
Optimisations and Improvements
of Topographic Robotic Grasping

Using Machine Learning Approaches

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Dipl.-Ing

im Rahmen des Studiums

Computational Intelligence

eingereicht von

Soroosh Mortezapoor
Matrikelnummer 1225049

an
der Fakultät für Informatik der Technischen Universität Wien
und der Fakultät für Elektrotechnik und Informationstechnik

Betreuung: Vincze, Markus; Ao.Univ.Prof. Dipl.-Ing. Dr.techn.
Mitwirkung: Fischinger, David; Projektass. Dipl.-Ing. Dr.techn.

Wien, TT.MM.JJJJ
(Unterschrift Verfasser) (Unterschrift Betreuung)

Technische Universität Wien
A-1040 Wien � Karlsplatz 13 � Tel. +43-1-58801-0 � www.tuwien.ac.at

Die approbierte Originalversion dieser Diplom-/
Masterarbeit ist in der Hauptbibliothek der Tech-
nischen Universität Wien aufgestellt und zugänglich.

http://www.ub.tuwien.ac.at

The approved original version of this diploma or
master thesis is available at the main library of the
Vienna University of Technology.

http://www.ub.tuwien.ac.at/eng

Optimisations and Improvements
of Topographic Robotic Grasping

Using Machine Learning Approaches

MASTER’S THESIS

submitted in partial fulfillment of the requirements for the degree of

Dipl.-Ing

in

Computational Intelligence

by

Soroosh Mortezapoor
Registration Number 1225049

to the Faculty of Informatics,
and the Faculty of Electrical Engineering and IT
at the Vienna University of Technology

Advisor: Vincze, Markus; Ao.Univ.Prof. Dipl.-Ing. Dr.techn.
Assistance: Fischinger, David; Projektass. Dipl.-Ing. Dr.techn.

Vienna, TT.MM.JJJJ
(Signature of Author) (Signature of Advisor)

Technische Universität Wien
A-1040 Wien � Karlsplatz 13 � Tel. +43-1-58801-0 � www.tuwien.ac.at

Acknowledgements

I would like to express my gratitude to my supervisor, Prof. Markus Vincze, for his outstandingly
useful comments, remarks, and engagement through the learning process of this project. Further-
more, I would like to express my sincere appreciation to my co-adviser, Dr. David Fischinger,
whose engagement through the entire process and guidelines, made the project possible.

Special thanks to Prof. Horst Eidenberger, for teaching me how human vision works and
helping me to find a better understanding of media processing.

Additionally, I would like to thank my loved ones, who have supported me from the first mo-
ment thought the last, both by keeping me harmonious and helping me putting pieces together.
I will be grateful forever for your love.

i

Abstract

Even though grasping has been an interesting and crucial topic in robotics for a long time, robots
still have great difficulty in picking up arbitrary objects when they face open, unknown environ-
ments or under uncontrolled conditions. Solving these issues would make using robots fit for
many repetitive scenarios such as checking and restock supermarket aisles, tidying up house-
holds, dispatching mail orders at distribution centres, collecting ripe fruits, or doing ecological
pest control by selectively removing bugs. To become reality, robots have to learn to grasp as
reliable as humans. Many people have tried to discover the tricks people unconsciously employ
when they cannot rely on their perception, and transfer these insights to robots.

As a result, a new research and development conducted with a new vision to this prob-
lem introducing a novel approach for training a robot how to grasp, using topographic features
of the objects, especially developed for grasping without requiring a prior knowledge of the
objects, called Height Accumulated Features (HAF) and Symmetry Height Accumulated Fea-
tures (SHAF). This method abstracts topographic information from perceived surfaces of objects
hence enables to learn how to grasp them, even if they are unknown or on a heap of other objects.

An important and inseparable part of the core of such an approach is the decision part, where
the perceived scenes are interpreted into abstract models and need to be classified, to help the
rest of the core to make a conclusion and find the best suitable points to grasp an object. This
thesis proposes improvements and optimisations on this part of the core, in three different stages,
extending machine learning training instances, introducing new feature set definitions, to be used
as either substitutions or complements to HAF and SHAF, and selecting the best classification
algorithm, to be employed for the grasping using topographic features.

Three new feature set definitions, Circular Feature Definition (CF), Differential Intra-Circular
Feature Definition (DICF) and Bell-Circular Feature Definition (BCF) try to summarize the
scene in an abstract form with enormously less data dimensions, compared the combination of
HAF-SHAF, not only to maintain and even improve the accuracy of the outcome, but also to
increase efficiency by reducing the computation complexity.

Furthermore, the extended data set is used in order to put the new features, as well as HAF
and SHAF into test, with different classification algorithms including Support Vector Machines,
Decision Trees, k−Nearest Neighbors and Random Forest, in order to find the best combination
of (feature set definition, classification algorithm) for the problem of grasping using topographic
features. Finally, the results of the experiments are presented and compared to provide more
insight into the performance of each setting.

iii

Kurzfassung

Obwohl Greifen seit langer Zeit ein interessantes und elementares Thema in der Robotik ist,
haben Roboter immer noch große Schwierigkeiten beliebige Objekte aufzunehmen, wenn die-
se sich in unbekannten Umgebungen befinden, oder unkontrollierte, offene Bedingungen herr-
schen. Durch die Lösung dieser Probleme, würden sich Roboter dazu eignen repetitve Aufgaben
zu erfüllen, wie zum Beispiel die Kontrolle und das Wiederauffüllen von Supermarktregalen, das
Aufräumen von Haushalten, die Ablieferung von Postsendungen bei Verteilerzentren, das Sam-
meln reifer Früchte oder in ökologischen Szenarien durch selektives entfernen von Schädlingen.
Um dies Wirklichkeit werden zu lassen, ist es essenziell, dass Roboter lernen Objekte mit der
selben Zuverlässigkeit zu greifen wie der Mensch. Viele haben versucht die unbewussten Tricks,
welche Menschen anwenden wenn sie sich nicht auf ihre Wahrnehmung verlassen können, zu
entschlüsseln und diese Methoden auch auf Roboter anzuwenden.

Als Ergebnis, wurde ein neuer Ansatz in Forschung und Entwicklung eingeführt um den
neuen Visionen gerecht zu werden. Dieser nutzt topographische Merkmale der zu greifenden
Objekte, welche keine vorherigen Kenntnisse der Begebenheiten der Gegenstände erforden.
Die dazu eingesetzten Methoden heißen Height Accumulated Features (HAF) und Symmetry
Height Accumulated Features (SHAF). Diese Methode abstrahiert topographische Informatio-
nen aus wahrgenommen Oberflächen von Gegenständen und ermöglicht dadurch das Greifen
dieser. Selbst wenn die Gegenstände unbekannt sind oder mehrere verschiedene auf einander
liegen, funktioniert diese Methode.

Ein extrem wichtiger Teil eines solchen Ansatzes ist die Entscheidungsfindung in einem
Teil des Kerns. In diesem werden die wahrgenommenen Szenen in abstrakte Modelle interpre-
tiert und klassifiziert um den Rest des Kerns beim finden von den besten Angriffspunkten zu
unterstützen.

Diese Arbeit schlägt Verbesserungen und Optimierungen in diesem Teil des Kerns, in drei
verschiedenen Stufen vor. Diese enthalten erweitertes maschinelles lernen, mit neu eingeführten
Feature-Set Definitionen, entweder zur Substitution oder Unterstützung von HAF und SHAF
um den besten Klassifikationsalgorithmus auszuwählen, welcher Anwendung beim Greifen mit
topographischen Merkmalen findet.

Drei neue Feature-Set Definitionen, Circular Feature Definition (CF), Differential Intra-
Circular Feature Definition (DICF) und Bell-Circular Feature Definition (BCF), versuchen die
Szene mit einer sehr geringen Datendimensionen in abstrakter Form zusammenzufassen. Vergli-
chen mit der Kombination von HAF-SHAF wird hier nicht nur die Genauigkeit der Ergebnisse
verbessert, sondern auch die Effizienz verbunden mit einer Verringerung der Rechenkomplexität.

v

Darüber hinaus wird der erweiterte Datensatz dazu verwendet, um die neuen Funktionen
sowie HAF und SHAF zu testen. Dafür werden verschiedene Klassifikationen und Algorith-
men einschließlich Support Vector Machines, Decision Trees, kNearest Neighbors und Random
Forest verwendet um das Problem, greifen mit topographischen Merkmale, zu lösen. Schlus-
sendlich wurden die Ergebnisse der Experimente dargestellt und verglichen, um einen besseren
Einblick in die Performance der einzelnen Einstellungen zu bekommen.

Contents

1 Introduction 1
1.1 Problem Statement . 2
1.2 Contribution of Project . 5

Training Instances . 5
Features . 6
Classifier . 6
Classifier Parameters . 6

1.3 Outline . 6

2 Related Work 9
2.1 Topographic Features . 9
2.2 Previous Obtained Results . 11

3 Theoretical Contribution 13
3.1 New Features . 13

Circular Feature Definition - CF . 13
Differential Intra-Circular Feature Definition - DICF 14
Bell-Circular Feature Definition - BCF . 15

3.2 Learning Process . 17
Chunked Data sets . 17
Pre-processing . 17
Classifier Selection . 18
Parameters . 19

4 Experiments and Results 21
4.1 Set-up . 21

Test Application . 21
Extending Sample Database . 28
Hardware Specifications . 32

4.2 Experiments Overview . 33
4.3 Parameters . 33
4.4 SVM − Linear Kernel . 34

Including and Excluding Reproduced Instances 35

vii

Newly Defined Features . 38
4.5 More Classifiers . 39

SVM − Radial Basis Function Kernel . 39
SVM − Stochastic Gradient Descent Training 40
3−Nearest Neighbors . 42
Decision Tree . 43
Random Forest . 44
Summary of Results . 45

5 Conclusion and Future Work 49
5.1 Conclusion . 49
5.2 Future Work . 50

Bibliography 51

A Appendices 55

viii

List of Tables

2.1 Comparison between HAF and Height Grids . 12

4.1 Different states of the State Machine . 24
4.2 Hardware specifications . 33
4.3 Classifier parameters - Other classifiers . 34
4.4 SVM - Results with and without reproduced data 36
4.5 SVM - Results . 36
4.6 SVM - Results . 38
4.7 SVM−RBF - Results . 40
4.8 SVM−SGD - Results . 41
4.9 3−NN - Results . 42
4.10 Decision Tree - Results . 43
4.11 Random Forest - Results . 44

ix

List of Figures

1.1 Abstract stages of robotic interaction . 3
1.2 TFRGA stages of interaction . 4
1.3 14× 14 Hightgrid . 4

2.1 Demonstration of HAF . 10
2.2 Demonstration of SHAF . 11

3.1 Circular regions in CF and DICF . 14
3.2 CF applied to a Height Grid . 15
3.3 DICF applied to a Height Grid . 15
3.4 BCF ring of cell importance . 16
3.5 BCF applied to a Height Grid . 17
3.6 Flipping captures scenes to generate new scenes 18

4.1 Architecture of the Test App . 23
4.2 Test App UI - Main panel . 25
4.3 Test App UI - Classifier parameters . 25
4.4 Test App UI - Loading pickled classifier . 26
4.5 Test App UI - Result board . 27
4.6 Test rig . 29
4.7 Depth view of the test rig . 30
4.8 Coordination Transformation . 31
4.9 Reproduced point clouds . 32
4.10 ROC Curves - SVM - HAF and HAF−SHAF . 37
4.11 ROC Curves - Original vs. Reproduced . 37
4.12 Classification Method Comparison - Accuracy . 46
4.13 Classification Method Comparison - F1 . 47
4.14 ROC Curves - Comparison of the bests . 48

A.1 ROC Curves - Linear SVM . 57
A.2 ROC Curves - SVM−RBF . 58
A.3 ROC Curves - SVM−SGD . 59
A.4 ROC Curves - 3−NN . 60
A.5 ROC Curves - Decision Tree . 61
A.6 ROC Curves - Random Forest . 62

x

CHAPTER 1
Introduction

There are plenty of objects with which a normal human being interacts every day. These objects
are designed with a particular way of being grasped and manipulated that is determined and
characterized by their shape and the contact constraints. Consequently, if robots are supposed
to replace humans in a wide variety of tasks, ranging from a dangerous situation in search and
rescue to repetitive everyday activities, the capability of grasping different types of objects is a
must to be taken into account. Furthermore, there are so many challenges in the way of making a
robotic hand capable of grasping differently shaped objects in an uncertain, semi-structured and
in many cases unstructured real environment. For example, a noteworthy challenge that could
be mentioned is to find a proper pose for starting the procedure of grasping.

There have been so many research projects conducted to tackle such problems and they
proposed significantly different approaches, each presuming a lot of different criteria. From
these approaches, some tried to rely on 3D object recognition algorithms [26] [2] while some
others tried to use shape primitives such as boxes, spheres, etc. to approximate the new ob-
ject [21] [17] [29] [10].

Among all approaches which tried to address the problem of grasping, a state-of-the-art
approach for grasping using a robotic hand proposes to use topographic features [8] [9] [7].
In topographic feature robotic grasping approach, called TFRGA hereafter in this essay, two
feature types based on the topography of objects or scenes are introduced and motivated in order
to extract topographic features of the scene for further process.

Moreover, almost every scientific approach deals with many parameters and variables to
which making changes will result in a different outcome in terms of quality [34]. Thus picking
the best setting for the parameters of these approaches is significantly important. In other words,
an approach can have different sets of results depending on their parameter settings. In this
project, we try to design and implement a tool which is capable of evaluating the outcome of
TFRGA in order to reach a better setting for the parameters that are used in this approach. In
addition, some new extensions are proposed, introduced and evaluated for TFRGA.

In this chapter, first it is tried to describe the optimisation problem of the TFRGA. Next,
the contribution of this project is briefly introduced, followed by the chapter on related work.

1

Subsequently, the theoretical contribution of this thesis is discussed in more depth. Finally, the
practical result of this project are presented along with a discussion on the obtained results and
a conclusion is made. When necessary, figures and tables are utilized to demonstrate some parts
of the contents of the chapters.

1.1 Problem Statement

TFRGA tries to address the problem of grasping objects. This problem could informally be
defined as a problem of finding a proper pose, for a robotic hand, in a multi-dimensional grasp
space, incorporating position, orientation and respectively, gripper opening width, that ensures a
stable grasp. Additionally, the solution should include the trajectory by which the robotic hand
can reach the desired pose. Besides, a stable grasp is defined as a type of grasp by which a robotic
hand is able to pick an object with a reasonably low probability of dropping it due to a wrong
grasping pose. Definition 1 shows a formal definition of this problem. As stated in Definition 1,
the solution to this optimisation problem looks like a 7−dimensional tuple (x, y, z, R, P, Y, w)
which determines the position (x, y, z), the orientation (R,P, Y), and the opening width of the
gripper (w).

DEFINITION 1: PROBLEM STATEMENT

INSTANCE:
A point cloud C of a scene S, A stack of objects T with top(T) as the top element of
the stack, a robotic manipulator M .

PROBLEM:
Given the point cloud C of the scene S, find a tuple (x, y, z, R, P, Y, w) that maximizes
P , the probability of grasping the object top(T) as a stable grasp for the manipulator
M .

In most of the autonomous robotic interactions with semi-structured or unstructured proba-
bilistic uncertain environments, an abstract Perception-Decision-Action cycle [14] can be con-
sidered that ensures the proper actions by the robots in different circumstances and helps the
robots to stay tuned with the latest changes in the environment. We regard the grasping proce-
dure in TFRGA as a similar type of activity. Figure 1.1 depicted this abstract system of interact-
ing with surrounding environment. As represented in this figure, in the first stage, Perception,
the robot perceives the environment through its diverse sensors. Then as soon as the information
is gathered, it is transmitted to a processing unit that we call the Planner, in the second stage,
Decision. When we talk about Decision unit, in fact, we talk about a unit in which all activities,
since the environment is perceived by the corresponding sensors till a complete plan is ready
for a physical execution are planned. In the Planner, a plan containing all information about the
reaction to the perception is generated and the answer of the system in the form of some consec-

2

utive commands is transmitted to the actuators for the third stage, Action. TFGRA follows the
same principle. An important computation step in the Decision stage of TFGRA, can be seen as
a function, whose input is a perceived scene and its output is a three-value tuple, (x, y, z), ref-
erence to Definition 1, that repeatedly calls a decision function for binary answers with altered
selected frames from a big scene, indicating whether two grasp-suitable spots, as shown on the
bottom left corner of Figure 1.1 as two red spots, can be found, where it’s improvement and
optimization is the main contribution of this project.

Figure 1.1: Abstract stages of interaction of a robot with its surrounding environment. In the Perception
stage, the robot perceives the environment. Then the information is transmitted to the Planner, for a
Decision phase, where it is decided what the response to the environment should look like, and the reaction
commands are transmitted to the actuators for execution as the final stage, Action. These three stages
are done in a loop which means that after each action, the robot goes into the Perception stage to have a
new understanding of the surrounding environment. The main contribution of this project will impact the
Decision stage. The red spots are the gripper’s fingers locations for grasping.

The Planner is responsible for processing the input data and generating some output com-
mands based on this input. Figure 1.2 illustrates the stages which should be done in order to
turn some perceived data, input, to the corresponding output commands. As it is shown in this
figure, first the input data in the form of a point cloud is passed to the Planner. From this point
cloud, the Planner creates a 14 × 14 grid called a Height Grid which is illustrated in figure 1.3
holding the highest measured point in a 1 cm2 cell of a 196 cm2 scene. Next, from the Height
Grid, some feature vectors are extracted that form a feature space, helping to summarise the

3

scene. Immediately after extracting each feature vector, a classifier, trained by a binomial set of
instances of feature vectors for grasping scenes is utilized to categorise the perceived scene. As
a result, depending on the outcome of classification, the Planner tries to find a proper trajectory
for grasping.

Figure 1.2: This figure shows a complete interaction cycle of TFRGA which is grabbed from [9]. The
stages 2 through 7 are done in the Planner. This project tries to optimize the stages 4 to 6.

Figure 1.3: 14 × 14 Height Grid. Each cell corresponds to 1 cm2 and holds the height of the highest
measured point in that cell in the perceived scene.

TFRGA, defines two feature types based on the topography of objects or scenes, Height
Accumulated Features, HAF for short, which are developed specifically for abstracting relevant
information of a grasp, and Symmetry Height Accumulated Features, SHAF for short, as an
additional feature type, to deal with the cases that a classification model, which is trained with
HAF instances seems to be unable to classify correctly. The basic concept of HAF was first

4

published in Fischinger et al. [8] whilst the concept of SHAF proposed later as a complement in
Fischinger et al. [9]. These two concepts are explained more in details in following chapters of
this essay.

In this project, it is tried to optimise the process by which the Planner of TFRGA decides
what position shall be used for grasping. Reference to Definition 1, we are mainly interested in
first three elements of an answer to the optimization problem which mean (x, y, z). Furthermore,
we consider no correlation between these tree elements and the remaining elements in an answer
tuple. In other words, the elements correspond to position, orientation, and the opening width
are considered independent of each other. Hence they can be optimized independently and the
problem of ensuring consistency is left out of this project. In following chapters we discuss
how the evaluation on the gained results of the Planner is performed based on HAF and SHAF.
Additionally, we propose some new feature definitions with particular properties to be used
in combination or as a substitute for HAF and/or SHAF. Besides, we try to utilize different
classification methods and compare them to find the best matching classifier for the discussed
domain.

1.2 Contribution of Project

There is a wide variety of aspects for optimising a process. Besides, here in our case, the optimi-
sation process could be applied in different parts of the Decision Stage, which was depicted in
Figure 1.1, in Planner’s decision procedure. Defining decision quality in the current context as
the accuracy of binomial decision making of the Planner in the form of (YES|NO) answer to the
question of “Is the point (x, y, z) a good position for grasping” in an observed scene S, the goal
of this project can be formulated as identifying a set of candidate positions for grasping to max-
imize the decision quality. To be more specific, a larger set of points in a 3−dimensional space
is selected by the Planner to find a proper candidate subset, by giving to the trained classifier to
be examined once at a time.

The very first problem to be addressed is how to measure the degree of success achieved by
applying any type of change in the parameters and processing stages of our optimisation prob-
lem. In order to measure the quality of decisions by selecting different settings of parameters
for the Planner, a new software is developed in the frame of this project in order to facilitate the
process of evaluation.

Having such an evaluation software developed and ready, the process of making decisions
can be inspected, evaluated and consequently optimized in four different levels. Initial instances
used for training the classifier, extracted features, classification algorithm, and the parameters to
customize the selected classifier algorithm. Following sections show the operations which are
performed in each of these level.

Training Instances

The first step of the optimisation is to gather more instances of both successful and failed cases
of grasping. The more the diversity of instances of scenes as examples of success and failure, the
better and more precise the result of a classifier. This phase corresponds to the stages 1 and 2 of

5

Figure 1.2. In order to capture more grasping scenes and turning them into classification training
instances, some prerequisites should be met which are explained in more details in Chapter 4.

Features

As mentioned before, TFRGA introduces two different types of features in order to cover the
different scenarios of detecting the suitable poses of grasping. In this project, more features are
defined, having different properties, to deal with the aspects at which HAF and SHAF can be
optimized. These features try to help the classifier to deal with various new scene instances to
increase the quality of classification. These features are introduced and explained later in this
report and the results obtained by using these features are presented and compared to other cases.

Classifier

One of the question that always arises in classification tasks is to find the most appropriate clas-
sification algorithm for the problem [33] [1] [3]. There are so many approaches to evaluate the
outcome of different classifiers on the same problem [40] [39] [18]. Nonetheless, the first step
toward using any of these approaches is to have an application capable of applying each classifi-
cation algorithm, on demand, on any desired dataset. This is the reason why it is decided to take
the flexibility of plugging different classification algorithms into consideration in designing and
implementing the evaluation software.

In evaluation application, there are different options to use many famous and widely used
classifiers including k-NN, Decision Trees, Random Forest, Stochastic Gradient Descent (SGD)
and Support Vector Machines (SVM). This way it would be possible to apply different algo-
rithms on the same dataset and observe the outcome and consequently pick the best algorithm
matching the problem.

Classifier Parameters

Another important aspect in optimization of a classification algorithm is to find a set of param-
eters that help the algorithm to output more accurate results. These parameters are capable of
varying the behavior of a classification algorithm significantly. In order to be able to manipulate
the behavior of the algorithms mentioned before, the evaluation application is implemented in
a way that allows altering parameters of the selected working algorithm easily from the user
interface. Changing the working underlying algorithm in each run cause changes in the number
of parameters and their characteristics depending on the chosen algorithm.

1.3 Outline

Following the current chapter, in Chapter 2, some related work around the current problem,
mainly the idea behind the approach for grasping using Topographic Features is discussed. Af-
ter that, the theoretical contribution of this thesis project is described in Chapter 3, comprising
introducing new features in order to help classifying the observed scenes more precisely, pre-
processing steps on the training dataset, and a detailed plan for experiments on selected classifi-

6

cation algorithms with different configuration settings. Subsequently, in Chapter 4 practical parts
of the project are explained, the architecture and properties of the test application are described,
steps which are taken in order to achieve the ultimate goal of the project are demonstrated and
the obtained results are presented. Furthermore, Chapter 4 is finished by a summary over all
gained experimental results. Finally a conclusion, in Chapter 5, is made, out of what is done in
this project, to show the impact of the project on gaining better results in TFGRA, followed by
sketching the future plan.

7

CHAPTER 2
Related Work

Turning light into concepts and connecting them to visually understanding features and objects,
that usually involves distilling foreground from background, recognizing objects, which can be
presented in a wide range of positions and orientations, and interpreting spatial cues accurately,
is a complex and considerably complicated task that a human vision system is capable of. As
mentioned in Chapter 1, so many people tried to solve the vision problem for robots with various
approaches.

2.1 Topographic Features

It is already mentioned that, TFRGA introduces two different features, HAF and SHAF. HAF
tries to detect scenes that share similar characteristics by means of comparing average heights
of the different regions in a 14cm × 14cm discretized point cloud data as a 14 × 14 grid. In
other words, a HAF can be seen as a linear function over two, three or four variables as one
HAF is defined as a two, three or four-region 14 × 14 mask over the Height Grid, having an
independent weight for each region. Considering each cell cij of the Height Grid as the highest
measured point of the point cloud data in that cell, Rk as the k−th defined region, ↓ iRk

and
↓ jRk

as the starting indices and ↑ iRk
and ↑ jRk

as the ending indices of i and j in the k−th
region, and finallywk as the weight of the corresponding region, the HAF value of a Height Grid,
HAF (Cs, R) for the point cloud of the scene, Cs, and the regions definition R is calculated as
shown in (2.1).

HAF (Cs, R) =

#R∑
k=1

↑iRk∑
i=↓iRk

↑jRk∑
j=↓jRk

cij .wk (2.1)

9

Figure 2.1 depicts a HAF with three different regions as a mask over a Height Grid. However
in Fischinger et al. [7] it is mentioned that HAF may misclassify some certain type of scenes.
Typically these scenes are those in which one tall object located at center but from one side it is
expanded too long to be fit in a gripper for grasping. Thus TFRGA introduces another type of
feature called Symmetry Height Accumulated Features, SHAF. In SHAF, very similar to HAF,
there are some regions but they are always disjunctive and sized equally. A simple SHAF as
a mask on a Height Grid is shown in Figure 2.2. This SHAF comprises three different regions
where each region has its own weighting factor. As it was mentioned before, unlike HAF, SHAF
is diminishing which means that the blue and the red areas are subtracted from the green area.

Furthermore, there is another important difference between HAF and SHAF which is the
difference in the calculations. While HAF is a cumulative approach, SHAF is a diminishing
one. Consequently SHAF is calculated as can be seen in (2.2), (2.3) and (2.4) while similar
to (2.1), Cs is the scene, in the form of a point cloud, R is the definition of the regions, ↑ iRxx ,
↓ iRxx , ↑ jRxx and ↓ jRxx are the starting and ending indices of i and j in the xx region,
where xx can have a value from {rr, gg, bb}, that stand for the red region, green region and
blue region respectively, cij shows the highest value of the cell Rij and wxx is the weight of
the corresponding region. Furthermore, GDiff(Cs, R) represents the difference between the
region value RVgg and the maximum of the RV s of the two other regions, rr and bb .

SHAF (Cs, R) =

{
GDiff(Cs, R) GDiff(Cs, R) > 0

−1 otherwise

GDiff(Cs, R) = RVgg −max(RVrr, RVbb)

RVxx,x∈{rr,gg,bb} =

↑iRxx∑
i=↓iRxx

↑jRxx∑
j=↓jRxx

cij .wxx

(2.2)

(2.3)

(2.4)

Figure 2.1: Demonstration of a HAF as a mask on a Height Grid. This HAF comprises three different
regions. Each region has its own weighting factor.

10

Figure 2.2: Demonstration of a SHAF as a mask on a Height Grid, comprising three different regions.
Each region has its own weighting factor.

It should also be stated that, introducing SHAF in Fischinger et al. [9] as a complementary
feature type to the HAF which was introduced and used earlier in Fischinger et al. [8] can be seen
as a step toward optimizing TFRGA. In addition, not only it was tried to optimize the outcome
of the system by defining the new feature type, but also Fischinger et al. [7] directly states that
overall around 71, 000 different HAF features were created, most of which automatically using
a brute force algorithm, and then subsets of size 300 to 325 were selected, measured by their
f-score in order to increase the performance, whilst maintaining the quality which means having
minimum impact on the result in the performance-quality trade off.

2.2 Previous Obtained Results

In Fischinger et al. [7] it is claimed that HAF brings significant additional information value.
Conducting a test a comparison between a classifier trained with HAF data versus a classifier
trained with simple Height Grids in the mentioned resource supports the result this claim. Ta-
ble 2.1 shows the result of this test on a 3928−record dataset. It can be seen that according to
this result, HAF increased the success rate by over 21%. In a world in which people are strug-
gling to increase the Accuracy of models by a tenth of a percent, a 21% increase in Accuracy
sounds like an outstanding improvement.

Nonetheless, the same statement could not be made about SHAF, according to the same
article. Another test was performed measuring the improvement by adding SHAF features on
the same HAF feature set. The outcome on the same dataset as the previous test seemed dras-
tically changed again but this time by decreasing the Accuracy to 74.31%. Then the author of
Fischinger et al. [7] in a try to explain the shocking results, gathered more instances for classifier
data training and included more specific cases for which SHAF was proposed, into the training
set. The final result after including such instances reached the point of 85.50%, still less than
the result obtained from HAF only. However, it should be mentioned that according to further
investigations by the authors of TFRGA, it turned out that the Accuracy of SHAF is not bal-

11

Data Type Succeeded cases Success Rate (%)

Height Grid 2516/3928 64.05

HAF 3368/3928 85.74

Table 2.1: Comparison between HAF and Height Grid on the same dataset using Support Vector Machine
classification algorithm. This result is extracted from Fischinger et al. [7] directly. HAF increased the
success rate notably.

anced on different classes. Having two classes of Positive and Negative, SHAF hit an Accuracy
of 90% on Negative class. Therefore it can be concluded that including SHAF, increased recall
of Negative class and decreased precision of Positive class, again a trade-off between precision
and recall.

According to Fischinger et al. [7], “Clearly, missing training data cannot be considered as a
sufficient explanation why the HAF-classifier achieved a higher Accuracy rate than the classifier
trained with HAF and SHAF”1. Thus, in following chapters where the outcome and the experi-
mental results of this project are presented, probable causes of this incident when one deals with
Support Vector Machine classifiers is also discussed.

1Quote from Fischinger et al. [7] Chapter 5 Section 3

12

CHAPTER 3
Theoretical Contribution

In the previous section, is was presented that HAF and SHAF bring additional information value.
In this chapter, three new feature set definitions, Circular Feature Definition (in short, CF), Dif-
ferential Intra-Circular Feature Definition (in short, DICF) and Bell-Circular Feature Definition
(in short, BCF) are introduced and the motivations behind using them are explained. Further-
more, a plan for the experimental phase is presented that includes pre-processing steps on the
dataset and an overview of the selection process of the classification algorithms.

3.1 New Features

In order to expand the experiment to other possible types of features, here in this project, we
introduce three new features definitions. These three features definitions, Circular Feature (CF),
Differential Intra-Circular Feature (DICF) and Bell-Circular Feature (BCF) follow a very simple
principle. They try to find a horizontal circular cylinder which is suitable to grasp. In compar-
ison to HAF and SHAF, these three features are considerably lighter in terms of computational
complexity, to be extracted and processed, due to the characteristics of Height Grids. However,
more detailed experiments are planned to evaluate the adequacy of these new features. Later in
this report, experimental results of the new features, which are extracted using these new feature
definitions, are presented, along with a comparison between the results which are obtained with,
and without adding these features to the system, that mainly work with HAF and SHAF.

Circular Feature Definition - CF

Circular Feature, CF for short, is a type of feature that splits a height grid to three disjunctive
regions using a simple circle, Inside (I), Outside(O) and the Border (B) as shown in Figure 3.1.
Then based on a linear mathematical combination of these regions, it is tried to estimate whether
a new scene has a suitable grasping point or not. CF circles are always centered at the center
of the Height Grid, which is a the point where c7,7, c7,8, c8,7 and c8,8 meet while ci,j indicates
the cell at the position (i, j) of a 14 × 14 Height Grid. Consequently, only there are 6 circles

13

which could be defined in a Height Grid of size 14 × 14, and this is the reason why circle
based features, which are defined in this project, can be considered lightweight in terms of
computations. Finally, the Figure 3.2 shows the application of a CF on a Height Grid, whilst
(3.1) depicts how the circular feature value of the Height Grid is calculated.

Vcf (hg, cf) = Avg(hg, cf,B)−Avg(hg, cf, I) (3.1)

Figure 3.1: Three regions of a Height Grid, separated by a circle. These three regions are called Inside
(I), Outside (O) and the Border (B). Depending on the radius of the circle, the width of I and O regions
can vary but the border is always 1 cell long.

In (3.1), Vcf (hg, cf) is the feature value of the Height Grid hg, having the feature definition
cf . This value is calculated by subtracting the average height in the region I from the average
height in the region B. In other words, the supporting idea is that if in a cylinder, the border area
is averagely lower than the inside area, then this cylinder can be a good candidate for grasping.
However, the feature values from all 6 cylinders should be seen together, for a more accurate
prediction.

Differential Intra-Circular Feature Definition - DICF

Although Differential Intra-Circular Feature, DICF, follows the same principle as CF in using
circles, there is a difference between the way in which the DICF is computed and the compu-
tation of CF. While CF concentrates on the average height of I and B regions, DICF tries to
find the difference between the highest point and the lowest point in I region. As a result, the
computation of DICF is as simple as computation of CF, and is shown in (3.2).

Vdicf (hg, dicf) =Max(hg, dicf, I)−Min(hg, dicf, I) (3.2)

14

Figure 3.2: A CF definition applied to a Height Grid. In this illustration, the green cells are border (B)
cells and all other cells surrounded by these green cells are inside (I) cells. Subsequently, all the rest are
outside (O) cells.

In (3.2), Vdicf (hg, dicf) is the DCIF feature value of the Height Grid hg using the feature
definition dicf . It was mentioned before that the value is the difference between the highest
point in I, Max(hg, dicf, I), and the lowest point in I, Min(hg, dicf, I). The strength of CF
and DICF is in their simplicity in terms of both definition and necessary computation steps.
Figure 3.3 shows how a DICF is applied to a Height Grid.

Figure 3.3: A DICF definition applied to a Height Grid. In this figure, only violet region, I, is involved
in the computations.

Bell-Circular Feature Definition - BCF

Assuming that, rather than a simple circle, a Height Grid is masked by a weighted circle, it
will be possible to prioritize some cells and involve them in the result by their importance. It
is important to mention that, for a gripper, it is essential to find two suitable points to place its
fingers. That’s why BCF concentrates on two sides of the circle which are the locations of the
fingers. BCF forms an imaginary crown as illustrated in Figure 3.4 and tries to find the average

15

height of the cells which are underneath the circle of the crown according to their importance
defined by the relative position of the cell to the center of the Height Grid. From a different point
of view, a BCF calculation can be seen as measuring the similarity of a scene to a crown.

Figure 3.4: BCF crown of cell importance. A visualization of the crown of the Bell-Circular Feature with
two bells which specify the importance of each cell on the circle.

Having the crown and the region B of the circle at the bottom of the crown, (3.3) and (3.4)
are utilized to obtain the Bell-Circular Feature value. B in (3.3) refers to the B section of the
Figure 3.1. Furthermore, (x′, y′) indicates the location of the center of the cell ci′j′ where i′ and
j′ are the indices of the cells after transforming the Height Grid’s coordinate system’s base, to
the center of the Height Grid, with y-axis in reverse order. Besides, Figure 3.5 visualizes how
the BCF is applied to a Height Grid and defines a weight for each cell underneath its circle.
In this figure, the lighter the green color goes, the more important that cell becomes, whilst α
specifies the location of the cell and its importance.

Vbcf (hg, bcf) =

∑
ci′j′∈B

|Cos(αx′y′)| × ci′j′∑
ci′j′∈B

|Cos(αx′y′)|
(3.3)

αx′y′ =

y′

x′

(x′, y′) = (i′ + 0.5, j′ − 0.5)

(i′, j′) = (i− 7,−j + 7)

(3.4)

BCF as Convolution

The process of calculating BCF can be seen as convolving the Height Grid with six different
kernels. Each kernel, ki; (1 ≤ i ≤ 6), is a matrix with value 0 for all cells but the cells on a
circle with r = i. Furthermore, in this case, the kernel is the same size as the original matrix.
Thus no sliding is required to get the convolution result.

16

Figure 3.5: A BCF definition applied on a Height Grid. The more lighter the green color, the more
important the cell. α specifies the location of the cell and its importance.

3.2 Learning Process

Chunked Data sets

An important pre-processing step which was done in Fischinger et al. [7] has been producing
new data, based on the binomial gathered samples of successful and failing grasping scenes,
by manipulating the height of the objects in the scene. As there is no sufficient argument in
the article to reject the hypothesis of impacting the final result by this pre-processing step, the
newly generated data is suspected to bias the classifier’s result model. In order to prevent such
ambiguity in the newly gathered samples, it is decided to split the raw samples to samples with
no artificial reproduction, in 5 disjoint subsets. Afterwards, it will be possible to generate new
data which is believed to help the classifier to classify more precisely. However, this time, the
data-generating phase is not intended to manipulate the height of the object in the scene but
to flip the Height Grid, once horizontally and once vertically. Therefore as it can be seen in
Figure 3.6, three new samples can be generated from one original sample which are believed to
have no harm to the classifier. In addition, these newly generated data stay in the subset to which
the original scene belongs.

Generally, the effectiveness of what has been done in Fischinger et al. [7] on the height of
the samples, should be tested as there might be no difference for certain classifiers, particularly
those that use a separator linear line to separate the data into binary classes. Thus, in Chapter 4
of this document, where experimental results are presented, this question will be answered.

Pre-processing

The machine learning cases in which the data range of the attributes vary significantly, attribute
values may need to be standardized, scaled or normalized prior to use for training a model,
particularly as utilizing a machine learning algorithm whose objective function uses distances
between different attribute values. Having a vast range of values, one attribute may dominate
the others due to the larger difference between its values [13]. Thus, the range of all features

17

Figure 3.6: The figure illustrates a sample assumed scene with four regions and its corresponding gen-
erated scenes. The one with 4 regions in the top left corner is the original scene, H and V characters on
the arrows show that the scene is flipped horizontally or vertically respectively relative to its predecessor.
These four colors as four regions are chosen in order to facilitate understanding of the process.

should be normalized such that each attribute contributes approximately proportionately to the
final decision.

In this project, normalization/scaling is so important since, on one hand, the value of differ-
ent features can considerably vary and on the other hand, Support Vector Machines are sensitive
to attributes’ ranges [16]. Furthermore, it is very important to use the same normalization/s-
caling method on both training and test sets. In TFRGA, the authors used a linear method for
scaling the attribute data which is commonly known as Min-Max scaling or simply Rescaling. In
this method, as shown in (3.5), each attribute is scaled linearly to the range of [0, 1] and although
the scaling function is notably simple, it can result in outstandingly better outcomes especially
when dealing with support vector machines [16]. What’s more, S(a) in (3.5) indicates the scaled
value of the attribute value a.

S(a) =
a−min(a)

max(a)−min(a)
(3.5)

Since rescaling is used in TFRGA and it performed pretty well, therefore it is decided to use
the same approach. The rescaling functionality which is used in this project is provided by a
MinMaxScaler class object of SciKit Learn.

Classifier Selection

In order to have more information about what classification method can perform better on such
a problem, some well-known and widely used classification algorithms are employed. These
algorithms, then, will be assessed, based on the quality of the results, using some measurements

18

such as Precision, Recall, F1 score, Accuracy, and the area under their Receiver Operating Char-
acteristic curves.

Parameters

For the parameters, in each experiment part of this project on different classifier algorithm, the
amounts which are commonly believed to be more effective on general problems are set. In each
section of the Experimental Result’s section, the parameters which are used by the classifier
algorithm to build models are specified.

19

CHAPTER 4
Experiments and Results

In Section 1.2, it was mentioned that, in order to be able to conduct different experiments, a test-
ing software is required to be developed. In this chapter, first of all, the testing application which
has been developed for the experiments of this project is introduced, and more information on
different aspects and features of the application, along with prerequisites to run it are provided.
After that, it is described that what steps should be taken in order to prepare a test rig, extend
sample dataset, and prepare requirements for performing various tests.

4.1 Set-up

In the path to optimize the solution, and in order to put the theories in use and test them, a test rig,
along with a set of applications are required to be set up and implemented respectively. Here in
this chapter, all of the requirements for a test environment are discussed more in depth, followed
by the experimental results of the project, having different settings of datasets, features, algo-
rithms and parameters. At the end of this chapter, the obtained results from different algorithms
are analysed in order to give a deeper understanding of the characteristics of our problem.

Test Application

The first step in an optimisation problem is to have a measurement tool. As it is mentioned
before, an application is developed in order to help see the differences in the outcome of any
individual change that is made to each part of the process. This application should be flexible
enough to enable putting any affecting parameter in test. Thus as designing, it is tried to make
the application architecture as flexible as possible to the changes which may come in mind later.

What’s more, there are some important points which should be taken into consideration
about the Test Application. The first point to consider is that unlike the operator application
which is installed on the robotic hand, that we call Production Application, Test Application
does not need to be real time. In contrast, the Test Application should be more flexible to
possible changes than the Production Application. Therefore, some features of the production

21

application that are introduced in Fischinger et al. [7] which have no impact on the result and
just implemented to improve the performance such as ”height accumulated rectangular regions”
are skipped in the Test Application. Besides, while the Production Application is implemented
in C++, the Test Application is implemented in Python, that is known to be significantly slower.
Another point is that, in contrast to the Production Application, the Test Application is highly
customizable in terms of underlying algorithms and parameters. Nonetheless, it should be the
case about every Test Application to provide testers with a wider range of capabilities to cus-
tomize the behavior and observe the differences.

Architecture

As it has been stated before, the Test Application must keep the flexibility meaning that testing
new theories by changing any part of the application should be fairly easy. On the other hand, the
application should be capable of working with some similarly-structured components with dif-
ferent behaviors, such as different classifier algorithms. In order to maintain these two important
points, the core of the Test Application is designed like a state machine. As it is obvious there
are many advantages in this form of design. The first benefit is that the flexibility requirement is
satisfied by a very simple and loosely-coupled architecture of a state machine. Figure 4.1 repre-
sents the architecture of the core of the application as a state machine while Table 4.1 describes
each state as well as the task which should be done before leaving the state. The second impor-
tant port for which we are looking, is the possibility of using similarly-structured components
as substitutions. The state machine architecture provides a satisfying level of abstraction and
isolation. Therefore it will be very easy to unplug a part of the state machine and replace it by
another similarly-structured part.

As it is demonstrated in the Figure 4.1, there are different zones in the Test Application
which are distinguished by different colors. For instance, green and red zones show the stages
that positive and respectively negative samples of grasping are loaded by the application and the
Height Grids are extracted from them. The reason why there are 4 states instead of one for each
of these zones is definitely the memory problem. For large datasets, it is not simply possible to
read all files in one move and keep them in memory. However, Height Grids are much lighter in
terms of size on memory. Another reason is to isolate the transformation of the point could to
Height Grid from other stages of the procedure.

Another interesting fact about the Test Application is that the output of each zone is saved
on the disk. Consequently, it is easily possible to start off from a saved stage in future runs. This
helps a lot to save time in testings, since usually reading, parsing and transforming point clouds
to Height Grids take plenty of time. This way, if the method for turning point clouds to Height
Grids is not subjected to change, the tester could simply start from generated Height Grids by
previous runs. The same story applies to Height Grids to feature values and feature values to
trained classifier. As it can be seen in the Figure 4.1, there are four different application entry
points, distinguished by PCD, HG, F and T that stand for Point cloud data, Height Grids, Feature
values and Trained classifier respectively.

22

Figure 4.1: Architecture of the Test Application as a state machine. The green zone shows the states
in which PCD files for positive instances are processed. The red zone is where PCD files for negative
instances are read and processed. Next, the blue zone shows the states in which feature definitions are
read from files and Height Grids from green and red zones become feature values with respect to the
feature definitions. After that, a classifier is trained with the feature values and tested in the yellow zone
before going to the final state where the results are shown. 19* state is the error state where there is
an error in any state. Therefore there should be an arrow from each state to 19*. However, in order
to maintain simplicity, these arrows are not depicted. Three regions with lighter colors, light red, light
blue and light yellow, are some states that do exactly what zones with their corresponding intense colors
do having only one difference. They read the requirements from files which were saved before, in each
former zone.

User Interface

In addition to the core, a user-friendly user interface is developed for the Test Application to
make it as easy as possible to deal with different settings and arrangements of data, algorithms,
and parameters. Figure 4.2 shows the main panel of the Test Application. As it can be seen in
the figure, there are different modes to select for testing. Mode 1..4 show different application
entries which were discussed in the previous section. By selecting each mode of testing, the
tester should provide the application with different input parameters. Furthermore, for modes 1
to 3, it is possible to customize the classifier’s parameters. Figure 4.3 shows how the panel for
customizing the parameters of an SVM classifier looks like. It should be noted that these pa-
rameters are different than the parameters shown for other classifiers such as k−NN or Random

23

Current State No. Current State Job Next State No.

0 ((s)) StateMachine Start 1

1 Positive PCD Read 2,5

2 Positive PCD Parsed 3

3 Positive Height Grid Created 4

4 Positive Height Grid Saved 1

5 Negative PCD Read 6,9

6 Negative PCD Parsed 7

7 Negative Height Grid Created 8

8 Negative Height Grid Saved 5

9 Feature Definition Read 10

10 Feature Definition Parsed 11

11 Feature Values Created (ALL) 12

12 Feature Values Saved (Disk) 13

13 Learner Trained 14

14 Learner Tested+Saved (Disk) 20

15 Saved Height Grid Read (ALL) 16

16 Height Grid Parsed 11

17 Saved Feature instances Read (ALL) 18

18 Feature instances Parsed 13

19 Error 20

20 ((t)) FINISH (0)

21 Saved classifier Read 14

Table 4.1: The table represents the states in the state machine depicted in Figure 4.1. Current State Job
shows the job which is done before checking the condition of transition. All means both positive and
negative instances and Disk means while leaving that state, the data is saved.

Forest.

24

Figure 4.2: The main panel of the Test Application. There are different parameters and inputs to set,
such as the path to the input data and the desired path to write the output date including intermediary
result of each zone.

Figure 4.3: The panel to customize the parameters for the classifier. Here in this figure, the parameters
for an SVM classifier are shown since the selected classifier for the application is an SVM.

25

However, for the mode 4 it is not possible to customize the parameters anymore since the
mode 4 simply loads a classifier which is trained before and a data set as a test set. These saved
classifier models are pickled classifier objects on disk from previous runs. Figure 4.4 illustrates
the panel for loading a saved classifier and a test dataset.

Figure 4.4: The panel to Load a pickled classifier and a test set from disk. Immediately after selecting
these two requirements, it would be possible to test the classifier on the dataset.

Finally, after the Start Operation button is pushed and the procedure is done, the result is
shown in a proper informative way. Figure 4.5 shows how the output is represented. There are
different types of information projected on this board. Starting from the top left corner, it is stated
that what classifier is used for this experiment. Then, the size of the dataset which is loaded, the
proportion of the data used to split the dataset and the final number of instances which are used
for training and testing are shown. Furthermore, on the right-hand side of the panel, the detailed
information about the classifier is shown, starting with the final result of the experiment in terms
of classification precision, recall and f-score. Then a log-like data is presented containing the
information mentioned above in addition to a confusion matrix of the classifier and an overview
of the parameters used to train the classifier. Nevertheless, when Cross-Validation is used for
testing the classifier, the confusion matrix is not shown anymore and instead, Receiver Operating
Characteristic, ROC is generated to reflect the characteristics of each classifier on the domain.

How To Run

There are some prerequisites which should be met before one can simply run the application.
These prerequisites are mainly some Python packages and dependencies. Meeting these pre-
requisites makes it possible to run the application regardless of what operating system is the host
since the Python and all dependent packages can work cross-platform, and so the application.
The prerequisites are listed below:

26

Figure 4.5: The board to show the result of the procedure. There are different types of information shown
on this board such as the information about the input, the classifier type, the parameters of the classifier
and the output.

? Python: Python [38] version 2.7.3, an ”easy to learn, powerful programming language.
It has efficient high-level data structures and a simple but effective approach to object-
oriented programming [37]”.

? Numpy: Numpy [24] version 1.6.1, a ”fundamental package for scientific computing with
Python. NumPy can also be used as an efficient multi-dimensional container of generic
data [23]”.

? Qt: Qt [22] version 4, a ”cross-platform application framework that is widely used for
developing application software that can be run on various software and hardware platforms
with little or no change in the underlying codebase, while having the power and speed of
native applications [31]”.

? PyQt4: PyQt4 [4] version 4.9.1, a ”set of Python v2 and v3 bindings for The Qt Com-
pany’s Qt application framework and runs on all platforms supported by Qt including Win-
dows, MacOS/X and Linux [30]”.

? Scikit-learn Scikit-learn [28] version 0.16.1 a ”Simple and efficient tools for data mining
and data analysis [36]” which is developed for Python. Most of machine learning tools
such as classifier algorithms and pre-processing tools which are used in this project are
provided by Scikit-learn package.

Having the prerequisites fulfilled, it is fairly easy to run the application. However, before
running the application, the tester should decide which classifier algorithm needs to be plugged
into the application. In order to test different types of the algorithms on the datasets of the prob-

27

lem domain, some well-known algorithms are selected to be implement and utilized. However,
one can add a new classifier to the application with a little amount of effort. The classifier,
as mentioned before, should be specified through a configuration file, that is placed inside the
project. The configuration file which is named learners.txt can be found in the path ”src/S-
tarter/UI/” relative to the root of the project. Appendix A.1 shows how to select the desired
classifier by putting a * next to its name in the file. Adding a new classifier to the list of the
classifier is quite easy. There are only two different things to declare. At first, parameters should
be defined, if any is required to be configured through the user interface. Appendix A.2 demon-
strates how to define the parameters that are required to be possible to change in the application.
Finally, the classifier algorithm should be specified and the defined parameters can be used to
declare the new classifier as shown in Appendix A.3. It can be seen that the parameters which
are defined in Appendix A.2 are the same parameters as the shown in Figure 4.3 with one addi-
tion, the proportion of the test set, which is in common by all classifier algorithms. In the cases
where Cross-Validation is used, the number of folds is equal to b1/proportionc.

Extending Sample Database

In almost every case in machine learning in which a model should be created, it is commonly
known that the more data gathered for training, the more accurate the model will become. How-
ever, there are some considerations in extending data samples. In this section, it is explained that
how some new samples are gathered for this project.

The newly gathered data as before and in order to maintain consistency to the data that
existed before and gathered in Fischinger et al. [7], is collected in a binomial form of either
successful or failure cases of grasping. However, it should be mentioned that during this process,
no robotic manipulator is used and only the possible grasping dimensions of an object, located
in the center of the scene are checked. In more details, provided that in a 14cm × 14cm scene,
an object located in the center of the scene, having maximum width of 10cm and sufficient
depth for grasping, meaning at least 4cm in our case, then the captured scene is categorized as
successful grasping case and all other cases are considered as failure grasping cases.

Prerequisites

In order to gather new data samples, a test rig is built and some other requirements needed to be
met. In following, the most important parts of this process are described consisting of the test
rig, the process of gathering, transforming and reproducing the data.

Test Rig

The first step toward having more samples is to have a proper test rig and a way of collecting the
information of a particular scene in this test rig in the form of a point cloud. For this purpose, a
test rig is created and a Microsoft Kinect [41] is utilized to capture the necessary information of
the scene. Figure 4.6 shows this created test rig from two different views, one from outside and
the other, closer view. As it is illustrated in Figure 4.6a, a Microsoft Kinect is mounted on the
wall, monitoring the area that is in front of it, meaning the part of the table with some object in

28

(a) An outer look of the test rig (b) A close view of the test rig

Figure 4.6: Two different views of the test rig. The left side figure illustrates the test rig and the Microsoft
Kinect device, mounted to collect the information from the scene. The right side figure shows the 14cm×
14cm square of the scene.

different shapes. Figure 4.6b magnifies the important part of what Microsoft Kinect observes,
which is of our interest. As it can be seen in this figure, a square of size 14cm× 14cm is drawn
in which three different objects with diverse dimensions are placed. This square is considered
as our scene for which point cloud files will be created in later stages.

Gathering

In order to obtain desired data from Microsoft Kinect, ROS1 [32], a robotic platform along with
some packages and programs are employed and some extensions are implemented. In following,
a list of what is required in order to obtain the target point cloud files is stated:

? ROS Hydro Medusa, a robot operating system that ”provides libraries and tools to help
software developers create robot applications. It provides hardware abstraction, device
drivers, libraries, visualizers, message-passing, package management, and more. [6]”.

? Rviz, a 3D visualization tool for ROS [35].
? Openni_camera, ”A ROS driver for OpenNI depth (+ RGB) cameras. These include:

Microsoft Kinect, PrimeSense PSDK, ASUS Xtion Pro and Pro Live The driver publishes
raw depth, RGB, and IR image streams. [25]”.

? Freenect_camera, ”A libfreenect-based ROS driver for the Microsoft Kinect. [11]”
? PCL, Point Cloud Library, a ROS package ”for point cloud processing - development. The

PCL framework contains numerous state-of-the art algorithms including filtering, feature
estimation, surface reconstruction, registration, model fitting and segmentation. [27]”.

1Robot Operating System

29

(a) Test rig, RGB + depth view (b) Test rig, depth view

Figure 4.7: Two different depth views of the test rig. The left side figure illustrates the test rig in RGB
form and a depth view of the square test rig. The right side figure shows the test rig in depth view and the
square test rig of the scene in a different depth view layer.

After having these application installed, it would be possible to obtain depth information
in the form of point clouds from ROS and PCL library. Rviz, as mentioned, is a visualization
tool by which it is possible to visualize the point cloud information from Microsoft Kinect.
Figure 4.7 shows the view of the Microsoft Kinect, visualized in Rviz. The figure shows two
different windows. The first window on the left side shows the RGB output of the camera along
with a depth view layer over this RGB output, only for the 14cm × 14cm square test rig. The
one on the right-hand side, which is demonstrated in Figure 4.7b, shows two layers of the depth
view of the Microsoft Kinect camera, one the whole camera view and the other one the square
test rig.

Subsequently, the depth output information of the camera can be used as input for PCL
package, turning the information to point clouds. Fortunately, the resulting point cloud can also
be visualized in Rviz.

Transformation

A transformation should be done in order to transfer the center of the coordination to the center
of the point cloud as the depth view which is obtained from Kinect is relative to the position
of the Kinect’s depth camera. In other words, the center of the coordination of the obtained
point cloud is the Kinect’s depth camera and all points should be transformed to a new Cartesian
coordination system where the X−Y plain matches the surface of the test rig. In order to trans-
form the point cloud, the transformation matrix (4.1) is used. The transformation matrix (4.1)
transforms a point (x, y, z) to a corresponding point in the new coordination using dx, dy and
dz which stand for the distance of the center of the Kinect’s depth camera from the center of the

30

(a) Raw depth input (b) Transformed and hedged

Figure 4.8: Two different views from the same scene with and without coordination transformation. In
addition to coordination transformation, (b) is a 14cm× 14cm cut of the scene.

test rig along with p, r and y which stand for pitch, roll and yaw respectively. Furthermore, Sa
and Ca in (4.1) show Sin(a) and Cos(a).

CyCp CySpSr − SyCr CySpCr + SySr

SyCp SySpSr + CyCr SySpCr − CySr

−Sp CpSr CpCr

x− dx

y − dy

z − dz

 (4.1)

Figure 4.8 illustrates how the coordination transformation algorithm works. Figure 4.8a
shows the raw input, that comes from the depth camera of Kinect whereas Figure 4.8b represents
a transformed 14cm × 14cm cut of the same scene. The transformation algorithm works as a
ROS service, that receives the depth information from Kinect and publishes the transformed
scene for further use.

Reproduction

In Section 3.2, it was mentioned that in order to have more point cloud instances to be used in
the process of training a model, three more point clouds are produced, out of each point cloud
file that was obtained directly from Kinect and transformed, resulting in four times point cloud
instances. Figure 4.9 demonstrates a point cloud and its three additional reproduced versions
according to the description in Section 3.2.

31

(a) Original point cloud (b) Reproduced point cloud 1

(c) Reproduced point cloud 2 (d) Reproduced point cloud 3

Figure 4.9: An original point cloud, that comes from a real scene along with three different reproduced
point clouds based on the original one.

Hardware Specifications

For all parts of the experiments that are conducted in this project, a single computer with the
specifications mentioned in Table 4.2 is utilized. Thus, all represented running times of different
algorithms or different runs are measured on the stated hardware system and may differ if tested
on different specifications.

32

Component Details

Processor Intel Core2 Duo CPU E8400, 3.00GHz ×2

Memory 6GB DDRII

VGA AMD ATI Radeon HD 4350

Operating System Ubuntu 12.04LTS x64

Table 4.2: Hardware specifications on which the experiments of this project are conducted.

4.2 Experiments Overview

In following sections, the experimental results of the project are presented which are obtained
using different algorithms and parameters. In each section, it is mentioned that which part of the
code/algorithm is different than the others along with the outcome. At the end, a comparison is
made to magnify the differences between the approaches and a conclusion is made out of the
result of the comparison.

For the experimental part of the project, an independent set of instances is reserved as the
test set. This set is collected for this project and is reproduced using the method mentioned in
Section 3.2. The set contains 2240 instances in total and all experimental results, presented in
this chapter will be the result of the trained models on the mentioned test set.

4.3 Parameters

The set of the parameters, that are used to configure the classification algorithms that are uti-
lized in this part of the experiments are shown in Table 4.3. Where necessary, the parameters
are explained and the reasons behind selecting them are discussed in more details in their cor-
responding sections. It is noteworthy that for each classification algorithm, that is utilized in
the experimental part of the project, there are more parameters to adjust. However, the most
important ones, with the most impact on the results of the algorithms are picked to be shown
in Table 4.3, and the rest of the parameters are set according to the default values of SciKit
libraries.

33

Algorithm Parameter Value

SV
M
−

L
in Kernel Linear

Penalty (C) 1.0

Probability Estimation True
SV

M
−

R
B

F Kernel Radial Basis Function (RBF)

Penalty (C) 1.0

γ 1
#Instances

Probability Estimation True

SV
M
−

SG
D

Penalty Parameter l2

Loss function modified_huber

α 0.0001

ε 0.1

3−
N

N

Neighbors 3

Weights Uniform

Distance Algorithm Auto (ball_tree, kd_tree, brute)

R
an

do
m

Fo
re

st # Trees 10

Criterion Impurity (Gini)

Max Features Auto

Min Leaf Size 1

Table 4.3: Selected parameters for the different classification algorithms that are utilized in the experi-
ments.

4.4 SVM − Linear Kernel

For the fist part of the experiments, it is decided to use SVM, as it has been also used in
Fischinger et al. [7]. In this part of the experiments, an SVM is trained over the set of in-
stances that was gathered in Fischinger et al. [7], along with the newly collected instances of
this project, to show the result of the SVM classifier on the data.

In order to keep the experiment as close as possible to the experiments which were conducted
in Fischinger et al. [7], the same set of parameters is selected for the algorithm, that has been

34

mentioned in Table 4.3 of Section 4.3 under SVM−Lin.

Including and Excluding Reproduced Instances

The experiment is done in two different stages. In the first stage, the results of the trained
models over the original dataset and reproduced dataset of Fischinger et al. [7] are presented,
in order to test the effectiveness of the generated instances by altering the height of the objects
in the scenes, as an answer to the question which was raised in Section 3.2. Table 4.4 shows
the outcome of the experiment on the original set of instances along with the results which are
obtained from the dataset having the reproduced data. In all tables that appear in this section,
hereafter, the columns DS, FD, #At, CLS, P, R, F1, A, BT, and CM stand for Data Set, Feature
Definitions, Number of Attributes, Classifier, Precision, Recall, F1 Score, Accuracy, Build Time
and Confusion Matrix respectively. Furthermore, O and R under the column DS indicate the
Original dataset and Reproduced dataset. Similar to Fischinger et al. [7], the same 302 features
for HAF and 21 features for SHAF are used for the experiments.

According to the information which is provided in Table 4.4, in the case of HAF features,
there is an improvement on the Precision, unlike the Recall which decreased from 0.848 to 0.780.
However, the F1 score, which introduces a way of measurement based on both Precision and
Recall, has a significant improvement which has jumped above 0.72 from below 0.65. Besides,
the Accuracy improved remarkably, from 0.664 to 0.791. Nevertheless, such an improvement
can not be seen in HAF−SHAF cases. According to the table, apart from the Precision, all
factors dropped slightly.

In addition, Figure 4.10 illustrates the Receiver Operating Characteristic curve, ROC curve,
of all four trained models. The area under the ROC curve, AUROC, measures discrimina-
tion [15] and it is used as another mean of measuring how good a classifier is, compared to
other classifiers. The more the AUROC is, the better the binary classifier operates. As it can be
seen in Figure 4.10, despite all differences, AUROC of the trained models with original dataset
and the reproduced dataset in both cases of HAF and HAF−SHAF, are not notably different.

As a result, it can be concluded that, altering the heights of the objects in the scenes do
not have any considerable impact on the results of the SVM classification models although it
increased the required time for building the model drastically. However, ignoring the time over-
head in building the models, the generated data seems to be harmless to the trained models and
in both cases of HAF and HAF−SHAF slightly improved the results, according to the AUROC
in Figure 4.10. Therefore, it is decided to use the reproduced dataset in addition to the newly
collected instances for the rest of the experiments, in this project.

Picking the reproduced dataset as the base and adding the newly collected samples along
with their mirrors, which were explained in former chapters of this document, the same exper-
iment is conducted as the second stage of the experiments, on the new dataset, which will be
the dataset for all later experiments. The results of the training over this dataset, using HAF
and HAF−SHAF feature definitions are shown in Table 4.5. As it is shown in the table, and
Figure 4.11, which depicts the ROC curves of the trained models, the results are slightly better
than the best results from the previous stage.

35

DS FD #At CLS P R F1 A BT CM

O HAF 302 SVM 0.521 0.848 0.646 0.668 0:16

 818 662

121 679

O HAF-SHAF 323 SVM 0.748 0.725 0.736 0.814 0:17

 1245 195

220 580

R HAF 302 SVM 0.681 0.780 0.727 0.791 2:17

 1149 291

176 624

R HAF-SHAF 323 SVM 0.753 0.693 0.722 0.809 2:26

 1258 182

245 555

Table 4.4: The results of the SVM algorithm on the datasets including and excluding the reproduced
samples with different feature definitions. O shows the original dataset whilst R shows the instances
including the reproduced data.

FD #At CLS P R F1 A BT CM

HAF 302 SVM 0.796 0.721 0.757 0.834 15:14

 1293 147

223 577

HAF-SHAF 323 SVM 0.759 0.717 0.737 0.817 16:07

 1258 182

226 574

Table 4.5: The results of the SVM algorithm on the final dataset with different feature definitions.

36

(a) HAF (Original) (b) HAF (Reproduced)

(c) HAF-SHAF (Original) (d) HAF-SHAF (Reproduced)

Figure 4.10: ROC curves of the trained models over original and reproduced data sets with two different
feature definitions, HAF and HAF−SHAF

(a) HAF (b) HAF-SHAF

Figure 4.11: ROC curves of the trained models over the final data set, comprising the reproduced data set
from Fischinger et al. [7] and the newly collected instances, with two different feature definitions, HAF
and HAF−SHAF

37

Newly Defined Features

According to what has been explained in Section 3.1 of this document, three new feature sets
are proposed in order to improve the results of classification, CF, DICF, and BCF. The results of
the trained models with each set of the features are demonstrated in Table 4.6. Based on the data
that can be seen in the table, comparing to HAF and HAF−SHAF, these three newly defined
features show acceptable outcomes with a better Accuracy from DICF as an example, that is
above 0.85, in comparison with 0.834 from HAF. In terms of F1 score and Accuracy, the other
two, CF and BCF obtained weaker results. However, it should be noted that these two features
contain only 7 attributes each, which is only about 2% of the size of the HAF and HAF-SHAF.
Such a reduction in the size of attributes can have a dramatic impact on the required amount
of time to build a model for the algorithms which are sensitive to the size or dimensions of the
data, such as SVM. As a wittiness, the required time for building a model with HAF−SHAF is
recorded at 16 : 07 minutes, compared to 3 : 27 minutes for a model with CF and 3 : 00 minutes
for a model with BCF.

FD #At CLS P R F1 A BT CM

HAF 302 SVM 0.796 0.721 0.757 0.834 15:14

 1293 147

223 577

HAF-SHAF 323 SVM 0.759 0.717 0.737 0.817 16:07

 1258 182

226 574

CF 7 SVM 0.753 0.720 0.736 0.816 3:27

 1252 188

224 576

DICF 6 SVM 0.939 0.625 0.750 0.851 4:29

 1408 32

300 500

BCF 7 SVM 0.710 0.625 0.664 0.775 3:00

 1236 204

300 500

All 343 SVM 0.978 0.753 0.851 0.906 18:38

 1427 13

197 603

Table 4.6: The results of the SVM algorithm on the final dataset with different feature definitions. The
best scores are underlined.

Interestingly, the combination of all five sets of feature definitions, which is called ”All” in
Table 4.6, hits a record of 0.851 for F1 score and 0.906 for Accuracy. To be more precise, ”All”

38

feature definitions improved the results, obtained from HAF−SHAF by around 12% in F1 score
and 9% in Accuracy. Nonetheless, it should be considered that the time for building a model is
the highest among all in this case, with 18:36 minutes.

Furthermore, Appendix A.1 represents the ROC curves of the models of the Table 4.6. The
inference can be drawn from the figure in the appendix that the model with ”All” feature defini-
tion has the best AUROC among all others. Based on AUROC, HAF and HAF−SHAF follow
”All”, both with 0.88.

4.5 More Classifiers

In order to find the best classification algorithm for the problem, more algorithms are utilized
and tested on the final dataset, with all 6 sets of feature definitions, that were used in the pre-
vious section. In this section, the experimental results of applying the selected algorithms, Ra-
dial Basis Function Kernel SVM, SVM with Stochastic Gradient Descent Training, k−Nearest
Neighbors, Decision Trees and Random Forest are presented and compared to the results which
were obtained from an SVM having a Linear Kernel.

SVM − Radial Basis Function Kernel

Support vector machines accept different kernels, one of which ”Radial Basis Function”, RBF,
which follows a simple principle, meaning that the influence of a training example depends on
its distance from the hedging line. Here in this experiment, two important RBF parameters, C,
the penalty parameter that trades off misclassification of training examples against simplicity
of the decision surface, and γ, that in simple words, defines how far the influence of a single
training example reaches [12] are adjusted according to the Table 4.3 of Section 4.3.

Despite spending more time for building the models with RBF Kernel, the data of Table 4.7
shows that the achievements are not very promising. Compared to the SVM with Linear Kernel,
the best result with RBF Kernel still stands below the best scores from SVM with Linear Kernel
by almost 4% difference in Accuracy and 6% in F1 score. However, it should be noted that in
some cases such as HAF and DICF, the results are almost the same as SVM with Linear Kernel
and in the case of HAF−SHAF, the results are slightly better, but still far behind the best score
of the SVM with Linear Kernel. Moreover, Appendix A.3f shows how DICF outperforms the
rest of the trained models based on AUROC, equal to 0.90.

39

FD #At CLS P R F1 A BT CM

HAF 302 SVM−RBF 0.694 0.732 0.712 0.789 23:26

 1182 258

214 586

HAF-SHAF 323 SVM−RBF 0.771 0.715 0.742 0.822 26:25

 1271 169

228 572

CF 7 SVM−RBF 0.723 0.760 0.741 0.810 6:12

 1208 232

192 608

DICF 6 SVM−RBF 0.932 0.625 0.748 0.850 8:35

 1404 36

300 500

BCF 7 SVM−RBF 0.708 0.655 0.680 0.780 5:50

 1224 216

276 524

All 343 SVM−RBF 0.845 0.743 0.791 0.859 31:35

 1331 109

205 595

Table 4.7: The results of the SVM algorithm with RBF Kernel on the final data set with different feature
definitions. The best scores are underlined.

SVM − Stochastic Gradient Descent Training

Stochastic Gradient Descent, SGD for short, is a simple and very efficient approach to dis-
criminative learning of linear classifiers under convex loss functions such as (linear) Support
Vector Machines, which has been used for the current part of the experiments. This estimator
implements regularized linear models with SGD learning which means the gradient of the loss
is estimated each sample at a time and the model is updated along the way with a decreasing
strength schedule (aka learning rate). The list of the important parameters which are used to con-
figure the algorithms can be found in Table 4.3 of Section 4.3 under SVM−SGD. As mentioned
in the table, the penalty parameter (aka regularization term) is set to l2, which is the standard
regularizer for linear SVM models. Furthermore, ε, which determines the threshold at which it
becomes less important to get the prediction exactly right, is set to 0.1, which is considered as
the best amount, generally. For epsilon-insensitive loss functions, huber for instance, which is
utilized in this experiment, any differences between the current prediction and the correct label
are ignored if they are less than this threshold.

40

The results of the experiment are presented in Table 4.8. According to the results, the best
F1 score and Accuracy is obtained by using the DICF features, with 0.765 for F1 score and
0.864 for Accuracy. It is noteworthy that the Precision in the case of DICF is measured at
1.000, and according to the confusion matrix, all 1440 positive instances are identified correctly,
in addition to 304 negative instances which are guessed to be positive instances. Adequacy of
such a classifier depends on the application, and in our case, it interprets to the question, Is it
acceptable if the robot tries to grasp something that might not exist?. If the answer is yes, then
it could be said that the DICF trained model achieved the best result so far with 100% success
rate in identifying the positive cases and 62% success rate in identifying the negative cases.
Another interesting fact, is that the DICF achieved such results with only 6 feature values, which
corresponds to the attributes of the data set and as a result, the training time, BT, is the lowest
with only 1 : 10 minutes, compared to ”All” case with the highest amount of building time,
6 : 04.

FD #At CLS P R F1 A BT CM

HAF 302 SVM−SGD 0.520 0.860 0.648 0.667 2:27

 807 663

112 688

HAF-SHAF 323 SVM−SGD 0.434 0.961 0.598 0.538 3:02

 438 1002

31 769

CF 7 SVM−SGD 0.958 0.460 0.621 0.800 1:10

 1424 16

432 368

DICF 6 SVM−SGD 1.000 0.620 0.765 0.864 1:07

 1440 0

304 496

BCF 7 SVM−SGD 0.862 0.560 0.678 0.810 1:20

 1368 72

352 448

All 343 SVM−SGD 0.617 0.921 0.739 0.768 6:04

 984 456

63 737

Table 4.8: The results of the SVM algorithm with SGD training on the final data set with different feature
definitions. The best scores are underlined.

Moreover, Appendix A.3f illustrates the ROC curves of the classifiers of this section. The
results obtained from SVM−SGD classifier still do not hit the top scores of the best classifier so
far.

41

3−Nearest Neighbors

Moving on, to the next part of the experiments, the data is used with a 3−NN classifier. It should
be noted that in a k−NN classifier, there is no building time associated with the results as k−NN
classification is a lazy-learning approach [19]. Instead, the prediction time is important for such
algorithms, especially, in the case of a problem with many calls to the model for prediction.

Table 4.3 of Section 4.3 shows the parameters that are used to build a model under 3−NN.
Besides, the final results from the 3−NN classifier are presented in Table 4.9. Interestingly,
BCF outperforms all others, not only in this section of the test but also all other experiment
parts that have been conducted so far, with a score 0.926 in F1 score and 0.945 in Accuracy.
It is notable that the results are obtained using only 7 features, that is a great achievement.
However, as mentioned before, the one drawback of the 3−NN algorithm is the amount of time
it needs to predict. In Table 4.9, rather than Building Time (BT), Prediction Time (PT) is stated
in seconds. It can be seen that the amount of time, BCF needed for predicting 2240 instances,
is considerably less than the time for predicting the same sample set using HAF, HAF−SHAF
and ”All” feature definitions. Another important aspect that should be noted, is that the balance
between the Precision and the Recall, especially in the case of BCF, unlike what we observed
for SVM−SGD.

FD #At CLS P R F1 A PT(s) CM

HAF 302 3−NN 0.769 0.871 0.817 0.860 30.17

 1182 258

214 586

HAF-SHAF 323 3−NN 0.788 0.868 0.826 0.870 34.15

 1271 169

228 572

CF 7 3−NN 0.737 0.955 0.832 0.862 1.34

 1168 272

36 764

DICF 6 3−NN 0.446 0.920 0.601 0.564 1.40

 528 912

64 736

BCF 7 3−NN 0.891 0.965 0.926 0.945 1.45

 1346 94

28 772

All 343 3−NN 0.767 0.875 0.817 0.860 40.02

 1228 212

100 700

Table 4.9: The results of the 3−NN training on the final data set with different feature definitions. The
best scores are underlined.

42

In addition to the results, that are presented in this section, it is interesting to observe that
the AUROC of BCF is outstandingly high with 0.95, among all, which are depicted in Ap-
pendix A.4f.

Decision Tree

Based on the results, that were obtained by a 3−NN classifier, we have guessed that a Decision
Tree Classifier must also have good results on our data sets, with an important difference that
Decision Trees are eager-learners and they don not have the prediction time problem, due to its
importance in this project. The only important configuration setting while training a Decision
Tree in this section, is the method for measuring the suitability of a split, which has been decided
to be done by Impurity (Gini). However according to Table 4.10, the results are not what we
expected. The best results are obtained using DICF, having F1 score and Accuracy under 0.8
which is far below what we achieved using 3−NN or SVM. Also the AUROC of these trained
models, which are illustrated in Appendix A.5, show that the performance of the Decision Trees
on our data set is not quite satisfying.

FD #At CLS P R F1 A BT CM

HAF 302 DT 0.613 0.741 0.671 0.741 2:49

 1067 373

207 593

HAF-SHAF 323 DT 0.622 0.705 0.661 0.741 3:37

 1098 342

236 564

CF 7 DT 0.560 0.757 0.643 0.700 1:17

 964 476

194 606

DICF 6 DT 0.650 0.920 0.761 0.794 1:12

 1044 396

64 736

BCF 7 DT 0.638 0.855 0.730 0.775 1:10

 1052 388

116 684

All 343 DT 0.645 0.760 0.698 0.765 2:40

 1106 334

192 608

Table 4.10: The results of the Decision Tree on the final data set with different feature definitions. The
best scores are underlined.

43

Random Forest

According to the weak outcome of Decision Trees on our data set, it is decided to perform
another test on a similar structure, with a slight difference, that is Random Forest classifiers.
Random Forest classifiers comprise a certain number of Decision Trees, but they are different in
how the trees are created, and the prediction is done using a polling mechanism [20]. Similar to
the previous section, the suitability measurement of a split is done by Impurity (Gini), as shown
in Table 4.3 of Section 4.3 under Random Forest. Furthermore, the number of Decision Trees in
the Random Forest is set to 10, whilst the maximum number of features in each tree is left to the
algorithm to decide.

In contrast to the results from the Decision Trees, the results by Random Forests are more
promising, with the best F1 score and Accuracy equal to 0.837 and 0.880 respectively, in the
case of ”All” feature definitions, followed by HAF−SHAF and HAF on the second and third
places. Nevertheless, the results are not as good as the best results which are achieved so far by
other classifiers. ROC curves of the Random Forest classifiers are demonstrated in Appendix A.6
where it can be seen that the best results belong to HAF, HAF−SHAF and ”All” with AUROC
equal to 0.94.

FD #At CLS P R F1 A BT CM

HAF 302 RF 0.761 0.888 0.820 0.860 1:59

 1217 223

89 711

HAF-SHAF 323 RF 0.827 0.826 0.826 0.876 2:50

 1302 138

139 661

CF 7 RF 0.658 0.840 0.738 0.787 1:06

 1092 348

128 672

DICF 6 RF 0.503 0.560 0.530 0.645 1:05

 998 442

352 448

BCF 7 RF 0.771 0.875 0.784 0.828 1:16

 1156 284

100 700

All 343 RF 0.812 0.865 0.837 0.880 3:37

 1280 160

108 692

Table 4.11: The results of the Random Forest on the final data set with different feature definitions. The
best scores are underlined.

44

Summary of Results

Based on the results, which were obtained through different experiments and presented in the
previous sections, Figure 4.12 and Figure 4.12 compare the results of the models employing
different feature definitions, in terms of Accuracy and F1 score, respectively. As it was discussed
before and according to the figures, by far, the best results are achieved using BCF feature
definitions on the 3−NN classifier, with around 0.95 in Accuracy and 0.93 in F1 score, compared
to the best results, claimed by Fischinger et al. [7], which is 0.857 using HAF features and
0.743 using HAF-SHAF. Even the HAF and HAF-SHAF models achieved 0.834 and 0.817 after
extending the dataset, on the SVM classifiers, which are generally weaker results, comparing to
the best scores of the experiments, that are obtained in this project.

The second best score, according to the figures, belongs to ”All” feature definitions, on SVM
with almost 0.91 in Accuracy and 0.85 in F1 score. The comparison between the results, which
are obtained from a 3−NN classifier and the results which are obtained using an SVM classifier
can be tricky in the case of our problem due to the fact that grasping process, as defined by
the problem statement in Section 1.1, needs a lot of calls to the classification model, in order
to find a suitable position for grasping, and as the 3−NN classifier is a lazy-learner, it follows
that the amount of time for predictions are so much higher than an eager-learner classifier such
as SVM, and unlike SVM, this amount of time can vary according to the size of the training
dataset. On the other hand, it should be considered that the amount of time, a machine needs
in total for the case of BCF on 3−NN might be less, based on the number of operations, that
should be executed before calling the trained model, as the computational complexity of a BCF
with only 7 feature definitions, can be drastically less, than the computational complexity of the
343 feature definitions of ”All”.

Another interesting fact is that the Random Forest classifier, performed almost acceptable
with all three feature definition sets, HAF, HAF-SHAF and ”All”. Apart from BCF on 3−NN
and ”All” on SVM, Random Forest classifier using HAF, HAF-SHAF and ”All” can be consid-
ered the best results of all others.

Despite mentioning in previous sections, Figure 4.14 illustrates four ROC curves, HAF and
HAF-SHAF on SVM, that come from Fischinger et al. [7], along with BCF on 3−NN and ”All”
with SVM, to emphasize how the project successfully improved the results.

Overall, given the fact that, BCF on a 3−NN reached the Accuracy of 0.945 and the F1
score of 0.926, it can be claimed that the outcome of the project is satisfying and promising as
the optimisations, on the project by Fischinger et al. [7], has been performed successfully, and
the best result of the TFRGA project is improved by nearly 9%, in terms of Accuracy.

45

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

HAF

HAF-
SHAF

CF

DICF

BCF

All

0.83

0.82

0.82

0.85

0.78

0.91

0.79

0.82

0.81

0.85

0.78

0.86

0.67

0.54

0.8

0.86

0.81

0.77

0.86

0.87

0.86

0.56

0.95

0.86

0.74

0.74

0.7

0.79

0.78

0.77

0.86

0.88

0.79

0.65

0.83

0.88

RF
DT

3−NN
SVM-SGD
RVM-RBF

SVM

Figure 4.12: A comparison between the performance of classification algorithms, on the feature values,
extracted using different feature definitions. The results are the Accuracy of the trained models on the
same test dataset.

46

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

HAF

HAF-
SHAF

CF

DICF

BCF

All

0.76

0.74

0.74

0.75

0.66

0.85

0.71

0.74

0.74

0.75

0.68

0.79

0.65

0.6

0.62

0.77

0.68

0.74

0.82

0.83

0.83

0.6

0.93

0.82

0.67

0.66

0.64

0.76

0.73

0.7

0.82

0.83

0.74

0.53

0.78

0.84

RF
DT

3−NN
SVM-SGD
RVM-RBF

SVM

Figure 4.13: A comparison between the performance of classification algorithms, on the feature values,
extracted using different feature definitions. The results are the F1 scores of the trained models on the
same test dataset.

47

(a) HAF with SVM (b) HAF-SHAF with SVM

(c) BCF with 3−NN (d) ”All” with SVM

Figure 4.14: ROC curves of the best obtained results in this project, compared with the initial results,
from TFGRA project.

48

CHAPTER 5
Conclusion and Future Work

In this chapter, a conclusion is made over the entire project, its goals, steps which have been
taken to achieve these goals, and the outcomes, in Section 5.1. Furthermore, Section 5.2 sketches
some possible ways to continue and expand this project toward further optimizations and im-
provements of the solution to the problem which was stated in Section 1.1.

5.1 Conclusion

In Definition 1 of Section 1.1, we formally defined the main problem of grasping, as an optimi-
sation function, where within, the problem can be divided into different pieces, one of which a
decision problem, that specifies, given a frame of a perception of the surrounding environment,
as a scene, either two spots can be found in the center of the scene, to be used for grasping.
The main goal of this project has been to optimize and improve the decision function, that is
the solution for the mentioned decision problem. By the definitions of the TFRGA project in
Fischinger et al. [7], the stated decision function is called so many times by other functions, in
each Decision round of the iterations that were shown in Figure 1.1.

In order to achieve any improvement by changing or replacing any part of a solution, it
should be possible to measure how the changes impact the success rate of the solution. Thus,
as the first step in this project, a testing application has been developed, that allows making
changes in different sections of the process, from input scene’s features to classification algo-
rithms and their parameters, and informs about the outcome of the changes. In Chapter 4 the
testing application, its architecture, and abilities have been discussed.

As the main part of the core of the decision algorithm contains a classification model, another
step toward making the experiments’ results more robust and rigid, is to extend the training
instances database. This step has been done in this project and the details on how to collect,
transform, replicate, and prepare the new instances have been provided in Chapter 4, Section 4.1.

Moving on, it should be tested that, whether it is possible to achieve as good results as what
was shown in TFRGA, with lighter and smaller feature set definitions. Therefore, three new

49

feature definitions have been proposed and discussed in Chapter 3, which are called Circular
Feature Definition (CF), Differential Intra-Circular Feature Definition (DICF), and Bell-Circular
Feature Definition (BCF), in order to be tested as both substitutes and complements for HAF and
SHAF from TFRGA.

In addition to the new features, more classification algorithms should be tested, in order
to make sure that the most effective classification algorithm is used to making binomial deci-
sions based on the feature values of the scenes. As a result, a list of some popular and well-
known has been made, consisting of Support Vector Machines with both Linear and RBF ker-
nels, k−NN, Decision Tree, and Random Forest, in order to conduct more experiments, utilizing
the mentioned classification algorithms, instead of the Linear kernel SVM, that was employed
in TFRGA.

Finally, some different experiments have been performed on the final dataset, which was
made out of the training instances from TFRGA, along with the collected and processed in-
stances of this project, utilizing different classification algorithm, and using HAF and SHAF
from TFRGA, and the three newly defined feature set definitions, CF, DICF, and BCF in differ-
ent combinations. The results of the experiments were presented and discussed in Chapter 4 and
the chapter has been concluded with a summary over all results, in Section 4.5. Reference to the
summary, the project has made it possible to optimize the decision problem with an Accuracy
of 0.95, with a 3−NN classification trained model, compared to the best results, claimed by
Fischinger et al. [7], which was 0.857 using HAF features and 0.743 using the combination of
HAF and SHAF.

5.2 Future Work

There are many steps, that can be made, toward further optimizations and improvements of
the project, such as performing more experiments with different classification algorithms which
have not been used in this project, and altering the parameters of the algorithms to achieve better
results.

Another improvement on the developed testing application could be to have a possibility to
run more than one classifier algorithm in parallel on the same dataset, and having some mea-
sures over the performance difference such as Statistical Significance Test [5]. Furthermore, the
ability to ensemble classifiers could be a new approach for optimizing such a project as it has
been observed in the results that different classifiers are capable of predicting with different pat-
terns. Some predict positive instances better than the others whilst some are better with negative
instances.

50

Bibliography

[1] Shawkat Ali and Kate A Smith. On learning algorithm selection for classification. Applied
Soft Computing, 6(2):119–138, 2006.

[2] Dmitry Berenson, Rosen Diankov, Koichi Nishiwaki, Satoshi Kagami, and James Kuffner.
Grasp planning in complex scenes. In Humanoid Robots, 2007 7th IEEE-RAS International
Conference on, pages 42–48. IEEE, 2007.

[3] Pavel B Brazdil and Carlos Soares. A comparison of ranking methods for classification
algorithm selection. In Machine Learning: ECML 2000, pages 63–75. Springer, 2000.

[4] River Bank Computing. Pyqt. PyQt is available online at http://www. riverbankcomputing.
co. uk/, visited on June, 13, 2004.

[5] Janez Demšar. Statistical comparisons of classifiers over multiple data sets. Journal of
Machine learning research, 7(Jan):1–30, 2006.

[6] ROS Documentation. http://wiki.ros.org/. Accessed: 2016-01.

[7] David Fischinger. Enabling autonomous robotic grasping based on topographic features,
phd thesis. Vienna University of Technology, 2014.

[8] David Fischinger and Markus Vincze. Empty the basket-a shape based learning approach
for grasping piles of unknown objects. In Intelligent Robots and Systems (IROS), 2012
IEEE/RSJ International Conference on, pages 2051–2057. IEEE, 2012.

[9] David Fischinger, Markus Vincze, and Yun Jiang. Learning grasps for unknown objects in
cluttered scenes. In Robotics and Automation (ICRA), 2013 IEEE International Conference
on, pages 609–616. IEEE, 2013.

[10] David Fischinger, Astrid Weiss, and Markus Vincze. Learning grasps with topographic
features. The International Journal of Robotics Research, page 0278364915577105, 2015.

[11] freenect Documentation. http://wiki.ros.org/freenectcamera. Accessed: 2016-01.

[12] Raul Garreta and Guillermo Moncecchi. Learning scikit-learn: machine learning in
python. Packt Publishing Ltd, 2013.

51

[13] Arnulf Graf, Alexander J Smola, and Silvio Borer. Classification in a normalized feature
space using support vector machines. Neural Networks, IEEE Transactions on, 14(3):597–
605, 2003.

[14] L. Guo, M. Zhang, Y. Wang, and G. Liu. Environmental perception of mobile robot. pages
348–352, 2006. cited By 2.

[15] James A Hanley and Barbara J McNeil. The meaning and use of the area under a receiver
operating characteristic (roc) curve. Radiology, 143(1):29–36, 1982.

[16] Chih-Wei Hsu, Chih-Chung Chang, Chih-Jen Lin, et al. A practical guide to support vector
classification, 2003.

[17] Kai Huebner and Danica Kragic. Selection of robot pre-grasps using box-based shape ap-
proximation. In Intelligent Robots and Systems, 2008. IROS 2008. IEEE/RSJ International
Conference on, pages 1765–1770. IEEE, 2008.

[18] Sašo Karakatič and Vili Podgorelec. Improved classification with allocation method and
multiple classifiers. Information Fusion, 31:26–42, 2016.

[19] Sotiris B Kotsiantis, I Zaharakis, and P Pintelas. Supervised machine learning: A review
of classification techniques, 2007.

[20] Andy Liaw and Matthew Wiener. Classification and regression by randomforest. R news,
2(3):18–22, 2002.

[21] Andrew T Miller, Steffen Knoop, Henrik Christensen, Peter K Allen, et al. Automatic
grasp planning using shape primitives. In Robotics and Automation, 2003. Proceedings.
ICRA’03. IEEE International Conference on, volume 2, pages 1824–1829. IEEE, 2003.

[22] Qt Nokia. A cross-platform application and ui framework, 2009, 2009.

[23] A Python Computing Package Numpy. http://www.numpy.org/. Accessed: 2015-08.

[24] Travis E Oliphant. A guide to NumPy, volume 1. Trelgol Publishing USA, 2006.

[25] openni_camera Documentation. http://wiki.ros.org/opennicamera. Accessed: 2016-01.

[26] Chavdar Papazov, Sami Haddadin, Sven Parusel, Kai Krieger, and Darius Burschka. Rigid
3d geometry matching for grasping of known objects in cluttered scenes. The International
Journal of Robotics Research, page 0278364911436019, 2012.

[27] pcl Documentation. http://wiki.ros.org/pcl. Accessed: 2016-01.

[28] Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel, Bertrand
Thirion, Olivier Grisel, Mathieu Blondel, Peter Prettenhofer, Ron Weiss, Vincent Dubourg,
et al. Scikit-learn: Machine learning in python. The Journal of Machine Learning Re-
search, 12:2825–2830, 2011.

52

[29] Markus Przybylski, Tamim Asfour, and Rüdiger Dillmann. Planning grasps for robotic
hands using a novel object representation based on the medial axis transform. In Intelligent
Robots and Systems (IROS), 2011 IEEE/RSJ International Conference on, pages 1781–
1788. IEEE, 2011.

[30] Riverbank Computing Limited PyQt. https://riverbankcomputing.com/software/pyqt/intro.
Accessed: 2015-08.

[31] A cross-platform application framework Qt. https://en.wikipedia.org/wiki/Qt. Accessed:
2015-08.

[32] Morgan Quigley, Ken Conley, Brian Gerkey, Josh Faust, Tully Foote, Jeremy Leibs, Rob
Wheeler, and Andrew Y Ng. Ros: an open-source robot operating system. In ICRA work-
shop on open source software, volume 3, page 5, 2009.

[33] John R Rice. The algorithm selection problem. 1975.

[34] Alejandro Rosales-Pérez, Jesus A Gonzalez, Carlos A Coello Coello, Hugo Jair Escalante,
and Carlos A Reyes-Garcia. Multi-objective model type selection. Neurocomputing,
146:83–94, 2014.

[35] rviz Documentation. http://wiki.ros.org/rviz. Accessed: 2016-01.

[36] Machine Learning in Python scikit learn. http://scikit-learn.org/stable/. Accessed: 2015-
08.

[37] The Python Tutorial. https://docs.python.org/2/tutorial/. Accessed: 2015-08.

[38] Guido Van Rossum et al. Python programming language. In USENIX Annual Technical
Conference, volume 41, 2007.

[39] Ingrid Visentini, Lauro Snidaro, and Gian Luca Foresti. Diversity-aware classifier ensem-
ble selection via f-score. Information Fusion, 28:24–43, 2016.

[40] Xu-Cheng Yin, Kaizhu Huang, Chun Yang, and Hong-Wei Hao. Convex ensemble learning
with sparsity and diversity. Information Fusion, 20:49–59, 2014.

[41] Zhengyou Zhang. Microsoft kinect sensor and its effect. MultiMedia, IEEE, 19(2):4–10,
2012.

53

APPENDIX A
Appendices

Code Part A.1: How select a classifier

1 SVM*, DecisionTree, KNN, SGD, RandomForest

Code Part A.2: How to define parameters for a new classifier

1 def PrepareParameters():
2 LearnerParameters.update(
3 {
4 ’kernel’: LearnerParameterUnit(’kernel’, ’Kernel

function’, ’linear’),
5 ’C’ : LearnerParameterUnit(’C’, ’Penalty

parameter C ’, ’1.0’),
6 ’max-iter’ : LearnerParameterUnit(’max-iter’,

’Maximum iteration’, ’-1’),
7 ’test-por’ : LearnerParameterUnit(’test-por’,

’Test set portion’, ’0.5’)
8 })

Code Part A.3: How to declare the new classifier

1 class SVMLearner(LearnerBase):

55

2
3 def __init__(self):
4
5 super(SVMLearner, self).__init__()
6
7 self.learner_name = ’SVM Learner’
8
9 self.clf = svm.SVC(

10 kernel=
LearnerParameters[’kernel’].value,

11 C=
float(LearnerParameters[’C’].value),

12 max_iter=
int(LearnerParameters[’max-iter’].value)

13)

56

(a) HAF (b) HAF-SHAF

(c) CF (d) DICF

(e) BCF (f) All

Figure A.1: ROC curves of the SVM with Linear Kernel trained models over final data set with 6 different
sets of feature definitions.

57

(a) HAF (b) HAF-SHAF

(c) CF (d) DICF

(e) BCF (f) All

Figure A.2: ROC curves of the SVM with RBF Kernel trained models over final data set with 6 different
sets of feature definitions.

58

(a) HAF (b) HAF-SHAF

(c) CF (d) DICF

(e) BCF (f) All

Figure A.3: ROC curves of the SVM with SGD training trained models over final data set with 6 different
sets of feature definitions.

59

(a) HAF (b) HAF-SHAF

(c) CF (d) DICF

(e) BCF (f) All

Figure A.4: ROC curves of the 3−NN trained models over final data set with 6 different sets of feature
definitions.

60

(a) HAF (b) HAF-SHAF

(c) CF (d) DICF

(e) BCF (f) All

Figure A.5: ROC curves of the Decision Tree trained models over final data set with 6 different sets of
feature definitions.

61

(a) HAF (b) HAF-SHAF

(c) CF (d) DICF

(e) BCF (f) All

Figure A.6: ROC curves of the Random Forest trained models over final data set with 6 different sets of
feature definitions.

62

	Introduction
	Problem Statement
	Contribution of Project
	Training Instances
	Features
	Classifier
	Classifier Parameters

	Outline

	Related Work
	Topographic Features
	Previous Obtained Results

	Theoretical Contribution
	New Features
	Circular Feature Definition - CF
	Differential Intra-Circular Feature Definition - DICF
	Bell-Circular Feature Definition - BCF

	Learning Process
	Chunked Data sets
	Pre-processing
	Classifier Selection
	Parameters

	Experiments and Results
	Set-up
	Test Application
	Extending Sample Database
	Hardware Specifications

	Experiments Overview
	Parameters
	SVM - Linear Kernel
	Including and Excluding Reproduced Instances
	Newly Defined Features

	More Classifiers
	SVM - Radial Basis Function Kernel
	SVM - Stochastic Gradient Descent Training
	3-Nearest Neighbors
	Decision Tree
	Random Forest
	Summary of Results

	Conclusion and Future Work
	Conclusion
	Future Work

	Bibliography
	Appendices

