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Abstract

The Mediterranean area has a complex geography covering several climate zones. Cur-

rently the interactions and processes of the hydrological cycle in the area are in the focus

of many scienti�c studies due to the increase in extreme weather events and climate

change impact. The ever-increasing need for water in tourism and agriculture reinforces

the problem in areas of drought. Therefore, monitoring and better understanding of the

hydrological cycle are crucial in order to create better long-term forecasts for this area.

The variabilities in climate that follow distinct repeating spatio-temporal patterns

known as climate modes, are one of the major drivers for the hydrological cycle. There-

fore, this study seeks to quantify the relationship between regional climate modes and

the hydrological cycle in the study area. Empirical Orthogonal Functions (EOF), and

variations of them, are applied to a wide range of hydrological datasets to extract the

major variation over the study period. More than ten datasets, describing precipitation,

soil moisture, and evapotranspiration, have been analysed to give further support and

enrich �ndings of earlier studies. The time span of the datasets varies and lies within

1980 - 2015. The resulting EOFs are then correlated with regional climate modes using

Spearman Rank correlation analysis. This is done for the entire time span of the EOFs

by monthly and seasonal means.

There is evidence for relationships between hydrological phenomenon and the climate

modes North Atlantic Oscillation (NAO), Arctic Oscillation (AO), Eastern Atlantic

(EA), and Tropical Northern Atlantic (TNA). By analysing by seasonal and monthly

means, especially high correlation in the winter months are found. However, the results

strongly depend on the study area extent.
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The �ndings suggest an impact of regional climate modes on the hydrological cycle in

the Mediterranean area.
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Kurzfassung

Der mediterrane Raum hat eine komplexe Geographie, die sich über verschiedene Klima-

zonen streckt. Die Interaktionen und Prozesse des Wasserkreislaufs der Region sind auf-

grund der Häufung von extremen Wetterphänomenen und dem Klimawandel derzeit im

Fokus vieler wissenschaftlicher Studien. Der ständig wachsende Bedarf an Wasser durch

den Tourismus und durch die Landwirtschaft verstärkt die Probleme in von Dürren ge-

plagten Gegenden noch weiter. Deshalb sind Monitoring und ein besseres Verständnis

für den Wasserkreislauf in dieser Region besonders wichtig.

Variationen im Klima, die speziellen räumlichen und zeitlichen Mustern folgen und als

Klimaoszillationen bekannt sind, sind ein wichtiger Treiber des Wasserkreislaufs. Des-

halb versucht diese Arbeit ein besseres Verständnis für die Verbindung zwischen lokalen

Klimaoszillationen und dem Wasserkreislauf in der Region zu erreichen. Empirische Or-

thogonale Funktionen (EOF) und dessen Variationen werden an eine groÿe Auswahl von

Datensätzen, die den Wasserkreislauf beschreiben angewendet, um die Hauptkomponen-

ten für den Betrachtungszeitraum zu extrahieren. Mehr als zehn Datensätze, die Nieder-

schlag, Evapotranspiration und Bodenfeuchte beschreiben wurden untersucht, um die

bisherigen wissenschaftlichen Studien zu ergänzen. Die Datensätze decken unterschied-

liche Perioden im Zeitraum von 1980-2015 ab. Die berechneten EOFs werden dann mit

regionalen Klimamodi mit der Spearman Rank Korrelationsanalyse korreliert. Das wird

für die gesamte Studiendauer der EOFs gemacht, sowohl für monatliche als auch sai-

sonale Mittelwerte.

Die Ergebnisse sprechen für eine Beziehung zwischen den hydrologischen Datensätzen

und den Klimaoszillationen NAO, AO, EA und TNA. Bei Analysen der jeweils mo-

natlichen und saisonalen Mittelwerte �nden sich besonders hohe Korrelationen in den

v



Wintermonaten. Gleichzeitig wurde eine starke Abhängigkeit der Ergebnisse von den

gewählten Studienbereichen gefunden.

Die Ergebnisse deuten auf einen Ein�uss der regionalen Klima Oszillationen auf den

Wasserzyklus im Mediterranen Raum hin.
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1 Introduction

This thesis aims to quantify the impact of climatic oscillation on the hydrological cycle

of the Mediterranean area. A strong motivation to study the hydrological cycle is the

practical need for water management to handle water scarcity and other water-related

hazards in this particular region of the planet [14]. This study is part of the WACMOS-

MED project which seeks to monitor the water cycle in the Mediterranean area based on

remote sensing data. Satellite remote sensing o�ers valuable possibilities for monitoring

the individual parts of the hydrological cycle on a large scale.

The hydrological cycle describes the circulation of water within the climate system,

which is here understood as the atmosphere, hydrosphere, cryosphere, land surface, and

the biosphere. The interaction between these component is very complex and makes it

di�cult to fully understand the system. Any changes in the components or their interac-

tion, whether natural or anthropogenic, may cause changes in climate. The term climate,

therefore in a wider sense refers to the state of the climate system as a whole. More

commonly, climate is de�ned as the average weather in one location over a substantial

period of time [29].

To better understand changes in climate, it is important to understand the natural

variability in climate. The climate's main drivers are the radiation from the sun and

the rotation of our planet, but there also exist other forms of oscillations, called climate

modes. These variabilities in climate follow distinct repeating spatial-temporal patterns,

which can be yearly, diurnal, seasonal, or quasi-periodic cycles. In general, the modes

describe the spatial structure of two strongly coupled areas, but instead of being spatially

independent, one can see synchronized behaviour in regions that are far apart [75]. The

El Niño Southern Oscillation, the North Atlantic Oscillation, and the Arctic Oscillation

are well-known examples for climate modes. Some oscillations are more localised within
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1 Introduction

a smaller region while others a�ect regions across the globe [13]. Climate modes are a

major driver for hydrology in many regions of the world, including the Mediterranean

[46][17][24][6].

The Mediterranean was chosen as a study area due to the extreme e�ects changes in

climate have on the hydrological cycle there [32]. The region is already experiencing

droughts, forest �res, rivers drying up, but also extensive �ooding [72]. Due to heavy

tourism and agriculture, water scarcity is also largely due to human activities in the area.

Further the IPCC 2007 [72] also expects a signi�cant change in the hydrological cycle in

the Mediterranean region [44] [43]. Therefore, it is especially important to understand

the connection of the regional climate in the Mediterranean with the global climate.

By quantifying the impact of climate oscillations on the Mediterranean hydrology, an

important step taken in right directions.

There already exist studies that tie the climate oscillations to the climate in the

Mediterranean region. The winters in the Mediterranean region are dominated by the

wet air coming from the west with storms forming over the Atlantic. These so-called

'Westerlies' are a�ected by Atlantic climate oscillations, especially in the western part

of Europe [23]. Other climate modes are believed to have a signi�cant impact on the

climate in the Mediterranean region. These climate modes are heavily monitored and

studied on their variability because of global climate change. The impact that they have

on the Mediterranean climate needs to be better understood and quanti�ed, to help

understand the e�ect that climate change will have on the Mediterranean region.

This study uses Empirical Orthogonal Functions (EOF) Analysis to extract the main

signals out of large hydrological datasets, to quantify the impact of climate oscillations on

the Mediterranean water cycle. This signi�cantly reduces the complexity of the dataset

and enables correlation analyses with climate oscillation indices. These indices describe

the climate oscillations with simple numerical values, which are derived from complex

climate observations.

This study will �rst give a broad introduction to the climate in the study area and

any predictions on the future of the climate in the region. Then the climate modes

are introduced and their impact on the Mediterranean is highlighted. After these two

2



theoretical chapters, the datasets used in this study are introduced followed by a thor-

ough explanation of the methods used. Ultimately, the results are presented and the

conclusions of the study are summarised.

3





2 Climate and Hydrology of the

Mediterranean Area

In this chapter, the geography of the region is roughly introduced. Further, the climate

of the Mediterranean region is discussed. In this study only hydrological variables are

considered, and for this reason this chapter will also brie�y introduce the hydrological

cycle in the Mediterranean and some key components of it. Further, the impacts of

climate change on the region are outlined at the end of the chapter, emphasizing on the

e�ects on the hydrology.

2.1 The Mediterranean Area

In this study, we di�erentiate between the Mediterranean basin (Figure 2.1) and the

Mediterranean region (Figure 2.2). While the Mediterranean basin covers a much larger

and more diverse area, the Mediterranean region, as de�ned for this study, includes

mostly the Mediterranean Sea and the surrounding lands.

2.1.1 The Mediterranean Basin

The Mediterranean basin is de�ned by the total catchment area of the Mediterranean

Sea. This includes all rivers that lead into the Mediterranean Sea including the Black

Sea and its catchment area and the Nile river. The area reaches from the Atlantic in
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2 Climate and Hydrology of the Mediterranean Area

the west to the Don river in the east, and from Moscow in the north to Lake Victoria

in the south, covering an area of approximately 5 million km2 (Figure 2.1) [40].

The four largest Mediterranean catchments are the rivers Ebro, Rhone, Po, and Nile

which account for roughly 60% of total Mediterranean river discharge [40]. The Nile

river takes on a special role by transporting rainfall to a completely detached area.

This allochthonous water source has an impact on the salinity of the Mediterranean Sea

especially in the eastern Mediterranean [7].

Figure 2.1: The Mediterranean basin is shown here in grey, covering the total catchment
area of the Mediterranean Sea. It includes all river basins that drain into
the Mediterranean Sea including the Nile river.

The Mediterranean basin stretches across several climate zones. It includes equatorial

climates from equatorial monsoon around Lake Victoria to equatorial savannah, then

Arid climates with steppe and desert climate. Further north the Mediterranean basin

has warm temperate climates in the west and snow climates in the north east of the
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2.1 The Mediterranean Area

basin [38].

2.1.2 The Mediterranean Region

The Mediterranean region is the land surrounding the Mediterranean Sea. There is

no de�nition on the exact extent of the Mediterranean region, but in most studies of

the Mediterranean climate, a region spanning approximately between 25◦N - 50◦N and

10◦W - 45◦E is used (Figure 2.2). With these boundaries, the Mediterranean region

ranges from the Alpine region in the north to the Sahara Desert in the south and from

the Iberian Peninsula in the west to the Middle East in the east. This area includes,

fully or partially, more than 25 countries, which lie on three di�erent continents. This

bounding box is chosen generously to ensure that all areas of the Mediterranean region

are included.

Figure 2.2: The Mediterranean region is shown here with the chosen extents for this
study. Here the region spans 25◦N - 50◦N and 10◦W - 45◦E.

The Mediterranean Sea is the crucial environmental factor for this region [40]. The size

of the Mediterranean Sea is substantial, with an area of about 2.5 million km2, excluding

the Black Sea. It stretches about 3700 km in longitude and 1600 km in latitude and

has an average depth of 1500 m [40]. The Strait of Gibraltar on the Western end of the
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2 Climate and Hydrology of the Mediterranean Area

Mediterranean Sea connects it to the Atlantic Ocean. It is only 14.5 km wide and less

than 300 m deep at the shallowest sill. Through this connection the Mediterranean Sea

can compensate for water loss due to evaporation. The water entering from the Atlantic

Ocean is less salty and normally has a higher temperature than the water �owing out of

the Mediterranean Sea [40] .

The Mediterranean region has a complicated morphology and land-sea pattern with

many islands and peninsulas, that dived the Mediterranean Sea in many basins which

are connected by narrow straits [40]. There are two main basins in the Mediterranean

Sea which connected by the Strait of Sicily which are commonly referred to as Western

and Eastern Mediterranean. These two basins are roughly the same size and are each

made up several subbasins [60].

The morphology on land includes the highest mountain range of Europe with the

Alps, reaching a maximum height of 4,800m and several other mountain ranges close to

the water [39]. Human activities have profoundly transformed the Mediterranean region

over millennia, leaving only 4.7% of the region with its primary vegetation unaltered.

The region consists of �at agriculture and forested areas, mountain ridges, and steadily

growing urban areas [22]. In the Mediterranean region 34% of population lives in low

lying areas within 10m of mean sea level, compared to 10% of the population worldwide

[40].

2.2 The Climate in the Mediterranean Region

The term "Mediterranean Climate" is used to describe climates with mild wet winters

and warm to hot, dry summers. This climate is found mainly on the west coast of

continents between the 30◦and 40◦latitude [8] [39].

In the commonly used Köppen-Geiger climate classi�cation [54] [37], the Mediter-

ranean climate is de�ned as a mid-latitude temperate climate with a dry summer season,

which can be either warm or hot. These two types are labelled Csa and Csb, respec-

tively, in the Köppen-Geiger classi�cation. Besides the Mediterranean region, these

climate classes can be found in the west of the United States, in parts of Chile, on the
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2.2 The Climate in the Mediterranean Region

south-western tip of Africa, and the south-western tip of Australia. The Mediterranean

region is geographically unique for having a large marginal and almost completely closed

sea on the western side of a large continental area. This serves as a large reservoir of

heat and moisture for the region. Although the Mediterranean Sea takes up a signi�cant

part of the area, there is no uniform climate for the whole region [40]. Many other cli-

mate classes are present in the area according to the Köppen-Geiger classi�cation, while

the Csa and Csb classi�cations apply only to a fraction of the Mediterranean region

(Figure 2.3).

Figure 2.3: Thr Köppen-Geier Classi�cation of the Mediterranean Region is shown here
[54][53]. See Table 2.1 for explanation of the abbreviations used in this �gure.

The Mediterranean winters are dominated by storms forming over the Atlantic and

drawing into the region from the west. Besides the Atlantic storms, there is also the

9



2 Climate and Hydrology of the Mediterranean Area

Abbreviation Climate Classi�cation

BWh Arid Desert Hot
BWk Arid Desert Cold
BSh Arid Steppe Hot
BSk Arid Steppe Cold
Csa Temperate Dry Summer Hot Summer
Csb Temperate Dry Summer Warm Summer
Cfa Temperate Without dry season Hot Summer
Cfb Temperate Without dry season Warm Summer
Cfc Temperate Without dry season Cold Summer
Dsa Cold Dry Summer Hot Summer
Dsb Cold Dry Summer Warm Summer
Dfa Cold Without dry season Hot Summer
Dfb Cold Without dry season Warm Summer
Dfc Cold Without dry season Cold Summer
ET Polar Tundra
EF Polar Frost

Table 2.1: Köppen-Geier Climate Classes [54] which are present in the Mediterranean
region

occurrence of local storms in the Mediterranean region that mostly form on the south

side of the Alps. The Mediterranean summer is dominated by high pressure systems

causing very dry weather especially in the southern areas of the region [8][23].

Besides these large-scale processes, the climate of the Mediterranean is strongly in-

�uenced by local processes which lead to the large climate variability. The variations

in climate come from the regions location in a transitional climate zone, between the

subtropical zone to the south and the temperate zone to the north, and the complicated

morphology of the surrounding land. The area is made up of many sharp mountainous

features, often close to the coastlines, and there are distinct basins and gulfs, islands,

and peninsulas. This geography has a strong e�ect on the atmospheric circulation [40].

Even at relatively small spatial scales, the spatial variability of the climate in the

region is high, especially when moving away from the coast of the Mediterranean Sea.

The distance between most parts of this region and the sea is only a couple of hundred

kilometres, but still one can �nd other temperate, arid, and snow climate types in this

relatively small space. Some sites with the highest annual precipitation can be found in
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the area of the eastern Adriatic coast towards the Alps. On the other hand, extremely

dry areas can be found in North Africa at 32◦N [40]. The climographs in Figure 2.4

show examples for various climates that can be found in the Mediterranean region as

de�ned in this study. They exemplify the diversity of climates found in the small space

of this region.

2.3 Hydrology

Hydrology is literally the science of water, with its etymological roots in Ancient Greek.

Hydrology is now de�ned as the science that deals with the aspects of the cycling of

water in the natural environment that relate with the continental water processes and

the global water balance [10]

The hydrological cycle (Figure 2.5) describes the circulation of water and includes the

spatial and temporal distribution of water in the ocean, atmosphere, and over land. The

study of the hydrological cycle is a central part of the Earth's climate at all scales [14].

The hydrological cycle is mainly driven by solar heating which evaporates water from

the oceans and land surfaces. The water vapor is transported by wind and eventually

condensed to form clouds. This leads to precipitation over land and oceans. Precipitation

over land is stored temporarily as snow or soil moisture or runs o� in streams and rivers,

which eventually discharge the freshwater into the oceans which completes the global

water cycle [70].

The two main components of the water cycle are precipitation (P) and evaporation

(E). Globally P = E, but over land-surface we need to introduce run-o� (R) which is

given by

R = P − E (2.1)

[10]

The hydrological cycle of the Mediterranean region is largely in�uenced by the presence

of a large semi-enclosed sea. The Mediterranean Sea is characterized by a negative water
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(a) Climograph for Cairo, Egypt

(BWh)

(b) Climograph for Rome, Italy

(Csa)

(c) Climograph for Paris, France

(Cfb)

(d) Climograph for Bucharest, Romania

(Dfa)

Figure 2.4: Four examples for climographs from Köppen-Geiger classi�ed climates within
the Mediterranean region as de�ned in this study. Top left is an example for
Arid Desert Hot climate with very low precipitation and high temperatures
especially in summer. Top right is an example for Temperate Dry Summer
Hot Summer climate with a low in precipitation and a high in temperature
in summer. Bottom left is an example for Temperate Without dry season
Warm Summer climate with constant precipitation and moderate temper-
atures with a maximum in Summer. Bottom right is an example for Cold
Without dry season Hot Summer climate with a cold winter and high tem-
peratures in summer and a maximum in precipitation in summer.

budget where the excess of evaporation over freshwater input is balanced by the water

in�ow from the Atlantic. The freshwater input in the Mediterranean Sea is, as described

12



2.3 Hydrology

Figure 2.5: This �gure shows the hydrological cycle with water changing phase from
liquid to solid to gas and back to liquid. The estimated global volume of
water stored in each part of the system or exchanged with another part during
a year is given in cubic kilometres. This �gure was taken from Trenberth et
al. (2007) [70]

in the water cycle, given by the river runo�, precipitation over the sea surface, and in�ow

of the Black Sea water. The river runo� is estimated to account for 160-180 mm/yr of

freshwater [40].

The total estimated evaporation from the sea is in the range of 934-1179 mm/yr. In

winter months due to the in�uence of northern dry and cold winds the large evaporation

over the sea has its annual high. Precipitation over sea ranges between 331-477 mm/yr

[40].

Combining the excess of evaporation and the river input, there is an estimated Mediter-
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ranean freshwater de�cit of about 480 mm/yr. The de�cit should be balanced by the

freshwater in�ow from the Black Sea and the Atlantic Ocean [40].

Over land the high spatial variability of the climate in the Mediterranean region as

describes in Section 2.2, is also re�ected by the hydrology of the region. The complex

geography plays a crucial role in air�ow and consequently in the hydrological cycle.

This can lead to the creation of high-impact hydrological weather systems, such as

heavy precipitation and �ash-�ooding or heat-waves with droughts [43]. Besides the

local circulation patterns there are also larger processes that lead to hydrometeorological

extremes in di�erent parts of the Mediterranean. Especially the eastern Mediterranean

is in�uenced by several tropical processes leading to cloud bands forming over the Red

Sea and the Cyprus lows. The western Mediterranean meanwhile is sensitive to the

timing and location of winter storms that form over the Atlantic Ocean [43].

In the following subsections, the variables of the hydrological cycle and their impor-

tance to the Mediterranean hydrological cycle are brie�y introduced.

2.3.1 Precipitation

Precipitation in the Mediterranean shows a latitudinal gradient in all seasons, with an

increase in precipitation with increasing latitudes. The mean precipitation along the

African coast is about 350 mm/yr while over 750 mm/yr are found in parts of France

and along the Alps. Over the sea the western Mediterranean subbasin is drier than the

eastern Mediterranean in the annual mean.

Temporal variations in precipitation show very little precipitation in the summer

months in most of the Mediterranean region except for the North towards the Alps

where we see a maximum in precipitation in the summer months. Besides the minimum

in summer, there is a broad maximum in precipitation that extends beyond the conven-

tional winter season from autumn to spring. The largest amounts of precipitation occur

from November to January [43].

Interannual �uctuations in precipitation in the Mediterranean region occurred with

a variation of about 150mm/yr from the wetter period around 1985 to the drier 1990.
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Signi�cant interdecadal changes happend from the mid-1960s to around 1990 where

Mediterranean precipitation dropped from 550 mm/yr to 400 mm/yr [43].

Precipitation extremes are local and temporal �uxes in precipitation, they account

for 60% of the total precipitation in the Mediterranean region and are more likely to

happen over land than over sea. Precipitation extremes have a 5- to 50-year return cycle

[40] and can cause �oods in the region. Floods and �ash �oods are very prominent in

the Mediterranean area and pose a signi�cant threat. Although they are much more

common north of the Mediterranean Sea, they have also occurred along the African

coast [16].

2.3.2 Evapotranspiration

Evapotranspiration is a part of the hydrological cycle where liquid water is removed

from vegetation and surface and into the atmosphere. This needs two processes of both

transpiration and evaporation. While evaporation is the process of liquid water being

transformed to water vapour, transpiration is the process when water in plants is lost

to the atmosphere.

Evapotranspiration is the second largest component of the hydrological cycle after

precipitation and the second largest component in surface energy balance after net ra-

diation. A signi�cant amount of incoming solar radiation is energetically accounted for

by evapotranspiration. A reduction in evapotranspiration would therefore lead to higher

temperatures [80] [48].

The spatial distribution of evapotranspiration in the Mediterranean region roughly

follows the climate classes of the region (Figure 2.3), with lower evapotranspiration in

the humid climates in northern Mediterranean region and larger evapotranspiration in

the arid climates of the south [69].

When observing solely the evaporation in the Mediterranean region we see the maxi-

mum during the winter months mainly because of stronger and drier winds. In summer

evaporation is lower in over sea and in the southern Mediterranean while it increases in

the north of the basin, towards central eastern Europe [43].
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2.3.3 Soil Moisture

Soil Moisture is the water contained in the root zone of the soil where it is available to

plants. Although water contained in soil moisture only makes up a very small fraction

of the total water on earth, it has a known importance for the environment and climate

systems. It in�uences hydrological and agricultural processes, runo� generation, drought

development and many others. Through atmospheric feedback it also has an impact on

the climate system. Soil Moisture is involved in both the water and energy cycles as it

is the source of evapotranspiration over land [20] [5].

Soil moisture is of great interest in the Mediterranean region due to its direct link

to droughts. In the region droughts occur regularly in the summer months especially

in more recent years [77]. In the summer, a lack in soil moisture has a limiting e�ect

on evapotranspiration and consequently cloud formation and precipitation in the region

[66].

2.3.4 Climate Change Projections in the Mediterranean Region

The increase in mean global air temperature over the past 30 years, linked to the an-

thropogenic increase of CO2 emissions, is commonly known as climate change and is

believed to have a signi�cant impact on global circulation patterns [32]. The location

of the Mediterranean region, between the arid climate zone of northern Africa and the

temperate and humid climate of Europe, makes the Mediterranean climate especially

sensitive to changes in the global circulation [40]. Climate change is therefore expected

to have an especially strong impact on the Mediterranean region [32].

In the Mediterranean region, an increase in temperature and decrease in precipitation

is expected in results to climate change [40]. It is projected that the warm season will be

a�ected especially with a precipitation decrease between 25-30% and warming exceeding

4-5◦C when the 2071-2100 period is compared with the 1961-1990 period. Only in the

winter months an increase in precipitation can be expected in some areas of the north,

especially in the Alps. An expected increase of inter-annual variability will lead to a

greater occurrence of extreme heat and drought events [40]. A rapid drying on the region
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is expected from 2020 onwards. The drier land surface would then inevitably lead to a

decrease in evapotranspiration, but only at half the rate of precipitation [3].

The possible impact of climate change on the Mediterranean Sea is even more dra-

matic. While precipitation will reduce over sea, evaporation will increase at the same

rate. As a result, a 24% increase in loss of freshwater is expected. The in�ow from

the Black Sea could at the same time decrease leaving an even larger freshwater de�cit.

This would lead to an increase in salinity and temperature of the surface waters. Con-

sequently, this could have an e�ect on deep-water formation in the sea basin and the

water exchange over the Strait of Gibraltar with the Atlantic Ocean. The changes in

the Mediterranean Sea especially the surface waters could in return have a modulating

impact on the atmospheric changes in the Mediterranean region [40] [3].

The rivers in the Mediterranean region are also expected to become much drier due

to climate change with a decrease in �ow up to 85%, only the river Nile might have an

increase in river discharge [33].

Among many other studies Drobinsky et al. (2014) [16], Alpert et al. (2013) [3],

Quintana Seguí et al. (2010) [56], Jin et al. (2010) [33], Zampieri et al. (2009) [77],

Giorgi and Lionello (2008) [23], and Mariotti et al. (2008) [44] show with di�erent

climate models that climate change will have a signi�cant impact on the Mediterranean

climate and hydrological cycle.
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The world's climate is the long-term behaviour and structure of the atmosphere, hydro-

sphere, and cryosphere. To better understand changes in climate it is important to un-

derstand the natural variability in climate. These variabilities in climate follow distinct

repeating spatio-temporal patterns that are often described as climate modes or climate

oscillations. These patterns can be yearly, diurnal, seasonal, or quasi-periodic cycles.

They can be monitored by scalar-valued climate indices, representing them with simple

features. In general, the modes describe the spatial structure of two strongly coupled

areas, but instead of being spatially independent one can see synchronized behaviour in

regions that are far apart [75]. Many di�erent climate oscillations exist around the world

with some of the most prominent being the El Niño/Southern Oscillation (ENSO), the

NAO, the Paci�c Decadal Oscillation (PDO), and the Madden-Julian Oscillation (MJO).

Some oscillations are more localised within a smaller region while others a�ect regions

across the globe. Individual oscillations often have several teleconnections to other cli-

mate modes leading to correlations between the respective climate oscillation indices

[13].

Climate modes are a major driver for hydrology in many regions of the world, including

the Mediterranean [46] [17] [24] [6].

In the following sections, the climate modes and their corresponding indices used in

this study are introduced, followed by an overview over the existing �ndings regarding

the in�uence of climate modes on the Mediterranean region. In Table (3.1) a complete

list of climate indices used in this study is given. These indices were chosen due to the

�ndings of earlier studies regarding this topic. A more detailed description can be found

in Section 3.6.
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Climate Oscillation Indices

AO Arctic Oscillation
EA Eastern Atlantic
EAWR East Atlantic/West Russia
EP-NP East Paci�c - North Paci�c
NAO North Atlantic Oscillation
PNA Paci�c/North America
SOI Southern Oscillation Index
TNA Tropical Northern Atlantic
TSA Tropical Southern Atlantic

Table 3.1: Climate Oscillation Indices used in this study.

3.1 North Atlantic Oscillation Pattern

The NAO is one of the longest known climate patterns, dating back several centuries.

The NAO explains the redistribution of atmospheric mass between the Arctic and the

subtropical Atlantic and is especially strong in the winter months of the northern hemi-

sphere (November-April). It is known that the NAO has a direct e�ect on weather

phenomenon in the Atlantic and its surrounding continents [31], including the Mediter-

ranean [71].

The NAO consists of two pressure systems. The locations of the pressure systems can

vary, but are typically located with the low-pressure system near Iceland and the high-

pressure system over the Azores. During a positive winter NAO (see Figure 3.1), the

Icelandic low and Azores high are strengthened and result in warm moist air coming from

the Atlantic towards Europe through the strengthened westerlies jet stream. While a

negative NAO indicates a weakening of the Icelandic low and Azores high which weakens

the westerlies and causes cold dry air to come into Europe from the east [67].

The NAO relates to hydrological processes: Spencer and Essery (2016)[67] showed the

connection between the NAO and the snow cover in Scotland. Salgueito et al. (2013)[63]
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3.1 North Atlantic Oscillation Pattern

(a) Positive NAO. (b) Negative NAO.

Figure 3.1: On the left, a positive NAO is shown with a strong Icelandic low
and Azores high resulting in warm and wet air coming from the At-
lantic to Europe. The right image shows the weakening of both
pressure systems during a negative NAO leading to cold and dry air
coming from the North to Europe. Graphics from the MetO�ce,
United Kingdom (http://www.meto�ce.gov.uk/learning/learn-about-the-
weather/north-atlantic-oscillation)

found a stochastic relationship of �ood magnitudes in the Tagus River with the NAO.

And Kahya (2011)[35] discusses the impacts of NAO on the hydrology of the eastern

Mediterranean region.

North Atlantic Oscillation Index The NAO Index is the di�erence of normalized Sea

Level Pressure (SLP) between Lisbon, Portugal and Stykkisholmore/Reykjavik, Iceland.

The SLP values at each station are normalized by removing the long-term mean and

by dividing be the long-term standard deviation. Additional normalizations are used to

avoid the series being dominated by the greater variability of the northern station.

Instead of using the station based NAO index as it may not be the best representation

of the associated pattern, EOF analysis can be used. In this case, the leading EOF mode

of the seasonal (December to March) SLP anomalies over the Atlantic sector (20◦- 80◦N,

90◦W- 40◦E) are used.
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Figure 3.2: North Atlantic Oscillation Index for 1980-2014 with monthly values shown
in blue and the annual average in red.

3.2 Tropical North Atlantic Pattern

The Tropical North Atlantic Pattern together with the Tropical South Atlantic Pattern

make up the Atlantic meridional gradient mode [74]. Together they form a dipole and

are indicators for the Sea Surface Temperature (SST) of the tropical Atlantic [18]. Both

TNA and Tropical Southern Atlantic (TSA) are associated with variations of the Hadley

circulation [74].

The TNA is believed to be closely linked to the ENSO [74] [4]. The NAO and TNA

also show a connection where a positive TNA is associated with a negative phase of the

NAO [57] [11].

Tropical North Atlantic Index The TNA Index is calculated with SST measurements

within the 55◦W - 15◦W and 5◦N - 25◦N bounding box. It uses the standardized average

of the monthly SST anomalies over the tropical north Atlantic region [11].
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3.3 Eastern Atlantic Pattern

Figure 3.3: Tropical North Atlantic Index for 1980-2014 with monthly values shown in
blue and the annual average in red.

3.3 Eastern Atlantic Pattern

The Eastern Atlantic Pattern is said to be the second leading climate mode in the North

Atlantic and has a signi�cant impact on the structure of the NAO including changes

in location and intensity [49]. It consists of a north-south dipole of anomaly centres

spanning the North Atlantic from east to west resembling the NAO with a southward

shift. Unlike the NAO, the EA shows a strong subtropical link for the lower-latitude

centre which makes it distinct from the NAO.

A positive phase of the EA results in higher temperatures in Europe in all months and

seasonally depended low temperatures in the United States. It is also associated with

higher precipitation in Northern Europe and lower precipitation in Southern Europe

[73].

The EA has multi-decadal variability, with a negative EA during 1950-1976 and a

positive EA during 1977-2004 with a particularly strong positive during 1997 and 2004.

In recent years the EA has again been strongly positive since 2012.
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Eastern Atlantic Index Unlike the NAO index, the EA index is not as well established

and its pattern depends heavily on the methods used to calculate it [71]. The most

commonly used de�nition of the EA index comes from Wallace et al. (1981) [73] and

the EA index used in this study also follows this de�nition.

The EA Index is based on normalized 500 hPa height anomalies at three speci�c

centres. One is located south west of the Canary Islands, another west of Great Britain,

and the third near the Black Sea. A positive pattern index indicates a high 500 hPa

height over the North Atlantic low heights over the subtropical Atlantic and eastern

Europe. A negative pattern index indicates the opposite [73].

Figure 3.4: Eastern Atlantic Index for 1980-2014 with monthly values shown in blue and
the annual average in red.

3.4 Arctic Oscillation Pattern

The Arctic Oscillation pattern is characterized by winds circulating around the Arctic.

The AO resembles with the NAO strongly, but still shows distinct di�erences. The AO

centres more on the Arctic, making it more zonally symmetric [68].
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3.5 El Niño Southern Oscillation

In a positive phase of the AO the cold air is con�ned by high pressure in the Arctic

which causes the rest of the northern hemisphere to be warmer. In a negative phase,

the weaker pressure system allows the cold air to move south, causing the northern

hemisphere to be colder (Figure 3.5).

Figure 3.5: The e�ects of a positive and negative Arctic Oscillation pattern are shown
here. A positive phase results in dry and warm weather in the Mediterranean
area whereas a negative phase causes cold and wet weather in this area.

Arctic Oscillation Index The AO Index is derived from the monthly mean 1000 hPa

height anomalies across the Arctic poleward of 20◦N using EOF analysis. The �rst

leading mode of the EOF analysis is the temporal pattern of AO. To obtain the temporal

pattern, a year-round monthly mean anomaly data is used. The AO has the largest

variability in the winter months and the principal components therefore primarily show

the characteristics of the cold season patterns.

3.5 El Niño Southern Oscillation

The Niño Southern Oscillation (ENSO) is a climate phenomenon that involves �uctu-

ating ocean temperatures in the equatorial Paci�c. The pattern generally �uctuates

between two states: warmer than normal eastern equatorial Paci�c SST (El Niño) and

cooler than normal eastern equatorial Paci�c SST (La Niña). The terms El Niño and
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Figure 3.6: Arctic Oscillation Index for 1980-2014 with monthly values shown in blue
and the annual average in red.

La Niña originate from the (Spanish speaking) Christian inhabitants of South America

who celebrate Christmas around the time when the phenomenon usually reaches its full

strength. ENSO is the most important coupled ocean-atmosphere phenomenon to cause

global climate variability on interannual scales [9] [5].

ENSO has a signi�cant impact on the paci�c region in terms of rainfall, drought and

tropical cyclone behaviour, but via teleconnection it has an impact many parts of the

world especially in the tropics. During an El Niño event which usually lasts for one

year, the trade winds weaken, which are the drivers for ocean upwelling in the eastern

tropical Paci�c. As a consequence, SST rise as much as 5◦C above normal and surface

ocean currents are altered. This weakens trade wind even more, introducing a positive

feedback mechanism [9].

There is a large number of known ENSO-teleconnections to the North Paci�c and

Indian Ocean. Brönnimann (2007) also describes a signi�cant e�ect of El Niño on

European climate which appears to be closely linked through the NAO [9].
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Southern Oscillation Index The Southern Oscillation Index (SOI) index is derived

from observations of the sea level pressure at stations in Darwin, Australia and Tahiti.

The SOI is the standardized di�erence between the two atmospheric pressures. SOI

is used to quantify the strength of an ENSO event. Normally, lower pressure over

Darwin and higher pressure over Tahiti encourages a circulation of air from east to west,

indicating strong trade winds. A weaker pressure di�erence is strongly coincidental with

El Niño conditions.

The SOI used in this study is the Troup SOI which is the standardised anomaly of the

Mean Sea Level Pressure di�erence between Tahiti and Darwin, Australia (Figure 3.7).

Figure 3.7: Southern Oscillation Index for 1980-2014 with monthly values shown in blue
and the annual average in red.

3.6 In�uence of Climate Modes in the Region

As described in Chapter 2, the location of the Mediterranean region in the transition zone

causes the local climate to be in�uences by both the mid-latitudes and tropical climate

variability. In the north-west a large part of the variability is linked to the NAO and
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other midlatitude teleconnections patterns [16] especially the EA [40] while in the south

the in�uence of the descending branch of the Hadley cell in the form of the Azores high

is dominating. The Hadley cell is a primary circulation cell that lies between the equator

and 30-40◦latitude. Warm air rises near the equator and is transported polewards and

then descends in the subtropics causing high pressure systems. The east is in�uenced

by the ENSO [16], especially winter precipitation [40].

The in�uence of mid-latitude variability is greatest during winter season in the Mediter-

ranean. As the region is at the southern limit of North Atlantic storm tracks it is es-

pecially sensitive to slight changes in the trajectories of mid-latitude cyclones. Storm

impact variability has the strongest in�uence in the western Mediterranean, but also

shows in the eastern part. [71]

In the Mediterranean region, the NAO is known to have a strong impact on precipita-

tion in the winter months. This can be seen in both eastern and western Mediterranean,

but the impact is stronger in the west. Interestingly, the NAO has an in�uence on precip-

itation but does not have an impact temperature or evapotranspiration [71].There exist

many studies on the in�uence of the NAO on the Mediterranean region. For example

Salgueiro et al. (2013) [63], Kahya (2011) [35], López-Moreno et al. (2011) [41], Queralt

et al. (2009) [55], all study the impact of the NAO on the Mediterranean.

While the impact of the EA on the Mediterranean climate is not as well studied as

of the NAO, there is still evidence for variability associated with this pattern. Sáenz

et al. (2001) shows a signi�cant impact of the EA on winter precipitation [61] and

temperature [62] over the Iberian Peninsula. Salmaso (2012) [64] shows an in�uence of

the EA on freshwater ecosystems in the Mediterranean and the Alps. These ecosystems

are impacted by changes in temperature due to positive or negative phases of the EA.

More recently, Cook et al. (2016) [12] shows the impact of spring EA variability on

droughts in the Mediterranean area.

There exist many studies trying to quantify the impact of other climate modes on the

climate in the Mediterranean area. Alpert et al. (2006) [2] discusses the relation be-

tween the climate variability in the Mediterranean region and the ENSO and monsoons.

Martínez-Asensio et al. (2014) [46] discover connections between the Mediterranean sea

28



3.6 In�uence of Climate Modes in the Region

level to the climate modes. Capa-Morocho et al. (2016) [11] �nds correlation between

the TNA and water availability for crop growth in the Iberian Peninsula.
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4 Data

The data for this thesis was gathered for the WACMOS-MED (Water Cycle Observation

Multi-mission Strategy for Mediterranean) project [19] of the European Space Agency

(ESA). The project aims at a better understanding and quanti�cation of the hydrological

cycle in the Mediterranean by using ESA and non-ESA earth observation datasets. The

datasets used, span di�erent origins and time scales, but share a common extent over

the Mediterranean region. The datasets are exclusively raster datasets and are stored

in NetCDF �les. The grid size varies in size and was a coarse as 2.5◦x 2.5◦for some

datasets and as �ne as 0.5◦x 0.5◦grids. The timespan of the datasets varies between ten

to more than 30 years spanning from the 1980s to the 2010s. Although the temporal

resolution also varies between 3 hourly and monthly, in this study the datasets are being

resampled to either monthly or seasonal data before EOF analysis is applied. In the

following sections, the di�erent datasets listed in the table 4.1, are brie�y introduced

and explained.

4.1 Precipitation

Precipitation is often not highly correlated in space and time, but can be scattered in

space and discontinuous in time. This is especially true for small scales and many loca-

tion on earth, including the Mediterranean region. Even with the near-global coverage

of satellites, most satellites �y over a region only twice per day, potentially missing

precipitation events.

For this reason, many data sets combine observations from multiple satellite platforms

that carry passive microwave and/or infrared instruments. Infrared sensors are used to
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4.1 Precipitation

estimate cloud top temperatures, which must be calibrated to some other precipitation

estimate. The microwave-based algorithms derive the precipitation signal from both

scattering and emission, but only the scattering signal is useful over land because of

strong variations in surface emissivity that distort the emission [51].

4.1.1 GPCP

The GPCP monthly precipitation dataset from 1979 - today combines observations and

satellite precipitation data into 1◦x1◦global grids. It has been in existence for over

twenty years as part of the Global Energy and Water Cycle Exchanges (GEWEX) e�ort

under the World Climate Research Program (WCRP). The GPCP monthly product

integrates several satellite data sets over land and ocean and a gauge analysis over

land for a consistent analysis of global precipitation. To estimate the monthly rainfall

on the 1◦grid, data from the rain gauge stations, satellites, and sounding observations

are merged. By combining several satellite-based rainfall estimates the GPCP monthly

product is the most complete analysis of rainfall available covering the entire planet [52]

[1].

4.1.2 CMORPH

The CMORPH data set is a high temporal and spatial resolution data set with a spa-

tial resolution of 0.25◦x 0.25◦and a temporal resolution of 30 minutes. The data set

includes data from 2002 to today. The CPC MORPHing technique uses precipitation

estimates that have been derived from low orbiter satellite microwave observations ex-

clusively. Their features are transported via spatial propagation information that is

obtained entirely from geostationary satellite IR data [34].

4.1.3 TRMM-TMPA

The Tropical Rainfall Measuring Mission (TRMM) was a joint space mission between

NASA and Japan's National Space Development Agency designed to monitor and study
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tropical and subtropical precipitation and the associated release of energy. The TRMM-

TMPA data set with monthly precipitation averages was the most relevant TRMM data

set. It has a resolution of 0.25◦x 0.25◦for 1998 to 2015. The TRMM-TMPA combines

microwave data from multiple satellites while coverage gaps in space and time are �lled

in with calibrated infra-red data [30].

4.2 Evapotranspiration

The observation of evapotranspiration is di�cult, as it cannot be sensed directly from

satellites and therefore remains the part of the hydrological cycle with the largest un-

certainties. As the understanding of the importance to measure evapotranspiration to

better understand the hydrological cycle increases, more in situ networks have been cre-

ated and models to utilize a combination of remotely sensed drivers of evapotranspiration

have been developed [45].

4.2.1 GLEAM v3

GLEAM v3 [47] is a set of algorithms dedicated to the estimation of evapotranspiration

and root-zone soil moisture from satellite data by separately estimating the di�erent

components of evapotranspiration. It also assimilates the components of evapotran-

spiration (e.g. precipitation, soil moisture, radiance, vegetation stress, etc.) [45]. The

dataset has been developed in 2011 and spans 36 years from 1980 to 2015 with a temporal

resolution of one day. In this thesis, the dataset spanning 1980 - 2012 was used.

4.2.2 MODIS16

The MODIS16 evapotranspiration dataset is based on the data from the MODerate-

resolution Imaging Spectroradiometer (MODIS) which is a key instrument on the Terra

and Aqua satellites from National Space Agency (NASA). The dataset is a regular

0.05◦grid land surface evapotranspiration dataset for the global vegetated land areas at
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4.3 Soil Moisture

8-day, monthly and annual intervals. The dataset spans the time period of 2000 - 2010

[50].

4.2.3 PML-ET

The PML-ET evapotranspiration dataset was computed through the observation-driven

Penman-Monteith-Leuning model. The dataset spans 1981 to 2006 with monthly data.

It has a spatial resolution of 0.5◦[80].

4.2.4 PT-JPL

The dataset is based on the Priestley�Taylor Jet Propulsion Laboratory (PT-JPL)

model. The evapotranspiration dataset based on the PT-JPL algorithm comes in a

1◦grid with monthly data for the time span of 1984-2006 [21].

4.2.5 NTSG

The dataset of the NTSG is based on a remote sensing based evapotranspiration algo-

rithm in order to assess terrestrial evapotranspiration. Like other datasets, it uses a

modi�cation of the Penman-Moneith approach to estimate the soil evaporation and the

open water evaporation with a Priestly-Taylor approach. The NTSG dataset spans 1983

to 2006 and has a temporal resolution of one month. The spatial resolution is 1◦[79]

[78].

4.3 Soil Moisture

There are several techniques to measure the soil moisture. For in-situ measurements

electric devices that measure the conductivity of the soil, which can be converted to soil

moisture with a model. Since in-situ measurements of soil moisture are expensive and
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the individual stations are often poorly distributed, remote sensing is preferred for large

spatial coverage. Spaceborne microwave sensors have proven ability to determine soil

moisture on a global scale. Both passive and active microwave systems are suitable for

soil moisture measuring as both emission and scattering properties of soil are strongly

in�uenced by the soil's permittivity [5]. For retrieving soil moisture, it is necessary

to have models that are capable of accounting for vegetation and surface roughness

e�ects on the microwave signal and then convert accordingly the received intensity to

soil moisture values [5].

4.3.1 CCI Soil Moisture

The CCI Soil Moisture dataset is part of the CCI programme of ESA. The CCI program

seeks to contribute to data bases collecting essential climate variables for the Global

Climate Observing System and other international parties. For soil moisture retrieval,

the CCI project uses C-band scatterometers (ERS-1/2 scatterometer, METOP Advanced

Scatterometer) and multi-frequency radiometers (SMMR, SSM/I, TMI, AMSR-E, Wind-

sat) [15][20].
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This chapter explores the methods used in this thesis. First an overview over the study

setup is given. It is followed by a detailed description of the EOF Analysis and rele-

vant variations of it. Finally Spearman Rank Correlation Analysis is introduced as the

correlation method used in this thesis.

5.1 Study Setup

In this section, the overall data structure of all results of this study are described for

better understanding of the full extent of the study. This description uses tree graphs to

visualize the data structure level by level. A complete tree graph of the data structure

was omitted due to the high number of variations and branches.

All results are clustered in two geographic study areas: the Mediterranean region and

the Mediterranean basin.

Results

Mediterranean BasinMediterranean Region Study Area

Figure 5.1: Data Structure Tree 1: The Results are clustered in two geographic study
areas

For each study area, all datasets (see Chapter 4) that were available in this study were

analysed separately. Table 4.1 presents a complete list of the used datasets.

These datasets are re-sampled for either monthly or seasonal values.
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Study Area

NTSG...TRMM-TMPACMORPHGPCP Dataset

Figure 5.2: Data Structure Tree 2: For each study area, 9 di�erent datasets (see Ta-
ble 4.1) was used.

Dataset

seasonalmonthly Temporal sample

Figure 5.3: Data Structure Tree 3: Each dataset was re-sampled for both monthly and
seasonal values.

For each temporal sample, the analysis was done using either EOF or Complex Em-

pirical Orthogonal Functions (CEOF). The di�erences in the analysis are described in

Section 5.2 and Section 5.3.1 respectively.

Temporal sample

realcomplex

Figure 5.4: Data Structure Tree 4: For each temporal sampling of the datasets EOF and
CEOF analysis was applied.

Following the EOF or CEOF analysis, a rotation (see Section 6.1.2) was applied to the

results. Either the varimax criterion for an orthogonal rotation or the quartimin criterion

for an oblique rotation was used to determine the rotation matrix. For comparison, the

not rotated results were also used in further steps of the study.

complex/real

quartiminvarimaxno rotation Rotation

Figure 5.5: Data Structure Tree 5: After the analysis, a rotation was possibly added.
There was either no rotation or the varimax or quartimin criterion was used
to determine the rotation matrix

Following the (possible) rotation the results were correlated with climate modes (see

Chapter 3). The set up for the correlations depends on whether the dataset was re-
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sampled for monthly or seasonal values. The correlation was done using all possi-

ble values from the result (for each month or each season) and also the results were

correlated using only the values for one month (Jan, Feb, ..., Dec) or season (DJF

/ December-January-February, MAM / March-April-May, JJA / June-July-August,

SON / September-October-Nov) independently.

monthly

Rotation

Climate
Correlations

12...21All

mode 1 mode 2
mode 3 mode 4

seasonal

Rotation

Climate
Correlations

SONJJAMAMDJFAll

mode 1 mode 2
mode 3 mode 4

Figure 5.6: Data Structure Tree 6: Depending on the temporal sampling the climate
correlations are either done by month or by season. Also, the plots of the
�rst 4 modes of the analysis are outputted.

Further, in case CEOF was applied, the results were correlated using either the am-

plitude, the real part, or the imaginary part of the complex value. This leads to three

di�erent correlation results.

In case of standard EOF analysis, there is no need to di�erentiate in the correlation.

For each of these results a correlation matrix was created out of all four modes and the

climate modes (for example see Figure 6.6) and for each of these correlations a separate

graph showing both the EOF / CEOF results and the climate mode time series for the

same time span. This leads to a total of 36 graphs per correlation calculation.

This study set-up allowed the speci�c creation of a set of graphic outputs through

the settings. In the course of this study not all possible outputs were created for each

dataset as this would have exceeded the capacity of this study, instead all settings were
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complex

Correlations

imaginary part

36 plots
correlation
matrix

real part

36 plots
correlation
matrix

amplitude

36 plots
correlation
matrix

real

Correlations

36 plots
correlation
matrix

Figure 5.7: Data Structure Tree 7: For CEOF the results are correlated with the climate
modes by amplitude, real part, and imaginary part. The climate correlations
have an output of a correlation matrix and 36 individual plots of all correla-
tions between the �rst four modes of the analysis and the 9 climate indices.

tested and the most successful ones applied to all datasets. The code can also be easily

adapted to include more variations on EOF analysis or to run with a di�erent dataset

or a di�erent study area.

5.2 Empirical Orthogonal Functions

In this section, Empirical Orthogonal Functions (EOF) are introduced. This method is

also known as Principal Component Analysis (PCA) and either name is used in di�erent

scienti�c disciplines. The method was originally used in social science at the beginning

of the 20th century. EOF is a versatile exploratory method for numerical datasets as it

enables the display of a space-time �eld as a time display and a space display. There

exist many implementations, so that it has been used for very diverse applications [27].

In atmospheric science EOF is a widely used statistical method [27] and was �rst termed

in this �eld by Lorenz (1956) [42] who applied EOF to weather data. The method was

chosen for this thesis as it is suitable for the extraction of climate signals from large

datasets and well-tested in this �eld.
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For a given space-time �eld, EOF analysis �nds a set of orthogonal spatial patterns

along with a set of associated uncorrelated time series or Principal Components (PC) .

In Figure 5.8 EOF Analysis is schematically pictured.

Figure 5.8: Schematic representation of the EOF analysis [5]

The following summary of the method comes from Hannachi (2007) [27] and the

notation has been taken from Bauer-Marschallinger (2012) [5].

The base idea of EOF is to separate a space-time �eld into a space and a time �eld:

X(t, s) =

M∑
k=1

ck(t)uk(s) (5.1)

Where M is the total number of functions (modes) that are contained in the dataset

(�eld). The �eld X(t, s) is split up into the basic functions of space uk(s) and the

expansion functions of time ck(t) [27]. When using EOF analysis the main idea is to

get uncorrelated, independent, representative representations of the entire dataset, while

keeping the number of modes M signi�cantly lower than the total number of available

modes. This is done to simplify the dataset and to focus on a handful of modes that

explain a lot of total variability of the dataset. [5]
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To compute EOFs we start with a spatio-temporal �eld X(t, s) which shows the value

of the �eld X for time t and location s. The dataset can be noted as a matrix X:

X(t, s) = {x1, x2, ...xT}
T =


x1,1 x1,2 · · · x1,S

x2,1 x2,2 · · · x2,S
...

...
. . .

...

xT,1 xT,2 · · · xT,S

 (5.2)

In the matrix, the row-vectors in the matrix xt = (xt1, xt2, ..., xtS)
T are the value (or

the map) of the �eld at times t and the column-vectors in the matrix xs = (x1s, x2s, ..., xTs)

are the time series at locations s. The indexing in time is t = 1, 2, ...,T, in space the

indices are s = 1, 2, ..., S. In this study, all datasets are considered to contain more

spatial than temporal variables, meaning S > T .

For the EOF analysis the anomalies x ′, of the values in the dataset are used to

eliminate the impact of the actual size or unit of the original values. To get the anomalies

the mean of each time series is calculated and the subtracted from the individual values

of that time series:

	xs =
1

T

k=1∑
T

xks (5.3)

x ′ts = xts − 	xs (5.4)

As an alternative to anomalies climatology values can be used. Here the average is

calculated by only using values for a certain time span e.g. for a monthly climatology the

average is calculated for each month separately and then deducted from the individual

values of each month. This is a very common approach in atmospheric science [27] [5]

	cs =
1

P

P∑
k=1

xks (5.5)
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x ′ts = xts − 	cs (5.6)

For simpler notation, the dash of the anomalies will be dropped and x ′ will be x in

the following.

In case the data is stored in a regular geographic grid de�ned by latitudes and longi-

tudes, it is recommended by Hannachi et al. (2006) [26] to weigh the values to account

for the actual area represented by a grid cell at location s. The time series in the data

matrix X are therefore multiplied by latitudinal weights ws that depend on the latitude

ϕs of the location.

ws =
√
cosϕs (5.7)

As a next step, the sample covariance matrix is assembled. It contains the covariance

between the time series of any pair of grid points (si, sj):

sij = [S]ij =
1

T

T∑
t=1

xtixtj (5.8)

or in matrix notation:

S =
1

T
XTX. (5.9)

The diagonal of the covariance matrix S holds the sample variances of the S spatial

elements of the dataset X. The covariances can be found in the o�-diagonal positions

in the matrix. In case a correlation analysis is wanted, this empirical covariance matrix

is replaced by a empirical correlation matrix. A correlation matrix is created when

the anomalies are divided by the standard deviation of the time series samples in the

beginning, like suggested by Wilks (2011) [76]. This is recommended if di�erent units or

physical parameters are used in the original dataset, which would distort the numerical

conditions of the calculations.
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Computation of EOFs from Eigenvalue Analysis The aim of EOF analysis is to

�nd uncorrelated linear combinations (the modes) of the di�erent variables that explain

maximum variances. To achieve this, the vectors e = (e1, e2, ..., eS)
T , which point in the

directions of maximum variability, need to be found. With e having the unit-length, Xe

has the maximum variability, which further yields:

max (eTSe) with eTe = 1 (5.10)

This leads to the following eigenvalue problem:

Se = λ2e (5.11)

where the eigenvectors ek and the eigenvalues λk of the k'the EOF have to be found:

λ2k = eTkSe =
1

T
‖Xek‖2 (5.12)

The eigenvalues describe the variance of the data that is accounted for in the corre-

sponding eigenvectors. The eigenvalues are sorted in decreasing order as |λ1| > |λ1| >

... > |λS|. Which leads to the �rst eigenvector having the highest variance and then the

second eigenvalue describing the variance of the second eigenvector and so forth. The

spectrum of the covariance matrix S which is made up of the eigenvalues λk provide

information of the distribution of variation and separation of the EOF patterns. The

sum of all eigenvalues equals one if all modes explain the total variability:

S∑
k=1

λk = 1 (5.13)

It is common to present the variance of a mode in percent of the total variability:

100λk∑S
k=1 λk

% (5.14)
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Finally, the anomaly �eld X is projected onto the EOFs. The results are the k Principal

Components (PCs) pk of the data �eld X:

ptk =

S∑
j=1

xtjekj (5.15)

or in Matrix notation:

pk = Xek (5.16)

With this, Equation (5.1) and therefore our initial problem has been solved and the

principal components of the dataset X(t, s) can be calculated. Equation (5.1) and Equa-

tion (5.15) have the same structure and describe the same dataset. The time function

ck(t) and the space function uk(s) correspond to xtj and ukj, respectively. [27] [5]

Computation of EOFs from Singular Value Decomposition Singular Value Decom-

position (SVD) can be used alternatively for the determination of the covariance matrix

and eigenvectors as described above. It is a very powerful tool from linear algebra [27].

Every T × S matrix X can be decomposed as:

X = PΣET (5.17)

In (5.17) P and E are respectively T× r and r×S unitary matrices (PTP = ETE = Ir)

with r = rank(X) and r 6 min(T, S). Ir is therefore the identity matrix of order r. The

columns of P are the left singular vectors pr, and the columns of E are the right singular

vectors er of the data matrix X.

The Σ matrix is diagonal and its diagonal elements are the (positive) singular values

of X in descending order, so that
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Σ = diag(σ1,σ2, ...,σr) with σ1 > σ2 > ... > σr > 0 (5.18)

The SVD applied to the covariance matrix S (5.9) yields to:

S =
1

T
EΣ2ET (5.19)

It can be shown that the SVD of the anomaly data X and the eigenvalue analysis of its

covariance matrix S deliver the same information. The columns pr of P and the columns

er of E are the left and right singular vectors of X, respectively. With the left singular

vectors as the eigenvectors (EOFs) and the right singular vectors as the eigenvalues

(PCs) of the data matrix anomaly X. The EOFs and the PCs can therefore be directly

extracted from the SVD of X. The singular values σr of X are the square roots of the

eigenvalues λk of S per T , so that

λk =
1

T
σ2
k (5.20)

After separation of singular vectors and -values of X, Equation (5.17) can be written

as

xt =

r∑
k=1

ptkσkek (5.21)

This equation describes the synthesis of original data at all spatial locations at time

t by r principal components. If a compression of the original data without a signi�cant

loss of information is desired, a truncation of the sum in Equation (5.21) is possible,

which means summing only over the �rst singular values instead of overall r [5]. The

choice of number of PCs or modes is arbitrary, but as described before (5.18) the �rst PC

contain the most variability. The truncation of modes M to m drops the equal sign in

Equation (5.1) and the synthesis of the original data out of the EOFs and PCs becomes

an approximation:
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X(t, s) ≈
m<M∑
k=1

ck(t)uk(s) (5.22)

This formulation of the SVD is one out of many, but it o�ers a compact representation

of the original data since it drops unnecessary zero singular values due to r = T � S,

which is the case for meteorological or environmental parameters.

5.3 Variations of EOF Analysis

There exist many variations of EOF with each a di�erent goal and application. Several of

those variations are nicely outlined by Hannachi (2007) [27]. In this thesis, several pos-

sible enhancements of the EOF analysis have been tested on the data to see if signi�cant

improvement over the standard EOF analysis could be detected. First the expansion

of EOF to Complex EOF was considered in order to capture evolving or propagating

patterns in the �eld, which cannot be achieved with basic EOFs.

To increase the interpretability and meaningfulness of EOFs many di�erent approaches

are discussed in literature. EOF rotation is the most commonly used method, as it is

very simple [59]. EOF rotation will be introduced at the end of this chapter.

5.3.1 Complex Orthogonal Functions

Conventional EOF analysis which was presented above allows us to �nd stationary pat-

ters when applied to a space-time �eld. These patterns are stationary in the sense that

with any obtained EOF pattern there is a corresponding time series, which only shows

decrease or increase of the magnitude of that EOF pattern over time while the spatial

structure itself remains the same [27]. We therefore do not know about the relative time,

or the phase, of the impact [5]. As EOFs are based on (simultaneous) covariances, the

arrangement of the elements is irrelevant. In fact, two univariate time series xt and yt

and any permutation (πf(t)) of them will yield the same covariance [27]. This leads to
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ρxy = cov(xt,yt) = cov(xπ(t),yπ(t)) (5.23)

for t = 1, 2, ...,n. This proves that any propagating signal in the �eld will not be

detected by EOFs [27]. The evolution of EOFs to Complex EOFs (CEOFs) can solve

this problem.

An explanation can be found when looking at a signal that can be represented as a

wave and can therefore be generally described as

x(t) = Aeiωt+φ0 = Aeiφ = A(cos(φ) + i sin(φ)) (5.24)

where A is the wave amplitude, e the Euler's constant, i the imaginary unit, ω the

frequency, φ0 the phase shift at the origin and φ the actual phase. By augmenting the

input data with a complex component propagating signals may be detected by the EOF

analysis [5] [27] [28]. There are many options to add a complex component to the dataset

proposed in literature [27] In this study Hilbert Transform is used to "complexify" the

original dataset. This technique was introduced by Rasmusson et al (1981) [58] and has

been used in CEOF successfully [5] [27] [28].

Hilbert Transform Hilbert Transform augments the original data with a complex com-

ponent by using its Hilbert transform as the imaginary part. This leads to the inclusion

of the information about the rate of change of the �eld as the arti�cial imaginary part.

It can therefore be seen as the time derivative of the original process [5].

The Hilbert Transform is shortly introduced here. It follows the descriptions found in

Hannachi et al. (2007) [27] and Bauer-Marschallinger (2012) [5]:

Let xt = (x1s, x2s, ..., xts) with t = 1, 2, ...,n be the representation for a time se-

ries from a �eld X(t, s). With vector Fourier coe�cients a(ω) and b(ω) the Fourier

representation of the time series is:
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xt =

ω∑
a(ω) cos(ωt) + b(ω) sin(ωt). (5.25)

Since propagating waves need a complex representation as in Equation (5.24), Equa-

tion (5.25) can be transformed to yield the general complex Fourier decomposition:

yt =

ω∑
c(ω)e−iωt (5.26)

with Re(yt) = xt and c(ω) = a(ω)+ib(ω). This new complex �eld yt = (yt1,yt2, ...,ytp)
T

can therefore be written as:

yt = xt + iH(xt) (5.27)

where the imaginary part of yt is the Hilbert transform of xt

H(xt) =

ω∑
b(ω) cos(ωt) − a(ω) sin(ωt). (5.28)

The Hilbert transform H(xt) is seen to represent a simple phase shift by π
2
in time. In

fact, it can be seen that the Hilbert transform when considered as a �lter, removes zero

frequency without a�ecting the modulus of all others. As mentioned above, the Hilbert

transform can also be considered as the time derivative of the original process in case

the time series contains only one frequency. Therefore, locally in the frequency domain

H(xt) provides information about the rate of change of xt with respect to time t.

The derivative character and the π
2
phase shift becomes evident when comparing

Equation (5.25) and Equation (5.28). Both become manifest in the switch of sin and

cos at the a-term and b-term and the change in sign for the a-term, which re�ect the

basic relation between these two functions [5].

For completeness, the Hilbert transform of a continuous time series x(t) is in formal

terms de�ned by the convolution
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H(xt) =
1

π

∫
x(u)

t− u
du. (5.29)

In practice, the Hilbert transform of a continuous time series is estimated using Fourier

coe�cients with are commonly derived from Fast Fourier Transformation [27] [28].

Hilbert EOF Analysis To apply EOF Analysis on the "complexi�ed" dataset using the

Hilbert Transform only minor changes to the EOF analysis presented in the beginning

of this section have to be applied. This is then called Hilbertain EOFs (HEOFs). First

the real-valued time series of the �eld X(t, s) are expanded as in Equation (5.27). Then

the covariance matrix of the complexi�ed dataset Y yields

Syy =
1

T

T∑
k=1

yty
?T
t (5.30)

in which ? donates the complex conjugate, and T is the number of elements of the

time series as above. The HEOFs are then equal to the eigenvectors of Syy. Of course,

they can also be obtained as the right complex singular value vectors of the data matrix

Y through SVD. The complex PCs (CPCs) are obtained by adapting Equation (5.16).

The eigenvalues, which are still real-valued, are calculated accordingly as in the regular

EOF case.

5.3.2 EOF Rotations

The rotation of EOF results is done to increase interpretability of the results. These

linear transformations are based on vector rotation and yield simpler patterns than in

the original EOFs. Most of the analytic rotations are simple algebraic expressions which

attempt to approximate simple structure through the application of specially designed

mathematical algorithms which distribute the PC loadings such that the dispersion of

the loadings is maximized by maximizing the number of large and small coe�cients.
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These so-called rotation criteria are not unique and the number of EOFs used for the

rotation remains arbitrary. [27]

Hannachi et al. (2007) provide a comprehensive introduction into the rotation of

EOFs:

Rotation of the EOF patterns can systematically alter the structures of EOFs. By

constraining the rotation to maximise a simplicity criterion, the rotated EOF patterns

can be made simple. Given a p×m matrix Em = (e1, e1, ...em) of the loadings m EOFs,

the rotation is formally achieved by seeking an m ×m rotation matrix R to construct

the rotated EOFs B according to:

B = EmR (5.31)

where R can also be (RT )−1 depending on the type of rotation as detailed below. The

criterion for choosing the rotation matrix R is what constitutes the rotation algorithm

or the simplicity criterion, and is expressed by the maximisation problem:

max f(EmR) (5.32)

over a speci�ed subset or class of m×m square rotation matrices R. The functional

f() in (5.32) represents the rotation criterion. Note that instead of rotating the EOFs

Em as in (5.31), one could equally rotate the EOFs scaled by the square root of the

corresponding eigenvalues, i.e. using Em×m, where m = (λ1, λ2, ..., λm) is the diagonal

matrix containing the leading singular values. Alternatively, one can also rotate PCs in-

stead. Various rotation criteria exist in the literature. Richman (1986) [59], for example,

lists more than ten simplicity criteria. Broadly speaking, there are two large families

of rotation: orthogonal and oblique rotations. While the criterion for an orthogonal

rotation seeks an orthogonal rotation matrix R, in oblique rotation one seeks a (non-

orthogonal) rotation matrix R [27]. In this thesis, a criterion for each the orthogonal

rotation and the oblique rotation have been tested. In this section, these criteria are

brie�y introduced.
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Varimax

The varimax criterion is the most well-known orthogonal rotation algorithm for EOFs.

In orthogonal rotation, the rotation matrix R in (5.31) is chosen to be orthogonal, and

R = R. The problem is to solve (5.32) subject to the condition:

RRT = RTR = Im (5.33)

where Im is the m ×m identity matrix. For the varimax criterion let us designate

by bij, i = 1, ...p, and j = 1, ...m, the elements of the rotated EOFs matrix B in (5.31),

i.e. bij = [B]ij , then the varimax orthogonal rotation maximises a simplicity criterion

according to:

max

f(B) = m∑
k=1

p p∑
j=1

b4jk −

(
p∑
j=1

b2jk

)2
 (5.34)

where m is the number of EOFs chosen for rotation. The quantity inside the square

brackets in (5.34) is proportional to the (spatial) variance of the square of the rotated

vector bk = (b1k, ...,bpk)
T . Therefore, varimax attempts to simplify the structure of

the patterns by pushing the loadings coe�cients towards zero, or ± 1. [27] [36]

Quartimin

In oblique rotations, a non-orthogonal rotation matrix R with unit length columns is

chosen, so that the oblique rotated EOFs

B = Em(R
T )−1 (5.35)

minimise a certain criterion f(B). One well known example for oblique rotation is the

quartimin criterion, which corresponds to:
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5.4 Correlations

f(B) =
1

4

∑
r6=s

∑
k

b2krb
2
ks (5.36)

The oblique rotation matrix is calculated by solving (5.32) which is subject to the

previous constraints [27]. The quartimin criterion

5.4 Correlations

To identify if two or more samples of datasets or observations are statistically connected

is subject of Correlation Analysis [65]. Correlation analysis can be used to detect if

two or more signals are synchronous and to what extent. There exist many di�erent

methods in this �eld that provide information concerning the strength and the direction

of these relationships between data. The causality of these relationships can of course

not be determined with these methods. Additional distinct statements about the quality

of the correlation analysis are needed together with the actual results of the correlations

analysis. [5]. This is why in this study we use correlations measures to investigate

the relationship of variables of the hydrology in the Mediterranean region and di�erent

climate modes. In this study, Spearman Rank Correlation was used to quantify this

relationship, as it does not require assumptions about the probability distribution of the

samples. In the following paragraph, this correlation method is brie�y introduced.

Spearman Rank Correlation Suppose our data consists of pairs of n observations on

two variables A and B, (A1,B1), (A2,B2), ..., (An,Bn). We �rst order (or rank) all the

observations from A between themselves from smallest to largest (or from largest to

smallest). Then we independently do the same for the values of B. So, each observation

is assigned a rank according to its position relative to all other observations in its own

group. In case that this ranking can be done unambiguously without any two values

claiming the same rank the Spearman correlation coe�cient is de�ned by:

ρ = 1−
6

n3 − n

n∑
i=1

D2
i (5.37)
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where Di, i = 1, 2, ...,n are the di�erences in ranks of Ai and Bi and n is the number

of observations in each group. It can be shown that

− 1 6 ρ 6 1. (5.38)

In case the variables A and B are perfectly correlated ρ = 1, while if they are the

complete opposite of each other and have a perfect negative correlation ρ = −1. ρ = 0

when there is no relation between A and B values. All other values of ρ that are between

the extremes give a relative indication on the relation between A and B [25].

The signi�cance of a non-zero value of ρ can be tested by computing the test quantity

t = ρ

√
N− 2

1− ρ2
(5.39)

which is distributed approximately as Student's distribution with N − 2 degrees of

freedom. [5]
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This study uses several variations of EOF analysis to quantify the impact of climate

modes on the Mediterranean hydrology. In this chapter, the di�erent set-ups as explained

in Section 5.1 are discussed in a chronological order according to the study. Then an

example case with graphic output examples is presented. For this, �rst the spatial

subset for the study is chosen and the impact of the spatial extent is shown. Then

variation of EOF analysis like presented in Section 5.2 are applied to the datasets.

Finally, correlations to well knows climate modes which were presented in Chapter 3 are

calculated using the methods introduced in Section 5.4.

Although, in this study, the presented steps were conducted using the whole range of

datasets which are listed in Chapter 4, below only examples from the study are presented

in detail and an overview of the results using all datasets in given at the end of the

chapter. For better comparability, the examples are all taken from the analysis of the

GLEAMv3 dataset describing evapotranspiration which is introduced in Section 4.2.1.

6.1 Revealing the impact of methodological choices

on identifying main patterns of evaporation

The examples presented here use the GLEAMv3 dataset which is introduced in 4.2.1. It

is an evapotranspiration dataset and was chosen as the complete example for this study,

because of its completeness and interesting results. The results of all other datasets were

analysed as part of this study and a quick overview of them, will be given at the end of

this chapter.
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6.1.1 Spatial Subset

In this study both the Mediterranean basin and the Mediterranean region as presented

in Section 2.1 in Chapter 2 were used in the application of EOF analysis. First the

standard EOF analysis was applied to datasets with these two di�erent spatial extents.

The non-complex EOF analysis was applied over all months from 1980-2013.

The �rst four modes of the EOF analysis for the spatial extent of the Mediterranean

basin can be seen in Figure 6.1. On the left, the spatial patterns of the �rst four modes

are mapped in colours from red over white to blue. Red and orange colours represent

negative amplitude and blue colours positive amplitude. The map corresponds to the

temporal normalized amplitudes which are shown on the right. The modes are ordered

by the amount of represented variance as explained in Section 5.2. The �rst and second

mode show an annual pattern with only slight variation. The spatial pattern for all

modes show strong signals in the tropics between 0◦N and 15◦N. Details in the spatial

distribution around the Mediterranean Sea are only visible in the third mode with a

di�erence between the area more in the south close to the Mediterranean Sea and the

areas further north and more detached from the sea.

The results of the same analysis applied to the Mediterranean region is shown in Figure

6.2 with again the �rst four modes of the result. The �rst mode shows an annual pattern

while the second mode shows a biannual temporal pattern. The spatial distribution is

complex and shows details for the Mediterranean region. In the �rst mode, we see a

di�erence between the areas south and north of the Mediterranean Sea. In the second

mode, we see the same pattern that we see in the third mode of the analysis of the

Mediterranean basin. The third and fourth mode also show spatial di�erences for the

Mediterranean region in evapotranspiration.

These two examples are representative for the domain dependence of EOF analysis.

The selection of the study area has a large impact on the result of the analysis [26].

As this study tried to quantify the impact of climate oscillations on the Mediterranean,

and the Nile river with its vast catchment area only contributes very little to the overall

situation in and around the Mediterranean Sea, but dominates the derived signal, this

study applied the analysis on the Mediterranean region instead of the Mediterranean

basin.
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Figure 6.1: The �rst four modes of the results of EOF analysis applied to the GLEAMv3
dataset with the spatial extent of the Mediterranean basin. The dominance
of the tropical signal from the area around Lake Victoria can be seen very
clearly.
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Figure 6.2: The �rst four modes of the results of EOF analysis applied to the GLEAMv3
dataset with the spatial extent of the Mediterranean region. A more detailed
signal can be seen in the area surrounding the Mediterranean Sea.
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6.1.2 Variations of EOF analysis

As presented in Section 5.2 many variations of EOF analysis exist. In this study, some of

the available variations were implemented to investigate the advantages or disadvantages

for each adaptation of EOF analysis. First complex EOF are applied to increase the

information detail one can retrieve from the modes. Then rotations are applied to

increase interpretability of the results.

Complex EOF

Analogical to the EOF analysis presented above, CEOF analysis, as described in 5.3.1,

was applied to the GLEAMv3 dataset. The results of the �rst four modes can be seen in

Figure 6.3. The results are now split up in two spatial and temporal plots for each mode.

The upper plots show the spatial and temporal amplitude while the lower plots show

the spatial and temporal phase. The temporal and spatial amplitude contain the same

kind of information as the one found in the EOF analysis mode. The spatial pattern for

the amplitude for all four modes are similar to the patterns found in the EOF results.

The spatial phase and temporal phase show the propagating nature of that pattern.

The �rst mode explains 85.5% of variability which is signi�cantly higher than the

�rst mode of the EOF analysis, which only explains 74.0% of variability. The di�erence

accounts for the fact that they each include di�erent information: CEOF modes also

contain information about the temporal relationship of the observations.

There is a clear annual signal which is demonstrated by one phase revolution per

year in the phase graph of the �rst mode. This is connected to the spatial phase,

where it shows the propagation from south to north during one annual cycle. The

maximum amplitude is reached in the north around July-August and in the south in

January-February. Also in the southern regions of the northern coast of around the

Mediterranean has the maximum amplitude in April-May. The amplitude plots show

that there is barely any evapotranspiration in the south, except for coastal areas.

The second mode explains 4.6% of variability and shows a biannual phase pattern.
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There is also a biannual signal in the phase pattern of the third mode which explains

1.0% of variability.

The fourth mode with has a di�erent spatial amplitude pattern compared to the fourth

mode of the EOF analysis and explains only 0.8% of variability.

Rotations of EOF

In this study both rotations presented in Section 5.3.2 were applied to the datasets. Both

rotation criteria deliver similar results for the rotated EOFs, which is in accordance with

Hannachi et al. (2006) [26].

While some of the rotated EOFs did in fact increase interpretability for some datasets

(see Figure 6.15 and Figure 6.16) the overall result for the GLEAMv3 dataset was not

satisfying. The rotated EOFs followed extreme outliers and disregarded the general

patterns present in the signal. Especially the �rst mode has lost the general annual

temporal pattern and the north south spatial pattern. The rotations have failed for this

dataset in particular, because of the outlier pixel along the coast of the Mediterranean

Sea.

Varimax The result of rotated EOFs using the varimax criterion show both positive

and negative outlier for the �rst mode. The second to forth mode is dominated by

the positive outliers in the temporal pattern. Interestingly the overall spatial pattern

remains the similar to the spatial pattern of the not rotated EOFs.

Quartimin The result of rotated EOFs using the quartimin criterion show mostly

positive outliers for all four modes. Which is a small di�erence in the result compared

to the results using the varimax criterion. Again, the overall spatial pattern remains the

similar to the spatial pattern of the not rotated EOFs for the second to fourth mode.

The spatial pattern of the �rst mode is almost identical for the one found in the result

using the varimax criterion.
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6.1 Revealing the impact of methodological choices on identifying main patterns of evaporation

Figure 6.3: Part 1 - mode 1 and 2 of the �rst four modes of the results of Complex EOF
analysis applied to the GLEAMv3 dataset.
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Figure 6.3: Part 2 - mode 3 and 4 of the �rst four modes of the results of Complex EOF
analysis applied to the GLEAMv3 dataset.
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Figure 6.4: The �rst four modes of the results of EOF analysis and rotation using the
varimax criterion applied to the GLEAMv3 dataset with the spatial extent
of the Mediterranean region. A more detailed signal can be seen in the area
surrounding the Mediterranean Sea.
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Figure 6.5: The �rst four modes of the results of EOF analysis and rotation using the
quartimin criterion applied to the GLEAMv3 dataset with the spatial extent
of the Mediterranean region. A more detailed signal can be seen in the area
surrounding the Mediterranean Sea.
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6.1.3 Correlations with Climate Modes

To �nd a correlation between climate modes and the retrieved climate signals Spearman

Rank correlation as introduced in Section 5.4 was used. The correlations were calculated

for the monthly values, for subsets of the monthly values by season, and by using results

of the EOF analysis with the averaged seasonal values as an input. In the following

some representative examples of results are presented and then an overview of the overall

results given. The graphics used to show the results show a 2D grid with the �rst four

modes of the EOF analysis in the x-axis and a list of climate modes on the y-axis. The

Spearman Rank coe�cient for each combination is �lled in the grid which for easier

review also uses a shaded background colour according to the value of the correlation

coe�cient. Positive values have a blue background, while negative values have a red

background.

Monthly Correlations were calculated for all months of the resulting EOF and the

monthly values of the selection of climate indices. Overall the correlation values with

this set-up were low, ranging between −0.2 and +0.2.

The example shown in Figure 6.6 is the correlation matrix of not rotated EOF temporal

values and the selected climate indices. The maximum value for correlation was with

the East Paci�c - North Paci�c (EP-NP) index and the �rst three modes of the EOF

analysis, with correlation values of a maximum of 0.19.

Seasonal Correlations were calculated by only using seasonally averaged values for

DJF, MAM, JJA, and SON as an input to the EOF analysis. The results of the seasonally

re-sampled dataset (see Figure 6.7) are di�erent from the monthly results, by having a

smoothing e�ect on the temporal pattern and a very di�erent spatial pattern for modes

three and four.

The temporal values of the results were then correlated with the seasonally averaged

values of the climate indices (Figure 6.8). The values for the correlation were even lower

than for the monthly data and no climate index stood out with a higher value.
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Figure 6.6: Monthly correlations of EOFs and climate modes

66



6.1 Revealing the impact of methodological choices on identifying main patterns of evaporation

Figure 6.7: The �rst four modes of the results of EOF analysis applied to the GLEAMv3
dataset with seasonal values.
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Figure 6.8: Seasonal correlations of EOFs and climate modes using all seasonal values
for correlation.
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The results were then correlated by season, meaning: all DJF values of the result

temporal pattern were correlated with all the DJF values of the climate indices. This

lead to high correlation values for speci�c climate indices for varying seasons. The

example (Figure 6.9) shows the results for all four seasons. As other studies have shown

the winter values are especially highly correlated with the climate modes. The EA has

a 0.68 correlation value with the �rst mode and the AO and NAO correlate highly with

the second mode. This is in agreement with the �ndings of previous studies. Also, the

high correlation value (0.42) of the �rst mode and the SOI index for the MAM season

is in line with other studies. Surprising are the high values for the correlation with the

Paci�c/North American (PNA) index in the JJA and SON season, as no earlier studies

could be found stating this correlation.

For each value in the correlation matrix an individual plot showing the correlated

values plotted on top of each other, was created. The plots give a good understanding

about the relationship of the two correlated values. In Figure 6.10 the individual plots

for the pairs with the highest correlation values are shown. For the DJF season the

correlation with AO, EA, and NAO are shown. For MAM season, the correlation with

SOI is pictured, for JJA season with TNA, and SON season with PNA.

Complex Correlations were calculated using the results of CEOF. The correlation

with climate indices was calculated for the real and imaginary part separately and the

absolute values of the complex numbers. Therefore, for each CEOF result three corre-

lation matrices were created.

The matrices in Figure 6.11 show the correlation of the CEOF analysis result for the

monthly sampled dataset with the climate indices. All three show low correlation values

in between −0.2 and +0.2. The three matrices do not show much similarity on which

values correlate and which not.
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(a) DJF (b) MAM

Figure 6.9: Correlation by season for the GLEAMv3 dataset for DJF MAM.
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(c) JJA. (d) SON.

Figure 6.9: Correlation by season for the GLEAMv3 dataset for JJA SON.
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(a) Mode 2 for DJF with AO. (b) Mode 1 for DJF with EA.

(c) Mode 2 for DJF with NAO. (d) Mode 1 for MAM with SOI.

(e) Mode 1 for JJA with TNA. (f) Mode 1 for SON with PNA.

Figure 6.10: Selected individual plots for high correlation values when correlating the
seasonal values with climate modes per season for the EOF analysis results
of the GLEAMv3 dataset with the Mediterranean region as a study area.
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(a) amplitude (b) imaginary part

Figure 6.11: Correlation for the CEOF analysis of the GLEAMv3 dataset separated for
amplitude, the imaginary part, and the real part of the complex values.
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(c) real part.

Figure 6.11: Correlation for the CEOF analysis of the GLEAMv3 dataset separated for
amplitude, the imaginary part, and the real part of the complex values.
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6.2 General Results

In this section, a short overview of the results of all variables is given with the results

of one dataset is shown in more detail as an example.

6.2.1 Precipitation

As an example, for this variable the results of the EOF analysis without rotation for

the seasonally sampled GPCP dataset can be seen in Figure 6.12. The �rst mode shows

the annual signal with only small variations over the year describing 50.6% of total

variability. The second mode shows the characteristic dipole patter of the western and

eastern Mediterranean describing 10.9% of total variability. This dipole pattern can

also be found in the third mode of the CMORPH dataset and the second mode of the

TRMM-TMPA dataset.

For correlation analysis results of the EOF modes (see Figure 6.13) show high corre-

lations in the winter months for AO and NAO for the �rst mode. The spring months

show low correlations for the �rst mode, but relatively high correlations for the second

mode with SOI and AO. In the summer months, the �rst mode correlates with EA and

SOI. In the autumn months, it is notable that the �rst mode correlates strongly with

EP-NP as well as AO.

6.2.2 Evapotranspiration

A detailed description of this dataset was given as the practical example in the previous

section (see Section 6.1). For the other datasets (MODIS16, PML-ET, NTSG and PT-

JPL) the EOF analysis results show a slightly di�erent pattern especially for the second

mode. There they show a strong biannual pattern, while the GLEAM v3 dataset shows

an annual temporal signal. The dipole pattern found in the third mode of the GLEAM

v3 dataset cannot be found in any of the other datasets. In Figure 6.14 the results

of EOF analysis applied to the MODIS16 dataset is given as an example. There, the
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Figure 6.12: The �rst four modes of the results of EOF analysis applied to the GPCP
dataset with seasonal values.
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(a) DJF (b) MAM

Figure 6.13: Correlation by season for the GPCP dataset for DJF MAM.
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(c) JJA. (d) SON.

Figure 6.13: Correlation by season for the GPCP dataset for JJA SON.
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monthly values were used for the analysis. They clearly show the biannual temporal

pattern in the second mode as described above.

An example for a representative use of rotations of EOFs can also be found in the

analysis of the MODIS16 dataset. Figure 6.15 shows the result of rotated EOFs using

the varimax criterion. Compared to the not rotated results the temporal pattern has a

larger variance and the spatial pattern appears more re�ned. The variability of the �rst

three modes is increased compared to the not rotated results. A very similar result can

be seen in Figure 6.16. There the result of rotated EOFs using the quartimin criterion

are shown.

6.2.3 Soil Moisture

The results of the EOF analysis without rotation for the seasonally sampled CCI dataset

can be seen in Figure 6.17. It is quite striking that for all four modes the annual signal

is dominating the temporal result with only very small variations over the years.

In accordance with these results, the correlation analysis results of the EOF modes

are very similar across the modes. There is a strong correlation in the winter months

with PNA. The only other correlation value over 0.5 can be found in the summer month

for the correlation of the second mode and the TNA.
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Figure 6.14: The �rst four modes of the results of EOF analysis applied to the MODIS16
dataset with seasonal values.
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Figure 6.15: The �rst four modes of the results of EOF analysis and rotation using the
varimax criterion applied to the MODIS16 dataset
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Figure 6.16: The �rst four modes of the results of EOF analysis and rotation using the
quartimin criterion applied to the MODIS16 dataset
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Figure 6.17: The �rst four modes of the results of EOF analysis applied to the CCI Soil
Moisture dataset with seasonal values.
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(a) DJF (b) MAM

Figure 6.18: Correlation by season for the CCI Soil Moisture dataset for DJF MAM.
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(c) JJA. (d) SON.

Figure 6.18: Correlation by season for the CCI Soil Moisture dataset for JJA SON.
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7 Conclusion

This study o�ered an insight in the spatio-temporal characteristics of the hydrology of

the Mediterranean region and its connection with various climate modes. To accomplish

this the study needed a lot of work in handling the big amounts of data with over

ten datasets and monthly values for the entire region for roughly the last 30 years.

Using EOF analysis, and variations of it made it possible to cleverly compress the

data and extract the independent factors of their variability. These factors were then

correlated with climate indices using Spearman Rank correlation, which was chosen for

its robustness.

The Mediterranean region proved to be a highly complex study area with many details

in the spatial distribution of hydrological values. By using only the region instead of the

Mediterranean basin, the strong climate signals from the tropics could be avoided. Ex-

perimenting with the exact extent of the study area also showed the spatial dependency

of the EOF analysis and its limitations in that perspective.

EOF analysis was chosen, because it is a well-tested tool for the extraction of climate

signals from large data cubes. It indeed proved to be a useful tool in this study. It

helped breaking down very large datasets into manageable modes, which then allowed

further analysis. Other variations of EOF analysis did not prove to be of greater value.

CEOF is a useful tool to understand the propagating nature of the modes better, but

the resulting modes were not suitable for correlation analysis. The rotations of EOF

proved to be highly sensitive to outliers and therefore might only deliver nonsensical

results. This e�ect varied with the di�erent datasets and for some, meaningful results

were created. The overall result proved not to add much value to the analysis.

The relationships found between hydrological climate datasets of the Mediterranean
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region and climate indices all align with �ndings of earlier studies. The strong correlation

in the winter season with NAO, AO, and EA was evident in most datasets. Also,

a correlation of SOI and hydrological values in the spring months aligns with earlier

�ndings. Correlating the values by season resulted in much higher correlation values,

while using the values for the whole year showed very low correlation values. This

indicates that the impact of climate oscillation on the hydrology of the Mediterranean

varies throughout the year and is especially strong during the winter months.

Due to the limited scope of this master thesis, several open questions remain for

further research. One suggestion is to run a meta-analysis over all of the collected

results. In this study, not just the input datasets were plentiful, but the output was also

too large to fully understand the connections. By statistically analysing the results, one

might be able to get more general �ndings on the connection of climate modes and the

hydrology of the Mediterranean. Also, a di�erent form of analysis could be examined as

an alternative to EOF analysis, as some limitations were met when using this method,

especially the e�ect of the selected extent of the study area.

However, the thesis closes with the insight that climate modes do have a signi�cant

impact on the hydrology of the Mediterranean region. By using a large amount of

datasets, the �ndings of existing studies could be enriched. The details in spatial and

temporal patterns could be shown for a large number of variables and datasets. The

complex nature of the topography of the region re�ects in the hydrology. In addition

the thesis gave insights into the e�ectiveness of speci�c variations of the EOF analysis

applied to the used datasets. The �ndings of this thesis, hopefully contribute to the

overall understanding of the Mediterranean hydrology and help to re�ne predictions for

the future hydrology of this region.
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AO Arctic Oscillation. iii, v, xiii, 24, 25, 65, 69, 75, 87

CCI Climate Change Initiative. 31, 36, 79

CEOF Complex Empirical Orthogonal Functions. 37, 38, 39, 59, 69, 87

CMORPH CPC MORPHing technique. 31, 33, 75
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ESA European Space Agency. 31, 36
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MJO Madden-Julian Oscillation. 19
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NAO North Atlantic Oscillation. iii, v, xiii, 19, 20, 21, 22, 23, 24, 26, 27, 28, 65, 69, 75,

87

NASA National Space Agency. 34

NTSG Numerical Terradynamic Simulation Group. 31, 35, 75

PC Principal Components. 40, 46, 51

PDO Paci�c Decadal Oscillation. 19

PML-ET Penman-Monteith-Leuning Evapotranspiration. 31, 35, 75

PNA Paci�c/North American. 65, 69, 79

PT-JPL Priestley�Taylor Jet Propulsion Laboratory. 31, 35, 75

SLP Sea Level Pressure. 21

SOI Southern Oscillation Index. 26, 27, 65, 69, 75, 87

SST Sea Surface Temperature. 21, 22, 25, 26

SVD Singular Value Decomposition. 45, 46, 47, 50

TNA Tropical Northern Atlantic. iii, v, 21, 22, 28, 69, 79

TRMM Tropical Rainfall Measuring Mission. 33

TRMM-TMPA TRMM Multi-satellite Precipitation Analysis. 31, 33, 75

TSA Tropical Southern Atlantic. 21

WCRP World Climate Research Program. 33
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