
Spatio-Temporal Prioritized
Planning

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Technische Informatik

eingereicht von

Ing. Benjamin Binder, BSc
Matrikelnummer 1226121

an der Fakultät für Informatik

der Technischen Universität Wien

Betreuung: Ao.Univ.Prof. Dipl.-Ing. Dr.techn. Johann Blieberger
Mitwirkung: Univ.Ass. Dipl.-Ing. Dr.techn. Markus Bader

Wien, 5. Dezember 2017
Benjamin Binder Johann Blieberger

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.ac.at

Die approbierte Originalversion dieser Diplom-/
Masterarbeit ist in der Hauptbibliothek der Tech-
nischen Universität Wien aufgestellt und zugänglich.

http://www.ub.tuwien.ac.at

The approved original version of this diploma or
master thesis is available at the main library of the
Vienna University of Technology.

http://www.ub.tuwien.ac.at/eng

Spatio-Temporal Prioritized
Planning

DIPLOMA THESIS

submitted in partial fulfillment of the requirements for the degree of

Diplom-Ingenieur

in

Computer Engineering

by

Ing. Benjamin Binder, BSc
Registration Number 1226121

to the Faculty of Informatics

at the TU Wien

Advisor: Ao.Univ.Prof. Dipl.-Ing. Dr.techn. Johann Blieberger
Assistance: Univ.Ass. Dipl.-Ing. Dr.techn. Markus Bader

Vienna, 5th December, 2017
Benjamin Binder Johann Blieberger

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.ac.at

Erklärung zur Verfassung der
Arbeit

Ing. Benjamin Binder, BSc
Eulenbach 52,
3902 Vitis

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 5. Dezember 2017
Benjamin Binder

v

Kurzfassung

Mobile Roboter-Flotten werden aufgrund ihrer flexiblen Einsatzmöglichkeiten in Logisti-
kanwendungen immer beliebter. Mit dem Einsatz von Roboter-Flotten entsteht jedoch
die Notwendigkeit, die einzelnen Roboter in dieser Flotte zu koordinieren. Ein weit
verbreiteter Ansatz, um diese Problemstellung zu lösen, nennt sich „Prioritized Planning“.
Hierbei generiert ein Routenplaner alle Routen der Roboter sequenziell und versucht
Überschneidungen mit bereits geplanten Roboter-Routen zu vermeiden.
Diese Diplomarbeit beschäftigt sich mit einem neuen Ansatz für solch einen „Prioritized
Planner“. Der vorgestellte Planer erzeugt Routen für mehrere Roboter, welche zueinander
synchron abgearbeitet werden, um Kollisionen und Deadlocks zu vermeiden.
Zur Koordinierung von Robotern werden meist Pixel-Karten eingesetzt. Mit steigender
Pixelanzahl in den Karten wird die Planung der einzelnen Routen immer zeitintensiver.
Aus diesem Grund werden für den erzeugten Planer die Pixel-Karten auf einen Suchgra-
phen reduziert und somit die Dauer des Planungsprozesses verringert.
Es wird ein Planer für einzelne Roboter entwickelt, welcher fähig ist, bereits geplante
Routen von anderen Robotern in den Planungsprozess mit einzubinden. Diese Routen
werden in den Suchgraph des Planers integriert, um so das Ergebnis des nächsten Robo-
ters zu beeinflussen.
Weiters kann mit dem Planer die Verweildauer der einzelnen Roboter in einem Stre-
ckenabschnitt angepasst werden. Dadurch können gegebenfalls Wartezeiten integriert
werden. Sollten bei der Routenplanung dennoch Kollisionen zwischen Robotern auftreten,
können zusätzlich Pfad-Segmente in den Suchgraphen integriert und diese Kollisionen
somit vermieden werden.
Da die erzeugten Routen des Planers zeitabhängig sind, werden diese im Anschluss an den
Planungsprozess synchronisiert. Dabei werden für jeden Routenabschnitt Vorbedingungen
bestimmt, welche erfüllt sein müssen, bevor ein Roboter diesen Routenabschnitt befahren
darf.
Um diverse Szenarien zu lösen, die mit den derzeitig verwendeten „Prioritized Planning“-
Ansätzen nicht lösbar sind, kann der Planer bei fehlgeschlagenen Planungsversuchen den
Planungsprozess mit unterschiedlicher Reihenfolge und Geschwindigkeiten der Roboter
wiederholen.
Für die Evaluierung des neuen Planers, wird dieser mit den aktuell verwendeten Planer-
Ansätzen in einer simulierten Umgebung getestet und die Ergebnisse gegenübergestellt.
Weiters werden, durch den vorgestellten Planer lösbare Szenarien gezeigt, welche durch
aktuell verwendete „Prioritized Planner“ nicht lösbar sind.

vii

Abstract

Using robot fleets have gained popularity in recent years in industrial logistics applications
because of their flexible field of application. Therefore, the issue arises how to coordinate
these robots. A commonly used approach to this problem is Prioritized Planning, where
a coordinator plans all robot’s routes sequentially avoiding already planned ones.
This thesis presents a new approach for prioritized multi robot path planning. The
proposed planner works centralized and generates synchronized and deadlock-free routes
for robots.
Applying search algorithms on pixel-maps is expensive, therefore, pixel-maps are reduced
to search graphs using voronoi distillation.
A single robot path planner for use inside a prioritized multi robot path planner is
designed. This single robot path planner constrains the creation of new routes by adding
already planned ones to the used search graph. To find solutions in this graph the
single robot path planner is able to take temporal and spacial constraints into account.
Furthermore, potential collisions and deadlocks between robots are avoided by extending
the search graph with additional segments if a collision is detected.
The global multi robot path planner includes a priority and speed rescheduler as well, to
solve specific scenarios which are hard to solve using prioritized path planning. Because
the routes are generated time-dependently, they are post-processed to add synchronization
markers in form of preconditions for every robot. These preconditions have to be met
before a robot is allowed to enter a segment.
Selected scenarios with multiple robots are used to compare the proposed planner with
state of the art approaches in a simulated environment. Also scenarios are shown to be
solvable with the proposed planner, which are not solvable with currently used approaches.

ix

Contents

Kurzfassung vii

Abstract ix

Contents xi

1 Introduction 1
1.1 Motivation and Problem Statement . 1
1.2 Aim of the Work . 4
1.3 Methodological approach . 5
1.4 Structure of the Work . 6

2 State of the Art 7
2.1 Single Robot Planning . 8
2.2 Multi Robot Planning . 9
2.3 Multi Robot Planning Extensions . 11
2.4 Roadmapping (Voronoi Paths) . 12
2.5 Summary . 12

3 Approach 13
3.1 Terminology . 14
3.2 Requirements . 15
3.3 Structure . 17
3.4 Single Robot Route Planner (SRRP) 19
3.5 Multi Robot Route Planner Extensions 44

4 Implementation 49
4.1 Graph Generation . 51
4.2 Route Planning . 56
4.3 Robot Controller . 60
4.4 Test Environment . 61

5 Results 63
5.1 Experiments . 64

xi

5.2 Comparison to other planners . 72

6 Conclusion 79
6.1 Further Work . 80
6.2 Implementation and Source code . 80

List of Figures 81

List of Algorithms 83

Glossary 85

Acronyms 87

Bibliography 89

CHAPTER 1
Introduction

1.1 Motivation and Problem Statement

Driverless vehicles are commonly used in warehouses and on assembly lines to transport
goods [WDM07]. These vehicles are usually restricted to specific areas by using predefined
tracks. The disadvantage of this approach is, that stalls can occur if obstacles are blocking
these tracks. In order to avoid such stalls, one can enable vehicles to leave their tracks
autonomously for a short period of time. This can be done in two ways:

• Locally, by considering only conflicting paths in a specific area.

• Globally, by replanning all paths for all vehicles.

An example for a local solution to such a scenario is shown in Figure 1.1, where robot r1
avoids robot r0 at a crossing.

r0 r1

(a) The start positions of two robots, which
want to switch places.

I

II

III
r0 r1

(b) The solution to the given problem, where
robot r1 has to wait at the crossing until r0
has passed.

Figure 1.1: Example test scenario, where two robots switch places.

1

1. Introduction

robot

(a) The simulated environment in Gaze-
boSim with the robot

(b) The grid map of the simulated environ-
ment

Figure 1.2: Voronoi graph generation

Paper [BRS+15] tries to fuse both approaches. It describes a well designed framework
using a multi robot path planner combined with a behavior controller on every vehicle.
The multi robot planner passes a set of path segments to the behavior controller of a
vehicle, which decides if the robot has to move on the given path or is allowed to deviate
from it using a local path planner.
This thesis presents a new approach for a Multi Robot Route Planner (MRRP) based on
the ideas of [BRS+15].
The following keywords are essential to understand the ideas in this thesis:

• Graph refers to the search graph used by the route planner. This graph has a
bijective mapping to the used environment, where each vertex is mapped to a
segment of the environment.

• Segment is a small area of an environment with a specific shape. Every segment
of an environment can be mapped to exactly one vertex of the corresponding graph.

• Route describes a list of segments, including space and time.

• Path describes a list of points located on a map to lead a robot to its goal.

• Trajectory is used to describe a time-dependent point-sequence leading the robot
from one path point to another.

2

1.1. Motivation and Problem Statement

Distfield
Voronoi Path

(a) Voronoi path related to the map (ma-
genta); The Distance field (grey), which de-
scribes the minimal distance to an obstacle;

(b) The segmentation of the voronoi path
from Figure 1.3a.

Figure 1.3: Voronoi graph generation

Prioritized Planning is used inside the Multi Robot Route Planner (MRRP), which sorts
all robots by priority and let them plan their routes depending on the routes of higher
prioritized robots [LaV06].
These planning iterations are typically done on maps represented as grid-maps, shown in
Figure 1.2, where the planner can find a path and all possible deviations from it. Since
paper [BRS+15] describes a behavior controller, which is capable of deviating from the
given path, it is not necessary to keep detailed grid-maps. Instead, a data abstraction of
the grid-map to a graph representation is sufficient to find routes, given to the behavior
controller. An example for such an abstraction is a voronoi path describing the path
through a map, which has at every point the maximum distance to all obstacles around
(Figure 1.3). The given path can be revised further by segmenting it, which leads to a
graph like the one shown in Figure 1.3b. This data abstraction helps to reduce time
complexity for single robot planners, but problem cases exist, where relative execution
time between robots is relevant to fulfill a given goal. Therefore, time is modeled as well
in the graph representation. On this spacial-temporal-path, a planner similar to the idea
of [WG12] is used, which allows "waiting-steps" in the robot’s route, to wait for other
robots causing potential deadlocks. Furthermore, additional strategies are used to find
solutions to other problems like avoiding robots at a crossing.

3

1. Introduction

IIIr1

r0

(a) The start positions and the robots de-
sired goals.

r1 r0E

(b) A solution can’t be found assuming robot
r0 has higher priority than r1, because r0
plans its path first and blocks r1’s trajectory.

Figure 1.4: Problem set where robot priorities matter

1.2 Aim of the Work

The scientific contribution of this work is a new approach for a MRRP. The goal of
this MRRP is to find deadlock-free routes and optimize them for the use in dynamic
environments. Actual challenges in multi robot planning are evaluated, to derive the
structure of the MRRP. An example for such a scenario can be seen in Figure 1.1, where
robots r0 and r1 want to switch places. Obviously, r1 has to wait at the crossing as shown
in Figure 1.1b, to let r0 pass. Although this problem is easy to solve for a human, multi
robot planners are struggling to solve such scenarios. To solve these problems, spacial
and temporal locality have to be considered. In our approach this is done by introducing
"spacial-temporal-graphs", describing not only spacial restrictions but also temporal ones
for planning[CPA+14]. A solution to the shown issue in Figure 1.1 can be found with such
a graph. Robot r0 locks its route (II) on the graph. Robot r1 is forced to avoid r0’s route
and moves (I) to the free space at the crossing to wait there until r0 has passed. Finally,
r1 can move to its goal (III). Furthermore, this "spacial-temporal-graph"-approach will
decrease the computational time of the planner, because several areas are merged together
to one edge of the graph as shown in Figure 1.3b.
In Figure 1.4 a situation can be seen, where the higher prioritized robot (r0) blocks the
route of r1 after planning its route. This can be easily solved by switching the priorities
of the robots, to let r1 plan its route first, to force r0 to wait. Thus, a strategy to solve
such scenarios is implemented in the MRRP, which allows the planner to solve more
problem sets.
After finding a valid routing table it has to be ensured that the robots maintain the given
restrictions of the routing table. This can be done centralized, decentralized or decoupled.
For the centralized approach a supervisor can be used to observe the robots positions and
stop single robots if they offend any restriction. For the decentralized approach every
robot has to communicate with each other, to maintain the selected order. Finally for
the decoupled approach every robot has to follow a given velocity profile to reach its
planed deadline.

4

1.3. Methodological approach

1.3 Methodological approach

As mentioned in Section 1.2 the scientific contribution of this work is a new approach for
prioritized path planning. This approach is implemented as ROS1 node. To evaluate the
result it is compared to other planning approaches in terms of computation time and
completeness. The work is split into four parts:

1. The first task was to set up a test environment for the planner, which works on
ROS with stage as simulator and RVIZ as visualization. Furthermore, a vehicle
controller was programmed to follow the given routes. The test environment is
described in Chapter 4.

2. Afterwards, a minimal multi robot planner for vehicles with the same radius and
non intersecting routes at every point in time is created. Simultaneously, the
planner is designed in a way, that it is easily expandable to the final global planner.
It is intended to use a central Single Robot Route Planner (SRRP) planning all
the single routes combined with a so called "path query"-class, which organizes the
route allocation between the planning tasks.

3. After creating a minimal solution and the framework, the planner will be expanded
to a prioritized planner, taking time into account. Furthermore a strategy to
synchronize routes between robots was created.

4. The prioritized planner can now be refined to custom defined problem sets and
compared to other planners.

1(www.ros.org)

5

1. Introduction

1.4 Structure of the Work

The work is structured in six parts. In this section the motivation and the ideas covered
in this thesis are explained.
In „State of the Art“ literature is described which is used for the proposed MRRP.
Therefore, the framework, which forms the basis of the work is discussed, papers for
single and multi robot planning are presented and some papers explaining roadmapping
are shown as well.
In Chapter 3 the general ideas of the MRRP are described, by deriving the structure
of the planner using papers introduced in Chapter 2. Afterwards, the structure of the
used search graph is described. To show current problems in prioritized path planning,
some scenarios are shown, which should be solvable by the prioritized planner. These
scenarios are used to create collision resolution strategies for the MRRP to solve scenarios
efficiently. Since the generated solutions of the MRRP are time dependent, an approach
to execute the planned routes on the robots is discussed in the end of Chapter 3.
Chapter 4 describes the implementation of the MRRP. To these ends the test environment
is described in detail. The process of generating a usable search graph for the MRRP is
described, by generating voronoi paths, which are transformed into a graph. Also, an
algorithm is shown, which describes the structure of the MRRP and the Robot Controller
including the strategy used to synchronize routes is explained.
To evaluate the created MRRP, tests are presented in Chapter 5. At first, test cases
shown in Chapter 3 are executed to verify the proper function of the MRRP. Furthermore,
the resulting routes for each robot are shown and checked for their validity in the global
routing table. In the second part the MRRP is compared to other planners. Thus, a
simple planner with priority scheduling and a planner using waiting steps in its routes
are compared to the MRRP.
In the last chapter the thesis is summarized and further work is discussed.

6

CHAPTER 2
State of the Art

Quite some research has been contributed to path planning in the last years [WG12]
[WLW13] [CNKS15]. Most of these approaches are based on path planning for a single
robot[WWW16] [CNM99]. The proposed thesis examines path planning with multiple
robots on graphs trying to find a system optimal solution.
The presented approach is based on the framework proposed in [BRS+15]. This framework
organizes a large number of robots in a centralized way while allowing single robots to
deviate from their given trajectory. It is proposed to create a framework which consists of
a centralized Automated Guided Vehicle Control System (ACS) and multiple Automated
Guided Vehicles (AGVs) controlled with a behavior controller on each vehicle. The ACS
contains a job planner to coordinate pending tasks and a Route Planner, which creates
a global routing table for the current task schedule. The single routes of this routing
table are given to the corresponding AGV. An AGV consists of a Behavior Controller,
Self-Localization, and a Local Path Planner. The Behavior Controller receives routes
from the ACS and selects how to follow them. Therefore, the Behavior Controller can
select one of two control strategies: Following the route precisely or diverge from it locally
to avoid obstacles. To diverge from the given route a Self-Localization module and a
Navigation module are essential. The control task is done by using a Model Predictive
Control working similarly to the Dynamic Window Approach but in a more advanced
way. This framework has the major benefit of combining a global and a local planning
approach resulting in a sound and flexible system.
To prevent confusion, I want to make the reader aware, that the terminology used in this
chapter is the one found in the papers and not the one explained in Chapter 1.

7

2. State of the Art

2.1 Single Robot Planning

Single Robot Planning is discussed extensively in [LaV06], which shows different types of
map representations and roadmaps for planning. Furthermore, it shows the Dijkstra and
A-Star algorithm, which are used for many single robot planning approaches.
Mapping on a maximum distance roadmap is explained in the paper [WWW16], which
describes a heuristic for planning trajectories using generalized Voronoi diagrams GVDs
to speed up the planning process. In comparison to Euclidean heuristics, this approach
avoids local minima and for this reason shows, a significant speedup of the algorithm.
A simple algorithm to avoid obstacles and other robots is the Optimal Reciprocal Collision
Avoidance (ORCA) algorithm proposed in [vdBGLM11]. This algorithm calculates so-
called velocity obstacles, which are describing velocities leading to a collision in the next t
seconds. The robot selects the best velocity out of its velocity space, avoiding the ones
described by the velocity obstacles. In this case, the best velocity means the velocity
which leads the robot as fast as possible to its target. This algorithm works well for
planning locally but has problems to find a global plan in the presence of local minima.
Another set of algorithms is called bug algorithms. A survey of these algorithms is shown
in paper [GKM10]. These algorithms including simple strategies like following a wall, to
find their goal. The benefit of these algorithms is that they don’t need to know any kind
of map because they rely only on their sensors. One of these algorithms is described
in [KRR98], which has two behaviors for following walls and moving towards obstacles.
This helps the algorithm to find the shortest path locally.

8

2.2. Multi Robot Planning

2.2 Multi Robot Planning

A solution and a proof to a complete algorithm, which is able to find a solution for multi
robot planning can be found in [LB11]. This algorithm defines primitive operations to
move the robots towards their goals. The basic operations are push and swap, which
enable a robot to push another one in any direction or to swap place with it if they
are in an appropriate spot for switching. These two operations are enough to prove the
completeness of the algorithm. However, a few other operations have to be added to
produce short and clean paths.
Another complete algorithm is proposed in paper [PCM08]. This algorithm is split into
four phases and uses a minimal spanning tree of the search graph to compute the solution.
In the first phase, every robot has to find a leaf of the spanning tree. If this is possible
and one leaf is empty, which means there have to be at least n+ 1 leafs for n robots, the
algorithm is guaranteed to find a solution.
In the second phase, the robots are ordered such that every robot is on a subtree of its
goal node. If two robots are on the same subtree, the robots are ordered by the depth of
their goal in the tree.
In step three every robot is moved to its goal and in step four the generated paths are
optimized to find a concurrent plan.
This idea has the advantage of completeness, but is not optimal and produces, longer
path lengths compared to prioritized planners like the one explained in [BBT02].
In [ELP86] and in [LaV06] the idea of prioritized planning is proposed, which splits a
multi robot planning problem into multiple single robot planning problems to decrease
complexity. Furthermore, [LaV06] proposes the velocity tuning method to solve a planning
problem with multiple moving obstacles for a robot by keeping the planned path and
tuning the velocities until all collisions are resolved.
Paper [CNKS15] introduces a revised prioritized planning algorithm, which is complete
for certain structures of the environment. Furthermore, it presents an asynchronous
decentralized approach for the proposed algorithm. The idea behind this algorithm is
to never overrun goal points of higher prioritized robots and to avoid start-points of
lower prioritized robots. If there is an environment, which guarantees such paths for
every vehicle, the planner will always find a valid plan. The decentralized version of the
algorithm starts the planning algorithm on every robot. After finishing the planning task,
the trajectories are checked for conflicts. If there are conflicts the lower priority robot
has to plan its trajectory again until every robot has found a valid trajectory.
Paper [WLW13] suggests a strategy for coordinating a large number of robots using
roadmaps generated using a voronoi-distillation. Such a voronoi path is a fully connected
path with the maximum distance to every obstacle in the vicinity. It introduces a so-called
electric circuit based path planning (ECPP) algorithm, which works on GVDs. Therefore,
a path segment has a specific resistance, which describes the number of robots and the
thickness of the path. Now, the robot acts like current in an electrical system and tries to
find the path with least resistance. Thereby, robots are well distributed over all existing
paths. But the ECPP algorithm will not provide collision-free paths but minimizes the

9

2. State of the Art

possibility of "traffic jam".
In paper [CPA+14] a whole framework for planning and synchronizing robot trajectories
is presented. The framework consists of a motion planner, a motion coordinator, a vehicle
executive, a trajectory smoother and a motion controller. The motion planner generates
an initial trajectory using a lattice-based planner. The motion coordinator tries to solve
all conflicts for overlapping paths by altering temporal and spacial constraints. If the
motion coordinator fails, the motion planner is triggered to replan the trajectories. After
finding conflict-free trajectories, the trajectory smoother is used to refine the trajectory
for the vehicles considering accelerations and turn radii. Finally, the vehicle executive
selects a trajectory and updates temporal constraints when a vehicle misses a deadline.
The motion controller is used to move the vehicle along a given trajectory.
The paper [JN01] presents a collision resolution strategy to avoid deadlocks with robots
locally. It describes an algorithm, which lets every robot plan its trajectory without
knowledge of others. In the case a robot moves along its path and detects a robot in
its vicinity, it starts to communicate with it. After a successful connection, the robots
can exchange their trajectories and check them for potential collisions. If a collisions is
detected each robot gets a priority for this scenario. The robots are allowed to move in
the order of their priorities through the collision. An algorithm checks if this priority
order causes a deadlock, where two robots block their paths mutually, and tries to resolve
it if there is one. If this coordination fails, single robots are requested to replan their
trajectory until a valid solution is found. The benefit of this approach is that any planning
algorithm can be used to plan and replan the robots trajectories. Furthermore, no global
communication is needed. Because potential deadlocks are resolved locally, non-optimal
trajectories can be found.

10

2.3. Multi Robot Planning Extensions

2.3 Multi Robot Planning Extensions

A enhanced version of an A*-algorithm is represented in the paper [WG12]. It is called
Spatial-Temporal-A*-algorithm and lets the planner choose for every step between moving
in any direction or waiting on spot. To apply a Spatial-Temporal-A*-algorithm the data
structure used to create planes has to be enhanced by a third dimension. This means
each pixel of the map used for planning is extended by a list to save the time a robot
spends on it. This approach decreases the computational complexity by keeping a high
success rate for the algorithm. This rate increases even more if an adaptive priority
assignment strategy is used.
Papers [BBT01] and [BBT02] are discussing techniques to select priority orders for robots
to improve the number of solvable scenarios and shorten the overall path length of a plan.
The paper [BBT01] tries to achieve this by initializing the priorities randomly and using
a hill-climbing search to exchange priorities. This significantly decreases the overall path
length and the number of solvable problems.
The second paper ([BBT02]) tries to find constraints for priorities. For example, if the
target location of a robot Ra lies too close to an optimal trajectory of another robot Rb,
robot Rb has to plan its trajectory first. This reduces the number of exchanged priorities
and therefore the number of planning iterations.
In paper [Rya07], a strategy is presented to analyze a graph for special subgraphs to
simplify it. These subgraphs are merged to one vertex of the graph, which presents three
methods to access the new graph:

• ENTER: Tests if a robot can enter the subgraph.
• EXIT : Tests if a robot can exit a subgraph.
• TERMINATE : Tests if a robot can move to its goal vertex.

This approach performs well in structures containing long hallways and roads because
vertices connected in long straight lines occur with high probability.
Generation of the underlying graph for planing will be presented next.

11

2. State of the Art

2.4 Roadmapping (Voronoi Paths)

Since the generation of voronoi graphs is needed in this thesis some papers to generate
such graphs are reviewed as well. An idea how to generate voronoi paths is presented
in [WLW13], which uses a distance transform algorithm from [FYS03] and an improved
version of [ZS84], which is used to skeletonize a distance-transformed image. The dis-
advantage of the approach in [ZS84] is, that it needs multiple iterations for one image
which slows down the skeletonizing process. [NAU06] comes up with a fast algorithm to
calculate the skeleton of an image by following the ridge of a distance transform map.
Therefore, the algorithm calculates maximum-, minimum- and saddle-points of a distance-
transformed image. Because these points are all local minima and maxima on the ridge,
the algorithm only has to expand from every found point to the highest neighbor until
an already expanded point is found. This decreases the number of iterations compared
to [ZS84] and therefore the computation time.

2.5 Summary

In this chapter, multiple approaches to the topic of path planning are explained. Basically,
two different groups of approaches can be identified:

1. Centralized approaches

2. Decentralized approaches

Centralized ones ([LB11], [PCM08],...) are in general complete and (at least theoretically)
able to find optimal solutions, but their computational complexity grows exponentially
with the number of robots. Decentralized approaches ([LaV06], [CNKS15], [WG12],...)
are in general incomplete, but their computational complexity scales better compared to
centralized ones.
Furthermore, various approaches to improve the results of decentralized planners are
shown ([WG12], [BBT02],...). Adding these improvements to a planner increases its
performance, but the planner is still not able to solve key scenarios important for the
proposed planner.
To these ends, a new approach for a Prioritized Planner is described in the following
chapter.

12

CHAPTER 3
Approach

In this chapter the approach and algorithm of the MRRP are developed. First the
terminology used in this thesis is introduced. The requirements to the MRRP are
concluded in Section 3.2. Section 3.3 describes the chosen internal structure of the
MRRP. Sections 3.4 and 3.5 are describing the algorithm used by the MRRP, where
Section 3.4 describes the adaption of the Single Robot Route Planner (SRRP) and
Section 3.5 describes possible extensions to the MRRP.

SRRP RG

PR SR
V0(t) V1(t) ...

Route rn

V0(t) V1(t) ...

Route rn+1

Map Roadmap Graph

MRRP Routing table
Route candidate

Figure 3.1: The overall picture of the Route Planner

13

3. Approach

3.1 Terminology

In Figure 3.1 the overall picture of the routing table generation is shown, to clarify the
terminology used in this thesis. As one can see the map is shown in the top left corner.
This map is a grid-map representing static obstacles in an environment. An algorithm
is used to convert this map into a roadmap, which is based on a voronoi path. This
roadmap is processed further to generate a graph, which can be used by the MRRP.
The MRRP consists of the Priority Rescheduler (PR), the Speed Rescheduler (SR), the
SRRP and the Route Generator (RG). The Priority Rescheduler (PR) and the Route
Generator (RG) are only shown for completeness because they pass the graph combined
with a corresponding schedule to the SRRP. The SRRP generates for each robot a route
candidate. The reason the SRRP generates route candidates and not routes is because
they are not synchronized and not part of a routing table. Therefore, the RG receives
a list of route candidates and generates the final routing table consisting of a list of
synchronized routes.
These algorithms used to generate the specific structures mentioned are described in
Chapters 3 and 4.
The following glossary explains the most important terms and definitions:

• Graph refers to the search graph used by the route planner. The graph has a
bijective mapping to the used environment, where each vertex is mapped to a
segment of the environment.

• Segment is a small area of an environment with a specific shape. Every segment
of an environment can be mapped to exactly one vertex of the corresponding graph.

• Routing table is a synchronized list of routes.

• Route describes a list of segments, including space and time, which are part of a
routing table.

• Route candidate describes any list of vertices, including space and time.

14

3.2. Requirements

V1 V2 V3 V4

V5

V6

S1 S2 S3 S4

S5

S6

Figure 3.2: A graph transformation from any roadmap consisting of subsegments to the
search graph used by the MRRP. (Sx → Vx)

3.2 Requirements

As mentioned in Chapter 1, the MRRP is based on the framework proposed in [BRS+15].
This work describes an ACS, which coordinates a number of AGVs centralized.
The ACS consists of a job Planner, arranging the single goals of the robots and a Route
Planner, which has to find a number of vertices leading all AGVs to their goals. The
proposed MRRP is used as Route Planner of the ACS. An AGV consists of a Behavior
Controller, a Self-Localization, Sensors, a Motor Controller and a Navigation module.
These modules enable the AGV to avoid dynamic or static obstacles locally.
Therefore, it can be assumed, that if there exists a path px through a segment sx the AGV
will find it. This means, that the MRRP only has to consider a search graph G(V,E)
without knowing the exact structure of the environment. In G a vertex represents a
path segment with a specific length and width. The length is needed to find the shortest
route candidate using a search algorithm and the width to check if a robot rx can move
through vx. The edges E are undirected and representing the connection between two
neighboring nodes. In Figure 3.2 a roadmap transformed into a valid search graph for
the MRRP can be seen.
On this graph, the MRRP should be able to find solutions for different scenarios. In
order to make the MRRP work properly in tight environments, specific showcases are
considered, which should be solvable using the MRRP. These cases are shown in Figure 3.3.
Figure 3.3a shows two robots moving sequentially, Figure 3.3b shows a robot waiting
on another one before moving out of a room, Figure 3.3c shows two robots switching
places, Figures 3.3d and 3.3e are showing scenarios where a robot blocks another one’s
path and Figure 3.3f shows a scenario where one robot pushes another one, sitting on its
goal, away to move into the room. These scenarios should work for multiple robots and
in any combination.
Since the generated route has temporal dependencies between robots, it is not guaranteed,
that the path is deadlock-free if robots have no communication to each other. Therefore,
a strategy to synchronize the robots using the given routing table is necessary.

15

3. Approach

r1 r0

(a) Scenario Sequential: Robot r1 follows
r0.

r0r1

(b) Scenario Wait: Robot r1 has to wait
until r0 enters the room

r1r0

(c) Scenario Avoid at Crossing: To
switch positions robot r1 has to avoid r0
in the door above the hallway

r1r0

(d) Scenario Avoid at Start: Robot r1
sits on its start position and wants to move
to the left. Therefore, it has to move back-
wards and let r0 pass.

r1r0

(e) Scenario Avoid at Goal: Robot r1
has already reached its goal but has to move
back and forth again to avoid r0 moving into
the door on top of the hallway.

r1r0

(f) Scenario Push: Robot r1 has already
reached its goal but has to move back and
forth again to avoid r0 moving into the door
on top of the hallway. The difference to 3.3e
is that the crossing is not directly at the
robots goal and therefore r1 has to search
for the crossing.

Figure 3.3: Test cases used for creating the SRRP

16

3.3. Structure

3.3 Structure

With the requirements mentioned in Section 3.2 in mind, a planning strategy for the
MRRP is selected. [LaV06] identified two types of methods used to address such planning
problems:

1. Centralized Methods

2. Decentralized Methods

The centralized method describes one in which all vehicles are delineated as one system
with multiple degrees of freedom. The papers [WG12], [LB11] and [PCM08] describe
centralized approaches for solving the planning problem. Centralized approaches are in
general complete and (at least theoretically) able to find optimal solutions, but their
computational complexity grows exponentially with the number of robots [BBT02].
Decentralized methods, however, are generally incomplete, but scale better for a larger
number of robots in terms of computational complexity. The decentralized approach is
described in [LaV06] and used in many other papers like [BBT02], [WG12] and [CNKS15].
The MRRP should work for a large number of robots, therefore, a decentralized approach
is chosen. However, the basic approach for decentralized methods is not able to find a
solution to any of the given scenarios shown in Figure 3.3. Non-solvable examples are
shown in [LaV06] and [Mar06], which match the scenarios in Figure 3.3c (Scenario Avoid
at Crossing). Therefore, the prioritized planning approach used for the MRRP is revised
by changing the SRRP and using a priority scheduling strategy similar to [BBT02] and a
newly created velocity scheduling strategy explained below.
Since prioritized planning splits multi robot planning problem into multiple single ones,
the structure of the MRRP is basically a Single Robot Route Planner (SRRP) which
is invoked multiple times. To avoid overlapping route candidates a Route Coordina-
tor, which is aware of already planned route candidates, is integrated into the SRRP.
Furthermore, strategies to resolve the given scenarios from Figure 3.3 are explained in
Section 3.4. To these ends, a Multi Robot Collision Resolver (MRCR) is integrated into
the SRRP to solve problems locally by waiting and avoiding other robots. Additionally,
a priority-rescheduler and a speed-rescheduler are integrated into the MRRP to achieve
deadlock-free routes when robot priority and speed matters (Section 3.5).
To keep the found routing table deadlock-free, while executing it, a synchronization strat-
egy between the robots has to be used. The Route Generator explained in Section 4.2.1
refines the given routes by adding dependencies and synchronization points to the given
route candidate.
In Figure 3.4 the structure of the MRRP is shown. The MRRP receives a graph and
a set of goals to initiate the planning task. The Priority Rescheduler and the Speed
Rescheduler use random priority schemes for the first planning attempt, which are given
to the SRRP. The SRRP consists of a Potential Expander the Route Coordinator and
the MRCR. The Potential Expander elects with every iteration of the SRRP a vertex
to expand and gives it to the Route Coordinator. The Route Coordinator checks if the

17

3. Approach

Priority
Rescheduler

Speed
Rescheduler

SRRP

Potential
Expander

MRCR

Route
Coordinator

Route
Coordinator

Route
Generator

Graph
Goals

Routing
Table

Figure 3.4: The structure of the MRRP

vertex and the assigned potential to it is conflicting with other route candidates. If the
expansion is valid the Potential Expander continues to expand the next vertex. If the
expansion is invalid the MRCR gets invoked to try to extend the search graph in a way
that the Potential Expander finds a route candidate avoiding this collision and gives this
graph to the Potential Expander again. If the goal of the route candidate is found the
route candidate is given to the Route Coordinator to check it for its validity and added
to a list of route candidates. Afterwards the SRRP is invoked with the next robot in the
priority list. If the generated route candidate is invalid the Route Coordinator invokes
the Speed Rescheduler to find a new speed schedule, which might solve the problem. If
the Speed Rescheduler fails to find such a schedule the Priority Rescheduler (PR) has
to reschedule the priorities and start the planning process for all robots again. If the
SRRP succeeds to find a route candidate for every robot the Route Coordinator gives
the list of route candidates to the route generator, which prepares the path for execution
on a robot, by synchronizing them. This list of synchronized routes is called routing
table. Because the Route Coordinator has to check and save route candidates it is needed
inside the SRRP to constrain the expansions of the potential calculator and outside of
the SRRP, to save and coordinate all found route candidates.

18

3.4. Single Robot Route Planner (SRRP)

3.4 Single Robot Route Planner (SRRP)

In this section the approach for the SRRP included in the MRRP is described. The SRRP
is mainly responsible for finding subsolutions to the introduced scenarios in Figure 3.3.
Therefore, these scenarios are used to explain different parts of the approach.
[LaV06] describes different approaches to find a specific goal in a graph. These approaches
are breadth and depth-first search, the Dijkstra algorithm, the A-Star algorithm and
best-first search. For the MRRP the A-Star algorithm is utilized, because of optimality
and the lowest time complexity compared to the other approaches.

Algorithm 3.1: A-Star Algorithm
Input: Graph G, SourceVertex vs, GoalVertex vg

1 priority Queue Q()
2 foreach vertices v in Graph G do
3 if v 6= vs then
4 v.SetPotential (∞)
5 v.SetPredecessor (∅)
6 end
7 Q.Add (v, ∞)
8 end
9 vs.SetPotential (0)

10 Q.SetPredecessor (vs, 0)
11 while Q not empty do
12 vertex v = Q.PopElement ()
13 if IsGoal (v) then
14 return G
15 end
16 foreach Neighbor vn of v do
17 if v.GetPotential () + GetCosts (v, vn) < vn.GetPotential () then
18 vn.SetPotential (v.GetPotential () + GetCosts (v, vn))
19 vn.SetPredecessor (v)
20 Q.SetPriority (vn, vn.GetPotential () + CalcHeuristic (vn))
21 end
22 end
23 end

19

3. Approach

3.4.1 Single Robot Planning Algorithm

The A-Star algorithm is used in graph theory to determine if a goal vertex is reachable
from a defined start vertex and what are the minimum costs to reach this goal. Therefore,
the graph has to define movement costs between two vertices. The A-Star algorithm
is shown in Algorithm 3.1. At the start of the algorithm, every vertex of the search
graph G is assigned with an infinite potential and no predecessor vertex. The variable
potential saves the overall costs for moving from the start vertex to the current vertex.
The variable predecessor marks the vertex, right before the current vertex on the shortest
path. Furthermore, all vertices are added to a sorted queue with priority infinity. Since
the start vertex has to be expanded first and the shortest path from start to start has
zero costs, the potential and the priority are set to zero.
Now the algorithm iterates over all elements in the queue by priority and tries to find
the goal. Therefore, the element with the highest priority is selected first and expanded.
Expand means that all neighbors of the selected vertex are updated with the minimum of
their current potential and the selected vertices potential plus the costs from the selected
vertex to the neighbor. The priority of such a vertex is calculated by using the potential
plus the estimated distance to the goal, defined by a proper heuristic. Such a heuristic
has to be admissible to reach optimality using the A-Star algorithm. Admissible means
that the heuristic must not overestimate the costs to the goal vertex. Such an admissible
heuristic would be the Euclidean distance for example. Since the single robot planner
has to find the shortest path between two vertices and the A-Star algorithm only assigns
potentials to the vertices, every time a potential is updated, the predecessor is updated
as well with the selected vertex, to be able to find the shortest path by backtracking
from the found goal vertex to the start. In Algorithm 3.1 two functions are used, which
are assumed to be existent:

• float CalcCosts(start vertex, goal vertex)
Calculates the cost between two vertices. This costs are dependent on the goal the
algorithm has to achieve. In path planning these costs are often the path-length or
the travel time between two vertices.

• float CalcHeuristic(vertex)
Estimates the costs needed to travel from the given vertex to the goal. It is
important that the real costs are smaller equal to the value of GetPotential.

Since this algorithm is created for single robot path planning, a few additions have to be
made for using it in multi robot path planning. Firstly the SRRP has to be aware of
already planned route candidates. To these ends, a Route Coordinator (Section 3.4.2) is
introduced, which saves all planned route candidates and constrains newly planned ones.
This Route Coordinator presents a method for saving an already planned route candidate
and a method for checking if a vertex is occupied at a specific point in time. Therefore,
a vertex’s potential is only updated if it is not occupied by another robot. This addition
can be seen in Algorithm 3.2 line 17. This is sufficient for a minimal working solution
for a multi robot path planner, but since the MRRP should be able to solve complex

20

3.4. Single Robot Route Planner (SRRP)

problems like waiting on other robots and avoiding other robots, another addition is
included. Therefore, a module, which is able to resolve potential collisions, called MRCR
(Section 3.4.3) is added. It checks if a vertex is rejected because of a robot collision and
tries to bypass the collision by extending the search graph. It returns a list of possible
resolutions to the SRRP, which have to be added to the queue. The integration into the
algorithm is shown in Algorithm 3.2 line 23.

Algorithm 3.2: Adapted A-Star Algorithm
Input: Graph G, SourceVertex vs, GoalVertex vg

1 priority Queue Q()
2 foreach vertices v in Graph G do
3 if v 6= vs then
4 v.SetPotential (∞)
5 v.SetPredecessor (∅)
6 end
7 Q.add(v, ∞)
8 end
9 vs.SetPotential (0)

10 Q.SetPriority (vs, 0)
11 while Q not empty do
12 vertex v = Q.PopElement ()
13 if IsGoal (v) then
14 return G
15 end
16 foreach Neighbor vn of v do
17 if RouteCoordinator.CheckVertex (v,vn) then
18 if v.GetPotential () + GetCosts (v, vn) < vn.GetPotential ()

then
19 vn.SetPotential (v.GetPotential () + GetCosts (v, vn))
20 vn.SetPredecessor (v)
21 Q.SetPriority (vn, vn.GetPotential () + CalcHeuristic (vn))
22 end
23 else
24 set of vertices Vr = CollisionResolver.Resolve (v, vn, G)
25 foreach vr in Vr do
26 Q.add(vr, vr.GetPotential () + CalcHeuristic (vr))
27 end
28 end
29 end
30 end

21

3. Approach

timestep
robot tn tn+1 tn+2

robot r0 V2 V2, V5 V2, V3, V5

robot r1 V13 V13 V14

robot r2 V12 V12 V13

Figure 3.5: The data structure for saving the robot routes. tn saves the vertices occupied
for the specific time slice.

V1 V2 V3 V4

V5

V6

r0

(a) Robot occupies only one vertex at a point
in time

V1 V2 V3 V4

V5

V6

r0

(b) Robot occupies three vertices at a point
in time, while moving through the crossing

Figure 3.6: Segment occupation of a moving robot

3.4.2 Route Coordinator

The Route Coordinator is responsible for saving already planned route candidates from
the SRRP and constraining the generation of new ones. To save these route candidates
different data structures can be used. For a simple path planner, one can save generated
paths spatially, which has the disadvantage that a specific space is reserved for only one
robot. Another solution would be, to save space and direction of the robot’s movement
and allow robots to move on the same path if their direction matches. This approach
would solve our scenario from Figure 3.3a (Scenario Sequential), but would cause problems,
for other scenarios from Figure 3.3, where time has to be considered. The idea to solve
this issues is to use a timed data structure for saving route candidates given by the
SRRP.
This data structure is shown in Figure 3.5. It saves for each robot the locked vertices
at every point in time, which gives the SRRP the possibility, to include waiting steps
into the planner for solving temporal planning problems as well. Furthermore, the Route
Coordinator can plan route candidates, which can go forth and back on one vertex to
avoid other robots. The data structure has also to be able to save more than one vertex
for every robot and time step because by the given data-structure it can happen, that

22

3.4. Single Robot Route Planner (SRRP)

V0
r0: t1, t2
r1: t8, t7

V1
r0: t3, t4
r1: t6, t5

V2
r0: t5, t6
r1: t4, t3

V3
r0: t7, t8
r1: t2, t1

(a) Scenario, where robots r0 and r1 will find a invalid route candidate.

V0
r0: t1, t2, t3
r1: t9, t8, t7

V1
r0: t3, t4, t5
r1: t7, t6, t5

V2
r0: t5, t6, t7
r1: t5, t4, t3

V3
r0: t7, t8, t9
r1: t3, t2, t1

(b) Solution to the problem in 3.7a by using a slight time overlap for each vertex. Therefore, a
collision is detected in V1 and V2

Figure 3.7: A problem where two robots will switch places without detecting a collision.
It is assumed that every vertex is two "time-steps" long.

one robot occupies more than one vertex if it moves for example through a crossing. Such
a case is depicted in Figure 3.6. When using time for saving robot positions another
problem arises. If two robots are moving in opposite directions and would collide in
a specific spot, it can happen that the Route Coordinator is not able to recognize the
collision if both robots switching their vertices at the same time, depicted in Figure 3.7a.
To solve this problem, the vertices of a route candidate are saved with a slight time
overlap shown in Figure 3.7b.
To integrate the Route Coordinator into the SRRP, it presents two methods:

• bool CheckVertex(start vertex, goal vertex)
This method checks a given vertex at a specific point in time against all already
saved route candidates in the Route Coordinator for collisions. It returns success
or failure containing the colliding robot.

• bool SaveRoute (route)
Checks a newly planned route candidate and saves it internally for constraining
other ones.

23

3. Approach

Room A Room B

r0

r1

Figure 3.8: A scenario where robot r1 has to avoid r0

3.4.3 Multi Robot Collision Resolver (MRCR)

As one can see in Figures 3.3b (Scenario Wait), 3.3c (Scenario Avoid at Crossing), 3.3d
(Scenario Avoid at Start), 3.3e (Scenario Avoid at Goal), and 3.3f (Scenario Push), taking
time into account is not sufficient to solve these scenarios. Therefore, waiting steps and
redundant vertices have to be added to the search graph. The MRCR is used to generate
such waiting steps and vertices using three different algorithms described below:

• Backtracking Algorithm (BTA)

• Avoid Robot Algorithms (AVRA)

• Push Robot Algorithm (PRA)

The challenge for designing the MRCR is to create a solution, which does not remove
possible solutions from the SRRP and still allows the MRRP to find the shortest route
candidate from backtracking the potentials generated by the SRRP.
Assume the scenario from Figure 3.8. Therefore, robot r1 wants to follow the blue line.
Obviously, there are two solutions:

1. Robot r1 carries on moving and avoids r0 in Room A

2. Robot r1 waits in Room B and lets r0 pass first

24

3.4. Single Robot Route Planner (SRRP)

V0V1V2V3V4V5

V6

V7

V ′
1V ′

2V ′
3

G
G′

Figure 3.9: An example for a three dimensional graph extension. Vertices V ′
1,2,3 are

already assigned with different potentials compared to their parent nodes (V1,2,3).

Both of these solutions lead to a valid behavior of the robot, but the problem, how to
consider both solutions to the scenario arises. If we don’t allow a robot to wait, only
solution one will be found. This can lead to problems if waiting in the left crossing is
the only solution, which can happen when another higher prioritized robot has already
planned its route candidate. Furthermore, the planner has the possibility to select the
least time-consuming solution. If we allow the robot to wait, the planner has somehow to
save the calculated potentials for the alternative vertices without influencing the original
route candidate. A simple solution, therefore, is to save a list with different potentials,
but this makes the construction of a working traceback complicated. Furthermore, route
candidates where a robot avoids another one will produce multiple entries in the list,
which can lead to problems. The used idea for the MRRP is to temporarily extend the
graph, by copying vertices.
In Figure 3.9 such a scenario is shown. G describes the search graph, which is extended
with G′ to resolve a collision. Therefore, the first robot’s route candidate is already
planned, leading the robot from V5 to V7. For the second robot two scenarios are kept in
mind:

1. The robot moves from V0 to V7

2. The robot moves from V0 to V5

While resolving the problem, the MRCR has no idea in which branch the goal vertex
is placed. Therefore, both branches have to be considered. The solution for scenario
one would be to move from V0 to V7 in front of the first robot on G = (V,E). The
second solution would be to wait on V1 until robot one has passed and carry on moving
to V5. Obviously, the solution to scenario one is found anyway. For scenario two, the
second robot collides with the first one in V3. Assume the MRCR has found a resolution,
therefore, by waiting in V1 and afterwards moving to V3. Lets call the found vertices the
collision set Vc. In order to guarantee both scenarios a new subgraph G′ = (V ′, E′) is
introduced.

25

3. Approach

Furthermore, a new Joint Graph is created for the planning process, which is generated
as follows:

1. Copy all vertices involved in the collision to G′.
S ∈ Vc ↔ S′ ∈ V ′

Where S′ is the copy of S

2. Map all edges to the new graph as follows:
∀Vx, Vy ∈ V : (Vx, Vy) ∈ E ∧ V ′

x ∈ V ′ ∧ V ′
y ∈ V ′ → (V ′

x, V
′

y) ∈ E′

Where V ′
x is the copy of Vx

3. Create a joint graph Gj = (Vj , Ej):
Gj = G ∪G′

4. connect all edges of margin vertices with their original neighbor:
∀V ′

x, V
′

y ∈ V ′ : (Vx, Vy) ∈ E ∧ d+(V ′
x) ≤ 1 ∧ V ′

y /∈ V ′ → (V ′
x, Vy) ∈ Ej

Where d+(Vx) is the out-degree of Vx

After creating Gj critical potentials and predecessors, from vertices in G′ have to be
assigned. These are all vertices:

1. V ′
x, which are used for waiting tasks

2. V ′
y incident to edges connecting G′ with G, where the vertex Vy ∈ G has already a

potential assigned

3. V ′
z in between V ′

x and V ′
y

V ′
x is needed because the time a robot needs to spend on the vertex exceeds the time it

would need to move through the vertex. V ′
y needed because there are only edges from

G′ to the base graph G to not change its structure. This means if we would let the
Potential Expander continue planning on Vy instead on its successor V ′

x, it will not find a
successor and discards this resolution. V ′

z is needed because if the Potential Expander
finds a vertex with its potential assigned it will fail to expand this vertex. Therefore,
the Potential Expander has to continue expanding on the last vertex with an assigned
potential to find the intended resolution strategy, which is returned to the Potential
Expander. Since there are only connections from G′ to G, G′ is removed after resetting
the graph vertex’s predecessors and for the next planning iteration, Gj consists only of
G. To the SRRP the MRCR presents one method:

• list<vertex> Resolve(vertex, vertex, graph)
Tries to find a resolution to a marked collision on the graph and returns the end
vertex of the resolution, which the Potential Expander adds to its queue. Since for
different scenarios multiple collision resolution strategies are possible the resolve
method returns a list of these vertices.

In the following sections the used strategies for resolving collisions are explained. There-
fore, the introduced scenarios in Figure 3.3 are used to explain these strategies.

26

3.4. Single Robot Route Planner (SRRP)

r1 r0

(a) The start positions of the robots and the
desired paths by the corresponding arrows.

V0 V1 V2 V3

V4

(b) The solution to the given Problem with crit-
ical vertices marked (V0 − V4), which are used
for the Backtracking Algorithm (BTA)

Figure 3.10: Example Testcase which needs the BTA (Solution shown in Figure 3.11)

Backtracking Algorithm (BTA)

In Figure 3.3b (Scenario Wait) a scenario is shown, where a robot has to wait for another
one. To solve this scenario, waiting steps can be inserted into r1’s route candidate.
Because of the Route Coordinator’s data structure, the SRRP is also able to take time
into account. Thereby the problem arises, where and when to insert waiting steps. One
approach would be to consider waiting steps for every expansion, like the Spatio-Temporal
A* algorithm proposed in paper [WG12]. This has the major disadvantage that, the time
complexity of the planning problem is increased by one dimension through adding time.
To keep time complexity low, the MRCR approaches this problem by backtracking.
Assume the scenario depicted in Figure 3.3b (Scenario Wait). Robot r0 is planned first
and follows the red arrow. If the SRRP expands the route candidate for r1 along the
blue line, it detects a collision with r0 in the hallway. To resolve this collision the MRCR
is triggered, which backtracks the route candidate until the first vertex, distinct from the
r0’s route candidate is found. This vertex is assigned with the time, r0 reaches the first
vertex on its route candidate distinct from r1’s. From this point, the SRRP can carry on
expanding r1’s route candidate without finding the previous collision.
How to integrate this approach into the MRCR is shown in Algorithm 3.3. The shown
method is called recursively until a valid solution or the start vertex of the expansion
is found. Therefore, the algorithm calculates the potential of the colliding robot on the
collision vertex Pc, to assign this potential to the new copy of the vertex. If Va is not the
start vertex of the expansion it is tracked back once, by copying Va to the new vertex
to expand V ′

e and the predecessor of Va to the new actual vertex V ′
a. Furthermore, the

Potential of V ′
e is reset and the successor of the vertex is saved to enable the potential

calculator to expand this vertex again. For V ′
a the Potential is set to Pc and its successor

to V ′
e . If it is the start vertex tracking back is not possible. Therefore, Va is copied to

V ′
a and the potential is set to Pc for V ′

a. After creating the new vertices, it is checked
if the newly added vertex V ′

a has a valid potential to continue expanding. If not and a
new collision is detected, V ′

a and V ′
e are backtracked again. Obviously, if Va is the start

vertex further backtracking is not possible and NULL is returned. In the shown algorithm
Resolve is called in line 26. This method calls all resolve methods (BTA, Avoid Robot at
Crossing Algorithm (AVRCA), Avoid Robot at Start Algorithm (AVRSA), Avoid Robot

27

3. Approach

Algorithm 3.3: BTRA
Input: pointer(acutal_vertex Va), pointer(vertex_to_expand Ve),

colliding_robot Rc

Output: pointer(found_vertex Vf) or NULL
1 Pc = CalculatePotentialOfCollision (Ve, Rc)
2 if Pc == NULL then
3 return NULL
4 end
5 Pca = CalculatePotentialOfCollision (Va, Rc)
6 if Va is start_vertex ∨ Pca == NULL then
7 V ′

e = Ve

8 V ′
a = Copy (Va)

9 V ′
a.SetPotential (Pc)

10 V ′
a.SetCollidingRobot (Rc)

11 V ′
a.SaveSuccessor (V ′

e)
12 else
13 V ′

e = Copy (Va)
14 V ′

e .SetPotential (-1)
15 V ′

e .SaveSuccessor (Ve)
16
17 V ′

a = Copy (Va.GetPredecessor ())
18 V ′

a.SetPotential (Pc)
19 V ′

a.SaveSuccessor (V ′
e)

20 end
21
22 if IsNodeFreeUntil (V ′

a, Pc, out Rc) then
23 return V ′

a

24 else
25 if Rc is not NULL ∧ Va is not start_vertex then
26 return Resolve (V ′

a, V ′
e , Rc)

27 end
28 end
29 return NULL

28

3.4. Single Robot Route Planner (SRRP)

V0
r0: -

r1: t1 → t2

V1
r0: -

r1: t2 → t3

V2
r0: t5 → t6
r1: t3 → t4

V3
r0: t4 → t5
r1: t4 → t5E

V4
r0: t6 → t7
r1: t3 → t4

(a) The initial robot Collision on V3

V0
r0: -

r1: t1 → t2

V1
r0: -

r1: t2 → t3

V ′
1

r0: -
r1: t2 → t6

V2
r0: t5 → t6
r1: t3 → t4

V ′
2

r0: t5 → t6
r1: t6 → t7E

V3
r0: t4 → t5

r1: -

V4
r0: t6 → t7
r1: t3 → t4

(b) The first backtracking iteration creating V ′
1 and V ′

2 , which leads to another collision

V0
r0: -

r1: t1 → t2

V1
r0: -

r1: t2 → t3

V ′′
1

r0: -
r1: t2 → t7

V2
r0: t5 → t6
r1: t3 → t4

V ′
2

r0: t5 → t6
r1: -

V3
r0: t4 → t5

r1: -

V4
r0: t6 → t7
r1: t3 → t4

(c) The last iteration of the BTA by setting V ′′
1 to the appropriate time step.

Figure 3.11: The implementation of the BTA

29

3. Approach

at Goal Algorithm (AVRGA), Push Robot Algorithm (PRA)) sequentially to resolve a
collision.
An example for this algorithm is shown in Figures 3.10 and 3.11. Figure 3.10 shows the
start positions of the two robots and their final route candidates. Additionally, critical
vertices used by the MRCR are marked with Vx. In Figure 3.11 the procedure of resolving
this collision is shown. In this scenario, one can see the four vertices used by the MRCR
already assigned with their given time steps. Robot r0’s time steps are fixed because
this route candidate is already found and added to the Route Coordinator. Time steps
drawn in black are expanded by the Potential Expander but not necessary for the actual
solution. As mentioned in 3.4.2 each vertex is saved with a time overlap to the next one.
In Figure 3.11a the situation, where the planner fails to expand a route candidate, can
be seen. At this point the MRCR gets triggered with V2 → V3. The resolver tracks back
onto vertex V1. This vertex gets copied and the potential for waiting on this vertex is set.
V ′

2 is copied from V2. Its potential is kept empty because at this point the final value of
its potential is not known. In the next iteration a new collision is found in V ′

2 shown in
Figure 3.11b. Therefore, the MRCR recognizes, that V1 is only occupied from robot one
and sets the priority to the value robot zero leaves the collision vertex. As one can see
V ′′

1 is the vertex, which is finally used for waiting until robot zero has passed. Therefore,
the Potential Expander can continue expanding on this vertex and will find a solution
for this problem.

30

3.4. Single Robot Route Planner (SRRP)

Avoid Robot Algorithms (AVRA)

In Figure 3.3c (Scenario Avoid at Crossing) a scenario can be seen where both robots
want to switch places. It is assumed, that the start point of robot r0 is the goal point
of r1 and vice versa. Furthermore, it is assumed, that r0’s route candidate is already
planned. If the SRRP consists only of the Route Coordinator and the BTA, the planner
will fail because it will end backtracking in the start point of r1. Obviously, this scenario
can be solved by letting r1 move into the door above the hallway and back on its path.
Furthermore, in Figure 3.3d (Scenario Avoid at Start) a scenario can be seen, where robot
r1 sitting on its start point is blocking r0’s route candidate. This scenario can be solved
by moving r1 in the opposite direction until it has passed the door. Afterwards, r0 can
move into the door above and r1 can finally follow its route candidate toward the goal.
In Figure 3.3e (Scenario Avoid at Goal) a scenario is shown, where robot r1 sits on its
goal and blocks r0’s route candidate. This scenario can be solved similar to the one of
Figure 3.3d (Scenario Avoid at Start), by moving r1 through the crossing and let it wait
there.
All of these scenarios can be solved by allowing the MRCR to not only backtrack the route
candidate but also enable him to expand into branches of crossings and back to create
scenarios like the one in Figure 3.3b (Scenario Wait). The MRCR presents, therefore,
three different algorithms to avoid higher prioritized robots:

1. AVRCA (Figure 3.3c / Scenario Avoid at crossing)

r1 r0

2. AVRSA (Figure 3.3d / Scenario Avoid at Start)

r0 r1

3. AVRGA (Figure 3.3e / Scenario Avoid at Goal)

r0 r1

31

3. Approach

r1 r0

(a) The start positions of the robots and the
desired paths by the corresponding arrows.

V0
V1 V2 V3

V4

(b) The solution to the given Problem with crit-
ical vertices marked (V0 − V4), which are used
for the avoid crossing resolution strategy

Figure 3.12: Example Testcase which needs the AVRCA (Solution shown in Figure 3.13)

For the AVRCA strategy this will look like as follows. The SRRP finds a collision
between robots r1 and r0 and uses the BTA. After the MRCR reaches the door (which is
seen as crossing in the graph), it will try to wait on the upper branch of the crossing and
simultaneously continue backtracking. In this scenario, the BTA will fail, but waiting in
the upper branch of the crossing will succeed and is added to the route candidate. The
time until the robot sits on this branch is the time, where r0 leaves the vertex, which is
connected to the waiting branch. This creates the same scenario as shown in Figure 3.3b
(Scenario Wait) after the BTA is applied, which can be solved by expanding towards r1’s
goal.
The algorithm, therefore, is shown in Algorithm 3.4. This algorithm is called after every
backtracking iteration. At first, the potential of the colliding robot is calculated, which is
the time until a robot has to wait on another vertex to be allowed to move through this
one. If in between Va and Ve is a crossing the AVRCA can be applied. Therefore, each
vertex of the crossing except Va and Ve are candidates for the avoidance strategy. Now for
each candidate, a copy of it is produced and Ve and V ′

a are set as successor and predecessor
to build the connection to the base search graph G. Furthermore, the potential is set to
Pc or to the expansion costs of V ′

x if they exceed Pc. If this route candidate is valid V ′
x is

added to the list of found vertices Vf . If this route candidate contains a collision with
another robot the PRA is called, which is explained in Section Push Robot Algorithm
(PRA). This method basically tries to expand towards any other free vertex and back to
V ′

x. If a solution to this problem is found it is again returned to the SRRP.
Like in Section 3.4.3 an example for such a resolution is shown in Figures 3.12 and 3.13.
Figure 3.12 shows the start positions of the two robots and their final route candidates
and in Figure 3.13 the procedure of resolving this collision is shown. Again r0’s time
steps are fixed. Time steps drawn in black are expanded by the Potential Expander but
not necessary for the actual solution.
In Figure 3.13a, the state, where the MRCR has backtracked once, is shown. To resolve
the new collision detected in V ′

2 , Vertex V ′
4 is added to the graph to present a valid

route candidate for the Potential Expander. This is shown in Figure 3.13b, where V ′
4 is

returned to the SRRP, to continue expanding.

32

3.4. Single Robot Route Planner (SRRP)

Algorithm 3.4: AVRCA
Input: pointer(acutal_vertex Va), pointer(vertex_to_expand Ve),

colliding_robot Rc

Output: list of found_vertices Vf

1 Pc = CalculatePotentialOfCollision (Ve, Rc)
2 if Pc == NULL then
3 return NULL
4 end
5 if crossingBetween(Va,Ve) then
6 V ′

a = Copy (Va)
7 Vap = Va.GetPredecessor ()
8 V ′

a.SetPotential (Vap .GetPotential() + CalcCosts (Vap , Va))
9 foreach vertices Vx in crossing except Va and Ve do

10 V ′
x = Copy (Vx)

11 V ′
x.SaveSuccessor (Ve)

12 V ′
x.SavePredecessor (V ′

a)
13 V ′

x.SetPotential (Max (Pc, Va.GetPotential () + CalcCosts (Va, V ′
x)))

14
15 if IsNodeFreeUntil (V ′

x, V ′
x.GetPotential (), out Rc) then

16 Vf .Add (V ′
x)

17 else
18 if Rc is not NULL then
19 Vf .Add (PRA (Va, V ′

x, Rc))
20 end
21 end
22 end
23 end
24
25 return Vf

33

3. Approach

V0
r0: t7 → t8
r1: t1 → t2

V1
r0: t6 → t7
r1: t2 → t3

V ′
1

r0: t6 → t7
r1: t2 → t6E

V2
r0: t5 → t6
r1: t3 → t4

V ′
2

r0: t5 → t6
r1: -

V3
r0: t4 → t5

r1: -

V4
r0: -

r1: t3 → t4

(a) The backtracking attempt equal to 3.11b, which leads to another collision

V0
r0: t7 → t8
r1: t1 → t2

V1
r0: t6 → t7
r1: t2 → t3

V ′′
1

r0: t6 → t7
r1: t2 → t3

V ′
4

r0: -
r1: t4 → t7

V2
r0: t5 → t6
r1: t3 → t4

V ′
2

r0: t5 → t6
r1: -

V3
r0: t4 → t5

r1: -

V4
r0: -

r1: t3 → t4

(b) The avoidance resolution by copying V4 and setting the appropriate potential. Simultaneously
the BTA will continue until one of both has found a solution.

Figure 3.13: The implementation of the AVRCA

34

3.4. Single Robot Route Planner (SRRP)

r0 r1

(a) The start positions of the robots and the
desired paths by the corresponding arrows.

V0 V1 V2 V3

V4

(b) The solution to the given Problem with crit-
ical vertices marked (V0 − V4), which are used
for the AVRSA

Figure 3.14: Example Testcase which needs the AVRSA (Solution shown in Figure 3.15)

The AVRSA strategy is used if a robot sits on its start point and blocks a higher
prioritized robots route candidate. In Figure 3.3d (Scenario Avoid at Start) such a
scenario is shown. The Potential Expander detects a collision between robots r1 and r0.
Backtracking is not possible because r1 already sits on its start position. To resolve this
problem the MRCR expands into all branches of the crossing to the right of r1 and lets r1
wait until r0 has passed. Obviously, in the scenario, the expansion into the upper branch
of the crossing will fail, but the one in the right branch will succeed and the planner will
find a valid solution.
The algorithm used for this scenario is shown in Algorithm 3.5. If the actual base vertex
for the expansion Va is the start vertex, the algorithm iterates over all neighbors on
the opposite site of Ve. This means if Ve is in the list of predecessors, the successors
are taken and vice versa. For each Vx in this neighbor-set Va and Vx are copied. The
successors and predecessors are set, to create a new start sequence in the following
direction: Va → V ′

x → V ′
a → Ve. Furthermore, the potential of V ′

x is set to Pc or to the
expansion costs of V ′

x if they exceed Pc. If this route candidate is valid V ′
x is added to Vf .

If not the PRA, shown in Section Push Robot Algorithm (PRA), is used to find another
waiting spot.
In Figures 3.14 and 3.15 an example to this scenario is shown. Figure 3.12 shows the
start positions of the two robots and their final route candidates and in Figure 3.13 the
procedure of resolving this collision is shown. Again r0’s time steps are fixed. Time steps
drawn in black are expanded by the Potential Expander but not necessary for the actual
solution.
In Figure 3.15a, the collision is shown, where the Potential Expander tries to expand
into V0. This can be resolved by copying V2 to V ′

2 and expanding into it. Furthermore,
V1 is copied to V ′

1 to present a vertex, which allows the Potential Expander to find a
route candidate back. Additionally, V ′

4 is created and checked if an expansion into V ′
4

and back is possible. Obviously, this fails because r0 will overrun r2 when waiting in V4.
The newly created graph can be seen in Figure 3.15b.

35

3. Approach

Algorithm 3.5: AVRSA
Input: pointer(acutal_vertex Va), pointer(vertex_to_expand Ve),

colliding_robot Rc

Output: list of found_vertices Vf

1 Pc = CalculatePotentialOfCollision (Ve, Rc)
2 if Pc == NULL then
3 return NULL
4 end
5 if Va is start then
6 foreach vertices Vx in neighbours which not contain Ve do
7 V ′

a = Copy (Va)
8 V ′

x = Copy (Vx)
9 V ′

x.SaveSuccessor (V ′
a)

10 V ′
a.SaveSuccessor (Ve)

11 V ′
x.SavePredecessor (Va)

12 V ′
a.SavePredecessor (V ′

x)
13 V ′

x.SetPotential (Max (Pc, Va.GetPotential () + CalcCosts (Va, V ′
x)))

14
15 if IsNodeFreeUntil (V ′

x, GetPotential (Vx), out Rc) then
16 Vf .Add (V ′

x)
17 else
18 if Rc is not NULL then
19 Vf .Add (PRA (Va, V ′

x, Rc))
20 end
21 end
22 end
23 end
24 return Vf

36

3.4. Single Robot Route Planner (SRRP)

V0
r0: t1 → t2
r1: t1 → t2E

V1
r0: t2 → t3
r1: t0 → t1

V2
r0: -

r1: t1 → t2

V3
r0: -

r1: t2 → t3

V4
r0: t3 → t4
r1: t1 → t2

(a) Shown the expansion attempt into V0, which leads to a collision

V0
r0: t1 → t2

r1: -

V1
r0: t2 → t3
r1: t0 → t1

V ′
1

r0: t2 → t3
r1: -

V2
r0: -

r1: t1 → t2

V ′
2

r0: -
r1: t1 → t4

V3
r0: -

r1: t2 → t3

V4
r0: t3 → t4
r1: t1 → t2

V ′
4

r0: t2 → t3
r1: t3 → t4E

(b) The collision resolution by adding a new start sequence V1 → V ′
2 → V ′

1 to avoid robot r0
route. V ′

4 is also expanded but fails due to a collision with r0.

Figure 3.15: The implementation of the AVRSA

37

3. Approach

r0 r1

(a) The start positions of the robots and the
desired paths by the corresponding arrows.

V0 V1 V2 V3

V4

(b) The solution to the given Problem with crit-
ical vertices marked (V0 − V4), which are used
for the AVRGA

Figure 3.16: Testcase which needs the AVRGA (Solution shown in Figure 3.17)

The AVRGA strategy is used if a robot has already reached its goal and blocks a higher
prioritized robots route candidate. In Figure 3.3e (Scenario Avoid at Goal) such a scenario
can be seen. Robot r1 moves towards its goal and stops expanding because the goal of r1
is already found. This blocks robot r0 and the planner will fail to find a route candidate.
Therefore, r1 is only allowed to stop on its goal if it is not occupied in the future. To wait
on another vertex for this point in time the backtracking strategy can be used, but if r1
starts in front of r0 this will fail as well. Similar to the Avoid Robot at Start algorithm
this can be solved as well by expanding into the next crossing to avoid r0 there.
The algorithm, therefore, is shown in 3.6. If the vertex the planner wants to expand
to (Ve) is the goal vertex the planner adds a new goal sequence. To these ends, the
MRCR expands into the neighborhood, which not contains Va. For each vertex Vx in this
neighborhood a new goal sequence is created by copying Ve and Vx. Ve is the goal vertex
and is copied once for moving through it (V ′

e). V ′
x is the vertex, where the robot tries to

wait and assigned with the potential Pc or the expansion costs of V ′
x if they exceed Pc.

The Predecessors and Successors are set to fit the given goal sequence: V ′
e → V ′

x → Ve.
If the robot is not able to wait in this vertex the PRA, shown in Section Push Robot
Algorithm (PRA), is used to find another waiting spot. All results are saved into the list
Vf and returned to the SRRP.
In Figures 3.16 and 3.17 an example to this scenario is shown. Figure 3.12 shows the
start positions of the two robots and their final route candidates and in Figure 3.13 the
procedure of resolving this collision is shown. Again r0’s time steps are fixed. Time steps
drawn in black are expanded by the Potential Expander but not necessary for the actual
solution.
In Figure 3.17a, the collision is shown, where r1 tries to stay on its goal in V2. In
Figure 3.17b the resolution is shown, by adding the new goal sequence V ′

2 → V ′
3 → V2.

Another solution, which is tested by the algorithm is the sequence V ′
2 → V ′

4 → V2, but
this will fail due to a collision between r0 moving upwards and r1 waiting on V4.

38

3.4. Single Robot Route Planner (SRRP)

Algorithm 3.6: AVRGA
Input: pointer(acutal_vertex Va), pointer(vertex_to_expand Ve),

colliding_robot Rc

Output: list of found_vertices Vf

1 Pc = CalculatePotentialOfCollision (Ve, Rc)
2 if Pc == NULL then
3 return NULL
4 end
5 if Ve is goal then
6 foreach Vertices Vx in neighbours which not contain Va do
7 V ′

e = Copy (Ve)
8 V ′

x = Copy (Vx)
9 V ′

e .SavePredecessor (Va)
10 V ′

x.SavePredecessor (V ′
e)

11 V ′
e .SaveSuccessor (V ′

x)
12 V ′

x.SaveSuccessor (Ve)
13 V ′

e .SetPotential (Va.GetPotential () + CalcCosts (Va,V ′
e))

14 V ′
x.SetPotential (Max (Pc, V ′

e .GetPotential () + CalcCosts (V ′
e , V ′

x)))
15
16 if IsNodeFreeUntil (V ′

x, GetPotential (Vx), out Rc) then
17 Vf .Add (V ′

x)
18 else
19 if Rc is not NULL then
20 Vf .Add (PRA (Ve, V ′

x, Rc))
21 end
22 end
23 end
24 end
25 return Vf

39

3. Approach

V0
r0: t1 → t2

r1: -

V1
r0: t2 → t3
r1: t0 → t1

V2
r0: t3 → t4
r1: t2 →∞E

V3
r0: -
r1: -

V4
r0: t4 → t5

r1: -

(a) The expansion of robot r1 finding a collision in V2, because it is not allowed to wait forever in
this vertex.

V0
r0: t1 → t2

r1: -

V1
r0: t2 → t3
r1: t0 → t1

V2
r0: t3 → t4

r1: -

V3
r0: -
r1: -

V4
r0: t4 → t5
r1: t1 → t2

V ′
2

r0: t3 → t4
r1: t1 → t2

V ′
3

r0: -
r1: t2 → t5

V ′
4

r0: t4 → t5
r1: t3 → t4

V ′′
2

r0: t3 → t4
r1: t1 → t2 E

(b) The solution for the given problem generated from the MRCR. Therefore a route arises, which
moves the robot through the goal and back again. Additionally the route V ′′

2 → V ′
4 → V2 is also

created. Obviously there is a collision in V ′
4 between robots r0 and r1. Therefore this route is

rejected by the MRCR.

Figure 3.17: The solution for the scenario shown in 3.16.

40

3.4. Single Robot Route Planner (SRRP)

r0 r1

(a) The start positions of the robots and the
desired paths by the corresponding arrows.

V0 V1 V2 V3 V4

V5

(b) The solution to the given Problem with crit-
ical vertices marked (V0 − V4), which are used
for the PRA

Figure 3.18: Example Testcase which needs the PRA (Solution shown in Figure 3.19)

Push Robot Algorithm (PRA)

The Backtracking Algorithm (BTA) and the Avoid Robot Algorithms (AVRA), solve
problems where the robot passes a crossing or sits directly at a crossing. But many
scenarios are not exactly like these ones. For example, Figure 3.3e (Scenario Avoid at
Goal) shows a scenario solvable by the explained avoid robot at goal algorithm. If this
scenario is slightly changed and r1’s goal is not exactly at the crossing but one vertex
away this strategy fails because no free branch of a crossing is close to wait. Such a
scenario is shown in Figure 3.3f (Scenario Push). The solution, therefore, is to allow the
MRCR to "push" waiting vertices in the moving direction of the higher prioritized robot.
For the scenario from Figure 3.3f (Scenario Push) the MRCR uses the avoid robot at
goal algorithm at first. Obviously, a collision is detected again because robot r0 moves
through the same vertex. Now the MRCR is allowed to expand another vertex into all
branches right of this vertex. In this scenario, a free vertex at the crossing is found
and the MRCR assigns the found one with the time r1 has to wait until r0 has passed.
Additionally, the MRCR has to add vertices for moving back from the waiting vertex.
The algorithm, therefore, is shown in 3.7. At first, the Potential of the colliding robot in
Ve is calculated. If Ve is a wait_vertex, which means a vertex generated by any of the
Avoid Robot Algorithms (AVRA) or by the PRA, the strategy can be applied. To these
ends, Ve is set to the potential of Va plus the costs for moving through Va. For each Vx

in the neighbor set, which not contains Va, the following operations are executed. Ve is
copied to create a vertex for the planner to find the route candidate back to the vertex
in the base graph G and Vx is copied as new wait_vertex. Similar to the AVRGA the
potential for the wait_vertex V ′

x is set with the maximum of Pc and the cost for moving
through V ′

x. If this V ′
x has a valid potential, which causes no collisions with other robots

it is added to Vf . If there is a collision found in V ′
x the PRA is called recursively.

In Figures 3.16 and 3.17 an example to this scenario is shown. Figure 3.12 shows the
start positions of the two robots and their final route candidates and in Figure 3.13 the
procedure of resolving this collision is shown. Again r0’s steps are fixed. Time steps
drawn in black are expanded by the Potential Expander but not necessary for the actual
solution.

41

3. Approach

V0
r0: t2 → t3
r1: t0 → t1

V1
r0: t3 → t4

r1: -

V2
r0: t4 → t5

r1: -

V3
r0: -
r1: -

V4
r0: t5 → t6

r1: -

V ′
1

r0: t3 → t4
r1: t1 → t2

V ′
2

r0: t4 → t5
r1: t2 → t5E

(a) A collision, while the robot tries to use the AVRGA strategy

V0
r0: t2 → t3
r1: t0 → t1

V1
r0: t3 → t4

r1: -

V2
r0: t4 → t5

r1: -

V3
r0: -
r1: -

V4
r0: t5 → t6

r1: -

V ′
1

r0: t3 → t4
r1: t1 → t2

V ′′
2

r0: t4 → t5
r1: -

V ′
2

r0: t4 → t5
r1: t2 → t3

V ′
3

r0: -
r1: t3 → t6

V ′
4

r0: t5 → t6
r1: t3 → t6E

(b) The PRA by adding V4 and V3 to the resolution graph. V4 is rejected because this vertex
leads to a collision between robots r0 and r1.

Figure 3.19: The implementation of the PRA

42

3.4. Single Robot Route Planner (SRRP)

Algorithm 3.7: PRA
Input: pointer(acutal_vertex Va), pointer(vertex_to_expand Ve),

colliding_robot Rc

Output: list of found_vertices Vf

1 Pc = CalculatePotentialOfCollision (Ve, Rc)
2 if Pc == NULL then
3 return NULL
4 end
5 if Ve is wait_vertex then
6 Ve.SetPotential (Va.GetPotential + CalcCosts (Va,Ve))
7 foreach vertex Vx in neighbours which not contain Va do
8 V ′

e = Copy (Ve)
9 V ′

x = Copy (Vx)
10 V ′

x.SavePredecessor (Ve)
11 V ′

e .SavePredecessor (V ′
x)

12 V ′
x.SaveSuccessor (V ′

e)
13 V ′

e .SaveSuccessor (Va)
14 V ′

x.SetPotential (Max (Pc, V ′
e .GetPotential () + CalcCosts (Va, V ′

x)))
15 end
16
17 if IsNodeFreeUntil (V ′

x, V ′
x.GetPotential (), out Rc) then

18 Vf .Add (V ′
x)

19 else
20 if Rc is not NULL then
21 Vf .Add (PRA (Ve, V ′

x, Rc))
22 end
23 end
24 end
25 return Vf

In Figure 3.19a the first attempt to resolve a collision by the AVRGA is shown, which
causes a collision in the wait_vertex V ′

2 . To try to find another solution the MRCR uses
PRA. Therefore, V ′

2 is copied to V ′′
2 and V ′

2 is used to move to the new wait_vertex V ′
3 ,

which is set with the potential the robot has to wait there. Simultaneously V4 is copied
as well and checked for a solution, which fails because of a collision when r1 wants to
wait in V ′

4 . The solution is shown in Figure 3.19b.

43

3. Approach

3.5 Multi Robot Route Planner Extensions

In Section 3.4 the used SRRP is explained, which enables the MRRP to solve scenarios
like the ones shown in Figure 3.3, but there are still cases, which lead to problems, when
planning with multiple robots. Two such scenarios are shown in Figure 3.20. To solve
these scenarios two extensions to the MRRP are added explained in Sections 3.5.1 and
3.5.2.

r0 r1

(a) A test case where priority matters. If
robot r0 has higher priority than r1 the
MRRP fail because r0 blocks r1’s route can-
didate. If r1 has higher priority it will find
a route candidate to its goal and r0 has to
adapt to r1’s route candidate.

r0 r1

(b) A scenario, where priority scheduling
fails because no robot is fast enough to move
into the spot on the top to avoid the other
one. (Assumed both have the same maxi-
mum speed)

Figure 3.20: Problem sets, where the SRRP fail.

r2 r0 r1

Figure 3.21: In this scenario it is unnecessary to exchange r2’s priority with any other
robot

44

3.5. Multi Robot Route Planner Extensions

3.5.1 Priority Rescheduling

The scenario, shown in Figure 3.20a shows two robots, where robot r0 has higher priority
than r1. Therefore, r0 can plan its route candidate ignoring r1’s route candidate, which
leads to the situation, that r0 has planned its route candidate onto its goal, but blocks
r1’s route candidate. If r1 would have higher priority than r0, the planner can plan the
route candidate of r1 before the route candidate of r0 and the collision from the first
priority scheme would not exist. Therefore, r1 plans its route candidate in a straight line
and r0 is forced to wait at the crossing until r1 has passed, which can be solved by the
SRRP.
In the papers [BBT01] and [BBT02] an approach for solving such scenarios is explained,
by trying to find valid priority schemes for decoupled planning. Therefore, it is proposed
to assign all robots priorities randomly in the first iteration of the algorithm. After
receiving the first result from the SRRP, two robots priorities are exchanged randomly
and the SRRP is triggered again until a solution is found. This means if there is a
priority scheme, which solves the given scenario this strategy will find it eventually.
Furthermore, the algorithm can be run further after finding a successful priority scheme
until all schemes are tested or until a custom defined number of iterations to improve the
overall route length of the routing table.

Algorithm 3.8: Get Priority Schedule
Input: already tested schedules Vl, pointer to RouteCoordinator Pc, failed robot ri

Output: new schedule sp or NULL
1 if ri == NULL then
2 ri = Pc.GetRobotWithMostOveralCollisions ()
3 end
4 sorted list of robots Rl = Pc.GetRobotListSortedByNrOfCollision (ri)
5 foreach robot r in Rl do
6 current schedule sp = Vl.GetLastEntry ()
7 sp = FlipRobots (sp, ri, r)
8 if (Vl not contains sp) then
9 Vl.Add(sp)

10 return sp

11 end
12 end
13 return NULL

Because the algorithm exchanges priority schemes randomly, "inefficient priority ex-
changes" can happen. An example, therefore, is shown in Figure 3.21. In this scenario,
robot r0 has the highest priority followed by r1 and r2. This assignment lets the SRRP
fail planning all route candidates because r0 blocks r1’s route candidate. Thus, it is not
useful to exchange r2’s priority with any other robot. To avoid such "inefficient priority
exchanges" one can count the number of unresolvable collisions between two robots and

45

3. Approach

decide on this number, which priorities to exchange. Therefore, the SRRP has to count
all collision resolution calls, which are answered with an empty list of vertices. If no
routing table is found from the SRRP, the MRRP can exchange the two priorities with
the most unresolved collisions. Thus r2 from the scenario in Figure 3.21, is ignored when
the MRRP decides to exchange priorities. If there is no such collision the MRRP can
take the number of collisions with a resolution into account, to find the route candidate
with the most conflicts. If there is no collision of any type the route candidate length
is optimal if a routing table is found or there is no solution at all to this problem. The
reason, therefore, is that if there are no collisions between robots, every robot can be
planned using a single robot planner, which will either succeed for all robots on its
shortest route candidate or fail for at least one.
The algorithm used for priority rescheduling is shown in Algorithm 3.8. Therefore, three
methods are assumed to be known:

• List<Robots> GetRobotListSortedByNrOfCollision (robot)
This method returns a list sorted by unresolvable collisions. If two robots have the
same amount of unresolvable collisions with ri the one with more overall collisions
is higher placed in the list. If a robot has no collision of any type it is not part of
this list.

• robots GetRobotWithMostOveralCollisions ()
This method returns the robot, which has the most overall collisions. This would
be the robot with the greatest sum of GetRobotListSortedByNrOfCollision.

• schedule FlipRobots (schedule, robot, robot)
Exchanges two robots in a priority schedule.

46

3.5. Multi Robot Route Planner Extensions

3.5.2 Speed Rescheduling

Priority scheduling solves problems like the one from Figure 3.20a, but scenarios exist,
where two robots have the same distance to a crossing like that shown in Figure 3.20b.
Obviously, the solution to this scenario is to let one of both robots avoid the other
robot at the crossing. But in this scenario where both robots have the same distance to
the crossing the AVRCA will fail because independent of the priority scheme the lower
prioritized robot is too slow to move into its waiting spot.
To find a solution for such a problem, the higher prioritized robot has to wait a short
period of time for the lower prioritized one. This can be done through decreasing the
higher prioritized robots speed. Assume robot r0 has the highest priority but half of its
maximum speed. What happens is that r0’s route candidate needs twice as much time
to execute, but thereby r1 has enough time to use the AVRCA for avoiding r0, which
solves the scenario.
When using this approach two issues arise. The first issue is, that the time calculated
for a route candidate cannot be generated out of the potential field directly because of
robots with reduced speed using this speed for the planning process of the whole route
candidate. This issue can be resolved by following the route candidates for all robots
simultaneously and assigning the least potential value valid to a vertex or synchronize
robots independent of their maximum speed, which is explained in 4.2.1.

Algorithm 3.9: Get Speed Schedule
Input: already tested schedules per robot Vl, pointer to RouteCoordinator Pc,

failed robot ri

Output: new schedule sp or NULL
1 if ri == NULL then
2 return NULL
3 end
4 sorted list of robots Rl = Pc.GetRobotListSortedByNrOfCollision (ri)
5 foreach robot r in Rl do
6 current schedule sp = Vl.GetLastEntry ()
7 sp = DecreaseSpeed (sp, r, δv)
8 if IsScheduleValid (sp, Vl[ri]) then
9 Vl.Add(sp)

10 return sp

11 end
12 end
13 return NULL

The second issue, for speed scheduling, is that it is not trivial to find a speed schedule,
which leads to a valid solution. Thus the speeds of the robots have to be adapted if the
SRRP fails to find a plan, similar to the priority rescheduling strategy. Like used for
the priority rescheduling strategy collisions between robots are counted, while assigning

47

3. Approach

the search graph with priorities. If a routing table fails, the robot, which has the most
collisions with the robot for which the SRRP failed to find a plan, gets its maximum
speed reduced at δv. Every robots route candidate with lower or equal priority to this
robot is planned again. Furthermore, the number of times a robots maximum speed can
be decreased has to be limited because if a robot is selected, which will not solve the
problem, but has the most collisions with the failing robot, the planner will end up in an
infinite loop. The algorithm used for speed rescheduling is shown in 3.9. Therefore, three
methods are assumed to be known:

• List<Robots> GetRobotListSortedByNrOfCollision (robot)
This method returns a list sorted by unresolvable collisions. If two robots have the
same amount of unresolvable collisions with ri the one with more overall collisions
is higher placed in the list. If a robot has no collision of any type it is not part of
this list.

• bool IsScheduleValid (schedule, history of schedules)
Checks if a given Schedule is valid depending on the History for a given robot. For
a robot r it is only allowed to decrease the speed n times for a collision with a
specific robot ri.

• schedule DecreaseSpeed (schedule, robot, speed)
Decreases the robots speed in a given schedule.

48

CHAPTER 4
Implementation

This chapter describes the implementation of the MRRP including additional algorithms
and the setup used for testing. The framework is implemented using ROS. ROS is a
framework which provides a communication interface to simplify writing robot software.
It is organized in nodes and topics, where a node represents a program, which is able to
communicate with other ones over topics. A topic is a communication channel, which
allows a node to publish messages over a TCP-connection. Other nodes can subscribe to
these topics and receive the published messages. Furthermore, ROS presents multiple
tools for visualization, maintenance and debugging.
In order to cover the implementation this chapter is structured in four parts:

• Graph Generation
Containing a Voronoi Path Generator (4.1.1), a Path Segmentation node (4.1.2),
to generate a graph out of a given roadmap and a path saver/server node, to save
and publish precomputed maps

• Path Planning
Containing the MRRP, which implements the scientific contribution explained in
Chapter 3. However, some of the additional helper functions used are explained in
this chapter to complete the MRRP.

• Robot Controller
Containing a robot motion controller and a state observer to synchronize robots.

• Test Environment
Implemented in Robot Operationg System (ROS), including Stage and RVIZ to
simulate the robots. Stage is a simulation software, which can be used with ROS to
simulate mobile robots and RVIZ is a visualization tool, which presents an interface
for publishing and visualizing topics.

In Figure 4.1 the test environment of the MRRP is shown, containing the topics used for
communication between the nodes. The topics contain the following data:

49

4. Implementation

Path Segmentation Map Server

MRRP Robot Simulation (Stage ROS)

Controller
Robot 1

Controller
Robot 2

...

map

graph

ci/odom

ci/odom ci/cmd

ci/sync ci/sync

ci/sync

ci/plan
goals

Figure 4.1: The test environment consisting of Path Server, Path Segmentation, the
MRRP, simulation environment and multiple controllers (ci) for each vehicle.

• map (grid_map_msgs/GridMap)
Contains a distance transform and a roadmap represented as pixel map.

• graph (voronoi_segmentation/VoronoiGraph)
Contains the used search graph by the MRRP

• odom (nav_msgs/Odometry)
Contains the odometry data of a robot (x, y, z, qx, qy, qz, qw)

• plan (tuw_multi_robot_utils/SegmentPath)
the routing table containing a route to follow for each robot represented as segments
with start, end and preconditions for synchronization

• sync (tuw_multi_robot_utils/PathPrecondition)
Contains the synchronization messages for each robot to guarantee a deadlock free
execution of the plan

• cmd (geometry_msgs/Twist)
Contains the control commands for a robot

50

4.1. Graph Generation

4.1 Graph Generation

In this section, the generation of the graph used by the MRRP is explained.
Since our planner uses a search graph instead of a pixel map an algorithm to find a data
abstraction from a pixel map has to be used.
The idea, therefore, is to use roadmaps described in [LaV06] to create a data abstraction.
An approach, hereby, is shown in [WWW16], which describes voronoi paths used for
planning. The benefit of voronoi paths is, that they describe a fully connected path with
line-of-sight contact to every pixel on the map. Furthermore, these lines describe the
path with the maximum distance to obstacles at every point. Section 4.1.1 describes the
creation of such paths.
To build a usable graph for the MRRP the voronoi paths have to be converted into a
voronoi graph containing multiple segments of a specific length. This process is described
in Section 4.1.2.
To improve the execution time of the MRRP, these nodes are used to precompute the
maps. However, they can be used at execution time as well, to be prepared for new or
changing environments.

4.1.1 Voronoi Path Generator

To generate the mentioned voronoi paths, two steps are typically needed. The first
one is to create a distance transform map, which shows the minimum distance to all
obstacles for every pixel of a map. The second one is to thin the distance transform map,
computing the pixels following the ridge of the distance field.

Distance Transform Algorithm

Basically Distance Transform algorithms are scanning all pixels multiple times and setting
the minimal distance for everyone. An algorithm for such an operation is proposed in
[Bor86]. This algorithm is implemented in the OpenCV library and is used by the MRRP.
After the transformation we have a map with all foreground pixels marked with zero and
all other pixels marked with the distance to the closest foreground pixel.

Thinning Algorithm

This distance map can be used to generate the voronoi path. Therefore, a thinning
algorithm is used. A very popular one is the one proposed in [ZS84]. However, there are
images, where this algorithm does not find the maximum of the distance field depending
on the distance transform algorithm used. Thus another approach is used for the thinning
algorithm. This algorithm can be found in [NAU06], which computes all start-, maximum-
, saddle-, and double-saddle points of a distance field (shown in Figure 4.2). Afterwards,
it expands from every found point to the next higher one until an already expanded point
is found.
There are some cases in which the algorithm finds a two-pixel thick path, which is not
intended for the voronoi path. An example case is shown in Figure 4.3. These problems

51

4. Implementation

p2 p3 p4

p1 p0 p5

p8 p7 p6

(a) A maximum point example. Therefore
all neighbor pixels have to be smaller-equal
to the center point

p2 p3 p4

p1 p0 p5

p8 p7 p6

(b) A saddle point example. Therefore the
upper and lower neighbors are smaller and
the left and right ones are higher.

Figure 4.2: Examples for maximum- and saddle-points. (Lighter colors describing lower
and darker ones higher distance values.)

1 2 3 4 5 5 4 3 2 1

1 2 3 4 5 5 4 3 2 1

1 2 3 4 5 5 4 3 2 1

1 2 3 4 5 5 4 3 2 1

Figure 4.3: Shown a case where the final image of the algorithm from [NAU06] is more
than one pixel thick

appear if there are corridors with an even number of pixels in width. To avoid such
paths with two pixels thickness the Thinning algorithm from [ZS84] is used to thin the
path, even more. Therefore, this algorithm finds a path on the ridge of the distance field,
because the original structure was already on the ridge before. However, this algorithm
normally needs several iterations to find a solution. In this case, it does not need more
than two iterations to find the solution, because the original structure is not thicker than
two pixels.
These two generated maps are given to the path segmentation to generate the final graph
vertices used by the MRRP.

52

4.1. Graph Generation

4.1.2 Segmentation

To generate the graph out of the given path and the distance field an algorithm is used
to find crossings in the given data structure. To visualize the algorithm a crossing in a
given pixel map is shown as example in Figure 4.4. The segmentation algorithm is shown
in Algorithm 4.1

v

m

v v m c m v v

m

v

Figure 4.4: A crossing where many pixels have more than two neighbors. Shown the
voronoi path (magenta; v) and the margin pixels (red; m) neighboring a non-margin
pixel (less than two neighbors)

Algorithm 4.1: Path Segmentation
Input: pixel map containing the path mp, maximum segment length ls
Output: list of segments representing the graph G

1 list of crossings cl

2 foreach non marked pixel p in mp do
3 if p is not background pixel then
4 if GetPathNeighbours (p) > 2 then
5 crossing c = ExpandCrossing (p)
6 cl.Add (c)
7 end
8 end
9 end

10 foreach crossing c in cl do
11 foreach non marked margin pixel pm in c do
12 list of points Ps = ExpandPath (pm)
13 list of segments S = GetSegmentListWithMaximumLength (Ps, ls)
14 c.AddToCrossingAndUpdateNeighbours (S)
15 end
16 end

53

4. Implementation

v
v v

m m p1 p2 m m
m m

v v

Figure 4.5: Shown in magenta the path (v); in red the margin pixels (m) of the crossing;
in green the non-crossing pixels to expand; the Dijkstra expander starts in p1 and expands
until a margin pixel is found, which is not p1; the algorithm will end up in p2 and save
the segment from (p1 → p2)

It is known from the given path, that it has a maximum thickness of one pixel. This
means, that every non-crossing pixel, also named path pixels, has less or equal than two
neighbors. In Figure 4.4 these non-crossing pixels are marked with v. This means also
that all crossing pixels marked with m and c have to have more than two neighbors.
The used algorithm iterates over all pixels in the map and checks them for the number of
neighbors, which are non-background pixels. If such a pixel is found a Dijkstra expansion
is used to find all linked crossing pixels with no path pixel in between. In Figure 4.4 this
would be all pixels marked with m and c.
After finding the set of these pixels, all pixels having a neighbor, are marked as margin
pixels, marked with m in Figure 4.4. The center (c) of this crossing is the mean of the
x and y values of all margin pixels. After marking a crossing the algorithm continues
iterating over the left pixels of the map.

Figure 4.6: Shown the segmentation of a path in yellow and in magenta the given path

After detecting all crossings and their contained margin points, a Dijkstra expansion can

54

4.1. Graph Generation

be done to find the segments of the Graph, by expanding between the margin pixels.
Therefore the Dijkstra algorithm is only allowed to expand on path pixels to force it, to
expand away from a crossing. The algorithm terminates if another margin pixel is found,
which is not the starting one. Since the path is only one pixel thick and all crossings are
detected, there is only one margin pixel the expander can find and therefore, the segment
is unique. The segment expansion is shown in Figure 4.5.
To get a graph using only segments not exceeding a maximum length the found segment
can be split into multiple ones, where all segments have the same length. These found
segments are saved in the segment data structure, which contains length, width, a list of
predecessors and a list of successors. The minimum distance of such a segment is found
by taking the minimum value in the distance map of all pixels contained in a segment.
The length of the segment is calculated by using the pixels coordinates. For setting the
neighbors all found segments are linked to crossings and updated with every new segment
linked to the crossing.
An example for a generated graph can be found in Figure 4.6, where the voronoi path is
shown in magenta and the graph segments in yellow.

55

4. Implementation

4.2 Route Planning

In this section, the implementation of the MRRP is explained. This algorithm is split
into three parts:
1. Calculate Route Candidates (Algorithm 4.2),
receiving start and goal Segments as well as a speed and priority schedule and returning
the found list of route candidates containing all assigned potentials.

Algorithm 4.2: Calculate Route candidates
Input: search graph G; start vertices vs; goal vertices vg; speed Schedule Ss;

priority Schedule Sp

Output: list of robot route candidates Pr or NULL
1 foreach Robot ri do
2 graph with potentials Gp = CalculatePotentials (Sp[ri], Ss[ri], vs[ri], vg[ri])
3 if Gp == NULL then
4 return NULL;
5 end
6 route Pi = Traceback (Gp, vs[ri], vg[ri])
7 if Pi == NULL then
8 return NULL;
9 end

10 Pr[i] = Pi

11 end
12 return Pr

2. Calculate Schedules (Algorithm 4.3),
receiving start and goal Segments and returning the found list of route candidates
containing all assigned potentials.

Algorithm 4.3: Calculate Schedules
Input: search graph G; start vertices vs; goal vertices vg

Output: list of robot route candidates Pr or NULL
1 while Priority Scheduler.GetSchedule (out Priority Schedule Sp) do
2 while Speed Scheduler.GetSchedule (out Speed Schedule Ss) do
3 Pr = CalculatePaths (G, Ss, Sp, vs, vg)
4 if Pr != NULL then
5 return Pr

6 end
7 end
8 end
9 return NULL

56

4.2. Route Planning

3. Create Route candidate (Algorithm 4.4),
receiving start and goal positions and returning a synchronized routing table to all
robots. While the algorithms for Calculate route candidates and Calculate Schedules

Algorithm 4.4: Create Route candidate
Input: search graph G; start positions ps; goal positions pg

Output: route Pl or NULL
1 start vertices vs= FindPoseSegments (ps)
2 if vs == NULL then
3 return NULL
4 end
5 goal vertices vg = FindPoseSegments (pg)
6 if vg == NULL then
7 return NULL
8 end
9

10 Pr = CalculateSchedules (G, ss, sg)
11 if Pr == NULL then
12 return NULL
13 end
14
15 Pl = GeneratePathWithPreconditions (Pr)
16 return Pl

are described in Chapter 3, the algorithm Create Route candidate is described in this
chapter. To these ends, the FindPoseSegments algorithm is described in Section "Find
Pose Vertices" and the GeneratePathWithPreconditions algorithm is described in
4.2.1.

Find Pose Vertices

Since start and goal positions are published as odometry message, but the MRRP works
on a graph, the published positions have to be assigned to the closest segments. Because
the used search graph matches the given map, one can iterate over all segments and
check if the distance to the center line of the segment is smaller than the width of it. The
first segment found in this way is used as start/goal position. After a route candidates
is found an additional segment is added, which connects the last segment of the route
candidates with the real goal position.

57

4. Implementation

4.2.1 Route Generator (RG)

Since the routing table generated by the MRRP is time-dependent, a robot cannot
execute this routes without any information from other robots. For example in the
scenario shown in Figure 3.3b, the blue robot has to wait until the red robot has passed
the crossing. The MRRP includes, therefore, two approaches to synchronize the robots.

• A Velocity Profile, which has to be executed exactly

• Segment Constraints, which constrains robots to wait for others on a segment

Velocity Profile

Algorithm 4.5: MovePath
Input: list of routes P , Route Coordinator PC , actual robot ri, step nr ns

Output: list of routes P
1 actual route p = P [ri]
2 if ns < 0 then
3 ns = p.size()
4 end
5 last time tl=0
6 for i:0...ns do
7 tl = tl + p[i].GetLength () / ri.GetSpeed ()
8 foreach robot r in PC .GetEarlierRobotsOnVertex (p[i], ri) do
9 step nr on other route nr = GetPathStep (r, p[i]) + 1

10 MovePath (P , PC , r, nr)
11 tl = Max (tl, P [r][nr])
12 end
13 p[i].SetTime (tl)
14 end
15 return P

To synchronize all robots a velocity profile can be generated, which has to be exactly
executed from each robot to guarantee a deadlock-free movement. This has the benefit,
that no communication is needed, but problems arise if the model of the robot is not
exactly known or if the robot moves in dynamic environments.
However, such a Velocity Profile is generated by the MRRP by simulating the routes
execution. Therefore, the Velocity Profile Generator (VPG) iterates over a robot’s route
candidate, until he finds a segment Sc, which passes another robot earlier than the
current active robot. This can be seen by comparing the assigned potentials to the route
candidate. If such a route candidate is found the VPG switches to this robot and executes
this route candidate until another segment S′

c is found or the robot reaches the segment
Sc. Therefore, the algorithm to find a Velocity profile for one robots route is shown in

58

4.2. Route Planning

Algorithm 4.5. This algorithm is executed for each route in the list of routes P . In this
algorithm, two other algorithms are used:

• list<robot> GetEarlierRobotsOnVertex(vertex v, robot r)
The Route Coordinator is aware of all routes and presents a call, which returns all
robot passing a specific segment earlier than a given robot.

• int GetPathStep(robot r, vertex v)
This algorithm returns the step number of a segment contained in a robot’s route.

These velocities are only set for single segments and probably changes for each segment.
To get a smooth velocity profile, the VPG iterates over each found velocity profile selecting
each segment up to the first one, where a robot has to wait for another one. For this set
of segments, its average speed is applied to each segment. After finding a set of segments
the VPG starts collecting the next set until it has reached the end of the route.

Segment Constraints

To give a robot more freedom to move, one can save constraints for every segment, which
has to be satisfied before a robot is allowed to enter the segment. This has the benefit,
that every robot can select the velocity appropriate to its environment without risking a
deadlock. To execute these segments with constraints every robot has to be connected to
each other robot to read the actual robot state.
To these ends, every Segment in each route is assigned with constraints containing the
robot-id, of the constraining robot Rc and a step-id, which has to be reached from Rc.
This id is the number of segments the robot Rc has to have passed in its route before a
robot can pass this segment. In Figure 4.7 two routes and the segment constraints can be
seen. For each route only constraints of earlier robots are taken into account. To execute
such a route, every robot publishes the current number of segments executed. A robot
which needs a clearance for a segment checks the current executed segment number of
the constraining robot to know if the segment is released.

59

4. Implementation

S2 S1 S0

S3

(a) In this scenario, the blue robot has to
wait for the red one. Furthermore, the seg-
ments of the route are shown. The red robot
wants to follow the red route starting from
the right. The blue robot wants to follow
the blue line starting from the left.

1: S0
pc: -

2: S1
pc: -

3: S3
pc: -

1: S2
pc: -

2: S1
pc: s3

3: S0
pc: s2

(b) Above the route for the red robot and
below the route for the blue one. The ar-
rows are marking the constraints for the
blue robot. Obviously, one could remove
the precondition for S0, because the blue
robot cant reach S0 before the red one has
reached step three.

Figure 4.7: Example for segment constraints

4.3 Robot Controller

For the simulation a robot controller is created, which takes a routing table as described in
Section Segment Constraints as input. Every routing table consists of multiple segments,
with preconditions. The robot controller subscribes to every robots sync message and to
the current robots odometry message.
The controller continuously iterates over all other robots sync states to determine if it is
allowed to move the robot to the next segment in the given routing table. If the robot
is allowed to move to its next segment, a PID-control is utilized to calculate linear and
angular command messages and publish them to the robot’s motor driver. After receiving
the targeted segment, its own sync message is increased by one step.
However, since standard robot controllers normally are not able to receive such route
messages with preconditions a robot synchronizer is created, which receives a synced
route from the MRRP and publishes a valid route to the given robot controller. This
route starts from the current position of the robot and ends in the last segment, where
the robot is allowed to move to, depending on the other robots sync messages. A state
observer, receives the current robots odometry pose and updates with it the current sync
position of the route, to allow other robots to move.

60

4.4. Test Environment

4.4 Test Environment

(a) The robot simulation environment Stage (b) The ROS-visualization tool (RVIZ)

Figure 4.8: The test environment

For simulating multiple robots the robot simulation Stage is used. Stage (Figure 4.8a) is
a 2D simulation environment for multiple vehicles, which allows users to integrate sensors
and actors like laser range-finders, grippers and bumpers. Therefore, a configuration
file has to be written, which defines the shape, the sensors and the motion model of the
vehicles. Furthermore, the environment can be configured by using a (black-white) image.
For the integration in ROS, stage publishes odometry data and sensor readings and
subscribes to a command topic for each robot. The Path Planner uses the odometry data
to determine the robots start position for planning. The controller uses the command
topic to move the robot, and the subscribed topics to determine the position.
To visualize the output of the MRRP and the test environment, the Ros-visualization
tool (RVIZ) is used, shown in Figure 4.8b). This tool presents an interface for visualizing
and publishing ROS topics.

61

CHAPTER 5
Results

This chapter shows, different tests with the MRRP. All tests are done in a Simulation
environment called Stage. This has the advantage, that more tests can be done in a
shorter time period compared to a real world test environment. Because the MRRP has
no feedback loop from a robot, which can influence the routing task, testing the planner
in real world would not have any benefit compared to the simulation.
In Section 5.1 a number of special scenarios with two to three robots are tested, to show
which scenarios the planner can solve and when the planner fails to solve a scenario. The
used environment for these tests is shown in 5.1.
In Section 5.2, the MRRP is tested in different environments, with different configurations,
to compare the included modules to each other.

S2S3S4S5S6S7S8S17S16S15S14S13S12S11

S29S28S27S26S25S24S23S30S31S32S33S34S35S36

S22

S21

S20

S19

S18

Figure 5.1: The test environment, with all generated graph nodes (vertices) shown in
yellow and marked with Sx.

63

5. Results

5.1 Experiments

For testing the MRRP the environment shown in 5.1 is used. To illustrate the function
of the MRRP four test cases with up to three robots are used.

5.1.1 Switch

r0 r1

(a) A scenario, where the red and the
blue robot want to switch places. The
red robot wants to follow the red arrow
to the right and the blue one wants to
move to the red ones start position

S17
S18

S8

(b) The solution to the scenario from
Figure 5.3a, where the blue robot waits
for the red one at the crossing.

robot zero (r0) robot one (r1)
0 : S11 [-] 0 : S2 [-]
1 : S12 [-] 1 : S3 [-]
2 : S13 [-] 2 : S4 [-]
3 : S14 [-] 3 : S5 [-]
4 : S15 [-] 4 : S6 [-]
5 : S16 [-] 5 : S7 [-]

6 : S8 [-]
7 : S18 [-]

6 : S17 [r1 past step 7] 8 : S19 [-]
7 : S8 [r1 past step 7] 9 : S18 [r0 past step 7]
8 : S7 [r1 past step 5] 10: S17 [r0 past step 7]
9 : S6 [r1 past step 4] 11: S16 [r0 past step 5]
10: S5 [r1 past step 3] 12: S15 [r0 past step 4]
11: S4 [r1 past step 2] 13: S14 [r0 past step 3]
12: S3 [r1 past step 1] 14: S13 [r0 past step 2]
13: S2 [r1 past step 0] 15: S12 [r0 past step 1]

16: S11 [r0 past step 0]
(c) The routing table found by the MRRP for both robots including segment order and precondi-
tions.

Figure 5.2: A test scenario for the MRRP

64

5.1. Experiments

In Figure 5.2, a basic test case from Figure 3.3 is shown, where the red and the blue
robot want to switch places. For solving this scenario the SRRP fails in the first attempt
and the speed rescheduler decreases the speed for the robot with priority one which is, in
this case, the red robot. Afterwards, the SRRP finds a solution by letting the blue robot
wait at the crossing for the red one and generates the routes from Figure 5.2c. As one
can see the red robot executes its route until step five and waits afterwards for the blue
robot until it has reached step seven, which is the save spot at the crossing to wait for
the red robots step seven. In step six and seven of the red robot, the precondition states
to wait for the blue robots step seven in both steps. The reason, therefore, is that the
crossing segments S8, S17 and S18 are overlapping and have to be locked simultaneously.

65

5. Results

5.1.2 Push

Another test case from Figure 3.3 is shown in Figure 5.3. There, the red robot has the
highest priority and wants to move to the right. The blue robot has to avoid the red one
by moving back to the crossing and let it pass. The result of the MRRP is shown in 5.3c.
As one can see the red robot has constraints to wait until the blue robot has vanished
from its route from segment S12 to S8. Afterwards, the blue robot has to wait until the
red one has left its future route to move back (segments S18 to S16). Again, segments S8,
S17 and S18 are locked simultaneously because they are overlapping.
Since these test cases should work by design it is not surprising that they are valid, but
it is getting more interesting when testing with multiple robots.

r0 r1

(a) A scenario, where the red and the
blue robot want to switch places.

S17
S18

S8

(b) The solution to the scenario from
Figure 5.3a, where the blue robot waits
for the red one at the crossing.

robot zero (r0) robot one (r1)
0 : S11 [-] 0 : S12 [-]
1 : S12 [r1 past step 0] 1 : S13 [-]
2 : S13 [r1 past step 1] 2 : S14 [-]
3 : S14 [r1 past step 2] 3 : S15 [-]
4 : S15 [r1 past step 3] 4 : S16 [-]
5 : S16 [r1 past step 4] 5 : S17 [-]

6 : S18 [-]
6 : S17 [r1 past step 6] 7 : S19 [-]
7 : S8 [r1 past step 6]

8 : S18 [r0 past step 7]
8 : S7 [-] 9 : S17 [r0 past step 7]
9 : S6 [-] 10: S16 [r0 past step 5]
10: S5 [-] 11: S15 [r0 past step 4]
11: S4 [-] 12: S14 [r0 past step 3]
12: S3 [-] 13: S13 [r0 past step 2]
13: S2 [-] 14: S12 [r0 past step 1]

16: S11 [r0 past step 0]
(c) The routing table found by the MRRP for both robots including segment order and precondi-
tions.

Figure 5.3: A test scenario for the MRRP

66

5.1. Experiments

5.1.3 Multiple robots

r0 r1

r2

(a) A scenario with multiple robots cre-
ating multiple potential collisions for
the SRRP.

S17 S18

S8

(b) The solution to the scenario from
Figure 5.4a.

robot zero (r0) robot one (r1) robot two (r2)
0 : S21 [-] 0 : S29 [-] 0 : S18 [-]
1 : S20 [-] 1 : S28 [-] 1 : S17 [-]
2 : S19 [-] 2 : S27 [-] 2 : S16 [-]
3 : S18 [r2 past step 1] 3 : S26 [-]
4 : S8 [r2 past step 1] 4 : S25 [-]
5 : S7 [-] 5 : S24 [-] 3 : S17 [r0 past step 4]
6 : S6 [-] 6 : S23 [-] 4 : S8 [r0 past step 4]
7 : S5 [-] 7 : S22 [-] 5 : S7 [r0 past step 5]
8 : S4 [-] 8 : S21 [r0 past step 0]
9 : S3 [-] 9 : S20 [r0 past step 1]

10: S19 [r0 past step 2]
11: S18 [r0/r2 past step 4/4]
12: S17 [r0/r2 past step 4/4]
13: S16 [r2 past step 2] 6 : S8 [r0/r1 past step 4/12]
14: S15 [-] 7 : S18 [r0/r1 past step 4/12]
15: S14 [-] 8 : S19 [r0/r1 past step 2/10]
16: S13 [-] 9 : S20 [r0/r1 past step 1/9]
17: S12 [-] 10: S21 [r0/r1 past step 0/8]
18: S11 [-] 11: S22 [r1 past step 7]

12: S23 [r1 past step 7]
13: S24 [r1 past step 5]
14: S25 [r1 past step 4]
15: S26 [r1 past step 3]
16: S27 [r1 past step 2]
17: S28 [r1 past step 1]
18: S29 [r1 past step 0]

(c) The routing table found by the MRRP for all robots including segment order and preconditions.

Figure 5.4: A test scenario for the MRRP

In Figure 5.4 a test case is shown, where three robots want to switch places. This

67

5. Results

scenario is solvable as well using the MRRP, because enough spots for the robot to
avoid each other are present. Here it can be seen, how the MRRP works using multiple
resolution strategies. For planning the red and the blue robots routes the MRRP has no
constraints because both routes are not overlapping in time and space simultaneously.
When planning the green robot with the lowest priority multiple potential collisions
occur, which have to be avoided. At first, the red robot pushes the green robot towards
its start point to the next crossing. When the SRRP plans the route of the green robot
back to its start point, a potential collision occur between the blue and the green one.
Therefore, the SRRP backtracks to the last crossing and avoids the blue robot’s route
there. After avoiding both robots the green route can be planned back to the start and
towards its goal. The MRRPs output to these routes is shown in Figure 5.4c.

68

5.1. Experiments

5.1.4 Limitations

r0 r1 r2

(a) A scenario, where all priority and speed schedules fail with the MRRP

S17 S18

S8

(b) The first attempt, where the red robot
has the highest priority, the green one the
second highest and the blue one the lowest.
As one can see this fails after planning the
green robots route.

S17 S18

S8

(c) Shown the second attempt, where the
green robot has the lowest and the red one
the highest priority. This schedule fails when
planning the greens route because there is
no valid route from the waiting spot at the
crossing to its goal.

Figure 5.5: A scenario where the MRRP fails.

The test cases shown in Figures 5.2, 5.3, and 5.4 where all valid to illustrate the function
of the MRRP. In Figure 5.5 a test case is shown, where the MRRP fails. In this scenario,
the robots are starting as shown in 5.2a. As one can see, not every priority schedule
will work for this test case. Therefore, the red robot has to have the highest priority
because it wants to move from the most left to the most right point on the graph. For
the remaining robot priorities, both orders can be tested. If the green robot gets the
second highest priority it will avoid the red robot at the crossing in between its start and
goal position. But when planning the blue robots route no spot is left to avoid the red
robots route because the green robot blocks the crossing. This is shown in Figure 5.5b.
Since this fails, one can try to exchange the blue and the green robot’s priorities, shown
in Figure 5.5c. Therefore, the blue one avoids the red robot’s route at the crossing. The

69

5. Results

r0

r1 r2

(a) A scenario for the MRRP, where the blue
and the green robot have to avoid the red
one at the crossings.

S17 S18

S8

S30 S22

S23

(b) The found solution to the scenario in
5.6a.

robot zero (r0) robot one (r1) robot two (r2)
0 : S11 [-] 0 : S24 [-] 0 : S25 [-]
1 : S12 [-] 1 : S23 [-] 1 : S24 [r1 past step 0]
2 : S13 [-] 2 : S22 [-]
3 : S14 [-] 3 : S21 [-] 2 : S23 [r1 past step 2]
4 : S15 [-] 4 : S20 [-] 3 : S30 [r1 past step 2]
5 : S16 [-] 5 : S19 [-] 4 : S31 [-]

6 : S18 [-]
7 : S8 [-]

6 : S17 [r1 past step 7] 8 : S7 [-]
7 : S18 [r1 past step 7]
8 : S19 [r1 past step 5] 9 : S8 [r0 past step 7]
9 : S20 [r1 past step 4] 10: S18 [r0 past step 7]
10: S21 [r1 past step 3] 11: S19 [r0 past step 8]
11: S22 [r1/r2 past step 2/3] 12: S20 [r0 past step 9]
12: S23 [r1/r2 past step 2/3] 13: S21 [r0 past step 10]
13: S24 [r1/r2 past step 0/1] 5 : S30 [r0/r1 past step 12/2]
14: S25 [r2 past step 0] 6 : S23 [r0/r1 past step 12/2]
15: S26 [-] 14: S22 [r0/r2 past step 12/6] 7 : S24 [r0/r1 past step 13/0]
16: S27 [-] 15: S23 [r0/r2 past step 12/6] 8 : S25 [r0 past step 14]
17: S28 [-] 16: S24 [r0/r2 past step 13/7] 9 : S26 [r0 past step 15]
18: S29 [-] 17: S25 [r0/r2 past step 14/8] 10: S27 [r0 past step 16]

18: S26 [r0/r2 past step 15/9] 11 : S28 [r0 past step 17]
19: S27 [r0/r2 past step 16/10]

(c) The routing table found by the MRRP for all robots including segment order and predictions.

Figure 5.6: A test scenario for the MRRP

70

5.1. Experiments

route of the green robot has to avoid the red and the blue robots route. In the first step,
this is possible because the green robot starts in front of both other robots and can avoid
the red and the blue one, one segment after the crossing (S19 in Figure 5.1). But after
this point, no option for the green robot is left because the blue robot blocks its route to
the goal and therefore, the routing table fails again.
This leads to an assumption about the planner, which states that the planner can fail if
there are less than n− 1 crossings on the route of the involved robot with the highest
priority. Where n is the number of robots involved in the conflict and a crossing counts
as nb-2 crossings, where nb is the number of branches. In this case, the blue and the
green robot have one crossing in between the blues start and goal, but since the red robot
is also involved there have to be three crossings in on the red robot’s route.
On the counter side this means if there are more than n− 1 crossings on the route of the
robot with the highest priority, the planner will find a solution. For example if the goal
positions of the robots would be in one of the lower two hallways of the environment (e.g.:
S27, S28, S29 in Figure 5.1) this planner finds a solution because there are two crossing
in between the red robot’s route, which allows every lower prioritized robot to avoid the
red robot’s route.
In Figure 5.6a a scenario is shown, which depicts how the MRRP solves scenarios, where
conflicting robots are in between the last crossing of the highest prioritized route and its
goal. At first the SRRP plans the red robot’s route. Afterwards, the MRRP expands
towards the blue robot’s goal, which detects a potential collision at its goal and tracks
back to the start. Because at the blue robot’s start position still a potential collision
exists the avoid robot at start algorithm tries to find a spot to avoid the red robot and
finds it at one of the two crossings in the environment. Finally the SRRP plans a route
for the green robot, which works similar to the blue robot, by waiting at a free crossing.
The resulting routes for this routing table are shown in Figures 5.6c and 5.6b.

71

5. Results

(a) The test environments for the MRRP (b) The second test environments for the
MRRP, which is a basically the environment
shown in 5.7a with randomly added walls.

Figure 5.7: The used environments for testing the MRRP

5.2 Comparison to other planners

To verify the gain of the MRRP compared to other planners, multiple tests are done
by randomly selecting start and goal positions in a given map for varying numbers of
robots. These randomly generated positions are saved and executed for every planner
in the same order. The two environments shown in Figures 5.7a and 5.7b, are used for
testing the MRRP. This test environments are kept similar to be able to use the same
start and goal positions on both environments as well.

72

5.2. Comparison to other planners

5.2.1 Prioritized Planning

In the first step, the modules of the SRRP are tested and compared to each other, by
using three different configurations of the planner without speed and priority scheduling.
The first configuration is the planner without any collision resolution strategy, only taking
time into account. The second configuration is the simple planner including the BTA
and the third one is the full SRRP including the BTA, the AVRA and the PRA.
Furthermore, the single robot planner combined with priority rescheduling is compared
to the MRRP and the SRRP used in the first test run. All tests are executed with
four, eight fourteen, eighteen and twenty-four robots. For all test runs the average of
the longest route length, the average planning time and the percentage of solved test
cases are compared. For testing the modules of the SRRP only the percentage of solved
scenarios are shown in Figure 5.8, because all other stats are only changing marginally.
For the first set of test runs one can see in Figure 5.8, that allowing the planner to use
waiting steps increases the number of solved scenarios by 60 percent. The results can
be improved further by eight percent by including the AVRA and the PRA. Since the
environment shown in Figure 5.7a is a simple one without dead ends the gain increases
for more complex environments further, shown in Figure 5.9.

73

5. Results

4 8 14 18 24
0

55

100

99

90

68

49

28

10
0

10
0 99 97

8810
0

10
0 99 98 96

So
lv
ed

Te
st

C
as
es

[%
]

Simple Planner Simple Planner with waiting steps SRRP

Figure 5.8: The percentage of solved scenarios in environment one for different single
robot planner.

4 8 14 18 24
0

50

100

94

79

43

28

1

99 97

89 83

61

99 98 91 87

76

So
lv
ed

Te
st

C
as
es

[%
]

Simple Planner Simple Planner with waiting steps SRRP

Figure 5.9: The percentage of solved scenarios in environment two for different single
robot planner.

74

5.2. Comparison to other planners

5.2.2 Prioritized Planning with Extensions

To verify the SRRP to other strategies like a simple planner combined with priority
rescheduling some more test cases are done. Because every rescheduling strategy needs
multiple planning iterations, the average execution time for finding a routing table is
compared as well. In Figure 5.10, 5.11 and 5.12 the comparison of the simple planner
combined with priority rescheduling, the SRRP without any rescheduling strategy and the
full MRRP are compared by the number of solvable test cases and execution time of the
planner. Furthermore, the average route length of the longest route in a routing table is
compared. As one can see from Figure 5.10 priority rescheduling combined with a simple

4 8 14 18 24
0

50

100

10
0

10
0 99 98 9610
0

10
0

10
0 98 9610
0

10
0

10
0

10
0

10
0

So
lv
ed

Te
st

C
as
es

[%
]

SRRP Simple Planner and priority rescheduling MRRP

Figure 5.10: The percentage of solved scenarios in environment one for different multi
robot planner.

4 8 14 18 24
0

25

50

7 10

18 20

27

7 10

21

29

46

7 10

18

22

28

C
om

pu
ta
tio

n
T
im

e
[m

s]

SRRP Simple Planner and priority rescheduling MRRP

Figure 5.11: The average computation time of the solved scenarios in environment one
for different single robot planner.

75

5. Results

4 8 14 18 24
0

25

55

33
.7 37

.7 41
.1

42
.3 45

.9

33
.9 38

.7 43
.6 45
.7 50

.9

33
.7 37

.7 41
.2

42
.2 46

.1

Av
er
ag

e
of

lo
ng

es
t
pa

th
le
ng

th
s
[m

]

SRRP Simple Planner and priority rescheduling MRRP

Figure 5.12: Compared the longest path lengths of solved scenarios averaged.

planner works slightly better than the SRRP alone in terms of test case coverage, but is
worse in terms of execution time and overall route length, seen in Figures 5.11 and 5.12.
For a low number of robots, this strategy is as good as the other ones, but route length
and execution time are growing with larger numbers of robots. The reason, for the
increased planning time, is the increasing number of rescheduling iterations with growing
numbers of robots, where each iteration triggers the planner again. The longer route
lengths originate from the fact that collisions between robots have to be avoided in a large
scale by using the simple planner, but the SRRP can solve these collisions at crossings in
the vicinity of them.

76

5.2. Comparison to other planners

The MRRP combines the best of both worlds and uses basically the SRRP to solve
problems and triggers the priority scheduling approach combined with a speed scheduling
approach when the SRRP fails. This has the benefit of low execution times and route
lengths comparable to the SRRP as well as a high test case coverage. As one can see in
Figure 5.10 the MRRP manages to find a solution for all scenarios. Since the MRRP

4 8 14 18 24
0

50

100

98 95

84

76

62

99 98 91 87

76

10
0

10
0

10
0

10
0

10
0

So
lv
ed

Te
st

C
as
es

[%
]

SRRP Simple Planner and priority rescheduling MRRP

Figure 5.13: The percentage of solved scenarios in environment two for different single
robot planner.

4 8 14 18 24
0

50

100

8 11 16 21 28

8 11

19

32

90

8 11 16 21

60

C
om

pu
ta
tio

n
T
im

e
[m

s]

SRRP Simple Planner and priority rescheduling MRRP

Figure 5.14: The average computation time of the solved scenarios in environment two
for different single robot planner.

is designed to shine in complex environments further test runs are executed with a
more complex environment, by adding walls randomly to the environment shown in
Figure 5.7a. This altered environment can be seen in Figure 5.7b. The results can be
seen in Figure 5.13, 5.14 and 5.15. Again test case coverage, average execution time

77

5. Results

4 8 14 18 24
0

35

70

36
.5 41

.2 44
.4

45
.9

47
.2

36
.7 43

.1 48
.5 55

.1 65
.4

36
.5 41

.2 44
.4

46
.1 50

.8

Av
er
ag

e
of

lo
ng

es
t
pa

th
le
ng

th
s
[m

]

SRRP Simple Planner and priority rescheduling MRRP

Figure 5.15: Compared the longest path length of solved scenarios averaged.

and average route lengths are compared. In this test environment, the SRRP has better
results compared to the simple planner with the priority scheduler because there is a big
gap in between test case coverage of the simple planner and the SRRP, which is shown
in Figure 5.11. Therefore many replanning iterations have to be done by the priority
rescheduler which increases the execution time. As one can see the MRRP has a fairly
large average execution time for the test run with 24 robots as well. This high number
originates from multiple test cases where everyone of them needed more than 300ms to
find a plan, because of a large number of replanning approaches. All of these test cases
where only solvable by the MRRP. Calculating the execution time without these test
cases will result in 35ms.
Generally speaking, the MRRP finds more solution than priority rescheduling with a
simple planner in less time, because of the ability from the SRRP to solve collisions in
the local vicinity of them. Furthermore, the priority and the speed rescheduling strategy
improve the results further to combine the low execution time of the SRRP with the
ability to find solvable priority schemes for a better test coverage. What can be seen as
well is, that the MRRP shines in more complex environments, because of the SRRPs
collision resolution strategies.

78

CHAPTER 6
Conclusion

The aim of this work was to find a new approach for multi robot path planning. The
planner has to generate deadlock free routes for a large number of robots. Therefore, this
thesis presents an approach based on Prioritized Planning. The paper describes a multi
robot path planner containing a single robot path planner, a collision resolver, a Route
Coordinator, a priority and speed rescheduler to find a solution to a given problem on a
graph describing space and time.
The single robot path planner is able to avoid moving obstacles by inserting waiting
steps and additional path segments in a trajectory. These alternative trajectories are
integrated into a Dijkstra algorithm by extending the search graph temporarily, with a
solution generated by the collision resolver.
The Route Coordinator saves already planned robot trajectories as moving obstacles in
the graph to constrain the generation of a new one.
The collision resolver is created to analyze potential collisions between a robot and a
moving obstacle, found by the single robot path planner and find a resolution, therefore.
This resolution is temporarily added to the search graph to enable the path planner to
find a route for the conflicting robot.
To solve scenarios non-solvable by prioritized planning alone a speed rescheduler and a
priority rescheduler are proposed, which try to find valid speed and priority schemes for
a prioritized planning approach by considering potential collisions found while planning
a robot’s route.
It is shown, that the planner outperforms currently used strategies to find solutions to a
number of given scenarios considering time, space and number of solved instances.

79

6. Conclusion

6.1 Further Work

In Chapter 5 a test case is shown, where MRRP fails to find a solution. In this case,
no solution using a standard prioritized planning approach can be found. Because the
green and the blue robot are blocking themselves mutually. An idea to solve this would
be to split trajectories on certain points to have different parts of the trajectory, which
can be prioritized differently, what would solve this problem. Therefore the blue robot
would plan its trajectory to the crossing, where he has to wait for the red one. On this
waiting segment, the route can be split and the green robot’s trajectory can be planned,
which allows him to find its goal. After planning the green robot’s route the blue one can
finish its route. It remains to check, when and where to split routes and if this strategy
is feasible.
Furthermore the potential calculator only uses the time a robot needs to pass the segment.
An idea for an improvement there would be to try to update this potential calculator
with live data and statistical data from other robots to improve the MRRP behavior.
Another idea would be to optimize routes for different goals like the lowest execution
time for a routing table. An idea therefore is to iterate over all trajectories and replan
single ones to improve the result.
The speed rescheduler works well as a supplement to the solve specific test cases. Therefore,
it would be an interesting topic to examine if there is a well working heuristic for the
speed scheduler to replace the priority scheduler or other similar approaches like waiting.
As one can see there are lots of topics to investigate further for the MRRP, which maybe
can help to find a fast and complete approach for prioritized planning.

6.2 Implementation and Source code

The created MRRP is successfully used in a research project, to coordinate an autonomous
robot fleet. Since this project uses ROS as framework the planner is implemented as
ROS node as well and will be available on GitHub.

80

List of Figures

1.1 Example test scenario, where two robots switch places. 1
1.2 Voronoi graph generation . 2
1.3 Voronoi graph generation . 3
1.4 Problem set where robot priorities matter 4

3.1 The overall picture of the Route Planner 13
3.2 A graph transformation from any roadmap consisting of subsegments to the

search graph used by the MRRP. (Sx → Vx) 15
3.3 Test cases used for creating the SRRP . 16
3.4 The structure of the MRRP . 18
3.5 The data structure for saving the robot routes. tn saves the vertices occupied

for the specific time slice. 22
3.6 Segment occupation of a moving robot . 22
3.7 A problem where two robots will switch places without detecting a collision.

It is assumed that every vertex is two "time-steps" long. 23
3.8 A scenario where robot r1 has to avoid r0 24
3.9 An example for a three dimensional graph extension. Vertices V ′

1,2,3 are already
assigned with different potentials compared to their parent nodes (V1,2,3). 25

3.10 Example Testcase which needs the BTA (Solution shown in Figure 3.11) . 27
3.11 The implementation of the BTA . 29
3.12 Example Testcase which needs the AVRCA (Solution shown in Figure 3.13) 32
3.13 The implementation of the AVRCA . 34
3.14 Example Testcase which needs the AVRSA (Solution shown in Figure 3.15) 35
3.15 The implementation of the AVRSA . 37
3.16 Testcase which needs the AVRGA (Solution shown in Figure 3.17) 38
3.17 The solution for the scenario shown in 3.16. 40
3.18 Example Testcase which needs the PRA (Solution shown in Figure 3.19) . . 41
3.19 The implementation of the PRA . 42
3.20 Problem sets, where the SRRP fail. 44
3.21 In this scenario it is unnecessary to exchange r2’s priority with any other

robot . 44

81

4.1 The test environment consisting of Path Server, Path Segmentation, the
MRRP, simulation environment and multiple controllers (ci) for each vehicle. 50

4.2 Examples for maximum- and saddle-points. (Lighter colors describing lower
and darker ones higher distance values.) 52

4.3 Shown a case where the final image of the algorithm from [NAU06] is more
than one pixel thick . 52

4.4 A crossing where many pixels have more than two neighbors. Shown the
voronoi path (magenta; v) and the margin pixels (red; m) neighboring a
non-margin pixel (less than two neighbors) 53

4.5 Shown in magenta the path (v); in red the margin pixels (m) of the crossing;
in green the non-crossing pixels to expand; the Dijkstra expander starts in p1
and expands until a margin pixel is found, which is not p1; the algorithm will
end up in p2 and save the segment from (p1 → p2) 54

4.6 Shown the segmentation of a path in yellow and in magenta the given path 54
4.7 Example for segment constraints . 60
4.8 The test environment . 61

5.1 The test environment, with all generated graph nodes (vertices) shown in
yellow and marked with Sx. 63

5.2 A test scenario for the MRRP . 64
5.3 A test scenario for the MRRP . 66
5.4 A test scenario for the MRRP . 67
5.5 A scenario where the MRRP fails. 69
5.6 A test scenario for the MRRP . 70
5.7 The used environments for testing the MRRP 72
5.8 The percentage of solved scenarios in environment one for different single

robot planner. 74
5.9 The percentage of solved scenarios in environment two for different single

robot planner. 74
5.10 The percentage of solved scenarios in environment one for different multi

robot planner. 75
5.11 The average computation time of the solved scenarios in environment one for

different single robot planner. 75
5.12 Compared the longest path lengths of solved scenarios averaged. 76
5.13 The percentage of solved scenarios in environment two for different single

robot planner. 77
5.14 The average computation time of the solved scenarios in environment two for

different single robot planner. 77
5.15 Compared the longest path length of solved scenarios averaged. 78

82

List of Algorithms

3.1 A-Star Algorithm . 19

3.2 Adapted A-Star Algorithm . 21

3.3 BTRA . 28

3.4 AVRCA . 33

3.5 AVRSA . 36

3.6 AVRGA . 39

3.7 PRA . 43

3.8 Get Priority Schedule . 45

3.9 Get Speed Schedule . 47

4.1 Path Segmentation . 53

4.2 Calculate Route candidates . 56

4.3 Calculate Schedules . 56

4.4 Create Route candidate . 57

4.5 MovePath . 58

83

Glossary

graph Refers to the search graph used by the route planner. The graph has a bijective
mapping to the used environment where each vertex is mapped to a segment of the
environment.. 2–4, 13, 14, 17, 25, 81

path Describes a list of points located on a map to lead a robot to its goal.. 1–3, 15, 20,
22, 51, 85

roadmap A data abstraction of a grid-map.. 13–15, 49, 50, 81, 85

route Describes a list of segments, including space and time, which are part of a routing
table.. 2–7, 14, 15, 17, 22, 37, 40, 45, 50, 58–60, 65, 66, 68, 69, 71, 73, 75–81, 85

route candidate Describes any list of vertices, including space and time.. 13–15, 17,
18, 20, 22–25, 27, 30–32, 35, 38, 41, 44–48, 56–58, 83

routing table A list of synchronized routes describing a plan for a robot fleet.. 4, 6, 7,
13–15, 17, 18, 45, 46, 48, 50, 57, 58, 60, 64, 66, 67, 70, 71, 75, 80, 85

segment A small area of an environment with a specific shape. Every segment of an
environment can be mapped to exactly one vertex of the corresponding graph.. 2,
14

trajectory Describes a time-dependent point-sequence leading the robot from one path
point to another. 2

voronoi path A roadmap which describe a fully connected path with line-of-sight
contact to every pixel on the map.. 3, 14

85

Acronyms

ACS Automated Guided Vehicle Control System. 7, 15

AGV Automated Guided Vehicle. 7, 15

AVRA Avoid Robot Algorithms. 24, 31, 41, 73

AVRCA Avoid Robot at Crossing Algorithm. 27, 31, 32, 34, 47, 81

AVRGA Avoid Robot at Goal Algorithm. 27, 31, 38, 41–43, 81

AVRSA Avoid Robot at Start Algorithm. 27, 31, 35, 37, 81

BTA Backtracking Algorithm. 24, 27, 29, 31, 32, 34, 41, 73, 81

MRCR Multi Robot Collision Resolver. 17, 18, 21, 24–27, 30–32, 35, 38, 40, 41, 43

MRRP Multi Robot Route Planner. xi, 2–4, 6, 13–15, 17–20, 24, 25, 44–47, 49–52,
56–58, 60, 61, 63, 64, 66–73, 75, 77, 78, 80–82

ORCA Optimal Reciprocal Collision Avoidance. 8

PE Potential Expander. 17, 18, 26, 30, 32, 35, 38, 41

PR Priority Rescheduler. 13, 14, 17, 18

PRA Push Robot Algorithm. 24, 30, 32, 35, 38, 41–43, 73, 81

RC Route Coordinator. 17, 18, 20, 22, 23, 27, 30, 31, 59, 79

RG Route Generator. 13, 14, 17, 18, 58

ROS Robot Operationg System. 5, 49, 61

SR Speed Rescheduler. 13, 14, 17, 18

SRRP Single Robot Route Planner. xi, 5, 13, 14, 16–27, 29, 31–33, 35, 37–39, 41, 43–48,
65, 67, 68, 71, 73, 75–78, 81

VPG Velocity Profile Generator. 58, 59

87

Bibliography

[BBT01] Maren Bennewitz, Wolfram Burgard, and Sebastian Thrun. Optimizing
Schedules for Prioritized Path Planning of Multi-Robot Systems. In ICRA,
2001.

[BBT02] Maren Bennewitz, Wolfram Burgard, and Sebastian Thrun. Finding and
optimizing solvable priority schemes for decoupled path planning techniques
for teams of mobile robots. Robotics and Autonomous Systems, 41(2–3):89
– 99, 2002. Ninth International Symposium on Intelligent Robotic Systems.

[Bor86] Gunilla Borgefors. Distance Transformations in Digital Images. Comput.
Vision Graph. Image Process., 34(3):344–371, June 1986.

[BRS+15] M. Bader, A. Richtsfeld, M. Suchi, G. Todoran, W. Holl, and M. Vincze.
Balancing Centralised Control with Vehicle Autonomy in AGV Systems
for Industrial Acceptance. In Proceeding of the Eleventh International
Conference on Autonomic and Autonomous Systems (ICAS 2015), 2015.

[CNKS15] M. Cap, P. Novak, A. Kleiner, and M. Selecky. Prioritized Planning
Algorithms for Trajectory Coordination of Multiple Mobile Robots. IEEE
Transactions on Automation Science and Engineering, 12(3):835–849, July
2015.

[CNM99] M. Crneković, B. Novaković, and D. Majetić. Mobile Robot Path Planning
in 2D Using Network of Equidistant Path. Journal of computing and
information technology, Vol.7(2):123–135, June 1999.

[CPA+14] Marcello Cirillo, Federico Pecora, Henrik Andreasson, Tansel Uras, and
Sven Koenig. Integrated Motion Planning and Coordination for Indus-
trial Vehicles. In Proceedings of the Twenty-Fourth International Confer-
enc on International Conference on Automated Planning and Scheduling,
ICAPS’14, pages 463–471. AAAI Press, 2014.

[ELP86] Michael Erdmann and Tomas Lozano-Perez. On Multiple Moving Objects.
Algorithmica, 2:1419–1424, 1986.

89

[FYS03] Yi-Ta Wu Frank Y. Shih. Fast Euclidean distance transformation in two
scans using a 3x3 neighborhood. Computer Vision and Image Understand-
ing (1077-3142), 2003.

[GKM10] C. Goerzen, Z. Kong, and B. Mettler. A Survey of Motion Planning
Algorithms from the Perspective of Autonomous UAV Guidance. J. Intell.
Robotics Syst., 57(1-4):65–100, January 2010.

[JN01] Markus Jäger and Bernhard Nebel. Decentralized collision avoidance,
deadlock detection, and deadlock resolution for multiple mobile robots. In
IROS, 2001.

[KRR98] Ishay Kamon, Elon Rimon, and Ehud Rivlin. TangentBug: A Range-
Sensor-Based Navigation Algorithm. The International Journal of Robotics
Research, 17(9):934–953, 1998.

[LaV06] Steven M. LaValle. Planning Algorithms. Cambridge University Press,
New York, NY, USA, 2006.

[LB11] R. Luna and K. E. Bekris. Efficient and complete centralized multi-robot
path planning. In 2011 IEEE/RSJ International Conference on Intelligent
Robots and Systems, pages 3268–3275, Sept 2011.

[Mar06] F. M. Marchese. Multiple Mobile Robots Path-Planning with MCA. In In-
ternational Conference on Autonomic and Autonomous Systems (ICAS’06),
pages 56–56, July 2006.

[NAU06] A. Nedzved, S. Ablameyko, and S. Uchida. Gray-scale thinning by using
a pseudo-distance map. In 18th International Conference on Pattern
Recognition (ICPR’06), volume 2, pages 239–242, 2006.

[PCM08] M. Peasgood, C. M. Clark, and J. McPhee. A Complete and Scalable
Strategy for Coordinating Multiple Robots Within Roadmaps. IEEE
Transactions on Robotics, 24(2):283–292, April 2008.

[Rya07] Malcolm Ryan. Graph Decomposition for Efficient Multi-robot Path
Planning. In Proceedings of the 20th International Joint Conference on
Artifical Intelligence, IJCAI’07, pages 2003–2008, San Francisco, CA, USA,
2007. Morgan Kaufmann Publishers Inc.

[vdBGLM11] Jur van den Berg, Stephen J. Guy, Ming Lin, and Dinesh Manocha. Recip-
rocal n-Body Collision Avoidance, pages 3–19. Springer Berlin Heidelberg,
Berlin, Heidelberg, 2011.

[WDM07] Peter R. Wurman, Raffaello D’Andrea, and Mick Mountz. Coordinating
Hundreds of Cooperative, Autonomous Vehicles in Warehouses. In Pro-
ceedings of the 19th National Conference on Innovative Applications of

90

Artificial Intelligence - Volume 2, IAAI’07, pages 1752–1759. AAAI Press,
2007.

[WG12] Wenjie Wang and Wooi-Boon Goh. Multi-robot Path Planning with the
Spatio-temporal A* Algorithm and Its Variants. In Proceedings of the
10th International Conference on Advanced Agent Technology, AAMAS’11,
pages 313–329, Berlin, Heidelberg, 2012.

[WLW13] Qi Wang, Marco Langerwisch, and Bernardo Wagner. Wide Range Global
Path Planning for a Large Number of Networked Mobile Robots based on
Generalized Voronoi Diagrams. IFAC Proceedings Volumes, 46(29):107 –
112, 2013.

[WWW16] Qi Wang, Markus Wulfmeier, and Bernardo Wagner. Voronoi-Based Heuris-
tic for Nonholonomic Search-Based Path Planning. In Emanuele Menegatti,
Nathan Michael, Karsten Berns, and Hiroaki Yamaguchi, editors, Intel-
ligent Autonomous Systems 13, volume 302 of Advances in Intelligent
Systems and Computing, pages 445–458. Springer International Publishing,
2016.

[ZS84] T. Y. Zhang and C. Y. Suen. A Fast Parallel Algorithm for Thinning
Digital Patterns. Commun. ACM, 27(3):236–239, March 1984.

91

	Kurzfassung
	Abstract
	Contents
	Introduction
	Motivation and Problem Statement
	Aim of the Work
	Methodological approach
	Structure of the Work

	State of the Art
	Single Robot Planning
	Multi Robot Planning
	Multi Robot Planning Extensions
	Roadmapping (Voronoi Paths)
	Summary

	Approach
	Terminology
	Requirements
	Structure
	srpp
	gmrpp Extensions

	Implementation
	Graph Generation
	Route Planning
	Robot Controller
	Test Environment

	Results
	Experiments
	Comparison to other planners

	Conclusion
	Further Work
	Implementation and Source code

	List of Figures
	List of Algorithms
	Glossary
	Acronyms
	Bibliography

