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Kurzfassung

Gerade in sicherheitskritischen Anwendungen ist die Korrektheit von Software ein maßgeb-
licher Faktor. Neben dem Ansatz mit statischen und dynamischen Testmethoden Fehler
zu finden, kann eine formale Verifikation Fehler in der Software ausschließen. Die so durch-
geführte Überprüfung bildet einen wichtigen Bestandteil festzustellen, ob Spezifikationen
in sich schlüssig und korrekt sind. Eine der meist verwendeten Spezifikationssprachen
ist die Z Notation. Mit ihrer objekt-orientierten Erweiterung Object-Z können auch
komplexe Systeme in modularer Weise formal beschrieben werden. Die Toolunterstützung
für die Verifikation oder gar eine Generierung von Programmcode beschränkt sich bislang
primär auf Typüberprüfungen. Perfect Developer wurde mit dem Ziel erstellt, forma-
le Spezifikationen automatisiert zu verifizieren, Implementierungen zu validieren und
daraus Code zu generieren. Die Arbeit verknü beide Technologien miteinander, indem
Object-Z Spezifikation automatisch nach Perfect überführt werden. Mit dieser Arbeit
wird gezeigt werden, dass eine automatische Übersetzung der Object-Z Sprachkonstrukte
in semantisch gleichwertige Konstrukte in Perfect möglich ist. Nach einer detaillierten
Analyse von Syntax und Semantik der beiden Sprachen werden Regeln entwickelt, mit
Hilfe derer die Sprachkonstrukte der Quell- in die Zielsprache übersetzt werden können.
Bei der Ausführung ist es notwendig, die Originalspezifikation in mehreren Durchläufen
zu analysieren, um alle für die Transformation relevanten semantischen Informationen
in strukturierter Weise zugänglich zu machen. Anhand eines Fallbeispiels evaluieren wir
die Umsetzung der Regeln. Da das entwickelte Tool auf GitHub öffentlich zur Verfügung
steht, können nun gleichzeitig die Vorteile der übersichtlichen Object-Z-Notation und die
automatisierten Verifikationsmechanismen von Perfect genutzt werden.
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Abstract

Especially in security-critical applications, the correctness of software is a major factor.
In addition to static and dynamic test approaches to find errors in a software or system,
formal verification methods target on proving the correctness of software. It constitutes
an important component of determining whether a specification is coherent and sound and
is satisfied by an implementation. One of the most widely used specification languages
is the Z notation. With its object-oriented extension Object-Z, it offers a possibility to
formalize even complex systems in a modular manner. However, the tool support for
the verification of specifications or even the generation of program code remains limited
to type checking. Perfect Developer with its specification language Perfect was created
with the idea of automatically verifying formal specifications, validating implementations
against them and generating code. The idea of this work is to link these two technologies
and to automatically convert a given Object-Z specification automatically into a Perfect
specification making thus the functionalities of Perfect Developer available to the specifier.
This work demonstrates that an automated translation of Object-Z language constructs
into semantically equivalent constructs in Perfect is possible. After a detailed analysis of
the relevant parts of the syntax and semantics of the two languages, we develop rules
with the help of which the individual language constructs of the source language can be
translated into the target language. It is necessary to analyze the internal representation
of the original specification in several passes to obtain all the semantic information
relevant to the transformation in a structured manner. With the help of a case study, we
evaluate the implementation of the rules. The developed tool is available on GitHub.
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CHAPTER 1
Introduction

The idea of formally describing or specifying a system and then being able to not just
generate code from the written requirements, but even verifying the correctness of the
implementation with regard to the specification is a magical vision that is often wished for.
However, even in times when artificial intelligence is all around, there are still limitations,
especially as it is not only essential to prove correctness, but also make sure that the
software works in the context that can be safety, security, or life critical.

1.1 Motivation
Whenever it is crucial that a system works correctly, because lives could be threatened
in case of an error, the means how software is verified become even more important.
If there is a formal specification of how a system should work, it is necessary to make
sure that on the one hand this reflects how one actually wanted the system to behave
and on the other hand take care that the implementation fully satisfies the specification.
While testing is only able to prove the existence of bugs in a system with a certain code
coverage, formal verification approaches may actually prove correctness.

However, as specifications evolve over time due to new insights or feature updates,
instead of just being built as a whole upfront, it is important that the process of proving
correctness can be done again and again after modifications have been added. Doing
this manually is tedious work and especially makes it necessary for the person who
performs this process to have sufficient skills and experience with formal methods while
still not eliminating human errors. Therefore, tool support as comprehensive as possible
is desirable.

Perfect Developer, as a commercial tool, was created to verify specifications and re-
finements. There is even the option of creating source code for the program to be
designed. Providing these functionalities to creators of Object-Z specifications without
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the need of manually translating the existing specification into another language may
bring the benefits of Perfect Developer to a broader audience. Even in other domains of
software and system development a more formal way of specifying requirements can be
an interesting topic, specially, if this way of describing the interactions of components
and domain objects provides tool support for further work on the product itself, like code
generation or verifying the quality of the product. If there is no obligation to use formal
methods, this way of describing and verifying is usually considered as too expensive in
comparison to informal approaches like drawing diagrams without a mandatory structure,
testing, or reviews, as the implementers need to have the necessary skills to be able to
actually work through the formal proofs manually.

The Z notation is one of the most renowned languages to support the formal description
of a system. As software became more and more complex with the evolution of software
development tools and techniques, also the need for an object-oriented approach on
defining the behavior of a system arose. That was when Object-Z came into existence as
an extension of the Z notation.

1.2 Problem Statement

Especially, in the domain of safety and security critical applications such as transporta-
tion (train, avionics, space travel), critical infrastructure (power gird, water supply,
telecommunications), industry (heavy machinery, heavy long elevators, handling explosive
atmospheres) or military (missile control systems, emergency response), there are often
mandatory standards regarding formal specification and/or verification of the system,
without which it would not even be possible to bring them into a productive environment.

Object-Z as an extension of the Z notation has some limited tool support, mainly provided
by the Community Z Tools. There is assistance in writing Object-Z specifications using
Unicode and LATEX syntax. With regard to verification of an Object-Z specification, only
a type checker is currently available. The Community Z Tools do provide a module to
generate verification conditions for Z and some other Z dialects, unfortunately, Object-Z
specifications are not yet supported by this functionality. Another tool called Wizard
described by Wendy Johnston in [Joh96], facilitates type checking. Although Graeme
Smith describes rules for reasoning about Object-Z specifications in [Smi95], and Wendy
Johnston and Gordon Rose wrote a report [JR93] how to manually convert Object-Z
specifications to C++, no implementations to automate the reasoning process or a
conversion to some programming language are known.

Therefore, a conversion from Object-Z to Perfect is desirable to provide these functions to
people who usually write their specifications in Object-Z or who intend to learn Object-
Z and are already somewhat familiar with Perfect, a tool for transforming Object-Z
specifications into Perfect, can help to gain a better understanding of the Object-Z
specification language, especially its compact mathematical notations, if a mapping
between the two languages is available.
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1.3 Aim of the Work

The goal of this work is to provide a means to bridge the gap between Object-Z and Perfect.
This means the computer-aided translation from Object-Z into a semantically equivalent
specification in Perfect shall be done automatically. The resulting Perfect specification can
then be used in the Perfect Developer environment with all its functionality (automated
verification, code generation). This work shows how such a transformation can be done
programmatically and points out obstacles and limitations by the capabilities of the
language itself or due to the complexity of the transformation rules. The implemented tool
and all its functionality is provided publicly at https://github.com/sylviaswoboda/objectz-
2-perfect to make it available as foundation for future work as well as sparking new ideas
and opening new opportunities for verified software in more domains.

1.4 Methodological Approach

The topic of this work is approached in several steps as illustrated in Figure 1.1. The first
step is to thoroughly analyze the syntax and semantics of Perfect and Object-Z to gain an
overview of the available language constructs and also to provide a deeper understanding
of what each part of the specification language means and which constructs are available
in which context. Following the necessary detailed context, mapping rules for each single
language construct of Object-Z are developed and described in detail. These rules aim at
being applicable in every possible context. However, whenever it is not feasible to cover
all special cases, these limitations are added to the rule descriptions. The next step is
creating an implementation of all the given rules to translate Object-Z specifications into
Perfect. The arrow pointing back to the previous step depicts that this step also has
an influence there, because rules have to be adapted due to implementation constraints.
The next step is to transform an instructive example using the provided implementation
to demonstrate which verifications will be processed by the Perfect Developer verification
engine This verification step also influences either only the implementation or even the
transformation rules in the sense of a feedback loop to improve design or implementation
iteratively. The final step is an evaluation of the whole work, especially with regard to
related work.

1.5 Outline of the Document

Chapter 2 provides a discussion of the state of the art and related work. Afterwards a
short introduction to the Object-Z language is provided in Chapter 3, presenting the
language characteristics and features as an overview as far as they are further considered
in this work. More detailed insight into the semantics of each language construct will be
given in Chapter 5. Chapter 4 provides an introduction to the Perfect language in the
same way as for Object-Z.

Chapter 5 describes the requirements and transformations that are necessary to implement
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1. Introduction

Figure 1.1: Methodical steps of this work

a mapping from Object-Z to Perfect, which aims at maintaining the semantics defined
by Object-Z. Chapter 6 describes in detail how the mapping requirements defined in
Chapter 5 have been implemented, which tools have been used for implementation, and
how the tool can be used. Chapter 7 presents the results that can be achieved by using
the Object-Z to Perfect mapping tool as well as the limitations that have become visible
by applying the tool to exemplary Object-Z specifications. The thesis is concluded with
a brief summary and a discussion comparing the findings of this work to the state of the
art.
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CHAPTER 2
State of the Art

This chapter provides an overview of formal specification and verification. A first insight
into the languages Object-Z and Perfect is given in the context of formal specification
and verification, while also discussing already existing tooling approaches supporting the
use or verification of these languages. The chapter ends with a presentation of related
work, especially with regard to language transformations.

2.1 Formal Specification and Verification
Formal specification aims at describing the behavior of a system using mathematically
based techniques. Syntax and semantics of the used specification language are well-defined
and unambiguous. Formal verification, on the other hand, tries to find an answer to the
question whether a program is correct with regard to a given formal specification.

Although the process of formalizing requirements given in natural language takes some
effort, there are also benefits from having a formalized representation. First, the formal
specification may serve as a documentation of the system without ambiguities that cannot
be prevented in natural language. Even the process of representing the requirements
correctly itself can help in finding inconsistencies that would otherwise stay unnoticed.
Therefore, having a formal specification also influences the design of a system, as it
is necessary to clarify inconsistencies earlier in the development process. Additionally,
having a formal specification builds the necessary basis if any kind of formal reasoning
regarding the correctness of the design shall be performed.

Formal specification and verification techniques have been around for more than 40
years, but only safety- or security-critical system normally make use of these techniques,
especially when it comes to verification. Sometimes, the reason is the lack of knowledge
of formal methods by the acting persons (software developers), sometimes it is because
the effort does not seem worthwhile.
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2.2 The Language Object-Z

The specification language Object-Z1 is based on the Z notation. Jean-Raymond Abrial
first used the Z notation in his work [Abr74, Data Semantics]. Spivey gives a comprehen-
sive description of this specification language in [Spi89, The Z Notation - A Reference
Manual]. An introduction how to use Z is provided by Lightfood in [Lig01]. The [ISO02,
ISO Standard of Standard Z] published in 2002 specifies Z formally. Both languages
use a graphical notation with named boxes that structure the building blocks of the
specification.

In the early nineties the need for expressing object-oriented specifications arose [SRBC92]
and the Object-Z notation was introduced as an object-oriented extension to the Z notation
[CS90]. It was developed at the Department of Computer Science at the University
of Queensland with financial support of the Australian Overseas Telecommunication
Corporation(AOTC). The first basic semantical approaches to Object-Z were presented
by D. Duke and R. Duke in [DD90]. A first full version was published in 1991 by R.
Duke, King, Rose and Smith in [DKRS91] and defined in more detail in Smith’s PhD
thesis [Smi92]. Certain language constructs changed later on and the semantical and
logical foundations for Object-Z were introduced by Smith [Smi94], [Smi95b], [Smi95a],
and Griffith [Gri95], [Gri96]. Additionally, the basis for reasoning about and formally
verifying Object-Z specifications has been laid by Smith in [Smi95d] and [Smi95c], and
extended together with Winter in [WS03]. The language version as it is presented
in [Smi00] and [DR00] can be considered as the current version. That is why this thesis
is based on the language definition as described in these two books.

Wendy Johnston described a command line tool for type checking Object-Z specifications
called Wizard in a technical report in 1996 [Joh96]. Unlike Z where several tools for
creating and checking of specifications exist, Object-Z has essentially one main source
for tool support: the Community Z Tools2, a sourceforge project providing a collection
of modules that offer different kinds of functionality. For Object-Z, there is a module
“corejava” providing java classes for annotated syntax trees, a parser, a type checker and
IDE support via a customized Eclipse bundle or Eclipse and jEdit plugins.

2.3 Perfect Developer and the Language Perfect

Perfect Developer was previewed in 1999 as Escher Tool and commercially released in July
2002 [CC04, chapter 8] by Escher Technologies. The goal in developing Perfect Developer
was to combine modern component-based, object-oriented software development with
the benefits of formal methods and at the same time making developer productivity at
least as efficient as with conventional approaches using informal techniques, relying only
on testing.

1Object-Z Homepage, http://staff.itee.uq.edu.au/smith/objectz/objectz.html
2http://czt.sourceforge.net
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Perfect Developer is based on the concepts of formal specification and refinement. That
means that first the requirements for the software are defined in a formal way and
then refinement can either be done automatically for most of the specifications or
provided by the user by specific refinement expressions. Perfect Developer can then verify
whether the specification is correct with respect to the generated verification conditions
(section 2.3.3) and whether the user-defined refinement satisfies the conditions implied by
the specification. As a last step Perfect Developer supports automated code generation
in a number of target languages such as Java, C++, and C#.

2.3.1 Value Semantics vs. Reference Semantics

Most modern object-oriented programming languages like Java, implement reference
semantics for object handling. That is, a variable does not hold the entire object directly,
but rather a reference to that object. The object itself is stored somewhere else, which
may improve performance, e.g. if references are assigned to other variables, but also gives
rise to problems caused by numerous references to the same object called aliasing. Each
reference to an object may modify it. Controlling or keeping track of such changes gets
more and more difficult with the increasing number of references to an object.

Another approach for handling objects is the use of value semantics. Here, the object is
not considered to have its own object identity, but this identity is rather built up of the
values of its containing member variables. Objects are directly connected to a variable
and whenever an object is duplicated, this copy is different from the original. Changes to
the original are not reflected in the new object.

Perfect adopts the concept of value semantics as the default when declaring variables.
Crocker and Carlton describe in [CC04, section 2.4] why value semantics are sufficient
and often even more natural and desirable although parameter copying leads to additional
overhead. However, if the need for object references arises, Perfect also supports reference
semantics.

2.3.2 Verified Design by Contract

The Perfect language together with its verification engine integrated in Perfect Developer
bases on the principle of Verified Design by Contract. This term has been introduced
by David Crocker and discussed in detail in [Cro04]. It bases on design by contract, a
principle that goes back to Floyd-Hoare Logic [Hoa69], but the term has been introduced
by Bertrand Meyer of Interactive Software Engineering in [Mey97].

The basics of Design by Contract can be summarized as follows. We have a call to a
method S and a postcondition R, which holds after executing S. However, to execute S
the precondition P has to hold. Given P, R, and S, one can be sure that R holds after
execution of S only if the following statements are true:

• If P holds initially and S is executed, then this will always result in a state where
postcondition R is satisfied.
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• Each time immediately before S shall be executed, precondition P holds.

For the method S itself this means that two contracts have to be fulfilled. First the server
(where the method is defined) guarantees that whenever the precondition P is satisfied
and the method is called, then the call will result in a state satisfying R. Second, all
callers (clients) guarantee that they only call the method in a state where P holds and
therefore can be sure that R holds after execution of S.

The principle of design-by-contract can also be applied to contexts where objects are
dynamically bound, e.g. for inheritance hierarchies. In this case it must be allowed that
objects of subclasses can be used whenever an object of a superclass is expected. This
implies that in subclasses of these hierarchies preconditions may be loosened, whereas
postconditions may be strengthened, i.e. parameter values and their types may be widened
and return types and their values may only be constrained additionally.

Verified design by contract in Perfect adapts this approach by creating verification rules
to check for validity of such contracts. In Perfect postconditions are considered complete,
i.e. they specify what variables are changed by a method and how they are modified.
Postconditions as described above for design by contract are implemented in Perfect by
post assertions which state all conditions that a client may assume after a call to some
certain method. Postassertions must state a logical implication of the postcondition and
in contrast to postconditions they are inherited to derived classes.

2.3.3 Verification Conditions

To verify the correctness of the specification a total of over 50 different verification
conditions are created. A comprehensive list of them can be found on the Escher
Technologies website3. A small selection of them is presented here to give the reader an
impression of the verification capabilities of Perfect Developer.

Class invariant satisfied: Checks for the postcondition of each modifying schema or
constructor that the class invariants remain satisfied.

Precondition of op satisfied: Checks for any call to a function, operator, selector or
schema with a precondition, if the precondition is satisfied.

Expressions modified by schema are independent: Checks for each call to a schema
modifying more than one object that these objects are independent.

Objects modified in parallel are independent: Checks for parallel postconditions
that the objects modified are independent.

Operand of ’over’ has at least one element Checks whether the collection on which
op over is performed is not empty.

3http://www.eschertech.com/product documentation/Verification Conditions Generated by Escher
Verification Studio.pdf
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At least one guard is true: Checks for conditional expressions and postconditions
with no empty guard if there is at least one option that may be executed, because
the guard is true.

Assertion satisfies inherited assertion: Checks for methods declared with define or
redefine and an assertion whether the new assertion implies the original assertion.

Inherited precondition satisfies new precondition: Checks for methods declared
with define or redefine and a precondition, that the original precondition implies
the new precondition.

Type constraint satisfied: Checks for parameters, return values, variables and objects
modified by a postcondition whether the type constraints are satisfied.

After having tried to verify all created verification conditions, the Perfect verification
engine outputs information about which conditions could not be proven correct and gives
some hints where the cause of the problem lies. Examples for verifier output will be
provided in Chapter 7. Syntax and semantic of Perfect will be presented in more detail
in Chapter 4.

2.4 Related Work

Several people have already begun mapping Object-Z specifications into other notations.
Paige and Brook describe in [PB04] an approach to integrate BON and Object-Z to
provide a means of taking a specification one step further into the actual software
development process. The papers of Rafsanjani and Colwill [RC92], Johnston and
Rose [JR93], and Fukagawa, Hikita and Yamazaki [FHY94] target a similar issue. All
of them developed ways or guidelines of converting Object-Z specifications to the C++
programming language, so that executable code can be easily created from a given
specification. Soon-Kyeong Kim and David Carrington have concentrated on finding a
formal mapping between UML class diagrams and Object-Z [KC99], [KC00], and [KC02].

Another idea of using Object-Z specifications in the software development process is to
derive test cases from the specification. MacDonald, Murray, and Strooper published
their first work on creating object-oriented test oracles in 1997 [MMS97] and elaborated
their work during the following years in [MS98], [CMM+98], [MCMS99], and [MSH03]
together with Carrington, MacColl, and Hoffman. Ashraaf and Nadeem [AN06] also
proposed a technique for automated test case generation from Object-Z specifications.

Regarding Perfect, there have also been some efforts to provide conversions from Object-Z.
Brian Stevens described how to implement Object-Z specifications in Perfect in [Ste06],
but this approach is rather high level and demonstrates how to map the Object-Z
structures to Perfect without the in-depth inspection of each language construct necessary
to create an implementation for an automated conversion.
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Tim Kimber presented the most thorough discussion on how to map Object-Z to Perfect
in [Kim07]. In his work, he aims at constructing a tool for automatically translating
an Object-Z specification given in the so-called OZ notation of Object-Z. The OZ
notation has been introduced by Kimber to enable the user to easily edit an Object-Z
specification within an ASCII text file, where the good-looking and clearly arranged,
but for specification rather unhandy, Object-Z box notations are substituted by curly
brackets like they are used in C, C++, or Java. The mapping is described in much
detail, but leaves some language functionality unmapped like generics, inheritance, or
distributed operators. Furthermore, the tool that has been implemented based on the
mapping instructions has neither been made publicly available, nor could be retrieved on
request. However, his work is a good starting point to provide a comprehensive mapping
of the Object-Z language features.

2.5 Tools for Language Transformations

As the aim of this work is to provide a tool for automated translation from Object-Z
to Perfect, publicly, it is necessary to decide for an implementation language. To make
the tool available for a broad audience, both for using the tool as it is and for extending
its foundation, the decision should be for a widely used programming language that
supports at least Windows and Linux to enable the use for Perfect developer users on
both platforms. Therefore, and due to the author’s experience with it, Java4 has been
chosen as implementation language.

Apart from the programming language, another important aspect of the translator are a
lexical analyzer (lexer) and a parser for language recognition and syntactic analysis of
the source language. As the recognition part as such is not in the focus of this work, the
parser generator ANTLR was chosen to be used for this purpose. ANTLR5 has been
developed by Terence Parr since 1989. The project started as a parser-generator for
LL(1) parsers and evolved during years and over four major versions into a tool that
generates parsers with arbitrary look-ahead, so called LL(*) parsers as they process their
input from left to right and construct the leftmost derivation of a particular grammar
rule. Parr [Par07] includes a thorough discussion on this topic in block three of ’The
Definitive ANTLR Reference’. Together with Fisher [PF11] he also provides a foundation
on LL(*) parser generators.

Language recognition can be performed in multiple levels by first analyzing the input with
a lexer, resulting in input tokens. They are processed by grammar rules constructing an
abstract syntax tree (AST). This can then in return be transformed further into templates
or some other user-defined internal representation of the input. ANTLR supports various
code generation target languages6 such as Java, C++, C#, and JavaScript. In version

4http://www.oracle.com/technetwork/java/index.html
5http://www.antlr.org
6ANTLR Runtime Libraries and Code Generation Targets, https://github.com/antlr/

antlr4/blob/master/doc/targets.md
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4 of ANTLR [Par13], the concept of how the abstract syntax tree can be analyzed has
been changed to enable a separation between grammar and application code. This is
especially helpful, if several applications should be built on top of the same grammar.
Terence Parr introduced the listener and visitor patterns to react to the situation when
the traversal passes a node in case of the listener or to even control the traversal flow in
case of the visitor.

Another project, that can be smoothly integrated with ANTLR, is the StringTemplate
project7. The initial goal of StringTemplate was to separate business logic and displaying
data on webpages by enforcing a strict separation of model and view by means of template
engines. A single template is essentially a character string with a certain amount of
specially marked tokens that may later on be replaced by variables or even sets of variables.
For example, one could use a placeholder for the username on a website template. This is
then substituted by the username of the person who is actually initiating the web request
or the logged in user.

Templates may be either defined directly in the implementation code or read from a
so called StringTemplateGroup-file, which gathers all the necessary templates used in a
certain application. This enables separation of the program functions from the actual
presentation layer. Such StringTemplates can be used to manage the static or repeating
parts within the mapping from Object-Z to Perfect like the basic structure of a class or
an operation.

After the discussion of the context of this work the following two chapters will present
the language constructs of Object-Z (chapter 3) and Perfect (chapter 4) in more detail.

7http://www.stringtemplate.org
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CHAPTER 3
Object-Z

To enable readers to follow further findings in this work, one has to understand the
language Object-Z. This chapter presents descriptions of the language constructs added
to Z to support object-orientation in Object-Z. However, as the focus of this work is on
the object-oriented aspects of the work, the necessary descriptions for those parts of the
language that have already been introduced in Z and thoroughly discussed in Spivey’s Z
reference manual [Spi89], will only be presented in Chapter 5 in combination with the
mappings to Perfect.

3.1 The Class Construct
A class is a named box and consists of several graphical elements like named and unnamed
boxes. Figure 3.1 shows the general structure of an Object-Z class.

ClassName[FormalParameters]
[VisibilityList]
[InheritedClasses]
[LocalDefinitions]
[StateSchema]

[InitialStateSchema]

[Operations]

Figure 3.1: Structure of an Object-Z class

The class is surrounded by a border which limits the scope of the class. In the line at the
top of the frame the name of the class is given first, optionally, a list of formal parameters
can be specified in square brackets. All other components of the class, visibility list,
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inherited classes, local definitions, state and initial state schema, as well as operations
are situated within the borders of the class frame. Neither of these structures need to be
included in a class definition.

Queue[Item]

�(count, INIT , Join,Leave)

c : N

c ∈ 100, 200, 300

This is a comment.

items : seq Item
count : N

count ≤ c

INIT
items = 〈 〉
count = 0

Join
∆(items, count)
item? : Item

items′ = items a 〈item?〉
count′ = count + 1

Leave
∆(items)
item! : Item

items′ = 〈item!〉a items′

Figure 3.2: Example of an Object-Z class construct: Queue

To illustrate the inner structure of these components a specification of a generic Queue
is given in Figure 3.2, this specification is adopted from the queue example in [Smi00].
The following sections of this chapter provide a description of the building blocks of an
Object-Z specification to give a deeper insight into this notation.
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3.2 Genericity

In the Queue class example in Figure 3.2 the formal parameter Item is provided to the
class definition. This generic parameter, also called formal or template, is needed to
provide template functionality for the class. That means, a class Queue is defined once
without knowledge of the actual parameter type, and the element type of Item is only
fixed at instantiation time. When a new object is declared, the actual class names for
the formal template parameters are handed over.

Instantiation examples are natQueue : Queue[N] for queues of natural numbers and
messageQueue : Queue[Message] given that a type Message has already been declared.
As all the operations of the class are defined using the generic parameter Item, all of
them can be used for elements with the actual type of the parameter, like N or Message
in the objects declared earlier.

3.3 Visibility List

In Figure 3.2 the first line inside the class box shows the visibility list of the specified
class. As indicated by the name, the visibility list determines which features of a class
are visible to the environment. In this example the visibility list defines that only the
state variable count, the INIT -schema, and the two operations Join and Leave can be
accessed from other class specifications. Leaving out the visibility list states that all
features are visible to the environment.

Visibility in Object-Z comprises read and write access to a feature of a class. As visibility
lists are not inherited, the inheriting class has to define its own interface. The list of
features in an inheriting class may contain features directly defined in that inheriting
class as well as any of the features of the super classes because all features are inherited.

3.4 Inheritance

Object-Z supports single and multiple inheritance. The name of each class which shall
be inherited is specified in the class section directly after the visibility list.

SomeInheritingClass
...

SuperClass1[newVarName/varName,newOperationName/operationName]

SuperClass2[N]

...

Figure 3.3: Schematical example of inheritance in Object-Z
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Figure 3.3 schematically shows how inheritance is declared in Object-Z classes. SomeIn-
heritingClass inherits all the features (member variables, constants and operations) of
the two classes SuperClass1 and SuperClass2. If both classes happen to contain equally
named attributes, these features have to be type compatible for the specification to be
consistent. If an operation with the same name is included in a subclass the opera-
tion schema of the superclass and the operation schema of the subclass are conjoined.
Auxiliary variables also have to be type compatible.

If features are not type compatible or should be regarded as two separate features,
it is possible to rename the feature of the superclass like this is done for varName
and operationName of SuperClass1 in Figure 3.3. If an inherited class has been defined
generically, actual parameters must be provided like the parameter N for class SuperClass2.
If the inherited class is also declared with a formal parameter, this parameter could also
be provided to the inheriting class.

3.5 Polymorphism

Object-oriented polymorphism allows an object typed as class C to belong to other
classes as well, and therefore the object may also behave as if it belonged to these other
classes.

Figure 3.4: Animal hierarchy (simplified based on the animal hierarchy in [Hor00, p.
248])

The animal hierarchy in Figure 3.4 shows the class Animal and its four subclasses Dog,
Cat, Cow, and Pig. If polymorphism is available, an object of one of the four subclasses
may as well act as Animal object. Class Animal might declare a function makeSound
that gives the characteristic sound that an animal makes, but each of the subclasses may
return a different sound depending on the type of animal.

In Object-Z, the term a : ↓Animal declares a polymorphic variable. For the hierarchy
above, variable a may reference objects of the classes Animal, Dog, Cat, Cow, and Pig.
a may also call all the features provided by class Animal using the expression a.feature.

However, as already described in the visibility section 3.3, features may be hidden from
the environment by not including them in the visibility list. If the operation makeSound
was only included in the visibility lists of classes Animal, Dog, and Cat, a call of the
operation could be dynamically invalid. In this case e.g., a Cow object referenced by
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a does not have the makeSound operation and this feature could consequently not be
applied.

According to [DR00, p.30 f] a call to a feature is well-formed only if:

• Each attribute, operation or the initial state schema in the visibility list of a
superclass A is also included in the visibility lists of each subclass of A.

• For visible operations, the communication parameter must be the same, i.e. identi-
cally named and typed, in class A and in all subclasses.

Object-Z provides an even more generalized view of polymorphism. Using the union
operator ∪ several classes may be united to form a new type.

Pet == Cat ∪Dog

This expression unites the classes Cat and Dog from the animal hierarchy to form the
new type Pet. For this construct, attributes a and operations op are said to be in the
polymorphic core of the class union ([DR00, p.118] if

• attribute a is defined in each of the defining classes with the same name and type.

• operation op exists in each of the defining classes and the communication parameters
are the same in each class, i.e. name and type are identical.

For all features, i.e. attributes and operations, in the polymorphic core the expression
var .feature for var of the union type can always be semantically interpreted. In contrast,
for such an expression to be statically well-formed only one of the classes in the class
union need to have feature in its visibility list.

3.6 Renaming and Hiding
As input and output parameters of operations are equated to equally named and typed
variables of the environment, it may sometimes be advantageous to have the ability to
rename a variable to overcome naming clashes, for example. In the inheritance example in
Figure 3.3 above, SuperClass1 is used together with a renaming statement that renames
a variable and an operation.
The general syntax of this renaming construct is as follows.

[newName/oldName]

This may be used whenever class descriptors or operation expressions are used. The first
are used for the definition of inherited classes or whenever a variable is declared to have
some class type. The second appears in operation expressions (see sections 3.10.2 and
3.10.3), where they are primarily used to enable or disable equating of variables with
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the same base names. The construct means that all occurrences of oldName in the class
or operation expression are substituted by newName. A comma separated list of such
renaming pairs may be provided in one renaming expression.
The hiding construct is only available for operation expressions.

operationExpression \ (nameList)

It means that all the identifiers in the comma separated list nameList have to be removed
from the set of identifiers available to the operationExpression. This construct may
be used to hide some particular input or output variables, for example to achieve that
parameters are not equated or that the operation built by an operation promotion does
not have input or output variables anymore.

3.7 Local Definitions
In the part following the visibility list of the specification in Figure 3.2 an axiomatic
definition is introduced. This construct is marked by a vertical line on the left side of the
specification text. In the part above the horizontal line local constants can be introduced.
Predicates written below the line specify restrictions that hold for these constants. In
the given example the predicate states, constant c must have one of the values 100, 200,
or 300. This shows that the value of a constant does not need to be globally fixed, but
it remains constant for one particular object of the class, once the instance has been
created and the constant has therefore been initialized.

Besides simple constants also constant functions may be defined in an axiomatic definition.
Constant functions may be regarded as functions, that are totally defined by the predicates
in the axiomatic definition and can never ever be altered later on, i.e. the value that is
mapped to each element of the function domain is fixed on object creation time.

Axiomatic definitions, given type definitions, abbreviation definitions and free type defini-
tions form the set of local definitions. The characteristics of all of these are summarized
below. All kinds of local definitions are also normal Z constructs and therefore can be
used outside the class construct as well. For these local definitions the scope, in which
the introduced identifiers are known, is the whole specification starting from the point of
declaration.

Given/Basic type definitions introduce a number of new types. Defined within a
class this type can be used throughout the scope of the class definition starting
from the point of definition. The type identifiers are separated by ’,’ and enclosed
in square brackets like in the following example.

[BasicType1,BasicType2]

Abbreviation definitions introduce new identifiers that can be used instead of some
arbitrary expression and are written as:

Identifier == Expression
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The newly introduced Identifier may be used wihtin the class in which it is declared.

Free type definitions introduce types with a fixed set of values that are allowed for
this type. On the right hand side a list of branches is given, that describe the values
of this free type.

Colours ::= Blue |White | Yellow | Green | Red | Black

The new type can be used starting from the declaration until the end of the class
definition.

Axiomatic definitions introduce constants and constant functions. The properties of
these constants and functions are defined by the predicates given in the predicates
section in the part below the horizontal line.

Declarations

Predicates

Unlike all other local definitions, identifiers declared in axiomatic definitions may
also be included in the visibility list of a class to make them available to the
environment.

3.8 State Schema

The state schema introduces instance variables, also called primary variables which form
the state of the object. State schemas are always marked by an unnamed box and can be
separated by a horizontal line into two sections, the declaration and the predicate part, in
the same way as axiomatic definitions. The first part introduces the names and types of
the state variables the second part states restrictions that always have to hold for these
variables. Variables may have primitive types like integer, natural, or real, collection
types like set, sequence, or bag, user-defined types introduced by free and basic type
definitions, classes, or functional and relational types.

The section of variable declarations may once again be separated into a part for primary
and one for secondary variables, separated by a ∆ symbol. The values of secondary
variables are defined by a fixed relationship between some of the primary variables or
constants. This also means that the value of secondary variables is normally not changed
directly, but rather changes whenever one of the defining primary variables changes its
value.

The part after the horizontal line, the predicate section, contains one or more predicates
that define constraints for the state variables. These invariants always have to hold,
even if the value of a state variable is changed by an operation. The postcondition of
operations can be considered to implicitly contain the class invariants such that the
invariant is satisfied before and even after execution of the operation.
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Queue
c is a constant.

items : seq Item
count : N

count ≤ c

Figure 3.5: State schema of class Queue in Object-Z

In Figure 3.5 the snippet of the specification of class Queue declaring the state schema is
given. Two primary variables items and count are declared. The second variable count
is restricted to have a smaller value than the constant c. Predicates in the predicate
section may be built as simple as in this example, but they may also use disjunctions,
implications, negations, or equivalences as connectives. The restrictions may even be
expressed by existential or universal quantification expressions.

3.9 Initial State Schema

In Figure 3.6 the initial state schema is a box named with the keyword INIT in its top
border line. Its specification text may refer to all already introduced, locally defined
identifiers including constants and state variables. It describes the initialization condition,
the state which must hold for an object of the class on creation time. The predicates
given by the INIT schema may also hold later on, when the object has already changed
several times. Therefore, the statement object.INIT says that object satisfies all the
constraints specified by the initial state schema.

Queue

INIT
items = 〈 〉
count = 0

Figure 3.6: Initial state schema of the class Queue

In the example in Figure 3.6 two predicates are provided to define the initial state of
an object of class Queue. First, variable items is specified to be an empty sequence and
second, variable count must have value 0. Whenever both of these two conditions hold, a
Queue object satisfies the initialization condition.
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3.10 Operations
In Object-Z there are three kinds of operations:

• Operation schemas

• Operation promotions

• Operation expressions

A description of each of these is given in the following subsections. All three describe a
relationship of the state variables before and after the operation has been applied. That
is, they state in a declarative manner the conditions that the state variables have to
satisfy, such that the operation can be applied and which conditions hold afterwards.
However, the way how to get to this state is not specified like in imperative programming
languages.

3.10.1 Operation Schemas

The most basic form is the operation schema, a named box that may be split by a
horizontal line into two parts like state schemas. The building blocks of operation
schemas are described below.

Deltalist : Lists all the primary variables that may be changed by this operation schema.
If present, it is the first part of the operation schema. The ∆ symbol is followed by
a list of identifiers in parentheses.

Declarationlist : In the declaration part auxiliary variables can be specified. By
convention input variables are marked with a question mark, output variables end
with an exclamation mark. Both of these form the means of communication with
the environment. Auxiliary variables may also be undecorated, but these variables
are only used within an operation schema.

Predicatelist : The predicate section contains restrictions that must hold for the
operation to be applicable, i.e. preconditions, and it states the conditions that
must be true after the application of the operation schema, i.e. postconditions that
describe the state transitions for objects of a class.

Changing primary state variables that are not included in the deltalist results in an
inconsistent specification. Values of secondary variables may change without including
them into the deltalist of an operation schema.

In the Queue example in Figure 3.7, Join and Leave are operation schemas. Join may
change the variables items and count and has an input parameter item? of the generic
parameter type Item. The two predicates describe the transitions of the state variables.
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Queue

Join
∆(items, count)
item? : Item

items′ = items a 〈item?〉
count′ = count + 1

Leave
∆(items)
item! : Item

items = 〈item!〉a items′

Figure 3.7: Example of operation schemas: Join and Leave

A primed variable like items’ denotes the state of the variable after the operation schema.
Leave has only one variable in its deltalist. Instead of an input variable this operation
declares an output variable item!. The predicate of Leave only contains a postcondition
(indicated by the primed and the output variable) that states that items before the
operation must be equal to taking the output parameter item! concatenated with the
state variable items after the operation.

As already indicated in section 3.8, operation schemas implicitly also satisfy all the
class invariants as preconditions of the operation and can therefore restrict the states in
which an operation is applicable. Additionally, the class invariants modified so that all
occurrences of primary variables are primed have to hold after the operation.

For the example, in Figure 3.7, this means that the following predicates also have to be
satisfied for the operation schemas Leave and Join.

count ≤ c
count′ ≤ c

This does in fact add the restriction to operation Join that count has to hold a value
strictly smaller than c before the operation so that the second predicate may be satisfied
after the operation.

3.10.2 Operation Promotion

If an operation of a class should only propagate the exact behavior of an operation of
one of its state variables, then Operation Promotion is used. To illustrate operation
promotions the Book and SmallLibrary examples shown in Figures 3.8 and 3.9 were
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created for this work. The two classes model a simple and small library that administrates
the handling of only two books.

First the basic type String is introduced. Class Book allows a person to lend, return or
review a book. Only a limited amount of recensions is saved per book and if the number
of saved entries exceeds the limit, the oldest one is thrown away. The latest recension can
be accessed by the schema latestRecension. Additionally, the reader history is stored and
can be accessed through readerList. A book can only be returned and reviewed by the
current lender. Reviews can only be added, while the book is lent. The list of authors
may be set or retrieved from a book.

The operations lendBook1, lendBook2, returnBook1, and returnBook2 propagate the
operations lend and return of the books respectively. As both operations are also in the
visibility list of class SmallLibrary, these operations are accessible for the environment.
As neither book1 nor book2 are listed as visible, access to the objects or any of their
features would be prohibited.

Book
�(lend, return, review, latestRecension, authorList, readerList, setAuthorList)
[String]

maxHistoryEntries : N

maxHistoryEntries ∈ {10, 20, 50, 100}

title : String
authors, recensionHistory, readerHistory : seq String
lent, reviewed,mayBeReviewed : B
∆

totalLendingCount : N

#recensionHistory ≤ #readerHistory
#recensionHistory ≤ maxHistoryEntries
totalLendingCount = #readerHistory
authors 6= 〈 〉

INIT
recensionHistory = 〈 〉
readerHistory = 〈 〉
¬ lent ∧ ¬ reviewed ∧ ¬ mayBeReviewed

latestRecension
recension! : String

reviewed
recension! = last recensionHistory

setAuthorList
∆(authors)
authors? : seq String

authors′ = authors?
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authorList
authors! : seq String

authors! = authors

readerList
readers! : seq String

readers! = readerHistory

return
∆(lent,mayBeReviewed)

reader? : String

lent
reader? = last readerHistory
¬ mayBeReviewed ′ ∧ ¬ lent′

lend
∆(readerHistory, lent, reviewed,mayBeReviewed)

reader? : String

¬ lent
mayBeReviewed ′ ∧ lent′ ∧ ¬ reviewed ′

readerHistory′ = readerHistory a reader?

review
∆(reviewed, recensionHistory,mayBeReviewed)

recension?, reader? : String

¬ reviewed ∧ mayBeReviewed
reader? = last readerHistory
reviewed ′ ∧ ¬ mayBeReviewed ′

((#recensionHistory = maxHistoryEntries ∧
recensionHistory′ = tail recensionHistory a 〈recension?〉) ∨
(#recensionHistory < maxHistoryEntries ∧
recensionHistory′ = recensionHistory a 〈recension?〉))

Figure 3.8: Example of class with operation schemas: Book

Input and output variables of the propagated operations are used as communication
variables for the new operation. In this case only the single input variable reader? is
available as an input variable to all the four operations. Although changes are performed
to the inner state of book1 or book2, there are no changes to the SmallLibrary object, in
particular the references book1 or book2 are not altered. This is the reason why there is
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SmallLibrary
�(postRecension, lendBook1, lendBook2, returnBook1, returnBook2, ...)

book1, book2 : Book
recensionsWall : Book 7→ String
∆

books : PBook

book1 6= book2

books = book1 ∪ book2

INIT
recensionsWall = ∅

postRecension
∆(recensionsWall)
book? : Book
recension? : String

recensionsWall ′ = recensionsWall ⊕ {book? 7→ recension?}

lendBook1 =̂ book1.lend
lendBook2 =̂ book2.lend
returnBook1 =̂ book1.return
returnBook2 =̂ book2.return

Figure 3.9: Example of operation promotions: SmallLibrary

no need for a deltalist in such operations. Operation promotions do not change state
variables of objects of the class in which the operation promotion is defined.

3.10.3 Operation Expressions

Operation expressions or operation operators as they are called by Smith [Smi00],
introduce the ability to combine several operations together to form a new indivisible
operation. These operation operators originate from the schema operators that are
available in Z to build more complicated operations out of simple ones like schema
composition and schema disjunction [Lig01, chapter 6], [Spi89, chapter 3.8].

The following six kinds of operation expressions exist in Object-Z:

Conjunction: This operator models that two operations that are performed simultane-
ously. Communication between the two operations is not possible. The operation
schemas of the two constituting operation schemas are conjoined, which means that
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SmallLibrary
lendBoth =̂ book1.lend ∧ book2.lend
returnBoth =̂ book1.return ∧ book2.return
transferAuthors1 =̂ book1.authorList ‖ book2.setAuthorList
transferAuthors2 =̂ book1.authorList ‖! book2.setAuthorList
lendAny =̂ book1.lend [] book2.lend
returnAny =̂ book1.return [] book2.return
lendAndReaderList1 =̂ book1.lend o

9 book1.readerList
reviewAndThenReturnBook2 =̂ book2.review o

9 book2.return
lendAnyAlt =̂ [b? : books] • b?.lend

Figure 3.10: Extension of the SmallLibrary class

equally named input or output variables are equated and the conditions defined in
the predicate sections of the schemas are conjoined as well.

In Figure 3.10, the two operations lendBoth and returnBoth make use of the
conjunction operator. Both of the two combined operations, lend and return, have
the same input parameter reader?. These variables are equated when operation
conjunction is performed. If variables shall not be equated the only way to overcome
this is to hide or rename one of the parameters.

Parallel Composition: This operator models two operations occurring in parallel. The
predicates of the two operation schemas are conjoined and inter-object communica-
tion is possible, that is, output variables of one operation and input variables of
the other are considered equal if the base names of these variables are the same.
All equated variables are then hidden from the environment. This operator is
commutative, but not associative.

In the SmallLibrary example the operation transferAuthors1 calls the operations
authorList and setAuthorList of Book. The first has an output variable authors!
and the latter an equally named input variable authors?. The value of authors! is
used as input parameter to authors?, which copies the author of one book to the
other.

Associative Parallel Composition: This is essentially the same as parallel composi-
tion except for the variable hiding. Equated output variables are not hidden and
can therefore be accessed by subsequent operations, which makes this operator
associative and commutative.

The operation transferAuthors2 is the same as transferAuthors1 from the point of
object state changes, but the output parameter authors! is not hidden from the
environment.
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Nondeterministic Choice: This operator is used to model angelic choice between two
operations. This means, in any case at most one of the combined operations may
be performed and which one is chosen depends on which operation is applicable. If
both operations are applicable, either can be chosen and it is not further specified
which one it is. The operator is commutative and associative and no inter-object
communication is available. The argument operations are required to have the
same auxiliary variables, i.e. they must be signature compatible.
In Figure 3.10 operations LendAny and ReturnAny use the nondeterministic choice
operation expression. In the first case, both lend operations have one input
parameter reader? and are therefore signature compatible. Lending a book can
only be performed if the the book is not yet lent. This means that only the book
that is currently not lent will be chosen. If both books are available, one of the two
books is chosen arbitrarily.

Sequential Composition: This operation is the only one that defines an execution
order for the two combined operations. Inter-object communication is possible
from the first to the second operation, that is, output variables of the first can be
equated with input variables of the second operation. The intended semantics of
the predicates is that first the state transitions of the first operation are applied and
then the transitions of the second operation. The sequential composition is only
applicable if the preconditions of the first operation are satisfied in the beginning
and the intermediate state reached after the state changes from the first transition,
satisfies the preconditions of the second operation. The operation is considered
atomic, that is it can only be applied as a whole or not at all.
The operation lend has one input parameter reader? and the operation readerList
in Figure 3.9 has one single output parameter readers!, in which the names of the
readers up to that time are returned. So the composed operation lendAndRead-
erList1 needs one input parameter reader? as an input for operation lend and
provides one output parameter readers! to the environment. If the whole operation
is applicable, first lend is performed, which leads to a state change and immediately
afterwards readerList is called.
The operation reviewAndReturnBook2 is made up of the operations book2.review
and book2.return. Therefore the composite operation needs two input variables
recension? and reader?, but delivers no output variables. The predicates of the
two operations are conjoined so that first the new recension is added as a review
and then the book is returned.

Scope Enrichment Operator: has the following structure:

ScopeEnrichOp =̂ [Declarations | Predicates] • OperationExpression

It declares some auxiliary variables and may restrict them then by Predicates. The
scope enrichment operator enables all the declared variable of the first argument
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operation to be accessible in the second argument operation. There, the variables
are used in the OperationExpression. The declared variables are comparable to the
declaration of auxiliary variables in operation schemas, which are available in the
local scope of the operation schema. In the case of the scope enrichment, these
variables enrich the scope or environment to the right of the •. The [Declarations |
Predicate]-part may also be substituted by any other kind of OperationExpression.
In this case the scope of all the declared variables is also extended to the right hand
side.

In operation lendAnyAlt in Figure 3.10, the input variable b? is set to one of the two
books and then applies the promotion of operation lend to this input parameter.

3.10.4 Distributed operators

For some of the operation operators described in the last section, there is also a more
general form, the so called distributed operators. The following three kinds of operators
are provided by Object-Z for this kind of operation:

• Distributed Conjunction ∧

• Distributed Nondeterminitistic Choice []

• Distributed Sequential Composition o
9

As one can see in Figure 3.11, the syntax is essentially the same for the three of them.
DOp has to be replaced by the corresponding operator symbol.

SomeClass
DOp Declaration[ | Predicate] • OperationExpression

Figure 3.11: Distributed operators in Object-Z

The declaration defines auxiliary variables, that can be restricted by the optional Predicate.
The OperationExpression is then performed for each object defined by the Declaration
part. The behavior depends on the chosen operator:

distributed conjunction is similar to the normal conjunction described earlier except
that there are more argument operators

distributed nondeterministic choice chooses one of the operations from an arbitrary
number of options
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SomeClass
Op3 =̂ o

9 b : s | b.value < 10 • b.Op2

Figure 3.12: Example of a distributed sequential composition in Object-Z

distributed sequential composition executes the resulting operation expressions in a
sequence. In contrast to the binary operation, the sequential order is not predefined
for the distributed version of this operation. The operands may appear in any order
that is applicable.

Figure 3.12 shows an example for distributed sequential composition. In the declaration
part it selects a subset of set s consisting of only those objects b with feature value smaller
than 10. If only two objects x and y satisfy this condition, Op3 would be equivalent to:

Op3 =̂ (x.Op2 o
9 y.Op2) [] (y.Op2 o

9 x.Op2)

As the distributed sequential operator only says that it is applicable if at least one
ordering of the variables can be found, all options must be taken into consideration. If
the declarations and predicate part results in a set with three members x, y, z, the Op3
would be equivalent to:

Op3 =̂ (x.Op2 o
9 y.Op2 o

9 z.Op2) [] (x.Op2 o
9 z.Op2 o

9 y.Op2) []

(y.Op2 o
9 x.Op2 o

9 z.Op2) [] (y.Op2 o
9 z.Op2 o

9 x.Op2) []

(z.Op2 o
9 x.Op2 o

9 y.Op2) [] (z.Op2 o
9 y.Op2 o

9 x.Op2)

Apparently, the complexity is rising with the number of elements that satisfy the conditions
in the declaration and predicate section.

This concludes the chapter introducing the Object-Z language. Next, Perfect, the second
specification language presented in this work, is described in detail.
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CHAPTER 4
Perfect

This section provides an introduction to the main Perfect language constructs and is
based on the language information about Perfect available in the online tutorials of the
Escher website1, the introduction to Perfect by Carter and Monahan [CM05], and the
Perfect Developer language reference manual [Esc].

4.1 Symbols

Some of the most basic symbols of the Perfect specification are given in Table 4.1, so
that more complex constructs can be easier understood.

Table 4.1: Symbols in Perfect

Symbol Description
// Starts a one-line comment terminated at the end of the line
; Declaration and statement separator, statements are exe-

cuted sequentially.
, Statement separator, statements are executed in parallel.
self References the current object
! Indicates a change in the value of a variable, parameter or

self
’ The prime refers to the final value of a variable.
? Can be used to state that this part of the specification is not

yet decided

There are three kinds of brackets in Perfect to group expressions:
1http://www.eschertech.com/tutorial/tutorials_overview.php
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Round Brackets embrace parameter lists or define the evaluation order in expressions.

Square Brackets enclose the guards of the alternatives in conditional expressions.

Curly Brackets are only used to enclose the parameter list of a constructor call.

4.2 Predefined Types and Class Library
Perfect provides various predefined classes in its class library. Some of the classes that will
be necessary for the further work, are named and described here, while a comprehensive
list can be found in the Perfect language reference manual [Esc, Appendix A].

bool Represents a boolean object, that may have one of the two truth values (true or
false). The logical operators and (&), or (|), implication (==>, <==), equivalence
(<==>) and negation (˜) are available for this type.

char: Represents a single character literal. A predecessor (<) and successor (>) operation
are available as well as various functions to determine whether the character is a
letter, digit, or a control character.

string: Represents a sequence of characters. For strings all sequence operations are
available.

int: Represents integer numbers. The class provides the well-known binary arithmetic
operators addition (+), subtraction (-), multiplication (*), integer division (/), re-
mainder (%), and exponentiation (^). Additionally the unary predecessor, successor,
and negation operators are available.

nat: Represents special kinds of integers, i.e. integers with non-negative value. All the
operations available for type int are also available for type nat.

real: Represents rational and irrational numbers. Except for the remainder and integer
division operators, the same operators are available for real numbers. Additionally,
the division of real numbers is available as well as some functions to round the real
value to integer values.

set: Represents a collection of objects in which each item may only ever occur once.

seq: Represents an ordered collection of objects. The same item may occur arbitrarily
often in a sequence.

bag: Represents a collection of values with no order of items and no restriction on the
number of occurrences of one item.

pair: Represents a combination of two ordered items x and y. The items can be retrieved
from the pair p by accessing p.x or p.y respectively.
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triple: Represents a combination of three ordered items x, y, and z. The items can be
retrieved from the triple t by accessing t.x, t.y, or t.z respectively.

map of (X → Y): Represents a mapping of items of type X to items of type Y. Various
methods exist to access domain, range, or single elements, add or remove mappings.

void: Has only one valid value: null.

Various methods are available for collection types, set, sequence, and bag, that provide
for collection concatenation (++), intersection (**), difference (-), disjunction (##), or
counting the number of elements in the collection (#).

4.2.1 Further Operators

Additionally to the operators described within the list above some comparison operators
applicable for various types exist. These operators are listed and described in Table 4.2.

Table 4.2: Comparison operators in Perfect

Symbol Description
˜˜ The rank operator yields one of the values rank below,

rank same, rank below. It is predefined for enumera-
tion classes in which the declaration order defines the order
of the enumeration elements.

= Equality is defined automatically by the system, but the user
may provide a refinement. Whether the two operands are
equal depends on the values of all abstract data members.

< <= > >= The greater/smaller than (or equal) operators are predefined
for all classes representing numbers. The system defines
them automatically according to the definition of the rank
operator, e.g. a < b <==> a ˜˜ b = rank below

in The inclusion operator checks whether an element is in a
collection

««= =»» These inclusion and reverse inclusion operators compare two
collections whether one is a subset or strict subset of the
other set.

like Checks if the operands have exactly the same types at run-
time.

within Checks if a value is a member of one of the types forming a
united type.

Last, but not least, the sequence creation operator “..” shall be mentioned which is
defined for integers and characters. It yields a sequence of elements starting with the
element on the left side ranging up to the element on the right side. If the element on
the right is smaller, then the resulting sequence contains elements in decreasing order.
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4.3 Declarations
To declare a new variable the following statements are used in Perfect:

a: t Declares one variable a with type t
a, b, c: t Declares three variables a, b and c all with type t

Bound variable declarations may also declare variables as members of collections in
quantified and transformation expressions.

a::collection Declares variable a to belong to collection

4.4 Expressions
This section describes a selected set of expressions in Perfect that are necessary to be
understood for discussion of the transformation rules in Chapter 5.

4.4.1 Quantified Expressions

Perfect provides universal and existential quantification expressions over types and
collections. The syntax of this construct is given as follows:

(forall|exists) declaration :- predicate

The declaration part introduces some variables and for each of these variables it is
checked whether it satisfies the condition in predicate. The whole expression yields true
if all variables or at least one satisfies the predicate for the universal and the existential
quantification, respectively.

4.4.2 Choosing Elements Expressions

Elements of collections can be filtered so that exactly one, several or any of several
elements of the collection are chosen. Such constructs are built in the following way.

(that|any|those) declaration :- predicate

The declaration part may only declare one identifier in the way described in section 4.3.
The values referred to by the identifier are then filtered by the predicate resulting in
one or more elements. The meaning of any is to take any of these resulting values. For
that must be asserted that the result contains exactly one element or all elements are
equal. For these two options it is also possible to leave out the predicate, which is equal
to stating true as the predicate. In the third option those returns all the matching
elements.
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4.4.3 Transformation Expressions

Transformation expressions can be applied to sequences, sets or bags to transform the
elements of these collections. This language construct comes in two syntactical variations:

for identifier::collection yield expression

for those identifier::collection :- predicate yield expression

The first expression takes all elements of collection, referred to as identifier, and calculates
for each element expression. The second takes only those elements of collection that also
satisfy the predicate and then transforms these using expression. Both variants keep the
collection type, which means that for sets all duplicates of transformed elements will be
removed from the result set and the order of elements remains the same as for sequences.
In contrast, the element type depends on the result type of expression.

4.4.4 Conditional Expressions

A conditional expression consists of two or more guarded expressions enclosed in paren-
theses.

([Guard1] : Expression1,

[Guard2] : Expression2,

[] : ElseExpression)

The guards are evaluated in the order stated and if a guard evaluates to true, the
expression on the right side is evaluated and the conditional expression is exited. The
remaining guards are not evaluated. An empty guard, which is equivalent to a guard
containing true, can be added as shown in the last line to provide a branch to be executed
if all the others evaluate to false.

If a guarded expression is preceded by the keyword opaque, this makes the conditional
expression nondeterministic. In this case no default guard may be specified, but on the
other hand all guards are evaluated and in case there is more than one that yields true,
one is chosen arbitrarily.

4.5 United Types
To state that a function may return objects of some arbitrary class, but also the value
null, united types are useful.

a: string || void

The expression above states that variable a may be either string or void, i.e. have the
value null. This construct is not restricted to combinations with type void, and may be
used with any pre- or userdefined type.
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4.6 Type Conversion

Perfect provides two options to convert types, the operators is and as. The first operator
narrows the type of a variable whereas the second is the converse and widens the type.

a is string

42 as int || string

This first expression is only valid if a has run-time type string. In the other example the
automatic type integer of 42 is expanded to types integer or string.

Except for this explicit type widening, Perfect also allows for automatic type widening
in some cases as described in part three of the Perfect basic tutorial2 and [Esc, section
5.4.14].

4.7 Enumeration Classes

To define a class that has only a finite number of valid values, enumeration classes are
the best way to express that in Perfect. If one wants to define a type Color that may
take some particular values, this can be written as:

class Color ^= enum white, yellow, orange, red, purple, blue, green end;

Variables of types defined in that way can be declared in the same way as described in
section 4.3. The following example shows how to declare a variable of type Color and
how to refer to the values of the enumeration type to initialize variable colorOfCar.

colorOfCar: Color;

colorOfCar = Color red;

4.8 Declaring Subtypes

Sometimes only a restricted number of values of an already defined type may be needed for
some particular variable. For example, the scores of an examination may range between
0 and 100. A subtype of the integer numbers is advantageous for this purpose. Perfect
provides means for declaring subtypes using a those-clause similar to that described in
section 4.4.2.

class ExamScore ^= those x: int :- 0 <= x <= 100;

2http://www.eschertech.com/tutorial/tutorials_overview.php
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This creates the new type ExamScore and it may be used as such to declare variables.
Such type declarations may introduce new types deduced from any kind of pre- or user
defined type. The new type provides all the functionality of the original type, but only
for a restricted subset of values of the original type.

4.9 Abstract Classes

In Perfect the most complex types may be introduced by so-called abstract classes.
Listing 4.1 gives an overview of the structure of such a class in Perfect.
class ClassName of FormalParameters ^=

inherits SuperClassName
abstract abstractMembers
internal internalMembers
confined confinedMembers
interface interfaceMembers

end;

Listing 4.1: Abstract classes in Perfect

In the first line the class name is declared followed optionally by formal parameters used
for template classes. These formal parameters may also be followed by expressions defining
restrictions on the actual classes with which these formal parameters are instantiated.
The next part of the declaration is the optional inherits-clause which defines at most one
class as the direct superclass of this class.

The remaining part of the class specification is also referred to as the class body and
specifies the behavior of the class, its possible state transitions and may even provide
refinements and implementation details to improve performance while profiting from the
validation and verification mechanisms available in Perfect Developer. Constant, variable,
constructor, operator, function, selector, schema, property, axiom, and even inner class
declarations count amongst the member declarations possible in the four different sections
of the class body.

Abstract and internal sections are the private part of a class declaration and therefore
invisible for other classes. In contrast, the confined and interface sections are the public
part of the class declaration that may be visible and accessible for some or all other
classes. The order of the sections is mandatory as given in the class example in Listing 4.1.
However, a class can only specify one of abstract, confined, or interface part, the other
parts are optional then.

Abstract section: The abstract section counts among the two sections appearing in
most of the Perfect specifications. As described earlier this part of the specification
is private, which means that no other class can directly see or access the members
declared in this part. Except for member declarations, the abstract section is also
the place for defining class invariants that express relationships between abstract
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data members. Abstract data members together with class invariants form the
model of a class.
The postconditions of all constructors and modifying operations of the class have
to respect these relationships. Therefore, Perfect implicitly includes the invariants
in all these postconditions, which means that the whole postcondition, i.e. the
manually defined postconditions plus the implicit ones, yields false if the first part
contradicts the implicitly added invariants.

Internal section: This part describes actual implementations of abstract data members,
for example to represent data structures in a more efficient way. The internal
section may consist of the same building blocks as abstract sections including class
declarations and invariants, furthermore, implementations may be specified in the
internal section.

Confined section: This part contains declarations of those class members that are
intended to be visible for subclasses. Confined members are only directly accessible
within the defining class and all its derived classes. This section may contain
functions, selectors, properties, axioms, constructors, or redeclarations of abstract
variables or constants.

Interface section: Whereas the confined section is only visible and accessible for a
restricted group of classes, member declarations of the interface section are accessible
from any other object without restrictions. Interfaces may declare the same types of
members that confined sections do. The constructor provided for object initialization
is usually provided in this part of the class body. Interfaces are the second kind of
Perfect class body sections that are present in almost all Perfect specifications.

4.9.1 Class Member Declarations

This section gives an overview of what kinds of class members can be specified in the
four sections of the class body. Each syntactical element will be illustrated by a short
example, which will be part of the specification of a class representing currency amounts.

Constant Declarations

A constant in Perfect declares an identifier that gets a value on initialization and will
never change afterwards. The second characteristic of constants is that they have the
same value for all objects of the same class in which they are defined. Listing 4.2 shows
how to declare an identifier to hold a constant value of 99.
class CurrencyAmount ^=
abstract

const CENT_MAXIMUM ^= 99;
interface

?
end;

Listing 4.2: Constants in Perfect
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This is the most commonly used form of constant declarations. The syntax of Perfect
also allows for more complex structures in constant declarations, but as these will not be
relevant in the further course of this work, they are not discussed here. More details on
constant declarations are available in [Esc, chapter 6.2].

Variable Declarations

In Perfect a member variable declaration is started with the keyword var followed by a
declaration as defined in section 4.3 that specifies name and type of the variable.
class CurrencyAmount ^=
abstract

const CENT_MAXIMUM ^= 99;
var amount, cents: nat,

currency : string;
interface

?
end;

Listing 4.3: Variable declaration example

The variable declaration in Listing 4.3 declares three variables. The type of a variable
can be either a class name, a united type or a subclass of another type introduced by a
those-clause.

Invariants

In the presented example the cent values shall be constrained by an upper and lower
bound, which is expressed by an invariant in the abstract section.

invariant 0 <= cents <= CENT\_MAXIMUM;

After adding this invariant, it is no longer possible to set cents to any arbitrary value.
Invariants always start with the keyword invariant and are followed by a predicate
stating relationships between class members. An arbitrary number of invariants can be
provided in the abstract section of a Perfect specification.

Constructors

Constructors provide the means to create new objects of a class and at the same time
initialize the abstract data members of the object. Constructors always have to set each
abstract data member to some value while keeping all invariants satisfied.

The simplest form of constructor is written as follows.

build{};
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This can only be used in a context where no abstract data members have to be initialized.
As soon as there are abstract data members, the easiest way of initializing an object
is providing a parameter list containing each abstract member name preceded by “!”
together with its type. The CurrencyAmount class provides such a constructor as shown
in Listing 4.4.
class CurrencyAmount ^=

...
interface

build{!amount:nat, !cents:nat, !currency:string};
end;

Listing 4.4: Constructor example

This initializes the abstract data members to the values provided in the parameter list,
where the mapping is performed by means of the names. If one tries to verify this
specification in Perfect Developer, a conflict for the initialization of variable cents arises.
If a value of 100 or higher is provided as parameter to the constructor for this variable,
the invariant is no longer satisfied. To overcome this situation a precondition is added to
the constructor saying essentially the same as the invariant. However, the precondition
may even be more restrictive. The code snipped in Listing 4.5 shows the adoptions that
have to be made in the context of this class.
class CurrencyAmount ^=

...
interface

build{!amount:nat, !cents:nat, !currency:string}
pre 0 <= cents <= CENT_MAXIMUM;

build{!amount:nat, !cents:nat}
pre 0 <= cents <= CENT_MAXIMUM
post currency != "EUR";

build{centInput:nat}
post ([centInput > CENT_MAXIMUM]:

amount != centInput / (CENT_MAXIMUM + 1),
cents != centInput % (CENT_MAXIMUM + 1),

[]: amount! = 0, cents! = centInput),
currency != "EUR";

end;

Listing 4.5: Constructors with precondition example

In other cases it may be necessary to modify the input parameters or even set a variable
to a predefined value without the need of input parameters, then a postcondition is
added to the constructor. In the CurrencyAmount example it is convenient to provide a
constructor with a default value for the currency (i.e. “EUR” in the second constructor
of Listing 4.5).

A second form may be to provide the whole amount in cents as an input parameter.
This requirement is fulfilled by the third constructor in Listing 4.5, which differentiates
between the cases of cents below and including or over CENT MAXIMUM. In the first case
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the values can be set directly, whereas some calculations are performed for the latter
case.

Functions

Functions in Perfect assure to have no side-effects. They do not change the state of an
object, i.e. they do not modify values of member variables, but they always return at
least one value. Therefore, the function header comes in two forms. Simple functions
with only one return value can be written as:

function fName (parameterList):returnType

Functions with one or several return values have the following notation:

function fName (parameterList)retVal1:rType1, rVal2:rType2, rVal3:rType3

In both cases, the parameterList may be empty, so the whole expression, including
parentheses, is omitted. Directly following the function header, a precondition for the
function may be specified.

pre PredicateList

If a precondition is given, the function may only be executed, if the constraints are met
on function call time. Perfect Developer creates a verification condition to check that the
preconditions are satisfied for each function call.

The function body can also be specified in two different ways.

^= Expression

satisfy PredicateList

In the first case exactly one expression for each return value is given in the order
of appearance. In the satisfy-variant the terms result or result.returnValue
reference the return parameters and may be used more than once in the predicates of
the PredicateList. Redefining abstract member variables as functions in the interface or
confined section provides read-access to them. A temporary variable is declared to save
the container object for all parameters of a function. The single return values can be
accessed by referring to their names.

Listing 4.6 illustrates the different variants just described. Function convert2CA provides
one return value with the expression postcondition variant whereas convert2AmountNCents
also scales the CurrencyAmount but provides amount and cents separately using the
satisfy-form. The last function showRetvalAccess introduces a temporary variable to
show the access of the return values of another function.
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class CurrencyAmount ^=
interface

function convert2CA(factor: nat):CurrencyAmount
pre factor > 0
^= CurrencyAmount{((amount * 100 + cents) * factor)};

function convert2AmountNCents(factor: nat) amountRet: nat, centsRet: nat
pre factor > 0
satisfy ([cents * factor <= CENT_MAXIMUM]:

result.amountRet = amount * factor &
result.centsRet = cents * factor,

[]:result.amountRet = amount * factor + (cents * factor) / 100 &
result.centsRet = (cents * factor) % 100);

function showRetvalAccess(factor: nat):bool
^= (let retVal ^= convert2AmountNCents(factor);

(retVal.amountRet > 20 & retVal.centsRet > 20));
end;

Listing 4.6: Single- and multi-value return functions example

Selectors

To provide full read and write access to an abstract member variable or constant, this
member may be redeclared as selector in the confined or interface section. In this case
any other object of any class may read the value of the member and even arbitrarily
modify its value. As this would imply that invariants could not provably hold, it is not
allowed to express invariants with respect to members declared as selectors.
class CurrencyAmount ^=
interface

selector currency;
end;

Listing 4.7: Selector example

In the CurrencyAmount example a requirement might be to provide full read and
write access for the currency string. So this variable is redeclared as selector in the
interface section. Assuming another class has a member variable currencyAmount
of type CurrencyAmount, then this class may refer to the currency member by the
dot notation, currencyAmount.currency for both reading from and writing to the
member variable.

Operators

In many cases it is convenient to use well known operators in user defined types instead of
function names to express a similar meaning as the predefined operators. Perfect allows to
provide userdefined implementations for several unary and binary operators [Esc, section
6.6]. For convenience an operator for addition of amounts shall be specified for class
CurrencyAmount, as well. Listing 4.8 specifies the +-operator to add CurrencyAmounts
conveniently. This operator also takes care that the invariant for variable cents remains
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satisfied for the newly created CurrencyAmount object by distinguishing two cases in the
operator body. The first guard evaluates to true whenever the cents of the two operands
yield a value of at least 100. In this case the sum of the amounts must be increased by
one and the sum of the cents must be decreased by 100. Alternatively, the cent and
amount values of the operands simply have to be summed.
class CurrencyAmount ^=
interface

operator +(other: CurrencyAmount): CurrencyAmount
pre other.currency = currency
^= ([cents + other.cents >= 100]:

CurrencyAmount{amount + other.amount + 1, cents + other.cents - 100},
[]:CurrencyAmount{amount + other.amount, cents + other.cents});

end;

Listing 4.8: Operator for CurrencyAmount

Schemas

Whereas functions and operators described so far may only return new objects of the
same class, schemas also allow for changes of the values of member variables. Listing 4.9
shows the syntax of a schema.
schema !schemaName (parameterList)

pre preconditionPredicates
post postcondition;

Listing 4.9: Syntax of schemas in Perfect

The schemaName may be prefixed by an exclamation mark (!), depending on whether
the schema allows changes of member variables or not. Following the schema name, an
optional list of parameter name and type pairs may be given enclosed in parentheses.
While functions in Perfect may only use input parameters, Perfect allows four kinds of
parameters for schemas as listed here:

Input Parameters are declared as a pair of name and type, but without any kind of
decoration or keyword identifier. They may only be read by the schema.

Output Parameters are postfixed by an exclamation mark (!) and the type is preceded
by the keyword out. The initial values of such parameters are irrelevant, but final
values have to be given for these parameters

Limited Parameters are postfixed by an exclamation mark (!) and the type is pre-
ceded by the keyword limited. According to [Esc, chapter 6.8.1] these parameters
are only limited writable, that is, they may not be reassigned. Consequently, for
limited variables of union type, the actual type cannot be modified by the schema.

Repeated Parameters are all parameters declared after the keyword repeated. This
means that several parameters of one type may be given and the possible number
of these parameters is not predefined.

43



4. Perfect

If the schema is only applicable under certain circumstances, these conditions may be
specified in the precondition predicates given after the keyword pre. The postcondition
part provides the details on the actual state transitions. Such postconditions can be
expressed in various forms and provide different syntactical elements, that are described
in the next section.

4.9.2 Postconditions

The most general postcondition is defined by the change ... satisfy-form. Following the
keyword change all the variables have to be listed that will be modified by this schema.
The postcondition predicates after the keyword satisfy state the relationships of
variables before and after applying the schema by expressions using constants, parameters,
and state variables. In the predicate all the variables in the change list may be referred to
as primed variables. Although this form provides for literally all kinds of postconditions,
this structure also has some shortcomings as it is not always possible to automatically
deduce an implementation.

The assignment postcondition variation assigns an expression on the right hand side to
a variable on the left hand side. Although this approach is often an easy and straight
forward way of specifying state changes, this syntax is not applicable universally, but
only in those cases, where the new value can be explicitly written on the right side.

There is also a shorthand form which involves binary operators. A postcondition that
wants to double some value, add it to another variable and then assign it as new value to
this second variable could either be stated as follows:

post x!=x+2*y

post x!+2*y

schema !convertAmountChangeSatisfy(factor: int)
pre factor > 0
post change amount, cents

satisfy amount’ = amount * factor + (cents * factor) / 100 ,
cents’ = cents * factor % 100

schema !convertAmountAssign(factor: int)
pre factor > 0
post amount! = amount * factor + (cents * factor) / 100 &

cents! = cents * factor % 100

schema !convertAmountThen(factor: int)
pre factor > 0
post cents! = cents * factor then

amount! = amount * factor + cents / 100 then
cents! = cents % 100;

schema !convertAmountAnd(factor: int)
pre factor > 0
post amount! = amount * factor + (cents * factor) / 100 &

cents! = cents * factor % 100;

Listing 4.10: Different kinds of postconditions in Perfect
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The then-postcondition may be used to express a sequential order on postcondition
predicates. Primed subexpressions refer to the immediate after state, i.e. primed variables
in the left subpredicate refer to the intermediate state between applying the left and
the right subpredicate and unprimed variables in the right subpredicate may refer to
variables changed by the left subpredicate.

The &-postcondition may be used whenever parallel modifications to variables shall be
performed. As a consequence this form can only be applied if the sets of variables to be
modified of each individual postcondition are disjoint. Listing 4.10 shows examples for
the four schemas making use of all the four postcondition types described above. Each
schema provides exactly the same functionality, but expresses the result using different
syntactical elements. Listing 4.11 presents the usage of output variables in schemas in
conjunction with the application of the “&”- and “then” forms of postconditions.
schema !convertAmountAndReturn(factor:int, newAmount! : out CurrencyAmount)

pre factor > 0
post (cents! = cents * factor % 100 &

amount! = amount * factor + (cents * factor) / 100) then
newAmount! = CurrencyAmount{amount, cents};

Listing 4.11: Output parameters in combined “then” - and “&”-Postcondition

The bracketed postcondition given enclosed in parentheses allows introducing temporary
variables or constants. Additionally, guards as described in the conditional expressions
section 4.4.4 may provide different postconditions if certain boolean expressions specified
within the guard evaluate to true. An example is given in Listing 4.12.
schema !convertAmout2CentNAmountNReturn(factor: int,newAmount!:out nat,newCents!:out

nat)
pre factor > 0
post (let centsTimesFactor ^= cents * factor;

[centsTimesFactor <= CENT_MAXIMUM]: newAmount! = amount * factor &
newCents! = cents * factor,

[]: newAmount! = amount * factor + (cents * factor) / 100 &
newCents! = (cents * factor) % 100);

Listing 4.12: The bracketed postcondition

If all elements of a collection shall be modified in one step, forall-postconditions may be
helpful. The syntax is similar to the bound variable expressions described in section 4.4.1
except that the predicate of the bound variable expression is replaced by a postcondition
predicate. A valid example of this kind of postcondition is given in Listing 4.13. The
prefix keyword nonmember makes function toLowerCase accessible on class, not object
level.
nonmember function toLowerCase(aString: string): string

^= (for c::aString yield c.toLowerCase);

schema !convertCurrenciesToLowerCase
post (forall i::0..<#currencies :- currencies[i]!=toLowerCase(currencies[i]));

Listing 4.13: Valid “forall” postcondition
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schema !convertCurrenciesToLowerCase
post (var lowerCaseCurrencies: string != "";

forall i::0..<#currencies :- (currencies[i]! = toLowerCase(currencies[i]),
lowerCaseCurrencies! = lowerCaseCurrencies ++ currencies[i] ++ ","));

Listing 4.14: Invalid “forall” postcondition

As the modifications described by this postcondition type are considered to happen in
parallel, the changed objects must be distinct and constructs such as the one presented
in Listing 4.14 are not possible. The variable lowerCaseCurrencies aims on containing all
the currencies in lower case concatenated to one string where each currency is separated
from the next by a space. However, as lowerCaseCurrencies does not depend on the
bound variable i, this means that lowerCaseCurrencies would have to be modified by
several postconditions in parallel. This is a situation that cannot be satisfied.

4.9.3 Calling Schemas

A modifying schema is called using a similar notation as in function calls, but the dot
between variable name and function name is replaced by an exclamation mark indicating
that the object is modified by the schema.

schema !convertAmount(factor : int)
pre factor > 0
post currencyAmount!convertAmountAssign(factor);

Listing 4.15: Schema calls in Perfect

To conclude this section about class member declarations, a remark for constants,
functions, selectors, operators, and schemas is added. All these kinds of members may
be declared preceded by the keywords opaque or ghost. The first keyword always
introduces a nondeterministic context that has to be propagated upwards. The latter
defines that no code has to be produced for these members. Ghost members are usually
helper functions used in the context of invariants, assertions, or preconditions.

4.9.4 Preconditions

Preconditions as already used for operators, functions, selectors, constructors, and
schemas define the criteria in which cases such a member may be applicable or not. A
precondition is a predicate that may refer to any member variable, constant or input
parameter and expresses the relationships that have to be true before such a method
may be used. It specifies a part of the contract that the client, i.e. the method caller,
has to ensure so that the method can be used. On the other hand it defines the contract
for the server, that it delivers the results specified in the postcondition whenever the
precondition is satisfied.
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4.9.5 Postassertions

The other part of the contract that is concluded between a method and its caller is
specified in a so-called postassertion. Postassertions define the conditions which are
guaranteed to hold after the method call whenever the method is called in a state and
with parameter values such that the precondition is satisfied. Postassertions can be given
for operators, functions, selectors, constructors, and schemas, and describe the return
value or final value of a modified object. In the case of schemas the postcondition has to
imply the postassertion, i.e. the conditions defined by the postcondition also imply that
the conditions given in the postassertion hold.
schema !convertAmount(factor: int)

pre factor > 0
post cents! = cents * factor then

amount! = amount * factor + cents / 100 then
cents! = cents % 100

assert amount’ = amount * factor + (cents * factor) / 100,
cents’ = cents * factor % 100,
(factor > 1) ==> amount’ >= amount;

function convertAndCutToAmountByFactor(factor:int) amountRet: nat, centsRet: nat
pre factor > 0
satisfy (let retVal ^= convertAmoutToCentAndAmount(factor);

(result.amountRet = retVal.amountRet & result.centsRet = 0))
assert result.amountRet >= amount * factor,

result.centsRet = 0,
(cents * factor <= CENT_MAXIMUM) ==> result.amountRet = amount * factor,
(cents * factor > CENT_MAXIMUM) ==> result.amountRet > amount * factor;

Listing 4.16: Postassertion examples

The assertion in the schema example in Listing 4.16 states very much the same as the
postcondition, but expresses the relationship between amount and cents and their final
states by using only one predicate for each variable. Additionally, the last condition
asserts that if the parameter factor is bigger than one, then the final value of amount
must be at least as high as the initial value of amount.

As function convertAndCutToAmountByFactor shows, assertions may also be used in
function definitions. In this case the assertion says something about the return value
or object result and the function body has to deliver return values that satisfy the
postassertions.

4.9.6 Properties

Properties are class member declarations, but are at the same time a special kind of
assertion that may also involve more than one operator, function, or schema. That is
why they have not been described in previous sections. In the examples in the previous
sections some functions and schemas have been introduced that essentially calculate the
same values. To allow Perfect to create checks on whether these equalities hold, one may
specify properties that express these relationships.
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The difference between functions convert2AmountNCents and convertAndCutToAmount-
ByFactor is that the latter cuts the cents, but the amount must be the same if the
input factor is the same. The property declaration shown in Listing 4.17 states the
relationship between the two functions and at the same time provides this information to
the verification engines, which can help in proving verification conditions.
property (factor: int)

pre factor > 0
assert convert2AmountNCents(factor).amountRet =

convertAndCutToAmountByFactor(factor).amountRet,
convert2AmountNCents(factor).centsRet >=

convertAndCutToAmountByFactor(factor).centsRet;

Listing 4.17: Properties in Perfect

4.9.7 Axioms

Sometimes the verification engine of Perfect is unable to prove certain verification
conditions. If the specifier knows about predicates that can be considered as true, an
axiom can be provided stating these constraints. The verifier will then assume that this
axiom is true and can therefore include this assumption in its verification process.
function convertAmountWithReal(factor: real): CurrencyAmount

pre factor > 0.0
^= CurrencyAmount{((amount * 100 + cents) * factor).rounddn};

axiom (realValue:real)
pre realValue >= 0.0
assert realValue.rounddn >= 0;

Listing 4.18: Axioms in Perfect

The constructor of class CurrencyAmount needs a non-negative integer parameter
value, but the rounding functions provided by class real like rounddn do not assert
the return value to be positive even if strictly positive numbers are handed over as
parameter. Providing an axiom stating such knowledge not yet known may help the
verification engine in the verification process. The axiom in Listing 4.18 states that if
function rounddn is applied to a non-negative real number, then the return value is also
non-negative and can be considered as a fact by the Perfect verifier.

4.9.8 More on Genericity

When using template classes, sometimes certain operators or functions need to be available
to properly specify the generic functionality. Perfect provides the rank operator and a
ghost equality by default for template classes. To complement these, requirements on
the formal parameters, such as necessary operators, functions, or schemas available for
a template class or restrictions on the class hierarchy, may be specified in an optional
part. Functions or operators specified in the require-part of a template declaration
can be assumed to exist and may be used for members of generic class. Additionally,
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a verification condition is created for each reference to an object of the template class
which instantiates parameter X.

Assuming that there is a hierarchy with BankCard as superclass and DebitCard and
CreditCard as subclasses, the example in Listing 4.19 declares a template class BankCards,
which may hold either a set of BankCard, DebitCard, or CreditCard objects.
class BankCards of X

require X within BankCard
^= set of X;

Listing 4.19: Restrictions on templates in Perfect

In the second example in Listing 4.20, a template Queue is introduced, which may hold
elements of any class that defines a function isSpecialItem without parameters.
class Queue of X

require X has function isSpecialItem
^= ClassBody

end;

Listing 4.20: More restrictions on templates in Perfect

4.9.9 More on Inheritance

All confined and interface members are inherited to subclasses and can be accessed by new
or overriding members. In the class body members that have already been declared may
be redefined, but must have the same signature as the overridden member, i.e. have
the same parameters and deliver the same result type. Additionally, an overriding schema
or function always has to be applicable whenever the overridden member is applicable.
The results delivered by the function or the postcondition of the schema must satisfy the
specification of the overridden member.

It is also possible to leave the specification details for later and declare interface functions,
operators, selectors, schemas, and, as a consequence whole classes, as deferred. In this
case one cannot instantiate objects of this class, but variables can be declared as from
DeferredSuperClass. Such variables can then reference objects of any class derived
from this deferred class. Deferred classes may actually define some of the functions or
schemas etc in the class or at least give a postassertion, while leaving some others for
specification in subclasses. If a deferred member is overridden the first time, the keyword
define must be given as a prefix.

The example in Listing 4.21 defines two classes Shape and Polygon. The deferred class
Shape provides the actual specification of schema translate including a postassertion
that is inherited in all derived classes. The absence of the precondition of this schema
in the derived class shows how preconditions can be loosened in overriding methods of
subclasses. The function perim only provides a postassertion in class Shape, whereas
Polygon provides a definition of this method for which the return value has to satisfy the
given assertion.
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class Point ^=
abstract

var x, y: int;
interface

selector x, y;
build{!x: int, !y: int};

end;

deferred class Shape ^=
abstract

var startingPosition: Point;

interface
build{!startingPosition: Point};

selector startingPosition;

schema !translate(vX: int, vY: int)
pre vX > 0, vY > 0
post startingPosition!= Point{startingPosition.x + vX, startingPosition.y + vY}
assert startingPosition’.x = startingPosition.x + vX,

startingPosition’.y = startingPosition.y + vY;

deferred function perim: int
assert result > 0;

end;

class Polygon ^=
inherits Shape

abstract
var nodes: seq of Point;
invariant #nodes >= 3;

interface
build{startingPos: Point, !nodes: seq of Point}

pre #nodes >= 3
inherits Shape{startingPos};

redefine schema !translate(vX: int, vY: int)
pre vX > 0, vY > 0
post startingPosition!= Point{startingPosition.x + vX, startingPosition.y + vY}
assert startingPosition’.x = startingPosition.x + vX,

startingPosition’.y = startingPosition.y + vY;

define function perim: int
^= (+ over(for i::(nodes.front.dom) yield length(nodes[i], nodes[i+1])));

nonmember function length(p1:Point, p2:Point): int
^= p1.x - p2.x + p1.y - p2.y;

end;

Listing 4.21: Inheritance in Perfect

This short section on inheritance concludes the overview of the Perfect language. The
next chapters will provide the abstract mapping of Object-Z to Perfect and detailed
information on the implementation of this mapping.
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CHAPTER 5
Mapping Object-Z to Perfect

This chapter presents the solutions and results found in this work, which were also
practically realized as tool as described in Chapter 6. The mappings of most Object-Z
constructs to equivalent constructs in Perfect and why these are deemed appropriate in
this work are shown here. While some transformations could be easily found and the
rules are straight forward, some other, more complex Object-Z constructs needed a more
thorough analysis to provided a suitable mapping to Perfect. First the conversion for
different kinds of expressions is presented, then the mapping rules for each of the building
blocks of an Object-Z class specification are described. This work illustrates many of
the mappings, especially the more complex ones, using examples given in Object-Z and
Perfect. Whenever the semantics of an Object-Z syntax element have not been discussed
in the introductory sections, a short description is given here. Considering all the present
state of the art and related work, this chapter provides a mapping of all core Object-Z
language syntax and semantics and even for some of the more complicated Z expressions.
However, some Z constructs are only partially mapped, because more analysis on the
context in which these expressions are used. This work mainly focusses on mapping the
object-oriented language constructs of Object-Z, not Z expressions.

5.1 Definitions
During the descriptions of the mappings some keywords will be used repeatedly and it is
essential that the intended semantics are clear. Therefore some definitions are provided
here for the better understanding.

Base name: The base name of a variable is the name of a variable without decorations.
Decorations can be ’, ! and ?.

Attribute: State variables and constants together form the attributes of a class.
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Feature: The features of a class are all attributes and operations of a class and INIT if
the initial state schema exists

Type compatibility: Two type definitions are compatible if they define identical
sets. [Smi00, p. 46]

Signature compatibility: Two operation definitions have exactly the same input and
output variables with regard to name and type.

5.2 Expressions
Most of the expressions described in the following sections are not only syntax elements
of the Object-Z language, but also of the Z language. In the Z reference manual [Spi89]
Spivey describes the semantics formally and informally in the mathematical toolkit section.
Examples for Z/Object-Z expressions can also be found in Appendix A of [DR00].

5.2.1 Sets

In Object-Z there are several ways of defining sets, creating sets out of others or applying
functions to them. Table 5.1 lists these different possibilities providing also the names
used for these symbols, their usage in Object-Z, and their mappings to Perfect.

Object-Z distinguishes between two kinds of sets regarding the magnitude. Whereas
the power set is regarded as potentially infinitely large, the finite set always has a finite
number of elements. In Perfect sets are always considered as finite, only a pre- or
user-defined type like natural numbers may have an infinitely large number of elements.
This means that mapping both kinds of sets to set of X as presented in Table 5.1 does
not reflect the potential infiniteness of power sets in Object-Z in Perfect, but is regarded
as most accurate because Perfect does not provide a means of expressing infinite sets.

While the mapping of functions like set union, intersection, difference, size, and minimum
or maximum does not need detailed explanation as these language constructs can be
directly mapped to equivalent functions provided by the Perfect library, the functions at
the bottom of Table 5.1 need further comments on why these mappings are appropriate.
As observable in Table 5.1 Perfect provides an operator “..” denoting a range as well,
but the semantics of this operator is slightly different in Perfect. While Object-Z creates
a set of integer values if a is less or equal to b by using the range operator, Perfect
produces a sequence of integer elements starting from a ranging up to b no matter which
of the values is larger. To overcome this difference, it is necessary to distinguish between
two cases and apply the function .ran to the result of the range-operator in the mapping
to Perfect. This results in a set of exactly the same integer values as in Object-Z.

The last two functions Generalized Union and Generalized Intersection operate on a
set of sets of some type X in Object-Z. The first shall produce a set of all the elements
appearing in at least one of the subsets of A, the latter stands for the set of all those
elements contained in all the subsets of A. To map these generalized operations, the
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Table 5.1: Mapping of sets and operations on sets to Perfect

Name Usage in Object-Z Mapping to Perfect
Power Set PX s: set of X

Non-empty Subset P1X s: set of X

invariant #s > 0

Finite Set FX s: set of X

Finite Non-empty Set F1X s: set of X

invariant #s > 0

Empty Set ∅ set of X {}

Cartesian Product X ×Y pair of (X, Y)

Set Membership ∈ 6∈ in ~in

Subset ⊆ <<=

Proper Subset ⊂ <<

Set Union ∪ ++

Set Intersection ∩ **

Set Difference \ --

Set Size # #

Minimum min s s.min

Maximum max s s.max

Range a . . b ([a<=b]:(a..b).ran,
[]: set of int {})

Generalized Union
⋃
A flatten(A) or

([A.empty]: set of X {},

[]: ++ over(A)

Generalized Intersection
⋂
A ([A.empty]: set of X {},

[]: ** over(A)

Perfect over-expression is helpful. This expression allows a binary operator to be applied
to a set, bag, or sequence. In this case the binary operators ++ and ** may be utilized
as described for set union and set intersection in Table 5.1 and they are applied to a
set with element type set of X. In case set A does not contain elements, the result is
simply a new empty set. In addition, Perfect provides for an even more elegant way of
mapping generalized union: the pre-defined function flatten makes one big set out of
a number of sets that have all elements of the same type.

5.2.2 Relations

Relations provide a means of combining two values into one pair. The simplest form
of relations is the binary relation, further forms and operations that may be applied to
relations are shown in Table 5.2.

The binary relation described in Table 5.2 is defined as X ↔ Y == P(X × Y ) in the
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Table 5.2: Mapping relations and their operations to Perfect

Name Usage in Object-Z Mapping to Perfect
Binary Relation X ↔ Y set of pair of (X, Y)

Ternary Relation X ↔ Y ↔ Z set of triple of (X, Y, Z)

n-ary Relation X ↔ ...↔ Z set of nTuple of (X, ..., Z)

Relation Usage a rel b pair of (X, Y){a, b} in rel

(a, b, c) in rel triple of (X, Y, Z){a, b, c} in rel

Maplet x 7→ y pair of (X, Y){x, y}

mathematical tool kit of the Z reference manual [Spi89]. So, the mapping to Perfect is
basically just a combination of the mappings of cartesian product and power set. Ternary
relations can be easily expressed in Perfect using triples. In Object-Z relations can be
created with an arbitrary number of parameter elements. Perfect only provides pair
of and triple of as equivalent expressions. For tuples or n-ary relations with n > 4,
it is preferable to define new Perfect classes fourTuple, fiveTuple and so on, in the same
ways as for pairs and triples. This makes the whole specification more readable and even
simplifies the transformation as n-tuples only need to be prefixed by the appropriate
class name, of and the list of types.
The following simple example illustrates what the mapping looks like using the instructions
stated above. X1 to X6 are the types of the single elements:

(a, b, c, d, e, f )

sixTuple of (X1, X2, X3, X4, X5, X6){a, b, c, d, e, f}

Relation usage refers to the language construct used to show whether elements are related
or an n-tuple is a subset of a relation. The last line in Table 5.2 provides a mapping for
the maplet construct, a representation of an ordered pair as described in the mathematical
toolkit of Z in [Spi89, chapter 4.2].

5.2.3 Functions

Functions are a special kind of relations. In Object-Z, there are several kinds of functions
symbols that are used in declarations to define variables of functional types. Perfect uses
the map of (X -> Y)-class to express such function types, but this construct does
not reflect the invariants that are inherently stated by the different function symbols in
Object-Z. So they have to be explicitly added to the invariants part of the mapping to
Perfect. Table 5.3 provides an overview of the basic rules how functions and function
references are mapped to Perfect and the invariants that have to be added for each
function type.

In Table 5.3 it is easily observable, that the invariants given for the finite partial function
and finite partial injection are equal to their non-finite counterparts. As with sets, maps
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Table 5.3: Basic translation rules for functions and mapping different function types to
Perfect

Function type Usage in Invariants to Be Added
Object-Z

Function definition f : X → Y f: map of (X -> Y)

Access of functions f (x) = y f[x] = 2 * y

Partial function f : X 7→ Y no invariants to add
Total function f : X → Y invariant forall x:X :- x in f;

Partial injection f : X 7� Y invariant forall x1::f.dom, x2::f.dom

:- f[x1] = f[x2] ==> x1 = x2;

Total injection f : X � Y invariant forall x1::f.dom, x2::f.dom

:- f[x1] = f[x2] ==> x1 = x2;

invariant forall x:X :- x in f;

Partial surjection f : X 7→→ Y invariant forall y:Y :- y in f.ran;

Total surjection f : X →→ Y invariant forall y:Y :- y in f.ran;

invariant forall x:X :- x in f;

Bijection f : X �→ Y invariant forall y:Y :- y in f.ran;

invariant forall x:X :- x in f;

invariant forall x1::f.dom, x2::f.dom

:- f[x1] = f[x2] ==> x1 = x2;

Finite partial function f : X 7 7→ Y no invariants to add
Finite partial injection f : X 7 7� Y invariant forall x1::f.dom, x2::f.dom

:- f[x1] = f[x2] ==> x1 = x2;

in Perfect are implicitly finite and hence, the mapping is not completely equivalent for
non-finite functions, but as long as a mapped value is included for each object of interest
the result is still sufficient.

5.2.4 Operations on Relations and Functions

For relations and functions, there are several operations available. However, due to the
fact, that relations are mapped differently to Perfect than functions, it is necessary to
distinguish in all cases between functions and relations. First, the translation of domain
and range operations is shown in Table 5.4. While the operations on functions can be
mapped by the equally named functions .dom and .ran, a suitable mapping for relations
can be created using a for-clause to select only the elements of the left or the right hand
side of the relation.

Additionally, mappings for domain and range restriction and anti-restriction as well as
overriding will be presented. First, the mappings for domain and range restriction and
anti-restriction are presented in Table 5.5. These two operations aim on narrowing the
possible pairs of a binary relation R to allowed or forbidden values (sets S or T) on
left or right hand side of the pair. The mapping of this operation for functions has to
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Table 5.4: Mapping of domain and range operations of functions to Perfect

Description Usage in Object-Z Mapping to Perfect
Relations
Domain dom rel for x::rel yield x.x

Range ran rel for x::rel yield x.y

Functions
Domain dom f f.dom

Range ran f f.ran

yield a map of (X -> Y), whereas the mapping for relations has to result in a set
of pair of (X, Y). To create sets of pairs the those-clause can be used in Perfect.
Domain and range values of a pair are accessed by selectors x and y, respectively. In case
of functions, first the pairs are extracted from the original map and the set of restricted
pairs is taken as input for the resulting map.

Table 5.5: Mapping domain and range restrictions to Perfect

Description Object-Z Perfect
Relations
Domain Restriction S C R those x::R :- x.x in S

Range Restriction R B T those x::R :- x.y in T

Domain Anti-Restriction S −C R those x::R :- x.x ~in S

Range Anti-Restriction R −B T those x::R :- x.y ~in T

Functions
Domain Restriction S C R map of (X -> Y)

{those x::R.pairs :- x.x in S}

Range Restriction R B T map of (X -> Y)

{those x::R.pairs :- x.y in T}

Domain Anti-Restriction S −C R map of (X -> Y)

{those x::R.pairs :- x.x ~in S}

Range Anti-Restriction R −B T map of (X -> Y)

{those x::R.pairs :- x.y ~in T}

The last available operation for relations and functions is the override-operation. Accord-
ing to the mathematical toolkit of the Z language [Spi89, p. 102] the override function
S = Q ⊕ R means that in the resulting relation S , everything in the domain of R is
related to what it is related in R, and everything else in the domain of Q is related to
what it is related in Q. The mappings for relations and functions are shown in Table 5.6.

The mapping approach for relations is taking all the pairs of Q, in which the first value
is not first value of any of the pairs in R, and join these pairs with all the elements of
R. In Perfect, this can be expressed using a those-clause. In the case of functions, the
mapping has to be separated into overriding of functions by other functions (translated
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to maps in Perfect) or by a relation or set (translated to a set of pairs). In the first
case, the mapping is similar to domain and range restriction. The map of (X->Y)
constructor taking a set of pairs builds a new map from elements in Q for which there
is no corresponding element in map R, i.e. a pair with the same left hand side. The
resulting map is united with R using the ++-operator. For the second case, the selection
of the elements of qMap has to be modified to a Perfect transformation expression using
the for-clause to adapt the different mapping of the Object-Z dom function to Perfect
for relations as described earlier. Both cases are illustrated in Table 5.6.

Table 5.6: Mapping overriding for relations and functions to Perfect

Name Object-Z Perfect
Relations qRel ⊕ rRel (those q::qRel :-

(exists i::rRel :- q.x = i.x))++ rRel

Functions qMap ⊕ rMap map of (X->Y){

for those q::qMap.dom :-

q ~in rMap.dom yield

pair of (X, Y){q, qMap[q]}} ++ rMap

qMap ⊕ rRel map of (X->Y)

for those q::qMap.dom :-

q ~in (for r::rRel yield r.x)

yield pair of (X, Y){q, qMap[q]} ++ rRel}

5.2.5 Sequences

Sequences are basically functions from the natural numbers to some other type X. Table 5.7
describes ways how to declare different kinds of sequences and lists functions on sequences
together with their mappings to Perfect. It must be noted that Object-Z indices start
at value 1, whereas Perfect starts at index 0. This difference has to be reflected in a
modification of the mapping whenever elements of the sequence are accessed by their
index numbers and the index number is not retrieved from the sequence itself, but rather
user input or program input like a set of values.

Additionally to operations listed in Table 5.7, operations like ran and dom on binary
relations as described in sections 5.2.2 and 5.2.3 are also applicable to sequences. Perfect
operators ran and dom are also available for the sequence type. The Object-Z operator
# denoting set size or number of elements may as well be applied to sequences and is
mapped to the # operator in Perfect that returns the number of elements in the sequence.

Extraction on a sequence denoted by U � s with a set U of positive natural numbers and
some sequence s means that only those sequence elements of s shall be adopted to the
resulting sequence that have an index that is given in the set of positive natural numbers
in U and that are at the same time valid indices in the sequence s. To accomplish
a mapping with the same meaning in Perfect, first the set U is transformed into a
non-decreasing sequence and all elements that exceed the number of valid indices in s
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Table 5.7: Mapping sequences and operations for sequences to Perfect

Description Usage in Object-Z Mapping to Perfect
Finite Sequence s : seqX s: seq of X

Non-empty Finite s : seq1X s: seq of X

Sequence invariant #s > 0

Injective Sequence a : iseqX a: seq of X

invariant forall x :: a

:- (x # a)= 1

Empty Sequence 〈 〉 seq of X{}

Sequence Size #s #s

Concatenation s1a s2 s1 ++ s2

Reverse rev s s.rev

Head of Sequence head s s.head

Last of Sequence last s s.last

Front of Sequence front s s.front

Tail of Sequence tail s s.tail

Extraction U � s for those i :: u.permndec

:- i < #s yield s[i-1]

Filtering s �V those elem::s :- elem in V

Prefix Relation s1prefix s s.begins(s1)

Suffix Relation s1 suffix s s.ends(s1)

Segment Relation s1 in s s1 <<= s

Distributed Concatenation a/ q flatten(q)

are filtered out. Second, for each of these index elements the element of sequence s at
this index is put into a new sequence, which results in the expected sequence.

Filtering is the counterpart to extraction. Applying filtering by some set V to sequence
s with elements of the same type, denoted by s � V , yields a sequence of elements, where
all elements are removed from the sequence that are not in V . The mapping to Perfect is
similar as the one for range restriction, only those elements that are in the sequence and
satisfy the condition to be also contained in set V are added to the resulting sequence.

The last function in Table 5.7, distributed concatenation creates one flattened sequence
from the sequence of sequences of some type X . This operation strongly resembles
the generalized union of sets and in fact it can be mapped to Perfect in the same way.
The global function flatten is also defined for seq of seq of X in Perfect, so this
function can be directly applied to q to yield the expected sequence of elements of type
X .

58



5.2. Expressions

5.2.6 Bags

Whereas sets may only ever contain equal items once, bags may include any number of
the same item. Therefore, a special multiplicity operation, counting the occurrences of
an item in the bag, is available for this kind of collection. Table 5.8 shows the mappings
of bags and operations on these bags.

Table 5.8: Mapping bags and operations on bags to Perfect

Description Usage in Object-Z Mapping to Perfect
Bag bag X bag of X

Empty Bag [[ ]] bag of X{}

Multiplicity a]x a # x

Bag Scaling n ⊗ x x.rep(n)

Bag Membership a ` x a in x

Sub-bag Relation x1 v x2 x1 <<= x2

Bag Union x1 ] x2 x1 ++ x2

Bag Difference x1 −∪ x2 x1 -- x2

Bag of Elements of a Sequence items s s.ranb

5.2.7 Collection Constructors

It is possible to explicitly construct a collection by listing their members explicitly
for all three Object-Z collection types. Table 5.9 sums up the mappings for collection
construction. The number of expressions building up the collection is arbitrary, i.e. one
or more.

Table 5.9: Mapping collection construction expressions to Perfect

Description Usage in Object-Z Mapping to Perfect
Set {e1, e2, e3, ...} set of X{e1, e2, e3, ...}

Sequence 〈e1, e2, e3, ...〉 seq of X{e1, e2, e3, ...}

Bag [[e1, e2, e3, ...]] bag of X{e1, e2, e3, ...}

5.2.8 Set Abstraction

Another way to construct sets is making use of the Object-Z set abstraction construct:
{declarations | predicates • expression}
The declarations part defines variables, the predicates part, if existent, may restrict the
defined variables and the remaining expression part may transform values of declared
variables. The result is the set of all these restricted and transformed variables. Some
examples for this syntactic structure are given in appendix A of [DR00, p. 202].

Similar Perfect language constructs that could be used for a mapping are the those
and the for those clauses depending on whether expression is provided or not. The
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first construct has the limitation that declarations with a predefined or user defined type
do not produce a set of values, but a new type, so such expressions are only supported
in a context where a type is expected, like the declaration of subtypes (section 4.8) or
as type in variable declarations. In other contexts those-clauses may only be used in
a way such that they deliver finite collections. In this usage context only the variation
with bound variable declarations can be applied such that the mapping produces a set
as result. Therefore, the type of the declaration either has to be a collection or a type
restricted to a discrete number of values.

Finiteness can be achieved for natural numbers or integers, whenever the predicates
restrict the set by a lower and upper bound. The implicit lower bound of natural numbers
is n > 0. In such cases the set of values can be defined using the range operation
lowerBound . . upperBound introduced in section 5.2.1. A simple approach for finding
a lower or upper bound for the type expressions is to take comparison expressions like
100 > varName with varName as only operand on one side into consideration. One can
easily deduce an upper bound from such expressions.

For other pre- or user-defined classes, no transformation rules will be presented in this
work because a much deeper analysis of the context would be necessary to provide a
general mapping, which is out of scope of this work. Table 5.10 sums this up for set
abstractions without transformation expressions.

Table 5.10: Mapping set abstraction without transformations to Perfect

Declaration Type Mapping to Perfect
Collection Expressions
{v : coll | pred}
Sets those v::coll :- pred

Bags or Sequences (those v::coll :- pred).ran

Type Expressions
{v : type | pred} those v: type :- pred

But limited usage
Natural numbers those v::(0 .. upperBound).ran :- pred

if uppperBound can be found in pred
Integer numbers those v::(lowerBound .. upperBound).ran :- pred

if lowerBound and upperBound can be found

As described in section 4.4.3 transformation expressions in Perfect only work with a
bound variable declaration, which means that they can only be used when the type of
the declared variable in the set abstraction is a collection expression, collection typed
variables, or an upper and lower bound for an integer typed variable can be found just
like for set abstraction without transformations. A mapping to Perfect for all other kinds
of set abstraction is more sophisticated and a more in-depth analysis has to be made
to be able to perform an automatic mapping. Therefore, no rules are presented here to
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transform such Object-Z expressions to Perfect. Table 5.11 sums up the mapping rules
for set abstraction with transformations.

Table 5.11: Mapping set abstraction with transformations to Perfect

Declaration Type Mapping to Perfect
Collection Expressions
{v : coll | pred • expr}
Sets for those v::coll :- pred yield expr

Bags or Sequences (for those v::coll :- pred yield expr).ran

Type Expressions
{v : type | pred • expr}
Natural & Integer Numbers for those v::(lowerBound..upperBound).ran :- pred

if lowerBound and upperBound can be found in pred
In General No mapping, in depth case by case analysis necessary

According to the syntax definition it is also possible to declare more than one variable
in the declaration section. However, neither Duke and Rose [DR00] nor Smith [Smi00]
give examples of such set constructions. One can deduce from the semantics described in
[DR00] that variables of different types would all be combined to a tuple of values. As
Perfect cannot handle sets of different, non compatible types and the focus of this work
is on Object-Z while only providing a basic set of transformation rules for the various
expressions, finding a mapping covering all aspects and usage variations of set abstraction
is left for future work.

5.2.9 Summation

A construct similar to set abstraction is summation with the following syntax:
Σ schemaText • featureCall
It can be used to sum a list of values, i.e. as in set abstraction schemaText introduces a
set of values or objects and for each of these an object feature is accessed or a function is
applied (featureCall). The resulting values are then added so that the summation finally
delivers one result. In general, the operation is only applicable for features and functions
with a type that has a +-operator defined.

Table 5.12: Mapping summation functions to Perfect

Usage in Object-Z Mapping to Perfect
Σ schemaText • featureCall + over( schemaText • featureCall )

Mapping von schemaText • featureCall
wie bei set abstraction.

The mapping for the schemaText • featureCall part is the same as in Table 5.11 with
expression substituted by featureCall. Table 5.12 illustrates that summation is achieved
using the over-construct of Perfect in combination with the +-operator.
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5.2.10 Numbers

Expressions may also be formed out of relations or operations on numerical values and
variables. Mappings of arithmetic operators and relations are shown in Table 5.13.

Table 5.13: Mapping operations for numbers to Perfect

Name Symbol in Object-Z Mapping to Perfect
Binary + − ∗ / div mod + - * / / %

Unary − -

Comparison < 6 > > < <= > >=

Successor succ(n) >n

Boolean valued expressions are conjoined using logical connectives, not comparison
operators because in Object-Z the latter are not applicable for the boolean values true
and false. To read more about the mapping of logical operators, refer to section 5.2.16.

5.2.11 Genericity

Genericity in Object-Z classes has been introduced in section 3.2. Table 5.14 shows a
summary how to map these generic parameters to Perfect and how a generic instantiation
looks like in both languages. Formal and actual parameters are mapped to Perfect in the
same way.

Table 5.14: Generics in Object-Z and Perfect

Type Usage in Object-Z Mapping to Perfect
Formal parameters Queue[Item] Queue of Item

Actual parameters ClassName[int,nat] ClassName of (int,nat)

5.2.12 Object References

In Object-Z an object can reference itself by using the keyword self . This allows, for
example, to hand over the object itself to another object as a schema input parameter.
In Perfect the same keyword is used to reference the object

Table 5.15: Self-Reference in Object-Z and Perfect

Usage in Object-Z Mapping to Perfect
self self

5.2.13 Equality in Object-Z and Perfect

Object-Z is a language that uses reference semantics. Therefore, each object is considered
to have its own identity and two objects are considered equal only if they are really
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identical with respect to this identity. The inner state of the object is not examined when
two objects c1 and c2 are checked for equality.

In contrast, Perfect uses another approach and considers all abstract data variables of
the two objects to be compared for equality [Esc, chapter 5.3.3]. However, primitive
types like natural numbers, or integers can be directly compared for equality. Collections
make use of the equality operators of their elements. So collections of primitive types are
compared whether both contain elements with the same values, but if the elements are
arbitrary objects, comparison is based on the inner object status, not object identity.

A summary of how to map the equality operator to Perfect is given in Table 5.16

Table 5.16: Equality in Object-Z and Perfect

Description Usage in Object-Z Mapping to Perfect
Numbers or literals x = ’l’ x = ’l’

Two variables of x = y x = y

primitive type
Two collections of x = y x = y

primitive types
All other types x = y No fully correct mapping possible,

x = y appropriate for objects that have
a unique identifier in their abstract data.

One solution to overcome this problem is to explicitly use the ref-type in Perfect.
However, Crocker and Carlton state that reference data types cause much overhead, are
often even unnatural and due to the aliasing, cause severe problems in verifying the
specification [CC04, 2.4 Object Identity].

In general the following statements about the practical influence can be made if the
mapping for equality is provided for all kinds of types:

• If two objects are tested for equality and the answer is no, the user can be sure,
that the objects are not identical.

• Only if two objects are considered equal, they may be identical, as well.

• If the system is designed in a way that a state variable contains a unique identifier
for each object, equality in Perfect expresses that two objects are identical as
otherwise the identifier was not unique.

• Systems in which it is possible that two different objects have the same inner state
may deliver incorrect results with regard to identity and equality.

The operator 6= is the negation of the equality operator and therefore all the problems
discussed for equality still hold (with opposite meaning). However, to take advantage of
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the Perfect Developer verification engine, both operators are translated in this work as if
both languages used the same kind of semantics.

5.2.14 Object Containment

Object-Z also uses the notion of object containment. As described above, Perfect primarily
uses value semantics, which also implies that an object used as a state variable in another
class, is always contained by the outer object. This means that using object containment
in Object-Z does not raise the need for a special mapping, but rather specifies contained
objects as if they were used in a value semantics language like Perfect.

In contrast, using state variables without object containment in Object-Z, is still mapped
as if these variables were contained objects because of the value semantics in Perfect. If
Object-Z refers to one object A by some other objects B and C, and then A is changed
by a schema call, this means that the referenced object A for B and C stays the same
when using reference semantics, but the inner state of A is different and these changes
are visible for B and C. Mapping this situation directly to Perfect yields objects B and C
containing each a copy of A. This means that whenever A changes, this is not reflected
in the copies contained in B and C. To overcome this problem, it would be necessary to
keep track of all copies of such an object and if a change occurs in one copy, this change
is also propagated to the other ones.

If the specification is directly done in Perfect, the specifier is aware of the value semantics
and can model the system appropriately with this in mind. For the first prototype
keeping track of all objects and adding appropriate modifications will not be included in
the mapping.

5.2.15 Predefined Types

Each of the predefined types available in Object-Z has a compatible type in Perfect, so
that the mapping can be done directly. A new class pNat is introduced for the mapping
of strictly positive integers if this type is used in the Object-Z specification. Table 5.17
lists these mappings.

Table 5.17: Mapping predefined types to Perfect

Type name Symbol in Object-Z Symbol in Perfect
boolean B bool

integer Z int

natural number N nat

strictly positive integer N1 pNat and add
class pNat ^=

those n:nat :- n > 0 end;

real R real

character Char char
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5.2.16 Logical Operators and Conjunctives

Object-Z provides a total of seven logical operators and conjunctives, four binary, one
unary, and two quantification operators to express constraints on variables within boolean
expressions.

• Equivalence

• Implication

• Disjunction

• Conjunction

• Negation

• Universal Quantification (∀)

• Existential Quantification (∃ / ∃1)

The first five operators can be directly translated to Perfect by substituting the operator
with the Perfect equivalent and applying necessary transformations to the operands on
the left and right sides according to the rules provided in other sections of this chapter.
Table 5.18 lists the binary and unary logical operators with their Perfect equivalents.

Table 5.18: Mapping logical operators to Perfect

Name Symbol in Object-Z Symbol in Perfect
boolean literals true false true false

equivalence ⇔ <==>

implication ⇒ ==>

disjunction ∨ |

conjunction ∧ &

negation ¬ ~

Universal and Existential Quantification

The remaining quantification expressions cannot be mapped that straightforward. Before
a thorough discussion is presented for each construct in subsequent sections, some common
topics are explained in advance.

A quantified predicate has the form Q schemaText • predicate where Q is one of the three
quantification operators ∀, ∃ or ∃1, schemaText consists of a declaration- and an optional
predicate section (declarations | predicates) that introduces new variables restricted by
the predicates and predicate is the constraint that has to be satisfied for all, at least or
exactly one value respectively.
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Bound Variable Declarations

The variables declared in the schemaText section are also referred to as bound variables,
as they are declared in the scope of a quantifier and cannot be freely set to any arbitrary
value. These variables may be declared to have some predefined type like int, bool, real
or nat, or some user-defined class. Another alternative is declaring them as one of the
collection types. Object-Z treats these options syntactically equally, but Perfect makes
use of two syntax variations, either : or ::. The mappings for both types are shown in
Table 5.19.

Table 5.19: Bound variable declarations in Object-Z and Perfect

Description Usage in Object-Z Mapping to Perfect
Pre- or user- ∀ x : N, y : N • y = x ∗ x ⇒ y > x forall x:nat, y:nat

defined types :- y = x*x ==> y > x

Collection types ∃ x : {1, 2, 3} • x ∗ x < 16 exists x::set of nat{1,2,3}

:- x*x < 16

Mapping SchemaText without Predicate

As described in the previous paragraphs, the schemaText part has a declaration and an
optional predicate part. First the focus is put on the alternative without the predicate. In
this simpler form of quantification it does not make a big difference, how many variables
are declared in the schema text. The two following examples show how universal and
existential quantification are mapped to Perfect.

∀ c : {2, 3, 4, 5, 6, 7, 20, 30, 40, 56, 100} • c mod 2 = 0

The variable c is declared to be a member of the given set of integer numbers. The
predicate checks if the remainder of c divided by 2 is 0, i.e. c is an even number. The
mapping for this expression to Perfect is straightforward. Listing 5.1 shows how this
Object-Z quantification is translated to Perfect.
forall c::set of int {2,3,4,5,6,7,20,30,40,56,100} :- c % 2 = 0;

Listing 5.1: Simple “forall” example in Perfect

The second example presents existential quantification and declares two variables.

∃ a : setA, b : setB • a < 20 ∧ b < a

This example checks whether there exists one combination of an element a of setA and
an element b of setB, where a is smaller than 20 and b is smaller than a. Both setA and
setB are collections, so the Perfect mapping contains :: as separator between variable
name and type. The equivalent construct in Perfect is given in Listing 5.2.
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exists a::setA, b::setB :- a < 20 & b < a

Listing 5.2: Simple “exists” example without constraint in Perfect

Table 5.20 summarizes the mapping of quantification expressions without predicates in
the schema text for both existential and universal quantification. This corresponds to
the mapping described by Tim Kimber in [Kim07] for quantified expressions.

Table 5.20: Mapping of quantified expressions without schema text predicate

Usage in Object-Z Mapping to Perfect
∀ declarations • predicate forall declarations :- predicate

∃ declarations • predicate exists declarations :- predicate

The declarations used in Table 5.20 are mapped to Perfect according to the rules described
in Table 5.19. The predicate is either a logical expression or some other expression that
yields a boolean value.

Mapping SchemaText with Predicate

In the previous part only schemaTexts without predicates have been taken into con-
sideration. Although Tim Kimber does not provide a mapping for this construct in
[Kim07], a mapping is possible under some certain circumstances. In the simplest case,
the quantification in Object-Z makes use of only one declared variable and contains
an arbitrary number of ∧-conjoined constraints as predicates that only depend on this
variable, some constants or variables declared outside this construct. To map such an
expression to Perfect, the
textttthose-clause introduced in section 4.4.2 is helpful to describe a collection of values
restricted by constraints.

Extending the first example from the previous section by the constraint c > 10 in the
predicate-section of the schemaText of the specification restricts the values of the set
from which values are chosen by those that satisfy the additional constraint. Listing 5.3
shows the mapping to Perfect using a those-clause.
forall c::(those i:: set of int{2,3,4,5,6,7,20,30,40,56,100} :- i > 10) :- c % 2 = 0

Listing 5.3: Simple “forall” example with constraint in Perfect

More complicated quantifications can be expressed in Object-Z by declaring more than one
variable and including all these variables in the predicates of the schema text. Consider
an example where all pairs of players shall be tested if the values of their feature remain
are not equal. Obviously, it is desirable to exclude comparing an element with itself, as
this would naturally result in the predicate to evaluate to false:

∀ p1, p2 : players | p1 6= p2 • p1.remain 6= p2.remain
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In Perfect there is no such construct of first choosing all values of a set and then restricting
the pairs to the interesting ones, but one may alter the collection from which the values
are taken in the first place by using a
textttthose-clause instead of the collection. If one analyzes the example more thoroughly,
one will see that it is sufficient that the first variable may take any value of players
whereas the second may only be set to all the other values of players, but not the one
chosen as p1. This results in the mapping to Perfect given in Listing 5.4.
forall p1::players, p2::(those p3::players :- p3 ~= p1)

:- p1.remain ~= p2.remain

Listing 5.4: Players example in Perfect

In general it can be said that for schemaTexts in quantifications with two variables, the
predicates in the schema can be separated into three groups, predicates restricting only
the first, predicates restricting only the second variable, and predicates restricting both.
If there are predicates of the first group, then a those-clause also has to be introduced
for the first variable. If only predicates of group two and three exist, both kinds of
restrictions are added to the those-clause of the second variable.

Table 5.21: Mapping of quantified expressions with predicates in schema text

Usage in Object-Z Mapping to Perfect
∀ v1 : type1 | pred1 • pred No mapping
∀ v1 : coll1 | pred1 • pred forall v1::(those tempVar::coll1 :- pred1):- pred

∀ v1 : coll1, v2 : coll2, ... | forall

preds • pred v1::(those t1::coll1 :- preds(v1)),

v2::(those t2::coll2 :- preds(v2)), ... :- pred

with an appropriate variable ordering <v1, v2, ...>

Table 5.21 shows a summary of how quantified expressions with predicates in the
schemaText can be translated to Perfect. If a bound variable has user- or pre-defined
type, it can only be mapped, if there are no restricting predicates for this variable, because
the those-clause would have to use this type as well, but the usage of this construct is
not allowed in the context of a quantification expression. So the one-variable-case is not
applicable for such variables, but they may still appear within a list of bound variables.
Additional mapping coverage for such types might be possible in some ways as well, but
this analysis is left for an in-depth discussion in future work.

For collection types the mapping is performed using a those-clause which restricts the
original collection by the predicates of the schemaText. If the declaration list contains
more than one variable, it is necessary to find an appropriate ordering of the variables,
such that newly introduced those-clauses only make use of the currently defined variable
and variables that have already been defined before. First the schemaText predicate has
to be split into sub-predicates. A predicate can be split into two sub-predicates, if these
two sub-predicates are conjoined by ∧. Each sub-predicate depends on one or more of
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the declared variables. The term preds(var1) refers to exactly those predicates of the
original schemaText predicate that are relevant for the declaration of variable var1.

An ordering, if any exists, can be calculated by the ordering algorithm created for this
work and presented in Appendix A that uses a graph built from predicate and variable
nodes, where each variable is connected to a predicate whenever this variable appears in
the predicate. The graph may contain both, variables with user- and predefined type or
collection type.

Unique Quantification

Whereas the normal existential quantification using ∃ can be handled by the Perfect
counterpart exists and the mappings described above, the second operator ∃1 must
be treated specially. In the Z reference manual [Spi89] Spivey describes this operator as
Unique quantifier and an equivalence using existential and universal quantifiers is given:

(∃1 x : A • ...x...)⇔ (∃ x : A • ...x... ∧ (∀ y : A | ...y... • y = x))

Therefore the mapping to Perfect combines the mappings of existential and universal
quantification. To illustrate the mapping, Table 5.22 shows a minimum example using
one declaration without constraining predicates. A solution for more variables and even
with predicates in the schemaText can be found by properly applying the mappings
for existential and universal quantification which could also mean that no mapping is
possible.

Table 5.22: Mapping unique quantification to Perfect

Usage in Object-Z Mapping to Perfect
∃1 x : aSet • pred exists x::aSet :- pred &

(forall t1::(those t2::aSet :- pred[t2/x]) :- t1 = x)

5.2.17 Variable Declarations

Declarations of variables can be directly mapped to Perfect constructs. Table 5.23 shows
the mappings found in this work for all three syntactic variations of variable declarations.

Table 5.23: Mapping variable declarations to Perfect

Description Usage in Object-Z Mapping to Perfect
Single-declaration x : T var x: T

Multi-declaration x, y : T var x, y: T

Polymorphic declaration x : ↓T var x: from T
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5.3 The Class Construct
The structure of an Object-Z class has been described in section 3.1. Figure 5.1 and
Listing 5.5 show how the basic class construct with inheritance, and formal parameters,
but without definitions, state and operation schemas can be mapped to Perfect.

ClassName[X ,Y ]

...

InheritedClass1[X ]

...

Figure 5.1: An Object-Z class skeleton with inheritance and generics

class ClassName of (X, Y) ^=
inherits InheritedClass1 of X
...

end;

Listing 5.5: Mapping of class with inheritance and generics to Perfect

Perfect supports only single-inheritance. Therefore, Object-Z specifications that specify
more than one inherited class will not be taken into consideration in this mapping. One
inherited class can be included in the Perfect-inherits part. Figure 5.1 and Listing 5.5
also illustrate the definition of a generic class and the usage of the formal parameter in
both languages.

5.4 Local Definitions
As described in section 3.7 there are four types of local definitions. All of them may
either appear within a class definition or on global level. The scope of a local definition
starts at the point of the definition and ends at the end of the class in which it is defined.

5.4.1 Given Types

In order to translate given types to Perfect in this work, it is necessary to add a new
class definition as an inner class to the abstract part of the Perfect specification. The
resulting mapping is shown in Table 5.24.

This enables using BasicType1 within the defining class as a type. The definition also
provides a build-function so that objects of that type can be instantiated. As a basic type
definition does not provide more information about the structure of this type, the class
does not have any other features and the build-function does not take parameters. One
advantage of this translation is that the specification in Perfect can be easily extended
by variables, functions or schemas.
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Table 5.24: Mapping given types to Perfect

Usage in Object-Z Mapping to Perfect
[BasicType1] class BasicType1 ^=

interface

build{};

end;

one class definition per given type
in the abstract section

5.4.2 Free Type Definitions

Free type definitions are mapped to Perfect enumeration class definitions. Table 5.25
shows the resulting mappings for definition and usage of free types.

Table 5.25: Mapping free type definition to Perfect

Description Usage in Object-Z Mapping to Perfect
Definition Color ::= blue | green | class Color ^=

yellow | red | black | white enum blue, green, yellow, red,

black, white end;

Access b.color = blue b.color = Color blue

5.4.3 Axiomatic Definitions

Although there are constants in Perfect, the Object-Z semantics are different. In Object-Z
a constant only has to maintain its value for each object after it has been initially set
whereas in Perfect constants are named place holders for globally fixed values. Therefore,
the presented mapping uses variables to simulate the constant behavior expected by
Object-Z.

limit : N

limit ∈ {10, 20, 30}

In this simple example a constant limit is declared that might have one value of the
elements of the set given in the predicates section. The steps that have to be taken to
map axiomatic definitions to Perfect are:

• A variable with the name and type of the Object-Z constant is declared in the
abstract section of the Perfect class definition

• The predicate is mapped according to expression mapping rules and is added as an
invariant to the abstract section, as well.
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• The constructor has an input parameter to initialize the value of the constant. In
the precondition of the constructor the predicates that constrain the constant are
included, so that it may only be set to allowed values.

Listing 5.6 shows these rules applied to the example above.
abstract
var limit: nat;
invariant limit in set of nat {10, 20, 30};

interface
build{!limit:nat}

pre limit in set of nat {10, 20, 30};

Listing 5.6: Axiomatic definition mapped to Perfect

5.4.4 Abbreviation Definitions

Perfect does not provide a construct that expresses the same as Object-Z abbreviation
definitions, but for one type of expressions a mapping to Perfect can be achieved in a
relatively easy way using the those-construct. Although other expressions might be
mappable as well, a mapping will not be presented for them, as each expression has to
be regarded separately. Often abbreviation definitions are used as place holder for a set
or range of values like in the following examples.

BingoNumber == 1..75

SmallSquareNumbers == {1, 2, 4, 9, 16, 25, 36, 49}

These can be mapped to Perfect as follows:

class BingoNumber ^= those x:nat :- x in (1..75).ran;

class SmallSquareNumbers ^=

those x:nat :- x in set of nat {1, 2, 4, 9, 16, 25, 36, 49};

That means for an abbreviation definition Identifier == Expression where Expression is
a collection typed expression a new class named Identifier is created with a those-clause
as class body. There, a temporary variable x is introduced with the element type of the
collection as type and with the constraint that x is element of Expression.

5.4.5 Definitions on Global Level

If given, free type, axiomatic, or abbreviation definitions are declared on global level,
outside of any class, these definitions are regarded as globally visible throughout the
whole specification. The reason for this is, that in Z there is no way of expressing visibility
which means that all identifiers have to be globally visible.

Some modifications for the transformation rules above have to be applied so that the
semantics are adapted:
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Abbreviation, free, and given type definitions are expressed as class or enumera-
tion class definitions in Perfect, so they can be simply placed outside of all other
classes on global level.

Axiomatic definitions on local level are translated to declarations and predicates
within a class. Variable declarations may not be simply put outside a class definition
in Perfect. Therefore it is necessary to introduce a class that simulates globally
accessible axiomatic definitions. This is done by adding a class Global which contains
all global axiomatic definitions. To make all constants and functions globally visible,
the transformation rules for mapping visibility described in section 5.7 have to be
applied.

5.5 State Schema

In section 3.8 the state schema with its two kinds of variables and its predicates that
restrict their possible values has been presented. The described mapping is based on the
state schema shown in Figure 5.2.

StateSchemaMapping

stateVar1 : type1

∆

secVar1 : typeS1

predicate1

predicates(secVar1)

Figure 5.2: State schema in Object-Z

5.5.1 Primary Variables

Several steps have to be performed to map primary variables to Perfect appropriately.
For each Object-Z variable stateVar :

• A variable declaration is added to the abstract section

• For proper initialization, the class constructor takes an input parameter for each
variable stateVar with the same name.

• Each predicate that only contains primary variables, constants, or visible features
of other classes, but no secondary variables, is added as invariant to the abstract
section and as precondition to the constructor.
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• If the type of a variable implies additional invariants according to the mapping
rules presented in section 5.2, these predicates are also added as invariants and
preconditions just like explicitly stated predicates.

Listing 5.7 shows how the primary variables of the schematic Object-Z class given at the
beginning of this section are mapped to Perfect using these rules.
class StateSchemaMapping ^=
abstract
var stateVar1: type1;
invariant predicate1;

interface
build{!stateVar1: type1}

pre predicate1;
end;

Listing 5.7: Primary state schema mapped to Perfect

5.5.2 Secondary Variables

Secondary variables are in fact functions that represent a fixed relation between primary
state variables, constants and literals with exactly one value at any time. Therefore the
mapping makes use of functions in Perfect, in which constraints given in the predicates
part of the state schema form the function body. Depending on visibility the secondary
variable function is put either in the confined or interface part of the specification.

The function has the same name and type as in the Object-Z specification and both are
mapped according to the rules of section 5.2. Additionally, all predicates of the state
schema that have this secondary variable in their specification are appropriately mapped
to Perfect and then added as function body. If it is necessary to split predicates into
smaller parts, this is possible where the outmost operator is a conjunction. Listing 5.8
shows the results for the Object-Z class assuming that the secondary variable is globally
visible.
class StateSchemaMapping ^=
interface
function secVar1: typeS1
^= predicates(secVar1);

end;

Listing 5.8: Secondary state schema mapped to Perfect

5.6 Inital State Schema
According to the description of the initial state schema given in section 3.9 the mapping
of this construct has to cover two purposes. First, objects have to satisfy the predicates
listed in this schema on object creation time. Second, at any time the initial state schema
has to tell whether the inner object state satisfies the conditions given. To achieve the
first goal, the predicates have to be added appropriately as preconditions to the class
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constructor in Perfect. A function returning a boolean value is added to the specification,
that states whether the initialization conditions are currently satisfied by the object or
not, for achieving the second goal. Listing 5.9 shows the mappings for the initial state
schema in Figure 5.9.

INITMapping

INIT
predicate1

predicate2

Figure 5.3: INIT schema in Object-Z

It has to be said that normally the names of state variables and constants remain the
same when mapped to Perfect. However, if modifications are necessary in any way,
the same modifications have to be applied to each appearance of such an identifier,
i.e. appearances in predicate1 or predicate2. Note that the predicates refer to the input
parameters of build in the constructor and to abstract data members of the Perfect
class in the INIT-function.
class INITMapping ^=
abstract

...
interface

build{!state1: t1, !state2: t2, ..., !const1: t3,...}
pre predicate1 & predicate2;

function INIT: bool
^= predicate1 & predicate2;

end;

Listing 5.9: Initial schema mapped to Perfect

5.7 Visibility

Visibility of a feature in Object-Z is expressed by the visibility list. According to Smith
[Smi00, p.46] the following kinds of features may appear in this list:

• constants

• state variables

• the initial state schema

• operations
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Absence of the visibility list indicates visibility for all the features within the class. The
list above does not include basic, free type, or abbreviation definitions, which means that
such local definitions will never appear visible from outside the class. In contrast, Perfect
determines visibility and accessibility depending on the section of the specification in
which a definition appears. The mapping of features in the visibility list is performed as
stated in Table 5.26

Table 5.26: Mapping of features in visibility list

Feature Type Access Mapping to Perfect Section
Constant read-only function constName; interface
State variable read function var1 ; interface

write schema !set_var1(p_var1: type1) interface
pre invariants(var1)[p_var1/var1]

post var1!=p_var1;

Change all write accesses to var1
outside the class definition to a call to
set var1.

INIT function function INIT: bool interface
^= predicatesInINITFunction;

Operations no special mapping rule interface

Write access can be enabled by adding a set-schema in the interface section that assures
that all the class invariants referring to this variable, denoted by invariants(varName)
are satisfied if varName takes the new value. Additionally, all occurrences of the form
varName′ = expression have to be transformed to read !set varName(expression).
If a primed variable is modified from outside the class, but does not appear alone on one
side, no mapping can be provided.

If features are not listed in the visibility list, it is nevertheless important to make them
visible for inheriting classes to model the visibility properties of Object-Z. To accomplish
this, the same mapping rules as for visible features have to be applied, but the mapping
output has to be put in the confined instead of the interface section.

5.8 Operations
The different kinds of operations in Object-Z and their building blocks have been described
in section 3.10. It is necessary to take a closer look at their purpose for the mapping to
Perfect. Several high-level helper functions are defined here to describe the mappings of
operations in the following.

opName(): The name of the operation.

inVars(), inVarDecls(): The set of all input variables (postfix “?” in Object-Z) and
their corresponding variable declarations respectively.
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outVars(), outVarDecls(): The set of all output variables (postfix “!” in Object-Z)
and their corresponding variable declarations.

auxVars(), auxVarDecls(): The set of all other auxiliary variables defined within an
operation schema, that are neither input nor output variables and their correspond-
ing variable declarations.

deltalist(): The set of primary variable identifiers listed in the deltalist part of the
operation definition.

communicationVars(): The set of variables that act as communication from one
operation to another.

commonOutVars(): The set of output variables that are common between two opera-
tions.

preconditions(): The set of all predicates of the predicate list that make up the
precondition of this operation schema. Preconditions contain unprimed state or
input variables, but may never include primed state, auxiliary, or output variables.

postconditions(): The set of all predicates of the predicate list that contain primed
state or output variables.

usedStateVars(): The set of all the state variables used by this operation in unprimed
form.

If any of the helper functions are used in a mapping, the elements form comma-separated
lists unless stated differently. As variable names in Perfect may only consist of alpha-
numerical characters and underlines, input, and output variables always have to be
transformed in the mapping to Perfect. Table 5.27 shows the applied rules.

Table 5.27: Mapping of input and output variables of operations

Usage in Object-Z Mapping to Perfect
inputVar? inputVar_in

outputVar ! outputVar_out

5.8.1 Operation Schemas

The following sections present the transformation rules for different kinds of operation
schemas to Perfect. The characteristics, the mapping rules, and a simple example are
provided for each type in this chapter.

77



5. Mapping Object-Z to Perfect

No-Change Operation

The No-Change or Boolean Operation refers to operations that do not change the state
of an object nor output any values. However, these operations provide information about
the current state of the object, i.e. whether all preconditions of the operation hold.

isBelowBound
bound? : N

balance < bound?

bound? ≥ 0

function isBelowBound (bound_in:nat): bool
^= balance < bound_in & bound_in >= 0;

Listing 5.10: Operation isBelowBound mapped to Perfect

In the case when the precondition of an operation is not satisfied in Object-Z, the operation
is considered not to be applicable according to [Smi00, p. 55]. In contrast, in Perfect
a function may only be called if the preconditions are satisfied otherwise the validator
produces an error message. Boolean functions are typically used in operation expressions
where they indicate whether the whole operation is applicable. These semantics have to be
simulated by the mapping. Therefore, boolean operations are mapped to boolean-valued
functions in Perfect in this work. The isBelowBound example operation in Listing 5.10
illustrates the mapping from Object-Z to Perfect.

Table 5.28 sums up characteristics of no-change operations and their mappings. Expres-
sions in italic refer to the mapped values of results of the helper functions presented
earlier. If op.inVarDecls() is an empty set, the surrounding parentheses are left out. If
op.preconditions() returns more than one element, the single items are conjoined using
the &-operator of Perfect.

Table 5.28: Mapping of no-change operations

Characteristics deltalist() = ∅
outVars() = ∅
postconditions() = ∅

Mapping to Perfect function opName(inVarDecls()): bool

^= preconditions();

No-Change Operation with Output

The next, more complex type of operation schemas are no-change operations with output
or function operations. The difference to the previous type is the presence of one or more
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output variables and predicates that make use of them. In this work these operations are
mapped to Perfect functions with one or more output values as this inhibits changing the
state of the object. The operation fundsAvail is a simple function operation that uses a
state variable balance and a constant limit.

fundsAvail
funds! : N

funds! = balance + limit

function fundsAvail_prec
^= (exists tempVar:nat :- tempVar = balance + limit);
function fundsAvail: nat

pre fundsAvail_prec
^= balance + limit;

function fundsAvailAlt funds_out: nat
pre fundsAvail_prec
satisfy result.funds_out = balance + limit;

Listing 5.11: Function fundsAvail in Perfect

Listing 5.11 shows two possible mappings to Perfect with two approaches for mapping
output variable declarations and postconditions. This work favors the second approach,
because it is more flexible when it comes to the number of output parameters and also
makes it possible that several predicates set constraints on a single output variable.
The precondition introduces an existential quantification for all output variables to
mimic the intention that functions in Object-Z are not applicable if preconditions or the
implicit precondition that the postconditions can be satisfied do not hold. The operation
characteristics and mapping rules are summarized in Table 5.29.

Table 5.29: Mapping of functions to Perfect

Characteristics deltalist() = ∅
outVars() 6= ∅
postconditions() 6= ∅

Mapping to Perfect function opName(inVarDecls()) outVarDecls()
pre preconditions()
satisfy postconditions();

Adding an existential quantification for output variables to
preconditions and replacing each output variable outVar by
result.outVar in postcondition

Output Reference opName(inVars()).outVar
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Change Operations

In contrast to the two previously presented types of operations, change operations may
modify the inner state of an object, i.e. change the value of state variables. Only primary
state variables listed in the deltalist may be changed by these operations. Changes of
the inner state of objects are expressed using modifying schemas in Perfect, which is
illustrated in the following example in Listing 5.12.

withdrawAvail
∆(balance)

amount! : N

amount! = balance + limit
balance′ = −limit;

schema !withdrawAvail(amount_out!: out nat)
pre exists tempVar1:nat, tempVar2:int

:- tempVar1 = balance + limit & tempVar2 = -limit
post change balance, amount_out

satisfy amount_out’ = balance + limit,
balance’ = -limit;

Listing 5.12: Operation withdrawAvail in Perfect

In the post-clause the variables to be changed by the schema are listed after keyword
change. These are all primary variables specified in the deltalist of the Object-Z
operation schema and, additionally, all output variables. The satisfy-part, lists the
postconditions of the operation. If the Object-Z operation specification includes auxiliary
variables, these are declared as temporary variables at the beginning of the postcondition
and are valid only throughout this part of the Perfect specification. The precondition
consists of the translation of all preconditions of the Object-Z specification and an
existential quantification stating that values for output parameters and changed primary
variables exist that satisfy the postcondition. A summary of the characteristics of change
operations and the mapping to Perfect is given in Table 5.30

5.8.2 Operation Expressions

As introduced in section 3.10.3, operation expressions use one or more operation schemas
to build more complex operations. Depending on the type of operation schema described
in section 5.8.1, the mapping delivers either a function with or without output or a
schema in Perfect. Whenever a change operation is involved, the result will have the
structure of a change operation with the change-satisfy postcondition replaced by a
postcondition list. Here, output variables are always postfixed by “!”. Otherwise, if there
are output variables in the resulting operation, then the structure of function operations
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Table 5.30: Mapping change operations to Perfect

Characteristics op.deltalist() 6= ∅
op.postconditions() 6= ∅

Mapping to Perfect schema !opName(inVarDecls(), outVarDecls())
pre preconditions()
post change deltalist(), outVars()

satisfy postconditions();
Adding an existential quantification for output variables and
changed primary variables to preconditions

Auxiliary Variables satisfy(var auxVar:type; postconditions() );

for each auxiliary variable auxVar
Output Declaration outVar!:out type

is used. In all other cases, the final operation is built like a boolean operation which
never has postconditions.

In Listing 5.12 the mapped preconditions have been directly added to the precondition
section of the schema. However, this approach has some shortcomings if it comes to
operation expressions which may call functions or schemas from other classes. Sometimes,
not all features used in a precondition are visible globally but in fact, it is sufficient to
provide a means of stating whether the precondition of a mapped operation schema holds
or not. Therefore, this precondition check is extracted to a boolean-valued precondition
function, which has the same visibility as the mapped operation. Listing 5.13 shows the
prototype of such a function.

function op_prec(op.inVarDecls()):bool
^= op.preconditions();

Listing 5.13: Precondition functions

Operation Promotion

The operation promotion propagates a call of a schema of this or another class. Therefore,
the operation type (function or schema) remains the same as in the wrapped operation.
Input and output variables are propagated to the calling operation.

In the introductory section 3.10.2 class Book has been specified with operation return
that takes one input parameter lender? and modifies two state variables lent and
mayBeReviewed. In Figure 3.9 operation returnBook1 propagates operation return called
on book1 to the specification of SmallLibrary. In Perfect, the operation returnBook1 is
mapped to a schema because return of class Book has a non-empty deltalist. Listing 5.14
shows the mapping of both operations.
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class Book ^=
interface

function return_prec(lender_in: string):bool
^= lent <==> true & lender = readerHistory.last &

(exists lent_temp:bool, mayBeReviewed_temp:bool :-
(mayBeReviewed_temp <==> false & lent_temp <==> false));

schema !return(lender_in: string)
pre return_prec(lender_in)
post change lent, mayBeReviewed

satisfy lent’ <==> false & mayBeReviewed’ <==> false;
end;
class SmallLibrary ^=
interface

function returnBook1_prec (lender_in:String): bool
^= book1.return_prec(lender_in);

schema !returnBook1 (lender_in:String)
pre returnBook1_prec(lender_in)
post book1!return(lender_in);

end;

Listing 5.14: Operation promotion in Perfect

The mapping rules for promoting operation op of object o as operation opPromo are
summarized in Table 5.31. Accesses to helper functions of opPromo are used without
the operation name to simplify the mapping description. Preconditions of this operation
type are only a propagation of the preconditions of the inner operation, i.e. calling the
precondition function op prec. In function operations output parameters are promoted
to the outer operation by assigning the result of accessing each output variable outVar
of the function call to result.outVar in the satisfy-part. Change operations only
call the inner operation with all the input and output parameters. Object and operation
name are separated by an exclamation mark instead of the dot to indicate a change in
the calling object. If no caller is explicitly given, self is assumed resulting in the term
!op1 as caller of the inner operation.

Table 5.31: Mapping of operation promotions to Perfect

opPromo =̂ o.op
Characteristics inVars() = op.inVars()

outVars() = op.outVars()
Operation Type same as op
Bool Function Body pre o.op(inVars());
Function Body pre o.op_prec(inVars());

satisfy result.outVar = o.op(inVars()).outVar
for all output variables outVar

Change Operation Body pre o.op_prec(inVars());
post o!op(inVars(), outVars());

The following sections describe the mappings of the binary operation expressions that
have been introduced in section 3.10.3. The type of the resulting operation can be
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deduced in the same way for all the following operations. If either operation is a change
operation, the result will also be a change operation translated into a Perfect schema. If
none is a change operation and there are output variables in the resulting operation, the
combined operation is mapped to a Perfect function. In the remaining cases the result is
a boolean function.

Operation Conjunction

Operation conjunctions in Object-Z combine modifying and non-modifying schemas in a
parallel manner as if the variables and predicates of the two schemas were just merged
into a new one. This also means that variables with the same name in both schemas have
to be equal in the resulting conjunction. The following situations must be considered in
more detail:

• Input or output parameters with equal names

• Calling operations on the same object in modifying schemas

In the following, we assume dealing with conjunction operation conjOp, which is built
from the two operations op1 and op2 defined in the same or some other class.

conjOp =̂ a.op1∧ b.op2

Basic Mapping Rules Before going into more detail, the general case shall be con-
sidered and the basic mapping rules are formulated. In conjunction operations the
set inVars() is formed by combining the two sets op1.inVars() and op2.inVars() where
duplicates are removed, which is consistent with the intended meaning of variables with
the same name. The set of outVars() is built similarly. The resulting precondition is
created by conjoining the preconditions of both operations.

In contrast, one has to differentiate for postconditions regarding operation types. If
the resulting operation is a no-change operation with output, each output variable is
propagated to conjOp as presented for operation promotion. In change operations, output
variables may have different sources, either function or change operations. In the latter
case each output variable is simply used as output variable in the parameter list of the
operation call. Output variables originating from function operations have to be explicitly
assigned to the output variable. Table 5.32 illustrates the basic mapping for conjunction
operations.

Input or Output Parameters with Same Names Input variables can be easily
used by two operation calls within one operation in Perfect. However, if op1 and op2,
both use the same output variable outVar , a solution to correctly reflect these equated
variables has to be found. First, it has to be said that Object-Z implicitly only allows the
composite operation to be applicable if there is an object that satisfies all the conditions
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Table 5.32: Mapping of conjunction operations to Perfect

conjOp =̂ a.op1 ∧ b.op2
Characteristics inVars() = op1.inVars() ∪ op2.inVars(),

outVars() = op1.outVars() ∪ op2.outVars(),
commonOutVars() = ∅
a 6= b

Preconditions a.op1_prec(op1.inVars()) & b.op2(op2.inVars());
where op1 is a function or schema and op2 is a boolean function

Postconditions Functions
result.outVar1 = a.op1(op1.inVars()).outVar1 &

result.outVar2 = b.op2(op2.inVars()).outVar2 & ...

for all output variables outVar1 of op1 and outVar2 of op2
Change Operations
outVar! = a.op1(op1.inVars()).outVar
for each output variable outVar if op1 is a function
a!op1(op1.inVars(), op1.outVars())
for each change operation
all postconditions combined by ’,’

to act as output variable of both operations. Therefore, a precondition has to be added
stating that there exists one particular value that may fulfill this condition. If the
operation is a change operation an additional postcondition function op post has to be
added to provide the value of output variables without doing the actual change to the
calling object.

Regarding the postcondition, again, there is a difference between function and change
operations. In the combination of two functions or a function and a change operation,
one of the promotions of a common output variable is simply omitted in the mapping.
This is necessary, because an object cannot be modified twice in parallel in Perfect. In
the combination of two change operations, this problem can be solved by introducing a
temporary variable which substitutes one of the two appearances of the output variables.
This modification in combination with the precondition ensures, that the mapping still
delivers a correct result in this work.

Table 5.33 provides an overview on the modifications necessary to handle the mapping of
common output variables between any kind of combination of functions and schemas.

Calling Operations on the Same Object in Modifying Schemas In the previous
cases, the caller objects have been considered different. This section presents how to map
calls on the same object properly. As both operations may modify an arbitrary set of
state variables the mapping has to make sure that references to unprimed state variables
always refer to the not yet changed value.

A second difficulty in the mapping of these operations is that calling modifying schemas
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Table 5.33: Modifications with common output variables

conjOp =̂ a.op1 ∧ b.op2
Characteristics commonOutVars() 6= ∅
Operation Type same as without common output
Preconditions additional to the precondition without common output:

exists tempVar:type :-

tempVar = a.op1(op1.inVars()).outVar1 &

tempVar = b.op2(op2.inVars()).outVar1
one temporary variable declaration for each common output variable.

Postconditions Functions
Only include one occurrence of output variable promotion.
Functions and Change Operations
Do not include output variable promotion of function operation.
Two change operations:
Include temporary variable declaration for each common
var tempVar:type;

a!op1(op1.inVars(), op1.outVars()),
b!op2(op2.inVars(), op2.outVars());

in parallel on the same object is not possible in Perfect. To provide a mapping that
simulates a very similar behavior in this work, the individual postconditions may be
combined using the keyword then to call them in a sequence. An ordering has to be
found in which the second operation does not refer to state variables changed by the
first operation. In Object-Z the order of operations in the operation conjunction is not
significant so that operands may as well be exchanged.

To determine a pairwise order between two operations op1 and op2, one makes use of
the helper function usedStateVars(). The rules are presented in Table 5.34. The pairwise
order can be used as input for a topological sorting algorithm as presented by Knuth in
[Knu97] to find an ordering for more than two operations. If any order of operations can
be found, the only adoption to be made is applying the found order and replacing the
separating comma by the term then.

Parallel Composition

This next composite operation is very similar to the conjunction operation, but also
allows for variable communication from output variables of one to input variables of the
other operation. However, if two operations are conjoined using the parallel or associative
parallel composition operator, but neither schema provides output variables nor output-
input communication pairs, the mapping is done according to the rules presented for
conjunction operations.

As with conjunction operations there are certain conditions that have to be taken into
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Table 5.34: Finding a pairwise order for conjunction operations

isBefore(op1, op2)

if (op1.deltalist() ∩ op2.deltalist() 6= ∅ ):

error;

else if (op1.deltalist() ∩ op2.usedStateVars() = ∅ ):

return true;

else if (op2.deltalist() ∩ op1.usedStateVars() = ∅ ):

return false;

else

error;

special consideration:

• Input or output parameters with equal names

• Operations with communication variables

• Calling operations on the same object in a modifying schema

The complete mapping of parallel composition operations builds up on some basic
characteristics that are presented in Table 5.35.

Table 5.35: Basic characteristics of parallel compositions

parOp =̂ a.op1 ‖ b.op2
communicationVars() = (op1.outVars() ∩ op2.inVars()) ∪ (op2.outVars() ∩ op1.inVars())
inVars() = (op1.inVars() ∪ op2.inVars()) \ communicationVars()
outVars() = (op1.outVars() ∪ op2.outVars()) \ communicationVars()
commonOutVars() = (op1.outVars() ∩ op2.outVars()) \ communicationVars()

Preconditions and postconditions are basically formed in the same way as described for
conjunction operations. It has to be noted that in parallel composition operations all
the output variables that have been present in one of the constituent operations may
disappear. This happens in case each output variable functions as a communication
variable. The mapping rules for common input and output variables given in section 5.8.2
can be directly used for parallel composition. The only speciality to be noted is that
before considering which input or output variables are equated, all the communication
variables have to be eliminated, because they are no longer part of the external interface
of the composite operation.

Mapping Communication Variables According to the Object-Z language definition
the operations combined by parallel composition happen at the same time and the
operation is commutative. Consequently, communication may happen from the left to the
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right operation, vice-versa or even in both directions in parallel. In Figure 3.10 operation
transferAuthors1 has been presented to illustrate the use of this kind of operation
expression. The left-sided operation authorList has an output variable authors!, and the
operation on the right has an input variable authors?. As both communication variables
have the common base name authors, the two are used for internal communication. In the
mapping the same semantics have to be reflected. The operation signatures of authorList
and for setAuthorList in Perfect are:

function authorList authors_out: seq of string

schema !setAuthorList(authors_in: seq of string).

Therefore, the resulting operation has no more input or output variables to the environ-
ment, but only one internal communication variable. This means that the value of the
output variable has to be used as input parameter to the change operation.

Operation setAuthorList uses the temporary communication variable tempVar1 in primed
form to state that the input parameter is the final value of tempVar , i.e. after having
assigned the output of the other operation. However, the dependency between the
operations implied by the communication variable is not yet reflected in the mapping
done in this work. The only way to introduce a new variable in a precondition is adding
a quantification. In this case an existential quantification states that there exists one
value or object that is at the same time output of the left operation and input of the
right operation. The final mapping of the operation achieved in this work is shown in
Listing 5.15.
function transferAuthors1_prec: bool
^= book1.authorList_prec &

(exists tempVar1: seq of string :-
tempVar1 = book1.authorList.authors_out &
book2.setAuthorList_prec(tempVar1));

schema !transferAuthors1
pre transferAuthors1_prec
post (var tempVar1: seq of string;

tempVar1! = book1.authorList.authors_out,
book2!setAuthorList(tempVar1’));

Listing 5.15: Communication variables in parallel composition

In general, the concept of mapping preconditions for this construct is to introduce a
new temporary variable for each communication variable in an existential quantification
expression and state that this temporary variable is equal to the communication output
variable. Postconditions introduce temporary variables to hold the values of the commu-
nication output variables and transfer them to the other operation, as well. Once again
a distinction has to be made between function and change operations. Table 5.36 sums
up the mapping rules for parallel compositions with communication variables.

If a parallel composition operation contains both, common output variables and commu-
nication variables, then the resulting existential quantifications or variable declaration
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Table 5.36: Mapping communication variables in parallel compositions to Perfect

parOp =̂ a.op1 ‖ b.op2
Modified ∀ commVar:communicationVars() •
Preconditions exists tempVarDecl(commVar) :-

tempVarL1 = a.op1_post(op1.inVars(), tempVarR1).commVar1

tempVarR1 = b.op2(op2.inVars(), tempVarL1).commVar2

a.op1_prec(op1.inVars(), tempVarR1)&

b.op2_prec(op2.inVars(), tempVarL1)

Modified Functions
Postconditions Similar to preconditions, value of communication variable is assigned to

temporary variable and then used instead of communication input variable.
exists tempVarDecl(commVar) :-

tempVarL1 = a.op1(op1.inVars(), tempVarR1).commVar1

tempVarR1 = b.op2(op2.inVars(), tempVarL1).commVar2

result.outVarL1 = a.op1(op1.inVars(), tempVarR1).outVarL1

result.outVarR1 = b.op1(op2.inVars(), tempVarL1).outVarR1

Functions and Change Operations
var tempVarDecl(commVar);
a!op1(op1.inVars(), tempVarR1’, op1.outVars(), tempVarL1!),

tempVarR1! = b.op2(op2.inVars(), tempVarL1’).commVar2,

outVarR1! = b.op2(op2.inVars(), tempVarL1’).outVarR1

Change Operations
var commTempVarDecls();

a!op1(op1.inVars(), tempVarR1’, op1.outVars(), tempVarL1!),

b!op2(op2.inVars(), tempVarL1’, op2.outVars(), tempVarR1!)

parts in schemas have to be merged into one such construct because temporary variables
for communication variables have to be accessible by predicates for common output
variables as well.

Calling Operations on One Object When both operations of the parallel compo-
sition are change operations and called from the same object, the same problem with
concurrent modifications of one object arises as already described for conjunction op-
erations. The solution for parallel composition is almost the same as for conjunction
operations, but in combination with communication variables the mapping has to be
modified. The problem arises because of the primed variables in the postconditions of
schemas when communication variables are mapped.
var commTempVarDecls();

a!op1(op1.inVars(), op1.outVars(), tempVarL1!) then
a!op2(op2.inVars(), tempVarL1, op2.outVars())

Listing 5.16: Parallel communication with one caller object
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Here, op1 is first executed and tempVarL1 has a distinct value at this moment. Next
op2 is executed and needs to access the final value of tempVarL1, but as this variable
has not yet been modified in the part after then, tempVarL1’ does not have a distinct
value at that moment. To overcome this problem, the prime is simply removed from
all the communication input variables. Mapping to sequential order is only possible if
the second operation does not need to access the initial value of features of a that are
modified by the first operation. Another shortcoming of this mapping is that two-way
communication can no longer be translated, because the final value of all the input
variables of op1 must be fixed before op2 may be applied.

Associative Parallel Composition

A variation of parallel composition is the associative form. In Object-Z, the only difference
is that output variables remain visible to the environment. This means that only a few
changes have to be applied to the mapping of parallel composition.

Input and output variable sets as well as the set of common output variables do no longer
exclude the communication variables. Predicates are formed in exactly the same way
as for parallel composition, although the result is not the same for both, as associative
parallel compositions might have more common output variables, that produce their own
predicates in the preconditions.

The main difference in the mapping of postconditions is that they have to reflect the
fact that output variables involved in communication are propagated and not hidden.
In the mapping, this is done by explicitly setting the reference to the communication
output variable in the postcondition to the value of the introduced temporary variable. A
summary on the necessary modifications on variable sets and postconditions for associative
parallel composition is provided in Table 5.37.

Table 5.37: Differences of associative compared to parallel composition

assParOp =̂ a.op1 ‖! b.op2
Characteristics inVars() = op1.inVars() ∪ op2.inVars()

outVars() = op1.outVars() ∪ op2.outVars()
commonOutVars() = op1.outVars() ∩ op2.outVars()

Postconditions ∀ commVar:communicationVars() •
where tempVar is used as substitute for commVar
add a term depending on operation type
Function Operation
result.commVar = tempVar

Change Operation
commVar! = tempVar’
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Nondeterministic Choice

In comparison to the previous composition operations, nondeterministic choice has one
major difference: Both operations must have the same operation signature, i.e. the
same input and output variables. Combinations of change and no-change operations are
nevertheless possible.

In choice operations only one of the two operations will be executed and the chosen
one depends on which one is applicable. One can directly deduce the preconditions
of nondeterministic choice operations from this definition. A nondeterministic opera-
tion nonDetChoice may only be applied if at least one of the two inner operations is
applicable. Therefore the preconditions of both operations are combined by a logical
or (|). Postconditions on the other hand have to reflect that the postconditions of op1
or op2 are only satisfied if the preconditions of the respective operation are satisfied.
In Perfect, the bracketed form of postconditions is helpful to accomplish the mapping.
As the mapping result never provides a default guard, the keyword opaque has to be
used in the mapped operation to reproduce the nondeterministic semantics. Table 5.38
summarizes the mapping of this operation composition.

Table 5.38: Mapping nondeterministic choice to Perfect

nonDetChoice =̂ a.op1 [] b.op2
Characteristics inVars() = op1.inVars() = op2.inVars()

outVars() = op1.outVars() = op2.outVars()
Preconditions op1.preconditions() | op2.preconditions()
Postconditions Functions

([a.op1.preconditions()]:

result.outVar1 = a.op1(op1.inVars()).outVar1 & ...

[b.op2.preconditions()]:

result.outVar1 = b.op2(op2.inVars()).outVar1 & ...)

Functions and Change Operations
([a.op1.preconditions()]:

outVar1! = a.op1(op1.inVars()).outVar1 & ...

[b.op2.preconditions()]:

b!op2(op2.inVars(), outVar1!)& ...)

Change Operations
([a.op1.preconditions()]:

a!op1(op1.inVars(), op1.outVars()),
[b.op2.preconditions()]:

b!op2(op2.inVars(), op2.outVars())
Declare the combined operation opaque for the nondeterministic
behavior.
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Sequential Composition

The only operation expression that implies an order on the combined operations is the
sequential composition. Similar to parallel composition, communication is possible using
output and input variables with the same base name, but this communication may only
happen from the first to the second operation. Regarding applicability of a sequential
composition it has to be said, that the whole operation may only be used in a situation
where the precondition of the first operation is satisfied and the precondition of the
second operation is satisfied based on the state reached after executing the first operation.
Therefore the mapping of the sequential composition is equal to the mapping of parallel
composition with one-way communication from the first to the second operation without
common output variables and where left and right operation do not change the same
object.

If both operations are called on the same object and the first operation modifies the state
of the caller, then the precondition of the second operation might have to access the
value of a state variable changed by the first operation. In this case the new precondition
cannot be built with the means already introduced. It is necessary to have access to a
variable that holds the state of the caller modified by the first operation. This can be
achieved by an additional helper function in the class of the caller that returns an object
of this class with the state variables set to the values of the caller object modified by the
first operation. Table 5.39 sums up the mapping rules created in this work for sequential
composition referring to the mapping rules of parallel composition as far as applicable.

Scope/Environment Enrichment

The scope enrichment operation expression aims on providing the variables declared in
the operation on the left side to the operation on the right side, which is, except for
communication variables, not possible for any of the other operation expression types.
Although the operation on the left hand side might be any kind of operation expression,
this work will only present a mapping for flat operation schema declarations. Usually,
the left operation of scope enrichment selects an object out of an existing collection (like
in scopeEnr1) of elements by applying a predicate pred. This chosen object acts then
either as a caller on the right hand side or as an input variable to an operation (like
in scopeEnr2) that takes an input variable with the same name. These variations are
illustrated as follows:

scopeEnr1=̂[a : collection | pred(a)] • a.op1
scopeEnr2=̂[a? : collection | pred(a?)] • op2

Instead of selecting only one variable, there might be several which can all be used by
the predicates. The actual mapping depends on the declaration type of the selectors and
on the operation type of the operation expression on the right hand side.
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Table 5.39: Mapping sequential composition to Perfect

seqComp =̂ a.op1 o
9 b.op2

Characteristics communicationVars() = op1.outVars() ∩ op2.inVars()
inVars() = (op1.inVars() ∪ op2.inVars()) \ communicationVars()
outVars() = (op1.outVars() ∪ op2.outVars()) \ communicationVars()
commonOutVars() = (op1.outVars() ∩ op2.outVars()) \ communicationVars()
Sequential order is predefined: 〈 op1, op2 〉

Preconditions If a = b and op1 is a schema
Introduce an additional temporary variable with type of a
that holds the state of a modified by op1 provided by helper function
op1_constr

exists tempVarDecls() :-

tempVar1 = a.op1(op1.inVars()).cOutVar1 & ...

tempVarA = a.op1_constr(op1.inVars()) &

tempVarA.op2_prec(op2.inVars(), tempVar1)

No preconditions for common output variables.
Preconditions are equal to parallel composition in all other cases

Postconditions Postconditions are similar to parallel composition, but
in functions only include promotions of common output as call from right
hand side,
in schemas ’,’ is replaced by then

First, this work takes a closer look on the case in which the selector is an input variable.
Here, a? comes from outside and the mapping only has to make sure, that the value
satisfies the predicate on the left side and the preconditions of the operation on the right.
The operation on the right is mapped according to its own mapping rules described in
one of the sections of this chapter while the operation type remains the same.

If a has no suffixes, then it is in fact an auxiliary variable in Object-Z, this means, that
it is not set by the environment, but is fixed to a certain value locally and then the
right-hand side operation is involved on this object. Again, this operation might be a
no-change operation with or without output or a change operation. For the latter case,
this also implies, that the inner state of a will be modified by the operation on the right.
Therefore the step of setting a and then modifying it must be executed sequentially which
is expressed by then. The necessary mapping rules for scope enrichment are summarized
in Tables 5.40 and 5.41 for scope enrichments with input variables and auxiliary variables
as variables with enriched scope, respectively.

This concludes the list of operation expressions and the description of the mapping for
distributed operators is the only remaining part of the transformation rules in the chapter
about operations.
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Table 5.40: Mapping scope enrichment with an input variable to Perfect

scopeEnr =̂ [a?: collection | pred(a?)] • op2
Characteristics inVars() = left.inVars() ∪ op2.inVars()

outVars() = op2.outVars()
left.outVars() assumed to be empty
’a?’ as input variable
preconditions() = left.preconditions() ∪ op2.preconditions()

Postconditions Functions
∀ outVar:outVars •

result.outVar = op2(op2.inVars(), a?).outVar

Change Operations
op2(op2.inVars(), a?, op2.outVars())

Table 5.41: Changes of the mapping of scope enrichment with an auxiliary variable

scopeEnr =̂ [a: collection | pred(a)] • a.op2
Characteristics ’a’ as auxiliary variable
Preconditions Add existential quantification for auxiliary variable:

exists a::collection :- pred(a) & op2.preconditions()
Postconditions introduce a temporary variable for the declared auxiliary variable

Functions
∀ outVar:outVars() •
exists a::collection :- pred(a) &

result.outVar = a.op2(op2.inVars()).outVar
Change Operations
var a:collection.type();
(a! = (any tempVar1::collection :- pred(tempVar) &

a.op2_prec(op2.inVars())))then
a!op2(op2.inVars(), op2.outVars())

Distributed Operators

Distributed operators generalize the binary operation expressions from the previous
sections to operations performed on an arbitrary number of objects. Usually, these
objects are taken from a flat operation schema similar to scope enrichment.

In distributed conjunctions the most important issues in the mapping are that all opera-
tions happen in parallel and input and output variables with the same name are equated
and therefore have to be equal. As the same operation is applied to all of the callers, it
only makes sense that one caller does not appear more that once in the list of callers,
which also means that we can assume that concurrent modifications on one caller object
will never happen. The exact mapping rules depend once again on the operation type
of the inner operation op as this is shown in Table 5.42. In the mapping of schema
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Table 5.42: Mapping of distributed conjunction to Perfect

distrConj =̂ ∧ a:collection • a.op
Characteristics inVars() = op.inVars()

outVars() = op.outVars()
Preconditions Bool Functions

forall a::collection :- a.op(op.inVars())
Functions
for each output variable a temporary variable is declared.
(exists tempVarDecls() :- (forall a::collection :-

tempVar1 = a.op(inVars()).outVar1 &

tempVar2 = a.op(inVars()).outVar2 & ... ))&

(forall a::collection :- a.op_prec(inVars()))
Change Operations
similar to functions, but a.op is replaced by a.op post in
existential quantification for common output variables.

Postconditions Functions
for each output variable a temporary variable is declared.
exists tempVarDecls() :-

result.outVar1 = a.op(inVars()).outVar1 &

result.outVar2 = a.op(inVars()).outVar2 & ... &

(forall a::collection :-

tempVar1 = a.op(inVars()).outVar1 &

tempVar2 = a.op(inVars()).outVar2 & ...))

Change operations
A temporary variable is declared for each output variable, as a map of
elements with type of caller to type of output variable. This mapping is
only applicable if collection is a sequence or is transformed into one.
var tempMap1: map of (a.type()-> outVar1.type()); ...

(tempMap1! = map of (a.type()-> outVar1.type()){}, ... )then

(collection[0]!op(inVars(), outVars()),
forall i::1..#collection :-

collection[i]!op(inVars(), tempMap1[collection[i]]!,

tempMap2[collection[i]]!, ...))

postconditions the idea is to set the final value of the output parameters in the call of
the first operation and for all other operations the value of the output variable is written
to a temporary variable. Therefore, a map is introduced that can hold these values when
calling all the other operations.

The distributed nondeterministic choice selects only one of the operations for execution,
either the only one for which the individual precondition is satisfied or one of the
operations where its precondition is fulfilled if there are several. In the remaining cases,
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the whole operation has to be mapped as not applicable. The transformation rules are
presented in Table 5.43.

Table 5.43: Mapping of distributed nondeterministic choice to Perfect

distrChoice =̂ [] a:collection • a.op
Characteristics inVars() = op.inVars()

outVars() = op.outVars()
Preconditions Bool Functions

exists a::collection :- a.op(inVars())
Functions and Change Operations
exists a::collection :- a.op_prec(inVars())

Postconditions Functions:
for each output variable a temporary variable is declared.
(exists a::collection :- (a.op_prec(inVars()) &

result.outVar1 = a.op(inVars()).outVar1 &

result.outVar2 = a.op(inVars()).outVar2 & ... )

Change operations
A temporary variable is declared for each output variable, as a map of
elements with type of caller to type of output variable. This mapping is
only applicable if collection is a sequence or is transformed into one.
var a:a.type();

a! = (any tempVar1::collection :-

tempVar1.op_prec(inVars()))then
a!op(inVars(), outVars())

For the third operation, distributed sequential composition, one sequential order of elements
of the collection has to be found that is applicable. This means that all permutations of
the arbitrary number of objects has to be checked, which grows exponentially with the
element count. Therefore, a mapping to a checker that iterates over all permutations
seems to be inoperative. The only other way is to express the precondition using a
quantification that states that there is a permutation of the calling objects such that the
combined operation built from the permutation order yields a feasible result. However,
stating these semantics in terms of the Perfect language has been considered too complex
for this work because even more helper functions would be necessary and so no mapping
will be presented for distributed sequential composition, here.

Inheritance in Operations

Some important remarks regarding inheritance have to be made for the mapping from
Object-Z to Perfect. In Object-Z inherited operations always extend the operation of
the superclass, i.e. the operation is conjoined with new predicates. Up until now, we
have only used postconditions in the mapping to Perfect, not post-assertions. However,
when it comes to mapping inheritance, these post-assertions are very important, because
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they are the inherited part of the operation. Therefore, if an operation is declared in
a class that inherits from another, then all the operations with the same name in the
super classes have to be enriched with such post-assertions. In fact, this means that
postcondition and postassertion will have the same predicates, but it is not possible to
leave out either part if inheritance shall be mapped.

This concludes the description of transformation rules from Object-Z to Perfect. The
subsequent chapters will present more details on the implementation, a case study,
that shows the results of the implemented tool and an evaluation of the mapping and
implementation.
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CHAPTER 6
Implementation

This chapter provides details on how the mapping rules described in the previous chapter
have been transformed into an implementation. The structure and building blocks of the
implemented tool are presented here.

6.1 Design of the Mapping Tool
The transformation from Object-Z to Perfect is established in several subsequent process
steps. Figure 6.1 shows the processing steps that a specification will undergo during
transformation. The box named “Object-Z grammar” represents the parser and lexer
grammars of Object-Z, which are provided together with the translation tool. The boxes
on the right side show the names of the tool components that will be involved into the
described transformation steps.

In the first step, lexical analysis, the OZLexer analyzes the original Object-Z specification
according to the provided lexer grammar and splits the input into a sequence of tokens.
In the parsing step, the OZParser generates a parse tree from the token input and the
given grammar that represents the specification. Afterwards, several steps to semantically
analyze the parse tree are performed by the OZTranslator. This component builds an
internal representation of the Object-Z specification on top of the parse tree, iteratively
enhanced by all necessary information, such as symbols and type information, to create
a Perfect specification as output, by traversing the parse tree several times. During the
last step, the TemplateRenderer combines all involved templates and prints them out to
standard output.

6.2 Tool Implementation
As already proposed in section 2.5, Tools for Language Transformations, the implemen-
tation is based on the programming language Java, in version 8, in combination with
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Figure 6.1: Transformation steps within the mapping tool and high-level responsibilities
of the components

ANTLR 4 and the StringTemplate templating engine. The following subchapters present
more details on the implementation of the components of the mapping tool done in this
work.

6.2.1 Input Format – Modified Object-Z Syntax

As shown in Chapter 3, Object-Z uses a graphical syntax that defines the barriers between
their logically compound blocks by means of boxes to separate the single blocks. In
addition, many non-ASCII characters are used to start special purpose sections. Therefore,
LATEX markup is available to typeset Object-Z specifications properly. Another way to
visualize Object-Z specifications is using Unicode encodings to reference all the necessary
special characters. Although the grammar of Object-Z is provided in the work of Smith
[Smi00], and Duke and Rose [DR00], neither of these works specify the lexical tokens in
full detail. Due to these facts a lexer implementation that is based on Unicode syntax or
LATEX markup would have to make some assumptions about the box structures.

Therefore, and furthermore to ease the writing of the specification, this work uses a
mapping based on a simplified Object-Z syntax that solely depends only on ASCII
characters by replacing the graphical boxes with parenthesized blocks and special char-
acters with keywords. This syntax is adapted from the existing syntax presented by
Tim Kimber [Kim07]. Blocks use either curly braces or parentheses and are prefixed
by their name. Within Object-Z boxes some constructs use horizontal lines to separate
into subsections. These separators are in practice not necessary to correctly parse an
Object-Z specification, so they can be simply left out. However, the section of secondary
state variables still has to be labelled so that one can distinguish between primary and
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secondary variables. In the modified syntax, these secondary variables are enclosed by a
block with the name “delta” within the state schema. An operation block is started
with the name of the operation, and within this block the ∆ sign has been replaced by
the keyword “delta” to mark the deltalist of a change operation.

In essence, the syntax has only been adapted as little as necessary, and as far as possible
the original Object-Z syntax is maintained. Noticeably, there is no change in the order of
language elements within a class or smaller block, so the parser for this parenthesized-
block-ASCII-only syntax can be easily substituted by one that accepts LATEX markup or
a unicode character syntax, while still producing the same tree structure, so that the
traversal of the tree works fine on both notations. In the following, this syntax is just
called OZ to distinguish it from the original Object-Z specification language syntax.

The examples given in the case study in Chapter 7 illustrates the modified syntax. The
grammar and symbol descriptions used for the translation tool can be found in Appendix
B whereas the source code of the whole tool is available at the Object-Z 2 Perfect
translation project page1.

6.2.2 OZLexer and OZParser

Based on the grammar described before, lexer and parser have been generated using
ANTLR in version 4.7 with Java as target language. The implementation of the se-
mantical analysis, that is done by OZTranslator, bases on the listener interfaces that
are automatically created by ANTLR. In this work, the visitor interface classes are not
necessary, so there is no need to create them.

After running the antlr command on the input grammar file OZ.g4 six files are gener-
ated, two token files (OZ.tokens and OZLexer.tokens), two classes that implement
the lexical, and syntactical analysis (OZLexer.java and OZParser.java) and two
files to provide the listener functionality (the interface OZListener.java and the
actual implementation OZBaseListener.java). The implemented tool uses all these
files programatically to trigger the translation process. First, it reads the OZ definition
saved in the file at the path provided on startup. This file is analyzed and split into
tokens by OZLexer. Then these tokens are parsed by OZParser to produce a parse tree
that represents the Object-Z specification.

To illustrate this, an exemplary, slightly simplified parse tree for a sample OZ method
(Listing 6.1) is provided in Figure 6.2. The square boxes represent the terminal nodes
that correspond to tokens of the specification language. The names of the leave nodes,
as they are used by lexer and parser are not included in the diagram for simplicity
reasons. The circular nodes are non-terminal nodes, which represent a single rule or
production in the grammar of OZ. Reading the tree from top to button, one can see that
the outermost parse tree node is operationSchemaDef which consists of two terminal
nodes containing the texts withdraw and {. The next parts are the non-terminal nodes

1https://github.com/sylviaswoboda/objectz-2-perfect
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deltalist, declarationList, and predicateList. The grammar production operationSchemaDef
ends with a terminal node containing a closing curly brace }. The non-terminal nodes
are then again split into their building blocks, until all the paths end in terminal nodes.

withdraw{
delta(balance)
amount?: !N;
balance’ = balance - amount?;

}

Listing 6.1: Sample method written in OZ

Figure 6.2: Example parse tree of method “withdraw”

The latter two files created by ANTLR, OZListener.java and OZBaseListener.java
have not yet been used so far, but will be necessary when it comes to traversing the parse
tree to add further information.
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6.2.3 OZTranslator

The purpose of the OZTranslator is to gather information about the parse tree and
transfer it to the place where it will later be used to produce the output in the Perfect
language. The OZTranslator breaks these transformation steps down into smaller parts
and, therefore, dedicated classes fulfill only a limited purpose each, such as to collect or
combine additional semantic information, and, step by step, the single implementations
are then chained to provide the translation functionality as a whole. Figure 6.3 shows an
overview of the main classes and data structures built by them to do the final translation
to Perfect.

Figure 6.3: Overview of main classes for transformation and the internal data structures

Some, but not all of them are implemented as extension to the OZBaseListener class,
which provides two methods for each parse tree node. Listing 6.2 shows these methods
for parse rule classDefinition; enterClassDefinition is called by the tree walker
before entering the node, and exitClassDefinition after exiting the node.
@Override
public void enterClassDefinition(ClassDefinitionContext ctx) {

// actions executed before the rule go here
}
@Override
public void exitClassDefinition(ClassDefinitionContext ctx) {

// actions executed after the rule go here
}

Listing 6.2: Listener methods for parse rule classDefinition
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After exiting, all the semantical information from all the visited subnodes has already
been collected and so it can be aggregated even further. By implementing interface
OZListener or extending the default implementation OZBaseListener, which enables
overriding only selected methods, custom behavior can be provided for walking the tree.
When then ParseTreeWalker walks through a parse tree, it starts at the root node
and then descends down to each child node until it finally returns to the root node again.
For the listener implementations, this means, that one can assume that the enter and
exit methods of rules in the parse tree provided in Figure 6.2 are called in the order given
in Listing 6.3.
enterOperationSchemaDef()
enterDeltalist()
exitDeltalist()
enterDeclarationList()
enterDeclaration()
...
exitDeclaration()
exitDeclarationList()
enterPredicateList()
....
exitPredicateList()
exitOperationSchemaDef()

Listing 6.3: Call sequence of enter and exit methods while traversing the parse tree

The class ParseTreeProperty is another powerful feature of ANTLR that makes it
possible to associate data with a parse tree node. For example, it can be used to save
information of node declaration and this information can be accessed in the exit listener
of the parent node declarationList. The subsequent paragraphs will provide descriptions
of all components of OZTranslator shown in Figure 6.3.

IdentifierCollector

The idea of the IdentifierCollector is to have the identifiers that are used within
a subtree available at any given node. It starts from nodes representing names with and
without decoration and aggregates them in every single parent node. The result is saved
in the ParseTreeProperty usedIdentifierTree. This information is e.g. needed to
decide in the next step, whether a predicate is a pre- or a postcondition.

SymbolCollector

The SymbolCollector is responsible for declaring each symbol within its scope. Sym-
bols are variables, classes, operations, or local definitions and the possible scopes comprise
the whole Object-Z specification, a class, a schema, or a local scope, e.g. in set abstractions
or quantification predicates. After this step an ObjectZDefinition object is available
that already knows about the defined classes and local definitions. The referenced classes
in return know about the state variables and the class invariants, operations, the visibility
list, whether there is an INIT-function or not, and the names of inherited classes. However,
it is important to notice that at this point, structures like variable declarations cannot
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yet be fully filled as the already collected information is not capable of e.g. determining
the type of expressions. One could only say that the type is represented by a certain
Object-Z expression, but the type is not yet evaluated.

Beside the ObjectZDefinition object, the SymbolCollector also outputs three
ParseTreeProperty objects:

• The declarationTree assigns a variable declaration, a Variable object that
will enable the access to all information of a variable, like its declared type or name,
to the identifier node of the variable declaration.

• The localScopeTree holds the LocalScope objects that are created during
this pass of the tree.

• The schemaPredicateTree is the container for ISchemaPredicate objects
that wrap each predicate of the specification to link them back to the parse tree
and also provide access to the identifiers used within the predicate.

TypeDeclarationEvaluator

The TypeDeclarationEvaluator aims at assigning a type to all expressions within
the specification and also to each declared symbol. Simply said, if there is a variable
declaration such as s : PN, then the information that s is a variable typed as a set
of natural numbers should be available and accessible in the whole context where s is
declared. Evaluation of expressions and assignment of the found types to the declared
variables happen alternately, which can be easily seen in the previously shown set example.
First, the evaluator determines the type of N, then PN, then the declaration is recognized
and the type of the expression PN is assigned to the variable s. The next term in the
specification could be another variable declaration and the evaluation is done again in
the same manner.

The evaluator also determines the actual type if the expression is an identifier of e.g. a
class or a basic type, which then evaluates to a user defined type. Predicates evaluate to
a boolean type. In addition to the fact that the ParseTreeProperty declarationTree
now has the necessary type information for declared variables, the ParseTreeProperty
expressionTypeTree contains the type for all expressions and subparts of expressions
in the specification. This information is needed to determine for some expressions the
correct translation template based on the involved types.

EmptyCollectionEvaluator

Due to the bottom-up and left-to-right traversal of the tree, it is sometimes not possible
to determine the type of a single expression part. For example, in the expression
s = {} ∪ {1, 2, 3} it is possible to determine the types of s, {1, 2, 3} and even the whole
expression, but not the type of {}. However, the type information is mandatory for some
translation rules. In the example, the TypeDeclarationEvaluator is only able to
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recognize {} as a set of some type. In order to remain type compatible, the element
types of the left and right hand side of the union have to be the same or compatible.
Unfortunately, at the time the type of the left expression ({}) is evaluated, the element
type of the right expression ({1, 2, 3}) is not yet evaluated. In such cases, a second traversal
of these empty set, bag, or sequence nodes is helpful to determine the type of element
nodes from neighboring nodes. The EmptyCollectionEvaluator accomplishes this
task resulting in a modification of the affected nodes in the expressionTypeTree.

PredicateTranslator

The PredicateTranslator assigns a suitable template as mapping to each expression
and predicate node. This class makes use of internal data structures expressionType
Tree, declarationTree, and schemaPredicateTree for that purpose. The Parse-
TreeProperty expressionTypeTree is used in this context to determine which mapping
should be applied if the mapping depends on the type of the original expression. The
schemaPredicateTree is used for the proper translation of predicates in quantifica-
tion expressions. The ParseTreeProperty templateTree is initialized by this class and
saves all created templates at the corresponding predicate or expression node. The input
data structure declarationTree enables access to the variables and their types within
the tree. In order to be able to build a Perfect declaration only from the information
stored within a Variable object, the type template information is also handed over to
these objects, which means that the information in declarationTree is enhanced by
this class.

OperationComposer

In the symbol collection phase only the names of referenced operations have been collected
for operation expressions, and predicates only reference back to the parse tree. To be able
to translate operations to Perfect, it is necessary, to resolve these dependencies. So, the
OperationComposer looks up the names of the referenced operations in the class of the
calling object, retrieves the actual Operation object and makes the functions for input
and output parameters, preconditions and postconditions available for the composition
of the operation. The second duty is to build the preconditions and postconditions of all
operations in all classes. This internal representation of an operation is saved directly
within the Operation object. After this translation step has finished, this information
is available for output generation.

OperationTranslator

To maintain the characteristic of Object-Z in referencing the combined operations, it
became necessary, to have the information of all referenced operations available before
actually doing the translation step. That is why this step is not yet directly incorporated
into the previous class OperationComposer. The OperationTranslator starts
from the ObjectZDefinition object and iterates over all operations, first those based
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on operation schema definitions, then those built from operation expressions. In each step,
a template of the operation is built, which contains the representation of the operation
itself, a function representing its precondition and, if needed, a post-function, that makes
the value of output variables of schemas available before actually calling the schema and
doing the modifications on internal data structures. The resulting StringTemplate with
the concrete values of the operation is then saved within the operation and also in the
templateTree data structure.

DefinitionTranslator

The last step in the translation process chain translates all the remaining symbols to
Perfect. The DefinitionTranslator translates free type definitions, given types and
abbreviation definitions on global level, first. Next, it iterates over all defined classes
including their local definitions, and as a last step the single building blocks are combined
to one StringTemplate representing the whole Object-Z definition. As in the previous step,
the resulting StringTemplates are saved in the templateTree and additionally in the
internal representations of these language constructs, making the template representation
available using the method getTemplate().

6.2.4 TemplateRenderer

Finally, the processed Object-Z specification is rendered as Perfect class definitions.
After the Application of all the translation steps, the getTemplate() method of the
ObjectZDefinition object delivers the StringTemplate object representation of the
whole specification provided to the tool. It can be rendered into a string by means of the
render() method, which prints the whole specification translated to Perfect. That is
also the functionality available from the Main-class created within this project. However,
it is also possible to access single classes programmatically and render only parts of the
translated Perfect specification code.

6.3 Selected Topic: Types

After the overview of the main components of the translator, this and the following section
focus on some aspects of the implementation, that turned out to be quite interesting
during the implementation work, which was not anticipated before. The developed
internal structures helped to provide the semantics of the specification more explicitly
with regard to the needs of the translation to Perfect.

The first topic targets handling types properly, i.e. collecting the types and assigning
them to the declared variables and expressions on the one hand and, on the other hand,
having the correct information available for the translation. During the implementation
of the mapping, it turned out that just looking for the declared type cannot be enough
in particular cases. Considering the example in Figure 6.4, there is variable cset declared
as a set of natural numbers, variable c declared as member of cset and a quantification
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predicate declaring variable b again as a member of cset. The last line defines SmallNumber
as an abbreviation definition using set abstraction on the right hand side.

cSet : PN
c : cset
∀ b : cset • b < 100

SmallNumber == b : cSet • b < 100

Figure 6.4: Using collection typed variables in Object-Z

Object-Z allows variable declarations with a collection variable as type. However, in
Perfect this is only possible for bound variable declarations and so this has to be modeled
properly during translation. Listing 6.4 shows how these Object-Z declarations should be
translated to Perfect. In lines 2 and 3 c is declared as a natural number. The invariant
states that it also has to belong to cSet. In contrast in the quantification expression,
the bound variable declaration directly references the name of the set. In the context of
the abbreviation definition SmallNumber, b is again declared with a type and adds the
constraint to the predicate section of the those clause.

1 var cSet: set of nat;
2 var c: nat;
3 invariant c in cSet;
4 forall b::cSet :- b < 100;
5 class SmallNumber ^= those b:nat :- b in cSet & b < 100;

Listing 6.4: Translating collection typed variable to Perfect

Obviously, it is not sufficient, to solely know the expression written on the right hand side
of a declaration, especially if this is an identifier. To solve this problem, the types are
resolved and then saved in a dedicated structure during the translation process. This is
accomplished by two classes ExpressionType and Type. The first represents the whole
type information available for any given expression and consists of two Type variables,
declaredType and effectiveType. For the example in Figure 6.4, this means that
variable c has a declared type with Category.TEMPLATE and an effective type with
Category.SET which also references a single ExpressionType representing natural
numbers as a subtype. The declared type always stands for what was originally written
in Object-Z as a StringTemplate, while the effective type is used for type evaluations
such as choosing the correct mapping rule for domain and range operations. It is possible
to deduce all the declarations and usages in Listing 6.4 from this kind of data structure,
but it is still necessary to react to the different possible types within the implementation.
Figure 6.5 shows the relations between the two implemented type classes and lists the
available values for the enumeration Category as an UML class diagram.
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Figure 6.5: Relation between classes ExpressionType and Type as UML class diagram

6.4 Selected Topic: Combining Operation Expressions

Another interesting aspect of the implementation needs to be mentioned in more de-
tail. This work presents a novel approach for an abstraction of the preconditions and
postconditions involved in the combination of operation expressions. The goal of this
approach was to make it possible that operations of the same types can be combined
without nesting and therefore keeping the data structures as flat as possible.

Each composite operation is represented by its own class. Only parallel composition
and associative parallel composition can be combined within one class. The classes
representing postconditions have also been organized as a hierarchy. Figure 6.6 gives an
overview of the classes used to compose operation expression postconditions.

It is eye-catching, that there are six classes extending the abstract class Combined
Postconditions and only two other classes, NonDeterministicPostconditions
and SequentialPostconditions. The latter two represent the postconditions for
the corresponding operation promotions and they fulfill the goal that they can ac-
commodate operation promotions such as A [] B [] C or A o

9 B o
9 C within only one

postcondition object. The list members contain the representation of the sub operation
expressions and in the case of sequential composition, there is one entry in the list of
communicationVariables from each subpart of the operation expression to the next.

On the other side of the tree, there are different kinds of CombinedPostconditions
that are used to represent postconditions of operation conjunctions and parallel composi-
tions. EmptyPostconditions are used in bool functions or whenever there is no post-
condition available to prevent combinations with null values. An OutputPromotion rep-
resents a single promotion of an output parameter of a function. A ChangeOperation
Call wraps a single promotion of a call to an operation schema. The remaining opera-
tions are used to represent more complex situations including common output parameters
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Figure 6.6: Internal representation of postconditions of operation expressions

or communication from output to input parameters. ComplexOutputPromotions are
used for postconditions which contain only operation promotions. Its variable “mapping”
contains shared output variables and all the information necessary for communication.
ComplexChangePostconditions are similar to the ones before, except that this class
references ChangeOperationCalls as well as OutputPromotions. The last class,
ThenPostconditions, represents all those postconditions that need sequentiality in
the output, e.g. because they use common callers. The different data structures contain
the data to record the dependencies between the called operations. The way how this
structure is actually output is only calculated when the template for the operation is
created in the OperationTranslator step.

CombinablePostconditions are conjoined or combined by the dedicated class
CompositePostconditionDataCollector (see Listing 6.5). It retrieves the nec-
essary data from the involved postconditions using the methods defined in interface
ICombinablePostconditions which are shown in Figure 6.7.
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public class PostconditionFactory implements ICompositionFactory {

public ICombinablePostconditions compose(ICombinablePostconditions left,
ICombinablePostconditions right, Declarations communicationVariables,
Declarations sharedOutputVariables, boolean isAssociative){
CompositePostconditionDataCollector data = new

CompositePostconditionDataCollector(left, right);
data.compose(communicationVariables, sharedOutputVariables, isAssociative);
return new CompositePostconditionFactory(data).createPostcondition();

}
public ICombinablePostconditions conjoin(ICombinablePostconditions left,

ICombinablePostconditions right, Declarations sharedOutputVariables){
CompositePostconditionDataCollector data = new

CompositePostconditionDataCollector(left, right);
data.conjoin(sharedOutputVariables);
return new CompositePostconditionFactory(data).createPostcondition();

}
}

Listing 6.5: Usage of class CompositePostconditionDataCollector

Figure 6.7: Interface ICombinablePostcondition and its methods

This way of building an internal representation of the operation expressions makes it
possible to defer decisions how a subexpression should be mapped to Perfect to the latest
possible moment, which can make the generated output result easier to read, and the way
one can work with the data structure more flexible. For preconditions, a similar structure
has been built, but the used concepts are the same, so they will not be described here in
more detail.

This ends the chapter about how the tool for translating Object-Z to Perfect has been
implemented. The following chapter discusses the results of this work on the basis of a
case study.
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CHAPTER 7
Results, Conclusion, and Outlook

In this chapter the implemented tool1 is evaluated based on a case study providing
exemplary Object-Z specifications. The tool output and the verification and validation
results delivered by Perfect Developer are discussed, especially taking the differences to
other mappings into account.

7.1 Case Study: Book and SmallLibrary

To demonstrate the implemented translation tool, this section presents an example that
bases on the classes Book and SmallLibrary provided in Chapter 3 in Figures 3.8 and
3.9. The mapping of the first class focusses on the mapping of the class construct and
its different kinds of operations. To keep the case study simple and concise, only a
subset of the operations will be included in the mapping. On the other hand, the second
class only includes three operation expressions that underline the main features of their
translation rules, common output, communication, and sequentiality. The specifications
in Listings 7.1 and 7.2 are written in OZ syntax, the input notation for the translator,
instead of the usual Object-Z notation and these include only those parts, that will also
be discussed in this case study.

class Book{
visible(lend, latestRecension, authorList, setAuthorList)
const{

maxHistoryEntries: !N;
maxHistoryEntries in {10, 20, 50, 100};

}
state{

authors, recensionHistory, readerHistory: seq String;
lent: !B;
delta {

1Object-Z to Perfect Project, https://github.com/sylviaswoboda/objectz-2-perfect
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totalLendingCount: !N;
}
#recensionHistory <= #readerHistory;
#recensionHistory <= maxHistoryEntries;
totalLendingCount = #readerHistory;
authors ~= [];

}
INIT{

recensionHistory = [];
readerHistory = [];
~lent;

}
authorList {

authors!: seq String;
authors! = authors;

}
setAuthorList {

delta(authors)
authors?: seq String;
authors’ = authors?;

}
latestRecension{

recension!: String;
#recensionHistory > 0;
recension! = last recensionHistory;

}
lend{

delta(readerHistory, lent)
reader?:String;
~lent;
lent’;
readerHistory’ = readerHistory +^+ [reader?];

}
}

Listing 7.1: Book example in OZ

class SmallLibrary {
visible(postRecension, authorLists, transferAuthorsAndRecension,

switchAuthorsAndLend)
state {

book1, book2, book3: Book;
recensionsWall: Book <--> String;
book1 ~= book2;
book1 ~= book3;
book2 ~= book3;

}
postRecension{

delta(recensionsWall)
book?: Book;
recension?: String;
recensionsWall’ = recensionsWall >O< {book? |-> recension?};

}

authorLists ^= book1.authorList && book2.authorList;
transferAuthorsAndRecension ^= (book1.authorList ||! book2.setAuthorList &&

book2.latestRecension) 0/9 book3.latestRecension;
switchAuthorsAndLend ^= ((book1.authorList || book2.setAuthorList) && book2.lend)

[] ((book2.authorList || book1.setAuthorList) && book2.lend)
}

Listing 7.2: SmallLibrary example in OZ
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7.1.1 Evaluating the Tool implementation

Applying the translation tool to classes Book and SmallLibrary maps the OZ input to two
Perfect classes. The results of this process are presented and analyzed step by step starting
with the abstract section of class Book in Listing 7.3. All the primary variables of the
state schema of the Object-Z specification and constants of the axiomatic definition are
declared here as abstract data members. The secondary variable totalLendingCount
is not included, just as expected according to the mapping rules. It is notable that each
variable is declared in a separate line here, as opposed to the Object-Z specification,
which declared several names within one declaration statement. This happens, because
internally each variable is represented separately. However, both types of declarations
are semantically equivalent. The last four lines in the listing contain the mappings of the
invariants presented in the state schema and the axiomatic definition. In the invariants
concerning authors and maxHistoryEntries the types of the collections have been correctly
recognized by the translator.

class Book ^=
abstract

var authors: seq of String;
var recensionHistory: seq of String;
var readerHistory: seq of String;
var lent: bool;
var maxHistoryEntries: nat;
invariant #recensionHistory <= #readerHistory;
invariant #recensionHistory <= maxHistoryEntries;
invariant authors ~= seq of String {};
invariant maxHistoryEntries in set of nat {10, 20, 50, 100};

Listing 7.3: Abstract section of Book example translated to Perfect

The confined section of the mapped example is expected to consist of all remaining
members, that have not been included in the visibility list. In the Book example, these
are the INIT function, the getters and setters for all primary variables and the getter
function for the only declared secondary variable. The result is shown in Listing 7.4.

confined
function INIT: bool
^= recensionHistory = seq of String {} &

readerHistory = seq of String {} &
~ lent;

function authors;
function recensionHistory;
function readerHistory;
function lent;
function maxHistoryEntries;

schema !set_authors(authors_in:seq of String)
pre authors_in ~= seq of String {}
post authors! = authors_in;

schema !set_recensionHistory(recensionHistory_in:seq of String)
pre #recensionHistory_in <= #readerHistory,
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#recensionHistory_in <= maxHistoryEntries
post recensionHistory! = recensionHistory_in;

schema !set_readerHistory(readerHistory_in:seq of String)
pre #recensionHistory <= #readerHistory_in
post readerHistory! = readerHistory_in;

schema !set_lent(lent_in:bool)
post lent! = lent_in;

function totalLendingCount:nat
satisfy result = #readerHistory;

Listing 7.4: Confined section of the Book example translated to Perfect

Listing 7.5 demonstrates the build function that is used to construct new objects of the
class. It is always situated within the interface part of the Perfect specification and sets
all primary variables and constants to their initial values while maintaining all invariants
(lines 1-4 of the precondition section) and conditions specified by the INIT function (lines
5-7).

interface
build{!authors:seq of String, !recensionHistory:seq of String, !readerHistory:seq

of String, !lent:bool, !maxHistoryEntries:nat}
pre #recensionHistory <= #readerHistory,

#recensionHistory <= maxHistoryEntries,
authors ~= seq of String {},
maxHistoryEntries in set of nat {10, 20, 50, 100},
recensionHistory = seq of String {},
readerHistory = seq of String {},
~ lent;

Listing 7.5: Constructor of Book example translated to Perfect

Listing 7.6 presents the translations of all the operations of class Book. For each operation
schema, the correct type has been chosen for the mapping, function or schema, depending
on whether a deltalist has been included in the operation schema, or not. The mappings of
functions and schemas are split into two parts. First, a boolean helper function, defining
the preconditions of the actual operation, is declared. Second, the function or schema,
that provides the output parameters and state changes, is added. The precondition
function is called in the precondition section of the function or schema translation. It
contains the predicates of the operation schema that have been classified as preconditions,
and additionally, an existential quantification stating that this operation can only be
used, when a combination of suitable output parameters and values for primary state
variables to be changed can be found that satisfies all the postconditions.

As these are automatically generated conditions with no semantic checks applied, they
seem fairly obvious for operations authorList, setAuthorList, and latestRecension, but in
operation lend the quantification clearly states, that this operation may only be applied,
when a new reader? can really be added to the readerHistory. This is to reflect, that
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Object-Z operations that do not satisfy this implicit condition are not applicable at all.
For example, the number of readers could be restricted to a maximum by an invariant.

function authorList_prec : bool
^= (exists authors_temp:seq of String :- (authors_temp = authors));

function authorList authors_out:seq of String
pre authorList_prec
satisfy result.authors_out = authors;

function setAuthorList_prec (authors_in:seq of String): bool
^= (exists authors_temp:seq of String :- (authors_temp = authors_in));

schema !setAuthorList (authors_in:seq of String)
pre setAuthorList_prec(authors_in)
post change authors

satisfy authors’ = authors_in;

function latestRecension_prec : bool
^= #recensionHistory > 0 &

(exists recension_temp:String :- (recension_temp = recensionHistory.last));
function latestRecension recension_out:String

pre latestRecension_prec
satisfy result.recension_out = recensionHistory.last;

function lend_prec (reader_in:String): bool
^= ~ lent &

(exists readerHistory_temp:seq of String, lent_temp:bool
:- (lent_temp & readerHistory_temp = readerHistory ++

seq of String {reader_in}));
schema !lend (reader_in:String)

pre lend_prec(reader_in)
post change readerHistory, lent

satisfy lent’ &
readerHistory’ = readerHistory ++ seq of String {reader_in};

Listing 7.6: Interface methods of Book example translated to Perfect

It is already noticeable, that compared to the OZ input, the generated Perfect output
is quite long. This is mainly caused by the need to express all the implicit conditions
of Object-Z explicitly to make them available to Perfect Developer and, secondly, due
to the decision in the presented implementation, to make preconditions available via a
precondition function.

The operation postRecension in Listing 7.7 demonstrates the translation of expressions
with a mapping that distinguishes between types by usage of the overriding expression.
The translator has correctly chosen the mapping to be applied for relations, as described
in Table 5.6.

function postRecension_prec (book_in:Book, recension_in:String): bool
^= (exists recensionsWall_temp:set of pair of (Book, String)

:- (recensionsWall_temp = (those tempVar13::recensionsWall
:- (exists tempVar14::set of pair of (Book, String) {pair of (Book,

String) {book_in, recension_in}}
:- tempVar13.x = tempVar14.x))

++ set of pair of (Book, String) {pair of (Book, String) {book_in,
recension_in}}));
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schema !postRecension (book_in:Book, recension_in:String)
pre postRecension_prec(book_in, recension_in)
post change recensionsWall

satisfy recensionsWall’ = (those tempVar13::recensionsWall
:- (exists tempVar14::set of pair of (Book, String) {pair of (

Book, String) {book_in, recension_in}}
:- tempVar13.x = tempVar14.x))

++ set of pair of (Book, String) {pair of (Book, String) {book_in,
recension_in}};

Listing 7.7: Overriding in SmallLibrary example translated to Perfect

Listings 7.8, 7.9, 7.10 show different kinds of operation expressions involving two or more
operation calls. In the first one, the authorLists operation is included as a representative
for operation conjunction. It combines the operation authorList called on two Book
objects, which means that the common output parameter authors has to be handled
properly here. As described in the mapping, an existential quantification is added in the
precondition to make sure that the operation can only be applied, when the values of the
output parameter authors are equal. In the postcondition, only one promotion of the
output parameter is included as expected.

function authorLists_prec : bool
^= book1.authorList_prec &

book2.authorList_prec &
(exists tempVar25:seq of String

:- (tempVar25 = book1.authorList.authors_out &
tempVar25 = book2.authorList.authors_out));

function authorLists authors_out:seq of String
pre authorLists_prec
satisfy result.authors_out = book1.authorList.authors_out;

Listing 7.8: Example for operation conjunction with common output translated to Perfect

Listing 7.9 provides an example for the mapping of associative parallel composition,
conjunction and sequential composition. It includes communication by means of variable
authors and shows, that the value of the output parameter recension! is not constrained,
which conforms to the semantics, as the operation first sets it to one value and afterwards
to another. The first part of the postcondition is the promotion of recension, which
means, that when applying conjunctions or parallel compositions, the translation tool
may change the order in which the postconditions are output while maintaining the
semantics of the combined operation.

function transferAuthorsAndRecension_prec : bool
^= book1.authorList_prec &

book2.latestRecension_prec &
(exists tempVar27:seq of String

:- (tempVar27 = book1.authorList.authors_out &
book2.setAuthorList_prec(tempVar27))) &

book3.latestRecension_prec;
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schema !transferAuthorsAndRecension (authors_out!:out seq of String,
recension_out!:out String)

pre transferAuthorsAndRecension_prec
post recension_out! = book2.latestRecension.recension_out &

(var tempVar26:seq of String; (tempVar26! = book1.authorList.authors_out
& book2!setAuthorList(tempVar26’) & authors_out! = tempVar26’)) then

recension_out! = book3.latestRecension.recension_out;

Listing 7.9: Example of parallel and sequential compositions translated to Perfect

Finally, a more complex example for the mapping of operation expressions to Perfect
is shown in Listing 7.10. It combines nondeterministic choice, parallel composition and
operation conjunction involving communication variables and even shows the modification
of one object, book2, in parallel, in the left hand side of nondeterministic choice. On
the right hand side, book1 and book2 are modified, so it is not necessary to consider
concurrent changes, here.

function switchAuthorsAndLend_prec (reader_in:String): bool
^= book1.authorList_prec & book2.lend_prec(reader_in) &

(exists tempVar32:seq of String
:- (tempVar32 = book1.authorList.authors_out &

book2.setAuthorList_prec(tempVar32))) |
book2.authorList_prec & book2.lend_prec(reader_in) &
(exists tempVar33:seq of String

:- (tempVar33 = book2.authorList.authors_out &
book1.setAuthorList_prec(tempVar33)));

opaque schema !switchAuthorsAndLend (reader_in:String)
pre switchAuthorsAndLend_prec(reader_in)
post ([book1.authorList_prec & book2.lend_prec(reader_in) &

(exists tempVar28:seq of String
:- (tempVar28 = book1.authorList.authors_out &

book2.setAuthorList_prec(tempVar28)))]:
(var tempVar29:seq of String;

((tempVar29! = book1.authorList.authors_out &
book2!lend(reader_in)) then book2!setAuthorList(tempVar29))),

[book2.authorList_prec & book2.lend_prec(reader_in) &
(exists tempVar30:seq of String

:- (tempVar30 = book2.authorList.authors_out &
book1.setAuthorList_prec(tempVar30)))]:

book2!lend(reader_in) &
(var tempVar31:seq of String;

(tempVar31! = book2.authorList.authors_out &
book1!setAuthorList(tempVar31’))));

Listing 7.10: Example combining several operation promotions mapped to Perfect

During the translation process, the tool has recognized that one object is modified twice,
but the deltalists of the modifying operations do not intersect and lend, first, setAuthorList,
second, is an appropriate ordering, meaning the precondition of setAuthorList does
not use the member variables that are changed by lend. It is interesting to notice
that both preconditions are mapped in the same way, combining the precondition
functions and adding a quantification expression for the communication variable authors,
whereas in the postcondition, there is a difference in the mapping. For the left hand
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side, book2.setAuthorList is called using the then-postcondition form in Perfect after
book1.authorList and book2.lend have been called in parallel. In contrast, on the right
hand side, all three operations can be conjoined using & and they have even changed
their order completely.

This shows, that the operations are not mapped by recursively applying the binary
operations, but by keeping an internal structure that reflects the applied operations and
makes it possible to combine more and more of the operations that are considered to be
schema conjunctions (operation conjunction, parallel composition, associative parallel
composition) while keeping the mapping in a flatter structure. This example also shows,
that using precondition functions pays off when preconditions of other operations are
referenced several times within the whole specification. It is not necessary to know
more about the internals of the precondition function, when calling it from within
another precondition or postcondition. The whole specification will be shorter, even more
self-descriptive and the relations between operations remain visible to the specifier.

7.1.2 Evaluating the Verification Process in Perfect Developer

After evaluating the implementation, this section discusses how Perfect Developer (version
4.10.2 for windows) processes the produced output. The output of the case study has
been added to a Perfect Developer project. Figure 7.1 shows a screenshot of the project
files. File String.pd contains the mapping of the basic type String that has not been
discussed in the evaluation earlier as the mapping resulted in a simple class named String,
exactly as expected from the mapping rules and it was therefore not remarkable enough
to be presented in more detail in this work.

Figure 7.1: View of the Book and SmallLibrary project in Perfect Developer

The first step, is to check, whether the code translated from Object-Z has been mapped
correctly regarding syntax and typing. The icon below the menu bar with a yellow tick
on it, is used to perform this check. Perfect Developer parses and analyses the input and
then signals the successful check of the project using a popup, as shown in Figure 7.2.

Second, the Perfect specification is verified by the Perfect Developer verification engine.
A total of 38 verification conditions have been created for class Book and 43 for class
SmallLibrary. Perfect Developer indicates that at least one of the verification conditions
could not be proved by showing a popup with a warning.
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Figure 7.2: Project successfully checked for syntax and types in Perfect Developer

The goals of the generated verification conditions for class Book are to check whether
type constraints, class invariants, or preconditions of predefined operations are satisfied.
Perfect Developer creates two files, Book proof.htm and Book unproven.htm with more
details about successful and non-successful verification attempts. Only one condition
could not be proven in this example and the provided output is shown in Figure 7.3. It
has been generated for operation setAuthors to check whether the class invariants remain
satisfied while applying this operation. In the “To prove:”-line the output indicates that
it tries to prove the invariant that variable authors could not end up with the value of
an empty sequence. The necessary precondition that authors in must not be empty is
missing. In fact, Perfect Developer has just found a problem in the specification and
even provides a suggestion how to fix it. Therefore, it is necessary to add the suggested
precondition to the Object-Z specification, otherwise the specified system could end up
in an unwanted state.

For class SmallLibrary, Perfect Developer is able to prove 39 out of the 43 generated
verification conditions. Additionally to the types of conditions for Book, one condition is
generated to check whether at least one guard is true for the choice postcondition, and a
lot of conditions are generated to prove that the preconditions of the called operations of
class Book are satisfied in the context of the three combined operations. An overview of
the output provided by Perfect Developer of proven and unproven verification conditions
for SmallLibrary is shown in Figure 7.4. Three verification conditions could not be proven,
and one was neither proven nor disproved within the internal time limit.

All of them target the verification of the set of invariants that any two books of b1, b2,
or b3 must not be equal. In fact, in both operations, transferAuthorsAndRecension,
switchAuthorsAndLend the value of variable authors is set to the value of another book.
As Perfect uses value semantics and the equality for these classes is achieved when all
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Figure 7.3: Unproven verification condition in example Book

member variables are equal, this also means, that if the value of one member is set to the
value of the other object, at least one of the other member variables has to be different.
The operations are written in a way that this cannot be asserted from the specification,
so the proof fails. In Object-Z reference semantics is assumed, so there would not be the
need to make sure objects remain separate. This inaccuracy has already been mentioned
when providing the mapping rules for equality. Adding a unique identifier during the
translation process, could help for these false-positive-cases, but finding and evaluating
an appropriate solution for this problem, is left for future work.

7.2 Conclusion

This work shows how a mapping of Object-Z to Perfect can be achieved for classes
with operation schemas and even more complex operation constructs like distributed
operations. Also for many of the more expressive constructs of the Z notation such
as overriding, set abstraction, or domain and range restrictions, which are likely to be
used within pre- or postconditions of operations, mappings could be presented in this
work. They cover a large amount of possible usage contexts and even involve different
translation rules depending of the types of the involved expressions. The implemented
tool, together with a whole lot of unit tests covering the implemented functionality and
documenting the mapped features is available from the public repository on GitHub2.

2Object-Z to Perfect Project, https://github.com/sylviaswoboda/objectz-2-perfect
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Figure 7.4: Overview of all verification conditions for class SmallLibrary

7.2.1 Limitations of the Implementation

Some aspects that have not yet been covered by the implementation, although a mapping
has been presented in this work, are listed here:

• Parallel composition with common communication variables: If three operations
are combined by parallel composition (a.op1 || b.op2 || c.op3), then the names
of communication variables from op1 to op2 and op2 to op3 must not intersect,
otherwise a wrong constraint would be added as precondition.

• Combining any number of operation expressions in any composition order is not
yet implemented for all possible variations, especially nondeterministic choice and
scope enrichment only provide a basic mapping.

• Distributed operations
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• Inheritance: INIT-functions are not yet called by the INIT-function of the derived
class. The INIT-function of a derived class is always defined with redefine
keyword, even if there is no INIT function. Checking whether an identifier is a
state variable of a super class is missing.

• Template generation of set abstraction

• Template generation of summation

• Template generation of abbreviation definition

• Declaration of strict naturals is currently always included

• Adding invariants implied by function or set, sequence, and bag definitions are not
yet added to the output.

7.2.2 Discussion of Differences to Other Mappings

The findings of this work are finally compared with the proposed transformations presented
in the works of Tim Kimber [Kim07] and Brian Stevens [Ste06] pointing out different
approaches.

Brian Stevens showed how to exemplarily map an Object-Z class to a Perfect class by
informally describing how the mapping shall be achieved manually. In his work, there
is no detailed discussion on preconditions in operation promotions or on more complex
expressions. So an automated mapping could not have been made, based solely on this
work.

Tim Kimber’s work, on the other hand, is much more comprehensive, but still leaves some
aspects open for further work. This thesis has tackled most of them and has presented
alternative mapping approaches for several other language constructs. The following list
shows aspects of the Object-Z notation that were missing in Kimber’s work and are novel
in this work.

• Sets: Additional operations of the Z language have been mapped here, like minimum,
maximum, or generalized union and intersection.

• Sequences: Additional operations on sequences in Z such as: reversing, head, last,
front, tail of sequence, extraction, filtering, prefix, suffix, segment, and distributed
concatenation

• Bags

• Genericity

• Inheritance: This work provides a basic mapping supporting single inheritance
without method overriding.
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The following paragraphs cover aspects of the mapping presented in this work, compared
to the solutions presented in [Kim07].

Sets

The mapping presented in this work, covers the idea of the range operator on sets, a..b,
that for values a > b the expression evaluates to an empty set, which can be easily
mapped using the Perfect choice operator.

Set Abstraction and Summation

Additional rules have been included in this work for use with collections and transforma-
tions in set abstraction expressions and summations. However, these translation rules
have not yet been implemented.

Bound Variable Declarations

Kimber’s work distinguishes for bound variable declarations in quantification expressions,
such as ∀ declarations | predicates • predicate, between variable declarations of types
and collections but leaves the case when predicates are provided unmapped. This work
extends the mapping of bound variable declarations to support predicates restricting the
declared variables, and thoroughly discusses how a mapping for several declared variables
can be achieved with a variable ordering found by the presented algorithm.

n-ary Relations

Tim Kimber defines the mapping of ternary relations differently in [Kim07], i.e. set of

pair of (pair of (X, Y), Z)). Using this method an arbitrary number n of n-ary relations
can be mapped. However, considering a simple example like a relation R : Name ↔
Sport ↔ Place reflecting sentences such as, “Sylvia plays tennis at the playground”,
the idea is to find a mapping that keeps a flatter structure and improves readability.
In Object-Z, the sentence is expressed as (Sylvia, tennis, playground) ∈ R. Listing 7.11
shows both mapping approaches applied to the same example.

// Tim Kimber’s approach
set of (pair of (pair of (Name, Sport), Place)) \\
pair of (pair of (Name, Sport), Place) {pair of (Name, Sport){Sylvia, tennis},

playground}

// approach of this work
set of (triple of (Name, Sport, Place))
triple of (Name, Sport, Place){Sylvia, tennis, playground}

Listing 7.11: Comparison of the mapping of n-ary relations
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Operations on Relations and Functions

Beside covering overriding, domain restriction, and anti-restriction in addition to the
domain and range operation, this work also distinguishes between functions and relations
in the mapping of these operations and the access of elements of these. This is necessary
to provide appropriate translation rules as functions and relations map to different
constructs in Perfect, as well.

Free Type Definition

The mapping presented by Tim Kimber [Kim07], b.color = blue@Color, has been updated
to the notation given in Table 5.25 to support the newer version on how to refer to enum
types in Perfect according to the Perfect Developer language manual [Esc]. One further
remark has to be made: In Z and Object-Z the free type definition branches can also
be expanded by an expression which further describes the value. The mapping of this
construct has been left for future work.

Visibilitylist

In Tim Kimber’s mapping all features are made visible which does not represent the
visibility specified by Object-Z. It is done there to make the features available for the
use in preconditions of operations. This mapping uses a completely different approach
and encapsulates the semantics of a precondition within a precondition function. So,
features can be put into the appropriate areas in the Perfect specification while still
making preconditions available within other classes. The same concept applies to the init
schema. By wrapping it into a separate function and putting it into confined or interface
section, the visibility properties are maintained supporting information hiding.

Operation Schemas

Non-modifying operations schemas, those returning a boolean value and those that only
have output variables, have been mapped to functions in this work, while Tim Kimber
uses functions only for the first type and non-modifying and modifying schemas for the
latter two types.

Regarding the selection of preconditions and postconditions from the predicates provided
by the Object-Z specification, this work makes use of a simpler approach, i.e. predicates
are only split line by line and every predicate that uses a primed state variable or an
output variable is considered a postcondition, the remaining ones are preconditions, but
an additional precondition is added to reflect, that values for output and state variables
have to be available to fulfill these conditions.

Operation Expressions

The ideas in mapping concepts like common output variables or communication variables
have been solved similarly by making use of existential quantifications to assure the
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expected conditions are satisfied. However, in this work, the presented mappings target
on going even further into providing a transformation for more cases. For that reason,
the mapping rules and implementations make use of the inherent properties of operation
expressions like commutativity of conjunction and parallel composition. Also, the use of
helper functions like the precondition or “post” functions that make the values of output
variables accessible in preconditions, enable for example the two-way-communication for
parallel composition. The advantage of this approach is to encapsulate operations better
and also keep the dependencies of operations visible in the mapped operation. However,
the shortcoming is that a single operation can become quite long and, if not properly
formatted, difficult to read.

7.3 Outlook and Future Work

Although, this work could provide a significant amount of mapped features of the Object-Z
language, there are still a lot of possible improvements to the existing work.

• Complete open implementation topics listed in section 7.2.1.

• Improve the feedback in case of language recognition problems during parsing and
translation phase.

• Improve error handling: Do not interrupt the translation process in case of errors,
but only provide feedback to the user and proceed with the mapping as far as
possible.

• Provide and extend translation rules for further language features: such as dis-
tributed sequential composition, multi-inheritance, renaming, scope enrichment for
arbitrary operations on the left hand side, let definitions, λ, µ or other remaining
Z expressions.

• Revisit equality in Object-Z and Perfect.

• Replacing the OZ input syntax by Object-Z notation in UTF-8 or LATEX style,
e.g. by instrumenting the core classes provided by the Community Z Tools or only
adapt the lexical part of the provided grammar in this work.

• Facilitating the process of creating output files and handing them over to Perfect
Developer or building a graphical user interface on top and handing the generated
output files over to the Perfect verification engine without switching to another tool.
The output is then again fed back to the user via the interface of the translation
tool.

• Improve code formatting or add a means of reformatting the generated Perfect
output such as code formatting templates of IDEs.
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Providing a translation tool from Object-Z to Perfect not only builds the foundation to
improve on the existing implementation, but could also be used as a starting point to
translate back from Perfect again. The provided translation rules that mainly have to
mimic the semantics of language constructs in Object-Z suggest that a mapping from
Perfect to Object-Z could even be achieved more easily. Having a graphical notation to
represent an implementation and even be able to switch between languages back and
forth could be an interesting topic, when it comes to the specification and design phase.
In the communication process to find or validate whether the specification represents the
model of the real world properly, a visual representation is often more helpful.
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APPENDIX A
Ordering Algorithm

In Chapter 5, in the mapping of quantification expressions, the need for an ordering
algorithm arose to find an appropriate order of bound variable declarations in such an
expression. This chapter presents one way of finding such an ordering and also gives an
example to illustrate its function.

Starting from the original sequence of variables and a set of predicates in combination
with a graph in which both variables and predicates are represented as nodes and each
variable node is related to a predicate node if the variable appears in the named predicate,
the algorithm informally described in Listing A.1 either delivers an appropriate ordering
or aborts with an error message.
Input:

varSeq // Variable sequence in order of original appearance
predSet // Set of predicates, each predicate uses at least one variable
G // Graph representing the dependencies between variables and predicates,

// V(G) .. vertices, E(G) .. edges, N(v) .. neighbours of v
Output:

varOrder // list of variable and predicate combinations

1. Is there a variable-node v that has non-collection type?
1a: Yes. varOrder’ = varOrder ++ <v>;

E(G)’ = E(G) \ (v, w) for all w in predSet;
V(G)’ = V(G) \ {v}; Go to 1.

1b: No, go to 2.
2. Is there a predicate-node p without neighbours?

2a: Yes, error message and ABORT.
2b: No, go to 3.

3. Is there a variable-node v without neighbours?
3a: Yes. varOrder’ = varOrder ++ <v>;

varSeq’ = varSeq \ {v}; V(G)’ = V(G) \ {v};
Go to 3.

3b: No, go to 4.
4. Exists p in predSet with N(p) = {v}?

4a: Yes, there is exactly one such p. Go to 5
4b: Yes, there are more such p’s.

Choose p with (p,v) in G & v has smallest index in varSeq.

127



A. Ordering Algorithm

Go to 5.
4c: No, go to 6.

5. varOrder’ = varOrder ++ <v>;
varSeq’ = varSeq \ {v}; predSet’ = predSet \ {w} with (v, w) in G;
E(G)’ = E(G) \ (v, w) for (v, w) in G; V(G)’ = V(G) \ {v};

6. Exists p in predSet with |N(p)| > 1?
6a: Yes, there is exactly one/more than one such p.

Choose v in varSeq with
1. |N(v)| is minimal (for nodes v connected to p/one of the p’s)
2. v has smallest index in varSeq

7. varSeq’ = varSeq \ <v>; predSet’ = predSet \ {p} with |N(p)| = 0;
E(G)’ = E(G) \ (v, w) for (v, w) in G;
V(G)’ = V(G) \ {v} \ {p} with |N(p)| = 0;

8. (v, {p}) p from step 7; varOrder’ = varOrder ++ <v>;
9. Is varSeq = <> ?

8a: No, go to 4.
8b: Yes, output varOrder and stop.

Listing A.1: Ordering algorithm

The sequence varSeq contains all variables declared within this quantification expression
in the same order as in the Object-Z specification. The set predSet contains all predicates
from the schema text of the quantification that depend on at least one of the variables
in varSeq. The graph G represents the dependencies between variables of varSeq and
predicates of predSet. Edges are only allowed between a variable- and a predicate-node.
A connection between variable-node v and predicate-node p exists, if and only if the
predicate of p uses variable v.

The output list varOrder contains an ordering of the variables together with the predicates
that constrain the resulting those-clause such that the predicates use only the currently
or any previously declared variables.

First all variables declared with non-collection type have to be added to the output list,
their outgoing edges are removed from the graph and the variable itself is removed from
varSeq. After this step, a check is performed if there are any predicates, that have no
more dependencies now. This means that these predicates have depended on one of the
previously removed nodes for non-collection type variables. As such variables cannot be
restricted in Perfect by predicates in a those-clause, this results in an error message
and abortion. Else, all variables that do not appear in any of the predicates are added to
the output list as the next step.

Then the algorithm searches for predicate nodes that have the smallest number of
outgoing edges. If there is only one, the adjacent variable-node with the smallest number
of neighbors and second the smallest index in varSeq is chosen to be the next node in the
output list. If there are more such predicate nodes, the next variable node v is chosen
according to smaller number of neighbors or smaller index in sequence varSeq of all the
variables connected to these predicate nodes.

All edges starting in v are removed from the graph, v is removed from varSeq and from
the graph. All predicates that do not have adjacent edges are now paired with variable
v and added to the output list. The predicates are also removed from predSet and the
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graph. Now the graph only contains edges for dependencies of variable nodes that have
not yet been added to the output list. If no variables are left to be added, then the
output list is returned and the algorithm stops, else the algorithm repeats searching the
next predicate with smallest number of outgoing edges until no more variable nodes are
left in the graph.

Example: To illustrate the algorithm at work, a small example is presented as follows.
Variables v1 - v4 and v6 have collection type, v5 has some other type and a few predicates
are added in the quantification that use one or more of the declared variables. The
notation p1(...) is an abstraction of the concrete predicate and only lists the variables it
uses.

∀ v1 : col1, v2 : col2, v3 : col3, v4 : col4, v5 : type5, v6 : col6 |
p1(v1, v2, v3) ∧ p2(v1, v2, v3) ∧ p3(v1, v2, v3) ∧
p4(v2, v4) ∧ p5(v3) ∧ p6(v6) •
p(v1, v2, v3, v4, v5, v6)

Now the algorithm is applied to the Object-Z example above. First varSeq, predSet and
graph have to be initialized.

Input:
varSeq: <v1, v2, v3, v4, v5, v6>
predSet: {p1, p2, p3, p4, p5, p6}
graph: <{v1, v2, v3, v4, v5, v6, p1, p2, p3, p4, p5, p6},

{(p1, v1), (p1, v2), (p1, v3), (p2, v1),
(p2, v2), (p2, v3), (p3, v1), (p3, v2),
(p3, v3), (p4, v2), (p4, v4),
(p5, v3), (p6, v6)}>

Figure A.1: Visual representation of graph at the beginning

The steps of the algorithm are illustrated in Table A.1. The Input Graph column shows
the (modified) input graph with relevant nodes for this step highlighted with a dark
color and relevant edges stressed by using dashed edges. The light-grey arrows between
variable nodes indicate the order in which they appear in the Object-Z specification. In
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the last column the output variable list together with the predicates that have to be used
in the declaration of this variable are shown.

Table A.1: Applied example of the ordering algorithm

Step Input Graph Output

1

2

3

4

5

6

According to rule 1 of the algorithm the first variable to be added is v5, as it has a
non-collection type, this is also visualized in the first row of Table A.1. As no other
variables of non-collection type exist, the algorithm advances to the second rule. The
first graph of step 2 in the table contains no predicate nodes without neighbors, so the
algorithm may proceed with the nodes for collection type variables and their predicates
in rules 3 and following. At this moment the graph does not contain variable edges
without neighbors. According to rule 4, a predicate with only one outgoing edge has to
be chosen next. Nodes p5 and p6 are eligible. The variable node v3 with its dependency
to predicate p5 is added to varOrder as illustrated in the output graph of step 2 in
the table. In the same way variable v6 is added to the output variable list in the third
iteration step.

130



In step 4 of the table, there are 4 predicates and 3 variables left. All predicates use
exactly two variables. So, rule 6a is relevant in this situation. Variable v4 has only one
neighbor p4, v2 has 4 neighbors and v1 has three. Consequently v4 has to be chosen as
the next variable in the output varOrder . After removing v4 and its adjacent edges from
the graph, there is no predicate node without neighbors (rule 7 ), so no predicate node is
paired to v4 in the output list.

Now, predicate node p4 has only one neighbor left and is found by rule 4 of the algorithm.
Therefore, node v2 is the next output node in varOrder and has p4 as its only depending
predicate node. In the last step, predicate nodes p1, p2, and p3 have each one and the
same variable node neighbor v1. So this node is the last node in the output list and all
the three remaining predicates are paired as dependent predicate nodes.

All nodes from varSeq and predSet have been removed from the graph at this point. So
the algorithm stops and outputs the list varOrder containing the variable ordering for
the mapping to Perfect. For each variable exactly those predicates are paired with the
variable, that have to be added in a those-clause in the declaration of this variable in
the quantification expression in Perfect. The resulting mapping to Perfect of the example
above is shown in Listing A.2. Applying expression exp[newVar/oldVar ] replaces all
occurrences of oldVar in exp by newVar .
forall v5:type5,

v3::(those i::col3 :- p5(v3)[i/v3]),
v6::(those i::col6 :- p6(v6)[i/v6]),
v4::col4,
v2::(those i::col2 :- p4(v2, v4)[i/v2]),
v1::(those i::col1 :- p1(v1, v2, v3)[i/v1] &

p2(v1, v2, v3)[i/v1] &
p3(v1, v2, v3)[i/v1])

:- p(v1, v2, v3, v4, v5, v6)

Listing A.2: Ordering algorithm example in Perfect
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APPENDIX B
Object-Z Grammar

The simplified ANTLR grammar used to parse the OZ input is provided in Listing B.1.
Tables B.1 and B.2 show each Object-Z symbol with its corresponding OZ symbol and
token name for the lexer. The full version of the grammar including also alias names for
non-terminals used in the listener implementations is available from GitHub1.
program : definition+ ;

definition : localDefinition | classDefinition ;

classDefinition : CLASS ID formalParameters? LCURLY
visibilityList? inheritedClassList? localDefinitionList?
state? initialState? operationList? RCURLY ;

visibilityList : VISIBLE LPARA feature (COMMA feature)* RPARA ;
feature : INIT | ID ;
inheritedClassList : INHERITS LCURLY (classDes SEMI)+ RCURLY ;
classDes : ID genActuals? ;
localDefinitionList : localDefinition+ ;

localDefinition : givenTypeDefinition | axiomaticDefinition | abbreviationDefinition
| freeTypeDefinition ;

abbreviationDefinition : ID formalParameters? ABBRDEF expression ;
givenTypeDefinition : LBRACK ID (COMMA ID)* RBRACK ;
freeTypeDefinition : ID FTDEF ID (’|’ ID)* ;
axiomaticDefinition : CONST LCURLY declarationList? predicateList? RCURLY ;
state : STATE LCURLY primary? (DELTA LCURLY secondary RCURLY)? predicateList? RCURLY ;
primary : declarationList ;
secondary : declarationList ;
initialState : INIT LCURLY predicateList RCURLY ;
operationList : (operationSchemaDef | operationExpressionDef)+ ;
operationSchemaDef : ID LCURLY deltalist? declarationList? predicateList? RCURLY ;
deltalist : DELTA LPARA ID (COMMA ID)* RPARA ;
operationExpressionDef : ID ISDEF operationExpression SEMI? ;

1Object-Z to Perfect Project, https://github.com/sylviaswoboda/objectz-2-perfect
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operationExpression : DAND schemaText DOT operationExpression
| DNCH schemaText DOT operationExpression
| DSEQ schemaText DOT operationExpression
| opExpression ;

opExpression : opExprAtom
| opExpression AND opExpression
| opExpression APAR opExpression
| opExpression PAR opExpression
| opExpression NCH opExpression
| opExpression SEQ_OP opExpression
| opExpression DOT opExpression ;

opExprAtom : LBRACK (DELTA LPARA ID (COMMA ID)* RPARA)? declarationList? (’|’?
predicateList)? RBRACK
| caller? id
| LPARA operationExpression RPARA ;

caller : (id ATTR_CALL)+ ;
schemaText : schemaDeclarationList ( ’|’ predicate) ? ;
schemaDeclarationList : declaration (SEMI declaration)* SEMI? ;
declarationList : (declaration SEMI)+ ;
declaration : declarationNameList COLON expression ;
declarationNameList : id (COMMA id)* ;
predicateList : predicate (SEMI predicate)* SEMI? ;

predicate : (FORALL | EXISTS | EXISTS_1) schemaText DOT predicate
| simplePredicate ;

simplePredicate : simplePredicate CONJ simplePredicate
| simplePredicate OR simplePredicate
| simplePredicate IMPL simplePredicate
| simplePredicate EQUIV simplePredicate
| predicateAtom ;

predicateAtom : NOT predicateAtom
| id ATTR_CALL INIT
| TRUE | FALSE
| expression underlinedId expression
| expression | LPARA predicate RPARA ;

expression
: expression CARTESIAN expression
| powerSetOp expression
| prefix expression
| expression (MULT | DIV | INT_DIV | MOD) expression
| expression (PLUS | MINUS ) expression
| expression RANGE expression
| expression setOp expression
| expression infixComparisonOp expression
| expression infixRelationOp expression
| expression RELATION expression RELATION expression
| expression RELATION expression
| (UNION | INTERSECT | CONCATENATE) LPARA expression RPARA
| CLASS_HIER ID genActuals?
| p=predefinedType
| SUM schemaText DOT featureOrFunctionCall
| op=(MIN | MAX) e=expression
| id formalParameters
| id genActuals
| LCURLY schemaText (DOT expression)? RCURLY
| LPARA expression (COMMA expression)+ RPARA
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| featureOrFunctionCall
| LCURLY expression (COMMA expression)* RCURLY
| LLBRACK expression (COMMA expression)* RRBRACK
| LBRACK expression (COMMA expression)* RBRACK
| EMPTYSET | EMPTYBAG | NCH
| SELF
| LPARA expression RPARA ;

genActuals : LBRACK expression (COMMA expression)* RBRACK ;
formalParameters : LBRACK ID (COMMA ID)* RBRACK ;
powerSetOp : POWER | POWER1 | FINITE | FINITE1 | SEQ | SEQ1 | ISEQ | BAG ;

infixRelationOp
: PART_FUNC | TOT_FUNC | PART_INJ | TOT_INJ | PART_SUR | TOT_SUR | BIJEC
| MAPLET | F_PART_FUNC | F_PART_INJ | DOM_RESTR | RAN_RESTR | DOM_AR | RAN_AR ;

infixComparisonOp : EQUALS | NEQUALS | ELEM | NELEM | SUBSET | STR_SUBSET
| LT | LTE | GT | GTE | PREFIX | SUFFIX | IN_SEQ | IN_BAG | SUBBAG ;

setOp : UNION | DIFFERENCE | INTERSECT | CONCATENATE | OVERRIDE
| EXTRACT | FILTER | MULTIPLICITY | SCALING | BAG_UNION | BAG_DIFFERENCE ;

prefix : MINUS | COUNT | RAN | DOM | TAIL | HEAD | REV | LAST | FRONT | ITEMS ;

featureOrFunctionCall : id (ATTR_CALL id)+
| SUCC LPARA idOrNumber RPARA
| id LPARA featureOrFunctionCall (COMMA featureOrFunctionCall)* RPARA
| idOrNumber ;

idOrNumber : id | number ;
underlinedId : UNDERLINE id UNDERLINE;
id : ID DECORATION?;
number : INT | FLOAT;
predefinedType : NAT | PNAT | INTEGER | BOOL | REAL | CHAR ;

DECORATION : PRIME | QUEST | EXCL ;
ID : (’a’..’z’|’A’..’Z’)(’a’..’z’|’A’..’Z’|’0’..’9’|’_’(’a’..’z’|’A’..’Z’|’0’..’9’))* ;

CLASS : ’class’;
CONST : ’const’;
INHERITS : ’inherits’;
INIT : ’INIT’;
STATE : ’state’;
ATTR_CALL : ’.’;
UNDERLINE : ’_’;
SEMI : ’;’;
COMMA : ’,’;
COLON : ’:’;
LCURLY : ’{’;
RCURLY : ’}’;
LPARA : ’(’;
RPARA : ’)’;
LLBRACK : ’|[’;
RRBRACK : ’]|’;
LBRACK : ’[’;
RBRACK : ’]’;

INT : (’1’..’9’)(’0’..’9’)* | ’0’;
FLOAT : (’0’..’9’)+’.’(’0’..’9’)+;

COMMENT : ’/*’ .*? ’*/’ -> channel(HIDDEN);
SL_COMMENT : ’//’ .*? ’\r’? ’\n’ -> channel(HIDDEN);
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WS: (’ ’ | ’\t’ | ’\r’ | ’\n’)+ -> channel(HIDDEN);

Listing B.1: Grammar for OZ parsing

Table B.1: Object-Z symbols, token names in lexer and their corresponding OZ symbols

Object-Z Token OZ Object-Z Token OZ
� VISIBLE visible P POWER !P

∆ DELTA delta P1 POWER1 !P1

∀ FORALL forall F FINITE !F

∃ EXISTS exists F1 FINITE1 !F1

∃1 EXISTS 1 exists1 seq SEQ seq

self SELF self seq1 SEQ1 seq1

∅ EMPTYSET {} iseq ISEQ iseq

[[ ]] EMPTYBAG |[]| bag BAG bag

〈 〉 NCH [] × CARTESIAN ><

∈ ELEM in 6∈ NELEM ~in

⊆ SUBSET <<= ⊂ STR SUBSET <<

∪ UNION ++ \ DIFFERENCE \

∩ INTERSECT ** # COUNT #

min MIN min max MAX max

. . RANGE ..
⋃
A ++(A)⋂

A **(A) ↔ RELATION <-->

7→ MAPLET |-> → TOT FUNC -->

7→ PART FUNC -|-> 7� PART INJ >-|->

� TOT INJ >---> 7→→ PART SUR -|->>

→→ TOT SUR --->> �→ BIJEC >-->>

7 7→ F PART FUNC -||-> 7 7� F PART INJ >-||->

136



Table B.2: Object-Z symbols, token names in lexer and their corresponding OZ symbols
(cont.)

Object-Z Token OZ Object-Z Token OZ
dom DOM dom ran RAN ran

C DOM RESTR <| B RAN RESTR |>

−C DOM AR <|| −B RAN AR ||>

⊕ OVERRIDE >O< a CONCATENATE +^+

� FILTER filter � EXTRACT extract

head HEAD head last LAST last

front FRONT front tail TAIL tail

rev REV rev prefix PREFIX prefix

suffix SUFFIX suffix in IN SEQ inseq

a/A +^+(A) ] MULTIPLICITY #

⊗ SCALING (><) ` IN BAG inbag

v SUBBAG subbag items ITEMS items

−∪ BAG DIFFERENCE |-| ] BAG UNION |+|

∗ MULT * / DIV /

div INT DIV div mod MOD mod

+ PLUS + − MINUS -

= EQUALS = 6= NEQUALS ~=

< LT < 6 LTE <=

> GT > > GTE >=

Σ SUM sum succ SUCC succ

B BOOL !B Z INTEGER !Z

N NAT !N N1 PNAT !N1

R REAL !R Char CHAR !C

true TRUE true false FALSE false

⇔ EQUIV <=> ⇒ IMPL =>

∨ OR or ∧ CONJ and

6 NOT ~ ↓ CLASS HIER |v

::= FTDEF ::= == ABBRDEF ==

=̂ ISDEF ^= ∧ AND &&

‖ PAR || ‖! APAR ||!

[] NCH [] o
9 SEQ OP 0/9

• DOT @ ∧ DAND (&&)

[] DNCH ([]) o
9 DSEQ (0/9)

′ PRIME ’ ? QUEST ?

! EXCL !
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