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Abstract 

The development of effective strategies to improve the energy performance of the built 

environment depends on reliable data on the spatial and temporal distribution of energy 

demand and supply. As such, the interest in the urban energy computing has been steadily 

increasing. However, in most efforts, the informational and computational challenges have 

led to the adoption of simplified computational routines. These models fail to capture the 

temporal dynamics of load patterns and their dependency on transient phenomena 

(occupants and climate) with appropriate resolution.  

The present contribution reports on developmental activities towards generation of a 

bottom up urban stock heating demand model, which enables the use of Building 

Performance Simulation (BPS) tools for urban-level inquiries. For this purpose, a two-step 

method was adopted and applied to an urban instance in the city of Vienna, Austria. The 

first step, addresses the challenge of high informational and computational demand of BPS 

tools based on a systematic reduction of the extent of the required computations through 

sampling. Toward this end, key energy-relevant features of the buildings are used, along 

with a well-known datamining technique to classify the urban building stock and select 

representative buildings. Detailed descriptions of the selected buildings are utilized to 

generate detailed simulation models. Since loss of diversity is a natural consequence of any 

sample-based study, to recover part of the lost diversity, in a second step, a re-

diversification routine was developed. This routine automatically generates permutations 

of the simulation models of the sample buildings, with diversified descriptions of non-

geometric physical and operational building parameters. To represent operative diversity, 

stochastic techniques have been employed to model plausible yet diverse representations 

of occupants' presence and actions. The physical diversity, mainly pertaining to the thermal 

quality of construction components, has been treated through parametric representation of 

relevant material properties. As a prerequisite to the suggested method, GIS data and 

relevant performance assessment standards are utilized to generate an energy-relevant 

representation of the urban stock, which informs the two-step method. Since this 

framework reduces the computation domain in a first step and enhances it through the re-

diversification process, the term “hourglass model” has been adopted to characterize it.  

The suggested method drastically reduces the modeling effort associated with large-scale 

application of BPS tools through sampling. Preliminary evaluations suggest a promising 

accord between the predicted and the expected values of heating demand, both at 

aggregated and disaggregated levels. 
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Kurzfassung 

Die Entwicklung effektiver Strategien für die Verbesserung der Energieperformanz der 
bebauten Umgebung ist abhängig von verlässlichen Daten über der räumlichen und 
temporalen Verteilung des Energiebedarfs und -potenzials. Hierfür nimmt das Interesse an 
der urbanen Energieberechnung stetig zu. Allerdings, in den meisten vorherigen 
wissenschaftlichen Bemühungen, wegen der höhen Berechnungs- und Datenaufwände, 
wurden vereinfachte Rechenprozeduren adoptiert. Diese Modelle können die temporale 
Dynamik der Energielast und ihre Abhängigkeit von den transienten Phänomenen (z. B. 
Bewohner und Klima) nicht mit der passenden Auflösung erfassen. Dieser Beitrag berichtet 
von den Entwicklungsaktivitäten zur Schaffung eines Bottom-up 
Heizwärmebedarfsmodels für den urbanen Gebäudebestand, welche die Nutzung 
detaillierten Gebäude-Performanz-Simulationsmethoden (BPS) für energetische 
Untersuchungen auf urbanen Ebene ermöglicht. Zu diesem Zweck wurde eine Zwei-
Schritt-Methode entwickelt und auf eine urbane Instanz in der Stadt Wien, Österreich 
bezogen. Der erste Schritt befasst sich mit dem höhen Daten- und Rechenaufwand der 
BPS-Methoden und basiert auf der systematischen Verkleinerung des erforderlichen 
Rechenausmaßes mittels Sampling. In dieser Hinsicht wurden entscheidende 
energierelevante Gebäudeeigenschaften zusammen mit wohlbekannten Data-Mining-
Methoden verwendet, um den urbanen Gebäudebestand zu klassifizieren und 
repräsentative Gebäude auszuwählen. Detaillierte Beschreibungen der gewählten Gebäude 
werden benutzt, um entsprechende Simulationsmodelle zu erstellen. Da der Verlust der 
Diversität eine natürliche Konsequenz der Sample-basierten Studien ist, wurde zur 
Teilweisenzurückgewinnung der verlorenen Diversität einen Rediversifizierungsschritt 
entwickelt. Diese automatisierte Prozedur erstellt Permutationen der Simulationsmodelle 
der repräsentativen Gebäuden, mit diversifizierten nicht-geometrischen physikalischen und 
operativen Gebäudeeigenschaften. Zur Repräsentierung der operativen Diversität wurden 
stochastische Verfahren angewendet, um plausible aber auch diverse Repräsentationen der 
Präsenz und Aktionen der Bewohner zu erstellen. Die physikalische Diversität - 
hauptsächlich in Bezug auf die thermische Qualität der Konstruktionselemente - wurde 
durch parametrische Repräsentierung der relevanten Materialeigenschaften behandelt. Als 
Voraussetzung der vorgeschlagenen Methode wurde eine energetisch-relevante 
Repräsentation des urbanen Gebäudebestandes auf Basis GIS-Daten und relevanten 
Gebäude-Performanz-Evaluierungsstandards erstellt, welche die Zwei-Schritt-Methode 
informiert und unterstützt. Da das vorgestellte Verfahren im ersten Schritt das 
Rechenausmaß verkleinert und dieses im zweiten Schritt durch Rediversifizierung 
ausweitet, wurde den Begriff „Hourglass Model“ zur Beschreibung dessen adoptiert. Die 
vorgeschlagene Methode reduziert den mit der großflächigen Verwendung der BPS-
Methoden verbundenen Modellierungsaufwand stark durch Sampling. Vorversuche deuten 
eine vielversprechende  Übereinstimmung zwischen den vorausberechneten und 
erwarteten Werten des Heizbedarfs an, sowohl auf Kumulierten- als auch auf 
Gebäudeebene. 
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1. Introduction 

1.1. Motivation and Problem Statement 

The Paris environmental summit of 2015 concluded that global net zero emissions must 

be achieved before 2070 to avoid catastrophic levels of global warming (Citiscope 2015). 

Governments across the world have set up ambitious plans for the reduction of emissions 

and energy use. Urban areas, hosting now more than half of the world's population (The 

World Bank 2016), are considered the principle human habitat and, therefore, a core topic 

in the sustainability discourse. The city is an ecosystem composed of intertwined and 

interacting sub-systems, which may be physical or virtual, static or dynamic, predictable or 

complex, alive or inanimate. Buildings, climate and natural context, transport systems, 

media, energy production and distribution networks, financial and legal structures, 

inhabitants, etc. are all various subsystems forming this ecosystem. The entire system 

behavior is a product of the various chains of events within its different sub-systems and 

the interactions between them.  

Buildings, as major constituents of the urban ecosystem are responsible for more than 40 

percent of global energy use and a third of global greenhouse gas emissions (UNEP 2009). 

Moreover, the rate of growth in the building related emissions, including through use of 

electricity has been disconcertingly high over the past few decades. Levine et al. (2007) have 

documented a CO2 emission growth rate of 2.5% and 1.7% per annum for commercial and 

residential building sectors respectively over the period of 1971 through 2004. This 

significant increase rate is partly due to the rapid population growth, which results in the 

expansion of urban areas. It is also in part attributable to economic advancements, 

particularly in the case of developing countries, resulting in elevated living standards and 

expectations. In addition to the anthropocentric aspects, changes in climate patterns, such 
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as the steady increase in global temperatures can result in higher energy consumption (i.e. 

thorough increasing use of air-conditioning) and consequently higher emissions.  

On the bright side, buildings also present a high potential for energy saving and emission 

mitigation. According to UNEP (2009), “with proven and commercially available 

technologies, the energy consumption in both new and existing buildings can be cut by an 

estimated 30 to 80 percent with potential net profit during the building life-span”.  

Various demand side energy management strategies in this regard include improvement of 

building envelope and systems, alteration of building operation and use patterns, and shared 

use of facilities. In the context of European cities where a major share of the existing 

building stock was built prior to the establishment of stringent energy-saving building 

regulations in the 1970’s (e.g., 75% of the Austrian building stock (Bundesanstalt Statistik 

Österreich 2017)), building retrofit interventions are of particular significance. Inhabitant 

behavioral aspects and operation parameters are on the other hand determining factors in 

the conception of energy saving strategies for buildings with higher thermal quality. In this 

regard encouraging sustainable building operation routines either via informational 

campaigns or through energy pricing strategies can be attempted. 

Indirect approaches such as influencing the microclimatic conditions and mitigation of the 

Urban Heat Island effect (e.g., through introduction of vegetation, shading elements, and 

waterbodies) can positively affect energy consumption patterns. Moreover, given the 

significance of urban morphology (e.g.,  street orientation and mutual shading) for energy 

use in buildings (Ratti et al. 2005), the design and planning of new urban structures can 

benefit from efficiency-oriented morphological considerations. Some of these strategies 

can be applied to individual buildings but others depend on an integrative consideration of 

buildings within their urban context. In other words, tackling energy efficiency issues at a 

scale beyond the scope of individual buildings (neighborhood or urban scale), presents us 

with solutions that are unattainable when limiting efforts to single buildings.  

In line with this realization the Smart City initiative depicts urban areas not as 

agglomerations of independent objects, but as intertwined and connected networks of 

things, information, and processes. One of the key elements in the Smart City discourse is 

the “utilization of networked infrastructures to improve economic and political efficiency 

and enable social, cultural and urban development”(Hollands 2008). This initiative focuses 

on the utilization of Information and Communication Technologies towards enhancement 

and amelioration of the urban ecosystem with regard to energy efficiency among other 

objectives.  
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New supply side energy management paradigms such as Distributed Generation (DG), 

smart grids, and net-independent neighborhoods have emerged from this integrative 

perspective. In an article declaring DG as the “future power paradigm”, Manfren et al. 

(2011) count the “direct customer’s involvement in energy demand and peak power 

reduction programs” among the manifold strengths of a DG scheme. Given the increasing 

reliance of the building sector on electricity (see Figure 1) and the upsurge in affordable 

and effective small scale solar and wind energy conversion technologies, the 

aforementioned supply-side energy management concepts provide valuable frameworks for 

the exploitation of renewable energy potential. On the other hand, district heating and 

cooling systems may present opportunities to extend the existing urban infrastructures for 

more energy efficient generation and low-cost distribution of energy. However, spatially 

and temporally resolved energy supply and demand assessments and projections are 

required to evaluate the economic and technical feasibility, as well as energy and 

environmental benefits of various options.  

The severity and urgency of the current situation and the substantial financial resources, 

time and effort required for the deployment of such strategies, leave no room for trial and 

error in urban development and regeneration activities. Determining the appropriate course 

of action among the wide spectrum of possible options, in view of the available resources 

and imminent changes, requires not only reliable and high-resolution information on the 

buildings' energy behavior, but also methods to predict and investigate the energy 

implications of various building and urban level change and intervention scenarios.  

 

Figure 1 Global building-related energy consumption (International Energy Agency 2014) 
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Large-scale monitoring activities and smart metering are the most reliable means of building 

energy information retrieval. Nevertheless, the high cost of the required equipment, as well 

as data privacy regulations (European Parliament & European Commission 1995) hinder 

the pervasive realization of such schemes in the near future. Furthermore, monitored 

information alone provides limited prediction possibilities in view of new and 

unprecedented circumstances.  

Wetter and Van Treeck (2017) emphasize that modeling environments are required to 

quantify the interactions among buildings and the grid, as well as restrictions caused by the 

existing urban topologies and infrastructure. Integrative urban-level decision support 

environments, which allow for the computational investigation and comparative analysis 

of the implications of various energy and emission management plans, can help insure the 

effectiveness of the envisaged strategies and an efficient allocation of the available 

resources. The computational method for the approximation of urban building stock 

energy behavior or the “Urban Building Energy Model” (UBEM) is the core component 

of such environments, determining the scope of their utility. Over the past years, efforts 

towards development of energy and emission models of the urban building stock for the 

assessment of various urban change and intervention scenarios, and their consequences 

have been steadily increasing. These models vary substantially in view of the general 

approach, scenario modeling capabilities, disaggregation level, required input parameters, 

and temporal and spatial resolution of the results.  

In order to inform urban level strategic planning processes, the incorporated Urban 

Building Energy Model (UBEM) must be capable of investigating the following aspects of 

the urban environments and their impact on energy consumption:  

• Physical and technological properties of buildings 

• External boundary conditions including morphological and climatic aspects of the 

surroundings 

• Internal boundary conditions pertaining to building operation, tendencies and 

actions of inhabitants 

These various aspects of urban energy computing have been separately treated through 

former research and development efforts. Various models including global circulation 

models (GCMs), regional weather forecasting models, and computational fluid dynamics 

(CFD) models have been widely applied to generate time-domain urban microclimatic 

information (Wilby & Wigley 1997; Rizwan et al. 2008; Mirzaei & Haghighat 2010). 

Elaborate methods have been developed for the representation of occupants’ presence and 

actions for building performance assessment purposes including schedule-based, rule-
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based, stochastic (Yan et al. 2015), and more recently agent-based occupancy models (e.g., 

Langevin et al. 2015). Sophisticated Building Performance Simulation (BPS) tools have 

been developed to allow for detailed investigations of the energy behavior of single 

buildings (e.g., NREL 2017).  

However, an environment, which represents the mutual interactions of various influential 

phenomena and allows for the comparative analysis of the many-fold implications of 

changes and interventions on these phenomena is lacking. This is mainly attributable to the 

fact that detailed Building Performance Simulation (BPS) methods, which can provide the 

necessary versatility and flexibility in the representation of various characteristics of 

buildings, their boundary conditions and occupants with the appropriate resolution, are not 

scalable due to their high informational and computational requirements. In a detailed 

analysis of urban energy system models, including models pertaining to the urban building 

stock, Keirstead et al. (2012) point out the technical obstacles related to the complexity of 

the models and data uncertainty, as well as audience-oriented issues concerning model 

integration and policy relevance as the most prominent challenges in the field of building 

stock energy modeling.  

Seeking to achieve a level of technical feasibility in urban-scale energy modeling, previous 

efforts have predominantly relied on various domain simplifications. These include, for 

instance, simplification of the geometry and zonal complexity of modeled buildings, use of 

reduced order models to represent heat transfer phenomena, and a considerable reduction 

of the temporal resolution of the modeling results. As a consequence, certain important 

queries cannot be accommodated with appropriate levels of resolution. Specifically, the 

temporal dynamics of load patterns and their dependency on transient phenomena (e.g., 

weather conditions, inhabitants’ presence and actions) cannot be realistically captured. The 

identification of potential sites through analysis of existing customers’ distribution, energy 

demands and load patterns is, however, considered the preliminary phase towards efficient 

adoption of DG in urban areas. Investigation of the energy implications of behavior change 

scenarios, caused by demographic changes (e.g., ageing society, elevated birth rate, etc.), or 

new social developments (e.g., changes in official weekly work hours, increase in part-time 

employment), as such, can enhance the utility of the urban energy predictive models. 

Moreover, in the face of the human-induced changes in climate patterns, new urban 

developments and existing structures can benefit from the predictive capabilities of 

UBEMs, which are capable of accounting for the implications of projected changes for the 

urban energy use patterns.  
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1.2. Research Objectives  

The present research effort addresses the challenge of finding a reasonable trade-off 

between the modeling capabilities, the resolution of the results, the required input 

information, and the computation intensity in urban energy computing. The aim is to 

develop a computational routine for the estimation of urban building stock’s energy 

demand, able to incorporate detailed information on physical building attributes, as well as 

internal and external boundary conditions, and produce highly resolved results. The current 

method is intended as the core energy computation component of an integrative decision 

support environment for the comparative evaluation of urban change and intervention 

scenarios pertaining to: 

• Physical aspects: Thermal retrofit, densification, etc. 

• Technological advancements: Installation of efficient heating systems, etc. 

• Climate: Urban Heat Island studies, global warming, etc. 

• Inhabitant behavior: Developments induced by demographic changes, lifestyle 

changes, etc. 

Figure 2 schematically illustrates the envisaged decision support environment. In this 

modular framework, the UBEM is informed by available urban data, as well as detailed 

descriptions of internal and external boundary conditions, issued by the dedicated 

occupancy and microclimate models. Note that the development of these specialized 

modules is not the intention of the present effort. Rather, the focus is on the conception 

of a computational framework, which supports the incorporation of detailed and highly 

resolved information on occupant behavior and microclimate conditions. A computational 

engine that supports detailed representations of internal and external processes, and can 

generate spatially resolved results, allows for the reproduction of the geographical as well 

as temporal patterns of energy use.  

For this purpose, the present contribution explores the potential of employing already 

established detailed numeric BPS tools, towards estimation of the energy performance of 

large assemblies of buildings. In this regard, various challenges must be addressed, mainly 

pertaining to the following aspects: 

• The availability and accessibility of building information required for BPS 

• Extensive time and expertise required for the development of BPS models  

To address the scarcity of detailed building information required for the deployment of 

BPS tools, domain reduction routines based on available large-scale data, including 

Geographic Information Systems (GIS) data, building standards and statistical information 
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are considered. These methods limit the requirement for high resolution building 

information to a select number of instances, representing the entire computation domain. 

In this regard, the organization and incorporation of available information towards efficient 

representation of an urban domain is no trivial task. The appropriate selection of the 

representative instances also presents various challenges including the identification of the 

relevant reduction criteria, as well as a reductive method that can adapt to the dynamic 

nature of the urban environments. The development of a systematic and automated 

sampling procedure relying on major energy-relevant building characteristics is intended in 

the current effort. The intended reductive procedure should be flexible enough to allow 

for the adjustment of the size of the reduced domain in accordance with the available 

computational and informational resources.  

 

Figure 2 Conceptual framework of an integrative urban decision support environment 

A consequence of any reductive procedure, regardless of the efficiency of the method is an 

inevitable loss of diversity. The present work seeks to explore the possibility of recovering 

part of the lost diversity, through data-driven readjustment of various model variables. The 

evaluation of the overall significance of this diversification is also intended.  

To establish clear boundaries for the research effort, detailed simulation of the hourly space 

heating demand (ideal demand) of the urban building stock has been considered. Space 
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heating is the most energy-intensive activity in both residential and commercial buildings 

(Figure 3 and Figure 4). Consideration of heating systems is essential for the estimation of 

the overall energy demand of buildings. However, due to the scarcity of the information 

with regard to the geographical distribution of various system types, the current effort will 

not address this matter.   

 

Figure 3 (Left) Residential building energy consumption by end use in Austria (based on data from 
Austrian Energy Agency 2009) 
Figure 4 (Right) Commercial building energy consumption by end use in the United States (based on data 
from U.S. Energy Information Administration 2016) 

For developmental activities, and to demonstrate the capabilities of the developed method, 

as well as the encountered challenges and the adopted solutions, an urban instance in the 

city of Vienna is selected. The current implementation will be as such adapted to the 

Austrian context. The adaptation pertains to the format and the content of the available 

GIS data, as well as the incorporated standards and statistical information. However, the 

method should be applicable to other geographical locations with minor modifications to 

the code, provided that the necessary input data is procured.   
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1.3. Structure of the Work 

A description of the various chapters and the entailed information is presented below: 

• Chapter 2: State of the Art 

This chapter provides an overview of the state of the art in urban energy modeling. 

It includes an introduction to Urban Building Energy Modeling approaches as well 

as a structured analysis of some former efforts in view of computational method 

and modeling domain. Finally, it offers an overview of the building stock 

classification criteria adopted in former urban energy modeling efforts for the 

reduction of the computation domain. 

  

• Chapter 3: General Approach 

This chapter offers a general description of the suggested modeling framework, its 

prerequisites and components: i) the urban stock representation module ii) the 

reductive module, and iii) the re-diversification module. To facilitate the 

communication of the information, an urban instance considered for the 

developmental activities of the project is described.  The particulars of the three 

model components and the associated results are presented and explained in detail 

in dedicated chapters (Chapters 4 to 6).  

 

• Chapter 4: The Building Stock Representation Module 

This chapter describes the steps taken toward the generation of an energy-

assessment compliant representation of the urban building stock, from available 

large-scale data. This step serves as a prerequisite for the informational support of 

the following steps. The utilized tools and materials for this purpose are listed and 

the developed method is explained in detail.   

 

• Chapter 5: The Reductive Module 

In this chapter, the reductive process leading to the identification of the 

representative buildings in an urban building assembly is described. Toward this 

end, the adopted building stock classification criteria, and the utilized algorithms 

and tools are explained. Various classification scenarios are considered, and a 

method is suggested for the evaluation of the performance of the emerging 

classification schemas. Lastly, the results of the application of the reductive module 

to the previously introduced urban instance are presented and discussed.  
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• Chapter 6: The Re-diversification Module 

This chapter is dedicated to the description of the re-diversification process, aimed 

at restoration of part of the urban diversity lost through the reductive procedure. 

Primarily, an overview of the utilized tools and materials are provided. Then, the 

protocol followed for the generation of the reference simulation models, as well as 

the method developed for the generation of the diversified models is explained. 

Consequently, to demonstrate the impact of the re-diversification module, and the 

utility of the developed method towards scenario modeling, several illustrative 

scenarios are suggested and applied. Finally, the results of the re-diversification 

module as well as the outcome of the applied scenarios (on the formerly introduced 

urban instance) are presented and discussed in detail.   

 

• Chapter 7: Conclusion 

This chapter provides an overview of the developed method, sheds light on the 

encountered challenges and the particular findings of the research, and suggests 

issues requiring further investigation, as potential future research horizons.  
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2. State of the Art 

2.1. Urban Building Energy Modeling Approaches 

Over the recent years, a variety of Urban Building Energy Models (UBEM) have been 

developed. These models vary considerably in terms of overall approach, informational 

requirements, disaggregation levels, underlying assumptions about buildings and their 

operation, and the type of results and scenarios they can evaluate (Kavgic et al. 2010). In 

an extensive review of various modeling approaches aimed at predicting the energy 

performance of the urban building stock, Swan and Ugursal (2009) have identified two 

fundamental classes of approaches to urban building stock energy modeling: the top-down 

and the bottom-up approaches. The terminology is selected to characterize the hierarchal 

position of data inputs with regard to the building sector as a whole. Figure 5 provides an 

overview of the different approaches to urban energy modeling. 

 

 

Figure 5 An overview of urban energy modeling approaches 

 

CHAPTER 2 
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Top-down models work with aggregated national or regional energy consumption data and 

aim toward disaggregating this total sum based on econometric variables such as income, 

fuel prices, gross domestic product, or reduced technological aspects such as building type, 

energy standards, or simplified climatic representations. These approaches require little 

detail of the actual consumption processes. They treat the building sector as an energy sink 

and regress or apply factors that affect consumption to determine trends. Top-down 

approaches are very useful for supply analysis based on long-term projections of energy 

demand by accounting for historic response (Swan & Ugursal 2009). They can also be used 

to investigate the implications of a changing economy. However, they falter when 

encountering discontinuity for instance technological breakthroughs or severe supply 

shocks. In other words, due to their reliance on historical energy use patterns, top-down 

UBEMs have no inherent capability to model unprecedented circumstances (Kavgic et al. 

2010). Moreover, detailed analysis of the share of various end uses in the overall energy 

demand cannot be performed through these coarse methods. Therefore, their potential to 

inform design or intervention decisions are very limited.  

In contrast, bottom-up models calculate the energy consumption of individual buildings 

and then extrapolate these results to represent the energy use of the entire domain 

(neighborhood/ city/ region/ country). These approaches are either based on statistical 

methods or building physics principles (engineering techniques).  

Bottom-up statistical techniques are used to determine the energy demand contribution of 

end-uses including behavioral aspects based on data obtained from energy bills and surveys. 

These techniques including regression models, conditional demand analysis models, and 

artificial neural networks, rely on historical consumption trends and therefore, require a 

substantial amount of data on various physical, operational, and contextual properties of 

buildings as well as the consequent energy demand. The procurement of this information, 

particularly the demand information, is hampered in many countries by legal barriers. The 

modeling capabilities offered by these methods are limited by the scope and variety of the 

data used to develop or train the model. As such, these models are not easily adaptable for 

various contexts and cannot be relied on to assess the implications of new technologies and 

conditions, which may not have existed during the accumulation of the underlying dataset.  

Engineering (a.k.a. physical) techniques are used to explicitly calculate energy consumption 

of end-uses based on detailed descriptions of all or a representative set of buildings (Swan 

& Ugursal 2009). These techniques neglect the relationships between energy use and 

macroeconomic activity (Kavgic et al. 2010). They rely on building characteristics and end-

uses to calculate the energy consumption based on power ratings, use characteristics and/or 

heat transfer and thermodynamic principles. Consequently, they have the capability of 
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determining the energy implications of new technologies and discontinuous changes. 

Moreover, they are able to explicitly address the effect of solar energy gains, which is 

desirable in urban morphological studies. The selection of the general approach in the 

development of urban energy computing methods should take the nature of the intended 

inquiries into account. Swan and Ugursal (2009) emphasize that to evaluate the implications 

of employment of new technologies, which are more likely to gain public acceptance than 

taxation or pricing policies, the only option is to use bottom-up engineering modeling 

techniques. The major drawback of engineering models is their substantial information and 

expertise requirement, for the generation of reliable representations of buildings, their 

inhabitants, and their surroundings.   
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2.2. Computation Complexity, Modeling Extent, Resolution  

The modeling capabilities of a bottom-up engineering model and the temporal resolution 

of the model outcome depend on the underlying building performance computation 

method. The adopted method determines the ability of the computational routine to 

represent the various building aspects contributing to the energy behavior of a building. 

Simplified building performance assessment tools such as standard steady-state or reduced 

order procedures provide rough impressions of buildings' energetic behavior, but cannot 

capture the transient patterns of building energy use. The more elaborate dynamic 

performance simulation methods enable the detailed representation of the physical and 

technological properties of the buildings as well as their internal and external processes. 

These methods can generate highly resolved and realistic data on the energy performance 

of the investigated buildings. However, they are associated with significant modelling 

effort, extensive input data, and substantial computational power requirements. In other 

words, the versatility and the resolution of the computation method is strongly correlated 

with the scope and granularity of its input information. Due to the high informational and 

computational demand of more elaborate performance assessment tools a fundamental 

challenge with regard to their urban-scale application involves the identification of a proper 

balance between the spatial extent of the modeling domain (i.e. the size of the urban 

segment considered) and the resolution or level of detail of the individually represented 

entities in the model. The informational and computational requirements of performance 

simulation increase overwhelmingly as the computation domain broadens. As such, the 

deployment of performance simulation methods with high-resolution representations of all 

relevant aspects of buildings is not practical for large assemblies of buildings. Former 

research efforts have tried to address this challenge in various ways. Reinhart and Cerezo 

Davila (2016) provide an overview of the application domain, building representation 

process and computational methods adopted in previous efforts. With regard to the scope 

of the computations, two general types of bottom up engineering models can be identified: 

Whole domain models and reductive models.  

Whole domain models assess the energy demand of every building within the study domain. 

To enable such large-scale computations, these models have to rely on a coarse 

representation of the buildings and their various characteristics, which can be accessed 

through large scale data sources such as GIS and standards, using automated routines. As 

such, they typically incorporate reduced order or steady state standard-based computational 

methods, which are less demanding in terms of input information and representation 

complexity.  
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Li et al. (2015) have developed a bottom up engineering model of New York City, using a 

reduced-order demand computation process. The developed model uses GIS data and 

statistical information to arrive at the required building representation and produces 

monthly demand values.  

Glawischnig (2016) created a framework for the web-based application of a standard 

steady-state demand analysis method to the Viennese building stock. The model uses 

building certification standards, as well as GIS data to provide a representation of buildings 

compliant with simplified energy assessment routines. The results are in monthly 

resolution. Although these models provide a useful overview of the spatial distribution of 

energy demand, they cannot realistically represent the temporal dynamics of load patterns 

and their dependency on transient phenomena (e.g. weather conditions, inhabitants’ 

presence and actions).  

Due to the significance of the temporal patterns of demand and supply potential for the 

reliability and efficiency of energy networks, high temporal resolution of the results seems 

to be a fundamental requirement for any modeling environment aimed to inform energy 

management decisions. In order to facilitate whole domain application of elaborate 

performance simulation routines, Sansregret and Millette (2009) take a different approach 

towards building representation. Instead of modeling each building with its authentic 

characteristics, to represent the Quebecois building stock, they generate synthetic 

simulation models based on an analysis of a large database of building information. For this 

purpose, general descriptors such as main building activity, floor area, location, main 

heating source, and construction year are used to statistically determine probability 

distributions of other building parameters (e.g., aspect ratio, glazing ratio, thermal 

properties of the envelope, etc.) from the underlying database. According to these 

probabilities, simulation compliant generic models of the buildings are automatically 

generated. Even though this method efficiently represents the urban diversity and building 

characteristics, due to the archetypical representation of buildings, the mutual influence of 

microclimate and urban morphology and their energy implications are not efficiently 

captured by this model. The method does not allow for the consideration of contextual 

parameters such as adjacency and shading relations. A reliable spatial disaggregation of 

demand, necessary for proximity-dependent queries (e.g., pertaining to grid optimization 

and integration of distributed generation plants) cannot be expected.  

In a more recent but similar effort, Remmen et al. (2016) have developed a software for 

the automated generation of reduced order simulation models for large assemblies of 

buildings. The advantage of this so-called TEASER model over the previously mentioned 

effort is that it enables the incorporation of the available geo-referenced information, which 
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allows for a reproduction of the geographical distribution of energy use. It relies, however, 

also on predefined archetypical building descriptions and statistical data to fill in the missing 

information in building models. The possibility to consider multiple functionalities (in the 

case of multi-purpose buildings) has not been demonstrated in urban-level inquiries.  

In the framework of the IEA annex 60 project (Wetter and Von Treeck 2017), several tool 

packages have been developed for urban and district-level building energy assessments by 

participating research groups. In this project, the focus has been on the development of 

computational tools, which can accommodate optimization purposes. As such, in the 

representation of individual buildings various simplifications have been permitted, for 

instance with regard to zoning schemes and mutual shading effects.  

Other researchers have opted for detailed simulations with authentic models of the 

buildings in the study domain. However, in such efforts the study domain has been limited 

to small neighborhoods. Baetens and Saelens (2015), for instance, have developed a 

simulation-supported energy model of a small building assembly to investigate the impact 

of inhabitant behavior on large-scale energy assessments. The study domain is a synthetic 

neighborhood composed of buildings formerly identified to represent the Belgian building 

stock. However, since the computation results were not extrapolated to the entire stock, 

this effort can be categorized as a whole domain application. In this research, focused on 

inhabitant behavior, various occupant types (full-time employed, unemployed, minor) for 

the Belgian context are identified using time-use and household budget survey data. These 

typical profiles are then used as a basis for the stochastic modeling of occupant presence 

and activity schedules. The results are used to examine the uncertainties associated with 

user behavior in neighborhood scale energy assessments. The resulting model efficiently 

represents diversity of buildings and inhabitants, however, due to the extensive modeling 

effort required, its applicability to larger building assemblies is limited. Orehounig et al. 

(2011) apply detailed simulation computations to an entire village in Switzerland and 

compare the results of this analysis to those derived from a reductive model applied to the 

same domain.  

Reductive models focus on modeling the performance of a smaller domain representative 

of the entire building agglomeration under study. The resulting energy use patterns are then 

extrapolated to the larger urban area. Thus, these models can benefit from the analytic and 

predictive potentials of the more elaborate performance assessment methods through a 

systematic reduction of the computational domain. This is usually achieved through i) the 

selection of a sample of buildings, or ii) the development of archetype buildings (synthetic 

representatives), representing the energy behavior of the urban building stock under 

investigation. The number of selected samples or developed archetypes depends on the 
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diversity of energy behavior in the investigated urban area, the computational and 

informational requirements of the underlying performance assessment method, as well as 

the available resources. A review of former reductive models revealed that despite a 

systematic reduction of the modeling domain, most of these efforts still opted for simplified 

performance computational routines. 

Snäkin (2000) developed a non-dynamic bottom up engineering model of the province of 

North Karelia in Eastern Finland. Through a stock segmentation by building usage, built 

form, construction/retrofit period, primary heating energy source, and heat distribution 

type, 4163 building types were identified. The study does not consider heat loads from solar 

energy and users and focuses on annual demand estimations.  

Jones et al. (2001) analyzed data on heated ground floor area, façade, window to wall ratio, 

and exposed end area to identify 20 typical built forms for the assessment of the energy 

performance of the building stock of the city of Cardiff (UK). Along with 5 construction 

periods, this led to the definition of 100 building typologies. The buildings selected to 

represent these types, were subjected to assessments in a building performance 

benchmarking tool, UK Standard Assessment Procedure (United Kingdom Department 

for Business, Energy & Industrial Strategy 2013), which does not represent the temporal 

distribution of demand or capture the intricate effects of occupant presence and activity on 

energy demand. This stock energy model is a component of an integrative modeling 

environment aimed at facilitating urban level policy making, covering various aspects of the 

urban domain including traffic and industrial processes.  

Hens et al. (2001) classified the Belgian building stock according to age, total floor area, 

built form, primary energy source and heating system type (central heating vs. dispersed 

heating units), to investigate the effectiveness of several CO2 emission reduction strategies. 

The envisaged CO2 reduction measures included shifting to low emission fuels, installation 

of heat pumps, conversion to renewable sources and improvements to the energy efficiency 

of buildings. The identified classes were represented by synthetic archetype buildings, 

which underwent a steady-state single zone monthly energy demand assessment procedure.  

In a study of the energy demand of the Canadian building stock, Parekh (2005) partitioned 

the building stock into classes of buildings with similar usage, vintage and climate region, 

generating 56 building types. Other building parameters required for energy assessments 

were statistically determined in every class. The resulting archetypical buildings were 

simulated in the HOT2000 energy assessment tool (Natural Resources Canada 2016), used 

to estimate annual energy consumption of low-rise residential buildings (single-family 

houses, semi-detached houses, and row houses).  
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The TABULA project (Intelligent Energy Europe 2012), aiming towards development of 

residential building typologies for energy assessments across 11 European countries also 

relies on a building stock classification per climate zone, vintage and dwelling type. Real 

buildings representing the various characteristics of the buildings in each class are suggested 

as references, for performance computation purposes. The resulting typology has been 

used in various reductive urban energy assessment models (e.g., Dascalaki et al. 2011; 

Ballarini et al. 2014).  

Emphasizing the significance of the occupancy related variance in energy demand in view 

of the increasingly stringent thermal codes, Munoz and Peters (2014) question the 

efficiency of the reference operational schedules for assessments pertaining to DG 

schemes. They argue that even though social or behavioral diversity may not play a major 

role in the current centralized grids, development of decentralized energy generation 

paradigms requires reliable data on the dynamics of energy demand at a higher spatial 

resolution. To address this issue, they use the TABULA building typologies for Germany 

to characterize Hamburg’s existing stock. Focusing on the residential buildings, they 

analyze micro-census data, defining household types and their occurrence likelihood, in 

each statistical area. These households are allocated to the prototypical buildings within the 

designated spatial domains, but the resulting configuration is assessed using a simplified 

standard heat balance model, which is ill suited to incorporate this elaborate representation 

of inhabitants toward performance assessment.  

Fewer former efforts have adopted dynamic performance simulation tools to capture the 

energy behavior of the representative buildings. In an effort to develop a GIS-based, 

simulation supported energy model of a small town, Page et al. (2014) propose a typology 

of buildings based on vintage and usage. The relevance and significance of these criteria 

are then examined through sensitivity analysis. In addition to construction period and 

usage, the study points out the importance of the building’s urban context, adjacencies and 

obstructions in the thermal performance of the building, but does not include such factors 

in the development of building types.  

Heiple and Sailor (2008) have developed a simulation-based model applicable to any large 

US city, which can provide parcel-level hourly consumption predictions. The method 

employs the capabilities of Geographical Information Systems (GIS). The computation 

scope is limited to a number of prototypical buildings representing each city.  

Huang and Brodrick (2000) used a segmentation scheme by usage, vintage and location, 

developing a total of 120 commercial and 144 residential prototype/location combinations 

to characterize the US building stock. Simulation input files for the DOE-2 program (James 
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J. Hirsch & Associates 2016) were developed for each combination. Results were up-scaled 

and employed for cogeneration potential studies.  

Caputo et al. (2013) defined 56 archetypes based on indicators such as size, number of 

floors and envelope compactness and construction period to represent Milan’s building 

stock. These archetypes were subjected to detailed energy simulations using Energy Plus 

BPS software (NREL 2017). Using a GIS platform, a link was established between every 

building in the study domain and an energy profile pertaining to an archetype building, 

resulting in a geo-referenced energy consumption map of the city. Similar simulation-

supported reductive approaches have been followed by Tuominen et al. (2014) and 

Orehounig et al. (2011). The latter effort, however, was based on the selection of authentic 

representative buildings from the study domain.  

In a demand model for the residential building sector in the city of Osaka, Japan, Shimoda 

et al. (2003) incorporate a detailed survey on household demographics and activities to 

determine 23 household types. The data provides the probability distribution of each living 

activity such as sleep, meal, work, etc. in 15-minute time intervals for weekdays, Saturdays 

and Sundays for each family member’s category (classified by gender, age, and occupation: 

employed or not). With 20 dwelling typologies of detached and apartment houses 

(distinguished by size) and the defined household types, 460 building typologies were 

defined for which hourly energy consumption was simulated. The results were extrapolated 

to the entire city. The solid empirical basis allows for a detailed representation of the 

occupant-dependent aspects including heating, cooling, lighting and appliance use 

schedules. However, the physical aspects of buildings may have been over-simplified as the 

only criteria for the segmentation of dwelling types is area.  

Table 1 provides an overview of the discussed UEMs. Although the reductive approach 

facilitates the incorporation of detailed energy investigations, there are two principal 

challenges associated with this method. The first challenge pertains to the identification of 

an appropriate set of (authentic or synthetic) representative buildings. The second, 

concerns the inevitable loss of diversity through the reductive procedure. 
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Table 1 An overview of the consulted Urban Energy Models 

Computation 

Method 

Modeling 

Extent 

Building 

Representation 

Inhabitant 

Representation 

Examples Comments 

simplified 
  

Entire 

population 

Authentic  Simple aggregate 

representation 

(Li et al. 2015; Glawischnig 

2016) 

• Low informational requirements 

• Low computational cost 

• Loss of diversity in case of reduced modeling extent 

• Inefficient representation of contextual parameters in 

case of reduced modeling extent 

• Low temporal resolution of results 

• Limited modeling and representation capabilities (in 

particular with regard to transient phenomena) 

Reduced Synthetic 

 

Simple aggregate 

representation   

(Snäkin 2000; Hens et al. 2001; 

Jones et al. 2001; Parekh 2005; 

Dascalaki et al. 2011; Ballarini et 

al. 2014) 

Detailed diversity 

representation  

(Munoz H & Peters 2014) 

Dynamic 

performance 

simulation 

 

Entire 

population 

 

Synthetic Simple operational 

schedules 

(Sansregret & Millette 2009; 

Remmen et al. 2017) 

• High informational requirements 

• High computational cost 

• High temporal resolution of results 

• limited application domain due to reliance on a 

statistical approach towards model generation 

Authentic Simple operational 

schedules 

(Orehounig et al. 2011) 

Stochastic 

representation 

(Baetens & Saelens 2015) 

Reduced 

 

Authentic Simple operational 

schedules 

(Orehounig et al. 2011) • High temporal resolution of results  

• Manageable informational requirements and 

computational cost 

• Loss of diversity 

• Inefficient representation of contextual parameters 

 

 

Synthetic 

 

Simple operational 

schedules 

(Huang & Brodrick 2000; 

Heiple & Sailor 2008; Caputo et 

al. 2013; Tuominen et al. 2014; 

Page et al. 2014) 

Detailed diversity 

representation 

(Shimoda et al. 2003) 
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2.3. Domain Reduction Criteria 

Representation of the urban building stock through sample buildings or archetypes is not 

a new venture. In studies pertaining to urban energy modeling, typically, the existing 

building stock is subdivided into classes of buildings, which are expected to display similar 

energy behavior. Each class is then represented through a number of sample buildings or 

synthetic archetypes, which reflect the main energy-relevant characteristics of the buildings 

in their associated classes. Performance computations are conducted on this reduced 

domain and the results are extrapolated to the classes. A review of some contemporary 

reductive energy assessment methods revealed a frequent lack of explicitly stated 

arguments, evidence or reasoning in support of the selection of the set of building attributes 

intended to characterize the energy-relevant features of the building population, a.k.a. the 

classification criteria. Table 2 offers an overview of some reductive efforts and the various 

building characteristics used for stock classification or definition of building "types". 

Although a variety of factors have been considered in these approaches, not all energy-

relevant aspects of a building have been included.  

Geometric aspects are often expressed in terms of built form (detached, semi-detached, 

row house, etc.) usually in combination with an indicator of the building's size (volume, 

floor area, number of stories),(e.g., Farahbakhsh et al. 1998; Snäkin 2000; Ribas Portella 

2012). In very few cases (e.g., Jones et al. 2001), more detailed descriptions of the envelope 

such as compactness, window area, window to wall ratio, or area of façades are included.  

Construction period appears in almost all cases as a major indicator of the thermal quality 

of the buildings' enclosure elements. Some literature, however, state the necessity of 

involving the U-values of various building components in the classification process (Parekh 

2005). Despite having rather similar construction details, buildings of the same construction 

period may display very different thermal behavior, due to the fact that the sensitivity of 

transmission losses to the thermal quality of various components is dependent on the share 

of the respective components in the overall thermal envelope, as well as their boundary 

conditions. Aksoezen et al. (2015) have questioned the explanatory power of a classification 

based on construction age and building type (in the context of the Swiss residential stock). 

They state that based on previous research performed by the Swiss Federal Office of 

Energy (Dettli & Bade 2007), particularly in the case of older buildings (constructed prior 

to 1921), such a classification is not suitable for the typological prediction of the 

performance of an already existing building due to the large intra-class variation.  
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The urban context's implications for the solar gains through mutual shading are frequently 

ignored and the effect of surrounding buildings in the reduction of heat emitting envelope 

area is only sporadically considered. Although built form may give an indication of the 

exposure of the building to outside air (e.g. detached houses versus row houses), given the 

significance of adjacency relations (unconditioned spaces, conditioned spaces or outside), 

a more detailed representation may be required. In few instances, shape of the roof and 

type of the lowermost building floor are suggested to be involved in the classification, 

providing a better understanding of the boundary conditions of the horizontal enclosures 

(Parekh 2005).  

In research efforts with wider geographic scopes (national), climate conditions, depicted as 

climate zones or location, are also considered among classification criteria (e.g., Heiple & 

Sailor 2008; Deru et al. 2011; Benejam 2011). Additionally, Theodoridou et al. (2011) 

include the density of the urban area (high vs. low) in their classification, which may be a 

rough indicator of mutual shading, adjacency relations, and the urban heat island effect on 

microclimate.  

Of course, the selection of the classification criteria must correspond with the 

characteristics of the urban context. More specifically, in the definition of representative or 

typical buildings, only the energy-relevant building characteristics, which contribute to the 

diversity of demand profiles are to be considered. If the variance in a certain building 

characteristic is insignificant across the urban area, this characteristic, although influential 

in the overall energy consumption of buildings, is not important in the classification 

process. In a uniform urban structure where buildings are similarly oriented and are subject 

to equal amounts of mutual shading, the consideration of this building parameter does not 

affect the classification process and may instead result in unnecessary computation load. 

But in the context of the dense and varied morphology of historical European cities, where 

building orientation, parcel size, street canyon aspect ratio, and adjacency relations are very 

diverse, contextual parameters are considered influential in characterizing the demand 

diversity of buildings.  

Building's operational characteristics such as occupants' presence and activity, operation 

schedules, and temperature set points are usually depicted through building usage in former 

attempts. In some instances, number of occupants or internal temperatures have been 

considered in addition to usage to represent building operation (e.g., Heiple & Sailor 2008; 

Shimoda et al. 2003). In fact, in the case of single purpose buildings usage can be a fair 

indicator of the operational parameters of the building. Nevertheless, if the unit of 

observation is a single building, in the case of multi-purpose buildings a more elaborate 

method is required to represent the overall operational characteristics of the building. 
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Table 2 Building stock classification criteria adopted by previous reductive efforts (part 1/2) 
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(Farahbakhsh et al. 1998) National Residential ✓✓

           

✓

   

✓



(Huang & Brodrick 2000) National Various ✓   ✓          ✓   ✓


Snäkin (2000) National Various ✓✓           ✓✓✓     

Jones et al. (2001) City Various ✓    ✓✓✓

✓     ✓     

Hens et al. (2001) National Residential ✓✓  ✓       ✓✓      

Shimoda et al. (2003) City Residential 
✓ ✓            ✓  

Parekh (2005) City Residential ✓✓✓    ✓

✓✓ ✓ ✓✓


✓


✓ 

Heiple & Sailor (2008) National Various ✓    ✓     


✓


✓


✓

✓



Sansregret & Millette 
(2009) 

State Various ✓  ✓

✓ ✓    ✓


✓     

Firth & Lomas (2009) National Residential ✓✓                  

Amtmann (2010) National Residential ✓✓ ✓             ✓


Girardin et al. (2010) City Various ✓               ✓     

Continued                        
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Table 2 Building stock classification criteria adopted by previous reductive efforts (part 2/2) 
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Benejam (2011) National Various ✓✓            ✓  ✓


Dascalaki et al. (2011) National Residential ✓  ✓             ✓


Deru et al. (2011) National Various ✓  ✓         ✓  ✓

Orehounig et al. (2011) City Various ✓                ✓ 

Theodoridou et al. (2011a) National Residential/Mixed  ✓✓     ✓ ✓   ✓  ✓✓

Dall’O’ et al. (2012) National Residential ✓                 ✓

Ribas Portella (2012) National Various ✓✓           ✓✓  ✓


Howard et al. (2012) City Various     ✓        ✓ ✓ 

Caputo et al. (2013) City Various ✓✓ ✓         ✓  ✓


Page et al. (2014) City Various ✓             ✓    

Tuominen et al. (2014) City Various ✓✓            ✓    

Fonseca & Schlueter 
(2015) 

City Various ✓             ✓    
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3. General Approach 

3.1. Suggested Framework 

As previously discussed, the objective of the present work is to develop a computational 

frame-work for an integrative urban decision support environment, which enables the 

comparative analysis of the energy implications of various urban change and intervention 

scenarios. Following an extended study of urban energy modeling approaches, the bottom-

up engineering approach was considered as the most suitable for the purpose. However, to 

be able to assess a wide range of scenarios pertaining to different aspects of the urban eco 

system, including inhabitants and microclimate, this computational framework must be 

inherently capable of processing relevant information with an appropriate resolution. This 

led to the selection of detailed dynamic performance simulation tools as the building-level 

computational engine of the present model. These tools, however, typically demand large 

amounts of input data and extensive modeling expertise. Former simulation-supported 

efforts frequently alleviated this issue either through reduction of the modeling domain (via 

selection of a representative sample of buildings or generation of representative 

archetypes), or through reduction of modeling effort (via employment of statistical analyses 

towards automated generation of simulation models).  

The framework suggested in the present efforts combines the two techniques to propose a 

semi-automated routine towards urban stock energy modeling with respect to heating 

energy demand. Towards this end, a two-fold approach has been envisaged. The first 

development, the reductive process, is aimed at the automated selection of an appropriate 

sample of buildings to represent the urban domain under study. This allows for the 

adjustment of the extent of the modeling domain to the available resources with regard to 

information, time, and experienced staff. For this purpose, following the example of former 

CHAPTER 3 
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experiences, a set of criteria is defined for the classification of the urban building stock. 

However, the present project seeks to enhance former efforts through the introduction of 

a new set of criteria, incorporating contextual, geometric, operational and sematic 

properties of buildings in the classification process. Moreover, the potential of state of the 

art data-mining techniques, namely Multivariate Cluster Analysis (MCA) methods, towards 

classification of the building stock has been explored. Following the classification, a sample 

of buildings representative of the energy diversity of the urban stock are selected. 

For the extraction of the values of the defined classification criteria, the reductive procedure 

relies on an energy relevant representation of the urban building stock. As a prerequisite to 

the reductive procedure, such a representation is generated in an automated process using 

the available large-scale data such as GIS, statistical data and building standards. This 

representation serves as a basis for the computational or logical determination of the values 

of the classification criteria for each individual building within the study domain. The 

selected building sample is subsequently modeled within a dynamic performance simulation 

tool, using detailed information. The generation of the simulation models is performed 

manually. Various change and intervention scenarios can be defined within the scope of 

the modeling capabilities of the employed simulation software and applied to these models.  

The second development, concerns addressing the inevitable loss of diversity due to 

sampling, through an automated re-diversification of the models prior to aggregation. This 

step, involves the data-supported automated readjustment of the representative simulation 

models, to generate new versions, more representative of the energy characteristics of each 

building within the study domain. As such, it is essentially similar to the automated 

modeling approach adopted in some former efforts. With the difference that the model is 

not created from scratch. Rather it inherits the geometric configuration of a representative 

building. Towards this end, parametric modeling of non-geometric building properties such 

as thermal quality of components, as well as stochastic representation of occupant presence 

and actions have been considered. Figure 6 schematically presents the overall structure of 

the developed framework. Since this framework reduces the computation domain in a first 

step and enhances it through the re-diversification process, the term “hourglass model” has 

been adopted by the authors to characterize the method.  

The generation of the urban stock representation, as well as the reductive process are 

facilitated through the development of a plug-in for the open-source GIS platform QGIS 

(The Open Source Geospatial Foundation 2017), version 2.9.0 Master. The plug-in is 

developed in the Python Programming Language (Python Software Foundation 2017), 

version 2.7, and benefits from various packages of the R Project for Statistical Computing 

(The R Foundation 2017), version 3.2.1, for the classification process. The re-
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diversification step is achieved through a Python code that acquires the representative 

simulation models and relevant building information as input and generates readjusted 

simulation models associated with each building on the study domain. The presented 

method is in principle applicable to various geographic contexts. However, the current 

implementation is tailored to the Austrian context in view of the incorporated data, and its 

particular format. The following chapters provide detailed descriptions of the urban stock 

representation generation, the reductive, and the re-diversification processes and shed light 

to the various encountered challenges and the adopted solutions.  

 

Figure 6 Overall structure of the proposed urban energy computing framework 
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3.2. Selected Urban Instance 

As a testing ground for the developmental activities, and to demonstrate the capabilities of 

the developed method, as well as the encountered challenges and the adopted solutions an 

urban instance was selected. 

The selected testing ground involves a neighborhood in the center of the city of Vienna, 

Austria, covering an area of about 1.3 square kilometers. Figure 7 illustrates a bird’s eye 

view of the selected neighborhood, including parts of the 1st, 4th, and 6th districts of the 

city. The varied orientation and width of the streets, as well as the presence of parks, 

courtyards, and plazas render the selected neighborhood morphologically diverse. As such, 

the buildings within the study domain are subject to different external boundary conditions 

in terms of solar exposure and adjacency relations.  

 

 

Figure 7 The bird’s eye view of the neighborhood selected as a case study, from Google Maps (Google 2017) 
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The selected neighborhood, includes some 750 buildings of various construction periods 

and usages. It well represents the historical building stock of the Austrian capital, however, 

new Viennese buildings (constructed after 1945) are underrepresented due to their low 

count in the central districts. A less central location may have better captured the age 

diversity of the stock, however, due to their architectural and historical quality, the buildings 

in the central districts have been better documented in the official GIS data. The area also 

includes a wide variety of most common building usages, including residential, office, 

educational and commercial buildings. The share of educational buildings in the area may 

be relatively high due to the presence of a university complex in the neighborhood. Figure 

8 displays the distribution of the buildings by period of construction and primary usage. 

Note that multi-purpose buildings, especially dominated by residential usage, are very 

common in the area, especially along major streets.  

Buildings with uncommon usages were excluded from the analysis. These included kiosks 

in a permanent market place, underground station entrances, and a church.  

 

 

Figure 8 Distribution of buildings in the study area by usage and age 
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4. The Urban Building Stock 

Representation Module  

4.1. Introductory Comments 

Performance estimation procedures relying on buildings’ heat balance, regardless of the 

resolution and precision of the adopted computational method, require descriptions of 

physical, contextual, and operational characteristics of buildings. As such, generation of 

such a representation, providing information on the geometric and semantic properties, 

adjacency relations, and boundary conditions of the envelope components, as well as 

operational specifications of the building is a prerequisite of urban energy modeling efforts. 

The resolution and the accuracy of this representation however, depends on the granularity 

of the available and accessible data on the urban domain. The first developmental step of 

the current project consists of the superposition of various urban data sources to generate 

such an energy assessment compliant model of the urban domain. For this purpose, 

primarily the various data sources, tools, and developments, which could contribute to the 

development of a pertinent urban building stock representation, were identified. Since the 

current development is tailored to the Austrian, and in particular the Viennese context, the 

acquired information pertains to this geographical domain. However, the adopted methods 

towards model generation, can be applied to any other geographical context, provided that 

the required information can be obtained. Some readjustments as to the format of the 

available data may however be required.   

CHAPTER 4 
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4.2. Tools and Materials 

Given the strong reliance on GIS data as the principle source of spatially resolved urban-

scale building information, the selection of a GIS platform as the main data visualization 

and processing environment seemed appropriate. QGIS (The Open Source Geospatial 

Foundation 2017) is a user friendly Open Source Geographic Information System certified 

under the GNU General Public License. It is capable of visualizing and manipulating 

various GIS data formats.  QGIS is developed in and therefore compatible with the general-

purpose high-level programming language Python (Python Software Foundation 2017). Its 

utility can, therefore, be enhanced through the employment of various plug-ins developed 

by the QGIS users’ community in Python language. In the current project, the DEMTools 

plug-in (Hammerberg 2016) was utilized to computationally generate Sky View Factor 

maps. As mentioned before, the generation of an energy relevant representation of the 

urban building stock as well as the reductive procedure leading to the identification of a 

representing sample of buildings, is carried out through a dedicated plug-in, developed by 

the author for the purpose of the present project.  

The available data on the Viennese building stock includes official and crowd-sourced 

Geographic Information Systems (GIS) data, as well as statistical information and building 

performance assessment standards:  

• Official GIS Data: In the framework of Vienna Open Government initiative, 

basic GIS data of the city of Vienna including land-use plans and digital surface 

and elevation models of the city have been made accessible to public (Magistrat 

der Stadt Wien 2017b). Geographical building data inventories are also attainable 

for research purposes. Official Vienna GIS data includes geometric information 

on the buildings' foot prints, as well as properties such as height, primary usage, 

construction period, number of floors, etc.  

• Open Street Map (Verein OpenStreet Map Austria 2017): Open Street Map 

(OSM) is an open source of GIS data, created and maintained by a community of 

freelance mappers. It includes data about roads, stations, buildings and their 

usages, and can be used for any purpose as long as its contributors are credited. In 

the present research, OSM data was used to refine the usage profiles of buildings 

since it includes a more detailed description of various usages present in a building.  

• Sky View Factor Map: Generated using the DEMTools plug-in (Hammerberg 

2016), this geo-referenced raster data layer includes the value of the Sky View 

Factor on the ground level of the urban area under study.  

Various GIS data incorporated in the present development are visualized in Figure 9. 
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• Austrian Standard B-8110-6 (Austrian Standards Institute 2014): This standard, 

which establishes a method for heating demand and cooling demand 

benchmarking, provides average values for physical parameters (e.g., the ratio of 

transparent elements to walls, or net to gross floor area) in the absence of more 

accurate information.  

• Austrian Standard B-8110-5 (Austrian Standards Institute 2011): This standard 

offers operational profiles for various building usages. These profiles, aimed at 

informing norm-based performance assessment procedures, provide default 

values for parameters such as area-related internal gains, air-change rate, 

temperature set points, and operation schedules. A reference monthly weather data 

for Austria is also provided in the same standard, which includes orientation-

related solar radiation values.  

• Austrian Standard H-5059(Austrian Standards Institute 2010): Complementary 

to the previous document, this standard provides default values for the annual 

area-related lighting energy demand of non-residential buildings. 

• OIB-RL 6 guidelines (Österreichisches Institut für Bautechnik 2015):  include 

information on the thermal quality of various building components based on 

construction period for the energy performance assessment of historical buildings.  

 

Figure 9 GIS data incorporated in the present study visualized in a GIS platform. 
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Prior to the integration of various data sources, the data was checked for inconsistencies 

or deficiencies. The GIS data of the city of Vienna treats buildings as legal rather than 

architectural entities. As such, buildings pertaining to the same parcel may be identified 

with a single reference number, or several inventory points may be associated with a single 

building with several entrances (addresses). The accumulated data was as such pre-

processed to ensure that each building (the unit of observation in the study) is associated 

with a single inventory record and given a unique identifier. Multiple OSM data records can 

however be associated with one building, demonstrating multiple usages.  

Unfortunately, the official GIS data does not accurately represent the actual state of the 

buildings. This is due to the dynamic nature of the urban building stock and the effort and 

time associated with the accumulation and organization of the required information, partly 

through on-site surveys. Some of the inconsistencies encountered pertained to modified 

building usages. Others concerned physical interventions such as construction of rooftop 

extensions, very common in the Viennese contemporary architectural tradition. The GIS 

data available for the study also contains no information on previous refurbishment 

activities. Such shortcomings will of course affect the quality of the generated building stock 

representation and consequently the model predictions. The present research effort is not 

concerned with addressing such data-related issues. As such, buildings are assumed to have 

maintained their original conditions in terms of geometry and construction components 

(based on the GIS data). However, an alternative data sources on building usage, OSM, 

which is more regularly updated by the user community is incorporated to enrich and refine 

the stock model. Should more information become available in the official data sources, 

the developed method is capable of incorporating it into the representation generation 

process. Table 3 offers an overview of the available data sources and their contents. 
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Table 3 Summary of the available data sources and the contained information 

 Source Data type Contained data 

G
IS

 D
A

T
A

 

ViennaGIS   Land Use Plan  
(Vector layer) 

• Building Footprint Polygons 

• Construction type (main/annex) 

• Relative eaves height 

• Elevation from ground 

Digital Elevation Model (Raster 
layer) 

• Relative height of every point 

Building Inventory  
(Vector layer) 

• Building construction period or 
year 

• Main building usage 

• Number of Floors 

OpenStreetMap Land Use Plan  
(Vector layer) 

• Building Footprint Outline 

• Building usage 

DEMTools Sky View Factor Map  
(Raster layer) 

• Sky View Factor of every point 
at ground level 

S
T

A
N

D
A

R
D

S
 

Austrian 
Standard  
B-8110-5 

Thermal insulation in building 

construction: Model of climate 

and user profiles 

• Usage-based internal gains 

• Usage-based infiltration rate 

• Usage-based use hours 

• Reference weather data 

Austrian 
Standard  
B-8110-6 

Thermal insulation in building 

construction: Principles and 

verification methods: Heating 

demand and cooling demand 

• Average window to wall ratio 

• Average frame to window ratio 

• Average net to gross floor area 
ratio 

Austrian 
Standard H-5059 

Energy performance of 

buildings: Energy use for lighting 
• Annual lighting energy demand 

of non-residential buildings  

OIB-RL 6  Guidelines: Energy-technical 
behavior of buildings 

• Age-based component U-values 

• Age-based window solar 
transmittance 
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4.3. Building Stock Representation Routine 

The intended building stock representation is supposed to cover various energy-relevant 

aspects of the buildings. To determine the scope of the required information, the various 

terms in the heat balance of a building were considered and data required for the 

quantification of each term was identified.  Figure 10 displays the building properties 

required to assess various factors contributing to a building’s heating demand.  

 

Figure 10 Building information required for the quantification of the various heat transfer processes 
occurring in a building 

Based on the required information and the available data sources a data representation 

schema was developed for the representation of the individual buildings. This schema was 

the basis of the object-oriented framework developed for the extraction of the necessary 

information from the GIS sources as well as the mentioned standards. This data structure 

is illustrated in Figure 11.  

The data extraction and organization process is carried out through a QGIS plug-in. Before 

the plug-in is run, the necessary GIS data layers must be imported in the GIS platform and 

arranged in terms of reference coordinate system and projection, such that different 

information pertaining to the same geographic location are superimposed.  
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Figure 11 The building data representation schema developed for the structuring of building information from various sources, towards generation of 
necessary descriptions for all buildings within the study domain 
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Envelope Geometry and External Boundary Conditions  

Beginning with an analysis of the ViennaGIS Land Use plan, the developed plug-in 

identifies all unique reference codes, associated with features depicting a building, and 

creates corresponding “Building” objects. For each “Building” Land Use features 

(polygons with additional attributes) constituting the building’s footprint are identified by 

the reference number as “Building Parts”. Utilizing the foot print geometries and eaves 

height information pertaining to “Building Parts”, vertical building enclosures or “Wall” 

objects are generated. Since the footprint geometry of the building may be composed of 

several “Parts” each associated with different height information, geometric reasoning is 

required to determine which edges define the boundaries enclosing the building volume. 

For this purpose, edges of all “Building Parts” are compared pair-wise to determine 

collisions. The height information associated with colliding edges are compared. In case of 

a height difference, a “Wall” object is constructed with the geometry of the mutual edge 

and an elevation equal to the difference between the heights of the touching polygons or 

“Building Parts” (Figure 12). All “Walls” are assumed to be exposed to outside air at this 

point. 

 

Figure 12 Identification of vertical elements enclosing the building envelope: polygons 1 is associated with a 
higher eaves height than polygon 2. Once the polygons are extruded by the given heights to form the volume 
of the building, the resulting surfaces are not all considered parts of the building envelope. In this case, the 
shared wall marked in dotted line is excluded from the bounding envelope, whereas the wall element marked 
in darker color is included. 

The lowermost enclosures are considered to be floor elements adjacent to unheated 

basements (in line with the Viennese architectural tradition), unless according to the height 

information of the representing polygon, the building part is elevated from the ground (e.g. 

the case of a protruding built volume). In the latter case, the floor element is adjacent to 

outside air (Figure 13).  

A rule-based logic is implemented to infer the roof type and condition of the attic according 

to the difference between the eaves height and the average height of the building. The 

average height of a “Building Part” (represented by a polygon) is computed using the digital 



    

 

 

 

An Hourglass Approach to Urban Energy Computing 

38 

 

elevation model raster data. For this purpose, the heights associated with every pixel on 

this raster image, which falls within the bounds of a “Building Part”, are averaged. If the 

difference between this value and the eaves height provided by the Land Use data is below 

1 meter, the roof is assumed to be flat and adjacent to outside air. If it lies between 1 and 

3 meters, the roof is assumed to be sloped, but the attic space is considered unheated, as 

such the uppermost enclosure of the thermal envelope is the upper-most ceiling, adjacent 

to an unconditioned attic space. In case of a difference of above 3 meters, the attic space 

counts as part of the thermal envelope of the building (Figure 14). In this case, the area of 

the roof and the volume of the attic space are approximated based on the area of the 

footprint polygon and the height difference.  

 

Figure 13 Floor elements are assumed to be adjacent to an unheated basement unless their constituting 
“Building Part” is associated with an elevation above ground level.  

 

Figure 14 Rule-based identification of roof type and attic space condition 

Once the outer bounds of the building are determined, the pertaining information including 

the definitions of “Wall” objects are stored under the “Building” object. Then, for each 

building the bounding box of the building footprint is defined. Using the bounding box 

geometries in the first step, and the footprint geometry in a second step, a neighbor search 

is performed for each building. The “Walls” of neighbor buildings (wall baseline geometries 

and lower and upper elevations) are then cross-examined for adjacency relations, resulting 

in each wall element’s association with an adjacency status: outside, or another space. The 
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orientation of “Walls” is computationally derived. Area and orientation of the external wall 

elements can be used along with standard values for window to wall ratio and glazing to 

window ratio to determine the area and orientation of the transparent building elements. 

In the ViennaGIS data, features representing buildings may be parts of a main or a utility 

(annex) building. This is expressed through the building type property. In the present 

implementation, utility buildings (such as separate garages or storage cabins) are considered 

as unconditioned spaces. In the description of “Wall” elements, which are adjacent to 

another space, the thermal condition of the adjacent space is also stored (Figure 15). The 

adjacency relation information is required, for instance in the calculation of thermal 

transmittance for the determination of surface resistances of various elements.  

 

Figure 15 Determining the external boundary conditions of wall elements: Considering the building in the 
middle, the wall marked in dotted line is an adiabatic wall (adjacent to a main building), whereas the one 
marked in continuous line is a wall adjacent to an unconditioned space (utility building). All other wall 
elements are adjacent to outside air. 

The exact computation of the solar radiation incident on building enclosures is theoretically 

possible, based on the information contained in the GIS layers. However, for urban scale 

inquiries, the required computational effort and time may be unreasonable. As such, the 

shading effect of the surrounding buildings is approximated by the Sky View Factor (SVF) 

on a point on the ground in the vicinity of the building’s walls. Although SVF is only a 

measure of the visibility of the sky hemisphere from a given point, a combined use of SVF 

and orientation can provide a good estimation of incident solar radiation with an accuracy 

of up to 90% (Robinson 2006). Accordingly, if a larger portion of the sky is visible from a 

point close to the wall, that wall will receive less shading from its surrounding elements. If 

the footprint of the wall is longer than 5 m, three points along the wall are selected, and 

the corresponding SVF values are averaged to better represent the shading conditions.  
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Semantic Properties 

Each “Building” is associated with a feature on the building inventory data layer through 

the reference number. This feature contains various information fields including the 

construction year, or in the absence of that, the construction period of the building. Each 

construction period is associated with a set of building component thermal transmittance 

(U-value) derived from the standards for the energy assessment of historical buildings in 

Austria (Österreichisches Institut für Bautechnik 2015). The correct set of component 

thermal transmittance values is selected and stored in the building object accordingly. If no 

information on the age of the building is available (incomplete or missing inventory data), 

the building is assumed to have been built before 1900, since the majority of the buildings 

in the city are from that period. In cases where the period of construction of the building 

overlaps with two different historical periods mentioned in the standard (due to dissimilar 

categorization schemas), the older period is considered for the determination of 

component thermal properties.    
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Operational Parameters 

The building inventory data layer also provides information on the primary function of 

buildings (residential, educational, office, etc.). The information contained in the OSM data 

is integrated to refine and enrich the usage descriptions of buildings. For this purpose, a 

rule-based method is developed to associate different usages with various portions of the 

total volume of the building. For this purpose, the OSM building usages are categorized 

into four classes based on the typical location and spread of these usages in a building:  

• Functionalities such as school, embassy, hotel, and pension are typically associated 

with the entire building. As such, in case the OSM data indicates the presence of 

one of these usages in a building, the primary usage of the building extracted from 

ViennaGIS data is overwritten. OSM data in such cases is relied on since crowd-

sourced data repositories are expected to be updated more frequently. 

• Functionalities such as banks, post offices, supermarkets, restaurants, coffee 

houses and shops typically occupy the ground floors of buildings.  As such, the 

ground floor volume is divided among such usages.  

• Kindergartens, sport facilities, and religious assembly halls are assumed to occupy 

an entire floor of the building. 

• To other usages such as offices a portion of the volume of a floor is allocated. 

Upper limits are considered to prevent unreasonably large volumes associated with 

such functions in larger buildings.  

For the computation of the volume associated with every usage, following the above logic, 

the volume of every building story is required. For this purpose, the volume of the building 

is divided by the number of floors in a building. The number of floors is given by the 

building inventory data. This information is however not entirely reliable in case of larger 

buildings, where the number of floors in various parts of the building may vary. The 

number of floors can be used to derive the floor height as an indicator of the ratio of 

volume to useful floor area.  

The primary and additional usages of the building, as well as their associated shares of the 

total building volume are stored in the “Building” object. Sets of operational parameters 

for different usages including operation schedules, hourly air-change rate, and internal gains 

are extracted from relevant standards (Austrian Standards Institute 2010, 2011). 

Currently the urban stock representation is generated on the fly. The information required 

for the reductive module, which will be discussed in detail in the following section are 

automatically extracted from the generated representation and stored in a Comma 
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Separated Values file. But the developed logic can be implemented to create multi-purpose 

energy-relevant urban stock data repositories. Recent efforts towards enhancing the 

CityGML standard urban data model (Open Geospatial Consortium 2017), for energy 

assessment compliance facilitate the generation of such repositories (Benner et al. 2016; 

Nouvel et al. 2015). Due to its ontological congruence with energy assessment compliant 

building models, the developed representation can be adapted to similar energy-based 

representation schemas with minor modifications. 

Figure 16 recaptures and summarizes the necessary steps towards generation of the 

required urban building stock representation. 

 

Figure 16 Summary of the steps required for the generation of an energy-assessment-compliant representation 
of the urban building stock 
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5. The Reductive Module 

5.1. Introductory Comments 

A majority of former efforts have relied on construction period, usage and built form to 

classify the urban building stock. For this purpose, typically, bins or threshold values are 

defined for the considered classification criteria. The data space is then consecutively 

partitioned on the defined thresholds. The values of the classification variables in the 

resulting groups will therefore always remain within the limits of a certain predefined bin. 

A downside of this method is that as the number of the considered criteria and the 

associated bins grows, the resulting groups become smaller and more numerous. To avoid 

this, a high level of aggregation in the input parameters is required, which is probably the 

logic behind the selection of rough indicators such as building usage or age instead of more 

finely defined characteristics.  

Rather than relying on such vague descriptors, in the present research effort a set of 

indicators are defined to more implicitly capture the various energy-relevant aspects of the 

buildings, including physical, operational and contextual characteristics. To enable the use 

of numerous classification criteria, while maintaining control over the number of emerging 

categories, a different classification method widely incorporated in datamining has been 

adopted. This allows for the development of a more generic approach towards stock 

classification in view of the dynamic nature of cities.   

CHAPTER 5 
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5.2. Classification Criteria  

Classification criteria have to be defined in such a way as to incorporate the essential energy-

relevant building characteristics reflected in the developed representation. These include 

building geometry and adjacency relations, solar exposure, thermal quality of the envelope, 

and operational parameters. For this purpose, various properties of the buildings and their 

components are combined to create meaningful descriptive indicators of various aspects 

of the building. Obviously, there is no unique or best set of parameters that can cover 

various energy-relevant building characteristics. Major aspects can be expressed with 

different levels of accuracy and through different sets of indicators. For instance, different 

methods can be envisaged to represent operational parameters such as internal gains, 

ventilation rate, and occupancy schedules. The indicators adopted or developed in the 

present project to express various building characteristics are described below.  
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Geometry and Adjacency Relations 

In similar efforts, typically the size and built form of a building, in many instances as 

categorical variables, are adopted to represent geometry. To facilitate the utilization of 

datamining methods, however, in the present effort categorical indicators were avoided in 

favor of numerical indicators. As such, net building volume (Equation 1) and thermally 

effective envelope area (Equation 2) were selected to represent the size of the building. The 

latter variable factors in the adjacency relations through a standard-given temperature 

correction factor. This factor, assuming a value between 0 and 1 is defined in the standard 

for various building components, depending on their adjacency relations to account for the 

differences in the contribution of various components to transmission heat losses due to 

the variance in the boundary conditions. For instance, for exposed components of the 

envelope this variable assumes a value of 1, whereas components adjacent to unheated 

spaces (such as unconditioned attic or basement spaces), or earth (such as walls or floors 

of a conditioned basement) are associated with lower temperature correction factors, to 

compensate for the higher temperatures of earth and unconditioned spaces compared to 

outside air in the heating season. As such, temperature correction factor is a good indicator 

of how different adjacency relations can alter the significance of a building element in 

contributing to transmission losses. Equation 1 

 𝑉𝑛 = 𝑉×𝑓𝑛  (1) 

, where 𝑉𝑛 is the net volume of the building [𝑚3], 𝑉 is the gross volume of the 

building [𝑚3] as computed by in the previous step based on the available GIS data, 

and 𝑓𝑛 is the ratio of net to gross volume suggested by the standard (Austrian 

Standards Institute 2014). Equation 2  

𝐴𝑒 = ∑(𝐴𝑖×𝑓𝑡,𝑖) (2)

  

, where 𝐴𝑒 is the thermally effective envelope area [𝑚2], 𝐴𝑖 is the area of each 

building enclosure [𝑚2] as computed in the previous step based on the available 

GIS data, and 𝑓𝑡,𝑖 is the temperature correction factor suggested by the standard 

(Austrian Standards Institute 2014) for the heating season, depending on the 

adjacency relation of the enclosure in question (see Table 4).  
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Table 4 Temperature correction factors for various building enclosure elements based on their boundary 
conditions as given in the Austrian Standard B 8110-6 (Austrian Standards Institute 2014) 

Building element External boundary 

condition 
𝑓𝑡,𝑖 

Wall Outside air 1 

Unconditioned space 0.7 

Floor Outside air 1 

Unconditioned basement 0.7 

Ceiling/Roof Outside air 1 

Unconditioned attic 0.9 

 

The built form of a building can be expressed through the ratio of the building’s volume 

to envelope area. Usually the total area of the envelope is incorporated. However, given the 

significance of adjacency relations, in the current implementation, the thermally effective 

envelope area has been used to compute the thermal compactness (Equation 3).  

The buildings constructed in different historical periods, for various purposes, and different 

social and economic contexts feature different proportions. For instance, more 

representative historical buildings have much higher floor to ceiling heights than those 

constructed after the Second World War. Due to such differences in room height, buildings 

with similar volumes may be associated with different useful floor areas. Since the useful 

floor area has strong implications for the estimation of parameters such as internal gains, 

the effective floor height, defined as the ratio of the building’s net volume to the total floor 

area (Equation 4) is included as an additional geometric indicator in the current project. 

Equation 3  

𝐶𝑡 =
𝑉𝑛

𝐴𝑒
 (3) 

 , where 𝐶𝑡 is the thermal compactness of the building [𝑚].Equation 4  

ℎ𝑒 =
𝑉𝑛

𝐴𝑓×𝑛𝑓
  (4) 
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, where ℎ𝑒 is the effective floor height [𝑚], 𝐴𝑓 is the area of the building’s footprint 

[𝑚2] extracted from the GIS data in the previous step, and 𝑛𝑓 is the number of 

floors associated with the building in the building inventory data. As mentioned 

before the number of floors may not always be stated accurately in the databases, 

since some building parts may be higher than others, whereas only one number is 

associated with every building. In cases where the resulting effective floor height 

falls outside of a plausible range (under 2.7 m or above 5), the value is replaced by 

the average effective floor height across the data set.  
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Solar Exposure 

Solar exposure has often been ignored in former classification schemas. In very few 

instances, parameters such as exposed envelope area or window to wall ratio have been 

involved. However, the impact of orientation and mutual shading effect of buildings on 

solar gains have not been fully considered. In the present research, the solar exposure of 

the building has been expressed through the effective glazing ratio. This variable has been 

defined to include information such as climate zone, orientation, and mutual shading 

(Equation 5). Climate zone and orientation are captured through an orientation factor. 

Orientation factor for various orientations is defined as the ratio of the average available 

radiation in that orientation (derived from standard monthly climate data) to the average 

available radiation toward south (Equation 6). Mutual shading is represented through SVF. 

Equation 5  

𝐺𝑅𝑒 =
𝑊𝑊𝑅×𝐺𝑊𝑅×𝑔×∑(𝐴𝑜𝑤,𝑖×𝑓𝑜,𝑖×𝑆𝑉𝐹𝑖)

∑𝐴𝑜𝑤,𝑖
 (5) 

, where 𝐺𝑅𝑒 is  the  effective glazing ratio, 𝑊𝑊𝑅 and 𝐺𝑊𝑅 are the window to 

wall and glazing to window ratios respectively (Austrian Standards Institute 2014), 

𝑔 is the solar energy transmission of window glazing (derived from 

Österreichisches Institut für Bautechnik 2015), 𝐴𝑜𝑤,𝑖, 𝑓𝑜,𝑖, and 𝑆𝑉𝐹𝑖 are the area, 

orientation factor, and Sky View Factor pertaining to every wall element exposed 

to outside air. Wall elements, their orientation and the pertaining SVF values have 

been derived in the previous step. Equation 6  

𝑓𝑜 =
∑ (

𝑟𝑜,𝑗

𝑟𝑠,𝑗
)12

1

12
 (6) 

, where 𝑓𝑜 is the orientation correction factor for a certain orientation, 𝑟𝑜,𝑗 and 𝑟𝑠,𝑗  

are the radiation values for the considered orientation and the south orientation 

for each month [𝑘𝑊ℎ ∙ 𝑚−2], provided in the standard monthly weather data 

(Austrian Standards Institute 2011). Sixteen orientations (four cardinal directions 

and three intervals between each pair) have been considered in the standard climate 

data. As such, in the definition of wall objects in the previous step, each wall object 
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has been associated with one of these orientations according to the azimuth angle 

of the wall element’s foot print.  

Thermal Quality of the Envelope 

Rather than relying on period of construction as the main indicator of the envelope’s 

thermal quality, in the present effort, an effective average envelope thermal transmittance 

(U-value) has been adopted. This variable not only involves the U-values of all envelope 

components, but also weights them according to the share of the said components in the 

envelope and their significance for transmission losses based on their external boundary 

conditions (Equation 7). As explained before the thermal transmittance of various building 

enclosures is determined in the previous phase of the project according to the construction 

period of the building. But the introduction of area and adjacency-related weights renders 

this variable more effective in expressing the building’s overall quality. The thermal quality 

of the envelope can also be expressed with a lower level of aggregation through effective 

wall, ceiling, and floor U-values (Equation 8-Equation 10). Equation 7  

𝑈𝑒 = 
∑(𝑈𝑖×𝐴𝑖×𝑓𝑡,𝑖)

𝐴𝑒
 (7) 

, where 𝑈𝑒 is the effective envelope U-value [𝑊 ∙ 𝑚−2 ∙ 𝑘−1], 𝑈𝑖 , 𝐴𝑖 , and 𝑓𝑡,𝑖 are 

the U-value [𝑊 ∙ 𝑚−2 ∙ 𝑘−1], area [𝑚2], and temperature correction factor 

associated with every building enclosure. Equation 8  

𝑈𝑤,𝑒 = 
∑(𝑈𝑤,𝑖×𝐴𝑤,𝑖×𝑓𝑡,𝑖)

𝐴𝑒
 (8) 

, where 𝑈𝑤,𝑒 is the average effective wall U-value [𝑊 ∙ 𝑚−2 ∙ 𝑘−1], and 𝑈𝑤,𝑖 , 

𝐴𝑤,𝑖, and 𝑓𝑡,𝑖 are the U-value [𝑊 ∙ 𝑚−2 ∙ 𝑘−1], area [𝑚2], and temperature 

correction factor of different wall elements respectively. Equation 9  

𝑈𝑐,𝑒 = 
∑(𝑈𝑐,𝑖×𝐴𝑐,𝑖×𝑓𝑡,𝑖)

𝐴𝑒
 (9) 
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, where 𝑈𝑐,𝑒 is the average effective ceiling/roof U-value [𝑊 ∙ 𝑚−2 ∙ 𝑘−1], and 

𝑈𝑐,𝑖 , 𝐴𝑐,𝑖, and 𝑓𝑡,𝑖 are the U-value [𝑊 ∙ 𝑚−2 ∙ 𝑘−1], area [𝑚2], and temperature 

correction factor of different ceiling/roof elements respectively.  

Equation 10  

𝑈𝑓,𝑒 = 
∑(𝑈𝑓.𝑖×𝐴𝑓,𝑖×𝑓𝑡,𝑖)

𝐴𝑒
 (10) 

, where 𝑈𝑓,𝑒 is the average effective floor U-value [𝑊 ∙ 𝑚−2 ∙ 𝑘−1], and 𝑈𝑓,𝑖 , 𝐴𝑓,𝑖, 

and 𝑓𝑡,𝑖 are the U-value [𝑊 ∙ 𝑚−2 ∙ 𝑘−1], area [𝑚2], and temperature correction 

factor of different floor elements respectively.  
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Operational Parameters 

Although usage is a good categorical indicator of a building’s operational parameters in 

single use buildings, its adoption to express the operational characteristics of multi-usage 

buildings can be very limiting. As such, various indicators were considered to describe the 

operational characteristics of buildings including the temporal use patterns, internal gains, 

and ventilation rates. Naturally, concentrating the buildings’ use schedules into a few 

numeric variables will reduce the resolution of the representation. It is, however, necessary 

for the purpose of the classification. Toward this end, in order to capture the building’s 

temporal use pattern, four indicators were defined. The fraction of annual hours that the 

building is in use (Equation 11) is used as a measure of the frequency of usage. To 

distinguish buildings with similar number of use hours but different use duration in daytime 

and nighttime, three indicators were envisaged: daytime use intensity, which captures the 

ratio of daytime use hours to overall use hours (Equation 12), or alternatively, the annual 

daytime and nighttime use ratios (Equation 13, Equation 14). For multi-purpose buildings, 

all operational parameters are expressed as average values for the various usages present in 

the building, weighted according to the share of the overall volume associated with every 

usage. This information is stored in the building representation created in the previous step. 

Usage-derived operational parameters are extracted from the Austrian standard B 8110-5 

(Austrian Standards Institute 2011) and Austrian standard H 5059 (Austrian Standards 

Institute 2010). For an overview of these parameters see Table 5. Equation 11  

𝑂𝑢 =
∑(𝑡𝑢𝑠𝑒,𝑎,𝑖×𝑓𝑣,𝑖)

𝑡𝑎
 (11) 

, where 𝑂𝑢 is the fraction of the annual hours that the building is in use, 𝑡𝑢𝑠𝑒,𝑎,𝑖 is 

the number of annual use hours for a certain usage [ℎ. 𝑎−1], 𝑓𝑣,𝑖 is the fraction of 

the volume associated with that usage, and 𝑡𝑎 is the total number of hours in a 

year [ℎ. 𝑎−1]. Equation 12  

𝑂𝑑/𝑢 =
∑(𝑡𝑑𝑎𝑦,𝑎,𝑖×𝑓𝑣,𝑖)

∑((𝑡𝑑𝑎𝑦,𝑎,𝑖+𝑡𝑛𝑖𝑔ℎ𝑡,𝑎,𝑖)×𝑓𝑣,𝑖)
 (12) 

, where 𝑂𝑑/𝑢 is the daytime use intensity, 𝑡𝑑𝑎𝑦,𝑎,𝑖 and 𝑡𝑛𝑖𝑔ℎ𝑡,𝑎,𝑖 are the annual 

operation durations in daytime and nighttime for a certain usage [ℎ. 𝑎−1].  
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Equation 13  

𝑂𝑑 =
∑(𝑡𝑑𝑎𝑦,𝑎,𝑖×𝑓𝑣,𝑖)

𝑡𝑎
  (13) 

, where 𝑂𝑑 is the annual daytime use. Equation 14  

𝑂𝑛 =
∑(𝑡𝑛𝑖𝑔ℎ𝑡,𝑎,𝑖×𝑓𝑣,𝑖)

𝑡𝑎
  (14) 

, where 𝑂𝑛 is the annual nighttime use. 

Target internal temperature is also an essential factor in differentiating the operational 

characteristics of various space usages. However, the Austrian standards incorporated 

suggest an indoor temperature of 20 degrees for all usages involved in the present effort. 

Accordingly, the only building functions with different target indoor conditions are indoor 

swimming pools, senior care centers and hospitals which are absent in the adopted case 

study. To be able to generalize the developed method to other geographical locations, target 

indoor conditions need to be considered for building classification. 

To express the internal gains, average area-related rate of internal gains (Equation 15), and 

daily internal gains (Equation 17) were considered. The former variable ignores the 

differences in the number of operation hours of various usages in the building, whereas the 

second variable, involving the operation time, provides a better approximation of the 

building’s internal gains. Equation 15  

𝑞𝑖,ℎ = ∑((𝑞𝑖,ℎ,𝑖 + 𝑞𝑖,𝑙,𝑖)×𝑓𝑣,𝑖) (15) 

, where 𝑞𝑖,ℎ is the average area-related internal gains rate [𝑊.𝑚−2], 𝑞𝑖,ℎ.𝑖 is the 

area-related rate of internal gains from equipment, and occupants during the 

heating season [𝑊.𝑚−2], 𝑞𝑖,𝑙.𝑖 is the area-related rate of internal gains from 

lighting during the heating season [𝑊.𝑚−2] (Equation 16). 
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Equation 16  

𝑞𝑖,𝑙,𝑖 = 
0.5×1000×𝐿𝐸𝐷𝑖

𝑡𝑢𝑠𝑒,𝑎,𝑖
 (16) 

, where 𝐿𝐸𝐷𝑖 is benchmark value for the lighting energy demand associated with a 

usage [𝑘𝑊ℎ.𝑚−2. 𝑎−1], provided by the Austrian standard H 5059 (Austrian 

Standards Institute 2010).  Equation 17  

𝐼𝑔𝑑 = ∑((𝑞𝑖,ℎ,𝑖 + 𝑞𝑖,𝑙,𝑖)×𝑓𝑣,𝑖×𝑡𝑢𝑠𝑒,𝑑,𝑖) (17) 

, where 𝐼𝑔𝑑 is the daily area-related internal gains [𝑊ℎ.𝑚−2. 𝑑−1], and 𝑡𝑢𝑠𝑒,𝑑,𝑖 is 

the daily operation time for every usage present in the building [ℎ. 𝑑−1]. 

Thermal mass of buildings impacts the effectiveness of heat gains and consequently the 

heating demand. However, in the case of central European urban settings variance in 

thermal mass does not significantly contribute to the energy diversity of the building stock. 

In brick buildings, the effectiveness of heat gains is reduced by only 5% in lightweight 

constructions as compared to very massive ones (Staniszewski & Gierga 2016). However, 

the reduction may be more significant, when wooden constructions (e.g., in rural areas) are 

involved. As such, in the current implementation on an urban context thermal mass has 

not been involved in the classification and sampling efforts. This, by no means undermines 

the significance of the thermal mass in the estimation of the temporal dynamics of heating 

demand. It only means that the diversity in the heating demand of various buildings is not 

significantly affected by the differences in the thermal mass of these buildings. Had other 

performance indicators (such as summer overheating) been taken into consideration, this 

variable might have become more relevant in the classification process.  

Similar to the internal gains, the average hourly air-change rate (Equation 18) and the daily 

air-change rate (Equation 19) were adopted to reflect the ventilation behavior of the 

buildings. Due to the lack of more detailed information, all buildings are assumed to be 

naturally ventilated. This assumption agrees with the common practice in most historical 

buildings. Equation 18  

𝑛𝑣 = ∑(𝑛𝑣,𝑖×𝑓𝑣,𝑖) (18) 
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, where 𝑛𝑣 is the hourly ventilation rate [ℎ−1], and 𝑛𝑣,𝑖 is the hourly ventilation 

rate associated with every usage [ℎ−1]. 
Equation 19  

𝐴𝑐𝑑 = ∑(𝑛𝑣,𝑖×𝑓𝑣,𝑖×𝑡𝑢𝑠𝑒,𝑑,𝑖) (19) 

, where 𝐴𝑐𝑑 is the daily air change rate [𝑑−1]. 

Table 5 An overview of the default values for operational parameters for the usages present in the current 
project (Source : Austrian Standards Institute 2011; Austrian Standards Institute 2010) 

Building usage 
𝑡𝑑𝑎𝑦,𝑎,𝑖 

[ℎ. 𝑎−1] 

𝑡𝑛𝑖𝑔ℎ𝑡,𝑎,𝑖 

[ℎ. 𝑎−1] 

𝑡𝑢𝑠𝑒,𝑑,𝑖 

[ℎ. 𝑑−1] 

𝑞𝑖,ℎ.𝑖 

[𝑊.𝑚−2] 

𝐿𝐸𝐷𝑖 

[𝑘𝑊ℎ.𝑚−2. 𝑎−1] 

𝑛𝑣,𝑖 

[ℎ−1] 

Residential 5020 3740 24 3.75 - 0.4 

Office 2970 258 12 3.75 32.2 1.2 

Kindergarten/school 2860 368 12 3.75 24.8 1.2 

University 2930 298 12 7.5 24.8 1.8 

Hotel 1550 2830 12 7.5 65.1 1.2 

Gastronomy 3130 1250 12 7.5 27.1 2 

Assembly 1295 1260 7 7.5 27.1 1.8 

Sports facility 3690 690 12 7.5 37.9 3 

Retail  2970 834 12 3.75 70.6 1.8 

 

Since some of the above-introduced descriptive indicators are just different expressions of 

the same building characteristic, the combined use of all indicators will result in an 

unintentional weighting of these aspects of buildings. Weighting of different building 

characteristics in the classification process may in fact be desired, due to the notion that all 

building parameters may not contribute to a building’s heating demand by equal measures. 

However, such a weighting schema should be based on an in-depth analysis of the 

sensitivity of the urban building stock energy demand to different building properties. In 

the absence of such information, in the current research, no weighting schema has been 

considered. As such, different combinations of the above-mentioned indicators have been 

explored toward their potential for an efficient classification of the building stock. These 

sets have been composed such that all essential aspects of a building are covered, and a 

certain characteristic is not covered by multiple indicators. The classification scenarios will 

be introduced in a dedicated section. Table 5 provides an overview of the various indicators 

that have been considered for building stock classification in the scope of the current 
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project, along with their computation method and the associated input parameters. Note 

that these indicators are by no means claimed to be the only aggregate indicators 

conceivable.  
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Table 6 An overview of the various indicators that have been considered for building stock classification with their computation method and the 
associated input parameters (part 1/2) 

 Abbr. Variable Description Formula Parameters 

G
e
o

m
e
tr

y
 

𝑽𝒏 
Net Volume [m3] An indicator of the size of the 

building 𝑉𝑛 = 𝑉×𝑓𝑛 
𝑉 Gross volume of the building [m3] 

𝑓𝑛 Net to gross volume ratio   

𝑨𝒆 
Thermally effective 
envelope area [m2] 

Area of the heat emitting envelope 
corrected for adjacency relations 

𝐴𝑒 = ∑(𝐴𝑖×𝑓𝑡,𝑖) 
𝐴𝑖 Area of an envelope element [m2] 

𝑓𝑡,𝑖 Temperature correction factor 

𝑪𝒕 
Thermal 
compactness [m] 

Ratio of the net building volume 
to the thermally effective envelope 
area 

𝐶𝑡 =
𝑉𝑛
𝐴𝑒

 
 
 

 

𝒉𝒆 
Effective floor 
height [m] 

Ratio of the building volume to 
the floor area  

ℎ𝑒 =
𝑉𝑛

𝐴𝑓×𝑛𝑓

 
𝐴𝑓 Total footprint area [m2] 

𝑛𝑓 Number of floors 

S
o

la
r 

g
a
in

s 

𝑮𝑹𝒆 

Effective glazing 
ratio 

Average glazing to wall ratio 
weighted by orientation and 
corrected for the shading effect of 
the surroundings Weights 
associated with orientations were 
based on reference climate data 

𝐺𝑅𝑒

=
𝑊𝑊𝑅×𝐺𝑊𝑅×𝑔×∑(𝐴𝑜𝑤,𝑖×𝑓𝑜,𝑖×𝑆𝑉𝐹𝑖)

∑𝐴𝑜𝑤,𝑖

 

𝑊𝑊𝑅 Window to wall ratio 

𝐺𝑊𝑅 Glass to window ratio 

𝑔 Solar factor of glazing  

𝐴𝑜𝑤,𝑖 Area of external wall element [m2] 

𝑓𝑜,𝑖 Orientation correction factor 

𝑆𝑉𝐹𝑖 Corresponding Sky View Factor  

T
h

e
rm

a
l 

Q
u

a
li

ty
 

𝑼𝒆 

Effective average 
envelope u-value 
[W.m-2.K-1] 

Average u-value of the envelope 
corrected for adjacency relations 
and weighted by the 
corresponding areas 

𝑈𝑒 = 
∑(𝑈𝑖×𝐴𝑖×𝑓𝑡,𝑖)

𝐴𝑒

 

𝑈𝑖 
U-value of building element [W.m-

2.K-1] 

𝐴𝑖 Area of building element [m2] 

𝑓𝑡,𝑖 Temperature correction factor 

𝑼𝒘,𝒆 

Effective Wall U-
value [W.m-2.K-1] 

Average u-value of wall elements 
corrected for adjacency relations 
and weighted by the 
corresponding areas 

𝑈𝑤,𝑒 =  
∑(𝑈𝑤,𝑖×𝐴𝑤,𝑖×𝑓𝑡,𝑖)

𝐴𝑒

 

𝑈𝑤,𝑖 U-value of wall element [W.m-2.K-1] 

𝐴𝑤,𝑖 Area of wall element [m2] 

Continued 
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Table 6 An overview of the various indicators that have been considered for building stock classification with their computation method and the 
associated input parameters (part 2/2) 

 Abbr. Variable Description Formula Parameters 

T
h

e
rm

a
l 

Q
u

a
li

ty
 

𝑼𝒄,𝒆 

Effective 
Roof/Ceiling U-
value [W.m-2.K-1] 

Average u-value of roof/ceiling 
elements corrected for adjacency 
relations and weighted by the 
corresponding areas 

𝑈𝑐,𝑒 = 
∑(𝑈𝑐,𝑖×𝐴𝑐,𝑖×𝑓𝑡,𝑖)

𝐴𝑒

 

 

𝑈𝑐,𝑖 
U-value of ceiling/roof element 
[W.m-2.K-1] 

𝐴𝑐,𝑖 Area of ceiling/roof element [m2] 

𝑼𝒇,𝒆 

Effective Floor u-
value [W.m-2.K-1] 

Average u-value of floor elements 
corrected for adjacency relations 
and weighted by the 
corresponding areas 

𝑈𝑓,𝑒 = 
∑(𝑈𝑓.𝑖×𝐴𝑓,𝑖×𝑓𝑡,𝑖)

𝐴𝑒

 

𝑈𝑓.𝑖 U-value of floor element [W.m-2.K-1] 

𝐴𝑓,𝑖 Area of floor element [m2] 

O
p

e
ra

ti
o

n
a
l 

p
a
ra

m
e
te

rs
 

𝑶𝒖 
Annual use 
fraction 

Fraction of time the building is 
used annually 𝑂𝑢 =

∑(𝑡𝑢𝑠𝑒,𝑎,𝑖×𝑓𝑣,𝑖)

𝑡𝑎
 

𝑡𝑢𝑠𝑒,𝑎,𝑖 Annual operation hours [h.a-1] 
𝑓𝑣,𝑖 Associated volume fraction 
𝑡𝑎 Total hours in a year [h.a-1] 

𝑶𝒅/𝒖 
Daytime use 
intensity 

Ratio of the daytime use hours to 
total use hours 

𝑂𝑑/𝑢 =
∑(𝑡𝑑𝑎𝑦,𝑎,𝑖×𝑓𝑣,𝑖)

∑((𝑡𝑑𝑎𝑦,𝑎,𝑖 + 𝑡𝑛𝑖𝑔ℎ𝑡,𝑎,𝑖)×𝑓𝑣,𝑖)
 

𝑡𝑑𝑎𝑦,𝑎,𝑖 Annual daytime use hours [h.a-1] 

𝑡𝑛𝑖𝑔ℎ𝑡,𝑎,𝑖 Annual nighttime use hours [h.a-1] 

𝑶𝒅 
Annual daytime 
use fraction  

Fraction of time the building is 
used during daytime, annually 

𝑂𝑑 =
∑(𝑡𝑑𝑎𝑦,𝑎,𝑖×𝑓𝑣,𝑖)

𝑡𝑎
 

    

𝑶𝒏 
Annual nighttime 
use fraction 

Fraction of time the building is 
used during nighttime, annually 

𝑂𝑛 =
∑(𝑡𝑛𝑖𝑔ℎ𝑡,𝑎,𝑖×𝑓𝑣,𝑖)

𝑡𝑎
 

    

𝒒𝒊,𝒉 

Weighted average 
area related 
internal gains rate 
[W.m-2] 

Average rate of internal gains per 
unit of floor area weighted by the 
share of every usage of the total 
area 

𝑞𝑖,ℎ = ∑((𝑞𝑖,ℎ,𝑖 + 𝑞𝑖,𝑙,𝑖)×𝑓𝑣,𝑖) 
𝑞𝑖,ℎ,𝑖 

Usage-based internal gains rate 
during the heating season [W.m-2] 

𝑞𝑖,𝑙,𝑖 
Usage-based internal gains rate from 
lighting [W.m-2] 

𝑰𝒈𝒅 
Daily area related 
internal gains 
[Wh.m-2.d-1] 

Daily internal heat gains per unit 
of area during the heating season 𝐼𝑔𝑑 = ∑((𝑞𝑖,ℎ,𝑖 + 𝑞𝑖,𝑙,𝑖)×𝑓𝑣,𝑖×𝑡𝑢𝑠𝑒,𝑑,𝑖) 𝑡𝑢𝑠𝑒,𝑑,𝑖 Daily use hours [h.d-1] 

𝒏𝒗 
Weighted average 
hourly air-change 
rate [h-1] 

Average air-change rate weighted 
by the share of every usage of the 
total volume 

𝑛𝑣 = ∑(𝑛𝑣,𝑖×𝑓𝑣,𝑖) 𝑛𝑣,𝑖 
Usage-based hourly air-change rate 
[h-1] 

𝑨𝒄𝒅 
Daily air-change 
rate [d-1] 

Daily air-change rate 
𝐴𝑐𝑑 = ∑(𝑛𝑣,𝑖×𝑓𝑣,𝑖×𝑡𝑢𝑠𝑒,𝑑,𝑖) 
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5.3. Classification Algorithms and Tools 

In order to incorporate a larger number of classification criteria, while maintaining control 

over the number of the resulting groups, the present effort proposes the employment of 

Multivariate Cluster Analysis (Hair et al. 2010) for stock classification. Multivariate Cluster 

Analysis (MCA) is a fundamental technique in exploratory data-mining. It is concerned 

with dividing a multivariate data space into natural clusters or homogeneous groups of 

objects. MCA is used with an assumption that the object come from a number of distinct 

populations, but that there is no a priori definition of these populations (The Pennsylvania 

State University 2017). It has been widely employed in various fields of science including 

medical studies and market research. Its potential towards building stock classification 

however, has not been sufficiently explored.  

Various techniques and algorithms have been defined to date, for identification of clusters 

in a data set. Most of these methods can be classified under one of the two main families 

of MCA methods: i) Hierarchical approaches, and ii) Partitional or relocation approaches. 

The main distinction between these families is whether or not the identified clusters are 

nested. Hierarchical clustering methods, which proceed by stages, produce a nested 

sequence of partitions organized as a tree, through a divisive or an agglomerative procedure. 

Partitional or relocation clustering methods iteratively move objects from one cluster to 

another, starting from an initial partitioning schema, such that an objective function is 

minimized (Wilson et al. 2002; Fraley & Raftery 1998).  

In the current project, a classic and well-known algorithm from each family has been 

investigated for its potential toward efficient building stock classification. Considered 

algorithms are the hierarchical agglomerative clustering method (Hair et al. 2010) and the 

k-means method from the partitional family (MacQueen 1967). Later a third method, 

Model-based clustering (Fraley & Raftery 1998, 2002), was included due to its different 

approach to determining the number of emerging clusters. This approach incorporates 

both hierarchical and relocation techniques for a clustering based on probability 

distributions.  

As briefly mentioned before, the generation of the energy relevant building stock 

representation and the classification and sampling process are both facilitated through a 

GIS plug-in, developed for the purpose. The Python-based plug-in employs several 

packages from R statistical software (The R Foundation 2017) to perform the cluster 

analysis and select the most appropriate partitioning. R is a free software environment 

specialized in statistical computing and graphics. A large community of statisticians 

contribute to the R environment through development of task-oriented packages. The rpy2 
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package (Gautier & rpy2 contributors 2014) for python makes it possible to initiate the R 

engine and call its various functions and packages within a Python code.  

The values of the selected classification criteria are computed for each building and stored 

as a Comma Separated Values (CSV) file under the address provided by the user in the 

Python code of the plug-in. Due to the dependence of some of the adopted algorithms on 

the Euclidean distance between data points, the outcome of these methods is highly 

sensitive to the magnitude of the values representing the clustering criteria. For instance, 

parameters such as net volume, which are expressed in larger numerical values, can 

dominate the clustering process, overshadowing other characteristics such as effective U-

value, which assume much smaller numerical values. In order to prevent such unintended 

skewing of the results, the data set is subjected to standardization prior to the cluster 

analysis (Equation 20). Equation 20  

𝑧𝑑,𝑖 = 
𝑥𝑑,𝑖−𝑥𝑑̅̅ ̅̅

𝜎𝑑
 (20) 

, where 𝑥𝑑,𝑖 is the raw value of the d dimension of the i observation (in the unit of 

d),  𝑧𝑑,𝑖 is the standard score of 𝑥𝑑,𝑖 (unit-less), 𝑥𝑑̅̅ ̅ and 𝜎𝑑 are the mean and 

standard deviation of the values of the d dimension (in the unit of d). 

A new CSV file is thus generated, which includes the standardized values of the 

classification criteria. This file is called as an input to the R packages responsible for the 

cluster analysis and partitioning of the data. 

Note that a potential advantage of MCA methods is the possibility to apply weighting 

schemas to the input variables in order to strengthen the influence of one or more criteria 

in the clustering scheme. This would be useful in studies focused on a certain feature of 

the buildings (e.g. solar gains or behavioral aspects). In such cases, fine tuning the MCA 

process would result in a classification more sensitive to variables, which affect those 

particular building aspects (e.g. Effective glazing ratio or operational parameters). The 

current research is, however, not concerned with exploring the potential of weighting 

schemas for more efficient clustering, due to a lack of supporting information for such a 

process. 

The thorough description of the algorithms, as well as an introduction to the statistical 

analysis tools adopted for the purpose of the cluster analysis and partitioning follows. 
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K-Means Clustering 

In this method, the desired number of clusters, k, is a prerequisite of the clustering process. 

To initiate the process, k arbitrary (or pre-determined) data points are selected as the initial 

seeds of the intended clusters. The data space is then partitioned into k clusters around 

these seeds, such that the data points in each cluster are closer to the seed of their own 

cluster than to the seeds of any other clusters. Then, the centroids of the generated clusters 

are computed (Equation 21), and used as seeds for the next iteration. This process 

continues until a convergence is reached, in other words, the data points stop shifting 

clusters. This process can be expressed as follows:   

Initiate the seeds of the clusters (through random selection) 

Attribute each data point to the closest cluster 

Until assignments no longer change: 

 Recalculate the centroids of clusters as seeds 

 Re-distribute points among clusters based on the new seeds Equation 21  

𝑚𝐴⃗⃗ ⃗⃗  ⃗ =
1

𝑛𝐴
∑ 𝑥𝑖⃗⃗  ⃗𝑥𝑖∈𝐴  (21) 

, where 𝐴 is a cluster, 𝑥𝑖⃗⃗  ⃗ is a multi-dimensional vector belonging to the cluster 𝐴, 

𝑚𝐴⃗⃗ ⃗⃗  ⃗ is the centroid of the cluster 𝐴, and 𝑛𝐴 is the number of data points within this 

cluster. 

Various metrics can be adopted to measure the distances between data points and cluster 

centroids in the k-means method. In the present effort, the squared Euclidean distance 

(Equation 22), has been selected following the most common algorithm for this clustering 

method, known as the Lloyd’s algorithm (Lloyd 1982). Equation 22  

𝑑𝑖𝑠𝑡(𝑥 , 𝑦 ) = ‖𝑥 − 𝑦 ‖2  =  ∑ (𝑥𝑖 − 𝑦𝑖)
2𝑑

𝑖=1  (22) 

, where 𝑑𝑖𝑠𝑡(𝑥 , 𝑦 ) is the Euclidean distance between the vectors 𝑥 , 𝑦 , and 𝑥𝑖, 𝑦𝑖 

are the ith dimensions of the afore-mentioned vectors. 

As such, the entire process can essentially be expressed as an optimization problem, in 

which the objective function to be minimized is the sum of within cluster sums of squared 
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error. If the data space is the partitioned into a set of k clusters  𝑆 = {𝑆𝑖| 1 > 𝑖 > 𝑘}, the 

objective function is as follows (Equation 23): Equation 23  

argmin
𝑆

∑ ∑ ‖𝑥𝑗⃗⃗⃗  − 𝑚𝑆𝑖
⃗⃗ ⃗⃗ ⃗⃗  ‖

2
𝑥𝑗⃗⃗⃗⃗ ∈𝑆𝑖

𝑘
𝑖=1 = argmin

𝑆
∑ ∑ ∑ (𝑥𝑗𝑙

− 𝑚𝑆𝑖,𝑙
)2𝑑

𝑙=1𝑥𝑗⃗⃗⃗⃗ ∈𝑆𝑖

𝑘
𝑖=1  (23) 

, where 𝑘 is the number of clusters, 𝑆𝑖 is an arbitrary cluster, 𝑥𝑗⃗⃗  ⃗ is a member of a 

cluster, 𝑥𝑗𝑙 the dimension l of the vector 𝑥𝑗⃗⃗  ⃗, 𝑚𝑆𝑖
⃗⃗ ⃗⃗ ⃗⃗  is the centroid of the cluster 𝑆𝑖, 

𝑚𝑆𝑖,𝑙
 the dimension l of the centroid, and d the number of dimensions of the data 

space. 

Figure 17 depicts the application of this method to a sample of two-dimensional points.  

 

 

Figure 17 The steps of k-mean clustering method depicted with a sample of two-dimensional data points. 
In this example, the desired number of clusters is four, and the initial seeds are selected at random.  
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Hierarchical Agglomerative Clustering 

In this method, customarily the process starts with each data point constituting a cluster 

with a single member (although it is possible to initiate the process from a coarser partition). 

The closest pair of clusters are consecutively merged until only one cluster remains. The 

key operation of this clustering technique is the computation of the proximity (distance) 

between two clusters. The algorithm can be expressed as follows: 

Start with every instance as a cluster 

Compute the proximity matrix for the entire dataset 

Until only one cluster remains: 

 Merge the closest pair of clusters 

Update the proximity matrix for the new clustering schema 

Figure 18 illustrates the steps of this method, applied to a small sample of two-dimensional 

objects (points).  

 

Figure 18 Consecutive steps of hierarchical agglomerative clustering depicted on a sample of six points on 
the two-dimensional plane. 

In the current research the adopted proximity measure, which determines the pair of 

clusters to merge at every step is the Ward’s method (Ward 1963). The Ward’s method, 

assumes that each cluster is represented by its centroid ( Equation 2121): a virtual data point 

with mean values across the cluster for every dimension. It measures the proximity between 

two clusters in terms of the increase in sum of squared errors (SSE) resulting from the 

merging of the two clusters. In other words, for any arbitrary pair of clusters the sum of 
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SSEs (the sum of squared Euclidean distances between each member of the cluster and the 

cluster centroid) is smaller than the SSE, when the two clusters are merged. The Ward’s 

method measures the difference in the sum of the SSEs of the initial two clusters and the 

SSE of the emerging cluster (resulting from the merging of the two) as the inconsistency 

resulting from the merging of the two clusters. It then opts for the merge that minimizes 

the inevitable increase in inconsistency (Equation 24). Equation 24  

∆(𝐴, 𝐵) = ∑ ‖𝑥𝑖⃗⃗  ⃗ − 𝑚𝐴∪𝐵⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗‖2 − ∑ ‖𝑥𝑗⃗⃗  ⃗ − 𝑚𝐴⃗⃗ ⃗⃗  ⃗‖
2
−𝑥𝑗∈𝐴 ∑ ‖𝑥𝑘⃗⃗⃗⃗ − 𝑚𝐵⃗⃗⃗⃗ ⃗⃗ ‖2

𝑥𝑘∈𝐵𝑥𝑖∈𝐴∪𝐵   

=
𝑛𝐴×𝑛𝐵

𝑛𝐴+𝑛𝐵
‖𝑚𝐴⃗⃗ ⃗⃗  ⃗ − 𝑚𝐵⃗⃗⃗⃗ ⃗⃗ ‖2 (24) 

, where 𝐴, 𝐵 are two clusters, ∆ is the merging cost or the distance between two 

clusters,  𝑥𝑖⃗⃗  ⃗ is a multi-dimensional vector belonging to a cluster, �⃗⃗�  is the centroid 

of a cluster, and 𝑛 is the number of data points within a cluster. 

The linkages in hierarchical agglomerative clustering can be graphically visualized through 

a dendrogram. Figure 19 illustrates the dendrogram corresponding to the example provided 

in Figure 18. The merging steps can be traced back to arrive at a partitioning of the data 

space, which includes the desired number of clusters. This can be done simply by cutting 

through the dendrogram at a certain height (Figure 20). As such, the acceptable range for 

the number of clusters should be known before a decision can be made as to the height at 

which the dendrogram can be cut. However, deciding which cut provides a more efficient 

clustering is not a trivial problem. 

 

Figure 19 (Left) Dendrogram pertaining to the example illustrated in Figure 18. 
Figure 20 (Right) Possible partitioning schemas resulting in the identification of 2, 3, 4, and 5 clusters. 
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Determining the optimal number of clusters is not a trivial problem. Assuming that each 

cluster is to be represented through at least one building, the upper limit for the number of 

the clusters depends on the computational resources and time available for the performance 

assessments. A lower limit can also be set to ensure a minimum of diversity in the resulting 

sample. But the hierarchical agglomerative and k-means methods can generate as many 

clustering schemes as the numbers within the given range. A method is required to identify 

the optimal number of clusters from the defined range, in view of the quality of the 

emerging clustering scheme.  

In order to quantify the quality of the clustering schemes various approaches have been 

identified. Internal cluster validity approaches relying on “relative criteria” aim at finding the 

best clustering scheme that a clustering algorithm can generate under certain assumptions 

about algorithm parameters (Halkidi et al. 2002). The term internal, used to characterize 

such methods refers to the independence of these methods to outside information on the 

expected characteristics or labeling of the classes. This is in contrast to external methods, 

which rely on a prior knowledge on the natural clusters existing in the dataset. The internal 

approach is deemed appropriate to select the optimal clustering scheme emerging from 

each clustering algorithm when fed with different values from a predefined range for the 

number of clusters. For this purpose, the clustering algorithm is run for all values within 

the given range and the resulting clustering schemes are compared. To enable this 

comparison, various performance indicators have been defined and introduced by 

statisticians. These indicators seek to represent the intra-cluster similarity and inter-cluster 

dissimilarity of each partitioning scheme in terms of a single number. The Dunn’s index 

(Dunn 1974), for instance, is composed of the largest cluster diameter and the shortest 

distance between pairs of clusters in a scheme. It identifies the optimal partitioning as the 

one that minimizes the former and maximizes the latter.  The SD index (Halkidi et al. 2000) 

relies on the average scattering within clusters and the total separation between clusters, 

identifying a “good” clustering scheme as the one that minimizes the index, thereby 

insuring well separated and compact clusters. Various other clustering quality assessment 

methods have been introduced in literature (Rousseeuw 1987; Davies & Bouldin 1979; 

Tibshirani et al. 2001; Halkidi et al. 2002; Maulik & Bandyopadhyay 2002; Jung et al. 2003; 

Liu et al. 2010; Charrad et al. 2014). To facilitate the selection of the optimal clustering 

scheme, Charrad et al. (2014) have developed an algorithm that computes the value of over 

20 clustering quality indicators, across a given range of cluster numbers, and yields the 

clustering scheme suggested by the majority vote. This algorithm, developed as a package, 

NbClust, for the R software (Charrad et al. 2015), is capable of performing hierarchical 

agglomerative clustering with Ward’s method, as well as k-means clustering with squared 

Euclidean distance, intended in this study.  
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Model-based Clustering 

In model-based clustering (Fraley & Raftery 1998, 2002), probability models are used as a 

basis for cluster analysis. In this approach, the data is assumed to come from a mixture of 

probability distributions, with each distribution representing a cluster. The components of 

this mixture distribution (the underlying density functions) are assumed to belong to a 

family of parametric density functions. As such, the clustering problem is recast as a model 

choice problem, the objective being the identification of the optimal number of model 

components, as well as the parameters defining those components. For this purpose, a two-

fold method composed of hierarchical and relocation steps is utilized.  

The maximum number of model components, M, (or the maximum acceptable number of 

clusters) as well as the parametrization schema of the underlying components (the 

parametric family of density functions to which the components belong) is selected. The 

algorithm used in the present research is based on multivariate normal distributions. Several 

parametrizations of this family with various levels of complexity are considered, such as 

spherical or ellipsoidal parametrizations of equal or varying size, shape, and orientation  

(Fraley & Raftery 2002). 

To initiate the process, a hierarchical agglomerative clustering of the data is performed, and 

all partitioning schemas leading to 2 to M clusters are identified. This step is essentially 

similar to the hierarchical agglomerative clustering explained in the previous section, 

however, the criterion for merging groups in this case is the Maximum Likelihood (ML). 

In intuitive language, Maximum Likelihood Estimation (Wilks 1938), is a method for 

estimating the values of the parameters of a statistical model based on some observations, 

such that the likelihood of generating those observations with the parametric model is 

maximized. In other words, it is a method of fitting a statistical model to the available set 

of observations. This criterion can be used for hierarchical agglomerative clustering, to 

ensure that at every step, the selection of the clusters to merge, is based on maximization 

of the likelihood of the emerging statistical model representing the observations. 

The resulting partitioning schemas including between 2 and M clusters, are then used to 

initiate a relocation process. This process is similar to the k-means method, but with a 

different objective function. The relocation process is performed based on Expectation 

Maximization, EM (Dempster et al. 1977). In this process, an arbitrary assignment of 

observations to clusters is considered (resulting from the application of the first step). Then 

the likelihood function of the model parameters representing the data set is derived. Model 

parameters are recalculated such that this likelihood function is maximized. The 

observations are relocated among the clusters according to the current definition of the 
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underlying model components. This iterative process is continued until a convergence is 

reached. This process is repeated for all numbers of clusters smaller than M and for all 

parametrizations of the multivariate normal distribution family. At this point the optimal 

solution (the model parameters representing the clusters) for every scenario (pairs of 

number of clusters and parametrization) is achieved. As a final step, one of the resulting 

partitioning schemas should be selected. For this purpose, the Bayesian Information 

Criterion (BIC) is adopted (Schwarz 1978). BIC is a measure of how well a finite mixture 

model performs in predicting the observations. It is based on the maximum likelihood, and 

includes a penalty for the increase in the number of model parameters or the complexity 

of the adopted parametrization. 

The model-based clustering method requires the maximum number of clusters allowed, 

and is equipped with logical processes, which yield the optimal clustering schema. This 

process as used in the present research can be expressed as follows: 

Determine a maximum number of clusters as M 

Perform agglomerative hierarchical clustering based on likelihood 

maximization, obtain classifications with up to M groups 

For every classification: 

Until convergence is reached: 

  Perform Expectation Maximization 

Compute the value of the Bayesian Information Criterion 

Select the model corresponding to the first decisive local maximum BIC 

value 

To perform model-based clustering, the R package mClust (Fraley et al. 2015) has been used.  

Once the partitioning scheme (for each method) is selected, representatives are chosen for 

each cluster. Currently, one representative per cluster is considered. The most typical 

building, defined as the building closest to the center of each cluster, is selected as the 

cluster representative. Proximity to center is computed through Euclidean distance. The 

center of the cluster in the k-means and hierarchical agglomerative methods is defined as a 

virtual data point with median values (across cluster) for each dimension. In the model-

based method, the mean of each multivariate Gaussian distribution depicting a cluster is 

considered as the cluster center.  
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5.4. Clustering Scenarios 

Different combinations of the classification criteria are tested towards their efficiency in 

the partitioning of the data space into groups of buildings with similar energy behavior in 

terms of heating demand. Each combination includes some expression of the principle 

building features through inclusion of one or more indicators pertaining to that feature. 

However, one should bear in mind that the over-representation of a feature through 

inclusion of several associated indicators will skew the classification towards that specific 

feature. Also, consideration of a higher number of classification criteria leads to higher 

computational time, and may as well result in a noisier data space, reducing the chance of 

the identification of major traits and patterns. offers an overview of the various 

classification criteria sets considered in the various runs.  

Table 7 Various sets of descriptive indicators considered as input for cluster analysis 

  Geometry 
Solar 
Gains 

Thermal Quality Operational Parameters 
Number of 
parameters 

  𝑽𝒏 𝑨𝒆 𝑪𝒕 𝒉𝒆 𝑮𝑹𝒆 𝑼𝒆 𝑼𝒘,𝒆 𝑼𝒄,𝒆 𝑼𝒇,𝒆 𝑶𝒖 𝑶𝒅/𝒖 𝑶𝒅 𝑶𝒏 𝒒𝒊,𝒉 𝑰𝒈𝒅 𝒏𝒗 𝑨𝒄𝒅 

S1   ✓ ✓ ✓ ✓     ✓    ✓  ✓ 7 

S2 ✓  ✓ ✓ ✓ ✓     ✓    ✓  ✓ 8 

S3 
 ✓ ✓ ✓ ✓    ✓     ✓  ✓ 7 

S4 ✓  ✓ ✓ ✓ ✓    ✓     ✓  ✓ 8 

S5 
 ✓ ✓ ✓ ✓    ✓ ✓    ✓  ✓ 8 

S6 ✓  ✓ ✓ ✓ ✓    ✓ ✓    ✓  ✓ 9 

S7 
 ✓ ✓ ✓ ✓      ✓ ✓ ✓  ✓  8 

S8 ✓  ✓ ✓ ✓ ✓      ✓ ✓ ✓  ✓  9 

S9 
 ✓ ✓ ✓  ✓✓ ✓   ✓ ✓ ✓  ✓  10 

S10 ✓  ✓ ✓ ✓  ✓✓ ✓   ✓ ✓ ✓  ✓  11 

S11 ✓ ✓


✓ ✓  ✓✓ ✓   ✓ ✓ ✓  ✓  12 

 

Effective glazing ratio (𝐺𝑅𝑒) and effective floor height (ℎ𝑒) are included in all scenarios, 

since there are no other indicators that express these building characteristics. Scenarios 1 

to 10 can be seen as five pairs of similar scenarios differing only in the inclusion of net 

volume (𝑉𝑛) as an input parameter in the second scenario of each pair. The effective 

envelope area (𝐴𝑒) is only included in the last scenario, which is the only set that excludes 

thermal compactness (𝐶𝑡).  



 

    

 

 

An Hourglass Approach to Urban Energy Computing  

68 

 

The main differences among the first four pairs of scenarios is in their depiction of 

operational parameters. S1 and S2 depict the operational parameters through daytime use 

intensity (𝑂𝑑/𝑢), daily internal gains (𝐼𝑔𝑑), and daily air-change rate (𝐴𝑐𝑑) throughout a 

typical day. S3 and S4 are similar to the previous scenarios, however the use schedules are 

represented here through the fraction of the year the building is in use (𝑂𝑢). S5 and S6 

combine the above scenarios. In S7 and S8 operational characteristics are represented 

through the annual daytime and nighttime use fractions (𝑂𝑑 , 𝑂𝑛), along with average values 

of area-related internal gains (𝑞𝑖,ℎ), and hourly air-change rate (𝑛𝑣).  

S9 and S10 are similar to the former pair of scenarios in their expression of operational 

parameters, but incorporate a more detailed representation of the thermal quality of 

components. This is achieved through the consideration of wall, floor, and roof effective 

average U-values (𝑈𝑤,𝑒 , 𝑈𝑓,𝑒 , 𝑈𝑐,𝑒) instead of the overall effective average envelope U-value 

(𝑈𝑒).  

The combination of the eleven sets of input parameters and the three discussed clustering 

algorithms results in a matrix of 33 cluster analysis scenarios. All scenarios were performed 

to achieve 33 partitioning schemes. In each case, the buildings representing each cluster 

were identified. The emerging classifications were investigated through an external 

clustering quality evaluation test based on steady-state heating demand, to select the optimal 

classification routine for the project. For this purpose, the performance of the emerging 

set of representatives to predict the annual heating demand of the buildings in their 

associated cluster was evaluated.  
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5.5. Evaluation of Classification and Sampling Scenarios 

Data matrices associated with each of the scenarios introduced in Table 4 are automatically 

generated by the developed plug-in and subjected to the above-mentioned MCA techniques 

leading to a total of 33 partitioning schemes. In order to select the most efficient clustering 

procedure, the performance of the resulting classifications has to be compared in view of 

the ultimate objective of the model: prediction of heating energy demand. The best 

clustering procedure (combination of criteria and clustering method, as such, is the one 

leading to the best representation of the energy performance of the buildings. Due to its 

dependency on external data, regarding the performance of buildings, this evaluation 

method falls within the class of external clustering evaluation methods. Due to data privacy 

issues, a collection of empirical data on the actual energy demand of the neighborhood for 

model evaluation purposes was not possible. A full-fledged simulation of the buildings 

within the scope of the case study, was also beyond the means of the current project. For 

the comparative evaluation of the clustering methods a simple steady-state computation of 

the monthly heating demand of the buildings was performed using the initially generated 

building representations. Although this data is not sufficient for a thorough evaluation of 

the performance of the samples in view of the prediction of the temporal dynamics of load 

patterns, it provides some hints towards the fittest clustering procedure. For the purpose 

of this analysis, the method suggested by the Austrian standard B 8110-6 for the 

computation of the monthly energy demand of buildings (Austrian Standards Institute 

2014) was adopted. The essential input parameters of this method, which is based on a 

simple heat balance equation (Equation 25), are the same building characteristics 

considered for the cluster analysis. Naturally, this data could only be procured from the 

large scale available sources and as such is limited to the resolution and precision of these 

sources. Equation 25  

𝑄ℎ = (𝑄𝑇 + 𝑄𝑉) − 𝜂ℎ(𝑄𝑖 + 𝑄𝑠)  (25) 

, where 𝑄ℎ , 𝑄𝑇 , 𝑄𝑉 , 𝑄𝑖 , 𝑄𝑠 are the monthly heating demand, transmission losses, 

ventilation losses, internal gains and solar gains respectively [𝑘𝑊ℎ.𝑀−1], , 𝜂ℎ is 

the monthly utilization factor for heat gains. 

This computation was performed through a dedicated code developed in Python, which 

utilizes the urban representation generated in the previous step to extract the necessary 

input parameters. The various steps of this computation and the applied simplifications, 

necessary in view of informational limitations, are described below.  
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Transmission Heat Losses 

The utilized standard provides two methods for the computation of the transmission losses. 

The more elaborate method, requires detailed information on the condition of the unheated 

adjacent spaces and the nature of the existing thermal bridges. Since this information is 

unattainable at large scale, the more simpler strategy has been followed (Equation 26): Equation 26  

𝑄𝑇 =
1

1000
× 𝐿𝑇× Δ𝜃×𝑡  (26) 

, where  𝐿𝑇 is the transmission heat transfer coefficient [𝑊.𝐾−1] (Equation 27), 

Δ𝜃 is difference between internal temperature and average monthly external 

temperature [𝐾], and 𝑡 is the duration of the month [ℎ.𝑀−1]. The latter two are 

provided in the standard B 8110-5 (Austrian Standards Institute 2011). 

Theoretically, the internal temperature is usage-dependent. However, the 

mentioned standard suggests the same internal temperature for all usages existing 

in the case study. As such no distinction is necessary among the transmission losses 

from various conditioned parts of the building. Equation 27  

𝐿𝑇 = ∑(𝑈𝑖×𝐴𝑖×𝑓𝑡,𝑖) + (𝐿𝜓 + 𝐿𝜒) =  (𝑈𝑒×𝐴𝑒) + (𝐿𝜓 + 𝐿𝜒)  (27) 

, where (𝐿𝜓 + 𝐿𝜒) is the sum of the transmission heat coefficient due to linear and 

punctual thermal bridges[𝑊.𝐾−1]. The simpler method provided by the standard 

has been adopted in this case (Equation 28). Note that the first term in the 

calculation can be replaced by the effective envelope U-value multiplied by the 

effective envelope area (See Table 6). Equation 28  

(𝐿𝜓 + 𝐿𝜒) =  0.2 × [0.75 −
(𝑈𝑒×𝐴𝑒)

∑𝐴𝑖
]× (𝑈𝑒×𝐴𝑒) ≥ 0.1 ×(𝑈𝑒×𝐴𝑒)  (28) 

, where the term ∑(𝑈𝑖×𝐴𝑖×𝑓𝑡,𝑖) has been replaced by (𝑈𝑒×𝐴𝑒) as in the previous 

equation. 
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Ventilation Heat Losses 

Since no information was available as to the existence and operation mode of mechanical 

ventilation devices, all building within the study area are assumed to be naturally ventilated 

(Equation 29). The ventilation losses depend on the operational characteristics of the 

spaces. Technically, the standard method has been envisaged for a single-usage building (or 

portion of a building). Therefore, the contribution of each building usage to the overall 

ventilation losses has to be considered if the same method is to be used for the estimation 

of the overall ventilation losses of a multi-use building. Equation 29  

𝑄𝑉 =
1

1000
× 𝐿𝑉× Δ𝜃×𝑡  (29) 

, where  𝐿𝑉 is the ventilation heat transfer coefficient [𝑊.𝐾−1] (Equation 30).Equation 30  

𝐿𝑉 =  𝑐𝑉𝑝,𝐿× 𝑃𝐿×𝜈𝑉  (30) 

, where  𝑐𝑉𝑝,𝐿× 𝑃𝐿 is the volumetric heat capacity of air = 0.34 [𝑊ℎ.𝑚−3. 𝐾−1], 

and 𝜈𝑉 is the airflow [𝑚3. ℎ−1] (Equation 31). Equation 31  

𝜈𝑉 = ∑(
𝑛𝑣,𝑖.𝑡𝑢𝑠𝑒,𝑚,𝑖

𝑡
×𝑓𝑣,𝑖) × 𝑉𝑉  (31) 

, where 𝑛𝑣,𝑖 and 𝑓𝑣,𝑖  are the energetically relevant air-change rate of a usage in the 

building [ℎ−1], and its corresponding share of the overall building volume, 𝑡𝑢𝑠𝑒,𝑚,𝑖 

is the monthly use hours [ℎ.𝑀−1], and 𝑉𝑉 is the effective volume of the building 

[𝑚3] (Equation 32). This equation has been modified to incorporate the 

contribution of all functions existing in the building to the building’s airflow rate.Equation  

32  

𝑉𝑉  =  0.8 × 𝑛𝑓× 𝐴𝑓× 2.6  (32) 
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, where the term 𝑛𝑓 . 𝐴𝑓, number of floors multiplied by the area of the building 

footprint [𝑚2], has replaced the gross building floor area in the original equation.  
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Internal Heat Gains  

Similar to the ventilation heat losses, in the case of the internal gains, also dependent on 

the operational characteristics of spaces, various usages have to be factored in the 

computations. As such, the standard calculations have been modified to involve the 

contribution of various usages. Reference values for internal gains are commonly expressed 

per unit of floor area. Note that in the distribution of the volume of the buildings among 

usages, the potential differences in the heights of the different floors has been ignored due 

to a lack of data in this regard. As such one may assume that the same ratios apply for the 

association of the floor area to various usages (Equation 33). Equation 33  

𝑄𝑖 =
1

1000
×𝑞𝑖,ℎ×0.8 × 𝑛𝑓× 𝐴𝑓×𝑡  (33) 

, where 𝑞𝑖,ℎ is the average area-related internal gains rate weighted by the share of 

every building usage from the overall volume/area [𝑊.𝑚−2] (See Table 6). This 

value includes internal gains from occupants, equipment, as well as lighting devices. 
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Solar Heat Gains  

According to the standard, the solar heat gains in the heating season are computed based 

on the area and orientation of the transparent building enclosures, according to the 

standard climate data. The method also includes an estimation of the shading received by 

the building. This is done through consideration of a shading factor, which incorporates 

estimations of the average shading received from various obstructions including other 

buildings, trees, and shading elements such as overhangs and fins. The standard provides 

default values for the shading received by single family houses and row houses but no 

simplified method is suggested for the computation of the shading factor in the dense and 

diverse fabric of the city.  

As such, in the present project, this factor has been approximated by the Sky View Factor, 

which has been argued to provide a good estimation of the shading received on a building 

element. As such, the solar gains can be computed according to Equation 34. Equation 34  

𝑄𝑠 = ∑ (𝐼𝑠,𝑗×∑ 𝐴𝑡𝑟𝑎𝑛𝑠,𝑖,𝑗𝑖 )𝑗   (34) 

, where 𝐼𝑠,𝑗 is the monthly global irradiance on a surface with orientation j 

[𝑘𝑊ℎ.𝑚−2.𝑀−1], according to the reference climate data provided in Austrian 

standard B 8110-5 (Austrian Standards Institute 2011), 𝐴𝑡𝑟𝑎𝑛𝑠,𝑖,𝑗 is the effective 

area of a transparent building component with orientation j [𝑚2], (Equation 35). 
Equatio n 35  

𝐴𝑡𝑟𝑎𝑛𝑠,𝑖 = 𝑊𝑊𝑅×𝐺𝑊𝑅×𝐴𝑜𝑤,𝑖×𝑆𝑉𝐹𝑖×𝑔  (35) 

, where 𝑊𝑊𝑅 is the default value for window to wall ratio (=0.15), 𝐺𝑊𝑅 is the 

default value for glazing to window ratio (=0.7) (Austrian Standards Institute 

2014), 𝑔 is the default value for solar energy transmittance coefficient (=0.67) 

(Österreichisches Institut für Bautechnik 2015), and 𝐴𝑜𝑤,𝑖 , 𝑆𝑉𝐹𝑖 the area and 

corresponding Sky View Factor of exposed wall elements.  
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Utilization Factor for Heat Gains  

This utilization factor is defined to include the impact of the building’s thermal mass in the 

effective benefitting from the internal and solar heat gains (Equation 36). Equation 36  

𝜂ℎ = {

1−𝛾ℎ
𝑎

1+𝛾ℎ
𝑎+1    𝑖𝑓 𝛾ℎ ≠ 1

𝑎

1+𝑎
         𝑖𝑓 𝛾ℎ = 1

 (36) 

, where 𝛾ℎ is heat balance ratio in the heating season (Equation 37), and a is a 

numerical parameter for the utilization factor (Equation 38). Equation 37  

 𝛾ℎ =
𝑄𝑖+𝑄𝑠

𝑄𝑇+𝑄𝑉
 (37)  

Equation 38 

 𝑎 = 𝑎0 +
𝐶

𝜏0×(𝐿𝑇+𝐿𝑇)
  (38) 

, where C is the effective heat capacity of the building [𝑊ℎ.𝐾−1] (Equation 39), 

𝑎0 is a dimensionless reference numerical parameter (=1), and 𝜏0 is the reference 

time constant = 16 [ℎ].Equation 39  

 𝐶 = 𝑓𝐵𝑊×𝑉 (39) 

, where 𝑓𝐵𝑊 is the volumetric heat capacity of the building [𝑊ℎ.𝑚−3. 𝐾−1]  

according to Table 8. 
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Table 8 Values considered for the volumetric heat capacity of buildings according to construction period. 

𝒇𝑩𝑾 

[𝑾𝒉.𝑲−𝟏] 

Building type Associated construction 

period 

20 Mid-weight constructions Post 1976 

30 Massive constructions 1945-1976 

60 Very massive constructions Pre 1945 

The monthly values of heating demand are summed to obtain the annual heating demand 

of each building within the study area. This measure is used as an external objective to 

evaluate the quality of the various partitioning schemes emerging from the applied 

clustering scenarios. For this purpose, in each partitioning scheme, the volumetric heating 

demand of the representative of each cluster was used to predict the heating demand of 

each building within the cluster (Equation 40). Equation 40  

 𝑄𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑,𝑖,𝑗 = 𝑉𝑛,𝑖×𝑄𝑣,𝑟𝑒𝑝,𝑗  (40) 

, where 𝑄𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑,𝑖,𝑗 is the predicted annual heating demand of the building i, 

belonging to the cluster j [𝑘𝑊ℎ. 𝑎−1], 𝑉𝑛,𝑖 is the net volume of the building [𝑚3], 

and 𝑄𝑣,𝑟𝑒𝑝,𝑗 is the volumetric annual heating demand of the building representing 

the cluster j [𝑘𝑊ℎ.𝑚−3. 𝑎−1]. 

The results are compared to the theoretical annual demand values computed for each 

building according to the previously explained method. The following metrics were defined 

to assess the performance of each clustering scheme: 

• Relative error in the prediction of the annual heating demand of the entire 

neighborhood, as a measure of how well the sample represents the aggregate 

heating demand of the urban area under study ( Equation 41). Equation 41  

𝛿𝑇𝑜𝑡𝑎𝑙 =
|∑𝑄𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑,𝑖−∑𝑄𝑡ℎ𝑒𝑜𝑟𝑒𝑡𝑖𝑐𝑎𝑙,𝑖|

∑𝑄𝑡ℎ𝑒𝑜𝑟𝑒𝑡𝑖𝑐𝑎𝑙,𝑖
×100 (41) 

, where 𝛿𝑇𝑜𝑡𝑎𝑙 is the relative neighbourhood-level error [%], and 𝑄𝑡ℎ𝑒𝑜𝑟𝑒𝑡𝑖𝑐𝑎𝑙,𝑖 

is the theoretical annual heating demand computed for the building i 

[𝑘𝑊ℎ. 𝑎−1]. 
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• Mean relative error of building level annual heating demand prediction, as an 

indicator of the predictive abilities of the sample with regard to individual buildings 

( Equation 42). Equation 42 

𝛿𝑀𝑒𝑎𝑛 =
1

𝑛
×∑𝛿𝑖 (42) 

, where 𝛿𝑀𝑒𝑎𝑛 is the mean building-level error [%], 𝛿𝑖 is the relative prediction 

error of building i [%] (Equation 43), and n is the number of buildings within 

the study area. Equation 43  

 𝛿𝑖 =
|𝑄𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑,𝑖−𝑄𝑡ℎ𝑒𝑜𝑟𝑒𝑡𝑖𝑐𝑎𝑙,𝑖|

𝑄𝑡ℎ𝑒𝑜𝑟𝑒𝑡𝑖𝑐𝑎𝑙,𝑖
×100 (42) 

• Fraction of the total volume associated with a relative error of above 20% in the 

prediction of the annual heating demand, to identify the sampling scheme resulting 

in the least amount of severe prediction errors at buildings level ( Equation 44). Equation 

44 

𝑓>20% =
(∑𝑉𝑖|𝛿𝑖>20%)

∑𝑉𝑖
×100 (44) 

, where 𝑓>20% is the fraction of the volume associated with a building-level 

prediction error of above 20%, [%].  
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5.6. Results and Discussion 

Evaluation of Cluster Analysis Scenarios 

As explained previously, all steps necessary for the generation of an energy-relevant 

representation of the urban building stock, extraction of the values of the relevant 

descriptive indicators, multivariate cluster analysis, and selection of the buildings best 

representing the emerged classes, are performed through a GIS plug-in developed for the 

QGIS open platform. The final outcome of the operation of the reductive module plug-in 

for each run, is a map of the investigated urban area, in which clusters are identified by 

colors (See Appendix 1), a CSV file containing the values of the adopted descriptive 

indicators with an additional column associating each building with a cluster, as well as a 

list of buildings representing the clusters. On an average commercial PC, the application of 

the reductive plug-in on the current case study requires about 15 minutes. In each case, the 

volumetric heating demand of the representative buildings was used to compute the annual 

heating demand of the buildings in the associated clusters. Then, the previously-introduced 

performance indicators were computed for each partitioning schema. 

The performance of the three cluster analysis methods regardless of the input parameters 

is compared in Figure 21 , where the ranges of the performance indicators are shown for 

each method across all 11 input parameter scenarios. As seen in this figure, the three cluster 

analysis algorithms perform rather similarly with regard to the prediction of the aggregate 

demand of the neighborhood.  

 

Figure 21 Comparison of the performance of the three clustering algorithms regardless of input parameters. 
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Except in two cases, the 𝛿𝑇𝑜𝑡𝑎𝑙 lies below 10 percent, which is an acceptable deviation 

from the theoretical values. The above 10% deviations pertain to the hierarchical 

agglomerative and the model-based methods, with a maximum 𝛿𝑇𝑜𝑡𝑎𝑙 of 11% and 17% 

respectively. The k-means method displays a slightly lower median deviation in the 

prediction of the aggregate heating demand of the neighborhood. The k-means clustering 

method performs consistently better than the two other algorithms in the building level 

prediction of heating demand. The mean deviation of the building level predictions (𝛿𝑀𝑒𝑎𝑛) 

of the k-means algorithm from the theoretical values lies below 15%, and less than 25% of 

the volume of the neighborhood, in average, is associated with a severe building level 

prediction error (𝑓>20%). The model-based clustering algorithm displays the weakest 

performance in building level demand prediction, with as much as 50% of the total volume 

associated with severe errors in the worst case. The hierarchical agglomerative clustering 

performs rather well with regard to the 𝛿𝑀𝑒𝑎𝑛. However, it results in a noticeably larger 

portion of the neighborhood being affected with high prediction errors, compared to the 

k-means clustering algorithm. As such, regardless of the set of descriptive indicators 

selected to represent buildings, the k-means method seems to perform best in capturing 

and representing the diversity of the building stock with regard to annual heating demand. 

Figure 22 illustrates the impact of various sets of descriptive indicators on the quality of 

the resulting partitioning, without considering the clustering method. In this graph, the 

three performance indicators have been plotted for each scenario (in terms of input 

variables).  

 

Figure 22 Comparison of the performance of the various sets of performance indicators on the quality of the 
emerging partitioning and building representation, regardless of the clustering algorithm. 
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With regard to the prediction of the aggregate heating demand of the neighborhood, with 

the exception of scenarios 2 and 7, all scenarios result in a deviation of 10% or less from 

the theoretical values. However, scenarios 3, 4, 6, 9, 10, and 11 perform better than the 

others, as in these cases, in a majority of cases the deviations lie below 5%. A comparison 

of the pairs of similar scenarios (See Clustering Scenarios) reveals that the inclusion of 

volume as a clustering criteria, in almost all cases, results in a better prediction of the 

aggregate heating demand. It’s effect on the prediction of building level demand, however, 

is not consistently positive. At building level, scenario 3 produces the best result with regard 

to average deviation from the theoretical values, whereas the best performance with regard 

to the share of the volume associated with severe errors pertains to scenario 4. Scenarios 

1, 4, 6, and 9 are the next best performing scenarios based on 𝛿𝑀𝑒𝑎𝑛, but scenario 1 results 

in the misrepresentation of a much larger share of the total volume. An increase in the 

number of parameters considered for the cluster analysis does not necessarily improve the 

quality of the classification. This may be due to the extra noise introduced by the inclusion 

of new, yet insignificant and interrelated variables. As mentioned before, the 33 investigated 

partitioning schemas, lead to the identification of a range of 6 to 21 clusters. Figure 23 

illustrates the relationship between the number of identified clusters (and consequently 

representative buildings) in the representation of the heating demand of the neighborhood. 

As apparent from the figure, a higher number of representative buildings does not 

guarantee a more successful representation of the neighborhood, whereas, partitioning 

schemas with fewer clusters can perform reasonably well in capturing the energy 

characteristics of the buildings in the neighborhood.  

 

Figure 23 Comparison of the performance of the partitioning schemas in view of the number of the buildings 
representing the neighborhood in each case.  
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Table 9 displays the values of the performance indicators for all partitioning schemas. All 

schemas resulting in values below 10%, 15%, and 20% for the  𝛿𝑀𝑒𝑎𝑛, 𝑓>20%, and 𝛿𝑇𝑜𝑡𝑎𝑙 

are highlighted in the table, as the most successful clustering scenarios. Interestingly, none 

of the best performing schemas are associated with more than 10 classes. Note that the k-

means method is responsible for a majority of these partitioning schemas. Scenario 4, with 

the k-means method, constituting 7 clusters, yields the best results in every aspect. 

Table 9 An overview of the values of the performance indicators computed for the 33 partitioning scenarios 

Clustering Scenario Clusters # 𝜹𝑻𝒐𝒕𝒂𝒍 𝜹𝑴𝒆𝒂𝒏 𝒇>𝟐𝟎% 

S1 

Hierarchical agglomerative 6 6% 15% 31% 

K-means 7 6% 13% 28% 

Model-based 14 10% 15% 29% 

S2 

Hierarchical agglomerative 6 11% 17% 32% 

K-means 7 8% 14% 28% 

Model-based 17 6% 14% 23% 

S3 

Hierarchical agglomerative 6 8% 13% 26% 

K-means 7 3% 12% 17% 

Model-based 19 5% 8% 28% 

S4 

Hierarchical agglomerative 8 3% 13% 17% 

K-means 7 0% 11% 12% 

Model-based 21 7% 15% 26% 

S5 

Hierarchical agglomerative 6 9% 14% 26% 

K-means 6 10% 15% 24% 

Model-based 12 7% 24% 50% 

S6 

Hierarchical agglomerative 7 3% 14% 23% 

K-means 6 3% 12% 15% 

Model-based 8 3% 14% 17% 

S7 

Hierarchical agglomerative 6 6% 15% 26% 

K-means 7 9% 14% 29% 

Model-based 8 17% 18% 39% 

S8 

Hierarchical agglomerative 6 3% 14% 22% 

K-means 6 10% 14% 27% 

Model-based 8 4% 21% 42% 

S9 

Hierarchical agglomerative 10 3% 14% 19% 

K-means 10 1% 13% 17% 

Model-based 13 8% 15% 27% 

S10 

Hierarchical agglomerative 16 7% 16% 28% 

K-means 10 0% 14% 18% 

Model-based 11 4% 16% 27% 

S11 

Hierarchical agglomerative 13 0% 15% 21% 

K-means 11 5% 15% 25% 

Model-based 14 6% 16% 31% 
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Best Performing Clustering Scenario and Associated Representative Buildings 

The clusters identified by the most successful classification schema (S4-Kmeans) are 

represented in Figure 24. This map is automatically generated by the plug-in at the end of 

its operation. Interestingly, most buildings with similar footprint geometry and size are 

clustered together.  

 

Figure 24 The visualized results of the reductive procedure for the S4-Kmeans clustering scenario.  

An overview of the mean values of the descriptive indicators adopted in scenario 4, across 

the emerging seven clusters is provided in Table 10.   
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Table 10 Mean values of the employed descriptive indicators across clusters S4-Kmeans clustering scenario.  

The range of volumetric heating demand of the buildings in every cluster as well as that of 

the representing building is presented in Figure 25. As seen in this figure, the energy 

demand of clusters 3 and 6 is underestimated by the representative building. The 

representatives of other clusters, however, provide acceptable representativeness. 

 

Figure 25 Volumetric heating demand of buildings in each cluster and the cluster representative. The lighter 
colored columns pertain to non-residential buildings 

Table 11 provides an overview of the distribution of buildings by age, construction period, 

and volume in each cluster, as well as a brief introduction to the representative buildings.  

A more detailed description of representative buildings can be found in Appendix 2. 

Cluster 1 is characterized by prominently sized buildings of mainly residential use with high 

ceilings, and an L-shaped or U-shaped foot print resulting in high exposure to outside air 

(lower compactness values). Cluster 2, also a mainly residential cluster, includes buildings 
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2 8048 3.82 3.04 0.054 1.319 0.94 0.09 10.6 43.80 44.68 

3 8188 4.77 2.89 0.031 1.407 0.97 0.09 10.18 52.92 45.53 

4 11186 4.63 3.13 0.039 1.336 0.4 0.05 18.54 30.12 31.76 

5 5616 3.81 2.71 0.031 1.326 0.97 0.09 10.15 53.53 52.76 

6 51430 4.63 4.19 0.049 1.334 0.41 0.07 19 25.15 20.60 

7 14590 3.89 2.87 0.069 0.726 1 0.09 9.6 23.73 21.87 
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of medium size with relatively low compactness, also much less affected by mutual shading, 

due to their placement along wider streets or their adjacency to large courtyards. Due to 

their narrow, linear forms and high exposure to the sun, these buildings receive higher solar 

gains. Most buildings constructed after 1945 are clustered in this group, although buildings 

of other construction periods are also present. Clusters 3 and 5 feature a collection of 

smaller residential buildings. The major distinction between the two classes is in volume 

and average floor height. Cluster 3 features larger buildings with lower ratio of useful floor 

area to volume (higher ceilings). 

Clusters 4 and 6 are mixes of educational, cultural, commercial and office buildings. 

Buildings in cluster 6 receive less shading and are considerably less compact than those in 

cluster 4. Cluster 4 is composed of mid-sized buildings, whereas cluster 6 includes the 

largest non-residential buildings in the area. Cluster 7 represents all buildings constructed 

after 1976, whose thermal performance is significantly superior to that of all other classes 

of building. Among the prominently residential clusters (1, 2, 3, 5, and 7), clusters 1 and 2 

have a higher share of mixed use or non-residential buildings, whereas cluster 7 is strictly 

residential. All clusters, with the exception of cluster 7, are composed of buildings of 

various construction period. Figure 26 visualizes the accord between the building level 

predictions of the annual heating demand with the expected theoretical values.  

 

Figure 26 Theoretical against predicted values of annual heating demand based on the representation 
resulting from S4-Kmeans scenario. 
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Table 11 An overview of the age and usage composition of the generated classes and the associated representative buildings (Part 1/2).  

 # by construction period # by primary usage # by volume Representative building 
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Table 11 An overview of the age and usage composition of the generated classes and the associated representative buildings (Part 2/2). 
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Efficiency of the Adopted Classification Compared to Conventional Approaches 

An initial goal of the clustering-based reductive procedure was to achieve a more efficient 

method for the classification of the existing building stock, compared to the commonly 

adopted age-based classification. In order to demonstrate the insufficiency of a building's 

construction period to represent the overall thermal quality of a building, the effective 

envelope U-value of the buildings, as well as the computed heating demand are plotted 

against the construction year in Figure 27 and Figure 28 respectively. These graphs are 

generated based on 504 buildings in the dataset, for which the exact year of construction 

(and not merely the construction period) was known. This sample included no residential 

buildings constructed between 1945 and 1976, or non-residential buildings constructed 

after 1976. As seen in the graphs, in the case of buildings constructed prior to 1970's, no 

meaningful correlation can be found between the overall effective thermal quality or 

performance of the envelope and construction period. This suggest the inadequacy of 

construction period as an indicator of the thermal quality of the building. Newer buildings 

(post 1976), however, perform significantly better due to the drastic changes in the 

Viennese construction codes in 1976.  

One may argue, however, that a combined use of construction period and usage can result 

in a reasonable classification. To compare the quality of the clustering-based classification 

schema, with the age/usage based method, the residential buildings in the study area were 

classified according to the construction period, based on the thresholds provided in the 

Austrian guidelines for the computation of the energy demand of historical buildings 

(Österreichisches Institut für Bautechnik 2015). Due to the small number of non-residential 

buildings in each usage and age category, this analysis was only performed for the residential 

buildings. 

 

Figure 27 (left) Effective envelope U-value by year of construction. 
Figure 28 (Right) Volumetric heating demand by year of construction. 
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The volumetric heating demand of the resulting classes are illustrated in Figure 29, 

alongside those of the primarily residential classes emerging from the developed reductive 

method. The comparison reveals a clear (though not optimal) improvement in the 

distinction among classes in the developed method. Note that the proposed classification 

method dedicates a separate cluster (cluster 7) to the buildings constructed after 1976, the 

only age class which has a significantly different performance compared to the other age 

groups. Even in this case, the clustering algorithm relocates the only building of this period, 

which performs worse than the others to a different class to provide a more homogeneous 

group. Clusters 1 and 2 are composed of buildings with similar volumetric annual heating 

demand, but these classes perform visibly better than classes 3 and 5. As such, these four 

clusters feature two distinct heating demand tendencies, whereas the first three age-based 

clusters are largely overlapping and not very efficient in terms of distinguishing better 

performing from worse performing buildings. Therefore, the developed method represents 

the diversity in building performance more reliably, even though each cluster is composed 

of buildings of various construction periods.  

The performed analysis is of course strictly focused on the annual heating demand of 

buildings, which is not the optimal metric for the evaluation of a building classification 

schema, aimed at the representation of the temporal patterns of energy use in urban areas. 

It can however be relied on to offer some insight as to the comparative quality of the 

developed classification schemas.  

  

Figure 29 Ranges of volumetric heating demand values across classes emerging from the multivariate cluster 
analysis procedure adopted in the current effort. 
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6. The Re-Diversification Module 

6.1. Introductory Comments 

Previous studies have shown that the acquisition of pertinent building information and 

generation of the geometric model of a building are the most time and effort intensive 

activities in building performance simulation (Mahdavi & El-Bellahy 2005). The developed 

reductive module, reduces this effort by way of limiting the modeling scope to a 

manageable number of buildings. As suggested by the simple evaluation performed in the 

previous phase, buildings selected through the reductive process provide a fair overall 

representation of the energy demand of the neighborhood. However, much of the diversity 

of the building stock has been lost in this representation. Loss of diversity is a natural 

consequence of a reductive process. Moreover, the use of reference schedules and default 

values for the representation of the operational parameters of the individually assessed 

representative buildings contributes further to the loss of diversity. The re-diversification 

module has been developed to reintroduce part of the lost diversity back to the 

computational model, and to obtain more realistic representations of the spatial and 

temporal distribution of demand. 

The core concept of the re-diversification module is to use the representative buildings as 

a basis for the automated generation of a diverse set of models that better reflect the various 

characteristics of the building stock. Assuming that the identified sample of buildings 

represents the geometric features of the stock with acceptable fidelity, the re-diversification 

module attempts to readjust some of the non-geometric parameters of the reference 

simulation models, such that they emulate the characteristics of the represented buildings 

more closely.  

CHAPTER 6 
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6.2. Tools and Material 

Once the representative buildings are selected by the reductive module, reference 

simulation models are developed based on the detailed plans of these building, procured 

from the Viennese Building Police (Magistrat der Stadt Wien 2017a). The simulation 

program Energy Plus (National Renewable Energy Laboratory 2017) was used for the 

development of the simulation models of sample buildings. Energy Plus is an openly 

accessible whole building energy simulation program, capable of performing high-

resolution building energy assessments, and detailed representation of the operational as 

well as physical properties of buildings. All required information for Energy Plus 

simulations is structured and stored in a text-based object-oriented Input Data File (IDF). 

The modeling process was facilitated by the open studio plug-in (NREL et al. 2017), which 

utilizes the SketchUp three dimensional modeling environment (Trimble Inc. 2017), to 

provide a graphical user interface for the development of IDF building models for 

simulation purposes. The re-diversification module, is developed in Python programming 

language and requires the IDF’s of the above-mentioned reference models as input. The 

Eppy package for Python (Philip 2013) offers the possibility to browse and modify IDF 

objects through Python codes. This package was utilized to automate the diversification 

process. 

For various usages present in reference buildings, occupancy, HVAC, lighting, and 

equipment schedules provided by the Standard 90.1 of the American Society of Heating, 

Refrigerating, and Air-conditioning Engineers (ASHRAE 2013) were adopted as reference. 

These reference schedules were readjusted to meet the requirements of Austrian Standards 

(ÖNORM 2014). For the definition of the layered composition of building components, 

base case assumptions of the Austrian Handbook for Building Thermal Retrofit (Schöberl 

et al. 2012) were used. These templates were adjusted such that the national guidelines for 

performance assessment of historical buildings (OIB 2015) with regard to thermal quality 

of components were met. Other adopted sources of information for this purpose included 

the Baubook (Baubook GmbH 2017) and MASEA (Fraunhofer 2017) web-based building 

product data bases.  

Some descriptive indicators extracted in the previous step (See Table 6), were used to 

inform the diversification process. These include: the effective U-values of wall, 

roof/ceiling, and floor elements. Additionally, and for the same purpose, annual area-

related internal gains and average hourly air-change rate values were extracted from the 

urban stock representation developed in the first phase of the project (Equation 45 and  

Equation 46). 
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Equation 45  

𝐼𝑔𝑎,𝐵𝑢𝑖𝑙𝑑𝑖𝑛𝑔 = ∑((𝑞𝑖,ℎ,𝑖 + 𝑞𝑖,𝑙,𝑖)×𝑓𝑣,𝑖×𝑡𝑢𝑠𝑒,𝑎,𝑖) (45) 

, where 𝐼𝑔𝑎,𝐵𝑢𝑖𝑙𝑑𝑖𝑛𝑔 is the area-related annual internal gains of each building from 

all sources [𝑊ℎ.𝑚−2. 𝑎−1], 𝑡𝑢𝑠𝑒,𝑎,𝑖 is the number of annual hours the building is 

used [ℎ. 𝑎−1], 𝑞𝑖,ℎ,𝑖 and 𝑞𝑖,𝑙,𝑖 are the standard internal gains rate from equipment, 

people and lighting during the heating season for each usage [𝑊.𝑚−2], and 𝑓𝑣,𝑖 is 

the fraction of the volume associated with each usage. Equation 46  

𝑛𝑣,𝐵𝑢𝑖𝑙𝑑𝑖𝑛𝑔̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ =  
∑(𝑛𝑣,𝑖×𝑓𝑣,𝑖×𝑡𝑢𝑠𝑒,𝑎,𝑖)

𝑡𝑎
 (46) 

, where 𝑛𝑣,𝐵𝑢𝑖𝑙𝑑𝑖𝑛𝑔̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ is the weighted average air change rate of the building [ℎ−1], 

𝑛𝑣,𝑖 is the standard provided air-change rate of every usage [ℎ−1], and 𝑡𝑎 is the 

total annual hours [ℎ. 𝑎−1].  

The computed values, along with the effective U-values of the components are stored in a 

CSV file and used in the re/diversification process.  
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6.3. Development of Simulation Models 

Geometry and Zoning 

Buildings were modeled based on the detailed drawings provided by the Building Police. 

However, to maintain representation consistency, operational and material properties were 

defined according to the information available in the previous phase. As such, the 

simulation models were high-resolution versions of the building representation derived 

from large-scale data sources. The inconsistencies between the large-scale data sources and 

the real situation were ignored. Such inconsistencies pertain mainly to recent thermal 

retrofit activities, or changes in the usage of spaces.  But the incorporation of these changes 

would damage the representativeness of the sample. 

In the definition of the bounds of the buildings’ thermal envelope, the common 

conventions in performance simulation were followed. This means that the inner surfaces 

of the external walls, lowermost and uppermost enclosures were considered as the outer 

boundaries. To model all relevant elements within these boundaries, virtual surfaces parallel 

and equidistant to the facets of the elements were considered. By “relevant elements” those 

constituting the boundaries of distinct thermal zones are intended. Figure 30 provides a 

schematic illustration of this convention. Walls adjacent to other conditioned buildings 

were modeled as adiabatic elements.  

Building models were composed of multiple zones. To avoid over-complication of the 

models, on each building floor, all thermally connected spaces of similar usage were 

considered as one thermal zone. This rule applied to conditioned, as well as unconditioned 

spaces. As such, all internal floors were modeled according to the previously described 

convention, whereas only the internal walls constituting the boundaries of a zone were 

included in the geometric model. Figure 31 provides an illustrative example of the adopted 

zoning convention. Representative buildings included between 11 zones in the simplest 

building (Preßgasse 17) and 76 zones in the most complex building (Mühlgasse 7). 

Partition walls within thermal zones, which contribute significantly to the thermal mass of 

the building, were not represented geometrically, but were included in the thermal mass 

computations. Internal apertures such as doors and windows were not modeled. Whereas 

external windows were represented geometrically according to available drawings.   

Balconies and protruding façade elements permanently contributing to shading were 

geometrically represented as shading elements; so were all surrounding buildings 

obstructing solar radiation. Trees were not included in the models. Also, shading 

components such as blinds and curtains were not considered due to lack of information on 

their presence, and operation routines.  
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Semantic Properties of Building Components 

To represent the thermal quality of the building components, for historical buildings, 

typical layered compositions of various building elements, based on the period of 

construction were extracted from the Austrian Handbook for Building Thermal Retrofit 

(Schöberl et al. 2012). These constructions provided the material and thickness of every 

layer, but included no information on other material properties required for simulation 

computations (e.g., thermal conductivity, density, etc.). Additional information on the 

thermally relevant properties of the suggested materials were extracted from MASEA 

(Fraunhofer 2017) and Baubook (Baubook GmbH 2017) web-based data bases.  

In cases, where a wide range for the thermal conductivity of a certain material was 

conceivable (e.g., bricks and plasters), the values were selected such that the overall thermal 

transmittance (U-value) of the construction matched the values suggested by the standards 

for the computation of the heating demand of historical buildings (Österreichisches Institut 

für Bautechnik 2015). In case of newer buildings (Mattiellistraße 3 and Rechte Wienzeile 

25) the constructions provided in the building documentation were adopted. But the 

thermal conductivity values were readjusted in accordance with the values provided in the 

standards, similar to the case of historical buildings. The simplest possible representation, 

based on U-value was adopted for the modeling of transparent building elements. 

 

 

Figure 30 (Left) Modeling of space enclosures in the simulation models. 
Figure 31 (Right) An example of the adopted zoning convention based on space usage and connectivity, 
applied to an arbitrary building floor: Four zones are identified in this floor plan. 
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Operational Parameters 

Operational parameters pertaining to inhabitants’ presence, use of appliances and lighting 

devices, and natural ventilation were represented through schedules and reference values. 

In this representation, the reference value provides the maximum possible numerical value 

of a commodity in a time step, and the schedule expresses the fraction of that value 

associated with every time step. HVAC operation was expressed in terms of a schedule 

with Boolean values (0 and 1). To represent the temporal patterns of the above mentioned 

aspects, schedules suggested by ASHRAE (2013) were used. For non-residential buildings, 

different schedules are available for weekdays and weekends. The standard schedules were 

however modified, such that the daily operation hours matched the values suggested in the 

Austrian standards (Austrian Standards Institute 2011) for the pertinent building usage.  

For people’s activities, a schedule was developed based on the expected activities 

throughout an average day. Given the dependence of natural ventilation on inhabitants’ 

presence in the building, and in the absence of more detailed information, the occupancy 

schedule was adopted for ventilation as well. Unconditioned spaces such as corridors, 

basements, and uninhabited attic spaces were associated with higher permanent infiltration 

rates, and no elements contributing to internal gains.  

As emphasized before, the simulation models are supposed to be high-resolution versions 

of the representations generated based on large scale data. As such, in the definition of 

reference values for the above-mentioned parameters, the internal gain values suggested by 

the Austrian standards (Austrian Standards Institute 2011) and employed in the previous 

phases must be considered. In other words, the mean rate of internal gains from people, 

equipment, and lights must match the values provided in the mentioned standard.  

For every time-step, Energy Plus computes the values of lighting and equipment gains by 

multiplying the applicable usage rate (given by the schedule) by the pertinent reference 

value. In the case of occupants, the hourly gains depend not only on hourly occupancy 

presence rates, but also on the metabolic rate or activity level assumed for the time step. 

For the determination of the reference values such that the overall gains agree with 

standard-based average rates, area-related annual internal gains value was computed for 

each usage (Equation 47). For non-residential buildings, gains from lighting were computed 

separately according to (Equation 48). Equation 47  

 𝐼𝑔𝑎 = 𝑡𝑢𝑠𝑒,𝑎×𝑞𝑖,ℎ (47) 
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, where 𝐼𝑔𝑎 is the area-related annual internal gains for a certain usage 

[𝑊ℎ.𝑚−2. 𝑎−1], 𝑡𝑢𝑠𝑒,𝑎 is the number of annual operation hours associated with 

the usage [ℎ. 𝑎−1], and 𝑞𝑖,ℎ is the standard internal gains rate for the usage in 

question [𝑊.𝑚−2]. Equation 48  

 𝐼𝑔𝑎,𝐿 = 𝑡𝑢𝑠𝑒,𝑎×𝑞𝑖,𝑙   (Non-residential) (48) 

, where 𝐼𝑔𝑎,𝐿 is the area-related annual internal gains from lighting for a certain 

usage [𝑊ℎ.𝑚−2. 𝑎−1], and 𝑞𝑖,𝑙  is the standard internal gains rate from lighting for 

the usage in question [𝑊.𝑚−2].  

The reference values for the lighting, and equipment use, and the number of occupants had 

to be selected, such that the sum of the internal gains computed by the simulation matched 

the above values. For this purpose, first the above aggregate values had to be disaggregated 

among the three components of internal gains (Except in the case of lighting gains in non-

residential usages). This disaggregation was based on statistical information on the 

contribution of each component to internal gains. Internal gains from each sector can be 

calculated based on Equation 49, Equation 50, Equation 51. Equation 49  

 𝐼𝑔𝑎,𝐿 = 𝐼𝑔𝑎×𝑓𝐿 (Residential) (49) 
Equatio n 50  

 𝐼𝑔𝑎,𝐸 = 𝐼𝑔𝑎×𝑓𝐸 (50) 
Equatio n 51  

𝐼𝑔𝑎,𝑃 = 𝐼𝑔𝑎×𝑓𝑃 (51) 

, where 𝐼𝑔𝑎,𝐸 and 𝐼𝑔𝑎,𝑃 are the annual area-related internal gains form equipment 

and people [𝑊ℎ.𝑚−2. 𝑎−1], and 𝑓𝐿, 𝑓𝐸, and 𝑓𝑃 are the shares of internal gains 

from lighting, equipment, and people respectively. For residential spaces, 58%, 

19%, and 23% were assumed for gains pertaining to equipment, lighting and 

people respectively (Kemna & Acedo 2014). For gastronomy 70% and 30% were 

considered for gains from people and equipment, and for office 30% and 70 %. 
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The reference values for lighting and equipment power were computed according to 

Equation 52. Equation 52  

 𝑃𝐿/𝐸 =
𝐼𝑔𝑎,𝐿/𝐸

∑𝐻𝑅𝐿/𝐸
 (52) 

, where 𝑃𝐿/𝐸 is the reference area-related lighting/equipment power [𝑊.𝑚−2], 

∑𝐻𝑅𝐿/𝐸 is the aggregated annual full load hours of lighting/equipment use 

calculated based on hourly rates provided by the schedule [ℎ. 𝑎−1].  

In the case of occupants, the hourly gains depend not only on hourly occupancy presence 
rates, but also on the metabolic rate or activity level assumed for the time step. In this case, 
the following equation was applied ( Equation 53): Equation 53  

 𝑁𝑃 =
𝐼𝑔𝑎,𝑃

∑(𝐻𝑅𝑃×𝐻𝑚𝑟)
 (53) 

, where 𝑁𝑃 is the area-related number of people [𝑝𝑒𝑟𝑠𝑜𝑛.𝑚−2], 𝐻𝑅𝑃 is the hourly 

presence rate of inhabitants provided by the schedule [ℎ. 𝑎−1] , and 𝐻𝑚𝑟 is the 

hourly activity level or metabolic rate of the inhabitants provided by the schedule 

[𝑊. 𝑝𝑒𝑟𝑠𝑜𝑛−1]. 

The same logic was applied to acquire the reference air change rates, such that the annual 

average matches the expected value. For this purpose, the average hourly air change rate 

for every usage was calculated based on the standard provided values (Equation 54). Then, 

the reference air change rate was determined such that this average value would be attained 

(Equation 55). Note that natural ventilation follows the same schedule as occupancy 

presence rate. Equation 54  

𝑛𝑣̅̅ ̅ =
𝑛𝑣×𝑡𝑢𝑠𝑒,𝑎

𝑡𝑎
 (54) 

, where 𝑛𝑣̅̅ ̅ is the average hourly air change rate [ℎ−1], 𝑛𝑣 is the standard provided 

value for air change rate during use hours [ℎ−1], and 𝑡𝑎 is the number of hours in 

a year [ℎ. 𝑎−1]. 
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Equatio n 55  

𝑛𝑣,0 = 
𝑛𝑣̅̅̅̅ ×𝑡𝑎

∑(𝐻𝑅𝑉)
 (55) 

, where 𝑛𝑣,0 is the reference value for air change rate [ℎ−1], and ∑(𝐻𝑅𝑉) is the 

total number of full load operation hours of ventilation in a year [ℎ. 𝑎−1].  

Once the reference simulation models were developed, they were used as a basis to develop 

diversified models to represent buildings in the study area.  

  



    

 

 

 

An Hourglass Approach to Urban Energy Computing 

98 

 

6.4. Diversification Parameters 

The re-diversification module readjusts the non-geometric parameters of the reference 

simulation models to recapture part of the lost diversity and generate simulation models 

that better reflect the physical and operational characteristics of the represented buildings. 

The building parameters currently subjected to diversification are the thermal properties of 

the main building components and operational parameters. More specifically, the following 

model properties are diversified and readjusted: 

• Schedules pertaining to the presence and actions of inhabitants, use of lighting and 

equipment.  

• Reference area-related values for the number of inhabitants, equipment and 

lighting power. 

• Reference values for air change rate.  

• Thermal performance of the main components of the buildings’ thermal 

envelopes: uppermost and lowermost enclosures, external walls. 

In the current effort, fairly constant physical contextual parameters such as adjacency 

relations and mutual shading have been considered in the clustering process. The 

contribution of other urban features such as traffic or trees to microclimate variations can 

be captured via the re-diversification process. This can be achieved through readjustment 

of standard climate data used in the simulation or operational parameters, based on location 

dependent variables via a dedicated microclimate model. Similarly, a detailed consideration 

of inhabitant types, their behavioral traits and the consequent energy implications can be 

included. This can be facilitated through the coupling of the re-diversification module with 

an advanced data-informed occupancy model. Such expansions have been foreseen in the 

initial vision of the envisaged computational environment. However, the present effort 

focuses only on the diversification of those parameters, for which some source of 

background information concerning pertinent distribution patterns was available. The 

diversification process is guided by the information contained in the initially generated 

building stock representation. The current implementation of the re-diversification of 

occupant-dependent variables, can be seen as a place holder for more intricate 

considerations of inhabitant diversity in future attempts.  
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6.5. Diversification Method 

Computational Logic 

For the purpose of re-diversification, for every building in the neighborhood, a duplicate 

of the reference simulation model pertaining to the relevant representative building is 

created. In the new model, the values of the above-mentioned parameters are modified 

according to the information available on the target buildings, or based on background 

information on the distribution of the parameter subject to diversification. This procedure 

results in the generation of a unique simulation file associated with a unique set of schedules 

for every building in the study domain. These models share all geometric properties of the 

reference models, but are expected to emulate the thermal and operational properties of 

the target buildings more closely.  

The resulting simulation files are batch processed from the Energy Plus launcher. Hourly 

volumetric simulation results for energy loads of these diversified models are used along 

with the net volume of the target buildings to arrive at the hourly demand of these buildings 

according to Equation 56. Equation 56  

 𝑄𝑖,ℎ =
𝑄𝑆𝑖𝑚,𝑖,ℎ

𝑉𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒,𝑖
×𝑉𝑛,𝑖  (56) 

, where 𝑄𝑖,ℎ is the heating demand of an arbitrary building i in timestep h [𝑘𝑊ℎ], 

𝑄𝑆𝑖𝑚,𝑖 is the heating demand of the diversified simulation model pertaining to 

building i in the same timestep [𝑘𝑊ℎ], 𝑉𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒,𝑖 and 𝑉𝑛,𝑖 are the net volumes 

of the reference building (based on which the simulation model is generated) and 

building i, [𝑚3] respectively. 

A thorough explanation of the methods adopted to diversify each model parameter follows.  
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Representation of Inhabitant Behavior Diversity  

The reference schedules represent the temporal distribution of internal loads in aggregate 

terms. However, use of average profiles for demand assessments will result in identical peak 

load hours and unrealistically monotonous profiles across building classes. In order to 

stochastically represent occupancy-related factors, for each building based on the reference 

schedules for various days of the week, a set of randomized schedules were created and 

stored as CSV files compatible with Energy Plus requirements. Each schedule file has 8760 

rows (for every hour of the year), and 5 columns corresponding to occupants’ presence, 

lighting use, equipment use, HVAC operation and activity level (metabolic rate). The first 

three variables assume real values in the range of 0 to 1, and the fourth is a Boolean variable 

(0 or 1). The metabolic rate column includes values between 70 and 180 [𝑊. 𝑝𝑒𝑟𝑠𝑜𝑛−1] 

HVAC schedules are not diversified.  

As apparent in Table 11, the representative buildings are associated with three usages: 

residential, office, and gastronomy. In case of residential and gastronomy usages, schedules 

for occupancy, activity level, lighting and equipment use were diversified separately. For 

this purpose, for every hour of the year and every variable, the value suggested by the 

reference schedule was considered as the mean value of the time step, and a default 

coefficient of variance (CV) was used to derive the standard deviation of the normal 

probability distribution representing the variable in question (Equation 57). A value was 

then generated based on this distribution and assigned to the time step using NumPy an 

existing Python package (NumPy developers 2017).  

The identification of the specifically appropriate CV value is an open research question. 

Former studies on an office space with eight employees, suggests that for certain 

applications (e.g., the stochastic generation of presence patterns), CV might display a 

distinct value range (Mahdavi & Tahmasebi 2015). For instance, in the observed case study, 

the work duration is associated with a CV of 0.2-0.3 for various subjects, whereas the CV 

of arrival and departure times reveals a smaller value.  As such, a CV value of 0.2 was 

deployed in the present study. However, as mentioned before, further investigation is 

required to arrive at CV values, which better describe the distribution of various inhabitant-

related aspects of building operation. Equation 57  

 𝜎𝑡,𝑗 = 𝐶𝑉𝑗×𝜇𝑡,𝑗  (57) 
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, where 𝜎𝑖,𝑗 is the standard deviation of the variable j in time step t, 𝐶𝑉𝑗 is the 

coefficient of variance associated with variable j (in the present case for all variables 

this value equals 0.2), and 𝜇𝑡,𝑗 is the mean value of the variable j in time step t 

which equals the value provided for the time step in the standard schedules. 

Rules were set to ensure that the selected value remained within the acceptable range. These 

included upper and lower threshold values for various variables: a range of 0 to 1 for 

inhabitant presence, appliance and lighting use values, and minimum values of 70, and 90 

for activity levels (metabolic rates) in residential and non-residential buildings. As such, the 

generated schedules maintain the overall tendencies of the reference schedules, while 

featuring unique characteristics, which better emulate the diverse nature of occupant 

behavior.  

For residential and gastronomy usages, all schedules were diversified independently. In the 

case of office spaces, where equipment and lighting use are very strongly correlated to 

inhabitant presence, the rate of lighting and equipment use in every time step of the 

reference schedules was expressed as a function of the occupancy rate (Equation 58 and 

Equation 59). In this case, occupancy schedule was subjected to diversification. Equipment 

and lighting rates were computed based on the occupants’ presence rate at every time step. 

Diversified activity level schedules were also generated based on the explained method. 

Natural ventilation was assumed to follow the occupancy schedule. Equation 58  

 𝐿𝑡 = 𝑂𝑡×𝑓𝐿,𝑡 + 𝐿0,𝑡 (58) 

, where 𝐿𝑡 is the lighting use rate in time step t, 𝑓𝐿,𝑡 is a factor derived from standard 

schedules for time step t, and 𝐿0,𝑡 is the minimum lighting use rate of the timestep 

regardless of occupant presence (also defined based on standards schedules). Equation 59  

 𝐸𝑡 = 𝑂𝑡×𝑓𝐸,𝑡 + 𝐸0,𝑡  (59) 

, where 𝐸𝑡 is the equipment use rate in time step t, 𝑓𝐸,𝑡 is a factor derived from 

standard schedules for time step t, and 𝐸0,𝑡 is the minimum equipment use rate of 

the timestep regardless of occupant presence. 
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The diversification code links each IDF file (Simulation model) associated with a building 

to a unique set of diversified schedules according to the functions present in the model. 

The implementation of more elaborate occupancy models (e.g., Page et al. 2008) was not 

considered due to the excessively high granularity of the resulting profiles for urban level 

assessments. However, for certain applications, where an in-depth study of behavioral 

aspects of energy use is intended, the use of such models can be envisaged. The 

employment of Energy Plus for the simulation assessments certainly allows for the 

incorporation of more detailed developments with regard to occupant behavior modeling. 

Yet the usefulness of the adopted method, and its implications for computational load 

should be justified.   
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Readjustment of Reference Values Pertaining to Internal Gains and Ventilation 

Once the schedules are generated, the reference values for equipment and lighting power, 

number of occupants, and air change rate need to be diversified. This process is informed 

by a comparison between the annual area-related internal gains (𝐼𝑔𝑎,𝐵𝑢𝑖𝑙𝑑𝑖𝑛𝑔) and average 

hourly air change rate (𝑛𝑣,𝐵𝑢𝑖𝑙𝑑𝑖𝑛𝑔̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅) of the target buildings in each cluster with the values 

associated with the reference building representing them. These values were extracted from 

the developed urban building stock representation, for the purpose of the re-diversification 

process (See 906.2). For each target building, if the internal gains or air change rate vary 

from those of the reference building, in the simulation file the relevant values are readjusted 

in proportion to the observed difference.  

However, a straightforward readjustment of reference values for equipment and lighting 

power, number of occupants and ventilation rate would not be accurate, since each 

simulation model is associated with a unique set of schedules. Although the schedules 

pertaining to each usage are relatively similar in terms of overall tendencies, the annual of 

full load operation hours may vary slightly from one schedule to another. As such, to 

determine the reference values, the following steps are taken: 

• The relation between the annual internal gains of the target building and the 

reference building is expressed as a fraction (Equation 60). 

• For the target building, the annual internal gains through lighting (𝐼𝑔𝑎,𝐿), 

equipment use (𝐼𝑔𝑎,𝐸), and people (𝐼𝑔𝑎,𝑃) are calculated for each usage based on 

the default values of these variables calculated for the generation of the reference 

models and the multiplier derived in the previous step (Equation 61).  

• Using the new values, and the schedules associated with the target building, the 

reference values for lighting and equipment power, and number of occupants are 

computed according to Equation 52 and Equation 53. Equation 60  

𝑓𝐼𝑔 =
𝐼𝑔𝑎,𝐵𝑢𝑖𝑙𝑑𝑖𝑛𝑔,𝑇𝑎𝑟𝑔𝑒𝑡

𝐼𝑔𝑎,𝐵𝑢𝑖𝑙𝑑𝑖𝑛𝑔,𝑅𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒
 (60) 

, where 𝑓𝐼𝑔 is the multiplier for the readjustment of internal gains, and 

𝐼𝑔𝑎,𝐵𝑢𝑖𝑙𝑑𝑖𝑛𝑔,𝑇𝑎𝑟𝑔𝑒𝑡 and 𝐼𝑔𝑎,𝐵𝑢𝑖𝑙𝑑𝑖𝑛𝑔,𝑅𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒  are the area-related annual internal 

gains of the target building and the reference building representing it respectively 

[𝑊ℎ.𝑚−2. 𝑎−1]. 
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Equatio n 61  

𝐼𝑔𝑎,𝐿/𝐸∕𝑃,𝑇𝑎𝑟𝑔𝑒𝑡 = 𝐼𝑔𝑎,𝐿/𝐸∕𝑃,𝑅𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒×𝑓𝐼𝑔 (61) 

, where 𝐼𝑔𝑎,𝐿/𝐸∕𝑃,𝑇𝑎𝑟𝑔𝑒𝑡 and 𝐼𝑔𝑎,𝐿/𝐸∕𝑃,𝑅𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 are the area-related annual 

internal gains from lighting/equipment/people of the target and reference 

buildings respectively [𝑊ℎ.𝑚−2. 𝑎−1]. 

Similarly, the multiplier for reference values for air change rate is computed according to 

Equation 62.  Equation 62  

𝑓𝑛𝑣̅̅̅̅ =
𝑛𝑣,𝐵𝑢𝑖𝑙𝑑𝑖𝑛𝑔,𝑇𝑎𝑟𝑔𝑒𝑡̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

𝑛𝑣,𝐵𝑢𝑖𝑙𝑑𝑖𝑛𝑔,𝑅𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅
 (62) 

, where 𝑓𝑛𝑣̅̅̅̅  is the multiplier for the readjustment of average air change rate, and 

𝑛𝑣,𝐵𝑢𝑖𝑙𝑑𝑖𝑛𝑔,𝑇𝑎𝑟𝑔𝑒𝑡̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ and 𝑛𝑣,𝐵𝑢𝑖𝑙𝑑𝑖𝑛𝑔,𝑅𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅  are the average hourly air change 

rates of the target building and the reference building representing it respectively 

[ℎ−1]. 

Equation 55 is used to compute the reference value for air change rate for each usage based 

on the schedule associated with the target building. The resulting value is multiplied by the 

above identifier.   
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Readjustment of thermal properties 

The diversification of the thermal properties of the envelope relies on the diversity of 

effective element U-values. The effective element U-value is not only a measure of the 

thermal quality of the element’s construction, but also a function of the significance of the 

said construction in the overall thermal performance of the building. This significance is 

determined by the share of the elements associated with a particular construction in the 

total thermally effective area of the envelope (corrected for adjacencies). The diversification 

process modifies the pertinent constructions in such a way as to replicate the effective 

construction U-values computed for every principle building element in the previous phase. 

Since the geometry of the diversified target model is identical to that of the reference model, 

any deviations from the effective U-values of the reference building must be accounted for 

by manipulating the U-values of the constructions in the new model. For instance, if the 

walls of a building have a more significant share in the building’s effective envelope than is 

the case for the reference building, and both buildings have the same effective wall U-value, 

the wall element of the diversified model will assume a higher U-value, such that the 

effective U-value of the wall remains the same. 

As mentioned before, for every reference simulation file, building component 

constructions were defined according to the common practice of the period of construction 

of the reference building. In every relevant construction, only the most thermally effective 

layer was subjected to modifications. (e.g., the massive masonry layer, or the ceiling timber 

in the case of historical buildings, and the insulation layer in case of newer buildings). Since 

a modification of the thermal mass of the building was not intended, only the thermal 

conductivity of the layer was changed to reach the target construction U-value (Equation 

63). 

Rules have been applied to prevent the layer from assuming unreasonably large or negative 

values. This may happen in rare cases where the effective U-value of the components vary 

significantly from those of the reference building.  

The re-diversification process, for each building computes the value of the diversified 

variables and modifies the associated IDF model accordingly. As a result, each building is 

represented by a unique simulation model which mimics the geometry of the pertinent 

reference building but is expected to represent the operational and thermal properties of 

the target building more closely. 
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 Equatio n 63  

𝑈𝑇𝑎𝑟𝑔𝑒𝑡 − 𝑈𝑅𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 = 
1

𝑅𝑇𝑎𝑟𝑔𝑒𝑡
−

1

𝑅𝑅𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒
 (63) 

⟹ 𝑅 𝑅𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒−𝑅𝑇𝑎𝑟𝑔𝑒𝑡 = 
𝑈𝑇𝑎𝑟𝑔𝑒𝑡−𝑈 𝑅𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒

𝑈 𝑇𝑎𝑟𝑔𝑒𝑡×𝑈𝑅𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒
  

⟹
1

𝜆𝑅𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒
−

1

𝜆𝑇𝑎𝑟𝑔𝑒𝑡
=

𝑈𝑇𝑎𝑟𝑔𝑒𝑡−𝑈 𝑅𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒

𝑈 𝑇𝑎𝑟𝑔𝑒𝑡×𝑈𝑅𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒×𝑑
  

⟹ 𝜆𝑇𝑎𝑟𝑔𝑒𝑡 = 
1

1

𝜆𝑅𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒
−

𝑈𝑇𝑎𝑟𝑔𝑒𝑡−𝑈 𝑅𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒

𝑈 𝑇𝑎𝑟𝑔𝑒𝑡×𝑈𝑅𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒×𝑑

  

, where 𝑈𝑇𝑎𝑟𝑔𝑒𝑡 and 𝑈 𝑅𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 are the effective U-values of a certain component 

(uppermost/lowermost enclosures/external walls) of the target and reference 

buildings [𝑊.𝑚−2. 𝐾−1],  𝑅𝑇𝑎𝑟𝑔𝑒𝑡 and 𝑅 𝑅𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 are the thermal resistance of 

the said element in target and reference buildings [𝐾.𝑚2.𝑊−1], 𝑑 is the thickness 

of the layer subjected to diversification [𝑚], and 𝜆𝑇𝑎𝑟𝑔𝑒𝑡 and 𝜆𝑅𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 are the 

thermal conductivities of the layer in the target construction and the reference 

construction [𝑊.𝑚−1. 𝐾−1]. 

The generation of diversified simulation files for all buildings in the case study, on an 

average PC, requires less than one hour. The simulation process itself, for the 744 buildings 

within the study area, takes several hours. The computation load association with the 

simulations can be managed through deployment of distributed computing schemes. 
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6.6. Illustrative Scenarios 

Two sets of illustrative scenarios have been developed to demonstrate the impact of the 

adopted diversification on model predictions. The first set of scenarios aims at comparing 

the model predictions with various levels of diversification to determine whether or not 

the integrity of the model and its representativeness is maintained through the re-

diversification process.  

The second set is intended to display the utility and implications of the re-diversification 

process in comparative analysis of hypothetical simple behavior change scenarios. The 

envisaged scenarios in this regard, are purely illustrative and do not claim to represent the 

complexity of real behavioral traits. Rather, they are developed to demonstrate the different 

response of the diversified and non-diversified models to potential behavioral changes.   

Diversification Scenarios 

To assess the impact of the diversification process on the model predictions, the 

predictions of the non-diversified model were compared to the predictions resulting from 

models with two levels of diversification. The non-diversified model (NDM) is based on 

the reference simulation files with standard assumptions for thermal quality of 

components, schedules, area-related internal gains, and air change rate (As presented in 

6.3). In this case, the volumetric hourly demand values of the reference simulation models 

are multiplied by the volume of the represented buildings to yield the hourly heating 

demand of these buildings. In the second model (DMS), as a first diversification step, only 

the schedules are diversified. The third model (DMA) involves all the diversification steps 

described in the previous chapter (Table 12). In each case, simulation results are used to 

compute the heating demand of the entire neighborhood according to  Equation 56. 

Table 12 Overview of the diversification scenarios 

Abbr. Schedules Thermal properties Internal gains 
Number of 

simulations 

NDM Not diversified Not diversified Not diversified 7 

DMS Diversified Not diversified Not diversified 744 

DMA Diversified Diversified Diversified 744 
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Behavior Change Scenarios  

To demonstrate the advantages of the developed computational model for the investigation 

of various change and intervention scenarios, three simple illustrative scenarios pertaining 

to changes in the operational parameters of buildings (occupant behavior) were designed. 

The first scenario follows the standard assumptions for internal temperature and HVAC 

availability hours. The second scenario assumes a set-back heating set point for the vacant 

hours in non-residential spaces, which is closer to the actual building operation tendencies. 

The third scenario, emulating the behavior of a more energy-aware population, maintains 

the set-back threshold, and modifies the internal heating set point temperatures in 

proportion to the occupancy rate of the building in every time step. This scenario is based 

on the simple assumption that if the occupancy rate is lower, fewer spaces are heated, 

thereby reducing the average internal temperature of the building. These scenarios were 

simulated with the NDM and DMA models. Note that the developed behavior change 

scenarios are intended as illustrative examples to demonstrate the modeling possibilities of 

the developed framework and are not presumed to realistically capture the behavior of 

inhabitants. Table 13 describes the rules defining the HVAC operation in each scenario.  

Table 13 Overview of the base case and scenario assumptions for HVAC operation 

 Residential Non-Residential 

S0 
Set point assumptions [°C] 20 20 

HVAC Availability 24 hours a day 14 hours on weekdays 

S1 

Set point assumptions [°C] 20  20 during work hours 

14 other times 

HVAC Availability 24 hours a day 24 hours a day 

S2 

Set point assumptions [°C] 16  

16  

20  

Interpolate 

Night hours  

Occupancy rate <25% 

Occupancy rate > 55% 

Other times 

14  

16  

20 

Interpolate 

Not working hours 

occupancy rate <25% 

Occupancy rate > 75% 

Other times 

HVAC Availability 24 hours a day 24 hours a day 
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6.7. Results and discussion 

Diversified Schedules 

Figure 32 displays examples of hourly metabolic rates (activity level values) of a typical 
day for each usage. As apparent in the graph, the values remain within a plausible range, 
yet display variations. 

 

Figure 32 An instance of hourly metabolic rate values generated for the three usages on a typical day. 

Figure 33, Figure 34, and Figure 35 illustrate the standard schedules for occupancy, lighting, 

and equipment use as well as instances of a week of diversified operational data generated. 

Note that the diversified schedules closely follow the tendencies of the reference schedules, 

yet represent the stochastic nature of occupant behavior. The presented examples display 

a single week of data generated for three instances of office, gastronomy, and residential 

spaces. The generated schedule files include 8760 rows of stochastically generated data for 

each commodity, and are produced individually for each building. Note that the usages 

present in the simulation file produced to represent each target building are the same as 

those incorporated in the relevant reference model. As such, the general temporal 

distribution of loads in the target models are not much different from the reference model. 

The variations in load distributions due to diversification of schedules maintain the general 

patterns but add some noise to better represent the stochastic nature of inhabitant-

dependent building characteristics.  
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Figure 33 Reference schedules versus diversified schedules generated for a building with office usage 
representing a. Occupancy, b. Lighting, and c. Equipment. 
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Figure 34 Reference schedules versus diversified schedules generated for a building with gastronomy usage 

representing a. Occupancy, b. Lighting, and c. Equipment. 

0%

20%

40%

60%

80%

100%

Monday Tuesday Wednesday Thursday Friday Saturday Sunday

In
h

ab
it

an
t 

P
re

se
n

ce
 R

at
e

a. Gastronomy Occupancy 

Reference Diversified

0%

20%

40%

60%

80%

100%

Monday Tuesday Wednesday Thursday Friday Saturday Sunday

L
ig

h
ti

n
g 

R
at

e

b. Gastronomy Lighting 

Reference Diversified

0%

20%

40%

60%

80%

100%

Monday Tuesday Wednesday Thursday Friday Saturday Sunday

E
q
u
ip

m
en

t 
U

se
 R

at
e

c. Gastronomy Equipment 

Reference Diversified



    

 

 

 

An Hourglass Approach to Urban Energy Computing 

112 

 

 
 

 
 

 

Figure 35 Reference schedules versus diversified schedules generated for a building with residential usage 
representing a. Occupancy, b. Lighting, and c. Equipment. 
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Results of Diversification Scenarios 

Table 14 summarizes the results of the modeled cases. As seen in the table, both levels of 

diversification result in minor changes in the model outcome in terms of the aggregate 

energy demand of the neighborhood, as well as annual peaks. The diversification of the 

schedules results in small modifications in the annual peak load (+1%) and the aggregated 

annual demand of the neighborhood (-1%). The cumulative effect of the diversified 

schedules resembles closely, that of the impact of the average schedule, which was to be 

expected. The additional readjustment of the buildings’ thermal properties, internal loads 

and ventilation rates causes slightly more significant changes in the overall predictions of 

the model (-3.4%). However, the deviation at the aggregated level is not so substantial as 

to compromise the representativeness of the model.  

Table 14 Summary of the results of modeled diversification scenarios. The non-diversified model is considered 
as the reference model in the calculation of the relative values.  

Nonetheless, the impact of the diversification process is magnified when the scale of 

observation reduces. A comparison of the aggregated annual demand of various clusters 

computed with the three models can be seen in Table 15. At the level of the clusters, the 

deviations from the NDM are more substantial in the case of DMA. The non-residential 

building clusters are more sensitive to changes in schedules.  

Table 15 Deviations in the annual demand of clusters as predicted by diversified models from the non-
diversified model predictions. 

  Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 Cluster 6 Cluster 7 

NDM 

A
gg

re
ga

te
d

 

an
n

u
al

 h
ea

ti
n

g 

d
em

an
d

 [
M

W
h

] 

45584.23 22397.46 38435.705 41929.35 16690.24 32003.70 1313.78 

DMS 45489.35 22343.98 38334.817 41001.84 16663.19 31264.58 1308.41 

DMA 43109.15 25443.04 32301.631 37494.41 17984.79 33739.19 1587.04 

DMS 

R
el

at
iv

e 

d
ev

ia
ti

o
n

 

fr
o

m
 

N
D

M
 [

%
] 

0 0 0 -2 0 -2 0 

DMA -5 14 -16 -11 8 5 21 

Models Maximum 
hourly load 

[MWh] 

Relative 
deviation from 

reference 
scenario [%] 

mean hourly 
demand 
[MWh] 

Standard 
deviation 
[MWh] 

Total annual 
space heating 
load [MWh] 

Relative 
deviation from 

reference 
scenario [%] 

NDM 153.13 0 22.64 26.83 198354.47 0 

DMS 154.84 1.11 22.4 26.34 196406.17 -0.98 

DMA 151.39 -1.13 21.88 25.97 191659.24 -3.38 
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The percentage deviation of the volumetric annual heating demand of the buildings 

acquired from the DMA, from the reference (non-diversified) values are shown in Figure 

36.  For the majority of the buildings, the DMA volumetric demand remains within 20% 

of the reference value. The values predicted by DMS do not vary significantly from the 

reference values. 

 

Figure 36 Percentage deviation of the volumetric annual heating demand of buildings in each cluster, 
computed by the DMA from that of the relevant reference model (NDM). 

If the observation scale is further reduced to a single time step, both DMS and DMA result 

in noticeable deviations from the non-diversified hourly predictions.  displays the diversity 

caused by the two diversification scenarios in the hourly heating demand values of the 

buildings in a single time step (11 am, January 8th). In this graph, the percentage deviation 

from the hourly demand value predicted by the non-diversified model has been shown. 

The two diversification scenarios, DMS and DMA, result in 2% and 8% average deviation 

from the hourly predictions of the non-diversified model respectively. 

 

Figure 37 Relative deviation of hourly demand results of all buildings as predicted by the DMA and DMS 
from NDS predictions for a single time step. The x-axis represents the 744 buildings in the study area. 
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These variations, although unnoticeable at aggregate scale, can have significant implications 

for instance for the design and deployment of small scale distributed generation schemes. 

Although the variance resulting from the re-diversification process produces seemingly 

more realistic results, the performance of this model towards accurate representation of 

urban energy demand requires further validation. The ultimate reliability of the predictions 

with regard to heating demand, can only be assessed and validated based on actual demand 

data, currently unavailable.  
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Results of Illustrative Behavior Change Scenarios 

The three sets of assumptions about inhabitant behavior have been applied to the non-

diversified model as well as the fully diversified model. The results of this investigation are 

summarized in Table 16. All scenarios have been compared to the base case assumptions 

with the non-diversified model (as the reference scenario). As mentioned before, at the 

aggregated level, peak, mean, and total heating demand simulated for the base case 

assumptions (S0) change little due to the inclusion of re-diversification in the modeling 

procedure. The application of the first behavior change scenario does not result in the 

divergence of the tendencies of non-diversified and the diversified model. The 

consideration of a setback value for the operation of non-residential spaces leads to a minor 

increase (2%) in the overall energy demand of the neighborhood based on both models. 

This is to be expected as the modifications applied in this scenario are somewhat 

independent of the occupancy-related aspects (they apply only to non-residential spaces in 

non-occupied hours). However, the implications of this scenario for the annual peak load 

are much more significant (16-17% depending on the computational model). Lower peak 

loads are advantageous for grid stability particularly in distributed generation systems.  

Table 16 Results of the behavior change scenarios as simulated by the non-diversified and diversified 
computational models 

The differences between the two models become more visible in case of the second 

scenario, which is based on maintaining the set-back values in non-residential buildings 

during non-occupied hours, occupancy sensitive control of heating set points during 

daytime, and lower night-time indoor thermostat settings in residential buildings. The 

comparison of the second scenario's predictions of both models (NDM-S2, DMA-S2) with 

the respective base case predictions of the same models (NDM-S0, DM-2-S0) shows that 

in the non-diversified model the application of the occupant-sensitive HVAC control 

displays a more significant decrease in demand than in the diversified model (14.7% 

Scenarios 
Annual Peak load 

[MWh] 
Relative deviation 
from NDM-S0 [%] 

Total annual space 
heating load [MWh] 

Relative deviation 
from NDM-S0 [%] 

N
D

M
 S0 153.1 0 198.35 0 

S1 128.2 -16.3 200.70 1.2 

S2 122.6 -19.9 169.14 -14.7 

D
M

A
 S0 151.4 -1.1 191.66 -3.4 

S1 124.5 -18.7 195.22 -1.6 

S2 111.7 -27.0 170.30 -14.1 
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compared to 10.7%). As such, the non-diversified model may over-estimate the energy 

saving impact of similar scenarios. Comparing the S2 scenario to S1, reveals an even larger 

improvement in the case of the non-diversified model (-15.9% versus -12.5%). However, 

the peak load predicted by the non-diversified model, when subjected to S2, does not 

display much improvement compared to the case of S1. The non-diversified model predicts 

an additional 3.6% improvement in peak load when applying S2, whereas the improvement 

predicted by the diversified model mounts up to 8.2%. This seems to be inconsistent with 

the higher overall demand reduction predicted by the former model. As such, the non-

diversified model appears to overestimate annual demand reduction due to occupant 

behavior change, while failing to realistically predict the impact of these improvements on 

the peak loads. Figure 38 displays the range of hourly loads (of the entire domain) for 

various scenarios applied to the diversified model in terms of boxplots. In Figure 39, the 

cumulative frequency graph for hourly demand of the neighborhood in all scenarios has 

been plotted. Note that even though S1 and S2 result in decreases in the magnitude of the 

peak load, they increase the frequency of hours with higher demands. Such information 

can support an efficient deployment of supply side energy management strategies. 

 

Figure 38 (Left) Comparative analysis of the hourly demand predicted in various scenarios by DMA 

Figure 39 (Right) Cumulative relative frequency of the hourly heating load in relation to annual peak load  

The current study cannot provide solid evidence as to whether or not the developed 

diversified model is successful in realistic capturing of the actual response of urban 

neighborhoods to inhabitant behavior change. However, the existing urban diversity, and 

the significant differences between the response of the diversified and non-diversified 

models to various assumptions with regard to building operation, suggest that essential 

information can be lost or misrepresented in common reductive urban stock models.
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7. Conclusion 

7.1. Summary of Contributions 

 

Large-scale implementation of detailed building performance simulation 

Addressing the requirement for more versatile urban energy computing methods, the 

Hourglass framework enables the utilization of full-fledged building performance simulation 

tools for high-resolution assessment of the performance of large building assemblies. These 

tools can model the intricate interrelations between buildings, their surroundings, and their 

internal processes, yet their large-scale application is hampered by limitations in 

informational and computational resources. The suggested approach relies on three 

fundamental developments to eliminate the practical obstacles toward implementation of 

simulation tools at urban level: a. the urban building stock representation module, b. the 

reductive module, and c. the re-diversification module.  An urban instance in the city of 

Vienna, Austria, has been selected as a laboratory for the developmental and evaluative 

activities of the current project. A such, the current implementation is tailored to the 

Austrian context but can be readjusted for other geographical contexts with minor 

modifications. 

  

CHAPTER 7 
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Automated generation of a geo-referenced, versatile, and energy-relevant urban 

building stock representation using available official and crowd-sourced data  

The first component, incorporates the data available at large scale to generate an energy 

relevant representation of the urban building stock. For this purpose, official and crowd-

sourced web-based GIS data, relevant standards and guidelines, and statistical information 

are utilized. The developed routine, integrated within a plug-in for an open source GIS 

platform, superimposes the available data to extract information on buildings’ geometric, 

thermal, contextual, and operational properties. The adopted method points out the short-

comings of the official GIS data in providing useful descriptions of buildings. The lack of 

an appropriate task-oriented ontology for the accumulation and organization of such data 

has resulted in inconsistencies in the available information, pertaining to physical and 

operative aspects. Moreover, due to the time, effort, and resources required for the 

accumulation of the official GIS information, and given the dynamic nature of the urban 

environments, the available information is outdated in many instances. Unofficial web-

based sources on the other hand, which are fuelled by volunteer communities, if used with 

care can provide insight into the current state of the urban fabric. The present effort is a 

case in point of how crowd-sourced web-based data repositories can be utilized to evaluate, 

enrich, and update the available official data sources.  

The generated representation does not only provide the basis for the following steps of the 

current project, but can also cater for other applications, which require three-dimensional 

urban stock models (e.g., solar or wind energy availability analyses). Since the entire process 

relies on geo-referenced information, the model can be further enhanced through 

incorporation of other information layers such as energy and mobility networks, renewable 

energy sources, etc. Currently, a building data representation schema created for the 

purpose of this project is being used. However, the recent advancements in the 

development of standard energy-compliant urban data representation schemas (Nouvel et 

al. 2015; Benner et al. 2016) facilitate the integration of the developed routine for the 

generation of multi-purpose city models. 
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Employment of cluster analysis techniques for the identification of authentic 

representative buildings from an urban neighborhood 

The second component of the project, employs well-known data mining methods towards 

an energy-based classification and sampling of buildings. In lieu of the conventional usage 

and age based classification schemes, to more systematically capture the dynamic nature of 

the urban building stock and its transformations through retrofit and densification, as well 

as operative changes, an original set of energetically relevant indicators was assembled for 

stock segmentation. The building stock representation provided by the first module was 

used to extract the values of these descriptive indicators and the matrix of building 

information expressed in terms of these indicators was then subjected to Multivariate 

Cluster Analysis (MCA). The resulting classification was visualized in the adopted GIS 

environment. Average buildings were selected from each class as the class representative. 

Contrary to the conventional classification efforts, where an increase in the number of 

classification criteria results in an increase in the number of classes, MCA-based 

classification enables the involvement of various parameters, while maintaining control 

over the number of resulting classes. This facilitates the use of explicit energy-influential 

characteristics such as average envelope U-value, as opposed to vague signals such as 

building age. In view of the dynamic nature of the urban building stock and its 

transformations through retrofit and densification, as well as operative changes, this may 

provide a more generic stock segmentation and sampling possibility. The cluster analysis 

algorithms allow for flexibility in the definition of the acceptable range for the number of 

emerging clusters. As such, the number of clusters can be adapted to the available 

computational and informational resources of the users.  

Ideally, the identification of the most suitable set of descriptive indicators for classification 

and the potential weighting of these factors, should be based on detailed analysis of the 

sensitivity of the urban energy use patterns to various building characteristics. Since this 

analysis requires currently unavailable highly resolved information on the actual energy 

demand of the urban building stock, a different method was adopted to support the 

selection of the criteria for the classification process. Various scenarios in terms of 

classification criteria and clustering algorithms were tested for their performance toward 

efficient prediction of the aggregated and disaggregated values of heating demand. 

Preliminary tests carried out on the selected urban instance involving 744 buildings, based 

on simplified normative procedures suggest that the adopted classification and sampling 

schema can reliably represent the aggregate annual energy performance of an urban 

neighborhood. The best performing clustering schema results in the partitioning of the 

studied building agglomeration into 7 distinct building clusters. Each cluster is represented 
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through one building, resulting in a sample size of less than 1% of the entire domain. 

Despite the small sample size, this method leads to relatively small errors in the prediction 

of the aggregated neighborhood performance, as well as low average error in the building 

level predictions. A comparison between the conventional “construction period and usage” 

oriented classification and the suggested method (performed for residential buildings) 

reveals the superiority of the developed method in view of the representation of heating 

demand diversity. Although this evaluation has provided some indication of the efficiency 

of the selected method for building classification, due to the low temporal resolution of the 

incorporated information, further investigation with highly resolved data is necessary to 

readjust, enhance, and validate the model.  

The selection of authentic buildings to represent the urban neighborhood, on the one hand 

enables the detailed modeling of the various aspects of these buildings based on actual data. 

On the other hand, use of authentic buildings as opposed to synthetic archetypes, facilitates 

the future utilization of punctual monitoring data for the calibration of large-scale energy 

models. Such methods can significantly improve the quality of model predictions, while 

minimizing the investment and effort required for data acquisition through monitoring 

activities.  
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Consideration of the impact of urban diversity on the model predictions 

The third component of the environment utilizes stochastic methods and the generated 

stock representation to recover part of the diversity loss, inherent to reductive methods. 

Currently, several non-geometric building characteristics are subjected to diversification. 

These diversified aspects pertain to the magnitude and temporal distribution of internal 

gains and natural ventilation, as well as thermal properties of the building envelope. The 

information contained in the representation developed in the first method is used to create 

permutations of the simulation models of the selected representative buildings, such that 

the resulting models better express various characteristics of the target buildings.  

The impact of the diversification process on the model predictions have been demonstrated 

with simple illustrative examples pertaining to behavior change scenarios. In the 

diversification of the reference schedules, due to the nature of the stochastic method 

adopted, in aggregate terms, the tendencies of the original standard schedules are 

maintained. However, the diversification results in a more realistic representation of the 

temporal as well as spatial distribution of energy demand. The data-oriented diversification 

of internal gains and thermal properties leads to more significant changes in the overall 

demand predictions of the model. However, it is expected to improve the performance of 

the model for comparative analysis of the energy impact of various scenarios due to the 

better representation of urban stock diversity.  

A model validation process is essential to prove that the re-diversification process improves 

the precision and accuracy of the sample-based energy model’s predictions. However, a 

comparison between the predictions of the diversified and non-diversified models when 

subjected to behavior change scenarios demonstrates the significance of accounting for 

operative diversity in such studies. The applied tests suggest that due to its unrealistic 

representation of the occupants’ presence and behavior, the non-diversified model appears 

to overestimate the urban-level consequences of occupancy-driven changes in the settings 

of system controls. This could lead to major shifts between the expected improvements 

and delivered outcomes in the planning of urban-level demand side energy strategies.  On 

the other hand, the predicted impact of the envisaged changes on the peak load was not 

consistent with the projected changes in the overall demand. Such miscalculations may 

falsify, amongst other things, the design and deployment process of renewable distributed 

energy generation schemes. As such, the presented illustrative examples suggest that the 

consideration of urban diversity, often ignored in reductive energy models, is of crucial 

significance in the assessment of the impact of various change and intervention scenarios.   
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Catering for the computational requirements of an integrative urban decision 

support environment 

The proposed Hourglass approach is envisaged as the core computational component of an 

integrative urban decision support environment, which is intended to cater for urban scale 

energy inquiries in view of various change and intervention scenarios. This environment is 

targeted at the assessment and comparative analysis of the energy and emission implications 

of a wide range of scenarios pertaining to the following aspects: 

• Physical interventions: Thermal retrofit, densification, etc. 

• Technological and infrastructural interventions: Integration of distributed 

generation systems, efficient heating systems, etc. 

• Climatic changes: Urban Heat Island Studies, etc. 

• Occupant behavior changes: Induced by demographic changes, lifestyle changes, 

etc. 

Figure 40 schematically illustrates how the current development can be incorporated within 

such an environment. The generated routine represents buildings and their internal and 

external boundary conditions with the level of detail suited to intricate simulation 

assessments. As such, it has the appropriate representation resolution to support the influx 

of data from dedicated modules of inhabitant behaviour and microclimate for better 

predictive performance. The computational framework is inherently capable of 

incorporating detailed representations of building systems. Even though the current 

implementation does not consider this commodity, the method can be extended to involve 

system types in the clustering and/or the re-diversification process.  
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Figure 40 Schematic depiction of the incorporation of the developed Hourglass model in an integrative urban 
decision support environment. 
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7.2. Future Research Horizons 

The reported effort paves the way toward generation of generic urban stock energy models, 

which do not rely on expert or location dependent knowledge on building typologies. It 

enables the use of detailed simulation computations for urban-level energy inquiries, while 

attempting to represent the urban diversity. Despite the efforts to assess the performance 

of the developed model using low-resolution estimated demand data, a thorough validation 

of the method via highly resolved energy demand information remains a necessary step to 

establish its merit and usability. If the required data for such an analytical step becomes 

available, this data can be utilized to take a step backwards and re-evaluate and improve the 

set of descriptive indicators adopted for the classification process, as well as reconsider the 

benefits of various MCA algorithms for the efficient partitioning of the urban building 

stock.  

Moreover, following in-depth analyses, a suitable weighting schema can be determined for 

the classification criteria. In a broader approach, further research on various urban contexts 

with diverse spatial and morphological compositions can help better understand the 

relationship between various city and building characteristics and their implications for 

energy demand. Such studies can support and improve the development of advanced tools 

to inform urban developmental activities and strategic planning.   

The consideration of urban diversity is shown to be of marked significance in the planning 

of urban intervention strategies and the prediction of the impact of various changes on the 

urban energy demand. In the current project, some non-geometric building features were 

subjected to diversification. However, accounting for the diversity of some geometric 

aspects such as window to wall ratio can be done with acceptable effort. Future research 

intentions in this regard include exploring the potential of diversifying other building 

characteristics such as solar exposure. Also, the underlying assumptions (constant CV 

values) for the stochastic generation of schedules require further refinement and evaluation 

through empirical studies, to insure realistic representation of operational parameters. The 

diversification process can be a potential instrument for the calibration of urban energy 

models. Another interesting research endeavor would be to explore the utility of the 

diversification process for calibration of reductive urban energy demand models based on 

detailed monitored data from a subset of buildings.  

Ultimately, further research is required to insure the incorporation of other useful sources 

of information in such energy computing schemes. Toward this end, integration of available 

Building Information Models, simulation results from on-site predictive control systems, 

and monitored demand data can be considered for real-time model evaluation and 
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calibration. For instance, utilization of monitored data pertaining to the representative 

buildings can help calibrate the model for more precision.  In a more general approach, 

available and growing monitored data can be used to refine estimations of neighborhood 

level energy behavior. In this regard, the potential of statistical methods (e.g., Bayesian 

statistics), which facilitate the correction and readjustment of predictions as more data 

becomes available, can be explored. Such attempts may lead to the development of a 

computational environment, which is capable of aligning all available data streams to deliver 

consistent and reliable projections of urban energy use patterns.
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List of Abbreviations 

General 

DG Distributed Generation 

UBEM 

GCM 

CFD 

Urban Building Energy Model 

Global Circulation Model 

Computational Fluid Dynamics 

BPS Building Performance Simulation 

GIS Geographic Information Systems 

SVF Sky View Factor 

OSM Open Street Map 

MCA Multivariate Cluster Analysis 

EM Expectation Maximization 

BIC Bayesian Information Criterion 

CSV Comma Separated Values 

CV coefficient of variance 

IDF Input Data File 

HVAC Heating Ventilation and Air-Conditioning 

 

 

 

Project Related 

NDM Non-diversified model 

DMS Model with diversified schedules 

DMA Model with diversification of all considered parameters 
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List of Symbols and Units 

The Reductive Module 

Symbol Description Units 

Vn net volume of the building 𝑚3 

V Urban air temperature 𝑚3 

𝑓𝑛 ratio of net to gross volume  - 

𝐴𝑒 thermally effective envelope area 𝑚2 

𝐴𝑖 area of a building enclosure  𝑚2 

𝑓𝑡,𝑖 temperature correction factor  - 

𝐶𝑡 thermal compactness of the building 𝑚 

ℎ𝑒 effective floor height 𝑚 

𝐴𝑓 area of the building’s footprint 𝑚2 

𝑛𝑓 number of floors - 

𝐺𝑅𝑒 effective glazing ratio - 

𝑊𝑊𝑅 window to wall ratio - 

𝐺𝑊𝑅 glazing to window ratio - 

𝑔 solar energy transmission of glazing - 

𝐴𝑜𝑤,𝑖 Area of an external wall 𝑚2 

𝑓𝑜,𝑖 orientation factor of a wall - 

𝑆𝑉𝐹𝑖 Sky View Factor of a wall - 

𝑟𝑜,𝑗 Monthly radiation value for an 

orientation 

𝑘𝑊ℎ ∙ 𝑚−2 
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Symbol Description Units 

𝑟𝑠,𝑗 Monthly radiation value for the south 

orientation 

𝑘𝑊ℎ ∙ 𝑚−2 

𝑈𝑒 Average effective envelope U-value 𝑊 ∙ 𝑚−2 ∙ 𝑘−1 

𝑈𝑖 U-value of an enclosure 𝑊 ∙ 𝑚−2 ∙ 𝑘−1 

𝑈𝑤,𝑒 average effective wall U-value 𝑊 ∙ 𝑚−2 ∙ 𝑘−1 

𝑈𝑤,𝑖 U-value of a wall element 𝑊 ∙ 𝑚−2 ∙ 𝑘−1 

𝐴𝑤,𝑖 area of a wall element 𝑚2 

𝑈𝑐,𝑒 average effective ceiling/roof U-value 𝑊 ∙ 𝑚−2 ∙ 𝑘−1 

𝑈𝑐,𝑖 U-value of a ceiling/roof element 𝑊 ∙ 𝑚−2 ∙ 𝑘−1 

𝐴𝑐,𝑖 area of a ceiling/roof element 𝑚2 

𝑈𝑓,𝑒 average effective floor U-value 𝑊 ∙ 𝑚−2 ∙ 𝑘−1 

𝑈𝑓.𝑖 U-value of a floor element 𝑊 ∙ 𝑚−2 ∙ 𝑘−1 

𝐴𝑓,𝑖 area of a floor element 𝑚2 

𝑂𝑢 Annual use hours fraction  - 

𝑡𝑢𝑠𝑒,𝑎,𝑖 number of annual use hours for a usage ℎ. 𝑎−1 

𝑓𝑣,𝑖 fraction of the volume associated with a 

usage 

- 

𝑡𝑎 total number of hours in a year ℎ. 𝑎−1 

𝑂𝑑/𝑢 daytime use intensity - 

𝑡𝑑𝑎𝑦,𝑎,𝑖 annual operation hours in daytime ℎ. 𝑎−1 

𝑡𝑛𝑖𝑔ℎ𝑡,𝑎,𝑖 annual operation hours in nighttime ℎ. 𝑎−1 
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Symbol Description Units 

𝑂𝑑 annual daytime use fraction - 

𝑂𝑛 annual nighttime use fraction - 

𝑞𝑖,ℎ average area-related internal gains rate 𝑊.𝑚−2 

𝑞𝑖,ℎ,𝑖 area-related rate of internal gains from 

equipment, and occupants in heating 

season 

𝑊.𝑚−2 

𝑞𝑖,𝑙,𝑖 area-related rate of internal gains from 

lighting during the heating season 

𝑊.𝑚−2 

𝐿𝐸𝐷𝑖 benchmark value for the lighting energy 

demand 

𝑘𝑊ℎ.𝑚−2. 𝑎−1 

𝐼𝑔𝑑 daily area-related internal gains 𝑊ℎ.𝑚−2. 𝑑−1 

𝑡𝑢𝑠𝑒,𝑑,𝑖 daily operation time for a usage ℎ. 𝑑−1 

𝑛𝑣 hourly ventilation rate ℎ−1 

𝑛𝑣,𝑖 ventilation rate for a usage ℎ−1 

𝐴𝑐𝑑 Daily air-change rate 𝑑−1 

𝑄ℎ monthly heating demand 𝑘𝑊ℎ.𝑀−1 

𝑄𝑇 Monthly transmission losses 𝑘𝑊ℎ.𝑀−1 

𝑄𝑉 Monthly ventilation losses 𝑘𝑊ℎ.𝑀−1 

𝑄𝑖 Monthly internal gains 𝑘𝑊ℎ.𝑀−1 

𝑄𝑠 Monthly solar gains 𝑘𝑊ℎ.𝑀−1 

𝜂ℎ monthly utilization factor for heat gains - 

𝐿𝑇 transmission heat transfer coefficient 𝑊.𝐾−1 
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Symbol Description Units 

Δ𝜃 difference between internal temperature 

and average monthly external 

temperature 

𝐾 

𝑡 duration of the month ℎ.𝑀−1 

𝐿𝜓 transmission heat coefficient due to 

linear thermal bridges 

𝑊.𝐾−1 

𝐿𝜒 transmission heat coefficient due to 

punctual thermal bridges 

𝑊.𝐾−1 

𝐿𝑉 ventilation heat transfer coefficient 𝑊.𝐾−1 

𝑐𝑉𝑝,𝐿× 𝑃𝐿 volumetric heat capacity of air 𝑊ℎ.𝑚−3. 𝐾−1 

𝜈𝑉 Hourly airflow 𝑚3. ℎ−1 

𝑡𝑢𝑠𝑒,𝑚,𝑖 monthly use hours ℎ.𝑀−1 

𝑉𝑉 effective volume of the building 𝑚3 

𝐼𝑠,𝑗 monthly global irradiance on a surface 

with orientation j 

𝑘𝑊ℎ.𝑚−2.𝑀−1 

𝐴𝑡𝑟𝑎𝑛𝑠,𝑖,𝑗 effective area of a transparent building 

component with orientation j 

𝑚2 

𝛾ℎ heat balance ratio in the heating season - 

𝑎 numerical parameter for the utilization 

factor 

- 

𝑎0 dimensionless reference numerical 

parameter 

- 

𝐶 effective heat capacity of the building 𝑊ℎ.𝐾−1 

𝜏0 the reference time constant ℎ 
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Symbol Description Units 

𝑓𝐵𝑊 volumetric heat capacity of the building 𝑊ℎ.𝑚−3. 𝐾−1 

𝑄𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑,𝑖,𝑗 predicted annual heating demand of the 

building i, belonging to the cluster j 

𝑘𝑊ℎ. 𝑎−1 

𝑉𝑛,𝑖 net volume of the building i 𝑚3 

𝑄𝑣,𝑟𝑒𝑝,𝑗 volumetric annual heating demand of 

the building representing the cluster j 

𝑘𝑊ℎ.𝑚−3. 𝑎−1 

𝛿𝑇𝑜𝑡𝑎𝑙 relative neighborhood-level error - 

𝑄𝑡ℎ𝑒𝑜𝑟𝑒𝑡𝑖𝑐𝑎𝑙,𝑖 theoretical annual heating demand 

computed for the building i 

𝑘𝑊ℎ. 𝑎−1 

𝛿𝑀𝑒𝑎𝑛 mean building-level error - 

𝛿𝑖 relative prediction error of building i - 

𝑛 number of buildings within the study 

area. 

- 

𝑓>20% the fraction of the volume associated 

with a building-level prediction error of 

above 20% 

- 
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The Re-Diversification Module 

Symbol Description Units 

𝐼𝑔𝑎,𝐵𝑢𝑖𝑙𝑑𝑖𝑛𝑔 area-related annual internal gains of each 

building 

𝑊ℎ.𝑚−2. 𝑎−1 

𝑛𝑣,𝐵𝑢𝑖𝑙𝑑𝑖𝑛𝑔̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ weighted average air change rate of the 

building 

ℎ−1 

𝐼𝑔𝑎 area-related annual internal gains for a 

usage 

𝑊ℎ.𝑚−2. 𝑎−1 

𝐼𝑔𝑎,𝐿 area-related annual internal gains from 

lighting  

𝑊ℎ.𝑚−2. 𝑎−1 

𝐼𝑔𝑎,𝐸 annual area-related internal gains form 

equipment 

𝑊ℎ.𝑚−2. 𝑎−1 

𝐼𝑔𝑎,𝑃 annual area-related internal gains form 

people 

𝑊ℎ.𝑚−2. 𝑎−1 

𝑓𝐿 share of internal gains from lighting - 

𝑓𝐸 share of internal gains from equipment - 

𝑓𝑃 share of internal gains from people - 

𝑃𝐿/𝐸 Reference area-related lighting or 

equipment power 

𝑊.𝑚−2 

𝐻𝑅𝐿/𝐸 aggregated annual full load hours of 

lighting or equipment use 

ℎ. 𝑎−1 

𝑁𝑃 area-related number of inhabitants 𝑝𝑒𝑟𝑠𝑜𝑛.𝑚−2 

𝐻𝑅𝑃 hourly presence rate of inhabitants ℎ. 𝑎−1 

𝐻𝑚𝑟 metabolic rate of inhabitants 𝑊.𝑝𝑒𝑟𝑠𝑜𝑛−1 

𝑛𝑣̅̅ ̅ average hourly air change rate ℎ−1 
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Symbol Description Units 

𝑛𝑣,0 reference value for air change rate ℎ−1 

∑(𝐻𝑅𝑉) 
number of full load operation hours of 

ventilation in a year 

ℎ. 𝑎−1 

𝑄𝑖,ℎ heating demand of an arbitrary building i 

in timestep h 

𝑘𝑊ℎ 

𝑄𝑆𝑖𝑚,𝑖,ℎ heating demand of the diversified 

simulation model associated with 

building i in timestep h 

𝑘𝑊ℎ 

𝑉𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒,𝑖 the net volume of the reference building 𝑚3 

𝐿𝑡 lighting use rate in time step t - 

𝑂𝑡 Inhabitant presence in time step t - 

𝑓𝐿,𝑡 multiplier derived from standard 

schedules for time step t (lighting) 

- 

𝐿0,𝑡 minimum lighting use rate of the 

timestep regardless of occupant presence 

- 

𝐸𝑡 Equipment use rate in time step t - 

𝑓𝐸,𝑡 multiplier derived from standard 

schedules for time step t (equipment) 

- 

𝐸0,𝑡 minimum equipment use rate of the 

timestep regardless of occupant presence 

- 

𝑓𝐼𝑔 multiplier for the readjustment of 

internal gains 

- 

𝐼𝑔𝑎,𝐵𝑢𝑖𝑙𝑑𝑖𝑛𝑔,𝑇𝑎𝑟𝑔𝑒𝑡 area-related annual internal gains of the 

target building 

𝑊ℎ.𝑚−2. 𝑎−1 
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Symbol Description Units 

𝐼𝑔𝑎,𝐵𝑢𝑖𝑙𝑑𝑖𝑛𝑔,𝑅𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 area-related annual internal gains of the 

reference building 

𝑊ℎ.𝑚−2. 𝑎−1 

𝐼𝑔𝑎,𝐿/𝐸∕𝑃,𝑇𝑎𝑟𝑔𝑒𝑡 area-related internal gains of target 

building (lighting/equipment/people)  

𝑊ℎ.𝑚−2. 𝑎−1 

𝐼𝑔𝑎,𝐿/𝐸∕𝑃,𝑅𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 area-related internal gains of reference 

building (lighting/equipment/people) 

𝑊ℎ.𝑚−2. 𝑎−1 

𝑓𝑛𝑣̅̅̅̅  multiplier for the readjustment of 

average air change rate 

- 

𝑛𝑣,𝐵𝑢𝑖𝑙𝑑𝑖𝑛𝑔,𝑇𝑎𝑟𝑔𝑒𝑡̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ average hourly air change rates of the 

target building 

ℎ−1 

𝑛𝑣,𝐵𝑢𝑖𝑙𝑑𝑖𝑛𝑔,𝑅𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ average hourly air change rates of the 

reference building 

ℎ−1 

𝑈𝑇𝑎𝑟𝑔𝑒𝑡 effective U-values of a component of 

target building 

𝑊.𝑚−2. 𝐾−1 

𝑈𝑅𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 effective U-values of a component of 

reference building 

𝑊.𝑚−2. 𝐾−1 

𝑅𝑇𝑎𝑟𝑔𝑒𝑡 thermal resistance of a component in 

target building 

𝐾.𝑚2.𝑊−1 

𝑅𝑅𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 thermal resistance of a component in 

reference building 

𝐾.𝑚2.𝑊−1 

𝜆𝑇𝑎𝑟𝑔𝑒𝑡 thermal conductivities of a material in 

the target building 

𝑊.𝑚−1. 𝐾−1 

𝜆𝑅𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 thermal conductivities of a material in 

the reference building 

𝑊.𝑚−1. 𝐾−1 

𝑑 thickness of a material layer in the 

target/reference buildings 

𝑚 
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Appendix 1 

The results of all applied cluster analysis scenarios are presented in this appendix. These 

scenarios vary in the selection of the descriptive indicators constituting the clustering 

criteria, as well as the adopted clustering algorithms. The list of the input parameters in 

each case can be found in Table 7. The results have been visualized by the GIS plug-in 

developed for the reductive process. In each image, the buildings belonging to the same 

cluster are marked in the same color.  
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Figure 1.1 Visualized results of clustering scenario 1, K-means Method  
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Figure 1.2 Visualized results of clustering scenario 1, Hierarchical Method   
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Figure 1.3 Visualized results of clustering scenario 1, Model-based Method   
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Figure 1.4 Visualized results of clustering scenario 2, K-means Method   
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Figure 1.5 Visualized results of clustering scenario 2, Hierarchical Method   
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Figure 1.6 Visualized results of clustering scenario 2, Model-based Method   
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Figure 1.7 Visualized results of clustering scenario 3, K-means Method   
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Figure 1.8 Visualized results of clustering scenario 3, Hierarchical Method   



 

166 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1.9 Visualized results of clustering scenario 3, Model-based Method   
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Figure 1.10 Visualized results of clustering scenario 4, K-means Method   
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Figure 1.11 Visualized results of clustering scenario 4, Hierarchical Method   



  

169 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1.12 Visualized results of clustering scenario 4, Model-based Method   
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Figure 1.13 Visualized results of clustering scenario 5, K-means Method   
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Figure 1.14 Visualized results of clustering scenario 5, Hierarchical Method   



 

172 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1.15 Visualized results of clustering scenario 5, Model-based Method   
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Figure 1.16 Visualized results of clustering scenario 6, K-means Method   
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Figure 1.17 Visualized results of clustering scenario 6, Hierarchical Method   
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Figure 1.18 Visualized results of clustering scenario 6, Model-based Method   
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Figure 1.19 Visualized results of clustering scenario 7, K-means Method   
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Figure 1.20 Visualized results of clustering scenario 7, Hierarchical Method   
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Figure 1.21 Visualized results of clustering scenario 7, Model-based Method   
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Figure 1.22 Visualized results of clustering scenario 8, K-means Method   
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Figure 1.23 Visualized results of clustering scenario 8, Hierarchical Method   
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Figure 1.24 Visualized results of clustering scenario 8, Model-based Method   
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Figure 1.25 Visualized results of clustering scenario 9, K-means Method   



  

183 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1.26 Visualized results of clustering scenario 9, Hierarchical Method   
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Figure 1.27 Visualized results of clustering scenario 9, Model-based Method   
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Figure 1.28 Visualized results of clustering scenario 10, K-means Method   
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Figure 1.29 Visualized results of clustering scenario 10, Hierarchical Method 
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Figure 1.30 Visualized results of clustering scenario 10, Model-based Method   
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Figure 1.31 Visualized results of clustering scenario 11, K-means Method   
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Figure 1.32 Visualized results of clustering scenario 11, Hierarchical Method   
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Figure 1.33 Visualized results of clustering scenario 11, Model-based Method 
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Appendix 2 

This appendix provides more information on the representative buildings emerging from 

the most successful clustering schema (Scenario 4, K-means clustering method). 

Accordingly, for each representative building, a descriptive table, as well as the typical floor 

plan, and an elevation is provided.  
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Cluster 1 

 

 

 

 

Figure 2.1 South-West View 

 

 

 

 

Figure 2.2 North-East View 

Table 2.1 Description of the building representing cluster 1 

Address Mühlgasse 7, 1040 

Total Area [m2] 10489 

Conditioned Area [m2] 6888 

Total Volume [m3] 34218 

Conditioned Volume [m3] 23217 

Year of construction 1914 

Number of Zones 76 

Primary Usage Residential 

Associated Area [m2] 5987 

Other Usage(s) Gastronomy 

Associated Area [m2] 900 

Heating Demand per Total Building Area [kWh.m-2.a-1] 99.37 

Heating Demand per Conditioned Building Area [kWh.m-2.a-1] 151.33 
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Figure 2.3 Typical floor plan, the conditioned area is highlighted 

 

 
 

Figure 2.4 Main elevation 

  



   

 

 

 

An Hourglass Approach to Urban Energy Computing 

194 

 

Cluster 2 

 

 

 

 

 

 

 

Figure 2.5 (Left) North-West View 
Figure 2.6 (Right) South-East View 

 

Table 2.2 Description of the building representing cluster 2 

Address Rechte Wienzeile 25, 

1040 

Total Area [m2] 1608 

Conditioned Area [m2] 1180 

Total Volume [m3] 4595 

Conditioned Volume [m3] 3541 

Year of construction 1945-1976 

Number of Zones 18 

Primary Usage Residential 

Associated Area [m2] 1180 

Other Usage(s) - 

Associated Area [m2] - 

Heating Demand per Total Building Area [kWh.m-2.a-1] 86.38 

Heating Demand per Conditioned Building Area [kWh.m-2.a-1] 117.68 
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Figure 2.7 Typical floor plan, the conditioned area is highlighted 

 

Figure 2.8 Main elevation  
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Cluster 3 

 

 

 

 

 

 

 

 

Figure 2.9 (Left) East View 

Figure 2.10 (Right) West View 

Table 2.3 Description of the building representing cluster 3 

Address Preßgasse 17, 1040 

Total Area [m2] 2777 

Conditioned Area [m2] 1647 

Total Volume [m3] 8441 

Conditioned Volume [m3] 5536 

Year of construction 1846 

Number of Zones 11 

Primary Usage Residential 

Associated Area [m2] 1252 

Other Usage(s) Gastronomy 

Associated Area [m2] 395 

Heating Demand per Total Building Area [kWh.m-2.a-1] 85.2 

Heating Demand per Conditioned Building Area [kWh.m-2.a-1] 143.67 
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Figure 2.11 Typical floor plan, the conditioned area is highlighted 

 

Figure 2.12 Courtyard elevation-section 
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Cluster 4 

 

 

 

 

 

 

 

Figure 2.13 (Left) East View 
Figure 2.14 (Right) West View 

Table 2.4 Description of the building representing cluster 4 

Address Schwarzenbergplatz 16, 

1010 

Total Area [m2] 5099 

Conditioned Area [m2] 38512 

Total Volume [m3] 22508 

Conditioned Volume [m3] 17863 

Year of construction 1868 

Number of Zones 17 

Primary Usage Office 

Associated Area [m2] 38512 

Other Usage(s) - 

Associated Area [m2] - 

Heating Demand per Total Building Area [kWh.m-2.a-1] 106.18 

Heating Demand per Conditioned Building Area [kWh.m-2.a-1] 140.56 
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Figure 2.15 Typical floor plan, the conditioned area is highlighted 

 

Figure 2.16 Main elevation 
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Cluster 5 

 

 

 

 

 

 

 

 

Figure 2.17 (Left) West View 
Figure 2.18 (Right) East View 

Table 2.5 Description of the building representing cluster 5 

Address Große Neugasse 16, 

1040 

Total Area [m2] 25512 

Conditioned Area [m2] 1494 

Total Volume [m3] 9464 

Conditioned Volume [m3] 5963 

Year of construction 1872 

Number of Zones 21 

Primary Usage Residential 

Associated Area [m2] 1494 

Other Usage(s) - 

Associated Area [m2] - 

Heating Demand per Total Building Area [kWh.m-2.a-1] 96.33 

Heating Demand per Conditioned Building Area [kWh.m-2.a-1] 164.52 

 



   

 

 

 

An Hourglass Approach to Urban Energy Computing 

201 

 

   

 

Figure 2.19 (Left) Typical floor plan, the conditioned area is highlighted 

Figure 2.20 (Right) Main elevation 
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Cluster 6 

 

 

 

 

 

 

 

 

Figure 2.21 (Left) North view 

Figure 2.22 (Right) South view 

Table 2.6 Description of the building representing cluster 6 

Address Schillerplatz 4, 1010 

Total Area [m2] 14502 

Conditioned Area [m2] 9757 

Total Volume [m3] 64181 

Conditioned Volume [m3] 43683 

Year of construction 2002 

Number of Zones 40 

Primary Usage Office 

Associated Area [m2] 9757 

Other Usage(s) - 

Associated Area [m2] - 

Heating Demand per Total Building Area [kWh.m-2.a-1] 85.01 

Heating Demand per Conditioned Building Area [kWh.m-2.a-1] 126.35 
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Figure 2.23 Typical floor plan, the conditioned area is highlighted 
 

 

Figure 2.24 East elevation  
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Cluster 7 

 

 

 

 

 

 

 

 

Figure 2.25 (Left) West view 

Figure 2.26 (Right) East view 

Table 2.7 Description of the building representing cluster 7 

Address Mattiellistraße 3, 1040 

Total Area [m2] 3667 

Conditioned Area [m2] 2169 

Total Volume [m3] 10622 

Conditioned Volume [m3] 6108 

Year of construction  

Number of Zones 22 

Primary Usage Residential 

Associated Area [m2] 2169 

Other Usage(s) - 

Associated Area [m2] - 

Heating Demand per Total Building Area [kWh.m-2.a-1] 43.46 

Heating Demand per Conditioned Building Area [kWh.m-2.a-1] 73.49 
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Figure 2.27 Typical floor plan, the conditioned area is highlighted 
 

 

Figure 2.28 Main elevation 
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