
Unterschrift des Betreuers

Diplomarbeit

Discussion, simulation and
foundations of experimental tests of

phenomena with superimposed signals
by the example of time dependent

radioactive decay

ausgeführt am

Atominstitut

der Technischen Universität Wien

unter der Anleitung von

Em.Univ.Prof. Dipl.-Ing. Dr.techn. Gerald Badurek
und

Ass.Prof. Dipl.-Ing. Dr.techn. Erwin Jericha

durch
Lukas Császár, BSc.
Rainergasse 31/28

1040 Wien

Datum Unterschrift Student

Die approbierte Originalversion dieser Diplom-/
Masterarbeit ist in der Hauptbibliothek der Tech-
nischen Universität Wien aufgestellt und zugänglich.

http://www.ub.tuwien.ac.at

The approved original version of this diploma or
master thesis is available at the main library of the
Vienna University of Technology.

http://www.ub.tuwien.ac.at/eng

2

Kurzfassung

Um in den von einem realen Messaufbau gelieferten Daten einen Effekt geringer Amplitude vom
statistischen und systematischen Untergrund zu isolieren, ist, vor allem wenn beide Beiträge
von vergleichbarer Größenordnung sind, die Kenntnis über den systematischen Untergrund
eine wesentliche Voraussetzung. Ist das eigentliche Signal besonders klein, so verschwindet es
mitunter vollständig im Untergrund.

Um die Möglichkeiten derartiger Messsituationen zu untersuchen wurde eine Computersimu-
lation geschrieben, die es dem Nutzer ermöglicht, Datensätze zu simulieren als stammten sie
aus einem realen Versuchsaufbau. Dabei können die vorherrschenden physikalischen Gesetz-
mäßigkeiten naturgemäß nach Belieben vorgegeben werden. Anhand der Simulationsergebnisse
kann untersucht werden, ob und unter welchen Bedingungen das tatsächlich vorhandene
Messsignal statistisch signifikant nachweisbar ist. Dazu lassen sich in der Simulation auch
verschiedene Analysemethoden implementieren und anwenden.

Als Arbeitsbeispiel wurde die Idee zeitabhängigen radioaktiven Zerfalls (E. Fischbach,
J. H. Jenkins, P. A. Sturrock et al.) herangezogen und durch ein einfaches physikalisches Modell
– eine Modifikation des allseits bekannten exponentiellen Zerfallsgesetzes um eine zeitabhängige
Oszillation der Zerfallskonstante – beschrieben. Mittels der durch die Simulation erzeugten
Datensätze wurden Analysemethoden wie Autokorrelation, Glättung und verschiedene Arten
der Normierung auf ihre Tauglichkeit, die eingeführte Oszillation zu detektieren, getestet.

Es stellte sich heraus, dass nur eine Kombination aller möglichen Analysemethoden zu einem
sinnvollen Ergebnis führen kann. Es ist damit aber gelungen, Oszillationen mit einer relativen
Amplitude von bis zu 10−7 nachzuweisen.

Die entstandene Simulation und die theoretische Arbeit können als Grundlage für andere
Anwedungsbereiche dienen.

3

4

Abstract

In order to distinguish effects of small amplitude from the statistical and systematic background
in the data gathered by a real measurement setup, knowledge about the systematic background
is essential, even more so if both contributions (measurement signal and background signal) are
of comparable magnitude. Tiny signals might become even completely obscured.

To allow for investigation of such measurement situations, a computer simulation framework
was established. It enables the user to generate data sets similar to those obtained by a real
experimental setup. Naturally, the applied physical laws in such a computer program can be
arbitrary. The results of the simulation are used to investigate under which circumstances an
actual effect can be determined with statistical significance. In order to do that, various analysis
methods can be implemented and used in the framework.

Time dependent radioactive decay (E. Fischbach, J. H. Jenkins, P. A. Sturrock et al.) serves as
an example to establish the contents of this work. On the basis of a simple model of such “new
physics” – given by the introduction of a time dependent decay constant into the well-known
exponential law of decay – it was attempted to isolate the introduced oscillation by means of
several analysis methods like autocorrelation, smoothing and different kinds of normalization.

It turned out that only a combination of all available methods can provide usable results.
That way it was possible to detect oscillations with a relative amplitude of down to 10−7.

From such tests one can derive conclusions to support real experiments and characterize
essential parameters. The flexibility of the framework allows the application to other physical
models as well.

5

6

Contents

1. Introduction 11

2. Physics and math 15

2.1. Radioactive decay . 15
2.1.1. The law of radioactive decay . 15
2.1.2. Remaining, decaying and decayed nuclei – basic formulas 16

2.2. Models – postulated influences and their mathematical description 17
2.2.1. New physics? . 17
2.2.2. General sinusoidal Sun influence . 19
2.2.3. Sinusoidal, time dependent summand . 20
2.2.4. Sinusoidal, time dependent decay constant 22
2.2.5. Inducing and/or inhibiting effect in sinusoidal models 24
2.2.6. Discrete Sun influence (solar activities) . 25
2.2.7. Rectangular (neutrino) influence . 25

2.3. Mathematical discussion of the measurement process 26
2.3.1. Principle of measurement . 26
2.3.2. Basic concepts of statistics . 28
2.3.3. Computing the initial number of nuclei from measurement data 29
2.3.4. Statistical description of radioactive decay 30
2.3.5. Accuracy and resolution; problems . 35
2.3.6. The solid angle in a real measurement setup 36

2.4. Mathematical analysis tools . 37
2.4.1. Autocorrelation . 37
2.4.2. Standard decay subtraction . 41
2.4.3. Standard decay normalization . 43
2.4.4. Smoothing and filtering . 44
2.4.5. Accumulation . 46

3. Simulation 47

3.1. Requirements and goal . 47
3.1.1. Primary requirements and goal . 47
3.1.2. Secondary requirements . 47

3.2. Structure . 47
3.2.1. Schematic description of the framework 48
3.2.2. Fundamental implementation . 49
3.2.3. Style choice, naming conventions and coding standards 50

3.3. Random numbers, normal distributed values and approaches of simulating . . . 52
3.3.1. Random numbers – Mersenne Twister engine 52
3.3.2. Gaussian normal distributed values . 53
3.3.3. Types of simulating . 53

3.4. Implementation of the framework . 54
3.4.1. File class . 55
3.4.2. FileDoc class . 56
3.4.3. data3 struct . 57
3.4.4. Data class . 57
3.4.5. RandomNumbers class . 58
3.4.6. Analysis class . 59
3.4.7. Sample class . 61
3.4.8. Parameter class . 61
3.4.9. Conversion functions . 62

7

3.4.10. Model class . 62
3.4.11. Simulation class . 64

3.5. Implementation of the analysis classes . 66
3.5.1. Autocorr(elation) class . 66
3.5.2. StdDecaySub(traction) class . 67
3.5.3. StdDecayNorm(alization) class . 68
3.5.4. Smooth class . 68
3.5.5. Accumulation class . 69

3.6. Using and extending the framework . 70
3.6.1. Guide to implement a new model . 70
3.6.2. Guide to implement a new analysis method 71
3.6.3. Benefits of the design . 71
3.6.4. Code example . 71

4. Application 73

4.1. Summary of the theoretical and mathematical findings 73
4.1.1. The model of choice . 73
4.1.2. A set of rules . 73
4.1.3. Magnitudes and values of introduced variables; exemplary case 75

4.2. Effectiveness of the analysis methods – subtleties in the application of the simulation 77
4.2.1. Increasing sensitivity by standard decay subtraction/normalization . . . 77
4.2.2. Problems in the autocorrelation analysis 86
4.2.3. Comparing the effects of smoothing and accumulation 87
4.2.4. Retrieving the effect’s frequency ω and amplitude ε 87
4.2.5. Effect magnitude and uncertainty estimation 90

4.3. Blind tests . 91
4.3.1. Motivation and design . 91
4.3.2. Evaluation of analysis methods based on the results of a blind test 91
4.3.3. Comparison of the methods . 92
4.3.4. Characteristics of standard decay . 97
4.3.5. Parameter estimation by reconstruction 98

5. Experimental setup 103

5.1. Remarks on a real measurement . 103
5.1.1. The detector and further influences . 103
5.1.2. List of parameters . 104

5.2. Current setup . 105
5.2.1. General description, signal chain . 105
5.2.2. Equipment used (samples, hardware and software) 105
5.2.3. Detector service . 107

5.3. Problems and possible solutions . 107
5.4. Running the measurements . 109

5.4.1. Starting measurements . 109
5.4.2. File formats, report . 109

6. Conlusion and outlook 111

6.1. Summary of findings . 111
6.2. Other applications . 111
6.3. Possible next steps. 112

6.3.1. Physics and math . 112
6.3.2. Simulation . 112
6.3.3. Application . 113

8

6.3.4. Experimental setup . 113

References 115

A. CD Attachment 117

B. Genie 2000 sample report 117

C. Evaluation notes for blind test “A” 119

9

List of Figures

1. Calculation types . 18
2. Shifted sine . 25
3. Connection between the law of decay, the underlying probability distribution

and a measurement . 32
4. Error of the autocorrelation . 40
5. Schematic illustration of the program components 48
6. Ba-133 – exemplary plots . 77
7. Autocorrelation function with and without standard decay subtraction 81
8. Autocorrelation – visible magnitudes due to standard decay subtraction 82
9. Standard decay subtraction and impact on autocorrelation analysis 84
10. Example simulation for Ba-133 . 85
11. Comparing subtraction methods . 85
12. Signal accumulation versus smoothing . 88
13. Normalized signal of blind test “A” . 93
14. Processed standard decay signal of blind test “B” 97
15. Processed source signal of blind test “C” . 100
16. Processed, accumulated source signal of blind test “C” 101
17. Estimation of ε (blind test “C”) . 102
18. Synthesized signals (blind test “C”) . 102
19. Experimental setup . 105

10

1. Introduction

In every real measurement situation the experimenter is confronted with data in which the
actual measurement signal is superimposed on a statistical and systematic background. The
modeling of said background is always of great importance when judging the significance of
the data. If both contributions in the signal (data of interest and background) are of the same
order of magnitude a proper analysis can be difficult – all the more, the less pronounced the
amplitudes of the measurement signal.

In some extreme cases, the measurement signal is apparently invisible and entirely obscured
by statistical fluctuation and the systematic background. However, if the investigated signal
is periodic or the nature of the systematic background known, this can help (or even make
possible at all) to differentiate the signal components.

The thesis in hand aims to develop analysis methods in order to find such periodic signals of
small amplitude and isolate them from a dominant background. This is achieved by theoretical
considerations and by means of an extendable computer simulation framework. The latter
provides the means to generate and analyze simulated measurement data.

The key idea of the simulation involves the generation of synthetic data containing a small,
obscured signal the nature of which is defined by an implemented, physical model. By a set of
analysis methods (which are also part of the simulation framework) it is then attempted to detect
this signal content. From such tests one can derive conclusions to support real experiments and
characterize essential parameters.

Oscillations of order 10−3 in the nuclear decay rates of some investigated nuclides as reported
by E. Fischbach, J. H. Jenkins, P. A. Sturrock et al. may serve as an interesting example to build
the theoretical and programming work on. The signal of interest would be a tiny sinusoidal
oscillation of the activity superimposed on an exponential background with large statistical
fluctuations, since radioactive decay is a random process.

They support the hypothesis that there is some unknown solar influence on nuclear decay
rates, which becomes visible through annual oscillations varying with Earth-Sun distance [1].
These findings mainly revolve around two sets of data, one from the Brookhaven National
Laboratory concerning the decay rate of a Si-32 sample recorded from 1982 until 1989 and
one from the Physikalisch-Technische Bundesanstalt where (among others) a Ra-226 sample
was monitored from 1983 until 1998 [2, 3]. Furthermore, perturbations in a Mn-54 sample’s
decay rate coinciding with severe solar flares and storms in December 2006 strengthen their
postulation of a solar influence on nuclear decay processes [4]. Several more findings of other
groups are listed in [5] as is a table of experiments exhibiting time dependent decay rates.

They attribute the observed effects to a solar influence. Seasonal changes in the Earth-Sun
distance due to the orbit’s eccentricity could therefore account for annually varying decay rates.
Additionally, all observed effects concern β-decays or were β-decay related (such as β-decaying
daughter products in equilibrium with their parents), suggesting a possible influence of solar
neutrinos [5]. They even discuss the potential existence of a new field/particle; the neutrello [6].
α-decay seems to be entirely unaffected ([5] and references therein).

Also, oscillations of other frequencies have been found in the data sets, which were linked to
possible internal solar activities [7].

Naturally, their inference did not go unchallenged, since such findings speak against our
understanding of radioactive decay and many other researchers opposed these claims [8–11].

Quoting [10]: When radioactivity was first being studied in the early 1900s, the question was
raised if environmental factors could change the speed at which radioactive atoms decay. Several
experiments conducted by Earnest Rutherford, Pierre and Marie Curie, and others found that the

11

decay constant had no measurable influence, within measurement uncertainties, to environmental
conditions, including temperature, pressure, chemical composition and magnetic fields. Recently,
starting in 2009, a series of studies and measurements have been conducted to re-investigate whether
the decay constant is truly constant. This recent work has been focused on Earth-Sun distance variation
and solar flare activity and how they might influence the decay constant.

Quantum mechanics does predict that under under special circumstances, decay of unstable quantum
states, including unstable nuclear ground states, is not always exponential [. . .]. It has also been
demonstrated experimentally that the radioactive decay constant can be influenced by external forces
for the electron capture decay mode [. . .], this is a well-understood consequence of changes to the phase
space [. . .].

The main criticism of the conclusions drawn by Jenkins and Fischbach has been that the data
which they based their conclusions on were acquired mostly by old technology detector systems (gas
filled detectors) which were not in climate controlled rooms, nor were the environmental conditions
measured during the time of radiation measurements. Jenkins et al. concludes that “there is an
obvious need for more experiments examining a wide variety of detector technologies and a large array
of isotopes utilizing appropriate controls, including directly measuring temperature, pressure and
humidity effects on the detector systems in environmental chambers”.1

Dedicated high-precision experiments and investigations in the references listed above find
no evidence for sought oscillations. For instance [11]: The most stable activity measurements of
alpha, beta-minus, electron capture, and beta-plus decaying sources set an upper limit of 0.0006 % to
0.008 % to the amplitude of annual oscillations in the decay rate. Oscillations in phase with Earth’s
orbital distance to the Sun could not be observed within a 10−6 to 10−5 range of precision. There are
also no apparent modulations over periods of weeks or months.

The publications mentioned above were discussed within the neutron and quantum physics
group of the Atominstitut and E. Jericha decided in 2012 to launch perpetual data mining using
a spare germanium photon detector “Polygam” of the institute without any further planning.
Polygam was set up in a measuring room in the second basement of the Atominstitut, TU Wien,
which it shares with two other detectors, the latter of which is low level shielded, and a mass
spectrometer. Polygam is regularly used in the frame of the neutron physics laboratory course,
two weeks per semester.

Until now, this issue has been subject of [13] and [14], however, the thesis in hand did not use
the mentioned resources, as an “unspoiled” approach seemed appropriate. Furthermore, these
theses do not provide a description of the investigated effect and focus on the evaluation of data
gathered by the aforementioned experiment.

Early parts of the thesis dealt with finding ways of refining the available setup. Since, very
quickly, the focus of the work shifted to the establishment of the theoretical background and the
simulation and analysis framework, this thesis will only very briefly touch on several aspects of
a possible experimental setup.

Section 2 Physics and math (p. 15) covers simple physical models of (non-)standard radioactive
decay, provides general information on the measuring process and introduces the mathematical
analysis tools.

Section 3 Simulation (p. 47) discusses the design and contents of the simulation framework
and how to use and possibly extend it.

Section 4 Application (p. 73) combines the two preceding chapters and tests the methods and
ideas introduced in the second chapter by using the established framework.

Section 5 Experimental setup (p. 103) briefly discusses the experimental setup and points out
possible improvements.

1
Jenkins et al. present a detailed analysis of the detector responses to environmental influences and conclude that
these effects are unlikely to explain the observed periodic fluctuations [12].

12

Finally, section 6 Conlusion and outlook (p. 111) provides a collection of results from section
4 Application (p. 73), briefly discusses other possible fields of application and gives a list of
items of future work.

13

14

2. Physics and math

This section is devoted to the presentation of physical and mathematical concepts necessary to
describe the issues of this thesis.

2.1. Radioactive decay

The work takes place in the frame of radioactive decay of nuclei. It is thus essential to be well
informed about its phenomena and laws.

Radioactivity is the property of certain nuclei (so called radionuclides) to spontaneously, i.e. in-
dependent from external influences), disintegrate/convert (radioactive decay) into other nuclei.
In the process, energy in the form of particles – α-, β- or γ-decay – is released.2

The latter, electromagnetic radiation from γ-decay, is subject of the thesis in hand. Gamma
spectroscopy examines the characteristic energy of the released radiation (photons) and thus
allows to study the decay process.

Since the experiment and research described follow the tracks of the assumption that there
are still aspects about the decay process to be unveiled, it will be referred to as “standard decay”
in the following.

2.1.1. The law of radioactive decay

The following ordinary differential equation was found to describe the effect in question:

dN
dt

= −λN , (2.1)

where N = N (t) is the current quantity of nuclei, t is the time and λ is a constant factor – the
decay constant with dimension [λ] = 1/s. The minus sign is used since the number of nuclei has
to decrease over time. Its reciprocal

tλ = 1/λ (2.2)

is called lifetime ([tλ] = s).
Solving the equation results in what is known as the law of radioactive decay, namely

N (t) =N0 e−λt , (2.3)

where N0 =N (t0) =N (t = 0) is the number of nuclei existing at the beginning.
The time t = t1/2, after which only half of the initially existing nuclei remain, is called half-life.

With N (t1/2) = 1/2 ·N0 we find

λ =
ln2
t1/2

(2.4)

to link decay constant and half-life, of which the latter is commonly found in literature.

The statistical process of radioactive decay follows a Poisson distribution. For a large number of
nuclei, the process can be described by a Gaussian normal distribution with mean µ(t) =N (t)
and standard deviation σ (t) =

√
N (t). The details of this statistical treatment will be extensively

covered in section 2.3.4 Statistical description of radioactive decay (p. 30).

2 Freely translated from [15].

15

2.1.2. Remaining, decaying and decayed nuclei – basic formulas

As explained above, the ansatz of a simple differential equation of first order in time and its
solution (in combination with a starting condition) leads us to a function, which describes the
number of remaining nuclei.

dN (t)
dt

∝N (t)
solve differential−−−−−−−−−−−−−−→

equation
N (t) with N (t = 0) =N0 (I)

Let us remember the just introduced law of standard decay (2.3) from the last section at this
point. Whereas it only provides the number of remaining nuclei in the sample, it is useful to
think about the mathematical description from another “perspective”.

We want to find the total amount of nuclei Nd which already decayed at a given time and
therefore state a (very intuitive) fact: The sum of already decayed and still remaining nuclei
must always remain constant; N0, to be exact.

N (t) +Nd(t) ≡N0 = const ∀t ≥ t0

This quickly leads to
Nd(t) =N0 −N (t) (II)

and
Nd(t) =N0

(
1− e−λt

)
(2.5)

in terms of standard decay.

If we want to describe the decay process at a certain (infinitesimal) time rather than over
a time interval (the previous two formulas gave us information about the time interval t − t0),
we naturally define

n(t) =
dNd(t)

dt
= − dN (t)

dt
∝N (t) , where sgnn(t) != 1 ∀t ≥ t0 . (III)

as the decay rate, thus, the number of currently decaying nuclei.3 Care must be taken to
guarantee the easily overlooked condition of a constant sign!

sgnn(t) != 1 ∀t ≥ t0 (IIIa)

A change of sign – once a “perspective” has been chosen – would indicate “a wrong direction” of
the process, which is against physical laws. For instance, a negative sign in (III) would describe
decayed nuclei reassembling!

We decide on the “perspective of the experimenter” to properly depict the experimental setup;
using the expressions of standard decay, we obtain in this case

n(t) = λN0 e−λt = λN (t) . (2.6)

3 It is important to be aware of the frame of reference at this point. We define the decay rate from the perspective of
the experimenter. We see the decay rate as the change of decayed nuclei, a growing function, thus we define as in
(III) and the function must have a positive range. If we were to express the decay rate in the sample’s frame, we
would ask in what manner the number of remaining nuclei changes and consequently find

n(t) =
dN (t)

dt
, where sgnn(t) != −1 ∀t ≥ t0 ,

since it decreases.

16

Note that (III) is, in fact, the definition of activity

A(t) := − dN (t)
dt

= λN0 e−λt = A0 e−λt , (2.7)

the unit of which is [A] = 1Becquerel = 1Bq = 1/s, where an activity of A = 1Bq means one
decay process per second. A0 := λN0 is the initial activity. Another common unit of activity is
1Curie = 1Ci = 3.7 · 1010 Bq.4

Math already suggests to find the number of nuclei which decayed during a time interval [t0, t0+∆t]
through integration after

∆N (∆t; t0) =

t0+∆t∫
t0

n(t)dt , (IV)

or more exactly

∆N (∆t; t0) =

t0+∆t∫
t0

n(t)dt =

t0+∆t∫
t0

dNd(t)
dt

=Nd(t0 +∆t)−Nd(t0) (IVa)

≡ −
t0+∆t∫
t0

dN (t)
dt

=N (t0)−N (t0 +∆t) . (IVb)

For standard decay we obtain

(IVb) =N0 e−λt0
(
1− e−λ∆t

)
. (2.8)

Defining t0 = 0 and ∆t→ t results precisely in case (II), namely

∆N (∆t→ t; t0 = 0) ≡Nd(t) =N0

(
1− e−λt

)
.

Obviously, equations (I) to (IV) are profoundly intertwined. It is important to see the four
introduced descriptions of radioactive decay – namely, remaining N (t), decayed Nd(t), decaying
(decay rate) n(t) and “discretely decayed” ∆N (∆t; t0) nuclei – as different points of view on one
process.

Figure 1 shows the introduced functions.

2.2. Models – postulated influences and their mathematical description

2.2.1. New physics?

In contradiction to the preliminary findings, as presented in the introduction, stands the
postulation of a time dependence of what we know as the decay constant, thus

λ
?= λ(t) .

Since a sufficiently accurate model was found to describe the observed (macroscopic) nuclear
decay processes, the scientific community focused on working off the heap of data which was
now to be gathered; such as measuring half-lives, mapping the different nuclides on the well

4 How N0 can be calculated from a given A0 or a measurement is pictured in 4.1.3 Magnitudes and values of
introduced variables; exemplary case (p. 75).

17

Figure 1 This figure shows the graphs of the remaining, decayed and decaying nuclei (standard decay).
It is clearly visible that n(t) is mathematically identical to N (t). N (t) and Nd(t) add up to N0 at all times.
The ∆N (t;∆t) graph (not depicted), where now ∆t is a constant parameter and t0 → t is the variable,
would lie between 0 for ∆t = 0 and N (t) for ∆t→∞ and is again mathematically equivalent to N (t) and
differs only by a constant pre-factor. It is identical to n(t) for ∆t = − ln(1−λ)/λ.

known chart of nuclides and expanding the knowledge of nuclear physics rather than diligently
observing a, seemingly, entirely random process in order to find tiny but regular variations, the
assumption of which going without any obvious indication. In short: There was too much to
do, one would not even expect this kind of periodic fluctuation and, apart from that, it was
irrelevant.

Quoting from the introduction of [16]: In a recent paper, early data from a sample of Cs-137
on board the Messenger spacecraft enroute to Mercury were analyzed to set limits on a possible solar
influence on nuclear decay rates. This work was motivated by the suggestion put forward in a recent
series of papers which cite evidence for a drop in the count rate of Mn-54 during a solar flare, for a
correlation between decay rates of various isotopes and Earth-Sun distance, and for periodicities in
decay rate data associated with solar rotation. Although the suggestion of a solar influence on nuclear
decay rates has been challenged by the apparent absence of decay anomalies in some isotopes that have
been studied, and by a recent reactor experiment, there is no a priori reason to assume that all isotopes
should be equally sensitive to a putative solar influence, or that the antineutrinos produced in reactors
would be the dominant agents through which a solar influence would be exerted. As we have noted
elsewhere, the very same properties of decaying nuclides that are responsible for the broad range of
observed half-lives (e.g., nuclear and atomic wave-functions, Q-values, selection rules) would likely
render nuclides sensitive in different degrees to a putative solar influence.

The suggestion that the sun is responsible for variations in decay rates can be tested directly by
studying the decay rates of appropriate nuclides located on spacecraft traveling through the solar
system.

Assuming the sun being origin of new aspects of nuclear decay, it could contribute in two
different ways: Irregular activities (solar flares for instance) and a permanent influence due to
an unknown mechanism.

The first would probably cause temporary fluctuation, reflected in varying count rates of a

18

measured spectrum.
The latter would cause a change of the decay rate possibly in dependence of the distance

between the sun (or, in fact, any other star) and the position of the affected nucleus. Earth’s orbit
around the sun as well as its rotation would both cause a varying distance. The resulting effect
would thus be twofold.

Fischbach et al. propose that neutrinos could be responsible this effect. The Triga reactor
of the Atominstitut, for example, is a neutrino source and must therefore be taken into account.
If the influence of neutrinos from the reactor is stronger than that of the sun (or other neutrino
sources) one should be able to detect their impact by comparison of measured variations and
reactor runtime.

However those hypothetical effects work, their influence must be so small that they do not
obviously show up in data sets already gained in the course of the exploration of nuclear decay.
Fischbach et al. suppose the effects to show up with a relative magnitude of 10−3!

In order to describe the effects in question, we have to modify the standard model of radioactive
decay and find appropriate versions of formulas (I) to (IV).

All models will introduce a well-defined periodical fluctuation of a certain amplitude ε into
the signal. Depending on the ansatz of the respective model, the meaning of this parameter can
vary.

Not all models presented in this section were actually simulated and investigated.

2.2.2. General sinusoidal Sun influence

A possible spatial dependence of λ = λ(r) due to the sun’s influence can be transformed into a
time dependence, considering that Earth orbits the sun in a well understood manner.

λ(r) = λ(r(t)) = λ(t)

This movement involves a varying distance that will be described by a periodical function.
Furthermore, the Earth’s rotation will cause variations of the distance between the sun and the
experiment as well, however being of the magnitude of Earth’s diameter, which is negligible in
comparison to the distance of approximately one astronomical unit5.

A very general description according to [16] reads

λ(t) = λ0 +λ1(~r, t) ,

where λ0 represents the intrinsic contribution to the decay rate of the unstable nuclei, along with a
possible time dependent background arising from new interactions. Here λ1(~r, t)� λ0 characterizes
the anomalous position and time dependent contribution to the decay rate, assumed, in this case,
to arise from the sun. [. . .] there is evidence using terrestrial radioactive samples suggesting that
decay rates are correlated with sample-Sun separation. To study this effect, we will assume a specific
phenomenological form for λ1(~r, t) given by

λ1(~r, t) = λ0ξ
(n)

(
r0
r(t)

)n
,

where n ∈ N, r = |~r | is now the sample-Sun separation distance, r0 = 1AU and ξ(n) is a composition
dependent dimensionless parameter characterizing the strength of the decay anomaly for a specific
nucleus. The form of [the equation] is designed to encompass a broad range of theories. If the decay

5 1astronomical unit = 1AU = 149597870km ≈ 1.5 · 108 m [17].

19

anomalies are caused by a flux of neutrinos from the sun or by an inverse-square law field, then one
expects n = 2.6

2.2.3. Sinusoidal, time dependent summand

General description

The following ansatz assumes that a certain percentage 0 < ε � 1, of the remaining nuclei
shows sinusoidal decay, whereas a fraction of (1− ε) follows the unmodified law of decay. As a
consequence, we obtain simply a modified version of the standard decay function for remaining
nuclei (in accordance with (I)), which reads as follows:

N (t) := (1− ε) ·N0 e−λt+εcos(ωt +ϕ) ·N0 e−λt ,

where ω is the frequency of the periodic variation (and is correlated with the orbit of the earth)
and ϕ is a phase shift.7 The frequency is proportional to the reciprocal value of the effect’s cycle
duration T , thus

ω =
2π
T

, [ω] = rad/s . (2.9)

T will be of the order of a year for the orbit and of a day for the rotation respectively.
Note that in this ansatz the decay constant is λ = const, but a time dependent, periodical

summand is added to factor in the assumed influence of the sun.

A more general version of this “brute-force” ansatz reads

N (t) :=N0 e−λt · [1 + ηε+ εcos(ωt +ϕ)] , (2.10)

where

η =

+1 inhibiting

0 alternating

−1 inducing

.

For η = −1 we obtain the case presented before, in which a fraction of (1− ε) nuclei show sinu-
soidal decay, which matches an inducing effect, the maximum values being the ones predicted
by the standard decay equation. If this seems counter-intuitive, remember that N (t) provides
the number of remaining nuclei: In this case, this number is equal or less than the standard
values and a diminished number of remaining nuclei means that the effect has induced decay
processes. Analogously, η = +1 would describe an inhibiting effect, where the lowest occurring
values are that of standard decay. The case of alternately inducing and inhibiting decay about
the values corresponding to the standard case is given by η = 0. In all cases, ε is the amplitude of
the postulated oscillation, the order of magnitude of which determines directly that of the effect.
At the same time, it denotes which percentage of nuclei show a change in their disintegration
behavior (i.e. their activity).

This model will be referred to as the “sinusoidal summand” model in the course of this text.

Formulas

The common differential equation already introduced,

dN (t)
dt

= −λN (t) ,

6 The mathematical models described throughout the thesis in hand developed independently from the cited papers.
They were, on purpose, read after the formalism and simulation were written to avoid any bias!

7 The choice of the cosine is due to consistency reasons with the next presented model.

20

underlies this description – its solution is just modified!
In order to satisfy the initial condition N (t = 0) = N0, we must also modify the integration

constant.

N (t = 0) = [1 + ηε+ εcos(ϕ)]N0

leads to

N0→
N0

1 + ηε+ εcos(ϕ)
=:N0(ϕ) ,

which yields the first equation:

(I) → N (t) =
N0

1 + ηε+ εcos(ϕ)
e−λt [1 + ηε+ εcos(ωt +ϕ)]

=N0(ϕ) e−λt [1 + ηε+ εcos(ωt +ϕ)] (2.11)

If we didn’t want to neglect the earth’s rotation compared to the orbit of the earth around the
sun, we would choose a modification somewhat like

N (t) :=N0 e−λt · [1 + η(εorbit + εrot) + εorbit cos(ωorbitt +ϕorbit) + εrot cos(ωrott +ϕrot)] ,

where εorbit� εrot but again εorbit + εrot� 1.

We find the other functions according to their definitions:

(II) → Nd(t) =N0

[
1− (1 + ηε+ εcos(ϕ))−1 e−λt [1 + ηε+ εcos(ωt +ϕ)]

]
(2.12)

(III) → n(t) = λN0(ϕ)e−λt
[
[1 + ηε+ εcos(ωt +ϕ)] +

ωε
λ

sin(ωt +ϕ)
]

(2.13)

(IVb) → ∆N (∆t; t0) =N (t0)−N (t0 +∆t)

=N0(ϕ)e−λt0
[
[1 + ηε+ εcos(ωt0 +ϕ)] −

− e−λ∆t[1 + ηε+ εcos(ω(t0 +∆t) +ϕ)]
]

(2.14)

Simplification

The phase ϕ defines the starting point in the effect’s cycle. However, this information is neither
of importance in the description of the model nor in the simulations or any real measurement.8

Merely when fitting to a set of experimental data, a phase variable (fit parameter) has to be in-
troduced to allow for a proper fit result. Additionally, it can be argued that the knowledge about
Earth’s position with respect to aphelion and perihelion allows to determine the approximate
current phase, assuming that in the perihelion the effect is the greatest.

With these considerations in mind we will set ϕ := 0 for future reference. This leaves the
trigonometric functions unchanged in that the phase variable can be re-introduced at any time
without modification. This choice of ϕ introduces the negligible error of [1 + ηε+ εcos(0)]−1 ≈ 1,
because ε is by definition very small9, which simplifies N0(ϕ) ≈ N0. This approximation is
supported by the fact, that uncertainties in the determination of N0 will most probably always
obscure any resulting errors. (In the simulations only the order of magnitude of N0 is taken into

8 In theory, it can be determined in a normalized signal as shown in 2.4.3 Standard decay normalization (p. 43).
9 This is actually a very important point: If ε wasn’t very small, it would have already been discovered.

21

account anyway.)

(I) → N (t) =N0 e−λt [1 + ηε+ εcos(ωt)] (2.15)

(II) → Nd(t) =N0

[
1− e−λt [1 + ηε+ εcos(ωt)]

]
(2.16)

(III) → n(t) = λN0 e−λt
[
[1 + ηε+ εcos(ωt)] +

ωε
λ

sin(ωt)
]

(2.17)

(IVb) → ∆N (∆t; t0) =N (t0)−N (t0 +∆t)

=N0 e−λt0
[
[1 + ηε+ εcos(ωt0)] −

− e−λ∆t[1 + ηε+ εcos(ω(t0 +∆t))]
]

(2.18)

2.2.4. Sinusoidal, time dependent decay constant

General description

In this ansatz of the differential equation modeling decay, the decay “constant” is composed of a
static and an oscillating contribution

λ(t) = λ0(1 + asin(ωt +ϕ)) ≈ λ0 , (2.19)

where λ0 represents the standard decay constant and a� 1 is a dimensionless factor ([a] = 1),
resembling the strength of the postulated effect.10 This mathematical ansatz introduces both
induction and inhibition of disintegration by its very nature. The other introduced variables are
analogous to the model described above.

In this model, the free parameter a has some significant physical meaning and is an attribute of
the sample. The magnitude of the resulting effect (deviation from the expectations of the model
of standard decay) will still be given by the quantity ε, however, in this model, it results from the
physical model, i.e. ε = ε(λ0, a,ω), whereas in the preceding model it was predefined; in direct
comparison, it is important to beware a , ε. Mind also that a itself is not directly accessible by
the experimenter – its nature is entirely unclear!

This model will be referred to as the “sinusoidal decay constant” model.

Formulas

The differential equation is then (check against (I))

dN (t)
dt

= −λ(t)N (t) = −[λ0(1 + a sin(ωt +ϕ)]N (t) . (2.20)

The difference to the summand model lies in the implication of the modified decay constant λ(t)
in the ansatz. Solving leads to a new solution, which already includes the idea of the new model.
In contrast, the properties of the preceding model have just been tinkered into the solution of
the unmodified standard model. Hence, the present model is somewhat more profound. We
will also see that its equations resemble those of the standard description more convincingly.
The solution of (2.20) is

N (t) = e−λ0

∫
(1+asin(ωt+ϕ)) dt = C e−λ0t eλ0

a
ω cos(ωt+ϕ) .

10 Of course, a definition like λ(t) = λ0 + asin(ωt +ϕ), where a� λ0 and [a] = 1/s would also be possible. However,
the chosen approach, yields a deeper intertwining of λ0 and a and makes the latter a dimensionless, relational
quantity.

22

To satisfy the boundary condition N (t = 0) =N0, we find

N (t = 0) = C eλ0
a
ω cos(ϕ) =N0

and thus, solving for the integration constant C,

C =N0 e−λ0
a
ω cos(ϕ) =:N0(ϕ) .

This gives

(I) → N (t) =N0 e−λ0
a
ω cos(ϕ) e−λ0t eλ0

a
ω cos(ωt+ϕ)

=N0(ϕ)e−λ0t eλ0
a
ω cos(ωt+ϕ) . (2.21)

Again we calculate the different functions to describe the introduced model:

(II) → Nd(t) =N0

[
1− e−λ0

a
ω cos(ϕ) e−λ0t eλ0

a
ω cos(ωt+ϕ)

]
(2.22)

(III) → n(t) = λ0 [1 + asin(ωt +ϕ)] ·N0(ϕ)e−λ0t eλ0
a
ω cos(ωt+ϕ) = λ(t)N (t) (2.23)

(IVb) → ∆N (∆t; t0) =N (t0)−N (t0 +∆t)

=N0(ϕ)e−λ0t0
[
eλ0

a
ω cos(ωt0+ϕ)−e−λ0∆t eλ0

a
ω cos(ω(t0+∆t)+ϕ)

] (2.24)

The amplitude of the sine has to be very small, λ0 a/ω� 1, otherwise the effect would have been
described already – which makes this relation a promising candidate for ε(λ0, a,ω).

Simplification

By the use of the same arguments as before, we can set the phase argument ϕ := 0. The term
exp(−λ0 a/ωcos(0)) ≈ 1 allows for the approximation N0(ϕ) ≈N0. This simplifies the equations
as follows:

(I) → N (t) =N0 e−λ0t eλ0
a
ω cos(ωt) (2.25)

(II) → Nd(t) =N0

[
1− e−λ0t eλ0

a
ω cos(ωt)

]
(2.26)

(III) → n(t) = λ0 [1 + asin(ωt)] ·N0 e−λ0t eλ0
a
ω cos(ωt) = λ(t)N (t) (2.27)

(IVb) → ∆N (∆t; t0) =N (t0)−N (t0 +∆t)

=N0 e−λ0t0
[
eλ0

a
ω cos(ωt0)−e−λ0∆t eλ0

a
ω cos(ω(t0+∆t))

] (2.28)

The equations look very similar to the equations from the standard decay; even more so than
those of the sinusoidal summand.

Effective amplitude ε of the oscillation

We already found ε := λ0 a/ω as one possible candidate for the effective amplitude of the
postulated oscillation, which should be visible in the measured/simulated data, eventually.
Considering the mathematical structure of equation (2.21), this assumption seems intuitive.

Let us examine the general term f (t;ξ) = exp(ξ cos(ωt)). A quick plot will show that f (t;ξ)
takes the characteristics of a cosine for fairly large values of ξ already. A Taylor expansion for
small values ξ ≈ 0, namely

f (t;ξ)
∣∣∣∣
ξ0≈0

=
∑
n

1
n!

∂n

∂ξn
f (t;ξ0)(ξ − ξ0)n = 1 + ξ cos(ωt) +O(ξ2) , (2.29)

23

where ∂n/∂ξnf (t;ξ) = ξn cosn(ωt), performed for the corresponding term in (2.21) yields

N (t) ≈N0(ϕ)e−λ0t
[
1 +λ0

a
ω

cos(ωt +ϕ)
]
,

which is exactly the result (2.11) from the sinusoidal summand model in the case of η = 0.11

This is consistent with the assumption of disintegration being both induced and inhibited in the
current model and comparison of these two equations indeed surmounts the relationship

ε = λ0
a
ω
� 1 . (2.30)

This finding also justifies the general ansatz (2.19), since (2.30) links all important quantities
defining the model; namely the standard decay constant λ0, the dimensionless factor a, the
effect’s frequency ω and the observable effective amplitude ε. This relation allows to estimate
the value for a, which otherwise remains inaccessible to the experimenter. And still ε� 1 holds,
because if not, I would not need to write any of this.

2.2.5. Inducing and/or inhibiting effect in sinusoidal models

The second model (sinusoidal decay constant) assumes the effect in question to induce and
inhibit decay equally, since λ(t) ∝ sin(ωt). The first model (sinusoidal summand) can describe
an inducing, an inhibiting or alternating influence on the disintegration rate via the parameter η.
For η = 0 the two models coincide in the first approximation.

To describe inducing influence exclusively also in the second model, one would need to shift
the sine

sin(ωt) + 1
2

instead of a mere sin(ωt). Analogously, one could state

sin(ωt)− 1
2

to examine inhibiting influence only.12

Generally, we could also postulate a mixture of the two, in that we assume the effect in question
to induce decay at the maximum amplitude of θ+ > 0 and at the same time act inhibiting at
the minimum θ− < 0. We seek to find the description of a sine shaped influence satisfying the
mentioned bounding conditions (extrema).

11 This finding was the motivation to choose a cosine function in the ansatz of the former model.
12 Mind that simply taking the absolute value ±|sin(ωt)| or writing ±sin2(ωt) would alter the shape of the influence!

24

The ansatz

λ(t) ∝ sin(ωt) + θ̃
C

and the bounding conditions

Maximum:
1 + θ̃
C

= θ+ , θ+ > 0

Minimum:
−1 + θ̃
C

= θ− , θ− < 0

lead to

θ̃ = −1 +θ
1−θ

, θ =
θ+

θ−
and

C = − 2
θ− −θ+ .

A phase shift of ϕ = −arcsin θ̃ will enforce
λ(0) = 0. See figure 2.

Figure 2 This figure shows a shifted sine
curve for given θ+, θ− and ω.

2.2.6. Discrete Sun influence (solar activities)

Another idea is to expect irregular sun activities, like solar flares, to have an influence on
decay processes as in [4]. In comparison with known dates of solar flares, one could try to find
correlations events in the data.

An analytical model could use Dirac functions, Gaussians or typical window functions to
describe a time-limited influence. However, Dirac functions may not properly introduce possible
“precursor” signals before the actual solar event into to the model as described in [4].

2.2.7. Rectangular (neutrino) influence

Given that neutrinos of the reactor at the Atominstitut have an effect on decaying nuclei in that
they either induce or inhibit disintegration, the measured spectrum has to show a rectangular
shaped variation. The periodicity of the variations would coincide with the reactor runtime,
documented in the reactor journal. Thus, the fundamental mathematical shape of the adapted
formula, analogously to (2.10), would read

N (t) =N0 e−λt
[
1 + ηε

(
θ(t − ton)θ(−(t − toff))

)]
,

where

η =
{

+1 inhibiting

−1 inducing

and θ is the Heaviside theta function. The time dependence of this effect lies in the time
dependent reactor activity, actually – thus, it is, similar to the sinusoidal distant dependent
effects, not time dependent by nature.

Since the reactor is generally scheduled to run from Monday to Friday, 8am to 3:45pm, the
correct formula would look very cluttered. Instead, the calculations will be performed with
general ton and toff to represent any rectangular influence.

25

We find

(I) → N (t) =N0 e−λt
[
1 + ηε

(
θ(t − ton)θ(−(t − toff))

)]
(2.31)

(II) → Nd(t) =N0

[
1− e−λt

[
1 + ηε

(
θ(t − ton)θ(−(t − toff))

)]]
(2.32)

(III) → n(t) = λN (t)− ηεN0 e−λt
(
δ(t − ton)− δ(t − toff)

)
(2.33)

(IV) → ∆N (∆t; t0) =N0 e−λt
[
λ
(
∆t + ηε

∫ t0+∆t

t0

θ(t − ton)θ(−(t − toff))dt
)

− ηε
∫ t0+∆t

t0

(
δ(t − ton)− δ(t − toff)

)
dt

] (2.34)

The Dirac delta functions in (2.33) become 1 each if ton or toff respectively lie within [t0, t0 +∆t],
which corresponds to switching the effect on or off. The first integral in (2.34) becomes 1 for the
intersection of [t0, t0 +∆t] and [ton, toff], whereas the second integral, as above, becomes 1 for
each Dirac function lying in [t0, t0 +∆t].

The relationships

d
dt

θ(at − b) =aδ(at − b)

δ(t) =δ(−t)

were used.
Mind that the use of Heaviside theta and Dirac delta functions involve an idealization of the

real process in which the reactor start-up and shut-down times may even surpass ∆t.

Similar to the first sine model, this model simply modifies the solution of standard decay.
An ansatz introducing a reactor run time dependent decay “constant”, much like the second
sine model, could be formulated as well.

2.3. Mathematical discussion of the measurement process

This section will briefly explain the principle of measurement and which formulas will be used
to compute data in the simulation described in section 3 Simulation (p. 47). Furthermore, the
statistical treatment of radioactive decay processes will be presented and the explained issues
will be put into the light of a real measurement and concluded for practical use.

2.3.1. Principle of measurement

In a real measurement situation a detector cannot measure for an infinitesimal time interval dt.
In order to obtain usable results, the detector needs to measure throughout a certain time
interval

[ti , ti +∆t] =: [ti , ti+1] for ∆t = const and [∆t] = 1s (2.35)

and sum up all recorded events (photons of decayed nuclei hitting the detector) to output a
tuple of values (

ti+1 , ∆N (ti ;∆t) ,
√
∆N (ti ;∆t)

)
, (2.36)

which holds the time ti+1 after the measurement interval ∆t, the number of events registered by
the detector during [ti , ti+1] and the statistical uncertainty of that number.

This principle of measurement requires a discretization of time:

t → ti+1 = ti +∆t or ti = t0 + i∆t , i ∈ N0 . (2.37)

26

Let us, at this point, refer to equation (IV)

∆N (∆t; t0) =

t0+∆t∫
t0

n(t)dt =N (t0)−N (t0 +∆t)

to get rid of confusion about the nomenclature. The formula describes the amount of decayed
nuclei in dependence of the measurement time ∆t for a given starting time t0; it is therefore
natural to write ∆N (∆t; t0). We chose the notation ∆N (ti ;∆t) for the context of measuring, since
it emphasizes the role of ti as the variable (an arbitrary time during the measurement) instead
of the constant ∆t. This makes (IV):

∆N (∆t; t0) → ∆N (ti ;∆t) =
k∑
j=1

n(ti,j)∆tmin =N (ti)−N (ti +∆t) =N (ti)−N (ti+1) , (2.38)

where the integral became a sum due to the discretization. For ∆t we find in this context

∆t = k ·∆tmin where ti,j = ti + j∆tmin and k, j ∈ N .

In this context, ∆tmin resembles the smallest step size possible (or reasonable) – the “infinites-
imal step in discrete time”, so to say. This seemingly strange definition is necessary when
approaching computer simulations, where we could define a small yet reasonable ∆tmin := 1s,
for instance. A single measurement therefore lasts k steps of length ∆tmin, which is exactly the
upper limit in the sum.

The whole measurement is characterized by the measurement duration T ([T] = 1s), which is
ideally a whole-number multiple of ∆t.

Note that ∆t must never be of the same magnitude as the cycle duration T but considerably
smaller to not obscure the periodicity. The Nyquist theorem states

∆t < T /2 , (2.39)

however, in reality, the integration time has to (and will) be way shorter.13

In (2.38), because of the discretization, we found two expressions for ∆N (ti ;∆t). The former
integration – now the sum – over the activity

∆N (ti ;∆t) =
k∑
j=1

n(ti,j)∆tmin (2.40)

and, on the other hand, the use of the stem function

∆N (ti ;∆t) =N (ti)−N (ti +∆t) . (2.41)

The difference between methods (2.40) and (2.41) may not be immediately clear, but will be
pointed out in section 3.3.3 Types of simulating (p. 53).

The actual setup of the experiment and a slightly more detailed description of how the detector
works is pictured in section 5 Experimental setup (p. 103).

13 Too large values for ∆t will very likely render an analysis futile as they can obscure the periodicity of a signal.

27

2.3.2. Basic concepts of statistics

This section briefly lists well-known formulas for the basic statistical handling of values with
uncertainty. It mainly relies on [18] and supplementary internet research. Section 2.3.4 Statisti-
cal description of radioactive decay (p. 30) covers the probability distributions used to describe
radioactive decay.

The mean value x of N acquired values xi is

x =
1
N

N∑
i=1

xi .

For an infinite number of measurements N →∞ the mean value approaches the expectation
value E[x] of the underlying probability distribution. The combined squared deviation from the
mean value gives the (empirical) standard deviation σx according to

σx =

√
1

N − 1

∑
i

(xi − x)2,

where the prefactor 1/N instead of 1/(N −1) is used if the population is known. The variance σ2
x

is the standard deviation squared. Mind that mean value and standard deviation are of the same
dimension.

The variance Var[x] of a stochastic variable x originating from a probability distribution is

Var[x] = E
[
x2

]
−E[x]2

and we also find for the standard deviation

Std[x] =
√

Var[x] .

Mind that in a real measurement situation the experimenter always deals with x and σx!

Under linear transformations we find for the expectation value and the variance

E[c · x+ d] = c ·E[x] + d and Var[c · x+ d] = |c|2 ·Var[x] . (2.42)

In many cases one needs information about expectation/mean value and the standard de-
viation while the data is still recorded or one needs to avoid buffering large amounts of data.
Constantly updated values

∑N
i=1 xi and

∑N
i=1 x

2
i allow for a continuous calculation of the mean

value

x
∣∣∣
N

=
1
N

N∑
i=1

xi

and the empirical standard deviation14 according to

σx
∣∣∣
N

=

√√√√
1

N − 1

 N∑
i=1

x2
i

− 1
N

 N∑
i=1

xi

2 . (2.43)

14 This relation was taken from [19] and checked by personal calculation.

28

Given that y = y(xi) is a function of multiple values xi , all coming with an uncertainty σi ,
one needs a way to treat the combination of said uncertainties. The Gaussian uncertainty
propagation is an essential tool for the statistical treatment of such a function y

σy =

√√∑
i

(
∂y

∂xi

)2

σ2
i , (2.44)

where the uncertainties σi are statistically independent.

Generally, if one wishes to combine multiple values xi but weigh their influence individu-
ally, one computes the weighted average

x =
∑
i xi gi∑
i gi

, (2.45)

where the gi are the individual weights. The respective standard deviation is calculated via

σx =

√ ∑
i gi σ

2
i

(
∑
i gi)− 1

,

where σi = x − xi .
In the case of a stochastic variable with given individual uncertainties σi one defines

gi =
1

σ2
i

and σx =
1√∑
i gi

=
1√∑
i

1
σ2
i

. (2.46)

2.3.3. Computing the initial number of nuclei from measurement data

The initial number of nuclei N (t = t0) = N0 is not an absolute value, because, in fact, the
reference time t0 is arbitrary. In case of a measurement situation one would naturally choose it
to be at the beginning of the measurement process and define t0 := 0.

“Measuring” means sampling the graph of ∆N (ti ;∆t) at discrete times ti . According to (2.37)
and t0 := 0, we find ti = i∆t. Hence, we can plug into (2.41) and get

∆N (ti ;∆t) =N (ti)−N (ti +∆t) =N0 e−λti
(
1− e−λ∆t

)
.

This expression can be rearranged and we find for the initial number of nuclei

N0 =
∆N (ti ;∆t)
(1− e−λ∆t)

eλti =
∆N (ti ;∆t)
(1− e−λ∆t)

eλi∆t . (2.47)

If the values ∆N (ti ;∆t) (short-hand notation ∆Ni for now) are drawn from, for instance, a data
file, it would be plausible to use all available data points to increase accuracy and calculate an
average value N0 for the initial number of nuclei from all resulting N0,i .

Let Bi := (1− e−λ∆t)e−λi∆t and thus N0,i = ∆Ni/Bi , then using (2.42), σ∆Ni =
√
∆Ni and (2.46)

will provide

σ2
N0,i

=
∆Ni
B2
i

and gi =
1

σ2
N0,i

=
B2
i

∆Ni
.

Plugging into (2.45) will provide

N0 =
∑
iN0,i gi∑
i gi

=
∑
iN0,i gi∑
i gi

=

∑
i
∆Ni
Bi

B2
i

∆Ni∑
i
B2
i

∆Ni

=
∑
i Bi∑
i
B2
i

∆Ni

. (2.48)

29

For the standard deviation we obtain

σN0
=

1√∑
i gi

=
1√∑
i
B2
i

∆Ni

(2.49)

by using (2.46).15 16

2.3.4. Statistical description of radioactive decay

If not stated otherwise, the contents of this section rely on mathematical definitions and connec-
tions given by the respective Wikipedia articles and on personal communication with Erwin

Jericha and Rudolf Frühwirth.

Let us recall the empirical law of radioactive decay (2.3)

N (t) =N0 e−λt

and the definition of the activity (2.7)

A(t) := − dN (t)
dt

:= n(t) = λN0 e−λt = A0 e−λt .

The law of decay can also be derived by simple statistical argumentation and without knowledge
about the underlying physical mechanisms.

Let us assume (a purely statistical assumption about this stochastic, i.e. random, process)
that the probability of a nucleus to decay during a time interval δ is constant. Given that δ is
small enough, the probability of a decay during that time is λδ, where λ (the decay constant)
is a constant rate specific to the type of nucleus and regardless of the time it has existed. The
probability for a nucleus not to decay, 1−λδ, during the time t = kδ is then (1−λδ)k . For very
small δ→ 0 we obtain

lim
δ→0

(1−λδ)k = lim
δ→0

(1−λδ)t/δ ≡ lim
δ→0

eln(1−λδ)t/δ = lim
δ→0

et ln(1−λδ)/δ .

Taking the limit by applying l’Hôspital’s rule yields

lim
δ→0

exp

 d
dδ ln(1−λδ)

d
dδδ

t

 = lim
δ→0

exp
(−λ

1−λδ
t
)

= e−λt ,

which is the probability of a nucleus not to decay. Starting from a given number N0 of nuclei,
the number of untransformed nuclei is in fact given by N (t) =N0 exp(−λt). (q.e.d.) [20]

The observation of decay events is carried out via counting processes (registration of decay
products by a detector), thus we are more interested in a probability distribution of the expected
number of decay events in a certain time, than in their temporal distribution.

The decay of a single nucleus is a simple Bernoulli process with probability p = 1− e−λt as
we just calculated; p gives the probability of the nucleus to decay within time t. For a number
of nuclei N , the same situation can be described by a binomial distribution B (N,p), which
factors in that the events are discrete and independent from each other, that all nuclei have the

15 While testing it seemed that this method would yield results too low such that the standard deviation was too
small to include the true value. This can happen in case of non-standard decay – turning non-standard physics off
yielded results well in accordance with the true value for N0 and of great accuracy!

16 For reviewing the actual code in the simulation framework it helps to know that Bi ≡ factor,
∑
i Bi ≡ facSum

and
∑
i B

2
i /∆Ni ≡ fac2sum.

30

same (constant) decay probability λt and that it is unknown which of the nuclei decayed. The
probability density function (PDF) reads

B (x | N,p) =
(
N
x

)
px(1− p)N−x with

(
N
x

)
=

N !
x!(N − x)!

,

where p = 1 − e−λt is the same as above and x denotes the number of registered events. The
distribution therefore provides the probability of registering x events for given N and p. The
expectation value and variance read as follows (the standard deviation is Std[x] =

√
Var[x]):

E[x] =Np Var[x] =Np (1− p)

The correct description of the statistics of radioactive decay follows a binomial distribution,
however, it can be approximated by a Poisson distribution P (x | κ) ≈B (N,p), if the observation
time t is small compared to the life time, λt = 1/tλ · t � 1, and if N is large compared to
the number of detected events x, x� N , which means that the sample has a low activity. In
terms of the symbols above, the same conditions can be written as N →∞ and p → 0. The
approximation is valid, if the limits are approached such that Np = const := κ. The PDF of the
Poisson distribution (a distribution of discrete events in continuous time) reads

P (x | κ) =
(Np)x

x!
e−Np =

κx

x!
e−κ , (2.50)

where yet again x denotes the number of detected events. One finds:

E[x] = κ =Np Var[x] = κ =Np

Since N is usually in the magnitude of 1010 and higher, the Poisson distribution is a good
description of the phenomenon.

It is important to recall that all introduced variables p = p(t;λ), N = N (t) and A = A(t) are
actually time dependent and that the presented Poisson approximation is only valid, if these
quantities remain quasi-constant during the observation time t, which is true under the afore-
mentioned conditions. The presented distributions provide the probability of detecting x events
within that time t, but are not explicitly time dependent. In reality, at each point in time, the
situation is described by a new distribution, because the parameters changed, even if just ever
so slightly. This is illustrated in figure 3 for the Gaussian distribution which will be introduced
in the next paragraph.

The well known Gaussian distribution17 G (µ,σ) can be used for further simplification and
is described by two parameters: mean value µ and variance σ2 (σ is the standard deviation).
The general PDF reads

G (x | µ,σ) =
1

√
2πσ2

e−
(x−µ)2

2σ2 .

Already for values κ ≈ 35 [18], the Poisson distributionP (κ) can be approximated by a Gaussian
distribution according to

P (x | κ) ≈ 1
√

2πκ
e−

(x−κ)2

2κ = G (x | κ,
√
κ)

and comparison yields
µ = σ2 = κ and thus σ =

√
κ .

17 To avoid confusion with the number of nuclei, we refrain from using the usual symbolN (“normal distribution”).

31

Figure 3 This sketch shows the principle of the connection between the law of decay, the probability
distribution of the physical process of decay and the results of an experiment. The “theoretic” line
(black) represents the findings of the law of decay (decayed nuclei in a time interval, in this case;
we have refrained from including ∆t into the nomenclature here). At each point in time ti there is a
probability distribution (green) with mean and standard deviation dictated by the theoretical expectation
value ∆N (ti). These factor in the physical (unpredictable) behavior of the decaying sample. In an
actual simulation/experiment, the obtained value (red) at each measurement time ti originates from its
respective distribution.

One finds for the Gaussian distribution:

E[x] = µ = κ , Var[x] = σ2 = κ and Std[x] =
√

Var[x] = σ =
√
κ

Mind that this distribution describes continuous events in continuous time despite the discrete
nature of a collection of nuclei. Furthermore, note that also the empirical law of decay does not
factor in their discreteness either.

When plugging into κ =Np, we obtain a term which is similar to (2.8)

κ =Np =N (1− e−λt) ∧= ∆N =
∫ t

0
A(t′)dt′ = Att , (2.51)

where we used the mean value theorem to obtain a mean activity At for the time interval t.18

Now the relations for the Gaussian distribution can be rewritten as

G
(
x | µ = ∆N,σ =

√
∆N

)
=

1
√

2π∆N
e−

(x−∆N)2

2∆N (2.52)

and

E[x] = µ = ∆N , Var[x] = σ2 = ∆N and Std[x] =
√

Var[x] = σ =
√
∆N . (2.53)

18 The gentle reader might argue that (2.51) rather resembles expression (2.5) for the number of decayed nuclei Nd
than equation (2.8) (as claimed in the text), which denotes the number of decay events during a time interval ∆t.
This is true, but, for the sake of clarity, the present notation was chosen for the rest of this section, because ∆N
really is the true quantity of interest. The integral limits in (2.51), which cause the potential confusion, are just
due to an arbitrary shift of the reference time, which causes ∆t→ t, in order to make the expression simpler.

32

This notation builds a bridge between the theoretical, statistical description and a quantity,
which can be accessed in the experiment, namely the number of decayed nuclei ∆N .

The expression κ = Np = Att for the mean activity in (2.51) can also be used to rewrite the
Poisson distribution (2.50):

P (x | κ) =
κx

x!
e−κ =

(Att)x

x!
e−Att =P (x | Att) (2.54)

The PDF has now an explicit time dependence and we can use it to determine the (probability
of the) time until x arrivals have happened.

When we want to find the probability P of having the k-th event in a time interval [t, t + δ],
where δ is so small that the chance of having more than one event during that interval is
negligible, then we need to find the respective PDF fk(t) such that

fk(t)δ = P (t ≤ k-th event ≤ t + δ) , (2.55)

which can be written as the product of the probabilities of having k − 1 events during [0, t] and
one during [t, t + δ];

P (t ≤ k-th event ≤ t + δ) = P (0 ≤ k − 1 events ≤ t) · P (t ≤ one event ≤ t + δ)

Using (2.54) and the interpretation of At as an average event rate/“intensity”, we can write

P (0 ≤ k − 1 events ≤ t) =P (x = k − 1 | Att) =
(Att)k−1

(k − 1)!
e−Att

P (t ≤ one event ≤ t + δ) = Atδ ,

which yields, after plugging into (2.55),

fk(t)δ =
(Att)k−1

(k − 1)!
e−Att ·Atδ ,

which simplifies to

fk(t) =
A
k
t t
k−1

(k − 1)!
e−Att .

This is (k→ x) the Erlang distribution ERL (At ,x) with PDF

ERL (t | At ,x) =
A
x
t t
x−1

(x − 1)!
e−Att

with
E[t] =

x

At
and Var[t] =

x

A
2
t

and it describes the probability distribution of the time t until the x-th event at constant average
rate At. For x = 1, it turns into the exponential distribution E (At)

ERL (t | At ,x = 1) =
A

1
t t

0

(0)!
e−Att = At e−Att = E (t | At)

with
E[t] =

1

At
and Var[t] =

1

A
2
t

,

33

which was already implied in the equation for the activity A(t) ∝ λe−λt.19 Thus, the time until
the first event and between two consecutive events (since the events are independent from each
other) is distributed exponentially [21].

Let us summarize the findings of this section: The correct statistical description of the ra-
dioactive decay of a number of nuclei N is that of a (discrete) binomial distributionB (N,p).
Since it will be always the decay products that will be detected (not the remaining nuclei), the
probability parameter p of the distribution will be that of the description of decayed nuclei,
thus p = 1− exp(−λt). This probability follows from the empirical law of decay, but can also
be derived from statistical considerations. Under the condition that the observation time is
small compared to the life-time of the nuclei and that the number of nuclei N is large com-
pared to the number of detected events x, which is the same as demanding low activity (or a
quasi-constant average decay rate), the binomial distribution can be approximated by a Poisson
distributionB (N,p) ≈P (κ =Np) (Poisson approximation). In reality, the quantities p = p(t;λ),
N =N (t) (and as a consequence any derived quantity such as ∆N = ∆N (t) and At = At(t)) are not
constant, which means that all distributions, whether they describe a time dependency or not,
are, as a whole, time dependent and change at every moment in time. However, the statistical
treatment as provided above is valid as long as these quantities change slow enough. The
Poisson distribution can then, for a number κ sufficiently large, be approximated by a Gaussian
distribution, which is very easy to handle. By the relation Np = ∆N = Att – where ∆N denotes
the number of detected decay products and At the average constant decay rate/activity during
the observation time –, the distributions can be rewritten to either describe counting statistics or
temporal aspects of the same process. In the most practical form, we findP (Np) ≈ G (∆N,

√
∆N).

The Gauss approximation set aside, the radioactive decay of a large sample is a discrete Poisson
process, so the number of events is Poisson distributed and the time between two consecutive
events is exponentially distributed.

Conclusion for the application

Generally, the law of decay provides the statistical mean value N (t) of remaining nuclei after a
given time t. This principle also holds true for any equation derived from it, such as, for instance,
the quantity ∆N (t;∆), which is the number of decay events during a given time interval. For
reasons of readability we will write ∆N (t) until the end of this section.

In the case of a real measurement (denoted by an asterisk), in which the observable is
∆N instead of N , the actual number of decayed nuclei ∆N ∗(t) originates from the Poisson
distribution P (N,p) of that time t. As already pointed out above, the state of the system is
actually described by a new distribution at every step t along the time axis! Approximating the
Poisson by a Gaussian distribution and using Np = ∆N , as displayed in the preceding section,
this can be expressed by

∆N → ∆N (t) and thus G
(
∆N,
√
∆N

)
→ G

(
∆N (t),

√
∆N (t)

)
,

since p = p(t;λ) and N = N (t) are changing with every decay process. Examination of a
real measured or simulated signal would show a multitude of data points (values ∆N ∗(ti)),
distributed about the corresponding theoretical curve (or a fit), following the statistics of a
Gaussian distribution. A measured or simulated data point is a random value from this very
distribution:

∆N ∗(t) ∈ G
(
∆N (t),

√
∆N (t)

)
You may want to go back to figure 3 at this point.

19 Considering that the time until the decay of a single nucleus is exponentially distributed, the Erlang distribution
(as the probability distribution which describes x decays) can be obtained by convolution of x exponential
distributions of the same constant rate.

34

The nature of a Gaussian distribution demands that 68.3% of all “real” data points N∗(t)
(with their own uncertainties

√
N∗(t)) lie within the error bar of the theoretical value µ(t) =N (t)

(error σ (t) =
√
N (t)).

Relative error

We define the difference ∆x = x̃ − x between a measured (approximated) value x and the exact
value x̃ (where x ≈ x̃) as the absolute error. We obtain the relative error δx by dividing the
absolute error by the exact value, thus

δx =
|∆x|
x̃
≈ |∆x|

x
.

Considering the fact that the problem is described by a Gaussian distribution G (µ,σ) and (2.53),
we can set x = µ = ∆N and ∆x = σ =

√
∆N and obtain

δN =
σ
µ

=

√
∆N
∆N

=
1
√
∆N

. (2.56)

As a result, the relative error decreases for larger ∆N .
If we demand the relative error to be δ∆N ≤ α, we can solve for ∆N

∆N ≥ 1
α2 (2.57)

to obtain the minimum number of detected nuclei ∆N (and thus, dependent from the measure-
ment situation values for the initial number of nuclei N0, integration time ∆t etc.) to achieve a
relative error of α.

2.3.5. Accuracy and resolution; problems

Two substantial quantities come along with a measurement: Measuring accuracy and resolution.
We expect to have to look for an effect of very low amplitude, thus we have to guarantee high

measuring accuracy. Secondly, we need to achieve a time resolution sufficient to make sought
effects visible in time units possibly down to hours (see section 4.1.3 Magnitudes and values of
introduced variables; exemplary case (p. 75)).20

Short things short: We demand maximum accuracy at maximum resolution. Unfortunately,
they depend inversely on each other.

According to (2.56), the relative error decreases for an increasing number of registered de-
cayed nuclei ∆N . Three main parameters have an impact on the magnitude of the signal:
Measuring time interval ∆t, initial number of nuclei N0 and the decay constant λ; the last two
being inherent with the respective sample and best described by its activity as defined in (2.7).

Considering ∆N (t;∆t) = N0 exp(−λt)[1 − exp(−λ∆t)], which is (IV) for standard decay, we
conclude: The number of counts, and thus accuracy, increases with increasing ∆t and increasing
N0. The role of λ is a bit more complex; for large λ, the exponential decay is more rapid due to
exp(−λt), but at the same time the term [1−exp(−λ∆t)] increases. The value of λ determines the
time curve of ∆N – high values of λ will lead to high initial values of ∆N but a rapid decrease,
whereas lower values for λ will yield a smaller but more steady ∆N over time.

To achieve maximum resolution, the time interval ∆t of integrating events by the detector
has to be kept low, according to e.g. (2.39), which already opposes one of the statements above.

20 If one ignores the earth’s contribution, much higher values for ∆t can be chosen and resolution is not a major
problem anymore.

35

The severity of this restriction depends heavily on the magnitude of T ; for large values of T the
choice of ∆t is not too restricted.

Eventually, coming to a compromise is inevitable: The measuring time has to be long enough
to ensure sufficient accuracy (given a limited number of samples with strictly determined
quantities) and, at the same time, be short enough to guarantee appropriate resolution to allow
the sought periodic fluctuations to become visible in the data.

Special care has to be taken in the case in which the setup heavily focuses on sample attributes
to achieve desired accuracy and resolution! If the total measuring time T is very long, for
instance, the sample must retain its properties in the course the whole measurement. A sample
with a short half-life may not live long enough to achieve a sufficiently high count rate at the
end of a long term measurement. Long half-lives will lead to a less pronounced exponential
shape of the signal, which could facilitate later analysis.

In what fashion the parameters influence each other is briefly discussed in 4.1.2 A set of
rules (p. 73).

2.3.6. The solid angle in a real measurement setup

Although it is not the purpose of this chapter to deal with the intricacies of a real measurement
setup, there is one important aspect when considering such a setup and the particular detector
in use.

While talking of ∆N or whatever description of the number of nuclei, events etc. we may
choose, we must not ignore the fact that not all of the photons resulting from radioactive decay
in the sample will hit the detector and be recorded, but only a part of them determined by the
constant cross sectional area F of the detection unit and the distance d between the detection
unit and the sample. The sample radiates into all directions isotropically so the fraction Ω(d) of
decay products reaching the detector is the ratio of F to the surface area of the sphere 4πd2:

Ω(d) =
1

4π
F

d2 . (2.58)

This is actually the two-dimensional solid angle S/r2, where S is the surface segment of a sphere
and r is its radius. Since the detection unit’s diameter is small, we can approximate S ≈ F.
Furthermore, r = d in terms of above.

A detector usually also has an energy dependent efficiency ε(E) which further reduces the
yield of the detector.

As a consequence, ∆N and therefore the value N0, which we use in our calculations, are but a
fraction f (E, d) of the real amount of nucleiN (t) andN0 remaining/decaying,

N (t) = ε(E) ·Ω(d)︸ ︷︷ ︸
=:f (E,d)

·N (t) = f (E, d) ·N0 e−λt , (2.59)

which may neither change anything about the validity of what has been displayed so far nor
about the error handling21, but reduces the magnitude of the effective count rate; a fact that was
not yet considered in the discussion in section 2.3.5 Accuracy and resolution; problems (p. 35)!

21 For a solid angle of 4π, we have N and σN =
√
N . For 4π/n, we obtain Ni = N/n, where i = 1, . . . ,n and thus

σNi=
√
Ni =

√
N/n. Summing up all “solid angle elements” yields

∑n
i=1Ni =

∑n
i=1N/n =N/n

∑n
i=1 1 =N/n ·n =N .

Using simple error propagation, the error is given by σΣiNi =
√∑n

i=1[∂(
∑n
i=1Ni) /∂Ni · σNi]

2 =
√∑n

i=1[1 · σNi]2 =√∑n
i=1
√
N/n

2
=

√∑n
i=1N/n =

√
N/n

∑n
i=1 1 =

√
N/n ·n =

√
N → σN = σΣiNi q.e.d.

36

2.4. Mathematical analysis tools

This section will provide the mathematical/statistical means to, on the one hand, isolate possible
traces of the postulated effects in available spectra, and to, on the other hand, estimate the
magnitudes of all important parameters in order to obtain reasonable results.

The actual usage of the presented methods will be primarily covered in section 3.5 Imple-
mentation of the analysis classes (p. 66) in greater detail.

2.4.1. Autocorrelation

All models including a periodic term obviously generate functions for remaining, decaying and
decayed nuclei which show the same periodicity as well and its frequency ω does not change.
Such a periodicity in the change of count rates will also show up in the data! A powerful tool to
find periodicity in data sets or signals22 is autocorrelation, which is the cross-correlation of the
signal with itself. Its definition reads as follows:

Ψ (τ) =
1
T

∫ T
0
N (t)N (t + τ)dt ,

where τ is the time shift or so-called lag, which describes at which “distance” the signal N (t) is
overlapping with itself. The time-discrete variant is

Ψτ̂ =
M∑
i=1

NiNi+τ̂ , (2.60)

where τ = τ̂∆t and τ̂ ∈ N0 and M equals the number of included data points.23

The self-similarity is obviously the highest, when the lag is τ = 0

maxΨ (τ) = Ψ (0) ,

which is commonly used for normalization

ψ(τ) :=
Ψ (τ)
Ψ (0)

, (2.61)

since the autocorrelation function usually attains fairly high values.
The autocorrelation function is a function of the lag τ where [τ] = 1s or τ̂ where [τ̂] = 1

respectively.

Periodicity

For our application, the following property of the autocorrelation function Ψ (τ) is crucial: If
the signal N (t) =N (t +nT) is periodical, then the autocorrelation as well is, Ψ (τ) = Ψ (τ +nT),
and both share the same periodicity T .

The periodical maxima Ψ (τk) of the autocorrelation function at the respective lags τk coincide
with the periodicity T in that T = τk+1 − τk or T = τ1 for the first maximum.24 In our specific
case of an exponential decay modulated with a periodical interference, the maxima at τk will

22 In the course of this explanation, N (t) will be used to represent the signal, however, any other function can be
used, of course.

23 Furthermore, the symbol N is not even correct at this point, as it should rather be ∆N (ti ;∆t)! For the sake of
simplicity we will write N regardless and introduce a more precise notation when necessary.

24 Note that this is not the maximum at lag τ = 0!

37

only be local and shrink with increasing index k. This periodicity might even only be visible to
the human eye.

For a time-discrete autocorrelation function as in (2.60), we obtain the periodicity T via

T = (τk+1 − τk)︸ ︷︷ ︸
=:∆τ

= τ1 = τ̂1∆t , (2.62)

where ∆t shall be seen as in (2.37) and τ̂ as in (2.60). We obtain the corresponding frequency by
plugging into (2.9):

ω =
2π
∆τ

=
2π
τ1

=
2π
τ̂1∆t

Subtleties in the application

Recall equation (2.60) in whichM was the number of included data points, which can, in general,
differ from the number of available data points Mtot! Under the premise of comparability, we
can demand the number of included data points to remain constant

M = const

for every lag while computing the autocorrelation function, which inevitably causes at times the
exclusion of large ranges of available data!

The maximum lag at the highest number of included data points M we can achieve is

τ̂max =
Mtot

2
, (2.63)

because any lag τ > τmax would surpass the number of available data pointsMtot. This definition
automatically implies

M =
Mtot

2
= τ̂max (2.64)

as well.

A lag of

τmax
!
> T

is necessary in order to find at least one significant maximum in the autocorrelation function
of a periodical signal with cycle duration T , which accounts for the problem mentioned above.
Using τ = τ̂∆t, this becomes

τ̂max >
T
∆t

and plugging into (2.63) yields
T
∆t

<
Mtot

2
.

The number of available data points Mtot for a given total measurement duration T and
integration time ∆t can be calculated via

Mtot =
T

∆t
.

Combining the last two equations, the demanded total measurement duration is

T > 2T . (2.65)

Since the phase of the effect is not known upon start of measurement, even

T ≈ 4T

38

might be indicated in order to assure that the periodicity of the autocorrelation function is very
clearly visible (even more so because of the exponential decay)!25

At this point it is good to remember (2.39) ∆t � T /2 from the previous chapter to prevent
the periodic fluctuation from becoming obscured, although it is not a matter of autocorrelation
but only the fault of the experimenter in that he chose an improper ∆t and stripped the signal
from any oscillation.

Direction of the lag

The definition of the autocorrelation can be slightly altered in that the lag is pointing “back-
wards”, namely (in comparison to (2.60))

Ψ −τ̂ =
M∑
i=1

NM+1−iN(M+1−i)−τ̂

=̂
1∑

i=M

NiNi−τ̂ ,

(2.66)

where the first line describes in a mathematically correct manner what the second shows
intuitively: A decrementing sum and a lag reaching “backwards” in that the M included data
points will be summed up, starting with the smaller values, to avoid numerical precision
problems in the sum.26

Errors in autocorrelation

The calculation of the error in the autocorrelation is not trivial. We would need to compute the
propagation of the uncertainty of the sum of products of two values at a time, both with a given
uncertainty. Since the autocorrelation overlays the input signal with itself, the “two” signals
are not independent of each other. Thus, one would need to consider correlation terms in the
error propagation. The variables in such an analysis would be the Ni , though, which makes the
procedure rather complicated.

Assuming that there are no correlation effects to be considered and using “simple” error propa-
gation, we can estimate a resulting uncertainty for the function values of the autocorrelation.

According to (2.60), we can calculate the autocorrelation function value Ψτ̂ for a given lag τ̂
by

Ψτ̂ =
∑
i

NiNi+τ̂ :=
∑
i

fi(τ̂) ,

where every Nk =N ∗k ± σk is given with a measured value N ∗k and uncertainty σk and fi(τ̂) = f ∗i ±
σfi shall denote the individual summed up products. According to Gaussian error propagation,
the resulting error can be obtained by (2.44), thus

f ∗i =N ∗i N
∗
i+τ̂ and σfi = f ∗i

√(
σi
Ni

)2

+
(
σi+τ̂
Ni+τ̂

)2

.

The error of the sum is then

Ψτ̂ =
∑
i

f ∗i ±
√∑

i

σ2
fi

25 Actually, the phase could be estimated by taking the current position of Earth in its orbit between perihelion and
aphelion into account.

26 In all comparisons that were performed, both methods of summation yielded the same results.

39

and plugging in yields

Ψτ̂ = Ψ ∗τ̂ ± σΨτ̂ =
∑
i

N ∗i N
∗
i+τ̂ ±

√√∑
i

(
N ∗i N

∗
i+τ̂

)2
(σiNi

)2

+
(
σi+τ̂
Ni+τ̂

)2 (2.67)

for the estimated error of the autocorrelation.
Comparison with the empirical calculation of the autocorrelation’s expectation values and

standard deviations (see figure 4) according to (2.43) shows that (2.67) is indeed a very generous
estimation of the correct uncertainty. It ignores obvious correlation effects which apparently
minimize the actual uncertainty. At large times t the results converge.

Figure 4 Error calculation of the autocorrelation. The red curves are the empirical results computed
by 1001 simulations and (2.43). The black curves are the obtained via one autocorrelation simulation
and the error was estimated via (2.67).

40

2.4.2. Standard decay subtraction

Any oscillation of amplitude ε in a simulated/measured signal is obscured by the exponential
background and its large statistical uncertainty due to the nature of the decay process. The
exponential component of the signal surmounts the oscillating one by many orders of magnitude
and significantly complicates the analysis or might even render it futile.

One approach to get rid of said background is what we might call “standard decay subtraction”.
By knowing what kind of sample is used in the measurement process, one also knows what
statistical mean background is to be expected in the signal. Simply subtracting these values
from the signal should expose the deviations from the expected values – be it statistical (as
inherent with the phenomenon) or periodic fluctuations – and make the autocorrelation analysis
more sensible.

The general ansatz for the modified signal ∆Nsub reads

∆Nsub(t) := ∆N (t;∆t)−∆Nstd(t) , (2.68)

where ∆N is the measured/simulated non-standard signal and ∆Nstd are the analogous standard
decay expectation values as in (2.8). Both are of the same oder of magnitude, which is expected
to make the deviations visible.

This procedure, however, has two disadvantages: First of all, as we will see, an exponential
term ∝ exp(−λt) remains, albeit of smaller amplitude, which complicates analysis. Secondly, the
relative error drastically increases by this procedure, since a simple constant shift of the data
does not affect the uncertainty of the values according to (2.42). Since ∆Nsub fluctuates about
zero, the relative error will attain extreme values.

In the following, the expressions for ∆Nsub for the examined models will be presented.

Sinusoidal summand model

For the the sinusoidal summand model, using (2.18), the subtracted signal reads

∆Nsub(t) := ∆N (t;∆t)−∆Nstd(t)

=N0 e−λt
[
1 + ηε+ εcos(ωt)− e−λ∆t

(
1 + ηε+ εcos(ω(t +∆t))

)]
−N0 e−λt

(
1− e−λ∆t

)
=N0 e−λt

[
1 + ηε+ εcos(ωt)− e−λ∆t

(
1 + ηε+ εcos(ω(t +∆t))

)
− 1 + e−λ∆t

]
For λ∆t→ 0 the term exp(−λ∆t) ≈ 1 can be approximated and the expression simplifies to

∆Nsub(t) ≈N0 e−λt
[
ε
(
cos(ωt)− cos(ω(t +∆t))

)]
.

Since ∆t is chosen by the experimenter and ω assumed to be constant and evaluated through
the data, we can write ω∆t = φ = const and obtain

∆Nsub(t) ≈N0 e−λt
[
ε
(
cos(ωt)− cos(ωt +φ)

)]
.

Sinusoidal decay constant model

For the model of a sinusoidal decay constant, using (2.28), the subtracted signal reads

∆Nsub(t) := ∆N (t;∆t)−∆Nstd(t)

=N0 e−λ0t
[
eλ0

a
ω cos(ωt)−e−λ0∆t eλ0

a
ω cos(ω(t+∆t))

]
−N0 e−λ0t

(
1− e−λ0∆t

)
=N0 e−λ0t

[
eλ0

a
ω cos(ωt)−e−λ0∆t eλ0

a
ω cos(ω(t+∆t))−1 + e−λ0∆t

]
=N0 e−λ0t

[
eεcos(ωt)−e−λ0∆t eεcos(ω(t+∆t))−1 + e−λ0∆t

]
,

41

where we used (2.30) in the last step. Expanding the terms ∝ exp(ε) according to (2.29) yields

∆Nsub(t) ≈N0 e−λ0t
[(

1 + εcos(ωt)
)
− e−λ0∆t

(
1 + εcos(ω(t +∆t))

)
− 1 + e−λ0∆t

]
,

which again, for λ0∆t→ 0 and ω∆t = φ = const, simplifies to

∆Nsub(t) ≈N0 e−λ0t
[
ε
(
cos(ωt)− cos(ωt +φ)

)]
.

The result for the models is the same in the first approximation, both oscillating about zero.
However, in addition to the problem of the relative error getting out of hand, the subtracted
signal still includes an exponential contribution/envelope.

Error propagation

When computing the subtracted signal for a given set of ∆N (ti ;∆t) =: ∆Ni and σ∆Ni from
a measurement, it is likely that N0 has to be calculated from the available data. The error
propagation is not trivial in this case. The values Nstd,i will be calculated after N0 and σ2

N0
was

computed according to (2.48):
Nstd,i =N0 e−λti

Simple error propagation yields
σ2
Nstd,i

= e−2λti σ2
N0

,

where σ2
N0

is calculated via (2.49). According to the rules of error propagation, (2.68) has to be
derived with respect to the two variables ∆Ni and Nstd,i , since both have uncertainties. Mind
that the standard values depend on the weighted mean number of initial nuclei, which itself is
dependent on ∆Ni !

∂
∂(∆Ni)

(
∆Ni −N0 e−λti

)
:=D∆Ni = 1− ∂

∂(∆Ni)

(
N0 e−λti

)
= 1− e−λti

∂
∂(∆Ni)

∑
k Bk∑
k
B2
k

∆Nk

= 1− e−λti

∑
k

Bk

 · ∂
∂(∆Ni)

∑
k

B2
k

∆Nk

−1

= 1− e−λti

∑
k

Bk

 · (−1)

∑
k

B2
k

∆Nk

−2
∂

∂(∆Ni)

∑
k

B2
k

∆Nk

= 1 + e−λti

∑
k

Bk

 ·
∑
k

B2
k

∆Nk

−2

(−1)

 B2
i

∆N2
i

= 1− e−λti

∑
k Bk(∑

k
B2
k

∆Nk

)2

 B2
i

∆N2
i

where we used the fact that in the sum only the term where k = i gives a non-zero contribution.
We also find

∂
∂(∆Nstd,i)

(
∆Ni −Nstd,i

)
:=DNstd,i

= −1 .

42

Thus, we find for the variance of the subtracted signal value ∆Nsub,i = ∆Ni −Nstd,i :

σ2
∆Nsub,i

=D2
∆Ni

σ2
∆Ni

+D2
Nstd,i

σ2
Nstd,i

The error propagation for the sinusoidal summand model is not provided, since it is not used in
the quantitative analysis.

2.4.3. Standard decay normalization

Similar to the just introduced modification is the standard decay normalization. Much like
the standard decay subtraction method it aims at stripping the signal from the exponential
background and it even avoids the major disadvantages of said method.

As its name suggests, the definition of the normalized signal ∆Nnorm reads

∆Nnorm(t) :=
∆N (t;∆t)
Nstd(t)

, (2.69)

where again ∆N is the measured/simulated non-standard signal andNstd are the standard decay
expectation values.

This procedure eliminates all time dependent terms ∝ exp(−λt), which leads to a constant
amplitude of any visible oscillation. Furthermore, the relative error remains the same, because of
(2.42). It is the total extinction of the time dependent exponential contribution that will render
this analysis method very useful when estimating the effect’s amplitude ε and frequency ω.

Note that the label normalization is a little bit misleading as one would expect the resulting
signal to oscillate around one, however, the signal is normalized to standard decay values in
order to expose ε! Effect magnitudes as given in the references mentioned in the introduction
are given for the normalization with respect to ∆Nstd.

In the following, the expressions for ∆Nnorm for the examined models will be presented.

Sinusoidal summand model

For the the sinusoidal summand model, using (2.18), the normalized signal reads

∆Nnorm(t) :=
∆N (t;∆t)
Nstd(t)

=
N0 e−λt

[
1 + ηε+ εcos(ωt)− e−λ∆t

(
1 + ηε+ εcos(ω(t +∆t))

)]
N0 e−λt

= 1 + ηε+ εcos(ωt)− e−λ∆t
(
1 + ηε+ εcos(ω(t +∆t))

)
With the same arguments as before we set λ∆t→ 0 and ω∆t = φ = const and obtain

∆Nnorm(t) ≈ ε
(
cos(ωt)− cos(ωt +φ)

)
.

Sinusoidal decay constant model

For the model of a sinusoidal decay constant, using (2.28), the normalized signal reads

∆Nnorm(t) :=
∆N (t;∆t)
Nstd(t)

=
N0 e−λ0t

[
eλ0

a
ω cos(ωt)−e−λ0∆t eλ0

a
ω cos(ω(t+∆t))

]
N0 e−λ0t

= eλ0
a
ω cos(ωt)−e−λ0∆t eλ0

a
ω cos(ω(t+∆t))

= eεcos(ωt)−e−λ0∆t eεcos(ω(t+∆t)) ,

43

where we used again (2.30) in the last step. Expanding the terms ∝ exp(ε) according to (2.29)
yields

∆Nnorm(t) ≈
(
1 + εcos(ωt)

)
− e−λ0∆t

(
1 + εcos(ω(t +∆t))

)
, (2.70)

which as usual, for λ∆t→ 0 and ω∆t = φ = const, simplifies to

∆Nnorm(t) ≈ ε
(
cos(ωt)− cos(ωt +φ)

)
. (2.71)

Yet again, the results for both models are similar in the first approximation. Additionally,
they differ from the findings in the case of standard decay subtraction merely by a pre-factor.
The normalization is using Nstd instead of ∆Nstd since the latter would contribute a factor
1/[1− exp(−λ∆t)] to the amplitude of the normalized signal.

We will see in section 4.2.4 Retrieving the effect’s frequency ω and amplitude ε (p. 87) how
the amplitude ε and the frequency ω of the effect can be derived from that relation.

Error propagation

For computing the normalized signal for a given set of ∆N (ti ;∆t) =: ∆Ni and σ∆Ni from a
measurement, we proceed analogously to the case of the subtracted signal.

We derive (2.69) with respect to the two variables ∆Ni and Nstd,i for the error propagation.

∂
∂(∆Ni)

(
∆Ni

N0 e−λti

)
:=D∆Ni =

1

N0 e−λti
+∆Ni

∂
∂(∆Ni)

(
1

N0 e−λti

)

=
1

N0 e−λti
+∆Ni e

λti
∂

∂(∆Ni)

∑
k
B2
k

∆Nk∑
k Bk

=

1

N0 e−λti
+
∆Ni eλti∑

k Bk
· (−1)

B2
i

∆N2
i

= eλti
 1

N0
− 1
∆Ni

B2
i∑
k Bk

 ,

where we used the fact that in the sum only the term where k = i gives a non-zero contribution.
We also find

∂
∂(∆Nstd,i)

(
∆Ni
Nstd,i

)
:=DNstd,i

= − ∆Ni
N2

std,i

.

Thus, we find for the variance of the normalized signal value ∆Nnorm,i = ∆Ni/Nstd,i :

σ2
∆Nnorm,i

=D2
∆Ni

σ2
∆Ni

+D2
Nstd,i

σ2
Nstd,i

The error propagation for the sinusoidal summand model is not provided, since it is not used in
the quantitative analysis.

2.4.4. Smoothing and filtering

An operation mathematically very similar to the autocorrelation is the convolution of two
functions N (t) and g(t), denoted by the symbol (N ∗ g)(t). Its definition reads as follows:

(N ∗ g)(t) =
∫ ∞
−∞
N (τ)g(t − τ)dτ (2.72)

Note that the argument t of the convolution function is the same as in N (t), and the lag τ is the
integration variable as opposed to the autocorrelation function, where τ becomes the argument

44

of the resulting function Ψ (τ).

The time-discrete version of (2.72) is

(N ∗ g)i =
M∑
k=1

Nk gi−k , (2.73)

where k∆t ∧= τ and k ∈ N0 and M equals the number of included data points.27

The uncertainty propagation is pretty forward since g is analytical. The errors of the products
are calculated using (2.42) and the errors of the sum via (2.44). Thus we find

(N ∗ g)i =
∑
k

Nk gi−k ±
√∑

k

g2
i−k σ

2
i .

The convolution can be understood as the product of two functions or the moving average
of N (t), weighted by the function g(t).

In system theory, N (t) is an input signal and g(t) the so-called system response function of a
linear system, which contains its complete information (it is the system’s response to an input
Dirac pulse). The convolution function is then the output signal corresponding to N (t) after
going through the system.

The response function must be normalized, otherwise it distorts the output signal.

By choosing a suitable response function g, one can smooth the input signal, i.e. remove
high-frequency components. In this context, g might rather called the kernel. In image process-
ing, so-called Gaussian smoothing is very common. In this case, g is just a normalized Gauss
function

g(t;σt) =
1

√
2πσt

e
− t2

2σ2
t . (2.74)

The convolution of two functions N (t) and g(t) as in (2.72) can be written as the product of their
respective Fourier transforms N̂ (ω) and ĝ (ω) in Fourier space

(N ∗ g)(t) = N̂ (ω) · ĝ (ω) ,

where N̂ (ω) is called the Fourier spectrum of N (t) and ĝ (ω) the frequency response of g(t). This
is the formalism of filtering.

Obviously, smoothing and filtering are profoundly entangled and can not be separated from
each other – they are two ways of describing the same process within two different domains. In
the time domain, the meaning of the signal N (t) might be more tangible for us and we consider
the convolution with a kernel g(t) as some kind of averaging (smoothing). In Fourier space, the
frequency response ĝ (ω) of a kernel, a filter, is very graphic and we can quickly understand,
how the frequency components of a signal (N̂ (ω) – which might not be as conceivable as N (t))
are modified by it.

Let N̂ ′(ω) = N̂ (ω) ĝ (ω) be the modified spectrum of the original signal N (t). Then the inverse
Fourier transformation of N̂ ′(ω) back into the time domain, denoted by N ′(t) – the filtered
signal – is equal to the smoothed signal (N ∗ g)(t) obtained by convolution with the kernel g(t)!

27 For the sake of readability, we useN for an arbitrary signal instead of ∆N , which would be the correct nomenclature
for the signal in our case.

45

Now, being aware of the influence of the application of a smoothing kernel on the frequency
spectrum of the input signal, one should investigate its frequency response.

Looking at the well-known solution

e−at
2 Fourier−−−−−−−−→

transform

π

a
e−

π2ω2
a

shows that the Fourier transform of a Gaussian is again a Gaussian and comparison against
(2.74) yields

a =
1

2σt
and

π2

a
=

1
2σω

.

Eliminating a in both equations provides us with a relation between the standard deviations of
the kernel σt and the respective frequency response σω:

σt =
1

2πσω
(2.75)

From this we can draw the conclusion that smoothing with a Gaussian kernel will essentially
function as a low-pass filter (since its frequency response has the shape of a Gaussian as well),
gradually suppressing all frequency components about ω ≈ σω and higher.

Since the discretization due to the nature of the data acquisition N (ti) in discrete time in-
tervals ∆t in combination with the inherent, strong statistical fluctuation introduces “artificial”
frequency components, smoothing (i.e. low-pass filtering) the signal with a proper choice of σt
can get rid of the noise introduced by the statistical fluctuations and simplify eventual fitting
processes.28

2.4.5. Accumulation

It is perfectly possible to accumulate k data points of a measurement with count numbers ∆Nk
and integration time ∆t to one new data point ∆N after the time k∆t. The accumulated count
number is then just

∆N =
∑
k

∆Nk .

The resulting error can be easily calculated by using (2.44); the derivatives are simply ∂∆N
∂(∆Nk)

= 1

and using σ2
k = ∆Nk (refer to (2.53)) will lead to

σk =

√∑
i

∂∆N
∂(∆Nk)

σ2
k =

√∑
k

∆Nk =
√
∆N .

This shows that subsequent accumulation does not affect the uncertainty of the results. This
means that accumulation of a signal can be performed such that the investigated phenomenon
is still visible but at the highest possible accuracy.

28 We are talking about low-pass filtering because we expect the frequency of the effect to be very low (cycle duration
of approximately one year).

46

3. Simulation

The main part of this thesis was to create a computer program – a simulation written in C++.
Now that the physical and mathematical issues of radioactive decay have been discussed, the
computer simulation can be explained in great detail.

3.1. Requirements and goal

3.1.1. Primary requirements and goal

The simulation should meet two primary requirements.
Firstly, the generation of a signal in tuples of values

(
ti+1 , ∆N (ti ;∆t) ,

√
∆N (ti ;∆t)

)
like a real

measurement would provide them in the case of non-standard decay and secondly, it should
feature the means to analyze them in order to find the anomalies. In short:

• signal generation

• signal analysis

The goal is to find out if, how, when and under which circumstances we can find what kind of effect
of which magnitude in a set of data. Therefore, the second point is, in fact, the most important
one. The generation of signals is necessary only because we have to test if the analysis methods
can find an effect of which we know it is there because we “made” it.

3.1.2. Secondary requirements

The simulation was created in compliance with additional requirements no less important. The
separation is solely motivated by the fact that the “primary” demands formulate the objective of
the program, whereas the “secondary” conditions will specify the architecture of the program
itself.

The computer program is designed to be a flexible “framework”, thus it is essential to make
it adaptable, flexible and expandable in order to develop it further. The desired modularity
demands to follow the principle of loose coupling and the separation of concerns as much as
possible, both of which are often referred to in object orientated programming. The former term
means that all components of the software should depend as little as possible on each other
and should function independently. The latter term implies that every specific task should be
performed by a dedicated component of the software.

A basic framework in order to provide file I/O and documentation facilities needs to be estab-
lished.

Data needs to be distributed in a simple and organized fashion and it is necessary to pro-
vide the means to implement different physical models with little effort.

A generic mechanism needs to provide a simulated signal depending on the given input param-
eters and chosen model.

Once a signal is created, the framework needs to provide the means to perform various analyses
and enable the user to add new methods easily.

3.2. Structure

The aforementioned requirements impose a certain structure on the program, which is the
object of this section.

47

3.2.1. Schematic description of the framework

First of all, we certainly need to separate the implementation of a physical model from the
“dumb” computing work, the act of simulation. The model will contain the physical information
(formulas, parameters, . . .), which shall be used for computation, whereas the simulation just
uses said formulas to create (with the aid of a random number generator) a signal it knows
nothing about, though. Loose coupling and the presence of multiple models motivate the
implementation of a simulation component, which can handle any model!

Comparing to “reality”, the model plays the role of the actual physics involved, the simulation
represents the collection of data as in the course of a real measurement.29 Both pivot on a
radioactive sample, which is inherent to the model.30 A third component, input data, consists
of merely more than organized collections of data in order to represent sample and parameter
attributes.

All three components are (and should be!) independent from each other! A model doesn’t
need information about the implementation of a sample, it just has to provide mathematical
instructions representing whatever alternative physics we seek to describe. Then again, the
simulation shall not care which model it performs thousands of calculations for. Its job is to take
a model, compute data and save it to a file

This data will be used by a fourth component, which is charged with data analysis. Since
there may be a manifold of available analysis methods, it’s good to have a solid base structure
for this kind of tasks.

To make all these parts work together seamlessly and consistently, a collection of utility compo-
nents provides file management, file documentation, data distribution and conversion functions.

The interconnection of the components of the framework is schematically depicted in figure 5.

signal generationinput data signal analysis

Sample

Parameter

Model

Simulation

Autocorrelation

Smooth

〈other〉

Data Data

Figure 5 Schematic illustration of the program components divided into three main task groups (red).
The utility classes are not included in this picture.

29 Actually, the engaged hardware can be simulated as well – the complexity of this part of the simulation is arbitrary,
abundant and will not be covered in the course of this thesis.

30 A future design may change that fact in order to enable the model to deal with more than one sample at a time.

48

3.2.2. Fundamental implementation

The introduced modules will be implemented through respective classes. Especially the model
and the simulation class have to work together in that the simulation class has to know about
how to create a signal according to any given model. The model class is obviously independent
from the simulation class and the analysis classes are not concerned with the rest.

The following explanation is no exhaustive description of the implementation, but it lists
all defined classes, gives a picture of the role and functionality of every component and how
they fulfill the stated requirements. For a more detailed description see section 3.4 Implementa-
tion of the framework (p. 54) and refer to the full program code in the CD attachment of this
thesis.

Utility classes

The core of the framework is given by several utility classes, which simplify and standardize the
basic mechanisms of the program.

The File class keeps file data like path, name and extension and allows for basic modifi-
cations like adding pre- and post-fixes. It is used to have a consistent format for file names and
to easily distribute file references (as they are the source of data) to the different components of
the program.

The FileDoc (file documentation) class is a very simple utility class which is used in every
non-utility class for the purpose of documentation. It provides simple means to add information
to it which will be printed into every output file. Every class apart from the utility classes are
supposed to use this facility. In that, every file containing data also contains information about
the chosen parameters, model etc.

The data3 struct is a POD (“plain old data”) C-style structure in order to standardize the
format of the data used in the simulation framework. It represents the triple

(
x,f (x), ferror(x)

)
and is nothing but a data container with no specific functionality whatsoever, but it enables
concise implementations like std::vector<data3> result_;.

The Data class is an important class charged with data distribution throughout the compo-
nents of the simulation and with file I/O. Every read or write process is managed by this class,
which guarantees consistency and compatibility throughout. It keeps track of accessed files in
order to avoid overwrites, provides static getters to “globally” define and distribute information
like comment character (for in-file documentation) or data tag (to mark the beginning of the
data in a file for read-out) and supplies a static method to write data to a file. These methods
are implemented static so that other classes can access its functionality. The class makes data it
manages accessible read-only (by providing a constant reference to the data) to avoid redun-
dancy and of course uses the aforementioned classes.

The RandomNumbers class is an abstract, static class, which can not be instantiated but consists
only of public, static members. Its purpose is to provide the means to generate pseudo-random
numbers by a pseudo-random number engine to any class calling its methods. It may provide
pseudo-random numbers originating from a normal distribution and offers a mechanism to
seed the engine and return the value of said seed.

The Analysis class is an important abstract base class which provides the basic functionality of
every analysis method to be implemented. That way, the demand of consistency throughout all
analysis methods is accommodated. Furthermore, this keeps the actual analysis classes simple

49

and slender, as they have to implement the new functionality only. Because of that, this class
has to be inherited and no objects of Analysis can be instantiated. It accesses the data to be
evaluated by a read-only reference provided by a Data object and uses the static interface of the
latter to make its results available.

Input data classes

The input data classes collect and logically capsule information about samples and parameters
of the different models. They are used to keep the respective model abstractions tidy. Since
most of the actual values are of such intangible magnitudes, a set of conversion functions is
provided and eases their handling.

The Sample class is the object-orientated representation of a physical nuclide.

The Parameter class is an abstract parent class which has to be inherited for every created
model and will hold the parameters defined by the respective model.

A set of conversion functions is defined in the conv namespace, which will convert years
or months to seconds or half-lives into decay constants, for example.

Model classes

The Model class is also an abstract base class of which no objects can be created; it must be
inherited. Each implementation of a derived child class represents a physical model.

Every model class will provide a Calculation() function (virtual and null-defined in the
parent class) featuring equations (I) to (III) of the respective model which will be called by the
simulation component. To address the different equations in a descriptive way, an enumeration
class CalcType was introduced.

Furthermore, the parent contains a Sample object and the children add their individual
Parameter child class object.31

Simulation class

The Simulation class is the working horse of the framework and probably its most crucial
component. It is responsible for generating signal data either by calculating the statistical mean
values according to the equations provided by a model or by additionally using pseudo-random
numbers in order to simulate of a real measurement. For this purpose, the random numbers
must originate from a normal distribution – a feature which is provided by the RandomNumbers

class. Furthermore, it documents the current seed in the file documentation, which makes every
simulation run entirely reproducible.

Much like the experimenter, the user can set the total measurement time T and integration
time ∆t. By design and definition, these input parameters are of integer type and of unit seconds.
This makes seconds the (“quantized”) unit of time throughout the framework and accounts for
consistency, simplicity and any possible errors due to machine epsilon.

To fulfill its task in the most coherent way, it makes use of almost all utility classes.

3.2.3. Style choice, naming conventions and coding standards

This section briefly presents the style choices, naming conventions and coding standards in this
project.

As in all complex projects, the KISS principle is of greatest importance: “Keep it short and

31 The parent does not include a Parameter base class object, because a child is only compatible with a specific,
individually created Parameter child.

50

simple”. In the course of its creation, the current version of the framework underwent numerous,
sometimes very substantial, changes in the attempt to achieve both simplicity and flexibility in
the most elegant fashion.

Also, the order of “make it work, make it nice, then make it fast” in terms of priority shall be
kept in mind to never sacrifice flexibility and simplicity for speed in a clear case of premature
optimization. This application is anything but time-critical.

In the light of separation of concerns and encapsulation, the classes should be split up into
several header and implementation files. Currently, each group (the utility classes, the input
data classes, the model classes and the simulation class) have their own translation unit. The
analysis methods are defined in isolated units.

In order to guarantee traceability and reproducibility, every file created by the framework
shall provide thorough documentation which can be easily achieved by the FileDoc class.

All code in the header files must be commented in Doxygen syntax to allow for the auto-
matic generation of an exhaustive documentation. The structural means of Doxygen (grouping,
cross-referencing, member and parameter referencing, LATEX interpreting etc.) should be gener-
ously used. The member fields and methods are mostly documented inline via \\\<, members
are referenced by # and function parameters by \a. Documenting without using line-breaks is
of advantage, because the code stays compact when auto-wrapping is disabled in the IDE.

The implementation files will only include comments concerning the actual coding and thus
be C++-style. The generated documentation will include all files nonetheless. Implementation
documentation should always answer the question “Why?”. Decent code answers the questions
“What?” by sophisticated naming and “How?” by decent implementation by itself in most cases.

The conceptual structure and implementation of the framework is covered in this text. To
keep this description free from clutter and distracting details, it is important to document the
source code in great detail. The combination of these two sources – concept and overview in
the text, details in the code (header files) – should enable the reader to comprehend, work with,
refine and advance the framework.

A thorough output via the standard std::cout stream in order to inform the user about the
current tasks in progress is mandatory. Tab stops should be used to indicate the hierarchy of the
current process. For example:

Creating Standard Decay Normalization object (source file: D:/path/to/file.dat)

Received 43830 data points.

Performing standard decay normalization...

(Calculating N0 from the data.)

...done.

Requesting to print results to file...

Printing data to file (D:/path/to/file.dat)...

...done.

Variables and functions are written lower camel case.32 Member variables are indicated by a
trailing underscore: classMemberVariable_. Function names should always hint at what they
do or provide by the use of meaningful prefixes like “set”, “get”, “is” etc. Also variable names
should tell as much about them as possible.

Class names and enumerations are upper camel case, structs are lower camel case.
Constructor arguments should always have the same name as the respective member fields

32 Camel case means that the first letter of every word the variable/function name consists of is capitalized. Lower
camel case means that the very first letter is printed lowercased; justLikeThis. In upper camel case also the
first character is capitalized; LikeInThisExample.

51

without the trailing underscore.
In case of function parameters, the required unit should be given in the parameter name

offset by an underscore, e.g. void setFrequency (double frequency_inOneOverSeconds); as the
setter for a class member frequency_.

Children of the Parameter class start with a capital P, e.g. PSineSummand, and children of the
Model class with capital M, e.g. MSineSummand. This way, classes of the same model can carry the
same name.

The implementations of the framework follow the principle of “const correctness”. This means
that every method, which does not alter the state of the calling object, should be declared
constant. Applied consistently together with sound naming conventions and meaningful vari-
able/function names, const correctness can produce very clean code, which automatically tells
the user exactly what is happening. Prime example of const methods are getters, for instance.

Trivial functions like getters and setters are implemented in the respective header file.

Operator overloads are declared as member functions in case of unary operators and in case
of binary operators when one of objects is changed (e.g. operator+=). If a binary operator
treats both objects equally (e.g. operator+, operator==, . . .) it is implemented as a non-member
function; in that case it may be friend of the operand’s type.

Furthermore, there should always be provided a set of related operators, if meaningful
(e.g. operator== and operator!=, operator+= and operator+, . . .). This can be achieved very
effortlessly since related operators to be implemented will just forward their argument to the
defined one in a proper manner.

Enumerations are implemented as enum classes and a string representation function should be
provided.

3.3. Random numbers, normal distributed values and approaches of simulating

3.3.1. Random numbers – Mersenne Twister engine

This short section is devoted to the description of the engaged pseudo-random number en-
gine/generator (P-RNG). The simulation uses the std::mersenne_twister_engine [22] with its
standard instantiation std::mt19937.33 It is defined in <random>. A random number can be
generated via:

#include <random>

#include <ctime>

std::mt19937 generator(std::time(NULL)); //seeds the P-RNG
double random = generator(); //returns a random number

The argument std::time(NULL) returns the current system time and functions as a so-called
“seed”. Any P-RNG provides a recurring series of numbers, which will eventually be repeated.
The quality of the engine determines how “random” the numbers appear and after how many
numbers the series repeats itself. The seed defines the entry point in the series. If no seed is
provided, the engine will use a default starting point during instantiation. Be aware that each
definition with the same (or no) seed will result in the same sequence of “random” numbers!

The <chrono> library features a system clock with much higher resolution, which avoids the
problem of calling std::time(NULL) in such rapid succession that it returns the same value
through multiple calls. The code would then look like

#include <random>

#include <chrono>

33 A 64 bit version std::mt19937_64 is available as well.

52

auto time = std::chrono::high_resolution_clock::now(); //get time from system clock
std::mt19937 generator(time.time_since_epoch().count()); //seeds the P-RNG
double random = generator(); //returns a random number

3.3.2. Gaussian normal distributed values

A Gaussian normal distributed random number value ∈ G (µ,σ) can be obtained by using the
introduced random number engine in combination with the std::normal_distribution template
from <random>. It demands two parameters for initialization, namely mean µ and standard
deviation σ . In accordance with section 2.3.4 Statistical description of radioactive decay (p. 30),
we pass µ = ∆N and σ =

√
∆N , where ∆N = ∆N (ti ;∆t), every time we need a random value.

From the created distribution, the P-RNG picks a value, which is then returned. Every new
random number at a different time ti demands the creation of a new Gaussian distribution with
the updated attributes.

Implementation can be accomplished as pictured:

#include <random>

std::mt19937 generator(); //assumed to be seeded as described in preceding section

normal_distribution<double> distribution(〈∆N 〉, 〈
√
∆N 〉);

double value = distribution(generator); //random number from the distribution

3.3.3. Types of simulating

As held out in section 2.3.1 Principle of measurement (p. 26), more precisely in equations (2.40)

∆N (ti ;∆t) =
k∑
j=1

n(ti,j)∆tmin where ∆t = k ·∆tmin , ti,j = ti + j∆tmin and k, j ∈ N

and (2.41)
∆N (ti ;∆t) =N (ti)−N (ti +∆t) ,

there are two types of simulating.

The first one splits a measurement integration interval ∆t. The calculation algorithm for decay-
ing nuclei will be called for every single one of the k steps of size ∆tmin, where ∆t = k ·∆tmin.
The results will be summed up and returned as ∆N (ti ;∆t).

The description and “measurement” of continuous disintegration of nuclei according to
(III) is attempted by choosing a reasonably small (“infinitesimal”) ∆tmin, e.g. ∆tmin = 1s, and
performing k “measurements” until the time ∆t is completely covered.

The second approach calculates the result by using the stem functions straightforwardly, which
means that the calculation algorithm according to (I) is called twice per measurement integra-
tion interval.

In pseudo-code, both types would look somewhat like:

//summation
double result; // ∆N (ti ;∆t)
for (int j = 1; j <= k; j++) // delta_t = k · delta_t_min

result += calculateDecaying(t_i+j*delta_t_min)*delta_t_min;

//stem function
double result;

result = calculateRemaining(t_i) - calculateRemaining(t_i+delta_t);

53

It is important to understand the difference between the two solutions.
The first performs a number of measurements in a very small time interval and sums them

up. It is monitoring the activity of the sample, so to say; for a low activity and very small ∆tmin
even one decay after another. In practice, it is indeed possible to measure in “list mode”, which
gathers a time stamp for every detected decay process, potentially creating huge data files.

The second solution describes the detector measuring during ∆t and providing the number
of registered events afterwards. However, it delivers no information about when the individual
counts were detected.

As explained in section 2.4.5 Accumulation (p. 46), there is no difference in statistics between
the two methods, thus the second method34 was implemented in the framework for reasons of
simplicity.

The value result in the code example above corresponds to the theoretical values given by the
law of decay. If we wanted to really simulate a measurement, we needed to – as explained in
section 2.3.4 Statistical description of radioactive decay (p. 30) – use values from the right
normal distribution. Thus, the code example would read:

//summation
double result; // ∆N (ti ;∆t)
for (int j = 1; j <= k; j++) { // delta_t = k · delta_t_min

//calculate theory value
double theory = calculateDecaying(t_i+j*delta_t_min)*delta_t_min;

//create corresponding normal distribution (refer to preceding section)
std::normal_distribution<double> dist(theory, sqrt(theory));

result += dist(); //get a random value from that distribution (pseudo code; P-RNG missing)
}

//stem function
//calculate theory value
double theory = calculateRemaining(t) - calculateRemaining(t+delta_t);

//create corresponding normal distribution (refer to preceding section)
std::normal_distribution<double> dist(theory, sqrt(theory));

double result = dist(); //get a random value from that distribution (pseudo code; P-RNG missing)

3.4. Implementation of the framework

This section will discuss the implementation of the program components in greater detail. Refer
to section 3.2 Structure (p. 47) to get familiar with the structure of the framework; specifically
subsection 3.2.2 Fundamental implementation (p. 49) offers a short overview of the available
classes. The actual (commented) source code can be found in the attachment of this thesis. A
documentation can additionally be generated by Doxygen.

Note that the std:: namespace is set by a using directive in the implementation files.

The code examples given in the following section are copies of the contents of the header
files (class declarations) and some exemplary sections from the implementation files. All code
has been stripped from documentation comments to maximize readability; explanations are
given in the accompanying text.

The code inserts should only “list” the declared members, methods and the design of the class.
Due to the sophisticated naming conventions all elements are, to a high extent, self-explaining.
Together with the explanations and the full source code (containing full documentation) side by
side, the reader will be able to comprehend the implementation of the framework.

34 Actually, this approach is “unrealistic” in that it is impossible to determine the exact number of remaining nuclei
(which is what using the stem function means) at the start and the beginning of each measurement. However, it is
possible in the simulation and valid.

54

Any parameters of functions and constructors may be omitted in the accompanying texts
for reasons of readability. Refer to the code examples printed at the beginning of each section
to find the parameters of the declared methods. Since member fields are always furnished
with a trailing underscore_, it is easy to distinguish between member variables and function
parameters.

While describing a specific class in the following sections, references to fields of other classes
not yet in focus will be prefixed with the respective class namespace in order to make the
distinction clear.

3.4.1. File class

The File class is part of the utility classes and it used to manage files. It is defined in the files
utility.h and utility.cpp respectively.

//from utility.h
class File {

private:

std::string path_;

std::string basename_;

std::string extension_;

std::string temporary_;

public:

File() {}

File(std::string path, std::string basename, std::string extension);

friend bool operator==(const File&, const File&);

void setPath(std::string path);

void setBasename(std::string basename);

void setExtension(std::string extension);

void addPrefix(std::string prefix);

void addSuffix(std::string suffix);

bool isModified() const;

void resetTemporary();

std::string getPath() const;

std::string getFilename() const;

std::string getPathFilename() const;

File getFile() const;

};

bool operator==(const File& lhs, const File& rhs);

bool operator!=(const File& lhs, const File& rhs);

The temporary_ member holds a modified version of basename_ when addPrefix() or addSuffix()
are called. It is possible to call them multiple times – temporary_ gets updated every time.

The getFile() method returns a new File object, the member basename_ of which contains
the old basename including any temporary changes. The temporary_ variable of the new object
is reset to "". This is referred to as “baking” in the documentation.

The get-functions are implemented in the source file, since they perform error checking and
the constructor of the class uses said functions to assign the member fields.

Any given path_ must already exist in the file system; this class does not create files or
directories.

55

3.4.2. FileDoc class

The File class is part of the utility classes and provides a standardized way to add information
to any given output File. It is defined in the files utility.h and utility.cpp respectively.

//from utility.h
class FileDoc {

private:

std::string fileComment_;

public:

FileDoc();

FileDoc(std::string comment);

friend bool operator== (const FileDoc&, const FileDoc&);

FileDoc& operator+=(const FileDoc& rhs);

void addComment(std::string comment, std::string lineEnd="\n");

void addCommentTitle(std::string comment);

template<typename T> void addCommentKeyVal(std::string key, T value) {

std::stringstream stream;

stream.precision(15);

stream << "\t" << key << ": " << value;

addComment(stream.str(), "\n");

return;

}

void appendString(std::string comment);

void setFileCommentString(const std::string& comment) {fileComment_=comment;}

void resetFileCommentString();

std::string getString() const {return fileComment_;}

};

bool operator== (const FileDoc& lhs, const FileDoc& rhs);

bool operator!= (const FileDoc& lhs, const FileDoc& rhs);

FileDoc operator+ (FileDoc lhs, const FileDoc& rhs);

All documentation, obtained as a string variable by calling getString(),35 is stored in the
fileComment_ member. The addComment〈...〉 functions add informative text to the information
string with different formatting (they all call addComment() though). Note that addCommentKeyVal
() is implemented as a template function which can handle any standard type.

appendString() appends a string without any formatting. Using setFileCommentString()

overwrites contents of fileComment_ and resetFileCommentString() sets it to ""!

Every non-utility class contains a FileDoc object and must document the parameters (value and
unit) it uses!

Here is an example of how such a documentation might look like. The comment charac-
ter is # and the #BEGIN# tag marks the beginning of the data; both have been received by static
methods of the Data class as will be pointed out there.

#Model info: // addCommentTitle("Model info");
#***********
model: Sinosoidal 〈...〉 // addCommentKeyVal("model", "Sinusoidal 〈...〉");
formulas: // addComment("formulas:");
N_0*exp(-lambda_0*t)*〈...〉 // addComment("\t\tN_0*exp(-lambda_0*t)*〈...〉");
〈...〉
〈...〉

#Sample: // addCommentTitle("Sample");
#*******
name: test sample // addCommentKeyVal("test sample", name);
N(t=0): 100000000 // addCommentKeyVal("N(t=0)", n0);

35 This function name was chosen in case the internal structure of FileDoc gets more complex.

56

half life (s): 693147180.559945 // etc.
decay constant (1/s): 1e-009

〈...〉

#BEGIN#

〈Data〉

3.4.3. data3 struct

The data3 struct is part of the utility classes and standardizes the data format
(
x,f (x), ferror(x)

)
to be used throughout the whole program. Every input and output data is expected to have this
structure. It is defined in the files utility.h and utility.cpp respectively.

//from utility.h
struct data3 {

double x;

double y;

double err;

};

bool operator== (const data3& lhs, const data3& rhs);

bool operator!= (const data3& lhs, const data3& rhs);

This allows for compact definitions like std::vector<data3> data_;. The contents of this POD
struct objects can be accessed simply via the member accessor “.”.

3.4.4. Data class

The Data class is part of the utility classes and exclusively manages file I/O and data distribution.
It uses the more basic utility classes. It is defined in the files utility.h and utility.cpp

respectively.

//from utility.h
class Data {

private:

static std::vector<File> fileList_;

File file_;

FileDoc fileDoc_;

std::vector<data3> data_;

public:

Data(File file);

Data(File file, FileDoc fileDoc, std::vector<data3> data);

~Data();

friend bool operator== (const Data&, const Data&);

static std::string dataIndicator() {return "#BEGIN#";}

static std::string commentCharacter() {return "#";}

static bool printDataToFile (const File& file, const FileDoc fileDoc,

const std::vector<data3>& data);

File getFile() const {return file_.getFile();}

FileDoc getFileDoc() const {return fileDoc_;}

const std::vector<data3>& getData() const {return data_;}

};

bool operator== (const Data& lhs, const Data& rhs);

bool operator!= (const Data& lhs, const Data& rhs);

The static fileList_ member stores every File the Data class reads from (via the constructor
File(File)) or writes to (via printDataToFile()). This prevents the class from overwriting
already existing files. If a destination file is in the fileList_, the data will not be saved and the

57

function returns false. Upon destruction of a Data object, its file_ member will be removed
from the fileList_. Of course, the class can only monitor File objects it registered. It will not
perform any file checking in the file system.

The data tag and the comment character which we encountered in the example of the FileDoc

class were provided by dataIndictor() and commentCharacter(), which are called by the FileDoc

::addComment-methods (hence the static modifier). This allows for flexibility and eliminates
redundancy.

The printDataToFile() method is used to print a given set of data to a given file, obligato-
rily adding the respective FileDoc. Since it is static, it doesn’t matter whether a Data object is
making a call or any other class which wishes to store data. This design guarantees a uniform
data and file format. Thus, also external data can be saved by this method and thus be used
with classes of the framework.

The Data(File) constructor is used when the source of the data is a File already existing
in the file system. If the file doesn’t exist, a zombie object is created whose FileDoc_ member
is set to "NO FILE FOUND!". If the destructor tries to delete a File from the fileList_, it first
checks whether the calling object is a zombie by comparing its fileDoc_ contents. If that is the
case, the file name is not deleted from the list, because it may be in use by a valid object by now.

The Data(File, FileDoc, std::vector<data3>) constructor is used whenever data generated
by the program needs to be written to a file not yet existing or needs to be distributed. The
constructor assigns the members naturally, does not yet add the File object to the fileList_,
though. To save the data to a file, printDataToFile() has to be called.

Both constructors copy the provided data, either from the source file or the “source variable”
– hence, the Data object is always the owner of the data and does not depend on the source after
successful data acquisition.

By the getData() getter, a Data object provides the data it received as a constant reference.
Thus, the data is not copied but only read by the receiving class. This prevents unnecessary
copying and allows one Data object to make its data available to multiple other components
without the danger of data corruption. For the same reason, care must be taken when a Data

object gets destructed. This might lead to invalid references in the current version.

3.4.5. RandomNumbers class

The RandomNumbers class is part of the utility classes and an abstract (private constructor), static
class which provides pseudo-random numbers to other classes. It is defined in the files utility.h
and utility.cpp respectively.

class RandomNumbers {

private:

static std::mt19937 generator_;

RandomNumbers() {}

public:

static int getNewSeed();

static bool testSeeder();

static void seed(int seed);

static void getTestData (File file, int noValues);

static double randomValue();

static double normalDistValue (double mean, double stddev);

};

58

Together with the Model and the Simulation class, the RandomNumbers class could be considered
the heart of the framework. Its very profound task is to provide pseudo-random numbers origi-
nating from a certain distribution, namely the normal distribution. To do this, it uses a static
instance of Mersenne Twister engine (described in section 3.3.1 Random numbers – Mersenne
Twister engine (p. 52)) and the std::normal_distribution class template (described in section
3.3.2 Gaussian normal distributed values (p. 53)), which are both part of the standard library.
Pseudo-random number generators (P-RNGs) always provide a repeating series of numbers. The
quality of the engine determines the non-repetitive length of the series. The so-called “seed” is
the entry point in the series. Thus, the class also provides a mechanism to seed the P-RNG.

A couple of static fields manage the random number generation.
std::mt19937 generator_ is the Mersenne Twister, defined in the <random> library. In order to

generate pseudo-random numbers it needs to be seeded. This mechanism is implemented in the
getNewSeed() method whose return value can be passed to the generator_ by the seed() method
for initialization. It uses static variables inside the function to check whether the random devices
have been initialized already and to output user information. The std::default_random_engine

will be used for seeding. Since any non-random seeder will produce the same series of numbers
with every start of the application, it itself needs to be seeded. This is done by the std::chrono

class from the <chrono> library.

A random value can be obtained by calling randomValue().
As described in section 3.3.2 Gaussian normal distributed values (p. 53), the random numbers

should originate from a normal distribution, though. The static normalDistValue() method uses
the P-RNG and the std::normal_distribution template to return a random number originating
from the distribution defined by mean and stddev. How this is achieved is covered in the linked
section as well. For more details refer to the source code.

Upon initialization, the seed generation will be tested by the testSeeder() function, which
compares two consecutive return values of getNewSeed() – if they are equal, it reports an error.

Because of its static public design, any class can use pseudo-random numbers without the
need to introduce this functionality on its own.

3.4.6. Analysis class

The Analysis class is part of the utility classes and an abstract base class which must be inherited
in order to implement an analysis method. It uses all the other utility classes. It is defined in
the files utility.h and utility.cpp respectively.

//from utility.h
class Analysis {

protected:

const File fileSource_;

const FileDoc fileDocSource_;

File file_;

FileDoc fileDoc_;

const std::vector<data3>& data_;

std::vector<data3> result_;

const std::string analysisName_;

Analysis(const Data& data, std::string analysisName);

public:

bool printToFile();

File getFile() const {return file_.getFile();}

59

Data toDataObject() const;

};

Every Analysis object (every child, to be more exact) needs data to work with. This data will
be provided by a Data object passed to the constructor. It assigns the constant reference to
access the data and makes constant copies of the source File and FileDoc (members of the
Data instance) objects to the corresponding member fields in order to preserve them for later
(unmodified) use. Additionally, the fileSource_ will be copied to the file_ member, since the
resulting file name after analysis should just be a modification of the source file name.

The reason for the FileDoc separation on the other hand is that the child classes may need to
reset their own file documentation during their life time. If the old documentation was only
included in the same non-constant member, they could delete the source documentation in the
course of updating their own!

The analysisName_ member, set by the corresponding constructor argument, gives the name
of the implemented analysis method which is used for documentation later.

The results of the analysis will be saved in the result_ vector, which can be saved by the
Analysis::printToFile() method. It combines the old fileDocSource_ and the new fileDoc_

file documentations while adding basic contents (source file and analysis method name) be-
fore passing it to Data::printDataToFile(File, FileDoc, std::vector<data3>). The necessary
file_ modification is task of the child’s methods, of course, same as any additional documenta-
tion.

If one source signal should undergo several different analyses in a row, when not all gen-
erated data needs to be saved for later access or when one wants to avoid to multiply read data
from a file which is already present in the running application, the toDataObject() method will
create a Data object containing the result_ data and the prepared File and FileDoc as described
for the printToFile() method. This avoids the slow file read-out.

If this method is used, it is important to assign to a variable in the same scope.

//pseudo-code class definitions; both shall feature a performAnalysis() method
class AnalysisONE : public Analysis;

class AnalysisTWO : public Analysis;

//usage
File file(〈source file〉);
Data source(file); //receive source data from a source file

AnalysisONE one(source); //provide source data
one.performAnalysis(); //do stuff
one.printToFile(); //save the results

//instead of (slow file read): Data data(one.getFile()):
Data data(one.getAnalysisDataObject());

AnalysisTWO two(data);

two.performAnalysis();

〈...〉

Mind that a construction like

AnalysisTWO two(one.getAnalysisDataObject()); //bad!

will lead to a segmentation fault during run-time, since the Data object passed as a parameter
will only be available during this function call but not for any later access!

60

3.4.7. Sample class

The Sample class is part of the input data classes and depicts a radioactive nuclide. It is defined
in the files inputdata.h and inputdata.cpp respectively.

//from inputdata.h
class Sample {

private:

FileDoc fileDoc_;

std::string name_;

double n0_;

double halflife_;

double decayconst_;

public:

Sample(std::string name, double n0, double halflife_inSeconds);

~Sample() {}

FileDoc getFileDoc () const {return fileDoc_;}

//getter
double getN0 () const {return n0_;}

double getHalflife () const {return halflife_;}

double getDecayconst () const {return decayconst_;}

};

The class is pretty much self-explaining and straightforward. Like every other class it needs to
provide documentation; this is handled by the constructor:

//from inputdata.cpp
Sample::Sample (string name, double n0, double halflife_inSeconds)

: name_(name), n0_(n0), halflife_(halflife_inSeconds)

{

decayconst_ = log(2)/halflife_inSeconds;

fileDoc_.addCommentTitle("Sample");

fileDoc_.addCommentKeyVal("name", name_);

fileDoc_.addCommentKeyVal("N(t=0)", n0_);

fileDoc_.addCommentKeyVal("half life (s)", halflife_);

fileDoc_.addCommentKeyVal("decay constant (1/s)", decayconst_);

}

3.4.8. Parameter class

The Parameter class is an abstract base class and part of the input data classes and collects the
parameters for a specific physical model. It is defined in inputdata.h.

class Parameter {

protected:

FileDoc fileDoc_;

Parameter() {}

~Parameter() {}

public:

FileDoc getFileDoc() const {return fileDoc_;}

};

This class is barely more than the shadow of a POD class. It essentially just enforces doc-
umentation and its children will add member fields for the necessary parameters, adding
documentation to the fileDoc_ member and implementing simple getter methods. Mind that
this documentation should only provide the units and values of the parameters by calling

61

FileDoc::addCommentKeyVal() (in the constructor) – the description of the meaning of the pa-
rameters is task of the Model classes.

In general, the Parameter classes hold all parameters that describe the effect in question, es-
pecially those which can be evaluated by the experimenter. In some cases, there might be
other parameters whose values can only be defined in conjunction with the engaged sample.
Such quantities will be part of the respective Model class for conceptual (i.e. the quantity is
an attribute of the sample) and practical (i.e. parameters of the sample are needed for calcu-
lation) reasons. The 2.2.4 Sinusoidal, time dependent decay constant (p. 22) model with its
fundamental parameter a is an example for such a case.

3.4.9. Conversion functions

Together with the input data classes comes a set of conversion functions, collected in a namespace
called conv. It seeks to facilitate the usage of the other components and the handling of all the
parameters in use which oftentimes are of such different magnitude. Implemented are:

//from inputdata.h
namespace conv {

int yearsToSec(double years);

int weeksToSec(double weeks);

int daysToSec(double months);

int hoursToSec(double hours);

double perToFrequ(double periodicity_in_seconds); // cycle dur. (s) to angular frequ. (rad/s)
double frequToPer(double frequency_in_radOverSeconds);// angular frequ. (rad/s) to cycle dur. (s)
double DCtoHL(double decayconst_in_oneOverSeconds); // decay constant (1/s) to half-life (s)
double HLtoDC(double halflife_in_seconds); // half-life (s) to decay constant (1/s)

}

The 〈...〉ToSec() functions return integer values, which already illustrates the paradigm of using
seconds as the smallest unit of time in the simulation. These conversion functions call each
other, round their calculated value via std::round() defined in <cmath> and type-cast it to
an integer before returning it. Only the yearsToSec() function uses the following definition:
1a = 365.24219878d. [23]

3.4.10. Model class

The Model class is an abstract base class and defines the implementation of a physical model
used as a basis for signal generation. It is defined in the files model.h and model.cpp respectively.

//from model.h
class Model {

protected:

FileDoc fileDoc_;

std::string name_;

std::string descr_;

std::string formulaRem_;

std::string formulaDeced_;

std::string formulaDecing_;

Sample sample_;

Model (const Sample& sample);

~Model () {}

void aboutBasic();

62

virtual void setStrings () = 0;

public:

virtual void aboutDetailed () = 0;

FileDoc getFileDoc() const {return fileDoc_;}

virtual double calculation (CalcType type, const int t) = 0;

};

The most important part of the class is the pure virtual calculation() function, implementing
the basic formulas (I) to (III), which are unique for every model and thus every derived child
class. Choosing between the equations by the CalcType enumeration, and providing an integer
time argument t, this function returns the corresponding theoretical value. It is implemented
via a switch-case control sequence. The definition of the enumeration reads:

//from model.h
enum class CalcType {

remaining,

decayed,

decaying

};

std::string getCalcType (CalcType type);

and it includes a string representation function declaration for documentation purposes.

For standard decay one would implement the calculation() function in the following way:

//from model.cpp
double MExponential::calculation (CalcType type, const int t) {

double n0 = sample_.getN0();

double lambda = sample_.getDecayconst();

switch (type) {

case CalcType::remaining:

return n0 * exp(-lambda * t);

case CalcType::decayed:

return n0 * (1 - exp(-lambda * t));

case CalcType::decaying:

return lambda * n0 * exp(-lambda * t);

default:

return -666;

}

}

Note that before the switch-case query all used variables are locally stored.36 At the same time,
they are renamed to resemble the symbols in the equations so that comparison and error check-
ing becomes more intuitive; a very recommended approach, because their original meaning gets
clear thanks to their assignment anyway.

Apart from the self-explaining members fileDoc_, name_ and descr_, this parent class con-
tains three other string variables (formula〈X〉_), which are assigned the string representations of
the basic formulas (I) to (III) to be included in the documentation. For this purpose, the child
class implements the pure virtual setStrings() function – in which all string members are set –
to keep the constructor free from clutter. For example

//from model.cpp
void MExponential::setStrings() {

36 This might be a place for performance optimization, since this function will be called very often by the
Simulation class.

63

name_ = "Exponential decay";

descr_ = "This model describes the standard exponential decay.";

formulaRem_ = "N(t) = N_0*exp(-lambda*t)";

formulaDeced_ = "N_d(t) = N_0*(1 - exp(-lambda*t))";

formulaDecing_ = "n(t) = lambda*N_0*exp(-lambda*t)";

}

for standard decay. It is advised to choose variable names like lambda and omega in the formula
strings instead of decayconst and frequency as in the class definitions. Whereas in the latter
case it is important to be informed about the meaning of the symbols (hence the naming), the
purpose of the former is to quickly transcribe the equations to paper to study them.

The base class method aboutBasic() is already implemented and adds the strings defined
via the setStrings() function to the fileDoc_ in a consistent manner.

The pure virtual method aboutDetailed() is implemented by the child class and contains a
call to Model::aboutBasic() and a description (including dimensions) of the introduced model
parameters (unlike the corresponding Parameter class which adds the concrete values and units).
Here is one example from a non-standard model:

void MSineSummand::aboutDetailed () {

Model::aboutBasic(); //include basic model info; calls setStrings() of child

//add child-model-specific info
fileDoc_.addComment("\tparameters:");

fileDoc_.addComment("\t\tamount (epsilon), [dimensionless] --- describes the 〈...〉");
fileDoc_.addComment("\t\tinfluence (eta), [dimensionless] --- defines the 〈...〉");
fileDoc_.addComment("\t\tperiodicity (T), [time] --- is the periodicity of 〈...〉");
〈...〉

//add sample and parameter info afterwards
fileDoc_ += sample_.getFileDoc();

fileDoc_ += parameters_.getFileDoc();

return;

}

As the example shows, the aboutDetailed() method also includes the FileDoc info of the Sample

and an inherited Parameter member. The latter is included in the child class. Since a child of a
Model can only work with one specific child of Parameter, the Model parent class does not include
a generic parent class Parameter parameter_; member field.

3.4.11. Simulation class

The Simulation class provides the means to generate a theoretical or simulated signal (as a real
measurement would provide it), according to the chosen model, which may introduce standard
or non-standard physics. It is defined in the files simulation.h and simulation.cpp respectively.

//from simulation.h
class Simulation {

private:

File file_;

FileDoc fileDoc_;

int deltaT_;

int timeTot_;

Model& model_;

std::vector<data3> result_;

64

public:

Simulation(Model& mod, File file, int dt_inSeconds, int t_inSeconds);

~Simulation() {}

void simulate(bool simulate, int seed = 0);

void justPlot(CalcType type, bool simulate, int seed = 0);

bool printToFile();

File getFile() const {return file_.getFile();}

Data toDataObject() const;

};

By using the RandomNumbers and Model classes, the Simulation class enables the user to generate
signals equal to those an experimenter could find when performing a measurement.

It uses the facilities of the RandomNumbers class and documents the results of its P-RNG tests.

The class has a model_ member defining the physical equations that will be used for simu-
lation. By design, it includes all necessary data and documentation. Mind that Model& is
compatible with every child of Model, which is the conceptual motivation of the separation of
the Simulation and the Model class and deriving from the latter to implement different physical
models.

There are two members corresponding to ∆t and T , namely deltaT_ and timeTot_ respec-
tively. They are of int type, which makes time in the simulation “quantized”. The unit of time
throughout the simulation is seconds. timeTot_ will be truncated to a whole-number multiple
of time_ by an integer division and “re-multiplication”.

Similar to the Analysis class, the Simulation class features a std::vector<data3> result_ vector
which will hold the generated signal, a printToFile() method, which will use the interface sup-
plied by the Data class to save the generated signal to a file and a toDataObject() method for the
same reason as presented in the context of the Analysis class. Both functions will combine the
model_’s and the Simulation object’s FileDoc instances. They need to be kept separate, otherwise
the Simulation object’s documentation could not be updated throughout its lifetime.

The simulate() method performs the actual signal generation and simulates a real measurement
(i.e. uses random numbers), if the parameter simulate is true. Otherwise it uses the statistical
mean values, which means that it actually just plots the graph of (IVb). Because of the findings
in 3.3.3 Types of simulating (p. 53), this is the only way of signal generation provided.

If simulate is true and seed is 0, the seeding mechanism of RandomNumbers will be used to kick
off the P-RNG. If seed is different from 0, this value will be used to seed the engine, which makes
every simulation run exactly reproducible.

The justPlot() method works almost exactly the same as the simulate() method but includes
an additional function parameter of type CalcType. The function is used to generate data con-
taining values that would just plot equations (I) to (III) depending on the calc argument. In
case of very large values timeTot_ (T), the method restricts itself to 10000 values.

Both methods, simulate() and justPlot(), clear the result_ vector when being called in order
to allow for multiple simulation runs with different simulation settings (but constant time_
and deltaT_).37 In order to keep every result, the printToFile() or getSimulationDataObject()

37 This is because these two parameters are not included in the file name modifications, thus changing just the two
would result in file overwrites.

65

methods have to be called before every new call of simulate() or justPlot().
They also reset and then update the file_ and fileDoc_ members accordingly. If the simulate

argument is true, they add the post-fix simulated, otherwise theory. Additionally, the justPlot()
method adds the string representation of the chosen CalcType as an additional post-fix.

3.5. Implementation of the analysis classes

This section explains how the methods presented in 2.4 Mathematical analysis tools (p. 37)
are implemented by inheriting from the abstract Analysis base class documented in section
3.4.6 Analysis class (p. 59).

3.5.1. Autocorr(elation) class

The Autocorr class performs the autocorrelation of a signal. It is defined in the files autocorrelation
.h and autocorrelation.cpp respectively. Its mathematical description can be found in 2.4.1 Au-
tocorrelation (p. 37).

//from autocorrelation.h
class Autocorr : public Analysis {

private:

int noTotal_;

int noUsed_;

int lagMax_;

void initializeParameters();

double autocorrelationValue (AucoType direction, int lag);

public:

Autocorr (const Data& data);

void autocorrelation (AucoType direction, bool normalize = true);

};

noTotal_ is the total number of data points Mtot provided by the parent object, noUsed_ is the
number of data points M used in every step of the integration and lagMax_ is the maximum
lag τ̂max available in the resulting autocorrelation function.

The values for the member variables are calculated according to (2.63) and (2.64) by the
initializeParameters() method which is called by the constructor.

The autocorrelationValue() method returns the autocorrelation function value Ψ (τ̂) for a
given lag τ̂ using an implementation of (2.60).

autocorrelation() loops through all possible lags (calling the autocorrelationValue() method)
and adds the results to the Analysis::result_ vector, which is the autocorrelation function ta-
ble Ψ (τ̂). If the parameter normalize is set to true, the result will be (2.61), the normalized
autocorrelation function ψ(τ̂).

The enumeration AucoType

//from autocorrelation.h
enum class AucoType {

forwards,

backwards

};

std::string getAucoType (AucoType type);

allows the user to choose the direction in which the summation should be performed in
autocorrelationValue(). Since the function values for small lags are significantly higher, inte-
gration back to front might minimize numerical summation errors. Although not dedicatedly
investigated it seems that both methods yield the same results.

66

The first column of the Analysis::result_ holds the dimensionless lag τ̂ . In order to com-
pute the corresponding periodicity T of a periodic autocorrelation function, a multiplication
with ∆t (evident from the file documentation) according to (2.62).

An automated lag estimation algorithm is not implemented and not trivial, since in some
cases the autocorrelation function will show an exponential decrease. In addition to the statisti-
cal fluctuation and small amplitudes of the possible effect, this shape of the curve makes it hard
for an automated algorithm to find the periodicity, although it might be obvious to the human
eye.

For quantitative analysis one should probably restrict oneself to autocorrelation signals with
no exponential contribution.

Generally, fitting by using starting values gained from an analysis “by hand”, could lead to
quantitative estimations.

The class adds the prefix auto to the file name and, depending on the chosen options, con-
catenates N for a normalized autocorrelation and Backw in case of backward summation.

3.5.2. StdDecaySub(traction) class

The StdDecaySub class performs the standard decay subtraction of a signal. It is defined in
the files stddecaysub.h and stddecaysub.cpp respectively. Its mathematical description can be
found in 2.4.2 Standard decay subtraction (p. 41).

//from stddecaysub.h
class StdDecaySub : public Analysis {

public:

StdDecaySub(const Data& data);

void standardDecaySubtraction(const double decayconst_inOneOverSec);

void standardDecaySubtraction(const double n0,

const double decayconst_inOneOverSec);

void old_standardDecaySubtraction();

};

This class is fairly simple. It computes the subtracted signal according to (2.68). In its discrete
form, the formula reads

∆Nsub(ti+1) = ∆N (ti ;∆t)−∆Nstd(ti ;∆t)

since the data is provided in tuples
(
ti+1 , ∆N (ti ;∆t) ,

√
∆N (ti ;∆t)

)
and the subtraction of

∆Nstd(ti ;∆t) allows to factor the term out as in (refer to 2.4.2 Standard decay subtraction
(p. 41))

N0 e−λti ·
(
. . .

)
︸ ︷︷ ︸

∆N (ti ;∆t)

−N0 e−λti (1− e−λ∆t)︸ ︷︷ ︸
∆Nstd(ti ;∆t)

.

Depending on the chosen function overload, the value forN0, which is needed for the calculation,
is either passed to the method by the user (if N0 is known or taken from a fit) or computed
automatically. In the latter case, the method calculates N0 according to (2.47) for all available
data points and uses the arithmetic mean value for the calculation of the standard decay values,
which are used for subtraction.

The reference point t0 – and the resulting N0 – is of course at the start of the measurement.
The old_standardDecaySubtraction() method implements the original (deprecated) subtrac-

tion method presented later in 4.2.1 Increasing sensitivity by standard decay subtraction/nor-
malization (p. 77) for compatibility reasons.

67

Depending on the chosen method, the class adds the prefix subGetN0, subCalcN0 or subOLD

to the file name.

The uncertainty propagation as given in the respective theory chapter is not yet implemented in
the framework and needs to be tested.

3.5.3. StdDecayNorm(alization) class

The StdDecayNorm class performs the standard decay normalization of a signal. It is defined in
the files stddecaynorm.h and stddecaynorm.cpp respectively. Its mathematical description can
be found in 2.4.3 Standard decay normalization (p. 43).

//from stddecaynorm.h
class StdDecayNorm : public Analysis {

public:

StdDecayNorm(const Data& data);

void standardDecayNormalization(const double decayconst_inOneOverSec);

void standardDecayNormalization(const double n0,

const double decayconst_inOneOverSec);

};

This class is fairly simple. It computes the normalized signal according to (2.69). In its discrete
form, the formula reads

∆Nnorm(ti+1) =
∆N (ti ;∆t)
Nstd(ti)

,

since the data is provided in tuples
(
ti+1 , ∆N (ti ;∆t) ,

√
∆N (ti ;∆t)

)
and only the division by

Nstd(ti) = Nstd(ti+1 − ∆t) allows to cancel the prefactor as in (refer to 2.4.3 Standard decay
normalization (p. 43))

N0 e−λti ·
(
. . .

)
N0 eλti

}
∆N (ti ;∆t)}
Nstd(ti)

.

Depending on the chosen function overload, the value forN0, which is needed for the calculation,
is either passed to the method by the user (if N0 is known or taken from a fit) or computed
automatically. In the latter case, the method calculates N0 according to (2.47) for all available
data points and uses the arithmetic mean value for the calculation of the standard decay values,
which are used for normalization.

The reference point t0 – and the resulting N0 – is of course at the start of the measurement.

Depending on the chosen method, the class adds the prefix normGetN0 or normCalcN0 to the
file name.

3.5.4. Smooth class

The Smooth class tries to even out the statistical fluctuations of a given signal. It is defined in
the files smooth.h and smooth.cpp respectively. Its mathematical description can be found in
2.4.4 Smoothing and filtering (p. 44).

class Smooth : public Analysis {

private:

public:

Smooth(const Data& data);

std::vector<double> kernel_;

68

void printCurrentKernelTable(File file);

void setKernelGauss(int sigma_inUnitsDeltaT, int range_inUnitsSigma);

void setKernel〈OtherKernel〉(〈...〉);

bool smooth();

};

This class convolves the input signal with a given kernel, thus providing a corresponding
weighed average. The member kernel_ holds the look-up table of the chosen kernel. It is
set by calling one of the setKernel〈...〉(). Every one of them should reset the current state of
Analysis::fileDoc_ and add its own documentation. The printCurrentKernelTable() method
prints the current kernel look-up table to a given file and adds the current contents of fileDoc_.

The implemented setKernelGauss() method computes a simple Gaussian kernel by sampling
(2.74). Its standard deviation sigma_inUnitsDeltaT (σ∆t) is passed in units ∆t, where 1∆t
equals the distance between two data points in a typical signal. The width of the kernel,
i.e. how many sigmas width should be taken into account for smoothing, is determined by the
range_inUnitsSigma (nσ) parameter. The resulting size of the look-up table is then 2(σ∆tnσ) + 1
elements/data points (the plus one is due to the “zero position” of the bell curve). Normalization
is achieved by dividing every value in the look-up table by the sum over all its entries!

Care must be taken when choosing these parameters. The convolution can only compute
values where the kernel fits in the data completely. This means that the resulting function will
be shortened by σ∆tnσ data points on each side. If there are only few data points available –
due to a large ∆t or small T – an unsuitable choice of especially nσ can render the analysis
impossible. A value of nσ = 2 seems proper in almost all cases. σ∆t must be chosen according to
the desired grade of smoothing.

New smoothing kernels may be added to this class at any time. In that case mind the re-
sulting setKernel〈...〉() methods would also need to assign different file_ prefixes to avoid
overwrites.

It adds the prefix smooth〈σ∆t〉x〈nσ 〉 to the file name.

3.5.5. Accumulation class

The Accumulation class adds up multiple data points of a given file. This reduces the number of
available points but also decreases the relative error of each data point. It is defined in the files
accumulation.h and accumulation.cpp respectively. Its mathematical description can be found
in 2.4.5 Accumulation (p. 46).

class Accumulation : public Analysis {

public:

Accumulation(const Data& data);

void accumulate(int accumulate_inUnitsDeltaT);

};

The principle and the implementation of this class are pretty straightforward: The parame-
ter n = accumulate_inUnitsDeltaT defines how many data points (spaced in steps ∆t) shall be
summed up to one new resulting point. The class checks if any data points at the end will be
dismissed as a consequence and informs the user.

It adds the prefix acc〈n〉 to the file name.

69

3.6. Using and extending the framework

This section will briefly describe how to implement new physical models, new analysis classes
and provide a check list. Also, the code of the standard decay model is presented and as well as
a general code example.

Knowing the structure of the simulation and how the different classes are meant to inter-
act as described in sections 3.2 Structure (p. 47) and 3.4 Implementation of the framework
(p. 54) will render the actual usage and extension of the framework pretty straightforward.
It may help to follow the implementation of an already existing model while reading this
explanations. Mind also the established coding style described in 3.2.3 Style choice, naming
conventions and coding standards (p. 50).

3.6.1. Guide to implement a new model

The models implemented in the course of this work are all defined/implemented in the
model.h/*.cpp files. The respective parameter classes are located in inputData.h/*.cpp. As
long as the file structure of the simulation is not changed, it stands to reason to add new models
in these files.

• Implement the parameter class for the new model by inheriting from Parameter and
adding all necessary model parameters as member variables and provide getter methods.
Mind that these do not include sample parameters or quantities that follow from the
combination of model and sample parameters (such as a in the sinusoidal decay constant
model), which will be part of the model class.

• In the constructor perform basic error checking, assign the parameters and use the par-
ent’s fileDoc_ object for proper documentation of the actual values (using FileDoc::

addCommentKeyVal(). Take care to ask the user for only a minimum number of intuitive
input parameters (such as T instead of ω; and definitely not both) and use the conversion
functions of the framework to derive other quantities. Add new conversion functions to
the framework if necessary.

• Subclass the Model parent class for the new model and define a constructor accepting a
Sample and a newly created parameter object. Add member fields for possible additional
parameters and provide getter functions.

• Implement the virtual setStrings() method and assign the parent member strings: name_
and descr_ (description) plus the formulas formula〈...〉_ like "N(t) = N_0*exp(-lambda*t)".

• Implement the virtual aboutDetailed() method: First, this method must call the parent’s
aboutBasic() method, which provides standard documentation. Then use the parent’s
FileDoc object to add a qualitative explanation of all parameters via FileDoc::addComment().
Finally, append the FileDoc members of the sample_ and the parameters_ object as in
fileDoc_ += sample_.getFileDoc() etc. This provides decent documentation (basic model
description, parameter description, actual values for all parameters).

• In the Model child class constructor just assign the members and call the setStrings() and
the aboutDetailed() methods.

• Now implement the parent’s calculation() function by using a switch-case query for the
three different calculation types CalcType. It may be helpful to define dummy variables
like double lambda = sample_.getDecayconst(); etc. in order to increase readability in
the implementation of the formulas.

70

3.6.2. Guide to implement a new analysis method

Each analysis class is implemented in its own translation unit - create new header and imple-
mentation files.

• Define the new analysis class by deriving the Analysis parent. Create a constructor
accepting only the parameters demanded by the parent constructor. Basic documentation
is performed by the parent constructor automatically. The constructor should not be used
for any class managing purposes.

• Define all necessary member fields and methods to provide the desired functionality. Take
care to provide decent user feedback and documentation! Unless the analysis method is
very simple, use dedicated methods to gather and process user input (like picking a kernel
in the Smooth class). Such functions then also deal with file documentation (fileDoc_) and
output file naming (file_); always reset those objects before assigning values so that the
same analysis object can be used for multiple sets of input parameters. Pick file name
prefixes in the style of the already existing analysis classes and add the most important
values to make the files distinguishable.

It is advised to skim through the code of the analysis classes already implemented in order to
see how different design problems are tackled.

3.6.3. Benefits of the design

This seemingly pedantic coding style and design provides major advantages and should there-
fore be pursued dedicatedly.

Decent user feedback will make the procedures and progress obvious to the user. This will also
help to identify errors in the implementation or usage.

The ample documentation effort results in a rich data file preamble collecting all necessary
information about the data in the file. Thus, every single file will provide comprehensive
information about the model and parameters in use and about all steps of processing that were
applied to the data.

The file name conventions allow the user to draw the most important information about the
current data from the file name itself. For instance, the file name

autoN_normCalcN0_acc336_A_simulated.dat

will tell the user that the data set A was simulated using the random number engine. The original
signal was accumulated with n = 336 and then normalized where N0 was computed from the
data. The current file contains the normalized autocorrelation of said data.

3.6.4. Code example

The following code example shows how one can generate a simulated measurement signal,
smooth it and then perform an autocorrelation analysis.

//INPUT DATA
//create base file
File file("./data/", "example", "dat");

//create a sample
double N0 = 1E9;

double halflife = conv::yearsToSec(10.54);

Sample ba133("Ba-133", N0, halflife);

71

//create a parameter set
double eps = 1E-4;

double perio = conv::yearsToSec(1.0);

PSineLambda param(eps, perio);

//create model
MSineLambda model(ba133, param);

//measurement parameters
int deltaT = conv::daysToSec(1);

int tTotal = conv::yearsToSec(4);

//SIMULATION
//create simulation
Simulation sim(model, file, deltaT, tTotal);

sim.simulate(true);

sim.printToFile();

//ANALYSIS
//load data of simulation
Data dataSim(sim.getFile()); //reads from file
//or
Data dataSim = sim.toDataObject();

//normalize signal
StdDecayNorm norm(dataSim);

norm.standardDecayNormalization(sample.getDecayconst());

norm.printToFile();

//smooth the normalized signal
Data normData(norm.getFile()); //reads from file
//or
Data normData = norm.toDataObject();

Smooth smoothNorm(normData);

smoothNorm.setKernelGauss(14, 2); //σ∆t = 14∆t = 14d
smoothNorm.smooth();

smoothNorm.printToFile();

smoothNorm.setKernelGauss(28, 2); //σ∆t = 28∆t = 28d
smoothNorm.smooth();

smoothNorm.printToFile(); //will be printed to a new file

//autocorrelation of smoothed normalized signal
Data smoothNormData = norm.toDataObject(); //or...
Autocorr autoSmoothNorm(smoothNormData);

autoSmoothNorm.autocorrelation(AuCoType::forwards, true);

autoSmoothNorm.printToFile();

72

4. Application

This section will cover the findings gained by the usage of the methods presented in 2 Physics
and math (p. 15) and the simulation and analysis framework pictured in 3 Simulation (p. 47).
It will evaluate the “pros and cons” of the introduced tools and try to derive “rules” for their
usage. The goal is to work out how the different methods and parameters intertwine and how
these insights might guide the ambitious experimenter when designing an experimental setup
dedicated to track down effects similar to what is covered in this thesis and beyond.

By the very nature of the problem, all investigations and solution approaches are more or less
reverse-engineered. In order to test them against the influence of bias, a series of blind tests
is performed. Additionally, the nature of data originating from simulations of standard decay
has to be studied thoroughly before jumping to any conclusions about an ostensibly visible,
unknown effect.

4.1. Summary of the theoretical and mathematical findings

This section is a direct reference to the contents of chapter 2 Physics and math (p. 15) and will
gather the most important presented issues and draw theoretical/mathematical conclusions
which will help to learn about the relations between the manifold of (free) parameters and
physical values.

4.1.1. The model of choice

Two models to introduce a sinusoidal oscillation in the standard equation of radioactive decay
were established in sections 2.2.3 Sinusoidal, time dependent summand (p. 20) and 2.2.4 Sinu-
soidal, time dependent decay constant (p. 22).

The sinusoidal summand model was a blatant and physically “unmotivated” approach in
order to achieve the desired behavior and could be understood very easily. It was used to estab-
lish first results, to test analysis methods (as pointed out in the later section 4.2.1 Increasing
sensitivity by standard decay subtraction/normalization (p. 77)) and to “get a feeling” for the
effect in question.

Its evolution after developing some understanding for the nature of such signals lead to the
sinusoidal decay constant model, which introduced the sinusoidal modification in a physically
reasoned way, namely an oscillation inherent with the decay “constant” of the sample as in
(2.19), which also leads to a new differential equation. Where the effect’s amplitude ε was the
main parameter in the first model, its role as a (merely) effective quantity detectable by an
experiment became clear in the second, in which the profound variable is, in fact, a, describing
the variation of the decay constant itself. The cause of such a quantity is entirely unclear, but,
according to this model, the connection between ε (the amplitude of the oscillation in the
measurement signal) and a is given by (2.30).

This discussion clearly concludes the sinusoidal decay constant model to be the model of
choice to describe radioactive decay with a sinusoidal influence.

As demonstrated in the sections linked above, Taylor expansion shows that both models are
equivalent in the first order. This, in retrospect, justifies the analyses performed by using the
sinusoidal summand model.

4.1.2. A set of rules

After receiving a set of data through measurement (or simulation), our primary goal is to find a
recurring oscillation of cycle duration T (and thus frequency ω according to (2.9)) in the signal.

73

For an estimated cycle duration and magnitude of the effect

T := const and ε := const ,

we can find restrictions for other parameters.

Because of (2.39), we automatically obtain an upper limit for integration time ∆t, namely

∆t� T /2 .

Assuming ε to be the amplitude of the effect (as in the sinusoidal summand model for instance),
a maximum relative error δ∆N ≤ α is required in order isolate the effect in the data,

δ∆N ≤ α = α(ε) ,

where α = α(ε) directly depends on the effect’s amplitude (both are relative values) and α < ε.

Equation (2.57) reminds us of the fact that a desired accuracy of α yet demands a minimum
count number ∆N in accordance with

∆N ≥ 1
α2 ,

which must be true during the whole measurement time T . Since the relative error rises over
time (because N (t) drops), this is guaranteed if (refer to (2.8))

∆N (T −∆t;∆t) ≥ 1
(cε)2 . (4.1)

Mind (2.65), which imposes a lower limit for the measurement time

T > 2T .

If we could simply choose a sample to fulfill the stated estimations, we would require (rearrang-
ing (4.1) after plugging in (2.8)) an initial number of nuclei (for λ = const)

N0 ≥
1
α2

eλT

eλ∆t −1
.

An analogous solution for λ is not analytically possible. For a given N0 or total measurement
duration T , we can solve (4.1) for ∆t and obtain, assuming T −∆t ≈ T ,

∆t ≥ 1
λ

ln
(
1 +

eλT

(α2N0)

)
.

Mind that, taking (2.59) into account, we actually obtain

N0 ≥
N0

f (E,d)

in all the relations above for the sample in use!

Number of counts

To raise the number of counts to the value demanded by the preceding conditions (in case of a
given sample where N0 and λ are not free to choose), we can increase ∆t because of (IV) as long
as (2.39) is not violated. Additionally, we can decrease the distance d between the detector and
the sample to increase the count rate in accordance to (2.58).

74

Notes

This set of rules was established for a given cycle duration T and effect magnitude ε but is not
limited to these assumptions. All formulas can be rearranged to fit any other set of “starting
parameters”. For example, considering ε unknown, all relations could be used to find out which
magnitude of a possible effect could theoretically be observable for given values of N0, λ, c, . . .

In section 4.2.5 Effect magnitude and uncertainty estimation (p. 90) the relation between
measuring accuracy and the magnitude of the effect will be further discussed.

4.1.3. Magnitudes and values of introduced variables; exemplary case

Discussion of the parameters of the effect
The distance to the sun (as a possible parameter for the sun-induced influence) is twofold. We
have to distinguish the contribution of the earth’s orbit around the sun from the rotation of
the earth itself. The distance r can be the parameter itself or it can be parameterized via time
r = r(t).

The distance between Earth and Sun varies between approximately 152 ·106 km (aphelion)
and 147 · 106 km (perihelion) [17] – on average r0 ≈ 1AU ≈ 150 · 106 km. The spatial parameter
of the first component is therefore rorbit ≈ 5 ·106 km = 5 ·109 m, since only the change of distance
may lead to a hypothetical, observable change in activity. The cycle duration is in the magnitude
of years or months; Torbit ≈ 1a ≈ 3.15 · 107 s.

The second contribution results in a spacial parameter of the magnitude of the earth’s di-
ameter d. The experiment is either r0 − d/2 away from the sun or r0 + d/2, where rearth = d ≈
12760km ≈ 1.3 ·107 m, which is the important magnitude. This variation occurs on a daily basis,
hence Tearth ≈ 24h ≈ 86400s.

We obtain ωorbit ≈ 2 · 10−7 rad/s and ωearth ≈ 7.3 · 10−5 rad/s.
Mind that rorbit exceeds rearth by more than two orders of magnitude! The contribution of the

earth’s rotation shall be neglected in the first approximation, provided that the effect depends
on the change of distance only.

contribution r [m] T [s] ω [rads−1]

orbit 5.0 · 109 3.15 · 107 2.0 · 10−7

Earth 1.3 · 107 8.60 · 104 7.3 · 10−5

Naturally, this discussion is a matter of pure speculation. The nature of such an effect is entirely
unknown and hypothetical. This was merely an attempt to construct an exemplary case to be
used for demonstration purposes somewhat inspired by [1].

Exemplary case: Ba-133

The current setup (described in 5.2 Current setup (p. 105)) uses a Barium Ba-133 sample; thus
it will be used as an example. Its attributes are listed according to [24]:

Ba-133
half-life t1/2 = 10.540(6)a = 332.61(19) · 106 s

decay constant λ = 2.0840(12) · 10−9 s−1

number of nuclei (current sample) N0 ≈ 1013

The value ofN0 was estimated according to the following considerations:
It can be calculated via a provided initial activity of Ainit. ≈ 10µCi = 3.7 · 105 Bq on

tinit. = 01.10.1988. From then until t0 = 01.01.2015, ∆t ≈ 8.284 · 108 s passed. Using (2.7)
we obtain

A(t0) =Ainit. e
−λ∆t

75

and then
N (t0) =A(t0)/λ .

We define according to the current reference time t0: N (t0) ≡N0 and A(t0) ≡ A0. In this case,
we obtainN0 ≈ 3.2 · 1013 ± 5.7 · 106.

An alternative approach uses one of the latest measurement results: ∆N (t0;∆t) ≈ 250000
where ∆t = 20min = 1200s (dead time not taken into account). We can use (2.47) and obtain
N0 ≈ 9.997 · 1010 ± 3.2 · 105.

We define according to the current reference time t0: N (t0) ≡N0 and A(t0) ≡ A0. Note that this
approach provides N0 and A0 and notN0 and A0! A realistic combined efficiency f (E,d) ≈ 1%
would yieldN0 ≈ 1013, again, in the same order of magnitude.

General discussion for the present case

If we recall the considerations of the preceding section and follow the established rules we can
estimate magnitudes of all involved parameters. The following figures relate to the described
Ba-133 sample and the model of the sinusoidal summand (2.2.3 Sinusoidal, time dependent
summand (p. 20)) under negligence of the earth’s contribution and f (E,d).

Let’s summarize the given parameters:

λ = 2.084 · 10−9 s−1 T = 3.15 · 107 s = 1a

N0 = 1013→N0 ≈ 1011 ω = 2.0 · 10−7 rad/s

The following conditions apply:

T ≥ 2T = 6.3 · 107 s = 2a and ∆tmax <
T
2

= 1.575 · 107 s = 0.5a ,

where the latter wont ever be transgressed in a real measurement, if T is expected to be in the
magnitude of months. Considering T = 2a = const for now leaves ∆t and the relative error α to
be the free parameters.

∆t(α;T = 2a) ≥ 1
λ

ln
(
1 +

eλT

α2N0

)
=

α ∆t [s] ∆t [min]

0.010 54.72 0.91
0.005 218.87 3.65
0.001 5471.66 91.19

delivers the minimum ∆t required to achieve the demanded accuracy α. Errors in the magnitude
of α = 0.0001 yield values of ∆t = 1week. Since the half-life of Ba-133 is so long, changes of T
have almost no effect as proven by:

∆t(T ,α = 0.001) ≥ 1
λ

ln
(
1 +

eλT

α2N0

)
=

T [a] ∆t [s]

1 5124.39
2 5472.48
3 5844.22

We can also estimate the possible α for a given ∆t and T = 2a.

α(∆t) =

√
1
N0

eλT

eλ∆t −1
=

∆t [s] α

55 0.0100 = 1.00%
103 0.0023 = 0.23%
∆tmax 1.85 · 10−5 = 0.00185%

Figure 6 shows the presented connections.

76

Figure 6 These plots show the functional connections of several attributes of a sample (Ba-133) and
experimental parameters; N0 = 1011, λ = 2.084 · 10−9 s−1 and T = 6.3 · 107 s (if not stated otherwise).
(a) Necessary integration time to maintain a certain error (α = 0.001) throughout the whole measure-
ment for a given total measurement duration; ∆t(T). (b) Necessary integration time for a given error
throughout the whole measurement; ∆t(α). (c) Necessary integration time to maintain a certain error
(α = 0.001) throughout the whole measurement for a given half-life; ∆t(λ). One can see very clearly that
if the half-life is too short, the sample can not deliver enough counts (in the end of the measurement)
because it disintegrates too fast. On the other hand, if its half-life is too long it takes very long to get
enough counts. (d) Resulting error for a given integration time; α(∆t).

4.2. Effectiveness of the analysis methods – subtleties in the application of the

simulation

This section describes all the findings which rose up during the implementation and usage
of the simulation framework. It will therefore reference the contents of chapter 3 Simulation
(p. 47) but implicitly also those of chapter 2 Physics and math (p. 15).

Generally, as the findings of section 4.3 Blind tests (p. 91) will show, it stands to reason to use
only as much processing as necessary in order to avoid systematic errors.

4.2.1. Increasing sensitivity by standard decay subtraction/normalization

In all subsequent figures, the graphs were drawn with lines according to the underlying data
points in order to guide the eye and to emphasize the quality of what is discussed hereafter.

As can also be seen in the second column (ψ) of figure 7, the autocorrelation function does
reveal only effects of unrealistically pronounced amplitude. However, by subtracting the sta-
tistical mean values (standard decay) corresponding to the engaged sample (N0, λ) from the
data obtained through the measurement before performing the autocorrelation analysis, the

77

sensibility of the latter can potentially be increased! The same holds true for the standard decay
normalization method. Both tools are presented in sections 2.4.2 Standard decay subtraction
(p. 41) and 2.4.3 Standard decay normalization (p. 43) and are, in fact, so effective that an
autocorrelation analysis might not be even necessary.

The first discussion of these findings was made by using an early version of the standard
decay subtraction. By that time, it was not yet mathematically formulated in the way it is now
and the standard decay normalization was not introduced at all. Although every step along
this time line improved the results, the old tests still picture the effectiveness of standard decay
subtraction (or normalization) pretty well.

The original subtraction method reverse engineered a theoretical initial number of nuclei N ′0
corresponding to one data pair of the measurement ∆N (ti ;∆t):

∆N (ti ;∆t)
!≈N ′(ti) :=N ′0 e−λ·i∆t

Rearranging yields
N ′0 = ∆N (ti ;∆t) · eλ·i∆t

and by setting i = 1, without loss of generality, one obtains

N ′0 = ∆N (t1;∆t) · eλ∆t . (4.2)

For every ti in the data set one would now subtract the value N ′(ti) from the measured value
∆N (ti ;∆t) and use the results for autocorrelation analysis.

∆N ′(ti ;∆t) := ∆N (ti ;∆t)−N ′(ti)

The results of this treatment, shown in the third column (ψ′) of figure 7, speak for themselves.
Normal autocorrelation, second column (ψ), fails already at high magnitudes of the effect.

We define the mean relative error δ of a mea-
sured number of counts

δ :=
δmin + δmax

2
, (4.3)

using the boundary values of the respective
measurement according to (2.56). We also in-
troduce a signal-to-noise ratio (SNR), which
is defined as the ratio of the effect ampli-
tude zeffect to the amplitude of the noise znoise
in a given graph according to

SNR :=
zeffect

znoise
. (4.4)

The higher the value, the more pronounced
the oscillation of the signal over the noise. A
“smooth” graph will be denoted by SNR =∞.

znoise

zeffect

For simplicity, a fictional test sample (t1/2 = 60− 5000d, N0 = 105 − 1012) was used to explore
the potential sensitivity of the procedure.

Simulations using the model of a sinusoidal summand (2.2.3 Sinusoidal, time dependent
summand (p. 20)) were performed for constant T = 20d and T = 80d. As experimenting with
different sets of parameters in the given ranges (see appendix A CD Attachment (p. 117)) shows,

78

effects of the order ε ≈ 10−7 in the sinusoidal summand model are potentially visible as can
be seen in figure 8! Mind that a statement about the magnitude of ε is only of use real use, if
parameters like N0 etc. are given. For instance, an absurdly high value for N0 might render
extremely low amplitudes visible, however, is not practically feasible.

A long half-life t1/2 with respect to ∆t and T can result in a quasi-constant background signal,
but will also increase the relative error, which yet again might call for a greaterN0.

Figure 9 compares the steps in the mentioned development of methods illustrating the re-
spective advantages. All methods aim at eliminating the exponential contribution in the signal
and reveal the (possible) oscillation.

As described in the theory chapter 2.4.2 Standard decay subtraction (p. 41), the subtracted
signal will oscillate around zero and symmetrically decrease by an exponential envelope. The
deprecated version of the subtraction algorithm, denoted by primed symbols, distorts the signal
(although achieving astonishing results despite being very simple) in that it introduces an
“exponential slope”. The normalized signal removes any trace of the exponential characteristics
successfully.

The disadvantage of maintaining an exponential contribution in both of the subtraction meth-
ods (it can also be seen in the third row of figure 8 or in the other panels as an exponential
envelope/decay) is that it makes fitting complicated and error-prone and even leads to the
autocorrelation failing its task.

As can be seen in the figure as well, autocorrelation seems to strangely fail sometimes; for
instance in this case of a normalized signal, although the oscillation is clearly visible to the
(blind) naked eye. The reason for that is unclear. Even more so why it was successful in the case
of the very similar subtracted signal that, actually, should be even harder to analyze because
of the exponential decay. On the other hand, we find examples of successful autocorrelation
analysis of a normalized signal in 4.3.3 Comparison of the methods (p. 92). A quick test by
examining the Fourier transform of the normalized signal showed a distinct peak at the effect’s
frequency.

On a side note, when performing standard decay subtraction or normalization, oscillations are
usually already clearly visible in the modified signal (as shown in figure 9)! However, there are
cases in which an autocorrelation analysis comes in handy as shown in the next paragraph.

Simulation with Ba-133

Figure 10 shows one exemplary simulation for a “real” measurement situation as described in
4.1.3 Magnitudes and values of introduced variables; exemplary case (p. 75). Furthermore, it is
a text book example of the successful use of autocorrelation in order to verify an oscillation in a
(subtracted) signal.

As shown before, a manifold of parameter configurations can provide workable results re-
garding the signal analysis. Thus, one would need to choose among them a set of parameters,
which provides the best possible overall results (relative error, SNR etc.). It has yet to be further
investigated, which parameter combinations interlock in what fashion. From the ample list
of configurations given in the attachment, one may derive relationships between the different
parameters and their magnitudes.

Behaviour of the subtraction methods

As already pointed out above, the autocorrelation might fail its job on signals with a pronounced
(exponential) slope – and even in situations where it clearly should not. Also, the different

79

methods of modifying the original signal yield similar results but differ in the details.

An error in the implementation of the deprecated subtraction algorithm while testing and
comparing the mechanisms demonstrated how even small changes can impair the effectiveness
of the results. During programming, two mistakes were made in the calculation of N ′0 which
would read N0’ = data[0].dN * exp(lambda*dt) in pseudo code according to (4.2): Once the
factor exp(λ∆t) was missing – N0’ = data[0].dN referred to as INDEX0 – and the other time the
wrong index was used accidentally – N0’ = data[1].dN referred to as INDEX1.

Figure 11 shows the differences of the results. INDEX1 comes with the largest deviation from
the correct graph ∆N ′ and INDEX0 is between the two. The “more correct” the calculated N ′0 the
less the exponential slope. A wrong choice ofN ′0 cannot not sufficiently suppress the exponential
contribution. The current implementation ∆Nsub oscillates around zero as expected and shows
the already discussed exponential envelope.

The autocorrelation functions emphasize the exponential contributions even more. One can
clearly see that signals with a strong exponential decay slope will most likely provide no usable
autocorrelation signal.

Interestingly enough, the shapes of the curves in figure 8 vary greatly although they use
the same subtraction method. This might be due to different combinations of the parameters. A
similar effect is described in 4.3.5 Parameter estimation by reconstruction (p. 98) where the
qualitative characteristics of a normalized and a subtracted signal are reversed.

80

1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0
5.5

0.65
0.7
0.75
0.8
0.85
0.9
0.95

−0.8
−0.6
−0.4
−0.2
0
0.2
0.4
0.6
0.8

2.0

2.5

3.0

3.5

4.0

4.5

0.65
0.7
0.75
0.8
0.85
0.9
0.95

−0.8
−0.6
−0.4
−0.2
0
0.2
0.4
0.6
0.8

2.0

2.5

3.0

3.5

4.0

4.5

0.65
0.7
0.75
0.8
0.85
0.9
0.95

−0.8
−0.6
−0.4
−0.2
0
0.2
0.4
0.6
0.8

2.0

2.5

3.0

3.5

4.0

4.5

0.65
0.7
0.75
0.8
0.85
0.9
0.95

0.4

0.5

0.6

0.7

0.8

0.9

2.0

2.5

3.0

3.5

4.0

4.5

10 20 30 40 50 60 70 80

0.65
0.7
0.75
0.8
0.85
0.9
0.95

5 10 15 20 25 30 35 40

0.65
0.7
0.75
0.8
0.85
0.9
0.95

5 10 15 20 25 30 35 40

∆N (t;∆t,ε) [107 counts] ψ(τ)

ε
=

0.
01

ψ′(τ)

ε
=

0.
00

1
ε

=
10
−4

ε
=

10
−5

t [days] τ [days]

ε
=

10
−6

τ [days]

Figure 7 This plot shows several signals of varying oscillation amplitude ε (printed on the right hand-
side) and constant periodicity T = 20d. The first column represents the data of a measurement (created
with the simulation program), the second column shows the normalized autocorrelation function and the
third column pictures the normalized autocorrelation function resulting after standard decay subtraction.
The periodicity of the signal is clearly visible and can be read directly from the plot. Mind that the
abscissas of the autocorrelation plots show the real lag τ = τ̂∆t already. N0 = 1011, t1/2 = 60d, T = 80d
and ∆t = 1h.

81

0

1000

2000

3000

4000

5000

6000

7000

0 10 20 30 40 50 60 70 80
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

0 5 10 15 20 25 30 35 40

N0 = 108

t1/2 = 60d

ε = 10−4

∆t = 12h

SNR ≈ 4.6

δ̄ ≈ 0.15%

−3000

−2000

−1000

0

1000

2000

3000

4000

0 10 20 30 40 50 60 70 80
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20 25 30 35 40

N0 = 107

t1/2 = 60d

ε = 10−3

∆t = 24h

SNR ≈∞
δ̄ ≈ 0.4%

−40000

−30000

−20000

−10000

0

10000

20000

30000

0 10 20 30 40 50 60 70 80
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20 25 30 35 40

N0 = 107

t1/2 = 60d

ε = 10−2

∆t = 24h

SNR ≈∞
δ̄ ≈ 0.4%

t [days] τ [days]

∆N ′(t;∆t) ψ′(τ)

Figure 8 This graph shows plots for effect amplitudes ε the range of 10−2 to 10−7 with different
sample and measurement parameters. The effect periodicity T = 20d and the total measurement
duration T = 80d remain the same. The left column shows the signal after standard decay subtraction
was performed, the second column provides the resulting autocorrelation function. In every graph, the
periodicity is clearly visible, . . .

82

−25000

−20000

−15000

−10000

−5000

0

5000

10000

15000

20000

25000

0 10 20 30 40 50 60 70 80
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20 25 30 35 40

N0 = 1012

t1/2 = 5000d

ε = 10−7

∆t = 6h

SNR ≈ 9

δ̄ ≈ 0.017%

−15000

−10000

−5000

0

5000

10000

15000

20000

25000

30000

0 10 20 30 40 50 60 70 80
−0.2

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20 25 30 35 40

N0 = 1011

t1/2 = 1000d

ε = 10−6

∆t = 6h

SNR ≈ 5.6

δ̄ ≈ 0.01%

−10000

−5000

0

5000

10000

15000

0 10 20 30 40 50 60 70 80
−0.2

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20 25 30 35 40

N0 = 1011

t1/2 = 60d

ε = 10−5

∆t = 10min

SNR ≈ 7.6

δ̄ ≈ 0.05%

t [days] τ [days]

∆N ′(t;∆t) ψ′(τ)

Continued Figure 8 . . . even in the ones of tiniest effect amplitude ε. Many more parameter configura-
tions provide workable results. The periodicity is also visible in the ∆Nsub graphs, although the noise
is less pronounced in the ψ′ graphs. The values for SNR and δ are roughly estimated “by hand” in
accordance with (4.4) and (4.3); they correspond to the ψ′ graphs. Additionally, the condition (2.65) can
be clearly seen. Long half-lives (t1/2� T) suppress the exponential character of the graphs.

83

Figure 9 These plots demonstrate the different “standard decay procedures” in the left column and the
resulting autocorrelation fuction in the right column. N0 = 1011, t1/2 = 60d, ε = 10−5, T = 20d, T = 80d
and ∆t = 2h. The first row shows the original signal. The second row shows the original subtraction
method. Its disadvantage lies in the“exponential slope” which also influences the autocorrelation
function. The more pronounced the exponential decay is, the more ineffective the autocorrelation
analysis becomes. The third row demonstrates the current implementation of the standard decay
subtraction. The exponential contribution is that of an envelope. As expected, the curve oscillates
about zero. Finally, in the last row the standard decay normalization is presented. The exponential
characteristics have vanhished and the amplitude shifted in to an entirely different order of magnitude
(which will be used for the estimation of ε). However, it inexplicably spoils the autocorrelation analysis in
this case (the range of values is so small that it cannot be usefully displayed). The reason for that is
unknown.

84

−0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

0 20 40 60 80 100 120 140
0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

0 10 20 30 40 50 60 70
t [weeks]

∆N ′(t;∆t) [104 counts]

τ [weeks]

ψ′(τ)

Figure 10 This figure shows the standard decay subtraction graph ∆Nsub and the resulting autocorre-
lation function ψ′ for a Ba-133 sample. The parameters are: N0 = 1011, t1/2 = 10.54a; ε = 10−6, T = 1a;
∆t = 48h, T = 2.5a. It might be one of the cases in which the presence of an effect needed to be assured
by autocorrelation. This result is especially noteworthy considering how poorly the autocorrelation
analysis fails in the example in figure 9.

Figure 11 This plot compares several versions of the standard decay subtraction procedure; namely
the deprecated ∆N ′ and the current subtraction ∆Nsub. The left graph provides the subtracted signals,
the right plot the corresponding autocorrelation functions. The same exemplary parameters as in the
other comparison plot are used: N0 = 1011, t1/2 = 60d, ε = 10−5, T = 20d, T = 80d and ∆t = 2h. The
upper two curves (black) resulted from programming errors described in the main text. The red curve
resembles the correct algorithm and the gray curve gives the current implementation. One can clearly
see how the characteristics of the exponential contribution differ.

85

4.2.2. Problems in the autocorrelation analysis

Application to subtracted/normalized signals

Autocorrelation of an unprocessed signal is futile. Standard decay subtraction/normalization,
as extensively discussed in the preceding section, can produce signals for successful analysis.
Ususally, an osciallation is already visible in these source signals, but autocorrelation might
enhance the SNR and thus improve fit results or might find correlations which are not even
visible in the subtracted/normalized signal. Refer to figure 10, for instance.

Yet there are cases in which the autocorrelation analysis fails miserably and the reason for that
is not clear. Refer to the last panel in figure 9. These problems seem to arise with normalized
signals mostly, which might be due to their small values.

Problems in the automated analysis of the autocorrelation function

The autocorrelation function of a processed signal can come with various exponential contribu-
tions. The implementation of an automated algorithm designed to find a periodicity in the given
signal is not trivial, even though a possible oscillation might be even visible to the naked eye. In
addition to the statistical fluctuation, this shape of the curve makes it hard for an automated
algorithm to find a periodicity. This is especially the case, when the exponential decrease is
so pronounced that ∀i : ψ(ti+1) < ψ(ti), even though there is a clear sinusoidal oscillation. Of
course, also fitting to such a curve is not trivial - the exponential artifacts would need to be
modeled via additional fit parameters.

Immense measurement duration

One major disadvantage of the autocorrelation is the fact that the maximum lag reaches only
half-way into the data according to (2.63). This means that minimum measurement time for a
successful autocorrelation analysis is twice the cycle duration of the effect according to (2.65).
In case of an annual oscillation this would mean a minimum measurement time of two years!

Considering the immense measurement duration, it is highly advised (in a real setup) to
perform multiple measurements in parallel.

Smoothing/Accumulation

The autocorrelation of a lightly smoothed/accumulated signal may deliver better results, since
it reduces the amount of noise in the signal.

Fourier analysis

In cases in which the autocorrelation fails to deliver usable results, a Fourier analysis of the
processed signal could reveal a periodicity. Such an analysis tool is not implemented in the
framework, yet a quick test in Matlab for the presented case showed a distinct peak at the
effect’s frequency in the spectrum.

Improper integration time

If the integration time ∆t is too long, an oscillation might still be visible, but the maxima/minima
get shifted and will not provide the correct lag in the autocorrelation, because the step size on
the τ̂-axis is too big. A value for ∆t corresponding to the Nyquist frequency is a very unrealistic
choice, anyway. In general, it is a question of initial phase whether the maximum/minimum of
a possible sinusoidal oscillation appears exactly on the data grid. A value for ∆t way below T /4
might be appropriate so that the maxima and minima of possible sinusoidal oscillations appear
on the data grid, independent from the phase of the effect’s cycle. Such considerations might
become important for large ∆t since the autocorrelation reduces the number of available points.

86

4.2.3. Comparing the effects of smoothing and accumulation

In this section the benefits of smoothing (refer to 2.4.4 Smoothing and filtering (p. 44)) a given
signal versus accumulating it (refer to 2.4.5 Accumulation (p. 46)) will be presented.

In order to justify comparison, the signal was smoothed/accumulated such that the respective
first data point would lie at the same point in time, thus

n∆t = σ∆tnσ + 1 .

Smoothing yields a lower relative error at the cost of truncation on both ends of the signal. Since,
however, the accumulated signal does not provide direct information about the time prior to
its first data point either, this “disadvantage” remains without consequence. In contrast to the
accumulation procedure which might discard at most n∆t data points at the end of the signal,
the smoothing algorithm uses all available data points. Furthermore, the smoothing process
leaves the position of the graph unchanged unlike the accumulation process, which shifts the
signal height into another order of magnitude. See figure 12.

It turned out, however, that strong smoothing alters the effective amplitude of the signal – an
effect which needs to be considered if the signal should be used for further analysis.

This most probably is due to the equivalence of smoothing and filtering. As explained in the
theory chapter, smoothing is the same as to low-pass filtering. The process removes spectral
components of high frequency which weakens the signal. The higher the grade of smoothing
(i.e. the lower the critical filter frequency), the more frequency components are removed and
the more pronounced the impact on total amplitude.

Accumulation on the other hand seems to not distort the signal. These findings are docu-
mented in section 4.3 Blind tests (p. 91).

4.2.4. Retrieving the effect’s frequency ω and amplitude ε

All the presented techniques can and should be engaged in order to isolate any traces of a
possible effect. The two parameters of interest are its frequency ω and amplitude ε and all
available means should be used to evaluate the present data.

In theory, the autocorrelated signal will provide the experimenter with the frequency of the effect.
Usually, it will already become visible in the signal obtained by standard decay subtraction or
normalization respectively. Fitting will provide a value for ω. In order to retrieve an estimation
for the effect’s amplitude, we will use exactly these signals and investigate relations (2.70)

∆Nnorm(t) ≈
(
1 + εcos(ωt)

)
− e−λ0∆t

(
1 + εcos(ωt +φ)

)
and (2.71)

∆Nnorm(t) ≈ ε
(
cos(ωt)− cos(ωt +φ)

)
further.

We would like to extract ε from the normalized signal ∆Nnorm. It is only available as a data
function, but the underlying analytical expression is well defined. So far, the amplitude of the
signal is ξ , ε due to interference of the two cosine terms. However, since ω = const, there is no
beat in the signal and since the phase difference φ =ω∆t = const is known (∆t = const is chosen
by the experimenter) and constant and ω will be drawn from analysis, the signal is sinusoidal
and oscillating with the same frequency. There is only a modulation of the effect’s amplitude ε
by a constant factor and a phase shift χ. It can thus be rewritten in the very simple form of a
sine (at first we consider (2.71))

∆Nnorm(t) := ξ · sin(ωt +χ) ,

87

Figure 12 This figure shows a simulated signal ∆N (ti ;∆t), where N0 = 108, λ = 2 · 10−9 s−1, T = 107 s
and ∆t = 86400s, and its smoothed (σ∆t = 5 and nσ = 2) and accumulated (n∆t = σ∆tnσ + 1 = 11) version.
Next to them are their respective relative errors. One can clearly see that any treatment of the two
ameliorates the relative error, however, the best results are achieved by smoothing.

88

which can be shown by the following addition theorem:

cos(x)− cos(y) = −2 sin
(x+ y

2

)
sin

(x − y
2

)
Setting x =ωt and y =ωt +φ we obtain (including the prefactor ε)

−2ε sin
(
ωt +ωt +φ

2

)
sin

(
ωt −ωt −φ

2

)
and using sin(−x) = −sin(x) we find

2ε sin
(
φ

2

)
· sin

(
ωt +

φ

2

)
.

Comparison yields then

ξ = 2ε sin
(
φ

2

)
and χ =

φ

2
for (2.71). (4.5)

With the same arugments we can also find an alternate form of (2.70), unveiling the impact of
the interference between the cosine terms. Expansion of the product in (2.70) yields

εcos(ω)− εe−λ0∆t cos(ωt +φ) +
(
1− e−λ0∆t

)
and we generalize by writing

Acos(ωt) +Bcos(ωt +φ) +C ,

where A = ε, B = −εexp(−λ0∆t) and C = 1 − exp(−λ0∆t). In analogy to the case before we
formulate the desired function

ξ · sin(ωt +χ) + ζ .

Using cos(x+ y) = (cosxcosy − sinx siny) and equating the coefficients provides the following
relations between the coefficients A, B, C and ξ, χ, ζ:

A+B cosφ = ξ sinχ

−B sinφ = ξ cosχ

C = ζ

Adding the first two equations squared and using (sin2 x+ cos2 x) = 1 yields

ξ =
√
A2 +B2 + 2AB cosφ .

By simply rearranging them we obtain

ξ =
A+B cosφ

sinχ
= −

B sinφ
cosχ

.

Dividing the first by the second equation and using (sinx/ cosx) = tanx, we find an equation for
the new phase χ:

χ = tan−1
(
−
A+B cosφ
B sinφ

)
Plugging in A, B and C we find

ξ = ε
√

1 + e−2λ0∆t −2e−λ0∆t cosφ , χ = tan−1
(

1− e−λ0∆t cosφ
e−λ0∆t sinφ

)
and ζ = 1− e−λ∆t for (2.70) .

(4.6)

89

If χ is drawn from the data, it might be of advantage to use

ξ = ε
e−λ0∆t sinφ

cosχ

instead.

Setting A := ε, B := −ε and C := 0 according to (2.71), we obtain exactly the results of (4.5).38

In a measurement/simulation, ∆t is known and ξ and ω (φ =ω∆t) are drawn from the data.39

The effect’s amplitude ε can then be easily calculated and, in case of the sinusoidal decay
“constant” model, the parameter a determined via (2.30)

a =
εω
λ0

.

Rearranging to obtain ε from (4.6) yields

ε = ξ
(
1 +u2 − 2u cosφ

)−1/2
with u = e−λ0∆t .

In order to perform an uncertainty calculation according to (2.44) one needs the derivatives
with respect to ξ and φ, where the latter reads

∂ε
∂φ

= −ξu sinφ
(
1 +u2 − 2u cosφ

)−3/2
.

4.2.5. Effect magnitude and uncertainty estimation

In section 4.1.2 A set of rules (p. 73) we found relations in very simple fashion, showing how
the manifold of parameters affect each other and pose criteria to be fulfilled in order to meet
certain requirements. Among others, a desired relative error of α was introduced, which was
related to the effect’s amplitude ε and the accuracy with which it can be detected. This was a
very superficial discussion and now that we have decided for a concrete model in 4.1.1 The
model of choice (p. 73) and can retrieve the effect’s amplitude from a normalized signal as in
4.2.4 Retrieving the effect’s frequency ω and amplitude ε (p. 87), a brief subsequent discussion
is due.

As explained in 2.2.4 Sinusoidal, time dependent decay constant (p. 22), ε is actually just
an intermediate quantity linking the intrinsic model parameter a and the quantity ξ, which
is the amplitude in the normalized signal. This value ξ is detectable in the experiment and
links almost all parameters characterizing the effect, the sample and the experiment itself:
ξ = ξ(ε,ω,λ,∆t) as given in (4.6). For these two reasons the detectable amplitude ξ will be in
focus of this discussion.

The SNR introduced in 4.2.1 Increasing sensitivity by standard decay subtraction/norma-
lization (p. 77) ultimately determines if an oscillation becomes visible in the normalized signal.
Recalling (4.4)

SNR :=
zeffect

znoise

we set zeffect = ξ and znoise = σ∆Nnorm
and obtain

zeffect

znoise
=

ξ
σ∆Nnorm

=: c .

38 For the proof we need 1− cosx = 2 sin2
(
x
2

)
and 1−cosx

sinx = tan
(
x
2

)
.

39 The amplitude ξ must be taken from ∆Nnorm whereas ω might be obtained by fitting to either ∆Nnorm or
smoothed/autocorrelated versions of the signal.

90

Rearranging yields
cσ∆Nnorm

= ξ ,

providing the amplitude ξ with an accuracy of c sigmas.

An inverse definition
NSR :=

znoise

zeffect

brings a slightly different interpretation. Assigning the same variables this becomes

σ∆Nnorm

ξ
=: β .

The nature of β is that of a relative uncertainty most closely resembling the parameter α, where

β =
1
c
.

However, in contrast to α, β relates to ∆Nnorm instead of ∆N .

Mind that σ∆Nnorm
is actually time and sample dependent and that – whatever requirements are

formulated on the basis of this parameter – it needs to retain its minimum value until the end
of the whole measurement.

Furthermore, σ∆Nnorm
may be roughly approximated by

σ∆Nnorm
≈ σ∆N
Nstd

=

√
∆N
Nstd

.

Mind also here the time dependence.
Additionally, β must not be confused with δ∆Nnorm

= σ∆Nnorm
/∆Nnorm, which is the relative

uncertainty of the normalized signal.

4.3. Blind tests

This section will document the blind tests which were performed to test the presented methods.

4.3.1. Motivation and design

While creating and testing all the presented models and analysis methods, the investigated
effects and test/debug scenarios were available in all their detail. This means that at all times,
the expected results were known; a situation bringing a lot of bias!

The concept of a blind test is to eliminate said bias and investigate unknown signals.

Erwin Jericha used the simulation framework to create a series of test signals and deleted any
documentation about the introduced effect from the data files. A copy of the original files was
saved for later comparison against the obtained results.

The following sections are devoted to the quantitative comparison of the analysis methods
and will draw conclusions for their usage.

4.3.2. Evaluation of analysis methods based on the results of a blind test

Next to the elimination of expectation there is another huge advantage to the idea of such tests.
Naturally, the true values of the quantities in question are known! Thus, the most accurate
method to retrieve those values can be picked by comparison.

91

As in all experiments and simulations there are two types of errors: statistical and system-
atic errors. Obviously, for the analysis of a given signal, only methods with minor to no
systematic errors should be used. Among those one wishes to pick the ones of highest statistical
quality. If one needs to use

A set of simple, straight-forward selection rules was established to eliminate faulty methods
and rank the remaining ones by their statistical accuracy in the course of a blind test.

Every fitted or calculated quantity brings a result/mean value µi and an uncertainty σi .40 The
true value of interest is denoted by µ̃ and is exact.

First attempts of working with the various methods showed that some of them provide high
statistical accuracy but introduce a notable systematic error. Evaluation of the given uncertainty
alone is thus no sufficient selection criterion. First, the deviations of the acquired values from
the true value, the absolute errors, are computed:

∆µi =
∣∣∣µ̃−µi ∣∣∣ (4.7)

The relative error is defined as

δµi =
∆µi
µ̃

. (4.8)

Now, only methods which find the true value within one standard deviation are accepted, thus,
they need to fulfill the criterion

∆µi ≤ 1 · σi . (4.9)

The set of accepted methods can now be ranked by their statistic quality, the best being min {σi}.
In case of a number of methods providing the same uncertainty σ , they can be ranked by the
deviation of their respective mean values from the true value. The method with min

{
∆µi

}
is the

most accurate among them.

It is possible that a result of sufficient accuracy can emerge from two input values with uncer-
tainties although one of them might not meet one of the upper criteria. It makes sense to further
evaluate also the disqualified methods according to the level of their correctness. The criterion

rµ,i :=
∆µi
σi

(4.10)

provides how many standard deviations the calculated is off the real value. Depending on this
ratio one can decide whether a method should still be (under reserve) accepted nontheless. It
is just (4.9) where rµ,i = 1. Mind that judging from this ratio alone can be very misleading!
Accpeted methods according to (4.9) need to be ranked by the criteria mentioned above. (4.10)
only gives a general notion about the method’s accuracy.

4.3.3. Comparison of the methods

The contents and ideas presented above will be exemplified on the basis of such a blind test –
namely blind test “A”.

After a standard decay normalization, which provided a value for N0, an oscillation was
undoubtedly visible in the signal. Fits were performed to this normalized signal as well as to
differently processed versions of it like the respective autocorrelation function or differently

40 The fitting was performed with Gnuplot 5.2 using the basic syntax fit 〈fit function〉"〈source file〉" using 1:2:3

yerr via 〈fit parameters〉. 〈fit function〉 is a user-defined function using the free fit parameters 〈fit parameters〉 and
the entries of the third column of the data file (uncertainty) are used as weights. The deviations of the listed fit
results are Gnuplot’s “asymptotic standard errors” and are only useful for qualitative purposes, since they are
considered “over-optimistic”. Thus, the given deviations do not determine confidence levels [25].

92

Figure 13 Original (left) and normalized (right) signal of blind test “A”. The oscillation is clearly visible
in the normalized signal and already faintly suggested by the original signal. This speaks for a quite
pronounced amplitude of a possible effect.

smoothed or accumulated versions.

Normalized signals can provide information about amplitude ε, frequency ω and phase χ
of the effect and so do accumulated and smoothed signals. An autocorrelation signal will
just provide the frequency of the effect. The model parameter is then calculated by using the
amplitude value gained from the signal before autocorrelation.

The known parameters of this blind test (seed: 1316160400) were:

T = 5a

∆t = 3600s = 1h

λ = 2.08396 · 10−9 s−1

From these,

u = e−λ∆t = 0.999992498

ζ = 1−u = 7.5022278 · 10−6

can be calculated analytically.

Before presenting the numbers, the most important findings shall be discussed:
First of all, it is very important that a clear evaluation of techniques is only possible if the

exact result is known, which is never the case in a real measurement situation. Thus, the results
gained by the least amount of processing involved should be given the most weight.

Secondly, one needs to be aware of what parameters a given analysis method might distort.
Smoothing, for instance, potentially increases the accuracy of a frequency fit, but quickly spoils
the results of an amplitude fit.

The following processing was performed:

• (1) standard decay normalization,

• (2) autocorrelation of the normalized signal,41

41 Note that, unlike in section 4.2.1 Increasing sensitivity by standard decay subtraction/normalization (p. 77), the
autocorrelation of the normalized signal worked just fine.

93

• (3) (4) smoothing with two values σ∆t where nσ = 2 and respective

• (5) (6) autocorrelation of the smoothed signals,

• (7) (8) normalization of accumulated versions of the original signal for two values n∆t and
respective

• (9) (10) autocorrelation of the accumulated, normalized signals.

The true values (denoted by a tilde) of the parameters of interest read:

Ñ0 = 1012

ε̃ = 10−5

ω̃ = 1.9910638 · 10−7 rads−1

ã = 9.554215 · 10−4

Of course they were looked up after the calculations. The number of initial nuclei is computed
in the course of the normalization and reads N0 = 1.00000558 · 1012 ± 1.89 · 106.42 Fitting to the
normalized signal, we obtain (in brackets the coefficient of variation, i.e. the relative standard
deviation σ/µ, is given)

ε1 = (1.0017± 0.0028) · 10−5 (0.28%)

ω1 = (1.9910± 0.0006) · 10−7 rads−1 (0.03%)

a1 = (9.569± 0.027) · 10−4 (0.28%)

The frequencies ωi and the error are taken directly from the Gnuplot fit, whereas the ampli-
tude εi and the model parameter ai are computed via (4.6) and (2.30). The necessary values for
that (like ξi and φi = ωi∆t) are also computed or taken from the fit. Consistency is indicated by
the fit result ζ1 = (7.502156± 0.000014) · 10−6 (0.0002%) – this held true for all cases.

Autocorrelation yielded

ω2 = (1.989517± 0.000024) · 10−7 rads−1 (0.001%)

a2 = (9.563± 0.027) · 10−4 (0.28%) .

Smoothing with σ∆t,3 = 168 ∧= 7d yields43

ε3 = (9.9391± 0.0011) · 10−6 (0.01%)

ω3 = (1.991051± 0.000024) · 10−7 rads−1 (0.001%)

a3 = (9.496± 0.001) · 10−4 (0.01%)

and smoothing with σ∆t,4 = 672 ∧= 4weeks results in

ε4 = (9.13186± 0.00045) · 10−6 (0.005%)

ω4 = (1.990844± 0.000012) · 10−7 rads−1 (0.0006%)

a4 = (8.72382± 0.00043) · 10−4 (0.005%) ,

42 The sinusoidal contribution distorts the accuracy of the result. For standard decay signals, the computed values
for N0 are consistent.

43 The mathematical sign “∧=” is used because the two sides are not of equal dimension, but it means (in this case)
that using the smoothing class with a parameter value of 168 corresponds to averaging over a time window of
7days for the given ∆t.

94

which brings in already quite considerable deviations from the true values of ε̃ and ã. Notice
that, at the same time, the ostensible accuracy increased by up to three orders of magnitude!
Also the results for the autocorrelated signals show “wrong” results of high certainty.

ω5 = (1.989541± 0.000022) · 10−7 rads−1 (0.001%)

a5 = (9.489± 0.001) · 10−4 (0.01%)

ω6 = (1.98945± 0.00019) · 10−7 rads−1 (0.001%)

a6 = (8.71773± 0.00044) · 10−4 (0.007%) .

Accumulation is not an analysis method in that sense and does not process the data other than
simulating a higher integration time ∆t by summation providing the statistical advantages of
such a measurement. It turns out indeed that it does not introduce the disadvantages of the
smoothing procedure presented above. To make the procedures comparable, n∆t,7 = 336 was
chosen such that n∆t

∧= σ∆tnσ , meaning that both graphs cover the same time range. Mind that
∆tacc = n∆t∆t has to be used for further calculations with the accumulated signal.

ε7 = (9.994± 0.023) · 10−6 (0.23%)

ω7 = (1.99096± 0.00051) · 10−7 rads−1 (0.03%)

a7 = (9.548± 0.022) · 10−4 (0.23%)

For n∆t,8 = 1344 we obtain

ε8 = (9.993± 0.027) · 10−6 (0.27%)

ω8 = (1.99071± 0.00063) · 10−7 rads−1 (0.03%)

a8 = (9.546± 0.026) · 10−4 (0.27%) .

The results of the autocorrelation are:

ω9 = (1.98947± 0.00045) · 10−7 rads−1 (0.02%)

a9 = (9.541± 0.022) · 10−4 (0.23%)

ω10 = (1.9891± 0.0011) · 10−7 rads−1 (0.05%)

a10 = (9.538± 0.027) · 10−4 (0.28%) .

Applying the criterion (4.9) qualifies the following methods, ranked by increasing standard
deviation and (if necessary) increasing absolute error:

• ε7, ε8 and ε1

• ω3, ω7, ω1 and ω8

• a7, a8, (a2), (a9), a1 and (a10)

The results in brackets denote that the respective value was calculated by using a value not on
the list of accepted methods (see below).

As we can see, the autocorrelation (2) (5) (6) (9) (10) never yields satisfying results for the
effect’s frequency ω. Thus, it should only be engaged in cases where a periodicity can not be
assuredly detected in the signals before autocorrelation analysis. However, (9) and (10) almost
fulfill the criteria since rω,9 = 3.54 and rω,10 = 1.79.

Interestingly enough though, exactly those “faulty” frequencies obtained from autocorrela-
tion signals allowed for proper determination of the model parameter a, except for those of

95

the smoothed signals (5) and (6). While ra,5 = 65.22 and ra,6 = 1901.10, the other ratios for
the autocorrelation methods are well ra,i < 1 (i = 2,9,10). This is probably by virtue of the
parameter ε being of sufficient accuracy: rε,1(2) = 0.61, rε,7(9) = 0.26 and rε,8(10) = 0.26 as op-
posed to rε,3(5) = 55.36 and rε,4(6) = 1929.2.44 Mind also that the inaccuracy of the frequency in
these cases, as mentioned before, is not strikingly bad; rω,9 = 3.54 and rω,10 = 1.79 almost fulfill
the selection criterion, merely rω,2 = 64.45 is quite high but presumably compensated for by ε1(2).

Soft smoothing (3) might be acceptable for frequency fitting (∆ω3 < σω,3, rω,3 = 0.53). In
this particular case it even yielded the best result for the frequency approximation, although
the error introduced in the amplitude is already so considerable (rε,3(5) = 55.36) that the result
was not fulfilling the criterion anymore (ra,3 = 58.22). The autocorrelation (5) of that signal
worsened the results (rω,5 = 69.22, ra,5 = 65.22).

Heavy smoothing (4) brings unacceptable distortion to the amplitude evaluation (rε,4(6) =
1929.2) which renders the final result useless (ra,4 = 1931.15), although the frequency deviation
is not affected that badly (rω,4 = 18.32). Interestingly, the autocorrelation signal (6) slightly
augmented the results in this case (rω,6 = 8.49, ra,6 = 1901.1).

These figures support the findings of section 4.2.3 Comparing the effects of smoothing and
accumulation (p. 87) in that smoothing affects the amplitude of the processed signal.

Although various combinations of methods (even with “insufficient” interim results) yield
values fulfilling condition (4.9), the results obtained by a pronounced normalized signal or
by accumulation and normalization should be considered with highest priority. This is also
surmounted by the fact that methods (1), (7) and (8) are the only ones providing all parameters
while satisfying the selection criteria. Furthermore, the autocorrelated (9) and (10) also use
signal accumulation and miss the criteria only very narrowly.45

Generally, the relative errors (4.8) consistently follow (with minor deviations) the discussed
ranking of methods.

The relative errors δεi range from δε7
= 0.06% to δε3

= 0.61%; only method (4) delivers the
worst result of δε4(6)

= 8.68% by virtue of the influence of the applied smoothing.
The results for ω are all extraordinarily good judging from the relative errors alone: We find

values from δω3
= 0.0006% to δω10

= 0.0986%. Note that, however, only four of them fulfill
criterion (4.9).

Since the parameter a is derived from both ε and ω, the relative errors unsurprisingly vary
from δa7

= 0.07% to δa5
= 0.68% with the expected exception of δa4

≈ δa6
≈ 8.7%.

After all it needs to be emphasized that all methods (apart from the obvious exception of
the smoothed signal in terms of amplitude) deliver results with a relative error well below 1%,
even though a considerable number of them fails to fulfill the criterion (4.9), which is used to
judge their ostensible systematic accuracy.

The hand-written full evaluation of blind test “A” can be found in appendix C Evaluation
notes for blind test “A” (p. 119).

44 The notation rε,1(2) just emphasizes that method (2) does not provide a value for ε and that the value from
method (1) is used instead as would seem natural; etc.

45 In comparison to unweighted fitting (provided in the CD attachment), the results changed only very slightly, often
yielding almost exactly the same values. The “ranking” of the methods is not changed either, apart from the a
values, however, the presented qualitative findings remain valid. Interestingly, the results obtained by methods
using the autocorrelation improved slightly when compared to unweighted fitting, which encourages to further
investigate the uncertainty propagation of the autocorrelation analysis method. Also, the accumulation results
seem to have slightly improved. In contrast, the results of the purely normalized signal worsened ever so slightly.

96

4.3.4. Characteristics of standard decay

When searching for “non-standard” physics, one has to be very careful not to be fooled by expec-
tations. Thus, it is very important to know the characteristics of standard decay and how such a
signal looks like when the presented analysis methods are applied. Blind test “B” was assumed
to and turned out to be a standard signal. Figure 14 demonstrates the effects of smoothing and
accumulating such a signal. Additionally, the respective autocorrelation functions are given.
Especially the smoothed signal might put oneself into assuming a deterministic oscillation.
However, the irregularities in periodicity and particularly the great fluctuation in amplitude
speak against such a finding.

Figure 14 This figure shows a series of processings of a standard decay signal (blind test “B”). The left
column shows the normalized signal, a smoothed version (σ∆t = 336, nσ = 2) and the normalization of an
accumulated version (n∆t := σ∆tnσ + 1 = 673). The right column depicts the respective autocorrelation
function. ∆t = 3600s and after accumulation n∆t∆t = 2419200s. The data points were connected
because only the characteristics of the graphs are of interest.

97

4.3.5. Parameter estimation by reconstruction

As luck would have it, another interesting strategy can be demonstrated on the basis of blind
test “C”: The reconstruction of the source signal by using the simulation framework in order to
estimate the effect parameters. If the analysis of the given signal does not allow for comprehen-
sive parameter determination, missing values may be narrowed down roughly by “sculpting”
an artificial signal by varying the unassigned parameters.

The known parameters of this blind test were like in blind test “A” (seed: 561038530):

T = 5a

∆t = 3600s = 1h

λ = 2.08396 · 10−9 s−1

From these,

u = e−λ∆t = 0.999992498

ζ = 1−u = 7.5022278 · 10−6

can be calculated analytically.

The first trials showed that neither the subtracted or the normalized signal displayed any
sign of periodic fluctuation and nor did the autocorrelation function of the subtracted signal.
Merely the autocorrelation graph of the normalized source signal might give a hint on a obscured
periodicity. The mentioned graphs are depicted in figure 15.

However, upon accumulation of the source signal, the autocorrelation of both the subtracted
and the normalized signals revealed a periodicity. Interestingly enough, the one of the sub-
tracted signal provided the most workable result with no exponential slope in contrast to the
normalized signal.

The source signal was accumulated with n∆t = 336. A fit to the autocorrelation function
of the afterwards subtracted signal yielded

ω1 = (2.009± 0.033) · 10−7 rads−1 (1.64%) .

The subtraction algorithm provided a value for the initial number of nuclei: N0 ≈ 1012. Accu-
mulation with n∆t = 672 gave analogously

ω2 = (2.00± 0.03) · 10−7 rads−1 (1.5%) .

In both autocorrelation functions the first value (which is always ψ(0) = 1) was set to NaN in
order to facilitate the fitting process.

Even though the autocorrelation analysis provided a value for the effect’s frequency, the normal-
ized signal did not show a clear oscillation. In a daring attempt to retrieve a value for ε from it
nonetheless, a fit was performed with fixed ω1. The resulting value

ε1 = (5.60± 0.086) · 10−5 (15%)

seemed totally wrong (judging from experience of the former blind tests).

Another approach proved successful: Knowing N0 and ω, the only missing parameter was ε.
The simulation framework was now used – with constant seed 561038530 – to create test signals

98

with the known input parameters (∆t′ = 336∆t according to the accumulation which revealed
the signal’s periodicity) but varying ε.

Starting from a relatively high value at which the oscillation was clearly visible in both the
subtracted and normalized signal, ε was reduced step by step until any trace of the oscillation
disappeared. This was the case at ε ≈ 4.0 · 10−7 below which the oscillation could not be
unequivocally seen in the processed source signal anymore (but indeed in the autocorrelation
plots). This naturally marked the upper limit of ε, since in the studied blind test the processed
signals did not show any clear sign of oscillation either but the autocorrelation plots did indeed.

The lower limit was determined by steadily reducing the value of ε until even the autocorrela-
tion functions did not show a clear sign of periodic oscillation. This was the case at ε ≈ 1.0 ·10−7.
Refer to figure 17.

Especially for finding the lower limit, all four graphs ∆Nsub, ∆Nnorm, ψsub and ψnorm (which
did not show the pronounced slope) were inspected.46

This procedure provided an estimated range of

ε ≈ (1.0− 4.0) · 10−7 .

The true values read:

Ñ0 = 1012

ε̃ = 10−7

ω̃ = 1.9910638 · 10−7 rads−1

ã = 9.554215 · 10−6

The estimation of ω is very good and ε is also surprisingly accurate (given that it could not be
taken from the source signal).

These simulations were performed with ∆t′ directly. Instead, simulation with ∆t and sub-
sequent accumulation would have been the approach to depict the original situation more
correctly. This method introduced a slight exponential slope in the autocorrelation of the nor-
malized signal (in accordance with the findings of the original examination), however, rendered
the autocorrelation of the subtracted signal slightly more workable.

In retrospect, I would have gone down as far as ε ≈ 8 · 10−8 in estimating the lower boundary.

Figure 16 shows the accumulated, normalized/subtracted source signals and the respective
autocorrelation functions. The frequency of the effect was taken from the autocorrelation graph
of the subtracted signal.

Also, in this case happened what became apparent in various situations of testing: The quality
of the results varies. It can happen that, with the same set of parameters, one simulation shows
a known periodicity and the next one simply does not as demonstrated in figure 18. This is a
strong argument supporting the need to perform multiple measurements in parallel, since very
subtle effects may not always become visible.

46 For instance, I would have set the lower limit only to ε = 1.5 · 10−7 judging from ψsub alone.

99

Figure 15 This figure shows the normalized/subtracted source signal of blind test “C” in the left
column and the corresponding autocorrelation functions in the right column. The graphs look very
similar and do not give away a possible obscured oscillation except for the autocorrelation graph of the
normalized signal (top right), which suggests a periodicity. The difference in the two autocorrelation
graphs is striking, given that the respective underlying signals show no visible difference in their quality. It
is also noteworthy that the character of ψnorm(τ) (compare with figure 16) does not significantly change
throughout the signal processing. The data point ψsub(0)=1 is cut off at 0.1 for reasons of presentability.

100

Figure 16 The left panels show the accumulated (n∆t = 672) and normalized/subtracted source signal
of blind test “C”. They do not give away the hidden periodicity T̃ = 1a which is clearly visible in the
autocorrelation graph of the subtracted signal (bottom right), though. The gray curve is the sinusoidal
fit for which the value ψ(0) = 1 was omitted and from which ω was taken. The autocorrelation graph of
the normalized signal (top right) suggests the oscillation, but shows a slope.

101

Figure 17 This figure shows exemplary plots of the ε estimation procedure (blind test “C”) described
in the main text. The first row shows graphs for the upper limit of ε ≈ 4.0 · 10−7 – the subtracted signal
starts to get obscured, however, the oscillation in autocorrelation function is obvious as expected. The
second row shows graphs for the lower limit of ε ≈ 1.0 · 10−7 – the subtracted signal shows no clear
oscillation anymore and also the oscillation of the autocorrelation graph is rather subtle.

Figure 18 This plot shows the autocorrelation functions (shifted along the y axis for better presen-
tation) for two simulation runs. Both graphs use the same parameters N0 and ω obtained by the
reconstruction and ε = ε̃ = 10−7. The lower (thick) graphs use the original seed of blind test “C”. The
upper (thin) ones are generated with another seed (1800565643). Where the oscillation is clearly visible
in the original data, it is invisible in the newly generated data set. This shows that two simulations with
the same parameters can lead to very different results.

102

5. Experimental setup

This section will discuss the experimental setup at the Atominstitut which was “spontaneously”
installed to investigate the effects presented in [1] etc.

As already pointed out in the introduction it is important to take note of the fact that the
experiment was not actually designed and therefore cannot achieve results of demanded accuracy.

Early parts of the thesis dealt with finding ways of refining the available setup and performing
a small series of measurements. However, since, very quickly, the focus of the work shifted to the
establishment of the theoretical background and the establishment of the simulation framework,
this section touches on several aspects of a possible experimental setup and its improvements
only very briefly. The actual measuring process and the evaluation of the gathered data was not
part of the thesis.

The contents of this chapter rely mostly on personal communication with Dieter Hainz and
Erwin Jericha and very basic introductory experimental work under their guidance.

5.1. Remarks on a real measurement

This section will briefly point out some basic principles about measuring activity of a radioactive
sample. Generally, a detector detects the decay products of a radioactive decay process. Disinte-
gration can happen via α-, β- and γ-decay. Different detection techniques are used for different
particles. The detector used in this setup is a photon detector. As shown in [10] and [11] a
manifold of measurement techniques is available and should be exploited when investigating
such a controversial effect. Even more so considering the fact stressed by [16] that there is no
reason to assume that all nuclides should be equally affected.

5.1.1. The detector and further influences

The detector is the crucial, non-trivial component in a real setup. In the simulation, its principle
of operation has been entirely ignored! Apart from the mentionable fact that it

• comes with an inherent instability and thus inaccuracy (to a certain extent),

• wears out after a certain time (and needs to be maintained, vacuum),

• shows an energy dependent efficiency ε(E),

• saturates at very high count rates and

• demands continuous cooling, which automatically implies a constant interference with
the setup,

the devices necessary for measuring (all coming with their own errors) and the working principle
of the detector itself contain a significant effect: dead time.

As opposed to the so-called live time, the dead time is the time during which a detector did not
register any events. Live and dead time put together will sum up to the real time (measurement
duration).

A parameter fundamentally affecting the resulting dead time is the so-called shaping time
of the spectroscopic amplifier, which is set by the experimenter. Every photon the detector
registers triggers an electrical signal, which has to be amplified and formed into a pulse whose
height corresponds to the energy of the detected photon. The time to build up the pulse is
exactly the introduced shaping time. The longer the shaping time, the better the resolution.
Note, though, that no signal can be processed during (at least) the defined shaping time of a
preceding count. Thus, a high shaping time may ignore a high number of counts if the sample
is very active.

103

Furthermore, the effect of saturation has to be considered for very high count rate; a state in
which the detector provides no usable signal, due to a too large number of “incoming” events.

As pointed out in section 2.3.6 The solid angle in a real measurement setup (p. 36) the posi-
tioning of the sample and the detector relative to each other has a major impact on the count
rate. In case of a germanium detector the area of the detecting unit is that of the semiconductor
crystal’s cross-section. The efficiency is determined by the length of the crystal (high-energy
photons may pass the entire crystal before depositing their energy).

The back end of the measurement machinery is formed by a computer program, which evaluates
the count numbers of a specific energy interval, so-called γ-lines, which are characteristic for
the deployed sample(s). Those lines are the subject of interest. However, the lines of a certain
energy range have to be separated from other lines in their vicinity (which should not be a
big problem, if proper samples have been chosen) and from the Compton background (due to
Compton scattering of the incident photons which leave the crystal before their total energy is
deposited), whose intensity grows with the growing energy of a γ-line.

More precisely speaking, a measurement provides a histogram of events assigned to a set of
channel numbers. Those channel bins represent the range of detectable γ-energies. The number
of counts of several adjacent channels add up to the total number of events ascribed to a γ-line
(including background). The area of this line (above the background) represents the γ-intensity
in question.

Gaining triplets of data, namely

(energy of γ-line, peak area, measuring time) ,

is the task of an evaluation software for which it uses its own algorithms. Although this does not
directly effect the detector, it shall be mentioned in this context.

Right at this point, the simulation described in section 3 Simulation (p. 47) cues in and
provides data of an imaginary measuring cycle (the peak areas are represented by the count
numbers ∆N).

Generally, all devices and the detector shall be called the hardware, next to the software and
the sample.

5.1.2. List of parameters

Concluding the previous chapters, a setup offers several degrees of freedom, some of which can
be controlled by the experimenter (marked with ◦), divided into roughly three main groups:

• sample (activity)

◦ decay constant λ

◦ order ofN0

• detector and hardware

◦ shaping time

– dead time

– efficiency ε(E)

– accuracy of the detector

– stability (linear, fluctuating, . . .)

• measurement (resulting in a data set for analysis)

104

◦ yield (count number ∆N) in dependence of the distance d between detector and
sample (factored in by Ω(d))

◦ measurement duration T

◦ integration time interval ∆t

◦ accuracy via current count number ∆N

– (software and algorithms)

5.2. Current setup

5.2.1. General description, signal chain

A measurement set up consists of three important parts: The sample, the hardware and the
software. The hardware includes the detector, whose running requires a high voltage supply
and constant cooling, and all devices to amplify and transform the analog signal of the detector
into a digital signal. The signal is fed to a computer, on which a piece of software evaluates
the data. The sample is mounted in front of the detector, both sitting on a rack, encased in an
absorbing lead shielding.

The detector has a built-in pre-amplifier. The jagged signal of a registered count provided
by it then gets shaped and boosted by the main amplifier. The duration of building the pulse is
called shaping time – any event during the shaping time will be ignored. The higher the shaping
time, the higher the resolution but the the more events are potentially lost. The analog signal is
then converted to a digital signal. The multi channel analyzer then associates the pulse height
with a channel. The former is a measure of the energy of the original photon which caused the
signal. A sprectrum is thus a scaled probability distribution of the pulse heights.

A software evaluates the registered countrates. An energy calibration is necessary to associate
a channel number with an energy value. It is performed with the aid of a calibrated test sample,
the energies of the detected pulses of which are known.

The setup is shown in figure 19.

Figure 19 The current setup is pictured on the left side. The right image shows an inside view of the
setup. The sample is mounted in the front, the detector window is visible in the rear.

5.2.2. Equipment used (samples, hardware and software)

Samples

The samples currently at our disposal are:

• Ba-133

• Am-241

105

• Cs-137

• Co-60

One sample at a time can be mounted in a custom made plastic mount. There are three slots in
different distances from the detector for the mount to be placed in.

Hardware

The setup installed in 2012 uses the following hardware components:

• high-purity germanium solid-state photon detector47 [26]

• built-in preamplifier

• liquid nitrogen cooling (refilled once a week)

• high voltage supply “Ortec 454 Bias Supply” at U = −2.9kV

• amplifier “Ortec 570 Amplifier”

• analog-to-digital converter (ADC) “Canberra FAST ADC 8077”

• Multi Channel Analyzer (MCA-527)48 [27]

• the personal computer of Fred Feuerstein (ATI 112-39) with an ancient interface necessary
to communicate with our punch card like output card insulated with a high-end A4
paper sheet, constantly losing track of time in its longing for the bygone days before the
Gregorian calendar. . . Joking aside: The setup really needs a “better” computer (one that
features a USB port higher than version 1.0, if possible).

During maintenance work the high voltage supply “Ortec 660 Dual Power Supply” was replaced
with the device listed above. Be sure to never abruptly switch on or off the high voltage supply!

Software

The evaluation software in use is Genie 2000 [28, 29].
It is necessary to perform an energy calibration in the course of which the 8192 channels of

the MCA are associated with a certain energy. One can select regions of interest (ROI) around a
peak in the spectrum. These ROIs will be included in the automatically generated evaluation
report. Said report features information about the number of counts etc. at specific energies.

For the time of a computer damage, alternative software was used: WinSPEC for inspectors

(*.spe files). However, it turned out that it is insufficient for our purposes. Among other issues,
the energy calibration parameters provided by the program greatly differed from those used for
spectrum evaluation by the program itself! The program’s algorithms seemed too incomprehen-
sible and unstable. The measurements took place during a damage of the evaluation computer.
In my personal opinion, the measurements and the software should be paid no attention at all.
Efforts of combining the interim measurements with the past and future measurements would
be a precarious task and are utterly futile.49

New gear

In the meantime, the institute afforded a new piece of hardware: A digital signal analyzer
“Canberra DSA-LX” replacing the aforementioned high voltage supply, the amplifier, the ADC
and the MCA. This also required a software update to Genie 2000 V3.3.

47 The data sheet of this approximately 30 year old detector is not available anymore.
48 This particular device could also function as an amplifier and ADC, but is used as a MCA only (direct mode).
49 The damage lasted from 16.06.14 until 08.07.14. No important measurements were performed. The detector was

serviced shortly afterwards.

106

5.2.3. Detector service

After the computer damage, a detector service was performed in the time from 18.07.14 to
23.07.14. At first, the detector had to slowly warm up until it reached room temperature. Then it
was heated to TC ≈ 50◦C crystal temperature (50V→ Theat ≈ 80◦C) and evacuated to a pressure
of p ≈ 2 · 10−6 mbar over three days.

5.3. Problems and possible solutions

This section is devoted to the description of several design flaws and possible solutions, which
must be considered carefully in the course of a new setup. High-precision measurements
have been performed by [8] and [10] with astonishing effort. Considering the design of their
experiments it is unimaginable to allow for high-precision analysis of the data gathered by the
current setup.

Lead shielding

The shielding consists of rectangular lead elements which can be assembled according to the re-
quirements of the experimental setup. Currently, it is arguably not meeting these requirements
and does not provide low-level shielding. The radiation source and the detector are framed
by said lead elements and covered with a sliding lid that also has a lead inlay. There is a 8cm
measuring gap between the “lead-walls” and the cover of the setup. This all round gap could be
a problem.

I propose to either

⇒ close the gap with additional lead elements, or

⇒ increase the height of the lead shielding to a reasonable extent.

Nearby experiments and room access

Out of necessity, the experiment shares the room with multiple other experiments but their
influence on our own measurements hasn’t yet been estimated. The closest experiment – which
uses radiation sources as well – is installed less than one meter away. Considering the very
possibly insufficient shielding, a resulting effect can’t be ruled out and has to be taken into
account. Additionally, other experimenters enter the room randomly to maintain their own
setups. Neither their actions, nor the resulting influence on our measurements can be captured.

⇒ In the best case, a separate room for the experiment is provided. At least the distance of
the experiments has to be increased.

⇒ No matter if further separation is feasible or not, a “room journal” should be installed to
backtrack events, if necessary.

⇒ For some reason we frequently found the setup opened several centimeters. We need to
install a clasp to prevent that from happening.

Background noise

All the conditions mentioned above yet only strengthen the need for the – until now omitted –
gathering of background noise data.

⇒ Collection of data with and without a sample is essential to judge over the impact of
each of the possible sources of disturbances. The latter would give an impression of the
background noise.

107

Triga reactor activity – neutrino interaction

Neutrinos – as they are produced by reactors – that originate from the spatially separated Triga

reactor could effect the decay of the nuclei in the used samples. The distance of the reactor and
the shielding provided by the facility are known thanks to construction plans. Knowledge about
the precise run time of the reactor is essential, though.

⇒ The reactor journal has to be at our disposal during and after the evaluation of the data.

⇒ The influence of reactor neutrinos on the measured spectrum should be examined.

Cooling

The nitrogen cooling system has to be maintained on a regular basis to provide constant thermal
conditions. The interval of this maintenance work has to be set with respect to the answer to the
following question:

⇒ What difference of the temperature does show up (and how) in the obtained data?

Vibrations

The distance between sample and detector plays an important role. It has to be examined how
far vibrations and convulsions cause changes of said distance and thus falsify the measured
spectrum.

⇒ Evaluation of the solid angle change of the detector depending on changes of the distance
between detector and sample.

⇒ Actively disturbing the setup by vibrations and examining the impact.

Monitoring

The detector feeds a computer via an interface with the obtained data. The clock of this
computer tends to gain time continuously. Furthermore, there’s a room thermometer to monitor
the thermal conditions of the room. This device is not yet connected to the computer system.

⇒ It has to be decided whether (and how) this time difference is taken into account.

⇒ The temperature device has to be connected to the monitoring system.

⇒ Ambient pressure and humidity monitoring needs to be added.

Sample mounting

Currently, there is one custom made sample mount (plastic), which can hold one sample at a
time and be inserted into three fixed slots. In a measurement with two samples, the second was
stuck on the mount with duct tape.

⇒ There has to be built a sample mount which can hold more than one sample.

⇒ There should be made at least a second mount. If the plans of the old mount do not exist
anymore, a new one should be designed.

Effect of various influences Before a new setup is established we should use the opportunity
to do measurements under various disturbances and evaluate their impact on the resulting
spectra. Since, according to [30], a cathode ray tube monitor can effect a measurement, it was
replaced with an LCD screen on 23.07.14.

Additionally, measurements with an external oscilloscope have been made, showing intense
noise – up to half the height of a regular pulse – which we could not backtrack. Shortly after, a
detector service was performed. All cable connections should be thoroughly checked in a new
setup! So should the sensitivity to vibrations by touching the detector etc.

108

5.4. Running the measurements

The longtime measurements were performed with ∆t = 20min = 1200s. A Ba-133 sample was
engaged.

Starting a measurement is fairly simple. The Genie 2000 can show the measuring process in
real time or be programmed to measure for a certain period of time. Of course, the software is a
very powerful tool!

5.4.1. Starting measurements

Apart from controlling via the software, a measurement can be launched via command line
options. A *.bat file to start a measurement could look like:

FOR /L %%J IN (1 1 〈end index〉) DO (

STARTMCA DET:POLYGAM /REALPRESET=〈seconds (integer)〉
WAIT DET:POLYGAM /ACQ

MOVEDATA DET:POLYGAM 〈full/path/to/destination/filename without extension〉%%J.CNF
)

REALPRESET is the measurement real time ∆t (real time = live time + dead time). %%J represents
the running index and enables the start of several measurements in a row. It can be included
into the file name (note that there are no preceding zeros – for a consistent file name scheme
multiple loops are necessary). Note that Windows paths are written \.

5.4.2. File formats, report

The *.CNF files hold the channel data of the measurement and can be evaluated by the Genie

2000 software. A report – an analysis of the registered events – can be output, which provides
information about the gamma lines in the spectrum, the energy and the peak area. To obtain
the report one has to run:

〈path/to/Genie 2000’s/〉Analyze.exe 〈path/to/source file〉.CNF
/SEQ=〈path/to/Genie 2000’s/〉Peak_sho1.asf > 〈path/to/destination file〉.TXT

An exemplary report is provided in appendix B Genie 2000 sample report (p. 117).

109

110

6. Conlusion and outlook

6.1. Summary of findings

This thesis used the example of time dependent radioactive decay due to a postulated influence
of the sun on nuclear decay rates ([1, 4] etc.) as an example to investigate by theoretical discussion
and computer simulation to which extent (periodic) measurement signals of small amplitude
can be isolated from a dominant (statistical and systematical) background.

Although the experiment pictured in 5 Experimental setup (p. 103) launched by Erwin

Jericha originally aimed at refuting claims about such effects, this work is not trying to sur-
mount arguments in favor of or to disprove such an effect by any means. It merely provides a
framework which can be used and extended to investigate phenomena of such or similar nature.
Considering the efforts being made in order to test these assumptions ([8–11] etc.) it is unlikely
that data from this setup can deliver results of statistical significance. Nonetheless it may prove
interesting to analyze these data using the framework – something which lies beyond the scope
of this work.

In this text, simple physical models were discussed and implemented in the simulation frame-
work. Several analysis methods were introduced, programmed and used on data sets which
were created using the simulation.

The manifold of free parameters – the attributes of the sample, the parameters of the physical
model and the measurement – makes it very hard to find all relations between them; especially
because they often are of extreme (and extremely different) magnitudes packed in rather com-
plicated equations.

The most suitable model to describe sinusoidal influence of the sun turned out (in the frame of
this thesis) to be the sinusoidal decay constant model, which is used most of the time.

Where the standard decay subtraction method can help to find oscillations in a signal, only
the standard decay normalization method can provide values for the effect’s amplitude ε.

Interestingly, the autocorrelation (which at first seemed to be the ultimate tool for finding
such hidden periodic fluctuations) sometimes inexplicably fails in the most obvious cases of
periodicity in a normalized signal. The reason for that is unclear.

Yet again, this strengthens the following inference which came up multiple times during the
theoretical, programming and testing work: All available (and new) tools should be used to
analyze a signal; there is no such thing as an analysis recipe, it is often a matter of trial and
error. Automatized analysis, at this point, seems to be highly unrealistic.

The analysis of blind tests showed that the means presented in this thesis can potentially
provide good results and find amplitudes of ε ≈ 10−7. However, such figures always depend on
other parameters such as N0, λ etc.

Testing of and working with the analysis classes showed that it is best to reduce the signal
processing to a minimum since it potentially introduces systematic errors. Furthermore, in
case of a real measurement, multiple measurements should be performed in parallel due to the
long measurement duration. It can be demonstrated (multiple simulations with unchanged
parameters but different P-RNG seeds) that the results can look very differently in case of
extreme parameter values (such as very low ε, for instance).

6.2. Other applications

As mentioned before, time dependent radioactive decay was merely an example to build this
work on. Other situations in which the experimenter is investigating a small (periodic) signal
superimposed on a dominant background may also profit from this framework. Its extensibility

111

allows for the implementation of other physical models.
For instance, the analysis of interference spectra of low contrast in neutron interferometry

experiments [31] may provide application for the framework.
Another example could be the analysis of high-resolution measurements of the neutron

intensity of the “white beam” at the Triga reactor at the Atominstitut, which were performed by
time-resolved neutron detection with diamond detectors.

6.3. Possible next steps. . .

After concluding the work and findings of the thesis in hand there remains a manifold of tasks
to be tackled in the future. This section will briefly list possible next steps in the continuation
of this work.

6.3.1. Physics and math

• The models of “discrete” and rectangular influences have not been implemented yet. It
stands to reason to include them in the simulation, since the former represents the effects
discussed in [4] and the latter describes the Triga reactor of the Atominstitut as a possible
source of disturbance in any real measurement at the facility.

• The findings in [1] might encourage to pursue the influence of a free phase parameter in
the models.

• New mathematical analysis tools should be implemented. Especially the autocorrelation
needs to be improved: At the time being it is unclear why it sometimes fails in finding
obvious oscillations in a signal of very small values. Additionally, more sophisticated
implementations (such as in Matlab) might circumvent the restriction τ̂max =Mtot/2.

• Fourier analysis of a measurement signal can also reveal periodicities in their spectrum.

6.3.2. Simulation

The simulation (as every computer program in the past, present or future) can be enhanced in
many regards. First, some design issues will be listed.

• The models, parameters and utility classes are not consistently separated in their own
translation units. It stands to reason to capsule the core of the framework (being the
abstract parent classes, the sample class, the conversion functions and the utility classes)
in their own translation units. New components like actual models or analysis methods
should then be added in their own units (such as currently the analysis classes) as well.

• The aforementioned separation and structure might be supported by dedicated namespace
declarations.

• The current documentation mechanism should be preserved, however, until now, the data
columns of the files have no table header. Although the ample documentation within
the file leaves no doubt about its contents, such table headers would indeed be “nice” to
have. The implementation is not trivial, since it would demand some kind of updatable
member field in the FileDoc class (also taking care to delete old table headers in chains of
processing steps) and a mechanism to adapt to other data formats than the data3 structure.

• So far, quantities like λ were assumed to be exact in the simulation! In fact, they are not.
A new version of the simulation framework should introduce new datatype structures
allowing to assign uncertainties to a given quantity. Operator overloads could provide
basic error propagation calculations. Mind that by introducing such uncertainties any
error propagation relations can become by far more complicated.

112

• In the course of major changes to the framework, a versioning convention should be in-
cluded into the source files. Additionally, the version number should then be documented
in the data file documentation in order to avoid compatibility and reproducibility issues.

• The option to pass Data objects to an Analysis object instead of providing a File object
was not yet satisfactorily accounted for in the user feedback of the simulation.

• One might introduce a new abstract Simulation parent class to allow for more flexibility
in the choice of physical models and calculation types. In that case, class DecaySim :

Simulation could be the simulation class for time dependent radioactive decay models, for
instance.

Possible improvements of the actual contents include:

• A mechanism to switch to Poisson distributed pseudo-random numbers in the Simulation

class (or RandomNumbers class respectively) as soon as the given mean value falls below a
critical value.

• The complete uncertainty propagation of the standard decay subtraction is not yet im-
plemented and needs to be coded and tested. Given is only an approximation of the
uncertainty.

• The findings in [1] encourage the implementation of a free phase parameter in the models.

• A sliding, non-weighted average could be included as a new kernel in the Smooth class.

• A graphical interface for real-time adjustment of the parameters of (standard) decay
might help to understand the relations between them on a deeper level and is very much
encouraged. This does not need to be a direct part of the framework!

• A graphical user interface in order to use the framework more quickly in the analysis
process would be a major step, however, demands a lot of work and dedication.

6.3.3. Application

A lot more of the available blind tests should be analyzed in order to understand the possibilities
and restrictions of the framework and the investigated problem even better.

The subtraction and normalization processing should also be tested with a value for the decay
constant λ obtained from a fit, because using the correct value for λ in this tests might bias the
results. Right now, only N0 can be calculated from the data.

6.3.4. Experimental setup

After thorough investigation and proper enhancement of the current setup, new long-time
measurements could be launched.

113

114

References

[1] J. H. Jenkins et al. “Evidence of correlations between nuclear decay rates and Earth–Sun
distance”. In: Astroparticle Physics 32 (2009), pp. 42–46. doi: 10.1016/j.astropartphys.
2009.05.004.

[2] P. A. Sturrock et al. “Power Spectrum Analysis of Physikalisch-Technische Bundesanstalt
Decay-Rate Data: Evidence for Solar Rotational Modulation”. In: Solar Physics 267 (2010),
pp. 251–265. doi: 10.1007/s11207-010-9659-4.

[3] D.E. Alburger, G. Harbottle, and E.F. Norton. “Half-life of 32Si”. In: Earth and Planetary
Science Letters 78 (1986), pp. 168–176. doi: 10.1016/0012-821x(86)90058-0.

[4] J. H. Jenkins and E. Fischbach. “Perturbation of nuclear decay rates during the solar flare
of 2006 December 13”. In: Astroparticle Physics 31 (2009), pp. 407–411. doi: 10.1016/j.
astropartphys.2009.04.005.

[5] J. H. Jenkins et al. Analysis of Experiments Exhibiting Time-Varying Nuclear Decay Rates:
Systematic Effects or New Physics? 2011. arXiv: 1106.1678v1 [nucl-ex].

[6] E. Fischbach, J. H. Jenkins, and P. A. Sturrock. Evidence for Time-Varying Nuclear Decay
Rates: Experimental Results and Their Implications for New Physics. 2011. arXiv: 1106.
1470v1 [nucl-ex].

[7] E. Fischbach et al. Evidence for Solar Influences on Nuclear Decay Rates. 2010. doi: 10.1142/
9789814327688_0033. arXiv: 1007.3318v1 [hep-ph].

[8] E. Bellotti et al. Search for the time dependence of the 137Cs decay constant. 2012. doi:
10.1016/j.physletb.2012.02.083. arXiv: 1202.3662v1 [nucl-ex].

[9] J.C. Hardy, J.R. Goodwin, and V.E. Iacob. “Do radioactive half-lives vary with the Earth-
to-Sun distance?” In: Applied Radiation and Isotopes 70 (2012), pp. 1931–1933. doi: 10.
1016/j.apradiso.2012.02.021.

[10] B. Goddard et al. “Experimental setup and commissioning baseline study in search of
time-variations in beta-decay half-lives”. In: Nuclear Instruments and Methods in Physics
Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 812
(2016), pp. 60–67. doi: 10.1016/j.nima.2015.12.026.

[11] S. Pommé et al. “Evidence against solar influence on nuclear decay constants”. In: Physics
Letters B 761 (2016), pp. 281–286. doi: 10.1016/j.physletb.2016.08.038.

[12] J. H. Jenkins, D. W. Mundy, and Ephraim Fischbach. “Analysis of environmental influences
in nuclear half-life measurements exhibiting time-dependent decay rates”. In: Nuclear
Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors
and Associated Equipment 620 (2010), pp. 332–342. doi: 10.1016/j.nima.2010.03.129.

[13] S. Lindner. “Untersuchung der zeitlichen Stabilität einer Ba-133-Quelle”. Atominstitut
TU Wien, 2015.

[14] S. Lindner. “Statistische Analyse der Gammasprektren einer Ba-133-Quelle mit R”. Atom-
institut TU Wien, 2013.

[15] Dudenverlag, ed. Das Lexikon für Österreich in 20 Bänden. "Radioaktivität". German.
Vol. 14. 20 vols. 2006.

[16] D. E. Krause et al. “Searches for solar-influenced radioactive decay anomalies using
Spacecraft RTGs”. In: Astroparticle Physicsu 36 (2012), pp. 51–56. arXiv: 1205.7015v1
[astro-ph.SR].

[17] Dudenverlag, ed. Das Lexikon für Österreich in 20 Bänden. "Apsiden", "Astronomische
Einheit". German. Vol. 1. 20 vols. 2006.

115

https://doi.org/10.1016/j.astropartphys.2009.05.004
https://doi.org/10.1016/j.astropartphys.2009.05.004
https://doi.org/10.1007/s11207-010-9659-4
https://doi.org/10.1016/0012-821x(86)90058-0
https://doi.org/10.1016/j.astropartphys.2009.04.005
https://doi.org/10.1016/j.astropartphys.2009.04.005
http://arxiv.org/abs/1106.1678v1
http://arxiv.org/abs/1106.1470v1
http://arxiv.org/abs/1106.1470v1
https://doi.org/10.1142/9789814327688_0033
https://doi.org/10.1142/9789814327688_0033
http://arxiv.org/abs/1007.3318v1
https://doi.org/10.1016/j.physletb.2012.02.083
http://arxiv.org/abs/1202.3662v1
https://doi.org/10.1016/j.apradiso.2012.02.021
https://doi.org/10.1016/j.apradiso.2012.02.021
https://doi.org/10.1016/j.nima.2015.12.026
https://doi.org/10.1016/j.physletb.2016.08.038
https://doi.org/10.1016/j.nima.2010.03.129
http://arxiv.org/abs/1205.7015v1
http://arxiv.org/abs/1205.7015v1

[18] I. G. Hughes and T. P. A. Hase. Measurements and their Uncertainties A practical guide to
modern error analysis. Oxford University Press, 2010.

[19] Wikipedia. Stichprobenvarianz (Schätzfunktion) – Stichprobenstandardabweichung. url:
https://de.wikipedia.org/wiki/Stichprobenvarianz_(Sch%C3%A4tzfunktion)

#Stichprobenstandardabweichung (visited on 12/02/2017).

[20] S. Meyer and E. Schweidler. Radioaktivität. Naturwissenschaft und Technik in Lehre und
Forschung. B.G. Teubner, 1927.

[21] J. Tsitsiklis. Probabilistic Systems Analysis And Applied Probability – Poisson Process I.
MIT Open Courseware. 2011. url: https://ocw.mit.edu/courses/electrical-
engineering-and-computer-science/6-041-probabilistic-systems-analysis-

and- applied- probability- fall- 2010/video- lectures/lecture- 14- poisson-

process-i/ (visited on 12/02/2017).

[22] The C++ Resources Network 2016. Class template reference: std::mersenne_twister_engine.
2016. url: http://www.cplusplus.com/reference/random/mersenne_twister_
engine/ (visited on 12/02/2017).

[23] IAEA - Nuclear Data Services. Live Chart of Nuclides (Guide). url: https://www-nds.
iaea.org/relnsd/vcharthtml/guide.html#gs_hs (visited on 12/02/2017).

[24] Laboratoire National Henri Becquerel. Nucléide - Lara: Library for gamma and alpha emis-
sions (keyword Ba-133). 2016. url: http://www.nucleide.org/Laraweb/ (visited on
12/02/2017).

[25] T. Williams and C. Kelley. gnuplot 5.2 – an interactive plotting program (manual). 2017.

[26] EG&G Ortec. Gamma-X High-Purity Germanium Coaxial Solid-State Photon Detector System.
Operators Manual.

[27] GBS Elektronik. MCA-527 Digital Multi-Channel Analyzer. User Manual. 2012.

[28] Canberra Industries. Genie 2000 Spectroscopy Software. Customization Tools. 2006.

[29] Canberra Industries. Genie 2000 Spectroscopy Software. Operations. 2016.

[30] G. Gilmore and J. D. Hemingway. Practical Gamma-Ray Spectrometry. John Wiley & Sons,
1995.

[31] H. Rauch et al. “Low-contrast and low-counting-rate measurements in neutron interfer-
ometry”. In: Phys Rev A 42 (1990), pp. 3726–3732. doi: 10.1103/physreva.42.3726.

116

https://de.wikipedia.org/wiki/Stichprobenvarianz_(Sch%C3%A4tzfunktion)#Stichprobenstandardabweichung
https://de.wikipedia.org/wiki/Stichprobenvarianz_(Sch%C3%A4tzfunktion)#Stichprobenstandardabweichung
https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-041-probabilistic-systems-analysis-and-applied-probability-fall-2010/video-lectures/lecture-14-poisson-process-i/
https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-041-probabilistic-systems-analysis-and-applied-probability-fall-2010/video-lectures/lecture-14-poisson-process-i/
https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-041-probabilistic-systems-analysis-and-applied-probability-fall-2010/video-lectures/lecture-14-poisson-process-i/
https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-041-probabilistic-systems-analysis-and-applied-probability-fall-2010/video-lectures/lecture-14-poisson-process-i/
http://www.cplusplus.com/reference/random/mersenne_twister_engine/
http://www.cplusplus.com/reference/random/mersenne_twister_engine/
https://www-nds.iaea.org/relnsd/vcharthtml/guide.html#gs_hs
https://www-nds.iaea.org/relnsd/vcharthtml/guide.html#gs_hs
http://www.nucleide.org/Laraweb/
https://doi.org/10.1103/physreva.42.3726

A. CD Attachment

This thesis includes a CD attachment containing:

• the C++ code (header and implementation files) of the simulation framework (refer to
3 Simulation (p. 47)),

• the Qt Creator project files,

• the Doxygen documentation (html) and the Doxygen file for its creation,

• the simulation results referred to in 4.2.1 Increasing sensitivity by standard decay sub-
traction/normalization (p. 77),

• the weighted and unweighted fit results referred to in 4.3.3 Comparison of the methods
(p. 92) and

• more blind test data for further evaluation.

Please contact lukas_csaszar@yahoo.de if the attachment is missing.

B. Genie 2000 sample report

1

2 ***

3 ***** G A M M A - S P E K T R U M - A N A L Y S E ******

4 ***

5

6

7 Dateiname:C:\GENIE2K\SHAPINGTIME_DISTANCE\ST_10\ST_10_D_GROSS_1.CNF

8

9 Bericht erstellt am : 28.07.2014 16:00:10

10

11 Probentitel : Sample title.

12 Probenbeschreibung :

13 Proben-Identifikation :

14 Probentyp :

15 Probengeometrie :

16

17 Peaksuch-Empfindlichkeit : 3.00

18 Bereich Peaksuche (Kanaele) : 1 - 65535

19 Bereich Peakflaechen (Kanaele) : 1 - 65535

20 Identifizierungs-Energietoleranz: 1.000 keV

21

22 Probenmenge : 1.000E+000 Unit

23

24 Probe entnommen am :

25 Messung gestartet am : 28.07.2014 15:00:42

26

27 Dead-time : 0.3 Sekunden

28 Real-time : 600.0 Sekunden

29

30 Live-time : 99.94 %

31

32

33 Benutzte Energie-Kalibrierung vom : 28.07.2014

34 Benutzte Effizienz-Kalibrierung vom : ??????????

35 Effizienz ID :

36

117

37

38

39 --- <Next Page> ---

40

41 Peakanalyse-Bericht 28.07.2014 16:00:11 Seite 2

42

43

44 **

45 ***** P E A K A N A L Y S E - B E R I C H T *****

46 **

47

48 Detektorname POLYGAM

49 Probentitel: Sample title.

50 Peakanalyse durchgefuehrt am: 28.07.2014 16:00:11

51 Peakanalyse Anfangskanal: 1

52 Peakanalyse Endkanal: 8192

53

54 Peak ROI ROI Peak Energie FWHM Net Peak Net Flaeche Untergrund

55 Nr. Anf. Ende Lage (keV) (keV) Flaeche Fehler Flaeche

56

57 M 1 56- 84 62.42 27.93 2.39 43.32 7.50 17.86

58 m 2 56- 84 74.90 32.06 2.40 146.36 12.61 63.50

59 3 152- 165 157.92 59.54 1.31 470.48 30.69 170.52

60 4 201- 210 205.54 75.29 1.16 110.50 24.29 190.50

61 M 5 229- 249 233.85 84.66 1.31 87.24 12.36 95.03

62 m 6 229- 249 243.99 88.02 1.31 187.99 16.15 109.35

63 7 340- 354 347.08 122.13 1.51 68.86 19.35 106.14

64 8 1155- 1169 1161.51 391.67 0.92 57.25 12.44 33.75

65 9 1969- 1987 1977.17 661.60 1.88 232.36 18.51 32.64

66 10 2685- 2700 2692.09 898.20 0.55 51.31 9.91 15.69

67 11 3512- 3533 3523.50 1173.35 1.68 200.49 14.88 5.51

68 12 3995- 4015 4004.94 1332.68 2.12 154.33 14.35 14.67

69

70 M = Erster Peak in einer Multiplett-Region

71 m = Weiterer Peak in der Multiplett-Region

72 F = Gefittetes Singlet

73

74 Fehler in 1.000 Sigma angegeben

118

C. Evaluation notes for blind test “A”

119

120

121

122

	Introduction
	Physics and math
	Radioactive decay
	The law of radioactive decay
	Remaining, decaying and decayed nuclei – basic formulas

	Models – postulated influences and their mathematical description
	New physics?
	General sinusoidal Sun influence
	Sinusoidal, time dependent summand
	Sinusoidal, time dependent decay constant
	Inducing and/or inhibiting effect in sinusoidal models
	Discrete Sun influence (solar activities)
	Rectangular (neutrino) influence

	Mathematical discussion of the measurement process
	Principle of measurement
	Basic concepts of statistics
	Computing the initial number of nuclei from measurement data
	Statistical description of radioactive decay
	Accuracy and resolution; problems
	The solid angle in a real measurement setup

	Mathematical analysis tools
	Autocorrelation
	Standard decay subtraction
	Standard decay normalization
	Smoothing and filtering
	Accumulation

	Simulation
	Requirements and goal
	Primary requirements and goal
	Secondary requirements

	Structure
	Schematic description of the framework
	Fundamental implementation
	Style choice, naming conventions and coding standards

	Random numbers, normal distributed values and approaches of simulating
	Random numbers – Mersenne Twister engine
	Gaussian normal distributed values
	Types of simulating

	Implementation of the framework
	File class
	FileDoc class
	data3 struct
	Data class
	RandomNumbers class
	Analysis class
	Sample class
	Parameter class
	Conversion functions
	Model class
	Simulation class

	Implementation of the analysis classes
	Autocorr(elation) class
	StdDecaySub(traction) class
	StdDecayNorm(alization) class
	Smooth class
	Accumulation class

	Using and extending the framework
	Guide to implement a new model
	Guide to implement a new analysis method
	Benefits of the design
	Code example

	Application
	Summary of the theoretical and mathematical findings
	The model of choice
	A set of rules
	Magnitudes and values of introduced variables; exemplary case

	Effectiveness of the analysis methods – subtleties in the application of the simulation
	Increasing sensitivity by standard decay subtraction/normalization
	Problems in the autocorrelation analysis
	Comparing the effects of smoothing and accumulation
	Retrieving the effect's frequency and amplitude
	Effect magnitude and uncertainty estimation

	Blind tests
	Motivation and design
	Evaluation of analysis methods based on the results of a blind test
	Comparison of the methods
	Characteristics of standard decay
	Parameter estimation by reconstruction

	Experimental setup
	Remarks on a real measurement
	The detector and further influences
	List of parameters

	Current setup
	General description, signal chain
	Equipment used (samples, hardware and software)
	Detector service

	Problems and possible solutions
	Running the measurements
	Starting measurements
	File formats, report

	Conlusion and outlook
	Summary of findings
	Other applications
	Possible next steps…
	Physics and math
	Simulation
	Application
	Experimental setup

	References
	CD Attachment
	Genie 2000 sample report
	Evaluation notes for blind test ``A''

