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Kurzfassung

Netzneutralität ist ein Terminus, der in Wirtschaft, Politik und Technik stark diskutiert
wird. Im Grunde bedeutet Netzneutralität, dass alle Datenströme im Internet, unab-
hängig ihres Inhalts, gleich behandelt werden müssen. Praktisch bedeutet das, dass es
Internetprovidern (ISPs) nicht erlaubt ist, ihre eigenen Webservices oder die Services von
Partnern anderen gegenüber zu bevorzugen. Eine solche bevorzugte Behandlung könnte
etwa eine erhöhte Geschwindigkeit oder Verfügbarkeit sein, andererseits aber auch in
einem unterschiedlichen Verrechnungsmodell liegen.

In der vorliegenden Diplomarbeit wird nicht speziell auf wirtschaftliche oder politische
Motive und Verstöße eingegangen, sondern Netzneutralität aus einem rein technischen
Standpunkt betrachtet.

Dazu wurde ein eigenes Messsystem entwickelt. So wurden fünf Anschlüsse bei vier
österreichischen ISPs angemietet und, um konsistente Aussagen zu ermöglichen, über
einen Zeitraum von zwei Monaten über 100.000 Messungen durchgeführt.

Die Messungen belegten beispielsweise den Einsatz eines transparenten Web-Proxies
bei T-Mobile Österreich und die Verfälschung von DNS-Abfragen nichtexistierender
Domains durch Hutchison Drei.
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Abstract

Net neutrality is a topic that is broadly discussed in economy, politics and technology.
Basically, net neutrality states, that all internet packets should be treated equally by
Internet Service Providers (ISPs). This principle does, for example, not allow ISPs to
treat their own web services or the services of partners better than all other web services.
The treatment has to be equal in every aspect - be it connection speed, availability or
billing.

In this thesis, neither economic nor political aspects of net neutrality are discussed,
but the focus is only on technology.

For this, a measurement system was built and five internet plans with four Austrian
ISPs were ordered. Over a period of two months, over 100,000 single measurement points
were taken.

Evaluating these measurements showed, for example, that T-Mobile Austria uses a
transparent web proxy for HTTP connections and that Hutchison Drei tampers with
DNS requests for non-existing domains.
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CHAPTER 1
Introduction

Net Neutrality is a topic that is discussed broadly in technical, economic and legal
literature[23, 14, 27, 7]. The term "Net Neutrality" itself means that an Internet Service
Provider (ISP) should only take on the role of a carrier for packets on the network. The
ISP should therefore not treat packets differently based on the protocol, destination,
source or other characteristics[5]. Since net neutrality covers a broad spectrum of topics,
not every aspect of net neutrality is covered by this thesis. For example, economic aspects
like zero-rating are not given any attention.

However, it should be mentioned, that net neutrality has a legal basis in the European
Union. This legal framework is found in Regulation (EU) 2015/2120, where recital
11 specifically mentions, that blocking, slowing down, altering, interfering with and
discriminating specific content or services that goes beyond reasonable traffic management
measures, is prohibited with certain exceptions. This regulatory action is necessary
since tampering with net neutrality can have significant economic benefits for ISPs, for
example by blocking VoIP traffic to force users to use conventional – billed – methods for
communication. Another lucrative use-case would be to force content providers which
cause high traffic volumes to pay for fast delivery to the end customer. This was already
seen with the American ISP Comcast, which throttled traffic with the streaming provider
Netflix, forcing the company to pay a fee to the ISP for continuing full-speed streaming
to end customers[15].

For definitions of what measures affecting net neutrality are allowed within EU
regulations, BEREC, a consortium consisting of national telecommunication authorities,
has published guidelines[27] for providers. Before these guidelines were published, public
discussion and concern for net neutrality formed. At the center of this was the collective
savetheinternet.eu, which organized protests, petitions and reached out to citizens, asking
them to contact regulation authorities and politicians.

The BEREC guidelines e.g. define in which cases traffic management and zero rating
are allowed. They also explicitly state, that neither blocking, slowing down, restricting
or altering traffic constitute allowed traffic management measures. In contrast, ISPs can
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provide “specialized” services which they are allowed to optimize, e.g. Voice over LTE.
However, they have to be transparent to the customer and provide information about all
measures concerning network neutrality.

In Austria, some public discussion spurred when Hutchison Drei announced its
Spotify packet, allowing customers to stream unlimited music from Spotify without being
charged[32]. This zero-rating also has technical violations against net neutrality - when
the included data volume is spent, ISPs throttle the bandwidth for customers. If the
bandwidth is kept up for some arbitrary services like Spotify, this would constitute a
violation[31].

To our knowledge, there is not yet scientific work concerning the technical aspects of
net neutrality for Austria. Therefore, in the following chapters, a monitoring system is
designed and applied to detect net neutrality violations with Austrian ISPs.

The remainder of this thesis is structured as follows: In chapter 2, the scientific work
of other researchers is discussed. These researchers mostly focused on markets other than
Austria, but their findings are still relevant to this thesis.

In chapter 3, a measurement system is presented. For this thesis, internet plans with
four Austrian ISPs were ordered. All tests were conducted using these four ISPs. For a
better consistency, the measurements were done over a period of two months.

These measurements resulted in over 100,000 single measurement points which are
evaluated in detail in chapter 4.

Following this, possible background reasons for these results are discussed in chapter 5.
Some plans for future measurements are then given in chapter 6. Finally, the most
important results are once again summarized in chapter 7.

2



CHAPTER 2
Related Work

Aside from legal and regulatory documents, many researchers conducted experiments
concerning the technical restrictions of network neutrality. Some researchers focus on
the part of net neutrality, that states, that ISPs should not manipulate the content of
network packets.

For example, Nakibly et al. [26] showed that some network operators are manipulating
HTTP traffic. In their paper, they showed that not only edge ISPs – as measured in this
thesis – but also some intermediate network operators manipulate traffic and therefore
affect customers of all edge ISPs in the same way. As a method for content manipulation,
these network operators use out-of-band injection. This means, that the original packets
are not discarded and replaced by a forged packet, but that a forged packet is inserted
into the network stream between server and client and poses for the original packet. If
the forged packet then arrives first at the client, the client discards the original packet.
This method has the advantage that it does not introduce a point of failure – if the forged
packet arrives second or contains any errors, the client simply treats the original packet
as intended and does not experience any difficulties when retrieving the requested HTTP
resources. For their research, Nakibly et al. intercepted all traffic from three universities
and one company for multiple weeks, recording over 1.500 terabytes of IP packets with
netsniff-ng and using a filter to only capture HTTP traffic. They then analyzed all
packets and stored all TCP segments that carried different payloads but corresponded to
the same sequence number. As a limitation of this methodology, in-place-swapping of
packets was not detected. As for the result, the researchers showed that in most cases of
out-of-band injection, the forged packet wins the race (78% of the time). The affected
packets were mostly coming from Chinese websites. In the manipulated HTTP traffic,
some JavaScript-Code was inserted that either served advertisements or malware. Also,
the results could not be reproduced, as most content manipulation lasted only for a short
period of time, often disappearing after a few hours or a few days.

The paper of Nakibly et al. is relevant to this thesis, as it shows that not all content
manipulation is caused directly by the ISP, but could also be attributed to core network
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operators. Since a server-centric approach is used in this thesis, this sort of content
manipulation should not occur, since both clients and server are located in Austria
and serve non-public content - therefore content-manipulation caused by Asian network
operators should not take place. As for the out-of-band injection: In this thesis, content
manipulation is measured over multiple months. So, if a racing condition decides if the
original packet or the forged packet is received by the client, this should show in the
results.

The same goal for network operators – generating revenue streams by delivering
advertisements to the end customers – can also be reached by other measures. In their
research based on 259,000 measurements by 193,000 users, Weaver et al. [35] showed
that some providers use failed DNS lookups for monetization. They showed, that some
ISPs don’t return the legitimate NXDOMAIN error code for non-existing web pages but
instead return a custom page to users. Aside from ISPs, third-party DNS providers use
DNS redirection to custom error pages as their primary source of income. These pages
usually contain some search results, sponsored content, and advertisements based on
keywords extracted from the domain that was requested. Depending on the provider of
these pages, ISPs either only redirect failed DNS lookups with hostnames beginning with
www. or all lookups. Also, some providers only redirect NXDOMAIN errors, while others
also redirect SERVFAIL errors. The revenue is substantial: ISPs can make a profit of
1-3 dollars per customer per year by DNS redirection. As a consequence of this research,
for this thesis, a DNS lookup test was implemented, where a lookup for non-existing
hostnames is performed. Similar to the paper of Weaver et al., the test is only counted
as passed, if the original NXDOMAIN error code is returned by the ISP, instead of some
custom error page.

Another research that deals with content manipulation and blocking was done by
Khattak et al. [21]. In their paper, they investigated if Tor users were served other HTTP
content than non-Tor users. As a methodology, they chose two different methods. First,
they decided to scan the entire IPv4 address space for manipulation when connecting
with an HTTP request on TCP port 80. As a second measurement, they requested the
homepages of the top thousand websites as listed on Alexa. They showed, that around
6.8% of HTTP requests are blocked when using Tor while being served normally without
using a Tor connection. The largest provider responsible for these blockings was the
content delivery network CloudFlare, which accounted for 2.5%. In their paper, they only
measured the homepage of each respective site, therefore not taking content manipulation
or blocking into account that does not occur on the homepage but only on subpages, e.g.
on Wikipedia, where Tor-users may only read, but not edit articles.

For this thesis, this is relevant, as based on this paper, a test based on Tor OONI
was introduced, that records any content manipulation that takes place when using Tor.
In contrast to the paper of Khattak et al., in this thesis only a few selected websites are
accessed using Tor, in this case, websites that are blocked by Austrian providers like
kinox.to.

Research that is also very relevant for this thesis has been done by Xu et al. [37]. In
their paper, they discovered that all four mobile ISPs in the United States use proxies for
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their networks. Especially, port 80 is handled over a split TCP connection and a proxy.
Providers in the U.S. use various techniques to “optimize” traffic but are not transparent
to the customer. The researchers discovered at least five different optimizations. First,
some ISPs cache web resources like images or stylesheets for a certain period of time.
This can be measured, if one has control over both client and server and requests that
were sent by the client never reach the server as they are handled directly by the proxy.
Another optimization is DNS redirection: If an HTTP request contains a “Host” field, the
target IP of the IP packet is ignored by the proxy. Also, content is manipulated: Certain
proxies optimize files in the U.S., e.g. whitespace is trimmed or images are transcoded
to reduce mobile network traffic. Another optimization is the automatic addition of
the “connection: keep-alive”-header to HTTP responses or the dropping of the FIN
TCP-packet. Lastly, some ISPs delay the TCP handshake between their middleboxes
and the server until they get an HTTP request from the client.

These tests all are relevant for this thesis and are therefore conducted for the Austrian
ISPs. The tests, however, had to be rewritten, as Xu et al. did not provide any code of
their work. Some Austrian ISPs use proxies with techniques similar to the optimizations
found in the paper, as is shown in a later chapter of this thesis.

Many researchers focus on censorship of certain protocols and politic contents. For
this, the RIPE Atlas network has been built, spanning over 13,000 instances worldwide
where researchers can conduct measurements. The network can be rented for experiments
with credits. These credits can be easily generated by lending network clients to the
Atlas network for multiple years.

For example, the Atlas network was used to monitor content blocking in Turkey and
Russia. Anderson et al. [3] showed in their paper how the governments of these countries
facilitated the blockings and in which timeframe and density they occurred.

For this thesis, using the RIPE Atlas network for measurements is not possible since
the network is limited to only certain tests designed to measure censorship (e.g. ping,
traceroute, sslcert, DNS)[4]. Also, the hardware poses certain limitations as different
iterations are used for test instances and affect measurements. Hard- and software for
the test clients are continually updated, but dealing with different software and hardware
revisions inflicts additional work when designing the measurement metrics.

The mentioned papers are however still relevant as they suggest how censorship
techniques work in general and the measurements used in this thesis are heavily inspired
by the methodology of the RIPE Atlas network. Similar to Atlas, ping, traceroute and
DNS tests are conducted to measure censorship and speed of different websites.

In November 2015, shortly before the design of the tests used in this thesis, T-Mobile
USA introduced BingeOn, a technique that allows American customers to stream videos
from participating websites without affecting the data volume included in their mobile
plan. Even before, T-Mobile USA provided a similar program for music streaming, Music
Freedom, which caused controversy as smaller radio stations were either not included in
the program or had to wait for long periods to be included[39].

In Austria, Hutchison Drei provides a similar service with Spotify, where users can
stream an unlimited amount of music via Spotify without affecting their data plan[32].
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While this Zero rating is a violation of net neutrality – even if not in a technical sense –
T-Mobile USA goes one step further and limits the bandwidth of websites participating
in the BingeOn-program. This caused quite a bit of controversy in the U.S., led to the
EFF suggesting that T-Mobile abandons the BingeOn-program and various responses by
John Legere, the CEO of T-Mobile USA.

Kakhi et al. [19] focused their research on which techniques T-Mobile uses for BingeOn
and published a paper discussing their findings. They discovered, that T-Mobile uses
policing to reduce bandwidth and is probably using a token bucket system with a very
small or no queue which leads to high retransmission rates. Even though T-Mobile
claims to “optimize” video, no transcoding is taking place, content, therefore, is not
modified. If a user tries to stream eligible video, the bandwidth is automatically limited
to 1.5 Mbps. For detecting eligible video streams, T-Mobile seems to be using deep
packet inspection, as the selection criteria are matched with a simple string comparison.
For HTTP-traffic, depending on the concrete website (e.g. Netflix, HBO Go, Hulu), the
Host-File of the GET-requests as well as the Content-Type is used to categorize traffic.
For HTTPS-websites (e.g. YouTube), the server name provided in the Server Name
Indication (SNI)-extension during the TLS handshake is used. The researchers showed
that by randomizing the fields of the HTTP GET-request header, evading detection by
BingeOn is possible. As a consequence, it is possible to zero-rate arbitrary traffic by
manipulating these fields. For conducting their measurements, the researchers simply
replayed traffic, once over the original channels and once over an encrypted VPN service.
This architecture enabled them to compare traffic throughput consistently[20].

This research is directly relevant to this thesis, as Hutchison Drei provides the Spotify
Zero-rating mentioned above. For the measurement, a test specifically for detecting
video transcoding and rate limiting was designed. Even though this thesis follows a
client-server-centric approach, replays of recorded traffic were used for detecting changes
in Quality of Experience in RTP traffic used by VoIP.

Tools for detecting net neutrality violations are available in abundance. Many of them
are even available as Open Source software. Already mentioned were the RIPE Atlas
network that provides measurement clients for detecting censorship and the Tor OONI-
framework that detects content manipulation for Tor users. Another tool is Glasnost,
which is used to detect shaping of traffic using the BitTorrent-protocol. The tool works
by actively generating traffic by using a test server and measuring discrimination that is
triggered on the TCP layer or on the application layer.

In their research, Dischinger et al. [10] found in 2010, based on tests by more than
350,000 users testing over 5,800 ISPs, that traffic shaping for the BitTorrent-protocol
or other P2P protocols typically only affects a limited number of users of an ISP. Also,
some providers seem to only employ traffic management measures at certain times of
a day. For example, Kabel Deutschland discriminated P2P traffic only between 6pm
and midnight. The researchers also found, that slowing down P2P traffic may also only
affect users with heavy loads or at times with a high load of the network. As a basis
for discrimination, most providers inspect the TCP layers and slow down traffic that
flows between ports that are associated with certain protocols, e.g. TCP port 6881 for

6



BitTorrent traffic. Based on these results, this thesis also measures for traffic shaping in
regular intervals to be able to detect slowing down only at certain hours of the day.

The tool NetPolice tests HTTP, SMTP and VoIP, Bonfide tests YouTube-Videos and
RTSP traffic by inspecting routing information, packet headers and application layer
content. Netalyzr detects DNS tampering. Some tools, for example, NeuBot or NANO
work not by generating own test traffic but by passively monitoring user traffic and
inspecting it for indications of discrimination.

Not directly affecting network neutrality, but still relevant is the specification of the
RTR Multithreaded Broadband Test (RMBT)[33]. This protocol defines a speed test
technique. Implementations are available for Java and JavaScript using WebSockets.
Applications based on the protocol are used by the network regulation authorities in
Austria, Slovenia, Serbia and the Czech Republic. In this thesis, all tests that aim to
measure network speed are based on a custom python implementation of this protocol.

Even though there are many papers and tools available for detecting net neutrality
violations, there is no single tool that meets all requirements for this thesis. These tools
either don’t cover certain tests, are not possible to run without reporting results to the
manufacturer of the tool or do not meet the specific landscape of the test setup. However,
most of the implemented metrics and methods are corresponding to published papers of
net neutrality violations in other countries. Where possible, third-party tools are used to
add reliability and control mechanisms while reducing custom code and possible errors in
the implementation. For example, the Tor OONI-measurement framework for detecting
HTTP header manipulation is directly used in the test framework of this thesis.
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CHAPTER 3
Methodology

In this section, the methodology and scope of the measurements done in this thesis are
described. First, the tested providers and used hardware are listed. Following this, the
used software architecture and the taken approach when designing the tests is given.
Lastly, each measurement is explained in detail, including the motivation and background
of the tested technology.

3.1 Tested providers and contracts

All measurements have been done with four Austrian ISPs using two fixed-line products
and three mobile (LTE) products. The used products for LTE measurements are:

• A1 Net Cube Internet M ("A1 LTE")

• Hutchison Drei HUI SIM Flat 30 ("Drei")

• T-Mobile My Homenet unlimited light ("TMA")

For the fixed-line clients, the following products were used:

• A1 Internet Pur ("A1 DSL")

• UPC Fiber Power Pack Small ("UPC")

All contracts for the test clients have been concluded by a natural person and not
on behalf of any organization or company. So, the products could be obtained by any
person and not only by companies. The measurement results, therefore, represent the
connection quality obtainable by any customer of these ISPs in the same geographical
area.
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3.2 Measurement Architecture

3.2.1 Hardware Architecture

For conducting all measurements, a client-server architecture was established. Therefore,
a single test server was used. This test server is connected to the Internet via Gigabit
LAN, obtaining a static public IPv4 address belonging to the address space of the Vienna
University of Technology. This server conducted all measurements with five clients,
connected to the respective Austrian ISPs. An overview of this architecture is given in
Figure 3.1.

Measurement Server
Internet

Measurement Database

Server PCAP Storage

Modem A1 LTE NUC A1 LTE Client PCAP Storage

Modem T-Mobile NUC T-M LTE Client PCAP Storage

Modem Drei LTE NUC Drei LTE Client PCAP Storage

Modem A1 DSL NUC A1 DSL Client PCAP Storage

Modem UPC NUC UPC Client PCAP Storage

Figure 3.1: Measurement architecture

Since all tests should not be recognizable to the providers during the measurement
period, the whole IT landscape was under control of the researchers, the code has not been
made public until after all tests have occurred. Also, the server firewall was configured in
a way that allowed only connections on port 22 (SSH) from arbitrary IP addresses. So,
for all other tests, exceptions for the client IPs had to be made to the firewall. To deal
with dynamic IPs, clients first established an SSH connection to the server, wrote their
current IP address to a file which in turn was watched for changes by a script on the
server. This script then removed any firewall exceptions concerning old IP addresses of
the respective client and added a new exception for the given IP, allowing all inbound
and outgoing traffic for the address. This also ensured that no foreign traffic would
contaminate test results.
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When beginning to research, the original plan was to use cheap Raspberry Pi-
workstations for test clients. This plan was discarded in favor of more powerful hardware.
This upgrade was deemed necessary to guarantee that measurement results are not
skewed by hardware limitations.

As a result, for the clients, Intel NUCs were used. These featured an Intel Core
i5-6260U CPU clocking at 2x 1.80 GHz, 16 GB of DDR4 RAM and a 500 GB Solid State
Drive. Each client is connected to the original router provided by the respective ISP,
with the exception of Hutchison Drei, which is connected using a TP-Link TL-MR6400
modem. So, some test results may be influenced by the used hardware for the router and
not the ISP itself. This is discussed later in the test results. We decided to stick to the
hardware provided by the ISP to better represent the experience of a typical customer,
not a lab environment.

For both clients and server, Ubuntu 16.04 LTS (“Xenial Xerus”) was used as an
operating system. As can be seen in Figure 3.2, the LTE clients were installed next to
each other and placed in next to a window with strong LTE signal. The NUCs with a
fixed-line connection were placed in a data center with climate control.

Figure 3.2: Installation of the used NUCs and LTE modems

3.2.2 Software Architecture

This section describes the used software architecture, the requirements that lead to this
architecture and the impact of this decisions. For the framework, multiple requirements
had to be met:
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1. Changeability: It should be possible to change test configurations and reschedule
single measurements without restarting all clients

2. Traceability: The traffic resulting from each and every measurement should be
recorded into a pcap-file. It should be possible to easily access the recorded traffic
for a single test after the measurement is finished.
This recording mechanism guarantees the traceability of the results. Additionally,
if a property of the traffic should be measured that was not planned in the initial
design, the property could also be reconstructed from the recorded traffic for all
previously conducted measurements.

3. Failure-Resistance: In case of a failure, there should be some sort of fail-over
mechanism that allows a recovery of the system.

4. Single tests should also be available in a format that allows effective evaluation
while still containing all information necessary to evaluate them over a long-term
time period.

In general, these tools were used:

Python 3 As a programming language used for almost all newly written code

MongoDB As a database management system for storing all measurement results.
Since the result structure varies greatly for each test type, the JavaScript Object
Notaion (JSON) is used as a data structure for the results. This allows more
effective evaluations compared to pcap files while still retaining all information
deemed relevant at time of the test design. MongoDB natively stores data in JSON
and provides powerful queries for evaluating results.

Wireshark The dumpcap-tool provided by Wireshark is used to record network traffic.
Wireshark’s command-line tool tshark is used in the VoIP test to extract com-
munication streams and their Quality of Service parameters from network traffic
dumps.

dnspython This tool is used for conducting DNS tests directly in Python.

Scapy Used as a framework to craft custom network packets and send them over a
network. Also, the PCAP parser provided by Scapy is used for evaluating recorded
network traffic.

Tor OONI The Tor OONI-Framework is used for testing network interference and
blocking of Tor traffic.

Bottle/Jinja2/Bootstrap/jQuery For providing a user-friendly maintenance fron-
tend to the server.
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Besides these tools, some other Python packages were used, providing some function-
ality necessary for smaller parts, e.g. croniter for parsing crontab-lines, watchdog for
watching text files for changes or requests for easier HTTP communication between client
and server.

The resulting code and software architecture was created using these tools and is
based on the requirements mentioned above. Accordingly, tasks were split between server
and client.

The server is used specifically to:

• Manage test configurations and schedule tests: The client polls every x minutes for
new tests and the server. The server then sends a list of scheduled test types to
the client, together with their respective configurations and time spans in which
the test has to be executed.

• All test configurations are stored at the server in a JSON file. For the scheduling
of the tests, a crontab-like schedule is given. Based on this schedule, the server
assigns the tests to the single clients. The configuration used for testing is listed in
Appendix A.

• Store all test results from the clients centrally in a database.

• Provide a management interface.

The client, in turn, has no own scheduling logic, but only conducts the tests given by
the server. After the test is finished, the client sends the JSON results to the server.

The measurement framework on both client and server is kept simple. The following
tasks are done by the framework on both client and server:

• Schedule: Individual tests on the client and their server counterparts are scheduled
for startup and shutdown. The tests and test servers are represented as Python
classes; the code is executed in threads. The shutdown methods are also called
by the framework, regardless of the success of a test. This assures that in case of
failure, resources such as ports are freed after task completion.

• Record: All network activity for each single test is recorded on both client and server
into a pcap file, using dumpcap. This recording mechanism is directly integrated
into the measurement framework and guarantees traceability of all results.

• Store: Test results in JSON format are sent from the client framework to the server,
which in turn stores them into the database. Traffic dumps are not automatically
transferred to the server but are manually backed up in regular intervals from the
clients due to their large file size, often exceeding multiple hundred megabytes for
traffic-intensive measurements.
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3.2.3 Scheduling

A large part of the framework, as mentioned above, is the scheduling of tests. Scheduling
is non-trivial since individual tests have different prerequisites:

• Resources: Some tests use the same resources, meaning that there can never be
multiple tests that run at once while using the same port.

• Time: Some tests require more time than others. E.g. while the POP3 test POP37
can be done in a matter of seconds, other tests require more time. This is especially
important when connection speed is measured, which is done by TCPS4 and MM7.

• Used traffic: This often correlates to the time-criteria: Some tests require more
network traffic for measurements. There is an incentive to run these tests less often
on a metered connection.

The first idea was to simply run tests in a queue. This was unsuccessful due to several
reasons: For example, in case a client fails during a test, the server may enter a deadlock
since it waits for a client result that is never transmitted. The same applies if a client
loses its internet connection during a measurement. Since this happens once or twice a
day due to IP changes and forced provider disconnects, a deadlock would be eventually
inevitable. A queue also makes restarting of clients and servers more difficult, since at
the time of a server restart, the queue information may be lost.

But the idea of conducting tests in a repeating fashion stuck. In the final scheduling
framework, a crontab-like schedule together with a test duration was used. Using this,
each test has a fixed assigned timeslot, in which it can be executed. This allows for clients
to fail, since the server does not wait for responses but autonomously starts up and shuts
down the individual measurement servers at the begin and at the end of the timeslot. It
also allows for client restarts, since at every time it is known which tests are scheduled
for future measurements. This also allows for different intervals, e.g. a short test can
be executed multiple times per hour, while data-intensive tests are executed only a few
times per day. Since timing is important for this matter, as the test slots are described
by their UTC timestamps, all clients and the server’s clock are synced via NTP.

As for resources, the tests are arranged in the schedule in a way, that there is a few
seconds buffer between tests using the same port. So, even if there is some failure or
timing inaccuracy, measurements are not affected. The resulting schedule can be seen in
Table 3.1.

3.3 Metrics
In this section, all the used metrics are described. For each metric, a reason is given
why it is important to measure in this specific way. Also, the configuration options are
given. Naming of the metrics is done in the following scheme: [protocol][osi-layer] where
protocol stands for the protocol that is tested, e.g. TCP or HTTP and osi-layer gives a
numeric representation of the layer this test takes place in the OSI model[40].
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Test Start at min. Duration (min)
cm7 0 3
vs7 3 1
http7 4 1
tcp4 5 2
udp4 7 2
tcps4 9 10
mm7 19 10
syn4 29 1
stls7 30 1
smtp7 31 1
pop37 32 1
voip7 33 3
tls4 36 1
ndns7 37 1
bdns7 38 1
trac3 39 1
ooni7 40 10

Table 3.1: Overview of test scheduling

3.3.1 Basic TCP measurements (TCP4)

This metric is designed to detect basic port blocking and different treatments of packets
sent using the Transmission Control Protocol. TCP[29] is a protocol defined on the
transport layer of the OSI model. It allows a reliable communication between endpoints
and ensures that messages are received by the client application reliable, meaning that
there are no out-of-order-messages, lost or duplicated segments. However, this entails
that applications cannot access incomplete messages, rendering the protocol unsuitable
for many real-time applications, e.g. online gaming or VoIP.

In this metric, a few TCP segments on a single port are sent from the client and
server and returned by the server. The input configuration for this test is given by the
JSON given in Listing 1. The configuration takes a list of ports that should be tested
and a parameter of how often a test should be conducted for each port. The TCP
connection is established only once for each port to minimize inaccuracies caused by the
TCP handshake and connection establishment.

The tested ports correspond to the protocols[8] listed below:

• 20 : File Transfer Protocol (FTP)

• 80 : Hypertext Transfer Protocol (HTTP)

• 443 : Hypertext Transfer Protocol over TLS/SSL (HTTPS)

• 554 : Real-Time Streaming Protocol (RTSP)

• 1214 : Kazaa - Peer-to-peer file transfer
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• 1725 : Valve Steam Client - online gaming

• 5060 : Session Initiation Protocol (SIP) - used for Voice over IP

• 6881 : BitTorrent - Peer-to-peer file transfer

• 8333 : BitCoin - cryptocurrency

• 48123 : Reference port, not used for any protocol

A TCP connection is established using a three-way handshake. The segments in the
handshake make use of the SYN, ACK, and, in case of an unsuccessful attempt, the RST
flag. Along with this, the sequence number and acknowledge number are used. In this
handshake, the client initializes a connection by sending a segment with the SYN -flag
set and arbitrary sequence number to the server. The server then responds by sending
a segment with set SYN and ACK -flags, using its own arbitrary sequence number and
increasing the client’s sequence number by one and setting this as an acknowledge number.
The client then finishes the handshake by sending a segment with the ACK -flag set to
the server, acknowledging the server’s sequence number.

In the implementation, it was originally planned to implement the connection including
a full TCP handshake using scapy for finer-grained measurements. This plan was dropped
in favor of using the standard Python network stack, since the performance of scapy
was not satisfactory. Also complicating is that, by default, the Linux kernel handles all
TCP connections. As a consequence, if another program uses a Raw socket to establish
a TCP connection that the kernel is unaware of, the kernel sends a RST -segment as
soon as it receives the SYN-ACK answer from the server, since it is unaware of the
SYN -segment sent by the application, therefore treating the SYN-ACK -segment as an
error and responding by resetting the connection[1]. As an easy remedy, it is possible
to block outgoing RST -segments by iptables, effectively blocking the Linux kernel from
interfering.

1 {
2 "ports" : [ 20, 80, 443, 554, 1214, 1725, 5060, 6881, 8333,

48123],↪→

3 "pings" : 5
4 }

Listing 1: Configuration of TCP4

The sequence of communication is illustrated in Figure 3.3. As it can be seen, for each
port given in the configuration, the client initiates a connection to the server, sends a
PING-message, to which the server responds with a PONG. After receiving this message,
the client responds to the server with OK. The server then sends its measured round-trip
time to the client.

Measurements made by this metric are:
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Client Server

PING

loop

[n=[0...pings]

loop

[p in Ports]

PONG

OK

TIME 123456

Figure 3.3: TCP4 sequence diagram

• If all segment are fully received by both client and server or if network operators
block traffic.

• The round-trip time (RTT) from client-side and server-side. The client RTT is
defined as the time that passes from sending the first PING segment until receiving
the PONG segment from the server. The server RTT is defined as the time passing
between sending the PONG segment and receiving the OK segment.

• The TTL of all packets received by the client. This is done to detect middleboxes
that modify the TTL of packets in TCP communication on specific, but not all,
ports.

The result of a measurement is described in Listing 2. It features a full list of all
measured TTLs and RTT for every given segment. Also, the minimum, maximum, mean
and median is given for the TTLs and RTTs.

3.3.2 Basic UDP measurements (UDP4)

Like the TCP4 metric, the UDP4 metric is designed to detect basic port blocking and
middleboxes applied on specific ports by ISPs. The User Datagram Protocol[28] is also
located at the transport layer in the OSI model. In contrast to TCP, it does not ensure
reliable communication. When using UDP, it is therefore possible that packets arrive
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1 {
2 "220": {
3 "ttl_source": [ 53, 53, 53, 53 ],
4 "pings": [
5 {
6 "server": 352.116346,
7 "begin": 1473156307,
8 "client": 179.92615699768066
9 },

10 {
11 "server": 187.517642,
12 "begin": 1473156308,
13 "client": 195.98698616027832
14 }
15 ],
16 "ping_server_mean": 238.1682867,
17 "ping_client_median": 220.94297409057617,
18 "ttl_source_mean": 53,
19 "ttl_source_median": 53.0,
20 "ttl_source_max": 53,
21 "ttl_source_min": 53,
22 "ping_server_median": 206.28535649999998,
23 "ping_client_mean": 261.25638484954834
24 }
25 }

Listing 2: Result of a TCP4 measurement for port 220

out-of-order, in duplicates or not at all. This also ensures short transmission delays,
rendering the protocol ideal for real-time applications like VoIP or online gaming.

The UDP4 metric follows the concept of the TCP4 metric. The configuration given
in Listing 3 is identical – it only specifies the tested ports and how often a round-trip
should be performed.

1 {
2 "ports": [
3 1725, 5060, 6881, 9987, 48123
4 ],
5 "packets": 10
6 }

Listing 3: Configuration of a UDP4 measurement
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The test has to operate differently since UDP does not ensure that all datagrams are
transmitted reliably. To tackle this, all messages sent between client and server contain a
numeric identifier that allows assigning timings to the correct datagrams. This is shown
in Figure 3.4.

Client Server

PING n

loop

[n=[0...packets]

loop

[p in Ports]

PONG n

OK n

TIME n 123456

Figure 3.4: UDP4 sequence diagram

• If all datagrams are fully received, the RTT for client and server (see the section
for the TCP4 metric) and the TTL values for all packets received by the client.

• Additionally: The rate of lost datagrams, and if datagrams are received out-of-order.

The result of a single measurement of the UDP4 metric is described in Listing 4.

3.3.3 SYN Flooding attack test (SYN4)

The SYN4 test simulates a SYN Flooding attack[11]. In a SYN Flooding attack, the
attacker sends a great amount of TCP segments with a set SYN flag to the victim. The
victim, in turn, returns a TCP segment with a set SYN and ACK flags, signaling that it
is ready for a connection. The attacker, in turn, never answers sends a TCP segment
with a ACK flag therefore never establishing the connection. Since the victim still waits
for the attacker’s answer, the resources remain blocked for a certain period of time. Using
a large enough number, the attacker can block all of the victim’s resources, causing a
Denial-of-Service.
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1 {
2 "6881": {
3 "ping_server_mean": 3.951,
4 "ping_client_mean": 3.820,
5 "ping_server_median": 4.16,
6 "ping_client_median": 3.820,
7 "pings": {
8 "0": {
9 "client": 3.289937973022461,

10 "server": 4.166603,
11 "begin": 1465227634.8416238,
12 "received_as": 2
13 },
14 "n-1": {
15 "client": 2.968311309814453,
16 "server": 2.586364,
17 "begin": 1465227634.8404565,
18 "received_as": 8
19 }
20 }
21 }
22 }

Listing 4: Result of a UDP4 measurement of port 6881

The idea behind this metric is to measure if ISPs allow SYN-flooding attacks origi-
nating from their customers.

The configuration of this test, listed in Listing 5 once again, is simple. It allows only
to set the port range of the originating segments from which ports are randomly selected,
the victim’s port and the count of SYN segments that should be sent. It is implemented
using the scapy library.

1 {
2 "port": 443,
3 "count": 200,
4 "source_port": {
5 "min": 40234,
6 "max": 41453
7 }
8 }

Listing 5: Configuration of a SYN4 measurement
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The sequence of this test illustrated in Figure 3.5 is also straight-forward: The client
sends n TCP segments to the server, the server responds with a SYN-ACK segment. The
client then counts how many segments were received during the test. If the ISP filters the
attack, either the SYN segments are never received by the server and the client therefore
never receives SYN-ACK segments from the server. This is also represented in the result
structure provided in Listing 6: It is saved how many SYN-ACKs were received by the
client, along by the concrete origin ports used in the attack.

Client Server

SYN

SYN-ACK

loop

[n=[0...count]

Figure 3.5: SYN4 sequence diagram

1 {
2 "answers": 200,
3 "used_ports": [
4 40279,
5 40893,
6 41073
7 ]
8 }

Listing 6: Result of a SYN4 measurement

3.3.4 Blocked Hosts DNS test (BDNS7)

The Domain Name System (DNS)[24] is a decentralized hierarchical Internet service,
allowing clients to resolve hostnames (e.g. tuwien.ac.at) to the corresponding IP addresses.
These DNS resolvers are typically provided to customers directly by the ISPs, meaning
that every DNS request is handled by the customer’s ISP in a first step.

In some countries, including Austria, certain domains are blocked for legal or political
reasons. In Austria, the Supreme Court (OGH ) made it clear in judgment 4 Ob 71/14s,
following judgment C-314/12 of the European Court of Justice (ECJ ), that ISPs can be
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forced to block websites providing illegal content. In the case of the judgment, this was
the website kino.to, but other websites followed shortly.

The court did not specify, in which way the websites have to be blocked. In practice,
Austrian ISPs use their DNS nameservers to accomplish this. In the blocked DNS test
(BDNS7), it is measured, if certain websites are blocked via DNS and in which way this
censorship is implemented. For this, the test clients facilitate DNS requests using the
dnspython-package and save the results. The configuration for this test can be found
in Listing 7 and contains the hostnames that should be queried and the nameservers
used. If there is no nameserver given, the default nameservers are used. The nameserver
8.8.8.8 is provided by Google[16] and serves as a control request. If the request with
Google returns the domain, but the ISPs DNS does not, it can be assumed that a domain
is blocked and not simply non-existent.

1 {
2 "requests": [
3 { "host": "www.thepiratebay.se" },
4 { "host": "www.kinox.to" },
5 { "host": "www.123hjaf9hu32iufhuihoafine.com" },
6 {
7 "host": "www.kinox.to",
8 "nameservers": ["8.8.8.8"]
9 }

10 ]
11 }

Listing 7: Configuration for both the BDNS7 and NDNS7 measurements

A result can be seen in Listing 8. Variables that are saved include:

• The IP address(es) provided by the nameserver.

• The return code provided by the DNS service, for being able to distinguish between
non-existing hosts, existing hosts and timeouts.

• The runtime of the request.

3.3.5 Non-existing Hosts DNS test (NDNS7)

The DNS test for non-existing domains follows the same configuration (Listing 7),
implementation and result structure (Listing 8) as the BDNS7 test. The objective,
however, is to measure, how providers handle non-existing domains. The measurement
was implemented following the paper of Weaver et al. [35], who found that some providers
use(d) custom error pages, featuring auto-correction of domains, advertisements and
other content.
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1 {
2 "duration_ms": 84.296227,
3 "host": "www.123hjaf9hu32iufhuihoafine.com",
4 "rcode": 3
5 },
6 {
7 "rcode": 0,
8 "duration_ms": 14.236689,
9 "ttl": 3600,

10 "entries": [ "0.0.0.0" ],
11 "host": "www.kinox.to"
12 },
13 {
14 "host": "www.kinox.to",
15 "rcode": 0,
16 "nameservers": [ "8.8.8.8" ],
17 "duration_ms": 38.822174,
18 "ttl": 299,
19 "entries": [ "104.28.21.67", "104.28.20.67"
20 ]
21 }

Listing 8: Result for both the BDNS7 and NDNS7 measurements, containing blocked
and non-existent domains

3.3.6 HTTP Caching and Manipulation (CM7)

In this test, caching and manipulation of content delivered over the Hypertext Transfer
Protocol (HTTP)[12] is measured. This test is based on the papers of Nakibly et al. [26]
and Xu et al. [37], who found that some network operators manipulate ad content
for monetization and cache objects for performance increases. The CM7 test works
by simulating HTTP traffic, as illustrated in Figure 3.6. It measures for two possible
alterations done by ISPs:

Caching It is measured if ISPs cache some website resources. For this, the same
unencrypted HTTP request is sent multiple times to a server. Since the server
always responds with the HTTP Header field Cache-Control: max-age=600, public,
the client is (in theory) allowed to cache the resource and not query the server
again on future requests[12]. So, in theory, ISPs could also cache this resource and
directly deliver it to customers, reducing network traffic. If this is the case, HTTP
requests sent by the client should never reach the server.

Manipulation It is measured if an ISP manipulates content. For this, checksums of
every HTTP response header/body are calculated and compared. If there is no
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Client Server

GET xxx

HTTP/1.1 OK xxx

Figure 3.6: CM7 sequence diagram

manipulation, these checksums have to be identical on both client and server. The
motivation for ISPs to manipulate content can be manifold: For example, ISPs
could replace ad identifiers with their own, generating additional revenue. On the
other hand, ISPs could optimize files (e.g. by applying lossless compression) and
optimize network performance.

The configuration in Listing 9 is therefore held flexible: All requests that are sent
during a test are specified, including which HTTP headers should be used and if the
requests should be made multiple times. Some additional header fields are set directly in
the Python code.

To measure caching, the number of sent requests is compared with the number of
requests received by the server, as demonstrated in the result data structure in Listing
10. For measuring manipulation, the checksums of both header and body of the HTTP
response are generated using the SHA-256 hashing algorithm and compared for equality.

3.3.7 HTTP Antivirus test (VS7)

The goal of the VS7 metric is to detect if ISPs use deep package inspection to apply
virus-protection for end customers. For this, an EICAR test file is requested via an
unencrypted HTTP request and transmitted to the client.

The European Institute for Computer Antivirus Research (EICAR)[36] provides this
test file as a tool to test antivirus software. As such, the file is recognized as a virus by
almost all software products[34]. It contains no functionality but produces correct output
when run as an executable.

The configuration, result and sequence of the test are identical to that of the CM7
test: The client requests the EICAR test file from the server using HTTP, the server
responds with a valid answer for this file. Once again, it is measured, if the response from
the server is received without modifications by the client. For this, again, the SHA-256
hashing algorithm is used to assert equality of the received file.
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1 {
2 "requests": [
3 {
4 "resource": "GET

/959ffdfd-1c56-4294-97e4-397c0e1e4171/image2.jpg
HTTP/1.1",

↪→

↪→

5 "repeat": 3
6 },
7 {
8 "header": [
9 "Host: r1---sn-4g5edne7.googlevideo.com",

10 "User-Agent: Mozilla/5.0 (Windows NT 10.0)
Gecko/20100101 Firefox/47.0",↪→

11 ],
12 "resource": "GET

/videoplayback?mime=video/webm&upn=q_PY3To1fWI
HTTP/1.1"

↪→

↪→

13 }
14 ]
15 }

Listing 9: Configuration for a CM7 measurement

3.3.8 Invalid HTTP syntax test (HTTP7)

Besides VS7 and CM7, the HTTP7 test also is aimed at detecting middleboxes applied
to HTTP traffic by ISPs. For this, invalid HTTP requests and responses are sent by
both client and server. This technique is also used by the Tor OONI project[38]. In
the Tor OONI-project, this lead to the detection of the use of BlueCoat, Squid and
Privoxy-middleboxes in eleven countries.

The configuration, result and sequence of the HTTP7 test are once again identical to
their counterparts in the CM7 test. However, in generating results, the focus is more on
the integrity of the HTTP header fields rather than at the HTTP bodies. If there are
proxies used by the ISPs, these faulty requests would in some cases either never reach
the server, or be auto-corrected by the used proxy.

3.3.9 Voice over IP test (VOIP7)

In the Voice over IP test, the quality of VoIP-streams is measured. Especially for mobile
ISPs, VoIP can be harmful to their business model[6], as customers may use the Internet
to conduct telephony rather than billed connections. This is especially true for overseas
connections. If connections are not blocked altogether, it can seem lucrative to degrade
the quality of the VoIP connection, leading customers to use regular billed connections.
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1 {
2 "matches": [
3 {
4 "request": "GET

/959ffdfd-1c56-4294-97e4-397c0e1e4171/image2.jpg
HTTP/1.1",

↪→

↪→

5 "header": {
6 "server": "6834c6a767da721[...]8d0058976",
7 "client": "6834c6a767da721[...]8d0058976"
8 },
9 "body": {

10 "server": "275a021bbf[...]4538aabf651fd0f",
11 "client": "275a021bbf[...]4538aabf651fd0f"
12 }
13 }
14 ],
15 "leftover": [],
16 "mismatches": []
17 }

Listing 10: Result for a CM7 measurement

As the blocking of VoIP traffic is detected by other tests (namely TCP4 and UDP4),
the VOIP7 test measures different Quality of Service (QoS) metrics for VoIP connections.
For this, a call is simulated using a replay of a pre-recorded Real-Time Transport Protocol
(RTP)[30] stream. The prerecorded call is given in a pcap-file. The individual packets are
loaded, parsed and filtered using scapy’s scapy.all.readpcap functionality. The payload
itself is then sent using the standard Python UDP socket implementation.

The sequence of this measurement is shown in Figure 3.7. While replaying the stream,
all traffic is recorded on the client-side. After the call is finished, tshark, the command-line
variant of Wireshark, is invoked to give QoS metrics for the connection using:

tshark -r pcap_file.pcap -d udp.port==2222,rtp -q -z rtp,streams

The input configuration for the VOIP7 measurement in Listing 11 consists only of
the pcap-file containing the call that should be replayed and the duration of the call.
The output of tshark is then parsed and used for the JSON-result given in Listing 12.
Good measurements for the QoS are especially the jitter, packet loss and delta metrics
provided by tshark.

3.3.10 Malformed TLS handshake test (TLS4)

Transport Layer Security (TLS)[9] provides encryption, mainly for TCP connections.
The secure channel provided by this software stack is established using a handshake
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Client Server

[RTP packet]

[RTP packet]

loop

[n=[0...packets]

Figure 3.7: VOIP7 sequence diagram

1 {
2 "ports": [
3 2222
4 ],
5 "replay_pcap": "./metrics/voip7/rtpstream.pcap",
6 "test_uuid": "77b26c92-27a7-49dd-846c-fc20906a0c80",
7 "call_duration_ms": 14000
8 }

Listing 11: Configuration for a VOIP7 measurement

Byte offset 0 1 2 3 4 5 6 7 8 9..n
Description record type TLS version major minor length length client hello length length length message
Example 0x16 0x03 0x01 0x01 0x0c 0x01 0x00 0x00 0xf7 0x03...

Table 3.2: TLS record containing a handshake

between client and server based on asymmetric cryptography. The intent of the TLS4
measurement is to find, if this handshake is intercepted and inspected by middleboxes.
For this, a handshake is simulated, using syntactical errors, e.g. by setting by length
fields that do not correspond with the actual length. While this is ignored by the custom
code on both test client and server, middleboxes may throw errors or do not allow to
establish connections at all. The sequence of this test is illustrated in Figure 3.8.

An example for these length fields is listed in Table 3.2. The byte sequence contains
the first 10 bytes of a TLS record representing a handshake (record type 0x16). The
record contains a "client hello" as part of the handshake (type 0x1). Bytes 2 and 3 state
the length of the record including the handshake, bytes 6, 7 and 8 state the length of the
handshake record contained in the TLS record. In the test, these bytes representing the
length of the record are replaced by random data, invalidating the TLS record in the
process.
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1 {
2 "statistics": [
3 {
4 "jitter_ms_max": 8.43,
5 "packets": 9,
6 "dst_ip": "10.0.0.8",
7 "dst_port": 57478,
8 "jitter_ms_mean": 19.45,
9 "payload": "PCMU",

10 "loss_percent": 0.0,
11 "src_ip": "128.130.204.34",
12 "loss_packets": 0,
13 "ssrc": "0x40C735AF ITU-T G.711",
14 "delta_ms_max": 109.31,
15 "src_port": 2222
16 }
17 ]
18 }

Listing 12: Result for a VOIP7 measurement

The test needs no further configuration since a valid handshake is pre-loaded and
made invalid with random mutations in different length fields. The result shown in
Listing 13 therefore only contains the matching and mismatching SHA256-checksums of
the handshakes sent and received.

1 {
2 "matches": {
3 "server": "26d361eb15fd05c5937[...]c5e7b0d82c8",
4 "client": "26d361eb15fd05c5937[...]c5e7b0d82c8"
5 }
6 }

Listing 13: Result for a TLS4 measurement

3.3.11 Invalid POP3 syntax test (POP37)

Similar to HTTP7 and TLS4, the POP3 test tries to detect the usage of middleboxes by
transmitting traffic containing syntactical errors. The Post Office Protocol in version 3
(POP3)[25] allows users to retrieve emails from mail servers using a TCP connection.
During this process, the account credentials are transmitted. Based on this, the test uses
a malformed email address as input data, making the authentication process invalid. The
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Client Server

TLS Client hello

TLS Server hello

TLS Server Certificates

TLS Server hello done

TLS Server Key Exchange

Figure 3.8: TLS4 sequence diagram

schematic for this test can be seen in Figure 3.9. The test is repeated for multiple ports,
in case of middleboxes only inspecting traffic on specific TCP ports.

Client Server

+OK POP3

USER info@secure,ail.org

+OK USER info@secure,ail.org

Figure 3.9: POP37 sequence diagram

The test takes no special configuration other than the ports that should be used, the
result shown in Listing 14 simply states if the malformed address was received by both
client and server.
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1 {
2 "110": {
3 "invalid_address_received": true
4 },
5 "8110": {
6 "invalid_address_received": true
7 }
8 }

Listing 14: Result for a POP37 measurement

3.3.12 Invalid SMTP syntax text (SMTP7)

The SMTP7 measurement is similar to the HTTP7, POP37 and TLS4 tests as it again
tries to detect hidden middleboxes by issuing malformed traffic, this time for the Simple
Mail Transfer Protocol (SMTP). SMTP[22] allows users to send electronic mail. The
protocol uses TCP port 25 as a standard port, allowing users to send mail with or without
authentication.

Once again, malformed requests are sent, as can be seen in the sequence diagram
shown in Figure 3.10. The configuration given in Listing 15 allows to turn on/off these
syntax errors. The result structure in Listing 16 simply states if the content integrity is
given, meaning that the content that was sent by the client reached the server without
any modifications.

Client Server

220 mail.secure.org ESMTP service ready

EHLO <test_uuid>

250-mail.secure.org
250-STARTTLS

Figure 3.10: SMTP7/STLS7 sequence diagram

3.3.13 StartTLS stripping test (STLS7)

StartTLS [17] provides secure SMTP communication by securing connections with Trans-
port Layer Security. For this, during the SMTP communication, the server lists a flag,
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1 {
2 "ports": [ 25 ],
3 "valid_response": false/true
4 }

Listing 15: Configuration for the SMTP7 and STLS7 measurements

1 {
2 "25": {
3 "content_integrity": true,
4 "starttls_client_received": true,
5 "starttls_server_received": true
6 }
7 }

Listing 16: Result for the SMTP7 and STLS7 measurements

signaling the client that StartTLS is available for communication, offering the client a
chance to upgrade to a secure connection.

In the past, some ISPs have been known for not transmitting this flag to the client[18],
thereby effectively prohibiting their clients from establishing a secure connection for email
sending, even though their email servers offer StartTLS. The STLS7 measurement aims
to detect stripping of this flag. For this, an SMTP session is established between client
and server. In case the ISP prohibits StartTLS, the server sends the StartTLS flag to
the client which it never receives.

The configuration structure (Listing 15), the communication flow (Figure 3.10) and
the result (Listing 16) are identical to the SMTP7 test. Only the configuration differs:
The SMTP request from the client is answered with a syntactically valid response from
the server.

3.3.14 TCP bandwidth test (TCPS4)

In the speed test over TCP, the connection speed over various TCP ports is measured. It
aims to detect traffic shaping of ISPs for specific ports, e.g. port 6881 for BitTorrent
traffic.

For performing a reliable speed test measurement while still controlling both test
server and the test clients, an implementation of the RTR Multithreaded Broadband Test
(RMBT)[33] is used. This specification allows for accurate measurements of download
and upload speeds using a one or more concurrent threads. The Austrian website
www.netztest.at is based on this specification and counts more than two million speed
tests at the time of this thesis.

Since there was not yet an implementation of this protocol available in Python, an
implementation of a stripped-down RMBT test was custom-made for this thesis. The
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communication sequence illustrated in Figure 3.11 is identical to the communication of
other RMBT-based tests. All data for the transfer during measurements is generated at
random, using os.urandom which provides random data on-the-fly fast enough for all
connection speeds. An RMBT test is divided into multiple phases:

1. Initialization: The test is initialized, the client is authenticated with the server.

2. Download pre-test: For getting a rough estimate of the client connection speed,
a short download pre-test is conducted. This pre-test works by sending doubling
amounts of data chunks for a given time. E.g. in the first iteration, 4096 bytes are
send, in the second iteration 8192 bytes, then 16384 and so on, until the time limit
of two seconds is reached. In other RMBT test clients, this is used to determine
how many threads are used in the final measurement. Since the implementation of
TCPS4 uses only one thread and rough client connection speeds are known, this
phase was not implemented.

3. Ping test: The connection round-trip time is measured. For this thesis, this test is
not featured in TCPS4. However, it was implemented in TCP4, which follows the
RMBT protocol for conducting these ping tests.

4. Download test: The client requests the start of the download speed test by sending
DOWN n to the server, where n represents a number of milliseconds that the test
should last. The server then sends data chunks of a fixed size (4096 bytes in this
implementation) to the client. During this period, the last byte of each chunk is
set to 0x00, signaling the client that the download test is not yet finished. After
this period, the server sets the last byte of the last chunk to 0xFF, signaling the
client that the test is finished.

5. Upload pre-test: This phase mirrors the download pre-test: The client sends rounds
of doubling data sizes to the server for a given period of time, determining a rough
speed estimate. This phase was also not implemented for TCPS4.

6. Download test: This phase mirrors the download test phase: The client sends a
continuous stream of data chunks to the server for a given time, masking their last
bytes with 0x00, except for the last chunk, which is masked with 0xFF.

The test configuration is shown in Listing 17. It contains all ports that should be
tested together with how long the single tests should last. If concurrent is set, all ports
are tested at the same time. Packet_size gives the chunk size in bytes used for all tests.

The result in Listing 18 follows a stripped-down data structure an RMBTmeasurement.
In the result, for each of the phases, download and upload, the measured duration and
the transmitted bytes are given, allowing to calculate the connection speed. Additionally,
roughly every 50 milliseconds, an interim value ("speed curve") is given, allowing to
measure the connection speed over the time of a measurement.
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Client Server

Download-Test

TEST <uuid>

DOWN 12000

12 Sec
Binary chunk, Last Byte = 0x00

Binary chunk, Last Byte = 0xFF

OK

UP

OK

Upload-Test

12 Sec Binary chunk, Last Byte = 0x00

Binary chunk, Last Byte = 0xFF

END

Figure 3.11: TLS4 sequence diagram, following the RMBT specification

Since the data structure is identical to the structure used by the RMBT-implementation
of netztest.at, code reuse is possible. As an example, Figure 3.12 shows the speed graph
during a measurement of TCPS4, generated with code provided by netztest.at.

3.3.15 Multimedia test (MM7)

The multimedia test is designed to detect traffic shaping that uses similar techniques to
BingeOn used by T-Mobile USA[19]. T-Mobile USA shapes connection speed based on
fields found in the Host-field found in the HTTP header.

For testing the speed, the RMBT implementation used in the TCPS7 measurement
is used. It is only modified in two ways:

• There is no upload test since HTTP is stateless and there is no further upload in
the connection, it the keep-alive header is not used.

• The test configuration transmitted from the client to the server, e.g. for signaling
when the download test should start and how long it should take, is all reduced
into a single request, mimicking a normal HTTP GET-request.
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1 {
2 "ports": [
3 { "port": 80 },
4 { "port": 443 },
5 { "port": 6881 },
6 { "port": 48123 }
7 ],
8 "packet_size": 4096,
9 "test_duration_ms": 12000,

10 "concurrent": false,
11 }

Listing 17: Configuration of a TCPS4 measurement

1 {
2 "48123": {
3 "upload": {
4 "duration_ms": 12319,
5 "bytes": 12312576,
6 "speed_curve": [
7 {
8 "time_elapsed": 64,
9 "bytes_total": 4096

10 },
11 {
12 "time_elapsed": 120,
13 "bytes_total": 8192
14 }
15 ]
16 }
17 }
18 }

Listing 18: Result of a TCPS4 measurement

The resulting communication sequence can be seen in Figure 3.13: The client initializes
the test by sending an HTTP request, containing all relevant information, while retaining
the Host-header field mimicking traffic from a video provider. The server responds with
an HTTP status 200 (OK) and begins to execute the download test phase as specified in
the RMBT protocol.

The configuration for an MM7 test is shown in Listing 19. It is similar to a TCPS4
test but allows to additionally specify the concrete HTTP headers that should be used in
both the client request and the server response. The result is identical to the result of a
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Figure 3.12: Visualization of connection speed during a TCPS4 measurement, generated
by netztest.at-code

Client Server

Download-Test

GET xxxx

12 Sec
Binary chunk, Last Byte = 0x00

Binary chunk, Last Byte = 0xFF

HTTP/1.1 200 OK

Figure 3.13: MM7 sequence diagram

TCPS4 test (see Listing 18) but misses the upload component, since no upload speed test
is executed. It is still compatible with the data structure used by netztest.at, allowing
the use of existing code for evaluations, e.g. the graphical representation of the interim
speed given in Figure 3.12.
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1 {
2 "ports": [
3 {
4 "port": 80,
5 "request_with": 1,
6 "answer_with": 0
7 }
8 ],
9 "http_headers": [

10 {
11 "id": 0,
12 "header": "HTTP/1.1 200 OK\r\nAccept-Ranges: bytes\r\n"
13 },
14 {
15 "id": 1,
16 "header": "GET /videoplayback?mime=video/webm\r\n\r\n"
17 }
18 ],
19 "test_duration_ms": 12000,
20 "concurrent": false,
21 "packet_size": 4096
22 }

Listing 19: Configuration of a MM7 measurement

3.3.16 Traceroute test (TRAC3)

Traceroute is a tool used to detect which intermediate nodes are used when establishing
an Internet connection. As it is mentioned in the paper by Xu et al. [37], some providers
use caches for certain websites for some times of the day. If this is the case in Austria, the
intermediate connection changes for the same websites at different times of the day. Also,
if the ISP optimizes the route for certain websites, this can be detected via a traceroute.

Traceroute works by sending IP packets with low time to live (TTL) values, beginning
with one and adding one for each iteration. It the route to the target is longer than
the TTL value, the intermediate host where the TTL reached zero, responds with an
ICMP packet, informing the client that the TTL was exceeded during transit. Using
these ICMP packets, the route to the target host can be reconstructed.

For performing traceroute, different protocols can be used, e.g. ICMP packets,
UDP datagrams or TCP segments. In this implementation, TCP segments are used by
scapy’s implementation available in scapy.inet.traceroute. The test configuration shown
in Listing 20 contains which hosts should be queried. A result, as listed in Listing 21,
contains the route found for the individual hostnames, including all intermediate IPs and
the TTLs that were used to find them.
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1 {
2 "requests": [
3 { "host": "www.orf.at" },
4 { "host": "www.google.at" }
5 ]
6 }

Listing 20: Configuration of a TRAC3 measurement

1 {
2 "requests": [
3 {
4 "host": "www.orf.at",
5 "result": [
6 { "ip": "192.168.8.1", "hop": 0 },
7 { "ip": "10.122.9.236", "hop": 1 },
8 { "ip": "10.122.8.9", "hop": 2 },
9 { "ip": "10.122.6.178", "hop": 3 },

10 { "ip": "194.232.104.149", "hop": 4 }
11 ]
12 }
13 ]
14 }

Listing 21: Result of a TRAC3 measurement

3.3.17 Tor OONI test (OONI7)

The Tor OONI framework[13] is a censorship analysis tool and allows for tests detecting
ISP interference and blocking, all while using a Tor-secured connection as a reference
connection. Since some websites in Austria are blocked by ISPs, it makes sense to utilize a
pre-existing framework to detect censorship and obtain in-detail results of this censorship.

Tor OONI uses YAML for both its own configuration with testdecks and its results.
Out of the many features of OONI, the only select modules were used. The complete
testdeck is given in Appendix B. An overview is listed below:

• manipulation/http_invalid_request_line tests if malformed HTTP requests are
manipulated and serves as a complimentary test to HTTP7.

• manipulation/http_header_field_manipulation tests if HTTP header fields are
manipulated and serves as a complimentary test to HTTP7, CM7 and VS7.

• blocking/web_connectivity tests the blocking of kinox.to and movie4k.to and serves
as a complimentary test to BDNS7. Additionally, it also records the actual response
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of the blocked site, providing more additional information than just the DNS
response found in the result of BDNS7.

During its tests, a Tor connection is established, therefore additionally testing for
ISP interference with Tor.

OONI is invocated directly from the Python code, allowing control of input and
output via pipes. The results are given in OONIs own YAML structure, which is encoded
into a String in the resulting JSON, as shown in Listing 22.

The OONI framework is invocated using the following code:

ooniprobe -i testdeck.deck -n

Using the -n command line parameter ensures that results are not automatically
transmitted to the Tor project, therefore keeping the measurements private.

1 {
2 "results": {
3 "report-http_invalid_request_line": "####...",
4 "report-web_connectivity": "###...",
5 "report-http_header_field_manipulation": "###..."
6 }
7 }

Listing 22: Result of a OONI7 measurement
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CHAPTER 4
Results

In this chapter, the results of all tests are listed. For each of the different measurements,
a summary of the results is given.

4.1 Overview
Over the course of two months, over 100,000 measurement samples were gathered. The
distribution of these tests over the providers and the different metrics can be seen in
Table 4.1. There were some downtimes of clients as can be seen in Figure 4.2. These were
partly caused by software problems, network failures, and hardware problems. Over the
cause of the measurement period, two NUCs had to be replaced. Some of the network
connectivity problems at first seemed to occur at random and were later attributed to
loose contacts of the network cables, depicted in Figure 4.1.

Figure 4.1: Loose contacts of a network cable (white)

4.2 Basic TCP measurements (TCP4)
The motivation behind the TCP4 measurement was to find shaping and blocking of traffic
by ISPs based on TCP segment characteristics and differences in round-trip times (RTT).
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Provider bdns7 cm7 http7 mm7 ndns7 ooni7 pop37 smtp7 stls7 syn4 tcp4 tcps4 tls4 udp4 voip7 vs7 trac3 Total
A1 DSL 1897 1584 1706 1603 1902 1315 1845 1737 1800 1901 1557 1785 1885 1675 1733 1698 1899 29522
A1 LTE 1967 1678 1745 1579 1970 1418 1922 1757 1895 1918 1576 1810 1899 1779 1753 1751 1906 30323
Drei 1411 1403 1396 1374 1411 964 1412 1413 1412 1413 1072 1408 1170 1413 1412 1398 1410 22892
TMA 1805 1636 1721 1528 1807 1423 1799 1808 1808 1807 1473 1738 1807 1703 1807 1623 1807 29100
UPC 1061 1034 1025 990 1063 616 1065 1065 1064 1064 829 662 860 1065 1062 1036 1063 16624
Total 8141 7335 7593 7074 8153 5736 8043 7780 7979 8103 6507 7403 7621 7635 7767 7506 8085 128461

Table 4.1: Conducted tests during the measurement interval
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Figure 4.2: Measurement results over the months 08/2016-09/2016

4.2.1 TTL

In the test, the time to live property of each packet was recorded, as can be seen in Table
4.2 and Figure 4.3. While the TTLs of the tested ports were equal in general, there were
two exceptions:

• UPC had a different TTL on port 554 (RTSP).

• T-Mobile had a different TTL on port 80 (HTTP).

While the difference with T-Mobile was significant (a median increase of 8), the
difference with UPC was also consistent, but much smaller. At least for T-Mobile, the
use of a deep packet inspection seems likely (as can also be seen in measurement CM7).
For UPC, no manipulation of traffic could be detected - the TTL could, therefore, either
origin from a middlebox of the ISP, but also from some treatment from the provided
modem.

There were also some smaller inconsistencies with TTLs of other ISPs and other
ports, but these were only negligible (e.g. only for a single packet during a measurement).
Another interesting occurrence was, that while the fixed-line ISPs A1 DSL and UPC
stayed consistent with their TTLs, the TTL values for mobile ISPs varied to a much
greater degree.

4.2.2 RTT

Besides the TTL value, the round-trip time of packets was also measured. This was
done to measure traffic shaping during some hours of the day. However, no significant
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Port 80 Port 220 Port 443 Port 554 Port 1725 Port 5060 Port 6881 Port 8333 Port 48123
A1 DSL 54,0000 54,0000 53,9970 54,0000 54,0000 54,0000 54,0000 54,0000 54,0000
A1 LTE 48,4554 48,5374 48,5322 48,5374 48,5374 48,4326 48,3598 48,3598 48,3598
Drei 51,3293 51,3293 51,3293 51,3293 51,3293 51,3293 51,3293 51,3293 51,3293
TMA 60,9939 52,9915 52,9936 52,9929 52,9929 52,9929 52,9932 52,9932 52,9932
UPC 54,9988 54,9988 54,9988 53,9988 54,9988 54,9988 54,9988 54,9988 54,9988
Overall 54,0289 52,1990 52,1977 52,0605 52,1993 52,1227 52,0933 52,0933 52,0933

Table 4.2: Mean TTL of the tested ports in TCP4
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Figure 4.3: Average TTL values as given in Table 4.2

differences in RTTs were measured, neither depending on the protocol nor depending -
as the test was conducted hourly - on the time of the day.

4.3 Basic UDP measurements (UDP4)

Similar to TCP4, for the UDP4 test, the round-trip times were measured and the TTL
values recorded.

When inspecting the TTL values, it is obvious that TTL values vary more greatly
than with TCP measurements as can be seen in Table 4.3 and Figure 4.4. This, however,
does not entail that traffic is treated differently, as not all ports were tested successfully
in all measurements.

Also, port 5060 (SIP - Session Initiation Protocol) seemed to be blocked for A1 LTE
customers. If this holds true for all customers or only for the test client depending on a
specific hardware/software environment could not be determined.

Again, there could not be measured any difference in RTTs depending on the time of
the day or the used port.

4.4 SYN Flooding attack test (SYN4)

Out of over 6,500 individual measurements sending 20 SYN packets, only in less than 1%
packets were filtered. It is therefore concluded that no ISP filters SYN-flooding attacks,
at least not when only sending 20 packets.
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Port 1725 Port 5060 Port 6881 Port 9887 Port 48123
A1 DSL 60,3432 59,4993 60,2568 59,4854 57,6820
A1 LTE 59,7595 58,8332 57,9796 55,4921
Drei 61,5821 60,1178 61,0462 60,0675 57,0763
TMA 60,3002 58,3947 59,5200 58,8313 57,0600
UPC 61,2847 60,9183 61,1495 60,5114 58,3477
Overall 60,5751 59,5867 60,0245 59,1972 56,9565

Table 4.3: Mean TTL of the tested ports in UDP4
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Figure 4.4: Average TTL values as given in Table 4.3

4.5 Blocked Hosts DNS test (BDNS7)
The tested domain www.kinox.to was blocked by all ISPs. The domain www.thepiratebay.se
was not blocked by T-Mobile, but blocked by all other providers. The censorship was
done using DNS. Interestingly, not a single provider just returned a NXDOMAIN record,
signaling that the domain does not exist. Instead, ISPs redirect traffic to pages informing
users about the censorship. An exception to this is UPC, which redirects users to the
non-existent IP 0.0.0.0.

The resolved IP addresses can be seen in Table 4.4. The IP addresses were consistent
throughout the measurement interval. Interestingly, thepiratebay.se is not blocked by
T-Mobile Austria, as the request resolves to IP addresses belonging to the CloudFlare
Content Delivery Network. The pages informing about the censorship of thepiratebay.se
and kinox.to are identical for each provider with the exception of A1 LTE, which uses
two different pages, giving different reasons. For kinox.to it is stated that the website
is blocked due to a court order ("einstweilige Verfügung des Handelsgerichts Wien")
while the website for piratebay.se states the reason as a censorship request based on the
Austrian copyright law ("Sperrbegehren nach § 81 Abs 1 UrhG").

The pages informing about the censorship are publicly accessible without a Host-field
in the HTTP header for all providers with the exception of Drei. For Drei, the IP address
is only reachable from within the Drei network. Also, a response is only generated, if a
valid Host-header field is transmitted. The pages can be reached using netcat:

$ nc 213.94.80.154 80
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Host www.thepiratebay.se www.kinox.to
A1 LTE 213.33.66.164 213.33.66.163
A1 DSL 213.33.66.164 213.33.66.164
Drei 213.94.80.154 213.94.80.154
TMA 104.31.10.172, 104.31.11.172 212.166.122.119
UPC 0.0.0.0 0.0.0.0

Table 4.4: IP resolution for blocked pages by Austrian ISPs

www.123hjaf9hu32iufhuihoafine.com Duration (ms)
A1 LTE Timeout 5005,17
A1 DSL Not found 81,89
Drei 213.94.80.190 158,92
TMA Not found 1261,49
UPC Not found 133,97

Table 4.5: IP resolution for non-existing pages along with the mean duration of the
resolution request

GET / HTTP/1.1
Host: www.kinox.to

HTTP/1.0 302 Found
Location: http://www.drei.at/portal/de/privat/info/sperre.html
Server: BigIP
Connection: Keep-Alive
Content-Length: 0

4.6 Non-existing Hosts DNS test (NDNS7)

In this measurement, a DNS request for the non-existing domain www.123hjaf9hu32iu-
fhuihoafine.com was facilitated using the default DNS nameservers provided by the ISPs.
The request was resolved as shown in Table 4.5. The resolved IPs and return codes were
consistent throughout the measurement period.

T-Mobile, UPC, and A1 on landline connections resolved correctly, issuing a NXDO-
MAIN return code. A1 on LTE connections did not return anything but timeout after
the maximum time of 5 seconds allowed by the measurement.

The exception to this is Hutchison Drei, which returned a page featuring Google
Analytics and a Google Custom Search form. This search form is automatically transmit-
ted when loading the page, searching for the non-existing host name. The IP, as in the
BNDS7 measurement, once again could only be reached from within the Drei network
and needs a transmitted Host header field. The HTML of this page can be seen in Listing
23.
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1 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">↪→

2 <html xmlns="http://www.w3.org/1999/xhtml">
3 <head>
4 <meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
5 <title>Seite nicht gefunden</title>
6 <style>
7 body {margin: 0; padding: 0;font-family: Arial, Helvetica, sans-serif;

overflow-x: hidden;min-width:980px;}↪→
8 header, section, article {display: block;}
9 .header {background: black

url(http://live-pse-download.drei.com:8000/UN/content/dns/bgHeader.png) 0
100% repeat-x;padding: 20px;height: 40px;}

↪→
↪→

10 h1 {margin: 10px 0;color:white;font-size:large;}
11 .logo3er { float: left; margin-right: 20px;}
12 </style>
13 <link rel="stylesheet" href="http://www.google.com/cse/style/look/default.css" />
14 </head>
15 <body>
16 <div class="header">
17 <h1>&quot;<strong>www.123hjaf9hu32iufhuihoafine.com </strong>&quot; kann nicht gefunden

werden.</h1>↪→
18 <hr style="display: none;" />
19 </div>
20 <div id="cse" style="width: 95%;">Loading</div>
21 <script src="http://www.google.com/jsapi" type="text/javascript"></script>
22 <script type="text/javascript">
23 var jsText = "www.123hjaf9hu32iufhuihoafine.com ";
24 google.load(’search’, ’1’);
25 google.setOnLoadCallback(function() {
26 var customSearchControl = new google.search.CustomSearchControl(

’partner-pub-5603398754456553:76a02bequj0’);↪→
27 var wsr = new google.search.WebSearch();
28 customSearchControl.setResultSetSize(

google.search.Search.FILTERED_CSE_RESULTSET);↪→
29 customSearchControl.draw(’cse’);
30 customSearchControl.addSearcher(wsr);
31 customSearchControl.execute(jsText);
32 }, true);
33 </script>
34 <script type="text/javascript">
35 var _gaq = _gaq || [];
36 _gaq.push([’_setAccount’, ’UA-809011-8’]);
37 _gaq.push([’_trackPageview’]);
38 (function() {
39 var ga = document.createElement(’script’); ga.type = ’text/javascript’; ga.async =

true;↪→
40 ga.src = (’https:’ == document.location.protocol ? ’https://ssl’ : ’http://www’) +

’.google-analytics.com/ga.js’;↪→
41 var s = document.getElementsByTagName(’script’)[0]; s.parentNode.insertBefore(ga, s);
42 })();
43 </script>
44 </body>
45 </html>

Listing 23: Returned Web page for a request of a non-existing domain using Drei

4.7 HTTP Caching and Manipulation (CM7)

In this test, the caching and manipulation of HTTP traffic was measured.

4.7.1 Caching

For all tested ISPs, there were no instances of caching. All facilitated repeated requests
reached the server. This was true for all HTTP requests, not depending on the used
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HTTP header or content type.

4.7.2 Manipulation

There were no differences in content for all tested ISPs. However, the HTTP header was
manipulated for all measurements with T-Mobile.

T-Mobile kept adding a Connection: keep-alive header field and a Host header field to
the transmitted HTTP header of both client and server. This did not alter the integrity
of the body, which was transmitted unaltered in all tests. Listing 24 shows the sent and
received HTTP alterations for T-Mobile for a sample measurement.

1 % Client request
2 GET /19cea6ff-5d64-4e47-af4e-62cdbd00574d/image2.jpg HTTP/1.1
3

4 % Client request, as received by server
5 GET /19cea6ff-5d64-4e47-af4e-62cdbd00574d/image2.jpg HTTP/1.1
6 Host: 128.130.204.34
7 Connection: keep-alive
8

9 % Server response
10 HTTP/1.1 200 OK
11 Content-Length: 15717310
12 Content-Language: en
13 Content-Type: image/jpeg
14

15 [JPG data]
16

17 % Server response, as received by the client
18 HTTP/1.1 200 OK
19 Content-Length: 15717310
20 Content-Language: en
21 Content-Type: image/jpeg
22 Connection: keep-alive
23

24 [JPG data]

Listing 24: HTTP communication for T-Mobile, showing added Connection: keep-alive
and Host-headers

4.8 HTTP Antivirus test (VS7)
In this measurement, the transmission of the EICAR-test file was tested. The file was
transferred without alterations for all ISPs, meaning that no anti-virus-inspection is
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taking place in the concrete test setup. However, the HTTP header was altered for
T-Mobile customers, as in the CM7 measurement, but the transmitted file was not
affected by this.

4.9 Invalid HTTP syntax test (HTTP7)

Malformed HTTP requests were transmitted without alterations for all ISPs with the
exception of T-Mobile. T-Mobile once again added the Connection: Keep-alive and Host
headers. Additionally, a syntax error was corrected by T-Mobiles middlebox. The traffic
can be seen in Listing 25

1 % Client request
2 GET /19cea6ff-5d64-4e47-af4e-62cdbd00574d/faultyResponse

HTTP/1.1↪→

3

4 % Client request, as received by server
5 GET /19cea6ff-5d64-4e47-af4e-62cdbd00574d/faultyResponse

HTTP/1.1↪→

6 Host: 128.130.204.34
7 Connection: keep-alive
8

9 % Server response
10 HTTP/79.2 404 OK
11 Content-Length: 11
12 Content-Language: en
13 Content-Type: text/plain
14

15 testfile123
16

17 % Server response, as received by the client
18 HTTP/1.1 404 Not Found
19 Content-Length: 11
20 Content-Language: en
21 Content-Type: text/plain
22 Connection: keep-alive

Listing 25: HTTP communication for T-Mobile, showing added Connection: keep-alive
and Host-headers and a corrected HTTP/79.2
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jitter (ms) jitter (ms) max
A1 DSL 40,82 55,41
A1 LTE 39,42 47,85
Drei 43,91 60,52
TMA 49,74 61,94
UPC 22,96 43,64
Average 42,33 55,54

Table 4.6: Jitter for tested VOIP calls

4.10 Voice over IP test (VOIP7)

When testing Voice over IP connection quality, none of the providers had significantly
worse connection quality than the others. In Table 4.6, the mean jitter, and the mean
maximal jitter are listed. The best results were obtained with UPC, but the results of
the other ISPs were not significantly worse.

There were no significant variations in connection quality over the course of the day.
However, it should be noted that due to Firewall problems, the sample size of n=275 was
not large enough to definitively conclude connection variations over the course of a day.

4.11 Malformed TLS handshake test (TLS4)

All TLS handshakes, regardless of syntax errors, were received by both client and server
without interference for all tested ISPs.

4.12 Invalid POP3 syntax test (POP37)

All POP3 communication, regardless of syntax errors, was received by both client and
server without interference and manipulation for all tested ISPs.

4.13 Invalid SMTP syntax text (SMTP7)

All SMTP communication, regardless of syntax errors, was received by both client and
server without interference and manipulation for all tested ISPs.

Note: Due to the Firewall configuration used in the infrastructure provided by the
university, port 25 could not be tested. Instead, all communication was done on port
8025.

4.14 StartTLS stripping test (STLS7)

All SMTP communication was received by both client and server without interference and
manipulation for all tested ISPs. There was no case of STARTTLS-stripping measured.
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Down 80 Up 80 Down 443 Up 443 Down 6881 Up 6881 Down 48123 Up 48123
A1 DSL 2,61 0,69 2,54 0,69 2,50 0,69 2,44 0,68
A1 LTE 5,61 2,43 5,50 2,49 5,62 2,45 5,61 2,45
Drei 7,26 3,33 7,15 3,38 7,23 3,32 7,16 3,35
TMA 4,89 2,17 4,89 2,14 4,96 2,12 4,89 1,98
UPC 8,98 1,25 8,86 1,26 8,89 1,25 8,73 1,20
Average 5,42 2,04 5,35 2,06 5,40 2,04 5,34 2,00

Table 4.7: Test speeds (Mbps) on different ports for the tested ISPs

Note: Due to the Firewall configuration used in the infrastructure provided by the
university, port 25 could not be tested. Instead, all communication was done on port
8025.

4.15 TCP bandwidth test (TCPS4)

During the measurement period, every hour, a speed test was conducted. The transmission
speed was tested on ports 80 (HTTP), 443 (HTTPS), 6881 (BitTorrent) and 48123 (control
port).

Due to an error in the measurement, speed tests in the time period from 2016-08-04 to
2016-09-21 were showing slower connection speeds than the ISPs provided in reality. This
can be seen in Figure 4.7. To remedy this, the tests during this period have been discarded
and additional tests conducted before the start and after the end of the measurement
period (using the same test programming) have been added. The unaltered connection
speeds can be seen in Table 4.7, adjusting for the invalid measurements in Table 4.8.

4.15.1 Speed differences depending on port

For all tested ISPs, there were no overall differences in connection speeds depending on
the used port. If traffic shaping does take place, it could not be measured overall.
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Figure 4.5: Measured connection speeds during the measurement period
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Figure 4.6: Test speeds (Mbps) on different ports for the tested ISPs, corresponding to
Table 4.7

Down 80 Up 80 Down 443 Up 443 Down 6881 Up 6881 Down 48123 Up 48123
A1 DSL 5,90 0,70 5,91 0,70 5,92 0,70 5,82 0,69
A1 LTE 16,99 5,18 16,83 5,20 17,20 5,24 17,18 5,19
Drei 22,17 7,94 22,01 7,94 22,21 7,93 22,11 7,91
TMA 13,38 3,87 13,56 3,84 13,72 3,82 13,56 3,77
UPC 18,11 1,36 18,24 1,38 18,33 1,37 18,20 1,36
Average 14,72 3,84 14,71 3,84 14,88 3,85 14,78 3,82

Table 4.8: Test speeds (Mbps) on different ports for the tested ISPs, adjusted
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Figure 4.7: Test speeds (Mbps) on different ports for the tested ISPs, corresponding to
Table 4.8

4.15.2 Speed differences depending on the time of the day

All tests were executed once per hour. The resulting speed measurements can be seen in
Tables 4.9 and 4.10, giving the connection speed depending on the hour of the day in the
UTC timezone. The connection speeds are visualized in Figure 4.8 for A1 LTE, Figure
4.9 for A1 DSL, Figure 4.10 for UPC, Figure 4.11 for Drei and Figure 4.12 for T-Mobile
Austria.

All ISPs seemed to yield slower connection speeds during the night. However, it
should be noted that throughout the day, the connection speeds stays approximately the
same for all used ports. No traffic shaping could be measured.
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Hour of the day Provider Down 80 Up 80 Down 443 Up 443 Down 6881 Up 6881 Down 48123 Up 48123
0 Overall 15,40 3,98 15,44 3,94 15,94 4,00 15,44 3,93

A1 LTE 17,00 4,95 17,01 4,82 16,97 4,82 16,37 4,74
A1 DSL 5,65 0,72 6,11 0,71 6,31 0,71 5,62 0,70
UPC 21,79 1,47 22,08 1,47 22,62 1,47 22,63 1,47
Drei 24,33 8,83 23,56 8,82 24,15 8,83 22,87 8,70
TMA 13,83 3,88 13,98 3,84 15,13 4,05 15,30 3,97

1 Overall 10,12 3,48 9,57 3,29 9,53 3,35 9,27 3,11
A1 LTE 11,24 4,33 10,23 4,06 10,05 4,14 10,14 3,81
A1 DSL 4,82 0,71 4,97 0,72 5,05 0,71 4,65 0,72
UPC 10,19 1,23 9,34 1,23 8,53 1,23 7,51 1,19
Drei 16,17 7,47 15,12 6,93 14,81 7,07 15,16 6,57
TMA 9,71 3,61 9,40 3,48 9,97 3,52 9,49 3,24

2 Overall 14,73 3,69 15,09 3,69 15,05 3,70 14,49 3,65
A1 LTE 16,74 4,99 16,77 5,03 16,79 5,00 16,84 4,94
A1 DSL 5,88 0,69 6,09 0,70 5,85 0,70 5,53 0,69
UPC 18,08 1,26 19,39 1,33 19,32 1,34 17,66 1,35
Drei 22,59 8,09 23,63 8,06 23,55 8,11 23,54 8,02
TMA 13,67 3,71 13,33 3,67 13,47 3,68 12,47 3,60

3 Overall 14,13 3,65 14,35 3,58 14,59 3,71 14,25 3,65
A1 LTE 16,82 4,99 16,95 4,88 17,24 5,06 17,06 4,95
A1 DSL 5,78 0,72 5,33 0,71 5,53 0,71 5,55 0,71
UPC 14,14 1,17 15,49 1,27 15,66 1,27 14,84 1,24
Drei 22,62 7,96 23,13 7,70 23,52 8,15 23,14 8,00
TMA 13,64 3,70 13,67 3,63 13,82 3,66 13,36 3,65

4 Overall 8,34 2,65 8,53 2,53 8,50 2,61 8,52 2,55
A1 LTE 8,75 2,91 8,61 2,88 9,03 2,83 8,74 2,82
A1 DSL 3,85 0,70 3,93 0,69 4,15 0,70 4,33 0,68
UPC 11,34 1,14 12,95 1,24 13,20 1,22 13,70 1,29
Drei 12,04 5,33 11,78 5,05 11,61 5,36 11,61 5,16
TMA 8,32 2,89 8,66 2,64 7,98 2,77 7,93 2,68

5 Overall 14,98 4,02 14,84 3,83 14,03 3,76 14,40 3,71
A1 LTE 17,24 4,93 16,91 4,87 15,90 4,84 16,79 4,79
A1 DSL 5,85 0,72 5,74 0,72 5,30 0,70 5,41 0,71
UPC 18,72 1,41 19,00 1,46 17,84 1,45 17,20 1,42
Drei 22,98 8,58 22,80 8,00 21,81 7,82 21,98 7,67
TMA 13,30 3,95 13,12 3,66 12,44 3,58 13,30 3,55

6 Overall 12,83 3,49 12,82 3,44 12,32 3,41 12,49 3,37
A1 LTE 15,48 4,58 14,95 4,61 14,70 4,59 14,54 4,54
A1 DSL 5,14 0,66 5,06 0,67 4,89 0,67 4,83 0,66
UPC 15,68 1,31 16,23 1,32 14,91 1,31 15,14 1,29
Drei 19,62 7,54 19,28 7,36 18,65 7,25 18,85 7,28
TMA 11,15 3,58 11,47 3,49 11,07 3,48 11,66 3,35

7 Overall 14,47 3,93 14,66 3,93 14,70 3,99 14,67 4,01
A1 LTE 17,14 5,05 16,92 4,95 16,97 5,04 17,12 5,21
A1 DSL 5,55 0,69 5,62 0,69 5,62 0,70 5,74 0,69
UPC 19,24 1,34 19,72 1,36 19,01 1,34 19,02 1,33
Drei 22,59 8,19 23,05 8,05 23,14 8,46 23,04 8,44
TMA 12,94 3,86 13,29 4,06 13,56 3,92 13,28 3,87

8 Overall 11,63 2,97 11,66 3,01 11,64 3,02 11,82 3,02
A1 LTE 12,78 3,98 12,77 4,05 12,70 4,03 12,95 4,10
A1 DSL 5,14 0,64 5,04 0,64 5,05 0,65 5,09 0,64
UPC 17,85 1,26 17,80 1,27 17,54 1,26 17,88 1,24
Drei 16,91 6,33 17,09 6,46 17,30 6,51 17,56 6,54
TMA 9,36 2,92 9,51 2,91 9,47 2,91 9,56 2,87

9 Overall 14,42 3,76 14,07 3,65 14,55 3,57 14,27 3,53
A1 LTE 16,74 5,12 16,41 4,93 17,04 4,81 16,81 4,77
A1 DSL 5,91 0,69 5,64 0,69 5,58 0,69 5,55 0,68
UPC 18,30 1,32 17,34 1,38 17,57 1,35 17,94 1,32
Drei 23,23 8,37 23,05 8,02 23,79 7,80 23,14 7,75
TMA 12,83 3,66 12,60 3,60 13,44 3,55 12,79 3,46

10 Overall 15,16 4,05 15,15 4,17 14,96 4,16 15,00 4,14
A1 LTE 17,04 5,41 17,28 5,60 17,26 5,37 17,00 5,54
A1 DSL 5,96 0,71 6,03 0,70 5,94 0,70 5,81 0,71
UPC 19,66 1,45 19,76 1,47 19,57 1,46 19,60 1,43
Drei 23,54 8,47 22,46 8,71 22,00 9,12 22,05 8,95
TMA 13,10 3,87 13,58 3,98 13,39 3,84 13,88 3,76

11 Overall 17,34 4,28 17,63 4,25 17,65 4,25 17,59 4,36
A1 LTE 19,79 5,80 20,18 5,85 20,15 5,83 20,36 5,80
A1 DSL 6,59 0,72 6,54 0,71 6,65 0,72 6,59 0,72
UPC 22,12 1,46 22,05 1,47 21,89 1,46 21,41 1,46
Drei 26,28 8,52 26,81 8,48 27,05 8,44 27,01 8,85
TMA 15,00 4,14 15,50 4,04 15,41 4,07 15,31 4,23

Table 4.9: Speed measurements depending on the hour of the day, 0-11 UTC
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Hour of the day Provider Down 80 Up 80 Down 443 Up 443 Down 6881 Up 6881 Down 48123 Up 48123
12 Overall 17,19 4,26 17,26 4,54 17,44 4,30 17,50 4,40

A1 LTE 21,39 6,23 21,18 6,60 21,56 6,24 21,91 6,25
A1 DSL 6,61 0,70 6,45 0,70 6,26 0,70 6,44 0,70
UPC 19,60 1,40 18,97 1,46 18,84 1,45 19,05 1,42
Drei 24,85 8,88 25,67 9,69 26,45 8,98 26,01 9,41
TMA 16,32 4,34 16,67 4,52 16,77 4,37 16,83 4,45

13 Overall 15,29 3,89 15,26 3,94 15,64 3,91 15,41 3,89
A1 LTE 17,75 5,45 18,26 5,58 18,56 5,60 18,18 5,56
A1 DSL 6,60 0,71 6,51 0,71 6,60 0,71 6,44 0,70
UPC 18,60 1,34 17,68 1,34 18,91 1,34 18,47 1,34
Drei 21,05 7,75 20,78 7,82 21,10 7,72 20,82 7,73
TMA 14,14 4,05 14,45 4,10 14,67 4,00 14,72 3,97

14 Overall 15,52 3,95 15,05 4,08 15,50 3,95 15,40 3,96
A1 LTE 17,75 5,35 16,98 5,56 18,22 5,37 17,69 5,35
A1 DSL 6,21 0,69 6,03 0,69 5,96 0,69 6,08 0,70
UPC 18,23 1,31 18,61 1,29 19,15 1,31 19,48 1,32
Drei 22,79 7,70 21,40 8,11 21,94 7,68 22,75 7,75
TMA 14,73 3,86 14,60 3,87 14,67 3,85 13,77 3,86

15 Overall 17,51 4,49 17,66 4,55 17,76 4,59 17,82 4,56
A1 LTE 19,96 6,02 19,81 6,08 20,31 6,04 20,35 6,04
A1 DSL 7,00 0,70 7,02 0,69 6,82 0,69 6,78 0,69
UPC 21,70 1,47 22,03 1,46 22,44 1,48 22,49 1,47
Drei 26,28 8,66 26,49 9,01 25,87 9,22 26,39 9,08
TMA 16,37 4,63 16,77 4,57 17,28 4,58 17,06 4,55

16 Overall 13,08 3,79 13,16 3,77 13,53 3,77 12,99 3,76
A1 LTE 17,84 5,49 17,36 5,62 17,12 5,57 16,45 5,58
A1 DSL 5,85 0,70 5,83 0,70 5,90 0,70 5,86 0,69
UPC 13,55 1,36 13,78 1,38 15,31 1,35 14,13 1,35
Drei 18,21 7,03 18,33 6,89 18,56 6,96 17,72 6,96
TMA 11,07 3,78 11,60 3,69 12,31 3,70 11,98 3,63

17 Overall 16,88 4,53 17,06 4,53 17,20 4,56 17,31 4,55
A1 LTE 17,49 6,17 17,63 6,18 17,75 6,32 18,60 6,29
A1 DSL 6,93 0,72 7,23 0,72 7,32 0,72 7,05 0,72
UPC 20,93 1,43 20,40 1,42 20,10 1,41 21,19 1,41
Drei 27,32 9,98 27,59 9,94 28,11 9,95 27,94 9,87
TMA 14,72 4,49 15,19 4,54 15,42 4,54 14,79 4,55

18 Overall 13,89 3,84 13,90 3,81 14,22 3,99 13,93 3,92
A1 LTE 16,31 5,22 16,46 5,25 16,93 5,70 17,69 5,54
A1 DSL 5,34 0,70 5,66 0,70 5,79 0,70 5,45 0,69
UPC 15,93 1,38 15,31 1,37 15,79 1,40 15,05 1,39
Drei 20,47 7,33 20,65 7,39 20,54 7,67 20,65 7,67
TMA 12,89 4,00 12,71 3,83 13,35 3,94 12,01 3,80

19 Overall 15,24 3,70 15,30 3,78 16,28 3,77 16,01 3,80
A1 LTE 17,37 5,06 17,46 5,19 19,93 5,42 19,14 5,48
A1 DSL 5,82 0,71 5,59 0,72 6,03 0,71 6,03 0,71
UPC 19,47 1,40 20,57 1,42 20,26 1,40 20,04 1,40
Drei 22,61 7,35 21,20 7,52 23,11 7,27 22,79 7,31
TMA 13,72 3,79 14,55 3,85 14,73 3,84 14,70 3,86

20 Overall 13,46 3,35 13,62 3,32 13,57 3,32 13,80 3,29
A1 LTE 14,83 4,45 14,39 4,39 14,94 4,72 16,21 4,59
A1 DSL 5,81 0,70 5,70 0,69 5,57 0,68 5,25 0,67
UPC 15,27 1,40 16,03 1,37 16,47 1,35 15,91 1,32
Drei 20,56 6,58 19,85 6,51 19,86 6,37 20,13 6,34
TMA 12,59 3,55 13,89 3,58 13,01 3,43 13,31 3,45

21 Overall 18,40 4,26 17,91 4,29 18,63 4,24 18,41 4,17
A1 LTE 21,84 6,03 21,67 6,09 22,99 6,22 22,31 6,10
A1 DSL 6,89 0,73 6,49 0,72 6,44 0,72 6,18 0,72
UPC 22,69 1,48 22,61 1,48 23,24 1,48 22,58 1,48
Drei 26,89 8,54 26,45 8,75 28,06 8,56 27,98 8,49
TMA 17,17 4,45 16,01 4,34 16,31 4,19 16,66 4,05

22 Overall 16,91 4,47 17,14 4,45 17,50 4,50 17,46 4,38
A1 LTE 19,90 6,30 19,62 6,14 19,08 6,28 19,13 5,96
A1 DSL 6,24 0,72 6,61 0,71 6,82 0,71 6,99 0,69
UPC 22,15 1,47 22,31 1,47 22,75 1,47 22,79 1,48
Drei 24,33 9,38 24,62 9,39 25,05 9,39 24,47 9,36
TMA 15,35 4,33 15,87 4,38 17,09 4,48 17,15 4,28

23 Overall 14,98 3,59 14,76 3,57 14,91 3,64 14,97 3,59
A1 LTE 16,54 4,68 15,81 4,70 17,49 5,04 16,83 4,77
A1 DSL 6,07 0,70 6,42 0,69 6,52 0,69 6,18 0,69
UPC 17,95 1,31 17,60 1,31 17,74 1,31 19,89 1,31
Drei 22,16 7,46 21,99 7,47 21,47 7,49 21,30 7,59
TMA 14,65 3,74 14,28 3,65 13,76 3,63 13,70 3,58

Table 4.10: Speed measurements depending on the hour of the day, 12-24 UTC
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Figure 4.8: Test speed on different ports depending on the UTC hour of day for A1 LTE
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Figure 4.9: Test speeds on different ports depending on the UTC hour of day for A1 DSL
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Figure 4.10: Test speeds on different ports depending on the UTC hour of day for UPC

4.16 Multimedia test (MM7)

For the multimedia test, the speed test was initiated on port 80 with an HTTP header
posing as a YouTube-video. The motivation behind this was to detect if ISPs discriminate
based on this header field. For establishing a reference value, the same test was conducted
on port 48123.

The measurement had the same problems as the TCPS4 test, therefore tests during
the period of 2016-08-04 to 2016-09-21 were discarded.

During development, another problem occurred: For tests with T-Mobile, the down-
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Figure 4.11: Test speeds on different ports depending on the UTC hour of day for Drei

  

0

5

10

15

20

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

M
b

p
s

Hour of the day

Down 80

Up 80

Down 443

Up 443

Down 6881

Up 6881

Down 48123

Up 48123

Figure 4.12: Test speeds on different ports depending on the UTC hour of day for
T-Mobile

load test phase sometimes did not finish correctly. This was attributed to the middlebox
used by T-Mobile for HTTP traffic on Port 80: Only traffic volume less or equal to the
Content-Length-field in the HTTP header is forwarded to the communication partner.
This problem was mitigated by using a Content-Length large enough to allow for all
connection speeds. Due to the middlebox, performing an upload speed test was also
not possible, since all segments sent over the same TCP connection that was used for
the download test did never reach the communication partner but were filtered out by
T-Mobile.

4.16.1 Speed differences depending on the HTTP header

As can be seen in Table 4.12 and Figure 4.13, no significant differences could be measured
depending on HTTP headers and port. If an ISP behavior similar to T-Mobile USA’s
BingeOn was expected, this should have lead to significant lower connection speeds on
TCP port 80. Instead, connection speeds for the tested ISPs seem to be consistent for
the tested HTTP headers, and also consistent with the non-HTTP speed measurements
conducted in measurement TCPS4.
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Port 80 Port 48123
A1 DSL 5,66 5,52
A1 LTE 16,44 14,53
Drei 21,25 20,13
TMA 13,31 12,87
UPC 15,25 14,98
Average 14,03 13,26

Table 4.11: Connection speeds (Mbps) depending on port and HTTP header

4.16.2 Speed differences depending on the time of the day

Similar to TCPS4, variations in connection speed during the day were measured. As
can be seen in Table 4.12, no significant differences could be measured depending on the
HTTP header and port. Traffic shaping based on the HTTP header was not detected for
any of the tested providers.

4.17 Traceroute test (TRAC3)

In the traceroute measurement, a traceroute was periodically performed for all providers.
For this, the hosts www.google.at, www.derstandard.at and www.orf.at were used. These
sites can be found on rank 1, 7 and 10 of the Alexa Top 100 Websites visited in Austria[2]
and could therefore be a prime target for optimization by ISPs.

The results of the traceroute measurements are given in Tables 4.13, 4.14, 4.15, 4.16
and 4.17. In these tables, the last IP of each traceroute is given, along with the number
of measurements that had this concrete IP as their last entry and the mean TTL value
that was used to reach the IP.

Accordingly to these tables, DerStandard.at uses a single IP, while Google and ORF.at
use a load-balancing system consisting of multiple IP addresses. Even for DerStandard.at,
not every traceroute resulted in the correct IP. Some measurements returned IPs belonging
to the ISP subnet or network infrastructure. The cause for this could e.g. be network
issues, downtimes of the service or changing firewall configuration.
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Hour of the day Port A1 DSL A1 LTE Drei TMA UPC Overall
0 Port 80 5,58 16,27 22,60 14,34 13,92 14,14

Port 48123 5,53 14,28 21,90 13,95 13,01 13,40
# tests 18 13 15 14 14 74

1 Port 80 5,98 18,53 23,57 15,66 15,80 15,45
Port 48123 5,73 15,75 22,06 14,67 15,74 14,39
# tests 18 13 15 16 14 76

2 Port 80 4,68 13,54 17,88 11,44 11,78 11,55
Port 48123 4,47 12,09 15,98 10,90 10,53 10,53
# tests 18 14 15 15 12 74

3 Port 80 6,18 18,58 24,45 15,69 15,80 15,68
Port 48123 6,04 16,85 23,71 15,62 15,69 15,17
# tests 18 13 15 16 14 76

4 Port 80 5,11 17,00 20,79 12,76 15,19 13,63
Port 48123 5,09 15,46 20,80 12,91 14,81 13,31
# tests 19 14 15 15 13 76

5 Port 80 4,53 12,47 16,54 10,05 9,30 10,25
Port 48123 3,94 10,62 14,07 9,81 8,71 9,14
# tests 18 13 14 15 11 71

6 Port 80 5,83 19,63 20,83 13,17 11,68 13,90
Port 48123 5,30 17,02 18,61 12,36 10,09 12,43
# tests 17 12 15 15 11 70

7 Port 80 4,63 14,28 19,90 11,51 17,26 13,07
Port 48123 4,73 12,39 18,63 11,17 16,76 12,31
# tests 16 14 14 15 11 70

8 Port 80 6,02 16,95 21,94 12,70 15,46 14,31
Port 48123 5,61 14,51 19,48 11,73 16,23 13,20
# tests 17 16 14 15 14 76

9 Port 80 6,12 17,14 24,81 15,06 17,34 15,48
Port 48123 6,08 15,52 25,23 14,52 19,17 15,50
# tests 19 15 14 13 15 76

10 Port 80 6,68 19,85 26,03 13,84 16,79 16,14
Port 48123 6,49 18,22 24,24 13,17 16,79 15,27
# tests 18 16 14 15 11 74

11 Port 80 6,55 20,23 26,81 15,35 20,30 17,27
Port 48123 6,47 17,77 27,45 15,23 19,80 16,74
# tests 19 17 15 17 14 82

12 Port 80 7,11 18,37 24,37 14,54 19,87 16,48
Port 48123 6,80 15,43 22,96 14,37 18,49 15,30
# tests 18 15 16 17 14 80

13 Port 80 5,92 16,89 18,63 14,14 17,40 14,41
Port 48123 5,93 15,61 18,13 13,79 17,12 13,92
# tests 18 18 16 17 15 84

14 Port 80 6,62 17,11 21,39 14,46 14,84 14,71
Port 48123 6,79 15,27 20,61 13,82 14,57 14,03
# tests 18 17 16 17 14 82

15 Port 80 6,69 18,73 23,15 14,32 16,65 15,65
Port 48123 6,36 16,32 20,46 13,74 16,84 14,47
# tests 18 16 16 17 14 81

16 Port 80 4,87 13,27 17,10 10,41 11,86 11,21
Port 48123 5,13 12,32 16,54 10,57 12,22 11,07
# tests 19 17 15 17 16 84

17 Port 80 5,03 14,35 19,91 12,79 16,87 13,50
Port 48123 5,01 13,30 18,50 12,04 16,17 12,72
# tests 18 17 16 17 14 82

18 Port 80 4,52 13,56 15,72 11,21 8,74 10,68
Port 48123 4,32 11,65 14,99 10,54 9,03 10,02
# tests 19 18 17 17 15 86

19 Port 80 6,15 16,91 24,61 15,06 17,90 15,71
Port 48123 5,72 13,74 20,65 13,94 17,11 13,83
# tests 20 17 17 17 14 85

20 Port 80 4,89 12,61 19,43 11,19 18,98 12,83
Port 48123 4,90 11,66 19,95 11,12 19,13 12,75
# tests 18 16 15 16 12 77

21 Port 80 5,49 17,08 19,47 14,15 14,17 13,70
Port 48123 5,37 15,08 19,03 13,52 13,24 12,92
# tests 19 15 16 16 12 78

22 Port 80 6,09 19,35 25,66 15,38 16,08 16,14
Port 48123 5,82 17,44 25,33 15,26 15,95 15,59
# tests 19 16 16 16 14 81

23 Port 80 4,59 12,09 15,15 9,79 10,96 10,31
Port 48123 4,62 10,35 14,70 9,78 10,49 9,82
# tests 18 14 16 15 13 76

Overall Port 80 5,66 16,44 21,25 13,31 15,25 14,03
Port 48123 5,52 14,53 20,13 12,87 14,98 13,26
# tests 437 366 367 380 321 1871

Table 4.12: Speed measurements depending on the hour of the day UTC
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A1 LTE
www.derstandard.at www.google.at www.orf.at

194.116.243.20 (1521, Ø 5,2) 216.58.209.67 (435, Ø 4,28) 194.232.104.149 (371, Ø 4,71)
10.122.6.178 (35, Ø 25,83) 216.58.214.195 (250, Ø 4,75) 194.232.104.142 (322, Ø 5,52)
195.3.64.142 (21, Ø 29,29) 216.58.214.227 (92, Ø 6,43) 194.232.104.150 (321, Ø 4,62)
195.3.90.33 (11, Ø 29,91) 216.58.212.67 (81, Ø 3) 194.232.104.140 (315, Ø 5,09)
10.122.6.161 (11, Ø 26) 172.217.23.99 (81, Ø 3) 194.232.104.139 (212, Ø 5,6)

172.217.16.99 (62, Ø 4,9) 194.232.104.141 (166, Ø 4,61)
216.58.208.163 (57, Ø 3) 10.122.6.178 (70, Ø 23,87)
216.58.212.163 (56, Ø 4) 10.122.6.161 (34, Ø 23,94)
64.233.162.94 (50, Ø 3,78) 194.158.150.61 (21, Ø 29)
173.194.73.94 (46, Ø 4,65) 10.122.5.73 (18, Ø 29)

Table 4.13: Last IP with measurement count and mean TTL values for A1 LTE

The mean traceroutes differ between ISPs, as shown in Figure 4.14. TTL values for
A1 LTE are generally the lowest, ranging from 5 to 15 and the highest for Drei, ranging
from 21 to 25.
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Figure 4.14: Mean TTL values for the traceroutes performed

Once again, there could be no significant difference in TTL be measured depending
on the time of the day. This can be seen in Figure 4.15 and Table 4.18. For these
results, the TTL values for all traceroutes performed to www.derstandard.at resulting in
IP 194.116.243.20 as their last entries were used.

It can be concluded that none of the tested ISPs in the used test setup cached the
website on the ISP infrastructure during certain times of the day. If this would be the
case, the number of tests resolving to the IP belonging to DerStandard.at should not be
consistent throughout the day. Since even the TTL values are consistent throughout the
day, none of the tested ISPs seems to be optimizing routing during times of heavy load,
resulting in roughly the same route for all times of the day.
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A1 DSL
www.derstandard.at www.google.at www.orf.at

194.116.243.20 (1208, Ø 5,63) 216.58.213.99 (110, Ø 14,17) 194.232.104.150 (256, Ø 7,94)
195.3.68.133 (54, Ø 31) 216.58.214.3 (99, Ø 14,28) 194.232.104.140 (234, Ø 7,86)

195.3.64.142 (48, Ø 30,06) 216.58.210.35 (96, Ø 12,82) 194.232.104.141 (234, Ø 7,68)
216.58.198.163 (93, Ø 13,78) 194.232.104.139 (221, Ø 8,33)
216.58.213.67 (73, Ø 13,34) 194.232.104.142 (220, Ø 8,6)
172.217.23.3 (62, Ø 13,37) 194.232.104.149 (213, Ø 8,28)
195.3.68.133 (51, Ø 30,75) 194.158.150.61 (111, Ø 29,68)
216.58.208.131 (45, Ø 12,67) 194.158.150.145 (66, Ø 29,68)
172.217.23.35 (41, Ø 13,83) 195.3.68.133 (49, Ø 30,43)
172.217.16.99 (38, Ø 6,82) 195.3.64.10 (35, Ø 30,23)

Table 4.14: Last IP with measurement count and mean TTL values for A1 DSL

Drei
www.derstandard.at www.google.at www.orf.at

194.116.243.20 (918, Ø 21,15) 92.60.6.245 (104, Ø 28,25) 194.232.104.139 (182, Ø 17,23)
213.94.72.8 (190, Ø 30) 213.94.72.8 (67, Ø 27,67) 194.232.104.149 (158, Ø 15,08)

213.94.72.5 (115, Ø 29,99) 216.58.201.163 (58, Ø 18,74) 194.232.104.140 (143, Ø 16,96)
213.94.72.6 (51, Ø 30) 216.58.209.163 (57, Ø 20,37) 194.158.150.149 (135, Ø 29,99)
213.94.72.11 (37, Ø 30) 216.58.209.99 (53, Ø 23,23) 194.232.104.142 (132, Ø 16,81)

213.94.72.77 (28, Ø 29,96) 216.58.214.227 (48, Ø 19,52) 194.232.104.141 (130, Ø 16,14)
213.94.72.81 (25, Ø 30) 213.94.72.77 (29, Ø 28,38) 194.232.104.150 (122, Ø 17,79)
213.94.72.37 (22, Ø 30) 216.58.211.35 (28, Ø 20,61) 194.158.150.41 (107, Ø 30)
213.94.72.33 (18, Ø 30) 216.58.209.195 (28, Ø 18,11) 213.94.72.11 (84, Ø 30)
193.203.0.214 (6, Ø 30) 172.217.16.99 (28, Ø 13,21) 213.94.72.9 (67, Ø 30)

Table 4.15: Last IP with measurement count and mean TTL values for Drei

T-Mobile Austria
www.derstandard.at www.google.at www.orf.at

194.116.243.20 (1508, Ø 9,02) 173.194.222.94 (90, Ø 3,71) 194.232.104.139 (318, Ø 6,54)
10.74.133.22 (43, Ø 28,7) 173.194.221.94 (69, Ø 3,68) 194.232.104.140 (281, Ø 7,43)
10.74.139.22 (25, Ø 28,08) 10.126.5.2 (61, Ø 28,1) 194.232.104.141 (274, Ø 8,73)
10.15.16.22 (19, Ø 28,11) 64.233.161.94 (47, Ø 11,32) 194.232.104.149 (230, Ø 7,53)
10.15.12.162 (17, Ø 28,12) 74.125.205.94 (46, Ø 3,11) 194.232.104.150 (217, Ø 11,11)
10.126.7.2 (15, Ø 28,73) 173.194.73.94 (45, Ø 10,11) 194.232.104.142 (138, Ø 8,73)
10.15.16.46 (12, Ø 28,67) 10.74.133.22 (35, Ø 28,6) 10.74.133.22 (84, Ø 28,51)
10.15.16.34 (11, Ø 28,18) 216.58.201.163 (33, Ø 13,52) 10.126.7.2 (51, Ø 28,65)
10.126.5.2 (10, Ø 27,5) 74.125.232.247 (31, Ø 4,58) 10.74.139.22 (45, Ø 28,44)
10.15.16.58 (9, Ø 27,78) 74.125.232.248 (31, Ø 6,61) 10.126.5.2 (37, Ø 28,22)

Table 4.16: Last IP with measurement count and mean TTL values for TMA

57



UPC
www.derstandard.at www.google.at www.orf.at

194.116.243.20 (1045, Ø 8,92) 74.125.206.94 (450, Ø 11,16) 194.232.104.139 (173, Ø 9,44)
84.116.231.37 (9, Ø 31) 216.58.211.3 (213, Ø 13,77) 194.232.104.140 (167, Ø 9,77)
213.46.173.6 (8, Ø 30) 216.58.211.35 (64, Ø 13,72) 194.232.104.150 (159, Ø 10,03)

172.217.23.35 (58, Ø 15,19) 194.232.104.142 (158, Ø 10,38)
216.58.208.35 (50, Ø 10,82) 194.232.104.149 (152, Ø 11,25)
172.217.23.3 (46, Ø 14,72) 194.232.104.141 (141, Ø 10,06)
213.46.160.77 (19, Ø 25,74) 194.158.150.61 (50, Ø 30,06)
84.116.231.37 (15, Ø 23,53) 194.158.150.145 (45, Ø 30,02)
216.239.51.59 (12, Ø 29,92) 84.116.231.37 (10, Ø 31)
172.217.16.163 (12, Ø 11,75) 213.46.173.6 (6, Ø 30)

Table 4.17: Last IP with measurement count and mean TTL values for UPC

A1 DSL A1 LTE Drei TMA UPC
Hour of the day TTL Count TTL Count TTL Count TTL Count TTL Count
0 7,25 53 4,79 61 20,74 34 7,94 65 8,84 43
1 7,61 54 5,55 64 20,38 34 8,37 57 8,50 42
2 5,71 51 5,50 62 20,48 27 9,86 64 9,58 43
3 6,34 50 5,52 62 19,94 34 9,31 58 8,51 43
4 6,65 43 5,57 61 22,90 40 9,86 64 8,17 41
5 5,23 48 5,60 58 21,47 36 8,37 62 9,29 42
6 5,27 45 4,56 61 22,39 38 9,34 64 10,32 41
7 5,68 50 5,46 65 21,47 38 9,79 61 9,22 41
8 4,86 51 5,17 64 21,11 38 10,26 58 8,36 42
9 5,16 49 5,65 62 22,30 40 9,56 59 8,14 43
10 5,90 51 4,83 65 20,82 38 10,79 62 9,73 41
11 5,10 52 5,25 64 21,45 44 8,55 64 8,58 45
12 4,73 56 5,60 63 20,88 42 9,00 66 8,93 45
13 5,24 54 4,71 65 22,22 36 8,60 62 9,38 47
14 5,19 52 4,60 63 20,00 44 8,90 63 8,28 46
15 4,20 46 5,99 68 22,18 40 8,85 65 8,48 46
16 5,86 50 4,67 66 21,10 42 8,37 65 8,11 45
17 5,04 48 4,56 63 22,33 40 8,91 64 9,67 46
18 4,85 48 5,63 67 20,90 41 9,97 67 8,37 46
19 5,16 50 5,65 69 20,45 40 8,94 64 9,80 44
20 5,73 51 5,02 63 21,64 39 8,70 66 10,02 44
21 6,21 53 4,89 65 19,53 36 8,31 65 8,86 42
22 6,02 52 4,70 63 20,82 38 7,70 61 9,23 44
23 5,92 51 5,32 57 19,74 39 8,42 62 7,84 43

Table 4.18: Measurements for DerStandard.at during the day (UTC)
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Figure 4.15: Mean TTL values for the traceroutes to DerStandard.at during the day
(UTC)

4.18 Tor OONI test (OONI7)
The OONI7 measurement is mostly a supplementary test to the other metrics. It uses a
well-established system and establishes a Tor connection for the control measurements.
This Tor-connection was established for all Austrian ISPs. Due to the result structure
produced by Tor OONI being in YAML, actually getting results in bulk required a custom
Python script to convert relevant fields to JSON.

The OONI7 testdeck, as listed in Appendix B, contained three measurements, ma-
nipulation/http_invalid_request_line, manipulation/http_header_field_manipulation
and blocking/web_connectivity. Based on this configuration, the framework measured
HTTP header field tampering, tampering of invalid HTTP requests and the censorship
of kinox.to and movie4k.to.

4.18.1 HTTP header tampering

Tor OONI detects four different forms of header manipulation:

• Request Line Capitalization: This measures, if there were any changes to the
capitalization of the request line (e.g. GET / HtTP/1.1 ).

• Header Field Number : Measures, if the number of header fields matches the number
of sent header fields

• Header Name Capitalization: The OONI probe sends the HTTP request using an
unusual capitalization, e.g. aCcEpt-chaRseT: ’ISO-8859-1,utf-8;q=0.7,*;q=0.3’.
This metric measures if the capitalization was changed mid-fly.

• Header field value: Detects any changes in the values of the sent fields.

Consistent with the results in metric CM7, none of the Austrian ISPs tampers with
any of the HTTP header fields with the exception of T-Mobile. Interestingly, Tor OONI
only detects a change in capitalization, but not the added Connection: keep-alive header.
An example for such a request sent by Tor OONI can be seen in Listing 26.
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1 % Client request heades
2 ACcEPT-LanGUAGE: ’en-US,en;q=0.8’
3 AccePT-eNCoDINg: ’gzip,deflate,sdch’
4 aCCEpt:

’text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8’,↪→

5 aCcEpt-chaRseT: ’ISO-8859-1,utf-8;q=0.7,*;q=0.3’,
6 hOsT: 3nYjhGgxmtTJOie.com
7 uSer-agenT: ’Mozilla/5.0 (Windows; U; Windows NT 5.1; en-US;

rv:1.9.1.7) Gecko/20091221 Firefox/3.5.7’↪→

8
9 % Request headers received by the Tor OONI server

10 Accept-Language: ’en-US,en;q=0.8’
11 Accept-Encoding: ’gzip,deflate,sdch’
12 Accept:

’text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8’↪→

13 User-Agent: ’Mozilla/5.0 (Windows; U; Windows NT 5.1; en-US;
rv:1.9.1.7’Gecko/20091221 Firefox/3.5.7’↪→

14 Accept-Charset: ’ISO-8859-1,utf-8;q=0.7,*;q=0.3’
15 Host: 3nyjhggxmttjoie.com
16 Connection: keep-alive

Listing 26: HTTP communication for T-Mobile, showing a added Connection: keep-alive
HTTP header as well as changed capitalization and header order

4.18.2 HTTP invalid request line

In this test, Tor OONI sends invalid HTTP request lines and inspects, if they reach the
server without interference. For this, different invalid requests are generated at random
using four different methods.

• Invalid method: Here, an invalid HTTP method is generated at random, resulting
e.g. in RKDN / HTTP/1.1

• Invalid field count: HTTP header fields are generated in a random (invalid) number,
e.g. N3YIr 8cAH7 CoB3C L39gK

• Big request method: A random request method with 1024 bytes is generated, e.g.
1cd...lRKz / HTTP/1.1

• Invalid version number: An invalid HTTP version number is generated and sent,
e.g. GET / HTTP/mzq

When inspecting the results given in Table 4.19, it once again is shown that out of
all tested ISPs only T-Mobile Austria is manipulating traffic. Interestingly, this is not
the case for all conducted tests but only for a certain subset, amounting to around 11%
of conducted tests, not changing throughout the measurement period. Unfortunately,
the YAML provided by Tor OONI does not give detailed results on which of the different
requests were tampered with.
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Tampering
False True

A1 DSL 1311
A1 LTE 1414
Drei 963
TMA 1050 151
UPC 615

Table 4.19: Invalid Request line tampering

From inspecting single tests, it shows that:

• Invalid and big request methods were not tampered with.

• Invalid field counts were not tampered with.

• Invalid version numbers were sometimes not transmitted at all.

It is unknown how it is caused, that only some invalid version numbers are not
transmitted. Possibly, it could be a programming mistake in the Tor OONI framework.
More likely, it could result from some unknown condition at work in T-Mobile Austria’s
middlebox that blocks some of the random version numbers, but not all.

4.18.3 Blocking: Web Connectivity

The web connectivity measurement did not yield any new results: It only confirmed that
all Austrian ISPs block kinox.to and movie4k.to by using DNS manipulation. Additionally,
it reassured, that the websites informing about the censorship for A1 DSL, A1 LTE,
T-Mobile Austria and UPC are accessible via their public IP addresses, while the website
for Drei is only reachable from within the network.
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CHAPTER 5
Discussion

Net Neutrality seems to be respected by Austrian ISPs based on the results. No
measurements lead to any detection of traffic shaping of specific protocols.

However, there are a few exceptions to this listed below.

Port 5060 This port is primarily used for the Session Initiation Protocol (SIP) which is
essential to VoIP telephony. Port 5060 seems to be blocked for UDP and only for
A1 LTE customers. In the measurements, it was not determined if this blockings
are due to settings in the default configuration of the modem supplied by the ISP
or with the internet connection itself.

Being a mobile provider, A1 would have an incentive to make VoIP calls more
difficult to end customers, since they effectively subvert its business plans, moving
end customers away from paid telephone calls billed by the minute, allowing to
make calls directly over the Internet.

Port 554 This port is essential for multimedia streaming as it allows communication in
the Real-Time Streaming Protocol (RTSP). In contrast to port 5060, it was not
blocked by any provider but still treated differently for UPC customers. This was
measured in that the Time-To-Live values were treated differently than for any
other port with UPC customers.

The motivation for this seems unclear since the different treatment did not influence
the performance of the port. However, it should be stated that UPC provides a
Video-On-Demand streaming service (ondemand.upc.at). Since RTSP is used in
video streaming, this different treatment could stem from zero-rating or billing
purposes.

T-Mobile’s Port 80 T-Mobile Austria treats port 80 (HTTP) different from all other
tested ports. This shows in different metrics as listed below.
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• TCP4 : Port 80 has different TTL values than any other port with T-Mobile
customers. The TTL value of port 80 is generally higher than for other ports.

• CM7/HTTP7/VS7 : While T-Mobile does not interfere with the transmitted
HTTP content, the HTTP headers are changed. HTTP requests gain a Host
header field if they to not contain one. Additionally, the Connection: keep-alive
field is added to the HTTP header if it does not yet exist.

• OONI7 : A fraction of HTTP requests that contain invalid HTTP numbers
(e.g. GET / HTTP/kRm) are never received by a server when they are sent
over T-Mobile’s network infrastructure.
In addition to tampering with the HTTP header fields as mentioned above, T-
Mobile streamlines the capitalization of field names, leading to the conclusion,
that the whole HTTP header is replaced.

• Other : During development or in other tests, it additionally showed that
content exceeding the Content-Length header field is not transmitted at all.
Additionally, any traffic from the receiver of the request to the sender using
the same TCP connection is discarded.

Based on these test results, it is safe to assume that these modifications are not
done by the modem provided by T-Mobile, but by the ISP itself. This leads to the
conclusion, that, at least for port 80, deep packet inspection (DPI) is performed by
the provider.
As for the reason, why T-Mobile uses resource-intensive DPI for tampering with
HTTP header fields: Adding a Connection: keep-alive reduces the time needed for
TCP handshakes that would otherwise be used for per-object connections. This
strategy is also used by some ISPs in the U.S.[37].

Censorship Austrian ISPs are forced to censor certain domains by court orders. Domains
affected by this are e.g. the streaming sites www.kinox.to and www.movie4k.to.
Additionally, all providers with the exception of T-Mobile block www.thepiratebay.se.
All ISPs block on a DNS level. Censorship on IP level would be difficult since all of
the mentioned sites use the content delivery network CloudFlare that is used by
many other, legit, websites.
With the exception of UPC, all providers re-route customers trying to access
censored websites to custom web pages, informing about the censorship and the
reason for the censorship. These custom pages provide transparency to customers.
UPC’s DNS server returns the non-existing IP 0.0.0.0 for these websites.
Since the information on these custom pages is formulated in a way that shifts
the blame away from the ISPs, it seems plausible that ISPs are unhappy with the
current way this censorship is done. This is also indicated by the sheer number of
court cases in these censorships (e.g. OGH 4 Ob 22/15m, OGH 4 Ob 71/14s, OGH
4 Ob 6/12d among others).
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NXDOMAIN rerouting While all other ISPs return the correct NXDOMAIN -status
code to DNS requests for non-existing domains, Drei answers with an existing IP
address from its address space. This address can only be reached from within the
Drei network,
As described in the NDNS7 measurement, this page contains a Google Analytics
integration along with a Google custom search form that is pre-filled with the
search request. There are no direct advertisements displayed on the page. Following
the paper of Weaver et al. [35], the reason behind this could possibly be found in
monetization. On the one hand, Drei collects data from these pages. On the other
hand, the custom search form contains ads provided by Google, possibly directly
generating revenue for Drei.
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CHAPTER 6
Future Work

Based on the findings in this work, there are many possible alterations and enchantments
to measurements possible for future work. Some of the more obvious options are listed
below.

Measurment period The measuring period for this thesis was a mere two months, in
which some test clients were offline at times or did not conduct usable measurements.
In the future, these tests could be run for a longer time, trying to find some long-term
patterns.

IPv6 All measurements were done using the IPv4 stack. Some ISPs could alter traffic
only for IPv4 or IPv6.

T-Mobile’s Port 80 In this thesis, it was concluded that T-Mobile Austria uses some
sort of proxy for its port 80. This is based on TTL values and HTTP header
tampering.
When inspecting transparent proxies in the U.S., Xu et al. [37] found that not only
HTTP headers are altered, but also the underlying TCP connections. In the U.S.,
ISPs for example suppress the RST -flag in connections, delay TCP handshakes or
split connections.
In the future, it could be tested, if any of these operations are also done by Austrian
ISPs, especially T-Mobile.

Greater port range For measuring RTT, TTL and connection speeds, only a handful
of hand-selected ports were used due to resource constraints. In future work, other
ports could also be included in measurements.

More diversity for headers The MM7 metric was specially designed to detect traffic
shaping in the form of the BingeOn-program of T-Mobile USA. For this, a request
for a YouTube-video, that would be treated differently by BingeOn, was used.
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However, in the U.S., there are much more hosts[19] that are included in the
BingeOn-program.
In future measurements, these hosts could also be tested to detect, if Austrian ISPs
e.g. do not slow down YouTube, but slow down other services that were not tested
for this thesis.

Full protocol simulations When measuring traffic shaping based on different proto-
cols, these protocols were only simulated by their ports. Any shaping that also
inspects the protocol header (e.g. BitTorrent traffic) could therefore not yet be
detected.
To remedy this in the future, tests could follow the correct protocol specifications.
This could be done by either implementing some minimal stack of the protocol
for sending random but syntactically correct data or by replaying traffic that was
previously recorded.

Data caps Some ISPs have data plans with a fixed data cap. After customers used up
the included volume, the bandwidth is throttled. This should affect all services the
same.
However, it is possible that some services are still available with full bandwidth
to customers. This was the case with Spotify for Deutsche Telekom[31]. In future
tests, this could also be measured.

Variance in hostnames The results showed that Drei does not return a NXDOMAIN
status for DNS requests of non-existing domains. However, in the test setup, only
a static fixed domain name was used. As Weaver et al. [35] showed, some ISPs only
redirect for certain domain lookups to custom search pages. In future research, the
hostnames for non-existing domains should be randomized.

Hostname based caching In contrast to American ISPs[21], Austrian ISPs did not
cache static content for the custom sites tested. However, it was not tested, if ISPs
cache content of popular websites (e.g. stylesheets for orf.at) based on the Host
HTTP header. This test could also be implemented as a complementary test in
future work.

68



CHAPTER 7
Conclusion

In our research, we showed that net neutrality in Austria is, at least from a technical
perspective, mostly respected. The metrics mentioned in chapter 3 were designed to
cover a broad spectrum of violations, many of them given in papers of other researchers,
mentioned in chapter 2.

The measurement architecture followed a client-server-centric approach, with a central
server and five measurement clients, conducting tests in a schedule that was set up using
a crontab-style configuration. Each and every test generated a result in the JSON format.
This result was then saved on the server-side in a MongoDB database. Besides that, all
network communication on both client and server side was recorded for each individual
test and saved in a pcap-file.

To prohibit interference of foreign clients, the server’s firewall was configured to only
allow ssh traffic and from certain IPs. Since all clients had dynamic IPs, the current IP
was periodically transmitted to the server via ssh, ensuring that only the test clients had
access to all server ports at all times.

Using this system, we conducted over 100,000 measurements over the period of
two months. We tested for network interference in low-level TCP segments and UDP
datagrams, connection speeds and much more. While most of these low-level tests did
not yield any significant results, there were the three exceptions mentioned below.

• The difference in TTL for port 80 with T-Mobile clients.

• The difference in TTL fort port 554 with UPC.

• The blocking of port 5060 for A1 LTE clients.

Even though all tests were periodically executed on an hourly basis, 24 times per
day, we did not see any differences based on the time of the day or the duration of the
measurement period. This held true for round-trip times, connection speeds and other
metrics.
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When investigating the censored domains thepiratebay.se, movie4k.to and kinox.to,
we were able to draw conclusions about the technical background of these blockings. It
was detected that all ISPs use DNS for fulfilling their censorship obligations. With the
exception of UPC, all ISPs provide information to the user on why a page is censored.

Another result that these DNS tests yielded was that Hutchison Drei does not treat
non-existing domains appropriately. Instead of returning the NXDOMAIN error code,
customers are presented with a custom error-page, containing a Google custom search
field and integrated Google Analytics.

For the high-level tests, we also did not find many anomalies. The exception to this
was T-Mobile Austria. Our tests showed, that T-Mobile uses some sort of middlebox.
This middlebox affects port 80 and changes fields in the HTTP header while leaving the
content unchanged. In some cases, this middlebox also caused malformed HTTP traffic
to not be transmitted at all.

The motivations for all detected ISP measures were briefly discussed in chapter 5. For
T-Mobile’s middlebox, it is mentioned, that some U.S. ISPs use comparable transparent
proxies to optimize their network infrastructure[37].

Following our research, possible further investigations were introduced in chapter 6. It
seems reasonable to at least conduct the existing measurements for a longer time period
for detecting any further inconsistencies. Following the results, especially T-Mobile’s
middlebox, further research in this direction could be conducted, also testing for further
anomalies in the TCP traffic, e.g. missing RST -flags.
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APPENDIX A
Server configuration

This configuration given in the JSON format is used to configure the test scheduling and
the configurations for the single tests. It is stored with the server, the respective parts
are transmitted to the client when necessary.

1 {
2 "server": {
3 "host" : "128.130.204.XXX",
4 "port" : 8082
5 },
6 "mongo": {
7 "host" : "localhost",
8 "port" : 27017,
9 "database": "test-database",

10 "test-collection": "tests"
11 },
12 "enable_client_ip_handling" : true,
13 "client_ip_directory": "/home/measurement/client_ips/",
14 "tests": {
15 "cm7" : {
16 "schedule" : "0 * * * * ",
17 "duration_seconds" : 170,
18 "port" : 80,
19 "host" : "128.130.204.34",
20 "requests": [
21 {
22 "resource" : "GET /{test_uuid}/image1.bmp HTTP/1.1"
23 },
24 {
25 "resource": "GET /{test_uuid}/image1.bmp HTTP/1.1"
26 },
27 {
28 "resource": "GET /{test_uuid}/image2.jpg HTTP/1.1",
29 "repeat": 3
30 },
31 {
32 "resource" : "GET /{test_uuid}/faultyResponse HTTP/1.1"
33 },
34 {
35 "resource" : "GET /videoplayback?mime=video/webm&dur=610.640&upn=q_PY3To1fWI

HTTP/1.1",↪→
36 "header": [
37 "Host: r1---sn-4g5edne7.googlevideo.com",
38 "User-Agent: Mozilla/5.0 (Windows NT 10.0; WOW64; rv:47.0) Gecko/20100101

Firefox/47.0",↪→
39 "Accept: text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8",
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40 "Accept-Language: de,en-US;q=0.7,en;q=0.3",
41 "Accept-Encoding: gzip, deflate, br",
42 "X-Test: {test_uuid}"
43 ]
44 }
45 ]
46 },
47 "vs7": {
48 "schedule" : "3 * * * * ",
49 "duration_seconds" : 45,
50 "port" : 80,
51 "host" : "128.130.204.34",
52 "requests": [
53 "GET /{test_uuid}/eicar.exe HTTP/1.1"
54 ]
55 },
56 "http7" : {
57 "schedule" : "4 * * * * ",
58 "duration_seconds" : 45,
59 "port" : 80,
60 "host" : "128.130.204.34",
61 "requests": [
62 "GE/T /{test_uuid}/faultyResponse HTTP/1.1"
63 ]
64 },
65 "tcp4" : {
66 "schedule" : "5 * * * * ",
67 "duration_seconds" : 110,
68 "host" : "128.130.204.34",
69 "ports" : [
70 80,
71 220,
72 443,
73 554,
74 1725,
75 1214,
76 5060,
77 6881,
78 8333,
79 48123
80 ],
81 "pings" : 10
82 },
83 "udp4": {
84 "schedule" : "7 * * * * ",
85 "duration_seconds" : 110,
86 "host": "128.130.204.34",
87 "ports": [
88 1725,
89 5060,
90 6881,
91 9987,
92 48123
93 ],
94 "packets": 10
95 },
96 "ndns7": {
97 "schedule" : "37 * * * * ",
98 "duration_seconds" : 50,
99 "requests": [

100 {
101 "host": "www.orf.at"
102 },
103 {
104 "host": "www.123hjaf9hu32iufhuihoafine.com"
105 }
106 ]
107 },
108 "bdns7": {
109 "schedule" : "38 * * * * ",
110 "duration_seconds" : 50,
111 "requests": [
112 {
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113 "host": "www.thepiratebay.se"
114 },
115 {
116 "host": "www.kinox.to"
117 },
118 {
119 "host": "www.kinox.to",
120 "nameservers": ["8.8.8.8"]
121 }
122 ]
123 },
124 "syn4": {
125 "schedule" : "29 * * * * ",
126 "duration_seconds" : 50,
127 "host": "128.130.204.34",
128 "port": 443,
129 "count": 20,
130 "source_port": {
131 "min": 40234,
132 "max": 41453
133 }
134 },
135 "stls7": {
136 "schedule" : "30 * * * * ",
137 "duration_seconds" : 50,
138 "host": "128.130.204.34",
139 "ports": [
140 8025,
141 8026
142 ],
143 "test_uuid": "{test_uuid}",
144 "valid_response": true
145 },
146 "smtp7": {
147 "schedule" : "31 * * * * ",
148 "duration_seconds" : 50,
149 "host": "128.130.204.34",
150 "ports": [
151 8025
152 ],
153 "test_uuid": "{test_uuid}",
154 "valid_response": false
155 },
156 "pop37": {
157 "schedule" : "32 * * * * ",
158 "duration_seconds" : 50,
159 "host": "128.130.204.34",
160 "ports": [
161 110,
162 8110
163 ],
164 "test_uuid": "{test_uuid}"
165 },
166 "trac3": {
167 "schedule": "39 * * * * ",
168 "duration_seconds": 50,
169 "requests": [
170 {
171 "host": "www.orf.at"
172 },
173 {
174 "host": "www.google.at"
175 },
176 {
177 "host": "www.derstandard.at"
178 },
179 {
180 "host": "www.123hjaf9hu32iufhuihoafine.com"
181 }
182 ]
183 },
184 "tls4": {
185 "host": "128.130.204.34",
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186 "schedule": "36 * * * * ",
187 "duration_seconds": 50,
188 "test_uuid": "{test_uuid}",
189 "host": "128.130.204.34",
190 "port": 443
191 },
192 "tcps4": {
193 "host": "128.130.204.34",
194 "schedule": "9 * * * * ",
195 "duration_seconds": 590,
196 "ports": [
197 {
198 "port": 80
199 },
200 {
201 "port": 443
202 },
203 {
204 "port": 6881
205 },
206 {
207 "port": 48123
208 }
209 ],
210 "http_headers" : [],
211 "packet_size": 4096,
212 "test_duration_ms": 12000,
213 "concurrent": false,
214 "test_uuid": "{test_uuid}"
215 },
216 "mm7": {
217 "host": "128.130.204.34",
218 "schedule": "19 * * * * ",
219 "duration_seconds": 590,
220 "ports": [
221 {
222 "port": 80,
223 "answer_with" : 0,
224 "request_with" : 1
225 },
226 {
227 "port": 48123,
228 "answer_with" : 0,
229 "request_with" : 1
230 }
231 ],
232 "http_headers": [
233 {
234 "id": 0,
235 "header": "HTTP/1.1 200 OK\r\nAccept-Ranges:

bytes\r\nAccess-Control-Allow-Credentials: true\r\nAlt-Svc: quic=\":443\";
ma=2592000\r\nAlternate-Protocol: 443:quic\r\nCache-Control: private,
max-age=21293\r\nConnection: keep-alive\r\nContent-Length:
1718030000\r\nContent-Type: video/webm\r\n\r\n"

↪→
↪→
↪→
↪→

236 },
237 {
238 "id": 1,
239 "header": "GET /videoplayback?mime=video/webm&dur=610.640&upn=q_PY3To1fWI

HTTP/1.1\r\nHost: r1---sn-4g5edne7.googlevideo.com\r\nUser-Agent: Mozilla/5.0
(Windows NT 10.0; WOW64; rv:47.0) Gecko/20100101 Firefox/47.0\r\nAccept:
text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8\r\nAccept-Language:
de,en-US;q=0.7,en;q=0.3\r\nAccept-Encoding: gzip, deflate, br\r\n\r\n"

↪→
↪→
↪→
↪→

240 }
241 ],
242 "packet_size": 4096,
243 "test_duration_ms": 12000,
244 "concurrent": false,
245 "test_uuid": "{test_uuid}"
246 },
247 "voip7": {
248 "schedule": "33 * * * * ",
249 "duration_seconds": 170,
250 "host": "128.130.204.34",
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251 "ports": [2222],
252 "test_uuid": "{test_uuid}",
253 "replay_pcap": "./metrics/voip7/rtpstream.pcap",
254 "call_duration_ms": 14000
255 },
256 "ooni7": {
257 "schedule": "40 * * * * ",
258 "duration_seconds": 590,
259 "test_uuid": "{test_uuid}"
260 }
261 },
262 "dumpcap": {
263 "path_to_executable" : "/usr/bin/dumpcap",
264 "save_location" : "/home/measurement/pcaps/",
265 "interface" : "ens3f0"
266 },
267 "results": {
268 "save_location" : "/home/measurement/results/"
269 }
270 }
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APPENDIX B
Tor OONI testdecks

The OONI testdecks are used to configure which tests the Tor OONI framework should
perform. The default.deck file configures the tests, the citizenlab-urls-global.txt file
contains all domains used for the censorship test.

default.deck

1 - options:
2 annotations: null
3 bouncer: null
4 collector: null
5 no-collector: 0
6 no-geoip: 0
7 no-yamloo: 0
8 reportfile: null
9 subargs: &id001 []

10 test_file: manipulation/http_invalid_request_line
11 verbose: 0
12 - options:
13 annotations: null
14 bouncer: null
15 collector: null
16 no-collector: 0
17 no-geoip: 0
18 no-yamloo: 0
19 reportfile: null
20 subargs: *id001
21 test_file: manipulation/http_header_field_manipulation
22 verbose: 0
23 - options:
24 annotations: null
25 bouncer: null
26 collector: null
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27 no-collector: 0
28 no-geoip: 0
29 no-yamloo: 0
30 reportfile: null
31 subargs: [-f, ../deck/citizenlab-urls-global.txt]
32 test_file: blocking/web_connectivity
33 verbose: 0

citizenlab-urls-global.txt
1 http://kinox.to
2 http://movie4k.to
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