
Exploratory Search on Expert
Knowledge Graphs

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Software Engineering & Internet Computing

eingereicht von

Armin Friedl, BBSc.
Matrikelnummer 1053597

an der Fakultät für Informatik

der Technischen Universität Wien

Betreuung: Ao.Univ.Prof. Dipl.-Ing. Mag.rer.soc.oec. Dr.techn. Stefan Biffl
Mitwirkung: PhD Marta Sabou

Wien, 30. November 2017
Armin Friedl Stefan Biffl

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.ac.at

Die approbierte Originalversion dieser Diplom-/
Masterarbeit ist in der Hauptbibliothek der Tech-
nischen Universität Wien aufgestellt und zugänglich.

http://www.ub.tuwien.ac.at

The approved original version of this diploma or
master thesis is available at the main library of the
Vienna University of Technology.

http://www.ub.tuwien.ac.at/eng

Exploratory Search on Expert
Knowledge Graphs

DIPLOMA THESIS

submitted in partial fulfillment of the requirements for the degree of

Diplom-Ingenieur

in

Software Engineering & Internet Computing

by

Armin Friedl, BBSc.
Registration Number 1053597

to the Faculty of Informatics

at the TU Wien

Advisor: Ao.Univ.Prof. Dipl.-Ing. Mag.rer.soc.oec. Dr.techn. Stefan Biffl
Assistance: PhD Marta Sabou

Vienna, 30th November, 2017
Armin Friedl Stefan Biffl

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.ac.at

Erklärung zur Verfassung der
Arbeit

Armin Friedl, BBSc.
Hasenstraße 38/5, 3430 Tulln

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 30. November 2017
Armin Friedl

v

Acknowledgements

First, I would like to thank my advisor Professor Stefan Biffl. His willingness to take
over the patronage of this diploma thesis is what made it possible in the first place. At
every step of the process he was within reach, answering any questions I had.

Furthermore, I want to thank Marta Sabou. The role she played for me during the course
of this diploma thesis cannot be overrated. She went above and beyond what anyone
could expect from an advisor. Her positive attitude and continuous support eased me
through the most difficult times during this last journey of my studies. Her expertise
and technical advice was of great help and always on point. I cannot imagine a better
advisor and mentor, neither professionally nor personally.

I also want to take this opportunity to express my gratitude to my family. To my parents,
for providing a secure foundation from where I could set out to the great unknown. They
never failed to let me feel warm and welcomed and were as much a role model as they
covered my back. And to my two lovely and caring sisters for the joy of growing up with
them.

Finally, I want to thank all those that accompanied me through any step of the way.
Unfortunately every acknowledgement has to reach an end and there will never be enough
room to do all of them the justice they deserve. I am however eternally greatful for every
single one of them and the roles they played in my life.

vii

Kurzfassung

Die Erkundung unserer Umgebung ist ein wichtiger Bestandteil der menschlichen Aktivtät.
Beginnend in unserer frühesten Kindheit, wird diese mit lernen, kognitiver Entwicklung,
sozialem Verhalten und Anpassungsfähigkeit assoziiert. Obwohl ein zentraler Bestandteil
unseres Verhaltens, wird der Erkundung kein angemessener Stellenwert im derzeit domi-
nierenden Such-paradigma beigemessen, welches sich auf die einmalige Extrahierung von
Elementen zu einer gegebenen Menge von Schlüsselwörter konzentriert.

Forschung im Bereich der explorativen Suche versucht dies zu ändern, indem ein Augen-
merk auf interaktives Suchverhalten wie das Lernen und die Erkundung der Suchergebnisse
gelegt wird. Für Maschinen ist es jedoch schwierig solche komplexen menschlichen Verhal-
tensweisen zu unterstützen. Dennoch hätte ein exploratives Suchsystem einen enormen
Einfluss. Unternehmen in der ganzen Welt haben Schwierigkeiten ihr intellektuelles Ka-
pital zwischen Mitarbeitern zu transferieren. Ein System, welches Mitarbeiter bei der
Exploration und dem Erlernen dieses impliziten Wissens hilft, ist nicht nur ein finanzieller
Vorteil, sondern trägt auch dazu dabei, dass Wissen nicht verloren geht.

Obwohl kürzlich vielversprechende Ergebnisse im Bereich des Semantic Web publiziert
wurden, ist wenig über mögliche Basisalgorithmen für explorative Suchsysteme bekannt.
Einer der hervorstechendsten Merkmale von Daten im Semantic Web ist deren Graph-
Struktur. Die Diplomarbeit untersucht zwei Arten von Graphalgorithmen und deren
Eignung für explorative Suche: Zentralitäts- und Ähnlichkeitsmetriken. Drei Algorithmen
wurden im kürzlich publizierten Gather-Apply-Scatter Modell für die Verwendung mit
Triple Stores neu formuliert. Zusätzlich wird eine neue Variation der auf Information
Content basierenden Ähnlichkeitsheuristiken vorgeschlagen. Eine kürzlich publizierte und
speziell für das Semantic Web entwickelte Ähnlichkeitsheuristik rundet den Mix ab.

Die Algorithmen wurden auf eine Unterart von semantischen Graphen — Expert Know-
ledge Graphs — angewandt, welche domänenspezifisches aber komplexes Expertenwissen
enthalten. Die Ergebnisse von zwei verschiedenen Expert Knowledge Graphs wurden
statistisch, wie auch qualitativ, in Hinblick auf explorative Suche evaluiert und vergli-
chen. Während die Zentralitätsmetriken relevante Knoten effektiv herausfiltern konnten,
war die Differenzierung weniger relevanter Knoten kaum gegeben. Die Ähnlichkeits-
metriken zeichneten sich durch hohe Anforderungen an die Struktur des modellierten
Wissens aus. Waren diese erfüllt, so wies die neu vorgeschlagene Ähnlichkeitsheuristik
die vielversprechendsten Resultate aus.

ix

Abstract

Exploration of objects and the environment around us is an important part of human
activity. Starting in our early infancy, it is closely associated with learning, cognitive
development, education, social behavior and adaptability. Although exploration is such a
vital trait, it did not receive proportional attention in today’s dominating lookup-based
search paradigms, which are typically only focused on the one-off retrieval of a set of
items matching a set of keywords.

Research in exploratory search set out to change that by including interactive search
activities like learning and investigation of the result space. But supporting such elaborate
human traits is notoriously hard for machines to do. However, being able to build a system
that assists users in exploratory search would have a tremendous impact. Businesses
around the world are struggling with the transfer of hard-built intellectual capital between
their employees. Helping them to explore and learn this expert knowledge is not only
financially beneficial, but also prevents knowledge from getting lost or stale.

Recent advances using semantic web technologies show promising results. Still, little is
known about which algorithms could be used at the core of an exploratory search system.
One of the distinguishing properties of data specified via semantic web standards is their
graph structure. This diploma thesis investigates two groups of graph algorithms and their
eligibility for exploratory search: centrality and similarity metrics. To that end, three
well-known algorithms were redesigned in the recently published Gather-Apply-Scatter
graph processing paradigm for use in triple stores. Additionally, a novel variation of
information content based similarity metrics is suggested. The mix is completed by a
recently published similarity heuristic specifically designed for the semantic web.

The algorithms were applied to a special kind of semantic graphs — Expert Knowledge
Graphs — featuring enterprise-scale, domain-specific but complex expert knowledge.
The results from two different expert knowledge graphs were evaluated and compared
statistically, as well as qualitatively, particularly with respect to exploratory search. While
the evaluated centrality metrics turned out effective in suggesting high-profile nodes, they
fell short on distinguishing between less important nodes. The tested similarity metrics
were found to make high demands on the structuring of the encoded knowledge. If met,
the newly suggested similarity heuristic turned out to yield the most promising results.

xi

Contents

Kurzfassung ix

Abstract xi

Contents xiii

1 Introduction 1
1.1 Aim of the Work . 3
1.2 Contributions . 5
1.3 Structure of the Work . 5

2 State of the Art 7
2.1 Expert Knowledge Graphs . 7
2.2 Exploratory Search . 9
2.3 Classification and Overview of Metrics 15
2.4 Selected Metrics . 18
2.5 Gather–Apply–Scatter . 24

3 Methodology 29

4 Implementation 31
4.1 Environment . 31
4.2 Implementation . 32

5 Results 53
5.1 Centrality Metrics . 53
5.2 Similarity Metrics . 61

6 Discussion and Conclusion 69

7 Summary and Future Work 75

List of Figures 79

List of Tables 81

xiii

List of Algorithms 83

Acronyms 85

Bibliography 87

CHAPTER 1
Introduction

Exploration of objects and the environment around us is an important part of human
activity. Starting in our early infancy, it is closely associated with learning, cognitive
development, education, social behavior and adaptability [AB70, WM76, Haz82, Ruf84].
Although exploration is such a vital trait, it did not receive proportional attention in
what is probably the most dominating search paradigm today: lookup-based information
retrieval [Mar06].

Lookup-based information retrieval is often associated with keyword-based search systems
such as Google1, Bing2, or Yahoo3. However, as an umbrella term it also contains more
formal techniques such as SQL-queries conducted on relational databases. All of them
have in common that the user must have a rather thorough understanding of the search
domain and the items he or she wants to retrieve [Mar06]. Therein lies also a subtle
difference between Exploratory Search (ES) and lookup-based information retrieval. The
existence of an item or answer in lookup-based systems is already known (or at least
presumed) beforehand. The exploratory searcher on the other hand has no, or only
a very vague, conception of the items he or she wants to explore. It is the task of
the Exploratory Search System (ESS) to assist the searcher in exploring the domain of
interest and suggesting relevant items [WR09].

Figure 1.1 shows one conceptual overview of ES according to [Mar06]. Learn and
Investigate are the defining activities of ES. However, they do not only depend on each
other. Interactions with the related activity Lookup are common too. The main problem
every ES systems tries to solve is to either assist the user during these activities or to
enable them in the first place.

1https://www.google.com
2https://www.bing.com
3https://www.yahoo.com

1

https://www.google.com
https://www.bing.com
https://www.yahoo.com

1. Introduction

Figure 1.1: Learn and Investigate as core activities of ES.
Arrows indicate interactions between the core activities as well
as with the related activity Lookup. Figure taken from [Mar06].

As already mentioned shortly in the abstract, one potential use case of exploratory search
is to support businesses and their employees to transfer knowledge accumulated over time.
Being able to exploit and manage such intellectual capital is a competitive advantage for
companies [KRSV14, AK12].

But this example stands for a much larger problem. The sophistication and accumulation
of knowledge in our modern world seems to accelerate only ever faster. Although the
legend of the last polymath is attributed to many, they all have one thing in common —
they are long dead. To keep up with this development it may be even essential in the
future to have assistance in exploring and learning a field of expertise to an expert-level
degree.

But already today, for many constant learning and investigation of expert knowledge
is a integral part of their lives. An ESS can help in bringing order to complex expert
knowledge and making it more accessible. It can also assist the aspiring expert to learn
more efficient in a more enjoyable way.

The increasingly widespread availability of semantic data opens new perspectives on ESS.
In particular, it has been argued that semantic elements are well suited to support explo-
ration [DLT+13, WKW+10]. Several W3C Recommendations (e.g. Resource Description
Framework (RDF) [CWL14] and Web Ontology Language (OWL) [MW04]) specify means
to capture data and its semantics in machine-processable formats. Leveraging these
semantic web technologies in ESS research became popular recently [MG14].

However, most research in this area concentrates on encyclopedic knowledge graphs
like Freebase4 or DBpedia5 [MG14]. But semantic web technologies are well suited for

4http://freebase.com
5https://dbpedia.org

2

http://freebase.com
https://dbpedia.org

1.1. Aim of the Work

encoding small-scale, complex and domain-specific expert knowledge too.

An example are Expert Knowledge Graphs (EKGs) such as the STAR knowledge base
created at TU Vienna in cooperation with Siemens [MES+17]. This knowledge base
encodes Software Architectural Knowledge collected over time at Siemens. Originating
from research on STAR, the question arose how the encoded knowledge could be leveraged
for ES. A seemingly simple question for, as it turned out, a deep, elaborate and largely
unsolved problem. Framed by the STAR research the following diploma thesis tries to
contribute a small part to the vast topic of ES.

1.1 Aim of the Work
ES has an „[. . .] unclear and open-ended definition“ [PGGT17]. Due to the intricate
nature of exploratory search, attempts at conceptualizing and defining ES on a generic
level are usually quite elaborated [PGGT17, WR09]. The very first question that arises
is therefore what ES actually is. A conclusive definition of ES does not seem viable
currently. However, in order to gain a better understanding of ES various approaches are
reviewed and integrated in Section 2.2.

One specialty of the STAR KB was the fact that there existed already a faceted user
interface developed in-house by Siemens. The fact that the user-facing part ought not to
be altered outside Siemens sprouted a research question (RQ) that was not yet addressed
much in current literature:

RQ–I. How can exploratory search on semantic web technologies be supported algorith-
mically?

Hence, the focus of the diploma thesis is on algorithmic methods for exploratory search
systems (in contrast to view-based approaches as in [MG14]). This excludes research that
is concerned with how to represent the data to the user for exploration (e.g. force-directed
layouts [DLT+13], or timelines for temporal data [HMK05]).

One proposed solution investigated in this thesis builds upon a special property of
semantic web technologies: The immediate representability as a graph structure. Several
heuristics were developed in previous research to estimate the importance of, or similarity
between, vertices in a graph. Some of these algorithms are reviewed for ES in Section 2.3.
Subsequently an in-depth examination of selected algorithms is provided in Section 2.4.

Most of the research on ES in the semantic web is in the form of case studies bound to a
single ontology only [MRDNDS10, Res95, Pas10]. Although this diploma thesis is rooted
in the STAR KB too, the hope was to find generic methods applicable to various similar
datasets. To this end two related questions are answered in this diploma thesis:

RQ–II. What are the characteristics of datasets like STAR that are required by the
algorithms?

In order to answer this question the notion of EKGs is introduced in Section 2.1. EKGs
are the accumulation of various concepts and terms from existing literature that were

3

1. Introduction

concentrated in a definition for a class of knowledge graphs defined via semantic web
technologies.

Additionally in Chapter 5 a close look at the results of the algorithms conducted on
two different datasets is taken. In particular, those cases where the results were not
satisfactory hint at preconditions that must be fulfilled by the datasets in order to be
supported by the algorithms.

Being able to state requirements that must be fulfilled by the datasets is important.
However, the closely connected question arises how well algorithms can be ported to other
datasets. This is a question seldom considered in current literature and leads directly to
the next research question investigated in this diploma thesis.

RQ–III. To what extent is it possible to transfer the investigated methods to different
datasets?

In order to answer this question, MusicPinta [DLT+13] was chosen as a second EKG
(besides STAR) for investigating the portability of the implemented algorithms to different
EKGs. MusicPinta itself is an aggregation of information about musical instruments,
artists, pieces of music and customer reviews from various sources. Consequently, the
evaluation in Chapter 5 was conducted on both datasets which confirmed the portability
of the algorithms to different EKGs.

One of the major components in the semantic web ecosystem are triple stores. Triple
stores are datastores implementing specifications of the semantic web stack like inference,
consistency checks, and the SPARQL Protocol and RDF Query Language (SPARQL).
Especially considering that most EKGs like STAR are used in an applied setting, porta-
bility may be also seen as being able to work in the prevalent environment these datasets
are embedded in. Hence, one goal was to build upon, and integrate with, existing triple
stores.

The intended means to access a triple store is via the provided SPARQL interface.
However, due to a lack of a loop construct many algorithms cannot be expressed via
SPARQL. Also, SPARQL is a graph query language not well suited for algorithms
demanding graph processing features.

Current ES research falls largely into two categories with respect to triple stores. Either
the proposed approaches are chosen to be well suited for a SPARQL based solution. Or
special prototypes are developed that effectively circumvent triple stores, thereby also
loosing their advantages. Unsatisfied with both of these solutions, the following research
question arose:

RQ–IV. How can we implement the proposed algorithms based on a common triple store?

Some of the proposed algorithms are well suited for a SPARQL based implementation
and can therefore leverage the common query interface of triple stores. However, many
of the general graph algorithms need efficient access to the graph structure integral to
every EKGs. Since triple stores can be considered black-boxes only accessible through
defined interfaces like SPARQL, this access has to be provided by the triple store.

4

1.2. Contributions

One potential solution was found in the Gather Apply Scatter (GAS) computational model
discussed in Section 2.5. At least one common triple store (Blazegraph 6) implements
this interface. In order to use it, the graph algorithms had to be reformulated in this
new paradigm. The newly suggested implementations are shown in Chapter 4.

Finally, the proposed solutions had to be evaluated too. Hence, the last major research
questions answered in this diploma thesis is:

RQ–V. Which of the proposed algorithms work best? What are potential shortcomings
and why?

To address these questions a statistical analysis of the computations yielded by the
implemented metrics was conducted in Chapter 5. To circumvent single observation
outliers the evalutations were performed on two different EKGs. Indeed, several interesting
results were found that could also spawn topics for further research in this area. Although
covering only a narrow notion of „best“, the results also indicate at an answer to this
last research question.

1.2 Contributions
By answering the aforementioned research questions, this diploma thesis provides several
contributions to advance the current state of ES on EKGs:

• The identification of algorithmic methods (metrics) that could potentially support
ES.

• An attempt at transferring the wealth of previous research on graph algorithms to
triple stores for ES in the semantic web via the GAS computational model.

• The first formulation of the Load and Accessibility (ACS) algorithms in GAS.

• An attempt at fostering the generalisation of ES methods over various datasets in
the semantic web by defining dataset-independent charactersitics of EKGs.

• A novel suggestion for an information content based similarity metric

• An statistical and qualitative analysis of the suggested metrics evaluated on two
different datasets.

1.3 Structure of the Work
This diploma thesis is structured as follows. Chapter 2 introduces the concepts used
during the rest of the work. This includes (i) the definition of EKGs by extracting impor-
tant characteristics of STAR and conglomerating various existing terms and definitions

6https://www.blazegraph.com/

5

https://www.blazegraph.com/

1. Introduction

in Section 2.1, (ii) a review of existing literature about ES in general and ES in the
context of semantic web technologies in particular in Section 2.2, (iii) an overview of
some metrics that are specifically designed, or could be leveraged, for ES (Section 2.3),
(iv) an in-depth presentation of selected metrics in Section 2.4, (v) a presentation of the
GAS paradigm for graph algorithms in Section 2.5.

In Chapter 3 the approach to implement and evaluate the metrics is presented and
discussed. Chapter 4 then presents the implementation of the selected metrics, particularily
with respect to their reformulation in GAS. The results obtained by running the metrics
on two different EKGs are analyzed statistically in Chapter 5.

In the second to last section, Chapter 6, the research questions are revisted again and dis-
cussed with respect to the results obtained during this diploma thesis. Finally, Chapter 7
summarizes the results and provides an outlook for future research topics in this area.

6

CHAPTER 2
State of the Art

2.1 Expert Knowledge Graphs
When we refer to Expert Knowledge Graphs (EKGs), we refer to a concept that is
not yet defined as such in current literature. During this section various related terms
from literature are integrated to arrive at a useful notion of EKGs. Additionally, the
technological basis — semantic web technologies — and their relation to EKGs are
discussed during this section.

The first perspective taken is that of human experts. The earliest modern study about
human experts is the analysis of expert agriculture judges by Hughes in 1917. Unfor-
tunately the original study became unavailable or lost. However, a later reanalysis of
the data pointed out the low correlation between expert judgement and actual crop
yields [Wal23]. This in turn sparked loads of research pinpointing various deficies of
experts and expert knowledge [Sha92].

There are probably more questions than answers when it comes to expert knowledge.
Nevertheless, two general — and usually agreed upon — properties may be claimed
here. First, expert knowledge is domain specific and constrained in its scope. Experts
do not neccessarily exhibit specific traits outside their field of expertise [Sha92]. Second,
knowledge of an expert within his or her domain of expertise is usually perceived as
highly structured, detailed and interconnected [Hof98].

Adapted to EKGs these two properties of expert knowledge can be summarized as follows.
EKGs are highly specific, often encoding a single, narrowly defined domain. Furthermore,
they are comparatively small (compared to e.g., general knowledge graphs). EKGs are
also deeply structured with sophisticated and detailed interconnections between their
domain concepts.

This definition of EKGs also adheres to an advantageous technical perspective. Due
to their constrained size (in comparison to web-scale general knowledge graphs) they

7

2. State of the Art

Subject
http://ekg.org/sub

Object
http://ekg.org/obj

Predicate
http://ekg.org/pred

Figure 2.1: Model of an RDF Triple consisting of a subject, a connecting predicate and
an object. All of them assigned to a unique label IRI.

allow for more demanding processing than would be possible if scaling would be of great
concern. The detailed structure potentially gives rise to the possibility of extracting
richer information.

Another important concept of EKGs is the graph structure the knowledge is encoded
in. Definitions of graphs can be found in every introductory text about the subject
(e.g., [Wil96]). In particular, EKGs are directed multi-graphs:

Definition 2.1.1 (Directed multi-graph). A graph G = (V,E) consists of a non-empty,
finite set V = V (G) of elements called vertices (or nodes), and a finite set E = E(G) of
edges. An edge e ∈ E(G) is a pair of vertices v1, v2 ∈ V (G). An ordered pair of vertices
(v1, v2) ∈ E(G) with v2, v2 ∈ V (G) is called a directed edge. An unordered pair of vertices
{v1, v2} ∈ E(G) with v1, v2 ∈ V (G) is called an undirected edge. If all edges e ∈ E(G)
of a graph G are ordered (unordered), G is called directed (undirected). A multi-graph
G′ = (V ′, E′) consists of a finite multi-set E′ = E′(G′) of edges. That is, it allows for
multiple edges between any two nodes v1, v2 ∈ V ′(G′).

Although EKGs could be left at the general notion given above, in this thesis they are
also tightly bound to a particular technology: the semantic web stack. On the knowledge
engineering level different specifications can be used for encoding knowledge. Examples
are the OWL [BCG+12] for (asserting) ontologies or Simple Knowledge Organization
System (SKOS) [BM09] for (unasserting) knowledge organization schemes1.

The higher level specifications mentioned above are built upon the RDF model [CWL14].
The core structure of RDF consists of subject-predicate-object triples Figure 2.1. A set of
triples naturally corresponds to a directed multi-graph (see Definition 2.1.1). Every node
and edge is assigned a label. For non-blank nodes the label must be an Internationalized
Resource Identifier (IRI) as defined in [DS05].

Note that, already from the definition of a multi-graph, the assigned labels have to
uniquely identify (i) a vertex globally, and (ii) an edge within the edge set between two
vertices2. However, IRIs do not uniquely identify edges globally. Which is also why we did
not define the graph a labeled directed multi-graph to avoid confusion with mathematical
definitions.

1SKOS schemes, in contrast to OWL, do not assert facts or axioms about the world, but rather just
state facts about the particular encoded knowledge organization scheme. For the lack of a concise term
we call this unasserting. For a discussion of the differences see [BM09].

2Due to the vertex set V (G) and any edge set e ∈ E(G) being sets

8

2.2. Exploratory Search

Due to its simplicity, RDF is a very general model. Flexible enough to represent various
information. In particular, it is flexible enough to provide the basis for OWL itself,
ontologies defined via OWL, and also further schemes leveraging the already defined
RDF representation of OWL to define different semantics for knowledge representation
such as SKOS. Note that all of these specifications, by having a defined representation in
RDF, are automatically representable as a graph structure too.

Taken together, an Expert Knowledge Graph is then defined as:

Definition 2.1.2 (Expert Knowledge Graph). An Expert Knowledge Graph is any
knowlege-encoding directed multi-graph based on the RDF model and semantic web
technologies. EKGs are specific, covering a narrowly defined domain of expertise. They are
small enough in size to allow for complex processing procedures to run in reasonable time.
Furthermore, EKGs are deeply structured with meaningful and detailed interconnections
between their domain concepts.

This definition is still purposefully open-ended. However, it should capture a class of well-
behaving knowlege graphs (with respect to processing methods), while still representing a
useful subset of all possible ones. The first two properties help to concentrate on a specific
technological stack. Every knowledge base defined in the semantic web stack fulfills these
properties (being based on RDF and in turn representable as directed multi-graph).

The size properties vary with advances in technology. It is useful to allow for investigations
of demanding methods without having to care for web-scale scaling issues. Nevertheless,
especially in the semantic web context, scaling is a desirable property.

The deep structure and meaningful, detailed interconnections are necessary to allow
for extraction of information. It is related to the folkloric dictum in machine learning:
“Garbage in, garbage out”. That is, a high-qualitative data basis with enough information
to work on is a basic necessitiy of almost all algorithms. What is an acceptable level of
quality may vary with the method in question and is a useful property to investigate.
It is, however, not a major concern for algorithms working on EKGs since a qualitative
data basis is axiomatically assumed.

One shortcoming of a majority of current research on ES in the semantic web is the focus
on special-purpose prototypes applicable to a single dataset only. Properties of EKGs
as defined above are often implicitely assumed. We deem this lack of generalizability a
gap in current research. By operationalizing a notion of EKGs, the investigations in this
diploma thesis are made independent from a specific dataset, relying only on a small
amount of assumptions.

2.2 Exploratory Search

As already discussed in Chapter 1, Exploratory Search (ES) is oftentimes contrasted with
lookup-based information retrieval, the currently predominant search paradigm. In the

9

2. State of the Art

first part of this section, research that tries to conceptualize ES is presented. Towards the
end, current literature that attempts to exploit semantic web technologies for exploratory
search is reviewed. Finally, the area of ES considered during this thesis is narrowed down.

Figure 2.2 shows the conceptualization by [Mar06] again. In this model ES consists of
the two main activities learn and investigate. These activities are interrelated as learning
is not cleanly separated from investigation and vice versa. Also, lookup based search can
be an integral part for both of these activites. The activities are further refined by terms
derived from Bloom’s taxonomy of educational objectives [BEF+56].

Lookup

Fact retrieval
Known item search
Navigation
Transaction
Verification
Question answering

Learn

Knowledge acquistion
Comprehension/Interpretation
Comparison
Aggregation/Integration
Socialize

Investigate

Accretion
Analysis

Exclusion/Negation
Synthesis

Evaluation
Discovery

Planning/Forecasting
Transformation

Exploratory Search

Figure 2.2: Learn and Investigate as core activities of ES. Intersections indicate over-
laps between the core activities as well as with the related activity Lookup. Figure
after [Mar06].

Although this model is conceptually simple, [WR09] criticizes that it does not capture
the process of an exploratory search well enough. A pictorial model of this process was
suggested as being akin to berry picking. In this analogy the search process consists of
finding and selecting small bits of information (just like berries on a bush). These small bits
constantly inform the search process to find new and refined bits of information [Bat89].

This is arguably also how lookup-based search systems are used. New lookups are
constantly conducted after refining and changing keywords according to newly found
information. An example is literature search where a searcher may start with entering

10

2.2. Exploratory Search

some general keywords about the topic of interest. After learning about prominent
authors in the field, the searcher looks up papers from these authors. ISBN and DOI
numbers retrieved from the bibliography sections may then be used to explicitly look up
further literature, etc. [Bat89]. Although this process can be simulated with lookup-based
information retrieval systems, it is not only a time-consuming but also a manual and
laborious activity. Ideally, an ESS would offload some of this work from the user to the
system.

The question may arise if there is even a difference between lookup-based and exploratory
search. A recent study tried to answer that. Users were asked to conduct different tasks
on a keyword-based search system. The tasks were selected according to Marchionini’s
model already presented in Figure 2.2. The predicted categorization of search and their
accompanying key tasks can be found in Table 2.1. A total of four different search
categories were suggested. Moreover, the transition from lookup to ES is suggested
to be a smooth one. Starting from core lookup, borderline lookup is already on the
edge to borderline exploratory. Core exploratory captures only clearly identifiable
exploratory tasks. However, according to the tested assumption the four categories are
still distinguishable [AGJ+16].

Several variables like gaze distribution, completion time and scroll depth were mea-
sured. Whereas gaze distribution showed no significant differences, completion time
and scroll depth were significantly higher for exploratory tasks. These results suggest
that there is indeed a difference between lookup and ES and that the current theoretic
conceptualizations resemble these differences [AGJ+16].

Goals Complexity Search Category Key Tasks

Precise Low Core lookup Fact-finding, Navigation
Precise High Borderline lookup Question answering
Open-ended Low Borderline exploratory Comparison
Open-ended High Core exploratory Knowledge acquisition, Planning

Table 2.1: Distinguishable categories of search from core lookup to core exploratory,
together with their respective goals, complexity and key tasks. A priori predicted and
empirically validated by [AGJ+16].

In the aforementioned study, lookup and ES were operationalized along two dimensions:
Complexity and Goals. Whereas complexity is also a property of the ES task, goals is
a property of the user. The user is also an equally important task for a model of ES
extracted by a survey on ES literature conducted in [PGGT17].

In their survey Palagi, et al. [PGGT17] extracted eleven high level characteristics com-
monly used in various studies about definitions and models of ES. They divide these
characteristics into two larger, overlapping domains considered in ES systems: The ES
task itself and the user domain. This conceptualization of ES is depicted in Figure 2.3.

11

2. State of the Art

ES Task UserMultifaceted

An evolving
search process

An open ended
search activity
which can occur
over time

Several on-off
pinpoint searches

Mutiple possible
answers

Uncertainty
is fluctuating

Multiple targets/
goals of search

An evolving
information need

Not an expected
exact answer

An Anomalous State
of Knowledge and an
ill-structured (vague,
general or unsure)
context of search or
goals

A serendipitous
attitude

Figure 2.3: High-level characteristics of ES commonly used in various ES models cat-
egorized into two larger, overlapping domains. After a figure in [PGGT17]’s review
study.

Since most of the terms used are intuitively clear, only the following terms that may not
be familiar to the reader are explained here: (i) Multifaceted, (ii) Anomalous State of
Knowledge and, (iii) Serendipitous attitude. For a complete description the interested
reader may refer to [PGGT17].

Multifaceted search is a property of the user interaction. During exploratory search,
the user repeatedly selects facets that restrict the search space to a subset. By adding
facets the search space can be narrowed down until a specific information is found.
Also, different subsets of facets can be used to explore the search space. Note how a
multifaceted search paradigm does not demand specific domain knowledge from the
user [PGGT17].

Anomalous State of Knowledge refers to the state the user is assumed to be in when
starting the ES. Although the user has a motivation to start the search, a precise idea
of what he or she is actually looking for is lacking. Also, although the user has a vague
objective, a definite plan to attain it is missing in the user’s mind [PGGT17].

The last term explained here is the serendipitous attitude an exploratory searcher is
assumed to exhibit. The user is open to surprise and tends to pay attention to it. This
open-mindedness allows to exploit unexpected elements for further discovery and adaption
of search strategies or goals [PGGT17].

ES can be seen as even much broader than what was discussed so far. For example the
problem context and search behavior can be taken into account too [WR09]. However,
the main terms and concepts of ES are now established. Also, as stated in [PGGT17]:

12

2.2. Exploratory Search

“[ES] is a loosely defined concept as its definition is not stable and continues to evolve
every time new systems are being developed”. Hence, a conclusive definition of ES does
not seem to be viable currently.

However, the conceptualizations and models discussed so far give rise to a good enough
working definition for research on the various sub-problems of ES. Marie and Gan-
don [MG14] reviewed linked data based ES systems and how the characteristics of ES
translated to features in these systems.

According to their survey most systems concern themselves with different visualizations
of the semantic graph. Faceted search systems are among the most prominent of these
visualizations. In addition to mere presentation of the data, they also allow the user to
restrict the search space and explore the data by selecting different subsets of facets.

As an example of a faceted search system mSpace is presented here. Faceted search
systems try to map the multi-dimensional data into a two-dimensional view. In mSpace
facets for the domain of music are grouped into different facet groups like eras, composers,
and pieces. Facet groups are ordered horizontal columns containing the facets of each
group. The order is significant. That is, the left-most column (e.g., eras) is the most
significant one [SWRS06].

Facets selected on the left (e.g., classical era) restrict possible facets to the right (e.g., only
composers of the classical era are shown). Additionally, the columns can be reordered
and different groups can be selected (e.g., Albums instead of Places). An exemplary state
of the facet visualization is depicted in Figure 2.4. One drawback of the mSpace system
is that a new RDF model for every dataset has to be manually specified in order to guide
the system which groups and facets should be shown [SWRS06].

Figure 2.4: Exemplary user interface of a faceted search system. Taken from
mSpace [SWRS06].

Faceted search systems are probably the most prevalent in current exploratory search
systems on semantic web technologies. The reason for that is probably that the structure
of semantic web ontologies defined via OWL or RDF Schema (RDFS) consist of classes
and properties which can be rather directly mapped to facets.

\facet for example lifts the requisite for manually defining the mapping between the
dataset, facet groups and facets. Instead, it automatically extracts that information from

13

2. State of the Art

RDFS classes and properties [HvOH06]. Other systems investigate different visualization
paradigms. For example gFacet visualizes the facets in a graph visualization instead of
hierarchical columns [HZL08].

Although user interaction and interface design is an important part of ES systems, the
question is if semantic graphs can be leveraged for ES systems that go beyond exposing
classes and properties via facets.

Indeed, several prototypes where developed that investigate other parts of ES. DBpedia
Ranker uses external services like the amount of search results returned by Google to
estimate the similarity between entities in the semantic graph [MRDNDS10]. However,
the question remains how the semantic graph itself (and not external lookup-based
services) can be leveraged for ES beyond providing a convenient basis for facets.

A recommender system based on similarity was suggested by [DNMO+12]. This work
was selected as being representative of a class of prototypes that are tightly bound to one
specific dataset. Similarity in this prototype is calculated by leveraging specific, predefined
properties of movies in e.g. DBpedia like dbpedia-owl:director. However, these
properties have to be manually re-defined for each domain. Depending on the data this
may not be possible.

A short look at recommendation systems that do not leverage semantic web technologies
should be taken here too. An overview of current recommender systems is given in [AT05].
These systems are tailored to specific use cases. An example are recommendations based
on user ratings. These techniques can be used if user ratings (and accompanying data
about users) are encoded in a semantic graph. However, the domain of semantic graphs
are potentially more general and can contain almost any information. The goal of classical
recommender systems diverges from the needs of ES on semantic graphs. Depending
on the dataset they can still be a rich resource for specialized ES systems on semantic
graphs too.

One way to leverage semantic web technologies for enhanced ES is to use the graph
representation of the information. Research on graphs have a long history and yielded
a huge amount of algorithms and suggestions for various tasks. However, bringing this
wealth of knowledge over to the semantic web world for ES is not a trivial task.

The intended access to the semantic web data for applications is by using the SPARQL
interface of triple stores. SPARQL, being a declarative querying language, does not
allow for more involved processing procedures. For example, there is no loop or recur-
sion construct defined in SPARQL (besides property paths which have restricted use
cases) [HS13]. Algorithms with statically unknown bounds are therefore prohibited. This
is also reflected in previous research. The majority of ES systems on semantic web
technologies is concentrated on user interface and interaction design [MG14].

In order to develop common graph algorithms that can be leveraged for exploratory search,
the underlying graph structure exposed by RDF has to be available to the algorithms.
One way is to circumvent this problem by developing prototypes that read the RDF data

14

2.3. Classification and Overview of Metrics

into a graph structure. However, the facilities and advantages (e.g., consistency checks,
SPARQL queries, inferences) that are provided by widely available triple stores are then
lost or would have to be reimplemented.

Previous work did not spend enough attention to transferring the wealth of knowledge
accumulated in graph algorithm research to commonly used triple stores. However,
the requirements of graph algorithms demand special provisions that are currently not
widespread among these triple stores (see also Section 4.2). The model used during this
diploma thesis is the GAS paradigm presented in Section 2.5. But first a discussion of
graph algorithms and selected metrics that are potentially useful for ES are presented
in Section 2.3 and Section 2.4

2.3 Classification and Overview of Metrics
Research on graph algorithms has a long history and a variety of measurements were
developed that try to capture different features of the graph [New10]. Due to the sheer
amount only a small part of measurements that are potentially useful for ES can be
reviewed here.

The Resource Description Framework (RDF) is the fundamental representation format
underlying the semantic web technology stack. As already discussed in Section 2.1, RDF
directly translates to a graph model. It therefore seems useful to transfer the knowledge
aggregated in graph algorithms to triple stores containing the semantic knowledge graph.
However, many of the general graph algorithms below do not lean themselves well towards
a SPARQL based algorithms.

Current research in ES based on semantic web technologies does not address this problem.
Sometimes the main focus is a different one, such as user interface and interaction
design. Other times, research invents novel measurements that lean themselves well
towards SPARQL based processing (e.g., [Pas07]). Yet other research loads the RDF data
into custom data structures to support a prototypical implementation, sacrificing the
advantages of triple stores which support techniques such as inferences and consistency
checks (e.g., [FSSS09]).

From a viewpoint of EKGs that are deployed on standard triple stores, none of these
solutions seems satisfying. Additionally, a way to transfer algorithms developed for
general graphs to the semantic web would open up the floodgates to a wealth of research
that can be advantageous for ES.

The first category of graph algorithms discussed in this section are so-called centrality
metrics. An overview is given in Table 2.2 on page 16. They generally try to estimate
the importance of a node in the graph as a whole.

The centrality of a node for ES is useful for at least the following two reasons:

• As already mentioned in 1, in comparison to lookup-based information retrieval, the
exploratory searcher is not assumed to be familiar with the domain. It is therefore

15

2. State of the Art

important to provide a starting point in the exploration of the knowledge graph.
Centrality metrics can provide just that. The more central a node is, the more
importance it bears in the graph. The notion of importance, however, varies with
the different metrics. Selecting the best fit (or a combination thereof) may be
subject to the specific use case.

• Furthermore, centrality metrics can also provide guidance during further exploration
of the knowledge graph. Suggestions for exploration worthy nodes can be weighted
according to their centrality. An example is the manifold faceted search systems
suggested by research in semantic databases (e.g. [AGK+16, HZL08, HvOH06]).
Although they are tailored to a specific dataset, all of them could integration the
suggested centrality measures to weight instances and facets and present them to
the user accordingly.

Metric Description Reference

PageRank Estimates the probability of arriving at a vertex when
randomly following edges. Calculated by vertices spreading
commodity (current PageRank) equally along outgoing
edges until a convergence criteria is met.

[BP98]

Katz Estimates the importance of a vertex for information flow
through the graph. Calculated by accumulating commodity
from direct and indirect neighbors proportional to their
distance.

[Kat53]

HITS Extension of PageRank that assumes two influential kinds
of nodes: Hubs (linked to by authoritative nodes) and
Authorities (linked to by hubs). Targeted at extracted
subgraphs according to, for example, a query. Also, able
to assign high rank to lesser-linked nodes, still deemed
influential (in contrast to PageRank)

[Kle99]

Betweenness Nodes deemed more influential the more shortest paths
between any two nodes they intercept. Extensions and
variants including Load, Stress, Group betweeness, and
Edge betweeness

[Bra08]

Accessibility Two kinds of influential nodes: Nodes that can be quickly
accessed from anywhere in the graph (Inward Accessibility)
and nodes from which a large part of the graph can be
quickly accessed (Outwards Accessibility).

[TdFC08]

Table 2.2: Centrality Metrics: Measure the influence of a node in the (semantic) graph.

Similarity metrics are the second kind of graph algorithms advantageous to ES that

16

2.3. Classification and Overview of Metrics

are investigated in this diploma thesis. An overview of metrics is given in Table 2.3
on page 18. Note that the table also contains a similarity metric designed to allow a
simple expression in various SPARQL queries. Although a new approach to calculation
of general graph algorithms on RDF graphs is suggested in this diploma thesis, the triple
store foundation still allows for standard semantic web technologies to be leveraged.

It is easy to imagine possible use cases of similarity metrics in exploratory search. An
exploratory searcher is assumed to explore the semantic graph without a clear future
path in his or her mind. Similarity metrics can help guide the exploratory searcher from
one concept to the next, thereby offering a path through the expert knowledge thicket.

In particular similarity metrics can potentially address at least the following characteristics
of ES systems as suggested in Figure 2.3:

An evolving search process. By repeatedly suggesting related entities in the EKG or
depicting similarity between entities, the exploratory searcher can build a similarity
map in his or her mind. The search process can be informed by that information,
thereby constantly evolving in sophistication.

Multiple possible answers. Due to the system knowing about related entities (and
potentially also the kind of relatedness as defined by the metrics), similar entities
that could be part of a more involved answer or provide an alternative answer can
be suggested.

A serendipitous attitude. By suggesting unrelated items (e.g., the inverse related-
ness), surprising new entities can be suggested leading to serendipitous discoveries.

Metric Description Reference

Distance Assumed that the closer two nodes are the more
similar they should be. Estimated by the length
of the shortest path between them. Extensions
for groups of nodes: Conjunctive (Normalized
sum of individual distances), Disjunctive (Min-
imum of individual distances). In original for-
mulation only is-a relations are considered since
others may have arbitrary positive or negative
influences.

[RMBB89]

SimRank Estimates similarity by how many steps two ran-
dom walkers starting at two nodes need (on av-
erage) until they meet.

[JW02]

SSDM Based on SimRank but follows only equal prop-
erties. Directed edges can be traversed in both
directions (from source to target or vice-versa),
but both walkers must take the same direction.

[OPSPL11]

17

2. State of the Art

LDSD Linked Data Semantic Distance. Defines dif-
ferent link counts like direct, incoming links or
indirect, outgoing links. Similarity is estimated
by combining the basic link-counting formulas
in various ways

[Pas07]

Information Content Makes use of information theory for similarity
measures. Similarity is estimated by the infor-
mation content of features two nodes have in
common. In the original formulation indicated
by most specific concept that subsumes them
both. Works with detailed class structure only.
Various extensions exist [Lin98, SDRL06, CY11]

[Res95]

Binary Similarity A general class of similarity metrics amount of
features possessed by two nodes are combined in
various ways. E.g. simjacard(i, j) = a

a+b+c where
a = |P : P (i) ∧ P (j)|, b = |P : P (i) ∧ ¬P (j)|,
c = |P : ¬P (i) ∧ P (j). Survey of 76 binary
similarity metrics.

[sChC10]

Table 2.3: Similarity Metrics: Measure the relatedness between two nodes in the (semantic)
graph.

2.4 Selected Metrics
Five metrics were selected to represent the two large categories discussed in Section 2.3:
Centrality and Similarity. The selected metrics are presented in this chapter on a
conceptual level. For the adaption to the GAS model please refer to Section 4.2.

Section 2.4.1, Section 2.4.2 and Section 2.4.3 take a look at the three centrality metrics.
The two similarity metrics presented in Section 2.4.4 and Section 2.4.5 fulfill a different
purpose. They measure similarity between two arbitrary nodes in the graph. Given two
nodes they estimate how strongly related the nodes are.

Again, both of these similarity metrics can support an exploratory searcher during his
or her path through the knowledge domain. Given the node the exploratory search is
currently investigating, closely related nodes can be calculated and suggested for further
exploration.

Another opportunity would be to purposefully suggest nodes that are as unrelated as
possible (the inverse relatedness) to encounter surprising, new knowledge. The suggestion
of such unrelated (also called peculiar or serendipitous knowledge) was also discussed in
previous research and found as a useful addition for an exploratory searcher [NPG+17,
BPCF17].

18

2.4. Selected Metrics

2.4.1 PageRank

Probably one of the most popular centrality metrics is PageRank (PR). Intuitively, the
goal is to estimate the probability of a random surfer to arrive at a vertex. The random
surfer is assumed to follow the directed links of the graph, hopping from vertex to vertex.
Additionally, the surfer may jump to an arbitrary, non-adjacent vertex. Eventually the
surfer will stop, staying at some vertex u. The PageRank PR(u) of a vertex u reflects
the probability that the surfer is at node u when coming to a halt [PBMW99].

The PageRank PR(vi) of a vertex vi in a graph G = (V,E) is mostly determined by the
PR of its incoming vertices PR(vj)|(vj , vi) ∈ E(G) scaled by the number of outgoing
edges out(vj). Additionally, the probability for leaving/arriving at vi by a “remote jump”
to/from a non-adjacent vertex has to be factored in. In the simplest case this is done by
means of a damping factor d capturing the probability of a remote jump.

The iterative formula for calculating the PR of vertex vi adapted from [BP98] is then:

PR(vi) = (1− d) + d×
∑ PR(vj)

out(vj)
∀vj |(vi, vj) ∈ E (2.1)

PR has multiple alternative formulations, the one we concentrate on here is the algorithmic
one adapted from [BP98, PBMW99] and shown in Algorithm 2.1. In the beginning
PageRanks are set to some initial distribution S. A simple (but effective) example is to
set the initial PR to 1

|V | where |V | is the number of vertices in the graph.

Afterwards the PR algorithms runs until a convergence criteria (delta ≤ ε) is met.
Alternatively, other stopping criteria could be defined such as a predetermined number
of rounds.

The new PageRank (prn) of every vertex is then calculated based on the previous
PageRanks (pr) of its neighborhood. Note that the reset probability r = 1− d (capturing
the probability to arrive at the vertex by a remote jump) is scaled by the number of
vertices in the graph. Although not part of the original formula stated in [BP98], this is
a common normalization factor not affecting the algorithm meaningfully.

2.4.2 Accessibility

ACS is based on a similar notion of random walks as PR. However, the semantics for
estimating centrality of a vertex are quite different. When talking about accessibility one
has to distinguish between inward accessibility and outward accessibility [TdFC08].

While inward accessibility is mentioned in this section shortly too, the main focus is
on outward accessibility since the semantics diverge more from the already discussed
PR and similar centrality metrics. However, an algorithm than can calculate outward
accessibility is, with slight modifications, also able to calculate inwards accessibility.

From a birds view, outward accessibility quantifies the diversity of the access of the
remainder vertices starting from some vertex in the graph in a finite number of steps.

19

2. State of the Art

Algorithm 2.1: PageRank adapted from [PBMW99]
Input: A directed graph G(V,E)
Output: The PageRank for every vertex

1 pr ← S
2 repeat
3 foreach vi ∈ V do
4 prn[vi]← 1−d

|V | + d
∑

vj∈ inV(vi)

pr[vj]
|outE(vi)|

5 end
6 delta = ||prn− pr||1
7 pr ← prn

8 until delta ≤ ε

Inwards accessiblity on the other hand quantifies the frequency of access of a vertex
starting from the remainder vertices in a finite number of steps [TdFC08].

Although the calculations differ substantially and will likely yield different results on a
given graph, on the level of semantics the inwards accessibility is quite similar to PR: A
vertex that is frequently accessed should also have a rather high probability for a random
walker to end up in.

A vertex with high outward accessibility allows a random walker starting at this vertex
to explore a large and diverse part of the graph after a finite period of time [TdFC08].
This is an important property for ES since it allows to suggest vertices that foster a quick
and diverse overview of the graph during traversal. Conversely, if a concept should be
explored in-depth it may yield vertices that easily distract the searcher.

For calculating accessibility only self-avoiding walks are considered. A self-avoiding walk
is a finite sequence of consecutive edges contains no repeated edges or vertices. The
transition probability Ph(i, j) is the probability that a random walker stops at vertex
i after h steps in a self-avoiding walk starting from vertex j. The diversity entropy
signature Eh of a vertex i is defined by [TdFC08]:

Eh(Ω, i) = −
N∑
j=1

{
0 if Ph(j, i) = 0,
Ph(j, i) log(Ph(j, i)) otherwise

(2.2)

Eh(i,Ω) = −
N∑
j=1

{
0 if Ph(i, j) = 0,
(Ph(i,j)
N−1) log(Ph(i,j)

N−1) otherwise
(2.3)

where Ω is the set of vertices except i.

Finally, the outwards accessibility OAh(i) and inwards accessibility IAh(i) of a vertex i

20

2.4. Selected Metrics

are defined as [TdFC08]:

OAh(i) = exp(Eh(Ω, i))
N − 1 (2.4)

IAh(i) = exp(Eh(i,Ω))
N − 1 (2.5)

Hence, in comparison to other metrics, the calculation of accessibility is more involved. A
potential algorithm has to overcome at least the following hurdles for calculating OAh(i)
for a single vertex i: (i) ensuring self-avoiding walks, (ii) determining the transition
probability for a multi-hop neighborhood (iii) calculating Eh in a non-local neighborhood
with optimization (ignoring nodes that are non-reachable in h hops), or over all vertices
without optimization (iv) calculating OAh(i) presuming knowledge of the number of
vertices in the graph

2.4.3 Load

Load is a metric set in the comparatively long heritage of betweenness centrality. Before
discussing load in particular, a short discussion of betweenness is provided first.

Interest in measuring the centrality of a vertex in a graph structure stems from a variety of
fields. The first explicit mention of betweenness probably originates from the importance
of people in a group (a social network, representable as graph) [Bav48]. Betweenness was
later picked up and sculpted by [Fre77] to its currently most authoritative definition.

The intuition behind betweenness is rather simple though it may vary depending on the
domain. For example in a communication network, a node that relays most communication
has more power in the network than a vertex that just sends or receives message [Fre77].
Betweenness additionally assumes that under standard conditions communication always
tries to take the shortest, most efficient way.

The importance of a vertex v in a network (its centrality) is estimated by how many
shortest (geodesic) paths v intercepts. The betweenness centrality of a given node v in a
graph can then be defined as [Fre77, Bra01]:

Btw(v) =
∑

s 6=v 6=t∈V

σst(v)
σst

(2.6)

where σst is the number of shortest paths from vertex s to vertex t with σss = 1. σst(v)
is then the number of shortest paths from s to t intercepted by some vertex v.

As with other metrics this basic definition of betweenness spawned a wealth of variants
(for a selection see [Bra01]). Anecdotally, their semantics and definitions start to become
so similar that their authors occasionally mistake them for each other [New06, Bra01].

[New06] suggested an algorithmic approach to a betweenness variant called Load. This is
also the representative of betweenness metrics used in this thesis. The basic idea of Load

21

2. State of the Art

is to distribute a commodity along the shortest paths from any vertex v to any vertex
w. Those nodes that accumlate most commodity have the highest load. An simplified
algorithm after [New06] and [Bra08] is shown in Algorithm 2.2.

Algorithm 2.2: Load
Input: A directed graph G(V,E), shortest paths between vertices
Output: Load of all vertices

1 for v ∈ V do δ[v]← 1 /* load initialized to 1 */
2 for v ∈ V do
3 for w ∈ V do

/* Pred(v,w) is the set of predecessors of vertex v
along all shortest paths from w to v ordered after
their ascending distance from v */

4 for p ∈ Pred(v, w) do δ[p]← δ[p] + δ[v]
|Pred(v,w)|

5 end
6 end

Although the calculation of Load seems simple, note how a potential algorithm has to
efficiently (i) calculate all shortest paths between any combination of vertices v and w in
the graph, and (ii) spread the Load equally between all predecessors along any shortest
path of every combination of vertices v and w in the graph..

2.4.4 Information Content

One class of metrics for ES is based on information content commonly defined as the
negative log-likelihood − log(p(c)) where p(c) is the probability of c. Probably the first
attempt to apply information content as a way to estimate semantic similarity can
be found in [Res95]. This is also the one used for application to EKGs. Since the
original paper has no notion of semantic web technologies, some terms are adapted to
the vocabulary used in semantic web based knowledge graphs.

Resnik’s reasoning was based on taxonomies. Normally taxonomies exhibit highly
sophisticated and deep subsumption structures. Although semantic knowledge graphs in
general, and EKGs in particular, can potentially exhibit such structures too, they are
not obliged to. In cases where such deeply nested classes are not encoded in the EKG,
information content based metrics (as defined below) are not applicable.

The underlying idea behind information content metrics is that two concepts are similar
to the extent to which they share information in common. Given two resources the
information content of the concepts that subsume them both is used as heuristic for
their similarity [Res95]. In case of an expert knowledge graph this means classes (and
super-classes) that contain both given resources.

22

2.4. Selected Metrics

Information content itself is based on the probability of encountering a class, denoted as
function p : C → [0, 1] where C is a class. One possibility to calculate the similarity of
two resources r1, r2 in the EKG is then to take the maximum information content of all
classes that subsume them both, i.e [Res95]:

sim(r1, r2) = max
c∈S(r1,r2)

[− log(p(c))] (2.7)

where S(c1, c2) is the set of classes that subsume (or contain) both resources c1 and c2.

Another possibility is to take a weighted sum. Potentially, this allows an expert to assign
different weight to classes based on external judgment. The formula according to [Res95]
is then defined as:

sim(r1, r2) =
∑

c∈S(r1,r2)
α(c)[− log(p(c))] (2.8)

where
∑

c∈S(r1,r2)
α(c) = 1 and represents the weighting factor. Alternatively, it can just be

set to α(c) = 1
|S(r1,r2)| for equal weighting.

The second formulation can be more suitable for EKGs that have a sophisticated, but
non-hierarchical structure (in contrast to taxonomies that typically have a tree-like,
strictly hierarchical shape). However, the EKGs still has to fine-grained classes with
high discriminatory power. Otherwise, the sets S(r1, r2) will be mostly the same (most
resources are subsumed by the same, few classes) for any two resources r1, r2.

2.4.5 Linked Data Semantic Distance

In contrast to centrality metrics that try to estimate the importance of a vertex in
relation to the whole graph, Linked Data Semantic Distance (LDSD) tries to measure
the relatedness between two given vertices [Pas07, PD10].

LDSD is not a single, strictly defined measure. Instead, it can be seen as a family of
measures that are defined by combining the same basic ingredients in different ways.
Another variation from other metrics discussed so far is that LDSD does not have
any overarching semantic reasoning. Instead, the goal is to measure relatedness. The
underlying idea is, that relatedness correlates with the amount of various kinds of links
between them. The effectiveness is tested by empirical observation [Pas07].

Since the various LDSD measures in [Pas07] are different linear combinations of the same
ingredients, we will concentrate only on one of them. The LDSD variation (henceforth
just called LDSD) discussed here is the one determined most effective on a musical
domain [PD10]. This need not hold true for every conceivable EKG. However, the
implementation discussed in Chapter 4 can be easily adapted by changing the combination
of the basic ingredients.

Two different kinds of basic link counting formulas can be distinguished in Passant’s [Pas07]
model: direct distance formulas consisting only of 1-hop neighborhood calculations and
indirect distance which considers at most two hops.

23

2. State of the Art

The following direct distance formulas are defined [Pas07, PD10]:

Cd The number of direct and distinct links between resources.

Cd(li, ra, rb) Equals 1 if < ra li rb > is a triple in the semantic graph, 0 otherwise.
Cd(n, ra, rb) The total number of links li for which Cd(li, ra, rb) = 1
Cd(li, ra, n) The total number of resources rb for which Cd(li, ra, rb) = 1

The following indirect distance formulas are defined [Pas07, PD10]:

Cio The number of indirect and distinct outgoing links between resources

Cio(li, ra, rb) Equals 1 if there exists a resource r such that both < li ra r > and
< li rb r > are triples in the semantic graph.

Cio(n, ra, rb) The total number of distinct links li for which Cio(li, ra, rb) = 1
Cio(li, ra, n) The total number of resources rb for which Cio(li, ra, rb) = 1

Cii The number of indirect and distinct incoming links between resources

Cii(li, ra, rb) Equals 1 if there exists a resource r such that both < li r ra > and
< li r rb > are triples in the semantic graph.

Cii(n, ra, rb) The total number of distinct links li for which Cii(li, ra, rb) = 1
Cii(li, ra, n) The total number of resources rb for which Cii(li, ra, rb) = 1

With these basic ingredients, the LDSD used in this thesis is then defined as suggested
by [PD10]:

LDSD(ra, rb) =
1

1 +
∑
i

Cd(li,ra,rb)
1+log(Cd(li,ra,n)) +

∑
i

Cd(li,rb,ra)
1+log(Cd(li,rb,n)) +

∑
i

Cii(li,ra,rb)
1+log(Cii(li,ra,n)) +

∑
i

Cio(li,ra,rb)
1+log(Cio(li,ra,n))

(2.9)

2.5 Gather–Apply–Scatter
Gather Apply Scatter (GAS) is one possible computational model for graph processing. It
is particularly well suited for large graphs that are distributed among several computing
nodes. The mechanisms of this paradigm are presented in this section. Additionally,
connections to other models are provided.

GAS is based upon the “think like a vertex” philosophy popularized by Pregel, another
graph computation model [MAB+10]. Pregel consists of vertex-local computations that
are synchronized and distributed in supersteps. In contrast to GAS basically all work is

24

2.5. Gather–Apply–Scatter

done in a node-local compute method. However, also Pregel fundamentally executes
the GAS steps. GAS just breaks them out and explicitly invokes them in each round.
Additionally, the main difference between Pregel and GAS is that vertices in GAS can
operate only on the directly connected (adjacent) neighborhood.

A GAS algorithm has three distinct phases constituting a round: Gather, Apply and
Scatter. After every phase there is an implicit barrier for synchronization. Other than
that, the operations can be processed in parallel. After a GAS round control is transferred
to a super-step which is responsible to coordinate and redistribute the local computations.
All three phases will be discussed in order during the following.

Gather is probably the most involved and restrictive operation. It extracts and aggregates
information from adjacent vertices as well as their respective connecting edges into a
generalized sum [GBL+12]:

Σ←
⊕

v∈N(u)
g(Du, D(u,v), Dv) (2.10)

where N(u) denotes the neighborhood of vertex u, Du and Dv denotes the vertex state
associated with the vertices u and v respectively, and D(u,v) denotes the edge state
associated with the edge (u, v). g(...) stands for the Gather function and ⊕ for the
generalized sum (the aggregation) of the gathered information.

Hence, the Gather phase actually consists of two operations. First, the gathering of data
(g(...)). Second, the aggregation of the gathered data (⊕). However, if makes sense to
view them on a conceptual level as one edge-parallel operation. Subsequently, if we speak
about Gather3 or the Gather phase, both operations (gather and sum) are combined. In
case gather or sum is used, it is about the particular operation.

The gathering operates on state associated with vertices and edges (Du,. . . where D
stands for Data). State can be transformed during subsequent phases and accessed again
in the next round. Only the direct neighborhood of a vertex can be potentially accessed
during gather. The gather edges are specified in the GAS program and consist either of
in-edges, out-edges or both.

The sum operation takes the result of gather and aggregates them to a single result.
Since there is no guarantee in which order the gather results are provided, sum has to be
associative and commutative [KVH16].

The result Σ of the Gather phase is then available to the Apply phase for transforming
the state of the vertex [GBL+12]:

Dnew
u ← a(Du,Σ) (2.11)

3Note the capital G

25

2. State of the Art

The scatter phase can then update the state of adjacent edges and activate vertices for
the next GAS round. Scatter edges are specified in the GAS program and consist either
of in-edges, out-edges or both. Again (and in contrast to e.g. Pregel) only the directly
connected (adjacent) neighborhood can potentially be accessed and activated.

∀v ∈ N(u) : (D(u,v) ← s(Dnew
u , D(u,v,), Dv)) (2.12)

For illustration purposes, a complete GAS round is shown in Figure 2.5. In the figure
denotes a vertex state, whereas denotes an edge state. Colors denote for a particular
state at a round r.

Figure 2.5a shows the graph at some round r = r0. Vertices and edges are already in
some state before the next round r1 starts. In case this is the first round, vertex and
edge state are initialized to a starting state.

The active vertices in the example round r1 are I and II. During the Gather phase Fig-
ure 2.5b edge and vertex states connected by incoming edges to either I or II are gathered
and summed. The result of the sum operation is denoted by . Note how the gather
operation and an associative and commutative sum can be parallelized along the incoming
edges of a vertex.

In Figure 2.5c the result of the Gather phase is processed locally for each vertex.
This operation also updates the state of the vertex (denoted by a changing color). The
updated state is accessible in the next GAS round.

Finally the scatter phase allows to update the edge state of scatter edges. In the example
in Figure 2.5d the out edges of the vertices I and II are used for scattering. Additionally,
during the scatter phase adjacent vertices can be activated for the next GAS round (e.g.
vertices 1 and 2 for currently active vertex II). In case there are no more active vertices
scheduled for the next round GAS terminates.

26

2.5. Gather–Apply–Scatter

A B

I

1 2

II

(A
,I)

(A
,II)

(B
,II)

(I,1
)

(II,2
)(I

I,1
)

(a) Init. Initial state before the start of a new
round or after initialization.

A B

I

1 2

II

A IIII

B

A I

(A
,I)

(A,II)

(B
,II)

(A,II)

(B,II) IIII

(A,II) I II

(I,1
)

(II,2
)(I

I,1
)

(b) Gather. Merging of vertex and edge states
along gathering edges.

A B

I

1 2

II

(I,1
)

(II,2
)(I

I,1
)

A IIII

B

A I

(A
,I)

(A,II)

(B
,II)

(A,II)

(B,II) IIII

(A,I) I II

(c) Apply. Integrating results from Gather into
the vertex states.

A B

I

1 2

II

(I,1
)

(I,2
)(I

I,1
)

A IIII

B

A I

(A
,I)

(A,II)

(B
,II)

(A,II)

(B,II) IIII

(A,I) I II

(d) Scatter. Integrating information from the
new vertex states into the state of scatter edges.

Figure 2.5: Illustration of the GAS phases. Distribution of new information shown by
the flow of ocher through the graph.

27

CHAPTER 3
Methodology

During the last sections all the notions needed for the rest of this diploma theses were
established. Besides reviewing current literature for models of Exploratory Search (ES),
the term Expert Knowledge Graph (EKG) was synthesized from properties of STAR and
notions in the literature too.

Furthermore, several metrics potentially usable for ES where classified. A selection of
these metrics for assessing centrality of a node and similarity between nodes was examined
in more detail. Finally, the Gather Apply Scatter (GAS) model was introduced as an
abstract computational model for graph algorithms.

The next two sections (Chapter 4 and Chapter 5) contain the main part of this diploma
thesis. An overview of the methodological approach taken during these chapters is
discussed in this section.

The centrality metrics originate from general graph algorithms. In order to implement
them on a triple store the GAS computational model was leveraged. Blazegraph, a triple
store, supports an Application Programming Interface (API) for this model already.
However, in order to use it, the centrality algorithms had to be adapted.

The theory and reasoning behind the algorithms was already discussed in the previous
sections. In Chapter 4 the reformulation as GAS steps is shown conceptually. The
algorithms were implemented in Java based on the API provided by Blazegraph.

The similarity metrics differ from this approach. Information content based on PageRank
(Information Content/PageRank (ICPR)) is a novel suggestion for an information content
based algorithm. It leverages the PageRank (PR) implementation and a SPARQL query
embedded in a simple controller program. This was again implemented on Blazegraph,
this time using the RDF4J API and the SPARQL interface.

The final similarity algorithm, Linked Data Semantic Distance (LDSD), is again of a
different nature than the previously described ones. This metric was specifically designed

29

3. Methodology

for ES on triple stores by leveraging their SPARQL capabilities. The respective SPARQL
queries were reimplemented from the description of the LDSD formula as given in the
previous chapters. Again a controller program was used leveraging the RDF4J API and
SPARQL.

The evaluation in Chapter 5 was conducted on two different EKGs: STAR and MusicPinta.
On the one hand this ought to showcase the portability of the algorithms to various
EKGs. On the other hand the evaluation on two datasets strengthens the arguments by
avoiding single observation outliers.

For the evaluation common descriptive statistics are used. Additionally, the correlation
between centrality metrics is calculated and discussed. Violin and scatter plots allow for
a visual examination of the centrality results. Histograms were used as visualizations for
the similarity results. Furthermore, a small subset of nodes together with their computed
value is tabulated for each metric. This allows for a simple qualitative analysis.

30

CHAPTER 4
Implementation

In Chapter 3 a theoretical foundation was built. This chapter describes the realization of
a concrete prototype. One of the main goals of the implementations was to run in an
environment that could be found in a real world setting too. Furthermore, the used data
was not purpose-built for the implementation. Instead, independently created knowledge
graphs were used. Conversely, the prototype was not special-fitted to the data either.

Section 4.1 contains some more specific information about the technical environment
the algorithms were implemented in. Section 4.2 contains pseudo-code and figurative
illustrations for the formulations of the algorithms discussed in Section 2.4.

4.1 Environment

Expert Knowledge Graphs (EKGs) are a special subset of knowledge graphs captured via
semantic web technologies as defined in Section 2.1. EKGs — especially if originating
from a business setting like the STAR KB — are oftentimes deployed on off-the-shelf
components. A tailor-made environment to support the suggested prototype is therefore
precluded. The algorithms are purposefully built on commonly available and widely used
components. This includes the underlying triple store as well as various APIs.

While this may seem like common practice, it is comparatively unusual in existing
literature. As an example, many metrics are based on the concept of random walkers1

traversing the graph structure. However, none of the widely available triple stores provides
a flexible enough access to the graph structure. Implementing sophisticated random
walker algorithms is prohibitively complex.

1This should not be confused with algorithms such as PageRank which additionally provide a concise
mathematical formulation.

31

4. Implementation

Blazegraph 2 was chosen as triple store. Besides commercial grade maturity it provides
possibilities to overcome some of the shortcomings when it comes to calculating the
suggested metrics by providing a Gather Apply Scatter (GAS) interface. GAS can be
used for accessing and processing the graph structure directly (see also Section 2.5).
Blazegraph was deployed as an embedded instance running in the same JVM as the
prototype itself.

For pragmatic reasons, Java with JDK 1.8 running on an Oracle JVM was chosen as
programming environment. Blazegraph itself runs on the JVM and provides the best
integration within this environment.

The results in section Chapter 5 were gained from experiments conducted on a 64-
bit Intel Core i5-4200U processor with 2.6 GHz, 2 cores and 4 hardware threads via
Hyper-Threading. The operating system used was a Fedora Linux 26 with Kernel 4.12.9.

4.2 Implementation

In this section the implementation of three centrality measures and two similarity measures
are described. Due to the high computational requirements, the centrality measures were
implemented by means of the Gather Apply Scatter (GAS) model. GAS is an abstract
computational model for graph processing consisting of the three distinct phases it is
name after. Each phase can be specified by the algorithm developer and is executed by,
for example, a triple store.

Another, and also the more widespread, means to access a triple store is via its SPARQL
interface. SPARQL is a query language specifically designed for the semantic web. The
similarity measures could be implemented externally by querying the triple store through
SPARQL and processing the resulting triples. Therefore, the SPARQL interface to the
triple stores was instead of GAS.

4.2.1 PageRank

PageRank (PR) is probably one of the best researched centrality measures. It possesses
a particular elegant definition allowing for simple formulations in manifold models. This
is also shown by a review of programming model demonstrations in [KVH16] where PR
appears in more than twice as many demonstrations than shortest paths, the second
most popular measure.

PR is also one of the prime examples of an algorithms leaning itself well towards a
GAS-style formulation. It almost naturally fits into this model and was already presented
as an example in the genesis paper of GAS [GBL+12]. GAS is an abstract computational
model consisting of the three phases Gather, Apply and Scatter. During each phase
computations can be conducted that alter well specified states of vertices or edges.

2https://www.blazegraph.com/

32

https://www.blazegraph.com/

4.2. Implementation

A conceptual overview of the most important phases is given in Figure 4.1 and Algo-
rithm 4.1. The shown pseudocode is taken (and slightly adapted) from [GBL+12] as
there are no major differences to the implemented algorithm.

The gather and sum phase are depicted in Figure 4.1a. Before the first round all nodes
are initialized with the reset probability rp = 1− dp = 1− 0.85 = 0.15, where dp is the
damping factor commonly defined as dp = 0.85. During the gather phase the current
weighted PR (the reset probability in the first round) of incoming adjacent vertices is
collected. In the sum phase these the PageRanks of neighboring vertices are added
together (see also Line 1 to Line 6 in the pseudocode).

During the scatter phase the new PR of the vertex is calculated from the previously
gained sum of (weighted) neighboring PageRanks. As can be seen on Line 8, the
calculation is rather simple: newpagerank = (1 − dp) + dp ∗ sum = 0.15 + 0.85 ∗ sum
where dp denotes the damping factor commonly set to dp = 0.85. Figure 4.1b shows
the vertex states after this step. For example the new PR of vertex 1 is calculated by
newpagerank = 0.15 + 0.85 ∗ 0.225 = 0.341 with the gathered weighted sum of adjacent
vertices equaling 0.225.

In order for the algorithm to terminate, a convergence criteria has to be defined. The
criteria can be either a particular number of rounds, or a minimum amount of (weighted)
change between two calculated PageRanks of a vertex. The criteria shown in the
pseudocode is of the second kind. In Line 13 the delta is calculated. During the scatter
phase all adjacent vertices along outgoing edges are activated for the next round. That
is, all vertices that can potentially receive an updated PR. If the delta is below a defined
minimum (ε), none of the adjacent vertices is activated for the next round (the amount
of change is not worth propagating). Note however that the adjacent vertices can be
activated by another vertex with a larger change than ε.

33

4. Implementation

A B

I II

1 2

A

II
A

0.15 0.15

0.150.15

0.15 0.15

0.05 0.05 0.05 0.15

0.15 0.075 0.075

0.1 0.2

0.225 0.075

(a) Gather-Sum phase calculating the
weighted sum of incoming edge importance

A B

I II

1 2

A

II
A

0.15 0.15

0.320.235

0.341 0.213

0.1 0.2

0.225 0.075

(b) Vertex states after the Apply phase con-
taining the new PageRank

Figure 4.1: Illustration of a Gather-Sum and Apply phase for PageRank. Calculations
and state changes in each phase denoted by ocher colored border.

34

4.2. Implementation

Algorithm 4.1: GAS PageRank after [GBL+12]
Input: A directed graph G(V,E)
Output: The PageRank for every vertex

1 function gather(Du, D(u,v), Dv) is
2 return Dv.rank/out(v)
3 end
4 function sum(left, right) is
5 return a+ b
6 end
7 function apply(Du, sum) is
8 newrank = 0.15 + 0.85 ∗ sum
9 Du.delta = (newrank −Du.rank)/out(u)

10 Du.rank = newrank

11 end
12 function scatter(Du, D(u,v), Dv) is
13 if |Du.delta| > ε then activate(v)
14 return delta
15 end

35

4. Implementation

4.2.2 Accessibility

This chapter presents the first formulation of Accessibility (ACS) in the Gather Apply
Scatter (GAS) paradigm. GAS is an abstract computational model consisting of the
three distinct phases: Gather, Apply and Scatter. During each phase computations can
be conducted that alter well specified states of vertices or edges (see also Section 2.5).

To the best of the authors’ knowledge, it is the first GAS-formulation of an algorithm
that (i) deploys a non-trivial reduction operation, (ii) operates on a non-local neighbor-
hood, and (iii) encodes an involved, multi-step, non-uniform procedure.

ACS — in contrast to e.g. PR — does not naturally fit into the GAS paradigm. Although
the basic calculations are the same as in the original definition, the procedure to get the
required ingredients had to be fundamentally redefined.

Although slightly hidden in the conceptual view of GAS, one of the most critical points
is the design of the sum function. It has to be associative and commutative [KVH16].
Moreover, it has to be homomorph with sum being defined for the domain as well as the
range of the function. In Blazegraph’s GAS implementation it even has to be a function
sum : T 2 → T with T being a type. That is, the argument and return types of the sum
function are the same.

The obstacle with more involved algorithms like ACS is that not all needed information be
reduced to a simple type like double, integer or string. How to merge congregate types in
the discussed way, without loosing information necessary, is often not obvious or wanted.
The suggested solution is to lift any congregate containing the needed information to a
bag container abstraction. Merging two bags fulfills all needed properties. This idea is
also used in the GAS implementation of ACS.

In our implementation linked lists are actually underlying the bag container. This
provides constant merge-time (just rewiring pointers) and linear time traversal. However,
later usages cannot depend on the ordering of elements (although a particular order is
given in the linked list). Otherwise, the merge operation would lose commutative-ness.

Although strictly speaking, the gather and sum phase are distinct, they are often
considered together. In this vein Figure 4.2 shows both phases together. During
gathering, the state of incoming neighbors is wrapped into single element lists. Sum then
concatenates these single element lists to a flat list of incoming neighborhood states.

For example in the graph in Figure 4.2 during the gathering phase of vertex II, the states
of both adjacent vertices A and B are collected into single-element lists. This wrapping
is parallelized along the edges and can be seen as edge information as depicted in the
figure. During sum the single element lists (A . nil) and (B . nil) are merged into
(B . (A . nil)). Note, that RDF also allows multiple edges between vertices. These
edges are not handled differently. For example Vertex I’s gather-sum phase results in
(A . (A . nil)). Multiple edges are also the reason why a bag abstraction instead
of a set abstraction has to be used.

36

4.2. Implementation

A B

I II

A

1 2

I

I II II

A A

A A

II

II II

B

B A

Figure 4.2: Gather-Sum phase creating and concatenating lists of neighborhood states.

Figure 4.3 shows the vertex states after the first (Figure 4.3a) and after the second
(Figure 4.3b) round of apply. During apply the gathered information is transformed
to a new data structure and stored as vertex state for the next GAS round. The data
structure has to hold enough information about the transitions to avoid loops (only
self-avoiding walks are allowed) and to calculate the transition probability of paths.

For each possible starting vertex a map consisting of the starting vertex and a pointer to
a set of intermediary path vertices is created. Note that, a set is used since vertices are
not allowed to be visited more than once (leading to a loop).

For example in the first round, vertex II stores its adjacent nodes A and B as starting
vertices and puts itself in the bag of (intermediary) path vertices.Furthermore,e the
transition probability is stored with the transition. The transition probability is calculated
by tp(A, II) = inEdges(A, II) ∗ 1

out(A) = 1 ∗ 1
3 = 0.33. This yields the exact transition

37

4. Implementation

probability compared to an approximated probability as suggested by the original ACS
definition (see Section 2.4.2). After the first round the vertex states contain all single-edge
traversal paths with their probabilities ending in the vertex where they are stored.

In the second GAS round these single-edge traversal paths are distributed again during
the gather phase as sen in Figure 4.2. During the second apply depicted in Figure 4.3b
all two-edges traversal paths are calculated.

For example vertex 2 retrieves the single-edge traversal paths from vertex II during
the second gather. It then checks if it is not already in the set of path edges for any
retrieved traversal. If not, it adds itself creating a new two-edges traversal. Otherwise,
the traversal is ignored since only self-avoiding walks are allowed. The probability for
the traversal from A to 2 is calculated by tp(A, 2) = tp(A, II) ∗ 1

out(II) = 0.66 ∗ 1
2 = 0.16.

Algorithm 4.2 shows the previously described gather, sum, apply phases in pseudo code.
The gather and sum phases are only responsible for transferring neighborhood states and
combining them in an associative, commutative, homomorphic way by lifting the state to
a bag containing the state(s).

The apply phase is more involved. Line 8 associates adjacent vertex states with the
number of incoming edges. This is needed for the calculation of transition probabilities
(see for example the transitions from node A to I in Figure 4.2 and Figure 4.3). Afterwards
the transition probability for every adjacent vertex then calculated. In the first round
(Line 11 to Line 13) all possible (single-element) transitions have to be initialized. All
other rounds just extend these transitions one edge per round until the maximum number
of rounds, carefully avoiding loops.

The scatter phase was not discussed yet. However, it just activates all adjacent vertices
on outgoing paths of a vertex (i.e. all vertices that can potentially extend the saved
transition) for the next GAS round. Except the last round is reached, then the stored
vertex states are reduced.

38

4.2. Implementation

II

A B

I

1 2
I II II

A A B

I II II

1 1 2

p=0.66 p=0.33 p=1

p=1 p=0.5 p=0.5

(a) Vertex states after first apply round

II

A B

I

1 2
A B

II 2 II 2

A B

I 1 II 1

A

II 1p=0.66

p=0.16

p=0.5
p=0.16 p=0.5

(b) Vertex states after second apply round

Figure 4.3: Apply phases storing start vertices with bags of intermediate path vertices
together with the transition probability of the paths

39

4. Implementation

Algorithm 4.2: GAS Accessibility
Input: A directed graph G(V,E), maximum path length len
Output: ∀vi ∈ V (G) : All self-avoiding walks of length len ending in vi

1 function gather(Du, D(u,v), Dv) is
2 return cons(Dv, nil) /* single-element list */
3 end
4 function sum(left, right) is
5 return append(left, right)
6 end
7 function apply(Du, sum) is
8 gc ← groupCount(sum) /* count multi-edges */
9 foreach key in gc.keys do

10 transProb ← gc[key]
outEdges(key) /* transition probability */

11 if round ≡ 0 then
12 if key ≡ Du then continue; /* no self-loops */
13 else mkTrans(Du, key, set(Du), transProb)
14 else
15 foreach trans in key.transitions do
16 if Du ∈ trans.elems then continue;
17 else
18 fullTransProb ← trans.transProb ∗ transProb
19 pathBag ← add(trans.elems,Du)
20 mkTrans(Du, trans.key, pathBag, fullTransProb)
21 end
22 end
23 end
24 end
25 end
26 function scatter(Du, D(u,v), Dv) is
27 if round < len then activate(Dv)
28 else reduce(Du)
29 end

40

4.2. Implementation

The reduction phase was not yet discussed. So far the GAS algorithm collected transition
paths and their probabilities. In a last step these probabilities have to be reduced
to the diversity entropy signature Eh(Ω, i) and finally to the outwards accessibility
OAh(i) [TdFC08]. The reduction steps are shown in Algorithm 4.3. First, from the
transition probabilities Eh(Ω, i) = −

∑N
j=1 tp(j, i) ∗ log(tp(j, i)), with i being the current

node, is calculated in Line 1 to Line 5. The outwards accessibility is then defined as
OAh(i) = expEh(Ω,i)

N−1 with N being the number of vertices in the graph and i the current
node (Line 7).

Algorithm 4.3: Accessibility Reducer
Input: Vertex state data Du for vertex u
Output: Outward accessibility for vertex u

1 forall trans do
2 if size(trans.pathBag) < len then continue;
3 eh ← −trans.transProb ∗ log2(trans.transProb)
4 ehSum ← ehSum+ eh

5 end
6 if ehSum 6≡ null) then
7 Du.accessibility ← exp(ehSum)

|V |−1 /* G = (V, E) */

8 end

4.2.3 Load

The third centrality metric adapted to Expert Knowledge Graphs (EKGs) (and triple
stores in general) is Load. Structurally the implemented algorithm follows the formulation
in [New01]. However, there is a lot of confusion about the relation between Load,
Betweenness and similar metrics [Bra08, New06]. The original formulation by [New01]
(although coined as Betweenness) actually encodes Load on undirected graphs [Bra08].
Since expert knowledge graphs are directed, it had to be slightly adapted as suggested
in [Bra08].

As for the previous algorithms the Gather Apply Scatter (GAS) computational model
was used for the implementation. GAS is an abstract computational model consisting of
the three distinct phases Gather, Apply and Scatter. During each phase computations
can be conducted that alter well specified states of vertices or edges (see also Section 2.5).

Load (as many other Betweenness measures) is based on shortest paths. The unique
challenge for GAS was that it consisted of two consecutive phases:

1. Calculation of all shortest paths from a given node

2. Distribution of a commodity along the shortest paths

41

4. Implementation

Figure 4.4 depicts these two phases for node 1. During the first phase in Figure 4.4a
the incoming edges are traversed in a breadth-first manner. The current depth of the
breadth search traversal is stored in the vertex states for bookkeeping means.

The second phase (Figure 4.4b) then starts at the nodes farthest away from the starting
node and traverses the shortest paths back to the origin. During this traversal the Load
is distributed to the encountered vertices.

At the start of the second phase all vertices are initialized with a Load of 1. Starting from
the vertices farthest away the Load of a vertex distributed to its predecessors along the
shortest paths. In case a vertex has multiple predecessors its load is equally distributed
among its predecessors.

Note that only the number of predecessors are counted for the distribution of Loads,
not the number of edges. For example node A in Figure 4.4b distributes an equal
load of load(A)

|Predecessors(A)| = 1
2 to its predecessors although there are two edges to node I.

Alternatively, A could distribute a load of load(A)
outEdges(A) ∗ 2 to node I and load(A)

outEdges(A) to
node II. This is mostly a design decision and can be adapted by minor changes to the
algorithm.

Load has two peculiarities when formulating the algorithm in the GAS paradigm. First,
the already discussed two consecutive phases. Second, there is no benefit in using the
gather and apply phases except additional complexity. Instead, all needed information
can be distributed in what is called a push-style scatter. That is, all information is
pushed to the next activated vertex during the scatter phase.

The switch between the two phases (breadth-first shortest path search and Load dis-
tribution) is done by intercepting at the barrier after the scatter phase. After every
phase in GAS a barrier is introduced to synchronize the distributed computing of the
phases [GBL+12]. Blazegraph’s GAS implementation provides standard hook at this
point to decide if a new round should be started. This hook is used to switch phases if
the breadth-first shortest path search is over. That is, no more vertices can be reached.

The corresponding pseudocode can be found in Algorithm 4.4. In contrast to the other
presented GAS implementations, the Single Node Load does not need gather and apply
phases. Instead, all information is distributed during the push-style scatter.

Line 3 to Line 11 show the scatter during the breadth-first shortest paths search. If the
adjacent vertex does not have a distance assigned yet, the distance of the current vertex
plus one edge is the shortest possible path length from the origin node (breadth-first).
Only the first vertex that encounters a yet unassigned vertex schedules that vertex for
the next GAS round. In case another vertex at the same distance encounters is adjacent
too, it is only added to the predecessor set. During the load phase (Line 12 to Line 17)
the loads are then distributed as already described previously.

The function nextRound is called after the scatter phase of a GAS round has finished
deciding whether a new round should be started. In this case, it is also responsible

42

4.2. Implementation

A B

I II

1 2

II
A

1

1

2 2

(a) First phase of Load, calculating all short-
est paths for node A by traversing the graph
in a breadth first manner.

A B

I II

1 2

II
A

1
1

2 2

1.5 2.5

1 1

3.75 2.5

(b) Vertex states after second phase of Load.
A commodity is distributed along all short-
est paths for any given node.

Figure 4.4: Illustration of the shortest path calculation and commodity distribution
phases for LOAD via two subsequent GAS phases.

to switch between the breadth-first and load phases. In case GAS is currently in the
breadth-first state and there are no more vertices left (breadth-first has traversed all
reachable nodes), the phase is set to load and the scatter edges are reversed: As can
also be seen in Figure 4.4 during the breadth-first phase scattering happens along the
incoming edges starting from the origin node whereas during the load is distributed along
the outgoing edges towards the origin node.

43

4. Implementation

Algorithm 4.4: Single Node Load
Input: A starting node
Output: Load for reachable nodes

1 function scatter(Du, D(u,v), Dv) is
2 switch phase do
3 case BFS do
4 if Dv.distance ≡ −1 then
5 Dv.distance = Du.distance+ 1
6 Dv.predecessors.add(u)
7 schedule(v)
8 else if Dv.distance ≡ Du.distance+ 1 then
9 Dv.predecessors.add(u)

10 end
11 end
12 case LOAD do
13 if v ∈ Du.predecessors then
14 Dv.load = Du.load

|Du.predecessors|
15 schedule(v)
16 end
17 end
18 end
19 end
20 function nextRound (gas) is /* Called after scatter finished */
21 if phase ≡ BFS ∧ gas.schedule ≡ null then
22 phase = LOAD

/* The currently activated vertices (frontier) are the
ones farthest away from the origin */

23 gas.schedule = gas.frontier
24 scatterEdges = OutEdges // Swap scatter orientation
25 return true // Continue GAS

26 else if phase ≡ LOAD ∧ gas.schedule ≡ null then
27 return false // Stop GAS
28 end
29 end

4.2.4 Information Content

The implementation of information content as defined by [Res95] measures the similarity
between two nodes. The major drawback of this method is that it presumes a deep
class hierarchy. This is the case in taxonomies and can be the case in semantic graphs.
However, depending on the domain this may not be how an Expert Knowledge Graph

44

4.2. Implementation

(EKG) is constructed. In such knowledge bases, information content based measures
are not applicable since they are not able discriminate enough between the similarity of
nodes.

However, information content based similarity measures are also comparatively efficient
and simpler to implement. A formulation in SPARQL is possible 3 making it available to
triple stores that do not support more sophisticated triple processing capabilities like
GAS.

Although there are many alternative formulation of information content based measures,
they are generally based on two key ingredients:

1. The capability to extract common super classes of the given instances, and

2. The calculation of a probability for a given class

.

The implementation described here did not use a pure SPARQL formulation but a hybrid
implementation with SPARQL queries for retrieving relevant data from the triple store
and calculations done in Java. This allows for a very concise formulation of this metric.
Furthermore, a novel suggestion for the calculation of class probabilities is provided.

The SPARQL query for retrieving common super-classes of two nodes is given in Al-
gorithm 4.5. It is relatively simple due to the possibility of using property paths in
SPARQL 1.1 [HS13]. Property paths provide a kind of restricted traversal with statically
unknown bound. Note however that this is different from full recursive capabilities or a
loop construct, which are not available in SPARQL. Also, property paths are not available
in previous SPARQL versions (see [PS08]), yielding common super-class calculations via
a SPARQL-only approach impossible for triple stores not supporting SPARQL 1.1.

The algorithm retrieves all common super-classes of two given nodes designated as <a>
and . The union is necessary to also allow for computing the similarity of two
class-nodes. Furthermore, standard classes defined by the w3 consortium 4 are excluded
as they are not defined by the EKG and bear no relevant domain information (but could
potentially spoil the similarity calculations).

The second ingredient for information content based measures is a function p : C→ [0, 1]
associating probabilities to classes. The function should reflect “the probability of
encountering an instance of concept c” [Res95]. However, the probability calculation
in [Res95] is not suitable for EKGs as it presumes a taxonomy and effectively a tree
structure.

There are many possibilities to defining the probability function. One simple way would
be to assign for each class the number of nodes belonging to it (or a subclass) divided

3No inherent recursive computations with statically unknown bounds
4E.g. rdfs:Class which is a rdf:type of all RDF classes by definition [BG14]

45

4. Implementation

Algorithm 4.5: SPARQL Super-Classes
Input: Nodes <a> and for which common super-classes should be found
Output: The common super-classes of <a> and

1 SELECT ?sub WHERE
2 {
3 {
4 <a> rdf:type/rdfs:subClassOf* ?sup .
5 rdf:type/rdfs:subClassOf* ?sup .
6 }
7 UNION
8 {
9 <a> rdfs:subClassOf/rdfs:subClassOf* ?sup .

10 rdfs:subClassOf/rdfs:subClassOf* ?sup .
11 }
12 FILTER (!STRSTARTS (str (?sup), “http://w3.org”))
13 }

by the number of total nodes, i.e. nodes((C))
N with N the total number of nodes. A more

sophisticated choice would be the probability of a surfer to arrive at a class by randomly
following edges. PR calculates this probability, but other centrality measures could
potentially be used (with different semantics) too.

Although PR is comparatively efficient it is still not suitable for real-time calculations.
Therefore, in the current implementation it is computed beforehand for every node. The
probability function is then a simple lookup of the precomputed PR for a given class.

The final information content based algorithm with PR is given in Algorithm 4.6. It
retrieves both discussed ingredients in computes the final similarity between two nodes
with the given common super-classes. Note that the similarity is defined like in [Res95]
as the maximum information content. However, different definitions can be used with
minor adaptions too (e.g. the average).

46

4.2. Implementation

Algorithm 4.6: ICPR
Input: A list of classes (sups) and a lookup table of PageRanks for classes
Output: The information content based similarity between nodes with common

super-classes (sups)
1 sim = 0.0
2 for sup in sups do
3 tmpsim = − log2 (pageRank.get(sup))
4 if tmpsim > sim then sim = tmpsim /* maximum */

5 end
6 return sim

4.2.5 LDSD

Linked Data Semantic Distance (LDSD) is another measure estimating similarity between
two nodes. Again, similar to the information content measure in Section 4.2.4, the
definition provides an example of an algorithm that can be computed efficiently by
querying the triple store through SPARQL and processing the results in Java. A GAS
style formulation is therefore not necessary.

The reason for this is that only a node its neighborhood with at most one indirection is
considered for the computations. That is, similarity can be calculated only between a
node <a> and all nodes connected to <a> by at most two edges. Given a node
<a>, the algorithm always computes the similarity of all possible nodes at once. If
needed the similarity between <a> and a particular can be queried afterwards.

The algorithm consists of several SPARQL queries that are then combined to form the
final formula for LDSD (see also Section 2.4.5). The first query in Algorithm 4.7 retrieves
all relevant nodes for a given node. That is, all connected nodes that are at most two
edges away and are relevant for future calculations.

The following algorithms are SPARQL queries calculating values for the functions as
defined in [PD10]:

• The direct and distinct links between resources ra and rb: Cd(li, ra, rb) in Algo-
rithm 4.8

• The indirect and distinct incoming links between resources ra and rb: Cii(li, ra, rb)
in Algorithm 4.9

• The indirect and distinct outgoing links between resources ra and rb: Cio(li, ra, rb)
in Algorithm 4.10

47

4. Implementation

Algorithm 4.7: SPARQL LDSD Neighborhood (ldsd-neighborhood)
Input: Nodes <a> and for which common super-classes should be found
Output: The common super-classes of <a> and

1 SELECT DISTINCT ?b WHERE
2 {
3 {
4 { <a> ?l1 ?b .}
5 UNION
6 { ?b ?l2 <a> .}
7 }
8 UNION
9 {

10 {
11 ?nii ?lii <a> .
12 ?nii ?lii ?b .
13 }
14 UNION
15 {
16 <a> ?lio ?nio .
17 ?b ?lio ?nio .
18 }
19 }
20 }

Additionally, the respective extensions to calculate total number of resources for functions
as defined in [PD10]:

• The total number of resources n linked directly to ra via li: Cd(li, ra, n) in Algo-
rithm 4.11

• The total number resources n linked indirectly to ra via the incoming edge li:
Cii(li, ra, n) in Algorithm 4.12

• The total number of resources n linked indirectly to ra via the outgoing edge li:
Cio(li, ra, n) in Algorithm 4.13

Algorithm 4.8: SPARQL Cd links (cdlab)
Input: Nodes <a> and
Output: A list of direct and distinct links between <a> and

1 SELECT ?l WHERE { <a> ?l . }

48

4.2. Implementation

Algorithm 4.9: SPARQL Cii links (ciilab)
Input: Nodes <a> and
Output: A list of indirect and distinct incoming links shared between <a> and

1 SELECT ?l WHERE
2 {
3 _:x ?l <a> .
4 _:x ?l .
5 }

Algorithm 4.10: SPARQL Cio links (ciolab)
Input: Nodes <a> and
Output: A list of indirect and distinct outoing links shared between <a> and

1 SELECT ?l WHERE
2 {
3 <a> ?l _:x .
4 ?l _:x .
5 }

Algorithm 4.11: SPARQL Cd resource count (cdlan)
Input: Node <a>
Output: The number of resources b linked directly to <a> per link type l

1 SELECT ?l (COUNT (DISTINCT ?b) AS ?n) WHERE
2 { <a> ?l ?b . }
3 GROUP BY ?l

Algorithm 4.12: SPARQL Cii resource count (ciilan)
Input: Node <a>
Output: The number of resources b linked indirectly to <a> per incoming link

type l
1 SELECT ?l (COUNT (DISTINCT ?b) AS ?n) WHERE
2 {
3 _:x ?l <a> .
4 _:x ?l ?b .
5 }
6 GROUP BY ?l

49

4. Implementation

Algorithm 4.13: SPARQL Cio resource count (ciolan)
Input: Node <a>
Output: The number of resources b linked indirectly to <a> per outgoing link

type l
1 SELECT ?l (COUNT (DISTINCT ?b) AS ?n) WHERE
2 {
3 <a> ?l _:x .
4 ?b ?l _:x .
5 }
6 GROUP BY ?l

50

4.2. Implementation

Finally, with these SPARQL query the LSDS measure can be calculated for a given node
<a> and all relevant neighborhood nodes by Algorithm 4.14.

Algorithm 4.14: LDSD
Input: Node a
Output: A map containing the LDSD for all relevant neighborhood nodes

1 neighborLSDS = map() /* neighborLSDS is an empty map */
2 neighbors = ldsd-neighborhood(a)
3 linkCdlan = cdlan(a)
4 linkCiilan = ciilan(a)
5 linkCiolan = ciolan(b)
6 for b in neighbors do
7 sum_cd = sum(cdlab(a,b), linkCdlan)
8 sum_cii = sum(ciilab(a,b), linkCiilan)
9 sum_cio = sum(ciolab(a,b), linkCiolan)

/* Reusing same methods with a and b switched */
10 sum_cd_b = sum(cdlab(b,a), cdlan(b));
11 lsds = 1

1+sum_cd+sum_cd_b+sum_cii+sum_cio

12 neighborLSDS.put(b, lsds)
13 end
14 return (neighborLSDS)
15 function sum (links, linkCxlan) is
16 sum = 0
17 for l in links do
18 sum += 1

1+log(linkCxlan.get(l))
19 end
20 return sum
21 end

51

CHAPTER 5
Results

During this chapter the metrics are evaluated in order to answer the research questions
stated in the beginning. All of the evaluations were carried out on two different graphs:
STAR and MusicPinta. This ought to reduce the chance that the conclusions are prone
to a coincidental outlier result. Additionally, for each metric a qualitative discussion of
the suggested nodes and a statistical-quantitative investigation was performed.

The evaluation is split according to the classification established in Section 2.3. That
is, Section 5.1 will concentrate on the centrality metrics PageRank (PR), Accessibility
(ACS) and Load. Section 5.2 on the other hand evaluates the similarity metrics Linked
Data Semantic Distance (LDSD) and Information Content/PageRank (ICPR).

5.1 Centrality Metrics
In this section results from the centrality metrics as discussed in Section 4.2 are shown.
Namely, results for Accessibility (ACS), Load (LOAD) and PageRank (PR) are examined.
Since ACS is parameterized by the path length, results for (i) a path length of exactly
four, denoted as ACS(4), as well as (ii) the averaged ACS for path lengths between one
and four, denoted as ACS(1-4) are used. Where applicable results are normalized to a
range between [0, 1] to allow for better comparability.

The evaluation was carried out with Expert Knowledge Graphs (EKGs) and Exploratory
Search (ES) in mind. EKGs are a special kind of knowledge graph leveraging in semantic
web technology. Furthermore, they consist of specialized, domain-constrained knowledge,
and sophisticated knowledge as an expert would have in his or her domain of expertise
(see Section 2.1). ES is a broader view on search than previous search paradigms provides.
In addition to lookup it takes into account activities like learning and investigation too
(see Section 2.2). Exploratory Search Systems (ESSs) are software systems built for
assisting an exploratory searcher.

53

5. Results

STAR

In the first part of this section centrality metrics calculated from the STAR EKG are
examined. Table 5.1 on page 54 shows the five most influential nodes for each of the
metrics with respect to the whole STAR graph. All algorithms work very well for filtering
out less informative nodes that are contained in the graph. All the concepts in Table 5.1
on page 54 may also be assessed by a human evaluator as good starting points for an ES.

Metric Node Value

ACS (4) context#AuthorTag 1
specific#Domain 0.84776
context#ContextInformationElement 0.81734
context#Role 0.76283
instance#DesignPattern_modal_window 0.49041

ACS (1-4) specific#UseCase 1
generic#DesignTactic 0.02967
context#Role 0.02393
context#ProjectPhase 0.02393
context#AuthorTag 0.01835

LOAD instance#ArchitecturalQuality_scalability 1
instance#ArchitecturalQuality_security 0.99651
instance#ArchitecturalQuality_safety 0.86639
instance#ArchitecturalQuality_reliability 0.81948
instance#ArchitecturalQuality_usability 0.76662

PR context#ContextInformationElement 1
generic#ArchitecturalKnowledgeElement 0.85672
specific#Domain 0.42875
context#Project 0.28875
context#Author 0.21385

Table 5.1: The five most influential nodes selected by centrality metrics with respect to
the whole STAR EKG.

Indeed, considering a faceted search interface, the user could reasonably select any of the
suggested nodes for further exploration of the domain. Nodes in the graph that are less
informative or represent dead ends are successfully filtered out. Note also, that a ESS
could support an exploratory search by iteratively and semantically refining facets. If
the user selects context#AuthorTag the most central nodes contained in this class
(that are rdf:type context#AuthorTag) could be further explored. However, given
that this diploma thesis investigates core algorithms only, the concrete usage is at the
discretion of the ESS.

Whereas most metrics exhibit a decent decline among the highest ranking nodes, the

54

5.1. Centrality Metrics

averaged ACS(1-4) puts a disproportional emphasis on the dominant node with a stark
decrease in value of the second-to-highest ranking node.

But the summary statistics in Table 5.2 on page 55 hint that all the metrics are skewed.
Already at the third quartile the numerical values are roughly 1/15 for LOAD down to
1/103 for ACS(1-4). At some point after the first few highest ranking nodes all of them
seem to exhibit a steep decrease with most of the values clustering at comparatively low
levels.

ACS (4) ACS (1-4) LOAD PR

mean 0.01539 0.00182 0.06154 0.01260
std 0.06503 0.03179 0.09384 0.04502
min 0 0 0 0
25% 7.1e-06 0.00065 0.01747 0.00051
50% 1.0e-05 0.00069 0.04491 0.00222
75% 0.00670 0.00082 0.06676 0.02379
max 1 1 1 1

Table 5.2: Descriptive summary statistics of the centrality metrics as computed on the
STAR EKG.

Figure 5.1 shows the distribution of values for every centrality metric. Although all
metrics, with exception of ACS(1-4), distinguish well between the higher ranking metrics,
most results cluster around very low numerical values. LOAD exhibits the most favorable
behavior in that regard, distributing more nodes evenly along the possible value-range
than any other metric.

Figure 5.1: Violin plots of the centrality metrics as computed on the STAR EKG showing
the data points as well as the kernel density estimation.

55

5. Results

Judging from Table 5.1 on page 54 the metrics also do not seem to exhibit homogeneous
results. Indeed, the sole noticeable Pearson correlation is between ACS (path length = 4)
and PR with a moderate correlation of r = 0.44. All other correlations between any
pair of metrics are in-betwen the [−0.01, 0.01] range, hence not noteworthy. To the
contrary, the results rather hint at independence. Scatter plots for the metrics are shown
in Figure 5.2. They confirm the low correlation and skewed distribution of the metrics
too.

Figure 5.2: Scatter plots of the centrality metrics, as computed on the STAR EKG,
showing the data points of the centrality metrics plotted against each other as well as
the kernel density estimation for each metric on the diagonal axis.

56

5.1. Centrality Metrics

However, especially from the point of view of a human exploratory searcher, it is not
necessarily reasonable to interpret the degree of difference between values as suggested
by the results. That is, an interval scale may not be appropriate. Indeed, presuming
only an ordinal scale the Spearman correlation between any pairs of metrics suggests a
tighter coupling. All correlations, except between ACS(4) and PR, are at least weak up
to strong according to common interpretation (see Table 5.3 on page 57).

ACS (4) ACS (1-4) LOAD PR

ACS (4) 1 0.252593 0.394421 -0.092467
ACS (1-4) 0.252593 1 0.468736 0.775616
LOAD 0.394421 0.468736 1 0.340784
PR -0.092467 0.775616 0.340784 1

Table 5.3: Spearman correlations between any pair of centrality metrics as computed on
the STAR EKG.

57

5. Results

MusicPinta

In order to judge the previous results from more than a single observation, the algorithms
were conducted on a second dataset too. MusicPinta, which is a mesh from many
different datasets about music, also contains many scrub nodes that cannot be considered
expert knowledge such as hash values used for fingerprinting songs or invalid download
links. The MusicPinta dataset was hence pruned to the EKG about instruments for the
investigation.

Due to peculiarities of the selection chosen from the MusicPinta dataset the metrics
revealed a problem already seen at the averaged ACS(1-4) metric on the STAR EKG: An
overemphasis of a dominant concept to the disadvantage of all others. Concretely, due to
the selection of the MusicPinta subgraph, the abstract concept Instrument (represented
by the node musicbrainz:instrument/14) is arguably the most important node in
the graph and also designated as such by various metrics.

However, due to the stark decrease in value of the second-to-highest ranking node, this
node also represents an extreme outlier leading to a dominating node in the following
examination which would hide other effects. For cosmetic reasons, Instrument was
therefore left out in the following examination 1. However, this bears no consequences
for the stated arguments.

Table 5.4 on page 59 shows the five most influential nodes and their respective values as
calculated by the centrality metrics. Since the IRIs in the MusicPinta dataset bear little
information for a human examiner, the respective labels are given too (if available). Note
that all metrics are successful in providing a variety of fruitful suggestions for further
exploration. They do not only filter out dead ends but also nodes that a human assessor
would probably deem less important when examining the MusicPinta EKG.

The summary statistics in Table 5.6 on page 60 exhibits a similar pattern to the one already
discovered on the STAR EKG. This suggests that the results are largely independent
from any particular dataset but rather tied to the algorithms themselves. Again a stark
decrease in values at or before the third quartile can be observed. An ESS incorporating
these algorithms may take this into account, using only the suggested high-profile nodes.

1Note that, especially if an ordinal scale is presumed, a potential ESS is not affected by the dominating
node.

58

5.1. Centrality Metrics

Metric Node Label Value

ACS (4) musicbrainz:instrument/69 String instruments 1
musicbrainz:instrument/322 Struck string instruments 0.87688
musicbrainz:instrument/15 Wind instruments 0.75184
musicbrainz:instrument/180 0.43062
musicbrainz:instrument/329 Electric Piano 0.34246

ACS (1-4) musicbrainz:instrument/75 Guitars 1
musicbrainz:instrument/322 Struck string instruments 0.26965
musicbrainz:instrument/159 Electronic instruments 0.02216
musicbrainz:instrument/123 0.00506
dbpedia:Huqin Huqin 0.00461

LOAD musicbrainz:instrument/124 Percussion instruments 1
musicbrainz:instrument/229 Guitar 0.82813
musicbrainz:instrument/302 Plucked string instruments 0.76563
musicbrainz:instrument/75 Guitars 0.70313
musicbrainz:instrument/233 Reeds 0.69531

PR musicbrainz:instrument/69 String instruments 1
musicbrainz:instrument/15 Wind instruments 0.67156
musicbrainz:instrument/229 Guitar 0.58000
dbpedia:Guitar Guitar 0.57975
musicbrainz:instrument/124 Percussion instruments 0.51585

Table 5.4: The five most influential nodes selected by centrality metrics with respect to
the whole MusicPinta EKG.

ACS (4) ACS (1-4) LOAD PR

mean 0.01141 0.00142 0.04829 0.01236
std 0.09260 0.03272 0.08082 0.04574
min 0 0 0 0
25% 3.2e-09 2.7e-08 0 0
50% 3.2e-09 2.7e-08 0.03906 0.00380
75% 3.2e-09 0.00017 0.06250 0.00817
max 1 1 1 1

Table 5.5: Descriptive summary statistics of the centrality metrics as computed on the
MusicPinta EKG.

The violin plots in Figure 5.3 confirm the observations made so far. Although, the
centrality metrics provide a useful distinction among the highest-ranking nodes most
others group around low numerical values. Again, LOAD exhibits the most favorable

59

5. Results

behavior in that regard, distributing more nodes evenly along the possible value-range
than any other metric.

Figure 5.3: Violin plots of the centrality metrics as computed on the MusicPinta EKG
showing the data points as well as the kernel density estimation.

Given that a degree of difference is not necessarily interpretable only the Spearman
correlation were calculated for comparison. The correlations between the metrics on
the MusicPinta EKG are given in Table 5.6 on page 60. However, they are harder to
interpret with respect to the previous results on the STAR EKG. Despite being generally
higher, some combinations (in particular ACS(4) to PR and ACS(1-4) to PR) show a
diverging pattern compared to the previous EKG. The reason for that is unclear and
subject to future investigations.

ACS (4) ACS (1-4) LOAD PR

ACS (4) 1 0.618032 0.682259 0.508396
ACS (1-4) 0.618032 1 0.694103 -0.123142
LOAD 0.682259 0.694103 1 0.125202
PR 0.508396 -0.123142 0.125202 1

Table 5.6: Spearman correlations between any pair of centrality metrics as computed on
the MusicPinta EKG.

The scatter plots in Figure 5.4 also bear no surprises compared to the ones from the
STAR EKG. Although slightly closer correlated, they show no clear connection between
the metrics. The results within each of the metrics are again highly skewed towards low
values as can be seen on the diagonal axis in Figure 5.4.

60

5.2. Similarity Metrics

Figure 5.4: Scatter plots of the centrality metrics as computed on the MusicPinta EKG,
showing the data points of the centrality metrics plotted against each other as well as
the kernel density estimation for each metric on the diagonal axis.

5.2 Similarity Metrics

For the evaluation of similarity metrics the top node of each centrality metric (see Sec-
tion 5.1) was chosen and the similarity to all other nodes in the Expert Knowledge Graph
(EKG) was computed. Namely, results for Information Content/PageRank (ICPR), the
newly suggested information content metric based on PageRank (PR), and Linked Data
Semantic Distance (LDSD), the similarity metric specifically designed for the semantic
web, are examined during this section (for implementation details see Section 4.2).

The evaluation was carried out with Expert Knowledge Graphs (EKGs) and Exploratory
Search (ES) in mind. EKGs are a special kind of knowledge graph leveraging in semantic

61

5. Results

web technology. Furthermore, they consist of specialized, domain-constrained knowledge,
and sophisticated knowledge as an expert would have in his or her domain of expertise
(see Section 2.1). ES is a broader view on search than previous search paradigms provides.
In addition to lookup it takes into account activities like learning and investigation too
(see Section 2.2). Exploratory Search Systems (ESSs) are software systems built for
assisting an exploratory searcher.

The first part of the analysis again concentrates on the STAR EKG. In the second part
the results from STAR are compared to results of the same evaluation conducted on
the MusicPinta EKG. This approach was chosen in order to mitigate a potential outlier
observation and show the portability of the metrics to various datasets.

STAR

Table 5.7 on page 63 and Table 5.8 on page 63 show the three highest ranking nodes
(according to their LDSD and ICPR value respectively) for each of the top centrality
nodes calculated in Section 5.1. There are several things of note when examining the
tables.

First, the similarity nodes in Table 5.7 on page 63 partially consist of properties. From
a naive view-point these are ought to materialize as edges in the EKG, therefore not
occur in results of LDSD or ICPR. However, properties defined in OWL are also subjects
(read nodes) in other triples2. Depending on the ESS built upon these algorithms such a
duality may be desired or not. In this evaluation the properties were kept as nodes too.
The advantage of this approach is that similarity (or relative importance) is assigned to
edges too 3, which can be leveraged in an ESS. However, it would be straight-forward to
filter out properties with an appropriate SPARQL query.

Second, whereas the centrality algorithms at least distinguished well between the highest
ranking nodes, this cannot be said of the similarity metrics. In fact, when filtering out
properties, there would be no difference in similarity values in the given tables. As already
discussed, the similarity metrics depend on a differentiating class hierarchy to expose a
high discriminative power. If the ontology is more homogeneous, the similarity between
nodes tends to fall into one out of a few discrete categories of values. This pattern can
be observed on the STAR EKG too.

From the perspective of an ESS, the suggested nodes in Table 5.7 on page 63 and Table
5.8 on page 63 can, for example, be used to facilitate further exploration after the user
has explored an initial node suggested by one of the centrality metrics. Under this
perspective, the nodes emphasized by LDSD may also be chosen by a human assessor for
further exploration. However, the nodes emphasized by ICPR do not seem particularly
well chosen considering the STAR EKG.

2Stating something to be a property already necessitates this — at least implicitly. Assigning a label
to a property would be another common case.

3Note that in the average case ICPR implicitly filters out properties by construction.

62

5.2. Similarity Metrics

Node Value

context#AuthorTag
generic#hasMethodTag 1.00000
instance#AuthorTag_technical_realization_plan 0.71366
instance#AuthorTag_cost-benefit_analysis 0.71366

context#ContextInformationElement
generic#hasContext 1.00000
instance#ProjectPhase_architecture 0.71677
instance#AuthorTag_software_analysis 0.71677

instance#ArchitecturalQuality_scalability
generic#ArchitecturalQuality 1.00000
instance#AuthorTag_scalability 1.00000
generic#ArchitecturalKnowledgeElement 1.00000

specific#UseCase
specific#hasUseCaseRequirement 1.00000
specific#containedWithin 1.00000
instance#UseCase_sad_generation 0.71659

Table 5.7: The three highest ranking LDSD-nodes for each of the top centrality nodes in
the STAR EKG

Node ICPR

context#AuthorTag
instance#Domain_ar-103__kpi_computation 1.00000
instance#Domain_ar-102__tool_integration 1.00000
instance#Domain_ar-021__privacy_monitoring 1.00000

context#ContextInformationElement
instance#Domain_ar-103__kpi_computation 1.00000
instance#Domain_sr-01_01 1.00000
instance#Domain_ar-024__data_and_process_auditing 1.00000

instance#ArchitecturalQuality_scalability
instance#Domain_ar-104_2__variable_filtering 1.00000
instance#Domain_ar-105__reports_and_analytics 1.00000
instance#Domain_ar-08__rapid_specification_authoring 1.00000

specific#UseCase
instance#Domain_ar-102__tool_integration 1.00000
instance#Domain_ar-101__dwh_querying 1.00000
instance#Domain_ar-02__incentives_for_architects 1.00000

Table 5.8: The three highest ranking ICPR-nodes for each of the top centrality nodes in
the STAR EKG

63

5. Results

Summary statistics are given in Table 5.9 on page 64. Due to space constraints the
following abbrevations were used:

• AT. . . context#AuthorTag

• CI. . . context#ContextInformationElement

• AQ. . . instance#ArchitecturalQuality_scalability

• UC. . . specific#UseCase

Contrary to the impression from the top similar nodes in 63 and 63 the summary statistics
show that, over all nodes, LDSD actually discriminates worse than ICPR with at least
50% of AT and CI and at least 25% of UC having the same values. In fact, it seems like
LDSD is not usable for assessing discriminating values for medium- to low-profile nodes
in many cases.

LDSD ICPR

AT CI AQ UC AT CI AQ UC

mean 0.56755 0.62382 0.15474 0.32922 0.64082 0.64146 0.32844 0.64020
std 0.27144 0.22931 0.14558 0.32800 0.21219 0.21134 0.3715 0.21304
min 0 0 0 0 0 0 0 0
25% 0.71366 0.71677 0.01609 0.10308 0.47992 0.47992 0 0.47992
50% 0.71366 0.71677 0.07053 0.10308 0.55380 0.55380 0.14206 0.55380
75% 0.71366 0.71677 0.29288 0.71659 0.80185 0.80190 0.61900 0.80185
max 1 1 1 1 1 1 1 1

Table 5.9: Descriptive summary statistics of the similarity metrics for each of the top
centrality metrics as computed on the STAR EKG.

Figure 5.5 shows a more detailed picture of the distribution of LDSD and ICPR values.
Although ICPR contains more nodes in the top range (ICPR=1), the resolution over all
possible values is finer than for LDSD. However, due to the dependence on discriminating
elements in the ontology (like a fine-grained class hierarchy), both of the investigated
similarity metrics exhibit a low sampling rate yielding only few, discrete categories of
values.

64

5.2. Similarity Metrics

(a) Histograms of LDSD values for the top cen-
trality nodes in the STAR EKG

(b) Histograms of ICPR values for the top cen-
trality nodes in the STAR EKG

Figure 5.5: Histograms of similarity values for the top centrality nodes in the STAR EKG

MusicPinta

For comparison and in order to reassure the observations made on the STAR EKG,
the same similarity evaluation as before was repeated on the MusicPinta EKG. In fact,
MusicPinta has a slightly more discriminating class structure which is why the similarity
metrics could be expected to yield more satisfactory results. However, also the MusicPinta
EKG does not come close to the optimal case of a thesauri-like class structure.

Despite this, the top similarity nodes for each of the most central nodes as selected
in Section 5.1 show a surprisingly similar pattern on the MusicPinta EKG as for the
STAR EKG (see Table 5.10 on page 66 and 66).

Again, LDSD seems to discriminate better among the top nodes than ICPR. In fact, there
are several nodes with a top ICPR score (ICPR=1) such that the particular selection of
the three nodes among the top nodes shown in Table 5.11 on page 66 is an artifact of
the ordering in the evaluation program. This also explains the uniformity of the ICPR
selection. Most of the musicbrainz:instrument/[0-9]+ instruments have the same ICPR
score for each of the top centrality nodes. The uniform selection is due to the (same)
ordering of equal values along an independent dimension in the evaluation program.

65

5. Results

Node Value

musicbrainz:instrument/124
mo:Instrument 1.00000
dbpedia:Kontra 0.21856
dbpedia:Bandone%C3%B3n 0.21856

musicbrainz:instrument/69
mo:Instrument 1.00000
dbpedia:Kontra 0.22383
dbpedia:Bandone%C3%B3n 0.22383

musicbrainz:instrument/75
leeds:Media.owl#3c53d830-e548-11e2-b8b2-bc305beb9a1f 1.00000
leeds:Media.owl#3ad2a150-e546-11e2-b8b2-bc305beb9a1f 1.00000
leeds:Media.owl#f6eff330-e549-11e2-b8b2-bc305beb9a1f 1.00000

Table 5.10: The three highest ranking LDSD-nodes for each of the top centrality nodes
in the MusicPinta EKG

Node Label Value

musicbrainz:instrument/124 Percussion instruments
musicbrainz:instrument/102 Hardingfele 1.00000
musicbrainz:instrument/36 Tenor saxophone 1.00000
musicbrainz:instrument/309 Rebab 1.00000

musicbrainz:instrument/69 String instruments
musicbrainz:instrument/102 Hardingfele 1.00000
musicbrainz:instrument/36 Tenor saxophone 1.00000
musicbrainz:instrument/309 Rebab 1.00000

musicbrainz:instrument/75 Guitars
musicbrainz:instrument/103 Hurdy gurdy 1.00000
musicbrainz:instrument/36 Tenor saxophone 1.00000
musicbrainz:instrument/309 Rebab 1.00000

Table 5.11: Three of the highest ranking ICPR-nodes for each of the top centrality nodes
in the MusicPinta EKG

The summary statistics in Table 5.12 on page 68 show a similar pattern compared to the
STAR EKG too. Again, for space constraints, the similarity nodes where abbreviated by
their unique number in their musicpinta:instrument/[0-9]+ uri pattern. Many similarity
assignments have the same numerical value. However, the uniformity in the top quartile
of ICPR stands out from the ICPR values obtained on the STAR EKG.

66

5.2. Similarity Metrics

The question that may arise at this point is why the similarity metrics seem to work
just equally well if not worse on the MusicPinta EKG as on the STAR EKG, despite
the proposed more discriminating structure of MusicPinta. Indeed the nature of the
similarity metrics is not yet fully revealed as Figure 5.6 shows.

(a) Histograms of LDSD values for the top centrality nodes in the MusicPinta EKG

(b) Histograms of ICPR values for the top centrality nodes in the MusicPinta EKG

Figure 5.6: Histograms of similarity values for the top centrality nodes in the MusicPinta
EKG

LDSD exhibits only slight improvements over the STAR EKG. However, ICPR discloses
an exceptionally well discriminating, and approximately normally distributed, pattern in
the low to medium range. In fact, the only outlier is the top ICPR value (ICPR=1) with
a large cluster of nodes assigned to it. Another peculiarity is the uniformity of all three
ICPR plots in Figure 5.6b.

One explanation for the results of the analysis so far is that, although as a whole the
MusicPinta EKG possesses a well discriminating class hierarchy, the subgraph induced
by the musicbrainz sub-URIs does not. Hence, the ICPR algorithm is not able to
distinguish between musicbrainz instruments, as there are no distinguishing features
in the data which are potentially exploitable by ICPR.

67

5. Results

To take a closer look at this new hypothesis, the MusicPinta EKG was further pruned
and all nodes with a musicbrainz sub-URI were removed. In addition, the URIs of
the form leeds:Media.owl#.* were removed since they bear no meaning in the graph.
Note that after this final pruning the remaining EKG consisted almost solely of dbpedia
instruments.

LDSD ICPR

124 69 75 124 69 75

mean 0.12185 0.12101 0.09718 0.62868 0.62888 0.62897
std 0.08851 0.09447 0.10366 0.31902 0.31912 0.31926
min 0 0 0 0 0 0
25% 0.06315 0.06947 0.04370 0.36077 0.36046 0.36009
50% 0.06315 0.06947 0.04370 0.54553 0.54625 0.54649
75% 0.21856 0.22383 0.15571 1 1 1
max 1 1 1 1 1 1

Table 5.12: Descriptive summary statistics of the similarity metrics for each of the top
centrality metrics as computed on the MusicPinta EKG.

After pruning, the same similarity analysis as before was conduced again. That is, the
most central nodes, as recalculated by the various centrality metrics on the pruned graph,
were selected and the similarity values were then computed again.

Whereas LSDS did not show much of an improvement, ICPR could benefit from the new
graph. Figure 5.7 shows the new ICPR histogram. As expected, the dominant cluster
at ICPR=1 disappeared. Furthermore, the remaining values exhibit a (slightly skewed)
normal distribution with many distinct values. Additionally, the uniformity of the three
similarity calculations was replaced by more unique patterns for each of the top centrality
nodes.

Figure 5.7: Histograms of similarity values for the top centrality nodes in the MusicPinta
EKG after pruning the MusicBrainz nodes.

68

CHAPTER 6
Discussion and Conclusion

This diploma thesis investigated Exploratory Search (ES) on Expert Knowledge Graphs
(EKGs). EKGs are a special kind of knowledge graph leveraging in semantic web tech-
nology. Furthermore, they consist of specialized, domain-constrained knowledge, and
sophisticated knowledge as an expert would have in his or her domain of expertise
(see Section 2.1). ES is a broader view on search than previous search paradigms provides.
In addition to lookup it takes into account activities like learning and investigation too
(see Section 2.2). Exploratory Search Systems (ESSs) are software systems built for
assisting an exploratory searcher.

The field of ES is still a largely undetermined topic. Although several approaches exist
(see Section 2.2), a clear direction is missing and its definition is currently evolving
constantly. Furthermore, ES is a vast topic spanning various fields from human centered
approaches like psychology to approaches leaning more towards engineering approaches
in computer science. Any attempt to tackle this problem can only hope to contribute a
small part to this topic.

ES also found its way into the semantic web research already. However, current approaches
are either tailor made solutions applicable only to a single ontology, concentrate solely on
the user interfacing part of an ESS or handle the problem on a more theoretic level. Only
few research tries to investigate possible algorithmic fundamentals of an ES (Section 2.2).

In contrast this diploma thesis tries to highlight particularly this part of an ESS. Two
similarity metrics, namely Linked Data Semantic Distance (LDSD) and Information
Content/PageRank (ICPR) have been implemented. ICPR is newly suggested informa-
tion content metric based on PageRank (PR), LDSD is a similarity metric specifically
designed for the semantic web. Furthermore, the three centrality algorithms PageRank
(PR), Accessibility (ACS), and Load have been implemented via Gather Apply Scatter
(GAS). Centrality metrics try to estimate the importance or the influence of a node
in the graph. GAS is an abstract computational model consisting of the three distinct

69

6. Discussion and Conclusion

phases Gather, Apply and Scatter. During each phase computations can be conducted
that alter well specified states of vertices or edges (see also Section 2.5).

The approach taken in this diploma thesis is novel in several ways that will be discussed
during this section. In addition, the results obtained from conducting several algorithms
(see Section 4.2 and Chapter 5) are revisited again and conclusions from these results
will be drawn.

The main research question examined in this diploma thesis was:

RQ–I. How can exploratory search on semantic web technologies be supported algorith-
mically?

The suggested solution are metrics assessing the centrality of a single node and the
similarity between two nodes in the semantic graph. The selected metrics vary in their
nature and show different approaches how algorithms can be used for ES on EKGs.

The centrality metrics stem from general graph algorithms that were not designed with
ES or semantic web technologies in mind. One of the major advantages of semantic web
technologies compared to other data models is their immediate representation as a graph.
Research on graph algorithms has a long tradition already. Although it may seem like
a natural fit, almost no current research tries to leverage the accumulated knowledge
in both of these fields to advance ES. The transfer into the realm of EKGs shown in
this diploma thesis offers a procedure that can be used for many other general graph
algorithms too.

Centrality metrics estimate the importance of a node. The notion of importance differs
from metric to metric. This can be used in various ways for exploratory search. For
example, an important node can be suggested as a starting point for exploration to a
user unfamiliar with the EKG domain. As part of a faceted search system, facets can be
selected and/or ordered by node centrality too.

The first similarity metric, information content based on PR (ICPR) is a novel suggestion
for an information content based metric. It leverages PR for associating probabilities to
classes. PR is known to converge fast and, in concert with the suggested approach for
centrality metrics, is also readily available.

LDSD is a similarity metric specifically designed with ES and semantic web technologies
in mind. This kind of algorithms is comparatively easy to implement since it uses the
SPARQL capabilities of triple stores without the need for further provisions.

A potential shortcoming of LDSD with respect to other metrics like the discussed graph
algorithms is the lack of theoretic reasoning. LDSD was developed by empirically
evaluating various combinations of the basic ingredients (Cd, Cii, etc. See Section 4.2.5).
However, the only evidence that this metric is advantageous for ES is given by an
empirical user study.

The second research question was concerned with transferring the investigated methods
to different datasets:

70

RQ–II. What are the characteristics of datasets like STAR that are required by the
algorithms?

In Section 2.1 several characteristics of EKGs were proposed that can be presupposed
by the algorithms. Some of them, like a graph representation, are immediately given by
datasets specified via semantic web technologies.

However, others are less widespread. One of the defining characteristics of EKGs are their
constrained size (expert knowledge is rather small and complex than shallow and huge).
Indeed, despite the GAS computational model allows for parallelization, it also puts
severe constraints on the algorithms, like immediate vicinity of the gather and scatter
nodes. This results in demanding workaround like seen in Section 4.2. Also, most of the
investigated algorithms are inherently demanding. Depending on the available computing
power, a comparatively a constrained size is a necessary precondition.

A sophisticated structure of the graph is another defined characteristic of expert knowl-
edge and consequently EKGs. The extend to which this is required was only revealed
in Chapter 5. In fact, it seems like there is a need for less sensitive algorithms.

In particular the similarity metrics are very sensitive to the discriminative power of the
class structure in the EKG. That is, if the class structure is shallow with few classes
containing the majority of nodes, or subsets of nodes are all assigned to the same classes,
the algorithms cannot distinguish well between the similarity of nodes. The result are
few distinct similarity values assigned to large subsets of the nodes. While centrality
metrics are subject to the same problem in principle, they were found to be more robust
in that regard.

RQ–III. To what extent is it possible to transfer the investigated methods to different
datasets?

The proposed centrality metrics, as implemented depend on no internals of the dataset
beside the graph structure and the previously discussed characteristics. If the term
portability is extended to the environment the datasets commonly reside in, then the
triple store containing the data has to support a GAS interface. Currently the only triple
store known to the authors to support this is Blazegraph. However, the hope is that
other vendors will also recognize the need for direct access to the graph and implement a
GAS interface.

The similarity metrics do not depend on internals of the datasets, besides the discussed
characteristics, as well. However, they must be held in a triple store supporting SPARQL.
This is a reasonable assumption, since triple stores are prevalent for data provision in
the semantic web.

Indeed, in Chapter 5 the proposed metrics were also conducted on two different EKGs.
Besides switching the datasets in the triple store no adaptions to the algorithms had to
be made.

The third research question targeted to implementation on triple stores which are a
major part of the semantic web stack. However, algorithms that do not align well with

71

6. Discussion and Conclusion

SPARQL are implemented by bypassing triple stores in current literature. Hence, the
question was:

RQ–IV. How can we implement the proposed algorithms based on a common triple store?

Since the similarity metrics leaned themselves well towards a SPARQL-based implemen-
tation, this question had to be answered only for the centrality metrics as examples of
general graph algorithms.

Loading the raw RDF data into a specialized graph data structure is not enough as
many of the defining advantages of semantic web ontologies, like triple inference and
consistency checks, would be lost. Another possibility would be to use the SPARQL
access triple stores commonly provide.

However, as already mentioned, SPARQL is not powerful enough to support most graph
algorithms since a loop construct is missing. Continuously issuing queries to a SPARQL
endpoint and processing the results externally is also no sustainable solution, since the
demands of graph algorithms are oftentimes too high to be computed efficiently this way.

Currently, common triple stores provide almost no solutions for efficient access to the
graph structure. One was found in the GAS API provided by Blazegraph. Besides being
still only a preliminary API, the graph algorithms were reformulated in this paradigm.

Whereas PR is a natural fit for GAS (in fact GAS is an abstraction and generalization of
the PR computation), the restrictions of GAS (Section 2.5) induce obstacles hard to
come by in other algorithms. Workarounds often require to carry around a lot of state
for bookkeeping. Also, GAS is still a rather novel paradigm such that there is not much
experience in reformulating algorithms for GAS that could be built upon. Nevertheless,
it was possible to reformulate all of the proposed algorithms in this paradigm.

Finally, the last research question addressed in this master thesis was:

RQ–V. Which of the proposed algorithms work best? What are potential shortcomings
and why?

The prevalent shortcoming of centrality algorithms was their lack of differentiation in the
medium to low value range. While the centrality algorithms worked well in selecting and
distinguishing the top nodes, most of the nodes built a cluster at a very low value range.
Many of them got assigned the same values. Depending on the ES system built upon
the algorithms this might be enough (e.g., if the ES system is only interested in the top
nodes).

With respect to differentiation of the nodes, LOAD did exhibit the most beneficial results.
Although still subject to a cluster in the low value range, LOAD distributed more nodes
along the whole value range than any other of the tested centrality metrics. This behavior
could be observed on both datasets, hence it seems to be a property of the algorithm
rather than properties of the data.

Another peculiarity could be observed for the averaged ACS for path lengths between
one to four. This metric tends to overemphasize one or very few nodes, therefore, in

72

relation, dwarfing all other values. However, if only the rank of the nodes is considered,
this is not an obstacle.

The rank correlation between the centrality metrics were mostly in the low to medium
range. This hints at desirable properties of the metrics. On the one hand there might
be a common component measured by all metrics (the fundamental importance of a
node). On the other hand the metrics also seem to measure slightly different notions
of importance, therefore being all relevant and cannot be substituted for one another.
However, this hypothesis would demand further investigations for a final conclusion.

As already mentioned, the similarity metrics require a very discriminative class structure
to work well. The similarity metrics suggested in this diploma thesis seem to be too
sensitive to this requirement. ICPR was not able to distinguish between the most similar
nodes at all. LDSD performed slightly better in the top range, tough still dissatisfying.
Conversely, over the whole value range ICPR performed slightly better than LDSD. Both
metrics reduced the similarities into only a few distinct categories.

Whereas the pattern for LDSD was similar on any of the tested datasets, ICPR exhibited
a different behavior on the MusicPinta EKG. In fact, it turned out that the ICPR
metric was able to differentiate very well between the similarity of the MusicPinta nodes.
However, this was hidden by a particular subgraph of the MusicPinta EKG. After pruning
this subgraph from the EKG, the results from ICPR were satisfying and clearly superior
to LDSD. However, this also means that ICPR is sensitive to even parts of an EKG not
having a high discriminative power.

73

CHAPTER 7
Summary and Future Work

During this diploma thesis algorithms for Exploratory Search (ES) based on semantic
web technologies were proposed and investigated. ES is a broader view on search than
previous search paradigms provides. In addition to lookup it takes into account activities
like learning and investigation too. Exploratory Search Systems (ESSs) are software
systems built for assisting an exploratory searcher.

The investigated algorithms fell into two categories: Metrics estimating centrality of
a node and metrics estimating similarity between two nodes. Two similarity metrics,
namely Linked Data Semantic Distance (LDSD) and Information Content/PageRank
(ICPR) have been implemented. ICPR is newly suggested information content metric
based on PageRank (PR), LDSD is a similarity metric specifically designed for the
semantic web. Furthermore, the three centrality algorithms PageRank (PR), Accessibility
(ACS), and Load have been implemented via Gather Apply Scatter (GAS). Centrality
metrics try to estimate the importance or the influence of a node in the graph.

In order to be able to use triple stores, a major component of the semantic web stack,
graph algorithms were reformulated in the GAS computational model. GAS is an abstract
computational model consisting of the three distinct phases Gather, Apply and Scatter.
During each phase computations can be conducted that alter well specified states of
vertices or edges. The algorithms were then conducted on two different datasets. The
STAR EKG and the MusicPinta EKG. Expert Knowledge Graphs (EKGs) are a special
kind of knowledge graph leveraging in semantic web technology. Furthermore, they
consist of specialized, domain-constrained knowledge, and sophisticated knowledge as an
expert may possess in his or her domain of expertise

The centrality metrics worked reasonably well but exhibited less desirable properties
beneath the most central nodes. Requirements of the similarity metrics were not met by
the STAR EKG, leaving some room for improvements on the metrics. The novel ICPR
algorithm suggested in this diploma thesis however worked very well on the MusicPinta

75

7. Summary and Future Work

EKG after a confounding subgraph was pruned from the data set. LDSD did not match
ICPR on the MusicPinta EKG, even after the pruning.

Before discussing possible future work, a look back to the beginning of this diploma
thesis is taken here. There the use case of ES for supporting businesses in managing and
exploiting intellectual capital was discussed. However, this example was also generalized to
the overarching problem of becoming an expert in light of increasingly more sophisticated
expert knowledge. Another stated use case of an ESS was also just to help the casual
knowledge worker in his or her daily work with the information in this world.

Considering these examples the question arises how the results from this thesis have
contributed to these larger future visions. The problem of creating a fully working ESS
was not solved. Instead, only a small part (possible core algorithms) were investigated.
However, the algorithms could be used already today as part of the backend of a faceted
search interface, or some other user interface and -interaction methodology for ES.

Furthermore, graph algorithms were reformulated in the GAS model and applied to a
common triple store. This also provides possible case study for implementing many more
graph algorithms on triple stores. As a matter of fact, graph algorithms have a long
history with many interesting results already. Show-casing how ESS for the semantic
web can leverage this history is another small contribution to the overall vision.

Although just another similarity algorithm in an already rich selection, the newly pro-
posed ICPR algorithm managed to improve upon LDSD in some cases. While a small
contribution (and ICPR still not being perfect), the algorithm can be used in the backend
of an ESS for improved similarity assessment.

Finally, a business looking to get an exploratory search system at a level of sophistication
the research vision envisions is still out of luck. Provided in this diploma thesis are only
small steps embedded in a much larger overarching task.

While this diploma thesis tried to advance ES on semantic web technologies in various
novel ways, there are still several open questions that were purposefully not addressed
here, as well as new questions sprouted during the course of this work.

Probably one of the hardest, overarching tasks for future research concerns the notion of
ES itself. While there exists a wealth of research concerning theoretic models of ES, they
often reside on a very abstract level leaving a gap between the models and the needs
of research trying to use them. In the future it would be desirable to close this gap by
operationalizing the high level terms used in theoretic models of ES. This would not
only be useful in research of methods and algorithms supporting ES but also in their
evaluation. This is of course a highly non-trivial problem.

A more accessible task for future research is trying to transfer knowledge gained in
previous research to ES in the semantic web. There are still many graph algorithms that
could be useful for ES. Reformulating and evaluating them in the context of semantic
web technologies would be interesting.

76

In that vein future research could also look into other possibilities to access the graph
structure inherent to semantic web technologies via triple stores. While GAS is one
possibility, it is also quite restrictive (mainly due to the locality requirement of gather
and scatter edges/nodes). This makes it hard to port algorithms developed in other areas
over to triple stores. However, the immediate graph representation is a major advantage
of the semantic web over other technologies like relational databases. Finding possibilities
to make the underlying graph more accessible to applications built upon triple stores
could be an important future contribution.

Another topic future work could look more into is the generalizability of approaches.
Most of the current research on ES in the semantic web is effectively bound to a single
ontology or application only. Extracting only the bits and pieces that are quintessential
to these approaches could make them transferable to other datasets as well. The notion
of EKGs introduced in this diploma thesis could be used for this task as well or refined
in future research to capture more of the features needed for generic approaches.

More specific to this diploma thesis, future research could try to evaluate the results in a
user centered study. While the synthetic analysis in this diploma thesis provides valuable
insights, a user study could better assess the effectiveness from a user perspective.

However, this would also presume the last suggestion for future work given in this section.
Future work could try to integrate the provided algorithmic basis into a fully fledged ESS.
Whether via a faceted interface as suggested at several points during this thesis or with
another interface and interaction paradigm. The metrics discussed here are potentially
flexible enough to support various approaches. However, this is left for the future.

77

List of Figures

1.1 Learn and Investigate as core activities of ES. Arrows indicate interactions
between the core activities as well as with the related activity Lookup. Figure
taken from [Mar06]. 2

2.1 Model of an RDF Triple consisting of a subject, a connecting predicate and
an object. All of them assigned to a unique label IRI. 8

2.2 Learn and Investigate as core activities of ES. Intersections indicate overlaps
between the core activities as well as with the related activity Lookup. Figure
after [Mar06]. 10

2.3 High-level characteristics of ES commonly used in various ES models cate-
gorized into two larger, overlapping domains. After a figure in [PGGT17]’s
review study. 12

2.4 Exemplary user interface of a faceted search system. Taken from mSpace [SWRS06]. 13
2.5 Illustration of the GAS phases. Distribution of new information shown by the

flow of ocher through the graph. 27

4.1 Illustration of a Gather-Sum and Apply phase for PageRank. Calculations
and state changes in each phase denoted by ocher colored border. 34

4.2 Gather-Sum phase creating and concatenating lists of neighborhood states. 37
4.3 Apply phases storing start vertices with bags of intermediate path vertices

together with the transition probability of the paths 39
4.4 Illustration of the shortest path calculation and commodity distribution phases

for LOAD via two subsequent GAS phases. 43

5.1 Violin plots of the centrality metrics as computed on the STAR EKG showing
the data points as well as the kernel density estimation. 55

5.2 Scatter plots of the centrality metrics, as computed on the STAR EKG,
showing the data points of the centrality metrics plotted against each other
as well as the kernel density estimation for each metric on the diagonal axis. 56

5.3 Violin plots of the centrality metrics as computed on the MusicPinta EKG
showing the data points as well as the kernel density estimation. 60

5.4 Scatter plots of the centrality metrics as computed on the MusicPinta EKG,
showing the data points of the centrality metrics plotted against each other
as well as the kernel density estimation for each metric on the diagonal axis. 61

79

5.5 Histograms of similarity values for the top centrality nodes in the STAR EKG 65
5.6 Histograms of similarity values for the top centrality nodes in the MusicPinta

EKG . 67
5.7 Histograms of similarity values for the top centrality nodes in the MusicPinta

EKG after pruning the MusicBrainz nodes. 68

80

List of Tables

2.1 Distinguishable categories of search from core lookup to core exploratory,
together with their respective goals, complexity and key tasks. A priori
predicted and empirically validated by [AGJ+16]. 11

2.2 Centrality Metrics: Measure the influence of a node in the (semantic) graph. 16
2.3 Similarity Metrics: Measure the relatedness between two nodes in the (seman-

tic) graph. 18

5.1 The five most influential nodes selected by centrality metrics with respect to
the whole STAR EKG. 54

5.2 Descriptive summary statistics of the centrality metrics as computed on the
STAR EKG. 55

5.3 Spearman correlations between any pair of centrality metrics as computed on
the STAR EKG. 57

5.4 The five most influential nodes selected by centrality metrics with respect to
the whole MusicPinta EKG. 59

5.5 Descriptive summary statistics of the centrality metrics as computed on the
MusicPinta EKG. 59

5.6 Spearman correlations between any pair of centrality metrics as computed on
the MusicPinta EKG. 60

5.7 The three highest ranking LDSD-nodes for each of the top centrality nodes in
the STAR EKG . 63

5.8 The three highest ranking ICPR-nodes for each of the top centrality nodes in
the STAR EKG . 63

5.9 Descriptive summary statistics of the similarity metrics for each of the top
centrality metrics as computed on the STAR EKG. 64

5.10 The three highest ranking LDSD-nodes for each of the top centrality nodes in
the MusicPinta EKG . 66

5.11 Three of the highest ranking ICPR-nodes for each of the top centrality nodes
in the MusicPinta EKG . 66

5.12 Descriptive summary statistics of the similarity metrics for each of the top
centrality metrics as computed on the MusicPinta EKG. 68

81

List of Algorithms

2.1 PageRank adapted from [PBMW99] . 20

2.2 Load . 22

4.1 GAS PageRank after [GBL+12] . 35

4.2 GAS Accessibility . 40

4.3 Accessibility Reducer . 41

4.4 Single Node Load . 44

4.5 SPARQL Super-Classes . 46

4.6 ICPR . 47

4.7 SPARQL LDSD Neighborhood (ldsd-neighborhood) 48

4.8 SPARQL Cd links (cdlab) . 48

4.9 SPARQL Cii links (ciilab) . 49

4.10 SPARQL Cio links (ciolab) . 49

4.11 SPARQL Cd resource count (cdlan) . 49

4.12 SPARQL Cii resource count (ciilan) . 49

4.13 SPARQL Cio resource count (ciolan) . 50

4.14 LDSD . 51

83

Acronyms

ACS Accessibility. 5, 19, 34, 35, 49, 51, 68

ACS(1-4) Averaged Accessibility with path length 1 to 4. 49–51, 53, 55

ACS(4) Accessibility with path length 4. 49, 53, 55

API Application Programming Interface. 29–31, 67, 68

EKG Expert Knowledge Graph. 2–9, 15, 17, 22, 23, 29–31, 39, 42, 43, 49–63, 65–69,
71–75

ES Exploratory Search. 1–5, 9–17, 20, 22, 29, 30, 49, 65, 66, 68, 71–73

ESS Exploratory Search System. 1, 2, 11, 50, 53, 54, 57, 65, 72

GAS Gather Apply Scatter. 4–6, 15, 18, 24–27, 29, 31, 32, 34, 35, 37, 39–41, 43, 45,
66–68, 71–73

ICPR Information Content/PageRank. 29, 49, 57, 59–63, 66, 68, 69, 71

IRI Internationalized Resource Identifier. 8, 53, 73

LDSD Linked Data Semantic Distance. 23, 24, 29, 30, 45, 49, 57, 59, 60, 62, 66, 68, 69,
71

OWL Web Ontology Language. 2, 8, 9, 13, 57

PR PageRank. 19, 20, 29, 32–34, 44, 49, 51, 53, 55, 57, 66, 68

RDF Resource Description Framework. 2, 8, 9, 13–15, 17, 35, 43, 67, 73

RDFS RDF Schema. 13, 14

SKOS Simple Knowledge Organization System. 8, 9

SPARQL SPARQL Protocol and RDF Query Language. 4, 14, 15, 17, 29, 30, 32, 43,
45, 48, 57, 66, 67

85

Bibliography

[AB70] Mary D. Salter Ainsworth and Silvia M. Bell. Attachment, exploration,
and separation: illustrated by the behavior of one-year-olds in a strange
situation. Child Development, 41(1):49–67, 1970.

[AGJ+16] Kumaripaba Athukorala, Dorota Głowacka, Giulio Jacucci, Antti
Oulasvirta, and Jilles Vreeken. Is exploratory search different? a compari-
son of information search behavior for exploratory and lookup tasks. Jour-
nal of the Association for Information Science and Technology, 67(11):2635–
2651, 2016.

[AGK+16] Marcelo Arenas, Bernardo Cuenca Grau, Evgeny Kharlamov, Sarūnas
Marciǔska, and Dmitriy Zheleznyakov. Faceted search over RDF-based
knowledge graphs. Web Semantics: Science, Services and Agents on the
World Wide Web, 37-38:55–74, 2016.

[AK12] Tatiana Andreeva and Aino Kianto. Does knowledge management really
matter? linking knowledge management practices, competitiveness and
economic performance. Journal of Knowledge Management, 16(4):617–636,
2012.

[AT05] G. Adomavicius and A. Tuzhilin. Toward the next generation of recom-
mender systems: a survey of the state-of-the-art and possible extensions.
IEEE Transactions on Knowledge and Data Engineering, 17(6):734–749,
2005.

[Bat89] Marcia J. Bates. The design of browsing and berrypicking techniques for
the online search interface. Online Review, 13(5):407–424, 1989.

[Bav48] Alex Bavelas. A mathematical model for group structures. Human
Organization, 7(3):16–30, 1948.

[BCG+12] Jie Bao, Diego Calvanese, Bernardo Cuenca Grau, Martin Dzbor,
and Achille Fokoue et al. OWL 2 web ontology language. Techni-
cal report, W3C, December 2012. http://www.w3.org/TR/2012/
REC-owl2-overview-20121211.

87

http://www.w3.org/TR/2012/REC-owl2-overview-20121211
http://www.w3.org/TR/2012/REC-owl2-overview-20121211

[BEF+56] Benjamin S Bloom, Max D Engelhart, Edward J Furst, Walker H Hill,
and David R Krathwohl. Taxonomy of educational objectives, Handbook
I: The cognitive domain, volume 19. David McKay Co Inc, 1956.

[BG14] Dan Brickley and Ramanathan Guha. RDF Schema 1.1. W3C
recommendation, W3C, 2014. http://www.w3.org/TR/2014/
REC-rdf-schema-20140225.

[BM09] Sean Bechhofer and Alistair Miles. SKOS simple knowledge organization
system reference. W3C recommendation, W3C, August 2009. http:
//www.w3.org/TR/2009/REC-skos-reference-20090818.

[BP98] Sergey Brin and Lawrence Page. The anatomy of a large-scale hypertextual
web search engine. Computer Networks and ISDN Systems, 30(1–7):107 –
117, 1998.

[BPCF17] Federico Bianchi, Matteo Palmonari, Marco Cremaschi, and Elisabetta
Fersini. Combining serendipity and active learning for personalized con-
textual exploration of knowledge graphs. Semantic Web, 2017. Submitted
for peer-review.

[Bra01] Ulrik Brandes. A faster algorithm for betweenness centrality. The Journal
of Mathematical Sociology, 25(2):163–177, 2001.

[Bra08] Ulrik Brandes. On variants of shortest-path betweenness centrality and
their generic computation. Social Networks, 30(2):136 – 145, 2008.

[CWL14] Richard Cyganiak, David Wood, and Markus Lanthaler. RDF 1.1 concepts
and abstract syntax. W3C recommendation, W3C, 2014. http://www.
w3.org/TR/2014/REC-rdf11-concepts-20140225.

[CY11] Valerie Cross and Xinran Yu. Investigating ontological similarity theoreti-
cally with fuzzy set theory, information content, and tversky similarity and
empirically with the gene ontology. In S. Benferhat and J. Grant, editors,
Proceedings of the 5th International Conference on Scalable Uncertainty
Management, volume 6929 of SUM’11, pages 387–400, Berlin, Heidelberg,
2011. Springer-Verlag.

[DLT+13] Vania Dimitrova, Lydia Lau, Dhavalkumar Thakker, Fan Yang-Turner,
and Dimoklis Despotakis. Exploring exploratory search: A user study with
linked semantic data. In Proceedings of the 2nd International Workshop
on Intelligent Exploration of Semantic Data. ACM Press, 2013.

[DNMO+12] Tommaso Di Noia, Roberto Mirizzi, Vito Claudio Ostuni, Davide Romito,
and Markus Zanker. Linked open data to support content-based recom-
mender systems. In Proceedings of the 8th International Conference on
Semantic Systems, I-SEMANTICS ’12, pages 1–8, New York, NY, USA,
2012. ACM.

88

http://www.w3.org/TR/2014/REC-rdf-schema-20140225
http://www.w3.org/TR/2014/REC-rdf-schema-20140225
http://www.w3.org/TR/2009/REC-skos-reference-20090818
http://www.w3.org/TR/2009/REC-skos-reference-20090818
http://www.w3.org/TR/2014/REC-rdf11-concepts-20140225
http://www.w3.org/TR/2014/REC-rdf11-concepts-20140225

[DS05] M. Duerst and M. Suignard. Internationalized resource identifiers (iris).
RFC 3987, RFC Editor, January 2005. http://www.rfc-editor.
org/rfc/rfc3987.txt.

[Fre77] Linton C. Freeman. A set of measures of centrality based on betweenness.
Sociometry, 40(1):35–41, 1977.

[FSSS09] Thomas Franz, Antje Schultz, Sergej Sizov, and Steffen Staab. Triplerank:
Ranking semantic web data by tensor decomposition. In Abraham Bern-
stein, David R. Karger, Tom Heath, Lee Feigenbaum, Diana Maynard,
Enrico Motta, and Krishnaprasad Thirunarayan, editors, The Semantic
Web - ISWC 2009: 8th International Semantic Web Conference, ISWC
2009, Chantilly, VA, USA, October 25-29, 2009. Proceedings, pages 213–
228, Berlin, Heidelberg, 2009. Springer Berlin Heidelberg.

[GBL+12] Joseph E. Gonzalez, Danny Bickson, Yucheng Low, Carlos Guestrin, and
Haijie Gu. Powergraph: Distributed graphparallel computation on natural
graphs. In The 10th USENIX Symposium on Operating Systems Design
and Implementation (OSDI), 2012.

[Haz82] Nancy L. Hazen. Spatial exploration and spatial knowledge: Individual
and developmental differences in very young children. Child Development,
53(3):826–833, 1982.

[HMK05] David Huynh, Stefano Mazzocchi, and David R. Karger. Piggy bank:
Experience the semantic web inside your web browser. In The Semantic
Web - ISWC 2005, 4th International Semantic Web Conference, ISWC
2005, Galway, Ireland, November 6-10, 2005, Proceedings, pages 413–430,
2005.

[Hof98] Robert R. Hoffman. How can expertise be defined? implications of
research from cognitive psychology. In Robin Williams, Wendy Faulkner,
and James Fleck, editors, Exploring Expertise: Issues and Perspectives,
pages 81–100, London, 1998. Palgrave Macmillan UK.

[HS13] Steven Harris and Andy Seaborne. SPARQL 1.1 query language. W3C
recommendation, W3C, March 2013. http://www.w3.org/TR/2013/
REC-sparql11-query-20130321.

[HvOH06] Michiel Hildebrand, Jacco van Ossenbruggen, and Lynda Hardman. /facet:
A browser for heterogeneous semantic web repositories. In Isabel Cruz,
Stefan Decker, Dean Allemang, Chris Preist, Daniel Schwabe, Peter
Mika, Mike Uschold, and Lora M. Aroyo, editors, The Semantic Web -
ISWC 2006: 5th International Semantic Web Conference, ISWC 2006,
Athens, GA, USA, November 5-9, 2006. Proceedings, pages 272–285, Berlin,
Heidelberg, 2006. Springer Berlin Heidelberg.

89

http://www.rfc-editor.org/rfc/rfc3987.txt
http://www.rfc-editor.org/rfc/rfc3987.txt
http://www.w3.org/TR/2013/REC-sparql11-query-20130321
http://www.w3.org/TR/2013/REC-sparql11-query-20130321

[HZL08] Philipp Heim, Jürgen Ziegler, and Steffen Lohmann. gFacet: A browser
for the web of data. In Proceedings of the International Workshop on
Interacting with Multimedia Content in the Social Semantic Web, volume
417 of IMC-SSW’08, pages 49–58, 2008.

[JW02] Glen Jeh and Jennifer Widom. Simrank: A measure of structural-context
similarity. In Proceedings of the Eighth ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, KDD ’02, pages
538–543, New York, NY, USA, 2002. ACM.

[Kat53] Leo Katz. A new status index derived from sociometric analysis. Psy-
chometrika, 18(1):39–43, Mar 1953.

[Kle99] Jon M. Kleinberg. Authoritative sources in a hyperlinked environment.
Journal of the ACM, 46(5):604–632, September 1999.

[KRSV14] Aino Kianto, Paavo Ritala, John-Christopher Spender, and Mika Vanhala.
The interaction of intellectual capital assets and knowledge management
practices in organizational value creation. Journal of Intellectual Capital,
15(3):362–375, 2014.

[KVH16] Vasiliki Kalavri, Vladimir Vlassov, and Seif Haridi. High-level program-
ming abstractions for distributed graph processing. CoRR, abs/1607.02646,
2016.

[Lin98] Dekang Lin. An information-theoretic definition of similarity. In Pro-
ceedings of the Fifteenth International Conference on Machine Learning,,
ICML 1998, pages 296–304, 1998.

[MAB+10] Grzegorz Malewicz, Matthew H. Austern, Aart J.C Bik, James C. Dehnert,
Ilan Horn, Naty Leiser, and Grzegorz Czajkowski. Pregel: A system for
large-scale graph processing. In Proceedings of the 2010 ACM SIGMOD
International Conference on Management of Data, SIGMOD ’10, pages
135–146, New York, NY, USA, 2010. ACM.

[Mar06] Gary Marchionini. Exploratory search: from finding to understanding.
Communications of the ACM, 49(4):41–46, 2006.

[MES+17] J. Musil, F. J. Ekaputra, M. Sabou, T. Ionescu, D. Schall, A. Musil, and
S. Biffl. Continuous architectural knowledge integration: Making hetero-
geneous architectural knowledge available in large-scale organizations. In
2017 IEEE International Conference on Software Architecture (ICSA),
pages 189–192, 2017.

[MG14] Nicolas Marie and Fabien Gandon. Survey of linked data based exploration
systems. In Proceedings of the 3rd International Conference on Intelligent
Exploration of Semantic Data, volume 1279, pages 66–77. CEUR-WS.org,
2014.

90

[MRDNDS10] Roberto Mirizzi, Azzurra Ragone, Tommaso Di Noia, and Eugenio Di Scias-
cio. Ranking the linked data: The case of dbpedia. In Boualem Benatallah,
Fabio Casati, Gerti Kappel, and Gustavo Rossi, editors, Web Engineering:
10th International Conference, ICWE 2010, Vienna Austria, July 5-9,
2010, pages 337–354, Berlin, Heidelberg, 2010. Springer Berlin Heidelberg.

[MW04] Deborah McGuinness and Christopher Welty. OWL web ontology language
guide. W3C recommendation, W3C, 2004. http://www.w3.org/TR/
2004/REC-owl-guide-20040210.

[New01] M. E. J. Newman. Scientific collaboration networks. ii. shortest paths,
weighted networks, and centrality. Physical Review E, 64:016132, Jun
2001.

[New06] M. E. J. Newman. Erratum: Scientific collaboration networks. ii. shortest
paths, weighted networks, and centrality [phys. rev. e 64, 016132 (2001)].
Physical Review E, 73:039906, Mar 2006.

[New10] Mark Newman. Networks: an introduction. Oxford university press, 2010.

[NPG+17] Andrea Giovanni Nuzzolese, Valentina Presutti, Aldo Gangemi, Silvio
Peroni, and Paolo Ciancarini. Aemoo: Linked Data Exploration Based on
Knowledge Patterns. Semantic Web, 8:87–112, 2017.

[OPSPL11] Catherine Olsson, Plamen Petrov, Jeff Sherman, and Andrew Perez-Lopez.
Finding and explaining similarities in linked data. In Semantic Technology
for Intelligence, Defense, and Security, pages 52–59, 2011.

[Pas07] Alexandre Passant. Measuring semantic distance on linking data and using
it for resources recommendations. In Linked AI: AAAI Spring Symposium
Linked Data Meets Artificial Intelligence. AIII, 2007.

[Pas10] Alexandre Passant. dbrec - music recommendations using dbpedia. In The
Semantic Web - ISWC 2010 - 9th International Semantic Web Conference,
ISWC 2010, Shanghai, China, November 7-11, 2010, Revised Selected
Papers, Part II, pages 209–224, 2010.

[PBMW99] Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Winograd. The
pagerank citation ranking: Bringing order to the web. Technical Report
1999-66, Stanford InfoLab, November 1999.

[PD10] Alexandre Passant and Stefan Decker. Hey! ho! let’s go! explanatory
music recommendations with dbrec. In The Semantic Web: Research
and Applications, 7th Extended Semantic Web Conference, ESWC 2010,
Heraklion, Crete, Greece, May 30 - June 3, 2010, Proceedings, Part II,
pages 411–415, 2010.

91

http://www.w3.org/TR/2004/REC-owl-guide-20040210
http://www.w3.org/TR/2004/REC-owl-guide-20040210

[PGGT17] Émilie Palagi, Fabien L. Gandon, Alain Giboin, and Raphaël Troncy. A
survey of definitions and models of exploratory search. In Proceedings
of the 2017 ACM Workshop on Exploratory Search and Interactive Data
Analytics, ESIDA@IUI 2017, Limassol, Cyprus, March 13, 2017, pages
3–8, 2017.

[PS08] Eric Prud’hommeaux and Andy Seaborne. SPARQL query language for
RDF. W3C recommendation, W3C, January 2008. http://www.w3.
org/TR/2008/REC-rdf-sparql-query-20080115.

[Res95] Philip Resnik. Using information content to evaluate semantic similarity
in a taxonomy. In Proceedings of the Fourteenth International Joint
Conference on Artificial Intelligence, IJCAI 95, Montréal Québec, Canada,
August 20-25 1995, 2 Volumes, pages 448–453, 1995.

[RMBB89] R. Rada, H. Mili, E. Bicknell, and M. Blettner. Development and applica-
tion of a metric on semantic nets. IEEE Transactions on Systems, Man,
and Cybernetics, 19(1):17–30, January 1989.

[Ruf84] Holly A. Ruff. Infants’ manipulative exploration of objects: Effects of age
and object characteristics. Developmental Psychology, 20(1):9–20, 1984.

[sChC10] Seung seok Choi and Sung hyuk Cha. A survey of binary similarity and
distance measures. Journal of Systemics, Cybernetics and Informatics,
pages 43–48, 2010.

[SDRL06] Andreas Schlicker, Francisco S. Domingues, Jörg Rahnenführer, and
Thomas Lengauer. A new measure for functional similarity of gene
products based on gene ontology. BMC Bioinformatics, 7(1):302, Jun
2006.

[Sha92] James Shanteau. The psychology of experts an alternative view. In George
Wright and Fergus Bolger, editors, Expertise and Decision Support, pages
11–23, Boston, MA, 1992. Springer US.

[SWRS06] m.c. Schraefel, Max Wilson, Alistair Russell, and Daniel A. Smith. mspace:
Improving information access to multimedia domains with multimodal
exploratory search. Communications of the ACM, 49(4):47–49, April 2006.

[TdFC08] B.A.N. Travençolo and L. da F. Costa. Accessibility in complex networks.
Physics Letters A, 373(1):89 – 95, 2008.

[Wal23] HA Wallace. What is in the corn judge’s mind. Journal of the American
Society of Agronomy, 15(7):300–304, 1923.

[Wil96] Robin J. Wilson. Introduction to graph theory. Longman, Harlow, 4th ed
edition, 1996.

92

http://www.w3.org/TR/2008/REC-rdf-sparql-query-20080115
http://www.w3.org/TR/2008/REC-rdf-sparql-query-20080115

[WKW+10] Jörg Waitelonis, Magnus Knuth, Lina Wolf, Johannes Hercher, and Harald
Sack. The path is the destination – enabling a new search paradigm
with linked data. In In Proc. of the Workshop on Linked Data in the
Future Internet at the Future Internet Assembly, Dec 16–17, 2010, Ghent,
Belgium, CEUR Workshop Proc, 2010.

[WM76] Ann Weisler and Rober R. McCall. Exploration and play: Resume and
redirection. American Psychologist, 31(7):492–508, 1976.

[WR09] Ryen W. White and Resa A. Roth. Exploratory Search : Beyond the
Query-Response Paradigm. Morgan & Claypool Publishers, 2009.

93

	Kurzfassung
	Abstract
	Contents
	Introduction
	Aim of the Work
	Contributions
	Structure of the Work

	State of the Art
	Expert Knowledge Graphs
	Exploratory Search
	Classification and Overview of Metrics
	Selected Metrics
	Gather–Apply–Scatter

	Methodology
	Implementation
	Environment
	Implementation

	Results
	Centrality Metrics
	Similarity Metrics

	Discussion and Conclusion
	Summary and Future Work
	List of Figures
	List of Tables
	List of Algorithms
	Acronyms
	Bibliography

