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Kurzfassung

Diese Diplomarbeit stellt den AscAMG Vorkonditionierer vor, einen verteilten Alge-
braischen Mehrgitter-Vorkonditionierer fiir skalare, elliptische H1-Probleme, der zur Ein-
bindung in Netgen/NGSolve entwickelt wurde. Die Methode ist benannt nach der alter-
nativen Art und Weise wie starke Verbindungen charakterisiert werden. Die dabei zum
Einsatz kommende Ersatzmatrix fiihrt direkt zu einer neuen Variation der Methode der
geglatteten Prolongation die in Aggregations-basierten Mehrgitterverfahren zum Einsatz
kommt. Auf die Parallelisierung der Methode wird ganz besonders eingegangen und auch
skalierbare parallele Glatter werden besprochen. Nachdem die Skalierbarkeit der Meth-
ode auf mindestens 1800 Prozessoren durch numerische Ergebnisse demonstriert wird,
werden Schliisse gezogen und eine Perspektive auf mogliche kiinftige Weiterentwicklun-
gen der Methode gegeben.
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Abstract

This thesis introduces the AscAMG preconditioner, a distributed Algebraic Multigrid
Preconditioner for scalar, elliptic Hl-problems, that has been developed for NGSolve.
The method gets its’ name from an alternative way to define strong connections that is
based on a replacement matrix. This leads directly to a new variation of the smoothed
prolongation method commonly found in aggregation based Multigrid solvers. The par-
allelization of the method is described in detail and scalable smoothers are found and
discussed. After demonstrating the scalability of the method to at least 1800 cores with
numerical results, conclusions are drawn and an outlook on possible future developments
of the method is given.
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Notation

The standard euclidian product in R™ will be denoted by (-, -), or, if the context is clear,
by (-,-). The euclidian norm will be written as || - ||2 or || - [|. We write a < b for a < Cb
with some moderately sized constant C and a ~ b for a S bAb S a. We will conistently
write vectors in R™ and matrices in R™*" bold. For matrices A € R™"*", we will write

(u,v) 4 = (Au,v) (0.1)
[ull% = (u,u), (0.2)
(0.1) is called the energy inner product. For SPD A the norm (0.2)) is called the energy

norm. For matrices A, B € R"*" we write A > 0 if (Ax,x) > 0Vx € R" and A > B if
A-B>0.
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1 Introduction

Algebraic Multigrid Methods are a class of solvers and preconditioners for systems of
linear equations that have been used in a wide variety of problems, among others in heat
conduction, fuild dynamics and electromagnetics. While they are generally inferior to
geometric multigrid methods where those can be applied, algebraic multigrid methods
offer relatively “black-box” solvers that are robust against large jumps in coefficients
and complex geometrical situations, neither of which is true for geometric multigrid
algorithms. This work will introduce “AscAMG ”, which stands for “Algebraic Multigrid
with Alternative Strong Connections”, an algebraic multigrid preconditioner for scalar,
symmetric positive definite H' - problems. More precicely, we will consider the equation
—div (aVu) + pu = f (1.1)
with badly behaving coefficients o and § in 2 and 3 dimensions on arbitrarily complex
domains ).
AscAMG is an extension to Netgen/NGSolve. Netgen/NGSolve is a multi purpuse C++
mesh-generation and Finite Element library that has been in development since the
ninties (see also [5], [6]). AscAMG is itself implemented in C++ and has been shown to
scale to 1800 cores.

Outline of the thesis

In chapters [2| and |3, we will very shortly review the Finite Element method and some
numerical methods we can use to solve linear equations resulting from the Finite Element
discretization of the problem in question.

After that, we will discuss the challenges distributed computing environments pose for
Finite Elements and very briefly review the Message Passing Interface (MPI), a standard
for message passing in distributed systems. The distributed Finite Element Method as
well as a particular viewpoint of distributed linear algebra that fits it very well will be
presented. Closing out chapter flwe will give some perspectives on how NGSolve handles
MPI-parallelization.

After that, in chapter motivation for multigrid methods will be provided, and in
chapter [0] we will take a first look at multigrid methods in general, at their advantages
and at the difference between geometric and algebraic methods.

In section [7] the algebric multigrid method will be introduced in a generic way and a
well known result about a condition that implies its’ convergence will be presented.
The AscAMG method itself will be introduced in detail in chapter [§] A proof for the
methods’ convergence based on the previous’ chapter’s abstract definition will be given.
In particular, the parallelization of the method will be described in detail. In course
of that, we will intorduce a formalism that divides the degrees of freedom into equiva-
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lence classes based on their parallelicity. This will be used to formulate our coarsening
algorithm as well as the smoothers available in AscAMG with great ease. It will also
provide a very simple characterization of a class of prolongation matrices that guarantee
communication-free transfer between grid-levels.

Finally, the quality and scalability of the method will be demonstrated in section [9}



2 The Finite Element Method

In this chapter we will briefly review the most important facts about the finite element
method for discretizing (1.1), as far as we will need it later on. As we will only be
interested in the lowest order case and equation is one of the most basic partial
differntial equations there are, proofs for all lemmas and theorems in this chapter can
be found in any good textbook on the Finite Element Method, for example [3]. Section
will give an overview over element matrices which will be used in chapter |4 to gain
a better perspective on distributed linear algebra for the distributed Finite Element
method.

Let us first enforce boundary conditions in (1.1). Let I'p and I'y be subsets of 0
such that I'p UTy = 9Q. For o, 3, f € L?(Q) and suitable up,g € L?(T'y), enforcing
boundary conditions in equation (1.1]) leads to:

Find u € C?(Q) such that:

—div (aVu)+ pu=f inQ (2.1)
trryu=up onlIp
Vu-n=g only (2.3)

Notation 2.1. For the remainder of this work, let O C R? where d = 2 or d = 3 be
a Lipschitz domain. We will also limit ourselfs to the case where () is a polygon or
polyhedron.

Next, we will work towards the weak formulation of (2.1)).
Lemma 2.1: H'-Sobolev Space

The space
HY Q) = {u e L*(Q) : Vu € L*(N)}

equipped with the norm

lullZ oy = lullZoiy + IVulZe@
is a hilbert space. Let I' C 0, with |I'| > 0. Then there is a continuous trace
operator trp : H'(Q) — L%(T) that extends the restriction operator for continuous
functions:
Vue CQ): trru=ur onT

The space
HL(Q) == ker trp = {uc HY(Q) : trr u =0}

equipped with the H'-norm is also a hilbert space. If T = 09, we write tr instead
of trr and HE(Q) instead of H5(Q).
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The weak formulation of (2.1)) reads:
Find u € H'(Q) such that:

a(u,v) = f(v) Yo e HH(Q) (2.4)
u=up onlp (2.5)

With:
a(u,v) = /QaVu - Vv + Puv dx (2.6)

flv) = /va dx + /FN gv ds (2.7)

Technically, we require up € HY?('p) and g € H-'/?(T'p), with the fractional order
Sobolev-Slobodeckij spaces H'/2(I'p) and H~Y/2(I'p), however, we will simply assume
that these functions are as smooth as we need them to be. The well known Lax-Milgram
lemma guarantees the exinstence of a sultion for and in H'(Q), provided
a>ag>0,5>0and either > fy > 0 or |[I'p| > 0. We will assume this to be the
case.

Lemma 2.2: Lax-Milgram

Let V' be a Hilbert space, and let a(-,-) be a continuous, elliptic (or coercive)
bilinear form on V', that is

a(u,v) < C|lullv|vlly VYu,v eV
a(u,u) > cllul|? YueV
Let f(-) be a continuous linear form on V,
f(w) < Dluly VueV
Then, the equation
a(u,v) = f(v) YveV

has a unique solution uw € V. Furthermore,

D
lully < —
Cc

For the Finite Element Method we replace the infinite-dimensional continuous spaces
HY(Q) and H}(£2) by finite dimensional, discrete spaces V3, and Vp, and arrive at the
discrete weak formulation:

Find u; € V), such that:

a(uh,vh) = f(vh) V’Uh c Vb,h (28)
up = PhuD on FD (2.9)

Here, Py, is the L2-Projector onto trr, (V},), for simplicity we will from now on assume
that up € trp, (V4). The discrete spaces V3, Vi, p will be defined shortly.



Definition 2.1: Regular Triangulation

A regular triangulation Ty of € is a set of non degenerate, closed traingles or

tetraheda such that
a=r

TeT

For any T;, Ty, € Ty, T; N'T; must be either empty, a vertex or an edge. The mesh
width h is the mazimal diameter of any T € T. We assume that

diam(7) > Ch VT €T

with a moderately sized constant C. This property will also be called the shape
reqularity of T,.

Notation 2.2. We will write V(7) for the set of all vertices and £(7) for the set of
all edges of a triangulation 7. The set of all its faces will be F(75). A “node” can
refer to either a vertex, an edge, a face or an element of 7. All k-dimensional nodes in a
triangulation will be assigned a number in {1...nx}, in no particular order, v; will stand
for the vertex with number i, e; for the edge with number 7 etc. The edge connecting
two vertices v; and v; will also be written as e, ,;, or, more briefly, e;;. The two vertices
of an edge e will also be written as v, and ve,, in no particular order. We will also use
the notation Ty, :={T € T, : v € Vr} C Tp.

In order to properly resolve the boundary conditions, we require I'y and I'p both to
consist of a union of elements in £(7,) in two dimensions or F(73) in three dimensions.
We will assume this as given. We are now ready the define what a finite element is.

Definition 2.2: Finite Element

Let Ty, be a regular triangulation of Q. A finite element is a triple (T, Vi1, V),
where T' € Tp, Vi, 7 s a finite dimensional function space onT" and Y1 is a base of
its dual space V};T. The finite element’s base functions are the dual basis vectors
of Ur. For each i; € U we write p; € ®p for its dual basis function.

The global finite element space, which will take the place of V} in , is just the
product of these local spaces defined on each element in 7, with some additional enfored
restrictions. We will only be concerned with the classical nodal, scalar, continuous, lowest
order H' Finite Element space.
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Definition 2.3: Lowest Order H' Finite Element Space

For a regular triangulation Ty, and T € Ty, let Vi, p = PY(T). Let Vr be the set
of vertices of T and for each v € Vp let ¢, € C(T) be defined by 1, (u) = u(v).
Finally, let U == {1, : v € Vr}. The lowest order H! finite element is defined as
(T, PX(T), ¥r). The lowest order H' Finite Element Space is defined as

Vi =[] VarnC®(Q) € H'(Q) (2.10)
TeT

We also need the discrete space that corresponds to H})(Q), which is just the set
of all Vi, functions that vanish on I'p:

Vi,p = {un € V, t up(v;) =0 Yv; e VNI'p}
Again, we write Vy, o instead of Vi, p if I'p = OS.

Note 2.1. In 2 dimensions, this gives us the standard “hat”-function basis.

Notation 2.3. We will write || - |4 for the A-norm, the norm on V}, induced by af(-,-).
We will write up, L 4 vy, if a(up,vp) = 0.

Lemma 2.3: Céa

Let V' be a hilbert space and let Vi, be a finite dimensional subspace of V. Let a(-,-)
be an elliptic and continuous bilinear form onV and let f(-) be a continuous linear
form on V. Then, there exist ungiue solutions u and up of the problems

a(u,v) = f(v) YveV
a(up,vp) = f(vp) Yv eV,

With the ellipticity constant ¢ and the continuity constant C of a(-,-), they fulfill

C
_ < =~ inf _
Ju= ]l < % inf flu—vi

From now on, Vj, will always be the lowest order H' Finite Element space defined on
Th.

Lemma 2.4: Approximation Properties of 1},

On a regular triangulation, the lowest order nodal scalar H'-finite element space

fulfills

: 2
U;fel{/h lu = vnllziq) S hlulg2@)  Yu € H(Q)

. 2 2
Uilel{;h |w = vnllL2) S A7 lulp2@) Yu € H ()

We will now turn our attention towards the system of linear equation induced by (2.8)).
For that, we identify V}, with the coordinate space R™:



2.1 Element Matrices

Lemma 2.5: Galerkin Isomorphism

The Galerkin isomorphism G : R™ — Vj, where n = dim Vj, = |V|

Gu= Z w;p; = up, (2.11)
i=1
fulfills the bounds

~

W ull3 < lunllz2 < hull3

Notation 2.4. In prose, we will usually not distinguish between a finite element function
up, and its coordinate vector representation G~luy at all, however, where it is necessary
to differentiate between the two, we will often omit G and write pairs with respect to G
as up, and u, vy and v etc.

Lemma 2.6: Finite Element Matrix
Let A € R™™ and b € R™, with n = dim V}, = |V| be defined by
Ay = a(pi, pj)
b; = f(¢i)

Then, the action of a(-,-) can be brougt from Vi, to R™ with the galerkin isomor-

phism, :

vl Au = a(uy,vp)
Solving (@ is then, via the Galerkin isomorphism, equivalent to finding u € R"
such that
Au=Db (2.12)

Notation 2.5. We will write || - ||a for the A-norm, the norm on R™ induced by A. We
will write u Lo v if (Au,v) =0.

Definition 2.4: Stifflness and Mass matrices

From now on, M stands for the mass matriz, which is the finite element matriz

for @ and a=0,8#0, or
a(u,v) = / Buvdx
Q

If =1, [lullar = lJunllz2()-
The stiffness matriz K will be the finite element matrixz for (@ and o # 0,8 =0

a(u,v) = / aVu - Vudz
Q

Ifa=1, ||ullx = [urlmr (@) = IVurllr2 @)

2.1 Element Matrices

We will now take a look at element matrices, how to assemble the global matrix from
these and how to perform the matrix vector multiplication with A while only using the
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element matrices. While this will not be a point of focus for the rest of this work, the per-
spective gained in this section will be useful for the later discussion of the parallelization
of the Finite Element method in section [4.3]

Definition 2.5: Reference Element

The reference element T C R? is defined as the convec hull conv{0, ey, ey} in two
and conv{0, ey, ez, e,} in three dimensions.

Lemma 2.7: Element Transformation

For each T € Ty, there is a bijective linear element transformation Fr : T—>T
such that:
|detVEr| ~ h?

Definition 2.6: Element Matrix

Let T € Ty, be an element with Vp = {i1,i9,i3}. Let (T,Vp.Wr) be the Finite
Element corresponding to T and let (p;)i<i<a be the local Finite Element basis
functions as in deﬁmtion numbered such that ©;(vi,) = d;,. Note that the ¢;
are restrictions of global basis functions to T'.

The element matriz Ay € R™*? associated with T and a(-,-) is defined by

Ar i = ar(pj, pr) = / aV; - Vop + Bojpr dz 1< j,k<d (2.13)
T
The element vector by € RY associated with T and f(-) is defined by
bj = fir(e;) = / feoj do+ / ge;j ds (2.14)
T CNNOT
The element index-map is
{{1...3} ~{0...n—1}
T : ‘
k — 1k

The discrete embedding matriz Ep € R™ % associated with T is defined by the
element index map via

Erij = 0i.mz(j)



2.2 Numerical Aspects

Lemma 2.8: Assembling the Matrix

The global matriz A can be assembled from the element matrices and the embed-
dings by:

A= > ErArEf
TeT

Using T, from Notation [2.3, this means that the components of A can be written

as:
A= Y Arpigmeig)
T€To;NTo;

Note 2.2. We can express multiplication with A via the element matrices. For a vector
v € R” and an element T € Ty, vp := Epv € R? is its component corresponding to the
element’s degrees of freedom. GE%V € Vi is the restriction of vy, to T'.

Av = Z ETATE%:V = Z ETATVT
TeT TeTh
This means that Av is the sum of local contributions Arvr.

2.2 Numerical Aspects

The matrix graph of A is strongly related to the triangulation 7y, a;; # 0 if and only if
there exists an edge connecting v; and vj, or in other words if e;; € £(73). This means
that, assuming shape regularity of 7, the number of non zero entries of A per row is
limited by approximately 7 in two dimensions and 14 in three dimensions.

Lemma 2.9: Conditioning of the mass matrix

If B =1, the mass matrix M fulfills the (sharp) spectral bounds
W3 S llullds < Aflull3
This leads to the condition number

#(M) = O(1)

Note 2.3. If § # 1 but max{f3(x), z € Q} < C and min{5(z), x € Q} > ¢ for positive
constants, we at worst incur an additional factor C' in the upper bound and ¢ in the
lower bound, leading to an additional worst case factor % in the condition number.

Lemma 2.10: Conditioning of the stiffness matrix
If o =1, and |[I'p| > 0, the stiffness matriz K fulfills the (sharp) spectral bounds
hlull3 < Jlullf < A7?[ul3

This leads to the condition number
w(K) = O(h™?%)
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Note 2.4. If a # 1 but max{a(z), = € Q} < C and min{a(z), x € Q} > ¢ for positive
constants, we at worst incur an additional factor C' in the upper bound and ¢ in the
lower bound, leading to an additional worst case factor % in the condition number.

Note 2.5. From this we can see that condition-wise, the worst case in (2.8) is the pure
poisson problem, where, f = 0, and « varies strongly. Adding any (positive) L?-term
will only improve the codition of the Finite Element matrix A.

10



3 Basic lterative Methods

This chapter contains a short overview over some very basic iterative methods that will
be referred to throughout the rest of this work. While the Conjugate Gradient Algorithm
will only be mentioned shortly for the sake of completeness, stationary iterative methods
will be elaborated upon in more detail, as these are the basic building blocks for all
multigrid algorithms.

For now, we will take a step back and consider the equation Ax = b for generic (sparse)
SPD matrices A € R™™ and x,b € R™. When n is very large, solving such systems
of equations in general requires iterative methods, as direct solution methods require
too much memory and time to be feasible. Unfortunately, most iterative techniques
also behave badly as n — oo because their performance is dependent on x(A). In the
case where A is a finite element matrix for the poisson problem, lemma tells us
that kK(A) — oo as h — 0. One way out of the dilemma is to try and find a good
Preconditioner C for A, that is a matrix such that C~! is a good approximation for
A~ that is also cheap to compute. Then the condition of C™'A is much better that
that of A and one can apply the iterative method to a transformed system.

Definition 3.1: Preconditioner

A preconditioner for an SPD matriz A € R™"™ is an SPD matriz C € R™"™ such
that

k(C71A) < k(A)

The Conjugate Gradient Method (CG-Method) is probably the most famous method
for solving generic SPD problems Ax = b. It is a member of the family of Krylov
Space methods and features strict monotone convergence in the energy norm, however
the rate of convergence is dependent on the condition of the matrix A. The CG method
is featured in many textbooks, for example, it is treated in great detail in [4].

Theorem 3.1: The Preonditioned Conjugate Gradient Method

The preconditioned Conjugate Gradient Method (algom'thm for solving the equa-
tion

Ax =D
for an SPD matriz A € R™" and b € R", given an initial approximation ugy of
u with help of an SPD preconditioner C € R™ ™ finds the exact solution after at
most n steps. With the intermediate apprzimate solution after k steps and the
er = u — uyg, it fulfills the energy norm estimate

feula < (Lo VACTAT
er||A = 1+\/m €o|lA

11



3 Basic Iterative Methods

Proof. See, for example [4] O

Note 3.1. PCG combines a very generic algorithm, the conjugate gradient method, that
works for all SPD matrices A with a preconditioner C, which is usually specifically
tailored to the problem at hand.

Algorithm 1 The Preconditioned Conjugate Greadient Method
1: procedure PCG(A, b, %)
2 Compute 1o :=b — Axg, zg = C 'rg, po = 2o
3 for j =0,1... until convergence do
4 aj = (rj, zj) / (Apj, pj)
5: Xj+1 = X; + ;P
6
7
8
9

Tj+1 =1 — ajAp;
zj+1 =M lrj
Bj = (rj+1,2541) / (T, 1j)
Pj+1 = Zj11 + 5P
10: return x;

3.1 Stationary Linear Iterative Methods

In essence, Stationary Linear Iterative Methods (SLIMs) are affine linear mappings

® : R" — R™. One starts with some initial guess xq for the solution x* and then iterates

Xk+1 = P(xg). For consistency, the true solution x* must be a fixed point, ®(x*) = x*.
Definition 3.2: Stationary Linear Iterative Methods

A stationary linear iterative method for the solution of Ax = b can be written as
Xp+1 = Mxy + Nb (31)
with M, N € R™*"™ N invertible and I = M + NA.

Note 3.2. Alternatively, one could also write (3.1)) as

Xpr1 =X + N (b — Axk) (32)
This is just one step of the preconditioned Richardson-iteration. We see that N should
be an approximation for A1

Note 3.3. Given an SPD preconditioner C for A such that A < CC and A > cC,
N = LC~! defines a convergent SLIM for which || M| < % =1-r(CtA)"L

Note 3.4. M is also called the error propagation matrix or simply the iteration matrix
of the SLIM, because, with the error e, := X* — x;,, the error after the next iteration is

err1 = Mey,
Lemma 3.1: Convergence Criterium for SLIMs

Let W = N~L, then a sufficient condition for the convergence of SLIM is
W+ WD —A>0 (3.3)

12



3.1 Stationary Linear Iterative Methods

Proof. By definition of the operator norm (w.r.t the euclidian norm), we have
lexrillz = |[Megl2 = [|(T — NA)eg |2 < [T - NA|2llex]l2 < [IT— NAJ5||eo]2
We have to show that |[I — NA, = ||I— A2NAz |, < 1.
(I— A3NAZ)T(I- A3NA2)=1— A3NTA? — A*NAZ + A:NTANA: =
—T- ANTNINAZ — AsNTNTNA> + A:NTANAS =
—T— (NA2)T (W + W7 — A)(NA2) =
=1-B
Now, if W+ W7 — A >0, Bis SPD,I—-B < 1 and
IT— AZNAZx|? = <(I ~ AINAZ)x, (I - A3NA3) > -
- <(I— ANTAZ)(I - ATNA?)x x>
= ((I-B)x,x) < |x|3
And thus ||[I — NAJ2 < 1. O

Notation 3.1. The matrices M, N and W will from now, unless explicitely stated other-

wise, stand for the iteration matrix, the approximate inverse and it’s inverse associated
with a SLIM.

Definition 3.3: Dampened Jacobi Method

The dampened jacobi method with dampening parameter w € R is given by defini-
tion[3.4 and

N=wD""!
with the diagonal D of A.

Lemma 3.2: Spectral Bounds for Jacobi Preconditioning

The jacobi preconditioner for the stiffness matriz K fulfills the (sharp) spectral
bounds

PD<K<D
This leads to the condition number estimate k(D~'K) = O(h~2) with a constant
that depends on «.
The jacobi preconditioner for the mass matrix M fulfills the optimal spectral bounds
cD<SM<SCD
with condition number kK(D~'M) = O(1) with a constant that depends on f3.

Proof. f0 < ap<a< o

O‘%S}?f} el (oyllullz < (Du,u) < ay it s lull zr1 e llall3

Therefore, assuming shape regularity of the triangulation, D ~ k% 2I. and if 0 < By <
0 < a

min u Du,u) < max ull?
o, min ol Faqoy a3 < (D w) < 81 max flgulzaollull

13



3 Basic Iterative Methods

Therefore, assuming shape regularity of the triangulation, D ~ h%I. Now the claim is
evident from lemmas and O

Note 3.5. According to lemma the dampened jacobi method is convergent if %D >
A.

Definition 3.4: Gauss-Seidel Method

The Gauss-Seidel method is given by definition [3.4 and
N=(L+D)™"

where L is the strictly lower triangular part of A.

Note 3.6. In contrast to the Jacobi method, the Gauss-Seidel method does not require
a dampening parameter, however using one can improve the convergence rate altough
finding a good parameter is not trivial.

Note 3.7. For any SLIM given by N, N7 defines another, “transposed”, SLIM, that
converges iff. the original one does. The error propagation matrix of the transposed
SLIM is I — NTA = M*, which is the (-, -) g4-conjugate of M. For example, the GS
method becomes the backwards GS method with N = (U + D)L

Definition 3.5: Symmetrized SLIM

Let a SLIM be given by N, then the symmetrized SLIM is given by
N=N'(NT4+N'!'-A)N
or, equivalently, by

W =WW? + W - A)"'wW7

Note 3.8. One iteration of the symmetrized SLIM N is equivalent to one iteration woth
N followed by one iteration with N7. As M = M*M is symmetric wrt. (-,-) 5, p(M) =

IMILa = M]3
Note 3.9. If we symmetrize GS with dampening parameter w, we obtain the well known
SSOR method (successive overrelaxation) with
N=w?2-w)(L+D)'DL+U)"!
From lemma we know that the contraction rate of the jacobi method is 1 — O(h?).

We will now see that Gauss-Seidel has the same asymptotic behavior.

Lemma 3.3

If a SLIM fulfills, for some gg,01 > 0
(W + w7 — A) x,x) > 0¢ (Dx,x)
<WTD_1WX,X> < o1 (Dx, x)
Then
% (Dx,x) < <VNVX,X> < a1 (Dx, x) (3.6)

a0

14



3.1 Stationary Linear Iterative Methods

Proof. Let B = D_%WD_%, now from |D we get:

<D—%WTD—1WD—%X,X>

1B = sup
X

112

<WTD*1WD_%X, D—%x>

= sup
X

<
]2

DD—%X,D—%X>

< o1 sup
X

]2

Now, using we can show the upper bound for W in :
(Wx,x) = (W+ W'~ A) WIx, Wx) < Ui (D'WTx, Wx) =
0

_ <BBD%X,D%X> <
For the other bound, (3.4]) gives us:

(Dx,x) = a1 (Dx, x)

a0

2(Wx,x) = <(W+WT) X,X) > <(W+WT—A) x,X) > oo (Dx,x)

Equivalently,

(Bx,x) > ?0 (x,x)

Now, we apply this inequality to B~ !x:

2 2
IB™'x|I* < = (x,B7"x) < ~ B x||x| = B <
00 00 00

From this we obtain
<W_1x, X>

IN

4
00

IN

Or, equivalently

2 (Dx,x)

<D*1x,x>

2

(WE(W+ W T AW x) =
(WT+W W TAW ) x,x) <
<(W7T + Wfl) X, x> =2 <W*1x, x> =

2 <B’1D’%x, D*%x> <2|B7!(D x,x) <

(e

Theorem 3.2: Asymptotic Behavior of Gauss-Seidel
The Gauss-Seidel method fulfills the conditions , from theorem with

oo = 1 and some moderately sized o .

Proof. og =1 is trivial because (W +WT — A) = D. For the other condition we have

to show

<WTD71WX,X> < o1 (Dx, x)

15



3 Basic Iterative Methods

This is equivalent to showing
0 (D_1WTD_1W) <oy
A stronger condition than this is
IDT'W[DT'WT | <o
for some arbitraty matrix-norm || - ||. We choose || M| = max; {Z] \mw|} Assuming

regularity of the trangulation, we can now bound ||[D~'W|| from above by a moderately
sized constant. Let m be the maximum number of entries in any row of A. Then

1 1

D 'W| = max{ — Qi < max<{ — Qi <

¢ J ; J

@ Qi < i Qii =
J<i J

< mmax { 2551 } < mmax{aj;}
i ail J

O]

Note 3.10. In the proof of theorem we obtained o7 = O(m?), which holds for all
SPD matrices A but is very pessimistic in the case where A is the poisson matrix. In
fact, because constant functions are in the kernel of the poisson-matrix (for a domain
without dirichlet boundaries), we usually have

1
. ZJ: lai;| = O(1)

with the constant depending on the space dimension and the shape regularity of the
triangulation.

Corrolary 3.1.1. Forwards/Backwards/Symmetric Gauss-Seidel behave no better than
Jacobi for h — 0.

Proof. Theorem says that W ~ D. This means that
h2 < <AX7X> _ <AX7X> <DX7X>
~ <VNVX,X> (Dx, x) <Wx,x>
where the lesser bound is sharp because of lemma Thus the convergence rate of
symmetric Gauss-Seidel is 1 — O(h?), just as that of Jacobi. With

M| = MM < [M]* = [M]| > \/[[M]| > [|M]
it is clear that forwards/backwards Gauss-Seidel can do no better than symmetric GS.
O
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4 Distributed Computing

In this chapter we will illustrate the most fundamental differences between smaller sys-
tems, ranging from personal computers to single machine servers, and fully distributed
clusters and how a simplified programming model has to change to accomodate that.
After that, we will show how, in NGSolve, this shift in perspectives is extended to the
Finite Element method in a very natural way and how the linear algebra is implemented
to match.

While systems of the first kind can, on the most basic level, be viewed as single, integrated
machines consisting of a number of processing units that may act independently of one
another but share all of the available memory, clusters typically consist of many such
machines, in that context also called nodes, that are basically independent and only
connected to the others by some kind of communication network.

Broadly speaking, accessing memory on the same node may involve latencies ranging
from a few processor cycles, typically about 1ns when accessing cached memory, to
about 100ns when accessing memory in DRAM. Making use of the communication
system to get information from another node involves higher latencies that depend on
the networks’ exact makeup, the node-to-node distance and possible congestion, however
we are typically on a s scale.

Additionaly, the bandwidth of local memory access is in general much larger than the
bandwidth of the communication network.

This discrepancy in both latency and throughput between accessing local memory and
making use of the communication network to access memory on other nodes has to be
reflected in our programming model if we want to write even remotely useful code for
such systems.

4.1 The Distributed Programming Model

The central distinction between a simple shared memory programming model and a
simple distributed one is that the first is what one might call “task based” and the
second “proc based”. In this context a process, or in short proc, is a unit for scheduling
and memory management, while a proc is unit for scheduling only.

A simple shared memory model, schematically depicted in figure assumes that there
is a number of threads within a single process that can act independently of one another
but can all access any part of the available memory at roughly the same speed. The
rationale is that different threads can be assigned to different processors and can then
work in parallel. We, as programmers, to some degree, depending on the framework
used for threading, have to take care of synchronization between threads, but on the
most basic level we do not need to care about which data is stored in which part of
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4 Distributed Computing

the memory. Even when considering that in reality we do in fact have to consider non-
uniform memory access if we want to write really efficient code, we can usually get away
with parallelizing the sequential code on a relatively low level without changing many
of the algorithms very much on a conceptual level.

In the context of Finite Elements, this may

for example involve parallelizing for-loops over { " }
elements or nodes using a coloring of the un- ‘ ‘ ‘ ‘

derlying mesh.

On clusters on the other hand, we have to use
more of a “top-down” approach to paralleliza-
tion. The higher latency and lower through-
put of the communication network as opposed a: Shared memory model
to local memory access on each node forces
us away from this kind of thread based ap- M M M M
proach towards one that is concerned with | | | |
procs. Schematically, this new approach is il-

T T T T

lustrated in figure Each proc has its own P P P P
private memory which can only be accessed | | | |
by itself and is completely opaque to all other ( e )
procs, the memory is now distributed. The

only way for the procs to cooperate is by send- b: distributed memory model

ing messages via the communication network.
Now we, as programmers, have to know exactly which data is stored in which part of the
memory and we have to make any needed piece of data stored outside of any procs’ own
memory available to it by explicitly making use of the network. In contrast to shared
memory parallelization, it is now in most cases insufficient to parallelize sequential code
on a low level, instead we now also have to adapt our algorithms on a high level in order
to minimize use of the communication network. In scientific computing, the de facto
standard way of interacting with the communication network is via an MPI-library.

4.2 MPI

The Message-Passing-Interface is a standard that specifies a number of functions that
facilitate the passing of messages between different processes. This standard is imple-
mented in a multitude of good libraries, for example OpenMPI, IntelMPI and MPICH.
While MPI provides an interface that is platform independent, the libraries themselfs
are very well optimized and can be tuned for any specific machine, which allows users
to write efficient and portable code relatively easily.

We will now go over some of the terminology MPI introduces, as far as we will need it
in the remainder of this work.

Notation 4.1. The number of processes at work will be written as n,,.

In MPI, a communicator is a context in which a group of processes can exchenge mes-
sages. This group can include all of the n, procs or only a suset thereof. MPI provides
a global communicator containing all procs called MPI_.COMM_WORLD, and gives the
user the ability to create new communicators containing any subset of all procs. Within
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4.2 MPI

each communicator, any participating proc is assigned a rank, a number in {0...n.—1},
with n. being the number of procs in the communicator, which is used as an identifier.
This means that each proc can have different ranks in different communicators, however
we will simply refer to any proc by its rank in MPI.COMM_WORLD and explicitly
mention if a rank refers to some other sub-communicator.

Notation 4.2. We will consistently write P for the set of ranks {0...n, — 1}.

The most basic communication facility MPI provides is that of the matched Send/Recv
operations. With a send operation, a proc can send a certain block of data to another
one in a communicator. The target proc is specific by it’s rank in the communicator in
which the message is sent. This operation has to be matched by a corresponding Recv
operation on the target proc. The receiver must know the origin, type of content and
size of any message it wishes to receive. Data is passed to MPI-functions via a C-style
pointer, the Send-operation provides a pointer to the memory where the data to be
sent is stored and the Recv-operation provides a pointer to a buffer the received data is
to be written into. There are multiple versions of these operations available, the ones
that are relevant for us are the standard MPI_Send(..)/MPI_Recv(..) operations as well
as their nonblocking counterparts MPI_Isend(..)/MPI Irecv(..). MPI_Send(..) returns
only when it is safe to modify the data it has been passed, and MPI_Recv(..) returns
when the message has arrived and been written into the recv-buffer. MPI_Send(..) may
only return when the matching receive-operation has been called and the message has
actually been sent, it may, however, if the data is in the background copied to a seperate
system buffer, return sooner than that. The nonblocking versions return immediately,
without any guarantee about the state of the data in the send- and recv-buffers. The
completion of a nonblocking send or receive can be waited for by calling MPI_Wait(..).
MPI_Wait(..) returns exactly when MPI_Send(..) or MPI_Recv(..) would have, that
is when it is safe to modify the send-buffer and the message has arrived in the recv-
buffer respectively. Both send-variants come in different modes, for example buffered
mode where outgoing messages are copied to a user provided buffer which lets the send-
call return immediately after that or synchronous send that does not return until the
matching receive has actually been posted. The advantage of nonblocking operations
are, among others, that it is easier to avoid deadlocks, that multiple communications
can happen at the same time and that it allows for overlapping of communication and
computation if there is special hardware present that can work on communication in the
background.

This only scratches the surface of MPI, which also provides sophisticated methods for
collective communication, where a set of procs communicate as a group, onesided com-
munication, where one proc provides a “window” to portions of its memory that other
procs can look through and much more. We will only list some of them, and that mostly
to establish notation for communication patterns. More details can be found in the
MPI-standard [1].

— MPI_Gather: A collective operation that gathers data from all ranks in a com-
municator on one specified rank (the “root”).

— MPI_Scatter: A collective operation where one specified rank in a communicator
(again, the “root”) sends a potentially different message to each other rank in the
same communicator.
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— MPI_Bcast: A collective operation where one specified rank in a communica-
tor (again, the “root”) sends the same message to each other rank in the same
communicator.

— MPI_Reduce: A collective operation that combines data from all ranks in a
communicator and makes the result available on one “root” rank. The combination
is done via an MPI_Op, which can be MPI_.SUM, MPI_MAX, etc.

— MPI_Allreduce: The same as MPI_Reduce, but afterwards the combined data is
available on all ranks in the communicator. Can be expressed as an MPI_Reduce
followed by an MPI_Bcast operation.

Note 4.1. All of these are also available in nonblocking variations.

There are many more, we have only singled these out so that it is clear what we mean
by a “gather-operation”, a “reduce-operation” and so forth. These terms will only be
used to describe communication patterns, in order to make clear which data has to go
where in a communication step. The actual implementation is often realized differently,
it might, for example, instead of an MPI_Allreduce, consist of a series of nonblocking
send /recv operations. Also note that all of the above collective operations require all of
the procs of a communicator to participate, which is not the situation we are usually in
in Finite Elements. As we will see in the next section, each proc is typically most of the
time only interested in exchanging messages with a few “neighbouring” procs, not all
others.

4.3 The Distributed Finite Element Method

We will now define distributed meshes and Finite Element spaces and show how NGSolve
adapts to the changes to the programming model and makes use of MPI when running
on a cluster.

Definition 4.1: Mesh Partition

Let Ty, be a regular partition of 2, as in definition . Let (Q;)icg be a finite
partition of Q, that is all (finitely many) ; are open and

Ja=0
i€J
LNQ=0 Vi#j
We also require the partition to respect the triangulation, that is:
VT, € Ty, - i = Ty, C Q
The corresponding partition (T;)icr of the triangulation Ty is defined by
Ti:={TeTh:TCQ}

Notation 4.3. As for the global partition 7, we will write V(7;) for the set of all vertices,
E(T;) for the set of all edges and F(T;) for the set of all faces in 7T;.

Note 4.2. This definition does not allow for an overlap between different subdomains.
Thus, different sub-meshes do not share cells but only vertices, edges and in three di-
mensions also faces. In other words, sub-meshes do not share any d-dimensional nodes.
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4.3 The Distributed Finite Element Method

It is evident how the concept of partitioning a mesh C—
fits into the distributed programming model: Each
proc gets assigned one of the subdomains and with
it it’s submesh. This is very standard approach is
also the one taken in NGSolve. In Finite Elements,
most operations are local in nature, for example a
matrix vector multiplication will need access to de-
grees of freedoms sitting in all neighbouring nodes
of a particular vertex in order to compute the value
of the result there. When assembling the bilinear
form matrices, we only need to access one element
at a time. Data exchange most of the time only Figure 4.2: Partition of a mesh
has to happen for operations that concern degrees onto 6 procs.

of freedom that sit either on an interface or di-

rectly next to one. This naturally decouples the entire Finite Element Method into a
row of local Finite Element Methods that have to synchronize and work in concert with
each other wherever boundary nodes are concerned. We will now formally introduce
distributed Finite Element spaces and talk about distributed linear algebra after that.

Note 4.3. In practice, Netgen/NGSolve does not keep track of a particular conistent
global enumeration, instead all nodes are only numbered locally, however the order of
the numbering is kept consistent between different procs. Occasionaly some subset is
ordered globally when needed.

Note 4.4. Altough in definition the partition of € defines the partition of the mesh,
in practice, this is handeled the other way around and the mesh is partitioned which then
induces the partition of 2. NGSolve uses the software library METIS for this purpose.

As we will see now, the partition of a mesh naturally induces a decomposition of the
global Finite Element space into smaller, local Finite Element spaces. Although we are
only concerned with the lowest order H' space in this work, we will show how distributed
Finite Elelment Spaces can be defined in a general way.
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In

to view each subdomain as a kind of “makro Finite Element”. Now we can think back to
theorem [2.8]and note[2.2] where we have shown how to implement the multiplication with
A via the element matrices and the embeddings, without assembling A itself. Extending
this from elements to makro elements, a.k.a subdomains, we now have an idea of how

Definition 4.2: Distributed Fintie Element Space

Given a Finite Element space Vi, defined by Finite Elements (T, Vi1, hr, Y7)
and a function space X that imposes additional reqularity, such that V, =
HTeTh Vi, T N X, and a partition of the triangulation as in definition the
local (sub-) Finite Element spaces are defined as

Vh,i = {uhml Tup € Vh}
With the restrictions X; := {f‘Qi : f € X} of X, the subspaces can also be written
as

Vhi = H Vo N X;
T€eT;

The (global) Finite Element space Vi, then admits the representation
Vi, = H Vh,i NnX
el
For each bilinear form a(-,-) and linear form f(-) on Vi we can introduce their
local restrictions

ai(”? U) = a(u, U) Vu,v € thi
fiw) == f(v) Vo € Vi

Their matriz and vector representations will be written as A* € R™*" gnd b® €

Rm, with n; = dim Vh,i = ‘V(IE)’

Definition 4.3: Distributed lowest order H' Finite Element space

The local subspaces of the lowest order H' Finite Element space from definition

2.3 are

Vii= ][ VarnC®(Qu) C H' () (4.1)
TeT;
The space itself can also be written as
Vi = [[VhinC°(Q) € H'(Q) (4.2)
el

light of the equivalent representations (2.10) and (4.2)) of V}, the natural idea here is

to realize multiplication with A only using the local contributions A’
The next section will generalize and elaborate on this approach in more detail.
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4.4 Distributed Linear Algebra

4.4 Distributed Linear Algebra

Now that we know how the gloal Finite Element space cna be represented by local ones
and that the global bilinear form is just a sum of local contributions, represented by local
matrices, we already have a good idea how to implement distributed lineara algebra. We
will formalize this now.

4.4.1 Distributed Matrices and Vectors
Definition 4.4: Parallel Vector
Let v.€ R™ be some global vector. For k € P, let I, = {lo,l1,...ln,—1} C
{0,1...n — 1} such that
UZL={0..n-1}

keP
Let the embedding matrices EF € R™™ for k € P be defined by
1 ifv=1;
EF — J
" {0 else

A parallel vector is then a tuple (VF)pep with vF € R™ .
We say that the global vector v is represented by the parallel vector if (V¥)pep
either

1. v =" cp EFVF, in which case (V¥)rep is called distributed.
2. vk = EFTv Yk € P, in which case (V¥)rep case is called cumulated.

If v is represented by (vF)rep we will also write v = (vF)pep.

If the sets I, are pairwise disjoint, v has a unique, distributed and cumulated
representation. If the sets Iy, do overlap, vectors v in the global space R™ do not
have a unique parallel representation.

Note 4.5. A parallel vector representing a global vector is also said to have a parallel
status, which can either be distributed or cumulated.

Definition 4.5: Parallel Matrix

Let A™" some global matriz, and I, and E* for k € P given as in definition
. A parallel matriz is a tuple (AF)pep with AF € R™X™ We say that A is
represented by (AF)pep if
A=) EFAFERT
keP

In that case, we will also write A = (A?);.

Note 4.6. We only define one “valid” parallel status for parallel matrices, which is the
analogue of the distributed parallel status for parallel vectors, as this is the one that arises
naturally when assembling the local bilinear form contributions on each subdomain. In
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chapter [8] we will also see an example for a matrix analogon of a cumulated vector. In
contrast to that, we need both distributed and cumulated statuses for parallel vectors,
as we will see in the next sessions.

Global vectors always have a local representation, as long as |J, Iy = {0...n — 1}. For
a global matrix A to have a local representation, we also need

Note 4.7. In many other software libraries, for example PETSc and and the hypre
package, global matrices are simply distributed row-wise. This is, of course, also a
practical approach and in fact, from a linear algebra point of view, simpler in many
ways, however it implies a bigger distance between the linear algebra and Finite Element
perspectives. As a sidenote, the NGSolve way of partitioning with overlapping rows also
allows us to make do without a global enumeration, just so long as dofs are ordered
consistently on all procs that share it.

4.4.2 Distributed Linear Algebra Operations

A global vector can have multiple representations by parallel vectors, and while the
cumulated representation is unique, there can be multiple distributed representations.
From a distributed representation, we can always get the cumulated one and from the
cumulated one we can get any distributed one.

Lemma 4.1: Cumulating and Distributing Parallel Vectors

~Y

For a distributed parallel vector v = v = (Vk)ke’[), there is a unique cumulated
parallel vector (W*)pep = v. It is given by

wk — ERT Z Eivk
JEP
For a cumulated parallel vector v = (vF)rep, there is no unique distributed repre-
sentation, but a possible one is defined by

k—1
wh = vk — Z EFTE/ v = (4.3)
j=0
k—1
=ET(I-) EE )y (4.4)
j=0
Proof. Directily follows form the definition of parallel vectors. O

Note 4.8. Distributing a parallel vector means just zeroing out all entries in the local
vectors corresponding to degrees of freedom that are shared with a proc that has lower
rank. This means the full value v; is stored on the proc P¥ with k = min{j : i € I;}, that
is, the proc that shares it with the lowest rank. This is an inherently local operation, no
data has to be exchanged.

Cumulating a distributed vector requires communication. Every proc has to exchange a
message with all other procs it shares a degree of freedom (DOF) with, containing the
values of its’ local vector for all shared DOFs.
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Now that we are able to switch between different representations of global vectors at
will, we can perform parallel linear algebra operations.

Lemma 4.2: Vector Scalar product

The scalar product between a distributed parallel vector v = (vF)rep and a cumu-
lated one w = (WF)pep is given by

(v,v) = Z <Vk,Wk>

keP

Lemma 4.3: Matrix Vector Multiplication

For a cumulated parallel vector v = (VF)rep and a parallel matriz A =2 (A*)ep,
(A*vK) is a distributed representation of Ab.
Ab =) E‘A"b
keP

Proof. Follows directly from the definitions of parallel matrices and vectors. O

Note 4.9. Therefore, when we want to multiply a parallel matrix with a parallel vector,
we first cumulate the vector, then multiply locally and end up with a distributed vector.

Parallel matrix-matrix multiplication is more difficult. Even when both matrices A
and B can be represented locally, this is not necessarily true for their product because
matrix-matrix multiplication can introduce nonzero entries

(AB)Z']' #OAﬂkE’PZ {Z,]} C I
This problem will return later on in chapter

4.5 MPI-Parallelization in Netgen/NGSolve

We will now outline the key aspects of the distributed parallel implementation of NG-
Solve. For now, this helps with understanding what exactly is involved in each of the
steps of a parallel matrix-vector multiplication and it will also build a base for under-
standing the difficulties we ran into during the development of AscAMG .

Note 4.10. One of the peculiarities of Netgen/NGsolve is that the global “master proc”,
the proc with rank 0, not to be confused with the “master proc” of a particular DOF or
node, never gets assigned a submesh, which means that it is idle most of the time. On
occasion, however, it allows us to shift some computational work to the master without
impacting the performance of other, concurrent computations. This has historically
grown.

The two key classes in NGSolve that together manage to encapsulate much of the gritty
details of MPI from the higher level components are the ParallelDofs and the Paral-
lelVector classes.

The class ParallelDofs, locally on each proc mainly consists of a table, where the k’th
row stores the list of other processors that shere the k’th local DOF. These are also
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called the DistantProcs of the k’th DOF. ParallelDofs provides methods to access this

information in different ways, the most important ones are:

GetDistantProcs(): Returns the list of all procs that share any DOF with the

caller.

— GetDistantProcs(int k): Returns the list of procs the dof k is shared with.

— GetExchangeDofs(int p): Returns the list of DOF's that are shared with proc

p.

IsMasterDof(int k): Returns true if the proc is not shared with any proc with

a lower rank, and false in any other case. Informally, it answers the question “Am

I the master of this DOF?”.

— GetMasterProc(int dof): Returns the lowest rank of any proc that shares this
dof (which is the master proc’s).

It also provides the method EnumerateGlobally, with which one can find a global
enumeration of some subset of DOFs. This is used occasionally, however keep in mind
that there is no overarching global enumeration of DOFs in NGSolve.

It also features three methods that perform communication on given data:

— ReduceDofData(FlatArray<T> data, MPI_Op op): Input is an array with
data for each local dof and an operation to perform on the data (for example
MPI_SUM, MPI_.MAX, etc...). Computes an array a, where the for each masterdof
k, a[k] = op(v1,va,...), where v; = data[k] and v . .. vy, are the values for the DOF
the array has on the DOFs DistantProcs. For non-master DOFs k, data[k] = a[k].
Overwrites data with a. In particular, it returns an inconsistent array! It “reduces”
information to the master of each dof. This can be thought of an MPI_Reduce for
each DOF, where only the procs that share it participate.

— ScatterDofData(FlatArray<T> data): Input is an array with data for each
local dof. Modifies data such that each entry has the same value across all procs,
the one it initially had on the master proc. In particular, does not modify values
of master DOFs. It “scatters” information from the master of each DOF to the
others. This can be thought of an MPI_Bcast for each DOF, where only the procs
that share it participate.

— AllReduceDofData(Flat Array<T> data, MPI_Op op): Performs ReduceD-
ofData followed ScatterDofData. For each dof k it performs “op” on the set of
values it has on all procs that share it and makes that information available to all
of them. This is basically a “Cumulate”-operation, it is however only a moderately
efficient implementation of it.

As iterative algorighms require us to do matrix-vector multiplications and evaluate scalar
products in each iteration step, we have to pay dearly for any inefficiencies in this regard.
In section we have seen that these operations can be realized by local matrix-vector
multiplications and scalar products combined with Cumulate- and Distribute- opera-
tions. The ParallelVector class of NGSolve is a wrapper around the other, sequential
vector classes that provides exactly this functionality, implemented very efficiently.

A ParallelVector has a PARALLEL_STATUS, a variable that can take any of the values
CUMULATED, DISTRIBUTED or NOT_PARALLEL. The most important methods
ParallelVector provides above a sequential vector are:

— GetParallelStatus(): Returns the parallel status of the vector.
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— SetParallelStatus(PARALLEL_STATUS stat): Sets the parallel status of
the vector. This is useful occasionally, for example when zeroing out an entire
vector or writing information of which we know that it is already cumulated into
it.

— Cumulate(): If the status is DISTRIBUTED, cumulates the vector. Otherwise,
does nothing.

— Distribute(): If the status is CUMULATED, distributes the vector by zeroing
all entries of non master dofs. Otherwise, does nothing.
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5 Error Smoothing

In this section, we will make observations about the behavior of certain Stationary
Linear Itherative Methods (SLIMs) that will ultimately motivate the introduction of
multigrid algorithms.

As we have seen in section both Jacobi and Gauss-Seidel give very poor spectral
bounds as h — 0 and are insufficient as both preconditioners and stand alone solvers on
their own, however this does not mean that all error components are eliminated equally
slowly. In fact, error components that belong to eigenvectors of the error propagation
matrix M = I — NA with small eigenvalues (which are made up of eigenvectors of A
with large eigenvalues) are eliminated rapidly. In the case of the pure poisson prob-
lem (equation with o = 1,3 = 0), the A-norm is just the H'-seminorm (of the
Vj-funcion identified with the vector via the Galerkin isomorphism) and eigenvectors
with large eigenvalues are highly oscillating functions. Conversely, eigenvectors with
small eigenvalues, which are exactly the ones Jacobi and Gauss-Seidel can not eliminate
effectively, are very smooth functions.

Figure [5.1] shows the evolution of the error when performing Gauss-Seidel on equation
with Q = [0,1]?, @ = 1, homogenous dirichlet boundary conditions and f = 1.
We see that the error looses it’s oscillating components very rapidly, while its smooth
components can not be treated effectively by Gauss-Seidel. This should not come as a
big surprise, since one GS iteration essentially consists of a series of local updates for
each degree of freedom which can only ever take into account the neighbouring DOFs.
This phenomenon is called “error smoothing”, and SLIMs that behave in this way are
also called “smoothers”.

a: initial error b: error after iteration 5 c: error after iteration 50

Figure 5.1: Error of GS applied to —Au =1 in with homogeneous dirichlet con-
dition.
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5 Error Smoothing

a: init b: iteration 2 c: iteration 40

Figure 5.3: Error of GS applied to —V - (aVu) = 1 with homogeneous dirichlet condition
and « from figure

5.1 Algebraically Smooth Error

So far, geometrically smooth errors are exactly those
that are not effectively eliminated by a cheap linear
iteration like J or GS, however this is not always the
case. Figure shows the same sitation as figure
, however with a different coefficient «, as in
figure The coefficient is very large on one part
of the domain (£21) and moderately sized on the rest
of the domain (22 = Q\ ©1). As can be seen, the
error is now very smooth in ; and varies strongly
in Q9. The reason for this behavior is that || || o now
weighs variation in {2; much more more strongly than
variation in s:

ull3 = 10°- |uh|fq1(91) + |uh|§{1(\92) Figure 5.2: « for ﬁgure
This kind of error is called purely “algebraically smooth”, which means nothing else than
that it cannot be effectively eliminated by a smoother. As we have seen now, algebraic
smoothness does not necessarily translate to geometric smoothness, although it does so
in many cases.
In [7], a SLIM is said to satisfy the soothing property if for some o > 0

Melia < llela —ollAelf- (5.1)

Here, the D~ !-norm is used in order to retain the scaling with respect to D between
the two terms on the right hand side. This condition says that errors for which |le[|3
and ||Ae||?_, are comparably large will be eliminated efficiently. For these terms to be
comparable, e has to be mostly a linear combination of eigenvectors of A with large
eigenvalues. We can also see that errors that are mostly made up of components with
small eigenvalues will be reduced only very inefficiently. For a SLIM it is equivalent to
satisfy the smoothing property and to satisfy

cWID'W < W + W1 — A (5.2)

for some o > 0. This condition can also be obtained by a combination of conditions

(3-4) and (3.5) from theorem [3.3]
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This chapter will introduce the basic multigrid-approach with its two main variations,
geometric and algebraic multigrid and hightlight the differences between the two. We
will look at algebraic multigrid in more detail in section

6.1 The Two-Grid Algorithm

They key to the multigrid idea are the observations made in section [5, that is that
error components that are not handled efficiently by a smoother can be characterized
by their (geometric or algebraic) smoothness. In the simplest case, the approach is to
combine a computationally cheap smoother, which takes care of high frequency error
components with a so called coarse grid correction that takes care of the low frequency
error components.
Assume that, in addition to the finite element space V},, we also have access to V, which
is itself a lowest order H'-finite element space defined on a triangulation Tz of Q with
mesh size H > h. The coarse triangulation should be such that V;, C Vy. We will
write Ay, Ay to distinguish the finite element matrices of V}, and V and n,, ny for the
dimensions of V}, and V. The prolongation matrix P € R™#*" is the linear operator
that is defined by
PG;luH = G}:luH Yug € Vy
with the galerkin isomorphisms Gy, Gp. It is just the embedding of V; into V}, brought
to the coordinate space. Because
<AhG}:1uH,G}:1vH> =alug,vy) = <AHG;1uH,GI;11)H> Yug, vy € Vi
the coarse finite element matrix can be expressed as:
A, =PTAP
At this point, remember that for ease of notation we use wy and u for u; € Vj and

u € R™ gsuch that Gpu, = u.
Applying a couple of smoothing steps to equation

Ahu =b
gives us an approximate solution uy to
a(uh,vh) = f(’l)h) Yup € V,
such that with the true solution 4y, the error e = 4, — ujp consists mainly of geomet-
rically smooth components and can be approximated well by some ey € V. Therefore
updating
Up, — Up + €H

should yield a good approximation for uy + ep = Uy,.
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6 Multigrid Methods

The choice for e, that minimizes ||a,—(up+en)||a = [len—en|| 4, is just the A-orthogonal
projection of ey onto Vy, which is the solution to
aley,vy) = alep,vy) = altp, vy) — alup,vy) = f(vg) — alup,vy) Yoy € Vy
With 4y, = up, + ey and €y, = 4y, — Uy we have €, = (I — Py)ep La Vi, where Py is the
A-orthogonal projector onto V. Because
fog) — a(up,vy) = <b — Aju, G;LI’UH> = <b — Aju, PG;1UH> =
= <PT (b—Ajpu) 7G;1UH>
the vector representation of ey (w.r.t. the Vy-basis) is e = AP (b — Aju), and with
G, (up+ey) =u+Gpley =u+ Pe

the coarse grid correction in the coordinate space (of V},) reads as

r=b-— Ahu

i=u+PA,; 'P'r
Given a starting vector u’; the standard Two-Grid (TG) algorithm (algorithm [2)) now
consists of the following three steps

1. One iteration of the SLIM, “Pre-Coarsening”
u! = Mu’ + Nb

2. Coarse Grid Correction
uw’ =ul+ PAy 'PT(b - Apul)

Y

3. One iteration of the transposed SLIM, “Post-Coarsening’
uw’ = M"u® +N'b

Algorithm 2 Two-Grid Algorithm.

1: procedure TG(A,b, x()

2: x1 =x0 + N(b — Axq) > (Pre)-Smooth
3: ry = P7(b - Axy) > Restrict residuum
4: Xy = A;er > Coarse level solve
5 X9 = X1 + Pxy > Coarse grid correction
6 x3 = Xg + NT(b — Axy) > (Post)-Smooth
7 return zj

Remembering that with the error propagation matrix of the SLIM, M, the error prop-
agation matrix of the transposed SLIM is its (,-) ,-adjoint M*, the error propagation
matrix of the TG algorithm can be written as:

M = M* (I-PA,'PTA)M (6.1)

As (I—PA;'PTA) is the A-orthogonal projector onto ran P, My is self adjoint wrt.
(,-)a- We can also write the two-grid algorithm as one step of a Richardson-iteration
with preconditioner

B;l=W+ (I-NTA)PA,'PT (1-N"'A) (6.2)
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Note that B;4 is a symmetric matrix, and we can therefore use it in the PCG (algorithm
. This would not be the case if we used only one smoothing step either before or after
the coarse grid correction.

Note 6.1. If xo = 0 in algorithm [2] it returns x3 = B7lb.

6.2 The Multi-Grid Algorithm

In principle, we could replace the exact inverse A5 in algorithmwith C~! where Cis a
good preconditioner for A . For example, we could use another two-grid preconditioner,
only now we start from the coarse level. In that case what we end up with is called a
three-level method. Doing this recursively, until one arrives at a small enough space
where direct solution is feasible, leads to the V-cycle multigrid-method (algorithm .
The ingredients are now a nested series of finite element spaces

Vi=VoDOViDW...DV,

of dimension n; with finite element matrices A; and SLIMs defined by N; for every level
1 €{0...L} as well as prolongation matrices P; € R™*™+1 for every level but the last.

Algorithm 3 Multi-Grid V-cycle Algorithm.

1: procedure MG (b, zg, )
2: if [ = L then

return AZlb > Coarsest level solve
3: else
4: X1 = Xg + Nl(b - AlXQ) > (Pre)—SmOOth
5: r. = Pl(b— Ajx;) > Restrict residuum
6: xe = MG(r., 0,0+ 1) > Recurse
7: X9 = X1 + Pix. > Coarse level correction
8: x3 = x2 + NJ (b — A;x2) > (Post)-Smooth

return xs

The error propagation matrix takes the form
My = MPoM;P;...M;_, (I-P,_A;'P]_A; )M, ...P{M,P{M, (6.3)

Note 6.2. There are other variations of multigrid cycles that are mainly used when
employing multigrid on its own instead of as accelerators for a krylov space method like
CG. For a W-cycle, instead of going back down a level after the coarse grid correction,
we instead update the residuum and goe up a level once more. That way, we smooth 2!
times on level [. In a Full MultiGrid (FMG)-cycle, one starts with an exact solution on
the coarsest level L, then prolongates that solution to the next coarsest level L — 1 and
calls a V-cycle starting on level L — 1 to get a new solution, which is then prolongated
to level L — 2 and so on. As we are mainly interested in AMG in combination with CG,
we will restrict ourselfs to V-cycles.
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6 Multigrid Methods

6.3 Advantages and Weakpoints of the Geometric Multigrid
Method

Assuming we choose hyy1 =~ 2h; we get ny,1 =~ 27%;. As typically, one iteration of a
SLIM requires O(n) operations, by the convergence of the geometric series, the V-cycle
multigrid algorithm also has linear operator complexity. For the simple case where o and
B are somewhat smooth in equation one can show that k(Bj,'A) = O(1). A very
nice proof for this that looks at multigrid algorithms in the context of general subspace
correction methods is given in [11].

If applicable, geometric multigrid is a preconditioner with linear operator complexity
and ideal spectral bounds!
This is the best possible behavior we could ever hope for. Unfortunately, there are some
restrictions to the applicability of this simple kind of geometric multigrid approach. First
of all, we need the spaces V; to be nested, Vo C V4 C ... C Vi. For that to be true,
each triangulation has to be a refinement of the next coarser one. This means that we
have to be able to triangulate the domain Q with with a very coarse hy, which poses a
problem for complex €.
Let us also remember what we discovered in section 5] specifically that algebraic smooth-
ness and geometric smoothness are not at all the same thing if, for example, « varies
strongly or even has large jumps. The entire idea of multigrid was based on the fact
that error components that can not be efficiently adressed by the smoother can be ap-
proximated well on the coarse grid, that is that algebraically smooth errors are also
geometrically smooth!
There are two basic approaches to deal with these problems. On the one hand, one
can try to fit the multigrid method to the problem and the geometry at hand, which
usually involves more sophisticated smoothers. The other is to stick to cheap, simple
smoothers like GS or Chebyshev-smoothers but to completely throw the idea that the
coarse spaces have to be finite element spaces defined coarse meshes overboard. Instead,
one constructs the coarse spaces such that they contain the algebraically smooth vectors.
Methods based on this idea are called algebraic multigrid methods and will be discussed
starting with chapter
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In section [5| we observed that in many cases, algebraically smooth vectors are also ge-
ometrically smooth and in section [6] we combined this with the fact that finite element
spaces defined on some coarser triangulation are on the one hand of much lower dimen-
sion than the original space and on the other hand consist of just such functions to arrive
at geometric multigrid methods. Now we will travel down a different path and try to
construct coarse spaces, again of decreasing dimension, such that they contain alge-
braically smooth vectors. After fixing some ideas on how to go about doing this, section
will show conditions for the convergence of the algebraic two-grid algorithm and we
will discuss the difficulty of proofing convergence of the algebraic multigrid method in
section

In principle, in order for the two-grid algorithm (algorithm [2]) to be defined, we need a
smoother defined by a matrix IN as well as the prolongation matrix P and the coarse
system matrix. We will now, as there is no longer an actual coarse “h” involved, write A,
for the coarse matrix. As already mentioned, we want to construct the coarse space such
that it contains algebraically smooth vectors, which means that we fit the coarse space
to the given smoother and we do not need to be concerned with choosing N right now.
Since we think of the prolongation matrix as the embedding of the, to be constructed,
coarse space, which we will now call V, into V},, we can simply define the coarse system
matrix as

A.=PTAP (7.1)
This preserves the property that the coarse grid correction is an A-orthogonal projection.

We see that our task is to, given a smoother N, construct P such that the two grid
method converges.

As the columns of P are just the coordinates of the V, basis wrt. the V}, basis, this is
equivalent to constructing the coarse space V..

The extension of this approach from a two-grid method to a multigrid method is not
quite as straightforward as it was for geometric multigrid. In principle one could use
information about the triangulation or the exact shape of the base functions when con-
structing Py, the prolongation on the finest level, however, as there is no coarse mesh
present in the background, we usually cannot rely on this kind of information on any
coarse level. Algebraic multigrid methods therefore construct the prolongation matrices
only on basis of A, that is on basis of the matrix graph and the coefficients of A.
Because the coarse grid correction now per construction takes care of the algebraically
smooth error components, we are free to choose a smoother mostly based on its compu-
tational cost. The standard choices here are properly dampened Jacobi, some variant of
Gauss-Seidel and polynomial Chebyshev smoothers.
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7 Algebraic Multigrid

When constructing P, we have two conflicting goals in mind; on the one hand we want
the coarse space to be big enough to approximate all algebraically smooth vectors as
well as possible and on the other hand we want to keep the operator complexity of the
entire multigrid-cycle as small as possible, which means that we want the coarse spaces
to be as small as possible and we want to keep A, as sparse as we possibly can.

The rest of this chapter will present some established results on sufficient conditions
posed to P and N that imply convergence of the two grid method method. We will finish
the chapter with some remarks on the difficulties of analyzing the algebraic multigrid
method. The actual construction of the prolongation matrix P and the exact choice of
the smoother will be discussed in chapter

7.1 Analysis of the two grid method

In this section we will show conditions for N and P that guarantee convergence of the
two-grid method or, equivalently, spectral bounds for the two-grid preconditioner while
sticking to the way things are presented in the relevant section of [10].

We will need the following lemma for the proof of the main theorem.

Lemma 7.1
Let A € R™™ be SPD and let V' be an m-dimensional subspace of R™ with an
orthonormal basis {q1 ...qm} of V and an orthonormal basis {p1,p2...DPn—m} of

Vi Let Q= (q1,q2-..qm) ER™™ and P = (p1,p2. .. Pm—n) € RP*(=7)
Then

<(QTA_1Q)_1Xqv Xq> = . eil{g—m (A(Qzq + Pxy), (Qrg + Pzp)) VI, € R™
(7.2)

Proof. Let us first show an identity for the matrix S = (QTA1Q)~ !
Qx, = AA7'Qx, = A(QQTAT'Q)x, + P(PTA'Q)x,) =
= Q[(QTAQ)(Q"AT'Q)x + (QTAP)(PTAT!Q)z]+
+P[(PTAQ)(Q"A™'Q)z + (PTAP)(PTA™'Q)z]

As Qx, L ran P, the second term above, P[...], must be 0 and the first one, Q.. ],
must be Qx,. From this we get

(PTAT'Q) = —(PTAP) '(PTAQ)(Q"AT'Q)
Inserting this in the first expression yields
1-(Q"AQ) - (Q"AP)(P"AP)"(PTAQ)|(Q7A'Q)
As both matrices are symmetric, we have an identity for the matrix in question

S = [(Q"AQ) — (QTAP)(PTAP) (PTAQ)]
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Now, using the ontained identity and some elementary manipulations,
A = (QQ" + PPT)A(QQ" + PPY) =
= Q(Q"AQ)Q" + Q(Q"AP)P" + P(P"AQ)Q" + P(PTAP)P”
=Q(Q"AT'Q)'Q" + Q(Q"AP)P" + P(PTAQ)Q" + P(PTAP)P"+
+Q(Q"AP)(P"AP) (PTAQ)Q" =
= QSQ’ + [(P(P"AP) + Q(Q"AP)|(P"AP) ' [P"AP)P” + (P"AQ)Q"]
This means that QSQ” < A, which shows with ”<” instead of ”=" and because
(SQ"x,Q"x) = (Ax,x) <« (PTAP)P” + (PTAQ)Q")x=0
is the case iff.
Plx = (PTAP) L (PTAQ)Q"x
the inf is attained for all Q7x € R™.

O
Let us remember the representation of the two-grid preconditioner
Byl =W+ (I-NTA)PA'PT (I-N"!A) (7.3)
ant the two-grid error propagation is
My¢ = (I-BrA) =M* (I-PA'PTA)M (7.4)

The following well known result, the proof of wich we have adapted from [10], is the
basis for the construction of the prolongation matrix.

Theorem 7.1: Convergence of the Two-Grid Method

Let A € R™™™ be SPD, let N € R™" define a SLIM such as in deﬁnition with
N as in definition and let P € R™™ with m < n be a prolongation matriz.
The spectral bounds for preconditioning by performing one step of the the 2-grid
algorithm (alg. @) with starting value xg = 0 are given by

(Ax,x) < (Brex,x) < Krg (AX,X) (7.5)
where Krq 1s a constant such that
inﬂg |x — Px,|lw < Kre||x||]a Vx €R"” (7.6)
x.ER™

For the error propagation matrix of the two-grid algorithm Mys we have

1
Mrella <1

TG

(7.7)

Proof. begin by showing (7.7)) with Kr¢ given by (7.6]), which implies the upper bound

in ([7.5).
Using 1) and the fact that I — wa = I — PAZ'PT A is the A-orthogonal projector
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7 Algebraic Multigrid

onto ran P12 we see that
Mg = M*I - 7waA)M =M1 —7w2)°M = [(I—7aA)M]*[(I - 7a) M]
= [Micla = [(T—7a)M|3 = [M*(I—ma)|x
Now, with
(M*)TAM = (I- AN)A(I-NTA) =
— A3 [I ~ASN(NT + N1 - A)NTAZ| AS =

— A3 [I _ A%NA%} A3

we get:
M*(I—ma)X||a (AM*(I — 7a)x, M*(I — 7wa)X)
M*(I—74)||% = su | =su ’ =
IV =l =2 ™ » (Ax.x)
~ o <(M*)TAM*(I —ma)x, (I— 7rA)x> _
x (Ax,x)
<(1 ~A3NA)A(I - ma)x, A2 (I — 7rA)x>
Y (Ax,%) B
<(I ~ASNADAT(I - wa)A 3x, A3 (I — wA)A—%x>
= sup

As (I—7TA) = A%(I - wA)Afé =I- A%PAC_IPTA% is an orthogonal projector

) <A%NA%X,X>
IM(T-ma)3= s [1- -
A x€ran (I-74) (x,x)

=1- inf =
x€ran (I-7a) <X, X>
-1
=1- sup {x, x)

x€ran (I-7A) <A%N’A%x7 X>
We will now show that

. (x,%)

x€ran (I-74) <A%NA%X, X>

< Kog

For that, let W :=ran (I —74), m = dim W and let Q € R™™ such that Q7'Q =1,
and QQT is the orthogonal projector onto W. Finally, with R € R™*("=m) guch that
RTR = I,_,, and such that RR” is the orthogonal projector onto W, we can use
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7.1 Analysis of the two grid method

theorem [Z.1] to see

sup (x, %) = sup (e Xe) =

x€ran (I-7a) <A%NA%x’x> XcER™ <QT(A%NA%>QXC,XC>

(1Q7(AENADQ %, x. ) (1Q7(ANADQI %, %) g
= sup = sup =
xcER™ <XC7 XC> XcER™ <Xc7 Xc)

XcER™ <Xc7 Xc>

(ABWA(x+y). (x+y))
= sup inf —
xXEran A%(IfﬂA)A*% yEran A%‘rrAA’% <X7 X>

(Wix+y), (x+y))

= sup inf =
xeran (I-mwpy) YEran ma <AX? X>

(Wix+y),(x+))

SP yeranma (AI—7ma)x, (I —ma)X) !

Now, because ||x|% = ||(I — wa)x||% + |[wrax]|/%, it is obvious that

(Wix+y), (x+y))

K1 < inf = K.
b= Sip yerlfgl TA (Ax,x) 2

On the other hand, by writing y — max+y in K; and then taking the sup over a bigger
set we see that

<W((I —7mA)x+Yy), (I—ma)x+ Y)>

PP yeran ma (AD—7ma)x, (I—ma)x)

= sup inf <W(X Ty et Y)>

xcran (I—mwpy) YEran 7a <AX7 X>

< Ky

Thus K7 = Ky and with K¢ as in 1) because ran waA = ran PAglPTA Cran P
x + Px.||2.
Ki;=sup inf w
X XcER™ HX”A
Therefore we have shown ((7.7) and the upper bound in (7.5). Lastly, the lower bound
follows from ((7.4]):

(Ax,x) < (Brex,x) < <B;(1;AX,X> <|x|? &
0<((I- BriA)x,x) = (Mypex, x) = (I — ma)Mx, Mx)

< Krg

AsTa = A%FAAié is an orthogonal projector, Vx we can show this easily by

(TAX,X) = <WAA%X, A7%x> < <A%x, A7%x> = (X,X)
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7 Algebraic Multigrid

Corrolary 7.1.1. Preconditioning by the Two-grid algebraic multigrid method yields
spectral bounds
K(BreA) < Kog

If the prolongation P fulfills equation , it is also said to fulfill the weak approxi-
mation property. Unfortunately, while condition is very compact, it is not very
usable in practice. For example, in order to show convergence of a two-grid method
using forward/backward GS smoothing, we would have to show this condition using the
very ugly expression W = (L + D)D~'(U + D) which does not have a very “nice”
representation. However, in section using theorem we showed that GS is no
substantial improvement over (properly dampened) jacobi and that W =~ D. Using this
fact, instead of , we can show the, much simpler, modified condition below.

Definition 7.1: Weak Approximation Property

inf ||x—Px.|p < Krollx||la VxeR" (7.8)
X ER™

We have to pay the constants incurred when going from W to D and back in the
estimates. As all common smoothers fulfill W ~ D, (they fulfill the smoothing property
(5.2)) ), we will restrict ourselfs to this case.

7.2 Analysis of the Multi Grid Method

When applicable, geometric multigrid methods fulfill spectral bounds that are indepen-
dent of the number of levels. Proofs for this rest on the fact that when the coarse
spaces are nested finite element spaces defined on coarse grids, each u € Vj has a regular
decomposition that is a set of u; € V; such that v = >, u; and ||ul[F, = 3, [uill3.
with constants independent of the number of levels. This is achieved by choosing
u; = (Q; — Qi+1)u with well understood interpolation operators Q; : C(Q2) — V;.

Something similar can not be done for generic algebraic multigrid methods. The ex-
act makeup of the coarse spaces is not known a priori and the interpolation operators
are difficult to pin down and are also often much weaker than those in the geometric
case. Generally speaking, AMG methods are always constructed such that the weak
approximation property holds on all levels, but this alone is much too weak for
level-independent bounds. It is in fact very difficult to proof level-independence of al-
gebraic multigrid methods and we will not touch upon this topic any more. The good
news is that in praxis ALlebraic Multigrid behaves nicely.

In [9], the spectral bounds of a variant of algebraic multigrid known as smoothed aggre-
gation are proven to be at worst O(L3).
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8 Algebraic MultiGrid with Alternative
Strong Connections

In this chapter the AscAMG method will be described in detail. Section will define
a tentative prolongation operator, show an energy based criterium for the prolongation
that implies two grid convergence and finally discuss a way to improve on this tentative
prolongation by a smoothing step.

The parallelization and implementation of these ideas will be the topic of section [8.2
where, in section we will also discuss distributed smoothers.

AscAMG is implemented in a C++ library that acts as an extension to Netgen/NG-
Solve. It is integrated into it’s NGSPy python-interface. It uses and expands on the
MPI-parallelization of NGSolve. The parallel matrices and vectors provided by NG-
Solve, as discussed in chapter 4l are used extensively, however the parallel smoothers
described in seciton had to be implemented from scratch, as the only parallel
smoother currently provided by NGSolve is Jacobi.

8.1 The Prolongation

Definition 8.1: “Piecewise” Prolongation

Let n be the dimension of some fine space (including dirichlet DOFs) and let
D C{0...n— 1} be the set of dirichlet dofs. The “piecewise” prolongation matriz
P € R " defined by a partition C = {C;,i =0...n. — 1} such that

CinC;j =0 Vi#j

ne—1

Jci={0..n-13\D
=0

1S gilven as:
_% ifi e C;

7= 0 else

Note 8.1. This is the classical tentative prolongation operator that also plays a role in
aggregation based AMG ([g]).

Note 8.2. Note that the (C;); are only a partition of the fine degree dofs excluding
dirichlet dofs, this means that all dofs on the coarse level are “free”.
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8 Algebraic MultiGrid with Alternative Strong Connections

Each subset C; defines one coarse grid variable, and by making these sets large, one
could achieve very rapidly decreasing number of degrees of freedom on coarse levels, and
thus excellent operator complexity, at the cost of the rate of convergence.

In ascAMG, we only pair up dofs istead of using bigger sets. This will have far-
reaching ramifications. In section we will discuss how we can still have good operator
complexity in spite of this fact.

Definition 8.2: AscAMG Piecewise Prolongation

Let n be the dimension of the fine space (including dirichlet-dofs) and let D C
{0...n — 1} be the set of dirichlet dofs. The ascAMG piecewise prolongation ma-
triz P € R" " defined by a partition C = {C; :i=0...n.—1}U{D.} of the fine
degrees of freedom such that

(i) CNC=0 YC#CeC
@) |Jc={0...n-1}

ceC
(i4i) D C D
(iv) |Cs] <2 Vie{0...n,—1}

18 given as:

0 else

P, = {1 ifi € C; 8.1)

Note 8.3. The difference between definitions 8.1 and is that the set D, in the latter is
allowed to be a true superset of D. This allows us to exclude additional DOF's besides the
dirichlet DOF's from the coarse level. Doing this poses an additional loss of information
from one level to the next, however there are are two considerations that motivate us to
allow this all the same. Firstly, as we have seen in section[3.1] in the case where the mass
term dominates the stiffness term in the system matrix, the GS method is sufficient on
its own, therefore there is no need to introduce any coarse spaces at all in those parts of
the domain that feature a large 12-term. In fact, not introducing coarse spaces in those
areas of the domain decreases the operator complexity of the multigrid cycle while hardly
impacting the quality of the method. Secondly, and related to this, often times dirichlet
conditions are not imposed in an essential but rather in a weak way by adding a large
12-term on those degrees of freedom where one wishes to impose dirichlet conditions. If
we can automatically identify those DOFs where the 12-term dominates and not include
these in the coarse spaces, we are able to deal with these situations as well.

Note 8.4. Note that |C;| < 2, therefore, unless we exclude many DOFs from the coarse
level by including tem in D,, the dimension of the coarse space will not be mucch smaller
than 5. If many single DOFs are include on the coarse level, it might even be much
larger.
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8.1 The Prolongation

This kind of piecewise prolongation leads to step-
wise functions on coarse levels (figure 8.1)). In the
case of constant coefficients it is clear that inter-
polation with coarse level basis functions has much
worse properties than interpolation with hat ba-
sis function coming from a coarse finite element
space. The stepwise interpolation can give a good
L?-approximation, but because of the never dimin-
ishing steepness of the base functions they cannot
give a good H'-approximation. It is clear that
the resulting multigrid algorithm does not feature
level-independent bounds. In section [8.1.3] we will
try to solve this problem.

The process of finding a good partition C is known
as “coarsening”. We will elaborate upon our coarsening algorithm in more detail in
section [8.:2.1] In general, the coarsening algorithm has to construct the partition in such
a way that the resulting prolongation matrix fulfills the weak approximation property
. In our specific case, when we include the set {i,j} in the partition, we effectively
connect the dofs ¢ and j, of the space span {y;, p;} only span {y; + ¢;} is retained on
the coarse level, while span {¢; — ¢;} is discarded. Thus it obviously only makes sense to
connect ¢ and j if they share an “algebraic edge” (that is, an edge in the matrix graph of
A or, as we will cal it, the “algebraic mesh”). The set of edges of the algebraic mesh will
for the remainder of this section be called £(A), and will be formalized and extended
in section The concept of an algebraic edge will be formalized and expanded in
section We call this process “collapsing” of the connecting edge e;;, as the coarse
algebraic mesh emerges from the fine one after merging the vertices on either end of any

edge ey, with {k,l} € C.
_— I

Figure 8.1: A base function on level
9 using piecwise prolon-
gation.

Figure 8.2: Red edges are collapsed. Coarse DOFs are “located” at the midpoints of the
collapsed edges.

We know from chapter [5| that algebraically smooth error varies slowly inside parts of
the domain with a comparatively large coefficient o and can vary more strongly in
domains with comparatively small «, especially in areas where two “strong” domains
are connected by a “weak” domain. Therefore we want to allow collapsing of an edge
within areas of relatively constant o« and we absolutely do not want to collapse edges
that connect two strong domains but that themselfs “lie” in a weak region. We must do
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8 Algebraic MultiGrid with Alternative Strong Connections

all of this on the basis of the matrix A itself, without knowledge of the actual coefficients
or the mesh underneath. The criterium for an edge’s eligibility for collapsing is based
on the construction of a replacement matrix that is spectrally equivalent to A but has
an even simpler structure.

8.1.1 Replacement Matrix

We will now show that we can find a replacement matrix A for A on the finest level.

Theorem 8.1: Replacement Matrix

Let Vi, of dimension n be the lowest order H'-Finite Element space.

aij = {ZTGTM eer i S5 e € E(T) i,j=0...n—1

0 , else

Here, Sr;; is the schur complement of the element matriz for the element T with
respect to the dofs i and j.
Then, the replacement stiffness matriz matriz K € R"*™ defined by

1 . .
K. — Z;L:() Qi 1 =]
/N . .
— ;5 i #
and the original stiffness matriz K induce equivalent norms.
n—1
2 2
=D aij(w—w) (8.2)

1,j=0

lulli ~ fu

Define 3; := Dy j, where D)y is the diagonal of the mass matriz. Then Dy ~ M.
A replacement matrixz for A is given by A := K + Dyy, or, in other words:

n—1n—1 n—1
lalfa = llulf =) > aij(ui—w)® + Y fia (8.3)
i=0 j=0 i=0

All constants in these equivalences only depend on the spatial dimension and the
shape regularity of the triangulation (and are, in particular, h-independent).

Proof. We have to show, with |uh|L%(Q) = [, Blun|*dz, that

n—1 2
E u; @5
=0

Let T € T be any element in 7, T' be the reference element, ¢; = ¢; o ¢ be the hat
basis functions on the reference element with the usual transformation ¢ : T — T and
F = ¢'. We will show equivalence in the L% norms restricted to 7. Summation over
elements then gives us the result. For uy, € V), and and T € T

n—1
g W; @5
i=0

n—1
2
~ Z ’uz'<P1'|L%(Q)
i=0

L3(9)

v €T

9 2
:/B|det F| Z w;p;| dr
yary T
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8.1 The Prolongation

and

Z /B|det F||u@i|* da
T

n—1

E on.|2 —
‘quOZ |L%(T) -

=0 v, €T

These are both norms on R? and thus equivalent.

We will now show the eqivalence of the stiffness and replacement-stiffness matrices in
two dimensions. The proof works in the same in three dimensions, but it is a bit more
compact in two.

First we will show that for all T" € T}, and uy € V},

’uh|T|12LI(§(T) = / a| Vuy *de ~ Z (w; — )27 (0i — @5) | 1) (8.4)
T g
ei; €T
Here, H% is the harmonic extension from the edge ei; to the entire element T', defined
by -
HY (uipi + ujp;) = argmin {[u;; + wjo; + Aol (T) }
AER

where k is the index of the DOF' at the third vertex of 7. On the one hand, we have
1 1
uy i = i(ui —u;)(pi — ¢j) + <uk - 5(11@’ + uj)> Ok
and thus -
o3 oy = (W = w)* 1Y (0 = 05)| ()

On the other hand, with u := % (u; + u;j + uy) we have

1 1 1
up,r =W+ o (W =) (05— 95) + 5 (W5 — ) (05 — o) + 5 (e — i) [ (o — 1)

and thus
2

2 2 2 2
unlf ey = | D (Wi —w)* (i — ¢;) S Y (wi—w)? [ (i — 95) [Ty
€ij cT Hé (T) €ij eT
We need to show
i = il S M (0 = ) | F )

We would like to show the other bound by transforming to the reference element T,
however this turns out not to work easily. Let again T' be the reference element, ¢; =
©; 0 ¢ be the hat basis functions on the reference element with the usual transformation
¢:T — T and F = ¢'. transformation, with F := ¢/. With p(é(z)) = ¢(x), the chain
rule gives Vo = FTV$ and transformation of one term from the right hand side of ()
to the reference element gives:

H (i — ¢;) |2 :'f/VZ-—-A 2d
[# (i = 05) [y () = nf Ta\ (0i = pj + Aop)["da

= mf/a\det F| <FT¢(¢,-—gz»j+A¢k),FT¢(¢i—¢j+A¢k)>da:
AeR S
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8 Algebraic MultiGrid with Alternative Strong Connections

We see that taking the infimum and doing the transformation only commute if FFT = T
for some constant v € R, or in other words: if the element transformation is a (scaled)

euclidian motion.
(a, b)

For this reason, instead of transforming back to the ref-
erence element T, we transform to some “stretched ref-
erence element” T := cov {(0,0)7,(1,0)T, (a,b)"} (with
a,b > 0). The transformation ¢ can now be chosen to
take the form ¢(x) = h.Qx + ¢ with an orthogonal ma- (0,0) (1,0)
trix @ and some vector ¢ € R? and the length of the

edge e;j, he. The transformation maps e;; to the edge o
cov {(0,0)7,(1,0)"}. In a shape regular triangulatuon

we can assume a and b to be bounded away from 0 and vj
bounded from above by moderately sized constants.

~

The base functions on T are:

a—1 a—1
(P1:1_$+Ty V1= (—1, )

b
a a
Y2 =T — gy Vs = (17 —5>
1 1
= — — 0 _
Y3 =7y Vs < ’b)

Now, the transformation and the infimum commute and we can compute

1o =) ey = nf | el¥ (o1 = o2+ Aga) Pla

2 — 1+ M\ 7|
gt o225
xSy b

- -1 2
— |T|heinf4 + <M>
A b

= 4|T|he

) " 2a—1)>
| (i = i) [ (ry = [Thed + | —

The shape regularity of the triangulation 7, guarantees that the term % is bouned

from above and below. The second inequality for now follows from applying this
to each edge (in particular, transforming three times, with each edge mapped to the
(0,0) — (1,0) edge once). Now follows from summing over all elements and the
simple argument that by definition of the schur complement and the harmonic extension

H
H (i = 6)) i) = 11, =112, = tr St

Note 8.5. The replacement-matrix from theorem is an M —matrix.
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8.1 The Prolongation

Note 8.6. The «;; and the 8; can be computed on the element matrix level.

Note 8.7. Given a prolongation operator P € R"*"¢ we can define the coarse replace-
ment matrix AC = PTAP which is equivalent to the coarse matrix A, = PTAP with
the same bounds as A and A.

AC ~Ag

If we have no L?-term in the original equation all Bj = 0 and the equation Au=>b
can interpreted as describing a resistor network where each vertex v; is a node, each
eij €& (A) represents a a conductor of resistance 1/c;; that connects v; and vj, u; is the
value of the electric potential u at v; and b; gives the (constant) electric current flowing
into/out of the network at v;. Assuming our dirichlet-data is up = 0, u; = 0 for all
nodes v; € 9€2; this just means that these nodes are grounded. As any other case with
up # 0 can, by taking any function w that fulfills the dirichlet conditions and considerin
the equation for @ = w — w which has 0 boundary values by construction, be reduced
to one where up = 0, it is the only case we need to concern ourself with. Each line of
the equation corresponding to a non-dirichlet DOF ¢ is then just Kirchhoff’s first law

applied at v;:
> aij(w; —uj) =b;
J

Given a piecewise prolongation as in definition we can find a similar interpretation
for A.. Let i #£ j, then, with the unit vectors e; € R™ we have

Acﬂj = <APeZ~,Pej> = — Z Z Qg = Oéfj

keC; lECj

The off-diagonal entries of ACW are the sums of all off-diagonal entries of A correspond-
ing to edges that connect a vertex in C; to one in Cj;. This sum corresponds to the
inverse of the collective resistance of the resistors along all of those edges connected in
parallel. Unlike at the fine level, the diagonal entries of the coarse replacement matrix
, in addition to the (negative) sum of the odd-diagonal entries of the row, also have
additional values corresponding to edges that connect any node in C; to any node in D

(if there are any).
ACZZ_ZACZJ+Z Zak] ZO‘U_‘_/BC

keC; jeDc
We see that the coarse replacement matrix has the form of a replacement matrix in the
sense of theorem [8.1] however with an 12-term and induces the quadratic form

Iulfie = 2ot = w)" + 3 pud

Let us therefore go back to the ﬁne level and interpret the problem for a nonzero 3. We
can write the induced quadratic form [8.3] as

3& - Z(uz —w))*aij + ZuZ& - Z( ) ey + Z(uz -

Y] Y]
With b = (8, 51, - - .,Bnc,l) and b:=) . 3, we can now define an extension A of A

[
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8 Algebraic MultiGrid with Alternative Strong Connections

by

A b —b” n+1xn+1

A now has the form of a replacement matrix without 12-term, for which we already have
an interpretation, the §; now stand for additional connections between v; and the newly
intriduced node v_; (we will use indices starting with -1 for the extended replacement
matrix). The equation Au = b is equivalent to

Solving Au = b is equivalent to solving an equation with A where we prescribe 0 as
a dirichlet condition for v_;. The B; act as grounding conductors. The connections
between vertices on the dirichlet-boundary and vertices not on the dirichlet boundary
act in the same way. We can extend A, in the same way to get an extended coarse
replacement matrix Ao € Rmet1Xnetl - After extending the prolongation matrix P €
R™¥7 to P € R*T1X7et! by defining
P;; ifi,j >0
Pij: 1 ifj:—landiGDcU{—l}

0 else

we see that Ac = PTAP. All fine dirichlet-DOFs, the (fine) fictitious DOF -1 as well
as all other dofs in D, have been mapped to the coarse dirichlet dof —1. All in all,
as mentioned above, for the interpretation of the coarse matrix this means that coarse
dofs ¢ and j are connected by a resistor that corresponds to all the resistors connecting
a dof in C; with one in C; connected in parallel. The resistances along connections
between dofs i and j with {i,j} = Cj € C, that is ay,, for m,n € Cj do not factor
into any entry of Kc - in the coarse network these connections play the role of a perfect
conductor. The connections between some DOF in D, and some DOF not in D, become
grounding conductors on the coarse level. Having some i € D, \ D is therefore equivalent
to collapsing the edge connecting nodes 7 and —1, for this reason we call putting some
free DOF i into D, “collapsing the vertex v;”, in analogy to “collapsing an edge e;;”
when {i,j} € C\ {Dc}. An edge e;; with {i,5} € C\ {D¢} will be called a collapsed
edge, and a vertex v; with ¢ € D, will be called a collapsed vertex.
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8.1 The Prolongation

Figure 8.3: The coarse resistor network for the piecewise prolongation. Resistors along
collapsed edges are replaced by perfect conductors, the resistances A; along
these connections are 0. Those along the other labelled edges are put in

parallel, p. = (3, p7 1) 7"

These ideas will be used in section as motivation for an improvement to the piece-
wise prolongation operator.

8.1.2 Two Grid Convergence

We will now show how to construct C such that the resulting piecewise prolongation
operator P fulfills the weak approximation property (7.8) and thus establish two-grid
convergence.

Theorem 8.2: Weak Approximation Property for AscAMG

Let P be a piecewise prolongation and C be the partition as in definition [8.9
Define the vertex strengths s; = Aj;, the edge-collapse-weights w;; = i gnd the

$i+s;
vertez-collapse-weights w; = %
If, for some 1 > 0o >0
Wij > O V{Z,]} eC (85)
w; > 0o Vi€ D.\ D (8.6)
Then
inf ||x — Px |3 <o Yx|i VYxecR® (8.7)

x.ER

That is, P fulfulls the coarse approzimation property with resprect to A and
its diagonal D and therefore for A and its diagonal D.

Proof. For any x € R™ we define the coarse grid interpolant x. by taking the average
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8 Algebraic MultiGrid with Alternative Strong Connections

for each collapsed edge and keeping u; the same for all ¢ such that {i} € C.
whu i = (k)
Xci =
’ ug if Cz = {k}
With this we have

1
Pxc = Z 5(111' +uj)(e; + ;) + Z u;e;

{i,j}eC\{Dc} {iYeC\{Dc}
And
1
x —Pxc = Z u;e; + uje; — §(ui +uj)(e; + €) Z ue; =
{i,j}EC\{Dc} ZGDc\D
1 1
— Z §(uz — uj)ei =+ i(uj — ui)ej -+ Z u;e;
{i,jyeC\{Dc} i€De\D
Thus
1 . 1 . .
I —Pxclz = > 1 =) A+ (0 - wi)? Ay, + Y. uiAi =
{i.5}eC\{Dc} i€Dc\D
1 9 (2 " 1 9
- > 7w —uy) (Aii+Ajj) Ty Y uisi<
{i,j}eC\{Dc} i€De\D

IN

1 1 1
p > (i~ ;) s + = > ouig <
{i4}eC\(De) ;

1 1 1
< ; Z Z(uz - uj)201ij + ; Zugﬁz <
i, 7

1

2
S Ixlia

| A

Therefore P fulfills the weak _approximation property for A and its diagonal D and
because A ~ A also for D ~ D. O

8.1.3 Smoothed Prolongation

As mentioned before, because the “steepness” of coarse base function never diminishes,
coarse spaces constructed by peicewise prolongation feature poor H!'-approximation
properties. For the method this means that it’s quality gets worse as the number of levels
increases. The term “smoothed prolongation” refers to a modification of the piecewise
prolongation that is supposed to smooth out the coarse base functions to deal with this
problem. In principle, given the error prolongation matrix M of our smoother of choice,
we want the coarse space be able to approximate all algebraically smooth vectors, that
is vectors such that Mx ~ x or at least not to contain nonsmooth vectors, which are
those with Mx = 0. We could now define the smoothed prolongation as P, := MP.
The extra smoothing step is supposed remove nonsmooth components in the range of
P. The problem with this approach is that when using this smoothed prolongation to
build the coarse matrix A = PZAPS, we potentially introduce a lot of nonzero entries
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8.1 The Prolongation

which we would not have if we used the simple P. In many cases, M is not even sparse,
for example M = I — (L + D) A for Gauss-Seidel. Even if we wanted to compute M
in that case, which is unfeasible in and of itself for large problems, the number of nonze-
ros in Ao, which determines the operator complexity of the multigrid algorithm, would
be unacceptably large and even if we would be willing to live with that, this problem
would get worse and worse on coarser levels and after a few levels we would have a dense
system matrix. We already observed in chapter [3| that jacobi and Gauss-Seidel actually
behave similarly, therefore the usual approach is to use the iteration matrix of dampened
jacobi instead of M to smooth the prolongation and define P := (I — wD~!A)P. This
decreases the problem we face somewhat:

Ao =PTI-wD'A)TATI-wD AP

=As

A, is now the coarse matrix of A, built with the original piecewise prolongation.
I — wD~'A has the same sparsity pattern as A, therefore the matrix graph of Ay has
an edge for each path of length 3 in the matrix graph of A. In traditional smoothed
aggregation methods, the aggregates C' € C are made so large that the corresponding
piecewise prolongation cancels out many of these additional connections.

In our case, we have |C| < 2VC € C\ {D.} therefore the piecewise prolongation can not
eliminate many of the additional connections and the matrix graph of A is again a much
denser matrix that A, however, it is still much sparser than it would be if we had used
Mgs. Over many levels, however, these additional entries still compound and pose an
increasingly big problem. What follows is a modification of the smoothed prolongation
based on the replacement matrix A.

8.1.4 A better coarse system

We have seen how to interpret the coarse replacement matrix, constructed from a piece-
wise prolongation operator P, via a coarse resistor network which corresponds for the
fine one, with resistors along each collapsed edge replaced by perfect conductors and re-
sistors along edges connecting the same agglomerates connected in parallel (figure [8.3)).
We have also seen how to extend the replacement matrix in order to reduce the iner-
pretation for the case where some [3; # 0 to one where all 5; = 0, which is therefore the
only case we need to consider in this section.

Notation 8.1. For the next section, it will be convenient to be able to map fine DOF's to
coarse ones. A prolongation matrix P defines a fine-to-coarse index map

{0...n—1} - {0...n.— 1}
c:
i —j such that i € C;

which we will use for the remainder of this section only. It will be generalized later.
Note 8.8. The corresponding coarse-to-fine index map, although mapping indices to sets,
is just i — Cj.

This coarse netowork is simply not a very good approximation to the fine one, as all
resistors along collapsed edges are simply removed. We can find a better fitting coarse

network that features the exact same nodes and connections as the original coarse one
but has different resistances. First, we replace each resistor in the fine grid that runs
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8 Algebraic MultiGrid with Alternative Strong Connections

along a collapsed edge by two, weaker, resistors, connected in serial, each with halve
of the original’s resistance, as seen in figure on the right. Let us call this simply
the extended network (which is a different extended network than the one before, where
we interpreted the 12-terms!). Then, for the coarse network, we call the node on the
edge e;; with {i,j} = Cy € C\ {Dc} node k, remove nodes in vertices of collapsed
edges and call the node on vertex v; with {i} = C; € C\ {D¢} node j. As before, we
establish a connection between nodes ¢ and j in the coarse network exactly if there is
some edge ey € E(A) with ¢(k) = i and ¢(l) = j. This leaves us with the exact same
nodes and connections between nodes we had in the old coarse network constructed from
the piecewise prolongation matrix. We want the resistances on the coarse network to
be chosen such that the extended nework is approximated as well as possible by the
coarse one. We are not interested in how exactly the optimal choice looks, however it is
obvious that it somehow has to incorporate resistances along the split collapsed edges,
in contrast to before, where we simply replaced these with perfect conductors.

Figure 8.4: A coarse resistor netwerk that better approximates the original one. Resistors
along collapsed edges are split into two, each of them connecting a newly
introduced node at the midpoint of the edge with a vertex, each accounting
for half the resistance of the original one. One possible, not necessarily ideal,
choice for the coarse resistance would be to first connect resistors along edges
that are not collapsed in parallel where appropriate and then connect them
in serial with the newly introduced ones for i = (2A71 + 2\, 1+, p 1)~

What we are interested in is to build a good prolongation matrix P, that takes a
vector u® of nodal values of an electric potential v on the coarse network and gives
us a good approximation of its nodal values on the fine network. That is, given u®
as dirichlet data in the coarse nodes of the extended network, we want to find the
nodal values of u in the rest of the extended network (of course, with no current ex-
iting or entering the extended network in nodes not present in the coarse network).
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8.1 The Prolongation

These nodal values restricted to the nodes present in the fine network are then P uc.

Finding the exact nodal values would require solv- A
ing a laplacian-like equation on the entire extended “
network and is not feasible. We will therefore, as r
we did with the collapsed edges before, now also L
introduce new nodes on edges e;; that are not col-
lapsed, split their resistors in two and then pre- N
scribe dirichlet-values 5( e(i) T Ue(j)) there - this g

is not exact, but these nodes should lie somewhere
in the middle between the nodes ¢(i) and ¢(j) and
there is no current entering the network in between
so it should be a reasonable approximation. Now,
with the neighbor set N; = {j : e;; € £(A)}, Kirch-
hoff’s law for each node ¢ with {3, j} € C\ {D.} is

1
2005 (u; — ugy) + Z 20 <ui - i(uc(i) + uc(l))> =0
lEN;
c(l)e(i)

Equivalently, as ay; = —Ag, ZjeNi a;j = Ay,
c(j) = ¢(i) and u¢ o) = (Pu®);, which is clear by
the definition of the replacement matrix, the fine-
to-coarse index map and the piecewise prolongation
respectively,

Alﬁl c 1 c Al_ll A c
= A + Y aagg | = guie - =5 > Aug) =
ZENi lENi

_ <(1 - ;f)lA)Pu“>

So Py, = (I— %f)*lA)PS, which is just the smoothed prolongation we already know,

i

except that here, we are using the replacement matrix A instead of A to smooth the
prolongation matrix!

All in all, these considerations may have convinced us that it is reasonable to use the
replacement matrix to smooth the prolongation, however, as the matrix graphs of A and
A are the same, this does not solve the problem we had, which was that the additional
nonzeros on coarser and coarser levels introduced by smoothing the prolongations keep
compounding at an unacceptable rate because the matrices (I — %]A)_lA) themselfs keep
on getting denser and denser.

The next observation is that, while we have no choice but to define the coarse matrix
as Ao = PTAP for the coarse grid correction to be an A-orthogonal projection, we
are free to modlfy A, as long as it stays equlvalent to A.. For the concrete choice
A = pT AP we maintain equivalence of A, and AC and, because as we know the
coarse level matrix does not decrease in sparsity under P, A, s just as sparse as A.
This means that, while the smoothed prolongation keeps on increasing the nonzero
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8 Algebraic MultiGrid with Alternative Strong Connections

elements per row as levels get coarser, the rate of increase is under control!
Definition 8.3: AscAMG Smoothed Prolongation

Given A, A, a piecewise prolongation P, and a dampening parameter w € (0, 1),
which will usually be %, the smoothed prolongation is defined as

P,:= (I-wD AP
The coarse level replacement matriz is defined as

A, =PTAP

Note 8.9. As A is an M-matrix, the modification of the coarse replacement matrix
introduces only a moderate additional constant in As ~ A..

Even with these modifications of the smoothed prolongation and the coarse system,
the resulting operator complexity of the V-cycle MG algorithm is still too large. More
optimizations to this method, in the form of alternating prolongation types and the
hierarchic prolongation will be introduced in section
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8.2 Parallelization and Implementation

8.2 Parallelization and Implementation

In this chapter we will discuss the implementation of AscAMG and present some of
the optimization that has been done to achieve the performance and scalability that
will be shown in chapter 9] After outlining some of the problems we have run into
during developing AscAMG , section will introduce the terminology we use to
formulate the subsequently presented coarsening algorihm. Afterwards, in section
we will discuss problems very small coarse spaces pose in large computations. Section
3.2.3| contains the promised solutions to the problems we still have with the smoothed
prolongation and finally, in section we will touch upon the topic of the exact choice
of smoothers that are available in AscAMG , which is a topic that has been completely
neglected so far.

When talking about the problems we ran into during develompent of AscAMG , going
through them in the chronological order in which we ran into them makes some sense,
however we will choose a more orderly and logically more coherent order.

The first thing we needed was the coarsening algorithm, which is not trivial to efficiently
implement because we are essentially partitioning a graph which is distributed over many
procs with each only having access to the subgraph coming from its own subdomain.
We also had to consider that we would run into problems when allowing collapsing of
edges for which there are some procs that only “see” one of its vertices. We therefore
had to either completely forbid the collapsing of these edges, which turned out to be
too restrictive to be efficient, to continuously redistribute the algebraic mesh - and the
parallel matrices with them, which we did not even attempt, or to find a kind of middle
ground between these two approaches. We ended up having to forbid some edges in order
to limit proc interfaces on coarse levels. The chronologically last major problem we ran
into was that when doing larger computations, on very coarse levels, which had only very
few DOFs per core left, the restrictions to the collapseable edges we had put in place
turned out to halt further coarsening almost completely. Additionally, as DOFs/core
decrease on the coarse levels, communication overhead plays a bigger and bigger role as
opposed to actual computing. The solution to this was to redistribute the entire problem
to fewer cores at certain breakpoints.

We also needed to implement an efficient distributed smoother. While jacobi is easily
implemented even in a distributed setting, it also needs dampening with some parameter
we have to choose appropriately. Gauss-Seidel on the other hand is incredibly difficult to
implement efficiently in a distributed setting. Ultimately it turned out to be too difficult
to make run efficiently on more than about 1000 cores. The solution to this was using
the so-called ¢1-smoother. In section this will be elaborated upon.

After having dealt with that we ran into problems with trying to implement a distributed
smoothed prolongation, the smoothing itself introduced entries in the coarse matrices
that brought processors into contact with each other that were not in contact before at
all, which would have increased the necessary communication for each smoothing step
and also necessitated making major adjustments to the distribution of data and the
communication structure on each level which we were not willing to put up with and
implement respectively. Our solution to both this problem and the answer to the still
unsolved question of how to limit operator complexity despite prolongation smoothing
from the previous chapter will be given in section
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8 Algebraic MultiGrid with Alternative Strong Connections

First, however, we will get some general notation out of the way. Some notation form
previous chapters will be slightly modified or replaced throughout this section. Some
notation from previous chapters will also be repeated here because we have opted to
keep as much of the notation necessary for reading the chapter in one place.

Notation 8.2. We will write n, for the number of procs and each proc will be identified
by its rank, a number in 0...n, — 1. The set of all procs will be P = {0,1,...n, — 1}.
For the proc with rank k we will write P*.

Notation 8.3. The global number of DOF's (on the fine level) will be written as NV, the
local number of DOFs on some generic proc will be n and the number of local DOFs on
P* will be n*.

Notation 8.4. The set of global DOFs will be N := {0... N — 1}, the set of DOFs local
to some generic proc will be Ny = {0...n — 1} and the set of DOFs local on P* to /\/Zk.
Notation 8.5. The local-to-global DOF map g* maps local dof-numbers on proc P* to
global ones. Its inverse is the global-to-local DOF map £ = (g¥)~!.

Notation 8.6. For each local DOF k, its proc-rank-set, or, more informally, its proc-
set will be I = {l : P! shares DOF k;} C P. The proc-set of a global dof g*(j) is,

consistently defined, I;i 0= ijk On proc P7, for each local DOF k, its distant-proc-

7)
rank-set or dist-proc-set will be I,fj == IT\ {j}, that is, the set of ranks of all other procs
that share the k-th local DOF.

Notation 8.7. We will use the notation from chapter [ for distributed matrices and write
A = (A¥). On the finest level, each A¥ is the Finite elemetnt Matrix assembled on the
subdomain €2, and therefore posesses a replacement matrix A¥. We will write the global
replacement matrix as A = (A%).

Notation 8.8. A partition C of A induces a partition C* of N} by
€' = {C1 = £ (Couiy N8 NE)) : C € C\ {De, € NgHNF) # 0} U (D)

where we write D¥ = £°(D. N g"(NF)) and D* == £°(D N g?(N})). In particular, the
numbering of the C; of the local and global partitions are conistent. The piecewise pro-
longation based on this local partition is called P*. They induce the coarse replacement
matrix by Ao = (PTAFPF),.

The coarse DOF-set will be N :={0...|C\ {D.}| — 1} C also induces a (global) coarse-

to-fine DOF-map f
. {J\/ I 2N

k — Ck
and a (global) fine-to-coarse DOF-map crs

N — Ne
crs :
k—j suchthat ke C;e€C

Note 8.10. The local piecewise prolongations P¥ do not induce the global matrix P,
because they have full values Pfj =1foriecCjc C* and therefore

I ifkeCecC

S

else
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8.2 Parallelization and Implementation

(P*); is a matrix-analogon to a cumulated vector as, with the E? as in chapter

P' = E"TPE’
However, keep in mind that we have not formally defined non-rectangular parallel ma-
trices. If (v¥)y is a distributed /cumulated parallel vector, then (P*v*), is again a dis-
tributed/cumulated parallel vector and represents Pv. We can do multiplication with

the global matrix P locally, without worrying about or modifying the parallel status of
a parallel vector!

Note 8.11. In order to compute P, we are not actually interested in computing a global

¢, we only need the local partitions ’é on all procs but do we need them to be consistent!

8.2.1 Coarsening

In order to compactly formulate the coarsening algorithm as well as most considerations
in subsequent sections, we need a little more notation that replaces the mesh with a
purely algebraic construct.

Definition 8.4: Weighted Vertices and Edges

A weighted vertex is a tuple
vk = (k,z,y) € Nx RT x Rt
A weighted edge is a tuple
ex = ({k,1},z,y) € N2 x RT x RT

With the usual projection operators w1, me, T3, the vertex-to-index map for weighted
vertices is defined by i == 1. For weighted edges, we define the edge-to-vertex maps
as iy = myom and iy == myomy. The weight-functions w = w9 and collapse-weight-
functions cw = w3 are defined for both weighted edges and vertices.

We call a set A of weighted edges or a set B of weighted vertices reqular if m is
injective on A or B respectively. That just means, there are no “double” edges or
vertices that only differ in weights.

For two such sets, if i1(A) Uia(A) C i(B), the edge-to-vertex maps vi,va are

defined by:
A— B
Vi = 1.
e— (it oig)(e)
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8 Algebraic MultiGrid with Alternative Strong Connections

Definition 8.5: (Global) Algebraic Mesh

With the global system and replacement matrices A and A, the (global) edge
weights oyj, verter weights [;, vertex-collapse-weights w;, and edge collapse
weights w;j;, we define the (global) algebraic mesh as

M=V, €E) (8.8)
Where V is the set of (weighted) vertices
V= {(k,ﬁk,wk) ke N} (8.9)
And & is the set of (weighted) edges
& = {({i,j} ais,wig) 16,5 € N A Ay £ 0} (8.10)

Definition 8.6: (Local) Algebraic Mesh

For each proc P*, with its’ local system and replacement matrices A* and A¥, the
(global) edge weights oj;, vertex weights B;, vertex-collapse-weights w;, and edge
collapse weights w;j, we define the (local) algebraic mesh as

MFE = (VE &) (8.11)
Where V¥ is the set of (weighted) vertices
VE = {1, Bewy wa) 1 € N} (8.12)
nd E* is the set of (weighted) edges
&= {({Z}J}v (i) Weke()) 1 d € NE A Aglig(y) # 0} (8.13)

Note 8.12. Note that the local algebraic meshes are defined with the global edge- and
vertex-weights and vertex strengths! In praxis, these have to be computed from the local
ones.

Note 8.13. In addition to the edge-collapse-weights w;; and the vertex-collapse-weights
w;, which are all that is needed in the coarsening algorithms, the algebraic mesh also
holds the edge-weights «;; and the vertex-weights 3;. The reason for that is that with this
additional data, it holds all the information A does, therefore we never need to explicitly
assemble A at all. The coarse algebraic mesh can also relatively easily computed from
the fine algebraic mesh, without ever assembling the coarse replacement matrix A..

Note 8.14. The sets £ and V are, by definition, regular and the global edge-to-vertex
maps vi,vy : £ — V are defined. The same goes for the local sets £ and V* and the

local edge-to-vertex maps v¥, v&.
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8.2 Parallelization and Implementation

Definition 8.7: Vertex- and Edge-Maps

For each proc P®, the local-to-global vertez-map gF is

VE sy
& {v e )
For each proc P, the global-to-local vertez-map €* is
g"(Vh) = V"
& {v — (it 0 £F 0iy)(v)
For each proc P¥, the local-to-global edge-map gF is
EF s &
& {e — (i o (gF, &) oi1)(e)
For each proc P*, the global-to-local edge-map ok s
{g’f(e’f) > &F
e— (iy ! o (€°,£°) o1)(e)

After this exhaustive introduction of notation, we will now present a compact formalism
to describe the parallelism of DOFs in a distributed setting which will subsequently
be used to discuss our coarsening algorithm as well as an optimization for very large
problems on many cores we have implemented.

DOF EQCS
Definition 8.8: DOF-EQCs

The proc-sets I,f define an equivalence relation on N by
j~kie Il =17
We define a partial order on N by
j<k:e I C I
This induces a partial order on N/ by [j] < [k] :& j < k, which we call the eqc-
hierarchy. For the equivalence class of some vertex a we write [a]¥ instead of the
more common [a]~. For any J C P, we will write its DOF' equivalence class, or
simply its DOF eqc, as [-]5 = {k eN: I,f = J}.
The “master” of an EQC []Y is P* with k = min{j : j € J}.
An equivalence class [j]" € N/ is called a:
~ V-eqc:  “vol-eqc”, if ]IJP\ =1
— F-eqc:  “face-eqc”, if |I]73| =2
— W-eqe:  “wire-eqc”, if \If! >3
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(@——9o—o; (o} (o—0——0——0)

Figure 8.5: DOF-EQCs for a simple case of four procs. The bold lines are proc-interfaces.
Blue:vol-eqcs, Green:face-eqcs, Red:wire-eqcs

Note 8.15. The terms vol-, face-, and wire-eqc come from the fact that if the DOFs
come from a finite element space defined on a mesh, in 3d, vol-eqcs usually lie in the 3-
dimensional interiors of subdomains , face-eqcs lie on usually 2-dimensional interfaces be-
tween two subdomains and wire-eqcs lie on the intersections of the subdomain-interfaces,
which are usually 1- or O-dimensional. With algebraic multigrid, on coarse levels, this is
not true anymore, however it does help with visualizing the coarsening and prolongation
algorithms.

Note 8.16. In general, perforing operations on dofs in v-eqcs can be done locally to
each processor and requires no communication and the communication necessary for
operations on f-eqcs is only pair-wise and is also quite easy to implement and relatively
cheap (as long es the number of neighbouts for each proc is bounded), operations on w-
eqcs can require extensive (potentially even global!) communication which often difficult
to implement efficiently.

For formulating the coarsening algorithm we will also need to define equivalence classes
on the set of edges
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8.2 Parallelization and Implementation

Definition 8.9: Edge-EQCS

For an edge e € £, we define its proc-set I' as
P _ P P P
I; =1 L) N e

e i1(e)iz(e) =

Again, this induces an equivalence relation on & by
e~éa Il =17

The partial orders on € and &/~ are defined in the same way as for DOFs, and
will again be called the eqc-hierarchy.
For the equivalence class of some edge a we write [a]® instead of the more common
[a]~. For any J C P, we will write its edge equivalence class, or simply its edge-
eqc, as []5 = {e € £: IT = J}. These classes in &/~ will be called vol-, face-, and
wire- eqcs in the same way that DOF-eqcs are. The “master” of an EQC []5 is
P* with k = min{j : j € J}.
We will call an edge an in-eqc edge if I” = Ii?(e) = Ii72>(e) and a cross-eqc edge if

P P
Ly 7 Loy

Note 8.17. The case I7 = ) will be excluded, it cannot occur on the finest level and the
coarsening algorithm and parallel prolongation will be built in such a way that it will
also not occur on any coarser levels.

Note 8.18. In figure exactly those edges are in-eqc that do not cross any differently
colored vertices.

The Coarsening Algorithm

To reiterate and summarize what we know from section[8.1] it is the job of the coarsening
algorithm to construct a partition C of A as needed for building a piecewise prolongation
(definition such that conditions and are fulfilled, that is for o € (0,1)
(we will usually choose o = 0.1)

Wij > O V{Z,]}EC
w; >0 Vi€ Do\ D

We will first give an algorithm that works sequentially. Algorithm [4] is very simple, as
we are very restrictive with which agglomerates C; € C we allow (that is, only single
DOFs or paris of DOFs). We also do not need to concern ourselfs as much with any
criterium for the agglomerates that limits the nonzero entries introduced by smoothing
the prolongation (see section .

Algorithm [ can be given an initial partial partition Cy to start from which noth-
ing will be removed, it will only be added to. It also takes a boolean parameter
MAKE_COMPLETE, which allows for an incomplet partition that does not contain
any single DOF's (it consists only of collapsed edges and vertices). Both of these options
will be used later, for now we will call it with Cg = ) and MAKE_COMPLETE=TRUE.

61



8 Algebraic MultiGrid with Alternative Strong Connections

Algorithm 4 Coarsen Algebraic Mesh sequentially. Input:

— M algebraic mesh

— D... set ofdirichlet dofs.

— Cp ... initial partition, can be empty. If it not empty it must contain the set
D, 2 D. Will only be added to, no elements will be removed or modified.

— MAKE_COMPLETE. .. boolean value, if true, returns a complete partition of the
DOFs. Otherwise, only collapses vertices and edges and leaves left over DOF's
unassigned.

Output:
— (... (local) partition.

1: procedure CAM_SEQ(M, D, Cy, MAKE_COMPLETE)

2 if Cp =0 then

3 Set D, =D

4 Set C :=={D.}

5: Set U =D

6: else

7 Set U = Ugee, C

8 for e € £, in descending order of their collapse-weight cw(e) do
9: if cw(e) >0 and ij(e) ¢4 and ix(e) ¢ U then

10: C—CU{{ii(e),iz(e)}}, U—=UU{ii(e),iz(e)}

11: for v € V, in descending order of their collapse-weight cw(v) do
12: if cw(v) > o and i(v) ¢ U then

13: De — D, U{i(v)}, U—-UU{i(v)}

14: else if MAKE_COMPLETE then

15: C—CU{{i(v)}}, U—-UU{i(v)}

16: return C

Note 8.19. Algorithm [4] detects weakly enforced dirichlet boundary conditions and col-
lapses all concerned DOFs. This can be seen easily: When we weakly enforce a dirichlet
condition at DOF j, we add an 12-term with a coefficient that is larger than « by a
couple of orders of magnitude. This means that ; is larger than all o;; by a multiple
orders of magnitude, which means w;; << 1 and no edge connected to ¢ can be collapsed.
We also have w; =~ 1 and therefore the DOF is collapsed.

A first, simple approach to parallelizing algorithm {4 is grounded in the observation that
for each P, its purely local part of the algebraic mesh, consisting of the purely local
vertices and the edges that connect purely local DOF's to each other, is not seen from
the outside by any other proc. We can just apply algorithm [4] to each of these local
sub-meshes sequentially. In fact, there is even more we can do purely locally, without
any communication. For that, let us define more rigorously what a “block of an algebraic
mesh” is:
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8.2 Parallelization and Implementation

Definition 8.10: Algebraic Mesh Block
For J C P, the “J-Block of M?”, is defined as My = (V;,Ey), with the eqc-vertex

set
Vy={veV:iw)e[]5tCV
and the in-eqc-edge set
&y ={ee&nl]y:[vi(e)]" = [va(e)]"} €€
For each proc P*, the local J-Block is defined as MFE = (Vﬁ,gﬁ), with the local
eqc-vertex set

vk = gk (VJ N gk(Vk))
and the local in-eqc-edge set
£ = £+ (£, ng"(EM))
For each J we also define the global cross-eqc-edge set
Gr={ec&n[;: [vi(e)]" # [va(e)I’y € €
For each proc P* and proc-set J, the local cross-eqc-edge set is
G5 = £ (QJ N g’“(g’“))

For obious reasons, we call My a “vol-block” if |J| = 1, a “face-block” if |J| = 2
and a “wire-block” if |J| = 3.
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Figure 8.6: The same case as figure All green edges are in-eqc and are therefore
viable for collapse by algorithm [f] Cross-eqc edges are dashed to indicate
that the are not seen by algorithm

63



8 Algebraic MultiGrid with Alternative Strong Connections

In addition to applying algorithm (4| to each My, locally, we can actually apply it to
all blocks M ; locally on each proc P’ € J. The collapsing of each block is independent
and the results for collapsing each block must be consistent across all procs as algorithm
[ is deterministic.

Algorithm [5| does just that, is fairly easy to implement and also looks pretty good at
first glance. In fact, it does work very well for the first couple of levels, however after
that things go awry quickly as seen in figure [8.7]

1.0 1.00 1

0.8

0.6

0.4 1 0.759

0.2

0.0

0.0 25 5.0 7.5 10.0 12.5 15.0 17.5 20.( 0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

a: x-axis: levels. y-axis: Fraction of b: x-axis: levels. y-axis: Relative loga-
DOFs in vol-eqes (blue), face-eqes — rithmic number of DOFs compared
(green) and wire-eqcs (red). to level 0. Dashed: 27! - (inital

NDOF)

Figure 8.7: Behavior of algorithm |5| for the 3d-problem poisson problem, o = 1,5 =0
on the unit cube with approximately 108 DOFs on only 60 cores.

The problem that occurs here is caused by the fact that the support of coarse base
functions corresponding to nodes in vol-eqcs tend to have 3-dimensional support, those
in face-eqcs tend to have 2-dimensional and those in wire-eqcs 1-dimensional support.
The overlap of two coarse level basis functions with d-dimensional support tends to be
(d-1)-dimensional, and as the edge-weight for the corresponding coarse algebraic edge is
given by the sum over all finest level edge weights that lead through the common support,
it scales like {4, with the number of levels I. The overlap of a (d4k)-dimensional and
a d-dimensional base function support overlap still tends to be d-dimensional, and the
corresponding edge-weight scales like 9.

Summarized, vol-vol- and vol-face edge-weights scale like [?, vol-wire, face-face and face-
wire edge-weights like | and wire-wire weights stay constant. After enough levels, all
face-face edge weights are outscaled by surrounding vol-face edge weights and all wire-
wire edge weights are outscaled by surrounding face-wire edge weights until they cannot
fulfill condition , which, when 8 = 0 just says that an edge that is admissible for
collapse has to represent a certain fraction of the total edge weights coming together
in either vertex. Of coarse, now the vol-face and face-wire edges are very strong and
admissible for collapse, but algorithm never even considers these (cross-eqc) edges. We
will now see what we can do about that.
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Algorithm 5 Coarsen Algebraic Mesh EQC-wise on each proc. Input:

— M.... the (local) algebraic mesh

D ... (local) set of dirichlet dofs.

— JP ... set of all proc-sets J C P that contain the calling proc with non-empty Vf}

— Cp. .. initial (local) partition, can be empty. If it not empty it must contain the
set D, 2 D. Will only be added to, no elements will be removed or modified.

— MAKE_COMPLETE... boolean value, if true, returns a complete partition of the
DOFs. Otherwise, only collapses vertices and edges and leaves left over DOF's
unassigned.

Output:
— (... (local) partition

1: procedure CAM_EQC_WISE(M, D, J?, Cy, MAKE_.COMPLETE)
2 if Cy =0 then

3 Set Do =D

4 Set C :=={D.}

5: Set U =D

6 else

7 Set U = UCGCO C

8 for J € J do

9: Set D := CAM_SEQ(M,D,0, TRUE)
10: C—-CuUD

11: return C

Note 8.20. We assume that each proc P* with k € J has access to everything in M.
This is not actually induced by the parallelization of the Finite Element space ”out
of the box”: Starting out from the finest level, each rank in J knows about all DOFs
with vertices in V; and the global vertex-weights and vertex-collapse-weights are easy to
compute - this is just one parallel vector Cumulate-operation each. However, there can
be edges e € £ that , even though are in-eqc, are not known to all P* in .J. To see this,
consider, for example, the 2-dimensional case of a triangle where two of its edges lie on a
subdomain interface between (2; and €2; and the third lies within €;. P’ will know about
the corresponding algebraic edge as A?, which was assembled on §2; has a corresponding
entry, but A7 does not and therefore PJ does not know about this algebraic edge. This is
the reason that we use A istead of A¥ in the definition of Ek. Tt is, however a relatively
simple matter to synchronize this information once in the beginning and to then make
sure to keep it consistent whenever constructing a coarser level. Computing the global
edge- and edge-collapse weights is also easy and only has to be done once.

There are two possible ways out of this dilemma. One is to redistribute the algebraic
mesh, and with it the system matrix such that cross-eqc edges become in-eqc edges. The
other is to try and find an algorithm that is also capable of collapsing cross-eqc edges.
AscAMG went the latter way.

The first thing we have to think about is which cross-eqc edges we will even allow for
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collapse in the first place. If we do not put any restrictions in place, we will end up
bringing procs into contact with each other that were not in contact in the first place.
This means that whenever we do have to do MPI-communication on those coarse levels,
as we have to every time we do cumulate a parallel vector, which happens all the time,
we do not only have to send more data but we also have to send the data to more other
procs which results in an increase in message size and number. Therefore, we want to
forbid at least all edges that would result in creating additional proc-interfaces.

On the other hand, at the very least, we want to allow collapsing of all edges e that
connect DOFs “upwards” or “downwards” in the eqc-hierarchy, that is e € £ such that
[ij(e)]" < [i1—i(e)]’. In that case, the proc-set of one of the edge’s vertices is a superset
of the other one’s and collapsing the edge clearly introduces a coarse level DOF in the
eqc of the “larger” one. This just removes one DOF from the “smaller” eqc and leaves
one in the “larger” one. In absolute numbers, this does not even increase the size of
any proc-interfaces. In the general case, collapsing an edge e introduces a coarse dof in

the eqc ['EE@UI?;@)’ in contrast to the edges own eqc which is [-]zﬁ(e)mg(e)
potentially introduce a coarse DOF in an equivalence class which was empty beforehand,

but as long as it does not create a new proc-interface we will put up with that.

. This can

Definition 8.11: Admissible Cross-EQC-Edges

The set of allowed EQC-identifiers is the set of all proc-sets where there is at least
a larger one that already has a DOF in its EQC. It is called HT to indicate its
relation to the hierarhcy of the relevant EQCs.

HP ={JCP:3ICP, [|¥40, JCI} (8.14)
An edge is called algebraically admissible for collapse if it fulfills condition
and topologically admissible iflgf(e)ufif(e) € HP. An algebraically and topologically
admissible edge is called absolutely admassible.
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Figure 8.8: An example for a topologically not admissible edge (red). Proc-interfaces
are again bold.
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Now we know which edges are admissible in the first place and we only need an algorithm
that is capable of following through.
Our distributed coarsening algorithm (algorithm @ consists of 6 steps:

— Pre-Coarsening: We do an inital coarsening-step with the eqc-wise coarsening

algorithm [5] from before, however we set MAKE_COMPLETE=FALSE, so we do
only edge- and vertex-collapses. This step can be done locally.

— Vertex-Marking: On each proc we iterate through all local absolutely admissi-

ble cross-eqc edges and mark each of it’s vertices with the edges’ collapse-weight.

— Vertex-Reduction: We gather all vertex-markings on the master of each eqc.

The master of the eqc assigns each vertex to the proc that has marked it with the
highest weight. Gathering the vertex-markings requires communication.

— Cross-Coarsening: On each proc we iterate through all local absolutely admis-

sible cross-eqc edges and, if both got assigned to the local proc, collapse them. No
communication required.

— Restoring Consistency: Next, for all collapsed cross edges e we have to com-

municate the fact that the edge was collapsed to all ranks in [e]® (the other procs
in [e]® so far only know which proc the two vertices got assigned to, not that the
connecting edge is actually collapsed). All procs in (I} () \ I ia e)) (rr ir(e) \ i (e) )
do not know of the existance of e, they only have access to one of e’s vertices
and all they need to be notified of is that the coarse DOF belongs into the EQC

[[]Y P AP . This requires some relatively fancy communication.
ig(e) “i1(e)

— Post-Coarsening: Do a final caorsening-step with the eqc-wise coarsening al-

gorithm [5 this time with MAKE_COMPLETE=TRUE to accept all otherwise
unassigned dofs on the coarse level.

In algorithm [6] all of the required bookkeeping and communication is only hinted at.
M is used as whatever object holds the information on the edge markings M (4, 7) holds
the value P/ has marked the global dof j with, Gather M does not gathering of all
information to some root-proc but gathering the entire “row” M (i, -) on the master of the
EQC [i]" for all DOFs i € N. Broadcasting M means making the value M (i, master/i)
available to all procs in IZP .

10:
11:
12:

13:
14:

1:
2:
3
4:
5:
6
7
8
9

procedure CAM_DISTRIBUTED (M, D, JF)

Set De =D
Set C :=={D.}
Set U =D
Set M =0

Set K := rank of the local proc
Set D := CAM_SEQ(M,D,0, FALSE)
C—»CuUD
for J € J* do
for e € gf} do

M(g(is(e)), K) = ew(e)

M(g(is(e), K) = cw(e)
Gather M to master
for J € J¥ do
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15: if K = min(J) then

16: for e € G% do

17: for [ € {1,2} do

18: q = argmax,¢c ;{M(i(e),p)}
19: M(il<e)> Q) =-1

20: Broadcast M
21 for J € JF do

22: for e ¢ Q§ do

23: if M(ii(e), K) = —1 and M (iz(e), K) = —1 then
24: C=CU {il(e), ig(e)}

25: Restore Consistency

26: Set D= CAM_SEQ(M,D,0,TRUE)
27: C—-CUD
28: return C

Algorithm 6: Distributed Coarsening Algorithm. Step 5 is only hinted at in line 39.
Input:

— M. .. the global algebraic mesh
— D ... (local) set of dirichlet dofs.
— JP ... set of all proc-sets J C P that contain the calling proc with non-empty V]}
Output:
— C... (local but globally consistent) partition, that is, a partition of /\/f where
the C; are indexed consistently across all procs (such that they induce a global
partition).

Note 8.21. In praxis, algorithm [6] returns, besides ¢, also some additional information
about collapsed cross-edges wherever the local proc sees one of its vertices. This is
basically the information mentioned above, under the point “Restoring Consistency”,
and is needed to be able to properly build the ParallelDof-object (which holds all of the
parallelism-information used by standard NGSolve lienar algebra classes, see chapter |4)
and the algebraic mesh on the coarse level. In theory, however, we can ignore this and
can recover the global partition from the local ones by

Ci=|J Cwy i=1...N

peEP
icgP(NY)

Here, we have to take the union of the local C; because collapsed cross-edges with only
one vertex shared by a particular proc P* are represented as a singleton in C*. With

D = U gp(Dg)
peEP
we have

C={Ci:i=1...N}YU{Dc}
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What can in general be said about coarsening for AscAMG is that the fact that we
restrict ourselfs to agglomerates of maximum size 2 made it a lot easier to both come
up with and implement a reasonably efficient distributed coarsening algorithm. In this
place we get back a bit of what we loose by not going for larger agglomerates. For how
relatively straightforward the algorithm is, it performs pretty well, although there is
certainly room for improvement. In particular, it is probably the least optimized part of
AscAMG | as we are on the one hand only coarsening once on each level and as it was,
on the other hand, one of the messier and more complicated things to implement. In
contrast, the smoothing operations are performed many times and have therefore been
optimized much more heavily and most of the other linear algebra, like constructing the
coarse matrices once the prolongations are in place, already come very well optimized
out of NGSolve.

Ultimately however, we still face the issue that allowing cross-eqc collapses, as these
always introduce coarse nodes “upwards” in the eqc-hierarchy, lead to an increase in the
fraction of shared DOFs versus local DOFs on each level. Also, the restrictions we had
to put in place to counter uncontrolled growth of proc interfaces will eventually, after
many levels, prevent us from maintaining a constant decrease by a factor 2 from level to
level we would like to have. The problem is much, much less pronounced than what we
saw in figure [8.7] and does usually not become debilitating until the coarse spaces reach
a dimension in the range of under 100 DOFs per proc, but it does still occur. It also
becomes more and more of an issue the further we try to scale up in terms of number of
procs.

In the next section we will outline what has been done to combat both of these problems.

8.2.2 Contracting

On very caorse levels, as the number of DOF's per proc becomes small, communication
overhead starts playing a bigger and bigger role compared to computation cost. This
is especially true when we are doing sparse matrix vector operations which have linear
operator complexity. To reiterate the conclusion from the last section, this is exacerbated
by the tendency of the caorsening algorithm to make DOFS on caorser levels more and
more “global” and by the fact that the restrictions to topologically admissible algebraic
edges become more noticeable on coarse levels.

The solution to all of these problems is as straightforward to formulate as messy to
implement. We can simply redistribute the entire problem to fewer procs after reaching
certain breakpoints.This might seem a bit unintuitive on first glance, as we are essentially
giving awas computing power, however, if done correctly, what we loose is more than
made up by the decreased communication costs.

Redistributing to fewer procs everytime makes some additional edges topologically ad-
missible. Such a redistribution can be wonderfully formalized with the notation devel-
oped in section [8.2.1] and yields an unorthodox application of algorithm
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Definition 8.12: Contraction Map
We define the weighted-proc-vertez-set as
VP ={(p,0,0) : p € P}
With proc-edge-collapse-weights
wP. = |IEJ}|
Tl Mgl + 15

and the weighted-proc-edge-set as

5}7 = {({kvl}vwipo) : le 7é 0}
The (global) algebraic proc-mesh is

MP = (VP EP)

The partition CP = CAM_SEQMP. 0,0, TRUE) \ {0} induces a “Proc-
Contraction-Map” that takes ranks and delivers coarse ranks

D . P Pe={0...|CP| — 1}
i—j forieC;eC
gP can also be extended to mapping vertex-EQCs to corresponding coarse EQCs
that define a coarse equivalence relation ~o on N .

) {N/NHN/NQ
gr .

[y — [‘]gp(J)

Redistributing, or, as we call it, contracting the problem is now just:
— Constructing the contraction map
— Collecting the local algebraic meshes M’ as well as the local matrices A?, A’ and
P on proc g (4).
— On the master, combine the collected algebraic meshes, matrices, etc. into new,
“coarse” objects.
— The master ranks k € P¢ continue, while all others are done with the setup.

For DOFs, if k € []Y, then per construction k € [‘];p(‘]), we say DOF-EQCs are invariant
under contraction. The DOF-proc sets on the “coarse” space (that is, in this context,
the same space but distributed to fewer procs) become smaller.

When collapsing P* with P7, all of the dofs in the face-eqc []yp , which are shared
between these two exclusively, become new, local dofs in the C({)zﬁse vol-eqc [‘]E’gp(i)}.
Besides that, any other eqc [-]; with {i,j} C J loses at least one proc, so it becomes
“less parallel”, some wire-eqcs can even become face-eqcs. This is the reason why the
proc-edge-collapse-weights are defined the way they are.

Note 8.22. After a contraction, the problem has been redistributed to fewer cores, and
on all the following levels we have to take into account that only certain procs are active
anymore. On the surface, this would require the coarsening algorithm and the smoothers
to constantly be aware of which procs are active and which are not. In practice, however,
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MPI does all of that work for us. We can simply construct a new communicator that
consists of all the active procs and no others. Therefore neither the coarsening algorithm
nor the smoothers need to be aware of contractions at all. We do however have to take
care of gathering vector entries when going up in the v-cycle and scattering them when
going down.

Note 8.23. The Edge-EQCs are not invariant under the contraction map, they have to
be rebuilt after the vertices have been mapped. To see this, consider an edge between
vertices with proc-sets {1,2,3} and {2,3,4}, where gP that maps 1 — 1;2 — 2;3 —
3;4 — 1. The fine edge is in [-]?273}, but the coarse one is in [-]?1’273}

Note 8.24. One thing to keep in mind here is that contracting is a narrow road to walk.
Excessive, or simply too early contracting can hinder more than help. Whenever we
contract, we approximately double the DOF's that are local to each proc and therefore
increase the local operator complexity of the multigrid cycle. The total operator com-
plexity remains unchanged, but a part of the work is shared between fewer procs and in
the end what we really care about is wall time.

Additionaly, while we only have to move data around once when contracting the algebraic
mesh and the matrices, during the solution phase we have to move data everytime we
cross a “contraction level” on the way up or down in the v-cycle. The communication
necessary for that is however only responsible for collecting the partial vectors of all
procs at the master proc of each C' € CP when going up or distributing the data from
the master to the other procs when going down, which is all in all about equivalent to
one parallel vector cumulate operation.

Note 8.25. We have not yet experimented with allowing bigger proc-agglomerates in the
contraction-map. It might or might not be more efficient, one should keep in mind that
contracting procs by a factor k increases the local DOF-number on the coarse level by
the same factor.

The exact algorithm that decides on which levels and under which conditions we should
do a contraction and when we should not do one is still up to debate, currently each
proc says it wants to contract if one of the following three conditions holds:

— If there is a very attractive partner for collapse

max wf > 0.2
jep Y

— If the local NDOF is very small:
INF| < 100
The thought behind this condition is that for so few DOFs, any communication at
all is more expensive than computation.
— If the local vol-eqc DOF's make up too small a fraction of all local ones:
[N
/\/ék
The rationale here is that if there are too few local vol-eqc DOFs, that is if almost
all DOF's are shared with other procs anyways, what is then point of this proc

even running anymore. Again, the small amount of computation done on the local
vol-DOF's is far outweighed by the costly computation on all the other dofs.

<0.2
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On each level, if more than a third of all procs want to do a collapse, we do one, otherwise
we do not.

This relatively simple approach seems to work well enough for now, although it does
not take into account the distance between procs in the communication network of the
cluster. In principle it would probably be preferrable to choose the partition in such a
way that the minimum number of nodes are occupied, but this is a feature that AscAMG
currently simply does not support.

Note 8.26. For me personally, implementing the contracting as well as the mappings
needed for the multigrid-cycle that map vectors to contracted vectors and the other way
around was probably the least rewarding part of the entire project. While the DOF-
EQC formalism describes the contraction very nicely, implementation was a lot of work
for the speedup it resulted in on the medium size systems we had access to. However as
figure [8.7] shows quite convincingly, it is a crucial component for further scalability.

8.2.3 Distributed Smoothed Prolongation and Optimizing Operator
Complexity

We will now give the answer to the question how good V-cycle operator complexity can be
achieved despite the small agglomerates we use for building the piecewise prolongation.
Besides the idea of using different prolongations to transport the system matrix A and
the replacement matrix A (and with it the algebraic mesh) to the coarse level, there are
two more components to our strategy.

We will first show how to properly define and construct a distributed parallel version of
the smoothed prolongation from definition

Hierarchic Prolongation

While we have seen that the local piecewise prolongations P* form a kind of cumulated
parallel vector and can be used to transport cumulated or distributed parallel vectors up
or down between levels without communicating at all, it is not really clear how to com-
pute local P’j that could represent P,. Even worse, it is usually impossible to compute
local A’é that represent the coarse system without doing some serious redistribution of
the problem. This fact becomes clear when we remember what we observed in section
The matrix Ay == (I — wDA)TA(I — wD A) has nonzero entries corresponding
to each path of length three or less in the matrix graph of A. In particular, there are
connections between DOFs i € []} and j € []} where I N J = (. This means that
for two procs P* € I and P7 € J, there is an an entry of Ay that connects a DOF of
P* which P! does not know exists, to a dof of P!, which P* does not know about. In
other words, in order to be able to write this entry in some local component of a prallel
matrix, we have to eiter put ¢ into ./\fé or j into NVF, which either way makes the proc-set
of one of the DOFs larger, or in other words, makes its’ equivalence class “larger” in the
eqc-hierarchy. There is no representation of the global matrix Ay by local components
without changing the A;. This means that the coarse matrix A, = PTA3P does not
have a representation by local components that fit the dof-sets of the coarse algebraic
mesh. In addition to all of this, PT A,P can have entries that connect procs that were
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not in direct contact on the fine level. We took great pains to avoid such things hap-
pening when constructing the coarsening algorithm, and the same considerations that
made us do it there also hold up here.

Note 8.27. For the system matrix A and the coarse system matrix A, we use the
standard parallel sparse matrices coming from NGSolve. As we know by now, these
matrices store the information on the parallel structure of the DOFs in ParallelDofs-
objects. As long as the distant procs on the coarse level are the same as, or a subset
of, the distant procs on the fine level, it is quite easy to construct the appropriate
ParallelDofs for the coarse matrix, however if the coarse ones are a true superset of the
fine ones, this becomes messy as well.

Notation 8.9. To differentiate between EQCS on the fine and coarse level, we will write
7[] and °[-] respectively. To differentiate between local-to-global maps we will write ‘g*
and °g”, the global-to-local maps will be 7£¥ and “€*. The DOF-Sets will be f./\//lc and
C/\/’/C , etc. We can extend the definition of < to accept a coarse and a fine, or a fine
and a coarse EQC in the canonical way.

We will now show a condition for P, that guarantees the existence of a local represen-
tation for the global coarse system matrix.

Theorem 8.3: Hierarchic Prolongation

Given a partition C with |C| = n. that induces a piecewise prolongation, if some
P e R™*" fulfills

P;; #0 forie C;eC only if ’[i]” < [5]° (8.15)
and there exist local matrices P* on all procs such that

P =Pyrigry) VEEP Vi j € NS

that is, the P* form a (cumulated) local representation of P, we will call P hier-
archic.
If P is hierarchic, then given a cumulated parallel vector v = (v'); on the coarse
level, Pv = (P*v');cp is a cumulated (fine) vector.
Conversely, given a distributed vector v = (v'); on the fine level, if P is hierarchic,
PTv = (P¥"vi);cp is a distributed (coarse) vector.
The coarse matriz of Ao = (A’é)ke'p defined by Ao = PTAP is represented by

Ao = ((P*)TA*PF)ep

Proof. We will show ‘
Pv = (Pv');
that is
[PV] 1) = [ka’f}  VieNfVkeP
Fori € N} and je N

V@) U = k€ Ihpy €I = j € N}
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From this, and 1) it follows that we can replace the sum over C/\Qk by the sum

over ‘N in (x):
ko k k ok
|:P v i| = Z P”Vj = Z Pfgk(i)cgk(j)vcgk(j) ==

(2

jec‘/\[lk jGCNek
B> Prgryvi = [Pvlrgr
jeEN

The second claim, PTv = (PTv?);, follows in the same way.

The last claim naturally follows from the first two: Given any cumulated vector v =2
(vF)rep on the coarse level, we have to show that ((P*)T A*PkvF),cp is a distributed
vector such that Acv = (P*)TAFPFvF),cp. From the first two points we know that
component-wise multiplication of P with a coarse cumulated vector yields a fine cumu-
lated vector and Pv = (P*v¥),cp. Because A is a standard distributed parallel matrix,
component-wise multiplication of A with a fine cumulated vector per definition yields a
fine cumulated vector and APv = (A*PFvF),cp. Lastly, as we also know, component-
wise multiplication of PT with a fine distributed vector yields a coarse, distributed one
and finally PTAPv = ((PF)T AFPFvF)cp. O

Note 8.28. Equation alone guarantees the existence of local representations as de-
fined in theorem as if

P #0="[l]"<° "= kel nI’
Which means that the value P;; can be represented locally by proc k.
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Figure 8.9: Under a hierarchic prolongation, information from the coarse level is trans-
ported “downwards” in the EQC-hierarchy. The graphic shows the maximal
allowed matrix graph a matrix B (on the fine level), for the same case as
figure is allowed to have such that, given a piecewise prolongaion P, BP
is hierarchic prolongation.

Hierarchic prolongations have two very nice features, firstly, the local coarse system
matrix components are exactly the local coarse matrices of the local system matrix
components and we can compute A¥, = (P¥)T A¥P¥ locally without required communi-
cation. Even better, we have shown that we can transport distributed vectors upwards
across levels and cumulated vectors downwards by purely local matrix-vector multiplica-
tion without any needed communication. As we typically want to restrict (distributed)
fine residuals to the coarse level and prolong (cumulated) coarse solutions to the fine
level, this is a perfect fit.

We will now modify the smoothed prolongation Py in such a way that it becomes a
hierarchic prolongation. We will also set a limit for the nonzero entries per row of
the new, hierarchic prolongation, usually by 3 or 4, by simply removing all but the
strongest entries from A. In the resistor network this means that we only consider the
connections with the highest conductivity when solving the local nodal problem to get
the fine potential from the coarse one.
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Definition 8.13: Hierarchic Smoothed Prolongation

Given the replacement matriz A, an upper bound M for the nonzero entries in the
prolongation matriz, a piecewise prolongation matrix P induced by a partition C
and its induced fine-to-coarse DOF-map crs and for each DOF i € N, let the set
of admissible DOF's be defined as A; ={j : j ¢ Dc N cijj > o AN [i]” < “[ers(j)]"}.
Next, let S; be the mazimal subset of A; consisting of the k dofs in A; that have
the highest weight such that |crs(S;)| < M. Define S; = (crs™! o crs)(S;), that is
the set of all dofs that are mapped to the same coarse DOF as some DOF in S;.
The sparsity- and hierarchy-filtered replacement matrix A° (Akvo)kep 1s defined
by

) 2e((ersogh)-L(siy) Wit =]

Afjo =4 —j if (crsogh)(j)) € Si

0 else

Finally, the AscAMG hierarchic smoothed prolongation is defined as
P, = (I—-(D°)'A°)P (8.16)

Note 8.29. By the last theorem and the definition of A;, P}, is a hierarchic prolongation
that admits local representation.

Note 8.30. The matrix A*° itself is not necessarily symmetric anymore. See also figure
[8-9] where we have a directed graph, not an undirected one.

Figure 8.10: Basis functions of coarse level 12 resulting from hierarchic smoothed prolon-
gation for the same problem as in figure[5.3] Nonzero entries per row of all prolongations
bounded by 3. In the top two pictures, alpha jumps between 1 and 10% and in the bot-
tom alpha is constant. In the top right picture, the color indices the value of a (red is
higher).
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Alternating Prolongations and Skipping Levels

The hierarchic smoothed prolongation on its own still underperforms. Especially the
smoothing of the prolongation between levels 1 and 0 increases the operator complexity
by a lot.

There is one, last, component missing that gives us another considerable boost in per-
formance. What we informally call “alternating composite prolongation schemes” are
just Multigrid V-cycles with two twists to them.

First of all, we do not use the same kind of prolongation on all levels. One level of
piecewise prolongation might be followed by two levels of smoothed prolongation, follwed
by another level of piecewise prolongation, etc. This is where the “alternating” comes
from.

The “composite” comes from the fact that we do not necessarily need to smooth on each
level. In most AMG solvers, the difference in NDOFs between to levels is much larger
than a factor two, in fact, some of them start with an initial, massive coarsening step
between levels 0 and 1, instantly going down in NDOF by a factor 10 or so.

We therefore choose not to include all levels in the V-cycle. If we decide to skip level k,
we can just compose the prolongation that goes from level kK — 1 to k and the one going
from k£ — 1 to k£ + 1 by multiplying them and directly build the coarse matrix on level
k + 1 from the one on level k — 1.

A (PPH)-(NNB)-scheme, for example, would use (P)iecewise, (P)iecewise, (H)ierarchic-
smoothed prolongations in this recurring order and always skip two levels and directly
go to the third (the matrices are (N)ot built, (N)ot built and (B)uilt). In practice it has
proven to be most efficient to arrange the scheme such that each level directly after an
H-prolongation is built and those after P-prols are skipped.

Overall, the best choice seems to be a prefixed (PH)-(NB)-scheme. Prefixed here means
that for the first couple coarse levels we do something special, usually involving skipping
a few extra steps and then appending the (PH)-(NB)-scheme after that. We write such
a scheme, for example as (PPHPPH)-(NNBNNB)//(PH)-(NB), which stands for two
skipped P-prol levels, followed by a built H-level, another two skipped P-levels and a
last built H-level and staring the (PH)-(NB)-scheme after that, on coarse level 7.

As we will se in chapter [9] after all of these optimizations, operator complexity is finally
under control.
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Figure 8.11: Showing the exact same situation as in figure however using a (PH)-
scheme.
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8.2.4 smoothers

In this last section of the chapter, we will discuss the (small) range of smoothers that
come with AscAMG . By small, we really mean only two, and one of them, the dis-
tributed Gauss Seidel smoother, turned to be extremely, extremely difficult to imple-
ment efficiently, in fact we would not recommend using it for problems running on more
than about 500 procs. Up to that point, however, it perforems pretty well. Besides,
it is an interesting piece of software that will also give us another opportunity to use
the DOF-eqc terminology developed in section so we will describe it briefly despite
its’ shortcomings. In [2], multiple viable, scalable options for multigrid smoothers are
presented and analyzed, including the ¢'-hybrid Gauss Seidel smoother, which is the
other smoother available in AscAMG .

Hybrid Gauss Seidel
Definition 8.14: /!-Hybrid Gauss Seidel Smoother

For k € P, let J* be its set of master DOFs,

JV = {j e N* 1 k =min(I])}
Let A jx € RIVIXIT*T be the submatriz of A for indices in J*. For each k € P,
let the diagonal matriz D* = diag(dy, ds, . .. 2 d) e € RIV*IXIT*1 pe defined by its’s

entries
di= Y |Ayl
JENK\Jk

The £ -Hybrid Gauss Seidel Smoother is the SLIM defined by the block-diagonal
W 22 (WF)icp, where the WF are the purely matrices

1~
Wk ::Lk+Dk+§Dk

Note 8.31. As can be seen easily, per construction of f), we have Wy + WE —A>0

Note 8.32. Although it is a bit of a misnomer, this smoother will simply be referred to
as HGSS.

This is just the application of local Gauss-Seidel on every proc, except that we have a
modified diagonal and that we are only doing this on the submatrix corresponding to
the master-DOFs. This is easily implemented, and communication-wise the only thing
we need to do is to cumulate the solution vector after the local Gauss-Seidel sweeps have
finished. For more details on hybrid smoothers and see [2].

Distributed Gauss Seidel

What is internally reffered to as DGSS is a distributed parallel implementation of stan-
dard Gauss Seidel. It is based on a particular, semi-manual coloring of the DOFs that
allows it to hide much of the communication overhead incurred due to the serial nature
of Gauss Seidel behind local computations.
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Definition 8.15

We will call T = {i € N : |[i]'| = 1} the set of all vol-DOFs and define the sets
of all face-DOFs F and all wire-DOFs W accordingly as F = {i € N : |[i]"| = 2}
and W= {i € N': |[i]°| > 3}.
The set F of all face-interior DOFs will be

F={keF:Ar=0 VjeF\I[K'}

The matriz A restricted to the indices in F is block-diagonal, each diagonal block
corresponds to the “interior” of one vol-eqc. Similarly, the set W is defined by

W={keW: Ay =0 YjeW\I[k'}
Doing the same for T would be pointless, no vol-DOFs can be connected with a

vol-DOF' of another proc in the matrix graph of A. Instead, we define the set of
“absolutely local” DOFs as

T={keT:Au=0 VieN |lg>0}
This is the set of all interior DOFs tl}at are at least one “DOF-layer” removed
from any interface. The set M =T \ Z, which consists exactly of this connecting
“DOF-layer”, will be called the mortar-DOF set.
All of the remaining DOFs will be called “type-C” dofs and the set of all type-C
DOFs is ) )

C=(F\FHHuW\W)
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Figure 8.12: Classification ofODOFS Dfor the same case as in figure dark blue:i, light
blue: M, green: F, red:WW, brown:C

The two key observations behind any attempt to parallelize Gauss-Seidel are that firstly,
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the exact order in which we update the residuals and solution vectors is not actually
important, as long as we do it one DOF at a time. This means that we can permute
A and apply Gauss-Seidel to the permuted Matrix. Let us take permutation such that
first take all DOF's in f, then all in Z, ctc. The order of sets will be i M, F,W,C. The
permuted matrix now looks like this
A o« 0 0
* AM * *
0 * * Ay
0 * * x  Ag

The second observation is that we can update DOFs i and j at the same time if A;; = 0.
On first glance, permuting A has not really put us a large step forward. Splitting of the
mortar-DOFs from the absolutely interior DOFs allows us to update 7 at the same time
as ]i', W, C, but ]i', W and C are connected among each other.

The submatrices Az, Ap, Az and A,z are all block-diagonal.

This is clear for A; and Apq as these are vol-EQC DOFs that can never connect to
vol-EQC DOFs on other procs, so the subblocks for each domain are not connected to
each other. In a way tere are type A-DOFs, which were always “easy” to parallelize to
begin with.

A ; and A are block diagonal by design, in the definition of F and W we threw out
all DOFs that connect face-eqcs to face-eqcs or wire-eqcs to wire-eqcs. These are, in a
way, type B-DOFs, they were not parallelizable to begin with, but with a bit of work,
and by removing all troublesome DOF's, we are still able to find a way.

This brings us to the very troublesome type C-DOF's, which are, unfortunately, basically
unparallelizable. They do, however, at least on the finer levels, make up the vast minority
of all DOFs.

Let us first formulate the distributed Gauss Seidel algorithm for the rest of the DOFs
and discuss what to do about the C-DOF's afterwards.

In figure we can see the the basic flow chart of the DGSS algorithm. First, we
are smoothing the M-DOFs, these are Z-DOF's, so we can compute the residuals and
update the solution vectors locally. After that, the 7 dofs can be updated at the same
time as the j:"—, W- and C-DOFs.

Updating the solution on the F and W-dofs requires first local computation of partial
residuals (which can be thought of as a partial distributed parallel vector), then a com-
munication step to cumulate these values and finally, once the full residual values are
present, a local update to the solution vector.

Updating the Z-DOFs can again be done completely locally.We try to hide as much of
the time that is spent on waiting for messages on the W, F , and C-parts with local
computation as possible. Overlapping communication and computation manually can
be tricky. One has to very carefully split up the local work into smaller chunks and
whenever one is waiting for a message work off a couple of them. We use more of a brute

* ¥ % O

force approach.

On construction of the first DistributedGaussSeidelSmoother-object, a thread is created
that immediately goes to sleep. Wenever we do a Gauss-Seidel sweep, this thread is
woken up and told to to the f—portion of the work. The main proc itself meanwhile
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8 Algebraic MultiGrid with Alternative Strong Connections

keeps on working on the F , W, and C-portions. Each proc only creates one thread for
all DGSS-objects (in particular, only one for all levels!). Depending on the MPI-libeary
in use, the way it was compiled and the machine we are running on, this sometimes
works well and sometimes not so much.

We are left with discussing what

can be done about the C-dofs. So
far, there were two differnt at- DGSS Smooth
tempts to master this problem. start M-DOFs

One is to just redistribute the —
entire matrix block Ac to the
master proc PY%. It has been
mentioned when talking about
parallel meshes in NGSolve that Smooth Smooth
the master proc does not posess 7-DOFs F-DOFs
a subdomain, which means that
most of the time, it has nothing
to do. From that point of view,
and if also considering that usu-
ally C should only contain very
few DOFs, this appears to be a DGSS end
good idea. This is however not
always the case on the coarse lev-
els, as the coarsening algorithm
tends to make DOFs more and Figure 8.13: Simple FlowChart for the DGSS algo-
more global as the number of lev- rithm.

els increases. Nonetheless, this

works pretty well up to around 500 cores or so, provided C stays small. After that,
problems start to arise even if C is small. Every time we have to smooth the C-DOFs, we
have to send the residual data for all C-DOFs, which come from all over the computa-
tional domain, to the master proc. This is basically a global Gather-operatioon, which,
as it has to be done for every Gauss-Seidel sweep, becomes prohobitively expensive when
many procs are involved.

The other approad was to divide the C dofs back into their FQC-blocks and then work
through one block after another. For that, a global C-EQC-block-graph, consisting of
a node for each block, and an edge e;; whenever a DOF in block i is connected to a
DOF in block j in the matrix graph of A is cunstructed. Then, a coloring for this graph
is found. All blocks of the same color can be updated at the same time, after which
residuals have to be updated and cumulated before one can proceed with the next color.
This corresponds to construcing a directed acyclic graph on the C-EQC-block-graph.
Unfortunately, every color in the graph “costs” one round of communication, and as the
C-EQC-block-graph becomes denser and denser on coarse levels, this is just too costly.
Currently a mixture of the two is employed. We take all C-dofs in the largest M colors
and go through them block-wise and gather the rest on the master-proc. The parameter
M can me modified.

Smooth Smooth
C-DOFs W-DOFs
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8.2 Parallelization and Implementation

Ultimately, the distributed Gauss Seidel algorith performs acceptably well when the
number of cores does not get too large and can perform very good in circumstances
where a lot of local computation has to be done which hides some of the latencies. In
terms of scalability however, it does not even come close to the ¢; hybrid Gauss Seidel
smoother.

Note 8.33. The created thread is a C++-11 thread that is notified via a condition_variable
when it has work to do.
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9 Performance and Benchmarks

All results in this section have been obtained on the COEUS clutster at Portland State
University, thanks to the support by Professor Jay Gopalakrishnan and the Portland
Institute for Computational Science and its resources acquired using NSF Grant DMS
1624776.
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Figure 9.1: Comparison of DGSS and HGSS. On the left: Efficiency of HGSS(circles)
and DGSS(triangles). The Y-axis shows time for a matrix-vector multiplication divided
by time for one smoothing step. On te right: n, versus wall time for 25 smoothing

interations

Overall, DGSS performs acceptably where there is sufficient local work to hide commu-
nication but is still outperformed by HGSS across the board. It has to be said, however,
that these computations were done on the finest levels. On coarser levels, the comparison

is even less favorable towards DGSS.
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AscAMG Performance

Figure shows results for 8 = 0 and homogeneous dirichlet boundary conditions
on Q = (—1,1)3. « is constant on Q1 = (—0.3,0.3)% and either 10, 103 or 10°. On
2\ 2, a = 1. The mesh size and number of procs varies. Obtained by AscAMG
-preconditioned PCG. The empleysd smoother is HGSS. Figure does not take the
time for assembling and AscAMG setup into account, includes it. We prescribed
that AscAMG uses the scheme (PPHPPH)-(NNBNNB)//(PH)-(NB) and left it to its’
own devices otherwise. The cutoff-points for contraction and number of levels before the
left over coarse system is solved directly have been left up to AscAMG to decide.
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Figure 9.2: Circles: a; = 10. Rectangles: o7 = 103. Triangles: a; = 10°. Colors
indicate number of procs; red:20, violet:100, turquoise:200, dark blue:400,
orange:500, green:600, black:700, light green:800, ochre:900

We show also results of a test run where we solved the same equation, with & = 1 and
kept % ~ 2-10° constant while increasing both problem size and the number of procs

evenly. This goes up to 1460 procs. In this case we did do some handtuning, by adding
additional P-prefix-stages to the scheme as the problem became bigger.
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Figure 9.3: y-axis:time, x-axis:ndof. All the while is kept constant.

Concluding this chapter, let us take one computation and look a little closer at a lingle,
ver large computation. The problem is again the same as above, with « = 1, § = 0. The
number of DOFs is about 3 - 10® and we are using 1800 cores, which represents 90% of
COEUS’s 100 standard compute nodes with 20 cores each. We use a total of 21 coarse
levels, the scheme was the rather monstrous looking (PPHPPHPHPHPHPHPHPH)-
(BNNBNNBNBNBNBNBNBNB)//(H)-(B). Again, we use HGSS. We solve the equation
in 63 iterations and 6.9 seconds, the time needed for assembling the bilinearform and
setting up the AscAM G preconditioner was 25 seconds. This gives us a very respectable
performance of solving 29 x 103 unknowns per core and second. Counting the setup
time, we get 5 x 103. The condition number of the preconditioned system is 107.161. A
total of 6 contraction steps have been used, in total reducing 1800 procs on the finest
level to only 43 active procs in the coarsest. The operator complexity of the V-cycle is
1.65. The maximal local operator complexity is 1.77, which tells us that the contraction
happened at good breakpoints and spaced out enough that operator complexity was not
overly impacted. The degrees of freedom where reduced from about 3 - 10® on the finest
level to 2497 on the coarsest one.
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10 Conclusion and Outlook

Conclusion

In this thesis we have introduced AscAMG . We have shown a new way to define strong
connections via the replacement matrix that has resulted in a new variation of smoothed
prolongation. Particular emphasis has been placed on all aspects of the the paralleliza-
tion of AscAMG , for which a formalism has been introduced that allows us to write
down parallel algorithms with great ease. Scalable Smoothers have been discussed and
an, as far as I know, original approach to Distributed Gauss-Seidel has been presented.
AscAMG has been shown to perform well and scale to at least 1800 cores, although
without manual tuning it lacks consistency.

Future Work

While AscAMG has been shown to be able to perform well if tuned manually, we have not
yet managed to find a good algorithm that can let AscAMG tune itself. This currently
limits the consistency of the method and means that its usefulness for the average user
who does not know all the peculiarities of the method is limited.

I have also personally not given up hope on making the distributed Gauss Seidel work
respectably. While it is probably impossible to outperform the ¢'-Hybrid Gauss Seidel
smoother, it remains nonetheless a very intriguing problem. One interesting approach
would be to combine DGSS with a hybridization only for the C-DOFs.

The next truly major step would be to hybridize AscAMG . NGSolve already provides
very efficient parallelization either by MPI or by shared memory parallelization via C++-
11-threads. Omne could build on these established foundations and combine the two
approaches, into the effort of which AscAMG could be integrated.
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