈ S.

If f ∈ML(U), then, for any I ∈ S, we have

f(x) =
1

2π

∫
∂(U∩CI)

S−1
L (s, x) dsI f(s) for any x ∈ U. (3.36)

If g ∈MR(U), then, for any I ∈ S, we have

f(x) =
1

2π

∫
∂(U∩CI)

g(s) dsI S
−1
R (s, x) for any x ∈ U.
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Proof. We obtain the statement, if we apply Theorem 3.81 with O = U .

Theorem 3.83 (Cauchy formula outside an axially symmetric slice domain). Let U ⊂ H be a bounded
slice domain such that U

c
is connected and such that the set ∂(U ∩ CI) is the union of a finite number

of piecewise continuously differentiable Jordan curves for any I ∈ S. If f ∈ ML(U c) such that f(∞) =
lim|x|→∞ f(x) exists, then, for any I ∈ S, we have

f(x) = f(∞)− 1

2π

∫
∂(U∩CI)

S−1
L (s, x) dsI f(s) for any x ∈ U c.

If f ∈MR(U c) such that f(∞) = lim|x|→∞ f(x) exists, then, for any I ∈ S, we have

f(x) = f(∞)− 1

2π

∫
∂(U∩CI)

f(s) dsI S
−1
R (s, x) for any x ∈ U c.

Proof. Let f ∈ ML(U c) and let x ∈ U c. Since U is bounded, x and U are contained in the ball Br(0)
for r large enough. Then Vr = Br(0) \ U is an axially symmetric slice domain such that ∂(Vr ∩ CI) is
the union of a finite number of piecewise continuously differentiable Jordan curves for any I ∈ S and f
is left slice regular on Vr. Thus, we can apply Corollary 3.82 and obtain for I ∈ S

f(x) =
1

2π

∫
∂(Vr∩CI)

S−1
L (s, x) dsI f(s) =

=
1

2π

∫
∂(Br(0)∩CI)

S−1
L (s, x) dsI f(s)− 1

2π

∫
∂(U∩CI)

S−1
L (s, x) dsI f(s).

For s = reIθ, we get

1

2π

∫
∂(Br(0)∩CI)

S−1
L (s, x) dsI f(s) =

1

2π

∫ 2π

0

S−1
L (reIθ, x)(−I)IreIθf(re−Iθ) dθ =

=
1

2π

∫ 2π

0

−(x2 − 2r cos θx+ r2)−1(x− re−Iθ)reIθf(re−Iθ) dθ =

= − 1

2π

∫ 2π

0

(x2 − 2r cos θx+ r2)−1xreIθf(re−Iθ) dθ +
1

2π

∫ 2π

0

(x2 − 2r cos θx+ r2)−1r2f(re−Iθ) dθ.

Since limr→∞(x2 − 2r cos θx + r2)−1xr = 0 and limr→∞(x2 − 2r cos θx + r2)−1r2 = 1 uniformly and
since f(∞) = lim|x|→∞ f(x) exists, the integrands converge uniformly. Hence, we can exchange limit
and integration and obtain

lim
r→∞

− 1

2π

∫ 2π

0

(x2 − 2r cos θx+ r2)−1xreIθf(re−Iθ) dθ = 0

and
1

2π

∫ 2π

0

(x2 − 2r cos θx+ r2)−1r2f(re−Iθ) dθ =
1

2π

∫ 2π

0

lim
r→∞

f(re−Iθ) dθ = f(∞).

Thus,

f(x) = f(∞)− 1

2π

∫
∂(U∩CI)

S−1
L (s, x) dsI f(s).
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Chapter 4

The S-resolvent operator and the
S-spectrum

In the following, we consider right linear operators on a quaternionic Banach space V . Nevertheless, since
we can identify BL(V ) and BR(V ) the theory of left linear operators on V coincides with the one for
right linear operators, if we interpret the formulas according to Definition 2.36. However, it is important
to keep in mind that although the obtained resolvent operators etc. are formally the same, they act in
different ways when they are interpreted as left or as right linear operators.

We state all results for both, the left and the right slice regular case, but again we only give the
proofs for the left slice regular one because the proofs for the right slice regular case are similar with
obvious modifications.

The presented results can be found in Chapter 3 and Chapter 4 of [12], except for Theorem 4.16,
which is going to appear in the paper [2] that was recently accepted for publication.

4.1 The S-resolvent operator and the S-spectrum

As in the case of the classical Riesz-Dunford-calculus, we define f(T ) for an operator T by formally
replacing the variable x by the operator T in the Cauchy formula. The following discussion shows that
this is actually possible. We start by replacing the variable x in the series expansion of the Cauchy
kernel.

Definition 4.1. Let T ∈ BR(V ) and let s ∈ H. We call the series

∞∑
n=0

Tns−1−n and

∞∑
n=0

s−1−nTn

the left and right Cauchy kernel operator series, respectively.

Remark 4.2. As for the scalar Cauchy kernel series, we have

∞∑
n=0

‖Tns−1−n‖ ≤ |s|−1
∞∑
n=0

(
‖T‖|s|−1

)n
and

∞∑
n=0

‖s−1−nTn‖ ≤ |s|−1
∞∑
n=0

(
|s|−1‖T‖

)n
.

Thus, the left and the right Cauchy kernel operator series converge if ‖T‖ < |s|.
Recall that we used the fact that x − s is invertible when we determined the inverse of the scalar

noncommutative Cauchy kernel in the proof of Theorem 3.67. To determine the inverse of the Cauchy
kernel operator series, we need the corresponding result for operators.

Theorem 4.3. Let T ∈ BR(V ) and let ‖T‖ < |s|. Then the series

∞∑
n=0

(s−1T )ns−1

converges in the operator norm and it is the inverse of sI − T , where I denotes the identity operator
on V .

63



Proof. Since
∑∞
n=0 ‖(s−1T )ns−1‖ = |s|−1

∑∞
n=0(‖T‖|s|−1)n < ∞, the series converges in the operator

norm. Moreover, we have

(sI − T )

∞∑
n=0

(s−1T )ns−1 = s

∞∑
n=0

(s−1T )ns−1 − T
∞∑
n=0

(s−1T )ns−1 =

= s

∞∑
n=0

(s−1T )ns−1 − ss−1T

∞∑
n=0

(s−1T )ns−1 =

= s

∞∑
n=0

(s−1T )ns−1 − s
∞∑
n=1

(s−1T )ns−1 = sIs−1 = I

and( ∞∑
n=0

(s−1T )ns−1

)
(sI − T ) =

( ∞∑
n=0

(s−1T )ns−1

)
sI −

( ∞∑
n=0

(s−1T )ns−1

)
T =

=

∞∑
n=0

(s−1T )n −
∞∑
n=0

(s−1T )n+1 =

∞∑
n=0

(s−1T )n −
∞∑
n=1

(s−1T )n = I.

Theorem 4.4. Let T ∈ BR(V ) and let s ∈ H with ‖T‖ < |s|. Then

(i) the operator

SL(s, T ) = −(T − s I)−1(T 2 − 2Re[s]T + |s|2I)

is the left inverse of the left Cauchy kernel series

(ii) the operator

SR(s, T ) = −(T 2 − 2Re[s]T + |s|2I)(T − s I)−1

is the right inverse of the right Cauchy kernel series.

Proof. We proceed as in the proof of Theorem 3.67 in order to show

I = −(T − s I)−1(T 2 − 2Re[s]T + |s|2I)

∞∑
n=0

Tns−1−n,

which is equivalent to

s I − T = (T 2 − 2Re[s]T + |s|2I)

∞∑
n=0

Tns−1−n.

Since 2Re[s] = s+ s and |s|2 = s s = s s are real, they commute with the operator T , and hence,

(T 2 − 2Re[s]T + |s|2I)

∞∑
n=0

Tns−n−1 =

∞∑
n=0

Tn+2s−n−1 −
∞∑
n=0

Tn+1(s+ s)s−n−1 +

∞∑
n=0

Tnsss−n−1 =

=

∞∑
n=0

Tn+2s−n−1 −
∞∑
n=0

Tn+1s−n −
∞∑
n=0

Tn+1ss−n−1 +

∞∑
n=0

Tnss−n =

=

∞∑
n=0

Tn+2s−n−1 −
∞∑
n=0

Tn+2s−n−1 − T −
∞∑
n=0

Tn+1ss−n−1 +

∞∑
n=0

Tn+1ss−n−1 + s I = s I − T.

The previous result motivates the following definitions.
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Definition 4.5. Let T ∈ BR(V ). We define the S-resolvent set ρS(T ) of T as

ρS(T ) = {s ∈ H : T 2 − 2Re[s]T + |s|2I is invertible}

and we define the S-spectrum σS(T ) of T as

σS(T ) = H \ ρS(T ).

Definition 4.6. Let T ∈ BR(V ). For s ∈ ρS(T ), we define the left S-resolvent operator as

S−1
L (s, T ) = −(T 2 − 2Re[s]T + |s|2I)−1(T − s I),

and the right S-resolvent operator as

S−1
R (s, T ) = −(T − sI)(T 2 − 2Re[s]T + |s|2I)−1.

In analogy to Proposition 3.74, we obtain the following result.

Lemma 4.7. The left S-resolvent operator S−1
L (s, T ) is a BR(V )-valued right-slice regular function of

the variable s on ρS(T ), that is, S−1
L (s, T )∂̄I = 0 for all I ∈ S and all s ∈ ρS(T ).

The right S-resolvent operator S−1
R (s, T ) is a BR(V )-valued left-slice regular function of the variable s

on ρS(T ), that is, ∂̄IS
−1
R (s, T ) = 0 for all I ∈ S and all s ∈ ρS(T ).

Proof. Let s = s0 + Is1 ∈ ρs(T ) and let Q(s) = T 2 − 2Re[s]T + |s|2I. Then ∂
∂s0

Q(s) = −2T + 2s0I and
∂
∂s1

Q(s) = 2s1I. Hence, Q(s) and ∂
∂sj

Q(s) commute and a computation as in (3.26) yields ∂
∂sj

Q(s)−1 =

−Q(s)−2 ∂
∂sj

Q(s) for j = 1, 2. Since S−1
L (s, T ) = −Q−1(s)(T − sI), we obtain

∂

∂s0
S−1
L (s, T ) =

(
T 2 − 2Re[s]T + |s|2I

)−2
(−2T + 2s0I)(T − sI) +

(
T 2 − 2Re[s]T + |s|2I

)−1

and
∂

∂s1
S−1
L (s, T ) =

(
T 2 − 2Re[s]T + |s|2I

)−2
2s1(T − sI)−

(
T 2 − 2Re[s]T + |s|2I

)−1
I.

Therefore, if we apply the operator ∂̄I in the variable s from the right, we obtain

S−1
L (s, T )∂̄I =

1

2

(
∂

∂s0
S−1
L (s, T ) +

∂

∂s1
S−1
L (s, T )I

)
=

=
1

2

((
T 2 − 2Re[s]T + |s|2I

)−2
(−2T + 2s0I)(T − sI) +

(
T 2 − 2Re[s]T + |s|2I

)−1
+

+
(
T 2 − 2Re[s]T + |s|2I

)−2
2s1(T − sI)I −

(
T 2 − 2Re[s]T + |s|2I

)−1
I2

)
.

Since 2s0 and T − sI commute, we finally get

S−1
L (s, T )∂̄I =

1

2

((
T 2 − 2Re[s]T + |s|2I

)−2 (− 2T (T − sI) + (T − sI)(2s0 + 2Is1)
)
+

+ 2
(
T 2 − 2Re[s]T + |s|2I

)−1
)

=

= −
(
T 2 − 2Re[s]T + |s|2I

)−2 (
T 2 − 2Re[s]T + |s|2I

)
+
(
T 2 − 2Re[s]T + |s|2I

)−1
= 0.

4.2 Properties of the S-spectrum

Many results that hold for the spectrum of an operator in classical functional analysis can be generalized
to the case of the S-spectrum. The first important result is the fact that the S-spectrum is bounded by
the norm of T .
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Lemma 4.8. Let T ∈ BR(V ) and let s ∈ H with ‖T‖ < |s|. Then the series

L(s, T ) =

∞∑
n=0

Tn|s|−2n−2
n∑
k=0

sksn−k (4.1)

converges in BR(V ) and it is the inverse of the operator T 2 − 2Re[s]T + |s|2I.

Proof. We have

∞∑
n=0

∥∥∥∥∥Tn|s|−2n−2
n∑
k=0

sksn−k

∥∥∥∥∥ ≤
∞∑
n=0

‖T‖n|s|−2n−2
n∑
k=0

|s|n =

∞∑
n=0

‖T‖n|s|−n−2(n+ 1).

From ‖T‖ < |s|, we conclude

lim
n→∞

‖T‖n+1|s|−n−3(n+ 2)

‖T‖n|s|−n−2(n+ 1)
= lim
n→∞

(n+ 2)‖T‖
(n+ 1)|s|

=
‖T‖
|s|

< 1.

Hence, the series above converges absolutely by the ratio test. Moreover

(T 2 − 2Re[s]T + |s|2I)L(s, T ) = (T 2 − 2Re[s]T + |s|2I)

∞∑
n=0

Tn|s|−2n−2
n∑
k=0

sksn−k =

=

∞∑
n=0

Tn+2|s|−2n−2
n∑
k=0

sksn−k −
∞∑
n=0

Tn+1|s|−2n−2
n∑
k=0

sk(s+ s)sn−k +

∞∑
n=0

Tn|s|−2n
n∑
k=0

sksn−k =

=

∞∑
n=2

Tn|s|−2n
n−2∑
k=0

sk|s|2sn−2−k −
∞∑
n=1

Tn|s|−2n
n−1∑
k=0

sk(s+ s)sn−1−k +

∞∑
n=0

Tn|s|−2n
n∑
k=0

sksn−k =

=

∞∑
n=2

Tn|s|−2n

(
n−2∑
k=0

sk|s|2sn−2−k −
n−1∑
k=0

sk(s+ s)sn−1−k +

n∑
k=0

sksn−k

)
−

− T |s|−2(s+ s) + I + T |s|−2(s+ s).

As

n−2∑
k=0

sk|s|2sn−2−k −
n−1∑
k=0

sk(s+ s)sn−1−k +

n∑
k=0

sksn−k =

=

n−2∑
k=0

sk+1sn−1−k −
n−1∑
k=0

sksn−k −
n−1∑
k=0

sk+1sn−1−k +

n∑
k=0

sksn−k =

=

n−1∑
k=1

sksn−k −
n−1∑
k=0

sksn−k −
n∑
k=1

sksn−k +

n∑
k=0

sksn−k = 0,

we obtain

(T 2 − 2Re[s]T + |s|2I)L(s, T ) = I.

Since
n∑
k=0

sksn−k =

n∑
k=0

sksn−k =

n∑
k=0

sn−ksk =

n∑
k=0

sksn−k,

Corollary 2.3 implies that
∑n
k=0 s

ksn−k is real. Thus, the series (4.1) has real coefficients, and therefore,
it commutes with T , which gives

L(s, T )(T 2 − 2Re[s]T + |s|2I) = (T 2 − 2Re[s]T + |s|2I)L(s, T ) = I.
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Theorem 4.9. Let T ∈ BR(V ). The S-spectrum σS(T ) of T is a nonempty, compact set contained in
the closed ball B‖T‖(0).

Proof. For ‖T‖ < r, the series S−1
L (s, T ) =

∑∞
n=0 T

ns−n−1 converges uniformly on ∂Br(0). Thus, for
I ∈ S, we obtain ∫

∂(Br(0)∩CI)

S−1
L (s, T ) ds =

∞∑
n=0

Tn
∫
∂(Br(0)∩CI)

s−n−1ds = 2πI I,

because
∫
∂(Br(0)∩CI)

s−n−1ds equals 2πI if n = 0 and 0 otherwise.

Recall from Corollary 2.38 that we can consider any quaternionic Banach space as a complex Banach
space if we restrict the right scalar multiplication to a complex plane CI . Hence, by Lemma 4.7 the
map s 7→ S−1

L (s, T ) is holomorphic on ρs(T ) ∩ CI . We conclude (Br(0) ∩ CI) * (ρS(T ) ∩ CI) because
otherwise the vector-valued version of Cauchy’s Theorem would imply

∫
∂(Br(0)∩CI)

S−1
L (s, T )ds = 0.

Thus, σS(T ) = ρS(T )c 6= ∅.
We can also consider BR(V ) as a real Banach algebra if we restrict the scalar multiplication to R. If

we define the map τ : s 7→ T 2 + 2Re[s]T + |s|2I, then s ∈ ρS(T ) if and only if τ(s) is invertible. But
the set Inv(BR(V )) of invertible elements of a Banach algebra is open (see for instance Theorem 10.12
in [25]). Since τ is continuous, ρS(T ) = τ−1(Inv(BR(V ))) is open, and in turn, σS(T ) is closed.

Finally, Lemma 4.8 implies |s| ≤ ‖T‖ for any s ∈ σS(T ). Thus, σS(T ) is closed and bounded, and
therefore, compact.

As the following result shows, the S-spectrum has a structure that is compatible with the structure
of slice regular functions.

Proposition 4.10. Let T ∈ BR(V ). Then σS(T ) is axially symmetric.

Proof. Let s = s0 + Is1 ∈ σS(T ) and let s̃ ∈ [s]. Then Re[s] = Re[s̃] and |s|2 = |s̃|2, and hence,

T 2 − 2Re[s]T + |s|2I = T 2 − 2Re[s̃]T + |s̃|2I.

Thus, s ∈ σS(T ) if and only if s̃ ∈ σS(T ).

Recall from the introduction that there are two different types of eigenvalues in the quaternionic case,
namely left and right eigenvalues which satisfy Tv = λv and Tv = vλ, respectively, for some v ∈ V .
Moreover, recall that it is the set of right eigenvalues σR(T ) that is meaningful in applications and that
allows to prove the spectral theorem for quaternionic matrices.

Before we discuss the relation of the σR(T ) and σS(T ), we need an auxiliary lemma (see [8, Section 5]).

Lemma 4.11. Let s ∈ H and let p ∈ [s]. Then there exists ω ∈ H \ {0} such that p = ω−1sω.

Proof. Let I1, I2 ∈ S with I1 ⊥ I2 and set I0 = 1 and I3 = I1I2. By Lemma 2.9, the set {I0, I1, I2, I3} is
an orthogonal basis of H that satisfies (2.1) and (2.3), the defining relations of the quaternionic product,

just as {e0, e1, e2, e3}. Thus, we can write x, y ∈ H as x =
∑3
i=0 xiIi and y =

∑3
i=0 yiIi with xi, yi ∈ R.

For their product, we obtain

xy =x0y0I0I0 + x0y1I0I1 + x0y2I0I2 + x0y3I0I3+

+ x1y0I1I0 + x1y1I1I1 + x1y2I1I2 + x1y3I1I3+

+ x2y0I2I0 + x2y1I2I1 + x2y2I2I2 + x2y3I2I3+

+ x2y0I3I0 + x3y1I3I1 + x3y2I3I2 + x3y3I3I3.

By (2.1) and (2.3), this equals

xy = x0y0I0 + x0y1I1 + x0y2I2 + x0y3I3+

+ x1y0I1 − x1y1I0 + x1y2I3 − x1y3I2+

+ x2y0I2 − x2y1I3 − x2y2I0 + x2y3I1+

+ x2y0I3 + x3y1I2 − x3y2I1 − x3y3I0.
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If we sort the terms, we finally get

xy =(x0y0 − x1y1 − x2y2 − x3y3)I0+

+ (x0y1 + x1y0 + x2y3 − x3y2)I1+

+ (x0y2 − x1y3 + x2y0 + x3y1)I2+

+ (x0y3 + x1y2 − x2y1 + x2y0)I3.

Let s ∈ H and let p ∈ [s]. The equation p = ω−1sω is equivalent to ωp = sω. By the preceding
calculation, this is equivalent to the system

ω0p0 − ω1p1 − ω2p2 − ω3p3 = s0ω0 − s1ω1 − s2ω2 − s3ω3

ω0p1 + ω1p0 + ω2p3 − ω3p2 = s0ω1 + s1ω0 + s2ω3 − s3ω2

ω0p2 − ω1p3 + ω2p0 + ω3p1 = s0ω2 − s1ω3 + s2ω0 + s3ω1

ω0p3 + ω1p2 − ω2p1 + ω3p0 = s0ω3 + s1ω2 − s2ω1 + s3ω0

respectively to 
p0 − s0 −p1 + s1 −p2 + s2 −p3 + s3

p1 − s1 p0 − s0 p3 + s3 −p2 − s2

p2 − s2 −p3 − s3 p0 − s0 p1 + s1

p3 − s3 p2 + s2 −p1 − s1 p0 − s0



ω0

ω1

ω2

ω3

 =


0
0
0
0

 . (4.2)

If we choose I1 = Is, then s = s0 + I1s1 and s2 = s3 = 0. Moreover, we can choose I2 ⊥ I1 such that
p ∈ span{1, I1, I2}. Then p = p0 + I1p1 + I2p2 and p3 = 0. Since p ∈ [s], we also have s0 = p0. Hence,
the system (4.2) simplifies to

0 −p1 + s1 −p2 0
p1 − s1 0 0 −p2

p2 0 0 p1 + s1

0 p2 −p1 − s1 0



ω0

ω1

ω2

ω3

 =


0
0
0
0

 . (4.3)

The determinant of the matrix M of this system is

detM = p4
1 − 2p2

1s
2
1 + 2p2

1p
2
2 + s4

1 − 2s2
1p

2
2 + p4

2 = (p2
1 + p2

2)2 + s4
1 − 2s2

1(p2
1 + p2

2).

Since s ∈ [p], the vector parts of s and p have the same absolute value. Hence, s2
1 = |s|2 = |p|2 = p2

1 + p2
2

and
detM = s4

1 + s4
1 − 2s2

1s
2
1 = 0.

Therefore, the system (4.3) has a nontrivial solution (ω0, ω1, ω2, ω3)T and ω = ω0 +
∑3
i=1 ωiIi satisfies

ωp = sω, which implies p = ω−1sω.

The set of right eigenvalues has a structure that is analogue to the one of the S-spectrum.

Lemma 4.12. Let T ∈ BR(T ) and let s ∈ σR(T ). Then the whole 2-sphere [s] belongs to σR(T ).

Proof. Since s is a right eigenvalue, there exists a vector v ∈ V such that Tv = vs. Let s̃ ∈ [s]. By
Lemma 4.11 there exists ω ∈ H \ {0} such that s̃ = ω−1sω. If we consider the vector vω, we obtain

T (vω) = T (v)ω = vsω = (vω)ω−1sω = (vω)s̃.

Hence, s̃ is a right eigenvalue of T , too.

Definition 4.13. Let T ∈ B(V ). A quaternion s is called an S-eigenvalue of T if there exists a vector
v ∈ V \ {0} such that (

T 2 − 2Re[s]T + |s|2I
)
v = 0. (4.4)

The following Lemma shows that the S-spectrum can be considered as a generalization of the set of
right eigenvalues, just in the same way as the spectrum of an operator on a complex Banach space can
be considered as a generalization of the set of eigenvalues in classical functional analysis; see [9].
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Lemma 4.14. Let T ∈ B(V ). The set of right eigenvalues σR(T ) coincides with the set of S-eigenvalues
of T . Therefore, σR(T ) ⊂ σS(T ). If V has finite dimension, then we even have σS(T ) = σR(T ).

Proof. Let s be an S-eigenvalue. Then there exists a vector v 6= 0 such that T 2v−2Re[s]Tv+ |s|2v = 0.
If Tv = vs, then s ∈ σR(T ). Otherwise, w = Tv − vs 6= 0. Since 2Re[s] = s+ s commutes with T and
v and since |s|2 = ss, we obtain

0 = T 2v − 2Re[s]Tv + |s|2v = T 2v − Tvs− Tvs+ vss = T (Tv − vs)− (Tv − vs)s = Tw −ws.

Thus, Tw = ws and s is a right eigenvalue of T . By Lemma 4.12, the entire 2-sphere [s] belongs to
σR(T ). In particular, s is a right eigenvalue of T itself.

If on the other hand s is a right eigenvalue, then there exists a vector v 6= 0 such that Tv = vs.
Since 2Re[s] = s+ s commutes with v and since |s|2 = ss, we have

T 2v − 2Re[s]Tv + |s|2v = Tvs− 2Re[s]vs+ v|s|2 = vs2 − vs2 − vss+ vss = 0.

Hence, s is an S-eigenvalue.
A quaternion s is an S-eigenvalue of T if and only if the operator L(s, T ) = T 2−2Re[s]T+ |s|2I is not

injective because in this case L(s, T )v = (T 2 − 2Re[s]T + |s|2I)v = 0 for some v ∈ V \{0}. In particular,
L(s, T ) is not invertible, and hence, s belongs to the σS(T ). Since the set of S-eigenvalues coincides with
the set of right eigenvalues, we obtain σR(T ) ⊂ σS(T ). Moreover, if V has finite dimension, then L(s, T )
is invertible if and only if it is injective by Corollary 2.33. Hence, in this case, σR(T ) = σS(T ).

4.3 Resolvent equations

In contrast to the classical case, the quaternionic S-functional calculus involves two different important
types of resolvent equations. The first one substitutes the fact that in the classical Riesz-Dunford calculus
an operator commutes with its resolvent, which is in general not true for the S-resolvent operators.

Theorem 4.15 (Left and right S-resolvent equation). Let T ∈ BR(V ) and let s ∈ ρS(T ). Then, the left
S-resolvent operator satisfies the left S-resolvent equation

S−1
L (s, T )s− TS−1

L (s, T ) = I (4.5)

and the right S-resolvent operator satisfies the right S-resolvent equation

sS−1
R (s, T )− S−1

R (s, T )T = I. (4.6)

Proof. Since 2Re[s] and |s|2 are real, they commute with the operator T . Hence,

T (T 2 − 2Re[s]T + |s|2I) = (T 2 − 2Re[s]T + |s|2I)T

and in turn,
(T 2 − 2Re[s]T + |s|2I)−1T = T (T 2 − 2Re[s]T + |s|2I)−1.

Thus,

S−1
L (s, T )s− TS−1

L (s, T ) =

= −(T 2 − 2Re[s]T + |s|2I)−1(T − s I)s+ T (T 2 − 2Re[s]T + |s|2I)−1(T − s I) =

= (T 2 − 2Re[s]T + |s|2I)−1(−T + s I)s+ (T 2 − 2Re[s]T + |s|2I)−1T (T − s I) =

= (T 2 − 2Re[s]T + |s|2I)−1(T 2 − 2Re[s]T + |s|2I) = I.

The left and the right S-resolvent equation cannot be considered as generalizations of the classical
resolvent equation

Rλ(T )−Rµ(T ) = (µ− λ)Rλ(T )Rµ(T ), (4.7)
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where Rλ(T ) = (λI − T )−1 is the classical resolvent operator and λ and µ lie in the resolvent set of T
(see Lemma 6 in [16, Chapter VII.3.5]). In fact, the classical resolvent equation provides a possibility
to split the product of two resolvent operators into a sum of the factors, whereas the left and the right
S-resolvent equation provide a possibility to split the product of T and the left and right S-resolvent
operator, respectively.

The next result, Theorem 3.8 in [2], can be regarded as the generalization of the classical resolvent
equation, which preserves its philosophy. However, it is remarkable that this equation involves both, the
left and the right resolvent operator and that no generalization of (4.7) including just one of them, either
the left or the right resolvent operator, has been found yet.

Theorem 4.16. Let T ∈ BR(V ) and let s, p ∈ ρS(T ). Then the equation

S−1
R (s, T )S−1

L (p, T ) =
[(
S−1
R (s, T )− S−1

L (p, T )
)
p− s

(
S−1
R (s, T )− S−1

L (p, T )
)]

(p2 − 2Re[s]p+ |s|2)−1 (4.8)

holds true. Equivalently, it can also be written as

S−1
R (s, T )S−1

L (p, T ) = (s2 − 2Re[p]s+ |p|2)−1 [(S−1
L (p, T )− S−1

R (s, T )
)
p− s

(
S−1
L (p, T )− S−1

R (s, T )
)]

. (4.9)

Proof. We prove the first identity (4.8). The second identity (4.9) follows by analogous computations.
We show that for s, p ∈ ρS(T )

S−1
R (s, T )S−1

L (p, T )
(
p2 − 2Re[s]p+ |s|2

)
=

(
S−1
R (s, T )− S−1

L (p, T )
)
p− s

(
S−1
R (s, T )− S−1

L (p, T )
)
. (4.10)

To abbreviate the formulas, we denote

S(s, p, T ) = S−1
R (s, T )S−1

L (p, T )
(
p2 − 2Re[s]p+ |s|2

)
.

The left S-resolvent equation (4.5) implies S−1
L (p, T )p = TS−1

L (p, T ) + I. Hence,

S(s, p, T ) = S−1
R (s, T )S−1

L (p, T )p2 − 2Re[s]S−1
R (s, T )S−1

L (p, T )p+ |s|2S−1
R (s, T )S−1

L (p, T ) =

= S−1
R (s, T )[TS−1

L (p, T ) + I]p− 2Re[s]S−1
R (s, T )[TS−1

L (p, T ) + I] + |s|2S−1
R (s, T )S−1

L (p, T ) =

= S−1
R (s, T )T [TS−1

L (p, T ) + I] + S−1
R (s, T )p−

− 2Re[s]S−1
R (s, T )[TS−1

L (p, T ) + I] + |s|2S−1
R (s, T )S−1

L (p, T ) =

= S−1
R (s, T )T 2S−1

L (p, T ) + S−1
R (s, T )T + S−1

R (s, T )p−
− 2Re[s][S−1

R (s, T )TS−1
L (p, T ) + S−1

R (s, T )] + |s|2S−1
R (s, T )S−1

L (p, T ).

On the other hand, the right S-resolvent equation (4.6) implies S−1
R (s, T )T = sS−1

R (s, T )−I. There-
fore,

S(s, p, T ) = [sS−1
R (s, T )− I]TS−1

L (p, T ) + sS−1
R (s, T )− I + S−1

R (s, T )p−
− 2Re[s]

[
[sS−1

R (s, T )− I]S−1
L (p, T ) + S−1

R (s, T )
]

+ |s|2S−1
R (s, T )S−1

L (p, T ) =

= s[sS−1
R (s, T )− I]− T ]S−1

L (p, T ) + sS−1
R (s, T )− I + S−1

R (s, T )p−
− 2Re[s]

[
[sS−1

R (s, T )S−1
L (p, T )− S−1

L (p, T )] + S−1
R (s, T )

]
+ |s|2S−1

R (s, T )S−1
L (p, T ) =

= (s2 − 2Re[s]s+ |s|2)S−1
R (s, T )S−1

L (p, T ) + [S−1
R (s, T )− S−1

L (p, T )]p− s[S−1
R (s, T )− S−1

L (p, T )].

Since s2 − 2Re[s]s+ |s|2 = 0, we obtain (4.10).
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Chapter 5

The S-functional calculus

The most obvious advantage of the notion of slice regularity over the notion of Cauchy-Fueter-regularity
is the fact that polynomials of a quaternionic variable are slice regular. It is this fact that makes this
class of functions extremely useful for a functional calculus in a quaternionic setting. When we finally
define this functional calculus, we follow again Chapters 3 and 4 of [12], except for the proofs of the
product rule and the existence of the Riesz-projectors, which can be found in [2].

5.1 The definition of the S-functional calculus

We consider again a right linear operator T on a quaternionic Banach space V . Before we can define the
S-functional calculus, we have to specify the underlying class of functions.

Definition 5.1 (T -admissible slice domain). Let T ∈ BR(V ). A bounded axially symmetric slice domain
U ⊂ H is called T -admissible if σS(T ) ⊂ U and ∂(U ∩ CI) is the union of a finite number of piecewise
continuously differentiable Jordan curves for any I ∈ S.

Definition 5.2. Let T ∈ BR(V ).

(i) A function f is called locally left slice regular on σS(T ), if there exists a T -admissible slice domain
U ⊂ H such that f ∈ML(U). We denote the set of all locally left slice regular functions on σS(T )
by ML(σS(T )).

(ii) A function f is called locally right slice regular on σS(T ), if there exists a T -admissible slice domain
U ⊂ H such that f ∈MR(U). We denote the set of all locally left slice regular functions on σS(T )
by MR(σS(T )).

(iii) By N (σS(T )) we denote the set of all functions f ∈ ML(σS(T )) such that there exists a T -
admissible slice domain U with f(U ∩ CI) ⊂ CI for all I ∈ S.

To show that T -admissible slice domains do actually exist, we need the following result, which is well
known from complex analysis; see Proposition 1.1 in [14, Chapter VIII].

Lemma 5.3. Let G ⊂ C be a domain and let K be a compact subset of G. There exists an open set
O such that K ⊂ O and O ⊂ G and such that ∂O consists of a finite number of piecewise continuously
differentiable Jordan curves.

Remark 5.4. Since the result is well known, we omit the proof because it is quite technical. The basic
idea is to cover K with sufficiently small rectangles Ri, i ∈ I. Since K is compact, there exists a finite
subset Ri, i = 1, . . . , n that covers K. Then O =

⋃n
i=1Ri has the desired properties. However, if K and

G are symmetric with respect to the real axis, then we can chose the covering Ri, i ∈ I, and in turn also
the set O, symmetric with respect to the real axis. Adding additional rectangles Rj , j = 1, . . . ,m, we
can even chose the set O such that it is connected because G is connected.

Lemma 5.5. Let G be an axially symmetric slice domain and let K be a compact, axially symmetric
subset of G. Then there exists an axially symmetric slice domain U such that K ⊂ U and U ⊂ G and
such that ∂(U ∩CI) consists of a finite number of piecewise continuously differentiable Jordan curves for
any I ∈ S.
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Proof. Let I ∈ S. We apply Lemma 5.3 with the compact set K∩CI and the domain G∩CI and obtain a
domain UI ⊂ CI that is symmetric with respect to the real axis such that (K∩CI) ⊂ UI and U I ⊂ (G∩CI)
and such that ∂UI consists of a finite number of piecewise continuously differentiable Jordan curves. We
set U = [UI ], where [UI ] denotes the axially symmetric hull of UI . Since UI is symmetric with respect
to the real axis, we have U ∩ CI = UI . Since UI is also connected, UI ∩ R 6= ∅, and hence, U is a slice
domain by Lemma 3.20. Finally, ∂(U ∩ CI) = ∂UI consists of a finite number of piecewise continuously
differentiable Jordan curves. For J ∈ S, Lemma 3.20 implies U ∩ CJ = {x0 + Jx1 : x0 + Ix1 ∈ U}.
Therefore, also ∂(U ∩ CJ) consists of a finite number of piecewise continuously differentiable Jordan
curves.

Corollary 5.6. Let T ∈ BR(V ). If f is left or slice regular on an axially symmetric slice domain U with
σS(T ) ⊂ U , then there exists a T -admissible slice domain U ′ wit U ′ ⊂ U .

Proof. We obtain the U ′ by applying Lemma 5.5 with G = U and K = σS(T ).

Lemma 5.7. Let O ⊂ H be an axially symmetric open set and let K be an axially symmetric compact
subset of O. Then there exists an axially symmetric open set A with K ⊂ A and A ⊂ O such that,
for any I ∈ S, the boundary ∂(A ∩ CI) consists of a finite union of piecewise continuously differentiable
Jordan curves.

Proof. Let Oi, i = 1, . . . , n be the connected components of O with K ∩ O 6= ∅. We assume that they
are ordered such that Oi ∩R 6= ∅ if 1 ≤ i ≤ m and Oi ∩R = ∅ if m+ 1 ≤ i ≤ n for some m ∈ {0, . . . , n}.

If x ∈ Oi with i ∈ {1, . . . , n}, then [x] ∩ Oj , j = 1, . . . , n is a decomposition of [x] into open subsets
whose intersection is empty. x ∈ Oi implies [x] ⊂ Oi and [x]∩Oj = ∅ for j 6= i because [x] is connected.
Therefore, the sets Oi are axially symmetric domains in H. Since K is axially symmetric and compact
and since Oi ∩Oj = ∅ if i 6= j, the sets Ki = K ∩Oi are axially symmetric and compact.

For i = 1, . . . ,m, Lemma 3.20 implies that Oi is an axially symmetric slice domain because Oi∩R 6= ∅
and [Oi] = Oi. If we apply Lemma 5.5 with K = Ki and G = Oi, we obtain an axially symmetric slice
domain Ai such that Ki ⊂ Ai and Ai ⊂ Oi and such that ∂(Ai∩CI) consists of a finite union of piecewise
continuously differentiable Jordan curves.

For i = m+ 1, . . . , n, we chose I ∈ S and set C<I = {x = x0 + Ix1 ∈ CI : 0 < x1}. The set Oi ∩C<I is
open in CI . If there exists two open subsets B1 and B2 of C<I with Oi ∩CI = B1 ∪B2 and B1 ∩B2 = ∅,
then, by Lemma 3.19, their axially symmetric hulls [B1] and [B2] are open and satisfy [B1] ∪ [B2] = Oi
and [B1] ∩ [B2] = ∅. Since Oi is connected, either [B1] = ∅ or [B2] = ∅, and in turn, B1 = ∅ or B2 = ∅.
Hence, Oi ∩ C<I is connected. Moreover, the set Ki ∩ C<I = Ki ∩ C<I is compact in CI . Therefore,
we can apply Lemma 5.3 with G = Oi ∩ C<I and K = Ki ∩ C<I . We obtain an open set Ai,I such
that Ki ∩ C<I ⊂ Ai,I and Ai,I ⊂ Oi ∩ C<I and such that ∂Ai,I consists of the finite union of piecewise
continuously differentiable Jordan curves. If we set Ai = [Ai,I ], then Ai is open by Lemma 3.19 and
satisfies Ki ⊂ Ai and Ai ⊂ Oi. For any J ∈ S, the boundary Ai ∩CJ consists of the union of the disjoint
sets {x0 + Jx1 : x0 + Ix1 ∈ ∂Ai,I} and {x0 − Jx1 : x0 + Ix1 ∈ ∂Ai,I}. Hence, it is the finite union of
piecewise continuously differentiable Jordan curves.

Finally, the set A =
⋃n
i=1Ai has the desired properties.

Recall the definition of the integral with respect to dsI in Definition 3.77. The following theorem
motivates the S-functional calculus and shows that it is well defined in the sense that it is compatible
with polynomials of the quaternionic variable.

Theorem 5.8. Let T ∈ BR(V ), let m ∈ N0 = N ∪ {0} and let U ⊂ H be a T -admissible slice domain.
Then

Tm =
1

2π

∫
∂(U∩CI)

S−1
L (s, T ) dsI s

m =
1

2π

∫
∂(U∩CI)

sm dsI S
−1
R (s, T )

for any imaginary unit I ∈ S.
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Proof. Let us first consider the case that U is a ballBr(0) with ‖T‖ < r. Then S−1
L (s, T ) =

∑∞
n=0 T

ns−n−1

for any s ∈ ∂Br(0); see Definition 4.1. Moreover, the series converges uniformly on ∂Br(0), and hence

1

2π

∫
∂(Br(0)∩CI)

S−1
L (s, T ) dsI s

m =
1

2π

∞∑
n=0

Tn
∫
∂(Br(0)∩CI)

s−1−n+mdsI .

The fact that ∫
∂(Br(0)∩CI)

s−1−n+m dsI =

{
0 if n 6= m

2π if n = m

gives
1

2π

∫
∂(Br(0)∩CI)

S−1
L (s, T ) dsI s

m = Tm.

Now let U be an arbitrary T -admissible slice domain. Then there exists a radius r such that U ⊂
Br(0). Moreover, if we restrict the right scalar multiplication to the complex plane CI , then BR(V )
is a complex Banach space by Corollary 2.38. By Lemma 4.7, the mapping s 7→ S−1

L (s, T )sm is a
BR(V )-valued holomorphic function on CI \ σS(T ). Thus, the vector-valued Cauchy theorem implies

1

2π

∫
∂(Br(0)∩CI)

S−1
L (s, T ) dsI s

m − 1

2π

∫
∂(U∩CI)

S−1
L (s, T ) dsI s

m =

=
1

2π

∫
∂((Br(0)\U)∩CI)

S−1
L (s, T ) dsI s

m = 0

and further
1

2π

∫
∂(U∩CI)

S−1
L (s, T ) dsI s

m =
1

2π

∫
∂(Br(0)∩CI)

S−1
L (s, T ) dsI s

m = Tm.

The second identity, which involves the right S-resolvent operator S−1
R (s, T ), follows analogously from

the corresponding series expansion of the right S-resolvent operator.

Corollary 5.9. Let T ∈ BR(V ), let U be a T -admissible slice domain and let p(x) =
∑N
n=0 x

nan with

an ∈ H be a left slice regular polynomial. If we set p(T ) =
∑N
n=0 T

nan, then

p(T ) =
1

2π

∫
∂(U∩CI)

S−1
L (s, T ) dsI p(s) (5.1)

for any imaginary unit I ∈ S. Similarly, if p(x) =
∑N
n=0 anx

n with an ∈ H is a right slice regular

polynomial and we set p(T ) =
∑N
n=0 anT

n, then

p(T ) =
1

2π

∫
∂(U∩CI

p(s) dsI S
−1
R (s, T ) (5.2)

for any imaginary unit I ∈ S.
In particular, if the polynomial p has real coefficients, the integrals (5.1) and (5.2) define the same

operator.

Proof. Let p(x) =
∑N
n=0 x

nan. Then Theorem 5.8 implies

1

2π

∫
∂(U∩CI)

S−1
L (s, T ) dsI p(s) =

N∑
n=0

[
1

2π

∫
∂(U∩CI)

S−1
L (s, T ) dsI s

n

]
an =

N∑
n=0

Tnan = p(T ).

The case of a right slice regular polynomial follows with analogous computations. Moreover, if p(x) =∑N
n=0 anx

n has real coefficients, then

1

2π

∫
∂(U∩CI)

S−1
L (s, T ) dsI p(s) =

N∑
n=0

Tnan =

N∑
n=0

anT
n =

1

2π

∫
∂(U∩CI)

p(s) dsI S
−1
R (s, T ).
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Theorem 5.10. Let T ∈ BR(V ), let U ⊂ H be a T -admissible slice domain and let I ∈ S. Then the
integrals

1

2π

∫
∂(U∩CI)

S−1
L (s, T ) dsI f(s), for f ∈ML(σS(T )) (5.3)

and
1

2π

∫
∂(U∩CI)

f(s) dsI S
−1
R (s, T ), for f ∈MR(σS(T )),

do neither depend on the choice of the imaginary unit I nor on the set U .

Proof. Let be VR be the real part of V as in Lemma 2.17. For any vector v ∈ V there exist vectors
vi ∈ VR, i = 0, . . . , 3 such that v =

∑3
i=0 viei. If a quaternionic right linear operator T̃ satisfies

T̃ (v) = T (v) for any v ∈ VR, then

T̃ (v) =

3∑
i=0

T̃ (vi)ei =

3∑
i=0

T (vi)ei = T (v)

for any v =
∑3
i=0 viei ∈ V . Hence, two quaternionic right linear operators are equal if and only if they

coincide on VR.
For v ∈ VR and for any left linear functional φ ∈ V ′R, we define

gv,φ(s) =
〈
φ, S−1

L (s, T )v
〉

for s ∈ ρs(T ).

Then gv,φ is right slice regular on ρS(T ) because of Lemma 4.7. Indeed, for s = s0 + Is1 ∈ ρS(T ), we
have

gv,φ(s)∂̄I =
1

2

(〈
φ,

∂

∂s0
S−1
L (s, T )v

〉
+

〈
φ,

∂

∂s1
S−1
L (s, T )v

〉
I

)
=

=
1

2

(〈
φ,

∂

∂s0
S−1
L (s, T )v

〉
+

〈
φ,

∂

∂s1
S−1
L (s, T )Iv

〉)
=
〈
φ,
(
S−1
L (s, T )∂̄I

)
v
〉

= 0

because the vector v ∈ VR commutes with any imaginary unit I.
Moreover, for any φ ∈ V ′R and any v ∈ VR, we obtain〈

φ,

[
1

2π

∫
∂(U∩CI)

S−1
L (s, T ) dsI f(s)

]
v

〉
=

1

2π

∫
∂(U∩CI)

〈φ, S−1
L (s, T )v〉 dsI f(s) =

=
1

2π

∫
∂(U∩CI)

gv,φ(s) dsI f(s).

We first show that the integral (5.3) does not depend on the slice domain U . Let U ′ be another
T -admissible slice domain. Applying Lemma 5.7 with the axially symmetric open set U ∩ U ′ and the
axially symmetric compact set σS(T ), we obtain an axially symmetric open set O with σS(T ) ⊂ O and
O ⊂ U such that ∂(O ∩ CI) consists of a finite union of piecewise continuously differentiable Jordan
curves for any I ∈ S.

Applying Cauchy’s Integral Theorem, Theorem 3.80, with Di = (U ∩ CI) \ (O ∩ CI), we obtain

1

2π

∫
∂(U∩CI)

gφ,v(s) dsI f(s)− 1

2π

∫
∂(O∩CI)

gφ,v(s) dsI f(s) =
1

2π

∫
∂((U∩CI)\(O∩CI)

gφ,v(s) dsI f(s) = 0.

Hence, 〈
φ,

[
1

2π

∫
∂(O∩CI)

S−1
L (s, T ) dsI f(s)

]
v

〉
=

〈
φ,

[
1

2π

∫
∂(U∩CI)

S−1
L (s, T ) dsI f(s)

]
v

〉
(5.4)

for all φ ∈ V ′R and all v ∈ VR. We know from Corollary 2.43 that V ′R separates the points of V . Thus,
(5.4) implies [

1

2π

∫
∂(O∩CI)

S−1
L (s, T ) dsI f(s)

]
v =

[
1

2π

∫
∂(U∩CI)

S−1
L (s, T ) dsI f(s)

]
v
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for all v ∈ VR and, in turn, for all v ∈ V . The same calculation holds true if we replace U by U ′.
Therefore,

1

2π

∫
∂(U∩CI)

S−1
L (s, T ) dsI f(s) =

1

2π

∫
∂(O∩CI)

S−1
L (s, T ) dsI f(s) =

1

2π

∫
∂(U ′∩CI)

S−1
L (s, T ) dsI f(s).

To show that (5.3) does not depend on the imaginary unit, we consider I, J ∈ S with I 6= J and a
T -admissible slice domain U such that f ∈ ML(U). The series

∑∞
n=0 T

ns−n−1 converges uniformly on
the set {s ∈ H : 2‖T‖ < |s|}. Hence,

lim
|s|→∞

S−1
L (s, T ) = lim

|s|→∞

∞∑
n=0

Tns−1−n =

∞∑
n=0

lim
|s|→∞

Tns−1−n = 0.

By Lemma 5.5, we can choose another T -admissible slice domain U ′ such that U ′ ⊂ U and apply
Theorem 3.83, the Cauchy formula outside an axially symmetric slice domain, to calculate the values of
gφ,v(x) for x ∈ H \ U ′. For all φ ∈ V ′R and all v ∈ VR, we obtain

gφ,v(x) = − 1

2π

∫
∂(U ′∩CJ )

gφ,v(s) dsJ S
−1
R (s, x) for x ∈ H \ U ′,

and 〈
φ,

[
1

2π

∫
∂(U∩CI)

S−1
L (s, T ) dsI f(s)

]
v

〉
=

1

2π

∫
∂(U∩CI)

gv,φ(s) dsI f(s) =

=
1

2π

∫
∂(U∩CI)

[
− 1

2π

∫
∂(U ′∩CJ )

gφ,v(p) dpJ S
−1
R (p, s)

]
dsIf(s) =

=
1

2π

∫
∂(U ′∩CJ )

gφ,v(p) dpJ

[
1

2π

∫
∂(U∩CI)

−S−1
R (p, s) dsI f(s)

]
,

where the last equality follows from Lemma 3.78. Since −S−1
R (p, s) = S−1

L (s, p) by Corollary 3.71 and
since f is left slice regular on U , we obtain from Corollary 3.82

1

2π

∫
∂(U∩CI)

−S−1
R (p, s) dsI f(s) =

1

2π

∫
∂(U∩CI)

S−1
L (s, p) dsI f(s) = f(p).

As (5.3) does not depend on the set U , we finally derive〈
φ,

[
1

2π

∫
∂(U∩CI)

S−1
L (s, T ) dsI f(s)

]
v

〉
=

1

2π

∫
∂(U ′∩CJ )

gφ,v(p) dpJ f(p) =

=

〈
φ,

[
1

2π

∫
∂(U ′∩CJ )

S−1
L (p, T ) dpJ f(p)

]
v

〉
=

〈
φ,

[
1

2π

∫
∂(U∩CJ )

S−1
L (p, T ) dpJ f(p)

]
v

〉
for all φ ∈ V ′R and all v ∈ VR. By Corollary 2.43, V ′R separates the points of V . It follows that[

1
2π

∫
∂(U∩CI)

S−1
L (s, T ) dsI f(s)

]
v =

[
1

2π

∫
∂(U∩CJ )

S−1
L (s, T ) dsI f(s)

]
v for all v ∈ VR, and therefore, for

any v ∈ V . Thus, (5.3) does not depend on the choice of the imaginary unit I ∈ S.

Definition 5.11 (S-functional calculus). Let T ∈ BR(V ). For any f ∈ML(σS(T )), we define

f(T ) =
1

2π

∫
∂(U∩CI)

S−1
L (s, T ) dsI f(s), (5.5)

where I is an arbitrary imaginary unit and U is an arbitrary T -admissible slice domain such that f is
left slice regular on U .

For any f ∈MR(σS(T )), we define

f(T ) =
1

2π

∫
∂(U∩CI)

f(s) dsI S
−1
R (s, T ), (5.6)

where I is an arbitrary imaginary unit and U is an arbitrary T -admissible slice domain such that f is
right slice regular on U .
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Theorems 5.8 and 5.10 show that the S-functional calculus is well defined for any left or right slice
regular function. However, if f is left and right slice regular it is not yet clear that (5.5) and (5.6) give
the same operator. To show this, we need the fact, that the S-functional calculus is consistent with the
limits of uniformly convergent sequences of slice regular functions.

Theorem 5.12. Let T ∈ BR(V ). Let fn, f ∈ML(σS(T )) or let fn, f ∈MR(σS(T )) for n ∈ N. If there
exists a T -admissible slice domain U such that fn → f uniformly on U , then fn(T ) converges to f(T )
in BR(V ).

Proof. Since fn → f uniformly on U , we can exchange limit and integration and obtain

lim
n→∞

fn(T ) = lim
n→∞

1

2π

∫
∂(U∩CI)

S−1
L (s, T )dsIfn(s) =

1

2π

∫
∂(U∩CI)

S−1
L (s, T )dsIf(s) = f(T ).

The following Theorem 5.13 shows that the representations (5.5) and (5.6) are equivalent, if f belongs
to N (σS(T )). However, the proof of this theorem uses the product rule for the S-functional calculus
in the special case that f is a polynomial with real coefficients. We prove the product rule later in
Theorem 5.17. The reason why we postpone the proof of the product rule is that it uses the fact that
(5.5) and (5.6) are equivalent for any function in N (U), which is exactly the statement of the following
Theorem 5.13. Nevertheless, this is not circular reasoning because for the special case of a polynomial
with real coefficients, the equivalence of (5.5) and (5.6) has already been shown in Corollary 5.9. Thus,
strictly speaking, we have to proceed as follows:

Step 1) We show that the product rule (fg)(T ) = f(T )g(T ) holds in the special case that either f is a
polynomial with real coefficients and g ∈ML(σS(T )) or that f ∈MR(U) and g is a polynomial
with real coefficients. Thereby, we use that the representations (5.5) and (5.6) coincide for any
polynomial with real coefficients by Corollary 5.9.

Step 2) We show Theorem 5.13, where we use Step 1).

Step 3) We show the general product rule, where we use Theorem 5.13, that is, that (5.5) and (5.6)
coincide for f ∈ N (U).

But since the proofs of Step 1) and Step 3) are exactly the same, we only write them down for the general
case in Theorem 5.17, keeping in mind this remark.

Theorem 5.13. Let T ∈ BR(V ) and let f ∈ N (σS(T )). Then

1

2π

∫
∂(U∩CI)

S−1
L (s, T ) dsI f(s) =

1

2π

∫
∂(U∩CI)

f(s) dsI S
−1
R (s, T ). (5.7)

Proof. Let p 6= 0 ∈ N (H) be a polynomial with real coefficients such that p−1 ∈ N (σS(T )). Then p(T )
is invertible and we have p(T )−1 = p−1(T ), where

p−1(T ) =
1

2π

∫
∂(U∩CI)

S−1
L (s, T ) dsI p

−1(s) =
1

2π

∫
∂(U∩CI)

p−1(s) dsI S
−1
R (s, T ).

Indeed, by applying Theorem 5.8 and the product rule for the S-functional calculus, we obtain

I =
1

2π

∫
∂(U∩CI)

S−1
L (s, T ) dsI 1 =

=
1

2π

∫
∂(U∩CI)

S−1
L (s, T ) dsI p

−1(s)p(s) =

[
1

2π

∫
∂(U∩CI)

S−1
L (s, T ) dsI p

−1(s)

]
p(T )

and

I =
1

2π

∫
∂(U∩CI)

1 dsI S
−1
R (s, T ) =

=
1

2π

∫
∂(U∩CI)

p(s)p−1(s) dsI S
−1
R (s, T ) = p(T )

[
1

2π

∫
∂(U∩CI)

p−1(s) dsI S
−1
R (s, T )

]
.
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Therefore,

1

2π

∫
∂(U∩CI)

S−1
L (s, T ) dsI p

−1(s) = p(T )−1 =
1

2π

∫
∂(U∩CI)

p−1(s) dsI S
−1
R (s, T ).

In particular, p−1(T ) is well defined. Moreover, if r = q−1p is a real rational function, then p and q have
real coefficients, and we can apply the product rule to obtain r(T ) = q−1(T )p(T ). Hence, (5.7) holds
also for r.

Let f ∈ N (σS(T )) and let U be a T -admissible slice domain such that f ∈ N (U). Then U is compact
and therefore Runge’s Theorem, Theorem 3.64, implies the existence of a sequence rn of real rational
functions in N (U) such that f = limn→∞ rn uniformly on U . Theorem 5.12 then gives

1

2π

∫
∂(U∩CI)

S−1
L (s, T ) dsI f(s) = lim

n→∞

1

2π

∫
∂(U∩CI)

S−1
L (s, T ) dsI rn(s) =

= lim
n→∞

1

2π

∫
∂(U∩CI)

rn(s) dsI S
−1
R (s, T ) =

1

2π

∫
∂(U∩CI)

f(s) dsI S
−1
R (s, T ).

Corollary 5.14. For T ∈ BR(V ) and f ∈ML(σS(T )) ∩MR(σS(T )), we have

1

2π

∫
∂(U∩CI)

S−1
L (s, T ) dsI f(s) =

1

2π

∫
∂(U∩CI)

f(s) dsI S
−1
R (s, T ).

Proof. Let U be a T -admissible slice domain such that f ∈ ML(U) ∩MR(U). By Lemma 3.42, there
exist a constant a ∈ H and a function f̃ ∈ N (U) such that f = a+ f̃ . From Theorem 5.8, we know that

I =
1

2π

∫
∂(U∩CI)

S−1
L (s, T ) dsI =

1

2π

∫
∂(U∩CI)

dsI S
−1
R (s, T ).

Hence,

1

2π

∫
∂(U∩CI)

S−1
L (s, T ) dsI f(s) =

=
1

2π

∫
∂(U∩CI)

S−1
L (s, T ) dsI f̃(s) +

1

2π

∫
∂(U∩CI)

S−1
L (s, T ) dsI a =

=
1

2π

∫
∂(U∩CI)

S−1
L (s, T ) dsI f̃(s) +

(
1

2π

∫
∂(U∩CI)

S−1
L (s, T ) dsI

)
a = f̃(T ) + Ia.

Since by (2.14) the identity operator I commutes with the scalar a, this equals f̃(T )+aI. Theorem 5.13
implies

f̃(T ) + aI =
1

2π

∫
∂(U∩CI)

f̃(s) dsI S
−1
R (s, T ) + a

(
1

2π

∫
∂(U∩CI)

dsI S
−1
R (s, T )

)
=

=
1

2π

∫
∂(U∩CI)

f̃(s) dsI S
−1
R (s, T ) +

1

2π

∫
∂(U∩CI)

a dsI S
−1
R (s, T ) =

=
1

2π

∫
∂(U∩CI)

f(s) dsI S
−1
R (s, T ).

5.2 Algebraic properties

An immediate consequence of Definition 5.11 is that the S-functional calculus for left slice regular
functions is quaternionic right linear and that the S-functional calculus for right slice regular functions
is quaternionic left linear.
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Lemma 5.15. Let T ∈ BR(V ).

(i) If f, g ∈ML(U) and a ∈ H, then

(f + g)(T ) = f(T ) + g(T ) and (fa)(T ) = f(T )a.

(ii) If f, g ∈MR(U) and a ∈ H, then

(f + g)(T ) = f(T ) + g(T ) and (af)(T ) = af(T ).

Proof. If f, g ∈ML(U) and a ∈ H, then we have

(f + g)(T ) =
1

2π

∫
∂(U∩CI)

S−1
L (s, T ) dsI (f(s) + g(s)) =

=
1

2π

∫
∂(U∩CI)

S−1
L (s, T ) dsI f(s) +

1

2π

∫
∂(U∩CI)

S−1
L (s, T ) dsI g(s) = f(T ) + g(T )

and

(fa)(T ) =
1

2π

∫
∂(U∩CI)

S−1
L (s, T ) dsI f(s)a =

(
1

2π

∫
∂(U∩CI)

S−1
L (s, T ) dsI f(s)

)
a = f(T )a.

Since the product of two slice regular functions is not necessarily slice regular, we cannot expect
to obtain a product rule for arbitrary slice regular functions. However, at least if f ∈ N (σS(T )) and
g ∈ ML(σS(T )) or if f ∈ MR(σS(T )) and g ∈ N (σS(T ), then fg ∈ ML(U) resp. fg ∈ MR(U). To
show that the S-functional calculus is compatible with the product in these cases, we need the following
lemma. Note that in this lemma, we do not assume that O is a slice domain.

Lemma 5.16. Let B ∈ BR(V ), let O be an axially symmetric open set such that ∂(O ∩ CI) consists of
the finite union of piecewise continuously differentiable Jordan curves and let U be an axially symmetric
slice domain such that O ⊂ U . If f ∈ N (U), then for any I ∈ S

1

2π

∫
∂(O∩CI)

f(s) dsI (sB −Bp)(p2 − 2Re[s]p+ |s|2)−1 = Bf(p), p ∈ O.

Proof. Since ss = |s|2 and s+ s = 2Re[s] are real, they commute with the operator B. Hence,

(s2 − 2Re[p]s+ |p|2)(sB −Bp) = s|s|2B − 2Re[p]|s|2B + |p|2sB − s2Bp+ 2Re[p]sBp− |p|2Bp =

= sB|s|2 −B|s|22Re[p] + sB|p|2 − s2Bp+ sB2Re[p]p−B|p|2p =

= sB|s|2 −Bp|s|2 − |s|2Bp+ sB|p|2 − s2Bp+ sBp2 + sB|p|2B|p|2p =

= (sB −Bp)|s|2 − s(s+ s)Bp+ (s+ s)Bpp+ (sB −Bp)p2 =

= (sB −Bp)|s|2 − (sB −Bp)2Re[s]p+ (sB −Bp)p2 = (sB −Bp)(p2 − 2Re[s]p+ |s|2).

Thus,
(sB −Bp)(p2 − 2Re[s]p+ |s|2)−1 = (s2 − 2Re[p]s+ |p|2)−1(sB −Bp).

We calculate

1

2π

∫
∂(O∩CI)

f(s) dsI (sB −Bp)(p2 − 2Re[s]p+ |s|2)−1 =

=
1

2π

∫
∂(O∩CI)

f(s) dsI (s2 − 2Re[p]s+ |p|2)−1(sB −Bp) =

=
1

2π

∫
∂(O∩CI)

f(s) dsI (s2 − 2Re[p]s+ |p|2)−1(s− p)B+

+
1

2π

∫
∂(O∩CI)

f(s) dsI (s2 − 2Re[p]s+ |p|2)−1(pB −Bp).
(5.8)
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For the first integral, we have

1

2π

∫
∂(O∩CI)

f(s) dsI (s2 − 2Re[p]s+ |p|2)−1(s− p)B =
1

2π

∫
∂(O∩CI)

f(s) dsI S
−1
R (s, p)B = f(p)B, (5.9)

where we use −S−1
L (p, s) = S−1

R (s, p), cf. Corollary 3.71.
Let us consider the second integral. If we write s = s0 + Is1 and p = p0 + Ipp1 according to

Corollary 3.11, then the solutions of the equation s2 − 2p0s+ |p|2 = 0 in the plane CI are pI = p0 + Ip1

and pI = p0 − Ip1. f ∈ N (U) gives f(O ∩ CI) ⊂ CI . Hence, the function fI is holomorphic on O ∩ CI
and we obtain

1

2π

∫
∂(O∩CI)

f(s) dsI (s2 − 2p0s+ |p|2)−1(pB −Bp) =

=
1

2π

∫
∂(O∩CI)

fI(s)

(s− pI)(s− pI)
dsI (pB −Bp).

If we denote FI(s) = fI(s)
(s−pI)(s−pI) , the residue theorem implies

1

2π

∫
∂(O∩CI)

f(s) dsI (s2 − 2Re[p]s+ |p|2)−1(pB −Bp) = (Res(FI , pI) + Res(FI , pI)) (pB −Bp),

where

Res(FI , pI) = lim
z→pI∈CI

(z − pI)FI(z) =
−I
2p1

fI(pI)

and

Res(FI , pI) = lim
z→pI∈CI

(z − pI)FI(z) =
I

2p1
fI(pI).

Therefore,

1

2π

∫
∂(O∩CI)

f(s) dsI (s2 − 2Re[p]s+ |p|2)−1(pB −Bp) =
I

2p1
[f(pI)− f(pI)](pB −Bp).

Recall that by Theorem 3.21 the slice regular function f can be written as f(p) = α(p0, p1) + Ipβ(p0, p1),
where α(p0, p1) = 1

2 (f(pI) + f(pI)) and β(p0, p1) = I 1
2 (f(pI) − f(pI)). Moreover, since f ∈ N (U), the

functions α and β are real-valued by Corollary 3.40. Therefore, if we plug the values of the first and the
second integral into (5.8), we finally obtain

1

2π

∫
∂(O∩CI)

f(s) dsI (sB −Bp)(p2 − 2Re[s]p+ |s|2)−1 = f(p)B +
I

2p1
[f(pI)− f(pI)](pB −Bp) =

= α(p0, p1)B + Ipβ(p0, p1)B +
1

p1
β(p0, p1)(pB −Bp) =

= α(p0, p1)B + Ipβ(p0, p1)B +
β(p0, p1)

p1
((p0 − Ipp1)B −B(p0 − Ipp1)) =

= B(α(p0, p1) + Ipβ(p0, p1)) =

= Bf(p).

Theorem 5.17. Let T ∈ BR(V ) and let f ∈ N (σS(T )) and g ∈ML(σS(T )) or let f ∈MR(σS(T )) and
g ∈ N (σS(T )). Then

(fg)(T ) = f(T )g(T ).

Proof. Let Up and Us be T -admissible slice domains such that Up ⊂ Us and such that f ∈ N (Us) and
g ∈ML(Us). The subscripts p and s are chosen in order to indicate the respective variable of integration
in the following computation. For I ∈ S, p ∈ ∂(Up ∩ CI) and s ∈ ∂(Us ∩ CI), we have

f(T )g(T ) =
1

2π

∫
∂(Us∩CI)

f(s) dsI S
−1
R (s, T )

1

2π

∫
∂(Up∩CI)

S−1
L (p, T ) dpI g(p) =

=
1

2π

∫
∂(Us∩CI)

f(s) dsI

[
1

2π

∫
∂(Up∩CI)

S−1
R (s, T )S−1

L (p, T ) dpI g(p)

]
.
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Applying (4.8), we obtain

f(T )g(T ) =
1

(2π)2

[∫
∂(Us∩CI)

f(s) dsI

∫
∂(Up∩CI)

S−1
R (s, T )p(p2 − 2Re[s]p+ |s|2)−1dpI g(p)

]
−

− 1

(2π)2

∫
∂(Us∩CI)

f(s) dsI

[∫
∂(Up∩CI)

S−1
L (p, T )p(p2 − 2Re[s]p+ |s|2)−1dpI g(p)

]
−

− 1

(2π)2

∫
∂(Us∩CI)

f(s) dsI

[∫
∂(Up∩CI)

sS−1
R (s, T )(p2 − 2Re[s]p+ |s|2)−1dpI g(p)

]
+

+
1

(2π)2

∫
∂(Us∩CI)

f(s) dsI

[∫
∂(Up∩CI)

sS−1
L (p, T )(p2 − 2Re[s]p+ |s|2)−1dpI g(p)

]
.

Observe that

1

(2π)2

∫
∂(Us∩CI)

f(s) dsI

[∫
∂(Up∩CI)

S−1
R (s, T )p(p2 − 2Re[s]p+ |s|2)−1dpI g(p)

]
=

=
1

(2π)2

∫
∂(Us∩CI)

f(s) dsIS
−1
R (s, T )

[
−
∫
∂(Up∩CI)

dp p(p2 − 2Re[s]p+ |s|2)−1I g(p)

]
= 0

and

− 1

(2π)2

∫
∂(Us∩CI)

f(s) dsI

[∫
∂(Up∩CI)

s S−1
R (s, T )(p2 − 2Re[s]p+ |s|2)−1dpI g(p)

]
=

=− 1

(2π)2

∫
∂(Us∩CI)

f(s) dsI s S
−1
R (s, T )

[
−
∫
∂(Up∩CI)

dp (p2 − 2Re[s]p+ |s|2)−1Ig(p)

]
= 0

by the complex Cauchy theorem for vector-valued holomorphic functions, because the functions p 7→
p(p2 − 2Re[s]p+ |s|2)−1Ig(p) and p 7→ (p2 − 2Re[s]p+ |s|2)−1Ig(p) are left holomorphic on Up ∩ CI for
s ∈ ∂Us as Up ⊂ Us. Therefore,

f(T )g(T ) =− 1

(2π)2

∫
∂(Us∩CI)

f(s) dsI

[∫
∂(Up∩CI)

S−1
L (p, T )p(p2 − 2Re[s]p+ |s|2)−1dpI g(p)

]

+
1

(2π)2

∫
∂(Us∩CI)

f(s) dsI

[∫
∂(Up∩CI)

sS−1
L (p, T )(p2 − 2Re[s]p+ |s|2)−1dpI g(p)

]
=

=
1

(2π)2

∫
∂(Us∩CI)

[ ∫
∂(Up∩CI)

f(s) dsI [sS
−1
L (p, T )− S−1

L (p, T )p]·

· (p2 − 2Re[s]p+ |s|2)−1dpI g(p)

]
Since ∂Up ⊂ Us and since ∂Up, ∂Us ⊂ ρS(T ), the integrand in the last integral is continuous on
(∂Up ∩ CI)× (∂Us ∩ CI). Hence, we can apply Fubini’s theorem to change the order of integration
and obtain

f(T )g(T ) =

=
1

2π

∫
∂(Up∩CI)

[
1

2π

∫
∂(Us∩CI)

f(s) dsI [sS
−1
L (p, T )− S−1

L (p, T )p](p2 − 2Re[s]p+ |s|2)−1

]
dpI g(p).

Applying Lemma 5.16 with B = S−1
L (p, T ), we get

f(T )g(T ) =
1

2π

∫
∂(Up∩CI)

S−1
L (p, T ) dpI f(p)g(p) = (fg)(T ).
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Corollary 5.18. Let T ∈ BR(V ) and let f ∈ N (σS(T )). If f−1 ∈ N (σS(T )), then f(T ) is invertible
and f(T )−1 = f−1(T ).

Proof. Let U be a T -admissible slice domain such that f and f−1 are left slice regular on U . The product
rule implies

I =
1

2π

∫
∂(U∩CI)

S−1
L (s, T ) dsI 1 =

1

2π

∫
∂(U∩CI)

S−1
L (s, T ) dsI f(s)f−1(s) =

=
1

2π

∫
∂(U∩CI)

S−1
L (s, T ) dsI f(s)

1

2π

∫
∂(U∩CI)

S−1
L (s, T ) dsI f

−1(s) = f(T )f−1(T )

and

I =
1

2π

∫
∂(U∩CI)

S−1
L (s, T )dsI1 =

1

2π

∫
∂(U∩CI)

S−1
L (s, T ) dsI f

−1(s)f(s) =

=
1

2π

∫
∂(U∩CI)

S−1
L (s, T ) dsI f

−1(s)
1

2π

∫
∂(U∩CI)

S−1
L (s, T ) dsI f(s) = f−1(T )f(T ).

Finally, also the existence of Riesz-projectors onto invariant subspaces generalizes to the case of the
S-functional calculus.

Theorem 5.19. Let T ∈ BR(V ) and let σS(T ) = σS,1(T ) ∪ σS,2(T ) with dist(σS,1(T ), σS,2(T )) > 0. Let
O1 and O2 be two axially symmetric, bounded open sets with O1 ∩ O2 = ∅ such that σS,1(T ) ⊂ O1 and
σS,2(T ) ⊂ O2, such that ∂(Oj ∩ CI) is the finite union of piecewise continuously differentiable Jordan
curves for any I ∈ S and j = 1, 2. If we define

Pj =
1

2π

∫
∂(Oj∩CI)

S−1
L (s, T ) dsI , j = 1, 2, (5.10)

Tj =
1

2π

∫
∂(Oj∩CI)

S−1
L (s, T ) dsI s, j = 1, 2, (5.11)

then Pj is a projector, that is P 2
j = Pj, and satisfies Tj = TPj = PjT for j = 1, 2.

Proof. Note that the functions 1Oj and x1Oj satisfy the Representation formulas (3.5) and (3.7) although
they are left and right slice regular only on an axially symmetric open set, but not necessarily on an
axially symmetric slice domain. Following the lines of the proof of Theorem 3.81, we deduce easily
that they satisfy the Cauchy integral formula. Hence, we can repeat the arguments in the proof of
Theorem 5.10 to see that the integrals in (5.10) and (5.11) do neither depend on the open set Oj nor on
the imaginary unit I, see also Remark 5.20. Moreover, we can repeat the arguments in Theorem 3.64 to
approximate 1Oj and x1Oj by real rational functions and, as in the proof of Theorem 5.12, we obtain

Pj =
1

2π

∫
∂(Oj∩CI)

dsI S
−1
R (s, T ) =

1

2π

∫
∂(Oj∩CI)

S−1
L (p, T ) dpI . (5.12)

and

Tj =
1

2π

∫
∂(Oj∩CI)

S−1
L (s, T ) dsI s =

1

2π

∫
∂(Oj∩CI)

s dsI S
−1
R (s, T ). (5.13)

The S-spectrum σS(T ) = σS,1(T ) ∪ σS,2(T ) is compact and axially symmetric by Theorem 4.9 and
Lemma 4.10. Since dist(σS,1(T ), σS,2(T )) > 0, the sets σS,1(T ) and σS,2(T ) are compact. If x ∈ σS,1(T ),
then dist(σS,1(T ), σS,2(T )) > 0 implies [x] ∩ σS,2(T ) = ∅, and in turn [x] ⊂ σS,1(T ), because [x] is
connected. Hence, σS,1(T ) is axially symmetric. Similarly, σS,2(T ) is axially symmetric.

Let us fix j ∈ {1, 2} and let Gp and Gs be two axially symmetric open sets such that σS,j(T ) ⊂ Gp,
Gp ⊂ Gs and Gs ⊂ Uj and such that ∂(Gp ∩CI) an ∂(Gs ∩CI) consist of a finite union of continuously
differentiable Jordan curves. We can, for instance, apply Lemma 5.7 with K = σS,j(T ) and O = Oj
to obtain Gs and then apply Lemma 5.7 again with K = σS,j(T ) and O = Gs to obtain Gp. The
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subscripts p and s are again chosen in order to indicate the respective variable of integration in following
computation.

By (5.12), we can consider P 2
j written as

P 2
j =

1

2π

∫
∂(Gs∩CI)

dsIS
−1
R (s, T )

1

2π

∫
∂(Gp∩CI)

S−1
L (p, T ) dpI =

=
1

(2π)2

∫
∂(Gs∩CI)

dsI

∫
∂(Gp∩CI)

S−1
R (s, T )S−1

L (p, T ) dpI .

Applying (4.8), we obtain

P 2
j =

1

(2π)2

∫
∂(Gs∩CI)

dsI

∫
∂(Gp∩CI)

S−1
R (s, T )p(p2 − 2Re[s]p+ |s|2)−1 dpI−

− 1

(2π)2

∫
∂(Gs∩CI)

dsI

∫
∂(Gp∩CI)

S−1
L (p, T )p(p2 − 2Re[s]p+ |s|2)−1 dpI

− 1

(2π)2

∫
∂(Gs∩CI)

dsI

∫
∂(Gp∩CI)

sS−1
R (s, T )(p2 − 2Re[s]p+ |s|2)−1 dpI +

+
1

(2π)2

∫
∂(Gs∩CI)

dsI

∫
∂(Gp∩CI)

sS−1
L (p, T )(p2 − 2Re[s]p+ |s|2)−1 dpI .

Hereby,
1

(2π)2

∫
∂(Gs∩CI)

dsI S
−1
R (s, T )

∫
∂(Gp∩CI)

p(p2 − 2Re[s]p+ |s|2)−1 dpI = 0

and

− 1

(2π)2

∫
∂(Gs∩CI)

dsI sS
−1
R (s, T )

∫
∂(Gp∩CI)

(p2 − 2Re[s]p+ |s|2)−1 dpI = 0

by the complex Cauchy theorem, because Gp ⊂ Gs and the functions p 7→ p(p2 − 2Re[s]p+ |s|2)−1 and
p 7→ (p2 − 2Re[s]p+ |s|2)−1 are holomorphic on Gp ∩ CI for s ∈ ∂Gs. We obtain

P 2
j =− 1

(2π)2

∫
∂(Gs∩CI)

dsI

∫
∂(Gp∩CI)

S−1
L (p, T )p(p2 − 2Re[s]p+ |s|2)−1 dpI

+
1

(2π)2

∫
∂(Gs∩CI)

dsI

∫
∂(Gp∩CI)

sS−1
L (p, T )(p2 − 2Re[s]p+ |s|2)−1 dpI ,

=
1

2π

∫
∂(Gp∩CI)

[
1

2π

∫
∂(Gs∩CI)

dsI (sS−1
L (p, T )− S−1

L (p, T )p)(p2 − 2Re[s]p+ |s|2)−1

]
dpI .

Finally, since ∂Gp ⊂ Gs, we can apply Lemma 5.16 with B = S−1
L (p, T ) and f ≡ 1 and we get

P 2
j =

1

2π

∫
∂(Gp∩CI)

S−1
L (p, T ) dpI = Pj .

In order to prove Tj = TPj = PjT , we apply the left S-resolvent equation (4.5) to obtain

TPj =
1

2π

∫
∂(Uj∩CI)

TS−1
L (s, T ) dsI =

1

2π

∫
∂(Uj∩CI)

[S−1
L (s, T ) s− I] dsI =

=
1

2π

∫
∂(Uj∩CI)

S−1
L (s, T ) s dsI − I

1

2π

∫
∂(Uj∩CI)

dsI =

=
1

2π

∫
∂(Uj∩CI)

S−1
L (s, T ) dsI s = Tj .

On the other hand, by (5.12) and (5.13), the operators Pj and Tj also allow an integral representation
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based on the right S-resolvent operator. The right S-resolvent equation (4.6) yields

PjT =
1

2π

∫
∂(Uj∩CI)

dsI S
−1
R (s, T )T =

1

2π

∫
∂(Uj∩CI)

dsI [s S−1
R (s, T )− I] =

=
1

2π

∫
∂(Uj∩CI)

dsI s S
−1
R (s, T )− 1

2π

∫
∂(Uj∩CI)

dsI I =

=
1

2π

∫
∂(Uj∩CI)

s dsIS
−1
R (s, T ) = Tj .

Hence, PjT = Tj = TPj .

Remark 5.20. We recall the proof of the existence of Riesz projectors in the complex case. Let us assume
that the spectrum σ(T ) of an operator T on a complex Banach space satisfies σ(T ) = σ1(T ) ∪ σ2(T )
with dist(σ1(T ), σ2(T )) > 0. Then we can apply the functional calculus to the indicator functions and
define Pi = 1Ui

, i = 1, 2, for two open sets U1 and U2 with σi(T ) ⊂ Ui, i = 1, 2, and dist(U1, U2) > 0.
The properties P 2

i = Pi and PiT = TPi follow immediately from the product rule as we have seen in
(1.5) and (1.6).

This approach is not possible in the case of the S-functional calculus because it is only defined for
functions that are slice regular on an axially symmetric slice domain . Hence, the proof of the existence
of Riesz-projectors is a lot more complicated in the quaternionic setting.

One may wonder whether it is possible to enlarge the class of functions that are admissible for
a quaternionic right linear operator T , such that it also contains functions that are defined on more
general sets. Due to the fact that the S-spectrum is axially symmetric, it is clear that there is no
sense in weakening the condition that the domain of definition of an admissible function must be axially
symmetric. On the other hand, Theorem 3.8, the Identity Principle, holds only for functions, which
are slice regular on a slice domain. This theorem is fundamental in the proof of Theorem 3.21, the
Representation Formula, but it is actually the Representation Formula and not the Identity Principle,
that is the crucial argument in the proofs of Theorem 3.81 and Theorem 5.10, the Cauchy Formula and
the well definedness of the S-functional calculus.

In principle, one could therefore consider a notion of strong slice regularity that applies to functions
that are slice regular on an arbitrary axially symmetric open set and satisfy the Representation Formula.
Indeed, the Cauchy formula, and therefore also Theorem 5.10, hold true for these functions. Hence, if
we plug a strongly slice regular function that is defined on an axially symmetric open set U , which is
not necessarily a slice domain, into (5.5) or (5.6), the formulas, which define the S-functional calculus,
then the integral still does neither depend on the axially symmetric open set U nor on the choice of the
imaginary unit.

If f is strongly left and right slice regular on an axially symmetric open set O and satisfies f(O∩CI) ⊂
CI for all I ∈ S, that is f ∈ N s(O), then we can approximate it by real rational functions and obtain
that (5.5) and (5.6), the formulations of the S-functional calculus for strongly left and right slice regular
functions, yield the same operator f(T ). However, since Lemma 3.42 is based on the Identity Principle,
it does not hold for strongly slice regular functions. Thus, for an arbitrary strongly left and right slice
regular function, we do not obtain a decomposition of the form f = f̃ + a with f̃ ∈ N s(U) and a ∈ H
as in Lemma 3.42. Hence, we cannot follow the proof of Lemma 5.14 and it is not clear that both
formulations of the S-functional calculus yield the same operator.

If σS(T ) = σS,1(T ) ∪ σS,2(T ) with dist(σS,1(T ), σS,2(T )) > 0, then we apply Lemma 5.7 to obtain
axially symmetric open sets Ui with σS,i(T ) ⊂ Ui for i = 1, 2 and U1 ∩U2 = ∅ such that ∂(U1 ∩CI) and
∂(U2∩CI) consist of a finite union of continuously differentiable Jordan curves for any I ∈ S. Obviously,
1Ui(T ) = Pi for i = 1, 2. But for the function a1Ui with a ∈ H \ R, we get

a1Ui
(T ) =

1

2π

∫
∂(Ui∩CI)

S−1
L (s, T ) dsI a = Pia

if we consider it as a strongly left slice regular function and

a1Ui
(T ) =

1

2π

∫
∂(Ui∩CI)

a dsIS
−1
R (s, T ) = aPi
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if we consider it as a strongly right slice regular function. In contrast to the case of the identity operator I,
it is not clear that the projections Pi commute with the scalar a. Indeed, since Pi is quaternionic right
linear, the invariant subspace Vi = Pi(V ) is a right linear subspace of V . But if Pi commutes with any
scalar a ∈ H, then

av = aPiv = Piav ∈ Vi,

for v ∈ Vi. Hence, Vi is also a left linear, and therefore a two-sided subspace of V .
We see that, in the case of strongly slice regular functions, which are not necessarily defined on a slice

domain, the equality of both of formulation of the S-functional calculus is not immediate at all. If it
holds true, it will allow new insights into the structure of quaternionic linear operators and it will allow
to generalize further properties of the Riesz-Dunford-functional calculus. The question whether and how
the S-functional calculus can be extended to functions that are not necessarily defined on a slice domain
is currently under investigation.

5.3 The Spectral Mapping Theorem

We conclude with the Spectral Mapping Theorem in the slice regular case and two important conse-
quences. However, in contrast to the complex case, the Spectral Mapping Theorem does not hold for
arbitrary left or right slice regular functions. In fact, it is clear that it can only be true for slice regular
functions that preserve the fundamental geometry of the S-spectrum, that is, the axially symmetry. The
functions, that preserve this property are exactly the functions in N (σS(T )).

Theorem 5.21 (The Spectral Mapping Theorem). Let T ∈ BR(V ) and let f ∈ N (σS(T )). Then

σS(f(T )) = f(σS(T )) = {f(s) : s ∈ σS(T )}.

Proof. Let U be a T -admissible open slice domain such that f ∈ N (U), let U ′ be an axially symmetric
slice domain with U ⊂ U ′ and f ∈ N (U ′) and let s = s0 + Iss1 ∈ σS(T ). For x ∈ U ′ \ [s], we define

g̃(x) = (x2 − 2Re[s]x+ |s|2)−1(f(x)2 − 2Re[f(s)]f(x) + |f(s)|2).

By Theorem 3.62 and Corollary 3.40, the function g̃ belongs to N (U ′) \ [s]. Moreover, we can extend
g̃ to a function g ∈ N (U ′). Indeed, if s /∈ R and I ∈ S, then the function g̃I has the singularities
sI = s0 + Is1 and sI = s0− Is1 in U ∩CI . Moreover, if we write f(x) = α(x0, x1) + Iβ(x0, x1) according
to Corollary 3.22, then α and β are real valued by Corollary 3.40. Hence, Ref(s) = α(s0, s1) = Ref(sI)
and |f(s)|2 = |α(s0, s1)|2 + |β(s0, s1)|2 = |f(sI)|2 for any I ∈ S. Therefore,

lim
z→sI

g̃I(z) = lim
z→sI

(z2 − 2Re[sI ]z + |sI |2)−1(f(z)2 − 2Re[f(sI)]f(z) + |f(sI)|2) =

= lim
z→sI

(f(z)− f(sI))(f(z)− f(sI))

(z − sI)(z − sI)
= f ′I(sI)

f(s)− f(sI)

sI − sI
.

As f(sI) = f(sI) by Corollary 3.41, we also have

lim
z→sI

g̃I(z) = lim
z→sI

(z2 − 2Re[sI ]z + |sI |2)−1(f(z)2 − 2Re[f(sI)]f(z) + |f(sI)|2) =

= lim
z→sI

(f(z)− f(sI))(f(z)− f(sI))

(z − sI)(z − sI)
= f ′I(sI)

f(sI)− f(sI)

sI − sI
.

Thus, sI and sI are removable singularities of g̃I and since sI = s−I , the function

g(x) =

{
g̃(x) if x ∈ U ′ \ [s],
∂f
∂s (x) f(x)−f(x)

x−x if x ∈ [s]

is well defined. Obviously, its restriction gI to the plane CI is holomorphic and satisfies gI(U
′∩CI) ⊂ CI

for any I ∈ S. Moreover, g is real differentiable at any point x ∈ U ′ \ [s]. It satisfies the Representation
Formula (3.5)

g(x0 + Ixx1) =
1

2
(1− IxI)gI(x0 + Ix1) +

1

2
(1 + IxI)gI(x0 − Ix1)
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for x ∈ U ′ \ [s] and by continuity even for x ∈ [s]. The function gI(x0 + Ix1) is a real differentiable
function of x0 and x1 and x 7→ Ix = x/|x| is real differentiable for x /∈ R, where x is the vector part of
x. Hence, g is also real differentiable at any point x ∈ [s]. Therefore, it is left slice regular and belongs
to N (U ′).

If on the other hand s ∈ R, then the point s is the only singularity of the function g̃I for any I ∈ S.
Since f(s) = f(s) = f(s) by Corollary 3.41, we also have f(s) ∈ R. Hence, Re[s] = s and Re[f(s)] = f(s),
which implies

lim
z→s

g̃I(z) = lim
z→sI

(z2 − 2sz + s2)−1(f(z)2 − 2f(s)f(z) + f(s)2) =

= lim
z→∞

(
f(z)− f(s)

z − s

)2

= (f ′I(s))
2 =

(
∂

∂s
f(s))

)2

.

Therefore, the singularity s of g̃I is removable for any I ∈ S. Since
(
∂
∂sf(s)

)2
does not depend on the

imaginary unit I, the function

g(x) =

{
g̃(x) if x ∈ U ′ \ {s},(
∂
∂sf(s)

)2
if x = s

is well defined. It is real differentiable on U ′ \ {s} and any restriction gI of g to a complex plane CI
is holomorphic on U ′ ∩ CI and satisfies gI(U

′ ∩ CI) ⊂ CI . Since U ′ is open, there exists an open ball

Br(s) with Br(s) ⊂ U ′. The Taylor series expansion gI(s+ h) =
∑∞
n=0

1
n!g

(n)
I (s)hn of gI at s converges

absolutely and uniformly for h ∈ Br(0) ∩ CI .
Any restriction gI of g to a complex plane CI is holomorphic and therefore infinitely differentiable as

a function of two real variables. Consequently, g is infinitely differentiable at s with respect to x0 because

g|U ′∩R = gI |U ′∩R. For arbitrary h = h0 + Ihh1 ∈ H with |h| ≤ r, the equality g
(n)
Ih

(s) = ∂n

∂xn
0
gIh(s) =

∂n

∂xn
0
g(s) implies

g(s+ h) = gIh(s+ h) =

∞∑
n=0

1

n!

∂n

∂xn0
g(s)hn = g(s) +

∂

∂x0
g(s)h+

∞∑
n=2

1

n!

∂n

∂xn0
g(s)hn,

where the uniform convergence of the series implies

lim
h→0

∣∣∣∣∣ 1

|h|

∞∑
n=2

1

n!

∂n

∂xn0
g(s)hn

∣∣∣∣∣ ≤ lim
h→0

∞∑
n=2

∣∣∣∣ 1

n!

∂n

∂xn0
g(s)

∣∣∣∣ |h|n−1 =

∞∑
n=2

lim
h→0

∣∣∣∣ 1

n!

∂n

∂xn0
g(s)

∣∣∣∣ |h|n−1 = 0.

Hence, the function g is also real differentiable at s because

g(s+ h) = g(s) +
∂

∂x0
g(s)h+ o(|h|),

where the mapping h 7→ ∂
∂x0

g(s)h is R-linear. Therefore, it is left slice regular on U ′ and belongs to the
class N (U ′).

The product rule implies

f(T )2 − 2Re[f(s)]f(T ) + |f(s)|2I = (T 2 − 2Re[s]T + |s|2I)g(T ).

Thus, if f(T )2−2Re[f(s)]f(T )+ |f(s)|2I were invertible, then g(T )(f(T )2−2Re[f(s)]f(T )+ |f(s)|2I)−1

would be the inverse of T 2 − 2Re[s]T + |s|2I. But this contradicts s ∈ σS(T ). Hence, f(s) ∈ σS(f(T )).
If on the other hand s /∈ f(σS(T )), then we can define the function

h(x) = (f2(x)− 2Re[s]f(x) + |s|2)−1 ∈ N (σS(T )).

The set of singularities of h is exactly the set {x ∈ U ′ : f(x) ∈ [s]}.
Since f ∈ N (U), the component functions α and β obtained by Corollary 3.22 are real valued

because of Corollary 3.40. Corollary 3.23 implies f([x]) = [f(x)] for all x ∈ U ′. Therefore, we have either
[p] ⊂ f(σS(T )) or [p] ∩ f(σS(T )) = ∅ for p ∈ H and s /∈ f(σS(T )) implies f(σs(T )) ∩ [s] = ∅. Thus, no
point in σS(T ) is a singularity of h. Hence, h belongs to N (σS(T )) and we can define h(T ). The product
rule implies that h(T ) is the inverse of f(T )2 − 2Re[s]f(T ) + |s|2, that is, s /∈ σS(f(T )).
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The Spectral Mapping Theorem allows us to generalize the Spectral Radius Theorem, Theorem 1.7,
to the slice regular case.

Definition 5.22. Let T ∈ BR(V ). Then the S-spectral radius of T is defined to be the nonnegative real
number

rS(T ) = sup{|s| : s ∈ σS(T )}.

Theorem 5.23. For T ∈ BR(V ), we have

rS(T ) = lim
n→∞

‖Tn‖ 1
n .

Proof. By Theorem 4.9, we have that rS(T ) ≤ ‖T‖. Recall from Corollary 2.38 that BR(V ) is a complex
Banach space, if we restrict the right scalar multiplication to a complex plane CI . Because of Lemma
4.7 and because of lims→∞ S−1

L (s, T ) = 0, the mapping τI : s 7→ S−1
L (s, T ) is a Banach space-valued

holomorphic function on (ρs(T ) ∩ CI) ∪ {∞}. We know that it allows the series representation τI(s) =∑∞
n=0 T

ns−1−n for ‖T‖ < |s|. Since it is holomorphic not only on {s ∈ CI : ‖T‖ < s} but even on
{s ∈ CI : rS(T ) < s}, this series representation holds for rS(T ) < |s|. Thus, the series S−1

L (s, T ) =∑∞
n=0 T

ns−1−n converges with respect to the norm of BR(V ) not only for ‖T‖ < |s| but even for any s
with rS(T ) < |s|. In particular, ‖Tns−n−1‖, n ∈ N0, is bounded for any s with |s| > rS(T ).

Let s ∈ H with |s| > rS(T ) and set

Cs = sup
n∈N0

‖Tns−n−1‖ <∞.

Then,

lim sup
n→∞

‖Tn‖ 1
n

1

|s|
= lim sup

n→∞
‖Tn‖ 1

n |s|−
n+1
n = lim sup

n→∞
‖Tns−n−1‖ 1

n ≤ lim sup
n→∞

C
1
n
s = 1,

and hence, lim supn→∞ ‖Tn‖
1
n ≤ |s|. Since s was arbitrary with |s| > rS(T ), we obtain

lim sup
n→∞

‖Tn‖ 1
n ≤ rS(T ).

Moreover, the Spectral Mapping Theorem, Theorem 5.21, implies σS(Tn) = σS(T )n. By Theorem 4.9,
we obtain

rS(T )n = sup{|s|n : s ∈ σS(T )} = sup{|s| : s ∈ σS(Tn)} = rS(Tn) ≤ ‖Tn‖.

for any n ∈ N. Therefore, we get

rS(T ) ≤ lim inf
n→∞

‖Tn‖ 1
n ≤ lim sup

n→∞
‖Tn‖ 1

n ≤ rS(T ), (5.14)

and in turn rS(T ) = limn→∞ ‖Tn‖
1
n , where (5.14) also implies the existence of the limit.

Finally, the Spectral Mapping Theorem, Theorem 5.21 also allows us to generalize the composition
rule corresponding to (iii) in Corollary 3.40.

Theorem 5.24. Let T ∈ BR(V ), let U be a T -admissible slice domain and let f ∈ N (U). Moreover,
let g ∈ ML(W ) or g ∈ MR(W ), where W is an axially symmetric slice domain with f(U) ⊂ W . Then
g ∈ML(σS(f(T ))) resp. g ∈MR(σS(f(T ))) and

g(f(T )) = (g ◦ f)(T ).

Proof. Let g ∈ ML(W ). Since σS(f(T )) = σS(f(T )) by Theorem 5.21, we have f(σS(T )) ⊂ f(U). By
Corollary 3.40, we have f(x0 + Ix1) = α(x0, x1) + Iβ(x0, x1) where α and β are real-valued because
f ∈ N (U). Hence, f([x]) = [f(x)], and in turn f(U) is axially symmetric. Therefore, we can assume
W to be an f(T )-admissible slice domain. Otherwise, we can apply Lemma 5.5 with K = f(T ) and
G = W and switch to an f(T )-admissible slice domain W ′ with f(T ) ⊂ W ′ and W ′ ⊂W . Consequently,
g ∈ML(σS(f(T ))).
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The mapping s 7→ S−1
L (p, f(s)) is left slice regular on {s : f(s) /∈ [p]} = {s : p /∈ [f(s)]} by

Corollary 3.40. Hence, s 7→ S−1
L (p, f(s)) is left slice regular on σS(T ) if p /∈ σS(f(T )), because f(σS(T )) =

σS(f(T )) by Theorem 5.21. By Corollary 5.15, Lemma 5.17 and Corollary 5.18, the S-functional calculus
is compatible with algebraic operations, which implies

S−1
L (p, f(T )) = −(f(T )2 − 2Re[p]f(T ) + |p|2I)−1(f(T )− pI) =

=
1

2π

∫
∂(U∩CI)

S−1
L (s, T ) dsI

[
−(f(s)2 − 2Re[p]f(s) + |p|2)−1(f(s)− p)

]
=

=
1

2π

∫
∂(U∩CI)

S−1
L (s, T ) dsI S

−1
L (p, f(s)).

Therefore,

g(f(T )) =
1

2π

∫
∂(Wp∩CI)

S−1
L (p, f(T )) dpI g(p) =

=
1

2π

∫
∂(Wp∩CI)

[
1

2π

∫
∂(Us∩CI)

S−1
L (s, T ) dsI S

−1
L (p, f(s))

]
dpI g(p) =

=
1

2π

∫
∂(Wp∩CI)

[
1

2π

∫
∂(Us∩CI)

S−1
L (s, T ) dsI S

−1
L (p, f(s)) dpI g(p)

]
,

where Wp = W and Us = U and where the subscripts s and p indicate the respective variable of
integration. Since the integrand in the last integral is continuous on ∂(Wp ∩ CI) × ∂(Us ∩ CI), we can
apply Corollary 3.78 to change the order of integration and obtain

g(f(T )) =
1

2π

∫
∂(Us∩CI)

S−1
L (s, T ) dsI

[
1

2π

∫
∂(Wp∩CI)

S−1
L (p, f(s)) dpI g(p)

]
=

=
1

2π

∫
∂(Us∩CI)

S−1
L (s, T ) dsI g(f(s)) =

=
1

2π

∫
∂(Us∩CI)

S−1
L (s, T ) dsI (g ◦ f)(s) = (g ◦ f)(T ).
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89

http://dx.doi.org/10.1007/s12220-014-9499-9
http://arxiv.org/abs/1403.0175v1


[21] V. V. Kisil and E. Ramı́rez de Arellano. “The Riesz-Clifford functional calculus for non-commuting
operators and quantum field theory”. In: Math. Methods Appl. Sci. 19.8 (1996), pp. 593–605.

[22] T.-Y. Lam. A first course in noncommutative rings. 2nd ed. Graduate Texts in Mathematics 131.
New York: Springer, 2001.

[23] C.-K. Ng. “On quaternionic functional analysis”. In: Math. Proc. Cambridge Philos. Soc. 143.2
(Sept. 2007), pp. 391–406.

[24] I. R. Porteous. Topological geometry. 2nd ed. Cambridge: Cambridge University Press, 1981.

[25] W. Rudin. Functional Analysis. 2nd ed. International Series in Pure and Applied Mathematics.
New York: McGraw-Hill, 1991.

[26] W. Rudin. Real and complex analysis. 3rd ed. New York: McGraw-Hill, 1987.
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