
Diplomarbeit

AscAMG, Algebraic Multigrid with
Alternative Strong Connections

Ausgeführt am Institut für

Analysis und Scientific Computing

der Technischen Universität Wien

unter der Anleitung von

Univ.Prof. Dipl.-Ing. Dr.techn. Joachim Schöberl

durch

Lukas Kogler BSc

Schallergasse 39, 1120 Wien

December 13, 2017

Die approbierte Originalversion dieser Diplom-/
Masterarbeit ist in der Hauptbibliothek der Tech-
nischen Universität Wien aufgestellt und zugänglich.

http://www.ub.tuwien.ac.at

The approved original version of this diploma or
master thesis is available at the main library of the
Vienna University of Technology.

http://www.ub.tuwien.ac.at/eng

ii

Kurzfassung

Diese Diplomarbeit stellt den AscAMG Vorkonditionierer vor, einen verteilten Alge-
braischen Mehrgitter-Vorkonditionierer für skalare, elliptische H1-Probleme, der zur Ein-
bindung in Netgen/NGSolve entwickelt wurde. Die Methode ist benannt nach der alter-
nativen Art und Weise wie starke Verbindungen charakterisiert werden. Die dabei zum
Einsatz kommende Ersatzmatrix führt direkt zu einer neuen Variation der Methode der
geglätteten Prolongation die in Aggregations-basierten Mehrgitterverfahren zum Einsatz
kommt. Auf die Parallelisierung der Methode wird ganz besonders eingegangen und auch
skalierbare parallele Glätter werden besprochen. Nachdem die Skalierbarkeit der Meth-
ode auf mindestens 1800 Prozessoren durch numerische Ergebnisse demonstriert wird,
werden Schlüsse gezogen und eine Perspektive auf mögliche künftige Weiterentwicklun-
gen der Methode gegeben.

iii

Abstract

This thesis introduces the AscAMG preconditioner, a distributed Algebraic Multigrid
Preconditioner for scalar, elliptic H1-problems, that has been developed for NGSolve.
The method gets its’ name from an alternative way to define strong connections that is
based on a replacement matrix. This leads directly to a new variation of the smoothed
prolongation method commonly found in aggregation based Multigrid solvers. The par-
allelization of the method is described in detail and scalable smoothers are found and
discussed. After demonstrating the scalability of the method to at least 1800 cores with
numerical results, conclusions are drawn and an outlook on possible future developments
of the method is given.

v

vi

Acknowledgements

First and foremost I want to thank Prof. Dr. Joachim Schöberl for supervising this
thesis. Without his advice and patience this work would not have been possible.

Special thanks also go to Professor Jay Gopalakrishnan who granted me access to the
COEUS cluster at Portland State University which was a huge help in developing, opti-
mizing and benchmarking my code.

Another person who must be mentioned is my colleague, Matthias Hochsteger, who was
always happy to help me with his expertise in C++ and anything computer-related in
general. I hope he will never again have to hear me say that the SCALAPACK library
was not linked correctly again.

And lastly, I want to sincerely thank my family for supporting me during the course of
my studies.

vii

Notation

The standard euclidian product in Rn will be denoted by 〈·, ·〉2 or, if the context is clear,
by 〈·, ·〉. The euclidian norm will be written as ‖ · ‖2 or ‖ · ‖. We write a . b for a ≤ Cb
with some moderately sized constant C and a ≈ b for a . b∧ b . a. We will conistently
write vectors in Rn and matrices in Rn×n bold. For matrices A ∈ Rn×n, we will write

〈u,v〉A := 〈Au,v〉 (0.1)

‖u‖2A := 〈u,u〉A (0.2)

(0.1) is called the energy inner product. For SPD A, the norm (0.2) is called the energy
norm. For matrices A,B ∈ Rn×n, we write A ≥ 0 if 〈Ax,x〉 ≥ 0 ∀x ∈ Rn and A ≥ B if
A−B ≥ 0.

ix

Contents

1 Introduction 1

2 The Finite Element Method 3
2.1 Element Matrices . 7
2.2 Numerical Aspects . 9

3 Basic Iterative Methods 11
3.1 Stationary Linear Iterative Methods . 12

4 Distributed Computing 17
4.1 The Distributed Programming Model . 17
4.2 MPI . 18
4.3 The Distributed Finite Element Method 20
4.4 Distributed Linear Algebra . 23

4.4.1 Distributed Matrices and Vectors 23
4.4.2 Distributed Linear Algebra Operations 24

4.5 MPI-Parallelization in Netgen/NGSolve 25

5 Error Smoothing 29
5.1 Algebraically Smooth Error . 30

6 Multigrid Methods 31
6.1 The Two-Grid Algorithm . 31
6.2 The Multi-Grid Algorithm . 33
6.3 Advantages and Weakpoints of the Geometric Multigrid Method 34

7 Algebraic Multigrid 35
7.1 Analysis of the two grid method . 36
7.2 Analysis of the Multi Grid Method . 40

8 Algebraic MultiGrid with Alternative Strong Connections 41
8.1 The Prolongation . 41

8.1.1 Replacement Matrix . 44
8.1.2 Two Grid Convergence . 49
8.1.3 Smoothed Prolongation . 50
8.1.4 A better coarse system . 51

8.2 Parallelization and Implementation . 55
8.2.1 Coarsening . 57
8.2.2 Contracting . 69

xi

Contents

8.2.3 Distributed Smoothed Prolongation and Optimizing Operator Com-
plexity . 72

8.2.4 smoothers . 79

9 Performance and Benchmarks 85

10 Conclusion and Outlook 89

xii

1 Introduction

Algebraic Multigrid Methods are a class of solvers and preconditioners for systems of
linear equations that have been used in a wide variety of problems, among others in heat
conduction, fuild dynamics and electromagnetics. While they are generally inferior to
geometric multigrid methods where those can be applied, algebraic multigrid methods
offer relatively “black-box” solvers that are robust against large jumps in coefficients
and complex geometrical situations, neither of which is true for geometric multigrid
algorithms. This work will introduce “AscAMG ”, which stands for “Algebraic Multigrid
with Alternative Strong Connections”, an algebraic multigrid preconditioner for scalar,
symmetric positive definite H1 - problems. More precicely, we will consider the equation

−div (α∇u) + βu = f (1.1)

with badly behaving coefficients α and β in 2 and 3 dimensions on arbitrarily complex
domains Ω.
AscAMG is an extension to Netgen/NGSolve. Netgen/NGSolve is a multi purpuse C++
mesh-generation and Finite Element library that has been in development since the
ninties (see also [5], [6]). AscAMG is itself implemented in C++ and has been shown to
scale to 1800 cores.

Outline of the thesis

In chapters 2 and 3, we will very shortly review the Finite Element method and some
numerical methods we can use to solve linear equations resulting from the Finite Element
discretization of the problem (1.1) in question.
After that, we will discuss the challenges distributed computing environments pose for
Finite Elements and very briefly review the Message Passing Interface (MPI), a standard
for message passing in distributed systems. The distributed Finite Element Method as
well as a particular viewpoint of distributed linear algebra that fits it very well will be
presented. Closing out chapter 4,we will give some perspectives on how NGSolve handles
MPI-parallelization.
After that, in chapter 5, motivation for multigrid methods will be provided, and in
chapter 6 we will take a first look at multigrid methods in general, at their advantages
and at the difference between geometric and algebraic methods.
In section 7, the algebric multigrid method will be introduced in a generic way and a
well known result about a condition that implies its’ convergence will be presented.
The AscAMG method itself will be introduced in detail in chapter 8. A proof for the
methods’ convergence based on the previous’ chapter’s abstract definition will be given.
In particular, the parallelization of the method will be described in detail. In course
of that, we will intorduce a formalism that divides the degrees of freedom into equiva-

1

1 Introduction

lence classes based on their parallelicity. This will be used to formulate our coarsening
algorithm as well as the smoothers available in AscAMG with great ease. It will also
provide a very simple characterization of a class of prolongation matrices that guarantee
communication-free transfer between grid-levels.
Finally, the quality and scalability of the method will be demonstrated in section 9.

2

2 The Finite Element Method

In this chapter we will briefly review the most important facts about the finite element
method for discretizing (1.1), as far as we will need it later on. As we will only be
interested in the lowest order case and equation (1.1) is one of the most basic partial
differntial equations there are, proofs for all lemmas and theorems in this chapter can
be found in any good textbook on the Finite Element Method, for example [3]. Section
2.1 will give an overview over element matrices which will be used in chapter 4 to gain
a better perspective on distributed linear algebra for the distributed Finite Element
method.

Let us first enforce boundary conditions in (1.1). Let ΓD and ΓN be subsets of ∂Ω
such that ΓD ∪ ΓN = ∂Ω. For α, β, f ∈ L2(Ω) and suitable uD, g ∈ L2(ΓN), enforcing
boundary conditions in equation (1.1) leads to:

Find u ∈ C2(Ω) such that:

−div (α∇u) + βu = f in Ω (2.1)

trΓDu = uD on ΓD (2.2)

∇u · n = g on ΓN (2.3)

Notation 2.1. For the remainder of this work, let Ω ⊆ Rd, where d = 2 or d = 3 be
a Lipschitz domain. We will also limit ourselfs to the case where Ω is a polygon or
polyhedron.

Next, we will work towards the weak formulation of (2.1).

Lemma 2.1: H1-Sobolev Space

The space
H1(Ω) := {u ∈ L2(Ω) : ∇u ∈ L2(Ω)}

equipped with the norm

‖u‖2H1(Ω) := ‖u‖2L2(Ω) + ‖∇u‖2L2(Ω)

is a hilbert space. Let Γ ⊆ ∂Ω, with |Γ| > 0. Then there is a continuous trace
operator trΓ : H1(Ω)→ L2(Γ) that extends the restriction operator for continuous
functions:

∀u ∈ C(Ω) : trΓu = u|Γ on Γ

The space
H1
D(Ω) := ker trΓ = {u ∈ H1(Ω) : trΓ u = 0}

equipped with the H1-norm is also a hilbert space. If Γ = ∂Ω, we write tr instead
of trΓ and H1

0 (Ω) instead of H1
D(Ω).

3

2 The Finite Element Method

The weak formulation of (2.1) reads:

Find u ∈ H1(Ω) such that:

a(u, v) = f(v) ∀v ∈ H1
D(Ω) (2.4)

u = uD on ΓD (2.5)

With:

a(u, v) :=

∫
Ω
α∇u · ∇v + βuv dx (2.6)

f(v) :=

∫
Ω
fv dx+

∫
ΓN

gv ds (2.7)

Technically, we require uD ∈ H1/2(ΓD) and g ∈ H−1/2(ΓD), with the fractional order
Sobolev-Slobodeckij spaces H1/2(ΓD) and H−1/2(ΓD), however, we will simply assume
that these functions are as smooth as we need them to be. The well known Lax-Milgram
lemma guarantees the exinstence of a sultion for (2.4) and (2.5) in H1(Ω), provided
α ≥ α0 > 0, β ≥ 0 and either β ≥ β0 > 0 or |ΓD| > 0. We will assume this to be the
case.

Lemma 2.2: Lax-Milgram

Let V be a Hilbert space, and let a(·, ·) be a continuous, elliptic (or coercive)
bilinear form on V , that is

a(u, v) ≤ C‖u‖V ‖v‖V ∀u, v ∈ V
a(u, u) ≥ c‖u‖2V ∀u ∈ V

Let f(·) be a continuous linear form on V ,

f(u) ≤ D‖u‖V ∀u ∈ V
Then, the equation

a(u, v) = f(v) ∀v ∈ V
has a unique solution u ∈ V . Furthermore,

‖u‖V ≤
D

c

For the Finite Element Method we replace the infinite-dimensional continuous spaces
H1(Ω) and H1

D(Ω) by finite dimensional, discrete spaces Vh and VD,h and arrive at the
discrete weak formulation:

Find uh ∈ Vh such that:

a(uh, vh) = f(vh) ∀vh ∈ V0,h (2.8)

uh = PhuD on ΓD (2.9)

Here, Ph is the L2-Projector onto trΓD(Vh), for simplicity we will from now on assume
that uD ∈ trΓD(Vh). The discrete spaces Vh, Vh,D will be defined shortly.

4

Definition 2.1: Regular Triangulation

A regular triangulation Th of Ω is a set of non degenerate, closed traingles or
tetraheda such that

Ω =
⋃
T∈T

T

For any Ti, Tk ∈ Th, Ti ∩ Tj must be either empty, a vertex or an edge. The mesh
width h is the maximal diameter of any T ∈ T . We assume that

diam(T) ≥ Ch ∀T ∈ Th
with a moderately sized constant C. This property will also be called the shape
regularity of Th.

Notation 2.2. We will write V(Th) for the set of all vertices and E(Th) for the set of
all edges of a triangulation Th. The set of all its faces will be F(Th). A “node” can
refer to either a vertex, an edge, a face or an element of T . All k-dimensional nodes in a
triangulation will be assigned a number in {1 . . . nk}, in no particular order, vi will stand
for the vertex with number i, ei for the edge with number i etc. The edge connecting
two vertices vi and vj will also be written as evi,vj , or, more briefly, eij . The two vertices
of an edge e will also be written as ve1 and ve2 , in no particular order. We will also use
the notation Tv := {T ∈ Th : v ∈ VT } ⊆ Th.

In order to properly resolve the boundary conditions, we require ΓN and ΓD both to
consist of a union of elements in E(Th) in two dimensions or F(Th) in three dimensions.
We will assume this as given. We are now ready the define what a finite element is.

Definition 2.2: Finite Element

Let Th be a regular triangulation of Ω. A finite element is a triple (T, Vh,T ,ΨT),
where T ∈ Th, Vh,T is a finite dimensional function space on T and ΨT is a base of
its dual space V

′
h,T . The finite element’s base functions are the dual basis vectors

of ΨT . For each ψi ∈ ΨT we write ϕi ∈ ΦT for its dual basis function.

The global finite element space, which will take the place of Vh in (2.8), is just the
product of these local spaces defined on each element in Th, with some additional enfored
restrictions. We will only be concerned with the classical nodal, scalar, continuous, lowest
order H1 Finite Element space.

5

2 The Finite Element Method

Definition 2.3: Lowest Order H1 Finite Element Space

For a regular triangulation Th, and T ∈ Th let Vh,T = P 1(T). Let VT be the set
of vertices of T and for each v ∈ VT let ψv ∈ C(T)′ be defined by ψv(u) = u(v).
Finally, let ΨT := {ψv : v ∈ VT }. The lowest order H1 finite element is defined as
(T, P 1(T),ΨT). The lowest order H1 Finite Element Space is defined as

Vh :=
∏
T∈T

Vh,T ∩ C0(Ω) ⊆ H1(Ω) (2.10)

We also need the discrete space that corresponds to H1
D(Ω), which is just the set

of all Vh functions that vanish on ΓD:

Vh,D := {uh ∈ Vh : uh(vi) = 0 ∀vi ∈ V ∩ ΓD}
Again, we write Vh,0 instead of Vh,D if ΓD = ∂Ω.

Note 2.1. In 2 dimensions, this gives us the standard “hat”-function basis.

Notation 2.3. We will write ‖ · ‖A for the A-norm, the norm on Vh induced by a(·, ·).
We will write uh ⊥A vh if a(uh, vh) = 0.

Lemma 2.3: Céa

Let V be a hilbert space and let Vh be a finite dimensional subspace of V . Let a(·, ·)
be an elliptic and continuous bilinear form on V and let f(·) be a continuous linear
form on V . Then, there exist unqiue solutions u and uh of the problems

a(u, v) = f(v) ∀v ∈ V
a(uh, vh) = f(vh) ∀v ∈ Vh

With the ellipticity constant c and the continuity constant C of a(·, ·), they fulfill

‖u− uh‖ ≤
C

c
inf

vh∈Vh
‖u− vh‖

From now on, Vh will always be the lowest order H1 Finite Element space defined on
Th.

Lemma 2.4: Approximation Properties of Vh

On a regular triangulation, the lowest order nodal scalar H1-finite element space
fulfills

inf
vh∈Vh

‖u− vh‖H1(Ω) . h|u|H2(Ω) ∀u ∈ H2(Ω)

inf
vh∈Vh

‖u− vh‖L2(Ω) . h2|u|H2(Ω) ∀u ∈ H2(Ω)

We will now turn our attention towards the system of linear equation induced by (2.8).
For that, we identify Vh with the coordinate space Rn:

6

2.1 Element Matrices

Lemma 2.5: Galerkin Isomorphism

The Galerkin isomorphism G : Rn 7→ Vh, where n = dim Vh = |V|

Gu =

n∑
i=1

uiϕi =: uh (2.11)

fulfills the bounds

hd‖u‖22 . ‖uh‖2L2 . hd‖u‖22

Notation 2.4. In prose, we will usually not distinguish between a finite element function
uh and its coordinate vector representation G−1uh at all, however, where it is necessary
to differentiate between the two, we will often omit G and write pairs with respect to G
as uh and u, vh and v etc.

Lemma 2.6: Finite Element Matrix

Let A ∈ Rn×n and b ∈ Rn, with n = dim Vh = |V| be defined by
Aij = a(ϕi, ϕj)

bi = f(ϕi)

Then, the action of a(·, ·) can be brougt from Vh to Rn with the galerkin isomor-
phism (2.11):

vTAu = a(uh, vh)

Solving (2.8) is then, via the Galerkin isomorphism, equivalent to finding u ∈ Rn
such that

Au = b (2.12)

Notation 2.5. We will write ‖ · ‖A for the A-norm, the norm on Rn induced by A. We
will write u ⊥A v if 〈Au,v〉 = 0.

Definition 2.4: Stiffness and Mass matrices

From now on, M stands for the mass matrix, which is the finite element matrix
for (2.8) and α = 0, β 6= 0, or

a(u, v) =

∫
Ω
βuvdx

If β = 1, ‖u‖M = ‖uh‖L2(Ω).
The stiffness matrix K will be the finite element matrix for (2.8) and α 6= 0, β = 0

a(u, v) =

∫
Ω
α∇u · ∇vdx

If α = 1, ‖u‖K = |uh|H1(Ω) =: ‖∇uh‖L2(Ω)

2.1 Element Matrices

We will now take a look at element matrices, how to assemble the global matrix from
these and how to perform the matrix vector multiplication with A while only using the

7

2 The Finite Element Method

element matrices. While this will not be a point of focus for the rest of this work, the per-
spective gained in this section will be useful for the later discussion of the parallelization
of the Finite Element method in section 4.3.

Definition 2.5: Reference Element

The reference element T̂ ⊆ Rd is defined as the convec hull conv {0, ex, ey} in two
and conv {0, e1, ex, ez} in three dimensions.

Lemma 2.7: Element Transformation

For each T ∈ Th, there is a bijective linear element transformation FT : T̂ → T
such that:

|det∇FT | ≈ hd

|∇FT | ≈ h

Definition 2.6: Element Matrix

Let T ∈ Th be an element with VT = {i1, i2, i3}. Let (T, VT .ΨT) be the Finite
Element corresponding to T and let (ϕi)1≤i≤d be the local Finite Element basis
functions as in definition 2.3, numbered such that ϕj(vik) = δjk. Note that the ϕi
are restrictions of global basis functions to T .
The element matrix AT ∈ Rd×d associated with T and a(·, ·) is defined by

AT,jk := a|T (ϕj , ϕk) :=

∫
T
α∇ϕj · ∇ϕk + βϕjϕk dx 1 ≤ j, k ≤ d (2.13)

The element vector bT ∈ Rd associated with T and f(·) is defined by

bj := f|T (ϕj) :=

∫
T
fϕj dx+

∫
ΓN∩∂T

gϕj ds (2.14)

The element index-map is

mT :

{
{1 . . . 3} → {0 . . . n− 1}
k 7→ ik

The discrete embedding matrix ET ∈ Rn×d associated with T is defined by the
element index map via

ET,ij = δi,mT (j)

8

2.2 Numerical Aspects

Lemma 2.8: Assembling the Matrix

The global matrix A can be assembled from the element matrices and the embed-
dings by:

A =
∑
T∈Th

ETATE
T
T

Using Tv from Notation 2.2, this means that the components of A can be written
as:

Aij =
∑

T∈Tvi∩Tvj

AT,m−1
T (i)m−1

T (j)

Note 2.2. We can express multiplication with A via the element matrices. For a vector
v ∈ Rn and an element T ∈ Th, vT := ETv ∈ Rd is its component corresponding to the
element’s degrees of freedom. GET

Tv ∈ Vh,T is the restriction of vh to T .

Av =
∑
T∈Th

ETATE
T
T v =

∑
T∈Th

ETATvT

This means that Av is the sum of local contributions ATvT .

2.2 Numerical Aspects

The matrix graph of A is strongly related to the triangulation Th, aij 6= 0 if and only if
there exists an edge connecting vi and vj , or in other words if eij ∈ E(Th). This means
that, assuming shape regularity of Th, the number of non zero entries of A per row is
limited by approximately 7 in two dimensions and 14 in three dimensions.

Lemma 2.9: Conditioning of the mass matrix

If β = 1, the mass matrix M fulfills the (sharp) spectral bounds

hd‖u‖22 . ‖u‖2M . hd‖u‖22
This leads to the condition number

κ(M) = O(1)

Note 2.3. If β 6= 1 but max{β(x), x ∈ Ω} < C and min{β(x), x ∈ Ω} > c for positive
constants, we at worst incur an additional factor C in the upper bound and c in the
lower bound, leading to an additional worst case factor C

c in the condition number.

Lemma 2.10: Conditioning of the stiffness matrix

If α = 1, and |ΓD| > 0, the stiffness matrix K fulfills the (sharp) spectral bounds

hd‖u‖22 ≤ ‖u‖2K ≤ hd−2‖u‖22
This leads to the condition number

κ(K) = O(h−2)

9

2 The Finite Element Method

Note 2.4. If α 6= 1 but max{α(x), x ∈ Ω} < C and min{α(x), x ∈ Ω} > c for positive
constants, we at worst incur an additional factor C in the upper bound and c in the
lower bound, leading to an additional worst case factor C

c in the condition number.

Note 2.5. From this we can see that condition-wise, the worst case in (2.8) is the pure
poisson problem, where, β = 0, and α varies strongly. Adding any (positive) L2-term
will only improve the codition of the Finite Element matrix A.

10

3 Basic Iterative Methods

This chapter contains a short overview over some very basic iterative methods that will
be referred to throughout the rest of this work. While the Conjugate Gradient Algorithm
will only be mentioned shortly for the sake of completeness, stationary iterative methods
will be elaborated upon in more detail, as these are the basic building blocks for all
multigrid algorithms.
For now, we will take a step back and consider the equation Ax = b for generic (sparse)
SPD matrices A ∈ Rn×n and x,b ∈ Rn. When n is very large, solving such systems
of equations in general requires iterative methods, as direct solution methods require
too much memory and time to be feasible. Unfortunately, most iterative techniques
also behave badly as n → ∞ because their performance is dependent on κ(A). In the
case where A is a finite element matrix for the poisson problem, lemma 2.10 tells us
that κ(A) → ∞ as h → 0. One way out of the dilemma is to try and find a good
Preconditioner C for A, that is a matrix such that C−1 is a good approximation for
A−1 that is also cheap to compute. Then the condition of C−1A is much better that
that of A and one can apply the iterative method to a transformed system.

Definition 3.1: Preconditioner

A preconditioner for an SPD matrix A ∈ Rn×n is an SPD matrix C ∈ Rn×n such
that

κ(C−1A) < κ(A)

The Conjugate Gradient Method (CG-Method) is probably the most famous method
for solving generic SPD problems Ax = b. It is a member of the family of Krylov
Space methods and features strict monotone convergence in the energy norm, however
the rate of convergence is dependent on the condition of the matrix A. The CG method
is featured in many textbooks, for example, it is treated in great detail in [4].

Theorem 3.1: The Preonditioned Conjugate Gradient Method

The preconditioned Conjugate Gradient Method (algorithm 1) for solving the equa-
tion

Ax = b

for an SPD matrix A ∈ Rn×n and b ∈ Rn, given an initial approximation u0 of
u with help of an SPD preconditioner C ∈ Rn×n finds the exact solution after at
most n steps. With the intermediate apprximate solution after k steps and the
ek := u− uk, it fulfills the energy norm estimate

‖ek‖A ≤

(
1−

√
κ(C−1A)

1 +
√
κ(C−1A)

)k
‖e0‖A

11

3 Basic Iterative Methods

Proof. See, for example [4]

Note 3.1. PCG combines a very generic algorithm, the conjugate gradient method, that
works for all SPD matrices A with a preconditioner C, which is usually specifically
tailored to the problem at hand.

Algorithm 1 The Preconditioned Conjugate Greadient Method

1: procedure PCG(A, b, x0)
2: Compute r0 := b−Ax0, z0 = C−1r0, p0 := z0

3: for j = 0, 1 . . . until convergence do
4: αj := 〈rj , zj〉 / 〈Apj,pj〉
5: xj+1 := xj + αjpj
6: rj+1 := rj − αjApj
7: zj+1 := M−1rj+1

8: βj := 〈rj+1, zj+1〉 / 〈rj , rj〉
9: pj+1 := zj+1 + βjpj

10: return xj

3.1 Stationary Linear Iterative Methods

In essence, Stationary Linear Iterative Methods (SLIMs) are affine linear mappings
Φ : Rn → Rn. One starts with some initial guess x0 for the solution x∗ and then iterates
xk+1 = Φ(xk). For consistency, the true solution x∗ must be a fixed point, Φ(x∗) = x∗.

Definition 3.2: Stationary Linear Iterative Methods

A stationary linear iterative method for the solution of Ax = b can be written as

xk+1 = Mxk + Nb (3.1)

with M, N ∈ Rn×n, N invertible and I = M + NA.

Note 3.2. Alternatively, one could also write (3.1) as

xk+1 = xk + N (b−Axk) (3.2)

This is just one step of the preconditioned Richardson-iteration. We see that N should
be an approximation for A−1.

Note 3.3. Given an SPD preconditioner C for A such that A ≤ CC and A ≥ cC,
N := 1

CC−1 defines a convergent SLIM for which ‖M‖ ≤ C
c = 1− κ(C−1A)−1.

Note 3.4. M is also called the error propagation matrix or simply the iteration matrix
of the SLIM, because, with the error ek := x∗ − xk, the error after the next iteration is

ek+1 = Mek

Lemma 3.1: Convergence Criterium for SLIMs

Let W := N−1, then a sufficient condition for the convergence of SLIM is

W + WT −A > 0 (3.3)

12

3.1 Stationary Linear Iterative Methods

Proof. By definition of the operator norm (w.r.t the euclidian norm), we have

‖ek+1‖2 = ‖Mek‖2 = ‖(I−NA)ek‖2 ≤ ‖I−NA‖2‖ek‖2 ≤ ‖I−NA‖k+1
2 ‖e0‖2

We have to show that ‖I−NA‖2 = ‖I−A
1
2 NA

1
2 ‖2 < 1.

(I−A
1
2 NA

1
2)T (I−A

1
2 NA

1
2) = I−A

1
2 NTA

1
2 −A

1
2 NA

1
2 + A

1
2 NTANA

1
2 =

= I−A
1
2 NTN−1NA

1
2 −A

1
2 NTN−TNA

1
2 + A

1
2 NTANA

1
2 =

= I− (NA
1
2)T (W + WT −A)(NA

1
2) =

=: I−B

Now, if W + WT −A > 0, B is SPD, I−B < 1 and

‖I−A
1
2 NA

1
2 x‖2 =

〈
(I−A

1
2 NA

1
2)x, (I−A

1
2 NA

1
2)x
〉

=

=
〈

(I−A
1
2 NTA

1
2)(I−A

1
2 NA

1
2)x,x

〉
= 〈(I−B)x,x〉 < ‖x‖22

And thus ‖I−NA‖2 < 1.

Notation 3.1. The matrices M, N and W will from now, unless explicitely stated other-
wise, stand for the iteration matrix, the approximate inverse and it’s inverse associated
with a SLIM.

Definition 3.3: Dampened Jacobi Method

The dampened jacobi method with dampening parameter ω ∈ R is given by defini-
tion 3.2 and

N = ωD−1

with the diagonal D of A.

Lemma 3.2: Spectral Bounds for Jacobi Preconditioning

The jacobi preconditioner for the stiffness matrix K fulfills the (sharp) spectral
bounds

h2D . K . D

This leads to the condition number estimate κ(D−1K) = O(h−2) with a constant
that depends on α.
The jacobi preconditioner for the mass matrix M fulfills the optimal spectral bounds

cD . M . CD

with condition number κ(D−1M) = O(1) with a constant that depends on β.

Proof. If 0 < α0 < α < α1

α0 min
v∈V(Th)

‖ϕv‖2H1(Ω)‖u‖
2
2 ≤ 〈Du,u〉 ≤ α1 max

v∈V(Th)
‖ϕv‖H1(Ω)‖u‖22

Therefore, assuming shape regularity of the triangulation, D ≈ hd−2I. and if 0 < β0 <
β < α

β0 min
v∈V(Th)

‖ϕv‖2L2(Ω)‖u‖
2
2 ≤ 〈Du,u〉 ≤ β1 max

v∈V(Th)
‖ϕv‖L2(Ω)‖u‖22

13

3 Basic Iterative Methods

Therefore, assuming shape regularity of the triangulation, D ≈ hdI. Now the claim is
evident from lemmas 2.9 and 2.10.

Note 3.5. According to lemma 3.1, the dampened jacobi method is convergent if 2
ωD >

A.

Definition 3.4: Gauss-Seidel Method

The Gauss-Seidel method is given by definition 3.2 and

N = (L + D)−1

where L is the strictly lower triangular part of A.

Note 3.6. In contrast to the Jacobi method, the Gauss-Seidel method does not require
a dampening parameter, however using one can improve the convergence rate altough
finding a good parameter is not trivial.

Note 3.7. For any SLIM given by N, NT defines another, “transposed”, SLIM, that
converges iff. the original one does. The error propagation matrix of the transposed
SLIM is I − NTA = M∗, which is the 〈·, ·〉A-conjugate of M. For example, the GS
method becomes the backwards GS method with N = (U + D)−1.

Definition 3.5: Symmetrized SLIM

Let a SLIM be given by N , then the symmetrized SLIM is given by

Ñ := NT (N−T + N−1 −A)N

or, equivalently, by

W̃ := W(WT + W −A)−1WT

Note 3.8. One iteration of the symmetrized SLIM Ñ is equivalent to one iteration woth
N followed by one iteration with NT . As M̃ = M∗M is symmetric wrt. 〈·, ·〉A, ρ(M̃) =

‖M̃‖A = ‖M‖2A.

Note 3.9. If we symmetrize GS with dampening parameter ω, we obtain the well known
SSOR method (successive overrelaxation) with

N = ω(2− ω) (L + D)−1 D (L + U)−1

From lemma 3.2 we know that the contraction rate of the jacobi method is 1 − O(h2).
We will now see that Gauss-Seidel has the same asymptotic behavior.

Lemma 3.3

If a SLIM fulfills, for some σ0, σ1 > 0〈(
W + WT −A

)
x,x

〉
> σ0 〈Dx,x〉 (3.4)〈

WTD−1Wx,x
〉
≤ σ1 〈Dx,x〉 (3.5)

Then
σ0

4
〈Dx,x〉 ≤

〈
W̃x,x

〉
≤ σ1

σ0
〈Dx,x〉 (3.6)

14

3.1 Stationary Linear Iterative Methods

Proof. Let B := D−
1
2 WD−

1
2 , now from (3.4) we get:

‖B‖2 = sup
x

〈
D−

1
2 WTD−1WD−

1
2 x,x

〉
‖x‖2

=

= sup
x

〈
WTD−1WD−

1
2 x,D−

1
2 x
〉

‖x‖2
≤

≤ σ1 sup
x

〈
DD−

1
2 x,D−

1
2 x
〉

‖x‖2
= σ1

Now, using (3.5) we can show the upper bound for W̃ in (3.6):〈
W̃x,x

〉
=
〈(

W + WT −A
)
WTx,WTx

〉
≤ 1

σ0

〈
D−1WTx,WTx

〉
=

=
〈
BBD

1
2 x,D

1
2 x
〉
≤ ‖B‖

2

σ0
〈Dx,x〉 =

σ1

σ0
〈Dx,x〉

For the other bound, (3.4) gives us:

2 〈Wx,x〉 =
〈(

W + WT
)
x,x

〉
≥
〈(

W + WT −A
)
x,x

〉
≥ σ0 〈Dx,x〉

Equivalently,

〈Bx,x〉 ≥ σ0

2
〈x,x〉

Now, we apply this inequality to B−1x:

‖B−1x‖2 ≤ 2

σ0

〈
x, B−Tx

〉
≤ 2

σ0
‖B−1x‖‖x‖ ⇒ ‖B−1‖ ≤ 2

σ0

From this we obtain〈
W̃−1x,x

〉
=
〈
WT

(
W + W−T −A

)
W−1,x

〉
=

=
〈(

W−T + W−1 −W−TAW−1
)
x,x

〉
≤

≤
〈(

W−T + W−1
)
x,x

〉
= 2

〈
W−1x,x

〉
=

= 2
〈
B−1D−

1
2 x,D−

1
2 x
〉
≤ 2‖B−1‖

〈
D−1x,x

〉
≤

≤ 4

σ0

〈
D−1x,x

〉
Or, equivalently

σ0

4
〈Dx,x〉 ≤

〈
W̃x,x

〉

Theorem 3.2: Asymptotic Behavior of Gauss-Seidel

The Gauss-Seidel method fulfills the conditions (3.4), (3.5) from theorem 3.3 with
σ0 = 1 and some moderately sized σ1.

Proof. σ0 = 1 is trivial because
(
W + WT −A

)
= D. For the other condition we have

to show 〈
WTD−1Wx,x

〉
≤ σ1 〈Dx,x〉

15

3 Basic Iterative Methods

This is equivalent to showing

ρ
(
D−1WTD−1W

)
≤ σ1

A stronger condition than this is

‖D−1W‖‖D−1WT ‖ ≤ σ

for some arbitraty matrix-norm ‖ · ‖. We choose ‖M‖ := maxi

{∑
j |mij |

}
. Assuming

regularity of the trangulation, we can now bound ‖D−1W‖ from above by a moderately
sized constant. Let m be the maximum number of entries in any row of A. Then

‖D−1W‖ = max
i

 1

aii

∑
j≤i
|aij |

 ≤ max
i

 1

aii

∑
j

|aij |

 ≤
≤ mmax

i,j

{
|aij |
|aii|

}
≤ mmax

j
{ajj}

Note 3.10. In the proof of theorem 3.2 we obtained σ1 = O(m2), which holds for all
SPD matrices A but is very pessimistic in the case where A is the poisson matrix. In
fact, because constant functions are in the kernel of the poisson-matrix (for a domain
without dirichlet boundaries), we usually have

1

aii

∑
j

|aij | = O(1)

with the constant depending on the space dimension and the shape regularity of the
triangulation.

Corrolary 3.1.1. Forwards/Backwards/Symmetric Gauss-Seidel behave no better than
Jacobi for h→ 0.

Proof. Theorem 3.2 says that W̃ ≈ D. This means that

h2 .
〈Ax,x〉〈
W̃x,x

〉 =
〈Ax,x〉
〈Dx,x〉

〈Dx,x〉〈
W̃x,x

〉
where the lesser bound is sharp because of lemma 3.2! Thus the convergence rate of
symmetric Gauss-Seidel is 1−O(h2), just as that of Jacobi. With

‖M̃‖ = ‖MTM‖ ≤ ‖M‖2 ⇒ ‖M‖ ≥
√
‖M̃‖ ≥ ‖M̃‖

it is clear that forwards/backwards Gauss-Seidel can do no better than symmetric GS.

16

4 Distributed Computing

In this chapter we will illustrate the most fundamental differences between smaller sys-
tems, ranging from personal computers to single machine servers, and fully distributed
clusters and how a simplified programming model has to change to accomodate that.
After that, we will show how, in NGSolve, this shift in perspectives is extended to the
Finite Element method in a very natural way and how the linear algebra is implemented
to match.

While systems of the first kind can, on the most basic level, be viewed as single, integrated
machines consisting of a number of processing units that may act independently of one
another but share all of the available memory, clusters typically consist of many such
machines, in that context also called nodes, that are basically independent and only
connected to the others by some kind of communication network.
Broadly speaking, accessing memory on the same node may involve latencies ranging
from a few processor cycles, typically about 1 ns when accessing cached memory, to
about 100 ns when accessing memory in DRAM. Making use of the communication
system to get information from another node involves higher latencies that depend on
the networks’ exact makeup, the node-to-node distance and possible congestion, however
we are typically on a µs scale.
Additionaly, the bandwidth of local memory access is in general much larger than the
bandwidth of the communication network.
This discrepancy in both latency and throughput between accessing local memory and
making use of the communication network to access memory on other nodes has to be
reflected in our programming model if we want to write even remotely useful code for
such systems.

4.1 The Distributed Programming Model

The central distinction between a simple shared memory programming model and a
simple distributed one is that the first is what one might call “task based” and the
second “proc based”. In this context a process, or in short proc, is a unit for scheduling
and memory management, while a proc is unit for scheduling only.
A simple shared memory model, schematically depicted in figure 4.1a, assumes that there
is a number of threads within a single process that can act independently of one another
but can all access any part of the available memory at roughly the same speed. The
rationale is that different threads can be assigned to different processors and can then
work in parallel. We, as programmers, to some degree, depending on the framework
used for threading, have to take care of synchronization between threads, but on the
most basic level we do not need to care about which data is stored in which part of

17

4 Distributed Computing

the memory. Even when considering that in reality we do in fact have to consider non-
uniform memory access if we want to write really efficient code, we can usually get away
with parallelizing the sequential code on a relatively low level without changing many
of the algorithms very much on a conceptual level.

T T T T

M

a: Shared memory model

P

M

P

M

P

M

P

M

communication network

b: distributed memory model

In the context of Finite Elements, this may
for example involve parallelizing for-loops over
elements or nodes using a coloring of the un-
derlying mesh.
On clusters on the other hand, we have to use
more of a “top-down” approach to paralleliza-
tion. The higher latency and lower through-
put of the communication network as opposed
to local memory access on each node forces
us away from this kind of thread based ap-
proach towards one that is concerned with
procs. Schematically, this new approach is il-
lustrated in figure 4.1b. Each proc has its own
private memory which can only be accessed
by itself and is completely opaque to all other
procs, the memory is now distributed. The
only way for the procs to cooperate is by send-
ing messages via the communication network.
Now we, as programmers, have to know exactly which data is stored in which part of the
memory and we have to make any needed piece of data stored outside of any procs’ own
memory available to it by explicitly making use of the network. In contrast to shared
memory parallelization, it is now in most cases insufficient to parallelize sequential code
on a low level, instead we now also have to adapt our algorithms on a high level in order
to minimize use of the communication network. In scientific computing, the de facto
standard way of interacting with the communication network is via an MPI-library.

4.2 MPI

The Message-Passing-Interface is a standard that specifies a number of functions that
facilitate the passing of messages between different processes. This standard is imple-
mented in a multitude of good libraries, for example OpenMPI, IntelMPI and MPICH.
While MPI provides an interface that is platform independent, the libraries themselfs
are very well optimized and can be tuned for any specific machine, which allows users
to write efficient and portable code relatively easily.
We will now go over some of the terminology MPI introduces, as far as we will need it
in the remainder of this work.

Notation 4.1. The number of processes at work will be written as np.

In MPI, a communicator is a context in which a group of processes can exchenge mes-
sages. This group can include all of the np procs or only a suset thereof. MPI provides
a global communicator containing all procs called MPI COMM WORLD, and gives the
user the ability to create new communicators containing any subset of all procs. Within

18

4.2 MPI

each communicator, any participating proc is assigned a rank, a number in {0 . . . nc−1},
with nc being the number of procs in the communicator, which is used as an identifier.
This means that each proc can have different ranks in different communicators, however
we will simply refer to any proc by its rank in MPI COMM WORLD and explicitly
mention if a rank refers to some other sub-communicator.

Notation 4.2. We will consistently write P for the set of ranks {0 . . . np − 1}.
The most basic communication facility MPI provides is that of the matched Send/Recv
operations. With a send operation, a proc can send a certain block of data to another
one in a communicator. The target proc is specific by it’s rank in the communicator in
which the message is sent. This operation has to be matched by a corresponding Recv
operation on the target proc. The receiver must know the origin, type of content and
size of any message it wishes to receive. Data is passed to MPI-functions via a C-style
pointer, the Send-operation provides a pointer to the memory where the data to be
sent is stored and the Recv-operation provides a pointer to a buffer the received data is
to be written into. There are multiple versions of these operations available, the ones
that are relevant for us are the standard MPI Send(..)/MPI Recv(..) operations as well
as their nonblocking counterparts MPI Isend(..)/MPI Irecv(..). MPI Send(..) returns
only when it is safe to modify the data it has been passed, and MPI Recv(..) returns
when the message has arrived and been written into the recv-buffer. MPI Send(..) may
only return when the matching receive-operation has been called and the message has
actually been sent, it may, however, if the data is in the background copied to a seperate
system buffer, return sooner than that. The nonblocking versions return immediately,
without any guarantee about the state of the data in the send- and recv-buffers. The
completion of a nonblocking send or receive can be waited for by calling MPI Wait(..).
MPI Wait(..) returns exactly when MPI Send(..) or MPI Recv(..) would have, that
is when it is safe to modify the send-buffer and the message has arrived in the recv-
buffer respectively. Both send-variants come in different modes, for example buffered
mode where outgoing messages are copied to a user provided buffer which lets the send-
call return immediately after that or synchronous send that does not return until the
matching receive has actually been posted. The advantage of nonblocking operations
are, among others, that it is easier to avoid deadlocks, that multiple communications
can happen at the same time and that it allows for overlapping of communication and
computation if there is special hardware present that can work on communication in the
background.
This only scratches the surface of MPI, which also provides sophisticated methods for
collective communication, where a set of procs communicate as a group, onesided com-
munication, where one proc provides a “window” to portions of its memory that other
procs can look through and much more. We will only list some of them, and that mostly
to establish notation for communication patterns. More details can be found in the
MPI-standard [1].

– MPI Gather: A collective operation that gathers data from all ranks in a com-
municator on one specified rank (the “root”).

– MPI Scatter: A collective operation where one specified rank in a communicator
(again, the “root”) sends a potentially different message to each other rank in the
same communicator.

19

4 Distributed Computing

– MPI Bcast: A collective operation where one specified rank in a communica-
tor (again, the “root”) sends the same message to each other rank in the same
communicator.

– MPI Reduce: A collective operation that combines data from all ranks in a
communicator and makes the result available on one “root” rank. The combination
is done via an MPI Op, which can be MPI SUM, MPI MAX, etc.

– MPI Allreduce: The same as MPI Reduce, but afterwards the combined data is
available on all ranks in the communicator. Can be expressed as an MPI Reduce
followed by an MPI Bcast operation.

Note 4.1. All of these are also available in nonblocking variations.

There are many more, we have only singled these out so that it is clear what we mean
by a “gather-operation”, a “reduce-operation” and so forth. These terms will only be
used to describe communication patterns, in order to make clear which data has to go
where in a communication step. The actual implementation is often realized differently,
it might, for example, instead of an MPI Allreduce, consist of a series of nonblocking
send/recv operations. Also note that all of the above collective operations require all of
the procs of a communicator to participate, which is not the situation we are usually in
in Finite Elements. As we will see in the next section, each proc is typically most of the
time only interested in exchanging messages with a few “neighbouring” procs, not all
others.

4.3 The Distributed Finite Element Method

We will now define distributed meshes and Finite Element spaces and show how NGSolve
adapts to the changes to the programming model and makes use of MPI when running
on a cluster.

Definition 4.1: Mesh Partition

Let Th be a regular partition of Ω, as in definition 2.1. Let (Ωi)i∈J be a finite
partition of Ω, that is all (finitely many) Ωi are open and⋃

i∈J
Ωi = Ω

Ωi ∩ Ωj = ∅ ∀i 6= j

We also require the partition to respect the triangulation, that is:

∀Th ∈ Th : ∃!i : Th ⊆ Ωi

The corresponding partition (Ti)i∈I of the triangulation Th is defined by

Ti :=
{
T ∈ Th : T ⊆ Ωi

}
Notation 4.3. As for the global partition Th, we will write V(Ti) for the set of all vertices,
E(Ti) for the set of all edges and F(Ti) for the set of all faces in Ti.
Note 4.2. This definition does not allow for an overlap between different subdomains.
Thus, different sub-meshes do not share cells but only vertices, edges and in three di-
mensions also faces. In other words, sub-meshes do not share any d-dimensional nodes.

20

4.3 The Distributed Finite Element Method

Figure 4.2: Partition of a mesh
onto 6 procs.

It is evident how the concept of partitioning a mesh
fits into the distributed programming model: Each
proc gets assigned one of the subdomains and with
it it’s submesh. This is very standard approach is
also the one taken in NGSolve. In Finite Elements,
most operations are local in nature, for example a
matrix vector multiplication will need access to de-
grees of freedoms sitting in all neighbouring nodes
of a particular vertex in order to compute the value
of the result there. When assembling the bilinear
form matrices, we only need to access one element
at a time. Data exchange most of the time only
has to happen for operations that concern degrees
of freedom that sit either on an interface or di-
rectly next to one. This naturally decouples the entire Finite Element Method into a
row of local Finite Element Methods that have to synchronize and work in concert with
each other wherever boundary nodes are concerned. We will now formally introduce
distributed Finite Element spaces and talk about distributed linear algebra after that.

Note 4.3. In practice, Netgen/NGSolve does not keep track of a particular conistent
global enumeration, instead all nodes are only numbered locally, however the order of
the numbering is kept consistent between different procs. Occasionaly some subset is
ordered globally when needed.

Note 4.4. Altough in definition 4.1, the partition of Ω defines the partition of the mesh,
in practice, this is handeled the other way around and the mesh is partitioned which then
induces the partition of Ω. NGSolve uses the software library METIS for this purpose.

As we will see now, the partition of a mesh naturally induces a decomposition of the
global Finite Element space into smaller, local Finite Element spaces. Although we are
only concerned with the lowest order H1 space in this work, we will show how distributed
Finite Elelment Spaces can be defined in a general way.

21

4 Distributed Computing

Definition 4.2: Distributed Fintie Element Space

Given a Finite Element space Vh, defined by Finite Elements (T, Vh,T , hT ,ΨT)
and a function space X that imposes additional regularity, such that Vh =∏
T∈Th V h, T ∩ X, and a partition of the triangulation as in definition 4.1, the

local (sub-) Finite Element spaces are defined as

Vh,i :=
{
uh|Ωi : uh ∈ Vh

}
With the restrictions Xi :=

{
f|Ωi : f ∈ X

}
of X, the subspaces can also be written

as
Vh,i =

∏
T∈Ti

Vh,T ∩Xi

The (global) Finite Element space Vh then admits the representation

Vh =
∏
i∈I

Vh,i ∩X

For each bilinear form a(·, ·) and linear form f(·) on Vh we can introduce their
local restrictions

ai(u, v) := a(u, v) ∀u, v ∈ Vh,i
fi(v) := f(v) ∀v ∈ Vh,i

Their matrix and vector representations will be written as Ai ∈ Rni×ni and bi ∈
Rni, with ni = dim Vh,i = |V(Ti)|.

Definition 4.3: Distributed lowest order H1 Finite Element space

The local subspaces of the lowest order H1 Finite Element space from definition
2.3 are

Vh,i =
∏
T∈Ti

Vh,T ∩ C0(Ωi) ⊆ H1(Ωi) (4.1)

The space itself can also be written as

Vh =
∏
i∈I

Vh,i ∩ C0(Ω) ⊆ H1(Ω) (4.2)

In light of the equivalent representations (2.10) and (4.2) of Vh, the natural idea here is
to view each subdomain as a kind of “makro Finite Element”. Now we can think back to
theorem 2.8 and note 2.2, where we have shown how to implement the multiplication with
A via the element matrices and the embeddings, without assembling A itself. Extending
this from elements to makro elements, a.k.a subdomains, we now have an idea of how
to realize multiplication with A only using the local contributions Ai.
The next section will generalize and elaborate on this approach in more detail.

22

4.4 Distributed Linear Algebra

4.4 Distributed Linear Algebra

Now that we know how the gloal Finite Element space cna be represented by local ones
and that the global bilinear form is just a sum of local contributions, represented by local
matrices, we already have a good idea how to implement distributed lineara algebra. We
will formalize this now.

4.4.1 Distributed Matrices and Vectors

Definition 4.4: Parallel Vector

Let v ∈ Rn be some global vector. For k ∈ P, let Ik = {l0, l1, . . . lnk−1} ⊆
{0, 1 . . . n− 1} such that ⋃

k∈P
Ik = {0 . . . n− 1}

Let the embedding matrices Ek ∈ Rn×nk for k ∈ P be defined by

Ek
ij =

{
1 if i = lj

0 else

A parallel vector is then a tuple (vk)k∈P with vk ∈ Rnk .
We say that the global vector v is represented by the parallel vector if (vk)k∈P
either

1. v =
∑

k∈P Ekvk, in which case (vk)k∈P is called distributed.

2. vk = Ek,Tv ∀k ∈ P, in which case (vk)k∈P case is called cumulated.

If v is represented by (vk)k∈P we will also write v ∼= (vk)k∈P .
If the sets Ik are pairwise disjoint, v has a unique, distributed and cumulated
representation. If the sets Ik do overlap, vectors v in the global space Rn do not
have a unique parallel representation.

Note 4.5. A parallel vector representing a global vector is also said to have a parallel
status, which can either be distributed or cumulated.

Definition 4.5: Parallel Matrix

Let An×n some global matrix, and Ik and Ek for k ∈ P given as in definition
4.4. A parallel matrix is a tuple (Ak)k∈P with Ak ∈ Rnk×nk . We say that A is
represented by (Ak)k∈P if

A =
∑
k∈P

EkAkEk,T

In that case, we will also write A ∼= (Ai)i.

Note 4.6. We only define one “valid” parallel status for parallel matrices, which is the
analogue of the distributed parallel status for parallel vectors, as this is the one that arises
naturally when assembling the local bilinear form contributions on each subdomain. In

23

4 Distributed Computing

chapter 8, we will also see an example for a matrix analogon of a cumulated vector. In
contrast to that, we need both distributed and cumulated statuses for parallel vectors,
as we will see in the next sessions.

Global vectors always have a local representation, as long as
⋃
k Ik = {0 . . . n− 1}. For

a global matrix A to have a local representation, we also need

Aij 6= 0⇒ ∃k ∈ P : {i, j} ⊆ Ik
Note 4.7. In many other software libraries, for example PETSc and and the hypre
package, global matrices are simply distributed row-wise. This is, of course, also a
practical approach and in fact, from a linear algebra point of view, simpler in many
ways, however it implies a bigger distance between the linear algebra and Finite Element
perspectives. As a sidenote, the NGSolve way of partitioning with overlapping rows also
allows us to make do without a global enumeration, just so long as dofs are ordered
consistently on all procs that share it.

4.4.2 Distributed Linear Algebra Operations

A global vector can have multiple representations by parallel vectors, and while the
cumulated representation is unique, there can be multiple distributed representations.
From a distributed representation, we can always get the cumulated one and from the
cumulated one we can get any distributed one.

Lemma 4.1: Cumulating and Distributing Parallel Vectors

For a distributed parallel vector v ∼= v ∼= (vk)k∈P , there is a unique cumulated
parallel vector (wk)k∈P ∼= v. It is given by

wk = Ek,T
∑
j∈P

Ejvk

For a cumulated parallel vector v ∼= (vk)k∈P , there is no unique distributed repre-
sentation, but a possible one is defined by

wk = vk −
k−1∑
j=0

Ek,TEjvj = (4.3)

= Ek,T (I−
k−1∑
j=0

EjEj,T)v (4.4)

Proof. Directily follows form the definition of parallel vectors.

Note 4.8. Distributing a parallel vector means just zeroing out all entries in the local
vectors corresponding to degrees of freedom that are shared with a proc that has lower
rank. This means the full value vi is stored on the proc P k with k = min{j : i ∈ Ij}, that
is, the proc that shares it with the lowest rank. This is an inherently local operation, no
data has to be exchanged.
Cumulating a distributed vector requires communication. Every proc has to exchange a
message with all other procs it shares a degree of freedom (DOF) with, containing the
values of its’ local vector for all shared DOFs.

24

4.5 MPI-Parallelization in Netgen/NGSolve

Now that we are able to switch between different representations of global vectors at
will, we can perform parallel linear algebra operations.

Lemma 4.2: Vector Scalar product

The scalar product between a distributed parallel vector v ∼= (vk)k∈P and a cumu-
lated one w ∼= (wk)k∈P is given by

〈v,v〉 =
∑
k∈P

〈
vk,wk

〉

Lemma 4.3: Matrix Vector Multiplication

For a cumulated parallel vector v ∼= (vk)k∈P and a parallel matrix A ∼= (Ak)k∈P ,
(Akvk) is a distributed representation of Ab.

Ab =
∑
k∈P

EkAkbk

Proof. Follows directly from the definitions of parallel matrices and vectors.

Note 4.9. Therefore, when we want to multiply a parallel matrix with a parallel vector,
we first cumulate the vector, then multiply locally and end up with a distributed vector.

Parallel matrix-matrix multiplication is more difficult. Even when both matrices A
and B can be represented locally, this is not necessarily true for their product because
matrix-matrix multiplication can introduce nonzero entries

(AB)ij 6= 0 ∧ @k ∈ P : {i, j} ⊆ Ik
This problem will return later on in chapter 8.

4.5 MPI-Parallelization in Netgen/NGSolve

We will now outline the key aspects of the distributed parallel implementation of NG-
Solve. For now, this helps with understanding what exactly is involved in each of the
steps of a parallel matrix-vector multiplication and it will also build a base for under-
standing the difficulties we ran into during the development of AscAMG .

Note 4.10. One of the peculiarities of Netgen/NGsolve is that the global “master proc”,
the proc with rank 0, not to be confused with the “master proc” of a particular DOF or
node, never gets assigned a submesh, which means that it is idle most of the time. On
occasion, however, it allows us to shift some computational work to the master without
impacting the performance of other, concurrent computations. This has historically
grown.

The two key classes in NGSolve that together manage to encapsulate much of the gritty
details of MPI from the higher level components are the ParallelDofs and the Paral-
lelVector classes.
The class ParallelDofs, locally on each proc mainly consists of a table, where the k’th
row stores the list of other processors that shere the k’th local DOF. These are also

25

4 Distributed Computing

called the DistantProcs of the k’th DOF. ParallelDofs provides methods to access this
information in different ways, the most important ones are:

– GetDistantProcs(): Returns the list of all procs that share any DOF with the
caller.

– GetDistantProcs(int k): Returns the list of procs the dof k is shared with.
– GetExchangeDofs(int p): Returns the list of DOFs that are shared with proc

p.
– IsMasterDof(int k): Returns true if the proc is not shared with any proc with

a lower rank, and false in any other case. Informally, it answers the question “Am
I the master of this DOF?”.

– GetMasterProc(int dof): Returns the lowest rank of any proc that shares this
dof (which is the master proc’s).

It also provides the method EnumerateGlobally, with which one can find a global
enumeration of some subset of DOFs. This is used occasionally, however keep in mind
that there is no overarching global enumeration of DOFs in NGSolve.
It also features three methods that perform communication on given data:

– ReduceDofData(FlatArray<T> data, MPI Op op): Input is an array with
data for each local dof and an operation to perform on the data (for example
MPI SUM, MPI MAX, etc. . .). Computes an array a, where the for each masterdof
k, a[k] = op(v1, v2, . . .), where v1 = data[k] and v2 . . . vm are the values for the DOF
the array has on the DOFs DistantProcs. For non-master DOFs k, data[k] = a[k].
Overwrites data with a. In particular, it returns an inconsistent array! It “reduces”
information to the master of each dof. This can be thought of an MPI Reduce for
each DOF, where only the procs that share it participate.

– ScatterDofData(FlatArray<T> data): Input is an array with data for each
local dof. Modifies data such that each entry has the same value across all procs,
the one it initially had on the master proc. In particular, does not modify values
of master DOFs. It “scatters” information from the master of each DOF to the
others. This can be thought of an MPI Bcast for each DOF, where only the procs
that share it participate.

– AllReduceDofData(FlatArray<T> data, MPI Op op): Performs ReduceD-
ofData followed ScatterDofData. For each dof k it performs “op” on the set of
values it has on all procs that share it and makes that information available to all
of them. This is basically a “Cumulate”-operation, it is however only a moderately
efficient implementation of it.

As iterative algorighms require us to do matrix-vector multiplications and evaluate scalar
products in each iteration step, we have to pay dearly for any inefficiencies in this regard.
In section 4.4.2, we have seen that these operations can be realized by local matrix-vector
multiplications and scalar products combined with Cumulate- and Distribute- opera-
tions. The ParallelVector class of NGSolve is a wrapper around the other, sequential
vector classes that provides exactly this functionality, implemented very efficiently.
A ParallelVector has a PARALLEL STATUS, a variable that can take any of the values
CUMULATED, DISTRIBUTED or NOT PARALLEL. The most important methods
ParallelVector provides above a sequential vector are:

– GetParallelStatus(): Returns the parallel status of the vector.

26

4.5 MPI-Parallelization in Netgen/NGSolve

– SetParallelStatus(PARALLEL STATUS stat): Sets the parallel status of
the vector. This is useful occasionally, for example when zeroing out an entire
vector or writing information of which we know that it is already cumulated into
it.

– Cumulate(): If the status is DISTRIBUTED, cumulates the vector. Otherwise,
does nothing.

– Distribute(): If the status is CUMULATED, distributes the vector by zeroing
all entries of non master dofs. Otherwise, does nothing.

27

5 Error Smoothing

In this section, we will make observations about the behavior of certain Stationary
Linear Itherative Methods (SLIMs) that will ultimately motivate the introduction of
multigrid algorithms.

As we have seen in section 2.2, both Jacobi and Gauss-Seidel give very poor spectral
bounds as h→ 0 and are insufficient as both preconditioners and stand alone solvers on
their own, however this does not mean that all error components are eliminated equally
slowly. In fact, error components that belong to eigenvectors of the error propagation
matrix M = I −NA with small eigenvalues (which are made up of eigenvectors of A
with large eigenvalues) are eliminated rapidly. In the case of the pure poisson prob-
lem (equation (2.1) with α = 1, β = 0), the A-norm is just the H1-seminorm (of the
Vh-funcion identified with the vector via the Galerkin isomorphism) and eigenvectors
with large eigenvalues are highly oscillating functions. Conversely, eigenvectors with
small eigenvalues, which are exactly the ones Jacobi and Gauss-Seidel can not eliminate
effectively, are very smooth functions.
Figure 5.1 shows the evolution of the error when performing Gauss-Seidel on equation
(2.1) with Ω = [0, 1]2, α = 1, homogenous dirichlet boundary conditions and f = 1.
We see that the error looses it’s oscillating components very rapidly, while its smooth
components can not be treated effectively by Gauss-Seidel. This should not come as a
big surprise, since one GS iteration essentially consists of a series of local updates for
each degree of freedom which can only ever take into account the neighbouring DOFs.
This phenomenon is called “error smoothing”, and SLIMs that behave in this way are
also called “smoothers”.

a: initial error b: error after iteration 5 c: error after iteration 50

Figure 5.1: Error of GS applied to −∆u = 1 in with homogeneous dirichlet con-
dition.

29

5 Error Smoothing

a: init b: iteration 2 c: iteration 40

Figure 5.3: Error of GS applied to −∇·(α∇u) = 1 with homogeneous dirichlet condition
and α from figure 5.2.

5.1 Algebraically Smooth Error

1e6

1

1e6

1

1e6

Figure 5.2: α for figure 5.3

So far, geometrically smooth errors are exactly those
that are not effectively eliminated by a cheap linear
iteration like J or GS, however this is not always the
case. Figure 5.3 shows the same sitation as figure
(5.1), however with a different coefficient α, as in
figure 5.2. The coefficient is very large on one part
of the domain (Ω1) and moderately sized on the rest
of the domain (Ω2 = Ω \ Ω1). As can be seen, the
error is now very smooth in Ω1 and varies strongly
in Ω2. The reason for this behavior is that ‖·‖A now
weighs variation in Ω1 much more more strongly than
variation in Ω2:

‖u‖2A = 106 · |uh|2H1(Ω1) + |uh|2H1(\Ω2)

This kind of error is called purely “algebraically smooth”, which means nothing else than
that it cannot be effectively eliminated by a smoother. As we have seen now, algebraic
smoothness does not necessarily translate to geometric smoothness, although it does so
in many cases.
In [7], a SLIM is said to satisfy the soothing property if for some σ > 0

‖Me‖2A ≤ ‖e‖2A − σ‖Ae‖2D−1 (5.1)

Here, the D−1-norm is used in order to retain the scaling with respect to D between
the two terms on the right hand side. This condition says that errors for which ‖e‖2A
and ‖Ae‖2D−1 are comparably large will be eliminated efficiently. For these terms to be
comparable, e has to be mostly a linear combination of eigenvectors of A with large
eigenvalues. We can also see that errors that are mostly made up of components with
small eigenvalues will be reduced only very inefficiently. For a SLIM it is equivalent to
satisfy the smoothing property and to satisfy

σWTD−1W ≤W + WT −A (5.2)

for some σ > 0. This condition can also be obtained by a combination of conditions
(3.4) and (3.5) from theorem 3.3.

30

6 Multigrid Methods

This chapter will introduce the basic multigrid-approach with its two main variations,
geometric and algebraic multigrid and hightlight the differences between the two. We
will look at algebraic multigrid in more detail in section 7.

6.1 The Two-Grid Algorithm

They key to the multigrid idea are the observations made in section 5, that is that
error components that are not handled efficiently by a smoother can be characterized
by their (geometric or algebraic) smoothness. In the simplest case, the approach is to
combine a computationally cheap smoother, which takes care of high frequency error
components with a so called coarse grid correction that takes care of the low frequency
error components.
Assume that, in addition to the finite element space Vh, we also have access to VH , which
is itself a lowest order H1-finite element space defined on a triangulation TH of Ω with
mesh size H > h. The coarse triangulation should be such that Vh ⊂ VH . We will
write Ah,AH to distinguish the finite element matrices of Vh and VH and nh, nH for the
dimensions of Vh and VH . The prolongation matrix P ∈ RnH×nh is the linear operator
that is defined by

PG−1
H uH = G−1

h uH ∀uH ∈ VH
with the galerkin isomorphisms Gh, GH . It is just the embedding of VH into Vh brought
to the coordinate space. Because〈

AhG
−1
h uH , G

−1
h vH

〉
= a(uH , vH) =

〈
AHG

−1
H uH , G

−1
H vH

〉
∀uH , vH ∈ VH

the coarse finite element matrix can be expressed as:

AH = PTAhP

At this point, remember that for ease of notation we use uh and u for uh ∈ Vh and
u ∈ Rnh such that Ghuh = u.
Applying a couple of smoothing steps to equation

Ahu = b

gives us an approximate solution uh to

a(uh, vh) = f(vh) ∀vh ∈ Vh
such that with the true solution ûh, the error eh = ûh − uh consists mainly of geomet-
rically smooth components and can be approximated well by some eH ∈ VH . Therefore
updating

uh → uh + eH

should yield a good approximation for uh + eh = ûh.

31

6 Multigrid Methods

The choice for eH that minimizes ‖ûh−(uh+eH)‖A = ‖eh−eH‖A, is just the A-orthogonal
projection of eh onto VH , which is the solution to

a(eH , vH) = a(eh, vH) = a(ûh, vH)− a(uh, vH) = f(vH)− a(uh, vH) ∀vH ∈ VH
With ũh := uh + eH and ẽh := ûh − ũh we have ẽh = (I − PA)eh ⊥A VH , where PA is the
A-orthogonal projector onto VH . Because

f(vH)− a(uh, vH) =
〈
b−Ahu, G

−1
h vH

〉
=
〈
b−Ahu,PG

−1
H vH

〉
=

=
〈
PT (b−Ahu) , G−1

H vH
〉

the vector representation of eH (w.r.t. the VH-basis) is e = A−1
H PT (b−Ahu), and with

G−1
h (uh + eH) = u +G−1

h eH = u + Pe

the coarse grid correction in the coordinate space (of Vh) reads as

r = b−Ahu

ũ = u + PAH
−1PT r

Given a starting vector u0, the standard Two-Grid (TG) algorithm (algorithm 2) now
consists of the following three steps

1. One iteration of the SLIM, “Pre-Coarsening”

u1 = Mu0 + Nb

2. Coarse Grid Correction

u2 = u1 + PAH
−1PT (b−Ahu

1)

3. One iteration of the transposed SLIM, “Post-Coarsening”

u3 = MTu2 + NTb

Algorithm 2 Two-Grid Algorithm.

1: procedure TG(A, b, x0)
2: x1 = x0 + N(b−Ax0) . (Pre)-Smooth
3: rH = PT (b−Ax1) . Restrict residuum
4: xH = A−1

H rH . Coarse level solve
5: x2 = x1 + PxH . Coarse grid correction
6: x3 = x2 + NT (b−Ax2) . (Post)-Smooth
7: return x3

Remembering that with the error propagation matrix of the SLIM, M, the error prop-
agation matrix of the transposed SLIM is its 〈·, ·〉A-adjoint M∗, the error propagation
matrix of the TG algorithm can be written as:

MTG = M∗ (I−PA−1
H PTA

)
M (6.1)

As (I−PA−1
H PTA) is the A-orthogonal projector onto ran P, MTG is self adjoint wrt.

〈·, ·〉A. We can also write the two-grid algorithm as one step of a Richardson-iteration
with preconditioner

B−1
TG = W̃ +

(
I−N−TA

)
PA−1

H PT
(
I−N−1A

)
(6.2)

32

6.2 The Multi-Grid Algorithm

Note that B−1
TG is a symmetric matrix, and we can therefore use it in the PCG (algorithm

1). This would not be the case if we used only one smoothing step either before or after
the coarse grid correction.

Note 6.1. If x0 = 0 in algorithm 2, it returns x3 = B−1
TGb.

6.2 The Multi-Grid Algorithm

In principle, we could replace the exact inverse A−1
H in algorithm 2 with C−1 where C is a

good preconditioner for AH . For example, we could use another two-grid preconditioner,
only now we start from the coarse level. In that case what we end up with is called a
three-level method. Doing this recursively, until one arrives at a small enough space
where direct solution is feasible, leads to the V-cycle multigrid-method (algorithm 3).
The ingredients are now a nested series of finite element spaces

Vh = V0 ⊃ V1 ⊃ V2 . . . ⊃ VL
of dimension nl with finite element matrices Al and SLIMs defined by Nl for every level
l ∈ {0 . . . L} as well as prolongation matrices Pl ∈ Rnl×nl+1 for every level but the last.

Algorithm 3 Multi-Grid V-cycle Algorithm.

1: procedure MG(b, x0, l)
2: if l = L then

return A−1
L b . Coarsest level solve

3: else
4: x1 = x0 + Nl(b−Alx0) . (Pre)-Smooth
5: rc = PT

l (b−Alx1) . Restrict residuum
6: xc = MG(rc, 0, l + 1) . Recurse
7: x2 = x1 + Plxc . Coarse level correction
8: x3 = x2 + NT

l (b−Alx2) . (Post)-Smooth
return x3

The error propagation matrix takes the form

MV = M∗
0P0M

∗
1P1 . . .M

∗
L−1

(
I−PL−1A

−1
L PT

L−1AL−1

)
ML−1 . . .P

T
1 M1P

T
0 M0 (6.3)

Note 6.2. There are other variations of multigrid cycles that are mainly used when
employing multigrid on its own instead of as accelerators for a krylov space method like
CG. For a W-cycle, instead of going back down a level after the coarse grid correction,
we instead update the residuum and goe up a level once more. That way, we smooth 2l

times on level l. In a Full MultiGrid (FMG)-cycle, one starts with an exact solution on
the coarsest level L, then prolongates that solution to the next coarsest level L− 1 and
calls a V-cycle starting on level L− 1 to get a new solution, which is then prolongated
to level L− 2 and so on. As we are mainly interested in AMG in combination with CG,
we will restrict ourselfs to V-cycles.

33

6 Multigrid Methods

6.3 Advantages and Weakpoints of the Geometric Multigrid
Method

Assuming we choose hl+1 ≈ 2hl we get nl+1 ≈ 2−dnl. As typically, one iteration of a
SLIM requires O(n) operations, by the convergence of the geometric series, the V-cycle
multigrid algorithm also has linear operator complexity. For the simple case where α and
β are somewhat smooth in equation 2.1, one can show that κ(B−1

V A) = O(1). A very
nice proof for this that looks at multigrid algorithms in the context of general subspace
correction methods is given in [11].

If applicable, geometric multigrid is a preconditioner with linear operator complexity
and ideal spectral bounds!
This is the best possible behavior we could ever hope for. Unfortunately, there are some
restrictions to the applicability of this simple kind of geometric multigrid approach. First
of all, we need the spaces Vl to be nested, V0 ⊂ V1 ⊂ . . . ⊂ VL. For that to be true,
each triangulation has to be a refinement of the next coarser one. This means that we
have to be able to triangulate the domain Ω with with a very coarse hL, which poses a
problem for complex Ω.
Let us also remember what we discovered in section 5, specifically that algebraic smooth-
ness and geometric smoothness are not at all the same thing if, for example, α varies
strongly or even has large jumps. The entire idea of multigrid was based on the fact
that error components that can not be efficiently adressed by the smoother can be ap-
proximated well on the coarse grid, that is that algebraically smooth errors are also
geometrically smooth!
There are two basic approaches to deal with these problems. On the one hand, one
can try to fit the multigrid method to the problem and the geometry at hand, which
usually involves more sophisticated smoothers. The other is to stick to cheap, simple
smoothers like GS or Chebyshev-smoothers but to completely throw the idea that the
coarse spaces have to be finite element spaces defined coarse meshes overboard. Instead,
one constructs the coarse spaces such that they contain the algebraically smooth vectors.
Methods based on this idea are called algebraic multigrid methods and will be discussed
starting with chapter 7.

34

7 Algebraic Multigrid

In section 5 we observed that in many cases, algebraically smooth vectors are also ge-
ometrically smooth and in section 6 we combined this with the fact that finite element
spaces defined on some coarser triangulation are on the one hand of much lower dimen-
sion than the original space and on the other hand consist of just such functions to arrive
at geometric multigrid methods. Now we will travel down a different path and try to
construct coarse spaces, again of decreasing dimension, such that they contain alge-
braically smooth vectors. After fixing some ideas on how to go about doing this, section
7.1 will show conditions for the convergence of the algebraic two-grid algorithm and we
will discuss the difficulty of proofing convergence of the algebraic multigrid method in
section 7.2.

In principle, in order for the two-grid algorithm (algorithm 2) to be defined, we need a
smoother defined by a matrix N as well as the prolongation matrix P and the coarse
system matrix. We will now, as there is no longer an actual coarse “h” involved, write Ac

for the coarse matrix. As already mentioned, we want to construct the coarse space such
that it contains algebraically smooth vectors, which means that we fit the coarse space
to the given smoother and we do not need to be concerned with choosing N right now.
Since we think of the prolongation matrix as the embedding of the, to be constructed,
coarse space, which we will now call Vc into Vh, we can simply define the coarse system
matrix as

Ac := PTAP (7.1)

This preserves the property that the coarse grid correction is an A-orthogonal projection.

We see that our task is to, given a smoother N, construct P such that the two grid
method converges.

As the columns of P are just the coordinates of the Vc basis wrt. the Vh basis, this is
equivalent to constructing the coarse space Vc.
The extension of this approach from a two-grid method to a multigrid method is not
quite as straightforward as it was for geometric multigrid. In principle one could use
information about the triangulation or the exact shape of the base functions when con-
structing P0, the prolongation on the finest level, however, as there is no coarse mesh
present in the background, we usually cannot rely on this kind of information on any
coarse level. Algebraic multigrid methods therefore construct the prolongation matrices
only on basis of A, that is on basis of the matrix graph and the coefficients of A.
Because the coarse grid correction now per construction takes care of the algebraically
smooth error components, we are free to choose a smoother mostly based on its compu-
tational cost. The standard choices here are properly dampened Jacobi, some variant of
Gauss-Seidel and polynomial Chebyshev smoothers.

35

7 Algebraic Multigrid

When constructing P, we have two conflicting goals in mind; on the one hand we want
the coarse space to be big enough to approximate all algebraically smooth vectors as
well as possible and on the other hand we want to keep the operator complexity of the
entire multigrid-cycle as small as possible, which means that we want the coarse spaces
to be as small as possible and we want to keep Ac as sparse as we possibly can.

The rest of this chapter will present some established results on sufficient conditions
posed to P and N that imply convergence of the two grid method method. We will finish
the chapter with some remarks on the difficulties of analyzing the algebraic multigrid
method. The actual construction of the prolongation matrix P and the exact choice of
the smoother will be discussed in chapter 8.

7.1 Analysis of the two grid method

In this section we will show conditions for N and P that guarantee convergence of the
two-grid method or, equivalently, spectral bounds for the two-grid preconditioner while
sticking to the way things are presented in the relevant section of [10].
We will need the following lemma for the proof of the main theorem.

Lemma 7.1

Let A ∈ Rn×n be SPD and let V be an m-dimensional subspace of Rn with an
orthonormal basis {q1 . . . qm} of V and an orthonormal basis {p1, p2 . . . pn−m} of
V ⊥. Let Q := (q1, q2 . . . qm) ∈ Rn×m and P := (p1, p2 . . . pm−n) ∈ Rn×(n−m)

Then〈
(QTA−1Q)−1xq,xq

〉
= inf

xp∈Rn−m
〈A(Qxq + Pxp), (Qxq + Pxp)〉 ∀xq ∈ Rm

(7.2)

Proof. Let us first show an identity for the matrix S := (QTA−1Q)−1:

Qxq = AA−1Qxq = A(Q(QTA−1Q)xq + P(PTA−1Q)xq) =

= Q[(QTAQ)(QTA−1Q)x+ (QTAP)(PTA−1Q)x]+

+ P[(PTAQ)(QTA−1Q)x+ (PTAP)(PTA−1Q)x]

As Qxq ⊥ ran P, the second term above, P[. . .], must be 0 and the first one, Q[. . .],
must be Qxq. From this we get

(PTA−1Q) = −(PTAP)−1(PTAQ)(QTA−1Q)

Inserting this in the first expression yields

I = [(QTAQ)− (QTAP)(PTAP)−1(PTAQ)](QTA−1Q)

As both matrices are symmetric, we have an identity for the matrix in question

S = [(QTAQ)− (QTAP)(PTAP)−1(PTAQ)]

36

7.1 Analysis of the two grid method

Now, using the ontained identity and some elementary manipulations,

A = (QQT + PPT)A(QQT + PPT) =

= Q(QTAQ)QT + Q(QTAP)PT + P(PTAQ)QT + P(PTAP)PT

= Q(QTA−1Q)−1QT + Q(QTAP)PT + P(PTAQ)QT + P(PTAP)PT+

+ Q(QTAP)(PTAP)−1(PTAQ)QT =

= QSQT + [(P(PTAP) + Q(QTAP)](PTAP)−1[PTAP)PT + (PTAQ)QT]

This means that QSQT ≤ A, which shows (7.2) with ”≤” instead of ”=” and because〈
SQTx,QTx

〉
= 〈Ax,x〉 ⇔ (PTAP)PT + (PTAQ)QT)x = 0

is the case iff.

PTx = (PTAP)−1(PTAQ)QTx

the inf is attained for all QTx ∈ Rm.

Let us remember the representation of the two-grid preconditioner

B−1
TG = W̃ +

(
I−N−TA

)
PA−1

c PT
(
I−N−1A

)
(7.3)

ant the two-grid error propagation is

MTG =
(
I−B−1

TGA
)

= M∗ (I−PA−1
c PTA

)
M (7.4)

The following well known result, the proof of wich we have adapted from [10], is the
basis for the construction of the prolongation matrix.

Theorem 7.1: Convergence of the Two-Grid Method

Let A ∈ Rn×n be SPD, let N ∈ Rn×n define a SLIM such as in definition 3.2 with
Ñ as in definition 3.5 and let P ∈ Rn×m with m < n be a prolongation matrix.
The spectral bounds for preconditioning by performing one step of the the 2-grid
algorithm (alg. 2) with starting value x0 = 0 are given by

〈Ax,x〉 ≤ 〈BTGx,x〉 ≤ KTG 〈Ax,x〉 (7.5)

where KTG is a constant such that

inf
xc∈Rm

‖x−Pxc‖W̃ ≤ KTG‖x‖A ∀x ∈ Rn (7.6)

For the error propagation matrix of the two-grid algorithm MTG we have

‖MTG‖A ≤ 1− 1

KTG

(7.7)

Proof. begin by showing (7.7) with KTG given by (7.6), which implies the upper bound
in (7.5).
Using (7.4) and the fact that I − πA := I − PA−1

c PTA is the A-orthogonal projector

37

7 Algebraic Multigrid

onto ran P⊥A , we see that

MTG = M∗(I− πA)M = M∗(I− πA)2M = [(I− πA)M]∗ [(I− πA) M]

⇒ ‖MTG‖A = ‖(I− πA)M‖2A = ‖M∗(I− πA)‖2A
Now, with

(M∗)TAM = (I−AN)A(I−NTA) =

= A
1
2

[
I−A

1
2 N(N−T + N−1 −A)NTA

1
2

]
A

1
2 =

= A
1
2

[
I−A

1
2 ÑA

1
2

]
A

1
2

we get:

‖M∗(I− πA)‖2A = sup
x

‖M∗(I− πA)x‖A
‖x‖A

= sup
x

〈AM∗(I− πA)x,M∗(I− πA)x〉
〈Ax,x〉

=

= sup
x

〈
(M∗)TAM∗(I− πA)x, (I− πA)x

〉
〈Ax,x〉

=

= sup
x

〈
(I−A

1
2 ÑA

1
2)A

1
2 (I− πA)x,A

1
2 (I− πA)x

〉
〈Ax,x〉

=

= sup
x

〈
(I−A

1
2 ÑA

1
2)A

1
2 (I− πA)A−

1
2 x,A

1
2 (I− πA)A−

1
2 x
〉

〈x,x〉

As (I− πA) := A
1
2 (I− πA)A−

1
2 = I−A

1
2 PA−1

c PTA
1
2 is an orthogonal projector

‖M∗(I− πA)‖2A = sup
x∈ran (I−πA)

1−

〈
A

1
2 ÑA

1
2 x,x

〉
〈x,x〉

 =

= 1− inf
x∈ran (I−πA)

〈
A

1
2 ÑA

1
2 x,x

〉
〈x,x〉

=

= 1−

 sup
x∈ran (I−πA)

〈x,x〉〈
A

1
2 ÑA

1
2 x,x

〉
−1

We will now show that

sup
x∈ran (I−πA)

〈x,x〉〈
A

1
2 ÑA

1
2 x,x

〉 ≤ KTG

For that, let W := ran (I− πA), m := dim W and let Q ∈ Rn×m such that QTQ = Im
and QQT is the orthogonal projector onto W . Finally, with R ∈ Rn×(n−m) such that
RTR = In−m and such that RRT is the orthogonal projector onto W⊥, we can use

38

7.1 Analysis of the two grid method

theorem 7.1 to see

sup
x∈ran (I−πA)

〈x,x〉〈
A

1
2 ÑA

1
2 x,x

〉 = sup
xc∈Rm

〈xc,xc〉〈
QT (A

1
2 ÑA

1
2)Qxc,xc

〉 =

= sup
xc∈Rm

〈
[QT (A

1
2 ÑA

1
2)Q]−1xc,xc

〉
〈xc,xc〉

= sup
xc∈Rm

〈
[QT (A

1
2 ÑA

1
2)Q]−1xc,xc

〉
〈xc,xc〉

7.1
=

= sup
xc∈Rm

infxr∈Rn−m
〈

(A−
1
2 Ñ−1A−

1
2)(Qxc + Rxr), (Qxc + Rxr)

〉
〈xc,xc〉

=

= sup

x∈ran A
1
2 (I−πA)A−

1
2

inf
y∈ran A

1
2πAA−

1
2

〈
(A−

1
2 W̃A−

1
2)(x + y), (x + y)

〉
〈x,x〉

=

= sup
x∈ran (I−πA)

inf
y∈ran πA

〈
W̃(x + y), (x + y)

〉
〈Ax,x〉

=

= sup
x

inf
y∈ran πA

〈
W̃(x + y), (x + y)

〉
〈A(I− πA)x, (I− πA)x〉

=: K1

Now, because ‖x‖2A = ‖(I− πA)x‖2A + ‖πAx‖2A, it is obvious that

K1 ≤ sup
x

inf
y∈ran πA

〈
W̃(x + y), (x + y)

〉
〈Ax,x〉

=: K2

On the other hand, by writing y→ πAx+y in K1 and then taking the sup over a bigger
set we see that

K1 = sup
x

inf
y∈ran πA

〈
W̃((I− πA)x + y), ((I− πA)x + y)

〉
〈A(I− πA)x, (I− πA)x〉

=

= sup
x∈ran (I−πA)

inf
y∈ran πA

〈
W̃(x + y), (x + y)

〉
〈Ax,x〉

≤ K2

Thus K1 = K2 and with KTG as in (7.6), because ran πA = ran PA−1
c PTA ⊆ ran P

K1 = sup
x

inf
xc∈Rm

‖x + Pxc‖2W̃
‖x‖2A

≤ KTG

Therefore we have shown (7.7) and the upper bound in (7.5). Lastly, the lower bound
follows from (7.4):

〈Ax,x〉 ≤ 〈BTGx,x〉 ⇔
〈
B−1

TGAx,x
〉
≤ ‖x‖2 ⇔

0 ≤
〈
(I−B−1

TGA)x,x
〉

= 〈MTGx,x〉 = 〈(I− πA)Mx,Mx〉

As πA = A
1
2πAA−

1
2 is an orthogonal projector, ∀x we can show this easily by

〈πAx,x〉 =
〈
πAA

1
2 x,A−

1
2 x
〉
≤
〈
A

1
2 x,A−

1
2 x
〉

= 〈x,x〉

39

7 Algebraic Multigrid

Corrolary 7.1.1. Preconditioning by the Two-grid algebraic multigrid method yields
spectral bounds

κ(B−1
TGA) ≤ KTG

If the prolongation P fulfills equation (7.6), it is also said to fulfill the weak approxi-
mation property. Unfortunately, while condition (7.6) is very compact, it is not very
usable in practice. For example, in order to show convergence of a two-grid method
using forward/backward GS smoothing, we would have to show this condition using the

very ugly expression W̃ = (L + D)D−1(U + D) which does not have a very “nice”
representation. However, in section 3.1, using theorem 3.3, we showed that GS is no
substantial improvement over (properly dampened) jacobi and that W̃ ≈ D. Using this
fact, instead of (7.6), we can show the, much simpler, modified condition below.

Definition 7.1: Weak Approximation Property

inf
xc∈Rm

‖x−Pxc‖D ≤ KTG‖x‖A ∀x ∈ Rn (7.8)

We have to pay the constants incurred when going from W̃ to D and back in the
estimates. As all common smoothers fulfill W̃ ≈ D, (they fulfill the smoothing property
(5.2)), we will restrict ourselfs to this case.

7.2 Analysis of the Multi Grid Method

When applicable, geometric multigrid methods fulfill spectral bounds that are indepen-
dent of the number of levels. Proofs for this rest on the fact that when the coarse
spaces are nested finite element spaces defined on coarse grids, each u ∈ V0 has a regular
decomposition that is a set of ui ∈ Vi such that u =

∑
i ui and ‖u‖2H1 ≈

∑
i ‖ui‖2H1

with constants independent of the number of levels. This is achieved by choosing
ui := (Qi −Qi+1)u with well understood interpolation operators Qi : C(Ω)→ Vi.

Something similar can not be done for generic algebraic multigrid methods. The ex-
act makeup of the coarse spaces is not known a priori and the interpolation operators
are difficult to pin down and are also often much weaker than those in the geometric
case. Generally speaking, AMG methods are always constructed such that the weak
approximation property (7.8) holds on all levels, but this alone is much too weak for
level-independent bounds. It is in fact very difficult to proof level-independence of al-
gebraic multigrid methods and we will not touch upon this topic any more. The good
news is that in praxis ALlebraic Multigrid behaves nicely.
In [9], the spectral bounds of a variant of algebraic multigrid known as smoothed aggre-
gation are proven to be at worst O(L3).

40

8 Algebraic MultiGrid with Alternative
Strong Connections

In this chapter the AscAMG method will be described in detail. Section 8.1 will define
a tentative prolongation operator, show an energy based criterium for the prolongation
that implies two grid convergence and finally discuss a way to improve on this tentative
prolongation by a smoothing step.

The parallelization and implementation of these ideas will be the topic of section 8.2,
where, in section 8.2.4, we will also discuss distributed smoothers.

AscAMG is implemented in a C++ library that acts as an extension to Netgen/NG-
Solve. It is integrated into it’s NGSPy python-interface. It uses and expands on the
MPI-parallelization of NGSolve. The parallel matrices and vectors provided by NG-
Solve, as discussed in chapter 4, are used extensively, however the parallel smoothers
described in seciton 8.2.4 had to be implemented from scratch, as the only parallel
smoother currently provided by NGSolve is Jacobi.

8.1 The Prolongation

Definition 8.1: “Piecewise” Prolongation

Let n be the dimension of some fine space (including dirichlet DOFs) and let
D ⊆ {0 . . . n− 1} be the set of dirichlet dofs. The “piecewise” prolongation matrix
P ∈ Rn×nc defined by a partition C = {Ci, i = 0 . . . nc − 1} such that

Ci ∩ Cj = ∅ ∀i 6= j

nc−1⋃
i=0

Ci = {0 . . . n− 1} \D

is given as:

Pij =

{
1 if i ∈ Cj
0 else

Note 8.1. This is the classical tentative prolongation operator that also plays a role in
aggregation based AMG ([8]).

Note 8.2. Note that the (Ci)i are only a partition of the fine degree dofs excluding
dirichlet dofs, this means that all dofs on the coarse level are “free”.

41

8 Algebraic MultiGrid with Alternative Strong Connections

Each subset Ci defines one coarse grid variable, and by making these sets large, one
could achieve very rapidly decreasing number of degrees of freedom on coarse levels, and
thus excellent operator complexity, at the cost of the rate of convergence.
In ascAMG, we only pair up dofs istead of using bigger sets. This will have far-
reaching ramifications. In section 8.2, we will discuss how we can still have good operator
complexity in spite of this fact.

Definition 8.2: AscAMG Piecewise Prolongation

Let n be the dimension of the fine space (including dirichlet-dofs) and let D ⊆
{0 . . . n− 1} be the set of dirichlet dofs. The ascAMG piecewise prolongation ma-
trix P ∈ Rn×nc defined by a partition C = {Ci : i = 0 . . . nc− 1}∪ {DC} of the fine
degrees of freedom such that

(i) C ∩ C̃ = ∅ ∀C 6= C̃ ∈ C

(ii)
⋃
C∈C

C = {0 . . . n− 1}

(iii) D ⊆ DC
(iv) |Ci| ≤ 2 ∀i ∈ {0 . . . nc − 1}

is given as:

Pij =

{
1 if i ∈ Cj
0 else

(8.1)

Note 8.3. The difference between definitions 8.1 and 8.2 is that the set DC in the latter is
allowed to be a true superset of D. This allows us to exclude additional DOFs besides the
dirichlet DOFs from the coarse level. Doing this poses an additional loss of information
from one level to the next, however there are are two considerations that motivate us to
allow this all the same. Firstly, as we have seen in section 3.1, in the case where the mass
term dominates the stiffness term in the system matrix, the GS method is sufficient on
its own, therefore there is no need to introduce any coarse spaces at all in those parts of
the domain that feature a large l2-term. In fact, not introducing coarse spaces in those
areas of the domain decreases the operator complexity of the multigrid cycle while hardly
impacting the quality of the method. Secondly, and related to this, often times dirichlet
conditions are not imposed in an essential but rather in a weak way by adding a large
l2-term on those degrees of freedom where one wishes to impose dirichlet conditions. If
we can automatically identify those DOFs where the l2-term dominates and not include
these in the coarse spaces, we are able to deal with these situations as well.

Note 8.4. Note that |Ci| ≤ 2, therefore, unless we exclude many DOFs from the coarse
level by including tem in DC, the dimension of the coarse space will not be mucch smaller
than n

2 . If many single DOFs are include on the coarse level, it might even be much
larger.

42

8.1 The Prolongation

Figure 8.1: A base function on level
9 using piecwise prolon-
gation.

This kind of piecewise prolongation leads to step-
wise functions on coarse levels (figure 8.1). In the
case of constant coefficients it is clear that inter-
polation with coarse level basis functions has much
worse properties than interpolation with hat ba-
sis function coming from a coarse finite element
space. The stepwise interpolation can give a good
L2-approximation, but because of the never dimin-
ishing steepness of the base functions they cannot
give a good H1-approximation. It is clear that
the resulting multigrid algorithm does not feature
level-independent bounds. In section 8.1.3, we will
try to solve this problem.
The process of finding a good partition C is known
as “coarsening”. We will elaborate upon our coarsening algorithm in more detail in
section 8.2.1. In general, the coarsening algorithm has to construct the partition in such
a way that the resulting prolongation matrix fulfills the weak approximation property
(7.8). In our specific case, when we include the set {i, j} in the partition, we effectively
connect the dofs i and j, of the space span {ϕi, ϕj} only span {ϕi + ϕj} is retained on
the coarse level, while span {ϕi − ϕj} is discarded. Thus it obviously only makes sense to
connect i and j if they share an “algebraic edge” (that is, an edge in the matrix graph of
A, or, as we will cal it, the “algebraic mesh”). The set of edges of the algebraic mesh will
for the remainder of this section be called E(Â), and will be formalized and extended
in section 8.2. The concept of an algebraic edge will be formalized and expanded in
section 8.2.1. We call this process “collapsing” of the connecting edge eij , as the coarse
algebraic mesh emerges from the fine one after merging the vertices on either end of any
edge ekl with {k, l} ∈ C.

Figure 8.2: Red edges are collapsed. Coarse DOFs are “located” at the midpoints of the
collapsed edges.

We know from chapter 5 that algebraically smooth error varies slowly inside parts of
the domain with a comparatively large coefficient α and can vary more strongly in
domains with comparatively small α, especially in areas where two “strong” domains
are connected by a “weak” domain. Therefore we want to allow collapsing of an edge
within areas of relatively constant α and we absolutely do not want to collapse edges
that connect two strong domains but that themselfs “lie” in a weak region. We must do

43

8 Algebraic MultiGrid with Alternative Strong Connections

all of this on the basis of the matrix A itself, without knowledge of the actual coefficients
or the mesh underneath. The criterium for an edge’s eligibility for collapsing is based
on the construction of a replacement matrix that is spectrally equivalent to A but has
an even simpler structure.

8.1.1 Replacement Matrix

We will now show that we can find a replacement matrix Â for A on the finest level.

Theorem 8.1: Replacement Matrix

Let Vh of dimension n be the lowest order H1-Finite Element space.

αij :=

{∑
T∈Th; eij∈T tr ST,ij , eij ∈ E(T)

0 , else
i, j = 0 . . . n− 1

Here, ST ,ij is the schur complement of the element matrix for the element T with
respect to the dofs i and j.
Then, the replacement stiffness matrix matrix K̂ ∈ Rn×n defined by

K̂ij =

{∑n−1
l=0 αil i = j

−αij i 6= j

and the original stiffness matrix K induce equivalent norms.

‖u‖2K ≈ ‖u‖2K̂ =
n−1∑
i,j=0

αij(ui − uj)
2 (8.2)

Define βj := DM,j, where DM is the diagonal of the mass matrix. Then DM ≈M .

A replacement matrix for A is given by Â := K̂ + DM , or, in other words:

‖u‖2A ≈ ‖u‖2Â =

n−1∑
i=0

n−1∑
j=0

αij(ui − uj)
2 +

n−1∑
i=0

βiu
2
i (8.3)

All constants in these equivalences only depend on the spatial dimension and the
shape regularity of the triangulation (and are, in particular, h-independent).

Proof. We have to show, with |uh|L2
β(Ω) :=

∫
Ω β|uh|

2dx, that∣∣∣∣∣
n−1∑
i=0

uiϕi

∣∣∣∣∣
2

L2
β(Ω)

≈
n−1∑
i=0

|uiϕi|2L2
β(Ω)

Let T ∈ T be any element in T , T̂ be the reference element, ϕ̂i = ϕi ◦ φ be the hat
basis functions on the reference element with the usual transformation φ : T̂ → T and
F := φ′. We will show equivalence in the L2

β norms restricted to T . Summation over
elements then gives us the result. For uh ∈ Vh and and T ∈ T∣∣∣∣∣

n−1∑
i=0

uiϕi

∣∣∣∣∣
2

L2
β(T)

=

∫
T̂
β̂|det F |

∣∣∣∣∣∣
∑
i:vi∈T

uiϕ̂i

∣∣∣∣∣∣
2

dx

44

8.1 The Prolongation

and
n−1∑
i=0

|uiϕi|2L2
β(T) =

∑
i:vi∈T

∫
T̂
β̂|det F | |uiϕ̂i|2 dx

These are both norms on R3 and thus equivalent.

We will now show the eqivalence of the stiffness and replacement-stiffness matrices in
two dimensions. The proof works in the same in three dimensions, but it is a bit more
compact in two.
First we will show that for all T ∈ Th and uh ∈ Vh

|uh|T |2H1
α(T) :=

∫
T
α|∇uh|2dx ≈

∑
eij∈T

(ui − uj)
2|Hij(ϕi − ϕj)|H1

α(T) (8.4)

Here, Hij is the harmonic extension from the edge eij to the entire element T , defined
by

Hij(uiϕi + ujϕj) = arg min
λ∈R

{
|uiϕi + ujϕj + λϕk|H1

α
(T)
}

where k is the index of the DOF at the third vertex of T . On the one hand, we have

uh|T =
1

2
(ui − uj)(ϕi − ϕj) +

(
uk −

1

2
(ui + uj)

)
ϕk

and thus
|uh|T |2H1

α(T) ≥ (ui − uj)
2|Hij(ϕi − ϕj)|H1

α(T)

On the other hand, with ū := 1
3 (ui + uj + uk) we have

uh,|T = ū +
1

3
(ui − uj) (ϕi − ϕj) +

1

3
(uj − uk) (ϕj − ϕk) +

1

3
(uk − ui) | (ϕk − ϕi)

and thus

|uh|2H1
α(T) =

∣∣∣∣∣∣
∑
eij∈T

(ui − uj)
2 (ϕi − ϕj)

∣∣∣∣∣∣
2

H1
α(T)

.
∑
eij∈T

(ui − uj)
2 | (ϕi − ϕj) |2H1

α(T)

We need to show
|ϕi − ϕj |2H1

α(T) . |H (ϕi − ϕj) |2H1
α(T)

We would like to show the other bound by transforming to the reference element T̂ ,
however this turns out not to work easily. Let again T̂ be the reference element, ϕ̂i =
ϕi ◦φ be the hat basis functions on the reference element with the usual transformation
φ : T̂ → T and F := φ′. transformation, with F := φ′. With ϕ(φ(x)) = ϕ̂(x), the chain
rule gives ∇ϕ = F T ∇̂ϕ̂ and transformation of one term from the right hand side of (8.4)
to the reference element gives:

|H (ϕi − ϕj) |2H1
α(T) = inf

λ∈R

∫
T
α|∇(ϕi − ϕj + λϕk)|2dx

= inf
λ∈R

∫
T̂
α|det F |

〈
F T ∇̂(ϕ̂i − ϕ̂j + λϕ̂k), F

T ∇̂(ϕ̂i − ϕ̂j + λϕ̂k)
〉
dx

45

8 Algebraic MultiGrid with Alternative Strong Connections

We see that taking the infimum and doing the transformation only commute if FF T = γI
for some constant γ ∈ R, or in other words: if the element transformation is a (scaled)
euclidian motion.

For this reason, instead of transforming back to the ref-
erence element T̂ , we transform to some “stretched ref-
erence element” T̃ := cov

{
(0, 0)T , (1, 0)T , (a, b)T

}
(with

a, b > 0). The transformation φ can now be chosen to
take the form φ(x) = heQx + c with an orthogonal ma-
trix Q and some vector c ∈ R2 and the length of the
edge eij , he. The transformation maps eij to the edge
cov

{
(0, 0)T , (1, 0)T

}
. In a shape regular triangulatuon

we can assume a and b to be bounded away from 0 and
bounded from above by moderately sized constants.

(0,0) (1, 0)

(a, b)

vi

vj

vk

T̃

T

φ

The base functions on T̃ are:

ϕ1 = 1− x+
a− 1

b
y ∇ϕ1=

(
−1,

a− 1

b

)
ϕ2 = x− a

b
y ∇ϕ2 =

(
1,−a

b

)
ϕ3 =

1

b
y ∇ϕ3 =

(
0,

1

b

)
Now, the transformation and the infimum commute and we can compute

|H (ϕi − ϕj) |2H1(T) = inf
λ

∫
T̃
he|∇ (ϕ1 − ϕ2 + λϕ3) |2dx

= inf
λ

∫
T̃
he

∣∣∣∣∣
(
−2,

2a− 1 + λ

b

)T ∣∣∣∣∣
2

= |T̃ |he inf
λ

4 +

(
2a− 1 + λ

b

)2

= 4|T̃ |he

| (ϕi − ϕj) |2H1(T) = |T̃ |he4 +

(
2a− 1

b

)2

The shape regularity of the triangulation Th, guarantees that the term 2a−1
b is bouned

from above and below. The second inequality for (8.4) now follows from applying this
to each edge (in particular, transforming three times, with each edge mapped to the
(0, 0) − (1, 0) edge once). Now (8.2) follows from summing over all elements and the
simple argument that by definition of the schur complement and the harmonic extension
H

|H(φi − φj)|2H1
α(T) = |(1,−1)T |2ST,ij = tr ST,ij

Note 8.5. The replacement-matrix from theorem 8.1 is an M−matrix.

46

8.1 The Prolongation

Note 8.6. The αij and the βi can be computed on the element matrix level.

Note 8.7. Given a prolongation operator P ∈ Rn×nC , we can define the coarse replace-
ment matrix ÂC := PT ÂP which is equivalent to the coarse matrix AC = PTAP with
the same bounds as A and Â.

ÂC ≈ AC

If we have no L2-term in the original equation all βj = 0 and the equation Âu = b
can interpreted as describing a resistor network where each vertex vi is a node, each
eij ∈ E(Â) represents a a conductor of resistance 1/αij that connects vi and vj , ui is the
value of the electric potential u at vi and bi gives the (constant) electric current flowing
into/out of the network at vi. Assuming our dirichlet-data is uD = 0, ui = 0 for all
nodes vi ∈ ∂Ω; this just means that these nodes are grounded. As any other case with
uD 6= 0 can, by taking any function w that fulfills the dirichlet conditions and considerin
the equation for ũ := u − w which has 0 boundary values by construction, be reduced
to one where uD = 0, it is the only case we need to concern ourself with. Each line of
the equation corresponding to a non-dirichlet DOF i is then just Kirchhoff’s first law
applied at vi: ∑

j

αij(ui − uj) = bi

Given a piecewise prolongation as in definition 8.2, we can find a similar interpretation
for ÂC . Let i 6= j, then, with the unit vectors ei ∈ Rnc we have

ÂC,ij =
〈
ÂPei,Pej

〉
= −

∑
k∈Ci

∑
l∈Cj

αkl =: αCij

The off-diagonal entries of ÂC,ij are the sums of all off-diagonal entries of Â correspond-
ing to edges that connect a vertex in Ci to one in Cj . This sum corresponds to the
inverse of the collective resistance of the resistors along all of those edges connected in
parallel. Unlike at the fine level, the diagonal entries of the coarse replacement matrix
, in addition to the (negative) sum of the odd-diagonal entries of the row, also have
additional values corresponding to edges that connect any node in Ci to any node in D
(if there are any).

ÂC,ii =
∑
j

ÂC,ij +
∑
k∈Ci

∑
j∈DC

αkj =:
∑
j

αCij + βCi

We see that the coarse replacement matrix has the form of a replacement matrix in the
sense of theorem 8.1, however with an l2-term and induces the quadratic form

‖u‖2ÂC =
∑
i,j

αCij(ui − uj)
2 +

∑
i

βCi u2
i

Let us therefore go back to the fine level and interpret the problem for a nonzero β. We
can write the induced quadratic form 8.3 as

‖u‖2
Â

=
∑
i,j

(ui − uj)
2αij +

∑
i

u2
iβi =

∑
i,j

(ui − uj)
2αij +

∑
i

(ui − 0)2βi

With b := (β0, β1, . . . βnc−1)T and b :=
∑

i βi, we can now define an extension Ã of Â

47

8 Algebraic MultiGrid with Alternative Strong Connections

by

Ã =

(
b −bT

−b Â

)
∈ Rn+1×n+1

Ã now has the form of a replacement matrix without l2-term, for which we already have
an interpretation, the βi now stand for additional connections between vi and the newly
intriduced node v−1 (we will use indices starting with -1 for the extended replacement
matrix). The equation Âu = b is equivalent to

Ã

(
0
u

)
=

(
∗
b

)
Solving Âu = b is equivalent to solving an equation with Ã where we prescribe 0 as
a dirichlet condition for v−1. The βi act as grounding conductors. The connections
between vertices on the dirichlet-boundary and vertices not on the dirichlet boundary
act in the same way. We can extend ÂC in the same way to get an extended coarse
replacement matrix ÃC ∈ Rnc+1×nc+1. After extending the prolongation matrix P ∈
Rn×nc to P̃ ∈ Rn+1×nc+1 by defining

P̃ij =

Pij if i, j ≥ 0

1 if j = −1 and i ∈ DC ∪ {−1}
0 else

we see that ÃC = P̃T ÃP̃. All fine dirichlet-DOFs, the (fine) fictitious DOF -1 as well
as all other dofs in DC have been mapped to the coarse dirichlet dof −1. All in all,
as mentioned above, for the interpretation of the coarse matrix this means that coarse
dofs i and j are connected by a resistor that corresponds to all the resistors connecting
a dof in Ci with one in Cj connected in parallel. The resistances along connections
between dofs i and j with {i, j} =: Ck ∈ C, that is αmn for m,n ∈ Ck do not factor
into any entry of ÃC - in the coarse network these connections play the role of a perfect
conductor. The connections between some DOF in DC and some DOF not in DC become
grounding conductors on the coarse level. Having some i ∈ DC \D is therefore equivalent
to collapsing the edge connecting nodes i and −1, for this reason we call putting some
free DOF i into DC “collapsing the vertex vi”, in analogy to “collapsing an edge eij”
when {i, j} ∈ C \ {DC}. An edge eij with {i, j} ∈ C \ {DC} will be called a collapsed
edge, and a vertex vi with i ∈ DC will be called a collapsed vertex.

48

8.1 The Prolongation

µ1

µ2

µ3

λ2

λ1

µ1

µ2

µ3

0

0

µc

Figure 8.3: The coarse resistor network for the piecewise prolongation. Resistors along
collapsed edges are replaced by perfect conductors, the resistances λi along
these connections are 0. Those along the other labelled edges are put in
parallel, µc = (

∑
i µ
−1
i)−1.

These ideas will be used in section 8.1.3 as motivation for an improvement to the piece-
wise prolongation operator.

8.1.2 Two Grid Convergence

We will now show how to construct C such that the resulting piecewise prolongation
operator P fulfills the weak approximation property (7.8) and thus establish two-grid
convergence.

Theorem 8.2: Weak Approximation Property for AscAMG

Let P be a piecewise prolongation and C be the partition as in definition 8.2.
Define the vertex strengths si := Âii, the edge-collapse-weights wij :=

αij
si+sj

and the

vertex-collapse-weights wi := βi
si

.
If, for some 1 > σ > 0

wij > σ ∀{i, j} ∈ C (8.5)

wi > σ ∀i ∈ DC \D (8.6)

Then

inf
xc∈Rm

‖x−Pxc‖2D̂ ≤ σ
−1‖x‖2Â ∀x ∈ Rn (8.7)

That is, P fulfulls the coarse approximation property 7.8 with resprect to Â and
its diagonal D̂ and therefore for A and its diagonal D.

Proof. For any x ∈ Rn we define the coarse grid interpolant xC by taking the average

49

8 Algebraic MultiGrid with Alternative Strong Connections

for each collapsed edge and keeping ui the same for all i such that {i} ∈ C.

xC,i =

{
uk+ul

2 if Ci = {k, j}
uk if Ci = {k}

With this we have

PxC =
∑

{i,j}∈C\{DC}

1

2
(ui + uj)(ei + ej) +

∑
{i}∈C\{DC}

uiei

And

x−PxC =
∑

{i,j}∈C\{DC}

uiei + ujej −
1

2
(ui + uj)(ei + ej) +

∑
i∈DC\D

uiei =

=
∑

{i,j}∈C\{DC}

1

2
(ui − uj)ei +

1

2
(uj − ui)ej +

∑
i∈DC\D

uiei

Thus

‖x−PxC‖2D̂ =
∑

{i,j}∈C\{DC}

1

4
(ui − uj)

2Âii +
1

4
(uj − ui)

2Âjj +
∑

i∈DC\D

u2
i Âii =

=
∑

{i,j}∈C\{DC}

1

4
(ui − uj)

2
(
Âii + Âjj

)
+

1

σ

∑
i∈DC\D

u2
iβi ≤

≤ 1

σ

∑
{i,j}∈C\{DC}

1

4
(ui − uj)

2αij +
1

σ

∑
i

u2
iβi ≤

≤ 1

σ

∑
i,j

1

4
(ui − uj)

2αij +
1

σ

∑
i

u2
iβi ≤

≤ 1

σ
‖x‖2Â

Therefore P fulfills the weak approximation property for Â and its diagonal D̂ and
because A ≈ Â also for D ≈ D̂.

8.1.3 Smoothed Prolongation

As mentioned before, because the “steepness” of coarse base function never diminishes,
coarse spaces constructed by peicewise prolongation feature poor H1-approximation
properties. For the method this means that it’s quality gets worse as the number of levels
increases. The term “smoothed prolongation” refers to a modification of the piecewise
prolongation that is supposed to smooth out the coarse base functions to deal with this
problem. In principle, given the error prolongation matrix M of our smoother of choice,
we want the coarse space be able to approximate all algebraically smooth vectors, that
is vectors such that Mx ≈ x or at least not to contain nonsmooth vectors, which are
those with Mx ≈ 0. We could now define the smoothed prolongation as Ps := MP.
The extra smoothing step is supposed remove nonsmooth components in the range of
P. The problem with this approach is that when using this smoothed prolongation to
build the coarse matrix AC = PT

s APs, we potentially introduce a lot of nonzero entries

50

8.1 The Prolongation

which we would not have if we used the simple P. In many cases, M is not even sparse,
for example M = I − (L + D)−1A for Gauss-Seidel. Even if we wanted to compute M
in that case, which is unfeasible in and of itself for large problems, the number of nonze-
ros in AC , which determines the operator complexity of the multigrid algorithm, would
be unacceptably large and even if we would be willing to live with that, this problem
would get worse and worse on coarser levels and after a few levels we would have a dense
system matrix. We already observed in chapter 3 that jacobi and Gauss-Seidel actually
behave similarly, therefore the usual approach is to use the iteration matrix of dampened
jacobi instead of M to smooth the prolongation and define Ps := (I− ωD−1A)P. This
decreases the problem we face somewhat:

AC = PT (I− ωD−1A)TA(I− ωD−1A)︸ ︷︷ ︸
:=A2

P

AC is now the coarse matrix of A2, built with the original piecewise prolongation.
I − ωD−1A has the same sparsity pattern as A, therefore the matrix graph of A2 has
an edge for each path of length 3 in the matrix graph of A. In traditional smoothed
aggregation methods, the aggregates C ∈ C are made so large that the corresponding
piecewise prolongation cancels out many of these additional connections.
In our case, we have |C| ≤ 2 ∀C ∈ C \{DC} therefore the piecewise prolongation can not
eliminate many of the additional connections and the matrix graph of AC is again a much
denser matrix that A, however, it is still much sparser than it would be if we had used
MGS. Over many levels, however, these additional entries still compound and pose an
increasingly big problem. What follows is a modification of the smoothed prolongation
based on the replacement matrix Â.

8.1.4 A better coarse system

We have seen how to interpret the coarse replacement matrix, constructed from a piece-
wise prolongation operator P, via a coarse resistor network which corresponds for the
fine one, with resistors along each collapsed edge replaced by perfect conductors and re-
sistors along edges connecting the same agglomerates connected in parallel (figure 8.3).
We have also seen how to extend the replacement matrix in order to reduce the iner-
pretation for the case where some βi 6= 0 to one where all βi = 0, which is therefore the
only case we need to consider in this section.

Notation 8.1. For the next section, it will be convenient to be able to map fine DOFs to
coarse ones. A prolongation matrix P defines a fine-to-coarse index map

c :

{
{0 . . . n− 1} 7→ {0 . . . nc − 1}
i→ j such that i ∈ Cj

which we will use for the remainder of this section only. It will be generalized later.

Note 8.8. The corresponding coarse-to-fine index map, although mapping indices to sets,
is just i→ Ci.

This coarse netowork is simply not a very good approximation to the fine one, as all
resistors along collapsed edges are simply removed. We can find a better fitting coarse
network that features the exact same nodes and connections as the original coarse one
but has different resistances. First, we replace each resistor in the fine grid that runs

51

8 Algebraic MultiGrid with Alternative Strong Connections

along a collapsed edge by two, weaker, resistors, connected in serial, each with halve
of the original’s resistance, as seen in figure 8.4 on the right. Let us call this simply
the extended network (which is a different extended network than the one before, where
we interpreted the l2-terms!). Then, for the coarse network, we call the node on the
edge eij with {i, j} = Ck ∈ C \ {DC} node k, remove nodes in vertices of collapsed
edges and call the node on vertex vi with {i} = Cj ∈ C \ {DC} node j. As before, we
establish a connection between nodes i and j in the coarse network exactly if there is
some edge ekl ∈ E(Â) with c(k) = i and c(l) = j. This leaves us with the exact same
nodes and connections between nodes we had in the old coarse network constructed from
the piecewise prolongation matrix. We want the resistances on the coarse network to
be chosen such that the extended nework is approximated as well as possible by the
coarse one. We are not interested in how exactly the optimal choice looks, however it is
obvious that it somehow has to incorporate resistances along the split collapsed edges,
in contrast to before, where we simply replaced these with perfect conductors.

µ1

µ2

µ3

λ2

λ1

λ2/2

λ2/2

λ2/2

λ2/2
λ2/2

λ2/2

λ2/2
λ2/2

λ2/2

λ2/2

µ1

µ2

µ3

µc

Figure 8.4: A coarse resistor netwerk that better approximates the original one. Resistors
along collapsed edges are split into two, each of them connecting a newly
introduced node at the midpoint of the edge with a vertex, each accounting
for half the resistance of the original one. One possible, not necessarily ideal,
choice for the coarse resistance would be to first connect resistors along edges
that are not collapsed in parallel where appropriate and then connect them
in serial with the newly introduced ones for µc = (2λ−1

1 + 2λ−1
2 +

∑
i µ
−1
i)−1.

What we are interested in is to build a good prolongation matrix Ps that takes a
vector uc of nodal values of an electric potential u on the coarse network and gives
us a good approximation of its nodal values on the fine network. That is, given uc

as dirichlet data in the coarse nodes of the extended network, we want to find the
nodal values of u in the rest of the extended network (of course, with no current ex-
iting or entering the extended network in nodes not present in the coarse network).

52

8.1 The Prolongation

These nodal values restricted to the nodes present in the fine network are then Psu
c.

Finding the exact nodal values would require solv-
ing a laplacian-like equation on the entire extended
network and is not feasible. We will therefore, as
we did with the collapsed edges before, now also
introduce new nodes on edges eij that are not col-
lapsed, split their resistors in two and then pre-
scribe dirichlet-values 1

2(uc(i) + uc(j)) there - this
is not exact, but these nodes should lie somewhere
in the middle between the nodes c(i) and c(j) and
there is no current entering the network in between
so it should be a reasonable approximation. Now,
with the neighbor set Ni = {j : eij ∈ E(Â)}, Kirch-
hoff’s law for each node i with {i, j} ∈ C \ {DC} is

2αij(ui − ucc(i)) +
∑
l∈Ni

c(l)6=c(i)

2αil

(
ui −

1

2
(ucc(i) + ucc(l))

)
= 0

Equivalently, as αkl = −Âkl,
∑

j∈Ni αij = Âii,
c(j) = c(i) and ucc(i) = (Puc)i, which is clear by
the definition of the replacement matrix, the fine-
to-coarse index map and the piecewise prolongation
respectively,

ui =
Â−1
ii

2

Âiiu
c

c(i) +
∑
l∈Ni

αilu
c

c(l)

 =
1

2
ucc(i) −

Â−1
ii

2

∑
l∈Ni

Âilu
c

c(l) =

=

(
(I− 1

2
D̂−1Â)Puc

)
i

So Ps = (I − 1
2D̂−1Â)Ps, which is just the smoothed prolongation we already know,

except that here, we are using the replacement matrix Â instead of A to smooth the
prolongation matrix!
All in all, these considerations may have convinced us that it is reasonable to use the
replacement matrix to smooth the prolongation, however, as the matrix graphs of Â and
A are the same, this does not solve the problem we had, which was that the additional
nonzeros on coarser and coarser levels introduced by smoothing the prolongations keep
compounding at an unacceptable rate because the matrices (I− 1

2D̂−1Â) themselfs keep
on getting denser and denser.

The next observation is that, while we have no choice but to define the coarse matrix
as AC = PT

s APs for the coarse grid correction to be an A-orthogonal projection, we
are free to modify ÂC , as long as it stays equivalent to AC . For the concrete choice
ÂC := PT ÂP, we maintain equivalence of AC and ÂC and, because as we know the
coarse level matrix does not decrease in sparsity under P, ÂC is just as sparse as Â.
This means that, while the smoothed prolongation keeps on increasing the nonzero

53

8 Algebraic MultiGrid with Alternative Strong Connections

elements per row as levels get coarser, the rate of increase is under control!

Definition 8.3: AscAMG Smoothed Prolongation

Given A, Â, a piecewise prolongation P, and a dampening parameter ω ∈ (0, 1),
which will usually be 1

2 , the smoothed prolongation is defined as

Ps := (I− ωD̂−1Â)P

The coarse level replacement matrix is defined as

ÂC := PT ÂP

Note 8.9. As Â is an M-matrix, the modification of the coarse replacement matrix
introduces only a moderate additional constant in AC ≈ ÂC .

Even with these modifications of the smoothed prolongation and the coarse system,
the resulting operator complexity of the V-cycle MG algorithm is still too large. More
optimizations to this method, in the form of alternating prolongation types and the
hierarchic prolongation will be introduced in section 8.2.3

54

8.2 Parallelization and Implementation

8.2 Parallelization and Implementation

In this chapter we will discuss the implementation of AscAMG and present some of
the optimization that has been done to achieve the performance and scalability that
will be shown in chapter 9. After outlining some of the problems we have run into
during developing AscAMG , section 8.2.1 will introduce the terminology we use to
formulate the subsequently presented coarsening algorihm. Afterwards, in section 8.2.2
we will discuss problems very small coarse spaces pose in large computations. Section
8.2.3 contains the promised solutions to the problems we still have with the smoothed
prolongation and finally, in section 8.2.4 we will touch upon the topic of the exact choice
of smoothers that are available in AscAMG , which is a topic that has been completely
neglected so far.
When talking about the problems we ran into during develompent of AscAMG , going
through them in the chronological order in which we ran into them makes some sense,
however we will choose a more orderly and logically more coherent order.
The first thing we needed was the coarsening algorithm, which is not trivial to efficiently
implement because we are essentially partitioning a graph which is distributed over many
procs with each only having access to the subgraph coming from its own subdomain.
We also had to consider that we would run into problems when allowing collapsing of
edges for which there are some procs that only “see” one of its vertices. We therefore
had to either completely forbid the collapsing of these edges, which turned out to be
too restrictive to be efficient, to continuously redistribute the algebraic mesh - and the
parallel matrices with them, which we did not even attempt, or to find a kind of middle
ground between these two approaches. We ended up having to forbid some edges in order
to limit proc interfaces on coarse levels. The chronologically last major problem we ran
into was that when doing larger computations, on very coarse levels, which had only very
few DOFs per core left, the restrictions to the collapseable edges we had put in place
turned out to halt further coarsening almost completely. Additionally, as DOFs/core
decrease on the coarse levels, communication overhead plays a bigger and bigger role as
opposed to actual computing. The solution to this was to redistribute the entire problem
to fewer cores at certain breakpoints.
We also needed to implement an efficient distributed smoother. While jacobi is easily
implemented even in a distributed setting, it also needs dampening with some parameter
we have to choose appropriately. Gauss-Seidel on the other hand is incredibly difficult to
implement efficiently in a distributed setting. Ultimately it turned out to be too difficult
to make run efficiently on more than about 1000 cores. The solution to this was using
the so-called `1-smoother. In section 8.2.4, this will be elaborated upon.
After having dealt with that we ran into problems with trying to implement a distributed
smoothed prolongation, the smoothing itself introduced entries in the coarse matrices
that brought processors into contact with each other that were not in contact before at
all, which would have increased the necessary communication for each smoothing step
and also necessitated making major adjustments to the distribution of data and the
communication structure on each level which we were not willing to put up with and
implement respectively. Our solution to both this problem and the answer to the still
unsolved question of how to limit operator complexity despite prolongation smoothing
from the previous chapter will be given in section 8.2.3.

55

8 Algebraic MultiGrid with Alternative Strong Connections

First, however, we will get some general notation out of the way. Some notation form
previous chapters will be slightly modified or replaced throughout this section. Some
notation from previous chapters will also be repeated here because we have opted to
keep as much of the notation necessary for reading the chapter in one place.

Notation 8.2. We will write np for the number of procs and each proc will be identified
by its rank, a number in 0 . . . np − 1. The set of all procs will be P = {0, 1, . . . np − 1}.
For the proc with rank k we will write P k.

Notation 8.3. The global number of DOFs (on the fine level) will be written as N , the
local number of DOFs on some generic proc will be n and the number of local DOFs on
P k will be nk.

Notation 8.4. The set of global DOFs will be N := {0 . . . N − 1}, the set of DOFs local
to some generic proc will be N` := {0 . . . n− 1} and the set of DOFs local on P k to N k

` .

Notation 8.5. The local-to-global DOF map gk maps local dof-numbers on proc P k to
global ones. Its inverse is the global-to-local DOF map `k = (gk)−1.

Notation 8.6. For each local DOF k, its proc-rank-set, or, more informally, its proc-
set will be IPk :=

{
l : P l shares DOF k

}
⊆ P. The proc-set of a global dof gk(j) is,

consistently defined, IP
gk(j)

= IP,kj . On proc P j , for each local DOF k, its distant-proc-

rank-set or dist-proc-set will be I
Pj
k

:= IPk \{j}, that is, the set of ranks of all other procs
that share the k-th local DOF.

Notation 8.7. We will use the notation from chapter 4 for distributed matrices and write
A ∼= (Ak). On the finest level, each Ak is the Finite elemetnt Matrix assembled on the
subdomain Ωk and therefore posesses a replacement matrix Âk. We will write the global
replacement matrix as Â ∼= (Âk).

Notation 8.8. A partition C of N induces a partition Ck of N k
` by

Cl :=
{
Ci := `k(Cgk(i) ∩ gk(N k

`)) : C ∈ C \ {DC}, C ∩ gk(N k
`) 6= ∅

}
∪ {Dk

C}

where we write Dk
C := `k(DC ∩ gk(N k

`)) and Dk := `k(D ∩ gk(N k
`)). In particular, the

numbering of the Ci of the local and global partitions are conistent. The piecewise pro-
longation based on this local partition is called Pk. They induce the coarse replacement
matrix by ÂC

∼= (PT ÂkPk)k.
The coarse DOF-set will be N c := {0 . . . |C \ {DC}| − 1} C also induces a (global) coarse-
to-fine DOF-map f

f :

{
N f 7→ 2N

k → Ck

and a (global) fine-to-coarse DOF-map crs

crs :

{
N 7→ N c

k → j such that k ∈ Cj ∈ C

Note 8.10. The local piecewise prolongations Pk do not induce the global matrix P,
because they have full values Pk

ij = 1 for i ∈ Cj ∈ Ck and therefore

(
∑
i

EiP
iET

i)kl =

{
|IPk | if k ∈ Cl ∈ C
0 else

56

8.2 Parallelization and Implementation

(Pk)k is a matrix-analogon to a cumulated vector as, with the Ei as in chapter 4,

Pi = Ei,TPEi

However, keep in mind that we have not formally defined non-rectangular parallel ma-
trices. If (vk)k is a distributed/cumulated parallel vector, then (Pkvk)k is again a dis-
tributed/cumulated parallel vector and represents Pv. We can do multiplication with
the global matrix P locally, without worrying about or modifying the parallel status of
a parallel vector!

Note 8.11. In order to compute P, we are not actually interested in computing a global

C , we only need the local partitions kC on all procs but do we need them to be consistent!

8.2.1 Coarsening

In order to compactly formulate the coarsening algorithm as well as most considerations
in subsequent sections, we need a little more notation that replaces the mesh with a
purely algebraic construct.

Definition 8.4: Weighted Vertices and Edges

A weighted vertex is a tuple

vk := (k, x, y) ∈ N× R+ × R+

A weighted edge is a tuple

ekl := ({k, l}, x, y) ∈ N2 × R+ × R+

With the usual projection operators π1, π2, π3, the vertex-to-index map for weighted
vertices is defined by i := π1. For weighted edges, we define the edge-to-vertex maps
as i1 := π1 ◦π1 and i2 := π2 ◦π1. The weight-functions w := π2 and collapse-weight-
functions cw := π3 are defined for both weighted edges and vertices.
We call a set A of weighted edges or a set B of weighted vertices regular if π1 is
injective on A or B respectively. That just means, there are no “double” edges or
vertices that only differ in weights.
For two such sets, if i1(A) ∪ i2(A) ⊆ i(B), the edge-to-vertex maps v1,v2 are
defined by:

vk :=

{
A 7→ B

e→ (i−1 ◦ ik)(e)

57

8 Algebraic MultiGrid with Alternative Strong Connections

Definition 8.5: (Global) Algebraic Mesh

With the global system and replacement matrices A and Â, the (global) edge
weights αij, vertex weights βi, vertex-collapse-weights wi, and edge collapse
weights wij, we define the (global) algebraic mesh as

M := (V, E) (8.8)

Where V is the set of (weighted) vertices

V := {(k, βk, wk) : k ∈ N} (8.9)

And E is the set of (weighted) edges

E :=
{

({i, j}, αij , wij) : i, j ∈ N ∧ Âij 6= 0
}

(8.10)

Definition 8.6: (Local) Algebraic Mesh

For each proc P k, with its’ local system and replacement matrices Ak and Âk, the
(global) edge weights αij, vertex weights βi, vertex-collapse-weights wi, and edge
collapse weights wij, we define the (local) algebraic mesh as

Mk := (Vk, Ek) (8.11)

Where Vk is the set of (weighted) vertices

Vk :=
{

(l, βg(l), wg(l)) : l ∈ N k
`

}
(8.12)

nd Ek is the set of (weighted) edges

Ek :=
{

({i, j}, αg(i)g(j), wg(k)g(j)) : i, j ∈ N k
` ∧ Âg(i)g(j) 6= 0

}
(8.13)

Note 8.12. Note that the local algebraic meshes are defined with the global edge- and
vertex-weights and vertex strengths! In praxis, these have to be computed from the local
ones.

Note 8.13. In addition to the edge-collapse-weights wij and the vertex-collapse-weights
wi, which are all that is needed in the coarsening algorithms, the algebraic mesh also
holds the edge-weights αij and the vertex-weights βi. The reason for that is that with this

additional data, it holds all the information Â does, therefore we never need to explicitly
assemble Â at all. The coarse algebraic mesh can also relatively easily computed from
the fine algebraic mesh, without ever assembling the coarse replacement matrix ÂC .

Note 8.14. The sets E and V are, by definition, regular and the global edge-to-vertex
maps v1,v2 : E 7→ V are defined. The same goes for the local sets Ek and Vk and the
local edge-to-vertex maps vk1 ,v

k
2 .

58

8.2 Parallelization and Implementation

Definition 8.7: Vertex- and Edge-Maps

For each proc P k, the local-to-global vertex-map gk is

g

{
Vk 7→ V
v → (i−1

1 ◦ gk ◦ i1)(v)

For each proc P k, the global-to-local vertex-map `k is

g

{
gk(Vk) 7→ Vk

v → (i−1
1 ◦ `

k ◦ i1)(v)

For each proc P k, the local-to-global edge-map gk is

g

{
Ek 7→ E
e→ (i−1

1 ◦ (gk,gk) ◦ i1)(e)

For each proc P k, the global-to-local edge-map `k is

g

{
gk(Ek) 7→ Ek

e→ (i−1
1 ◦ (`k, `k) ◦ i1)(e)

After this exhaustive introduction of notation, we will now present a compact formalism
to describe the parallelism of DOFs in a distributed setting which will subsequently
be used to discuss our coarsening algorithm as well as an optimization for very large
problems on many cores we have implemented.

DOF EQCS

Definition 8.8: DOF-EQCs

The proc-sets IPk define an equivalence relation on N by

j ∼ k :⇔ IPj = IPk

We define a partial order on N by

j C k :⇔ IΩ
j ⊆ IΩ

k

This induces a partial order on N/∼ by [j] C [k] :⇔ j C k, which we call the eqc-
hierarchy. For the equivalence class of some vertex a we write [a]v instead of the
more common [a]∼. For any J ⊆ P, we will write its DOF equivalence class, or
simply its DOF eqc, as [·]vJ :=

{
k ∈ N : IPk = J

}
.

The “master” of an EQC [·]vJ is P k with k = min{j : j ∈ J}.
An equivalence class [j]v ∈ N/∼ is called a:

– V-eqc: “vol-eqc”, if |IPj | = 1

– F-eqc: “face-eqc”, if |IPj | = 2

– W-eqc: “wire-eqc”, if |IPj | ≥ 3

59

8 Algebraic MultiGrid with Alternative Strong Connections

P 1 P 2

P 3P 4

Figure 8.5: DOF-EQCs for a simple case of four procs. The bold lines are proc-interfaces.
Blue:vol-eqcs, Green:face-eqcs, Red:wire-eqcs

Note 8.15. The terms vol-, face-, and wire-eqc come from the fact that if the DOFs
come from a finite element space defined on a mesh, in 3d, vol-eqcs usually lie in the 3-
dimensional interiors of subdomains , face-eqcs lie on usually 2-dimensional interfaces be-
tween two subdomains and wire-eqcs lie on the intersections of the subdomain-interfaces,
which are usually 1- or 0-dimensional. With algebraic multigrid, on coarse levels, this is
not true anymore, however it does help with visualizing the coarsening and prolongation
algorithms.

Note 8.16. In general, perforing operations on dofs in v-eqcs can be done locally to
each processor and requires no communication and the communication necessary for
operations on f-eqcs is only pair-wise and is also quite easy to implement and relatively
cheap (as long es the number of neighbouts for each proc is bounded), operations on w-
eqcs can require extensive (potentially even global!) communication which often difficult
to implement efficiently.

For formulating the coarsening algorithm we will also need to define equivalence classes
on the set of edges

60

8.2 Parallelization and Implementation

Definition 8.9: Edge-EQCS

For an edge e ∈ E, we define its proc-set IPe as

IPe := IPi1(e)i2(e)
:= IPi1(e) ∩ I

P
i2(e)

Again, this induces an equivalence relation on E by

e ∼ ẽ :⇔ IPe = IPẽ

The partial orders on E and E/∼ are defined in the same way as for DOFs, and
will again be called the eqc-hierarchy.
For the equivalence class of some edge a we write [a]e instead of the more common
[a]∼. For any J ⊆ P, we will write its edge equivalence class, or simply its edge-
eqc, as [·]eJ :=

{
e ∈ E : IPe = J

}
. These classes in E/∼ will be called vol-, face-, and

wire- eqcs in the same way that DOF-eqcs are. The “master” of an EQC [·]eJ is
P k with k = min{j : j ∈ J}.
We will call an edge an in-eqc edge if IPe = IPi1(e) = IPi2(e) and a cross-eqc edge if

IPi1(e) 6= IPi2(e).

Note 8.17. The case IPe = ∅ will be excluded, it cannot occur on the finest level and the
coarsening algorithm and parallel prolongation will be built in such a way that it will
also not occur on any coarser levels.

Note 8.18. In figure 8.5, exactly those edges are in-eqc that do not cross any differently
colored vertices.

The Coarsening Algorithm

To reiterate and summarize what we know from section 8.1, it is the job of the coarsening
algorithm to construct a partition C of N as needed for building a piecewise prolongation
(definition 8.2) such that conditions (8.5) and (8.6) are fulfilled, that is for σ ∈ (0, 1)
(we will usually choose σ = 0.1)

wij > σ ∀{i, j} ∈ C
wi > σ ∀i ∈ DC \D

We will first give an algorithm that works sequentially. Algorithm 4 is very simple, as
we are very restrictive with which agglomerates Ci ∈ C we allow (that is, only single
DOFs or paris of DOFs). We also do not need to concern ourselfs as much with any
criterium for the agglomerates that limits the nonzero entries introduced by smoothing
the prolongation (see section 8.1.3).
Algorithm 4 can be given an initial partial partition C0 to start from which noth-
ing will be removed, it will only be added to. It also takes a boolean parameter
MAKE COMPLETE, which allows for an incomplet partition that does not contain
any single DOFs (it consists only of collapsed edges and vertices). Both of these options
will be used later, for now we will call it with C0 = ∅ and MAKE COMPLETE=TRUE.

61

8 Algebraic MultiGrid with Alternative Strong Connections

Algorithm 4 Coarsen Algebraic Mesh sequentially. Input:

–––––– M algebraic mesh
– D . . . set ofdirichlet dofs.
– C0 . . . initial partition, can be empty. If it not empty it must contain the set
DC ⊇ D. Will only be added to, no elements will be removed or modified.

– MAKE COMPLETE. . . boolean value, if true, returns a complete partition of the
DOFs. Otherwise, only collapses vertices and edges and leaves left over DOFs
unassigned.

Output:

– C . . . (local) partition.

1: procedure CAM SEQ(M, D, C0, MAKE COMPLETE)
2: if C0 = ∅ then
3: Set DC := D
4: Set C := {DC}
5: Set U := D
6: else
7: Set U :=

⋃
C∈C0 C

8: for e ∈ E , in descending order of their collapse-weight cw(e) do
9: if cw(e) > σ and i1(e) /∈ U and i2(e) /∈ U then

10: C → C ∪ {{i1(e), i2(e)}}, U → U ∪ {i1(e), i2(e)}
11: for v ∈ V, in descending order of their collapse-weight cw(v) do
12: if cw(v) > σ and i(v) /∈ U then
13: DC → DC ∪ {i(v)}, U → U ∪ {i(v)}
14: else if MAKE COMPLETE then
15: C → C ∪ {{i(v)}}, U → U ∪ {i(v)}
16: return C

Note 8.19. Algorithm 4 detects weakly enforced dirichlet boundary conditions and col-
lapses all concerned DOFs. This can be seen easily: When we weakly enforce a dirichlet
condition at DOF j, we add an l2-term with a coefficient that is larger than α by a
couple of orders of magnitude. This means that βi is larger than all αij by a multiple
orders of magnitude, which means wij << 1 and no edge connected to i can be collapsed.
We also have wi ≈ 1 and therefore the DOF is collapsed.

A first, simple approach to parallelizing algorithm 4 is grounded in the observation that
for each P k, its purely local part of the algebraic mesh, consisting of the purely local
vertices and the edges that connect purely local DOFs to each other, is not seen from
the outside by any other proc. We can just apply algorithm 4 to each of these local
sub-meshes sequentially. In fact, there is even more we can do purely locally, without
any communication. For that, let us define more rigorously what a “block of an algebraic
mesh” is:

62

8.2 Parallelization and Implementation

Definition 8.10: Algebraic Mesh Block

For J ⊆ P, the “J-Block of M”, is defined as MJ := (VJ , EJ), with the eqc-vertex
set

VJ := {v ∈ V : i(v) ∈ [·]vJ} ⊆ V

and the in-eqc-edge set

EJ := {e ∈ E ∩ [·]vJ : [v1(e)]v = [v2(e)]v} ⊆ E
For each proc P k, the local J-Block is defined as Mk

J
:= (VkJ , EkJ), with the local

eqc-vertex set

VkJ := `k
(
VJ ∩ gk(Vk)

)
and the local in-eqc-edge set

EkJ := `k
(
EJ ∩ gk(Ek)

)
For each J we also define the global cross-eqc-edge set

GJ := {e ∈ E ∩ [·]vJ : [v1(e)]v 6= [v2(e)]v} ⊆ E
For each proc P k and proc-set J , the local cross-eqc-edge set is

GkJ := `k
(
GJ ∩ gk(Gk)

)
For obious reasons, we call MJ a “vol-block” if |J | = 1, a “face-block” if |J | = 2
and a “wire-block” if |J | = 3.

P 1 P 2

P 3P 4

Figure 8.6: The same case as figure 8.5. All green edges are in-eqc and are therefore
viable for collapse by algorithm 5. Cross-eqc edges are dashed to indicate
that the are not seen by algorithm 5.

63

8 Algebraic MultiGrid with Alternative Strong Connections

In addition to applying algorithm 4 to each M{k} locally, we can actually apply it to
all blocksMJ locally on each proc P j ∈ J . The collapsing of each block is independent
and the results for collapsing each block must be consistent across all procs as algorithm
4 is deterministic.
Algorithm 5 does just that, is fairly easy to implement and also looks pretty good at
first glance. In fact, it does work very well for the first couple of levels, however after
that things go awry quickly as seen in figure 8.7.

a: x-axis: levels. y-axis: Fraction of
DOFs in vol-eqcs (blue), face-eqcs
(green) and wire-eqcs (red).

b: x-axis: levels. y-axis: Relative loga-
rithmic number of DOFs compared
to level 0. Dashed: 2−l · (inital
NDOF)

Figure 8.7: Behavior of algorithm 5 for the 3d-problem poisson problem, α = 1, β = 0
on the unit cube with approximately 108 DOFs on only 60 cores.

The problem that occurs here is caused by the fact that the support of coarse base
functions corresponding to nodes in vol-eqcs tend to have 3-dimensional support, those
in face-eqcs tend to have 2-dimensional and those in wire-eqcs 1-dimensional support.
The overlap of two coarse level basis functions with d-dimensional support tends to be
(d-1)-dimensional, and as the edge-weight for the corresponding coarse algebraic edge is
given by the sum over all finest level edge weights that lead through the common support,
it scales like ld, with the number of levels l. The overlap of a (d+k)-dimensional and
a d-dimensional base function support overlap still tends to be d-dimensional, and the
corresponding edge-weight scales like ld.
Summarized, vol-vol- and vol-face edge-weights scale like l2, vol-wire, face-face and face-
wire edge-weights like l and wire-wire weights stay constant. After enough levels, all
face-face edge weights are outscaled by surrounding vol-face edge weights and all wire-
wire edge weights are outscaled by surrounding face-wire edge weights until they cannot
fulfill condition (8.5), which, when β = 0 just says that an edge that is admissible for
collapse has to represent a certain fraction of the total edge weights coming together
in either vertex. Of coarse, now the vol-face and face-wire edges are very strong and
admissible for collapse, but algorithm 5 never even considers these (cross-eqc) edges. We
will now see what we can do about that.

64

8.2 Parallelization and Implementation

Algorithm 5 Coarsen Algebraic Mesh EQC-wise on each proc. Input:

––––––– M . . . the (local) algebraic mesh
– D . . . (local) set of dirichlet dofs.
– JP . . . set of all proc-sets J ⊆ P that contain the calling proc with non-empty VkJ
– C0 . . . initial (local) partition, can be empty. If it not empty it must contain the

set DC ⊇ D. Will only be added to, no elements will be removed or modified.
– MAKE COMPLETE. . . boolean value, if true, returns a complete partition of the

DOFs. Otherwise, only collapses vertices and edges and leaves left over DOFs
unassigned.

Output:

– C . . . (local) partition

1: procedure CAM EQC WISE(M, D, JP , C0, MAKE COMPLETE)
2: if C0 = ∅ then
3: Set DC := D
4: Set C := {DC}
5: Set U := D
6: else
7: Set U :=

⋃
C∈C0 C

8: for J ∈ JP do
9: Set D := CAM SEQ(MJ , D, ∅, TRUE)

10: C → C ∪ D
11: return C

Note 8.20. We assume that each proc P k with k ∈ J has access to everything in MJ .
This is not actually induced by the parallelization of the Finite Element space ”out
of the box”: Starting out from the finest level, each rank in J knows about all DOFs
with vertices in VJ and the global vertex-weights and vertex-collapse-weights are easy to
compute - this is just one parallel vector Cumulate-operation each. However, there can
be edges e ∈ EJ that , even though are in-eqc, are not known to all P k in J . To see this,
consider, for example, the 2-dimensional case of a triangle where two of its edges lie on a
subdomain interface between Ωi and Ωj and the third lies within Ωi. P

i will know about
the corresponding algebraic edge as Ai, which was assembled on Ωi has a corresponding
entry, but Aj does not and therefore P j does not know about this algebraic edge. This is
the reason that we use Â istead of Âk in the definition of EkJ . It is, however a relatively
simple matter to synchronize this information once in the beginning and to then make
sure to keep it consistent whenever constructing a coarser level. Computing the global
edge- and edge-collapse weights is also easy and only has to be done once.

There are two possible ways out of this dilemma. One is to redistribute the algebraic
mesh, and with it the system matrix such that cross-eqc edges become in-eqc edges. The
other is to try and find an algorithm that is also capable of collapsing cross-eqc edges.
AscAMG went the latter way.
The first thing we have to think about is which cross-eqc edges we will even allow for

65

8 Algebraic MultiGrid with Alternative Strong Connections

collapse in the first place. If we do not put any restrictions in place, we will end up
bringing procs into contact with each other that were not in contact in the first place.
This means that whenever we do have to do MPI-communication on those coarse levels,
as we have to every time we do cumulate a parallel vector, which happens all the time,
we do not only have to send more data but we also have to send the data to more other
procs which results in an increase in message size and number. Therefore, we want to
forbid at least all edges that would result in creating additional proc-interfaces.
On the other hand, at the very least, we want to allow collapsing of all edges e that
connect DOFs “upwards” or “downwards” in the eqc-hierarchy, that is e ∈ E such that
[il(e)]

v C [i1−l(e)]
v. In that case, the proc-set of one of the edge’s vertices is a superset

of the other one’s and collapsing the edge clearly introduces a coarse level DOF in the
eqc of the “larger” one. This just removes one DOF from the “smaller” eqc and leaves
one in the “larger” one. In absolute numbers, this does not even increase the size of
any proc-interfaces. In the general case, collapsing an edge e introduces a coarse dof in
the eqc [·]v

IP
i1(e)
∪IP

i2(e)

, in contrast to the edges own eqc which is [·]e
IP
i1(e)
∩IP

i2(e)

. This can

potentially introduce a coarse DOF in an equivalence class which was empty beforehand,
but as long as it does not create a new proc-interface we will put up with that.

Definition 8.11: Admissible Cross-EQC-Edges

The set of allowed EQC-identifiers is the set of all proc-sets where there is at least
a larger one that already has a DOF in its EQC. It is called HP to indicate its
relation to the hierarhcy of the relevant EQCs.

HP := {J ⊆ P : ∃I ⊆ P, [·]vI 6= ∅, J ⊆ I} (8.14)

An edge is called algebraically admissible for collapse if it fulfills condition (8.5)
and topologically admissible if IPi1(e)∪I

P
i2(e) ∈ H

P . An algebraically and topologically
admissible edge is called absolutely admissible.

Figure 8.8: An example for a topologically not admissible edge (red). Proc-interfaces
are again bold.

66

8.2 Parallelization and Implementation

Now we know which edges are admissible in the first place and we only need an algorithm
that is capable of following through.
Our distributed coarsening algorithm (algorithm 6) consists of 6 steps:

– Pre-Coarsening: We do an inital coarsening-step with the eqc-wise coarsening
algorithm 5 from before, however we set MAKE COMPLETE=FALSE, so we do
only edge- and vertex-collapses. This step can be done locally.

– Vertex-Marking: On each proc we iterate through all local absolutely admissi-
ble cross-eqc edges and mark each of it’s vertices with the edges’ collapse-weight.

– Vertex-Reduction: We gather all vertex-markings on the master of each eqc.
The master of the eqc assigns each vertex to the proc that has marked it with the
highest weight. Gathering the vertex-markings requires communication.

– Cross-Coarsening: On each proc we iterate through all local absolutely admis-
sible cross-eqc edges and, if both got assigned to the local proc, collapse them. No
communication required.

– Restoring Consistency: Next, for all collapsed cross edges e we have to com-
municate the fact that the edge was collapsed to all ranks in [e]e (the other procs
in [e]e so far only know which proc the two vertices got assigned to, not that the
connecting edge is actually collapsed). All procs in (IPi1(e) \ I

P
i2(e)) ∪ (IPi2(e) \ I

P
i1(e))

do not know of the existance of e, they only have access to one of e’s vertices
and all they need to be notified of is that the coarse DOF belongs into the EQC
[·]v
IP
i2(e)
∩IP

i1(e)

. This requires some relatively fancy communication.

– Post-Coarsening: Do a final caorsening-step with the eqc-wise coarsening al-
gorithm 5, this time with MAKE COMPLETE=TRUE to accept all otherwise
unassigned dofs on the coarse level.

In algorithm 6, all of the required bookkeeping and communication is only hinted at.
M is used as whatever object holds the information on the edge markings M(i, j) holds
the value P j has marked the global dof j with, Gather M does not gathering of all
information to some root-proc but gathering the entire “row” M(i, ·) on the master of the
EQC [i]v for all DOFs i ∈ N . Broadcasting M means making the value M(i,master/i)
available to all procs in IPi .

1: procedure CAM DISTRIBUTED(M, D, JP)
2: Set DC := D
3: Set C := {DC}
4: Set U := D
5: Set M := 0
6: Set K := rank of the local proc
7: Set D := CAM SEQ(MJ , D, ∅, FALSE)
8: C → C ∪ D
9: for J ∈ JP do

10: for e ∈ GkJ do
11: M(gk(i1(e)),K) = cw(e)
12: M(gk(i2(e)),K) = cw(e)

13: Gather M to master
14: for J ∈ JP do

67

8 Algebraic MultiGrid with Alternative Strong Connections

15: if K = min(J) then
16: for e ∈ GkJ do
17: for l ∈ {1, 2} do
18: q = arg maxp∈J{M(il(e), p)}
19: M(il(e), q) = −1

20: Broadcast M
21: for J ∈ JP do
22: for e ∈ GkJ do
23: if M(i1(e),K) = −1 and M(i2(e),K) = −1 then
24: C = C ∪ {i1(e), i2(e)}
25: Restore Consistency
26: Set D := CAM SEQ(MJ , D, ∅, TRUE)
27: C → C ∪ D
28: return C

Algorithm 6: Distributed Coarsening Algorithm. Step 5 is only hinted at in line 39.
Input:

––––– M . . . the global algebraic mesh
– D . . . (local) set of dirichlet dofs.
– JP . . . set of all proc-sets J ⊆ P that contain the calling proc with non-empty VkJ

Output:

– C . . . (local but globally consistent) partition, that is, a partition of N k
` where

the Ci are indexed consistently across all procs (such that they induce a global
partition).

Note 8.21. In praxis, algorithm 6 returns, besides C , also some additional information
about collapsed cross-edges wherever the local proc sees one of its vertices. This is
basically the information mentioned above, under the point “Restoring Consistency”,
and is needed to be able to properly build the ParallelDof-object (which holds all of the
parallelism-information used by standard NGSolve lienar algebra classes, see chapter 4)
and the algebraic mesh on the coarse level. In theory, however, we can ignore this and
can recover the global partition from the local ones by

Ci :=
⋃
p∈P

i∈gp(N p`)

C`p(i) i = 1 . . . N

Here, we have to take the union of the local Cl because collapsed cross-edges with only
one vertex shared by a particular proc Pk are represented as a singleton in Ck. With

DC :=
⋃
p∈P

gp(Dp
C)

we have
C = {Ci : i = 1 . . . N} ∪ {DC}

68

8.2 Parallelization and Implementation

What can in general be said about coarsening for AscAMG is that the fact that we
restrict ourselfs to agglomerates of maximum size 2 made it a lot easier to both come
up with and implement a reasonably efficient distributed coarsening algorithm. In this
place we get back a bit of what we loose by not going for larger agglomerates. For how
relatively straightforward the algorithm is, it performs pretty well, although there is
certainly room for improvement. In particular, it is probably the least optimized part of
AscAMG , as we are on the one hand only coarsening once on each level and as it was,
on the other hand, one of the messier and more complicated things to implement. In
contrast, the smoothing operations are performed many times and have therefore been
optimized much more heavily and most of the other linear algebra, like constructing the
coarse matrices once the prolongations are in place, already come very well optimized
out of NGSolve.
Ultimately however, we still face the issue that allowing cross-eqc collapses, as these
always introduce coarse nodes “upwards” in the eqc-hierarchy, lead to an increase in the
fraction of shared DOFs versus local DOFs on each level. Also, the restrictions we had
to put in place to counter uncontrolled growth of proc interfaces will eventually, after
many levels, prevent us from maintaining a constant decrease by a factor 2 from level to
level we would like to have. The problem is much, much less pronounced than what we
saw in figure 8.7, and does usually not become debilitating until the coarse spaces reach
a dimension in the range of under 100 DOFs per proc, but it does still occur. It also
becomes more and more of an issue the further we try to scale up in terms of number of
procs.
In the next section we will outline what has been done to combat both of these problems.

8.2.2 Contracting

On very caorse levels, as the number of DOFs per proc becomes small, communication
overhead starts playing a bigger and bigger role compared to computation cost. This
is especially true when we are doing sparse matrix vector operations which have linear
operator complexity. To reiterate the conclusion from the last section, this is exacerbated
by the tendency of the caorsening algorithm to make DOFS on caorser levels more and
more “global” and by the fact that the restrictions to topologically admissible algebraic
edges become more noticeable on coarse levels.
The solution to all of these problems is as straightforward to formulate as messy to
implement. We can simply redistribute the entire problem to fewer procs after reaching
certain breakpoints.This might seem a bit unintuitive on first glance, as we are essentially
giving awas computing power, however, if done correctly, what we loose is more than
made up by the decreased communication costs.
Redistributing to fewer procs everytime makes some additional edges topologically ad-
missible. Such a redistribution can be wonderfully formalized with the notation devel-
oped in section 8.2.1 and yields an unorthodox application of algorithm 4.

69

8 Algebraic MultiGrid with Alternative Strong Connections

Definition 8.12: Contraction Map

We define the weighted-proc-vertex-set as

Vp := {(p, 0, 0) : p ∈ P}
With proc-edge-collapse-weights

wpij :=
|IP{i,j}|

|IP{i}|+ |I
P
{i,j}|+ |I

P
{j}|

and the weighted-proc-edge-set as

Ep := {({k, l}, wpkl, 0) : wpkl 6= 0}
The (global) algebraic proc-mesh is

Mp := (Vp, Ep)
The partition Cp := CAM SEQ(Mp, ∅, ∅, TRUE) \ {∅} induces a “Proc-
Contraction-Map” that takes ranks and delivers coarse ranks

gp :

{
P 7→ Pc := {0 . . . |Cp| − 1}
i→ j for i ∈ Cj ∈ C

gp can also be extended to mapping vertex-EQCs to corresponding coarse EQCs
that define a coarse equivalence relation ∼2 on N .

gp :

{
N/∼ 7→ N/∼2

[·]vJ → [·]vgp(J)

Redistributing, or, as we call it, contracting the problem is now just:

– Constructing the contraction map
– Collecting the local algebraic meshes Mi as well as the local matrices Ai, Âi and
P i on proc gP (i).

– On the master, combine the collected algebraic meshes, matrices, etc. into new,
“coarse” objects.

– The master ranks k ∈ Pc continue, while all others are done with the setup.

For DOFs, if k ∈ [·]vJ , then per construction k ∈ [·]cgp(J), we say DOF-EQCs are invariant

under contraction. The DOF-proc sets on the “coarse” space (that is, in this context,
the same space but distributed to fewer procs) become smaller.
When collapsing P k with P j , all of the dofs in the face-eqc [·]v

IP{i,j}
, which are shared

between these two exclusively, become new, local dofs in the coarse vol-eqc [·]v{gp(i)}.

Besides that, any other eqc [·]J with {i, j} ⊆ J loses at least one proc, so it becomes
“less parallel”, some wire-eqcs can even become face-eqcs. This is the reason why the
proc-edge-collapse-weights are defined the way they are.

Note 8.22. After a contraction, the problem has been redistributed to fewer cores, and
on all the following levels we have to take into account that only certain procs are active
anymore. On the surface, this would require the coarsening algorithm and the smoothers
to constantly be aware of which procs are active and which are not. In practice, however,

70

8.2 Parallelization and Implementation

MPI does all of that work for us. We can simply construct a new communicator that
consists of all the active procs and no others. Therefore neither the coarsening algorithm
nor the smoothers need to be aware of contractions at all. We do however have to take
care of gathering vector entries when going up in the v-cycle and scattering them when
going down.

Note 8.23. The Edge-EQCs are not invariant under the contraction map, they have to
be rebuilt after the vertices have been mapped. To see this, consider an edge between
vertices with proc-sets {1, 2, 3} and {2, 3, 4}, where gp that maps 1 → 1; 2 → 2; 3 →
3; 4→ 1. The fine edge is in [·]e{2,3}, but the coarse one is in [·]e{1,2,3}
Note 8.24. One thing to keep in mind here is that contracting is a narrow road to walk.
Excessive, or simply too early contracting can hinder more than help. Whenever we
contract, we approximately double the DOFs that are local to each proc and therefore
increase the local operator complexity of the multigrid cycle. The total operator com-
plexity remains unchanged, but a part of the work is shared between fewer procs and in
the end what we really care about is wall time.
Additionaly, while we only have to move data around once when contracting the algebraic
mesh and the matrices, during the solution phase we have to move data everytime we
cross a “contraction level” on the way up or down in the v-cycle. The communication
necessary for that is however only responsible for collecting the partial vectors of all
procs at the master proc of each C ∈ Cp when going up or distributing the data from
the master to the other procs when going down, which is all in all about equivalent to
one parallel vector cumulate operation.

Note 8.25. We have not yet experimented with allowing bigger proc-agglomerates in the
contraction-map. It might or might not be more efficient, one should keep in mind that
contracting procs by a factor k increases the local DOF-number on the coarse level by
the same factor.

The exact algorithm that decides on which levels and under which conditions we should
do a contraction and when we should not do one is still up to debate, currently each
proc says it wants to contract if one of the following three conditions holds:

– If there is a very attractive partner for collapse

max
j∈P

wpij > 0.2

– If the local NDOF is very small:

|N k
` | < 100

The thought behind this condition is that for so few DOFs, any communication at
all is more expensive than computation.

– If the local vol-eqc DOFs make up too small a fraction of all local ones:

|[·]v{k}|
N k
`

≤ 0.2

The rationale here is that if there are too few local vol-eqc DOFs, that is if almost
all DOFs are shared with other procs anyways, what is then point of this proc
even running anymore. Again, the small amount of computation done on the local
vol-DOFs is far outweighed by the costly computation on all the other dofs.

71

8 Algebraic MultiGrid with Alternative Strong Connections

On each level, if more than a third of all procs want to do a collapse, we do one, otherwise
we do not.

This relatively simple approach seems to work well enough for now, although it does
not take into account the distance between procs in the communication network of the
cluster. In principle it would probably be preferrable to choose the partition in such a
way that the minimum number of nodes are occupied, but this is a feature that AscAMG
currently simply does not support.

Note 8.26. For me personally, implementing the contracting as well as the mappings
needed for the multigrid-cycle that map vectors to contracted vectors and the other way
around was probably the least rewarding part of the entire project. While the DOF-
EQC formalism describes the contraction very nicely, implementation was a lot of work
for the speedup it resulted in on the medium size systems we had access to. However as
figure 8.7 shows quite convincingly, it is a crucial component for further scalability.

8.2.3 Distributed Smoothed Prolongation and Optimizing Operator
Complexity

We will now give the answer to the question how good V-cycle operator complexity can be
achieved despite the small agglomerates we use for building the piecewise prolongation.
Besides the idea of using different prolongations to transport the system matrix A and
the replacement matrix Â (and with it the algebraic mesh) to the coarse level, there are
two more components to our strategy.
We will first show how to properly define and construct a distributed parallel version of
the smoothed prolongation from definition 8.3.

Hierarchic Prolongation

While we have seen that the local piecewise prolongations Pk form a kind of cumulated
parallel vector and can be used to transport cumulated or distributed parallel vectors up
or down between levels without communicating at all, it is not really clear how to com-
pute local Pk

s that could represent Ps. Even worse, it is usually impossible to compute
local Ak

C that represent the coarse system without doing some serious redistribution of
the problem. This fact becomes clear when we remember what we observed in section
8.1; The matrix A2 := (I− ωD̂−1Â)TA(I− ωD̂−1Â) has nonzero entries corresponding
to each path of length three or less in the matrix graph of A. In particular, there are
connections between DOFs i ∈ [·]vI and j ∈ [·]vJ where I ∩ J = ∅. This means that
for two procs P k ∈ I and Pj ∈ J , there is an an entry of A2 that connects a DOF of
P k, which P l does not know exists, to a dof of P l, which P k does not know about. In
other words, in order to be able to write this entry in some local component of a prallel
matrix, we have to eiter put i into N l

` or j into N k
` , which either way makes the proc-set

of one of the DOFs larger, or in other words, makes its’ equivalence class “larger” in the
eqc-hierarchy. There is no representation of the global matrix A2 by local components
without changing the N`. This means that the coarse matrix AC = PTA2P does not
have a representation by local components that fit the dof-sets of the coarse algebraic
mesh. In addition to all of this, PTA2P can have entries that connect procs that were

72

8.2 Parallelization and Implementation

not in direct contact on the fine level. We took great pains to avoid such things hap-
pening when constructing the coarsening algorithm, and the same considerations that
made us do it there also hold up here.

Note 8.27. For the system matrix A and the coarse system matrix AC , we use the
standard parallel sparse matrices coming from NGSolve. As we know by now, these
matrices store the information on the parallel structure of the DOFs in ParallelDofs-
objects. As long as the distant procs on the coarse level are the same as, or a subset
of, the distant procs on the fine level, it is quite easy to construct the appropriate
ParallelDofs for the coarse matrix, however if the coarse ones are a true superset of the
fine ones, this becomes messy as well.

Notation 8.9. To differentiate between EQCS on the fine and coarse level, we will write
[·]f and [·]c respectively. To differentiate between local-to-global maps we will write gf k

and gc k, the global-to-local maps will be `f k and `c k. The DOF-Sets will be Nf k
` and

Nc k
` , etc. We can extend the definition of C to accept a coarse and a fine, or a fine

and a coarse EQC in the canonical way.

We will now show a condition for Ps that guarantees the existence of a local represen-
tation for the global coarse system matrix.

Theorem 8.3: Hierarchic Prolongation

Given a partition C with |C| = nc that induces a piecewise prolongation, if some
P ∈ Rn×nc fulfills

Pij 6= 0 for i ∈ Cj ∈ C only if [i]f v C [j]c v (8.15)

and there exist local matrices Pk on all procs such that

Pk
ij = Pgk(i)gk(j) ∀k ∈ P ∀i, j ∈ N k

`

that is, the Pk form a (cumulated) local representation of P, we will call P hier-
archic.
If P is hierarchic, then given a cumulated parallel vector v ∼= (vi)i on the coarse
level, Pv ∼= (Pivi)i∈P is a cumulated (fine) vector.
Conversely, given a distributed vector v ∼= (vi)i on the fine level, if P is hierarchic,
PTv ∼= (Pi,Tvi)i∈P is a distributed (coarse) vector.
The coarse matrix of AC

∼= (Ak
C)k∈P defined by AC = PTAP is represented by

AC
∼= ((Pk)TAkPk)k∈P

Proof. We will show
Pv ∼= (Pvi)i

that is
[Pv] gf k(i) =

[
Pkvk

]
i
∀i ∈ N k

` ∀k ∈ P

For i ∈ Nc k
` and j ∈ Nc

[gf k(i)]
f v

C [j]c v ⇒ k ∈ IPgf k(i)
f ⊆ IPj

c ⇒ j ∈ N k
`

c

73

8 Algebraic MultiGrid with Alternative Strong Connections

From this, and (8.15), it follows that we can replace the sum over Nc k
` by the sum

over Nc in (∗): [
Pkvk

]
i

=
∑

j∈ Nc k
`

Pk
ijv

k
j =

∑
j∈ Nc k

`

P gf k(i) gc k(j)v gc k(j) =

(∗)
=

∑
j∈ Nc

P gf k(i)jvj = [Pv] gf k(i)

The second claim, PTv ∼= (PTvi)i, follows in the same way.
The last claim naturally follows from the first two: Given any cumulated vector v ∼=
(vk)k∈P on the coarse level, we have to show that ((Pk)TAkPkvk)k∈P is a distributed
vector such that ACv ∼= ((Pk)TAkPkvk)k∈P . From the first two points we know that
component-wise multiplication of P with a coarse cumulated vector yields a fine cumu-
lated vector and Pv ∼= (Pkvk)k∈P . Because A is a standard distributed parallel matrix,
component-wise multiplication of A with a fine cumulated vector per definition yields a
fine cumulated vector and APv ∼= (AkPkvk)k∈P . Lastly, as we also know, component-
wise multiplication of PT with a fine distributed vector yields a coarse, distributed one
and finally PTAPv ∼= ((Pk)TAkPkvk)k∈P .

Note 8.28. Equation 8.15 alone guarantees the existence of local representations as de-
fined in theorem 8.3, as if

Pij 6= 0⇒ [i]f v C [j]c v ⇒ ∃k ∈ IPi ∩ IPj
Which means that the value Pij can be represented locally by proc k.

74

8.2 Parallelization and Implementation

Figure 8.9: Under a hierarchic prolongation, information from the coarse level is trans-
ported “downwards” in the EQC-hierarchy. The graphic shows the maximal
allowed matrix graph a matrix B (on the fine level), for the same case as
figure 8.5, is allowed to have such that, given a piecewise prolongaion P, BP
is hierarchic prolongation.

Hierarchic prolongations have two very nice features, firstly, the local coarse system
matrix components are exactly the local coarse matrices of the local system matrix
components and we can compute Ak

C = (Pk)TAkPk locally without required communi-
cation. Even better, we have shown that we can transport distributed vectors upwards
across levels and cumulated vectors downwards by purely local matrix-vector multiplica-
tion without any needed communication. As we typically want to restrict (distributed)
fine residuals to the coarse level and prolong (cumulated) coarse solutions to the fine
level, this is a perfect fit.
We will now modify the smoothed prolongation Ps in such a way that it becomes a
hierarchic prolongation. We will also set a limit for the nonzero entries per row of
the new, hierarchic prolongation, usually by 3 or 4, by simply removing all but the
strongest entries from Â. In the resistor network this means that we only consider the
connections with the highest conductivity when solving the local nodal problem to get
the fine potential from the coarse one.

75

8 Algebraic MultiGrid with Alternative Strong Connections

Definition 8.13: Hierarchic Smoothed Prolongation

Given the replacement matrix Â, an upper bound M for the nonzero entries in the
prolongation matrix, a piecewise prolongation matrix P induced by a partition C
and its induced fine-to-coarse DOF-map crs and for each DOF i ∈ N , let the set
of admissible DOFs be defined as Ai := {j : j /∈ DC ∧ αij > σ ∧ [i]f v C [crs(j)]c v}.
Next, let S̃i be the maximal subset of Ai consisting of the k dofs in Ai that have
the highest weight such that |crs(S̃i)| ≤M . Define Si := (crs−1 ◦ crs)(S̃i), that is
the set of all dofs that are mapped to the same coarse DOF as some DOF in S̃i.
The sparsity- and hierarchy-filtered replacement matrix Â◦ ∼= (Âk,◦)k∈P is defined
by

Âk,◦
ij =

∑

l∈((crs◦gk)−1(Si)) αil if i = j

−αij if (crs ◦ gk)(j)) ∈ Si
0 else

Finally, the AscAMG hierarchic smoothed prolongation is defined as

Ph := (I− (D◦)−1A◦)P (8.16)

Note 8.29. By the last theorem and the definition of Ai, Ph is a hierarchic prolongation
that admits local representation.

Note 8.30. The matrix Âk,◦ itself is not necessarily symmetric anymore. See also figure
8.9, where we have a directed graph, not an undirected one.

Figure 8.10: Basis functions of coarse level 12 resulting from hierarchic smoothed prolon-
gation for the same problem as in figure 5.3. Nonzero entries per row of all prolongations
bounded by 3. In the top two pictures, alpha jumps between 1 and 106 and in the bot-
tom alpha is constant. In the top right picture, the color indices the value of α (red is
higher).

76

8.2 Parallelization and Implementation

Alternating Prolongations and Skipping Levels

The hierarchic smoothed prolongation on its own still underperforms. Especially the
smoothing of the prolongation between levels 1 and 0 increases the operator complexity
by a lot.
There is one, last, component missing that gives us another considerable boost in per-
formance. What we informally call “alternating composite prolongation schemes” are
just Multigrid V-cycles with two twists to them.
First of all, we do not use the same kind of prolongation on all levels. One level of
piecewise prolongation might be followed by two levels of smoothed prolongation, follwed
by another level of piecewise prolongation, etc. This is where the “alternating” comes
from.
The “composite” comes from the fact that we do not necessarily need to smooth on each
level. In most AMG solvers, the difference in NDOFs between to levels is much larger
than a factor two, in fact, some of them start with an initial, massive coarsening step
between levels 0 and 1, instantly going down in NDOF by a factor 10 or so.
We therefore choose not to include all levels in the V-cycle. If we decide to skip level k,
we can just compose the prolongation that goes from level k− 1 to k and the one going
from k − 1 to k + 1 by multiplying them and directly build the coarse matrix on level
k + 1 from the one on level k − 1.
A (PPH)-(NNB)-scheme, for example, would use (P)iecewise, (P)iecewise, (H)ierarchic-
smoothed prolongations in this recurring order and always skip two levels and directly
go to the third (the matrices are (N)ot built, (N)ot built and (B)uilt). In practice it has
proven to be most efficient to arrange the scheme such that each level directly after an
H-prolongation is built and those after P-prols are skipped.
Overall, the best choice seems to be a prefixed (PH)-(NB)-scheme. Prefixed here means
that for the first couple coarse levels we do something special, usually involving skipping
a few extra steps and then appending the (PH)-(NB)-scheme after that. We write such
a scheme, for example as (PPHPPH)-(NNBNNB)//(PH)-(NB), which stands for two
skipped P-prol levels, followed by a built H-level, another two skipped P-levels and a
last built H-level and staring the (PH)-(NB)-scheme after that, on coarse level 7.
As we will se in chapter 9, after all of these optimizations, operator complexity is finally
under control.

77

8 Algebraic MultiGrid with Alternative Strong Connections

Figure 8.11: Showing the exact same situation as in figure 8.10, however using a (PH)-
scheme.

78

8.2 Parallelization and Implementation

8.2.4 smoothers

In this last section of the chapter, we will discuss the (small) range of smoothers that
come with AscAMG . By small, we really mean only two, and one of them, the dis-
tributed Gauss Seidel smoother, turned to be extremely, extremely difficult to imple-
ment efficiently, in fact we would not recommend using it for problems running on more
than about 500 procs. Up to that point, however, it perforems pretty well. Besides,
it is an interesting piece of software that will also give us another opportunity to use
the DOF-eqc terminology developed in section 8.1 so we will describe it briefly despite
its’ shortcomings. In [2], multiple viable, scalable options for multigrid smoothers are
presented and analyzed, including the `1-hybrid Gauss Seidel smoother, which is the
other smoother available in AscAMG .

Hybrid Gauss Seidel

Definition 8.14: `1-Hybrid Gauss Seidel Smoother

For k ∈ P, let Jk be its set of master DOFs,

Jk := {j ∈ N k : k = min(IPj)}

Let AJk ∈ R|Jk|×|Jk| be the submatrix of A for indices in Jk. For each k ∈ P,

let the diagonal matrix D̃k = diag(d1, d2, . . . , d|Jk|) ∈ R|Jk|×|Jk| be defined by its’s
entries

di =
∑

j∈N k\Jk
|Aij |

The `1-Hybrid Gauss Seidel Smoother is the SLIM defined by the block-diagonal
W ∼= (Wk)k∈P , where the Wk are the purely matrices

Wk := Lk + Dk +
1

2
D̃k

Note 8.31. As can be seen easily, per construction of D̃, we have WH + WT
H −A > 0

Note 8.32. Although it is a bit of a misnomer, this smoother will simply be referred to
as HGSS.

This is just the application of local Gauss-Seidel on every proc, except that we have a
modified diagonal and that we are only doing this on the submatrix corresponding to
the master-DOFs. This is easily implemented, and communication-wise the only thing
we need to do is to cumulate the solution vector after the local Gauss-Seidel sweeps have
finished. For more details on hybrid smoothers and see [2].

Distributed Gauss Seidel

What is internally reffered to as DGSS is a distributed parallel implementation of stan-
dard Gauss Seidel. It is based on a particular, semi-manual coloring of the DOFs that
allows it to hide much of the communication overhead incurred due to the serial nature
of Gauss Seidel behind local computations.

79

8 Algebraic MultiGrid with Alternative Strong Connections

Definition 8.15

We will call I := {i ∈ N : |[i]v| = 1} the set of all vol-DOFs and define the sets
of all face-DOFs F and all wire-DOFs W accordingly as F := {i ∈ N : |[i]v| = 2}
and W := {i ∈ N : |[i]v| ≥ 3}.
The set F̊ of all face-interior DOFs will be

F̊ := {k ∈ F : Akj = 0 ∀j ∈ F \ [k]v}

The matrix A restricted to the indices in F̊ is block-diagonal, each diagonal block
corresponds to the “interior” of one vol-eqc. Similarly, the set W̊ is defined by

W̊ := {k ∈ W : Akj = 0 ∀j ∈ W \ [k]v}
Doing the same for I would be pointless, no vol-DOFs can be connected with a
vol-DOF of another proc in the matrix graph of A. Instead, we define the set of
“absolutely local” DOFs as

I̊ := {k ∈ I : Akl = 0 ∀l ∈ N |[l]c| > 0}
This is the set of all interior DOFs that are at least one “DOF-layer” removed
from any interface. The set M := I \ I̊, which consists exactly of this connecting
“DOF-layer”, will be called the mortar-DOF set.
All of the remaining DOFs will be called “type-C” dofs and the set of all type-C
DOFs is

C := (F \ F̊) ∪ (W \ W̊)

Figure 8.12: Classification of DOFs for the same case as in figure 8.5. dark blue:I̊, light
blue:M, green:F̊ , red:W̊, brown:C

The two key observations behind any attempt to parallelize Gauss-Seidel are that firstly,

80

8.2 Parallelization and Implementation

the exact order in which we update the residuals and solution vectors is not actually
important, as long as we do it one DOF at a time. This means that we can permute
A and apply Gauss-Seidel to the permuted Matrix. Let us take permutation such that
first take all DOFs in I̊, then all in I, ctc. The order of sets will be I̊,M,F ,W, C. The
permuted matrix now looks like this

A =

AI̊ ∗ 0 0 0
∗ AM ∗ ∗ ∗
0 ∗ AF ∗ ∗
0 ∗ ∗ AW ∗
0 ∗ ∗ ∗ AC

The second observation is that we can update DOFs i and j at the same time if Aij = 0.
On first glance, permuting A has not really put us a large step forward. Splitting of the
mortar-DOFs from the absolutely interior DOFs allows us to update I̊ at the same time
as F̊ , W̊, C, but F̊ , W̊ and C are connected among each other.
The submatrices AI̊ , AM, AF̊ and AW̊ are all block-diagonal.
This is clear for AI̊ and AM as these are vol-EQC DOFs that can never connect to
vol-EQC DOFs on other procs, so the subblocks for each domain are not connected to
each other. In a way tere are type A-DOFs, which were always “easy” to parallelize to
begin with.
AF̊ and AW̊ are block diagonal by design, in the definition of F̊ and W̊ we threw out
all DOFs that connect face-eqcs to face-eqcs or wire-eqcs to wire-eqcs. These are, in a
way, type B-DOFs, they were not parallelizable to begin with, but with a bit of work,
and by removing all troublesome DOFs, we are still able to find a way.
This brings us to the very troublesome type C-DOFs, which are, unfortunately, basically
unparallelizable. They do, however, at least on the finer levels, make up the vast minority
of all DOFs.
Let us first formulate the distributed Gauss Seidel algorithm for the rest of the DOFs
and discuss what to do about the C-DOFs afterwards.
In figure 8.13 we can see the the basic flow chart of the DGSS algorithm. First, we
are smoothing the M-DOFs, these are I-DOFs, so we can compute the residuals and
update the solution vectors locally. After that, the I̊ dofs can be updated at the same
time as the F̊-, W̊- and C-DOFs.
Updating the solution on the F̊ and W̊-dofs requires first local computation of partial
residuals (which can be thought of as a partial distributed parallel vector), then a com-
munication step to cumulate these values and finally, once the full residual values are
present, a local update to the solution vector.
Updating the I̊-DOFs can again be done completely locally.We try to hide as much of
the time that is spent on waiting for messages on the W̊, F̊ , and C-parts with local
computation as possible. Overlapping communication and computation manually can
be tricky. One has to very carefully split up the local work into smaller chunks and
whenever one is waiting for a message work off a couple of them. We use more of a brute
force approach.
On construction of the first DistributedGaussSeidelSmoother-object, a thread is created
that immediately goes to sleep. Wenever we do a Gauss-Seidel sweep, this thread is
woken up and told to to the I̊-portion of the work. The main proc itself meanwhile

81

8 Algebraic MultiGrid with Alternative Strong Connections

keeps on working on the F̊ , W̊, and C-portions. Each proc only creates one thread for
all DGSS-objects (in particular, only one for all levels!). Depending on the MPI-libeary
in use, the way it was compiled and the machine we are running on, this sometimes
works well and sometimes not so much.

DGSS
start

Smooth
M-DOFs

Smooth
F-DOFs

Smooth
W-DOFs

Smooth
C-DOFs

DGSS end

Smooth
I̊-DOFs

Figure 8.13: Simple FlowChart for the DGSS algo-
rithm.

We are left with discussing what
can be done about the C-dofs. So
far, there were two differnt at-
tempts to master this problem.
One is to just redistribute the
entire matrix block AC to the
master proc P 0. It has been
mentioned when talking about
parallel meshes in NGSolve that
the master proc does not posess
a subdomain, which means that
most of the time, it has nothing
to do. From that point of view,
and if also considering that usu-
ally C should only contain very
few DOFs, this appears to be a
good idea. This is however not
always the case on the coarse lev-
els, as the coarsening algorithm
tends to make DOFs more and
more global as the number of lev-
els increases. Nonetheless, this
works pretty well up to around 500 cores or so, provided C stays small. After that,
problems start to arise even if C is small. Every time we have to smooth the C-DOFs, we
have to send the residual data for all C-DOFs, which come from all over the computa-
tional domain, to the master proc. This is basically a global Gather-operatioon, which,
as it has to be done for every Gauss-Seidel sweep, becomes prohobitively expensive when
many procs are involved.
The other approad was to divide the C dofs back into their EQC-blocks and then work
through one block after another. For that, a global C-EQC-block-graph, consisting of
a node for each block, and an edge eij whenever a DOF in block i is connected to a
DOF in block j in the matrix graph of A is cunstructed. Then, a coloring for this graph
is found. All blocks of the same color can be updated at the same time, after which
residuals have to be updated and cumulated before one can proceed with the next color.
This corresponds to construcing a directed acyclic graph on the C-EQC-block-graph.
Unfortunately, every color in the graph “costs” one round of communication, and as the
C-EQC-block-graph becomes denser and denser on coarse levels, this is just too costly.
Currently a mixture of the two is employed. We take all C-dofs in the largest M colors
and go through them block-wise and gather the rest on the master-proc. The parameter
M can me modified.

82

8.2 Parallelization and Implementation

Ultimately, the distributed Gauss Seidel algorith performs acceptably well when the
number of cores does not get too large and can perform very good in circumstances
where a lot of local computation has to be done which hides some of the latencies. In
terms of scalability however, it does not even come close to the `1 hybrid Gauss Seidel
smoother.

Note 8.33. The created thread is a C++-11 thread that is notified via a condition variable
when it has work to do.

83

9 Performance and Benchmarks

All results in this section have been obtained on the COEUS clutster at Portland State
University, thanks to the support by Professor Jay Gopalakrishnan and the Portland
Institute for Computational Science and its resources acquired using NSF Grant DMS
1624776.

85

9 Performance and Benchmarks

Smoother Performance

a: x-axis: ln(nnp) . y-axis: tmult
tsmooth

. tri-
angles are DGSS. Colors are the num-
ber of procs: red:20, yellow:40, pir-
ple:100, green:200, blue:400, black:600,
orange:800 and turquoise:1000.

b: x-axis: log2(np). y-axis: log2(time) for
25 iterations. DGSS is dashed. Colors
are problem sizes: green: 5.7 · 106, pur-
ple: 14.2 · 106, orange: 14.8 · 106, blue:
18.8 · 106 and turquoise: 29.5 · 106

Figure 9.1: Comparison of DGSS and HGSS. On the left: Efficiency of HGSS(circles)
and DGSS(triangles). The Y-axis shows time for a matrix-vector multiplication divided
by time for one smoothing step. On te right: np versus wall time for 25 smoothing
interations

Overall, DGSS performs acceptably where there is sufficient local work to hide commu-
nication but is still outperformed by HGSS across the board. It has to be said, however,
that these computations were done on the finest levels. On coarser levels, the comparison
is even less favorable towards DGSS.

86

AscAMG Performance

Figure 9.2 shows results for β = 0 and homogeneous dirichlet boundary conditions
on Ω = (−1, 1)3. α is constant on Ω1 = (−0.3, 0.3)3 and either 10, 103 or 106. On
Ω \ Ω1, α = 1. The mesh size and number of procs varies. Obtained by AscAMG
-preconditioned PCG. The empleysd smoother is HGSS. Figure 9.2a does not take the
time for assembling and AscAMG setup into account, 9.2b includes it. We prescribed
that AscAMG uses the scheme (PPHPPH)-(NNBNNB)//(PH)-(NB) and left it to its’
own devices otherwise. The cutoff-points for contraction and number of levels before the
left over coarse system is solved directly have been left up to AscAMG to decide.

a: y-axis: dof
tsolve·np , x-axis: log10(ndof

np
) b: y-axis: dof

tsolve·np , x-axis: log10(ndof
np

)

c: y-axis: condition number, x-axis:
log10(ndof)

Figure 9.2: Circles: α1 = 10. Rectangles: α1 = 103. Triangles: α1 = 106. Colors
indicate number of procs; red:20, violet:100, turquoise:200, dark blue:400,
orange:500, green:600, black:700, light green:800, ochre:900

We show also results of a test run where we solved the same equation, with α = 1 and
kept ndof

nprocs ≈ 2 ·105 constant while increasing both problem size and the number of procs
evenly. This goes up to 1460 procs. In this case we did do some handtuning, by adding
additional P-prefix-stages to the scheme as the problem became bigger.

87

9 Performance and Benchmarks

a: setup and solution b: solutin only

c: setup only

Figure 9.3: y-axis:time, x-axis:ndof. All the while ndof
proc is kept constant.

Concluding this chapter, let us take one computation and look a little closer at a lingle,
ver large computation. The problem is again the same as above, with α = 1, β = 0. The
number of DOFs is about 3 · 108 and we are using 1800 cores, which represents 90% of
COEUS’s 100 standard compute nodes with 20 cores each. We use a total of 21 coarse
levels, the scheme was the rather monstrous looking (PPHPPHPHPHPHPHPHPH)-
(BNNBNNBNBNBNBNBNBNB)//(H)-(B). Again, we use HGSS. We solve the equation
in 63 iterations and 6.9 seconds, the time needed for assembling the bilinearform and
setting up the AscAMG preconditioner was 25 seconds. This gives us a very respectable
performance of solving 29 × 103 unknowns per core and second. Counting the setup
time, we get 5× 103. The condition number of the preconditioned system is 107.161. A
total of 6 contraction steps have been used, in total reducing 1800 procs on the finest
level to only 43 active procs in the coarsest. The operator complexity of the V-cycle is
1.65. The maximal local operator complexity is 1.77, which tells us that the contraction
happened at good breakpoints and spaced out enough that operator complexity was not
overly impacted. The degrees of freedom where reduced from about 3 · 108 on the finest
level to 2497 on the coarsest one.

88

10 Conclusion and Outlook

Conclusion

In this thesis we have introduced AscAMG . We have shown a new way to define strong
connections via the replacement matrix that has resulted in a new variation of smoothed
prolongation. Particular emphasis has been placed on all aspects of the the paralleliza-
tion of AscAMG , for which a formalism has been introduced that allows us to write
down parallel algorithms with great ease. Scalable Smoothers have been discussed and
an, as far as I know, original approach to Distributed Gauss-Seidel has been presented.
AscAMG has been shown to perform well and scale to at least 1800 cores, although
without manual tuning it lacks consistency.

Future Work

While AscAMG has been shown to be able to perform well if tuned manually, we have not
yet managed to find a good algorithm that can let AscAMG tune itself. This currently
limits the consistency of the method and means that its usefulness for the average user
who does not know all the peculiarities of the method is limited.
I have also personally not given up hope on making the distributed Gauss Seidel work
respectably. While it is probably impossible to outperform the `1-Hybrid Gauss Seidel
smoother, it remains nonetheless a very intriguing problem. One interesting approach
would be to combine DGSS with a hybridization only for the C-DOFs.
The next truly major step would be to hybridize AscAMG . NGSolve already provides
very efficient parallelization either by MPI or by shared memory parallelization via C++-
11-threads. One could build on these established foundations and combine the two
approaches, into the effort of which AscAMG could be integrated.

89

Bibliography

[1] Mpi: A message-passing interface standard version 3.1. http://mpi-forum.org/

docs/mpi-3.1/mpi31-report.pdf. Accessed: 2017-12-11.

[2] Allison H. Baker, Robert D. Falgout, Tzanio V. Kolev, and Ulrike Meier
Yang. Multigrid smoothers for ultraparallel computing. SIAM J. Sci. Comput.,
33(5):2864–2887, October 2011.

[3] Dietrich Braess. Finite Elemente. Springer Berlin Heidelberg, Berlin, Heidelberg,
vierte, berarbeitete und erweiterte auflage. edition, 2010.

[4] Y. Saad. Iterative Methods for Sparse Linear Systems. Society for Industrial and
Applied Mathematics, Philadelphia, PA, USA, 2nd edition, 2003.

[5] Joachim Schöberl. Netgen an advancing front 2d/3d-mesh generator based on ab-
stract rules. Computing and Visualization in Science, 1(1):41–52, Jul 1997.

[6] Joachim Schöberl. C++11 implementation of finite elements in ngsolve. Institute
for Analysis and Scientific Comuting, Vienna University of Technology, 2014.

[7] K. Stüben. Algebraic Multigrid (AMG): An Introduction with Applications ;
Updated Version of GMD Report No 53, March 1999. GMD-Report. GMD-
Forschungszentrum Informationstechnik, 1999.

[8] Petr Vaněk. Fast multigrid solver. Appl. Math., 40(1):1–20, 1995.

[9] Petr Vaněk, Marian Brezina, and Jan Mandel. Convergence of algebraic multigrid
based on smoothed aggregation. Numer. Math., 88(3):559–579, 2001.

[10] Panayot S. Vassilevski. Lecture notes on multigrid methods, 2010.

[11] Jinchao Xu. Iterative methods by space decomposition and subspace correction.
SIAM Rev., 34(4):581–613, 1992.

91

http://mpi-forum.org/docs/mpi-3.1/mpi31-report.pdf
http://mpi-forum.org/docs/mpi-3.1/mpi31-report.pdf

	Introduction
	The Finite Element Method
	Element Matrices
	Numerical Aspects

	Basic Iterative Methods
	Stationary Linear Iterative Methods

	Distributed Computing
	The Distributed Programming Model
	MPI
	The Distributed Finite Element Method
	Distributed Linear Algebra
	Distributed Matrices and Vectors
	Distributed Linear Algebra Operations

	MPI-Parallelization in Netgen/NGSolve

	Error Smoothing
	Algebraically Smooth Error

	Multigrid Methods
	The Two-Grid Algorithm
	The Multi-Grid Algorithm
	Advantages and Weakpoints of the Geometric Multigrid Method

	Algebraic Multigrid
	Analysis of the two grid method
	Analysis of the Multi Grid Method

	Algebraic MultiGrid with Alternative Strong Connections
	The Prolongation
	Replacement Matrix
	Two Grid Convergence
	Smoothed Prolongation
	A better coarse system

	Parallelization and Implementation
	Coarsening
	Contracting
	Distributed Smoothed Prolongation and Optimizing Operator Complexity
	smoothers

	Performance and Benchmarks
	Conclusion and Outlook

