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Abstract

Visual Analytics is one effective way to improve the understanding of large and com-
plex datasets through the systematic combination of interactive visualizations and au-
tomated analysis techniques. Time-oriented data are highly relevant to many appli-
cation fields of Visual Analytics but time and time-oriented data do also have a com-
plex semantic structure involving design aspects such as granularities of time, different
time primitives, and indeterminacy. Still, most existing software frameworks for visu-
alization and Visual Analytics support only a subset of these design aspects to satisfy
concrete application demands. However, for prototyping in basic research on Visual
Analytics methods, a software framework is needed that supports the design aspects
of time-oriented data in a systematic, theory-driven way.

Tackling such need, this work investigates how a software framework can support
Visual Analytics of time-oriented data in an expressive and efficient way. Its outcomes
comprise substantial parts of the conceptual software architecture and the prototypical
implementation of TimeBench. In particular, this work focuses on TimeBench’s data
structures and import/export functions.

Development was guided by three desiderata on expressiveness regarding design
aspects of time-oriented data and three desiderata regarding efficiency for software
developers. The software architecture and implementation were designed based on es-
tablished software design patterns for visualization such as the Proxy Tuple pattern.
The resulting data structures are conceptually based on two interlinked direct acyclic
graphs and implemented on top of the relational data tables provided by the prefuse
framework. For evaluation regarding its desiderata, the work presents the reimple-
mentation of two complex visualization techniques and two development case studies.
These results demonstrate that TimeBench is useful for Visual Analytics prototyping
with a focus on time-oriented data well.
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Kurzfassung

Visual Analytics ist eine effektive Herangehensweise um große beziehungsweise kom-
plexe Datenbestände zu verstehen. Dazu werden interaktive Visualisierungen von Da-
ten und automatische Datenanalysemethoden planvoll verbunden. Zeitbezogene Da-
ten sind höchst relevant in vielen Anwendungsgebieten von Visual Analytics, aber Zeit
und zeitbezogene Daten haben auch eine komplexe semantische Struktur, die Desi-
gnaspekte wie Granularitäten, verschiedene Zeitprimitive und Unbestimmtheiten ein-
schließt. Doch die meisten bestehenden Software Framework für Visualisierung und
Visual Analytics unterstützen nur Teile dieser Designaspekte, um konkreten Bedarf
aus einzelnen Anwendungsgebieten zu decken. Gerade aber für das Prototyping in
der Visual Analytics Grundlagenforschung ist ein Software Framework nötig, das die
Designaspekte von zeitbezogenen Daten auf eine systematische, theoriebasiert Weise
unterstützt.

Um diesen Bedarf aufzugreifen, untersucht diese Arbeit, wie ein Software Frame-
work Visual Analytics mit zeitbezogenen Daten auf ausdrucksvolle und effiziente Wei-
se unterstützen kann. Die Ergebnisse dieser Untersuchung stellen grundlegende Teile
der konzeptuellen Softwarearchitektur und der prototypischen Implementierung von
TimeBench dar. Vor allen stehen bei dieser Arbeit die Datenstrukturen und Import/
Export Funktionen von TimeBench im Mittelpunkt.

Die Entwicklung orientierte sich an drei Desiderata zur Expressivität hinsichtlich von
Designaspekten zeitbezogener Daten und drei Desiderata zur Effizienz für Software-
entwicklerinnen und -entwickler. Die Softwarearchitektur und die Implementierung
basieren auf etablierten Software Entwurfsmustern für Visualisierung wie dem Proxy
Tuple Muster. Die resultierende Datenstruktur besteht konzeptuell aus zwei verknüpf-
ten gerichteten zyklenfreien Graphen und wurde mit Hilfe von relationalen Datenta-
bellen aus dem prefuse Framework umgesetzt. Zur Evaluierung hinsichtlich der Desi-
derata erläutert die Arbeit wie zwei komplexe Visualisierungstechniken mit TimeBench
umgesetzt werden können. Außerdem werden zwei Fallstudien über die Anwendung
in Entwicklungsprojekten beschrieben. Diese Ergebnisse legen dar, dass TimeBench für
das Visual Analytics Prototyping mit einem Fokus auf zeitbezogene Daten nützlich ist.
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1
Introduction

Visualization is one effective way to improve the understanding of large and complex
datasets [Card et al., 1999] and, thus, computer-based visualization systems are impor-
tant tools to cope with data deluge in our generation’s work and personal life. Interac-
tion is an inherent part of visualization allowing users to apply their expert knowledge
and tackle ill-defined problems. The growing research field Visual Analytics combines
such interactive visualizations with automated analysis techniques and puts special fo-
cus on cognitive aspects of understanding, reasoning, and decision making on the basis
of very large and complex datasets [Keim et al., 2010; Thomas and Cook, 2005].

Time is common and plays an important role in many application fields for Visual
Analytics (e.g., in business [Lammarsch et al., 2009] or healthcare [Aigner et al., 2012;
Rind et al., 2017]). Following Aigner et al. [2011b, p. 2], “data that are inherently linked
to time” will be referred to as time-oriented data. Time is not just another ‘flat’ quan-
titative data dimension but has a complex semantic structure that is comprised of a
hierarchy of granularities (e.g., years, months, days). Granularities can be combined
to form different calendar systems (e.g., Gregorian, financial, academic) and capture
natural cycles or social re-occurrences. Furthermore, data can relate to time using dif-
ferent time primitives: instants, intervals, and spans. Thus, it is worthwhile to treat
time-oriented data specifically in order to provide appropriate Visual Analytics meth-
ods [Aigner et al., 2011b].

However, most existing software frameworks for visualization and Visual Analytics
address time in a simplistic manner, usually in the form of equally spaced time series
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1. Introduction

(e.g., one value by month) or time stamped values (e.g., using Unix epoch). Visualiza-
tion techniques and Visual Analytics solutions that demand advanced aspects of time-
oriented data (e.g., GROOVE [Lammarsch et al., 2009], VisuExplore [Rind et al., 2011])
need to implement these aspects in an ad-hoc fashion. Therefore, the Visual Analytics
community would profit from a reusable software framework for time-oriented data.

Research Questions

Thus, the research objectives of this thesis will be to investigate software design patterns
for Visual Analytics of time-oriented data and to combine them in an implemented
software framework. The main research question of this thesis is:

How can a software framework support Visual Analytics of time-oriented data in
an expressive and efficient way?

The sub-questions tackle two particular packages within such a framework:

Which data structure can manage time-oriented data that is linked to heterogeneous,
hierarchically composed time primitives?

How can text files with comma-separated values be annotated for configurable im-
port of time-oriented data?

1.1. Expected Results

The outcomes of this work will be a substantial part of the software architecture and the
prototypical implementation of TimeBench, a framework for Visual Analytics of time-oriented
data. The framework will encompass data structures, import/export functions, visual
representations, interaction techniques, and automated analysis operations. It will
be built based on the Information Visualization Reference Model [Card et al., 1999]
and other software design patterns for information visualization [Heer and Agrawala,
2006]. For example, the Data Column pattern will be used for efficient storage in tables
while the Proxy Tuple pattern will provide a convenient object-oriented programming
interface. The data structure for time-oriented data will be based on conceptual pro-
posals by Aigner [2006] and Lammarsch et al. [2011].

TimeBench will be primarily used for rapid prototyping in Visual Analytics research
projects. Expressive time and data abstractions plus an extensible set of Visual Ana-
lytics operations should provide a platform to quickly recombine approaches and test
ideas. Furthermore, the framework will be used in the FWF-sponsored project HypoVis
for modeling hypotheses supported by the structure of time [Lammarsch et al., 2011].

2



1. Introduction

1.2. Methodological Approach

Following the nested model for visualization design and validation by Munzner [2009]
(Figure 1.1), the contributions of this work lie mainly in the innermost layer “algorithm
design” and partly in “encoding/interaction technique design”.

multiple levels

domain problem characterization

data/operation abstraction design

encoding/interaction technique design

algorithm design

Figure 1.1.: Nested model for visualization design and validation [Munzner, 2009]
c© 2009 IEEE

On the algorithm layer software design and implementation are needed for the data
structures and the operations powering visual representation, interaction, and auto-
mated analysis. The design will follow established software design patterns for visu-
alization (e.g., [Heer and Agrawala, 2006]) and time-oriented data (e.g., interval tree
[Cormen et al., 2001]). The implementation will target the Java programming language
and will be built on top of the open-source visualization framework prefuse [Heer et al.,
2005]. To mitigate the threat of incorrect algorithms, the library will be thoroughly
tested.

On the encoding/interaction technique layer visual representation and interaction tech-
niques for time-oriented data will be developed. The design of these techniques will
start from existing work but their implementation will build on top of the framework’s
algorithmic layer. Qualitative result image analysis serves as further downstream vali-
dation for correctness.

The outer layers are tackled insofar that results from previous research inform on the
needs of domain users and several simple Visual Analytics prototypes (e.g., horizon
graph with indexing [Reijner, 2008], PlanningLines [Aigner et al., 2005], ) will be built
as application examples to demonstrate the capabilities of the framework. Two case
studies will report about the application of TimeBench in two student projects Further
validation will result from its adoption in HypoVis and other research projects.

1.3. Collaboration in Research Projects

TimeBench was designed and developed collaboratively by a team of researchers. Be-
sides Alexander Rind, the author of this thesis, Tim Lammarsch, Wolfgang Aigner, Bilal

3



1. Introduction

Alsallakh, and Silvia Miksch were in the TimeBench core team [Rind et al., 2013]. The
author of this thesis was involved in all design decisions and was the lead developer for
the data structures and import/export functions of TimeBench. He also implemented a
number of Visual Analytics operations and TimeBench demos.

While this thesis needs to provide a complete overview of the TimeBench framework,
it presents the author’s contributions in more detail (esp. Sections 4.3 and 4.4). The
contributions of others are clearly attributed throughout the thesis.

The core team published a journal article on TimeBench [Rind et al., 2013] with the
student as first author. He also presented the article at the IEEE VAST conference.

1.4. Structure of the Work

Chapter 2 surveys software frameworks for Visual Analytics of time-oriented data and
other related work. Due to the non-existence of a framework addressing the time ab-
straction aspects collected by Aigner et al. [2011b], Chapter 3 establishes three desider-
ata on expressiveness. Additionally, it postulates three desiderata on efficiency and lists
some of the essential software features.

The design rationales and software architecture of TimeBench are presented in Chap-
ter 4. First, the fundamental decisions for a polylithic framework [Bederson et al., 2004;
Fekete, 2013] based on design patterns [Heer and Agrawala, 2006] and the choice of
prefuse [Heer et al., 2005] base framework are justified. After a summary of the cal-
endar package, Section 4.3 elaborates the data structures on the conceptual and the
implementation level. Further sections introduce the import and export functions, au-
tomated analysis operations, and visual representation and interaction techniques.

Chapter 5 presents two demonstration applications showcasing reimplementations
of horizon graph [Reijner, 2008] and a PlanningLines [Aigner et al., 2005]. Furthermore,
two case studies of students applying respectively extending TimeBench are reported.
The fulfillment of desiderata is discussed in Chapter 6. Finally, Chapter 7 concludes the
work by answering the research questions and pointing toward directions for future
research and development.

4



2
Related Work

Visualization of time-oriented data is a very actively researched topic. More than 100
visualization technique are collected in the book “Visualization of Time-Oriented Data”
[Aigner et al., 2011b]. Time also plays an important role in Visual Analytics, which
is demonstrated by the dedicated chapter in “Mastering the Information Age” [Keim
et al., 2010].

2.1. Visualization Frameworks

Visual Analytics developers looking for a prototyping software environment have a
wide range of options (Figure 2.1). First, they can work within a data analysis and vi-
sualization tool like Tableau/Polaris [Stolte et al., 2002], or Keshif [Yalçin et al., 2016].
Second, they can develop a prototype based on a software framework such as pre-
fuse/Flare [Heer et al., 2005], IVTK [Fekete, 2004], behaviorism [Forbes et al., 2010],
Tulip [Auber, 2004; Auber et al., 2012], ProtoVis [Bostock and Heer, 2009; Heer and Bo-
stock, 2010], or D3.js [Bostock et al., 2011]. Some tools such as Improvise [Weaver, 2004]
can also be used as a framework. The recent frameworks Vega [Satyanarayan and Heer,
2014; Satyanarayan et al., 2016] and Vega-Lite [Wongsuphasawat et al., 2016; Satya-
narayan et al., 2017] are designed as a low-level grammar and a high-level grammar for
declarative specification of interactive visualizations. Vega can be edited through the
tool Lyra [Satyanarayan and Heer, 2014]. Vega-Lite is the foundation of Voyager [Wong-
suphasawat et al., 2016], a visualization tool providing recommendations. Working
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Figure 2.1.: Design space for visualization software environments.

with a tool is easier for end-users and typically requires less time for training and first
prototypes, but there are often limitations of what results are possible and what can be
automatized. Furthermore, these tools and frameworks are conceptualized with dif-
ferent levels of flexibility: On the one hand, graphics frameworks like Java2D or Pro-
cessing [Reas and Fry., 2014] and graphics tools like Gimp or Inkscape allow complete
flexibility but do not offer significant structure for turning data into visual represen-
tations. On the other hand, software environments that are too rigidly structured like
Microsoft Excel or JFreeChart [Gilbert et al., 2000] will soon impose limitations to their
users. Visualization frameworks aim for a balanced level of flexibility by providing ex-
tendable software features based on information visualization concepts such as visual
channels [Card et al., 1999; Munzner, 2014, Chapter 5].

2.2. Time-Oriented Data in Visualization Frameworks

prefuse [Heer et al., 2005] is an open-source Java framework for information visualiza-
tion. Its polylithic architecture is based on visualization design patterns and is com-
posed of data tables, mapping of abstract data to visual structures, and the rendering
to the display. This makes prefuse suitable for extensions. prefuse has a dedicated vari-
able type for time, but it only stores the timestamp as a number with support for string
parsing and formatting. Apart from that, support for time-oriented data needs to be
implemented by application developers.
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2. Related Work

D3.js [Bostock et al., 2011] is a very widely used open-source framework imple-
mented in JavaScript. Its core functionality focuses on generically mapping arbitrary
data to document objects with a webpage. Yet, D3.js is accompanied by a large ecosys-
tem of supplementary features. For example d3.scaleTime()1 provides a linear time
axis with axis labels based on calendar units. The d3-time package 2 supports calcu-
lations based on calendar units. Cubism.js3 is an extension to D3.js showing real-time
time series in a horizon graph [Reijner, 2008]. STRAD-Wheel [Fernández-Prieto et al.,
2017] is an extension to D3.js that displays time series in a circular layout with facets
for aggregation and filtering by different granularities of time. D3.js, however, does not
provide a data structure for the development of visualizations of complex time-oriented
data such as data with heterogeneous primitives.

Many frameworks support instant data on a linear time axis, e.g., IVTK [Fekete,
2004] or ProtoVis [Bostock and Heer, 2009]. Vega [Satyanarayan and Heer, 2014; Satya-
narayan et al., 2016] and Vega-Lite [Wongsuphasawat et al., 2016; Satyanarayan et al.,
2017] support a linear time axis, instants and intervals, and aggregation by some cal-
endar units. Simile TimeLine [Huynh et al., 2007] is specialized component for visual-
izing interval data. Improvise provides the “reruns” component [Weaver et al., 2006]
that displays an instant’s data a glyph in a matrix. By changing the number of glyphs
in a matrix row, the users can explore cyclical patterns in time.

Kuhail and Lauesen [2012] present a visualization tool with time-oriented building
blocks [Kuhail et al., 2012] that can be glued together and customized by spreadsheet-
like formulas. This approach allows designers to create several advanced visualizations
for time-oriented data such as horizon graphs, cycle plots, or spiral graphs without the
need to learn a programming language. Even though the blocks are largely customiz-
able, the expressiveness is a limited by the available blocks and properties (e.g., there is
a dedicated building block for a cycle plot).

Nanocubes [Lins et al., 2013] are data structures for efficient exploration of aggre-
gated data from big spatio-temporal datasets. They allow binning by some calendar
units.

2.3. Frameworks for Time and Calendars

Besides visualization and visual analytics, there are software frameworks specialized
on time and calendars: The standard Java base classes include an implementation of

1https://github.com/d3/d3-scale/blob/master/README.md#scaleTime, last accessed Nov 2, 2017
2https://github.com/d3/d3-time, last accessed Nov 2, 2017
3https://square.github.io/cubism/, last accessed Nov 2, 2017
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2. Related Work

the Gregorian calendar.4 Joda Time [Colebourne et al., 2011] provides calendar systems
from different parts of the world. tauZaman [Urgun et al., 2007] is supports multiple
calendar systems with multiple calendars, and multiple granularities. It is built as a
distributed system, where clients send requests such as conversion between two cal-
endars to a tauZaman server. Additional calendar systems can be defined by XML or
custom Java code depending on calendar system’s complexity. Moment.js Luxon 5 is
a JavaScript framework that can parse, validate, manipulate, and display dates and
times. It supports instant, interval, and span primitives.

2.4. Summary

Most if not all visualization frameworks support time in one way or another. Applying
calendar units to explore cyclical patterns in time is also possible in some of the frame-
works but typically there are only a few calendar units of the Gregorian calendar sup-
ported. Most frameworks support instants and some support intervals, but typically,
these time primitives are not provided together. Neither could other time primitives
such as an indeterminate interval be found.

Overall, existing software frameworks for visualization and Visual Analytics address
time and time-oriented data on an ad-hoc basis. Their support satisfies typical needs
from scientific and commercial Visual Analytics applications but they do not tackle
the design aspects of time-oriented data in a systematic, theory-driven way. However,
basic research on Visual Analytic methods for time-oriented data needs such a broad
systematic software framework to rapidly prototype and test novel methods.

4https://docs.oracle.com/javase/7/docs/api/java/util/GregorianCalendar.html, last accessed Nov 2,
2017

5http://moment.github.io/luxon/, last accessed Nov 20, 2017
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3
Framework Requirements

As the analysis of related work (Section 2.1) demonstrated, existing software frame-
works for visual analytics support time-oriented data to some extent but do so in a
rather simplistic manner without addressing the multiple aspects of time-oriented data
[Aigner et al., 2011b] needed for advanced visual analytics solutions.

As a roadmap for the development of TimeBench, we established a list of desiderata
that TimeBench needs to address and structured these along the lines of expressiveness
(Section 3.1) and efficiency (Section 3.2). Additionally we collected specific software
features (Section 3.3) that software developers would frequently need when working
with time-oriented data. By addressing these needs, TimeBench can be of larger practi-
cal utility and decrease its adoption costs.

Method We collected and ranked the requirements for TimeBench in a series of fo-
cus group meetings. The participants of the focus group meetings were members of
the visual analytics research projects HypoVis (FWF-funded, #P22883) and CVAST (a
Laura Bassi Centre of Excellence, #822746). All participants had experience in visual
analytics with time-oriented data and two participants were co-authors of a reference
book on “Visualization of Time-Oriented Data” [Aigner et al., 2011b]. One participant
had designed a framework for visualization of time-oriented data on the conceptual
level as part of his doctoral dissertation [Aigner, 2006, Chapter 10]. This conceptual
framework served as inspiration for TimeBench, which should translate these concepts
to an implemented software framework and revise them where applicable.
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3. Framework Requirements

3.1. Desiderata on Expressiveness

For TimeBench to be an expressive software framework for time-oriented data, it needs
to support in particular the three time abstraction aspects described by Aigner et al.
[2011b]: (1) granularity & calendars, (2) time primitives, and (3) determinacy.

Granularity & calendars Calendars are used to divide time into units that are un-
derstood by humans such as the months or hours. Granularities and granules
generalize such time units and have been formally defined by Bettini et al. [2000].
This aspect of time abstraction can be applied to segment the time axis into human-
readable units, to aggregate time-oriented data accordingly, and to construct ad-
vanced visualization techniques [Lammarsch, 2010] such as cycle plot [Cleveland,
1993] (Figure 3.1) or GROOVE [Lammarsch et al., 2009].

Time primitives Data can be associated to either a point in time, the range between
two time points, or a given duration. Goralwalla et al. [1998] conceptualize these
associations as time primitives and defines these three cases as instant (e.g., the
day granule 31 July 2017), interval (e.g., the range of days between 4 and 14 July
2017), and span (e.g., a duration of 10 days). While instants and intervals have
fixed positions in time and are called anchored primitives, spans are unanchored
and provide no information about their position in time. In a visual analytics
system, the difference between primitives need to be addressed accordingly. For
example, while instants have only three possible order relations (before, identi-
cal, after), intervals can have 13 qualitative relations (e.g., starting together and
ending earlier) [Allen, 1983]. The combination of heterogeneous time primitives

Figure 3.1.: Cycle plot example Screenshot by the author, based on code by Graham Odds
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Figure 3.2.: VisuExplore prototype [Rind et al., 2011] with different visual representa-
tion methods for data associated to instants and intervals
Reused under CC-BY-ND license from http:// ieg.ifs.tuwien.ac.at/projects/VisuExplore/

is of particular relevance in healthcare [Aigner et al., 2012; Rind et al., 2017] as
demonstrated in the VisuExplore design study [Rind et al., 2011] (Figure 3.2).

Determinacy Applications in healthcare also illustrate the need to consider tempo-
ral indeterminacy [Aigner et al., 2012; Kosara and Miksch, 2001]. For example,
a clinical guideline could prescribe that treatment has to be within one to three
weeks before surgery and last between two and four days but leave exact start
point and duration undecided, so that caregivers can adjust it based on patient
status. Such indeterminate intervals were demonstrated in the PlanningLines de-
sign study [Aigner et al., 2005] (Figure 3.3). Another source of indeterminacy can
be the conversion between granularities (e.g., when monthly data are combined
with weekly data).

These three time abstraction aspects are the top priority for the expressiveness of
TimeBench. State-of-the-art visual analytics frameworks already address a number of
design aspects of time-oriented data such as quantitative/qualitative scale, abstract/
spatial frame of reference, different number of variables. Other design aspects such as
multiple perspectives or streaming data would exceed the scope of this work and need
to be addressed in the future.

11
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Figure 3.3.: Temporal constraints of the indeterminate interval as represented in the
PlanningLines glyph [Aigner et al., 2005] c© 2005 IEEE

3.2. Desiderata on Efficiency

Besides being expressive for design aspects of time-oriented data, TimeBench needs to
be an efficient basis for software development. Therefore it should be (1) built around
a common data structure, (2) accessible for developers, and (3) efficient at runtime.

Common data structure TimeBench should not only support different forms of time-
oriented data, it also needs to support the combined analysis of heterogeneous
data. In particular, the researchers engaged in the HypoVis project planned to
apply TimeBench as the technical foundation to model hypotheses supported by
the structure of time within a Visual Analytics environment as conceptually de-
scribed by Lammarsch et al. [2011]. Consequently, standardized data structures
should be at its core.

Developer accessibility Since the “users” of a software framework are software de-
velopers, it important that they can learn the framework quickly and can use it
without barriers [Heer et al., 2005]. Thus, the framework’s application program-
ming interface should be designed to match metaphors of the time domain. Fur-
thermore, the framework should be modular so that can be extended further. A
polylithic architecture [Bederson et al., 2004; Fekete, 2013] should allow for the
composition of visual analytics operations both from the TimeBench base compo-
nents and future extensions.

Runtime efficiency Visual analytics solutions built with TimeBench need to provide
interactive reaction times (cp. [Munzner, 2014, p. 139 ff.]). Therefore, its data struc-
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tures and operations should be optimized based on the aspects of time-oriented
data.

3.3. Essential Software Features

TimeBench is to be designed as an extensible and polylithic software framework. In
order to provide a good basis for software development, a number of software features
need to be available within the base framework instead of being part of extensions.

Data structures TimeBench should provide data structures for determinate and in-
determinate time primitives and for multivariate data of quantitative and quali-
tative types associated with these primitives [Aigner et al., 2011b]. It should also
be possible to structure these data items as a network with edges or as a tree with
hierarchy [Munzner, 2014].

Import/export functions Time-oriented data needs to be imported from structured
text files such as comma-separated values (CSV) and from calendars in the iCal-
endar format. Furthermore, a file format is needed that can store all details of
the TimeBench data structure so that data can be exported and imported without
information-loss.

Visual representations A linear time axis plus generic visual representations such
as marks, lines, and bars need to be available to create, for example, scatter plots,
line plots, and Gantt charts.

Interaction techniques Zoom and pan needs to be available for the linear time axis.
In addition, generic interaction techniques like detail-on-demand and brushing
and linking [Shneiderman, 1996] should be available.

Automated analysis operations Filtering and aggregation based on time granular-
ities should be possible. For example, show only “Fridays” or average all hourly
values of each day. An indexing operation should transform all quantitative val-
ues into the changes relative to the indexing point [Aigner et al., 2011a], which is
often applied in horizon graphs [Reijner, 2008].

3.4. Discussion of Requirements

Some of the requirements postulated above are in conflict with each other. For example,
higher expressiveness implies that the framework will most likely be harder to learn for

13
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developers and could be less efficient at runtime. While a common data structure is of
benefit for developers, it could impair the runtime efficiency.

When finding suitable trade-offs, the desiderata should be weighted in the same
order as presented in this work. Expressiveness is the primary desideratum because
TimeBench is developed in particular for academic usage where rapid prototyping with
a wide range of possible combinations is required.
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The previous chapter laid out the requirements for TimeBench. It should primarily be
expressive to address the time abstraction aspects granularity & calendars, time prim-
itives, and determinacy. Secondarily it should be an extensible framework based on
top of a common data structure. It should also be easy to use for developers and effi-
cient at runtime. The following sections, elaborate how TimeBench was designed and
implemented in order to address these requirements.

4.1. Fundamental Design Decisions

In order to address the efficiency desiderata, TimeBench’s software architecture is based
on well-established design patterns for Information Visualization [Heer and Agrawala,
2006]. Thus, we expect it to be more easily extensible, more accessible to software devel-
opers, and to profit from experience regarding runtime efficiency. The general architec-
ture of a visual analytics solution using TimeBench will follow the reference model for
visualization [Card et al., 1999], which is a special form of the Model–View–Controller
design pattern [Heer and Agrawala, 2006]. In this model, raw data is first transformed
to abstract data, then enriched with visual attributes, and finally rendered onto views,
whereby the user can adjust settings at each transition via interaction techniques.

A polylithic visualization framework [Bederson et al., 2004; Fekete, 2013] supporting
the reference model provides various implemented operations at each transition. A
solution designer can combine these operations in multiple ways similar to Lego bricks.
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For example, a scatter plot would be a composition using a CSV reader, a horizontal and
a vertical position mapping, and a renderer for marks. All that is needed to extending
the scatter plot to a bubble chart would be to add a size mapping. Likewise, TimeBench
can provide a collection of operations that are specialized on time-oriented data such
as a reader for iCalendar files or a calendar-based position mapping (cp. Section 3.3).

The implementation of TimeBench is designed as an extension of prefuse [Heer et al.,
2005], which is a general purpose software framework for Information Visualization
written in Java. prefuse has a polylithic architecture and is based on design patterns in
accordance to what is planned for TimeBench. The design decision to extend prefuse
rather than building TimeBench from scratch was supported by the following argu-
ments:

(1) In general, software developers would rather accept a comparatively smaller exten-
sion than a completely new framework, as they have to consider the time needed to
learn the framework and to adapt their existing code base. In particular, the devel-
opers within the research projects HypoVis and CVAST are familiar with prefuse
and, at the time when TimeBench development started, were predominately using
this framework for their prototyping.

(2) Some previous visual analytics prototypes for time-oriented data such as CareVis
[Aigner and Miksch, 2006] or VisuExplore [Rind et al., 2011] had been developed
using prefuse. It was planned to reuse and generalize part of this code base like
their calendar-based time axis labels.

(3) As prefuse has been available as free and open-source software on SourceForge
since 20041 and has been widely adopted it can be assumed that a large number
of bugs have been discovered and fixed. A newly written framework would need
more time to reach the same level of maturity. Furthermore, prefuse contains sev-
eral optimizations for runtime efficiency unrelated to time-oriented data such as
graph layout.

(4) The meta-framework Obvious [Fekete et al., 2011] provide interoperability between
various Visual Analytics software frameworks. Thus, prefuse/TimeBench compo-
nents could be combined with the visualization frameworks IVTK [Fekete, 2004],
Improvise [Weaver, 2004], or JUNG [The JUNG Development Team, 2006] and ex-
change data with databases via JDBC, Weka, or RapidMiner.

Roadmap prefuse provides a good selection of data structures and operations for
multivariate data and for graph data but it lacks specific data structures and operations

1https://sourceforge.net/projects/prefuse/files/prefuse/, last accessed Oct 29, 2017
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for time-oriented data. Thus, the primary core functionality of TimeBench needs to be a
solid data structure for time-oriented data that addresses the expressiveness desiderata
(cp. Section 3.1), which will be presented in Section 4.3. The second core functionality of
TimeBench is calendar support, which will be summarized in Section 4.2. Furthermore,
a good selection of operations is needed to provide software developers with frequently
needed functionality. Yet, this selection need not be complete, because operations can
easily be added due to TimeBench’s polylithic architecture. These operations will be
presented in Sections 4.4–4.5.

4.2. Calendars

While the author of this thesis focused on data structures (Section 4.3), the design and
development of the calendar package was lead by Tim Lammarsch. Therefore details
about calendar support in TimeBench are beyond the scope of this work; instead the
journal article [Rind et al., 2013, p. 2251 f.] should be consulted. This section summa-
rizes key concepts necessary to understand the data structures of TimeBench.

The calendar package is designed based on the calendar operations described by
Bettini et al. [2000] and Goralwalla et al. [2001]. Time is modeled as a discrete domain
composed of atomic units called chronons. In the context of a Java virtual machine, such
chronons would be milliseconds. A mapping from chronons to subsets of chronons is
called a granularity (e.g., days would be such a mapping) and a subset of chronons
mapped by a granularity is called granule (e.g., 2 June 2017 ). Finally, granularities
can have different mappings depending on which calendar they belong to. TimeBench
encapsulates this calendar model in the classes Granule, Granularity, and Calendar.

A Granularity is defined by its identifier and its context identifier. For example a
granularity with the identifier for day and the context identifier for week would map
chronons to days of week (Monday, . . . , Sunday, Monday, . . . ). In contrast a granu-
larity with the identifier for day and the predefined context identifier TOP would map
chronons to calendar day (3 May 2017, 4 May 2017, . . . ).

A Granule is defined by its identifier and the granularity it belongs to and it has a
human readable label. For example in the day-of-week Granularity, the identifier 0
could stand for “Monday”. Additionally, the Granule can have a context granule that
further specifies its time. For example, a “Monday” Granule has the context granule
“week 45”, which has the context granule “2017”. If the time of a Granule is fully
specified it is a “particular granule”, otherwise it is a “general granule”. For a particular
granule, it is possible to calculate the infimum and the supremum, which are its first
and its last chronon. Vice versa, the Granule identifier and context granules can be
calculated from the infimum or the supremum (or actually from any chronon within its
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Figure 4.1.: Classes of the calendar package [Rind et al., 2013] c© 2013 IEEE
The diagram depicts classes and their relations using the extended object-modeling technique [Gamma
et al., 1995; Heer and Agrawala, 2006]. The diagram is simplified and does not show all details.

duration). General Granules are useful to represent cyclic patterns or indeterminacies.
Most calendar operations can be realized by conversion between different Granu-

laritys, conversion from chronons to Granules (in fact chronons are Granules of the
predefined BOTTOM Granularity), and integer arithmetic with Granule identifiers.

The calendar classes are designed in a generic way as a Facade [Gamma et al., 1995] to
a calendar backend that implements the CalendarManager interface (Figure 4.1). Java-
DateCalendarManager is available as a base implementation using the GregorianCalen-
dar included within the Java core packages, while future extensions based on τZaman
[Urgun et al., 2007] or JodaTime [Colebourne et al., 2011] are possible.

4.3. Data Structures

TimeBench’s data structures aim to achieve a desired expressiveness regarding time
abstraction (cp. Section 3.1), but these data structures should also be accessible to de-
velopers in a meaningful way. Therefore, the data structures were first modeled in a
conceptual way. Then an efficient backend data structure was built, which can be ac-
cessed and manipulated via an API that follows the conceptual model.

4.3.1. Conceptual Data Model

The data structures of TimeBench are inspired by conceptual ideas of Aigner [2006,
Chapter 10]. In particular, he proposed a clear distinction between temporal and application-
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specific data aspects of time-oriented data and he modeled TemporalObjects and Tem-
poralElements as composite objects that could have TemporalObjects respectively Tem-
poralElements as child objects (Figure 4.2).

TimeBench adopts these two architectural design decisions, because they make it
possible to save heterogeneous time-oriented data in a common data structure. Each
data item is modeled as a TemporalObject that stores application data together with a
reference to a TemporalElement. More formally, this conceptual data structures can be
modeled as a set of TemporalObjects, a set of TemporalElements an a timing function
mapping the former to the later [Rind et al., 2013, p. 2249]. The abstract class Tempo-
ralElement provides a uniform interface for time primitives, which have very different
internal structure:

• An Instant references a point in time, i.e., a Granule of a granularity [Lammarsch
et al., 2011] (Figure 4.3a).

• A Span is defined a number of granules of a granularity [Lammarsch et al., 2011].

• An Interval could be given by its first and last Granule, by its first Granule and
its length as number of granules, or by its last Granule and its length. Since such
time primitives are already modeled as Instant and Span, TimeBench expresses

Last Name First Name Date of Birth Place of Birth University From University To University
Aigner Wolfgang 23.05.1977 Steyr, Austria 1997 2003 TU Wien
... ... ... ... ... ... ...

Data (non-temporal) Attributes
Temporal Attributes

Instant Instant Instant

Interval

begin end

Temporal Object

temporal
aspects

data
aspects

Temporal Object

temporal
aspects

data
aspects

application
specific level

abstract level

Temporal Object

sub objects

data
aspects

Figure 10.21: Data Model Building Process – Temporal objects that associate data to time are
introduced.Figure 4.2.: Building temporal objects from a data table using the conceptual model by

Aigner [2006, p. 218] Image courtesy of Wolfgang Aigner
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the Interval as a composite primitive consisting of two Instants or an Instant and
a Span (Figure 4.3b).

• Beyond these three time primitives, further time primitives are possible. For ex-
ample, an indeterminate interval can be expressed as a composite primitive con-
sisting of two Intervals for possible start and possible end and two Span for min-
imum and maximum duration (Figure 4.3c).

• Such composite time primitives can also be built as a set of child primitives in
order to address particular requirements of an application scenario (Figure 4.3d).
For example, a psychotherapeutic treatment series could be linked to a set of ten
intervals.

Thus, hierarchical composition of TemporalElements has the benefit that implementa-
tions specific to simple primitives can be reused within complex primitives. Compo-
sition of TemporalElements is modeled as a directed acyclic graph [Kerren et al., 2014,
p. 2]:

• A parent element can have multiple child elements (e.g., in Figure 4.3b the Inter-
val e6 is composed of the Instant e1 an the Span e2).

• A child element can have multiple parent elements (e.g., in Figure 4.3b the Instant
e5 marks the end of the Intervals e7 and e8).

For consistency and to stay compatible with Aigner [2006]’s conceptual model, Tem-
poralObjects can be composite objects organized in a directed acyclic graph structure
as well.

4.3.2. Backend Data Structure

TimeBench stores TemporalObjects and TemporalElements in its data structure classes
TemporalDataset and TemporalElementStore (Figure 4.4). Internally, they deposit tem-
poral and domain-specific data in relational data tables that are provided by the prefuse
framework. These Tables realize the Data Column design pattern [Heer and Agrawala,
2006], i.e., they manage their data not by rows but by columns. For example a discrete
quantitative attribute would be stored as an integer array by the prefuse class IntCol-
umn. Accessor methods of the Table use a row manager to map between row indices of
the table and the column if these are different. The Data Column data structure has the
advantages that data in a column are usually homogeneous and can, thus, be stored and
indexed more efficiently. Furthermore. columns can be efficiently added or removed,
and columns can be used by multiple tables (such as raw data and derived data) [Heer
and Agrawala, 2006]. Since the TemporalDataset class extends a generic prefuse data
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Figure 4.3.: Four temporal dataset examples depicted at the conceptual level. Each
green circle ex represents temporal element, i.e., an object of a subclass of
TemporalElement; each violet circle ox represents a temporal object , i.e., an
object of TemporalObject or a subclass. Dashed lines represent composition
of complex such as an interval defined by a start instant and an end instant.

structure, its non-temporal aspects are fully compatible with existing prefuse opera-
tions. For example, a TemporalDataset of blood tests could be shown as a scatter plot
of glucose by cholesterol without any TimeBench code.

While Tables are an efficient data structure and a convenient abstraction for design-
ing the flow of data, accessing individual TemporalObjects or TemporalElements by
their row index is cumbersome. To make these available in an object-oriented fashion,
TimeBench applies the Proxy Tuple pattern [Heer and Agrawala, 2006], a variant of the
Facade pattern [Gamma et al., 1995]. Following this design pattern, the so-called tuple
does not store its data directly but acts as a proxy to a Table object at a stored row index.
Listing 4.1 shows how this works in the prefuse class TableTuple. TemporalObjects and
TemporalElements both extend class TableTuple with time-specific accessor methods as
will be described below. As TemporalObjects and TemporalElements need a Temporal-
Dataset and a TemporalElementStore to store their data, new objects are created from
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ParentChildGraph

TemporalDataset

TemporalElementStore

TemporalObject

TemporalColumnColumn

TemporalElement

creates

creates

Graph

ParentChildNode

Figure 4.4.: Main data structures in TimeBench: Both TemporalDataset and Tempo-
ralElementStore are subclasses of ParentChildGraph, which is a subclass of
the prefuse Graph [Heer et al., 2005]. They create TemporalObject and Tem-
poralElement instances respectively. TemporalDataset and TemporalEle-
mentStore are linked by an instance of TemporalColumn, which is a sub-
class of a prefuse Column.
The diagram depicts classes and their relations using the extended object-modeling technique [Gamma
et al., 1995; Heer and Agrawala, 2006]. The diagram is simplified and does not show all details.

factory methods provided by these data structures.
Since TemporalObjects and TemporalElements can be composed of a hierarchy of

subobjects, their data structure needs to store the links between parent and child ob-
jects. For this, TimeBench extends the prefuse Graph class, which applies the Relational
Graph design pattern [Heer and Agrawala, 2006]. According to this design principle,
the Graph stores graph its nodes and edges in two Tables. For efficient lookup it pro-
vides indices. However, the generic accessor methods of Graph do not convey the se-
mantics of composition in a directed acyclic graph. In order to improve developer ac-
cessibility and to avoid errors from mixing up edge direction, the classes ParentChild-
Graph and ParentChildNode extend Graph and TableNode with meaningful accessor
methods (Listing 4.2). By convention, edges are directed from directed from child to

22



4. Framework Design and Implementation

Listing 4.1: Excerpts of TableTuple from prefuse illustrating how accessor methods are
realized as proxy to an underlying data structure.

public class TableTuple implements Tuple {

protected Table m_table;

protected int m_row = -1;

public final Object get(String field) {

validityCheck();

return m_table.get(m_row, field);

}

}

parent.
The connection from a TemporalDataset to its TemporalElementStore is built via a a

special column type TemporalColumn. While all TemporalElements used in a Tempo-
ralDataset need to be from the same TemporalElementStore, a TemporalElementStore
can be shared by multiple TemporalDatasets. This makes it possible to use the same
TemporalElements for both raw and derived data.

4.3.3. Temporal Elements

TimeBench provides various subclasses of TemporalElement for different time primi-
tives (Figure 4.5). On the first level of inheritance, AnchoredTemporalElements are dis-
tinguished from UnanchoredTemporalElement. These are further extended to Instant,
Interval, and Span. Furthermore, each TemporalElement can be accessed as a Gener-
icTemporalElement, which provides read-write access to the underlying data. There-
fore, the methods asPrimitive() and asGeneric() allow the developer to switch between
the GenericTemporalElement and the other subclasses. The corresponding objects are
created and cached by the class TemporalElementManager that is used by TemporalEle-
mentStore. TemporalElementStore provides factory methods to create various Tem-
poralElements (Listing 4.3). A factory method for indeterminate intervals creates the
composition tree depicted in Figure 4.3c and returns it as AnchoredTemporalElement
object.

The TemporalElementStore has a fixed internal structure that is common across all
scenarios. All TemporalElements are stored in the node table of a ParentChildGraph,
which has six columns as defined in Table 4.1. For example, an Instant is stored as a
row with the inf (infimum), sup (supremum), granularity id, and granularity context
id of the Granule linked to the Instant. Additionally it stores a unique identifier of the
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Listing 4.2: Excerpt of ParentChildNode with accessor methods for directed acyclic
graph relationships.

public class ParentChildNode extends TableNode {

public int getParentCount() {

return super.m_graph.getOutDegree(this);

}

public ParentChildNode getParent(int idx) {

int c = getGraph().getParentRow(m_row, idx);

return (ParentChildNode) (c < 0 ? null : m_graph.getNode(c));

}

@SuppressWarnings("unchecked")

public Iterator<? extends ParentChildNode> parents() {

return super.outNeighbors();

}

}

Listing 4.3: Factory methods in TemporalElementStore (selection).
public GenericTemporalElement addTemporalElement(long id, long inf, long

sup, int granularityId, int granularityContextId, int kind) {...}

public GenericTemporalElement[] addTemporalElements(int nTuples, int kind)

{...}

public Instant addInstant(long inf, long sup, Granularity granularity)

{...}

public Instant addInstant(Granule granule) throws TemporalDataException

{...}

public Span addSpan(long length, int granularityId) {...}

public Interval addInterval(Instant begin, Span span) throws

TemporalDataException {...}

public AnchoredTemporalElement addIndeterminateInterval(Interval begin,

Span maxLength, Span minLength, Interval end) {...}

public AnchoredTemporalElement addAnchoredSet(TemporalElement... elements)

throws TemporalDataException {...}
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TemporalElementNode

GenericTemporalElement AnchoredTemporalElement

Instant Interval

UnanchoredTemporalElement

Span

Figure 4.5.: Inheritance tree of the TemporalElement class. TimeBench provides sub-
classes for different temporal primitives.

TemporalElement and its kind (e.g., 2 := instant).
As shown in Listing 4.4, an Instant can be created from a Granule. These Granule ob-

jects are cached in a dedicated data structure within TemporalElementStore, while the
infimum and supremum are copied into the relational data table. For efficient lookup,
the infimum and the supremum are stored in the corresponding column for all An-
choredTemporalElements like Instant and Interval. For UnanchoredTemporalElements
the infimum and the supremum are undefined and the columns inf and sup are instead
used to store the length in granules. This is a minor architectural inconsistency, which
was taken into account because the underlying prefuse Table does not efficiently handle
sparse data columns.

4.3.4. Temporal Objects

The data items in a TemporalDataset are made available as TemporalObjects proxy tu-
ples. These objects and the data structure provide accessor methods connecting them
to TemporalElements and with each other in a ParentChildGraph (Listing 4.5). For
application-specific data, the schema of the TemporalDataset can be extended with data
columns as illustrated in Listing 4.6. Alternatively, the classes could be extended for an
application-specific proxy tuple type.

Index structures are included to improve lookup efficiency. An interval index [Cor-
men et al., 2001] provides efficient queries for TemporalObject occurring in a given time
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Listing 4.4: Illustration how TemporalElements can be created.
Granule g1, g2;

TemporalElementStore store;

Instant i1 = store.addInstant(g1);

Instant i2 = store.addInstant(g2);

Interval n = store.addInterval(i1, i2);

Span s = store.addSpan(42, i1.getGranularityId());

GenericTemporalElement gen = n.asGeneric();

boolean b = i1.getInf() == g1.getInf(); // true

b = n.getInf() == g1.getInf()); // true

Listing 4.5: Accessor methods of TemporalDataset and TemporalObject (selection).
public class TemporalDataset extends ParentChildGraph {

public Iterable<TemporalObject> temporalObjects() {...}

public Iterable<TemporalObject> temporalObjects(Predicate filter) {...}

public Iterable<TemporalObject> getTemporalObjectsByElementId(long

temporalId) {...}

}

public class TemporalObject extends ParentChildNode {

public TemporalDataset getTemporalDataset() {...}

public TemporalElement getTemporalElement() {...}

public Iterable<TemporalObject> childObjects() {...}

public Iterable<TemporalObject> parentObjects() {...}

}

Listing 4.6: Illustration how a TemporalDataset and one TemporalObject are created.
TemporalDataset tmpds = new TemporalDataset();

tmpds.addDataColumn("glucose", double.class, 0.0d);

TemporalObject obj = tmpds.addTemporalObject(instant1);

obj.set("glucose", 90.0);
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Table 4.1.: Columns of the TemporalElement Table [Rind et al., 2013, p. 2251]. c© 2013 IEEE

Column Name Type Explanation

id long unique identifier
inf long first chronon for anchored elements

granule count for unanchored element
sup long last chronon for anchored elements

granule count for unanchored element
granularityID int identifier of the granularity
granularityContextID int identifier of the context granularity
kind int enumeration of primitive types (0 := span, 1 := set/

custom temporal element, 2 := instant, 3 := interval)

interval based on the inf and sup columns in TemporalDataset. In particular, all pos-
sible qualitative relations [Allen, 1983] between the requested temporal objects and a
given time point or interval. The interval index was initially implemented by Bilal Al-
sallakh and is based on a red-black tree, that has O(log n) algorithmic complexity for
temporal queries and for adding respectively removing elements to the index [Cormen
et al., 2001]. TimeBench takes care to update the index automatically upon changes in
the temporal elements. Furthermore, the id column in TemporalDataset, the id col-
umn in TemporalElementStore, and the TemporalElement’s id in TemporalDataset are
indexed using red-black trees implemented within prefuse.

TemporalDataset with temporal items connected by non-temporal edges is the de-
fault data structure provided by TimeBench, but other structures are possible. Tempo-
ralTable is a more generic alternative to TemporalDataset. It is a flat prefuse Table that
may have more than one TemporalColumns. On this basis, it is possible to create a table
with valid time and transaction time [Jensen et al., 1998], a graph with temporal edges,
or a temporal tree.

4.3.5. Comparison to Aigner [2006]

While TimeBench’s design started from the conceptual foundations laid by Aigner
[2006, Chapter 10], the developers reconsidered the conceptual model in light of the
desiderata and refined the architecture based on software design patterns but also on
constraints from the programming language Java and the base framework prefuse. The
most important differences are:
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• The TemporalObject class stores its data aspects not in a dedicated DataElement
class but via the attributes managed by its base class Tuple. This inheritance al-
lows to visually represent the data aspects in a prefuse Visualization without any
modifications specific to TimeBench.

• TemporalObjects and TemporalElements are not in an 1:n but in a m:n relation-
ship with their child objects. For example, the same instant object could be the end
of two interval objects (cp. e5 in Figure 4.3b). While Aigner [2006] modeled a tree
structure for these classes, TimeBench stores them in subclasses of ParentChild-
Graph, which is a directed graph with accessor methods to reflect parent and
child relationships.

• The offset of TemporalElements was discarded because it would add more com-
plexity than benefits.

• A GenericTemporalElements was implemented to allow more direct manipula-
tion of temporal aspects.

4.4. Import/Export Functions

While the code listings above demonstrated how TemporalObjects can be created with
Java code, a majority of usage scenarios requires that temporal data is loaded from an
external data source. TimeBench provides import functions for text files with comma-
separated values (Section 4.4.1) and calendars in iCalendar (Section 4.4.2). Furthermore
it can import and export time series data from the R Project (Section 4.4.3).

Additionally a data exchange format is needed that is capable to express the struc-
tural details of the TemporalDataset so that it can be exported and re-imported with-
out loss of information. Such an exchange format was built on top of GraphML (Sec-
tion 4.4.4).

4.4.1. Comma-Separated Values

Text files with comma-separated values (CSV) are a frequently used data source in vi-
sual analytics prototyping. However, there are many variations of the file formats such
as other delimiters instead of comma or different language-specific date formats. Fur-
thermore, it is necessary to specify time abstraction aspects such as the granularity or
the composition of TemporalElements. While the former could be substituted by a pre-
ceding data wrangling step (e.g., [Kandel et al., 2011]), the latter requires time-specific
metadata about the data source.
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The TimeBench class TextTableTemporalDatasetReader is capable to import a good
selection of temporal data from CSV. By default, it looks for the first column, for which
each value can be parsed as a Date object and creates an Instant primitive in the mil-
liseconds granularity from these Dates. All other columns are made available as data
columns of the TemporalDataset. For example, the CSV file shown in Listing B.1 can
be imported without metadata because the date is given in a standardized format.

TextTableTemporal
DatasetReader

TemporalData
ColumnSpecificationuses

Calendar TemporalObject
Encoding

TextTableFormat

StringGranularity

dataColumns

InstantEncoding IntervalEncoding

DateInstant
Encoding

StringInstant
Encoding

TwoString
InstantEncoding

Figure 4.6.: Metadata structure for importing temporal data from CSV text files by the
TextTableTemporalDatasetReader: A TemporalObject is created for each
line of the input file and each TemporalObjectEncoding with the given data
columns. The type of TemporalElement created depends on the subclass of
TemporalObjectEncoding. Currently, TimeBench provides three encodings
for Instant primitives and one for Interval primitives. All of them allow fur-
ther configuration.
The diagram depicts classes and their relations using the extended object-modeling technique [Gamma
et al., 1995; Heer and Agrawala, 2006]. The diagram is simplified and does not show all details.

To import data with regard of particular time abstractions or a varied file format,
TextTableTemporalDatasetReader can be configured using metadata in TemporalData-
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ColumnSpecification object. This metadata object is typically loaded from an XML file
using the Java Architecture for XML Binding (JAXB) framework [Fialli and Vajjhala,
2006]. Figure 4.6 shows its data structure in the extended object-modeling technique
and Appendix A lists the XML Schema. The metadata is specified as follows:

• One or more TemporalObjects are imported from each line of the CSV file de-
pending on how many TemporalObjectEncoding are specified. Each TemporalOb-
jectEncoding imports different columns for the time primitive and as data columns.

• How a time primitive is constructed from column values depends on the subclass
of TemporalObjectEncoding. Currently there are four encodings: (1) DateInstan-
tEncoding converts a automatically parsed Date object to an Instant of the given
Granularity. (2) StringInstantEncoding additionally specifies a datetime format
pattern for String to Date conversion. (3) TwoStringInstantEncoding builds a Date
object from a date column and a time column. It provides two format patterns.
(4) IntervalEncoding builds an Interval primitive from two Instant primitives that
are previously imported by one of the other encodings.

• The Calendar is specified at the top level; the Granularity for each TemporalOb-
jectEncoding.

• TextTableFormat specifies the delimiter and whether dates should be automati-
cally parsed using the underlying prefuse code. This parsing offer less control
over datetime format than TimeBench’s metadata and is subject to the language
settings at runtime.

Appendix B demonstrates one XML specification to import Instants from a non-standard
time format (Listing B.4) and another XML specification to import Intervals (Listing B.5).

4.4.2. iCalendar

The class ICalenderTemporalDatasetReader provides an import function for calendars
in iCalendar format. It has been developed by David Bauer during an internship with
support from the author.

4.4.3. R Project

The class RConnector provides bidirectional data exchange between TimeBench and the
R Project for Statistical Computing (R) [R Core Team, 2013]. In particular, it supports
the R classes ts and zoo. ts is a very simple class supporting only regularly sampled
time series. It is possible to time series in the Granularitys month, year, and decade and
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to export a time series in the Granularity month. With zoo irregularly sampled Instants
at the milliseconds Granularity can be imported and exported. The R class POSIXct
stores the temporal data.

4.4.4. GraphML as Exchange Format

The class GraphMLTemporalDatasetWriter can save a TemporalDataset into a GraphML
[Brandes et al., nd] file that maintains its internal graph structure. The class GraphML-
TemporalDatasetReader2 can load the GraphML file and recreate a TemporalDataset
with the same data in the same structure. GraphML [Brandes et al., nd] is based on
XML and its elements and attributes are defined by an XML Schema. This file format
can be used to exchange data between different Visual Analytics solutions based on
TimeBench. Since the file output conforms to the established GraphML file format, it
can also be used for data exchange with graph tools such as Gephi [Bastian et al., 2009].

In order to be saved as a GraphML graph, the TemporalDataset and its associated
TemporalElementStore, which are each structured as a directed acyclic graph, are trans-
formed into one directed acyclic graph. This transformation needs to follows several
conventions, so that it can be reversed:

• The GraphML id is build from the TemporalObject id prefixed with “o” or the
TemporalElement id prefixed with “e”. Other prefixes are not allowed.

• TemporalElements use the GraphML attributes _inf, _sup, _granularityID, _gran-
ularityContextID and _kind to store their internal data (cp. Table 4.1).

• TemporalObjects use GraphML attributes to store the data of their data columns.
Neither in the TemporalDataset nor in its GraphML transformation is a data col-
umn name allowed that starts with an underscore.

• Each TemporalObject node must have exactly one directed edge to a TemporalEle-
ment node that represents their temporal relation.

• Directed edges between two TemporalObject nodes or between two TemporalEle-
ment nodes represent composition (from child to parent) like in the internally
used ParentChildGraph.

The conventions guarantee that each GraphML file produced by TimeBench is valid
with respect to the GraphML XML Schema. Conversely, each valid GraphML file that
follows these convention can be loaded as a TemporalDataset. Listing 4.7 shows a

2GraphMLTemporalDatasetReader had initially been developed by Sascha Plessberger during an intern-
ship with support from the author and later refined by the author.
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Listing 4.7: GraphML representation of a TemporalObject that records a blood sugar
value (glucose = 90.0) at an Instant (the day June 8, 2011).

<graph id="temporalData" edgedefault="directed">

<node id="t2">

<data key="_inf">1307491200000</data>

<data key="_sup">1307577599999</data>

<data key="_granularityID">4</data>

<data key="_granularityContextID">32767</data>

<data key="_kind">2</data>

</node>

<node id="o0">

<data key="glucose">90.0</data>

</node>

<edge source="o0" target="t2" />

</graph>

minimal example of one TemporalObject and one Instant represented as two GraphML
nodes and one edge. A complete GraphML file with prologue and the declaration of
GraphML attributes can be found in Appendix C.

However, the generic GraphML format has the limitation that a GraphML attribute
can only contain a number, a boolean, or a string. While this is sufficient for some Vi-
sual Analytics scenarios, other scenarios would require TemporalDatasets with a data
columns that stores a complex internal structure such as a linked list, a tree, or a map or
a data column that stores an application-specific data structure. There are two possible
workarounds: First, the data structure could be transformed into a string representa-
tion. Second, the GraphML schema could be extended to support this data structure.

4.5. Automated Analysis Operations

TimeBench’s data structures can be transformed, aggregated, or enriched by automated
analysis operations that are configured by user interaction. These operations can be
constructed based on either the Operator design pattern or the Expression design pat-
tern [Heer and Agrawala, 2006]. For both types of automated analysis operations,
TimeBench provides some core operations and can be extended further.

Operator The Operator pattern allows to “decompose visual data processing into a series
of composable operators, enabling flexible and reconfigurable visual mappings” [Heer
and Agrawala, 2006, p. 857]. In TimeBench it is realized by subclasses of the the
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prefuse class Action. While prefuse applies Actions only at the transition from
abstract data (e.g., Graph) to visually-enriched data (e.g., VisualGraph), it was
to possible employ Actions also to transform one instance of abstract data into
another.

The InterpolationIndexingAction is a novel operator that transforms the values
of a data column into values relative to an indexing point. Indexing is useful
to compare different time series at different value ranges [Aigner et al., 2011a]
and is often used together with horizon graphs [Reijner, 2008]. The operator uses
TimeBench’s data structure and internal indices to efficiently lookup TemporalOb-
jects near the indexing point and interpolates the value.

The class ColumnToRowsTemporalDataTransformation is an operator that trans-
forms a pivot table into a sequence of key/value pairs. This transformation is
frequently needed when working with public datasets.

The GranularityAggregationAction is an operator that is particularly based on
the time abstraction aspects supported by TimeBench.3 It is configured with a
sequence of Granularitys and rearranges the TemporalObjects of the input data
set into the terminal nodes of a tree. The branches and non-terminals nodes are
built based on granules of the configured Granularitys. Quantitative data of the
TemporalObjects is aggregated based on a configurable aggregation method such
as mean or sum. For example, from a daily time series of energy consumption
could be transformed into a tree with a root TemporalObject that has the overall
sum of energy consumed as a value, its children could be TemporalObjects for
each month with the monthly sums of consumption, and their children would be
TemporalObjects for the days of the month, which are copied from the original
time series. The GranularityAggregationAction can be applied for many scenar-
ios involving temporal aggregation, for example for the visualization technique
GROOVE [Lammarsch et al., 2009].

Furthermore, an operator can be built using the RConnector to transform the data
by algorithms implemented in a R package.

Expression This pattern “provide[s] an expression language for data processing tasks such
as specifying queries and computing derived values” [Heer and Agrawala, 2006, p. 856].
TimeBench extends the expression language of prefuse with various expressions
that leverage concepts of TimeBench’s data structure and calendars. For example,
with the AnchoredPredicate one can filter all the dataset to only include anchored

3GranularityAggregationAction was designed and implemented by Tim Lammarsch with support from
the author.
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TemporalElements. Other predicates allow filtering by primitive type, granular-
ity, and context granularity.

4.6. Visual Representation and Interaction Techniques

Since TimeBench extends the polylithic framework prefuse, there are multiple possible
approaches for interactive visual representation of a TemporalDataset.

• The TemporalDataset is an extension of the prefuse Graph. Therefore it can be
added to any prefuse visualization either as a Graph or as the Table of nodes. Like-
wise, data aspects are available as attributes of the nodes using generic prefuse
mechanisms. As mentioned above, a TemporalDataset with two data columns
for glucose and cholesterol could be represented in a scatter plot. For this, the
prefuse ShapeRenderer and two instances of the prefuse class AxisLayout would
be used. A details-on-demand interaction for the scatter plot could be provided
using the prefuse class ToolTipControl. After loading the TemporalDataset, no
TimeBench code would be necessary.

• The TimeBench operator TimeAxisLayout lays out marks for TemporalObjects
along a linear time axis. The class IntervalAxisLayout, which is a subclass of
TimeAxisLayout, not only positions the mark for a TemporalObject but also sets
its size to correspond with its temporal extent. These layouts are bundled with
a group of classes that provide gridlines and interaction, which are based on the
TimeVis framework by Peter Weishapl [2007] and earlier developments for the
VisuExplore design study [Rind et al., 2011]. The class TimeScalePainter draws
gridlines and axis labels using Granularity-based time units so that they fit to the
current zoom level and screen resolution.

To allow for interaction, an AdvancedTimeScale object needs to be set to the ear-
liest and latest possible time and the prefuse class Display needs to be substi-
tuted with its subclass TimeAxisDisplay. This TimeAxisDisplay can be interac-
tively panned and zoomed either by dragging the mouse (RangePanControl and
RangeZoomControl) or by pushing toolbar buttons (RangePanAction and Range-
ZoomAction). A MouseTracker shows a support line and the timepoint at the
current mouse position.

Figure 4.7 illustrates TimeAxisLayout and its bundled functionality in a simple
dot plot demo. To illustrate how these classes are embedded, the Java source
code of this demo can be found in Appendix D.
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Figure 4.7.: Dot plot implemented with TimeAxisLayout

• The operators and expressions presented above can be used to transform the Tem-
poralDataset into another data structure that lends itself better for visual repre-
sentation and interaction.

• Finally, it is possible to create custom operators that are specific to TimeBench’s
data structure. For example, ThemeRiverLayout turns a TemporalDataset com-
prised of several time series into a group of polygons that will be rendered as a
stacked area chart [Havre et al., 2002].

4.7. Summary

Together, the arrangement of the concepts and classes presented above results in TimeBench,
a software framework for Visual Analytics of time-oriented data. It allows for a large
degree of expressiveness of its calendar package, its data structure, and its set of opera-
tions in extension of prefuse. At the same time, it aims for comprehensibility based on
its conceptual design.

TimeBench is free and open-source software under a BSD 2-Clause license and avail-
able at GitHub4 It is implemented in the Java programming language, version 1.6 and

4https://github.com/ieg-vienna/TimeBench, last accessed Oct 29, 2017
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extends the visualization framework prefuse [Heer et al., 2005]. It has the additional
dependencies of Apache Commons Lang 3.0,5 Apache log4j 1.2,6 iCal4j 1.0.4,7 and of
the Java/R Interface (JRI), which is part of rJava.8

5https://commons.apache.org/proper/commons-lang/, last accessed Nov 2, 2017
6https://logging.apache.org/log4j/1.2/, last accessed Nov 2, 2017
7https://github.com/ical4j/ical4j, last accessed Nov 2, 2017
8https://www.rforge.net/rJava/, last accessed Nov 2, 2017
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5
Evaluation

Development with a Visual Analytics software framework like TimeBench has some of
the same characteristics like data analysis with an application domain-specific Visual
Analytics solution: First, the number of possible users – developers respectively ana-
lysts with domain expertise – is much lower than for a usability study on an consumer
e-commerce website. Second, their work typically lasts over longer stretches of time
and involves many intertwined steps. These characteristics limit the repertoire of eval-
uation methods, because it is hard to find representative tasks for a laboratory study.
Therefore, qualitative results inspection [Isenberg et al., 2013] is a widely used evalua-
tion method in Visual Analytics. This inspection demonstrates that the solution is capa-
ble to achieve the expected results but does not test with users. In this spirit, Section 5.1
presents how TimeBench can be used to replicate two complex visualization techniques
for time-oriented data. Another popular evaluation method is the case study with a
small number of users in a realistic field setting [Shneiderman and Plaisant, 2006]. Sec-
tion 5.2 presents two case studies of development projects that applied TimeBench. In
addition, Section 5.3 surveys community adoption of TimeBench.

5.1. Demonstrations of Expressiveness

The software repository for TimeBench includes a collection of demonstration applica-
tions. On the one hand, these applications showcase the expressiveness of TimeBench.
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On the other hand, they can serve as training material for developers starting to use
TimeBench. Next, two of them will be introduced in more detail.

5.1.1. Horizon Graph

The horizon graph is a space-efficient visualization technique for multi-variate time se-
ries. It was introduced by Reijner [2008] as a variant of two-tone pseudo coloring [Saito
et al., 2005] and has received considerable attention in the visualization community
[Heer et al., 2009; Javed et al., 2010; Perin et al., 2013; Federico et al., 2014].

Figure 5.1.: Horizon graph implemented with TimeBench

Figure 5.1 shows the TimeBench implementation of the horizon graph technique. It
was built as follows: The data are 20 time series with a length of 168 months and contain
public health about 20 cities data from the NMMAPS study [Peng and Welty, 2004].
First, the data is loaded from the CSV file as Instants of the Granularity month. Then it
is transformed from a pivot table to city/value pairs. The class HorizonGraphAction and
some other specialized operators transform the time series into colored polygons. The
horizontal position of the polygon’s control points is controlled by a TimeAxisLayout.
Finally, the rendered polygons result in a horizon graph. Additionally, control points
that are represent a months are rendered as a small grey dot. Since, the cities’ values are
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in different value ranges, the InterpolationIndexingAction transforms them to relative
values. An IndexingControl allows the use to select a month as the indexing point by
clicking on one of its grey control points. Furthermore, the TimeAxisLayout allows for
interactive zooming and panning.

5.1.2. PlanningLines

The PlanningLines technique was devised by Aigner et al. [2005] to represent temporal
indeterminacy in clinical guidelines and protocols. It extends the notation of a Gantt
chart by anchoring tasks to indeterminate intervals that are visually represented using
the glyph depicted in Figure 3.3.

Figure 5.2.: PlanningLines implemented with TimeBench

Figure 5.2 depicts the TimeBench implementation of the PlanningLines technique. It
was realized as follows: First, 20 tasks of random indeterminate duration are created
and scheduled using a simple forward planning algorithm. Dependencies between
tasks are represented as directed edges between TemporalObjects and are shown as
thin black lines. For each TemporalObject five marks will be created that are organized
by prefuse in different groups: the minimum and the maximum duration will be ren-
dered as rectangles of different color, the start and the end interval will be rendered as
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black polygons, and the tasks title will be displayed as a label below the glyph. Four
instances of IntervalAxisLayout set the x-position and width of the glyph parts. For
this, the IntervalAxisLayout can be configured to use a specific child primitive its lay-
out. For example, the layout for the black polygon mark representing the start interval
is calculated based on the first child of the AnchoredTemporalElement associated to
the TemporalObject. The task labels are positioned relative to this mark of the start in-
terval. Since all IntervalAxisLayout instances share the same AdvancedTimeScale, the
PlanningLines chart can be zoomed and panned interactively.

5.2. Case Studies of Usage in Development Projects

To investigate how TimeBench can be deployed in the realistic setting of Visual Analyt-
ics prototyping, another Master student and a group of two high school students were
invited to base the implementation of their final theses on TimeBench.

5.2.1. Model Selection in Time Series Analysis

TiMoVA [Bögl, 2013; Bögl et al., 2013] is visual analytics solution for model selection
in time series analysis (Figure 5.3). It employs TimeBench’s CSV import to load time
series data from text files and displays them in a zoomable line plot (top left). This line
plot can also be used to select a segment of the time series for analysis. Time series anal-
ysis and other statistical computations are performed using the R Project for Statistical
Computing (R) [R Core Team, 2013]. The data exchange between R and the Java-based
visual interface uses TimeBench’s RConnector. In particular, a seasonal ARIMA model
[Shumway and Stoffer, 2011] is fitted to the time series and complexity of the plots can
be interactively adjusted using the plots in the bottom left. Diagnostic plots in the right
half of the visual interface allow the inspection of the residuals (i.e., difference between
the data and the model’s output). An extension of TiMoVA [Bögl et al., 2015] includes
the prediction of time series values as an additional way to assess the quality of a time
series model.

TiMoVA was developed within the scope of M.Sc. thesis in Medical Informatics. The
student had no prior experience with TimeBench or prefuse. He could reuse code from
the demonstration applications for the import from text files and the interactive line
plot based on TimeAxisLayout. Instead of reimplementing these standard features, he
could focus on making statistical methods smoothly accessible in an interactive visual
interface. Thus, he successfully employed TimeBench without needing to concern him-
self with details of its data structures or calendars.
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Figure 5.3.: TiMoVA prototype [Bögl et al., 2013]: It loads and visualizes time series
based on TimeBench and connects to R for time series analysis. c© 2013 IEEE

5.2.2. Exploration of Irregularly Sampled Data

If time-oriented data is irregularly distributed over a large portion of time, its explo-
ration gets more complicated as data are more dense in some parts while other stretches
of time are empty without any data. To improve the user experience, two variants
of a linear time axis mapping were developed [Bauer and Pleßberger, 2013]: For the
first variant, the mapping of between time and display space is distorted based on the
density of data, which is computed using the GranularityAggregationAction. The sec-
ond variant compresses the time scale at gaps without any data that are longer than a
threshold. The user can interactively configure both variants by setting the minimum
gaps length and strength of distortion.

This work was conducted as the final project of two high school students special-
ized in information technology. The student were involved in the development of
TimeBench during a one-month internship with the author’s research group. Before
that, they had no experience of Java or prefuse because their curriculum focused on C#.
For their school they reported a total development time of 165 person hours (h), 10 h
for setup on basis of a demo, 109 h for the distorted time scale, and 46 h for the time
scale with gaps. Within this project, the students succeeded in independently extending
components of TimeBench.
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5.3. Community Adoption

An article about the TimeBench framework was published in the IEEE Transactions on
Visualization and Computer Graphics [Rind et al., 2013]. As of completion of this thesis,
this article has 23 citations in Google Scholar.1 Besides the case studies presented above,
at least two published projects applied TimeBench: Lammarsch et al. [2014] developed
a novel visual analytics approach for pattern discovery based on temporal predicates
between events of interest. [Amor-Amorós et al., 2017] used it in a design study to
support aerial image georeferencing in order to identify unexploded bombs.

5.4. Summary

While the adoption of TimeBench by more projects could be desired, the demonstra-
tions and case studies show that TimeBench is a capable basis for complex Visual Ana-
lytics solutions and provides good developer accessibility.

1https://scholar.google.at/scholar?cites=14703250657204117914&as_sdt=2005&sciodt=0,5&hl=de, last
accessed Nov 12, 2017
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6
Discussion

The design decisions leading to the software architecture and prototypical implemen-
tation of TimeBench were guided by the desiderata established in Chapter 3. The pre-
vious chapter reported collected evidence about how well TimeBench addresses these
desiderata. The fulfillment of desiderata will be discussed next. Afterwards, some as-
pects of TimeBench will be critically reflected.

6.1. Fulfillment of Desiderata

TimeBench aims to address three desiderata on expressiveness regarding time abstrac-
tion and three desiderata on efficiency for software development. The desiderata were
prioritized in order listed below with expressiveness having a higher priority than effi-
ciency.

Granularity & calendars The calendar package of TimeBench provides a unified pro-
gramming interface for different calendars and different calendar backends. It
provides classes for Granules and Granularitys and can express particular gran-
ules such as ‘the day November 2, 2017’, general granules such as ‘the first day of
a week’, or general granules in context such as ‘every Monday in October 2017’.
Granules are directly connected to the data structures as for example an Instants
can be create from a Granule. Furthermore, the calendar package provides the
basis for human-readable axis labels in the widely used TimeAxisLayout and for
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the GranularityAggregationAction, which was used for example in the case study
to distort the display of irregularly sampled data (Section 5.2.2).

Time primitives The class TemporalElementStore provides an abstraction layer be-
tween application data associated to TemporalObjects and time primitives. This
makes it possible to support the three widely used primitives Instant, Interval,
and Span. It also allows the definition of custom primitives that can be composed
of a hierarchy of primitives. TimeBench provides an object-oriented program-
ming interface for primitives with subclasses of TemporalElement for each type
of primitive. TimeBench also provides an import function from text files with
comma-separated values that supports data anchored at Instants, Intervals, or
custom primitives by extension. The GraphML example listed in Appendix C
illustrates a heterogeneous time-oriented data set with different primitives in a
fictitious healthcare scenario. Furthermore, the PlanningLines example demon-
strates the extensibility of time primitives by implementing the indeterminate in-
terval as a composite of two Intervals and two Spans (Section 5.1.2).

Determinacy While determinacy of temporal data is a standard feature of many soft-
ware frameworks, TimeBench additionally supports three forms of indetermi-
nacy: (1) The indeterminate intervals implemented in the PlanningLines example
illustrate how TimeBench can capture indeterminacy explicitly as a time primi-
tives. (2) TimeBench anchors temporal data at the precision of a Granule. For
example, a TemporalObject can be anchored at an Instant of Granularity week,
whereas a simpler data structure might require an artificial milliseconds preci-
sion. (3) The general granules can specify partly determined temporal informa-
tion such as ‘on a Monday’ without fixing ‘which Monday’.

Common data structure TimeBench is constructed around a the data structure pre-
sented in Section 4.3. The same underlying structure could be used for all the
examples presented in this work and the demonstration applications packaged
with the source code. This common data structure is enabled by relational data
tables that can be accessed via extensible classes that act as Proxy Tuples [Heer
and Agrawala, 2006].

Developer accessibility While TimeBench needs to introduce some complexity in
order to support the desiderata listed above, its architecture was designed with
a focus on developer accessibility: (1) The data structures are built based on a
simple conceptual model described in Section 4.3.1. (2) The Proxy Tuple design
pattern [Heer and Agrawala, 2006] allows access to temporal data in an object-
oriented manner. (3) Calendar operations, time primitives, and datasets are built
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as three nested layers. Developers of a new TimeBench component will typically
only need to manipulate objects from one or two layers to build the needed func-
tionality. Developer using existing TimeBench components will typically not be
concerned with internal layers. This is illustrated well by the two case studies
presented in Section 5.2. (4) TimeBench does not introduce a completely new
software framework but extends prefuse [Heer et al., 2005]. (5) The demonstra-
tion applications packaged with the source code provide an novice TimeBench
developers a quick start to learn and experiment with its components.

Runtime efficiency Again, the constraints imposed by other desiderata limit the op-
tions for optimizing runtime efficiency. Within these limits, TimeBench builds it
data structures on the well-tested relational data tables of prefuse [Heer et al.,
2005] that employ the Data Column design pattern [Heer and Agrawala, 2006]
for efficient storage. In addition, the temporal extent (infimum and supremum)
of anchored time primitives such as Instants is stored in two columns of type
long. Furthermore, the interval-based lookup of TemporalObjects and various
other lookups are optimized using red-black trees [Cormen et al., 2001]. The run-
time performance of TimeBench can be estimated by using the demonstration
applications. For example, the horizon graph can be interactively zoomed and
re-indexed smoothly with a data size of 20 × 12 × 14 = 3, 360 TemporalObjects.

In summary, it can be concluded that TimeBench addresses the desiderata well.

6.2. Critical Reflection

Beyond the desiderata discussed above, some questions arose during the development
of TimeBench and will be critically reflected below.

Visual Analytics One could question whether TimeBench is a software framework
for Visual Analytics or for Information Visualization. On the one hand, its base frame-
work prefuse [Heer et al., 2005] and its related work are rather from known as Informa-
tion Visualization frameworks. Furthermore, the majority of demonstration applica-
tions are reimplementations of classical Information Visualization techniques like hori-
zon graph or stream graph. On the other hand, time plays a very important role in Vi-
sual Analytics, which is demonstrated by the dedicated chapter on “Space and Time”
in the roadmap book edited by Keim et al. [2010]. TimeBench supports Visual Analytics
with time-oriented data not only by information methods but it also intertwines them
with automated analysis operations such as the GranularityAggregationAction (Sec-
tion 4.5). The TiMoVA [Bögl, 2013; Bögl et al., 2013] case study (Section 5.2.1) and the
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pattern discovery approach by Lammarsch et al. [2014] demonstrate how TimeBench
could be effectively employed for Visual Analytics.

Java In recent years, Java has lost popularity as a development platform to JavaScript-
based web applications. Current web browsers make it increasingly difficult to run
code developed in Java for stability and security reasons – neither Java applets nor
Java Web Start can be expected to be available by default. Due to these technical con-
straints and JavaScript being the primary programming language of many developers,
D3.js [Bostock et al., 2011] is now one of the most popular frameworks for visualization
prototyping. These devaluations of Java also affects TimeBench, which was primarily
intended for rapid prototyping in Visual Analytics research.

However Java is still in use for rich client user interfaces such as Eclipse,1 FreeMind,2

Cytoscape [Shannon et al., 2003], or Gephi [Bastian et al., 2009]. Likewise, it is still used
for Visual Analytics prototyping (e.g., [Janetzko et al., 2014; Wagner et al., 2017]).

In addition, web applications can interface via web services with Java code running
on a server. Thus, a TimeBench-based time analytics server would be possible. Fur-
thermore, given the increasing maturity of TypeScript,3 a typed extension of JavaScript
that compiles to JavaScript, reimplementing the conceptual design of TimeBench in
JavaScript and linking it the feature-rich D3.js framework would be a promising direc-
tion.

1http://www.eclipse.org/, last accessed Oct 29, 2017
2http://freemind.sourceforge.net/wiki/index.php/Main_Page, last accessed Oct 29, 2017
3https://www.typescriptlang.org/, last accessed Oct 29, 2017
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7
Conclusions

The starting point of this work was to better support Visual Analytics of time-oriented
data. In particular, for rapid prototyping in research projects, a specialized software
framework was needed. On the one hand, this framework should be expressive to sup-
port the time abstraction aspects of time-oriented data: granularity & calendars, time
primitives, and determinacy [Aigner et al., 2011b]. On the other hand, it should be ef-
ficient by supporting heterogeneous time-oriented data with a common data structure,
be accessible to developers, and efficient at runtime. Thus, this work tackled the main
research question: How can a software framework support Visual Analytics of time-oriented
data in an expressive and efficient way?

Answering this research question, this work proposes the software architecture and
prototypical implementation of TimeBench. In particular, this work focuses on the data
structures and import/export functions developed by its author.

Which data structure can manage time-oriented data that is linked to heterogeneous, hierar-
chically composed time primitives? TimeBench stores time-oriented data in two directed
acyclic graphs, one for TemporalObjects with application-specific attributes and one
for TemporalElements that capture the time abstraction aspects. Each TemporalOb-
ject is connected with exactly one TemporalElement, while a TemporalElement may
have zero, one, or multiple connected TemporalObjects. Directed graph edges rep-
resent composition and allow, e.g., an Interval to be composed of two Instants. These
data items can be manipulated using object-oriented programming, because TimeBench
applies the Proxy Tuple design pattern [Heer and Agrawala, 2006] to encapsulate the
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internal data structure. Internally, data are managed using the Data Column design
pattern as implemented in a prefuse Table [Heer et al., 2005].

How can text files with comma-separated values be annotated for configurable import of time-
oriented data? To get time-oriented data into TimeBench it provides a widely config-
urable importer from text files with comma-separated values. Custom datetime formats
can be specified and both instants and intervals are supported. Its configuration can be
loaded from an XML file. that is based on the XML Schema listed in Appendix A. Fur-
thermore, it provides a calendar importer from the iCalendar format, bidirectional data
exchange with two R packages for time series, and a GraphML-based data exchange
format.

Integrating these features with a calendar package, automated analysis operations,
and visual representation and interaction techniques, TimeBench results in an expres-
sive and efficient framework for Visual Analytics development. For its evaluation, two
complex visualization techniques were reimplemented as application examples. Fur-
thermore, two case studies observed one student project that applied TimeBench and
one student project that extended its visual representation support.

Future Work While TimeBench at its current state is a complete and useful software
framework that has already been practically applied, there are ample opportunities for
further research and development:

• The set of included operators for import/export, automated analysis operations,
visual representation techniques, and interaction techniques could be increased.
For example, an interactive spiral display [Weber et al., 2001] would support the
investigation of seasonal patterns.

• A larger set of demonstration applications would increase developer accessibil-
ity. Furthermore, stepwise tutorials targeting different development needs would
reduce hurdles for TimeBench novices even further.

• In addition to existing case studies and demonstration applications that each fo-
cus on one particular form of time-oriented data, large case study with heteroge-
neous data would demonstrate the added value of TimeBench more clearly. Such
a case study could for example be based on healthcare data [Aigner et al., 2012;
Rind et al., 2017].

• Finally, Lammarsch et al. [2011] envisioned an extended Visual Analytics frame-
work that would extends TimeBench with hypothesis and models about time-
oriented data. For this, additional metadata would be needed within the data
structure. Furthermore, a set of operators are needed so that these data and meta-
data can be effectively applied.
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7. Conclusions

All these development directions will contribute the Visual Analytics community by
providing better software infrastructure. TimeBench now is a solid starting point for
these endeavors.
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A
XML Schema for Importing CSV Data

Below, the complete XML schema for providing metadata to a text file with comma-
separated values is listed. The metadata comprises details on the data format and on
time abstractions and is described in detail in Section 4.4.1.

The XML schema was auto-generated from Java code and annotations using the Java
Architecture for XML Binding (JAXB) framework [Fialli and Vajjhala, 2006].

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>

<xs:schema version="1.0" xmlns:xs="http://www.w3.org/2001/XMLSchema">

<xs:element name="temporal-data-column-specifaction"

type="temporalDataColumnSpecification"/>

<xs:complexType name="temporalDataColumnSpecification">

<xs:sequence>

<xs:element name="calendar" type="xs:int"/>

<xs:element name="fail-on-illegal-rows" type="xs:boolean"/>

<xs:element name="encodings" minOccurs="0">

<xs:complexType>

<xs:sequence>

<xs:choice minOccurs="0" maxOccurs="unbounded">

<xs:element name="date-instant" type="dateInstantEncoding"/>

<xs:element name="string-instant" type="stringInstantEncoding"/>
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<xs:element name="two-string-instant"

type="twoStringInstantEncoding"/>

<xs:element name="interval" type="intervalEncoding"/>

</xs:choice>

</xs:sequence>

</xs:complexType>

</xs:element>

<xs:element name="text-table" type="textTableFormat" minOccurs="0"/>

</xs:sequence>

</xs:complexType>

<xs:complexType name="dateInstantEncoding">

<xs:complexContent>

<xs:extension base="instantEncoding">

<xs:sequence>

<xs:element name="temporal-column" type="xs:string"/>

</xs:sequence>

</xs:extension>

</xs:complexContent>

</xs:complexType>

<xs:complexType name="instantEncoding" abstract="true">

<xs:complexContent>

<xs:extension base="temporalObjectEncoding">

<xs:sequence/>

</xs:extension>

</xs:complexContent>

</xs:complexType>

<xs:complexType name="temporalObjectEncoding" abstract="true">

<xs:sequence>

<xs:element name="data-element" minOccurs="0">

<xs:complexType>

<xs:sequence>

<xs:element name="column" type="xs:string" minOccurs="0"

maxOccurs="unbounded"/>

</xs:sequence>

</xs:complexType>

</xs:element>

<xs:element name="granularity-id" type="xs:int"/>

<xs:element name="granularity-context-id" type="xs:int"/>

</xs:sequence>

<xs:attribute name="key" type="xs:string" use="required"/>

</xs:complexType>
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<xs:complexType name="stringInstantEncoding">

<xs:complexContent>

<xs:extension base="instantEncoding">

<xs:sequence>

<xs:element name="temporal-column" type="xs:string"/>

<xs:element name="date-time-pattern" type="xs:string" minOccurs="0"/>

<xs:element name="language" type="xs:string" minOccurs="0"/>

</xs:sequence>

</xs:extension>

</xs:complexContent>

</xs:complexType>

<xs:complexType name="twoStringInstantEncoding">

<xs:complexContent>

<xs:extension base="instantEncoding">

<xs:sequence>

<xs:element name="date-column" type="xs:string"/>

<xs:element name="time-column" type="xs:string"/>

<xs:element name="date-pattern" type="xs:string" minOccurs="0"/>

<xs:element name="time-pattern" type="xs:string" minOccurs="0"/>

<xs:element name="language" type="xs:string" minOccurs="0"/>

</xs:sequence>

</xs:extension>

</xs:complexContent>

</xs:complexType>

<xs:complexType name="intervalEncoding">

<xs:complexContent>

<xs:extension base="temporalObjectEncoding">

<xs:sequence>

<xs:element name="begin" type="xs:string" minOccurs="0"/>

<xs:element name="end" type="xs:string" minOccurs="0"/>

<xs:element name="span" type="xs:string" minOccurs="0"/>

</xs:sequence>

</xs:extension>

</xs:complexContent>

</xs:complexType>

<xs:complexType name="textTableFormat">

<xs:sequence>

<xs:element name="method" type="method"/>

<xs:element name="has-header" type="xs:boolean"/>

<xs:element name="parse-dates" type="xs:boolean"/>
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<xs:element name="delimiter-regex" type="xs:string" minOccurs="0"/>

</xs:sequence>

</xs:complexType>

<xs:simpleType name="method">

<xs:restriction base="xs:string">

<xs:enumeration value="csv"/>

<xs:enumeration value="regex-delimited"/>

</xs:restriction>

</xs:simpleType>

</xs:schema>
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B
Example Specifications for

Importing CSV Data

The listings below demonstrate how TimeBench can import three example text files
with comma-separated values containing instant (Listings B.1 and B.2) and interval
data (Listing B.3). TextTableTemporalDatasetReader uses metadata specified as shown
in Listing B.4 and Listing B.5. The metadata is described in detail in Section 4.4.1.

Listing B.1: Example CSV working in auto-detection mode.
date,value

1987-01-01,55

1987-01-02,73

1987-01-03,64

1987-01-04,57

1987-01-05,56

1987-01-06,65

1987-01-07,43

1987-01-08,69
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Listing B.2: Example CSV with Instant data.
date,value

11.4.2005 9:00,30.0

11.4.2005 9:05,27

11.4.2005 9:10,42

11.4.2005 9:15,38

11.4.2005 9:20,39

11.4.2005 9:25,29

11.4.2005 9:30,31

11.4.2005 9:35,29

11.4.2005 9:40,31

11.4.2005 9:45,37

11.4.2005 9:50,19

11.4.2005 9:55,34

11.4.2005 10:00,26

11.4.2005 10:05,26

11.4.2005 10:10,26

11.4.2005 10:15,39

11.4.2005 10:20,29

11.4.2005 10:25,25

11.4.2005 10:30,32

Listing B.3: Example CSV with Interval data.
begin,end,event,location

2016-10-23,2016-10-28,IEEE VIS,Baltimore

2015-10-24,2015-10-30,IEEE VIS,Chicago

2014-11-09,2014-11-14,IEEE VIS,Paris

2016-06-06,2016-06-10,EuroVis,Groningen

2015-05-25,2015-05-29,EuroVis,Cagliari

2014-06-09,2014-06-13,EuroVis,Swansea

2017-04-18,2017-04-21,PacificVis,Seoul

2016-04-19,2016-04-22,PacificVis,Taipei

2015-04-14,2015-04-17,PacificVis,Hangzhou

2014-03-04,2014-03-07,PacificVis,Yokohama
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Listing B.4: Example specification for importing the Instant data shown in Listing B.2.
<?xml version="1.0" encoding="UTF-8" standalone="yes"?>

<temporal-data-column-specifaction>

<calendar>0</calendar>

<fail-on-illegal-rows>true</fail-on-illegal-rows>

<encodings>

<string-instant key="date">

<data-element>

<column>value</column>

</data-element>

<granularity-id>0</granularity-id>

<granularity-context-id>1111111111</granularity-context-id>

<temporal-column>date</temporal-column>

<date-time-pattern>d.M.yyyy H:mm</date-time-pattern>

<language>de</language>

</string-instant>

</encodings>

<text-table>

<method>csv</method>

<has-header>true</has-header>

<parse-dates>false</parse-dates>

</text-table>

</temporal-data-column-specifaction>
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Listing B.5: Example specification for importing the Interval data shown in Listing B.3.
<?xml version="1.0" encoding="UTF-8" standalone="yes"?>

<temporal-data-column-specifaction>

<calendar>0</calendar>

<fail-on-illegal-rows>true</fail-on-illegal-rows>

<encodings>

<date-instant key="begin">

<granularity-id>4</granularity-id>

<granularity-context-id>1111111111</granularity-context-id>

<temporal-column>begin</temporal-column>

</date-instant>

<date-instant key="end">

<granularity-id>4</granularity-id>

<granularity-context-id>1111111111</granularity-context-id>

<temporal-column>end</temporal-column>

</date-instant>

<interval key="date">

<data-element>

<column>event</column>

<column>location</column>

</data-element>

<begin>begin</begin>

<end>end</end>

</interval>

</encodings>

<text-table>

<method>csv</method>

<has-header>true</has-header>

<parse-dates>true</parse-dates>

</text-table>

</temporal-data-column-specifaction>
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C
GraphML Example

The listing below shows a complete GraphML file (cp. Section 4.4.4) that stores a hetero-
geneous time-oriented dataset comprised of eight TemporalElements and seven Tem-
poralObjects in a fictitious healthcare scenario. Their structure is also depicted in Fig-
ure 4.3d on a conceptual level.

<?xml version="1.0" encoding="UTF-8"?>

<graphml xmlns="http://graphml.graphdrawing.org/xmlns"

xsi:schemaLocation="http://graphml.graphdrawing.org/xmlns

http://graphml.graphdrawing.org/xmlns/1.0/graphml.xsd"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

<key id="_inf" attr.name="_inf" attr.type="long" for="node" />

<key id="_sup" attr.name="_sup" attr.type="long" for="node" />

<key id="_granularityID" attr.name="_granularityID" attr.type="int"

for="node" />

<key id="_granularityContextID" attr.name="_granularityContextID"

attr.type="int" for="node" />

<key id="_kind" attr.name="_kind" attr.type="int" for="node" />

<key id="name" attr.name="name" attr.type="string" for="node" />

<key id="value" attr.name="value" attr.type="double" for="node" />

<graph id="temporalData" edgedefault="directed">

<node id="t0">

<data key="_inf">1304406702000</data>

<data key="_sup">1304406702999</data>
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<data key="_granularityID">1</data>

<data key="_granularityContextID">32767</data>

<data key="_kind">2</data>

</node>

<node id="t1">

<data key="_inf">1304294400000</data>

<data key="_sup">1304380799999</data>

<data key="_granularityID">4</data>

<data key="_granularityContextID">32767</data>

<data key="_kind">2</data>

</node>

<node id="t2">

<data key="_inf">1307491200000</data>

<data key="_sup">1307577599999</data>

<data key="_granularityID">4</data>

<data key="_granularityContextID">32767</data>

<data key="_kind">2</data>

</node>

<node id="t3">

<data key="_inf">1304294400000</data>

<data key="_sup">1307577599999</data>

<data key="_granularityID">4</data>

<data key="_granularityContextID">32767</data>

<data key="_kind">3</data>

</node>

<node id="t4">

<data key="_inf">23</data>

<data key="_sup">23</data>

<data key="_granularityID">4</data>

<data key="_granularityContextID">-1</data>

<data key="_kind">0</data>

</node>

<node id="t5">

<data key="_inf">1304294400000</data>

<data key="_sup">1306281599999</data>

<data key="_granularityID">4</data>

<data key="_granularityContextID">32767</data>

<data key="_kind">3</data>

</node>

<node id="t6">

<data key="_inf">1304406702000</data>

<data key="_sup">1307577599999</data>

<data key="_granularityID">4</data>

<data key="_granularityContextID">32767</data>
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<data key="_kind">1</data>

</node>

<node id="t7">

<data key="_inf">1304294400000</data>

<data key="_sup">1307577599999</data>

<data key="_granularityID">4</data>

<data key="_granularityContextID">32767</data>

<data key="_kind">1</data>

</node>

<node id="o0">

<data key="name">HbA1c</data>

<data key="value">8.5</data>

</node>

<node id="o1">

<data key="name">VZI</data>

<data key="value">12.0</data>

</node>

<node id="o2">

<data key="name">ALT</data>

<data key="value">1.5</data>

</node>

<node id="o3">

<data key="name">Misch</data>

<data key="value">1.0</data>

</node>

<node id="o4">

<data key="name">HbA1c</data>

<data key="value">7.2</data>

</node>

<node id="o5">

<data key="name">HbA1c</data>

<data key="value">7.75</data>

</node>

<node id="o6">

<data key="name">Insulin</data>

<data key="value">1.0</data>

</node>

<edge source="o0" target="t0" />

<edge source="o1" target="t3" />

<edge source="o2" target="t5" />

<edge source="o3" target="t5" />

<edge source="o4" target="t2" />

<edge source="o5" target="t6" />

<edge source="o6" target="t7" />
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<edge source="o0" target="o5" />

<edge source="o4" target="o5" />

<edge source="o1" target="o6" />

<edge source="o2" target="o6" />

<edge source="o3" target="o6" />

<edge source="t1" target="t3" />

<edge source="t2" target="t3" />

<edge source="t1" target="t5" />

<edge source="t4" target="t5" />

<edge source="t0" target="t6" />

<edge source="t2" target="t6" />

<edge source="t3" target="t7" />

<edge source="t5" target="t7" />

</graph>

</graphml>
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Dot Plot Example

The listing below shows the complete source code of the DotPlotDemo. This demo is a
very simple example of how TimeAxisLayout can be used.

package timeBench.demo.vis;

import ieg.prefuse.data.DataHelper;

import javax.swing.BorderFactory;

import javax.swing.event.ChangeEvent;

import javax.swing.event.ChangeListener;

import prefuse.Constants;

import prefuse.Visualization;

import prefuse.action.ActionList;

import prefuse.action.RepaintAction;

import prefuse.action.assignment.ColorAction;

import prefuse.action.assignment.ShapeAction;

import prefuse.action.layout.AxisLabelLayout;

import prefuse.action.layout.AxisLayout;

import prefuse.controls.ToolTipControl;

import prefuse.render.AxisRenderer;

import prefuse.render.DefaultRendererFactory;

import prefuse.render.ShapeRenderer;
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import prefuse.util.ColorLib;

import prefuse.visual.VisualItem;

import prefuse.visual.expression.InGroupPredicate;

import prefuse.visual.expression.VisiblePredicate;

import prefuse.visual.sort.ItemSorter;

import timeBench.action.layout.TimeAxisLayout;

import timeBench.action.layout.timescale.AdvancedTimeScale;

import timeBench.action.layout.timescale.RangeAdapter;

import timeBench.data.TemporalDataException;

import timeBench.data.TemporalDataset;

import timeBench.ui.TimeAxisDisplay;

import timeBench.util.DemoEnvironmentFactory;

/**

* Simple demo of a dot plot showing a numerical variable over time.

* @author Rind

*/

public class DotPlotDemo {

private static final String COL_DATA = "value";

private static final String GROUP_DATA = "data";

private static final String GROUP_AXIS_LABELS = "ylab";

/**

* @param args

* @throws TemporalDataException

*/

public static void main(String[] args) throws TemporalDataException {

TemporalDataset tmpds = DemoEnvironmentFactory

.generateRandomNumericalInstantData(100, COL_DATA);

DataHelper.printTable(System.out, tmpds.getNodeTable());

final Visualization vis = new Visualization();

final TimeAxisDisplay display = new TimeAxisDisplay(vis);

// display width must be set before the time scale

// otherwise the initial layout does not match the display width

display.setSize(700, 450);

// --------------------------------------------------------------------

// STEP 1: setup the visualized data & time scale

vis.addTable(GROUP_DATA, tmpds.getTemporalObjectTable());

long border = (tmpds.getSup() - tmpds.getInf()) / 20;
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final AdvancedTimeScale timeScale = new AdvancedTimeScale(

tmpds.getInf() - border, tmpds.getSup() + border,

display.getWidth() - 1);

AdvancedTimeScale overviewTimeScale = new AdvancedTimeScale(timeScale);

RangeAdapter rangeAdapter = new RangeAdapter(overviewTimeScale,

timeScale);

timeScale.setAdjustDateRangeOnResize(true);

timeScale.addChangeListener(new ChangeListener() {

public void stateChanged(ChangeEvent e) {

vis.run(DemoEnvironmentFactory.ACTION_UPDATE);

}

});

// --------------------------------------------------------------------

// STEP 2: set up renderers for the visual data

ShapeRenderer dotRenderer = new ShapeRenderer(8);

DefaultRendererFactory rf = new DefaultRendererFactory(dotRenderer);

rf.add(new InGroupPredicate(GROUP_AXIS_LABELS), new AxisRenderer(

Constants.FAR_LEFT, Constants.CENTER));

vis.setRendererFactory(rf);

// --------------------------------------------------------------------

// STEP 3: create actions to process the visual data

TimeAxisLayout time_axis = new TimeAxisLayout(GROUP_DATA, timeScale);

AxisLayout y_axis = new AxisLayout(GROUP_DATA, COL_DATA,

Constants.Y_AXIS,

VisiblePredicate.TRUE);

// add value axis labels and horizontal grid lines

AxisLabelLayout y_labels = new AxisLabelLayout(GROUP_AXIS_LABELS,

y_axis);

// color must be set -> otherwise nothing displayed

ColorAction color = new ColorAction(GROUP_DATA, VisualItem.FILLCOLOR,

ColorLib.rgb(100, 100, 255));

ShapeAction shape = new ShapeAction(GROUP_DATA,

Constants.SHAPE_ELLIPSE);

// runs on layout updates (e.g., window resize, pan)

ActionList update = new ActionList();
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update.add(time_axis);

update.add(y_axis);

update.add(y_labels);

update.add(new RepaintAction());

vis.putAction(DemoEnvironmentFactory.ACTION_UPDATE, update);

// runs once (at startup)

ActionList draw = new ActionList();

draw.add(update);

draw.add(color);

draw.add(shape);

draw.add(new RepaintAction());

vis.putAction(DemoEnvironmentFactory.ACTION_INIT, draw);

// --------------------------------------------------------------------

// STEP 4: set up a display and controls

// ensure there is space on left for tick mark label (FAR_LEFT setting)

display.setBorder(BorderFactory.createEmptyBorder(7, 25, 7, 0));

// ensure (horizontal) grid lines are in back of data items

display.setItemSorter(new ItemSorter() {

public int score(VisualItem item) {

int score = super.score(item);

if (item.isInGroup(GROUP_AXIS_LABELS))

score--;

return score;

}

});

// show value in tooltip

display.addControlListener(new ToolTipControl(COL_DATA));

// --------------------------------------------------------------------

// STEP 5: launching the visualization

DemoEnvironmentFactory env = new DemoEnvironmentFactory("dot plot");

env.setPaintWeekends(false);

env.show(display, rangeAdapter);

}

}
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