
Analysis of Coupling Strategies
and Protocols for Co-Simulation

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Software Engineering/Internet Computing

eingereicht von

Clemens Pühringer, Bsc.
Matrikelnummer 1026571

an der Fakultät für Informatik

der Technischen Universität Wien

Betreuung: Ao.Univ.Prof. Dr. Wolfgang Kastner
Mitwirkung: Dipl.-Ing. Bernhard Heinzl

Wien, 6. Dezember 2017
Clemens Pühringer Wolfgang Kastner

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.ac.at

Die approbierte Originalversion dieser Diplom-/
Masterarbeit ist in der Hauptbibliothek der Tech-
nischen Universität Wien aufgestellt und zugänglich.

http://www.ub.tuwien.ac.at

The approved original version of this diploma or
master thesis is available at the main library of the
Vienna University of Technology.

http://www.ub.tuwien.ac.at/eng

Analysis of Coupling Strategies
and Protocols for Co-Simulation

DIPLOMA THESIS

submitted in partial fulfillment of the requirements for the degree of

Diplom-Ingenieur

in

Software Engineering/Internet Computing

by

Clemens Pühringer, Bsc.
Registration Number 1026571

to the Faculty of Informatics

at the TU Wien

Advisor: Ao.Univ.Prof. Dr. Wolfgang Kastner
Assistance: Dipl.-Ing. Bernhard Heinzl

Vienna, 6th December, 2017
Clemens Pühringer Wolfgang Kastner

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.ac.at

Erklärung zur Verfassung der
Arbeit

Clemens Pühringer, Bsc.
Rothenbergstrasse 19/1, 4942 Gurten

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 6. Dezember 2017
Clemens Pühringer

v

Kurzfassung

Computersimulationen werden immer komplexer. Kontinuierliche und diskrete Modelle
benötigen zur Simulation von Grund auf verschiedene Ansätze. Derzeit existierende Simu-
lationsanwendungen unterstützen meist nur eine der beiden Methoden und bieten keine
oder nur sehr eingeschränkte Unterstützung für die andere. Mithilfe der Co-Simulation
kann ein Modell in mehrere Teile aufgeteilt werden. Diese Teile können anschließend mit
unterschiedlichen Methoden und Anwendungen simuliert werden, welche zur Laufzeit
Daten austauschen. Den derzeit verfügbaren Herangehensweisen fehlt es an Flexibilität.
Viele der existierenden Frameworks sind schwierig zu verwenden oder wurden nur für eine
spezielle Anwendung erstellt. Um die Implementierung von Co-Simulationen einfacher zu
gestalten, benötigt es leichter zu handhabende und flexiblere Werkzeuge.

Diese Arbeit präsentiert einen Vergleich verschiedener Kopplungsstrategien und Kom-
munikationsprotokolle für Co-Simulation. Zu diesem Zweck wurde ein Co-Simulations-
Framework implementiert, das Matlab/Simulink und OpenModelica unterstützt. Daten
zwischen den Simulationen werden mit dem Simple Object Access Protocol (SOAP)
und dem OPC Unified Architecture (OPC UA) binary Protokoll ausgetauscht. Diese
Protokolle wurden aufgrund ihrer hohen Flexibilität und Erweiterbarkeit gewählt. Mit
beiden Ansätzen ist es möglich, strukturierte Daten einfach zu transportieren. Das Fra-
mework unterstützt desweiteren weak und dynamic Coupling-Strategien. Obwohl weak
coupling in Co-Simulationen ungenauer ist, wird es derzeit am häufigsten verwendet.
Dem liegt zugrunde, dass andere Kopplungsstrategien oft wesentlich schwieriger zu im-
plementieren und zu verweden sind. Im Zuge dieser Arbeit werden die Genauigkeit und
die Geschwindigkeit verschiedener Kopplungsstrategien verglichen.

Als Proof-of-Concept wurde ein bestehendes Modell zur Simulation industrieller Energie-
effizienz verwendet. Das Modell wurde in einen thermischen Teil und einen maschinellen
Teil aufgeteilt. Der thermische Teil wird in Matlab/Simulink simuliert und beinhaltet
Energieversorgung und Wärmeausbreitung innerhalb von vier thermischen Zonen eines
Gebäudes. Der maschinelle Teil wird in OpenModelica simuliert und beinhaltet Maschi-
nen, die elektrische Energie in thermische Energie umwandeln und abgeben. Im Zuge der
Co-Simulation tauschen diese beiden Simulationen elektrische Energie und Wärmeenergie
miteinander aus. Dies zeigt den Effekt verschiedener Kopplungsstrategien anhand der
Verzögerung des Energieaustausches.

vii

Die Ergebnisse der Co-Simulation werden mit Ergebnissen eines Referenzmodells vergli-
chen und zeigen eine zufriedenstellende Übereinstimmung. Die Übereinstimmung ist nicht
exakt, zeigt aber, dass sich die Ergebnisse durch die Reduzierung der Makro-Schrittweite
an die originalen Ergebnisse annähern. Desweiteren wird demonstriert, dass dynamic
coupling bei gleicher Makro-Schrittweite wesentlich genauere Ergebisse liefern kann als
weak coupling. Dies zeigt, dass dynamic coupling durchaus das Potential hat schneller
als weak coupling zu agieren.

Abstract

Computer simulations are becoming increasingly complex. Different simulation techniques
are needed to correctly simulate systems that consist of both continuous and discrete
components. Current simulation tools offer support for either one or the other, but only
limited or no support for both at the same time. By using co-simulation, a model can be
split into multiple parts, which can then be simulated by different tools and methods
and exchange data at runtime. Current co-simulation approaches are either hard to use
in a custom co-simulation setup or are only designed for a very specific use-case. More
flexible tools are needed to simplify the separation of a model into multiple parts.

This thesis presents a comparison of different coupling methods and protocols for data
exchange in a co-simulation setup. For this purpose, a new co-simulation framework was
developed which supports Matlab/Simulink and OpenModelica simulations and exchanges
data via the Simple Object Access Protocol (SOAP) and OPC Unified Architecture (OPC
UA) binary protocol. These high-level protocols were chosen due to their flexibility. Both
allow to transport structured information and can be extended easily. Also, the framework
is designed to handle weak and dynamic coupling methods. In current co-simulation
setups, weak coupling is usually preferred even though it is less accurate. It is mainly
used because dynamic coupling takes longer to implement and are harder to use. The
different coupling methods are compared to each other in terms of speed and accuracy.

As a proof-of-concept, an existing model for simulating industrial energy efficiency was
split into two parts and simulated with the framework. The first part of the model
consists of a building with thermal zones and an energy supply system. It is simulated
in Matlab/Simulink and manages energy and heat distribution. The second part of
the model manages machines that convert electrical energy into heat, it is simulated
in OpenModelica. In the co-simulation, both model parts exchange energy and other
information with each other and thereby demonstrate the effects of different coupling
methods due to communication delays.

The results of the co-simulation are validated with existing results of a reference imple-
mentation and show a satisfactory outcome. While not exact, they demonstrate that
the results of the co-simulation converge towards the original results when reducing the
macro-step size. They also show that dynamic coupling methods are far more accurate
than the widely used weak coupling methods and may even provide better results in less
time.

ix

Contents

Kurzfassung vii

Abstract ix

Contents xi

1 Introduction 1
1.1 Motivation . 1
1.2 Problem Statement . 2
1.3 Goal . 3
1.4 Method . 3

2 State of the Art 5
2.1 Co-Simulation . 5
2.2 Latest Developments . 9
2.3 Modelling and Simulation Tools . 10
2.4 Communication Protocols . 11

3 Requirements 15

4 Design & Implementation 19
4.1 Overview . 19
4.2 Chosen Technologies . 19
4.3 Data Model . 21
4.4 Communication Model . 24
4.5 The Coordinator . 26
4.6 The Matlab/Simulink framework . 31
4.7 The OPC UA Server & OpenModelica Framework 36

5 Testing & Evaluation 43
5.1 Implementation vs. Requirements . 43
5.2 Scenario Results . 55
5.3 Summary . 69

xi

6 Conclusion & Outlook 71

List of Figures 73

Bibliography 75

Appendix A: Example Initialization Files 79
Coordinator Initialization File . 79
OpenModelica Framework Initialization File . 80
Matlab Framework Initialization File . 82

CHAPTER 1
Introduction

1.1 Motivation

Simulation is an important part for many scientific and industrial fields. It allows to
analyze and predict many properties of the physical world. Simulations are typically
used in cases where real-world trials are expensive (e.g. aeronautics, fluid dynamics), or
simply impossible (e.g. cosmology). The simulation used in this thesis is based upon a
case study analyzing energy efficiency in industrial environments. The study investigates
different scenarios and the resulting energy usage and distribution. With the help of
these simulations, weak points can be identified and the energy efficiency of factories can
be improved.

As models get bigger and more complex, co-simulation, where multiple simulation models
and/or tools are coupled at runtime to exchange data, plays a more important role. With
the help of co-simulation, models can be split into smaller parts, which enables multiple
people to work on a model simultaneously. This allows for experts in their respective
fields to create the different parts of the model, which can then be combined into the
co-simulation. Furthermore, different solvers (algorithms) can be used to simulate each
part of the co-simulation. This can be beneficial when different solvers are better suited
or produce more accurate results for different parts of the model. Most importantly,
splitting the model allows researchers to combine multiple modelling approaches within
one simulation. This can be very beneficial in hybrid models, where one part is more
suited for discrete simulation and another part is better suited for continuous simulation.

A drawback of co-simulation is that there is currently little standardization of interfaces
between the model parts. Current co-simulation solutions are often tailor-made for specific
setups and tools, and are not reusable for different models. Standardized interfaces would
make it possible to use the different elements of the model in other co-simulations. An
example of such a dependency is PowerNet [LA11] which uses co-simulation for Smart

1

1. Introduction

Grid simulation. It uses ns-2 as a discrete simulator for the data network and Modelica
as continuous simulator for the electrical network.

Other technologies exist which can be used by a larger variety of simulators, but are
still very limited with respect to extendability, scalability and fault tolerance. One such
technology is the Building Controls Virtual Test Bed (BCVTB) [Nou]. It can be used in
many simulation tools, but offers only low-level socket connections between them. The
semantics of the data which is transferred over such a connection has to be defined on
a per-application basis. Another drawback of BCVTB is that it only allows for loose
coupling and a fixed step size for the whole co-simulation [HHR13].

The dependency on tools and setup also means that the parts of the model can not easily
be exchanged with other teams and researchers. Dividing the model into smaller pieces
and combining them also leads to more overhead, as the exchange of results between
simulations (and/or even different systems) takes time. Another important factor is
that different coupling strategies vary in execution time and accuracy. All strategies can
lead to numerical errors, but the most used coupling strategy today (weak coupling),
where data is exchanged at certain intervals, is also the least accurate. This strategy is
primarily used because it is fast and easy to implement, and oftentimes it is the only
choice available.

1.2 Problem Statement

The first challenge of the thesis is to describe what kind of information needs to be
exchanged between between the participants in a co-simulation. Finding a suitable data
model is an important first step because the following steps all build upon it.

The next challenge is to find appropriate technologies for actually exchanging the infor-
mation within the co-simulation setup. These technologies should be extendable, scalable,
and also have good usability. The overall aim in using such technologies is to create a
new co-simulation tool that is easy to use, easy to integrate into existing projects, and
powerful/fast enough to handle real-world applications.

Different technologies offer different trade-offs for these characteristics. Technologies
like SOAP will have a lot more overhead than BCVTB, but offer much more flexibility
in terms of metadata and can thus be extended much more easily. OPC UA binary
takes the middle ground, it has less overhead than SOAP but also offers less usability
and extendability. Other technologies like JSON could also be a valid option in this
endeavour.

In addition to improvements in usability, we want to investigate different co-simulation
strategies. The two basic co-simulation strategies are weak and dynamic coupling. The
most popular today is weak coupling, where the simulations exchange data at specified
timesteps. It is a very straight-forward approach and is feasible for values which do not
vary a lot over time. The second strategy is dynamic coupling, this approach aims to

2

1.3. Goal

minimize the error by simulating a timestep multiple times with updated values. This
approach will usually take significantly longer than weak coupling due to the fact that a
time step is simulated more than once.

The questions that this thesis aims to answer are which technologies are best suited for
co-simulation based on their functional and non-functional characteristics. Specifically,
are SOAP and OPC UA suitable technologies to be used in co-simulation and the different
coupling strategies? And if so, how do they compare to existing technologies with regard
to usability, extendability and scalability?

1.3 Goal

The goal of this thesis is to research and test different technologies for their use in
co-simulation. This is done in two main parts.

The first part is the proof-of-concept implementation of a co-simulation software which
will be able to execute co-simulations between Simulink and OpenModelica simulations.
Simulink and OpenModelica are chosen based on the case study which is used as a
basis for the models for the co-simulation. The case study is about interdisciplinary
investigations of energy efficiency in production facilities, and can easily be separated
into multiple models for a co-simulation. This makes it an ideal candidate for this
thesis. Existing models for the case study are implemented in Matlab and OpenModelica,
therefore it is reasonable to also use these tools in the new co-simulation software. Two
technologies, SOAP and OPC UA, will be used in the co-simulation software, where
SOAP will be used in conjunction with Simulink simulations, and OPC UA will be
used for OpenModelica simulations. The software will also support weak and dynamic
coupling strategies. As dynamic coupling is not used very often in current co-simulation
setups, it presents an additional opportunity to analyze the impact in simulation time
and the accurracy of the results based on varying parameters.

The second part is an analysis of the results produced by the proof-of-concept imple-
mentation. The goal of this analysis is an overview of properties (usability, scalability,
extendability) that indicate which technologies are the most promising in future applica-
tions. To validate the correctness of the results, the existing results of the case study will
be used to compare against the results of the thesis.

1.4 Method

In a first step, a literature study will be conducted to gain insight into how co-simulation
is generally executed and how different coupling strategies work. Additionally, the impact
of the different protocols and associated data formats on the performance of the system
will be evaluated.

3

1. Introduction

In the next step, the requirements for the co-simulation system will be defined based on
the findings of step one. The requirements will include non-functional requirements like
usability, scalability and extendability as well as functional requirements for the system.
The functional requirements will define which features will be supported by the finished
product, like the ability to perform weakly and dynamically coupled co-simulations with
it.

Based on the findings of the literature study and the requirements of the thesis, the data
models and communication patterns will be designed. The data model will consist of new
data types and their associations based on the defined requirements with the specified
data transfer protocols in mind. The application level communication pattern for the
co-simulation system will be designed around SOAP and OPC UA as those two protocols
are the first protocols to be implemented for this thesis.

After the design phase, a proof-of-concept implementation of the co-simulation system
will be created. The system will be able to execute a co-simulation between the Mat-
lab/Simulink and the OpenModelica simulation tools, using SOAP and OPC UA as the
respective protocols for the data exchange between them.

The last step will be the testing and evaluation of the different used simulation tools and
protocols based on their speed, their usability and their extendability. An overview will
be given to highlight advantages and drawbacks of the different technologies based on
the aforementioned criteria.

4

CHAPTER 2
State of the Art

2.1 Co-Simulation

A lot of scientific fields today are supported by computational models and simulation.
Models are abstract representations of the real world. They are formulated through
mathematical relationships and describe how a system behaves and changes over time.
Models are simulated with the help of simulation tools to gain insights into the behaviour
of complex systems. Simulation itself is the act of numerically calculating solutions to
the model’s equations over a specified time period. A distinction can be made between
continuous and discrete models/simulations [BB14].

Continous models are based on mathematical equations and describe continous processes
in the real world, like electrical systems or heat distribution. Such models typically
contain ordinary and/or partial differential equations (ODE and PDE) and are simulated
with the help of ODE/PDE solvers, optimized algorithms to numerically solve these
systems of equations [CK06].

Fundamentally different to continuous simulations are discrete event simulations. They
do not simulate continuous processes, but instead are based on events at specific time
instants. A solver for discrete event simulation does not need to continously solve the
system, but only needs to do so at the time instants at which an event occurs. To
find/compute these time instants is a big challenge when designing a discrete event
simulation software [CK13].

The term co-simulation describes the simulation of a system in a distributed manner.
The parts of a co-simulation do not necessarily have to be of the same type. The
problem that this approach also solves is that continuous and discrete models are hard
to combine/simulate in one single simulation environment. In a co-simulation, the
continuous model can be simulated with a tool for continuous simulation and the discrete

5

2. State of the Art

part can be simulated with a discrete simulation tool. The data that each sub-model
needs from other sub-models is exchanged between simulation runs.

To be able to distribute the model, the system is split into sub-parts, where each part
acts as a black box with inputs and outputs that can be simulated indepenently from the
other parts. Inputs for a part of the co-simulation are the values it needs from other parts
to simulate its own sub-model. The outputs of a part are the values it provides for other
sub-models. Parts of a co-simulation typically exchange these values in defined intervals.
The duration of an interval therefore directly affects the precision of the co-simulation. If
the intervals are short, the co-simulation will take longer to execute but the results will
be more precise because the shared variables will be updated more often. Likewise, if the
intervals are long, the co-simulation will execute faster but the results will be less precise,
depending on the influence of the shared variables on the sub-models. Three general
approaches to coupling a co-simulation exist to deal with this problem.

Weak Coupling

Weak coupling is the most basic form of connecting the parts of a co-simulation, but
is nonetheless often used due to its speed and simplicity compared to the other two
approaches. In this form of coupling, each part of the co-simulation simulates its part
of the model. When the parts are finished with simulating for some set interval, they
exchange data and simulate the next interval. This is done until the co-simulation is
finished. The precision of the results in this form of coupling is only influenced by the
amount of time between data exchanges, where a longer time between exchanges generally
means less accuracy. The loss of accuracy stems from the fact that the simulation tools
do not have any information on the value of the datapoints of other simulations between
exchanges. Therefore they can only be extrapolated by the simulation tool in some
fashion. If more time passes between such an exchange, the greater the difference between
the used value and the actual value of the datapoint can become. Errors emerging due
to this inaccuracy can propagate through the whole co-simulation and falsify the results.
This problem can be somewhat mitigated by using more sophisticated coupling strategies
where values for the datapoints are interpolated between the exchanges. An in-depth
mathematical analysis of simulation and different co-simulation strategies can be found
in [Awa15] and [Sch15]. Figure 2.1 shows how a co-simulation is executed when using
weak coupling.

Parallel Dynamic Coupling

Parallel dynamic coupling is a more sophisticated form of co-simulation where each part
of the co-simulation can interpolate the values of other parts. Using this coupling strategy
involves simulating one interval multiple times. Figure 2.2 illustrates the sequence of
events in this coupling mode. In the first iteration in each step of the co-simulation, each
part of the co-simulation has the results of the other parts at the last iteration of the

6

2.1. Co-Simulation

t t+1 t+2

Sim 1

Sim 2

Sim 3

Data exchanges

Figure 2.1: Sequence of events in weak coupling mode

last interval. This is one value per variable. Now each part simulates its model for the
duration of the interval and then the parts exchange data again. Each part now has two
values for each variable from the other parts. The first value is the value of the variable
at the start of the interval and the second value is the value of the variable at the end
of the interval. Now the parts reset back to the beginning of the interval. With this
knowledge of the future, a part in the co-simulation can interpolate the value in its own
simulation from the start until the end of the interval. This process can be executed
multiple times per interval to potentially achieve greater accuracy [AG01][Whi+85].

Serial Dynamic Coupling

Serial dynamic coupling is a variation of dynamic coupling where the parts of the co-
simulation execute after one another. The basic principle is the same as in parallel dynamic
coupling, but the amount of iterations needed for the same precision are potentially far
less. Figure 2.3 shows the sequence of events in the serial coupling mode. Parts 1, 2 and
3 exchange data at the start of the interval, then part 1 starts with the simulation of
the interval. After it has finished, it sends model parts 2 and 3 its data from the end of
the interval. Part 2 now starts its first iteration of the interval and is already able to
interpolate the values of part 1. After part 2 has finished, part 3 can start to simulate
and has interpolation values for both, part 1 and 2. The last part to execute the iteration
is able to interpolate all variables from other parts of the co-simulation and will produce
the most accurate results. This process can also be repeated multiple times per interval
to achieve greater accuracy.

7

2. State of the Art

t t+1 t+2

Sim 1

Sim 2

Sim 3

Data exchanges

iteration 1

iteration 2

iteration 3

Figure 2.2: Sequence of events in parallel dynamic coupling mode

t t+1 t+2

Sim 1

Sim 2

Sim 3

Data exchanges

iteration 1

iteration 2

Figure 2.3: Sequence of events in serial dynamic coupling mode

8

2.2. Latest Developments

2.2 Latest Developments

Due to the current developments in the area of Cyber-Physical Systems, state-of-the-art
research in this field is largely based on co-simulation between continuous and discrete
simulations, but most of this research focuses heavily on specific simulation tools.

[Lin+11] describe a co-simulation framework which takes both, the regular intervals of
the continuous and the events of the discrete simulation into account and forms a global
timeline with information on when information is needed by which simulation. Based on
this timeline, the simulations can be synchronized without loss of accuracy. A drawback
of this approach is that all discrete event times have to be known in advance.

Research in different coupling algorithms is done by Ciraci et al. [Cir+14a][Cir+14b].
In their research, they present a framework for co-simulation which uses optimistic
approaches to predict when the next synchronization should take place. Also, various
other approaches for coupling co-simulations are presented, those can be used to reduce the
overhead and the number of the synchronizations between simulations. The approaches
yield varying results depending on the involved simulations.

Often, the co-simulation is implemented only locally by using named pipes or other
inter-process communication methods [LA11][Ton10][Lin+11]. This of course reduces
communication overhead and speeds up the overall co-simulation between two or more
specialized simulation tools, but reduces interoperability and versatility. Additionally, it
is often hard to extend models which are based on those co-simulation systems with new
variables or introduce new models into the co-simulation setup.

Other implementations like BCVTB [Wet12] allow for a variety of simulation environments
to be used and coupled together. BCVTB works by using a middleware which controls
data flow between the individual simulators. Data between the actors is exchanged
as raw data via BSD sockets, without metadata like units or names. BCVTB is well
suited for fast co-simulation involving different simulators but the way in which data is
exchanged makes it hard to extend existing models with new datapoints and add new
models altogether.

A different approach for co-simulation is the Functional Mockup Interface [Blo+11].
Individual simulation units can be compiled before the actual simulation with their
own solver in place. The FMI provides an interface which the units have to implement
for them to be used later in a co-simulation setup. At simulation time, the individual
simulation units, which are run by their individual simulation tools, are handled by a
central master that uses the FMI interface to coordinate the units. With the help of
wrappers, communication between the master and the individual units can be extended
to function over a network.

In 1998, an approach was made by the US Defense Modeling and Simulation Office
to create a standard (High Level Architecture) for distributed modelling and simula-
tion [Boa10]. This standard has been revised and extended in 2010 to include various

9

2. State of the Art

web service technologies, among which is the support for WSDL. HLA is a solid standard
for the federation of simulations, but it is not an open standard and is mainly used in
commercial and governmental environments.

2.2.1 Advantages of Existing Approaches

The advantages of existing co-simulation implementations such as [LA11] are the speed at
which they execute the co-simulation. Because of the tight integration of the co-simulation
framework into the simulation environment and the low level data exchange (shared
memory/low-level socket data transfer), the data can be exchanged much faster. Also,
the integration of the co-simulation functionality into the simulation tool itself enables
the co-simulation to use the event-detection mechanisms of the simulation tools and thus
be more accurate than other approaches.

2.2.2 Drawbacks of Existing Approaches

The drawbacks of tightly integrated co-simulation frameworks are usually that they
are not scalable and do not have a high degree of extendability or usability. Often the
framework is tailormade for two specific simulation tools or even a model and so can not
be reused easily.

Most implementations separate the simulation into a discrete and a continuous part, and
usually both parts are run on the same machine. In these scenarios, co-simulation is used
for accuracy in systems where only one continous and one discrete simulation is involved.
But with the growing amount of data in simulations it would be preferrable to be able to
split a simulation into multiple parts and execute them in a distributed environment,
maybe even in the cloud.

2.3 Modelling and Simulation Tools

2.3.1 Matlab and Simulink

Matlab is a tool for numerical computation of various problems, it was created and is
still developed by MathWorks [Mat]. Built-in is a versatile scripting language that can
be used to create classes and functions. A very important feature for this thesis is the
support for an easy creation of a SOAP client from a WSDL file.

Simulink is a graphical tool for designing models of continuous systems. It is created by
the same company that develops Matlab, and is integrated into it. Simulink offers some
ways to interact with Matlab at the start/end and even during a simulation, which makes
those two tools combined an ideal candidate for one part of the proposed co-simulation
tool.

10

2.4. Communication Protocols

2.3.2 OpenModelica

OpenModelica [Cona] is a modelling environment based on the Modelica [Ass] language.
It is free of charge and is actively maintained and developed. The Modelica language is
an object-oriented declarative modelling language designed for continuous simulation.
Model binaries created with the OpenModelica compiler can load initial values for all
components from a file given at the start and export the values of all components of the
model to a file at the end of the simulation. This capability made OpenModelica a prime
candidate for use in this thesis.

2.4 Communication Protocols

2.4.1 SOAP

SOAP, or originally Simple Object Access Protocol, is a protocol for exchanging structured
data in the form of XML. Early versions of SOAP were developed in the late nineties for
Microsoft. It was not until 2003 and SOAP version 1.2 that it became a World Wide
Web Consortium (W3C) [Conb] recommendation, and thus a “standard”.

SOAP defines the basic XML structure of the content in messages. Messages are contained
within an <Envelope> tag and consist of optional <Header> elements and a mandatory
<Body> element. The header elements can contain arbitrary meta data for the message,
while the body element contains the message content. Child elements of the <Header>
and <Body> elements are defined by the application itself via namespaces.

The SOAP standard basically defines a protocol between the transport and the application
protocol. This means that the application itself has to process the SOAP data but many
libraries and tools exist which can handle this task.

Listing 2.1 shows an example message based on the data used in this thesis.

Listing 2.1: SOAP structure example
<?xml version="1.0" encoding="UTF-8"?>
<S:Envelope xmlns:S="http://schemas.xmlsoap.org/soap/envelope/">
<S:Body>
<registerResultRequest xmlns="http://www.pueh.at/">
<stateId>54</stateId>
<iteration>1</iteration>
<simulationResult>
<simulationName>thermisch</simulationName>
<dataset>
<time>2650.0005</time>
<datapoints>
<name>TZ1_Pel_O</name>

11

2. State of the Art

<unit>
<name>W</name>
<power>0</power>

</unit>
<valueArray>
<value>500.0</value>

</valueArray>
</datapoints>
<datapoints>
...

</datapoints>
...

</dataset>
</simulationResult>

</registerResultRequest>
</S:Body>

</S:Envelope>

Because SOAP only defines the structure of messages, it relies on other protocols, such
as HTTP, for the transportation of the messages to an endpoint. The Web Service
Description Language (WSDL) is often used to easily create SOAP web services. WSDL
is an iterface definition language, where the endpoints of a service are defined and
described so that clients can automatically access them. The definition tells clients
which operations are supported and how the data is structured in the request and the
response. This allows for the automatic creation of clients by tools like the Apache
CXF framework [Foua]. The use of these open and widely used standards makes SOAP
platform independent and ideal for cross-platform applications. Because Matlab offers
integrated support for the creation of SOAP clients from WSDL files, SOAP was the
obvious choice for a data-exchange protocol between Matlab and the central server in
this thesis.

A disadvantage of using SOAP is that, by default, it uses plain-text XML to transfer
data. This leads to a high overhead in transmitting and parsing the data due to the
text-heavy nature of XML. However, other transmission mechanisms and formats, like the
Message Transmission Optimization Mechanism [Groa], which uses XML-binay Optimized
Packaging [Grob], exist to alleviate this issue.

2.4.2 OPC UA

The OPC Unified Architecture standard is the successor to the OPC standard, which is
widely used in industrial applications for exchanging data. This new standard was and is
still developed by the OPC Foundation [Fouc]. The standard is platform-independent
and based on a service-oriented architecture to further enhance interoperability between

12

2.4. Communication Protocols

different systems. The two main features of OPC UA, upon which all others are built,
are the transport protocols and the information meta-model.

The information model defines how datatypes are constructed. OPC UA defines some
basic data types and an inheritance mechanism that can be used to build custom data
types. Data types can contain simple fields, functions and references to other types.
Like in object-oriented programming languages, types can be instantiated as concrete
objects of that type. Types, and their instances are linked together via hierarchial
and non-hierarchial references. In addition to hierarchial references, items can have
non-hierarchial references to one another so as to be able to associate them in different
ways. An actuator in one branch of the model might, for example, be dependent on the
value of a sensor in another part of the model without a parent-child association. The
ability to create custom type information is very useful when defining the semantics of a
custom type. Nodes can for example be typed as temperature sensors or stepper motors.
Another very useful and related feature is the built-in ability to give values a unit. A
node with type heat-sensor, for example, can have a datapoint of type float with unit ◦C.
This furthers interoperability and automation between different systems.

Other features of OPC UA include the ability to store historical data, an alarm system,
support for redundancy and heartbeats and many more. Of great importance are also the
built-in security mechanisms with support for authentication, authorization, encryption
and data integrity via signatures. Fast and secure communication between low-power
peripherals is important in industrial as well as private environments, especially with the
proliferation of the Internet of Things.

Figure 2.4 shows the different protocols that can be chosen for exchaning data. The
most interesting one for this thesis was the opc.tcp protocol. This protocol is built on
top of the TCP protocol and offers high speed and low data usage when transferring
data over the network. The other available protocol option would be HTTP where the
server is used as a web service and the data is transferred via SOAP. Whereas the binary
protocol is implemented in all available OPC UA libraries, the web service is currently
only available in some of them (e.g. .NET).

In this thesis, the OPC UA binary protocol is used for data exchange between the central
server and OpenModelica simulations, where the OpenModelica simulation runs the OPC
UA server and the central server queries the simulation for the needed data.

13

2. State of the Art

Figure 2.4: Different data transfer modes in OPC UA [Aro]

14

CHAPTER 3
Requirements

The central goal of this thesis is the implementation and analysis of a co-simulation tool
which enables distributed co-simulation of Simulink and OpenModelica models. Below is
a list of functional and non-functional requirements.

Functional Requirements

1. Support for weak coupling.

2. Support for dynamic parallel coupling.

3. Support for dynamic serial coupling.

4. Support for engineering units as metadata. The communication protocol
will include the engineering units of the sent datapoints as metadata. This reduces
errors due to wrong assumptions about units and can be used to automatically
convert between them. Additionally, this serves as a demonstration as to which
benefits can be gained by sending additional metadata.

5. A central server for data exchange. It should be possible for multiple simu-
lations to participate in a co-simulation. Therefore, a server will be implemented
that communicates with each of the simulations and is responsible for exchanging
data between them. This server will have the following capabilities:

a) Support multiple break conditions for dynamic coupling. In order to limit
the amount of iterations for dynamic coupling, the co-simulation should
automatically advance to the next interval if a maximum number of iterations
is reached or if the error for all datapoints has become small enough.

15

3. Requirements

b) Support an ordering of simulations for dynamic serial coupling. It should be
possible to set an ordering for each participating simulation, which specifies
at which point in an iteration it will be executed.

c) Set initialization data. The server will be able to set the simulation parameters
of each individual participating simulation based on the configuration of the
server/the co-simulation. These initialization parameters include: the used
solver, the start time of the simulation, the end time of the simulation as well
as the interval between data exchanges.

d) Convert between units. The server will be able to convert between different
units of datapoints, based on what unit a simulation sends and what unit
a simulation expects. This requirement is restricted to converting between
different powers of the same base unit, but the mechanism should be easily
extendable to include different conversion mechanisms.

e) Support SOAP data transfer. In order for simulations to communicate with
the server via SOAP, the server will contain an HTTP SOAP server which
receives requests from the simulations (SOAP clients).

f) Support OPC UA data transfer. The server will have the means to communicate
with simulations via OPC UA.

6. A co-simulation framework for Matlab/Simulink. It should be possible for
Simulink simulations to participate in a co-simulation. Therefore, a framework
will be developed in the Matlab scripting language, which will have the following
features:

a) SOAP client for communicating with the server. In order to communicate
with the central server, the Matlab framework will use Matlab’s built-in
functionality to automatically create a SOAP client from a WSDL file.

b) Ability to execute Simulink simulations.

7. A co-simulation framework for OpenModelica It should be possible for
OpenModelica simulations to participate in a co-simulation. Therefore, a framework
will be developed which will have the following features:

a) Ability to communicate via OPC UA. In order to communicate with the central
server, the framework will be able to communicate via OPC UA.

b) Ability to execute OpenModelica simulations.

Non-functional Requirements

1. Usability. The co-simulation tool should be as easy to use as possible.

a) Low amount of modifcations for an existing model. The amount of changes
that are needed for a model to be used in a co-simulation should be kept to a
minimum.

16

b) Easy integration of a new simulation into a co-simulation. It should be easy
to add a new simulation to the co-simulation setup.

c) Easy configuration of server and frameworks. The amount of configuration
that is needed for the server and the frameworks should be kept to a minimum.

2. Extendablity.

a) More simulation tools. It should be easy to create a new framework for a new
simulation tool and integrate it into the existing setup.

b) Diversity of data transfer protocols. It should be easy to extend the central
server with more communication protocols, so that a new framework can be
integrated without too much effort.

c) Support of further unit conversion algorithms. It should be easy to implement
new strategies to convert between units.

3. Scalability. It should be possible to have an unlimited number of simulations
participating in one co-simulation, with each simulation running in a pure distributed
fashion (e.g. on individual hardware).

17

CHAPTER 4
Design & Implementation

4.1 Overview

Based on requirement 5, the communication between the involved simulations happens
via a central server, the so-called Coordinator, which handles all the data exchange and
the flow of the co-simulation. The Coordinator uses two protocols for communicating
with the simulations, XML-based SOAP, and OPC UA.

Figure 4.1 shows an overview of what the complete system looks like and how the
components are interacting. Data is repeatedly transferred from the simulations to the
Coordinator, where it is processed and sent to the other simulations so they can use it.

Figure 4.1: Overview of the components and their interactions

4.2 Chosen Technologies

Due to its speed, C++ was chosen as the programming language for the Coordinator.
It is the central piece of the setup and has to be fast or it will be the bottleneck of the
co-simulation. In order to utilize new features and be up-to-date with technology, the
C++11 standard is used for compilation and development.

19

4. Design & Implementation

A co-simulation setup can contain both Matlab and OpenModelica simulations. Because
of this, the Coordinator contains a SOAP server and an OPC UA client in order to
communicate with the two types of simulations. In this setup, it can directly initiate
communication with the OPC UA-based OpenModelica framework, whereas it has to
passively wait for data to be sent from the Matlab framework via SOAP. There are
positive and negative aspects to both approaches, those are explained in more detail
below.

The Matlab/Simulink framework (requirement 6) is developed in the Matlab scripting
language. This framework handles the running of Simulink simulations, the extraction of
results from the simulations and the communication with the Coordinator via a SOAP
client. Because Matlab can create SOAP clients nearly out-of-the-box from a WSDL file,
it was decided that the framework should act as the client and the Coordinator as the
server. This setup is somewhat unintuitive because the Coordinator, as the manager of
the co-simulation, has to wait for the frameworks to contact him, instead of him remotely
calling the frameworks.

The OpenModelica framework (requirement 7) is also developed in C++ and handles
the running of simulations and extraction of results from OpenModelica simulations. It
communicates with the coordinator via OPC UA. To this end, the framework contains
an OPC UA server which provides all the information about the simulation as well as
the results from a simulation step. In this case, the Coordinator acts as the client. When
the Coordinator can directly send and retrieve data from the frameworks, as well as call
functions remotely on the frameworks, synchronization and error handling becomes a lot
easier.

To have two different communication models is somewhat counter-intuitive. The reasoning
behind this is that Matlab supports SOAP clients out-of-the-box, therefore it was much
easier to implement it. On the other hand, when the Coordinator acts as the initiator
of requests (OPC UA), communication is much more intuitive and easier to control. In
hindsight, having both communication patterns gives a good overview of the advantages
and drawbacks of each approach.

Coordinator acts as server:

Advantages

• Only the Coordinator address information needs to be known by the frameworks.

• NAT mechanisms only have to be taken care of on the Coordinator side.

Drawbacks

• Coordinator has no way to initiate communication with the frameworks.

• Flow of control is unintuitive, framworks initiate communication, Coordinator has
to wait for the information.

20

4.3. Data Model

• Coordinator has no real way of knowing if a framework has crashed, only via
timeout.

Coordinator acts as client:

Advantages

• Coordinator can directly initiate communication with the frameworks.

• Flow of control is intuitive, Coordinator controls frameworks.

• Coordinator can immediately tell if a framework is not reachable.

Drawbacks

• Coordinator needs to know address information for each of the frameworks.

• NAT mechanisms have to be taken care of for each framework.

SOAP was chosen because of its extendability and descriptiveness in terms of transferred
information. SOAP will likely lack somewhat in speed because of its communication
model (server, client, new request for each data transfer) and the amount of metadata
transferred. OPC UA will probably be significantly faster than SOAP but is much more
complex, and thus not quite as flexible as SOAP.

4.3 Data Model

Figure 4.2 shows an overview of the relevant datatypes and their associations within the
Coordinator. Each technology (SOAP and OPC UA) has its own way to encapsulate
and transfer the data. The Coordinator converts the received data to its internal
representation. Similarly, when sending data to the simulations, the Coordinator converts
the internal representation to the representation that the technology uses. By using
this internal representation, the core of the Coordinator is independent of the used
technologies and can work on the data without considering the transfer mechanisms.

Data is sent between the actors in the co-simulation setup as “simulation results”. A
simulation result contains the name of the simulation which produced the data and a
dataset containing a timestamp and a list of datapoints with values and units. The
timestamp of the dataset indicates when the data was produced. A unit contained
in a datapoint contains a string representation of the unit name and a power, which
indicates the offset from the non-prefixed unit in terms of 10power. An example would be
a unit [name = “kW”, power = 3], which means that the unit has to be multiplied
by 103 to get a value without prefix. This comes into play in the Coordinator, which

21

4. Design & Implementation

Figure 4.2: Overview of datatypes and associations

automatically converts values based on the unit sent by a simulation and the units which
are required by other simulations in the setup. Currently, each datapoint is designed to
hold a vector of values. This feature is not used in the current implementation but can
potentially be used in later versions to transmit a vector as one single datapoint instead
of individual ones.

Initialization request data, where a simulation requests certain datapoints from other
simulations, is also sent in the form of simulation results, but the dataset timestamp and
the datapoint values are omitted in this case because they hold no significance. Figure 4.4
shows how such an initialization request message looks like.

Each response message from the Coordinator contains a nextStateId field which
indicates the state that the Coordinator is in and which message it expects from a
simulation. The next message from the simulation to the Coordinator has to have its
stateId field set to the last nextStateId it received from the Coordinator. This
keeps the simulations and the Coordinator synchronized and helps to detect errors.

Initialization response messages from the Coordinator to the simulations also contain
configuration data for the co-simulation. This data is split into three parts:

1. Coupling configuration, contains the coupling mode (either WEAK,
DYNAMIC-PARALLEL or DYNAMIC-SERIAL), the number of iterations for each
interval (only important in dynamic coupling), and a precision. The precision can
be used in dynamic coupling to proceed to the next interval once the difference
of two values of the same datapoint in successive iterations is less or equal to the
precision, see Section 4.3.1 for details.

22

4.3. Data Model

2. Timing configuration, contains the start and end time of the whole simulation,
the interval (the time for one simulation cycle) and a maximum variation, which indi-
cates the maximum time difference between expected and actual time in simulation
results which the Coordinator tolerates before terminating the co-simulation.

3. Solver configuration, contains control data for the solver, such as the name of
the solver to be used, absolute and relative tolerance, and minimum and maximum
step size.

4.3.1 Data for Dynamic Coupling

Some parts of the data model are specifically used for dynamic coupling and are mean-
ingless in weak coupling mode. Those parts are:

1. The number of iterations: Indicates how many iterations of the same interval
should be simulated (at most).

2. The precision: Defines a termination condition in terms of a limit. If a precision
is specified, the co-simulation advances to the next interval of the simulation, if

|dpj,i − dpj,i−1| < precision

holds true for all datapoints dpj in each iteration i, where j is the index of the
datapoint in the co-simulation. If a number of iterations and a precision are defined,
the co-simulation will advance if the precision criteria is met or if the maximum
number of iterations has been simulated. If no number of iterations is defined, an
interval will be iterated until the precision criteria is met.

3. The step-start-results: In dynamic coupling mode, the Coordinator additionally
sends step-start-results at iteration 1 of each new interval. The step-start-results
contain the results of the simulations at the end of the last interval. In contrast, the
co-simulation results are updated after each iteration with the current results of the
simulations. For example, take a simulation run [iteration=1, startTime=1,
stopTime=2], where the results of SimulationA are [a=2.5] at time 1. Other
simulations will receive [stepStartResults=["SimulationA",a=2.5],
coSimulationResults=["SimulationA",a=2.5]] at the start of the sim-
ulation run. After this run, the results of SimulationA are [a=5.5] at time
2. The data sent to the simulations for the next simulation run [iteration=2,
startTime=1, stopTime=2] will be [coSimulationResults=
["SimulationA",a=5.5]]. Now, the other simulations can interpolate values
for SimulationA.a by using the value in the step-start-results and the current
value in the co-simulation-results. For parallel dynamic coupling, no extra field
like this would be necessary, but serial dynamic coupling necessitates this because
in this mode, step-start-results and co-simulation-results can already be different

23

4. Design & Implementation

in the first iteration. Suppose SimulationB is the second simulation in a serial
simulation run, and SimulationA is the first. The results of SimulationA in
the first interval [startTime=0, stopTime=1] are SimulationA.a=2.35.
Now interval [startTime=1, stopTime=2] starts and SimulationA simu-
lates first, for SimulationA, the step-start-results and the co-simulation-results
will be identical. After this first simulation run, the value of the datapoint of
SimulationA has changed to SimulationA.a=5.12. All simulations that run
after SimulationA will receive different values for the step-start-results and the
co-simulation-results: [stepStartResults=["SimulationA","a"=2.35],
coSimulationResults=["SimulationA","a"=5.12]]. This way, later sim-
ulations in the order can already interpolate in the first iteration.

4.4 Communication Model

At the beginning of each co-simulation, all involved simulations have to send initialization
data to the Coordinator, which contains datapoints that the simulation needs from other
simulations in the co-simulation setup. In the case of OPC UA, the Coordinator initiates
the connections to the simulations and polls the data directly. The Coordinator then sends
initialization data for the simulations. The initialization response contains configuration
data for the solver, the timing, and the coupling mode of the co-simulation. After this
initialization step, the simulations begin simulating their model and their results are
regularly transmitted to the Coordinator. The Coordinator then sends some control
data and the datapoint values of the other simulations in the setup. See Section 4.3
for details on the data model. An overview of the communication process can be seen
in Figure 4.3. The different actors are all part of the Coordinator. In the case of a
parallel co-simulation, the Coordinator instantiates a ParallelSimulator object which
handles the flow of data. In a parallel co-simulation, each participating simulation
executes an iteration simultaneously. If the client simulation framework uses SOAP,
the SoapServer waits for connections with the framework and then calls back to the
ParallelSimulator, which processes the data. If the client framework uses OPC UA, the
OpcUaSimulationConnector directly initiates communication with the OPC UA server
and calls back to the ParallelSimulator when the data has been fetched. The calls back to
the ParallelSimulator block until data from each client is available and the next iteration
can be simulated. Figure 4.4 shows how the initialization messages are structured.

4.4.1 SOAP Communication

Communication between the Coordinator and the Matlab framework happens via SOAP.
The datatypes and services are described in a WSDL file. The WSDL description
contains a binding for a SOAP service which is used by the SOAP server contained in
the Coordinator, and the SOAP client contained in the Matlab framework to structure

24

4.4. Communication Model

Figure 4.3: Basic communication model for parallel simulation

their data accordingly. The datatypes used in this SOAP exchange are essentialy the
same as described in Section 4.3. Because of the client/server nature of HTTP transfer,
it originally made sense that the Coordinator should be the HTTP server where each
SOAP-based simulation would register their results. One big reason for its current
design is that Matlab has no functionality to create a SOAP server, but it has built-in
support to automatically create a SOAP client from a WSDL file. Another reason for this
control-flow direction is that the Coordinator does not need to know the IP-addresses
and ports of each simulation at startup, it just waits for the simulations to connect to its
server.

4.4.2 OPC UA Communication

OPC UA communication happens in the opposite direction of the SOAP communication.
Here, the Coordinator contains an OPC UA client and the simulation framework contains
an OPC UA server. Each server of a simulation has two methods, initialize and
simulate, which are called synchronously by the Coordinator. Before each call to
simulate, the Coordinator writes the results from the other co-simulations to the

25

4. Design & Implementation

Figure 4.4: Initialization messages from the simulations

server and after each call to simulate, it reads the results of the simulation from the
server. OPC UA binary encoding is used as the transfer encoding, as it offers very good
performance in terms of bandwidth and speed.

4.5 The Coordinator

The Coordinator acts as the central data exchange and coordinates the pacing and type
of the co-simulations via control data sent to the individual simulations. The basic layout
of the Coordinator can be seen in Figure 4.5.

The Coordinator connects to the simulations via so-called SimulationConnectors that pro-
vide data from and send data to their respective simulations. The SimulationConnectors
are instantiated at startup based on the configuration given to a Simulator, which can
be either a Serial- or ParallelSimulator. The Simulator controls the pacing of the whole
co-simulation, it tells the SimulationConnectors when to proceed with which simulation
step. A ParallelSimulator waits for every simulation to register a result after each step,
and then tells all SimulationConnectors to proceed simultaneously. A SerialSimulator
lets the SimulationConnectors execute in series, providing the following simulations with
results of the previous simulations from the current interval. This approach is only useful
when using dynamic coupling and should in theory provide more precise results in less
iterations than a parallel approach. The state of the co-simulation is managed by the
CoSimulation object, which is also instantiated based on the type of co-simulation. It
saves a history of all the datapoints sent to the coordinator over the whole co-simulation.
This history can be saved as a Matlab or XML file for later use.

26

4.5. The Coordinator

Figure 4.5: Basic class layout of the Coordinator

Building and Starting the Coordinator

The Coordinator is implemented in C++ in order to get the most speed out of this central
piece in the co-simulation setup. It is developed for the C++11 standard so that new
convenient features could be used when implementing it. For building the Coordinator,
cmake [CMa] is used. This tool offers a great deal of automation and flexibility and is
a well-established cross-platform buildsystem generator. Several external libraries are
used to get the intended functionality for the Coordinator. To run the SOAP server, the
gSOAP [Eng] library is used. This library, in conjunction with the included binaries,
offers very easy integration and usage of a SOAP server. The gSOAP library is published
under the GPL v2 license and thus can be used freely for the purpose of this project.
To run the OPC UA client, the Unified Automation [Aut] SDK was used. This SDK
contains an “evaluation licence” which makes it possible to use the functionality of the
SDK for up to one hour before it stops working. This also means that co-simulations
with OPC UA participants can run at most one hour before the co-simulation fails. In
order for the OPC UA SDK to compile, the additional libraries xmlparser, xml2, ssl and
crypto are needed. TinyXML2 [Tho] is used in order to parse XML files for initializing
the Coordinator. It is a library under the zlib license and may be freely used for any
purpose. Lastly, Log4cxx, published under the Apache v2 License is used for logging
purposes.

The Build Process

The steps described here are for understanding only, they are automatically executed
when make is run in the coordinator directory. All the commands and steps are integrated
and executed via the CMakeLists.txt file. For convenience, a custom makefile was
created to automatically build the project out-of-source in the build directory.

27

4. Design & Implementation

Before compiling any code, the sources for the SOAP server have to be generated
via the binaries delivered with the gSOAP library. First, wsdl2h is executed, which
takes as input the WSDL file ../cosimulation.wsdl and outputs the header file
gsoap/coordinator.h. This header file contains datatypes and bindings described in
the WSDL file. The relevant command in the CMakeLists.txt file is listed in Listing 4.1

Listing 4.1: Command for generating SOAP header file from WSDL
add_custom_command (
OUTPUT
${GSOAP_DIR}/${CMAKE_PROJECT_NAME}.h

COMMAND
wsdl2h -o ${GSOAP_DIR}/${CMAKE_PROJECT_NAME}.h
${CMAKE_CURRENT_SOURCE_DIR}/../cosimulation.wsdl

)

In a second step, the tool soapcpp2 is executed, which generates the implementations
from the previously generated header file. The -i options is used to generate service
proxies for C++, or in other words, code which is more suited to be used in C++. After
this step, the gsoap subdirectory contains all the files needed for the SOAP server. The
command as defined in the CMakeLists.txt is listed in Listing 4.2

Listing 4.2: Command for generating SOAP implementation files from the header file
add_custom_command (
OUTPUT
${GSOAP_DIR}/soapStub.h
${GSOAP_DIR}/soapcoSimulationBindingService.h
${GSOAP_DIR}/coSimulationBinding.nsmap

COMMAND
soapcpp2 -i -d${GSOAP_DIR} -I${GSOAP_IMPORT_DIR}
${GSOAP_DIR}/${CMAKE_PROJECT_NAME}.h

DEPENDS
${GSOAP_DIR}/${CMAKE_PROJECT_NAME}.h

)

Now the project can be compiled by adding all .cpp files in the src and soap directories
to the compilation process, and using the subdirectories

• gsoap

• include

• include/opcuasdk

• include/opcuasdk/uaclient

28

4.5. The Coordinator

• include/opcuasdk/uabase

• include/opcuasdk/uabase/arch

• include/opcuasdk/uabase/arch/gcc

• include/opcuasdk/xmlparser

• include/opcuasdk/uapki

• include/opcuasdk/uastack

• include/opcuasdk/uamodels

as source directories for header files.

Configuration and Startup

The Coordinator supports three command-line arguments at startup:

1. --init-file=somepath/somefile.xml specifies a file to use for the co-simulation
specification. This argument is mandatory.

2. --xml-out=somepath/somefile.xml specifies a file to write the co-simulation
data to after the co-simulation has finished. The data will be written in XML
format.

3. --ml-out=somepath/somefile.m specifies a file to write the co-simulation
data to after the co-simulation has finished. The data will be written as matlab
script.

The commands xml-out and ml-out are not mutually exclusive and can both be
specified.

The Coordinator and the co-simulation it manages can be configured via an XML file
given to it at startup via the init-file argument. This file contains initialization
data for the co-simulation. An example of such a file can be seen in Appendix A 6. The
root element for an init file is cosimulation, child elements of this are the coupling,
timing, solver and simulations elements, where the first three contain global
configuration data about the whole co-simulation and the simulations tag contains
specific information about each simulation.

The coupling tag can contain the child tags

• mode: Enum, Required; One of weak, dynamic-serial, dynamic-parallel.

29

4. Design & Implementation

• iterations: Integer, Required if precision not defined; Number of itera-
tions for dynamic coupling.

• precision: Double, Required if iterations not defined; Difference at which
to advance to the next interval. See Section 4.3.1 for details.

The timing tag can contain the child tags

• startTime: Double, Required; Time at which to start the co-simulation.

• endTime: Double, Required; Time at which to stop the co-simulation.

• timeStep: Double, Required; Time interval between communication.

• maxVariation: Double, Required; Maximum allowed difference between
coordinator-time and client-time. See Section 4.3 for details.

The solver tag can contain the child tags

• name: String, Required if not overridden; The name of the solver to be used
by a simulation.

• absoluteTolerance: String, Optional; Configuration parameter for the solver.

• relativeTolerance: String, Optional; Configuration parameter for the solver.

• minimumStepSize: String, Optional; Configuration parameter for the solver.

• maximumStepSize: String, Optional; Configuration parameter for the solver.

The simulations tag contains one simulation tag per participating simulation, each
simulation tag can contain the following child tags:

• name: String, Required; The name of the simulation.

• connection-type: Enum, Required; Either SOAP or OPCUA.

• connection-information: String, Required if connection-type is
OPCUA; contains the URL of the OPC UA server, e.g. opc.tcp://localhost:
48010.

• ordering: Integer, Optional; Used in dynamic-serial coupling, ordering is done
in ascending order, meaning a simulation with odering 0 will execute before a
simulation with ordering 1.

• solver: String, Optional; solver element which overrides global solver settings
for a specific simulation.

30

opc.tcp://localhost:48010
opc.tcp://localhost:48010

4.6. The Matlab/Simulink framework

4.6 The Matlab/Simulink framework

This framework is written in the Matlab scripting language and executes Simulink
simulations. It communicates with the Coordinator via SOAP.

4.6.1 Preparation

The steps mentioned here are for understanding the toolchain used to prepare Matlab to
run the framework. They are only relevant if one wishes to modify the framework or the
communication pattern (WSDL/SOAP).

In order to use SOAP as a means of communicating with the Coordinator, the framework
needs a SOAP client. A seemingly simple way to create such a client is to use the built-in
Matlab function matlab.wsdl.createWSDLClient(wsdlURL). This function takes
the URL to a WSDL file as parameter and creates a WSDL/SOAP client from the defini-
tions therein. This function, in turn, uses the Apache CXF framework [Foua]. The path to
the Apache CXF framework, along with the path to a Java Development Kit has to be set
in Matlab via the function matlab.wsdl.setWSDLToolPath(’JDK’,jdk,’CXF’,
cxf). For the current version of the Matlab/Simulink co-simulation framework, the
Apache CXF tools version 3.0.4 were used. After the matlab.wsdl.createWSDLClient
function has executed sucessfully, Matlab should have created all the relevant files for the
SOAP client in the current working directory. Unfortunately, there seem to be discrepan-
cies between the generated Java code from the CXF framework and the generated Matlab
code. To fix this, the generated Matlab file coSimulationService.m was modifed to
work with the CXF code and saved under CustomCoSimulationService.m. This
class has the two functions initialize and registerResult which are called by
the framework to communicate with the Coordinator.

The endpoint of the WSDL service is currently configured to be the localhost on port
8080. To change this endpoint, the binding inside the WSDL file has to be changed and
the matlab.wsdl.createWSDLClient function has to be executed to create a new
client with the modified binding.

4.6.2 Interfacing a Model with the Framework

The Matlab/Simulink framework was designed with usability in mind. It should not be
overly complicated to export datapoints to other simulations in the co-simulation setup.
Likewise, it should be easy to use the datapoints of other co-simulations in the Simulink
model. To achieve this, the framework handles the two things as follows:

Datapoints which are exported to the Coordinator are read from the workspace after
each simulation step. This means that those datapoints have to be manually exported to
the workspace from inside the model. Each datapoint that should be sent to the server

31

4. Design & Implementation

has to be explicitly exported to the workspace and marked as output in the initialization
file (see Section 4.6.3 for details). This has to be done by the user for each datapoint he
or she wishes to expose to other simulations.

Datapoints which are received from the Coordinator are written to the workspace be-
fore each simulation step. This means that those datapoints have to be read from the
workspace from inside the Simulink model. The datapoints from other simulations are writ-
ten to the Matlab workspace in the format <simulationName>.<datapointName>,
where <simulationName>.<datapointName>.value contains a vector from which
the actual value can be interpolated with actual = value[1] ∗ time + value[0]. This
interpolation has to be modelled manually inside the model itself, because only the model,
at the time of simulation, has access to time information and can therefore interpolate the
actual value correctly. In order to read load the datapoints from the Matlab workspace,
Constant blocks from the Simulink components library have to be used. Others, like the
LoadFromWorkspace block, will not work in conjunction with the framework.

4.6.3 Configuration and Startup

The simplest way to run the framework is to create a CoSimulation object (with the
Matlab root directory at cosim/matlab) and give it the model file to use via the
options.modelFile option. After creating the CoSimulation object, the co-simulation
can be started by calling the function runCosimulation(). This will initiate the
communication with the Coordinator and the execution of the co-simulation. The call
will block until the co-simulation has finished or some error occurs.

Options are given to the CoSimulation object’s constructor via a struct. Currently,
supported fields in the options struct are:

• initFile Path to the XML file used at startup to determine imported/exported
variables and simulation configuration options. Can be a relative or an absolute
path.

• modelFile Path to the model file that is passed to Simulink and is used for the
co-simulation. Can be a relative or an absolute path.

• setupScript Path to a Matlab script file that should be executed before each
simulation; that is, before each invocation of the sim(...) function. Can be a
relative or an absolute path.

• tearDownScript Path to a Matlab script file that should be executed after each
simulation; that is, after each invocation of the sim(...) function. Can be a
relative or an absolute path.

The framework needs an initialization file to run. When starting the framework with no
initialization file specified, the framework automatically looks for a file named init.xml

32

4.6. The Matlab/Simulink framework

inside the directory of the model file. If another initialization file should be used, it can
be specified via the options.initFile option. The init-file has to be in XML format
and has to have the root element cosimulation. Child elements of this element are
input, which specifies which datapoints this simulation needs from other simulations, and
output, which specifies what datapoints this simulation should send to the Coordinator.
An example of such a file is shown in Appendix A 6. The simulation element inside the
output element defines how the local simulation is represented to the Coordinator, i.e.
the name for the simulation that is sent to the Coordinator and all the local datapoints
which should be sent to the Coordinator. Datapoints within the ouput element contain
a value that is used as an initial value in the initialization step. These values have to
be modified manually if initial values in the model change. The simulation elements
within the input element specify what datapoints from which simulations in the co-
simulation setup are needed for the local simulation to run. Here, only the names and
units of the datapoints are relevant and an initial value is not needed.

In addition to the initialization files, startup and a teardown scripts can be specified
via the options.startupScript and options.tearDownScript options. The
specified startup script will be executed each interval before the simulation is executed.
The teardown script is executed each interval after the simulation has executed. These
scripts are simply Matlab scripts that can be used for cleaning up the workspace, or
other tasks that should be done regularly in-between intervals.

Listing 4.3 shows all steps necessary to run a cosimulation, provided that a Coordinator
is running at the endpoint specified in the used WSDL file.

Listing 4.3: Sample code for running a co-simulation
matlab.wsdl.setWSDLToolPath(’JDK’,’/opt/jdk7/’, ...
’CXF’,’/opt/apache-cxf-3.0.4/’);

matlab.wsdl.createWSDLClient(’cosim/cosimulation.wsdl’);
javaaddpath(’+wsdl/cosimulation.jar’);
options.initFile = ’/somepath/to/initfile.xml’;
options.modelFile = ’/somepath/to/modelfile.slx’;
options.setupScript = ’/somepath/to/setup.m’;
options.tearDownScript = ’/somepath/to/teardown.m’;
cosim = CoSimulation(options);
output = cosim.runCosimulation();

4.6.4 Internal Workings

A basic class layout of the framework can be seen in Figure 4.6.

The CoSimulation class handles parameters and instantiates a suitable (as of now, only
Simulink simulations are supported) SimulationRunner object. The Simulation
Runner handles the execution of the actual simulation in the framework. In the case

33

4. Design & Implementation

Figure 4.6: Overview of datatypes and associations in the Matlab framework

of a SimulinkSimulationRunner, it handles the saving of co-simulation results to
the workspace, saving of the simulation state for later runs and executing Simulink to
actually simulate the model. Upon calling runSimulation(), a Simulator object
is instatiated with the created SimulationRunner and the co-simulation is started.
This means that a connection to the Coordinator is opened and the initialization data is
fetched from the Coordinator. This initialization data contains the macro-step size, the
number of iterations, and other control data for the framework. After this initialization
data is fetched, the framework begins executing the simulation and periodically sending
the simulation data to the Coordinator. The response from the Coordinator can be
delayed if it needs to wait for other simulations to finish. This way, the pacing of the
framework can be indirectly controlled by the Coordinator.

The Matlab/Simulink framework works by saving the complete end-state after each
simulated interval and then starting the next interval with the previous state object.
Simulations are not paused, but run only for one interval at a time, a simulation is
completely restarted for each interval. This approach is more resource and time intensive,
but ensures that results from other co-simulations are loaded from the workspace for
each interval and also enables dynamic coupling by being able to restart an interval with
other input values.

To summarize, the following enumeration lists the steps taken by the framework in each
iteration of the co-simulation.

1. Calculate the interpolation vectors from the step-start-results and the current
results.

2. Run a user-defined setup script (in this case just setting some parameters in the
workspace).

3. Execute the sim(...) command.

34

4.6. The Matlab/Simulink framework

4. Save the simulation result to the workspace.

5. Run a user-defined tear-down script (in this case deleting the parameters from the
workspace).

6. Get variable values from the final state.

4.6.5 Problems and Difficulties

A big problem, encountered early on, was that the WSDL client, which Matlab automat-
ically creates with a call to matlab.wsdl.createWSDLClient(wsdlURL), seems
to require a specific version of the Apache CXF framework [Foua] to work. The used
version 3.0.4 does not produce errors when creating the client, but when executing SOAP
calls, some internal calls to the Java code in the background fail because of mismatched
datatypes. Because of this, the generated matlab WSDL client had to be modified
manually in order to get it working properly.

Another problem, which is still not resolved, is that the automatically created client is
not able to translate SOAP faults correctly into Matlab. This means that each time a
fault is sent from the Coordinator to the Matlab framework, it just fails with a generic
exception inside the Java code instead of a managable exception in the Matlab code.

In order to get dynamic coupling working with Simulink, the state of the simulation has
to be saved across iterations. This proved to be a very time-consuming endeavor. The
state of a simulation in Simulink can be saved in two different ways, partial or complete.
A partial simulation state can be saved in Simulink by passing the ’SaveFinalState’, ’on’
to the sim command. When passing these two parameters, Simulink will save a subset
of the final simulation states to the workspace. These states, however, do not contain
the internal information of integrators and other blocks that rely on internal states, like
Stateflow charts. In order to save all states, the parameters ’SaveCompleteFinalState’, ’on’
have to be passed to the sim command as well. While only saving the final state allows
for small modifications of the model between stops and restarts, saving the complete
final state forbids any modifications of the model in order for the state to be restored.
This behaviour proved to be problematic in conjunction with some building blocks, most
of all the LoadFromWorkspace block. This block works when only saving the partial
final state, but generates errors when using the complete final state and the value of
the workspace variable changes between simulation runs. After some trial and error,
it was discovered that Constant blocks from the Simulink component library also have
the ability to load variables from the workspace and do not generate errors if the value
changes between runs. The difference being that Constant blocks only load the value
of a workspace variable at the very start of the simulation run. This, however does not
impact the functionality of the co-simulation framework, and so, all LoadFromWorkspace
block could easily be replaced by Constant blocks.

35

4. Design & Implementation

4.7 The OPC UA Server & OpenModelica Framework

The OpenModelica framework, along with the OPC UA server is written in C++. It
communicates with the Coordinator via OPC UA binary encoding and creates simulation
binaries via the OpenModelica compiler. Figure 4.7 shows the most important classes of
the framework and their associations.

Figure 4.7: Most relevant classes of the OpenModelica framework

4.7.1 Preparation & Build Process

Like with the Coordinator, the C++11 standard is used for compiling/writing the
OpenModelica framework. Again, cmake is used as a build automation tool. In order to
parse XML initialization files, the TinyXML2 library is used again. As in the Coordinator,
the Unified Automation [Aut] SDK is used in conjunction with the free evaluation license
to create an OCP UA server and communicate with the Coordinator. Because of this,
the addiational libraries xmlparser, xml2, ssl and crypto are needed again as well. In
addition to those libraries, the boost libraries system, program_options and filesystem are
used and needed for compilation. Attention: the OPC UA server caused a segmentation
fault at startup when compiled with gcc >= 5.0. The problem seems to lie in the Unified
Automation libraries and can thus not be circumvented, gcc 4.8 is recommended for
compilation of the project.

36

4.7. The OPC UA Server & OpenModelica Framework

The Build Process

The steps described here are for understanding only, they are automatically executed
when make is run in the openmodelica directory. All the commands and steps are
integrated and executed via the CMakeLists.txt file. For convenience, a custom makefile
was created to automatically build the project out-of-source in the build directory.

To compile the OPC UA server, a C++11 capable compiler has to be used or the
compilation will fail. If a GNU [Foub] C++ compiler is found on the compiling sys-
tem, the -std=c++11 flag is set automatically. If the compilation process finishes
correctly, the executable for the OpenModelica framework should be located at openmod-
elica/build/server/opcuaserver.

4.7.2 Interfacing a Model with the Framework

The only difference between a normal OpenModelica model and a model specifically
created for a co-simulation is the handling of the interpolation vectors which are received
from the other simulations in the co-simulation setup. Such vectors arrive in the form
valuet = value[1] ∗ t + value[0] where valuet is the value of a variable at time t and
value[] is the vector of constants. To differentiate between different co-simulations, each
variable from a co-simulation is prefixed with the co-simulation’s name and has to be
used that way. For example, in the model created for this thesis, the OpenModelica
simulation requests the value TZ1_Pel_O, which stands for Thermal Zone 1 - electrical
Power - Oven, from the simulation thermisch. Thus, to use the variable in a model, it
has to be declared as follows:

Listing 4.4: Co-simulation-variable declaration in an OpenModelica model
model Machines:
...
Real[2] thermisch__TZ1_Pel_O;
...

As can be seen, the variable is prefixed with the name of the simulation thermisch and
two underscores. After the prefix comes the name of the variable as it is presented by
the thermisch simulation. This way the framework “injects” the value of this variable
into the OpenModelica simulation at the start of each interval.

In order to get the actual value of a variable and to balance out equations for OpenMod-
elica, three equations are necessary:

Listing 4.5: Necessary equations for co-simulation-variables in an OpenModelica model
equation:
thermisch__TZ1_Pel_O[1] = pre(thermisch__TZ1_Pel_O[1]);
thermisch__TZ1_Pel_O[2] = pre(thermisch__TZ1_Pel_O[2]);

37

4. Design & Implementation

oven.P_el.p = thermisch__TZ1_Pel_O[2] * time +
thermisch__TZ1_Pel_O[1];

...

The first two of those equations balance out the equations in the simulation and ensure
that the values of the given constant vector stays the same. The second equation calculates
the actual value of the variable thermisch__TZ1_Pel_O at time time and assigns it
to the correct variable in the model.

4.7.3 Configuration and Startup

Like the Matlab framework, the OpenModelica framework expects an XML configuration
file at startup, given to it via the config argument. This file contains information
about imported and exported datapoints and initial values of exported datapoints. See
Section 4.6.3 for more information about the XML config file. In addition to this co-
simulation configuration file, the OPC UA framework expects a configuration file for the
OPC UA server. This file has to be present in the root directory of the framework binary.
An example file can be found at opcua/server/serverConfig.xml, this file is copied into
the opcua/build/server/ directory at build time so that the binary can be executed.

4.7.4 Internal Workings

Internally, the framework consists of an OPC UA server in the simulation part, and an
OPC UA client in the Coordinator. When the simulation part of the framework starts, it
will first read the initialization file given to it as an argument. After it has processed
which variables to export and import, it will generate those variables in the OPC UA
path tree. Figure 4.8 shows how the nodes in the OPC UA server are arranged.

Directly below the root element in the tree are the three main nodes which are rel-
evant for co-simulation: configuration, cosimulations and simulation. The configura-
tion node is of type SimulationConfigType. It contains child objects of types
SolverConfigurationType and TimingConfigurationType which contain dat-
apoints for the solver and timing settings respectively. Figure 4.9 shows an overwiew
of the type hierarchy and composition. The configuration node is written to by the
Coordinator in the initialization phase.

The cosimulations node contains two children, the step_start and the step_end nodes.
Each of these two nodes contains the state of all co-simulations. Each simulation
node is named after the simulation as configured in the initialization file and is of
type SimulationType. A SimulationType object contains DatapointType child
objects named after the respective datapoints of the simulation. The step_start node
contains the state at the start of the interval, and the step_end node contains the most
recent state. See Section 4.3.1 (step-start-results) for details. These nodes are written by
the Coordinator before each simulation step.

38

4.7. The OPC UA Server & OpenModelica Framework

Figure 4.8: Node Tree layout of the OPC UA server

The last node, simulation, contains data about the current simulation which the OPC UA
server is managing and executing. This node not only contains the exported datapoints,
but the three operations: initialize(), simulate(startTime, endTime) and
export().

When the Coordinator is in the initialization phase, all existing OpcUaSimulation
Connectors will write configuration settings and call the initialize() operation
of their respective OPC UA servers. When this operation is called on the server, it
will compile the model by calling the omc tool (the OpenModelica compiler). After the
initialization step, the Coordinator reads the initial datapoint values from the server.

The simulate(startTime, endTime) operation is called for each step in the co-
simulation. Before each call to this operation, the client in the Coordinator sets the
respective datapoint values of the simulations in the OPC UA path tree of the server
by issuing a write command. It then executes the operation and the server simulates
the given interval with the co-simulation values set. After the simulation step, the
Coordinator reads the simulation’s datapoint values from the path tree of the server by
issuing a read command. The read and write commands from the Coordinator to the
simulation are executed in bulk in order to save bandwidth and increase speed.

The export() operation is used at the end of a simulation in order to write the history
of the simulation to a matlab file named results.m in the execution directory of the OPC
UA server.

To compile the model in the initialization step, the framework uses a template file

39

4. Design & Implementation

Figure 4.9: OPC UA type definition

(compilation_template.mos located in the opcua/server/ directory). It replaces the values
in the template file and copies this file as compile.mos into the directory of the model
to simulate. After the template is copied, the command cd <model-directory> &&
omc compile.mos is executed to compile the model. This will generate the simulation
binary inside the build subdirectory. As can be seen in the template file, the output of
the simulation binary is set to CSV in order to be able to read the results more easily.
To be able to start the OpenModelica simulation with different values, the framework
utilizes the overrideFile argument of the simulation binary. After each step, it reads the
CSV values generated by the simulation binary in the result file <modelname>_res.csv.
Before each simulation step, it generates an override file based on the last results in the
result file and the co-simulation values set by the Coordinator. The simulation binary is
called as follows: cd <compilation-directory> && ./<simulation-binary>
-overrideFile=<override-file>

The sequence of events in each iteration of the co-simulation is as follows:

1. Calculate the interpolation vectors from the step-start-results and the current
results.

2. Write the override-file with parameters and variable values to disk.

3. Run the simulation binary with the override-file as parameter.

4. Parse the result file and update variable values in-memory.

40

4.7. The OPC UA Server & OpenModelica Framework

4.7.5 Problems and Difficulties

Although the integration of the OpenModelica framework into the co-simulation setup
was much simpler than the Simulink framework, it did not come without problems.

The first problem was the selection of an OPC UA SDK. Since virtually all existing
SDKs were only available commercially, the decision fell to the Unified Automation SDK
because it offers one hour of functionality per run. A major problem was encountered
later on when using gcc version >= 5.0 for compiling the project. It seems that these
versions of the compiler cause a problem with the Unified Automation SDK libraries
where the server cannot be started and a segmentation fault occurs when trying to do so.
It is therefore recommended to use gcc 4.8 to compile the framework.

Like with the Simulink framework, imported variables actually need to consist of two
parts, an offset and a gradient. The gradient is always zero in non-dynamically coupled
simulations because no previous results are available. In dynamic coupling, however,
these two parts are necessary in order to linearly interpolate a value of an imported
variable over time. Offset and gradient are based on the results of the last interval and
the results of the current interval in a previous iteration.

Initializing the OpenModelica simulation with new values proved more difficult than
anticipated. Early attempts tried to modify the<modelname>_init.xml file created by the
compilation process, without success. After some trial and error, the -overrideFile
parameter was discovered. This parameter can be used when running the simulation
binary, it specifies a comma-separated file with new values for simulation parameters,
as well as all variables occurring in the model. With this parameter, the framework
could be implemented as intended. The problems with this approach are, that each
iteration of a simulation step generates a new file on the hard drive and that writing and
subsequent reading of the file by the simulation binary generates overhead that would
not be necessary if the passing of parameters could be done in-memory.

41

CHAPTER 5
Testing & Evaluation

5.1 Implementation vs. Requirements

5.1.1 Functional Requirements

5.1.1.1 Requirement 1: Support for Weak Coupling

Support for weak coupling has been implemented. It can be chosen by setting the coupling
mode in the Coordinator initialization file to weak.

5.1.1.2 Requirement 2: Support for Dynamic Parallel Coupling

Support for dynamic parallel coupling has been implemented. It can be chosen by
setting the coupling mode in the Coordinator initialization file to dynamic-parallel.
The number of iterations can be chosen by setting the iterations in the Coordinator
initialization file to the desired amount. The initialization files of the simulations do not
need to be modified.

5.1.1.3 Requirement 3: Support for Dynamic Serial Coupling

Support for dynamic serial coupling has been implemented. It can be chosen by setting the
coupling mode in the Coordinator initialization file to dynamic-serial. The number
of iterations can be chosen by setting the iterations in the Coordinator initialization file
to the desired amount. The order in which the simulations are executed can be set by
giving the simulations inside the Coordinator initialization file an ordering value. The
initialization files of the simulations do not need to be modified.

43

5. Testing & Evaluation

5.1.1.4 Requirement 4: Support for Units as Metadata

Units are sent from the simulation frameworks to the Coordinator. The Coordinator
aborts the co-simulation if units for the same datapoint are different and it cannot
automatically convert between them.

5.1.1.5 Requirement 5: A Central Server for Data Exchange

Has been implemented as the Coordinator.

a) Support multiple break conditions for dynamic coupling. The Coordinator supports
a maximum number of iterations and a minimum error that has to be reached in
order to advance the simulation. Those limits can be set via the iterations and
precision elements inside the Coordinator initialization file.

b) Support an ordering of simulations for dynamic serial coupling. Has been imple-
mented via an XML element ordering inside the simulation elements of the
Coordinator initialization file.

c) Set initialization data. The initialization file for the Coordinator allows for setting
the start and end time of a co-simulation and an interval between data exchanges
via the timing element and its child elements in the initialization file. Furthermore,
a global solver to be used and specific solvers for each participating simulation can
be set via the global solver element and the individual solver elements of the
simulations.

d) Convert between units. The Coordinator automatically converts between different
powers of the same unit. It is extendable by implementing a new class derived from
the common base class, see Section 5.1.2.4 for details.

e) Support SOAP data transfer. The Coordinator contains a SOAP server in order to
receive and transmit SOAP data.

f) Support OPC UA data transfer. The Coordinator contains an OPC UA client in
order to receive and transmit OPC UA data.

5.1.1.6 Requirement 6: A co-simulation framework for Matlab/Simulink

Has been implemented in Matlab as the Matlab framework.

a) SOAP client for communicating with the server. The Matlab framework contains a
SOAP client in order to receive and transmit data from an to the Coordinator via
SOAP.

44

5.1. Implementation vs. Requirements

b) Ability to execute Simulink simulations. The Matlab framework has the ability to
execute Simulink simulations. It can insert data into them and extract data from
them in order to exchange data with the Coordinator.

5.1.1.7 Requirement 7: A co-simulation framework for OpenModelica

Has been implemented in C++ as the OpenModelica framework.

a) Ability to communicate via OPC UA. The OpenModelica framework contains an
OPC UA server in order to receive and transmit data from an to the Coordinator
via OPC UA.

b) Ability to execute OpenModelica simulations. The OpenModelica framework can ex-
ecute OpenModelica simulations and insert/extract data into/from the simulations
to exchange it with the Coordinator.

5.1.2 Non-Functional Requirements

5.1.2.1 Speed

The speed of the co-simulation can be measured in two distinct ways. First, the time
it takes a simulation tool to simulate a model from a start time ts to and end time
te, and second, the time it takes for data to be exchanged (transmitted and received)
with the Coordinator. To be able to measure these two metrics, a timing functionality
was implemented in both the Coordinator and in each framework (Matlab/SOAP and
OpenModelica/OPC UA). The Coordinator times how long it takes for a simulation
framework to execute each timestep and iteration. The result of this measurement is a
list of millisecond-durations for each connected simulation. Each of these lists contain
the durations between registering new result, i.e. the duration of one simulation of the
timestep and the duration of the data transfer to/from the coordinator.

The results of this measurement can be seen in Figure 5.1. For this measurement, the
thermisch-maschinen co-simulation was simulated with settings for Scenario 1 from time
0 to 30000s. The thermisch simulation was simulated by the Matlab framework and the
data transferred via SOAP to the Coordinator. The maschinen simulation was simulated
by the OpenModelica framework and the data transferred via OPC UA. As can be seen
right away, there is quite a difference in the duration of the simulation runs between the
two used technologies. To identify the causes for such a huge time difference, however,
the simulation times and the data transport times have to be separated and viewed
independently of each other.

45

5. Testing & Evaluation

Figure 5.1: Duration of simulation runs measured by the Coordinator

Co-Simulation Speed

In order to measure the time it takes for the Coordinator to process the simulation data,
a separate timing mechanism was implemented. The Coordinator times each major data
processing step in each request. The complete time taken per request is recorded and
output as Matlab data. In the tested scenario, two simulations exist, where one (Matlab)
sends eight and requests four datapoints and the other simulation (OpenModelica) sends
six and requests one datapoint. Figure 5.2 shows that data processing takes about the
same time for both simulations, although the mean value of the times of the Matlab
simulation is quite a bit higher than the mean value of the times of processing durations
of the OpenModelica simulation. While the Matlab simulation with eight sent and four
requested datapoints takes an average of 1.65 ms to process one request, a request from the
OpenModelica simulation only takes an average of 1.03 ms to process on the Coordinator.
This behavior can probably be explained by the structure and the complexity of the
code. In a parallel co-simulation, the Coordinator builds the step-start-results once every
timestep. This process has a worst-case complexity of O(N ∗M ∗K ∗ L) where N is the
number of simulations that participate in the co-simulation setup and M is the number
of simulations which provide at least one datapoint to other simulations. M is equal to
N if every simulation requires datapoints from all other simulations and every simulation
provides at least one datapoint, so the complexity can be simplified to O(N2 ∗K ∗ L).
K is the number of datapoints that a simulation requires from another simulation and
L is the number of datapoints that the other simulation provides. In addition to the
step-start-results, the Coordinator builds the current results for an iteration once every
iteration. This process has the same worst-case complexity of O(N2 ∗K ∗L). The code in
the Coordinator is written so that the last thread to receive data from a client is the first

46

5.1. Implementation vs. Requirements

one to execute those data processing steps. Assuming that the Matlab simulation takes
longer to simulate and send data than the OpenModelica one (see below), the Matlab
thread in the Coordinator is always the first thread to execute the data processing. All
following threads only have a complexity of O(logN) for retrieving the needed data from
a map. In contrast to the parallel co-simulation, a serial one would have a complexity of
O(N2 ∗K ∗L) once every timestep and a complexity of O(N ∗K ∗L) for every thread in
every iteration and timestep.

Figure 5.2: Duration of data processing in the Coordinator

To measure simulation time, each of the frameworks take measurements of the time it
takes to setup/tear down the simulation process and the actual time to simulate the
model itself. The results of these measurements is a list per framework which contains
the durations of each simulation run. A comparison between Matlab and OpenModelica
can be seen in Figure 5.3. It is apparent that Matlab/Simulink takes about 7 times longer
to simulate the thermisch part of the co-simulation as OpenModelica takes to simulate
the maschinen part. This outcome might be based on several factors. First, it might be
that the models simply take a different time to simulate due to their different complexity.
Second, the initialization process and the code execution of the Matlab framework take
longer than the OpenModelica C-binary to execute. See Sections 4.6.4 and 4.7.4 for a
coarse-grained list of events which happen in each iteration cycle that could influence the
simulation speed.

To further examine where the huge time difference comes from, another measurement
was taken solely for execution of the matlab sim(...) function, the results are also
displayed in Figure 5.3. As can be seen, the sim(...) function alone takes up a huge
chunk of the time needed to simulate a step. The rest of the framework execution also
takes about 50ms, but in contrast to the simulation itself, this duration is nearly constant.

47

5. Testing & Evaluation

Figure 5.3: Duration of the Matlab sim(...) function vs the whole process and OpenMod-
elica

Data Transfer Speed

To calcualte the time needed to transfer data to and from the Coordinator, the timings
from the Coordinator and from the frameworks were used. The transfer time was calcu-
lated by subtracting the timings of the frameworks from the timings of the Coordinator.
As an example, let tmc be the time the Coordiator measured for a Matlab/SOAP sim-
ulation and tm be the time that the Matlab/SOAP framework itself measured for the
execution of a simulation step. The time it takes for the SOAP connection to send and
receive data is then ttrs = tmc − tm. To clarify further, the Coordinator starts a timing
tmc right before it sends SOAP data back to a client and stops the timing right after it
received the next batch of data from the client. This time therefore includes the time
it takes for the data to be sent to the client/framework, the time tm it takes for the
framework to simulate one step, and the time it takes for the framework data to be sent
to the Coordinator. If the time tm is then subtracted from the time the Coordinator
measured (tmc), the data transfer time can be calcuated. Figure 5.4 shows how SOAP
data transfer performs in contrast to OPC UA binary transfer. Not only is SOAP far
slower (about 20 times), it also contains significant spikes which reduce transfer speed
even further.

In order to analyze further, Wireshark [tea] was used to capture the data sent to/from
the Coordinator.

In the case of SOAP, one request to the Coordinator, sending eight datapoints was about
1560 bytes in size. This number also contains the fixed part of the request which does not
scale with the amount of datapoints sent. Using this number and ignoring the fixed part

48

5.1. Implementation vs. Requirements

Figure 5.4: Duration of data transfer, SOAP vs OPC UA

of the request, transferring one datapoint to the Coordinator via SOAP takes roughly 200
bytes of data. A response from the Coordinator, effectively transferring four datapoints,
is about 2660 bytes in size. The response, however, contains each datapoint twice because
of the step-start-results. Due to this, every datapoint sent from the Coordinator should
take about twice the amount of data than a datapoint in the request. Calculating the
bytes per datapoint for the response (2260/4) yields 565, which is nearly triple the size of
a datapoint in the request. Upon closer inspection it was found that gSOAP, the SOAP
tool used in the Coordinator, writes namespaces more detailed than the Apache CXF
framework. As a result, one request/response cycle with eight datapoints sent to the
Coordinator and four datapoints received from the Coordinator needs about 4220 bytes
in transfer volume. The amount of data needed for x datapoints sent and y datapoints
received can be calculated as follows: bytes_needed = x ∗ 200 + y ∗ 565.

The case is a little bit more complex when looking at OPC UA, as there are more
short requests and other small transfers in between the actual data transfer. As the
communication is implemented right now, the Coordinator will:

1. Write the step-start-results to the OPC UA server.

2. Call simulate() on the server.

3. Read all needed string values from the server in bulk.

4. Read all needed numerical values from the server in bulk.

5. Write the co-simulation results to the server.

49

5. Testing & Evaluation

This leads to a number of request/response cycles which can be further broken down as
follows:

1. 1 datapoint: 217 bytes, ack from server: 130 bytes, whole cycle: 347 bytes, worst
case: 347 bytes/datapoint.

2. method call: 226 bytes, ack from server: 154 bytes, whole cycle: 380 bytes, worst
case: 380 bytes/datapoint.

3. Request for reading 6 variable unit names: 502 bytes, response: 267 bytes, whole
cycle: 769 bytes, about 128 bytes/datapoint.

4. Request for reading 6 variable values, 6 unit values and the simulation time: 959
bytes, response: 440 bytes, whole cycle: 1399 bytes, about 233 bytes/datapoint.

5. 1 datapoint: 215 bytes, ack from server: 130 bytes, whole cycle: 345 bytes, worst
case: 345 bytes/datapoint.

One such request needs about 3240 bytes in total. When sending x datapoints to the
OPC UA server and querying y datapoints from it, the amount of bytes transferred can
be roughly calculated as follows: x ∗ (347 + 345) + 380 + y ∗ (128 + 233).

The comparatively huge amount of data needed for OPC UA stems mainly from using
strings as node identifiers and that each node identifier is a concatenation of parent
node name and own name. For example, the identifier simulation.maschinen.
TZ1_Q_AW_WM.datapoint_value selects the value node of the datapoint node TZ1_Q
_AW_WM belonging to the maschinen simulation. A request contains one such string
for each value that is requested from the server. The fact that OPC UA is nontheless
considerably faster than SOAP may result from the parsing and conversion overhead of
XML and protocol overhead of HTTP.

5.1.2.2 Usability

Usage of the co-simulation setup is intended to be as straight-forward as possible. The
Coordinator and the Matlab/OpenModelica frameworks are configured via XML files
which are passed to them at startup and define which datapoints from other simulations
are required and which datapoints from the local simulation are exported. Simulation
configuration parameters can also be set locally for every simulation, but are potentially
overridden by the Coordinator configuration.

The used models themselves need to be slightly adapted in order to work with the
co-simulation setup. Suppose the setup consists of a Simulink simulation A and an
OpenModelica simulation B. Simulation A uses the datapoint B.x and simulation B
uses the datapoint A.y. For this to work, Simulation A has to export datapoint y and

50

5.1. Implementation vs. Requirements

simulation B has to export datapoint x and both have to import the datapoint of the
other simulation.

In Simulink, importing is done via a constant block and requires an additional interpolation
step before the value can be used in the simulation. Exporting a value to the Coordinator
requires the model to explicitly write the value to the workspace after the simulation,
e.g. via a ToWorkspace block. In OpenModelica, importing is done similarly via the
declaration of an array inside the model and also requires an interpolation step before the
value can be used. Exporting a value in an OpenModelica simulation does not require
any additional steps. This means that modifying an OpenModelica model for use in the
co-simulation setup is slightly less intrusive and time-intensive than modifying a Simulink
model.

Starting the individual components differs slightly in complexity.

Starting the Coordinator is pretty straight-forward, it only requires an initialization file.
Optionally, XML and Matlab output files can be specified if needed. The initialization
file structure for the Coordinator is slightly different for SOAP and OPC UA connections.
The SOAP endpoint is defined in the WSDL and thus can only be altered by changing
the WSDL and recompiling the Coordinator. The OPC UA server address is defined
in the initialization file and can be changed easily without recompilation. So, while it
is easier to change the OPC UA server address, it requires slightly more configuration
inside the initialization file. On the other hand, SOAP requires slightly less configuration,
but changing the server endpoint requires a recompilation of the Coordinator.

The same principle goes for the frameworks. The Matlab/SOAP framework does not
require a server address to be specified, as that is taken from the WSDL file and
hardcoded into the code generated by the Apache CXF framework. If the server address
needs to be changed, the whole WSDL client code has to be generated again. The
OpenModelica/OPC UA framework’s server port is specified inside the ServerConfig.xml
file and can easily be changed without the need for a recompilation. The downside of
this is, however, that the framework cannot be started without both, an initialization
file for the co-simulation configuration, and a configuration file for the OPC UA server,
located inside the directory of the framework binary.

To summarize, we look at specific scenarios and the steps that need to be taken to make
them work.

Import a value in a Simulink simulation

In order to use a value from another simulation inside a Simulink simulation, the following
steps have to be taken:

• Declare the need for the new datapoint in the input tag inside the init.xml file.

51

5. Testing & Evaluation

• In the model, create a constant block with its value being the name of the new dat-
apoint, datapoints have names of the form simulationName.datapointName.
The constant block will then provide a 2-dimensional vector to the simulation, with
the first value being the value of the datapoint at the start time and the second
value being the value at the end of the current timestep (for dynamic coupling).

• Linearly interpolate the value for the new datapoint, e.g. using a function block
and calculating u(2) ∗ t + u(1).

Export a value from a Simulink simulation

To supply a value from a Simulink simulation to the other simulations in the setup, the
following steps have to be taken:

• Declare that the simulation is exporting the variable in the output tag inside the
init.xml file.

• In the model, create a toWorkspace block and give the workspace variable the
same name as in the init.xml file.

Import a value in an OpenModelica simulation

To import a shared variable inside an OpenModelica simulation, simply:

• Declare the need for the new datapoint in the input tag inside the init.xml file.

• Create a 2-dimensional Real vector which has the name of the new datapoint,
datapoints have names of the form simulationName__datapointName. This
vector will be initialized with the value of the other simulation when the co-
simulation starts.

• Create a new Real value which holds the actual interpolated value of the datapoint.

• Linearly interpolate the value for the new datapoint, e.g. create a new equation
which interpolates the values of the vector and assigns the result to the actual
variable.

Export a value from an OpenModelica simulation

The only thing that needs to be done in this case is to declare the export of the datapoint
inside the init.xml file.

52

5.1. Implementation vs. Requirements

Add a new simulation to the co-simulation setup

To add a whole new simulation to a co-simulation,

• Create an initialization file, set properties and declare imported and exported
datapoints.

• Modify the model to handle the import and export of datapoints.

• Modify other models to import datapoints of the new simulation.

• Add an entry for the new simulation inside the init.xml file of the Coordinator.

5.1.2.3 Scalability

Due to the fact that the communication between the components of this project is based
on standard network protocols, multiple machines can be used in parallel to run one
co-simulation. The bottleneck in the setup will eventually become the Coordinator, as it
is the central component where all the data and connections meet. Specifically, either
bandwidth or processing power/memory will eventually slow down the co-simulation. For
such a thing to happen though, a very high number of individual simulations will need
to be participating in one co-simulation.

Due to the fact that the worst-case complexity of the Coordinator for the first thread in
each timestep is O(N2 ∗L ∗K) (see Section 5.1.2.1), this processing step might become a
processing-power bottleneck if a fair amount of simulations and exchanged datapoints are
involved in the co-simulation setup. Of course, a high number of exchanged datapoints
also means that more bandwidth is used and more time is needed for transferring the
data to and from the Coordinator. Basically, the scalability, or better, what will become
a bottleneck first, highly depends on the hardware setup.

5.1.2.4 Extendability

The Coordinator can easily be extended with another protocol for data transfer, all
that has to be done is to implement another SimulationConnector (include/sim-
ulation/simulation_connector.h) class for the new protocol. The new class needs
to implement the Start(Simulator*) and the Shutdown() functions, where the
Start(Simulator*) function is called by the Simulator when the co-simulation
begins. The Simulator* argument is used as a callback, two functions have to be
invoked by the new component in order for it to work properly. First, the Initialize
SimulationOrDie(InitRequest). This function of the Simulator has to be called
once from within the Start() function of the new SimulationConnector imple-
mentation, after the connected simulation has been initialized and the data for an
InitRequest is present. The function call will block until the Coordinator has received

53

5. Testing & Evaluation

data from each simulation and is ready to start the co-simulation. The function returns
an InitResponse which contains configuration data for the connected simulation based
on the initialization file. After the connected simulation is initialized, the second function
of the Simulator, RegisterResultOrDie(RegisterResultRequest) has to be
invoked repeatedly until the co-simulation has finished. It returns a RegisterResultRe-
sponse object which contains data about the other simulations in the setup. This function
might block for some time, depending on what coupling mode is used in the co-simulation.
If dynamic-serial coupling is used, it might block for the time it takes all other simulations
in the setup to execute one simulation step.

The Matlab framework can also quite easily be extended for other types of simulations
besides Simulink. To extend the Matlab framework, another SimulationRunner
has to be implemented for the new simulation type. The type of SimulatonRunner
is set in the constructor of the CoSimulation class and is currently fixed. If new
SimulationRunners are implemented, some kind of selection for the Simulation
Runner (maybe based on a setting in the initialization file) would be necessary.

The OPC UA-based framework can also easily be extended to execute simulations other
than OpenModelica. All that is needed is to implement another SimulationInterface
(simulation/simulation_interface.h). Currently, the SimulationInterface is set in
the server_main.cpp file. Here, it would also be a good idea to select the Simulation
Interface to be used based on a setting in the initialization file.

Adding new datatypes for data management and transfer has to be done in-source. To
add a new datatype to the Matlab framework, the WSDL file has to be modified to
contain the new datatype. After the WSDL has been modified, the Matlab command
for creating the SOAP client (matlab.wsdl.createWSDLClient(wsdlURL)) has
to be run again in order to create the necessary Java code. Some modifications inside
the CustomCoSimulationService.m file and the rest of the framework may be necessary
to incorporate the new datatype into the framework. To use the new datatype in the
Coordinator, the best option is to modify soap/soap_util.cpp. The functions in this file
are used to convert gSOAP datatypes into the ones used in the Coordinator code. After
the necessary changes are made, a recompilation is sufficient to rebuild the gSOAP code
based on the new WSDL file. Adding a new datatype to the OpenModelica framework
simply entails transporting the data of the datatype to and from the Coordinator as
simple types like integer or double and recreating the desired type on the other side.

The unit converter inside the Coordinator currently only converts between exponents
of the same base unit. In order to implement a more sophisticated converter, a new
UnitConverter (conversion/unit_converter.h) has to be implemented and set inside
the constructor of the CoSimulation class. As multiple converters become available, it
might be convenient to add a mechanism to select the converter based on a setting in
the initialization file.

54

5.2. Scenario Results

5.2 Scenario Results

The co-simulation environment was tested with a proof-of-concept model originating from
the Balanced Manufacturing (BaMa) project [Rai+16]. The original model modells a
bakery and has real-world applications. The model used here is has been simplified so as
to allow for easier splitting and handling. The modelled factory consists of four individual
thermal zones. Thermal zones 3 and 4 exist only to transfer thermal energy between the
rooms inside the building. Thermal zone 1 contains all the machines used for production,
whereas thermal zone 2 contains the heating, cooling and electrical components. These
components supply the machines with thermal and electrical power and are responsible
for a stable temperature of the thermal zones themselves. The production machines
process discrete entities. The heating of the machines influences the ambient temperature
surrounding them, which in turn, influences the temperature of the other thermal zones.
The Oven contains a two-point controller with hysteresis which regulates its temperature
and a conveyor belt which transports the entities from the input to the output. The
conveyor belt can transport multiple entities at the same time, therefore allowing multiple
entities to be inside the Oven simultaneously. The model of the oven component as well
as thermal zones and energy supply are not described in detail here, more information
can be found in [Rai+16], [Püh16] and [Smo+16].

The derived proof-of-concept model is split into two parts, a machinen and a thermisch
model. As the name suggests, the machinen model handles all the functionality of the
machines, this case only handles the material flow including the Oven. The thermisch
model handles heat, cold and electrical energy transfer in the building. An overview
of the reduced model can be seen in Figure 5.5. The Oven receives entities from an
EntitySource, processes them and outputs them into an EntitySink. The amount of
energy needed and the amount of waste-heat produced by the Oven are sent to the
thermisch model, the thermisch model processes these values and sends the amount of
energy that the Oven requested back to the maschinen model. A simplified illustration
can be seen in Figure 5.6. When the Oven needs energy from the thermisch model, it
can request that energy only at a macro-step, when communicating with the Coordinator.
This introduces a delay that can be used to test and compare different coupling strategies
and macro-step sizes in terms of accuracy. As part of the validation, the results of the
co-simulations will be compared to the results of the BaMa project in the following
scenario-related sections.

The thermisch sub-model is simulated in Matlab/Simulink and the data exchange with the
Coordinator happens via SOAP. The maschinen sub-model is simulated in OpenModelica
and exchanges data with the Coordinator via OPC UA. The following sections present
the results obtained by simulating the proof-of-concept model in five different scenarios.

It should be noted that the times used for the macro-steps in the following scenarios are
not exact times. For example, for the 100s macro-step, a value of 100.003 was chosen.
This was due to the fact that certain events would not fire in the OpenModelica simulation
if it was started at exactly the event time. For example, an event at time t = 300s

55

5. Testing & Evaluation

Figure 5.5: Overview of the model used in this thesis

Figure 5.6: Simplified view of data exchange between the models

would not fire when the simulation was run with a start time of 300s. This is possibly
due to some implementation shortcomings in the event handling of the OpenModelica
model. However, this does not diminish the proof-of-concept in any significant way, as
the co-simulation strategies and framework still remain valid.

5.2.1 Scenario 1

This scenario tests the heating of the oven component. At t = 0, the oven wants to heat
up, so it requests energy for heating right from the beginning. When the temperature
of the Oven has reached the upper limit of the controller’s hysteresis (240◦C), it stops
requesting thermal energy and the temperature begins to drop. When the temperature
has reached the lower end of the hysteresis (220◦C), the Oven starts requesting energy
again. After t = 25200s (t = 7h), the Oven is turned off and begins to cool down.

56

5.2. Scenario Results

In the weakly coupled co-simulations (Figure 5.7), it can be seen that the Oven only
starts warming up after two cycles, at times t = 2 ∗macroStep. This is due to the fact
that before the first simulation step is run, the energy need is not yet communicated
to the framework. So at the first data exchange with the Coordinator at t = 0, the
OpenModelica framework, which manages the maschinen model, sends only the initial
values of the variables, as defined in the init.xml file. Only after the first simulation step
(t = macroStep) the OpenModelica framework sends the energy need to the Coordinator,
which forwards it to the Matlab framework. After the exchange, the models are simulated
again, and after this second cycle, the thermisch model outputs the energy requested
by the maschinen model. In the 1000-second-interval co-simulation, the oven heats up
to over 300 degrees because it takes one simulation cycle for the thermisch part to stop
sending energy to the oven.

Figure 5.7: Oven temperature curves for weak coupling in scenario 1

Figure 5.8 shows a comparison of macro-steps and iteration count for dynamic-parallel
coupling. Iteration 1 is a weakly coupled co-simulation with the appropriate macro-step
size. For the 1000s macro-step, the temperature curve is pretty different than the original
one. Even iterations 2 and 3 show an irreconcilable difference to the original. Interesting
here is that iteration 2 produces the same result as weak coupling with a macro-step
of 500s. This behaviour is similar to the two-macro-step delay in the weakly coupled
co-simulations mentioned above. After the first iteration, the Oven sends its thermal
energy request to the thermisch simulation. The thermisch simulation received the
request at the start of the second iteration and outputs the thermal energy at the end
of the second iteration. The Oven thus receives its requested energy at the end of
the second iteration, at which a new macro-step starts with iteration 1. So instead
of a two-macro-step delay, there is only a one-macro-step delay but it still takes two
iterations for the energy to reach the oven. In the third iteration, the models can already

57

5. Testing & Evaluation

interpolate the received thermal energy. The increase in Oven temperature begins when
it is supposed to, at t = 0s, but the gradient starts slow and needs some time to reach
the intended value. This behavior is due to the linear interpolation in the models. The
received power is interpolated linearly inside the maschinen model, thus, the received
power increases with time. This leads to an increase in computed temperature in each
calculation step and a smoother temperature curve.

The 100s macro-step values in iteration 3 are getting pretty close to the desired results,
but still don’t quite match them. A major problem here is that there seems to be some
problem with the temperature controller once the oven temperature reaches the lower
threshold when cooling down.

Figure 5.8: Comparison of iterations for dynamic parallel coupling in scenario 1

Figure 5.9 shows a comparison of macro-steps and iteration count for dynamic-serial
coupling. In this mode, the first iteration is identical to the second iteration of dynamic-
parallel coupling and the second iteration is identical to the third iteration of parallel.
The serial co-simulation is essentially one iteration faster than the parallel co-simulation.
This behaviour can be explained as follows:

First, the parallel co-simulation is examined:

1. The co-simulation starts with iteration 1 at t = 0, no energy is requested from
the thermisch simulation, so at the end of the iteration, the thermisch simulation
outputs 0 energy to the maschinen simulation.

2. The two models exchange data, the maschinen simulation receives 0 energy for
the Oven, but the thermisch simulation is now aware of the energy needed by the
Oven.

58

5.2. Scenario Results

Figure 5.9: Comparison of iterations for dynamic serial coupling in scenario 1

3. Both models are simulated in iteration 2. The Oven still has not received any
energy, so it does not heat up. At the end of this iteration, the thermisch simulation
outputs the energy requested by the Oven.

4. The two models exchange data again, this time the maschinen simulation receives
an interpolation vector for the requested energy which has a positive gradient.

5. Both models are simulated in iteration 3. The maschinen simulation can now
interpolate a value for the received energy for the Oven based on the given
interpolation vector. The temperature of the Oven begins to rise immediately.

This same behavior is seen one iteration earlier in the serial co-simulation if the thermisch
model is simulated after the maschinen model:

1. The maschinen model is simulated first in iteration 1, the result is an energy need
by the Oven.

2. The thermisch model is simulated in iteration 1 and already knows of the energy
need by the Oven. The simulation outputs an interpolation vector with a positive
gradient for the energy supplied to the Oven.

3. The maschinen model is simulated in iteration 2 and has already received the
interpolation vector for the energy supplied to the Oven and can therefore already
begin to interpolate the received energy.

59

5. Testing & Evaluation

An interesting phenomenon here is that the controller failure happens when each macro-
step is iterated two times, but vanishes when three iterations are performed with the
same macro-step.

Due to the fact that the simulations have to wait for one another in serial mode, there is
no real simulation-time benefit to the reduced number of iterations. With 2 participating
simulations and 2 iterations per macro-step, one macro-step takes 4 simulation cycles to
complete. The number of simulation cycles grows by 1 for each participating simulation
and iteration. At 2 iterations, one additional simulation in the co-simulation causes an
increase in time of 2 simulation cycles. A parallel co-simulation with 2 participating
simulations and 3 iterations only takes 3 simulation cycles to complete one macro-step. In
theory, as Figure 5.10 shows, a serial co-simulation could be faster if some participating
simulations are fast enough.

Figure 5.10: Serial and parallel co-simulation time for similar results

Figure 5.11 and Figure 5.12 show comparisons of the weakly and dynamically coupled
results to the original results. The dynamic-parallel and the dynamic-serial co-simulations
were simulated with a macro-step of 1000 seconds. In the 2-iteration results, the dynamic-
parallel co-simulation is, again, basically just weakly coupled co-simulations with a macro-
step of 500s. Due to this behaviour, the results of the parallely-coupled co-simulation
are quite far off from the original.

The serially-coupled results seem to be a little bit better, but still deviate significantly
from the original, which indicates that the macro-step size has to be lowered.

The weakly-coupled results start of pretty good, but the error accumulates pretty fast
due to the flat decline in temperature when cooling down. By heating up just a bit more
above the target temperature, the cooling takes much longer and the whole curve is
streched out to the right.

60

5.2. Scenario Results

Figure 5.11: Comparison of different coupling strategies after 2 iterations for a macro-step
of 1000 seconds in scenario 1

Figure 5.12: Comparison of different coupling strategies after 3 iterations for a macro-step
of 1000 seconds in scenario 1

61

5. Testing & Evaluation

It can be seen in Figure 5.12 that the parallel-dynamic simulation has interpolated the
thermal energy and the temperature curve is much smoother than after two iterations.

Figure 5.13 and Figure 5.14 show the results with a macro-step of 100 seconds. The
controller failure can be seen again after two iterations in the dynamic-serial results, and
after three iterations in the dynamic-parallel results.

Other than that, the results are much closer to the original data. Especially the dynamic-
serial results after two/three iterations are very close to the weak coupling results with a
macro-step of 10 seconds. This means that dynamic-serial coupling is producing similar
results to weak coupling, but with a much higher macro-step size.

Figure 5.13: Comparison of different coupling strategies after 2 iterations for a macro-step
of 100 seconds in scenario 1

To show that the dynamic coupling modes converge to the correct results by using smaller
macro-step sizes, the scenario was simulated in dynamic-serial mode with 2 iterations
and macro-steps of 5, 10 and 20 seconds. The scenario could not be simulated fully
because of the time restriction on the trial version of the Unified Automation [Aut] OPC
UA server, but Figure 5.15 and Figure 5.16 show the rise of the Oven temperature and
the point where the temperature begins to drop again.

62

5.2. Scenario Results

Figure 5.14: Comparison of different coupling strategies after 3 iterations for a macro-step
of 100 seconds in scenario 1

Figure 5.15: Temperature rise for different macro steps in dynamic-serial coupling mode
in scenario 1

63

5. Testing & Evaluation

Figure 5.16: Temperature drop for different macro steps in dynamic-serial coupling mode
in scenario 1

5.2.2 Scenario 2

In the second scenario, the Oven should start heating up at time t = 0 and be able
to accept entities as soon as it has reached operating temperature (230◦C), at about
t = 4320s. The entity source outputs entities from time t = 5400s until t = 10800s with
an interval of 180s. The oven has a conveyor size of 5, this means that an entity remains
5∗180s = 900 seconds inside the Oven before reaching the output. Figure 5.17 shows the
weak coupling results. Notice that with a 1000s macro-step, the Oven reaches operating
temperature long after the entity source outputs entities into it. After accepting entities
onto its conveyor belt, the Oven heats up and cools down much slower than before, due
to the heat capacity of the entities inside it. Figure 5.18 shows the amount of entities
processed. The input values increase each time the entity source offers an entity to
the input of the Oven. The conveyor load of the Oven increases each time the Oven
accepts an incoming entity and puts it on its conveyor. The output increases each time
the entity sink receives an entity from the oven. At time 5400s + 900s = 6300s, the first
entity on the conveyor reaches the output of the oven and is output into the entity sink.

With a macro-step of 100s, everything goes as expected, the Oven heats up fast enough
to start accepting entities as soon as they arrive. As Figure 5.19 shows, problems start
occurring with longer macro-step sizes. With weak coupling and a macro-step size of
1000s, the oven does not reach operating temperature in time and has to reject incoming
entities until the temperature is reached. Due to this delay, 6 fewer entities are processed.
As opposed to weak coupling, dynamic-parallel and dynamic-serial coupling both output

64

5.2. Scenario Results

Figure 5.17: Oven temperature curves for weak coupling in scenario 2

Figure 5.18: Comparison of entity throughput for a macro-step of 100s in scenario 2

65

5. Testing & Evaluation

the correct amount of entities because they heat up fast enough before entity source
starts outputting entities.

Figure 5.19: Comparison of entity throughput for a macro-step of 1000s in scenario 2

66

5.2. Scenario Results

5.2.3 Scenario 3

Scenario 3 is very similar to scenario 2, the Oven starts heating up at t = 0, but it only
processes a single entity at time t = 4500s. It stops heating at time t = 6300s and slowly
cools down until the simulation is stopped at time t = 7200s. Figure 5.20 shows that for
a macro-step of 100s, all coupling strategies produce results that match the original very
closely, especially in the cooling phase, at t > 5000s.

Figure 5.20: Comparison of different coupling strategies after 3 iterations for a macro-step
of 100 seconds in scenario 3

5.2.4 Scenario 4

Scenario 4 is also pretty similar to the previous scenarios, with the difference being that
entities are sent to the oven before it reaches its working temperature. In such a case,
the oven rejects the entities until the working temperature is reached. If an entity is
rejected, the entity source discards it and sends the next entity after the next interval
has elapsed. This way, entities can only arrive at the oven at times that are a multiple of
the interval, in this case t = 180 ∗ x.

The oven starts heating at time t = 0, entities are sent from time t = 3600s until
t = 7200s. The oven should, again, reach working temperature at about t = 4320s and
start processing entities from this point onwards.

Because the entities are beeing sent at specific intervals, even small deviations in the
time it takes to reach operating temperature can lead to differences in the amount of
entities that are processed. Figure 5.21 shows the temperatures for a macro-step of 100

67

5. Testing & Evaluation

Figure 5.21: Comparison of different coupling strategies after 3 iterations for a macro-step
of 100 seconds in scenario 4

Figure 5.22: Comparison of entity throughput for a macro-step of 100s in scenario 4

seconds. Figure 5.22 shows the corresponding entity throughput. Due to the slightly
faster temperature increase in the dynamic-parallel and dynamic-serial co-simulations,
the Oven can process one more entity as opposed to weak coupling. Even so, the slight
delay in the heating of the Oven causes less entities to be processed than in the original.

68

5.3. Summary

5.2.5 Scenario 5

In scenario 5, the Oven is used as a cooler, it greatly resembles scenario 1, but instead
of positive thermal energy, the maschinen simulation requests negative thermal energy
from the thermisch simulation in order for the temperature to drop inside the Oven.
Figure 5.23 shows the results with a 100 seconds macro-step. Again, the temperature
controller error can be observed in dynamic parallel mode after three iterations.

Figure 5.23: Comparison of different coupling strategies after 3 iterations for a macro-step
of 100 seconds in scenario 5

5.3 Summary

To summarize, the results of the dynamic coupling strategies show much promise. Even
with macro-step 10 times longer, the results are nearly as good as the weak coupling
results. Additionally, dynamic-serial coupling can in certain scenarios be faster than
dynamic-parallel coupling even if the simulations have to wait for one another.

Table 5.1 shows the performance results of the simulation tools and communication
protocols. While it was obvious that SOAP would require more time for the data to be
sent and processed, the actual time difference between the two protocols is immense. In
real world applications, SOAP might often be unusable for these purposes.

69

5. Testing & Evaluation

Table 5.1: Performance comparison of SOAP and OPC UA

Matlab/SOAP OM/OPC UA
Avg. time for single simulation ~170ms ~22ms
Avg. time for data transfer ~115ms ~2ms
approx. # of bytes for sending one datapoint ~200 ~690
approx. # of bytes for receiving one datapoint ~565 ~360

70

CHAPTER 6
Conclusion & Outlook

In conclusion, the current implementation works quite well and can, in theory, scale
to very large numbers of simulations without much performance loss. This is because
of the same timestep that the Coordinator uses for all simulations to control the co-
simulation. If the co-simulation is executed in parallel, and all simulations run on
individual hardware, then the only bottlenecks are the available bandwidth and the
available memory/processing power of the Coordinator. As the processing of the co-
simulation data inside the Coordinator can be done very quickly, it should, even with a
large number of connected simulations, perform quite fast in relation to the time it takes
for a simulation to execute. A downside of parallel co-simulation is, that a low number of
simulations in the co-simulation setup take as much time as a high number of simulations
to execute one simulation because each iteration takes as long as the slowest simulation.

In contrast to existing solutions which use inter-process and low-level socket communi-
cation, the communication technology used in this thesis (SOAP, OPC UA) transfers
data at a much higher level and exchanging data is thus quite a bit slower. This offers
other benefits, such as a greater extendability of the protocol. New datapoints can be
included without modifying the existing protocol and new metadata and settings can
be included with minimal changes in the source code. Also, restarting the simulations
for each timestep and iteration is very time-consuming, but offers the possibility of
dynamic-coupling.

The choices in this thesis are not so much about performance, but rather the new
possibilities in terms of usability and extendability that these technologies and methods
provide. This work shows that using high-level approaches can simplify the creation
of a co-simulation. With the use of the developed frameworks, models barely have to
be changed for them to be used in a co-simulation setup. Different parts of the model
can be developed completely independently and need only specify the datapoints which
they require from other parts. By using high level data transfer protocols and clearly
defined interfaces between the simulations, the transferred data has clear semantics

71

6. Conclusion & Outlook

which can be used to automate a number of things. An example of this would be to
automatically convert engineering units between participating simulations. Additionally,
by making the flow of the co-simulation dependent on the Coordinator, the coupling
type for a co-simulation can be changed by simply adjusting the initialization file of the
Coordinator.

These things greatly enchance usability and the ability to setup a co-simulation, but there
is definitely room for improvement. For now, the data exchange between simulations and
coordinator happens in fixed intervals defined in the configuration file of the coordinator.
A first step to improve the design could be to implement adaptive timesteps, where the
Coordinator can dynamically change the duration of a timestep based on some metric.
Such a metric could, for example, be based on the rate of change of a specific variable.
Or the Coordinator computes the rates of change of all variables and shortens/lengthens
the timestep based on this. Such a behaviour could potentially lead to improvements
in simulation time, as the timestep could be lengthened drastically in periods where
no significant change occurs. Another bonus to this approach would be that data
would/could be far more accurate in periods where the values of datapoints change fast.
Although, the higher the number of connected simulations, i.e. the complexity of the
co-simulation, the higher the chance that there will always be a variable which changes
so that the timestep will be shortend, and the co-simulation will end up taking far longer
than with a fixed timestep.

Another modification would be to implement a sort of distributed event detection, where
the simulations exchange data before any event that uses a variable of another co-
simulation. For example, if a simulation A reaches an event A.e at time 3.9 of timestep
3− 4, and a calculation is performed in the course of this event which uses a value from
another co-simulation, then this value might have changed significantly in the other
co-simulation, but the new value has not reached simulation A yet. By exchanging data
right before the event, the calculations of simulation A will be far more accurate. Such an
event-detection mechanism has been researched an implemented by Lin et. al. [Lin+11]
for a smart-grid co-simulation.

One improvement, which might prove quite useful, would be to be able to send vectors
of values as one datapoint. The current implementation only allows for one value per
datapoint to be transmitted. Although the basics for this feature are already implemented
in the WSDL file and the Coordinator, it has not yet been implemented in the individual
frameworks.

To enhance extendability, it would be advantageous to implement a mechanism to choose
a SimulationRunner (Matlab), SimulationInterface (OPC UA), Simulation
Connector (Coordinator) and a UnitConverter (Coordinator) based on settings in
the init XML files. With such a mechanism in place, a user would easily be able to
choose which type of framework should run what type of simulation. Assuming that a
new simulation tool is implemented for the OPC UA framework, the user could then
choose in the init XML file if the OPC UA server should execute an OpenModelica or
the other type of simulation.

72

List of Figures

2.1 Sequence of events in weak coupling mode . 7
2.2 Sequence of events in parallel dynamic coupling mode 8
2.3 Sequence of events in serial dynamic coupling mode 8
2.4 Different data transfer modes in OPC UA [Aro] 14

4.1 Overview of the components and their interactions 19
4.2 Overview of datatypes and associations . 22
4.3 Basic communication model for parallel simulation 25
4.4 Initialization messages from the simulations 26
4.5 Basic class layout of the Coordinator . 27
4.6 Overview of datatypes and associations in the Matlab framework 34
4.7 Most relevant classes of the OpenModelica framework 36
4.8 Node Tree layout of the OPC UA server . 39
4.9 OPC UA type definition . 40

5.1 Duration of simulation runs measured by the Coordinator 46
5.2 Duration of data processing in the Coordinator 47
5.3 Duration of the Matlab sim(...) function vs the whole process and OpenModelica 48
5.4 Duration of data transfer, SOAP vs OPC UA 49
5.5 Overview of the model used in this thesis . 56
5.6 Simplified view of data exchange between the models 56
5.7 Oven temperature curves for weak coupling in scenario 1 57
5.8 Comparison of iterations for dynamic parallel coupling in scenario 1 58
5.9 Comparison of iterations for dynamic serial coupling in scenario 1 59
5.10 Serial and parallel co-simulation time for similar results 60
5.11 Comparison of different coupling strategies after 2 iterations for a macro-step

of 1000 seconds in scenario 1 . 61
5.12 Comparison of different coupling strategies after 3 iterations for a macro-step

of 1000 seconds in scenario 1 . 61
5.13 Comparison of different coupling strategies after 2 iterations for a macro-step

of 100 seconds in scenario 1 . 62
5.14 Comparison of different coupling strategies after 3 iterations for a macro-step

of 100 seconds in scenario 1 . 63

73

5.15 Temperature rise for different macro steps in dynamic-serial coupling mode in
scenario 1 . 63

5.16 Temperature drop for different macro steps in dynamic-serial coupling mode
in scenario 1 . 64

5.17 Oven temperature curves for weak coupling in scenario 2 65
5.18 Comparison of entity throughput for a macro-step of 100s in scenario 2 . . . 65
5.19 Comparison of entity throughput for a macro-step of 1000s in scenario 2 . . . 66
5.20 Comparison of different coupling strategies after 3 iterations for a macro-step

of 100 seconds in scenario 3 . 67
5.21 Comparison of different coupling strategies after 3 iterations for a macro-step

of 100 seconds in scenario 4 . 68
5.22 Comparison of entity throughput for a macro-step of 100s in scenario 4 . . . 68
5.23 Comparison of different coupling strategies after 3 iterations for a macro-step

of 100 seconds in scenario 5 . 69

74

Bibliography

[AG01] Martin Arnold and Michael Günther. “Preconditioned dynamic iteration for
coupled differential-algebraic systems”. In: BIT Numerical Mathematics 41.1
(2001), pp. 1–25.

[Aro] Jouni Aro. OPC UA stack protocols. url: https://www.prosysopc.
com/blog/opc-ua-1-02/ (visited on 11/26/2017).

[Ass] Modelica Association. Modelica Homepage. url: https://www.modelica.
org/ (visited on 11/26/2017).

[Aut] Unified Automation. Unified Automation - Homepage. url: https://www.
unified-automation.com/ (visited on 11/26/2017).

[Awa15] Muhammad Usman Awais. “Disctributed Hybrid Co-Simulation”. In: (2015).
[BB14] S. Bandyopadhyay and R. Bhattacharya. Discrete and Continuous Simulation:

Theory and Practice. Taylor & Francis, 2014. isbn: 9781466596399.
[Blo+11] T. Blochwitz et al. “The Functional Mockup Interface for Tool independent

Exchange of Simulation Models”. In: 2011.
[Boa10] IEEE-SA Standards Board. “IEEE Standard for Modeling and Simulation,

High Level Architecture (HLA)– Framework and Rules”. In: IEEE Std 1516-
2010 (Revision of IEEE Std 1516-2000). Aug. 2010, pp. 1–38.

[Cir+14a] Selim Ciraci et al. “FNCS: A Framework for Power System and Communica-
tion Networks Co-simulation”. In: Proceedings of the Symposium on Theory
of Modeling & Simulation - DEVS Integrative. DEVS ’14. Tampa, Florida:
Society for Computer Simulation International, 2014, 36:1–36:8.

[Cir+14b] S. Ciraci et al. “Synchronization Algorithms for Co-simulation of Power
Grid and Communication Networks”. In: Modelling, Analysis Simulation of
Computer and Telecommunication Systems (MASCOTS), 2014 IEEE 22nd
International Symposium on. Sept. 2014, pp. 355–364.

[CK06] BFrançois E. Cellier and Ernesto Kofman. Continuous System Simulation.
Springer US, 2006. isbn: 9780387302607.

75

https://www.prosysopc.com/blog/opc-ua-1-02/
https://www.prosysopc.com/blog/opc-ua-1-02/
https://www.modelica.org/
https://www.modelica.org/
https://www.unified-automation.com/
https://www.unified-automation.com/

[CK13] Byoung Kyu Choi and Donghun Kang. Modeling and Simulation of Discrete-
Event Systems. John Wiley & Sons, Inc., 2013. isbn: 9781118732793. doi:
10.1002/9781118732793. url: http://onlinelibrary.wiley.
com/book/10.1002/9781118732793.

[CMa] CMake. CMake - Homepage. url: https://cmake.org/ (visited on
11/26/2017).

[Cona] Open Source Modelica Consortium. OpenModelica Homepage. url: https:
//openmodelica.org/ (visited on 11/26/2017).

[Conb] World Wide Web Consortium. World Wide Web Consortium Homepage. url:
https://www.w3.org (visited on 11/26/2017).

[Don+09] Zhang Dong-xu et al. “Co-simulation with AMESim and MATLAB for
differential dynamic coupling of Hybrid Electric Vehicle”. In: Intelligent
Vehicles Symposium, 2009 IEEE. June 2009, pp. 761–765.

[Ele13] General Electric. Positive Sequence Load Flow - Homepage. 2013. url: http:
//www.geenergyconsulting.com/practice- area/software-
products/pslf-re-envisioned (visited on 11/26/2017).

[Eng] Robert A. van Engelen. gSOAP - Homepage. url: https://www.cs.fsu.
edu/~engelen/soap.html (visited on 11/26/2017).

[Foua] Apache Soaftware Foundation. Apache CXF Homepage. url: http://cxf.
apache.org/ (visited on 11/26/2017).

[Foub] Free Software Foundation. GNU Project Homepage. url: https://www.
gnu.org/home.en.html (visited on 11/26/2017).

[Fouc] OPC Foundation.OPC Foundation Homepage. url: https://opcfoundation.
org/ (visited on 11/26/2017).

[Groa] W3C XML Protocol Working Group. SOAP Message Transmission Opti-
mization Mechanism. url: https://www.w3.org/TR/soap12-mtom/
(visited on 11/26/2017).

[Grob] W3C XML Protocol Working Group. XML Optimized Packaging. url:
https://www.w3.org/TR/2005/REC-xop10-20050125/ (visited on
11/26/2017).

[HHR13] Irene Hafner, Bernhard Heinzl, and Matthias Rössler. “An Investigation
on Loose Coupling Co-Simulation with the BCVTB”. In: Simulation Notes
Europe SNE 23 (2013), pp. 45–50.

[Kel+15] B.M. Kelley et al. “A federated simulation toolkit for electric power grid
and communication network co-simulation”. In: Modeling and Simulation of
Cyber-Physical Energy Systems (MSCPES), 2015 Workshop on. Apr. 2015,
pp. 1–6.

[LA11] V. Liberatore and A. Al-Hammouri. “Smart grid communication and co-
simulation”. In: Energytech, 2011 IEEE. May 2011, pp. 1–5.

76

http://dx.doi.org/10.1002/9781118732793
http://onlinelibrary.wiley.com/book/10.1002/9781118732793
http://onlinelibrary.wiley.com/book/10.1002/9781118732793
https://cmake.org/
https://openmodelica.org/
https://openmodelica.org/
https://www.w3.org
http://www.geenergyconsulting.com/practice-area/software-products/pslf-re-envisioned
http://www.geenergyconsulting.com/practice-area/software-products/pslf-re-envisioned
http://www.geenergyconsulting.com/practice-area/software-products/pslf-re-envisioned
https://www.cs.fsu.edu/~engelen/soap.html
https://www.cs.fsu.edu/~engelen/soap.html
http://cxf.apache.org/
http://cxf.apache.org/
https://www.gnu.org/home.en.html
https://www.gnu.org/home.en.html
https://opcfoundation.org/
https://opcfoundation.org/
https://www.w3.org/TR/soap12-mtom/
https://www.w3.org/TR/2005/REC-xop10-20050125/

[Lin+11] Hua Lin et al. “Power system and communication network co-simulation for
smart grid applications”. In: Innovative Smart Grid Technologies (ISGT),
2011 IEEE PES. Jan. 2011, pp. 1–6.

[Mat] MathWorks. MathWorks Homepage. url: https://mathworks.com/
(visited on 11/26/2017).

[Nou] Thierry S. Nouidui. BCVTB Homepage. url: https://simulationresearch.
lbl.gov/bcvtb (visited on 11/26/2017).

[Püh16] Clemens Pühringer. Using the Modelica language to simulate hybrid models.
Tech. rep. Student project. TU Wien, Oct. 2016.

[Rai+16] Philipp Raich et al. “Modeling Techniques for Integrated Simulation of
Industrial Systems Based on Hybrid PDEVS”. In: 2016 Workshop on Modeling
and Simulation of Cyber-Physical Energy Systems (MSCPES). Apr. 2016,
pp. 1–6. doi: 10.1109/MSCPES.2016.7480221.

[Sch15] Robert Schmoll. “Co-Simulation und Solverkopplung, Analyse komplexer
multiphysikalischer Systeme”. In: (2015).

[Smo+16] P. Smolek et al. “Hybrid Building Performance Simulation Models for Indus-
trial Energy Efficiency Applications”. In: Proceedings of the 11th Conference
on Sustainable Development of Energy, Water and Environment Systems
(SDEWES 2016). 2016.

[Sou] University of Southern California - Information Sciences Institute. Network
Simulator 2 - Homepage. url: http://www.isi.edu/nsnam/ns/
(visited on 11/26/2017).

[tea] TheWireshark team.Wireshark Homepage. url: https://www.wireshark.
org/ (visited on 11/26/2017).

[Tho] Lee Thomason. TinyXML2 Github page. url: https://github.com/
leethomason/tinyxml2 (visited on 11/26/2017).

[Ton10] Xiaoyang Tong. “The Co-simulation Extending for Wide-area Communication
Networks in Power System”. In: Power and Energy Engineering Conference
(APPEEC), 2010 Asia-Pacific. Mar. 2010, pp. 1–4.

[Wei08] Tim Weilkiens. Systems Engineering with SysML/UML: Modeling, Analysis,
Design (The MK/OMG Press). 1st ed. Morgan Kaufmann, Feb. 2008. isbn:
9780123742742.

[Wet12] Michael Wetter. “Co-Simulation of Building Energy and Control Systems with
the Building Controls Virtual Test Bed”. In: Journal of Building Performance
Simulation. Sept. 2012, pp. 185–203.

[Whi+85] J. White et al. “Waveform Relaxation: Theory and Practice”. In: Transactions
of the Society for Computer Simulation 2.1 (1985), pp. 95–133.

77

https://mathworks.com/
https://simulationresearch.lbl.gov/bcvtb
https://simulationresearch.lbl.gov/bcvtb
http://dx.doi.org/10.1109/MSCPES.2016.7480221
http://www.isi.edu/nsnam/ns/
https://www.wireshark.org/
https://www.wireshark.org/
https://github.com/leethomason/tinyxml2
https://github.com/leethomason/tinyxml2

Appendix A: Example
Initialization Files

Coordinator Initialization File

<?xml version="1.0"?>
<cosimulation>
<coupling>
<mode>weak</mode>
<iterations>2</iterations>
<precision>0.001</precision>

</coupling>
<timing>
<startTime>0</startTime>
<endTime>86400</endTime>
<timeStep>50.00001</timeStep>
<maxVariation>5.0</maxVariation>

</timing>
<solver>
<name>ode45</name>
<absoluteTolerance>0.000000001</absoluteTolerance>
<relativeTolerance>0.00000001</relativeTolerance>
<minimumStepSize>1</minimumStepSize>
<maximumStepSize>5</maximumStepSize>

</solver>
<simulations>
<simulation>
<name>thermisch</name>
<ordering>2</ordering>
<connection−type>SOAP</connection−type>
<solver>
<solver>ode45</solver>
<absoluteTolerance>0.05</absoluteTolerance>
<minimumStepSize>5</minimumStepSize>
<maximumStepSize>10</maximumStepSize>

</solver>
</simulation>

79

<simulation>
<name>maschinen</name>
<ordering>1</ordering>
<connection−type>OPCUA</connection−type>
<connection−information>opc.tcp://localhost:48010</connection−information>
<solver>
<solver>dassl</solver>
<absoluteTolerance>0.04</absoluteTolerance>
<minimumStepSize>2</minimumStepSize>

</solver>
</simulation>

</simulations>
</cosimulation>

OpenModelica Framework Initialization File

<?xml version="1.0"?>
<cosimulation>
<configuration>
<solver>
<solver>dassl</solver>
<minimumStepSize>1</minimumStepSize>

</solver>
</configuration>
<output>
<simulation>
<model−src>Cube/package.mo</model−src>
<model−name>Cube.Production.MachinesScenario5</model−name>
<name>maschinen</name>
<datapoints>
<datapoint>
<name>TZ1_Q_AW_WM</name>
<value>0</value>
<unit>
<name>W</name>
<power>0</power>

</unit>
</datapoint>
<datapoint>
<name>TZ1_Q_AW_O</name>
<value>0</value>
<unit>
<name>W</name>
<power>0</power>

</unit>
</datapoint>
<datapoint>
<name>TZ1_PelB_O</name>

80

<value>0</value>
<unit>
<name>W</name>
<power>0</power>

</unit>
</datapoint>
<datapoint>
<name>TZ1_Q_WB_O</name>
<value>0</value>
<unit>
<name>W</name>
<power>0</power>

</unit>
</datapoint>
<datapoint>
<name>globalState</name>
<value>0</value>
<unit>
<name>Unit</name>
<power>0</power>

</unit>
</datapoint>
<datapoint>
<name>T</name>
<value>0</value>
<unit>
<name>C</name>
<power>0</power>

</unit>
</datapoint>
<datapoint>
<name>Q_W</name>
<value>0</value>
<unit>
<name>W</name>
<power>0</power>

</unit>
</datapoint>

</datapoints>
</simulation>

</output>
<input>
<simulation>
<name>thermisch</name>
<datapoints>
<datapoint>
<name>TZ1_Pel_O</name>
<unit>
<name>W</name>

81

<power>0</power>
</unit>

</datapoint>
<datapoint>
<name>TZ1_Q_W</name>
<unit>
<name>W</name>
<power>0</power>

</unit>
</datapoint>

</datapoints>
</simulation>

</input>
</cosimulation>

Matlab Framework Initialization File

<?xml version="1.0"?>
<cosimulation>
<output>
<simulation>
<name>thermisch</name>
<dataset>
<time>0</time>
<datapoints>
<datapoint>
<name>TZ1_Pel_O</name>
<unit>
<name>W</name>
<power>0</power>

</unit>
</datapoint>
<datapoint>
<name>TZ1_Q_W</name>
<unit>
<name>W</name>
<power>0</power>

</unit>
</datapoint>
<datapoint>
<name>qwges</name>
<unit>
<name>W</name>
<power>0</power>

</unit>
</datapoint>
<datapoint>
<name>ttz1</name>

82

<unit>
<name>◦C</name>
<power>0</power>

</unit>
</datapoint>
<datapoint>
<name>ttz2</name>
<unit>
<name>◦C</name>
<power>0</power>

</unit>
</datapoint>
<datapoint>
<name>ttz3</name>
<unit>
<name>◦C</name>
<power>0</power>

</unit>
</datapoint>
<datapoint>
<name>ttz4</name>
<unit>
<name>◦C</name>
<power>0</power>

</unit>
</datapoint>
<datapoint>
<name>hbtz1</name>
<unit>
<name>W</name>
<power>0</power>

</unit>
</datapoint>
<datapoint>
<name>kbtz1</name>
<unit>
<name>W</name>
<power>0</power>

</unit>
</datapoint>

</datapoints>
</dataset>

</simulation>
</output>
<input>
<simulation>
<name>maschinen</name>
<dataset>
<time>0</time>

83

<datapoints>
<datapoint>
<name>TZ1_Q_AW_WM</name>
<unit>
<name>W</name>
<power>0</power>

</unit>
</datapoint>
<datapoint>
<name>TZ1_Q_AW_O</name>
<unit>
<name>W</name>
<power>0</power>

</unit>
</datapoint>
<datapoint>
<name>TZ1_PelB_O</name>
<unit>
<name>W</name>
<power>0</power>

</unit>
</datapoint>
<datapoint>
<name>TZ1_Q_WB_O</name>
<unit>
<name>W</name>
<power>0</power>

</unit>
</datapoint>
<datapoint>
<name>T</name>
<unit>
<name>C</name>
<power>0</power>

</unit>
</datapoint>

</datapoints>
</dataset>

</simulation>
</input>

</cosimulation>

84

	Kurzfassung
	Abstract
	Contents
	Introduction
	Motivation
	Problem Statement
	Goal
	Method

	State of the Art
	Co-Simulation
	Latest Developments
	Modelling and Simulation Tools
	Communication Protocols

	Requirements
	Design & Implementation
	Overview
	Chosen Technologies
	Data Model
	Communication Model
	The Coordinator
	The Matlab/Simulink framework
	The OPC UA Server & OpenModelica Framework

	Testing & Evaluation
	Implementation vs. Requirements
	Scenario Results
	Summary

	Conclusion & Outlook
	List of Figures
	Bibliography
	Appendix A: Example Initialization Files
	Coordinator Initialization File
	OpenModelica Framework Initialization File
	Matlab Framework Initialization File

