

TECHNISCHE UNIVERSITÄT WIEN Vienna University of Technology

DISSERTATION

Untersuchung elektrochemischer Prozesse für Anwendungen in der Mikro- und Optoelektronik

Ausgeführt zum Zwecke des Erlangens des akademischen Grades eines

Dr. techn.

unter der Leitung von

A. o. Univ. Prof. Dr. phil. Ernst WINTNER

Ausgeführt am Institut für Photonik der Technischen Universität Wien

Eingereicht an der Technischen Universität Wien Fakultät für Elektrotechnik und Informationstechnik

von

Dipl.-Ing. Ingo MURI Matr. Nr. 0326405 Lederergasse 16/4 9500 Villach

Villach, Oktober 2014

Die approbierte Originalversion dieser Dissertation ist in der Hauptbibliothek der Technischen Universität Wien aufgestellt und zugänglich. http://www.ub.tuwien.ac.at

The approved original version of this thesis is available at the main library of the Vienna University of Technology.

http://www.ub.tuwien.ac.at/eng

The approved original version of this thesis is available at the main library of the Vienna University of Technology.

Als erstes möchte ich mich bei meinen beiden Betreuern, Herrn Prof. Ernst Wintner vom Institut für Photonik an der TU Wien sowie Herrn Dr. Friedrich Kröner von der Firma Infineon¹ für die fachliche Unterstützung bedanken. Deren breitgefächertes Wissen sowie die langjährige Erfahrung im Bereich der Mikro- und Optoelektronik waren mir eine große Hilfe. Sie waren meine ersten Ansprechpartner und konnten meine Fragen stets beantworten.

Danken möchte ich auch meinem Vorgesetzten der Abteilung UPD5² der Firma Infineon in Villach, Herrn Dr. Hannes Eder für das entgegengebrachte Vertrauen und den Rückhalt während meiner Dissertationszeit. An dieser Stelle sei auch allen Entscheidungsträgern der Firma Infineon gedankt, dass sie es ermöglichen, umfangreiche Forschungsarbeiten im industriellen Umfeld durchzuführen.

Weiters möchte ich mich bei meinem Zweitprüfer, Herrn Prof. Günter Fafilek vom Institut für chemische Analytik der TU Wien bedanken, der mich bei vielen Fragen, die Elektrochemie betreffend, unterstützen konnte.

Dank gilt auch allen Kolleginnen und Kollegen bei Infineon, mit denen ich zusammenarbeiten durfte und die für ein sehr angenehmes Betriebsklima sorgten. Danke an Iris, Monika, Bernhard, Hans, Daniel, Elisabeth, Reza, Fanghua, Thomas, Gernot, Alex, Peter, Andre, Karin, Sigrid, Stefan, Sabine, Carsten, Markus, Michael, Martin, Fritzi, Kurti und Andreas.

In besonderer Dankbarkeit gedenke ich unserer im Vorjahr verstorbenen Teamassistentin, Frau Dietlinde Nagler. Sie war die gute Seele unseres Teams und immer hilfsbereit, insbesondere bei allen organisatorischen Angelegenheiten.

Nicht zuletzt danke ich der Familie: meiner Lebensgefährtin Anita sowie unserer Tochter Lara, die in der Zeit meines Doktoratstudiums zur Welt kam. Ein herzliches Hvala Lepa für all die Unterstützung, das Verständnis die Geduld und Motivation in allen Phasen der Dissertation.

Auch bei meinen Eltern, die mir das Diplomstudium der Technischen Physik finanziert und damit die Voraussetzung für ein Doktorat erst geschaffen haben, möchte ich mich bedanken. Sie haben mich auch während meiner Dissertation immer wieder aufrichtig gestärkt. Danke auch meinen Brüdern Chris und Patrick für die stets aufmunternden Worte.

¹Infineon Technologies Austria AG

²Unit Process Development, Abteilung 5

The approved original version of this thesis is available at the main library of the Vienna University of Technology

University of TechnologThis thesis focuses on the research of electrochemical processes, which are supposed to be useful for the fabrication of microelectronic and microoptic semiconductor devices. Among these processes are: the anodic oxidation of silicon in alkaline solutions, the electrochemical etch stop (ECES) and the electrochemical deposition of copper on thin

> The first part of this work deals with the investigation of the creation and etching of anodic oxides in tetra-methyl-ammonium-hydroxide (TMAH). (100) Silicon wafers were anodically oxidized in TMAH and the grown oxide was removed without changing the electrolyte. The influences of the anodization time and the voltage on the oxide growing rates were analyzed by using a method which is similar to cyclovoltammetry. The used voltage pulses had trapezoid, triangular and square shapes. This method provided valuable information on the building mechanisms of anodic oxides by measuring the passivation current as a function of time and of the applied potential. The shapes of the current curves provided details on the uniformity and the thickness of the oxide. This could be proofed by stochastic simulations. A model for an in-situ electrochemical oxide thickness measurement method was developed.

> silicon wafers. Several experiments and numerical simulations have been carried out.

The second part of this thesis addresses the anodic oxidation as a manufacturing process for the fabrication of thick oxide structures for optical applications. Anodic oxide thicknesses were electrochemically and optically determined and compared with pictures from scanning electron microscopy (SEM). Furthermore high-precise, laterally varying thin films of anodic oxide on silicon wafers were produced. These films showed the optical phenomenon of wedge interference. The oxide films have been generated by applying a lateral current on silicon wafers and by taking advantage of the linear dependence of the oxide thickness on the applied voltage between the silicon and the electrolyte. The color gradients, which were caused by wedge interference, were analyzed and simulated by using data from optical thickness measurements. This new technique could be suitable as a cheap and reproducible manufacturing process for precise optical components as microlenses and microprisms.

An important part of this thesis focuses on the investigation of the electrochemical etch stop as a thinning process for power-semiconductor devices, especially for insulated gate bipolar transistors (IGBTs). The thickness of these devices determines the electrical properties and it is highly important, that the thickness variations after grinding are as low as possible in order to minimize the chip area. Finite elements simulations were applied to identify the potential distribution across single chips during electrochemical etching. As a result of this simulation, an efficient electrochemical wafer thinning process for IGBTs could be developed and experimentally demonstrated for the first time. Parasitic effects, which hinder the precision of the electrochemical etching were also specified. It could be demonstrated, that appropriate contact structures of the chips are of fundamental importance for a stable process. Thick layers of copper-carbon compounds were created on wafer level by utilizing The approve the electrochemical deposition of copper. Such layers are able to improve the thermal available at properties of power semiconductors because of their elevated thermal conductivity http://www.uand.their.heat capacity compared with silicon. The applied method made use of pulse plating for filling up a thick ballasting of carbon fibers. It was demonstrated, that

only very slow deposition rates lead to an adequate filling of the voids. To avoid such slow deposition rates, an alternative process was suggested. This process uses the sedimentation of carbon fibers and layer by layer creates a carbon-copper compound which disposes of much higher deposition rates.

The approved original version of this thesis is available at the main library of the Vienna University of Technology.

http://www.ub.tuwien.acIm.Rahmen dieser Dissertation wurden verschiedene elektrochemische Prozesse untersucht und auf deren Anwendbarkeit für die Herstellung mikroelektronischer sowie mikrooptischer Bauelemente geprüft. Dies waren unter anderem die anodische Oxidation von Silizium in alkalischen Lösungen, der elektrochemische Ätzstopp sowie die galvanische Abscheidung von Kupfer auf dünnen Siliziumwafern. Es wurden sowohl Experimente als auch Computersimulationen durchgeführt.

> Ein Schwerpunkt der vorliegenden Arbeit lag auf der Erzeugung und Ätzung anodischer Oxide auf (100) Silizium in heißer TMAH (Tetramethylammoniumhydroxid) Lösung. Das Silizium wurde anodisch oxidiert und das gebildete Oxid anschließend alkalisch geätzt, ohne einen Badwechsel durchzuführen. Dabei wurden unter anderem der Einfluss der Zeit sowie der angelegten Spannung auf die Bildung des anodischen Oxids untersucht. Es kam eine abgewandelte Form der Zyklovoltammetrie unter Verwendung von Rechtecks-, Trapez- und Dreiecksspannungspulsen zur Anwendung. Wichtige Informationen über den Bildungsmechanismus der erzeugten Oxide lieferte dabei der Stromverlauf während der Oxidation. Aus der Form der Stromkurven während der Oxidätzung konnten zudem Rückschlüsse auf die Gleichmäßigkeit des Oxids gezogen werden. Der Stromverlauf konnte auch stochastisch simuliert werden. Weiters wurde eine Methode für eine elektrochemische in situ Oxiddickenbestimmung gefunden.

> Ein weiterer Teil der Arbeit befasst sich mit der anodischen Oxidation von Silizium mit dem Ziel der Erzeugung von Oxidstrukturen für optische Anwendungen. Es wurden Oxiddicken optisch und elektrochemisch bestimmt und mit Aufnahmen unter dem Elektronenmikroskop verglichen. Weiters wurden hochpräzise lateral veränderliche Dünnschichten aus anodischem Oxid auf Siliziumwafern erzeugt, die den Effekt der Keilinterferenz aufwiesen. Dazu wurde ein lateraler Stromfluss am Wafer eingeprägt und der lineare Zusammenhang zwischen angelegter Spannung und Oxiddicke ausgenützt. Die durch Keilinterferenz hervorgerufenen Farbverläufe wurden untersucht und konnten anhand von Ergebnissen optischer Dickenmessungen simuliert werden. Der verwendete Prozess wäre dazu geeignet, präzise mikrooptische Bauelemente, wie zum Beispiel Mikrolinsen und Mikroprismen auf Siliziumwafern kostengünstig und reproduzierbar herzustellen.

> Ein wichtiger Bestandteil dieser Dissertation sind Untersuchungen zum elektrochemischen Ätzstopp als Dünnungsprozess für Leistungshalbleiter, insbesondere für IGBTs³. Bei diesen Bauelementen ist es von großer Bedeutung, dass die Dickenvariation der Wafer nach der Dünnung auf die Zieldicke möglichst klein ist, um die Chipfläche zu minimieren. Hier spielten dreidimensionale Finite-Elemente Simulation zur Untersuchung der Spannungsverteilung über den Chip während der elektrochemischen

³Insulated Gate Bipolar Transistor

Ätzung eine entscheidende Rolle. Anhand dieser Ergebnisse konnte ein funktionieren-The approveder elektrochemischer Dünnungsprozess entwickelt und experimentell demonstriert available at werden. Parasitäre Effekte, die einen präzisen Ätzstopp erschweren, wurden ebenfalls http://www.unäher.untersucht und beschrieben. Es konnte gezeigt werden, dass für einen funktionierenden elektrochemischen Ätzstopp auf manchen Leistungshalbleitern die Art der Kontaktierung einzelner Siliziumchips von entscheidender Bedeutung ist.

Mit Hilfe der elektrochemischen Abscheidung von Kupfer wurden Dickschichten aus Kupfer-Kohlenstofffaser Verbundmaterial auf Waferebene hergestellt. Diese Schichten können die thermischen Eigenschaften von Leistungshalbleitern verbessern, indem sie Wärme besser zwischenspeichern und ableiten als Silizium. Bei der angewendeten Methode wurde eine Schüttung aus vorverkupferten Kohlenfasern mit Hilfe von Pulsgalvanik elektrochemisch verfüllt. Es konnte experimentell und rechnerisch gezeigt werden, dass eine vollständige Verfüllung nur mit extrem langsamen Abscheideraten gelingen kann. Um dies zu umgehen wurde ein alternativer Prozess erarbeitet und erprobt, bei dem durch Sedimentation von Kohlenstofffasern der Verbundwerkstoff schichtweise erzeugt werden kann.

The approved original vers available at the main libr University of Technology.	ion of this thesis is ary of the Vienna Einleitung		1
http://www.ub.tuwien.ac.at/e	ng B		-
2	Grundlagen	der Halbleiterphysik und Elektrochemie	5
	2.1 Grund	lagen der Halbleiterphysik	5
	2.1.1	Das Bandermodell	5
	2.1.2	Donatoren und Akzeptoren	6
	2.1.3	Das Ferminiveau	7
	2.1.4	Drift und Diffusion	7
	2.1.5	Metallurgischer pn-Ubergang	9
	2.1.6	Ausbreitung der Raumladungszone	
	2.1.7	Strom-Spannungs-Verhalten des pn Ubergangs	12
	2.1.8	Funktionsweise des Bipolartransistors	13
	2.1.9	Der Thyristor	14
	2.2 Grund	lagen der Elektrochemie	16
	2.2.1	Elektrolytische Leitfahigkeit	16
	2.2.2	Elektrodenpotential und Nernst Gleichung	16
	2.2.3	Bezugselektroden	17
	2.2.4	Potentiostaten	17
	2.2.5	Zyklovoltammetrie	18
	2.2.6	Elektrochemische Abscheidung	19
3	Elektrochei	nie des Siliziums 2	20
-	3.1 Der Ha	albleiter-Elektrolyt Übergang	20
	3.1.1	Das Redox-Potential	20
	3.1.2	Struktur der Ladungsverteilung	20
	3.2 Elektro	ochemie des Siliziums in alkalischen Medien	22
	3.2.1	Ätzung von Silizium in alkalischen Medien	22
	3.2.2	Kaliumhydroxid (KOH)	22
	3.2.3	Tetramethylammoniumhydroxid (TMAH)	23
	3.2.4	Anodischer Strom- Spannungsverlauf	24
	3.3 Anodis	sche Oxidation von Silizium	25
	3.3.1	Eigenschaften und Herstellung von Oxiden	25
	3.3.2	Wachstumsmechanismus anodischer Oxide	25
	3.3.3	Feldverlauf im p und n Halbleiter	27
	3.3.4	Einfluss der Beleuchtung	28
	3.4 Elektro	chemischer Ätzstopp	29
	3.4.1	Physikalisches und chemisches Prinzip	<u>29</u>
-		- 	
4	Elektrochei	mische Untersuchungen anodischer Oxide 3	5 1
	4.1 Strom-	und Spannungscharakteristik von Silizium in alkalischen Medien	31
	4.1.1	Anodischer Peak beim Zyklovoltammogramm von Silizium 3	31

Die appro Dissertation Technischen zugänglich.	bierte ist in Univers	Ori der ität	ginalv Haup Wien	version tbiblioth aufgeste	dieser ek der ellt und

nttp://www.ub.tuwien.ac.a	4.1.2. Zyklovoltammetrie in TMAH	31
The approved original v	4.1.3 Linversitäte Könner Spannung	33
available at the main 2	^{ib} Untersuchungsmethoden	34
http://www.ub.tuwien.ac.a	4.2.1 Trapezförmige Spannungspulse	34
	4.2.2 Strom- und Spannungsverlauf trapezförmiger Pulse	35
	4.2.3 Ablauf des Messprogramms	37
4.3	Messaufbau und Materialien	39
	4.3.1 Siliziumproben	39
	4.3.2 Messgeräte	40
	4.3.3 Versuchsaufbau	40
4.4	Aufnahme und Darstellung der Messreihen	42
	4.4.1 Variation der Spannung	42
	4.4.2 Variation der Passivierungszeit	44
4.5	Untersuchung der Passivierungsströme	45
	4.5.1 Zeitliches Verhalten der Passivierungsströme	46
	4.5.2 Grenzströme als Funktion der Spannung	47
	4.5.3 Interpretation der Passivierungsströme	48
4.6	Rückätzung anodischer Oxide in TMAH	50^{-0}
	4.6.1 Oxidrückätzung als Funktion der Passivierungsspannung	50
	4.6.2 Simulation der Rückätzströme	51
	4.6.3 Zeitliche Abhängigkeit der Oxidrückätzung	54
	4.6.4 Variation der Vorschubgeschwindigkeit	56
	4.6.5 Untersuchung der Zeit- und Spannungsabhängigkeit mittels	
	Rechteckpulsen	57
4.7	Untersuchungen auf Wafern mit niedrig dotierter n-Epitaxie	58
	4.7.1 Zeit- und Spannungsabhängigkeit der Rückätzung im Dunkeln .	59
	4.7.2 Experimentelle Bestimmung der Durchbruchspannungen	60
	4.7.3 Oxidation mit lokal erhöhter Dotierung	62
5 Hor	stellung anodischer Oxide mit lateral veränderlicher Dicke	63
5 1	Spannungsabhängigkeit anodischer Oxide bei höheren Spannungen	63
0.1	5.1.1 Bückätzzeit als Funktion des Endstromes	63
	5.1.2 Oxiddicke als Funktion der Spannung	65
	5.1.2 Oxiduteke als Funktion der Spannung	66
	5.1.4 Cleichmäßigkeit der Oxiddicke	67
5.2	Simulation eines Spannungsabfalles im Halbleiter	72
0.2	5.2.1 Modellierung des Stromflusses	72 72
	5.2.2 Findimensionaler Fall	74
	5.2.2 Finite-Elemente Simulation des Spannungsahfalls	74
5.3	Experimentelle Herstellung keilförmiger Oxidstrukturen	77
0.0	5.3.1 Präparation der Wafer	77
	5.3.2 Experimentelle Durchführung	78
	5.3.3 Spannungsrampen, lateraler und vertikaler Stromfluss	79
5.4	Dickenmessung lateral veränderlicher Oxide	82
	0	

Die approbierte Originalversio Dissertation ist in der Hauptbibl Technischen Universität Wien aufg	n dieser iothek der estellt und	
zugänglich.		
TUU	15.4.1 Optische Bestimmung der Oxiddicken	82
The approved original version of th	5_{15} Vergleich der optischen Bestimmung mit REM-Aufnahmen	84
available at the main library of t University of Technology.	15.4.3 ^a Anodisches Oxid im elektrischen Durchbruch	85
http://www.ub.tuwien.ac.at/en 5.5	Optische Effekte an dünnen Oxidschichten	87
	5.5.1 Fresnelsche Formeln	87
	5.5.2 Interferenz an dünnen Schichten	90
	5.5.3 Berechnung der Farben anodischer Oxidschichten	91
	5.5.4 Keilinterferenz und Newtonsche Ringe	93
	5.5.5 Simulation der Farbverläufe keilförmiger, anodischer Oxide	94
5.6	Abschließende Bewertung und mögliche Anwendungsgebiete	99
	5.6.1 Optoelektronische Anwendungen	99
	5.6.2 Verfahren zur Herstellung von Dunnschichten	99
	5.6.3 Anwendungen im MEMS Bereich	100
	5.6.4 Anwendungen im Bereich von Leistungshalbleitern	100
6 Elek	trochemischer Ätzstopp als Dünnungsprozess für Leistungshalbleiter	101
6.1	Motivation	101
6.2	Problematik des Ätzstopps am IGBT	102
	6.2.1 Aufbau und Funktion von IGBTs	102
	6.2.2 Problematik bei der Kontaktierung: Widerstand der Driftzone .	104
	6.2.3 Einflüsse auf die Enddicke	105
6.3	Theoretische Modellierung des Ätzstroms	105
	6.3.1 Bipolarmodell für eine 4-Elektrodenanordnung	105
	6.3.2 Berechnung des Ätzstroms	107
	6.3.3 Thyristoreffekt	109
6.4	Simulation des lateralen Spannungsabfalls beim ECES	109
	6.4.1 Lateraler Spannungsabfall am Chip	109
	6.4.2 Finite-Elemente Simulation des Spannungsabfalls am Chip	110
	6.4.3 Buried Layer als Opferschicht: Simulation am Wafer	111
6.5	Experimentelle Untersuchungen	115
	$6.5.1 \text{Versuchsaufbau} \dots \dots \dots \dots \dots \dots \dots \dots \dots $	115
	6.5.2 Kennlinie eines Wafers mit pn-Ubergang in KOH	115
	0.5.3 Zeitlicher Verlauf des Atzströms und Auswirkung der Raumla-	116
	6 5 4 Ätzetenn bei Crebenkentelt der Driftzene	110
	6.5.5 ECES suf niedrig detierten Substraten	117
6.6	Abschließende Bewertung	121 191
0.0	Abschliebende Deweitung	121
7 Galv	anische Herstellung von Kupfer-Kohlenstoff-Verbundmaterialien	123
7.1	Integrierte Wärmesenken	123
	7.1.1 Thermische und elektrische Eigenschaften von Kupfer-Verbund-	
	werkstoffen	124
	7.1.2 Herstellung von Verbundwerkstoffen	125
7.2	Thermische Finite-Elemente Simulationen	126

Х

7.2.	IUDie Wärmeleitungsgleichung	. 126
The approved original version of	2his Simulation kurzer Wärmepulse	. 127
available at the main library 200	^{3 the} Ergebnisse der thermischen Simulation	. 129
http://www.ub.tuwian.3.at/eDiff	usion in porösen Medien	. 130
7.3.	Die Diffusionsgleichung	. 132
7.3.2	2 Effektiver Diffusionskoeffizient	. 133
7.3.3	3 Finite-Elemente Simulationen von Diffusionsvorgängen	. 134
7.4 Gal [*]	vanische Verfüllung von Kohlefaser-Schüttungen mit Kupfer	. 137
7.4.	1 Herstellung strukturierter Siliziumwafer	. 137
7.4.2	2 Prozessablauf	. 137
7.4.3	3 Ergebnisse	. 138
7.5 Here	stellung von Verbundmaterial-Dickschichten durch Sedimentation	. 142
7.5.1	1 Sedimentation von Mikropartikeln	. 142
7.5.2	2 Experimentelle Durchführung	. 143
7.5.3	3 Ergebnisse	. 144
8 Schlussfo	olgerungen und Ausblick	146
Abkürzungs	verzeichnis	149
Abbildungsv	erzeichnis	150
Literatur		153

Die approbierte Originalversion dieser Dissertation ist in der Hauptbibliothek der Technischen Universität Wien aufgestellt und zugänglich. http://www.ub.tuwien.ac.at

The approved original version of this thesis is available at the main library of the Vienna University of Technology.

http://www.ub.tuwien.ac.at/eng

The approved original version of this thesis is available at the main library of the Vienna University of Technology.

Mikroelektronische Bauelemente auf der Basis von Silizium finden in nahezu allen Bereichen der Elektronikindustrie breite Anwendung. Von Küchengeräten, diversen Sicherheitssystemen, Computern, Smartphones, Autos bis hin zu Hochleistungschips für Windkraftanlagen und Lokomotiven gibt es praktisch kaum einen Bereich, wo Halbleiterbauelemente nicht benötigt werden. Dieser Trend dürfte sich in nächster Zeit noch verstärken und auf andere Bereiche ausdehnen. Analoge Technologien werden verdrängt und durch digitale ersetzt, wie dies am Beispiel der Photographie sehr deutlich zu sehen ist. Gleichzeitig mit der Erschließung neuer Geschäftsfelder erhöht sich die Komplexität integrierter Schaltkreise: die Integrationsdichte verdoppelt sich alle zwei Jahre. Dieser Zusammenhang wurde von Gordon Moore 1965 postuliert und ist allgemein als Moorsches Gesetz bekannt. Es ist absehbar, dass dieser Trend noch bis in die 2020er Jahre anhalten wird. [1, 2]

Im Bereich der Leistungselektronik erhöht sich nicht nur die Integrationsdichte, es sinkt auch die Verlustleistung und Größe der Chips und somit können immer höhere Ströme pro Siliziumfläche geschaltet werden. Kleinere Chips haben mehrere Vorteile: sie senken die Fertigungskosten und bieten gleichzeitig einen Mehrwert für die Kunden. Durch die geringere Verlustleistung können diese ihre Schaltungen besser optimieren und damit Energie und Kosten sparen. Einsparungen von wenigen Prozent auf Chipebene können deutliche Auswirkungen auf die Gesamtapplikation haben, wenn für den Bau von Schaltungen beispielsweise kleinere Kondensatoren und Induktionsspulen verwendet werden können. Elektrische Geräte werden damit insgesamt kleiner und stromsparender, im Falle von Elektroautos erhöht sich deren Reichweite. In der Mikroelektronik, vor allem im Bereich der Leistungshalbleiter, gibt es daher Bestrebungen immer kleinere und dünnere Chips mit immer höheren Stromdichten und daher kleinerem Einschaltwiderstand (R_{on}) zu fertigen, was zusätzlich in höheren Stückzahlen pro Wafer und somit in geringeren Kosten resultiert. [1, 3]

Die Produktion von Mikrochips muss immer schneller, günstiger und zuverlässiger werden, Einzelprozesse werden optimiert und stoßen oft an die Grenzen technischer Machbarkeit. Oft stehen die Anforderungen an die Stabilität und Präzision von Einzelprozessen im Widerspruch zum Durchsatz und den Kosten. In manchen Fällen ist es notwendig, völlig neue Alternativen zu untersuchen, auszuprobieren und gegebenenfalls auch zu implementieren. Eine weitere Senkung der Kosten bringt die Fertigung auf Wafern mit größerem Durchmesser. Erste 300 mm Fertigungsanlagen gab es bei der Herstellung von Speicherchips. Infineon Technologies ist es 2011 als erster Firma weltweit gelungen, auch funktionierende Leistungshalbleiter auf Dünnwafern mit 300 mm Durchmesser herzustellen. [4, 1, 3]

Die vorliegende Dissertation befasst sich mit elektrochemischen Einzelprozessen zur Herstellung von Halbleiterbauelementen. Die Elektrochemie spielt in der Halbleiterfertigung zur Zeit eine eher untergeordnete Rolle. Einer der bedeutendsten elektroche-The approved original mischen Einzelprozesse, der einen breiten Anwendungsbereich hat, ist der elektrocheavailable at the main mische Ätzstöpp. Er dient vor allem der Herstellung von hochpräzisen Membranen http://www.ub.tuwien.acfür mikroelektronische mechanische Systeme (MEMS), wie zum Beispiel Druck- und Beschleunigungssensoren. Andere elektrochemische Prozesse, die ihre Anwendung in der Halbleiterindustrie haben sind unter anderem die elektrochemische Abscheidung

von Metallen, Elektropolieren sowie die Herstellung von porösem Silizium. [5, 6, 7]

Ein möglicher Anwendungsbereich der Elektrochemie in der Halbleiterindustrie ist die Erzeugung anodischer Oxide auf Silizium. Siliziumdioxid spielt in der Herstellung von Leistungshalbleitern eine sehr wichtige Rolle mit seinen Eigenschaften als Dielektrikum und Isolator sowie als Hartmaske beim Ätzen. Es lässt sich auf Silizium sehr einfach herstellen, etwa durch thermische Oxidation oder durch Abscheidung (TEOS⁴). Diese Prozesse erfordern hohe Temperaturen von über 800 °C, was eine große Einschränkung in der Halbleiterfertigung darstellt, da jeglicher Oxidationsschritt vor einer Metallabscheidung stattfinden muss. Es wäre daher wünschenswert, Oxide bei verhältnismäßig niedrigen Temperaturen unter 400 °C herstellen zu können. Die anodische Oxidation bietet diese Möglichkeit, da sie bereits bei Normalbedingungen stattfinden kann. In diesem Fall ist das elektrische Feld die treibende Kraft und somit sind hohe Temperaturen nicht erforderlich, um die Oxidation von Silizium zu ermöglichen. Allerdings haben anodische Oxide deutlich schlechtere Eigenschaften als thermische Oxide, zudem ist deren Herstellung komplizierter und erfordert ein Elektrolytbad sowie eine elektrische Kontaktierung des Wafers. Aus diesem Grund hat sich die anodische Oxidation nicht gegen die anderen Verfahren durchsetzen können und ist dadurch auch wesentlich schlechter untersucht. [6, 5]

Anodische Oxidation würde sich weiters auch zur Herstellung von mikrooptischen Strukturen auf Siliziumwafern eignen. Als solche werden miniaturisierte Formen von konventionellen optischen Elementen bezeichnet, deren Durchmesser kleiner als 1 mm ist und bis zu 10 µm reichen kann. Beispiele dafür sind Mikrolinsen und Mikroprismen. In der Natur treten sie in Form von Schorganen kleiner Tiere, zum Beispiel bei Insekten auf. Mikrolinsen spielen auch in der Optoelektronik eine bedeutende Rolle. Es gibt verschiedene Verfahren zur Herstellung solcher Linsen. Ein Beispiel wäre der sogenannte LOCOS Prozess, bei dem eine Siliziumnitridmaske lokal geöffnet und der Siliziumwafer thermisch oxidiert wird. Dabei entstehen je nach Größe und Form der Öffnung dreidimensionale, linsenförmige Strukturen. Andere Herstellungsmethoden bedienen sich der Strukturierung von Glaswafern, wobei die Linsen anschließend auf Siliziumwafer gebondet werden können. Eine weitere Möglichkeit bietet die lokale anodische Oxidation, wo über einen Flüssigkeitstropfen ein elektrisches Feld angelegt und so eine Linse erzeugt wird. Die in dieser Arbeit vorgestellte Methode hat den Vorteil, dass sie sich mit sehr hoher Präzision reproduzierbar auf Waferebene anwenden ließe. [8, 9]

2

 $^{{}^{4}}$ Tetraethylorthosilicat

Ein weiterer Anwendungsbereich elektrochemischer Prozesse ist die hochpräzise Dün-The approvenung von Siliziumwafern. Leistungshalbleiter werden für gewöhnlich auf der Vorderseite unversity of prozessiert, wobei der Wafer in diesem Zustand bis zu 800 µm dick ist. Nachdem die http://www.Worderseite fertiggestellt ist, wird der Wafer auf einer Folie oder einem Glaswafer geträgert und von der Rückseite aus geschliffen. Das mechanische Schleifen von Siliziumwafern erfolgt mit einer Genauigkeit von bis zu einem Mikrometer. Dies gilt jedoch nur für blanke, ungeträgerte Siliziumscheiben. Photoimidstrukturen auf der Vorderseite sowie Dickenvariationen des Trägersystems verursachen unter Umständen Ungenauigkeiten von mehreren Mikrometern. Der elektrochemische Ätzstopp ermöglicht eine hochpräzise Dünnung, die unabhängig von der Vorderseitenstruktur sowie der eingesetzten Trägertechnik ist. Im Zuge dieser Dissertation wurden verschiedene Ansätze mit dieser Methode ausgetestet und auch erfolgreich auf Wafern mit Leistungshalbleitern demonstriert. Die Methode beschränkt sich jedoch keineswegs auf Leistungshalbleiter und kann auch als kostengünstige Alternative zur sehr teuren SOI⁵ Methode angesehen werden. [5, 10]

Die elektrochemische Abscheidung von Kupfer auf Siliziumwafern gehört zum aktuellen Stand der Technik und wird in der Halbleiterfertigung für eine Vielzahl an Produkten eingesetzt. Eine weitere Möglichkeit zum Einsatz dieser Technik ist die Herstellung dicker Schichten aus Kupferverbundmaterialien mit angepasstem thermischen Ausdehnungskoeffizienten auf dünnen Siliziumwafern. Die aktive Zone, die für die elektrischen Eigenschaften eines Leistungshalbleiters von Bedeutung ist, beinhaltet meist nur einige Mikrometer an der Vorderseite, während das restliche Silizium als Träger dient, um den Chip mechanisch zu unterstützen. Die thermischen Eigenschaften eines Chips verbessern sich für Wärmepulse im Bereich einiger Mikrosekunden deutlich, wenn das überflüssige Silizium durch Materialien mit besserer Wärmeleitfähigkeit und -kapazität ausgetauscht wird. Auch der Einschaltwiderstand R_{on} erniedrigt sich durch die Verwendung von Materialien mit besserer elektrischer Leitfähigkeit. Eine Schicht mit guten thermischen Eigenschaften wird auf Waferebene als "integrierte Wärmesenke" bezeichnet. Die Verwendung von reinem Kupfer ist hochproblematisch, da dieses einen thermischen Ausdehnungskoeffizienten hat, der weit über dem des Silizium liegt. In dieser Arbeit wurden grundlegende Untersuchungen zur Herstellung integrierter Wärmesenken aus Kupfer-Kohlenstoff Verbundmaterialien mit reduziertem Ausdehnungskoeffizienten durch elektrochemische Abscheidung durchgeführt. [1, 11, 12, 13]

Neben den experimentellen Untersuchungen spielten für die Ergebnisse dieser Arbeit auch Computersimulationen eine wichtige Rolle, um in vielen Fällen Interpretationen von Messungen zu untermauern und die physikalische Zusammenhänge besser verstehen zu können. Zum Teil wurden diese Simulationen auch dazu verwendet, konkrete Vorhersagen über den Ausgang von Experimenten zu machen. Dies war vor allem von Bedeutung, wenn Versuche ein aufwendiges Chipdesign erforderten, wie es beim elektrochemischen Ätzstopp auf Leistungshalbleitern der Fall war.

 $^{^{5}}$ Silicon on Insulator

Sämtliche in dieser Arbeit verwendeten Simulationsprogramme wurden in der Program-The approved original miersprache Python⁶ geschrieben [14]. Für aufwendige numerische Berechnungen wurde available at the main zusätzlich auf die Python Bibliotheken NumPy⁷ und SciPy⁸ zurückgegriffen, die ihreruniversity of Technology. Seits auf den Softwarebibliotheken LAPACK⁹ und BLAS¹⁰ aufbauen. Diese quelloffenen Bibliotheken stellen den De-Facto-Standard für elementare Operationen der linearen

Algebra dar. Die Programmiersprache Python bietet mit diesen Softwarebibliotheken eine freie Alternative zur weit verbreiteten Simulationssoftware MATLAB¹¹.[15]

Finite Elemente Simulationen wurden mit dem Softwarepaket FEniCS¹² durchgeführt, das über ein Python Interface verwendet werden kann. Es bietet Werkzeuge für numerisches, wissenschaftliches Rechnen mit computergenerierten Netzen, der Berechnung von gewöhnlichen und partiellen Differentialgleichungen sowie für die Behandlung mathematischer Problemstellungen der linearen Algebra. [16]

Die Aufbereitung der Messdaten sowie deren Auswertung erfolgte überwiegend mittels eigens geschriebener Computerprogramme. Die grafische Darstellung wurde unter Verwendung der Python Grafikbibliothek MATPLOTLIB¹³ durchgeführt. Lineare Ausgleichsrechnungen wurden mit Python und Gnuplot¹⁴ durchgeführt. Die Messwerterfassung geschah zum Teil durch Python Programme unter Verwendung des Moduls PySerial¹⁵, das zum Ansteuern von seriellen Schnittstellen dient. [17, 18]

4

 $^{^{6}}$ Interpretierte, objektorientierte Programmiersprache

⁷http://www.numpy.org/

⁸http://www.scipy.org/

⁹Linear Algebra PACKage

¹⁰Basic Linear Algebra Subprograms

¹¹ http://www.mathworks.de/products/matlab/

¹²Sammlung freier Softwarekomponenten zur automatisierten, numerischen Berechnung von Differentialgleichungen http://fenicsproject.org/

 $^{^{13} \}rm http://matplotlib.org/$

¹⁴http://www.gnuplot.info/

 $^{^{15}}$ http://pyserial.sourceforge.net/

Die approbierte Originalversion dieser Dissertation ist in der Hauptbibliothek der Technischen Universität Wien aufgestellt und zugänglich. http://www.ub.tuwienac.at

2 Grundlagen der Halbleiterphysik und Elektrochemie

The approved original version of this thesis is available at the main library of the Vienna University of Technology.

In diesem Abschnitt sind die wichtigsten Grundlagen und theoretischen Modelle der Halbleiterphysik und Elektrochemie kurz zusammengefasst. Sie sind für das Verständnis der folgenden Kapitel und insbesondere der elektrochemischen Eigenschaften des Siliziums von grundlegender Bedeutung. Der Inhalt wurde verschiedenen Lehrbüchern entnommen, die als Standardwerke gelten.

2.1 Grundlagen der Halbleiterphysik

2.1.1 Das Bändermodell

Die Energiezustände in einem idealen Kristall werden üblicherweise mit Hilfe des Bändermodells beschrieben. Energiebänder sind Bereiche mit vielen dicht benachbarten Energieniveaus, die mit Elektronen besetzt werden können. Bei einem Halbleiter sind nur das oberhalb der Leitungsbandkante E_L liegende Leitungsband sowie das unter der Valenzbandkante E_V liegende Valenzband von Interesse. Alle Energiebänder unterhalb des Valenzbandes sind voll mit Elektronen besetzt. Sie können keine kinetische Energie aufnehmen und daher auch nicht zur elektrischen Leitfähigkeit beitragen. Der Energieabstand E_g , der das Leitungsband vom Valenzband trennt, wird als verbotene Zone bezeichnet, in der keine zu besetzenden Energieniveaus vorhanden sind. [2]

Ein Halbleiter hat die Eigenschaft, dass bei sehr niedrigen Temperaturen keine Elektronen im Leitungsband sind und das Valenzband voll besetzt ist. Dadurch ist dieser nicht mehr leitfähig und wird zum Isolator. Mit steigender Temperatur sind Elektronen zunehmend in der Lage, die Bandlücke zu überwinden und ins Leitungsband zu gelangen. Halbleiter haben daher einen positiven elektrischen Temperaturkoeffizienten: sie werden mit steigender Temperatur leitfähiger. Bei Silizium beträgt die Bandlücke 1.12 eV. Dieser Bandabstand ist so gering, dass bereits bei Raumtemperatur im Silizium $1.45 \cdot 10^{10}$ Elektronen und Löcher pro cm³ entstehen. [2]

Ist die Energielücke so groß, dass sie nicht überwunden werden kann (größer 4 eV), so spricht man von einem Isolator. Da in diesem Fall ein Band vollkommen besetzt und das andere leer ist, kann kein Stromfluss stattfinden. Bei Metallen hingegen überlappen das Leitungs- und Valenzband, sodass bereits bei geringen Temperaturen und Feldstärken ein Stromfluss möglich ist. Das Bändermodell für diese drei Fälle ist in Abbildung 1 auf der nächsten Seite dargestellt.

Die Elektronen, die in das Leitungsband gelangen, hinterlassen im Valenzband unbesetzte Zustände. In diese können nun benachbarte Valenzbandelektronen migrieren, wodurch neue unbesetzte Niveaus entstehen. Dieser Vorgang kann als Wanderung

Abbildung 1: Das Bändermodell: a) Isolator - die Bandlücke ist so groß, dass keine Elektronen ins Leitungsband geraten können, b) Halbleiter - einige Elektronen werden thermisch angeregt und erzeugen Elektron-Loch Paare, c) Metalle - die Energiebänder überlappen.

positiver Ladungen beschrieben werden. Die unbesetzten Zustände werden Löcher oder Defektelektronen genannt und man spricht vom Konzept der Löcherleitung. [2, 19]

Das Entstehen von Elektron - Lochpaaren durch thermische Anregung wird als Generation bezeichnet. Den gegenläufigen Vorgang, bei dem Elektronen Energie verlieren und zurück ins Valenzband gelangen nennt man dagegen Rekombination. Es stellt sich ein thermodynamisches Gleichgewicht zwischen Rekombination und Generation ein. Bei einem undotierten Halbleiter ist die Konzentration der Elektronen gleich jener der Löcher und wird als Intrinsicdichte n_i bezeichnet. Die Intrinsicdichte ist umso größer, je kleiner die Bandlücke und je höher die Temperatur ist. [2, 19]

2.1.2 Donatoren und Akzeptoren

Durch den Einbau von Fremdatomen können die elektrischen Eigenschaften von Halbleitern verändert werden. Dieser Vorgang wird als Dotierung bezeichnet. Silizium befindet sich in der IV. Hauptgruppe des Periodensystems der Elemente und besitzt auf der äußeren Schale vier Elektronen. Da zu einer vollständigen Schale 8 Elektronen gehören, ergeben sich pro Siliziumatom 4 Elektronenpaarbindungen. Wird nun an einen Gitterplatz anstatt des Siliziums ein fünfwertiges Atom gebracht, zum Beispiel Phosphor, so ist eine der Bindungen ungesättigt und ein Siliziumatom kann ins Valenzband abgespalten werden. [2]

Dies ist möglich, wenn die Ionisationsenergie des zusätzlichen Elektrons sehr viel geringer ist als der Bänderabstand. Am Beispiel Silizium-Phosphor beträgt dieser Abstand 0.05 eV. Es entsteht somit ein frei bewegliches Elektron sowie ein positiv geladenes, fest verankertes Phosphoratom. Ein fünfwertiges Fremdatom wird als Donator bezeichnet, da es ein Elektron abgeben kann. Werden viele solcher Donatoratome eingebracht (zB. durch Implantation und Diffusion oder während eines Epitaxieverfahrens), so The approventsteht ein producerter Halbleiter. Je höher die Dotierung, desto niedriger ist der available at spezifische Widerstand. Wird anstatt eines fünfwertigen Atoms ein dreiwertiges in http://www.udas-Kristallgitter des Siliziums eingebracht, so kann von einer benachbarten Bindung ein Elektron an diese Stelle migrieren, was der bereits erwähnten Löcherleitung entspricht. Dreiwertige Atome werden als Akzeptoren bezeichnet, da sie in der Lage sind, Elektronen aufzunehmen. [2, 19, 20]

2.1.3 Das Ferminiveau

Die Ladungsträgerkonzentration in einem Halbleiter wird mit Hilfe der Fermi-Verteilungsfunktion berechnet. Diese gibt an, mit welcher Wahrscheinlichkeit ein bestimmtes Energieniveau besetzt ist. Im thermodynamischen Gleichgewicht gilt für die Besetzungswahrscheinlichkeit:

$$F(E) = \frac{1}{1 + e^{(E - E_F)/kT}},$$
(1)

mit der Boltzmannkonstante k und der absoluten Temperatur T. Die Energie E_F wird als Ferminiveau bezeichnet und ist eine wichtige Größe in der Halbleiterphysik. Ein Energinieveau mit dem Wert des Ferminiveaus hat, wie man durch Einsetzen von $E = E_F$ in Gleichung (1) erkennen kann, die Besetzungswahrscheinlichkeit $\frac{1}{2}$. Das Ferminiveau ist demnach jener Energiezustand, der mit 50% iger Wahrscheinlichkeit besetzt ist. Für T = 0 nimmt die Funktion einen rechteckigen Verlauf an. [2]

Die Konzentration der Donatoren und Akzeptoren im Halbleiter beeinflusst die Lage des Ferminiveaus, das sich bei Halbleitern innerhalb der verbotenen Zone befindet. Je stärker n-dotiert der Halbleiter ist, desto näher verschiebt es sich an die Leitungsbandkante. Bei p-Dotierung wiederum liegt es näher an der Valenzbandkante. Das Ferminiveau spielt auch bei der späteren Betrachtung des Halbleiter-Elektrolyt Überganges eine wichtige Rolle.

2.1.4 Drift und Diffusion

Wird an einen Halbleiter ein elektrisches Feld angelegt, so erhalten die freien Ladungsträger zusätzlich zu ihrer thermischen Bewegung eine Geschwindigkeitskomponente. Für die mittlere Geschwindigkeit v eines Elektrons gilt:

$$\vec{v}_n = -\mu_n \vec{E}.\tag{2}$$

http://www.ub.tuwien.ac.at/eng

$$\vec{v}_p = \mu_p \vec{E}.$$
(3)

Die Bewegung der Ladungsträger im Halbleiter wir als Drift bezeichnet und der resultierende Strom wird Driftstrom genannt. Für die Stromdichte der Elektronen J_n gilt somit:

$$\vec{J_n} = \rho \vec{v_n} = -qn \vec{v_n} = qn\mu_n \vec{E}.$$
(4)

Analog gilt für die Stromdichte ${\cal J}_p$ der Löcher:

$$\vec{J_p} = \rho \vec{v_p} = q n \vec{v_p} = q n \mu_p \vec{E},\tag{5}$$

wobei μ_n und μ_p die Beweglichkeiten der Elektronen und Löcher im Halbleiter darstellen. [2]

Erfolgt ein Stromfluss durch das Zerfließen von Ladungsträgern infolge thermischer Anregung, so spricht man von Diffusion. Für die Diffusionsstromdichte der Elektronen und Löcher gilt:

$$\vec{J_n} = qD_n \vec{\nabla} n \tag{6}$$

$$\vec{J_p} = qD_p \vec{\nabla} p \tag{7}$$

Die Diffusionskonstante D kann mit Hilfe der Einstein-Beziehung in Abhängigkeit der Beweglichkeit ausgedrückt werden [2]:

$$D_{p,n} = \frac{kT}{q} \mu_{p,n}(T) = \phi_t(T) \mu_{p,n}(T).$$
 (8)

2.1.5 Metallurgischer pn-Übergang

The approved original version of this thesis is available at the main library of the Vienna

University of Die Grenzfläche zwischen einem p- und einem n-dotierten Halbleiter wird als pn-Ubergang bezeichnet. An dieser Stelle stehen sich unterschiedliche Konzentrationen von Elektronen und Löchern gegenüber. Dieser Konzentrationsunterschied bewirkt, dass Löcher vom p-Gebiet in das n-Gebiet und umgekehrt Elektronen aus dem n- in den p-dotierten Halbleiterbereich diffundieren. Dieser Diffusionsstrom bewirkt, dass sich der zuvor neutrale Halbleiter im n-Gebiet positiv und im p-Gebiet negativ auflädt. Die unterschiedlichen Ladungen bewirken ein elektrisches Feld, das eine Bewegung hervorruft, die genau entgegengesetzt der Diffusion gerichtet ist und einen Driftstrom verursacht. [2]

Das thermodynamische Gleichgewicht am pn-Übergang ist erreicht, wenn der Driftund Diffussionsstrom gleich sind und der Gesamtstrom damit 0 ist. Für Elektronen gilt im eindimensionalen Fall:

$$J_n = q\mu_n nE + qD_n \frac{dn}{dx} = 0.$$
(9)

Umformen ergibt:

$$Edx = -\frac{D_n dn}{\mu_n n}.$$
(10)

Die Diffusionsspannung kann als Integral über das elektrische Feld berechnet werden. Es gilt:

$$\phi_i = -\int_{x_p}^{x_n} E dx = \frac{D_n}{\mu_n} \int_{n_{p0}}^{n_{n_0}} \frac{dn}{n} = \phi_t \ln \frac{n_{n0}}{n_{p0}}$$
(11)

Die Raumladungszone ist an freien Ladungsträgern verarmt. Die Elektronen aus dem n-Gebiet, die in das p-Gebiet diffundieren, sind dort Minoritätsladungsträger und rekombinieren folglich mit den Löchern. Das selbe passiert auch mit den Löchern im n-Gebiet, die analog mit den dort im Überschuss vorhandenen Elektronen rekombinieren. Im thermodynamischen Gleichgewicht muss Ladungsgleichheit herrschen und somit gilt die Ladungsbilanz:

$$x_p N_A = x_n N_D, (12)$$

Abbildung 2: Der pn-Übergang: a) und b) Ausbildung der Raumladungszone: es verbleiben die positiv geladenen Donatorrümpfe und die negativ geladenen Akzeptorrümpfe. c) Konzentration der positiv geladenen Akzeptoren N_A und der negativ geladenen Donatoren N_D . Die Raumladungszone ist an freien Ladungsträgern vollständig verarmt. d) Das elektrische Feld nimmt einen dreiecksförmigen Verlauf an. [2]

wobei x_p und x_n die Ausbreitung der Raumladungszone in das jeweilig dotierte Gebiet bezeichnen. Diese erstreckt sich somit immer stärker in den schwächer dotierten Bereich des pn-Übergangs. Die Landungsmenge auf beiden Seiten ist identisch. [19]

Das Anlegen eines elektrischen Feldes bewirkt je nach Polarität eine Ausweitung oder eine Verminderung der Raumladungszone. Bei Polung in Sperrrichtung (plus auf n und minus auf p) verbreitert sich die Raumladungszone und es fließt nur ein sehr kleiner Strom, der als Leckstrom bezeichnet wird. Der Grund für die herabgesetzte Leitfähigkeit liegt in der Verarmung an freien Ladungsträgern. Das Silizium verhält sich in diesem Bereich wie ein Isolator.

In Durchlassrichtung verkleinert sich die Raumladungszone, bis der pn-Übergang nicht mehr sperren kann und leitend wird. Minoritätsladungsträger werden aufgrund

der reduzierten Energiebarriere in das n- und p-Gebiet injiziert, wobei die injizier-The approve ten Ladungsträger, aus dem Reservoir der Majoritätsträger kommen und durch die available at Spannungsquelle nachgeliefert werden. [19]

http://www.ub.tuwien.ac.at/eng

2.1.6 Ausbreitung der Raumladungszone

Zur Berechnung der Raumladungszone wird angenommen, dass die Raumladung durch eine rechteckige Verteilung der ionisierten Dotieratome beschrieben werden kann. Durch Integration über die ionisierte Ladung ergibt sich der Verlauf des elektrischen Feldes.

$$E(x) = \frac{1}{\epsilon_0 \epsilon_{Si}} \int \rho(x) dx.$$
(13)

Am metallurgischen pn-Übergang ist das Feld maximal. Aufgrund der rechteckigen Raumladung gilt für E_M :

$$E_M = -\frac{qN_A}{\epsilon_0\epsilon_{Si}}x_p = -\frac{qN_D}{\epsilon_0\epsilon_{Si}}x_n,\tag{14}$$

wobei x_n und x_p die Ausbreitung der Raumladungszone in das n- und p-dotierte Gebiet angibt. [2]

Die an der Raumladungszone wirkende Spannung $\phi_i - U_{pn}$ entspricht dem Integral über das gesamte elektrische Feld. Aufgrund der dreieckigen Form des Feldes (siehe 2) gilt:

$$\phi_i - U_{pn} = -\frac{1}{2} E_m \cdot w, \tag{15}$$

wobei $w = x_p + x_n$ die gesamte Ausbreitung der Raumladungszone ist. Damit ergibt sich durch Einsetzen der obigen Beziehungen:

$$\phi_i - U_{pn} = \frac{1}{2} \frac{qN_A}{\epsilon_0 \epsilon_{Si}} x_p (x_p + x_n) \tag{16}$$

Mit Hilfe der Ladungsneutralität in Gleichung (12) auf Seite 9 lassen sich x_n und x_p von einander abhängig explizit ausdrücken. Durch Einsetzen und Auflösen nach x_p ergibt sich die Weite der Raumladungszone im p-dotierten Gebiet:

$$x_p = \sqrt{\frac{2\epsilon_0\epsilon_{Si}(\phi_i - U_{pn})}{qN_A(1 + \frac{N_A}{N_D})}}.$$
(17)

Analog erhält man für die Ausbreitung in das n-dotierte Gebiet durch auflösen nach x_n :

$$x_{n} = \sqrt{\frac{2\epsilon_{0}\epsilon_{Si}(\phi_{i} - U_{pn})}{qN_{D}(1 + \frac{N_{D}}{N_{A}})}}.$$
(18)

Für die gesamte Ausbreitung der Raumladungszone gilt somit:

$$w = x_p + x_n = \sqrt{\frac{2\epsilon_0\epsilon_{Si}}{q} \left(\frac{1}{N_A} + \frac{1}{N_D}\right)(\phi_i - U_{pn})}.$$
(19)

Diese Formeln spielen eine wichtige Rolle beim elektrochemischen Ätzstopp, da mit ihrer Hilfe Membrandicken berechnet und vorhergesagt werden können. [2, 20]

2.1.7 Strom-Spannungs-Verhalten des pn Übergangs

Die klassische Theorie des pn-Übergangs wurde als erstes von Shockley [21] hergeleitet. Demnach hat die Stromdichte die Form:

$$j = j_s \left(e \frac{qU}{kT} - 1 \right). \tag{20}$$

Der Vorfaktor j_s ist in diesem Fall der Sättigungssperrstrom. Diese Gleichung wird auch als die Strom-Spannungs-Kennlinie der idealen Diode bezeichnet. Im Durchlassfall beschreibt sie einen exponentiell ansteigenden Strom, im Grenzfall einen Sperrstrom, der sich an j_s annähert. Der Sättigungssperrstrom hängt von den Dotierverhältnissen des pn-Überganges ab und hat die Form:

$$j_s = n_i^2 \left(\frac{D_p}{L_p N_D} + \frac{D_n}{L_n N_A} \right).$$
(21)

 L_n und L_p sind die Diffusionslängen der Minoritätsladungsträger. Damit ist der Sättigungssperrstrom dominiert durch das intrinsische Dichteprodukt n_i^2 . Daraus resultieren

Abbildung 3: Funktionsweise eines Bipolartransistors. Ein schwacher Basisstrom steuert einen stärkeren Kollektor-Emitter Strom. [22]

unter anderem auch die hervorragenden Sperreigenschaften von Galliumnitrid und Siliziumcarbid, da für diese Halbleiter die intrinsische Ladungsträgerkonzentration um Größenordnungen unter der des Silizium liegt. [2]

Für Leistungsbauelemente sind pn-Übergänge, bei denen die eine Seite hoch und die andere niedrig dotiert ist, üblich. Die schwach dotierte Seite dient dabei der Aufnahme des elektrischen Feldes, wenn das Bauelement in Sperrrichtung betrieben wird. Die hoch dotierte Seite wiederum injiziert Ladungsträger in die niedrig dotierte Zone und wird daher als Emitter bezeichnet. Viele Dioden und Bipolartransistoren sind auf diese Weise aufgebaut. [19]

2.1.8 Funktionsweise des Bipolartransistors

Ein Bipolartransistor ist ein Bauelement mit einer p
np oder npn Schichtfolge. Er besteht aus zwei aufeinander folgenden pn-Übergängen und entspricht damit zwei ent-
gegengesetzt geschalteten Dioden. Lange Zeit war der Bipolartransistor das wichtigste schaltende Bauelement der Leistungselektronik, bis er Ende der 80er Jahre durch den IGBT¹⁶, abgelöst wurde. [19]

Das Funktionsprinzip eines n
pn Bipolartransistors ist in Abbildung 3 dargestellt. Werden nur der Kollektor und der Emitter angeschlossen, wobe
i $U_C > U_E$ gilt, so befindet sich der pn-Übergang zwischen Basis und Kollektor im Sper
rzustand. Es fließt nur ein sehr kleiner Strom, der dem Leckstrom der Diode entspricht.

Wird an der Basis eine positive Spannung gegenüber dem Emitter angelegt, die größer ist als die Diffusionsspannung der Basis-Emitter Diode (etwa 0.7 V bei Silizium), so fließt ein kleiner Basisstrom zwischen Emitter und Basis. Die Diode wird leitend und

¹⁶Insulated Gate Bipolar Transistor, Bipolartransitor mit isolierter Gate-Elektrode

es werden Löcher in den Emitter injiziert, die entsprechend der Diffusionslänge mit den The approved original Elektronen, sdie available at the main auch Elektronen aus dem Emitter in die Basis injiziert. Ist die Weite der Basis unter der university of Technology. Elektronen der Elektronen, so können diese durch sie hindurch diffundieren und in die Basis-Kollektor Sperrschicht gelangen, wo sie aufgrund der hohen Potentialdifferenz

in den Kollektor gezogen werden und einen Emitter-Kollektor Strom generieren. [2]

Der Stromverstärkungsfaktor α eines Bipolartransistors ist definiert durch:

$$I_C = \alpha I_E + I_{CB0},\tag{22}$$

wobei mit I_{CB0} der Basis-Kollektor Sperrstrom bezeichnet wird. Bei offener Basis ist der Emitter- gleich dem Kollektorstrom: $I_C = I_E = I_{CE0}$. Damit gilt:

$$I_{CE0} = \frac{I_{CB0}}{1 - \alpha}.$$
 (23)

Der Sperrstrom zwischen Kollektor und Emitter ist folglich immer größer als der Sperrstrom zwischen Kollektor und Basis und zudem stark vom Verstärkungsfkator α abhängig. Dieser hängt wiederum vom Emitterwirkungsgrad γ und dem Transportfaktor α_T ab: [19, 20]

$$\alpha = \gamma \cdot \alpha_T. \tag{24}$$

Die Faktoren α_T und γ hängen unter anderem von den Dotierverhältnissen, der Basisweite sowie von der Diffusionslänge der Elektronen in der Basis ab. Für den elektrochemischen Ätzstopp ist dies von zentraler Bedeutung, da die Zunahme von α im Verlauf der Ätzung zu einem immer höheren Kollektor-Emitter Strom und unter Umständen zu einem verfrühten Ätzstopp führt. Dieser Zusammenhang wird ausführlich in Kapitel 6.3.1 auf Seite 105 behandelt.

2.1.9 Der Thyristor

Ein Thyristor ist ein Bauelement, das aus 4 Schichten mit abwechselnd n- und pdotierten Gebieten besteht und somit 3 pn-Übergänge aufweist. Beim Betrieb in Vorwärtsrichtung befinden sich die äußeren pn-Übergänge in Durchlassrichtung, während der mittlere im Sperrzustand betrieben wird. Beim Betrieb des Thyristors in Sperrrichtung befinden sich die äußeren pn-Übergänge im Sperrzustand während, der

Abbildung 4: Schematische Darstellung des Thyristors: a) und b) Schichtfolge, c) Ersatzschaltbild mittels zweier Bipolartransistoren, d) Schaltzeichen. [23]

mittlere leitend ist. Die Sperreigenschaften sind in beide Richtungen annähernd gleich. Eine schematische Darstellung des Thyristors ist in Abbildung 4 zu sehen.

Im Ersatzschaltbild zeigt sich eine Zerlegung des Thyristors in zwei Bipolartransistoren. Der Kollektorstrom eines Transistors bildet dabei den Basistrom des jeweils anderen – es entsteht eine positive Rückkoppelung. Das bedeutet, dass der Thyristor, sobald er einmal eingeschaltet ist, in diesem Zustand verbleibt, auch wenn der Gatestrom $I_G = 0$ ist. Nur spezielle GTO¹⁷ Thyristoren können über das Gate abgeschaltet werden. Für gewöhnlich erfolgt die Löschung des Thyristors durch eine Umpolung der Versorgungsspannung. [19]

Für den Anodenstrom des Thyristors gilt:

$$I_A = \frac{\alpha_2 \cdot I_G + I_{p0} + I_{n0}}{1 - (\alpha_1 + \alpha_2)}$$
(25)

Dabei sind α_1 und α_2 die Stromverstärkungsfaktoren der Teiltransistoren und I_{p0} und I_{n0} die Teilsperrströme. Zwischen den Teiltransistoren liegt eine innere Schleifenverstärkung vor und wenn $\alpha_1 + \alpha_2$ gegen 1 streben, scheint der Anodenstrom auch ohne Gatestrom zu divergieren. Das erklärt, warum der Thyristor auch ohne Gatestrom eingeschaltet werden kann. [20, 19]

Die Zündung des Thyristor kann auf mehrere Arten erfolgen, durch: [19]

- einen Gatestrom (im Normalfall die vorgesehene Zündart),
- Überschreiten der Kippspannung (Überkopfzündung), als Bauelement zur Spannungsbegrenzung (z. B. als ESD Schutzstruktur),
- eine Spannungsflanke du/dt (unerwünschte Zündart),
- Lichteinfall in die mittlere Raumladungszone (Zündung über Glasfaserkabel).

 $^{^{17}\}mathrm{Gate}$ Off Thyristor

Die approbierte Originalversion dieser Dissertation ist in der Hauptbibliothek der Technischen Universität Wien aufgestellt und zugänglich.

Ein parasitärer Thyristoreffekt spielt vor allem beim elektrochemischen Ätzstopp auf Wafern mit IGBT Struktur eine entscheidende Rolle und ist dort unerwünscht. available at the main library of the Vienna University of Technology.

http://www.ub.tuwien.ac.at/eng

2.2 Grundlagen der Elektrochemie

2.2.1 Elektrolytische Leitfähigkeit

Elektrolyte sind chemische Verbindungen, die im festen, flüssigen oder gelösten Zustand in Ionen dissoziiert sind. Wirkt die Kraft eines elektrischen Feldes auf diese ein, so führt dies zu einer Bewegung der Ionen in oder gegen die Richtung des elektrischen Feldes. Diese Ionenbewegung führt zu einem Transport elektrischer Ladung und bewirkt einen Stromfluss. Die Leitfähigkeit eines Elektrolyten beschreibt analog zum spezifischen Widerstand eines Festkörpers das elektrische Verhalten von Elektrolytlösungen. Sie hängt von der Konzentration und der Beweglichkeit der Ionen ab. [24]

2.2.2 Elektrodenpotential und Nernst Gleichung

Das chemische Potential der Komponenten einer Mischphase ist jene Energie, die aufgewendet werden muss, um ein Mol dieser Komponente aus dem wechselwirkungsfreien Unendlichen in das Innere dieser Mischphase zu bringen.

$$\mu = \mu^0 + RT \ln a. \tag{26}$$

 μ ist das chemische Potential, R die Gaskonstante, k die Boltzmannkonstante und a die Aktivität. Stehen zwei Mischphasen in direktem Kontakt, so besteht chemisches Gleichgewicht, wenn das chemische Potential aller Komponenten i in beiden Phasen gleich ist. Wird eine Elektrode in einen Elektrolyten getaucht, so wird sich das chemische Potential der beiden Phasen im allgemeinen unterscheiden. Es muss daher eine Ausgleichsreaktion erfolgen, die jedoch nicht bis zur Erfüllung des chemischen Gleichgewichts andauern kann. Ansonsten würde sich beispielsweise ein Metalldraht in einer wässrigen Lösung sofort zur Gänze auflösen. Verantwortlich dafür ist die Coulombkraft, die sich einstellt, wenn beispielsweise Metallionen aus einer Elektrode austreten. Es entsteht eine elektrochemische Doppelschicht und eine Potentialdifferenz zwischen Elektrode und Lösung. [24]

Das Potential des Elektrolyten kann nicht als Bezugspunkt herangezogen werden, da es nicht experimentell bestimmt werden kann. Für die Konzentrationsabhängigkeit des Gleichgewichtspotentials bei unbestimmtem Bezugspunkt gilt die Nernstsche Gleichung:

$$\phi_0 = \phi_{00} + \frac{RT}{ZF} \ln \frac{a_{ox}}{a_{red}} \tag{27}$$

Dabei ist ϕ_0 das Gleichgewichtspotential, ϕ_{00} das Standard- oder Normalpotential, z die Äquivalenzzahl sowie F die Faradaykonstante. Die Nernstsche Gleichung hat eine zentrale Bedeutung in der Elektrochemie, da sie die elektrische Größe des Potentials mit der chemischen Größe der Aktivität verbindet. [24, 25]

2.2.3 Bezugselektroden

Eine Bezugs- oder Referenzelektrode ist eine elektrochemische Zelle mit konstantem Gleichgewichtspotential, das sich schnell und reproduzierbar einstellt. Referenzelektroden werden für elektrochemische Messungen von relativen Potentialen als Bezugspunkt herangezogen. Als Standardpotential wird das Potential der Standard-Wasserstoff-Elektrode (SHE) verwendet und willkürlich als 0 V definiert. Diese Potential stellt den Nullpunkt der elektrochemischen Spannungsreihe dar. [25]

Wasserstoffelektroden sind in der Praxis schwierig zu handhaben. Daher werden in der Regel sogenannte Elektroden zweiter Art verwendet, die auf Metallionen beruhen und bei denen sich das Gleichgewichtspotential ebenfalls schnell und reproduzierbar einstellt. Dabei taucht ein Metall in eine Lösung eines schwerlöslichen Metallsalzes ein, zum Beispiel ein Silberdraht in eine Silber/Silberchlorid (Ag/AgCl) Lösung. Für das Elektrodenpotential ist in diesem Fall die Konzentration der Chloridionen maßgeblich. [25, 24]

Für elektrochemische Messungen ist es von großer Bedeutung, dass die Referenzelektrode während der Messung nicht belastet ist, da eine Polarisation sofort das Potential beeinflussen und verändern würde. Daher ist es notwendig, dass für elektrochemische Messungen ein Potentiostat mit einem hochohmigen Eingang ($> 10^{10} \Omega$) verwendet wird. [24]

2.2.4 Potentiostaten

Ein Potentiostat ist eines der wichtigsten Messgeräte in der Elektrochemie. Es handelt sich dabei um einen elektronischen Regelverstärker, mit dem das Potential einer Elektrode, die als Arbeitselektrode bezeichnet wird, in Bezug zu einem Referenzpunkt auf einen gewünschten Wert geregelt wird. Dazu wird der Strom über eine Hilfselektrode, die auch Gegenelektrode genannt wird, so eingestellt, dass das gewünschte Potential an der Arbeitselektrode erreicht wird. Die Referenzelektrode stellt dabei den

Abbildung 5: Spannungsverlauf bei Zyklovoltammetrie. Die Spannung wird linear als Funktion der Zeit vorgegeben und das Potential der Arbeitselektrode mittels eines Potentiostaten bezüglich einer Referenzelektrode geregelt. Eine Darstellung des gemessenen Stromes als Funktion der Spannung wird als Zyklovoltammogramm bezeichnet.

Referenzpunkt dar, auf den geregelt wird. Ihr Potential ist in der elektrochemischen Spannungsreihe definiert. [24]

Die Referenzelektrode darf dabei nicht belastet werden, da jeder Strom eine Polarisierung hervorrufen und das Potential verändern würde. Gleichzeitig sollte die Regelung sehr schnell und präzise erfolgen. Das Kernstück eines Potentiostaten ist daher ein Operationsverstärker, der diese Anforderungen erfüllen kann. Potentiostaten sind für gewöhnlich darauf ausgelegt, Ströme über mehrere Größenordnungen präzise messen zu können. In der Regel können herkömmliche Potentiostaten auch als Galvanostaten betrieben werden. In diesem Fall wird der Stromfluss über die Arbeitselektrode konstant gehalten und über die Spannung der Gegenelektrode geregelt. [24]

2.2.5 Zyklovoltammetrie

Die zyklische Voltammetrie (auch Dreiecksspannungsmethode oder Zyklovoltammetrie genannt) ist eine gebräuchliche, potentiostatische Messmethode in der Elektrochemie, bei der das Potential der Arbeitselektrode durch eine Dreiecksspannung vorgegeben und der resultierende Potential-Strom Verlauf als Funktion der Zeit aufgezeichnet wird. Der Potential-Zeit Verlauf ist schematisch in Abbildung 5 dargestellt. Eine Darstellung des Stromes als Funktion des Potentials wird Zyklovoltammogramm genannt.

Im allgemeinen wird das positive und negative Umkehrpotential bei der Zyklovoltammetrie so gewählt, dass das Potential der Meßelektrode zwischen der Sauerstoffentwicklung und Wasserstoffentwicklung hin und herläuft. Mit dieser Methode können beispielsweise The approve Deckschichtdiagramme aufgenommen werden, wobei die beobachteten Ströme dem available at Aufraindra Abbau Von Wasserstoff und Sauerstoff-Chemisorptionsschichten entsprechen. http://www.u[24]en.ac.at/eng

2.2.6 Elektrochemische Abscheidung

Unter Galvanotechnik oder Elektroplattieren versteht man die elektrochemische Abscheidung von metallischen Niederschlägen auf Substraten. Dabei wird das Substrat negativ gegenüber einer Gegenelektrode gepolt, die meist aus dem abzuscheidenden Metall besteht und während der Prozessierung für den Nachschub an Ionen sorgt. Da die Metallionen im Elektrolyten positiv geladen sind, wandern sie zur negativ geladenen Kathode und scheiden sich an dieser ab. Das Substrat wird schichtweise mit einer metallischen Dünnschicht überzogen. Gearbeitet wird meist galvanostatisch, das heißt bei konstanter Stromdichte oder mittels Pulsgalvanik, die auch eine gute Verfüllung tiefer Strukturen ermöglicht. [11]

In der Halbleiterindustrie ist die elektrochemische Abscheidung eine gängige Methode zur Herstellung von Kupferschichten auf Siliziumwafern. Dies erfordert das Vorhandensein eines Seed-Layers, da sich Kupfer auf Silizium nur schlecht abscheiden lässt. Auch zur Verfüllung tiefer Gräben mit Metall kann diese Methode angewendet werden. [11]

3.1.1 Das Redox-Potential

Jede Redox-Reaktion kann in zwei Teilreaktionen aufgespalten werden, in eine Reduktion sowie in eine Oxidation. Das Redox-Potential ist eine Messgröße der Chemie der Redoxreaktionen und gibt das bei Standardbedingungen gemessene Reduktions/Oxidationspotential gegenüber einer Standard-Referenz-Halbzelle an. [26]

Analog zum Ferminiveau im Halbleiter sind die Energieniveaus der Elektronen (oder Ionen) im Elektrolyten durch das Redox-Potential E_{Redox} charakterisiert. Dieses beschreibt die Eigenschaft eines Stoffes, Elektronen abzugeben oder aufzunehmen und kann somit als effektives Ferminiveau der Lösung betrachtet werden. [6]

Abbildung 6: Darstellung eines n-Halbleiter/Elektrolytüberganges: a) vor dem Kontakt und b) nach dem Kontakt. Das Ferminiveau und das Redox-Potential sind im elektrostatischen Gleichgewicht ausgeglichen. [6, 20]

Wird ein Halbleiter mit einem Elektrolyten in Kontakt gebracht, stellt sich ein Gleichgewicht ein, sobald die Ferminiveaus der beiden Phasen gleich sind, siehe Abbildung 6. Es gilt:

$$E_F = E_{Redox}.$$
 (28)

3.1.2 Struktur der Ladungsverteilung

Beim Kontakt einer Elektrode mit einem Elektrolyten kommt es zur Ausbildung unterschiedlicher Ladungsverteilungen. Bei einer Metallelektrode beschränkt sich die

Abbildung 7: Darstellung der Halbleiter/Elektrolyt Grenzfläche zwischen p-Silizium und einem basischen Elektrolyten im thermodynamischen Gleichgewicht. [6, 28]

Ladung auf die Oberfläche, da das Innere eines Metalls stets frei von elektrischen Feldern sein muss. Im Falle einer Halbleiterelektrode kann sich je nach Dotierung auch eine Raumladungszone unterschiedlich weit ausbilden. Wird beispielsweise p-dotiertes Silizium in Kontakt mit einem Elektrolyten gebracht, so kommt es zu einer Akkumulation von Elektronen an der Oberfläche des Halbleiters. Dies führt zu einer lokalen Umkehr der Dotierverhältnisse: der p-Typ-Halbleiter ist dort n-dotiert und man spricht von einer n⁺-Inversionsschicht die dazu führt, dass sich in das p-dotierte Gebiet eine Raumladungszone ausbreitet. Die Weite dieser Raumladungszone ist abhängig von der Dotierstoffkonzentration und ist umso breiter, je schwächer der Halbleiter dotiert ist. [27]

Die Potentialdifferenz an der Elektrodenoberfläche führt zu einer Umorientierung der Lösungsmitteldipole sowie der Ionen. Knapp an der Oberfläche bildet sich die innere Helmholtzschicht, die durch die Schwerpunktebene der kontaktadsorbierten Ionen und der ausgerichteten Dipole bestimmt wird. Die äußere Helmholtzebene ist durch die hydratisierten Ionen bestimmt, die sich aufgrund der Solvathülle nur bis zu einer gewissen Distanz der Oberfläche nähern können. Zusammen mit der Helmholtzschicht und der sogenannten Guy-Chapman-Schicht bildet sich eine elektrische Doppelschicht aus. Dies ist in Abbildung 7 dargestellt.[28, 27]

Im Inneren der Lösung hängt die Ladungsverteilung von der Ionenkonzentration im Elektrolyten ab. Bei niedrigen Konzentrationen liegt eine Guy-Chapman Schicht in Form einer diffusen Verteilung vor. Diese entfällt weitgehend bei hohen ElektrolytkonDie approbierte Originalversion dieser Dissertation ist in der Hauptbibliothek der Technischen Universität Wien aufgestellt und zugänglich. http://www.ub.tuwien.ac.at

zentrationen, wie sie beim Ätzen von Silizium verwendet werden. In diesem Fall kann The approved original der Elektrolyt, wie eine flächige Kondensatorplatte betrachtet werden. [24, 27] available at the main library of the Vienna University of Technology.

http://www.ub.tuwien.ac.at/eng

3.2 Elektrochemie des Siliziums in alkalischen Medien

3.2.1 Ätzung von Silizium in alkalischen Medien

Alkalische Lösungen werden häufig zum Ätzen von Silizium eingesetzt. Sehr häufig kommen dabei Kalilauge (KOH), EDP (eine Mischung aus Ehylendiamin, Pyrocatechol und Wasser) sowie Tetramethylammoniumhydroxid (TMAH) zur Anwendung. Welche Lösung eingesetzt wird, hängt von den Anforderungen an die Ätzrate, Präzision, Anisotropie, Oberflächenrauhigkeit und anderen Faktoren ab [6]. Zur Erklärung des Mechanismus der alkalischen Ätzung werden in der Literatur verschiedene Modelle angeführt. Palik, Glembocki und andere Autoren gehen von einem chemischen Modell aus [29, 30, 31, 32], Seidel und Faust schlagen dagegen ein elektrochemisches Modell vor [33, 34, 35]. Auch thermodynamische Modelle werden verwendet, unter anderem von Elwenspoek und Nguyen [36, 37].

Für die Ätzung von Silizium in alkalischen Lösungen sind vor allem das Wassermolekül H_2O sowie das Hydroxidion OH^- verantwortlich. Das Wassermolekül spielt eine wichtige Rolle, da es die rückwärtigen Si-Si Bindungen¹⁸ aufbricht und die Chemiesorption des Hydroxidions und somit eine Oxidation des Silizium ermöglicht. Die Nettoreaktionsgleichung lautet:

$$Si + 2H_2O + 2OH^- \rightarrow 2H_2 + SiO_2(OH)_2^{2-}$$
 (29)

Bei der Ätzung entstehen Wasserstoff und ein ionisierter Orthokieselsäurekomplex, der negativ geladen ist, was durch Ramanspektroskopie nachgewiesen werden konnte [31]. Dieser Komplex kann sich nun von der Oberfläche ablösen oder, im Falle einer anodisch angelegten Spannung, an der Oberfläche verbleiben, was die Ätzung stoppt und zu anodischer Oxidation führt.

3.2.2 Kaliumhydroxid (KOH)

Die Ätzrate von Silizium in KOH variiert von weniger als 1 nm/s bei Raumtemperatur bis zu einigen 100 nm/s bei hohen Temperaturen. Sie hängt exponentiell von der Temperatur ab, steigt mit zunehmender Konzentration an und erreicht ein Maximum

 $^{^{18} \}rm backbonds$

bei einer 5 molaren Lösung, um bei höheren Konzentrationen abzufallen [38]. Die Ätzrate hängt auch signifikant davon ab, ob die Lösung gerührt wird, was darauf available at hindeutet, dass der Massentransport einen limitierenden Faktor in der Kinetik des http://www.dÄtzens.darstellt. Für die Berechnung der Ätzrate als Funktion der Temperatur und der Konzentration kann folgende empirische Formel angewendet werden [27]:

$$R = k [H_2 O]^4 [OH^-]^{1/4} e^{\frac{-Ea}{k_B T}}.$$
(30)

Charakteristisch für die Ätzung in KOH ist die starke Anisotropie. Die Ätzrate hängt wesentlich von der Orientierung des Kristallgitters ab. Die höchste Ätzrate weisen die (110) sowie die (100) Ebene auf, die Ätzrate der (111) Ebene liegt meist eine Größenordnung darunter [39]. Der genaue Unterschied in der Ätzrate der einzelnen Ebenen hängt von der Konzentration, der Temperatur und der Anwesenheit von Additiven ab. Bei einer Konzentration von 20% und einer Temperatur von 100 °C, beträgt die Selektivität der Ätzraten der Ebenen (110):(100):(111) 50:30:1, bei Raumtemperatur beträgt sie hingegen 160:100:1. Die Zugabe von Isopropanol kann diese Abhängigkeit stark beeinflussen und die Selektivitäten der (100) und (110) Ebene auch umkehren[40].

Die Verwendung von KOH zur Ätzung von Silizium hat viele Vorteile. Die Lösung ist ungiftig, billig und leicht zu handhaben. Die Ätzrate von KOH ist verglichen mit anderen alkalischen Lösungen sehr hoch, was geringe Prozessierungszeiten erlaubt. Ein großer Nachteil ist, dass sie für MOS-Bauelemente nicht verwendet werden kann, da Kalium-Ionen in das Silizium diffundieren und am Gateoxid zu einer Verschiebung der Einsatzspannungen führen können. [41]

3.2.3 Tetramethylammoniumhydroxid (TMAH)

TMAH ist eine starke Base und findet breite Anwendung bei der Herstellung von mikroelektronischen, mechanischen Systemen (MEMS). Wie KOH ist auch die Ätzung in TMAH anisotrop, wobei die Selektivität geringer ist als die der Kalilauge.

Die Ätzcharakteristik von Silizium in TMAH ist sehr gut untersucht [42, 43], und da es sich um eine organische Base handelt, kann sie auch bei der Herstellung von Bauelementen, die über eine MOS-Struktur verfügen, angewendet werden. Die Ätzrate ist etwas geringer als bei KOH, das Maximum liegt bei etwa 5% in wässriger Lösung und führt bei diesen Konzentrationen zu extrem rauhen Oberflächen unter Pyramidenbildung. Die Zugabe von Pyrazin zu einer 20-25% TMAH Lösung in der Größenordnung von einigen g/L macht die Oberfläche des Siliziums deutlich glatter und erhöht leicht die Ätzrate. [44]

Abbildung 8: Strom Spannungsverlauf von Silizium in KOH, beleuchtet und unbeleuchtet. Nach Chen. [45]

3.2.4 Anodischer Strom- Spannungsverlauf

Für die spätere Betrachtung der anodischen Oxidation sowie des elektrochemischen Ätzstopps ist die Strom-Spannungscharakteristik des Siliziums in alkalischen Medien von großer Bedeutung. Das anodische Verhalten von Silizium in Laugen ist durch die Bildung einer Oxidschicht, die ab einer gewissen positiven Spannung entsteht, bestimmt.

Abbildung 8 stellt den Strom- und Spannungsverlauf von p- und n-Silizium in KOH dar. Wird die Spannung von kathodischen zu anodischen Werten erhöht, so steigt der Strom an und es bildet sich ein Peak aus. Dieser wird auch als Passivierungspotential bezeichnet. Bei Spannungen über diesem Potential bricht die Siliziumätzung ein und es bildet sich anodisches Oxid. [45]

Für p-Silizium hat die Beleuchtung kaum Einfluss auf die Kennlinie, bei n-Silizium hingegen bewirkt sie einen deutlich höheren Strom. Dieser Umstand wird im nächsten Kapitel bei der anodischen Oxidation näher erklärt.

Bei negativen Spannungen kommt es bei p-Silizium zu keinem Stromfluss im unbeleuchteten Zustand, da durch die n-Inversionsschicht im Halbleiter eine pn-Diode entsteht, die in diesem Fall in Sperrrichtung gepolt ist. Wird das p-Silizium hingegen beleuchtet, tritt bei Spannungen unter dem Passivierungspotential sehr wohl Stromfluss auf, da sich die Raumladungszone in diesem Fall nicht ausbilden kann. Bei n-Silizium kommt es im Falle negativer Spannungen mit und ohne Beleuchtung zu einem starken Stromfluss. Das liegt daran, dass zwischen dem n-Silizium und dem Elektrolyten keine Raumladungszone entstehen kann, da die Elektronen bereits Majoritätsträger sind. [6]

TŲ UB

3.3 Anodische Oxidation von Silizium

The approved original version of this thesis is available at the main library of the Vienna University of 3:3:1 Diges Eigenschaften http://www.ub.tuwien.ac.at/eng

Siliziumdioxid kann in kristalliner Form (z.B. Quarz) oder amorph in Form von Glas vorliegen. In der Halbleiterindustrie spielt SiO_2 eine wichtige Rolle als Dielektrikum und Isolator, zum Beispiel als Feld- oder als Gateoxid für MOSFETs. Es gibt unterschiedliche Möglichkeiten der Herstellung von Siliziumdioxid.

Die thermische Oxidation von Silizium findet in Öfen bei Temperaturen zwischen 900 und 1200 °C bei trockener oder feuchter Sauerstoffatmosphäre statt. Die Oxidation in feuchter Atmosphäre ist wesentlich schneller als in trockener, sie hängt im wesentlichen von der Kristallorientierung, der Oxiddicke und der Temperatur ab. Die Struktur thermischer Oxide ist amorph und hat üblicherweise eine stöchiometrische Zusammensetzung. Andere Möglichkeiten der Siliziumdioxidherstellung sind die chemische Gasphasenabscheidung (CVD) und die Flüssigphasenabscheidung (LPD). [5]

Anodische Oxide haben aufgrund ihrer schlechten elektrischen Eigenschaften in der Halbleiterindustrie bisher kaum Anwendung gefunden und sind daher auch nicht gut untersucht [6]. Sie spielen jedoch eine Rolle bei elektrochemischen Prozessen und bieten vor allem die Möglichkeit einer selektiven Oxidabscheidung auf einem Siliziumwafer, abhängig von der Feldstärke. Dies bietet die Möglichkeit der Erstellung von kontrollierten Dickengradienten auf Siliziumwafern. Außerdem ist die anodische Oxidation die Grundvoraussetzung für den elektrochemischen Ätzstopp.

3.3.2 Wachstumsmechanismus anodischer Oxide

Die Oxidation von Silizium ist ein Reaktionsprozess, bei dem die Si-Si Bindungen aufgebrochen werden und sich zu Si-O Bindungen formieren. Bei der Anodisierung von Silizium gilt die folgende Reaktionsgleichung:

$$Si + 2H_2O + nh \to SiO_2 + 4H^+ + (4 - n)e \quad (n \le 4).$$
 (31)

Diese Reaktion erfordert das Vorhandensein von Wasser. In wässrigen Lösungen hängt die Anodisierung nicht von den gelösten Salzen ab. Diese spielen dabei nur eine untergeordnete Rolle. In nichtwässrigen Lösungen (z. B. in trockenen organischen Lösungen) ist die Hauptreaktion an der Anode die Entstehung von Wasser durch Oxidation der Lösung, was die Aufrechterhaltung der anodischen Oxidation ermöglicht. [6]

Ein theoretisches Modell der anodischen Oxidation als Funktion der angelegten anodi-The approved original schen. Spannung wurde von Ghowsi und Gale [46] entwickelt. Dieses Modell berückavailable at the main sichtigt teinen ionischen und einen durch Elektronen hervorgerufenen Strom. Für die http://www.ub.tuwien.acGesamtstromdichte gilt:

$$i = i_i + i_e. aga{32}$$

Dabei wird die nach innen gerichtete Bewegung der Anionen als dominierender Transportmechanismus angenommen. Der Ionenstrom ist ein durch das hohe elektrische Feld verursachter Driftstrom und stellt den limitierenden Faktor der Reaktionsrate dar. Für die Ionenstromdichte i_i gilt:

$$i_i(t) = -n_i q \mu_i E = n_i q \mu_i V/d(t) \tag{33}$$

mit der Konzentration der Anionen im Oxid n_i , der Ladung der Anionen q, der Mobilität der Anionen μ_i , dem elektrischen Feld E sowie der Dicke der Oxidschicht in Abhängigkeit von der Zeit d(t). Eine analytische Lösung der Gleichung ergibt:

$$d(t) = d_0 + \left[2n_i q \mu_i V_0 / (q N_i)\right]^{1/2} t^{1/2}$$
(34)

$$i_{i} = -1/2qn_{i} \left[n_{i}q\mu_{i}V_{0}/(qNi) \right]^{1/2} t^{-1/2}$$
(35)

wobei N_i die Anzahl der Anionen pro Volumen ist. [6, 46]

Der Elektronenstrom wir als Tunnelstrom zwischen den Zuständen des Elektrolyts und dem Leitungsband von SiO_2 beschrieben. Die Lösung der Elektronenstromdichte als Funktion der Zeit hat die Form:

$$i_e(t) = \frac{A + B\left(at^{1/2} + d_0\right)}{\left(at^{1/2} + d_0\right)^{1.6} + C}$$
(36)

mit den konstanten Faktoren A, B, und C. Es ist bemerkenswert, dass die Dicke des Oxids mit der Wurzel der Zeit zunimmt, was auch bei der thermischen Oxidation der Fall ist. Dies liegt vor allem daran, dass in beiden Fällen die treibenden Kräfte als konstant angenommen werden können und ein linearer Zusammenhang zwischen dem Massentransport und den Kräften besteht. [6]

Abbildung 9: MOS-Struktur bei der anodischen Oxidation. Links im Falle von n-Silizium, rechts im Falle von p-Silizium. Dargestellt sind die Raumladung a) und b), die Ladungsträgerkonzentration c) sowie das elektrische Feld d)

3.3.3 Feldverlauf im p und n Halbleiter

Der Halbleiter-Elektrolytkontakt bei der anodischen Oxidation kann in gut leitfähigen Elektrolyten im weitesten Sinne wie eine MOS-Struktur aufgefasst werden. Auf der einen Seite steht der Elektrolyt, der sich wie ein Metall verhält und negativ gepolt ist. Auf der anderen Seite steht das anodisch beschaltete Silizium, das p oder n dotiert ist. Dazwischen befindet sich das anodische Oxid, das abhängig von der Dotierung und der angelegten Spannung unterschiedlich dick sein kann.

Der Verlauf der Raumladungszone, der Ladungsträgerkonzentration sowie des elektrischen Feldes ist in Abbildung 9 dargestellt.

p-Silizium

Bei p-Silizium befindet sich die MOS-Struktur in Durchlassrichtung, und bereits bei niedriger Dotierung findet der gesamte Spannungsabfall zwischen dem Halbleiter und dem Elektrolyten statt. Wird die äußere Spannung erhöht, so steigt die Feldstärke innerhalb des gebildeten anodischen Oxids an und das Wachstum wird beschleunigt. Wird diese Spannung zu rasch erhöht, so entsteht ein hoher Stromfluss und das Oxid bricht durch. Dies äußert sich unter anderem in einer Zersetzung des Elektrolyten bei gleichzeitiger Produktion von Sauerstoff und Wasserstoff. Für kontrollierbares The approved original Oxid wachstum ist es daher notwendig, die Spannung hinreichend langsam zu regeln. Aus available at the main diesemf Grund wird anodische Oxidation häufig bei konstanter Stromdichte betrieben. http://www.ub.tuwien.ac[6]eng

n-Silizium

Versucht man n-dotiertes Silizium im Dunkeln anodisch zu oxidieren, so ist die MOS-Struktur rückwärts gepolt, und nach einer anfänglichen Oxidation breitet sich in den Halbleiter eine Raumladungszone aus, wo das elektrische Feld abgebaut wird. Eine Erhöhung der Spannung bewirkt eine weitere Ausbreitung der Raumladungszone, deren Dicke proportional zur Wurzel der angelegten Spannung ist (siehe Gleichung (19) auf Seite 12). Die Dicke des Oxids wird dabei kaum beeinflusst, und abhängig von der Dotierung des Halbleiters können damit bereits mit einer äußerst dünnen Oxidschicht sehr hohe Spannungen gesperrt werden.

Erreicht das elektrische Feld einen kritischen Wert E_c , so kommt es zu einem Lawinendurchbruch, der sich in einem extrem hohen Strom äußert. Der Spannungsabfall liegt jetzt direkt zwischen dem Halbleiter und dem Oxid, das jedoch extrem dünn ist und das elektrische Feld damit nicht sperren kann. Es kommt zu einem sehr starken und unkontrollierbaren Oxidwachstum unter Zersetzung des Elektrolyten und lokalisierten Durchbrüchen an der Oberfläche des Siliziumwafers unter Ausbildung von Defekten. [6]

3.3.4 Einfluss der Beleuchtung

Wird das n-Silizium beleuchtet, so führt dies zur Entstehung von Elektron-Loch-Paaren. Auf die MOS-Struktur des p-Siliziums hat dies kaum Einfluss, außer dass die Konzentration der Ladungsträger zusätzlich erhöht wird. Ganz anders verhält es sich im Falle von n-Silizium, bei dem der zusätzliche Eintrag an Ladungsträgern dazu führt, dass die Raumladungszone verschwindet und das elektrische Feld nur noch im Oxid abgebaut wird. [6]

Deutlich zu sehen ist dies auch in Abbildung 8 auf Seite 24. Über dem Passivierungspotential ist der Stromfluss am beleuchteten n-Silizium deutlich höher als am unbeleuchteten, während es beim p-Silizium nur einen geringen Unterschied in der Stromdichte gibt. Dieser Umstand kann prinzipiell dafür verwendet werden, auf einem Siliziumwafer lokale anodische Oxidation mittels Beleuchtung zu betreiben.

3.4 Elektrochemischer Ätzstopp

The approved original version of this thesis is available at the main library of the Vienna University of Technology

Der dektrochemische Ätzstopp oder kurz ECES¹⁹ ist eine gängige Methode im Bereich von mikroelektronisch mechanischen Systemen (kurz MEMS) insbesondere für die Fertigung von hochpräzisen Membranen. Als Beispiel für ein Produkt sei hier ein Reifendrucksensor erwähnt, wie er auch von Infineon gefertigt wird. Da die Dotierung für ein rein mechanisches Bauteil meist keine Rolle spielt, ist der elektrochemische Ätzstopp in diesem Bereich relativ unproblematisch zu implementieren. Bei Leistungshalbleitern ist ein derartiger Fertigungsprozess nicht mehr ganz so einfach umzusetzen, da hier die Dotierung für die elektrischen Eigenschaften des Bauteils entscheidend ist.

Der elektrochemische Ätzstopp ist somit nicht für alle Leistungsbauelemente als Dünnungsprozess anwendbar oder erfordert zusätzlichen Aufwand, wodurch sich der Vorteil, der durch die präzise Dünnung erreicht wird, unter Umständen relativiert. [20]

3.4.1 Physikalisches und chemisches Prinzip

Der elektrochemische Ätzstopp macht sich grundlegende Phänomene der Halbleiterphysik und der Elektrochemie zu Nutze. Wird Silizium einem alkalischen Medium wie TMAH oder KOH ausgesetzt, so findet eine chemische Ätzung statt. Legt man dagegen eine positive Spannung am Silizium gegenüber dem Elektrolyten an, so kommt es ab einem gewissen Potential, das als Oxidationspotential bezeichnet wird, zur Passivierung und damit zur anodischen Oxidation.

Dieser Effekt wird ausgenützt, indem ein Wafer mit einem pn-Übergang verwendet wird. Dabei wird an das n-Gebiet eine positive Spannung angelegt und das p-Gebiet der Lauge ausgesetzt. Der Wafer muss dabei mit einer Halterung an der nicht zu ätzenden Seite geschützt werden, an der sich auch der Kontakt befindet. Der pn-Übergang wird in diesem Fall in Sperrrichtung betrieben und die Diode verhindert, dass das p-Gebiet auf anodische Werte driftet. An der Halbleiter/Elektrolyt-Schicht kommt es aufgrund der unterschiedlichen Ferminiveaus zu einer n-Inversionsschicht, die wie ein n-dotierter Halbleiter angesehen werden kann. Die Schichtfolge entspricht einem Bipolartransistor und im Falle, dass an der p-Basis keine Spannung angelegt wird, findet während des gesamten Ätzvorganges ein Stromfluss statt. Mit zunehmender Ätztiefe nimmt die Dicke der Basis ab, und der Strom steigt an. Knapp vor Berührung der beiden Raumladungszonen erreicht der Strom sein Maximum und fällt danach auf einen Bruchteil seines Maximalwertes. Es findet anodische Oxidation statt. Die Ätzrate des anodischen Oxids ist um Größenordnungen niedriger als jene des Siliziums. [6, 7]

 $^{^{19}\}mathrm{Electro-Chemical}$ Etch Stop

Abbildung 10: Prinzip des elektrochemischen Ätzstopps. Die anfangs hohe Gesamtdickenvariation (Total Thickness Variation: TTV) ist nach eintreten des Ätzstopps nur noch durch die Unregelmäßigkeiten der n-dotierten Schicht bestimmt.

Dies ist in Abbildung 10 anschaulich dargestellt. Der Ätzstopp tritt in dem Augenblick ein, da sich das p-Silizium über dem Passivierungspotential befindet. Dies kann schon vor dem Kontakt der Raumladungszonen der Fall sein, wenn das p-Gebiet nicht elektrisch angeschlossen ist und aktiv geregelt wird. Im Idealfall tritt der Ätzstopp exakt in dem Moment ein, wenn sich die Raumladungszonen berühren. In diesem Fall kommt es zu einem Punch-Through des Bipolartransistors, da das elektrische Feld nicht mehr gesperrt werden kann [41]. Somit ist eine gleichmäßige Dicke der verbleibenden n-Schicht gewährleistet, die nur durch Unregelmäßigkeiten des pn-Übergangs limitiert ist. Die approbierte Originalversion dieser Dissertation ist in der Hauptbibliothek der Technischen Universität Wien aufgestellt und zugänglich

TU UB

http://www

4 Elektrochemische Untersuchungen anodischer Oxide

The approved original version of this thesis is available at the main library of the Vienna University of Technology.

http://www.u4.1...Strom- und Spannungscharakteristik von Silizium in alkalischen Medien

Das Ätzen von Silizium in alkalischen Medien spielt in der Mikrostrukturierung eine wichtige Rolle. Neben der Ätzcharakteristik wurde auch das Strom-Spannungsverhalten von Silizium in alkalischen Medien wie KOH, NaOH, CsOH und TMAH vielfach untersucht [35, 29, 47, 48]. Die verwendeten Methoden umfassen Zyklovoltammetrie und lineare anodische Spannungsrampen.

Die elektrochemischen Eigenschaften von Silizium und dessen anodischem Oxid lassen sich durch voltammetrische Methoden erforschen. Neben den charakteristischen Potentialen (Passivierungspotential, Flachbandpotential, offenes Quellspannungspotential) lassen sich die Spannungs-, Zeit-, Konzentrations- und Temperaturabhängigkeit der anodischen Oxidbildung elektrochemisch bestimmen.

4.1.1 Anodischer Peak beim Zyklovoltammogramm von Silizium

Ein Effekt, der von Cattarin und Musiani [48] beobachtet und von Miney und Cunnane [49] reproduziert und näher untersucht wurde, ist ein anodischer Peak unterhalb des Passivierungspotentials von Silizium beim negativen Sweep eines Zyklovoltammogramms in TMAH. Dieser Peak wurde sowohl auf p- als auch auf n-dotiertem, (100) orientiertem Silizium beobachtet und wird auf die Rückätzung des anodischen Oxids zurückgeführt. Er kann abhängig von der aufgewachsenen Oxiddicke und Durchlaufgeschwindigkeit auftreten oder auch nicht. Ist das aufgewachsene Oxid zu dick und die Vorschubgeschwindigkeit zu hoch, so liegt dieser Peak nicht innerhalb des Messbereichs. Abgesehen von den erwähnten Publikationen ist dem Verfasser der Arbeit nicht bekannt, ob dieser Peak beobachtet oder beschrieben wurde.

Miney und Cunnane machten einige Untersuchungen zu diesem Rückätz-Peak, indem sie Zyklovoltammogramme von (100) Silizium, p und n-dotiert, bei verschiedenen Temperaturen und Konzentrationen, Durchlaufgeschwindigkeiten und Umkehrpotentialen in TMAH durchführten [50, 49, 51].

4.1.2 Zyklovoltammetrie in TMAH

Die elektrochemische Untersuchung anodischer Oxide durch Oxidrückätzung macht sich die Strom-Spannungscharakteristik des Siliziums in alkalischen Lösungen zu Nutze.

Abbildung 11: Schematisches Zyklovoltammogramm von p-Silizium in alkalischer Lösung (TMAH/KOH) mit anodischem peak beim Hinund Rücklauf

Betrachtet man den Strom-Spannungsverlauf im Zyklovoltammogramm (konstante Durchlaufgeschwindigkeit) in Abbildung 11, so ist der Stromfluss bei negativen Potentialen leicht negativ. Am OCP (Open Circuit Potential - Offenes Klemmpotential) findet kein Stromfluss statt. Mit zunehmend anodischen Potentialen wird der Stromfluss immer stärker, bis er schließlich knapp unter dem Passivierungspotential PP (Passivation Potential) das Maximum (ca. $2.5 - 3 \text{ mA/cm}^2$ in 25% TMAH bei 90 °C) erreicht. Wird das Potential noch anodischer, bricht die Ätzung abrupt ab und der Stromfluss fällt auf einen Bruchteil seines ursprünglichen Wertes ab. Statt der Ätzung findet anodische Oxidation statt. Wird die Spannung langsam erhöht (bis auf etwa 5 V), so steigt die Stromdichte zunächst nur auf einige $10 - 100 \,\mu\text{A/cm}^2$ an. Bei höheren Spannungen von einigen $10 \,\text{V}$ kann es bei hoher Durchlaufgeschwindigkeit zu deutlich höheren Stromdichten von einigen mA/cm^2 kommen, da sich das anodische Oxid im elektrischen Durchbruch befindet.

Wird die Durchlaufrichtung umgedreht, so sinkt der Strom zunächst auf Null. Der Grund dafür liegt in der Oxidschicht, die bei niedrigeren Spannungen zu einem geringerem Stromfluss führt. Neben der anodischen Oxidation findet immer auch eine Rückätzung des gebildeten Oxids statt. Diese ist in TMAH abhängig von der Konzentration und Temperatur. Sie ist stets um Größenordnungen langsamer als die Siliziumätzung.

Solange sich die Spannung noch über dem Passivierungspotential befindet, ist es schwierig zu sagen, an welchem Punkt die anodische Oxidation oder die Oxidätzung die dominante chemische Reaktion darstellt, da sich dies nicht eindeutig aus der Stromkurve ablesen lässt. Dies dürfte auch abhängig von der Durchlaufgeschwindigkeit sein. Ist diese sehr schnell, kann sich noch nicht genügend Oxid gebildet haben und es kann noch bei niedrigeren Spannungen zu zusätzlichem Oxidwachstum kommen. Bei sehr niedrigen Durchlaufgeschwindigkeiten hat das Oxid beim Spannungsmaximum The approve bereits die maximale Dicke erreicht, und es findet bei niedrigeren Spannungen bereits available at eine Rückätzung des Oxids statt.

http://www.ub.tuwien.ac.at/eng

Unterhalb des Passivierungspotentials findet definitiv keine anodische Oxidation mehr statt, und es kann von reiner Oxidätzung ausgegangen werden. Der Stromfluss ist fast Null, solange der Wafer vollflächig von Siliziumdioxid bedeckt und dieses dick genug ist. Nach einer gewissen Zeit ist das Oxid vollständig weggeätzt und es kommt zu einem Stromanstieg: der Strom folgt nun der Strom-Spannungs-Kurve, die er vor der Oxidation hatte. Dies ist der beschriebene anodische Peak, der durch die Rückätzung des Oxids entsteht. Aus der Position des Strompeaks beim Rückwärtsdurchlauf im Zyklovoltammogramm lässt sich nun indirekt auf die Dicke des gebildeten Oxids schließen.

Wird das anodische Umkehrpotential bei konstanter Durchlaufgeschwindigkeit erhöht, so verschiebt sich der Rückätzpeak nach links. Das lässt sich dadurch erklären, dass bei höheren Potentialen das Oxid dicker wird und es daher länger dauert, bis es entfernt wird. Auch die Durchlaufgeschwindigkeit hat einen Einfluss auf die Position des Peaks. Wird diese erhöht, so wird der Rückätzpeak auch nach links verschoben, da die Ätzdauer sich nicht wesentlich ändert. Allerdings ist in diesem Fall von einer geringeren Oxiddicke auszugehen, da das Silizium weniger lang über dem Passivierungspotential liegt.

Es ist sehr schwer bei einem Zyklovoltammogramm die Oxiddicke als Funktion der maximalen Spannung oder der Passivierungsdauer darzustellen, da die beiden Größen nicht getrennt werden können. Neben der Temperatur und der Zusammensetzung des Elektrolyten sind die wichtigsten Faktoren für die Oxiddicke die Potentialdifferenz zwischen Elektrolyt und Silizium, die sich in der angelegten Spannung äußert, sowie die Dauer des angelegten anodischen Potentials.

4.1.3 Rückätzung anodischer Oxide bei konstanter Spannung

Zyklovoltammetrie wurde als elektrochemische Untersuchungsmethode für anodische Oxide von Miney herangezogen [50, 49, 51]. Dabei wurden die Durchlaufgeschwindigkeit sowie das positive Umkehrpotential variiert, um auf diese Weise Rückschlüsse auf die Mechanismen zu bekommen. Diese sind jedoch nur begrenzt aussagekräftig, da die Durchlaufgeschwindigkeit die anodische Oxidation stark beeinflusst und den möglichen Messbereich eingrenzt. Eine aufschlussreichere Größe als die Position des Rückätzpeaks bei der Zyklovoltammetrie ist daher die Rückätzzeit des anodischen Oxids bei konstanter Spannung.

Die Ätzrate anodischer Oxide in alkalischen Lösungen hängt sehr stark von der Temperatur ab. Bei 90 °C heißer TMAH mit einer Konzentration von 25% liegt sie

33

im Bereich von 1 nm/min. Dadurch ist es möglich, durch zyklische Versuche in Form The approved original von Passivierung und Rückätzung während einer Messung verschiedene Parameter zu available at the main while einer hund somit Veruchsreihen automatisiert durchzuführen.

Es kann davon ausgegangen werden, dass die Rückätzzeit von der Qualität (Dichte, Porösität, Stöchiometrie) sowie von der Dicke des Oxids abhängt. Nimmt man weiters an, dass die Qualität bei dickeren Oxiden über weite Bereiche konstant ist, so eignet sich die Messung der Rückätzzeit auch als quantitative Bestimmungsmethode der Oxiddicke. Auf diese Weise ist es mit gewissen Einschränkungen möglich, eine elektrochemische in situ Dickenbestimmung anodischer Oxide in alkalischen Lösungen vorzunehmen.

4.2 Untersuchungsmethoden

4.2.1 Trapezförmige Spannungspulse

Will man voltammetrisch die Spannungs- und Zeitabhängigkeit der anodischen Oxidation untersuchen, so ist es notwendig eine Methode zu wählen, die diese beiden Einflussgrößen voneinander unabhängig untersucht. Üblicherweise werden Experimente zur anodischen Oxidation galvanostatisch (bei konstantem Strom) durchgeführt, um das elektrische Feld zwischen Halbleiter und Elektrolyt konstant zu halten [6]. In dieser Arbeit wurden potentiostatische Untersuchungsmethoden zur Bestimmung des Oxidwachstums herangezogen, indem trapezförmige und rechteckige Spannungspulse verwendet wurden.

Oxidationsmechanismen bei verschiedenen Spannungen und Oxidationszeiten lassen sich durch trapezförmige Spannungspulse besser untersuchen als durch dreieckförmige. Um den Einfluss der Zeit auf die Oxiddicke zu untersuchen, wird die Spannung zunächst möglichst rasch auf ein definiertes Potential über dem Passivierungspotential (PP) eingestellt, konstant auf diesem gehalten und nach einer definierten Zeit darunter abgesenkt. Auf diesem Potential wird der Strom gemessen, der zuerst sehr niedrig ist und infolge abrupt ansteigt. Nach diesem raschen Anstieg pendelt sich der Strom auf einem Wert ein, den er vor der Oxidation bei diesen Bedingungen (Spannung, Temperatur, Konzentration) hatte.

In Abbildung 12 auf der nächsten Seite, sind drei verschiedene Spannungspulse dargestellt. Beim trapezförmigen Puls a), findet eine Potentialänderung nur während der Anstiegszeit t_s statt, danach wird die Spannung konstant gehalten. Zwei Extremfälle sind in b) und c) mit einem Sägezahn- und einem Rechteckpuls dargestellt. Die Verwendung von Rechteckpulsen hat den Nachteil, dass es bei höheren Spannungen sofort zu einem Durchbruch des Oxids kommt, da dieses keine Zeit hat sich zu bilden und damit unkontrollierbare Bedingungen herrschen. Der Vorteil ist, dass die Zeitund Spannungsabhängigkeit der Oxidbildung vollständig entkoppelt sind. Bei nicht zu

Abbildung 12: Spannungspulse: a) Trapezförmiger Puls mit der Anstiegszeit t_s , der Verweildauer t_{cp} und der Passivierungszeit t_{pass} . b) Sägezahnförmiger Puls mit der Anstiegszeit $t_s = t_{pass}$. c) Rechteckpuls mit $t_s = 0$.

hohen Spannungen von wenigen Volt über dem PP können diese Pulse zur Untersuchung herangezogen werden. Ein sägezahnförmiger Puls hat den Nachteil, dass das Oxidwachstum nach t_p noch voll im Gange ist und damit eine Unterscheidung des Zeit- und Spannungseinflusses nicht möglich ist.

Durch die Verwendung trapezförmiger Pulse sind das Wachstum und die Rückätzung des anodischen Oxids weitgehend voneinander entkoppelt. Der einzige Einflussbereich liegt während der Anstiegszeit t_s vor, wo beide Faktoren entscheidend sind. Für ein kontrolliertes Oxidwachstum ist eine gleichmäßige Erhöhung der Spannung notwendig. Dies kann nicht beliebig schnell erfolgen.

4.2.2 Strom- und Spannungsverlauf trapezförmiger Pulse

Der Strom- und Spannungsverlauf eines trapezförmigen Spannungspulses ist detailliert in Abbildung 13 auf der nächsten Seite dargestellt. Am Beginn einer Messung muss gewährleistet sein, dass kein Oxid auf dem Wafer vorhanden ist. Die Spannung wird auf einen Wert geregelt, der zwischen PP und OCP liegt. Bei den hier dargestellten Experimenten ist die Spannung so gewählt, dass der Strom zwischen 200 mA und 400 mA auf einem 8 Zoll Wafer liegt, was einer Spannung von -1 V gegenüber der Ag/AgCl Elektrode entspricht. Für die Messung selbst ist der genaue Wert nicht von Bedeutung. Wichtig ist nur, dass ein ausreichend starkes Stromsignal gemessen

Abbildung 13: Detaillierte Darstellung eines Strom-Spannungspulses. Oben: Spannungsverauf, unten: Stromverlauf. Der Spannungspuls wird in charakteristische Bereiche unterteilt: Passivierung, Oxidätzung und Siliziumätzung mit einem kleinen Übergangsbereich. Anhand des Stromverlaufs erkennt das Messprogramm, wann es den nächsten Puls generieren muss.

wird, damit es vom Messprogramm erkannt wird. In diesem Spannungsbereich findet Siliziumätzung statt. Der Stromfluss im unteren Bild beträgt etwas über 200 mA. Der Puls wird nun in 4 unterschiedliche Bereiche unterteilt, die durch Farben gekennzeichnet sind.

Passivierung: Nach einer kurzen Wartezeit von einigen Sekunden, sobald sich ein stabiler Stromfluss eingestellt hat, wird die Spannung mit einer Vorschubgeschwindigkeit v_s hochgeregelt. Der Stromfluss steigt zunächst stark an (wie im Zyklovoltammogramm in Abbildung 11 auf Seite 32), erreicht das Maximum von etwa 800 mA und fällt danach abrupt auf etwa 10 mA ab. Hier beginnt der Passivierungsbereich. Nach Erreichen des Zielpotentials wird die Spannung konstant auf einem Wert gehalten. Die Pulse können aktiv auf unterschiedliche Spannungen mit unterschiedlicher Verweildauer und Anstiegszeit geregelt werden.

Oxidätzung: Nach einer definierten Zeit t_{pass} oder t_{cp} wird die Spannung aktiv auf das Ausgangspotential (im Bild -1 V) geregelt. Da die Oberfläche nun mit Oxid bedeckt ist, sinkt der Strom zunächst auf Null. Das Messprogramm befindet sich in einer Warteschleife und misst während dieser Zeit den Strom und hält die Spannung

konstant auf JPV. Es findet eine Oxidätzung statt, die sich zunächst nicht durch einen das Oxid ausreichend dünn und durchlässig, findet zunächst ein statt, der mit zunehmend dünner werdendem Oxid noch weiter http://www.ansteigt.eErreicht der Strom einen gewissen Schwellwert, 100 mA im aktuellen Fall, so wird die Warteschleife des Programms beendet und eine neue Schleife mit konstanter

Wartezeit von 60 s wird gestartet.

Übergangsbereich: Während das Oxid noch nicht vollständig entfernt ist, gibt es einen kleinen Übergangsbereich, wo der Strom ansteigt und sowohl Oxid- als auch Siliziumätzung gleichzeitig stattfinden. Nach Erreichen eines kleinen lokalen Maximums pendelt sich der Strom auf den ursprünglichen Wert vor beginn der Oxidation ein.

Siliziumätzung: Nach dem Eintritt eines konstanten Stromes kann von einer reinen Siliziumätzung ausgegangen werden. Eine Wartezeit von einigen Sekunden bis zu einer Minute ist notwendig, um eine restlose Entfernung des gebildeten anodischen Oxids zu gewährleisten, das dieses ansonsten die folgende Messung beeinflussen könnte.

Nach der Wartezeit t_w wird ein neuer Spannungspuls generiert, der sich vom vorherigen in der maximalen Spannung, der Dauer oder der Anstiegszeit unterscheiden kann. Es können auf diese Weise sehr viele Messpulse automatisiert wiederholt und Parameter variiert werden, ohne die Messanordnung selbst durch einen Umbau zu beeinflussen.

4.2.3 Ablauf des Messprogramms

In Abbildung 14 auf der nächsten Seite ist ein Ablaufdiagramm eines Messprogramms mit trapezförmigen Pulsen mit den wichtigsten Parametern dargestellt. Die Pulse sind dabei einige Sekunden bis zu mehreren 10 Minuten lang. Je nach Anzahl und Dauer der Einzelpulse kann eine Messung mehrere Stunden dauern. Der Versuchsdurchlauf geschieht vollkommen automatisiert, gesteuert von einem in der Programmiersprache Python geschriebenen Messprogramm, das anhand der Strom- und Zeitmessung die entsprechenden Spannungspulse generiert. Die Daten werden über eine virtuelle serielle Schnittstelle mittels USB an das programmierbare Netzgerät übertragen, das durch SCPI²⁰ Befehle angesteuert wird.

Nach dem Start werden zunächst alle Parameter eines Spannungspulses initialisiert:

- die Ausgangsspannung während der Siliziumätzung U_0
- die Verweildauer während der Siliziumätzung t_w
- die maximale Spannung des Pulses U_{max}
- die Vorschubgeschwindigkeit v in V/s

 $^{^{20}\}mathrm{SCPI}{=}\mathbf{S}\mathrm{tandard}\ \mathbf{C}\mathrm{ommands}$ for $\mathbf{P}\mathrm{rogrammable}\ \mathbf{I}\mathrm{nstruments}$

Abbildung 14: Ablaufdiagramm eines Messprogramms mit trapezförmigen Spannungspulsen.

- die Verweildauer bei konstanter Spannung t_{cp}
- der Schwellstrom nach der Oxidrückätzung ${\cal I}_s$

Das Programm ist danach in vier Schleifenblöcke unterteilt, die insgesamt einen Spannungspuls darstellen. Die ersten drei Blöcke regeln die Spannung aktiv anhand der Parameter, die anfangs initialisiert werden und erstellen somit einen trapezförmigen Spannungspuls.

Der 4. Block ermittelt passiv anhand der Stromkurve, ob Oxid oder Silizium geätzt wird und bestimmt ohne Eingreifen von außen den Zeitpunkt für den nächsten Puls. Einmal gestartet, kann das Messprogramm alle vordefinierten Parameter selbständig durchlaufen und eine ganze Messreihe an einem Wafer ohne einen Badwechsel aufnehmen.

Nach Durchlaufen aller vorgegebenen Parameter wird das Programm beendet. Die zeitliche Auflösung, die durch die Kommunikation mit der Hardware beschränkt ist,

ermöglicht durchschnittlich 4 Messwerte pro Sekunde, was aufgrund der Langsamkeit The approveder Prozessabläufe, mehr als ausreichend ist.

available at the main library of the Vienna University of Technology. http://www.ub.tuwien.ac.at/eng

4.3 Messaufbau und Materialien

4.3.1 Siliziumproben

Als Probenmaterial wurden insgesamt 3 verschiedene Wafertypen verwendet: niedrig dotiertes p-Silizium, wie es bei der Herstellung von MEMS Bauteilen verwendet wird, hochdotiertes n-Silizium, das unter anderem als Grundmaterial zur Herstellung vertikaler MOSFETs verwendet wird sowie auf hochdotierten Wafern epitaxial abgeschiedenes n-Silizium mit mittlerer Dotierstoffkonzentration.

p-Wafer

Als p-Grundmaterial dienten Bor dotierte MCz²¹-Wafer mit einem Durchmesser von 200 mm (8 Zoll) der Firma MEMC²². Der spezifische Widerstand des Grundmaterials betrug 3 Ω cm. Die Wafer wurden vor der Prozessierung auf 400 μ m Dicke geschliffen, mit Bor implantiert, thermisch annealt und mit Aluminium gesputtert um einen guten elektrischen Kontakt zum Silizium zu gewährleisten.

$\mathbf{n}^{++}\text{-}\textbf{Wafer}$

Als hoch dotiertes
n Grundmaterial wurden mit Arsen dotierte Czochralski Wafer von 8 Zoll Durchmesser der Firma SUMCO
²³ verwendet. Der spezifische Widerstand dieser Wafer betrug weniger als 0.0035
 $\Omega \rm cm$. Die Wafer wurden auf 400 $\mu \rm m$ Dicke geschliffen, und rückse
itig mit AlTiNiAg gesputtert.

n-Epi-Wafer

Niedriger dotierte n-Wafer wurden durch Aufwachsen einer 10 µm dicken, mit Phosphor dotierten Epitaxieschicht auf den n⁺⁺-dotierten Wafern hergestellt. Der spezifische Widerstand konnte dabei nach Bedarf eingestellt werden, die Metallisierung für den elektrischen Kontakt sowie die Dünnung erfolgte wie bei den n⁺⁺-Wafern.

²¹Magnetic Czochralski-Silizium, Herstellungsverfahren

 $^{^{22}\}mathrm{Monsanto}$ Electronic Materials Company

²³SUMCO Corporation

Zur potentiostatischen Kontrolle der Arbeitselektrode wurde der Leistungspotentiostat HP96 von Bank Elektronik²⁴ verwendet. Der Potentiostat hat einen Messbereich von 100 μ A bis zu 10 A, eine Eingangsimpedanz für die Referenzelektrode von 10¹² Ω und einer Regelgeschwindigkeit von 10 V/ μ s.

Der Potentiostat wurde für die Oxidationsversuche nicht direkt angesteuert, da das verwendete Modell über einen unzureichenden Bereich für die Polarisationsspannung ± 2 V verfügt. Stattdessen wurde ein präzises, programmierbares Hochleistungs-Netzgerät verwendet, das in Serie zum Potentiostaten geschaltet wurde.

Netzgerät Hameg HMP4040

Das Hameg²⁵ HMP4040 ist ein programmierbares Labornetzgerät mit vier galvanisch getrennten Kanälen und entsprechenden Sense-Anschlüssen. Die Auflösung beträgt 0.1 mV für die Spannung und 0.1 mA für den Strom. Die Restwelligkeit des Netzgeräts beträgt weniger als 150 μ V, der Spannungsbereich umfasst 0 – 32 V und der Strombereich 0 – 10 A pro Kanal. Insgesamt kann damit eine Polarisationsspannung von 128 V eingestellt werden.

Das Netzgerät verfügt über eine USB/RS232 Schnittstelle und kann über einen virtualen COM Port mittels SCPI Befehlen angesteuert werden. Es wurde bei sämtlichen Versuchen zur Strom- und Spannungsmessung sowie zur Ansteuerung und Pulsgenerierung verwendet.

4.3.3 Versuchsaufbau

Elektrochemische Experimente wurden in einem Quarzglasbehälter in 25%
iger TMAH bei 90 °C durchgeführt. Der Versuchsaufbau ist in Abbildung 15 auf der nächsten Seite dargestellt.

Zunächst wurde ein 8 Zoll Siliziumwafer mit der metallisierten Seite nach unten in einen chemiebeständigen Waferholder aus $PEEK^{26}$ gelegt. Ein PEEK-Dichtring

²⁴Bank Elektronik - Intelligent Controls GmbH

 $^{^{25}\}mathrm{HAMEG}$ Instruments GmbH

²⁶Polyetheretherketon

Abbildung 15: Versuchsaufbau: 1) Flachbehälter aus Quarzglas, 2) Heizplatte, 3) Elektrolyt (TMAH/KOH), 4) Rührknochen, 5) Peek-Deckel, 6) Temperatursensor, 7) Peek-Waferholder, 8) Peek-Dichtring, 9) Siliziumwafer, 10) Kontaktleitung, 11) Ti/Pt Gegenelektrode, 12) Referenzelektrode

und zwei Chemraz²⁷-Dichtungen verhinderten das Eindringen des Elektrolyten zur nicht zu prozessierenden Seite des Wafers. Der Dichtring wurde dabei durch Vakuum mechanisch festgehalten. Der elektrische Kontakt zum Wafer erfolgte über vergoldete Kontaktfedern, die im Holder eingelassen wurden und über Leitungen nach außen führten.

Der Elektrolyt befand sich in einem Behälter aus Quarzglas, der auf eine Heizplatte mit eingebautem Magnetrührer gestellt wurde. Ein mit Kunststoff ummantelter Rührknochen sorgte für eine ständige Durchmischung. Ein Deckel aus chemikalienbeständigem PEEK mit vorgefertigten Ausnehmungen für Elektroden und Sensoren verhinderte

 $^{^{27}\}mathrm{Chemraz}$ Perfluoroelastomer

eine zu starke Verdunstung des Elektrolyten. Die Heizplatte überwachte mittels eines The approved original Sensors, der in den Elektrolyt eintauchte, die Temperatur.

university of Technology.

http://www.ub.tuwien.ac.at/eng

4.4 Aufnahme und Darstellung der Messreihen

Es wurden mehrere Messreihen mit verschiedenen Parametern auf unterschiedlichen Substratwafern durchgeführt. Variiert wurden die Passivierungsdauer t_{pass} , die Passivierungsspannung U_{max} und die Vorschubgeschwindigkeit v beim Hochregeln der Spannung . Als Messwerte waren vor allem der Passivierungsstrom sowie die Rückätzdauer des Oxids von Bedeutung. Diese wurden aus den Messreihen extrahiert und separat ausgewertet.

Die Wartezeit t_W nach Erreichen des Schwellstromes I_S und vor dem Anlegen der anodischen Spannung sollte eine restlose Entfernung des anodischen Oxids ermöglichen. Eine Information über die Gleichmäßigkeit der Oxiddicke auf dem Wafer gewinnt man aus der Geschwindigkeit des Stromanstiegs vor Erreichen des Schwellstromes. Geschieht dieser Anstieg sehr rasch, kann von einer gleichmäßigen Oxdidickenverteilung ausgegangen werden. Bei niedrigen Spannungen unter 5 V konnten auf diese Weise bis zu 40 Messzyklen durchgeführt werden.

Bei ungleichmäßiger Oxiddickenverteilung oder zu kurzen Wartezeiten nach Erreichen des Schwellstromes I_S kann es zu inhomogenen Stromdichteverteilungen und damit zu einem flachen Stromanstieg kommen.

4.4.1 Variation der Spannung

Die Variation der maximalen angelegten Spannung U_{max} bietet die Möglichkeit, die Spannungsabhängigkeit der anodischen Oxidation elektrochemisch zu untersuchen. Dabei tritt jedoch das Problem auf, dass dies nicht völlig unabhängig von der Oxidationsdauer geschehen kann. Wird U_{max} bei konstanter Verweildauer t_{cp} variiert, so ändert sich die gesamte Passivierungszeit t_{pass} von Puls zu Puls, da das Oxidationspotential schon bei etwa -0.75 V gegenüber Ag/AgCl überschritten wird. Die Spannungsrampe kann allerdings nicht unendlich steil sein, da das Oxid sonst durchbricht und der Strom unkontrolliert ansteigt. Daher muss diese Anstiegszeit berücksichtigt werden.

In Abbildung 16 auf der nächsten Seite ist eine Messreihe mit konstanter Verweildauer von 300 s auf U_{max} dargestellt. Die Vorschubgeschwindigkeit beträgt 50 mV/s und die Spannungsvariation liegt zwischen 0 V und 6 V. Die Oxidationszeit t_{pass} unterscheidet sich von Spannungspuls zu Spannungspuls, da die Anstiegszeiten mit jedem Puls zunehmen. Der Unterschied zwischen 0 V und 6 V beträgt insgesamt 125 s und ist somit nicht unerheblich.

Abbildung 16: Spannungsverlauf (oben) und Stromverlauf (unten) über 10 Zyklen bei konstanter Verweildauer t_{cp} und Vorschubgeschwindigkeit unter Variation der Spannung.

Abbildung 17: Spannungs- und Stromverlauf über 6 Zyklen bei gleicher Oxidationszeit t_{pass} von 300 s .

Eine Möglichkeit dies zu umgehen besteht darin, die Oxidationsdauer konstant zu halten. Dies führt jedoch dazu, dass sich die Verweildauer auf dem maximalen Passi-

Abbildung 18: Variation der Passivierungsdauer bei einer Spannung von 0 V zwischen 30 und 300 s mit v = 250. mV/s

vierungspotential über mehrere Messzyklen ändert und mit zunehmender Spannung kürzer wird.

Eine Messreihe mit konstanter Passivierungsdauer und damit unterschiedlicher Verweildauer auf den Endpotentialen ist in Abbildung 17 auf der vorherigen Seite dargestellt. Die Vorschubgeschwindigkeit beträgt wie in der vorhergehenden Messreihe 50 mV/s. Damit ist die Verweilzeit bei $U_{max} = 4$ V mit 220 s um fast 1/3 kürzer als bei $U_{max} = 0$ V.

Da die Anstiegszeit im Vergleich zur Oxidationszeit relativ kurz ist, liefern beide Messungen ähnliche Resultate. Dies zeigt sich insbesondere bei der Auswertung der Oxidrückätzzeiten und der Betrachtung der Passivierungsströme in den nächsten Kapiteln.

4.4.2 Variation der Passivierungszeit

Die elektrochemische Untersuchung des zeitlichen Einflusses auf die anodische Oxidation kann durch Variation der Passivierungszeit bei konstanter Spannung durchgeführt werden. Auch hier hat die Anstiegszeit einen wesentlichen Einfluss und sollte im Vergleich zur gesamten Passivierungsdauer kurz gehalten werden.

Eine Messreihe bei einer konstanten Spannung von 0 V bei unterschiedlichen Passivierungszeiten ist in Abbildung 18 dargestellt. Um den Einfluss der Anstiegszeit

Abbildung 19: Spannung (oben) und Passivierungsstrom (unten). Ausschnitt aus der Messreihe in Abbildung 16 auf Seite 43

möglichst gering zu halten, wurde die Vorschubgeschwindigkeit der Spannungsrampe mit 250 mV/s sehr hoch gewählt.

Es wurden verschiedenste Messreihen aufgenommen, bei denen sowohl die Spannung als auch die Oxidationszeiten variiert wurden. Damit ergaben sich Messreihen mit bis zu 50 Zyklen und Messdauern von mehreren Stunden. Diese Messzyklen werden in den nächsten Abschnitten beschrieben und ausgewertet.

4.5 Untersuchung der Passivierungsströme

Eine wichtige Größe bei der elektrochemischen Untersuchung der anodischen Oxidation ist der Passivierungsstrom I_{pass} . Dies ist der Strom, der während der Oxidation durch das anodische Oxid fließt und ein indirektes Maß für die Dicke und für die Geschwindigkeit des Oxidwachstums liefert.

Abbildung 19 stellt einen Ausschnitt aus der ersten Messreihe in Abbildung 16 auf Seite 43 bei einer Passivierungsspannung von 6 V dar. Nach dem Minimum, knapp nach dem Überschreiten des Passivierungspotentials, steigt der Strom zunächst mit der Spannung an, bis der Verlauf bei etwa 1.5 V flach wird und sogar leicht einbricht, um bei 2 V ein lokales Minimum einzugehen. Danach folgt ein erneuter Anstieg, der bei knapp über 3 V in einen flachen Verlauf übergeht und sich bis zu einer Spannung von 6 V auch nicht mehr stark ändert. Ist das Zielpotential erreicht und wird die Spannung

Abbildung 20: Darstellung der Passivierungsströme von Messung 1 für unterschiedliche Spannungen. Die gesamte Passivierungsdauer nimmt mit Erhöhung der Spannung zu

konstant, so fällt der Strom stark ab. Der flache Verlauf am Ende der Kurve ist ein Hinweis, dass sich die Oxiddicke zu diesem Zeitpunkt nicht mehr stark ändert, sondern konstant bleibt.

4.5.1 Zeitliches Verhalten der Passivierungsströme

Die gleichzeitige Darstellung aller Passivierungsströme einer Messreihe ist in Abbildung 20 zu sehen. Dazu wurden die Kurven am Beginn der einzelnen Spannungspulse ausgeschnitten und übereinander geplottet. Zunächst nehmen alle Kurven denselben Verlauf, da ja die Spannungsrampen anfangs identisch sind. Sobald die Spannungen konstant werden, brechen die entsprechenden Passivierungsströme ein und sinken nach einigen Sekunden auf einen Bruchteil der ursprünglichen Stromstärke.

Die Passivierungsströme weisen einige Besonderheiten auf. Zunächst fällt auf, dass die Ströme bis zu einem Endpotential von etwa 5 V keinem gemeinsamen Grenzwert zustreben. Dies deutet darauf hin, dass die Oxiddicke zunächst nur langsam mit der Spannung zunimmt. Der Grenzstrom bei 0 V beträgt beispielsweise 9 mA und nimmt mit der Spannung zu. Bei 1.5 V beträgt der Grenzstrom mit knapp 22 mA mehr als doppelt so viel wie bei 0 V. Bei höheren Spannungen ab 5 V sinkt der Grenzstrom dagegen sogar unter 7 mA.

Betrachtet man den Stromverlauf zwischen 0-5 V genauer, so stellt man fest, dass The approveder Grenzstrom nicht konstant bleibt, sondern nach einem lokalen Minimum leicht available at zu steigen beginnt. Dies wird deutlich, wenn man die Grenzströme als Funktion der http://www.uSpannung.darstellt.

4.5.2 Grenzströme als Funktion der Spannung

In Abbildung 21 sind die Grenzströme aus Abbildung 20 auf der vorherigen Seite als Funktion der Passivierungsspannung dargestellt. Dabei entspricht die untere Kurve dem minimalen Wert, den diese Grenzströme annehmen. Die obere Kurve stellt die Ströme am Ende des Spannungspulses nach einer Verweilzeit von 300 s auf dem maximalen Spannungsplateau dar.

Abbildung 21: Blaue Kurve: Passivierungsgrenzstrom am Ende der Spannungspulse nach $t_{cp} = 300$ s als Funktion der jeweiligen maximalen Spannung U_{max} ; grüne Kurve: minimaler Passivierungsstrom.

Es ist in beiden Kurven ein Maximum bei etwa 1.5 V erkennbar. Betrachtet man den Abstand der beiden Kurven zueinander, so zeigt sich, dass der Anstieg des Passivierungsstromes ebenfalls bei 1.5 V am deutlichsten im Bereich des Maximums ist. Bei niedrigeren Spannungen ist hingegen nur ein leichter Stromanstieg zu beobachten. Der Anstieg des Passivierungsstromes wird mit zunehmender Spannung ab 1.5 V geringer, bei 5 V beginnen die Kurven zu überlappen. Das liegt in erster Linie daran,

Abbildung 22: Auswertung des Passivierungsstromes der Messung aus Abbildung 16 auf Seite 43

dass in den Kurven ab 5 V das lokale Minimum noch nicht erreicht wurde, da die Passivierungsdauer in dieser Messung auf 300 s beschränkt blieb.

Auch in der Messung aus Abbildung 16 auf Seite 43 ergibt sich dieser Zusammenhang. Die Auswertung des Passivierungsstromes dieser Messreihe ist in Abbildung 22 dargestellt, wobei in diesem Fall nur der Grenzstrom nach 300 s dargestellt ist.

4.5.3 Interpretation der Passivierungsströme

Die Tatsache, dass der Passivierungsstrom bei konstanter Spannung ein Minimum einnimmt, deutet darauf hin, dass das Oxidwachstum in diesem Spannungsbereich zeitlich limitiert ist. Nach Erreichen einer maximalen Dicke kommt es zu einem Gleichgewicht zwischen anodischer Oxidation und Oxidätzung. Ab diesem Zeitpunkt wird gleich schnell oxidiert wie geätzt, wodurch sich die Oxiddicke nicht mehr ändert.

Es stellt sich dabei die Frage, warum der Strom nicht gleich konstant wird, sondern ab einem Minimum leicht zu steigen beginnt. In weiteren Untersuchungen konnte gezeigt werden, dass der Strom nach einem kurzen Anstieg konstant wird. Ein Grund dafür könnte sein, dass unterschiedliche Mechanismen bei der Oxidbildung, vor allem bei niedrigen Spannungen, eine Rolle spielen.

Es wird vermutet, dass die zwei wesentlichen Faktoren für die anodische Oxidation, Diffusion und die Drift von OH⁻ Gruppen sind. Die Diffusion spielt vor allem bei niedrigen Spannungen eine wesentliche Rolle. Der Oxidationsmechanismus in alkalischen Lösungen beginnt ab dem Passivierungspotential. Die Ätzung stoppt aufgrund der

gebildeten Oxidschicht. Eine leichte Erhöhung der Spannung dürfte allerdings nicht The approve ausreichen, um swesentlich zur Oxidbildung beizutragen. Dies dürfte erst bei deutlich available at höhenen Spannungen ab 8 V der Fall sein, wie im nächsten Kapitel gezeigt wird.

Eine mögliche Erklärung für den Verlauf der Passivierungsströme und Grenzströme in Abbildung 20 auf Seite 46 sowie in Abbildung 22 auf der vorherigen Seite wäre somit, dass bei niedrigen Spannungen zwischen 0 V und 1.5 V auch die Diffusion für das Wachstums des Oxids eine Rolle spielt. Ab 1.5 V wird die Reaktion zunehmend durch das angelegte Potential kontrolliert. Das Maximum des Grenzstroms in diesem Bereich deutet darauf hin, dass die zusätzliche Spannung, die ab dem Passivierungspotential angelegt wird zwar den Tunnelstrom zwischen Halbleiter und Elektrolyt erhöht, jedoch nicht in der Lage ist, die Oxidbarriere im selben Ausmaß zu erhöhen.

Ab 1.5 V bis 2 V beginnt die Drift der OH^- Ionen zu dominieren. Die zusätzliche Spannung generiert auch eine deutliche größere Barriere und der Grenzstrom beginnt abzufallen. Ab 4 V dürfte die Diffusion demzufolge keine Rolle mehr spielen. Die Ursache für den geringeren Einfluss des Potentials auf das Oxidwachstum bei niedrigen Spannungen könnte darin liegen, dass zunächst der Spannungsabfall nur zwischen dem Halbleiter und der inneren Helmholtzebene stattfindet und die angelegte Spannung zwar für zusätzliche Drift im bereits entstandenen Oxid verantwortlich ist, jedoch keine zusätzlichen OH^- Ionen aus dem Elektrolyten einbringen kann. Letzteres scheint erst bei höheren Spannungen der Fall zu sein. Dies sind allerdings nur Vermutungen, die weiterer Untersuchungen, vor allem bei verschiedenen Temperaturen, Konzentrationen und Elektrolytzusammensetzugen, bedürfen würden.

Die Tatsache, dass der Passivierungsstrom ein Minimum bei konstantem Potential im Bereich zwischen 0 V und 4 V einnimmt, dürfte auf das Oxidätzverhalten der TMAH zurückzuführen sein. Die äußeren Schichten des Oxids sind dem Elektrolyten direkt ausgesetzt und daher zusätzlich mit H_2O und OH^- Gruppen terminiert. Das Oxid wir mit der Zeit buchstäblich von den Ätzangriffen der Lauge aufgeweicht, was sich unter anderem in einem erhöhten Passivierungsstrom äußert.

Ob die Passivierungsströme auch bei höheren, konstanten Spannungen ein Minimum einnehmen und ansteigen würden, konnte in dieser Arbeit nicht untersucht werden, da solche Versuche sehr lange Zeiträume von mehren Tagen in Anspruch nehmen würden und es aus technischen und logistischen Gründen nicht möglich war, dies durchzuführen.

Weiterführende Untersuchungen auf diesem Gebiet wären vor allem bei unterschiedlichen Temperaturen und Konzentrationen interessant. Das Ätzverhalten von Siliziumdioxid hängt vor allem von der Temperatur ab, jedoch spielt auch die Konzentration des Elektrolyten eine Rolle. Derartige Untersuchungen wären vor allem für die Strukturierung von MEMS Bauelementen mit Hilfe des elektrochemischen Ätzstopps von Bedeutung, da dort die anodische Oxidation der entscheidende Faktor ist, der die Siliziumätzung zum Erliegen bringt. Vor allem bei komplizierteren Bauelementen mit The approved original verschiedenen Membrandicken ist es nicht unerheblich, welche Einflüsse eine längere available at the main Verweildauer nach dem Ätzstopp im Elektrolytbad hat.

http://www.ub.tuwien.ac.at/eng

4.6 Rückätzung anodischer Oxide in TMAH

Die Verwendung von KOH oder TMAH als Elektrolyt für die anodische Oxidation von Silizium bietet wie bereits beschrieben die Möglichkeit, die gebildeten Oxide rückzuätzen, ohne dabei den Versuchsaufbau zu verändern. Der Prozessablauf wird dabei quasi reversibel, da nach der Oxidrückätzung Silizium vorliegt. Die Konzentrationsänderung der TMAH ist sehr gering und damit vernachlässigbar.

Die Rückätzung des Oxids geschieht bei konstanter Spannung unterhalb des Passivierungspotentials aber oberhalb des OCPs. Die Regelung der Spannung vom Passivierungs- auf das Ätzpotential kann abrupt erfolgen, da dabei kein wesentlicher Stromfluss auftritt. Die Stromdichte sinkt augenblicklich auf nahezu null, da zwischen dem Silizium und dem Elektrolyten nur noch eine sehr geringe Potentialdifferenz herrscht und das Oxid nur eine sehr niedrige Leitfähigkeit hat. Der Prozess der Oxidrückätzung erfolgt dabei stromlos. Ein nennenswerter Stromfluss tritt erst auf, nachdem das Oxid hinreichend dünn ist, sodass Elektronen durch die Barriere fließen können.

Es kann angenommen werden, dass die Oxidrückätzzeit t_r mit der Dicke zunimmt. Jedoch kann nicht ohne weiteres darauf geschlossen werden, dass t_r proportional zur Dicke d_{ox} ist, da diese nicht unabhängig von der Zusammensetzung des Oxids sein muss. Die Ätzraten anodischer Oxide sind bisher nur wenig untersucht worden. Es ist jedoch bekannt, dass die Ätzraten sehr stark von der Art der Herstellung des Oxids abhängig und deutlich höher als die von thermischen Oxiden sind [52, 53]. Gegenstand von Untersuchungen waren außerdem anodische Oxide im Bereich von Stromoszillationen [54, 55]. Für anodische Oxide, die unter solchen Bedingungen hergestellt werden, hängt die Ätzrate stark von deren Entfernung von der Oxid/Elektrolyt Grenzfläche ab. [6]. Systematische Untersuchungen der Ätzraten anodischer Oxide in TMAH liegen in der Literatur gegenwärtig nicht vor.

4.6.1 Oxidrückätzung als Funktion der Passivierungsspannung

Die Dicke anodischer Oxide hängt sehr stark von der angelegten Spannung während der Oxidation ab. Literaturangaben zufolge ist die Oxiddicke ab einem gewissen Potential, das je nach Elektrolyt unterschiedlich sein kann, linear von der Spannung abhängig [6].

Abbildung 23: (a) Darstellung der Ströme während der Oxidrückätzung aus Abbildung 16 auf Seite 43 und (b) die Oxidrückätzzeit als Funktion der Spannung während der anodischen Oxidation.

In Abbildung 23 und Abbildung 24 auf der nächsten Seite sind die Ströme während der Rückätzung sowie die Zeiten bis zum Erreichen eines Schwellstromes von 100 mA als Funktion der Passivierungsspannung dargestellt. Es zeigt sich ein linearer Verlauf bis zu einer Spannung von 2 V. Hier beginnt die Ätzzeit mit der Spannung stark zuzunehmen. Der Knick erfolgt in einem Bereich in dem auch der Passivierungsstrom zu sinken beginnt, wie im vorigen Kapitel beschrieben wurde. Ginge man davon aus, dass die Rückätzzeit proportional zur Dicke ist, müsste der Verlauf bei höheren Spannungen linear werden.

4.6.2 Simulation der Rückätzströme

Die Rückätzströme (a) in Abbildung 23 und Abbildung 24 auf der nächsten Seite haben eine charakteristische Form. Der Strom ist bei allen Kurven anfangs fast null, steigt exponentiell, geht in einen sigmoiden Verlauf über und wird nach einem Überschwinger konstant. Auffällig dabei ist, dass die Anstiege mit zunehmender Passivierungsspannung flacher und die Überschwinger kleiner werden.

Der exponentielle Stromanstieg lässt sich durch den Tunnelstrom erklären, dessen Stärke von der verbleibenden Oxiddicke abhängig ist. Für die Stromdichte wird angenommen, dass diese mit der Dicke der Barriere exponentiell zunimmt:

$$j \propto e^{-d_{ox} \cdot \alpha}.$$
(37)

Abbildung 24: (a) Darstellung der Ströme während der Oxidrückätzung, aus Abbildung 17 auf Seite 43 und (b) die Oxidrückätzzeit als Funktion der Spannung während der anodischen Oxidation.

Dabei ist α eine zu bestimmende Proportionalitätskonstante. Die Oxiddicke verringert sich mit der Zeit aufgrund der Ätzung, und nimmt man in erster Näherung eine konstante Ätzrate über die Zeit an, so ergibt sich für diese der lineare Zusammenhang:

$$d_{ox}(t) = d_0 - r_{ox}t, \quad t < d_0/r_{ox}.$$
 (38)

Somit gilt für den Strom als Funktion der Zeit der exponentielle Zusammenhang:

$$j(t) = j_0 e^{-(d_0 - r_{ox}t)\alpha}, \quad t < d_0/r_{ox}.$$
 (39)

Dieser Formel zufolge nimmt die Stromdichte exponentiell mit der Zeit zu, bis das Oxid vollständig entfernt ist und sie den Wert j_0 annimmt. Dies entspricht dem Stromfluss bei reiner Siliziumätzung. Der tatsächlich beobachtete Stromanstieg erfolgt jedoch nicht exponentiell bis zum Erreichen des Maximums sondern wird vorher linear. Dieser lineare Anstieg lässt sich damit erklären, dass manche Bereiche früher vom Oxid befreit sind als andere.

Ausgehend von der Annahme, dass die Oxiddicke von der angelegten Spannung bestimmt wird, müsste das anodische Oxid sehr gleichmäßig sein, da das elektrische Feld in Bereichen mit geringerer Dicke höher ist. Der lineare Anstieg hat jedoch noch eine weitere Ursache, die in der Ungleichmäßigkeit der Oxidätzung begründet liegt. Diese kann nicht völlig gleichmäßig über den Wafer erfolgen. Die Unregelmäßigkeiten, die durch Schwankungen in der Ätzrate hervorgerufen werden, sollten proportional zur Oxiddicke sein. In der Stromkurve selbst wird man die Einflüsse, die durch die Ätzung The approve und durch die Dickenvariation zustande kommen, nicht unterscheiden können. available at the main library of the Vienna

Mute://www.uSowohl.lokalen Variationen der Oxidätzrate als auch der Dickenvariationen über den Wafer liegen stochastische Prozesse zugrunde. Um die Stromkurven zu simulieren wird angenommen, dass sowohl die Unterschiede in der Ätzrate r_{ox} als auch die Variationen in der Oxiddicke d_{ox} über den Wafer einer Normalverteilung entsprechen [56]. Für die Dichtefunktion der Oxiddicke (sowie analog der Ätzrate) gilt demnach:

$$f(d) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left\{-\frac{\left(d-\bar{d}\right)^2}{2\sigma^2}\right\}$$
(40)

mit dem Mittelwert \overline{d} und der jeweiligen Standardabweichung σ .

Die Stromkurven weisen noch eine weitere Besonderheit auf. Die Stromwerte nehmen nach der Rückätzung nicht sofort den Wert I_0 an sondern weisen einen kleinen Überschwinger auf, der mit zunehmender Oxiddicke kleiner wird. Dieser Überschwinger lässt sich dadurch erklären, dass das anodische Oxid ein Dielektrikum darstellt. Die Anordnung aus Silizium, Oxid und Elektrolyt bildet einen Kondensator, der sich schlagartig entlädt, sobald das Oxid entfernt ist. Für die Stomdichte während des Entladevorganges gilt:

$$j(t) = j_c e^{\left(-\frac{t}{\tau}\right)}.\tag{41}$$

Dabei ist j_c die Stromdichte zum Zeitpunkt der Entladung und $t = 0, \tau = R_c \cdot C$ die Zeitkonstante, die sich aus dem Produkt des Widerstandes des Kondensators und seiner Kapazität zusammensetzt [57]. Diese Größen sind schwer zu berechnen, da sich die Kapazität des Kondensators mit abnehmender Dicke erhöht, während der Leckstrom ansteigt. Außerdem können sie nicht direkt gemessen werden. In der folgenden Rechnung wird daher nur eine grobe Schätzung vorgenommen, die zu plausiblen Resultaten führt.

Für eine einfache, stochastische Simulation wird der Wafer in N Flächenstücke unterteilt, wobei jeder Teilbereich eine gleichmäßige Oxiddicke d_n , eine Oxidätzrate r_n , sowie eine Stromdichte $j_n(t)$ aufweist. Alle Flächenstücke sind gleich groß, die Dicken und Ätzraten sind entsprechend der Gleichung (40) normalverteilt.

Für den zeitlichen Verlauf der Stromdichte eines Flächenstückes gilt:

$$j_n(t) = \begin{cases} \frac{j_0}{N} e^{-\alpha (d_n - r_n t)}, & t < d_n / r_n \\ \frac{j_0}{N} + \frac{j_c}{N} e^{-\frac{t - d_n / r_n}{\tau}}, & t \ge d_n / r_n. \end{cases}$$
(42)

Die approbierte Originalversion dieser Dissertation ist in der Hauptbibliothek der Technischen Universität Wien aufgestellt und zugänglich.

Der Gesamtstrom ergibt sich aus der Summe der Teilstromdichten multipliziert mit The approved original der Waferfläche:

university of Technology. http://www.ub.tuwien.ac.at/eng

 $I(t) = A \sum_{0}^{N} j_n(t).$ (43)

Der Gesamtstrom wird auf diese Weise stochastisch simuliert. In Abbildung 25 auf der nächsten Seite ist das Ergebnis einer solchen Simulation dargestellt. Die Simulation wurde mittels eines in der Programmiersprache Python geschriebenen Computerprogrammes unter Zuhilfenahme der numerischen Bibliothek Numpy und des dort implementierten Pseudo-Zufallsgenerators durchgeführt.

Die mittlere Ätzrate wird mit 0.0133 nm/s²⁸ angesetzt. Ausgehend von den Werten für die Oxidätzzeit der Messung in Abbildung 23 auf Seite 51 wird daraus eine mittlere Oxiddicke berechnet. Der Wafer wird in 1000 Stücke unterteilt und jedem Flächenstück werden Werte entsprechend einer Normalverteilung mit einer Standardabweichung σ von 1% für die Oxiddicke und 1.5% für die Ätzrate, zugewiesen. In einem Zeitintervall von 500 s mit einer Unterteilung von 0.01 s werden die einzelnen Stromdichten als Funktion der Zeit berechnet und aufsummiert. Dabei werden für den Parameter $\alpha = 100$ sowie für die Abklingzeit der Kapazität $\tau = 0.3$ angenommen. Für den Gesamtätzstrom I_0 werden 275 mA angenommen und für den Gesamtentladestrom des Kondensators I_{0C} das Achtfache von I_0 .

Der aus der Simulation resultierende Stromverlauf in Abbildung 25 auf der nächsten Seite weist eine sehr große Ähnlichkeit mit den originalen Ätzkurven auf. Sowohl die flacheren Anstiegszeiten wie auch die kleiner werdenden Überschwinger können mit Hilfe der oben abgeleiteten Theorie erklärt und modelliert werden. Es ist zu beachten, dass es sich hierbei nur um eine Plausibilitätsprüfung der Theorie und nicht um eine exakte numerische Simulation unter Verwendung einer numerischen Ausgleichsrechnung handelt. Diese wäre bei einem derartigen Beispiel sehr umfangreich und schwierig zu implementieren. Allein für die Berechnung dieses einfachen Beispiels unter Verwendung eines fixen Parametersatzes wurden bereits einige Minuten an Rechenzeit benötigt. Eine einigermaßen exakte, numerische Ausgleichsrechnung müsste daher zunächst entsprechend optimiert werden, um in vernünftiger Zeit gute Resultate liefern zu können.

4.6.3 Zeitliche Abhängigkeit der Oxidrückätzung

Neben der Spannung hat auch die Verweildauer auf dem Zielpotential einen Einfluss auf die Oxidrückätzzeit. Um diesen Zusammenhang quantitativ zu untersuchen, wurden Rückätzversuche bei verschiedenen Verweildauern und Spannungen durchgeführt.

 $^{^{28}\}mathrm{Entspricht}$ 0.8 nm/min, siehe dazu Kapitel 5.1.3 auf Seite 66

Abbildung 25: Stochastische Simulation der Stromkurven bei der Rückätzung.

Das Ergebnis einer solchen Untersuchung ist in Abbildung 26 auf der nächsten Seite dargestellt. Dabei wurde die Spannung zwischen 0 und 6 V und die Passivierungszeit zwischen 20 und 250 s variiert. Die Vorschubgeschwindigkeit am Anfang betrug 500 mV/s. Dieser Wert musste so hoch gewählt werden, um bei kürzeren Passivierungszeiten den Einfluss durch die Spannungsrampe klein zu halten. Das Messergebnis weist eine Besonderheit auf. Während sich bei 0 V, 4 V und 6 V ein deutlicher Einfluss der Passivierungsdauer zeigt, verschwindet dieser bei 2 V völlig. Es scheint, als ob die Passivierungsdauer bei dieser Spannung keinerlei Einfluss hätte.

Eine weitere Versuchsreihe, die in Abbildung 27 auf Seite 57 dargestellt ist und die unter gleichen Bedingungen, nur bei geringeren Spannungen durchgeführt wurde, weist ebenfalls dieses Verhalten auf. Der Einfluss der Passivierungszeit ist bei 0 V relativ hoch. Die Rückätzung bei einer Passivierungsdauer von 30 s dauert etwa 70 s, bei 200 s sind es dagegen schon 100 s. Mit zunehmender Spannung verschwindet der zeitliche Einfluss, die Rückätzzeit wird jedoch mit zunehmender Spannung insgesamt höher. Bei 2 V ist dagegen sogar eine leichte Abnahme der Oxidätzzeit zu beobachten, was auf eine Verschlechterung der Oxidqualität bei längerer Verweildauer im Elektrolyt hinweist.

Eine Erklärung dafür dürfte sein, dass wie bereits erwähnt, sowohl die Drift als auch die Diffusion für die Oxidbildung eine Auswirkung auf die anodische Oxidation haben. Bei niedrigen Spannungen ist der Einfluss des elektrischen Feldes nicht von Bedeutung und das Oxid bildet sich in Folge von Diffusion. Bei höheren Spannungen überlagern sich die Effekte und der Einfluss des Feldes beginnt zu dominieren.

Abbildung 26: Oxidrückätzrate als Funktion der Zeit für verschiedene Spannungen (Ag/AgCl) zwischen 0 - 6 V.

4.6.4 Variation der Vorschubgeschwindigkeit

Untersuchungen von Miney [49] unter Variation der Vorschubgeschwindigkeit ergaben, dass sich die Rückätzzeiten des Oxids bei niedrigeren Vorschubgeschwindigkeiten verlängern. Dies ist einleuchtend, da bei langsameren Vorschubgeschwindigkeiten die Passivierungsdauer länger ist als bei höheren. Allerdings wurden diese Versuche nur bei vergleichsweise geringen Passivierungsspannungen von unter 1 $V_{Ag/AgCl}$ durchgeführt.

Die Ergebnisse der Untersuchung des Zeiteinflusses auf die Oxidrückätzrate lassen vermuten, dass sich im Bereich von 2 V die Vorschubgeschwindigkeit nur sehr wenig auswirken dürfte. Um dies zu durchleuchten, wurden Versuche mit sägezahnförmigen Spannungspulsen durchgeführt. Dazu wurde die Spannung sofort nach Erreichen des Zielpotentials unter das Passivierungspotential abgesenkt und die Rückätzdauer des Oxids gemessen. Die Ergebnisse von zwei Versuchen auf p- und hochdotiertem n⁺-Grundmaterial sind in Abbildung 28 auf Seite 58 dargestellt. Für eine Passivierungsspannung von 0 V und 5 V zeigt sich ein Verhalten, wie es aus der Literatur bekannt ist. Eine Ausnahme stellt die Messreihe bei 2.5 V auf p-Silizium dar. Es zeigt sich, dass bei sehr niedrigen Vorschubgeschwindigkeiten die Dauer der Rückätzung geringer wird und bei 25 mV/s ein Maximum einnimmt.

Dies ist konsistent mit der Beochbachtung des Zeiteinflusses auf die Oxidätzung. Die zusätzliche Verweildauer bewirkt nicht, dass das Oxid dicker wird, es wird in dieser Zeit jedoch von der Lauge angegriffen. Eine weitere mögliche Erklärung wäre, dass

Abbildung 27: Oxidrückätzrate als Funktion der Zeit bei verschiedenen Spannungen (Ag/AgCl) zwischen 0 - 2 V.

die geringere Vorschubgeschwindigkeit auch Auswirkungen auf das Oxidwachstum hat und zu weniger dichten anodischen Oxiden führt.

Auf dem hoch dotierten n-Wafer kann dies nicht beobachtet werden. Zwar ist auch hier der Einfluss der Vorschubgeschwindigkeit im Bereich von 2 V geringer, die Ätzdauer ist jedoch bei der geringsten Vorschubgeschwindigkeit am größten. Auch in absoluten Werten gemessen sind die Rückätzzeiten deutlich höher als auf dem p-Grundmaterial. Dies könnte daran liegen, dass die hohe Dotierung des n⁺-Siliziums dazu führt, dass auch das Oxid höher dotiert ist, wodurch sich die Barriere verringert und dementsprechend mehr OH⁻ Ionen in das Oxid eingebracht werden können.

4.6.5 Untersuchung der Zeit- und Spannungsabhängigkeit mittels Rechteckpulsen

Aus den bisherigen Ergebnissen kann man schließen, dass trapezförmige Spannungspulse zur Untersuchung des zeitlichen Einflusses der Passivierungsdauer auf die Rückätzung vor allem für kurze Passivierungszeiten nicht geeignet sind, da hier der Einfluss der Spannungsrampe zu groß wird. Aus diesem Grund wurden Untersuchungen mit Hilfe von Rechteckpulsen bei kurzen Passivierungszeiten und niedrigen Spannungen auf p und n⁺-Grundmaterial durchgeführt.

Die Ergebnisse einer Messreihe für p-Grundmaterial sind in Abbildung 29 auf Seite 59 a) dargestellt. Die kürzeste Passivierungszeit betrug 2.5 s. Es kann für alle verwendeten

Abbildung 28: Oxidrückätzung in Abhängigkeit der Vorschubgeschwindigkeit unter Verwendung von sägezahnförmigen Spannungspulsen.

Spannungen ein Einfluss der Passivierungszeit beobachtet werden. Für Spannungen ab 1.5 V ist zu beobachten, dass sich die Ätzzeiten ab 20 s Passivierungszeit nicht mehr ändern. Bei niedrigeren Spannungen kann jedoch sehr wohl noch ein Oxidwachstum darüber hinaus beobachtet werden.

Etwas anders ist dies im Falle von n^+ -Silizium, wie die Ergebnisse der Messreihen in Abbildung 29 auf der nächsten Seite b) zeigen. Hier unterscheidet sich die Form der Kurven von Spannung zu Spannung nur unwesentlich. Außerdem sind die Rückätzzeiten durchwegs höher als im Falle von p-Silizium, was darauf schließen lässt, dass das Oxid auf n^+ -Silizium insgesamt etwas dicker aufwächst als auf dem deutlich niedriger dotierten p-Silizium.

4.7 Untersuchungen auf Wafern mit niedrig dotierter n-Epitaxie

Die bisher beschriebenen Untersuchungen wurden alle auf p-Silizium und auf sehr hoch dotiertem n^{++} -Silizium durchgeführt, bei denen bereits bei geringen Spannungen das elektrische Feld zwischen dem Silizium und dem Oxid abgebaut wird und die anodische Oxidation ungestört stattfinden kann. Einige Versuche wurden jedoch auf niedriger dotierten epitaxial hergestellten n-Wafern durchgeführt, wobei als Substrat hoch n^{++} -dotierte Wafer verwendet wurden. Die Verwendung von p-dotierten Substraten hätte den Effekt, dass eine Diode in Vorwärtsrichtung betrieben und die n-Epi mit Defektelektronen geflutet worden wäre.

Abbildung 29: Rückätzzeit als Funktion der Passivierungsdauer für verschiedene Spannungen unter der Verwendung von Rechteckpulsen.

4.7.1 Zeit- und Spannungsabhängigkeit der Rückätzung im Dunkeln

Die Zeit- und Spannungsabhängigkeit für die niedriger dotierten Wafer konnte nur in kurzen Messreihen untersucht werden, da ansonsten die 10 μ m dünne Epitaxie-Schicht durch die Siliziumätzung entfernt worden wäre.

In Abbildung 30 auf der nächsten Seite (a) ist die Oxidrückätzzeit als Funktion der Passivierungszeit bei einer Spannung von 1 V_{Ag/AgCl} dargestellt. Die Kurve ähnelt einem Diffusionsprofil, und kann mit einer Funktion $\alpha \sqrt[4]{t_p}$ angenähert werden. Für den Parameter α ergibt sich unter Verwendung des nichtlinearen Levenberg-Marquardt Algorithmus ein Wert von 20.16 mit einem asymptotischen Fehler von 1.043%.

Die Darstellung der Oxidrückätzzeit als Funktion der Spannung in (b) zeigt deutlich, dass ab etwa 0 $V_{Ag/AgCl}$ die Oxiddicke nicht mehr mit der Spannung zunimmt. Dies geschieht erst, sobald die Durchbruchspannung des Silizium überschritten wird. Bei Spannungen unterhalb von 0 $V_{Ag/AgCl}$ zeigt sich hingegen ein linearer Verlauf.

Dieser Versuch zeigt, dass bereits bei niedrigen Spannungen, bevor das Silizium durchbricht, anodische Oxidation stattfindet. Die Oxidschicht ist ausreichend, um die Ätzung zu stoppen. Dieser Effekt ist maßgeblich für den elektrochemischen Ätzstopp verantwortlich. Daraus ist weiters ersichtlich, dass die Dicke des anodischen Oxids beim Eintreten des ECES unabhängig von der angelegten Spannung ist und diese allein von der Zeit abhängt. Dieser Zusammenhang ist vor allem von Bedeutung, wenn der elektrochemische Ätzstopp bei höheren Spannungen stattfinden soll.

Abbildung 30: n-Epitaxie, 10 μm, 1 · 10¹⁶/cm³ Phosphor auf n⁺⁺-Substrat. (a) Oxidrückätzzeit unter Variation der Passivierungszeit. (b) Oxidrückätzzeit in Abhängigikeit von der Spannung.

4.7.2 Experimentelle Bestimmung der Durchbruchspannungen

Wie in Kapitel 3.3.3 auf Seite 28 beschrieben, ist auf niedrig dotiertem n-Silizium die MOS-Struktur rückwärts gepolt. Eine Erhöhung der Spannung führt zunächst nicht zu stärkerer Oxidbildung, da nahezu das gesamte elektrische Feld im Silizium abgebaut wird. Ab einer gewissen Spannung ist das elektrische Feld im Silizium so hoch, dass es die Spannung nicht mehr sperren kann und durchbricht.

Zur Bestimmung der Durchbruchspannung des Siliziums wurden Wafer mit drei verschiedenen Dotierstoffkonzentrationen mit einer Schichtdicke von jeweils 10 μ m verwendet, die auf hoch n-dotierten Wafern abgeschieden wurden. Die Konzentration der Phosphoratome lag dabei bei 3E15, 7E15 und 1E16 cm⁻³.

Der Messaufbau war identisch wie in Kapitel 4.3 auf Seite 39 beschrieben. Der Potentiostat wurde auf -1.5 $V_{Ag/AgCl}$ gestellt und die Spannung am Netzgerät hochgeregelt. Die Messung erfolgte in 25%iger TMAH bei Raumtemperatur, da eine Ätzung nicht erforderlich war. Die Spannungen wurden mit einer Geschwindigkeit von 0.5 mV/s hochgeregelt und der Strom gemessen. Alle Messungen erfolgten bei Dunkelheit.

Abbildung 31 auf der nächsten Seite zeigt Strom-Spannungsverläufe für Wafer mit drei unterschiedlichen Dotierungen. Der Strom steigt zunächst nicht über 2 mA, was auf einen reinen Spannungsabfall im Halbleiter hindeutet. Der Beitrag des elektrischen Feldes zum Oxidwachstum ist äußerst gering. Je höher die Dotierung, desto früher kommt es zum Durchbruch, der sich in einem massiven Anstieg des Stromes äußert. Für die Durchbruchspannung als Funktion der Dotierung von Silizium gilt der folgende Zusammenhang[41]:

Abbildung 31: Durchbruch auf n-dotierten Wafern. Der Strom ist als Funktion der Spannung dargestellt, die Vorschubgeschwindigkeit betrug 500 mV/s. Zunächst ist der Stromfluss sehr gering über einen weiten Spannungsbereich und steigt beim Erreichen der Durchbruchspannung plötzlich an.

$$V_{DB} = 5.34 \cdot 10^{13} N_D^{-3/4}. \tag{44}$$

In Abbildung 32 auf der nächsten Seite ist diese Durchbruchspannung als Funktion der Dotierung dargestellt. Es zeigt sich, dass die in diesem Versuch gemessenen Werte für die Durchbruchspannung bei $3E15 \text{ cm}^{-3}$ und $7E15 \text{ cm}^{-3}$ deutlich unter den erwarteten Werten liegen, was viele Ursachen haben kann. Es könnte sich einerseits um lokale Schwankungen der Dotierung handeln, die zu einem verfrühten Durchbruch führen. Aber auch die Oxidqualität könnte einen Einfluss haben.

Der plötzliche, heftige Stromanstieg beim Durchbruch macht es unmöglich, unter diesen Bedingungen kontrolliert Oxide einer definierten Dicke entstehen zu lassen. Dies ist nur mit zusätzlicher Beleuchtung realisierbar, und würde in der Praxis einen Einzelprozess stark verkomplizieren.

Eine Beleuchtung des Siliziums knapp unterhalb der Durchbruchspannung führt zu einer Erhöhung des Stromes und damit zur anodischen Oxidation. Wird die Leuchtquelle abgeschaltet, sinkt der Stromfluss auf einen minimalen Wert. Mit dieser Methode ist es grundsätzlich möglich, selektiv zu oxidieren. Werden Teilbereiche beleuchtet, während andere dunkel bleiben, entsteht andodisches Oxid in erster Linie in den beleuchteten Bereichen.

Abbildung 32: Durchbruchspannung als Funktion der Dotierstoffkonzentration cm^{-3} . Die durchgezogene Linie beschreibt die theoretisch berechnete Durchbruchspannung.

4.7.3 Oxidation mit lokal erhöhter Dotierung

Eine Möglichkeit auf niedrig dotiertem n-Silizium eine anodische Oxidation zu ermöglichen, ist eine lokale Erhöhung der Dotierstoffkonzentration. In diesem Fall erhöht sich die Stromdichte lokal und obwohl die MOS-Struktur rückwärts gepolt ist, kann aufgrund der hohen Ladungsträgerkonzentration dort keine Raumladungszone entstehen. Ganzflächig ist dies leicht zu realisieren, indem in die dem Elektrolyt zugewandte Seite Phosphor implantiert wird. Es wurde ein Experiment durchgeführt, bei dem auch eine Struktur implantiert wurde. Es zeigte sich wie erwartet, dass in den implantierten Gebieten das anodische Oxid stärker aufwuchs als in den nicht implantierten. Allerdings erweist sich dieser Effekt als eher gering, da auch in den niedriger dotierten Bereich Ladungsträger diffundieren und dort zur anodischen Oxidation führen. Es ergibt sich ein Unterschied von nur wenigen Nanometern in der Oxiddicke, je nach eingesetzter Spannung. Optisch zeigt sich dies in einer leichten Schattierung der Farbe der Oxidschichten, die auch mit freiem Auge bei entsprechender Strukturgröße erkennbar ist.

The approved originary and the mit lateral available at the mit restriction of Technology.

http://www.ub.tuwien.ac.at/eng

Aus der Literatur [6] ist bekannt, dass die Dicke anodischer Oxide über weite Bereiche linear von der bei deren Erzeugung angelegten Spannung abhängig ist. Diese Spannungsbereiche sind je nach Elektrolytzusammensetzung unterschiedlich. Madou [58] untersuchte anodische Oxide in Methanol und Glycol mit Zusätzen von 0.04N KNO₄. Seinen Ausführungen zufolge ist die Oxiddicke zwischen 5 und 50 V für Methanol und ab 10 V für Glycol linear von der Spannung abhängig. Für TMAH konnten in der Literatur keine Werte zu diesem Spannungsbereich gefunden werden.

In diesem Kapitel wurde zunächst der lineare Bereich der anodischen Oxidation von Silizium in 25% TMAH bei einer Temperatur von 90 °C bestimmt. Dazu wurden als Messmethoden optische Dickenmessungen durch Vielstrahlinterferenz, Aufnahmen unter dem Elektronenmikroskop sowie die im letzten Kapitel beschriebene elektrochemische in situ Bestimmung der Oxiddicke durch Rückätzung herangezogen und miteinander verglichen. In weiteren Versuchen wurden durch das Einprägen eines linearen Spannungsabfalls am Siliziumwafer keilförmige, oberflächliche Dünnschichten von sehr hoher Präzision hergestellt und charakterisiert. Mögliche Anwendungsbereiche für derartige Strukturen wären unter anderem in der Optoelektronik denkbar.

5.1 Spannungsabhängigkeit anodischer Oxide bei höheren Spannungen

5.1.1 Rückätzzeit als Funktion des Endstromes

Wie in Kapitel 4.6 auf Seite 50 gezeigt werden konnte, hängt die Dicke anodisch gebildeter Oxide sowohl von der Passivierungsspannung als auch von der Passivierungszeit ab. Bei niedrigen Spannungen unter 3 V verlangsamt sich das Oxidwachstum bereits nach weniger als zwei Minuten, während es bei höheren Spannungen noch über einen längeren Zeitraum anhält. Will man die Spannungsabhängigkeit der Oxiddicke bei höheren Passivierungspotentialen untersuchen, so müssen geeignete Spannungspulse gewählt werden.

Rechteckspulse sind zu diesem Zweck ungeeignet, da diese bei höheren Spannungen sofort einen Durchbruch herbeiführen und einen sehr starken Stromfluss unter Zersetzung des Elektrolyten verursachen. Sägezahnförmige Pulse sind besser geeignet, allerdings ist der Einfluss des Zielpotentials auf die Oxiddicke in diesem Fall nicht eindeutig feststellbar. Auch trapäzförmige Pulse mit fixen Passivierungszeiten sind nicht optimal geeignet, da bei niedrigen Spannungen das Oxidwachstum bereits nach kurzer Zeit The approved original Eine Möglichkeit für derartige Untersuchungen wäre daher die Oxidation bei konstanter available at the main Stromdichte bis zum Erreichen des Zielpotentials. Versuche von Madou [58] und andeuniversity of Technology. The abedienten sich dieser Methode. In dieser Arbeit wurden trapezförmige Pulse mit variabler Passivierungsdauer als Untersuchungsmethode herangezogen. Dazu wurde die Spannung mit 50 mV/s bis zum Erreichen des Zielpotentials hochgeregelt und verblieb dort bis die Abbruchbedingung durch Unterschreiten eines zuvor definierten Endstromes I_{end} erfüllt war.

> Der Verlauf der Passivierungsströme in Kapitel 4.5 auf Seite 45 zeigt, dass diese bei zunehmenden Endpotentialen längere Zeit benötigen, um in einen flachen Verlauf überzugehen und einem Grenzwert zuzustreben. Um den Einfluss des Endstromes I_{end} auf die Oxiddicke zu untersuchen, wurde daher eine Messreihe bei einer konstanten Spannung von 7 V_{Ag/AgCl} in TMAH durchgeführt. Nach Erreichen des Zielpotentials wurde der Passivierungsstrom gemessen. Die Spannung wurde nach Unterschreiten des entsprechenden Endstromes unter das Passivierungspotential geregelt.

Abbildung 33: Untersuchungen bei einem Zielpotential von 7 V: (a) Oxidrückätzzeit und (b) Passivierungsdauer als Funktion des Endstromes

Das Ergebnis dieser Messung ist in Abbildung 33 für verschiedene Endströme dargestellt. Bei niedrigeren Endströmen ist die Passivierungsdauer länger und dementsprechend auch die Rückätzzeit, wobei diese beiden Größen nicht 1:1 korrelieren. Es zeigt sich, dass zum Erreichen eines Endstromes von 10 mA fast doppelt soviel Zeit benötigt wird wie zum Erreichen von 20 mA, während die Rückätzzeit nur um 1/4 zunimmt.

5.1.2 Oxiddicke als Funktion der Spannung

The approved original version of this thesis is available at the main library of the Vienna University of Technology.

http://www.ub.tuwien.ac.at/eng

Zur Bestimmung des linearen Spannungsbereichs der anodischen Oxidation in TMAH wurde eine elektrochemische Versuchsreihe wie im vorigen Kapitel beschrieben mit trapezförmigen Pulsen und einem Endstrom von 20 mA durchgeführt. Bei dieser Messung wurde das Zielpotential zwischen 2 und 14 V variiert. Ein linearer Verlauf der Oxidätzzeit von der Spannung zeigt sich beginnend zwischen 7 und 8 V wie in Abbildung 34 (a) dargestellt. Da jedoch aus der Literatur bekannt ist, dass die Ätzrate anodischer Oxide mit der Tiefe variieren kann [54], lässt diese Feststellung allein noch keinen gültigen Schluss über die Abhängigkeit der Oxiddicke von der Spannung zu.

Abbildung 34: (a) Rückätzzeit als Funktion der Spannung sowie (b) optisch bestimmte Oxiddicken. Die Spannung wurde in beiden Versuchen mit 50 mV/s hochgeregelt und danach auf dem Endwert konstant gehalten, bis der Endstrom 20 mA betrug.

Zur Bestimmung der Oxiddicke wurden daher noch zusätzlich optische Messungen durchgeführt. Dazu wurden Oxide unter den gleichen Kriterien wie bei der elektrochemischen Messreihe hergestellt und mittels Vielstrahlinterferenz gemessen. Das Ergebnis dieser Messung ist in Abbildung 34 (b) dargestellt. Es zeigt sich auch hier, das die Spannungsabhängigkeit ab 8 V linear ist. Da die Messmethode erst ab einer Oxiddicke von 20 nm zuverlässige Ergebnisse liefert, konnten keine Dickenmessungen bei noch niedrigeren Spannungen durchgeführt werden. Dickere Oxide stellen für diese Messmethode kein Problem dar und daher wurde der Spannungsbereich auf 30 V ausgedehnt. Die approbierte Originalversion dieser Dissertation ist in der Hauptbibliothek der Technischen Universität Wien aufgestellt und zugänglich. http://www.ub.tuwien.ac.at

TU UB

5.1.3 Bestimmung der Oxidätzrate

The approved original version of this thesis is available at the main library of the Vienna

University of Technolo Die beiden unterschiedlichen Messungen ermöglichen eine Bestimmung der Oxidätzrate. http://www.ub.tuwien.ac.Nimmt man an, dass der Kurvenverlauf ab 8 V in 34 (a) linear ist, so gilt für die Rückätzzeit als Funktion der Spannung:

$$t_{aetz} = a_{EC}(U - U_{EC}),\tag{45}$$

wobei t_{aetz} die Rückätzzeit in Minuten, a_{EC} ein Fitparameter für die elektrochemische Messung und U_{EC} der Punkt ist, an dem die Ausgleichsgerade die x-Achse schneidet. Ein linearer Fit ergibt für a_{EC} 12 min/V und für U_{EC} 6.37 V mit einem Korrelationskoeffizienten von 0.999772 und einem Fehler von 0.127 min.

Analog gilt für die optisch gemessene Oxiddicke als Funktion der Spannung:

$$d_{ox} = b_{opt}(U - U_{opt}). \tag{46}$$

In diesem Fall ist d_{ox} die Dicke des Oxids in Nanometern, b_{opt} ein Fitparameter für die optische Messung und U_{opt} der Schnittpunkt der Ausgleichsgeraden mit der Abszisse. Das Ergebnis einer linearen Ausgleichsrechnung ergibt für diesen Fallfür b_{opt} 10.16 nm/V und U_{opt} 6.48 V mit einem Korrelationskoeffizienten von 0.999481 und einer Standardabweichung von 0.18 nm.

Die Ätzrate des gebildeten ano
dischen Oxids in TMAH r_{ox} definiert sich aus dem Quotienten des Ätz
abtrags mit der Ätzzeit:

$$r_{ox} = \frac{\Delta d_{ox}}{\Delta t_{aetz}}.$$
(47)

Bei einer willkürlich gewählten Passivierungsspannung von 11 V ergibt sich damit für die Oxidätzrate:

$$r_{ox} = \frac{b_{opt}(11 - U_{opt})}{a_{EC}(11 - U_{EC})} = 0.8 \text{ nm/min.}$$
(48)

Wird die Ätzzeit mit der Ätzrate multipliziert, so ergibt sich damit die Oxiddicke. Dies ermöglicht einen Vergleich der optischen mit der elektrochemischen Messung. In Abbildung 35 auf der nächsten Seite sind die Ergebnisse beider Messungen dargestellt. Es ergibt sich eine sehr gute Übereinstimmung der beiden Geraden. Die

Abbildung 35: Vergleich der optischen Messung der Oxiddicke mit der Rückätzung des anodischen Oxids. Die Multiplikation der Ätzzeit mit der ermittelten Ätzrate ergibt die Dicke in nm.

Steigung der Geraden bei der elektrochemischen Messung beträgt für b_{EC} 10.16 nm/V womit sich eine Abweichung von 0.244 nm/V Passivierungsspannung ergibt. Die beste Übereinstimmung liegt naturgemäß im Bereich des Schnittpunktes der beiden Geraden.

5.1.4 Gleichmäßigkeit der Oxiddicke

Ein wichtiger Punkt bei der Untersuchung anodischer Oxide war die Gleichmäßigkeit der Dickenverteilung über den Wafer. Um diese zu beurteilen, wurde eine optische Dickenmessung über 49 Punkte am Wafer entlang einer Linie vorgenommen. Das Resultat dieser Dickenmessung ist in Abbildung 36 auf der nächsten Seite dargestellt. Es ergibt sich eine absolute Dickenvariation (TTV) des Oxids von 0.838 nm, was einer Abweichung von 0.87% entspricht. Der gemessene Wafer wurde bei einer Spannung von 16 V und einem Endstrom von 20 mA anodisch oxidiert.

Diese Messung weist eine signifikante Abweichung auf der linken Seite auf. Dies entspricht am Wafer dem Notchbereich, der sich im Elektrolytbad stets an der Oberseite befinden muss, da der verwendete Waferholder dies vorgibt. Somit lässt sich dieser Effekt auf den Versuchsaufbau zurückführen. Es kann angenommen werden, dass die Temperaturverteilung im Elektrolytbad trotz eingeschaltetem Magnetrüher nicht vollkommen homogen über den Wafer ist. An der Oberfläche des Elektrolyten müsste die Temperatur etwas geringer sein als in der Nähe der Heizplatte. Die Reaktionsrate der anodischen Oxidation nimmt mit steigender Elektrolytemperatur zu, was sich in

Abbildung 36: Gleichmäßigkeit der Oxiddicke über den Wafer, ermittelt durch eine optische Messung entlang einer Geraden

diesem Dickenunterschied äußert. Die relative Abweichung liegt jedoch noch weit unter 1%.

In Kapitel 4.6.2 auf Seite 51 konnte durch eine Simulation gezeigt werden, dass es eine Korrelation zwischen der Steilheit des Stromanstiegs bei der Rückätzung anodischer Oxide und der Dickenvariation des Oxids gibt. Der Stromanstieg hat wie bereits beschrieben einen sigmoiden Verlauf. Er nimmt zunächst die Form einer Exponentialfunktion an, geht danach in einen linearen Verlauf über und wird nach einem kurzen Überschwinger konstant.

Der lineare Anstiegsbereich kann durch eine Gerade approximiert werden. Unter der Annahme, dass die Steigung von der Dickenvariation des anodischen Oxids sowie von Unterschieden in der Ätzrate über den Wafer abhängt, ergibt sich aus dem Schnittpunkt dieser Gerade mit der Abszisse sowie der Stromhöhe bei reiner Siliziumätzung I_{Si} ein Zeitbereich Δt_{Vp} . Multipliziert man diesen mit der Ätzrate so ergibt sich eine Größe in Nanometern,

$$\Delta x = \Delta t_{Vp} r_{ox},\tag{49}$$

die unter der Voraussetzung, dass die oben getroffenen Annahmen zutreffen, mit der Dickenvariation des Oxids korreliert. Zwei Rückätzpeaks nebst der approximierten Geraden sind in Abbildung 37 auf der nächsten Seite dargestellt.

Abbildung 37: Strompeaks der Rückätzung des anodischen Oxids bei 3 und 4 V. Aus der Steigung der eingezeichneten Geraden können Rückschlüsse auf die Gleichmäßigkeit der Oxiddicke gezogen werden.

Die Steigung der Ätzkurve wird damit in eine Art Dickenvariation umgewandelt. Diese beinhaltet neben der Variation der Oxiddicke immer auch lokale Unterschiede in der Ätzrate, die hier nicht berücksichtigt, beziehungsweise als konstant vorausgesetzt weden. Eine Auswertung für verschiedene Passivierungsspannungen ist in Abbildung 38 auf der nächsten Seite dargestellt. Demzufolge nimmt die absolute Dickenvariation mit steigender Passivierungsspannung zu, der relative Fehler wird dagegen mit zunehmender Spannung kleiner und fällt ab etwa 9 V unter 1%. Vergleicht man diese Werte mit der optischen Messung so beträgt dort die Gesamtdickenvariation bei einer Spannung von 16 V 0.838 nm. Berechnet man aus den optisch gemessenen Daten unter der Annahme, dass die Dickenschwankung einer Normalverteilung entspricht, einen Mittelwert und eine Standardabweichung, so ergibt sich dafür eine mittlere Dicke von 96.46 nm mit einer Varianz von 0.2 nm. Der elektrochemische Wert für die Dickenvariation würde bei 0.6 nm liegen, wobei noch ein Anteil berücksichtigt werden müsste, der durch die lokal unterschiedlichen Atzraten bestimmt wird und in derselben Größenordnung angenommen wird. Treffen diese Annahmen zu, so ergibt sich eine ganz gute Übereinstimmung zwischen den beiden Messmethoden.

Die Abweichung in der Ätzrate müsste unabhängig von der Oxiddicke sein. Damit würde dieser Anteil am relativen Fehler konstant bleiben. Der elektrochemischen Messung der Ätzströme zufolge wird der relative Fehler zunehmend kleiner und liegt ab 20 nm deutlich unter 1%, siehe Abbildung 39 auf der nächsten Seite. Dies kann damit erklärt werden, dass bei niedrigeren Spannungen an der anodischen Oxidation

Abbildung 38: Auswertung der Oxidätzung: absolute und relative Dickenschwankungen als Funktion der angelegten Spannung.

Abbildung 39: Auswertung der Oxidätzung: absolute und relative Dickenschwankungen als Funktion der Oxiddicke.

auch Diffusionsprozesse beteiligt sind, die im Gegensatz zur Oxidation infolge eines angelegten elektrischen Feldes nicht selbstjustierend sind.

Das elektrische Feld ist umgekehrt proportional zur Dicke der Oxidbarriere. Damit wird an dünneren Stellen ganz automatisch die Oxidation vorangetrieben, während sie an Stellen mit dickerem Oxid langsamer voranschreitet. Der Messung zufolge nimmt bis zu einer Passivierungsspannung von 10 V der relative Fehler ab, was einer Oxiddicke zwischen 30 und 40 nm entspricht. Danach ändert sich der relative Fehler nicht mehr und liegt zwischen 0.5 und 1%.

TU UB

Professioneles Equipment mit ständigen, gleichmäßigem Elektrolytdurchfluss und The approve optimierte, Fertigungsprozesse könnten diese Abweichungen minimieren. Betrachtet available at manaldige in diesem Fall relativ einfache Herstellungsmethode, die bezüglich ihrer http://www.uPräzision_Raum für Verbesserungen lässt, so kann man annehmen, dass unter besser kontrollierten Bedingungen deutlich präzisere Oxide herstellbar wären. Die anodische Oxidation würde daher als Fertigungsprozess in solchen Bereichen in Frage kommen,

bei denen es auf eine sehr hohe Präzision der Oxiddicke ankommt.

Die approbierte Originalversion dieser Dissertation ist in der Hauptbibliothek der Technischen Universität Wien aufgestellt und zugänglich.

TU UB

5.2 Simulation eines Spannungsabfalles im Halbleiter

The approved original version of this thesis is available at the main library of the Vienna

University of Technolo Die Herstellung präziser geometrischer Strukturen im Mikro- und Nanometerbereich http://www.ub.tuwien.ac.at/emi Spielt eine wichtige Rolle bei der Herstellung elektronischer Bauelemente. Der lineare Zusammenhang zwischen Spannung und Oxiddicke sowie die hohe Gleichmäßigkeit des Oxids eröffnet ein breites Anwendungsgebiet der anodischen Oxidation für die Mikrostrukturierung von Halbleitern.

> Zum besseren Verständnis der angewendeten Prinzipien bei der Herstellung solcher Strukturen wurden Simulationen des Spannungsabfalls im Halbleiter mittels der Methode der finiten Elemente durchgeführt. Mit Hilfe der daraus gewonnenen Erkenntnisse wurden dreidimensionale Strukturen in Form von keilförmigen Oxidschichten experimentell hergestellt.

5.2.1 Modellierung des Stromflusses

Das ohmsche Gesetz beschreibt bei lokaler Betrachtung den Zusammenhang des elektrischen Stromdichtevektorfeldes mit dem Vektorfeld der elektrischen Feldstärke[59]. Es gilt in allgemeiner Form:

$$\tilde{J}_m = \sigma_{mn} \tilde{E}_n. \tag{50}$$

Dieser lineare Zusammenhang zwischen Stromdichte und elektrischem Feld äußert sich auch auf makroskopischer Ebene und ergibt den allgemein bekannten Zusammenhang zwischen Strom und Spannung:

$$U = RI. (51)$$

Während sich auf makroskopischer Ebene ein linearer Zusammenhang zwischen Strom und Spannung nur für sogenannte ohmsche Bauelemente zeigt, ist das ohmsche Gesetz auf lokaler Ebene immer gültig. Die Proportionalität bleibt immer erhalten, jedoch kann der elektrische Widerstand R vom Strom, der Spannung und anderen Faktoren abhängig sein.[59]

Im Falle von Silizium ist die elektrische Leitfähigkeit und somit der Widerstand abhängig von der Elektronen- oder Löcherbeweglichkeit μ , die wiederum von der effektiven Masse der jeweiligen Ladungsträger abhängig ist[20]. Die Leitfähigkeit von monokristallinem Silizium ist somit wie in Gleichung (50) eine tensorielle Größe und wäre grundsätzlich für die Herstellung von Mikro- und Nanostrukturen aus

anodischen Oxid zu berücksichtigen. In den folgenden Simulationen wird dieser Einfluss The approve vernachlässigt, da die betrachteten Strukturen deutlich größer sind und Volumenleitung available at angehommen werden kann.

http://www.ub.tuwien.ac.at/eng

In isotropen Medien kann der Leitfähigkeitstensor σ_{mn} durch einen Skalar ersetzt werden. Folglich gilt der Zusammenhang zwischen dem elektrischen Feld \vec{E} und der Stromdichte \vec{j}

$$\vec{E} = \rho \vec{j} \tag{52}$$

mit dem spezifischen Widerstand $\rho = \frac{1}{\sigma}$. Bei der Betrachtung von unterschiedlichen Dotierkonzentrationen stellt ρ eine räumlich veränderliche, skalare Größe dar. Das elektrische Feld lässt sich als Gradient eines skalaren Potentials schreiben:

$$\vec{E} = \vec{\nabla}u. \tag{53}$$

Setzt man diese Beziehung in die obige Gleichung für das ohmsche Gesetz ein, so ergibt sich:

$$\frac{1}{\rho}\vec{\nabla}u = \vec{j}.\tag{54}$$

Es wird angenommen, dass die Generation und Rekombination von Ladungsträgern gleich groß sind und die Stromdichte folglich keine Quellen oder Senken besitzt, womit für die Divergenz der Stromdichte gilt:

$$\vec{\nabla} \cdot \vec{j} = 0. \tag{55}$$

Dieser Zusammenhang wird als Kontinuitätsgleichung bezeichnet. Durch Bildung der Divergenz aus Gleichung 54 ergibt sich folgende partielle Differentialgleichung zweiter Ordnung:

$$\vec{\nabla} \frac{1}{\rho} \vec{\nabla} u = 0. \tag{56}$$

Diese Gleichung beschreibt den Verlauf eines skalaren Potentials u in einem Material mit dem elektrischen Widerstand ρ . Die Potentialdifferenz entspricht der elektrischen Spannung U. Diese Gleichung spielt auch für die Berechnung des Spannungsabfalls beim elektrochemischen Ätzen einen wichtige Rolle.

Die approbierte Originalversion dieser Dissertation ist in der Hauptbibliothek der Technischen Universität Wien aufgestellt und zugänglich. http://www.ub.tuwien.ac.at

TU UB

5.2.2 Eindimensionaler Fall

The approved original version of this thesis is available at the main library of the Vienna

University of Technolo Für einen Siliziumstab mit der Länge l_S , der Grundfläche A_S und dem Widerstand ρ_S , http://www.ub.tuwien.ac_t/eng anisotrop und damit überall am Stab gleich groß ist, ergibt sich folgende einfache Differentialgleichung:

$$\frac{d^2U}{dx^2} = 0. ag{57}$$

Diese wird von allen Funktionen der Form U(x) = ax + b erfüllt.

Wird der Stab auf der einen Seite bei x = 0 auf die Spannung U_1 und auf der gegenüberliegenden Seite $x = l_S$ auf die Spannung U_2 gebracht, so ergibt sich:

$$U(x) = (U_2 - U_1)x/l + U_1.$$
(58)

Der Spannungsabfall ist in diesem speziellen Fall unabhängig vom elektrischen Widerstand. Der Strom hingegen berechnet sich aus dem elektrischen Widerstand des Stabes und der Spannungsdifferenz:

$$I = \frac{U2 - U1}{R} = (U_2 - U_1) \frac{A_S}{l_S \cdot \rho_S}.$$
(59)

Dieser lineare Spannungsabfall entlang eines homogenen Stabes und die Beobachtung, dass das anodische Oxid linear von der Dicke abhängt sind Vorraussetzung für die Herstellung von Oxidstrukturen mit linear veränderlicher Dicke.

5.2.3 Finite-Elemente Simulation des Spannungsabfalls

Die partielle Differentialgleichung (56) ist im allgemeinen Fall für beliebige Geometrien nicht analytisch lösbar. Für die Betrachtung realer physikalischer Probleme bedient man sich bei derartigen Differentialgleichungen für gewöhnlich der Methode der finiten Elemente. Dabei wird ein räumlich beschränktes Gebiet Ω in endlich viele Teilstücke, z. B. Dreiecke im zweidimensionalen oder Tetraeder im dreidimensionalen Fall, zerteilt. Für jedes dieser Teilsegmente werden Ansatzfunktionen aufgestellt und die Differentialgleichung auf ein lineares Gleichungssystem zurückgeführt.

Für eine zweidimensionale Finite-Elemente Simulation betrachten wir zunächst die folgende Problemstellung, wie sie in Abbildung 40 auf der nächsten Seite dargestellt

Abbildung 40: Ausgangssituation für eine Simulation von lateraler Oxidbildung.

ist. Ein rechteckiges Siliziumstück ist auf zwei Seiten elektrisch kontaktiert, beide Seiten befinden sich auf dem Potential U_1 . Die obere Seite ist in Kontakt mit einem Elektrolyten, der sich auf dem Potential U_{El} befindet. Das Elektrolytpotential ist bekanntlich nicht bestimmbar Um eine Simulation durchführen zu können, muss trotzdem ein Wert angenommen werden. Der Elektrolyt wird in Folge wie ein Metall behandelt wobei davon ausgegangen wird, dass am offene Quellpotential des Siliziums U_{OCP} , bei dem kein Strom fließt, die Potentialdifferenz 0 V ist. Für p-Silizium in TMAH beträgt dieses etwa -1.7 $V_{Ag/AgCl}$.

Solange sich beide Spannungen am Silizium am offenen Klemmpotential $U_1 = U_{OCP}$ befinden, ist das System im Gleichgewicht und es fließt insgesamt kein Strom. Werden beide Spannungen am Silizium gleichmäßig erhöht, so findet auch zwischen diesen beiden Enden kein Stromfluss statt, es fließt jedoch über beide Elektroden ein Strom über den Elektrolyten. Es ist entscheidend, dass der Widerstand im Halbleiter nicht zu groß ist, da es sonst zu einem lateralen Spannungsabfall kommt, der eine anodische Oxidation verhindert. In diesem Fall ist es förderlich, dass beim Eintauchen des Siliziumwafers in den Elektrolyten bereits eine anfängliche Oxidschicht vorhanden ist. Andernfalls könnte es durch eine langsame Spannungsrampe in einer heißen Lauge in der Mitte zu einer Ätzung kommen, während an den Rändern bereits anodische Oxidation eintritt. In Abbildung 41 auf der nächsten Seite ist ein Spannungsabfall für verschiedene Oxidstromdichten dargestellt. Simuliert wurde für die Spannungen U1 und U2 7 $V_{Ag/AgCl}$ und eine Siliziumbreite von 6 cm. Es wurden verschiedene Stromdichten j_{ox} angenommen, da sie je nach Spannungsrampe größer oder kleiner sein können.

Abbildung 41: Simulierter Spannungsabfall bei einer Streifenbreite von 6 cm, auf 400 μ m dickem Silizium mit 3 Ω cm. Das Potential ist auf beiden Seiten auf 7 V geregelt.

Abbildung 42: Simulierter Spannungsabfall bei einer Potentialdifferenz von 12 V und einer Streifenbreite von 6 cm, auf 400 μ m dickem Silizium mit 3 Ω cm

Um einen möglichst gleichmäßigen Spannungsabfall generieren zu können, muss der laterale Stromfluss I_{lat} deutlich größer sein als der Stromfluss I_{ox} , der durch das Oxid und den Elektrolyten fließt. I_{ox} stellt eine Limitierung bei der Herstellung von geraden Strukturen dar. Er ermöglicht andererseits die Herstellung gekrümmter Oxidstrukturen. Eine Simulation des Spannungsabfalls auf einem Siliziumwafer bei lateralem und vertikalem Stromfluss ist in Abbildung 42 dargestellt.

Bei den bisherigen Simulationen wurde davon ausgegangen, dass das gebildete Oxid überall gleich dick ist. Beim Einstellen eines Spannungsgradienten ist jedoch davon

TU UB

Abbildung 43: Zweidimensionale Finite Elemente Simulation eines anodischen Oxidkeils. Die Linien stellen Äquipotentialflächen dar.

auszugehen, dass sich im Bereich höherer Spannungen sofort ein dickeres Oxid bildet. Dieser Umstand begünstigt die Gleichmäßigkeit des Spannungsabfalls. Um ein solches keilförmiges Oxid bildlich zu veranschaulichen, wurde eine Simulation mit angepassten Parametern durchgeführt. Dazu wurde die Oxiddicke statt in Nanometern in Mikrometern dargestellt und dafür die Leitfähigkeit des Oxids mit 1000 multipliziert. Das Ergebnis einer derartigen Simulation ist in Abbildung 43 dargestellt. Da das Oxid im Vergleich zum Silizium und zum Elektrolyten einen deutlich höheren spezifischen Widerstand hat, liegen dort die Äquipotentiallinien besonders dicht. Dies macht das anodische Oxid auch für elektrische Anwendungen interessant, zum Beispiel zum Abbau elektrischer Felder durch spezielle Geometrien.

5.3 Experimentelle Herstellung keilförmiger Oxidstrukturen

5.3.1 Präparation der Wafer

Es wurden Wafer mit einem speziellen Layout hergestellt, die einen lateralen Stromfluss und damit einen Spannungsabfall an der Halbleiter-Elektrolytgrenzfläche innerhalb des Siliziumwafers ermöglichten. Als Grundmaterial wurden Bor-dotierte Siliziumwafer mit einem spezifischen Widerstand von 3 Ω cm verwendet. Auf der Vorderseite wurde ganzflächig Aluminium gesputtert. Danach wurden die Wafer mit einem Photolack bedeckt und mit einem Stepper ohne Photomaske belichtet, sodass ein freier Streifen in der Wafermitte verblieb. An dieser Stelle wurde das Metall mit Hilfe einer nasschemischen Ätzung entfernt. Es wurden Wafer mit drei verschiedenen Breiten von 2 cm, 4 cm und 6 cm hergestellt. Nach der Ätzung wurden die Wafer auf eine Dicke von 400 μ m geschliffen.

Abbildung 44: Schematische Darstellung der Verschaltung bei der anodischen Oxidation. Beide Waferseiten sind anfangs bis zum Erreichen von U_1 noch verbunden, danach wird die Verbindung getrennt und U_1 im Verhältnis zu U_2 geregelt.

Da Aluminium p-dotierend wirkt, wurde auf eine zusätzliche p⁺ Implantation vor der Abscheidung verzichtet. Diese hätte den Widerstand des Grundmaterials herabgesetzt und zu einem erhöhten Stromfluss an der Waferrückseite geführt.

5.3.2 Experimentelle Durchführung

Zur Herstellung keilförmiger Oxide wurde die gleiche Experimentieranordnung wie bei der vollflächigen anodischen Oxidation (Kapitel 4.3 auf Seite 39) verwendet. Die Regelung auf das Referenzpotential erfolgte über den Leistungspotentiostaten, die Spannungen am Siliziumwafer wurden durch das HMP 4040 eingestellt. Als Elektrolyt diente 25%ige TMAH bei einer Temperatur von 90 °C. Es kam eine Silber-Silberchloridelektrode als Bezugselektrode zum Einsatz.

Die elektrische Verschaltung ist in Abbildung 44 dargestellt. Der Potentiostat wird verwendet, um den Ausgang der Arbeitselektrode auf das Referenzelektrodenpotential zu regeln. Zwischen dem Anschluss für die Arbeitselektrode und einem Anschluss am Holder ist ein Kanal des Netzgerätes so zwischengeschaltet, dass eine positive Spannung in Serie ausgegeben werden kann. Von diesem Kanal wird ein weiterer zugeschaltet und auf dem zweiten Anschluss am Holder angebracht. Hier wird eine negative Spannung in Bezug auf U_2 ausgegeben.

Die Spannungen U_1 und U_2 beziehen sich auf das Referenzelektrodenpotential. Somit The approvenuss der Kanal K2 am Netzgerät die Spannung U_2 ausgeben, K1 dagegen die Differenz available at von U_2 ib U_1 . Damit ist gewährleistet, dass der gesamte Strom zwischen Gegenelektrode university of Vendu U_2 . Damit ist gewährleistet, dass der gesamte Strom zwischen Gegenelektrode http://www.und Siliziumwafer durch den Potentiostaten und K2 fließen muss, während der gesamte laterale Stromfluss durch K1 erfolgt. Somit können die beiden Stromflüsse getrennt voneinander gemessen werden.

Diese Schaltung in dieser Form wurde erst verwendet, wenn Spannungsdifferenz zwischen U_1 und U_2 eingestellt wurde. Davor wurden beide Waferseiten auf das gleiche Potential bis zum Erreichen von U_1 geregelt. Vor dem Eintritt eines lateralen Spannungsabfalls trat ein reiner Passivierungsstrom auf.

5.3.3 Spannungsrampen, lateraler und vertikaler Stromfluss

Die Strom- und Spannungsverläufe bei drei verschiedenen Versuchen sind in den Abbildungen 45 bis 47 auf Seite 80 dargestellt. Auf allen drei Abbildungen ist links oben der laterale Stromfluss als Funktion der Zeit sowie darunter der laterale Strom-Spannungsverlauf zu sehen. Aus diesem lässt sich erkennen, dass sich der Halbleiter unter diesen Bedingungen wie ein ohmscher Widerstand verhält. Rechts oben sind die Spannungsrampen als Funktion der Zeit für U_1 sowie U_2 dargestellt und darunter jeweils der zeitliche Verlauf des Passivierungsstromes. Alle drei Experimente wurden bei gleichen Bedingungen in Bezug auf die Temperatur und die Zusammensetzung des Elektrolyten, durchgefürt. Von Interesse sind vor allem die Kurven mit den Passivierungsströmen, die sich bei allen drei Experimenten unterscheiden.

Beim ersten Versuch wird eine Spannungsdifferenz von 40 V auf dem Endpotential eingestellt. Die Spannungsrampe beträgt 20 mV/s, die Streifenbreite 2 cm. Zunächst wird die Spannung auf beiden Waferseiten gleichmäßig hochgeregelt, bis U_1 erreicht wird. Dann wird das Potential kurz konstant gehalten, um eine gleichmäßige Oxidschicht über dem Streifen zu ermöglichen. Es kommt hier, wie bei allen drei dargestellten Versuchen, zu einem kurzen Absinken des Stromes. Danach wird die eine Seite festgehalten, während die andere weitergeregelt wird. Das Endpotential von U_2 ist mit 47 V in diesem Versuch relativ klein im Vergleich zu den beiden anderen. Der maximale Stromfluss beträgt nur 80 mA. Es kann ein Absinken des Passivierungsstromes vor Erreichen der Maximalspannung beobachtet werden. Bei Erreichen von U_2 beginnt der Strom abzusinken, wie dies auch bei niedrigen Spannungen der Fall ist und klingt bis etwa 20 mA ab.

Im zweiten Versuch (Abbildung 46) sind sowohl das Zielpotential als auch die Vorschubgeschwindigkeit größer als im ersten Versuch. Der Siliziumstreifen ist in diesem Fall breiter, womit der maximale, laterale Stromfluss deutlich geringer ist, weil sich der Widerstand entsprechend vergrößert. Insgesamt ist in diesem Versuch der maximale

Abbildung 45: Strom- und Spannungsverläufe für $U_1 = 7$ V und $U_2 = 47$ V, 2 cm Streifenbreite und einer Vorschubgeschwindigkeit von 20 mV/s.

Abbildung 46: Strom- und Spannungsverläufe für $U_1 = 8$ V und $U_2 = 62$ V, 6 cm Streifenbreite und einer Vorschubgeschwindigkeit von 50 mV/s.

Abbildung 47: Strom- und Spannungsverläufe für $U_1 = 10$ V und $U_2 = 60$ V, 6 cm Streifenbreite und einer Vorschubgeschwindigkeit von 20 mV/s.

Passivierungsstrom mit 600 mA deutlich höher. Dies kann sowohl mit der steileren The approve Spannungstampe sals auch mit dem höheren Zielpotential begründet werden. Nach available at Erreichen von U_2^{vienim} mit der Passivierungsstrom nicht ab sondern steigt noch weiter http://www.uan, erreicht ein Maximum, nimmt ab und wird danach konstant.

Im dritten Versuch (Abbildung 47) wird die Spannung U_2 mit 20 mV/s auf bis zu 60 V geregelt. Der Stromverlauf ist anfangs eher flach und deutlich unter 100 mA, ab dem oberen Teil der Spannungsrampe bei etwa 50 V kommt es zu einem Stromanstieg, der trotz gleichbleibender Spannung immer stärker anwächst.

Auch hier konnten während des Experiments Bläschen beobachtet werden, die auf der mit 60 V beschalteten Seite entstanden. Das lässt darauf schließen, dass das anodische Oxid bei dieser Spannung an seine Grenzen kommt und es daher zu Auflösungserscheinungen von bereits gebildetem Oxid kommt. Das würde den Stromanstieg erklären. Von dem in diesem Versuch prozessierten Wafer wurden auch Aufnahmen des Oxids unter dem Elektronenmikroskop gemacht.

Während des Experiments konnten bei Versuch zwei und drei starke Blasenbildung auf der Waferseite mit der höheren Spannung beobachtet werden. Dies und die hohen Stromdichten sowie das Ansteigen des Stromes nach Erreichen von U_2 weisen darauf hin, dass sich das anodische Oxid im elektrischen Durchbruch befunden haben musste, was zur Elektrolyse durch Bildung von Sauerstoff und Wasserstoff führte. Zur Herstellung qualitativ hochwertiger Oxide sind derartige Bedingungen ungeeignet.

Eine weitere interessante Beobachtung während des Experiments war, dass sich der Elektrolyt offensichtlich im Bereich des Spannungsabbaus, in dem eine hohe thermische Leistung durch den Stromfluss eingebracht wurde, bis an den Siedepunkt erhitzte. Auch dies äußerte sich in Form von Blasen und konnte vor allem beim ersten Versuch beobachtet werden, da dort der Widerstand am geringsten und somit der laterale Stromfluss am höchsten war. Bei geringeren Spannungsdifferenzen und größeren Streifenbreiten dürfte dieser Effekt eine weniger große Rolle spielen.

Die unterschiedlichen Strom- und Spannungsverläufe zeigen, dass es wichtig ist, die richtigen Parameter zu wählen, um gut reproduzierbare Oxidstrukturen herstellen zu können. So können zu hohe Spannungen und eine zu rasche Spannungsrampe dazu führen, dass das Oxid zerstört wird.

Eine Möglichkeit der Bestimmung von Oxiddicken bietet die Methode der reflektometrischen Dünnschichtmessung. Diese Methode beruht auf der Interferenz von Weißlicht. Das physikalische Prinzip wird in Kapitel 5.5 auf Seite 87 noch näher beschrieben, da es für optische Effekte grundlegende Bedeutung hat. Alle Messungen wurden entlang einer Linie durch die Wafermitte, vom Notch beginnend, durchgeführt.

Abbildung 48: Übersicht der Ergebnisse der optischen Oxiddickenmessung

Eine Übersichtsdarstellung der verschiedenen Oxidschichten ist in Abbildung 48 zu sehen. Die Schichten wurden auf unterschiedlichen Streifenbreiten und bei verschiedenen Spannungen hergestellt. Das Spektrum der möglichen Dünnschichten deckt einen Bereich von knapp 20 nm bis zu 500 nm ab. Es zeigt sich am rechten Rand des Keils eine starke Überhöhung der Oxidschichten, die bei höheren Spannungen hergestellt wurden. Dies ist auf den hohen Stromfluss und die damit verbundene lokale Erwärmung der Wafer zurückzuführen, da höhere Temperaturen den Oxidationsprozess begünstigen.

In Abbildung 49 auf der nächsten Seite sind unter (a) und (b) zwei Oxidschichten dargestellt, die bei Spannungen unter 30 V hergestellt wurden. Hier zeigt sich in beiden Fällen ein extrem linearer Verlauf über den gesamten Oxidstreifen. Die Abweichung von der Geraden beträgt in beiden Fällen deutlich weniger als 1%. Bei diesen relativ niedrigen Spannungen kam es bei der Herstellung auch nicht zu elektrischen Durchbrüchen des Oxids.

Abbildung 49: Optisch gemessene Dicken von Oxidkeilen mit entsprechenden linearen Interpolationen im geraden Bereich, hergestellt bei verschiedenen Spannungsgradienten

Bei höheren Spannungen ergaben sich dagegen Abweichungen von der Geraden. In (c) ist das Ergebnis bei Passivierungsspannungen zwischen 7 V und 47 V Volt dargestellt. Dabei zeigt sich, dass vor allem im unteren Spannungsbereich eine Abweichung von der Linearität festzustellen ist. Mit einer Verweildauer von mehr als 4500 s auf dem Maximalpotential wurde dieser Wafer am längsten oxidiert. Offenbar spielt für die Gleichmäßigkeit auch die Verweildauer eine große Rolle. Im Falle von (d) war die Verweildauer auf U_2 mit 2500 s deutlich geringer. Die Übereinstimmung mit der Geraden ist hier besser jedoch längst nicht so gut wie bei niedrigeren Spannungen.

Die am stärksten limitierenden Faktoren für die Herstellung derartiger Oxide sind offenbar die maximale Spannung sowie die Passivierungsdauer. Ist die Spannung zu hoch, kommt es zu Durchbrüchen und Auflösungserscheinungen. Eine zu lange Passivierungsdauer bei diesen Bedingungen bewirkt Abweichungen von der Linearität. Aus der Fachliteratur [6] ist bekannt, dass der mögliche, einsetzbare Spannungsbereich The approved original bei der lanodischen Oxidation stark elektrolytabhängig ist. Die Herstellungsmethode available at the main beschräfikt^vsich weder auf alkalische Elektrolyte noch auf die verwendete Temperatur. http://www.ub.tuwien.acMöglicherweise würden andere Bedingungen dazu führen, das präzise Oxidkeile bis zu deutlich größeren Dicken hergestellt werden könnten.

5.4.2 Vergleich der optischen Bestimmung mit REM-Aufnahmen

Abbildung 50: REM-Aufnahmen an verschiedenen Positionen am Wafer (10 mm Abstand), von links oben beginnend.

Eine optische Messung der Oxiddicke durch Vielstrahlinterferenz erfordert die Kenntnis des Brechungsindexes des zu messenden Oxids. Im Falle von anodischen Oxiden ist bekannt, dass diese einen vergleichsweise höheren Brechungsindex haben als thermische oder abgeschiedene Oxide. Dieser Umstand kann auf den hohen Anteil eingeschlossener Substanzen und nicht vollständig gesättigter Bindungen zurückgeführt werden.[6]

Um die tatsächliche Oxiddicke unabhängig vom Brechungsindex bestimmen zu können, wurden Aufnahmen unter dem Elektronenmikroskop gemacht. Dazu wurde zunächst ein Wafer mit einem lateral verlaufenden Oxid an ausgesuchten Positionen markiert und danach gebrochen. Die Aufnahmen sind in Abbildung 50 dargestellt.

Die Ergebnisse der REM-Aufnahmen können dazu verwendet werden, die Messung The approvenittels Vielstrahlinterferenz zu überprüfen. Dies ist in Abbildung 51 zu sehen, in der available at die Schichten, die durch das Elektronenmikroskop bestimmt wurden, mit der optischen dargestellt werden. Es zeigt sich, dass die tatsächliche Dicke des anodischen Oxids von der optischen Messmethode um einige Prozent zu hoch eingeschätzt wird. Damit zeigt sich, dass der Brechungsindex des anodischen Oxids etwas höher ist als der von der Messmethode herangezogene Wert.

Abbildung 51: Vergleich der optischen Messung des Oxidkeils mit REM-Aufnahmen. Die unterschiedlichen Dicken können auf den leicht höheren Brechungsindex anodischer Oxide zurückgeführt werden.

5.4.3 Anodisches Oxid im elektrischen Durchbruch

Bei anodischer Oxidation in heißer TMAH wird ab einer Spannung von etwa 50 V der Stromfluss bei konstanter Spannung nicht mehr geringer, sondern nimmt zu. In Abbildung 52 auf der nächsten Seite ist die Aufnahme einer bei derartigen Bedingungen hergestellten Schicht unter dem Elektronenmikroskop dargestellt. Es zeigt sich, dass sich in der Mitte der Oxidschicht ein stark poröser Bereich mit vielen Ausnehmungen befindet. Der dem Elektrolyten zugewandte, etwa 100 nm breite Bereich, scheint dagegen weitgehend intakt zu sein. Auffallend ist auch, dass die Gleichmäßigkeit des Oxids stark leidet und Dickenschwankungen klar erkennbar sind.

Dies kann damit erklärt werden, dass das Oxid sich ständig im Aufbau und Durchbruch befindet und dadurch nachhaltig zerstört wird. Anscheinend ist die Potentialdifferenz im Inneren des Oxids zu stark und führt dort zur Elektrolyt- und Oxidzersetzung.

Abbildung 52: Oxid im Bereich des elektrischen Durchbruchs. Die Beschädigung erklärt den Stromanstieg bei konstanter Spannung

Dabei dürfte der Großteil der Spannung bereits an der innen liegenden Schicht abgebaut werden, sodass die äußere weitgehend unversehrt bleiben kann.

Aufgrund dessen ist es sehr wichtig, einen elektrischen Durchbruch des Oxids zu verhindern und den maximalen Stromfluss zu begrenzen. Für die Herstellung präziser Strukturen sind solche Oxidschichten gänzlich ungeeignet.

5.5 Optische Effekte an dünnen Oxidschichten

The approved original version of this thesis is available at the main library of the Vienna

University of Antrdümnen Schichten http://www.dierten Teilstrahlen optische Effekte auf. Sie spielen eine sehr wichtige Rolle in der Optik und werden dazu verwendet, das Transmissions- und Reflexionsverhalten von Oberflächen für ultraviolette, sichtbare sowie infrarote Lichtstrahlung zu beinflussen. Wichtige Anwendungsgebiete sind reflektierende sowie reflexionsmindernde Schichten für Linsen und Spiegel in verschiedenen Bereichen, angefangen von der Lasertechnik bis hin zur Optoelektronik. [60]

Optische Schichten waren die ersten großtechnisch verwertbaren Anwendungen der Dünnschichttechnologie. In der ersten Hälfte des 20. Jahrhunderts waren reflexionsmindernde Schichten ein fundamentaler Fortschritt in der praktischen Optik. Die Anwendungsbreite hat sich in den letzten Jahrzehnten durch die Entwicklung neuer Beschichtungsverfahren und durch die Erschließung neuer Fachgebiete stark vergrößert. [61]

5.5.1 Fresnelsche Formeln

Für optische Schichten gilt ganz allgemein, dass die Energiegleichung

$$T + R + A + S = 1 \tag{60}$$

erfüllt sein muss. Dabei beschreibt T die Transmission, R die Reflexion, A die Absorption sowie S die Streuung, wobei letztere für die folgenden Betrachtungen keine Rolle spielt und vernachlässigt wird. Die Reflexion und Transmission spielen bei optischen Anwendungen absorptionsfreier Schichten die dominierende Rolle. Somit kann bei bekannter Reflexion die Transmission berechnet werden und umgekehrt. Der Reflexionsgrad R berechnet sich aus dem Quotienten der reflektierten mit der eingebrachten Leistung: [62]

$$R = P_r / P_0. \tag{61}$$

Analog gilt für den Transmissionsgrad:

$$T = P_t / P_0. \tag{62}$$

Optische Effekte an dünnen Schichten können mit Hilfe der Fresnelschen Formeln beschrieben werden, die sich aus den Maxwellschen Gleichungen herleiten lassen. Dabei werden die Sonderfälle der Randbedingungen elektromagnetischer Wellen an The approved original einer dadungs₁₅ und stromfreien Grenzschicht genützt. Es ergeben sich abhängig von available at the mainder Polarisation der einfallenden Welle unterschiedliche Randbedingungen für das http://www.ub.tuwien.aCauftreffen an einer optischen Grenzfläche. Dabei lässt sich jede beliebig polarisierte elektromagnetische Welle als Superposition zweier linear polarisierter und senkrecht zueinander schwingender Wellen darstellen. [62]

Bei senkrechter Polarisation zur Einfallsebene gilt allgemein für den Transmissionsfaktor t_s sowie für den Reflexionsfaktor r_s :

$$t_s = \frac{2N_1 \cos \alpha}{N_1 \cos \alpha + \frac{\mu_{r1}}{\mu_{r2}} N_2 \cos \beta} \tag{63}$$

$$r_{s} = \frac{N_{1} \cos \alpha - \frac{\mu_{r1}}{\mu_{r2}} N_{2} \cos \beta}{N_{1} \cos \alpha + \frac{\mu_{r1}}{\mu_{r2}} N_{2} \cos \beta}.$$
(64)

In dieser Gleichung sind N der komplexe Brechungs
index, α der Einfalls- und β und Brechungswinkel sowie
 μ die magnetische Permeabilität. [62]

Aus dem Transmissions- und Reflexionsfaktor ergeben sich der Transmissions- und Reflexionskoeffizient, indem das Produkt des jeweiligen Faktors mit seinem konjungiert komplexen Wert gebildet wird:

$$T = t \cdot t^*,\tag{65}$$

$$R = r \cdot r^*. \tag{66}$$

Im Falle der linear parallel zur Einfallsebene polarisierten Welle ergibt sich für t_p und $r_p{\rm :}$

$$t_p = \frac{2N_1 \cos \alpha}{N_2 \frac{\mu_{r1}}{\mu_{r2}} \cos \alpha + N_1 \cos \beta} \tag{67}$$

$$r_p = \frac{N_2 \frac{\mu_{r1}}{\mu_{r2}} \cos \alpha - N_1 \cos \beta}{N_2 \frac{\mu_{r1}}{\mu_{r2}} \cos \alpha + N_1 \cos \beta}.$$
 (68)

Für den Spezialfall eines idealen Dielektrikums ist $\kappa = 0$ und somit gilt für den Brechungsindex:

$$N = n(1 + i\kappa) = n. \tag{69}$$

Bei nichtmagnetischen Materialien ist die magnetische Permeabilität $\mu_{r1} = \mu_{r2} = 1$ und kann somit aus den Gleichungen gekürzt werden. Bei senkrechtem Lichteinfall gilt zusätzlich, dass der Einfalls- und Brechungswinkel null ist. Somit gilt:

$$\cos \alpha = \cos \beta = 1. \tag{70}$$

Setzt man dies in die Fresnelschen Formeln ein, so vereinfachen sich die Gleichungen zu:

$$r_s = -r_p = \frac{n_1 - n_2}{n_1 + n_2} \tag{71}$$

$$t_s = t_p = \frac{2n_1}{n_1 + n_2} \tag{72}$$

Die Ausdrücke (71) und (72) werden als Fresnelkoeffizienten der Grenzschicht bezeichnet [62]. Der Energiefluss R ist das Verhältnis von reflektierter zur einfallenden Energie und ergibt sich aus dem Quadrat der reflektierten Amplitudenkomponenten zu:

$$R^{p} = R^{s} = (r_{s})^{2} = (r_{p})^{2} = \left(\frac{n_{1} - n_{2}}{n_{1} + n_{2}}\right)^{2}.$$
(73)

Unter der Berücksichtigung, dass der Lichtstrahl Medien mit unterschiedlichem Brechungsindex durchläuft, gilt für die Transmission:

$$T = \frac{n_1}{n_2}(t)^2 = \frac{4n_1n_2}{n_1 + n_2}.$$
(74)

Diese Zusammenhänge gelten wie erwähnt nur für absorptionsfreie Schichten, sofern die Streuung vernachlässigbar ist. [62]

Die approbierte Originalversion dieser Dissertation ist in der Hauptbibliothek der Technischen Universität Wien aufgestellt und zugänglich. http://www.ub.tuwien.ac.at

TU UB

5.5.2 Interferenz an dünnen Schichten

The approved original version of this thesis is available at the main library of the Vienna

University of Technolo-Wird auf ein an der Luft (Brechzahl n_0) liegendes, absorptionsfreies Substrat mit der http://www.ub.tuwien.acBrechzahl n_2 eine planparallele, isotrope absorptionsfreie Schicht mit der Brechzahl n_1 aufgebracht und liegt die Dicke d_1 der Schicht im Bereich der Wellenlänge des eingestrahlten Lichtes, so ergeben sich Mehrfachreflexionen an den Grenzflächen n_1/n_0 sowie n_1/n_2 . Die Aufsummierung aller Teilstrahlen ergibt bei senkrechtem Einfall für den reflektierten und transmittierten Anteil:

$$r = \frac{r_1 + r_2 e^{-i2\delta_1}}{1 + r_1 r_2 e^{-i2\delta_1}} \tag{75}$$

$$t = \frac{t_1 t_2 e^{-i2\delta_1}}{1 + r_1 r_2 e^{-i2\delta_1}},\tag{76}$$

wobei r_1 und r_2 die Fresnelkoeffizienten (71) und (71) der jeweiligen Grenzschicht sind. $\delta_1 = (2\pi/\lambda)n_1d_1$ ist die Phasendicke der Schicht. In diesem Ausdruck ist λ die Wellenlänge des einfallenden Lichtes und d_1 die Schichtdicke. [62]

Unter Berücksichtigung von Gleichung (73) auf der vorherigen Seite und (74) sowie aus der Beziehung T + R = 1 ergibt sich für die Transmission und Reflexion an der Oberfläche der Dünnschicht:

$$R = \frac{r_1^2 + 2r_1r_2\cos(2\delta_1) + r_2^2}{1 + 2r_1r_2\cos(2\delta_1) + r_1^2r_2^2}$$
(77)

$$T = \frac{n_0}{n_2} \frac{t_1^2 t_2^2}{1 + 2r_1 r_2 \cos(2\delta_1) + r_1^2 r_2^2}.$$
(78)

Mit den oben hergeleiteten Formeln lassen sich die Reflexion sowie die Transmission an Dünnschichten quantifizieren. In Abbildung 53 auf der nächsten Seite ist die Transmission als Funktion der Schichtdicke für 3 verschiedene Wellenlängen veranschaulicht, wobei $n_1 > n_0$ ist. Es ist zu erkennen, dass die Reflexion in diesem Fall minimal wird, wenn für die Schichtdicke gilt:

$$d_{min} = \frac{\lambda(2m-1)}{4n_1} \quad m = 1, 2, 3...$$
(79)

Derartige Schichten haben in der Praxis als reflexionsmindernde Schichten große Bedeutung. Für $n_1 > n_2$ kehrt sich das Verhältnis jedoch um, und die Reflexion wird an dieser Stelle maximal.

Abbildung 53: Reflexionen an einer absorptionsfreien Einfachschicht (Oxid auf Silizium) mit $n_1 = 1.36$ und $n_2 = 4$ für 3 verschiedene Wellenlängen (rot, grün, blau)

Für $n_1 < n_2$ nimmt die Reflexion ihren Maximalwert an, wenn für die Dicke gilt:

$$d_{max} = \frac{\lambda m}{2n_1}$$
 $m = 1, 2, 3...$ (80)

Dies ist für anodisches Oxid auf Silizium erfüllt, da $n_{Si} \approx 4$ und $n_{Anox} \approx 1.36$ gilt. Für gewöhnlich werden reflexionsmindernde Schichten auf Glassubstraten abgeschieden, wobei der Brechungsindex der Schichten größer ist als der des Glases. [62, 60]

5.5.3 Berechnung der Farben anodischer Oxidschichten

In Abbildung 54 auf der nächsten Seite ist eine photographische Aufnahme von 5 Wafern mit unterschiedlich dicken anodischen Oxiden unter weißem Licht dargestellt. Je nach Schichtdicke weisen die Wafer unterschiedliche Farben auf. Dieser Effekt entsteht, da unterschiedliche Wellenlängen bei verschiedenen Dicken eine stärkere oder geringere Reflexion aufweisen.

Weißes Licht besteht aus einer Vielzahl von Wellenlängen, die im Falle eines idealen schwarzen Strahlers gemäß des planckschen Strahlungsgesetzes verteilt sind. Um die Farbe einer Schicht anhand der Dicke und des Brechungsindexes zu bestimmen, reicht

The approved original version of this thesis is available at the main library of the Vienna University of Technology.

http://www.ub.tuwien.ac.at/eng

Abbildung 54: Verfärbung der Waferoberfläche durch Dünnschichtinterferenz. Anodisierungsspannungen: 8, 12, 16, 20 und 30 V von links nach rechts.

es, 3 Farben zu betrachten, da sich jeder Farbeindruck durch die Kombination maximal dreier Farbtöne darstellen lässt. [63]

Der RGB Farbraum ist additiv und lässt Farbeindrücke durch das Mischen der drei Grundfarben rot, grün und blau entstehen. Das menschliche Auge ist nicht in der Lage, zwischen dem ursprünglichen Farbreiz, der entsprechend einer Wellenlänge entsteht, und einem nachgebildeten Farbreiz zu unterscheiden. [63]

Der RGB Farbraum kann verwendet werden, um optische Eindrücke auf Wafern mit anodischen Dünnschichten zu simulieren. Für die Bestimmung des Gesamtfarbeindruckes werden 3 Wellenlängen verwendet, rot mit 700 nm, grün mit 540 nm sowie blau mit 470 nm. Der Anteil der reflektierten Strahlung pro Wellenlänge errechnet sich gemäß Gleichung (77) auf Seite 90. Es ergibt sich jeweils ein Wert für die Intensität zwischen null und eins pro Wellenlänge. Diese Intensität kann in einem RGB Kanal dargestellt werden. Im Falle eines 8-Bit Farbkanals, muss dieser Wert zunächst auf ein Zahlentripel mit ganzzahligen Werten zwischen 0-255 pro Farbkanal normiert werden.

In Abbildung 55 auf der nächsten Seite sind die mit dieser Methode errechneten Farben mit den entsprechenden Schichtdicken, Passivierungsspannungen sowie den Werten der einzelnen Farbkanäle dargestellt. Es ist zu berücksichtigen, dass die nachgebildeten Farben nicht ganz dem Original entsprechen können, da die Lichtverhältnisse beim Photographieren einen wesentlichen Einfluss auf den Farbeindruck haben. Weitere

TU UB

Abbildung 55: Simulation der Farbeffekte für verschiedene Schichtdicken mit Darstellung der Werte des 8-Bit RGB Kanals. Die Farben entsprechen jenen in Abbildung 54 auf der vorherigen Seite.

Abweichungen entstehen durch die Vernachlässigung des Absorptionskoeffizienten des Siliziums sowie durch den wellenlängenabhängigen Brechungsindex.

5.5.4 Keilinterferenz und Newtonsche Ringe

Wird eine konvexe Linse mit sehr hoher Brennweite auf eine Glasplatte gelegt, sodass ein dünner Luftspalt zwischen den Gläsern entsteht wie in Abbildung 56 auf der nächsten Seite a) dargestellt, so bilden sich durch Inferferenzeffekte konzentrische Ringe aus. Im Falle von monochromatischem Licht sind dies hell-dunkel Zonen, bei weißem Licht hingegen bilden sich Farbringe aus. Dieses Phänomen wurde von Isaac Newton beobachtet und beschrieben und wird zur Überprüfung von Linsenfehlern verwendet. [60]

Der gleiche Effekt ergibt sich, wenn zwei Glasplatten übereinander gelegt und auf der einen Seite von einem sehr dünnen Platzhalter getrennt werden, wie in Abbildung 56 auf der nächsten Seite b) dargestellt. In diesem Fall ergeben sich keine Ringe, sondern

Abbildung 56: a) Konvexe Linse auf einer Glasplatte führt zur Entstehung von konzentrischen Interferenzmustern. b) Prinzip eines Keilinterferometers durch einen Luftkeil und zwei Glasplatten.

ein paralleles Streifenmuster. Diese Anordnung wird als Keilinterferometer bezeichnet. [60]

Die Interferenzstreifen kommen durch die Abhängigkeit der Reflexion von der Schichtdicke und Wellenlänge zustande. Betrachtet man nur eine Farbe, so ergibt sich ein hell-dunkel Verlauf mit an- und absteigender Intensität. Bei weißem Licht ergeben sich Farbverläufe, die durch die Überlagerung der einzelnen Farben entstehen.

Eine anodische Oxidschicht mit keilförmig veränderlicher Dicke entspricht physikalisch gesehen einem Keilinterferometer. Statt eines Luftspalts ist es in diesem Fall eine Dünnschicht aus anodisch gebildetem Siliziumdioxid, die Interferenzmuster hervorruft. Die Möglichkeit der Herstellung hochpräziser, anodischer Oxidschichten auf Siliziumwafern eröffnet potentielle Anwendungsmöglichkeiten in der Optoelektronik.

5.5.5 Simulation der Farbverläufe keilförmiger, anodischer Oxide

Die Farbverläufe, die durch Keilinterferenz auf Wafern mit keilförmigen Oxiden erzeugt werden, können mit den zuvor hergeleiteten Ausdrücken für die Transmission und Reflexion berechnet und im RGB Farbraum dargestellt werden.

In den Abbildungen 57 bis 60 auf den Seiten 95 bis 98 sind photographische Aufnahmen (a) der Interferenzmuster sowie (c) deren numerische Simulationen mittels der zuvor hergeleiteten Gleichungen dargestellt. Als Oxiddicken wurden die Ergebnisse der Oxiddickenmessung hergenommen. Die dafür verwendete Messmethode der Vielstrahlinterferenz bedient sich des beschriebenen Effektes durch Transmission und Reflexion von Weißlicht. Daneben sind noch (b) die Anteile der einzelnen Farben (rot, grün, blau) sowie die (d) Gesamtintensität als Funktion der Waferposition dargestellt. TŲ UB

Die approbierte Originalversion dieser Dissertation ist in der Hauptbibliothek der Technischen Universität Wien aufgestellt und zugänglich. http://www.ub.tuwien.ac.at

The approved original version of this thesis is available at the main library of the Vienna University of Technology.

http://www.ub.tuwien.ac.at/eng

Abbildung 57: Simulation der Farbeffekte: 7 – 20 V

TŲ UB

Die approbierte Originalversion dieser Dissertation ist in der Hauptbibliothek der Technischen Universität Wien aufgestellt und zugänglich. http://www.ub.tuwien.ac.at

The approved original version of this thesis is available at the main library of the Vienna University of Technology.

http://www.ub.tuwien.ac.at/eng

Abbildung 58: Simulation der Farbeffekte: 8 - 62 V
TŲ UB

Die approbierte Originalversion dieser Dissertation ist in der Hauptbibliothek der Technischen Universität Wien aufgestellt und zugänglich. http://www.ub.tuwien.ac.at

The approved original version of this thesis is available at the main library of the Vienna University of Technology.

http://www.ub.tuwien.ac.at/eng

Abbildung 59: Simulation der Farbeffekte: 8 - 30 V

TŲ UB

Die approbierte Originalversion dieser Dissertation ist in der Hauptbibliothek der Technischen Universität Wien aufgestellt und zugänglich. http://www.ub.tuwien.ac.at

The approved original version of this thesis is available at the main library of the Vienna University of Technology.

http://www.ub.tuwien.ac.at/eng

Abbildung 60: Simulation der Farbeffekte: $7-47~\mathrm{V}$

5.6 Abschließende Bewertung und mögliche Anwendungsgebiete

The approved original version of this thesis is available at the main library of the Vienna University of 5:6:1.1°gOptoelektronische Anwendungen http://www.ub.tuwien.ac.at/eng

> Aufgrund der Herstellungsmöglichkeit lateral verlaufender anodischer Oxide auf Waferebene sind Anwendungsmöglichkeiten in der Optoelektronik naheliegend. Ein großer Vorteil dieser Methode ist die Präzision, die über weite Bereiche extrem hoch ist, vor allem im Falle von Mikroprismen.

> Neben keilförmigen sind auch weitere Strukturen denkbar, die sich durch entsprechendes Layout und mittels unterschiedlicher Implantationsdosen herstellen lassen würden. Runde und zylindrische Mikrolinsen sowie ganze Arrays könnten auf diese Art kostengünstig erzeugt werden.

> Ein Nachteil der Methode ist, dass die Schichten nicht einfach auf ein beliebiges Substrat aufgebracht werden können, sondern dass dieses zunächst die Voraussetzungen für den oberflächlichen Schichtaufbau erfüllen muss, um gezielt anodische Oxidation betreiben zu können. Ein weiterer Nachteil ist die Dichte an Leiterbahnen, über die jeder Chip kontaktiert sein muss. Diese würden im Falle einer Anwendung viel Platz brauchen und möglicherweise zu einem komplizierten Aufbau führen, was die Einsatzmöglichkeiten etwas einschränken würde. Bei einer Miniaturisierung wäre darauf zu achten, dass der Stromfluss nur in entsprechend dünnen Schichten stattfinden müsste, was durch Implantation von oberflächlichen p- und n-dotierten Gebieten realisiert werden könnte.

5.6.2 Verfahren zur Herstellung von Dünnschichten

Die Präzision der Dünnschicht über weite Bereiche macht diese Methode als Beschichtungsverfahren für optische Bauelemente attraktiv. Verlaufende Dünnschichten könnten in der Lasertechnik für eine definierte Phasenverschiebung sowie in der Interferometrie von Interesse sein. Eine wesentliche Einschränkung dabei ist jedoch, dass sich diese Schichten nur auf Halbleitern, auf denen ein entsprechender Spannungsabfall generiert werden kann, herstellen lassen.

5.6.3 Anwendungen im MEMS Bereich

Die Strukturierung von Silizium spielt eine wichtige Rolle im Bereich mikroelektronischer mechanischer Systeme. Mittels der anodischen Oxidation ließen sich Siliziumoder Oxidstrukturen von sehr hoher Präzision herstellen, wie dies mit anderen Methoden kaum möglich ist. Keilförmige Siliziummembranen würden sich zum Beispiel durch eine Ätzung mit elektrochemischem Ätzstopp, anschließender anodischer Oxidation

sowie durch eine Oxidätzung in HF erzeugen lassen. Der große Vorteil wäre auch The approved original hier die hohe Präzision der Methode über größere Strecken von mehreren Mikro- bis available at the main Millimetern.

http://www.ub.tuwien.ac.at/eng

Membranen mit variabler Dicke könnten bei sensorischen Anwendungen zum Einsatz kommen. Für Sensoren wären auch definiert variable Oxide von Interesse, z. B. zum Steuern von Diffusionsvorgängen im Festkörper.

5.6.4 Anwendungen im Bereich von Leistungshalbleitern

Beim Abbau hoher elektrischer Spannungen haben geometrische Faktoren einen wesentlichen Einfluss. Oxidkeile, die durch einen Damage-Implant sowie anschließende, seitliche Ätzung hergestellt werden können dabei zum Einsatz kommen. Weitere Anwendungsgebiete wäre die Herstellung von Oxidstrukturen innerhalb von Trenches, die durch lithographische Methoden nicht erschließbar sind. Eine variable Oxidschicht könnte auch als Maskierung für anschließende Implantationen hergenommen werden, um definierte Dotiergradienten zu erzeugen. Auf diesem Gebiet gibt es zwar auch andere Methoden, sie kommen jedoch hinsichtlich ihrer Präzision nicht an die Genauigkeit der anodischen Oxidation heran.

6 Elektrochemischer Ätzstopp als Dünnungsprozess The approved origin version of his desires shall bleiter available at the further eistung shall bleiter University of Technology.

http://www.ub.tuwien.ac.at/eng

6.1 Motivation

Leistungshalbleiter sind Mikroelektronische Bauelemente, die in der Lage sind, hohe Ströme zu leiten und hohe Spannungen zu sperren. Je nach Spannungsklasse und Anwendungsbereich werden unterschiedliche Bauelemente benötigt. Im unteren Spannungsbereich dominieren Power-MOSFETs²⁹. Diese sind entweder gewöhnliche Feldeffekttransistoren oder Kompensationsbauelemente, die sich durch einen niedrigeren Einschaltwiderstand R_{on} auszeichnen.

Der Stromfluss ist bei Leistungshalbleitern meist vertikal, um die Waferfläche bei der Herstellung bestmöglich nutzen zu können. Damit ist durch die Spannungsklasse auch die Mindestdicke des Siliziumwafers nach der Rückseitenprozessierung festgelegt. Da zum Sperren höherer Spannungen mehr Silizium benötigt wird, müssen solche Bauelemente entsprechend dick sein. [19, 57, 2]Das Silizium, das die Sperrspannung aufnehmen muss, stellt im eingeschalteten Zustand einen elektrischen Widerstand dar und sollte daher nicht dicker als notwendig sein. Dies macht einen präzisen Dünnungsprozess erforderlich, der in der Lage ist, auf 1 µm genau zu dünnen. Eine derartige Methode ist der elektrochemische Ätzstopp, der in der Herstellung von MEMS Bauteilen häufig verwendet wird. [19]

In diesem Kapitel sind theoretische und experimentelle Untersuchungen zum elektrochemischen Ätzstopp auf Schichtfolgen, wie sie für IGBTs verwendet werden, detailliert beschrieben. Die Abkürzung IGBT steht für Insulated Gate Bipolar Transistor, einen Bipolartransistor mit isolierter Gate Elektrode. Die Prinzipien des elektrochemischen Ätzstopps in alkalischen Medien entsprechen dabei dem Stand der Technik und wurden bereits von vielen anderen Autoren umfassend untersucht[6, 64, 27, 7]. Einen Neuigkeitswert stellt hingegen die Anwendung des elektrochemischen Ätzstopps für die Dünnung auf Leistungshalbleitern dar sowie die damit verbundene zwei- und dreidimensionale Modellierung des Ätzstromes und die dabei auftretenden parasitären Effekte. Diese Effekte treten bei der Herstellung von MEMS-Bauteilen nicht auf, da sie dort weitgehend vermieden werden können und sind daher auch nicht in der Literatur belegt.

 $^{^{29}\}mathrm{Metal}$ Oxide Semiconductor Field-Effect Transistor

Die approbierte Originalversion dieser Dissertation ist in der Hauptbibliothek der Technischen Universität Wien aufgestellt und zugänglich. http://www.ub.tuwien.ac.at

TU UB

6.2 Problematik des Ätzstopps am IGBT

The approved original version of this thesis is available at the main library of the Vienna

University of Technolo Für Leistungs-MOSFETs ist der elektrochemische Ätzstopp unproblematisch, sofern http://www.ub.tuwien.activergenet and der Rückseite sehr hoch n⁺-dotiert sind und dadurch Löcher zuverlässig rekombinieren können. Ein epitaxialer Aufbau auf einem p-Substrat ermöglicht somit ideale Bedingungen für einen elektrochemischen Ätzstopp ohne parasitäre Effekte. Problematischer ist dies beim IGBT, der anders funktioniert als ein Feldeffekttransistor und der sehr niedrig dotiert sein muss. Hier führen viele Effekte dazu, dass ein elektrochemischer Ätzstopp einigen Aufwand erfordert um zu funktionieren. Gerade beim IGBT wäre es andererseits besonders wünschenswert, über eine hochpräzise Dünnungsmethode zu verfügen, da sich hier Dickenschwankungen direkt auf die Sperreigenschaften auswirken, während es bei Power-MOSFETs nur um eine Verbesserung der thermischen Leitfähigkeit geht.

Der IGBT ist ein vertikal leitender Leistungshalbleiter, der die Vorteile des Bipolartransistors mit denen eines Feldeffekttransistors vereint. Er besitzt eine hohe Sperrfähigkeit, hat ein gutes Durchlassverhalten und wird wie der Feldeffekttransistor nahezu leistungslos angesteuert. Es gibt viele verschiedene Spannungsklassen von IGBTs. Diese reichen von 400 V sperrenden Bauelementen für Anwendungen im mittleren Spannungsbereich, z. B. Waschmaschinen, bis hin zu Chips für Hochleistungsmodule mit Sperrspannungen von bis zu 6500 V, wie sie in Lokomotiven eingesetzt werden. [1, 19, 65]

6.2.1 Aufbau und Funktion von IGBTs

Um die beim elektrochemischen Ätzstopp am IGBT auftretenden Phänomene nachvollziehen zu können, ist es zunächst notwendig, den grundsätzlichen Aufbau dieses Halbleiterbauelements zu kennen. Eine stark vereinfachte schematische Darstellung ist in Abbildung 61 auf der nächsten Seite zu sehen.

Der IGBT besteht zum Großteil aus einer niedrig dotierten Schicht, die als Driftzone bezeichnet wird. Der spezifische Widerstand dieser Schicht liegt je nach Spannungsklasse im Bereich von einigen 10 Ω cm bis etwa 100 Ω cm. Da die Driftzone einige 100 μ m dick sein kann, wird sie üblicherweise nicht mittels Epitaxie auf einem Substrat aufgewachsen, sondern es werden Wafer verwendet, die mittels Zonenziehverfahren (Float Zone) gefertigt werden. Dies ermöglicht eine gute Kontrolle über die Dotierverhältnisse[66]. Auf der Vorderseite (oben) werden durch verschiedene Implantations-, Ofen- sowie Abscheidungsprozesse der Emitter sowie das Gate hergestellt. Dann wird auf die gewünschte Enddicke gedünnt und danach die Rückseite prozessiert. [19]

In vertikaler Richtung bilden der p⁺-Body, die n⁻-Driftzone und der Rückseitenkollektor einen pnp-Bipolartransistor. Liegt am Kollektor eine positive Spannung gegenüber dem Emitter an, so befindet sich der pn-Übergang zwischen Body und Driftzone

Abbildung 61: Prinzipieller Aufbau eines IGBTs in vereinfachter Darstellung.

in Sperrrichtung, wobei die Raumladungszone ab einer gewissen Spannung bis zum Feldstopp reicht. Die maximale Spannung, die der IGBT sperren kann, ist nun durch die Dicke der n⁻-Driftzone festgelegt. Als gute Näherung gilt, dass Silizium pro μ m etwa 10 V sperren kann. Ein 1200 V sperrender IGBT ist daher an die 120 μ m dick. [2]

In horizontaler Richtung bilden das n⁺-Gebiet, der p⁺-Body und die n⁻-Driftzone einen npn-Feldeffekttransistor. Liegt nun zusätzlich eine positive Spannung am Gate an, die größer als eine Spannung U_{th} ist, so bildet sich im p⁺-Gebiet ein n-Kanal aus, und es werden Elektronen in die n⁻-Driftzone gezogen. Dieser Strom entspricht nun dem Basisstrom des pnp-Bipolartransistors. Gelangen Elektronen zum kollektorseitigen pn-Übergang so entsteht dort eine Spannung in Flussrichtung: es werden Löcher in die Basis (Driftzone) injiziert und können aufgrund der sehr geringen Basisdotierung bis zum Emitter diffundieren. Die erhöhte Ladungsträgerdichte setzt den Widerstand der Driftzone herab, und es entsteht ein Elektronen-Lochplasma: der IGBT wird leitend. [19]

Für das Schaltverhalten eines IGBTs ist es notwendig, dass die Dotierungen sehr genau den Spezifikationen entsprechen und Abweichungen nur im einstelligen Prozentbereich auftreten. Für das elektrochemische Dünnen auf Waferebene ist dies mit starken Einschränkung verbunden, da jeder Einfluss auf die Dotierung die elektrischen Eigenschaften beeinflussen würde. Durch entsprechende Kontaktierung können die Probleme, die durch die niedrige Dotierung der Driftzone auftreten, weitgehend vermieden werden. [19] Die approbierte Originalversion dieser Dissertation ist in der Hauptbibliothek der Technischen Universität Wien aufgestellt und zugänglich. http://www.ub.tuwien.ac.at

6.2.2 Problematik bei der Kontaktierung: Widerstand der Driftzone

The approved original version of this thesis is available at the main library of the Vienna University of Technology.

http://www.ub.tuwien.acDieg beim elektrochemischen Ätzstopp an einem 8 Zoll Wafer auftretenden Ströme können abhängig von der Temperatur, dem Ätzmedium, der angelegten Spannung sowie den Dotierverhältnissen und der Lichteinstreuung von einigen 10 mA bis hin zu einigen Ampere reichen. Diese, für eine elektrochemische Ätzung relativ hohen Stromdichten von einigen mA/cm², stellen auf planaren Strukturen keinerlei Probleme dar, da der Strom immer senkrecht durch den Wafer fließen kann und sich somit eine eindimensionale Problemstellung ergibt. Bei einem IGBT ist dies bei direkter Kontaktierung der Driftzone nicht der Fall, da der Strom in diesem Fall auch in lateraler Richtung fließen muss, was einem zwei- oder dreidimensionalen Problem entspricht. Dies ist in Abbildung 62 veranschaulicht.

Abbildung 62: Unterschiedliche Möglichkeiten der Kontaktierung und schematische Darstellung des Stromflusses: a) direkte Kontaktierung der Driftzone, b) Kontaktierung über den Emitter-Kontakt

Im Fall der direkten Kontaktierung der Driftzone erhöht sich die Stromdichte zum Rand hin. Da dieses Gebiet sehr niedrig dotiert ist, kommt es zu einem Spannungsabfall in lateraler Richtung, der je nach Stromdichte und Chipdesign unterschiedlich stark ausfallen kann. Der Spannungsabfall kann einerseits die Gleichmäßigkeit der Ätzung beeinflussen oder, wenn das Passivierungspotential unterschritten wird, den Ätzstopp an sich vereiteln. Das Strom-Spannungsverhalten während der Ätzung entspricht aufgrund der npn-Struktur dem eines Bipolartransistors. Wird der Kontakt über die Vorderseiten-Metallisierung des Emitters hergestellt, so The approvestellt die Stromdichte available at Fall senkrecht erfölgt und die Stromdichteverteilung über den Chip gleichmäßig ist. http://www.Das.Verhalten während der Ätzung entspricht im Ersatzschaltbild aufgrund der pnpn-Struktur einem (parasitären) Thyristor, der abhängig vom Stromfluss und der Dotierung über Kopf zünden und einen vorzeitigen Ätzstopp verursachen kann.

Eine direkte Kontaktierung der Driftzone ist nur mit einer zusätzlichen Photomaske möglich und hat gegenüber einer Kontaktierung über den Emitter den Vorteil, dass keine parasitären Effekte zu einem vorzeitigen Ätzstopp führen können. Diese Variante hat bei Betrachtung der Wirtschaftlichkeit den Nachteil, dass sie mit relativ hohen zusätzlichen Kosten pro Wafer einhergeht und damit den Gewinn durch die höhere Präzision relativiert.

6.2.3 Einflüsse auf die Enddicke

Grundsätzlich sollte beim elektrochemischen Ätzstopp auf die Enddicke des Bauelements nur die Dicke der Epitaxie einen Einfluss haben. Da der Ätzstopp nicht am metallurgischen pn-Übergang stattfindet sondern bereits früher, gibt es noch andere Effekte, die zu Abweichungen von der Zieldicke führen.

Im Idealfall können die Dotierungen frei gewählt und alle Gebiete elektrisch gut kontaktiert werden. Dies ermöglicht eine gute Kontrolle der Ätzung und führt zu Präzisionen in der Dicke von weit unter 1 µm. Verwendet man den ECES³⁰ als Dünnungsprozess für Halbleiter, so schlägt sich der zusätzliche Aufwand für die Kontaktierung der Driftzone in den Kosten nieder und wird daher vermieden. Einen Einfluss auf die Enddicke haben damit unter anderem die Dotierverhältnisse des Grundmaterials, die Temperatur während der Ätzung sowie bei Nichtkontaktieren des p-Gebiets die anodische Spannungsdrift, die auch einen verfrühten Ätzstopp verursachen kann. Falls die Dotierung des Grundmaterials nicht allzu niedrig ist, können diese Einflüsse jedoch, anders als bei der Herstellung hochpräziser Membranen, vernachlässigt werden.

6.3 Theoretische Modellierung des Ätzstroms

6.3.1 Bipolarmodell für eine 4-Elektrodenanordnung

Ein umfassendes theoretisches Modell für eine 4-Elektrodenanordnung, bei der sowohl der Emitter und Kollektor als auch die Basis des Bipolartransistors kontaktiert sind,

 $^{^{30}\}mathrm{Electro-Chemical}$ Etch Stop

wurde von Lapadatu [64] vorgeschlagen und auch experimentell überprüft. Die 4. The approved original Elektrode ist in diesem Fall die Referenzelektrode, die ein reproduzierbares Gleichavailable at the main dewichtspotential herstellen soll und bei der Herstellung sehr präziser Membranen http://www.ub.tuwien.acwichtig ist. Bei der Herleitung für dieses Modell wird auf den Grundgleichungen des Bipolartransistors aufgebaut, die sich aus den Drift- und Diffusionsströmen ergeben.

Demnach ist die Emitter-Stromdichte J_E des npn-Bipolartransistors definiert als:

$$J_E = \frac{L_{nP}}{w_p} J_{EB0,\infty} e^{\frac{qV_P}{mkT}}.$$
(81)

Dabei ist L_{nP} die Diffusionslänge der Elektronen im p-Substrat, $J_{EB0,\infty}$ der Emitter-Sättigungsstrom einer unendlich ausgedehnten Basis und damit unabhängig von der Breite der Basis, k die Boltzmannkonstante, T die absolute Temperatur, q die Elementarladung. Der Faktor m kann Werte zwischen 1 und 2 annehmen, je nachdem welche Diffusions- und Rekombinationsströme in der Raumladungszone zwischen Basis und Emitter vorliegen. [64]

Die Kollektor-Stromdichte J_C kann als Summe des Sättigungstroms des rückwärts gepolten pn Überganges und der Emitterstromdichte, multipliziert mit der Effizienz γ sowie dem Transportfaktor α_T dargestellt werden und beträgt: [20]

$$J_C = (\gamma \alpha_T J_E + J_{d0}) M \tag{82}$$

Mit abnehmender Basisweite konvergiert dieser Effizienzfaktor zu 1:

$$\gamma = \frac{1}{(1 + J_{p0}/J_{n0} \coth w_P/L_{nP})}$$
(83)

In dieser Formel sind J_{p0} und J_{n0} die Sättigungsstromdichten der Löcher und Elektronen des Emitter-Überganges. Es ist bekannt, dass durch das Ätzen von Silizium keine Injektion von Löchern in den Emitter erfolgt und somit $j_{p0} = 0$ und damit $\gamma = 1$ gilt. Laut Lapadatu [64] ist durch die hohe Oberflächenrekombination an der Silizium/Elektrolyt-Grenzfläche γ etwas weniger als 1.

Der Transportfaktor α_T konvergiert mit abnehmender Basisbreite gegen 1:

$$\alpha_T = \operatorname{sech} \frac{w_p}{L_{nP}} \tag{84}$$

Unter Vernachlässigung des Sättigungsstroms der pn-Diode gilt für die Kollektorstrom-

The approved ichts version of this thesis is available at the main library of the Vienna University of Technology. http://www.ub.tuwien.ac.at/eng

$$J_C = M \alpha_T \gamma \frac{L_{nP}}{w_P} I_{EB0,\infty} e^{\frac{V_P}{mkT}}$$
(85)

Diese Formeln sind gültig, wenn die Breite der Basis geringer ist als die Diffusionslänge L_{nP} . Ist dies nicht der Fall, so existiert der Bipolartransistor nicht. Der Ätzstopp kommt in der 4-Elektrodenkonfiguration bei der Berührung der beiden Raumladungszonen zustande. Die Weite der Raumladungszone am metallurgischen pn-Übergang lässt sich aus Gleichung (17) auf Seite 12 berechnen. Die Weite der Raumladungszone, die sich durch den Kontakt mit dem Elektrolyten ausbildet, beträgt nach Lapadatu: [64]

$$x_d = \sqrt{\frac{2\epsilon_{Si}}{qN_A}} \frac{2kT}{q} \ln \frac{N_A}{n_i}.$$
(86)

Mit Hilfe dieses Modells lassen sich Membrandicken mit sehr hoher Präzision vorhersagen. Die Gleichungen gelten jedoch nur bei kontaktierter Basis. Im Falle einer floatenden Basis sind die Zusammenhänge komplizierter und es kann unter Umständen bereits zum verfrühten Ätzstopp kommen, wenn das Basispotential anodischer als das Passivierungspotential wird. In diesem Fall ist es sehr schwierig, reproduzierbare Dicken zu erzielen. Diese Präzision ist bei einer Anwendung als Dünnungsprozess nicht notwendig. Aus diesem Grund wurde bei den Versuchen auf eine Kontaktierung der Basis verzichtet.

6.3.2 Berechnung des Ätzstroms

Bei einer 3-Elektroden-Konfiguration ist die Basis des Bipolartransistors nicht angeschlossen. In diesem Fall ist der Emitter- gleich dem Kollektorstrom. Damit kann Gleichung (82) auf der vorherigen Seite aufgelöst werden:

$$J_C = J_E = \frac{M}{1 - \gamma \alpha_T M} J_{d0}.$$
(87)

Einsetzen von α ergibt:

$$J_{CE} = \frac{M}{1 - \gamma M \cdot \text{sech}\left(\frac{w_p}{L_{nP}}\right)} J_{d0}.$$
(88)

Unter der Annahme, dass sich die Ätzrate mit der Zeit nicht ändert, kann für die Dicke der Basis folgender Zusammenhang angenommen werden:

TU UB

Те

av Ur

$$w(t) = w_0 - r_{Si} \cdot t, \tag{89}$$

wien a Wobei w_0 die Breite der Basis zum Zeitpunkt t = 0 und r_{Si} die Ätzrate des Siliziums ist. Mit diesem Zusammenhang lässt sich nun der Verlauf des Kollektor-Emitter-Stromes als Funktion der Zeit berechnen.

$$J_{CE} = \frac{M}{1 - \gamma M \cdot \operatorname{sech}\left(\frac{w_0 - r_{Si} \cdot t}{L_{nP}}\right)} J_{d0} \tag{90}$$

Der Ätzstrom ist grafisch in Abbildung 63 dargestellt.

Abbildung 63: Simulierter Ätzstrom und Abnahme der Basisweite, berechnet nach dem Bipolarmodell.

Dabei wurde für M = 1, $w_0 = 100 \ \mu\text{m}$, $J_0 = 1 \ \text{und} \ r_a = 0.02 \ \mu\text{m/s}$ angenommen. Der Effizienzfaktor wurde auf $\gamma = 0.99$ gesetzt, da bei $\gamma = 1$ die Gleichung divergieren würde. Damit wird berücksichtigt, dass aufgrund der Oberflächenrekombination dieser Faktor nicht exakt 1 sein kann. Als Diffusionslänge L_p werden 100 μm angenommen, gleich der Ausgangsdicke der Basis.

Der Kurvenverlauf wird durch den Secans Hyperbolikus im Nenner bestimmt. Es ergibt sich eine Stromkurve, die qualitativ dem Stromverlauf beim Ätzen entspricht. Der Stromanstieg ist zu Beginn der Ätzung eher moderat und zeigt gegen Ende der Kurve einen steilen Anstieg. Eine präzise Vorhersage ist damit leider nicht möglich, da die Kurve sehr empfindlich auf Änderungen des Transport- und Effizienzfaktors reagiert. Geringe Änderungen ergeben bereits eine unphysikalisch hohe Stromdichte. Das weist auch darauf hin dass sich beim elektrochemischen Ätzen in der 3-Elektronenanordnung The approvedie Präzision des Atzstopps nicht exakt vorhersagen lässt. Experimentell konnte gezeigt available at werden löbrig dass teie Präzision unter 1 µm liegt, was für einen Dünnungsprozess auf http://www.uWaferebene, ausreichend ist.

6.3.3 Thyristoreffekt

Eine direkte Kontaktierung über die Vorderseitenpads von IGBTs bewirkt das Einschalten eines parasitären Thyristors und führt zu einem sehr hohen Stromanstieg und damit zum vorzeitigem Ätzstopp, lange vor Berührung der Raumladungszonen. Dies konnte experimentell mehrfach gezeigt werden. Auf Substraten mit einem spezifischen Widerstand von 3 Ω cm kam es in 90 °C heißer TMAH bei einer Konzentration von 10% bereits etwa 50 µm vor Erreichen des pn-Übergangs zu einem Ätzstopp, und dies bei einem Strom von über 3 A auf einem 8 Zoll Wafer.

Der Grund für den hohen Stromfluss liegt in der Schleifenverstärkung des Thyristors, der im Ersatzschaltbild durch zwei Bipolartransistoren modelliert werden kann. Dies ist in Kapitel 2.1.9 auf Seite 14 genauer beschrieben. Der stark p-dotierte Body des IGBTs führt zu einer Injektion von Löchern in die n-Driftzone, die dort ungehemmt das p-Substrat erreichen können. Eine sehr hoch dotierte n-Schicht könnte diesen Effekt reduzieren oder sogar ausschalten, wenn gewährleistet ist, dass alle Defektelektronen dort rekombinieren können. Beim IGBT ist das jedoch nicht sinnvoll, da eine derartige Schicht bereits am Beginn der Prozessierung vor Abscheidung der Epi-Driftzone vorhanden sein müsste. Dies würde dazu führen, dass diese Schicht durch die Folge von Ofenprozessen ausdiffundieren würde. Außerdem müsste die Schicht noch nach dem Ätzstopp mit einer Fixzeitätzung entfernt werden.

Es wurde experimentell versucht, den Thyristoreffekt einzudämmen, indem das p-Substrat elektrisch kontaktiert wurde. Dies brachte jedoch keinen Erfolg, da sich ein Thyristor über einen Gate-Strom nicht steuern lässt und einmal eingeschaltet in diesem Zustand verbleibt. Die ungünstigen Dotierverhältnisse in der Driftzone führen dazu, dass der Bipolareffekt von Beginn an auftritt und es zu einer sofortigen Überkopfzündung des Thyristors kommt. Bei einer Kontaktierung der Driftzone ist daher unbedingt darauf zu achten, dass dieser Thyristoreffekt auf keinen Fall auftritt.

6.4 Simulation des lateralen Spannungsabfalls beim ECES

6.4.1 Lateraler Spannungsabfall am Chip

Entscheidend für die Realisierung eines Dünnungsprozesses am IGBT mit Hilfe des ECES ist die Art der Kontaktierung. Wird diese durch eine zusätzliche Photoebene

realisiert, indem bei jedem Chip die Driftzone separat kontaktiert wird, so genügt es, The approved original den Spannungsabfall an einem Chip zu modellieren, um vorhersagen zu können, wie available at the main die Köntäktierung erfolgen muss um einen Ätzstopp zu ermöglichen.

http://www.ub.tuwien.ac.at/eng

Grundsätzlich muss diese Kontaktierung in Form von Leiterbahnen und Kontaktlöchern erfolgen. Es ist wichtig, dass der zusätzliche Platzverbrauch am Chip möglichst gering ist, um die Kosten niedrig zu halten. Daher ist es naheliegend, zunächst nur einen elektrischen Kontakt in den Chipecken vorzunehmen. Da die Driftzone niedrig dotiert ist, kommt es zu einem nicht vernachlässigbaren Spannungsabfall, der bei zu hohem Stromfluss einen elektrochemischen Ätzstopp unmöglich machen würde.

Eine weitere Möglichkeit der Kontaktierung besteht darin, um den Siliziumchip einen Kontaktgraben mittels Plasmaätzung herzustellen und diesen metallisch zu verfüllen. Dies erfordert mehr Platz und ist somit teurer. Allerdings spielt in diesem Fall der Spannungsabfall in der Driftzone keine so große Rolle wie bei der Eckkontaktierung.

Abbildung 64: Veranschaulichung der Kontaktierung sowie der Randbedingungen für die Finite-Elemente Simulation. Links: Grabenkontakt, rechts: Kontakt in den Chipecken.

6.4.2 Finite-Elemente Simulation des Spannungsabfalls am Chip

Der laterale Spannungsabfall am Chip kann für beide Arten der Kontaktierung mit Hilfe einer finite Elemente Simulation quantifiziert werden. Die partielle Differentiagleichung (Gleichung (56) auf Seite 73), die den Potentialverlauf in einem von Strom durchflossenen Gebiet beschreibt, wurde bereits im vorherigen Kapitel aus dem ohmschen Gesetz hergeleitet. Die Kontaktierung sowie die Randbedingungen sind in Abbildung 64 für beide Fälle dargestellt.

Bei dieser Simulation werden an den Chipecken dirichtletsche Randbedingungen angenommen. Der Chiprand befindet sich auf dem vorgegebenen Potential U_0 .

$$U_{CR} = U_0 \tag{91}$$

Über die Unterseite tromfluss, Der Strom available at geltein Neumännrandbedingungen, das heißt, dass die Normalableitung und damit der http://www.Fluss.an.dieser Stelle bekannt sind. [16]

$$\frac{\partial}{\partial n}U = \rho J \tag{92}$$

An allen anderen Flächen ist die Normalableitung null, da dort kein Stromfluss stattfindet. Das Problem wurde für beide Kontaktierungsarten gelöst. Dabei wurde ein dreidimensionales Netz mit 60000 Knotenpunkten verwendet, das der Chipgeometrie entsprach.

Die Lösungen sind in den Abbildungen 65 und 66 auf Seite 112 dargestellt. Dabei wurden die Dotierverhältnisse eines IGBTs sowie die beim elektrochemischen Ätzen in 80 °C grad heißer KOH erwarteten Ströme von einigen hundert mA pro Wafer angenommen. Die Simulation wurde mit Hilfe des Softwarepakets FEniCS durchgeführt. [16]

Es zeigt sich, dass im Falle einer reinen Kontaktierung an den Chipecken der Spannungsabfall sehr groß ist. Experimentell konnte festgestellt werden, dass ein Ätzstopp unter diesen Bedingungen nicht möglich ist und es nur in den Ecken zum Ätzstopp kommt, während in der Chipmitte in die Driftzone weitergeätzt wird. Bei der Kontaktierungsmethode mittels Grabenkontakt ist der Spannungsabfall dagegen deutlich geringer.

6.4.3 Buried Layer als Opferschicht: Simulation am Wafer

Grundsätzlich besteht für eine präzise Dünnung auch die Möglichkeit, eine hoch n⁺-dotierte Schicht als Opferschicht zu implantieren und auszuheilen oder epitaxial aufzuwachsen. Dies würde eine Kontaktierung über den Waferrand ermöglichen, ohne das Layout der Chips zu verändern. Der gesamte Strom könnte während der Ätzung entlang dieser Opferschicht fließen, die nach Eintritt des Äztstopps durch eine Fixzeitätzung entfernt werden würde.

Auch in diesem Fall würde ein Spannungsabfall entlang der Scheibe von außen zur Scheibenmitte hin auftreten. Eine Kontaktierung am Waferrand könnte aufgrund der Randentlackung relativ einfach durchgeführt werden. In diesem speziellen Fall ist das Problem rotationssymmetrisch, und die partielle Differentialgleichung (siehe Gleichung (56) auf Seite 73) kann unter der Verwendung von Polarkoordinaten in eine gewöhnliche Differentialgleichung umgewandelt und analytisch gelöst werden.

The approved original version of this thesis is available at the main library of the Vienna University of Technology.

http://www.ub.tuwien.ac.at/eng

Abbildung 65: Simulation des Spannungsabfalls bei Kontaktierung in den Chipecken.

Abbildung 66: Simulation des Spannungsabfalls bei einem Kontaktgraben rund um den Chip.

Die approbierte Originalversion dieser Dissertation ist in der Hauptbibliothek der Technischen Universität Wien aufgestellt und zugänglich. http://www.ub.tuwien.ac.at

Zunächst wird angenommen, dass der gesamte Stromfluss in der Opferschicht lateral The approve yon innen nach außen erfolgt. Anstatt einer Neumannrandbedingung muss daher ein available at Quellteinn^y verwendet werden, als würde der Strom direkt in der n-Schicht entstehen. http://www.uDamit.hat die zu lösende Differentialgleichung die Form:

$$\nabla \frac{1}{\rho} \nabla u\left(x, y\right) + f\left(x, y\right) = 0.$$
(93)

Der spezifische Widerstand sollte sich über den gesamten Radius nicht ändern. Der Quellterm entspricht der Stromdichte während der elektrochemischen Ätzung. Es gilt:

$$\hat{f} = \frac{\rho}{d}f = \frac{\rho}{d}\frac{I}{R^2\pi},\tag{94}$$

wobei I der Gesamtstrom, R der Waferdurchmesser und d die Dicke der Opferschicht ist. Die Größe ρ/d wird als Flächenwiderstand bezeichnet. Der Spannungsabfall über den Wafer sollte idealerweise klein sein, daher kann f als konstant angenommen werden. Damit hat die Gleichung die einfache Form:

$$\Delta u(x,y) + \hat{f} = 0. \tag{95}$$

Unter Verwendung des Laplace-Operators in Polarkoordinaten [67] gilt:

$$\frac{1}{r}\frac{\partial}{\partial r}\left(r\frac{\partial u}{\partial r}\right) + \frac{1}{r^2}\frac{\partial^2 u}{\partial \phi^2} + \hat{f} = 0.$$
(96)

Da uaufgrund der Radialsymmetrie nicht vom Winkel ϕ abhängt, kann die Gleichung weiter vereinfacht werden:

$$\left(\frac{\partial}{\partial r^2} + \frac{1}{r}\frac{\partial}{\partial r}\right)u(r) + \hat{f} = 0.$$
(97)

Damit ergibt sich eine gewöhnliche Differentialgleichung 2. Ordnung :

$$u'' + \frac{1}{r}u' + \hat{f} = 0, \tag{98}$$

113

die mittels Separation der Variablen und Variation der Konstanten gelöst werden kann The approved original [68] Die partikuläre Lösung der Differentialgleichung ergibt sich aus dem homogenen available at the main Ainteilfund vist:

http://www.ub.tuwien.ac.at/eng

$$v = \frac{1}{r}c_1. \tag{99}$$

Die Lösung der inhomogenen Gleichung unter Variation der Konstanten lautet:

$$u = -\hat{f}\frac{r^2}{4} + d\ln(r) + c \tag{100}$$

mit den Integrationskonstanten c und d, die sich aus den Randbedingungen bestimmen lassen. Am Waferrand ist die Spannung u_0 eingeprägt, folglich gilt für die Funktion an der Stelle r = R die Dirichletsche Randbedingung: $u(R) = u_0$. In der Mitte des Wafers ist die Steigung null, da der Strom von dort gleichmäßig in alle Richtungen fließen muss. Dort gilt die Neumannrandbedingung u'(0) = 0.

Die Lösung der Differentialgleichung für dieses spezielle Problem lautet somit:

$$u(r) = u_0 - \frac{\rho}{d} \frac{I}{4\pi} (1 - \frac{r^2}{R^2})$$
(101)

Dieses Ergebnis ermöglicht die Berechnung von Schichtwiderständen auf runden Substraten, die eine Opferschicht für den elektrochemischen Ätzstopp benötige. Um zu berechnen wie stark dotiert eine 5 µm dicke Schicht sein müsste, damit beim Strom von 1 A an einem 8 Zoll Wafer der Spannungsabfall nicht mehr als 0.2 V bis zur Wafermitte beträgt, muss nur die Gleichung nach ρ aufgelöst und die entsprechenden Werte eingesetzt werden. Für r = 0 gilt somit:

$$\rho = \frac{4\pi d}{I} (u_0 - u_m). \tag{102}$$

Im Falle einer 5 μ m dicken Opferschicht darf der spezifische Widerstand demzufolge höchstens 1 m Ω cm betragen. Grafisch ist dies für 3 verschiedene Waferdurchmesser in Abbildung 67 auf der nächsten Seite dargestellt. Der Spannungsabfall bei einem 6 Zoll Wafer ist bei ansonsten gleichen Bedingungen etwas geringer, bei einem 12 Zoll Wafer dagegen deutlich höher und beträgt fast 0.5 V. Die Dicke der Opferschicht müsste folglich dem Waferdurchmesser angepasst sein, um einen gleichmäßigen Ätzstopp zu ermöglichen.

Abbildung 67: Spannungsabfall am buried Layer während der Ätzung für verschiedene Waferdurchmesser.

6.5 Experimentelle Untersuchungen

6.5.1 Versuchsaufbau

Der Versuchsaufbau beim elektrochemischen Ätzstopp ähnelt vom Prinzip her dem der anodischen Oxidation wie in Kapitel 4.3 auf Seite 39 beschrieben. Es wurden der gleiche Potentiostat und auch das gleiche Netzgerät verwendet. Die Ätzungen fanden in KOH und TMAH bei Temperaturen von 80 °C bis 90 °Cstatt. Die Temperatur und die Konzentration spielen hier nur eine untergeordnete Rolle und beeinflussen in erster Linie die Rauhigkeit sowie die Ätzrate, die jedoch für einen funktionierenden Ätzstopp nicht so bedeutend sind. Zwar sind die parasitären Effekte bei niedrigeren Temperaturen und damit kleineren Stromdichten geringer als bei hohen Temperaturen, ihr Einfluss ist jedoch gering.

6.5.2 Kennlinie eines Wafers mit pn-Übergang in KOH

Wird ein anodischer Sweep an einem Wafer mit pn-Übergang in einer starken Lauge durchgeführt, so unterscheidet sich die Kurve grundlegend von einem reinen p- oder n-dotierten Wafer. Der Strom steigt oberhalb des offenen Quellpotentials V_OCP drastisch an und wird sofort konstant. Der Kurvenverlauf entspricht dabei dem eines Bipolartransistors, bei dem die Kollektor-Emitter-Spannung bei konstanter Basis variiert wird.

Die Kennlinie eines Wafers mit pn-Übergang in 80 °C heißer Kalilauge ist in Abbil-The approved original dung 68 sdargestellt. Die Form der Kurve bestätigt, dass das Modell eines Bipolaravailable at the main likens ist of s^Vdie Verhältnisse beim elektrochemischen Ätzstopp sehr gut beschreiben University of Technology.

> Der nur sehr flache Stromanstieg nach dem Knick könnte dazu verleiten, einen lateralen Spannungsabfall in Kauf zu nehmen und dafür die Spannung zu erhöhen. Dies würde bewirken, dass es am Wafer zu unterschiedlichen Zeiten zum Ätzstopp kommt und sich damit ein Profil der Vorderseite auf die Rückseite abbildet. Dies führt jedoch zu einer erhöhten Gesamtdickenvariation.

Abbildung 68: Kennlinie eines Wafers mit pn-Übergang gemessen bei 80 °C in 10% KOH.

6.5.3 Zeitlicher Verlauf des Ätzstroms und Auswirkung der Raumladungszone

Wie bereits theoretisch berechnet, bewirkt der Bipolareffekt beim elektrochemischen Ätzstopp in der 3-Elektroden-Konfiguration ein starkes Ansteigen des Ätzstroms kurz vor Berührung der Raumladungszonen. Dieser Stromfluss tritt im Falle einer 4-Elektroden-Anordnung nicht auf. Erst bei der Berührung der Raumladungszonen ergibt sich ein rascher Stromanstieg. Die Ausbreitung der Raumladungszone hängt von der Dotierung des Substratmaterials sowie von der angelegten, anodischen Spannung ab.

Dies ist sehr deutlich in Abbildung 69 auf der nächsten Seite zu erkennen. Bei diesem Experiment wurde ein sehr niedrig dotiertes Substrat mit einem spezifischen Wider-

Abbildung 69: Zeitlicher Verlauf des Ätzstroms. Nach eingetretenem Ätzstopp wurde die Spannung jedes Mal halbiert.

stand von mehr als 1000 $\Omega {\rm cm}$ verwendet, um die Auswirkung der angelegten Spannung auf die Ausbreitung der Raumladungszone zu demonstrieren.

Der Versuch wurde in 10% KOH bei 80 °C durchgeführt. Die Spannung wurde zunächst auf 20 V geregelt und der Stromverlauf bis zum eintretenden Ätzstopp gemessen. Nach erfolgtem Ätzstopp wurde die Spannung jedes Mal halbiert, bis zu einem Wert von 1.25 V. Die Zeit zwischen den Ätzstopps ist bei konstanter Ätzrate proportional zur geätzten Dicke.

Diese Auswirkung ist nicht unproblematisch und bedeutet eine Einschränkung für das Substratmaterial. Idealerweise sollte die Raumladungszone nicht mehr als einige 100 nm betragen, um eine präzise Dünnung zu ermöglichen.

An den Stromkurven lässt sich beobachten, dass der Stromabfall beim ersten Ätzstopp deutlich flacher ist als bei den folgenden, wo er sehr abrupt eintritt. Dies weist darauf hin, dass beim ersten Ätzstopp die Rauigkeit des Wafers noch relativ hoch ist. Durch den elektrochemischen Ätzstopp reduziert sie sich stark und erhöht sich während der weiteren Ätzung nicht mehr. Daraus lässt sich schließen, dass sich diese Methode gut für eine Reduktion der Gesamtdickenvariation (TTV) eignet.

6.5.4 Ätzstopp bei Grabenkontakt der Driftzone

Um die elektrischen Eigenschaften eines späteren Chips nicht negativ zu beeinflussen, muss eine Kontaktierung der Driftzone im Sägerahmen am Chiprand erfolgen. In

diesem etwa 50 The approved original möglichst nicht available at the main eine Köntäkt der Driftzone allein in den Chipecken ausprobiert. Dabei wurde mittels http://www.ub.tuwien.e.Plasmaätzung ein einige Mikrometer tiefes Kontaktloch geätzt und das n⁻-Gebiet über eine Aluminiumstruktur angeschlossen. Dieser Kontakt erwies sich, wie bereits erwähnt, als unzureichend, da der Stromfluss über die Chipecken zu einem Spannungsabfall

führte, wie dies im vorigen Kapitel theoretisch berechnet werden konnte.

Die fehlgeschlagenen Experimente mit dem Eckkontakt und dem parasitären Thyristor sowie die Ergebnisse der Finiten-Elemente Simulationen des Spannungsabfalls zeigen die Notwendigkeit eines völlig neuen Designs, bei dem um den ganzen Chip herum im Sägerahmen ein tiefer Graben geätzt wird.

Ein solcher Chip ist in Abbildung 70 auf der nächsten Seite schematisch dargestellt. Um diese Struktur herzustellen, wurde ein IGBT auf der Vorderseite standardmäßig gefertigt. Vor der Metallisierung wurde ein zusätzlicher Prozessblock eingeführt, bei dem über eine Maske ein Graben um jeden Chip in den Sägerahmen geätzt wurde. Dies erfolgte durch eine Trockenätzung von Silizium mit Hilfe des Bosch-Prozesses. Nach der Ätzung erfolgte eine Phosphorimplantation sowie ein thermischer Annealschritt. Daraufhin wurden die Gräben mit Metall verfüllt und die Wafer elektrochemisch geätzt. Der Versuch wurde in 25% TMAH bei 90 °C durchgeführt.

Das Dickenprofil eines solchen 8 Zoll Wafers nach dem Ätzstopp ist in Abbildung 71 auf der nächsten Seite dargestellt. Es zeigt sich, dass sich die Vorderseitenstruktur nicht abbildet und die Gesamtdickenvariation bei etwa 1 μ m liegt. Die Abbildung entspricht genau dem Profil der Epitaxie, deren Ungleichmäßigkeit damit den limitierenden Faktor bei der Präzision dieses Prozesses darstellt. Eine Verbesserung der Dickenvariation würde damit eine Optimierung der Konformität des Epitaxieprozesses erfordern.

In Abbildung 72 auf Seite 120 sind REM-Bilder von gebrochenen Proben nach dem elektrochemischen Ätzstopp dargestellt. Gut zu sehen ist der Kontaktgraben sowie die aus Stabilitätsgründen dickere Metallisierung der Vorderseite. Dieser Graben könnte mehrere Funkionen erfüllen. Einerseits ermöglicht er eine zuverlässige Kontaktierung der Driftzone für den elektrochemischen Ätzstopp, andererseits könnten damit auch Ausbrüche beim Sägen vermieden werden. Denkbar wäre auch eine Verwendung als Diffusionsbarriere für Lötprozesse (z. B. Diffusionslöten). Nachteilig sind jedoch die hohen Kosten durch die zusätzliche Photoebene und den Aufwand der Plasmaätzung, die den Prozess unter Umständen unwirtschaftlich machen.

Mit diesem Experiment konnte erfolgreich demonstriert werden, dass der elektrochemische Ätzstopp auch als Dünnungsprozess für IGBTs geeignet ist, sofern einige Voraussetzungen erfüllt werden. Für andere Bauelemente muss dieser Aufwand unter Umständen nicht betrieben werden. Bei Feldeffekttransistoren mit hoch n-dotierten Schichten zum Beispiel tritt der Thyristoreffekt nicht auf, da die Defektelektronen

Abbildung 70: Schematische Darstellung eines IGBTs mit tiefen Kontaktgräben zur Kontaktierung für den elektrochemischen Ätzstopp.

Abbildung 71: Siliziumdicke nach Eintritt des Ätzstopps auf einem p-Wafer mit n-Epitaxie und Vorderseitenstruktur. Es zeigt sich eine Gesamtdickenvariation von $1.16 \ \mu m$ entsprechend dem Epitaxieprofil.

Abbildung 72: REM-Aufnahmen von IGBTs nach eingetretenem Ätzstopp mit epitaxial aufgebautem pn-Übergang.

Abbildung 73: Siliziumdicke nach Eintreten des Ätzstopps auf einem Wafer mit Vorderseitenstruktur. Der pn-Übergang wurde mittels Protonenimplantation hergestellt.

mit den Elektronen zuverlässig rekombinieren können. Dies ermöglicht eine direkte The approve Kontaktierung, über die Vorderseitenpads.

available at the main library of the Vienna University of Technology. http://www.ub.tuwien.ac.at/eng

6.5.5 ECES auf niedrig dotierten Substraten

Es besteht die Möglichkeit, Siliziumwafer mittels Protonen
implantation zu dotieren [69], sofern das verwendete Substrat nicht zu hoch p-dotiert ist. Das p
-Silizium wird nach einem Temperaturprozess von 400 °C n-dotiert. Dies kann auch dazu verwendet werden, Siliziumwafer mit präziser Dicke mit Hilfe des elektrochemischen Ätzstopps herzustellen, ohne dabei auf einen Epitaxieschritt angewiesen zu sein, der je nach Dicke sehr teuer sein kann.

Daher wurden auch Versuche unternommen, den elektrochemischen Ätzstopp auf niedrig dotierten Substraten zu ermöglichen. Dabei stellte sich heraus, dass die niedrige Dotierung des Substrats dazu führt, dass sich einerseits die Vorderseite bei einer Kontaktierung über den Chiprand auf die Rückseite abbildet und sich andererseits die Raumladungszone sehr weit ausbreiten kann und es somit verfrüht zum Ätzstopp kommt. Auch der Stromfluss ist auf niedrig dotiertem Material stärker, da die Diffusionslänge für Elektronen höher ist und somit der Bipolareffekt früher und stärker zutage tritt.

Das Ergebnis eines solchen Experiments ist in Abbildung 73 auf der vorherigen Seite dargestellt. Dabei wurde auf der Vorderseite eine IGBT-Struktur mit Grabenkontaktierung verwendet. Die Abbildung der Vorderseite auf die Rückseite erfolgt aufgrund der lokal erhöhten Stromdichte und der damit verbundenen, erhöhten Ätzrate. Die Ungleichmäßigkeit in der Dicke deutet darauf hin, dass der Ätzstopp nicht durch Kontakt der Raumladungszone sondern deutlich früher auftritt, was ebenfalls auf die niedrig dotierte Basis des durch die Ätzung entstehenden Bipolartransistors zurückzuführen ist. Dies deutet darauf hin, dass der elektrochemische Ätzstopp für niedrig dotierte Substrate völlig ungeeignet ist, sofern eine präzise Enddicke gewünscht ist.

6.6 Abschließende Bewertung

Es wurde erfolgreich demonstriert, dass der elektrochemische Ätzstopp ein geeigneter Prozess zur Herstellung von Dünnwafern mit sehr niedriger Dickenvariation ist und dass er im Bereich der präzisen Dünnung Anwendung finden könnte. Im Falle von IGBTs, wo eine sehr präzise Enddicke von großer Bedeutung ist, erfordert die Implementierung des elektrochemischen Ätzstopps zusätzlichen Aufwand. Es konnte experimentell und theoretisch gezeigt werden, dass ein Einschalten des parasitären Thyristors dringend zu unterbinden ist. Anders als bei nur einem pn-Übergang ist eine Kontaktierung der Basis bei weitem nicht ausreichend, eine Einschaltung des Thyristors zu unterbinden. Die Verwendung einer zusätzlichen Photoebene zur ausschließlichen Kontaktierung der The approved original Driftzone ist, beim IGBT daher zwingend notwendig. Dabei muss die Kontaktierung available at the mainin Form eines Grabens um den Chip gewährleistet sein, was sowohl theoretisch als http://www.ub.tuwien.acauch experimentell gezeigt wurde. Eine weitere Alternative, die jedoch nur theoretisch behandelt wurde, wäre eine Kontaktierung über den Waferrand bei einer zusätzlich

implantierten oder aufgewachsenen Opferschicht. Diese könnte unter Umständen mit etwas weniger Aufwand realisiert werden als der Kontakt jedes einzelnen Chips. Es wurde auch dargelegt, dass der Ätzstopp für niedrig dotierte Substrate ungeeignet ist, da sich in diesem Fall die Raumladungszone bis zu einigen Mikrometern ausbreiten kann. Grundsätzlich wäre vor einer praktischen Anwendung bei der Herstellung von Leistungshalbleitern im Einzelfall zu prüfen, ob sich der zusätzliche Aufwand, der zum Erreichen dieser Präzision notwendig ist, auch wirtschaftlich rechnet.

The approved original provide the main scheme Herstellung von The approved original provide the main scheme Herstellung von available at the main scheme Konhlenstoff-Verbundmaterialien University of Technology.

http://www.ub.tuwien.ac.at/eng

7.1 Integrierte Wärmesenken

Zunehmende Stromdichten und thermische Belastungen von Leistungshalbleitern erfordern eine immer besser werdende Wärmeabführung. Dies führt zur Herstellung immer dünnerer Chips, um sowohl den elektrischen als auch den thermischen Widerstand zu minimieren. Da die Dünnung der Chips auf Waferebene erfolgt, macht dies den Umgang mit Dünnwafertechnologien und speziellen Trägertechniken erforderlich. Insbesondere bei Dünnwafern ist es zusätzlich problematisch, dass es in der Halbleiterindustrie einen Trend zu immer größeren Waferdurchmessern gibt. Dies kann zu höherem Waferbruch und in der Folge zu Ausbeuteproblemen führen. Aktuelle Trägertechnologien haben auch den Nachteil, dass sie keine Temperaturen über 200 °C zulassen, wodurch diese Methode für manche Produkte ungeeignet wird. [1, 70]

Siliziumwafer mit vertikal aufgebauten Leistungshalbleitern werden auf der Vorderseite fertiggestellt, danach auf einem Träger dünngeschliffen, auf der Rückseite metallisiert, auf einer Folie gesägt und assembliert. Bei vielen Halbleiterbauelementen beträgt die minimal erforderliche Siliziumdicke nur wenige Mikrometer. Zum Beispiel müsste ein vertikal leitender Leistungs-MOSFET mit einer Sperrspannung von 50 V für das Sperren des elektrischen Feldes eine Dicke von mindestens 5 µm plus wenige Mikrometer Silizium für Source und Gate aufweisen. In Wirklichkeit sind solche Chips jedoch wesentlich dicker, was vor allem der mechanischen Unterstützung dient. Außerdem lassen sich sehr dünne Chips deutlich schwerer assemblieren und auf Leadframes löten als dickere. [70, 71]

Im Falle einer integrierten Wärmesenke müsste das überflüssige Silizium, das für das elektrische Verhalten des Chips keine Rolle spielt, auf Waferebene durch eine entsprechend dicke Metallschicht oder eine Schicht aus Verbundmaterial ersetzt werden, die über deutlich bessere thermische und elektrische Eigenschaften als das Silizium verfügt. Eine solche Wärmesenke hätte den Vorteil, dass die Wafer selbst dick genug blieben, um ein sicheres Handling zu ermöglichen. Eine Voraussetzung dafür wäre, dass der thermische Ausdehnungskoeffizient der Wärmesenke vom Ausdehnungskoeffizienten des Siliziums nur wenig abweicht, da es ansonsten zu einem starken Waferbow kommen würde. Dies schränkt die Auswahl an potentiellen Kandidaten für die Wärmesenke stark ein. [70, 72]

Technischen Universität Wi zugänglich	en aufgestellt und					
http://www.ub.tuwien.ac.at	TU UB	Silizium	Kupfer	Kohlefaser	Diamant	CCu
The approved original vers	ion of $ ho_{el. ext{th}}[\Omega ext{cm}]$	$1 - 3 \cdot 10^{-3}$	$1.72 \cdot 10^{-6}$	$1.6 \cdot 10^{-3}$	Isolator	$2 - 8 \cdot 10^{-6}$
available at the main libr University of Technology.	$\lambda [W/(mK)]$	150	400	17	1000-2500	50-300
http://www.ub.tuwien.ac.at/e	ng $ ho~[{ m g/cm^3}]$	2.34	8.92	1.8	3.52	2-6
	c [J/(kgK)]	703	385	710	472	400-600
	$c \cdot \rho [\mathrm{J/(cm^3 K)}]$	1645	3434	1278	1661	2000-3000
	$\alpha [\mathrm{ppm/K}]$	2.6	16.5	-0.1	1.18	4-14

Tabelle 1: Vergleich der elektrischen und thermischen Eigenschaften einiger Materialien. Bei Silizium wird von einem mΩcm Substrat ausgegangen, wie es für die Herstellung von Power-MOSFETs verwendet wird. Als CCu wird ein Verbundwerkstoff aus Kupfer und Kohlefasern bezeichnet, der je nach Mengenanteil der beiden Stoffe unterschiedliche Eigenschaften aufweisen kann. Größen: $\rho_{el.}$ - spezifischer elektrischer Widerstand, λ - Wärmeleitfähigkeit, ρ - Dichte, c-Wärmekapazität pro Masse, $c \cdot \rho$ - Wärmekapazität pro Volumen, α -linearer thermischer Ausdehnungskoeffizient.

7.1.1 Thermische und elektrische Eigenschaften von Kupfer-Verbundwerkstoffen

Verbundwerkstoffe sind Werkstoffe, die aus zwei oder mehr miteinander verbundenen Werkstoffen aufgebaut sind und andere Materialeigenschaften aufweisen als die einzelnen Komponenten. Für die Eigenschaften der Verbundwerkstoffe sind sowohl die Eigenschaften der Grundkomponenten als auch die Geometrie von entscheidender Bedeutung. Um geeignete Stoffe für eine integrierte Wärmesenke zu finden werden Materialien mit guten thermischen und elektrischen Eigenschaften mit anderen Werkstoffen, die einen geringen Ausdehnungskoeffizienten aufweisen, kombiniert. [13, 73]

Ein Material, das sowohl über hervorragende elektrische als auch thermische Eigenschaften verfügt, ist Kupfer. Verglichen mit Silizium besitzt Kupfer fast die dreifache thermische Leitfähigkeit, mehr als die doppelte Wärmekapazität pro Volumen sowie einen deutlich kleineren elektrischen Widerstand. Dieser ist selbst bei sehr niederohmigen und damit hochdotierten Siliziumsubstraten um einige Größenordnungen höher. Kupfer würde sich daher perfekt als Wärmesenke eignen, wäre nicht der große Unterschied im thermischen Ausdehnungskoeffizienten, der beim Kupfer mehr als 6 Mal so groß ist wie beim Silizium. Spätestens beim Löten würde dies zu großen Schwierigkeiten führen. [74, 19]

Dicke Kupferschichten auf dünnen Siliziumwafern führen bereits bei relativ kleinen Temperaturänderungen zu starken Verbiegungen. Es ist daher notwendig ein Material zu finden, das einen Ausdehnungskoeffizienten im Bereich des Siliziums besitzt. In Tabelle 1 sind einige wichtige physikalische Eigenschaften einiger ausgewählter Werk-

124

TU UB

Die approbierte Originalversion dieser Dissertation ist in der Hauptbibliothek der

stoffe angeführt? Dies sind zunächst Silizium, Kupfer, Kohlefasern und der Diamant.

The approve 751 ginal version of this thesis is available at the main library of the Vienna University of Technology.

http://www.ub.tuwien.ac.at/eng

Der Diamant hat eine herausragende thermische Leitfähigkeit und einen äußert geringen thermischen Ausdehnungskoeffizienten, ist jedoch elektrisch ein Isolator. Die Wärmeleitung wird damit ausschließlich durch Phononen bestimmt. Kupfer-Diamant-Verbundwerkstoffe haben gute elektrische und thermische Eigenschaften. Allerdings ist Diamant ein sehr teurer Rohstoff und wurde daher nicht näher in Betracht gezogen. [76, 75]

Kohlenstofffasern haben nicht so gute thermische Eigenschaften wie der Diamant, jedoch einen negativen thermischen Ausdehnungskoeffizienten. Verbundwerkstoffe aus Kupfer und Kohlefasern, kurz CCu, haben sowohl gute elektrische als auch thermische Eigenschaften. Bei einem ausreichend hohen Anteil an Kohlenstofffasern kann der Ausdehnungskoeffizient auf unter 4 ppm/K reduziert werden, was den Verbundwerkstoff als Kandidat für eine Wärmesenke geeignet macht[76]. Je nach Zusammensetzung der Komponenten und den unterschiedlichen Anteilen an Kupfer oder Kohlenstoff, können die Werte für die Dichte, Wärmeleitfähigkeit, den Ausdehnungskoeffizient sowie die Wärmekapazität von Verbundmaterialien sehr unterschiedliche Werte auftreten.

7.1.2 Herstellung von Verbundwerkstoffen

Verbundwerkstoffe aus Kupfer und Diamant sowie Kupfer und Kohlefasern werden für gewöhnlich durch Sintern hergestellt. Dabei werden vorverkupferte Fasern bei hohem Druck und hoher Temperatur zu einem Verbundwerkstoff gepresst. Diese Methode eignet sich jedoch nicht für die Herstellung auf Waferebene. Die auf diese Art hergestellten Substrate können dagegen als Leadframes mit angepasstem Ausdehnungskoeffizienten dienen. Es gibt einige Lieferanten, die sich auf die Herstellung dieser Verbundwerkstoffe spezialisiert haben. Bei diesen Werkstoffen ist für die Materialeigenschaften die Beschaffenheit der Grenzfläche zwischen Kupfer und Kohlenstoff von entscheidender Bedeutung. [77, 76]

Für die Herstellung auf Waferebene eignen sich vor allem galvanische Verfahren, da diese bei niedrigen Temperaturen stattfinden und darüber hinaus auch die Möglichkeit zur Mikrostrukturierung bieten. In der vorliegenden Arbeit wurde diese Herstellungsmethode untersucht, da sie vor allem auch im Zusammenhang mit dem elektrochemischen Ätzstopp einige interessante Anwendungsmöglichkeiten bietet. Die approbierte Originalversion dieser Dissertation ist in der Hauptbibliothek der Technischen Universität Wien aufgestellt und zugänglich. http://www.ub.tuwien.ac.at

7.2 Thermische Finite-Elemente Simulationen

The approved original version of this thesis is available at the main library of the Vienna University of Technolog.2.1 Die Wärmeleitungsgleichung http://www.ub.tuwien.ac.at/eng

> Neben der mechanischen Unterstützung auf Waferebene hätte eine integrierte Wärmesenke vor allem auch Vorteile bei sehr kurzen Wärmepulsen. Dabei würde weniger die Leitfähigkeit sondern vielmehr die Wärmekapazität eine entscheidende Rolle spielen. Im stationären Fall ist der Vorteil der Wärmesenke eher gering, da hier vor allem die Wärmeabfuhr durch das Package bestimmt wird. Um diesen Zusammenhang zu veranschaulichen, wurden Finite-Elemente und Finite-Differenzen Simulationen zur Bestimmung des zeitlichen und räumlichen Verlaufs von Wärmepulsen in Siliziumchips durchgeführt.

> Die Wärmeleitungsgleichung ist eine partielle, parabolische Differentialgleichung. Sie beschreibt den Zusammenhang zwischen der zeitlichen und der räumlichen Änderung der Temperatur an einem Ort in einem Körper. Sie eignet sich zur Berechnung instationärer Temperaturfelder. Die nichthomogene Gleichung hat die Form:

$$\rho c_p \frac{\partial}{\partial t} T(\vec{x}, t) - \lambda \nabla^2 T(\vec{x}, t) = f(\vec{x}, t).$$
(103)

Dabei ist $T(\vec{x}, t)$ die Temperatur am Ort \vec{x} zum Zeitpunkt t, a > 0 die Temperaturleitfähigkeit des Mediums und $f(\vec{x}, t)$ der Quellterm. Er ist der Quotient aus der volumenbezogenen Wärmestromdichte und Wärmekapazität. Im stationären Fall $\partial T/\partial t = 0$ geht die Gleichung in die Poissongleichung über. [78]

Die Zeitabhängigkeit hat die Form einer gewöhnlichen, inhomogenen Differentialgleichung 1. Ordnung. Eine einfache Möglichkeit zur Berechnung solcher partieller Differentialgleichungen mittels der Methode der Finiten-Elemente besteht darin, zunächst die zeitliche Ableitung mittels eines Finite-Differenzen Schemas zu diskretisieren. Dies ergibt eine rekursive Anordnung stationärer partieller Differentialgleichungen, von denen jede einzelne in Form eines Variationsproblems dargestellt werden kann. [16]

Eine Finite-Differenzen Diskretisierung stellt das Problem zu einem bestimmten Zeitpunkt t_k dar:

$$\rho c_p \frac{\partial}{\partial t} T^k = \lambda \nabla^2 T^k + f^k.$$
(104)

Die Ableitung nach der Zeit kann in Form einer Finiten-Differenz angenähert werden:

$$\frac{\partial}{\partial t}T^k \approx \frac{T^k - T^{k-1}}{\Delta t},\tag{105}$$

wobei Δt den Parameter für die zeitliche Diskretisierung darstellt. Es folgt:

$$\rho c_p \frac{T^k - T^{k-1}}{\Delta t} = \lambda \nabla^2 T^k + f^k.$$
(106)

Durch Umformen ergibt sich die stationäre partielle Differentialgleichung:

$$\rho c_p T^k - \Delta t \lambda \nabla^2 T^k = \rho c_p T^{k-1} + f^k, \quad k = 1, 2, 3...$$
(107)

Ist die Anfangsbedingung T^0 , das heißt die Temperaturverteilung am Anfang, bekannt, so kann die partielle Differentialgleichung schrittweise berechnet werden, indem jedes stationäre Problem von T^k aus der Temperaturverteilung des vorherigen Rekursionschrittes T^{k-1} bestimmt wird. [16]

7.2.2 Simulation kurzer Wärmepulse

Um die Auswirkung einer integrierten Wärmesenke auf das thermische Verhalten eines Leistungshalbleiters zu quantifizieren, reicht es aus, das Problem eindimensional zu betrachten. Der Schichtaufbau für 3 verschiedene physikalische Problemstellungen ist in Abbildung 74 auf der nächsten Seite dargestellt.

Der Querschnitt a) stellt einen Chip dar, der auf Standard Dünnwafertechnologie basiert, b) und c) haben eine integrierte Wärmesenke. Die oberen 15 μ m (Bereich 1) sind bei allen Querschnitten gleich und stellen den aktiven Bereich eines Leistungshalbleiters dar. Der Bereich 2) ist bei allen Querschnitten aus unterschiedlichen Materialien zusammengesetzt und besteht bei a) aus hochdotiertem Silizium, bei b) aus Kupfer-Kohlenstoff-Verbundmaterial mit einem Volumsverhältnis von 1 : 1 sowie im Falle von c) aus reinem Kupfer. Der gelbe Bereich stellt eine Diffusionsbarriere aus Titan dar, damit keinerlei Metallionen, insbesondere Kupfer, in das Silizium gelangen können [79]. In der Realität sind derartige Barrieren weitaus komplizierter und bestehen aus verschiedenen Metallen, was für die folgende Betrachtung jedoch keine Rolle spielt.

Da es sich bei der Simulation um eine eindimensionale Berechnung handelt, vereinfacht sich die Differentialgleichung (107) zu:

$$\rho(x)c_p(x)T^k(x) - \Delta t \frac{d}{dx}\lambda(x)\frac{d}{dx}T^k(x) = T^{k-1}(x) + \Delta t f^k(x).$$
(108)

Abbildung 74: Schematische Darstellung der Konstellation der Schichten für die eindimensionale FE/FD-Simulation. a) Dünnwafer, b) Integrierte Wärmesenke aus CCu, c) Wärmesenke aus reinem Kupfer. Der Bereich 1) stellt den elektrisch aktiven Chip dar, 2) die mechanische Unterstützung / integrierte Wärmesenke und 3) das Leadframe inklusive Soft-Solder.

Für die Temperatur gelten folgende Randbedingungen an der Vorderseite des Chips sowie an der Rückseite des Leadframes:

$$\frac{\partial}{\partial n}T = 0, \text{ für } x = 0 \tag{109}$$

$$T = 25^{\circ} \text{C}, \text{ für } x = x_{RS}.$$
 (110)

Physikalisch bedeutet dies, dass der Chip an der Vorderseite perfekt isoliert ist und kein Wärmeaustausch stattfindet. Die Dirichletsche Randbedingung an der Rückseite gibt vor, dass das Leadframe sich auf konstanter Temperatur befindet und z. B. aktiv gekühlt wird. [16]

Am Beginn der Simulation befindet sich der Chip auf Raumtemperatur. Damit gilt für die Anfangsbedingung:

$$T^0 = 25^{\circ} \text{C} \text{ für } t = 0.$$
 (111)

Es wird davon ausgegangen, dass der Leistungshalbleiter sich für eine kurze Zeit von 20 μ s einschaltet und einen Kurzschlussstrom aufnimmt. Dabei wird angenommen, dass eine Wärmemenge von $q = 20000 \text{ J/m}^2$ innerhalb von 20 μ s in die oberen 5 μ m des Chips eingebracht wird. Dies entspricht der Simulation eines kurzzeitigen Kurzschlusses. Nach diesen 20 μ s folgt eine Abkühlungsphase, während der die gesamte Wärme über die Rückseite abgeführt wird. Andere Effekte, wie thermische Strahlung oder Konvektion werden vernachlässigt und nur die Wärmeleitung berücksichtigt. [78]

7.2.3 Ergebnisse der thermischen Simulation

Abbildung 75: Vergleich des zeitlichen Verlaufs der Oberflächentemperatur eines Chips auf Silizium-Dünnwafertechnologie, mit einer Wärmesenke aus Kupfer-Kohlenstofffasern sowie mit einer reinen Kupferschicht. In den ersten 20 Mikrosekunden wird Wärme eingebracht, danach folgt eine Phase der Abkühlung.

Die Ergebnisse der thermischen Simulation an der Chipoberfläche (aktiven Zone) als Funktion der Zeit sind in Abbildung 75 für alle 3 Wafertypen dargestellt. In den ersten 20 μ s während der Aufheizphase findet ein sehr rascher Temperaturanstieg statt und der Siliziumchip erwärmt sich am Ende des Pulses auf seine maximale Temperatur. Während der Abkühlphase sinkt die Temperatur zunächst sehr schnell, die Kurve wird nach 100 μ s jedoch zunehmend flach und die Temperatur sinkt nur noch sehr langsam. Wie erwartet, erwärmt sich der Dünnwafer aus Silizium am stärksten von allen, während The approved original die Wärmesenke aus reinem Kupfer die besten Ergebnisse bezüglich der Wärmeabfuhr available at the main inferent. Die maximale Temperatur liegt nahezu bei 100 °C unter der des Siliziumwafers. http://www.ub.tuwien.acDie Wärmesenke aus Kupfer-Kohlenfasern-Verbundwerkstoff liegt dieser Berechnung zufolge in der Mitte zwischen diesen Extremen. Die integrierte Wärmesenke aus CCu

ist nicht so gut wie Kupfer, jedoch immer deutlich besser als ein auf Dünnwafer basierender Chip aus reinem Silizium.

Der räumliche Verlauf der Temperatur sowie der Wärme ist in Abbildung 76 auf der nächsten Seite dargestellt. Auf der linken Seite ist der Temperaturverlauf bei 10, 20 und 100 μ s zu sehen. Rechts daneben ist die Wärmemenge als Funktion des Ortes, die sich aus der Temperaturverteilung multipliziert mit der spezifischen Wärme ergibt, zu sehen.

Vor allem der Wärmeverlauf zeigt, dass nicht in erster Linie die hohe Wärmeleitfähigkeit des Kupfers für die deutlich bessere Entwärmung an der Vorderseite entscheidend ist, sondern dessen Wärmekapazität bezogen aufs Volumen. Die Wärme, die im Silizium entsteht, wird zunächst regelrecht von der Wärmesenke aufgesogen, zwischengespeichert und weiter an das Leadframe abgegeben.

Das reine Kupfer würde in dieser Form, wie es dargestellt ist, zu riesigen Problemen führen. Jeder Temperaturprozess wäre ausgeschlossen und würde zu einem extrem starken Waferbow führen. Daher ist eine Wärmesenke aus Verbundwerkstoff gegenüber einer aus reinem Kupfer vor allem aufgrund der thermischen Spannungen im Silizium sowie des geringen Waferbows von Vorteil, selbst wenn sie nicht ganz an reines Kupfer herankommt.

7.3 Diffusion in porösen Medien

Der Stofftransport während der elektrochemischen Abscheidung von Kupfer wird durch 3 Mechanismen bestimmt. Dies sind: [80]

- Diffusion
- Konvektion
- Drift

Die Konvektion beschreibt den Stofftransport infolge einer Strömung. Da innerhalb eines porösen Materials wie einer Schüttung aus Kohlenstofffasern eine Strömung selbst durch starkes Rühren nicht erzeugt werden kann, spielt diese für den Stofftransport keine Rolle.

Abbildung 76: Örtlicher Wärme und Temperaturverlauf für verschiedene Zeitpunkte

Die approbierte Originalversion dieser Dissertation ist in der Hauptbibliothek der Technischen Universität Wien aufgestellt und zugänglich.

Auch die Drift, die durch das elektrische Feld hervorgerufen wird, hat auf den Nachschub The approved original ans Kupferionen available at the maindige Kinetik der University of Technologie Kinetik der

http://www.ub.tuwien.ac.at/eng

7.3.1 Die Diffusionsgleichung

Die Gesetzmäßigkeiten der Diffusion sind denen der Wärmeleitungsgleichung äquivalent. Die treibende Kraft des Diffusionsstromes ist der Gradient des chemischen Potentials μ [25]. Für die Teilchenstromdichte J in mol/(m²s¹) ergibt sich bei konstantem Druck und konstanter Temperatur somit:

$$J = -K \left(\frac{\partial \mu}{\partial x}\right)_{p,T}.$$
(112)

Dabei ist K ein Koeffizient mit der Einheit mol²s/(kg·m³). Für praktische Anwendungsfälle wird die Konzentration c verwendet, die über

$$\mu = \mu^{\circ} + RT \ln\left(\frac{c}{c^{\circ}}\right) \tag{113}$$

mit dem chemischen Potential verbunden ist. Damit ergibt sich das erste Ficksche Gesetz:

$$J = -D\frac{\partial c}{\partial x}.$$
(114)

mit dem Diffusionskoeffizienten D = KRT/c in m²/s. Die Teilchenstromdichte ist proportional zum Konzentrationsgradienten mit dem Diffusionskoeffizienten als Proportionalitätskonstante.[80]

Mit Hilfe der Kontinuitätsgleichung, die sich aus der Massenerhaltung ergibt,

$$\frac{\partial c}{\partial t} = -\frac{\partial J}{\partial x} \tag{115}$$

erhält man die Diffusiongleichung, die auch als zweites Ficksches Gesetz bezeichnet wird. [25]
$$\frac{\partial c}{\partial t} = \frac{\partial}{\partial x} \left(D \frac{\partial c}{\partial x} \right) \tag{116}$$

Analog zur Wärmeleitungsgleichung beschreibt sie die Beziehung zwischen den örtlichen und zeitlichen Konzentrationsunterschieden. Die Existenz analytischer Lösungen dieser Differentialgleichung hängt von den Anfangs- und Randbedingungen sowie, insbesondere bei dreidimensionalen Problemen, von der Geometrie ab. Als numerische Lösungsmethode kann wie bei der Wärmeleitung ein Finite-Differenzen Ansatz für die zeitliche Diskretisierung sowie die Methode der Finiten-Elemente für die stationären Teilprobleme herangezogen werden. [80, 25]

7.3.2 Effektiver Diffusionskoeffizient

Die Diffusion in einem porösen Medium wird durch die Einführung eines effektiven Diffusionskoeffizienten beschrieben. Dabei wird nicht jede einzelne Pore betrachtet, sondern über den gesamten Porenraum gemittelt [81]. Bestimmend dafür sind die

- Porosität ϵ_t ,
- Tortuosität τ ,
- Konstriktivität δ ,

die den effektiven Diffusionskoeffizienten ergeben:

$$D_{eff} = D \frac{\epsilon_t \delta}{\tau}.$$
 (117)

Die Porosität beschreibt die Gesamtporosität abzüglich jener Poren, die aufgrund ihrer geringen Größe nicht dem Gesamtporensystem zugänglich sind, sowie abzüglich jener, die nicht in Verbindung mit dem restlichen System stehen. Die Tortuosität beschreibt die Gewundenheit der Wege, um wieviel der Weg l_{eff} länger ist als ohne das Porensystem: [81]

$$\tau = \left(\frac{l_{eff}}{l}\right)^2.$$
(118)

Die Konstriktivität ist die Verlangsamung der Diffusion infolge der durch die durchschnittlich größere Nähe zur Porenwand erhöhten Viskosität. Sie ist eine Funktion des Porendurchmessers und der Größe der diffundierten Teilchen. [81]

251

1.00

501.

751.

1.00e+03

Die Tortuosität und Porosität lassen sich mit Hilfe einer Finite-Elemente Simulation darstellen und abschätzen. In Abbildung 77 ist das Ergebnis einer Simulation dargestellt. Für die Anfangsbedingung gilt, dass zur Zeit t = 0 die Konzentration im gesamten Bereich 1 mol/m³ ist. Es wird angenommen, dass an der Oberseite unbeschränkter Materialtransport (z.B. durch Rührung) gewährleistet ist und daher die Dirichletsche Randbedingung $c(x = 0) = c_0$ gilt. Für alle anderen Grenzflächen gelten natürliche Randbedingungen. [16]

Es ist zu sehen, dass nach einer Dauer von 5 Sekunden der Bereich ohne Poren bereits ausgeglichen ist, während es in den porösen deutlich länger dauert, bis dort die Konzentration ansteigt. Für eine realitätsbezogene Simulation zur Bestimmung des effektiven Diffusionskoeffizienten müsste allerdings die genaue Geometrie der Poren bekannt sein. Zunächst ist in diesem Zusammenhang vor allem wichtig, dass die Diffusion stark gehemmt ist und Konvektion nicht stattfinden kann.

Es soll nun die Diffusion eines schwefelsauren Kupferelektrolyts auf der Basis von Kupfersulfat in einer 400 µm dicken Schüttung aus verkupferten Kohlefasern berechnet werden. Als Diffusionskoeffizient wird der für Schwefelsäure herangezogen. Dieser hat einen Wert von $1.73\cdot 10^{-9}$ m²/s. Es wird ein effektiver Diffusionskoeffizient von $D_{eff}=D/10$ abgeschätzt, ausgehend von einer angenommenen Porosität von $\epsilon_t=0.5$ und einer geschätzten Tortuosität $\tau=5$. Die Konzentration im Elektrolyten beträgt 0.5 mol/L.

Es wird davon ausgegangen, dass über die Länge von 400 μ m innerhalb der Schüttung The approve beigeingeschaltetem. Strom die Abscheiderate 1 μ m/s beträgt. Bei einem molaren available at Volumen von ¹⁷.11ⁿ·10⁻⁶m³/mol ergibt sich damit eine molare Abscheiderate von ^{http://www.2.3} mol/s₉auf der Fläche von einem Quadratmeter.

Die Randbedingungen für eine eindimensionale Finite-Elemente Simulation sind, dass bei x = 0 an der Waferoberfläche der Gradient der Konzentration null ist. Bei $x = 400 \ \mu m$ wenn die Schüttung zu Ende ist, soll die Konzentration maximal sein und mit $c_0 = 500 \ mol/m^3$ der Elektrolytkonzentration entsprechen. Die Anfangsbedingung ist, dass die Konzentration zum Zeitpunkt t = 0 überall c_0 beträgt.

Die Diffusionsgleichung wird, um die Abscheidung zu simulieren, um einen Senkenterm f(x,t) erweitert. Dabei wird angenommen, dass die Konzentration über den ganzen Bereich von 400 µm gleichmäßig gemäß der Abscheiderate von 2.3 mol/s abnimmt.

Das Ergebnis einer Simulation ist in Abbildung 78 auf der nächsten Seite dargestellt. Es handelt sich um das Konzentrationsprofil über die Schüttung zu verschiedenen Zeitpunkten. Am rechten Rand, wo stets Kontakt zum Elektrolytbad besteht, ändert sich die Konzentration nicht, sondern behält ihren Maximalwert. Mit zunehmender Tiefe nimmt die Konzentration ab und wird mit jedem Zeitschritt kleiner.

Interessant ist dies vor allem, wenn man die Konzentration an der Waferoberfläche als Funktion der Zeit betrachtet. Dies ist in Abbildung 79 auf der nächsten Seite dargestellt. Man erkennt, dass die Konzentration am entferntesten Punkt vom Elektrolytbad zunächst rasch abnimmt und schließlich ins Gleichgewicht kommt. Der Stofftransport durch Diffusion und der Verbrauch an Kupfer gleichen sich nach einer gewissen Zeit aus.

Allerdings ist zu beachten, dass die Konzentration sehr stark abnimmt und nach einer gewissen Zeit nur noch einen Bruchteil des ursprünglichen Wertes ausmacht, besonders bei hohen Abscheideraten. Bei niedrigen Raten mit einer Ein-Zeit von 1/50 ist dagegen zu erkennen, dass sich die Konzentration nur unwesentlich ändert. Es ist daher mit einer besseren Verfüllung der Schüttung mit Kupfer zu rechnen, je niedriger die Abscheiderate ist.

Diese Erkenntnis hat weitreichende Auswirkungen auf die Verwendbarkeit eines derartigen Herstellungsverfahrens, da die Prozessierungsdauer für eine Dickschicht aus Verbundmaterial und damit die Kosten extrem in die Höhe gehen. Das Verfahren ist folglich nur für geringe Schichtdicken anwendbar.

Abbildung 78: Verarmung des Elektrolyten entlang der Schüttung für verschiedene Zeitpunkte. Auf der linken Seite besteht kein Kontakt zum Elektrolytbad, rechts ist die Konzentration maximal. Abscheiderate von 1 μ m/min bei einer Ein-Zeit von 1 : 4.

Abbildung 79: Konzentration des Elektrolyten an der Waferoberfläche als Funktion der Zeit für unterschiedlich lange Ein-Zeiten.

7.4 Galvanische Verfüllung von Kohlefaser-Schüttungen mit

The approved origina **Kupfer** is thesis is available at the main library of the Vienna University of Technology. http://www.ub.tuwien.ac.at/eng

Eine Möglichkeit, Kupfer-Kohlenstoff-Verbundmaterialien auf Waferebene zu erzeugen ist die galvanische Verfüllung einer Schüttung aus vorverkupferten Kohlefasern. Dazu wurden zunächst spezielle Wafer mit geätzten Kavitäten erzeugt, in die anschließend vorverkupferte Kohlenfasern gerakelt, und in einem Elektrolyt mittels Pulsgalvanik verfüllt wurden. [11]

7.4.1 Herstellung strukturierter Siliziumwafer

Auf einem 3 m Ω cm p-dotiertem Grundmaterial wurden mittels Epitaxie 40 µm ndotiertes Silizium abgeschieden. Darauf folgte eine n⁺-Implantation mit einem kurzen thermischen Anneal. Die Wafer wurden ganzflächig mit Alu gesputtert und rückseitig auf eine Enddicke von 410 µm geschliffen und poliert. Weitere 10 µm wurden mit einem Spinätzer entfernt. Auf der Rückseite wurde eine Hartmaske aus Siliziumnitrid abgeschieden und mit 400x200 µm² großen Rechtecken strukturiert.

Anschließend wurden die Wafer von der Rückseite in heißer Kalilauge geätzt. Dies geschah bei einer Konzentration um die 50% KOH und bei Temperaturen über 120 °C. Der Ätzstopp erfolgte elektrochemisch, so dass eine 40 μ m dicke Membran stehen blieb. Die Wafer wurden danach an der Rückseite mit einer Metallschicht aus AlTiNiAg gesputtert. Der Prozessablauf ist in Abbildung 80 auf der nächsten Seite dargestellt.

7.4.2 Prozessablauf

Nach der Metallabscheidung erfolgte zunächst eine galvanische Abscheidung einer wenige Mikrometer dicken Kupferschicht. Anschließend wurden zerkleinerte und vorverkupferte Kohlenfasern mit etwas Kupferelektrolyt vermischt und mittels einer Rakel in die Kavitäten des Siliziumwafers geschmiert. Der Wafer wurde in eine Halterung aus Kautschuk gelegt, die eine elektrische Kontaktierung von der Vorderseite ermöglichte, und mittels Vakuum und Dichtungen aus Viton³¹ vor dem Eindringen des Elektrolyten geschützt. An der Rückseite wurde ein Kunststoffsieb einer Körnung von 50 µm befestigt, um die Fasern in Position zu halten. Der Wafer wurde mitsamt der Halterung in ein Kupfergalvanikbad gelegt und mittels Pulsgalvanik verfüllt.

Die Abscheiderate bei der elektrochemischen Kupferabscheidung wurde mittels der Breite der Pulse kontrolliert. Es wurden Pulse mit einer Ein-Zeit von 1:3 bis zu

 $^{^{31} \}rm Fluorelas tomer$

Abbildung 80: Prozessablauf: Zunächst wird ein Siliziumwafer Strukturiert, die entstandenen Kavitäten werden metallisiert und mit vorverkupferten Kohlefasern verfüllt. Anschließend wird die Schüttung mittels Pulsgalvanik verfüllt.

1:100im Vergleich zur Aus-Zeit verwendet. Die Frequenz der Pulse betrug um die 1 KHz. Die Stromdichte während der Ein-Zeit betrug etwa 3 A/cm². Dies entspricht unter Gleichstrombedingungen einer Abscheiderate von 1 $\mu m/min$.

7.4.3 Ergebnisse

Es zeigt sich, wie bereits zuvor berechnet, dass bei langen Ein-Zeiten von 1:4 bis 1:10 und somit relativ hohen Abscheideraten von 0.1 bis 0.25 μ m/min im oberen Bereich nahe dem Elektrolytbad deutlich mehr Kupfer abgeschieden wird als im unteren Bereich. Die Aufnahme einer solchen Schüttung ist in Abbildung 81 auf der nächsten Seite dargestellt.

The approved original version of this thesis is available at the main library of the Vienna University of Technology.

http://www.ub.tuwien.ac.at/eng

Abbildung 81: REM-Aufnahmen einer Schüttung nach 60 min Abscheidung. Bei der Verwendung von zu hohen Ein-Zeiten von 1:4 scheidet sich Kupfer überwiegend im oberen Bereich nahe dem Elektrolytbad ab.

Abbildung 82: Ein nicht vollständig verkupfertes Gefüge aus metallisierten Fasern kann mit Lötzinn sehr gut verfüllt werden. Dadurch entsteht ein neuer Verbundwerkstoff. The approved original version of this thesis is available at the main library of the Vienna University of Technology.

ΤU

UB

http://www.ub.tuwien.ac.at/eng

Abbildung 83: Mittlere Ein-Zeiten von 1:20 führen zu besseren Ergebnissen, der untere Bereich des Gefüges bleibt jedoch weiterhin schlecht verfüllt. Es entstehen große Hohlräume, die die Wärmeleitung stark beeinträchtigen würden.

Abbildung 84: Die besten Resultate konnten mit sehr kurzen Ein-Zeiten von 1:50 erzielt werden. Die Prozessierungsdauer betrug allerdings bis zu 60 Stunden, was den Prozess ungeeignet für einen produktiven Einsatz macht.

Wird die Abscheidung unterbrochen, bevor alles verfüllt ist, so entsteht ein festes The approve poröses Gefüge aus verkupferten Kohlenfasern. Dieses lässt sich mit Lötzinn, das in die available at Höhlfräume fließt, sehr gut verfüllen, und es entsteht ein Festkörper, der sich nur sehr http://www.uschwer.delaminieren lässt. REM-Aufnahmen einer solchen Probe sind in Abbildung 82 auf Seite 139 dargestellt.

Deutlich bessere Resultate erhält man, wie erwartet, wenn die Ein-Zeiten deutlich kürzer im Vergleich zu den Aus-Zeiten werden. Ein Beispiel dafür ist in Abbildung 83 auf der vorherigen Seite zu sehen. Hier betrug die Abscheiderate nur noch etwa 0.5 μ m/min. Trotzdem konnte nicht der gesamte Block galvanisch verfüllt werden, sondern nur die oberen 200 μ m.

Nahezu ohne Hohlräume lässt sich der Verbundwerkstoff bei Ein-Zeiten jenseits von 1:50 herstellen, wie dies in Abbildung 84 auf der vorherigen Seite zu sehen ist. Es ist zu erwarten, dass bei noch geringeren Ein-Zeiten von 1:100 oder weniger die Resultate noch besser werden. Allerdings ist dabei zu beachten, dass in diesem Fall die gesamte Prozessierungszeit um denselben Faktor in die Höhe geht. Um diese Methode wirtschaftlich zu machen muss daher ein Verfahren gefunden werden, bei dem die Diffusion eine nicht so große Rolle spielt. Dies ist vor allem bei dünneren Schichten der Fall. Die approbierte Originalversion dieser Dissertation ist in der Hauptbibliothek der Technischen Universität Wien aufgestellt und zugänglich. http://www.ub.tuwien.ac.at

The approved original version Sedimentation available at the main library of the Vienna

http://www.ub.tuwien.ac.at/eng

University of Technology.

7.5.1 Sedimentation von Mikropartikeln

Wie im vorigen Kapitel beschrieben, haben dicke Schüttungen von Kupfer-Kohlefasern den großen Nachteil, dass die Diffusion die Prozessierungsgeschwindigkeit sehr stark einschränkt. Um diesen Einfluss abzuschwächen, ist es sinnvoll, nur dünne Schichten galvanisch zu verfüllen. Eine Methode, dieses Problem zu lösen, besteht darin, in einem alternierenden Prozess je eine Schicht Kohlefasern im Elektrolyten zu sedimentieren und anschließend galvanisch zu verfüllen. Dabei wird der Umstand ausgenutzt, dass die Dichte der Fasern höher ist als die des Elektrolyten wodurch sich die Fasern, die zunächst mit dem Elektrolyten vermischt werden, verstärkt auf dem Boden absetzten. [82]

Dafür wird der Wafer waagrecht, mit seiner zu prozessierenden Seite nach oben, horizontal in einem nach oben offenem Holder angebracht, wo er auch als Kathode geschaltet ist. Anschließend wird die Menge für ein bis zwei Schichten Kohlefasern eingebracht und im Volumen des Elektrolyten gleichmäßig verteilt. Sobald sich der Elektrolyt beruhigt hat, sinken diese zu Boden und können mit Gleichstrom oder mittels Pulsgalvanik verfüllt werden. Dieser Vorgang kann beliebig oft wiederholt werden und es entstehen Dickschichten, bei denen die Abscheiderate nicht so stark von Diffusionsprozessen gehemmt ist wie beim Verfüllen einer Schüttung.

Die einzelnen Schichten können dabei einige wenige 10 μ m (was einigen Faserlagen entspricht) dick sein. Dadurch entsteht direkt am Silizium ein Verbundwerkstoff mit einem angepassten Ausdehnungskoeffizienten. Die Dicke und Porosität des Verbundmaterials sind dabei leicht über die Anzahl der Schichten sowie über die Geschwindigkeit der Abscheidung zu steuern. Schichten, die vollständig mit Kupfer verfüllt sind, wären dabei ebenso denkbar wie stark poröse Strukturen, die nachträglich mit Lötzinn verfüllt werden. Eine Mischung aus dichteren und poröseren Schichten wäre mit dieser Methode ebenfalls einstellbar. Je nach Zusammensetzung der Fasern können damit Verbundmaterialien mit unterschiedlichen Eigenschaften erzeugt werden.

Die schichtweise Herstellung durch Sedimentation hat gegenüber der Verkupferung einer Schüttung den Vorteil, dass die Abscheideraten deutlich höher sind und die Hemmung durch Diffusion kaum gegeben ist. Außerdem ermöglicht diese Methode die Herstellung von sowohl strukturierten als auch unstrukturierten Schichten.

Abbildung 85: Experimenteller Aufbau zur Sedimentation von Kohlenstofffasern.

7.5.2 Experimentelle Durchführung

Experimente zur Herstellung von CCU-Dickschichten mittels Sedimentation wurden auf hoch n-dotierten 8 Zoll Wafern durchgeführt. Die zu bearbeitende Seite erhielt eine 4-Schicht Rückseitenmetallisierung mit Silber als Seed-Layer für die elektrochemische Abscheidung. Der Wafer wurde mit der Vorderseite nach unten auf eine Edelstahlplatte gelegt und darauf eine spezielle Vorrichtung aus Polyetheretherketon befestigt. Dies ist in Abbildung 85 dargestellt.

Um eine gleichmäßige Verteilung der Fasern von Beginn an zu ermöglichen, wurden diese abgewogen und mit dem Elektrolyten außerhalb der Vorrichtung vermengt. Pro Schicht wurde eine Menge von 2 g verwendet. Waren die Fasern aufgewirbelt, wurden sie mit dem Elektrolyten in die Haltevorrichtung gekippt. Dabei wurde darauf

geachtet, dass das Einfüllen möglichst turbulent erfolgte, um keine Vorzugsrichtungen The approved original zusgenerieren, is was eine ungleichmäßige Verteilung der Fasern zur Folge hätte. available at the main library of the Vienna University of Technology.

http://www.ub.tuwien.acAn.gder Oberfläche des Elektrolyten wurde sodann eine konvex geformte Kupferplatte appliziert, die oben aufschwimmen konnte und als Anode geschaltet wurde. Die Edelstahlplatte wurde als Kathode angeschlossen und ein Strom von 9 A eingeprägt, was einer Stromdichte von 3 A/dm² und etwa einem Mikrometer/Minute an Abscheiderate entsprach. Nach einer gewissen Zeit wurde der Elektrolyt aus der Vorrichtung genommen und ein weiteres Mal mit Fasern verrührt. Dieser Vorgang wurde einige Male wiederholt, bis eine Schicht von über 100 μm aufgewachsen war.

Danach wurden die Wafer von der Halterung gelöst und auf einer Heizplatte erhitzt, damit der restliche eingeschlossene Elektrolyt verdampfen konnte. Danach wurden die Wafer noch unter Ameisensäureathmosphäre einer Temperatur von 400 $^{\circ}$ C ausgesetzt.

7.5.3 Ergebnisse

Die Ergebnisse von zwei derartigen Experimenten sind in Abbildung 86 und Abbildung 87 auf der nächsten Seite dargestellt. Die Wafer zeigen je nach Dicke der Metallschicht einen unterschiedlich starken Bow. Das bedeutet, dass der Anteil an Kohlenstofffasern zu gering ist, was vor allem an der Länge der verwendeten Fasern liegt. Optimal für derartige Experimente wären Fasern mit deutlich geringeren Längen und Durchmessern. Derartige Fasern standen jedoch nicht für Versuche zur Verfügung.

Grundsätzlich sollte durch diese Experimente vor allem gezeigt werden, dass eine Herstellung von Verbundmaterial mit Hilfe von Sedimentation möglich ist. Die Einsatzmöglichkeiten sind nicht nur auf Kupfer und Kohlefasern beschränkt, sondern können auch auf andere Materialien angewendet werden. Dies wäre eine neue Methode zur Erzeugung verschiedenster Verbundwerkstoffe durch elektrochemische Abscheidung. Je nach verwendeten Materialien könnten damit Werkstoffe mit unterschiedlichsten Eigenschaften hergestellt werden. The approved original version of this thesis is available at the main library of the Vienna University of Technology.

http://www.ub.tuwien.ac.at/eng

Abbildung 86: Wafer mit 4 Sedimentationsschichten CCu zu je 1 g und einem gesamten galvanischem Kupferäquivalent von 125 μ m. Nach Tempern bei 400 °C.

Abbildung 87: Wafer mit 4 Sedimentationsschichten CCu < 50 μm zu je 2 g und galvanischem Kupferäquivalent von 500 μm . Nach Tempern bei 400 °C.

Die approbierte Originalversion dieser Dissertation ist in der Hauptbibliothek der Technischen Universität Wien aufgestellt und zugänglich.

TU UB

8 Schlussfolgerungen und Ausblick

The approved original version of this thesis is available at the main library of the Vienna University of Technology.

Das Ziel dieser Arbeit war die Untersuchung verschiedener elektrochemischer Prozesse auf deren Eignung für die Herstellung von mikroelektronischen und mikrooptischen Bauelementen. Darüber hinaus wurden einige grundlegende Experimente im Zusammenhang mit der anodischen Oxidation, dem elektrochemischen Ätzstopp und der galvanischen Abscheidung durchgeführt. Die Experimente wurden durch numerische Computersimulationen unterstützt.

> Es wurden Versuchsreihen mit anodisch in TMAH gebildeten Oxiden durchgeführt. Dabei wurden die Siliziumwafer zunächst anodisch oxidiert und anschließend ohne Badwechsel geätzt. Auf diese Weise wurde der Einfluss des Anodisierungspotentials und der Anodisierungszeit auf die gebildeten Oxide unter Verwendung von trapezförmigen Spannungspulsen untersucht. Es wurden vor allem im Spannungbereich zwischen 0 und 4 V_{Ag/AgCl} einige interessante Effekte bezüglich des Passivierungsstromes und der Oxidrückätzzeit beobachtet. Der zeitliche Einfluss auf die Oxdibildung konnte dabei vom Einfluss der Spannung weitgehend getrennt werden, was bei reiner Zyklovoltammetrie, wie sie von anderen Autoren verwendet wurde, nicht möglich ist. Die Form der Rückätzkurven konnten durch einen Tunnelstrom sowie den Entladevorgang eines Kondensators theoretisch modelliert und auch simuliert werden. Dabei ergab sich eine gute Übereinstimmung zwischen Theorie und Eperiment. Weiterführende Versuche auf diesem Gebiet wären vor allem mit anderen alkalischen Elektrolyten von Interesse. Auch Versuche mit anderen Konzentrationen und Temperaturen wären mit dieser Methode einfach durchzuführen und könnten neue Erkenntnisse über die Bildung und Ätzung von anodischen Oxiden bringen. Derartige Versuchsreihen wären für die Herstellung von MEMS-Bauelementen mittels des elektrochemischen Ätzsopps von Bedeutung, da dort anisotrope Siliziumätzung, andodische Oxidation und Oxidätzung zeitgleich auftreten.

> Versuche zur anodischen Oxidation wurden auch bei erhöhten Spannungen von bis zu einigen 10 $V_{Ag/AgCl}$ in TMAH durchgeführt. Dabei wurde beobachtet, dass die Rückätzzeit zwischen 7 und 8 V Volt linear von der Spannung abhängig wird. Durch optische Messungen konnte festgestellt werden, dass auch die Oxiddicke linear mit der Anodisierungsspannung zunimmt. Mit Hilfe dieser Ergebnisse wurde eine Oxidätzrate ermittelt, die in 25 %iger TMAH bei 90 °C 0.8 nm/min beträgt. Die Dauer der Oxidätzung kann auf diese Weise zur Oxiddickenbestimmung herangezogen werden. Weiters wurde ein Verfahren zur Herstellung hochpräziser, lateral veränderlicher Siliziumdioxidschichten mittels anodischer Oxidation entdeckt und untersucht. Dabei wurden dünne, linear in ihrer Dicke veränderliche anodische Dünnschichten mit einer Abweichung von weniger als 1 nm von der Linearität auf einer lateralen Strecke von mehreren mm hergestellt. Die resultierenden Oxiddicken betrugen zwischen 20 nm und 600 nm. Es konnte sehr deutlich der Effekt der Keilinterferenz beobachtet und auch simuliert werden. Es ist nicht bekannt, ob dieses Verfahren jemals zuvor angewendet worden wäre oder ob

es eine alternative Methode gibt, die eine Herstellung derartiger Oxidstrukturen auf The approve Chipebene ermöglichen würde. Die hohe Präzision der Dünnschichten macht diese für available at verschiedene Anwendungen in der Opto- und Mikroelektronik interessant, insbesondere http://www.im-Bereich der integrierten Optik sowie für die Herstellung von Mikrolinsen. Weitere Untersuchungen auf diesem Gebiet währen in Richtung einer Miniaturisierung auf Chipebene von besonderer Bedeutung für die Halbleiterindustrie. Das Verfahren könnte viele neue Möglichkeiten in der Sktrukturierung von MEMS-Bauelementen ermöglichen. Daher wären Untersuchungen dieser Methode zur hochpräzisen Strukturierung von Silizium ebenfalls von großem Interesse.

Es wurden Untersuchungen zum elektrochemischen Atzstopp, der zum Stand der Technik bei der Herstellung von MEMS-Bauelementen zählt, auf Wafern mit darauf realisierten Leistungshalbleiter-Strukturen durchgeführt. Neu ist in diesem Zusammenhang die Anwendung des elektrochemischen Atzstopps als Dünnungsprozess für Leistungshalbleiter auf Waferebene und die damit verbundene Limitierung bezüglich der Dotierung und der Geometrie. Es wurden Versuche anhand von Siliziumwafern mit darauf prozessierten Leistungshalbleitern durchgeführt. Finite-Elemente Simulationen wurden als Hilfsmittel zur Realisierung von geeigneten Kontaktstrukturen herangezogen. Es konnte erfolgreich gezeigt werden, dass der elektrochemische Ätzstopp ein geeigneter Prozess für die Herstellung von Leistungshalbleiter-Dünnwafern ist. Die Voraussetzung dafür sind spezielle Kontaktstrukturen, wie sie in dieser Dissertation am Beispiel von IGBTs erarbeitet wurden. Mit den gewonnenen Ergebnissen wäre es möglich einen Einzelprozess produktiv einzuführen, ohne weitere Forschungsarbeiten durchführen zu müssen. Es wurde auch ein Verfahren vorgeschlagen, bei dem die Kontaktierung unabhängig von der Dotierung der Bauelemente und deren Geometrie wäre. Dies könnte in Form einer vergrabenen, hochdotierten Schicht erfolgen, die in der Lage wäre den bei der Ätzung fließenden Strom zu leiten, ohne einen zu starken Spannungsabfall über den Wafer zu verursachen. Dazu wurde die Poissongleichung für eine scheibenförmige Geometrie gelöst und eine Formel entwickelt, mit der man den maximal zulässigen Flächenwiderstand der Schicht bestimmen kann. Die verbleibende Schicht müsste nach dem Ätzstopp durch eine Fixzeitätzung entfernt werden. Diese Methode wäre für alle Bauelemente anwendbar, die einen epitaxialen Aufbau haben und unabhängig von der Dotierung des Grundmaterials hergestellt werden können. Experimentell wurde gezeigt, dass sich im Falle eines thyristorförmigen Aufbaus ein verfrühter Ätzstopp nicht verhindern lässt, da aufgrund der Schleifenverstärkung des Thyristors der Stromfluss deutlich höher ist als beim bipolaren Aufbau. Weitere Forschungsarbeiten auf diesem Gebiet wären in Bezug auf sehr niedrig dotierte Substrate interessant.

Von besonderem Interesse für die Herstellung von Leistungshalbleitern waren Simulationen und Experimente im Bezug auf die Realisierung einer integrierten Wärmesenke. Dazu wurden dicke Schichten aus Kupfer-Kohlenstoff Verbundmaterial auf Waferebene hergestellt, die die thermischen und mechanischen Eigenschaften von Leistungshalbleitern stark verbessern sollten. Dazu wurden zwei Ansätze experimentell ausprobiert und mit numerischen Simulationen verifiziert. Der erste Ansatz bestand darin, eine The approved original Schützung, von available at the main thode erfordert geeignete Vorrichtungen zur Fixierung der Fasern und ist ganzflächig university of Technologi.

> durchzuführen. Es wurde festgestellt, dass eine einigermaßen gute Verfüllung nur mit extrem kurzen Ein-Zeiten mittels Pulsgalvanik realisiert werden kann. Dies resultiert in einer extrem niedrigen Abscheiderate. Experimentell wurde festgestellt, dass ein geeignetes Verhältnis der Ein- zur Aus-Zeit bei etwa 1:50 (bei 2 kHz) beginnt, was eine um das fünfzigfache langsamere Abscheiderate als bei Gleichstrom ergibt. Ein alternativer Prozess wurde eingeführt, bei dem einzelne Fasern in Form einer Suspension im Elektrolyten verteilt werden und auf einen Wafer am Boden eines flachen Gefäßes absinken. Dies ermöglicht die schichtweise Herstellung eines Verbundwerkstoffes, ohne dabei durch die Diffusion begrenzt zu sein. In ersten Vorversuchen konnte erfolgreich demonstriert werden, dass die Methode prinzipiell funktioniert. Auf diesem Gebiet gibt es sehr viel Bedarf an weiteren Untersuchungen, denn es könnten verschiedenste Verbundwerkstoffe elektrochemisch hergestellt werden. Von besonderem Interesse wäre es festzustellen, ob sich die Methode auch für Carbon-Nanotubes oder Diamant eignet. Der Nutzen einer Kupfer-Kohlenstoff Wärmesenke mit angepasstem thermischen Ausdehnungskoeffizienten auf Siliziumwafern wäre sehr hoch da man versuchen könnte, die Siliziumdicke auf das minimal Notwendige zu beschränken und trotzdem vom Konzept der Fertigung auf Dünnwafern abzurücken.

The approved original version of this thesis is available at the main library of the Vienna	
University of Conclogy. http://www.ub.tuwien.ac.at/eng	Kohlenstoff-Kupfer-Verbundmaterial
CVD	Chemical Vapor Deposition
ECES	Electro-Chemical Etch Stop
FET	Field-Effect Transistor
FEM	Finite-Elemente Methode
GTO	Gate Off Thyristor
IGBT	Insulated Gate Bipolar Transistor
LOCOS	Local Oxidation of Silicon
LPD	Liquid Phase Deposition
MEMS	Microelectromechanical Systems
MOS	Metal Oxide Semiconductor
MOSFET	Metal Oxide Semiconductor Field-Effect Transistor
ОСР	Open Circuit Potential
PEEK	Polyether Ether Ketone
РР	Passivation Potential
REM	Rasterelektronenmikroskop
SCPI	Standard Commands for Programmable Instruments
SHE	Standard Hydrogen Electrode
SOI	Silicon on Insulator
TEOS	Tetraethylorthosilicat
ТМАН	Tetramethylammoniumhydroxid
ттv	Total Thickness Variation

i.

available at the main library of	th Das ⁿ Bändermodell: Isolatoren, Halbleiter, Metalle	6
http://www.ub.tuwien.ac.at/end	Der pn-Übergang: Raumladungszone, Ladungsträgerdichte, elektrisches	
	Feld	10
3	Funktionsweise eines Bipolartransistors	13
4	Schematische Darstellung eines Thyristors.	15
5	Zyklovoltammetrie: Spannungs- Zeitverlauf	18
6	Halbleiter-Elektrolyt Übergang: Ferminiveau und Redoxpotential	20
7	Halbleiter-Elektrolyt Grenzfläche	21
8	Strom-Spannungsverlauf von Silizium in KOH	24
9	Anodische Oxidation: MOS-Struktur	27
10	Prinzip des elektrochemischen Ätzstopps	30
11	Zyklovoltamogramm von p-Silizium in alkalischer Lösung	32
12	Spannungspulse: Trapez, Sägezahn, Rechteck	35
13	Detaillierte Darstellung eines Strom-Spannungspulses	36
14	Ablaufdiagramm eines Messprogramms mit trapezförmigen Spannungspul-	
	sen	38
15	Versuchsaufbau zur anodischen Oxidation	41
16	Strom-Spannungsverlauf bei konstanter Verweildauer	43
17	Strom-Spannungsverlauf bei gleicher Oxidationszeit	43
18	Variation der Passivierungsdauer	44
19	Spannung und Passivierungsstrom	45
20	Passivierungsströme	46
21	Passivierungsgrenzstrom und minimaler Passivierungsstrom	47
22	Auswertung des Passivierungsstromes der Messung aus Abbildung 16	
	auf Seite 43	48
23	(a) Darstellung der Ströme während der Oxidrückätzung aus Abbil-	
	dung 16 auf Seite 43 und (b) die Oxidrückätzzeit als Funktion der	
	Spannung während der anodischen Oxidation.	51
24	(a) Darstellung der Ströme während der Oxidrückätzung, aus Abbil-	
	dung 17 auf Seite 43 und (b) die Oxidrückätzzeit als Funktion der	
	Spannung während der anodischen Oxidation.	52
25	Stochastische Simulation der Stromkurven bei der Rückätzung	55
26	Oxidruckatzrate als Funktion der Zeit für verschiedene Spannungen	- 0
07	(Ag/AgCI) zwischen $U - b$ V	50
27	Oxidruckatzrate als Funktion der Zeit bei verschiedenen Spannungen $(A = (A = CI))$	
00	$(Ag/AgCI)$ zwischen $U - 2V \dots $	97
28	Uxidruckatzung in Abhangigkeit der Vorschubgeschwindigkeit unter	F 0
20	Verwendung von sagezahnformigen Spannungspulsen.	58
29	nuckatzzeit als Funktion der Passivierungsdauer für verschiedene Span-	۲O
0 0	Ovidnigheit gest unter Verwendung von Rechteckpulsen.	99
30	oxidi uckatzzeit unter variation der Passivierungszeit (a) und der Span-	60
		00

http://www.ub.tuwien.ac.at 21	Durchbruch auf n-dotierten Wafern	61
30	WIEN Universitätsbibliother	62
The approved original ver available at the page li	(b) Ovidinization des Funktion des Dotterstonkonzentration	02
University of Technology.	atromed bei 7 V. Zielpotentiel	64
http://www.ub.tuwien.ac.at/	Bückätzzeit (a) und optisch hostimmte Oviddieken (b)	65
	Vergleich der optischen Messung mit der Dückötzgeit	67
50 20	Cleicher Pirleit der Oriddiche über der Wefer erreittelt dereh eine	07
30	Gielchmabigkeit der Oxiddicke über den waler, ermittelt durch eine	60
27	optische Messung entlang einer Geräden	68
37	Strompeaks der Ruckatzung des anodischen Oxids bei 3 und 4 V. Aus	
	der Steigung der eingezeichneten Geraden konnen Ruckschlusse auf die	co
20	Gleichmaßigkeit der Oxiddicke gezogen werden.	69 70
38	Elektrochemisch bestimmte Dickenvariation als Funktion der Spannung	70
39	Elektrochemisch bestimmte Dickenvariation als Funktion der Oxiddicke.	70
40	Ausgangssituation fur eine Simulation von lateraler Oxidbildung	75
41	Simulation des Spannungsabfalls im Halbleiter zwischen Metallstreifen .	76
42	Simulierter Spannungsabfall bei einer Potentialdifferenz von 12 V und	-
10	einer Streifenbreite von 6 cm, auf 400 μ m dickem Silizium mit 3 Ω cm .	76
43	Zweidimensionale Finite-Elemente Simulation eines anodischen Oxidkeils.	77
44	Schematische Darstellung der Verschaltung bei der anodischen Oxidation.	78
45	Strom- und Spannungsverläufe für $U_1 = 7$ V und $U_2 = 47$ V	80
46	Strom- und Spannungsverläufe für $U_1 = 8$ V und $U_2 = 62$ V	80
47	Strom- und Spannungsverläufe für $U_1 = 10$ V und $U_2 = 60$ V	80
48	Ubersicht der Ergebnisse der optischen Oxiddickenmessung	82
49	Optisch gemessene Dicken von Oxidkeilen	83
50	REM-Aufnahmen an verschiedenen Positionen am Wafer (10 mm Ab-	
	stand), von links oben beginnend.	84
51	Vergleich der optischen Messung des Oxidkeils mit REM-Aufnahmen.	
	Die unterschiedlichen Dicken können auf den leicht höheren Brechungs-	
	index anodischer Oxide zurückgeführt werden.	85
52	Oxid im Bereich des elektrischen Durchbruchs. Die Beschädigung erklärt	
	den Stromanstieg bei konstanter Spannung	86
53	Reflexionen an einer absorptionsfreien Einfachschicht	91
54	Verfärbung der Waferoberfläche durch Dünnschichtinterferenz. Anodi-	
	sierungsspannungen: 8, 12, 16, 20 und 30 V von links nach rechts. \ldots	92
55	Simulation der Farbeffekte für verschieden Schichtdicken.	93
56	Newton Ringe und Keilinterferometer	94
57	Simulation der Farbeffekte: $7 - 20$ V \ldots \ldots \ldots \ldots \ldots \ldots	95
58	Simulation der Farbeffekte: $8 - 62$ V $\dots \dots $	96
59	Simulation der Farbeffekte: $8 - 30$ V $\dots \dots $	97
60	Simulation der Farbeffekte: $7 - 47$ V \dots \dots \dots \dots \dots \dots \dots	98
61	Prinzipieller Aufbau eines IGBTs in vereinfachter Darstellung 1	103
62	Unterschiedliche Möglichkeiten der Kontaktierung des IGBTs beim	
	elektrochemischen Ätzstopp	104
63	Simulierter Ätzstrom nach Lapadatu	108

	URontaktierung und Randbedingungen: Graben- und Eckkontakt 110
The approved original version of	thi Simulation des Spannungsabfalls bei Kontaktierung in den Chipecken. 112
University of Technology.	Simulation des Spannungsabfalls bei einem Kontaktgraben rund um
http://www.ub.tuwien.ac.at/eng	den Chip
67	Spannungsabfall am buried-Layer
68	Kennlinie eines Wafers mit pn-Ubergang
69	Zeitlicher Verlauf des Atzstroms
70	IGBT mit Grabenkontakt
71	Siliziumdicke nach Atzstopp auf epitaxialem Wafer
72	REM-Aufnahmen von IGBTs nach eingetretenem Atzstopp mit epitaxial
	aufgebautem pn-Übergang
73	Dicke nach Ätzstopp - Protonendotierter Wafer
74	Eindimensionale thermische FE/FD Simulation. Schematische Darstel-
	lung der Konstellation der Schichten
75	Vergleich des zeitlichen Verlaufs der Oberflächentemperatur
76	Örtlicher Wärme und Temperaturverlauf für verschiedene Zeitpunkte . 131
77	Diffusion in Materialien unterschiedlicher Porosität
78	Verarmung des Elektrolyten entlang der Schüttung für verschiedene
	Zeitpunkte
79	Konzentration des Elektrolyten an der Waferoberfläche als Funktion
	der Zeit für unterschiedlich lange Ein-Zeiten.
80	Galvanische Verfüllung einer Schüttung: Prozessablauf
81	Verfüllung mit Kupfer bei hohen Ein-Zeiten
82	Verfüllung mit Lötzinn
83	Verfüllung mit Kupfer bei mittleren Ein-Zeiten
84	Verfüllung mit Kupfer bei niedrigen Ein-Zeiten
85	Experimenteller Aufbau zur Sedimentation von Kohlenstofffasern 143
86	Wafer mit 4 Sedimentationsschichten CCu zu je 1 g und einem gesamten
	galvanischem Kupferäquivalent von 125 $\mu m.$ Nach Tempern bei 400 °C. 145
87	Wafer mit 4 Sedimentationsschichten CC u $<50\;\mu{\rm m}$ zu je 2 g und
	galvanischem Kupferäquivalent von 500 $\mu m.$ Nach Tempern bei 400 °C. 145

The approved original version of this thesis is available at the main library of the Vienna

- [2] K. Hoffmann. Systemintegration: Vom Transistor zur großintegrierten Schaltung. Oldenbourg Wissensch.Vlg, 2011.
- [3] H.G. Servatius and F.T. Piller. Der Innovationsmanager: Wertsteigerung durch ein ganzheitliches Innovationsmanagement. Symposion Publishing GmbH, 2014.
- [4] P. Kucher. The world's first 300 mm fab at infineon challenges and success. In Semiconductor Manufacturing, 2000. Proceedings of ISSM 2000., pages 39–43, 2000.
- [5] Marc J. Madou. Fundamentals of Microfabrication and Nanotechnology: Solidstate physics, fluidics, and analytical techniques in micro- and nanotechnology. Number v. 1 in Fundamentals of Microfabrication and Nanotechnology. CRC Press, 2012.
- [6] X.G. Zhang. Electrochemistry of Silicon and Its Oxide. Springer, 2001.
- [7] V. Lehmann. The electrochemistry of silicon: instrumentation, science, materials and applications. Wiley-VCH, 2002.
- [8] V.V. Gmm. Mikrosystemtechnik-Kongress 2005: 10. bis 12. Oktober 2005 in Freiburg. VDE-Verlag, 2005.
- [9] H.P. Herzig. Micro-Optics: Elements, Systems And Applications. Taylor & Francis, 1997.
- [10] J.-P. Colinge. Silicon-on-Insulator Technology: Materials to VLSI. The Kluwer international series in engineering and computer science. VLSI, computer architecture and digital signal processing. Springer, 1997.
- [11] N. Kanani. Galvanotechnik: Grundlagen, Verfahren und Praxis einer Schlüsseltechnologie. Hanser, 2009.
- [12] H.S. Lee. Thermal Design: Heat Sinks, Thermoelectrics, Heat Pipes, Compact Heat Exchangers, and Solar Cells. Wiley, 2010.
- [13] W. Krenkel. Verbundwerkstoffe. Wiley, 2009.

[14] H. P. Langtangen. A Primer on Scientific Programming with Python. Texts in The approved original version Computational Science and Engineering. Springer, 2012.

available at the main library of the Vier

http://www.ub.tuwien.ac[15]_g H.P. Langtangen. *Python Scripting for Computational Science*. Texts in Computational Science and Engineering. Springer, 2007.

- [16] A. Logg, K.A. Mardal, and G. Wells. Automated Solution of Differential Equations by the Finite Element Method: The FEniCS Book. Lecture Notes in Computational Science and Engineering. Springer, 2012.
- [17] A. Devert. matplotlib Plotting Cookbook. Packt Publishing, 2014.
- [18] J.M. Hughes. Real World Instrumentation with Python: Automated Data Acquisition and Control Systems. O'Reilly Media, 2010.
- [19] J. Lutz. *Halbleiter-Leistungsbauelemente*. SpringerLink : Bücher. Springer Vieweg, 2012.
- [20] S.M. Sze and K.K. Ng. Physics of Semiconductor Devices. Wiley, 2006.
- [21] F. S. Goucher, G. L. Pearson, M. Sparks, G. K. Teal, and W. Shockley. Theory and experiment for a germanium pn junction. *Phys. Rev.*, 81:637–638, Feb 1951.
- [22] Wikipedia. Bipolar junction transistor Wikipedia, the free encyclopedia, 2014. [Online; accessed May-2014].
- [23] Wikipedia. Thyristor Wikipedia, the free encyclopedia, 2014. [Online; accessed May-2014].
- [24] C.H. Hamann and W. Vielstich. *Elektrochemie*. John Wiley & Sons Australia, Limited, 2005.
- [25] P.W. Atkins, J. De Paula, and M. Bär. *Physikalische Chemie: 4. Auflage*. Number v. 1. Wiley-VCH Verlag GmbH, 2006.
- [26] J. Schüring. Redox: Fundamentals, Processes and Applications. Springer, 2000.
- [27] E. Soßna. Dissertation: Herstellung von spannungsoptimierten Silizium-Membranen durch den elektrochemischen Ätzstopp. Universität Kassel, 2002.
- [28] S.R. Morrison. Electrochemistry at semiconductor and oxidized metal electrodes. Plenum Press, New York, London, 1980.
- [29] E. D. Palik, O. J. Glembocki, J. D. Rinko, and I. Heard. Current-voltage characteristics of heavily doped p-si in aqueous KOH. *Journal of The Electrochemical Society*, 136(5):1420–1425, 1989.

[30] E. D. Palik O. J. Glembocki, and I. Heard. Study of bias dependent etching of si The approved original aqueous KOH. Journal of The Electrochemical Society, 134(2):404–409, 1987.

- http://www.u[31]_E_D_Palik, H. F. Gray, and P. B. Klein. A raman stusy of etching silicon in aqueous KOH. Journal of The Electrochemical Society, 130(4):956-959, 1983.
 - [32] Orest J. Glembocki, Robert E. Stahlbush, and Micha Tomkiewicz. Bias-dependent etching of silicon in aqueous KOH. Journal of The Electrochemical Society, 132(1):145–151, 1985.
 - [33] H. Seidel, L. Csepregi, A. Heuberger, and H. Baumgärtel. Anisotropic etching of crystalline silicon in alkaline solutions: II. influence of dopants. *Journal of The Electrochemical Society*, 137(11):3626–3632, 1990.
 - [34] H. Seidel, L. Csepregi, A. Heuberger, and H. Baumgärtel. Anisotropic etching of crystalline silicon in alkaline solutions: I. orientation dependence and behavior of passivation layers. *Journal of The Electrochemical Society*, 137(11):3612–3626, 1990.
 - [35] J.W. Faust Jr. and E.D. Palik. Study of the orientation dependent etching and initial anodization of si in aqueous KOH. *Journal of the Electrochemical Society*, 130(6):1413–1420, 1983. cited By (since 1996)29.
 - [36] Q. D. Nguyen and M. Elwenspoek. Influence of applied potentials on anisotropic etching of silicon described using kinematic wave etch model. *Journal of The Electrochemical Society*, 154(12):D684–D691, 2007.
 - [37] M. Elwenspoek. On the mechanism of anisotropic etching of silicon. Journal of The Electrochemical Society, 140(7):2075–2080, 1993.
 - [38] O. J. Glembocki, E. D. Palik, G. R. de Guel, and D. L. Kendall. Hydration model for the molarity dependence of the etch rate of Si in aqueous alkali hydroxides. *Journal of The Electrochemical Society*, 138(4):1055–1063, 1991.
 - [39] D. L. Kendall. Vertical etching of silicon at very high aspect ratios. Annu. Rev. Mater. Sci, 9(373), 1979.
 - [40] J. B. Price. Anisotrop etching of silicon with KOH-H2O isopropyl alcohol. Semiconductor Silicon symposium, The Electrochemical society, (373):339–353, 1973.
 - [41] B.J. Baliga. Fundamentals of Power Semiconductor Devices. Springer, 2010.
 - [42] P. T. Michaud and D. Babic. A raman study of etching silicon in aqueous tetramethylammonium hydroxide. *Journal of The Electrochemical Society*, 145(11):4040– 4043, 1998.

[43] J. T.B. Thong, W.K. Choi, and C.W. Chong. TMAH etching of silicon and the of etching parameters. *Sensors and Actuators A: Physical*, 63(3):243 – University of Technology.

http://www.ub.tuwien.ac.at/e

- [44] Elin Steinsland, Martin Nese, Anders Hanneborg, Ralph W. Bernstein, Halle Sandmo, and Gjermund Kittilsland. Boron etch-stop in TMAH solutions. *Sensors and Actuators A: Physical*, 54(1–3):728 732, 1996.
- [45] Lai-Cheng Chen, Minjan Chen, Chenhsin Lien, and Chi-Chao Wan. The band model and the etching mechanism of silicon in aqueous KOH. Journal of The Electrochemical Society, 142(1):170–176, 1995.
- [46] Kiumars Ghowsi and Robert J. Gale. Theoretical model of the anodic oxidation growth kinetics of si at constant voltage. *Journal of The Electrochemical Society*, 136(3):867–871, 1989.
- [47] P. Allongue, V. Costa-Kieling, and H. Gerischer. Etching of silicon in NaOH solutions: II . electrochemical studies of n-Si(111) and (100) and mechanism of the dissolution. *Journal of The Electrochemical Society*, 140(4):1018–1026, 1993.
- [48] Sandro Cattarin and Marco M. Musiani. Electrodissolution and passivation of silicon in aqueous alkaline media - a voltammetric and impedance investigation. *The Journal of Physical Chemistry B*, 103(16):3162–3169, 1999.
- [49] Paul G Miney and Vincent J Cunnane. A study of the chemical breakdown of the anodic oxide formed on (100) oriented silicon in tetramethylammonium hydroxide (TMAH) solutions. *Electrochimica Acta*, 48(11):1475 – 1482, 2003.
- [50] Paul G. Miney and Vincent J. Cunnane. An investigation into the use of an anodic reverse peak to study the growth of anodic oxides on (100) orientated silicon in tetramethylammonium hydroxide (TMAH). Journal of Electroanalytical Chemistry, 545(0):73 – 82, 2003.
- [51] Paul G. Miney and Vincent J. Cunnane. A study of the passivation peak current density for (100) oriented silicon in tetramethylammonium hydroxide (TMAH)- effect of temperature, concentration and carrier type. *Electrochimica Acta*, 49(7):1009 – 1018, 2004.
- [52] F. Yahyaoui, Th. Dittrich, M. Aggour, J.-N. Chazalviel, F. Ozanam, and J. Rappich. Etch rates of anodic silicon oxides in dilute fluoride solutions. *Journal of The Electrochemical Society*, 150(5):B205–B210, 2003.
- [53] C. Serre, S. Barret, and R. Herino. Characterization of the electropolishing layer during anodic etching of p-type silicon in aqueous HF solutions. *Journal of The Electrochemical Society*, 141(8):2049–2053, 1994.

[54] J.-N. Chazalviel, C. da Fonseca, and F. Ozanam. In situ infrared study of the The approved originoscillating anodic dissolution of silicon in fluoride electrolytes. *Journal of The* available at the mallectrochemical Society, 145(3):964–973, 1998.

http://www.ub.tuwien.ac.at/eng

- [55] V. Lehmann. On the origin of electrochemical oscillations at silicon electrodes. Journal of The Electrochemical Society, 143(4):1313–1318, 1996.
- [56] M. Kolonko. Stochastische Simulation: Grundlagen, Algorithmen und Anwendungen. Vieweg Studium. Vieweg Verlag, Friedr, & Sohn Verlagsgesellschaft mbH, 2008.
- [57] E. Philippow and K.W. Bonfig. *Grundlagen der Elektrotechnik*. Verlag Technik /Huss Medi, 2000.
- [58] M. J. Madou, W. P. Gomes, F. Fransen, and F. Cardon. Anodic oxidation of p-type silicon in methanol as compared to glycol. *Journal of The Electrochemical Society*, 129(12):2749–2752, 1982.
- [59] N.W. Ashcroft and D.N. Mermin. *Festkörperphysik*. Oldenbourg Wissenschaftsverlag, 2012.
- [60] K.K. Sharma. Optics: Principles and Applications. Elsevier Science, 2006.
- [61] F.W. Bach, K. Möhwald, A. Laarmann, and T. Wenz. Moderne Beschichtungsverfahren. Wiley, 2006.
- [62] R. Dohlus. Photonik: Physikalisch-technische Grundlagen der Lichtquellen, der Optik und des Lasers. Oldenbourg, 2010.
- [63] E. Lübbe. Farbempfindung, Farbbeschreibung und Farbmessung: Eine Formel für die Farbsättigung. SpringerLink : Bücher. Springer Fachmedien Wiesbaden, 2012.
- [64] Daniel Lapadatu, Gjermund Kittilsland, Martin Nese, Svein M. Nilsen, and Henrik Jakobsen. A model for the etch-stop location on reverse-biased pn junctions. Sensors and Actuators A-physical, 66:259–267, 1998.
- [65] F. Zach. Leistungselektronik. Number Bd. 2. Springer Wien, 2010.
- [66] Thierry Duffar. Crystal Growth Processes Based on Capillarity: Czochralski, Floating Zone, Shaping and Crucible Techniques. Wiley, 2010.
- [67] F. Paech. Analysis anschaulich und anwendungsorientiert. Carl Hanser Verlag GmbH & Company KG, 2013.

[68] M. Tenenbaum and H. Pollard. Ordinary Differential Equations. Dover Books on The approved original version Mathematics Series. Dover Publications, Incorporated, 2012.

available at the main library of the Vienna University of Technology.

- http://www.ub.tuwien.ac[69] R. Siemieniec, F.-J. Niedernostheide, H.-J. Schulze, W. Südkamp, U. Kellner-Werdehausen, and J. Lutz. Irradiation-induced deep levels in silicon for power device tailoring. *Journal of The Electrochemical Society*, 153(2):G108–G118, 2006.
 - [70] J. Burghartz. Ultra-thin Chip Technology and Applications. SpringerLink : Bücher. Springer, 2010.
 - [71] J.W. Balde. Foldable Flex and Thinned Silicon Multichip Packaging Technology. Emerging Technology in Advanced Packaging. Springer US, 2003.
 - [72] D. Chung. Carbon Fiber Composites. Elsevier Science, 1994.
 - [73] B. Wielage and G. Leonhardt. Verbundwerkstoffe und Werkstoffverbunde. Wiley, 2001.
 - [74] G. Humpston and D.M. Jacobson. Principles of Soldering. ASM International, 2004.
 - [75] M. Kutz. Handbook of Materials Selection. Wiley, 2002.
 - [76] E. Neubauer. Interface optimisation in copper carbon metal matrix composites. Technische Universität Wien, 2003.
 - [77] K Mayerhofer, E Neubauer, C Eisenmenger-Sittner, and H Hutter. Characterisation of Cr intermediate layers in Cu–C-system with SIMS method. Applied Surface Science, 179(1–4):275 – 280, 2001. 11th Conference on Applied Surface Science.
 - [78] J. Kopitz and W. Polifke. *Wärmeübertragung: Grundlagen, analytische und numerische Methoden.* Ing Maschinenbau. Pearson Studium, 2009.
 - [79] E. Machlin. Materials Science in Microelectronics II: The effects of structure on properties in thin films. Materials science in microelectronics. Elsevier Science, 2010.
 - [80] E.L. Cussler. *Diffusion: Mass Transfer in Fluid Systems*. Cambridge Series in Chemical Engineering. Cambridge University Press, 2009.
 - [81] P. Grathwohl. Diffusion in Natural Porous Media: Contaminant Transport, Sorption/Desorption and Dissolution Kinetics. Kluwer international series: Topics in environmental fluid mechanics. Springer US, 1998.
 - [82] A.V. Delgado. Interfacial Electrokinetics and Electrophoresis. Surfactant Science. Taylor & Francis, 2001.