
Web Response Ontology for Data
Import in Smart Buildings

DIPLOMA THESIS

submitted in partial fulfillment of the requirements for the degree of

Diplom-Ingenieur

in

Computer Engineering

by

Reinhold Gschweicher, Bsc
Registration Number 0828055

to the Faculty of Informatics

at the TU Wien

Advisor: Ao.Univ.Prof. Dipl.-Ing. Dr.techn. Wolfgang Kastner
Assistance: Dipl.-Ing. Dr.techn. Filip Petrushevski

Vienna, 26th November, 2017
Reinhold Gschweicher Wolfgang Kastner

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.ac.at

Die approbierte Originalversion dieser Diplom-/
Masterarbeit ist in der Hauptbibliothek der Tech-
nischen Universität Wien aufgestellt und zugänglich.

http://www.ub.tuwien.ac.at

The approved original version of this diploma or
master thesis is available at the main library of the
Vienna University of Technology.

http://www.ub.tuwien.ac.at/eng

Erklärung zur Verfassung der
Arbeit

Reinhold Gschweicher, Bsc
2084 Obermixnitz 23

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 26. November 2017
Reinhold Gschweicher

iii

Acknowledgements

Foremost, I would like to express my gratitude to my advisor, Wolfgang Kastner, who
gave me the opportunity to write my master’s thesis as a member of the Automation
Systems Group. Likewise, I would like to thank Filip Petrushevski for his steady support.
Both of them were always available for questions and discussion of relevant issues.

Moreover, my thanks go to my friends who always supported and helped me.

Especially, I would like to thank my parents, Sylvia and Franz for their mental, but
also financial support during my time as a student and throughout my life.

v

Abstract

Smart Buildings collect and store data from lots of sensors to save energy and improve
the comfort level of the occupants among other things. The usefulness of the collected
samples can be enhanced by fusing them with external data sources. These improved
data points could be analysed to help save energy and therefore money. However before
working with the data, it must first be retrieved from web servers. These provide their
information in various formats like CSV, JSON and XML. Each format must be treated
and parsed differently.

Ontologies are a great tool for combining data points and representing knowledge. In
this thesis, a response description ontology to describe web service responses in CSV,
JSON or XML format is created. To verify the applicability of the ontology it is used by
a parser to extract the specified data points in web service responses. The extracted data
is then used to calculate one day heat energy consumption forecasts in a smart office
building situated in Vienna.

vii

Contents

Abstract vii

Contents ix

1 Introduction 1
1.1 Motivation . 1
1.2 Problem statement . 2
1.3 Methodology . 3
1.4 Structure of the work . 3

2 State of the art 5
2.1 Information exchange in the World Wide Web 5

2.1.1 Information encoding . 5
2.1.1.1 CSV . 5
2.1.1.2 XML . 6
2.1.1.3 JSON . 7

2.1.2 Message exchange protocols . 7
2.1.2.1 Uniform Resource Locator 8
2.1.2.2 HTTP . 8
2.1.2.3 REST . 8

2.2 Ontology . 9
2.2.1 Resource Description Framework (RDF) 10

2.2.1.1 RDF Serialization Formats 11
2.2.2 RDF Schema (RDFS) . 14
2.2.3 Web Ontology Language (OWL) 15
2.2.4 SPARQL Protocol And RDF Query Language (SPARQL) . . . 16
2.2.5 Related Work . 17

2.3 Conclusion . 19

3 System Specification and Design 21
3.1 Use cases . 22
3.2 Functional and non-functional requirements 22
3.3 Class Design . 23

ix

3.3.1 Important Terms . 23
3.3.2 Classes . 24
3.3.3 Properties . 27

3.3.3.1 Response . 27
3.3.3.2 Structure Object . 27

3.4 System Design . 29

4 Implementation 31
4.1 Infrastructure . 31

4.1.1 SPARQL Endpoint . 32
4.1.2 Building Management System 32
4.1.3 Building Data Interface . 33

4.1.3.1 JEDataCollector . 33
4.1.3.2 Improvement: SQL Driver 34

4.2 Ontology Instances . 35
4.2.1 Geolocation Service . 35
4.2.2 Weather Service . 36

4.2.2.1 Weather Underground Geolookup 37
4.2.2.2 Weather Underground Historic Data 39

4.2.3 Building Information Service 39
4.2.3.1 JEVis Structure . 40
4.2.3.2 JEVis Data . 42

4.3 SPARQL Queries . 43
4.3.1 Root of path . 43
4.3.2 Getting the full path . 44

4.4 PyCaster . 46
4.4.1 Data Import . 47

4.4.1.1 Sparql-py . 47
4.4.1.2 jeapi-py . 47

4.4.2 Data Processing . 47

5 Evaluation 49
5.1 Energy Data . 49
5.2 Anomalies . 50

6 Conclusion 53

A Ontology 55
A.1 response description . 55

B SQL driver 65
B.1 Configuration . 66
B.2 Message Sequence chart . 67

List of Figures 69

List of Tables 71

Bibliography 73

CHAPTER 1
Introduction

1.1 Motivation

Keeping the temperature of a workplace or a residential building at a comfortable level
is a complicated and resource intensive task. According to Statistics Austria [Aus], in
2013, one third of the useful energy consumption in Austria can be attributed to space
and water heating. Figure 1.1 shows the useful energy consumption in Austria. The
main energy consumption falls into one of three major categories: production purposes,
traction and finally heating, lighting and computing combined. In absolute values, space
and water heating accounted for 332 PJ , traction for 380 PJ , production purposes for
374 PJ , and lighting and computing for only 33 PJ .

Seeing these numbers it is easy to understand why much effort has been put into
minimizing the heating costs in residential as well as commercial buildings.

Just reducing the cost of heating would be easy (not heating at all). The hard part
is to minimize the costs while keeping the comfort level of the people in the building
high. To reach this goal, building automation is an essential part [Kas06]. The roots of
building automation lie in the heating domain. Among others, core domains of building
automation are Heating, Ventilation and Air Conditioning (HVAC), lighting and shading.
Today, building automation in commercial buildings is well established.

As a side effect of building automation extensive databases with sensor data are often
available. Furthermore, services providing data like geolocation or weather forecasts are
readily available over the Internet. However, the import, fusion and analysis of these
different data inputs is a difficult and building or service specific task. As a result, a high
amount of duplicated effort for parsing and importing data samples is invested.

In recent years small, versatile and connected devices generally called Internet of
Things (IoT) devices have been growing in popularity. The rapid development of new IoT

1

1. Introduction

33.5 %

production purposes

33.9 %

traction

29.7 %

space and water heating2.9 %

lighting and computing

Figure 1.1: Useful energy analysis in Austria [Aus]

devices has also increased the number of possible data sources, because many of those
devices are equipped with sensors. With this rise the complexity of manually selecting
data points and writing specialized importers increases.

Sometimes, the effort of analysing the available data samples, selecting the best
samples and writing code to import those samples is too high. Therefore, much useful
data is sitting in databases unused with waiting potential.

1.2 Problem statement
The most efficient control mechanism would be one, that knows the future and can plan
accordingly. Control loops can only react to changes in their sensor values after the
events are measurable. Prediction and forecasts try to close this gap by using statistics
and computer algorithms predict the most likely outcomes. Facility managers can use
these forecasts to improve the performance of an automated system. They can be used to
monitor the performance of the heating system, find anomalies and improve the control
parameters of the heating system.

However, the improvement can only be significant if the forecasts are accurate. Bad
forecasts can lead to bad decisions, which may result in increased costs.

An energy load forecasting solution needs to be tailored to every building and service
in use by hand. Each service can have a different structure or encoding (like CSV, JSON
or XML). To change a data source (for example, a weather service providing weather

2

1.3. Methodology

forecasts), the program computing the energy load forecast needs to be rewritten or
updated with a new parser adapted to a different structure and possibly a different
encoding.

This thesis proposes the use of an ontology to describe the response of these various
data sources. To use data points from a different provider, only minimal changes to the
program and an ontological description of the data source should be necessary.

1.3 Methodology
First, research of the state of the art and related work of short term energy load forecasts
in smart buildings is done. Then, the current state of ontologies for weather forecasts and
sensors in smart buildings is evaluated. Next, the requirements and non-requirements of
a forecasting system and the ontologies are defined. According to the found requirements
and the chosen weather service, a prototype is implemented. Existing ontologies are used
or extended as needed. Finally, the results are examined and possible future improvements
are discussed.

1.4 Structure of the work
This section provides a general overview of the structure of this thesis.

Chapter 2 discusses the state of the art regarding information encoding, information
exchange and ontologies.

Chapter 3 contains a requirements analysis to define the scope of the ontology. The
requirements are then used to establish the design of a prototype system and the ontology.

In Chapter 4, models based on the defined ontology describing the responses of
different services are shown. A prototype application using these models is presented.
The prototype has the ability to obtain weather and sensor data from various sources
and then use this data to calculate a one day forecast. The application uses information
defined in the ontological models to import the correct data points from the various
service responses.

Chapter 5 evaluates the imported data and calculated results. The root mean square
error of the forecast is used to find anomalies in the data set. Those anomalies are further
inspected and possible causes identified.

Finally, Chapter 6 concludes this thesis, summarizes the findings and gives an outlook
on possible future work.

3

CHAPTER 2
State of the art

2.1 Information exchange in the World Wide Web

There are many ways to transfer information in the World Wide Web. In this section,
some commonly used Web standards for information exchange and encoding are described.

2.1.1 Information encoding

Before sending information over the Internet, the information should be encoded and
structured. This facilitates the implementation of computer programs transferring
information. In the following sections, the Web standards CSV, XML and JSON are
shown. These Web standards create structured data which can be parsed by computers.

2.1.1.1 CSV

The first described standard is abbreviated as CSV and stands for Comma Separated
Values. It describes a simple text only data format for tabular data [Sha05]. Each row
represents one record. Each record may be separated into multiple fields/columns by
a delimiter. The first row can be used as header to describe the contents of the single
columns. The header should have the same number of fields as normal record lines.

As the name suggests, the records are separated by a comma. However as there is
no single "master" specification for this format [Sha05] other delimiters are used as well.
Common delimiters are comma (,), semicolon (;), white spaces and tabulators. The fields
may contain numbers or text. The text can be quoted, but like the separator this is
implementation specific.

5

2. State of the art

2.1.1.2 XML

The eXtensible Markup Language (XML) is a text based data format to exchange
structured information over the Internet. It was developed by the XML Working Group
of the World Wide Web consortium in 1996 and like HTML is a subset of the Standard
Generalized Markup Language (SGML) [BPSM+98]. Additional restrictions on XML
include case sensitive names and that the characters ’<’ and ’&’ are not allowed in data
fields and must be entered as ’<’ and ’&’. A complete list of differences and
restrictions can be found at [Cla97].

For the intended use as document exchange format [BPSM+98], XML is designed
for ease of implementation [BPSM+98]. Programs to read and process, or create XML-
structured documents should be easy to create.

A well formed XML document has a prolog and a root element. Other elements are
nested within the root element. The prolog is used for the XML declaration, which defines
the version of XML being used, and other definitions describing the XML document.

Elements are encapsulated by so called start- and end-tags. An element with no
content can be encoded by an empty-element tag instead of a start- and end-tag. Both
variants are shown in the following listing:

<bu i l d i ng> <f l o o r /> </ bu i l d ing>

In this example, <building> is the start-tag, </building> the end-tag, and
<floor/> is the empty-element tag.

Attributes can be used to associate name-value pairs with elements. The attributes
only appear inside of start-tags or empty-element tags.

The following example extends the previous example with two attributes: the city
the building is situated in and the number of floors in the building.

<bu i l d i ng c i t y=" Vienna ">
<f l o o r number=" 2 " />

</ bu i l d i ng>

One strength of XML is the ability to add meta-data to tags in the form of attributes
[Str]. Another strength of XML is the support for mixed content. The keyword "#PC-
DATA" can be used to indicate binary data as content. "#PCDATA" historically stands
for "parsed character data".

6

2.1. Information exchange in the World Wide Web

2.1.1.3 JSON

JavaScript Object Notation (JSON) is intended to be an easy data-interchange format
[jso]. It is a language independent text format, but uses a convention common to C-like
languages.

JSON uses four primitive types to represent information. Those types are string,
number, boolean and null. Furthermore, two structured types (objects and arrays) can be
used [Bra14].

An object in JSON is described in [Bra14] as "an unordered collection of zero or more
name/value pairs". The name is a string and the value can be a string, number, boolean,
null, array or another object. After each name, a colon (:) symbol is used as separator.
An object is enclosed by curly brackets containing the name/value pairs. Such pairs are
separated by a single comma (,).

The second structured type is the array. An array is represented by squared brackets
([and]). It contains an ordered sequence of zero or more values. The values are separated
by commas and can be of any primitive data type or structured type. The elements in
one array may also be of different types.

JSON, unlike XML, has a less verbose message object encoding overhead [AP12]
which results in smaller encoded messages. When binary data is to be encoded, XML can
be more efficient because of the ability of attributes to contain binary data. JSON needs
to encode this binary data for example with Base64, which introduces more overhead.

As being based on a subset of JavaScript [jso], JSON can be easily parsed in JavaScript.
Other languages have already adopted JSON support with many tools facilitating the
serialization of data structures as JSON-text.

The building with two floors example can be represented in JSON in the following
way:

{
" bu i l d i ng " : {

" c i t y " : " Vienna " ,
" f l o o r s " : 2

}
}

2.1.2 Message exchange protocols

This section describes some Web standards used to exchange various types of information
over the Internet.

7

2. State of the art

2.1.2.1 Uniform Resource Locator

Before describing the protocols, the terms Uniform Resource Locator (URL), Universal
Resource Identifier (URI) and International Resource Identifier (IRI) are explained. This
explanation is based on the work of DuCharme [DuC13].

Uniform Resource Locator (URL) and Universal Resource Identifier (URI) are two
terms often used interchangeably. But URL and URI have a slightly different meaning. A
URL may also be called a Web address. It is a compact way for a client to specify which
resource on the Web (a specific Web page) it wants. The URL contains the information
about the name of the resource, the location on the server, and the server itself. The
popularity and simplicity of Web addresses led developers to use URLs for resources,
which were not web pages at all. This confused many people. To solve this confusion,
engineers defined the specification for Universal Resource Names (URN). A URN starts
with urn: and uses the character ’:’ as separator. The term URI was introduced as
broader term for URL and URN. As the URN standard was not not widely adopted, the
terms URL and URI are often used as synonyms.

IRIs are a generalization of URLs, because they allow non-ASCII characters to be
used in the IRI character string [SR14].

2.1.2.2 HTTP

The Hyper Text Transfer Protocol (HTTP) is described in [FR14] as "a stateless protocol
for distributed, collaborative, hypertext information systems." To indicate the target
resource and relationships between resources the Unified Resource Identifier standard
(URI) is used.

The protocol defines method tokens to indicate the operation that is to be performed
on the specified resource. The common methods are OPTIONS, GET, HEAD, POST,
PUT, DELETE, TRACE and CONNECT. Each method requests some other action
or processing of the request from the server. It indicates the purpose of the client’s
request [FR14]. For example, GET is used to indicate a request for a transfer of the
specified resource. POST indicates, that the body of the request needs to be processed
by the server. PUT is used to replace the resource specified by the URI by the request
payload.

HTTP allows MIME-like [FB96] messages, which provide meta information about
the content of the message.

Most HTTP connections consist of a GET request to request information for a
resource represented by a URI [FR14].

2.1.2.3 REST

The Representational State Transfer (REST) paradigm is a software architectural style of
the World Wide Web [FT00]. REST defines a Web-friendly or Web-like way of designing

8

2.2. Ontology

and implementing Web services [AP12]. Uniform Resource Identifiers (URIs) are used
to uniquely identify a resource. There is only a small set of methods to interact with
the resources. Those methods are based on HTTP methods like GET, POST and
PUT [Sch14]. REST itself is no protocol, but rather a description of an architecture with
its constraints and rules. A system conforming to the guidelines and constraints of REST
can be called RESTful.

2.2 Ontology

This section explores what an ontology is and how it can be represented.

According to Steyskal [Ste14] one of the most cited definition of the term ontology is
the following:

"An ontology is an explicit specification of a conceptualization." [G+93]

Stated differently, an ontology is a way to represent and organize knowledge about a
domain of interest [Sch14].

The advantage over relational databases is the possibility to additionally store seman-
tics of data and the rules describing the schema. Using an ontology to describe data,
adds the possibility to create a knowledge base. Using this knowledge base, reasoners
can be used to infer new information [Ste14],[Sch14].

URI/IRI

Data Interchange:
RDF

RDFS

Ontology:
OWLQuery:

SPARQL

XML

Figure 2.1: Used subset of the Semantic Web Stack [Bra]

Figure 2.1 shows an overview over the relevant parts of the Semantic Web stack [Bra].
The stack is built upon the URI/IRI layer. Using URIs or IRIs, the higher layers can
uniquely identify resources. As explained earlier in Section 2.1.2.1, these technologies are
also used in the World Wide Web. Just like a Web-page can be uniquely identified and
accessed by its URL, a resource can also be identified by its URI.

9

2. State of the art

The next layer defines the data interchange using the RDF (Resource Description
Framework), which is based on XML (eXtensible Markup Language). RDF is both
human readable and at the same time machine-processable. A more in-depth description
of RDF and its serializations can be found in Section 2.2.1.

RDFS (RDF Schema) and OWL (Web Ontology Language) are extensions to RDF.
They enable the possibility to define and model ontologies. Both languages extend RDF
with the features that facilitate describing complex relations between resources [Ste14].RDFS
and OWL are described in Sections 2.2.2 and 2.2.3, respectively.

Naturally, developers want to access the modeled data and ontologies. The standard-
ized query language for querying RDF and OWL data is SPARQL [PAG09] (SPARQL
Protocol And RDF Query Language). SPARQL is described in Section 2.2.4.

2.2.1 Resource Description Framework (RDF)

As the name implies, RDF (Resource Description Framework) is a framework to express
information about resources. Resources can be anything including documents, people,
physical objects and abstract concepts [SR14].

RDF Version 1.0 was released as W3C recommendation in 2004 [CK04]. An updated
version RDF 1.1 was released in 2014 [CWL14].

The RDF standard was developed to structure information and represent knowledge
on the World Wide Web [Kof14]. Most information on the Web displayed on websites is
intended to be viewed by people. RDF is designed to structure information to be human
readable as well as easily processed by applications [SR14, Ste14]. This also facilitates
information exchange between applications without loss of semantics.

In RDF, the basic unit of information is a triple consisting of a subject, a predicate
and an object. The subject can be viewed as resource identifier, the predicate as a
property name, and the object as a property value [DuC13]. The predicate puts the
two resources, subject and object, into a relationship. The relationship is phrased in a
directional way (from subject to object) and called a property [SR14].

In graphs, the basic building blocks are nodes and edges [Kof14]. Triples can be
visualized as a connected graph. Figure 2.2 shows a graphical representation of the simple
triple "Alice knows Bob". The subject (Alice) is connected to the object (Bob) by the
predicate (knows). The nodes of the graph represent the subjects and objects. The nodes
are connected by directed edges, which represent the predicates [SR14]. Usually, one
triple doesn’t describe a resource entirely. For example, Alice and Bob can also have an
age or other people they know. Each triple describes a resource in more detail. Those
triples are combined into a directed graph called RDF Graph [Ste14].

To query the resulting graph for information the language SPARQL can be used.
SPARQL is explained in more depth in Section 2.2.4.

10

2.2. Ontology

Alice Bobknows

Subject Predicate Object

Figure 2.2: RDF triple showing sentence "Alice knows Bob"

In RDF 1.0 resources are identified by URIs. With RDF 1.1, resources are uniquely
identified by IRIs [Woo14]. As described in Section 2.1.2.1, IRIs (International Resource
Identifiers) are a generalization of URLs (Universal Resource Identifiers). URLs are most
notably known to identify Web addresses. IRIs are more general because they allow
non-ASCII characters to be used in the IRI character string [SR14].

RDF can be used to publish and interlink data on the Web [SR14]. Because the
resources are uniquely identified using IRIs the referred nodes don’t necessarily need
to be within the same document [Kof14]. They may be located elsewhere on the Web.
Therefore, RDF provides a simple way to describe distributed data [AH11].

Literals in RDF are basic values that are not IRIs [SR14]. They are used for values
such as strings, numbers and dates [CWL14]. To enable the automatic parsing of literals,
they are associated with a datatype. Examples for data types are xsd:string for simple
strings, xsd:integer for arbitrary-sized integer numbers, xsd:decimal for arbitrary-precision
decimal numbers, or xsd:date for dates (yyyy-mm-dd) [CWL14]. In the case of strings,
the literal value may even be localized using well formed language tags [PD09] and a
datatype of xsd:langString.

2.2.1.1 RDF Serialization Formats

The mentioned standard defines the concepts of RDF, but not the details of how the
RDF triples and graphs are serialized. This section lists available serialization formats
defining a concrete syntax on how to represent, store or exchange RDF triples.

Together with the RDF 1.0 specification, the serialization RDF/XML was introduced
in 1999. It was historically the first RDF serialization format recommended by the W3C.
Being based on XML, this format is easily processed by XML parsers. A disadvantage of
RDF/XML is its verbosity, which often obfuscates the underlying RDF graph and hence
makes it hard to understand for a human reader [Kof14].

Apart from RDF/XML there are several other serialization formats in use (see
Figure 2.3 for an overview). Over time, these other formats have been adopted and
standardized as W3C recommendations [SR14]. According to [SR14], the interesting
languages are the following:

• Turtle family (N-Triples, Turtle, TriG and N-Quads)

11

2. State of the art

• JSON-LD

• RDFa

• RDF/XML

RDFa Turtle

RDF/XML

N-Triples

Supports Multiple Graphs

JSON-LD

TriG

N-Quads

extended by
extended by

similar to

Figure 2.3: RDF 1.1 serialization formats [SR14]

Since the Turtle language is widely supported and easy to read for humans, further RDF
examples in this thesis are using the Turtle language. The remaining section describes
the Turtle syntax and the provided features.

Published as a W3C recommendation in February 2014, Turtle [BBLPC14] is an
extension to N-Triples. It provides syntactic shortcuts for namespace prefixes, lists and
shorthands for datatyped literals [SR14]. Namespace prefixes can be used to make the
serialization more compact and easier to read. Instead of the full IRI, a short prefixed
link can be used to identify a resource.

<http :// example . com/ t h e s i s / a l i c e > <http :// xmlns . com/ f o a f /0 .1/ knows> <http
:// example . com/ t h e s i s /bob> .

The previous example can be rewritten using prefix definitions as follows:

pr e f i x d e f i n i t i o n s
@p r e f i x t h e s i s : <t h e s i s http :// example . com/ t h e s i s /> .
@p r e f i x f o a f : <http :// xmlns . com/ f o a f /0.1/> .
t r i p l e s
t h e s i s : a l i c e f o a f : knows t h e s i s : bob .

12

2.2. Ontology

With Turtle 1.1, the base and the prefix can also be described in the SPARQL way. The
next example is equivalent to the previous one, but uses the SPARQL notation.
pr e f i x d e f i n i t i o n s
PREFIX t h e s i s : <t h e s i s http :// example . com/ t h e s i s />
PREFIX f o a f : <http :// xmlns . com/ f o a f /0.1/>
t r i p l e s
t h e s i s : a l i c e f o a f : knows t h e s i s : bob .

Apart from prefix definitions, the examples show several different syntactic rules:

• IRIs are enclosed in between ’<’ and ’>’ characters.

• A prefix must be defined before it is used.

• A triple is terminated with the dot-character ’.’.

• Comments are indicated with the character ’#’. The comment spans from the ’#’
character to the end of the line.

The next example shows a slightly modified version of the relationship between Spiderman
and the Green Goblin taken from [BBLPC14].
@base <http :// example . org/> .
@p r e f i x rd f : <http ://www.w3 . org /1999/02/22− rdf−syntax−ns#> .
@p r e f i x r d f s : <http ://www.w3 . org /2000/01/ rdf−schema#> .
@p r e f i x f o a f : <http :// xmlns . com/ f o a f /0.1/> .
@p r e f i x r e l : <http ://www. pe r c e i v e . net / schemas/ r e l a t i o n s h i p/> .

<green−gobl in>
r e l : enemyOf <spiderman> ;
a f o a f : Person ; # in the context o f the Marvel un ive r s e
f o a f : name "Green␣Goblin " .

<spiderman>
r e l : enemyOf <green−gobl in> ;
a f o a f : Person ;
f o a f : name " Spiderman " , " Die␣Spinne "@de .

The token ’a’ is another shortcut which represents a ’rdf:type’ relation. It mimics the
English language. The first occurrence in the example can be read as "green-goblin is a
foaf:Person".

Another feature shown in the example above is the use of predicate and object lists.
The following triples are equivalent (omitting the prefix definitions):
<spiderman>

r e l : enemyOf <green−gobl in> ;
a f o a f : Person .

13

2. State of the art

<spiderman> r e l : enemyOf <green−gobl in> .
<spiderman> a f o a f : Person .

Using the predicate list, one can omit the repeating subject of the triples. Instead of
terminating the first triple with an ’.’ the character ’;’ is used to indicate that the next
predicate-object pair describes the previous subject.

The following example shows the usage of object lists and language tags.
<spiderman> f o a f : name " Spiderman " , " Die␣Spinne "@de .

With an object list the objects are repeated with the same subject and predicate. The
series of objects are separated using the character ",". The second feature is the use of a
language tag. The language tag is preceded by a ’@’ and can be used to localize strings.

Literals are used to identify values like strings, numbers or dates. Turtle provides a
shorthand syntax for several data types. Table 2.1 shows the abbreviated and lexical
forms supported by the Turtle language.

Data Type Abbreviated Lexical
xsd:string "spiderman" "spiderman"ˆˆxsd:string
xsd:integer -5 "-5"ˆˆxsd:integer
xsd:decimal -5.0 "-5.0"ˆˆxsd:decimal
xsd:double -4.2E9 "-4.2E9"ˆˆxsd:double
xsd:boolean true "true"ˆˆxsd:boolean

Table 2.1: Quoted Literal shorthands [BBLPC14]

More expressive languages are needed to describe ontologies. The W3C standardized
languages that fulfill this role are RDFS and OWL. They are based on RDF and extend
it with the main language features necessary to create ontologies (formal and expressive
conceptualizations) [Kof14]. The extensions RDFS and OWL are explained in the
following sections.

2.2.2 RDF Schema (RDFS)

The RDF Schema (RDFS) is an extension to the RDF specification. RDF Schema 1.0
has been a W3C Recommendation since February 2004 [BGM04]. The latest version
(RDF Schema 1.1) was released in February 2014 [BG14].

RDFS adds capabilities to express the meaning of resources in an RDF graph. To add
this semantic information to RDF properties, RDFS introduces features to define classes
and hierarchies. Like other RDF resources, additional meta information is represented as
RDF triples, which means no additional representation format is needed [Kof14].

RDFS introduces the concept of classes (rdfs:Class), which can have properties
(rdf:Propterty) to further describe the classes [Kof14]. For these classes and properties,

14

2.2. Ontology

hierarchical relations can be described [Kof14, DuC13]. To define a hierarchy of classes
the property rdfs:subClassOf may be used. As mentioned, the creation of hierarchies is
not limited to classes. Properties can be put into a hierarchical relation as well by using
the rdfs:subPropertyOf property.

At the root of the class hierarchy is the class rdfs:Resource. All resources described
by RDF are instances of the class rdfs:Resource or its subclasses [BG14]. One subclass
of rdfs:Resource is the class of literal values rdfs:Literal for values such as strings and
integers.

All classes are instances of rdfs:Class. Even rdfs:Class is an instance of rdfs:Class [BG14].

These added capabilities enable the definition of simple ontologies called taxonomies [KKR12,
Kof14, Ste14].

2.2.3 Web Ontology Language (OWL)

The OWL 2 Web Ontology Language (OWL 2) was released in December 2012 as a
W3C recommendation [C+12]. OWL 2 is an extension and revision of the OWL Web
Ontology Language (OWL 1), which was published in February 2004 [MVH+04]. OWL
was developed to facilitate the creation and distribution of ontologies over the Web. The
goal was to make Web content more accessible to machines [C+12]. As a description
language OWL 2 represents the meaning of resources on the web in a way machines can
understand [Kof14].

The OWL 2 specification [C+12] defines ontology as "formalized vocabularies of terms,
often covering a specific domain and shared by a community of users". The terms of
an ontology are defined by describing their relationships with other terms within the
ontology.

To store and exchange the created ontologies a concrete syntax is needed. OWL
2 defines one required syntax and some optional ones. The one required syntax is
RDF/XML. The optional syntaxes are OWL/XML, Functional Syntax, Manchester
Syntax and Turtle. Every syntax provides different advantages like easier processing
using XML tools (RDF/XML), easier discovery of formal structures (Functional Syntax),
easier reading and writing of RDF triples (Turtle).

In OWL, the number of individuals connected through a property can be defined.
These constraints are called cardinality constraints. The cardinality can be specified by
defining a maximum, minimum or an exact amount [Kof14].

Another way to describe properties in more detail provided by OWL is the distinction
between object and datatype properties. Object properties are used to link different
individuals to each other, whereas data properties are used to link datatype properties
to individuals.

In OWL 2, there are two different ways to define semantics: Direct Semantics
and RDF-based Semantics. The Direct Semantics provide a structural specification

15

2. State of the art

independent of any specific syntax. There exists a mapping from the Direct Semantics to
RDF triples. RDF-Based Semantics assign meaning directly to RDF graphs to represent
OWL 2 ontologies. The previously mentioned mapping can also be used to transform an
RDF graph satisfying certain restrictions into an OWL 2 ontology. OWL 2’s RDF-Based
Semantics is fully compatible with RDF Semantics and extends them [Kof14].

The above mentioned features are just a small part of OWL 2. For a complete
discussion about the specification, an interested reader may refer to [C+12].

2.2.4 SPARQL Protocol And RDF Query Language (SPARQL)

The previous languages encode the data in RDF triples, which can be stored in RDF
stores. In order to be useful, this data needs to be accessed. To simplify the interaction
with RDF graphs a standardized language is desirable. Such a language prevents a lot of
duplicated work on specialized programs to parse and interpret these graphs.

SPARQL is a recursive acronym and stands for SPARQL Protocol And RDF Query
Language. The "S" in "SPARQL" actually stands for "SPARQL" [AH11]. SPARQL 1.0
was introduced as W3C recommendation in January 2008 [PS+08] and updated with the
new version 1.1 on March 2013 [HSP13].

RDF is a directed labeled graph data format, and SPARQL is the standard query
language to access RDF data. Therefore, SPARQL is essentially a graph-matching query
language [PAG09, Kof14].

To construct a simple SPARQL query, at least the two keywords SELECT and
WHERE are needed. The SELECT statement defines which variables should be returned
by a query. The WHERE clause contains the basic graph pattern to match against the
RDF data [HSP13]. To represent graph patterns, SPARQL uses the Turtle [BBLPC14]
RDF serialization syntax.

After the values have been matched and the results are listed in a table, the second part
of the query contains solution modifiers which may be applied. Classical database query
operators such as DISTINCT, ORDER BY, LIMIT and OFFSET are available [PAG06].
Basic graph patterns require the entire query pattern to match. But not all structures
are complete (not everyone has a middle name). To add a graph pattern that adds to the
solution if available, but does not reject a solution if unavailable the keyword OPTIONAL
is used [HSP13].

Initially, SPARQL was only designed to query an RDF store. With version 1.1 the
keyword CONSTRUCT was added, which enables the ability to update the RDF store.

The update to version 1.1 brought many new features like value assignment, value
aggregation (like SUM and COUNT), path expressions (like ’?’,’*’ and ’+’) and nested
queries [C+13]. The introduction of those new keywords and capabilities raised the
expressiveness of SPARQL significantly [Kof14].

16

2.2. Ontology

A few selected path expressions are listed in Table 2.2. The keyword elt indicates a
path element, which may be composed of path constructs. These expressions allow to
extend basic SPARQL graph patterns into Property Paths. A triple pattern is a simple
property path of length exactly one [HSP13]. Using path expressions a path of arbitrary
length connecting two resources can be described.

Syntax Property Path Matches
Form Expression Name
iri PredicatePath Simple path of length one indicated by

an IRI
ˆelt Inverse Path Inverse path (object to subject)
elt1 / elt2 SequencePath A sequence path of elt1 followed by elt2
elt1 | elt2 AlternativePath Matches when elt1 or elt2 or both alter-

native paths matches
elt* ZeroOrMorePath A path of zero or more matches of elt

between a subject and an object
elt+ OneOrMorePath A path of one or more matches of elt

between a subject and an object
elt? ZeroOrOnePath A path of zero or one matches of elt

between a subject and an object

Table 2.2: Property paths introduces with SPARQL 1.1 [HSP13]

The concept of nested queries or sub queries allows one to embed SPARQL queries
within other queries. This enables results which could not be achieved otherwise. It’s
worth noting that the nested queries are evaluated first and the solution of the inner
query is expanded into the outer query, where further processing may occur.

A Web service which accepts SPARQL queries is called a SPARQL endpoint [DuC13].

2.2.5 Related Work

This section outlines some of the ontologies used to describe or store weather and sensor
data.

As part of the project ThinkHome Steyskal [Ste14] created an ontology to store
preferences of various users. ThinkHome is an ontology-based intelligent home using
artificial intelligence to improve the control of home automation functions.

Kofler [Kof14] presents an OWL based ontology to describe the smart home environ-
ment. The ontology provides a knowledge base for autonomous control of user comfort
and energy efficiency in smart homes.

Staroch [Sta13] constructs an OWL ontology describing current weather conditions
and weather forecasts. It aims to provide knowledge for a smart home to make decisions
based on current and future weather conditions.

17

2. State of the art

Kastner et al. [KKR12] describe an ontology which describes the energy usage and
energy creation in the field of home and building automation.

Huang et al. [HLZ15] create several ontologies to implement a dialog system between
humans and their smart homes. The dialog system aims to provide the user with a
more natural way to communicate with the smart home. To make this possible, the two
ontologies Home Ontology and Family Member Ontology are provided. The former is
used to define and store information on space, device location, and device status. The
latter models and stores information about the family members in the home environment.
A described scenario is the request "Turn on the fan.". The system responds with "Turn
on the fan in the living room?", which the user answers in the affirmative. The scenario
demonstrates the advantage of a dialog system by reacting to an incomplete command
(the location of the fan to operate was not specified).

Gao et al. [GCF16] create the Point of Interest (POI) ontology model to store and
query points of interest from social networks, such as Twitter, Foursquare, Google and
others. Pictures, Tweets and other social network information is often linked to POIs.
The problem they solve is the collecting and merging of replicated data. Instead of
clustering or data ranking, the authors introduce the POI ontology as a unified structure.
The use of SPARQL is outlined to insert and query the stored (and merged) data. With
the introduction of this unified data source, query applications can retrieve data of a
single POI without requesting it multiple times from different sources.

Compton et al. [CBB+12] introduce the Semantic Sensor Network (SSN) ontology,
which is produced by the W3C Semantic Sensor Network Incubator group (SSN-XG). The
ontology is an OWL2 ontology for describing the relationships between sensors, stimulus
and observations. Data itself, units of measurement or locations are not part of the
ontology. The latest version is available at http://purl.oclc.org/NET/ssnx/ssn.

Daniele et al. [DdHR15] present the Smart Appliances REFerence (SAREF) ontology.
Their ontology aims to provide a common architecture to enable semantic interoperability
for smart appliances. Those smart appliances form heterogeneous systems, which need
standardized interfaces to communicate on a sensor and device level. Those standards
exist, but for two devices to communicate a translation between standards needs to be
defined. For a system with devices using, for example, 47 different standards, a total of
47 · 46 = 2162 translations is required. With SAREF only 47 translations between the
standard and the reference ontology are necessary.
The ontology is centered around describing devices, their locations, functions, energy
production and consumption, etc. The ontology can be found at http://ontology.
tno.nl/saref/.

Lefrançois et al. [LKGZ16] creates the Smart Energy Aware Systems (SEAS) ontology,
that describes energy systems and their interactions among other things. The ontology is
modularized and versioned. It aims proviede nodes with a way to "expose, exchange, rea-
son and query knowledge in a semantically interoperable manner". Due to its modularity
it is able to describe systems and features of interest in many different fields. Examples

18

http://purl.oclc.org/NET/ssnx/ssn
http://ontology.tno.nl/saref/
http://ontology.tno.nl/saref/

2.3. Conclusion

include devices, forecasting, properties (time, comfort, statistics), smart grid, smart home,
offers and markets. The ontology can be found at https://w3id.org/seas/.

Ahvar et al. [AST+17] present the FUSE-IT ontology, which merges already exist-
ing ontologies, such as Semantic Sensor Network (SSN), Smart Appliances REFerence
(SAREF), Smart Energy Aware Systems (SEAS), and others. The ontology aims to
provide a common information base to implement smart building management systems to
ensure "global physical and cyber security, trust and safety in critical sites". The ontology
covers the four key domains energy supply and efficiency, facility and building automation,
information and communication technology (ICT), as well as security and safety. The
paper states that other ontologies don’t cover all four domains, and consequently cannot
provide a unified information base.

2.3 Conclusion
Several ontologies have been created covering many fields like weather, comfort, energy
usage and sensor networks. Along with descriptive information many ontologies store
the data points as well.

Unfortunately, the majority of data points is not provided within an ontology. Web
services commonly offer their information in raw formats without context. To use these
data sources, programs often need to be customized or specifically developed for each
Web service. This leads to duplicated code and effort.

Therefore, in this thesis a new ontology, which can be used to describe different data
structures, is created. Using this ontology, a program can be used for many different Web
services, saving the effort of reimplementing nearly the same data parsing programs over
and over again. The extracted data can be used by programs or inserted into another
ontology.

19

https://w3id.org/seas/

CHAPTER 3
System Specification and Design

In this section the response description ontology and the prototype system are specified.
The full ontology in turtle syntax is available in Appendix A.1.

In Ontology Development 101 [NM01], the following steps are proposed to create a
new ontology:

1. Determine the domain and scope of the ontology

2. Consider reusing existing ontologies

3. Enumerate important terms in the ontology

4. Define the classes and the class hierarchy

5. Define the properties of classes - slots

6. Define the facets of the slots

7. Create instances

This thesis roughly follows these steps. The first two steps are covered by the
requirements analysis (Section 3.2) and the state of the art research (Section 2.2.5).
Section 3.3 covers step three to six by enumerating terms, defining classes (Section 3.3.2)
and their properties (Section 3.3.3).

The last step of creating instances of the ontology classes is described in Section 4.2.

21

3. System Specification and Design

3.1 Use cases
UC1: The designer creates a new model with a data point.

• To create the model, the designer gets a response from the server.

• The response is analysed to find the required data point.

• A path describing the objects and conditions a parser must take to get from the
root of the response to the data point is created.

• As last step the previously found path is used to create a model containing all
needed information from the path.

UC2: The modeller adds a new data point to an existing model.

• To create the model, the modeller gets the response from the server.

• The response is analyzed to find the required data point.

• A path describing the objects and conditions a parser must take to get from the
root of the response to the data point is created.

• The found path is integrated into the existing model without disturbing previously
found paths.

UC3: The parser is used to extract a data point from a response.

• A response and an identifier of a data point are given.

• The parser searches the model for a path to the specified data point.

• The found path is used to parse the response to extract the specified data points
from the response.

3.2 Functional and non-functional requirements
In this section each requirement is defined and then explained in more depth.

• R1: "Support for sparse descriptions of the response."
If only one specific data point in a response is needed then it should be sufficient
to only specify the path from the root to the desired data point. The specification
of the whole response should not be mandatory. This requirement is derived from
UC1.

22

3.3. Class Design

• R2: "The addition of new data must not invalidate existing structures."
If a new entry is to be added to an existing model then only the new elements of a
path leading there need to be defined. This requirement is derived from UC2.

• R3: "The model should be able to describe XML, JSON and CSV responses."
XML, JSON and CSV are three major established data formats. The ontology
must be able to describe the structures of all three formats.

• R4: "Conditions on processing a node must be describable in the ontology."
Conditionals are essential to describe key-value pairs often seen in data responses.
The key attribute can be a specific string or any other attribute. A parser can drop
processing a subtree if the condition is not met. The use cases UC1 and UC2 both
describe a path, with elements only valid if a condition is met.

• R5: "Data attributes may have a different name (identifier) than in the response."
The name of a temperature value in different responses may be something like ’C’
or ’TemperatureC’, but the name in the model may be a different one. The use
case UC3 specifies, that an identifier is used to specify the data point to parse for.

• R6: "It should be possible to substitute a name of an attribute."
The instances of the ontology need to be generic. The structure of two responses
may be identical, except for the identifiers of some attributes. It should be possible
to use the instance and replace keywords to prevent multiple instances which are
exactly the same except for one attribute name.

• R7: "The type and the format of a data point need to be describable in the
ontology."
It should be possible to define the data type (such as string, float, date) and the
format (e.g. the date format) of data points. The parser may need this additional
information to convert strings to other data formats.

• R8: "The ontology should store no data."
The ontology is supposed to describe the structure of the response. No data samples
are to be stored in the ontology itself.

3.3 Class Design
After defining the scope of the new ontology the classes are specified in this section.

3.3.1 Important Terms

The third step of [NM01] is to enumerate important terms. In this section, important
terms are listed along with reasons for their importance.

23

3. System Specification and Design

• response
The purpose of the ontology is to describe the structure of web responses. Therefore,
this keyword is included.

• CSV, XML, JSON
These three encoding formats are specified by requirement R3.

• tag, attribute
These keywords are well known XML keywords.

• value, value type, value format
Requirement R7 states to describe the data points with their type and also format.

• condition
Requirement R4 describes, that data points can be excluded if specific conditions
are not met.

3.3.2 Classes

The fourth step of Ontology Development 101 [NM01] is to define the classes for the
ontology. This section follows this process and elaborates the constructed class hierarchy.

First the Response class is defined. To model the encoding of the response, the
specialized classes CSV Response, JSON Response and XML Response are used. Figure 3.1
shows the resulting class hierarchy.

Figure 3.1: Classes defining the encoding of response

The first response structure type designed is CSV. As outlined in Section 2.1.1.1 this
format describes a table of values. In this thesis, it is assumed, that the table has a
header with names for each column. Figure 3.2 shows the only class needed to define the
name of a desired column.

The next modeled encoding is XML. As described in Section 2.1.1.2, this format uses
tags and attributes to describe its elements and values. Figure 3.3 shows the classes XML

24

3.3. Class Design

Figure 3.2: CSV structure classes

Attribute and XML Tag. A tag can contain other tags as well as attributes. Therefore,
the superclass XML Object is introduced.

Figure 3.3: XML structure classes

The last encoding modeled in this thesis is JSON. JSON has four primitive types
(string, number, boolean and null), as well as two structured types (object and array).
Figure 3.4 shows the hierarchy if all those types are modeled.

Figure 3.4: JSON structure classes, a first try

Specialized primitive data type classes are removed to simplify the class hierarchy.
This information will be encoded as property (slot) of the class JSON Value. Furthermore,

25

3. System Specification and Design

the class JSON Array is removed. The parser is expected to match every member of
a JSON array to the defined structure. With these two simplifications the simplified
hierarchy is shown in Figure 3.5.

Figure 3.5: JSON structure classes, simplified

Notice, that the hierarchy of XML and JSON classes is very similar. They could be
combined to shrink the number of ontology classes. One could argue, that the parser needs
to know which encoding is used, and therefore different classes for different encodings are
needed. However, the encoding is specified by the Response subclasses and won’t change
during the parsing of a web response.

For the final class hierarchy, the classes JSON Element and XML Object are combined
to form the class Structure Object. XML Tag and JSON Value are combined into Structure
Tag. And lastly XML Attribute and JSON Value form Structure Attribute to represent
primitive types like strings, numbers, dates and times. The CSV class CSV Row can be
represented by the class Structure Attribute, as both describe a named field containing
values. The final class hierarchy can be seen in Figure 3.6.

Figure 3.6: Structure classes, combination

26

3.3. Class Design

3.3.3 Properties

Step five of [NM01] recommends to define the properties of the classes (slots). Sec-
tion 3.3.3.1 describes the slots of the Response classes, whereas Section 3.3.3.2 covers
Structure Object’s classes.

Additionally step six is covered by defining the facets of the slots. The facets, or
cardinality, define how many attributes of the same kind an instance can have. For
example, a binary tree node can have at most two children.

3.3.3.1 Response

Figure 3.7: Ontology response classes

Currently, three different data encodings are implemented: CSV, JSON and XML,
fulfilling requirement R3. As shown in Figure 3.7, the response classes are children of
the class Response. Those classes are used to indicate the type of the encoding of the
response. A response has one or more hasChild properties with links to Structure Objects
describing the structure of the response. The property longName describes the response
in a human readable form. It is for informational purposes and provides a way to describe
the response in more detail. This property is optional.

3.3.3.2 Structure Object

To describe the structure of the response, instances of the Structure Object class and
its children are used. Each object of the class Structure Object (or its children) may
have any combination (or none) of the properties tag, hasName or hasCondition. In the
current implementation, each property has a maximum cardinality of one.

• The property tag is a string identifying the current object in the actual response.

• The property hasName is a string identifying the object independently of the actual
response. This property is a result of requirement R5.

27

3. System Specification and Design

• The property hasCondition is a link to a Structure Attribute with tag and value.
For a Structure Object to be valid, either no condition is present, or the condition
is satisfied. The condition is satisfied if the specified Structure Attribute is found.
Structure Objects where the condition is not met should be discarded by the parsing
program. This satisfies requirement R4.

Figure 3.8: Ontology Structure Object classes

As shown in Figure 3.8 two subclasses of Structure Object are implemented.

• Structure Tag

A Structure Tag is used to build the structure of the response. In addition to the
inherited properties, it has the property hasChild. This property is a reference
to another instance of Structure Object. A Structure Tag can have one or more
children.

The property tag is used to indicate keywords which contain other structures.

• Structure Attribute

A Structure Attribute describes the object’s semantics. To give meaning to the
values, as required by R7, the properties dataType and dataFormat are used.
Examples for values of dataType are "datetime" or "float". If none is given the
default data type is "string", which tells the parser to do no data conversion. In the
case of "datetime", the property dataFormat can be used to store a format string.
This gives meaning to a string and supports the computer in interpreting a string
as a date or time object.

To make the models more general, the properties tag and value can store special
keywords. In this thesis, a property containing "!sub:building!" should be replaced by a
variable specified by the keyword "building". This satisfies requirement R6.

28

3.4. System Design

Because of the nature of RDF graphs responses can be sparsely described (require-
ment R1), as well as new data points can be added without disturbing previously modelled
aspects of the response (requirement R2).

The last requirement R8, is satisfied by not providing a way to store the measurements
of data points in the response description ontology.

3.4 System Design
To validate the created ontology and show that it can be used to model and import data
from the Internet, a prototype system was implemented. The system uses the newly
defined ontology to model and import weather data, geolocation information and sensor
data from different sources. These sources are required to provide their data in a CSV,
JSON or XML encoded format.

In addition to importing data, the system needs to perform certain computations. As
the title of the thesis suggest the goal of the computation will be short term prediction
of the energy consumption of a smart building.

29

CHAPTER 4
Implementation

In this chapter, the developed prototype (Section 4.4), the infrastructure supporting
the prototype (Section 4.1) and the created ontology instances for the data sources
(Section 4.2) are described.

Among those sources are a geolocation service, a weather service and a building
information service. These data sources are specific for the prototype application, but
any service responding in XML, JSON or CSV could be modeled.

4.1 Infrastructure

This section describes the infrastructure around the prototype application.

Figure 4.1 shows an overview of this infrastructure. Building sensor data is gathered
by the Building Management System (BMS) Desigo.

As the data is not directly available (see Section 4.1.2), it is imported via a Building
Data interface called JEVis. Section 4.1.3 describes the structure of JEVis and the
contributions to JEVis to import data from Desigo. To provide access to the created
instances of the response-description ontology, the SPARQL Endpoint Blazegraph is used.
OpenStreetMaps is used as geolocation service to find the location (city or latitude and
longitude) based on the building’s name. With this location, the weather service Weather
Underground is contacted to find the nearest airport weather station and get its historic
weather data.

The central part of the prototype is the application PyCaster. This application
uses the provided infrastructure and instances of the response-description ontology (see
Section 4.2) to import the necessary data to calculate daily forecasts of the heat energy
consumption of a building.

31

4. Implementation

PyCaster

JEVis

JEDataCollector

BMS

Desigo

MySQL

JEAPI

JEWebService

SPARQL Endpoint

Blazegraph

Geolocation Service

OpenStreetMaps

Weather Service

Weather Underground

Figure 4.1: Overview of the system and infrastructure around it

4.1.1 SPARQL Endpoint

Rather than writing a program to traverse the RDF graphs of the ontology and find the
requested information, a SPARQL endpoint can be used. As the name suggests queries
for information need to be written in SPARQL. This implementation uses Blazegraph
due to its user friendliness and ease of use.

The ontology which is accessed by Blazegraph is described in Section 4.2.

4.1.2 Building Management System

A Building Management System (BMS) interacts with the building’s sensors and actuators,
collects and archives the sensor data, and provides an interface for the facility manager
to interact with the building system (to change room temperatures or heating strategies,
for instance).

For the prototype system, a BMS called Desigo is accessed. Desigo is a BMS storing
the most recent sensor data in a Microsoft SQL (MSSQL) database. Older data is archived
after a configurable time-frame. As a security measure, the database is accessible only
locally. Direct connections to the database over the network are ignored by the server.

This means that the building data is not available through a Web service and therefore
can’t be used directly by the prototype implementation.

32

4.1. Infrastructure

4.1.3 Building Data Interface

As a central place to aggregate, store and access sensor data, the system JEVis3 is used.
JEVis provides a RESTful JSON encoded API to access the stored structures and data
points.

DatabaseJEAPI

JEDataCollector

JEWebService

JEConfig

Figure 4.2: JEVis3 overwiev

The system consists of the following components as shown in Figure 4.2:

• Database (MySQL)

• JEConfig

• JEDataCollector - extendable through plugins called JEDrivers

• JEWebservice

Distributed instances called JEDataCollectors can be deployed to periodically import
data into the JEVis database. To configure the JEVis system (configure instances of
JEDataCollector, create structures for sensors and much more), a tool name JEConfig is
provided. JEWebservice provides the earlier mentioned RESTful JSON encoded API to
access the data structures and data points in the JEVis system. For Java programs, an
API called JEAPI is defined. All programs part of JEVis are using this API to access
and modify the database.

4.1.3.1 JEDataCollector

This program is used to import data from many different sources into the JEVis system.
There can be multiple JEDataCollector instances running on different machines. Each
instance is configured to connect to a specific JEVis server. From this server, the instances
get their configurations. The capabilities of the JEDataCollector can be extended by
plugins called JEDrivers. They are made available to the instances by the JEVis server.

At the time of writing, the following drivers are available:

33

4. Implementation

• HTTP-Driver: Acquires raw data from a Web server. The connection can be in
plain text (HTTP) or secured (HTTPS).

• FTP-Driver: Acquires raw data from a file transfer server using the FTP protocol.
The connection to the server can be in plain text or encrypted.

• sFTP-Driver: Acquires raw data using a secure shell (SSH) connection. These
types of connections are encrypted by default.

• CSV-Driver: Parse raw CSV encoded data.

• XML-Driver: Parse raw XML encoded data.

A JEDriver can implement the capabilities connection, parsing or both at the same
time. Examples for drivers with connection capabilities are HTTP-Driver, FTP-Driver
and sFTP-Driver. Those drivers acquire data from the specified source. This raw data
needs to be processed before it can be imported into the JEVis system. The interpretation
of the data is done by drivers with parsing capabilities. Examples for drivers with such
capabilities are CSV-Driver and XML-Driver.

For example, assume measurements from a sensor are available through an integrated
web-server serving a CSV-file. To acquire the data, the drivers HTTP-Driver and CSV-
Driver can be combined. The HTTP-Driver is used to get the raw data in form of the
CSV-file. Then the CSV-Driver is configured to parse the time stamp and the value
of each measurements saved in the CSV file. Finally, the parsed information can be
imported into the JEVis system.

4.1.3.2 Improvement: SQL Driver

As mentioned earlier, external connections to the Desigo database are not allowed. The
only direct access to the sensor data is by having local access on the physical machine
running Desigo with its MSSQL database.

Desigo stores the monitored building data in a Microsoft SQL database. The most
efficient way to reliably import the sensor data from Desigo was to access the Microsoft
SQL database used by Desigo locally.

Unfortunately, at the start of this thesis JEVis was not able to import sensor data
from an SQL database. Therefore, JEDataCollectors capabilities are extended by a newly
developed SQL JEDriver. The SQL driver has the capabilities connection and parsing.
This means that the driver is able to connect to a SQL database and parse its content.
The parsed data can then be imported into the JEVis system. The new driver supports
the SQL databases MySQL and MSSQL. PostgreSQL and other SQL databases could be
integrated in the future.

Since the MSSQL database is only accessible locally, an instance of JEDataCollector
is deployed on the same server as Desigo.

34

4.2. Ontology Instances

The available configuration parameters of SQL JEDriver and an example are described
in Appendix B.

4.2 Ontology Instances

The previously introduced response-description ontology is used to describe responses
from various sources. The data providers described in the following sections were chosen
because they either offered limited access to their API free of cost or offered unrestricted
access through their APIs. The proposed ontology makes it easy to integrate other
services if needed.

4.2.1 Geolocation Service

OpenStreetMap is used as geolocation service. It is a community maintained geolocation
service and provides free access to its geolocation data. It can be accessed through the
Web portal or through an API with XML encoded responses.

The URL used to search for a specific structure in OpenStreetMap is http://www.
overpass-api.de/api/xapi?way[name=<name>] where ’<name>’ is replaced by
the name of the structure.

Listing 4.1 shows an example response provided by the OpenStreetMap search API.
To keep this section readable, the example only shows a section of the actual response.
The top level tag (osm) contains tags labeled ’note’, ’meta’, ’node’ and ’way’. The tag
’node’ contains a tag called ’tag’, which has two attributes ’k’ and ’v’ representing a
key-value-pair. One of the key values is ’addr:city’. The interesting data is the value of
this pair (in the case of the example ’Wien’).

Listing 4.1: Example of a shortened OpenStreetMap XML response
<?xml version=" 1 .0 " encoding="UTF−8" ?>
<osm version=" 0 .6 " genera to r=" Overpass ␣API">
<note>The data inc luded in t h i s document i s from

www. openstreetmap . org . The data i s made av a i l a b l e
under ODbL.</note>

<meta osm_base="2016−10−25T11:53:03Z " />
<node id=" 310744920 " l a t=" 48.2695697 " lon=" 16.4267149 " />
<node id=" 348140578 " l a t=" 48.2695654 " lon=" 16.4267635 ">

<tag k=" entrance " v="main " />
</node>
<way id=" 28297041 ">

<nd r e f=" 310744920 " />
<nd r e f=" 348140578 " />
<tag k=" add r : c i t y " v="Wien" />
<tag k=" addr :country " v="AT" />
<tag k=" addr:housenumber " v=" 6 " />
<tag k=" addr :postcode " v=" 1210 " />
<tag k=" add r : s t r e e t " v=" G i e f i ngga s s e " />
<tag k=" bu i l d i ng " v=" yes " />

35

http://www.overpass-api.de/api/xapi?way[name=<name>]
http://www.overpass-api.de/api/xapi?way[name=<name>]

4. Implementation

<tag k="name" v="ENERGYbase" />
<tag k=" note " v="FH␣Technikum␣Wien␣Baute i l ␣E

␣␣␣␣␣␣(" ;ENERGYbase" ;) " />
<tag k=" r e f " v="E" />

</way>
</osm>

Figure 4.3 shows a model of the response description for the OSM API request. It
states that the response of the instance ’OSM’ is an ’XML Response’. The relevant data
is in an XML tag containing another with the label ’tag’. The key-value-pair is modeled
as a condition. If an attribute with the tag ’k’ contains the value ’addr:city’ the value of
the attribute with the tag ’v’ is returned.

Figure 4.3: OpenStreetMaps response ontology

4.2.2 Weather Service

Weather Underground is used as the weather service.

They provide limited free of cost access to their services through a JSON encoded
API. It is also one of the few services providing historical weather data free of charge.

36

4.2. Ontology Instances

4.2.2.1 Weather Underground Geolookup

The historical weather data is only available for airport weather stations. To find
those weather stations, Weather Underground provides a Geolookup service. The URL
of this service is http://api.wunderground.com/api/<api-key>/geolookup/
q/<lookup>.json. The ’<api-key>’ must be a valid Weather Underground API-key
(it can be an account in the free tier). The ’<lookup>’ string can be the name of the
city or the latitude and longitude separated by a comma.

By providing the API-call with a lookup value, the API returns (among other
information) a list of airport weather stations and their International Civil Aviation
Organization (ICAO) four letter airport codes.

Listing 4.2 shows an example for the JSON encoded result of a Weather Underground
Geolookup query. The result is shortened to keep the section readable. The ICAO
airport code can be found at /location/nearby_weather_stations/airport/
station/icao.

Listing 4.2: Example of Weather Underground’s Geolookup JSON response
{

" re sponse " : {
" v e r s i on " : " 0 . 1 " ,
" t e rmso fSe rv i c e " :

" http ://www. wunderground . com/weather / api /d/ terms . html " ,
" f e a t u r e s " : {

" geolookup " : 1
}

} ,
" l o c a t i o n " : {

" type " : " INTLCITY" ,
" country " : "OS" ,
" country_iso3166 " : "AT" ,
" country_name " : " Austr ia " ,
" s t a t e " : " " ,
" c i t y " : " Wien " ,
" tz_short " : "CET" ,
" tz_long " : " Europe/Vienna " ,
" l a t " : " 4 8 . 2 0 848846 " ,
" lon " : " 1 6 . 3 7 207603 " ,
" nearby_weather_stations " : {

" a i r p o r t " : {
" s t a t i o n " : [

{ " c i t y " : " Wien / City " ,
" s t a t e " : " " ,
" country " : " Austr ia " ,
" i c ao " : " " ,
" l a t " : " 4 8 . 1 9 834137 " ,
" lon " : " 1 6 . 3 6643028 " } ,

{ " c i t y " : " Vienna Schwechat " ,
" s t a t e " : " " , " country " : "OS" ,
" i c ao " : "LOWW" ,

37

http://api.wunderground.com/api/<api-key>/geolookup/q/<lookup>.json
http://api.wunderground.com/api/<api-key>/geolookup/q/<lookup>.json
/location/nearby_weather_stations/airport/station/icao
/location/nearby_weather_stations/airport/station/icao

4. Implementation

" l a t " : " 4 8 . 1 1 083221 " ,
" lon " : " 1 6 . 5 7083321 " }

]
}

}
}

}

In Figure 4.4, the structure of the response of WeatherUndergrounds geolookup query
is shown.

Figure 4.4: Weather Underground Geolookup ontology

38

4.2. Ontology Instances

4.2.2.2 Weather Underground Historic Data

Using the ICAO identification, historic data from the specified airport weather station
can be requested on a day to day basis. The responses are encoded in CSV.

The URL to call the API is of the form http://www.wunderground.com/
history/airport/<icao>/<datestring>/DailyHistory.html?format=1. ’<icao>’
needs to be substituted with the ICAO airport code of the earlier found airport. The
date-string is in the form ’%Y/%m/%d’. Listing 4.3 shows the first two lines of
the request https://www.wunderground.com/history/airport/LOWW/2016/
1/21/DailyHistory.html?format=1.

Listing 4.3: Example of Weather Underground’s Historic CSV response
TimeCET, TemperatureC ,Dew PointC , Humidity , Sea Level PressurehPa ,

Vis ib i l i tyKm ,Wind Direct ion ,Wind SpeedKm/h , Gust SpeedKm/h ,
Precipitationmm , Events , Condit ions , WindDirDegrees ,DateUTC

12:00 AM,0 , −5 ,55 ,1019 ,35 ,West , 2 8 . 8 , , , , Overcast , 280 ,
2016−01−20 23 : 00 : 00

In Figure 4.5, the structure of the response of Weather Undergrounds historic query
is shown. In this thesis, only the time and temperature in degree Celsius are extracted.

Figure 4.5: Weather Underground historic weather data

4.2.3 Building Information Service

As described in the overview, JEVis is used to import, store and provide the data-points
from the BMS. JEVis provides a RESTful interface encoding its responses in JSON. To
get sensor data, the unique ID of the data-points in the JEVis system containing the
sensor data needs to be found. In another step, the found ID can be used to request
corresponding data.

39

http://www.wunderground.com/history/airport/<icao>/<datestring>/DailyHistory.html?format=1
http://www.wunderground.com/history/airport/<icao>/<datestring>/DailyHistory.html?format=1
https://www.wunderground.com/history/airport/LOWW/2016/1/21/DailyHistory.html?format=1
https://www.wunderground.com/history/airport/LOWW/2016/1/21/DailyHistory.html?format=1

4. Implementation

4.2.3.1 JEVis Structure

At the time of writing, JEWebService did not provide a way to get a tree containing all
JEVis-nodes with ’id’, ’name’ and ’jevisclass’ by using a single API call. By combining
the separate calls to get the root node’s ID (<server>/objects?root=True), and
the information about a specific ID (<server>/objects/<id>) including name, class
and other node IDs in relationship with the specified node, it is possible to create a tree
representing the structure of all nodes in the JEVis system encoded as JSON objects.
Listing 4.4 shows the first few entries of a tree defining the structure of the JEVis system.

Listing 4.4: JSON example of a generated JEVis structure
{" j e v i s c l a s s " : " System " ,

" id " : " 1 " , "name " : " System " , " ch i l d r en " : [
{" j e v i s c l a s s " : " Administrat ion Di rec to ry " ,

" id " : " 2 " , "name " : " Administrat ion " , " ch i l d r en " : [
{" j e v i s c l a s s " : "Group Direc tory " ,

" id " : " 10 " , "name " : "Group Direc tory " , " ch i l d r en " : [
. . .

]
}

]
}

]
}

Figure 4.6 shows the ontology used to get the objects containing heat and temperature.
The node ’jevis_struct_cond_name_building’ has the value ’!sub:building!’. The flag
’!sub:<name>!’ tells the importer using the model to substitute the flag with the value
previously specified for ’building’. This reduces the number of duplicate models. If the
JEVis structure is the same, but the name of the building is different, the same model
can be used.

40

<server>/objects?root=True
<server>/objects/<id>

Figure 4.6: JEVis Structure

41

4. Implementation

4.2.3.2 JEVis Data

The unique JEVis IDs can be used to request the data samples from a given time
range. The URL to get the samples of a specific ID is <server>/objects/<id>
/attributes/Value/samples?from=<start>&until=<end>. The datetimes <start>
and <end> are in the format ’%Y%m%dT%H%M%S’.

An example of the JSON encoded response from JEWebService is shown in Listing 4.5.

Listing 4.5: JSON example of sensor values returned by JEVis
{ ’ Sample ’ : [

{ ’ note ’ : ’ Imported by JEDataCollector ’ ,
’ value ’ : ’ 23 .7653491 ’ , ’ ts ’ : ’2015−09−02T02 :00 : 00 . 000+02 :00 ’ } ,

{ ’ note ’ : ’ Imported by JEDataCollector ’ ,
’ value ’ : ’ 23 .0368386 ’ , ’ ts ’ : ’2015−09−02T03 :00 : 00 . 000+02 :00 ’ } ,

{ ’ note ’ : ’ Imported by JEDataCollector ’ ,
’ value ’ : ’ 22 .2765468 ’ , ’ ts ’ : ’2015−09−02T04 :00 : 00 . 000+02 :00 ’ } ,

{ ’ note ’ : ’ Imported by JEDataCollector ’ ,
’ value ’ : ’ 21 .4838807 ’ , ’ ts ’ : ’2015−09−02T05 :00 : 00 . 000+02 :00 ’ } ,

{ ’ note ’ : ’ Imported by JEDataCollector ’ ,
’ value ’ : ’ 20 .6529099 ’ , ’ ts ’ : ’2015−09−02T06 :00 : 00 . 000+02 :00 ’ } ,

{ ’ note ’ : ’ Imported by JEDataCollector ’ ,
’ value ’ : ’ 20 .3009703 ’ , ’ ts ’ : ’2015−09−02T07 : 00 : 0 0 . 0 00+02 : 00 ’ }]

}

In Figure 4.7 the structure of the response of JEVis samples request is shown. The
data samples are contained as JSON-arrays in the JSON object with the tag ’Sample’.

Figure 4.7: JEVis Samples

42

<server>/objects/<id>/attributes/Value/samples?from=<start>&until=<end>
<server>/objects/<id>/attributes/Value/samples?from=<start>&until=<end>

4.3. SPARQL Queries

4.3 SPARQL Queries
So-called SPARQL Queries are used to access the information of the created ontology.
This section shows the constructed queries used to get the full path from the root of
the response to a specified field. Additionally, a way to extract the starting point of the
earlier mentioned path is shown.

4.3.1 Root of path

The first SPARQL query checks if there is a path from the specified service to the desired
information with a given name. If the service has the required information the first
element of the path is returned.
PREFIX t h e s i s : <http :// example . com/ t h e s i s#>

s e l e c t ? obj ? ch i l d ? c l a s s l a b e l
where {

? obj r d f s : l a b e l "<SERVICE>" .
?end t h e s i s : hasName "<NAME>" .

? obj t h e s i s : hasChi ld ∗ ?end .
? obj t h e s i s : hasChi ld ? ch i l d .
? c h i l d t h e s i s : hasChi ld ∗ ?end .

? obj rd f : type [r d f s : l a b e l ? c l a s s l a b e l] .
}

Before sending the query to the SPARQL endpoint for processing the placeholders
<SERVICE> and <NAME> have to be replaced. In this thesis, PyCaster (Section 4.4)
is responsible for this subsitution. The service is identified by its attribute ’label’. In this
thesis, the following values for <SERVICE> are available:

• OSM

• WU Geolookup

• WU Historic

• JEVis Structure

The node is identified by its attribute hasName. In the query the placeholder
<NAME> needs to be replaced. Examples are "City", "Datetime" and "Value".

Table 4.1 shows the result of the query when replacing "<SERVICE>" with "OSM"
and "<NAME>" with "City". Figure 4.3 shows the full ontology instance "OSM". The root
node is in the column obj. As additional information, the label of the class ’classlabel’
and the next element in the path after the root node (in the column child) are shown.
The classlabel can be used to determine the encoding (XML, JSON, CSV) of the
response.

43

4. Implementation

obj child classlabel
<http://example.
com/thesis#OSM>

<http://example.
com/thesis#OSM_
node>

XML Response

Table 4.1: Root of the path from "OSM" to "City"

4.3.2 Getting the full path

The next query is an extension of the previous one. Instead of just returning the first
element of a path the entire path is returned. The placeholders <SERVICE> and
<NAME> need to be replaced like before.

PREFIX t h e s i s : <http :// example . com/ t h e s i s#>

s e l e c t ? obj ? ch i l d ? tag ? c l a s s l a b e l ?condTag ? condValue ?dataType ?dataFormat
where {

? s t a r t r d f s : l a b e l "<SERVICE>" .
?end t h e s i s : hasName "<NAME>" .

? obj t h e s i s : hasChi ld ∗ ?end .
? s t a r t t h e s i s : hasChi ld ∗ ? obj .

OPTIONAL {
? obj t h e s i s : hasChi ld ? ch i l d .
? c h i l d t h e s i s : hasChi ld ∗ ?end .

}
OPTIONAL {

? obj t h e s i s : tag ? tag .
}

OPTIONAL {
? obj t h e s i s : hasCondit ion [t h e s i s : tag ?condTag] .
? obj t h e s i s : hasCondit ion [t h e s i s : va lue ? condValue] .

}
OPTIONAL {

? obj t h e s i s : dataType ?dataType .
}
OPTIONAL {

? obj t h e s i s : dataFormat ?dataFormat .
}
? obj rd f : type [r d f s : l a b e l ? c l a s s l a b e l] .

}

In Table 4.2, the result for the query from "OSM" to "City" is shown. Figure 4.8
visualizes this path by showing only the nodes of the "OSM" model, which are part of
the path from "OSM" to "City". The query produces a list of edges with some additional
information for the current node listed in the column ’obj’.

44

4.3. SPARQL Queries

obj child tag classlabel condTag condValue
<http://example.com/
thesis#City_value>

v Structure
Attribute

k addr:city

<http://example.com/
thesis#OSM>

<http://example.com/
thesis#OSM_node>

XML
Response

<http://example.com/
thesis#OSM_node>

<http://example.com/
thesis#OSM_tag>

Structure
Tag

<http://example.com/
thesis#OSM_tag>

<http://example.com/
thesis#City_value>

tag Structure
Tag

Table 4.2: Path from "OSM" to "City"

The table shows the path from the node ’OSM’, through ’OSM_node’ and ’OSM_tag’,
to ’City_value’. The last node has a ’condTag’ of ’k’ with a conditional value ’addr:city’.
This tells the parser to only access the value if there is a node with a tag of ’k’ and a
value of ’addr:city’ in the XML document.

The columns ’dataType’ and ’dataFormat’ are emtpy for this particular query and
have been left out to save space. These columns indicate to the parser which type the
data point is and in the case of a date string its format.

Figure 4.8: Graph visualizing path from "OSM" to "City"

45

4. Implementation

The complexity of analysing the graph, determining the root node and the whole
path is offloaded to the SPARQL endpoint using the queries above. This reduces the
parser’s complexity and thus reduces the likelihood of bugs.

4.4 PyCaster

PyCaster is the heart of the implemented prototype system. It uses the Blazegraph server
to access the developed ontologies. Those ontologies are used to extract the required
information from the various data sources (OpenStreetMap, Weather Underground,
JEVis). The extracted data points are then preprocessed to eliminate obvious errors
in the sensor data, resampled, interpolated as well as scaled to be in a range of 0 to
1. The preprocessed data is fed to a Support Vector Machine to learn patterns in the
input data. The learned model can then be used to create one day predictions of heat
energy load. Those predictions are compared to the actual measured data points. As an
accuracy measure, the daily root mean square error between prediction and measurement
is calculated. For visual inspection, plots of the errors are created.

PyCaster is written in the scripting language Python [GvR01]. Python is cross
platform and provides many tools for easy and fast prototyping. The standard capabilities
of Python can be extended by modules. For PyCaster, the following modules are used:

• Requests [req11]

Requests provides an easy way to do HTTP requests. It is used to communicate
with all Web services. It also provides automatic conversion from JSON to Python’s
dictionary structure.

• scikit-learn [PVG+11]

Provides simple and efficient tools for data mining and data analysis. For this
thesis, the Support Vector Machine (SVM) implemented by this module is used.

• pandas [McK10]

Provides high performance and easy to use data structures and data analysis tools.

• numpy [WCV11]

Numerical Python provides powerful N-dimensional arrays and linear algebra
capabilities among others. This module is a dependency of the pandas module.

• matplotlib [Hun07]

This module is another requirement of the pandas module. It provides a 2D plotting
library with a MATLAB-like interface.

46

4.4. PyCaster

4.4.1 Data Import

4.4.1.1 Sparql-py

’Sparql-py’ is a simple module used to wrap the access to the Blazegraph server. Queries
to Blazegraph are HTTP-POST requests to <server>/blazegraph/namespace/
<namespace>/sparql. In the case of a locally running Blazegraph server and the
namespace ’tags’, the URL looks as follows http://localhost:9999/blazegraph/
namespace/tags/sparql.

The actual SPARQL query is in the data field called ’query’ of the POST request.
Because JSON to python-dictionary transformation is a built in feature of Requests the
response of Blazegraph is requested to be encoded in JSON. This is done by setting the
data field ’format’ to the value ’json’.

4.4.1.2 jeapi-py

At the time of writing, no Python wrapper to access the JEVis system was available.
Therefore ’jeapi-py’ a Python wrapper for JEWebService was created. It provides a
Python interface to the API-calls of JEWebService. Further convenience functions like
’getChildren’ to get all IDs of children of a specified ID, or ’getSamples’ to get all samples
for a specified ID, are provided. The formatting of date times for requests is handled by
’jeapi-py’.

The module is available at https://github.com/AIT-JEVis/jeapipy.

4.4.2 Data Processing

As a next step, the imported data is processed and used to calculate one day heat energy
consumption forecasts. A Support Vector Machine (SVM) provided by the module
scikit-learn [PVG+11] is used to generate the forecasts. Before the data is usable by the
SVM, it first needs to be pre-processed.

• The first step is to resample and interpolate the data at a fixed time step. In this
thesis, an interval of one hour is chosen.

• SVMs are not scale invariant in regard to their input data. Therefore, the input
data is scaled to be in a range of -1 to 1. The temperature for example is scaled
down from a range [-40,40] to [-1,1].

• For a forecast of the heat consumption of the next day, the data of the current day
and a temperature forecast of the next day are used.

In order to use an SVM, it needs to be trained with training data consisting of input
data and the expected output (in this case, the next day hourly heat consumption).
Afterwards, the SVM can be tested by calculating forecasts and comparing them with
the actual measured heat consumptions.

47

<server>/blazegraph/namespace/<namespace>/sparql
<server>/blazegraph/namespace/<namespace>/sparql
http://localhost:9999/blazegraph/namespace/tags/sparql
http://localhost:9999/blazegraph/namespace/tags/sparql
https://github.com/AIT-JEVis/jeapipy

CHAPTER 5
Evaluation

5.1 Energy Data
The evaluation of the input data is from January 1 2010 until June 30 2012.

(a) Overview over used data (b) Root Mean Square Error of prediction

Figure 5.1: Overview over data and prediction

An overview of the evaluated data input can be seen in Figure 5.1a. The values ’heat’
and ’temp’ were monitored at the office building ’EnergyBase’ located in Vienna. To
collect the sensor data from the building, a building management system (Desigo) was
used. The first subplot is labeled ’heat’. It shows the accumulated heat consumption
of the building ’EnergyBase’ in kWh. The second subplot labeled as ’heat_diff’ is the

49

5. Evaluation

hourly difference of the values of ’heat’. It can be observed, that in the winter months
heat energy consumption is high, and in the summer nearly no energy is used. The
third subplot is labeled ’temp’. This plot shows the measured outdoor temperature at
the roof of the building ’EnergyBase’. The temperature is given in degree Celsius. The
last plot labeled as ’wu_temp’ shows the measured temperature provided by Weather
Underground’s Historic service. The temperature is from the weather station located at
the airport ’Wien Schwechat’.

For the forecast, the input values ’heat_diff’ and ’wu_temp’ are used. The values of
’temp’ are used for the later inspection of anomalies. The data from 2010 is used as the
training set. Predicted values are calculated for the whole input time range.

Figure 5.1b shows the analysis of the forecast. The first two graphs show the actual
’heat_diff’ as measured and the predicted heat difference. The root mean square error
(RMSE) was chosen as the error metric. The last graph in Figure 5.1b shows the root
mean square error per day.

In the daily RMSE graph two spikes can be seen. Those spikes each indicate an
anomaly in the input data.

5.2 Anomalies

After the calculation of a forecast, the calculated predictions are compared to the real
heat consumption values. When a high mean square error is encountered the facility
manager could use this indicator to investigate further. In this section, the two highest
RMSE spikes are investigated.

(a) Anomaly December 2010 (b) Anomaly April 2012

Figure 5.2: Found anomalies

50

5.2. Anomalies

Figure 5.2a shows an anomaly during the last month of 2010. Between December 25
and 27 there was almost no heat consumption. During the previous days a regular heat
pattern is observable. Afterwards, there were three days with a high heat consumption
throughout the day. A possible explanation is that the winter holidays were used to test
the heating system and isolation of the building. Afterwards, the building was brought
back to a comfortable level.

Figure 5.2b shows an anomaly at the end of April 2012. From the 20th to 26th,
the heat consumption stayed at the same value. On the 27th, the biggest spike of the
whole data set occurred. Additionally as seen in the third graph labeled ’temp’, the
temperature recorded by the BMS did not change for a whole week. The fact that both
sensor values (’heat’ and ’temp’) did not change for six days hints that the system did
not operate as planned. Possible explanation are a system outage or a maintenance of
the system.

51

CHAPTER 6
Conclusion

An ontology to model data points in responses from web services was developed. To
verify its usefulness, a program to import temperature and heat consumption data of a
building from different web services was created. The imported data points were used to
create one day heat energy consumption forecasts. In this thesis, the ontology is used to
configure the data importing program.

The proposed strategy could be used at different scales, such as room level, floor level,
building level or even building complexes. Due to the nature of the available data at
EnergyBase, the building layer was chosen as a focus of this thesis.

Apart from directly using the extracted data points the developed response description
ontology could be used with other data storing ontologies to model how to import data
into the ontology.

The rapid growth of the number of Internet of Things (IoT) devices also increases
the number of possible data sources. With this increase the complexity of manually
selecting data points and writing specialized importers also rises. The proposed approach
could be used in combination with other ontologies and reasoners to aid in their selection.
Currently, many data sources are not modeled by ontologies. The proposed ontology
provides a way to model the structure of the responses of such data sources. In its current
implementation, the data points of the different modeled responses are not linked to each
other. The only way to link the data points with the proposes ontology is using the same
name for related values.

A proposal for future work is to explicitly model connections between data points
or use other ontologies to better describe each data point. The information could be
used to automatically find and provide the user with the connected data points from
the available sources. Because of the decentralised way of ontologies, other ones may be
linked to the response description ontology to model the connections between data points
and bridge the gap between data sources and ontologies.

53

APPENDIX A
Ontology

A.1 response description

In the following the response description ontology developed in this thesis is shown using
the turtle syntax.
@pr e f i x : <http :// webprotege . s t an fo rd . edu/ p r o j e c t /CVfEBMo9QGaGLnAuzg5AVr#>

.
@p r e f i x owl : <http ://www.w3 . org /2002/07/ owl#> .
@p r e f i x rd f : <http ://www.w3 . org /1999/02/22− rdf−syntax−ns#> .
@p r e f i x xml : <http ://www.w3 . org /XML/1998/namespace> .
@p r e f i x xsd : <http ://www.w3 . org /2001/XMLSchema#> .
@p r e f i x r d f s : <http ://www.w3 . org /2000/01/ rdf−schema#> .
@p r e f i x t h e s i s : <http :// example . com/ t h e s i s#> .
@base <http :// webprotege . s t an fo rd . edu/ p r o j e c t /CVfEBMo9QGaGLnAuzg5AVr> .

<http :// webprotege . s t an fo rd . edu/ p r o j e c t /CVfEBMo9QGaGLnAuzg5AVr> rd f : type
owl : Ontology .

##
#
Object Prope r t i e s
#
##

http :// example . com/ t h e s i s#hasRoot
t h e s i s : hasRoot rd f : type owl : ObjectProperty ;

r d f s : l a b e l " hasRoot " .

http :// example . com/ t h e s i s#hasChi ld
t h e s i s : hasChi ld rd f : type owl : ObjectProperty ;

r d f s : l a b e l " hasChi ld " .

55

A. Ontology

http :// example . com/ t h e s i s#hasCondit ion
t h e s i s : hasCondit ion rd f : type owl : ObjectProperty ;

r d f s : l a b e l " hasCondit ion " .

##
#
Data p r op e r t i e s
#
##

http :// example . com/ t h e s i s#hasName
t h e s i s : hasName rd f : type owl : DatatypeProperty ;

r d f s : l a b e l "hasName" .

http :// example . com/ t h e s i s#dataType
t h e s i s : dataType rd f : type owl : DatatypeProperty ;

r d f s : l a b e l " dataType " .

http :// example . com/ t h e s i s#dataFormat
t h e s i s : dataFormat rd f : type owl : DatatypeProperty ;

r d f s : l a b e l " dataFormat " .

http :// example . com/ t h e s i s#value
t h e s i s : va lue rd f : type owl : DatatypeProperty ;

r d f s : l a b e l " va lue " .

http :// example . com/ t h e s i s#longName
t h e s i s : longName rd f : type owl : DatatypeProperty ;

r d f s : l a b e l " longName " .

http :// example . com/ t h e s i s#tag
t h e s i s : tag rd f : type owl : DatatypeProperty ;

r d f s : l a b e l " tag " .

##
#
Clas s e s
#
##

http :// example . com/ t h e s i s#Response
t h e s i s : Response rd f : type owl : Class ;

r d f s : l a b e l " Response " ;
r d f s : subClassOf owl : Thing ,

[rd f : type owl : R e s t r i c t i o n ;
owl : onProperty t h e s i s : longName ;
owl : someValuesFrom xsd : s t r i n g

] ,
[r d f : type owl : R e s t r i c t i o n ;

owl : onProperty t h e s i s : hasChi ld ;

56

A.1. response description

owl : someValuesFrom t h e s i s : St ructureObject
] .

http :// example . com/ t h e s i s#JSONResponse
t h e s i s : JSONResponse rd f : type owl : Class ;

r d f s : l a b e l "JSON␣Response " ;
r d f s : subClassOf t h e s i s : Response .

http :// example . com/ t h e s i s#XMLResponse
t h e s i s : XMLResponse rd f : type owl : Class ;

r d f s : l a b e l "XML␣Response " ;
r d f s : subClassOf t h e s i s : Response .

http :// example . com/ t h e s i s#CSVResponse
t h e s i s : CSVResponse rd f : type owl : Class ;

r d f s : l a b e l "CSV␣Response " ;
r d f s : subClassOf t h e s i s : Response .

http :// example . com/ t h e s i s#StructureObject
t h e s i s : St ructureObject rd f : type owl : Class ;

r d f s : l a b e l " S t ruc ture ␣Object " ;
r d f s : subClassOf owl : Thing ,

[rd f : type owl : R e s t r i c t i o n ;
owl : onProperty t h e s i s : hasCondit ion ;
owl : someValuesFrom t h e s i s : S t ruc tu r eAt t r ibu te

] ,
[r d f : type owl : R e s t r i c t i o n ;

owl : onProperty t h e s i s : tag ;
owl : someValuesFrom xsd : s t r i n g

] ,
[r d f : type owl : R e s t r i c t i o n ;

owl : onProperty t h e s i s : hasName ;
owl : someValuesFrom xsd : s t r i n g

] .

http :// example . com/ t h e s i s#StructureTag
t h e s i s : StructureTag rd f : type owl : Class ;

r d f s : l a b e l " S t ruc ture ␣Tag" ;
r d f s : subClassOf t h e s i s : St ructureObject ,

[r d f : type owl : R e s t r i c t i o n ;
owl : onProperty t h e s i s : hasChi ld ;
owl : someValuesFrom t h e s i s : St ructureObject

] .

http :// example . com/ t h e s i s#St ruc tu r eAt t r ibu te
t h e s i s : S t ruc tu r eAt t r ibu t e rd f : type owl : Class ;

r d f s : l a b e l " S t ruc ture ␣Att r ibute " ;
r d f s : subClassOf t h e s i s : St ructureObject ,

[r d f : type owl : R e s t r i c t i o n ;
owl : onProperty t h e s i s : dataType ;
owl : someValuesFrom xsd : s t r i n g

] ,
[r d f : type owl : R e s t r i c t i o n ;

57

A. Ontology

owl : onProperty t h e s i s : dataFormat ;
owl : someValuesFrom xsd : s t r i n g

] ,
[r d f : type owl : R e s t r i c t i o n ;

owl : onProperty t h e s i s : va lue ;
owl : someValuesFrom xsd : s t r i n g

] .

##
#
Ind i v i dua l s
#
##

OSM
− osm_tag
− osm_tag − no name
− City − keypa i r
− City_key
− City_value

http :// example . com/ t h e s i s#OSM
th e s i s :OSM rd f : type t h e s i s : XMLResponse ,

owl : NamedIndividual ;
r d f s : l a b e l "OSM" ;
t h e s i s : longName "OpenStreetMap " ;
t h e s i s : hasChi ld t h e s i s :OSM_node .

http :// example . com/ t h e s i s#OSM_node
t h e s i s :OSM_node rd f : type t h e s i s : StructureTag ,

owl : NamedIndividual ;
r d f s : l a b e l "OSM_node" ;
t h e s i s : hasChi ld t h e s i s :OSM_tag ;
t h e s i s : hasChi ld t h e s i s :OSM_lat ;
t h e s i s : hasChi ld t h e s i s :OSM_lon .

http :// example . com/ t h e s i s#OSM_lat
t h e s i s :OSM_lat rd f : type t h e s i s : S t ruc tu r eAt t r ibut e ,

owl : NamedIndividual ;
r d f s : l a b e l "OSM_lat" ;
t h e s i s : hasName " Lat i tude " ;
t h e s i s : tag " l a t " ;
t h e s i s : dataType " f l o a t " .

http :// example . com/ t h e s i s#OSM_lon
t h e s i s :OSM_lon rd f : type t h e s i s : S t ruc tu r eAt t r ibu te ,

owl : NamedIndividual ;
r d f s : l a b e l "OSM_lon" ;
t h e s i s : hasName " Longitude " ;
t h e s i s : tag " lon " ;
t h e s i s : dataType " f l o a t " .

58

A.1. response description

http :// example . com/ t h e s i s#OSM_tag
t h e s i s :OSM_tag rd f : type t h e s i s : StructureTag ,

owl : NamedIndividual ;
r d f s : l a b e l "OSM_tag" ;
t h e s i s : tag " tag " ;
t h e s i s : hasChi ld t h e s i s : City_value .

http :// example . com/ t h e s i s#City_key
t h e s i s : City_key rd f : type t h e s i s : S t ruc tu r eAt t r ibu te ,

owl : NamedIndividual ;
r d f s : l a b e l " City_key " ;
t h e s i s : va lue " addr : c i t y " ;
t h e s i s : tag " k " .

http :// example . com/ t h e s i s#City_value
t h e s i s : City_value rd f : type t h e s i s : S t ruc tu r eAt t r ibu te ,

owl : NamedIndividual ;
t h e s i s : hasCondit ion t h e s i s : City_key ;
t h e s i s : hasName " City " ;
r d f s : l a b e l " City_value " ;
t h e s i s : tag " v " .

WU Geolookup
− wu_geo_root
− wu_geo_location − l o c a t i o n
− wu_geo_nearby_weather_stations − nearby_weather_stations
− wu_geo_airport − a i r p o r t
− wu_geo_station − s t a t i o n
− wu_geo_station_array −
− wu_geo_city − c i t y
− wu_geo_icao − i c ao − Airport

http :// example . com/ t h e s i s#wu_geolookup
t h e s i s : wu_geolookup rd f : type t h e s i s : JSONResponse ,

owl : NamedIndividual ;
r d f s : l a b e l "WU␣Geolookup " ;
t h e s i s : longName "Weather␣Underground␣Geolookup " ;
t h e s i s : hasChi ld t h e s i s : wu_geo_location .

http :// example . com/ t h e s i s#wu_geo_location
t h e s i s : wu_geo_location rd f : type t h e s i s : StructureTag ,

owl : NamedIndividual ;
r d f s : l a b e l " wu_geo_location " ;
t h e s i s : tag " l o c a t i o n " ;
t h e s i s : hasChi ld t h e s i s : wu_geo_nearby_ws .

http :// example . com/ t h e s i s#wu_geo_station
t h e s i s : wu_geo_nearby_ws rd f : type t h e s i s : StructureTag ,

owl : NamedIndividual ;
r d f s : l a b e l "wu_geo_nearby " ;
t h e s i s : tag " nearby_weather_stations " ;
t h e s i s : hasChi ld t h e s i s : wu_geo_airport .

59

A. Ontology

http :// example . com/ t h e s i s#wu_geo_airport
t h e s i s : wu_geo_airport rd f : type t h e s i s : StructureTag ,

owl : NamedIndividual ;
r d f s : l a b e l " wu_geo_airport " ;
t h e s i s : tag " a i r p o r t " ;
t h e s i s : hasChi ld t h e s i s : wu_geo_station .

http :// example . com/ t h e s i s#wu_geo_station
t h e s i s : wu_geo_station rd f : type t h e s i s : StructureTag ,

owl : NamedIndividual ;
r d f s : l a b e l " wu_geo_station " ;
t h e s i s : tag " s t a t i o n " ;
t h e s i s : hasChi ld t h e s i s : wu_geo_city ;
t h e s i s : hasChi ld t h e s i s : wu_geo_icao .

http :// example . com/ t h e s i s#wu_geo_city
t h e s i s : wu_geo_city rd f : type t h e s i s : S t ruc tu r eAt t r ibu t e ,

owl : NamedIndividual ;
r d f s : l a b e l " wu_geo_city " ;
t h e s i s : tag " c i t y " ;
t h e s i s : hasName " City " .

http :// example . com/ t h e s i s#wu_geo_icao
t h e s i s : wu_geo_icao rd f : type t h e s i s : S t ruc tu r eAt t r ibut e ,

owl : NamedIndividual ;
r d f s : l a b e l " wu_geo_icao " ;
t h e s i s : tag " i c ao " ;
t h e s i s : hasName "ICAO␣ a i r p o r t ␣ code " .

WU Hi s t o r i c
− wu_hist_root
− wu_hist_temp
− wu_hist_datetime

http :// example . com/ t h e s i s#wu_histor ic
t h e s i s : wu_histor ic rd f : type t h e s i s : CSVResponse ,

owl : NamedIndividual ;
r d f s : l a b e l "WU␣H i s t o r i c " ;
t h e s i s : longName "Weather␣Underground␣ H i s t o r i c ␣Data " ;
t h e s i s : hasChi ld t h e s i s : wu_hist_datetime ;
t h e s i s : hasChi ld t h e s i s : wu_hist_temp .

http :// example . com/ t h e s i s#wu_hist_datetime
t h e s i s : wu_hist_datetime rd f : type t h e s i s : S t ruc tu r eAt t r ibu te ,

owl : NamedIndividual ;
r d f s : l a b e l " wu_hist_datetime " ;
t h e s i s : tag "DateUTC" ;
t h e s i s : hasName " Datetime " ;
t h e s i s : dataType " datet ime " ;
t h e s i s : dataFormat "%Y−%m−%d␣%H:%M:%S" .

60

A.1. response description

http :// example . com/ t h e s i s#wu_hist_temp
t h e s i s : wu_hist_temp rd f : type t h e s i s : S t ruc tu r eAt t r ibut e ,

owl : NamedIndividual ;
r d f s : l a b e l "wu_hist_temp " ;
t h e s i s : tag " TemperatureC " ;
t h e s i s : hasName " Temperature " ;
t h e s i s : dataType " f l o a t " .

#− System (JEVis root)
− Organizat ion Di rec tory
− Organizat ion − Desigo
− Monitored Object Di rec to ry
− Bui ld ing − ENERGYBase
− Data Di rec tory
− Waerememenge Verbraucher
− Aussentemperatur

http :// example . com/ t h e s i s#j e v i s_ s t r u c tu r e
t h e s i s : j e v i s_ s t r u c tu r e rd f : type t h e s i s : JSONResponse ,

owl : NamedIndividual ;
r d f s : l a b e l " JEVis␣ St ruc ture " ;
t h e s i s : longName " JEVis␣Tree␣ St ruc ture ␣Desc r ip t i on " ;
t h e s i s : hasChi ld t h e s i s : j ev i s_s t ruc t_roo t .

http :// example . com/ t h e s i s#jev i s_s t ruc t_roo t
t h e s i s : j ev i s_s t ruc t_roo t rd f : type t h e s i s : StructureTag ,

owl : NamedIndividual ;
r d f s : l a b e l " j ev i s_s t ruc t_roo t " ;
t h e s i s : tag " ch i l d r en " ;
t h e s i s : hasChi ld t h e s i s : j ev i s_st ruct_org_di r .

http :// example . com/ t h e s i s#jev i s_st ruct_org_di r
t h e s i s : j ev i s_st ruct_org_di r rd f : type t h e s i s : StructureTag ,

owl : NamedIndividual ;
r d f s : l a b e l " j ev i s_st ruct_org_di r " ;
t h e s i s : tag " ch i l d r en " ;
t h e s i s : hasCondit ion t h e s i s : jev is_struct_cond_class_org_dir ;
t h e s i s : hasChi ld t h e s i s : j ev i s_st ruc t_org .

http :// example . com/ t h e s i s#jevis_struct_cond_class_org_dir
t h e s i s : j ev is_struct_cond_class_org_dir rd f : type t h e s i s : S t ruc tu r eAt t r ibu te ,

owl : NamedIndividual ;
r d f s : l a b e l " jev i s_struct_cond_class_org_dir " ;
t h e s i s : tag " j e v i s c l a s s " ;
t h e s i s : va lue " Organizat ion ␣Di rec tory " .

http :// example . com/ t h e s i s#jev i s_st ruc t_org
t h e s i s : j ev i s_st ruc t_org rd f : type t h e s i s : StructureTag ,

owl : NamedIndividual ;
r d f s : l a b e l " j ev i s_st ruc t_org " ;
t h e s i s : tag " ch i l d r en " ;
t h e s i s : hasCondit ion t h e s i s : j ev i s_struct_cond_class_org ;

61

A. Ontology

t h e s i s : hasChi ld t h e s i s : jevis_struct_mon_dir .

http :// example . com/ t h e s i s#jev is_struct_cond_class_org
t h e s i s : j ev i s_struct_cond_class_org rd f : type t h e s i s : S t ruc tu r eAt t r ibut e ,

owl : NamedIndividual ;
r d f s : l a b e l " jev i s_struct_cond_class_org " ;
t h e s i s : tag " j e v i s c l a s s " ;
t h e s i s : va lue " Organizat ion " .

http :// example . com/ t h e s i s#jevis_struct_mon_dir
t h e s i s : jevis_struct_mon_dir rd f : type t h e s i s : StructureTag ,

owl : NamedIndividual ;
r d f s : l a b e l " jevis_struct_mon_dir " ;
t h e s i s : tag " ch i l d r en " ;
t h e s i s : hasCondit ion t h e s i s : jevis_struct_cond_class_mon_dir ;
t h e s i s : hasChi ld t h e s i s : j e v i s_s t ruc t_bu i l d i ng .

http :// example . com/ t h e s i s#jevis_struct_cond_class_mon_dir
t h e s i s : jevis_struct_cond_class_mon_dir rd f : type t h e s i s : S t ruc tu r eAt t r ibut e ,

owl : NamedIndividual ;
r d f s : l a b e l " jevis_struct_cond_class_mon_dir " ;
t h e s i s : tag " j e v i s c l a s s " ;
t h e s i s : va lue "Monitored␣Object ␣Di rec tory " .

http :// example . com/ t h e s i s#j ev i s_s t ruc t_bu i l d i ng
t h e s i s : j e v i s_s t ruc t_bu i l d i ng rd f : type t h e s i s : StructureTag ,

owl : NamedIndividual ;
r d f s : l a b e l " j ev i s_s t ruc t_bu i l d ing " ;
t h e s i s : tag " ch i l d r en " ;
t h e s i s : hasCondit ion t h e s i s : jevis_struct_cond_name_building ;
t h e s i s : hasChi ld t h e s i s : j ev i s_struct_data_dir .

http :// example . com/ t h e s i s#jevis_struct_cond_name_building
t h e s i s : jevis_struct_cond_name_building rd f : type t h e s i s : S t ruc tu r eAt t r ibu te ,

owl : NamedIndividual ;
r d f s : l a b e l " jevis_struct_cond_name_building " ;
t h e s i s : tag "name" ;
t h e s i s : va lue " ! sub : bu i l d i ng ! " .

http :// example . com/ t h e s i s#jev i s_struct_data_dir
t h e s i s : j ev i s_struct_data_dir rd f : type t h e s i s : StructureTag ,

owl : NamedIndividual ;
r d f s : l a b e l " j ev i s_struct_data_dir " ;
t h e s i s : tag " ch i l d r en " ;
t h e s i s : hasCondit ion t h e s i s : jev is_struct_cond_class_data_dir ;
t h e s i s : hasChi ld t h e s i s : jev is_struct_data_heat ;
t h e s i s : hasChi ld t h e s i s : jevis_struct_data_temp .

http :// example . com/ t h e s i s#jevis_struct_cond_class_data_dir
t h e s i s : jev is_struct_cond_class_data_dir rd f : type t h e s i s : S t ruc tu r eAt t r ibu te

,
owl : NamedIndividual ;
r d f s : l a b e l " jev is_struct_cond_class_data_dir " ;

62

A.1. response description

t h e s i s : tag " j e v i s c l a s s " ;
t h e s i s : va lue "Data␣Direc to ry " .

http :// example . com/ t h e s i s#jevis_struct_data_heat
t h e s i s : jev is_struct_data_heat rd f : type t h e s i s : S t ruc tu r eAt t r ibu te ,

owl : NamedIndividual ;
r d f s : l a b e l " jev is_struct_data_heat " ;

t h e s i s : hasName "Heat " ;
t h e s i s : tag " id " ;
t h e s i s : hasCondit ion t h e s i s : jevis_struct_cond_name_heat .

http :// example . com/ t h e s i s#jevis_struct_cond_name_heat
t h e s i s : jevis_struct_cond_name_heat rd f : type t h e s i s : S t ruc tu r eAt t r ibu te ,

owl : NamedIndividual ;
r d f s : l a b e l " jevis_struct_cond_name_heat " ;
t h e s i s : tag "name" ;
t h e s i s : va lue "Waermemenge␣Verbraucher " .

http :// example . com/ t h e s i s#jevis_struct_data_temp
t h e s i s : jevis_struct_data_temp rd f : type t h e s i s : S t ruc tu r eAt t r ibut e ,

owl : NamedIndividual ;
r d f s : l a b e l " jevis_struct_data_temp " ;

t h e s i s : hasName " Temperature " ;
t h e s i s : tag " id " ;
t h e s i s : hasCondit ion t h e s i s : jevis_struct_cond_name_temp .

http :// example . com/ t h e s i s#jevis_struct_cond_name_temp
t h e s i s : jevis_struct_cond_name_temp rd f : type t h e s i s : S t ruc tu r eAt t r ibut e ,

owl : NamedIndividual ;
r d f s : l a b e l " jevis_struct_cond_name_temp " ;
t h e s i s : tag "name" ;
t h e s i s : va lue " Aussentemperatur " .

JEVis Sample
− Sample
− Timestamp − t s − ’%Y−%m−%dT%H:%M:%S.% f%z ’
− Value − value

http :// example . com/ t h e s i s#jev i s_samples
t h e s i s : j ev i s_samples rd f : type t h e s i s : JSONResponse ,

owl : NamedIndividual ;
r d f s : l a b e l " JEVis␣Samples " ;
t h e s i s : longName " JEVis␣Samples␣ d e s c r i p t i o n " ;
t h e s i s : hasChi ld t h e s i s : j ev i s_samples_root .

http :// example . com/ t h e s i s#wu_hist_datetime
t h e s i s : j ev i s_samples_root rd f : type t h e s i s : StructureTag ,

owl : NamedIndividual ;
r d f s : l a b e l " Sample " ;
t h e s i s : tag " Sample " ;
t h e s i s : hasChi ld t h e s i s : j ev i s_samples_ts ;
t h e s i s : hasChi ld t h e s i s : jev is_samples_value .

63

A. Ontology

http :// example . com/ t h e s i s#jev is_samples_ts
t h e s i s : j ev i s_samples_ts rd f : type t h e s i s : S t ruc tu r eAt t r ibu te ,

owl : NamedIndividual ;
r d f s : l a b e l "Timestamp " ;
t h e s i s : tag " t s " ;
t h e s i s : hasName " Datetime " ;
t h e s i s : dataType " datet ime " ;
t h e s i s : dataFormat "%Y−%m−%dT%H:%M:%S.% f%z " .

http :// example . com/ t h e s i s#jevis_samples_value
t h e s i s : jev is_samples_value rd f : type t h e s i s : S t ruc tu r eAt t r ibu te ,

owl : NamedIndividual ;
r d f s : l a b e l " Values " ;
t h e s i s : tag " va lue " ;
t h e s i s : hasName " Value " ;
t h e s i s : dataType " f l o a t " .

Generated by the OWL API (ve r s i on 3 . 5 . 0) http :// owlapi . s ou r c e f o r g e . net

64

APPENDIX B
SQL driver

This chapter describes the developed SQL driver to import data from MySQL and MSSQL
databases into JEVis. Section B.1 describes the available and mandatory configuration
options. In Section B.2 the process of a data import from Desigo to JEVis is shown with
the help of a message sequence chart.

Figure B.1: JEConfig showing SQL DataServer Desigo

65

B. SQL driver

B.1 Configuration
The following JEVis classes are used to establish an SQL connection using the specified
connection and parsing information.

• SQL DataServer
The SQL DataServer contains the information on how to connect to the SQL server.

– Host and Port
These attributes describe where the SQL server is listening for incoming
connections. For a local MySQL database, the Host would be ’localhost’ with
the Port ’3306’.

– Schema
The name of the database which contains the tables with data samples. An
SQL server can have multiple databases.

– Domain, User and Password
These attributes describe the credentials to authenticate with the SQL server.
If the Domain is empty the driver uses regular SQL Server authentication
with the provided User and Password. If the attribute Domain is set then
the driver uses Windows authentication (NTML) to sign in. In this case, the
provided credentials are the domain user and password.

• SQL Channel Directory
A virtual JEVis folder for multiple instances of SQL Channel.

• SQL Channel
The SQL Channel has attributes to describe the table containing the measurements.
This includes the name of the table and the names of the columns for ID, timestamp
and value.

– Table
Identifies the table of the database containing the samples.

– Column ID
The name of the column containing the ID(s) of the sensor(s). If Column ID
is left empty the driver assumes that there is no such column and will not
limit the query to an ID.

– Column Timestamp
Identifies the column which holds the timestamp of the samples.

– Timestamp Format
The format string used to parse the timestamp.

– Column Value
Identifies the column containing the value of the samples.

66

B.2. Message Sequence chart

• SQL Data Point Directory
A virtual JEVis folder for multiple instances of SQL Data Point.

• SQL Data Point
This class specifies the sensor and where the samples are stored in JEVis.

– ID
The string or number identifying the sensor in the previously specified table.

– Target
The JEVis internal ID of the data object in which to store the samples.

B.2 Message Sequence chart

JEDataCollector JEVis3

querry data

send data

send samples

Desigo

get configuration

send drivers/configurations

Figure B.2: JEDataCollector Message Sequence Chart

Figure B.2 shows the process of importing data from Desigo into JEVis. In the
following, the steps of the process are explained:

• get configuration
The JEDataCollector starts and connects to the JEVis system to request its
configuration.

• send drivers/configurations
JEVis responds with the needed drivers and configurations.

• query data
Using the received configurations, JEDataCollector connects to Desigo and requests
data samples.

67

B. SQL driver

• send data
Desigo returns the requested data points.

• send samples
JEDataCollector parses the received samples and sends them to JEVis to be stored.

68

List of Figures

1.1 Useful energy analysis in Austria [Aus] . 2

2.1 Used subset of the Semantic Web Stack [Bra] 9
2.2 RDF triple showing sentence "Alice knows Bob" 11
2.3 RDF 1.1 serialization formats [SR14] . 12

3.1 Classes defining the encoding of response 24
3.2 CSV structure classes . 25
3.3 XML structure classes . 25
3.4 JSON structure classes, a first try . 25
3.5 JSON structure classes, simplified . 26
3.6 Structure classes, combination . 26
3.7 Ontology response classes . 27
3.8 Ontology Structure Object classes . 28

4.1 Overview of the system and infrastructure around it 32
4.2 JEVis3 overwiev . 33
4.3 OpenStreetMaps response ontology . 36
4.4 Weather Underground Geolookup ontology 38
4.5 Weather Underground historic weather data 39
4.6 JEVis Structure . 41
4.7 JEVis Samples . 42
4.8 Graph visualizing path from "OSM" to "City" 45

5.1 Overview over data and prediction . 49
5.2 Found anomalies . 50

B.1 JEConfig showing SQL DataServer Desigo 65
B.2 JEDataCollector Message Sequence Chart 67

69

List of Tables

2.1 Quoted Literal shorthands [BBLPC14] 14
2.2 Property paths introduces with SPARQL 1.1 [HSP13] 17

4.1 Root of the path from "OSM" to "City" 44
4.2 Path from "OSM" to "City" . 45

71

Bibliography

[AH11] Dean Allemang and James Hendler. Semantic web for the working ontologist:
effective modeling in RDF and OWL. Elsevier, 2011.

[AP12] T. Aihkisalo and T. Paaso. Latencies of Service Invocation and Processing
of the REST and SOAP Web Service Interfaces. In 2012 IEEE Eighth World
Congress on Services, pages 100–107, June 2012.

[AST+17] S. Ahvar, G. Santos, N. Tamani, B. Istasse, I. Praça, P. E. Brun, Y. Ghamri,
and N. Crespi. Ontology-based model for trusted critical site supervision
in fuse-it. In 2017 20th Conference on Innovations in Clouds, Internet and
Networks (ICIN), pages 313–315, March 2017.

[Aus] Statistics Austria. Final energy consumption 2013 by fuels and useful energy
categories for Austria. http://statistik.at/. [Online; accessed 11-
February-2016].

[BBLPC14] D Beckett, T Berners-Lee, E Prud’hommeaux, and G Carothers. RDF 1.1
turtle–terse rdf triple language. W3C Recommendation. World Wide Web
Consortium (Feb 2014), available at http://www.w3.org/TR/turtle,
2014.

[BG14] Dan Brickley and R Guha. RDF Schema 1.1. W3C Recommendation (25
February 2014). World Wide Web Consortium, 2014.

[BGM04] Dan Brickley, Ramanathan V Guha, and Brian McBride. RDF vocabulary
description language 1.0: RDF Schema. W3C Recommendation (2004). URL
http://www. w3. org/tr/2004/rec-rdf-schema-20040210, 2004.

[BPSM+98] Tim Bray, Jean Paoli, C Michael Sperberg-McQueen, Eve Maler, and
François Yergeau. Extensible markup language (XML). World Wide
Web Consortium Recommendation REC-xml-19980210. http://www. w3.
org/TR/1998/REC-xml-19980210, 16:16, 1998.

[Bra] Steve Bratt. Semantic web, and other technologies to watch. W3C, 2007.
https://www.w3.org/2007/Talks/0130-sb-W3CTechSemWeb/
#(24). [Online; accessed 11-March-2016].

73

http://statistik.at/
http://www.w3.org/TR/turtle
https://www.w3.org/2007/Talks/0130-sb-W3CTechSemWeb/#(24)
https://www.w3.org/2007/Talks/0130-sb-W3CTechSemWeb/#(24)

[Bra14] Tim Bray. The javascript object notation (json) data interchange format.
2014.

[C+12] World Wide Web Consortium et al. OWL 2 web ontology language document
overview. 2012.

[C+13] World Wide Web Consortium et al. SPARQL 1.1 overview. 2013.

[CBB+12] Michael Compton, Payam Barnaghi, Luis Bermudez, Raúl García-Castro,
Oscar Corcho, Simon Cox, John Graybeal, Manfred Hauswirth, Cory Henson,
Arthur Herzog, Vincent Huang, Krzysztof Janowicz, W. David Kelsey,
Danh Le Phuoc, Laurent Lefort, Myriam Leggieri, Holger Neuhaus, Andriy
Nikolov, Kevin Page, Alexandre Passant, Amit Sheth, and Kerry Taylor.
The ssn ontology of the w3c semantic sensor network incubator group. Web
Semantics: Science, Services and Agents on the World Wide Web, 17:25 –
32, 2012.

[CK04] Jeremy J Carroll and Graham Klyne. Resource Description Framework
(RDF): Concepts and Abstract Syntax. 2004.

[Cla97] James Clark. Comparison of SGML and XML: World Wide Web Consortium
Note. World Wide Web Consortium, 15, 1997.

[CWL14] Richard Cyganiak, David Wood, and Markus Lanthaler. RDF 1.1 concepts
and abstract syntax. W3C Recommendation, 25:1–8, 2014.

[DdHR15] Laura Daniele, Frank den Hartog, and Jasper Roes. Created in Close
Interaction with the Industry: The Smart Appliances REFerence (SAREF)
Ontology, pages 100–112. Springer International Publishing, Cham, 2015.

[DuC13] Bob DuCharme. Learning SPARQL. O’Reilly Media, Inc., 2013.

[FB96] N. Freed and N. Borenstein. Multipurpose Internet Mail Extensions (MIME)
Part One: Format of Internet Message Bodies. https://tools.ietf.
org/html/rfc2045, 1996. [Online; accessed 5-June-2016].

[FR14] R. Fielding and J. Reschke. Hypertext Transfer Protocol (HTTP/1.1): Se-
mantics and Content. http://www.rfc-editor.org/info/rfc7231,
2014. [Online; accessed 5-June-2016].

[FT00] Roy T. Fielding and Richard N. Taylor. Principled Design of the Modern
Web Architecture. In Proceedings of the 22Nd International Conference on
Software Engineering, ICSE ’00, pages 407–416, New York, NY, USA, 2000.
ACM.

[G+93] Thomas R Gruber et al. A translation approach to portable ontology
specifications. Knowledge acquisition, 5(2):199–220, 1993.

74

https://tools.ietf.org/html/rfc2045
https://tools.ietf.org/html/rfc2045
http://www.rfc-editor.org/info/rfc7231

[GCF16] J. Gao, B. Cao, and H. Fan. Point of interest data storage using ontology.
In 2016 3rd International Conference on Systems and Informatics (ICSAI),
pages 1122–1126, Nov 2016.

[GvR01] F.L. Drake G. van Rossum. Python Reference Manual. http://www.
python.org, 2001. [Online; accessed 5-December-2015].

[HLZ15] C. C. Huang, A. Liu, and P. C. Zhou. Using ontology reasoning in building
a simple and effective dialog system for a smart home system. In 2015
IEEE International Conference on Systems, Man, and Cybernetics, pages
1508–1513, Oct 2015.

[HSP13] Steve Harris, Andy Seaborne, and Eric Prud’hommeaux. SPARQL 1.1 query
language. W3C Recommendation, 21, 2013.

[Hun07] John D. Hunter. Matplotlib: A 2D Graphics Environment. Computing in
Science & Engineering, 9(3):90–95, 2007.

[jso] Introducing JSON. http://www.json.org/. [Online; accessed 1-June-
2016].

[Kas06] Wolfgang Kastner. Trends in der Gebäudeautomation. (2006), 11, S. 44;
AC00340518, 2006. Aus Megatech ; 11.

[KKR12] Wolfgang Kastner, Mario Jerome Kofler, and Christian Reinisch. Knowledge
representation for the adaptive residential home in the context of smart
cities. e & i Elektrotechnik und Informationstechnik, 129(4):286–292, 2012.

[Kof14] Mario Jerome Kofler. An ontology as shared vocabulary for distributed
intelligence in smart homes, 2014. Wien, Techn. Univ., Diss., 2014.

[LKGZ16] Maxime Lefrançois, Jarmo Kalaoja, Takoua Ghariani, and Antoine Zim-
mermann. SEAS Knowledge Model. Deliverable 2.2, ITEA2 12004 Smart
Energy Aware Systems, 2016. 76 p.

[McK10] Wes McKinney. Data Structures for Statistical Computing in Python . In
Stéfan van der Walt and Jarrod Millman, editors, Proceedings of the 9th
Python in Science Conference, pages 51 – 56, 2010.

[MVH+04] Deborah L McGuinness, Frank Van Harmelen, et al. OWL web ontology
language overview. W3C Recommendation, 10(10):2004, 2004.

[NM01] Natalya F. Noy and Deborah L. Mcguinness. Ontology development 101: A
guide to creating your first ontology. Technical report, 2001.

[PAG06] Jorge Pérez, Marcelo Arenas, and Claudio Gutierrez. Semantics and Com-
plexity of SPARQL. In International semantic web conference, pages 30–43.
Springer, 2006.

75

http://www.python.org
http://www.python.org
http://www.json.org/

[PAG09] Jorge Pérez, Marcelo Arenas, and Claudio Gutierrez. Semantics and Com-
plexity of SPARQL. ACM Trans. Database Syst., 34(3):16:1–16:45, Septem-
ber 2009.

[PD09] Addison Phillips and Mark Davis. Tags for identifying languages. Technical
report, 2009.

[PS+08] Eric Prud’Hommeaux, Andy Seaborne, et al. SPARQL query language for
RDF. W3C Recommendation, 15, 2008.

[PVG+11] Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel,
Bertrand Thirion, Olivier Grisel, Mathieu Blondel, Peter Prettenhofer,
Ron Weiss, Vincent Dubourg, Jake Vanderplas, Alexandre Passos, David
Cournapeau, Matthieu Brucher, Matthieu Perrot, and Édouard Duchesnay.
Scikit-learn: Machine Learning in Python. Journal of Machine Learning
Research, October 2011.

[req11] Requests: HTTP for Humans. http://docs.python-requests.org/,
2011. [Online; accessed 5-December-2015].

[Sch14] Daniel Schachinger. Model-driven engineering for building automation
systems, 2014. Wien, Techn. Univ., Dipl.-Arb., 2014.

[Sha05] Yakov Shafranovich. Common format and MIME type for Comma-Separated
Values (CSV) files. 2005.

[SR14] Guus Schreiber and Yves Raimond. RDF 1.1 Primer. W3C Working Group
Note, 2014.

[Sta13] Paul Staroch. A weather ontology for predictive control in smart homes,
2013. Parallelt. [Übers. des Autors] A Weather Ontology for Predictive
Control in Smart Homes; Wien, Techn. Univ., Dipl.-Arb., 2013.

[Ste14] Simon Steyskal. Defining an actor ontology for increasing energy efficiency
and user comfort in smart homes, 2014. Parallelt. [Übers. des Autors]
Defining an Actor Ontology for Increasing Energy Efficiency in Smart Homes;
Wien, Techn. Univ., Dipl.-Arb., 2015.

[Str] Tom Strassner. XML vs JSON. http://www.cs.tufts.edu/comp/
150IDS/final_papers/tstras01.1/FinalReport/FinalReport.
html. [Online; accessed 1-June-2016].

[WCV11] Stéfan van der Walt, S. Chris Colbert, and Gaël Varoquaux. The NumPy
Array: A Structure for Efficient Numerical Computation. Computing in
Science & Engineering, 13(2):22–30, 2011.

[Woo14] David Wood. What’s New in RDF 1.1. W3C Working Group Note, 2014.

76

http://docs.python-requests.org/
http://www.cs.tufts.edu/comp/150IDS/final_papers/tstras01.1/FinalReport/FinalReport.html
http://www.cs.tufts.edu/comp/150IDS/final_papers/tstras01.1/FinalReport/FinalReport.html
http://www.cs.tufts.edu/comp/150IDS/final_papers/tstras01.1/FinalReport/FinalReport.html

	Abstract
	Contents
	Introduction
	Motivation
	Problem statement
	Methodology
	Structure of the work

	State of the art
	Information exchange in the World Wide Web
	Information encoding
	CSV
	XML
	JSON

	Message exchange protocols
	Uniform Resource Locator
	HTTP
	REST

	Ontology
	Resource Description Framework (RDF)
	RDF Serialization Formats

	RDF Schema (RDFS)
	Web Ontology Language (OWL)
	SPARQL Protocol And RDF Query Language (SPARQL)
	Related Work

	Conclusion

	System Specification and Design
	Use cases
	Functional and non-functional requirements
	Class Design
	Important Terms
	Classes
	Properties
	Response
	Structure Object

	System Design

	Implementation
	Infrastructure
	SPARQL Endpoint
	Building Management System
	Building Data Interface
	JEDataCollector
	Improvement: SQL Driver

	Ontology Instances
	Geolocation Service
	Weather Service
	Weather Underground Geolookup
	Weather Underground Historic Data

	Building Information Service
	JEVis Structure
	JEVis Data

	SPARQL Queries
	Root of path
	Getting the full path

	PyCaster
	Data Import
	Sparql-py
	jeapi-py

	Data Processing

	Evaluation
	Energy Data
	Anomalies

	Conclusion
	Ontology
	response description

	SQL driver
	Configuration
	Message Sequence chart

	List of Figures
	List of Tables
	Bibliography

