
Exploring computer vision
strategies of food recognition for

dietary assessment

MASTER’S THESIS

submitted in partial fulfillment of the requirements for the degree of

Master of Science

in

Media Informatics and Visual Computing

by

Andreas Fermitsch
Registration Number 0406978

to the Faculty of Informatics

at the TU Wien

Advisor: Prof. Dr. Martin Kampel
Assistance: Dr. Rainer Planinc

Vienna, 7th December, 2017
Andreas Fermitsch Martin Kampel

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.ac.at

Die approbierte Originalversion dieser Diplom-/ 
Masterarbeit ist in der Hauptbibliothek der Tech-
nischen Universität Wien aufgestellt und zugänglich. 

http://www.ub.tuwien.ac.at 

The approved original version of this diploma or 
master thesis is available at the main library of the 
Vienna University of Technology. 

http://www.ub.tuwien.ac.at/eng 





Erklärung zur Verfassung der
Arbeit

Andreas Fermitsch
Neubaugürtel 23 / 9 1150 Wien

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 7. Dezember 2017
Andreas Fermitsch

iii





Kurzfassung

Zunehmende Gesundheitsprobleme wie Diabetes oder Herz-Kreislauferkrankungen kön-
nen unter anderem auf unsere Ernährung zurückgeführt werden. Diverse Applikationen
benötigen eine Monitierung ernährungsbezogener Metadaten, wie etwa die Nahrungszu-
sammensetzung der täglichen Kalorienaufnahme. Existierende Methoden für Ernährungs-
auswertungen, wie 24-Stunden Erinnerungsprotokolle oder Verzehrsprotokolle, sind oft
ungenau, zeitaufwändig, teuer und schwerfällig. Auswertungen die auf Photographien von
Malzeiten basieren, bieten eine Alternative zu den traditionellen Methoden. Sie eröffnen
die Möglichkeit, diese zu unterstützen und zu verbessern.
Um State-of-the-art Methoden zur Erkennung von Essen zu identifizieren, wird ei-
ne Recherche gängiger Computer Vision-Methoden durchgeführt. Die Bag-of-Features-
Codierung wird als Bemessungsgrundlage, und die Fisher Vector-Codierung als Erwei-
terung implementiert. Diverse Farb- und Textur-Bildbeschreibungen werden verglichen
und analysiert. Um die Codierung weiter zu verbessern werden zwei räumliche Sampling-
Methoden für die Bildbeschreibungen verwendet. Um mehrere Bildbeschreibungen zu
kombinieren, werden zwei unterschiedliche Strategien miteinander verglichen. Eine dritte
Implementierung verwendet Convolutional Neural Networks für die Extraktion von Bild-
Merkmalen und die Kategorien-Klassifizierung. Zwei Netzwerk-Architekturen, AlexNet
und GoogLeNet werden verwendet. Alle drei Techniken werden auf drei unterschiedlich
großen Bild-Datensätzen von Malzeiten angewandt. Die Fisher Vector-Codierung über-
trifft die Bag-of-Features-Codierung, und die Convolutional Neural Networks die Fisher
Vector-Codierung. Die besten Klassifizierungsresultate liegen bei etwa 80% bei 100, und
bei etwa 71% bei 256 Essens-Kategorien. Bei allen drei Datensätzen, liegt die Top-5
Erkennungsrate in einem Bereich von 90-96%.
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Abstract

Diet is a contributing factor for growing health concerns, such as diabetes. For various
applications the need arises to monitor meta data, such as the caloric dietary intake
composition of daily life. Existing methods of dietary assessment, such as 24-hour Dietary
Recalls or Dietary Records, are often inaccurate, time-consuming, costly and cumbersome.
Assessment on basis of photographs of food, promises to be an alternative to, or a support
of traditional methods.
Research of computer-vision techniques for food recognition is conducted and the state-of-
the-art methods identified. The Bag-of-Features technique is implemented as a baseline
method, the Fisher Vector-encoding as an improvement of the technique. Several colour
and texture descriptors are compared and analysed. To further improve the method,
two spatial sampling techniques are used for each descriptor. For the combination of
various single descriptors, two fusion strategies are compared. The third implementation
uses Convolutional Neural Networks as feature extractor and classifier. Two network
architectures, AlexNet and GoogLeNet are used. The three techniques are applied
on three food image-datasets of different sizes. Fisher Vector-encoding outperforms
Bag-of-Features-encoding, and Convolutional Neural Networks outperform the Fisher
Vector-encoding. The top results achieved in the image classification task are around 80%
recognition rate in a 100 food-category problem, and around 71% for 256 food categories.
Top-5 recognition rates are in a range of 90-96% for all three datasets.
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CHAPTER 1
Introduction

1.1 Motivation

Diseases like diabetes, obesity, cancer and heart-related health issues are on the rise
globally and a growing concern in our society [Shim et al., 2014,McAllister et al., 2009].
One besides other lifestyle factors of the increasing incidences of these diseases, like lack
of physical activity, is an unhealthy diet [Rhyner et al., 2016]. Studies show that diet
changes can reduce cancer incidences by one-third and are associated with a low risk
of all-cause mortality [Shim et al., 2014]. Dietary data from long-term observation can
help to predict risks of cardiovascular diseases. Epidemiological studies are necessary
to identify risk factors for mentioned diseases to then be able to detect patterns for
prevention of those diseases. To conduct such studies a great collection of data is needed.

The number of adult people currently with diabetes are estimated by the [International
Diabetes Federation, 2016] to be 415 million, with expectations of 642 million by 2040. In
the United States health care in 2014, US $1 out of US $9 was spent on diabetes [Rhyner
et al., 2016], illustrating the financial implication of the disease.

There are two main types of diabetes mellitus: type 1 (T1D) and type 2 (T2D). 85% of
diabetes patients suffer from T2D [Forouhi and Wareham, 2014]. T1D is an autoimmune
process in which the pancreatic beta cells are destroyed, cells that produce insulin,
making it necessary for the patient to supply exogenous insulin [Rhyner et al., 2016].
The key factor to determine the postprandial insulin dose is to estimate the content
of carbohydrates of the meal [Anthimopoulos et al., 2015]. For an affected person it
is therefore a necessity to have a close observation of all dietary intake, especially the
carbohydrate intake throughout each meal.

Also obesity is one of the major health issues in developed countries. In the US the
majority of the population is overweight or obese [Karl and Roberts, 2014]. While
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1. Introduction

in 2008 one in ten of the worlds adult population was obese, in 2012 it were already
one in six. Recent studies show that obese people have higher risk of hypertension,
heart attack, type 2 diabetes, high cholesterol, breast and colon cancer, and breathing
disorders [Pouladzadeh et al., 2013].

Although the reasons for an obesity epidemic since the mid-20th century are not completely
understood, two strong contributors are modern food marketing practices and physical
inactivity. "Increased portion sizes in commercially marketed food items, inexpensive food
sources such as fast food, increased availability of vending machines with energy-dense
items, increased use of high fructose corn syrup", [McAllister et al., 2009, p. 2], are some
examples of the aftermath of methods of our food industry, affecting our dietary intake
and overall nutritional behaviour.

A general consensus of a reason for weight gain lies in consumption of unnecessary calories.
Key to prevent weight gain is to monitor overall energy intake in relation to energy
expenditure of physical activity, making it necessary to assess a long-term nutritional
intake estimation of people suffering from obesity.

Existing traditional methods for short- and long-term dietary assessment used to study
the aforementioned amongst other disease and health related issues, have many known
shortcomings when it comes to accuracy of the dietary intake. Methods like the 24-Hour
Recall (24HR) and the Food Frequency Questionnaires (FFQ), suffer from under-reporting.
Food diary methods often have the effect on an observed person, to change their nutritional
behaviour during the assessment [Shim et al., 2014].

Therefore the first motivational aspect is to improve the accuracy of existing assessment
methods. In the past years there has been a growing interest of developing technologically
assisted systems for more automation and the goal of a high accuracy of dietary assessment
[Illner et al., 2012, Stumbo, 2013]. Computer-vision methods are advancing at a fast
speed through growing research interest. Object recognition methods are getting closer
and closer to compete with humans in more and more recognition tasks [Borji and Itti,
2014].

The second motivational aspect is improving usability and relieving the assessment process
for patients and users. Existing methods are time-consuming, costly and cumbersome.
Through new technological advances and mainly automation, dietary assessment becomes
easier for users and patients to conduct in daily life and it is cost-effective because no
medical personnel is needed for qualitative methods of data enquiry.

The following list identifies target groups of users for such a system, to illustrate the
applicational range of dietary assessment systems:

• People depending on assessing their macro-nutrient(carbohydrates, fats, protein
and alcohol) intake composition like diabetes patients.

• Obese people that try to estimate their calorie intake to loose weight

2



1.2. Challenges

• People with fitness goals, e.g. gaining muscle mass or loosing fat benefit from tools
to keep track of their macro-nutrient intake

• For individual medical investigation on specific micro- and/or marco-nutrient
composition or deficiencies.

• For epidemiological studies, because of the lack of accurate cost effective methods
to assess data in a large scale.

1.2 Challenges

To support a person in counting their daily calorie intake or in documenting their dietary
habits and trends, an easy and practical way of obtaining this data for the user, is through
image data of photos of the foods taken before consumption, e.g. with a smartphone
camera. This can be done from any setting like a restaurant, at school, at home or while
travelling.

The main components of a dietary assessment system are the recognition of the food
categories and the volume quantification. With the resulting meta-data of the assessment
(such as an ingredient list and their corresponding volume), the structural meta-data can
be looked up in food databases. E.g. macro-nutrient composition estimation of the food
components, overall calorie content estimation or a list of the micro-nutrients (vitamin
and mineral content), depending on the research goal or application.

The first step of a computer vision based system is to identify the content of the available
image, i.d. recognising the kinds of foods and ingredients on the image. The difficulty of
food object recognition lies in the ways food can be represented in images: the intra-class
variation of a class of food is very high [Yang et al., 2010], due to the creative freedom
of the chef and the many ways a certain dish may be prepared. Same instances of food
items appear in different shapes and sizes, depending on how they are cut or prepared,
same food ingredients often appear in different colours or shades of colours, depending
on their freshness, also the texture of same instance foods vary etc. These obstacles
complicate the problem, but there are approaches in object recognition to deal with these
difficulties, such as invariances in rotation or colour intensity of descriptors or increasing
the training data to statistically cover more variance. Occlusion however poses a problem
that is different in nature. While recognition of single food items, like single fruits or a
clear bowl of rice is an easy problem, recognising complex meals with lots of chopped
and mixed ingredients covering other ingredients is challenging [Knez and Šajn, 2015]. If
not all information is included on the photo (like a piece of meat deep inside a soup, not
visible on the photo), then this information can therefore not be recognised, neither from
a human nor from an algorithm, making accurate dietary intake assessment on basis of
image data as a general solution not plausible in real life [Pouladzadeh et al., 2013]. To
improve the estimation errors resulting from occlusions, additional sensors may bring
an improvement [Knez and Šajn, 2015]. Computer vision does not provide a one-fits-all
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solution, but has the potential to contribute to an improvement of the dietary assessment
process, increase its usability and lowering its costs [Sharp and Allman-Farinelli, 2014].
Also the fine-grading of what items constitute as a single food category is debateable
and dependent on the application, considering the very large number of different kinds of
foods and combinations of ingredients [Puri et al., 2009].

The following list summarises identified challenges [Beijbom et al., 2015,Myers et al.,
2015]:

• open-world recognition (unbounded number of categories)

• fine-graded recognition (differentiating between subcategories of food items)

• hierarchical label spaces (handling related labels)

• visual attribute recognition (e.g. distinguishing between fried vs. baked)

• occlusion (unlikely to convey complete compositional information from visual data)

• volume estimation is very challenging

• assumptions (such as background, calibration targets) reduce usability or lead to
unrealistic arrangements

• multiple instances of items

• segmentation of items

1.3 Scope

The theoretical scope of this thesis is first a profound analysis of state-of-the-art approaches
that apply computer vision techniques for assessing dietary information and/or performing
visual food classification. The heart of such a system, is the method of recognition of food
objects on digital photographs of the specific dishes. The second part of the theoretical
scope is a detailed discussion of three of the recognition methods. The selected methods
are

• Bag-of-Features (BoF)-encoding of texture and colour features

• Fisher-Vector (FV)-encoding of texture and colour features

• Deep Convolutional Neural Network (DCNN)
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Due to the simplicity and the good performance, the Bag-of-Features (BoF) approach has
become well established [O’Hara and Draper, 2011], and for that reason is selected as a
baseline to show the advances of the other two methods. Encoding with the Fisher Vector
(FV) has shown to outperform the BoF-encoding significantly in recognition tasks [Sanchez
et al., 2013]. [Kawano and Yanai, 2015b] show an improvement of accuracy and processing
time of FV over BoF, applied to food categorization. Deep Convolutional Neural
Networks (DCNNs) recently got increasingly popular for large-scale image recognition
tasks [Simonyan and Zisserman, 2014], after winning the 2012 ImageNet Large-Scale
Visual Recognition Challenge (ILSVRC) [Krizhevsky et al., 2012]. Food recognition
experiments conducted by [Kawano and Yanai, 2014] showed improvement in accuracy
using pre-trained DCNNs over using FV-encoding, and [Kagaya et al., 2014] show
improvements of DCNNs over BoF-encoding.

The practical scope of this thesis is limited to the computer vision perspective of food
object recognition. Specifically, to the implementation of the mentioned object recognition
algorithms, to compare the different techniques with experiments on the same data. The
performance of the methods will be tested in various experiments of several image
descriptors and two DCNN architectures on three datasets of food images: the two
UEC-FOOD datasets [Kawano and Yanai, 2015b,Kawano and Yanai, 2015a], and the
FOOD101 [Bossard et al., 2014] (described in detail in Section 5.2.1). Those datasets
consist of 100/256 and 101 classes of food dishes. The images are collected from
the internet and represent images that are taken from real users (snapshots) under
uncontrolled conditions. The total amount of images in the sets are 31.394 and 101.000.

1.4 Contribution

The following enumeration summarises the contribution of the thesis:

1. Research of the history and applications of dietary assessment, to understand the
motivation and needs of possible applications, and establishing existing methods
and tools used for food related assessments in fields such as medical applications
and research.

2. Research of work related to food recognition that uses computer vision methods
to identify food categories on images. The collected work is then examined to
establish the recognition methods that are currently used for this purpose. The
result of the examination is a selection of the most promising methods.

3. A presentation of the selected methods. This serves for a deeper theoretical
understanding of the used recognition techniques.

4. A practical implementation of three selected object recognition methods.

5. An evaluation of the methods. For a direct comparison all methods are tested on
three datasets of food images.
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1. Introduction

1.5 Outline

In Chapter 2 the historical background of dietary assessment, presenting common practical
methods used in medical application. The chapter also presents computer aided tools
such as web-platforms or smartphone apps. In Chapter 3 state-of-the-art projects that
take a computer vision approach for identifying food categories are presented. The
general approach and the used techniques are described for each project. From this
overview of current research, the most promising recognition methods are identified, and
three methods selected. Chapter 4 gives a detailed description of the selected object
recognition methods. For each method, results from the previously described projects
are compared. In Chapters 5 the methodology used in the practical part of this thesis
is discussed, and the implementation details are described. Finally Chapter 6 presents
the results from all experiments, including various combinations of techniques and an
evaluation of the best results achieved for each of the three recognition methods on all
three datasets. And Chapter 7 draws conclusions from the comparison of the recognition
methods as well as from the achieved experimental results.
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CHAPTER 2
Background of dietary assessment

2.1 Dietary assessment methods

Dietary assessment in medical research goes back to the 1930s [Stumbo, 2013]. Since
then a great number of methods have been developed, from paper-based methods and
hand calculation of nutrient intake in the first half of the 20th century to computer-
assisted systems in the second half. In this section some traditional paper-based methods
for dietary assessment are described. Some computer technology assisted systems are
presented in Section 2.2 and computer-vision based systems in Chapter 3.

One possible purpose of those methods is to accurately estimate the usual food intake of
a person, meaning the food intake over a long-term period of months or a year. For most
research questions a long-term intake estimation is of interest, providing enough data to
reach conclusions, detect habitual patterns or defficencies. To improve the methods, trials
were conducted of how many days of dietary data are needed to reflect a usual intake and
how to evaluate the accuracy of the assessments. Additionally statistical methods for
estimating the usual intake of food were developed to reduce the needed data. However
the advances made, there is still no easy-to-use and reliable solution for assessing the
long-term intake [Stumbo, 2013]. [Shim et al., 2014] provide a review of popular dietary
assessment methods for medical applications. [Zhu et al., 2010] give a similar survey. The
following paragraphs give a short summary of the methods described in [Shim et al., 2014]
and [Zhu et al., 2010]. The methods discussed here are solely self-reporting methods1,
meaning the data of information is reported directly from the respondent, either through
actively collecting the data or passively assisting with answers.

1Opposed to observational methods of information collection.
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2. Background of dietary assessment

2.1.1 24-hour Dietary Recall (24HR)

The 24HR is conducted as an interview of approximately 20 to 30 minutes, where the
respondent reports to a trained interviewer from memory, all food and beverages that
were consumed in the past 24 hours. The accuracy of the method relies on the skills of the
interviewer, but mostly on the memory of the interviewed person, which often leads to
under-reporting. The volume of food portions are estimated in reference to a standardised
container like a tea cup or a spoon, to help the respondent with the quantification of the
food items. With detailed questions from the interviewer about exact ingredients, brands
or preparation (e.g. use of oils etc.) of the dishes, the interviewer tries to determine as
exact as possible the complete list of food items.

The concentrated information of the interviews are then coded with a food composition
database, the volume of the portions converted into actual weights and the macro-nutrient
composition of the intake from the analysed period can be calculated, a time-consuming
and expensive process.

[Baranowski et al., 2014] add that the method is among the most precise, because it
avoids reactivity issues of diaries, like avoiding foods during the assessment. The authors
also note that it is necessary to assess multiple days, along with statistical modeling to
reach a long-term conclusion.

2.1.2 Dietary Record (DR)

Similar to the 24HR method the food intake from the past 24 hours is being estimated.
The respondent has to go through a training process first, and is then entrusted to record
all ingredients and foods during the period of one day. The record keeping is to be
executed in real-time, i.e. before, during or after the meal. This method therefore does
not rely on the respondents memory as much as the 24HR method [Shim et al., 2014].
If executed conscientiously, the estimation will have a very high accuracy. In theory a
food diary like the Dietary Record (DR) is the most precise method, though studies
show that it also is prone to error, as they have the effect of avoiding certain ingredients
or foods from the usual dietary behaviour, when the respondent is knowingly under
observation [Baranowski et al., 2014]. Also they are often not completed in real time
during the assessment. For children its necessary to provide assistance and supervision
to complete the process. Also, the method is time-consuming and the training of the
participant causes costs. Keeping a DR is very burdensome on the participant, especially
when executed for a longer period of time [Small et al., 2009].

The 24HR and DR methods are not well suited to study chronic diseases, as they are
limited to a short-term window of information collection for the data inquiry. For the
study of chronic diseases a long-term exposure is of interest. These assessment methods
are used for national surveys, etiologic studies of chronic diseases, randomised clinical
trials and cohort studies [Shim et al., 2014].
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2.2. Computer aided systems for traditional dietary assessment methods

2.1.3 Dietary History (DH)

The protocol for a Dietary History (DH) is to perform a food diary for 3 full days,
and an additional check-list of frequently consumed foods. Its necessary to conduct an
in-depth time-consuming interview of about 90 minutes. The method was developed
by B. S. Burke in 1947 [Burke, 1947]. Due to its time effort and costs it is not used in
epidemiological studies [Shim et al., 2014].

2.1.4 Food Frequency Questionnaire (FFQ)

Using this method the respondent fills out an in-depth check-list about which kinds of
food he or she consumed and how frequently in a predefined time-frame. The FFQ is
more cost-effective than the previously mentioned methods, and they assess a long-term
period of time. Therefore they provide information of the usual dietary behaviour. FFQs
are a widely used technique in epidemiological studies since the 1990s, because they
are much simpler and faster to assess and cheaper to conduct than 24HRs, DRs or
DHs [Shim et al., 2014]. FFQs are usually designed for an intended group of respondents,
e.g. targeting certain ingredients of the local cuisine or a specific research question, e.g.
focus of intake of specific nutrients. This method relies on the memory of the respondent
over a much longer period of time compared to the 24HR and DH methods, one of the
reason that the reliability and accuracy of FFQs are widely discussed. FFQs are not
suited to estimate an accurate measure of calorie intake or macro-nutrient composition.

2.2 Computer aided systems for traditional dietary
assessment methods

First computerised systems for dietary assessment started to replace the manual cal-
culations in the 1970s and 1980s [Stumbo, 2013]. With further technological progress,
data acquisition became increasingly easier with computers and later mobile systems
such as Personal Digital Assistants (PDAs) and mobile phones. Through the revolution
of the internet, online systems were developed, that improved accessibility. Further
those technologies improved the usability of the assessment process by features such as
interaction, visualizations or prompts to remind respondents to submit reports.

Smart devices that exist on the market today are increasingly used by health conscious
individuals to track health parameters such as workout regime journaling, tracking ones
daily footsteps or estimating the amount of burnt calories [Nabi et al., 2015].

In this section examples of computer-aided systems of traditional dietary assessment
methods are introduced. They are grouped into technological application, this catego-
rization is independent of the methodology of the dietary assessment. Systems based on
computer-vision technologies are left out here on purpose, as these projects are discussed
in more detail in Chapter 3.
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2. Background of dietary assessment

2.2.1 Personal Digital Assistant(PDA)-based systems

Starting from the mid-1990s on, PDAs became a popular mobile tool for assessing
dietary intake [Forster et al., 2016]. These devices often provided the respondent with
predefined drop-down lists of food items, typically ranging from 180 to >4000 ingredients.
Evaluations show comparable results with traditional dietary assessment methods [Illner
et al., 2012]. Through technological progress and the innovation of smartphones the use
of PDA systems decreased.

Wellnavi is an image-based assessment system from Japan from the year 2007. It is
based on PDA technology although it works with the technological components of a
mobile-phone system, i.e. a camera and network-connection for data transfer [Kikunaga
et al., 2007]. Consumed food is photographed by the respondent before and after the
meal. Additionally a description of the meal in written form (with a stylus on the
devices display) can be given. A dietitian evaluates the respondents dietary assessment
parameters based on the observation of the collected photos and the descriptions. For
portion size quantification information for the dietitian, a fiducial marker of a fixed size
is to be placed next to the food [Illner et al., 2012].

The authors of the Wellnavi project conduct a validity study by comparing their system
to the weighted DR method. They report of overall under-reporting of dietary intake
using their method, in all test-groups (total of 27 men and 48 women from the general
population). They assume the reason for under-reporting to be the low image quality of
the Wellnavi system [Kikunaga et al., 2007].

2.2.2 Web-based systems

Automated Self-Administered 24-Hour Dietary Assessment Tool (ASA24)
Developed by the National Cancer Institute in the US., ASA24 is a web-platform based
on the Automated Multiple Pass Method (AMPM) [Shim et al., 2014], a method that is
structured into five interaction steps to assess the food intake of a 24-hour period. The
system works with a visualization of each step in the process of creating a food diary and
provides digital images for over 10.000 foods and up to eight images per food [Baranowski
et al., 2014].

The first step is to report meals and the time they were consumed, after that the meals can
be described in detail with all included ingredients. After selecting a food ingredient, the
quantification of the item is specified. This step is visualised to help with the estimation
of the portion size, that relies on the respondents memory. The assistant for the selection
of a portion size for a chosen food item is illustrated in Figure 2.1. Additionally the
system asks questions during the passes about forgotten foods and drinks, for every gap
of three or more hours between reportings, and asks for a review of the recall before
finishing [Baranowski et al., 2014].
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2.2. Computer aided systems for traditional dietary assessment methods

Figure 2.1: ASA24, Assistant for selection of portion sizes.

The ASA24-project can be accessed at http://epi.grants.cancer.gov/asa24
and a demonstration of the system is available at https://asa24.nci.nih.gov/
demo 2.

Food Intake Recording Software System (FIRSSt) is an adaptation of ASA24,
that is developed specifically for childrens needs. The project is currently in version 4.
An animated avatar is added with the goal of keeping focus and interest on completing
the process. General consideration on childrens knowledge about food and ingredients
was included in the systems design [Baranowski et al., 2014].

DietDay, NutriNet Sante and the Oxford WebQ are further examples of web-based
24HRs [Forster et al., 2016]. The Computer Assisted Personal Interview System (CAPIS)
[Shin et al., 2014] is a Korean open-ended web-based assessment tool. An example of
a development of an online FFQ is Food4Me FFQ, that was recently developed across
seven European countries and has been translated into six languages. The design is
similar to traditional paper-based FFQs, and evaluations showed good agreement with
the paper-based method. The recently developed GraFFS FFQ has a more interactive
approach, presenting illustrations of food items to choose from [Forster et al., 2016].

2accessed October 10, 2016
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2.2.3 Smartphone-based systems

Rising availability and use of smartphones among a variety of age groups enable low-cost
and large-scale potential for convenient real-time data acquisition [Forster et al., 2016].
Through the high number of sensors and features that smartphones are equipped with,
such as built-in cameras, global positioning systems (GPS), accelerometers, high-speed
microprocessors, portable designs, and connectivity to external devices via bluetooth and
infra-red, they represent powerful tools for dietary assessment and research [Sharp and
Allman-Farinelli, 2014].

Figure 2.2: A screenshot of My Meal Mate
illustrating the food entry process [Carter
et al., 2012].

My Meal Mate (MMM) Like the
PDA-based systems, MMM is an electronic
food diary to support weight loss. The food
entries are selected from a 40.000-item food
database that include generic and branded
items, therefore supports the ability to cre-
ate your own food entries. The system is
also capable of saving photographs, which
has the function of memory support for the
respondent for entries that are not entered
in real-time, but at a later opportunity.
No computational analysis is performed on
the image data. The study shows that the
dietary intake assessment correlates well
with a conducted 24HR comparison. Incor-
rect portion quantification introduced the
biggest outliers both in the MMM system
and the 24HR method. Figure 2.2 shows
a screenshot of the food diary entry page
of MMM [Carter et al., 2012].

Remote Food photography Method
(RFPM) has the same system design as
Wellnavi but on actual smartphones. An
image-based food diary is collected in real-
time by the respondent and can be labeled
with more detailed descriptions. This data
is then sent over the cellular network to
be evaluated by trained dietitians. In the
study they conducted several trials [Martin
et al., 2009]. A comparison of the RFPM
method with weighed ground truth values
of available food in over a non-consecutive 3-day period showed excellent correlations
with calorie intake, but an under-estimation of 88 kcal and 97 kcal (4.7% and 6.6% of
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the total energy balance), in one laboratory setting and one other mixed setting of a
laboratory lunch and a home dinner. They also determined a satisfaction of participants
with the system of 78.8% and a preference over paper-based diaries of 96.6% [Sharp and
Allman-Farinelli, 2014].

Figure 2.3: The RFPM image-capturing with
smartphone [Martin et al., 2012].

Nutricam Dietary Assessment Method
(NuDAM) also uses images as the re-
ported information, and adds the ability
to report voice recordings for more de-
tailed food descriptions [Sharp and Allman-
Farinelli, 2014]. The data is evaluated and
coded into calorie intake by trained dieti-
tians. Experiments suffered from bad qual-
ity of both data. Later the system was ex-
tended through adding a daily phone com-
munication between the respondent and
the dietitian, for clarification of the data
from the proceeding day. In comparison to
a weighed food record NuDAM correlated
strongly for protein and alcohol measures
but poorly for fat intake. The additional
phone check revealed many misreportings,
the main reason was that the participants
simply forgot to take photographs.

Two examples of projects that use crowd-
sourcing to estimate the calorie content on basis of images, are Meal Snap and Plate-
mate [Noronha et al., 2011], both discussed in [Stumbo, 2013].

2.2.4 Impacts of technological assistance on the methodology of
dietary assessment

Software assisted assessment methods are an expensive investment initially, but through
automation may reduce the cost in the long-run, for large-scale systems or studies with
many users, because the personnel resources for data collection and organizational tasks
are reduced. Computer systems have the advantage to deliver data in real-time, and
the collected data is more consistent coming from one objective interface instead from
many subjective sources like many different interviewers, they can improve usability
providing interactive processes and save time for both respondents and dietitians. The
calculation process of the estimation parameters on the basis of the collected data like
calorie intake or nutrient composition, is fully automated. The system can be accessed
from basically any place with an internet connection and an appropriate device. That
also introduces new problems to the assessment process: the respondent has to be capable
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of using a device like a computer, tablet or smartphone, and having access to it for the
duration of the assessment. Also technical dependencies like battery life of devices can
introduce new problems. For experienced users, the ubiquity and simplistic use of a
system that is available anywhere and at any time enables the respondent the freedom
to focus on the assessment task itself, without organisational overhead or time-costly
interview appointments [Shim et al., 2014].

2.3 Inaccuracies of traditional self-report methods

To understand the need of improvement in existing dietary assessment methods and the
potential of technologically assisted assessment systems, limitations of traditional dietary
assessment methods are analysed and discussed in this section.

Several clinical studies on carbohydrate counting (for postprandial blood glucose esti-
mation) identify inaccuracies from human test groups: [Graff et al., 2000], performed a
survey with 350 patients and observed that even patients that regularly estimate their
insulin dose obtain problematic inaccuracies. More information on carbohydrate counting
can be found in references [4-9] in the work of [Rhyner et al., 2016]. Carbohydrate
estimation error should be no more than ±10 g per meal, to maintain postprandial
blood glucose control. With a variation of ±20 g per meal, the probability to have a
problematic effect on the patient is already quite high. The authors state that there
was a one in three chance of hypoglycaemia occuring two to three hours after the meal
intake, if an insulin dose for 60 g carbohydrates was given for the actual intake of 40 g of
carbohydrates [Smart et al., 2012].

Not just carbohydrate counting, but self-reporting methods for dietary assessment in
general are prone to error among adults and more so among children [Baranowski et al.,
2014]. In an extensive review of evaluation studies of traditional self-report assessment
methods with children, 15 studies (between 1973 and 2009) were identified using the
doubly labeled water method3 for validation, with the majority of the studies having less
than 30 participants. A majority of the studies identified a degree of misreporting, eight
studies showed significant misreporting (p < 0.05). The misreporting comparisons varied
from 19% to 41% in 5 DR studies, from 7% to 11% in 4 24HR method studies, 9% to 14%
in 3 DH method studies, and 2% and 59% in 2 FFQ studies [Burrows et al., 2010]. The
Observing Protein and Energy Nutrition (OPEN) study with 484 participants conducted
a comparison of the 24HR and the FFQ methods with the unbiased biomarkers of energy
and protein intakes through the doubly labeled water method. For the 24HR method
9% of the men and 7% of the women were underreporters, for the FFQ the comparable
values were 35% and 23%. The average underreportings in energy intake was 12-24%
on 24HRs and 31-36% on FFQs for men, and 16-20% on 24HRs and 34-38% on FFQs
for women [Subar et al., 2003]. Currently available dietary assessment methods make it

3Commonly used bio-marking method for asserting energy consumption. Hydrogen and oxygen atoms
are replaced by isotopes for tracing.
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very difficult to estimate an accurate dietary intake due to the inherent and extrinsic
methodological problems. Associations gained from inacurate data between diet and
diseases are potentially erroneous [Sharp and Allman-Farinelli, 2014].

Through assisting the process with technological advances, the shortcomings on estimating
accurate dietary data of the paper-based methods are not overcome. The inaccuracies are
inherent to the methodology of the assessment process of self-reporting. The individual
bias of self-reporting recording methods like the DR manifests in under- or misreporting
for three reasons: erroneous weighing or estimation, forgetting to report and consciously
not reporting. The first reason can be avoided by shifting the estimation to a trained
dietitian. Forgetting to report occurs in traditional real-time paper-based food recording
methods and we have seen it occur also in image-based systems where participants often
forget to take a photo [Sharp and Allman-Farinelli, 2014]. With e.g. mobile phone systems
however, prompts can be sent to the participant to remind of the assessment. [Martin
et al., 2012] showed improvement of calorie intake estimation with customised prompts
over standardised prompts. The third reason of misreporting, the conscious leaving out
of certain ingredients might be overcome with additional technological measures that
observe the participant without his control, e.g. with wearable camera systems. [Sun
et al., 2010] present a prototype for such a dietary assessment system. Although this
approach inherently raises privacy concerns, and an unwilling user will find ways to turn
the system off in any case. To avoid erroneous self-reporting as one error-factor we have
seen systems that report records of images instead of records of ingredients of traditional
DR systems. This brings the burden to the dietitian that is evaluating the imagery data.
To ease and assist this process, automated and semi-automated systems of image-analysis
of food images are currently being researched in many projects (introduced in Chapter 3).

2.4 Contributions and feasibility of computer-vision
assistance to dietary assessment

Inaccuracies such as under-reporting or lack of reporting occur as a human factor in
application of paper-based dietary assessment methods [Baranowski et al., 2014]. Tech-
nological assistance of the paper-based methods through automation of some processes
does not bypass the limitations of self-reporting.

Through interaction and communication capabilities of smartphone-based systems, some
responsibility of the respondent can be moved to a dietitian, by including an expert
in the assessment process. There are a variety of studies in the literature that show
improvements of image-supported dietary assessment compared to traditional assessment
methods. [Gemming et al., 2015] give an extensive survey of ten image-assisted assessment
methods. The image acquisition in most studies was generated from mobile cameras
but also systems with wearable cameras were included. The results show that images
are able to reveal unreported foods and identify misreporting errors of the traditional
methods. The authors determine that image-reporting methods applied as the primary
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method of assessment is able to provide valid intake estimates, however can be prone
to under-estimation if the images suffer from inadequate quality. [Sharp and Allman-
Farinelli, 2014] conducted a similar survey of 16 studies, eight based on photograph
analysis by trained dietitians, six were automated image-analysis studies, the other two
were self-directed image-based (with no external or automatic analysis of the images, the
images serving solely as a memory support for the respondent). The authors identify
problems with photo quality and angle and missing photographs in five of the eight
image-based dietitian directed studies, as difficulties for the dietitians. They suggest a
backup recording method for forgotten photos, or prompts to the phone as a reminder
to assess meals. Assuming high image quality, the authors determine a potential of
shifting the responsibility from untrained respondents to more objective trained dietitian
to improve portion quantification.

Those insights suggest that computer-vision methods for dietary assessment have valid
prerequisites to be able to compete with results of human self-reporting methods, as it
shows that when documenting the foods with images, these images contain information
that can potentially lead to more accurate results.

Computer-vision algorithms work with the input of data produced by visual sensors like
digital cameras that produce digital images. A dietary assessment system therefore starts
out initially having to its disposal one or more digital photographs of food objects. A
question that has to be asked is: how much of the information that we want to assess, the
food ingredients and their quantification, is actually contained on the visual data. This
data can be 2-dimensional (2-d) or even 3-dimensional (3-d), if a 3-d scene is reconstructed
from multiple 2-d images or recorded with a 3-d sensor. In any case, what visual camera
sensors can detect are the surface of the objects, but information of the inner structure of
the object is not included. For images of food, that means that ingredients can occlude
other ingredients by covering them. For example a photograph of a bowl of chicken soup
may not contain that much information about the actual quantity of chicken meat inside
the bowl, as some parts of it are occluded by the surface of the soup and other ingredients.
These are natural limitations to the recognition and quantification estimation on the
basis of digital photographs. Additional information from the user or additional sensor
data could be acquired and may improve the estimation. The statistical models of the
machine learning process, will be generally improved by providing more training data to
the learning process.

The overall goal of a technologically aided system is to perform better than humans at
the task, or supporting the assessment process for an improvement in usability and/or
time effort. As we have seen humans tend not to perform self-reporting tasks very
accurately. Not many evaluations of the accuracy of fully automated computer-vision
approaches compared with traditional assessment methods or unbiased biomarkers of
energy intake through the doubly labeled water method exist at this point. Evaluations
of the computer-vision algorithms usually base their accuracy on the ground truth
of the annotated data they use, not on comparable dietary information of competing
methods. [Rhyner et al., 2016] claim that to the best of their knowledge, their study is
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the first to give a comparable study of an automated dietary assessment system together
with end users. Future development in the active research community of computer-
vision systems for dietary assessment may soon show more evaluations of automated
computer-vision assessments compared with traditional methods.
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CHAPTER 3
Related Work

In this chapter some of the most prominent works on dietary assessment that use computer
vision techniques on food images are presented. The goal of the analysis of the projects
is to identify the most successful methods used for food recognition and classification. To
this end, the reported results of the experiments of the works presented in this chapter,
are structured into the methodological approaches in Chapter 4, were they are also
compared, with consideration to the details and the data that was used in the specific
approaches.

3.1 Mobile phone Food Record (mpFR)

The mobile phone Food Record (mpFR)1 was developed by the Technology Assisted
Dietary Assessment (TADA) group at the Department of Foods and Nutrition at Purdue
University in the United States. [Zhu et al., 2010] report an image analysis system
that automatically segments, recognises the food items and quantifies the volume of
the identified items from images taken by a mobile phone. mpFR is designed as a
client-server architecture, shifting the computationally expensive image analysis tasks
to the server side. Images are captured before and after the food consumption, and on
the basis of those images the total energy of the items is determined. The system is
designed for images only from a controlled environment of a dark background (black
table cloth) and the placement of a fiducial marker for colour correction and estimating
scene dimension parameters. Figure 3.1 shows an example image, and also the ideal
segmentation of the items is illustrated. The lighting conditions vary in the used dataset.
The authors follow the paradigm of hand crafted descriptor extraction and BoF-encoding

1Inconsistently named by various authors of the TADA group, in other works also referred to as
mobile device Food Record (mdFR) and mobile Food Record (mFR).
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them before classification. [Zhu et al., 2011] focus on the segmentation method using
Normalised Cuts [Shi and Malik, 2000], [Bosch et al., 2011b] concentrate on the details
of the employed descriptors which are a combination of global and local descriptors. For
global colour descriptors the first and second order statistics for each resulting segment of
the segmentation process is computed for each channel of the colour spaces RGB, HSV, Cb
and Cr from Y CbCr and the colour opponent dimensions a and b from Lab. Further they
compute statistics of entropy [Shannon, 1948] and predominant colours as descriptors and
the averages of responses of a Gabor filter from divided blocks of the segments (discussed
in more detail in Section 4.1.2). For local descriptors the colour statistics, entropy
and Gabor filter responses are computed from local patches. Additionally they chose
the Scale Invariant Feature Transform (SIFT) descriptor (described in Section 4.1.2),
Tamura perceptual features descriptor [Tamura et al., 1978], a descriptor constructed
from Haar-wavelets based on the Speeded-Up Robust Feature (SURF) descriptor [Bay
et al., 2008], Steerable filters [Freeman and Adelson, 1991], and DAISY descriptor [Tola
et al., 2010]. The descriptors are classified individually and combined by majority vote
rule. The global descriptors are classified with Support Vector Machine (SVM) with
Radial Basis Function (RBF) kernel, the local descriptors are encoded following the BoF
principle (described in Section 4.2.1) and also classified with SVM. The experiments ran
on a very small scale dataset of 179 images that contain a total of 39 different foods.
The images were obtained under controlled conditions from nutritional studies conducted
at Purdue University, [Bosch et al., 2011a]. The experiments ran on hand segmented
images, instead of the resulting segmentations of the mpFR algorithm, to isolate the
recognition performance from the segmentation estimation results. The results show a
general superiority of the colour features over the texture features. The best performing
colour features were the local and global colour statistics with 79.2% and 78.6%, and
the global colour entropy descriptor with 78.2%. The best performing texture features
were SIFT, Haar-wavelet and DAISY descriptors with the accuracies of 65.2%, 64.1%
and 60.3% respectively. The accuracy of the descriptor combination was 86.1%.

Figure 3.1: The ideal segmentation and recognition of the mpFR-system [Zhu et al.,
2015].

[Lee et al., 2012] evaluate the mpFR in a trial conducted with 15 adolescents in semi-
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controlled living conditions, by comparing the results with intake values determined
through weighting of each food item. Each participant assessed three meals, 19 unique
food items including beverages were chosen for the trial. The result for the mean intake
over the three meals was 3588 ± 180 kcal, a considerable overestimation, the weighted
ground truth was 2723 ± 51 kcal. About 50% of the items were estimated within a 15%
margin of the true energy values. In [Boushey et al., 2015] studies have been conducted
to explore the attendance of adolescents to record their food with the mpFR.

More recently [Zhu et al., 2015] refined their recognition method but stayed with the hand
crafted feature and BoF-encoding approach. The novelty of the presented work compared
to the previous of [Bosch et al., 2011a], is an iterative multi-pass flow of segmentation step
and recognition step, using the recognition estimation for refinement of the segmentation
step, and creating multiple hypothesis of the segmentations. In addition to the descriptors
of their previous approach in [Bosch et al., 2011a], three global texture descriptors and
three SIFT descriptor variants (Section 4.1.2), computed on each channel of the RGB
colour space individually, were compared in the study. The three texture descriptors are
Gradient Orientation Spatial-Dependence Matrix (GOSDM) which describes a spatial
relationship between gradient orientations [Haralick et al., 1973], the Fractal Dimension
estimation (EFD) descriptor which is based on multifractal analysis and Gabor-based
image decomposition and Fractal Dimension estimation (GFD), that uses Gabor filters.
Detailed information on these three descriptors and how the TADA authors constructed
them was published in [Bosch et al., 2011c]. The small scale dataset for the experiments
contain an average of 30 segments from food images that contain complete meals (multiple
food items), with 83 different classes considered (79 food classes, the others were utensils,
glasses, plates, and plastic cups). The results of their classification show that the added
global texture features perform worse than their colour features and the SIFT descriptor
(detailed results are listed in Table 4.3). For combination of the descriptors they used
a late fusion approach, combining the features after classification. Two methods were
implemented, majority voting and comparing the confidence scores of the classifier. The
results were in the range of 70% and 74% for the different combinations of classifiers
(K-Nearest-Neighbour (KNN) and SVM were used) and fusion methods.

3.2 National University of Taiwan

The system reported by [Chen et al., 2012] from the national University of Taiwan is
similar to the TADA system. It is implemented as an Android application, performs
quantity estimation through a 3D sensor, and food recognition is performed by descriptor
extraction, encoding and classification with SVM. They use a dataset of 50 categories of
chinese dishes, each category is represented by 100 images. The descriptors extracted
for texture are SIFT and Local Binary Pattern (LBP) (described in Section 4.1) and
are coded with a method called sparse coding [Yang et al., 2009], which bases its image
representation on a linear combination of descriptors from visual words of a dictionary of
descriptors. Third texture descriptor used is the concatenations of the means and the
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variances of the Gabor filter(Section 4.1) responses with six orientations on 5 scales, from
4× 4 blocks of the divided image. The descriptor was not encoded before classification.
For colour description colour histograms are computed for a 4 × 4 grid of the image.
A histogram for each of RGB channel quantised into 32 bins, and concatenated which
results in a 1536 dimensional vector. For evaluation 5-fold cross validation is adopted,
the overall recognition rate achieved was 68.3%.

3.3 Type 1 Diabetes Self-Management and Carbohydrate
Counting (GoCARB)

GoCARB is a novel system that aims to estimate carbohydrate content with an error
less than twenty grams per meal, designed especially for type 1 diabetes patients [Rhyner
et al., 2016]. GoCARB is a Marie Curie Industry-Academia Partnerships and Pathways
project, funded by the European Commission’s 7th Framework Programme. The projects
aim is an automatic carbohydrate assessment of meals in a controlled setting, realised in
a smartphone application that analyses recorded images by the respondents and outputs
the estimated insulin bolus dosage using the USDA database [United States Department
of Agriculture, 2016]. The image-analysis components of the GoCARB project are: plate
detection, food segmentation, food recognition of each segment, 3-d model reconstruction,
volume estimation of each segment [GoCARB Project, 2016] (illustrated in Figure 3.2).

Figure 3.2: Overview of the GoCARB system, with its image-analysis components [Rhyner
et al., 2016].
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The assumptions the GoCARB system is based on, are 1) that there is exactly one dish
visible, 2) the food is inside a round plate and 3) there are no occlusions among the
food [Rhyner et al., 2016]. Those assumptions reduce the applicability of the system
for real-world images vastly as all foods with ingredients mixed with each other, are
uncovered by the systems recognition abilities. The contribution of the project is a
thorough execution of a working prototype with an extensive evaluation of the assessment
methodology.

The project started out in September 2011 and was initially planned for 48 months. The
following paragraphs give a summary of the productive output of the GoCARB research
team.

In [Anthimopoulos et al., 2013] the GoCARB authors present their first prototype. The
dish detection and segmentation methods were improved in the later published [Dehais
et al., 2015]. For recognition they follow the paradigm of hand crafted feature extraction
and classification, the method of encoding the local descriptor is not mentioned. The
authors use one feature for texture description, LBP (described in 4.1.2) and one colour
feature, a histogram of the 1024 most dominant food colours through clustering the colour
space with hierarchical k-means. After combination of the two features to one vector
of 1280 dimensions, they use a SVM classifier with RBF kernel to distinct between six
classes of foods. To evaluate their method 5000 images from the internet were manually
annotated and used for training and testing the approach. In a 10-fold cross-validation
they report an accuracy of 87% for the six class problem. For the quantification estimation
of the carbohydrate content a detailed description of their volume estimation method
can be found in [Dehais et al., 2013].

In [Anthimopoulos et al., 2014] the authors extend their experiments comparing 14
different local image descriptors, the encoding method BoF and extensive investigation of
its components and parameters, and six different classifiers. The colour image descriptors
they analyse are five Colour Histograms, Generalised Colour Moments and Colour Moment
Invariants and for texture description they use the SIFT descriptor and six colour variants
of the SIFT descriptor. A detailed description of the image descriptors can be found in
Section 4.1. The classifiers compared were SVMs (with three types of kernels: linear,
RBF and χ2), a feed-forward Artificial Neural Network (ANN) and a Random Forest
(RF). The highest classification rate was yielded computing the BoF dictionary with
100.000 patches for each of the eleven food classes, using 10.000 visual words in the
dictionary and using the SIFTHSV descriptor. An Overall Recognition Accuracy (ORA)2

of 77.6% was reached using a linear SVM for classification. 4868 images were used, 60%
for training, 40% for testing.

In [Anthimopoulos et al., 2015] they present a first evaluation of the complete system
with all its components, including the segmentation and volume estimation, as illustrated

2ORA =
∑N

i
CMii∑N

i
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j
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, where CM ij is the number of images that belong to class i and were

classified in class j, and N is the number of classes, [Anthimopoulos et al., 2014, p. 1265]
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in Figure 3.2. For the image descriptors and classification they use the same setup
as in [Anthimopoulos et al., 2013]. For their purpose of carbohydrate estimation they
define nine broad food categories3 pasta, potatoes, meat, breaded food, rice, green, salad,
mashed potatoes, carrots, and red beans. 1620 images from 248 multi-food served meals
were acquired under controlled conditions: a reference card (for the volume estimation)
was placed next to the dish, the foods do not overlap, the lighting conditions were the
same on each photo, the food was placed on elliptical plates and the angles the photos
were taken from were consistent. For the evaluation a set of 24 different dishes was
selected and the carbohydrate content estimated by the GoCARB system and compared
to the real values determined through weighing. The average mean error over the 24
dishes was 6 grams (10%) with a standard deviation of 8 grams (13%), which is well in
the aim of the variance of ±20 grams per meal. In fact 95.5% of the dishes were within
an error range of ±20 grams. They detect motion blurring as a factor for deviations.

[Dehais et al., 2015] propose an approach for dish detection with Canny filter edge
detection, followed by filtering to eliminate junctions between edge curves, sharp corners
and small segments. Of the left-over segments outliers that do not support an elliptical
model, are removed with Random Sample Consensus (RANSAC). The segmentation
method discussed is an automatic method based on the Seeded Region Growing (SRG)
algorithm with distance measure in CIELab colour space (focuses less on intensity changes
that are often caused by shadows). They propose an automatic and a semi-automatic
segmentation and evaluate both methods. The automatic algorithm distributes seeds on
a regular grid within the designated dish area. The grown regions produced by the SRG
algorithm are then combined with Statistical Region Merging paradigm (SRM), which
merges iteratively the two regions with the smallest cost based on ratio of colour distance.
The semi-automatic method is based on user inputs for the seed-centers, acquired through
the smartphone interface, and designed for the case where the automatic method fails.
The evaluation showed a 99% accuracy for the dish detection, 88% for the automatic
segmentation and 91% for the semi-automatic, outperforming [Anthimopoulos et al., 2013]
a previous study of the GoCARB group using a Mean-Shift algorithm, Local Variation
[Felzenszwalb and Huttenlocher, 1998] and a contour detection approach [Arbelaez et al.,
2011]. The average processing time on a Intel i7-3770 CPU was 0.19 seconds for dish
detection and 0.45 seconds for the proposed automatic segmentation.

In [Christodoulidis et al., 2015] the GoCARB authors explore DCNNs as an alternative for
their hand crafted feature approach. As in their previous system design in [Anthimopoulos
et al., 2013], the segmented regions are classified to corresponding food classes. For
classification with a Convolutional Neural Network (CNN), overlapping square patches
of the segmented regions are classified individually and the majority class is designated.
The training is performed from non-overlapping 32 × 32 pixel patches that are each
multiplied 16 times through flip and rotation transformations to extend the training set.

3in previous work [Anthimopoulos et al., 2013] they used six categories, in the later work [Anthi-
mopoulos et al., 2014] eleven, and in [Rhyner et al., 2016] the number of categories was reduced to
seven.
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The authors ran experiments with different network layouts, testing convolutional layer
depth of two, three and four, and altering also the sizes of the layers. The net that yielded
the best F-score was a net with four convolutional layers and two fully connected layers.
Each convolutional layer is followed by a 3× 3 pooling layer and a stride of two. A deeper
insight on DCNNs is presented in Section 4.3. The experiments were conducted using
the deep learning framework Convolutional Architecture For Fast Feature Embedding
(CAFFE) [Yangqing, J., 2013] on a single GPU (GeForce GTX 760, 2GB Memory, 1152
Cores). The presented results showed an accuracy of 84.9% of identified food items,
a slight improvement compared to 82.2% of their previous hand crafted feature based
approach from [Anthimopoulos et al., 2013]. The corresponding average processing times
per image for both methods were 0.28 sec and 0.1 sec.

In [Rhyner et al., 2016] the authors conduct an evaluation of the GoCARB system
comparing it to self-reported carbohydrate counting of the participants. The assessment
with the GoCARB system was conducted over a period of ten days with 19 adult diabetes
patients, six different meals from the hospital restaurant were evaluated every day, 60
different meals in the total trial. A meal consisted of three food categories each, the
authors define a category being a one unmixed food item e.g. rice, chicken or vegetables.
The six portions were of different sizes. Each of the participants did one assessment
of all six meals on one randomly chosen day, therefore on some days there was more
than one individual performing the assessment. The carbohydrate portion of a total of
19 × 6 = 114 meals was assessed by the participants, once with the GoCARB system
and also on their own via self-report assessment. Each user was trained how to use the
system prior to the trial and was assessed additionally with a questionnaire about the
usability of GoCARB. The results of the trial were an average absolute error of about 12
grams (26%) of carbohydrates for the GoCARB system versus about 28 grams (55%)
error of the participants self-assessment. About 81% of the estimations of the GoCARB
system were within the aimed goal of a ±20 grams variance, where only about 59%
of the self-reported estimations reached this criteria. Two participants produced high
deviations from the rest of the test group, the authors also ran a Mann-Whitney U-test
with exclusion of the participants data producing the biggest outliers (average of 158
grams of over-reporting over the six meals) and show that the GoCARB systems results
were still a significant (P = 0.01) improvement over the assessed data from self-reporting.
A significance test without the participant that produced the second greatest outliers
(around 70 grams average over-reporting) was not presented in the study. The resulting
distribution of the error including all participants, was broad with outliers up to 200
grams for the self-assessment, the corresponding GoCARB error distribution was more
centred around zero and was symmetric. The results of the study for the segmentation
was a 75% success-rate for the automatic segmentation, and the recognition was correct
in about 60% of the cases for all three food categories, in 36% two out of three were
correct and in 4% only one was recognised. The recognition is based on their previous
work [Anthimopoulos et al., 2013] combining two image descriptors, LBP and a histogram
of the 1024 most dominant colours and classifying the concatenation of the two vectors
directly with a SVM. The results of the qualitative questionnaire were high agreement
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about the system to be easy to use, and lower agreement about its speed, about which
the authors argue that depended mostly on the quality of the network connection.

The GoCARB group basis the insulin bolus solely on the carbohydrate portion. [Smart
et al., 2013] show that fat and protein also have a significant effect on the bolus estimation.
They conducted a trial where 33 test subjects are examined in a time window of five
hours after the meal. They show that different meals with a constant carbohydrate
content, but in combination with a high fat content and/or a high protein content, the
mean glucose excursions is significantly higher in the later phase of three to five hours
after the meal. Thus considering this additive effect to the effect of the carbohydrate
content of a meal when estimating the supplementary insulin dose, a more precise insulin
dose estimation will be reached.

3.4 FoodCam

[Hoashi et al., 2010] report a food recognition procedure that is based on hand crafted
image descriptor extraction without further encoding for all but for the SIFT descriptor,
which was encoded using the BoF paradigm. The system was trained on 85 food categories
of Japanese food but include also international food categories such as pizza or hamburgers.
The descriptors used besides SIFT are a Colour Histogram in RGB colour space, the
averages of 24 Gabor filter (four scales and six orientations) responses (discussed in
more detail in Section 4.1.2) and the Histogram of Oriented Gradients (HOG) descriptor
(detailed descriptions of the descriptors can be found in Section 4.1.2). The best result
of the single descriptor was an accuracy of 33.47% with SIFT and BoF encoding. The
best result of combined descriptors was 62.52%. The method they used for feature
fusion, which refers to combining the features, is an SVM with Multiple Kernel Learning
(MKL), that uses an individual kernel for each descriptor. For the implementation
they use the SHOGUN large-scale machine learning toolbox [Sonnenburg et al., 2006],
which supports MKL. The classification rate reached with uniform weights instead of the
MKL was 60.87%. They also performed an evaluation with a prototype system under
uncontrolled conditions without any instructions to the users (which contained photos in
dark environment or photographed from not optimal distance), and classified 45.3% of
785 images correctly.

In [Kawano and Yanai, 2015b] the authors present a mobile phone based prototype of
FoodCam, a system for automatic recognition of multiple meals from a photograph, with
semi-automatic segmentation of each meal and manual portion size input from the user.
The top five results of the classification are displayed to the user for selection. The main
focus of this paper lies on the computational efficiency of the system to be able to run
solely on a smartphone, without any computation on a server. The segmentation is
executed by a manual bounding-box selection by the user. The selections then get refined
by the graph-cut segmentation algorithm GrabCut [Rother et al., 2004]. Within each
resulting bounding-box the food recognition is performed. For recognition, a combination
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of BoF-encoding of SURF [Bay et al., 2008] local descriptors and a colour histogram
in RGB colour space (slightly modified procedure from previous paper [Hoashi et al.,
2010]), are compared with their new approach of FV-encoding HOG patches and colour
patches. The FV-encoding is computed with a Gaussian Mixture Model (GMM) with 32
gaussians, the BoF-encoding with a k-means clustered dictionary with the size of 500
codewords. The BoF descriptors are additionally mapped with a χ2 kernel to a triple
of their original dimensionality. Kernel feature maps were proposed in [Vedaldi and
Zisserman, 2010] (described in detail in Section 4.2.1). For classification they use one
linear SVM for each class, training each SVM with the one-versus-rest manner, where
descriptors from one class are positive samples and from all other classes are negative
samples. The system design takes advantage of multiple cores of Central Processing
Units (CPUs) on modern smartphones(for the experiments a processor of 1.6GHz with 4
cores, running Android 4.1 was used), carrying out computation of descriptors, encoding
and classification in parallel. Computation time results of the two recognition approaches
including the classification with linear SVM were 0.26 seconds for the SURF and colour
histogram computation with BoF-encoding, and 0.065 seconds for computation of the
HOG and colour patches and their FV-encoding, making the FV setting four times
faster than the BoF setting. The computation times for the encoding procedures were
0.018 seconds (including mapping computation) and 0.0099 seconds (including Principal
Component Analysis (PCA) computation) respectively, making FV-encoding 1.8 times
faster than BoF-encoding, were the sizes of the resulting descriptors were 500 (1500 after
the kernel mapping) and 1536 for the FV. The classification accuracy reached with the
SURF-BoF+colour histogram was 42% and with the HOG+colour patch-FV was 49.7%
in 100 food classes with a total amount of 12905 images in the dataset, which they called
UEC-FOOD100 (more details in Section 5.2.1). Through incorporating flipped images
increasing the training set, the accuracy of the FV was pushed to 51.9%. An extension
of the FV parameters to 64 gaussians and without reduction of the HOG dimensionality
and incorporating additional spatial coding with the spatial pyramid paradigm [Lazebnik
et al., 2006] they reached 59.6%, but was not considered for the mobile use because of
computational complexity.

In [Kawano and Yanai, 2014] the FoodCam authors explore the use of DCNNs for food
recognition. They pre-train (discussed in Section 4.3.3) their net with the 1000 class
ILSVRC-2012 dataset with 1000 images per class as a feature extractor. Following [Oquab
et al., 2014] they additionally added another 1000 food-related categories from the
ImageNet4 21,000 classes database, resulting in 2000 categories for pre-training. The
experiments were implemented using the CAFFE library [Yangqing, J., 2013]. They used
a net based on [Krizhevsky et al., 2012] (described in Section 4.3.4) with the modification
of increasing the sizes of the last convolutional layer and the first fully connected layer,
illustrated in Figure 3.3. They extract the previous to the last layer (Layer7 ), apply an
l2-normalisation and perform classification with a linear SVM classifier on the resulting
feature vector. For a baseline a HOG and a colour descriptor5 with FV-encoding is

4ImageNet 2011 Fall release
5more details of the parameters of the descriptors, can be found in [Yanai and Kawano, 2015]
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implemented, which achieve 65.32% and 52.85%, the 2000-category pre-trained DCNN
achieves 71.80% and 58.81% for the UEC-FOOD100 and the UEC-FOOD256 datasets
respectively. A combination of the FV and the DCNN extracted vector achieve accuracies
of 77.35% and 63.77%. The total dimensionality of the FV combination was 57344, of
the DCNN extracted vector 6144.

Figure 3.3: Overview of the FoodCam DCNN of [Kawano and Yanai, 2014].

The most recent work [Yanai et al., 2016], explores the trade-off between speed and
accuracy of performing DCNN classification on mobile phones. The demo application
called DeepFoodCam implements a Network In Network (NIN) structure [Lin et al., 2013]
to reduce memory and computational time, and was tested on iOS and Android platforms.
They report an average computation time for classification for one image of 66.6 ms on
an iPad Pro, with an accuracy of 78.8% on the UEC-FOOD100 dataset.

3.5 Im2Calories

[Myers et al., 2015] from Google describe a mobile system for food recognition and
quantification with the goal of macro-nutritional composition estimation from a single
image. Instead of full automation the goal is to offer smart auto-complete functionality,
considering the difficulties of food recognition. Two problem definitions are distinguished
for the experiments: the first assumes the image of the food items to be from a public
restaurant menu, the second approach tries to solve the problem of discriminating
between 201 generic food categories (a variation of the FOOD-101 dataset, described in
Section 5.2.1, structured into more detailed categories).

As a first step a food detection is performed, with a DCNN structure of the GoogLeNet
model (Section 4.3.5), utilizing the FOOD-101 as the food category and adding 100000
images from ImageNet for the non-food category. The classification accuracy reached for
the binary problem is 99.02%.

For the restaurant specific approach, the closest restaurant to the current GPS location
of the used device is looked up via Google’s Places API6. A DCNN of the GoogLeNet
model was trained and used as a multi-label classifier to support recognition of multiple
menu items (dishes) on one image. This is done by comparing to a threshold of the
probability of each value in the output layer. The dataset of [Beijbom et al., 2015] with
images from three restaurants was extended to cover 23 restaurants in the US, with a

6Google places API. https://developers.google.com/places/
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total of 2517 food items. The images were collected by a Google search on social media
platforms Yelp, Flickr, Instagram, Pinterest and Foodspotting to raise the probability of
user-generated photos. 270000 images were verified with Amazon Mechanical Turk and
resulted in a set of 99000 images of 2517 menu items. The DCNN was pre-trained7 and
then fine-tuned on the FOOD-101 dataset. Only the final layer was then trained with
75% of the Restaurant dataset, to adapt to the categories used for classification. The
error rates of the classification of the test data were very high. They do not publish the
exact values, but show a figure where the top-1 error rates of the individual restaurants
are illustrated. They are located roughly in the range of 0.5 and 0.77. The high values
are attributed to the fact that the restaurants have many categories that are almost
the same (e.g. items like Quarter Pounder Deluxe Burger and Quarter Pounder Bacon
Cheese Burger). To reach a better result they then merge the most confused classes.

For the approach to classify generic food images, the FOOD-101 dataset was used again.
50000 of the 101000 images were selected, and newly classified with Amazon Mechanical
Turk, after which emerged a total of 201 main categories (occurrence of minimum 100
instances for each category). Again a DCNN is used as a multi-label classifier. The mean
Average Precision (mAP) inside the 101 original categories was 0.8, but outside only 0.2.
As a reason for that the authors point to the sparseness of the occurrence of these items,
as they are mostly side-dishes. The average mAP was 0.5.

They also perform classification on the original FOOD-101 dataset with the pre-trained
GoogLeNet architecture (described in Section 4.3.5) and fine-tune with the FOOD-101
training set. On the test set a 79% top-1 accuracy is achieved.

For size estimation, a segmentation of the food items is performed. The segmentation
algorithm DeepLab is used, an adoption of [Chen et al., 2014]. A semantic segmentation
method that combines the classification scores, with low-level information of pixels
and edges, using a Conditional Random Field (CRF) graph. For the quantification a
proposal of [Eigen and Fergus, 2014] is followed, a depth prediction performed by a
multi-scale DCNN architecture based on the AlexNet model (Section 4.3.4, [Krizhevsky
et al., 2012]). The obtained depth-map is then converted into a voxel representation for
volume calculation of the segments.

There was no evaluation of calorie estimation performed. According to the authors this
was due to not having sufficient nutritional composition information, as no database was
found with a coverage broad enough for all categories.

3.6 IBM

[Wu et al., 2016] from IBM Research, propose a DCNN based food recognition framework
that incorporates the semantic relationship among food classes. A hierarchy of semantic
groups of food items from the FOOD-101 dataset (Section 5.2.1) was defined. The

7The net was pre-trained with the 1000 ILSVRC-2012 categories from the ImageNet dataset.
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semantic hierarchy is incorporated into the learning process by basing the loss function
of the DCNN on a multitask-learning, considering each level of the semantic hierarchy.
A method of label inference is also implemented, which incorporates an influence in
decision-making of the final category by considering the membership of the parent
structures. The authors observe that in cases of misclassification, decisions fall into the
same semantic category more likely than with the non-hierarchical approach, because the
model produces more semantically coherent predictions. [Wu et al., 2016] argue that this
behaviour is useful for a nutrition information estimation application, since semantically
close predictions in case of misclassification provides more relevant nutrition estimation
than an entirely unrelated prediction. For the base network structure of the DCNN they
adapt GoogLeNet [Szegedy et al., 2014] (Section 4.3.5). The reported accuracy with their
approach of hierarchical semantic learning was 72.11%, compared to an accuracy of the
unchanged GoogLeNet architecture that achieved 69.64%.

3.7 Menu-Match

[Beijbom et al., 2015] from Microsoft Research follow the approach of recognition of
restaurant specific food items. Location information (e.g. GPS) is used to reduce the
selection to a set of images of items from nearby restaurants. The goal is to estimate the
calorie value from single images. The approach is specifically designed for standardised
food items from restaurant menus, therefore does not consider varying sizes or ingredients.

The authors collected a dataset from three restaurants with a total of 646 images, 1386
tagged food items in 41 categories. Ground truth calorie meta data was estimated for
each of the 41 items by a dietitian.

The implementation is based on the BoF approach of hand crafted features. Specifically
they extract SIFT, HOG, LBP, colour and MR8 [Varma and Zisserman, 2005] descriptors
and apply Locality-constrained Linear Coding (LLC)-encoding. Classification of the
individual descriptors is performed with linear SVMs8. The results are combined with a
late fusion strategy of all scores of the SVMs, by training another linear SVM on the
fused data.

Its reported that the colour feature discriminates best, followed by the MR8 texture
descriptor. HOG and SIFT achieve worse discrimination of the used food images. The
evaluation of the proposed system resulted in an absolute error of 232±7.2 kcal (mean
± standard error) on their restaurant dataset. On the generic dataset with 50 classes
used in [Chen et al., 2012] a recognition accuracy of 77.4% was reached, an improvement
compared to Chen et al., which achieved 68.3%.

8A total of 205 linear SVMs were trained, one for each descriptor and class.
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3.8 Analysis

In the following sections applications (task, research or assessment question), assump-
tions on the composition of food items on the images, the granularity of the categories
and level of automation are analysed.

3.8.1 Application

From the introduced projects, following common general tasks are identified:

• Category Identification

• Caloric estimation

• Specific macro-nutrient estimation (e.g. carbohydrate content)

• Complete macro-nutrient composition (ratio of protein, carbohydrates and fats)

• other nutrient composition, e.g. specific micro-nutrients in epidemiological studies
[Shim et al., 2014] (more detailed ingredient list needed).

Observing the current works on dietary assessment and food recognition in general, a
trend exists to solve particular subdomains of the problem. A strong recent trend is to
identify food items purchased from restaurant chains. [Beijbom et al., 2015] argue that
especially for food consumed at restaurants it is difficult for users to estimate the caloric
value of the items, as they are unaware of preparatory details, e.g. how much oils or
other fats were added. [Myers et al., 2015] work on an extension of the Menu-Match
dataset [Beijbom et al., 2015]. [Bettadapura et al., 2015] presented a similar system
that also leverages the restaurant context. This particular subdomain promises a high
accuracy e.g. compared to generic food recognition, as the food categories are limited to
the size of the menu and portion sizes and ingredients tend to be standardised in most
restaurants, therefore a good estimation of the nutritional composition can be calculated
(e.g. by a dietitian) for each item. [Beijbom et al., 2015] report that their approach is
extendible for food from take-out or delivery, by adding a manual restaurant selection
from the user.

Canteen food is a similar example of a specialised subdomain. The GoCARB group
(Section 3.3) reduce their carbohydrate assessment solely to images from hospital canteen
restaurants. [Ciocca et al., 2017] recently developed a similar dataset called UNIMIB2016,
including over 1000 images of canteen trays with multiple food instances per tray.

Others, reduce the problem to a subdomain that considers categories of food of a specific
geographical region only, such as in the work of [Chen et al., 2012], that limit their system
to Chinese-food categories.
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Another approach is to focus on the computer-vision perspective, such as [Kawano and
Yanai, 2014], reducing the task to the categorization of food images into the predefined
categories9.

3.8.2 Assumption of Visually Separable Items

There is a general distinction of two approaches, for defining the recognition task of
food related problems. The first approach identifies one dish as an atomic object, the
second approach identifies separable items (e.g. ingredients) within one object (e.g. by
performing segmentation).

The decision for the approach is influenced by the expected image data, and also affects
the available nutritional meta data that is necessary to map the visual information to
the assessment meta data.

The GoCARB group (Section 3.3) assume clear visual separable food items present
on their images and use segmentation of the individual items. The GoCARB system
performs well in estimating carbohydrate content of a meal, within their desired limits of
±20 grams. But the system is limited to images that follow strong assumptions, their
experiments are similar to a near laboratory environment. [Dehais et al., 2015] argue that
such assumptions produce a system insufficient to deal with meals of arbitrary content
and portions, and only works for meals with specific composition and sizes (e.g. fast
food restaurants or cafeterias). Dietary assessment systems towards open-world food
categories is only realistic, if handling a high number of complex food items, as for most
dishes a simple segmentation is not feasible.

The two approaches map two different kind of food preparations, that can be observed
when taking a closer look at food photographs. One way of preparing dishes is to mix
ingredients into one connected entity. Another way of meal preparation is to combine
multiple separable disconnected food items on one plate next to each other. Examples of
the two dish designs are illustrated in Figure 3.4.

The approach directly affects the number of categories, as there are theoretically unbound
number of combinations of ingredients (dishes), but a smaller number of raw ingredients.
Therefore the design choice defines the necessary structure of the database used for
mapping to nutritional information. Inherent to the atomic approach is an extensive
database of meta data for whole dishes.

An ideal estimation would be to extract a list of every single ingredient, and use a
calorie/nutrition database to map the visual information to the meta data that we want.
The standard source for mapping raw ingredients to calorie values is the National Nutrient
Database (NNDB) of the United States Department of Agriculture (USDA) [USDA,
2016], [Rhyner et al., 2016,Myers et al., 2015]. However, mapping visual information to

9In other reports such as [Kawano and Yanai, 2015b] it is mentioned and illustrated that FoodCam is
estimating calorie values, but there is no description of how these are estimated.
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(a) Mixed, connected ingredients. (b) Separated, disconnected ingredients.

Figure 3.4: Illustrate two dish designs of different preparation style. All four images are
from the FOOD-101 dataset, from the category chicken-curry.

a ingredient-based database is hard and inevitably inaccurate [Beijbom et al., 2015], as
discussed above, strong assumptions for the image generation are necessary.

For atomic food-dishes [Myers et al., 2015] suggest to use an extension of the NNDB:
Food and Nutrient Database for Dietary Studies (FNDDS), which includes nutritional
information for whole dishes. However e.g. the calorie content depends a lot on the exact
preparation of the food (e.g. grilling versus frying) [Myers et al., 2015]. Consequently,
for a good estimation each preparatory detail occurring in the data, would ideally have
a mapping in the database. Another issue are large deviations within an atomic-dish
category (e.g. one hamburger may differ radically from another in calories if not specified
more precisely) [Beijbom et al., 2015]. For dietary assessment with fine-graded visual
categories, there is a need for the same graduation in the nutrition database (E.g. it is
more likely to have a more accurate estimation, if the domain hamburger has subcategories
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of details like with/without cheese or one or two slices of meat, etc.). Due to this fact a
database with broader coverage of prepared foods is needed [Myers et al., 2015]. Because
of the difficulties of fine-graded recognition, a semi-automated routine with interaction
steps by the user for verification and selection could increase the performance.

[Shim et al., 2014] discuss the distinction of separable ingredients versus atomic dishes
on the assessment level, comparing food-ingredient based versus dish based FFQ assess-
ments10. The conclusion is that the food based FFQ tends to underestimate dietary intake
more than a dish based FFQ. The explanation is that in the assessment of individual
food items, the preparation specific ingredients for the dish (various seasonings, like salt,
sauces, pastes, oils...) are not considered enough. Those ingredients highly contribute to
nutrients (e.g. energy, fat, sodium or β-carotene intake). One strategy for dealing with
challenges of undetectable ingredients from images could be resorting to recipe databases
(in combination of interaction with the user for confirmation or selection of possible
ambiguities).

[Zhu et al., 2015] compute a contribution ratio of single descriptors to the total clas-
sification result that is achieved by decision fusion of all descriptors, in their approach
of combining local and global descriptors. When classifying images with more complex
foods, the contribution of local features increases, whereas global descriptors cover the
description of simpler food items. That means, when choosing connected ingredient food
categories (whole meals) for what constitutes its own class in a food recognition system,
then descriptiveness of local descriptors is going to be higher than for a system that
classifies disconnected ingredients only.

An alternative for segmenting individual items of one dish, or for segmenting the image
in case of multiple category occurrences on one image, is the use of a multi-label classifier
as e.g. performed by [Myers et al., 2015].

3.8.3 Granularity of Semantic Assessment Categories

The definition and number of categories is influenced by the research question/assessment
application. Depending on the desired meta data of the assessment, multiple categories
or subdomains of food items can be grouped together into one semantic category.

In [Rhyner et al., 2016] the GoCARB group is classifying into only seven categories of
food types to estimate the carbohydrate content with an average error of 12 grams (49
kcal) carbohydrates per meal, for a total of 60 different meals (combinations of three
separable food items per meal). They reduced the problem to a minimum number of food
types that share a similar carbohydrate density, as there is no benefit to differentiate
between categories of similar carbohydrate content (e.g. different categories of meat).
This problem-reduction works if fine-grading into subcategories, does not increase the
accuracy of the assessment information.

10The discussion of the report is in the context of asian specific food.
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Other applications where categories could be grouped (do not have to be fine-graded),
are assessments similar to the FFQ (Section 2.1.4), where the goal is a general survey
of a patients diet. E.g. the occurrence of tendencially considered unhealthy categories
like cake or burger would be sufficient, and the exact composition would not alter the
assessment evaluation.

The task of full nutritional macro- or micro-composition estimation could be referred to
as the holy grail of food recognition tasks, as there is a necessity of a certain detailed
visual granularity to match the detail of the necessary meta information assessed.

3.8.4 Full / Semi Automation

Another approach for increasing the accuracy are semi-automated systems, where user
input is incorporated into the recognition routine. As suggested in [Beijbom et al., 2015],
hybrid interfaces could reduce the barrier to food logging: [Branson et al., 2010] study the
incorporation of human interaction in the visual recognition process, concluding that it can
drive up the recognition accuracy to levels good enough for practical application. [Myers
et al., 2015] propose to minimise user effort by offering smart auto-complete functionality,
rather than complete automation. [Beijbom et al., 2015] also suggest for future work
to incorporating user-specific customization, such as learning a user trend over time as
priors in the inference model.

3.8.5 Summary of the projects

For the state-of-the-art methods, the most used techniques are:

• hand-crafted feature extraction and BoF encoding, used in
[Hoashi et al., 2010,Bosch et al., 2011a,Chen et al., 2012,Anthimopoulos et al.,
2014,Zhu et al., 2015,Kawano and Yanai, 2015b]

• hand-crafted feature extraction and FV encoding, used in
[Bossard et al., 2014,Kawano and Yanai, 2014,Kawano and Yanai, 2015b,Zhu et al.,
2015]

• feature extraction and classification with DCNNs, used in [Kawano and Yanai,
2014,Myers et al., 2015,Wu et al., 2016].

• sparse coding [Chen et al., 2012]

• LLC-encoding used by [Beijbom et al., 2015]

Table 3.1 shows an overview of the described projects from this chapter.
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Project Segmentation Volume Estimation Recognition Method

mpFR normalised cuts from single image BoF
GoCARB region growing 3-D reconstruction from

2 images
BoF, DCNN from patches

FoodCam manual bounding
box selection

none FV and DCNN

IBM none none DCNN
Im2Calories DCNN multi-scale DCNN GoogLeNet-DCNN
Menu-Match none none LLC

Table 3.1: Overview of the general approaches of the described projects.

Results from the state-of-the-art research on food recognition reach accuracies from
87% [Anthimopoulos et al., 2013] and 84.9% [Christodoulidis et al., 2015] and 86.1%
in [Bosch et al., 2011b] for experiments in controlled environments and with limited variety
of food items (between 6 and 39 categories). In experiments closer to real-world conditions,
conducted on generic food images generated by users (e.g. from social food platforms),
the results are in a range of 77-79% [Kawano and Yanai, 2014,Myers et al., 2015] in
100 food category benchmarks. Evaluations from user studies for calorie estimations
from images as the only information source, exist only in very limited number. [Lee
et al., 2012] and [Anthimopoulos et al., 2015] present such evaluations (as presented in
Sections 3.1 and 3.3), but with very limited food categories and image data, for both
training and evaluation. A fully automated system for intake estimation is currently not
feasible for satisfying results in a real-world application with very high variety of foods
and combinations of foods. Distinguishing food ingredients from a photograph alone is
not at an acceptable level of accuracy to be used as an alternative for assessing dietary
intake [Sharp and Allman-Farinelli, 2014].

Current realistic applicability lies in assisting during the individual decision steps of
segmentation and recognition during the dietary assessment process. This assistance
can be of help for the user to save time or improve accuracy, suggesting e.g. ranked
hypothesis for each step that the user can choose from or edit the suggestion. To satisfy
the requirements of accuracy of dietary research, participants currently are required to
verify and correct the results from the automated processes [Sharp and Allman-Farinelli,
2014].

Still, the state of the art research in food recognition shows improvements in the recogni-
tion results through the application of DCNNs. [Kawano and Yanai, 2014,Myers et al.,
2015,Wu et al., 2016] show experiments with the use of DCNNs (results listed in Ta-
ble 4.8). The accuracy for 100 generic food classes lies roughly between 70 and 80%.
Results reached with feature extraction combined with encoding techniques (BoF and
FV) lie in an area of 40% to 65% [Kawano and Yanai, 2015b,Kawano and Yanai, 2014]
in a 100-class problem.
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In this thesis the most promising and most discussed methods currently used, are explored
and compared on the same datasets:

• Bag-of-Features (BoF)-encoding

• Fisher-Vector (FV)-encoding

• Deep Convolutional Neural Network (DCNN)

Detailed results of the individual approaches of the state-of-the-art projects are listed
in the next chapter. The chapter is structured by the methods that are used for the
recognition.
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CHAPTER 4
State-of-the-art recognition

methods

In this chapter the state-of-the-art methods for object recognition and image classification
used in the projects from the previous chapter are introduced. Instead of only picking the
best performing method, all methods that are commonly used in current food recognition
applications are explored. At the end of the chapter a short analysis of the methods is
discussed.

Hand-crafted visual descriptors and their encoding methods are discussed in detail, as well
as food recognition using DCNNs. First local and global colour descriptors are presented,
then local and global texture descriptors are categorised into wavelet based descriptors
and the local descriptors LBP, HOG and SIFT. For an overview of how the descriptors
and recognition methods perform with food related data, results are presented for each
category of descriptors/method from the experiments of a total of eleven state-of-the-art
works on food recognition. For each result a short description with detailed information
of the used recognition approach, encoding method and also information about the data
that was used for training and testing is provided.

4.1 Image Feature Descriptors

4.1.1 Colour Descriptors

Colour Histograms

Colour histograms are commonly used to describe colour distribution of an image
[Anthimopoulos et al., 2014]. They can be computed on different colour spaces, with the
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result of covering different invariants. Colour histograms are easy to compute and have
been successfully used in various object recognition tasks.

Colour histograms are computed separately on each channel of the chosen colour space.
For multichannel colour spaces, the histogram values of each channel are concatenated to
one vector.

Table 4.1 shows a selection of the histograms used in the state-of-the-art research on
food recognition, and the computation of the colour values from the RGB space.

Name Colour channels Colour space computation from RGB

HistRGB RGB -

HistOP Opponent colour
channels

OP =

O1
O2
O3

 =


R−G√

2
R+G−2B√

2
R+G+B√

3



HistRGnorm normed R and G
channels

RGnorm =
(
Rnorm
Gnorm

)
=
(

R
R+G+B

G
R+G+B

)

HistHue hue from HSV Hue = atan2(
√

3 ∗ (G−B), 2 ∗R−G−B)

HistRGBtrans transformed RGB
colour space

RGBtrans =

RtransGtrans
Btrans

 =


R−µR
σR

G−µG
σG

B−µB
σB


Table 4.1: Histogram types and the computation of the colour space from RGB-space
[Anthimopoulos et al., 2014]

Colour histograms are used in [Chen et al., 2012] on the RGB colour space reaching
40% recognition rate in a 50-class problem, [Hoashi et al., 2010] 27% in 85 classes and
in [Kawano and Yanai, 2015b] they reach 28% in 100 classes. [Anthimopoulos et al., 2014]
experimented with histograms constructed from all the colour spaces listed in Table 4.1
with the conclusion that for their ∼4800 food images, the histogram descriptor in the
opponent colour space achieved the best results, reaching 52% in eleven classes. [Kawano
and Yanai, 2015b] report to have compared colour histograms in RGB, HSV and La*b*
colour spaces and without showing specific results, they report RGB to have performed
best out of the three variants.

Colour Moments

[Anthimopoulos et al., 2014] conduct experiments with the colour descriptors Generalised
Colour Moments (GCM) and Colour Moment Invariants (CMI). The idea behind colour
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4.1. Image Feature Descriptors

moments is that any probability distribution can be uniquely characterised by its moments
[Anthimopoulos et al., 2014]. Colour moments are a generalization of the traditional
moments, in one sum they combine powers of the pixel coordinates and the intensities of
each colour channel [Mindru et al., 2004].

The generalised colour moment Mabc
pq of order p+ q and degree a+ b+ c is defined as

Mabc
pq =

W∑
x=1

H∑
y=1

xpyqR(x, y)aG(x, y)bB(x, y)c

where x and y are pixel positions and R(x, y), G(x, y) and B(x, y) are the RGB colour
channel values. W and H are the image width and height.

[Anthimopoulos et al., 2014] use orders of 0 or 1 and degrees 1 or 2 in their study to
compute the Generalised Colour Moment (GCM), leading to 27 possible combinations,
and then compute 24 invariant functions from these moments following [Mindru et al.,
2004]. The results (Table 4.2) show a good discrimination for food images compared
to the other descriptors used in the paper. The best result achieved around 59% on a
dataset with 4868 images with the Colour Moment Invariant (CMI) descriptor, other
results on the same data were 52% with colour histograms on opponent colour space,
around 61% with standard SIFT and 77.6% with SIFT on HSV colour space.

[Mindru et al., 2004] compute 30 combinations of the GCMs, with up to the first
order and the second degree (including the degree of zero for all colour channels). The
limitation to lower order moments are argued with higher robustness to noise compared
to when using higher moments. This leads to a selection of GCMs of Mabc

00 ,M
abc
10 and

Mabc
01 , with (a, b, c) ∈ {(0, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1), (2, 0, 0), (0, 2, 0), (0, 0, 2), (1, 1, 0),

(1, 0, 1), (0, 1, 1)}. This set of GCMs build the basis for the CMI descriptor, which are
functions of rational expressions of combinations of the colour moments. The exact
functions used for the experiments in the implementation are listed in Section 5.3.1.
The invariant functions are constructed so that they do not change under the selected
geometric (viewpoint) and photometric (illumination) transformations. [Mindru et al.,
2004] show how to make the colour moment descriptor invariant to viewpoint and
illumination, based on theoretical models of photometric transformations. Three models
are discussed: scaling, scaling with offset and affine transformations. Obtained are the
invariants by a method the authors call Lie group approach, where the invariants are
solutions of systems of partial differential equations.

Colour Patch Descriptors

[Kawano and Yanai, 2014] report of a local colour descriptor which the authors call colour
patches. The neighbourhood is divided into 2×2 blocks, and from each block the mean
and variance is computed for each colour channel of the RGB colour space. That results
in a description of each patch of a 24-dimensional vector. The neighbourhood size used
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4. State-of-the-art recognition methods

in the experiments is not reported. The FV-encoding of the descriptor performs with an
accuracy of 53% for 100 generic food classes and 41.6% for 256 classes (see Table 4.2). The
results are slightly higher than the results of the HOG descriptor (Table 4.4), 50.1% and
36.4% respectively, showing the descriptive power of colour in food recognition. [Bosch
et al., 2011b] report of a similar construction of a colour descriptor. The mean and
variance of ten colour channels (R,G, B, Cb, Cr, a, b, H, S, V) are computed from local
keypoints, resulting in a dimensionality of 20 values per descriptor. They also compute
the descriptor globally in the domain of the segmented food item areas. The results of
the two methods are 79.2% for the local patches and 78.6% for the global segment-wide
computed descriptor. The dataset size was 179 images in 39 categories. The close results
are presumably due to the small segments which are local patches of its own, and the
resulting similarity of local and global values.
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[Chen et al., 2012] HistRGB with 96 bins on a 4× 4 grid of the image. 5000 50 40.3%

[Anthimopoulos
et al., 2014]

BoF (10k dict. size) enc. of HistRGB 4868 11 ∼ 37%

BoF (10k dict. size) enc. of HistOP (opponent
colour space)

4868 11 ∼ 52%

BoF (10k dict. size) enc. of HistRGnorm
4868 11 ∼ 47%

BoF (10k dict. size) enc. of HistHUE 4868 11 ∼ 39%

BoF (10k dict. size) enc. of HistRGBtrans
4868 11 ∼ 23%

BoF (10k dict. size) enc. of CMI 4868 11 ∼ 59%

[Bosch et al.,
2011b]

BoF of µ and σ of 10 local colour components 179 39 79.2%

global colour, µ and σ of 10 colour components of
whole segment

179 39 78.6%

global entropy, µ and σ of the R, G, B channels are
estimated (in blocks and then avg)

179 39 78.2%

[Zhu et al., 2015]

µ and σ of 10 colour components of whole segments
(global)

30a 79 68.0%

Entropy colour statistics (µ and σ of RGB
components for whole segment, global)

30a 79 35.0%

Predominant colour statistics (distribution of salient
colours) within segment (global)

30a 79 60.0%

[Hoashi et al.,
2010]

HistRGB with 64 bins of 4 sub-images from a 2× 2
grid division

85×100 85 27.08%

[Kawano and
Yanai, 2014]

FV encoding of µ and σ2 of RGB from patches 100×100 100 53.04%

FV encoding of µ and σ2 of RGB from patches 256×100 256 41.60%

[Kawano and
Yanai, 2015b]

576-dim. HistRGB with 64 bins (from 3× 3 divided
image blocks), χ2 kernel feature mapping triplicating
the descr. to 1728-dim.

12905 100 ∼ 28%

BoF-enc. of colour patches / colour histogram 12905 100 ∼ 29%

FV-enc. of colour patches 12905 100 ∼ 41%

FV-enc. of colour patches (flipped training images) 12905 100 ∼ 42%

apatches of segmentation samples, average of 30 per class.

Table 4.2: Summary of the results of experiments with colour descriptors from researched
papers.
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4.1.2 Texture descriptors

Wavelet filters:

Gabor filter responses A two-dimensional Gabor filter is used to pass spatial frequen-
cies in a fixed direction. Using Gabor filter responses as a descriptor, is able to capture
the properties of spatial localization, orientation information, and spatial frequency
information and is widely used in texure representation and image recognition [Chen
et al., 2012,Li et al., 2010].

For the descriptor, a set of Gabor filters, also called Gabor filter bank, of different scales
and orientations are convolved with the image (Figure 4.1 shows the impulses of a
bank of Gabor filters). To encode the responses of each filter into the descriptor, [Chen
et al., 2012] e.g., compute mean and variance of image blocks of the magnitudes of the
filter responses and concatenate the values to form the texture descriptor. To make
the descriptor invariant to scale and orientation, [Rahman et al., 2011] propose to shift
around the responses of each scale and orientation filter impulse circularly, so that the
strongest impulse is on the first position. This method produces similar descriptors for
similar textures with different scales and rotations.

The results of experiments with Gabor filters on food images are summarised in Table 4.3.
[Chen et al., 2012] reach 26.6% with the Gabor filter descriptor, compared to a result of
from 39.9 to 45.9% with sparse coding of LBP descriptor (Tables 4.3 and 4.4).

Figure 4.1: Impulses of a Gabor filter bank with five scales and six orientations [Rahman
et al., 2011].
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[Chen et al., 2012] the µ and σ2 of magnitudes of Gabor filter
(6×5)

5000 50 26.6%

[Bosch et al.,
2011b]

BoF of µ and σ2 of Gabor filter (6×4)
response, on local interest points

179 39 29.1%

µ and σ2 of Gabor filter (6×4) response,
on blocks of whole segment (global), then
averaged

179 39 40.2%

BoF of Haar wavelet responses in
horizontal and vertical directions, on local
interest points

179 39 64.1%

[Hoashi et al.,
2010]

avg. responses of Gabor filter (6 dir. × 4
sc.) of 16 sub-images from a 4× 4 grid
division (384 dims), no encoding

85×100 85 25.35%

avg. responses of Gabor filter (6 dir. × 4
sc.) of 9 sub-images from a 3× 3 grid
division (216 dims), no encoding

85×100 85 23.60%

[Zhu et al., 2015]
EFD (global, whole segment) 30a 79 47.0%

GFD (global, whole segment) 30a 79 27.0%

GOSDM (global, whole segment) 30a 79 32.0%

apatches of segmentation samples, average of 30 per class.

Table 4.3: Summary of the results of experiments with wavelet filter descriptors and
global texture descriptors from researched papers.

Local texture descriptors:

LBP-descriptor The LBP descriptor [Ojala et al., 2002] was introduced for discrimina-
tion on basis of texture information. It is invariant to gray-scale, making it robust against
illumination changes that occur within a class, and it is invariant to rotation, making
it robust to variance in textural orientation. It has a low computational complexity,
resulting in simple and fast computation.

The LBP descriptor is a local descriptor, describing the pattern of differences in intensity
of the central pixel in relation to its neighbouring (local) pixels. The neighbourhood is
defined as the pixels of a fixed distance located angularly around the center pixel, forming
a circular symmetric neighbour set. The LBP descriptor has two parameters: P and
R, where P determines the quantization of the angular space (number of neighbours),
and R determines the spatial resolution (radius), illustrated in Figure 4.2. The intensity
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4. State-of-the-art recognition methods

value of neighbouring pixels that do not fall into a center of a pixel get estimated by
interpolation.

Figure 4.2: Examples of sampling parameters R and P , of the LBP descriptor [Ojala
et al., 2002].

To achieve invariance with respect to shifts in gray scale, first the intensity value of the
central pixel is substracted from all sampled points. Then all P sampled neighbours get
compared to the threshold value of the central pixel, getting assigned 0 if the value is less
than zero, and 1 if the value is greater or equal than zero. The outputs are concatenated,
producing a binary pattern.

To achieve rotation invariance the resulting 2P possibilities of binary patterns get reduced
to the minimum of different patterns possible when shift rotating the pattern around the
central pixel. The formed pattern can be seen as feature detectors, forming edges, lines,
spots or flat areas. E.g. the pattern with all zeros would detect bright spots and for a
LBP descriptor with P = 8, the pattern with four consecutive ones in it would detect
edges. Those cases are illustrated in the first and the last patterns in Figure 4.3. There
are a total of 36 rotation invariant unique patterns for the LBP with eight neighbours.

Figure 4.3: Five examples of unique binary patterns of the LBP descriptor [Ojala et al.,
2002].

Further improvements of the descriptor were reached by reducing to patterns that [Ojala
et al., 2002] define as uniform patterns, having the maximum of two transitions between
0 and 1 or vice versa inside the pattern. In the case of the 8-neighbour LBP descriptor
there are eight such patterns, describing detectors for spots and lines. Exactly P + 1
uniform patterns occur in a circularly symmetric set of P neighbours.

[Chen et al., 2012] achieve a recognition rate of 39.9 to 45.9% with sparse coding in
50 classes. Results of the LBP descriptor and other local texture descriptors in food
recognition experiments from the state of the art projects are summarised in Table 4.4.
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HOG-descriptor [Dalal and Triggs, 2005] propose a descriptor that computes his-
tograms of the orientations of the gradients from local points on a grid. The gradients
are computed with the 1-dimensional derivative mask [−1, 0, 1], there is no smoothing of
the image performed for preprocessing.

The histogram is formed of nine bins evenly spaced over 0◦− 180◦. The neighbourhood of
the descriptor spans 16× 16 pixels, consisting of four cells with each 8× 8 pixels of size.
The stride of dense sampling is 8 pixels, covering each cell four times. The descriptor
then gets l2-normalised to unit length.

The descriptor is invariant to intensity changes but not to rotation and scale. Results of
the HOG descriptor in food recognition experiments from state of the art projects are
summarised in Table 4.4.

In [Kawano and Yanai, 2014] the RootHOG1 descriptor achieves a recognition rate of
50% in 100 classes and 36% in 256 classes with FV encoding.

SIFT-descriptor The SIFT descriptor was proposed in [Lowe, 2004]. The total
neighbourhood considered for the computation is a window of 16×16 pixels. In the
original descriptor the computation is based on the intensity values of the image, omitting
all colour information. The gradients of each pixel is computed with

m(x, y) =
√

(L(x+ 1, y)− L(x− 1, y))2 + (L(x, y + 1)− L(x, y − 1))2,

where L holds the image intensities smoothed with a Gaussian. The magnitudes of the
gradients of the sample points are weighed by a 2-dimensional Gaussian function, giving
more focus to the central sample points. 8-bin histograms are computed of 16 subregions
of 4×4 pixels, resulting in 16 histograms of eight gradient directions per descriptor. The
total dimensionality of the SIFT descriptor therefore is 128. The descriptor is invariant
to light intensity changes, as relative information in gradient shifts of intensity is encoded
with the histograms. The original SIFT descriptor is operating on intensity values
enabling a descriptiveness for texture information, but it not being capable of capturing
colour information. A colour variant of the SIFT descriptor computes the gradients on
each colour channel of the colour space representation of the image, and combines the
resulting histograms of the channels.

In [Zhu et al., 2015] the SIFT descriptor was computed on the individual colour channels
of the RGB colour space but the descriptors were not combined, which did not lead to a
significant change in accuracy (Table 4.5), compared to the SIFT descriptor obtained
from intensity information. Whereas a combination of the descriptors from all colour
channels, the approach of [Anthimopoulos et al., 2014], add full colour information and
improve the accuracy for the combined descriptors, computed for six different colour
spaces (Table 4.5). The best result of the variants in [Anthimopoulos et al., 2014], was
obtained from SIFT from HSV space, which increased the accuracy about 16% compared

1RootHOG is inspired by RootSIFT from [Arandjelović and Zisserman, 2012], an element-wise square
root of the L1 normalised HOG descriptor [Kawano and Yanai, 2014].
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[Chen et al., 2012]

sparse coding of LBP: "59-bins histograms
from 16×16 patches with step size of 8px
in each level of [a 3 level] image pyramid
(2048dimensions)"

5000 50 45.9%

sparse coding of LBP (histogram pooling,
1024-Dim)

5000 50 39.9%

LBP as in [Ojala et al., 2002], without
encoding

5000 50 36.2%

[Bosch et al.,
2011b]

BoF of DAISY 179 39 60.3%

[Zhu et al., 2015] BoF of SURF 30a 79 45.0%

[Kawano and
Yanai, 2014]

FV-encoding of RootHOG 100×100 100 50.14%

FV-encoding of RootHOG 256×100 256 36.46%

[Bossard et al.,
2014]

Random Forest discriminative components
mining with BoF-enc.(1024 dict. size) of
SURF

101000 101 33.47%

Random Forest discriminative components
mining with FV-enc. of SURF, with 64
clusters

101000 101 44.79%

[Kawano and
Yanai, 2015b]

BoF-enc. of SURF (dense 8px grid), with
dict. size of 500, χ2 kernel feature
mapping triplicating the descr. to
1500-dim., linear SVM

12905 100 ∼ 29%

FV-enc. of HOG-patches (flipped training
images) (dense 6px grid), linear SVM

12905 100 ∼ 37%

apatches of segmentation samples, average of 30 per class.

Table 4.4: Summary of the results of experiments with various local texture descriptors
from researched papers.

to the original SIFT descriptor computed on the intensity values. The concatenation of
the SIFTHSV with the CMI descriptor, showed no significant improvement compared
to the SIFTHSV descriptor on its own, indicating that the colour variant is capable of
describing colour information in addition to its textual description capability.

Sampling strategies of local descriptors To compute local descriptors, there are
several common strategies for selecting the keypoint locations. The locations can be
selected randomly, which potentially leads to a higher correlation if the locations happen
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[Chen et al., 2012]

BoF of SIFT (1024 dictionary size) 5000 50 40.2%

sparse coding(multi-scale max pooling,
1024 dictionary size) of SIFT

5000 50 43.4%

sparse coding(histogram pooling, 1024
dictionary size) of SIFT

5000 50 53.0%

[Anthimopoulos
et al., 2014]

BoF (10k dict. size) enc. of SIFT 4868 11 ∼ 61%

BoF (10k dict. size) enc. of SIFTRGB 4868 11 ∼ 66%

BoF (10k dict. size) enc. of SIFTHSV 4868 11 77.6%

BoF (10k dict. size) enc. of SIFTHUE 4868 11 ∼ 67%

BoF (10k dict. size) enc. of
SIFTOP P ONENT

4868 11 ∼ 70%

BoF (10k dict. size) enc. of SIFTC 4868 11 ∼ 70%

BoF (10k dict. size) enc. of SIFTRG 4868 11 ∼ 71%

[Hoashi et al.,
2010]

BoF (2k dict. size) enc. of SIFT with
Difference of Gaussians (DoG) sampling

85×100 85 33.42%

BoF (2k dict. size) enc. of SIFT with
dense sampling

85×100 85 32.21%

[Bosch et al.,
2011b]

BoF of SIFT 179 39 65.2%

[Zhu et al., 2015]

BoF of SIFT 30a 79 48.0%

BoF of SIFTRED 30a 79 48.0%

BoF of SIFTGREEN 30a 79 49.0%

BoF of SIFTBLUE 30a 79 47.0%

FV of SIFT 30a 79 61.0%

apatches of segmentation samples, average of 30 per class.

Table 4.5: Summary of the results of experiments with the SIFT descriptor and variants
thereof from researched papers.

to be dense. Another selection strategy is over a uniform grid of the image (also called
dense-sampling). A third common strategy is the use of an Interest Point Operator. The
DoG keypoint detector, a method developed by [Lowe, 2004] for the selection of keypoints
of the SIFT descriptor, which detects local extrema in the DoG space. The idea behind
sampling interest points is to find points that are more descriptive than random points,
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using algorithms that filter points with a higher descriptivness, such as points on edges
or with certain minimum criteria of contrast etc. Other popular interest point detectors
are the Harris-Affine detector [Mikolajczyk and Schmid, 2004] and the Maximally Stable
Extremal Regions (MSER) [Matas et al., 2002] keypoint detector [O’Hara and Draper,
2011]. [Anthimopoulos et al., 2013] show that grid sampling performs better than DoG-
and random-sampling (illustrated in Figure 4.4), in their food recognition experiments.
In [Hoashi et al., 2010, p. 300] DoG-sampling (33.42%) performs slightly better than
random-sampling (30.36%) and grid-sampling (32.21%)2, using a 2000 visual words strong
dictionary.

Figure 4.4: Comparisons of sampling strategies for the SIFT descriptor [Anthimopoulos
et al., 2013]. The strategy denoted here as SIFT is the DoG keypoint detector used in
the SIFT descriptor.

4.1.3 Combination of descriptors

For the combination of multiple single descriptor vectors, also called fusion, three strategies
can be followed [Mangai et al., 2010]. Categorised by the level on which the fusion takes
place, the strategies are, information/data fusion (low-level fusion, early fusion) that
is performed on the raw data of the descriptor, creating new raw data, expected to
be more descriptive. Feature fusion (intermediate-level fusion) combines descriptors
following a selection process to remove redundancy in the combined feature space (e.g.

2The DoG keypoint detector selects a limited number of keypoints. In the evaluation they were
compared with a higher number of samples for the random and grid strategies.
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if two features have a similar distribution), or remove descriptors that turn out not to
be descriptive for the task. The third strategy decision fusion (high-level fusion, late
fusion), is performed after classification at decision level. A set of classifiers are used
and the resulting decision is a combination of the single classifiers. One way of realizing
the combination, is to build a feature vector from the results of the individual classifiers
of each feature on which a new classifier is trained. An example for this combination
strategy are the experiments of [Beijbom et al., 2015], where several single-descriptor
classifications were combined with a SVM3. The accuracy of five individual descriptors
was between 43.6% and 57.7%, and was increased to 77.4% due to the fusion. An other
strategy is to implement a voting scheme, e.g. majority voting, where the decision falls
to the category that is identified by the majority of the individual classifiers. Different
types of classifiers can be combined and also different sets of descriptors for each of the
classifiers.

Table 4.6 shows results from works on food related recognition, that experiment with
fusion of two or more descriptors. [Zhu et al., 2015] observe that decision fusion with
majority voting of 12 single descriptors (accuracy of 75%) outperforms a concatenation
of a selection of the three best-performing descriptors into one vector (feature fusion)
and applying classification (accuracy of 52%).

[Kawano and Yanai, 2014,Kawano and Yanai, 2015b] perform combinations of descriptors
on a low-level. The results of the feature fusions are also summarised in Table 4.6.
In [Kawano and Yanai, 2014], results for single classification of FV-encoding of a RootHOG
descriptor on the 100 class dataset was 50.14% and of the colour patch descriptor 53.04%.
The combination of the two reached 65.32%. In [Kawano and Yanai, 2015b] FV encoding
of HOG-patches reached 37%, of colour patches 41% and the combination 59.6%.

[Anthimopoulos et al., 2014] compare concatenations of raw descriptors to concatenation
of the histograms resulting from BoF-encoding. The results are illustrated in Figure 4.5.
The best combination from the experiment with eleven classes was achieved by combining
the descriptors SIFTHSV with the CMI descriptor (achieved around 59% on its own)
by raw concatenation before classification, resulting in 77.8% accuracy. Though this
did not improve the result of the single descriptor results, the SIFT descriptor on its
own achieved 77.6%. This result indicates the capability of the SIFT colour variant for
describing colour information.

4.2 Encoding techniques

Local descriptors extracted with a sampling strategy from an image, results in a large
collection of information. E.g. on an image with 500× 400 pixel and a dense-sampled 128

3A one-versus-rest linear SVM was trained for each of the 41 classes and each of the five descriptors,
leading to a 205-dimensional joint feature vector, that was then trained with an additional one-versus-rest
linear SVM.
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[Anthimopoulos
et al., 2014]

BoF (10k dict. size) enc. of SIFTHSV +
CMI

4868 11 77.8%

[Kawano and
Yanai, 2014]

FV of colourpatches and
RootHOG-patches

12905 100 65.32%

FV of colourpatches and
RootHOG-patches

100×256 256 52.85%

[Kawano and
Yanai, 2015b]

BoF (dict. size of 500) of SURF, kernel
feature mapping to 1500 dims + RGB
colour histogram, linear SVM

12905 100 42.0%

FV-enc. of PCA reduced 24 dim. HOG
patches + FV-enc. of colour patches with
32 gaussians, linear SVM

12905 100 49.7%

FV-enc. of PCA reduced 24 dim. HOG
patches + FV-enc. of colour
patches(flipped training images) with 32
gaussians, linear SVM

12905 100 51.9%

FV-enc. of 32 dim. HOG patches +
FV-enc. of colour patches(flipped training
images) with 64 gaussians, linear SVM

12905 100 59.6%

[Chen et al., 2012]

Data fusion of SIFT, LBP, colour and
gabor descriptors

5000 50 62.7%

Multi-class Adaboost [Zou et al., 2009] of
SIFT, LBP, colour and Gabor descriptors

5000 50 68.3%

[Beijbom et al.,
2015]

LLC-encoding, with 1024 words learned
via k-means of SIFT, LBP, colour, HOG
and MR8 [Varma and Zisserman, 2005]
with max-pooling and late fusion with
linear SVM

5000 50 77.4%

646 41 51.2%

Table 4.6: Summary of the results of experiments of combinations of descriptors by feature
fusion from researched papers. More combinations of the results from [Anthimopoulos
et al., 2014] are illustrated in Figure 4.5.

dimensional SIFT descriptor on an 8 pixel grid, 3100 descriptors are extracted, holding a
size of 1550 KiB per image, for a database with 100000 images, that accounts to around
148 GiB of raw descriptor data. Encoding strategies such as BoF and FV help to reduce
the size of the information, with the aim of keeping a high descriptiveness of the original
information.
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Figure 4.5: Comparisons of raw descriptor concatenation in red. In blue are the results
from histogram concatenation (from the BoF-encoding) [Anthimopoulos et al., 2014].

The focus on the encoding methods BoF and FV, is because they are the most used and the
most successful in food recognition related works (Chapter 3). Other encoding methods
applied in food recognition are sparse coding [Chen et al., 2012] and LLC-encoding (used
in [Beijbom et al., 2015]).

In [Chatfield et al., 2014] the choice of the improved4 FV technique, is argued as usually
outperforming BoF, LLC and Vector of Locally Aggregated Descriptors (VLAD) [Jegou
et al., 2012].

4.2.1 Bag-of-Features (BoF) encoding

The BoF method, also called Bag-of-Words or Bag-of-visual-Words, originates from the
representation of words in textual information retrieval [O’Hara and Draper, 2011]. With
Bag-of-Words a text document is represented by a normalised histogram by counting
the words. The words appearing in the document form the dictionary. All words can be
used, or non-informative words such as articles may be excluded, and synonyms may be
represented by the same term. The vector that represents the document has the size of
the dictionary, forming a sparse histogram vector. Each element of the vector is associated
with a word in the dictionary, and the value of that element is the number of times the
word appears in the document, normalised by the number of words sampled [O’Hara and
Draper, 2011]. It is called a bag because the spatial order of the words in the document is

4Refers to the description in [Perronnin et al., 2010].
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lost. The BoF image representation is analogous to the textual concept. The dictionary
is constructed by quantization (clustering) of a set of image feature descriptors into a
fixed sized set of visual words. The impact of the size of the dictionary, i.e. the number
of visual words, on the classification accuracy is illustrated in Figure 4.6. The images are
represented by histograms of the visual dictionary that incorporates assignments of each
descriptor to a visual word. As mentioned, the approach is characterised by an orderless
collection of image features [O’Hara and Draper, 2011]. In the step of the histogram
computation, the spatial information of the location of the keypoint of the descriptor
gets discarded. Therefore the information of the absolute location of a keypoint and also
the relative locations between the keypoints is lost, and also the scales and orientations
of the features are not incorporated in the histogram encoding.

Figure 4.6: Influence of dictionary size on accuracy in experiments with food images
in [Anthimopoulos et al., 2014].

There are two advantages that result from encoding to histograms. First the size of the
image description is constant, independent from the number of extracted descriptors. This
is necessary when using a classifier that only allows input of vectors of equal size. Second,
in case of higher dimensional descriptors and/or high extraction sampling densities, the
information size gets reduced to the size of the dictionary.

BoF technique consists of five primary steps: [O’Hara and Draper, 2011,Anthimopoulos
et al., 2014]:

• Keypoint Sampling: strategies are discussed in Section 4.1.2 on page 48.

• Local Feature Description: extraction of the features of each image.
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• Constructing the dictionary (feature space quantization): the extracted features
from the training set (or a subset thereof) are clustered into the dictionary5. Each
cluster represents one visual word or term.

• Term assignment (descriptor quantization): the extracted features of an image get
assigned to the entry in the dictionary with the highest similarity to those features.

• Generate histogram: the assignments to each cluster are counted and the histogram
gets normalised. This forms the final representation of the BoF-encoding of the
image.

The dictionary is constructed only once, all other steps are executed in both training
and testing for each image. Figure 4.7 illustrates the steps.

Figure 4.7: Illustration of the steps involved in the BoF-encoding technique [Anthimopou-
los et al., 2014, p. 1263].

5Also called visual vocabulary or codebook.
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Vector Space and Descriptor Quantization

To be able to construct a dictionary, the descriptor space is quantised into clusters.
Many BoF implementations use K-means6 or a hierarchical version of the algorithm for
clustering [Anthimopoulos et al., 2014,Kawano and Yanai, 2015b,Zhu et al., 2015,Lazebnik
et al., 2006].

In the next step a strategy is needed to assign a cluster (visual word) to represent
actual descriptors. In a hard assignment the closest neighbouring cluster-center is
assigned (Nearest Neighbour strategy), regardless of the distance to other cluster-centers.
Ambiguous descriptors that lie near Voronoi boundaries in between clusters, lead to weak
representations by the dictionary [O’Hara and Draper, 2011]. Soft assignment approaches
compensate with weighing the nearest k-neighbours, so that the nearest cluster gets a
higher weight but the k-1 next closest clusters, are also considered. [O’Hara and Draper,
2011] report of works using soft assignments to cause a modest increase in accuracy,
but associated with higher computational search time. The reported implementation
with k=3, required seven times the number of multiplications compared to the simple
assignment.

Spatial Pyramid Matching

In order to overcome the orderless collection of feature descriptors of BoF, [Lazebnik
et al., 2006] introduce the Spatial Pyramid Matching (SPM) technique. The technique
is inspired by the Pyramid Match Kernel in [Grauman and Darrell, 2005], which is an
orderless image representation of multi-resolution histograms7, that allows matching
of two collections of feature descriptors in high-dimensional space [Lazebnik et al., 2006].
In contrast, SPM operates in original image space, with constant resolution for all
levels of the Spatial Pyramid (SP). Histograms from gridded regions8 of the image are
constructed, dividing the image at a different grid on each level of the pyramid. For each
region, the descriptors located within that region are encoded into one histogram. The
SPM therefore generates r feature vectors (histograms), where r is the number of total
regions from all levels of the SP. The histograms are normalised by the total number of
feature descriptors contributing to the histogram. All histograms (one for each region)
are concatenated to a single feature vector. The result is a much higher dimensional
representation, r-times the size of the standard BoF approach. E.g. in [Kawano and Yanai,
2014] the SPM is arranged on three levels with 1×1, 2×2 and 1×3 regions, resulting in
eight total regions. When reduced to a single pyramid level consisting of the enitre image,
the technique (and feature vector) is equal to standard BoF. The works of [Grauman

6standard implementation described in [Lloyd, 1982]
7The histograms are constructed from an image pyramid, i.e. the whole image on different image

resolutions.
8Region denotes the areas resulting by splitting the image into a defined grid, e.g. a 2×2 grid splits

the image into four regions.
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and Darrell, 2005] and [Lazebnik et al., 2006] both develop a matching kernel for their
histogram constructions. The SPM suffices in a significant improvement in accuracy over
the standard BoF approach [Lazebnik et al., 2006].

Kernel Feature Mapping

[Kawano and Yanai, 2015b] focus on computational cost of the whole recognition process,
realizing a system running all its computations on a mobile device. For classification
linear SVMs are used. Linear SVMs are capable of being trained linear in time, O(n),
with n training samples [Joachims, 2006], whereas the learning of non-linear SVMs scales
somewhere between O(n2) and O(n3) [Perronnin et al., 2010]. However there have been
many studies showing that linear SVMs perform inferior to non-linear SVMs on BoF
histograms.

A linear SVM is defined by the inner product F (x) =
〈
w, x

〉
between a data vector

x ∈ RD and a vector of weights w ∈ RD [Vedaldi and Zisserman, 2010]. A non-linear
SVM is defined by the expansion F (x) =

∑N
i=1 βiK(x, xi), where K is a non-linear

kernel. x1, . . . , xN are the support vectors, N feature vectors that represent the training
set. Assuming that the computational cost of the inner product and the kernel are
comparable, then the evaluation of a non-linear SVM is N-times slower, similarly for the
training [Vedaldi and Zisserman, 2010].

Non-linear SVMs can be seen as linear SVMs operating in a higher feature space. The
kernel maps the feature into a higher dimensional space. Kernels commonly used in
computer vision, such as χ2, intersection, Hellinger’s and Jensen-Shannon kernel are
additive combinations of homogeneous kernels [Vedaldi and Zisserman, 2010]. A kernel
Kh : R+

0 × R+
0 → R is homogeneous if ∀c ≥ 0 : Kh(cx, cy) = cKh(x, y).

The homogeneous feature mapping [Vedaldi and Zisserman, 2010] approximates the
kernel, and can be computed explicitly, which accelerates the learning procedure of the
SVM. The kernel mapping function Ψ(x) of the data vector x is constructed such that
K(x, y) =

〈
Ψ(x), Ψ(y)

〉
.

Following the instructions in [Vedaldi and Zisserman, 2010,Kawano and Yanai, 2015b]
implement a mapping function that realizes an approximation of the χ2 kernel. The
dimension of the resulting feature vector is three times larger than the original feature
vector. The mapping function that was used is defined as:

Ψ(x) =
√
x

 0.8
0.6 cos(0.6 log(x))
0.6 sin(0.6 log(x))
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4.2.2 Fisher Vector (FV) encoding

FV-encoding is a high performance method to represent a set of local features [Kawano
and Yanai, 2015b]. It can be seen as an extension of the BoF-encoding. FV is not
limited to the occurences of the visual words, but also incorporates the distribution of
the descriptors [Perronnin et al., 2010]. Through the use of higher order statistics the
quanitization error is reduced, compared to the encoding with BoF [Kawano and Yanai,
2015b]. The FV encoding yields higher results than other encoding methods such as BoF
and LLC [Kawano and Yanai, 2015b,Yang et al., 2010].

The FV computation bases on an underlying probability distribution estimate of the
feature space. A common method in FV-encoding is the use of GMMs, as any continous
distribution can be approximated with arbitrary precision [Titterington et al., 1985,
Perronnin et al., 2010].

The FV was first presented with application to image classification in [Perronnin and
Dance, 2007], improvements were presented in [Perronnin et al., 2010] and a more detailed
work on theory and practice for image classification with the FV was presented in [Sanchez
et al., 2013].

Gaussian Mixture Model (GMM)

[Sanchez et al., 2013] define a GMM uλ(x) with K components as:

uλ(x) =
K∑
k=1

wkuk(x),

and its parameters are denoted by λ = {wk, µk, Σk, k = 1, . . . , K}, where wk, µk
and Σk are the mixture weights, mean vectors and covariance matrices of Gaussian k
respectively. To ensure a valid distribution, ∀k : wk ≥ 0,

∑K
k=1wk = 1 has to hold.

The kth Gaussian component uk(x) is computed with:

uk(x) = 1
(2π)D/2 |Σk|2

exp
{
−1

2(x− µk)′ Σ−1
k (x− µk)

}

For the covariance, a standard assumption is to use the diagonal covariance matrix. σ2
k

is used to denote the vector that holds the diagonal entries of the covariance matrix
Σk [Sanchez et al., 2013].

Fisher Vector

The details of the connection between the Fisher Kernel (FK) and the FV are found
in [Perronnin and Dance, 2007,Perronnin et al., 2010,Sanchez et al., 2013]. [Jaakkola and
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Haussler, 1998] introduce the FK to measure the similarity between two samples [Sanchez
et al., 2013]. [Perronnin et al., 2010] state that learning a kernel classifier (such as SVM)
using the FK is equivalent to learning a linear classifier on the FV.

In this section the necessary information to compute the FV is presented.

Let X be the set of all extracted D-dimensional features of an image: X = {xt, t =
1, . . . , T}, where T is the number of features and xt ∈ X , X denoting the feature
space [Sanchez et al., 2013]. The probability function that models the generative process
of the elements in X , is denoted with uλ(x).

The information about the distribution of the descriptors is incorporated into the FV
through the gradient of the log-likelihood, given by:

GXλ = ∇λ log uλ(X),

where GXλ ∈ RM , is depending only on the number of parametersM in λ, and independent
of the sample size T . The gradients of each parameter in λ describe the contribution of
the parameter to the generative process.

The gradients of a single descriptor xt, for the three parameters in λ: αk9, µk and σk,
are given by:

∇αk log uλ(xt) = γt(k)− wk

∇µk log uλ(xt) = γt(k)
(
xt − µk
σ2
k

)

∇σk log uλ(xt) = γt(k)
[

(xt − µk)2

σ3
k

− 1
σk

]

where γt(k) is the posterior probability of Gaussian k, given by:

γt(k) = wkuk(xt)∑K
j=1wjuj(xt)

The gradients for all T descriptors in an image, are given by:
9αk is a reparameterization of wk, with wk = exp(αk)∑K

j=1
exp(αj )

, so that ∀k : wk ≥ 0,
∑K

k=1 wk = 1.
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GX
αk

= 1
√
wk

T∑
t=1

(γt(k)− wk)

GX
µk

= 1
√
wk

T∑
t=1

γt(k)
(
xt − µk
σk

)

GX
σk

= 1
√
wk

T∑
t=1

γt(k) 1√
2

[
(xt − µk)2

σ2
k

− 1
]

GX
αk

is a scalar, GX
µk

and GX
σk

are D-dimensional vectors, where D is the dimension of the
extracted feature. The final FV is a concatenation of the gradients GX

αk
, GX

µk
and GX

σk
, for

k = 1, . . . ,K. The total dimension of the FV is E = (2D + 1)K [Sanchez et al., 2013].

The gradient of the weights brings little additional information and is not considered for
the FV in [Perronnin et al., 2010]. The influence from each parameter in λ is illustrated
in Figure 4.8.

Figure 4.8: Impact on mAP of each parameter in λ [Sanchez et al., 2013]. The experiments
were conducted on PASCAL VOC 2007 dataset with SIFT descriptor.

Relevance of Principal Component Analysis (PCA) for Gaussian Mixture
Modeling (GMM)

[Sanchez et al., 2013] conduct experiments with and without the use of PCA, the results
are illustrated in Figure 4.9. The experiment was conducted using a SIFT descriptor on
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the PASCAL VOC 2007 dataset. Without the use of PCA, using the original descriptor
to compute the FV the accuracy was at 54.5%, while with using PCA the accuracy is
above 60% for all reductions to over 48 dimensions.

Informally, this effect is caused by the use of the diagonal covariance matrix for the
GMM. The major and minor axes of the ellipses of a GMM with diagonal covariances
are parallel to the axes of the coordinate system. Performing a PCA and projecting the
data, the axis of the largest variance is employed as the new basis. This is performed for
every dimension of the data. Therefore the modelling fits the data better when the axis
of the Gaussians are aligned with the axes of the variance of the data.

Figure 4.9: Illustrates mean average precision of image classification using the SIFT-
descriptor on PASCAL VOC 2007 dataset with FV-encoding, applying various PCA
reduction sizes(black) and no result without PCA(red) [Sanchez et al., 2013].

Improvements

l2-Normalisation [Perronnin et al., 2010, Sanchez et al., 2013] show that applying
l2-normalisation to the FV limits the effect that different ratios of object information
to background information between images has. This is the case as the objects sizes
vary between the images in the set, as does the background (all non-object information).
Through the normalisation the image-independent information is approximately discarded
from the FV. Formal argumentations are given in [Perronnin et al., 2010] and in [Sanchez
et al., 2013]. The comparisons in [Sanchez et al., 2013] on the PASCAL VOC 2007
dataset show an improvement of 4.6% and 5.5% in accuracy for SIFT and Local Colour
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Statistics (LCS) descriptors respectively, using l2-normalisation over a non-normalised
FV (Table 4.7).

Power Normalisation To compute the Power Normalisation (PN), following operation
is applied to each dimension in the feature vector:

z ← sign(z) |z|ρ ,

with 0 < ρ ≤ 1. The value used for ρ in [Sanchez et al., 2013] is ρ = 1
2 , and referred

to as signed square rooting. This operation acts like an explicit representation of the
Hellinger or Bhattacharyya kernel. The higher the number of Gaussian components in the
GMM, the sparser the FV becomes, empirically observed in Figure 4.10 (a), (b) and (c)
in [Perronnin et al., 2010]. Through the PN the vector becomes denser (Figure 4.10 (d)),
which impacts the dot-product positively [Perronnin et al., 2010]. It is also argued
that the PN reduces the influence of descriptors that occur frequently within an image,
correcting the incorrect independence assumption [Sanchez et al., 2013].

Spatial Pyramid The SP was introduced for the BoF framework, but can be applied
to the FV in the same way [Sanchez et al., 2013]. The FV is computed for each region in
the image and the resulting vectors are concatenated. If R is the number of regions, the
dimensionality of the FV is E = (2D + 1)KR. The described routine in [Sanchez et al.,
2013] uses R = 4 regions, one of the whole image and three equally splitted horizontal
regions (1×1 + 3×1). Similar in [Kawano and Yanai, 2014] a FV is applied on a SP with
three levels and R = 8 regions (1×1 + 2×2 + 3×1) for food image classification.

An alternative to SPM is a spatial extension of the local descriptors proposed in [Sánchez
et al., 2012]. Here, this method will be refered to as Spatially Extended Descriptor
(SED). After descriptor extraction, the location is embedded into the feature vector as
two extra dimensions10. Let mt = [mx,t,my,t]ᵀ, where m are the 2D-coordinates of a
local descriptor xt in the image. The augmented feature vector x̂t ∈ RD+2 is defined as:

x̂t =

 xt
mx,t/W − 0.5
my,t/H − 0.5

 ,

where W and H are the width and the height of the image respectively. The values
are appended to the feature vector after PCA projection but before quantization with
the GMM, therefore spatial information is directly captured in the quantization process.
Compared to SPM the feature vector is significantly smaller, with a size of E = (2D+3)K.
The smaller feature vector leads to significant memory reduction over using SPM.

10In [Sánchez et al., 2012] the patch scale of the descriptor neighbourhood is also encoded as a third
parameter, beside the two location parameters.
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Figure 4.10: (a) (b) and (c) show the distribution of the l2 normalised FV values of the
first dimension from all computed FVs of all 5011 images of the PASCAL VOC 2007
dataset without the use of PN. For (a) 16 Gaussians were used, for (b) 64 and for (c) and
(d) 256 Gaussians. For (d) PN was used. Notice the different scales. [Perronnin et al.,
2010].

Effect of the improvements In Table 4.7 results of the contribution of each im-
provement is shown on experiments [Sanchez et al., 2013] conducted on the PASCAL
VOC 2007 dataset for the SIFT and the LCS descriptor. Each of the three described
improvements were applied separately and in combination with the other improvements.
When all improvements are combined the increase in accuracy accounts to 12.2% and
17.4% for the two descriptors respectively.
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PN l2 SP SIFT LCS

No No No 49.6 35.2

Yes No No 57.9 (+8.3) 47.0 (+11.8)
No Yes No 54.2 (+4.6) 40.7 (+5.5)
No No Yes 51.5 (+1.9) 35.9 (+0.7)

Yes Yes No 59.6 (+10.0) 49.7 (+14.7)
Yes No Yes 59.8 (+10.2) 50.4 (+15.2)
No Yes Yes 57.3 (+7.7) 46.0 (+10.8)

Yes Yes Yes 61.8 (+12.2) 52.6 (+17.4)

Table 4.7: Contribution of each improvement to the accuracy, individually and combined
for each improvement. Results are for the SIFT and the LCS desriptors on the PASCAL
VOC 2007 dataset [Sanchez et al., 2013].

4.3 Deep Convolutional Neural Networks (DCNNs)

The ILSVRC has been an annual competition since 2010, becoming a benchmark in
large-scale object recognition [Russakovsky et al., 2015]. Since the introduction of DCNNs
into the ILSVRC competition in 2012 by [Krizhevsky et al., 2012], DCNN is the winning
method every year so far [Russakovsky et al., 2015].

4.3.1 Neural Networks (NNs)

The basis of DCNNs are Feedforward Neural Networks (FFNN), also called Multilayer
Perceptrons (MLPs). The perceptron is introduced in [Rosenblatt, 1958], an artificial
neuron with multiple inputs and an output. The output is computed by summing the
weighed inputs, and then compared against a threshold to finally output xi, xi ∈ {0, 1}.
The MLP is an extension that connects multiple perceptrons in a layered structure.
An example of a simple MLP is illustrated in Figure 4.11. The decision making of a
perceptron following a perceptron is based on the outputs of the perceptrons in the
previous layer. Each new layers decisions can be interpreted as a higher level of abstraction
in the decision process, than the decisions of its predecessing layer [Nielsen, 2015].

In a FFNN there are no connections in the model that are fed back into itself. Graphically
the model relates to an acyclic graph, describing the relations between the functions.
They are called networks because they consist of many different layered functions. E.g. a
network with three functions f1, f2 and f3 form the chain f3(f2(f1(x))). These chain
structures are the most common use of Neural Networks (NNs). f1 is called the first
layer, f2 the second, and so on. The final layer is called output layer. The length of the
chains is also referred to as depth of a network. Therefore networks with long chained
functions are also called deep networks [Goodfellow et al., 2016].
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Figure 4.11: A simple example of an MLP with three layers [Nielsen, 2015].

A FFNN maps the input x to the categories y such that y = f(wx+ b), where w and
b are the learned parameters, for weight and bias respectively, that result in the best
approximation of the function [Goodfellow et al., 2016]. Sigmoid Neurons (SNs) are a
variation of perceptrons with the addition that the output xi, xi ∈ R : 0 ≤ xi ≤ 1 and a
very important property for the learning process: small changes in the weights result in
small changes in the output of the SN [Nielsen, 2015]. This is accomplished choosing an
appropriate output function f(z) = f(wx+ b). A common choice for the output function
is the sigmoid function:

f(z) = 1
1 + e−z

.

A similar function is modeled by the tanh neuron, where f(z) = tanh(z). A different
variation of the SN is the Rectified Linear Unit (ReLU), which is given by f(z) = max(0, z).
DCNNs with ReLUs train several times faster than networks with the SN or tanh
neurons [Krizhevsky et al., 2012].

Learning

For a NN to work, an algorithm is applied to learn the weights and biases of the neurons,
such that the output corresponds to the input of the layers [Nielsen, 2015]. To accomplish
that, a cost function is defined and minimised. The cost function has a general form of

C(w, b) ≡ 1
2n
∑
|y(x)− a|2 ,

where a is the output vector of the network and y is the vector of the actual categories of
the samples in x. When the defined cost function is minimised, the output of the network
is close to the true values. The algorithm used to learn the parameters to minimize the
cost function is called gradient descent. To use calculus for finding the global minimum
in practice is not feasible as there are millions of parameters in a NN [Nielsen, 2015].
Rather local minimas are estimated. The algorithm repeatedly computes the gradients
of the cost function of all parameters and changes the parameters into the direction of
the greatest slope. Doing this, the value of the cost functions iteratively decreases. The
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learning rate parameter η is introduced to control the speed of the decrease. A formal
definition of the gradient descent update rules are given by

wk → w′k = wk − η
∂C

∂wk
, and

bl → b′l = bl − η
∂C

∂bl
.

To reduce computational cost, the Stochastic Gradient Descent (SGD) is used, where a
small subset of x is selected to estimate the gradient [Nielsen, 2015].

The algorithm that computes the gradients through the network is called backpropagation.
It was introduced in the 1970s, and became popular through the work of [Rumelhart
et al., 1988,Nielsen, 2015]. The error is computed backwards through each layer of the
network, starting from the final layer.

4.3.2 Convolutional Neural Networks (CNN))

Convolutional Layers (CL)

To consider the spatial structure of images, Convolutional Layers (CLs) are introduced
into NNs. The layers are built using local receptive fields, that are slided across the
input image. The amount of pixels the field is moved in each step, is called stride length.
From each local receptive field a neuron is computed in the following hidden layer of
the network. The weight parameters are shared by all the receptive fields of the entire
layer, with the effect that one layer detects exactly the same feature11, just at different
locations in the input image [Nielsen, 2015]. The weight parameter w is a vector of the
size of the receptive field, such that one weight value is learned for each pixel of the
window. The bias parameter b is a scalar and also shared by all receptive fields in the
entire layer.

The mapping from the image input to the hidden layer is also called feature map12. It
is defined by the shared weights and bias, and can be interpreted as a filter or kernel.
Multiple of such maps are computed for each hidden layer, each defining one feature. For
the activation the convolution between the image and the weight matrix and the bias is
computed in a manner of a1 = f(w ∗ a0 + b), where ∗ is the convolution operator.

Pooling Layer (PL)

Another component of most DCNNs are Pooling Layers (PLs). They usually follow
CLs and serve the purpose of reducing the output data of a CL, which is input to the

11In the context of CNNs the term feature denotes a pattern that causes the neuron to activate, e.g. a
similar edge or colour pattern at the position of the local receptive field.

12In the research literature the term feature map is used loosely. Both the weight function and the
activation values of the neurons are sometimes called feature maps [Nielsen, 2015].
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following CL. To accomplish the reduction, fixed regions of e.g. 2×2 or 3×3 activation
neurons are sampled and reduced to a single neuron. Common pooling strategies are
max-pooling, where the maximum activation of a region represents that region, the other
activations are discarded. Informally that results in a reduction of the activations, as only
the high activations (which translates in a feature being found) are passed to the next
layer, also the exact position gets lost [Nielsen, 2015]. Another strategy commonly used
is l2-pooling, where the square root of the sum of the squares (l2-norm) of the selected
region is passed over to the next layer.

With the additions of CLs and PLs to the NN architecture, an example of a small but
complete CNN, with two CLs and two PLs respectively, is illustrated in Figure 4.12.

Figure 4.12: Typical DCNN architecture with two feature stages. The layer on the left
shows the input layer (the image), connected with the first convolutional layer, containing
five feature maps, followed by a pooling layer. The second stage is a convolutional layer
with seven feature maps followed again by a pooling layer. The layer on the right is a
fully connected layer, serving as the output layer [Christodoulidis et al., 2015].

Until recently, available dataset sizes were in the order of tens of thousands of images
[Krizhevsky et al., 2012], e.g. NORB [LeCun et al., 2004], Caltech-101/256 [Griffin et al.,
2007], CIFAR-10/100 [Krizhevsky, 2009]. Tasks such as the handwritten digit recognition
perform very well with CNNs, achieving an error rate less than 0.3% [Krizhevsky et al.,
2012].

In [Krizhevsky et al., 2012] the DCNN technique was applied to the large scale dataset
ILSVRC-2010 and ILSVRC-2012. The computation time was reduced by highly optimised
parts of the implementation, such as 2D convolution, that were executed on the Graphics
Processing Unit (GPU), achieving the best results on the datasets, that were ever reported
until 2012.

An explanation for the success of DCNNs lies in the deep structure following the initial
feature extraction. The hand-crafted encoding techniques discussed earlier operate on low-
level features, such as the SIFT or HOG descriptors, whereas the deep layered structure
of a DCNN provide more complex generic mid-level image representations [Oquab et al.,
2014].
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4.3.3 Pre-training a DCNN

For a DCNN to learn the millions of parameters13, a large scale dataset is necessary. In
cases where only small training data is available, such as currently food recognition, the
method of pre-training a network on large-scale generic data has been studied [Donahue
et al., 2013, Oquab et al., 2014]. In first experiments of [Kawano and Yanai, 2014],
traininig a DCNN with the UEC-FOOD100, they failed to outperform the results of their
hand crafted feature approaches (results presented in [Kawano and Yanai, 2015b]), which
they determine is due to the small scale of the dataset. To utilize DCNNs for small scale
datasets, [Donahue et al., 2013] suggested to pre-train the features with a large scale
dataset first in a supervised setting, and then transfer them to the actual data and labels
the network is intended for.

In [Oquab et al., 2014] the transfer is executed on the DCNN of [Krizhevsky et al., 2012].
The final layer is removed and the parameters of all the other layers of the network are
frozen. An additional fully connected layer and a new output layer(with the appropriate
number of categories for the new task) are added to the net, and the parameters of the
new layers are learned on the target data.

In the experiments of [Oquab et al., 2014] the AlexNet architecture was used for classifi-
cation of the PASCAL VOC 2012 dataset. Without pre-training the mAP was 70.9%,
with pre-training on the 1000 categories of the ILSVRC-2012 dataset, the mAP increased
to 78.7%. With pre-training on the 1000 ILSVRC-2012 plus an additional 500 target
task related categories selected from the other ImageNet categories, the mAP achieved
was 82.8%.

Fine-tuning In addition to pre-training [Girshick et al., 2013] continue the learning
with the SGD of also early layers of the network, with a learning rate of 0.001 (1/10th of
the initial learning rate that was used for pre-training) for the early convolutional layers.
A small learning rate has the effect that the SGD will try to find little improving changes
but the features will not change completely. The blank fully connected layers are set to
learn at a higher rate, as they are learned from scratch from random values to adapt to
the new problem of new or different categories.

4.3.4 AlexNet

AlexNet is a commonly used identifier for the architecture of Alex Krizhevsky’s 2012
network, described in [Krizhevsky et al., 2012]. The network consists of eight layers, five
convolutional and three fully connected layers (illustrated in Figure 4.13). The first CL
takes an input image of 224× 224× 3, therefore the dataset has to be augmented to this
size. The first, second and fifth CLs are followed by a max-pooling unit. As activation
function, a ReLU follows each CL and each fully connected layer.

13The network in [Krizhevsky et al., 2012] consists of 60 million parameters.
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For the ILSVRC-2012 dataset the network achieved a winning top-5 test error rate of
15.3%.

Figure 4.13: The network design from Krizhevsky et al. for two GPUs [Krizhevsky et al.,
2012].

4.3.5 GoogLeNet

The network developed by [Szegedy et al., 2014] called GoogLeNet was a submission
to the ILSVRC-2014 competition. It uses 12 times fewer parameters than Krizhevsky-
architecture, while being significantly more accurate. A new structural concept which
Szegedy et al. call Inception Module (IM) is introduced, inspired by [Lin et al., 2013].

An IM consists of convolutions of different filter sizes, in case of the GoogLeNet 1×1
convolutions are used to compute reductions followed by 3×3 and 5×5 convolutions and
a 3×3 max-pooling layer. The 1×1 convolution reduces the number of feature maps. To
accomplish this, the number of 1×1 kernels is set to a smaller value than there are feature
maps from the previous output. The outputs of these components are concatenated
to form one single vector which is the input to the next IM, illustrated in Figure 4.14.
The network consists of multiple IMs, stacked like layers. The GoogLeNet architecture
consists of nine such modules stacked on top of each other, resulting in a 22 layered14

network. The benefits of this design is that various scales are processed simultaneously
and then aggregated for the next stage. The dimension reduction of the data, before
the convolutions are computed, makes it possible to run parallel convolutions with large
patch sizes, allowing to increase the depth and the width of the network [Szegedy et al.,
2014].

For the 1000-category ILSVRC-2012 dataset classification task, the top-5 error-rate
achieved was 6.67%.

14Counting only the layers with parameters (convolutional and the fully connected layers).
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Figure 4.14: IM with the dimension reductions using 1×1 convolution kernels [Szegedy
et al., 2014].
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[Kawano and
Yanai, 2014]

DCNN pre-trained with ILSVRC + 1000
food-related categories (DCNN-FOOD)

100×100 100 71.80%

combination of FV of colour and
RootHOG and DCNN-FOOD

100×100 100 77.35%

DCNN pre-trained with ILSVRC + 1000
food-related categories (DCNN-FOOD)

256×100 256 58.81%

combination of FV of colour and
RootHOG and DCNN-FOOD

256×100 256 63.77%

[Yanai and
Kawano, 2015]

DCNN pre-trained with ILSVRC + 1000
food-related categories and
fine-tuned(DCNN-FOOD(tf2))

100×100 100 78.77%

DCNN pre-trained with ILSVRC + 1000
food-related categories and fine-tuned
(DCNN-FOOD(ft))

256×100 256 67.57%

DCNN pre-trained with ILSVRC + 1000
food-related categories and fine-tuned
(DCNN-FOOD(ft))

101000 101 70.41%

[Bossard et al.,
2014]

Random Forest discriminative components
mining with IFV(Improved Fisher Vector,
64 dict size) of SURF and Colour

101000 101 50.76%

DCNN 101000 101 56.40%

[Myers et al., 2015]

GoogLeNet DCNN model, pre-trained on
ILSVRC and fine-tuned on FOOD-101

101000 101 79.00%

GoogLeNet DCNN model, pre-trained on
ILSVRC and fine-tuned on FOOD-101

646 41 81.40%

[Wu et al., 2016]
DCNN GoogLeNet architecture 101000 101 69.64%

DCNN GoogLeNet architecture +
semantic hierarchy + label inference

101000 101 72.11%

Table 4.8: Summary of the results of experiments with DCNNs from researched papers.
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4.4 Analysis

Figure 4.15: Progress made over the years with the corresponding state of the art methods
of various BoF, FV and DCNN approaches. The results are for the image classification
task of the PASCAL VOC 2007 dataset [Chatfield et al., 2014].

Methods of object recognition and classification have been studied extensively with
countless fields of application. [Chatfield et al., 2014] emphasize on the details of the
exact implementation15, in experiments on the PACAL VOC 2007 dataset they compare
a handcrafted FV encoding with various DCNN architectures. The aim was to conduct
the experiments on a greater common ground, despite the differences of the approaches.
E.g. the augmentation of the data including cropping and flipping the images, common
for DCNNs, is also applied to the FV encoding, with the result of narrowing the gap
between the methods from an original mAP of 63.66% reached with the basic FV, to an
mAP of 68.02%16 This still leaves a gap of a mAP level difference of 14% compared to
the best DCNN technique, which reached 82.42% (with pre-training on the ILSVRC-2012
and fine-tuning). The authors also concatenated the feature vectors of both methods,
but discovered little difference [Chatfield et al., 2014]. The combination of the DCNN

15The previous work [Chatfield et al., 2011], analyse implementation details of encoding techniques
such asBoF, LLC and FV.

16The best FV-encoding technique (including the improvements from [Perronnin et al., 2010], using
the SED technique instead of SPM) on the PASCAL VOC 2007 of a SIFT descriptor. The combination
with a LCS descriptor did not improve the result significantly. 512 gaussians were used in the GMM
quantization.
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and the FV was also done by [Kawano and Yanai, 2014], achieving an improvement of
5.55% for the UEC-FOOD100, and 4.96% for the UEC-FOOD256 dataset.

For the comparison of the methods BoF, FV and DCNN in the experiments on food
data in this thesis, the performance is expected to be in similar ranges as in previous
object recognition experiments with generic classes, such as ImageNet or PASCAL VOC
datasets. Performance comparisons of the three methods on the same dataset can be
observed in Figure 4.15 [Chatfield et al., 2014]. Experiments of FoodCam (introduced in
Section 3.4) support this assumption, they compare FV and DCNNs extensively [Kawano
and Yanai, 2014], and also FV and BoF encoding [Hoashi et al., 2010,Kawano and Yanai,
2015b].

Despite all indication of DCNN outperforming a hand-crafted feature approach, the
method can not be considered favourable in any case. In [Christodoulidis et al., 2015],
where there is minimal training data available17, through segmentation the image data
is structured into overlapping patches of 32×32 pixels. The training and classification
is based on the patches. In the specific setup that was used, BoF encoding achieves a
classification accuracy of 82.2%, and the best performing DCNN achieves 84.9%, where
the DCNN method takes 2.8 times the computation time of the BoF classification. In
the following evaluation of their system in [Rhyner et al., 2016], the BoF approach was
used. Another factor to consider analysing the close result of the methods is the very
limited number of classes.

17This has been shown to be overcome with pre-training of the network [Donahue et al., 2013].
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CHAPTER 5
Methodology

To the best of our knowledge, no large dataset of food images that includes ground truth
data of nutritional information such as calorie content currently exists. [Beijbom et al.,
2015] give an example for such a dataset, where dietitians assessed each image of the
Menu-Match data for meta information such as calorie values. Through limitations in
the context of this thesis, the problem is reduced to the core element of every dietary
assessment task, the identification of the ingredients. We focus solely on the computer
vision perspective. For this task, available generic food datasets that map images of
food to predefined categories are used to get a deeper understanding of the recognition
methods. The experimental focus of this work therefore lies on exploring and comparing
state-of-the-art recognition methods on available generic food data.

5.1 Method

Three independent recognition techniques are implemented:

• Bag-of-Features (BoF)-encoding of texture and colour features

• Fisher-Vector (FV)-encoding of texture and colour features

• Deep Convolutional Neural Network (DCNN)

To compare the different approaches, they are evaluated on the same data. Three publicly
available datasets are used:

• UEC-FOOD 100
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• UEC-FOOD 256

• FOOD-101

The images of the multi-label UEC dataset are cropped to have only one class present
on each image. This is done to reduce the problem from a multi-label classification to
single-label classification. To accomplish this assumption on real-world data, multiple
instances would have to be segmented from each other.

All relevant parameters of each technique are tested with different values to find an
optimum. For each descriptor used by the BoF and FV encoding techniques, variations
of the parameters are tested on the data and the best found combination is chosen.
The general heuristic here is to first vary the sampling size and the descriptor size
(neighbourhood). The best combination of the two parameters is then combined with
different SP-resolutions. Two spatial sampling techniques are used: SPM and SED.
Depending on the resulting total feature-vector size, the dictionary size (BoF) or the
number of Gaussians (FV) are also varied.

For the combination of multiple descriptors for the BoF and FV approaches, two general
approaches are compared. For early descriptor fusion (before classification) the best
colour and best texture descriptors are combined. For late fusion (by SVM classification)
the same procedure is followed, additionally all computed descriptors are combined.

Summary of the general heuristic used for both encoding strategies (BoF and FV):

• Variation of descriptor size and/or sampling size

• Variation of levels of the SP-encoding / SED

• Variation of dictionary size or number of Gaussians

• Variations of combining the descriptors

The evaluation of the results produced by each parameter variation is documented in
Chapter 6.

For the DCNN approach, two of the state-of-the-art network architectures are compared.
The two architecture are:

• AlexNet

• GoogLeNet

On both architectures, the effect of using pre-trained network parameters is analysed for
all datasets (small scale and large scale). Different configurations of fine-tuning to the
food data is tested (e.g. different learning-rates for the individual layers).
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5.2 Data

The general distinction in data of a dietary assessment system, is whether or not the
images have been generated in a controlled setting. Figures 5.1a and 5.1b illustrate
controlled images. Examples of controlled conditions are angle, background, lighting,
food composition or fiducial markers used for colour correction and volume estimation.
Figures 5.1c and 5.1d illustrate open-world images. The data of this type are images that
are not bound by any restrictions other than that the object is at least partly visible on
the image.

(a) TADA (b) GoCARB (c) UEC-FOOD
(d) FOOD-101

Figure 5.1: Examples of images from the TADA, GoCARB, UEC-FOOD and FOOD-101
databases, illustrating different levels of image control.

5.2.1 Food datasets

In the literature discussed in Chapter 3 numerous sources for data of food images were
found. This section provides a summary of some commonly used datasets used in food
recognition.

GoCARB

In works of the GoCARB group [GoCARB Project, 2016], image data is used originating
from the restaurants at the university hospital Inselspital, of the city of Bern, Switzerland.
The dataset is small scale with a total of 1620 images. In [Anthimopoulos et al., 2015]
the conditions of the data is explained as being restricted to elliptical plates with a flat
base, single-dish images, fully visible food items and controlled lighting conditions. In
contrast, [Dehais et al., 2015] describe the dataset with varying conditions in angles,
plate backgrounds and lighting conditions. Next to the dish a reference card is visible,
which is used for volume estimation. The number of food categories vary in the works,
though its very limited, between six and eleven broad food categories. In [Anthimopoulos
et al., 2015] the categories pasta, potatoes, meat, breaded food, rice, green, salad, mashed
potatoes, carrots, and red beans are considered. This broad categorization is designed
for their task of estimating carbohydrate content.
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UEC-FOOD100/256

The dataset is structured into 100 food classes of a minimum of 100 images per class, and
total of 12905 images [Kawano and Yanai, 2015b]. A category is defined as a connected
compound of food ingredients, and the dataset is multi-labeled (i.e. an image might have
multiple labels). Most categories are Japanese foods, but also international categories
like hamburger and pizza etc. are present [Kawano and Yanai, 2015a]. The images were
collected from web sources, representing real world data. In [Kawano and Yanai, 2015a]
the set is expanded by an additional 156 categories1, leading to a total number of 31394
images. The first 50 categories with example images are listed in Figure 5.2.

Bounding-box information is available for the UEC-FOOD datasets, that identifies the
location and size of each dish belonging to a category, present for each image. For the
experiments a new dataset is created that consists of solely the cropped regions of the
bounding box definitions. This dataset is referred to as UEC-FOOD100/256-BB, creating
a single-label dataset of the cropped rectangular regions.

The distribution of number of images per category is not uniform in this dataset. The
minimum number of images for each category is 100 images. The non-uniform distribution
is a result of the multi-labels, some categories are overrepresented (e.g. bowl of rice is
present in many categories as a side dish).

Figure 5.2: The first 50 categories of the UEC-FOOD100 dataset [Kawano and Yanai,
2015b].

1 Both datasets are publicly available at http://foodcam.mobi/dataset.html, accessed October 10,
2016
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FOOD-101

[Bossard et al., 2014] created a real-world food dataset with 101 categories2. The images
where collected from a social food web platform called foodspotting.com. The categories
selected were the most popular and consistently named once on the platform. The dataset
has a predefined split of 75% training and 25% test sets, where the test set is cleaned
and the training set contains some outliers and wrong labels. The images are rescaled to
maximum side length of 512 pixels and smaller images excluded. Each category contains
1000 images leading to a total of 101000 images over the entire dataset. [Myers et al.,
2015] construct a variation named FOOD-201 of 50% of the images of the FOOD-101
dataset, structuring the food into more detailed categories.

Restaurant based datasets

Two examples of restaurant restricted food item datasets are the Menu-Match dataset
developed in [Beijbom et al., 2015], with 646 images of 41 food items from 3 restaurants.
The calorie counts for each item was estimated by a dietitian who had access to ingredients
and recipes. The dataset is publicly available3.

Another dataset from restaurant images is the Pittsburgh Fast Food Image Dataset
[Chen et al., 2009], which contains images of items from fast food chains, taken under
laboratory conditions.

An extensive survey of these and other food datasets can be found in a very recent report
by [Ciocca et al., 2017].

5.3 Implementation

The initial goal was an implementation in C++, using only open source tools and open
libraries. For the development operating system, Ubuntu Linux was used, running
inside a virtual machine. As an Integrated Development Environment (IDE) Eclipse
was used. For computer vision and machine learning algorithms, following libraries were
used: the Open Computer Vision (OpenCV) library, the Visual Lab Features (VLFeat)
library [Vedaldi and Fulkerson, 2010] and SHOGUN [Sonnenburg et al., 2006], and for
experiments with DCNN the CAFFE library [Yangqing, J., 2013] was used.

Due to unresolved issues of low performance results of the encoding methods of BoF and
FV in the C++ implementation, a prototype in Matlab was implemented for faster and
easier error search within the routines. The results from the final experiments (Chapter 6)
were produced using the Matlab prototype code for both encoding variants.

2The dataset is publicly available at http://www.vision.ee.ethz.ch/datasets/food-101/, accessed
October 10, 2016

3http://research.microsoft.com/menumatch/data/, accessed October 10, 2016
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The hardware that was used for the Matlab experiments, was a server running CentOS
Linux Version 7, equipped with 2 Intel R© Xeon R© CPU E5-2650 v3, with 10 cores of
2.30GHz each, with a total of 40 Threads and 128 GB RAM. The computation of the
descriptors is performed on parallel threads. The maximum feature vector dimensions, so
that clustering and SVM classification is executable on this hardware, is around 270000
dimensions for the UEC-FOOD datasets, and a maximum of 120000 dimensions for the
FOOD101 dataset.

The following sections describe the details of the implementation of each descriptor,
encoding method and details of CNN-framework and tools.

5.3.1 Descriptors

For the computation of the LBP descriptor, the implementation of the VLFeat library
[Vedaldi and Fulkerson, 2010] is used. It follows the implementation of [Ojala et al.,
2002], but the implementation is restricted to the 3× 3 neighbourhood size and quantifies
into 58 uniform patterns. The 3× 3 neighbourhood has shown to perform best compared
to bigger sizes [Ojala et al., 2002]. The image gets split into equal cells of a defined size
and local histograms of the descriptor are computed for each cell.

Two implementations of the HOG-descriptor, were compared, both are implemented by
the VLFeat library [Vedaldi and Fulkerson, 2010]. The original algorithm from [Dalal
and Triggs, 2005] and the variation proposed in [Felzenszwalb et al., 2010], which is based
on a parts model implementation. The second variant lead to better results in all tests.
For all results presented in Chapter 6, the variant of [Felzenszwalb et al., 2010] is used.
The histogram is computed over nine orientations, resulting in 31 total dimensions4.

The SIFT descriptor is computed with the OpenCV library in the C++ implementation.
In the MATLAB implementation the VLFeat library [Vedaldi and Fulkerson, 2010] is
used. To compute SIFT on multiple scales simultaneously, the library provides the
function vl_phow(), which computes densely sampled SIFT descriptors of four different
neighbourhood sizes where X × Y = 4× 4, 6× 6, 8× 8 and 10× 10, for each sampled
location. The library function also provides the computation of the descriptor on RGB,
HSV and the Opponent colour space.

Colour Moment Invariants

The implementation of the descriptor follows the invariant generalised colour moments
described by [Mindru et al., 2004]. These are rational expressions of the generalised colour
moments. The formal definition of generalised colour moments is listed in Section 4.1.1.

The functions of the generalised colour moments that compose the invariant descriptor
are:

4The exact implementation of the VLFeat library is documented in [VLFeat Library, 2016]
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The concatenation of all functions above formulates the descriptor.

Colourpatch

The local colour descriptor is implemented following the description in [Kawano and
Yanai, 2015b]. The sampled neighbourhood is divided into a 2 × 2 grid. The mean and
variance values of each grid are computed for each colour channel in the RGB colour
space, and the values concatenated into one vector. This results in a descriptor vector of
a total of 24 dimensions.

Due to very slow runtime caused by multiple iterations over the images in Matlab, the
routine alternatively is implemented within Matlab Executable (MEX)-files. MEX-files
are binary compiled files. They provide an interface between Matlab and C++ files.
Subroutines are dynamically linked and executed by the MATLAB interpreter.

For all descriptors and both encoding methods, dense sampling on a regular grid is
the used sampling strategy.

Descriptor combination

For combination of the descriptors, first the feature fusion method is implemented. For
the selection of the features, the best performing single descriptors for colour and texture
are combined.
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Combination on the decision level is also implemented, following the approach described
in [Beijbom et al., 2015], where the score values from each linear SVM classifier (one
per category) from all descriptors are concatenated. The resulting feature vector of one
image has the size of number of descriptors times the number of classes.

5.3.2 Classification

For the two hand-crafted descriptor encoding approaches, there are two classifiers im-
plemented for the original C++ implementation, a Random Forest and a linear SVM
classifier. The Matlab prototype bases solely on linear SVM classification as it is fast and
delivers good results. A single linear SVM is trained for each category and each feature
type. All evaluations shown in Sections 6.1 and 6.2 are a result of classification using the
SVM implementation from the VLFeat library.

For experiments of the encoding strategies, the training/test split used for the UEC-
FOOD datasets, is 65 training images and 30 test images for each class. All experiments
are conducted on the same set for training images and the same set of images for testing5.
All images in the dataset are reduced in size to a maximum side-length of 480 pixels, if
greater.

5.3.3 Bag-of-Features (BOF)

First 2M random descriptors are extracted from the training set, for the estimation of
the dictionary. For clustering the VLFeat implementation of the k-means algorithm is
used. For the k-means the Elkan strategy [Elkan, 2003] is used, an acceleration of the
original algorithm from [Lloyd, 1982].

For the search of the closest cluster, a k-d-tree of the vocabulary is constructed, and
then searched for each descriptor of the training and test set, for creating the feature-
histogram. For computation of the homogeneous kernel feature map the kernel described
in Section 4.2.1 is used. The implementations of the VLFeat library is used.

Features (BoF-histograms) are extracted for each segment of the SP. The SPM is
implemented by normalising each histogram with the l1-norm and concatenating the
vectors. The resulting final feature vector is normalised with l1-norm again.

Algorithm description

The image set is divided into training and test sets Xtrain and Xtest, according to the
used split ratio. The descriptors are extracted from all images. A subset of 2 million
random descriptors of Xtrain is used to create the dictionary. The dictionary consists of

5For the DCNN classification results, a different split is used, due to different implementations.
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the cluster-centers, computed with the k-means algorithm. For each image of the training
set and the test set, the descriptors from each segment of the SP form a subset Xs. For
each subset Xs the descriptors are quantised into a histogram over the dictionary entries
with the use of the KNN algorithm. The histogram is normalised over the sum of the
entries. The computed histograms from all segments of the SP are concatenated and
normalised again. The final feature-vector is created by applying the kernel mapping
function to the concatenated normalised histograms, to approximate the χ2 kernel. The
linear SVMs are trained with the resulting vectors from the training set. The resulting
vectors from the test set are being classified with the computed SVMs. Further the
results are evaluated.

5.3.4 Fisher Vector (FV)

The computation of the FV-encoding is implemented in C++ and in Matlab due to the
unknown source of the initial erroneous code. For the final results presented in Chapter 6
the implementation from the VLFeat library is used because its execution is faster. The
implementation also supports the improvements of the FV from [Perronnin et al., 2010]
described in Section 4.2.2. An instruction of a fast computation of the FV can be found
in [Sanchez et al., 2013, p. 227].

For the FV-encoding, both spatial strategies, SPM and SED are implemented and the
results compared in Chapter 6. For the SPM, the FVs of all segments are concatenated as
described in [Sanchez et al., 2013], i.e. each FV is unit-l2 normalised independently. [Chat-
field et al., 2014] report that it is common experience that linear classifiers are sensitive
to the normalisation, and that particularly SVMs benefit from an l2-normalisation.

For the SED strategy the spatial coordinates of the local patches are computed, normalised
(following [Sánchez et al., 2012], described in Section 4.2.2) and concatenated with the
PCA-projected descriptor before quantization with GMM.

Algorithm description

The image set is divided into training and test sets Xtrain and Xtest, according to the
used split ratio. The descriptors are extracted from all images. A subset Xdict of 2 million
random descriptors of Xtrain is used to create the dictionary in form of a GMM. The
mean µ and standard deviation σ are computed from Xdict. Each descriptor in Xdict is
standardised to zero-mean and unit-variance. A PCA is performed on the standardised
vectors. The vectors of Xdict are projected into the computed coordinate system. The
aligned data is modelled with a GMM as the dictionary for the FV-encoding. For each
image of the training set and the test set, the descriptors from each segment of the SP
form a subset Xs. For each subset Xs the descriptors are standardised and projected
into the PCA space. The FV is computed, power normalised and l2-normalised. The
computed FVs from all segments of the SP are concatenated. The linear SVMs are
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trained with the resulting vectors from the training set. The resulting vectors from the
test set are being classified with the computed SVMs. Further the results are evaluated.

5.3.5 Deep Convolutional Neural Networks (DCNNs)

For all experiments with DCNN, the deep learning framework CAFFE [Yangqing, J.,
2013] is used. The framework was developed by Berkeley AI Research (BAIR) and
by community contributors. The benefits of CAFFE are that it provides full support
for training, testing, fine-tuning and deployment of networks, it is well documented
and designed for exploring DCNNs. At the same time the implementation enables
computationally high-performing executions [Jia et al., 2014]. Network models are
independent from the framework and are stored as Google Protocol Buffers6.

For deeper understanding of the framework, first the C++ interface is used. CAFFE also
provides bindings for python and Matlab. For the documented benchmark experiments
in Chapter 6, the DIGITS interface7, an interactive deep learning GPU training system
is used. It supports all necessary configuration for training, testing, pre-training and
fine-tuning. For the visualisation of the feature maps of the first convolutional layer
a python script is used. Within CAFFE, already ILSVRC-2012 pre-trained nets are
downloaded from the Caffe Model Zoo8, for each network architecture.

CAFFE uses a Lightning Memory-Mapped Database (LMDB)-format database for storage
of the image data. The advantage of a memory-mapped database is that the requested
data is accessed through a pointer that is mapped into application address space, without
having to copy the data. The three used datasets FOOD101, UEC-FOOD100BB and
UEC-FOOD256BB are converted into LMDB format. The used network architectures
require a fixed image size, as both datasets consist of variable image sizes, a preceding
image transformation is performed. For the UEC datasets, that represent segmented food
dishes, the images are squashed to 256×256 pixels using the Joint Photographic Experts
Group (JPEG) format, with a lossy quality setting of 90%. The reason for squashing the
images instead of cropping, is to have the same input for the DCNN experiments as used
for the encoding techniques, and to not loose information as the images are segmented
and therefore do not contain much background information. The images of the FOOD101
are cropped, as described in [Krizhevsky et al., 2012], where the crop is performed on the
centre of the image. Another pre-processing step is to subtract the mean RGB values of
each pixel over the whole dataset. For the UEC datasets the test set is set to 30% of the
images, for the FOOD101 it is 25%, the rest of the images is used for training. In the
experiments two network architectures are compared, the AlexNet and GoogLeNet.

The hardware on which the experiments are carried out, is a single GeForce GTX Titan
X GPU with 12GB of memory.

6https://code.google.com/p/protobuf/, accessed October 10, 2016
7https://developer.nvidia.com/digits, accessed October 10, 2016
8http://caffe.berkeleyvision.org/model_zoo.html, accessed October 10, 2016
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5.4. Summary

5.4 Summary

For the experimental part of this thesis three techniques of object recognition for food
categories are implemented, BoF, FV-encoding and DCNN. Each of the techniques are
tested on three datasets of food images, two of them have 100 food categories, the third
one 256. Each technique is analysed for an optimal combination of parameters, such as
dictionary size, descriptor size or sampling step size for the hand-crafted descriptor based
techniques, or learning rates and fine-tuning for DCNNs. The hand-crafted descriptor
techniques are extended with two spatial sampling techniques, SPM and SED. Two
DCNN network architectures, AlexNet and GoogLeNet are used. The results of every
step in this process are documented in the next chapter.
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CHAPTER 6
Evaluation and Results

To evaluate the isolated methodological performance in a fair comparison, one could
compare the algorithms to the human dietitians that perform this task on basis of
images. To the best of our knowledge such an evaluation has not yet been conducted.
Menu-Match [Beijbom et al., 2015] conduct a comparison of their calorie estimation with
estimations of a crowd-source system (non experts). The comparative study of [Rhyner
et al., 2016], evaluates the estimations of their computational image analysis system in
relation to the method of self-reporting of carbohydrate counting. Others, of the few
evaluations of dietary assessment systems using image analysis that have been conducted,
were in laboratory environments with few participants, comparing the estimations to
determined ground-truth values. E.g. [Lee et al., 2012] and [Anthimopoulos et al., 2015]
conducted such evaluations. In the scope of this thesis the evaluation is restricted on
the accuracy of identification of food categories for all implemented object recognition
techniques.

Experiments of three selected recognition methods are conducted. Hand-crafted feature
extraction of multiple descriptors is performed and encoded with BoF and FV-encoding.
Also classification with two DCNN-architectures is performed. In this chapter the results
of the experiments are presented and analysed. First the isolated results of each individual
descriptor are presented. This chapter documents the chosen heuristic for finding an
optimal result that each descriptor can produce for the data. In particular the effect of
the variation of certain parameters such as descriptor size or sampling size. The results of
these experiments are not decisive on its own for a conclusion of the respective technique,
as each descriptor contributes only in part to the final performance of the technique. The
individual descriptors are further combined and the results are presented for all datasets,
in Section 6.4 the results of all methods are compared.

Table 6.1 serves as a lookup table for abbreviations of various configurations of SPs. In
the following tables presenting the results, each experiment using SPM, is labelled with
a reference (A-H) to this table.
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conf. name levels segments pyramid structure

(A) 1 1 1×1
(B) 3 8 1×1, 2×2, 1×3
(C) 3 20 1×1, 4×4, 1×3
(D) 3 68 1×1, 8×8, 1×3
(E) 3 148 1×1, 12×12, 1×3
(F) 4 24 1×1, 2×2, 4×4, 1×3
(G) 5 88 1×1, 2×2, 4×4, 8×8, 1×3
(H) 6 344 1×1, 2×2, 4×4, 8×8, 16×16, 1×3

Table 6.1: Configurations of pyramid structures for SPM. This table is a reference for all
following experiments for both BoF- and FV-encoding.

6.1 Bag-of-Features

After feature extraction and visual-word assignment the feature vector is expanded with
homogeneous feature kernel mapping, and then trained and classified with a linear SVM
in a one versus rest manner.

The k-means algorithm is initialised with random start locations for the clusters, therefore
the result of the clustering varies on each execution. Due to the extensive runtime of the
experiments and the high number of conducted experiments, each experiment is executed
only once. The results of the BoF-encoding experiments, presented in following tables
succumb to a certain variance. To analyse the variance, following experiments have
been executed as a whole 20 times in a row with the same parameter settings, for three
different dictionary sizes. The results of the experiment runs are summarised in Table 6.2.
The 95% confidence interval is computed as a statistical quantity of the reliability of the
results. The result of the variance and the confidence interval show a range of variation
that is not significant in the comparison to other approaches.

dictionary size 300 1000 4000

µ 20.9115 22.1390 21.6065
σ 0.6628 0.7930 0.6475
0.95 conf. interval µ± 0.2056 µ± 0.2942 µ± 0.1961

Table 6.2: Results of 20 runs of the same experiments of BoF encoding of the LBP
descriptor, with descriptor size of 4px, on the SP configuration (B), and the UEC-
FOOD100BB dataset.
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6.1. Bag-of-Features

6.1.1 Colourpatch

Results of all experiments for the single descriptor Colourpatch (CP) are summarised
in Table 6.3. Each sampling step size of {2, 4, 6, 8} is tested in combination with each
descriptor size of {4, 6, 8, 10, 12, 14, 16}, in experiments [a]–[β]. For step sizes 2 and 4
([a]–[n]), the accuracy stays in a close range of 29.07–31.77% ([h] vs. [c]). For step sizes 6
and 8 the accuracy drops to the range of 24.60–29.43% ([v] vs. [r]). The mean accuracy
for all descriptor sizes for each of the step sizes in {2, 4, 6, 8} are 31.22, 30.24, 28.44 and
25.91% respectively. For descriptor size 8 e.g., a decrease of the sampling step size from
8 to 2, shows an improvement of around 6% ([x] vs. [c]). The combination with the best
result ([c]), is used to experiment with the other parameters. Increasing the dictionary
size over 1000, on the same SP configuration (B), does not have significant influence on
the recognition accuracy (2.1% improvement) ([c] vs. [ζ]). Adding additional levels and
increasing the resolution of the SP however improves the accuracy 4.03% ([ν] vs. [c]).
Increasing the dictionary size to 3000 and using a slightly finer grid in the SP, results in
an increase of 4.56% ([μ] vs. [c]). Highest accuracy on the UECFOOD100BB dataset with
the densely sampled Colourpatch descriptor with BoF-encoding is 36.33%. The descriptor
with the same parameters classified the UECFOOD256BB with an accuracy of 28.48%
[σ]. Classification of the FOOD101 with the configuration ran out of memory, therefore
the parameters are changed to reach a feature vector with a lower dimensionality. An
accuracy of 27.15% is reached in [φ].
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(a) 2px 4px 1000 24000 (B) UECFOOD100BB 31.70%
(b) 2px 6px 1000 24000 (B) UECFOOD100BB 30.83%
(c) 2px 8px 1000 24000 (B) UECFOOD100BB 31.77%
(d) 2px 10px 1000 24000 (B) UECFOOD100BB 31.07%
(e) 2px 12px 1000 24000 (B) UECFOOD100BB 31.67%
(f) 2px 14px 1000 24000 (B) UECFOOD100BB 31.17%
(g) 2px 16px 1000 24000 (B) UECFOOD100BB 30.30%

(h) 4px 4px 1000 24000 (B) UECFOOD100BB 29.07%
(i) 4px 6px 1000 24000 (B) UECFOOD100BB 31.27%
(j) 4px 8px 1000 24000 (B) UECFOOD100BB 30.80%
(k) 4px 10px 1000 24000 (B) UECFOOD100BB 29.87%
(l) 4px 12px 1000 24000 (B) UECFOOD100BB 30.70%
(m) 4px 14px 1000 24000 (B) UECFOOD100BB 30.30%
(n) 4px 16px 1000 24000 (B) UECFOOD100BB 29.67%

Continued on next page
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Table 6.3 – continued from previous page
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(o) 6px 4px 1000 24000 (B) UECFOOD100BB 26.93%
(p) 6px 6px 1000 24000 (B) UECFOOD100BB 28.53%
(q) 6px 8px 1000 24000 (B) UECFOOD100BB 28.60%
(r) 6px 10px 1000 24000 (B) UECFOOD100BB 29.43%
(s) 6px 12px 1000 24000 (B) UECFOOD100BB 28.63%
(t) 6px 14px 1000 24000 (B) UECFOOD100BB 28.37%
(u) 6px 16px 1000 24000 (B) UECFOOD100BB 28.57%

(v) 8px 4px 1000 24000 (B) UECFOOD100BB 24.60%
(w) 8px 6px 1000 24000 (B) UECFOOD100BB 25.57%
(x) 8px 8px 1000 24000 (B) UECFOOD100BB 25.83%
(y) 8px 10px 1000 24000 (B) UECFOOD100BB 25.57%
(z) 8px 12px 1000 24000 (B) UECFOOD100BB 27.23%
(α) 8px 14px 1000 24000 (B) UECFOOD100BB 26.13%
(β) 8px 16px 1000 24000 (B) UECFOOD100BB 26.47%

(γ) 2px 8px 500 12000 (B) UECFOOD100BB 30.07%
(δ) 2px 8px 2000 48000 (B) UECFOOD100BB 32.90%
(ε) 2px 8px 4000 96000 (B) UECFOOD100BB 33.23%
(ζ) 2px 8px 8000 192000 (B) UECFOOD100BB 33.87%

(η) 2px 8px 1000 3000 (A) UECFOOD100BB 25.20%
(θ) 2px 8px 2000 6000 (A) UECFOOD100BB 26.73%
(ι) 2px 8px 4000 12000 (A) UECFOOD100BB 28.77%
(κ) 2px 8px 8000 24000 (A) UECFOOD100BB 29.03%
(λ) 2px 8px 10000 30000 (A) UECFOOD100BB 29.20%

(μ) 2px 8px 3000 180000 (C) UECFOOD100BB 36.33%
(ν) 2px 8px 1000 204000 (D) UECFOOD100BB 35.80%
(ξ) 2px 8px 500 222000 (E) UECFOOD100BB 33.77%
(ο) 2px 8px 2000 144000 (F) UECFOOD100BB 35.97%
(π) 2px 8px 3000 216000 (F) UECFOOD100BB 36.23%
(ρ) 2px 8px 1000 264000 (G) UECFOOD100BB 35.70%

(σ) 2px 8px 3000 180000 (C) UECFOOD256BB 28.48%
(τ) 2px 8px 1000 204000 (D) UECFOOD256BB 27.42%
(υ) 2px 8px 3000 216000 (F) UECFOOD256BB 28.24%

(φ) 2px 8px 2000 120000 (C) FOOD101 27.15%
(χ) 2px 8px 500 102000 (D) FOOD101 23.40%

Continued on next page
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Table 6.3 – continued from previous page
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(ψ) 2px 8px 1000 72000 (F) FOOD101 25.07%

Table 6.3: Results of Dense-Colourpatch descriptor with BoF encoding and spatial
pyramid sampling.

6.1.2 Colour-Histogram

The results from all experiments conducted with the Colour Histogram (CH) descriptor
are presented in Table 6.4. In experiments [a]–[x] in Table 6.4, each sampling step size of
{2, 4, 6, 8} is tested in combination with each descriptor size of {4, 6, 8, 10, 12, 14}. The
best result is achieved with the smallest values for both parameters [a]. Increasing the
dictionary size does not improve the accuracy significantly ([y]–[β]). In experiments [γ] –
[η] the SPM is removed. The isolated improvement of SPM with 3 levels and a total of 8
segments, at a dictionary size of 8000 is 4.36% ([α] vs. [ζ]). In [θ]–[ν] the SP is increased
with various configurations, and the dictionary size adapted so that the total descriptor
size is at a maximum of around 250000. The best result is achieved with the settings
in [ι], 34.53%. In experiments [ξ]–[ρ] the descriptor is computed on HSV and Opponent
colour space (OP) (computation described in Table 4.1), but achieved a worse result
compared to the same experiments on RGB colour space ([θ] and [ι]). The best result for
the UECFOOD256BB is 25.92%, achieved in experiment [σ], and a lower dimensional
configuration for the FOOD101 dataset reaches 23.71% in [φ].
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(a) 2px 4px 1000 24000 RGB (B) UECFOOD100BB 29.70%
(b) 2px 6px 1000 24000 RGB (B) UECFOOD100BB 28.97%
(c) 2px 8px 1000 24000 RGB (B) UECFOOD100BB 28.77%
(d) 2px 10px 1000 24000 RGB (B) UECFOOD100BB 27.43%
(e) 2px 12px 1000 24000 RGB (B) UECFOOD100BB 27.43%
(f) 2px 14px 1000 24000 RGB (B) UECFOOD100BB 27.73%

Continued on next page
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Table 6.4 – continued from previous page
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(g) 4px 4px 1000 24000 RGB (B) UECFOOD100BB 28.77%
(h) 4px 6px 1000 24000 RGB (B) UECFOOD100BB 28.27%
(i) 4px 8px 1000 24000 RGB (B) UECFOOD100BB 27.40%
(j) 4px 10px 1000 24000 RGB (B) UECFOOD100BB 27.27%
(k) 4px 12px 1000 24000 RGB (B) UECFOOD100BB 25.20%
(l) 4px 14px 1000 24000 RGB (B) UECFOOD100BB 25.97%

(m) 6px 4px 1000 24000 RGB (B) UECFOOD100BB 26.17%
(n) 6px 6px 1000 24000 RGB (B) UECFOOD100BB 26.37%
(o) 6px 8px 1000 24000 RGB (B) UECFOOD100BB 26.70%
(p) 6px 10px 1000 24000 RGB (B) UECFOOD100BB 26.10%
(q) 6px 12px 1000 24000 RGB (B) UECFOOD100BB 24.67%
(r) 6px 14px 1000 24000 RGB (B) UECFOOD100BB 24.53%

(s) 8px 4px 1000 24000 RGB (B) UECFOOD100BB 25.13%
(t) 8px 6px 1000 24000 RGB (B) UECFOOD100BB 25.60%
(u) 8px 8px 1000 24000 RGB (B) UECFOOD100BB 24.87%
(v) 8px 10px 1000 24000 RGB (B) UECFOOD100BB 25.83%
(w) 8px 12px 1000 24000 RGB (B) UECFOOD100BB 24.57%
(x) 8px 14px 1000 24000 RGB (B) UECFOOD100BB 23.90%

(y) 2px 4px 500 12000 RGB (B) UECFOOD100BB 27.47%
(z) 2px 4px 2000 48000 RGB (B) UECFOOD100BB 29.30%
(α) 2px 4px 4000 96000 RGB (B) UECFOOD100BB 30.03%
(β) 2px 4px 8000 192000 RGB (B) UECFOOD100BB 30.23%

(γ) 2px 4px 1000 3000 RGB (A) UECFOOD100BB 22.70%
(δ) 2px 4px 2000 6000 RGB (A) UECFOOD100BB 24.23%
(ε) 2px 4px 4000 12000 RGB (A) UECFOOD100BB 25.60%
(ζ) 2px 4px 8000 24000 RGB (A) UECFOOD100BB 25.87%
(η) 2px 4px 10000 30000 RGB (A) UECFOOD100BB 26.73%

(θ) 2px 4px 3000 180000 RGB (C) UECFOOD100BB 34.33%
(ι) 2px 4px 1000 204000 RGB (D) UECFOOD100BB 34.53%
(κ) 2px 4px 500 222000 RGB (E) UECFOOD100BB 33.27%
(λ) 2px 4px 2000 144000 RGB (F) UECFOOD100BB 32.97%
(μ) 2px 4px 3000 216000 RGB (F) UECFOOD100BB 32.73%
(ν) 2px 4px 1000 264000 RGB (G) UECFOOD100BB 33.73%

Continued on next page
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Table 6.4 – continued from previous page
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(ξ) 2px 4px 3000 180000 HSV (C) UECFOOD100BB 30.27%
(ο) 2px 4px 1000 204000 HSV (D) UECFOOD100BB 30.23%
(π) 2px 4px 3000 180000 OP (C) UECFOOD100BB 28.80%
(ρ) 2px 4px 1000 204000 OP (D) UECFOOD100BB 29.47%

(σ) 2px 4px 3000 180000 RGB (C) UECFOOD256BB 25.92%
(τ) 2px 4px 1000 204000 RGB (D) UECFOOD256BB 25.57%

(υ) 2px 4px 1500 90000 RGB (C) FOOD101 23.71%

Table 6.4: Results of Dense-Colour Histogram descriptor with BoF encoding and spatial
pyramid sampling.

6.1.3 Colour Moments Invariants

Results of experiments with the CMI descriptor are summarised in Table 6.5. Each
sampling step size of {2, 4, 6} is tested in combination with each descriptor size of
{2, 4, 6, 8, 10, 12, 14} in experiments [a]–[u]. The best combination is achieved in experi-
ment [e]. With these parameters the dictionary size is increased in [v]–[y], which brings
an improvement of 6% ([e] vs. [y]). Increasing the levels of the SP ([z]–[δ]) achieves
the best result in [γ] of 30.50% for the UEC-FOOD100BB dataset. The results for the
UEC-FOOD256BB dataset with the same configuration is 25.17%. For the FOOD101
dataset, an accuracy of 18.04% is achieved. The Colourpatch descriptor discriminates
the datasets significantly better, 5.83%, 0.75% and 5.67% for the UEC-FOOD100BB,
UEC-FOOD256BB and the FOOD101 datasets respectively.
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(a) 2px 2px 1000 24000 (B) UECFOOD100BB 17.70%
(b) 2px 4px 1000 24000 (B) UECFOOD100BB 21.03%
(c) 2px 6px 1000 24000 (B) UECFOOD100BB 22.10%
(d) 2px 8px 1000 24000 (B) UECFOOD100BB 22.80%
(e) 2px 10px 1000 24000 (B) UECFOOD100BB 23.97%
(f) 2px 12px 1000 24000 (B) UECFOOD100BB 23.90%
(g) 2px 14px 1000 24000 (B) UECFOOD100BB 23.73%

(h) 4px 2px 1000 24000 (B) UECFOOD100BB 15.30%
(i) 4px 4px 1000 24000 (B) UECFOOD100BB 15.80%
(j) 4px 6px 1000 24000 (B) UECFOOD100BB 18.13%
(k) 4px 8px 1000 24000 (B) UECFOOD100BB 19.03%
(l) 4px 10px 1000 24000 (B) UECFOOD100BB 20.60%
(m) 4px 12px 1000 24000 (B) UECFOOD100BB 20.27%
(n) 4px 14px 1000 24000 (B) UECFOOD100BB 20.47%

(o) 6px 2px 1000 24000 (B) UECFOOD100BB 12.03%
(p) 6px 4px 1000 24000 (B) UECFOOD100BB 14.47%
(q) 6px 6px 1000 24000 (B) UECFOOD100BB 15.27%
(r) 6px 8px 1000 24000 (B) UECFOOD100BB 16.77%
(s) 6px 10px 1000 24000 (B) UECFOOD100BB 17.43%
(t) 6px 12px 1000 24000 (B) UECFOOD100BB 18.23%
(u) 6px 14px 1000 24000 (B) UECFOOD100BB 18.23%

(v) 2px 10px 500 12000 (B) UECFOOD100BB 20.90%
(w) 2px 10px 2000 48000 (B) UECFOOD100BB 25.57%
(x) 2px 10px 4000 96000 (B) UECFOOD100BB 27.63%
(y) 2px 10px 8000 192000 (B) UECFOOD100BB 29.97%

(z) 2px 10px 3000 180000 (C) UECFOOD100BB 30.40%
(α) 2px 10px 1000 204000 (D) UECFOOD100BB 28.70%
(β) 2px 10px 500 222000 (E) UECFOOD100BB 25.37%
(γ) 2px 10px 3000 216000 (F) UECFOOD100BB 30.50%
(δ) 2px 10px 1000 264000 (G) UECFOOD100BB 30.10%

(ε) 2px 10px 3000 216000 (F) UECFOOD256BB 25.17%

(ζ) 2px 10px 1500 90000 (C) FOOD101 18.04%

Table 6.5: Results of Colour Moment Invariants descriptor with BoF encoding and spatial
pyramid sampling.
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6.1.4 SIFT

The implementation that is used (VLFeat Library), supports the computation on multiple
descriptor sizes. First single descriptor sizes of {2, 4, 6, 8, 10} are tested with each sampling
size of {2, 4, 6} ([a]–[o]). The best result achieves an accuracy of 38.17% [b]. Combining
two of the descriptor sizes does not improve the accuracy ([p]–[u]). The combination of
4 descriptor sizes is tested on sampling step sizes of {2, 4, 6, 8, 10}, achieving the best
result with step size 4: 39.83% [w]. Increasing the dictionary size ([β]–[ζ]), achieves
an improvement of another 3% ([ζ] vs [w]). Increasing the SP levels is only feasible if
the dictionary size is lowered, to avoid the usage of more memory than available. The
maximum feature descriptor successfully classified on the described hardware (Section 5.3)
for 100 classes had a dimensionality of 270336 per image (using 4 Bytes for float storage
for each dimension, the whole UEC-FOOD100BB dataset representation takes up 9.6GiB
of memory). The best result achieved for the UEC-FOOD100BB is 43.97% in [η]. For the
UEC-FOOD256BB only one descriptor size is used [μ]. Sampling descriptors on many
sizes produces a feature space that takes many days to compute the SVM for the 256
classes. The exact structure of the feature space is not investigated further. With the
configuration in [μ] an accuracy of 33.50% is achieved. On the FOOD101 the descriptor
achieved 35.74%.
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(a) 2 2 1000 24000 (B) UECFOOD100BB 36.47%
(b) 2 4 1000 24000 (B) UECFOOD100BB 38.17%
(c) 2 6 1000 24000 (B) UECFOOD100BB 35.70%
(d) 2 8 1000 24000 (B) UECFOOD100BB 34.17%
(e) 2 10 1000 24000 (B) UECFOOD100BB 1.00%

(f) 4 2 1000 24000 (B) UECFOOD100BB 28.23%
(g) 4 4 1000 24000 (B) UECFOOD100BB 35.77%
(h) 4 6 1000 24000 (B) UECFOOD100BB 35.07%
(i) 4 8 1000 24000 (B) UECFOOD100BB 32.83%
(j) 4 10 1000 24000 (B) UECFOOD100BB 1.00%

(k) 6 2 1000 24000 (B) UECFOOD100BB 22.80%
(l) 6 4 1000 24000 (B) UECFOOD100BB 30.37%
(m) 6 6 1000 24000 (B) UECFOOD100BB 32.40%
(n) 6 8 1000 24000 (B) UECFOOD100BB 29.63%

Continued on next page
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Table 6.6 – continued from previous page
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(o) 6 10 1000 24000 (B) UECFOOD100BB 1.00%

(p) 4 4, 6 1000 24000 (B) UECFOOD100BB 37.77%
(q) 4 4, 8 1000 24000 (B) UECFOOD100BB 38.00%
(r) 4 4, 10 1000 24000 (B) UECFOOD100BB 37.83%
(s) 4 4, 12 1000 24000 (B) UECFOOD100BB 38.00%
(t) 4 6, 8 1000 24000 (B) UECFOOD100BB 35.97%
(u) 4 6, 10 1000 24000 (B) UECFOOD100BB 37.17%
(v) 4 4, 6, 8 1000 24000 (B) UECFOOD100BB 39.17%
(w) 4 4, 6, 8, 10 1000 24000 (B) UECFOOD100BB 39.83%

(x) 2 4, 6, 8, 10 1000 24000 (B) UECFOOD100BB 39.20%
(y) 6 4, 6, 8, 10 1000 24000 (B) UECFOOD100BB 37.30%
(z) 8 4, 6, 8, 10 1000 24000 (B) UECFOOD100BB 34.90%
(α) 10 4, 6, 8, 10 1000 24000 (B) UECFOOD100BB 32.30%

(β) 4 4, 6, 8, 10 200 4800 (B) UECFOOD100BB 31.07%
(γ) 4 4, 6, 8, 10 500 12000 (B) UECFOOD100BB 35.90%
(δ) 4 4, 6, 8, 10 2000 48000 (B) UECFOOD100BB 41.53%
(ε) 4 4, 6, 8, 10 4000 96000 (B) UECFOOD100BB 42.73%
(ζ) 4 4, 6, 8, 10 8000 192000 (B) UECFOOD100BB 42.87%

(η) 4 4, 6, 8, 10 3000 180000 (C) UECFOOD100BB 43.97%
(θ) 4 4, 6, 8, 10 1000 204000 (D) UECFOOD100BB 40.50%
(ι) 4 4, 6, 8, 10 500 222000 (E) UECFOOD100BB 38.20%
(κ) 4 4, 6, 8, 10 3000 216000 (F) UECFOOD100BB 43.63%
(λ) 4 4, 6, 8, 10 1000 264000 (G) UECFOOD100BB 41.03%

(μ) 4 4 3000 180000 (C) UECFOOD256BB 33.50%
(ν) 4 4, 6, 8, 10 2000 120000 (C) FOOD101 35.74%

Table 6.6: Results of SIFT descriptor with BoF encoding.

6.1.5 LBP

Variations in descriptor size ([a]–[h]), achieve best accuracy at 4px ([c]). Decreasing the
dictionary size from 1000 to 200 ([c] vs. [k]), decreases the accuracy only 2.9%. With
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6.1. Bag-of-Features

the limitations of a total vector size of around 2500001 dimensions, the small feature
vector can be sampled on a higher number of SP-levels ([u]–[z]), compared to experiments
with the previous descriptors. Experiment [z] samples the descriptors on a total of 344
segments on six SP levels, achieving an accuracy of 29.03% on the UEC-FOOD100BB
dataset. The same configuration achieves 20.83% on the UEC-FOOD256BB dataset. On
the FOOD101 a lower dimensional configuration achieves 15.83%.
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(a) 2px 1000 24000 (B) UECFOOD100BB 20.97%
(b) 3px 1000 24000 (B) UECFOOD100BB 20.60%
(c) 4px 1000 24000 (B) UECFOOD100BB 22.80%
(d) 5px 1000 24000 (B) UECFOOD100BB 22.13%
(e) 6px 1000 24000 (B) UECFOOD100BB 21.73%
(f) 8px 1000 24000 (B) UECFOOD100BB 20.83%
(g) 10px 1000 24000 (B) UECFOOD100BB 20.23%2

(h) 12px 1000 24000 (B) UECFOOD100BB 19.03%

(i) 4px 50 1200 (B) UECFOOD100BB 13.37%
(j) 4px 100 2400 (B) UECFOOD100BB 17.23%
(k) 4px 200 4800 (B) UECFOOD100BB 19.93%
(l) 4px 300 7200 (B) UECFOOD100BB 21.47%2

(m) 4px 400 9600 (B) UECFOOD100BB 20.90%
(n) 4px 500 12000 (B) UECFOOD100BB 21.73%
(o) 4px 2000 48000 (B) UECFOOD100BB 22.03%
(p) 4px 4000 96000 (B) UECFOOD100BB 22.00%
(q) 4px 8000 192000 (B) UECFOOD100BB 21.53%

(r) 5px 1000 3000 (A) UECFOOD100BB 12.70%
(s) 5px 5000 15000 (A) UECFOOD100BB 13.60%
(t) 5px 10000 30000 (A) UECFOOD100BB OOM3

(u) 4px 4000 240000 (C) UECFOOD100BB 23.83%
(v) 4px 1000 204000 (D) UECFOOD100BB 27.90%
(w) 4px 500 222000 (E) UECFOOD100BB 28.87%
(x) 4px 3000 216000 (F) UECFOOD100BB 25.13%
(y) 4px 1000 264000 (G) UECFOOD100BB 28.30%

Continued on next page
1Due to the hardware (described in Section 5.3) and time limitations.
2These experiments have been analysed for its variance, and executed 20 times. Results are listed in

Table 6.2
3Produced an out of memory error.
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6. Evaluation and Results

Table 6.7 – continued from previous page
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(z) 4px 200 206400 (H) UECFOOD100BB 29.03%

(α) 4px 200 206400 (H) UECFOOD256BB 20.83%
(β) 4px 500 102000 (D) FOOD101 15.83%

Table 6.7: Results of LBP descriptor with BoF encoding.

6.1.6 RootHOG

The results of experiments with the Root-HOG descriptor are presented in Table 6.8. First
the descriptor size is increased step by step in [a]–[h], resulting in a decrease in accuracy,
for values higher than 4 [b]. Increasing the dictionary size ([i]–[o]), leads to an increase
up to a dictionary size of 1000 words [b], then decreases further. Increasing the SP-levels
over the used standard configuration E ([p]–[x]), does not have a significant effect on
the accuracy, leading to slightly worse results than in [b]. On the UEC-FOOD100BB
dataset the best result is 23.10%, achieved in [b]. For this dataset, increasing the spatial
information or the granularity of the dictionary does not affect the discrimination of
the data. On the UEC-FOOD256BB dataset the configurations achieve a significant
improvement over configuration [b] ([z] and [α] vs. [y]), with an accuracy of 15.63% in
[y]. On the FOOD101 dataset the descriptor achieves an accuracy of 11.12% [γ].
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(a) 2 1000 24000 (B) UECFOOD100BB 18.97%
(b) 4 1000 24000 (B) UECFOOD100BB 23.10%
(c) 6 1000 24000 (B) UECFOOD100BB 22.30%
(d) 8 1000 24000 (B) UECFOOD100BB 22.53%
(e) 10 1000 24000 (B) UECFOOD100BB 20.00%
(f) 12 1000 24000 (B) UECFOOD100BB 20.27%
(g) 16 1000 24000 (B) UECFOOD100BB 18.23%

Continued on next page
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6.1. Bag-of-Features

Table 6.8 – continued from previous page
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(h) 20 1000 24000 (B) UECFOOD100BB 16.73%

(i) 4 50 1200 (B) UECFOOD100BB 16.77%
(j) 4 100 2400 (B) UECFOOD100BB 18.63%
(k) 4 200 4800 (B) UECFOOD100BB 20.73%
(l) 4 500 12000 (B) UECFOOD100BB 22.87%
(m) 4 2000 48000 (B) UECFOOD100BB 22.77%
(n) 4 4000 96000 (B) UECFOOD100BB 22.10%
(o) 4 8000 192000 (B) UECFOOD100BB 21.73%

(p) 4 1000 3000 (A) UECFOOD100BB 8.17%
(q) 4 1000 60000 (C) UECFOOD100BB 18.90%
(r) 4 3000 180000 (C) UECFOOD100BB 19.10%
(s) 4 1000 204000 (D) UECFOOD100BB 19.97%
(t) 4 500 222000 (E) UECFOOD100BB 21.63%
(u) 4 1000 72000 (F) UECFOOD100BB 21.40%
(v) 4 3000 216000 (F) UECFOOD100BB 18.47%
(w) 4 1000 264000 (G) UECFOOD100BB 22.97%
(x) 4 200 206400 (H) UECFOOD100BB 21.83%

(y) 4 1000 24000 (B) UECFOOD256BB 10.35%
(z) 4 500 222000 (E) UECFOOD256BB 14.45%
(α) 4 1000 264000 (G) UECFOOD256BB 15.63%

(β) 4 1000 24000 (B) FOOD101 6.99%
(γ) 4 1500 108000 (F) FOOD101 11.12%

Table 6.8: Results of Root-HOG descriptor with BoF encoding.

6.1.7 Descriptor combinations

Feature Fusion

For the feature fusion (early fusion) the resulting histograms of the descriptor extraction
and subsequent BoF-encoding are concatenated. The best performing colour descriptor
and the best performing texture descriptor are selected. The results are presented
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6. Evaluation and Results

in Table 6.9. For the UEC-FOOD100BB dataset 50.87% is achieved. For the UEC-
FOOD256BB, the SIFT descriptor is sampled on only one size per sampling location,
to prevent classification issues with the resulting feature space. The exact cause is not
investigated further. The result of the feature fusion on the UEC-FOOD256BB dataset
is 42.20% and the FOOD101 dataset 42.39%.
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SIFT 4 4, 6, 8, 10 4000 96000 (B) UECFOOD100BB 50.87%CP 2 8 1500 108000 (F)

SIFT 4 4 4000 96000 (B) UECFOOD256BB 42.20%CP 2 8 1500 108000 (F)

SIFT 4 4, 6, 8, 10 1500 36000 (B) FOOD101 42.39%CP 2 8 1500 36000 (B)

Table 6.9: Results of Feature Combinations with BoF encoding by histogram concatena-
tion.

Decision Fusion

For fusion at decision level (late fusion), all computed descriptors have been combined
by classifying the scores of the individual classifiers. The results are listed in Table 6.10.
For the UEC-FOOD100BB dataset an accuracy of 52.30% is achieved, for the UEC-
FOOD256BB dataset 44.32% and for the FOOD101 dataset 44.16%.
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6.1. Bag-of-Features
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SIFT 4 4, 6, 8, 10 1000 24000 (B) UEC-100BB 48.10%CP 2 8 1000 24000 (B)

SIFT 4 4, 6, 8, 10 3000 216000 (F)

UEC-100BB 52.30%

CP 2 8 3000 180000 (C)
LBP – 4 200 206400 (H)
Root-HOG – 4 1000 264000 (G)
CMI 2 10 3000 216000 (F)
CHa 2 4 1000 204000 (D)

SIFT 4 4 3000 180000 (C)

UEC-256BB 44.32%

CP 2 8 3000 180000 (C)
LBP – 4 200 206400 (H)
Root-HOG – 4 1000 264000 (G)
CMI 2 10 3000 216000 (F)
CHa 2 4 3000 180000 (C)

SIFT 4, 6, 8, 10 2000 120000 (C)

FOOD101 44.16%

CP 2 8 2000 120000 (C)
LBP – 4 500 36000 (F)
Root-HOG – 4 1500 108000 (F)
CMI 2 10 1500 90000 (C)
CHa 2 4 1500 90000 (C)

aRGB colour space.

Table 6.10: Results of Feature Combinations with BoF encoding by late fusion.

6.1.8 Summary

The best results for each descriptor and each dataset, and the results from both fusion
strategies are summarised in Table 6.11. The best result from a single descriptor is
achieved with the SIFT descriptor for all datasets. For the UEC-FOOD100BB an accuracy
of 43.97% is reached, for the UEC-FOOD256BB 33.50% and the FOOD101 35.74%. The
improvement of feature fusion compared to result of the single descriptor is 6.9%, 8.7%
and 6.7% for the three datasets respectively, and the improvements of late fusion (of all
descriptors) compared to the best performing descriptor are 8.33%, 10.82% and 8.42%.

The best results achieved with BoF-encoding are 52.30%, 44.32% and 44.16% for the
three datasets. This results are compared to the other object recognition approaches at
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6. Evaluation and Results

method UEC-FOOD100BB UEC-FOOD256BB FOOD101

CP 36.33 28.48 27.15
CH 34.53 25.92 23.71
CMI 30.50 25.17 18.04
SIFT 43.97 33.50 35.74
LBP 29.03 20.83 15.83
Root-HOG 23.10 15.63 11.12

feature fusion 50.87 42.20 42.39
late fusion 52.30 44.32 44.16

Table 6.11: A summary of the best results from all BoF-encoding experiments, for each
descriptor and both fusion strategies and all three datasets.

the end of this chapter.

6.2 Fisher Vector

After feature extraction all descriptors of each image are encoded into a FV as a feature
vector. The training and classification is performed with linear SVMs in a one versus
rest manner. First the colour descriptors are discussed in Sections 6.2.1–6.2.3, the
texture descriptors in Sections 6.2.4–6.2.6, and the combinations of the descriptors in
Section 6.2.7.

6.2.1 Colourpatch

In experiments [a]–[e] the descriptor size is increased step by step, and in [f]–[i] the
sampling size increased in combination with the best performing descriptor size. The
best combination is the one of experiment [d]. Increasing the number of Gaussians of
the GMM ([j]–[m]), increases the accuracy 4.34% ([d] vs. [m]), achieving 52.37%. This
result supports the report of [Yanai and Kawano, 2015], who achieve an accuracy of
53.04% with the CP descriptor with FV-encoding on the same SP configuration on the
UEC-FOOD100BB dataset. In [n]–[s] the SP configuration is varied. The number of
Gaussians are decreased to keep the total feature vector size at around 250000. The
combinations do not improve the accuracy compared to [m]. The precision of the model
of the descriptor space, has a greater impact on the discrimination than the spatial
information of the descriptors. Also, this descriptor performs better with the SED than
with the SPM, for all other descriptors tested, this is not the case. The results for the
UEC-FOOD256BB and the FOOD101 are 45.08% and 44.46% respectively ([u] and [v]).

From [w]–[ω] the descriptor was extended with the spatial coordinates. In [w]–[π] every
combination of sampling step sizes in {2, 4, 6, 8} and descriptor sizes in {4, 6, 8, 10, 12}
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6.2. Fisher Vector

is tested, achieving the best result with the parameters in [y]. In [ρ]–[χ] the number
of Gaussians in the GMM is increased, achieving 54.10% for the UEC-FOOD100BB
dataset in [χ], the best result of all single descriptors tested, for both encoding variations.
The same configuration achieved 45.38% and 48.38% for the UEC-FOOD256BB and the
FOOD101 datasets respectively ([ψ] and [ω]).
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(a) SPM 4px 4px 64 24 24576 (B) UECFOOD100BB 44.13%
(b) SPM 4px 6px 64 24 24576 (B) UECFOOD100BB 47.50%
(c) SPM 4px 8px 64 24 24576 (B) UECFOOD100BB 47.87%
(d) SPM 4px 10px 64 24 24576 (B) UECFOOD100BB 48.03%
(e) SPM 4px 12px 64 24 24576 (B) UECFOOD100BB 47.50%

(f) SPM 2px 10px 64 24 24576 (B) UECFOOD100BB 47.97%
(g) SPM 6px 10px 64 24 24576 (B) UECFOOD100BB 46.03%
(h) SPM 8px 10px 64 24 24576 (B) UECFOOD100BB 45.33%
(i) SPM 10px 10px 64 24 24576 (B) UECFOOD100BB 42.40%

(j) SPM 4px 10px 32 24 12288 (B) UECFOOD100BB 44.27%
(k) SPM 4px 10px 128 24 49152 (B) UECFOOD100BB 50.13%
(l) SPM 4px 10px 256 24 98304 (B) UECFOOD100BB 51.77%
(m) SPM 4px 10px 512 24 196608 (B) UECFOOD100BB 52.37%

(n) SPM 4px 10px 128 24 122880 (C) UECFOOD100BB 51.47%
(o) SPM 4px 10px 256 24 245760 (C) UECFOOD100BB 51.80%
(p) SPM 4px 10px 64 24 208896 (D) UECFOOD100BB 48.73%
(q) SPM 4px 10px 32 24 227328 (E) UECFOOD100BB 44.97%
(r) SPM 4px 10px 128 24 147456 (F) UECFOOD100BB 51.60%
(s) SPM 4px 10px 64 24 270336 (G) UECFOOD100BB 49.47%

(t) SPM 4px 10px 256 24 98304 (B) UECFOOD256BB 44.41%
(u) SPM 4px 10px 512 24 196608 (B) UECFOOD256BB 45.08%
(v) SPM 4px 10px 180 24 69120 (B) FOOD101 44.46%

(w) SED 2px 4px 64 24 3328 (x,y) UECFOOD100BB 42.40%
(x) SED 2px 6px 64 24 3328 (x,y) UECFOOD100BB 43.43%
(y) SED 2px 8px 64 24 3328 (x,y) UECFOOD100BB 44.63%
(z) SED 2px 10px 64 24 3328 (x,y) UECFOOD100BB 44.03%
(α) SED 2px 12px 64 24 3328 (x,y) UECFOOD100BB 43.00%

Continued on next page
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Table 6.12 – continued from previous page
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(β) SED 4px 4px 64 24 3328 (x,y) UECFOOD100BB 40.33%
(γ) SED 4px 6px 64 24 3328 (x,y) UECFOOD100BB 44.13%
(δ) SED 4px 8px 64 24 3328 (x,y) UECFOOD100BB 44.00%
(ε) SED 4px 10px 64 24 3328 (x,y) UECFOOD100BB 43.20%
(ζ) SED 4px 12px 64 24 3328 (x,y) UECFOOD100BB 43.27%

(η) SED 6px 4px 64 24 3328 (x,y) UECFOOD100BB 37.50%
(θ) SED 6px 6px 64 24 3328 (x,y) UECFOOD100BB 41.00%
(ι) SED 6px 8px 64 24 3328 (x,y) UECFOOD100BB 42.50%
(κ) SED 6px 10px 64 24 3328 (x,y) UECFOOD100BB 42.83%
(λ) SED 6px 12px 64 24 3328 (x,y) UECFOOD100BB 41.60%

(μ) SED 8px 4px 64 24 3328 (x,y) UECFOOD100BB 35.60%
(ν) SED 8px 6px 64 24 3328 (x,y) UECFOOD100BB 38.33%
(ξ) SED 8px 8px 64 24 3328 (x,y) UECFOOD100BB 40.50%
(ο) SED 8px 10px 64 24 3328 (x,y) UECFOOD100BB 41.13%
(π) SED 8px 12px 64 24 3328 (x,y) UECFOOD100BB 40.67%

(ρ) SED 2px 8px 128 24 6656 (x,y) UECFOOD100BB 47.37%
(σ) SED 2px 8px 256 24 13312 (x,y) UECFOOD100BB 49.93%
(τ) SED 2px 8px 512 24 26624 (x,y) UECFOOD100BB 51.63%
(υ) SED 2px 8px 1024 24 53248 (x,y) UECFOOD100BB 53.23%
(φ) SED 2px 8px 2048 24 106496 (x,y) UECFOOD100BB 54.07%
(χ) SED 2px 8px 4096 24 212992 (x,y) UECFOOD100BB 54.10%

(ψ) SED 2px 8px 1024 24 53248 (x,y) UECFOOD256BB 45.38%
(ω) SED 2px 8px 1024 24 53248 (x,y) FOOD101 48.38%

Table 6.12: Results of Colourpatch descriptor with FV encoding.
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6.2. Fisher Vector

6.2.2 Colour-Histogram

The FV encoding of the CH descriptor do not lead to promising results, expecting
an improvement compared to the BoF encoding results. Classification with the linear
SVM is extensively more computationally expensive compared to the other descriptor
classifications. A probable cause is that the seperability of the computed feature space
is more complex, for each of the two-class problems (one versus rest). A similar issue
occurred at classification of the SIFT descriptor with BoF encoding with descriptor size 10
(Table 6.6), and for classification of the FOOD101 dataset with FV-encoding of the CMI
descriptor. Another possible cause might be an issue with the SVM implementation of the
VLFeat library, but this is not verified. A different classifier is not tested on the mentioned
experiments. To rule out the normalisation effect of the data before classification, the
concatenated histograms (each histogram is l1 normalised) are l1 normalised again, in
a second test l2 normalised and also no additional normalisation is also tested. The l2
normalisation achieved significantly higher results (as expect with FV, more information
in Section 4.2.2), but still low results compared to BoF encoding or compared to other
descriptors. The runtime is also not reduced by different normalisations of the feature
vector.
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(a) 2px 4px 64 24 24576 RGB (B) UECFOOD100BB 13.20%
(b) 2px 6px 64 24 24576 RGB (B) UECFOOD100BB 12.73%
(c) 2px 8px 64 24 24576 RGB (B) UECFOOD100BB 12.67%
(d) 2px 10px 64 24 24576 RGB (B) UECFOOD100BB 12.10%
(e) 2px 12px 64 24 24576 RGB (B) UECFOOD100BB 14.50%

(f) 4px 4px 64 24 24576 RGB (B) UECFOOD100BB 12.70%
(g) 4px 6px 64 24 24576 RGB (B) UECFOOD100BB 12.37%
(h) 4px 8px 64 24 24576 RGB (B) UECFOOD100BB 14.40%
(i) 4px 10px 64 24 24576 RGB (B) UECFOOD100BB 12.20%
(j) 4px 12px 64 24 24576 RGB (B) UECFOOD100BB 13.93%

(k) 6px 4px 64 24 24576 RGB (B) UECFOOD100BB 12.40%
(l) 6px 6px 64 24 24576 RGB (B) UECFOOD100BB 11.90%
(m) 6px 8px 64 24 24576 RGB (B) UECFOOD100BB 12.30%
(n) 6px 10px 64 24 24576 RGB (B) UECFOOD100BB 12.73%
(o) 6px 12px 64 24 24576 RGB (B) UECFOOD100BB 11.33%

(p) 8px 4px 64 24 24576 RGB (B) UECFOOD100BB 11.63%
Continued on next page
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Table 6.13 – continued from previous page
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(q) 8px 6px 64 24 24576 RGB (B) UECFOOD100BB 11.60%
(r) 8px 8px 64 24 24576 RGB (B) UECFOOD100BB 12.60%
(s) 8px 10px 64 24 24576 RGB (B) UECFOOD100BB 9.77%
(t) 8px 12px 64 24 24576 RGB (B) UECFOOD100BB 11.47%
Table 6.13: Results of Dense-Colour Histogram descriptor with FV encoding.

6.2.3 CMI

In experiments [a]–[u] each sampling step size in {2, 4, 6} is tested in combination with
each descriptor size of {2, 4, 6, 8, 10, 12, 14}. The best result is achieved in [e]. Increasing
the number of Gaussians of the GMM ([v]–[y]), achieves a slight increases with 512
Gaussians of 1.36% compared to [e]. Variations of the configuration of the SP increase
the accuracy 3.23% compared to [e] in experiment [δ], achieving 29.10%. For the UEC-
FOOD256BB dataset a result of 23.71% is reached [ε]. Execution on the FOOD101
dataset was cancelled due to the long runtime for classification (several days). With a
slightly different parameter setting of 64 Gaussians and pyramid configuration C, resulting
in slightly smaller dimensionality the same issue occurred. The reason for the cause and
the feature space is not explored any further, as the spatial extension of the descriptor
achieved acceptable results [ψ], and is used for the descriptor combination (late fusion).

In experiments [η]–[ψ], the descriptor is extended with the spatial coordinates, achieving
a result of 27.80% in [φ], 1.3% less than the best SPM configuration in [δ], with 19.7%
of the feature vector size. For the UEC-FOOD256BB 22.92% are achieved and for the
FOOD101 19.62%.
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(a) SPM 2px 2px 64 24 24576 (B) UECFOOD100BB 17.87%
(b) SPM 2px 4px 64 24 24576 (B) UECFOOD100BB 23.80%
(c) SPM 2px 6px 64 24 24576 (B) UECFOOD100BB 23.20%
(d) SPM 2px 8px 64 24 24576 (B) UECFOOD100BB 25.67%
(e) SPM 2px 10px 64 24 24576 (B) UECFOOD100BB 25.87%
(f) SPM 2px 12px 64 24 24576 (B) UECFOOD100BB 25.80%
(g) SPM 2px 14px 64 24 24576 (B) UECFOOD100BB 24.07%

(h) SPM 4px 2px 64 24 24576 (B) UECFOOD100BB 12.47%
(i) SPM 4px 4px 64 24 24576 (B) UECFOOD100BB 21.47%
(j) SPM 4px 6px 64 24 24576 (B) UECFOOD100BB 23.30%
(k) SPM 4px 8px 64 24 24576 (B) UECFOOD100BB 23.83%
(l) SPM 4px 10px 64 24 24576 (B) UECFOOD100BB 24.77%
(m) SPM 4px 12px 64 24 24576 (B) UECFOOD100BB 23.93%
(n) SPM 4px 14px 64 24 24576 (B) UECFOOD100BB 23.70%

(o) SPM 6px 2px 64 24 24576 (B) UECFOOD100BB 13.00%
(p) SPM 6px 4px 64 24 24576 (B) UECFOOD100BB 16.87%
(q) SPM 6px 6px 64 24 24576 (B) UECFOOD100BB 20.17%
(r) SPM 6px 8px 64 24 24576 (B) UECFOOD100BB 19.13%
(s) SPM 6px 10px 64 24 24576 (B) UECFOOD100BB 22.57%
(t) SPM 6px 12px 64 24 24576 (B) UECFOOD100BB 22.93%
(u) SPM 6px 14px 64 24 24576 (B) UECFOOD100BB 22.47%

(v) SPM 2px 10px 32 24 12288 (B) UECFOOD100BB 23.37%
(w) SPM 2px 10px 128 24 49152 (B) UECFOOD100BB 25.63%
(x) SPM 2px 10px 256 24 98304 (B) UECFOOD100BB 25.73%
(y) SPM 2px 10px 512 24 196608 (B) UECFOOD100BB 27.23%

(z) SPM 2px 10px 256 24 245760 (C) UECFOOD100BB 29.03%
(α) SPM 2px 10px 64 24 208896 (D) UECFOOD100BB 28.50%
(β) SPM 2px 10px 32 24 227328 (E) UECFOOD100BB 26.57%
(γ) SPM 2px 10px 128 24 147456 (F) UECFOOD100BB 28.57%
(δ) SPM 2px 10px 64 24 270336 (G) UECFOOD100BB 29.10%

(ε) SPM 2px 10px 128 24 147456 (F) UECFOOD256BB 23.71%
Continued on next page
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(ζ) SPM 2px 10px 180 24 69120 (B) FOOD101 –%4

(η) SED 2px 4px 64 24 3328 (x,y) UECFOOD100BB 20.10%
(θ) SED 2px 6px 64 24 3328 (x,y) UECFOOD100BB 23.07%
(ι) SED 2px 8px 64 24 3328 (x,y) UECFOOD100BB 23.83%
(κ) SED 2px 10px 64 24 3328 (x,y) UECFOOD100BB 22.33%
(λ) SED 2px 12px 64 24 3328 (x,y) UECFOOD100BB 23.00%

(μ) SED 4px 4px 64 24 3328 (x,y) UECFOOD100BB 12.90%
(ν) SED 4px 6px 64 24 3328 (x,y) UECFOOD100BB 21.53%
(ξ) SED 4px 8px 64 24 3328 (x,y) UECFOOD100BB 22.37%
(ο) SED 4px 10px 64 24 3328 (x,y) UECFOOD100BB 23.47%
(π) SED 4px 12px 64 24 3328 (x,y) UECFOOD100BB 21.17%

(ρ) SED 2px 8px 32 24 1664 (x,y) UECFOOD100BB 20.63%
(σ) SED 2px 8px 128 24 6656 (x,y) UECFOOD100BB 24.73%
(τ) SED 2px 8px 256 24 13312 (x,y) UECFOOD100BB 25.80%
(υ) SED 2px 8px 512 24 26624 (x,y) UECFOOD100BB 27.47%
(φ) SED 2px 8px 1024 24 53248 (x,y) UECFOOD100BB 27.80%

(χ) SED 2px 8px 1024 24 53248 (x,y) UECFOOD256BB 22.92%
(ψ) SED 2px 8px 1024 24 53248 (x,y) FOOD101 19.62%

Table 6.14: Results of CMI descriptor with FV encoding.

6.2.4 SIFT

The descriptor is extracted on four sizes on each sampling location for all experiments.
In [a]–[g] the sampling step size is increased step by step, achieving the best result in
[a]. Reducing the dimensionality with PCA in [h]–[k] does not reduce the accuracy
significantly between 64 and 128 dimensions, with a drop of 0.6% ([a] vs. [j]). The
dimensionality of 80 [i] is chosen for the following experiments. In [l]–[n] the number
of Gaussians of the GMM is increased to up to 128 Gaussians, slightly increasing the

4Experiment was cancelled due to a estimated classification runtime of several hours per classifier
(one for each category).
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6.2. Fisher Vector

accuracy to 43.77% on the UEC-FOOD100BB dataset [n]. Increasing the levels of the SP,
with the cost of cutting back on the GMM precision, does not improve the results ([o]
and [p]). For the UEC-FOOD256BB and the FOOD101 dataset the results are 36.63%
and 37.46% respectively.

In experiments [s]–[θ], the descriptor is extended with the spatial coordinates, achieving
a result of 35.50% in [t] for the UEC-FOOD100BB dataset, 8.27% less than the best
SPM configuration in [n]. For the UEC-FOOD256BB 26.63% are achieved, and 36.02%
for the FOOD101 dataset.
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(a) SPM 2 4, 6, 8, 10 64 128 131072 (B) UECFOOD100BB 41.93%
(b) SPM 4 4, 6, 8, 10 64 128 131072 (B) UECFOOD100BB 41.67%
(c) SPM 6 4, 6, 8, 10 64 128 131072 (B) UECFOOD100BB 40.80%
(d) SPM 8 4, 6, 8, 10 64 128 131072 (B) UECFOOD100BB 40.47%
(e) SPM 10 4, 6, 8, 10 64 128 131072 (B) UECFOOD100BB 39.53%
(f) SPM 12 4, 6, 8, 10 64 128 131072 (B) UECFOOD100BB 38.47%
(g) SPM 14 4, 6, 8, 10 64 128 131072 (B) UECFOOD100BB 36.90%

(h) SPM 2 4, 6, 8, 10 64 100 102400 (B) UECFOOD100BB 41.53%
(i) SPM 2 4, 6, 8, 10 64 80 81920 (B) UECFOOD100BB 42.30%
(j) SPM 2 4, 6, 8, 10 64 64 65536 (B) UECFOOD100BB 41.33%
(k) SPM 2 4, 6, 8, 10 64 32 32768 (B) UECFOOD100BB 39.60%

(l) SPM 2 4, 6, 8, 10 16 80 20480 (B) UECFOOD100BB 38.00%
(m) SPM 2 4, 6, 8, 10 32 80 40960 (B) UECFOOD100BB 41.27%
(n) SPM 2 4, 6, 8, 10 128 80 163840 (B) UECFOOD100BB 43.77%

(o) SPM 2 4, 6, 8, 10 64 80 204800 (C) UECFOOD100BB 43.73%
(p) SPM 2 4, 6, 8, 10 64 80 245760 (F) UECFOOD100BB 43.77%

(q) SPM 2 4, 6, 8, 10 128 80 163840 (B) UECFOOD256BB 36.63%
(r) SPM 2 4, 6, 8, 10 64 80 81920 (B) FOOD101 37.46%

(s) SED 2 4, 6, 8, 10 64 128 16640 (x,y) UECFOOD100BB 34.27%
(t) SED 4 4, 6, 8, 10 64 128 16640 (x,y) UECFOOD100BB 35.50%
(u) SED 6 4, 6, 8, 10 64 128 16640 (x,y) UECFOOD100BB 33.70%
(v) SED 8 4, 6, 8, 10 64 128 16640 (x,y) UECFOOD100BB 32.87%
(w) SED 10 4, 6, 8, 10 64 128 16640 (x,y) UECFOOD100BB 31.47%

(x) SED 4 4, 6, 8, 10 64 100 13056 (x,y) UECFOOD100BB 34.17%
Continued on next page
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(y) SED 4 4, 6, 8, 10 64 80 10496 (x,y) UECFOOD100BB 34.57%
(z) SED 4 4, 6, 8, 10 64 64 8448 (x,y) UECFOOD100BB 33.90%
(α) SED 4 4, 6, 8, 10 64 32 4352 (x,y) UECFOOD100BB 30.10%

(β) SED 4 4, 6, 8, 10 32 128 8320 (x,y) UECFOOD100BB 34.40%
(γ) SED 4 4, 6, 8, 10 128 128 33280 (x,y) UECFOOD100BB 33.03%
(δ) SED 4 4, 6, 8, 10 256 128 66560 (x,y) UECFOOD100BB 32.20%
(ε) SED 4 4, 6, 8, 10 512 128 133120 (x,y) UECFOOD100BB 32.27%
(ζ) SED 4 4, 6, 8, 10 1024 128 266240 (x,y) UECFOOD100BB 31.20%

(η) SED 4 4, 6, 8, 10 64 128 16640 (x,y) UECFOOD256BB 26.63%
(θ) SED 4 4, 6, 8, 10 64 128 16640 (x,y) FOOD101 36.02%

Table 6.15: Results of SIFT descriptor with FV encoding.

6.2.5 LBP

The results from all experiments with the FV encoding of the LBP descriptor are presented
in Table 6.16. In experiments [a]–[i] the descriptor size is increased step by step, reaching
the best result in [d]. In [j]–[m] the number of Gaussians used for the GMM is increased,
without affecting the accuracy. Increasing the levels of the SP shows an improvement of
3.3% ([n] vs. [d]), resulting in 29.40% for UEC-FOOD100BB. For the UEC-FOOD256BB
and FOOD101 datasets, 23.59% and 22.39% are reached.

In [r]–[ι] the descriptor is extended with the spatial coordinates instead of using SPM.
The best result for the UEC-FOOD100BB is 3.83% less accurate than the best result
from using SPM ([η] vs. [n]). For the UEC-FOOD256BB dataset the result is 2.85%
lower, and for the FOOD101 dataset 2.52%.
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(a) SPM 2px 64 58 59392 (B) UECFOOD100BB 23.53%
(b) SPM 4px 64 58 59392 (B) UECFOOD100BB 24.53%
(c) SPM 5px 64 58 59392 (B) UECFOOD100BB 25.43%
(d) SPM 6px 64 58 59392 (B) UECFOOD100BB 26.10%
(e) SPM 8px 64 58 59392 (B) UECFOOD100BB 25.57%
(f) SPM 10px 64 58 59392 (B) UECFOOD100BB 25.77%
(g) SPM 12px 64 58 59392 (B) UECFOOD100BB 24.20%
(h) SPM 14px 64 58 59392 (B) UECFOOD100BB 23.87%
(i) SPM 16px 64 58 59392 (B) UECFOOD100BB 23.27%

(j) SPM 6px 16 58 14848 (B) UECFOOD100BB 24.63%
(k) SPM 6px 32 58 29696 (B) UECFOOD100BB 24.97%
(l) SPM 6px 128 58 118784 (B) UECFOOD100BB 25.90%
(m) SPM 6px 192 58 178176 (B) UECFOOD100BB 26.43%

(n) SPM 6px 64 58 148480 (C) UECFOOD100BB 29.40%
(o) SPM 6px 64 58 178176 (F) UECFOOD100BB 29.00%

(p) SPM 6px 64 58 148480 (C) UECFOOD256BB 23.59%
(q) SPM 6px 32 58 74240 (C) FOOD101 22.39%

(r) SED 4px 64 58 7680 (x,y) UECFOOD100BB 21.50%
(s) SED 6px 64 58 7680 (x,y) UECFOOD100BB 22.93%
(t) SED 8px 64 58 7680 (x,y) UECFOOD100BB 22.80%
(u) SED 10px 64 58 7680 (x,y) UECFOOD100BB 21.97%
(v) SED 12px 64 58 7680 (x,y) UECFOOD100BB 21.70%
(w) SED 14px 64 58 7680 (x,y) UECFOOD100BB 21.33%
(x) SED 16px 64 58 7680 (x,y) UECFOOD100BB 19.43%

(y) SED 6px 64 50 6656 (x,y) UECFOOD100BB 21.93%
(z) SED 6px 64 40 5376 (x,y) UECFOOD100BB 20.20%
(α) SED 6px 64 30 4096 (x,y) UECFOOD100BB 20.13%

(β) SED 6px 16 58 1920 (x,y) UECFOOD100BB 16.77%
(γ) SED 6px 32 58 3840 (x,y) UECFOOD100BB 20.67%
(δ) SED 6px 128 58 15360 (x,y) UECFOOD100BB 24.20%
(ε) SED 6px 256 58 30720 (x,y) UECFOOD100BB 24.90%
(ζ) SED 6px 512 58 61440 (x,y) UECFOOD100BB 25.50%
(η) SED 6px 1024 58 122880 (x,y) UECFOOD100BB 25.57%

Continued on next page
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(θ) SED 6px 1024 58 122880 (x,y) UECFOOD256BB 20.74%
(ι) SED 6px 512 58 61440 (x,y) FOOD101 19.87%

Table 6.16: Results of LBP descriptor with FV encoding.

6.2.6 Root-HOG

In experiments [a]–[h], the descriptor size is increased, achieving the best result in [c].
In [i]–[l] the number of Gaussians of the GMM is varied, which does not improve the
result from [c]. For the experiments using between 32 and 256 Gaussians the accuracy
stays within a range of 1.4% ([i] – [l] and [c]). In [m]–[p] the SP configuration is varied
achieving the best result of 32.93% in [o], an increase of 4.23% compared to [c]. The same
configuration achieved 23.11% and 21.77% on the UEC-FOOD256BB and the FOOD101
respectively ([q] and [r]).

For experiments with spatially extending the descriptor ([s] – [ε]), the achieved accuracies
are worse than using SPM for all variations of parameters and all three datasets. For the
UEC-FOOD100BB the accuracy drops 7.56%, for the UEC-FOOD256BB 3.96%, and for
the FOOD101 dataset 4.45%.
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(a) SPM 2px 64 31 31744 (B) UECFOOD100BB 25.03%
(b) SPM 3px 64 31 31744 (B) UECFOOD100BB 27.03%
(c) SPM 4px 64 31 31744 (B) UECFOOD100BB 28.70%
(d) SPM 6px 64 31 31744 (B) UECFOOD100BB 28.67%
(e) SPM 8px 64 31 31744 (B) UECFOOD100BB 27.53%

Continued on next page
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(f) SPM 10px 64 31 31744 (B) UECFOOD100BB 26.97%
(g) SPM 12px 64 31 31744 (B) UECFOOD100BB 24.93%
(h) SPM 14px 64 31 31744 (B) UECFOOD100BB 24.80%

(i) SPM 4px 16 31 7936 (B) UECFOOD100BB 24.73%
(j) SPM 4px 32 31 15872 (B) UECFOOD100BB 27.30%
(k) SPM 4px 128 31 63488 (B) UECFOOD100BB 27.87%
(l) SPM 4px 256 31 126976 (B) UECFOOD100BB 28.03%

(m) SPM 4px 128 31 158720 (C) UECFOOD100BB 30.47%
(n) SPM 4px 32 31 134912 (D) UECFOOD100BB 29.37%
(o) SPM 4px 64 31 95232 (F) UECFOOD100BB 32.93%
(p) SPM 4px 128 31 190464 (F) UECFOOD100BB 29.87%

(q) SPM 4px 64 31 95232 (F) UECFOOD256BB 23.11%
(r) SPM 4px 64 31 79360 (C) FOOD101 21.77%

(s) SED 2px 64 31 4224 (x,y) UECFOOD100BB 18.43%
(t) SED 4px 64 31 4224 (x,y) UECFOOD100BB 21.80%
(u) SED 6px 64 31 4224 (x,y) UECFOOD100BB 22.17%
(v) SED 8px 64 31 4224 (x,y) UECFOOD100BB 21.60%
(w) SED 10px 64 31 4224 (x,y) UECFOOD100BB 21.00%
(x) SED 12px 64 31 4224 (x,y) UECFOOD100BB 20.43%

(y) SED 6px 16 31 1056 (x,y) UECFOOD100BB 15.40%
(z) SED 6px 32 31 2112 (x,y) UECFOOD100BB 18.73%
(α) SED 6px 128 31 8448 (x,y) UECFOOD100BB 23.60%
(β) SED 6px 256 31 16896 (x,y) UECFOOD100BB 24.47%
(γ) SED 6px 512 31 33792 (x,y) UECFOOD100BB 25.37%

(δ) SED 6px 512 31 33792 (x,y) UECFOOD256BB 19.15%
(ε) SED 6px 512 31 33792 (x,y) FOOD101 17.32%

Table 6.17: Results of Root-HOG descriptor with FV encoding.
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6. Evaluation and Results

6.2.7 Descriptor combinations

Feature Fusion

For the feature fusion (early fusion) the resulting FVs of the individual descriptors are
concatenated. The results are presented in Table 6.18. The best performing colour
descriptor and the best performing texture descriptor is selected. The results for the
UEC-FOOD100BB dataset is 56.90%. Combining FVs resulting from both SPM and
SED, does not lead to good results, therefore the spatial strategies are not mixed. For
the UEC-FOOD100BB, the accuracy reached with the SED strategy takes up less than
half of the dimensionality of the feature vector than the SPM vector, with an accuracy
drop of only 1.47%. For the UEC-FOOD256BB dataset, the SPM strategy is used and a
result of 51.52% is reached. For the FOOD101 dataset, the SED strategy is used due to
the good results in relation to a smaller descriptor size with an accuracy of 51.18%.
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SIFT 2 4, 6, 8, 10 64 80 (B) 81920 155648 UEC-100BB 56.90%CP 2 10 64 24 (F) 73728

SIFT 2 4, 6, 8, 10 128 80 (x,y) 20992 74240 UEC-100BB 55.43%CP 2 10 1024 24 (x,y) 53248

SIFT 2 4, 6, 8, 10 64 80 (B) 81920 180224 UEC-256BB 51.52%CP 4 10 256 24 (B) 98304

SIFT 2 4, 6, 8, 10 128 80 (x,y) 20992 74240 FOOD101 51.18%CP 2 10 1024 24 (x,y) 53248

Table 6.18: Results of Feature Combinations with FV encoding by feature vector con-
catenation.

Decision Fusion

For fusion at decision level (late fusion), all computed descriptors are being combined by
classifying the scores of the individual classifiers. The results are listed in Table 6.19.
For the UEC-FOOD100BB dataset an accuracy of 58.33% is achieved, for the UEC-
FOOD256BB dataset 53.14% and for the FOOD101 dataset 55.62%.
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SIFT 2 4, 6, 8, 10 128 80 (B) 163840

UEC-100BB 58.33%
CP 2 8 2048 24 (x,y) 106496
CMI 2 8 1024 24 (x,y) 53248
LBP – 6 64 58 (C) 148480
Root-HOG – 4 64 31 (F) 95232

SIFT 2 4, 6, 8, 10 128 80 (B) 163840

UEC-256BB 53.14%
CP 2 8 1024 24 (x,y) 53248
CMI 2 10 128 24 (F) 147456
LBP – 6 64 58 (C) 148480
Root-HOG – 4 64 31 (F) 95232

SIFT 2 4, 6, 8, 10 64 80 (B) 81920

FOOD101 55.62%
CP 2 8 1024 24 (x,y) 53248
CMI 2 8 1024 24 (x,y) 53248
LBP – 6 32 58 (C) 74240
Root-HOG – 4 64 31 (C) 79360

Table 6.19: Results of Feature Combinations with FV encoding by late fusion.

6.2.8 Summary

The best results for each descriptor and each dataset, and the results from both fusion
strategies are summarised in Table 6.20. The CH descriptor is not included in the
summary, due to the unsatisfying results. The best result from a single descriptor is
achieved with the CP descriptor for all datasets. For the UEC-FOOD100BB an accuracy
of 54.10% is reached, for the UEC-FOOD256BB 45.38% and the FOOD101 48.38%. The
improvement of feature fusion is 2.8%, 6.14% and 2.8% for the three datasets respectively,
and the improvements of late fusion (of all descriptors) over the use of the best performing
descriptor is 4.23%, 7.76% and 7.24%.

The best results achieved with BoF-encoding are 58.33%, 53.14% and 55.62% for the
three datasets. This results are compared to the other object recognition approaches at
the end of this chapter.
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6. Evaluation and Results

method UEC-FOOD100BB UEC-FOOD256BB FOOD101

CP (SED) 54.10 45.38 48.38
CMI 29.10 23.71 – a

SIFT 43.77 36.63 37.46
LBP 29.40 23.59 22.39
Root-HOG 32.93 23.11 21.77

feature fusion 56.90 51.52 51.18
late fusion 58.33 53.14 55.62

aWas cancelled due too long execution time.

Table 6.20: A summary of the best results from all FV-encoding experiments, of each
descriptor for both fusion strategies and all three datasets.

6.3 Deep Convolutional Neural Nets

For experiments with DCNNs, two network architectures are selected, the AlexNet and
the GoogLeNet. Various combinations of pre-training and fine-tuning are compared for
both architectures. The results are presented in Tables 6.21 and 6.23 in the following
sections.

6.3.1 AlexNet

Results from experiments with the AlexNet DCNN architecture (described in Section 4.3.4)
are presented in Table 6.21. For the UEC-FOOD100BB dataset the AlexNet achieves an
accuracy of 48.63% without any pretraining [a]. Pre-training the network with the 1000
categories from the ILSVRC-2012 results in an improvement of 18.66% [b]. Fine-tuning
on the UEC-FOOD100BB dataset achieves an improvement of another 6.99% [e].

For fine-tuning, each layer is applied with a multiplier for the learning rate. A value
of 0 for the multiplier would stop the particular layer from further learning, a value
of 0.5 would let the particular layer learn with half of the current learning rate, and a
value of 1 would apply the full learning rate to the particular layer. In [c]–[f], various
learning rate-multiplier configurations for each individual layer have been tested. All
configurations are listed with the learning rate-multipliers for each layer in Table 6.22.
The best result is achieved by having the last convolutional layer and the last fully
connected layer learn at the full learning rate, and each preceding layer learns at half the
rate as the its following layer. The configuration is denoted as all layers exp.

In [g]–[j], the network from [y] is used as the pre-trained network. This network has
been pre-trained with the 1000 ILSVRC-2012 categories and then fine-tuned on the
101000 food images from the FOOD101 dataset. Again the network is trained without
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(a) – – 90 UEC-100BB 48.63% 72.99%
(b) ImageNet – 72 UEC-100BB 67.29% 89.84%
(c) ImageNet all layers const. 81 UEC-100BB 72.25% 92.36%
(d) ImageNet all layers step 88 UEC-100BB 73.26% 92.78%
(e) ImageNet all layers exp. 79 UEC-100BB 74.28% 92.69%
(f) ImageNet all layers exp2. 87 UEC-100BB 72.89% 92.22%

(g) ImageNet & FOOD101 [y] – 72 UEC-100BB 67.48% 90.67%
(h) ImageNet & FOOD101 [y] all layers const. 90 UEC-100BB 72.22% 93.06%
(i) ImageNet & FOOD101 [y] all layers step 90 UEC-100BB 73.63% 93.24%
(j) ImageNet & FOOD101 [y] all layers exp. 77 UEC-100BB 74.31% 93.61%

(k) – – 84 UEC-256BB 38.53% 64.17%
(l) ImageNet – 86 UEC-256BB 54.94% 80.73%
(m) ImageNet all layers const. 82 UEC-256BB 61.61% 85.11%
(n) ImageNet all layers step 60 UEC-256BB 61.79% 85.49%
(o) ImageNet all layers exp. 76 UEC-256BB 62.92% 85.97%

(p) ImageNet & FOOD101 [y] – 86 UEC-256BB 56.09% 81.59%
(q) ImageNet & FOOD101 [y] all layers const. 67 UEC-256BB 62.37% 86.04%
(r) ImageNet & FOOD101 [y] all layers step 80 UEC-256BB 61.79% 85.49%
(s) ImageNet & FOOD101 [y] all layers exp. 77 UEC-256BB 64.19% 87.35%

(t) – – 90 FOOD101 52.36% 77.43%
(u) ImageNet – 86 FOOD101 51.43% 78.18%
(v) ImageNet all layers const. 82 FOOD101 67.36% 88.26%
(x) ImageNet all layers step 85 FOOD101 66.50% 87.34%
(y) ImageNet all layers exp. 85 FOOD101 68.58% 88.77%

Table 6.21: Results with various training configurations of the AlexNet. The initial
learning rate is set to 0.01 for all experiments and an exponential decay function is
applied throughout the training.

fine-tuning first [g], and then fine-tuned on the configurations from Table 6.22. The
additional adaptation to the FOOD101 data, does not improve the results compared to
the experiments in [b]–[f]. The best result achieved on the UEC-FOOD100BB dataset is
74.31%.

For the UEC-FOOD256BB dataset the same procedure is repeated in [k]–[s]. In the case
of this dataset the use of the ILSVRC pre-trained and FOOD101-fine-tuned network [y],
increases the accuracy compared to the network only pre-trained with the ILSVRC. The
improvement is 1.15%, for the non-fine-tuned, and 1.27% for the best fine-tuning variant.
The best result achieved on the UEC-FOOD256BB is 64.19%.
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In [t]–[y] the FOOD101 dataset is classified with the AlexNet. First without pre-training
reaching 52.36% in [t]. The result is higher then the result achieved by applying the
ILSVRC-pre-trained AlexNet, without fine-tuning. The cause is that each category in the
FOOD101 dataset has 1000 images, which is the same amount of data used for training
the parameters of the ILSVRC net. When the pre-trained network is fine-tuned on the
FOOD101 data though, the accuracy increases 16.22%, reaching 68.58% classification
accuracy.

conf. name conv1 conv2 conv3 conv4 conv5 fc6 fc7 fc8

no fine-tuning 0 0 0 0 0 0 0 1
all layers const. 0.05 0.05 0.05 0.05 0.05 0.05 0.05 1
all layers step 0.05 0.05 0.05 0.05 0.5 0.5 0.5 1
all layers exp. 0.05 0.1 0.2 0.5 1 0.2 0.5 1
all layers exp. 2 0.05 0.1 0.2 0.5 1 1 1 1

Table 6.22: Configuration of learning rates of the weights of the individual layers of the
AlexNet architecture, that are used in the fine-tuning process to the food data. The value
zero means, no that the corresponding layer does not continue learning the parameters
of the pre-trained model, therefore the layer is not fine-tuned. The learning rates of the
biases are consistently set to the double value of the weight learning rates.

6.3.2 GoogLeNet

Results from experiments with the GoogLeNet architecture (described in Section 4.3.5)
are presented in Table 6.23. For the UEC-FOOD100BB dataset the GoogLeNet achieves
an accuracy of 53.97% without any pretraining [a]. Pre-training the network with the 1000
categories from the ILSVRC-2012 results in an improvement of 17.22% [b]. Fine-tuning
on the UEC-FOOD100BB dataset achieves an improvement of another 7.95% [e].

Similar as with the AlexNet, for fine-tuning each layer is applied with a multiplier for
the learning rate. Due to the high number of layers only constant multipliers for all
layers(except the output layer, on which the unchanged learning rate is applied on) are
used. The values 0.01, 0.05, 0.1 and 0.2 are tested. The rate of 0.2 achieves the best
result in all experiments with the exception of experiments [f], where a slightly better
result is achieved in [e].

In [g]–[j], the network from [z] is used as the pre-trained network. This network has been
pre-trained with the 1000 ILSVRC-2012 categories and is then fine-tuned on the 101000
food images from the FOOD101 dataset. The network is trained without fine-tuning
first [g], and then fine-tuned on the learning rate multipliers of 0.05, 0.1 and 0.2 for all
layers, except the output layer. The additional pre-training on the FOOD101 data, does
improve the result from [e] to 80.34% [j], an increase of 1.2%.
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6.3. Deep Convolutional Neural Nets
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(a) – – 100 UEC-100BB 53.97% 80.00%
(b) ImageNet – 97 UEC-100BB 71.19% 91.82%
(c) ImageNet all layers const. 0.01 77 UEC-100BB 76.14% 94.59%
(d) ImageNet all layers const. 0.05 93 UEC-100BB 78.65% 95.33%
(e) ImageNet all layers const. 0.1 87 UEC-100BB 79.14% 95.66%
(f) ImageNet all layers const. 0.2 100 UEC-100BB 79.07% 95.86%

(g) FOOD101 [z] – 33 UEC-100BB 71.31% 92.19%
(h) FOOD101 [z] all layers const. 0.05 88 UEC-100BB 78.02% 95.89%
(i) FOOD101 [z] all layers const. 0.1 59 UEC-100BB 79.30% 96.14%
(j) FOOD101 [z] all layers const. 0.2 55 UEC-100BB 80.34% 96.42%

(k) – – 100 UEC-256BB 49.33% 76.44%
(l) ImageNet – 99 UEC-256BB 58.07% 83.47%
(m) ImageNet all layers const. 0.01 89 UEC-256BB 65.94% 88.22%
(n) ImageNet all layers const. 0.05 92 UEC-256BB 68.48% 89.78%
(o) ImageNet all layers const. 0.1 83 UEC-256BB 69.29% 90.68%
(p) ImageNet all layers const. 0.2 70 UEC-256BB 69.93% 90.03%

(q) FOOD101 [z] – 85 UEC-256BB 61.11% 85.27%
(r) FOOD101 [z] all layers const. 0.05 74 UEC-256BB 69.82% 90.67%
(s) FOOD101 [z] all layers const. 0.1 64 UEC-256BB 70.04% 90.90%
(t) FOOD101 [z] all layers const. 0.2 83 UEC-256BB 71.10% 91.40%

(u) – – 99 FOOD101 68.96% 89.02%
(v) ImageNet – 100 FOOD101 58.73% 83.66%
(w) ImageNet all layers const. 0.01 96 FOOD101 75.54% 93.37%
(x) ImageNet all layers const. 0.05 85 FOOD101 78.64% 94.36%
(y) ImageNet all layers const. 0.1 97 FOOD101 78.97% 94.19%
(z) ImageNet all layers const. 0.2 73 FOOD101 79.39% 94.27%

Table 6.23: Results with various training configurations of the GoogLeNet. The initial
learning rate is set to 0.01 for all experiments and an exponential decay function is
applied throughout the training.

For the UEC-FOOD256BB dataset the same procedure is repeated in [k]–[t]. The accuracy
of the network without any pre-training is 49.33% [k]. An increase of 8.74% is achieved
by using the ILSVRC pre-trained GoogLeNet [l]. Another 11.86% increase in accuracy is
achieved by fine-tuning this network to the UEC-FOOD256BB [p]. The final additional
pre-training on the FOOD101 data improves the result to 71.10% [t], a further increase
of 1.17% ([t] v.s [p]).

In [u]–[z] the FOOD101 dataset is classified with the GoogLeNet. First without pre-
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training reaching 68.96% in [u]. Same as for the AlexNet, the result is higher then the
result achieved by applying the ILSVRC-pre-trained GoogLeNet, without fine-tuning.
The cause is that each category in the FOOD101 dataset has 1000 images, which is the
same amount of data used for training the parameters of the ILSVRC net. When the
pre-trained network is fine-tuned on the FOOD101 data though, the accuracy increases
10.43% ([u] vs. [z]), reaching 79.39% classification accuracy.

6.4 Comparisons

Table 6.24 shows a summary of the best results of all methods. For the BoF and the
FV encoding techniques, the best result of a single descriptor and the best result for
each descriptor combination is selected. Also the best results of each DCNN-network
architecture for learning without pre-training and with pre-training are selected. In
Figure 6.1 the best results of each method and for each dataset are visualised in direct
comparison.

method details UEC-100BB UEC-256BB FOOD101

BoF single descriptor SIFT 43.97% 33.50% 35.74%
BoF descriptor fusion CP & SIFT 50.87% 42.20% 42.39%
BoF late fusion all descriptors 52.30% 44.32% 44.16%

FV single descriptor CP (SED) 54.10% 45.38% 48.38%
FV descriptor fusion CP & SIFT 56.90% 51.52% 51.18%a

FV late fusion all descriptors 58.33% 53.14% 55.62%

DCNN AlexNet no pre-training 48.63% 38.53% 52.36%
DCNN GoogLeNet no pre-training 53.97% 49.33% 68.96%
DCNN AlexNet pretrained & finetuned 74.31% 64.19% 68.58%
DCNN GoogLeNet pretrained & finetuned 80.34% 71.10% 79.39%

aSED method is used for both descriptors.

Table 6.24: Summary of best results of all methods for all three datasets.

The improvement of FV over BoF is 6.03%, 8.82% and 11.46% and the improvement
of DCNN over FV is 22.01%, 17.96% and 23.77%, for the UEC-FOOD100BB, UEC-
FOOD256BB and the FOOD101 datasets respectively. Compared to the DCNNs without
any pre-training, all results of the FV encoding are better than the DCNN results for all
datasets, except for the GoogLeNet classification of the FOOD101 dataset. Showing that
for small scale datasets the FV encoding can outperform DCNN, but for larger scale
datasets (1000 images and more per category) DCNN will outperform FV encoding.
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Figure 6.1: Top results of the three recognition strategies for all three datasets.

An interesting finding is the similar recognition rate for the UEC-FOOD100BB and
the FOOD101 datasets, 80.34% and 79.39%. This results show two capabilities of the
GoogLeNet DCNN architecture: the invariance of the computed features to background
information if there is enough data, and the ability of adapting to datasets of small scale
through fine-tuning.
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CHAPTER 7
Conclusion

An analysis of state-of-the-art food recognition approaches identify following methods as
the most promising:

• Bag-of-Features (BoF)-encoding of texture and colour features

• Fisher-Vector (FV)-encoding of texture and colour features

• Deep Convolutional Neural Network (DCNN)

Experiments with the three selected object recognition techniques on three of the biggest
publicly available datasets for food images are in the expected ranges of accuracy
(compared to previous observations from related work): the FV-encoding technique
outperforms the BoF encoding and the DCNN technique outperforms the FV encoding
in the classification task.

Analysing the results in the context of dietary assessment, a fully automated recognition
can not be advised for a satisfying performance with the current methods. Considering the
best result of around 80% recognition accuracy in a 100-category problem with real-world
data that does not underlie any assumptions, and around 70% for 256-categories with
images from bounding-box segmented objects containing less background information.
The results achieved on the datasets are supported by experiments with similar results
by [Myers et al., 2015,Yanai and Kawano, 2015]. A real-world system could include many
hundreds or even thousands of fine-graded food categories. Depending on the application,
the identification of the dish is followed by further modelling and/or assumptions of the
data, e.g. for segmentation or volume estimation.

Computer vision does not provide a one-fits-all solution, but has the potential to contribute
to an improvement of the dietary assessment process, increase its usability and lower
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its costs [Sharp and Allman-Farinelli, 2014]. To improve traditional dietary assessment
methods, computer vision techniques can play an assisting role in the data collection.
The results for the top-5 recognition rate were accuracies in the range of 90-96% for
all three datasets (GoogLeNet-DCNN), which could be used for interactive suggestions
saving the user time, compared to text-searching for items. For identifying information
that is not included on the imagery data, such as exact preparation details, brands of
ingredients, used oils and so on, combinations with traditional assessment techniques
such as the 24HR and DR methods could achieve improvements.

Limiting the application to sub-problems, achieve promising results. [Rhyner et al.,
2016] conducted a comparative study with self-reporting results, [Lee et al., 2012]
and [Anthimopoulos et al., 2015] conducted comparative studies with weighted ground
truth values. All three applications were conducted in a laboratory setting of limited
categories and assumptions on the data, such as images without any occlusions of
food ingredients. Natural limitations on basis of image data, such as occlusion, limits
the informational content of the assessment. Such limitations are inherently relevant
for computational vision analysis systems. Improvements that can be achieved over
traditional dietary assessment methods on basis of imagery data, could be investigated
in further research in form of comparative evaluations with weighted ground truth
information of the contained nutrients. Also comparative studies of computer vision
systems with self-reportings of users and/or estimations of dietitian experts are of interest,
considering the shortcomings of traditional dietary assessment methods.
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Acronyms

24HR 24-Hour Recall. 2, 8, 9, 11, 12, 14, 124

ANN Artificial Neural Network. 23

BAIR Berkeley AI Research. 86

BoF Bag-of-Features. 5, 19–21, 23, 26, 27, 30, 35, 36, 43, 48, 49, 51–58, 62, 72, 73, 76,
80, 83, 84, 89–92, 94, 96, 98, 99, 101–103, 106, 116, 121, 123

CAFFE Convolutional Architecture For Fast Feature Embedding. 25, 27, 80, 86

CH Colour Histogram. 92, 102, 103, 106, 116

CL Convolutional Layer. 66, 67, 69

CMI Colour Moment Invariant. 41, 43, 48, 51, 52, 94, 102, 103, 106, 107, 109, 116, 117

CNN Convolutional Neural Network. 24, 66, 67, 80

CP Colourpatch. 90, 101–103, 115–117, 121

CPU Central Processing Unit. 27

CRF Conditional Random Field. 29

DCNN Deep Convolutional Neural Network. 5, 24, 25, 27–30, 35, 36, 39, 64, 65, 67, 68,
71–73, 76, 80, 82, 86, 89, 117, 121, 123, 124

DH Dietary History. 9, 14

DoG Difference of Gaussians. 49, 50

DR Dietary Record. 8–10, 14, 15, 124

EFD Fractal Dimension estimation. 21, 45

FFNN Feedforward Neural Networks. 64, 65
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FFQ Food Frequency Questionnaires. 2, 9, 11, 14, 34, 35

FK Fisher Kernel. 58, 59

FNDDS Food and Nutrient Database for Dietary Studies. 33

FV Fisher Vector. 5, 27, 28, 35, 36, 42, 43, 47–49, 51–53, 58–63, 71–73, 76, 80, 83, 85,
89, 103, 106, 107, 109, 111, 113–117, 121, 123

GCM Generalised Colour Moment. 41

GFD Gabor-based image decomposition and Fractal Dimension estimation. 21, 45

GMM Gaussian Mixture Model. 27, 58, 61, 62, 72, 83, 103, 104, 107, 110, 111, 113

GOSDM Gradient Orientation Spatial-Dependence Matrix. 21, 45

GPU Graphics Processing Unit. 67, 69, 86

HOG Histogram of Oriented Gradients. 26, 27, 30, 39, 42, 47, 48, 51, 52, 68, 71, 80, 99,
101–103, 113, 114, 116, 117

IDE Integrated Development Environment. 80

ILSVRC ImageNet Large-Scale Visual Recognition Challenge. 5, 27, 29, 64, 67–72, 86,
117–121

IM Inception Module. 69, 70

JPEG Joint Photographic Experts Group. 86

KNN K-Nearest-Neighbour. 21

LBP Local Binary Pattern. 21, 23, 25, 30, 39, 44–46, 48, 52, 80, 90, 98, 99, 102, 103,
111, 113, 116, 117

LCS Local Colour Statistics. 61, 63, 64, 72

LLC Locality-constrained Linear Coding. 30, 35, 36, 52, 53, 58, 72

LMDB Lightning Memory-Mapped Database. 86

mAP mean Average Precision. 29, 60, 68, 72

MEX Matlab Executable. 82

MKL Multiple Kernel Learning. 26
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MLP Multilayer Perceptron. 64, 65

mpFR mobile phone Food Record. 19–21, 36

NIN Network In Network. 28

NN Neural Network. 64–67

NNDB National Nutrient Database. 32, 33

OpenCV Open Computer Vision. 80

ORA Overall Recognition Accuracy. 23

PCA Principal Component Analysis. 27, 52, 60–62, 83, 110

PL Pooling Layer. 67

PN Power Normalisation. 62–64

RANSAC Random Sample Consensus. 24

RBF Radial Basis Function. 20, 23

ReLU Rectified Linear Unit. 65, 69

RF Random Forest. 23

SED Spatially Extended Descriptor. 62, 72, 83, 104, 105, 109–115, 117, 121

SGD Stochastic Gradient Descent. 66, 68

SIFT Scale Invariant Feature Transform. 20, 21, 23, 26, 30, 39, 41, 47–52, 60, 61, 63,
64, 68, 72, 80, 81, 96, 98, 101–103, 106, 109, 111, 115–117, 121

SN Sigmoid Neuron. 65

SP Spatial Pyramid. 56, 62, 64, 76, 83, 89–91, 93, 95, 96, 98, 99, 103, 107, 110, 111, 113

SPM Spatial Pyramid Matching. 56, 57, 62, 72, 83, 89, 93, 104, 105, 108–115

SRG Seeded Region Growing. 24

SURF Speeded-Up Robust Feature. 20, 27, 48, 52

SVM Support Vector Machine. 20, 21, 23, 25–27, 30, 48, 51, 52, 57, 59, 76, 80, 82, 83,
90, 96, 103, 106

TADA Technology Assisted Dietary Assessment. 19
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USDA United States Department of Agriculture. 32

VLAD Vector of Locally Aggregated Descriptors. 53

VLFeat Visual Lab Features. 80, 82, 83, 96, 106
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