
A Graphical Environment for
Creating Constraint Programming

Models

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Computational Intelligence

eingereicht von

Martin Blöschl, B.Sc.
Matrikelnummer 1225362

an der Fakultät für Informatik

der Technischen Universität Wien

Betreuung: Priv.-Doz. Dr. Nysret Musliu

Wien, 23. November 2017
Martin Blöschl Nysret Musliu

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.ac.at

Die approbierte Originalversion dieser Diplom-/
Masterarbeit ist in der Hauptbibliothek der Tech-
nischen Universität Wien aufgestellt und zugänglich.

http://www.ub.tuwien.ac.at

The approved original version of this diploma or
master thesis is available at the main library of the
Vienna University of Technology.

http://www.ub.tuwien.ac.at/eng

A Graphical Environment for
Creating Constraint Programming

Models

DIPLOMA THESIS

submitted in partial fulfillment of the requirements for the degree of

Diplom-Ingenieur

in

Computational Intelligence

by

Martin Blöschl, B.Sc.
Registration Number 1225362

to the Faculty of Informatics

at the TU Wien

Advisor: Priv.-Doz. Dr. Nysret Musliu

Vienna, 23rd November, 2017
Martin Blöschl Nysret Musliu

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.ac.at

Erklärung zur Verfassung der
Arbeit

Martin Blöschl, B.Sc.
Waldheimstraße 45 1220 Wien

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 23. November 2017
Martin Blöschl

v

Acknowledgements

First and foremost, I would like to express my deep gratitude to my supervisor, Priv.-Doz.
Dr. Nysret Musliu. His remarks were very helpful and the meetings always provided new
insights into the subject.

I would also like to thank my family and friends for supporting me during the time it took
to write this thesis. In particular, I want to thank my girlfriend Lisa, who encouraged
me during the most stressful times.

vii

Kurzfassung

Viele wichtige Probleme aus der Praxis, etwa das „rotating workforce scheduling problem“
oder das „traveling salesperson problem“ können mit Constraint Programming modelliert
werden. Gute Lösungen für diese Probleme können nicht nur große Kostenersparnisse für
Firmen ermöglichen, sondern auch die Mitarbeiterzufriedenheit erhöhen.

Aus diesem Grund sind in den vergangenen Jahren viele (textbasierte) Constraint Pro-
gramming Sprachen entstanden. Mit Hilfe dieser Sprachen kann man komplexe Probleme
präzise formulieren. Dazu ist es aber nötig, die Syntax der jeweiligen Sprache zu beherr-
schen.

Für viele andere Programmierparadigmen, etwa für objektorientierte Programmierung,
wurden graphische Sprachen entwickelt. Für Constraint Programming ist dies unseres
Wissens nicht der Fall. Eine graphische Umgebung für Constraint Programming würde es
erlauben, wichtige Probleme der Praxis zu modellieren, ohne die Syntax einer textbasierten
Sprache zu kennen. Sie könnte auch hilfreich für erfahrene Entwickler sein, wenn sie
schnelle und intuitive Modellierung ermöglicht.

In dieser Arbeit stellen wir eine neue und intuitive graphische Umgebung zur Erstellung
von Constraint Programming Modellen vor. Wir zeigen einen neuen gitterbasierten Ansatz,
mit dem es möglich ist, Variablen und Constraints zu erstellen und im zweidimensionalen
Raum anzuordnen. Wir zeigen auch Möglichkeiten, häufig vorkommende Subprobleme wie
Routen auf eine einfache grapische Art zu modellieren. Wir werden auch demonstrieren,
wie solche graphische Modelle in die bekannte MiniZinc Sprache umgewandelt werden
können, damit sie mit bestehenden Solvern gelöst werden können.

In der Evaluierung haben wir festgestellt, dass es mit der vorgestellten Umgebung
möglich ist, viele bekannte Probleme wie das „rotating workforce scheduling problem“,
das „social golfer problem“ und das „traveling salesperson problem with time windows“
zu modellieren. In manchen Instanzen haben wir beim Lösen Laufzeiten erreicht, die
vergleichbar zu bestehenden Ansätzen sind.

Wir haben weiters herausgefunden, dass das Framework am besten für kleinere Instanzen
mit niedriger Komplexität geeignet ist, da das Modell dann übersichtlich auf einem
Bildschirm dargestellt werden kann. Wir können mögliche Anwendungen im Bereich der
Bildung oder für den schnellen Entwurf von Modellen erkennen.

ix

Abstract

Many practical problems of high importance such as the rotating workforce scheduling
problem or the traveling salesperson problem can be modeled with constraint program-
ming. Finding good solutions for those problems can enable great cost reduction for
companies and even improve employee satisfaction.

Therefore, many powerful text-based constraint programming languages and correspond-
ing solvers have emerged in the previous years. They allow concise formulation of
problems but require that the user learns the specific syntax of the language.

For other programing paradigms such as object orientated programming, graphical lan-
guages have been proposed. To our knowledge, no general purpose graphical constraint
programming language exists, that allows modeling without written formulas or con-
straints. Such a graphical constraint programming environment would not only allow
important practical problems to be modeled without having to know the syntax of a
text-based language, but could also be helpful to experienced developers if it allows fast
and intuitive modeling.

In this thesis we propose a new graphical environment for creating constraint programming
models. We present a grid-like approach to create variables and constraints and arrange
them in the 2D space. We present various possibilities to make constraint programming
in this framework as simple and intuitive as possible. We further present ways to model
common subproblems in constraint programming, such as routes, in a graphical way.
We also demonstrate how graphical models can be translated to the common MiniZinc
language, so that they can be solved with existing constraint programming solvers.

In the evaluation we have found out that the proposed environment can be successfully
used to model a variety of common constraint programming problems such as the rotating
workforce scheduling problem, the social golfer problem and the traveling salesperson
problem with time windows. In some problem instances, we achieved runtimes that were
comparable to existing methods.

We have further found out that the framework is best suited for small instances with low
complexity, as then the complete model can be displayed on an average computer screen
without scrolling. We can see applications for the framework in the field of education,
where it can help students learn the concepts of constraint programming.

xi

Contents

Kurzfassung ix

Abstract xi

Contents xiii

1 Introduction 1
1.1 Motivation and Problem Statement . 1
1.2 Aims of this Thesis . 2
1.3 Main Results . 2
1.4 Structure of this Thesis . 3

2 Theoretical Background and existing Approaches 5
2.1 Constraint Satisfaction Problems . 5
2.2 Constraint Optimization Problem . 6
2.3 Solving Constraint Satisfaction Problems 7
2.4 MiniZinc Modeling Language . 8
2.5 Existing Approaches of Graphical Programming Frameworks 9

3 A Graphical Environment 11
3.1 Grid Representation of Problems . 11
3.2 Developing a Framework . 11
3.3 Model Creation and Solving . 14
3.4 Functionality and Limits . 14

4 Evaluation 35
4.1 Sudoku . 36
4.2 8 Queens . 38
4.3 Social Golfer Problem . 40
4.4 Rotating Workforce Scheduling Problem 42
4.5 Magic Hexagon . 46
4.6 TSPTW . 47
4.7 Traveling Tournament Problem . 49
4.8 Simple Teacher Scheduling . 52

xiii

4.9 3-SAT . 55
4.10 Creating Models for Variable Input . 56
4.11 Finding the Right Solver . 58
4.12 (Un-)Suitable Classes of Problems . 60

5 Conclusion 63

List of Figures 65

Bibliography 67

CHAPTER 1
Introduction

1.1 Motivation and Problem Statement
Constraint Programming is a declarative programming paradigm where variables and
constraints are used to describe requirements that solutions have to fulfill. Constraint
programming does not only have a strong theoretical foundation, but is widely used
in practice, as it can be used for solving various important scheduling and planning
problems [Bar99]. Those real-world problems include transit bus crew scheduling, aircraft
scheduling, vehicle routing and physician scheduling [RVBW06].

Because of the high expressive power and practical relevance, many (text-based) constraint
programming languages and solvers have emerged in the previous years. With those
languages, it is possible to succinctly formulate even complex problems. It is however
necessary to learn the syntax of the respective constraint programming language to be
able to model problems.

For other programming paradigms, such as object-orientated programming, graphical
languages and frameworks have been proposed [AB93] that allow the formulation of
programs without having to know the precise syntax of a text-based language. Graphical
languages are appealing because they provide visual feedback and allow expression
without having to translate commands into abstract symbols [BA94] . There has been
some progress made in the field of conceptual design [HOO03], where a constraint aided
environment has been developed to help product designers. There are also approaches to
assist in the creation of continuous domain constraint programming models [Vie15]. But,
to our knowledge, no general purpose graphical framework for constraint programming
exists, that allows the formulation of models without explicit text-based formulation of
formulas or constraints.

Because of the expressive power and practical relevance of constraint programming, a
graphical framework that can be used for the creation of models for common problems

1

1. Introduction

without having to know the syntax of a language could be of great benefit. It could not
only be helpful for beginners but if it allows fast and intuitive modeling, it could also be
useful for those already experienced in constraint programming. For many problems there
exist different possible formulations as constraint program. Therefore an environment that
allows rapid creation of models could be very interesting for many practical applications,
because it could make it easier to test different formulations.

Therefore, we want to investigate in this thesis if a graphical environment for constraint
programming can be proposed that is general enough to model a variety of real-world
problems and is nonetheless easy and intuitive to use. Since it is usually desired to solve
the created constraint programming models, it is also necessary to examine how this can
be done.

1.2 Aims of this Thesis
The aims of this thesis are:

• We want to examine if it is possible to create a graphical environment for constraint
programming, since there exist many graphical languages for other computing
paradigms such as object orientated programming.

• We will analyze if using such graphical framework does not only allow modeling of
practical problems of high importance but can also be intuitive and simple to use.

• We will investigate how to translate the graphical models to a common constraint
programming language, so that they can be solved with existing state of the art
solvers.

• By implementing such a framework, we want to find out advantages and disadvan-
tages of our approach and if the created models for different real-world problems
can be solved in a reasonable time that is comparable to other existing approaches.

1.3 Main Results
The main results of this thesis are:

• We present a new graphical environment for creating constraint programming
models. It allows users to create models of some problems without having to know
a written constraint programming language. For this, we present a new grid-like
approach to arrange variables and constraints in the 2D space.

• We have found a way to model common subproblems such as routes in a simple
graphical way. This allows problems like the traveling salesperson problem to be
modeled in a very intuitive way and without having to know a text-based constraint
programming language.

2

1.4. Structure of this Thesis

• The proposed framework turned out to be capable enough to model a variety of
common problems of high practical importance. We have found out that this
environment can be successfully used to model instances of Sudoku, n-Queens and
more complicated real-world problems such as the rotating workforce scheduling
problem, the social golfer problem and the traveling salesperson problem with time
windows. In some problem instances of the rotating workforce scheduling problem,
we achieved runtimes that are comparable to existing methods.

• In empirical analysis, we discovered that the proposed grid based framework is best
suited for modeling single instances of problems. It was however also possible to
create models that can be configured to solve multiple different instances of some
problem without having to recreate the complete model.

• As with other graphical programming environments, we have discovered that with
increasing complexity of the problem, screen space becomes an issue. On a average
sized (24 inch) computer monitor, approximately 375 variables can be displayed at
once. If more variables are used, parts of the model can be accessed by scrolling.

1.4 Structure of this Thesis
In the second chapter, an introduction to the theoretical foundation of constraint pro-
gramming will be given. We will also discuss existing approaches to create graphical
programming environments.

In the third chapter, we propose a new framework. We will show the capabilities and
limitations and how the framework is used.

In the last chapter, we will evaluate the framework by modeling common practical
problems of high importance. We will provide runtimes for the solving process of some
those models. We then compare the performance of solving to existing approaches.

Then, we will summarize the results, provide a conclusion and state yet open problems,
that would be interesting to examine in future research.

3

CHAPTER 2
Theoretical Background and

existing Approaches

In the following sections, an overview of the theoretical background of constraint pro-
gramming will be presented. In particular, the constraint satisfaction problem and the
constraint optimization problem will be specified. Then there will be a short explanation
about how to solve a model and there will be an introduction to the MiniZinc Modeling
Language. Finally, we will review existing literature.

2.1 Constraint Satisfaction Problems

The goal of a constraint satisfaction problem is to find an assignment of variables
that satisfy a set of constraints. More formally [RN10], an instance of the constraint
satisfaction problem is a triple 〈X, D, C〉, where X = {X1, ..., Xn} is a set of variables,
D = {D1, ..., Dn} a set of nonempty domains and C = {C1, ..., Cm} a set of constraints.
The domain of each variable Xi is Di. A constraint Ci is a tuple 〈ti, Ri〉 where ti is a tuple
with pairwise different elements of X of size k and Ri is a k-ary relation. An assignment
is a mapping from the set of variables to their respective domains. A constraint Ci is
satisfied with respect to an assignment, if the k-tuple of values assigned to variables ti is
in the relation Ri. An assignment is valid, if all constraints are satisfied.

Informally, a constraint problem can be seen in the following way: The variables can
assume values defined in their respective domain. The constraints exist to exclude
some solutions that have undesired properties. For example, one could specify a set of
variables X of size 4. The domain of all variables in X could be {1, .., 4} and we have
a single constraint C1. Suppose we want only those assignments to be valid, where all
variables are mapped to a different element. C1 would then consist of t1 = (x1, ..., x4) and
Ri = {(1, 2, 3, 4), (2, 1, 3, 4), (3, 2, 1, 4), ..., (4, 3, 2, 1)}. It is also possible to use different

5

2. Theoretical Background and existing Approaches

constraint(s) and still achieve the same set of valid assignments: It would for example also
be possible to create a constraint for each pair of variables as ti and set the corresponding
Ri = {(1, 2), (2, 1), (1, 3), ..., (4, 3), (3, 4)}.

In the first example we had only a single constraint - the relation however was exponential
in the amount of variables and the size of the domains. In the second example we had a
quadratic number of constraints. The relations although were only quadratic in the size
of the domains. In practice, one of the two formulations could be faster to solve.

Summarizing, there are different ways to specify (=to model) a constraint satisfaction
problem instance. The performance difference of models in practice is reviewed in the
section ’Evaluation’.

2.2 Constraint Optimization Problem
In the previous section, we discussed the constraint satisfaction problem. The question
was if there is an assignment such that all constraints are satisfied. In practice, it is often
the case that not all solutions are equally good.

For example, one could use constraint programming to determine if an assignment of
workers is possible such that all break constraints of the workers are respected and all
machines are manned. If this is the case, there even might be different schedules that
satisfy all constraints. It could then be of interest to maximize the length of consecutive
’off’-blocks of the workers to improve worker satisfaction.

In principle, it would be possible to use the constraint satisfaction problem to find the
optimal assignment: by repeated solving and slight adaptation of the model in each run.
The first model would be the plain satisfaction problem asking if there is any solution for
the model. The next model would then be altered to ask if there is a solution and the
optimization function is as big or bigger than some fixed integer. With binary search,
the computational overhead is within logarithmic bounds of the domain of the variable
or optimization function to be optimized.

It is however more convenient to be able to directly specify a variable or optimization
function that is supposed to be minimal or maximal instead of guiding the search
process manually with repeated runs of the constraint satisfaction problem. In many
modern constraint programming languages and solvers it is possible to directly specify
optimization goals.

Since both the constraint satisfaction problem and the constraint optimization problem
have strong practical relevance, we will deal with both problems in this thesis.

There exist multiple formal specifications of the constraint optimization problem [RVBW06].
One formulation [Dec03] is the following: In addition to the constraints and variables
we define a global cost function F . Additionally, we define functions F1, ..., Fi. Each
function Fj is a function over some subset Dj of the set of variables X. An assignment
of the variables is denoted with ā.

6

2.3. Solving Constraint Satisfaction Problems

The global cost function with respect to an assignment ā is then defined as:

F (ā) =
i∑

j=1
Fj(ā) (2.1)

In above formula, Fj(ā) denotes that the function Fj is evaluated with respect to the
scope (subset of variables) that the function was defined over. The functions Fj can be
used to penalize undesired assignments of the variables.

2.3 Solving Constraint Satisfaction Problems

One important aspect of the field of constraint satisfaction is solving models. For fixed
domain problems, the problems we will be dealing with in this thesis, solving is in theory
simple [Bar99]. With an enumeration algorithm, all possible variable assignments could
be enumerated and checked if the assignment satisfies all constraints.

This approach is however unsuitable for many problems in practice, since a model with
only 50 variables with each a domain of size 10 will result in 1050 possibilities, much
more than any current computing machine can enumerate in reasonable time.

One approach that avoids enumerating the complete search space is ’Backtracking’. The
main idea is that instead of the simple enumeration method, partial assignments of some
variables are fixed incrementally. After one or more variables are fixed it is tested if
all constraints are satisfied (so far). If this is not the case, ’Backtracking’ occurs. This
means, the most recent variables are ’unfixed’ until all constraints are satisfied.

Modern solvers combine many solution methods to achieve reasonable solving times.
Other important methods besides ’Backtracking’ are consistency techniques[Bar99]. The
main idea is the following: If there are unary constraints (constraints that fix the value for
one variable), all other domain elements of that variable can be removed. This concept is
called node consistency. The same can be done for n-ary constraints. If a domain element
of a variable does not occur in the relation of the domain at all, it can be removed. This
concept is called arc consistency.

Another important technique is ’Forward checking’. With this method, the consistency
methods described in the previous paragraph are applied to not yet instantiated variables.
Again, like in ’Backtracking’, the variables are assigned incrementally. For the domain of
each unfixed variable, those domain elements are removed, that are inconsistent with
the constraints and the partial assignment of the variables. If an unfixed variable has an
empty domain, this means that there would be no way to complete the solution without
unsatisfied constraints. ’Forward checking’ can avoid that the solution space for some
partial assignment is explored even though there is no possibility to complete the partial
solution without conflicts.

7

2. Theoretical Background and existing Approaches

Current state of the art solvers use those and many other advanced methods to accelerate
the solving process. Since creating a good solver is a quite complicated task, we use
existing solvers to find solutions to the models created by our framework.

2.4 MiniZinc Modeling Language
The MiniZinc Modeling Language [NSB+07] was developed to provide a uniform interface
for constraint programming solvers. Previously, many solvers relied on an own modeling
language that the user had to learn for that specific solver. The MiniZinc Modeling
Language was created to overcome these limitations and provide a universal format for
constraint programming models. MiniZinc can therefore also make it easier to compare
different solvers with respect to a single model, as no adaptation of the model to the
solver specific language is necessary. It is indeed the case that since the specification of
the language 10 years ago, there exist many solvers that support the language. This is
reason enough for us to use the language for our framework.

The MiniZinc package consists of two languages: First, there is the high level MiniZinc
language that is meant to be used by the programmers/model creators. The MiniZinc
language supports many high level constraints. There is for example a constraint that
models the bin-packing problem.

Then, there is the FlatZinc language that is meant to be implemented by the solver. The
FlatZinc language supports mostly low level arithmetic and logical constraints and is
less convenient to write. The authors of the MiniZinc/FlatZinc languages provide tools
that allow conversion of the MiniZinc to the FlatZinc language. Therefore, it is possible
to write high level constraints in MiniZinc. Then, the completed model is translated to
FlatZinc and subsequently solved by any solver that supports the FlatZinc language.

We will now describe the MiniZinc language in more detail, as this language will be used
as the output language of our framework. A thorough description can be found in the
paper where the language was first described [NSB+07]. The most important parts of
the description for this thesis are:

In detail, a MiniZinc instance consists of a model and data, that can but don’t necessarily
have to be seperate files. The data file contains static assignments that determine
the configuration of a specific instance. The model is the description of the problem
containing the constraints and variables. In our framework, the output will be a single
file containing both the data and the model.

In our thesis, we will only use variables of type integer. Those can be created by specifying
a domain or without domain, where they can assume any value between -2147483646
and 2147483646.

We will also use predicates, which are similar to predicates in first order logic. A predicate
over some variables can evaluate to true or false given an interpretation. A constraint
can consist of a predicate or a connection of predicates (also similar to first order logic)
that has to evaluate to true in any solution of a model.

8

2.5. Existing Approaches of Graphical Programming Frameworks

Additionally, we will use arrays, which are fixed in size and contain variables. Some
predicates can be defined over arrays for concise formulations. Sets of variable size
containing variables will also be used in our framework.

An example for the MiniZinc syntax is a file containing the following lines:

var 1..4: a;
var 1..4: b;
var set of int: set_01 = {a,b};
array[1..2] of var int: array_01 = [a,b];
constraint array_01[1] > array_01[2];
constraint 4 in set_01;

solve satisfy;

In the first two lines, two variables named a and b are defined, both with domain
{1, 2, 3, 4}. In the third line, a set containing the values of the previous two variables
is defined. In the fourth line, an array of size 2 is defined where the first element is
the variable a and the second element is the variable b. In the fifth line, a constraint is
defined that contains the predicate array_01[1] > array_01[2]. This implicitly defined
predicate returns true, if and only if the value of the first element (in our case a) is
greater than the value of the second element (in our case b) of the array. The sixth line
contains a constraint that is defined over a predicate that returns true if and only if the
value 4 is contained in the set. The last line specifies that we want to find a solution to
this instance, but do not want to define an optimization function.

When we solve this problem using existing MiniZinc solvers like Gecode, we could get
the following instantiation as a result: a assumes 4 and b assumes 1. This instantiation
satisfies all constraints and respects the domains of the variables: The value of the first
element of the array, namely the variable a is 4 and thus bigger than the value of the
second element in the array (the value of b is 1). The second constraint is also satisfied
since the value 4 is contained in the sets of values that the variables a and b assume in
the interpretation: 4 ∈ {4, 1}. As expected, the interpretation we got from the solver is a
solution for our model.

2.5 Existing Approaches of Graphical Programming
Frameworks

In 2015, Nelson Viera [Vie15] has created a graphical user interface for continous constraint
satisfaction problems. He described a way to represent the solution space and provided
a way to design and visualize the constraints and variables. The constraints can be
specified using formulas. For example, one constraint could look like this: 8x4− 12y < 6z.
His user interface displays the relations of variables and constraints very well. Viera’s
approach focuses on the continuous domain.

9

2. Theoretical Background and existing Approaches

There have been efforts to guide the search space traversal of constraint programs in a
graphical way [FSC04]. Those kinds of tools are very useful to improve solving runtime.

There exist a number of general purpose graphical programming languages [Hil92]. Some
of those languages share common advantages and disadvantages. One of the advantages
of a graphical programming language is for example the fact that there is no syntax that
has to be learned to be able to write programs. Disadvantages include the fact that many
graphical programming languages use a lot of screen space [Hil92].

Some progress in the field of graphical constraint programming with strong focus on
a specific practical application has been made: Alan Holland et. al. [HOO03] have
developed a constraint aided environment for conceptual design. In product development,
it is often the case that precise specifications have to be respected. The environment
can be used to model constraints, restrictions, dependencies of objects in a constraint
based way. A prototype of the environment was developed to be compatible to Autodesk
Inventor, a graphical 3D-CAD software. The environment also aims to be similar to use
as existing modeling tools and uses graphical elements as user interaction interface. The
specification of the constraints is done with help of graphical elements.

In the paper ’Forms/3: A First-Order Visual Language to Explore the Boundaries of the
Spreadsheet Paradigm’ [BAWD+01], the authors Burnett et. al present a spreadsheet
based language. A spreadsheet language is defined to be a language that is based on
a spreadsheet with formulas within the cells. The language Forms/3 is designed to
overcome limitations of previous spreadsheet languages (like lack of data abstraction
features) and still aims to be usable for users that are not formally trained computer
programmers. Burnett and Ambert [BA94] state that visual programming is appealing
because it allows the expression by sketching, pointing or demonstrating and does not
require translation into abstract symbols.

A recent case study [SLRGVC16] evaluated the integration of a visual programming
language in the curriculum of five different elementary schools in Spain. The language
that was worked with was ’Scratch’. It allows the creation of ’interactive stories, games
and animations’ [SLRGVC16]. The researchers recommended the implementation of such
a course, as they have determined positive results after evaluation.

10

CHAPTER 3
A Graphical Environment

In this chapter, a graphical environment for creating constraint programming models is
proposed. We present the theoretical foundation of such a framework and examine the
advantages and disadvantages of our approach. We will then give a detailed evaluation
and provide possible applications in the next chapter.

3.1 Grid Representation of Problems
One concrete example for a problem that can be represented as a grid is the ma-
chine/worker assignment problem. Let us say there are a number of machines and an
equal number of workers. Each worker has to be assigned to a machine based on the
capabilities of the worker. One natural representation for such problem is a simple table
or grid where the first column is a numbered list of machines and the second column
contains the assigned worker. Each row represents the assignment of one worker to one
machine.

Scheduling, pickup and delivery and timetabling are some very common problems and
have a natural representation as table or grid [FFH+01]. Even papers as early as 1969
[PWW69] use a grid-like approach for representation (see Figure 3.1).

Since many problems have a natural representation as a grid, we will use a grid as the
base of our graphical framework. We aim to conceptualize an intuitive and easy to use
environment that is able to model a number of important real-world problems.

3.2 Developing a Framework
In this thesis, a framework1 will be developed that allows creation of constraint program-
ming models in a grid based way. To be more precise, the idea is to let the user specify

1The reference implementation can be found here: https://github.com/MartinBlo/graphicalCSP

11

3. A Graphical Environment

Figure 3.1: The solution representation of a scheduling problem. Recreated from the
paper: [PWW69]

the variables and the spatial order of the variables first and then let the user subsequently
add constraints until the created solution fulfills all properties that are necessary . Our
framework will allow the user to specify both variables and constraints in a graphical
manner. We will also incorporate common graphical elements such as drag and drop to
make model creation as easy and intuitive as possible.

A grid of unlimited size will be the base of our framework. Every grid cell can but does
not necessarily contain a variable. A grid cell can either be an empty cell or contain a
fresh variable.

In a lot of problems, there are numerous variables representing a similar type of value,
such as an assignment or a state. In some existing constraint programming frameworks
and languages, creating multiple variables is done with loops or arrays. While this allows
very concise formulation, it is necessary to remember the correct syntax [KCC+02]. Our

12

3.2. Developing a Framework

Figure 3.2: The main window of our implementation of the graphical constraint program-
ming framework.

approach will be to let users create similar variables by selecting a subset of the grid and
specifying the desired domain in a graphical way. This prevents syntax errors and is also
very fast and intuitive for the user to do.

The constraints will be incorporated as connections between variables. As described in
the chapter ’Theoretical Background and existing Approaches’, each constraint consists
of variables and a relation that describes allowed assignments of those variables. As a
relation over n elements can consist of an exponential number of elements that are in
relation, an implicit specification of constraints is often used in practice.

An example: A common constraint would be to specify that certain variables are ’all
different’, meaning that they all have a pairwise different value. This specification is more
concise than listing all assignments for the variables such that they are ’all different’.

Instead of writing the constraint in code, with our framework one will be able to select
the involved variables of a constraint with common graphical user interface methods such
as dragging with a mouse. Then it will be possible to create a constraint by selecting
involved variables and the type and to configure the constraint.

One benefit of such approach is that for basic constraints that require no further configu-
ration (such as ’all different’, ’all equal’, etc.) it is impossible to create models that are
syntactically incorrect, as no code has to be written.

Summarizing, we have described a graphical framework whose aim it is to be not only
intuitive and easy to learn but also to prevent syntax errors by relying on a graphical
user interface instead of textual specification of the model. In figure 3.2 one can see the

13

3. A Graphical Environment

main window of our implemented framework. We will go into more detail about the
individual components in the following sections.

3.3 Model Creation and Solving
Once the graphical model is created, it is usually desired to find a solution. There exist
a vast amount of constraint programming solvers [NSB+07] that are compatible with the
MiniZinc format.

Therefore, we created a translator that converts each part of the graphical model to
standardized MiniZinc code. The MiniZinc modeling language [NSB+07] was created
to provide a constraint programming language that can be used to describe constraint
programming problems and is supported by many solvers. Compatible solvers include
Gecode, Google OR-Tools and Chuffed Solver.

One advantage of this approach over creating an own solver is that we can use very
fast and highly optimized solvers and can fully concentrate on creating a graphical user
interface for the model creation.

Integrated into the user interface of our framework is also a module for communicating
with the solvers that oversees the solving and displays solutions (if found).

In the next section, the structure and functionality of the framework will be reviewed
and each part will be described in more detail.

3.4 Functionality and Limits
The main functionality of the framework is to let the user create constraint programming
models of problem instances. To achieve this, variables and constraints have to be created.
In the subsections after the general structure, we will describe how this is achieved and
which constraint can be created.

3.4.1 General Structure of the Framework

Our framework consists of the following parts:

• A graphical user interface for specifying variables and constraints

• A translator that translates the created variables and constraints to MiniZinc code

• A module for managing the solving process, reporting of solutions or failure and
for the communication to the solvers

In the subsections below, the first part of the framework, namely the user interface, will
be described thoroughly. It was one of the main challenges of this framework to develop

14

3.4. Functionality and Limits

Figure 3.3: The context menu allows creation of variables and constraints.

a user interface that allows easy and intuitive creation of constraint programming models.
First, we will describe how to create variables and constraints. Then, we will show how to
specify optimization goals. Finally, other important graphical features will be described.

The rest of this section describes the translator module and the module for managing
the solving process.

3.4.2 Variables

With our implementation it is possible to create variables of integer type and any fixed
domain. We excluded continuous variables in our framework.

As described in the previous section, it is not necessary to create each variable individually
but one can select a subset of the grid using a mouse and specify the desired domain for
the variables to be created.

To be more specific, the user selects a particular set of cells and clicks the right button of
the mouse to open the context menu. One can then use the function ’Create Variable’ in
the context menu. A separate window appears where the user is asked for specification
of the domain and to provide a name for the variables to be created. In figure 3.3, one
can see the context menu where the options to create the constraints are available.

The variable name is indexed using an x and y index. For example: if one were to create 21
variables as a 3 by 7 block and the name ’VAR’, the individual variables would be named
V AR1,1 to V AR3,7. In our framework, the names will be used in the non-formatted way,
so for example V AR1,1 corresponds to VAR_1_1.

The Minizinc code that is created for each variable is:

var DomainStart..DomainEnd: VariableName;

15

3. A Graphical Environment

Figure 3.4: Some variables that were created in the grid.

In above code, DomainStart is replaced with the lower bound of the domain and Do-
mainEnd is replaced with the upper bound of the domain. VariableName is replaced with
the user defined name of the variable plus indices. Domains with ’holes’, for example
{1,4,5} are not supported by our framework out-of-the-box but can be accomplished by
manually excluding the undesired values using constraints.

In figure 3.4, one can see the grid containing 7*5 variables in a rectangular block. The
indices and the name are displayed in the cell.

3.4.3 Implemented Constraints

One of the main parts of our graphical framework is easy creation and duplication of
constraints. This is important for many problems in practice, as their models usually
consist of a lot of constraints.

We will demonstrate on the following example, why duplicating constraints can be useful:
One very commonly used example in demonstrating constraint programming is Sudoku.
For those unfamiliar with this puzzle, Sudoku is a 9 by 9 grid where numbers from 1
to 9 must occur in each row, in each column and in all 9 adjacent 3 by 3 blocks. In
Sudoku, there are 27 constraints, as there are 9 rows, 9 columns and 9 blocks. The
constraints regarding the rows (and columns, blocks) are very similar except for the
involved variables. It would be very tedious to create all constraints individually in our
framework. This is why we present a drag and drop concept for constraint duplication.

In the enumeration below we will present the constraints we support in our reference
implementation. For each constraint, we will also describe how and if it has to be

16

3.4. Functionality and Limits

configured and how drag and drop duplication works.

• The ’All-Equal’ constraint. This constraint forces all involved variables (see section
’Theoretical Background and existing Approaches’) to assume equal value in all
solutions of the constraint programming model.
In our framework, creating such constraint is easy: the user selects the desired
variables that he or she wants to have equal value and in the context menu (see:
[SP98]) selects ’All-Equal’.
Duplicating such constraint is done in the following way: Once the constraint is
created, a label appears that the user can drag. Dragging the label will create a
new constraint for each cell the label is moved to (Manhattan distance is used).
For example: In a row, the first and the last variables are set equal. By dragging
the label down, a constraint for each row below is created (in each row the first
and last element are set equal now).
The generated MiniZinc code of the constraint for three variables that are already
defined looks like this:
constraint all_equal([A_3_1,A_2_1,A_1_1]);

• The All-Different constraint. This is a very important and well studied constraint
[Hoe01]. The intention is to force all involved variables to have a pairwise different
value in a solution.
Some paragraphs above we explained Sudoku, where the All-Different constraint
can be used. Another practical example would be an assignment problems. There,
it is often the case that one element (e.g machine) has to be assigned to some other
element (e.g. to a worker). The list of assigned machines will be ’All-Different’,
since it is in our example not desired to assign a machine to two workers.
The ’All-Different’ constraint is created in a very similar way as above ’All-Equal’
constraint, namely by selecting the desired variables and selecting the constraint in
the context menu. Duplication also works with the label that was described in the
previous constraint.
The generated MiniZinc code for three variables looks like this:
constraint all_different([A_3_1,A_2_1,A_1_1]);

In figure 3.5, one can see a block of variables, where the first row of variables
is involved in an ’All-Different’ constraint. In our framework, each constraint is
displayed with a rectangle containing all involved variables. The color is dependent
on the type of constraint. In our implementation, the ’All-Different’ constraint is
displayed in green. On the right side of the constraint, the label is shown that can
be used to duplicate the constraint to other rows.

• The ’Sum equal 1 constraint’ forces the sum of all involved variables to be exactly
1. This constraint is useful when one wants to model a 1 to n assignment problem.

17

3. A Graphical Environment

Figure 3.5: The All-Different constraint (first row, green).

For example, it might be necessary to model the location of an object. Then, it
would be possible to create variables for each location with domain {0, 1}. The
intended meaning is that a variable being one represents that the object has the
respective location. Only one location at a time is possible for the object. One
could create a ’Sum equal 1 constraint’ for the variables that model the location of
the object to achieve the desired effect of the object having precisely one location.

Creating such a constraint is done in the same way as described above, namely by
selecting the variables and the desired constraint in the context menu. Duplication
also works the same.

The generated MiniZinc code for three variables looks like this:

constraint (A_3_1+A_2_1+A_1_1) = 1;

• The ’Sum less or equal 1 constraint’ is very similar to the ’Sum equal 1 constraint’.
The only difference is that the sum can be 1 or less than one.

This constraint is useful when one wants to model an event that can happen, but does
not necessarily has to. Again, one can create a variable for each possible outcome
with the domain {0, 1}. If one then creates a ’Sum less or equal 1 constraint’ with
the variables of all events, in every solution at most one event will have happened
(at most one variable will have value 1).

Creation and duplication of this constraint is done in the same way as the previous
constraints.

The generated MiniZinc code for three variables looks like this:

constraint (A_3_1+A_2_1+A_1_1) < 2;

18

3.4. Functionality and Limits

• The ’Custom sum constraint’. This constraint is a generalization of the previous
two constraints. The sum of some variables can be equal, unequal, larger or smaller
than some value or variable.

This constraint is useful in a variety of applications. For example, one could easily
model some products with variables of the domain {0, 1}. The intended meaning of
the variables will be if the respective product will be purchased (1) or not purchased
(0). One could then use a ’Custom sum constraint’ to specify that the sum of
purchased products should be less than a specific value or variable that might then
depend on a budget.

Creating this constraint is more difficult, as some parameters have to be specified.
Similar to the previous constraints, the involved variables have to be selected and
the constraint is created by selecting it in the context menu. Then a new window
appears where some parameters are specified. First, the operator is defined as
either ’=’, ’!=’, ’<=’, ’>=’ using a drop-down list. After that, the desired value is
specified, for example to an integer like ’5’ or another variable or even a combination
(e.g. variable minus 1). One fully specified constraint would then be for example:
The sum of the selected variables is less than or equal to 6.

Duplicating the ’Custom sum constraint’ is done in the following way: Like in the
previous constraints, dragging a label that appears after constraint creation will
duplicate the constraints. Note that if the value that the sum should be equal (or
less, etc.) is a variable, the framework will also change this variable accordingly in
the duplication process.

The generated MiniZinc code for three variables looks like this:

constraint (A_3_1+A_2_1+A_1_1) op val;

where op is the operator and val the value that the sum should be compared to.

• Create ’Set’. In the strict sense, this is not a constraint but more ’syntactic sugar’
that is needed for other constraints. Creating a set of variables has the intended
meaning of creating a set of the values of the variables in the solution. For example,
if we specify two variables and select them to be in the set, the set contains precisely
the value (if they assume the same value) or values (if they assume a different value)
that they assume in a solution.

Set operations can be used in a variety of contexts to model problems succinctly.
One example, that will also be dealt with in more detail in the next chapter, is
the ’Social Golfer Problem’. In this problem, the goal is to avoid that players play
against each other more than once. In a mathematical sense, the groups can be
seen as sets and we want the pairwise intersection of all sets to be limited to 1.

Another example would be an assignment problem for groups, where the intersection
of the set of group-leaders and each group be exactly one. Then, each group will
contain exactly one group leader.

19

3. A Graphical Environment

Creating a set is done exactly in the same way as creating a constraint, namely by
selecting the desired variables and selecting ’Set’ in the context menu. Duplicating
the set also works as previously described using the drag label.

The generated MiniZinc code for a set of three variables looks like this:

var set of int: set_35619075 = {A_3_1,A_2_1,A_1_1};

Note that in the MiniZinc modeling language it is necessary to name the set, this
is done automatically with an unique identifier that is invisible to the user of our
framework.

• The ’Set intersection at most 1’ constraint. This constraint involves sets instead
of variables like the previous constraints. It forces the pairwise intersection of all
involved sets to have a cardinality of at most 1. If one wanted to formulate such
constraint in the formal way described in the chapter ’Theoretical Background
and existing Approaches’, the following way is possible: The variables of the
constraint are all individual variables that occur in the sets, the relation is simply
the enumeration of all possible assignments such that the set intersection of all
pairwise sets has cardinality of at most one.

The constraint is created by selecting variables and then creating the constraint
from the context menu. All sets that contain at least one of the selected variables
will then have a pairwise intersection cardinality of at most 1.

The generated MiniZinc code for two sets looks like this:

constraint at_most1([set_52136226,set_35619075]);

Other set constraints, like demanding the pairwise set intersection cardinality to be
at least, at most or (un-)equal to some value or variable are in theory also possible
to specify, albeit not part of our reference implementation.

• ’Break symmetry by ascending order’. This constraint is useful to create a model
that can be solved faster. The constraint forces the values of the selected variables
to be in ascending order. In some real world problems there exist multiple identical
solutions that just have permuted order. For example, if we look at some set of
a problem that we used as example in the previous two constraints, a set is not
different if the order is reversed. Nonetheless, the search space is much larger if
symmetric solutions are not eliminated.

A concrete example: If there are four variables with the same domain and the sum
of those variables v1, ..., v4 has to satisfy some property (e.g. being equal to an
integer), there are a lot of solutions that are identical to each other with exception
of the variable order. Any permutation of the assignments would be equally good
as any other, as permutation does not change the sum of the variables. The ’Break
symmetry by ascending order’ constraint forces the assignment of the involved
variables to be ascending, i.e the value of v1 be lower or equal to the value of v2,
the value of v2 be lower or equal to the value of v3, etc.

20

3.4. Functionality and Limits

A detailed evaluation of this constraint and when it is useful will be given in the
chapter ’Evaluation’.
Creating and duplicating the ’Break symmetry by ascending order’ is done in the
same way as the ’All-equal constraint’ and all other constraints without parameters.
The generated MiniZinc code for three variables looks like this:
constraint decreasing([A_3_1,A_2_1,A_1_1]);

Other symmetry breaking methods do exist in practice [GS00] but are not part
of our our reference implementation. Such methods are very interesting as they
can possibly reduce solving time drastically but are not part of our reference
implementation of the framework.

• The ’Forbidden pattern’ constraint. This constraint is often used in scheduling
context. It excludes specific sequences of values to occur in a sequence of variables.
For example, if we had a table for a shift assignment problem and each row
represents the shifts and breaks of a single worker, we could use this constraint to
specify illegal patterns. It might be desirable to disallow the worker to work an
evening shift and on the next day the morning shift.
To make it as easy as possible to create such a complex constraint, a simple language
is used. First, the user has to select the desired variables. Then, it is possible to
specify forbidden patterns one by one.
The syntax for a single pattern is the following: ([operator]value blankspace)∗
which means that an arbitrary number of groups of operators, values and spaces
can occur after each other. The intended meaning is that the line is parsed and any
complete match is forbidden. In above specification, value can be a single integer.
The idea is that integers are written after each other, separated with a blank space,
to describe a concrete sequence of assignments that is undesired in a sequence of
variables.
An example: The constraint is configured with a single pattern that is ’1 0 1 ’.
Then, three consecutive variables in the ordered list of variables of the constraint
having precisely the values ’1’,’0’ and ’1’ are forbidden.
Each forbidden pattern is separated with a new line. It remains to explain the
meaning of [operator] in the syntax. The square brackets mean that the operator
is optional. The operator can be one of the following strings: ’~’, ’<’, ’<=’, ’>’,
’>=’ which have the interpretation unequal, smaller, smaller or equal, larger, larger
or equal.
If one wanted to prohibit the sequence ’3’ followed by anything larger than ’3’
in a sequence of variables, the specification would be: ’3 >3’. This succinct
representation allows to express complex constraints in a straight forward way.
Duplication of this constraint is done in the same way as for the previous constraint,
by dragging the label that is displayed once the constraint is created.

21

3. A Graphical Environment

Figure 3.6: The forbidden pattern constraint can be used for defining undesired patterns
in sequences.

The generated code for 5 variables and the pattern ’0 1’ that is forbidden looks like
this:

constraint A_1_1 != 0 \/ A_2_1 != 1;
constraint A_2_1 != 0 \/ A_3_1 != 1;
constraint A_3_1 != 0 \/ A_4_1 != 1;
constraint A_4_1 != 0 \/ A_5_1 != 1;

The code makes it unable for two consecutive variables to be 0 and 1 because of the
clauses ’either one of the two consecutive variables must not be 0 or 1 respectively’.

In figure 3.6, one can see the interface that is used to specify the forbidden patterns.

• The ’Cyclic forbidden pattern’ constraint. This constraint is very similar to the
last constraint. The only difference is that the pattern must also not occur in the
cyclic continuation of the list of the variables. In other words, the successor of the
last variable is again the first variable. This leads to additional restriction of the
search space and is necessary in some applications. In cyclic scheduling problems,
forbidden shift sequences can be modeled with this constraint.

Creation and duplication of this constraint is done in the same way as the previous
constraint.

The generated code for 5 variables and the pattern ’0 1’ that is forbidden looks like
this:

22

3.4. Functionality and Limits

constraint A_1_1 != 0 \/ A_2_1 != 1;
constraint A_2_1 != 0 \/ A_3_1 != 1;
constraint A_3_1 != 0 \/ A_4_1 != 1;
constraint A_4_1 != 0 \/ A_5_1 != 1;
constraint A_5_1 != 0 \/ A_1_1 != 1;

The only difference to the previous constraint is an additional line (last line) that
continues the constraint from the last element to the first.

• The ’Forward’ constraint. This constraint can be used to specify desired sequences
in an ordered list of variables. The difference to the previous two constraints is
that the formulation is done in a positive way. In the previous two constraints,
the user had to specify patterns that were unwanted, e.g. a 0 following a 1. In
this constraint, the user can formulate implications what values the variables have
to assume if some conditions are given. In some cases, both the positive and the
negative formulation method allow succinct formulation:

If we wanted to specify that after each 3, a 4 should occur in a sequence of variables,
we could use the negative way of formulating this constraint: ’3 ~4’ is undesired,
or the positive way (for now informally): if variable x has value 3, then the next
variable x+1 should have value 4.

In some cases, the positive formulation is shorter:

If we want to specify an implication where the right side consists of more than
one element, e.g. a → b ∧ c∧, ...,∧z, then a negative formulation would need an
exponential overhead, as each wrong assignment of the right side would have to be
excluded individually.

This advantage makes it worth including the positive formulation of patterns. The
syntax for the positive formulation is the following:

Each pattern is written in a new line. The patten syntax is:

L1 operator1 a1, ... , Ln operatornan → R1 operatorr1 b1 , ... , Rm operatorrm bm

In above formula, Li and Ri stand for variables on the left and right side of the
implication. Note that we do not use the variable name but just the character
’C’ plus an arbitrary index that is relative to the other indices to create an order.
This notation is used to be able to specify the ’next’ and ’previous’ variable in the
sequence of variables. operatori and operatorr1 are operators and can assume one
of the following values: ’=’, ’~’, ’<’, ’<=’, ’>’, ’>=’. ai and bi stand for values the
variables will be compared to.

A practical example that uses above syntax: ’C0 = 5, C2 > 5 -> C4 = 4, C5 = 8’
which has the following intended meaning: An ordered list of variables is specified.
In this list, if some variable (C0) assumes 5 and the successor of the successor of
that variable (C2) is bigger than 5, then (→) the successor of the successor of C2,
namely C4 has to be 4 and the successor of C4, namely C5 has to assume 8.

23

3. A Graphical Environment

This constraint is very useful in scheduling contexts, for example if some sequence
of shifts has to be followed.

Creating a constraint is done in a similar way as the ’Forbidden pattern’ constraint,
namely by selecting the desired variables and entering the patterns in a text field.
Duplicating the constraint is done in the usual way by dragging the label.

The generated code for 5 variables and the constraint ’C0 = 1 -> C1 = 1’, meaning
that the successor of a 0 must be a 1, looks like this:

constraint A_1_1 = 0 -> A_2_1 = 1;
constraint A_2_1 = 0 -> A_3_1 = 1;
constraint A_3_1 = 0 -> A_4_1 = 1;
constraint A_4_1 = 0 -> A_5_1 = 1;

This code works in the following way: For each variable, there is a clause that if it
has the value 0, then the successor of that variable must have the value 1.

• The ’Cyclic forward’ constraint. This constraint is very similar to the ’Forward
constraint’ with the difference that the variables are treated in a cyclic way The
successor of the last variable in the list of involved variables is the first variable.

This constraint is also useful for scheduling applications, especially when planning
cyclic work patterns for example. A concrete problem would be ’rotating workforce
scheduling’.

Creating and duplicating this constraint is done in the same way as the previous
non-cyclic variant of this constraint.

The generated code for 5 variables and the constraint ’C0 = 1 -> C1 = 1’, meaning
that the successor of a 0 must be a 1, looks like this:

constraint A_1_1 = 1 -> A_2_1 = 1;
constraint A_2_1 = 1 -> A_3_1 = 1;
constraint A_3_1 = 1 -> A_4_1 = 1;
constraint A_4_1 = 1 -> A_5_1 = 1;
constraint A_5_1 = 1 -> A_1_1 = 1;

The only difference to the previous (non-cyclic) constraint is that there is an
additional line at the end that includes the first element being the successor of the
last element.

• The ’Number of occurrences’ constraint. This constraint is useful in a variety of
contexts and also studied very well in academia [FA03]. It allows to specify the
number of times a specific value has to occur in the solution for a set of variables.

To be more precise, the parameters of this constraint are: A set of variables, the
value to count, an operator and a count value or variable. The value to count can
be any integer or variable name. The operator can be one of the following: ’=’,
’!=’, ’<=’, >=’ meaning that the number of occurrences has to be equal, different,

24

3.4. Functionality and Limits

smaller or equal, larger or equal to some value or variable. The count value or
variable can either be an integer or some existing variable name.
A concrete problem, where this constraint is useful, is the nurse scheduling problem.
Each day it might me necessary that for example at least 4 nurses are present
in the day shift, at least 3 nurses are present in the evening shift and at least 2
nurses are present in the night shift. This can be easily modeled using ’Number of
occurrences’ constraints: Each shift type is modeled with a specific integer, e.g 1
for day shift. Then the number of ones occurring in the set of variables that model
the type of shifts of all nurse for a single day has to be at least 4.
Creating this constraint works in the following way: First, the involved variables
are selected. Those are the variables where the number of occurrences are counted.
When the ’Number of occurrences’ constraint is selected in the context menu, a
small window is opened where one can configure the remaining parameters (value
to count, operator and count value/variable).
The code generated for three variables (involved variables) and the number of
occurrences of 1 (variable to count) to be less or equal (operator) than 5 (count
variable) is the following:
constraint count([A_3_1,A_2_1,A_1_1], 1) <= 5;

• The ’Route’ constraint. This constraint is a high level constraint that can be used
for routing purposes and many other applications. It is useful in any case where
the user wants to find an optimal sequence.
To be more precise, the constraint has the following functionality: An ordered list
of variables is defined. The domain of the variables represent all possible elements
of the sequence, and the value of the variables are the order in the sequence. Each
domain element has a specific distance (or cost, depending on the actual problem
formulation) to any other domain element. This means, that a distance (or cost)
of the complete sequence can be calculated. This distance can be chosen to be a
constant or a variable, and if it is chosen to be a variable can be minimized in a
second step.
In some sense, this is a generalization of the traveling salesperson problem, where not
necessarily all cities have to be visited, the first and the last city do not necessarily
have to be identical and the distances can be asymmetric and non-euclidean.
This constraint does not only allow formulation of variants of the traveling sales-
person but also allows modeling of vehicle routing problems and modeling of
dependencies in scheduling problems.
One concrete example: The shortest path between two cities is wanted. The path
is a permutation of a subset of intermediate cities c1, ..., c5. Furthermore, it is
undesired that c3 is the successor or the successor of the successor of c2.
In our model, the integer values 1 to 5 stand for the respective cities ci. The route
constraint can then be used to formulate the search for the shortest path. This is

25

3. A Graphical Environment

done by entering the distances between all cities and setting the total cost of the
route to be equal to a variable that is then minimized (see subsection Optimization
Goals). The avoidance of c3 following immediately or after one other city after c2
can be modeled with the (non-cyclic)’Forbidden pattern constraint’: ’3 2’ and ’3 ~2
2’.

In our framework, the ’Route’ constraint is created in the following way: First,
a set of variables is selected. The constraint is selected in the context menu. In
a separate window, the user is asked to specify the distance between all domain
elements and what the sum should be equal to. This can be either a constant value
or a variable. Since there a quadratic amount of distances in the number of domain
elements, there are two tools to make this process of entering the distances less
time consuming. First, it is possible to set all distances to symmetric, which halves
the amount of distances that have to be entered. This is only useful if the problem
formulation has symmetric distances.

The second tool to make distance entering easier is a CSV-Import function. This
means, it is possible to use an external file that contains the distances for this
constraint. We use a format that is common in academia for specifying distances:
A distance matrix that is separated with spaces horizontally and with line breaks
vertically.

Importing distances from adjacent lists is also interesting, in particular when a
graph is sparse, but is not part of our reference implementation of the framework.

Duplication of this constraint is done in the same way for as the previous constraints
- by dragging the label that appears when the constraint is created. It is worth
noting that if the route length is set to be equal to a variable, this variable is also
changed respectively when the constraint is duplicated to other parts of the grid.

The generated code for four variables each with domain {1, ..., 4} and the distances
between all places being 1 looks like this:

array[int,int] of int: d_15832433 = array2d(1..4, 1..4,
[| 0, 1, 1, 1| 1, 0, 1, 1| 1, 1, 0, 1| 1, 1, 1, 0|]);

constraint (d_15832433[A_1_1 , A_2_1] + d_15832433[A_2_1 ,
A_3_1] + d_15832433[A_3_1 , A_4_1]) = R_1_1;

What is done here is the following: First, a 2d array containing all distances is
created (distance-matrix). An unique identifier for this array is created that is
invisible for the end-user but necessary for MiniZinc.

The second part of the code looks up the distances between two values in the
distance-matrix, adds all distances and sets the sum equal to some value or variable,
in this case the variable R_1_1.

In the figure 3.7, one can see the interface that is used to define the distances of
the route constraints. Since in this case, the distances are selected to be symmetric,

26

3.4. Functionality and Limits

Figure 3.7: The route constraint allows modeling of various routing and distance problems.

approximately half of the matrix is greyed-out and does not have to be filled
manually.

• The ’Custom’ constraint. This constraint is used to ensure that any aspects of a
problem that can only be modeled succinctly with code can also be modeled that
way in our framework. To be more precise, this constraint allows any MiniZinc
code to be entered. This code is then inserted into the generated model.

First, all variables that are involved in this constraint have to be selected. This
selection will only be used for visualization purposes in the grid. It is then possible
to enter code that will be included in the generated textual model. Duplication of
this constraint is possible but in most cases not useful, as no dynamic alteration of
the variables takes place if the constraint is duplicated to another part of the grid.

This concludes the list of available constraints in our framework. There exist numerous
more constraints in the MiniZinc language, but above constraints are sufficient for some
problems as the chapter ’Evaluation’ will show.

27

3. A Graphical Environment

3.4.4 Fixed Variables

Providing an intuitive way of fixing the value of variables is an important tool not only
for debugging but can also be used for solution exploration and other purposes. In some
sense, fixing the value of a variable is just a constraint over one variable where the relation
contains only one element - the desired fixed value.

Our framework provides an easy way to add and remove such fixings of variables that is
worth noting here. Once a grid cell contains a variable, double clicking it will take the
user to a small window that allows him or her to enter the value that the variable has to
assume in any solution.

The cell contains now the specified value in red - meaning it cannot assume any other
value. If the fixed value is not desired anymore, the value can be removed with another
double click on the cell and the variable is a regular variable again.

This feature is important for using the framework, as it allows rapid debugging. A
concrete use case: The selected solver (see subsection Output and Solving) takes a very
long time for solving and does not report a solution within acceptable time. The user
thinks that the model should have at least one specific solution that fulfills all constraints
and is not completely sure if the model is faulty. The user can now fix all variables to
values that should satisfy the model. If the solver then reports unsatisfiable, one can be
sure that the model is faulty.

Furthermore, the function of fixing variables can be used to create models for variable
input for some problems, where the actual instance is determined by some fixed variables.
See the chapter ’Evaluation’ and in particular the subsection ’Creating models for variable
input’ for concrete examples.

3.4.5 Optimization Goals

As we discussed in the chapter ’Theoretical Background and existing Approaches’, there
are two different problems in constraint programming. Either, it is desired to find any
variable assignment that satisfies all constraints (constraint satisfaction problem), or
there is a specific global cost function that has to be minimized or maximized.

In practice, solutions are not always equally good. A valid schedule for a school could be
optimized by taking personal teacher preferences into account, e.g on which day he or
she wants to work longer or shorter.

Until now, or framework had no possibility to define such ’soft constraints’ that can be
satisfied but don’t necessarily have to be. We will now present a way to define a cost
function that the solvers will minimize or maximize.

In our framework, individual variables are minimized or maximized. In some sense, the
variables selected to be optimized are the images of the functions Fi that we described in
the chapter ’Theoretical Background and existing Approaches’. The function itself has to
be specified using constraints.

28

3.4. Functionality and Limits

Figure 3.8: Cells containing variables that are set as optimization goal are highlighted in
color.

This means, that the user has to define constraints so that a variable or multiple variables
represent the quality or penalty of the solution. A quick example: One could count the
number of times some condition is not satisfied and use this number as quality criterion.
Another possibility would be to use the total length of a tour (see constraint ’Route’) as
a quality criterion.

Once a variable is set up so that it represents part of the quality of a solution, one can
use the context menu of this cell and select ’Minimize / Maximize this variable’. Then
there are three options:

1. ’Minimize this variable’. Once selected, the solution quality is higher, the lower
the value of this variable is. This option makes sense to be used for example with
a variable that represents the total length of a route, as it is usually desired to
minimize the route length.

2. ’Maximize this variable’. Once selected, the solution quality is higher, the higher
the value of this variable is. One example, where this option is useful is the number
of satisfied ’soft constraints’.

3. ’Bring variable close to’. When this option is selected, a new window appears where
the user has to enter an integer value. The solution quality is higher, the closer
the value of the variable is to the entered integer. This option is useful when one
wants a variable to have a specific value, and if this is not possible as least to have
a value as close as possible to the desired value.

When a optimization goal is set up, the cell that is involved is highlighted in color. This
is useful, as one can immediately see the quality of the solution. In figure 3.8, one can
see a variable being highlighted because it is defined as an optimization goal.

It is also possible to set multiple optimization goals. For example, one variable could
be minimized while another one will be optimized. Currently all optimization goals are
weighted equally. To be more precise, the following definition is used to calculate global
cost function for the solution, taking into account all optimization goals:

q = 1−
N∑

n=0
|gn − vn| (3.1)

29

3. A Graphical Environment

In above formula, q stands for the quality of the solution (higher is better). For each
optimization goal, the distance to the optimal value of that goal. There must be a single
optimal value for each optimization goal, as we are working with fixed domain integers
and either minimization (then the optimal value is the lower bound of the domain of the
respective variable), maximization (then the optimal value is the upper bound of the
domain of the respective variable) or bringing a variable close to some value (then the
optimal value is precisely that value). We can thus sum the distances of all goals to their
actual value and use 1 minus that sum so we get a quality indicator that is better the
higher.

In our framework, it is currently not possible to define different weights for the optimization
goals directly. It is however possible to model the weight by specifying another variable
to be a multiple of the original variable that models the image of Fi.

3.4.6 Other Features

In our reference implementation of the framework, we included many other features that
make it easier to use. In this subsection, we will briefly describe some of them and why
they are useful for creating constraint programming models.

1. Undo / Redo. Being able to undo and redo certain actions is a useful feature in
many commercial and non-commercial applications. We thus implemented this
functionality within our framework. The basic idea is the following:
All actions (creating a constraint, variable, optimization goal,...) are put on a stack.
Once the user wants to ’undo’, the first element of the stack is popped and put on
top of the ’redo’ stack. This behavor is repeated for each time, the ’undo’-button
is clicked by the user. If a new action is executed (e.g. a new constraint is created),
the redo stack is cleared. If the redo-stack contains elements (i.e some action has
been undone and no new action has been executed in the meantime), the redo
button is available to click. Pressing it will move the topmost element from the
redo-stack to the undo stack, meaning the action has been re-done.

2. Display Constraints. In our reference implementation, this function is realized
as a check-box. If it is checked, all constraints that were created in the current
model are displayed with color. If the check-box is unchecked, no constraints are
visualized. This function is useful if the model has been created and the user wants
to see the variables without distraction by the constraints.

3. Open / Save. Our implementation allows it to save and open constraint program-
ming models. This means, once a model is created it can be saved to the disk
and reused later. It is interesting to note that the saved file does not contain the
MiniZinc code as a whole but the individual information about all created variables,
constraints and in which cells they are located. This means it is possible to continue
working with the model or create two versions from one base model by saving and
altering.

30

3.4. Functionality and Limits

The saved file of a very simple instance containing three variables, an ’All-Different’-
Constraint involving all three variables and no optimization goal looks like this:
CONSTRAINT PROGRAMMING INSTANCE
-VARIABLES-
A_1_1|int_type|0|9|A|1|1|2|2|
A_2_1|int_type|0|9|A|2|1|3|2|
A_3_1|int_type|0|9|A|3|1|4|2|
-CONSTRAINTS-
GraphicalConstraintProgramming.AllDifferentConstraint|A_3_1|
A_2_1|A_1_1
-OPTIMIZATION GOALS-

The beginning of any file is a line containing the string ’CONSTRAINT PROGRAM-
MING INSTANCE’. A line containing just the string ’–VARIABLES–’ denotes
the beginning of the section containing all variables. Each variable is defined in a
new line with the following contents, seperated by the pipe-character: full name
including indices, type, start of domain, end of domain, name without indices, x
index, y index, x index of the cell in the grid containing the variable, y index of
the cell containing the variable.
The section containing all constraints starts with a line with the string
’–CONSTRAINTS–’. Each line contains the definition for a single constraint. As
before, the parameters of the constraint are separated with a pipe-character. In
this case, the first part contains the name of the constraint. For the ’All-Different’
constraint, the necessary parameters are just the involved variables, that are
separated with a pipe-character.
The last section deals with the defined optimization goals. Each optimization goal
is written in a seperate line. The parameters are: the variable name of the variable
to optimize, the optimal value for that variable and the weight of this optimization
goal (which is always 1 in the current implementation).

4. Show Row / Column Caption. This feature can be activated with a check-box.
Once checked, the grid is displayed with numbering for the rows and columns. This
is useful if one wants to refer to a specific cell.

5. Code view. The code view can be opened by clicking a tab in the upper right corner
of the main window. The grid view is changed to the textual view of the generated
MiniZinc code. Not only is this valuable when trying to debug a model, but can
also be helpful when trying to learn the MiniZinc syntax using this framework. In
figure 3.9 one can see a screenshot of the code view. The code shows the model
consists of four variables and a ’Sum equals 1’ constraint. No optimization goal is
set, thus the code ends with the command ’solve satisfy;’.
Of coure, the code can also be copied in an external editor and modified and used
with MiniZinc solvers directly. It could make sense to write some parts of a model
using our graphical framework and completing the model in a code editor.

31

3. A Graphical Environment

Figure 3.9: The code view can be used to examine the generated code.

Figure 3.10: The number of cells and the width and height of the selected rectangle are
displayed.

32

3.4. Functionality and Limits

6. Selected Cells count. When selecting cells in the grid-view (default view), a small
label appears displaying the total number of selected cells. If the selection is
rectangular, the width and height (in cells) of that rectangle are displayed too.
This could be helpful when someone wants to create a large number of variables
like a 14*7 grid but does not want to count the cells one by one. A screenshot of
this feature can be seen in figure 3.10.

3.4.7 Output and Code Generation

The translator module that creates code from our graphical model is essential so that we
can use existing well working solvers to find solutions for our constraint programming
models. To be more precise, this module works in the following way:

A header containing all necessary imports is written. In detail, the used code is:

include "globals.mzn";

Then, all code snippets of the variables are created and added after the header. In the
next step, all constraints are translated to code and also added to the code. In the final
step, the optimization goals and output annotations for the are added. The annotations
ensure that the output is formatted in a way that our framework work with. This is
necessary as we want to display the values of the variables of a solution in the grid. If no
additional optimization goal is provided, the code (for a model with one variable that is
specified above) concludes with the following lines:

solve satisfy;
output["A_1_1 = ", show(A_1_1),";"]

The last line is the line that ensures correct formatting the output and contains all
variables that exist in the model.

The result is a valid MiniZinc code file that is saved on the hard-disc in a temporary
location.

3.4.8 Solving

After a constraint programming model is created, the next step is to try so find a solution
that satisfies all constraints and the domain restriction of the variables. As we discussed
in the previous sections, it makes sense to use existing well established solvers.

As our framework creates models in the MiniZinc language, using existing solvers to solve
them is not complicated. In the right upper corner, there is a drop-down gui-element
that lets the user chose between different common solvers and the option ’All solvers in
parallel’.

If a single solver is selected and the ’Solve’-button is clicked, the model is passed to that
solver and an answer is awaited.

33

3. A Graphical Environment

Figure 3.11: The value of a variable in the solution is displayed in the corresponding cell.

If ’All solvers in parallel’ is selected, the model is passed to all available solvers. Once a
solver that finds a model to be either ’unsatisfiable’ or finds a solution and reports it
to the framework, all other solvers are terminated. Since all solvers excel in different
areas, running multiple solvers in parallel might not lead to the best runtime but to
an acceptable runtime in most cases. In the chapter ’Evaluation’ we will describe the
benefits of that approach in more detail and with concrete runtimes and examples.

If ’unsatisfiable’ is reported, the user is notified with a dialog window reporting that. If a
solution is found, it is automatically parsed and the values of the variables in the solution
are displayed in the respective cells. This means, the original spatial arrangement of the
variables is maintained.

In the figure 3.11, one can see a solution for a model with 5 variables, all with domain
{0, ..., 9} and a single ’All-different’-constraint containing all variables.

3.4.9 Limitations

There are a number of MiniZinc constraints that are not realized in this framework.
Examples would be the lexicographic functions and high level constraints like bin packing
or some specialized scheduling constraints. Note that it is possible to use those constraints
by entering the code in the ’custom constraint’.

We also did not include arithmetic operators like exponentiation, absolute value or modulo
calculations. Those operation could be included in further iterations of our framework,
but were not necessary for the problems we work with in the evaluation.

In our framework, it is not possible to specify variables that have a continuous domain.
This restriction is necessary to ensure that any variable can be used in constraints that
rely on a discrete domain. Because continuous variables are excluded in our framework,
we did not include functions like rounding or type conversions.

Another function that is not fully included in our framework is the possibility to incorpo-
rate data files. While it is possible to read a csv-file for the ’Route’ constraint, this is the
only constraint for which that is possible. For commercial applications it would be of
interest to have more possibilities to work with external data.

34

CHAPTER 4
Evaluation

In the previous chapter we introduced a graphical framework for creating constraint
programming models. In this section, we will use the framework to create models for
practical and well-known problems and evaluate them using different measures.

The following aspects of our chosen problems will be examined:

1. Is it possible to model a typical problem instance with our framework? If yes, how
is it possible? If it is not possible to model the problem, what could be changes
to the framework such that it will be possible to model the problem or is this
infeasible?

2. What is the quality of the model? Is it possible to find a solution using existing
solvers in reasonable time? The solving time will be compared to other models and
solving techniques.

3. Is the modeling process straight forward and intuitive, as the framework claims to
be? What could be extension of the framework that would improve the modeling
process?

4. Are there different ways to model the problem within the framework? Which is the
best way?

After the evaluation of the individual problems, we will ask if it is possible not only to
model concrete instances but create a general ’solver’ for any instances of some problems.
We will also try to generalize the previous insights and try to formulate classes of problems
for which the framework works very well and classes of problems that might be formulated
better with other means.

We will also try to find out if the function ’Run all solvers in parallel’ is useful in practice
or if a single solver is dominant with respect to the models generated with our framework.

35

4. Evaluation

4.1 Sudoku
The first problem that we will be looking at is Sudoku. The problem description is the
following:

Definition 1. ’A Sudoku square of order n consists of n4 variables formed into a n2 *
n2 grid with values from 1 to n2 such that the entries in each row, each column and in
each of the n2 major n * n blocks are alldifferent.’ [HPS05].

Above definition is the definition for the generalized Sudoku square. The variant that we
will be working with is n = 3.

Definition 2. ’A Sudoku problem (SP) consists of a partial assignment of the variables
in a Sudoku square. The objective is to find a completion of the assignment which extends
the partial assignment and satisfies the constraints.’ [HPS05].

One of the early approaches to apply constraint programming to Sudoku was by Simonis
[Sim05], where he suggested the ’All-Different’ constraint to be used for modeling.
Constraint programming was also used by [MG06], [Lew07] and [CACM08] to solve
Sudoku. Recent advances are a hybrid approach by [MW17] that combines constraint
programming methods with iterated local search. Their approach aims to solve larger
instances. In the evaluation they have concluded that their technique offers state of the
art performance for Sudoku instances of order four and five.

In our framework, modeling the n = 3 Sudoku square is possible in the following way:
First, a 9 ∗ 9 block of variables with domain {1, ..., 9} is created. As we take from the
problem definition, a total of 27 constraints have to be created. The variables in each
row will be in an ’All-Different’ constraint. It is sufficient to create the constraint for
the first row and then using the drag-label (see previous section) to generate the other 8
constraints for the rows.

The constraints for the columns can be created in a similar fashion. A constraint is
created for the first column and the other 8 column constraints are created by duplicating
the original constraint with the drag-label.

Generating the 9 ’All-Different’ constraints for the 3 ∗ 3 boxes must by done individually,
as duplicating would create superfluous constraints for boxes that don’t necessarily have
to be ’all-different’.

Once the model is created, we can solve the empty Sudoku square by pressing ’Solve’, or
we can fix some variables to solve a Sudoku with some numbers already filled out. This is
the Sudoku problem that was defined above, that is also often published in newspapers,
magazines, etc.

In figure 4.1, one can see the completed model for one configuration of the Sudoku
problem, where some numbers are already fixed by us. Solving then adds the remaining
numbers within a fraction of a second.

36

4.1. Sudoku

Figure 4.1: Sudoku problems can be modeled within our framework. In red: variables
fixed by us.

We can thus claim that it is possible to formulate this problem within our framework.

To assess the quality of the model, we measure the time it takes to solve it. With all
available solvers (Gecode, Chuffed Solver, OR-Tools), the time to solve our model is less
than a second. We conclude that the quality of the model is sufficient for the 9x9 Sudoku
problem instances.

The modeling process of Sudoku within our framework is quite straight-forward. The
only thing that is suboptimal is the creation of the constraints for the adjacent 3 ∗ 3
boxes. One possibility to improve this would be to specify a ’hot-key’ that when pressed
while dragging the drag-label, duplicates the constraints only to the location where the
drag-label is released.

The way the 9x9 Sudoku problem was modeled above seems to be one of the most
reasonable ways to do that within constraint programming. Looking at other models1, we
can see that our approach is very similar to other formulations (’All-Different’ constraints

1https://github.com/MiniZinc/libminizinc/blob/master/tests/examples/sudoku.mzn accessed on
22.10.2017

37

4. Evaluation

are used). Our model is also the same as in [Sim05], where 27 constraints for the rows,
columns and blocks are used.

4.2 8 Queens
The 8 Queens problem is - like Sudoku - often used for demonstration and teaching
purposes in the field of constraint programming. The setting is the following:

Definition 3. Given an n * n chessboard, is it possible to place n queens on the board
such that no queen threatens any other queen?

It is proven [BS09] that the answer is ’yes’ for any n > 3 and n = 1, and ’no’ for n = 2
and n = 3. The more interesting question is thus providing a concrete solution for a
specific n. We will try to find a solution for the most commonly used variant, n = 8.

One of the earliest approaches to solve n-queens with the means of constraint programming
was by Mackworth in 1977 [Mac77]. In this paper the problem is already described as
being a common problem for demonstration purposes.

One approach to model this problem with the proposed framework is the following: A 8∗8
grid with variables of domain {0, 1} is created. The intended meaning is the following: A
variable that has the value 0 in the grid stands for an empty cell of the chess board. A
variable that has the value 1 in the solution stands for a cell that contains one of the 8
queens.

The constraints are added to model the properties of the queen: that they must be alone
in each row, column and both diagonals going through a cell. It is relatively simple to
model the first two properties: We add a ’Sum equals 1’ constraint to the first row and
duplicate the constraint for all other rows. The same is done for the columns: We add a
’Sum equals 1’ constraint to the first column and duplicate it to the remaining 7 columns.

It remains to restrict the number of queens that can appear in the diagonals: No two
queens are allowed in any of the 30 diagonals. We can create a ’Sum less or equal to
1’-constraint for the two diagonals going through the center of the grid and duplicate
the constraints for the remaining variables. Unfortunately, we can only duplicate the
constraint in one diagonal direction, we thus have to create the constraints for the two
diagonals separately.

In figure 4.2, one can see what the finished and already solved model in our framework
looks like.

We conclude that it is possible to model the problem within our framework. The solvers
we used (Gecode, OR-Tools, Chuffed) were able to solve the model within less then
a second. Nonetheless, in comparison to other formulation strategies (see below), our
model seems relatively complex.

The modeling process is more or less straight forward and intuitive. The selection of the
diagonal elements and the duplication is not as simple as in Sudoku. One thing that

38

4.2. 8 Queens

Figure 4.2: The solved model shows one solution for the 8-queens problem.

could improve the modeling process would be the addition of ’hot-keys’, for example for
a diagonal selection or duplication.

As we observed above, our framework generates a lot of code for a relatively simple
problem. More concise formulations are possible with text-based constraint programming
languages.

One approach2 works the following way: Instead of a binary formulation the solution
is encoded as 8 ordered variables with domain {1, ..., 8} indicating the position of the
queens in the respective row. Additionally, all variables must be different, as the queens
cannot be below or above each other. Diagonal violations are dealt with by specifying
that the horizontal and vertical distance from any queen to any other queen must be
different, i.e queens placed at (3, 4) and (4, 5) are not allowed, as their distances would
be (1, 1) and thus the horizontal and vertical difference would be identical. To be more
precise, the absolute distance of two variables in the order must not be equal to the
absolute difference of their values.

While it is possible to add above concise constraint as a custom constraint, in this case
there is no benefit of using our framework in comparison to writing MiniZinc code directly.

2http://www.csplib.org/Problems/prob054/models/nqueens.essence.html accessed on 20.10.2017

39

4. Evaluation

4.3 Social Golfer Problem
The description for the original problem [GW99] is the following:

Definition 4. 32 golfers play in groups of four once a week. Is it possible to play for 10
weeks in such groups that no two golfers play against each other more than once?

We will first model a different instance, namely with 20 golfers that play for 4 weeks.

Early approaches to model the social golfer problem with constraint programming were
by Flener et. al. [FFH+01] who suggested a matrix formulation. In their formulation,
matrices of decision variables are used. The authors also claim that many problems have
a natural model as 2-d matrix, which also supports our claim that a grid of variables
(which can be seen as a 2-d matrix) is a suitable base for our framework. Constraint
programming was also used by [Har01], [RM05] and [Aze07] to solve the social golfer
problem.

In our framework, we can use the set functions to model this problem succinctly. To
be more precise, each group of golfers in each week is a set. Defining this is done in
the following way: First, the variables for all golfers and all weeks are created. For our
example, we will use 20 golfers that play in groups of 4 for 5 weeks. Thus we generate 5
times the 20 variables that represent which golfer plays in which group. The domain of
each variable is {1, ..., 20}.

Then, we proceed by creating 5 groups of 4 as sets per week, resulting in 25 sets. To
achieve this quickly, we can use the duplication function so we don’t have to create all
sets individually. The final step is to select all sets and selecting the constraint ’Set
intersection at most 1’. Selecting sets is done in our framework by selecting a variable
that is contained by the set. We have now restricted the solution space so that a solution
is only valid when the pairwise set intersection of all sets is at most one, meaning no
player can play against another player twice.

If we now try to solve this model, the solution is not found immediately with any of
the solvers. Note that OR-Tools currently (as of October 2017) does not support set
operations at all and is thus not able to work with our generated model. But even the
other solvers (e.g. Gecode) do not find the solution instantaneously.

One reason for this is that because we are working with sets, there is a large amount
of symmetrical solutions. Each group of each week can be rearranged in 4! = 24 ways.
The groups of each week can be rearranged in 5! = 120 ways. Then, the weeks can
be rearranged in 4! = 24 ways and lead to the ’same’ solution. Those are already
approximately 70000 symmetrical solutions for each solution. And we did not even take
isomorphic solutions that only differ in variable naming into account.

In the previous chapter, we introduced a constraint to break those symmetries to reduce
the solution space. We will apply the ’Break symmetry by ascending order’ constraint to
accelerate the solving process.

40

4.3. Social Golfer Problem

Figure 4.3: The model and solution for the (20, 4, 5) social golfer problem.

First, we can fix the first week to the numbers 1, ..., 20 in ascending order by selecting
the whole week and adding the ’Break symmetry by ascending order’ constraint. This
removes some of the isomorphic solutions that appear due to variable naming. The
complete first week is thus fixed and can be solved without branching, because the
solution space for those variables is of size 1.

We can proceed by removing symmetrical solutions from the other weeks. For each group
and each week, we can select the players to be in ascending order. As stated above, this
reduces the number of branches by a factor of 24 for each group and week.

We can then order the groups per week by their lowest numbered player. This removes a
symmetry factor of 120 for each week. Additionally, this fixes the first player of each
week to be player 1, as the player is guaranteed to be the first player in each group he
plays and furthermore the group the player participates will be the first group per week.

As the final step, we can sort one arbitrary value of each group in ascending order, to
reduce the solution space by an additional factor of 120 by fixing the order the weeks
occur. With all those measures, we have reduced the solution space so much that the
solvers (Chuffed, Gecode) report a valid solution on our average desktop computer used
for evaluation nearly instantly. One possible solution can be seen in figure 4.3.

We can therefore answer the questions regarding the evaluation: A problem instance
can be modeled within the framework. The initial model is created very fast, breaking
symmetries is then far more time consuming.

The quality of the model is good, a solution for the (20, 4, 5) instance can be found within
a second, but only after symmetry breaking constraints are added. With the plain model,
we could not get a result until timeout (1000 seconds).

In addition to the instance with 20 golfers and 5 weeks, we have used the framework
to model the original instance with 32 golfers and up to 10 weeks. The runtimes of all
configurations (1 to 10 weeks) can be seen in table 4.1. The test setup was the following:
Each instance was modeled and solved with all solvers in parallel on our test machine
(Intel Core2Quad Q6600, 6GB Ram). Each instance is tested 3 times and the average

41

4. Evaluation

Table 4.1: The runtimes for the social golfer problem instances with 32 players and up to
10 weeks.

Instance Runtime in seconds w/o symmetry breaking RT with
symmetry breaking

32 players / 1 week <1 <1
32 players / 2 weeks <1 <1
32 players / 3 weeks <1 <1
32 players / 4 weeks <1 <1
32 players / 5 weeks <1 <1
32 players / 6 weeks >1000 9
32 players / 7 weeks >1000 >1000
32 players / 8 weeks >1000 >1000
32 players / 9 weeks >1000 >1000
32 players / 10 weeks >1000 >1000

runtime is used. A value of >1000 denotes that we were not able to solve the instance
within 1000 seconds.

We can conclude our examination of this problem by noting the following findings:
Instances with at most 20 golfers (100 variables) can be solved quickly. Regarding larger
instances (up to 320 variables, 32 golfers, up to 10 weeks), we could only solve instances
with up to 6 weeks. In our test setup, incorporating symmetry breaking methods only
changed the runtime in one instance, where without symmetry breaking we did not get a
result at all within our timeout.

The modeling process itself is mostly straight forward and intuitive. A really good addition
would be mechanisms to automatically apply symmetry breaking features instead of
having to create the constraints manually. On the other hand, those methods could
be better added to the solver instead, making the improvements available to a wider
audience.

Regarding other formulations, there exist various possibilities to formulate the social
golfer problem as constraint satisfaction problem. However, there are often very refined
models used, as the solution space of this problem grows very fast by increasing number of
players, weeks and groups. We tried another formulation using a player-group assignment
(i.e in which group each player plays for each week) but this model was not as efficient
for the (20, 4, 5) instance. We could not get a result within the timeout (1000 seconds).

4.4 Rotating Workforce Scheduling Problem

The Rotating Workforce Scheduling problem exists in several variations. The main
problem setting is similar: a schedule for workers has to be created. There exist different
shift types, typically ’day’, ’evening’ and ’night’. The planning horizon is usually one

42

4.4. Rotating Workforce Scheduling Problem

or more weeks, after which the schedule of a single worker continues as the schedule of
the next worker. There are constraints regarding the weekends, legal shift sequences and
minimum available workers of each day.

Early approaches to model cyclic employee scheduling problems with constraint pro-
gramming include a paper by Chan et al [CW01]. They use high level constraints like
’sequence’, that make it possible to specify allowed patterns in a sequence of variables.

We consider the rotating workforce scheduling problem as defined in [MGS02]. Constraint
programming was also used by [LP04] and [TM11] to solve the this problem.

We will use our framework to model a typical instance, namely instance 8 from the paper
[Mus05], that was already used for the evaluation of previous methods. The properties
of the instance are:

1. The number of workers is 16.

2. The total planning horizon is 1 week (=7 days).

3. A shift change from evening to day, night to evening, and night to day must be
separated with at least one day off.

4. A shift must be worked at least twice.

5. The maximum number of consecutive work days is 7 and the minimum number is
3.

6. The number of consecutive rest days is between 2 and 4.

7. The maximum number of consecutive day shifts is 7, of consecutive evening shifts
is 6 and of consecutive night shifts is 5.

8. The number of workers needed for each day is given in matrix where each row
represents the demands for a specific shift type and each column represents a single
day. In our case, the matrix is:
5 5 5 5 5 2 0
5 5 5 5 5 2 0
3 3 3 3 2 0 3

We can model this instance in the following way:

A 7 ∗ 16 grid for the assignments of the workers for each day is created. The domain of
the variables is {0, ..., 3}. In our model, 0 stands for no shift, 1 is the morning shift, 2 is
the evening shift and 3 is the night shift.

Next, we want each shift to be manned according to our matrix every day. We create a
’Number of occurrences’ constraint selecting the 16 variables representing the first day

43

4. Evaluation

and set the value we count to 1, the operator to ’=’ and the number of occurrences to
5. This means, the number of ’1-shifts’ (morning shifts) must be at least 5. We can
duplicate this constraint by dragging it to the next 4 days. The same procedure is done
for all shift demands.

For the other constraints, we create one ’Cyclic forbidden patterns’ constraint. We add
the following configuration text:

0 0 0 0 0
~0 0 ~0
0 ~0 0
0 ~0 ~0 0
~0 ~0 ~0 ~0 ~0 ~0 ~0 ~0
3 1
3 2
2 1
~1 1 ~1
~2 2 ~2
~3 3 ~3
1 1 1 1 1 1 1 1
2 2 2 2 2 2 2
3 3 3 3 3 3

The first line prevents ’off-blocks’ to be of size 5 or more. The next line prevents ’off’
blocks to be of size 1.

The third line prevents work blocks of size 1. The fourth line excludes work blocks of
size 2. Together with the previous line, the constraint that work blocks must be at least
of length 3 is modeled.

The fifth prevents work blocks to be of size 8 or more.

The next 3 lines forbid combinations of different work blocks to come after each other
without a day off. The last 3 lines define the minimum and maximum block size of
specific shift types.

The model we created above can be solved within approximately 3 seconds when we
select the option ’All solvers in parallel’. This result is interesting, as it is comparable to
other solving techniques [TM11]. In figure 4.4, we can see the model and solution for
this instance.

We can thus conclude that it is possible to model an instance of this problem and solve
it within reasonable time. The modeling process itself was quite straight forward, since
we could use the ’Number of occurrences’ constraint and the patterns were easily defined
using the ’Cyclic forbidden pattern’ constraints. One further extension of the framework
could be an interface that allows the specification of patterns in a graphical instead of
text based way.

44

4.4. Rotating Workforce Scheduling Problem

Figure 4.4: The model and solution for the instance 8 of the rotating workforce scheduling
problem.

The actual code of the model created is somewhat comparable to the model created
others [TM11]. In fact, our approach of ’forbidden patterns’ and the language used to
model the patterns is somewhat similar to the existing language by [TM11].

For further evaluation, we tested our framework on all other instances from [Mus05] as
well. In table 4.2, one can see the runtimes in seconds for each instance. A value of
>1000 denotes that we were not able to solve the instance within 1000 seconds. The
column captioned with ’Runtime with fixed start’ denotes the runtimes for the model
where some value is fixed as first variable to eliminate symmetric solutions. For example,
if there is a demand of shift 1 of at least 1, we set the very first variable to one. As can
be seen, this reduces the runtime in some cases. In general, the results and comparable
to other solving methods (see [EM17]).

45

4. Evaluation

Table 4.2: The runtimes for 20 rotating workforce scheduling instances

Instance No. of workers Runtime in seconds Runtime with fixed start
1 9 <1 <1
2 9 <1 <1
3 17 <1 <1
4 13 <1 <1
5 11 <1 <1
6 7 <1 <1
7 29 <1 <1
8 16 <1 <1
9 47 >1000 >1000
10 27 <1 <1
11 30 >1000 >1000
12 20 143 3
13 24 202 <1
14 13 <1 <1
15 64 >1000 >1000
16 29 <1 <1
17 33 <1 <1
18 53 <1000 <1
19 120 <1 <1
20 163 <1000 <1000

4.5 Magic Hexagon
We chose this problem because it is not as common as Sudoku or 8-queens but also an
interesting mathematical problem. This problem is a number assignment problem with
additional constraints. The formal definition is the following:

Definition 5. ’A magic hexagon of order n is an arrangement of close-packed hexagons
containing the numbers 1, 2, ..., H(n−1), where Hn is the nth hex number such that the
numbers along each straight line add up to the same sum. In the magic hexagon of order
n=3, each line (those of lengths 3, 4, and 5) adds up to 38.’ [Wei17].

We will demonstrate the common variant where n = 3. Modeling the problem is straight
forward. We start by creating a grid of size 5∗5. The domain of the variables is {1, ..., 19}.
We do not need the first and last variable in the first and last row. Further we do not
need the first variable in the second and second to last row. We can fix those variables to
0 by hand (see previous chapter). The other variables are selected and an ’All-different’
constraint is created.

It then remains to add some ’Custom sum constraints’ to fix the sum of the variables in
the rows, columns and diagonals to 38. This process is not complicated but tedious.

46

4.6. TSPTW

Solving this model is a matter of less then a second, which is not surprising since the
number of variables that we use is only 19.

We can observe the following: It is possible to model the problem within our framework.
The quality of the model is acceptable, as it is possible to solve it within a fraction of a
second with all solvers.

The modeling process is intuitive albeit not that fast as other approaches (e.g. specification
via code) as a lot of constraints have to be created individually. An extension of the
framework could be the following: Instead of a grid it could be possible to create variables
in other shapes and even freely arranged in the 2d space. A selection could be done in a
’lasso’-like manner (see also: [LH11]).

There may be different formulations of this problem, but most models3 look very much
like our generated model.

4.6 TSPTW

The Traveling Salesperson Problem with Time Windows (short TSPTW) is a generaliza-
tion of the Traveling Salesperson Problem that incorporates time constraints for each
location.

The description of the problem is:

Definition 6. ’In the Traveling Salesman Problem (TSP) a set of N cities (one of which
is the depot) and their pairwise distances are given. The task is to find the shortest route
that starts and ends at the depot and visits each city only once. In the Traveling Salesman
Problem with Time Windows (TSPTW), additionally to the TSP, each city has to be
visited and left within a given time interval.’ [EGCT13].

First, we will show how to model the problem. We will use a smaller instance that was
already used in the academic context. As we have defined a constraint in our framework
that can directly use distance-matrices from a csv-file, the López-Ibáñez-Blum format4

will be used in our example. The concrete instance that is used is called ’LIB_test.tsptw’
and can be found in the link provided the footnote.

The first step is to create a 6∗1 grid of variables named C1,1 to C6,1 with domain {1, ..., 5}.
Those variables will represent the order that the cities are visited. The first and the last
variables are fixed to the depot, namely the value 1. Then, an ’All-different’ constraint is
created for the first 5 variables. This will ensure that all cities are visited once.

Then, 6 variables named L1,1 to L6,1 are created to reflect the distance between consecutive
cities in the order that is defined in the first 6 variables. For this, we create a ’Route’

3http://www.csplib.org/Problems/prob023/models/ accessed on 22.10.2017.
4https://acrogenesis.com/or-tools/documentation/user_manual/manual/tsp/first_tsptw_implementation.html

accessed on 22.10.207

47

4. Evaluation

constraint between the first two variables (C1,1, C2,1) in the order and set the route
length to be equal to L2,1. We can duplicate this constraint horizontally such that all
Li,1 represent the distance between the locations Ci−1,1 and Ci,1.

An additional 6 variables called T1,1 to T6,1 are created to represent the total time after
each city (the time when a city is left to the next one). This value Ti,1 is calculated to
be larger than the sum of the previous time Ti−1,1 and the distance to the next location,
Li,1. The reason that the value can by anything greater than the sum and does not have
to be exactly the sum is that it may be favorable or even necessary to wait and thus
’waste’ time. We thus use a ’Custom sum constraint’ and set the operator to ’>=’. This
constraint has to be created once and can then duplicated using the drag label to all
other Ti,1.

It remains to show how the time-constraints are modeled. We want the leave time of
each city Ci,1 to be greater or equal to the earliest possible leave time for that city (that
value is given in the instance file) and the leave time to be less or equal to the latest leave
time for that city (that value is also given for each city). We can model this restriction
with a ’forbidden pattern’ constraint. We select the first unfixed city C2,1 and the leave
time T2,1 using the following configuration of the ’forbidden pattern’ constraint:

2 <197
2 >216

3 <147
3 >165

4 <242
4 >254

5 <56
5 >67

The intended meaning is the following: each line forbids a specific pattern to occur. Each
pattern describes one time constraint for one city. The first line for example can be
understood the following way. We do not want the pattern 2 < 197 to occur in the
ordered variables C2,1 and T2,1. This means, it is forbidden that the city is 2 and the
leave time for that city is less than 197 (as this is demanded so in the instance file).

We can duplicate this constraint to all other cites and have thus modeled the time
constraints. The now completed model can be seen in figure 4.5.

If one wanted to the model the decision variant of this problem (Is there a route that
satisfies all constraints?) we are done. We can change this to the optimization variant
(What is the route with the earliest arrival time at the depot after visiting all cities?)
easily. We click to the time at the depot at the end, namely T6,1 and select ’Minimize
this variable’.

48

4.7. Traveling Tournament Problem

Figure 4.5: The Travelling Salesperson with Time Windows Problem can be modeled
with our framework.

Using the solve function ’All solvers in parallel’ we find the optimal solution for this
problem within less then a second.

We have shown that we can in fact model the TSPTW within our framework. A result
for smaller instances can be achieved in reasonable time (approximately 1 second on our
machine).

The modeling process is in our opinion a little bit complicated, as there are a lot of
different constraints. It is also necessary to decompose the problem into subproblems.
Our framework could be improved by providing more high level constraints that are
specialized for these kinds of problems.

The generated model is quite straight forward and relatively easy to understand. It may
however be the case that the use of the ’forbidden pattern’ constraint is not optimal,
as the number of constraints needed for modeling the time windows is quadratic in the
number of cities.

4.7 Traveling Tournament Problem
The Traveling Tournament Problem is closely related to the Traveling Salesperson Problem
(see above) and various tournament scheduling problems. In fact, the problem deals with
teams that play in different locations. The problem description is:

Definition 7. ’Given n teams with n even, a double round robin tournament is a set of
games in which every team plays every other team exactly once at home and once away.
A game is specified by an ordered pair of opponents. Exactly 2(n−1) slots or time periods
are required to play a double round robin tournament. Distances between team sites are
given by an n by n distance matrix D. Each team begins at its home site and travels to
play its games at the chosen venues. Each team then returns (if necessary) to its home
base at the end of the schedule. Consecutive away games for a team constitute a road
trip; consecutive home games are a home stand. The length of a road trip or home stand
is the number of opponents played (not the travel distance).’ [ENT01].

49

4. Evaluation

Easton et. al. [ENT01] also described how constraint programming can be used to solve
this problem. They note that even instances of size 6 are already challenging. A recent
method for the ’Traveling Tournament Problem’ problem is a combination of integer
programming and local search [GW16]. The authors claim that their approach was able
to find many new best known solutions for larger instances.

We use a small instance with 4 cities/teams for our demonstration purposes5.The distances
can be also found in the footnote.

We can model this problem with our framework in the following way: We create a grid
of 4 ∗ 6 variables that will represent the solution in the same way that Michael Trick (see
footnote) used on his website. The domain of the variables will be {0, ..., 4}. The value 0
represents that the respective team plays at home. The values 1, ..., 4 represent that a
team plays a road game against the respective team. Since each team starts and ends
their route at home, we will add additional 4 variables fixed to 0 above our grid and 4
variables fixed to 0 below our grid that represent the route.

Below all those variables we create 4 variables that represent the sum of each route of
each team. The domain of those variables is {0, ..., 99999} as the route can have arbitrary
length. We chose the upper bound of the domain to be 99999 as this value is as least as
large as 7 times the maximum of any distances. Then, another variable is created that is
equal to the total travel time of all teams (again with large domain). That variable is
selected to be minimized.

To correctly calculate the route length, we create a route constraint for each team selecting
the variables that represent the route and the start and end (0). The distances can be
imported from the csv given in the instance. Unfortunately, each route constraint is
slightly different. The distance matrix has to be adapted such that the distances from 0
are equal to the distances from the current team. For team 1 for example, all distances
from 0 are equal to all respective instances from 1, as 0 has the indented meaning of a
home play. The sum of the route is set equal to the variable that represents the length of
the route for each team.

It remains to add constraints such that the schedule is valid. First, the number of
occurrences of 0 in the schedule of each team (without start and end) is 3. Furthermore,
the number of each of the numbers 1, ..., 4 is less or equal to 1. The number of occurrences
of the own location (e.g. value 1 for team 1) is always 0, as a team cannot do a road
game against itself.

Then we will model the fact that a team can only play a road game against another team
if and only if that other team plays at home. We will create another 4 ∗ 6 variables with
the domain {0, 1} that represents if a team is played against in a road game. To model
this, we create a ’number of occurrences’ constraint. The number of occurrences of the
values 1, .., 4 is equal to the respective variable in the new grid and thus between 0 and 1.
We then create ’forbidden pattern constraints’ with the following content:

5http://mat.tepper.cmu.edu/TOURN/ accessed on 20.10.2017

50

4.7. Traveling Tournament Problem

~0 1
0 0

The first line states that if a city plays a road game, it cannot be played against in a
road game (as the city is on tour). The second line states that if a city plays at home,
another team must play against that city as a road game.

The constraint that no more than three consecutive home or road plays are allowed is not
needed in this instance (as there are only a total of three home and three road plays) but
could be modeled with a ’forbidden pattern’ constraint containing the tour of each team:

~0 ~0 ~0 ~0
0 0 0 0

The first line states that 4 (or more) consecutive road games are forbidden, the second
line states that 4 (or more) home plays are forbidden.

The only thing now remaining is the fact that repeaters are forbidden. This means, a
team must not play against the team of the previous day.

In our model, incorporating this restriction is quite complicated. A quadratic (in the
number of teams) number of constraints has to be created manually. A ’forbidden pattern
constraint’ is created for each pair of teams and the first two days. These constraints can
then be duplicated to the rest of the days.

The final model can be seen in figure 4.6.

The model can be solved within less then a second, which is not surprising given that
the instance contains only four teams. We also created a model for a larger instance
containing 6 teams that was solved within 75 seconds on our machine.

Summarizing, we can state that it is possible to model the Traveling Tournament Problem
with our framework. The quality of our model is reasonable, as we were able to solve
smaller instances quite fast.

The modeling process is very tedious and probably a lot slower than creating the model
in code. As we found out in the evaluation of the previous problems, models that
require various different constraints are less suitable for our framework. Even adding
additional high-level constraints would not solve the problem that the modeling process
gets unhandy with increasing complexity.

Looking at existing models for this problem6, we can state that our approach has many
additional variables that are not needed with other approaches. It will very likely be the
case that our approach is slower on larger instances, as the solution space is larger.

6http://csplib.org/Problems/prob068/models/TTPPV.mzn.html accessed on 20.10.2017

51

4. Evaluation

Figure 4.6: An instance of the Traveling Tournament Problem modeled within our
framework.

4.8 Simple Teacher Scheduling

Teacher Scheduling is an assignment problem for the schedule of a school. In the simple
variant, only one class is scheduled at a time.

The problem is defined in the following way: Each course (or teacher) has a specific
domain, meaning that the class can only take place on specific times and days. There
are restrictions that some courses must take place blocked and some courses have to be
held separately (on a separate day for example).

All classes have to be assigned according to the constraints. Additionally, the number of
courses that have priority (for example mathematics and languages) that take place in
the morning should be maximized.

We will model this problem in the following way: For every possible date a lesson can
take place a variable is created. We thus create a 7 ∗ 10 grid, meaning each lesson can
possible take place from Monday to Sunday from 8:00 to 18:00. The domain of the
variables is as large the number of different courses or teachers we want to schedule plus
one, in our case 11 if we have 10 courses. We thus set the domain to {0, ..., 10}. The
value 0 represents that the slot is unused (empty). If we want to exclude lessons to take
place on the weekend in beforehand, one can either create a smaller grid with less slots

52

4.8. Simple Teacher Scheduling

or fix the variables to 0.

Next, we will add the constraints that each course can only have specific dates or times.
For this, we also need the number of times a specific course should be held per week.

We select all variables that represent slots that a single course (e.g. mathematics) can
be held and create a ’Number of occurrences constraint’. We state that the number of
occurrences of 1 (as this is the first course we model) has to be equal to 4 (the number
of times mathematics is held per week).

If we do this for all other courses, we can be sure that all courses are assigned according
to the time and date restrictions. We add another constraint where we fix the number of
times the value ’0’ is assigned such that no superfluous assignments are done to empty
slots.

We will continue by creating constraints for the restrictions that some courses only appear
blocked or must not be held on the same day.

If a course has to occur in blocks of two, a ’forbidden pattern constraint’ with the
following content is created for each day:

~1 1 ~1

Above constraint will prevent that the course that corresponds to value 1 occurs as a
single (non-blocked) lesson.

If we want to achieve the opposite, namely that a course can only appear as a single
lesson, we can create the following ’forbidden pattern constraint’:

1 1

Above constraint will prevent the course 1 to appear directly after itself. If we wanted
to exclude a course to appear more than once per day, we can create a ’Number of
occurrences constraint’ and set the number of occurrences of 1 for example to be at most
1.

We can exclude small ’holes’ in the schedule in a similar way. If we create a ’forbidden
pattern constraint’ with the content

~0 0 ~0
~0 0 0 ~0

Above configuration has the following intended meaning: The first line prevents ’holes’
in the schedule of size one, i.e a single empty slot between two lessons. The second line
prevents ’holes’ of size two. In any solution of the model empty slots between courses
must now be at least 3 hours long.

It remains to show how we optimize the schedule such that the number of courses with
priority are mostly in the morning.

This can be done in the following way: All variables that count as morning are selected
(e.g. the first 3 slots of each day). Then, a ’number of occurrences’ constraint is created.

53

4. Evaluation

Figure 4.7: Simple Teacher Scheduling can be modeled and solved within our framework.

The number of occurrences of 1 (mathematics) must be equal to some fresh variable. The
same is done for all other priority courses. Then, a variable that represents the sum of
all those counting variables is created. By clicking right on that variable, one can select
’Maximize this variable’.

The resulting solution will then be a solution that satisfies each ’hard constraint’, e.g.
respecting the possible dates for each course and will also be optimal in terms of scheduling
the priority courses as early as possible. In figure 4.7, one can see the completed model
and the solution. With the function ’All solvers in parallel’, we were able to solve the
satisfiability variant of the problem within less than a second on our machine. For the
optimization variant, it took approximately 10 minutes to get to the optimal solution.

If one wants to extend the problem to a more advanced model incorporating multiple
classes, one could do this in the following way: The slots for all classes are created
separately, Then, the variables are used to specify specific courses like mathematics.
Constraints are created to account for the fact that for any given time only a specific
number of teachers are available.

Since we used only a total of 50 variables (we fixed the weekends to all 0), solving the
model was done in less than 10 seconds with all solvers (Gecode, Chuffed, OR-Tools).
We conclude that our framework is suitable to model such school scheduling problems.

54

4.9. 3-SAT

4.9 3-SAT

The ’Boolean Satisfiablity Problem’ is of big importance in the field of computer science,
as it can be used to prove NP-hardness of a problem. Here, we will show how an instance
of ’3-SAT’ can be modeled within our framework. We have chosen ’3-SAT’ over the
general ’Boolean Satisfiability Problem’ because in ’3-SAT’, the clause length is fixed
to 3 and this makes it easier to model with our framework. Nonetheless ’3-SAT’ is
NP-complete and thus can be used to prove the NP-hardness of problems.

Definition 8. Given a SAT-formula F , where each clause has a length of 3, is F
satisfiable?

Suppose we have an instance of ’3-SAT’ with 10 clauses and thus a maximum of 30
different variables. The instance can be modeled in the following way:

A grid of variables of size 3 ∗ 10 is created. Each variable has the domain {0, 1}. Then,
for each different variable vi in the original instance, the following is done:

1. All variables (in our framework) that represent the positive occurrence of vi are
selected and an ’All equal constraint’ is created.

2. All variables (in our framework) that represent a negative occurrence of vi are
selected and an ’All equal constraint’ is created.

3. If there are both positive and negative occurrences of a variable vi: One variable
that represents a negative occurrence of vi is selected and a variable that represents
a positive occurrence of vi is selected and an ’All-Different constraint’ is created.

4. For the first clause (3 variables) a ’Custom sum constraint’ is created, stating that
the sum of the variables must be at least 1. This constraint is duplicated for all
other clauses.

The sum constraint forces each clause to have at least one variable assigned to 1, which
corresponds to the truth assignment ’true’. The other constraints (’all equal’) force all
variables that occur more than once to have a consistent assignment. There is a solution
for the model if and only if there is a solution for the original ’3-SAT’ instance, as we
can show: A valid solution for the model is also a model for the original instance since
each variable has exactly one assignment and each clause contains at least one literal
that evaluates to ’true’ (because the sum of the truth assignments is specified to be 1
or more). On the other hand, if there is a model for the ’3-SAT’ instance, a respective
variable assignment for our model exists that satisfies all constraints.

Above proof (sketch) can be used to show that we can solve arbitrary concrete instances
of the 3-SAT problem within our framework.

55

4. Evaluation

Modeling this problem is interesting in more a theoretical than a practical sense, as
modern SAT solver would be faster at solving. Nonetheless, it is noteworthy that instances
of the 3-SAT problem can be solved within our framework.

4.10 Creating Models for Variable Input
One of the disadvantages of our framework is the fact that it is - at least on first sight -
not suitable for creating models that solve more than a single fixed instance. An example:
it might be useful to have a solver that can solve scheduling problems for any amount
of workers, machines and working days without recreating the whole model for each
individual configuration.

Our framework relies on the fact that a single solution of fixed format is desired. Models
that work with variable input on the other hand often have different outputs depending
on the input. The output for a n ∗ n Sudoku for example is an n ∗ n matrix containing
the solution.

In this section we will present two examples how we can overcome these limitations.

4.10.1 N-queens

This problem is a generalization of the 8-queens problem that we already have modeled
above. The main difference is now that we will create a solver that can provide solutions
for different given n. While it is in principle possible to create a solver within our
framework that can solve arbitrarily large n, we will show how to create a solver for any
given n between 1 and 14.

The first step is to create the solution space for the largest n. In our case we will create a
14 ∗ 14 grid. The sum of variables of each row and each column must be less or equal to
1, regardless of n. Our idea is it to force the solution for a given n to be in the upper left
corner. We thus create additional 2n variables counting the number of queens in each
row and column. We create constraints such that the ordered variables that represent
the counting above must be descending. Then, we create another variable representing n
and state that the total sum of the complete grid must be equal to n. The last step is to
create constraints to force the sum of all diagonals to be at most 1.

The finished model can be seen in figure 4.8.

If we then fix the variable representing n to any value between 1 and 14, the solution will
be a valid solution for the respective problem. In figure 4.8, n was set to 4. The resulting
solution is a solution for the 4-queens problem. If we try other values, we quickly find
out that there is a solution for n = 1, there is no solution for n = 2 and n = 3 and there
is a solution for any n above 3. All configurations from n = 1 to n = 14 were solved in
less than a second on our machine.

In theory it would be possible to create a model for instances of any maximal size. It
is however the case that the framework gets unpractical for large models with many

56

4.10. Creating Models for Variable Input

Figure 4.8: A solver that solves the n-queens problem up to 14 can be created within our
framework.

constraints. Here, we observed that our framework shares a disadvantage that can be
found in many graphical programming frameworks. As the complexity of the problem
rises, the more is screen space an issue. While n-queens for n up to 14 was no problem
on our screen, instances up to 100 could only be solved with a lot of scrolling.

4.10.2 Rotating Workforce Scheduling

To create a model that can solve the problem with a variable number of workers, we
again first have to fix the biggest instance we want to solve. We state that we want to
solve instances with a planning horizon of 7 days and 1, ..., 14 workers. We thus create
7 ∗ 14 variables called W1,1, ..., W7,14 with domain {0, ..., 3}. As before, each variable Wi,j

represents the type of a shift, 0 stands for a free day and 1, 2, 3 for the day, evening and
night shift.

Additionally, we create a variable for each worker that represents if the worker is active.
These variables will change depending on the number of workers of the current instance.

57

4. Evaluation

14 variables called A1,1, ..., A1,14 with domain {0, ..., 1} are thus created. We create
constraints that force the values of each variable A1,j to be bigger than the value of
A1,j+1. This means, the active workers will be the ones that appear first in the grid
W1,1, ..., W7,14.

To connect the variables representing if a worker is active with the actual assignment, we
create another 14 variables that count the number of zeros (days off) that appear in the
schedule of a specific worker. We will call those counting zero variables CZ1,1, ..., CZ1,14.
We then create a ’forbidden pattern constraint for each pair (A1,i, CZ1,i). The content of
the constraint is:

0 ~7

This means that if the worker is inactive (0), the count of zeros (days off) must be exactly
7. We create another single variable called TW1,1 that counts the number of active
workers. This variable can then be fixed to specify the instance. If it is for example set
to 9, exactly 9 workers from top to bottom will be active and all other workers will have
all shift assignments set to 0.

We then create a grid of 7 ∗ 3 variables that represent how often a shift has to occur each
day. The ’Number of occurrences’ constraint is used to achieve this. The variables can
then conveniently be fixed using our framework.

To configure a specific instance of the Rotating Workforce Scheduling Problem, the
procedure is the following. First the variable TW1,1 is fixed to the number of workers of
the instance. Then, the variables representing how often a shift has to appear each day
are fixed according to the instance.

The last step is to create a ’Forbidden pattern’ constraint selecting all active workers. The
content of this constraint will be dependent on the instance specification. For example,
one could enter

3 2
3 1
2 1

To forbid some pattern of shifts to occur. The final model that is already configured for
instance 17 can be seen in figure 4.9.

4.11 Finding the Right Solver

Finding the right solver for a model is not an easy task. There is even a challenge whose
aim it is to compare different MiniZinc solvers with respect to various problem [SBF10].

While using our framework, we have observed that using the option ’All solvers in parallel’
is a sensible choice. The total runtime of running 4 solvers in parallel until the first solver

7http://www.dbai.tuwien.ac.at/staff/musliu/benchmarks/ accessed on 20.10.2017

58

4.11. Finding the Right Solver

Figure 4.9: A model for the Rotating Workforce Scheduling Problem that is configurable
for different instances.

59

4. Evaluation

finishes is on average approximately 2 times the runtime of just the fastest solver. This
overhead is in our opinion a good trade-off to avoid cases as good as possible where a
solver does not find a solution at all.

We did not do further research on this topic, as solver selection is in principle a problem
that is independent from our framework.

4.12 (Un-)Suitable Classes of Problems
In the previous section we have seen a number of problems for which the framework
is suitable for. In some cases, our framework provided an intuitive way of graphically
modeling the problem instance.

All those problems that our framework was well suited for have the following properties
in common:

1. There is a natural tabular or grid-like problem representation.

2. The total number of different constraints is as low as possible. This means, that for
a problem that requires a lot of different constraints, the graphical framework we
proposed quickly gets visually cluttered. In all above examples, we used a maximum
of 10 different types of constraints (but those can occur more than once).

3. The constraints have some symmetry regarding the grid representation. This means,
one can save time by duplicating the constraints instead of creating all constraints
individually.

4. The constraints that are required to model the problem are ’low level’, meaning
that they are in the set of commonly used CP constraints [RVBW06].

5. The total number of variables of the instance is relatively small (<100). This allows
the model to fit on a average computer screen without scrolling.

6. The constraints are of low complexity, meaning that there is no combination of
different constraints. An example of a constraint that would be difficult to model
with our framework would be the following: ’If the variables A1, ..., Ai are all
different, then the variables B1, ..., Bj must be all at least as big as Cj .

7. The domain of the variables is fixed, meaning for a specific instance, one can deter-
mine the minimum and maximum possible value for each variable in beforehand.

A concrete example, for which our framework will be unsuitable is the ’Low Autocorrela-
tion Binary Sequences’ Problem [Pre00]. In this problem, the goal is to find a binary
sequence that minimizes a given formula.

While it is possible to model this problem in our framework using the ’Custom constraint’,
there is no advantage in comparison to just programming plain MiniZinc Syntax. The

60

4.12. (Un-)Suitable Classes of Problems

model for this problem consists of just 3 lines if formulated concisely8, meaning the
approach of specifying the model in a written way is likely to be the most efficient one.

8http://www.csplib.org/Problems/prob005/models/LowAutocorrelationBinarySequences.essence.html
accessed on 22.10.2017

61

CHAPTER 5
Conclusion

In this thesis a new graphical environment for creating constraint programming models
has been proposed.

The main goal of this environment is to allow users to create models of some problems
without having to know a written constraint programming language. For this, we present
a grid-like approach to arrange variables and constraints in the 2D space. The variables
and constraints are created using common graphical user interface elements such as
selecting elements with a mouse and the context menu. Various features are included to
make the modeling process as simple as possible. We have found a way to model common
subproblems such as routes in a simple graphical way.

In the evaluation we have found out that this environment can be successfully used
to model a variety of common constraint programming problems such as the rotating
workforce scheduling problem, the social golfer problem and the traveling salesperson
problem with time windows. In some problem instances, we achieved runtimes that are
comparable to existing methods.

In general, the framework is more suitable to model fixed instances of problems, as the
grid itself is static. It was however also possible to create models that can be configured
to solve multiple different instances of problems without having to recreate the complete
model. One of those problems is the n-queens problem.

As with other graphical programming environments, we have noticed that with increasing
complexity of the problem, screen space becomes an issue. On a average sized (24
inch) computer monitor, approximately 375 variables can be displayed at once. If more
variables are used, parts of the model can be accessed by scrolling.

We have come to the conclusion that the framework is most suitable for modeling
small instances with low complexity, as such instances can be presented on a computer
screen without scrolling. Furthermore, smaller models can be solved without advanced

63

5. Conclusion

refinements like symmetry breaking of the model. We therefore suggest that our framework
could be used for teaching and learning purposes to demonstrate the general idea of
constraint programming with simple examples. We can also see the framework being
beneficial for sketching and debugging purposes. It could make sense to use the framework
to quickly model different constraint programming formulations, as one of the aims of
our environment is to allow fast and simple modeling.

Future work on this topic could be experimental testing with students to see if the
framework can be a benefit in teaching the topic of constraint programming. It would
also be interesting to see if further refinements of our graphical environment, like additional
high level constraints, could make even more problems solvable within our framework.
It also would be interesting to see if automatic symmetry breaking methods could be
included in our framework to make the solving process faster.

64

List of Figures

3.1 The solution representation of a scheduling problem. Recreated from the
paper: [PWW69] . 12

3.2 The main window of our implementation of the graphical constraint program-
ming framework. 13

3.3 The context menu allows creation of variables and constraints. 15
3.4 Some variables that were created in the grid. 16
3.5 The All-Different constraint (first row, green). 18
3.6 The forbidden pattern constraint can be used for defining undesired patterns

in sequences. 22
3.7 The route constraint allows modeling of various routing and distance problems. 27
3.8 Cells containing variables that are set as optimization goal are highlighted in

color. 29
3.9 The code view can be used to examine the generated code. 32
3.10 The number of cells and the width and height of the selected rectangle are

displayed. 32
3.11 The value of a variable in the solution is displayed in the corresponding cell. 34

4.1 Sudoku problems can be modeled within our framework. In red: variables
fixed by us. 37

4.2 The solved model shows one solution for the 8-queens problem. 39
4.3 The model and solution for the (20, 4, 5) social golfer problem. 41
4.4 The model and solution for the instance 8 of the rotating workforce scheduling

problem. 45
4.5 The Travelling Salesperson with Time Windows Problem can be modeled

with our framework. 49
4.6 An instance of the Traveling Tournament Problem modeled within our frame-

work. 52
4.7 Simple Teacher Scheduling can be modeled and solved within our framework. 54
4.8 A solver that solves the n-queens problem up to 14 can be created within our

framework. 57
4.9 A model for the Rotating Workforce Scheduling Problem that is configurable

for different instances. 59

65

66

Bibliography

[AB93] Allen L. Ambler and Margaret M. Burnett. Visual programming languages
from an object-oriented perspective. ACM SIGPLAN OOPS Messenger,
4(2):225, April 1993.

[Aze07] Francisco Azevedo. An Attempt to Dynamically Break Symmetries in the
Social Golfers Problem. In Recent Advances in Constraints, volume 4651,
pages 33–47. Springer Berlin Heidelberg, 2007.

[BA94] Margaret M. Burnett and Allen L. Ambler. Interactive Visual Data
Abstraction in a Declarative Visual Programming Language. Journal of
Visual Languages & Computing, 5(1):29–60, March 1994.

[Bar99] Roman Barták. Constraint programming: In pursuit of the holy grail. In
Proceedings of the Week of Doctoral Students (WDS99), pages 555–564,
1999.

[BAWD+01] Margaret Burnett, John Atwood, Rebecca Walpole Djang, James Reichwein,
Herkimer Gottfried, and Sherry Yang. Forms/3: A First-order Visual
Language to Explore the Boundaries of the Spreadsheet Paradigm. J.
Funct. Program., 11(2):155–206, March 2001.

[BS09] Jordan Bell and Brett Stevens. A survey of known results and research
areas for n-queens. Discrete Mathematics, 309(1):1–31, January 2009.

[CACM08] Broderick Crawford, Mary Aranda, Carlos Castro, and Eric Monfroy. Using
Constraint Programming to solve Sudoku Puzzles. pages 926–931. IEEE,
November 2008.

[CW01] Peter Chan and Georges Weil. Cyclical Staff Scheduling Using Constraint
Logic Programming. In Practice and Theory of Automated Timetabling
III, volume 2079, pages 159–175. Springer Berlin Heidelberg, 2001.

[Dec03] Rina Dechter. Constraint processing. Morgan Kaufmann Publishers, 2003.

[EGCT13] Stefan Edelkamp, Max Gath, Tristan Cazenave, and Fabien Teytaud.
Algorithm and knowledge engineering for the TSPTW problem. pages
44–51. IEEE, April 2013.

67

[EM17] Christoph Erkinger and Nysret Musliu. Personnel Scheduling as Satisfiabil-
ity Modulo Theories. In Proceedings of the Twenty-Sixth International Joint
Conference on Artificial Intelligence, IJCAI 2017, Melbourne, Australia,
August 19-25, 2017, pages 614–621, 2017.

[ENT01] Kelly Easton, George Nemhauser, and Michael Trick. The Traveling
Tournament Problem Description and Benchmarks. In Principles and
Practice of Constraint Programming — CP 2001, volume 2239, pages
580–584. Springer Berlin Heidelberg, 2001.

[FA03] Thom Frühwirth and Slim Abdennadher. Essentials of constraint program-
ming. Springer Science & Business Media, 2003.

[FFH+01] Pierre Flener, Alan M. Frisch, Brahim Hnich, Zeynep Kzltan, Ian Miguel,
and Toby Walsh. Matrix Modelling. In Proc. of the CP-01 Workshop on
Modelling and Problem Formulation, 2001.

[FSC04] François Fages, Sylvain Soliman, and Rémi Coolen. CLPGUI: A Generic
Graphical User Interface for Constraint Logic Programming. Constraints,
9(4):241–262, October 2004.

[GS00] Ian P Gent and Barbara M Smith. Symmetry breaking in constraint
programming. In Proceedings of the 14th European conference on artificial
intelligence, pages 599–603. IOS press, 2000.

[GW99] Ian P. Gent and Toby Walsh. CSPlib: A Benchmark Library for Constraints.
In Principles and Practice of Constraint Programming – CP’99, volume
1713, pages 480–481. Springer Berlin Heidelberg, 1999.

[GW16] Marc Goerigk and Stephan Westphal. A combined local search and integer
programming approach to the traveling tournament problem. Annals of
Operations Research, 239(1):343–354, April 2016.

[Har01] Warwick Harvey. Symmetry breaking and the social golfer problem. Pro-
ceedings SymCon-01: Symmetry in Constraints, co-located with CP, pages
9–16, 2001.

[Hil92] Daniel D Hils. Visual languages and computing survey: Data flow vi-
sual programming languages. Journal of Visual Languages & Computing,
3(1):69–101, March 1992.

[Hoe01] W. J. van Hoeve. The AllDifferent Constraint: a Survey. In Sixth Annual
Workshop of the ERCIM Working Group on Constraints, 2001.

[HOO03] Alan Holland, Barry O’Callaghan, and Barry O’Sullivan. A Constraint-
Aided Conceptual Design Environment for Autodesk Inventor. In Principles
and Practice of Constraint Programming – CP 2003, volume 2833, pages
422–436. Springer Berlin Heidelberg, 2003.

68

[HPS05] Brahim Hnich, P Posser, and Barbara Smith. Modelling and Reformulating
Constraints Satisfaction Problem. In Proceedings of the 4th International
Workshop Sitges (Barcelona), Spain, 2005.

[KCC+02] Caitlin Kelleher, Dennis Cosgrove, David Culyba, Clifton Forlines, Jason
Pratt, and Randy Pausch. Alice2: programming without syntax errors. In
User Interface Software and Technology, 2002.

[Lew07] Rhydian Lewis. On the Combination of Constraint Programming and
Stochastic Search: The Sudoku Case. In Hybrid Metaheuristics, volume
4771, pages 96–107. Springer Berlin Heidelberg, 2007.

[LH11] Jakob Leitner and Michael Haller. Harpoon selection: efficient selections
for ungrouped content on large pen-based surfaces. page 593. ACM Press,
2011.

[LP04] Gilbert Laporte and Gilles Pesant. A general multi-shift scheduling system.
JORS, 55(11):1208–1217, 2004.

[Mac77] Alan K. Mackworth. Consistency in networks of relations. Artificial
Intelligence, 8(1):99–118, February 1977.

[MG06] Todd Moon and Jacob Gunther. Multiple Constraint Satisfaction by Belief
Propagation: An Example Using Sudoku. pages 122–126. IEEE, July 2006.

[MGS02] Nysret Musliu, Johannes Gärtner, and Wolfgang Slany. Efficient generation
of rotating workforce schedules. Discrete Applied Mathematics, 118(1-2):85–
98, 2002.

[Mus05] Nysret Musliu. Combination of Local Search Strategies for Rotating Work-
force Scheduling Problem. In IJCAI-05, Proceedings of the Nineteenth
International Joint Conference on Artificial Intelligence, Edinburgh, Scot-
land, UK, July 30 - August 5, 2005, pages 1529–1530, 2005.

[MW17] Nysret Musliu and Felix Winter. A Hybrid Approach for the Sudoku
Problem: Using Constraint Programming in Iterated Local Search. IEEE
Intelligent Systems, 32(2):52–62, March 2017.

[NSB+07] Nicholas Nethercote, Peter J. Stuckey, Ralph Becket, Sebastian Brand,
Gregory J. Duck, and Guido Tack. MiniZinc: Towards a Standard CP
Modelling Language. In Principles and Practice of Constraint Programming
– CP 2007: 13th International Conference, CP 2007, Providence, RI,
USA, September 23-27, 2007. Proceedings, pages 529–543. Springer Berlin
Heidelberg, 2007.

[Pre00] Steven Prestwich. A Hybrid Search Architecture Applied to Hard Random
3-SAT and Low-Autocorrelation Binary Sequences. In Principles and

69

Practice of Constraint Programming – CP 2000, volume 1894, pages 337–
352. Springer Berlin Heidelberg, 2000.

[PWW69] A. Alan B. Pritsker, Lawrence J. Waiters, and Philip M. Wolfe. Multiproject
Scheduling with Limited Resources: A Zero-One Programming Approach.
Management Science, 16(1):93–108, September 1969.

[RM05] Arathi Ramani and Igor L. Markov. Automatically Exploiting Symmetries
in Constraint Programming. In Recent Advances in Constraints, volume
3419, pages 98–112. Springer Berlin Heidelberg, 2005.

[RN10] Stuart J. Russell and Peter Norvig. Artificial intelligence: a modern
approach. Prentice Hall series in artificial intelligence. Prentice Hall, 3rd
ed edition, 2010.

[RVBW06] Francesca Rossi, Peter Van Beek, and Toby Walsh, editors. Handbook of
constraint programming. Foundations of artificial intelligence. Elsevier, 1st
ed edition, 2006.

[SBF10] Peter J. Stuckey, Ralph Becket, and Julien Fischer. Philosophy of the
MiniZinc challenge. Constraints, 15(3):307–316, July 2010.

[Sim05] Helmut Simonis. Sudoku as a Constraint Problem. CP Workshop on
Modeling and Reformulating Constraint Satisfaction Problems, 2005, 2005.

[SLRGVC16] José-Manuel Sáez-López, Marcos Román-González, and Esteban Vázquez-
Cano. Visual programming languages integrated across the curriculum in
elementary school: A two year case study using “Scratch” in five schools.
Computers & Education, 97:129–141, June 2016.

[SP98] V. Solimene and R. Provencal. Menu control in a graphical user interface.
Google Patents, October 1998.

[TM11] Markus Triska and Nysret Musliu. A Constraint Programming Application
for Rotating Workforce Scheduling. In Developing Concepts in Applied
Intelligence, volume 363, pages 83–88. Springer Berlin Heidelberg, 2011.

[Vie15] Nelson Manuel Marques Vieira. Graphical constraints: a graphical user
interface for constraint problems, University of Madeira. University of
Madeira, 2015.

[Wei17] Eric W. Weisstein. Magic Hexagon. From MathWorld–A Wolfram Web
Resource. http://mathworld.wolfram.com/MagicHexagon.html, 2017.

70

	Kurzfassung
	Abstract
	Contents
	Introduction
	Motivation and Problem Statement
	Aims of this Thesis
	Main Results
	Structure of this Thesis

	Theoretical Background and existing Approaches
	Constraint Satisfaction Problems
	Constraint Optimization Problem
	Solving Constraint Satisfaction Problems
	MiniZinc Modeling Language
	Existing Approaches of Graphical Programming Frameworks

	A Graphical Environment
	Grid Representation of Problems
	Developing a Framework
	Model Creation and Solving
	Functionality and Limits

	Evaluation
	Sudoku
	8 Queens
	Social Golfer Problem
	Rotating Workforce Scheduling Problem
	Magic Hexagon
	TSPTW
	Traveling Tournament Problem
	Simple Teacher Scheduling
	3-SAT
	Creating Models for Variable Input
	Finding the Right Solver
	(Un-)Suitable Classes of Problems

	Conclusion
	List of Figures
	Bibliography

