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Abstract

Cuprates—beyond the unconventional superconductivity—feature an extraordinarily rich
phase diagram, which has yet to be described in its full complexity. Among the various
distinct phases, the DC resistivity most characteristically changes its temperature (T )
dependence.

Notwithstanding, in 2015 novel experimental findings [1] by N. Barǐsić et al. have
revealed a surprising universal temperature behaviour. In particular, the ratio of the
DC resistivity over the Hall resistivity ρ/ρH a very clear T 2-dependence. This appears
universally for the pseudogap phase, the strange metal phase, and the Fermi liquid phase
across all hole-doping and temperature regimes, as well as in different compounds.

In our work, we analyzed a possible connection between the experimentally observed
quadratic T -dependence of ρ/ρH and the T -dependence of the electronic scattering rate.
Our numerical calculations are based on the two dimensional single-band Hubbard model
on a square lattice with next, 2nd next and 3rd next nearest neighbor hopping.

Due to the combination of low dimensionality and strong electronic correlations in
this system, non-local correlations are likely to provide important contributions to the
solution. On the basis of this consideration we employed the ladder dynamical vertex
approximation (DΓA) and the dual fermion (DF) theory, i.e. cutting edge many-body
algorithms, capable of including antiferromagnetic fluctualtions on all length scales.

The DΓA and DF results yield strongly momentum dependent single particle quan-
tities such as the electronic self-energy on the Matsubara axis. For the hole-dopings
δ = 0.1, 0.15 and 0.2 we have observed that the momentum dependence appears stronger
at small doping. To be more quantitative we approximated the scattering rate by two
methods:

First, we obtained the scattering rate by extracting the value of the imaginary part of
the self-energy at the Fermi level. To this end we performed an analytic continuation of
the Matsubara data by means of Padé approximation. Although the spectral function
gave rise to plausible trends, the analytic continuation fails to reveal the T -dependence
due to large uncertainties, which are intrinsic to the ill-defined problem of analytic
continuation.

Second, we approximated the spectral weight at the Fermi surface by means of the
single-particle Green’s function at the imaginary time point equal to half the inverse
temperature. In our case this could not be directly interpreted in terms of the scattering
rate, though.

Although we were not able to produce a stable prediction for the scattering rate
the DΓA results revealed two physically interesting results: (i) The spin susceptibility
shows commensurate and incommensurate fluctuations accompanied by a characteris-
tic T -dependence of the correlation length w.r.t. the doping level in the intermediate
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temperature regime. (ii) The self-energy on the Matsubara axis strongly suggests the
presence of a pseudogap as well as the absence of any universal behaviour w.r.t. different
doping or different temperature regimes.

We hence see the necessity to go beyond the single-particle scattering rate in order to
describe the experimentally observed T -dependence of ρ/ρH. In particular, we became
aware of expressions in the literature, which treat ρ/ρH within the linear response theory.
In this work, we merely sketch them as a possible preparation for future studies in terms
of the charge susceptibility.
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Kurzfassung

Kuprate besitzen, neben der unkonventionellen Supraleitung, ein außerordentlich viel-
seitiges Phasendiagram, das bislang nicht in seiner vollständigen Form beschrieben wer-
den konnte. Innerhalb der unterschiedlichen Phasen weist insbesondere der Widerstand
des Gleichstroms kennzeichnende Temperaturabhängigkeiten auf.

Gleichwohl legten aktuelle experimentelle Ergebnisse [1] von N. Barǐsić et al. eine
unerwartet einheitliche Temperaturabhängigkeit dar. Eingehend handelt es sich um
eine quadratische Temperaturabhängigkeit des Verhältnisses des Widerstandes bei Gle-
ichstrom und des Hall-Widerstandes ρ/ρH. Diese tritt für jedwege Lochkonzentration
und jeglichen Temperaturbereich gleichsam auf, sofern das System sich innerhalb der
Phase der Pseudo-Energielücke, der seltsamen Metallphase oder der Fermiflüssigkeits-
phase befindet.

In der vorliegenden Arbeit, haben wir die Möglichkeit eines Zusammenhanges der ex-
perimentell festgestellten quadratischen Temperaturabhängigkeit von ρ/ρH und der Tem-
peraturabhängigkeit der elektronische Streurate untersucht. Unsere numerischen Ergeb-
nisse basieren auf dem Ein-band Hubbard Model für ein zweidimensionales quadratisches
Gitter mit Nächsten-nachbar-, Zweit- und Drittnächstennachbarhüpfen.

Aufgrund der Kombination aus Niederdimensionalität und starken elektronischen Kor-
relationen innerhalb des Systemes, ist es naheliegend, dass nicht-lokale Korrelationen von
hoher Bedeutung für die Lösung sind. Aus diesem Umstand heraus verwenden wir die
Leiterversion der dynamischen Vertexapproximation (DΓA) und die Theorie der Du-
alfermionen (DF), und somit führende Algorithmen im Bereich der Vielteilchenphysik,
um antiferromagnetische Fluktuationen jeder Größe zu berücksichtigen.

Die DΓA und DF Ergebnisse ergeben eine starke Impulsabhängigkeit der Einteilchen
Größen auf der Matsubara-Achse. Für die betrachteten Lochkonzentrationen von δ =
0.1, 0.15 und 0.2 ist die Impulsabhängigkeit für kleinere Konzentrationen größer. Die
Streurate wird auf zwei Arten abgeschätzt:

Einerseits bestimmen wir die Streurate durch Bestimmung des Imaginärteils der Selbst-
energie am Ferminiveau. Dafür wurde eine analytische Fortsetzung der Masubara-Daten
mithilfe von Padé Approximation durchgeführt. Obwohl die Spektralfunktion plausi-
ble Tendenzen gezeigt hat, hat die analytische Fortsetzung aufgrund der dem Prob-
lem intrinsischen Ünbestimmtheit zu große Unsicherheiten geliefert, um eine Temperat-
urabhängigkeit zu bestimmen.

Andererseits, haben wir das spektrale Gewicht auf der Fermifläche mithilfe der Einteil-
chen-Green Funktion am Punkt der Imagin̈ıarzeit gleich der Hälfte der inversen Tem-
peratur bestimmt. Dieses kann hier jedoch nicht in Form der Streurate interpretiert
werden.
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Obwohl es uns nicht möglich war eine stabile Vorhersage für die Streurate zu tref-
fen, liefern die DΓA Resultate zwei physikalisch interessante Ergebnisse: (i) Die Spin-
suszeptibilität zeigt Kommensurabilität und Inkommensurabilität begleitet durch eine
kennzeichnende Temperaturabhängigkeiten der Korrelationslaänge bzgl. der Dotierung.
(ii) Die Selbstenergie gegeben auf der Matsubara-Achse deutet stark auf die Anwesen-
heit der Pseudo-Energielucke hin, und ebenso die Abwesenheit jeglichen universellen
Verhaltens weder bzgl. der der Dotierung noch des Temperaturbereiches.

Wir sehen daher die Notwendigkeit eine umfassendere Beschreibung als die Einteilchen-
streurate aufzubauen, um die experimentell beobachtete Temperaturabhängigkeit von
ρ/ρH zu beschreiben. Im Speziellen haben wir in der Literatur Ausdrücke ausgemacht,
welche ρ/ρH innerhalb der linearen Antworttheorie behandeln. In der vorliegenden Ar-
beit wird lediglich die Vorbereitung für eine eingehende kommende Studie, welche auf
die Ladungssuszeptibilität eingeht, präsentiert.
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1. Introduction

Gut Ding braucht Weile.

Volksmund

Superconductivity (SC) has been driving advances in condensed matter physics for
decades. At the beginning of the 20th century, the first superconductors were discovered
[2]. These materials have two main properties below a critical temperature Tc: Zero
electric resistivity and they expel magnetic field lines [3]. These properties make these
materials both, fundamentally and technically appealing. The first samples featuring
SC were simple metals with Tc below 10 K. The following decades revealed more metals
and metallic alloys with increasing Tc up to almost 30 K. Clearly, most of the desired
technological or commercial application remained far out of reach, and at the same time,
so did an acceptable explanation of the phenomenon.

Not until 46 years after the discovery of SC, the well-known BCS theory [4–7] was
established. In this theory J. Bardeen, L. N. Cooper and R. Schrieffer successfully
described the microscopic mechanism in metals and metallic alloys, which we now call
conventional SC. Here, an arbitrarily small attractive interaction between electrons leads
to the formation of Cooper pairs. Electronic states close to the Fermi level become in-
stable and create pairs of opposite momentum, which act as Bosons. These Bosons form
a Bose-Einstein condensate at the Fermi surface, while opening a gap in the excitation
spectrum.

The goal to find SC at room temperature was still unattainable. Another three decades
passed before the first unconventional superconductor brought a slight twist. In 1986 J.
G. Bednorz and K. A. Mueller discovered a lanthanum and copper oxide compound [8],
which becomes superconducting upon doping with barium. At that point the copper
age of SC started. Many copper oxide-based materials, that are now known as cuprates,
were discovered to display SC upon doping. The value of Tc quickly rose up to 135 K.
Even to this day, cuprates classify as high temperature superconductors (HTSCs). The
vague definition of HTSCs addresses materials with Tc roughly above 40 K. It is often
used as a synonym for unconventional superconductors. However, unconventional SC in
fact refers to all superconducting mechanisms that are not understandable within the
BCS theory.

It has been 31 years since their discovery and we remain in anticipation of a theory
that explains the complexity of HTSCs. In particular, the very different phases found in
cuprates demand better understanding. Although SC may be characteristic of the most
desirable phase, other phases in cuprates intrigue by means of nontrivial fluctuations. In
the subsequent section, we briefly explore the extent of their phenomenology. Thereafter
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1. Introduction

we want to highlight novel experimental findings that shaped the onset of this work. In
the present scope the electronic scattering rate is investigated by means of a model
generally aimed to represent cuprates. The ansatz and outline in the end of this chapter
offer more insight with respect to the employed model and methods.

1.1. Brief phenomenology of cuprates

Cuprates are a class of materials that consist of copper-oxide (CuO2) planes. The
electronic properties that arise from these quasi-two dimensional planes dominate the
physics of cuprates. In this section, we want to recall commonalities among cuprates
and explore what features are characteristic of a cuprate phase diagram. However to
grasp the amount of material that belong to the class of cuprates, it seems necessary to
mention some details with respect to the classification of cuprate compounds.

The CuO2-planes are embedded in buffer layers that can consist of various elements.
A first categorization of cuprates is often made in terms of the elements that appear in
these buffer layers. For instance, in the present work we will mainly refer to mercury
based compounds, where the buffer layer is HgOδ. δ is an oxygen induced hole-doping.
Moreover, the unit cell of a compound may consist of one or multiple layers of CuO2-
planes which are separated by an additional ion, such as Ca in the case of Hg-based
compounds. The electronic structure of distinct CuO2-planes inside one unit cell couple
weakly1 and slightly change the electronic response. Therefore, it is most common to
clarify two aspects, when reporting about one type of cuprate: Firstly, the basis element
in the buffer layer, and secondly, the amount of CuO2-layers in one unit cell.

Let us briefly introduce the phase diagram of cuprates, which is shown in Figure 1.1.
Along, we will mention some experimental observations that are common to all com-
pounds.

The parent compound2 is an antiferromagnetic insulator (AF) below the Neèl temper-
ature TN. This phase seems to be well-understood in terms of [10] an antiferromagnetic
charge transfer insulators. This is a specific case of the well-known Mott insulator,
where the conducting band is split into upper and lower Hubbard band due to strong
electronic correlations. A charge transfer insulator features a filled band in between the
Hubbard bands. Nevertheless the central point w.r.t. experimental observations of the
parent compound is represented by the localization of spins in a checkerboard manner.

A small doping to either hole or electron abundance leads to a rapid decrease of TN.
The mentioned filled band in between the Hubbard bands leads to an inherent particle-
hole asymmetry. This immediately reflects in the fact that the antiferromagnetic dome
is more robust to electron doping than hole doping.

Furthermore, on both sides of the antiferromagnetic phase a superconducting dome
(SC) emerges below a critical temperature Tc. The superconducting phase features the

1High-energy electron spectroscopy (EELS and XAS) demonstrated the quasi two-dimensional nature
[9] of the system by means of a polarization analysis. It showed that only a small fraction of the
spectra is due to Opz and Cu3d3z2−r2 states.

2The material without doping is called parent compound.
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1. Introduction

Figure 1.1.: Prototypical phase diagram of cuprates. The left and right hand side corre-
spond to hole and electron doping, respectively. The phases shown are the
antiferromagnetic insulator (AF), the superconducting dome (SC), a pseu-
dogap region (PG), a strange metal phase (SM), as well as the Fermi liquid
regime (FL).

basic properties of superconductors: Zero resistivity, the Meissner Effect, the Josephson
effect, the isotope effect, an anomalous specific heat capacity and abnormal infrared elec-
tromagnetic absorption. A direct measurement of the flux quantum (hc/2e) has shown
that Cooper pairs with charge 2e occur and the superconducting gap was unambiguously
detected via tunneling experiments [11]. In contrast to known conventional supercon-
ductors, in the case of cuprates angle-resolved photoemission spectroscopy (ARPES) [12]
captured an anisotropic superconducting gap. The superconducting gap function has a
dx2−y2-type symmetry with nodes on the Fermi surface in the direction of k = (±π,±π).
At this so-called nodal point the superconducting gap function is zero and changes its
sign.

The superconducting dome appears in a wider range of doping and features a higher
value for Tc in the hole-doped case. This roughly serves as a motivation to continue our
discussion on the hole-doped side of the phase diagram. Note, that the doping concen-
tration that features the maximum of Tc is called optimal doping. It is approximately at
15% hole concentration. The region of lower doping is the so-called underdoped regime,
while upon higher doping the overdoped regime is entered.

The normal state above the superconducting dome features an unexpected amount
of peculiar phases. The most mentioned phase is the pseudogap phase (PG) located
in the underdoped regime. The most characteristic property of the pseudogap phase
is the suppression of spectral weight on specific parts of the Fermi surface. ARPES
measurments prominently show arcs at the nodal point, while a spectral gap forms
towards the boundary of the first Brillouin zone. The point closest to the boundary,
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1. Introduction

which is furthest from the nodal point, is called anti-nodal point. The pseudogap phase
is entered below a crossover temperature T ∗ and can only be called phase to a certain
extend. Within this region there is experimental evidence for a multitude of fluctuation,
such as stripes emerging due to charge density waves as well as a changing temperature
dependence of transport coefficients in different parts. This very rich and different
phenomenology makes it somewhat troublesome to refer to it as a single phase.

Directly above the optimal doping a strange metal phase (SM) emerges in a funnel-
shaped way up to high temperatures. The main characteristic of this regime is an
unconventional temperature dependency of transport coefficients. This is often referred
to as non-Fermi liquid like behaviour or bad metal, as it cannot be easily interpreted in
terms of a Fermi liquid mass renormalized picture. The shape of this phase motivated
theoretical discussions about a hidden quantum critical point [13], however in the present
work this path is not explored.

Finally, upon inducing a large hole concentration a Fermi Liquid phase (FL) is re-
covered. This essentially refers to the fact that a normal metallic behaviour is restored.
From the viewpoint of strongly correlated electron systems we can easily understand
this as a result of diluting the system. Thus, electronic correlation effects loose their
influence.

Hitherto, the phase diagram shown in Figure 1.1 has been theoretically described only
by focusing on single specific regions. Moreover, experimental findings continue to refine
nuances in the phenomenology of the appearing phases. These details in observation are
not only derived from contributions of specific compounds as we will neatly see in the
subsequent section.

1.2. Novel experimental findings

In the previous section, we have briefly reviewed the discovery of superconducting mate-
rials and in particular copper-based superconductors, so-called cuprates. Subsequently,
we discussed the most striking phenomenology of cuprates and mentioned that, despite
many approaches, no complete theory for this class of materials has been formulated
yet.
Very recently, novel experimental findings are promising to give new insight. The re-
markable feature is, that the observed properties are compound and doping independent.
In other words, phases that otherwise look very distinct and are only well-described by
fundamentally different models, would be characterized by one single property, unique
in the entire phase diagram.

In the experiment [1], N. Barǐsić et al. have measured the DC resistivity and the
Hall coefficient of the compound HgBa2CuO4+δ with doping (δ). In Chapter 2, we will
elaborate on the structure of the compound, while in the following we briefly illustrate the
corresponding experimental measurements, before discussing the experimental results.

I Hall experiment
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1. Introduction

Figure 1.2.: Hall experiment in the Drude picture. A current density jx = evxn is carried
by electrons. The applied magnetic field Hz induces a charge imbalance. As
a result a Hall electric field Ey emerges in compensation of the Lorentz force
−eEy − evxHz = 0.

The DC resistivity (ρ) is the resistance along a unit distance in the direction parallel
to an applied electric field (Ex). The basic dimension [mass][length]3[time]−3[current]−2

can be expressed as Ωm. The inverse point of view is to consider the conductivity σ. It
is the tensor valued linear response function of the electrical current j due to an external
electro-magnetic perturbation (here: Ex), hence

jα = σαβEβ. (1.1)

Here: jx = σxxEx, (1.2)

where the off-diagonal entries vanish as a result of the Lorentz force,

FL = q [E + (v ×H)] , (1.3)

acting on a charge q, where we consider the case that the magnetic field within the
material H = 0. The DC resistivity in x-direction is therefore given as

ρ =
1

σxx
. (1.4)

The Hall resistivity (ρH), is measured when additionally to the E-field (Ex) a magnetic
field (Hz) is applied perpendicularly, see Figure 1.2. Due to Ex there is a current jx.
In a Drude picture, this implies that charge q = −e moves with a velocity −vx. Hz

forces the charge carriers in y-direction with the Lorentz force FL = (−eEx,−evxHz, 0).
Consequently, a charge imbalance builds up in y-direction, resulting in the so-called
Hall electric field (Ey). In our example Ey < 0 points in the negative y-direction.
The quantity that best characterizes the Hall effect, while being experimentally easy to
access, is the Hall coefficient (RH), defined as

RH :=
Ey
jxHz

. (1.5)

6



1. Introduction

The Hall resistivity ρH := Ey/jx is consequently given as

ρH = RHHz. (1.6)

In order to enable a theoretical discussion of the Hall coefficient, let us rewrite Equa-
tion (1.5) in terms of the conductivity tensor σαβ. Combining Equations (1.1) and (1.5),
yields

RH =
−σyx

σxxσyy − σxyσyx
1

Hz

. (1.7)

In a weak field limit, a response σxy can only be due to the applied magnetic field Hz.
As a result the off-diagonal elements, σxy and σyx, are at least of linear order in Hz,
while the diagonal elements, σxx and σyy, are of 0th order in Hz. This justifies further
simplification, yielding3

RH =
σxy

σxxσyy

1

1− σxyσyx
σxxσyy

1

Hz

=
σxy

σxxσyy

1

Hz

+O(Hz). (1.8)

Ultimately, by combining Equations (1.6) and (1.8), we obtain an expression for the Hall
resistivity. Here we neglect quadratic and higher orders in Hz, and assume σxx = σyy,
in order to yield

ρH '
σxy

(σxx)
2 . (1.9)

The experimental results [1] we investigate in the present work were obtained by
N. Barǐsić et al. . They carefully measured the DC resistivity and Hall coefficient of
HgBa2CuO4+δ. In Figure 1.3, their result is depicted for three exemplary samples.

The DC resistivity, ρ =̂ ρxx in Equation (1.4), is shown in Figure 1.3 A and B as a
function of temperature T and T 2, respectively. We observe that, above the critical
superconducting temperature Tc and below the optimal doping δ < δopt, a quadratic
temperature dependence is obtained. It remains quadratic up to a temperature T ∗∗.
Note at this point, that T ∗∗ was also displayed in Figure 1.1, although we had not yet
discussed its significance. Upon further increasing the temperature, the temperature de-
pendence changes to behave linear above T ∗. For temperatures T ∗∗ < T < T ∗ the system
features a crossover in terms of a mix of linear and quadratic temperature dependence.
Hence,

T < Tc : ρ = 0, (1.10a)

Tc < T < T ∗∗ : ρ ∝ T 2, (1.10b)

T ∗∗ < T < T ∗ : ρ ∝ aT + bT 2, (1.10c)

T ∗ < T : ρ ∝ T. (1.10d)

3 To get from the first to the second line the following considerations were applied: The factor
σxyσyx

σxxσyy
<< 1 is small, since it is of order O(H2

z ). Thus
[
1− σxyσyx

σxxσyy

]−1
= 1 +O(H2

z ) is expanded by

using 1/(1 + x) = 1 + x+ x2 + . . . .
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1. Introduction

Figure 1.3.: Experimental results of in Hg1201. (A),(B) Temperature dependence of
resistivity ρ, (C) the Hall coefficient as a function of temperature T , and
(D) the cotangent of Hall angle cot(θH) = ρ/ρH and a function T 2. The data
corresponds to three representative samples with Tc = 55 K, 71 K and 95 K,
which reside within the underdoped region. The plot is taken from Ref. [1]

.

In Figure 1.3 C the Hall coefficient RH, as in Equation (1.5), is shown. We observe
RH > 0 is positively valued, which suggests that holes are the effective charge carriers
in the system. The significance of its temperature dependence becomes only apparent
upon taking the ratio ρ/ρH = cot(θH), where θH is the so-called Hall angle. In Figure 1.3
D, the measurement of cot(θH) is shown as a function of T 2. We observe that a quadratic
temperature dependence is given across all temperature scales. And moreover all three
samples universally align as one curve. We note,

T < Tc : ρ/ρH = 0, (1.11a)

Tc < T : ρ/ρH ∝ T 2. (1.11b)

In Figure 1.4, the experimental result is summarized. Let us stress the great simplifica-
tion this observation yields w.r.t. the rich phase diagram of cuprates. The experimental
results pose an intriguing question to the theory: How can such an universal behaviour
across the phase diagram of cuprates emerge? Different regimes are governed by funda-
mentally different scattering processes, yet the same temperature dependency of ρ/ρH

is obtained at all doping levels and temperature scales. In the next section we will
elaborate how we start to investigate this phenomenon.

1.3. Ansatz

Hitherto, we have familiarized the reader with cuprates and their rich phenomenology
in Section 1.1. In Section 1.2, we highlighted novel experimental results by the group of
N. Barǐsić et al. at TU Wien. The most striking observation is a universal4 temperature

4Compound independent and valid for different phases, including the pseudogap phase, strange metal
phase and Fermi liquid phase.
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1. Introduction

Figure 1.4.: The resistivity in a prototypical phase diagram of cuprates. The left panel
shows the temperature dependence of the DC resistivity ρ, and the right
panel juxtaposes the ratio of DC resistivity and Hall resistivity ρ/ρH. The
phases shown are the antiferromagnetic insulator (AF), the superconducting
dome (SC), a pseudogap region (PG), a strange metal phase (SM), as well
as the Fermi liquid regime (FL) upon hole-doping δ. Figure is reproduced
from Ref. [1].
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1. Introduction

squared behaviour of the ration ρ/ρH, where ρ is the DC resistivity and ρH is the Hall
resistivity.

A first crude explanation, given in the same experimental paper, is the following:

Within the simple effective-mass approximation that assumes a parabolic
band,

ρ = m∗/(ne2τ) (1.12)

and
RH = 1/(ne), (1.13)

where m∗ is the effective mass and n is the carrier density, so that

cot(θH) = ρ/ρH ∝ m∗/τ (1.14)

is independent of the carrier density and essentially a direct measure of the
scattering rate 1/τ . [1]

This would suggest that the scattering rate has a T 2-dependence consistent with Fermi
liquid theory. Despite the beauty of this result and of its most natural interpretation, the
approximation of a parabolic band and in particular the Drude model is a priori rather
quenstionable for low-dimensional strongly correlated compounds such as cuprates.

In the scope of this thesis, we aim to understand how the ratio of ρ/ρH ought to be
interpreted. Being at the same institute of TU Wien, where the measurements have been
originally performed, we are highly motivated to gain a fundamental understanding.

From the theoretical point of view, as a first step, we need to define our model of
choice for cuprates. Throughout the analysis we approach cuprates from the Mott in-
sulator side. This approach was briefly compared to other perspectives in Section 1.1
and will be explained in more detail in Chapter 2. Before elaborating later on, let us
state that, within the scope of this thesis, we model cuprates by a single band Hubbard
model on a two dimensional square lattice with on-site Coulomb interaction and appro-
priate dispersion relation including nearest, next-nearest and next-next-nearest neighbor
hopping.

As a next step, we solve the Hubbard model by state-of-the-art quantum many-body
methods, such as the diagrammatic extensions to dynamical mean field theory, namely
the dynamical vertex approximation (DΓA) and the dual fermion (DF) theory.

Finally the data will be analyzed following two strategies:

• Extracting the scattering rate from the self-energy. We recall that the self-energy,
in its most general form, is a momentum and frequency dependent correction of
the dispersion relation, which accounts for temporal and spatial fluctuations due to
electron-electron correlations. By evaluating the self-energy at the Fermi surface,
we observe a small imaginary part, which is naturally interpreted as scattering
rate. Here we follow the intriguing question, whether said scattering rate displays
universal temperature dependence.

10
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• Direct computation of the ratio ρ/ρH. The difficulty here is that even within the
Kubo formalism the Hall conductivity, or rather the off-diagonal element of the
conductivity tensor5 is diagrammatically speaking a three-particle vertex. The
computation of such a vertex is currently not feasible in terms of numerical effort
within DΓA and DF. Therefore, we will aim to at least identify sufficient approxi-
mations, that potentially allow for both computation and physical interpretation.

The basic idea is to determine to what extent the methods employed and approxi-
mations applied are able or not able to capture and identify the physics observed in
the experimental data. This will be crucial in understanding the scattering processes
dominating the system and rejecting the theoretical paradigms not compatible with the
new experimental evidence. These processes might result to be quite helpful to define
the ’glue’ that makes superconductivity in cuprates possible.

1.4. Outline

In Chapter 1, we have outlined the discovery of superconducting materials with a
particular focus on cuprates. More specifically, in Section 1.1, we have highlighted some
phenomenology that all compounds have in common. This is supported by Chapter D,
where angle-resolved photoemission spectroscopy is briefly explained. In Section 1.2, we
have turned towards the main motivation of our work by discussing novel experimental
results obtained by the group of N. Barǐsić et al. at the institute of solid state physics at
TU Wien. In Section 1.3, we propose our ansatz to theoretically investigate the physics
underlying the experimental results.

In Chapter 2, we introduce the crystal structure of our physical system and the model
we apply to describe it. In Section 2.1, we motivate the Hamiltonian of our model. In
Section 2.3, the quantum field theoretical perspective is preceded, which is later exploited
in order to explain the methods in Chapter 3. In Section 2.4, all parameters that define
the model are stated. In particular, we illustrate the dispersion relation and show the
non-interacting density of states.

In Chapter 3, the numerical methods are discussed. This chapter is split in three
sections: Section 3.1 lays out the general idea of dynamical mean field theory (DMFT).
Section 3.2 goes beyond DMFT by means of diagrammatic extensions such as the dy-
namical vertex approximation and the dual fermion theory on top of the local description
of DMFT. Finally, in Section 3.3, we have briefly discussed the issue of analytic contin-
uation and in particular the Padé approximation.

In Chapter 4, we present results for the scattering rate in cuprates by means of dif-
ferent quantum many-body approaches. Specifically, in Section 4.1, the temperature

5The conductivity tensor was introduced in Section 1.2. Within the Kubo formalism the conductivity
tensor can be written as current-current correlation function.
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dependence of the scattering rate is extracted from single-particle quantities in DMFT,
DΓA and DF. Secondly, in Section 4.2, some linear response theory expressions are pro-
posed to be used within the previous schemes in order to make a more direct connection
with the experiment by N. Barǐsić et al. .

In Chapter 5, we summarize the theoretical description emerging from current re-
sults and discuss possible future paths to circumvent the present drawbacks and gain a
significantly improved theoretical understanding.
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2. Model

In this chapter, we introduce our physical system and the model we apply to describe
it. In Section 2.1, the crystal structure is shown and by physical arguments we motivate
the Hamiltonian of our model. Subsequently, in Section 2.2, we place this model in the
context of realistic material calculations and briefly compare it to possible alternative
models.

In Section 2.3, we introduce the model from a quantum field theoretical perspective.
This allows to introduce the formalism, which is later exploited in order to explain the
methods in Chapter 3.

In Section 2.4, all parameters that define the model are stated. In particular, we illus-
trate the dispersion relation, as well as show the corresponding non-interacting density
of states.

2.1. Intuitive picture

Cuprates, the class of materials subject to this work, consist of a layered structure of
weekly coupled quasi two dimensional CuO2-planes. In Figure 2.1 (left), the crystal
structure of an exemplary cuprate, namely HgBa2CuO4, is shown.

For an introduction on the classification of cuprates please refer to Ref. [15] or see
Appendix A. In a nutshell, HgBa2CuO4+δ classifies as one of the mercury based com-
pounds, belonging to the family of HgBa2Can−1CunO2n+2+δ (Hg−12(n− 1)n), where n
is the number of CuO2-planes per unit cell. In particular, HgBa2CuO4+δ is a single layer
compound, and it is referred to as Hg−1201. Here, δ denotes the doping: In case of hole
doping, this compound is annealed in oxygen atmosphere, which lets excess oxygen ions
immigrate with concentration δ in the buffer layer Hg −Oδ, not explicitly shown.1

1The position of the excess oxygen would be cubic centered between the top (bottom) Hg atoms in

Figure 2.1.: (left) Structure of the parent compound HgBa2CuO4 [14]. (right) Isolated
CuO2-planes.
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2. Model

Figure 2.2.: (left) Cartoon of 3-band model. (right) Schematic CuO2 energy splitting.

We present the specific case of Hg−1201 as exemplary cuprate, because it is the one
mostly used in the experiment by N. Barǐsić et al. [1], which is of interest in the scope
of this work. In particular, the experiment measured the temperature (T ) dependence
of the DC resistivity ρ(T ) and the Hall resistivity ρH(T ), see Section 1.2. As argued
in Section 1.2, the universal T 2-behaviour of the ratio ρ/ρH observed experimentally
is compound and doping independent, as far as the currently available data allows to
conclude. In fact, the models discussed are representative for single-layer cuprates in
general.

The CuO2-planes depict in Figure 2.1 (right) are the key ingredient, that all cuprates
have in common. Within the CuO2-planes , the copper appears in the form of positively
charged ions, Cu2+[Ar]3d9. Hence, 9 electrons occupy 5 twofold spin-degenerate 3d-
orbitals, giving rise to single occupation of the highest energy 3d-level. In particular,
the cubic crystal field leads to an energy splitting into a triplet t62g and a higher energetic
doublet e3

g, see Figure 2.2 (right). A further tetragonal crystal field splitting2 yields one
doublet dxz, dyz and 3 singlets dxy, dz2 , dx2−y2 ; ordered by increasing energy. Hence, the
dx2−y2 remains single occupied.

In the undoped case, the single occupied Cu 3dx2−y2-orbitals build up a half-filled band
crossing the Fermi surface. Furthermore, it is important to notice that, any orbital of
the 3d shell (n = 3, l = 2), has a radial quantum number (n− l + 1) equal to 0. Thus,
the radial wave function has no nodes. This leads to strong localization of the electrons,
and as a result to stronger electronic correlation. In particular, the Coulomb repulsion
of the electrons in this orbital is of the same order of magnitude as their kinetic energy.

As a result to the high localization in the Cu 3dx2−y2 orbital state, the undoped,
so-called parent, compound features an insulating, antiferromagnetic phase below the
Néel temperature. This phase is due to the strong electronic correlations and hence
unexpected in virtue of band theory, which predicts a conducting parent compound.

The simplest approach to explain this antiferromagnetic behaviour is to reduce the

Figure 2.1 (left). See also Figure A.1 in the Appendix.
2Depending on the compound and/or doping the additional field splitting can be due to tetragonal or

orthorhombic crystal fields. In Hg−1201, one has a tetragonal crystal structure.
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Figure 2.3.: The single band Hubbard model in two dimensions.

problem to the physics occurring within the strongly localized Cu 3dx2−y2-orbitals. The
corresponding model is the single band 2-dimensional Hubbard model [16–18] on a square
lattice. Figuratively, one may imagine electrons hopping, with probability amplitude −t,
from one Cu 3dx2−y2-orbital state to another on a square lattice. When two electrons,
of opposite spin, occupy the same lattice site, they pay a price in energy, the so-called
Hubbard-U , due to Coulomb repulsion, see illustration in Figure 2.3. If the price is
high enough, the electronic motion is suppressed, causing the system to be insulating.
A preferred checkerboard ordering arising from a residual superexchange interaction
between the spins also accounts for the antiferromagnetic instability at low temperature.

The Hamiltonian representing the above-mentioned single band 2-dimensional Hub-
bard model reads

H = −
∑

<i,j>,σ

tij ĉ
†
iσ ĉjσ + U

∑
i

ĉ†i↑ĉ
†
i↓ĉi↓ĉi↑, (2.1)

where ĉ†iσ(ĉiσ) are electronic creation (annihilation) operators with spin σ =↑, ↓ at site
i, respectively. The first term represents the kinetic energy with hopping amplitude
−tij between nearest neighboring sites < i, j >. While the second term corresponds to
a static on-site Coulomb interaction of strength U in case of double occupation. The
occupation of a site is given by ĉ†iσ ĉiσ = n̂iσ.

This is the model we will employ throughout this work. The exact parameters applied
are shown in Section 2.4. In the next section we will place this model in the context of
realistic material calculations. The expert reader may skip the following section without
missing essential details.

2.2. Viewpoint of realistic material calculations

The weary reader may ask: What about the oxygen? And how is the hopping parameter
−t and the Coulomb interaction U determined?

A complete discussion should start at the level of the ab-initio many-electron Hamil-
tonian of the material. If relativistic corrections are neglected, which is typically ap-
propriate for 3d-oxides, and the Born-Oppenheimer [19] approximation is applied, this
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yields [20]

H =
∑
σ

∫
d3r Ψ̂†(r, σ)

[
− ~2

2m
∇2 +

∑
l

−e2

4πε0

Zl
|r −Rl|︸ ︷︷ ︸

≡Vion(r)

]
Ψ̂†(r, σ)

+
1

2

∑
σσ′

∫
d3r d3r′ Ψ̂†(r, σ)Ψ̂†(r′, σ′)

e2

4πε0

1

|r − r′|︸ ︷︷ ︸
≡Vee(r−r′)

Ψ̂(r′, σ′)Ψ̂(r, σ), (2.2)

where Ψ̂(r, σ)
(

Ψ̂†(r, σ)
)

create (annihilate) an electron with spin σ, charge −e and

mass m at position r, Rl is the position of an ion with charge Zle, ε0 is the vacuum
dielectric constant and ~ the Planck constant. Vion(r) and Vee(r− r′) correspond to the
ionic lattice potential and the electron-electron interaction, respectively. As mentioned
above, at this point, phonon corrections, i.e. the kinetic energy of the lattice ions, and
relativistic corrections, e.g. spin-orbit coupling, have been neglected.

We recall, that density functional theory (DFT) treats the ab-initio Hamiltonian on
the basis of the Hohenberg-Kohn theorem [21], which states that the ground state energy
is an exact functional of the electronic density. This leads to a minimization principle,
which can be rewritten in Kohn-Sham equations [22], shown below in Equation (2.4),
by means of an auxiliary set of one-particle wave functions (ϕi) and eigenvalues (εi).
The Kohn-Sham equations are basically one-particle Schrödinger equantions, describing
single electrons moving in a time-averaged, i.e. static mean, potential that effectively
accounts for ionic, electronic density and exchange-correlation effects of the rest of the
system. In fact, the latter is the actual unknown. It is a non-local exchange-correlation
energy functional Exc[ρ], that bares all many-body difficulties and necessities of further
approximation.

One unexpectedly good approximation for many materials is the local density ap-
proximation (LDA), where the exchange-correlation energy functional is replaced by a
functional of the local density only. This yields the LDA Hamiltonian,

HLDA =
∑
σ

∫
d3r Ψ̂†(r, σ)

[
− ~2

2m
∇2+Vion(r)+

∫
d3r′Vee(r−r′)+

∂ELDA
xc (ρ(r))

∂ρ(r)

]
Ψ̂(r, σ).

(2.3)
In practice, the local density, that is the basis of the LDA exchange-correlation energy
functional, is computed by means of a weakly correlated model, namely the jellium
model. As a consequence, LDA can obtain good results for materials that exhibit weak
electronic correlations, while it fails to accurately describe strongly correlated electron
systems, such as the materials of our focus: the cuprates. [20]

Nevertheless, one can compute an approximate band-structure by means of LDA. This
is done by interpreting the eigenvalues of the Kohn-Sham equations,

HLDAϕi = εiϕi, (2.4)
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Model Hamiltonian

Hubbard model H =
∑
k,σ

εkĉ
†
kσ ĉkσ + U

∑
i

n̂i,↑n̂i,↓

Extended
Hubbard model

H(τ−τ ′) =
∑
k,σ

εk ĉ
†
kσ(τ)δ(τ−τ ′)ĉkσ(τ ′)+

1

2

∑
qσσ′

n̂σ(τ)U(τ−τ ′)n̂σ′(τ ′)

dp-model

H =
∑
k,σ,

l,m∈{d,px,py}

hk,lmĉ
†
lkσ ĉmkσ

+Udd
∑
i

n̂d,i↑n̂d,i↓ + Upp
∑
j

n̂p,j↑n̂p,j↓ + Udp
∑
〈ij〉σσ′

n̂d,iσn̂p,jσ′

Table 2.1.: Three possibilities of a low-energy modelization of the cuprate physics.

as single particle energies. Note that this is a leap, as the Hohenberg-Kohn theorem
is in principal only applicable to the ground state energy. Therefore, the LDA band-
structure is assumed to be reliable only in the close vicinity of the Fermi surface and not
for high energy excitations. The reader may refer to Ref. [23] for LDA band-structure
calculations, that are specifically performed for Hg−1201.

Once the Kohn-Sham equations are solved, the wave functions Ψ̂(r, σ) can be ex-
panded in a sophisticatedly chosen basis set, e.g. O. K. Andersen’s linearised muffin-tin
orbital [24] (LMTO) basis or its Nth order extensions [25] (NMTO).3 This gives direct
access to interpret the LDA band-structure in terms of “atomic” orbitals. In the frame-
work of an LDA band-structure calculation, O. K. Andersen et al. applied the LMTO
downfolding technique to cuprates in 1995. They deduced an effective low-energy Hamil-
tonian, which consists of 8-bands [28].

In particular, the 8-bands are formed by copper and oxide-orbitals of the CuO2-planes,
namely Cu 3dx2−y2 , O 2px, O 2py and Cu 4s with σ bonding character and Cu 3dxz,
Cu 3dyz and both O 2pz with π character. Such an 8-band Hamiltonian can be fur-
ther reduced into effective 3 and 1-band Hamiltonians. The latter is shown to involve a
dispersion relation, that must include at least next (t), 2nd next (t′) and 3rd next (t′′)

3 Another possibility is to expand in plane waves and subsequently perform a projection onto Wannier
orbitals. [26, 27]
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nearest neighbor hopping, [28]

εk =− 2t [cos(kx) + cos(ky)] + 4t′ cos(kx) cos(ky)− 2t′′ [cos(2kx) + cos(2ky)]

+ 4t(3) [cos(kx) cos(2ky) + cos(2kx) cos(ky)] + 4t(4) cos(2kx) cos(2ky)

− 2t(5) [cos(3kx) + cos(3ky)] + · · · − 2t(9) [cos(4kx) + cos(4ky)] + . . . , (2.5)

where εk is the Fourier transform of tij, so that Equation (2.1) takes the form of the
Hamiltonian in Table 2.1 (Hubbard model).

Moreover, the 3-band Hamiltonian includes hopping up to 2nd nearest neighbors be-
tween Cu 3dx2−y2 , O 2px and O 2py, where the Cu 4s is partly folded down to the oxygen
orbitals. This gives rise to the following tight-binding Hamiltonian [29]

Ht =
∑
k,σ,

l,m∈{d,px,py}

hk,lmĉ
†
lkσ ĉmkσ, (2.6)

hk,dd = εd + 2tdd [cos(kx) + cos(ky)] + 4t′dd cos(kx) cos(ky), (2.7)

hk,pxpx = εp + 2
[
t′pp cos(kx) + t′′pp cos(ky) + t′′′pp cos(kx) cos(ky)

]
, (2.8)

hk,pypy = εp + 2
[
t′pp cos(ky) + t′′pp cos(kx) + t′′′pp cos(ky) cos(kx)

]
, (2.9)

hk,dpx = 2
([
tpd + 2t′pd cos(ky)

]
sin(kx/2) +

[
t′′pd + 2t′′′pd cos(ky)

]
sin(3kx/2)

)
, (2.10)

hk,dpy = −2
([
tpd + 2t′pd cos(kx)

]
sin(ky/2) +

[
t′′pd + 2t′′′pd cos(kx)

]
sin(3ky/2)

)
, (2.11)

hk,pxpy = −4 [tpp sin(kx/2) sin(ky/2)

+t′′′′pp (sin(3kx/2) sin(ky/2) + sin(3ky/2) sin(kx/2))
]
. (2.12)

The inclusion of the Cu 4s orbital and the well-founded choice of dispersion corresponds
to an extended version of the 3-band tight-binding model originally suggested by Emery
[30] in 1987. Thus, it is often referred to as Emery model.

Starting from these effective 1 and 3-band Hamiltonians, one can perform calculations
using quantum many-body methods, such as e.g. dynamical mean-field theory (DMFT).
This corresponds to performing a so-called LDA+DMFT [20] calculation. The latter
treats an important part of electronic correlations, which are necessary to yield the an-
tiferromagnetic insulating phase in the proximity of half-filling. More details on DMFT
will be presented in Section 3.1.

LDA+DMFT has been applied to cuprates numerous times [31–38] in the literature.
In comparison to experimental data this was successful concerning the optical properties
and photoemission. However, by treating both, the extended Emery model and the less
involved single-band model by the hands of LDA+DMFT, surprisingly the former was
revealed less suiatble results. [29, 38]

Hitherto in our discussion, we considered the Coulomb interaction to be on-site and
strong only in the Cu 3dx2−y2 . In 2013, P. Hansmann et al. [29] showed that non-local
Coulomb interactions Upd between the Cu 3dx2−y2 and O 2p orbital are essential to the
applicability of the extended Emery model. Here, although the radial wave function
of the O 2p orbital is nodeless, the intra-atomic interaction Upp remains less important.
This is due to the typical occupation of the O 2p-bands, which is almost completely
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filled. Therefore, the corresponding spectral weight near the Fermi surface is small, or
equally scattering is suppressed due to the lack of empty states.

The complete interaction of the dp-model [29]

HU = Udd
∑
i

n̂d,i↑n̂d,i↓ + Upp
∑
j

n̂p,j↑n̂p,j↓ + Upd
∑
〈ij〉σσ′

n̂d,iσn̂p,jσ′ , (2.13)

which should be complemented by Equation (2.6). Here i and j sum over all Cu and
O sites, respectively. See also Table 2.1 (dp-model). The large Upd is important within
the DMFT calculation, as it allows for a self-consistent determination of the d-p level
splitting, i.e. εd− εp. It generally stabilizes a charge-transfer insulating [39] phase in the
undoped case.

The essential physics which is included by the dp-model, as opposed to the dis-
cussed single-band Hubbard model, are incommensurate charge-density waves (CDWs).
These correspond to a broken translational and rotational symmetry via intra-unit cell
charge stripe order. Incommensurate CDWs have been observed experimentally by X-
ray diffraction [40–46], tunneling microscopy [47, 48] and nuclear magnetic resonance
[49]. Recently, these have been suspected to be of crucial importance [40, 50–54] in the
interplay with the emergence of superconductivity. Hence, in principle, it would be most
interesting to treat the full dp-model. However, the computational effort that DMFT
and its extensions acquire grows exponentially with the number of orbitals. The possi-
bility to include non-local Coulomb interaction into an effective Hamiltonian has been
investigated. A promising method to investigate this effective interaction is constrained
random phase approximation [55] (cRPA). Here, the intra- and inter-atomic electronic
screening effects of the O2p-orbitals are treated on the RPA level, while an effective
U cRPA
dd,ωq remains to be treated on a many-body level.
This leads the path towards the so-called extended Hubbard model, which is in the

simplest way represented by the action4 [56]

S = −
∑
kσ

c̄kσ [iν − εk] ckσ +
1

2

∑
qσσ′

Uq ρ
∗
qσρqσ′ , (2.14)

ρqσ =
∑
kσ

[c̄kσck+qσ − 〈c̄kσckσ〉δq0] . (2.15)

This problem can be solved similarly to DMFT in extended DMFT [57] (EDMFT) by
mapping onto a local problem [51,54]. The self-consistent treatment effectively solves a
Hamiltonian containing a retarded interaction, which may be written as

H(τ − τ ′) =
∑
k,σ

εk ĉ
†
kσ(τ)δ(τ − τ ′)ĉkσ(τ ′) +

1

2

∑
qσσ′

n̂σ(τ)U(τ − τ ′)n̂σ′(τ ′). (2.16)

P. Werner et al. discussed [51] in 2014 the application of EDMFT to cuprates in the
undoped case, i.e. at half-filling, for an effective one and three-band Hamiltonian by

4A proper introduction to the action formalism is provided in the subsequent section.
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treating p-p and p-d interactions on a Hartree level. The results for the single-particle
spectral function showed good agreement with experimental values, however to the best
of our knowledge, hitherto cuprates have not been studied for the doped case nor under
consideration of momentum dependence. The implementation of such schemes are a
matter of current effort.

All models we have discussed here are summarized in Table 2.1 ordered in terms of
their computational effort. In the scope of this project, we restrict our-selfes to the
single-band Hubbard model with the parameters stated in the Section 2.4. The first
question to be answered is whether the least demanding model suffices to explain the
experimentally observed temperature dependency of the resistivity and Hall resistivity.

2.3. The Hubbard model in quantum field theory (QFT)

Up to this point, we have given an overlook of the phenomenology and modelization of
cuprates. Due to the considerable broadness of the literature on the topic it was not
possible to treat this in detail. However, in our discussion we basically arrived at a
very simple model. In this section, the model shall be discussed from a quantum field
theoretical perspective, where we will follow parts of [58] by N. E. Bickers.

The generating functional of a physical system at finite temperature can be written
in terms of a thermal partition function

Z =

∫
c̄c

e−S[c̄,c], (2.17)

S = S0 + Sint, (2.18)

where S is the action, which consists of two parts: the non-interacting S0 and the inter-
acting Sint.

∫
c̄c

denotes the coherent-state path integral, which is derived and discussed
in Appendix B.1 or in literature [59].

The Hubbard model is given by the following choice of action:

S0 = c̄σx [∂τδxx′ + δττ ′(txx′ − µδxx′)] cσ′x′ , (2.19)

Sint = Un↑xn↓x. (2.20)

At this point, repeated indices are summed over, or in case of continuous quantities
integrated, with 5 ∑

x

=

∫ β

0

dτ
∑
x

, (2.21)

where it → τ ∈ [0, β] is the imaginary time that is generated by performing a so-called
Wick rotation. β is the inverse temperature and the periodicity of the imaginary time.

5 Alternatively one could define S → βS and
∫

dτ → 1
β

∫
dτ
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The non-interacting system is described by S0, where c̄σx (cσx) are Grassmann fields
corresponding to electron creation and annihilation with spin σ at the space-time-point
x ≡ (τ,x) and the dispersion relation shall enter through the hopping amplitude txx′ .

The interacting part Sint consists of a 4-point interaction v(x − x′), which could in
general be non-local in space and time,

Sint =
1

2
c̄σxcσxv(x− x′)c̄σ′x′cσ′x′ . (2.22)

As argued in Section 2.1, within the simplest single-band Hubbard model the interaction
v is an instantaneous, on-site Coulomb interaction due to the high localization of the
Cu 3dx2−y2-orbital. Hence, the Hubbard interaction term in Equation (2.20) can be
derived from Equation (2.22) by setting

v(x− x′) = Uδxx′δττ ′δσ−σ′ . (2.23)

Finally, the definition of the field-density reads, nσx = c̄σxcσx, without summation over
repeated indices. The Hubbard action, hence, satisfies SU(2) invariance as well as
translational invariance in space and imaginary time.

This action is in generally not solvable due to the non-Gaussian contributions in both
real and momentum space in Equations (2.19) and (2.20), respectively. The solution
of the non-interacting system can be obtained by performing a Fourier transformation
with k ≡ (iν,k)

S0 = c̄σk [−iν + (εk − µ)] cσk, (2.24)

where εk is the dispersion relation and µ is the chemical potential. Note that, as is
well-known [60], due to the periodic nature of the imaginary time τ the frequencies iν
are discrete. These so-called Matsubara frequencies will play an important role in later
discussion. Equation (2.24) yields an exact expression for the bare one-particle Green’s
function6

G0,k =
1

iν − (εk − µ)
. (2.25)

To solve the interacting problem one may follow many different approximation tech-
niques, some of which will be discussed in the next chapter. The fundamental idea that
underlies all of them is to find an effective action Seff of Gaussian form. The proposal
translates in the most general form into the formulation [58] of a self-energy matrix
Σσσ′kk′ ,

S = SSCF + ∆S, (2.26)

∆S → 0, (2.27)

SSCF = S0 + c̄σkΣσσ′kk′cσ′k′ , (2.28)

6 Note that, the Green’s function has a relative minus to the Feynman propagator in thermal QFT,
as opposed to a relative imaginary unit in real time QFT.
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Figure 2.4.: The single band 2-dimensional Hubbard model.

where the label SCF refers to self-consistent field. In the scope of this work we will be
interested in the diagonal part, which is referred to as self-energy Σν,k

Σσσ′,kk′ = Σσσ′,kδkk′ , (2.29)

Σ↑↑,k = Σ↓↓,k. (2.30)

The interacting one-particle Green’s function is given as

Gk =
1

iν − (εk − µ)− Σk

, (2.31)

which is referred to as Dyson Equation.

2.4. Parameters to model cuprates

In the scope of this project, we employ the single-band Hubbard model as stated in
Table 2.1 (Hubbard model),

H =
∑
k,σ

εkĉ
†
kσ ĉkσ + U

∑
i

n̂i,↑n̂i,↓,

where ĉ†kσ(ĉkσ) are electronic creation (annihilation) operators with spin σ =↑, ↓ and

momentum k, U = 2.5 eV is a static on-site Coulomb interaction, n̂i,σ = c†iσ ĉiσ is the
occupation operator at site i, while εk is the associated band dispersion as in Equa-
tion (2.5),

εk = −2t [cos(kx) + cos(ky)] + 4t′ cos(kx) cos(ky)− 2t′′ [cos(2kx) + cos(2ky)] .

Here, we consider the hopping on a two dimensional square lattice including next, 2nd
next and 3rd next nearest neighbors: t = 0.25 eV, t′ = 0.05 eV and t′′ = 0.025 eV,
as illustrated in Figure 2.4. These values have been used in previous studies [36] to
successfully describe optical properties of Bi-based cuprates at different doping levels.

In Figure 2.5, displays the single-particle spectral function,

Aloc(ω) = − 1

π
ImGloc

R (ω), (2.32)

Gloc
R (ω) =

∑
k

1

ω − εk + iγ
, (2.33)
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Figure 2.5.: The single-particle spectral function for the nearly non-interacting case.

where γ = 0+ is a small artificial scattering rate. Note that particle-hole symmetry
is broken by finite t′ and t′′. Hence, the peak known as Van Hove singularity [35, 61]
appears slightly below the chemical potential, i.e. below 0.

The focus of this project is to investigate the same parameter range as in the experi-
ment by N. Barǐsić et al. [1]. In particular, we are interested in the so-called pseudo-gap
and strange metal phases that emerge above the critical temperature of superconduc-
tivity, which is of the order of 70 K in the case of Hg-1201. In order to scan the phase
diagram shown in Figure 1.1 on page 4, the doping δ and the temperature T are varied
with the following values:

T (K) = 77.37, 116.05, 145.06, 193.42, 232.10, 290.12, 386.83, 464.20 and 580.25,

β(eV−1) = 150, 100, 80, 60, 50, 40, 30, 25 and 20,

δ = 0.1, 0.15 and 0.2. (2.34)

Here, β is the inverse temperature in eV, thus, the first two lines convey equal infor-
mation. The highest temperatures are not of particular physical interest, but need to
be chosen so that our numerical calculation, and in particular the DMFT(ED)7 part,
undergoes proper annealing. The latter refers to the procedure of first computing the
highest temperature for each doping and subsequently, stepwise reducing the tempera-
ture for each doping individual by using the result of the previous calculation as input
for the new one at lower T .

7See Section 3.1.3.

23



3. Methods

In this chapter, we will review the methods, that we employ, to compute a solution for the
single-band 2-dimensional Hubbard model, which represents our most basic description
for the cuprate physics.

In Section 3.1, we introduce dynamical mean-field theory (DMFT), which is the state-
of-the-art method to treat strongly correlated electron systems. This approach singles
out one site on the lattice of the Hubbard model, where local Coulomb repulsion is
present, and treats the rest as a self-consistently determined mean-field bath of non-
interacting electrons.

Although DMFT is able to account for strong correlations in the system, it can only
treat purely local correlations. In high-dimensional models this is a good approxima-
tion, because the momentum-dependence of correlations is negligible on the one parti-
cle level. However, the physics of cuprates is governed by their quasi two-dimensional
copper-oxide-planes, cf. Section 2.1. As a consequence, cuprates show highly momentum-
dependent scattering, as experimentally demonstrated, e.g. by angle-resolved photoemis-
sion spectroscopy (ARPES), see Chapter D. Therefore, for these systems, we can use
DMFT as a mere starting point, at most.

The methods discussed in Section 3.2 include non-local fluctuations by means of dia-
grammatic extensions to DMFT. The formalism, that serves as a basis for these meth-
ods, is diagrammatics at the two particle level, which is introduced in Section 3.2.1.
Thereupon, dynamical vertex approximation (DΓA) and dual fermion (DF) theory are
explained, in Section 3.2.2 and Section 3.2.3, respectively.

Ultimately, DMFT, DΓA and DF enable us to compute the self-energy as a function
of Matsubara frequencies, see Section 2.3. However crucially, in order to deduce physical
information from the self-energy (or any observable of the system), they need to be given
as a function of real frequencies.

In Section 3.3, we discuss, hence, the procedure of analytic continuation. In particular,
the technique employed here is the Padé approximation, whose intrinsic strength and
limitation will be illustrated in details.

3.1. Dynamical mean-field theory (DMFT)

Here, we provide a short introduction to dynamical mean-field theory (DMFT).
As a first step, we familiarize the reader with the Anderson impurity model (AIM)

in Section 3.1.1. We then show how the Hubbard model is mapped onto the AIM, as
illustrated in Figure 3.1. This is done in a self-consistency loop described in Section 3.1.2.
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Figure 3.1.: Schematic DMFT loop.

In the course of the latter, the AIM must be solved by means of a so-called impurity
solver. In Section 3.1.3, we elaborate on our choice for the impurity solver, namely exact
diagonalization (ED).

3.1.1. Anderson impurity model (AIM)

The action of the AIM can be written as

SAIM =
∑
νlσ

[
b̄lσ(−iν + εl)blσ +

[
Vl b̄lσcσ + V ∗l c̄σblσ

]
+c̄σ (−iν − µ) cσ

]
+ U

∫ β

0

dτ n↑n↓, (3.1)

where b̄lσ(blσ) are fermionic Grassmann fields of a non-interacting bath with spin σ,
on the energy level εl, l ∈ [1,∞] The fermionic fields c̄σ(cσ) describe an interacting
impurity site, where double occupation costs energy U , similarly to the Hubbard model
introduced in Section 2.1.1 The impurity site hybridizes with the energy level2 εl of the
non-interacting bath via the probability amplitude Vl(V

∗
l ).

As shown in Appendix B.3, the AIM action can be rewritten in terms of the hybridiza-
tion function

∆ν =
∑
l

|Vl|2
iν − εl

(3.2)

=

∫ +∞

−∞
dω′

∆(ω′)

iν − ω′ , (3.3)

where ∆(ω) is the bath density of states. This yields

SAIM =
∑
ν

c̄σ [−iν + (∆ν − µ)] cσ + U

∫ β

0

dτ n↑n↓, (3.4)

1 Recall nσ = c̄σ(τ)cσ(τ).
2The energy levels of the bath are often referred to as bath sites. This can be misleading: The AIM

does not describe a cluster of sites with label l in real space. Instead, there are energy levels εl,
where the impurity electron can jump to with probability amplitude V ∗l , or vice versa Vl.
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comprising the expression for the exact solution of the bare Green’s function of the AIM:

(Gν)−1 = iν + µ−
∫ +∞

−∞
dω′

∆(ω′)

iν − ω′ . (3.5)

The algorithms to solve the AIM, the so-called impurity solvers, represent a crucial
part of the DMFT solution of the Hubbard model, introduced in Chapter 2. This will
be further discussed in Section 3.1.3. Let us first see, however, how the Hubbard model
can be mapped onto the AIM.

3.1.2. Self-consistency loop

The underlying theory of the self-consistency loop discussed in this section is dynamical
mean-field theory (DMFT). Within DMFT, a lattice model (here: Hubbard model) is
iteratively mapped onto an impurity model (here: AIM) through an iterative determina-
tion of its electronic bath. For a comprehensive review on the topic we refer the reader
e.g. to A. Georges’ et al. review. [62]

In a nutshell, DMFT can be understood as a self-consistency loop, where the momen-
tum degrees of freedom are treated on a mean-field level, while all temporal and local
quantum fluctuations are treated exactly. As a result the self-energy, see Equation (2.31)
and above, is local by construction: Σloc

ν .
The self-consistency loop employed for DMFT can be written as follows:

Input starting guess : Σloc
ν , e.g. Σloc

ν = 0,

Gloc
kν =

[
iν − (εk − µ)− Σloc

ν

]−1
, (3.6a)

Gloc
ν =

∑
k

Gloc
kν , (3.6b)

(Gν)−1 =
(
Gloc
ν

)−1
+ Σloc

ν , (3.6c)

Impurity solver : in : Gν out : GAIM
ν = Gloc

ν ,

Σloc
ν = (Gν)−1 −

(
Gloc
ν

)−1
, (3.6d)

where Gloc
kν is the DMFT lattice Green’s function computed in Equation (3.6a) from the

local self-energy and the lattice dispersion εk. The first DMFT self-consistency equation
is Equation (3.6b), where the local Green’s function is computed by summing over all
momenta. The second DMFT self-consistency Equation is the so-called Dyson Equation,
appearing in Equations (3.6a), (3.6c) and (3.6d). As shown in Section 3.1.1, the AIM
is fully defined by the choice of G. Here, we assume that we have an impurity solver
that solves the interacting problem stated in Equation (3.4). This loop is iterated from
Equations (3.6a) to (3.6d) until a converged solution for Σloc

ν is found.
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The impurity solver. There exists not one, but many possible impurity solvers includ-
ing, e.g., exact diagonalization (ED) schemes, continuous time quantum Monte Carlo
(CT-QMC) algorithms, numerical renormalization group (NRG), density matrix renor-
malization group (DMRG), as well as semi-analytic expressions, such as iterated per-
turbation theory (IPT). The choice of the impurity solver depends on many criteria. To
name a few:

1. The lattice model of choice.

2. The parameter regime dictated by the problem under investigation. This refers to
the range of e.g. temperature, interaction, doping and other parameters.

3. The additional approximations, that every impurity solver inevitably implies.

4. The computational effort the impurity solver demands.

Let us deduce which impurity solver is suitable for our purpose:
Ad point 1, the choice of our model has been thoroughly discussed in Chapter 2. The

Hubbard model does not allow for a fully analytic expression as an ’impurity solver’,
unlike the Falicov-Kimball model or the Binary Disorder model, to name counterexam-
ples. The semi-analytic technique IPT is a qualitatively good interpolation between the
two limiting cases, i.e. the non-interacting limit U = 0 and the atomic limit U � t, of
the Hubbard model. However, quantitatively it is not precise, e.g. the Mott-Hubbard
metal-insulator transition appears shifted, especially in the case of finite doping.

Ad point 2, the temperature regime we are interested in is determined by the occur-
rence of the pseudogap phase in cuprates above the superconducting dome. As seen
in Figure 1.1 on page 4, this ranges from about 70 K to 300 K. Thus, techniques only
suitable for zero or extremely low temperatures, such as DMRG and NRG, are excluded.

We hence narrowed the choice down to ED or CT-QMC. Both are suitable to com-
pute a solution for the proposed AIM and both are feasible options considering the
computational effort, mentioned in point 4.

Additionally, we need to consider the availability of a program and the expertise.
Within the groups at the solid states institute at TU Wien, there are currently two pro-
grams frequently used: One that contains a standard ED algorithm and the w2dynamics-
package [63–65], which is a CT-QMC solver in the hybridization expansion.

To adequately discuss point 3 goes beyond the scope here. Nonetheless, we mention
that ED acquires a systematic error from the discretization of the bath density of states,
while CT-QMC is afflicted with statistic errors. The latter was problematic for the first
implementations of dynamical vertex approximation, which will be used in the course of
this work, due to oscillations in the high-frequency regime of observables.3

Therefore, in the scope of this work, DMFT results have been obtained by exploiting
an ED algorithm, while benchmarking sample cases with CT-QMC.

3These oscillations are particularly pronounced at the two particle level, which is the corner stone of
DΓA. However, this is not to say, that CT-QMC and DΓA mutually exclude each other. On the
contrary, important progress [66] has been recently achieved on CT-QMC and implementing DΓA
in the w2dynamics package is a matter of current effort.
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In the following section, we will continue by specifically describing the ED algorithm.

3.1.3. Exact Diagonalization (ED)

In the previous section, we have illustrated how the Hubbard model is mapped onto the
AIM by means of a self-consistency loop. The last missing ingredient, to compute the
self-energy in Equation (3.6d) by means of this iterative method, is the impurity solver.

In the following, the ED algorithm employed in this work and its approximations are
described. The approach was first reported in 1994 [67] by M. Caffarel and W. Krauth.
Moreover, it is comprehensively reviewed [62] by A. Georges et al., where i.a. ED is
compared to CT-QMC.

The basic idea behind ED algorithms is to approximate the bath by a finite, discrete
set of Anderson parameters {|Vl|, εl}. The number of energy levels is fixed to a given
number4 ns, which is typically ≤ 8. The bare Green’s function in Equation (3.6c) is
hence projected to the discrete version of Equation (3.5), namely

(Gnsν )−1 = iν + µ−
ns∑
l=2

|Vl|2
iν − εl

. (3.7)

The projection, this implies, requires the definition of a distance between G and Gns ,
which is subsequently minimized. In the code, that we employ, the distance is defined
as

d =
1

N + 1

N∑
n=0

|Gνn − Gnsνn |
n+ 1

(3.8)

The minimization of this function yields a set of Anderson parameters {|Vl|, εl}.
The Anderson parameters define a discrete AIM Hamiltonian5

Hns
AIM =

ns∑
l=1,σ

[
εlb̂
†
lσ b̂lσ + Vl b̂

†
lσ b̂1σ + V ∗l b̂

†
1σ b̂lσ

]
+ Un̂1↑n̂1↓, (3.9a)

ε1 = µ, V1 = 0, n̂1σ = b̂†1σ b̂1σ, (3.9b)

where the 1st energy level l = 1 corresponds to the interacting impurity site. This
Hamiltonian is defined in a finite-dimensional Hilbert space, which is spanned by

|N1↑, N2↑, . . . , Nns↑〉 ⊗ |N1↓, N2↓, . . . , Nns↓〉, (3.10)

where Nlσ = 0, 1. As a next step, the Hamiltonian is diagonalized, yielding a numerically
exact set of eigenstates |i〉 with eigenvalues Ei.

4The number of energy levels ns includes the impurity site itself as 1st level. Therefore, the sum over
l in Equation (3.7) starts at l = 2, summing only over the bath states.

5Cf. the AIM action in Equation (3.4): Here, the Hamiltonian is written in fermionic operators instead

of Grassmann fields. Note that, we set ĉ
(†)
σ ≡ b̂(†)1σ .
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As shown in Section B.4, the AIM one-particle Green’s function in its spectral repre-
sentation, also called Lehmann representation [60], is given as

GAIM
ν = − 1

Z

∑
i,m

∣∣〈m|ĉ†σ|i〉∣∣2
Ei − Em − iν

(
e−βEi + e−βEm

)
. (3.11)

This can be explicitly computed by means of the set of eigenstates known from exact
diagonalization of the Hamiltonian in Equation (3.9), and consequently the self-energy
in Equation (3.6d) can be calculated.

With this procedure at hand, the self-consistency loop in Equations (3.6a) to (3.6d)
can be iterated until a converged solution is found. The condition, under which a solution
is considered converged, can be chosen in terms of Σloc

ν , Gloc
ν or in the case of ED, most

straight-forwardly, in terms of the Anderson parameters. In particular, we assume a
solution to be converged when the set {|Vl|, εl} remain unchanged within an absolute
tolerance of 10−13.

In conclusion, the ED impurity solver consists of three steps:

• Determine a set of Anderson parameters by minimization of Equation (3.8).

• Determine a set of eigenstates and eigenvalues by numerically exact diagonalization
of the Hamiltonian in Equation (3.9).

• Compute the AIM one-particle Green’s function, given in Equation (3.11).

3.2. Diagrammatic extensions to DMFT

In this section, we revise two ways of going beyond dynamical mean-field theory (DMFT).
The fundament of this discussion remains DMFT, which has been reviewed in Section 3.1.

In Section 3.2.1, we recall the structure of diagrammatics at the two-particle level.
With the latter at hand, the so-called dynamical vertex approximation (DΓA) is de-

scribed for our application, in Section 3.2.2. In particular, this corresponds to ladder
DΓA in the particle-hole channel on top of ED as it is currently implemented.

Subsequently, in Section 3.2.3, the theory of dual fermions (DF) is revised.
Fundamentally, both, ladder DΓA and DF, aim to include long-range correlation effects,
which are caused by collective excitations of the system. These are precursors of a phase
transition and emerge when the corresponding fluctuations get strong, i.e. the correlation
length of the associated susceptibility diverges. DΓA and DF are two examples of a larger
group of methods recently reviewed [56] by G. Rohringer et al.. All of these methods
have two basic steps in common:

• A non-perturbative building block is chosen amongst the two particle vertices and
approximated to be local.

• A diagrammatic scheme is built around that building block to obtain a non-local
self-energy, i.e. include non-local correlations beyond DMFT.
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χkk′q
σσ′ =

Gk+q

−−βδkk′δσσ′

Gk

Gk+q Gk′+q

F kk′q
σσ′

Gk Gk′

Figure 3.2.: Generalized susceptibility from Ref. [56].

The following discussion mostly follows [56] G. Rohringer et al., while further details on
the two-particle vertex can be found in Ref. [68].

3.2.1. Diagrammatics at the two particle level

The two-particle Green’s function,

G
(2)
σσ′,kk′q(τ1, τ2, τ3) ≡ 〈Tτ

[
ĉkσ(τ1)ĉ†k+q,σ(τ2)ĉk′+qσ′(τ3)ĉ†k′σ′(0)

]
〉, (3.12)

G
(2),νν′ω
σσ′,kk′q =

∫ β

0

dτ1dτ2dτ3 eiντ1 e−i(ν+ω)τ2 ei(ν′+ω)τ3 G
(2)
σσ′,kk′q(τ1, τ2, τ3), (3.13)

in particle-hole representation describes the propagation of a particle-hole pair through
the system. Note, however, that both, particle-hole and particle-particle propagators,
can be extracted from this representation: A mere shift of the form qpp = q + k + k′

recovers the process of two particles propagating. Equation (3.12) is the special case
of n = 2 for the n-particle Green’s function shown in Section C.2. Here, ν (ν ′) and k
(k′) are fermionic Matsubara frequencies and momenta, respectively, while ω and q are
bosonic.

By considering Wick’s theorem [59], the two-particle Green’s function consists of two
disconnected parts and one connected part. Subtracting one of the disconnected parts,
namely the cross-connected, defines the generalized susceptibility [68] (Figure 3.2)

χνν
′ω

σσ′,kk′q = G
(2),νν′ω
σσ′,kk′q − βGkGk′δq0, (3.14a)

= −βGkGk+q δkk′δσσ′︸ ︷︷ ︸
χνν
′ω

0,kk′q

−GkGk+qF
kk′q
σσ′ Gk′+qGk′ , (3.14b)

which is often used in computations, instead of the two-particle Green’s function. In
the second line we have additionally introduced the full vertex function F kk′q

σσ′ , that
accounts for all scattering events at the two-particle level. The lowest order of F is
the bare interaction [69], F kk′q

σσ′ = Uδ↑↓. Furthermore, we defined the bare generalized
susceptibility χνν

′ω
0,kk′q.
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Figure 3.3.: Parquet decomposition from Ref. [56].

Choosing a particular linear combination of spin indices, allows the extraction of the
physical charge (c) and spin (s) susceptibility6 by summation over all fermionic degrees
of freedom

χνν
′ω

c/s,kk′q = χνν
′ω

↑↑,kk′q ± χνν
′ω

↑↓,kk′q, (3.15a)

χωr,q =
∑
k,k′

χνν
′ω

r,kk′q, with r = c, s. (3.15b)

In the particle-particle scattering representation, additionally the spin-singlet and triplet
susceptibility can be defined.

Expanding the idea of one-particle irreducibility (1PI) one obtains three possibilities
of two-particle irreducibility (2PI): particle-hole (ph), particle-hole transverse (ph) and
particle-particle (pp) depending on the lines that enable the separation of the corre-
sponding diagrams. The parquet equations [58,70], (Figure 3.3)

F kk′q
r = Λkk′q

r + Φkk′q
ph,r + Φkk′q

ph,r
+ Φkk′q

pp,r , (3.16a)

F kk′q
r = Γkk

′q
l,r + Φkk′q

l,r , with l = ph, ph, pp, (3.16b)

are then nothing more than a classification of diagrams in terms of there two-particle
irreducibility. The full vertex F is decomposed into 2PI vertex functions Γkk

′q
l,r and their

counter-parts Φkk′q
l,r , the two-particle reducible vertices, as well as in Λkk′q

r , which is fully
irreducible on the two-particle level, i.e. 2PI in all channels. The specific channel is
denoted by the label l = ph, ph, pp.

The full vertex F can be expressed by means of the Bethe-Salpeter Equations, e.g.
for l = ph, it reads [58]

F kk′q
r = Γkk

′q
ph,r +

1

β

∑
k1

Γkk1q
ph,rGk1Gk1+qF

kk1q
r , (3.17a)

χkk
′q

r = χkk
′q

0 − 1

β2

∑
k1k2

χkk1q
0 Γk1k2q

ph,r χ
k2k′q
r . (3.17b)

6These correspond to density and magnetic fluctuations, respectively.
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Here, the second line refers to an equivalent formulation in terms of susceptibilities.
Finally, the Heisenberg equation of motion gives rise to the Schwinger-Dyson equation

[60]

Σk =
Un

2
− U

β2

∑
k′q

F kk′q
↑↓ Gk′Gk′+qGk+q. (3.18)

Hence, the knowledge of the full two-particle vertex function F , through the Schwinger-
Dyson equation, allows to compute the 1PI vertex, which is the one-particle quantity
called the self-energy.

3.2.2. Dynamical vertex approximation (DΓA)

In the following, we will revise the specific algorithm actually used to obtain our results.
This, in fact, corresponds to a particular type of DΓA, coined ladder DΓA. For a full
presentation of the DΓA method, we refer the reader to the recent review [56] on dia-
grammatic extensions by G. Rohringer et al., the PhD thesis by T. Schäfer [71], as well
as the PhD thesis by G. Rohringer [69], or the pioneering works [72, 73] by A. Toschi,
A. A. Katanin and K. Held.

The starting point for ladder DΓA is a converged DMFT calculation. From the known
set of eigenstates and eigenvalues obtained, e.g. by the exact diagonalization method any
observable can be computed given its spectral representation. The DMFT loop requires
the computation of the AIM one-particle Green’s function, GAIM

ν as given in Equa-
tion (3.11). The bare7 generalized susceptibility of the AIM is immediately accessible
through

χAIM,νν′ω
0 = −βGAIM

ν GAIM
ν+ωδνν′ . (3.19)

Similarly, the AIM generalized susceptibility is computed by means of its Lehmann
representation, which reads in its particle-hole representation [72]

χAIM,νν′ω
σσ′ =

1

Z

(
χAIM

123 + χAIM
132 + χAIM

312 + χAIM
213 + χAIM

231 + χAIM
321

)
, (3.20a)

χAIM
123 = − 1

β2

∑
m,n,i,j

〈n|ĉ†σ|m〉〈m|ĉσ|i〉〈i|ĉ†σ′|j〉〈j|ĉσ′|n〉
i(ν ′ + ω)− Ei + Ej[

1

i(ν − ν ′) + Em − Ej

(
e−βEn + e−βEj

iν ′ + En − Ej
− e−βEm + e−βEn

iν + En − Em

)
− 1

i(ν + ω) + Em − Ei

(
e−βEi − e−βEn

iω + En − Ei
− e−βEm + e−βEn

iν + En − Em

)]
, (3.20b)

χAIM
132 = . . . , (see Toschi et al., (2007) [72] for all expressions). (3.20c)

The AIM generalized susceptibility contains all two-particle scattering effects, where
correlation is local. When combined with GAIM

ν , χAIM is used to obtain the local full

7Note, that the full Green’s function is used to compute the bare generalized susceptibility. Here, bare
refers to the fact, that the corresponding diagrams are not connected, as seen in Equation (3.14b).
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vertex Floc by means of

F νν′ω
loc,σσ′ = −GAIM

ν

−1
GAIM
ν+ω

−1
[
χAIM,νν′ω
σσ′ − χAIM,νν′ω

0

]
GAIM
ν′+ω

−1
GAIM
ν′

−1
, (3.21a)

F νν′ω
loc,c/s = F νν′ω

loc,↑↑ ± F νν′ω
loc,↑↓, (3.21b)

where again c and s label charge and spin, respectively.
The 2PI vertex Γ can be computed via matrix inversion in νν ′ by means of the

’inverse’ Bethe-Salpeter equation. In the case of the charge and spin susceptibility, with
Equation (3.17b), this reads

Γloc,νν′ω
c/s = β2

([
χAIM,νν′ω
c/s

]−1

−
[
χAIM,νν′ω

0

]−1
)
. (3.22)

In the next step, the non-local bare DMFT susceptibility is computed via the DMFT
lattice Green’s function, Equation (3.6a),

χloc,kk′q
0 = −βGloc

k Gloc
k+qδkk′ , (3.23a)

with Gloc
k =

[
iν − (εk − µ)− Σloc

ν

]−1
. (3.23b)

Here, the label loc refers to the inclusion of exclusively local correlations through the
local self-energy of DMFT, although χloc

0 is obviously k-dependent as opposed to χAIM
0 .

The quantities, given in Equation (3.22) and Equation (3.23), enable us to compute
an auxiliary susceptibility (Ref. [71] Equation (2.47))

χ∗,νν
′q

r=c/s =

(∑
kk′

χloc,kk′q
0

)−1

+
1

β2

(
Γloc,νν′ω
r − Ur

)−1

, (3.24a)

Uc/s = ±U, (3.24b)

where inversion is performed in νν ′ and U is the bare Hubbard-U as it appears in the
Hamiltonian.

This trick causes the Bethe-Salpether ladder in the particle-hole channels, spin and
charge, to appear separated by Ur, (Ref. [71] p. 30)

χνν
′q

r = χ∗,νν
′q

r − 1

β

∑
ν1ν2

χ∗,νν1q
r Uν1ν2

r χν2ν′q
r , (3.25a)

= χ∗,νν
′q

r − Ur
(

1− Ur
1

β2

∑
ν1ν2

χ∗,ν1ν2q
r

)
1

β2

∑
ν3ν4

χ∗,νν3q
r χ∗,ν4ν′q

r +O
(
χ∗4
)
, (3.25b)

where Uν1ν2
r = const.

The last line was obtained by iterating the equation in the former line. The latter
equation builds ladder diagrams by means of the local 2PI vertex in the particle-hole
channels, Γloc,νν′ω

c/s , combined with the momentum-dependent lattice Green’s function,

Gloc
k . By a closer look this must violate the Ward-Takahashi identity and consequently

violates the Baym-Kadanoff conservation relation [74], which schematically reads8 Γ =
δΣ
δG

.

8 This reveals the contradiction arg(k-indep.) = arg(k-dep.).

33



3. Methods

Moriyaesque λ-correction. As a direct consequence of the violation of the Baym-
Kadanoff conservation relation it seems logical to use ladder DΓA as a single-shot cal-
culation. However, important two-particle self-consistent properties related to the Pauli
principle are lost [75] even then. In particular, the asymptotic behaviour of the self-
energy is one property where this loss is reflected. We recall, that the proper asymp-
totic behaviour is derived by expanding the Schwinger-Dyson equation of motion, Equa-
tion (3.18), and analytic evaluation of the sum [69]

Σk =
Un

2
+

1

iν
U2 1

β3

∑
k1k2q

χk1k2q
↑↑︸ ︷︷ ︸

n
2 (1−n

2 )

+O
(

1

(iν)2

)
. (3.26)

Note the direct connection to the susceptibility. Although this behaviour is not repro-
duced by Equation (3.25b), it offers a way of improvement as we will see in the following.

The physical interpretation of loosing two-particle self-consistent properties in this
procedure is that along with non-local correlations spacial fluctuations should reenter
the equations. A mean-field theory such as DMFT overestimates the correlation length
ξ of the system [69]. Consider the Ornstein-Zernicke form of the correlation function at
ω = 0 given as

χνν
′q

r =
A

(q −Qr)
2 + ξ−2

. (3.27)

Here, A is some constant and Qr determines the spatial modulation of the instability,
e.g. antiferromagnetic, ferromagnetic charge density wave etc.. The response is at its
maximum for an external perturbation which is spatially described by the specific q-
vector, q = Qr. In the case of commensurate antiferromagnetic fluctuations, relevant
here, this is Qs = (π, π).

In practice the overestimated correlation length ξ is compensated for by the so-called
Moriyaesque λ-correction. ξ−2 is too small, if ξ is overestimated. ξ is decreased by
adding a positive constant λr to χ−1

r . In order to choose the value λr, we recall the
connection between the response function and the asymptotic behaviour of the self-
energy in Equation (3.26). For the response computed by hands of a Bethe-Salpether
ladder in the spin and charge channel, i.e. for Equation (3.25b), the condition imposed
by the Moriyaesque λ-correction reads

1

β3

∑
νν′q

1

2

(
χλs,νν

′q
s + χλc,νν

′q
c

)
!

=
n

2

(
1− n

2

)
, (3.28a)

χλr,νν
′q

r =

[(
χνν

′q
r

)−1

+ λr

]−1

. (3.28b)

In our calculation, we have additionally assumed that magnetic fluctuations are preva-
lent for the specific model. Hence, the λ-correction for the charge channel can be ne-
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glected9, λc ≡ 0. As a result, the correct asymptotic behaviour, as in Equation (3.26),
is enforced by means of λs > 0.

At last, we define yet another auxiliary quantity, a triangular vertex,

γνqr =

(∑
kk′

χloc,kk′q
0

)−1
1

β

∑
ν′′

χ∗,νν
′′q

r , (3.29)

with inversion in νν ′. Note that the first sum goes over two momenta, but one frequency.
The ladder full vertex Flad in the particle-hole channels can then be computed as

F νν′q
lad,r=c/s =

(∑
kk′

χloc,kk′q
0

)−1
βδνν′ − χ∗,νν′qr

(∑
kk′

χloc,kk′q
0

)−1


+ Ur

(
1− Ur

1

β2

∑
ν1ν2

χλr,ν1ν2q
r

)
γνqr γ

ν′q
r (3.30)

As the Bethe-Salpether ladder in Equation (3.25b) is built in the spin and charge

channels, the momentum-dependence of the full vertex F νν′q
lad,r=c/s appears only in the

spin and charge reducible vertices Φνν′q
c/s :

Φνν′q
c/s = F νν′q

lad,c/s − Γνν
′ω

loc,c/s. (3.31)

The final result for the full vertex F is computed by plugging Equation (3.31) in Equa-

tion (3.16), and utilizing SU(2) symmetry, F
k(k+q)(k′−k)
↑↓,ph = −(F kkq

↑↑,ph − F kkq
↑↓,ph) = −F kkq

s .

F kk′q
↑↓ =

1

2

(
F νν′q

lad,c − F νν′q
lad,s

)
− F ν(ν+ω)(k−k′)

lad,s − 1

2

(
F νν′ω

loc,c − F νν′ω
loc,s

)
. (3.32)

Here, F νν′q
lad,c/s is given in Equation (3.30) and F νν′ω

loc,c/s is given in Equation (3.21).
The momentum-dependent ladder DΓA self-energy is obtained using the Schwinger-

Dyson equation, Equations (3.18) and (3.32) (Ref. [71] Equations (2.27) and (2.52))

Σk =
Un

2
+
U

β2

∑
k′q

F kk′q
↑↓ Gloc

k′ G
loc
k′+qG

loc
k+q, (3.33a)

=
Un

2
− U

2β2

∑
q

[
γνqc − 3γνqs + Uγνqc

(
1

β2

∑
ν1ν2

χλc,ν1ν2q
c

)

+3Uγνqs

(
1

β2

∑
ν1ν2

χλs,ν1ν2q
s

)
+ 2−

∑
k′

(
F νν′ω

loc,c − F νν′ω
loc,s

)
Gloc
k′ G

loc
k′+q

]
Gloc
k+q. (3.33b)

The second line, Equation (3.33b), is actually evaluated in the program, which sparse
from the necessity of evaluating Equation (3.32).

9In general, charge-density waves are present in cuprates. Thus, one may question this decision. On
the other hand, charge-density waves occur mediated by O 2px and O 2py orbitals, which have been
neglected by the choice of our model.
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Σ =

(a)

+
i

+ . . .
i i

(b)

Λ = + + . . .
i

i

i

i

i

Figure 3.4.: Local vertex. (a) DMFT assumes the fully 1PI vertex, Σ, to be local, (b) in
DΓA the fully 2PI vertex, Λ, is assumed to be local from Ref. [56].

The approximation that ladder DΓA imposes may not immediately be obvious from
the technical discussion above. In fact, the approximation on the level of the parquet
equations basically reads

F kk′q
↑↓ = Λνν′ω

loc,↑↓ + Φkk′q
ph,↑↓ + Φkk′q

ph,↑↓ + Φνν′ω
pp,loc,↑↓. (3.34)

Note the momentum and frequency dependencies. Thus, (i) the fully 2PI vertex Λ, and

(ii) the two-particle reducible vertex Φpp are assumed to be local, while Φkk′q
ph,↑↓ and Φkk′q

ph,↑↓
include particle-hole fluctuations on all length scales. In the following, we briefly discuss
the motivation and consequences of each approximation.

The first assumption (i) that Λ is local, invokes the diagrammatic content illustrated
in Figure 3.4. The locality of Λ may be an appropriate assumption under consideration
of the following three aspects. Firstly, the depicted Feynman diagrams are “topologically
compact”, hence they are supposedly connected to the most fundamental local processes.
Secondly, numerical evidence [76] based on DCA calculations on large clusters of a
fairly local Λ has been published for a two-dimensional system solved by dynamical
cluster approximation (DCA) within a regime of strong non-local correlations. Finally,
physically non-local correlations are typically associated with collective modes, which
are per definition not expressed by Λ, but ladder diagrams. The latter include e.g. spin
density waves and charge density waves. We recall that these are both important in
the physical system subject to this work, namely cuprates. As the dominant non-local
correlations are due to those modes associated with ladder diagrams, the momentum-
dependence of Λ can be likely assumed to be suppressed.

The second approximation (ii), that Φpp is local, introduces a particular numerical
advantage. It is unique to ladder DΓA in the particle-hole representation. It would
not be invoked in the numerically more demanding parquet DΓA. Here, instead, the
inversion to compute Γpp, analogous to Equation (3.22), is also done in fermionic indices,
the shift qpp = q+k+k′, which is necessary to change to particle-particle representation,
intertwines the indices. The justification for assuming Φpp to be local is that non-local
scattering prevalently occurs in the particle-hole channels, namely spin and charge.

Summarizing, the ladder DΓA algorithm consists of the following five steps:
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• Compute the AIM quantities, i.e. the AIM one-particle Green’s function GAIM
ν and

the AIM generalized susceptibility χAIM,νν′ω
σσ′ , of a converged DMFT calculation by

hands of Equations (3.11) and (3.20a), respectively. This also discloses the bare

generalized susceptibility χAIM,νν′ω
0 in Equation (3.19).

• Determine the local quantities, namely the local fully connected vertex F loc,νν′ω
c/s

and the local 2PI vertex Γloc,νν′ω
c/s in the charge and spin channel, as well as the

local bare susceptibility χloc,kk′q
0 , in Equations (3.21) to (3.23). All three exclusively

include local correlation.

• Compute the generalized susceptibility by means of the Bethe-Salpeter ladder,
which includes non-local correlations in the particle-hole channel, as given by Equa-
tion (3.25b).

• Enforce a Moriyaesque λ-correction as given in Equation (3.28).

• Compute the ladder DΓA full vertex and the momentum-dependend ladder DΓA
self-energy, as obtained by Equation (3.33b)

3.2.3. Dual fermion (DF) theory

The theory of dual fermions was first introduced by A. N. Rubtsov et al. [77] in 2008. The
code employed in this project was developed by H. Hafermann [78], while the discussion
below mostly follows the recent review [56] on diagrammatic extensions by G. Rohringer
et al.

In this section, we return to the action formalism preceded in Section 2.3 and consider
the action of the Hubbard model, cf. Equations (2.19) and (2.20),

S[c̄, c] = c̄kσ [−iν + εk − µ] ckσ + Uc̄↑xc↑xc̄↓xc↓x, (3.35)

in 4-vector notation defined in Section C.1.
Adding and subtracting a Gaussian part, that is an arbitrary local hybridization

function
∑

x c̄νxσ∆νcνxσ =
∑

k c̄νkσ∆νcνkσ, yields

S[c̄, c] =
∑
x

(∑
νσ

c̄νxσ [−iν + ∆ν − µ] cνxσ + U

∫ β

0

dτ c̄x↑(τ)cx↑(τ)c̄x↓(τ)cx↓(τ)

)
+
∑
νkσ

c̄νkσ [εk −∆ν ] cνkσ,

(3.36)

where we adopted a less compact notation to emphezise the summation. By comparison
of Equation (3.36) with the action of the Anderson impurity model Equation (3.4), one
can identify dim(x) local reference systems, given by

Sloc[c̄, c] =
∑
νσ

c̄νσ [−iν + ∆ν − µ] cνσ + U

∫ β

0

dτ c̄↑(τ)c↑(τ)c̄↓(τ)c↓(τ). (3.37)
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As discussed in Section 3.1, the AIM can be numerically solved.
The Hubbard action10 is given as

S[c̄, c] =
∑
x

Sloc[c̄x, cx] +
∑
νkσ

c̄νkσ [εk −∆ν ] cνkσ. (3.38)

The so-called dual fermions are introduced by a Hubbard-Stratonovich transformation,
which reads

e−c̄νkσ [εk−∆ν ]cνkσ = − 1∏
νkσ b

2
νσ [εk −∆ν ]

−1

∫
¯̃cc̃

eb
2
νσ

¯̃cνkσ [εk−∆ν ]c̃νkσ+bνσ[c̄νkσ c̃νkσ+¯̃cνkσcνkσ],

(3.39)

where bνσ = Gloc
νσ
−1

is a properly chosen proportionality factor, and c̃(¯̃c) are dual fields.
This leads to an alternative representation of the partition function in a form

Z =

∫
c̄c

e−S[c̄,c] = Z̃

∫
c̄c

∫
¯̃cc̃

e−S[c̄,c;¯̃c,c̃], (3.40)

S[c̄, c; ¯̃c, c̃] =
∑
x

Sloc[c̄, c] +
∑
νkσ

{
¯̃cνkσ

(
Gloc
νσ

−1
)2

[∆ν − εk] c̃νkσ −Gloc
νσ

−1
[c̄νkσ c̃νkσ + ¯̃cνkσcνkσ]

}
,

(3.41)

where a sole transformation, but no approximation, has been acted.
In the next step, the physical fields c(c̄) are integrated over.

Z = Z̃Zloc

∫
¯̃cc̃

e−S̃[¯̃c,c̃], (3.42)

S̃[¯̃c, c̃] = −
∑
νkσ

G̃−1
0,k

¯̃cνkσ c̃νkσ +
∑
i

Veff[¯̃ci, c̃i], (3.43)

where the remaining dual action S̃[¯̃c, c̃] generally contains a non-interacting part pro-
portional to the bare dual single-particle Green’s function, as well as an interacting part
Veff up to arbitrary order in dual fields c̃(¯̃c).

The connection between the bare dual single-particle Green’s function and the self-
consistently determined AIM Green’s function Gloc

ν =
[
iν −∆ν + µ− Σloc

ν

]
is defined

as

G̃0,k =
[(
Gloc
ν

)−1
+ (∆ν − εk)

]−1

−Gloc
ν , (3.44)

= Gloc
νk −Gloc

ν . (3.45)

This relation allows the interpretation of dual fermions as “non-local degrees of freedom”.
The dual interaction is expanded in powers of the dual fields. Note that a Taylor

expansion in c̃(¯̃c) imply variations, e.g. for first order of the form δ
δc̃

δ
δc̃

δ
δ¯̃c

δ
δ¯̃c

. Because dual

10Here, in terms of the local reference systems.
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fields are sources to physical fields, as seen in Equation (3.41), the dual interaction of nth
order consists of local connected n-particle vertex functions F (2n). The wisely-chosen
proportionality factor Gloc

νσ
−1

conveniently amputates all external legs. In particular, our
calculations include the first order term given as [78] (Equation (A.60))

Veff[¯̃ci, c̃i] =
1

4

∑
νν′ω
σσ′

(2− δσσ′)F νν′ω
σσ′

¯̃ciνσ c̃i(ν+ω)σ
¯̃ci(ν′+ω)σ c̃iν′σ. (3.46)

We have omitted higher-order terms, as these are assumed to be negligible11 in [80] this
particular case. At this point the DF approach becomes an approximation.

The system can be written in terms of a generating functional given as

Z[η, η̄; η̃, ¯̃η] =

∫
c̃¯̃c

e−S̃[c̃,¯̃c]−
∑
kσ [εk−∆ν ]−1(Gloc

ν )
−1

[¯̃ckσηkσ+η̄kσ c̃kσ]+[εk−∆ν ]−1η̄kσηkσ+˜̄ηkσ c̃kσ+˜̄ckσ η̃kσ ,

(3.47)

where source fields η(η̄) and their dual analogous η̃(¯̃η) have been introduced. The (dual)
Green’s function can be obtained through variations

G =
1

Z

δ2

δη̄δη
Z[η, η̄; η̃, ¯̃η]

∣∣∣∣
η,η̄;η̃,¯̃η=0

, (3.48)

G̃ =
1

Z

δ2

δ ¯̃ηδη̃
Z[η, η̄; η̃, ¯̃η]

∣∣∣∣
η,η̄;η̃,¯̃η=0

, (3.49)

which yields

Gk = [εk −∆ν ]
−1 (Gloc

ν

)−1
G̃k

(
Gloc
ν

)−1
[εk −∆ν ]

−1 − [εk −∆ν ]
−1 , (3.50)

and a relation between the physical and the dual self-energy, that reads

Σk = Σloc
ν +

Σ̃k

1 +Gloc
ν Σ̃k

. (3.51)

At this point, the problem formulated in Equation (3.43) actually has the same form
in dual space as the original problem, Equation (3.35), but with a more complicated
interaction. The advantage is that Veff can be seen as a small parameter [77], and hence
a perturbation expansion is in these newly introduced degrees of freedom might be
appropriate. Dual fermions, thus, live close to the non-interacting limit. As mentioned,
they are defined as being completely delocalized, which leads to the formulation of a
self-consistent condition, ∑

k

G̃k = 0. (3.52)

11How well this is justified is a matter of current discussion [79] within the community. In practice, the
computational effort to include higher orders would be considerably higher. This is why it has not
been systematically investigated, but often argued, that higher order contributions are small.
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It states that all fully local diagrams in dual space vanish.
The dual fermion self-energy can be computed in a ladder approximation scheme [78]

in the dual space. In the particle-hole channel it reads [56]

Σ̃k =− 1

β2

1

2

∑
k′q

F νν′ω
loc,c G̃k′G̃k′+qG̃k+q

[
F νν′q

lad,c −
1

2
F νν′ω

loc,c

]
− 1

β2

3

2

∑
k′q

F νν′ω
loc,s G̃k′G̃k′+qG̃k+q

[
F νν′q

lad,s −
1

2
F νν′ω

loc,s

]
, (3.53)

where Flad and Floc are exactly the same as in Section 3.2.2. The updated dual Green’s
function is obtained by the dual Dyson Equation

G̃−1
k = G̃−1

0 − Σ̃k. (3.54)

Iterating Equations (3.53) and (3.54) until the self-consistency condition Equation (3.52)
is full-filled is often referred to as inner loop. While updating the AIM and newly
computing the fully connected vertex F is referred to as outer loop.

3.3. Padé Approximation

Hitherto, multiple methods have been discussed, in order to compute observables as
a function of Matsubara frequencies, i.e. for imaginary time evolution. The rotation
to imaginary time was essential to enable numerical computation of a thermal state,
however it severely limits physical interpretation.

In this section, we address the procedure of analytic continuation, which unveils the
according observables as a function of real frequencies. Only from the latter one can
extract physical information. In particular, the technique employed here is the Padé
approximation, whose intrinsic strength and limitation will be detailed.

Analytic continuation of numerical data g(zi) is performed in two steps:

1. Determine an analytic expression f , which fits the data such that

fn(zi) ≡ g(zi) ∀i = 1, 2, . . . , n, (3.55)

where n� 1 and zi is complex. In other words, f is defined on a non-empty subset
U ⊂ C.

2. Determine a function F defined on a larger subset V ⊂ C, U ⊂ V , so that

F (z) = f(z) ∀z ∈ U. (3.56)

We then call F the unique analytic continuation of f .
Why is this an ill-defined procedure, but nonetheless what we do? In order to answer,

we shall first understand when two analytic functions are equal. This is given by the
identity theorem, which reads as follows:
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Identity theorem: U shall be a domain (i.e. an open, non-zero subset) in
the complex plain C and z0 ∈ U shall be the limit of the series {zn} ⊂ U ,
with zn 6= z0. If two analytic functions f and g are equal for all zn, they are
equal in the entire domain U .

Proof: Assuming f and g are equal for all zn, i.e. h(zn) = f(zn)− g(zn) = 0,∀zn 6= z0,
we want to show that h(z) = 0,∀z ∈ U . Let us expand h(z) in a Taylor series around
z0:

h(z) = c1 + c2(z − z0) + c3(z − z0) + . . . (3.57)

The constant part clearly vanishes by assumption, as f and g have the same limit

h(z = z0) = c1 = lim
z→z0

f(z)− g(z) = 0. (3.58)

Suppose now the linear order does not vanish

0 6= c2 = lim
z→z0

h(z)

z − z0

= lim
n→∞

h(zn)

zn − z0

= 0, (3.59)

which yields a contradiction, 0 6= 0. The last equality is obtained by looking at the series
elements, while keeping in mind that h(zn) = 0,∀zn,{

h(zn)

zn − z0

}
=

{
h(z1)

z1 − z0

,
h(z2)

z2 − z0

, . . .

}
= {0, 0, . . . } . (3.60)

The same argument can be made for any order. Hence all coefficients of the Taylor
expansion are zero. Consequently, h(z) = 0,∀z ∈ U . q.e.d.

In other words, in order to determine the analytic continuation, F must be equal to
f in the entire domain U , i.e. fulfill Equation (3.56). However to fulfill Equation (3.56),
the functions must have an accumulation point z0, which requires countably infinitely
many points. Thus uniqueness is impossible to achieve by means of finite numerical
data.

Why should we have confidence in the result of this mathematically ill-defined prob-
lem? Because physical properties given by the specific observable of the system is checked
additionally. This is detailed in the Paragraph Physical checks. As a caveat, note how-
ever, that the result ultimately remains afflicted with the systematic error introduced
by a finite set of data.

In the following, we demonstrate the procedure as it was implemented in the course
of this project. The code was written in c++ and benchmarked with a similar fortran
program.

Padé approximation. In practice, the first step to perform Padé approximation is to
fit the data, g(zi), to a chain fraction, fn(z), of fitorder n.
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In fact, fn(z) can be written as

fn(z) =
a1

1 + a2(z−z1)

1+
a3(z−z2)

1+... ...

1+
an−1(z−zn−2)

1+an(z−zn−1)

, (3.61)

where n is the number of parameters ai for given n − 1 points zi. In order to fix ai so
that

fn(zi) ≡ g(zi) ∀i = 1, 2, . . . , n, (3.62)

a recursion to determine the ith parameter ai is given by

fn(z1) = g(z1) = a1, (3.63a)

fn(zi) = g(zi) = c1, (3.63b)

cj =

(
aj−1

cj−1

− 1

)
1

zi − zj−1

, j = 2, . . . , i− 1, (3.63c)

ai =

(
ai−1

ci−1

− 1

)
1

zi − zi−1

, i = 2, . . . , n, (3.63d)

where cj are mere helper to iteratively determine ai. Note that n data values g(zi) at
n data points zi are necessary to fully determine Equation (3.62). This is demonstrated
for the example of n = 4 in Section B.6.

Rewriting in terms of a rational function. For the purpose of investigating the ana-
lytical properties, such as poles and asymptotic behaviour, we rewrite Equation (3.62)
in terms of a numerator polynomial p and denominator polynomial q. With the ansatz,

f (n) =
p(n)(z)

q(n)(z)
=

a1

1 + (z − z1)p
(n−1)(z)

q(n−1)(z)

=
a1q

(n−1)(z)

q(n−1)(z) + (z − z1)p(n−1)(z)
, (3.64)

we obtain the following recursion:

p(1)(z) = an, (3.65a)

q(1)(z) = 1, (3.65b)

p(j)(z) = an−j+1q
(j−1)(z), (3.65c)

q(j)(z) = q(j−1)(z) + (z − zn−j+1)p(j−1)(z) j ∈ [1, n]. (3.65d)

The application to n = 4 is performed in Section B.6. The recursion is used to compute
the polynomial coefficients, which in turn enable to obtain the roots of the numerator
and denominator. While there are many methods to unveil roots of a polynomial, here
we use the Numerical Recipes routine “roots”, which employs Laguerre’s method. [81]
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Physical input. The data, g(zi), could be any observable that depends on one fermionic
or bosonic Matsubara frequency.12 In fact, in the case of DMFT, DΓA and DF, this can
be the self-energy Σνk or the single-particle Green’s function Gνk. Next, we discuss the
case of fitting the Σνk. Note that any k-point has to be considered separately, hence,
we drop the index here.

The input is given by Σνj at νj = (2j + 1)π/β with j ∈ N. Typically j = 0, 1, . . . , n,
where n is of the order of 10 and j does not necessarily take on all values, which effectively
reduces the fitorder.

For a more stable fit the constant Hartree contribution, i.e. Un/2, is subtracted before
performing the recursion of Equation (3.63). Subsequently the chain fraction is rewritten
as a rational function and the roots of numerator and denominator are computed, as
described above. Finally, the analytic expression, namely the rational function, is tested
for its physical properties.

Physical checks. The asymptotic behaviour of the one-particle irreducible self-energy
is known to be

ν →∞ : Σν ∝ −
U2n

2
(1− n

2
)
1

ν
, (3.66)

see Ref. [69]. This is checked by comparison to the ratio of the highest polynomial
coefficients of numerator and denominator. Note that only even fitorders can yield a
denominator with higher polynomial degree than the numerator, and consequently 1/ν
asymptotic behaviour.

Furthermore, the self-energy (as well as the Greens function) is analytic in the upper
complex plane. This means that there are no poles of the rational function in the upper
complex plane, or equally, there are no roots of the denominator that do not cancel with
the numerator with positive imaginary part.

For good measure. From the analytic expression of the self-energy, Σ(z) = pΣ(z)
qΣ(z)

, which
has been examined to be physical, other observables can be computed. In particular,
the single-particle Green’s function

Gνk =
qΣ(z)

zqΣ(z)−KqΣ(z) + pΣ(z)
≡ pG(z)

qG(z)
, (3.67)

where K = (εk − µ) merges all contributions constant in k. Again the analyticity and
the asymptotic behaviour can be checked.

By means of the single particle Green’s function the spectral function can be computed
as follows,

A(ω) = − 1

π
ImGk(ω) =

1

2πi
[G∗k(ω)−Gk(ω)] . (3.68)

Here, we check the zeros on the real axis to verify that the spectral function is positive
within a certain range of ω around the Fermi surface, i.e. ω = 0. The sum rule for the

12The procedure cannot be applied to quantities, which depend on multiple Matsubara frequencies,
such as the generalized susceptibility.
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spectral function, ∫ +∞

−∞
dω A(ω) ≡ 1, (3.69)

is already checked by assuring the single-particle Green’s function to be analytic.

A word about the fitorder. At first glance, it is counter-intuitive to use a low fitorder,
because the finite amount of numerical data is the reason the fit is ill-conditioned in the
first place. It was reasoned in Section 3.3, that a unique analytic expression can only
be found when there is an accumulation point. However, considering that Matsubara
frequencies are equidistant, it is not beneficial to consider many or few data points in
respect to accumulation.13 In fact for a Padé fit procedure, each additional fitorder
results in a pole, i.e. roots of the denominator. When all physical poles are retrieved,
additional roots of the denominator ought to be cancelled by roots of the numerator. The
root cancellation is never exact and causes artifacts in the otherwise smooth function.
For higher fitorders root cancellation not only introduces artifacts, but is increasingly
likely to fail, which results in unphysical contributions. Consequently, it is preferable to
use a low fitorder, 5 ≤ n ≤ 20.

In the next chapter this procedure of analytic continuation is applied to real data.

13 Only for the limit of infinity the asymptotic behaviour yields an accumulation point for equidistant
data. However, as the asymptotic behaviour is known analytically this is included by a direct check,
see Equation (3.66).
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In this chapter, we present the scattering rate obtained for the single band two dimen-
sional Hubbard model by means of the self-energy and the computation of the conduc-
tivity tensor.

In Chapter 1, we highlighted novel experimental results [1] by the group of N. Barǐsić
et al. at TU Wien. In the experiment, the DC resistivity ρ and the Hall resistivity
ρH of a cuprate compound were measured. While in the same experimental paper the
ratio ρ/ρH was regarded to be directly proportional to the scattering rate, we have so
far expressed it in terms of the conductivity tensor. As discussed in Section 1.2 the
corresponding expressions are Equations (1.4) and (1.9),

ρ = 1/σxx, (4.1)

ρH = σxy/σ
2
xx. (4.2)

The most astonishing experimental observation is the doping and compound indepen-
dent behaviour of ρ/ρH =̂ σxx/σxy. And even more so, that it is quadratic in temperature,
as it would be expected for ρ in a normal metal. The experimentalists concluded that
the preliminary interpretation as a scattering rate would suggest a universal Fermi-liquid
like behaviour in otherwise vastly distinct phases. Here, we aim to theoretically identify
the physics observed in the experiment. We formulated our strategy in Section 1.3 and
briefly recapitulate it here:

As a first step, we focused on determining a suitable model to describe the physical
system. In Chapter 2, we compared different lattice models of the quasi two dimensional
copper oxide-planes, whose existence characterizes all cuprates. In our work, we have
employed the single band Hubbard model on a square lattice with on-site Coulomb
interaction and an appropriate dispersion relation including nearest, next-nearest and
next-next-nearest neighbor hopping. The exact parameters are given in Section 2.4.

In Chapter 3, the methods to solve the Hubbard model, which we employ, are re-
viewed. These are state-of-the-art quantum many-body methods, namely dynamical
mean-field theory (DMFT) and diagrammatic extensions to it, such as dynamical vertex
approximation (DΓA) and dual fermion (DF) theory.

We recall that DMFT is able to account for strong electronic correlations in the system,
yet can treat only local correlations. This manifests itself in a momentum-independent
self-energy, cf. Section 3.1.2. Diagrammatic extensions to DMFT, on the other hand,
are able to include spatial correlation at all length scale. It is generally achieved by
applying an approximation to the two-particle level, i.e. a two-particle vertex function is
assumed to be local as it would be in DMFT. Subsequently, a diagrammatic scheme is
employed to compute a momentum-dependent self-energy, which accounts for local and
non-local correlations.
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Ultimately, the computation of two kinds of data is interesting:

• Extracting the scattering rate from the self-energy, by evaluating it at the Fermi
surface.

• Direct computation of the ratio ρ/ρH by means of the conductivity tensor.

We will scan the phase diagram by varying the temperature at three different values
for the doping δ = 0.1, 0.15, 0.2.

4.1. The self-energy

Here, we will analyze the self-energy in order to ultimately extract the scattering rate.
The self-energy is generally a frequency and momentum dependent self-consistent field.
While theoretically it accounts for all corrections to the non-interacting lattice disper-
sion relation due to local and non-local electronic correlations, in practice the method
employed to compute the self-energy on the Matsubara axis introduces further approxi-
mations, such as e.g. analytic continuation. This has been discussed in Methods (Chap-
ter 3). In this section, we, hence, focus on the evaluation of the data, also discussing
additional uncertainties introduced by extracting the scattering rate.

The concept of quasiparticles is a powerful theoretical framework to describe the
interacting system in terms of a renormalised non-interacting system. In particular,
as we will see, the scattering rate can be defined in terms of so-called quasiparticle
parameters. The quasiparticle picture is introduced by a simple claim of the form

Gk
−1 = iν − (εk − µ)− Σk = Z−1 [iν − (ε̃k − µ̃)] , (4.3)

where ε̃k =
∑

i,j=x,y(ki − kF,i)v
∗
F,j, with the Fermi velocity v∗F,j = [∂εk(m∗)/∂kj]k=kF

,
has the same functional behaviour as εk near kF, but in terms of an effective mass m∗,
[1/m∗]ij = 1

~2
∂2ε̃

∂ki∂kj
.

By performing a Taylor expansion of Equation (4.3) around the Fermi surface one
obtains the following expressions:

ω : Z =

[
1− ∂ImΣ

∂ν

∣∣∣∣
iν→0
k=kF

]−1

, (4.4)

ki :
[ m
m∗

]
ij

= Z

[
1 +

m

kF,i

∂ReΣ

∂kj

∣∣∣∣
iν→0
k=kF

]
. (4.5)

On the other hand, we can expand the self-energy on the imaginary frequency axis and
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express an approximate real frequency self-energy (iν → ω + i0+),

Σk,ν ≈ ReΣkF,ν→0︸ ︷︷ ︸
µ̃−µ

+ i ImΣkF,ν→0︸ ︷︷ ︸
−iγ

+iν
∂ImΣ

∂ν

∣∣∣∣
kF
ν→0︸ ︷︷ ︸

−α

+
∑
i=x,y

(ki − kF,i)
∂ ReΣ

∂ki

∣∣∣∣
kF
ν→0

, (4.6)

Σω = (const. real)− iγ − ωα +O(ω2), (4.7)

with γ, α > 0.
In order to interpret these quantities, we recall the bare Green’s function of the non-

interacting problem, G0,k = [iν − (εk − µ)]−1, as given in Equation (2.25), which is

defined by H0 =
∑

k ĉ
†
kck. Using the Fourier Transformation given in Appendix C.3, we

obtain

G0,k(τ) =
1

β

∑
ν

e−iντG0,k, τ > 0, (4.8)

= −e−εkτ [1− f(εk − µ)] , (4.9)

by summing over Matsubara frequencies. This is analogous to the calculation in Ap-
pendix B.2. In other words, the propagation shows the proportionality

G0,k(t) ∝ e−iεkt. (4.10)

Following the same arguments within the quasiparticle picture, yields

Gk(t) ∝ e−i(εk+ReΣk,ω=0)t e−γt, (4.11)

which corresponds to a inverse life time, i.e. quasiparticle scattering rate,

γkF
= −ImΣkF,ν→0 ≥ 0, (4.12)

which can be varying along the Fermi surface, as is expected in the case of cuprates.
We recall that in the case of quasiparticles, the inverse life time can be further renor-

malized by the quasiparticle weight (controlled by α). Hence, as a first approximation
we are mostly interested in the imaginary part of the self-energy on the imaginary axis.1

This function displays particular behaviour for the paramagnetic metallic system, that
is of interest here. It can be seen as a convolution of the low energy expansion, as
given by Equation (4.6), and the asymptotic behaviour for high-frequencies, given by
[69] (Equation (4.16))

Σν =
Un

2
+
U2n

2

(
1− n

2

) 1

iν
+O

(
1

ν2

)
. (4.13)

1 Or equally in the imaginary part of the self-energy at ω = 0 and the linear behaviour or the real
part of the self-energy on the real axis.

47



4. Results

4.1.1. DMFT

In dynamical mean-field theory (DMFT) the self-energy is purely local, as discussed
in Section 3.1. We compute the self-energy as a function of Matsubara frequencies by
means of exact diagonalization (ED).

Fig. 4.1 shows the imaginary part of the k-independent DMFT self-energy, i.e. ImΣloc
ν ,

in the low-frequency regime. In the left panel, ImΣloc
ν is plotted at various temperatures

for hole doping δ = 0.1, while the right panel displays the same temperatures at higher
doping δ = 0.2. The temperatures T = 580 K, 290 K and 145 K correspond to β = 20, 40
and 80 in eV−1.

The calculations were obtained by means of exact diagonalization with ns = 5, i.e. 4
bath energy levels plus 1 impurity site. Each site is on average occupied by n = 1 − δ
electrons. The hole-doping δ = 0.1 is experimentally within the pseudogap (PG) regime
of cuprates and close to the antiferromagnetic (AF) phase, while δ = 0.2 is on the verge
of the Fermi liquid (FL) regime. For more details on the phenomenology we refer the
reader to Section 1.1.

The first observation from Figure 4.1 is that ImΣloc
ν is doping-dependent. The absolute

value of the function at any point is larger when approaching half-filling (left vs. right
panel), or equivalently increasing with decreasing doping.

In order to strengthen this result, we performed a benchmark at the low temperature
of T = 145 K, i.e. β = 80, where the finite bath size of our DMFT(ED) algorithm is
at its highest disadvantage. We compare the obtained ED results at ns = 5 with ED
ns = 6 and 7, as well as CT-QMC calculations by means of the w2dynamics-package.2

In Figure 4.2, the imaginary part of the self-energy is compared for two different dopings,
which yields good agreement for all methods.

This confirms the reasonable physical trend of our numerical data: Within DMFT the
corrections due to local electronic correlation are larger within the PG phase relative to
the strange metal (SM) regime, and further reduces towards the FL regime.

While this is clearly not a universal behaviour, let us further investigate the scattering
rate γkF

and in particular the T -dependence. Figure 4.1 emphasizes the discrete and
T -dependent Matsubara frequencies, νn = π

β
(2n + 1) with n ∈ Z. Consequently, the

function ImΣloc
ν is not immediately given at zero frequency, iν 6= 0. However, by con-

sidering Equation (4.12), we are interested in properties on the Fermi surface, i.e. real
frequency ω = 0 or the limit iν → 0.

A common practice to extract quasiparticle parameters is to perform a polynomial
extrapolation in the low frequency regime, in order to obtain ImΣloc

ν for iν → 0. The
issue we encounter in our particular case is that we aim for a T -dependent property.
Fitting the first x data points, ensues a potentially spurious T -dependence, which cannot
be easily disentangled to retrieve the intrinsic behaviour in T .

A more appropriate treatment of the self-energy, in order to extract physical meaning,
is the analytic continuation, which can be performed in different ways. In the case of
ED data Padé approximation, described in Section 3.3, is the best currently available

2The w2dynamics-package [63] employs continuous-time quantum Monte Carlo in the hybridization
expansion.
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Figure 4.1.: Imaginary part of the self-energy on Matsubara axis computed in DMFT
by means of exact diagonalization. The left (right) panel displays doping
δ = 0.1 (δ = 0.2) at T = 580 K, 290 K and 145 K, i.e. β = 20, 40 and 80,
respectively.
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Figure 4.2.: Benchmark for exact diagonalization with ns = 5, 6 and 7 and CT-QMC
(w2dynamics-package) comparing the imaginary part of the DMFT self-
energy on Matsubara axis. The left (right) panel displays doping δ = 0.1
(δ = 0.2) for the lowest temperature of T = 145 K, i.e. β = 80.
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Figure 4.3.: Padé fit of self-energy at doping δ = 0.1 and T = 145 K, i.e. β = 80. Plot
shows imaginary part of the self-energy on imaginary axis for Matsubara
data (ED ns = 5) and several Padé fits differing in the data points taken
into account. The fits spread for iν → 0, although none has poles in the
upper complex plane and all obey a physically correct asymptotic behaviour,
see inset.

method despite its intrinsic limitations. Due to the inherent ambiguity the Padé fit
encounters, we have employed the following strategy:

In particular, we perform 10 000 times a Padé fit of the self-energy, with randomly
chosen data points among which two are within the low-frequency linear regime. For
temperatures below 300 K, this was achieved by always taking into account the data of
the first Matsubara frequency, while the rest is chosen randomly amongst the first 12
Matsubara frequencies. For higher temperatures, above 300 K, the Matsubara frequen-
cies are widely separated. As a result, fits that omit the second frequency do not capture
the physics well and therefore the inclusion of the second data point was enforced.

Subsequently, the fit is checked to be analytic in the upper complex plane and display
the correct asymptotic behaviour for the self-energy, as given in in Equation (4.13).
Approximately 0.1− 10% pass these checks depending on doping and temperature.

In Figure 4.3, the results of several Padé fits are shown at doping δ = 0.1 and T =
145 K. Despite passing all checks the fits spread for iν → 0. As there is no physical
argument to prefer one fit over another, we compute the mean and the variance over all
physical fits along extracting the quasiparticle parameters.

Figure 4.4 displays the temperature dependence of the quasiparticle scattering rate,
γkF

(T ), computed by means of DMFT-ED+Padé approximation. The left panel shows
γkF

(T ) = −ImΣloc
ω=0 for 3 different doping levels, δ = 0.1, 0.15 and 0.2. Note that the

error bar displays 5× the variance.
The low temperature behaviour is dominated by T 2-behaviour, while the high temper-
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Figure 4.4.: The quasiparticle scattering rate as a function of temperature T (left) and
T 2 (right). Different colors correspond to 3 doping levels. The error bar
illustrates 5× the variance. The data was computed by means of a dynamical
mean field theory exact diagonalization algorithm with 4 + 1 sites and Padé
approximation with enforced physical constraints.

ature regime is governed by linear behaviour. This is strengthened by the right panel of
Figure 4.4, where the scattering rate is plotted as a function of T 2. By comparison with
the experiment, the overall T -dependence of γkF

(T ), though not universal, resembles the
behaviour of the planar resistivity ρ, rather that ρ/ρH, where ρH is the Hall conductivity,
(we refer the reader to Figure 1.3).

In general, the quantitative resemblance of the T -dependency to ρ is not surprising, as
the planar resistivity is due to inelastic scattering events of the charge carrying quasipar-
ticles connected to the single-particle spectral function, which is averaged over the entire
Fermi surface. The generically expected behaviour of a Fermi liquid due to Sommerfeld
expansion is to display γkF

(T ) ∝ aT 2 − bT 4, where a and b are positive. The observed
roughly linear behaviour might be caused by the compensation of the two expansions in
the intermediate T -regime.

The spectral function of the one-particle propagator,

Aloc(ω) = − 1

π
ImGloc

R (ω), (4.14)

Gloc
R (ω) =

1

Nk

∑
k

Gloc
k,R

(ω), (4.15)

is a byproduct of the analytical continuation. In Figure 4.5, the spectral function is
shown for three cases, in order to illustrate the changes observed in temperature and in
doping.

Varying the doping from δ = 0.1 to 0.2 at constant temperature T = 290 K suppresses
the local electronic correlations. This statement is based on multiple observations in Fig-
ure 4.5: (i) The overall spectral structures at δ = 0.2 are smoother and less pronounced.
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Figure 4.5.: The local spectral function computed by Equation (4.14) employing ED
and Padé approximation. The three spectra correspond to one variation in
doping δ and one in temperature.

(ii) The lower Hubbard band around −U/2 = −1.25 has more weight towards the Fermi
surface at δ = 0.2. (iii) The spectral weight at ω = 0 is larger for δ = 0.2 in magnitude
and width. This so-called quasiparticle peak is due to local spin-flip processes, i.e. the
Kondo-effect. As more scattering events of that kind appear close to half-filling the life
time of quasiparticles is shorter and their effective mass larger for δ = 0.1. All these
effects are to be expected from a system of increasing hole doping, where consequently
the remaining electrons can move around more easily as they become more diluted.

Decreasing the temperature to half its original value increases the lifetime of the
quasiparticle, while leaving the bands stationary. However, while the electronic peaks
get broader and even lose height, the hole-like peaks get more pronounced and gain
height.

When comparing Figure 4.5 with spectra of the dp-model model at half-filling ([29]
Figure 2), we observe qualitatively similar features. There are four peaks of similar
shape and arrangement. The main difference is the energy range and the position of the
chemical potential, ω = 0. The shift in chemical potential in our spectra moves spectral
weight to ω > 0, which is consistent with hole-doping the system. Which, htis way,
effectively includes the hopping via the oxygen ions by means of the dispersion relation.

Comparing to ARPES measurments ([82] Figure 2) shows that the overdoped spectra
has a sharper peak just below the Fermi surface, which corresponds to δ = 0.2 in
Figure 4.5, as opposed by the underdoped case δ = 0.1. While the overall effect of
doping shows good agreement with the experimental trends, the DMFT result has the
evident lack of momentum dependence. Therefore, the pseudogap can not accounted
for.

4.1.2. DΓA

For the dynamical vertex approximation (DΓA) a ladder approximation scheme was
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Figure 4.6.: The chemical potential as a function of temperature for three doping levels
δ by means of DΓA (left) and DMFT (right).

employed in the particle-hole channel, as discussed in Section 3.2.2. The self-energy is
momentum dependent and includes non-local fluctuations of particle-hole ladder type
processes at all length scales.

In our procedure, the Fermi surface is first computed by setting

−εk + µ− ReΣk,ν→0 = 0. (4.16)

This corresponds to finding the equipotential surface of the effective dispersion εk +
ReΣk,ν→0 at the level of the chemical potential µ. The chemical potential is iteratively
determined by imposing the desired filling for the DΓA Green’s function,

Gk = [iν − εk + µ− Σk]
−1, (4.17)

where Σk is given by Equation (3.33b). A simple bisection method is applied to test
which µ fulfills Equation (B.32),

〈n̂〉 =
1

Nk

∑
k

1

β

∑
n

e−iνn0−Gk, (4.18)

as shown in Section B.2.
In Figure 4.6 the chemical potential of DΓA (left, µDΓA) is juxtaposed with the chem-

ical potential of DMFT (right, µDMFT), i.e. the energy level of the impurity in Equa-
tion (3.9). As expected, we observe a decrease in the chemical potential with increasing
hole doping. The value is stable and remains approximately constant in temperature.
We can identify a general trend of a lower value of µDΓA compared to µDMFT.

In Figure 4.7 the Fermi surface is shown for selected values of temperature and doping.
The upper row (T = 290 K) displays a hole-like Fermi surface, which refers to the
curvature of the arcs. Increasing the hole doping (from left to right) decreases the
enclosed area. This is a confirmation that the amount of filled states decreases and
hence the electron filling is reduced. Let us highlight two points in the Brillouin zone:
The nodal point is the point on the Fermi surface in (π

2
, π

2
)-direction (red arrow). The
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Figure 4.7.: The Fermi surface for three doping levels δ = 0.1, 0.15 and 0.2 at two tem-
peratures 290 K and 145 K corresponding to ladder DΓA. Red (green) arrow
points towards the nodal (antinodal) point.

anti-nodal point (green arrow) is the point closest to the (π, 0)-direction, that lies on
the Fermi surface.

The second row in Figure 4.7 (T = 145 K) is a closed electron-like Fermi surface.
However we observe slight tendencies towards hole-like curvature near the nodal points
for δ = 0.1 and 0.15. Exactly these hole-like regions are visible in ARPES spectra. This
phenomenon may cause the temptation to expect a hole-like Fermi surface. Note that
the anti-nodal points are dark in ARPES and it might be therefore difficult to classify,
whether the Fermi surface are hole or electron-like at δ = 0.1 for low temperatures.
In the over-doped region, on the other hand, ARPES measurements of the whole Fermi
surface are available. Our DΓA results are in qualitative agreement with an electron-like
Fermi surface result, which was observed [83] in the over-doped region.

Analogously to the DMFT results discussed in the previous section, we aim at ex-
tracting the T -dependence of the quasiparticle scattering rate γkF

= −ImΣ(ω = 0,kF).
To this end, the self-energy Σk is analytically continued for each k-point on the Fermi
surface. Here, again we follow a procedure for the Padé approximation by randomly
choosing amongst the first 12− 40 data points and assure the self-energy to be analyt-
ical in the upper complex plane, i.e. to have no poles. We tried to additionally enact
analyticity of the Green’s function at each k-point. Due to the non analyticity induced

54



4. Results

0

0.5

0.9

0 15 30 N 60 75 AN

γ
k

F
=
−

Im
Σ

(ω
=

0,
k
F

)

θ = arctan(ky/kx)

464K

290K

232K

193K

145K

Figure 4.8.: The preliminary angle-resolved scattering rate for doping δ = 0.1 at different
temperatures as computed by ladder DΓA in the ph-channel.

by the λ-correction, only the analyticity of the local Green’s function is a good constraint
to select a physical continuation of the Matsubara data. Hence, there was no further
criterion adopted to discriminate between different results of the fitting procedure and
we obtain between 0 and 1500 possible fits. The resulting scattering rate is averaged
and its variance computed.

In Figure 4.7, the color bar displays the result for γkF
= −ImΣ(ω = 0,kF) extracted

from Padé fits. We observe the system to be more metallic (red color in the plot) for
higher hole-doping (left to right) due to a lower scattering rate. Furthermore, we observe
a strong differentiation between the nodal (red arrow) and the anti-nodal (green arrow)
direction for δ = 0.1 and slightly for δ = 0.15. This is consistent with experiments that
show an increasing suppression of spectral weight towards the anti-nodal point for lower
doping. Hence the nodal point is observed to be metallic and a spectral gap opens in
the direction of the anti-nodal point. The spectral gap is experimentally observed to be
maximal at the anti-nodal point.

The momentum dependence of the scattering rate is particularly strong approaching
the antiferromagnetic phase. In order to emphasize this, the scattering rate γkF

(θ) for

doping δ = 0.1 is shown in Figure 4.8. Here, θ = arctan(ky
kx

) is the angle in the center
of the Brillouin zone, which spans from the anti-nodal point (closest to 0◦, AN) to the
nodal point (45◦, N) and symmetrically extends to the next anti-nodal point towards
90◦.

We shall ask: To what extent is the pseudogap behaviour of the cuprate spectra
captured by ladder DΓA? The significant increase of the scattering rate towards the anti-
nodal point represents a promising trend, as it resembles the experimental observation of
the pseudogap regime by means of ARPES. Let us discuss further features characterizing
the pseudogap.

In a recent 2016 Nature Communications publication Chan et al. declared commensu-
rate antiferromagnetic excitations as a signature of the pseudogap [84] in Hg−1201. In
contrast, YBCO and LSCO compounds feature incommensurate antiferromagnetic fluc-
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tuations within the pseudogap region. Yet, it is claimed that the dominant pseudogap
behaviour is most apparent in Hg−1201 due to its structural simplicity, see Ref. [84].
The results were obtained by means of neutron-scattering and by analyzing the dynamic
susceptibility.

In order to compare our numerical results to this experimental result we would need
to compute the physical spin susceptibility

χphys
s (ωn = 0, q) = 2

∫ β

0

dτ〈Ŝz(τ, q)Ŝz(0,−q)〉, (4.19)

Ŝz(τ, q) =
1

2
[n̂q↑(τ)− n̂q↓(τ)] , (4.20)

where q is the momentum. The maximum of the physical spin susceptibility is located
at a specific momentum q = Qs = (π − q̃, π − q̃), with q̃ = 0 for commensurate and
q̃ 6= 0 for incommensurate antiferromagnetic fluctuations. Ŝz is the spin operator and
n̂qσ(τ) =

∑
x e−iqxĉ†xσ(τ)ĉxσ(τ) the Fourier transformation3 of the density operator with

spin σ.
Aiming at computing the physical susceptibility, we employ the generalized suscepti-

bility calculated by the ladder DΓA algorithm, as given in Equation (3.14b), and sum
over all fermionic degrees of freedom

χωs,q =
1

β2

∑
νν′

∑
kk′

χνν
′ω

s,kk′q. (4.21)

Note that ω = ωn = π
β
2n is the bosonic Matsubara frequency here. Only for ωn = 0

Equation (4.21) recovers the static limit [69] with direct physical meaning. In fact,
χω=0

s,q corresponds to the thermodynamic response function which describes the response
of the system to an external time independent perturbation whose spatial structure is
described by q, without the necessity of analytic continuation.

In Figure 4.9 the static spin susceptibility computed in DΓA is plotted for all tempera-
tures and doping levels considered. Recall that for doping δ = 0.1 (left panel) the system
is in the pseudogap phase. We clearly observe that χs(iωn = 0, q = (π, qy)) is peaked
with a maximum at qy = π, thus q̃ = 0. In other words, the system, according to DΓA,
displays commensurate antiferromagnetic fluctuation within the pseudogap phase. This
is consistent with the experimental observation by Chan et al. [84]. For doping δ = 0.15
and 0.2 (middle and right panel) incommensurate antiferromagnetic fluctuations emerge
instead. As expected these fluctuations are much weaker; note the scale.

As discussed for Equation (3.27), the function χs(iωn = 0, q = (π, qy)) is of the general
form

χs(iωn = 0, q = (π, qy)) =
A

4 sin2 (qy − (π − q̃)) + ξ−2
, (4.22a)

≈ A

(qy − (π − q̃))2 + ξ−2
, for (qy − (π − q̃))� 1. (4.22b)

3Defined in Section C.3.
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Figure 4.9.: The static spin susceptibility χs(iωn = 0, q = (π, qy)) as a function of the
momentum component qy. Three panels correspond to three doping levels
δ = 0.1, 0.15 and 0.2, which is underdoped, optimally doped and overdoped,
respectively. Inset: Temperature dependence of the correlation length ξ as
obtained by fitting to χs(iωn = 0, q = (π, qy)) for all three doping levels.

Here A is an arbitrary real constant and ξ is the correlation length. We measure length
in units of the lattice constant a = 1.

By means of a simple least square fit we extracted the correlation length as a function
of temperature for each doping, c.f. Figure 4.9 (Inset). By closer inspection, we note
that ξ−1 ∝ T ν̃ changes the exponent ν̃ in the intermediate temperature regime w.r.t.
different doping. We stress that this is not critical behaviour, as we are not close to
a phase transition and in our two dimensional system there cannot occur a magnetic
(SU(2)) phase transition at finite temperature due to the Mermin Wagner theorem.
By keeping in mind that ν̃ is not a critical exponent and that ξ would exponentially
grow with β for sufficiently low temperature, at least if the ground state is magnetically
ordered, we note that in the temperature regime considered ν̃ = 1 appears to be working
well for δ = 0.2. ν̃ decreases when approaching half-filling4: ν̃ ≈ 0.85 for δ = 0.15 and
ν̃ ≈ 0.73 for δ = 0.1.

Let us recall our objective. We would like to understand to what extent the pseu-
dogap behaviour is captured. Although we have observed some crucial indicators of
the pseudogap phase, including enhanced scattering towards the antinodal point and
commensurate antiferromagnetic fluctuations, the underlying concept of a pseudogap
remains the selective suppression of spectral weight along the Fermi surface.

4 ν̃ ≈ 0.5 at half-filling. The behaviour at half-filling, at sufficiently high temperature, is unpublished
and not shown here. The data at half-filling has been obtained during a different project by Thomas
Schäfer and we mention it here without claiming it is seen in the presented results. We only want
to point out a trend we have observed without knowing what we could infer from it.
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Figure 4.10.: The angle-resolved ladder DΓA spectral function obtained by the autom-
atized Padé procedure described in Section 3.3 at temperature T = 145 K
and doping δ = 0.1 for three different Fermi momenta: nodal, anti-nodal
and in the middle of the former two.

Figure 4.10 shows the spectral function obtained by analytical continuation by means
of Padé approximation at T = 145 K and δ = 0.1 for three exemplary Fermi momenta.
The nodal point displays the experimentally expected features. Specifically, there is an
upper Hubbard band at approximately 2 eV and a lower Hubbard band at approximately
−0.5 eV. This is consistent with the expected separation by the distance U . A robust
quasiparticle peak arises directly at the Fermi surface.

The spectral function “middle” in Figure 4.10, which is at the Fermi momentum
half-way towards the anti-nodal point starting from the nodal point, observes a severe
damping of the quasiparticle peak. We would expect a small spectral weight just above
the Fermi surface and a dip with A(ω = 0,kF)→ 0 from the viewpoint of a doped Mott
insulator [85], as well as by experimental observations [86] on various cuprates by means
of scanning tunneling spectroscopy. Although the scattering at ω = 0 in Figure 4.10
is clearly enhanced when approaching the anti-nodal point, no unoccupied low-energy
band develops according to our Padé based analytic continuation of the DΓA data.

There have been previous cluster DMFT (CDMFT) calculations that are able to
reproduce the spectral weight just above the Fermi surface. By means of an effective
single-band t−J model [85,87] and by means of the same effective single-band Hubbard
model [88] with slightly different parameters5; U = 8t, t = 0.3 eV, t′ = 0.2t, t′′ = 0.
At a lower doping (δ = 0.05) than that considered here the pseudogap was predicted to
emerge between 192 K and 288 K.

This previous literature results offers insight, in what way the pseudogap phenomenon
is observable even in the Matsubara data, enabling us to take a first step by comparing
our results without the considerable uncertainty introduced by analytic continuation.

In Figure 4.11, the imaginary part of the self-energy on the Matsubara axis at T =
145 K and doping δ = 0.1 is shown. The plots correspond to four different momenta
on the Fermi surface under the angle θ =arctan(ky/kx). For the nodal direction with
θ = 45◦ we observe a Fermi liquid-like linear regime for small Matsubara frequencies iν.

5Our parameters are U = 2.5 eV, t = 0.25 eV, t′ = 0.05 eV, t′′ = 0.025 eV.
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Figure 4.11.: The imaginary part of the self-energy at T = 145 K and doping δ = 0.1
for different momenta on the Fermi surface. The angle is given by
θ =arctan(ky/kx).

For θ = 30◦ optical inspection suggests that the scattering rate γkF
= −ImΣ(iν → 0,kF)

slightly increases, while the linear behaviour persists. Towards the anti-nodal point, for
θ = 15◦ and 0◦, the scattering rate is strongly enhanced. At the anti-nodal point the
sign of the slope changes. This indicates the complete break-down of the perturbative
regime and renders the attempt to define a quasi-particle mass impossible.

The behaviour shown in Figure 4.11 is qualitatively the same observed in CDMFT
calculations, where a pseudogap is clearly observed. It suggest that our implementation
of an automatic evaluation by means of the Padé approximation scheme tends to reject
analytic continuations that would display the pseudogap in the spectral function. It
happens because among the all trials for k ≈AN the ones that consider the Matsubara
frequencies close to zero result in on Green’s functions with poles in the upper com-
plex plane. These analytic continuations lack analyticity, however in fact the lowest
Matsubara frequencies are crucial for describing the pseudogap behaviour.

Since the automatic evaluation by Padé approximation fails, even the scattering rate
shown in Figure 4.8 should be questioned, as it could represent an underestimation of
the true scattering rate. We will thus follow two strategies in order to obtain more
reliable results: (i) We analyze G(τ = β/2) to try to entirely circumvent the necessity
of an analytic continuation, and (ii) we employ a more modern approach, namely sparse
modeling [89], to the problem of analytic continuation by means of an open package.

Let us start by motivating how G(τ = β/2) can be interpreted. The spectral function
is given by6

A(ω,k) = − 1

π
Im

[
1

ω − εk + µ− Σ(ω,k)

]
(4.23)

= − 1

π

ImΣ(ω,k)

(ω − εk + µ− ReΣ(ω,k))2 + (ImΣ(ω,k))2
. (4.24)

6NB: 1
a−ib = 1

a−ib
a+ib
a+ib = a

a2+b2 + i b
a2+b2
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This is a Lorentzian with maximum at ωk = εk − µ + ReΣ(ω,k). The Fermi surface
corresponds to 0 = εkF

− µ+ ReΣ(ω,k), which yields a value of the spectral function

A(ω = 0,kF) = − 1

π

1

ImΣ(ω = 0,kF)
. (4.25)

The spectral function at the Fermi level on the Fermi surface is hence inversely propor-
tional to the scattering rate. The Green’s function in imaginary time is related to the
spectral function by

G(τ) = −
∫

dω
e−ωτ

1 + e−ωβ︸ ︷︷ ︸
K(ω,τ)

A(ω). (4.26)

The kernel K(ω, τ) can be conveniently rewritten as a sech for τ = β/2.

K(ω, τ = β/2) =
[
eωβ/2 + e−ωβ/2

]−1
(4.27)

=
1

2
sech(ωβ/2) (4.28)

Combined with
∫∞
−∞ sech(x)dx = π, we identify a delta function in the limit of low

temperatures, δ(ω) = limβ→∞
β
2π

sech(ωβ/2). This is used to interpret G(τ = β/2) in
terms of the spectral weight at the Fermi level and hence the inverse scattering rate,

β

π
G(τ = β/2) = −

∫ ∞
−∞

dω
β

2π
sech(ωβ/2)A(ω) (4.29)

γkF
= [βG(τ = β/2,kF)]−1 . (4.30)

In the last line we used Equation (4.25).
Figure 4.12 (a) shows the scattering rate approximated by means of G(τ = β/2). We

present our numerical results for different temperatures at δ = 0.1. Let us first note the
qualitative agreement at low temperatures with the results of the analytic continuation,
namely the Padé approximation results in Figure 4.8. At the same time, in contrast to
the latter, here we can observe a clear temperature dependency of the scattering rate.

In particular, we note that for high temperatures the dependence on the angle θ =
arctan(ky/kx) is small. The spectral weight at the Fermi surface is large, which results
in a clearly metallic behaviour for all Fermi momenta and a small scattering rate. With
decreasing temperature the θ-dependence becomes more prominent.

The anti-nodal point in Figure 4.12 (a) is almost constant in the scattering rate for
lower temperatures, except for the lowest temperature 145 K we have considered, were
we see a decrease. This is suspicious and it ought to be analysed whether there is an
issue of numerical nature. The nodal point behaves differently. It features a clearly
decreasing scattering rate with decreasing temperature.

Two issues are remaining: (i) The approximation in Figure 4.12 given by Equa-
tion (4.30) holds an intrinsic temperature dependence, while (ii) the analytic continua-
tion by means of our automatic Padè approximation procedure is not reliable especially
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aid.

at the anti-node. This is illustrated in Figure 4.13, where the angle-resolved scattering
rate for doping δ = 0.1 is juxtaposes the two methods, i.e. (i) and (ii), at the lowest
temperature that we have considered. We recall that the error for Equation (4.30), i.e.
the error for method (i), should become smaller for low temperatures.

As we have speculated by analyzing the spectral functions in Figure 4.10, the analytic
continuation indeed fails to appropriately fit the anti-nodal regime. Also note that the
thermal error in Figure 4.12 should tend to always underestimate the scattering towards
higher temperatures. It is overestimating, because when β does not go to infinity there
is no legit delta function. As a result the spectral weight, assuming it is given by
βG(τ = β/2,kF), is overestimated and thus the scattering rate is underestimated. This
may explain the deviation around the nodal region.

In Figure 4.14 (right panel), we show the temperature dependence of the scattering
rate γkF

via Equation (4.30) for the nodal and anti-nodal direction as extracted from Fig-
ure 4.12. In the derivation of Equation (4.30) we used the assumption [β|G(τ = β/2,kF)|]−1

≈ −ImΣ(ν,kF). In order to check this assumption, we plot the imaginary part of the
self-energy (Figure 4.14 (left panel)) as a function of Matsubara frequencies in the low
frequency regime. Furthermore, the value of − [β|G(τ = β/2,kF)|]−1 is projected onto
iν = 0. Except for δ = 0.1 at the anti-nodal point, we immediately see that the assump-
tion is invalid even without distinguish between the temperatures.

ThereforeG(τ = β/2) can only be interpreted as the real frequency integration given in
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Equation (4.29) and not as the scattering rate. With this limitation the main observation
is that the temperature behaviour of Equation (4.29) is not universal. And by optical
observation of ImΣ(ν → 0,kF), it is likely that it is not universal either.

It remains interesting to compare this result to an approximation that is not affected
by an intrinsic temperature dependence. This would ideally be an systematic procedure
for the analytic continuation which attains the self-energy and the spectral function on
the real axis. Moreover it is our interest to also analyze the spectral function itself.
In particular, the θ-dependence of the pseudogap has not been agreed [88] on in the
community.

There are several modern approaches to the issue of analytic continuation. One note-
worthy approach is sparse modeling (SpM) [89] by J. Otsuki et al.. The package is
fully documented and the method well explained. We recall that the relation stated in
Equation (4.26) shall be inverted. In matrix representation it becomes clear that the
kernel needs to be inverted, which is an ill-posed problem due to its small values at large
frequencies.

G = KA, (4.31)

Gi ≡ G(τi), (4.32)

Kij ≡ K(τi, ωj), (4.33)

Aj ≡ A(ωj) ∆ω. (4.34)

A common way to cope with an ill-posed inversion is to introduce some form of regular-
ization. Here it is useful to perform a singular value decomposition (SVD)

K = USV t. (4.35)

S is a diagonal matrix with eigenvalues sl, while U and V are orthogonal matrices.
This can be used to rotate into an appropriate basis for the numerical evaluation.

SpM now properly defines a cost function by means of a least absolute shrinkage and
selection operator (LASSO)

A′ = V tA, (4.36)

G′ = U tG, (4.37)

C =
1

2

∑
l

(G′l − slA′l)2

︸ ︷︷ ︸
χ2

+λ
∑
j

|A′j|. (4.38)

The minimization of the cost function corresponds to finding the sparse solution if λ is
chosen correctly. The best value for λ must be searched by computing A′ for a given
λtry. In turn the first term in the cost function χ2 is computed as a function of λtry’s. A
linear interpolation between the lowest and highest λtry defines a function f . The best
λ is identified by a maximum in f/χ2.

In Figure 4.15, we show spectral functions computed by SpM at the same points
previously shown for the analytic continuation by means of Padé approximation in Fig-
ure 4.10. We can identify the similarities w.r.t. the appearance of Hubbard bands.
However we encounter the unfortunate event of a missing clear maximum in f/χ2.
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Figure 4.15.: The angle-resolved ladder DΓA spectral function computed by sparse mod-
eling at temperature T = 145 K and doping δ = 0.1 for three different Fermi
momenta: nodal, anti-nodal and in the middle of the former two.

Therefore the result in Figure 4.15 is to be regarded with caution. Let us be more
specific: The perfectly vanishing spectral function is a condition forced on the result
by hand. The nodal point should be the easiest to fit and in fact the spectral weight
given by Padé approximation and β|G(τ = β/2,kF)| show agreement with each other,
as seen in Figure 4.13. Therefore, it is quite surprising that the nodal spectral function
in Figure 4.15 would show no finite value at ω = 0.

We have tried to obtain a proper fit for other parameters of doping and temperature
(not shown). For momenta where we expect less metallic spectra the issues are more
severe, however even for higher doping and in particular δ = 0.2, T = 145 K, which is less
θ-dependent, we have not obtained acceptable results yet. Further work, and possibly
the comparison with other analytic continuation tools is planned.

We close this section by, then, summarizing the most important observations in our
numerical results obtained by ladder DΓA in the ph-channel:

• The system shows strong commensurate antiferromagnetic fluctuations for δ =
0.1. For higher hole-doping, δ = 0.15, 0.2, these fluctuations become weaker and
incommensurate.

• The temperature dependence of the corresponding correlation length is close but
not equal to T−1 for δ = 0.1, 0.15. For δ = 0.2 it seems to perfectly agree with
T−1.

• The imaginary part of the self-energy on the Matsubara axis clearly shows a strong
momentum dependence indicating a qualitative deviation from DMFT. It develops
a dip in the low Matsubara frequency range, which is associated with pseudogap
behaviour.

• The analytic continuation by both methods, Padé approximation and sparse mod-
eling, show the lower Hubbard band around −0.6 eV and the upper Hubbard band
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at around 1.9 eV. Unfortunately, the automatic evaluation of the Padé approx-
imation by taking into account physical constraints fails. On the other hand,
sparse modeling, applied to our DΓA datasets, has difficulties to find an optimal
regularization parameter.

• The approximation [β|G(τ = β/2,kF)|]−1 ≈ −ImΣ(ω = 0,kF) seems to be invalid
based on a simple visual inspection of ImΣ(iν,kF) for iν → 0.

• The precise temperature dependence of the scattering rate could not be extracted
from our ladder DΓA results.

• The whole set of data, and especially the non analytically continued data of
ImΣ(iν,kF) appears hardly compatible with an universal behaviour of the scat-
tering rate over the whole phase diagram.

4.1.3. DF

For the dual fermion (DF) calculation a ladder approximation scheme was employed in
the dual space, as discussed in Section 3.2.3. The self-energy is momentum dependent
and includes non-local fluctuations on all length scales. Here, we will mainly compare
the DF results to the dynamical vertex approximation (DΓA) results, which we discussed
in the previous section.
We will begin this section by pointing out that the results here are rather preliminary
and should be essentially seen as a preparation for future studies as well as an inspiration
for new discussions. It may sound like a disclaimer, but we think the results do not give
justice to the dual fermion method yet. Let us highlight some of the issues that arise in
our first approach for a comparison:

Firstly, DF is a self-consistent approach in contrast to the ladder DΓA, which is a
one-shot calculation. It is not clear whether, when comparing the two approaches, it is
better to only solve the inner self-consistency loop of DF on top of the same Anderson
impurity model (AIM) that was used in DΓA, or to do a full outer self-consistency
by updating the AIM. The latter changes the underlying local physics by adjusting
the AIM, and hence the underlying “model”. Surely, one argument could be, that the
“model” should not be changed to rigorously compare methods and hence a one-shot
comparison is best. On the other hand, the more fundamentally underlying model is the
2 dimensional single-band Hubbard model. This model can only be considered solved
by DF when doing an outer self-consistency. In our work, we have decided to begin by
performing a one-shot comparison. This is numerically less expensive and can be used
as a starting point for further discussions.

Secondly, the underlying impurity solver fetches unwanted approximations. In order to
start at the same impurity model both methods need to be given the same ingredients.
In particular, the full vertex and the one-particle propagator should be computed by
the same underlying DMFT calculations. As we have discussed in Section 3.1.2 we
employed an exact diagonalization (ED) algorithm. The main reason is that continuous
time quantum Monte Carlo (CT-QMC) suffers from high frequency oscillation, that
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Figure 4.16.: The chemical potential (left) and corresponding filling (right) of the one-
shot DF calculation (top) and 9th iteration of updating the AIM (bottom).

DΓA could not cope with. Recent CT-QMC developments [66] will allow to overcome
this problem in the future.

The DF implementation [78] by H. Hafermann is built on top of a CT-QMC algorithm,
which is able to perform full self-consistent calculations without the need of constant
attention by the user after each iteration. The main difference between CT-QMC and ED
is that the former suffers from statistical errors, while the latter is prone to systematic
errors introduced by a finite bath size. We have decided to use the identical full vertex
and the one-particle propagator computed by ED, which we used for DΓA. The curiosity
of how an update of the AIM may affect the system was also studied by us performing
9 outer iterations in DF. We hence stopped without reaching convergence, merely to
observe tendencies. Here, we used a somewhat delicate change of the impurity solver
by starting from ED and continuing with CT-QMC. Again, it can be seen as a starting
point for further discussions.

In Figure 4.16 we plot the chemical potential (left) and the corresponding filling that
DF infers (right) for the one-shot calculation (top panels), as well as the 9th iteration of
the outer loop (bottom row). The left hand side shows the chemical potential used for
the initialization of the hybridization, while the right hand side is the effective filling this
corresponds to. The deviation from the desired filling n = 0.9, 0.85 and 0.8 for doping
δ = 0.1, 0.15 and 0.2 respectively is significant.

We observe a systematic overestimation of the filling in Figure 4.16. In fact, this
reaches the extent of being in the effectively electron doped region for the one-shot
calculation. The 9th iteration is overall closer to to the desired filling, however this is
not sufficiently close either.

The overestimated filling has direct consequences for the Fermi surface. In Figure 4.16
we show exemplary Fermi surfaces at T = 290 K (top row) and T = 145 K (bottom row)
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Figure 4.17.: DF results: Fermi surface at T = 290 K (top row) and T = 145 K (bottom
row) for all doping levels δ = 0.1, 0.15 and 0.2. The larger surface with
higher scattering and lower curvature is a one-shot DF calculation, while
the smaller Fermi surface in each panel is the 9th iteration of updating the
AIM. For δ = 0.2 the two Fermi surfaces overlap.

for all doping levels δ = 0.1, 0.15 and 0.2. Here, the larger surface with higher scattering
rate and lower curvature corresponds to the one-shot calculation. Compared to DΓA
and experimental observations it is surprising that we do not observe any closed Fermi
surfaces. Furthermore we observe that the Fermi surface of the highest doping is almost
identical for one-shot DF and the 9th iteration. It confirms that external self-consistent
DF does not introduce signuficant corrections when the system is less correlated. When
comparing all results, DΓA, one-shot DF and the 9th iteration, the volume enclosed by
the Fermi surface varies significantly. On one hand, this may be due to the instable
“effective” filling the algorithm used, and on the other hand, Luttingers theorem does
not apply because of the finite temperature and the strongly momentum dependent
scattering.

The most important quantity we would like to compare is the temperature dependence
of the scattering rate. However already during the analysis of the DΓA results we
encountered severe limitations. The analytic continuation of our preliminary DF data
appears even more problematic than for DΓA. So the only possible comparison we can
engage in is to juxtapose β|G(τ = β/2,kF)| of DF with DΓA.

Figure 4.18 shows the temperature dependence of β|G(τ = β/2,kF)| at specific mo-
menta on the Fermi surface. The nodal (anti-nodal) point is presented for dopings
δ = 0.1, 0.15 and 0.2 in the top (bottom) row. We separately display the DF one-shot
calculation (left column), the 9th iteration in the outer loop of DF (center column) and
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Figure 4.18.: The spectral weight approximated as the value of β|G(τ = β/2,kF)| for
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panel compares DF one-shot calculations with DΓA results, while the lower
panel shows the 9th iteration of updating the AIM (not converged). The
panels show the nodal direction (left), the anti-nodal direction (middle)
and the value of the local Green’s function (right).

the DΓA results (right column).
We can make only few observations here. The qualitative agreement between DF one-

shot (left) and DΓA (right) is much larger than of either to the 9th iteration DF results.
An overall similarity between DF one-shot and DΓA is found when comparing the order
of the magnitude of β|G(τ = β/2,kF)| w.r.t. doping at any temperatures. We notice
that there are some outliers in the DF results, which may be slips of a numerical nature.
On the other hand, the DΓA results show sudden changes in the low temperature regime
for δ = 0.1 and 0.15, which are likely to be artifacts arising due to the limited bath size
in ED-DMFT in conjunction with DΓA.

The 9th iteration DF results bare little resemblance with anything we have observed
so far and is not converged. The only tendency we may guess, is that at low doping the
iterated AIM is far from where we started. It is unclear, at the moment, whether it is
due to the changed impurity solver, to a poor statistics or because DF would obtain a
radically different result with the external self-consistency.

For the sake of completeness, we present the full θ-dependence of [β|G(τ = β/2,kF)|]−1

in Figures 4.19 to 4.21. The figures separately show the doping δ = 0.1, 0.15 and 0.2,
respectively. The top panel corresponds to our one-shot and the bottom row to our 9th
iteration DF calculation. We would have to point out that the scale of the y-axis for
different dopings is not fixed. This is necessary in order to visually detect temperature
dependent changes.

The reader may also notice that we have not shown the spin-susceptibility and the
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atures as computed by DF.
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Figure 4.20.: The angle-resolved scattering rate for doping δ = 0.15 at different temper-
atures as computed by DF.

associated correlation length. This and other topics such as a converged fully self-
consistent calculation are reserved for a future investigation. A more detailed outlook
in this regard will be given in Chapter 5.

We close this section by comparing the most important observations w.r.t. our nu-
merical results obtained by DF in a one-shot calculation and in the 9th iteration (not
converged). We focus here on a comparison with ladder DΓA: Although for the one-shot
calculation the anti-nodal behaviour qualitatively agrees for both methods, DF and DΓA
yield different magnitude for β|G(τ = β/2,kF)| for all temperatures. The nodal point
shows even qualitative deviations between DF and DΓA in the low energy regime. Fur-
thermore some DF results seem to be outliers. The DF one-shot calculation, however,
is not robust when performing further iterations. The large change throughout the 9
iteration steps we computed, suggests that the one-shot calculation is far a way from
the converged DF solution of this system. In this respect it is important to recall that
the one-shot DF and DΓA results feature more similarities, than the 9th iteration of DF
with either.
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Figure 4.21.: The angle-resolved scattering rate for doping δ = 0.2 at different temper-
atures as computed by DF.

4.2. The ratio ρ/ρH

We recall that ρ/ρH =̂ σxx/σxy shall be computed, cf. Equations (4.1) and (4.2). Hitherto,
we set the focus on the temperature dependence of the scattering rate. However, we are
aiming to describe an—in principle different—aspect of the whole phase diagram of
cuprates, (depicted in Figure 1.4). The experimental results [1] obtained by N. Barǐsić
et al. at TU Wien, which reveal a surprising universal behaviour of ρ/ρH ∝ T 2. In this
section we try to identify many-body expressions, which can be employed to, in the
future, extend numerical results to the direct calculation of ρ/ρH.
Here, we mostly follow H. Kontani [90], who aims to describe transport phenomena
in strongly correlated Fermi liquids. Starting point of this discussion is Kubo’s linear
response theory [91]. We consider the first-order response w.r.t. an external perturbation
f(t) that couples to an operator Â of the system. The time-dependent Schrödinger
equation can be solved by means of an ansatz

i
∂

∂t
|Ψ(t)〉 = [H + V (t)] |Ψ(t)〉, (4.39)

V (t) =

∫
d3x Âf(t), (4.40)

|Ψ(t)〉 = a(t) e−iHt|Φ〉. (4.41)

H is the Hamiltonian of the system without an external perturbation, V (t) is the time-
dependent potential that linearly couples to the external perturbation7. In the ansatz
for the eigenstate |Ψ(t)〉 an unknown amplitude a(t) enters, as well as the initial state
|Φ〉 of the unperturbed system.

By solving the differential equation for a(t), we find

|Ψ(t)〉 = e−iHt|Φ〉 − ie−iHt

∫ t

0

dt′V Heis(t′)|Φ〉+O(V 2), (4.42)

V Heis(t) = eiHtV (t)e−iHt. (4.43)

7We used ~ = 1.
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As a next step, we perform the measurement of some operator B̂ of the system. This
is expressed by the Kubo formula in its general form, which reads

〈B̂〉 =

∫
dx′

∫
dt′ i

〈[
Â, B̂

]〉
0

Θ(t− t′)f(t), (4.44)

〈. . . 〉0 = 〈Φ| . . . |Φ〉, T = 0

〈. . . 〉0 = Tr{e−βH . . . }/Tr{e−βH}, T > 0.

As is known, it describes the expectation of B̂ in the perturbed system in terms of the
unperturbed system only.

Let us now apply Equation (4.44) to the measurement of DC resistivity and Hall
resistivity, as discussed in Section 1.2. Here the time-dependent external perturbation
is set to an adiabatically alternating field f(t) = Eαe−iωt+ηt, with α = x, y, z. f(t) is
adiabatically turned on, which is realized via a tiny η > 0. The case of a DC measurement
is recovered for ω → 0.

The external field couples to a misplacement of the charge density, i.e. Â = P̂α =
−e
∫

d3xx̂αn̂x. P̂α is the charge polarization operator of the system. Furthermore, we
measure the induced current, which corresponds to taking the expectation value of the
current density B̂ = jα = −e

∫
d3x∂x̂α

∂t
n̂x. The reader may already notice the subtle

similarity in the definition of the current density and the polarization operator.
This is the key for obtaining the Nakano-Kubo formula for the conductivity ( Ref. [90]

Equation (3.33) - (3.35) )

〈jα(x)〉 =

∫
dx′

∫
dt′ (−i) 〈[jα(x), jβ(x′)]〉0

×
[
Θ(t− t′)e−iωt′

iω
+ Θ(t′ − t)e−iωt

iω

]
eEβ, (4.45a)

jα(ω) =
∑
β

σαβ(ω)Eβ(ω), (4.45b)

σαβ(ω) =
e2

iω
KR
αβ(ω), (4.45c)

KR
αβ(t) = lim

q→0
−i

∫ ∞
∞

dt′ 〈[jq,α(t), j−q,β(t′)]〉0 Θ(t− t′), (4.45d)

in Coulomb gauge. Here, KR
αβ(ω)=̂Kαβ(ω+iδ) is the retarded current-current correlation

function, while σαβ(ω) is the conductivity tensor.
To establish ties with our numerical calculations, we have to proceed with the thermal

correlation function. Hence, instead of Equation (4.45d), we will continue with

Kαβ(ω) = lim
q→0

1

β

∫ β

0

dτ

∫ β

0

dτ ′ eiω(τ−τ ′) 〈Tτjq,α(τ)j−q,β(τ ′)〉0 , (4.46)

where ω = 2πn/β are the bosonic Matsubara frequencies.
Note, that the Hall resistivity can only be measured in the presence of a magnetic

field. The analysis of the full conductivity tensor, hence demands a perturbation in
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both, the electric and the magnetic field. The first approaches [92] in order to include
the effects of a magnetic field within the Kubo formalism were made by Kubo himself.
He employed the Wigner representation and avoided using a vector potential. It enabled
a characterization in terms of “classical” and “quantum-mechanical” corrections, which
contribute to the Hall coefficient. However, this approach could not be employed to
discuss correlation effects [93].

In 1969 [93, 94] H. Fukuyama et al. derived an expression for the conductivity in the
presence of a uniform magnetic field on the basis of diagrammatic techniques. In their
derivation a uniform magnetic field H = iq×A is included in terms of a vector potential
Ai = Aeiqx, where the limit q → 0 is taken in the final step of the calculation. The
vector potential enters the Hamiltonian of our system8 by means of a Peierls substitution
[95]

tij → tije
−ie(Ai+Aj)·(xi−xj)/2, (4.47a)

HA = H −A(q) · j(−q) +O(A2), (4.47b)

jα(q) = −e
∑
kσ

∂ε

∂kα
ĉ†k−q/2,σ ĉk+q/2,σ, (4.47c)

Note, that we write the Hamiltonian up to the linear order w.r.t. the vector potential.
Hence, the current operator which appears in the second term of Equation (4.47b) is of
0th order in A.

The observable we measure though is the current operator jA in the presence of the
vector potential up to linear order. It reads ( Ref. [90] Equation (3.48) and [93] (2.2) )

jAα (q) = jα(q)−
∑
β=x,y

Aβ(q′)jβα(q − q′) +O(A2), (4.48a)

jβα(q) ≡ e2
∑
k,σ

∂2ε

∂kβkα
ĉ†k−q/2,σ ĉk+q/2,σ. (4.48b)

The second line defines an “auxiliary” current operator with two indices.
The derivation in [93, 94] ultimately yields an expression for the thermal current-

current correlation function, which includes corrections due to the magnetic field up to

8Namely the Hubbard model given in Equation (2.1).
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linear order in A. It is ( Ref. [90] Equation (3.42) - (3.44) )

Kµν(ω) = lim
q→0

1

β

∫ β

0

dτ

∫ β

0

dτ ′ eiω(τ−τ ′) 〈TτjAµ (q, τ)jAν (−q, τ ′)
〉
A

(4.49)

=
1

β

∫ β

0

dτ

∫ β

0

dτ ′ 〈Tτjµ(q = 0, τ)jν(q = 0, τ ′)〉0

+ lim
q→0

∑
α=x,y

Aα

∫ β

0

dτ

∫ β

0

dτ ′ eiω(τ−τ ′)×[
− 1

β
〈Tτjµ(q, τ)jαν(−q, τ ′)〉0 +

∫ β

0

dτ ′′ eiω(τ−τ ′′) 〈Tτjµ(q, τ)jα(−q, τ ′)jν(0, τ ′′)〉0
]

+O(A2). (4.50)

Note, that these expressions are exact, as long as linear response theory is valid.
The first term in Equation (4.50) is of 0th order in A and therefore describes the

current-current correlation function without the presence of a magnetic field. It is ev-
ident, that this term will, in general, only contribute to the diagonal elements of the
conductivity tensor. This is based on the principle that within linear response the in-
duced current is parallel to the applied electric field in sufficiently isotropic systems.

The second term in Equation (4.50) is of linear order in A. It will contribute to the
off-diagonal elements of the conductivity tensor. The basis of this is, not surprisingly,
that the force of a magnetic field on moving charge is perpendicular to the movement
and the field.

In particular, the second term in Equation (4.50) is composed of two parts. On one
hand, there is a two particle process which is sensitive to the Fermi surface curvature
∂2ε

∂kβkα
, rather than the Fermi velocity ∂ε

∂kµ
. On the other hand, there is a three particle

process.
In order to further familiarize ourself with Equation (4.50), let us first examine the

standard example withH = 0 and µν = xx. According to the first term Kxx(ω) without
a magnetic field is given by

Kxx(ω) =
1

β

∫ β

0

dτ

∫ β

0

dτ ′ eiω(τ−τ ′) 〈Tτjx(0, τ)jx(0, τ
′)〉 , (4.51)

=
1

β

∫ β

0

dτ

∫ β

0

dτ ′ eiω(τ−τ ′)(−e)2
∑

kk′,σσ′

∂εk
∂kx

〈
Tτ ĉ†kxσ(τ)ĉkxσ(τ)ĉ†k′xσ′(τ

′)ĉk′xσ′(τ
′)
〉 ∂εk′
∂k′x

.

(4.52)

In the next step we identify the two particle Green’s function and perform the Fourier
transformation, yielding

G(2)
σ1σ2σ3σ4

(τ1, τ2, τ3, τ4) = (−1)2
〈
Tτ ĉ†k1σ1

(τ1)ĉk2σ2(τ2)ĉ†k3σ3
(τ3)ĉk4σ4(τ4)

〉
, (4.53)

G(2),k1k2k3k4
σ1σ2σ3σ4

(τ1, τ2, τ3, τ4) =
1

β4

∑
ν1ν2ν3ν4

ei(ν1τ1−ν2τ2+ν3τ3−ν4τ4) G(2),k1k2k3k4
σ1σ2σ3σ4

(ν1, ν2, ν3, ν4).

(4.54)
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We obtain

Kxx(ω) =
2e2

β2

∑
kk′,νν′

∂εk
∂kx

[
G

(2),kkk′k′

↑↑↑↑ (ν, ν + ω, ν ′ + ω, ν ′) +G
(2),kkk′k′

↑↑↓↓ (ν, ν + ω, ν ′ + ω, ν ′)
]

︸ ︷︷ ︸
G

(2),kk′q=0

c,νν′ω

∂εk′

∂k′x
.

(4.55)

c denotes the charge channel. We employed the SU(2) symmetry by using G
(2)
↑↑↑↑ = G

(2)
↓↓↓↓

and G
(2)
↑↑↓↓ = G

(2)
↑↑↓↓.

As we have seen in Chapter 3, the two particle propagator can be split in three parts,
namely two disconnected and one fully connected part. It reads

G
(2),νν′ω
σσ′,kk′q =βGk(ν)Gk′δq0δω0

−βGk(ν)Gk′+q(ν ′ + ω)δkk′δνν′δσσ′ −Gk(ν)Gk+q(ν + ω)F νν′ω
σσ′,kk′qGk′+q(ν + ω)Gk′(ν)︸ ︷︷ ︸

χνν
′ω

σσ′,kk′q

.

(4.56)

The expression in Equation (4.56) is used to analyze and motivate approximations for
Kxx(ω) in Equation (4.55).

First, we notice that for the single-band case, with the inversion symmetry, ∂εk/∂kµ
is completely antisymmetric w.r.t. k. Therefore one disconnected part, namely the first
term in Equation (4.56), completely vanishes when summing over k and k′. It remains
the generalized charge susceptibility χc in Equation (4.55).

The second term in Equation (4.56) is the disconnected part of the generalized charge
susceptibility. It does not vanish when summing over k and k′ due to the delta function
δkk′ . After the summation this term is the so-called bubble contribution to Kxx(ω).

Lastly, the third term in Equation (4.56) is the so-called vertex correction. In many
materials, though most likely not in cuprates, vertex corrections can be neglected. Ne-
glecting vertex corrections yields the well-known expression, which is often discussed in
textbooks

Kxx(ω) = −2e2

β

∑
k,νν′

∂εk
∂kx

Gk(ν)Gk(ν ′ + ω)
∂εk
∂kx

. (4.57)

We would like to mention two ways of approximating σxx building upon Equation (4.57),
following e.g. lecture notes by J. Tomczak [96] at TU Wien.

First, we use Reσxx(ω) = [ImKxx(ω)− ImKxx(0)] /ω and take the limit ω → 0. The
first approximation exploits the full spectral function A(k, ω) and reads

σxx = e2π2

∫
dω

(
−∂f
∂ω

)∑
k

A2(k, ω)

(
∂εk
∂kx

)2

. (4.58)

f is the Fermi function and yields ∂f/∂ω = −βeβω/(eβω + 1)2. Note, that this is the
DC conductivity tensor element as we have taken the limit ω → 0, though we omit an
additional label.
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In the limit of a long quasiparticle life time and no momentum dependence, the spectral
function can be further approximated. It enables an approximation for the ω integra-
tion, which is problematic especially numerically for low temperatures. The momentum
independent, low scattering approximation yields

σxx = − e2π2

2πImΣ(iω → 0)

∑
k

(
−∂f
∂ω

)
ω=εk

(
∂εk
∂kx

)2

. (4.59)

In order to connect the simplified expressions used here to a more general formalism,
we rewrite the current-current correlation function Equation (4.55) in terms of a current
vertex, which is defined via (Ref. [90] Equation (3.45)9)

Kxx(ω) =
2e2

β2

∑
kk′,νν′

∂εk
∂kx

G
(2),kk′q=0
c,νν′ω

∂εk′

∂k′x
(4.60)

= −2e2

β

∑
kν

∂εk
∂kx

Gk(ν)Gk(ν + ω)Jνωx,k. (4.61)

The lowest order without any vertex corrections hence yields J0,νω
x,k = ∂εk

∂kx
, as we can see

by a comparison with Equation (4.57).
Hitherto, we focused on the case without an external magnetic field. The reformulation

in terms of a current vertex J enables us to discuss the case including a static magnetic
field where Kxy 6= 0 in Equation (4.50).

In 1988 H. Kohno and K. Yamada derived an expression [97] for the off-diagonal
terms of the conductivity tensor which are linear in the external magnetic field. In
their calculation they applied several Ward identities to maintain gauge invariance and
neglected the 3P vertex correction10 to obtain ( Ref. [90] (3.47))

Kxy(ω) =
ie3

β

∑
ν,k

xy∑
µ,ν

[
∂Gk(ν + ω)

∂kµ
Gk(ν)−Gk(ν + ω)

∂Gk(ν)

∂kµ

]
×
[
Jνωx,k

∂

∂kν
Jνωy,k

]
εµνz, (4.62)

εµνz is completely antisymmetric with εxyz = 1.
The expression can be further approximated by additionally neglecting 2P vertex

correction. This way, one recovers the bubble approximation of the off-diagonal element
in the conductivity tensor. We took this approach in order to compute the Hall resistivity

9The sign we see by comparing the first and second line in Equations (4.60) and (4.61), as well as
comparing to the Ref. [90] originates from the definition of the two-particle Green’s function.

10 To this point, we have not introduced the concept of 3P vertex corrections. It is analogy to the 2P
level, they can be defined considering the fully connected part of the three-particle Green’s function.
[79]
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for the non-interacting system in Figure 4.22. The expression we implemented [62] reads

σxy ∝
∫

dω

(
∂f

∂ω

)∑
k

A3(k, ω)

(
∂εk
∂kx

)2

×
[(

∂2εk
∂k2

y

)(
∂εk
∂ky

)2

−
(

∂2εk
∂kx∂ky

)]
. (4.63)

In order to build some intuition for the complexity of this problem we implemented
Equations (4.58), (4.59) and (4.63). These results are preliminary and need further
benchmarking. We used a weakly correlated toy model based on the non-interacting
density of states shown in Figure 2.5 combined with two choices for the scattering rate,
i.e. γ = 0.005 eV and11 γ = (10−3 + 10−6T 2) eV, as well as two12 is not dopings δ = 0
and 0.2.

In Figure 4.2213 (top row) we present the resistivity ρ = 1/σxx for this toy model. Here,
we in particular compare Equations (4.58) and (4.59) (A vs. B) and observe that while
the magnitude may indeed strongly differ, the qualitative behaviour w.r.t. temperature is
the same. Furthermore, when comparing the constant scattering rate at different doping
(left and center), even on this per construction weakly correlated level the T -dependence
of the scattering rate does not uniquely determine the T -dependence of the resistivity.

In Figure 4.22 (middle row), the Hall coefficient RH = σxy/(σxx)
2 computed by means

of Equations (4.58) and (4.63) is shown. The behaviour for all choices of scattering
rate and doping have different T -dependence. Let us highlight that even when ρ in the
middle and the right column have similar T -dependence, it does not lead to a similar
T -dependence for RH.

Figure 4.22 (bottom row) shows ρ/ρH = σxx/σxy again computed by means of Equa-
tions (4.58) and (4.63). Merely accidentally the choice of a constant scattering rate
at δ = 0.2 (center column) somewhat resembles the T -dependence observed in the ex-
periment. However, it is important to point out that this approximation includes no
k-dependence nor frequency dependence nor strong correlations nor vertex corrections,
and is therefore not applicable to our modelization of cuprates.

As we have mentioned at the beginning this calculation is juast a preliminary property
to the case of cuprates, which will be analyzed further in the future. The path in order
to apply the expressions discussed in this chapter to the two dimensional Hubbard model
is the following:

The current vertex in Equation (4.61) should be implemented within a DΓA and
DF formalism. It enables the computation of Kxx(ω) and Kxy(ω) in Equations (4.61)

11The choice of coefficients is not based on any specific input.
12For doping δ = 0 the Fermi surface is very close to the Van Hove singularity. In contrast, for δ = 0.2

the Fermi surface is shift such that the Fermi surface is not in the direct proximity of the Van Hove
singularity.

13Note that the order of magnitude changes considerably between the three considered cases in Fig-
ure 4.22, i.e. for the columns. The difference in magnitude is due to the proximity to the Van Hove
singularity in the half-filled case. We deliberately show only the T -dependence and omit the order
of magnitude, in order to highlight the temperature behaviour.
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Figure 4.22.: The T -dependence of the DC resistivity ρ = 1/σxx (top row), the Hall
coefficient RH = σxy/(σxx)

2 (middle row) and the ratio ρ/ρH = σxx/σxy
(bottom row) for the weakly correlated system. For the density of states
shown in Figure 2.5 we implemented Equation (4.58), Equation (4.59)
and Equation (4.63) with γ = −ImΣ(ω = 0) = 0.005 eV at half-filling
(left column) and with doping δ = 0.2 (center column), as well as with
γ = (10−3 + 10−6T 2) eV at half-filling (right column). For A using Equa-
tion (4.58), B using Equation (4.59), C and D using Equations (4.58)
and (4.63). Also see Footnote 13.
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and (4.62) respectively. Note, that these are given for a bosonic Matsubara frequency. An
analytic continuation has to be performed in order to finally compute the conductivity
tensor and take the zero frequency limit.

H. Kontani applied these expressions [98] including vertex corrections to the current
operator to a single-band Hubbard model in 1998. He could reproduce both the tem-
perature and doping dependence of RH in cuprates, as well as the universal behaviour of
ρ/ρH. His numerical calculations are based on the fluctuation-exchange approximation
[99] (FLEX), which is a perturbative method and hence applicable in the weak-coupling
regime. FLEX becomes insufficient near the Mott insulating phase and limited his anal-
ysis to T > T ∗ and doping |δ| > 0.1.

This discussion should be encouraging for two main reasons. Both, DΓA and DF, can
in principal compute the expressions in Equations (4.61) and (4.62). Most importantly
both methods take into account non-local spin fluctuations like—but well beyond—
FLEX.

In contrast to FLEX, DΓA and DF are theoretically applicable to all temperature
and doping regimes of the single-band Hubbard model. This might hold the keys for
the description of challenging physics such as quantum critical behaviour and weak
localization in and around the pseudogap regime, which has been mostly inaccessible
thus far.
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This project was motivated by novel experimental findings [1] by N. Barǐsić et al. for
transport mechanisms in cuprates. We recall, that while the DC resistivity character-
istically changes its temperature (T ) dependence throughout the rich phase diagram of
cuprates, the experimental new results clearly showed a universal T 2-dependence for the
ratio of the DC resistivity over the Hall resistivity ρ/ρH. Strikingly, this T 2-dependence
emerges as a universal property of the whole cuprate phase diagram: It is observed, in
fact, ubiquitous in the pseudogap phase, in the strange metal phase, and in the Fermi
liquid phase across all hole-doping (δ) and temperature regimes, as well as in different
compounds, c.f. Figure 1.4.

In this work we have started to analyze the possible connection between the experimen-
tally observed quadratic T -dependence of ρ/ρH and the T -dependence of the electronic
scattering rate at a level of the quantum many electron physics. The corresponding tem-
perature trends can be easily related within the oversimplified description of a Drude
model, but it was not expected that such description still holds for strongly correlated
materials such as the cuprates. Our numerical results are based on calculations for the
single-band Hubbard model on a square lattice with local Coulomb repulsion U = 2.5 eV,
and hopping parameters t = 0.25 eV, t = 0.5 eV and t′′ = 0.025 eV, which is solved by
ladder dynamical vertex approximation (DΓA) and dual fermion (DF) in order to include
non-local particle-hole fluctuations beyond the weak coupling regime.

We summarize here the most important results we have obtained. In ladder DΓA we
observed the following:

• The system shows strong commensurate antiferromagnetic fluctuations for δ =
0.1. For higher hole-doping, δ = 0.15, 0.2, these fluctuations become weaker and
incommensurate.

• The temperature dependence of the corresponding correlation length in the tem-
perature interval considered is close but not equal to T−1 for δ = 0.1, 0.15. For
δ = 0.2 it seems to perfectly agree with T−1. At lower temperature an exponential
grove in temperature for T → 0 might appear.

• The imaginary part of the self-energy on the Matsubara axis clearly shows a strong
momentum dependence indicating a qualitative deviation from the local descrip-
tion of DMFT. It develops a dip in the low Matsubara frequency range associated
with pseudogap behaviour.

• The analytic continuation by both, Padé approximation and sparse modeling, show
the lower Hubbard band around −0.6 eV and the upper Hubbard band at around

79



5. Conclusion and Outlook

1.9 eV. Unfortunately, the automatic evaluation of the Padé approximation by tak-
ing into account all physical constraints fails. This might be due to several causes:
(i) the additional approximation introduced by the Moriyaesque λ-correction in
DΓA, (ii) the discretization of the DMFT(ED) bath, etc.. On the other hand,
sparse modeling, applied to our DΓA datasets, has difficulties to find an optimal
regularization parameter.

• At the same time, the approximation [β|G(τ = β/2,kF)|]−1 ≈ −ImΣ(ω = 0,kF)
seems to be invalid, in the parameter range of our interest, on the basis of a
comparison against a simple visual inspection of ImΣ(iν,kF) for iν → 0.

• The precise T -dependence of the scattering rate could not be extracted from our
current ladder DΓA results.

• Nonetheless, the whole set of data, and especially the analytically not continued
data of ImΣ(iν,kF), appears hardly compatible with an universal behaviour of the
scattering rate over the whole phase diagram.

As for the DF results, the outcome is at the present status of our calculations even less
clear: Our current DF results are, most likely, affected by an incorrect filling due to
an insufficient adjustment of the chemical potential within the self-consistency cycles.
For the moment, we can merely report qualitative similarity between a one-shot DF
and DΓA calculation for β|G(τ = β/2,kF)|. Updating the Anderson impurity model,
however, leads to significant changes of the DF solution. It is unclear whether these
changes are due to technical issues, such as the change of the impurity solver1 or still
to poor statistics, or whether it is because DF would indeed obtain a radically different
result via the external self-consistency.

In order to improve the analysis of the existing numerical results for ladder DΓA,
we need to find a suitable method for performing a stable analytic continuation. One
modern approach was taken in Ref. [100], where a machine learning algorithm was
employed.

In the case of our DF calculations a possible solution for the adjustment of the chemical
potential has already been implemented in another branch of the code. This improve-
ment will hopefully enable a more successful repetition of the same calculation.

Under consideration of the strengths and weaknesses of ladder DΓA and DF as
emerged in our study, it may be rewarding to focus on the two-particle level. Here
two suggestions may be followed in future studies, which both involve an analytic con-
tinuation of a bosonic quantity:

In the final part of this work we have considered the ratio ρ/ρH in terms of the
conductivity tensor. The expressions, that we have extracted from literature, could be
implemented in future DΓA and DF studies. The key ingredients for these expressions

1We first obtained all local quantities by means of an exact diagonalization scheme for a converged
dynamical mean-field theory calculation. Subsequently, the one-shot DΓA and DF calculations, were
done using the same input. However further outer loop iterations in DF employed a continuous time
QMC algorithm.
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is the generalized current vertex of Equation (4.61), which could be also expressed by
means of the generalized susceptibility in the charge channel.

Further studies may also analyze whether our DΓA/DF calculations support the spin-
freezing perspective [101] that has been recently put forward by P. Werner et al. also
for explaining the pseudogap phenomenology. This involves a closer analysis of the spin
susceptibility.

At this point we may note from the quantum many-body theory viewpoint, we were not
yet able to “simplify” the rich phase diagram of cuprates as suggested by the most recent
experiment. But if I may add a loose translation of my initial quotation: “Everything
worth-while may take a while.”
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A. Crystal structure

Generally one may distinguish between:

• Ba1−xKxBiO3,

• La2−xMxCuO4−y,

• Nd2−xCexCuO4-Based Compounds,

• YBaCuO-Based Compounds, and

• Bi-, Tl- and Hg-Compounds.

For a detailed Review see the book [15] by N. Plakida published in 2010. Here, we briefly
summarize its chapter about Bi-, Tl- and Hg-Compounds. In this summary there is a
special emphasize on Hg-Compounds as these are used in the resistivity measurements
[1] by N. Barǐsić et al. , which are the main focus of this work.

The Bi-, Tl- and Hg-compounds can be expressed in the general formula

AmB2Can−1CunOx,

where A= Bi, Ti or Hg and B = Sr (for Bi), Ba (for Tl and Hg). Further, for Bi m = 2,
Ti m = 1 or 2, while Hg m = 1.

The choice A=Hg, B=Ba and m = 1 yields

HgBa2Can−1CunO2n+2+δ,

where n determines the number of CuO2-planes. A convention for denoting this series
of compounds is Hg−12(n − 1)n.1 The series was discovered in 1993: Hg−1201 [102],
Hg−1212 [103] and Hg−1223 [104]. And continued expanding with Hg−1234, Hg−1245
[105], up to so-called infinite layered compounds with n ≥ 6 [106].

The crystal structure of Hg-based compounds with n = 1, 2 and 3 are displayed in
Figure A.1. The tetragonal structures of Hg−1201, Hg−1212 and Hg−1223 accommo-
date correspondingly n = 1, 2 and 3 CuO2-planes parallel to the xy-plane and n− 1 Ca
atoms are placed above the centres of the CuO2 squares. This is sandwiched by a pair of
BaO planes. Hg-ions then separate these basic layered sheets. In other words the layers
are stacked in the following sequence:

Hg−1201 : · · · − (HgOδ)
(2−2δ)+(BaO)0(CuO2)(2−2δ)−(BaO)0(HgOδ)

(2−2δ)+ − . . .
1 Analogously, the convention for TlBa2Can−1CunO2n+3+δ is Tl-12(n− 1)n etc.. . . .
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A. Crystal structure

Figure A.1.: Crystal structure of mercury compounds Hg−1201, Hg−1212 and
Hg−1223.[15] Fig. 2.17 [107] Fig. 10

The tetragonal structure belongs to the space group P4/mmm. In HgBa2Can−1CunO2n+2+δ,
δ denotes the doping. In case of hole doping, the compound is annealed in an oxygen
atmosphere. This leads to the implementation of excess oxygen ions in the buffer layer
Hg −Oδ with concentration δ. The doping is depict in Figure A.1.
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B.1. The fermionic coherent state path integral

The coherent state is the eigenstate of the anhilation operator a. To define such a state in
the fermionic case, we need to introduce Grassman variables, which are anticommuting
numbers:

{ci, cj} = 0 (B.1)

Asume we have a function f(ci) = a+ cib, which is commuting. Thus b is anticommut-
ing. To complete the definition we additionally need to define how to differentiate and
integrate. To differentiate with respect to ci from the left we must write ci to the far
left:

∂cif(ci) = b. (B.2)

Integration must obey linearity∫ ∞
−∞

dciαf(ci) = α

∫ ∞
−∞

dcif(ci) (B.3)

and invariance under a shift of the ci by a constant∫ ∞
−∞

dcif(ci + β) =

∫ ∞
−∞

dcif(ci). (B.4)

The only nontrivial definition up to a numerical factor is given by the Berezin integration:∫ ∞
−∞

dcif(ci) = b. (B.5)

With the definition of Grassman variables we can make an educated guess for the
fermionic coherent state:

|c〉 = e−
∑
i cia

†
i |〉 =

∏
i

(
1− cia†i

)
|〉, (B.6)
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where |〉 is the vacuum ground state and a†i creates an electron at xi with spin σi. We
proof now that this is indeed the eigenstate of a with eigenvalue ci:

aj|c〉 = aj
∏
i

(
1− cia†i

)
|〉

=

j−1∏
i=0

(
1− cia†i

)
aj

(
1− cja†j

) ∏
i=j+1

(
1− cia†i

)
|〉

=

j−1∏
i=0

(. . . )
(
aj + cjaja

†
j

) j−1∏
i=0

(. . . ) |〉

with
(
aj + cjaja

†
j

)
|〉 = (0 + cj 1) |〉

(B.7)

cj|c〉 = cj
∏
i

(
1− cia†i

)
|〉

=

j−1∏
i=0

(
1− cia†i

)
cj

(
1− cja†j

) ∏
i=j+1

(
1− cia†i

)
|〉

=

j−1∏
i=0

(. . . )
(
cj + c2

ja
†
j

)∏
i=0

with
(
cj + c2

ja
†
j

)
|〉 =

(
cj + 0 a†j

)
|〉

(B.8)

Let us state the unity to be

1 =

∫ ∏
i

dc̄idcie
∑
i c̄ici|c〉〈c|. (B.9)

For the sake of more clarity and less distraction we define the following convention

c̄c ≡
∑
i

c̄ici (B.10)

dc̄dc =
∏
i

dc̄idci (B.11)

and rewrite Eq. B.9 as

1 =

∫
dc̄dcec̄c|c〉〈c|. (B.12)
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With the unity we can rewrite the trace of an operator A in terms of Grassman variables

tr{A} =
∑
i

〈i|A|i〉

=
∑
i

〈i|A
∫

dc̄dcec̄c|c〉〈c|i〉

=

∫
dc̄dce−c̄c

∑
i

〈i|A|c〉〈c|i〉

=

∫
dc̄dce−c̄c

∑
i

〈−c|i〉〈i|A|c〉

=

∫
dc̄dce−c̄c〈−c|A|c〉.

(B.13)

Let us introduce the time evolving state as

|c(t)〉 = eiHt|c〉 (B.14)

and the time evolution operator

U(f, i) ≡ 〈c(f)(tf)|c(i)(ti)〉 (B.15)

One can now describe the transition amplitude from one state c(i) to another c(f) at zero
temperature by a path integral. We begin by dividing the time interval into N + 1 equal
pieces ∆t = tf−ti

N+1
. Then introduce N complete sets of eigenstates

〈c(f)|e−iH(tf−ti)|c(i)〉 =

∫ N∏
n=1

dc̄c〈c(f)|e−iH∆te
∑
i c̄

(N)
i c

(N)
i |c(N)〉

〈c(N)|e−iH∆te
∑
i c̄

(N−1)
i c

(N−1)
i |c(N−1)〉 . . . 〈c(1)|e−iH∆t|c(i)〉. (B.16)

As we send N → ∞ later, we can approximate e−iH∆t ≈ (1 − iH∆t). Then rewrite

e
∑
i c̄

(n)
i c

(n)
i |c(n) =

∏
i(1 + c̄

(n)
i c

(n)
i ), which leads for each time step to an evaluation of the

Hamiltonian, yielding

〈c(n)|e−iH∆te
∑
i c̄

(n−1)
i c

(n−1)
i |c(n−1)〉 = 〈c(n)|(1− iH[a†, a]∆t)

∏
i

(1 + c̄
(n−1)
i c

(n−1)
i )|c(n−1)〉

= (1− iH[c̄, c]∆t)
∏
i

(1 + c̄
(n−1)
i c

(n−1)
i )〈c(n)|c(n−1)〉.

(B.17)

Now inserting the definition of the coherent state from Eq. B.6 and then using c̄(n) =
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( 1
∆t
c̄(n−1))∆t+ c̄(n−1) yields

〈c(n)|c(n−1)〉 = 〈|e
∑
k c̄

(n)
k a

(n)
k e−

∑
l c

(n−1)
l a

†(n−1)
l |〉

= 〈|e
∑
k c̄

(n−1)
k

1
∆t
a

(n)
k ∆t+

∑
k c̄

(n−1)
k a

(n)
k e−

∑
l c

(n−1)
l a

†(n−1)
l |〉

= 〈c(n−1)|e
∑
i c̄

(n−1)
i

1
∆t
a

(n)
i ∆t|c(n−1)〉

= 〈c(n−1)|e
∑
i a
†(n−1)
i ∂ta

(n)
i ∆t|c(n−1)〉

(B.18)

Gathering all the terms from Eq.s B.16 - B.18 for Eq. B.15 gives the evolution operator
as

〈c(f)|e−iH(tf−ti)|c(i)〉 = lim
N→∞

∫ N∏
n=0

dc̄dc〈c(f)|e
∑N
n=1

∑
i

(
a
†(n)
i ∂ta

(n)
i −iH[a

†(n)
i ,a

(n)
i ]
)

∆t|c(i)〉, (B.19)

which is by taking the limit and adapting a more convinient notation, given by

U(f, i) =

∫
c̄c

〈c(f)|e
∫ tf
ti

dt(a†∂ta−iH[a†a])|c(i)〉. (B.20)

Here the path integral is denoted by
∫
c̄c

=
∫ ∏∞

n=0 dc̄dc and the sumation over time

intervals is replaced by an integral
∑N

n=1 ∆t→
∫ tf
ti

dt
Finally we have all the ingridience to derive the expression we are truely interested

in, the parition function. The most straight forward way to arrive at the partition
function is simply to sum up all energy eigenstates of the system with the appropriate
Boltzmannfactor e−βH , where β is the inverse temperature and H is the Hamiltonian1.
We thus choose A = e−βH in Eq. B.13

Z =

∫
dc̄dce−c̄c〈−c|e−βH |c〉. (B.21)

The expression for Z is very similar to Eq. B.16, with i(t−t′) = β. To proceed in analogy
to the time evolution operator we devide the imaginary time interval β into M +1 equal
pieces of ’duration’ ∆τ = β

M+1
.

Z =

∫
dc̄dc

∫ ∏
m

dc̄(m)dc(m)〈−c|e−H∆τec̄
(M)c(M)|c(M)〉

〈c(M)|e−H∆τec̄
(M−1)c(M−1) |c(M−1)〉 . . . 〈c(1)|e−H∆τec̄c|c〉, (B.22)

where we rewrite the terms

〈c(m)|e−H∆τec̄
(m−1)c(m−1)|c(m−1)〉 = 〈c(m−1)|e−(c̄(m−1)∂τ c(m)+H)∆τec̄

(m−1)c(m−1) |c(m−1)〉 (B.23)

and impose boundry conditions −c = cM and c = c0 and hence c0 = −cM . In the limit
M →∞ the partition function finally takes the form

Z =

∫
c̄c

e−
∫ β
0 dτ(c̄∂τ c+H), (B.24)

1To work with the great canonical esamble replace H → H − µN
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with boundry condition c(τ = 0) = −c(τ = β). It is analogous to Eq. B.20, however
due to the extra exponential in the expression for the trace and the boundry condition
all states nicely disapear and we are left with an expression for the fields.

A familiar approach in quantum field theory on the other hand is to express the
partition function in terms of the action

Z =

∫
c̄c

eiS = 〈0|0〉src, (B.25)

where the suffix src indicates the presence of sources. The crucial assumtion is that the
system is in the ground state at t → ∞ and t′ → −∞. It can be reasoned as follows:
Assume an abitrarily small shift H → (1− iδ)H in a time evolving state

|c(t)〉 = eiHt|c〉

=
∞∑
n=0

eiEnt〈n|c〉|n〉, (B.26)

and take the limit t→ −∞. Except for the ground state, which we choose to be E0 = 0,
all states are multiplied by a vanishing exponential factor. The limit is thus 〈0|c〉|0〉,
and similar for limt′→∞〈c(t′) = 〈0|〈c|0〉. The constant values 〈0|c〉 and 〈c|0〉 are simply
swollowed by the normalization later on, therefore they do not concern us and we simply
assume the ground state at t→∞ and t′ → −∞. So in other words Eq. B.25 evaluates
all possible paths from t→∞ to t′ → −∞.

How do we connect Eq. B.24 and Eq. B.25 with each other? The trick is here to
perform a Wick rotation to imaginary time it→ τ . It puts the Boltzman factor on the
same level as the time evolution. As the action contains integration over time, Eq. B.25
appears after a Wick Rotation as

Z =

∫
c̄c

e−S = 〈0|0〉src, (B.27)

where in the great canonical ensemble the action is given by

S =

∫ β

0

dτ(c̄∂τc+H) (B.28)

B.2. Filling and chemical potential

The one-particle Green’s function in imaginary time τ , as it appears in Equation (2.31),
is defined as

G(k, τ) = − 1

Z
tr{e−βHTτ ĉk(τ)ĉ†k(0)}, (B.29)

where Tτ is the imaginary time ordering operator and ĉ(ĉ†) are fermionic second quati-
zation operators that where denoted by a(a†) in the derivation of the fermionic coherent
state path integral in Section B.1.
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B. Derivations

Let us compute the filling defined as the thermal average of the density operator
n̂ = ĉ†kĉk,

〈n̂〉 = =
1

Nk

∑
k

〈ĉ†kĉk〉. (B.30)

Using 〈ĉ†ĉ〉 = G(k, τ = 0−) and the Fourier transformation defined in Equation (C.12),
yields

〈n̂〉 =
1

Nk

∑
k

G(k, τ = 0−) (B.31)

=
1

Nk

∑
k

1

β

∑
n

e−iνn0−G(k, iνn). (B.32)

By introducing the Fermi function as a weight function, this expression can be rewritten
by means of the residual theorem,∮

Γ

dzf(z) = 2πi
∑
a∈Γ

Resaf(z), (B.33)

in terms of a sum over the poles of the Green’s function:

1

β

∑
n

e−iνn0−G(k, iνn) =
∑

z0∈polesofG

Resz0 {f(z)G(k, z)} , (B.34)

where f(z) = 1/(eβz + 1) is the Fermi function. If we enter the non-interacting Greens
function Equation (2.25), here G0(k, z) = 1

z−(ε(k)−µ)
, we find

〈n〉 =
1

Nk

∑
k

∑
z0∈polesofG

Resz0

{
f(z)

z − (ε(k)− µ)

}
(B.35)

=
1

Nk

∑
k

f(ε(k)− µ) (B.36)

=
(number of occupied states)

(total number of states)
, (B.37)

where in the last line we used the simplefied picture true only at T = 0, that f(ε(k)−µ) =
1, if a state with quantum number k is occupied, and respectively f(ε(k) − µ) = 0, if
empty.

Numerically, we can sum over all available Matsubara frequenzies. But note that,

1

β

∑
n

eiνn0−

iνn
= f(z = 0) =

1

2
, (B.38)

is not absolutely convergent without the convergent factor eiνn0− .2 The trick is to add
and subtract as follows

1

β

∑
n

eiνn0−

iνn
=

1

β

∑
n

[
eiνn0−

iνn
− 1

iνn

]
+

1

2
, (B.39)

2 Just like the logarithm does not have asymptitic behaviour for large arguments.
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where the sum over eiνn0−

iνn
− 1

iνn
∝
(

1
iνn

)2

is convergent.

If you did not believe that G(k, iνn) ∝ c1
iνn
, c1 ≡ 1, let me convince you. The high-

frequency expansion of the Green’s function is of the general form

G(iνn) =
c1

iνn
+

c2

(iνn)2
+

c3

(iνn)3
+ . . . . (B.40)

Using Equation (C.11) and partial integration, we can determin the coeffitents as follows:

G(iνn) =

∫ β

0

dτeiνnτG(τ) (B.41)

=
−G(β)−G(0)

iνn
− −G

′(β)−G′(0)

(iνn)2
+
−G′′(β)−G′′(0)

(iνn)3
+ . . . . (B.42)

Considering Equation (B.31) and the antiperiodicity, namely G(τ) = −G(τ + β), yields
G(β) = −n. Using the anti-commutation relation, it is clear that G(0+) = −(1 − n).
Hence, the value of c1 = −G(β)−G(0) = +n+ (1− n) ≡ 1.

B.3. The hybridization function of AIM

The full Hamiltonian of the Anderson Impurity Model (AIM) in terms of Grassmann
variables is given by

H =
∑
l,σ

εlb̄lσblσ +
∑
l,σ

[
Vl b̄lσcσ + V ∗l c̄σblσ

]
+ Un↓n↑ − µ

∑
σ

c̄σcσ, (B.43)

where the first term is the bath Hamiltonian. Here b̄lσ, blσ are the fields of a fermionic
non-interacting bath with spin σ and orbital l degree of freedom and energy levels εl. The
second term describes the hybridization between the bath and an impurity site. The
Grassmann fields c̄σ, cσ describe creation and annihilation on the impurity. Hence Vl
decribes the hopping of an impurity Fermion to the bath and V ∗l vice versa, respectively.
The remaining two terms describe the impurity at a chemical potential µ with on-site
Coulomb repulsion, also called Hubbard-U , U .

The partition function is given by the Fourier transformation of B.25

Z =

∫
dc̄dc db̄db exp

(
−
∑
ν,l,σ

b̄(−iν + εl)b+
[
Vl b̄lσcσ + V ∗l c̄σblσ

]
+ c̄σ (−iν − µ) cσ + U [c̄, c]

)
,

(B.44)
where dc̄dc =

∏
νσ c̄νσdcνσ and respectively db̄db =

∏
ν,l,σ db̄νlσdbνlσ, following the con-

vention of B.10, while c̄c =
∑

ν,l,σ c̄νσcνσ and c̄c =
∑

ν,l,σ c̄νlσbνlσ. We now integrate over
the bath degrees of freedom. Let us consider the integration over one particular index
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i = ν, l, σ in the sum in the exponent:∫
db̄idbi exp

(
−b̄i (iν − εl) bi −

[
Vl b̄icνσ + c.c.

])
(B.45)

=

∫
db̄idbi

(
1− b̄i (iν − εl) bi

)(
1−

[
Vl b̄icνσ + c.c.

]
+

1

2
|Vl|2

[
Vl b̄icνσ + c.c.

] [
Vl b̄icνσ + c.c.

])
NB: All terms vanish except 1× 1

2
|Vl|2 [. . . ], and b̄i (iν − εl) bi × 1.

= (iν − εl) + |Vl|2c̄νσcνσ

= (iν − εl) exp

(
c̄νσ
|Vl|2

iν − εl
cνσ

)
. (B.46)

Now defining the hybridization function,

∆ν =
∑
l

|Vl|2
iν − εl

, (B.47)

and using B.46, we can evaluate B.44, yielding

Z = N
∫

dc̄dc exp (c̄ (iν + µ−∆ν) c− Un↓n↑), (B.48)

where N is the normalization factor, which swallowed the prefactor of B.46.

B.4. Lehmann representation of one-particle Green’s
function

Gkν = −
∫ β

0

dτ eiντ 〈Tτ
[
ĉkσ(τ)ĉ†kσ(0)

]
〉, (B.49)

= − 1

Z

∫ β

0

dτ eiντ Tr
(

e−βH ĉkσ(τ)ĉ†kσ(0) θ(τ)− e−βH ĉ†kσ(0)ĉkσ(τ) θ(−τ)
)

= − 1

Z

∫ β

0

dτ eiντ
∑
i,m

e−βEi〈i|eτH ĉkσe−τH |m〉〈m|ĉ†kσ|i〉

= − 1

Z

∑
i,m

e−βEi
∣∣∣〈m|ĉ†kσ|i〉∣∣∣2 ∫ β

0

dτ eτ(iν+Ei−Em)

=
1

Z

∑
i,m

e−βEi
∣∣∣〈m|ĉ†kσ|i〉∣∣∣2 1− eβ(iν+Ei−Em)

Ei − Em − iν

=
1

Z

∑
i,m

∣∣∣〈m|ĉ†kσ|i〉∣∣∣2
Ei − Em − iν

(
e−βEi + e−βEm

)
(B.50)
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B.5. Hubbard Stratonovic transformation

Let us first note a simple property of any Gaussian integral over a real variable (r ∈ R)∫
dr e−(ar+bs)2

=

∫
dr e−a

2r2−2abrs−b2s2 =

√
π

a
= N , (B.51)

N eb
2s2 =

∫
dr e−a

2r2−2abrs, (B.52)

∫
ds eb

2s2 = N−1

∫
dr

∫
ds e−a

2r2−2abrs, (B.53)

where integrals range from −∞ to +∞.
In a very similar manner, we can shift an integral over one fermionic field to another

by means of the Hubbard-Stratonivic transformation. Assume the partition function is
given as

Z =

∫
c̄c

e−S , (B.54)

S = B2c̄c. (B.55)

Then this is equal to

S = B−2

∫
f̄f

∫
c̄c

e−AB(c̄f+f̄ c)−B2f̄f . (B.56)
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B.6. Padé fit for n = 4

In order to fully understand the fitting procedure of Padé approximation, let’s consider
an example of n = 4, cf. Equation (3.63).

i = 1 : fn(z1) = a1 = g(z1) (B.57a)

i = 2 : fn(z2) =
a1

1 + a2(z2 − z1)
= g(z2) = c1 (B.57b)

→ a2 =

(
a1

c1

− 1

)
1

z2 − z1

i = 3 : fn(z3) = g(z3) = c1 (B.57c)

c2 =

(
a1

c1

− 1

)
1

z3 − z1

→ a3 =

(
a2

c2

− 1

)
1

z3 − z2

i = 4 : fn(z4) = g(z4) = c1 (B.57d)

c2 =

(
a1

c1

− 1

)
1

z4 − z1

c3 =

(
a2

c2

− 1

)
1

z4 − z2

→ a4 =

(
a3

c3

− 1

)
1

z4 − z3

Rewriting in terms of a rational function. As a next step, we will apply Equa-
tion (3.65). In order to properly add polynomials we expand them in their coefitients,

p(j)(z) =
L∑
l=0

c
(j)
l zl, L = Int ((j − 1)/2) , (B.58a)

q(j)(z) =
M∑
m=0

d(j)
m zm, M = Int (j/2) , (B.58b)

yielding a recursion for the coeffitients c
(j)
l and d

(j)
m :

c
(j=1)
l=0 = an, c

(j=1)
l>0 = 0, (B.59a)

d
(j=1)
m=0 = 1, d

(j=1)
m>0 = 0, (B.59b)

c
(j)
l = an−j+1d

(j−1)
l , (B.59c)

d(j)
m = d(j−1)

m − zn−j+1c
(j−1)
m + c

(j−1)
m−1 . (B.59d)

Again, let us consider the example of n = 4:

f 4(z) =
a1

1 + a2(z−z1)

1+
a3(z−z2)

1+a4(z−z2)

, (B.60)
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4 : c
(1)
0 = a4, (B.61a)

d
(1)
0 = 1,

3 : c
(2)
0 = a3d

(1)
0 , (B.61b)

d
(2)
0 = d

(1)
0 − z3c

(1)
0 ,

d
(2)
1 = c

(1)
0 ,

2 : c
(3)
0 = a2d

(2)
0 , (B.61c)

c
(3)
1 = a2d

(2)
1 ,

d
(3)
0 = d

(2)
0 − z2c

(2)
0 ,

d
(3)
1 = d

(2)
1 + c

(2)
0 ,

1 : c
(4)
0 = a1d

(3)
0 ,

c
(4)
1 = a1d

(3)
1 , (B.61d)

d
(4)
0 = d

(3)
0 − z1c

(3)
0 ,

d
(4)
1 = d

(3)
1 − z1c

(3)
1 + c

(3)
0 ,

d
(4)
2 = c

(3)
1 .
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C. Formalism

C.1. Sum convention

Repeated indices in 4-vector notation are summed over

x = (τ,x) and k = (iν,k), (C.1)∑
x

=

∫ β

0

dτ
∑
x

, (C.2)

∑
k

=
1

β

∑
ν

1

Nk

∑
k

, (C.3)

when not stated otherwise.

C.2. n-particle Green’s functions

The n-particle imaginary time Green’s function is defined as

G
(n)
i1...i2n

(τ1, . . . , τ2n) = (−1)n〈Tτ
[
ĉi1(τ1)ĉ†i2(τ2)ĉi3(τ3) . . . ĉ†i2n(τ2n)

]
〉, (C.4)

=
1

Z
Tr
(

e−βHTτ
[
ĉi1(τ1)ĉ†i2(τ2)ĉi3(τ3) . . . ĉ†i2n(τ2n)

])
, (C.5)

Z = Tr
(
e−βH

)
and ĉ

(†)
ij

(τj) = eτjH ĉ
(†)
ij

e−τjH (C.6)

where even indices are creation, ĉ†, and odd indices are annihilation operators, ĉ.
The one-particle Green’s function is defined as

Gk(τ) = G
(1)
kσ,kσ(τ, 0) = −〈Tτ

[
ĉkσ(τ)ĉ†kσ(0)

]
〉, (C.7)

Gkν =

∫ β

0

dτ eiντ Gk(τ). (C.8)

C.3. Fourier transformation and Matsubara frequencies

ĉ†kν =
∑
x

∫ β

0

dτ ei(ντ+kx) ĉ†x(τ), (C.9)

ĉ†x(τ) =
1

β

∑
ν,k

e−i(ντ+kx) ĉ†kν (C.10)
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and complex conjugated for ĉ.
The single-particle Green’s function

Gkν =

∫ β

0

dτ
∑
x

ei(ντ+kx) Gx(τ), (C.11)

Gx(τ) =
1

β

∑
ν

1

Nk

∑
k

e−i(ντ+kx) Gkν (C.12)

Fermionic: k, ν =
π

β
(2n+ 1), (C.13)

Bosonic: q, ω =
π

β
2n, (C.14)
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D. Angle-resolved photoemission
spectroscopy (ARPES)

I ARPES explained

The basic idea of angle-resolved photoemission spectroscopy (ARPES) is to exite pho-
toelectrons by means of a monochromatic beam and measure the kinetic energy of the
emitted electrons under a specific angle. As is schematically shown in Figure D.1. The
measurment of the angle-resolved spectrum1 has a one-to-one relation to the one-particle
spectral function

A(ω,k) = − 1

π
=GR(ω,k). (D.1)

The general concept of the photoelectric effect, which was originally observed by Hertz
in 1887 [108] and later explained by Einstein in 1905 [?] is shown in Figure D.2 (left).
Assume the photon with energy ~ω is able to exite electrons with binding energy EB

of filled bands in the valance band, and possibly core-levels. In addition to the binding
energy, the work function2 Φ0 of the sample must be overcome, yielding a kinetic energy
Ekin of the photoelectron, given as

Ekin = ~ω − |EB| − Φ0. (D.2)

The measurment of Ekin corresponds to photoelectron spectroscopy (PES). In ARPES

1In addition to the inverse ARPES.
2 The energy needed by an electron on the Fermi surface in order to leave the material

Figure D.1.: Angle-resolved photoemission spectroscopy (ARPES). A photon ~ω is ab-
sorbed by the sample, which subsequently emitts a photoelectron with ki-
netic energy Ekin and momentum ~k under the polar angle θ and azimuthal
angle φ.
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Figure D.2.: ARPES (left) Relation between the energy levels in a solid and electron
distribution produced by photons of energy ~ω. [109] (right) Schematic
experimental setup.[110]

the emission angles, i.e. the angle of the emitted photoelectron to the surface normal
(θ) and azimuthal angle (φ) are measured in addition to the energy spectrum. Hence,
the momentum ~k is completely determined, with absolute value of |k| =

√
2mEkin/~2.

The component parallel to the surface of the momentum is conserved resulting in the
following simple expression for the lattice momentum inside the solid

~k‖ =
√

2mEkin sin(θ), (D.3)

where m is the mass of the electron and k‖ is given in the extended zone scheme3. Here,
the momentum of the photon is neglected. Note that the copper-oxide planes in cuprates
are quasi two-dimensional planes and hence, k‖, corresponding to kx = |k‖| cos(φ) and
ky = |k‖| sin(φ), is all we are interested in.

A prototypical beamline of the experimental setup is shown in Figure D.2 (right).
A synchrotron beam is extracted from a so-called insertion device4 and subsequently
monochromized and focused onto a sample. The emitted photoelectrons are collected
by an analyser, where the kinetic energy and emission angles are determined. Note that
the experimental setup is situated in high vacuum. [110] [109]

The ARPES spectra measured for HgBa2CuO4+δ, which is subject of this work, is
shown in Figure D.3. The I. M. Vishik et al. carefully optimized the ARPES procee-
dure for HgBa2CuO4+δ, which is extremly sensitive to experimental conditions. Two

3 Not reducing the k‖ to the first Brillouin zone
4 Synchrotron: Electrons are bend by a magnetic field to travel on a circle emitting bremsstrahlung.

Insertion device: Arrays of magnets with alternating magnetic fields form a straight section in the
synchrotron. The electrons move on a sinosodal trajectory due to the alternating poles. This leads
to emission of synchrotron radiation at each turn. Insertion devices are classified by the periodicity
of the alternating magnetic fields resulting in continuouse or tunable quasi-discrete spectra. The
classes are called wigglers and undulators, respectively.
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of the main challenges are mentioned here: Firstly, the crystal structure lacks a neu-
tral cleavage plane. The unit cell of HgBa2CuO4+δ is made of layers (with charge):
Cu2+O2−

2 (−2), Ba2+ (+2), O−2 (−2), Hg2+ (+2), O−2 (−2) and Ba2+ (+2). This can
be seen in Figure 2.1. Hence, neighboring planes have opposit charge and therefore
a slice of layers would lead to polar catastrophe, which is compensated by self-doping
or mixed-termination5.[111] Secondly, the intensity yield against the background (BG)
varies rapidly with the photon energy. The quasiparticle peak could only be observed
for the range 19 eV ≤ ~ω ≤ 19.4 eV, near the nodal point.

In Figure D.3 (a) - (f) the intensity of the electron yield with binding energy EB =
E − EF, as in Equation (D.2), is ploted over the lattice momentum parallel to the
surface, as in Equation (D.3). The plots correspond to different angles θ, as defined in
Figure D.3 in the top right corner. The Fermi momentum kF is the point at which the
energy distribution curve is closest to the Fermi energy EF, as is marked in (b) by a red
line. In Figure D.3 (g) the BG measurment is shown, while in (h) the measurment of the
sample at kF is shown. By subtracting BG from the kF measurment the density of filled
states that were exited by the proceedure, becomes visible. We observe a pronounced
peak near the Fermi surface for close to the nodal point at θ = 45◦. The so-called
quasiparticle peak appears only in a narrow range θ ≥ 27◦. This could mean that the
filled states do not get exited for any reason, or as is commonly believed. The spectral
function shows a strong k-dependence, where there is no quasiparticle peak at the anti-
nodal points with θ = 0◦ and 90◦. Further the constant shift or step that is observed for
E −EF < 0 with respect to E −EF > 0 is due to secondary electrons that encountered
inelastic scattering, as is commonly observed in ARPES spectra. [112] [113]

Other cuprate compounds have been investigated. Here is a list of literature we
referred to: [113], [12], [114], [115], [112], [116], [110] and [109].

5The surface layer is not distinct.
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Figure D.3.: ARPES (a)-(f) Near-nodal cuts at different angles θ showing the energy
distribution curve (ECD) as a function of the crystal momentum component
k‖. All images have the same linear color scale. Color scale, which is in
arbitrary units, and θ are defined on the right hand side. Data taken with
19 eV photons, cuts parallel to Γ(0, 0)M(π, π), and T = 10 K. Red vertical
line in (b) marks kF and black dashed line marks momentum of BG of
EDCs. (g) BG EDCs, taken at momentum indicated in (b). (h) EDC at
kF. (i) EDC at kF with BG EDC subtracted. (j) Fermi surface map, kF

for each cut, and tight-binding model Fermi surfaces. Map is produced
by integrating cuts within a [20]meV window centered at EF. Four-fold
symmetrization is applied to the color map, but not kF data. Red and
blue symbols are Fermi surface crossings for two different experiments on
two different batches of crystals. Experiment A was performed with 19 eV
photons and experiment B was performed with 19.4 eV photons. Solid lines
are tight-binding Fermi surfaces enclosing different volumes, that are not
our concern here. [113]
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In D. Sénéchal, A.-M. Tremblay, and C. Bourbonnais, editors, Theoretical Methods
for Strongly Correlated Electrons, 237–296, Springer New York, New York, NY
(2004).

[59] a. Altland and B. Simons, Condensed Matter Field Theory, volume 115 (2010).

106



Bibliography

[60] A. A. Abrikosov, L. P. Gorkov, I. E. Dzyaloshinski, and I. E. Dzialoshinski, Meth-
ods of Quantum Field Theory in Statistical Physics, Dover Books on Physics
Series, Dover Publications (1975).

[61] K. Yamada, Electron Correlations in Metals, Cambridge University Press (2004).

[62] A. Georges, G. Kotliar, W. Krauth, and M. J. Rozenberg, Dynamical mean-field
theory of strongly correlated fermion systems and the limit of infinite dimensions,
Reviews of Modern Physics, 68, 13 (1996).

[63] N. Parragh, A. Toschi, K. Held, and G. Sangiovanni, Conserved quantities of S U (
2 ) -invariant interactions for correlated fermions and the advantages for quantum
Monte Carlo simulations, Physical Review B, 86, 155158 (2012).

[64] P. Gunacker, M. Wallerberger, E. Gull, A. Hausoel, G. Sangiovanni, and K. Held,
Continuous-time quantum Monte Carlo using worm sampling, Physical Review B,
92, 155102 (2015).

[65] P. Gunacker, M. Wallerberger, T. Ribic, A. Hausoel, G. Sangiovanni, and K. Held,
Worm-improved estimators in continuous-time quantum Monte Carlo, Physical
Review B, 94, 125153 (2016).

[66] J. Kaufmann, P. Gunacker, and K. Held, Continuous-time quantum Monte Carlo
calculation of multi-orbital vertex asymptotics (2017).

[67] M. Caffarel and W. Krauth, Exact diagonalization approach to correlated fermions
in infinite dimensions: Mott transition and superconductivity, Physical Review
Letters, 72, 1545 (1994).

[68] G. Rohringer, A. Valli, and A. Toschi, Local electronic correlation at the two-
particle level, Physical Review B, 86, 125114 (2012).

[69] G. Rohringer, New routes towards a theoretical treatment of nonlocal electronic
correlations, 318 (2013).

[70] I. T. Dyatlov, V. V. Sudakov, and K. A. Ter-Martirosyan, Asymptotic meson-
meson dispersion theory, Sov. Phys. JETP, 4, 767 (1957).
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