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KURZFASSUNG 
 

Diese Masterarbeit untersucht die schwach beaufsichtigte visuelle Objektdetektion eines 

gegebenen Satzes von Bildern. Hauptziel ist es, ein optimales Objektmodell für jedes 

ausgewählte visuelle Objekt zu erhalten, indem dieses sowohl positiv als auch negativ auf 

Bildniveau markierte Bilder lernt. Zu diesem Zweck wird ein Analyseprozess vorgeschlagen, 

der Segmente des Zielvisualobjekts aus positiven Trainingsbildern sammelt. Ein allgemeineres 

Objektmodell wird durch die Bestimmung der am meisten diskriminierenden detektierten 

Objektsegmente aufgebaut. Diese endgültige Form des Objektmodells wird von einem binären 

Klassifikator verwendet, um Segmente des Zielvisualobjekts aus Testbildern zu detektieren. 

Der vorgeschlagene Ansatz zur Wiederherstellung eines optimalen Objektmodells 

umfasst vier Hauptverarbeitungsschritte: Segmentierung, Merkmalsextraktion, 

Ähnlichkeitsmessung und Lernen. Für jeden dieser Schritte wird die Eignung verschiedener 

Techniken ausgewertet. Als erstes wird eine Auswertung in Bezug auf die Segmentierung mit 

einer mittleren Schichtsegmentierung und einem einfacheren und schnelleren 

Gleitfensteransatz durchgeführt. Zweitens werden für die Beschreibung der im ersten Schritt 

erhaltenen Segmente unterschiedliche Arten von Merkmalen (Farbhistogramme, dichte SIFT-

Deskriptoren, PHOW-Deskriptoren, VLAD-Deskriptoren, CEDD und MPEG-7-

Farbdeskriptoren) ausgewertet. Der dritte Schritt beinhaltet bei der Ähnlichkeitsmessung eine 

Auswertung unterschiedlicher Distanz- und Ähnlichkeitsfunktionen. Schließlich wird im 

Lernschritt ein nicht parametrisches, diskriminierendes Lernschema verwendet, welches auf 

Informationsgewinn basiert. Das Ergebnis des Lernens ist ein Ranking, das die 

Unterscheidungskraft jedes Kandidatensegments ausdrückt. Darüber hinaus wird die MPEG-

Videocodierung als alternative Technik für die Merkmalsextraktion und die 

Ähnlichkeitsmessung untersucht. Zu diesem Zweck wird ein Ansatz, der aus der 

Texturklassifizierung stammt, auf Farbbildsegmente erweitert. 

Die experimentellen Ergebnisse zeigen eine geringere rechnerische Komplexität für alle 

Kombinationen von untersuchten Merkmalsdeskriptoren und Distanzfunktionen im Vergleich 

zum MPEG-Video-Codierungs-basierten Ansatz. Weiterhin ist die Genauigkeit von visuellen 

Objektmodellen, die durch MPEG-Videocodierung erhalten werden, niedriger als diejenigen, 

welche in einigen der vorgeschlagenen Ansätze verwendet werden, die getrennte 

Verarbeitungsschritte für die Merkmalsextraktion und die Ähnlichkeitsmessung verwenden. 

Diese Masterarbeitsergebnisse zeigen, dass die Repräsentation in Form von VLAD-

Deskriptoren zusammen mit einer der drei Distanz-Funktionen (Chi-Quadrat-Statistik, 

Diffusions-Distanz und Euklidischer Abstand) die besten Ergebnisse liefern. Darüber hinaus 

wird eine Auswertung von Zielobjektdetektoren durch Auswählen eines der 

wiederhergestellten Objektmodelle für jede Auswertung durchgeführt. Der Zielobjektdetektor 

ist ein SVM-Klassifikator, ein Naïve Bayes-Klassifikator und ein alternativer Ansatz, der 

Informationsgewinn verwendet, um Entscheidungsschwellen zu lernen. 
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ABSTRACT 
 

This master’s thesis investigates the weakly-supervised visual object detection from a given set 

of images. The main goal is set as obtaining an optimal object model for any selected visual 

object by learning from positive- and negative-labeled images. To this end, an analysis process 

is proposed that gathers segments of the target visual object from positive training images. A 

more common object model is built by determining the most discriminative detected object 

segments. This ultimate form of the object model is employed by a binary classifier in order to 

detect segments of a target visual object from test images. 

The proposed approach for the recovery of an optimal object model comprises of four 

major processing steps: segmentation, feature extraction, similarity measurement, and learning. 

For each of these steps, the suitability of different techniques is evaluated. Firstly, an evaluation 

with respect to segmentation is made with mean shift segmentation and a simpler and faster 

sliding window approach. Secondly, different types of features (color histograms, dense SIFT 

descriptors, PHOW descriptors, VLAD descriptors, CEDD and MPEG-7 color descriptors) are 

evaluated for the description of the segments obtained in the first step. Thirdly, in similarity 

measurement an evaluation involves different distance and similarity functions. Lastly, in the 

learning step a non-parametric discriminative learning scheme based on information gain is 

employed. The result of learning is a ranking that expresses the distinctiveness of each 

candidate segment. In addition, MPEG video encoding is investigated as an alternative 

technique for both feature extraction and similarity measurement. For this purpose, an approach 

originating from texture classification is extended to color image segments.  

The experimental results demonstrate lower computational complexity for all 

combinations of investigated feature descriptors and distance functions compared to the MPEG 

video encoding-based approach. Furthermore, the accuracy of visual object models obtained by 

MPEG video encoding is lower than those presented in some of the proposed approaches 

employing separate processing steps for feature extraction and similarity measurement. These 

master thesis results suggest using the feature descriptors obtained from VLAD descriptors and 

one of three distance functions: chi square statistics, diffusion distance and Euclidean distance. 

Moreover, an evaluation of target object detectors is performed by selecting one of the 

recovered object models for each evaluation. The target object detector is an SVM classifier, a 

Naïve Bayes classifier, and an alternative approach employing information gain to learn 

decision thresholds. 
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CHAPTER 1 

 

 

1 INTRODUCTION 

he recognition of visual objects by automated software systems is used in different 

industries; e.g. automotive, medical, sport, military, security, governmental and remote 

sensing [1] [2] [3] [4] [5] [6] [7]. Depending on the labeling structure and ratio of input 

data utilized during the learning process of the automated systems, different machine learning 

techniques such as supervised, weakly-supervised, semi-supervised and unsupervised [8] are 

employed in order to provide object recognition capabilities to the automated systems. 

Supervised learning is defined as the training of a classifier by using a labeled training dataset 

in which the category information is supplied for each data by a label; whereas the unsupervised 

learning focuses on clustering an unlabeled training dataset intrinsically [9]. By taking these 

both learning strategies into consideration, the definitions of semi-supervised and weakly-

supervised learning lie between supervised and unsupervised learning [8] [10]. In semi-

supervised learning, category labels are provided only for a small amount of data placing in a 

training dataset. The rest of the data does not contain any label; therefore, it is ambiguous [10]. 

If a training dataset is gathered from visual space such as a set of image segments and a binary 

classification task is specified to group the segments as positive or negative, then only a small 

number of labeled segments from this complete set is sufficient for semi-supervised learning. 

On the other hand, the only required information for weakly-supervised learning is that in which 

images exists at least one positive segment. However, which image segment is positive or 

negative is unknown. When the labels are attached to only images, they are called image-level 

labels. Apart from that, if the labels are attached to segments, they are called pixel-level labels.  

Gathering pixel-level labeled images for supervised or semi-supervised learning 

requires a per-pixel annotation process, which is performed either manually or automatically.  

For example, doctors manually label signs of diseases in medical images to utilize them as a set 

of pixel-level labeled medical images for supervised or semi-supervised learning [2]. Likewise, 

oracles from all other industries utilizing pixel-level labeled images need to manually perform 

a per-pixel annotation process if there is no automated solution for this. Since the image-level 

labeling does not contain a per-pixel annotation process, it requires less labeling effort than 

pixel-level labeling. Apart from that, millions of online images are accessible free of cost with 

their image-level labels in the image hosting websites such as Flickr [11]. Therefore, assigning 

the oracles to a pixel-level labeling task is a labor-intensive and time-consuming process [2].  

Apart from the employing of a machine learning technique, the visual object recognition 

also requires two more processing steps in its entire pipeline such as segmentation and feature 

extraction [12]. Segmentation is performed on a set of input images as an initial processing step 

of visual object recognition in order to isolate visual objects from the background. Furthermore, 

feature extraction follows the segmentation in the pipeline and derives the feature values from 

the image segments by eliminating their redundant data and preserving their significant and 
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discriminative information. Therefore, the feature values which are derived by the feature 

extraction facilitate the interpretation of segments. The processing step of machine learning 

follows the feature extraction in the pipeline of visual object recognition for this interpretation. 

1.1  MOTIVATION 

Since the supervised learning methods are operated with a set of completely labeled samples, 

the statistical models constructed by the supervised learning methods are stronger than the ones 

constructed with only a set of completely unlabeled samples by the unsupervised learning 

methods [9]. Nevertheless, unsupervised learning methods can be used to either improve the 

models initially constructed by supervised learning methods with a small number of labeled 

samples, or extract features from unlabeled samples [9]. In fact, the former case gets involved 

in the scope of semi-supervised learning since the input data is formed with the mixture of both 

labeled and unlabeled samples [10]. Furthermore, it is a superior idea to construct a model with 

a weakly-supervised learning method instead of a supervised or semi-supervised learning 

method in order to avoid pixel-level labeling effort. From this point of view, the weakly-

supervised visual object detection from images is investigated in this thesis. 

The overall aim of this thesis is to recover an optimal object model by learning from 

positive and negative images. For this purpose, the most discriminative parts of the target visual 

object are mined from positive and negative images. From the detected object parts, a more 

general object model is built. A classifier is constructed that uses the object model to detect the 

target visual object in test images. 

1.2  PROBLEM STATEMENT 

The topic of this thesis is weakly-supervised visual object detection from images. For this 

purpose, a framework which implements different optional components for each core image 

processing step of the entire pipeline is implemented to evaluate the results with respect to 

execution timing, accuracy, required hardware sources, and stability. The implemented 

technique of the thesis is applicable to any selected species of animals, plants, or inanimate 

objects as a target visual object. In order to produce experimental results in this thesis, the 

species of elephant is selected as the target visual object. Color images containing image-level 

labels are given to the developed algorithm not only as a training dataset, but also as a test 

dataset. The label of each image is assigned as positive if the image includes the selected target 

visual object once or multiple times; otherwise it is assigned as negative. One half of the training 

images includes positive images while the other half includes negative images. During training, 

object models are recovered based on image features and image segmentation and the precision 

scores of object models are computed by validating against the pixel-level ground truth of the 

positive training images. 

During testing, one of the implemented binary classifiers can be selected to detect image 

segments containing target visual objects from a given test dataset by using a previously built 

object model. The test dataset contains only positive images together with pixel-level ground 

truth. The image segments classified by a selected binary classifier are used to compute 

accuracy, ROC curve and precision-recall curve by checking with the ground truth of test set. 
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Consequently, the performance of each binary classifier is evaluated based on both curves and 

results. Figure 1.1 demonstrates the explanation of a whole set of tasks described in this section. 

 

 

Figure 1.1: Demonstration of the idea of weakly-supervised visual object detection from 

images. 

1.3  APPLICATIONS 

Since fully automated visual object recognition applications achieve given related tasks faster, 

more cheaply and in a more standardized manner than the ones manually supplied by the oracles 

[13], the weakly-supervised visual object detection framework introduced in this thesis can 

enable this technological opportunity to be utilized in the different demanding areas of the 

industry by distributing its related applications. For instance, an application recognizing visual 

objects can be implemented by using our approach in order to be established as an integrated 

vision system of a robotic system, which is used as a production facility with respect to the 

motion control and regulation aids [14]. More specifically, thanks to such a visual object 

recognition application, a robot can learn visual objects shown by a human operator. Hence, 

this improves the Human-Robot Interaction (HRI). Furthermore, Fanello et al. [15] present a 

work regarding weakly-supervised visual object recognition in the same robotics scenarios; 

therefore, the approach of this thesis can also be used to implement an application for this work.  

 Automated image recognition techniques are not only employed as computer vision 

systems integrated with robotic systems, but also used in different industries without robots. 

For instance, an application tracking and identifying players from broadcast sport videos can 

be implemented by using the visual object detection approach of this thesis. Moreover, Zhang 

et al. [3] present another type of weakly-supervised learning technique in order to achieve the 

same goals by using the videos of basketball plays. Although the videos used in the scope of 

the experiments presented in [3] belongs to basketball plays, the approach of is proposed for 

whole sport industry due to the inferring capability of weakly-supervised learning method for 
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a given target visual object. Moreover, it is also possible to utilize our weakly-supervised 

approach for the delivery of the applications detecting target visual objects in the remote sensing 

industry. For instance, the weakly-supervised learning approach for airplane detection in remote 

sensing images introduced by Han et al. [7] can be replaced with our approach by preserving 

the same goals of the framework. 

Apart from the applications associated with the commercial targets, a non-commercial 

application supplying universally professional wildlife services can be implemented based on 

the theoretical approach proposed in this thesis in order to protect animals and increase the 

universal quality level of animal ethics. For instance, elephants are selected as target visual 

objects for sets of collected images in order to track the research results of this thesis, although 

it is applicable to any target visual object, which denotes a group of either the inanimate entities 

or the living beings as described in Section 1.2. Due to illegal trading of ivory, the existence of 

the intensive poaching of African elephants is established [16]. African elephants have more 

advantages than Asian elephants with respect to both mating and collecting food due to their 

larger tusks [17]. Since ivory poachers are inclined to hunt the elephants with larger tusks and 

the Asian elephants are seen as the valuable sources of livestock by the inhabitants, the African 

elephants owning the largest tusks become the main target for the ivory poachers [16]. As a 

result of this, the new generation of African elephants are born with the smaller tusks due to the 

immediate change in their genes, in other words, due to the mutation [17]. Since the introduced 

approach in this thesis is applicable to any selected target visual object, it can be globally used 

as a supportive and technological wildlife management tool by the law enforcement agencies 

to protect the animals having similar problems. 

The common behavior of all of these aforementioned approaches is not only being fully 

automated, but also having an inferring capability of recognizing a given target visual object 

without any dependency of object specification and pixel-level labeling. This inferring 

capability is obtained due to the natural consequence of weakly-supervised techniques. Such 

learning methods are useful when no pixel-level ground truth labels exist and applicable to a 

broad range of visual objects. 

1.4  OBJECTIVES 

This thesis has two main objectives. The first objective of this thesis is to extract compact and 

expressive feature descriptors for visual content. The compactness of feature descriptors has 

two particular advantages. The first one is a reduced storage cost of feature descriptors due to 

their reduced size. The second advantage of compactness regarding feature descriptors is their 

shortened computation and retrieval time frames. Furthermore, the expressiveness of feature 

descriptors is an advantage for the determination of differentiation or similarity among 

themselves.  

There are companies, which develop or support business intelligence applications for 

one of the many different areas, for example, finance, sales, or multimedia [18]. In this case, 

these companies utilize data warehouses or data marts in addition to databases containing only 

raw data related to the areas of their industries. The data warehouses are formed by merging 

and selecting the repositories of heterogeneous raw data to gather correlated data in a central 

data station and assist the progress of the data mining [19]. The multimedia data warehouses 
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comprise the integrated, elaborated and correlated data obtained from the multiple 

heterogeneous databases containing videos, audio recordings, images and textual information 

[19]. The data marts are the subsets of the data warehouses and contain the specific scopes of 

the integrated repositories of the data [20]. 

Based on the assumption that a commercial multimedia application holds all the feature 

descriptors extracted from a set of images in a multimedia data warehouse and this set of images 

in other separated databases, the compactness of the feature descriptors enables this multimedia 

data warehouse to store a decreased amount of required physical data. If the data placing in the 

data warehouse of a production multimedia application running for a company is purged, then 

it also causes a data purging for all the development and quality applications used for the 

business purposes of the same company in the multimedia industry. Therefore, the compactness 

of feature descriptors reduces the costs of companies to develop, maintain or support 

multimedia applications. When the required data to be stored in a data warehouse becomes 

smaller, then the sizes of hard disk drives can be setup with the smaller options for the servers 

of the data warehouse. Apart from that, when the size of the processed data is reduced, the 

required capacities of hardware such as CPUs and swap spaces become smaller for the related 

servers to be settled. Moreover, the required time for the retrieval of feature descriptors from a 

data warehouse apparently decreases when their sizes are reduced. 

The second objective of this thesis is to investigate large sets of different visual feature 

descriptors, different similarity functions, clustering methods to provide a guidance framework 

for the future research in the construction of weakly-supervised visual object recovery from 

color images. Since only image-level labeled images are utilized for weakly-supervised 

learning approaches, the differentiations between positive and negative visual feature 

descriptors have to be characterized by similarity functions without the information of their 

pixel-level labeling. Moreover, these differentiations characterized by similarity functions have 

to contain sufficient information to cluster corresponding visual feature descriptors correctly. 

Therefore, the combinations of different methods used in the entire pipeline of weakly-

supervised visual object recovery are evaluated based on the accuracies of clustering visual 

feature descriptors extracted from color images.  

1.5  OUTLINES 

The rest of the thesis is structured as follows: Chapter 2 elaborately reviews three papers 

introducing the approaches of weakly-supervised visual object recovery from either greyscale 

or color images. Some ideas presented in these three articles are used or extended for the 

investigation of this thesis. In Chapter 3, the detailed theoretical and practical explanations of 

the complete set of techniques investigated for the methodology of the thesis are given. Chapter 

4 presents the setup of the experiments and their contributions to the objectives of the thesis. In 

Chapter 5, the obtained both qualitative and quantitative results according to the experimental 

setups described in the previous chapter are illustrated and, additionally, comparisons of these 

results are discussed. Finally, the summary containing the pathways of the research completed 

in the thesis and the found answers and remedies for the questions and issues raised during the 

research are provided in Chapter 6. An overview of the future work concludes Chapter 6. 
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CHAPTER 2 
 

 

2 RELATED WORK 

his chapter presents three papers, which are related to the topic of weakly-supervised 

learning framework for the recognition of visual objects. All of these three papers 

mainly contribute the research of this thesis since some of their ideas are included in 

the research scope of this thesis. 

This thesis introduces a set of object models having higher precision scores shown in 

Chapter 5 than the ones obtained by all the related state-of-the-art methods presented in this 

chapter. Moreover, the recovery processes of these object models introduced in thesis have 

faster execution timings and smaller hard disk requirements than the ones utilized in the three 

articles described in the following subsections of this chapter. 

 

2.1 PROBABILISTIC VISUAL OBJECT MODELING PROPOSED BY 

SCHMID [21] 
 

The following subsections of Section 2.1 elaborately describe the method of probabilistic visual 

object modeling presented by Schmid [21] and its relation to this thesis, as well as its ideas 

utilized in this thesis.   

 

2.1.1 DESCRIPTION OF METHOD 
 

An approach to weakly-supervised learning of visual object models is introduced by Schmid 

[21]. The target of this method is to generate a distinctive visual object model for a target visual 

object such as a “textured” animal or a human face. Therefore, the generated visual object 

model can be utilized for the applications of content-based image retrieval from the large 

databases of images as well as a target visual object localization for a given set of test images.  

Greyscale images are used in the approach proposed by Schmid [21] as both test and 

training images. Firstly, the grey value descriptors dl are produced for each pixel location (x, y) 

of given five positive and ten negative images by applying the filter shown below: 

F(x, y, τ, σ) = F0(τ, σ) + cos (
√x2+y2   πτ

σ
) e

−
x2+y2

2σ2   2.1 [21] 

This “Gabor-like” filter shown in equation 2.1 also takes the scale and frequency values 

as parameters 𝜎 and 𝜏 respectively. The value of frequency 𝜏 defines the number of cycles in 

the harmonic result which is produced by this function. In order to have a DC-balanced 

waveform, 𝐹0(𝜏, 𝜎) is added into the function. This addition decreases the effect of illumination 

changes while the grey value descriptors are calculated. Schmid [21] investigates the results of 

T 
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13 different filters by changing the values of parameters 𝜏 and 𝜎. While the range of values for 

𝜏 is between 1 and 4, the range of values for 𝜎 is between 2 and 10. 

Once the generation of the grey value descriptors is completed for each pixel location 

of all the training images, this set of grey value descriptors is normalized by utilizing their mean 

and variance. Normalization provides an advantage to decrease the effect of scaling in this 

visual object modeling technique. Afterwards, the k-means clustering algorithm is applied to 

the normalized grey value descriptors by using Euclidean distance for the extraction of 

“generic” descriptors. The k-means algorithm focuses on finding the clusters and their centers 

for the given feature vectors as samples by iteratively updating the centers which are randomly 

initialized [22]. The iteration continues until the minimum sum of squares is calculated by using 

the distance between the samples and their closest centers [22]. The optimum value of k is found 

as 50 by comparing the distinctiveness of the extracted “generic” descriptors. Once k centers 

of the normalized grey value descriptors are found by applying k-means clustering, a covariance 

matrix ∑ for each center µ is computed by using the matrix of the only grey value descriptors 

which are in the cluster of the respective center. Each grey value descriptor, which is assigned 

to respective closest center, lies on a column vector of this matrix in order to be used for the 

calculation of the covariance matrix. Therefore, each “generic” descriptor refers to one cluster 

and is defined with the center and the covariance matrix of that cluster such as Ci = (µi, ∑𝑖).  

A pixel-level labeled image is created by assigning the index of a “generic” descriptor 

to each pixel location after all “generic” descriptors are extracted from a given training image. 

The decision of the assignment of each pixel location is made by choosing the generic 

descriptor, which has the highest probability for the grey value descriptor of that pixel location. 

For this purpose, the probabilities P(Ci|dl ) of the “generic” descriptors placing each pixel 

location are calculated for a given grey value descriptor dl of each pixel location of a given 

training image shown as below. 

P(Ci|dl ) =
P(dl|Ci)P(Ci)

P(dl)
=

P(dl|Ci)P(Ci)

∑ P(dl|Cj)P(Cj)
k
j=1

  2.2 [21] 

Two approximations are used as assumptions in order to compute a probability of 

“generic” descriptor Ci for a given grey value descriptor dl. One of these approximations is that 

the probability of each “generic” descriptor P(Ci) is equal. Another one is used to approximate 

a distribution of Gaussian to compute the probability of a grey value descriptor for a given 

“generic descriptors.” 

Figure 2.1 shows the visualization of some examples of “generic” descriptors, which 

are manually chosen. To this end, the pixel locations assigned by a selected “generic” descriptor 

are colored with black while the rest of pixel locations are colored with white in Figure 2.1. A 

given positive image of which the target visual object is selected as the species of cheetah is 

shown in Figure 2.1 [a]. The images shown in Figure 2.1 [b] and Figure 2.1 [c] are the 

visualizations of the examples of two different “generic” descriptors by utilizing the pixel-level 

labeled image shown in Figure 2.1 [a]. It is easily seen from Figure 2.1 [b] and Figure 2.1 [c] 

that the locations of pixels, which are grouped by those two different “generic” descriptors, 

characterize the target visual object. On the other hand, Figure 2.1 [d] shows an example of the 

visualization of another “generic” descriptor and the pixels which give the highest probability 

for this “generic” descriptor, and characterize the background. 
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                        (a)                                                  (b)                                                     (c)                                                     (d) 

Figure 2.1: The visualization of some examples of different “generic” descriptors by assigning 

them to the respective pixel locations in the case of obtaining the highest probability for the 

respective “generic” descriptors [21]. 

 (a) An original positive sample whose target visual object is determined as the species of 

cheetah (b)(c) The black colored pixel locations based on two different assigned “generic” 

descriptors show mostly the pixel locations of target visual object (d) The black colored pixel 

locations based on a “generic” descriptor show mostly the pixel locations of the background. 

The second layer processing is applied into the pixel-level labeled images holding the 

indices of the “generic” descriptors by utilizing the probability computation shown in the 

formula 2.2 to generate more distinctive descriptors than “generic” descriptors and rotationally 

invariant in contrast to the “generic” descriptors. The descriptors, which are obtained by 

applying the second layer processing into the pixel-level labeled images, are called as 

“neighbourhood-frequency” descriptors by the author of [21]. In order to generate 

“neighbourhood-frequency” descriptors, a circular window with radius 10 traverses the pixel-

level labeled images by sliding the center window from pixel to pixel. Therefore, a frequency 

vector vl is computed as shown in the formula 2.3 for each pixel location p where the center of 

circular window stays. 

vl = (
P(C1|wl )

⋮
P(Ck|wl )

) =

(

 

 
|C∗(p )=C1| p∈wl|

|wl|

⋮
|C∗(p )=Ck| p∈wl|

|wl| )

   2.3 [21] 

In formula 2.3, wl is the definition of the centered window, while |wl| refers to the size 

of the window. Once a frequency vector is computed for each pixel location, k-means clustering 

algorithm is applied to this list of vectors like the extraction of “generic” descriptors. However, 

this time, k is chosen as 10 instead of 50. Euclidean distance is used for comparing the 

“neighbourhood-frequency” descriptors in k-means clustering algorithm. Consequently, each 

cluster refers to one “neighbourhood-frequency” descriptor. After the obtaining of the 

“neighbourhood-frequency” descriptors, another kind of pixel-level labeled images is created 

by assigning the indices of “neighbourhood-frequency” descriptors to the respective pixel 

locations which provide the highest probability for “neighbourhood-frequency” descriptors for 

given grey value descriptors and frequency vectors of those pixel locations. The computation 

of “neighbourhood-frequency” descriptor Vij for a given grey value descriptor and frequency 

vector of each pixel is shown in formula 2.4. 
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P(Vij|vl ∧ dl ) =
P(vl∧dl|Vij)P(Vij)

P(vl∧dl )
=

P(vl|dl∧Vij)P(dl|Vij)P(Vij)

∑ ∑ P(vl|dl∧Vst)P(dl|Vst)P(Vst)ts
  2.4 [21] 

 

It should be noted that there are two assumptions in the computation shown in formula 

2.4 similar to the assignment of the most probable “generic” descriptors to the pixel-level 

labeled images. One of those assumptions is that the probability of each “neighbourhood-

frequency” descriptor P(Vij) is equal. The second assumption is to compute the probability of 

frequency vector for a given grey value descriptor and “neighbourhood-frequency” by 

approximating with a Gaussian (µi, ∑𝑖). 

Finally, the visual object model is built by choosing the positive and distinctive 

“neighbourhood-frequency” descriptor from positive and negative training images. For this 

purpose, the significance measurement of each “neighbourhood-frequency” descriptor from all 

training images is computed. There is an assumption that the probability of each training image 

is independent and equal. One should bear in mind that inter-pixel dependence is ignored and 

each pixel has the same probability. Therefore, the probability of a “neighbourhood-frequency” 

descriptor from a given training image can be computed as shown in formula 2.5. Moreover, 

the computation of the significance measurement is presented in formula 2.6. The definition of 

the symbol “I” is an image shown in the formula 2.5, while the symbol of “M” expresses the 

model in the formula 2.6. The number of pixels in a given image is assumed as “n” and specified 

in the formula 2.5. 

P(Vij|I ) = P(Vij|{ p1, p2…pn } ) = ∑ P(Vij|pl )
n
l=1 = ∑ {

P(Vij|pl ) if V
∗(pl) =  Vij

0             otherwise
n
l=1   2.5 [21] 

 

Sig(Vij|M ) =
P(Vij|{Ipos} )

P(Vij|{Ipos} )+P(Vij|{Ineg} )
  2.6 [21] 

 

As it is shown in the formula 2.6, the value of the significance measurement increases 

while the probability of a “neighbourhood-frequency” descriptor from a given positive image 

gets closer to 1. Likewise, while the probability of a “neighbourhood-frequency” descriptor 

from a given negative image gets closer to 0, the value of the significance measurement 

increases. The range value of the significance measurement is between 0 and 1. Therefore, the 

“neighbourhood-frequency” descriptors, which cause the computation of significance 

measurement close to 1, can be categorized as positive and distinctive descriptors for the target 

visual object. 

Once a model of a target visual object is constructed by the algorithm explained above, 

retrieving candidate positive images from a set of test images or localizing the target visual 

object in the test images can be done by exploiting this model. A target visual object model 

consists of a number of “generic” descriptors, a number of “neighbourhood-frequency” 

descriptors and the significance measurements of each of those “neighbourhood-frequency” 

descriptors. Schmid [21] proposes an image retrieving strategy by using a target visual object 

model. This strategy is based on computing a probabilistic score for each pixel of the test images 

by utilizing the descriptors and the significance measurements of the built model. For this 
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purpose, firstly, a grey value descriptor is constructed for each pixel of a given test image. A 

pixel-level labeled image is constructed by assigning the index of “generic” descriptor of the 

visual object model which has the highest probability for the given grey value descriptor 

computed from each respective pixel location. Afterwards, a frequency vector for each pixel is 

generated by using this pixel-level labeled image. Finally, a significance measurement can be 

computed by using those frequency vectors and “neighbourhood-frequency” descriptors of the 

visual object model. The probability of the model for each pixel, which is called a probabilistic 

score of each pixel P(M|pl), is set to 0 if the significance measurement which is computed in 

the test case is smaller than the specified threshold 0.5. Therefore, the probabilistic score of a 

pixel is computed as shown in the formula 2.7. 

P(M|pl ) = P(C
∗(pl)|dl)P(V

∗(pl)|vl ∧ dl)Sig(V
∗(pl)|M)  2.7 [21] 

In order to have a decision procedure with respect to retrieving candidate positive test 

images, the probabilistic score of a pixel shown in the formula 2.7 is extended as the probability 

of a model for a given test image shown in the formula 2.8. 

P(M|I ) = P(M|{ p1, p2…pn } ) = ∑ P(M|pl )
n
l=1  2.8 [21] 

The number of pixels in a given test image is fixed and defined as “n”. If the value of 

the probability of the model for a given test image is greater than the specified threshold, then 

it is retrieved as a positive test image. Moreover, the probabilistic score of a pixel is used for 

localizing the target visual object in a given test image by selecting the pixel locations, which 

give the high probabilistic scores. The Figure 2.2 [a] shows one of the test images, while Figure 

2.2 [b] shows the image depicting the pixel locations giving high probabilistic scores in black 

color and the rest of the pixel locations in white color. 

 

 
(a)                                                                           (b)         

Figure 2.2: The visualization of the pixel locations which produce the highest probabilistic 

scores for the given test image [21].  

(a) A given test image (b) The visualization of selected pixel locations of given test image based 

on high probabilistic scores. 
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2.1.2 RELATION TO THIS THESIS 
 

The overall aim of the method introduced by Schmid [21] is an optimal object model recovery 

by learning from positive and negative image-level labeled images same as the one of this 

thesis. There are only two distinct differences between the targets of the method proposed in 

[21] and the one introduced in this thesis. The first difference is that the method proposed in 

[21] constructs an object model based on the selected pixels of the image-level labeled images 

while the approach of this thesis recovers an object model by gathering the selected segments 

of the image-level labeled images. In other words, the object models which are recovered by 

using the method of [21] consist of the pixel locations of the image-level labeled images instead 

of the segment locations of the image-level labeled images. On the other hand, the segment 

locations of the image-level labeled images construct the object models which are recovered by 

the method of this thesis. The second difference between the methods proposed in [21] and in 

this thesis, is that the training and test dataset consists of greyscale images in [21] while color 

images construct the training and test dataset utilized in this thesis. 

 

2.1.3 IDEAS TAKEN OR EXTENDED FOR THIS THESIS 
 

Instead of utilizing the mathematical functions presented in the paper [21] of Schmid for this 

thesis, the overall aim of this thesis is derived from the target of [21] by extending to color 

images and segment-based object model recovery. Moreover, the general idea of retrieving 

candidate positive test images by using thresholds is applied for the detection of candidate 

positive test image segments. More specifically a threshold regarding the number of positive 

pixel locations is set to have a decision procedure for the retrieving candidate positive test 

images in [21]. Similarly, a decision procedure is used for the detection of candidate positive 

image segments from test images in this thesis by using a threshold regarding the number of 

similar positive segments placing in an object model. 

 

2.2 FINGERPRINT TECHNOLOGY PROPOSED BY HAO ET AL. [23] 
 

The details of the method of fingerprint technology presented by Hao et al. [23] is described in 

the following Subsection 2.2.1. Furthermore, Subsection 2.2.2 shows the relation of [23] to this 

thesis while Subsection 2.2.3 briefly expresses a list of ideas taken from [23] to be used in this 

thesis.   

 

2.2.1 DESCRIPTION OF METHOD 
 

Hao et al. [23] present an innovative recognition/classification tool for bioacoustics to monitor 

insects by operating the spectrograms of their sounds. The spectrogram is defined as an acoustic 

descriptor, which visualizes the magnitude of Short-time Fourier Transform (STFT) [24]. Since 

the typical sound signals produced by organisms comprise varying characteristics of the batch 

of formants for each particular time frame over time, there is a requirement for a technique, 

which examines the signals separately extracted from the sequential time frames instead of 

examining the entire signals at once. For this purpose, STFT is designed with the expansion of 
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the employment of the domains for discrete-time Fourier transform (DTFT) and discrete 

Fourier transform (DFT) [24]. The extended domain is the combination of time and frequency 

domains. While both DTFT and DFT are applied to the entire input signal, STFT is applied to 

equally divided sections of the signal over time to generate sinusoidal outputs in the frequency 

domain [24]. DTF maps a finite discrete set of complex numbers taken from the time domain 

to a finite set of coefficients, which are complex numbers in the frequency domain [24]. On the 

other hand, DTFT converts the infinite discrete set of complex or real numbers taken from the 

time domain to the continuous and periodic function in the frequency domain [24].  

Since both DTFT and DFT take discrete numbers as input, a continuous signal has to be 

sampled with the determined minimum sampling frequency by Nyquist rate [22]. Nyquist-

Shannon sampling theorem ensures that the sampled discrete signal is sufficiently 

representative to recover the original continuous signal [22]. From the practical point of view, 

the sampling process is executed by multiplying the continuous signals with the drain of pulses 

based on the Nyquist rate. The spectrograms are the intelligent way of representing in aid of 

two-dimensional space of the time varying spectral data produced by the application of STFT 

into the sound signals which require the four-dimensional space of representation due to the 

application of DTFT or DFT into small timeframes over time. When the computation results of 

the DFT or DTFT concerning small timeframes are restricted with magnitude, then the required 

numbers of dimensions are diminished to three from four dimensions for the representation 

space. To interpret the results even easier, the spectrograms are depicted as greyscale images, 

which code the magnitude values of the computation results of DFT or DTFT as the level of 

hues. For instance, the dark hues represent the small values while the bright hues are used to 

describe the high values of the magnitude. Figure 2.3 presents a sample spectrogram, which 

maps an insect sound demonstrated in [23]. 

 

 
Figure 2.3: A spectrogram mapping an insect sound for a specific time frame [23]. 

Hao et al. [23] mention about another research of acoustic recognition also using the 

spectrograms, which is introduced by Mellinger and Clark [25]. The purpose of this research is 

to build an automatic acoustic recognition tool for the bowhead whales, but in aid of supervised 

learning method since the training stage requires a significant amount of only labeled samples. 

All those training samples are the selected divisions of the spectrograms extracted from the 

conclusive records of the songs of the bowhead whales. The conclusive records take place once 

or a sequential number of times at the end of each separate song of the bowhead whales [25]. 

Apart from that, the time frame of each separate song of the bowhead whales is approximately 
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60-70 s while the interval between two separate songs is about 5-15 s [25]. The conclusive 

records from the songs of the bowhead whales are chosen as selected divisions of the 

spectrograms because those divisions contain more distinctive frequencies, in other words: 

higher frequencies due to the produced louder songs by the bowhead whales.  

During the training stage of this proposed automatic recognition tool, a correlation 

kernel is built by using the averaged consequent image of the selected divisions of the 

spectrograms based on the conclusive records from songs of the bowhead whales. The 

parameters of the spectrograms related to the time and frequency are chosen in [25] such that 

the contours of the frequencies are distinctly observable in those spectrograms. After the 

generation of the correlation kernel, the proposed automatic recognition tool computes the 

maximum cross-correlation coefficient between each test division of the spectrograms and the 

correlation kernel. This computation provides a function of time, which gives the detection 

scores as results. Mellinger and Clark [25] investigate different threshold values for those 

detection scores in their work to detect test divisions which are the conclusive actual records of 

the songs of the bowhead whales. The correlation coefficient is a statistical tool to find the 

quantity, which presents the nature of the relationship between two random variables [26]. 

Since a relationship between two random variables is defined as positive or negative depending 

on the sign of the quantity of the covariance [27], the covariance does not provide any 

information concerning the strength of the relationship. Therefore, to get more information 

about the strength of the relationship, the quantity of the covariance is divided by the value of 

the multiplication of the standard deviations of both random variables [27].  

Hao et al. [23] emphasize the large number of parameters, which are required to be 

adjusted to build the automatic recognition tool proposed by Mellinger and Clark [25] as one 

of the drawbacks. The limitations on the invariance of both local and global transformations of 

the time are also highlighted by Hao et al. [23] as another drawback of the approach of 

Mellinger and Clark [25]. Hao et al. [23] specify that these limitations occur due to the nature 

of the correlation coefficient, which is fundamentally linear. Therefore, to prevent the 

construction of the recognition/classification tool from overfitting [27], Hao et al. [23] apply 

CK-1 distance measurement introduced by Campana et al. [28] for the comparison of the 

subsets of the spectrograms between each other. These spectrograms are captured from the 

sounds of the insects. To compute the measure of CK-1 distance between two samples, it is not 

necessary to extract any feature from those samples. Instead, CK-1 distance is computed by 

directly exploiting those samples as inputs. Moreover, the computation of CK-1 distance is not 

required to be aligned by setting any parameter; therefore, CK-1 distance supplies a parameter-

free measurement between two samples. 

Campana et al. [28] mention about the approximation of the Kolmogorov complexity 

with the generalization of different compression algorithms to point out the fundamental 

structure of the CK-1 distance. The definition of the Kolmogorov complexity [29] is the length 

of the shortest string s which is the formal implementation of an algorithm created by a primitive 

programming language without any input based on Church-Turing Thesis [30] in order to print 

out a specified string x. In this case, the Kolmogorov complexity is presented as K(x). In other 

words, Kolmogorov complexity as a function provides a quantity as an output based on the 

encoding quality of a string, which is requested to be printed out and is given to the function as 

an input. When the input string gets more random, the length of the program becomes larger. 
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Moreover, the interpretation of K(xy) is the function of the Kolmogorov complexity taking the 

string xy as an input which is the concatenation of the strings x and y. As it is specified in the 

above definition of Kolmogorov complexity, there is no input for the program which prints out 

the string x. This notion is extended by adding a string y as an input for the program printing 

out the string x and introduced as a conditional Kolmogorov complexity K(x|y) which is also 

mentioned in [28]. Conversely, K(y|x) defines the Kolmogorov complexity of the program to 

print out the string y while the string x is given as an input. By using Kolmogorov complexity 

K(xy)  with the conditional Kolmogorov complexities  K(x|y)  and  K(y|x) , the distance 𝑑𝑘  

between two strings x and y is defined as the following formula 2.9: 

dk(x, y) =
K(x|y)+K(y|x) 

K(xy) 
  2.9 [28] 

Since the computation of Kolmogorov and conditional Kolmogorov complexities does 

not require the setting of any parameter to provide the quantity for a given program, the above-

presented distance 𝑑𝑘 is a parameter-free distance measurement function. Campana et al. [28] 

present a correspondence between the Kolmogorov complexity and universal string 

compression by transforming the problem of Kolmogorov complexity into the problem of 

universal string compression. More formally, the new problem of universal string compression 

is reduced to an already known problem of Kolmogorov complexity; therefore, the problem of 

universal string compression is not harder than the problem of Kolmogorov complexity. The 

correspondence between those two problems is initially and informally introduced, but the 

formal definition and the proof of this reduction is not described in the work of Campana et al. 

[28]. Accordingly, the formal definition and proof of this reduction is presented in Appendix 

A.1 of this thesis. 

According to this problem reduction, the distance formula of the universal string 

compression for given strings x and y can be presented as formula 2.10 by making use of the 

settings of the problem reduction. 

dc(x, y) =
C(x|y)+C(y|x) 

C(xy) 
  2.10 [28] 

The function of the universal string compression for the given string x is presented as 

C(x) which returns the size of the compressed string after the execution of the compressor on 

the string x. In the formula 2.10, the function of C(x|y) provides the compressed size of the 

string x whose compressor is trained on the string y. In the same way, C(y|x) returns the size 

of the string which is obtained after the execution of the compression on the string y by using 

the compressor which is previously trained on the string x. Moreover, C(xy) is the function 

which takes a string xy obtained by concatenating strings x and y as an input and distributes the 

size of the compressed string after the execution of the universal string compression on this 

concatenated string xy.    

The proof of this reduction also provides such information that the complexity of the 

distance formula of the universal string compression is not harder than the complexity of the 

distance formula of Kolmogorov complexity. However, the body of the distance formula of the 

universal string compression is not sufficient to be used for the domains of real numbers. 
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Because, the lossless compression techniques do not act based on the repeated structure in the 

domains of real numbers; conversely, the lossless compression techniques replace the repeated 

structures in the discrete data with the symbols which have shorter lengths than those in 

repeated structure [31]. Therefore, the formula 2.10 is not unswervingly applicable to real-

valued images or videos as a distance formula.  

Since the goal of the research introduced in [28] is to build an effective and parameter-

free distance measurement for the texture similarities of the given samples of the real-valued 

greyscale images, the distance formula of the universal string compression has to be modified 

for the usage of the domains of real numbers. Furthermore, the functions of the universal string 

compression in the distance formula have to be replaced with a lossy compression function 

which does not require any parameter alignment for its execution and succeeds based on the 

similarities of the given samples. For this purpose, Campana et al. [28] extend the idea of the 

distance function of universal string compression by exploiting of the video encoding format 

of MPEG-1 and call this new distance function as CK-1 distance. MPEG-1 is a standardized 

lossy compression format for the multimedia data published by Motion Picture Experts Group 

(MPEG) in the early 1990s in order to store a video or audio in the digital media with the bit 

rates which are up to about 1.5 Mbit/s [32].   

Campana et al. [28] mention two basic encoding steps of the video compression 

techniques, which are intra and inter frame compressions. The intra frame compression 

succeeds by encoding the similarities in the single frame, while the similarities between frames 

are encoded by the inter frame compression [32]. Campana et al. [28] express that if a video is 

created with only two image frames and then compressed into a video encoding format, then 

the size of the encoded video varies based on the similarities between those two image frames 

due to the inter frame compression step of the video compression technique. Accordingly, 

Campana et al. [28] gather the set of Matlab movie frames by converting the dataset of the 

research which is color image frames. In order to provide color invariance for the similarity 

measurements of the textures from the dataset, the color image frames are firstly transformed 

into grayscale image frames and then those grayscale image frames are transformed into Matlab 

movie frames. Each of those two Matlab movie frames from the transformed dataset, which are 

required to be checked concerning their similarities between each other, are firstly used to form 

four different Matlab videos after the transformed dataset is gathered as a set of Matlab movie 

frames. One should assume that the first considered Matlab movie frame is called x while the 

second one is called y. One of those four Matlab movies is created with the Matlab movie 

frames x and y in a consecutive manner and the respective temporal order, while another one is 

created with the same Matlab movie frames but in the reverse temporal order. Apart from them, 

the same Matlab movie frame x is sequentially repeated in the temporal axis in order to form 

the third Matlab movie while the fourth Matlab movie is formed in the same manner but with 

the Matlab movie frame y instead of x. After all those four Matlab movies are created, they are 

separately compressed into MPEG-1 format. Consequently, the algorithm of CK-1 distance 

function uses the sizes of these compressed videos as essential arguments for the computation 

of distance measurements between the samples since MPEG-1 video compression runs a 

temporal reduction on the bits in addition to the spatial reduction by keeping only the 

differences from the reference frame [33]. 
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The first image frame is assigned as a reference image frame and the second image 

frame is designated as a predicted image frame regarding the temporal order during the 

encoding process of a video via MPEG-1 compression. Hence, four videos created with the 

different temporal order of image frames are required to construct a symmetric distance 

function which is exploiting the ratios of the sizes of those four compressed videos. In other 

words, the size of a compressed Matlab movie into MPEG-1 format provides an asymmetric 

measurement for the similarity between the textures of the Matlab movie frames which form 

this Matlab movie; therefore, four Matlab movies are required to build a symmetric distance 

function taking two Matlab movie frames as inputs. In the light of this approach, Campana et 

al. [28] introduce the body of the symmetric MPEG distance function with the following 

equation 2.11.  

dmpeg(x, y) =
C(x|y)+C(y|x) 

C(x|x)+C(y|x) 
− 1    2.11 [28] 

The function of C from the above-shown equation 2.11 is replaced in [28] with the 

function of mpegSize which returns the size of the MPEG-1 format of the compressed Matlab 

movie with the same approach explained in the previous paragraph for two given samples from 

the dataset and called CK-1 distance. Apart from that, CK-1 distance is coded in Matlab which 

can also be understood from the transformed dataset mentioned during the explanation of the 

approach in the previous paragraph. Moreover, Campana et al. [28] exclude the step of the 

storage into the digital media from the compression format of MPEG-1 in order to boost the 

execution of the function of mpegSize. The Matlab code of the function of CK-1 distance 

implemented in [28] is shown in Table 2.1. 

 

 
Table 2.1: The implementation of CK-1 distance function in Matlab which exploits the inter 

frame compression step of MPEG-1 format for the symmetrically obtained reference and 

predicted movie frames [28]. 

 

Apart from the property of symmetry, CK-1 distance function returns zero when the 

same images are given as inputs; otherwise, always returns a positive value. Therefore, another 

property of CK-1 distance function is being nonnegative. The distance function of CK-1 is also 

gained with the property of rotation invariance by the additional implementation in the code of 

the function. This additional implementation enables the function to measure the value of the 

minimum CK-1 distance between one image with fixed standing and another image, which is 

rotated at ten different angles. When one of the input images is rotated at an angle, which is 

different than 90 ̊, 180 ̊ or 270 ̊, then the rotated image is not placed in its initial spatial 

coordinates. For this purpose, Campana et al. [28] utilize three different procedures such as 

cropping, padding and scaling to fix the issue of not fitting pixels of the rotated image with their 

initial positions.  
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Image cropping facilitates the improvement of focusing on the rectangular division of 

the interest [34]. Since there is a possibility that some or all the relocated pixels do not stand on 

the pixel coordinates after the scaling of a given image, one of the interpolation methods is 

required to be used to compute the values of those relocated pixels [34]. Image scaling, which 

is one of the affine transformation functions, is operated to resize an input image by preserving 

the points, lines and especially parallel lines [35]. Image padding is a method to extend the 

boundaries of a given image with additional pixels due to the filtering or representation 

purposes [36]. These additional pixels are set to a standard value, which is chosen as a 

minimum, maximum or intermediate from the range of 8-bit grayscale pixel values between 0 

and 255 [36]. If the additional pixels are set with zeros, then this type of padding is called as 

zero-padding [37]. Mirror image is the reflected representation of the original image based on 

its edge [22].  

 
Figure 2.4: The presentation of the samples created by different techniques in order to bring 

CK-1 distance function in the property of rotation invariance [28]. 

(a) Initial sample image (b) The result image after the cropping the rotated image from its 

centroid and then resizing based on the shape of initial sample image (c) The result image after 

the resizing of the rotated image and the application of the zero-padding (d) Mirrored image 

from the rotated image based on a specified mirror. 

In the work of [28], the mirror images are obtained by flipping over a given image based 

on a reference mirror. Apart from that, Campana et al. [28] employ the cropping method by 

cropping the images from the dataset around their centroids. These procedures, which are 

applied by Campana et al. [28] to fit the coordinates of the rotated image with its initial 

coordinates, are shown in Figure 2.4. The initial sample image from the dataset is shown in 

Figure 2.4 [a]. After the rotated image is cropped around its centroid, the cropped image is 

resized based on the shape of the initial sample image shown in Figure 2.4 [b]. As it is presented 

in Figure 2.4 [c], the rotated image is scaled with such a maximum ratio that the resized image 

stands between the boundaries of the location of the initial sample image. Moreover, the pixels, 

which are in the region between the boundaries of the location of the initial sample image and 

the outer of the boundaries of the rotated image shown in Figure 2.4 [c], are assigned to the 
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value of zero by the method of zero-padding. Figure 2.4 [d] shows a sample of the procedure 

of the image mirroring for the given image from the dataset. 

Finding a subset from the training subsets of the spectrograms as the most discriminative 

visual object model of which the dimensions are the smallest for the target visual object 

underlies all the functionalities of the bioacoustic recognition/classification tool introduced by 

Hao et al. [23]. This subset, which is found as the most discriminative visual object model, is 

called “sound fingerprint” for the respective target visual object by Hao et al. [23]. One should 

note that the subsets of the spectrograms are not labeled as positive or negative for a target 

visual object based on the existence or absence of the target visual object for the respective 

subsets of the spectrograms. Instead, only spectrograms in the dataset are labeled as positive or 

negative. Each spectrogram in the dataset is labeled as positive if it possesses at least one subset 

containing the target visual object; otherwise, it is labeled as negative.  

As it is noticeable from the labeled dataset, the issue of finding a sound fingerprint for 

a target visual object is a typical example of the problems of the weakly-supervised learning. 

For this purpose, Hao et al. [23] build a decision tree from the dataset of subsets/fragments of 

spectrograms. Since a decision tree contains the tasks of data compression and prediction, a 

constructed decision tree from a chosen dataset can be utilized to predict either unlabeled or 

labeled samples from the same chosen dataset as well as the samples from another dataset [38]. 

During the construction of a decision tree from the training dataset, Hao et al. [23] propose to 

use an idea of data mining called information gain as a decision rule. In order to diminish the 

computational complexity of the construction of a decision tree from the training dataset, CK-

1 similarity measurements between the fragments of spectrograms are exploited by Hao et al. 

[23] instead of any extracted features from the fragments of spectrograms. Furthermore, CK-1 

similarity measurements diminish the computational complexity of the extraction of the 

required classification information from the dataset by making use of the constructed decision 

tree. Therefore, the constructed decision tree from the training data used for the research of Hao 

et al. [23] comprises only two leaves due to the representation of CK-1 similarity measurements 

between the fragments of spectrograms in a single dimension. CK-1 similarity measurements 

between each candidate of sound fingerprint and the rest of the training dataset are calculated 

and represented on a number line. Afterwards, the threshold value on the number line is chosen 

in order to split the training dataset into two subsets for the purpose of linear classification based 

on the decision rule which is maximizing the result value of bits obtained by information gain.  

The definition of entropy has to be provided beforehand to describe information gain. 

Entropy provides a value of bits as a measurement based on the amount of ambiguity existing 

in the content of information obtained from the dataset due to the possibility of multiple 

classification options [38]. The information gain is defined as the value of bits which are 

measured as a result by calculating the difference between the entropies of the initial dataset 

and the subsets acquired after the division of the initial dataset [38]. In the light of the above 

description related to the whole process of building a decision tree from the dataset, Figure 2.5 

shows the ordered sample fragments of the positive and negative spectrograms on the number 

line. They are ordered based on the computation of the CK-1 distance between the sample 

candidate fragment and other sample fragments extracted from the positive and negative 

training dataset. 
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Figure 2.5: The illustration of maximizing the information gain for some samples of the lined 

up positive and negative fragments of the spectrograms on a number line based on their CK-1 

distances to a sample of candidate fragment [23].  

While the violet boxes point out the samples of positive fragments of the spectrograms, the 

negative ones are indicated by the green boxes. The yellow large vertical stripe depicts the 

location of the point splitting the given dataset into two subsets in such a manner that the 

computed value of information gain according to this splitting point is the maximum value that 

can be obtained from all possible splitting points by using this given dataset. 

After the maximum values of the computed information gain for the whole set of 

candidate fragments are obtained, the candidate fragment holding the maximum value of the 

information gain is set as the best fingerprint for the given dataset. There is also another 

additional selection criterion among the candidate fragments although their maximum values 

of the computed information gain are the same. In this case, the candidate fragment of the 

spectrogram possessing the longer distance between the medians of the positive and negative 

subsets placed on a number line according to their CK-1 distances to this candidate fragment is 

selected, instead of another fragment having the same maximum value of the information gain. 

For instance, it is identifiable in Figure 2.6 that the distance between the means of groups of 

green and violet lines placing in the lower number line is longer than the one in the upper 

number line. Therefore, the candidate fragment computed in the lower number line is selected 

as a better fingerprint rather than the one shown in the upper number line although the values 

of their information gains are equivalent. 

 

 
Figure 2.6: The number line representations of CK-1 distances between the sample fragments 

and two different selected fragments having exactly the same information gain [23]. 
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2.2.2 RELATION TO THIS THESIS 
 

The learning strategy of the approach proposed by Hao et al. [23] is a weakly-supervised 

learning same as the ones of the previously presented paper of Schmid [21] and the approach 

of this thesis. The overall aim of [23] is to find a single sound fingerprint belonging to a target 

visual object by using image-level labeled images while an optimal object model holding 

minimum 25 number of the best fingerprints is recovered in this thesis by utilizing the same 

approach of [23]. Segment-based fingerprint selection is performed by the both approaches 

introduced in this thesis and in [23]. 

Hao et al. [23] give 77% and 93% insect classification accuracies for 10 and 20 different 

insect genera, respectively. A wide range of frequency sounds is produced by the various 

species of insects based on many different constraints (e.g. body size and temperature) [39]. 

Apart from that, there are also various sounds that can be produced by only a single species 

[23]. When those complexities of the insect sound and the experimental results presented in 

[23] are taken into consideration, the approach proposed by Hao et al. [23] is set as an initial 

fundamental idea of this thesis and extended to color images. 

 

2.2.3 IDEAS TAKEN OR EXTENDED FOR THIS THESIS 
 

Since the initial approach of this thesis is originated from the approach proposed by Hao et al. 

[23], a complete set of methods described in Subsection 2.2.1 and utilized for object model 

recovery in [23] is applied in this thesis as well. One should note that the dependencies of these 

methods in the entire pipeline of object model recovery are same for the approach of this thesis 

and the approach of [23]. The classic machine learning idea of information gain, which is also 

used in [23], is performed for each experimental run of object model recovery in this thesis. 

Moreover, a set of methods which are different than the ones utilized in [23] is also investigated 

for all the processing steps placing in the entire pipeline apart from the one containing the 

application of information gain. 

While Hao et al. [23] make use of spectrograms, which are the spectral representation 

of acoustic signals; real-world color images are used as a pool of either test or training datasets 

in this thesis. CK-1 distance which is utilized in [23] as a tool for building an object model is 

applied to image segments in this thesis. Furthermore, there are a set of experimental setups 

which do not contain the application of CK-1 distance to build an object model in this thesis. 

When CK-1 distance method is not applied in an experimental setup of this thesis, it is replaced 

with a feature extraction method and a similarity metric. 

 

2.3 MULTI-FOLD WEAKLY-SUPERVISED LEARNING PROPOSED 

BY CINBIS ET AL. [40] 
 

The following Subsection 2.3.1 explains the details of the method of multi-fold weakly-

supervised learning presented by Cinbis et al. [40]. Moreover, the relation of [40] to this thesis 

is described in Subsection 2.3.2. Finally, Subsection 2.3.3 presents a list of ideas which are 

taken from [40] are included within the scope of the research of this thesis.   
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2.3.1 DESCRIPTION OF METHOD 
 

Cinbis et al. [40] propose a weakly-supervised object localization approach, which makes use 

of multiple instance learning. This approach is applied to color images taken from PASCAL 

VOC 2007 and 2010 datasets [41]. In multiple instance learning, each object, which is sent to 

the learner, is represented as a bag of vectors [42]. One should note that the number of vectors 

could vary and each vector is also named as an instance. Each object is labeled either as positive 

or negative in multiple instance learning [42]. The decision to set an object as a positive object 

is taken in the case at least one positive vector exists in its representation [42]. If all vectors of 

the object representation are negative vectors, then the respective object is labeled as a negative 

object [42]. Multiple instance learning provides a weakly-supervised learning framework for 

image-level labeled images by viewing them as bags of vectors [43].   

For the case of the approach introduced by Cinbis et al. [40], each object is defined as a 

window which is re-localized in previously divided disjoint folds of a training image or as a 

training window. Moreover, the number of disjoint folds is determined at the beginning and the 

windows, which are used for training, are extracted from other folds of training images than the 

windows used for re-localization related to each fold. The global representation of each window 

is created by assembling the extracted local Shift descriptors from each respective window. To 

generate this global representation, the local Shift descriptors are mined into 64 dimensions by 

applying Principle Component Analysis (PCA). The goal of the PCA method is to diminish the 

number of dimensions showing such data that the dimensions of the projected space can present 

the variation of the data with the most distinguishable manner [9]. Sanches et al. [44] introduce 

Image Classification with the Fisher vector (FV). The experimental results shown in this journal 

demonstrate the improvement in the accuracies by applying the PCA method on the local 

descriptors with the reduction to 48 dimensions or higher dimensions as depicted in Figure 2.7. 

In fact, the difference in the accuracies between the reduction to 64 and 128 dimensions is 

computed approximately less than 0.3% based on those experimental results. The PCA 

dimensionality is set as 64 for both works presented in [44] and [40]. The experimental results 

of the method introduced in [44] are generated using the color images of PASCAL VOC 2007 

[41], which consists of 20 classes. The Average Precision (AP) is computed for each class of 

this dataset with different size of PCA dimensionalities. Afterwards, the mean value of Average 

Precision (Mean AP) is computed by taking the average of the values of AP related to 20 classes 

for each PCA dimensionality. Those Mean AP values are shown in Figure 2.7.  

In the approach introduced in [40], after the local Shift descriptors of the windows are 

projected to lower dimensions such as 64 by using PCA, Gaussian Mixture Models (GMM) is 

utilized to build “probabilistic visual vocabularies” keeping 4, 64 or 1000 components from 

these computed principal components [44]. GMM is a parametric probability density function 

to model a given data, which has a specified number of subpopulations by summing weighted 

Gaussians [22]. 

Afterwards, a Fisher Vector (FV) with the size of 16 is constructed by measuring the 

gradient of its log-likelihood concerning the already built GMM. Fisher Kernel [44] shows the 

directions in gradient space to align the parameters of the model of the distribution; therefore, 

adapting the model through the parameters can represent a sample. A global representation of 
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each respective window is obtained by applying l2 and power normalization to the constructed 

FV.  

 
Figure 2.7: The visualization of the increase in Mean AP as a consequence of the 

dimensionality reduction while PCA is applied into the local SIFT Descriptors [44]. 

 

 
Figure 2.8: The visualization of the Segmentation as Selective Search proposed by Uijlings et 

al. [45]. 

(a) A given test/training image. (b) The ground truth of the given test/training image (c) The 

hierarchically merging strategy of segments, which are generated by over-segmentation during 

the initial level of the hierarchy (d) The bounding boxes covering some example selected 

segments 

 



23 

 

Each initial window is localized from the center of the entire training or test image with 

at least 4 percent smaller size than the size of the image. Afterwards, those initial windows are 

divided randomly into disjoint folds with the previously determined number. The classifier is 

trained with those divided windows from positive training images. The number of training or 

test windows is diminished by utilizing the approach of Selective Search introduced by Uijlings 

et al. [45]. The target of this pioneering approach is to facilitate the tasks of the feature 

extraction and classification units in an ordinary object recognition scenario. For this purpose, 

the pre-processing step of the object recognition, which is segmentation, is adjusted in such a 

way that some background candidate segments are eliminated in this upgraded segmentation 

unit without waiting for the classification unit. Consequently, this improvement intrinsically 

enables other processing steps placing in the entire pipeline to work more elaborately due to the 

reduction of the dimensions of respective input data. 

The approach introduced by Uijlings et al. [45] initially applies over-segmentation to a 

given test or training image. When segments are gathered with larger regions, they contain more 

information. Therefore, the segments collected with larger regions are more convenient to find 

similarities between each other in different variations, e.g. illumination conditions and noise. 

However, the probability of the existence of multiple target objects is getting higher when the 

region of a segment becomes larger. Accordingly, over-segmentation stabilizes the choice of 

the size for each segment by taking into account those pros and cons [46]. After the segments 

are generated with over-segmentation for the given training or test images, the similarities 

between them are computed in ways and by means discussed in [46]. According to the similarity 

computation between segments explained in [46], both size and texture similarities are 

employed by summation. The result ranges of the computation of both similarities vary between 

0 and 1; therefore, the effects of both similarity computations are the same on the global 

similarity measurements between the segments. The size similarity between two segments is 

assigned by computing the proportion of the region formed by joining those segments based on 

the entire image. Moreover, in order to compute the similarity based on textures, SIFT 

descriptors [47] are extracted in each segment. On the ground of the approach [48], the 

extraction of SIFT descriptors is applied into each color channel separately and concatenated 

as a batch of RGB-SIFT descriptors. Afterwards, the distances between the batches of those 

RGB-SIFT descriptors are computed by making use of the distance function of histogram 

intersection [49]. 

The hierarchically merging process of the method introduced by Uijlings et al. [45] 

starts with the initially generated segments from the given test or training images by applying 

over-segmentation. After that, the similarity measurements between adjacent segments are 

computed, and the segments having the smallest similarity value are merged. The similarity 

measurements between the newly merged segment and its neighbors are generated. This process 

continues until the entire image is represented as a single segment shown in the (c) of Figure 

2.8. The target visual objects can be in different scales from given images [45]. The hierarchical 

strategy of this method enables the locations of target visual objects in different scales. The 

combination of multiple color spaces is also investigated in this method. Apart from mulling 

over the only segments as selections by the method, the bounding boxes covering those 

segments are also investigated by Uijlings et al. [45] shown in (b) and (d) of Figure 2.8. 
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As it is mentioned previously, the positive training images are divided into disjoint folds 

randomly based on the approach introduced by Cinbis et al. [40]. During the iteration of each 

fold, the first detector is trained by using the windows extracted from other folds. Afterwards, 

the re-localization of the windows is applied for the same fold with this already trained detector. 

After the iteration of each fold reaches the number of folds defined as 10 in the beginning, the 

second detector is trained by employing the extracted windows from all disjoint folds of positive 

training images. The second detector is used to improve the classification accuracy of the first 

detector by catching the false positives and training the first detector with them once again. The 

false positive examples are called “hard examples” by Dalal et al. [50]. During the investigation 

of the method of HOG (Histograms of Oriented Gradients) by Dalal et al. [50] to detect humans 

from giving test images, the final detector is generated by training the already trained detector 

with hard examples once again. The final detector in the approach introduced by Cinbis et al. 

[40] is also formed by the same procedure with one difference. In the research of Dalal et al. 

[50], the negative training examples are the patches extracted from the negative test images, 

and it is known that a target visual object exists in those patches. Therefore, based on the results 

of the classifier for those given negative examples, the false positive ones can be determined. 

However, for the approach of Cinbis et al. [40], the negative examples are not known due to 

the natural consequence of the weakly-supervised process. As a matter of fact, the second 

detector determines the false negative examples. 

The contextual information from the training or test images is utilized by the method 

introduced in [40] as an additional feature to improve the performance of the localization of the 

target visual objects. For this purpose, the foreground, background and contrastive descriptors 

are investigated. The foreground descriptor is the Fisher Vector, which is developed with the 

extracted SIFT descriptors from the visual object window. The SIFT descriptors, which are 

extracted from the complement visual object window (the image area between the full 

training/test image and visual object window) are used to form the Fisher Vector for background 

descriptor. The contrastive descriptor is established as the difference of Fisher Vector extracted 

from background and Fisher Vector extracted from foreground as a 1×1 vector. In the light of 

the results generated during the investigation of different techniques and features, the highest 

accuracy of the target visual object localization and the highest mean value of the Average 

Precision for 20 classes of target visual objects are calculated when the contribution of the 

foreground and contrastive descriptors is determined as shown below in Table 2.2. 

 MIL Multi-fold MIL, K=10 

Descriptors F F+B F+C F F+B F+C 

CorLoc 29.1 29.8 29.7 36.5 38.5 38.8 

Detection mAP 14.0 15.6 15.5 20.0 21.0 22.4 

Table 2.2: The performance comparison between Multiple Instance Learning (MIL) and Multi-

fold Multiple Instance Learning based on the criteria such as “CorLoc” and “Detection mAP” 

by making use of foreground (F), background (B) and contrastive (C) features [40].  

“CorLoc” defines the accuracy percentage related to the correct target visual object localization 

for given training images. “Detection mAP” shows the percentage of the correctly detected 

target visual objects for given training images. 
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2.3.2 RELATION TO THIS THESIS 

The approach proposed by Cinbis et al. [40] also utilizes a weakly-supervised learning 

framework for the recognition of visual objects like the approaches of the previously presented 

related papers in this chapter and the approach proposed in this thesis.  Moreover, inputs of the 

both approaches of [40] and this thesis are training and test datasets which consist of only color 

images. Therefore, the targets of the methods of Cinbis et al. [40] and this thesis completely 

correspond to each other.   

2.3.3 IDEAS TAKEN OR EXTENDED FOR THIS THESIS 

The research of this thesis uses the idea of applying PCA to local feature descriptors, which is 

presented in [40]. While Cinbis et al. [40] apply PCA to Fisher vectors obtained from the image 

segments, the approach of this thesis applies PCA to either a type of color histograms or Vector 

of Locally Aggregated Descriptors Encodings. The following Chapter 3 describes these feature 

descriptors and their usage in this thesis. Apart from that, the idea of performing l2 and power 

normalization on the principal components obtained from local feature description by the 

application of PCA is taken from [40] for the investigation of this thesis. 
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 CHAPTER 3 

 

 

3 WEAKLY-SUPERVISED LEARNING OF VISUAL OBJECT 

MODELS 

n this chapter, the elaborated description of the weakly-supervised learning framework 

proposed by this thesis is introduced. The target of this weakly-supervised learning 

framework is to recover an optimal object model from a training dataset containing only 

image-level labeled color images. After an optimal object model is built by the weakly-

supervised learning framework of this thesis, it is used to detect the respective target visual 

object from a test dataset containing positively image-level labeled color images.  

Since collecting the most discriminative parts of the target visual objects is in interest, 

the datasets are sets of local properties of the images instead of global properties. In order to 

accomplish this fundamental objective, two different methods such as sliding windows and 

mean shift segmentation [51] are investigated. As demonstrated in Chapter 2, Hoa et al. [23] 

extract the fragments from the spectrograms by using the sliding window method and, therefore, 

they have the same size for each of their dimensions. The image segments as well have 

intrinsically the same sizes for both dimensions while the sliding window method is applied to 

them. On the other hand, the sizes of the image segments which are obtained by using mean 

shift segmentation do not have to be equal [51].  

 

 

Figure 3.1: The workflow collecting a set of the parts belonging to the target visual object from 

a set of positive and negative image-level labeled color images. 

Figure 3.1 shows the workflow, which takes a set of color images as inputs and returns 

a set of image segments. One should bear in mind that the input images are two different sets 

of images as positive and negative ones. The term “positive image” defines an image in which 

there exists at least one target visual object. In addition, the term “negative image” describes an 

image in which there exists no target visual object. 

I 
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As presented in Figure 3.1, the processing step of segmentation takes two sets of images. 

Afterwards, the segmented images are sent to the processing step of feature extraction in order 

to extract discriminative feature descriptors for each segment. Ultimately, the processing step 

of model building creates a model, which has a specific number of image segments along with 

their ratings. The higher the rating is, the more probable it is that the segment will become a 

target visual object. Any species of objects being either alive or not can be chosen as a target 

visual object.  The selected target visual object in Figure 3.1 is a vehicle. 

Based on the visual attributes of a selected target visual object, single or multiple visual 

feature descriptors are determined for the feature extraction [12]. The locally selected visual 

feature descriptors have to be invariant as much as possible to the changes such as scaling, 

orientation, illumination, affine deformation, etc. while those extracted from non-corresponding 

segments must stay distinguishable [22] [12]. Single or multiple types of visual attributes such 

as color, texture, shape and spatial relationships [12] are extracted from each image segment in 

order to construct the respective visual feature descriptor [52].  

While global visual representations map the content of the entire image, the regions 

obtained from a given image are mapped by local visual feature representations [12]. Since the 

target visual objects usually do not cover the entire image, either the image is uniformly 

partitioned, or the analogous regions of the image are clustered by a segmentation method [12].  

These segmented images constitute the training dataset and are applied to the feature 

extraction, which is the essential processing step on the path to success of gathering the parts 

of the target visual object with the highest precision. In fact, selection of image segments as the 

most discriminative parts of a target visual object is a successor processing step of the feature 

extraction. 

In the following subsections, the roles of these processing steps shown in Figure 3.1 are 

presented comprehensively. Furthermore, all the methods utilized in each processing step of 

the workflow shown in Figure 3.1 are described. 

 

3.1  SEGMENTATION 
 

The goal of the processing step of segmentation presented in this thesis is to partition a given 

color image into a set of regions. The only known information about the images used as inputs 

of this processing step of segmentation is their image-level labels. Consequently, the images 

are divided into two groups as positive and negative ones. There is no information about the 

location of target visual objects. In this processing step, one segmentation method is selected 

from two options investigated in this thesis. These two segmentation methods are sliding 

windows and mean shift segmentation [51]. In Subsection 3.1.1 and Subsection 3.1.2, these 

segmentation methods are described based on their implementation and performance. 

Moreover, the following subsections also specify the advantages and disadvantages of utilizing 

them while comparing them to each other.  

 

3.1.1 SLIDING WINDOWS  

 

The sliding windows are M pixels in width and N pixels in height. M and N are parameters, 

which are set by each experimental setup of this thesis. The method of sliding windows starts 



28 

 

traversing from the pixel location (0, 0) of an input image. The vertical sampling step of the 

sliding window has the same size with its own height. Firstly, the sliding window moves in the 

vertical direction and when it reaches the boundary of the image, it backtracks to 0 pixel of the 

row, however, this time it moves a single step horizontally. The horizontal sampling step of the 

sliding window is also same size with its width. This traversing process is repeated until the 

sliding window reaches the lower right corner of the image. Thus, there is no overlap between 

all the patches obtained by this method. The patches presented in Figure 3.3 are some outputs 

of the segmentation while the sample image shown in Figure 3.2 is given to this processing step 

as an input.   

 

 
Figure 3.2: A sample image which is given to the processing step of segmentation as an input. 

 

         

         

         

         

         

Figure 3.3: The patches collected by the sliding windows. While each vertical step size is equal 

to the height of each patch, the size of each horizontal step is equal to the width of each patch. 

 

The smaller vertical and horizontal sampling steps are also investigated in this thesis. 

When the vertical and horizontal sampling steps are chosen as smaller than the height and width 

of the sliding window, respectively, some of the obtained patches partially overlap each other 

shown in Figure 3.4. In order to gather patches presented in Figure 3.4, the vertical sampling 

step is set two times smaller than the width of the window. Furthermore, the selected horizontal 

sampling step is also two times smaller than the height of the window. Accordingly, the number 

of generated patches is four times bigger in Figure 3.4 than while choosing width and height 

presented in Figure 3.3.  
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Figure 3.4: The patches collected by the sliding windows. While the size of each vertical step 

has a two times smaller height of each patch, each horizontal step size has a two times width of 

each patch. 

 

There are two advantages of using sliding windows instead of mean shift in order to 

segment the images. The first one is that the implementation of sliding windows segmentation 

is easier than the one of mean shift segmentation. The second advantage of using it is having 

far shorter execution time than the one required for the mean shift segmentation. However, the 

disadvantage of the sliding windows is that a generated segment can contain not only the parts 

of target visual object, but also the background. Consequently, such segments act as a 

bottleneck for the following processing steps, which are feature extraction and model building. 

 

3.1.2 MEAN SHIFT SEGMENTATION  
 

The method of mean shift segmentation clusters the regions of sample color images relying on 

the algorithm of mean shift introduced by Fukunaga and Hostetler [53]. Its idea is to build a 

non-parametric clustering model for a sample of the data distribution gathered from color 

images [51]. Therefore, constructing a mean shift segmentation model from a sample is not 

imposed by a hidden premise. Mean shift segmentation partitions a sample color image by 

seeking the highest density values for the related local regions of the data distribution obtained 

as a result of the representation of the sample color image into L*u*v space [22]. These highest 

density values are called either modes or maxima [22]. Traversing the mean shift windows 

through the data distribution succeeds seeking the modes. The size of each mean shift window 

is parameterized. Firstly, the mean shift windows are located uniformly in the data distribution. 

Afterwards, each mean shift window is centered at the mean location of the data situated within 

the window. The procedure, which computes the mean location for each respective window and 

then relocates the window according to this mean location, is executed recursively until 

convergence. Finally, the windows ending up at the same peak location are merged and the data 

traversed by the same merged windows is specified as the same class.  

The aim of utilizing the mean shift segmentation in this thesis is to partition sets of 

trainings and test images into regions containing strongly correlated pixels based on their color 

information. Furthermore, mean shift segmentation employed in this thesis is applicable to the 

color spaces of L*a*b and L*u*v individually although it is theoretically defined only in L*u*v. 

As it is explained in the Section 3.2, some investigated methods of feature extractions require 

segments with the format of rectangular boundaries as inputs. After the segments are gathered 

by mean shift segmentation, each of them is aligned as a rectangular image segment by filling 

the background determined based on the boundary of the respective segment with black pixels 



30 

 

in case of the requirement by one of the investigated feature extraction techniques. For the 

purpose of this arrangement related to the background of each segment, 0s are assigned to all 

three channels of each background pixel location.  

One should notice that the execution time for the alignment of rectangular segments 

with black background pixels is included in the whole execution time of mean shift 

segmentation. Therefore, the alignment of rectangular segments causes an additional processing 

burden for the processing step of segmentation with the use of the method of mean shift 

segmentation. 

 

 

Figure 3.5: An instance from a set of positive color images. Since the elephant is selected as 

the target visual object, the image is positive. 

 

 

                  

                            

 

 

 

 
 

 

 

 

 

 

 

Figure 3.6: Some output samples of the segmentation unit with the use of both the mean shift 

segmentation method and the alignment of rectangular boundaries are illustrated. 
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Figure 3.5 shows a sample from positive training color images. Some examples of the 

segments obtained from the image shown in Figure 3.5 by applying mean shift segmentation 

are exhibited in Figure 3.6. Another potential drawback of the method of mean shift 

segmentation related to the required processing time is that all output segments do not have the 

same dimensions demonstrated in Figure 3.6. Accordingly, if the following section of either 

feature extraction or model building requires exact width and height sizes for the respective 

segments, then additional reshaping procedure has to be executed for these segments. Since the 

dimensions of the obtained segments by the method of sliding windows are exactly the same, 

such an additional processing load does not exist. 

 

3.2  FEATURE EXTRACTION 
 

Feature extraction is an operation of computing the values of certain features from a given 

sample [9]. Moreover, extracting feature values from a given sample always provides a data 

reduction [9]. While the process of feature extraction compresses a given sample, its 

discriminative data facilitating the recognition of a potentially situated target object has to be 

preserved and emphasized as much as possible [9]. 

The goal of feature extraction in this thesis is to obtain a compact and expressive feature 

descriptor from each image segment given as an input by the segmentation. The feature 

descriptors extracted from all the image segments are clustered or compared each other by a 

technique during the operation of model building. Therefore, the size of compressed data has a 

direct impact on the execution time of model building. Moreover, the accuracy percentage of 

the results generated by model building is unswervingly affected based on the quality of their 

distinguishability. 

The different techniques analyzed in this thesis as the options of the feature extraction 

are presented in the following subsections. Apart from that, the strengths and weaknesses of 

these techniques based on each other are mentioned and compared. 

 

3.2.1 COLOR HISTOGRAMS 
 

Color histograms can be used as index vectors mapping the respective color images [54]. For 

this purpose, color histograms contain pre-defined number of bins for each color channel in 

order to compress color information gathered from a sample color image [55]. Each bin of the 

color histogram maps a specific range of quantities for the related color channel [55]. Therefore, 

the value of each bin points out the number of pixel locations mapping its specified range of 

quantities [55].  

The drawback of the color histograms is the missing spatial information of compressed 

data [55]. In other words, after the images are mapped with color histograms, the spatial 

information of the pixels situated on these images is not preserved. Due to this drawback, Pass 

et al. [55] investigate some auxiliary computations to maintain the spatial coherence partially 

during the generation of color histograms. Figure 3.7 presents two color image instances, which 

have similar histograms based on the similarity measurement characterized by Pass et al. [55] 

due to red pixels depicting the flowers situated in the left image and the golfer’s t-shirt situated 

on the right image. Pass et al. [55] express that the values of bins specifying those red pixels 
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are very close to each other in the color histograms extracted from these two-color images 

shown in Figure 3.7 although their contents are different. However, color histograms also have 

the advantages of being robust to scaling, rotation and translation. Furthermore, another 

advantage of this method is that it is widely used.  

 

 
Figure 3.7: Two sample color images whose color histograms are recognized as similar based 

on the standards of similarity function defined by Pass et al. [55]. 

 

3.2.1.1 AB COLOR HISTOGRAMS 

AB color histograms are constructed based on the color space of CIE L*a*b (CIELAB). 

CIELAB color space is derived from the color space of CIE 1931 XYZ in order to provide 

perceptual differences of color by utilizing the color distance function introduced by MacAdam 

[56]. In other words, CIELAB is a perceptually uniform color space because each identified 

three-dimensional color value in this color space has a unique visual perception in humans.  

The opponent color theory defines aspects of encoding color process from retina to brain 

through the neural signals [57]. According to this encoding color process, some opponent colors 

occur in the visual interpretation of humans such as white against black, red against green and 

blue against yellow [57]. The representation of CIELAB color space is carried out in three-

dimensions by these three components of opponent colors shown in Figure 3.8 because the 

opponent color theory is the foundation of CIELAB color space [57]. The dimension of 

perceived brightness (lightness) is named as L*. The brightness increases from bottom to top in 

L* axis.  Other two dimensions are designated as a* and b* presented in Figure 3.8. The positive 

values of the dimension a* state red while green is indicated by the negative values of the 

dimension a*. The dimension b* is exploited to specify yellow with its positive values and blue 

with its negative values.  

In this thesis, in order to gain illumination invariant features (extracted as color 

histograms) defined in CIELAB color space, the dimension of L is ignored. Therefore, a two-

dimensional AB color histogram is extracted from each segment obtained from the mean shift 

segmentation described in Subsection 3.1.2. In the implementation of two-dimensional AB 

color histogram, 101 bins are deployed and the range for the bin centers is [-200, +200]. As the 

gathered segments from mean shift segmentation are in the color space of RGB, they are firstly 

converted into CIELAB color space. The extraction of AB color histogram does not require 

rectangular boundaries for the segments. The color information for each pixel location 
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belonging to segments is executed for the construction of AB color histograms. Therefore, the 

background color information has no effect in this process.  

 

 

Figure 3.8: The visual representation of CIELAB color space, which is modelled with opponent 

coloring in 3-dimensions [58]. 

 

 

 

 

(a) (b) 

 

 

 

(c) (d) 

Figure 3.9: Four different segments obtained in the color space of CIE L*a*b by the application 

of mean shift segmentation. 

 

The AB color histograms extracted from four different segment samples shown in 

Figure 3.9 are visualized in Figure 3.10. The frequency values of bins in AB color histograms 
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shown in Figure 3.10 imply the range of color values concerning the dimensions of a* and b* 

existing in a set of discrete pixel locations for each segment. Hence, the bins keeping the highest 

frequency values of AB color histograms specify the dominant colors of the respective 

segments.  

 

  

(a) AB color histogram obtained from the 

segment shown in (a) of Figure 3.9. 

(b) AB color histogram obtained from the 

segment shown in (b) of Figure 3.9. 

  

(c) AB color histogram obtained from the 

segment shown in (c) of Figure 3.9. 

(d) AB color histogram obtained from the 

segment shown in (d) of Figure 3.9. 

Figure 3.10: The exhibition of AB color histograms obtained from four different segments 

shown in Figure 3.9.  

 

3.2.1.2 UV COLOR HISTOGRAMS 

 

CIE 1976 L*u*v* (CIELUV) forms the base of the extraction of UV color histograms from the 

segments obtained by mean shift segmentation. CIELUV is also proposed as a perceptually 

uniform color space like the color space of CIELAB by International Commission on 

Illumination (CIE) [59]. CIELUV utilizes the upgraded version of CIE 1964 u, v diagram [59]. 

The fundamental design of both CIELUV and CIELAB is similar [59]. The intentions of 

introducing such similar color spaces are pragmatic and historical. Both color spaces of 

CIELUV and CIELAB rely on human perception instead of on that of any device; therefore, 

they are both device-independent color spaces [37].  
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The procedure for the extraction of UV color histograms starts with the conversion of 

gathered segments from RGB color space into CIELUV color space. The range [-150, +150] is 

adapted for both dimensions u* and v* and 85 bin centers are located in the equal intervals 

between this range. Based on the values of u* and v* for each pixel situated in the regions of 

the segments, the value of the proper bin center is incremented by matching the proper bin 

center for the related color information. This process of finding the values of each bin center is 

exactly the same with the one of AB color histograms. 

Figure 3.11 and Figure 3.12 present four different samples of segments and their 

corresponding UV color histograms, respectively.  

 

 

 

 

(a) (b) 

 

 

 

(c) (d) 

Figure 3.11: Four different segments obtained in the color space of CIE L*u*v by the 

application of mean shift segmentation. 
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(a) UV color histogram obtained from the 

segment shown in (a) of Figure 3.11. 

(b) UV color histogram obtained from the 

segment shown in (b) of Figure 3.11. 

  

(c) UV color histogram obtained from the 

segment shown in (c) of Figure 3.11. 

(d) UV color histogram obtained from the 

segment shown in (d) of Figure 3.11. 

Figure 3.12: The exhibition of UV color histograms obtained from four different segments 

shown in Figure 3.11. 

 

3.2.1.3 COMPARISON BETWEEN AB AND UV COLOR HISTOGRAMS 

 

As it is specified in Section 3.1, the implementation of mean shift segmentation supplies the 

operation of the segmentation in two different color spaces and outputs the segments indicated 

in the color space of RGB. The UV color histograms presented in Figure 3.12 are collected by 

integrating the feature extraction of UV color histograms with the mean shift segmentation 

operated in CIELUV color space. On the other hand, the mean shift segments are obtained by 

utilizing the color space of CIELAB before the extraction of AB color histograms, which are 

demonstrated in Figure 3.10. However, Figure 3.13 shows AB and UV color histograms both 

extracted from mean shift segments gathered in the color space of CIELAB. In Figure 3.13, the 

upper histograms are AB color histograms and the lower histograms are UV color histograms. 

Additionally, the leftmost histograms are extracted from the same segment while another 

segment is used to extract the rightmost histograms. 
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(a) AB color histogram obtained from the 

segment shown in (e). 

(b) AB color histogram obtained from the 

segment shown in (f). 

  

(c) UV color histogram obtained from the 

segment shown in (e). 

(d) UV color histogram obtained from the 

segment shown in (f). 

 

 

(e) (f) 

Figure 3.13: The AB and UV color histograms extracted from two different samples of the 

segments are depicted. 

 

The segments shown in (e) and (f) of Figure 3.13 belongs to the visual object which is 

the species of elephants. The primary colors of these both segments are similar to each other. 

Hence, their extracted both UV and AB color histograms contain similar frequencies for their 

respective dimensions.  

Both AB and UV color histograms presented in Figure 3.10, Figure 3.12 and Figure 

3.13 are not normalized between 0 and 1. However, there is also an optional component in the 

processing step of feature extraction, namely that each extracted either AB or UV color 

histogram are normalized. Therefore, the indices obtained from either AB or UV color 
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histograms referencing the respective segments are scale invariant features in this case of the 

optional computation flows. In addition to this case, these obtained indices are executed either 

with their multi-dimensional structure or firstly converted in the form of column vectors in the 

processing step of model building as another optional case. Furthermore, the final version of 

each column vector, which represents the corresponding image segment, is constructed in order 

to be used by the processing step of model building by applying PCA to the respective AB or 

UV color histogram. The difference of the reduction of dimensions between AB and UV color 

histograms is that the dimensions of the column vectors stating UV color histograms are 

reduced to 8 number of principal components while the selected number of principal 

components is 6 for AB color histograms. Since higher accuracies are obtained by performing 

l1 normalization for both AB and UV color histograms instead of non-normalized ones during 

the experimental runs, l1 normalization process is activated as default option for the construction 

of both types of color histograms. The demonstrated results in Chapter 5 regarding both AB 

and UV color histograms contain a performed l1 normalization process, which divides each 

column vector gathered from either AB or UV color histogram with the summation of its values. 

As the extraction of UV color histograms is applied to the mean shift segments, the outer parts 

of the segments regarding the respective images do not have any effect for the computation 

flows of the proposed approaches as the same as the extraction of AB color histograms. 

 

3.2.1.4 RGB COLOR HISTOGRAMS 

 

The different algorithms are investigated in this thesis to construct color histograms, which are 

based on the color model of RGB, and are called as RGB color histograms. RGB color model 

denotes each color as the mixture of lights owning proper spectral ranges of primary colors, 

which are red, green and blue [60]. All the sets of colors indicated by RGB color model can be 

represented as a cube located in the origin of a Cartesian coordinate system [60]. Such a sample 

cube is shown in Figure 3.14 [61]. The corner dimensions of the cube indicate the pure colors 

of black and white and as well as the primary and the secondary colors [60]. The corner holding 

three-dimensional indicator of pure black color locates in the origin [60]. This black corner is 

adjacent with the corners holding the primary colors and pure white in a structure shown in 

Figure 3.14 [61]. Hence, the furthest adjacent of the corner located in the origin is the pure color 

of white. When the range of dimensions is normalized between 0 and 1 for the representation 

of RGB color cube, then it is called “unit cube” [60]. 

All the investigated algorithms, in order to extract RGB color histograms, take the mean 

shift segments as inputs. Therefore, the outward parts of the segments regarding the input 

images are excluded for the construction of respective RGB color histograms like the 

construction of both AB and UV color histograms. The operation of mean shift segmentation 

is carried out in CIELAB color space for these segments. The first algorithm constructs a two-

dimensional histogram for each color channel of the input segment. The range is aligned as 

[0,255] for all of these two-dimensional histograms and allotted equally for 64 bins. Apart from 

that, each of these histograms is normalized. Once the construction of normalized two-

dimensional histograms from all red, green and blue color channels of the segment instance is 

accomplished, they are concatenated. Hence, the indices referencing the respective segments 
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are obtained from the compound of these histograms and each index has a form of a column 

vector with length of 192 (64*3).  

 

 

Figure 3.14: An instance of a cube representing the manifold of colors indicated by RGB color 

model [61]. 

The second algorithm builds a three-dimensional RGB color histogram as a reference 

index for each respective input segment. The range for each dimension is adjusted between 1 

and 256. In addition, 16 bins group each dimension equally. Each extracted three-dimensional 

RGB color histogram is normalized in the next step of the algorithm. Therefore, it supplies the 

property of scale invariance for the indices acquired from three-dimensional RGB color 

histograms like the ones constructed by the above-mentioned first algorithm constructing a type 

of RGB color histograms and the ones formed by exploiting both UV and AB color histograms 

as well.  

The ultimate algorithm in the content of this thesis regarding RGB color histograms is 

based on the combination of two-dimensional histograms constructed by utilizing specified 

two-color channels of the input segments. The first two-dimensional histogram is built by using 

the channels of red and green while the channels of green and blue are used for the construction 

of the second two-dimensional histogram. Moreover, the final two-dimensional histogram 

embodies the color channels of blue and red. All the dimensions of these histograms are 

regulated in the range [0,255] and each dimension is classified with 32 bin centers. After the 

generation of these three histograms for each input segment, they are normalized, converted 

into single dimensional column vectors and chained sequentially. Finally, the dimensions of 

each of these joint column vectors are reduced to 12 principal components by performing PCA 

and these 12 principal components form an index for each respective segment. 

 

3.2.1.5 GB COLOR HISTOGRAMS 

 

GB color histograms are constructed based on only two-color components of RGB color model, 

which are green and blue components. GB color histograms are created only for the segments, 

which are gathered by mean shift segmentation processed either in CIELAB color space or 
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CIELUV color space. Another difference between GB color histogram and the rest of the 

aforementioned color histograms is the range and bin sizes of the histograms. The specified 

range of GB color histograms is [-100,100] for both dimensions and there are 51 numbers of 

bin centers located with equal intervals at each dimension. Same as the construction of the 

mapping indices for the respective image segments by making use of either UV or AB color 

histograms, l1 normalization is performed on the column vectors stating the GB color 

histograms since the process of l1 normalization increases the score of precision for each model 

built by one of these types of color histograms. However, any kind of additional techniques 

regarding dimensionality reduction of these normalized column vectors is not performed 

contrary to the column vectors constructed from AB, UV or a described type of RGB color 

histograms.  

 

3.2.2 MPEG-7 COLOR DESCRIPTORS 

 

Feature extraction techniques of two different MPEG-7 color descriptors employed in the thesis 

are described in this subsection. The rest of MPEG-7 color descriptors existing in the related 

area is also investigated during the experimental runs of the thesis; however, they are not 

involved with the scope of the thesis since their accuracies are worse than of the ones being in 

the scope of this thesis. 

3.2.2.1 MPEG-7 COLOR STRUCTURE DESCRIPTOR 

 

The fundamental design of MPEG-7 color structure descriptor is derived from the construction 

of blob histogram introduced by Qian et al. [62]. A blob histogram is constructed by adjusting 

the percentile of a structuring element with 1 and encapsulating the recurrences and sizes of 

each same type of local pixel aggregation based on textual and color characteristics of a given 

image [63]. MPEG-7 color structure descriptors are obtained from HMMD (Hue-Max-Min-

Diff) color space [64]. The item of max defined in HMMD color space is computed as the 

maximum value placing in three channels of RGB color space [64]. Likewise, the minimum 

value of three RGB channels is set as min for HMMD color space [64]. The item of hue in 

HMMD color space is defined exactly same with the one defined in HSV color space [64]. The 

value of Diff can be computed by subtracting the value of Min from the value of Max [64]. In 

addition, the summation can be defined as an additional item and calculated by dividing the 

summation of the value of Min from the value of Max by 2 [64]. Hence, five items can be 

determined by using the color space of HMMD although the letters of its name contain only 

four items. Moreover, all of these items of HMMD color space are nonlinear and non-uniform 

quantization of this color space is employed for the extraction of MPEG-7 color structure 

descriptors [64].   

Initially constructed blob histogram is 256-bin histogram and if the length of the MPEG-

7 color structure descriptor is required to be 128, 64 or 32, then the length of bins is reduced by 

application of bin unification [64]. Bin unification groups 256 bins into new length of bins 

equally and sums the values of bins placing in the same groups in order to compute the values 

of the regarding updated bins [64]. Therefore, while the length of bins is being reduced, the 

average of bin values increases in the updated histogram, which is constructed by applying bin 

unification to initial histogram. In this thesis, bin unification is employed in order to reduce the 
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length of bins from 256 to 32. Since performing nonlinear quantization on amplitudes of 

MPEG-7 color structure descriptors increases the accuracies of object models built by these 

descriptors [63], this process is also executed. Figure 3.16 shows histograms constructed during 

the extraction process of MPEG-7 color structure descriptor from a sample image segment 

presented in Figure 3.15 as well as a nonlinear quantization function utilized for the extraction 

process. Similar to segments used for the extraction of CEDD, MPEG-7 color structure 

descriptors are also extracted from the segments, which are obtained with their rectangular 

boundaries from CIELUV color space by applying mean shift segmentation. 

 

 

Figure 3.15: A sample image segment obtained by mean shift segmentation and extracted with 

rectangular boundary by setting background region with black color in order to be used for the 

extraction of MPEG-7 color structure descriptor. 

 

  
(a) (b) 

  
(c) (d) 

Figure 3.16: Histograms constructed from beginning to the end of extraction process of MPEG-

7 color structure descriptor from the image segment shown in Figure 3.15 in addition to a 

performed nonlinear quantization function. 
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3.2.2.2 MPEG-7 SCALABLE COLOR DESCRIPTOR 

 

Extraction of MPEG-7 scalable color descriptor from a given image is started by quantizing its 

color values placing in HSV color space into 256 bins uniformly [64]. Afterwards, this 

uniformly quantized 256-bin histogram is encoded by performing Haar transformation in order 

to reduce the length of bins from 256 to 128 in a single iteration [64]. In this thesis, the length 

of bins of the constructed uniformly quantized histogram is compressed from 256 to 16 bins by 

performing Haar transformation with 4 repetitions since reducing the dimensions to 16 bins 

causes an increase in the accuracy of object recovery using MPEG-7 scalable color descriptors. 

In order to extract MPEG-7 scalable color descriptor from a sample image segment presented 

in Figure 3.18, the histograms shown in Figure 3.17 are constructed one after another by 

applying the operations described above. Moreover, a nonlinear scaling function, which is 

employed to construct a nonlinear quantized histogram by taking a uniformly quantized 256-

bin histogram as an input, is demonstrated in Figure 3.17. The same segments used by the 

extractions of MPEG-7 color structure descriptors are likewise used to perform extractions of 

MPEG-7 scalable color descriptors.  

 

  
(a) (b) 

  
(c) (d) 

Figure 3.17: Histograms constructed from beginning to the end of extraction process of MPEG-

7 scalable color descriptor from the image segments shown in Figure 3.18 in addition to a 

performed nonlinear scaling function. 
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Figure 3.18: A sample image segment obtained by mean shift segmentation and extracted with 

rectangular boundary by setting background region with black color in order to be used for the 

extraction of MPEG-7 scalable color descriptor. 

 

3.2.3 COLOR AND EDGE DIRECTIVITY DESCRIPTOR (CEDD) 

 

Color and edge directivity descriptor (CEDD) is proposed as an alternative feature descriptor 

containing only 54 bytes by Chatzichristofis et al. [65]. The size of 54 bytes for each feature 

descriptors corresponds to 144 numbers of dimensions. The main idea of the construction of 

CEDD for each given image is stated by Chatzichristofis et al. [65] as extracting a feature 

descriptor consisting of both color and texture information locating in the image and holding 

similar size of dimensions to MPEG-7 color descriptors. For this purpose, Chatzichristofis et 

al. [65] firstly extend the construction scheme of their previously introduced Fuzzy-Linking 

histogram in [66] from 10-bins histogram to 24-bins histogram by employing 4 more fuzzy 

rules in order to extract the color information from a given image formed in HSV color space. 

Chatzichristofis et al. [65] upgrade the limit calculations of each HSV channel value in [66] as 

distinct from [65] by detecting the vertical edges placing in these channels. In order to 

emphasize the vertical edges placing in a given image, coordinate logic filtering and the 

operation of AND are applied sequentially. Computing the differentiation between inputs and 

outputs of this vertical edge emphasizing procedure finds the positions of the vertical edges. 

Moreover, an extraction of texture information placing in a given image is accomplished by 

employing 5 digital filters presented by Park et al. [67] for their usage in MPEG-7 Edge 

Histogram descriptor. These filters enable to cluster image segments by assigning either a single 

or multiple texture classes. Consequently, corresponding 144-bin histograms are constructed 

for each given image by utilizing this texture clustering. 

 Extraction of CEDD is applied in this master’s thesis to image segments obtained with 

mean shift segmentation technique, which is performed in CIELUV color space. The minimum 

segmentation area is set as 200 pixels instead of 300 pixels different than other investigated 

feature extraction techniques taking inputs as segments obtained by application of mean shift 

segmentation in CIELUV color space since this change improves the accuracies of object 

recovery using CEDD as feature extraction technique. The obtained segments are extracted 

with their outer rectangular boundary and the color of regions between the boundaries and the 

segment is set with black color. The sample segments extracted by this method are shown in 

Figure 3.6. The dimension reduction is not performed for the extracted feature descriptors of 

CEDD from given image segments since dimension reduction decreases the accuracies of 

object recovery using CEDD. 

3.2.4 BAG OF VISUAL WORDS (BOVW) 

 

The bag-of-visual-words model is derived from the bag-of-words model. The bag-of-words 

model compresses the representation of the series of words [68]. To this end, only the 

frequencies based on the words appearing in a sample text are kept in a discrete format [68]. 

Therefore, a fixed vocabulary is utilized in order to obtain these frequencies [68]. In other 
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words, the semantics and syntax of the compressed text are lost with this discrete representation 

obtained by bag-of-words [68]. For the purpose of deriving the bag-of-visual-words model from 

the bag-of-words model, the components of the bag-of-words model identified as the words 

lying in a set of texts are replaced with the local feature descriptors extracted from a set of 

images. Moreover, the bag-of-visual-words model supplies an additional clustering process 

during the construction of the vocabulary [69].  

Csurka et al. [70] are the inventors of the bag-of-visual-words model but name this 

model as the bags of keypoints. The bag-of-visual-words also constructs a single dimensional 

histogram to provide a global representation for each instance (image or image segment). For 

this purpose, a clustering algorithm for all the gathered local feature descriptors from a set of 

training images is operated as a pre-learning process in order to build a visual vocabulary [71].  

After a visual vocabulary is obtained from a selected set of training images, each extracted 

feature descriptor from a set of test instances can be mapped to one of the classes defined in 

this visual vocabulary [71]. The number of occurrences of these classes forms a single 

dimensional histogram regarding each instance as a global feature descriptor [71]. Since the 

bag-of-visual-words model requires the use of a clustering algorithm for the discrete data 

denoted as the input, the bag-of-visual-words model is a vector quantization technique [71].  

 

 
Figure 3.19: The illustration of the updated design of Figure 3.1 with the additional usage of 

10 positive images selected from the initial positive image set in order to construct a visual 

vocabulary in the processing step of feature extraction. 

 

K-means clustering is applied in this thesis in order to construct a visual vocabulary 

from a set of local feature descriptors extracted from a selected training dataset in case the bag-

of-visual-words model is employed as a feature extraction tool in a research path involved in 

the thesis. In order to extend the experimental setups used in this thesis, the different values of 

k are selected as the additional research options in the tool of k-means clustering such as 50, 

100, 150, 200 and 250. The definition of k-means clustering is given in Subsection 2.1.1. One 

should note that 10 positive images are selected as a training dataset from 30 positive training 

images used in the processing step of segmentation in order to be utilized to build a visual 

vocabulary. In other words, the same 10 training images exploited for the building of a visual 

vocabulary are also used as the inputs of the segmentation included in the full execution path, 

which produces the parts of the target visual objects shown in Figure 3.19. Therefore, the 

experimental setup including the bag-of-visual-words model in the processing step of feature 

extraction updates the design shown in Figure 3.1 as Figure 3.19 presented above. 
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3.2.4.1 DENSE SIFT AND PHOW DESCRIPTORS 

 

Bosch et al. [69] establish the verification of the higher accuracies for the classification of the 

visual objects with the supplied experimental evaluations by extracting the SIFT descriptors 

from the regular dense grid points rather than the sparse interest points. Moreover, Bosch et al. 

[69] name the descriptors obtained by this method as dense SIFT descriptors. The root cause of 

the improvements in the experimental results is that the SIFT descriptors computed over the 

dense grid points provide more information about the contents of the respective images due to 

the larger set of the extracted local feature descriptors rather than the SIFT descriptors computed 

at sparse interest points. 

In order to construct a visual vocabulary when the dense SIFT descriptor is selected as 

the feature descriptor for one of the research purposes of this thesis, the descriptors are extracted 

from the entire image frame of each selected positive training image by traversing the Gaussian 

window. The size of each sampling step with respect to the Gaussian window is set as an 

optional case, which is single or 2 pixels, and the research results are collected for both cases. 

Apart from these two cases, the sampling at each 5 pixels is likewise investigated for the 

extraction of VLAD descriptors described in the following subsection. Moreover, whichever 

case is selected for the sampling step size, the size of each spatial bin locating in the Gaussian 

window is aligned as 2 pixels. One should bear in mind that before the computation of dense 

SIFT descriptors, the input images are converted from RGB color images to greyscale images. 

Figure 3.20 demonstrates the computation of SIFT descriptors at the dense grid points located 

by traversing the Gaussian window along one of the selected positive images. One should note 

that the bin borders and the keypoints of the Gaussian window is colored with blue for the 

demonstration purpose. Figure 3.20 (a) is the case when the sampling step size is determined 

as a single pixel. Additionally, Figure 3.20 (b) and Figure 3.20 (c) respectively present the 

illustration conditions for the selection of sampling step size as 2 and 5 pixels in order to settle 

the grid points for the computation of the SIFT descriptors by utilizing the Gaussian window. 

The size of each dense SIFT descriptor is 1×128. After the construction of a visual 

vocabulary by applying K-means clustering to these extracted dense SIFT descriptors, the dense 

SIFT descriptors are extracted this time from the whole training data. The newly extracted dense 

SIFT descriptors are assigned to the respective segments based on their fellowships with the 

regions of the segments. Eventually, single dimensional histograms indexing these segments 

are built by assigning these extracted dense SIFT descriptors to their closest visual words 

defined in the visual vocabulary constructed during the previous computation step and counting 

the number of the occurrences of the visual words for each segment.  

The magnified demonstration of the extraction of dense SIFT descriptors from an 

instance of the image segments is presented below in Figure 3.21. The only descriptors, which 

are in a relation with the region of the considering image segment, are taken into account in 

order to build a single dimensional histogram indexing this image segment. Performing l1 

normalization on the histograms constructed using dense SIFT descriptors based on bag of 

visual words is also investigated as well as non-normalized ones. 
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(a) 

 
(b) 

 
(c) 

Figure 3.20: The depiction of dense SIFT computation over one of the selected positive training 

images with different sampling step sizes (a single pixel (a) or 2 pixels (b) or 5 pixels (c)). 
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Figure 3.21: The enlarged representation of the gathering dense SIFT descriptors from a 

segment sample. 

 

Bosch et al. [72] introduce Pyramid Histogram of Visual Words (PHOW) by pursuing 

and extending the computation method of the SIFT descriptors at the dense grid points proposed 

again by Bosch et al. [69]. According to this newer approach derived from the dense SIFT 

descriptor, the extraction of SIFT descriptors is performed for four times at each grid point and 

the sizes of the annular areas employed for the computation of the SIFT descriptors differ from 

each other at the same grid point. The value of the radius is set with one of the followings pixels 

presented in the paper introducing PHOW [72] to impose the annular areas possessing different 

pixel sizes on the extraction of the SIFT descriptors: 4, 8, 12 or 16 pixels. Apart from this 

additional extraction possibility of the SIFT descriptors obtained densely with 4 different scales 

instead of only a single scale, the PHOW descriptors are applicable to the color images in 

addition to the greyscale images [72]. Bosch et al. indicate in their paper [72] that the dense 

SIFT descriptors are extracted with the specified scales for each channel of the input color 

image defined in the HSV color model. RGB color space forms HSV color space by projecting 

the color values denoted in the RGB cube onto the HSV cylinder and this projection enables a 

system using HSV color space to gain human perceptual differentiation [73]. Afterwards, the 

descriptors which are extracted from the different channels with the same scales and at the same 

grid points are jointed as PHOW descriptors. Therefore, the size of each PHOW descriptor is 

denoted as 128×3. 

 To obtain PHOW descriptors from the selected color images, RGB is used instead of 

HSV for the SIFT computation. Furthermore, the gathered dense SIFT descriptors from the 

different color channels are concatenated if they are extracted at the same grid points and with 

the same scales. Hence, the size of the extracted each PHOW descriptor is 1×384. Moreover, 4 

different scaling operations similar to the above-mentioned experimental runs executed in the 

related original paper [72] with the following spatial bin sizes are used: 4, 6, 8 and 10 bins.  

The extraction process of PHOW descriptor is succeeded by traversing a Gaussian 

window along the images same as dense SIFT descriptors described in the previous pages. Thus, 

the Gaussian window is also aligned with the spatial bins and each of the spatial bin keeping 

the size of 2 pixels for the computation of the PHOW descriptors. Apart from that, the same 

sampling sizes which are investigated during the computation of dense SIFT descriptors, are 

also analyzed during the extraction of PHOW descriptors. However, the images are not 

converted from RGB color images to greyscale images. Instead, the extraction process of 

PHOW descriptors is operated directly to the RGB color images. Since more descriptors are 

extracted due to the additional computations with respect to the scaling and the color 

information, the PHOW descriptors are more powerful scale invariant features and contain 

more clues placing in the color information rather than the dense descriptors. Based on the 

experimental checks, a normalization process decreases the score of precision of each model 
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built by the histograms constructed using PHOW descriptors. Therefore, these histograms are 

sent as representing indices for the respective image segments to the model building without 

processing normalization on PHOW descriptors. The regions of image segments are determined 

by performing mean shift segmentation based on CIELAB color space. 

 

3.2.4.2 VECTOR OF LOCALLY AGGREGATED DESCRIPTORS ENCODING (VLAD) 

Jégou et al. [74] present a new generation of image mining technique, which is called Vector 

of Locally Aggregated Descriptors Encoding (VLAD). This new approach is constructed by 

being inspired to find a simplified image mining technique, which keeps the structure of both 

Fisher vector and the bag-of-visual-words model [74]. The description of the Fisher vector is 

given in Subsection 2.3.1. The first advantage of VLAD against bag-of-visual-words model is 

that VLAD keeps the more detailed information with respect to the distinction of the classified 

local descriptors. In other words, the bag-of-visual-words model assigns the local descriptors 

to the closest visual words placing in the visual vocabulary; however, VLAD stores the 

distances between the local descriptors and their assigned closest visual words in addition to 

the assignment [75]. The second advantage of VLAD against bag-of-visual-words model is that 

the dimensions of the whole encoded data obtained by operating the technique of VLAD can 

be reduced dramatically without decreasing the quality of distinguishability by utilizing PCA 

[74]. The explanation regarding the method of PCA is provided in Subsection 2.3.1. These 

advantages are perceived as evidences to supply high-quality products with lower costs and 

decreased computation time by the industrial point of view. In this thesis, the number of visual 

words is determined as 16 to gather VLAD descriptors from given a set of image segments, 

which is collected by employing mean shift segmentation technique based on CIELUV color 

space. Same as the construction visual vocabularies for both dense SIFT and PHOW 

descriptors, 10 positively image-level labeled training images are selected. These selected 

training images are used to detect 16 numbers of cluster centers as visual words in a visual 

vocabulary. The dimension of each extracted VLAD descriptor is reduced from 6144 to 12 by 

applying PCA. Afterwards, the obtained principal components are processed by l2 and power 

normalization. The idea of performing l2 and power normalization during the construction of 

VLAD descriptor increases the precision scores of the object models constructed by using 

VLAD descriptor. These constructed final descriptors are sent to the processing step of model 

building. 

 

3.3  MODEL BUILDING 

After all the global feature descriptors are extracted from the corresponding segments by 

applying one of the feature extraction techniques described in Section 3.2, a non-parametric 

discriminative learning scheme on the basis of information gain proposed by Hao et al. [23] is 

adapted in the thesis. The elaborated description of this learning strategy and its usage in [23] 

is provided in Subsection 2.2.1. For this purpose, first of all, the similarity measurement for 

each pair of feature descriptors obtained from the segments of the complete set of training data 

is computed.  
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3.3.1 SIMILARITY MEASUREMENT 

In order to extend the pathways of the research, eight different similarity functions apart from 

CK-1 distance function introduced in [28] shown as below list are involved in the scope of the 

investigation. 

• Diffusion distance 

• Euclidean (l2) distance 

• Jensen-Shannon divergence 

• Kolmogorov-Smirnov test 

• Kullback–Leibler divergence 

• Chi square statistics 

• Histogram intersection 

• Matching distance 

The definitions of these distance functions and their connections are given as follows. 

Diffusion distance computation between histogram pairs is an imitation of the natural diffusion 

flows through inner spaces of histograms by reducing potential bin-to-bin conflicts [76]. 

Euclidean distance between a pair of histograms is calculated by simply summing up each bin-

to-bin Euclidean distance measurement [77]. One of differences between Euclidean and 

diffusion distance functions is that diffusion distance function has to compute most intensive 

flows only through inner spaces of a pair of histograms while the computation path of Euclidean 

distance function can contain both inner and outer spaces of this pair of histograms. Therefore, 

Euclidean distance function does not embed the adjacent bins into the computation of the 

measurement based on the input bins [77]. A distance quantity between empirical distribution 

functions of two instances is measured by Kolmogorov-Smirnov test [78]. Jensen-Shannon 

divergence measures a distance quantity between two probability distributions by utilizing 

Shannon entropy while Kullback–Leibler divergence computes a non-symmetric distance 

measurement (relative entropy) between a pair of probability distributions [79] [80]. Chi square 

statistics measures the similarity of the histogram pairs by calculating sum of the squared of 

difference (error) of histogram bins corresponding to standard normally distributed variables 

[81]. In addition, histogram intersection firstly sums up minimum distances between the 

histogram bins and then normalize these summations. Therefore, histogram intersection 

computes likewise the similarity measurement by involving the adjacent bins counter to 

Euclidean distance function [82]. Moreover, matching distance enables the combinatorial 

execution of the similarity measurement between histograms pairs by using size functions [83]. 

3.3.2 APPLICATION OF CK-1 DISTANCE 

All the elaborated description of CK-1 distance is provided both in Subsection 2.2.1 and Section 

6.1. CK-1 distance introduced in [28] is used for the experimental runs of this thesis without 

any changes in its implementation. The only difference is that the input segments are greyscale 

images in [23], while input segments are color images in this thesis. The input segments are 

gathered by either sliding window or mean shift segmentation (CIELUV color space is used to 
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perform mean shift segmentation) techniques as inputs for CK-1 distance. Since CK-1 distance 

function is applicable to only a pair of images which have exactly the same shape, additional 

reshaping process is implemented to be executed for a pair of segments obtained by mean shift 

segmentation if they do not have same shape. If only widths or heights of segment pairs are 

different, then the smaller heights or widths are extended to the lengths of the bigger heights or 

widths with the addition of black pixels by this reshaping process. If both widths and heights 

of segment pairs are different, the differences between widths and heights are compared. If the 

difference is bigger for widths than heights, then the segment containing the bigger width is 

reshaped based on the smaller width by keeping the aspect ratio. Likewise, the segment which 

has bigger height than the compared one is reshaped based on the smaller height by keeping the 

aspect ratio if the difference is bigger for heights than widths. After the reshaping by keeping 

aspect ratio, if the lengths of cross sides do not match, shorter cross sides are extended to longer 

cross sides by adding black pixels. Moreover, smaller length for either width or height is 15 

pixels to be applicable for CK-1 distance. Therefore, there is an additional alignment in 

reshaping process to avoid reshaping widths or heights smaller than 15 pixels. This additional 

alignment adds black pixels to extend the lengths of either widths or heights to 15 pixels if one 

of them has a length smaller than 15 pixels before or after the reshaping operation described 

above. 

The major difference between all the above-mentioned distance functions and CK-1 

distance function regarding their applications is that CK-1 distance function directly measures 

similarity between image segments while other distance functions listed in the scope of the 

thesis distribute the quantities of similarity comparisons between feature descriptors instead of 

image segments. Consequently, each kind of feature extraction techniques presented in Section 

3.2 is required to be applied to image segments to compute their similarity measurements by 

using their corresponding feature descriptors if one of the investigated distance functions apart 

from CK-1 distance function is selected for the similarity comparison. 

3.3.3 APPLICATION OF INFORMATION GAIN 

In order to build a discriminative learning scheme on the basis of information gain, the distance 

measures between each segment from positively image-level labeled training images (set as a 

candidate segment) and the rest of the segments from both positively and negatively image-

level labeled training images are computed by employing either one of eight similarity functions 

or CK-1 distance function. Afterwards, the values of information gain and threshold are 

calculated for each of these candidate segments by using these computed distance measures. 

The segments are sorted based on their values of information gain in a descending order. The 

highest value of information gain provides an intuition for the discrimination between positive 

and negative segments. Hence, object models are built with the numbers of 250, 200, 150, 100, 

50 and 25 segments having the highest values of information gain by storing their values of 

information gain and thresholds as well as their indices, which show their locations in the 

respective training images. For instance, the first 25 segments locating in that sorted list are 

collected with their above-mentioned data to build an object model with the 25 best fingerprints. 

These selected segments for the recovery of object models are called fingerprints in this thesis 

like in [23].  
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Once object models are built with the 250, 200, 150, 100, 50 and 25 best fingerprints, 

the precisions of these models are calculated by matching gathered fingerprints with the ground 

truth data. If the intersection of a gathered fingerprint with the ground truth data contains 

minimum 80% of entire region of the fingerprint, then this gathered fingerprint is set as true 

positive; otherwise, set as false positive. Figure 3.22 illustrates the precision calculations for 

the recovered object models with the 250, 200, 150, 100 and 50 best fingerprints. Based on the 

precision results of recovered object models, optimal models can be determined. The segments 

of images showing the results of information gain are colored in a greyscale form from lightest 

grey color to darkest grey color based on the values of their information gain. The value of 

information gain varies between 0 and 1. For instance, if the information gain value of a 

segment is 1 then the respective segment is colored by setting the respective pixels with 0s. On 

the other hand, a segment holding 0 value of information gain is colored by setting its pixels 

with 255s. Likewise, the mid values between 0 and 1 regarding information gain supply 

percentages to determine pixel values between 0 and 255. Moreover, the images presenting the 

best fingerprints show the gathered fingerprints for the respective images based on the selected 

number of the best fingerprints for the recovered object models. 

 

 
Figure 3.22: Demonstration of precision calculations for the recovered object models in order 

to select optimal ones. 

 

3.4  DETECTION OF TARGET VISUAL OBJECTS 

This section describes three different implemented approaches to detect segments of target 

visual object from a given set of positively image-level labeled test images by using one of the 

determined optimal object model. A Naïve Bayes classifier is employed as the first approach 

of target segment detector. Naïve Bayes classifier is the combination of a probabilistic model 

which utilizes the Bayes’ Theorem under the assumption of the independency of feature sets 

The Top 250 Best Fingerprints 

The Top 200 Best Fingerprints 

The Top 150 Best Fingerprints 

The Top 100 Best Fingerprints 

The Top 50 Best Fingerprints 

The Top 25 Best Fingerprints 
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[84]. The fundamental of Bayes’ Theorem is to compute the posterior probabilities by using 

prior probabilities and class-conditional densities [9]. In this thesis, the positive samples 

required for the training of this Naïve Bayes classifier are obtained from a selected object 

model. Furthermore, the negative samples used for its training are negative image segments, 

which are randomly collected during the segmentation process of object model recovery. The 

number of negative samples is aligned based on the number of positive samples because the 

training of this classifier utilizes an equal number of positive and negative samples. After the 

training process of Naïve Bayes classifier is completed, it is used to classify the segments 

collected from the test dataset. For this purpose, the segmentation and feature extraction 

methods which are exactly the same ones utilized for the selected object recovery process are 

performed on the test images. Afterwards, the segments are classified based on their feature 

descriptors by the already trained Naïve Bayes classifier. 

The second implemented technique is a linear SVM classifier which establishes a 

hyperplane to separate two different classes by maximizing the margin for both sides in the 

feature space [22]. This classifier is also initially trained by using an equal number of positive 

samples from a pre-trained object model and randomly gathered segments from negative 

training dataset same as the previous approach. In addition, an optional supportive training 

process is employed in order to re-train the already trained linear SVM classifier with hard 

examples (false positives) same as presented by Dalal et al. [50]. For this purpose, the feature 

descriptors are extracted from the segments of 10 randomly selected negative test images by 

employing the same segmentation and feature extraction techniques as the one utilized during 

the construction of the pre-defined object model. Afterwards, the extracted feature descriptors 

are classified by the already trained linear SVM classifier. The hard examples, which are 

classified as positives, are collected and used to train the SVM classifier once again. A set of 

positively image-level labeled test images is also segmented by executing the same 

segmentation technique and then the same feature extraction technique is applied to these 

obtained segments. Finally, the ultimate version of this classifier is used to detect target object 

segments by classifying their feature descriptors. (If this optional training process is not set as 

activated, then the linear SVM classifier is used for the detection of target object segments once 

its core training process, as described above, is completed.) 

The third alternative approach does not require any training process to start detecting 

target object segments from positively image-level labeled test images. Firstly, the feature 

descriptors are collected from these test images in exactly the same way as in the previously 

described approaches. The distance measures between these feature descriptors extracted from 

the test images and the feature descriptors of the segments placing in the determined object 

model are computed with the same distance function used during the process of object model 

recovery. Each of these distance measurements is normalized between 0 and 1 by aligning based 

on the segments having the greatest distances to the respective fingerprints during the 

information gain process of a selected visual object recovery. Once the distance measurements 

are completed, if the lengths of distances between a feature descriptor obtained from test images 

and the feature descriptors of at least a selected percent of the segments placing in the 

determined object model are less than the threshold values of the respective feature descriptors 

from the object model, then the test segment where the feature descriptor is extracted from, is 

detected as positive; otherwise, negative. Figure 3.23 illustrates the threshold spaces utilized 
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for the detection of test segments with the way explained in the previous sentence. Therefore, 

one should note that the spherical surface of each spherical threshold space constructed by using 

a selected fingerprint from a determined object model and its threshold value is defined as a 

negative zone. Moreover, Figure 3.24 presents the fingerprints, which are used to generate 

threshold spaces based on their threshold values. As it is explained in the previous section 3.3, 

the thresholds of the segments placing in the object model are collected during the learning 

process on the basis of the information gain. 

 

 
Figure 3.23: The visualization of the threshold spaces created by different fingerprint samples 

shown in Figure 3.24 in order to detect a test sample as positive or negative. 

 

 

Figure 3.24: 4 different fingerprint samples of an optimal object model. 

 

The detected segments whose boundaries intersect partially or fully, are merged into a 

single segment. After the merging process, the merged segments are visualized with boundary 

boxes. 
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CHAPTER 4 
 

 

4 EVALUATION 

he details of overall settings and ingredients in order to run each experiment existing in 

the experimental scope of the thesis are expressed in this chapter. Two different datasets 

are collected in this thesis. The dataset used for the development is called development 

dataset or elephant dataset. Another dataset is used to evaluate generatability to other visual 

objects and it is called tiger dataset. Moreover, this chapter lists the degrees of freedom for each 

experimental run and ends with the explanation how observations are assessed. 

 

4.1  DATASETS 
 

Each of the following subsections gives the details of one of the datasets utilized in this thesis. 

The development dataset is used for all the experimental runs. Moreover, only the selected 

experimental runs are launched by using the tiger dataset in order to verify the stability of their 

results which are previously obtained by using the development dataset.  

 

4.1.1 DEVELOPMENT DATASET 
 

The development dataset comprises of color images, which are 1920 pixels in width and 1080 

pixels in height HD images (1920×1080) and image-level labeled as positives or negatives. The 

images which contain at least one segment presenting partial or entire view of single or multiple 

elephants are labeled as positives. The rest of the images existing in the dataset is labeled as 

negative. Therefore, this dataset is also called elephant dataset. There are 50 positively and 40 

negatively image-level labeled images in the development dataset. 

A ground truth dataset related to the development dataset is created by using Adobe 

Photoshop CS6 as shown in Figure 4.1. This ground truth dataset represents the pixel-level 

labels of all the positively image-level labeled images of the development dataset. 

The development dataset is partitioned into a training dataset and a test dataset. 30 

positively and 30 negatively image-level labeled images of the development dataset forms the 

training dataset. These image-level images of the training dataset are used for building the 

object models. Furthermore, a set of segments collected from the training dataset is also used 

to train either an SVM classifier or a Naïve Bayes classifier employed in the detection of target 

visual objects. The images which form the half of the training dataset are taken personally by 

the supervisor of the thesis in the real wild environments of elephants. The rest of the training 

dataset is gathered from Flickr [11].  

The test dataset contains 20 positively and 10 negatively image-level labeled images 

and is utilized only to evaluate the accuracies of investigated three different detection 

approaches based on different recovered object models. The complete test dataset is also 

T 
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collected from Flickr [11]. The negatively image-labeled images of the test dataset are used 

only to catch “hard examples” for the already trained SVM classifier and then train the classifier 

once again with these hard examples. Since this is a supportive and optional training process, 

all the evaluations of detection approaches do not require the negatively image-level labeled 

images of test dataset. 

 

  

  

(a) Positive image samples from the 

elephant dataset 

(b) The respective ground truth data for (a) 

Figure 4.1: The presentation of two positive sample images from the elephant dataset and their 

ground truth data. 

 

4.1.2 VERIFICATION OF GENERALIZABILITY 
 

A tiger dataset is used for the verification of generalizability. The sizes of all the color images 

existing in the tiger dataset are not the same, contrary to the ones belonging to the development 

dataset but most of them are 1920 pixels in width and 1280 pixels in height HD images 

(1920×1280) or very close to these dimensions. All of these color images are also gathered from 

Flickr [11]. The labeling structure of the tiger dataset are exactly the same with the one of the 

development dataset. The only difference in the tiger dataset than in the development dataset is 

that the species of tiger is selected as a positive visual object rather than the species of elephant. 

50 positively image-level labeled images forms the tiger dataset. 

A ground truth dataset is also created by using the application of Adobe Photoshop CS6 

in order to have pixel-level labels of the tiger dataset. Figure 4.2 shows two samples from the 

positively image-labeled training images of the tiger dataset and their ground truth data. 

The tiger dataset is likewise partitioned into a training dataset and a test dataset. The 

number of images pertaining to the training dataset is 30 and all of these images are positively 

image-level labeled. When an experimental run is launched to build a tiger model, the negative 

images belonging to the training images of the development dataset are used as a negatively 

image-level training dataset. 
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 The test dataset contains only 20 color images which are negatively image-level labeled. 

This test dataset does not contain any additional set of negatively image-level labeled images 

in order to be used as “hard examples”, unlike the test dataset existing in the development 

dataset.  

 

  

  

(a) Image samples from the tiger dataset (b) The respective ground truth data for (a) 

Figure 4.2: Two samples from the positive images of the tiger dataset with their ground truth 

data. 

 

4.2  PARAMETER SELECTION 

EDISON [85] implementation of mean shift segmentation is employed for the investigation of 

this thesis. Timofte et al. [86] respectively set the bandwidths of spatial and color spaces to the 

default values determined in EDISON tool [85] as 7 and 6,5 for the mean shift implementation 

used in their research. Wang et al. [87] introduce the highest accuracies regarding their initial 

experiments with the employment of mean shift segmentation running for a large dataset by 

setting the following parameters as follows: spatial space, color space, and minimum segmented 

region are respectively set to 49, 30.5 and 7000 pixels. Based on these parameter settings, Wang 

et al. [87] suggest three different sets of parameters, which can be set with different 

combinations to obtain the satisfactory accuracies from the mean shift segmentation. The values 

of bandwidths of spatial and color spaces set by Timofte et al. [86] also exist in two of parameter 

sets suggested by Wang et al. [87]. Therefore, based on these two references and default 

selections in [85], the same bandwidth values of spatial and color spaced set in [86] are also 
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assigned to the same parameters of the mean shift segmentation employed in this thesis as 

specified above. A parameter is selected from the third parameter set suggested in [87] as 200 

pixels in order to set the minimum area of the segmented region for some experimental runs of 

this thesis. Moreover, the minimum segmented region is set to 300 for other experimental setups 

to speed up their executions although this value is not included in the parameter set presented 

in [87] regarding the minimum segmented region. If CEDD or MPEG-7 color descriptor is 

selected as the feature extraction technique or CK-1 distance is employed to measure distances 

among segments, the minimum area of the segmented region is set to 200 pixels; otherwise to 

300 pixels. The radius of the gradient window is set to 2 since this value is also determined as 

the default value for this parameter in [85]. The rest of the parameters required to be set for 

mean shift segmentation is also selected and assigned based on the default parameter selections 

in [85] and alignment made in [86] as follows: activation of synergistic segmentation, setting 1 

to the level of speed up and the assignment both mixture parameter and the strength of the edges 

to 0.3.  

 According to the comparisons among the precision scores of recovered object models 

using MPEG-7 color descriptors by setting all combinations of possible parameters, the ones 

which provide the highest precision scores are determined as the values of parameters to set for 

MPEG-7 color descriptors. Consequently, the number of coefficients is set to 32 for MPEG-7 

color structure descriptor and set to 16 for the MPEG-7 scalable color descriptor. In addition, 

the side length of structure element is aligned with 8. 

 The number of principal components is also determined for specific feature descriptors 

by selecting the highest precision scores gathered from some of the object models which are 

built during the experimental runs with about dozens of different numbers of principal 

components for each selected feature extraction technique using entire training dataset. If the 

application of PCA increases the precision scores of the recovered object models for a feature 

extraction technique, a PCA process is performed based on a selected number of dimension 

reduction for the respective feature descriptors. Therefore, the dimension reduction by 

performing PCA is only applied to AB, UV, third algorithm of RGB color histograms 

(described in Subsection 3.2.1.4) and VLAD encodings. The dimensions of AB color 

histograms are reduced to 6, while the number of principal components for UV color histograms 

is 8 after the dimension reduction by the application of PCA. Moreover, PCA reduces both 

dimensions of RGB color histograms described as the third algorithm in Subsection 3.2.1.4 and 

VLAD encodings to 12. The number of visual words placing in the visual vocabulary is 

determined as 16 for the extraction of VLAD descriptors by referencing from [75]. 

 The third approach for the detection of target visual objects classifies the segments as 

positives if they lie in the intersection of the distance spaces generated by at least 60% of the 

segments existing in the selected optimal object model with their thresholds as explained in 

Section 3.4.  

 

4.3  EXPERIMENTAL SETUP 
 

This section firstly presents a complete set of experimental setups which are used to launch the 

experimental runs for the visual object model recovery. Next, all the experimental setups used 

in this thesis for the detection of target visual objects are presented. 
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4.3.1 EXPERIMENTAL SETUP OF VISUAL OBJECT MODEL RECOVERY 
 

The overall configuration used in this thesis to recover a visual object model is represented in 

Figure 4.3. The configuration represented in Figure 4.3 shows all the possible degrees of 

freedom of the generally defined processing steps as well as the dependencies between the 

processing steps for the recovery of a visual object model. Each processing step is demonstrated 

as a black rectangular and defined with a red colored headline. In addition, an inner rectangular 

of each processing step shows its degrees of freedom and one of them has to be selected in order 

to setup an experiment. In the processing step of model building, information gain is the 

constant process, while a distance function has to be selected for the similarity measurements. 

For instance, the segments of the input training datasets are obtained by applying either mean 

shift segmentation or sliding windows.  

 

 
Figure 4.3: Demonstration of the dependencies between the processing steps and their degrees 

of freedom to setup an experiment with respect to an object model recovery. 

 

Moreover, there are two different methods of sliding windows and one of them has to 

be selected when an experimental run obtains the segments from a given training dataset by 

operating sliding windows. The first method of sliding windows produces the segments of a 

given image which contain only unprecedented image parts. On the other hand, the sampling 

step size of second sliding windows method is smaller than the dimensions of sliding windows; 

therefore, the segments which are sequentially obtained by this type of sliding windows method, 

contain the same image regions.  
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As it is shown in Figure 4.3 that using CK-1 distance function for the similarity 

measurement of the image segments bypasses the process of each kind of feature extraction 

technique. If a feature extraction process is used for an experimental run, a kind of feature 

extraction techniques presented in Figure 4.3 is selected. As it is mentioned in the previous 

section, four of these extraction techniques are followed by the execution of PCA. After the 

feature extraction process is completed during an experimental run, a distance function is 

selected from eight different kinds of options. The selected distance function is performed to 

compute the similarity measurements between the feature descriptors which are the global 

visual features of the image segments collected from both positive and negative training 

datasets. These similarity measurements computed among the global feature descriptors 

extracted from the image segments are employed to calculate the values of information gain 

and threshold for each image segment extracted from the positive training dataset during an 

experimental run. Afterwards, these image segments are sorted in descending order according 

to their information gain values. Finally, in keeping with the size determined for the 

construction of an object model, the first required number of the image segments from these 

sorted ones is selected as an object model. 

In the following subsections, the details (degrees of freedom) of the required processing 

steps and their experimental setups for the recovery of the object models depending on different 

feature extraction methods are represented by using tables. Each row except the first one of 

these tables belongs to a single processing step. 

4.3.1.1 VLAD-BASED MODEL RECOVERY 

 

VLAD-based model recovery DoF Comments 

Segmentation • Mean Shift segmentation based on 

CIELUV 

• Mean Shift segmentation based on 

CIELAB 

• Sliding windows with occlusions 

• Sliding windows without occlusions 

No additional 

process is 

required. 

Feature extraction • VLAD descriptors with sampling 

steps of {1,2,5} pixels 

Model building Information gain and one of eight 

different distance functions: 

• Diffusion distance 

• Euclidean (l2) distance 

• Jensen-Shannon divergence 

• Kolmogorov-Smirnov test 

• Kullback–Leibler divergence 

• Chi square statistics 

• Histogram intersection 

• Matching distance 

Table 4.1: The representation of all the experimental setups with respect to the object model 

recovery containing VLAD extraction. 
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VLAD descriptors are constructed by clustering its local PHOW descriptors based on the visual 

vocabulary (with the size of 16). Moreover, VLAD descriptors stores distances between the 

local PHOW descriptors and their assigned closest visual words. The dimension of each VLAD 

descriptor is reduced to 12 by performing PCA. L2 and power normalization is performed on 

the obtained principal components. Table 4.1 shows all the experimental setups utilizing VLAD 

descriptors in their processing step of feature extraction in order to build object models. 

The total number of the extracted dense SIFT descriptors from the selected 10 positive 

training images is 1251360 when the sampling step of the Gaussian window is set to a single 

pixel. When the sampling step is switched to 2 or 5 pixels from the single pixel, the total number 

of the extracted dense SIFT descriptors is respectively decreased from 1251360 to 312840 and 

50350. 

 

4.3.1.2 COLOR HISTOGRAMS-BASED MODEL RECOVERY 

 

All the experimental setups consisting of one of the color histograms as the feature descriptors 

existing in the research scope of the object model recovery are elaborated in Table 4.2. 

 

Color histograms-based 

model recovery 

DoF Comments 

Segmentation • 4 different segmentation methods same as the 

ones shown in Table 4.1 

No 

additional 

process is 

required. 
Feature extraction • 2-dimensional GB color histograms 

• UV color histograms 

• 3-dimensional RGB color histograms 

• AB color histograms 

• 1-dimensional RGB color histograms which are 

generated by concatenating the 2d- histograms of 

RG, GB and BR channels. 

• 1-dimensional RGB color histograms which are 

generated by concatenating the vectors of RGB 

channels. 

Model building • Information gain and 8 different distance 

functions same as the ones shown in Table 4.1 

Table 4.2: The representation of all the experimental setups with respect to the object model 

recovery containing the extraction of one of color histograms. 

 

2-dimensional GB color histograms are extracted by using only the green and blue 

channels of the segments and then converted in the form of normalized column vectors. 6 and 

8 principal components of the normalized column vectors which are respectively generated from 

AB and UV color histograms are the outputs of these feature extraction methods.  

 

 

4.3.1.3 DENSE SIFT AND PHOW DESCRIPTORS-BASED MODEL RECOVERY 

There are 30 different experimental setups presented in Table 4.3 with respect to dense SIFT 

descriptors depending on their segmentation method, sampling step size, vocabulary size and 
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normalization. If SIFT descriptors are extracted at each two pixels of the image segments, they 

are either normalized or not after their extractions as twenty different experimental setups. The 

remaining experimental setups contain the extraction of SIFT descriptors from each pixel of the 

image segments. The dense SIFT descriptors extracted from each image pixel are not 

normalized. As it is shown in the last row of Table 4.2, all 8 different distance functions 

described in Section 3.3 are employed for the computations of the similarities of the feature 

descriptors for each experimental setup presented in this table. After the similarity 

computations, the information gain values of the segments extracted from the positive training 

dataset are calculated for each set of similarities computed by using 1 of 8 different distance 

functions. Moreover, 10 different experimental setups utilizing the PHOW descriptors are 

shown in Table 4.3. 

Dense SIFT and 

PHOW Descriptors-

based model recovery 

DoF Comments 

Segmentation • Mean Shift segmentation based on CIELUV 

• Mean Shift segmentation based on CIELAB 

No 

additional 

process is 

required. 
Feature extraction • Dense SIFT descriptors with sampling step size 

of single pixel and vocabulary sizes of 

{50,100,150,200,250} 

• {Normalized, Non-Normalized} Dense SIFT 

descriptors with sampling step size of 2 pixels 

and vocabulary size {50,100,150,200,250} 

• PHOW descriptors with sampling steps of {1,2} 

pixels and vocabulary sizes of 

{50,100,150,200,250} 

Model building • Information gain and 8 different distance 

functions same as the ones shown in Table 4.1 

Table 4.3: The representation of all the experimental setups with respect to the object model 

recovery containing the extraction of either dense SIFT or PHOW descriptors. 

 

4.3.1.4 CK-1-BASED MODEL RECOVERY 

 

Table 4.4 presents the details of the required processing steps and their experimental setups for 

the recovery of the object models using CK-1 distance function. As seen in Table 4.4, when the 

mean shift segmentation method is selected for the processing step of segmentation, the 

segments are collected with their closest outer rectangular boundaries. Afterwards, the 

temporary resizing process is performed for each pair of segments in order to compute their 

CK-1 distances. One should note that the resizing process is performed on the segments for the 

equalization of their sizes during only their related computation of CK-1 distance function and 

after their distance is computed, the segments remain in their original sizes.  

Moreover, it is seen in Table 4.4, since the computation of CK-1 distance function does 

not require any feature extraction process as a predecessor processing step, a single process step 

of model building containing the sequential computations of CK-1 distance function among the 

image segments and the information gain values of the segments extracted from only the 



62 

 

positive training dataset based on their computed CK-1 distances. Therefore, the information 

gain values are computed as the successor of the computation of CK-1 distance function among 

the image segments in a single processing step. Furthermore, performing one of the methods of 

sliding windows in a processing step of segmentation does not require additional successor 

processes for the boundary selection and resizing of the image segments. 

 

CK-1-based model recovery DoF Comments 

Segmentation • 4 different segmentation 

methods same as the ones 

shown in Table 4.1 

If segments are gathered by 

one of mean shift 

segmentation methods, the 

segments are extracted with 

their closest outer 

rectangular boundaries and 

resizing segments is 

processed. 

Feature extraction Not required Not required 

Model building • CK-1 distance function 

and information gain. 

Similarity measurements 

between segments are 

calculated by CK-1 distance. 

Object models are built by 

learning similarity 

measurements based on the 

information gain. 

Table 4.4: The representation of the experimental setups for the employment of CK-1 distance 

function. 

 

4.3.1.5 MPEG-7 COLOR DESCRIPTORS-BASED MODEL RECOVERY 

 

Table 4.5 elaborates the degrees of freedom, supplementary and exceptional processes existing 

in the experimental setups used for the investigation of the effects obtained from the feature 

descriptors such as MPEG-7 color descriptors. 
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MPEG-7 Color 

Descriptors-based 

model recovery 

DoF Comments 

Segmentation • 4 different segmentation 

methods same as the ones 

shown in Table 4.1. 

If segments are gathered by 

one of mean shift segmentation 

methods, the segments are 

extracted with their closest 

outer rectangular boundaries as 

an only successor 

supplementary internal process 

of the segmentation. 

Feature extraction • MPEG-7 color structure 

descriptors  

• MPEG-7 scalable color 

descriptors 

No additional process is 

required. 

Model building • Information gain and 8 

different distance functions 

same as the ones shown in 

Table 4.1 

Shannon divergence and 

Kullback–Leibler divergence 

are excluded from the similarity 

measurements of MPEG-7 

scalable color descriptors 

because they are not applicable 

to this type of descriptors. 

Table 4.5: The representation of all the experimental setups with respect to the object model 

recovery containing the extraction of one of MPEG-7 color descriptors. 

 

4.3.1.6 CEDD-BASED MODEL RECOVERY 

 

CEDD descriptors can be extracted from the segments having rectangular boundaries same as 

MPEG-7 color descriptors. Therefore, the requirement of a supplementary process is likewise 

defined for mean shift segments in the details of experimental setups utilizing CEDD 

descriptors shown in Table 4.6. 

 

CEDD-based model 

recovery 

DoF Comments 

Segmentation • 4 different 

segmentation methods 

same as the ones 

shown in Table 4.1 

If segments are gathered by one of 

mean shift segmentation methods, 

the segments are extracted with their 

closest outer rectangular boundaries 

as an only successor supplementary 

internal process of the segmentation. 

Feature extraction • CEDD descriptors  No additional process is required. 

Model building • Information gain and 8 

different distance 

functions same as the 

ones shown in Table 

4.1 

Table 4.6: The representation of all the experimental setups with respect to the object model 

recovery containing the extraction of CEDD. 
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4.3.2 EXPERIMENTAL SETUP OF TARGET VISUAL OBJECT DETECTION 

The overall schema of the experimental installations used for launching the experimental runs 

regarding the target visual object detection as well as the elaborations of their dependencies are 

demonstrated in this subsection. Figure 4.4 illustrates the degrees of freedom for each 

processing step employed for the detection of target visual object in an overall schema. As seen 

in Figure 4.4, the segments of the images existing in the positive test dataset are collected by 

performing the mean shift segmentation on them. Afterwards, the global feature descriptors are 

extracted from these segments. Selection of the type of feature descriptors is made based on the 

type of the ones utilized for training or construction of the determined classifier. The selected 

object models containing these global feature descriptors as fingerprints are shown in the violet 

cube presented in Figure 4.4 and each of them is used by a classifier.  

 

 
Figure 4.4: Demonstration of the dependencies between the processing steps and their degrees 

of freedom to setup an experiment with respect to the detection of target visual objects. 

Only the sets of object models having the highest mean precision scores are selected in 

order to train a binary classifier. Since the object models owning the highest mean precisions 

scores are recovered by extracting either VLAD descriptors or GB color histograms, they are 

the only options in the processing step of feature extraction employed for the detection of a 

target visual object from the test dataset. Moreover, PCA is performed on both of these global 

feature descriptors shown in Figure 4.4 same as in the object model recovery. Similarly, since 

both VLAD descriptors and GB color histograms are extracted from the segments obtained by 

applying only mean shift segmentation, it is set as the only possible method in the processing 

step of segmentation. Once the execution of PCA is completed, the obtained principal 

components are sent to a selected classifier. If a linear SVM classifier or a Naïve Bayes 

classifier is selected in the processing step of classification, the input data coming from the 

positive test dataset is used for the core training of the selected classifier. There is an optional 

re-training process only for the linear SVM classifiers, which is executed as a successor process 
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of the core training by using the negative test dataset. For this purpose, the feature descriptors 

of the negatively image level-labeled test dataset are firstly extracted by using exactly the same 

experimental setup which is employed in order to collect the input data for the core training. 

Afterwards, these collected descriptors are classified by the already trained SVM classifier and 

the false positives are gathered in order to re-train the classifier by using them. On the other 

hand, if the selected classifier of the respective experimental setup is the one working based on 

the thresholds of the fingerprints obtained from information gain, it directly classifies the global 

feature descriptors extracted from the positive dataset by using these thresholds as explained in 

detailed in Section 3.4. These foregoing fingerprints are also sent to the processing step of 

classification from the selected object model placing in the violet cube shown in Figure 4.4. 

Finally, ROC curve, PR curve and accuracy belonging to a classifier trained based on an 

experimental setup and a selected object model are computed by comparing its classification 

results with the ground truth. One should bear in mind that each experimental setup contains a 

single type of classifiers and each of them is trained by using one object model from the selected 

set of object models. Therefore, each experimental setup constructs or trains six classifiers. 

Consequently, each of these classifiers from the same experimental setup receives its own ROC 

curve, PR curve and accuracy. 

 The processing details of all the experimental setups in the scope of the thesis with 

respect to the detection of a target visual object from a given set of color test images are 

presented in Table 4.7, Table 4.8 and Table 4.9. Each of these tables shows the degrees of 

freedom and supplementary details of the experimental setups containing a separate classifier 

approach. Inferring the configuration details of the experimental setups represented in these 

three tables is the same way how the previous tables of Subsection 4.3.1 are inferred. 

 

4.3.2.1 NAÏVE BAYES-BASED OBJECT DETECTION 

 

Naïve Bayes-based Object 

Detection 

DoF 

Segmentation • Mean Shift segmentation based on CIELUV 

Feature extraction • VLAD descriptors with sampling steps of {1,2,5} pixels 

• 2-dimensional GB color histograms 

Classification ➢ Trained with an object model recovered by using VLAD 

descriptors and one of three different distance functions: 

• Diffusion distance (for the ones sampled at each {2,5} 

pixels) 

• Euclidean (l2) distance (for the ones sampled at each 2 

pixels) 

• Chi square statistics (for the ones sampled at each {1,5} 

pixels) 

 

➢ Trained with an object model recovered by using GB 

descriptors and Euclidean (l2) distance 

Table 4.7: The configuration details of each experimental setup utilizing only Naïve Bayes 

classifier in its processing step of classification are demonstrated. 
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The experimental setups presented in Table 4.7 utilizes only Naïve Bayes classifier in 

their processing step of classification. As seen in Table 4.7, when a Naïve Bayes classifier is 

employed in the processing step of classification, either GB color histograms or VLAD 

descriptors are extracted from the segments of the test images in the processing step of feature 

extraction. One should note that the employed Naïve Bayes classifier is trained with an object 

model recovered by using exactly the same feature extraction setup with the one used for the 

segments of the test images. Apart from that, the segments used in the processing step of feature 

extraction are collected by applying mean shift segmentation to the test images based on 

CIELUV color space. There are three different options regarding the sampling steps for the 

extraction of VLAD descriptors utilized in each experimental installation shown in Table 4.7. 

For instance, if the extractions of VLAD descriptors from the test images are sampled at each 

two pixels, it means that the object model training the Naïve Bayes classifier is built by utilizing 

either diffusion distance or l2 distance. When the sampling step size is set to single pixel, the 

fingerprints of the object model are selected by using chi square statistics. Furthermore, 

sampling at each five pixels referring the Naïve Bayes classifiers trained by using either 

diffusion distance or chi square statistics. On the other hand, if GB color histograms are 

extracted in the processing step of feature extraction, l2 distance is performed during the object 

model recovery of the fingerprints utilized for the training of Naïve Bayes classifier. Moreover, 

any supplementary segmentation process such as boundary selection and resizing is not 

necessary for the experimental setups shown in Table 4.7. 

 

4.3.2.2 SVM-BASED OBJECT DETECTION 

 

Table 4.8 shows all the installation details regarding the processing steps cooperating with 

linear SVM classifiers. The extraction of the VLAD descriptors from the segments by sampling 

each two pixels exists in the processing step of feature extraction of each experimental setup 

presented in Table 4.6. Consequently, the linear SVM classifiers are employed to classify the 

principal components obtained from these VLAD descriptors. The core training of each of these 

classifiers is performed with an object model whose recovery contains similarity measurement 

by using either diffusion distance or l2 distance. In addition, re-training with the hard examples 

is also investigated for the linear SVM classifiers which are recovered by using l2 distance. 

 

SVM-based Object 

Detection 

DoF 

Segmentation • Mean Shift segmentation based on CIELUV 

Feature extraction • VLAD descriptors sampled at each 2 pixels 

• 2-dimensional GB color histograms 

Classification ➢ Trained with an object model recovered by using VLAD 

descriptors and one of two different distance functions: 

• Diffusion distance  

• Euclidean (l2) distance {No additional re-training, Re-

trained with hard examples} 

Table 4.8: The configuration details of each experimental setup utilizing only linear SVM 

classifier in its processing step of classification are demonstrated. 
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4.3.2.3 THRESHOLDS-BASED OBJECT DETECTION 

 

As shown in Table 4.9, the experimental setups containing the classifier constructed based on 

the thresholds of the fingerprints entails only VLAD descriptors extracted by sampling each 

two or five pixels for the processing step of feature extraction. During the calculation of these 

thresholds by using information gain, diffusion distance is employed. Furthermore, mean shift 

segmentation is performed on CIELUV color space in the experimental setups of Table 4.9 

without any additional process same as the ones shown in Table 4.7 and Table 4.8. 

 

Thresholds-based Object 

Detection 

DoF 

Segmentation • Mean Shift segmentation based on CIELUV 

Feature extraction • VLAD descriptors with sampling steps of {2,5} pixels 

Classification • The classifier which works based on the thresholds of the 

fingerprints calculated by employing information gain. 

The fingerprints are obtained from the object model 

recovered by diffusion distance. 

Table 4.9: The configuration details of each experimental setup containing only the classifier 

constructed by using the thresholds of selected fingerprints in its processing step of 

classification are demonstrated. 

 

4.4  EVALUATION MEASURE 

Since the target of recovering visual object models is to collect only the most discriminative 

candidate positive segments based on the selected target visual object, the evaluations are 

performed only on true and false positives by comparing the selected segments with the ground 

truth data. These selected segments which are the most discriminative candidate positive 

segments for each object model are called fingerprints as described in Subsection 3.4. The 

precision score of each investigated object model is computed by using the numbers of true and 

false positives of its fingerprints. The equation of precision is shown in the equation 4.1. 

 

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃 (𝑡ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 )

𝑇𝑃 (𝑡ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 )+ 𝐹𝑃 (𝑡ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓𝑓𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 )
  4.1 [22] 

 

As specified in Section 3.3, while calculating the precision scores of object models, 

fingerprints are set as true positives if and only if the intersections of fingerprints with ground 

truth data cover minimum 80% of complete regions of fingerprints. There are two purposes to 

set minimum covering region for the fingerprints as 80%. The first purpose is to provide a 

challenging examination to deeply evaluate capabilities of introduced segmentation techniques 

regarding cooperation with other components as well as segmenting pure segments. The second 

purpose is to recover object models by gathering pure fingerprints excluding the background 

data as much as possible and with the maximum possible number of such pure fingerprints.  
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Apart from that, the size of each object model is defined based on the number of 

fingerprints which are stored in the object model. For each experimental setup of visual object 

model recovery, six different sizes of object models such as 25, 50,100, 150, 200 and 250 are 

recovered. The mean value of the precision scores gathered from these six different object 

models is computed. This computed mean value is called mean precision. If the mean precision 

obtained from a set of object models is equal or greater than 0.85, then this set of object models 

is evaluated as highly satisfactory. Furthermore, if a set of object models is denoted as 

satisfactory or closely satisfactory, then its mean precision score is [0.75, 0.85) or [0.65, 0.75), 

respectively. Otherwise, if the mean precision calculated for a set of object models lies 

somewhere less than 0.65, then this set of object models is evaluated as unsatisfactory. 

ROC curves with respect to the true and false positive rates of the investigated binary 

classifiers used for the detection of target visual objects from the test dataset depending on the 

selected object models are demonstrated to evaluate the recognition capabilities of the 

investigated binary classifiers by checking the areas under ROC curves (AUCs). Since the 

preferable values of true and false positive rates are respectively 1 and 0, enlarging the area 

under the ROC curve obtained from a classifier identifies that the recognition capabilities of 

this classifier are strengthened. Moreover, if the misclassification probability of a point locating 

on a given ROC curve for a positive instance is equal to the one referring to a negative instance, 

this point can be used to compute a value of equal error rate (EER) for the given ROC curve. 

The value of equal error rate can be utilized as an alternative identifier with respect to the 

recognition capabilities of a classifier. The accuracy (ACC) of each selected classifier is 

computed by checking its results based on the ground truth dataset of the test dataset. The 

equation 4.2 shows the equation of accuracy. The labels TP and FP respectively refer to true 

positives and false positives in the equation 4.2 same as in the equation 4.1. Apart from that, 

true negatives and false negatives are respectively labeled as TN and FN in the equation 4.2. 

For each experimental setup of target visual object detection, six different sizes (25, 50,100, 

150, 200 and 250) of object models previously constructed by the training process are used. 

Consequently, for each experimental setup regarding the detection process, a mean value of 6 

different accuracies gathered depending on all these object models is computed and this mean 

value is called mean accuracy. The classifiers are evaluated as closely satisfactory if their 

accuracies are equal or greater than 0.5 and less than 0.7. Furthermore, the accuracies received 

from the satisfactory or highly satisfactory classifiers are respectively in the ranges of [0.7, 0.8) 

and [0.8, 1.0]. 

 

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁 

𝑇𝑃 +𝑇𝑁 + 𝐹𝑃 +𝐹𝑁 
  4.2 [88] 

 

 

4.5  RUN TIME AND STORAGE EVALUATION 
 

The both of tech and financial companies located all over the world, which either provide the 

IT services or supply the software services, software development, maintenance, publication 

and the activities categorized as Research and Development, firstly deploy the new software 

features in the many development and quality environments and then execute the Non-

Regression testing (NRT), gray box testing or visual testing on these environments before 
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releasing these new software features to the production applications. If a totally new software 

application is planned to be published, then the functional and non-functional testing methods 

are processed in the development and quality environments before its publication. The NRT, 

which is a type of black box testing approach same as the functional and non-functional testing 

methods, detects the inappropriate behaviors of the software application after the deployment 

of new changes or additions existing in the scope of the release [89]. For this purpose, the 

benchmark data and the post deployment data is reconciled to find the differences between the 

outputs produced by the post deployment software application and the software application 

denoted as the benchmark. These detected differences have to be explained by the experts 

whether they are expected or not according to the release. The black box testing is a testing 

approach inspecting the whole set of functions supplied by the selected software asset and does 

not have any information about the source code of the software [89]. Apart from this, the gray 

box testing externally examines the functions of the selected software asset same as the black 

box testing but with the full knowledge of the internal implementation enabling the testing 

approach to execute the tests with respect to the design of the selected software asset [89]. 

Furthermore, the visual testing enables the testers to see the errors with the respective 

comprehensible information at the place occurred in the source code [89].  

In particular, the required data, which has to be stored either in the databases or in the 

file systems of all these environments, constitutes an expenditure item for the firms. Therefore, 

the firms regularly open research projects to optimize this expenditure item. The number of the 

utilized development and quality environments differ based on the size of the projects running 

by the respective firms, the number of the features supported by the software assets, etc. 

Accordingly, the required number of the development and the quality environments can be even 

up to one hundred in order to support only one software asset providing the services for the 

clients in the production environment. The number of the databases used by a commercial 

software application is mostly more than one. Please note that the databases of these 

development and quality software applications are loaded with the dump of the databases of the 

production software application to have a benchmark application or application to be deployed 

with the new updates. Therefore, the sizes of the databases of the development and quality 

environments used as the benchmark applications are identical with the sizes of the databases 

of the production environment in case there is no additional data purging process executed in 

the databases of these test environments after the refreshment of their databases with the 

snapshot of the production databases. For instance, if the decreased size of the data stored either 

in the databases or the file system is 10 GB in the production environment thanks to an 

implemented optimization approach, then the total number of decreased data placing in the 

quality and test environments is approximately 1 TB when there is an assumption that the 

considered company is using one hundred numbers of development and quality environments. 

Consequently, the smaller sizes for the investigated feature descriptors are evaluated as an 

advantage in the scope of this thesis. If the execution time frame of a similarity measurement 

between a type of extracted feature descriptors is less than 90 minutes, then it is denoted as 

satisfactory based on its execution performance. One should note that the processor of the 

exploited workstation is Intel ® Core™ i7 CPU and its RAM is 4,00 GB. Moreover, the 

operating system installed in this workstation is 64-bit Windows 7 Professional. The execution 

time frames of the similarity measurements of the entire training dataset are 87 minutes, 44 
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minutes, 25 minutes and 56 minutes in order to recover the object models demonstrated in 

Figure 5.16 and related to diffusion distance, histogram intersection distance, l2 distance and 

chi square statistics, respectively. In addition, the executions of the same distance functions 

respectively take 73 minutes, 30 minutes, 13 minutes and 45 minutes for the calculations of the 

similarity measurements utilized while building the respective object models shown in Figure 

5.17. Therefore, the similarity measurements among the GB color histograms obtained from 

CIELAB color space take more time than the ones extracted from CIELUV color space. 

Consequently, the percent of the time difference between the executions of these two setups 

changes depending on each of these distance functions. Moreover, computing the similarity 

measurements for VLAD descriptors takes less time than GB color histograms, which are 

obtained from either CIELAB color space or CIELUV color space.  

Since the AB color histograms are reduced to 6 principal components and UV color 

histograms are reduced to 8 principal components, the distance measurements take less time 

among the principal components obtained from AB color histograms than the ones obtained 

from UV color histograms. For instance, the similarity computation of the principal components 

of UV color histograms extracted from the entire dataset takes about 51 minutes by using 

diffusion distance while it takes respectively about 45 minutes and 44 minutes for the principal 

components of AB color histograms and RGB 1-dimensional histograms by using the same 

distance function. Therefore, the execution time frames for the similarity measurements of the 

feature descriptors with respect to AB color histograms and RGB 1-dimensional histograms are 

very close to each other. 

The execution time frames obtained from the similarity computations using 

Kolmogorov-Smirnov test among either dense SIFT or PHOW descriptors change from about 

6 minutes to 9 minutes depending on the size of selected visual vocabulary. When the size of 

the selected visual vocabulary becomes bigger, the respective execution time frame also 

becomes bigger. The similarity measurements of the VLAD descriptors which are extracted for 

the recovery of the object models shown in Figure 5.1 take about 8 minutes in total by 

performing Kolmogorov-Smirnov test. Moreover, diffusion distance runs about 51 minutes and 

chi square statistics runs about 9 minutes while computing the similarities among either dense 

SIFT or PHOW descriptor. Apart from that, the runtime of chi square statistics is also 9 minutes 

for VLAD descriptors extracted based on the experimental setup of Figure 5.1. Consequently, 

the execution time frames received from the similarity computations of dense SIFT, PHOW 

and VLAD descriptors using both diffusion distance and chi square statistics are very similar 

to each other. They are not exactly equal to each to other due to the differences of the execution 

time frames only in the seconds. The runtime of chi square statistics is about 5 times longer for 

GB color histograms than dense SIFT, PHOW and VLAD descriptors. 

 The runtimes of CK-1 distance function for the mean shift segments, the sliding 

windows with occlusions and the ones without occlusions obtained from the complete training 

dataset of the thesis are respectively about 2 and half days, 3 days and 6 days. Therefore, the 

execution performance of CK-1 distance function is definitely unsatisfactory for each kind of 

these segments. The runtimes of all the distance functions performed with VLAD descriptors 

are about 23% shorter than the ones performed with CEDDs and about 41% shorter than the 

ones used for similarity measurements of MPEG-7 color descriptors. 
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CHAPTER 5 
 

 

5 RESULTS 

his chapter presents both qualitative and quantitative results which are collected by 

running experiments depending on two different groups of the setups elaborated in 

Section 4.3 (experimental setups of visual object recovery and target visual object 

detection). Firstly, the chapter starts with the demonstration of the qualitative results obtained 

from the experimental runs which are launched according to the setups prepared for the 

investigation of object model recovery from the development dataset described in Subsection 

4.1.1. Secondly, the chapter continues with the representation of the quantitative results which 

are also obtained by using both the experimental setups of visual object model recovery and the 

development dataset. Thirdly, the qualitative experimental results of detecting a target visual 

object from the development dataset are illustrated in this chapter. Fourthly, its quantitative 

results gathered from the same dataset are represented. Finally, Chapter 5 concludes with the 

demonstration of the results gathered based on the selected experimental setups by using the 

tiger dataset shown in Subsection 4.1.2. 

5.1  RESULTS OF VISUAL OBJECT MODEL RECOVERY 
 

The results demonstrated in this subsection are produced by using the development dataset 

which contains positively and negatively image-level labeled images depending on the 

existence of the species of elephant. The models built by using the same distance function is 

specified with the same color in all the figures presenting the precision scores of the recovered 

visual object models. Apart from that, the nodes presenting the precision scores of the object 

models which are built by using the same distance function are labeled with the same sign and 

jointed with a single line segment. Consequently, these line segments allow the readers of this 

thesis to see the fluctuations of the precision scores among the object models which are built 

based on exactly the same experimental setup but store different numbers of fingerprints. If 

there is bigger number of fingerprints in an object model than another one, then this object 

model is called a bigger object model than another one due to the increased number of stored 

fingerprints. Likewise, if there is less number of fingerprints in an object model than another 

one, then this model is called a smaller object model than another one. The results collected 

from dense SIFT-based and PHOW descriptors-based model recovery is described and 

illustrated in Appendix A.3. 

 

5.1.1 VLAD-BASED MODEL RECOVERY 

 

Figure 5.1 shows the precision scores of the models built by using VLAD descriptors which 

possess an extraction procedure from the interest points sampled at each single pixel of a given 

T 
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image. As it is seen in Figure 5.1 that Kolmogorov-Smirnov Test generates continuously 

increasing precision scores with each shift from a bigger object model to a smaller object model 

while the number of stored fingerprints decreases. Moreover, excluding the shift from the object 

model keeping 50 fingerprints to the object model keeping 25 fingerprints, the precisions of the 

object models built by using matching distance function progressively increase while shifting 

from a bigger object model to a smaller object model. Although the shift from the object model 

keeping 50 fingerprints to the smallest presented object model regarding matching distance 

function does not increase the precision score, it also does not decrease the precision score. In 

other words, the precision score stays the same when the number of fingerprints stored in the 

object model built by using matching distance function decreases from 50 to 25, and it is 0.88. 

Therefore, if the matching distance function is selected for the computations of the similarity 

measurements based on the above-mentioned experimental setup of Figure 5.1, then the object 

model keeping 25 fingerprints contains 22 true positives and the object model keeping 50 

fingerprints contains 44 true positives.  

  

 
Figure 5.1: The representation of the precision scores received from the object models built by 

using VLAD descriptors constructed based on the SIFT descriptors densely extracted at each 

single pixel from the mean shift segments. 

 

The highest mean precision is obtained from the models built by using chi square 

statistics when the experimental installation is based on the extraction of VLAD descriptors 

from the dense grid points sampled at each pixel location of a given image. The fluctuation of 

the curve among these object models built by using chi square statistics shows in Figure 5.1 

that the precision score slightly decreases only during a single shift. Nevertheless, since the 

mean precision of this set of object models is 0.8905, this set of object models is evaluated as 

highly satisfactory and so can be employed for one of the investigated detection approaches. 

Moreover, the mean precision scores of the previously mentioned sets of object models built 

by using either Kolmogorov-Smirnov Test or matching distance are respectively 0.7648 or 
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0.7887. Therefore, both of these sets of object models are evaluated as satisfactory and can be 

taken into account in order to be utilized by an investigated target visual object detection 

approach. In addition, if the similarity measurements of the visual descriptors are computed by 

Jensen Shannon divergence, the set of object models which is based on the same experimental 

configurations used for obtaining the results presented in Figure 5.1 is evaluated as closely 

satisfactory. This evaluation is made based on its mean precision score which is 0.7439. The 

remaining sets of object models presented in Figure 5.1 are unsatisfactory since they are under 

the value of 0.65. 

In Figure 5.2, the object models are built by using VLAD descriptors which are extracted 

from dense grid points sampled at each two pixels. Although the only change is the sampling 

step size during the building processes of object models regarding Figure 5.1 and Figure 5.2, 

the majority of the obtained precision scores of the object models is different with respect to 

each distance function based on the same number of stored fingerprints shown in Figure 5.1 

and Figure 5.2. Based on the black curve presented in Figure 5.2, the precision scores of the 

object models built by Kolmogorov-Smirnov Test increase if there is a shift to a smaller object 

model of this set. Therefore, the tilt directions of the line segments placing in the black curve 

presented both in Figure 5.1 and Figure 5.2 are the same while their tilt angles are different. 

Furthermore, the mean precision of the set of object models regarding Kolmogorov-Smirnov 

Test based on the experimental setup of Figure 5.1 is greater than the ones based on the 

experimental setup of Figure 5.2. Consequently, the mean precision score which is obtained by 

using Kolmogorov-Smirnov Test is 0.4137. Hence, this set of object models is registered as 

unsatisfactory for the usage of object detection. Likewise, the set of object models with respect 

to matching distance produces an unsatisfactory mean precision, although the shifting to each 

smaller object model of this set increases the respective precision score.  

According to all the sets of object models presented in Figure 5.1 and Figure 5.2, the 

highest mean precision score is received from the set of object models which is built based on 

the experimental installation of Figure 5.2 by using diffusion distance. Apart from that, the tilts 

of the line segments placing in the curve colored with violet identifying the diffusion distance 

in Figure 5.2 increases to the left upwards as the most preferable situation of the curve. The 

second highest mean precision score from Figure 5.2 belongs to the set of object models built 

by using l2 distance function, which is 0.8612. Furthermore, this mean precision score is the 

third highest one from all the mean precision scores of the sets of object models represented in 

Figure 5.1 and Figure 5.2. Since the precision score is greater than 0.85, this set of object models 

is evaluated as highly satisfactory. The drawback of this set of object models is that there is a 

decline in the precision score while shifting from the object model keeping 50 fingerprints to 

the object model keeping 25 fingerprints which is 0.04. The most stable distance functions seem 

as histogram intersection distance and Jensen Shannon divergence based on Figure 5.1 and 

Figure 5.2 because the precision scores using histogram intersection distance and Jensen 

Shannon divergence fluctuate in the regions [0.16, 0.4] and [0.68, 0.8] for both of these 

experimental setups, respectively. In other words, the region between the curves of either 

histogram intersection distance or Jensen Shannon divergence from Figure 5.1 and Figure 5.2 

is tight enough to decide that these distance functions provide stable behaviors based on both 

experimental setups with respect to the precision scores of the respective recovered object 

models. However, these precision scores gathered from object models using histogram 
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intersection distance are quite disappointing (unsatisfactory) and these object models cannot be 

employed for the investigated detection approaches of target visual objects to collect 

satisfactory test results.  

 

 

Figure 5.2: The representation of the precision scores received from the object models built by 

using VLAD descriptors constructed based on the SIFT descriptors densely extracted at each 2 

pixels from the mean shift segments. 

 

As seen in Figure 5.2, the set of object models with respect to Jensen Shannon 

divergence possessing a mean precision score (0.7085) which is a closely satisfactory result. 

Therefore, the closely satisfactory status of the mean precision obtained from the set of object 

models built by using Jensen Shannon divergence is stabilized even the experimental setup of 

Figure 5.2 is interchanged with the experimental setup of Figure 5.1. 

In Figure 5.3, the object models are recovered based on the VLAD descriptors which 

are extracted from the dense grid points determined by moving 5 pixels after each sampling of 

Gaussian window around the given image segments. The remaining part of experimental 

installation is exactly the same with the ones used for the recovery of the object models 

presented in Figure 5.1 and Figure 5.2. 

The highest mean precision score is 0.9029 from the mean precision scores of the sets 

of objects presented in Figure 5.1, Figure 5.2, and Figure 5.3. The set of object models 

recovered by using chi square statistics based on the experimental setup used for the 

representation of Figure 5.3 possessing this highest mean precision score. However, this set of 

object models contains the same drawback which is a decline in the precision score which 

occurs during the shift from the object model storing 50 fingerprints to smallest investigated 

object model of this set. Nevertheless, the effect of this decline in the precision score is less 

sharp than the one occurred during the same type of the shift among the object models recovered 

based on the experimental configurations of Figure 5.2 by using l2 distance function. In other 

words, this decline in the precision score is 0.02 for the objects with respect to chi square 
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statistics instead of 0.04 which is related to latter considered set of object models. Moreover, 

the diffusion distance provides a highly satisfactory mean precision score for the set of 

respective object models illustrated in Figure 5.3 while the object models built based on the 

experimental setup of Figure 5.3 by using l2 distance function produce a satisfactory result for 

the score of its mean precision. According to the curve constructed based on the models built 

by using diffusion distance, the precision score of the model storing 150 fingerprints is 0.067 

greater than the precision score of the one storing 100 fingerprints. Since the difference of these 

precision scores is very small, this drawback can be ignored. Apart from that, the constructed 

curve visiting the models built by using l2 distance function has preferable tilt directions for its 

line segments. As it is seen in Figure 5.3, the mean precision scores with respect to the rest of 

the distance functions are unsatisfactory. 

 

 
Figure 5.3: The representation of the precision scores received from the object models built by 

using VLAD descriptors constructed based on the SIFT descriptors densely extracted at each 5 

pixels from the mean shift segments. 

 

Figure 5.4 demonstrates the curves traversing precision scores pertaining to the object 

models built by using VLAD descriptors as well. However, these VLAD descriptors are 

extracted from each sliding window instead of each mean shift segment. Moreover, the step 

density between the selected dense grid points of a given image is 5 pixels for the computation 

of the SIFT descriptors, which are used for the construction of VLAD descriptors for the 

respective sliding windows. One should note that the sampling step sizes of sliding windows 

are equal to its dimensions. According to all the mean precision scores of the sets of objects 

presented in Figure 5.4, all of them apart from the ones built by using Kolmogorov-Smirnov 

test have unsatisfactory mean precision scores. The mean precision score of the set of object 

models built by using Kolmogorov-Smirnov test is 0.8217 and evaluated as satisfactory. 

However, this mean precision score is less than the mean precision scores of 5 different object 

model sets presented in previous figures. 
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Figure 5.4: The representation of the precision scores received from the object models built by 

using VLAD descriptors constructed based on the SIFT descriptors densely extracted at each 5 

pixels from the sliding windows. 

 

The precision scores of the object models illustrated in Figure 5.5 are received by 

changing only the sampling density from 5 pixels to 2 pixels for the extraction of SIFT 

descriptors and keeping the rest of the experimental configurations as they are described for the 

recovery of the object models presented in Figure 5.4. However, the mean precision scores 

collected from all the sets of objects shown in Figure 5.5 are less than 6.5 and so evaluated as 

unsatisfactory. The interesting point is that the models which are shown in Figure 5.4 and Figure 

5.5 and built by using Kullback Leibler Divergence have exactly the same precision scores 

when they store the same numbers of fingerprints. Therefore, their mean precision scores are 

equal to each other. Apart from that, the precision scores of all the objects models presented in 

Figure 5.4 and Figure 5.5, and built by using either Jensen Shannon Divergence or chi square 

statistics are equal to 0. Hence, all of these object models are completely disappointing and 

evaluated as unsatisfactory. 

As it is previously explained that each decrease occurring in the precision score while 

sifting to the smaller object models in a set belonging to a selected distance function is an 

undesired sign of the respective curve. The root causes of such undesired signs can be some 

disorder possibilities appearing during each processing step or information transferring among 

the processing components. In order to understand and analyze either desirable or undesired 

fluctuations of a curve, a visualization tool is implemented in the thesis.  

This tool illustrates four different images for each training image which is used for the 

recovery of a visual object model. The first image is the original training image given to the 

visualization tool and called original image. The second image is the image demonstrating the 

segments of the original training image after performing the utilized segmentation method by 

coloring each segment region properly and called segmented image. Apart from them, the third 

image is called fingerprint candidate rankings and contains the segment regions colored with 
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the greyscale values based on their values of information gain. Furthermore, the fourth image 

illustrates only the segments which are the fingerprints based on the selected number of the best 

fingerprints from the complete set of training images and locate in the demonstrated original 

image based on then given training image to the visualization tool. In other words, if the selected 

number of the best fingerprints is 50 for a recovered object model, then this means that only the 

50 best fingerprints are selected from the complete set of segments extracted from all the 

training images based on their values of the information gain. Therefore, it is possible that all 

the 50 best fingerprints can be selected from the segments which are extracted from only one 

image of the complete training dataset. This also means that each image in the training dataset 

does not have to have a fingerprint for a recovered object model. Hence, the fourth illustrated 

image of the visualization tool for a given training image is called the best fingerprints and 

shows each segment with its original texture and color if this segment is selected as a fingerprint 

in the recovered object model which is visualized by the tool.  

 

 
Figure 5.5: The representation of the precision scores received from the object models built by 

using VLAD descriptors constructed based on the SIFT descriptors densely extracted at each 2 

pixels from the sliding windows. 

 

Coloring the segments placing in the image of fingerprint candidate rankings is made 

by setting darker grey pixels based on the bigger information gain values. Hence, the darker 

segments in the images of fingerprint candidate rankings show that these segments hold bigger 

values of the information gain and vice versa. If the information gain value of a segment is 1 

(maximum), then its pixels are set with 0s. The pixels of a segment are set with 255s if its 

information gain value is 0 (minimum). The pixel values for a given training image are likewise 

aligned based on the mid-values of the information gain. 

Figure 5.6 shows the results obtained by the visualization tool for a sample training 

image based on four different object models. Each of these object models stores only 50 

fingerprints and their experimental installations are selected based on the highest four mean 
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precision scores from all the sets of object models presented in Table 5.2 and Table 5.3. One 

should note that the training dataset used for the recovery of these object models contains this 

sample training image. The illustrations of the first two images by the visualization tool are the 

same images for all these four object models because the selected sample training image and 

their utilized segmentation methods are the same. Therefore, an original image with respect to 

all these four models is shown in the top leftmost part of Figure 5.6. Moreover, the top rightmost 

part of Figure 5.6 illustrates a segmented image for all the models presented in Figure 5.6. In 

the second row of Figure 5.6, two images representing the fingerprint candidate rankings and 

the best fingerprints which are received from the object model built based on the experimental 

installation of Figure 5.2 and diffusion distance by performing visualization tool for the sample 

training image. The only difference between the illustrations of the second row and the third 

row of Figure 5.6 is that l2 distance function is used for the recovery of the object model 

demonstrated in the third row regarding the sample training image instead of diffusion distance; 

therefore, the rest of the experimental installation is the same. In addition, the fourth row of 

Figure 5.6 shows both images of the fingerprint candidate rankings and the best fingerprints 

which are created by visualizing the object model recovered based on the experimental setup 

utilized in Figure 5.3 by using diffusion distance. In order to produce the illustrations locating 

in the bottom of Figure 5.6, chi square statistics is used for the similarity measurements among 

the visual descriptors instead of diffusion distance as the only difference from all the 

configurations used for the upper row. When the differences between the images of the 

fingerprint candidate rankings placing in the second and the third rows of Figure 5.6, it is visible 

that the segments containing the darker areas of elephants obtained by using diffusion distance 

mostly have bigger values of the information gain than the ones obtained by using l2 distance 

function. Therefore, the segment selected as one of the 50 best fingerprints from the complete 

training datasets shown in the rightest image of the second row is darker than the segment 

presented in the rightest image of the third row. Nevertheless, it is also visible that the segments 

containing the shadows of elephants do not have bigger values of information gain when the 

object model is recovered using diffusion distance instead of l2 distance. Furthermore, the 

majority of the background segments of these two illustrations containing either green or water 

areas has the similar values of the information gain. However, a part of the background 

segments containing the areas of the ground which is illustrated in the fingerprint candidate 

rankings placing in the second row looks lighter greys than the ones illustrated in the third row. 

Consequently, diffusion distance is evaluated slightly better than l2 distance in order to 

distinguish textural information of the image segments depending on the selected experimental 

setup because the colors of the ground and elephant areas are similar while their textures are 

different. Since the fingerprint candidate rankings of green and water areas are similar for both 

diffusion distance and l2 distance, the qualities of their color discrimination is evaluated similar.  
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Figure 5.6: The recovery processes of 4 different object models based on the first sample 

training image are visualized. 
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It is seen that the fingerprint candidate rankings represented in the fourth row of Figure 

5.6 have the most different grey color values from the ones pertaining to all the representations 

of the fingerprint candidate rankings. For instance, many background segments are represented 

with lighter grey colors in the image of fingerprint candidate rankings placing in the fourth row 

than the ones represented in other three images of fingerprint candidate rankings. However, 

some of the foreground segments are also set to the lower rankings in the fourth row than other 

rows. In a nutshell, the model presented in the fourth row of Figure 5.6 has the best settings in 

order to eliminate background segments in all the models represented in Figure 5.6. On the 

other hand, this model discriminates the foreground segments from the background segments 

with a sharper manner than all the other models. Therefore, some foreground segments are set 

to very low rankings in the fourth row of Figure 5.6. In addition, three segments are gathered 

as fingerprints demonstrated in the respective image of the best fingerprints by this model which 

contains 50 fingerprints from the complete set of training images. 

Figure 5.7 shows the illustrations of the same models presented in Figure 5.6 which are 

captured from another sample training image by the visualization tool. It is seen in Figure 5.7 

that all the observations explained above with respect to the fingerprint candidate rankings and 

the best fingerprints represented in Figure 5.6 are valid for the ones represented in Figure 5.7 

as well. Consequently, this validation proofs that the qualifications of these object models with 

respect to object model recovery are stable for all the training images.  

It is shown in Figure 5.7 that there are two selected segments as fingerprints for both of 

the models presented in the second and the last row of Figure 5.7 and they are the same 

segments. Moreover, the fingerprints gathered for these both models are dark areas of elephants 

while the fingerprint represented in the third row of Figure 5.7 is a light area of an elephant. 

The discrimination of background segments from the foreground segments is likewise sharper 

by the model presented in the fourth row of Figure 5.7. The texture recognition capabilities of 

the models presented in the second and the last row of both figures are also observable for the 

sample training image presented in Figure 5.7. For instance, these two models eliminate the 

segments containing the ground areas slightly better than the one demonstrated in the last row 

of Figure 5.7. This means that the difference between the ground and elephant segments are 

emphasized slightly better by one of these two models. One should note that the pixel colors 

pertaining to the majority of the elephants appearing in the training dataset is brownish and the 

dominant color of the ground areas is brown shown in both Figure 5.6 and Figure 5.7.  

The same models receive different numbers of obtained fingerprints depending on the 

sample training images presented in Figure 5.6 and in Figure 5.7. Hence, this shows that there 

is no restriction for the models to select a specific number of fingerprints from each training 

image. 
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Figure 5.7: The recovery processes of 4 different object models based on the second sample 

training image are visualized. 
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Figure 5.8: The visualization of segmentation, fingerprint candidate rankings and the selected 

fingerprints for the sample training image containing the fingerprint with the highest 

information gain value from all the training dataset based on the recovery of the object model 

whose precision score places on the node defining 50 fingerprints of the violet curve presented 

in Figure 5.2. 

 

 
Figure 5.9: The enlarged version of the top fingerprint (keeping the highest information gain 

value) presented as one of the selected best fingerprints for the respective object model in 

Figure 5.8. 

 

Figure 5.8 visualizes the recovery processes belonging to the object model built by using 

diffusion distance with respect to a sample training image, which is different than the ones used 

in the last two previous figures. This object model is exactly the same object model represented 

in the second rows of both of these previous figures for two different sample training images. 

Therefore, the object model recovered in Figure 5.8 also stores 50 fingerprints. This sample 

training image is selected to be visualized because it possesses a segment keeping the highest 

information gain value from the ones gathered from all the segments in the entire training 

dataset based on the foregoing object model. Three segments shown in the best fingerprints part 

of Figure 5.7 are obtained from the training image presented in the original image part of Figure 

5.7 as three fingerprints of the foregoing object model keeping 50 fingerprints in total. The 
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obtained segment on the rightest is the one owning the highest information gain value 

comparing to all the other segments placing in the training dataset and its enlarged version is 

illustrated in Figure 5.9. As seen in Figure 5.9, the segment selected as a best fingerprint from 

the complete training dataset based on its information gain value also contains a dark area of 

an elephant similar to other fingerprints with respect to the same object model demonstrated in 

Figure 5.6 and Figure 5.7. In Figure 5.8, the pixel colors of the segments containing the sky are 

set to pure white since their information gain values are computed as 0 during the learning 

process of the considered object model. Moreover, the dark ground segments have slightly 

bigger information gain values than the light ground segments due to the similarities between 

the colors of the dark ground segments and the elephant segments; however, the segments 

containing the parts of elephants are still assigned to the bigger values of information gain than 

the ones belonging to the dark ground segments according to the large texture differences and 

the moderate color differences. 

 

 
Figure 5.10: The visualization of segmentation, fingerprint candidate rankings and the selected 

fingerprints for the sample training image containing the fingerprint with the highest 

information gain value from all the training dataset based on the recovery of the object model 

whose precision score places on the node defining 50 fingerprints of the yellow curve presented 

in Figure 5.2. 

 

The left upper image presented in Figure 5.10 is also used during the building process 

of the same object model presented in the third rows of both Figure 5.6 and 5.7 regarding 

different training images and owns a segment holding the highest information gain value by 

taking into account the complete training dataset. The segment keeping the biggest information 

gain value places at the upper rightmost of the best fingerprints image shown in Figure 5.10 

and its magnified form is shown in Figure 5.11. The best fingerprint shown in Figure 5.11 is 

also not a dark elephant segment like the fingerprints selected from the training images of 

Figure 5.6 and Figure 5.7 by the same object model. 
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Figure 5.11: The enlarged version of the top fingerprint (keeping the highest information gain 

value) presented as one of the selected best fingerprints for the respective object model in 

Figure 5.10. 

 

 
Figure 5.12: The visualization of segmentation, fingerprint candidate rankings and the selected 

fingerprints for the sample training image containing the fingerprint with the highest 

information gain value from all the training dataset based on the recovery of the object model 

whose precision score places on the node defining 50 fingerprints of the violet curve presented 

in Figure 5.3. 

 

The object model recovery regarding two different training images presented in the 

fourth rows of Figure 5.6 and Figure 5.7 produces the results visualized in Figure 5.12 for the 

training image presented in the left upper part of Figure 5.12. This training image contains a 

segment keeping the highest information gain value from all the fingerprints collected in this 

considered object model built by using diffusion distance. As seen in Figure 5.12, the majority 

of the segments consisting of the sky has the lowest information gain value so they are 

demonstrated with pure white color. Moreover, the elimination of green segments by setting 
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lower information gain values than the ones belonging to the segments containing the areas of 

the elephants is observable in the image of fingerprint candidate rankings presented in Figure 

5.12. Although some parts of elephants seem greenish, they keep higher information gain values 

than the ones related to the segments extracted from forest regions. The segment placing in the 

middle of all the segments shown in the lower rightmost image of Figure 5.12 keeps the top 

information gain value as a selected fingerprint for the foregoing object model. In addition, 

Figure 5.13 presents an enlarged form of this fingerprint. 

 

 
Figure 5.13: The enlarged version of the top fingerprint (keeping the highest information gain 

value) presented as one of the selected best fingerprints for the respective object model in Figure 

5.12. 

 

 
Figure 5.14: The visualization of segmentation, fingerprint candidate rankings and the selected 

fingerprints for the sample training image containing the fingerprint with the highest 

information gain value from all the training dataset based on the recovery of the object model 

whose precision score places on the node defining 50 fingerprints of the green curve presented 

in Figure 5.3. 

 

Figure 5.14 shows the training image supplying the best fingerprint from the complete 

training dataset to the recovery of the object model which is also presented regarding different 

training images in the last rows of both Figure 5.6 and Figure 5.7. Therefore, this object model 

is built by using chi square statistics. All of the selected segments presented in the lower 
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rightmost image of Figure 5.14 are true positives same as all other segments presented in the 

previous figures regarding other object models. The enlarged form of the segment keeping top 

information gain value for the object model used for the representation of Figure 5.14 is shown 

in Figure 5.15. 

 

 
Figure 5.15: The enlarged version of the top fingerprint (keeping the highest information gain 

value) presented as one of the selected best fingerprints for the respective object model in Figure 

5.14. 

 

The sets of object models which are recovered based on VLAD descriptors by using the 

mean shift segments collected from CIELAB color space or the segments obtained from sliding 

windows method with occlusions mostly evaluated as unsatisfactory. Therefore, their results 

are not presented. Table 5.1 represents the highest mean precision scores of the sets of object 

models built by using VLAD descriptors. 

 
Distance 

function 
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square 

statistics 

from 

Figure 5.3 

Diffusion 

distance 

from 

Figure 5.2 

Chi square 

statistics 

from 

Figure 5.1 

Diffusion 

distance 

from 

Figure 5.3 

L2 

distance 

from 

Figure 5.2 

Kolmogorov-

Smirnov test 

from Figure 5.4 

Matching 

distance 

from 

Figure 5.1 

L2 

distance 

from 

Figure 5.3 

Mean 

Precision 
0.9029 0.8945 0.8905 0.8599 0.8612 0.8217 0.7887 0.7831 

Table 5.1: The highest mean precisions obtained from VLAD-based model recovery 

 

5.1.2 COLOR HISTOGRAMS-BASED MODEL RECOVERY 
 

Figure 5.16 and Figure 5.17 show the precision scores obtained from the object models 

recovered based on GB color histograms, which are extracted from the mean shift segments. 

The difference between Figure 5.16 and Figure 5.17 is the color space utilized for the mean 

shift segmentation. The color space of the former is CIELAB while the latter is executed in 

CIELUV. The mean precisions obtained from the sets of object models represented in both of 

these figures regarding four different distance functions such as diffusion distance, l2 distance, 

chi square statistics and histogram intersection distance are greater than 0.8. In addition, the 

precisions of all these object models apart from the ones built by using l2 distance increase 

while shifting from bigger to smaller object models.  

The sets of object models shown in Figure 5.16 and Figure 5.17 and built by using 

Kolmogorov-Smirnov test have the mean precision scores, which are greater than 0.65 and less 

than 0.75. Therefore, these sets of object models are evaluated as satisfactory in order to be 

utilized for the construction of a target visual object detector. Performing mean shift 

segmentation on CIELUV or CIELAB does not cause any significant change in the precisions 

of the object models built by using GB color histograms. Consequently, since the object models 

built by using GB color histograms and one of five mentioned distance functions provide at 

least closely satisfactory mean precision scores, their respective sets are also evaluated as 
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qualitative results like the sets of object models, which are highlighted in the previous figures 

based on their mean precision scores and their curves having desirable shapes.  

 

 
Figure 5.16: The representation of the precision scores received from the object models 

recovered by using GB color histograms and performing mean shift segmentation in CIELAB 

color space. 

 

 
Figure 5.17: The representation of the precision scores received from the object models 

recovered by using GB color histograms and performing mean shift segmentation in CIELUV 

color space. 
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The set of object models recovered by using diffusion distance and presented in Figure 

5.16 is evaluated as highly satisfactory since its mean precision score is slightly bigger than 

0.85. Apart from that, other three sets of object models recovered by using one of the distance 

functions such as l2 distance, chi square statistics and histogram intersection distance are 

evaluated as satisfactory because their mean precision scores are greater than 0.75 and less than 

0.85. 

As seen in Figure 5.17, the mean precision scores regarding the set of object models 

recovered by using l2 distance is slightly bigger than 0.85; therefore, it is evaluated as highly 

satisfactory. Moreover, the rest of the distance functions recovering the set of object models 

receiving the mean precision scores being greater than 0.8 as described previously, is evaluated 

as a set of satisfactory distance functions for the recovery of the object model sets based on the 

experimental configurations used in Figure 5.17.  

 

 
Figure 5.18: The representation of the precision scores received from the object models 

recovered by using UV color histograms. 

 

The precision scores presented in Figure 5.18 pertaining to object models recovered 

based on the experimental setup containing UV color histograms as visual descriptors of the 

segments. The only curve having the desirable tilt directions for its line segments shown in 

Figure 5.18 is the one referring to the precision scores of the object models built by using 

matching distance. However, the mean precision score received from this set of object models 

is lower than 0.65 so it is evaluated as unsatisfactory. Moreover, the tilt directions of the line 

segments placing in the curve regarding histogram intersection distance are undesirable 

especially between the object models keeping 25 and 100 fingerprints. Nevertheless, the mean 

precision score belonging to this set is slightly bigger than 0.65 so it is evaluated as closely 

satisfactory. Apart from that, the mean precision scores of two sets with respect to l2 distance 

and diffusion distance are very close to each other and both are in the range of closely 

satisfactory as well. The shapes of their curves seem desirable apart from the object models 
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storing 25 fingerprints. Due to having three sets of object models evaluated as closely 

satisfactory based on the foregoing experimental setup, Figure 5.18 is also selected as a figure 

containing qualitative results. The sets of object models which are recovered based on GB color 

histograms by using the segments obtained from sliding windows methods mostly evaluated as 

unsatisfactory. Therefore, their results are not presented. 

 

 

 

Figure 5.19: The recovery process of an object model based on two different sample training 

images by using UV color histograms and diffusion distance is visualized. 

 

The recovery of an object model storing 50 fingerprints which is built by utilizing UV 

color histograms and diffusion distance function is visualized with respect to two different 

training images in Figure 5.19. These two training images are purposely selected in order to 

visualize the basic drawback of UV color histograms for the recovery of an object. As seen in 
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Figure 5.19, although the majority of the elephant segments is set to high fingerprint candidate 

rankings for both training images, some of segments containing either branches or trunks of 

tree are also set to high ranking values mostly due to their color similarities with elephant 

segments. Moreover, the majority of the segments consisting of the green areas has lower 

rankings than other segments. As a result of this, the root cause of the difference between the 

mean precision scores obtained from the sets of objects presented in Figure 5.18 and the others 

shown in the previous figures of this chapter keeping greater mean precision scores with respect 

to the respective distance functions is the weaker texture recognition capability of UV color 

histograms. The sets of object models which are recovered based on UV color histograms by 

using mean shift segments collected from CIELAB color space or segments obtained from 

sliding windows methods mostly evaluated as unsatisfactory. Therefore, their results are not 

presented. 

 

 
Figure 5.20: The representation of the precision scores received from the object models 

recovered by utilizing 1d RGB color histograms whose construction is based on the 

concatenation of each 2d histogram of RG, GB and BR channels into a single dimensional 

vector. 

 

Figure 5.20 presents the precision scores received from the object models built by using 

single dimensional column vectors which are constructed based on the third type of RGB color 

histograms introduced in Subsection 3.2.1.4. Same as UV color histograms, there are three sets 

of object models constructed based on this type of RGB color histograms receiving mean 

precision scores which pass 0.65. One of them is recovered by using l2 distance function and 

obtains 0.7564 as mean precision score. Therefore, this set is evaluated as closely satisfactory. 

Other two sets receive mean precision scores in the range [0.65, 0.75) so they are both evaluated 

as satisfactory. As presented in Figure 5.20, one of these sets receiving satisfactory mean 

precision score recovered by using diffusion distance while another set recovered based on 

Jensen Shannon divergence. The shape of the curve defining Jensen Shannon divergence is the 
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more desirable than the ones pertaining to other two sets although its mean precision score is 

the lower than theirs. The precision scores collected from the object models recovered based 

on other two approaches of RGB color histograms are described and illustrated in Appendix 

A.2. The sets of object models which are recovered based on RGB color histograms by using 

mean shift segments collected from CIELUV color space or segments obtained from sliding 

windows methods mostly evaluated as unsatisfactory. Therefore, their results are not presented.

 The curves presented in Figure 5.21 traverse the precision scores of object models built 

based on the similarities of AB color histograms computed by same distance function. There is 

a single set of object models presented in this figure having mean precision score is in the range 

[0.65, 0.75). This set is recovered by using l2 distance and it is evaluated as closely satisfactory 

based on its mean precision score. However, the curve referring to this set has undesired shifts 

between the object models keeping 25 and 100. The rest of the sets of object models recovered 

based on the experimental setup consisting of AB color histograms is evaluated as 

unsatisfactory since their mean precision scores are lower than 0.65. Moreover, the majority of 

the sets presented in Figure 5.21 receives lower mean precision scores than ones presented in 

Figure 5.18. Therefore, utilizing UV color histograms rather than AB color histograms provides 

slightly better discrimination of foreground segments from background segments depending on 

information gain. The shapes of the curves defining distance functions of l2 and diffusion shown 

in Figure 5.21 are very similar as well as the locations of their nodes specifying the precision 

scores of the respective object models. This similarity is also visible in Figure 5.2, Figure 5.3, 

Figure 5.17 and Figure 5.18. From this point of view, it can be inferred that the behaviors of 

diffusion or l2 distance functions are very similar to each other in the feature spaces constructed 

during the building processes of the foregoing object models. 

 

 

Figure 5.21: The representation of the precision scores received from the object models 

recovered by using AB color histograms. 
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The sets of object models recovered based on AB color histograms mostly evaluated as 

unsatisfactory like the ones collected based on RGB color histograms-based object model 

recovery when the mean shift segments collected from CIELUV color space or the segments 

obtained from sliding windows methods. Therefore, their respective results are not presented. 

Table 5.2 represents the highest mean precision scores of the sets of object models built by 

using Color Histograms. 

 
Distance 

function 

L2 

distance 

from 

Figure 

5.17 

Diffusion 

distance 

from 

Figure 

5.16 

Histogram 

intersection 

distance 

from 

Figure 5.16 

Diffusion 

distance 

from 

Figure 

5.17 

Chi square 

statistics 

from 

Figure 

5.16 

Chi square 

statistics 

from 

Figure 

5.17 

Histogram 

intersection 

distance 

from 

Figure 5.17 

L2 
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5.16 

Mean 

Precision 
0.8562 0.8511 0.8434 0.8404 0.8300 0.8244 0.8206 0.8132 

Table 5.2: The highest mean precisions obtained from Color Histograms-based model recovery 

 

5.1.3 CK-1-BASED MODEL RECOVERY 
 

Figure 5.22 illustrates the precision scores obtained from the object models recovered by using 

CK-1 distance. As seen in this figure, there is not any set of object models having mean 

precision score which reaches or exceeds the boundary of 0.65; therefore, all the sets recovered 

based on the experimental setups containing the employment of CK-1 distance are evaluated as 

unsatisfactory sets. The violet and dark blue curves demonstrated in Figure 5.22 fluctuate up 

and down more often than green one since the segments obtained by performing mean shift 

segmentation contain less background data than the ones obtained by performing sliding 

windows. Moreover, the tilt directions of the green curve are the desirable ones apart from only 

the line segment joining the object models storing 25 and 50 fingerprints.  

 

 
Figure 5.22: The representation of the precision scores received from the object models built 

by using CK-1 distance measure. 
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The sets of object models collected by CK-1-based model recovery and using the 

segments obtained from sliding windows method with occlusions mostly evaluated as 

unsatisfactory. Hence, their results are not shown. 

 

5.1.4 MPEG-7 COLOR DESCRIPTORS-BASED MODEL RECOVERY 

 

When the visual descriptors of the image segments are extracted as MPEG-7 color structure 

descriptors and gathered as object models based on different similarity measurements, the 

precision scores of all these object models are represented in (a) of Figure 5.23. Moreover, the 

recovery of the object models containing the process of the extraction of MPEG-7 scalable color 

descriptors yield the results shown in (b) of Figure 5.23. The only set of object models from all 

the sets presented in both subfigures of Figure 5.23 having closely satisfactory mean precision 

score is the one demonstrated in (a) of Figure 5.23 and recovered by using Kolmogorov-

Smirnov test. All the remaining sets possess unsatisfactory mean precision scores. In addition, 

the curve denoting Kolmogorov-Smirnov test in (a) of Figure 5.23 has a desirable shape since 

the precision scores of its object models continuously increase by switching from bigger object 

models to smaller object models. Since Jensen Shannon divergence and Kullback Leiber 

divergence are not applicable to the feature space of MPEG-7 scalable color descriptors, each 

precision score referring to these distance functions is presented in the (b) of Figure 5.23. The 

computations of histogram intersection distance and Kolmogorov-Smirnov test remain very 

similar for the both visual feature spaces of MPEG-7 color structure descriptors and MPEG-7 

scalable color descriptors.  

 

  
(a) (b) 

Figure 5.23: The representation of the precision scores received from the object models built 

by using either MPEG-7 color structure descriptors or MPEG-7 scalable color descriptors. 

MPEG-7 color descriptors-based object models which are recovered by using the 

segments obtained from the methods of sliding windows or the mean shift segments collected 

from CIELAB color space mostly receive smaller precision scores than the ones presented in 

Figure 5.23. Therefore, their results are not presented. 
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5.1.5 CEDD-BASED MODEL RECOVERY 
 

The mean precision scores collected from all the sets of object models shown in Figure 5.24 are 

smaller than 0.65 same as the ones recovered based on CK-1 distance. Therefore, CEDD-based 

model recovery is likewise evaluated as unsatisfactory. The evaluation of the precision scores 

of CEDD-based object models mostly worse than the ones presented in Figure 5.24 when they 

are recovered by using the segments obtained from the methods of sliding windows or the mean 

shift segments collected from CIELAB color space. Hence, , their results are not illustrated. 

 

 

 
Figure 5.24: The precision scores of the object models built by using CEDDs are represented. 

 

5.2  RESULTS OF TARGET VISUAL OBJECT DETECTION 
 

This subsection presents the accuracies received from the classifiers existing in the scope of the 

experimental setups with respect to the detection of the target visual objects from the test dataset 

of the thesis as well as their both curves of ROC and PR. For this purpose, these different 

classifiers are initially trained with the most qualitative object models selected based on the 

mean precision scores of their respective sets and the structures of the curves traversing through 

them. The details of these selected object models are presented in the previous subsection 5.1. 

Moreover, a mean accuracy received from each classifier is computed for each set of object 

models. One should note that the object models are grouped into the same set if they are 

recovered based on exactly the same experimental setup and distance function. The only 

difference among the object models placing in the same set is the number of fingerprints which 

is stored by each of them. 
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5.2.1  NAÏVE BAYES-BASED OBJECT DETECTION 
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Figure 5.25: The representation of both ROC and PR curves received from the Naïve Bayes 

classifiers trained with the object models from the set (only the ones keeping the 25, 50 and 100 

best fingerprints) recovered by using diffusion distance and the VLAD descriptors constructed 

based on the SIFT descriptors densely extracted at each 2 pixels from the mean shift segments. 
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Both Figure 5.25 and Figure 5.26 present the ROC and PR curves received from Naïve Bayes 

classifiers which are trained by using the object models associated with the diffusion distance 

in Figure 5.2. Each row of the both figures belongs to an object model keeping a specific number 

of fingerprints; therefore, all the object models referring all the rows of these both figures 

utilized for the training of the Naïve Bayes classifiers are in the same set and their only 

difference is their sizes. The ROC and PR curves obtained from the classifiers trained by the 

object models storing the 25, 50 and 100 best fingerprints are shown in Figure 5.25 while the 

ones storing the 150,200 and 250 best fingerprints are submitted to the classifiers whose results 

are presented in Figure 5.26. As shown in Figure 5.25 and Figure 5.26, the areas under the ROC 

curves change between 58.87% and 70.56% while their equal error rates vary between 36% and 

47.08%. Furthermore, the areas under PR curves presented in these figures change between 

44.09% and 59.48%. According to all these results, the Naïve Bayes classifier trained by using 

the object model keeping the 150 best fingerprints is evaluated as the best classifier because it 

receives the largest areas under both ROC and PR curves as well as the smallest equal error 

rate. Apart from that, the highest accuracy is also obtained by the same classifier. The accuracy 

of this classifier is 0.8230 and the mean accuracy obtained by using the complete set of these 

object models is 0.7932. 

The accuracies of the Naïve Bayes classifiers trained by using the object models storing 

the 150,200 and 250 best fingerprints from the foregoing set are greater than 0.8; therefore, 

these classifiers are evaluated as highly satisfactory. Furthermore, since the rest of Naïve Bayes 

classifiers regarding the same set of object models has accuracies in the range of [0.7 and 0.8), 

they are evaluated as satisfactory.  
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Figure 5.26: The representation of both ROC and PR curves received from the Naïve Bayes 

classifiers trained with the object models from the set (only the ones keeping the 150, 200 and 

250 best fingerprints) recovered by using diffusion distance and the VLAD descriptors 

constructed based on the SIFT descriptors densely extracted at each 2 pixels from the mean 

shift segments. 
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Figure 5.27: The representation of both ROC and PR curves received from the Naïve Bayes 

classifiers trained with the object models from the set (only the ones keeping the 25, 50 and 100 

best fingerprints) recovered by using chi square statistics and the VLAD descriptors constructed 

based on the SIFT descriptors densely extracted at each pixel from the mean shift segments.
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Figure 5.28: The representation of both ROC and PR curves received from the Naïve Bayes 

classifiers trained with the object models from the set (only the ones keeping the 150, 200 and 

250 best fingerprints) recovered by using chi square statistics and the VLAD descriptors 

constructed based on the SIFT descriptors densely extracted at each pixel from the mean shift 

segments. 
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 Both of the ROC and PR curves presented in Figure 5.27 and Figure 5.28 belong to 

Naïve Bayes classifiers trained with the set of object models shown in Figure 5.1 and recovered 

by using chi square statistics when they are performed on the development dataset. Same as 

Figure 5.25 and Figure 5.26, these figures likewise present the curves obtained based on the 

development dataset by using each object model of the mentioned set in a determined single 

row. Hence, the object models are sorted into the rows of figures in ascending order according 

to their sizes. 

As illustrated in Figure 5.27 and Figure 5.28, when the size of the object model utilized 

for the training of the classifier increases, the areas under both ROC and PR curves becomes 

larger and the equal error rates become smaller as the results of the classifier based on the 

development dataset. The areas under the curves respectively change based on the size of the 

utilized object model in the ranges of [55.23%, 65.39%] and [32.91%, 47.95%] for ROC and 

PR. Furthermore, the range of equal error rates received from the classifiers based on different 

sizes of considered object models is [38.45%, 45.94%]. The classifier which is trained by using 

the object model placing in this set and keeping the 250 best fingerprints has the highest 

accuracy from the ones trained by using all the set of these object models and it is 0.7730. Apart 

from that, the mean accuracy pertaining to this set is 0.7268. Since the mean accuracies of the 

classifiers presented in Figure 5.25, Figure 5.26, Figure 5.27 and Figure 5.28 are in the range 

of [0.7 and 08), the employment of the Naïve Bayes classifiers for these sets of object models 

are evaluated as satisfactory. In addition, as seen in Figure 5.27 and Figure 5.28, when a Naïve 

Bayes classifier is trained by using at least the 100 best fingerprints from the utilized object 

models, it receives an accuracy which is greater than 0.7 and less than 0.8. Hence, each Naïve 

Bayes classifier trained by using one of these object models is evaluated as satisfactory while 

others trained by using the either 25 or 50 best fingerprints are evaluated as closely satisfactory. 

Consequently, all these four major evaluations regarding ROC curves, PR curves, equal error 

rates and mean accuracies show that the previously presented set of object models generally 

conducts a better training session for the introduced Naïve Bayes classifier than the one 

presented in 5.32 and Figure 5.28. 

 Figure 5.29 and Figure 5.30 illustrate the classification results of the Naïve Bayes 

classifiers trained with a set of models whose precision scores are joint with a yellow curve in 

Figure 5.17 by using both ROC and PR curves. The subfigures presented in Figure 5.29 are 

generated by using the mentioned object models whose sizes are 25, 50 and 100. Moreover, the 

ROC and PR curves presented in Figure 5.30 are related to the object models from the same set 

keeping 150,200 and 250 fingerprints. As seen in these two figures, the range of areas under 

ROC curves is [61.93%, 63.20%] while the range of areas under PR curves is [42.57%, 

44.34%]. Apart from that, the equal error rates of these foregoing classifiers place in the range 

of [39.48%, 41.68%]. 
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Figure 5.29: The representation of both ROC and PR curves received from the Naïve Bayes 

classifiers trained with the object models from the set (only the ones keeping the 25, 50 and 100 

best fingerprints) recovered by using l2 distance and the GB color histograms extracted from 

the mean shift segments obtained in CIELUV color space. 
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Figure 5.30: The representation of both ROC and PR curves received from the Naïve Bayes 

classifiers trained with the object models from the set (only the ones keeping the 150, 200 and 

250 best fingerprints) recovered by using l2 distance and the GB color histograms extracted 

from the mean shift segments obtained in CIELUV color space. 
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Since the accuracies received from the classifiers shown in Figure 5.29 and Figure 5.30 

are less than 0.8 and greater than 0.7, the Naïve Bayes classifiers trained with this set of object 

models are evaluated as satisfactory in this thesis.  

The left upper corners of the subfigures shown in (a), (c) and (e) of all the figures 

received from Naïve Bayes classifiers are closer to the majority of line segments of the ROC 

curves than the red dotted lines defining the respective experimental results of the random 

classifiers. In addition, the majority of the line segments of PR curves presented in these six 

figures is likewise higher than the red dotted lines received from the random classifiers. Table 

5.3 represents the highest accuracies received from the Naïve Bayes classifiers as well as their 

mean accuracy. 

 
The Size of 

Object 

Model 

150 

(From 

Figure 5.26) 

200 

(From 

Figure 5.26) 

250 

(From 

Figure 5.26) 

100 

(From 

Figure 5.26) 

250 

(From 

Figure 5.28) 

200 

(From 

Figure 5.28) 

Mean 

Accuracy 

Accuracy 0.8230 0.8119 0.8047 0.7942 0.7730 0.7701 0.7961 

Table 5.3: The highest mean accuracies obtained from Naïve Bayes-based Object Detection 

 

5.2.2  SVM-BASED OBJECT DETECTION 

 

Figure 5.31 demonstrates both ROC and PR curves obtained from the linear SVM classifiers 

trained by using exactly the same object model used for the Naïve Bayes classifier whose results 

are shown in (a) and (b) of Figure 5.25. Therefore, this object model utilized for the presentation 

of Figure 5.31 also stores the 25 best fingerprints. Moreover, the results demonstrated in the 

first row of Figure 5.31 are obtained from the linear SVM classifier re-trained by using hard 

examples after its initial training with the foregoing object model and the randomly selected 

part of negative training dataset, but on the other hand, the last row of the same figure 

demonstrates the results related to the linear SVM classifier trained based on initial settings. As 

seen in these first and last rows of Figure 5.31, the area under the ROC curve enlarges 2% and 

the area under the PR curve enlarges 1.98% if the core (initial) training containing the foregoing 

object model keeping the 25 best fingerprints is completed for a linear SVM classifier and it is 

re-trained by using hard examples. Apart from that, this additional tuning of the classifier 

decreases the equal error rate as 0.55%. Nevertheless, the re-training with the hard examples 

improves the quality of the linear SVM classifier only if the foregoing object model from its 

complete set is used during its core training. Since the other object models store more 

fingerprints, this causes an overfitting during this re-training as an additional tuning process of 

the respective classifier. 

 Both ROC and PR curves received from the linear SVM classifiers trained by utilizing 

other object models storing more fingerprints from the foregoing set are presented in Figure 

5.32 and Figure 5.33. One should note that the re-training is not performed on the linear SVM 

classifiers whose results related to the test images of development dataset are presented in these 

two figures. Each row of 5.37 and Figure 5.33 presents the results belonging to an SVM 

classifier trained with an object model storing a different number of fingerprints from the same 

set and the results presented in the rows are arranged in line with the numbers of the fingerprints 

belonging to the respective object models in ascending order. As shown in Figure 5.31, Figure 

5.32 and Figure 5.33, the areas under the ROC and PR curves respectively change in the ranges 

of [51.32%, 60.89%] and [25.87%, 32.37%]. Apart from that, the equal error rates vary in the 
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range of [36.94%, 48.54%]. According to all these results excluding the first row of Figure 5.31, 

the linear SVM classifier whose training session containing the object model storing only the 

25 best fingerprints is evaluated as the best classifier from the ones trained with each object 

model belonging to the same foregoing set. On the other hand, the object model storing the 250 

best fingerprints tunes each linear SVM classifier in the worst way from all the object models 

from this set. Some fragments of both PR curves shown in Figure 5.33 have even smaller 

precision values than the ones pertaining to the random classifier and their linear SVM 

classifiers trained by using the respective object models storing the either 200 or 250 best 

fingerprints have lower accuracies than 0.5; therefore, they are evaluated as unsatisfactory 

classifiers.  
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Figure 5.31: The representation of both ROC and PR curves received from the linear SVM 

classifier initially trained with the object model (keeping the 25 best fingerprints) recovered by 

using diffusion distance and the VLAD descriptors constructed based on the SIFT descriptors 

densely extracted at each 2 pixels from the mean shift segments and the ones received from re-

trained of the same classifier with the hard examples. 
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Figure 5.32: The representation of both ROC and PR curves received from the linear SVM 

classifiers initially trained with the object models from the set (keeping the 50, 100 and 150 

best fingerprints) recovered by using diffusion distance and the VLAD descriptors constructed 

based on the SIFT descriptors densely extracted at each 2 pixels from the mean shift segments. 
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The highest accuracy of the linear SVM classifiers is even smaller than the lowest 

accuracy obtained from Naïve Bayes classifiers trained by VLAD descriptors. Nevertheless, 

the linear SVM classifier respective to this highest accuracy is closely satisfactory because its 

accuracy is greater than 0.5 and less than 0.7. 
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Figure 5.33: The representation of both ROC and PR curves received from the linear SVM 

classifiers initially trained with the object models from the set (keeping the 200 and 250 best 

fingerprints) recovered by using diffusion distance and the VLAD descriptors constructed based 

on the SIFT descriptors densely extracted at each 2 pixels from the mean shift segments. 

 

The mean accuracy decreases about 0.2783 when the linear SVM classifiers are 

employed for the same set of object models instead of the Naïve Bayes classifiers. Since the 

mean accuracy of the classifiers presented in Figure 5.32 and Figure 5.33 is slightly bigger than 

0.5, the usage of this set of object models for the linear SVM classifiers is evaluated as closely 

satisfactory. All the respective results show that the previously introduced Naïve Bayes 

classifiers have broadly better qualifications than these linear SVM classifiers.  

Figure 5.34 presents both ROC and PR curves in order to see the effect of already 

mentioned overfitting, which occurs due to the re-training of a specified linear SVM classifier 

with hard examples. These curves are obtained from the re-trained linear SVM classifiers whose 
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core trainings are performed by using the either 50 or 100 best fingerprints likewise utilized for 

the first two rows of Figure 5.32. As seen in Figure 5.32 and Figure 5.33, the areas not only 

under ROC curves but also PR curves presented in the first two rows of Figure 5.32 are 

significantly greater than the ones shown in Figure 5.34. 
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Figure 5.34: The representation of both ROC and PR curves received from the linear SVM 

classifiers re-trained with the hard examples after their initial training with the object models 

from the set (keeping the 50 and 100 best fingerprints) recovered by using diffusion distance 

and the VLAD descriptors constructed based on the SIFT descriptors densely extracted at each 

2 pixels from the mean shift segments. 

 

The evaluations presented in Figure 5.35 and Figure 5.36 belong to the linear SVM 

classifiers which are tuned by performing only core training process containing the set of object 

models utilized in Figure 5.2 and built by l2 distance. When the object model storing the either 

25 or 50 best fingerprints is selected from the mentioned set for the training of the linear SVM 

classifier, many fragments of both ROC and PR curves obtained from this classifier place lower 

than the random classifier.  
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Figure 5.35: The representation of both ROC and PR curves received from the linear SVM 

classifiers trained with the object models from the set (only the ones keeping the 25, 50 and 100 

best fingerprints) recovered by using l2 distance and the VLAD descriptors constructed based 

on the SIFT descriptors densely extracted at each 2 pixels from the mean shift segments. 
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Figure 5.36: The representation of both ROC and PR curves received from the linear SVM 

classifiers trained with the object models from the set (only the ones keeping the 150, 200 and 

250 best fingerprints) recovered by using l2 distance and the VLAD descriptors constructed 

based on the SIFT descriptors densely extracted at each 2 pixels from the mean shift segments. 

 

The mean accuracy of the classifier presented in Figure 5.35 and Figure 5.36 is slightly 

smaller than the one received by the classifier shown in Figure 5.32 and Figure 5.33. Therefore, 
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utilizing l2 distance instead of diffusion distance for the similarity measurements of the VLAD 

descriptors extracted by sampling each two pixels does not supply a significantly better feature 

space in order to train a linear SVM classifier. The ranges of the areas under ROC and PR 

curves are respectively [40.85%, 60.36%] and [21.14%, 31.41%]. The largest areas under these 

ROC and PR curves are very similar to the ones having the largest areas from all PR and ROC 

curves of the previously introduced linear SVM classifiers tuned by having only core training 

session based on the set of object model recovered by using diffusion distance.  

The areas under the PR curves presented in Figure 5.35 and Figure 5.36 are also 

significantly smaller than the ones obtained based on the firstly introduced two experimental 

setups containing the employment of Naïve Bayes classifiers and presented in Figure 5.25, 

Figure 5.26, Figure 5.27 and Figure 5.28. 

The SVM classifiers trained (without any additional re-training session) by using the 

respective object models storing 25 or 100 or 150 fingerprints are evaluated as closely 

satisfactory since their accuracies are bigger than 0.5 and less than 0.7.  

Table 5.4 represents the highest accuracies received from the linear SVM classifiers as 

well as their mean accuracy. 

 
The Size of 

Object 

Model 

25 

(From 

Figure 5.31) 

100 

(From 

Figure 5.35) 

150 

(From 

Figure 5.36) 

100 

(From 

Figure 5.32) 

50 

(From 

Figure 5.32) 

150 

(From 

Figure 5.32) 

Mean 

Accuracy 

Accuracy 0.6248 0.5795 0.5594 0.5489 0.5446 0.5446 0.5669 

Table 5.4: The highest mean accuracies obtained from SVM-based Object Detection 

 

5.2.3  THRESHOLDS-BASED OBJECT DETECTION 

 

The same set of object models utilized for the generation of Figure 5.31, Figure 5.32 and Figure 

5.33 is also employed for the construction of a set of target visual object detectors by using the 

algorithm described as the third detector approach in Subsection 3.4. Their evaluations based 

on the test images of development dataset are illustrated in Figure 5.37 and Figure 5.38. Each 

object model selected from this set is employed to provide a distance space based on the 

thresholds values of its fingerprints. Since this set of object models is recovered by using 

diffusion distance, the same distance function is used for the similarity measurements between 

the test and training segments. The details of the criteria for the classification of the segments 

as foreground or background is provided in Subsection 3.4. As seen in Figure 5.37 and Figure 

5.38, the majority of the fragments of both ROC and PR curves locates either above or on the 

red lines defined by random classifiers. Moreover, if the target visual object detector 

represented in Figure 5.35 and Figure 5.36 is constructed based on an object model storing at 

least 100 fingerprints, its accuracy becomes in the range [0.5129, 0.5622]. Therefore, these 

target visual object detectors are evaluated as closely satisfactory while the rest constructed 

based on the object models storing either 25 or 50 is evaluated as unsatisfactory. 
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Figure 5.37: The representation of both ROC and PR curves received from the classifiers 

constructed based on the thresholds of the fingerprints belonging to the object models from the 

set (only the ones keeping the 25, 50 and 100 best fingerprints) recovered by using diffusion 

distance and the VLAD descriptors constructed based on the SIFT descriptors densely extracted 

at each 2 pixels from the mean shift segments. 
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Figure 5.38: The representation of both ROC and PR curves received from the classifiers 

constructed based on the thresholds of the fingerprints belonging to the object models from the 

set (only the ones keeping the 150, 200 and 250 best fingerprints) recovered by using diffusion 

distance and the VLAD descriptors constructed based on the SIFT descriptors densely extracted 

at each 2 pixels from the mean shift segments. 
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As presented in Figure 5.37 and Figure 5.38, the ROC curve placing in (e) of Figure 

5.37 owns the largest area as 55.18% under itself from all the ROC curves presented in these 

two figures. The same classifier whose ROC curve having the largest area likewise receives the 

PR curve with the largest area as 28.61% shown in (f) of Figure 5.37. Apart from that, 44.22% 

is the smallest equal error rate obtained from all of these ROC curves and belongs to one 

presented in (c) of Figure 5.38. The largest areas under the curves of ROC and PR pertaining 

to each previously presented set of evaluations in this subsection are respectively larger than 

55.18% and 28.61%. 

Since the range of accuracies of the classifiers shown in Figure 5.37 and Figure 5.38 is 

tight, it shows that the qualifications of classifiers constructed by using the threshold values of 

the selected object models do not significantly change depending on the sizes of the selected 

object models from the same set. The PR ad ROC curves collected by changing the sampling 

step from 2 to 5 pixels in the configuration settings of the previous classifiers of this subsection 

are presented in Appendix A.4. Table 5.5 represents the highest accuracies received from the 

classifiers which are constructed based on the thresholds. Moreover, their mean accuracy is also 

represented in Table 5.5. 

 
The Size of 

Object 

Model 

150 

(From 

Figure 5.38) 

200 

(From 

Figure 5.38) 

250 

(From 

Figure 5.38) 

100 

(From 

Figure 5.37) 

50 

(From 

Figure 5.37) 

25 

(From 

Figure 5.37) 

Mean 

Accuracy 

Accuracy 0.5594 0.5342 0.5622 0.5129 0.4687 0.4529 0.5147 

Table 5.5: The highest mean accuracies obtained from Thresholds-based Object Detection 

 

5.3  RESULTS OBTAINED FROM TIGER DATASET 

In this section, two experimental setups selected from the previous sections of this chapter are 

employed for the species of tiger as a different target visual object than the one used in these 

previous sections. For this purpose, the experimental runs are launched based on the completely 

different sets of training and test images which forms the tiger dataset described in detailed in 

Subsection 4.1.2. The one of these experimental setups is selected based on the highest mean 

accuracy represented in the previous subsection. Since Table 5.3 presents the highest mean 

accuracy from all the tables placing in Section 5.2, the Naïve Bayes classifiers trained with a 

set of models whose recovery is based on the same experimental setup with the one defined 

with a violet curve in Figure 5.2 are employed for the detection of tigers from the tiger dataset. 

Consequently, the mentioned experimental setup regarding the object model recovery is the 

second selected experimental setup for this section and the respective set of object models is 

recovered based on it from the training images of the tiger dataset. Therefore, this section 

provides a verification of generalizability of the proposed approaches against each selection of 

target visual objects and datasets to the readers by showing their evaluations. 

 Other sets of object models are likewise recovered from the test images of the tiger 

dataset by changing only distance function from diffusion distance to the one of other seven 

options and keeping the rest of the mentioned second experimental setup. The precision scores 

received from all these sets of object models are presented in Figure 5.39. Hence, in the feature 

extraction processing step of their recovery, a dense extraction of VLAD descriptors at each 

two pixels is performed on the segments which are obtained by applying mean shift 
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segmentation in CIELUV color space to the test images of the tiger dataset. After the VLAD 

descriptors are extracted, their twelve principal components are gathered by applying PCA to 

them. As seen in Figure 5.39, the violet curve joins the precision scores of the object models 

recovered by using diffusion distance. When the sizes of the object models related to this violet 

curve become smaller, their precision scores become greater. Therefore, the tilts directions of 

the line segments of this violet curve are desirable. Moreover, the mean precision scores of the 

sets defined with the curves in Figure 5.39 are shown in Table 5.6. Since the majority of the 

precision scores placing in the violet curve is greater than all the rest of the precision scores and 

their mean accuracy is shown as the highest one in Table 5.6, the set recovered by using 

diffusion distance is evaluated as the best one from all the sets for this experimental setup same 

as the one illustrated in Figure 5.2. Apart from that, it is evaluated as satisfactory because its 

mean accuracy is greater than 0.75 and less than 0.85. All the mean accuracies received from 

the rest of the sets are smaller than 0.65; therefore, they are evaluated as unsatisfactory.  

 

 
Figure 5.39: The representation of the precision scores collected based on the tiger dataset from 

the object models built by using VLAD descriptors constructed based on the SIFT descriptors 

densely extracted at each 2 pixels from the mean shift segments. 

 

Distance 

function 

Diffusion 

distance 

L2 

distance 

Jensen 

Shannon 

divergence 

Kolmogorov-

Smirnov test 

Kullback 

Leiber 

divergence 

Chi 

square 

statistics 

Histogram 

intersection 

distance  

Matching 

distance 

Mean 

Precision 
0.8298 0.5974 0.2637 0.2363 0.0544 0.2930 0.1949 0.2273 

Table 5.6: The mean precisions of the set of models built based on the same experimental setup 

and the tiger dataset of Figure 5.39 by using the same distance function for each set are 

presented. 

 

The both curves of ROC and PR received from each Naïve Bayes classifier trained with 

one of the object models recovered based on the experimental setup utilized for the illustration 

of Figure 5.39 by using diffusion distance are presented in Figure 5.40 and Figure 5.41. Same 

as the previous figures presenting ROC and PR curves, these two figures also present the curves 

related to each object model from the foregoing set in a separate row in ascending order 

according to the sizes of the object models. As seen in both figures, the majority of the line 

segments belonging to the ROC and PR curves places in more desirable locations than the lines 

defining the experimental results of the random classifiers. 
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Figure 5.40: The representation of both ROC and PR curves collected based on the tiger dataset 

from the Naïve Bayes classifiers trained with the object models from the set (only the ones 

keeping the 25, 50 and 100 best fingerprints) recovered by using diffusion distance and the 

VLAD descriptors constructed based on the SIFT descriptors densely extracted at each 2 pixels 

from the mean shift segments. 
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Figure 5.41: The representation of both ROC and PR curves collected based on the tiger dataset 

from the Naïve Bayes classifiers trained with the object models from the set (only the ones 

keeping the 150, 200 and 250 best fingerprints) recovered by using diffusion distance and the 

VLAD descriptors constructed based on the SIFT descriptors densely extracted at each 2 pixels 

from the mean shift segments. 
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In Figure 5.40 and Figure 5.41, the ranges of the areas under ROC and PR curves and 

the equal error rates are respectively [54.07%, 68.28%], [31.56%, 40.28%] and [36.53%, 

49.45%]. Apart from the areas under PR curves, other experimental results look similar to the 

ones presented in Figure 5.25 and Figure 5.26. The areas under PR curves presented in Figure 

5.25 and Figure 5.26 are larger than the ones presented in Figure 5.40 and Figure 5.41. 

 

The Size of 

Object 

Model 

25 50 100 150 200 250 Mean 

Accuracy 

Accuracy 0.8302 0.8362 0.8278 0.8269 0.8305 0.8257 0.8295 

Table 5.7: The accuracies received from the Naïve Bayes classifiers whose ROC and PR curves 

are demonstrated in Figure 5.40 and Figure 5.41 are presented with their mean accuracy. 

 

Furthermore, the accuracies of the mentioned Naïve Bayes classifiers based on the tiger 

dataset and their mean accuracy are presented in Table 5.7. Since all these accuracies are greater 

than 0.8, they are evaluated as highly satisfactory. Apart from that, they are slightly bigger than 

the ones presented in Table 5.3. Hence, using foregoing experimental setups for two different 

datasets and target visual object models receive similar evaluations and all of them can be 

considered as highly satisfactory. While the accuracies of the Naïve Bayes classifiers employed 

for the detection of the species of elephant are slightly smaller than the ones utilized for the 

detection of the species of tiger, the former Naïve Bayes classifiers receive slightly better ROC 

curves, PR curves and equal error rates than the latter ones. 

 

 

Figure 5.42: The recovery process of the object model (storing the 25 best fingerprints and 

having 100% precision score shown in Figure 5.39) based on the first sample training image of 

the tiger dataset is visualized. 



118 

 

 
Figure 5.43: The recovery process of the object model (storing the 25 best fingerprints and 

having 100% precision score shown in Figure 5.39) based on the second sample training image 

of the tiger dataset is visualized. 

 

 
Figure 5.44: The recovery process of the object model (storing the 25 best fingerprints and 

having 100% precision score shown in Figure 5.39) based on the third sample training image 

of the tiger dataset is visualized. 
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Figure 5.42, Figure 5.43 and Figure 5.44 visualize the segmented images, the fingerprint 

candidate rankings and the selected fingerprints based on the selected object model from three 

samples of the training images of the tiger dataset. The selected object model keeps the 25 best 

fingerprints and places in the same set whose mean accuracy is presented in Table 5.7. As seen 

in each visualized recovery process of this object model from all these training images of the 

tiger dataset, their common quality for the discrimination of the foreground and background 

segments is similar to the ones presented in the subfigures placing in the second rows of Figure 

5.6 and Figure 5.7 as well as the one presented in Figure 5.8. Since the stripes of the tigers are 

mostly colored darker than other segments in the fingerprint candidates shown in Figure 5.42, 

Figure 5.43 and Figure 5.44, they generally possess high information gain values and, therefore, 

the ones having the highest information gain values are selected as fingerprints for the 

mentioned object model.  

 

5.4  CONCLUSION OF THE EXPERIMENTS 
 

When diffusion distance is employed to compute the similarities between the descriptors which 

are obtained after performing l2 and power normalization into 12 principal components of 

VLAD descriptors extracted from the mean shift segments, the captured similarity 

measurements enable a non-parametric discriminative weakly-supervised learning scheme 

based on information gain to recover a generalized object model for a target visual object. 

Moreover, the mean shift segments are collected from in CIELUV color space. The generalized 

object model collects the 25 best fingerprints from the selected entire training dataset and its 

experimental results obtained from two different training datasets utilized in this thesis show 

100% precision scores. Since each of these training datasets is based on a different target visual 

object, it proofs the generalizability of the approach against the usage of different datasets and 

its independence against the selection of a target visual object. When the size of the generalized 

object model based on one of these two target visual objects is extended from 25 to the larger 

ones existing in the scope of the thesis, its precision score is decreased after each extension. 

This provides an evidence that if the information gain value assigned to a segment is higher 

than the one belonging to another segment, the former segment has more probability for being 

foreground segment than the latter. Nevertheless, if there is a strict bottleneck regarding 

execution timings in an implementation plan, the employment of diffusion distance can be 

replaced with l2 distance by venturing 3.33% loss of the mean precision score (based on the 

evaluation result obtained from the development dataset of this thesis) since l2 distance runs 

about 5 times faster than diffusion distance. However, one should note that diffusion distance 

provides better stabilization against the changes on the datasets and the target visual object 

since the loss in the mean precision score is much bigger for l2 distance than diffusion distance 

when the development dataset is switched to the tiger dataset. Apart from that, another modeling 

approach containing the extraction of GB color histograms instead of VLAD descriptors from 

the same segments and the similarity measurements with the employment of l2 distance receives 

a mean precision score which is only 3.83% smaller than the one pertaining to the modeling 

approach mentioned with VLAD descriptors in the beginning of this chapter. According to the 

experimental results obtained from the development dataset, the mean accuracy of the Naïve 
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Bayes classifiers is only 5.99% smaller when they are trained by using GB color histograms 

rather than VLAD descriptors. These two approaches possess higher and more standardized 

precision and accuracy scores than all other investigated and related state-of-the-art methods 

while the hard disk occupation is minimized. 
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CHAPTER 6 
 

 

6 SUMMARY 

eakly-supervised framework of visual object detection is investigated in this thesis. 

For this purpose, an object model keeping the most discriminative segments of the 

target visual object is built from a set of image-level labeled training images. The 

recovered object model trains a classifier, which is used to detect the target visual object from 

a set of test images. 

The research of object model recovery in this thesis starts with extending the weakly-

supervised object modeling approach of Hao et al. [23] originated from texture classification to 

color image segments since the gathered accuracy results of the classification of insect sounds 

by using this proposed object model recovery from a training set of greyscale spectrogram 

segments are presented as 77% and 93% for 10 and 20 different insect categories, respectively. 

To this end, this thesis employs a tool of MPEG-1 video encoding by using CK-1 distance 

function presented by Campana et al. [28] and likewise used by [23] for their non-parametric 

similarity measurement framework. In fact, the usage of CK-1 distance function entails a 

segmentation method partitioning the segments with rectangular boundaries. Furthermore, each 

pair of segments of which the distance is computed by CK-1 distance function has to have 

exactly the same shape and area. Therefore, two different segmentation methods such as sliding 

windows and mean shift segmentation are investigated as the degrees of freedom in the 

processing step of segmentation. Since CK-1 distance function is applicable only to the segment 

pairs with rectangular boundaries having exactly the same shapes and areas, mean shift 

segments are extracted with their closest outer rectangular boundaries and then each pair of 

segments is resized based on their sizes by maintaining their aspect ratios. The background 

pixels are set with 0s (black color) in order to extract the segments with their closest outer 

rectangular boundaries.  

A discriminative learning scheme based on information gain introduced by Hao et al. 

[23] is operated in this thesis by using the similarity measurements of a set of training image 

segments, which are computed by the CK-1 distance function. The image segments receiving 

the highest information gain values are collected to build a model for the target visual object.  

The research way direction of the object model recovery is changed by replacing CK-1 

distance function with a feature extraction technique and a similarity metric. Therefore, a wide 

range of different techniques for feature extraction and similarity measurement is investigated 

by keeping the same learning strategy, which is based on information gain. For instance, 

different types of color histograms are constructed as visual feature descriptors of image 

segments by using some or all three-color components of different color models such as CIE 

L*a*b, CIE L*u*v* and RGB. Apart from color histograms, the success of a texture based 

feature extraction technique [90] is investigated by employing dense SIFT descriptors. In 

addition to exploiting texture as the only visual attribute, other feature extraction techniques 

constructing histograms with bag of visual words model based on both visual features of color 

W 
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and texture placing in the image segments are employed as additional degrees of freedom in the 

processing step of feature extraction. These are PHOW, VLAD, CEDD and MPEG-7 color 

descriptors. 

Finally, in order to detect the target visual object from the test images, a classifier is 

trained or constructed with the object models which are selected based on the best evaluations 

obtained from all the experimental results with respect to the object model recovery. 

Consequently, three different classification approaches are added in the scope of this thesis. A 

linear SVM classifier is employed as one of these different classification approaches while a 

Naïve Bayes classifier is the another one. Apart from these two, an alternative classifier working 

based on the spherical threshold spaces constructed by using the thresholds of the fingerprints 

belonging to the selected object model is employed as the third classification approach. 

Furthermore, the experimental results are likewise collected for the case that the linear SVM 

classifier is re-trained with the hard examples.  

The precision scores of object models recovered by using mean shift segmentation are 

mostly higher than the ones recovered by using sliding windows when the rest of the 

experimental setup is the same. This happens due to the well-known drawback of the sliding 

windows method which is the generation of the segments with the rectangular shapes as the 

only one possibility. Since the most of the target visual objects do not have rectangular shapes, 

the segments extracted by sliding windows mostly contains background pixels. Apart from that, 

since the fixed sized segmentation is used for the sliding windows method introduced by this 

thesis, it conflicts with the property of the scale invariance. This is another root cause of the 

lower precision scores of the object models built by using sliding windows. Setting black color 

for the background pixels causes a noise in each segment for the mean shift segmentation. 

However, the effect of this noise on the related experimental results is smaller than the 

drawback of sliding windows. The only way to eliminate these additional black pixels is to 

extract the closest inner rectangular boundaries of each segment; however, this type of 

extraction causes the loss of the shape information of each segment.  

The reason of replacing the CK-1 distance function with other approaches is its 

execution time frame since the original idea is extended to color images. The execution time of 

a single optimal object model recovery from 30 positive and 30 negative training color images 

by using CK-1 distance function takes approximately from 2 and half days to 6 days depending 

on the selected segmentation method although each training image is downscaled to its quarter 

size before the training images are segmented. Another drawback of employment of CK-1 

distance function is that it does not supply indices representing the corresponding image 

segments, contrary to the global visual feature descriptors of the image segments. Therefore, an 

entire set of training images has to be kept in the hard disk drives due to the possible future 

repetitions of learning process during the detection of target visual objects from the test images 

although the size of each image is larger than each type of its global feature descriptor. 

Since VLAD descriptors keep the distances between the local descriptors and their 

assigned visual words, this provides a persistence regarding the discrimination of the 

descriptors against dimension reduction performed by PCA. This additional info kept by VLAD 

descriptors provides better experimental results for the recovery of the object models than the 

ones built by either dense SIFT or PHOW descriptors. The highest mean precision scores from 

all the experimental results regarding object model recovery belongs to the ones using VLAD 
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descriptors in their processing step of feature extraction. The reason why the precision scores 

of the object models recovered by using VLAD descriptors than the ones recovered by color 

histograms could be the loss of spatial information of image segments in the color histograms. 

Although CEDD and MPEG-7 color descriptors also keep both color and texture information 

from the image segments, the precision scores received from the modeling approaches 

containing one of these visual feature descriptors are evaluated as unsatisfactory contrary to the 

ones utilizing VLAD descriptors. 

The complete set of the experimental results collected in the part of the thesis regarding 

the detection of the target visual objects show that the Naïve Bayes classifiers trained with the 

same set of object models having highest mean precision scores from the recovery part receive 

not only the highest mean accuracies but also the largest areas under ROC and PR curves. One 

should note that the experimental setups producing the best evaluations from the development 

dataset of the thesis are also employed on a different dataset containing a different target visual 

object in order to verify their stability against the changes of these conditions.      

6.1  FUTURE WORK 
 

As the main focus of the thesis is weakly-supervised object modeling, the research regarding 

the part of target visual object detection can be extended further by finding a junction point 

accumulating the advantages of the already introduced classification approaches to receive 

higher accuracies and larger areas under ROC and PR curves. Moreover, the generalizability of 

the proposed approaches is verified in this thesis. Therefore, the experimental setup of object 

model recovery evaluated as the best one in this thesis will be employed to detect target visual 

objects or abnormal behaviors from images sequences. 
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APPENDIX A 
 

A.1  FORMAL PROOF OF A PROBLEM REDUCTION 
 

The reduction from the problem of universal string compression to the problem of Kolmogorov 

complexity can be defined in polynomial time which is demonstrated in the following formal 

proof of the reduction. In this reduction, the problem of universal string compression makes use 

of the problem of Kolmogorov complexity as a subroutine. Moreover, this reduction is a special 

case of Turing reduction because the computation of the problem of universal string 

compression finishes immediately after the completion of the execution of problem of 

Kolmogorov complexity, which is called for the first time as a subroutine in the problem of 

universal string compression. Such a special case of Turing reductions is called many-one 

reductions, and if they can be defined in polynomial time, then those many-one reductions are 

called Karp reductions. Since it is specified above that, there is a reduction from the problem 

of universal string compression to the problem of Kolmogorov complexity in polynomial time, 

this particular kind of many-one reduction is a Karp reduction. In order to show the formal 

definition of this Karp reduction, the problems have to be presented in the form of decision 

problems. Hence, the following decision problems can be defined. 

 

Definition of the decision problem of Kolmogorov complexity 

INSTANCE:  L = {w ∈ {0,1}∗||w| is the length of the program which prints out string x} 

and a string y ∈ L, i.e. L contains all strings w such that each string w, which is a string of the 

binary digits and is constructed by symbols 0 and 1. Moreover, w is the string of the program 

which prints out the string x. 

QUESTION: |y| is the shortest length of all lengths |w| such that w ∈ L? 

 

Definition of the decision problem of universal string compression 

INSTANCE: H = {c ∈ {0,1}∗||c| is the length of the compression of the string z}  and a 

string q ∈ L, i.e. H contains all strings c such that each string c, which is a string of the binary 

digits and is constructed by symbols 0 and 1. Moreover, c is the compressed string of the string 

z. 

QUESTION: |q| is the shortest length of all lengths |c| such that c ∈ H? 

 

The reduction from the decision problem of universal string compression to the decision 

problem of Kolmogorov complexity is defined as follows. Let (H, q, z) be an arbitrary instance 

of the decision problem of universal string compression. An instance (L, y, x ) is built by setting 

H = L, x = z, and q = y since the randomness of a sample string is the core part of both 

problems. In fact, when the mapping reduction function R is applied to an instance m =

(H, q, z)  as R(m) , then R(m)  maps m to an instance of (L, y, x ) . In order to prove the 

correctness of this reduction, the following has to be pointed out: (H, q, z) is a positive instance 

of the decision problem of universal string compression ⇔ (L, y, x ) is a positive instance of 

the decision problem of Kolmogorov complexity. The individual proof of each direction of 

this equivalence is presented below. 

 



125 

 

”⇒” Suppose that (H, q, z) is a positive instance of the decision problem of universal string 

compression, i.e. |q| is the shortest length of all the compressed strings which can be obtained 

by compressing the string z in aid of the generalized version of the different string compression 

techniques utilized on a worldwide scale. Afterwards, |y| becomes the shortest length of all the 

programs L printing the string z due to the settings of H = L, x = z, and q = y by the problem 

reduction. It follows that (L, y, x )  is a positive instance of the decision problem of 

Kolmogorov complexity. 

 

”⇐” Suppose that (L, y, x ) is a positive instance of the decision problem of Kolmogorov 

complexity, i.e. |y| is the shortest length of all the programs which are implemented with a 

primitive programming language print out the string x. Afterwards, |q| becomes the shortest 

length of all the compressed strings H for the given string z due to the settings of H = L, x = z, 

and q = y  by the problem reduction. It follows that (H, q, z)  is a positive instance of the 

decision problem of universal string compression. 

These settings are carried out in this problem reduction because the more repeated 

structure of the string x makes the length of the program printing x shorter while the more 

repeated structure of the string z makes the length of the compressed string shorter due to the 

execution of the lossless compressor on the string z. Therefore, the best string compressor can 

be approximated to the Kolmogorov complexity for a given string which is proven above.  It is 

shown above that the setting of the reduction is applicable in polynomial time. 

 

A.2  RESULTS OF RGB COLOR HISTOGRAMS-BASED MODEL 

RECOVERY 
  

  

(a) (b) 

Figure A.1: The representation of the precision scores received from the object models built 

by utilizing either 1d RGB color histograms constructed based on the concatenation of the color 

channels into a single dimensional vector or 3d RGB color histograms. 

 

The precision scores presented in Figure A.1 belong to the object models built based on one of 

two different approaches which construct RGB color histograms from a given set of image 

segments. These two approaches are different than the one employed for the illustration of 
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Figure 5.20 and their contents are also explained in Subsection 3.2.1.4. The left subfigure of 

A.1 presents the precision scores obtained depending on an extraction process which transforms 

each channel of a given training image segment into a column vector and ultimately concatenate 

the columns vectors of all its three channels. On the other hand, the precision scores presented 

in the right subfigure of A.1 are collected when a three-dimensional RGB color histogram is 

extracted from each training image segment during their object recovery. The mean precision 

scores of all the sets presented in A.1 are less than 0.65; therefore, all these sets are 

unsatisfactory same as Figure 5.22 and Figure 5.24. 

 

A.3  RESULTS OF DENSE SIFT AND PHOW DESCRIPTORS-BASED 

MODEL RECOVERY 
 

The precision scores collected from the object models recovered based on all the introduced 

different experimental setups consisting of the employment of either PHOW descriptors or 

dense SIFT descriptors are presented in Figure A.2, Figure A.3, Figure A.4 and Figure A.5. The 

subfigures (a), (c) and (e) of Figure A.1 show the precision scores of object models concerning 

PHOW descriptors built by setting sampling step size to single pixel. In addition, switching 

only the sampling step size from single pixel to 2 pixels and aligning the rest of the experimental 

setup same as the left side of Figure A.2 generates the results shown in subfigures (b), (d) and 

(f) of Figure A.2. While the precision scores presented in Figure A.2 belonging to the object 

models are recovered based on three different vocabulary sizes such as 50, 100 and 150, the 

recovery of object models receiving the precision scores shown in Figure A.3 is accomplished 

by setting the vocabulary size to either 200 or 250. Therefore, the recovery processes utilized 

while obtaining the precision scores shown in Figure A.3 keeps the related subfigure alignments 

and their experimental setups same as Figure A.2 except vocabulary size.  

The object models built by using histogram intersection shown in all the subfigures of 

both Figure A.2 and Figure A.3 generate continuously increasing precision scores while shifting 

from bigger object model to smaller object model apart from a single shift from the object 

model keeping 50 fingerprints to the one keeping 25 fingerprints shown in (c) of Figure A.2. 

These shapes of the curves with respect to histogram intersection are evaluated as a desired 

situation; however, all of their mean precision scores are unsatisfactory. The only sets of object 

models which obtain either satisfactory or closely satisfactory mean precision scores from all 

the precision scores shown in the subfigures of both Figure A.2 and Figure A.3 are the ones 

built by using Kullback Leibler divergence. Nevertheless, all the curves regarding Kullback 

Leibler divergence presented in these subfigures are undesirable because none of these curves 

has continuous increases in the precision scores while moving nodes from left to right direction. 

Furthermore, the sets presented in (b) of Figure A.2 and in (d) of Figure A.3 by the dark blue 

curves own unsatisfactory precision scores. The sets of object models which are built by 

utilizing one of the remaining distance functions collect unsatisfactory mean precision scores. 
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Sampling step size: 1 pixel Sampling step size: 2 pixels 

  
(a) (b) 

  
(c) (d) 

  
(e) (f) 

Figure A.2: The representation of the precision scores received from the object models 

recovered by constructing histograms based on the BoVW utilizing PHOW descriptors for 

different vocabulary sizes such as 50, 100 and 150. 
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Sampling step size: 1 pixel Sampling step size: 2 pixels 

  
(a) (b) 

  
(c) (d) 

Figure A.3: The representation of the precision scores received from the object models 

recovered by constructing histograms based on the BoVW utilizing PHOW descriptors for 

different vocabulary sizes such as 200 and 250. 

 

The subfigures (a), (c) and (e) of Figure A.4 illustrate the precision scores obtained by 

comparing the ground truth data and the object models recovered using the non-normalized 

histograms which are constructed based on the vocabulary sizes of 50,100 and 150 by extracting 

dense SIFT descriptors sampled at each pixel location. The results of subfigures (b), (d) and (f) 

of Figure A.4 are gathered with respect to the object models built with the same experimental 

setup of the left subfigures apart from the only change in the sampling step size by replacing 

the single pixel with 2 pixels. 
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Sampling step size: 1 pixel Sampling step size: 2 pixels 

 
(a) 

 

 
(b) 

 
(c) 

 

(d) 

 
(e) (f) 

Figure A.4: The representation of the precision scores received from the object models 

recovered by constructing non-normalized histograms based on the BoVW utilizing dense SIFT 

descriptors for different vocabulary sizes such as 50, 100 and 150. 
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Non-normalized Normalized 

  
(a) (b) 

  
(c) (d) 

Figure A.5: The representation of the precision scores received from the object models 

recovered by constructing either normalized or non-normalized histograms based on the BoVW 

utilizing dense SIFT descriptors for different vocabulary sizes such as 200 and 250. 

 

The precision scores presented in the left subfigures of Figure A.5 are obtained from the 

object models built by launching experimental runs depending on exactly the same setup of the 

right subfigures of Figure A.4 including the alignment of the sampling step size as 2 pixels. The 

only difference between the object models shown in the left and right subfigures of Figure A.5 

is that the extracted histograms are normalized in the right subfigures while they are not 

normalized in the left subfigures. As seen in Figure A.2, Figure A.3, Figure A.4 and Figure A.5, 

changing the sampling step size does not lead any significant improvement in most of the results 

regarding dense SIFT and PHOW descriptors. According to the left and right subfigures of 

Figure A.5, performing l1 normalization on the dense SIFT descriptors increases the precision 

scores of all the object models built by using either matching distance or Kolmogorov-Smirnov 

test. On the other hand, the object models built by extracting dense SIFT descriptors and 

employing one of the three different distance functions such as diffusion distance, chi square 

statistics and histogram intersection distance gather bigger precision scores if l1 normalization 

is not performed on the extracted descriptors during their recoveries. Two sets shown in both 

subfigures placing in the bottom of Figure A.2 by defining with dark blue curves have the 
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highest mean precision scores from all the sets built by using either dense SIFT and PHOW 

descriptors. These two sifting lines traverse through the object models recovered by employing 

Kullback Leiber divergence and the mean precision scores of these two sets are equivalent. 

Since both of these scores are about 0.84, these two sets are evaluated as satisfactory. The set 

shown in (b) of Figure A.5 and built by using matching distance receive a closely satisfactory 

mean precision score. In addition, the sets with respect to Kullback Leiber divergence presented 

in Figure A.5 have either closely satisfactory or satisfactory mean precision scores. Likewise, 

the mean precision scores collected from the sets recovered by using the same distance function 

and demonstrated in some subsets of Figure A.4 are evaluated as either closely satisfactory or 

satisfactory. As seen in both Figure A.4 and Figure A.5, the rest of the sets obtain unsatisfactory 

mean precision scores. 

 

A.4  SUPPLEMENTARY RESULTS OF THRESHOLDS-BASED OBJECT 

DETECTION 
 

A shown in Figure A.6 and Figure A.7, a majority of both ROC and PR curve fragments places 

below the red lines generated by the random classifiers as an undesirable situation. Moreover, 

there is no classifier receiving any accuracy which is equal or greater than 0.5; therefore, all of 

these classifiers are evaluated as unsatisfactory. The accuracies of the classifiers represented in 

Figure A.6 and Figure A.7 are very similar to each other and even some of them are equal to 

each other; therefore, the difference between the maximum and the minimum accuracies is only 

0,0137. 
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 (e) (f) 

Figure A.6: The representation of both ROC and PR curves received from the classifiers 

constructed based on the thresholds of the fingerprints belonging to the object models from the 

set (only the ones keeping the 25, 50 and 100 best fingerprints) recovered by using diffusion 

distance and the VLAD descriptors constructed based on the SIFT descriptors densely extracted 

at each 5 pixels from the mean shift segments. 
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 (e)  (f) 

Figure A.7: The representation of both ROC and PR curves received from the classifiers 

constructed based on the thresholds of the fingerprints belonging to the object models from the 

set (only the ones keeping the 150, 200 and 250 best fingerprints) recovered by using diffusion 

distance and the VLAD descriptors constructed based on the SIFT descriptors densely extracted 

at each 5 pixels from the mean shift segments. 
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