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Abstract

Accurate description of bacterial dynamics is an important factor for understanding
the bacterial cell cycle. Traditionally direct observation of cell cycle dynamics using light
microscopy has been restricted by the diffraction limit. In recent years a number of
super-resolution techniques have been developed allowing to overcome these limitations.
However, time-lapse imaging of single cells is challenging due to photobleaching from
prolonged illumination and cell movement between images. In addition, some dyes used
in these techniques require the bacteria to be fixed prior to microscopy. This thesis
explores the possibilities to reconstruct a pseudo-temporal trajectory from static images
of cell populations and compares them to lower resolution single cell time lapse microscopy.
Results indicate that pseudo-temporal reconstruction can provide a good approximation
of the average development trajectories provided a sufficient number of cells in each cell
cycle phase is available for analysis.
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1 Introduction

Since its invention, the microscope has been used by biologists as a tool to study and de-
scribe biological specimen [40]. After observation and classification, research has moved on to
propose and study models for cell cycle development [19, 36]. For bacteria, the study of cell
shape dynamics proved to be an important tool for establishing and testing a biological cell
cycle model [19]. However, for small features like cell invagination before division or protein
distribution accurate description is difficult using classical diffraction limited light microscopy.

With the availability of new super-resolution techniques going beyond the classical diffrac-
tion limit, even small features can be measured with high precision. However, sample prepara-
tion and imaging conditions for some of the highest resolution techniques prevent the capture
of time-lapse images of the same cell ruling out direct observation of cell cycle dynamics.

The aim of this thesis is therefore twofold. First, the influence of spatial resolution im-
provement on the description of the cell cycle shall be assessed. Second, the possibilities
to reconstruct cell cycle development from static single cell images of different cells shall
be explored. A technique to regain approximate time information (called pseudo-temporal
classification) would potentially allow the usage of high spatial resolution methods for the
description of cell cycle dynamics.

Interestingly, a number of novel techniques to reconstruct dynamic information of biolog-
ical developments from static measurements of eukaryotic cells have been developed in recent
years [18, 17, 39]. These techniques are based on different types of measurements ranging from
single cell RNA sequencing to estimation of the DNA content and produce pseudo-temporal
estimations where the measurements are located within the cell cycle. These methods were
applied to microscopy data from bacteria and contrasted with traditional methods for approx-
imating the position of a measurement within the cell cycle. Descriptions of the used methods
can be found in section 2.3.

Motivation

Super-resolution microscopy technologies like STORM and PALM enable the spatial imaging
of cells with unprecedented resolution. However, the usage of these techniques for explor-
ing cell cycle dynamics is limited due to the fact that many of the commonly used sample
preparations require the cells to be fixed before imaging, killing them in the process [5]. Since
the low spatial resolutions may lead to significant imprecisions in the description of cell cycle
dynamics, it would be desirable to estimate the dynamics from a series of high resolution
static single cell images.

One approach to this problem is to try to infer the temporal cell cycle state from a
combination of static single cell images from a cell population. Under the assumption that
measurement noise and the intrinsic cell to cell variability is lower than the cell cycle dependent
dynamics, this may enable the reconstruction of the dynamics of a representative cell cycle.
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2 Previous work

2.1 Cell shape

The characterization of cell shape is an important requirement for the description of bacteria
shape dynamics. Often bacteria shape is described using a combination of geometric forms
symmetric to central axis of the cell. For example, a commonly used model of E. coli describes
the cells as cylinders with hemispherical caps, where the division site is modeled as capped
hemispheres [31].

As a rule of thumb, E. coli bacteria have dimensions of approximately 2µm in length and
1µm in diameter [33]. These dimensions are too small for accurate quantitative measurement
of cell shape using diffraction-limited light microscopy. The resulting measurement bias by
using classical microscopy on small bacteria is described in section 4.1.1.

Building on the model E. coli, the dominating form of the C. crescentus cells used in this
thesis is often described as a cylinder with hemispherical caps [19]. However, in contrast to
E. coli the C. crescentus cells may have significant curvature and grow a long, thin extension
at one cell pole called stalk. Based on this model a parametrization for C. crescentus is
developed in section 4.4.2 and shown in figure 28.

Alternatively, it is also possible to only make general assumptions about cell symmetry and
measure the actual shape along the symmetry axis. This path is followed in [41], where the cells
are assumed to have a uniform global curvature and cell diameter is measured perpendicular
to the symmetry axis (figure 1). The measurement process described in section 4.4 is using
similar principles but allows for non-uniform curvature of the symmetry axis.

Figure 1: Parametrization of C. crescentus along symmetry axis with uniform curvature. Cell
width (w) is measured along section perpendicular to the symmetry axis (l). The radius of
curvature (R) is shown together with the width at the invagination site (wmin). The stalked
(st) and swarmer compartments (sw) are shown using color coding. From [41]

2.2 Single cell identification

The observation of cell dynamics without single cell identification can mask important behav-
ior, as population noise may suppress the characteristics of single cell trajectories. With the
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availability of new dyes and microscopy techniques, a number of single cell studies have been
performed in recent years [31, 41].

Their scopes range from the determination of single cell variability of growth parameters
[31] to continuity of shape dynamics between generations of the same cell [41]. While the
studies have shown significant variability between single cells, the overall growth behaviour
was found to be similar, allowing the construction of a representative population trajectory.

The extent to which the population trajectory of C. crescentus represents the single cell
behaviour is also discussed in section 5.

2.3 Pseudo-temporal classification

Pseudo-temporal classification tries to infer cell cycle times from measurements of fixed cell
populations. Traditional techniques for estimating the number of cells within a cell cycle stage
have been known for some time [21]. However, in recent years a number of papers have been
published using novel approaches to recover temporal information from fixed eukaryotic cell
populations with increased precision. [18, 35, 17].

Two of the methods are mainly based on RNA sequence data, while the other uses nuclear
volume, DNA replication and cell cycle markers from microscopy images. They all use various
techniques to reduce the high dimensional measurement vector down to a pseudo-temporal
scalar.

In contrast, this thesis focuses on cell shape as the main information source for pseudo-
temporal classification. This is because unlike eukaryotic cells, bacteria go through a series
of highly stereotyped shape changes as they progress through cell cycle. Modifications to the
dimensionality reduction techniques described in these papers might therefore be necessary
in order to apply them to bacteria cell shape data.

The pseudo-temporal classification techniques can broadly be split into two categories.
In the category of supervised methods, new observations are classified based on calibration
observations with direct time measurements. This approach requires the availability of a
representative calibration dataset and is described in section 3.2.

In contrast unsupervised methods do not require calibration datasets. Instead, they make
general assumptions about bacteria development and try to exploit the connections between
individual measured bacteria within a dataset. All methods described in the following sections
fall into this category.

A general assumption used by all methods is that cell shapes are expected to feature only
small differences for each time step. Assuming all phases of the cell cycle are densely sampled,
a measure of similarity between cells allows to create a trajectory representing the average
cell cycle developments. The methods described below mainly differ in their approach for
assessing cell similarity.

Diffusion maps

In diffusion maps the similarity assessment used is the diffusion distance which represents a
measure for the probability of transition between the measurement vectors of individual cells.
For the propose of this thesis, the measurement vectors contain the parametrized shape of the
cells described in section 4.4.2.
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The diffusion distance decreases for smaller (euclidean) distances and a larger number of
possible transitions between cells. It is therefore robust to noise and perturbations created by
outlier cells [7].

A comparison with various similarity measures commonly employed for dimensionality
reduction of measurement vectors found diffusion maps to perform best for cell data [18].

Wishbone

Wishbone [35] follows a similar approach as diffusion maps but computes the similarity metric
based on the shortest paths instead of transition probabilities between cells. It uses diffusion
maps as a preprocessing step to reduce the number of measurement variables in the measure-
ment vector before computing the shortest path between cells.

Another difference to diffusion maps is that instead of calculating pairwise similarities
between all cells, wishbone limits the calculations to a fixed number of nearest neighbours,
thereby reducing computational complexity and processing time for large datasets. However,
it also makes the results more sensitive to outlier cells.

Cycler

Cycler [17] builds on the algorithms developed for Wishbone but is specifically designed to
process microscopy measurement data instead of generic feature vectors. Like wishbone it
receives a measurement vector as input but modifies details of the algorithm to ensure cells
from all cell cycle stages are evenly represented and takes steps to reduces the influence of
outlier cells.

In addition to shape measurements of the targeted cells it also takes DNA content and
replication information measured using markers as well as local crowding caused by hetero-
geneous growth environments into account.

Length ordering

Instead of computing similarities based on multiple shape parameters, length ordering focuses
on a single parameter for determining shape similarity. With this simplification cell similarity
can easily be determined by comparing two scalar numbers.

Ordering cells based on a parameter gradually increasing with time like cell length consti-
tutes a well known approach to pseudo temporal ordering [21]. The technique is described in
detail in section 3.2.1.

While overall simple and robust, application in asynchronous populations may lead to
biased results [39]. This can be circumvented by applying the time correction described in
the next section.

Ergodic rate analysis

Ergodic rate analysis (ERA) uses ergodic assumptions together with the known behaviour
of some properties of the cell cycle to construct a pseudo-temporal trajectory from fixed cell
measurements. While the use of this technique to quantify cells in discrete cell cycle stages
is well established [21], it has been extended in recent years to allow for the description of
continuously varying properties such as cell size and DNA content [24].
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To connect the dynamics of a single cell to the state of the cell populations, the underlying
process must satisfy a criteria known as the ergodic assumption. Following [39], the weak and
strong form of these ergodic assumption can be stated for the case of the cell cycle as:

Weak ergodic assumption If the distribution of cells among different states does not
change over time, then the proportion observed in any state is proportional to the time each
cell spends, on average, in that state.

Strong ergodic assumption If all cells are going through an identical cycle of events, then
the proportion of cells in any cycle stage observed in the population at a single time point is
the same as the proportion of time spent in cycle stage as a single cell progresses through the
cycle.

While the weak ergodic assumption is sufficient for the applicability of ERA the degree
of correspondence with the strong ergodic assumption determines how closely the ergodic
average represents the behaviour of a single cell [39].

The main idea of ERA is that the number of cells found in a certain state within an
asynchronous population is related to the average transit time through that state [24]. If
the number of cells grow exponential with a known rate and the behaviour of a continuously
varying properties such as cell size is known this can be used to infer the dynamics of other
measured quantities. If only an estimation of normalized cell cycle time is desired the expo-
nential rate constant can be left unknown. Since the number of cells doubles at the end of
each cell cycle, assuming a uniform correspondence between proportion of observed cells and
the cell cycle would lead to an over-representation of cells early in their cell cycle [39]. The
cell cycle time is therefore calculated as

t = −T
ln (1− p≤t

2 )

ln 2
(1)

with t as cell cycle time, T as time to complete one cell cycle and p≤t as the percentage of
cells up to time t [39]. The correspondence between observed percentages and cell cycle time
can also be seen in figure 2.
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Figure 2: Graphical depiction of the correspondence between the percentage of cells observed
up to a given point and the elapsed normalized cell cycle time. From [39].

ERA is also connected to length ordering described in section 3.2.1. Length ordering
of an asynchronous population can be regarded as a special case of ERA where the known
behaviour is the monotonic increase of cell length. The ability of ERA to correct for the bias
of observed cell cycle percentages can be used to improve over simple length ordering in the
case of asynchronous population.

2.4 Microscopy

Since over 300 years light microscopy has been used for the observation of biological samples.
While initially the resolution of early microscopes was limited by the production quality of
the lenses and afterwards by the diffraction limit, new methods have been developed in recent
years to overcome this traditional frontier [40].

The following sections briefly introduce the concepts of classical diffraction limited mi-
croscopy. Afterwards, an overview of SIM and localization microscopy is given, which are the
mainly used microscopy methods for this thesis.

The main limitations of today’s classical microscopy is the diffraction limit. First described
by Abbe in 1873 [1] it defines a minimum distance between two diffracting points required to
reliably separate them. The limit is shown graphically in figure 3.This distance d depends on
the light wavelength λ as well as on the refractive index n of the immersion medium and the
half opening angle θ between the point and the lens

d =
λ

2n sin θ
(2)

The quantity n sin θ is called numerical aperture and is a measure of microscope quality.
In modern times good microscopes can reach a value of about 1.4 [10]. For a typically used
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Figure 3: Images of diffraction limited point sources. The top row shows the captured images
with the bottom row schematically representing the contributions from the 2 emitters (a)
The intensity profiles of the 2 emitters (dotted black lines) can easily distinguished from the
superpositioned intensities (pink line) (b) At the resolution limit, the emitters are at the
minimum distance required for separation (c) Below the resolution limit, two emitters cannot
be separated anymore by the superpositioned intensities. From [32].
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wavelength of 500 nm the resolution limit is therefore roughly 180 nm. While the resolution
can be improved by lowering the wavelength, the higher energy wave may damage the specimen
setting a lower wavelength frontier in practise.

The diffraction limit may also be described by introducing the concept of spatial frequency.
Spatial frequency measures how often a sinusoidal spatial pattern repeats itself per unit dis-
tance. Therefore, coarse patterns typically have a low spatial frequency and fine patterns a
high spatial frequency. For the case of a line grating, spatial frequency is simply the number
of lines per unit distance. In this framework the diffraction limit can be understood as the
maximum number of lines per unit distance where the line spacing can still be determined.
This argument was also used by Abbe in his original derivation of the diffraction limit [1].

For imaging of biological specimen a number of additional challenges need to be considered
before choosing a microscopy technique. Due to the similarity between the refractive indices
of specimen and surrounding medium a separation between the two regions may be difficult.
In addition, it is often desired to image changes in biological composition instead of the raw
cell shape. The microscopy methods described below present different trade-offs to solve these
challenges.

2.4.1 Diffraction limited

Brightfield

In a brightfield microscope, the specimen is illuminated from below using a condenser. Light
is diffracted by the specimen and collected using the objective lens (figure 4). The diffraction
reduces the measured intensity depending on the sample density, resulting in a dark image on
a bright background, giving the method its name. Compared to other illumination methods
the setup is simple and therefore widely used.

However, the method has a number of drawbacks for the imaging of bacteria samples.
Since the refractive index of many bacteria is similar to the surrounding medium, image
contrast is very low. While image contrast can be improved by staining the bacteria prior to
microscopy, this requires additional sample preparation and prevents live cell imaging due to
cell fixation for some stains.

In addition out-of-focus material contributes to the measured signal, blurring the focused
sample details. Some of these drawbacks are mitigated by the methods described in the
following sections at the expense of a more complex microscopy setup.
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Figure 4: Schematic of a bright field microscope. The light passes through the condenser, is
diffracted by the specimen and focused using the objective lens onto the ocular. From [25].

Phase contrast

Phase contrast microscopy enhances contrast for biological samples by separating illumination
and sample scattered light using its phase change. Light scattered from the sample typically
experiences a phase shift of −90◦, whereas the illumination light is unaffected. By shifting
of the background light to constructively interfere with the scattered light and dimming the
remaining background, sample contrast can be enhanced drastically (figure 5). The method
proved to be extremely useful for biology, earning its inventor Frits Zernike the Nobel prize
in physics of 1953.

While requiring more components than a simple brightfield microscope, phase contrast
microscopy does not require cell staining making it the method of choice to image many
otherwise transparent bacteria.
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Figure 5: Working principle of a phase contrast microscope. The specimen is illuminated
using the condenser and background as well as specimen scattered light is collected by the
objective. Afterwards, the phase of the background and scattered light is aligned via a phase
shift ring to allow for constructive interference. The final filter ring dims the background
light, producing a high contrast image in the image plane. From [13].

Fluorescence

The microscopy methods described above used the scattering of light from the specimen
to generate an image. In contrast, fluorescence microscopy obtains information by using
fluorescence light emitted from the specimen. The finite size of emission spots generally
leads to the same resolution limit as previous methods, however the ability to image specific
(fluorescent) properties of the specimen makes it a widely useful method in biology.

A simple setup for fluorescence microscopy is the epifluorescence microscope. Within such
a setup illumination and emission light pass the same objective lens, giving the method its
name [9].

Light from an high intensity light source (e.g. Xenon arc-discharge lamp or laser) is tuned
to the right wavelength by an excitation filter, reflected by a dichroic mirror and focused onto
the sample by the objective, emitting fluorescence light. The emitted light passes the objective
again, is separated from the reflected excitation light by the dichroic mirror and filtered by the
emission filter before it finally reaches the detector. Depending on the specific microscope, the
detector might be a camera or a photodetector as in the laser scanning confocal microscope.
A schematic of this setup is shown in figure 6.
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Figure 6: Simplified schema of an epifluorescence microscope. See text further description.
From [9].

Since many interesting molecules in biological samples are not naturally fluorescent ad-
ditional sample preparation is needed before they can be used in fluorescence microscopy.
This typically involves staining the sample with a fluorophore. Due to the Stokes’ shift, the
wavelength of the emission spectrum is usually longer than the excitation spectrum (figure 7)
[9]. This allows to separate the two spectra in the fluorescence microscope.

Figure 7: Excitation (Ex) and emission (Em) spectrum for the Alexa Fluor 647. The Emis-
sion/Excitation profiles were normalized to peak intensities. In accordance with the Stokes’
shift, the emission spectrum is shifted towards higher wavelengths. From [20].

The intensity of fluorescence emission decreases with prolonged exposure to excitation
light, an effect known as photobleaching. Photobleaching results from chemical interaction of
the fluorophores with molecular oxygen locking them in an exited state and mechanisms of
non-radiative energy loss [9]. For time-lapse image series the amount of photobleaching can
be a critical factor for image contrast and therefore fluorophore choice (figure 8).

In comparison with previously described methods, fluorescence microscopy requires more
sample preparation and a more complex microscopy setup. However, the possibility to fol-
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Figure 8: Photobleaching rates of time-lapse fluorescence images of Indian Muntjac deer
epidermis fibroblast cells. The nuclei is stained blue (Hoechst 33258),t mitochondria red (Mi-
toTracker Red CMXRos) and the actine cytoskeleton green (phalloidin derivative conjugated
to Alexa Fluor 488). An image was taken every two minutes (left to right, top to bottom).
The blue fluorophore fades fast and is almost gone after the 4. image while the red and green
fluorophores are more resistant to photobleaching. From [9].
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low biological processes by tagging involved molecules with fluorophores and record them
simultaneously in multicolor images presents a unique advantage, warranting additional ef-
fort. Furthermore, some of the methods described below can surpass the diffraction limit,
allowing the imaging extremely small biological samples with high resolution.

Laser Scanning Confocal

In confocal microscopy only a small focal volume is illuminated at each time point using a laser
beam. A complete image is generated by rastering the sample using a dichroic mirror. The
combination of light source and detector pinhole allows to reject out-of-focus light, preventing
it from reaching the photodetector (figure 9).

The rejection allows to increase image contrast substantially, especially for thick samples
[14]. In addition the methods allows to image optical sections of thick samples, providing
depth information.

Its disadvantages are the high cost of purchase and operation compared to traditional
microscopes as well as damages to biological samples due to high laser intensities. Being
a scanning method, the image acquisition process is also much slower than for traditional
microscopes.

Figure 9: Imaging schematic of a laser scanning confocal microscope. The excitation light
passes through a pinhole, is reflected by a dichroic mirror and focused onto the sample by
the objective. The fluorescent light generated by the excitation passes through the dichroic
mirror, is reduced to in-focus light by the detector pinhole and measured using a detector.
The combination of light source and aperture pinhole is responsible for rejecting out-of-focus
light. From [14].

2.4.2 Super-resolution

SIM

Structured illumination microscopy achieves resolutions beyond the Abbe limit by exploiting
interference between a chosen illumination pattern and the specimen [23]. The interference
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results in a mixing between image frequencies, shifting higher frequency information into the
observable lower frequency domain. By combining multiple images with shifted illumination
patterns, the resulting image contains information from double the observable frequency range,
thereby also doubling the resolution. The process required for obtaining these images is
outlined in the following paragraphs.

An important technique to describe the combinations of image frequencies is the Fourier
analysis. It transforms images from the spatial to the frequency domain, thereby simplifying
the convolution of the point spread function (PSF) in spatial domain to a mere multiplication
with the optical transfer function (OTF) in the frequency domain (Fig 10).

Figure 10: Usage of the Fourier transformation in microscopy. Light emission of the fluorescent
molecules in the spatial domain is convoluted with the PSF to produce the observed images.
In the frequency domain representation same the observed image is found by multiplying with
the OTF. The representation domains domains are connected by the Fourier transform, where
the OTF is the Fourier transformed PSF. From [26]

.

An interference between the specimen and the illumination pattern can be produced by
rotating the specimen relative to an illumination grid produced by a grating (Fig 11a). The
observable region in frequency space is limited by a circle of radius k0 as shown in Fig 11b.
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With a grating spacing at the Abbe limit, the first order diffraction components k1 can be
used to produce images centered at the boundary of the observable region (Fig 11c). While
the the directly observable frequency range remains unchanged, frequency mixing carries
information beyond k0 into the observable region (overlapping circles in Fig 11d). Rotating
the specimen specimen allows to center the image at successive positions along the k0 circle,
mixing information from all directions of the higher frequency space into the observable region
(Fig 11d) [26].

Following [26], this process can be described mathematically as follows. The observed
fluorescent signal E(r) at position r is mainly determined by three factors: the local con-
centration of the fluorophores D(r), the excitation illumination I(r) and the point spread
function PSF (r) . In the spatial domain E(r) is then calculated as

E(r) = [D(r) ∗ I(r)]⊗ PSF (r) (3)

where ⊗ represents the convolution operation and the PSF models the point-emitters diffrac-
tion.

When transferred into a function of frequency k the convolution operation is replaced by
a multiplication and is therefore much simpler to compute

Ẽ(k) = [D̃(k) ∗ Ĩ(k)] ∗OTF (k) (4)

where the tildes represent Fourier transformed functions and the optical transfer function
OTF (k) is the Fourier transformed PSF (r). The trick is then to generate a non-uniform
illumination pattern Ĩ(k) such that the signal Ẽ(k) also depends on other frequencies k′. For
example, when choosing the sinusoidal pattern with frequency k0 and phase φ

I(r) = I0(1 + cos(k0 ∗ r + φ)) (5)

Ẽ is a function of k,k + k0 and k − k0. By capturing multiple images as described in the
previous paragraph, these contributions can be disentangled, yielding an image resolution
beyond the diffraction limit.

An exemplary SIM microscopy setup is shown in Figure 12. Each image is obtained at
a grating angle and subsequently transformed into the frequency domain. After all images
have been combined, the resulting image is transformed back into the spatial domain using
an inverse Fourier transform, yielding the final image.

While SIM microscopy allows to undercut the Abbe limit by a factor of 2, it also has some
disadvantages compared to the previously described methods. Multiple microscope image
captures are required to obtain a single SIM image, slowing down the image acquisition rate
and thereby potentially masking fast transitions [23]. Also, poor estimations for the parame-
ters required by the image reconstruction algorithm may lead to reconstruction artifacts [38].
Despite these drawbacks SIM is widely considered a promising method for microbiology [8] .

Localization

Instead of using specialized spatial illumination patterns, localization microscopy modifies
the emission behaviour of the sample fluorophores, introducing a time dependency to achieve
resolutions below the diffraction limit. This effectively allows to separate the measurements
temporally instead of spatially.
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Figure 11: Process of resolution enhancement in SIM. (a) Overlaying the specimen with an
grid illumination pattern produces Morié fringes.(b) The directly observable region is limited
to by the Abbe resolution limit to a circle of radius k0 in the frequency domain. (c) Points
at the edge correspond to the first order diffraction components k1. (d-e) Relative rotation
between specimen and grid illumination allows to mix higher frequencies into the observable
region.From [26]

.

Figure 12: Exemplary setup of a SIM microscope. Coming from from an optical fiber (a), the
laser beam is collimated (b) and linearly polarized (c). A phase grid (d) is used to produce
a diffraction pattern, of which the first orders are allowed to pass the beam block (e). The
resulting beam is focused on the specimen, triggering fluorescence light which passes the
dichroic mirror and is captured using a digital camera. Adapted from [26]

.
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The main idea is to limit the emitter density, so that the probability of significant overlap
between two emitter point spread functions is extremely low. Under these conditions the
position of each emitter can be localized separately without the usual diffraction limits re-
strictions. To generate a complete picture, different subsets of the fluorophores are activated
and localized for each image and then combined to reconstruct the specimens full image. This
process is also shown in figure 13.

The achievable localization error σ depends on the number of captured photons N as well
as the standard derivation of the Gaussian fit s and can be approximated as [22]

σ =
s√
N

(6)

An important characteristic for the quality of a dye used for localization imaging is therefore
the number of photons emitted before photobleaching occurs.

For achieving a time-dependent emission behaviour of the fluorescent dye, two techniques
are widely used. Their main difference roots in the type of used fluorophores.

Stochastic Optical Reconstruction Microscopy (STORM) uses a synthetic dye that is pho-
toactivated by laser illumination. Initially all fluorophores are in the ground state. From there
they are stochastically lifted to an exited emitting state by the laser irradiation and fall back
to a dark, non-emitting state after a short time. This effectively produces a local blinking
behaviour. The emitter density can be controlled by the irradiation intensity, producing the
required conditions for localization microscopy.

In contrast, Photoactivated Localization Microscopy (PALM) uses fluorescent proteins for
cell staining. Like in STORM, the fluorescent proteins are activated by laser irradiation.
However, photo-bleaching confines the activated molecules into the dark ground state after a
short amount of time, preventing the emitter density from becoming too high. In general the
fluorescent proteins emit less photons than the synthetic dyes used in STORM.

Unlike SIM, localization microscopy has no hard, wavelength depended resolution limit.
However, the time required to captured a large number of microscopy images and limited
lifetime of the fluorophores limits the resolution in practise to about 30 nm for bacterial
samples [11]. In addition, the amount of irradiation damage induced during microscopy makes
life cell imaging difficult for many samples.

Localization microscopy is therefore an attractive solution when high resolution images of
radiation resistant or fixed cell is desired.

3 Temporal reconstruction

Temporal information is essential for the study of cell cycle dynamics. However, experimental
procedures to obtain single cell temporal information using time-lapse microscopy are difficult
to implement efficiently in high-throughput experiments [17]. It would therefore be desirable
to obtain temporal information without the need for explicit time measurements. Temporal
reconstruction methods could provide temporal information as a byproduct of other measure-
ments, potentially enriching existing static measurements with dynamics information.

As a necessary precondition for any temporal reconstruction method, the measured quan-
tities must show a behaviour characteristic for the time at which they are observed. For
bacteria the concept of a cell cycle implies such a (periodic) dependency exists. In general
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Figure 13: Sketch of the imaging process of STORM, adapted from [4].(a) The selected region
of interest is labeled with fluorescent molecules.(b) At each batch a subset of fluorophores
is photo-activated and localized (black dots). The density of activation is limited to avoid
overlapping of measured signals (red dots).(c) The next batch image measures a different
subset of fluorophores.(d) After a sufficient number of localizations were recorded the final
image is generated by combining all measured localization data.

the cell cycle duration is different for each bacteria, hence no fixed correlation between cell
cycle and global time can be found. Since most biological measurements are expected to have
a stronger dependence on the bacteria cell cycle than on global time, all methods described
in this thesis primarily target cell cycle time.

The values of the measured quantities vary for different cells at the same cell cycle time.
Assuming the individual cell provenance is unknown in the experimental setup, the change
over time should be greater than fluctuations within the population at a fixed cell cycle time
point. Otherwise these fluctuations would mask the time dependence of the measured quantity
and make temporal reconstruction impractical.

A biological quantity which is readily available using microscopy is cell shape. For C.
crescentus the cell shape undergoes drastic changes, doubling its length and separating into
two compartments over the course of a cell cycle [36]. It is therefore a promising quantity to
use for temporal reconstruction. Nearly all methods described in the following sections are
primarily based on cell contour measurements.

The distribution of the measured quantities may provide additional information useful for
temporal reconstruction. Combined with unbiased sampling of the individual cells and basic
assumptions about monotonicity or a measure for shape proximity it forms the basis of most
of the temporal reconstruction techniques described in the following sections.

Another approach would be to use specialized markers with known changes over the course
of the cell cycle. While this approach can be used determine cell cycle stages it requires
specialized measurements in addition to actual target of the study. Furthermore, the time
dependence of the marker has to be known beforehand and may change between cell types.

Generally the temporal reconstruction methods can be divided into two categories de-
pending on the information they receive for reconstruction. Unsupervised methods are only
provided with a dataset containing no direct time measurement information. In contrast
supervised methods receive an additional calibration dataset with measured times and per-
form temporal reconstruction based on this information. The benefits and drawbacks of both
approaches are described in the following sections.
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3.1 Supervised methods

Supervised methods for temporal reconstruction build a temporal classification function from
samples with measured time. This function is then used to infer time for samples for which
no direct time measurements are available. For C. crescentus such time measurements can be
obtained by performing time-lapse SIM experiments.

While these methods may enable temporal reconstruction for complicated time depen-
dencies, they require the assumption that the behaviour of the samples used for training is
similar enough to the samples used for classification. When comparing different bacterial
strains this condition may be violated requiring a new calibration for each strain. The ability
to find a sufficiently general classification function is therefore essential for the applicability
of supervised methods.

Average calibration trajectory

A rather straight forward approach for obtaining a classification function from measured times
is to fit a smooth average to the time dependent measurements. The resulting calibration
trajectory can then be used to obtain times for new measurements by finding the closet
point on the calibration curve to the new measurement. Closeness can be determined by any
suitable distance metric, e.g. the euclidean distance. Normalization of each dimension before
distance calculations ensures that differences in measurement ranges do not affect the result.
This process is shown graphically in figure 14a. By assigning weights to the distances in
each dimension differences in measurement uncertainties for each variable can be taken into
account.

Nearest Neighbours Regression

The method used in the previous section required computing an average over the whole data
set in advance, reducing the measurement scatter to a single trajectory. Instead of performing
this information-reducing step, it is possible to retain the information of the measurement
distribution by classifying new points based on local proximity to training points. This method
is called nearest neighbour regression and is preformed by averaging over the measured times
of the k closet points. The average can either be uniform or weighted to put emphasis on
the local structure near the classified point. Like for the calibration trajectory, differences
in measurement uncertainties can be easily taken into account by adjusting the weights of
distances in different measurement dimensions. The basic principle of this method is shown
in figure 14b.

Random forest classification

Instead of obtaining a classification trajectory by computing a time average, machine learning
algorithms like random forest may be used to learn a more complex model from the measured
times. Random forest fits a number of decision trees to the data, each using a different subset
of measurements. While decision trees can capture complex relation between measurement
variables, they are also known to overly adjust to the specifics of their training data set, a
process called overfitting. Random forest aims to reduce this overfitting by averaging over
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Figure 14: Schema of the classification process using different methods (a) The calibration
trajectory (red line) is constructed by a smoothing function (lowess smoothing) over all mea-
surements with known time. A measurement with unknown time (red spade) is assigned the
time of the closest point on the calibration trajectory (blue spade). (b) A point with un-
known time is classified by averaging over the times of the k nearest points (red circles) from
all measurements with known time (blue scatter)
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the predicted values from all trees in the forest, therefore reducing the influence the bias of
an individual tree may have on the end result.

3.2 Unsupervised methods

Unsupervised methods have to work with much less information than their supervised coun-
terparts. They are not provided with a training dataset with known times, instead they only
receive the measurements with unknown times for classification. In order to provide classifi-
cations with this information they have to make assumptions about fundamental behaviour
of the measurement trajectories.

These assumptions are usually based on known biological behavior (e.g. cells elongate over
time) or morphological changes (e.g. similar cell shapes are typically close in time). Different
techniques of utilizing these assumptions are described in the following sections.

While these assumptions are qualitative in nature, they are more likely to hold between
different cells and stains than statements about quantitative behaviour. It therefore interesting
to explore if their pseudo-temporal classifications are precise enough to allow the construction
of meaningful population trajectory for different strains.

3.2.1 Length ordering

Most bacteria elongate over the course of their cell cycle [21]. A quantity naturally coming to
mind for temporal reconstruction is therefore cell length. Since the elongation over the course
of a cell cycle is rather large, it is easy to measure and quantify. For C. crescentus this length
should exclude the cell stalk as it shows a growth behaviour different from the rest of the cell
[36]. Since cells staying within certain size limits have a larger change of survival, their size
tends to be similar, leading to a phenomenon known as cell size homeostasis.

As cells are known to grow monotonically over the course of their cell cycle, small lengths
tend to correspond to cells early in their cell cycle. However, since the start and end cell
lengths may fluctuate between cells, the precision of this approach depends on the fluctuations
within the cell population. Fortunately cell size homeostasis implies reasonable limits for these
fluctuations, making the approach feasible.

A temporal reconstruction based on cell ordering requires assumptions in addition to
the measured cell length in order to yield predictions. One could assume the length time
correspondence function is known before hand. Alternatively one could assume the sampling
bias is negligibly and the length growth function is monotonic. Both approaches are described
in more detail in the following paragraphs.

Since the length time correspondence function maybe unknown a priori, a simple corre-
spondence function to assume could be linear interpolation between the smallest and largest
observed values. However, the growth of many cells is not linear and the approach suffers
from outliers at the start and end of the cell cycle. Even if the functional form of the growth is
known a priori its assumption may bias the resulting trajectories, making it harder to detect
variations between populations.

If the sampling bias is negligible it is possible to proceed without assuming a concrete
functional form. It is sufficient to know function is monotonically ascending. The cells can
then be sorted by length, assigning the smallest cell to the beginning and the largest to the
end of the cell cycle (figure 15). This effectively redistributes the cells to an evenly spaced grid
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where the positions depend only on the ordering and not the absolute difference between cells.
Because of negligible sampling bias, regions with slower growth will have more cells, decreasing
the predicted growth rate in this region. Cells exhibiting a atypical growth behaviour only
affect the predicted function locally. Their influence is particularly strong in the beginning
and the end of the cell cycle as unusually small or large cells are placed there.

Temporal

Reconstruction

< <

tt1 t3t2

Figure 15: Schematic of the length ordering process. From a stack of images (left) shape
measurements are extracted (right). The shapes are then ordered by their measured length
(blue line) and mapped to the time axis.

3.2.2 Diffusion map

Diffusion maps are based on the observation that the measurements are not distributed ran-
domly, instead they form a path in higher dimensional measurement space. By simulating a
diffusion process between measurements, a measure for their local similarity can be calculated.
With assumptions where the start and end of the cell cycle process is located, following this
path allows to construct a pseudo-temporal average based on measurement similarity. Cell
shape parameters are good candidates for a similarity comparison as they are expected to
change slowly over the course of the cell cycle.

The process of generating a diffusion map can be described as follows. First, each measure-
ment is assigned a (Gaussian) kernel function fixed width in measurement space. Then, the
interference between all measurement kernels pairs is calculated as a measure for transition
probability between cells. An eigenvalue decomposition on the resulting matrix of pairwise
transition probabilities is then performed. The first eigenvector corresponding to the first
eigenvalue is then a measure of the dominating component of the path, which corresponds to
the cell cycle trajectory. To obtain cell cycle time, the components of the first eigenvector are
normalized for a range between 0 and 1.

The choice of kernel width has a strong influence on the resulting diffusion distance. If the
width is too small, the resulting trajectory may contain gaps. A too large width may connect
unlike cells so that the differences between different parts of the cell cycle may be blurred.
The choice of a suitable kernel width is therefore essential for good results. Following [18],
the kernel width was estimated by the average intrinsic dimensionality of the measurements
in this thesis.

Diffusion maps require a densely sampled data set to produce a continuous trajectory. In
addition the trunk of the path generated by the cell cycle must be distinguishable from the
measurement noise. Under these conditions, the method represents an attractive option to
estimate a cell cycle trajectory from high dimensional data.
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3.2.3 Wishbone

In contrast to generic dimensionality reduction techniques like diffusion maps Wishbone is a
method developed specifically for pseudo-temporal reconstruction of single cell data [35]. It
uses a k-nearest-neighbours graph and a Gaussian distance metric to measure local proximity.
The shortest path between two cells is then taken to be their pseudo-temporal distance.
Initially all distances are computed relative to a predefined starting cell. To reduce the
influence of the starting cells, a random subset of all cells is subsequently chosen as waypoints
and a new pseudo-temporal distance is computed as the weighted average of their shortest
paths to a given cell. This process is repeated until the obtained distances converge. A
graphical description of this procedure can be found in 16.

The authors claim the method is robust against noise and the choice of starting cell [35].
A version of wishbone called cycler [17] has been developed, modifying the algorithm for
microscopy data by changing the waypoints selection mechanism to ensure cells from all cell
cycle stages are represented.

While wishbone was initially intended for mammalian cells its design should allow it to
function for bacteria cells as well. It also has the ability to identify bifuractions in the bacteria
trajectories, a feature which is not required for the scope of this thesis.

Figure 16: Wishbone pseudo-temporal ordering of cells. (a) The wishbone path preferentially
follows the lower dimensional path embedded in the higher dimensional space. It also allows
to detect a branching point in the trajectory (left image). Wishbone determines the distances
between two cells by computing the shortest path connecting them in the k-nearest-neighbours
network (right image). (b) The initial distances computed from a defined starting cell (top
left) are refined by the weighted averages to randomly chosen waypoint cells (top right,bottom
left) to yield the final pseudo-temporal ordering (bottom left). The colors indicate the pseudo-
temporal ordering with the black contour lines corresponding to cells of similar time. From
[35]

3.3 Cell cycle indicator

The progression of bacterial cell cycle is driven by a complex genetic machinery. For C.
crescentus, the cell cycle can be divided into 3 major stages: the G1, S and G2 phase. During
the G1 phase the cell features a flagellum and pili, allowing it to stay motile and explore the
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environment. At the transition to the S phase the cell drops the flagellum and pili, instead
growing a stalk and becoming sessile. The stalk is a cylindrical structure with a strong
adhesive at its tip, allowing the cell permanently attach itself to a surface. During this phase
the DNA is replicated and the cell starts to divide. The chromosomes for the daughter cells
are separated and the cell grows a new flagellum at the end opposite to the stalk in the G2

phase. This process is also depicted graphically in figure 17.

Figure 17: The cell cycle phases of C. crescentus with schematic indication of their form.
Circles represents the quiescent, ′θ′ the replicating chromosomes. The time line representing
the cell cycle time is in minutes. From [36].

It follows that an attractive cell cycle indicator to temporally resolve the development
during the S phase could be the total DNA content of the cell. Since this indicator relies
on features common in most bacteria cell cycles it is applicable to a wide range of bacteria.
However, it only describes a fraction of the cell cycle and must be combined with other
indicators to yield predictions for the full cell cycle. An implementation of this technique is
described in section 4.4.2.

Alternatively cell cycle indicators specific for C. crescentus could be used. Good candidates
would be the three so called master regulators CtrA, DnaA and GcrA which are known to drive
the progression of the cell cycle [16]. As seen in figure 18 these proteins are periodic within the
cell cycle. Since their functions are not invertible for most of the cell cycle additional context
would be required to use these proteins as indicators for the pseudo-temporal reconstruction
of the full cell cycle.

4 Materials and Methods

C. crescentus is often used as a model organism to study bacteria cell division [16]. The
bacteria is easy to synchronize, has a stalked and swarmer cell type with different functions
and divides asymmetrically. In addition, it only has a single DNA replication point and a
relatively short doubling time.
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Figure 18: Schematic abundance of 3 proteins driving the progression of the C. crescentus
cell cycle as function of cell cycle stages. These proteins are also known as master regulators.
From [16].

The distinction between stalked and swarmer cells allows for a separation of concerns.
Swarmer cells are motile and can search the environment for new nutrition sources. In con-
trast, stalked cells can use the adhesive holdfast to permanently attach themselves to a surface.
Only they can initiate chromosome replication and therefore progress towards cell division.
Swarmer cells are able to differentiate into stalked cells after a period of motility, complet-
ing the cell cycle. This distinction allows the cells to split the effort searching for new and
exploiting known nutrition sources, increasing the probability of survival.

All these properties make C. crescentus an attractive organism for studying bacterial
dynamics and searching for patterns in this biologically complex process.

4.1 Assessment methods

In order to compare the different microscopy and temporal reconstruction techniques an ex-
pressive comparison metric is required. For spatial measurements, the main quantity of inter-
est is the amount of captured details and introduced bias by lower resolution measurements.

For temporal resolution, the metric is more difficult to define. Since only a single mea-
surement for each cell is generally available, the method can only be expected to reconstruct
population averages. Because of biological variability, cells measured at the same time may
lead to different measured values. A simple difference between predicted and observed time on
a single cell level therefore provide an incomplete picture. A comparison between calculated
population averages is therefore the main method of comparison for assessing the temporal
resolution of the pseudo-temporal reconstruction methods.
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4.1.1 Spatial resolution

A simple approach to assess the influence of spatial resolution on shape measurement is to
measure cells simultaneously with multiple microscopy techniques. Differences in the mea-
sured shapes can then be attributed directly to resolution differences. If the experimental
procedures do not permit the usage of all microscopy methods simultaneously, the usage of
different cells within the same developmental stadium may allow for a similar comparison.

4.1.2 Temporal resolution

To accurately describe cell dynamics, the main quantity of interest is the difference between
the temporal averages of the measured quantities. Since the goal is to observe the overall
population dynamics, this measurement provides more meaningful information than the simple
sum of time differences between all single cell measurements.

4.2 Combining trajectories

To create temporal averages of population trajectories, a method for combining single cell
measurements has to be chosen. Such a method is also required where single cell trajectories
with direct temporal measurements are available as cell to cell variability may otherwise mask
population behaviour.

The methods can be roughly divided into group based and kernel density based methods.
Group based methods compute the population trajectory by applying a function to a subset of
all measured cells simultaneously. In contrast, kernel density based method assign a function
to each cell individually and compute the population average by summation over the single cell
functions. Both approaches have their advantages and drawbacks, described in the following
sections.

The choice of method may also depend on the dimensionality of the measurement vari-
able. For example, cell contour is inherently a 2D measurement requiring the interaction of
two dimensions for a meaningful cell representation. If the two dimensions were averaged
separately and then combined, the result would not represent a meaningful average.

4.2.1 Group based

Group based methods typically use a sliding window to split the dataset into multiple subsets
19. A function is then applied to each subset, generating the averaged value. The sliding
window size determines the stability and lagging of the result. A bigger sliding window
typically leads to more stable average at the expense of increased lag to local changes of the
dataset.

Group based methods therefore require a dense measurement for a stable and responsive
average. In addition the measurement should not contain spikes or discontinuities, as these
may be masked in the averaging process.

Group based methods are widely used as they allow easy interpretation and computation
of confidence interval. However, their result may strongly depend on the sliding window size,
systematically shifting inflection points for larger window sizes. They are therefore attractive
when the measurements are known to vary slowly and measurement density allows for a
sufficiently small window size.
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Figure 19: Illustration of the sliding window concept. A fixed number of points is selected
(red points) and the computed average is assigned to the center of the window (red dashed
line). The window boundaries (red lines) are then shifted to compute the next average.

Mean

The simplest function for average computation within the sliding window is the arithmetic
mean. It is parameter free and typically works well when the spread of the measured values
is small. However, a small number of outliers may be sufficient to bias the result, leading to
a discontinuities in the resulting average. If outliers are expected in the measurement using a
median may lead to more stable results (figure 20)

Median

Like the mean, the median can be used as a simple, parameter free average function. In
comparison to the arithmetic mean it is more robust to outliers but may depend more on the
sampled values. This may cause fluctuations leading to a non smooth average.

Lowess

The methods described before used an average computation on the sliding window data. All
measurements within the sliding window are treated as a list, discarding information that may
be contained in the local structure of the measurements. However, the measurement scatter
may also be treated as a local regression problem, assigning each window a value from a local
fit.

This approach is taken by the lowess (locally weighted scatterplot smoothing) method.
For each window a (linear) fit is performed, where the individual points are weighted by a
function depending on their distance to the currently estimated positions (typically a tricube
function). This allows to approximate even a non-linear function with a linear fit. As for
the previously described methods, a larger window size leads to a more stable curve with less
responsiveness to local changes.

In comparison to the previously described methods lowess requires significantly more com-
puting power and densely sampled measurements. Due to its fit based approach it is able
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Figure 20: Comparison of the sliding window average with 5 points generated by mean and
median computations. The mean is strongly affected by the single outlier point (red), while
the median is only slightly deviated. Since at least 5 points are required for the average
computations, the averages do not cover the full data range.

to better exploit the information contained in the local structure of the measurements. The
results may therefore be closer to what a human would consider a suitable smooth average.
If the dataset is densely sampled and sufficient computational power is available, lowess can
provide smooth trajectories representative for population behavior.

4.2.2 Parametrization

For two dimensional measurements, the previously described methods may yield non-representative
averages due to interactions between the measurements dimensions. This is shown in figure
21, where differences in cell length leads to distortions in the right cell poles contour. One
approach to solve this problem is to define a functional parametrization of the expected shape
and average the shape parameters instead of the raw shape.

The one dimensional shape parameters can then be averaged using any of the previously
described methods. The procedure to fit the parametrization to the measured shape is de-
scribed in section 4.4.2 with the parametrization for C. crescentus being shown in figure 28.

Shape parametrization is a trade-off between preservation of characteristic shape features
and bias introduced by the predefined functional form. For the purpose of this thesis the
need to preserve shape features dominated, prompting the use of parametrization for the
description of cell shape dynamics.

4.2.3 Kernel density based

Kernel density based methods estimate the behaviour of a function by assigning each mea-
surement a kernel function. The kernel is centered at the measured value and the overall
function is computed by summation over all kernel values at a particular point (figure 22). In
contrast to group based methods, this results in the estimation of a kernel density and does
not require the definition of a window size.
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Figure 21: Comparison of the shape combination results using group based mean and
parametrization average of 2 cell cycle time bins. The group based method follows the mea-
sured shape more closely but is affected by noise at the right pole resulting from different
cell lengths. In addition the invagination site is partially ”smoothed over” in the shape for
the second time bin. The parametrization average is less noisy at the expense of a simplified
shape description.
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Instead, the choice of kernel type and width determines the smoothness and dependence
on local variability of the resulting function. A popular choice is the Gaussian kernel and the
width can be chosen to represent the measurement uncertainties introduced by factors like
spatial resolution.

In comparison to group based methods the choice of kernel parameters is straight forward
while the interpretation of the results can be more difficult. The density cannot be directly
converted to an average trajectory, instead more complex approaches like following the peak
density of a two dimensional kernel density need to be applied. In comparison to average
based group methods the kernel density is also more expensive in terms of computational
power.

Figure 22: Illustration of kernel density estimation. A (Gaussian) kernel function (red) is
placed at the position of each measured value (small black bars). By summation over all
kernels a density estimate for the full data range is obtained (black line).

4.3 Experimental methods

In this thesis, mainly two microscopy methods were used to image the shape of C. crescentus.
By using SIM time-lapse microscopy shape dynamics could be observed directly. STORM
microscopy provided a higher resolution images, but sample preparation required cell fixation,
necessitating the use of pseudo-temporal reconstruction methods for shape dynamics.

Both methods required staining of the cells with fluorescent dyes, a process described in
the following section.

4.3.1 STORM Sample preparation

Cell growth

Under sterile conditions, three CB15N colonies were taken from a petri dish, suspended in
50 ml of PYE (Peptone Yeast Extract) and grown overnight at 28◦C in an incubator. If the
ODE density was greater than 0.04, PYE was added and the bacteria solution was diluted to
an ODE density of 0.03 and grown for an additional hour.
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The resulting solution was centrifuged for 5 min at max. speed. Afterwards the super-
natant was removed leaving the bacteria pallet on the bottom of the flask and resuspended
in 900µl of M2 salt previously cooled on ice.

Cell synchronization

All of the synchronization procedure was performed under sterile conditions. The solution
was again centrifuged for 3 min at max. speed, resuspended in 900µl of M2G and then split
into separate tubes of 300µl each.Afterwards, 600µl of cooled M2 and 900µl of cooled percoll
were added to each tube.

The tubes were centrifuged for 20 min at max. speed at 4◦C. The density gradient of
the solution lead to two bands of bacteria in each tube, with the upper band containing the
stalked and the lower the swarmer cells. The upper band was pipetted out and discarded.
The lower band cells were pipetted out using a 200µl pipette and combined into a single cone.

200µl of cells were taken out for immediate fixation. The rest of the cells together with 1
ml of PYE was put into a glass tube and grown in the incubator. At the chosen time points,
200µl of the bacterial solution were extracted out of the class tube to proceed with the steps
described in the next section.

Fixation & permeabilization

1 ml of bacteria solution was centrifuged for 3min. Under sterile conditions, the bacteria pellet
was resuspended in a PBS (Phosphate-buffered saline) and 2.5% PFA (Paraformaldehyde,
fixation) and 0.1% Triton (permeabilization) while wearing nitrile gloves. After 30 min the
solution was centrifuged again and the pellet resuspended in 250µl PBS.

Staining

For staining 0.5µl picogreen (DNA dye) and 25µl WGA (Wheat germ agglutinin, membrane
dye) at room temperature were added to the solution. After resting for 30 min the bacteria
were washed 5 times by centrifugation and subsequent resuspension in 250µl PBS.

Buffer

To increase the photon yield per fluorophore, the bacteria solution was suspended in a spe-
cialized buffer. The buffer reduced the amount of photo bleaching allowing to increase the
amount photons available for localization and therefore improving localization precision in
accordance with equation 6.

The buffer was prepared following [27]. It consisted of 10 mM MAE(Mercaptoethylamine),
50 mM BME (β-mercaptoethanol), 2 mM COT (Cyclooctatetraene) in 25% PBS, 2.5 mM
PCA (Protocatechuic acid), 50 nM PCD (Protocatechuic dioxygenase) combined with 75%
glucose (w/v) solution.

Cover slip

An agar solution of 2% was prepared and heated up in a microwave until the agar was fully
dissolved. The solution was then filled into a disk-shaped enclosure on top of a cover slip and
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sealed using a second glass pad, avoiding the production of bubbles. After 3 min the top pad
was removed using a scalpel.

At the same time the bacteria solution was centrifuged for 5 min at max. speed and
resuspended in 50µl PBS. The freshly prepared COT buffer was added and the suspension
remixed.

1µl of the solution was pipetted onto the middle of the agar pad, making sure to avoid
touching the agar with the pipette tip. After resealing the cover slip with a top glass pad, the
sample was ready for STORM microscopy.

4.3.2 STORM Microscopy

STORM microscopy was performed on a novel microscope, optimized for flat-field illumination
and a large field of view [11]. This allowed to capture a large number of bacteria per field of
view, speeding up the image acquisition process.

The design is based on a epi-illumination microscope and uses a Köhler integrator like
system to achieve flat-field illumination (figure 23).

The setup was equipped with a 642 nm laser (2RU-VFL-P-2000-642-B1R, MPB Com-
munications) for sample illumination and a 405 nm (OBIS, Coherent) controlling the return
rate of the fluorophores. Excitation light was reflected by a dichroic mirror and focused
by an objective (CFI60 PlanApo Lambda x60/NA 1.4, Nikon) onto the sample. Emission
light was collected using the same objective, focused using a tube objective (fTL = 200mm,
MXA20696, Nikon) and captured using a sCMOS Camera (Zyla 4.2, Andor) after passing
through the dichroic mirror.

In addition a separate 850 nm laser (0.9 mW, continuous wave circular beam, Thorlabs)
was reflected from the coverslip by total internal refraction after passing through a clean-up
filter (LL01-852, Semrock). The position of the reflected beam was determined by a linear light
sensor (TSL1401CL, AMS-TAOS USA, Inc.) after passing through a 850nm band-pass filter
(86-090, Edmund Optics). This was used as an input for the pgFocus open hardware focus
module [15], which allowed to lock the position of the microscopes stage within a standard
derivation of 10nm.

The images were acquired using the open source µManager [12] software. After selecting
a field of view and locking the auto focus, the shutter was opened exposing the sample to
laser illumination. When the emission density was low enough for commencing the STORM
imaging, 3000 images with an exposure time of 10 ms were captured. To increase image
quality for the second half of the image acquisition process the shutter of the 405 nm laser
was opened after the fluorophore emission density became too low. This process was repeated
until a sufficient number of field of views were captured.

The reconstruction of a single super-resolution image from this image stack is described
in section 4.4.

4.3.3 SIM Sample preparation

The wild type and mutant stains were electroporated with mCherry-MTS2 plasmid to stain
the inner cell membrane.

Cells were grown overnight and cell synchronization was performed as described in section
4.3.1.
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Figure 23: Schema of the flat-field illumination. The input Guassian beam is extended by
the rotating diffuser (RD), with the extension size depending on the offset δr. After passing
Fc the light is splitted into independent ray bundles by the microlens arrays (MLA). These
bundles are then redirected by the objective (OBJ) ensuring overlap in the sample plane. The
illumination light comes from all points and a range of solid angles in the source plane, thus
creating flat-field illumination (solid vs dashed lines). From [11]

For imaging, a silicon gasket filled with 1% M2G agrose was placed onto a cover slip, sealed
using top cover slip and rested for 5 min. Afterwards, the top cover slip was removed and 1µl
of bacteria suspension was pipetted onto the pad, keeping the pipette tip from touching the
pad. To ensure aerobic growth conditions a small stretch of agarose was cut from opposing
sides. After the drop was adsorbed to the pad, the gasket was sealed with a plasma cleaned
round cover slip. During microscopy the temperature was kept at 28◦C, allowing the cells to
grow.

The full protocol including preparations for additional measurements is described in [2].

4.3.4 SIM Microscopy

Imaging was performed on a commercial SIM microscope (3D NSIM Nikon with 100x, NA 1.49
CFI Apochromat TIRF objective), equipped with 480 nm (480 mW) and 561 nm (400 mW)
lasers and a back-illuminated EMCCD camera (512x512 CCD, iXon 3, Andor Technology).

Imaging of the mCherry-MTS2 fluorophore was performed on the 561 nm channel. The
camera was operated at the maximum readout speed (1 Mhz) and dynamic range (16 bit).
Preamplifier and electron multiplication gain were set to 1 and 200 respectively, maximizing
the signal to noise ratio. All images were obtained with a acquisition rate of 200 ms and a
laser power of 4W/cm2 balancing image quality and photo-bleaching. The microscope was
set to 3D image mode for maximum signal to noise ratio and lateral resolution.

At total of 15 images were captured for each field of view (30.7µmx30.7µm) with 5 phase-
shifted images at each of the 3 interference pattern angles. The acquisition of a full image
stalk for reconstruction the super-resolution image took about 17s.

Time-lapse imaging was used to obtain cell dynamics. An image was captured ever 5
minutes, allowing to follow cell dynamics while minimizing the sample photo-bleaching due
laser irradiation. Sequential imaging of multiple fields of view at each timepoint allowed to
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follow up to 200 cells per experiment.
The reconstruction of the raw images was performed using the Nikon NIS-Elements soft-

ware.

4.4 Image analysis

The first step for the analysis of STORM images was the conversion of the image stack
recorded by the microscope to localization data. The conversion was performed by custom
matlab code [11] producing a csv file containing precision and accuracy information for all
localized molecules. The csv file was then rendered by the thunderstorm plugin of the ImageJ
software [28], producing the bitmapped images required by further steps of the pipeline.

These images were subsequently segmented and analyzed for various shape parameters
using a newly written matlab program. The results for each image were exported as csv files.
An analysis of cell dynamics was then performed using a specialized ipython notebook. [30].

An overview of the complete image analysis pipeline is also shown in figure 24.

Image stack

Localization fitting

Rendering

Image Rendering

Sec 8.2.1

Rendered images

Segmentation

Shape analysis

Contour finding

Medial axis

Width measurement

Parametrization

Sec 8.2.2

Shape measurements

Temporal reconstruction

Length ordering

Diffusion maps

Wishbone/Cycler

Sec 8.2.4

Temporal information

Temporal Analysis

Sec 9.2 Sec 10.2

Shape measurements

Sec 9.3 Sec 10.3

Shape measurements

Spatial Analysis

Sec 9.1 Sec 10.1

Figure 24: Graphical overview of the image analysis workflow. The arrows represent data
dependencies and the colors indicate if the code is mainly based on external libraries (yellow)
or has been developed specifically for this thesis (blue). Each process is described in more
detail in the referenced sections (gray text).
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4.4.1 Localisation rendering

Fitting

After the cells were prepared an imaged as described in section 4.3.1, the localizations for
each light-emitting dye molecule needed to be computed for each microscopy image. This was
performed by a customized matlab program, which performed a Gaussian fit on the emitters
of each image. The localized emitter positions together with their uncertainties were then
saved to a csv file.

Since the emitter density on the first 500 images was typically to high for reliable single
emitter fitting, these images were discarded before the analysis. The calculations on a large
number of images required substantial computational resources and were performed on a
workstations graphically processing unit (GPU).

Rendering

The resulting localization file was then imported into the ImageJ plugin ThunderSTORM
[29]. As a first step the plugin was used to perform a drift correction, where the correlation
between two sequential images was used to estimate the drift between two frames. Afterwards
the image was rendered by assigning a Gaussian function to each localized point.

4.4.2 Shape

Overview

The analysis of the rendered images was performed in three steps. First, the field of views
containing multiple bacteria were segmented into images of individual bacterias. Second, the
length along the medial axis and width perpendicular to it were computed for each bacteria.
And finally, the bacterias volume and surface area were obtained by locally rotating the
bacteria around its medial axis. An overview of the measurement steps is shown in figure 25.

Segmentation

As a first step, the input image containing multiple cells was split into multiple single cell
images. A connected components analysis was used to determine regions of interest. Only
regions above a minimum pixel area threshold were selected to filter out background noise.

Afterwards, the regions of interest were cast into a rectangles and enlarged by a few border
pixels to account for possible outliers. These regions of interest were then used to carve out
the individual cell images. The individual cells were reviewed manually in order to filter out
damaged cells.

Contour finding

After the segmentation mask separating the bacteria from the image background was obtained,
the next step was to convert mask to a contour. This was done by following the border of the
masked region using the bwtraceboundry matlab function. The resulting list of boundary
pixels represents the bacteria outline.

39



A

B

C

Figure 25: Overview of the measurement steps for a single bacteria. (A) The contour is
extracted from the image (green line). (B) The medial axis (dashed red line) is computed
based on the contour. (C) The width is measured at images slices locally perpendicular to
the media axis (blue lines).

Medial axis

After the bacteria outlines were obtained, the medial axis was computed in order to straighten
the bacteria for further measurement. The medial axis was approximated by computing a
Voronoi diagram of the bacteria outline and removing all except the main branch.

For this computation the MicrobeTracker library [37] was used. The obtained medial axis
was then smoothed using a spline to provide a good basis for further measurements. Using
the same library the cell contour was also split into two parts, one above and one below the
medial axis called mesh.

Width measurement

Cell width was measured relative to the medial axis. The measurement was performed by
analyzing slices of the cell image locally perpendicular to the medial axis. The image obtained
by appending these slices is shown in figure 26. Two methods were used to determine cell
width from these slices. The widths could either be computed by measuring the FWHM of
the slice or by taking the width of the cell mesh at each medial axis point. The following
section describes both approaches in more detail.

FWHM

By computing the FWHM along each slice the width could be measured well for most of
the cell. However, the measurements start to significantly deviate from the cell shape for
regions of small width. This can be caused by bias within the FWHM measurement due to
non-uniform fluorescent labeling of the cell or by the effects of the spline based smoothing.
Both effects are shown in figure 27a.
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Figure 26: Image of bacteria straightened along the medial axis. The X axis corresponds to
length steps of equal distance along the medial axis while the Y axis represents the image
slices locally perpendicular at each measurement point. The Y axis magnitude represents the
distance of the image slice points from the medial axis.

A

B

Figure 27: Comparison of contour measurement methods. Dotted lines represent the mea-
sured, solid lines the smoothed contour. The dotted red line corresponds to the cell medial
axis in both images. (A) Contour measurement using the FWHM. (B) Contour measurement
using the cell outline (mesh).
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Mesh

The width measurement based on the mesh was computed by calculating the distance between
corresponding contour points above and below the medial axis. Since it is solely based on the
cell outline it tends to overestimate the true cell width. For the same reason it is also more
robust with respect to non-uniform florescent labeling of the cell. This is also shown in figure
27b.

Stalked and swarmer cells

The C. crescentus cells used in this project featured two compartments with different prop-
erties. One compartment builds a stalk and is therefore called the ”stalked” cell while the
other builds a flagella and is called the ”swarmer” cell.

These structures are much thinner than most of the cell and differ significantly in their
properties. It is therefore desirable to separate the measurements done on the stalk from
the ones performed on the rest of the cell. In this project the separation was performed by
searching for the end of the flat region corresponding to the stalk. To separate stalked from
swarmer cells it was assumed that stalk should have a length at least 15% of the total cell
length.

DNA

For the cells with DNA staining as described in section 4.3.1, the DNA content needed to
be quantified. Since for the spatial resolution gains were not significant for DNA images,
diffraction limited-whitefield images were used for the quantification. This simplified the
analysis pipeline, as the images could be captured in dual color using a different wavelength
to excite the DNA dye.

The amount of DNA content was estimated by assuming a linear proportionality with the
integrated signal intensity of the DNA dye within the cell. This assumption stems from the
fact that the used DNA dye is activated when intercalated within the DNA strang.

All images were taken with the same laser power and exposure settings, taking care to
avoid signal saturation, to allow for a unbiased comparison between different field of view. In
addition, a camera dark-field was captured and substracted from all images prior to analysis
to avoid a location dependent intensity bias.

To estimate the integrated intensity within the cells, cell outlines were required. These
outlines were obtained by segmenting whitefield images of the membrane dye and transfering
the regions to the DNA image with equal image dimensions. The signal intensity per pixel
was then summed up and reported as DNA signal.

Shape parametrization

To parametrize the measured shape, the model shown in figure in figure 28 was used. In order
to fit the model efficiently, the fit was performed stepwise. First, the previously calculated
stalk length was used to separate the cell into stalked (ls) and cell body part (lc). Then the
maximum diameters within the stalk and cell body were used as rs and rc respectively. The
minimum width within the cell body excluding the poles was used as rmin and its position
determined ldiv.
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Figure 28: Shape parametrization used for C. crescentus. The method of parameter extraction
form the measured shapes is described in the text.

4.4.3 Feature importance

Using the previously described steps, a number of features describing the bacteria where
obtained. From the raw data it is not immediately clear which set of features would be best
suited for the temporal reconstruction of cell cycle time. A method to find an optimal set of
features would therefore be desirable. Such a method could use the time measurement SIM
to assess the importance of the individual features.

A method fulfilling these criteria is the feature importance from random forest regression.
Each decision tree in the forest can compute the importance of individual features by looking
at the variance induced by the feature. The average over all trees in the forest then represents
a measure for feature importance. In addition, the standard deviation allows to estimate the
variability of feature. This method was found to perform well on biological data [3].

For implementation, the RandomForestRegressor of the scikit-learn [34] library was used
in this thesis. The number of trees was set to 30 with 30% of the SIM data used for training.
In addition to computation on the full dataset, the feature importance where also estimated
for bins containing 20% of the cell cycle to find a possible change of feature importance over
time.

4.4.4 Temporal reconstruction

The temporal reconstruction was implemented using three different methods. Since this meth-
ods should be able to reconstruct time without previous calibration, only the unsupervised
methods from section 3 were considered.

Length ordering

The implementation of length ordering was rather straight forward. All cells were ranked
based on their length excluding the cell stalk from smallest to largest. Each cell was assigned
a time linearly interpolated between 0 and 1 according to its rank. The ERA correction
described in section 2.3 was applied and saved separately from length ordering time.

Diffusion maps

Following [18] a python implementation of diffusion maps was developed for this thesis. From
the analysis of feature importance cell length and waist ratio emerged as the most important
features and were therefore used as input. Both features were normalized separately between
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0 and 1 before passing them to the diffusion maps algorithm. This prevents differences of the
measurement scale from influencing the diffusion map performance.

Apart from the data, the diffusion maps algorithm requires a measure for the Gaussian
kernel width (sigma). The Gaussian kernel width was determined using the method of average
dimensionality peak described in [18].

The application of this method resulted in a diffusion vector for each measured bacteria.
The entries of the first component of the diffusion vector represent a measure of similarity
between cells. The extracted components where then normalized between 0 and 1 to yield
the diffusion time. Diffusion maps has no information on the direction of bacteria dynamics.
Therefore, the assigned diffusion time was reversed if the last cell was found to be smaller
than the first cell.

In addition, a ranked diffusion time as calculated which assigned assigned a time between
0 and 1 base on the diffusion time rank.

Wishbone

The usage of wishbone [35] required computing the diffusion maps as described in the pre-
vious section beforehand. In addition wishbone takes to additional parameters: a cell used
as starting cell and the number of diffusion map components to consider. The number of
components was set to 2, since only measurements per cell where provided. As a starting
cell, the smallest cell was chosen. In addition wishbone allows to restrict the calculation to
the nearest neighbours. A value of 30 was used as a compromise between calculation speed
and accuracy. As described in section 5.3 the results of wishbone on the datasets used in this
thesis where rather erratic and therefore not investigated further.

5 Results

To address the questions raised in the previous sections, the analysis of the experimental
results is divided into 3 sections. The first section assesses the influence of spatial resolution
differences between the microscopy methods and the trade-offs of shape parametrization.
In the next section, the impact of the ability to follow single cell trajectories is discussed.
And lastly, the final section compares the developmental trajectories obtained using pseudo-
temporal classification to the measured trajectories.

For easier reference, this partitions is also maintained in the discussion section.

5.1 Spatial resolution

This section compares the measurement of the cell shape obtained using various microscopy
techniques as well as different representations of shape.

High spatial resolution is essential for accurate tracking of cell division

When comparing the cell profiles obtained with diffraction limited to the ones obtained with
super-resolution techniques it can be seen that lower spatial resolution results in an over-
estimation of cell width and length (Figure 29). For PALM and phase-contrast images of
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the same bacteria were available while for SIM a cell with similar length and developmental
stadium was chosen.

The PALM and SIM images imaged the fluorophores located at the inner membrane while
the phase contrast images observed the outer shape. Part of the difference may therefore be
due the membrane thickness of the cell. This difference is further discussed in section 6.1.

Since the absolute values of cell width are smaller than cell length, the percentage uncer-
tainty due to spatial resolution is higher for width. This limits the ability to accurately track
cell division towards the end of the cell cycle since percentage uncertainty increases for small
widths observed at the division site.
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Figure 29: Comparison of cell width measurements using phase-contrast and localization
microscopy on similar cells. (A) Cell width measurement as a function of length along the
medial axis. A strong discrepancy in width measurement and a small discrepancy in length
measurement can be observed. (B) Phase contrast image used for the measurements (C)
Localization image of the same cell. (D) SIM image of a different cell with similar length and
developmental stadium.
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Parametrization can reduce noise at the expense of cell variability

Cell parametrization can reduce the measurement noise at the expense of a simpler overall
shape. The classical model for C. crescentus assumes a cylindrical body with hemispherical
caps [19]. Fitting this model to actual measured shapes shows that it provides a good first
approximation for the measured cell shape.

However, the exact functional form differs from cell to cell. While some invagination sites
closely reassemble capped hemispheres, others show more a complex functional form. This is
exemplified for two cells measured using STORM in figure 30.
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Figure 30: Comparison of shape parametrization for two invaginating cells measured using
STORM. The measured contour (blue) is shown together with the fit based on the hemi-
spherical model (red). While for the cell in figure 30a the capped hemisphere model closely
reassembles the measured shape at the invagination site the invagination site in figure 30b is
elongated in comparison with the hemispherical model

5.2 Single cell identification

Time-lapse SIM microscopy allowed to follow the development of single cells. This section
assesses the differences between single cell and population trajectories. In addition the results
of methods to compute an average contour from single cell shape measurements are discussed.

Population noise largely obscures single cell trajectories

Populations exhibit a wide variability of shapes. While single cell observation show a clear
developmental trajectory over the course of a cell cycle, this development is largely obscured
in population measurements. For example the two single cell trajectories shown in Figure 31a
follow different rates for length and waist development, something which can not easily be
inferred from the population measurement of figure 31b. Depending on the required accuracy
of the study, single cell identification may therefore be crucial to obtain precise developmental
trajectories.
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Figure 31: Comparison of 2 selected single cell trajectories to the population measurements
obtained using SIM. (a) The measured trajectory of two bacteria is represented by a thick
line while the bands correspond to the uncertainty induced by the measurement resolution.
(b) Scatter of population measurements where each single cell trajectory can identified by the
assigned colors (N = 3238)
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Combining bacteria trajectories requires sound normalization

Within a population there is a significant variation in cell contour measurements. To compute
an representative contour for the overall population it is therefore essential to normalize the
cells first, allowing a combination of cells irrespective of differences in absolute measured
values.

For the C. crescentus populations analyzed in this thesis the normalization has to allow
comparison between the shapes of the stalked and swarmer cells during cell division. Since
the stalk has a growth behaviour different from the rest of the cell it is treated separately
from the cell body.

In addition, cell invagination may occur at different positions along the cell body. Two
ensure that the invagination is kept when averaging over multiple bacteria, the cell body is
normalized separately for the parts left and right of the invagination site. For cells without
measured invagination the invagination site was assumed to be in the middle of the cell body.

After this normalization has been performed a method for combining the resulting contours
needs to be chosen. From the methods described in section 4.2, a contour based on lowess
smoothing showed the best results.

Alternatively, it is also possible to average over the parameters of the parametrized shape
instead of normalizing the contour measurements. This generally leads to a smoother, less
detailed shape (figure 21).

5.3 Temporal reconstruction

Pseudo-temporal methods allowed to reconstruct developmental trajectories from images of
fixed cells. This section describes conditions required to apply pseudo-temporal methods
successfully and compares the results of the methods to measured developmental trajectories.

Length and waist ratio are the most influential parameters for pseudo-temporal
reconstruction

Assessing how well cell cycle time can be estimated from cell shape by using machine learning
(random forest) leads to the following conclusion: Good estimates are possible for the end of
the cell cycle while classification performance decreases significantly for cells in the beginning
of the cell cycle (figure 33). As can be seen from figure 32 the most significant shape parameters
for random forest are cell length and to a lesser extend waist.
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Figure 32: Comparison of shape parameter importance for the random forest regression.
Length and waist stand out as the most influential features. The box represents the quartiles
of each feature with the whiskers extending to the rest of the distribution cleaned of outliers.
The outliers are represented as small diamonds, the medians by vertical lines within the box.
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Figure 33: Estimation of classification error with random forest for 10 time bins. Each bin is
represented by a different color. It shows the cdf of the classification error in each time bin.
For example in the 0.8 to 0.9 time bin, more than 90% of the measurements were classified
with less than 10% error.
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The importance of waist surpasses length for the end of the cell cycle

Figure 32 suggests that length and waist are the most important features for temporal recon-
struction. However, this analysis did not distinguish between phases of the cell cycle, where
the feature importance may be different from the overall average. Repeating the analysis of
figure 32 for length and waist for different fractions of the cell cycle shows that the impor-
tance of waist surpasses length towards the end of the cell cycle (figure 34). An increase in
waist importance towards the end of the cell cycle is expected since cells start dividing about
half-way thorough the cell cycle.
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Figure 34: Comparison of feature importance estimated using random forest regression for
different fractions of the cell cycle. The fractions of cell cycle time between 0 and 1 are given
in brackets. The importance of waist increases during the cell cycle, surpassing length in
the 60 to 80% time bin. The box represents the quartiles of each feature with the whiskers
extending to the rest of the distribution cleaned of outliers. The outliers are represented as
small diamonds, the medians by vertical lines within the box.

The calibration of supervised method is generally only valid within a single strain

Comparing the average obtained using the supervised methods described in section 3.1 to
the averages obtained using measured time showed a clear limitation. While the average
of figure 35 (calibrated on wild type data) was following the general trend of the measured
averages for the wild type strain, this wasn’t the case for the mutant strain. The mutants
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length is shorter on average, therefore invalidating the calibration performed on the wild
type. For nearest neighbour calibration the comparison between the averages yields similar
results (figure 36). For new strains with unknown growth constants supervised methods may
therefore yield unreliable results.
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Figure 35: Comparison between the measured average (green line) and calibration curve (red
line) population average (lowess, α = 0.3) for wild type (N = 2918) and mutant (N = 2927)
data. The calibration curve average was calibrated by the wild type measurements on all
plots. Individual measurements (scatter points) were positioned using the time predicated
by calibration. First measurements were taken 30 min after synchrony for the wild type and
35min for the mutant data. The shading represents the standard deviation of a sliding window
containing 5% of the measured cells.

51



2000

2500

3000

3500

le
ng

th
 [n

m
]

mutant

300

350

400

450

500

550

600

w
ai

st
 [n

m
]

mutant

0.0 0.2 0.4 0.6 0.8 1.0
cellcycle time []

2000

2500

3000

3500

le
ng

th
 [n

m
]

wild type

0.0 0.2 0.4 0.6 0.8 1.0
cellcycle time []

300

350

400

450

500

550

600

w
ai

st
 [n

m
]

wild type

Figure 36: Comparison between the measured (green line) and nearest neighbour (red line)
population average (lowess, α = 0.3) for wild type (N = 2918) and mutant (N = 2927)
data. The nearest neighbours average was calibrated by the wild type measurements on all
plots. Individual measurements (scatter points) were positioned using the time predicated
by calibration. First measurements were taken 30 min after synchrony for the wild type and
35min for the mutant data. The shading represents the standard deviation of a sliding window
containing 5% of the measured cells.
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Calibration can be used to specify the observed portion of the cell cycle for the
calibrated strain

After correcting the wild type STORM measurements for the resolution bias observed in the
SIM measurements (section 4.1.1) their cell cycle times can be estimated by using a calibration
curve for the wild type (section 3.1). Results for the synchronized STORM data indicate that
primarily cells early in their cell cycle were observed (figure 37a), therefore invalidating the
fair-sampling assumption required for length ordering classification. Length ordering of the
unmodified synchronized STORM measurements may therefore yield misleading results. In
contrast, the unsynchronized STORM measurements also contain a non-negligible number of
observations in the second half of the cell cycle (fig 37b), indicating better sampling.

Both figures show a large number of cells in the first time bin. This behaviour is an
artifact stemming from the missing calibration curve information for the beginning of the cell
cycle (the measurement was started 30 minutes after synchrony). All earlier cells are grouped
within the first bin, producing making it an outlier.
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(a) Synchronized STORM measurements
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(b) Unsynchronized STORM measurements

Figure 37: Time distribution of STORM cells as predicted by the SIM calibration curve for
the same strain.(a) The majority of the observed cells come from the beginning of the cell
cycle. Only very few cells are classified to be in second half of the cell cycle (N = 654).(b)
For synchronized STORM measurements cells were also observed in the second half of the cell
cycle (N = 442)
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Ordering can provide good pseudo-temporal classification for most of the cell
cycle

Comparing the different pseudo-temporal reconstruction techniques, each had their specific
advantages and disadvantages. Length ordering performed best on the majority of the cell
cycle (figure 38), only surpassed by diffusion maps for the last 15% of the cell cycle (figure 39).
Wishbone struggled with the small number of parameters and produced erratic results. From
a comparison of measurement trajectories using all 3 techniques (figure 42) it can be seen
that the wishbone trajectories had little in common with the observed behaviour. Overall,
the general population development can be represented surprisingly well using simple length
ordering (figure 41).

Comparison between of the SIM and STORM averages for different populations of the same
strain show that averages are similar even for different measurements (figure 40). In addition,
visual comparison between the SIM and STORM images for the wild type measurements
shows that the ERA ordered STORM images show a similar time dependant behaviour (fig
43).
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Figure 38: Pseudo-temporal classification error using length ordering for wild type data.

55



0.0

0.2

0.4

0.6

0.8

1.0

fra
ct

io
n 

of
 c

el
ls

classification error (length_ordered_time)

(0.8, 0.85]
(0.95, 1]
(0.85, 0.9]
(0.9, 0.95]

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
Maximum error [%]

0.0

0.2

0.4

0.6

0.8

1.0

fra
ct

io
n 

of
 c

el
ls

classification error (diffusion_time)

(0.8, 0.85]
(0.95, 1]
(0.85, 0.9]
(0.9, 0.95]

Figure 39: Pseudo-temporal classification error for the last 20% of the cell cycle using using
length ordering and diffusion maps on wild type data. For the last 15%, diffusion maps
performs better than simple length ordering (lower maximum error for a given fraction of all
cells). Otherwise simple length ordering performs better (see figure 38).
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Figure 40: Comparison of population averages for different populations of the same stain
using SIM (N = 2918) and STORM (N = 442) measurements. The shading represents the
standard deviation of a sliding window containing 10% of the measured cells.
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Figure 41: Comparison of population trajectories resulting from measured SIM time and
pseudo-temporal length ordering (N = 2927). The blue scatter correspond to the individ-
ual measurements while the red line is a population average trajectory computed by lowess
smoothing (α = 0.3). The population trajectories are similar for width and waist ratio while
for length outliers lead to the effects described in section 3.2.1.
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Figure 43: Comparison of selected SIM (top block) and STORM (bottom block) images for
5 time bins. The top graph represents the waist ratio average (lowess α = 0.3) over the SIM
cell cycle time measurements (N = 2977). The vertical dividers in the graph mark the time
bin borders. Blue shading is the standard deviation of a sliding window over 10% of all cells.
Scale bars 500 nm.
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DNA measurements didn’t improve pseudo-temporal classification for the avail-
able measurements

To check the benefits additional measurements for pseudo temporal reconstruction, DNA
content measurements for each cell were added to the dataset. However, the temporal classi-
fication performance did not improve as theoretically expected after adding the DNA signal.

Possible reasons include differences in DNA development between stalked and swarmer
cells, segmentation noise due to alignment differences between shape and DNA signal and
intensity differences between the frames.

6 Discussion

6.1 Spatial resolution

Comparison between the diffraction limited phase-contrast and super-resolution images of C.
crescentus has shown that phase-contrast images tend to overestimate the cell size (figure 29).
This systematic bias may stem from a number of reasons. First, the phase-contrast images
measure the outer membrane while the dye used for STORM and SIM images targets the
inner membrane. Since the inner and outer membrane are typically about 50 nm apart a
difference between the observed cell sizes is expected (figure 44). Second, the threshold based
image segmentation will lead to a larger apparent cell size for lower resolution because the
point-spread function fades slower, yielding a larger diameter for a fixed intensity threshold.
While the systematic bias can be partially corrected, important features of C. crescentus
remain hard to quantify using diffraction-limited microscopy.

Figure 44: Cryo EM image of a C. crescentus cell without stalk. The inner membrane (IM)
and surface (S) is separated by a distance of about 50 nm. The scale bar is 100 nm. Adapted
from [6].

Such a feature is the invagination depth (waist) and position along the cell. Even when
using super-resolution microscopy, a waist below 300 nm is hard to observe (figure 36). How-
ever, this information is crucial for the cell dynamics as constriction rate and duration may
play a critical role in cell size control and homeostasis [2]. In practise the constriction rate
can be extrapolated to obtain a complete picture of cell dynamics.
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Another quantification made possible using super-resolution microscopy is the description
of the cell pole form. While traditionally C. crescentus has been modeled as cylinder with
capped hemispheres [19], the measurements in figure 30 show that the observed form varies
between cells. For some cells the approximation holds well (figure 30a) while for others there
is significant difference, especially at the invagination site (figure 30b). Apart from intrinsic
biological variability the reasons for this difference remain unclear.

Another small feature to be considered for the description of C. crescentus is the cell stalk.
As described in section 3.3 cells grow a stalk during replication. This stalk may persist and
grow during the course of multiple cell cycles. The stalk may therefore not directly depend
on the position of the cell within the cell cycle and is removed before the analysis of STORM
measurements. Since SIM measurements are performed on synchronized swarmer cells, the
potential contribution of the stalk to the cell length is much smaller.

6.2 Single cell identification

Observation of single cell trajectories in SIM has indicated that the developmental laws stay
the same between cells while their rate constants differ (figure 31a). Their developmental
trajectories overlap significantly, allowing the construction of population averages (figure 31b).
The population noise therefore prohibits the reconstruction of single-cell trajectories from
populations but allows the construction of population averages. The average of single cell
averaged trajectories was found to be nearly identical to the direct population average.

The averages were observed to be similar for different measurements, indicating stability
to biological as well as measurement noise (figure 40). The observations should therefore be
easily reproducible.

For the construction of average shapes, a method for combining trajectories is required.
Possible approaches and their trade-offs are described in section 4.2. In this thesis the av-
eraging of shape parameters is used, as it leads to minimal distortions of the relevant shape
features.

6.3 Pseudo-temporal classification

Pseudo-temporal classification allows to estimate the relative position of a cell within the cell
cycle without requiring direct time measurements. For the STORM measurements used in
this thesis such a technique is required to obtain bacterial dynamics, since the cells were fixed
prior to microscopy. To assess the quality of the reconstruction the methods were performed
on the SIM measurements, for which a trajectory based on measured time was available

A range of techniques described in section 3 was tested. This included generic and well
known techniques like length ordering and dimensionality reduction as well as methods specif-
ically developed for temporal reconstruction of cell cycle trajectories like cycler. The results
were rather surprising.

The method performing best on the majority of the cell cycle was traditional length
ordering. This could be due to a number of reasons. First, the used quantity of length has been
observed to be the most influential quantity for pseudo-temporal classification (figure 32) and
has the lowest relative measurement uncertainty of all shape parameters (figure 31a). Second,
rank ordering statistics tends to be robust against outliers, locally limiting their influence to
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the beginning and end of the cell cycle. The resulting average trajectory corresponds well to
the population average based on measured time (figure 41).

The performance of the remaining pseudo-temporal ordering techniques turned out the be
less consistent for the provided shape measurements than length ordering. A reason for this
observed difference could be that these methods derive information from the measurement
distribution, which may vary between populations of the same strain. In addition, figure
32 shows that other parameters are significantly less important than length, adding noise to
the calculations. Since all methods apart from length ordering require at least two shape
parameter the noise might out-weight the additional parameters benefit. These conclusions
are also summarized in table 1.

Table 1: Comparison of pseudot-temporal methods

Name Features Performance Noise Comments
One MultipleEnd Overall

Length
ordering

3 7 + ++ ++ Simple method,
extension to
multiple parame-
ters not straight
forward

Diffusion
time

7 3 ++ + + Increased sensi-
tivity to noise
with few parame-
ters

Wishbone
time

7 3 - - - Using two param-
eters is possible
but leads to bad
results in practise

Because length ordering averages of the same strain were observed to be similar for different
cell populations (figure 40), this method could potentially be used for a quick screening of
developmental trajectories of new strains. When applying the corrections of ergodic rate
analysis no cell synchronization is necessary, allowing for quick cell dynamics estimation using
fixed cell images.

7 Conclusion

Super-resolution microscopy was shown to be important tool for the accurate description of
cell division dynamics of C. crescentus. With diffraction-limited techniques the invagination
depth can only be observed inaccurately, obscuring an important part of cell dynamics.

Of the methods tested for pseudo-temporal reconstruction of cell cycle time length ordering
generally achieved good reconstruction performance for the majority of the cell cycle. The
inclusion of waist width together with the diffusion maps algorithm showed an improved
performance for the last fraction of the cell cycle while performing inconsistently for the
remaining part. The usage of rank ordering together with the generic assumption that cells
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elongate during the course of the cell cycle led to robust method applicable to a wide range
of cells.

Furthermore, population trajectories generated by pseudo-temporal reconstruction have
been found to be similar between different populations of the same strain, indicating usability
for the description of average population dynamics.

8 Outlook

The good performance of length ordering across various bacterial strains indicate that the
method could be used as technique to easily quantify the population average behaviour of
new strains. In combination with the ERA correction unsynchronized bacteria can be used
for microscopy, simplifying sample preparation drastically. It would therefore allow for quick
screening of cell dynamics for new strains, drastically reducing cost and experimental burden
for an exploratory approach to cell dynamics.

For this method to be used in a wider context, additional comparisons would have to be
performed in order to ensure that the pseudo-temporal average matches the dynamics of the
observed bacteria type. Evidence in this thesis indicates that this is the case of C. crescentus.

In addition, it has been found that the shape of the poles reassembles the classical as-
sumptions of capped hemispheres only for some cells, while others deviate significantly from
this proposed form. One possible reason for this are differences in the constriction duration of
individual cells, where a smaller duration would lead to a blunter pole [2]. To investigate the
exact mechanisms how this variability in pole shapes arises additional measurements would
be needed.
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