
Integration Strategies in the
Visualization of Multifaceted

Spatial Data

DISSERTATION

zur Erlangung des akademischen Grades

Doktor der Technischen Wissenschaften

eingereicht von

Dipl.Ing. Johannes Sorger
Matrikelnummer 0225843

an der Fakultät für Informatik

der Technischen Universität Wien

Betreuung: Assoc.Prof. Dipl.Ing. Dr.techn. Ivan Viola
und Ao.Univ.Prof. Dipl.Ing. Dr.techn. Eduard Gröller
In Mitwirkung von: Dr.techn. Harald Piringer

Diese Dissertation haben begutachtet:

Torsten Möller Barbora Kozlikova

Wien, 26. September 2017
Johannes Sorger

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.ac.at

Die approbierte Originalversion dieser
Dissertation ist in der Hauptbibliothek der
Technischen Universität Wien aufgestellt und
zugänglich.
http://www.ub.tuwien.ac.at

The approved original version of this thesis is
available at the main library of the Vienna
University of Technology.

http://www.ub.tuwien.ac.at/eng

Integration Strategies in the
Visualization of Multifaceted

Spatial Data

DISSERTATION

submitted in partial fulfillment of the requirements for the degree of

Doktor der Technischen Wissenschaften

by

Dipl.Ing. Johannes Sorger
Registration Number 0225843

to the Faculty of Informatics

at the TU Wien

Advisors: Assoc.Prof. Dipl.Ing. Dr.techn. Ivan Viola
and Ao.Univ.Prof. Dipl.Ing. Dr.techn. Eduard Gröller
In collaboration with: Dr.techn. Harald Piringer

The dissertation has been reviewed by:

Torsten Möller Barbora Kozlikova

Vienna, 26th September, 2017
Johannes Sorger

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.ac.at

Erklärung zur Verfassung der
Arbeit

Dipl.Ing. Johannes Sorger
Wasagasse 31/22, 1090 Wien, Austria

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 26. September 2017
Johannes Sorger

v

Acknowledgements

The work presented in this thesis has been realized in part at the VRVis research center
[SOP+15, SOL+16], and in part in the VisGroup at the Institute of Computer Graphics
and Algorithms at TU Wien [SMR+17, SMK+16]. At the end of this particular road
that is marked by the submission of my PhD thesis, I feel a lot of gratitude towards a
wide range of people who enabled my academic career and whom I had the pleasure to
work with in both environments. Firstly, I thank Meister Eduard Gröller, who was the
one constant factor, watching over my progress during my time both at the VRVis and in
the VisGroup. He was always ready to diligently and patiently provide me with detailed
feedback on the various intermediate states of the various paper drafts, as well as the
drafts of this thesis. His support was essential in shaping the rough ideas and formulations
of the individual works into the polished end-product that finally made it into this thesis.
The research environment that the Meister established is unique in the world, and it was
an honor to become a part of the famiglia. Thank you Meister! Next, I thank Harald
Piringer, who supervised me during my time at the VRVis, for providing me with the
opportunity to work in this great environment and on this interesting research topic.
Harald taught me a lot about the scientific workflow through his very structured way of
thinking and his attention to detail. Very special thanks go to Ivan Viola, who took me
in, after my initial funding at the VRVis ended, and who provided me with the chance to
finish my thesis by working on exciting topics in a very engaging environment. I learned
a lot from Ivan during the many discussions that we had. I was always impressed with
his ability to see unexpected angles and connections between the various topics. Ivan’s
support was essential in concluding this thesis, so thank you a lot Ivan! I also thank
Katja Bühler, who supervised my master thesis and thus introduced me to the world of
visualization research and the exciting environment that is academia in general and the
VRVis in particular. Thank you Katja! I thank Georg Stonawski and Werner Purgathofer
as the heads of the respective institutions for always being very supportive. Also a thank
you to Agnes Knor, Anita Mayerhofer-Sebera, Max Höfferer, and all technicians, the
respective souls and hearts of the VRVis and the VisGroup, who keep the operations
running and who always readily provided me with all the support that I needed.

vii

I thank all of my co-authors, project partners and collaborators. Without their support,
none of this work would have been possible. Very special thanks go to Thomas Ortner
and Peter Mindek, who were my brothers in arms during my time at the VRVis and the
VisGroup respectively. Thank you for having been closely at my side during the roller
coaster ride that is the sometimes nerve-wrecking life of a PhD student. I could not have
made it without you guys.

A heartfelt thank you goes to my many colleagues who always supported me and with
whom I had the pleasure of working at the VRVis and in the VisGroup. The friendly
and productive atmosphere that you created made me look forward to go to work every
morning. I was lucky to call you not only my colleagues but also my friends. Thank
you Mitschi, Harri, Edith, Wimmi, Höltzi, Henni, Lui, Andi, Martin, Mike, and Artem
and all the other Vollzeitequivalente at the VRVis. And thank you Manu, Rrrenata,
Yun, Johanna, Gabriel, Alexey (the Govna), Highchao, smoking David, wild Viktor,
Alexand0r, and Bruno at the VisGroup. Special thanks go to Clemens Arbesser, for
carrying the torch of the Tealuminati, and always providing me with tea during our
time at the VRVis, and to Thomas Auzinger for supporting me with adaptations of the
dissertation template.

I also thank the reviewers of this thesis, Barbora Kozlikova and Torsten Möller, for taking
the time to evaluate this work and for insightful discussions and feedback during its
finalization.

Thanks go also to the funding agencies that provided financial support for the duration
of my PhD studies. The works in this thesis were supported by the FWF-funded project
P24597-N23 (VISAR) and the COMET K1 program of the Austrian Funding Agency
(FFG) during my time at the VRVis, and by the Vienna Science and Technology Fund
(WWTF) through project VRG11-010 and by the EC Marie Curie Career Integration
Grant through project PCIG13-GA-2013-618680 during my time at the TU Wien.

Finally, I thank my family, my friends, and Müge for believing in me and supporting my
efforts despite being mystified about what it actually was that was keeping me so busy
and away from them all the time. I am lucky to be a part of you. Thank you.

Kurzfassung

Visualisierungsdesigner können auf eine Vielzahl an visuellen Kanälen zurückgreifen, die
es ihnen ermöglichen, Datenattribute visuell darzustellen. Beispiele für solche Kanäle
sind Position, Größe, Orientierung, Farbe, Textur, Helligkeit und Bewegung. Welche
Datenattribute welchen visuellen Kanälen zugewiesen werden, kann dabei vom Designer
entschieden werden. Theoretisch kann jedes Datenattribut durch jeden Kanal oder eine
Kombination mehrerer Kanäle dargestellt werden. In der Praxis hängt die optimale
Darstellungsform jedoch vom jeweiligen Datentyp und der Aufgabenstellung des Nutzers
ab. Bei der Visualisierung von räumlichen Daten ist die Zuordnung von räumlichen
Attributen zu visuellen Kanälen schon durch die Daten vorbestimmt. Der Designer hat
in diesem Fall weniger Gestaltungsfreiheit als bei Daten ohne solch eine vorbestimm-
te Zuordnung. Räumliche Daten können zusätzlich zu diesen inhärenten räumlichen
Attributen auch eine Vielzahl an weiteren Attributen aufweisen, die eine freie Zuord-
nung erlauben. Solch räumliche Daten werden auch als facettenreiche räumliche Daten
bezeichnet. Der räumliche Bezug der Attribute in diesen Daten ist oft wichtig für die
erfolgreiche Ausführung einer Aufgabenstellung. Die Kombination aus frei wählbaren
und vorbestimmten Zuordnungen schränkt den Designer bei der Wahl der optimalen
Darstellungsform stark ein, da die essentielle Information in sinnvoller Art und Weise mit
dem inhärenten räumlichen Kontext integriert werden muss. Es bedarf daher spezieller
Herangehensweisen, um Aufgabenstellungen, die auf der Analyse oder Präsentation von
facettenreichen räumlichen Daten beruhen, lösen zu können.

Im Rahmen dieser Dissertation wird die Integration von Darstellungsformen im Kontext
von facettenreichen räumlichen Daten erforscht. Der erste Teil dieser Arbeit beschreibt
eine Integrationstaxonomie, die aus zwei Teilaspekten besteht: visuelle Integration und
funktionale Integration. Visuelle Integration beschreibt, wie die diversen räumlichen
und nicht räumlichen Darstellungsformen von facettenreichen räumlichen Daten visuell
in Bezug zueinander gebracht werden können. Funktionale Integration wiederum be-
schreibt, wie Ereignisse und Interaktionen zwischen den jeweiligen visuell integrierten
Darstellungsformen koordiniert werden können.

Im zweiten Teil dieser Arbeit werden Beiträge zur Visualisierungsforschung vorgestellt,
die auf konkreten Anwendungen von Integration in Analyse- und Präsentationsszenarien
beruhen. Das erste Set an Herausforderungen betrifft die Analyse von facettenreichen
räumlichen Daten im Rahmen des in der Lichtplanung stattfindenden Entscheidungs-

ix

findungsprozesses. Die Aufgabenstellung des Nutzers ist dabei, eine optimale Leuchten-
konfiguration für eine gegebene Innenraumszene zu finden. Der Nutzer muss sich dabei
zwischen Duzenden bis Hunderten potentiellen Lösungen entscheiden. Die in dem Zusam-
menhang identifizierten Herausforderungen werden mit LiteVis gelöst, einem System, das
die Visualisierung von Eingabeparametern mit der Visualisierung von allen relevanten
Ausgabeparametern einer globalen Beleuchtungssimulation vereint. Die Integration dieser
heterogenen Aspekte, gemeinsam mit einer neuartigen Visualisierung für Multi-Parameter
Rankings, sind dabei die entscheidenden Faktoren, die einen effizienten Vergleich und die
Analyse von Leuchtenkonfigurationen ermöglichen.

In Präsentationsszenarien kann sich der Nutzer nicht auf Interaktion verlassen, um
Schlüsse aus einer Visualisierung ziehen zu können. Eine der Hauptherausforderungen in
diesem Zusammenhang ist daher, visuell ansprechende, sinnhafte Darstellungsformen zu
generieren, die für passive Benutzerrollen geeignet sind. In dieser Dissertation werden
diesbezüglich zwei Herausforderungen im Bereich Visualisierung molekularer Daten
adressiert.

In der ersten Aufgabenstellung, ist das Ziel, zwei unterschiedliche Darstellungsformen
eines molekularen Modells in Bezug zueinander zu bringen. Der Bezug zwischen den
Modellen wird dabei auf zeitlicher Ebene mittels Animation bzw. animierten Übergängen
dargestellt. Eine Darstellungsform geht dabei kontinuierlich in die andere über. Eine
neuartige Technik ermöglicht es, solche zeitlichen Übergänge in einer Art und Weise zu
spezifizieren, so dass sie auf verschiede molekulare Datensätze angewandt werden können.
Dadurch wird den Autoren von Animationen beträchtlicher Aufwand erspart, der mit
dem händischen Erstellen solcher Animationen verbunden ist.

Die zweite Aufgabenstellung im Bereich Visualisierung von molekularen Daten betrifft die
Präsentation von Übergängen zwischen zwei Entwicklungsstadien eines Mikroorganismus.
Die Herausforderung dabei resultiert aus dem Fehlen von Informationen, die diesen
Übergang auf molekularer Ebene beschreiben. Eine neuartige Technik hilft dabei, zu
vermeiden, dass beim Darstellen eines Übergangs aufgrund der fehlenden Details falsche
Informationen vermittelt werden. Die Technik basiert auf der kontinuierlichen visuellen
Abstraktion der jeweiligen Entwicklungsstadien. Die Idee dahinter ist, beide Modelle auf
eine Stufe zu abstrahieren, auf der der Bezug zwischen ihnen fehlerfrei vermittelt werden
kann. In dem Zusammenhang wird erforscht, wie die verschiedenen Abstraktionsgrade
und die Modelle der Entwicklungsstadien miteinander integriert werden können. Die
Resultate der in dieser Dissertation präsentierten Arbeiten zeigen deutlich, wie vielseitig
einsetzbar die Integration von Visualisierungen ist, um Herausforderungen in der Analyse
und Präsentation räumlicher Daten zu bewältigen.

Abstract

Visualization designers have several visual channels at their disposal for encoding data into
visual representations, e.g., position, size, shape, orientation, color, texture, brightness,
as well as motion. The mapping of attributes to visual channels can be chosen by the
designer. In theory, any data attribute can be represented by any of these visual channels
or by a combination of multiple of these channels. In practice, the optimal mapping
and the most suitable type of visualization strongly depend on the data as well as on
the user’s task. In the visualization of spatial data, the mapping of spatial attributes to
visual channels is inherently given by the data. Multifaceted spatial data possesses a wide
range of additional (non-spatial) attributes without a given mapping. The data’s given
spatial context is often important for successfully fulfilling a task. The design space in
spatial data visualization can therefore be heavily constrained when trying to choose an
optimal mapping for other attributes within the spatial context. To solve an exploration
or presentation task in the domain of multifaceted spatial data, special strategies have to
be employed in order to integrate the essential information from the various data facets
in an appropriate representation form with the spatial context.

This thesis explores visualization integration strategies for multifaceted spatial data. The
first part of this thesis describes the design space of integration in terms of two aspects:
visual and functional integration. Visual integration describes how representations of
the different data facets can be visually composed within a spatial context. Functional
integration, describes how events that have been triggered, for instance, through user
interaction, can be coordinated across the various visually integrated representations.

The second part of this thesis describes contributions to the field of visualization in the
context of concrete integration applications for exploration and presentation scenarios.
The first scenario addresses a set of challenges in the exploratory analysis of multifaceted
spatial data in the scope of a decision making scenario in lighting design. The user’s
task is to find an optimal lighting solution among dozens or even hundreds of potential
candidates. In the scope of a design study, the challenges in lighting design are addressed
with LiteVis, a system that integrates representations of the simulation parameter space
with representations of all relevant aspects of the simulation output. The integration of
these heterogeneous aspects together with a novel ranking visualization are thereby the
key to enabling an efficient exploration and comparison of lighting parametrizations.

xi

In presentation scenarios, the generation of insights often cannot rely on user interaction
and therefore needs a different approach. The challenge is to generate visually appealing,
yet information-rich representations for mainly passive observation. In this context, this
thesis addresses two different challenges in the domain of molecular visualization. The
first challenge concerns the conveying of relations between two different representations of
a molecular data set, such as a virus. The relation is established via animated transitions,
i.e., a temporal form of integration between two representations. The proposed solution
features a novel technique for creating such transitions that are re-usable for different
data sets, and can be combined in a modular fashion.

Another challenge in presentation scenarios of multifaceted spatial data concerns the
presentation of the transition between development states of molecular models, where
the actual biochemical process of the transition is not exactly known or it is too complex
to represent. A novel technique applies a continuous abstraction of both model repre-
sentations to a level of detail at which the relationship between them can be accurately
conveyed, in order to overcome a potential indication of false relationship information.
Integration thereby brings the different abstraction levels and the different model states
into relation with each other. The results of this thesis clearly demonstrate that integra-
tion is a versatile tool in overcoming key challenges in the visualization of multifaceted
spatial data.

Contents

Kurzfassung ix

Abstract xi

Contents xiii

1 Introduction 1
1.1 Definitions . 3
1.2 Thesis Overview . 4
1.3 Contributions . 7

I Integration Strategies 9

2 Visual Integration 11
2.1 Visual Channels in Spatial Data Visualization 11
2.2 Adapting the Spatial Representation . 14
2.3 Composing Multiple Representations . 18
2.4 Visual Integration Challenges . 26

3 Functional Integration 29
3.1 Introduction . 30
3.2 Related Work . 31
3.3 Model-Based Taxonomy . 32
3.4 Integration Techniques . 36
3.5 Discussion . 42
3.6 Conclusion and Outlook . 45

II Applications 47

4 Integration in Parameter Space Exploration 49
4.1 Introduction . 50
4.2 Related Work . 52

xiii

4.3 Lighting Design Background . 54
4.4 Design Study of LiteVis . 60
4.5 Implementation . 68
4.6 Use Case Scenario . 69
4.7 Evaluation . 72
4.8 Discussion and Future Work . 74
4.9 Conclusion . 76

5 Storytelling Templates For Temporal Integration 79
5.1 Introduction . 80
5.2 Related Work . 82
5.3 Metamorphers . 84
5.4 Implementation . 90
5.5 Results . 92
5.6 Discussion . 96
5.7 Conclusion . 98

6 Masking Missing Information Via Visual Abstraction 101
6.1 Introduction . 102
6.2 Related Work . 104
6.3 Forward & Inverse Abstraction . 106
6.4 Implementation of Visual Abstraction Levels 111
6.5 Results . 116
6.6 Discussion and Expert Feedback . 118
6.7 Conclusion and Outlook . 119

7 Conclusion 121
7.1 Summary . 121
7.2 Outlook . 123

Bibliography 127

Curriculum Vitae 141

CHAPTER 1
Introduction

Visual communication for the purpose of the presentation and exploration of data,
concepts, relationships, and processes can be described as one of the main goals of

visualization [RTM+03]. In order to give data attributes a visual representation capable
of achieving this goal, visualization designers encode the values of data attributes in so
called visual channels. Examples of these channels are position, size, shape, orientation,
color, texture, brightness, as well as motion [WGK10]. As one channel should only
encode the values of a single attribute, the amount of information that a visualization
can encode – i.e., the "visual budget" that a designer can spend – is limited by the
number of visual channels. The mapping of attributes to visual channels can be chosen
by the visualization designer. For instance, should the value of a stock market share
be represented by the position or the size of its visual representation? In theory, any
data attribute can be represented by any of these visual channels or by a combination
of multiple of these channels. In practice, the optimal mapping and the most suitable
representation form strongly depend on the data as well as on the user’s task. For
instance, ordered data can be intuitively represented by channels that perceptually
convey magnitude information, while categorical data is better represented by channels
that convey identity information [Mun14]. In the visualization of spatial data, the data’s
spatial context is often important for successfully fulfilling an analysis task. Spatial data
is a category of data where the spatialization is already given [TM04]. The spatialization
refers to the spatial reference of attributes, such as the position, orientation, shape, and
size. This means, each item in a data set has a given (inherent) value for its position –
and potentially also its orientation, shape, and size – in relation to the physical three-
(or two-) dimensional space, i.e., where it has been measured or simulated. Examples for
such data are computed tomography (CT) or magnetic resonance imaging (MRI) scans
that yield a volumetric image of a patient. The position of each voxel in the volume is
given, and typically essential for a successful analysis of the medical image data. In these
cases, the visual channels that are already encoding essential information from the data,
i.e., through a given mapping, are not available to be used in the visualization design.

1

1. Introduction

non-spatial attributessp
at

ia
l a

tt
rib

ut
es position

shape

size

orientation

color

texture

brightness

humidity

temperature

density

etc.

mapping can be given

no mapping given

Figure 1.1: Inherent mapping in spatial data: spatial attributes have an inherent mapping
to visual channels. Certain non-spatial attributes, i.e., color, texture, and brightness, can
have an inherent mapping as well. For the remaining non-spatial attributes the mapping
has to be chosen in order to visually convey the attribute values.

Depending on the data type and the acquisition method, spatial data can possess given
mappings for the other visual channels, i.e., color, texture, and brightness, as well. For
the representation of the earth in Figure 1.1, for instance, position, shape, size, and
orientation within the solar system are given. Similarly, we can extract values for the
color, texture, and brightness at each point where we sample the surface of the earth. All
of these attributes have an inherent (given) mapping to visual channels. Besides attributes
with a given mapping, spatial data can also possess attributes where the mapping is not
inherently given. For attributes, such as humidity, temperature, or density, a mapping
has to be chosen in order to visually convey their values. Conveying the spatial context
for these non-inherently mapped attributes is often important as well.

Depending on the number of attributes with a given mapping, the design space in
spatial data visualization, i.e., the mapping of data attributes to visual channels, can be
heavily constrained. If the mapping for most visual channels is already given, only few
channels remain to encode additional relevant information – the visual budget is almost
completely spent. In such cases, strategies for managing the visual budget in the spatial
representation have to be employed to enable a depiction of non-spatial attributes in
the spatial context. In other cases, a task requires the analysis of certain attributes of a
spatial data set within the context of a completely chosen, i.e., non-spatial representation.
In both cases, additional information or entire representations have to be integrated
within the spatial data visualization.

2

1.1. Definitions

Motivation & Goal

The motivation behind the work in this thesis is the exploration of the design space
of spatial data visualization in terms of how chosen mappings of attributes to
visual channels can be integrated with the constrained (given) mapping of spatial
data representations.

The goal is to enable the design of visualizations that incorporate, or integrate, the
representation of and interaction with all essential attributes and representation
forms that are required to fulfill a task in spatial data visualization.

The content of this thesis is structured into two parts as illustrated in Figure 1.2: In
Part I, we1 investigate the design space of integration in terms of two aspects. In
Chapter 2, Visual Integration, we discuss the strategies for managing the visual budget in
a visualization of spatial data, i.e., by adapting or extending the spatial representation,
in order to convey the entire essential information in a way that allows a user to fulfill
a certain task. Such an adaption or extension corresponds to the visual integration of
different kinds of mappings, i.e., visual representations, into a coherent visualization. In
Chapter 3, Functional Integration, we investigate the ways in which the events in multiple
data representations can be coordinated in order to form a single coherent visualization
system. In Part II of this thesis, we present several novel integration techniques in the
context of concrete application scenarios for exploration and presentation tasks. The
following sections will clarify the terminology that is used in this thesis, before giving a
more detailed overview of the individual chapters and contributions.

1.1 Definitions
A visual mark represents a single data item, e.g., a row in a tabular data set. Marks are
classified according to the dimensions that they occupy: points (0D), lines (1D), areas
(2D), and surfaces or volumes (3D). A mark can encode data attributes by variations
of its position, shape, size, orientation, color, texture, brightness, and motion. These
properties are referred to as visual channels. Visual channels can be separated into two
groups: spatial & retinal [WGK10]. Position, shape, size, and orientation are spatial
channels. Color, texture, and brightness are retinal channels. Motion affects all categories
as it describes variations of each channel over time. The process of encoding an attribute
by a visual channel refers to mapping the attribute to that channel.

The term spatial data describes data sets that have an association to physical (two- or
three-dimensional) space. This means, the attribute vector that describes a data item
contains spatial references to this physical space, i.e., where the respective data item was

1While this thesis is the result of the effort of a single author, the works, on which Chapters 3-6 are
based, have been achieved within collaborative efforts. In all cases, the author of this thesis is also the
main author of these works. In the remainder of this thesis, the plural first person form, i.e., "we", is
used to reflect this collaborative effort (please refer to the individual chapter prefaces for the detailed
author lists).

3

1. Introduction

measured or simulated. These spatial references can take the form of attributes, such
as position, orientation, size, and shape of the measured entity. These attributes are
referred to as spatial attributes in the context of this thesis. Spatial attributes have an
intrinsic mapping to the spatial visual channels.

Non-spatial data attributes do not possess any given mappings to spatial channels. Data
that consists solely of non-spatial attributes is often also referred to as abstract data in
the literature. However, in this thesis the term "non-spatial" is used exclusively, in order
to avoid confusion with the terms "visual abstraction" and "abstracted representation".

A spatial data set typically contains non-spatial attributes as well. Data that contains
spatial and non-spatial facets is referred to as multifaceted spatial data [KH13]. Some
non-spatial attributes, can have an intrinsic mapping to the retinal visual channels of a
representation. For all other non-spatial attributes, the mapping to visual channels has
to be chosen by the visualization designer (or by the users, if the visualization system
allows them to do so). In this thesis, the differentiation between attributes of spatial
data with inherent (given) mapping and attributes without inherent (chosen) mapping
to visual channels is important.

A visual representation or representation displays parts or all of the data within a
common frame of reference, e.g., within the same view, where the visual marks typically
share the same mapping of data attributes to visual channels. The representation form
describes, which spatial frame of reference and which kind of mapping was chosen to
display the data. A spatial representation form is defined as one that adheres to the given
mapping of spatial attributes to spatial channels. A representation form is non-spatial if
the visualization designer ignores any given spatial mapping. Examples for non-spatial
representation forms are bar charts, scatterplots, and parallel coordinate systems. Spatial
representation forms are, for instance, three dimensional volume representations, 3D
geometric scenes, and 2D geographic maps. A visualization system can be composed of
multiple representation forms. The visual budget describes how many visual channels are
available for encoding data attributes within a single representation or across an entire
visualization system.

1.2 Thesis Overview

The chapters in this thesis are structured into two parts as indicated in Figure 1.2. Part I
of this thesis defines the design space of integration in terms of visual (Chapter 2) and
functional integration (Chapter 3).

Chapter 2 describes the principal strategies for managing and increasing the visual budget
within a spatial data visualization in order to incorporate all essential information and
representation forms that enable a user to successfully fulfill a task. Visualization designers
can: 1) adapt the spatial representation in order to embed additional attributes, or in
order to make it more suitable for a specific task, and 2) extend the spatial representation
with additional representations, either a) spatially, or b) temporally, or they can apply a

4

1.2. Thesis Overview

Integration Taxonomy

Integration Applications

Ch3: Functional

Ch4: Exploration Presentation Ch5

Ch6

PA
R

T
I

PA
R

T
II

A B

Ch2: Visual

A

B

C

Figure 1.2: Overview of the thesis structure: Part I describes a taxonomy for visual and
functional integration. Part II presents novel techniques in the context of integration
applications for exploration and presentation scenarios.

combination of 1) and 2). The adaption of the spatial representation can be applied if
the goal is to convey non-spatial attributes in a spatial context. The idea behind this
strategy is to replace the given mapping of non-essential attributes by choosing to map
more essential ones to the respective visual channels instead. The representation of the
earth in Figure 1.1, for instance, could be adapted to encode the temperature in the
surface color. The feasibility of this strategy reaches its limits, either when the number of
attributes to encode is bigger than the number of available visual channels, or when the
analysis of attributes cannot be efficiently handled within the inherent spatial context.
Further, inherent obstacles of 3D spatial representation forms, such as occlusion and
perspective distortion of objects, can impede users from accurately interpreting or even
locating the information that they seek in a 3D spatial environment [ET08]. Regardless
of the number of available visual channels, it is therefore often more efficient to introduce
additional non-spatial views to a spatial representation. Each additional representation
thereby comes with its own set of visual channels, and thus increases the visual budget
of the visualization. Added representations can be distributed spatially or temporally.
A common example for spatially integrated representations are juxtaposed views where
views featuring separate representations are placed side-by-side. The temporal integration
of visualizations refers to animated transitions, where one representation is gradually
transformed into another one. Each form of visual integration comes with its own set of
advantages and restrictions that determine when their respective application is feasible,
as will be discussed in Chapter 2.

5

1. Introduction

Chapter 3 describes the design space of functional integration. When dealing with
multiple visually integrated spatial and non-spatial data representations, the question
arises how to coordinate events between them so that they act in concert, i.e., as a unit
of interconnected parts, within a coherent visualization system. Such events might be
triggered interactively by the user or they might be triggered by the dynamic nature of
the data. We refer to such coordinations as functional integration between representations.
A common example for a functional integration is brushing & linking where the selection
of data items in one representation triggers the visual indication (e.g., with a highlighting
color) of all associated items in the other representations. We differentiate the types of
functional integration based on whether an event has been triggered on the Data, the
Visual (mapping), or the Navigation component of a representation – as well as on the
component type that is affected in another (target) representation. We thereby regard
the components and their integration in terms of which kinds of tasks they support,
and we illustrate the various categories of functional integration with examples from
literature.

Part II of this thesis showcases how the application of integration can support specific
visualization tasks. Which types of visual and functional integration are thereby the most
suitable ones, strongly depends on the data and the task. On a high level, visualization
tasks can be classified into three categories: exploration, presentation (and fun) [BM13].
Chapters 4 through 6 describe novel integration techniques in the context of application
scenarios for exploration and presentation tasks.

Chapter 4 addresses challenges in exploratory analysis of multifaceted spatial data in
the scope of a decision making scenario in lighting design. There are multiple challenges
associated with exploratory analysis in integrated visualization systems. One is to choose
representation forms that complement each other [WBWK00]. Another is to functionally
integrate the interactions with the individual representations in a way that facilitates
the user’s task. The user’s task is to find an optimal lighting solution among dozens or
even hundreds of potential candidates. The optimality of a solution is determined by a
multitude of qualitative and quantitative factors. The assessment of qualitative factors,
such as luminary aesthetics and illumination quality, strongly depends on their depiction
in their original 3D spatial context, i.e., a 3D model of the scene where the illumination
is simulated, measured, and displayed. The wide range of quantitative factors in each
solution requires additional non-spatial representation forms that neglect the given spatial
mapping in order to favor a more structured overview for the comparison of multiple
attributes across many solutions. We demonstrate how to join the representations of
different data facets that result from these task requirements in an integrated visualization
system. We thereby propose a novel type of ranking visualization that considers the
spatial and non-spatial data facets for finding an optimal lighting solution.

Chapter 5 addresses the presentation of hidden insights into molecular models of microor-
ganisms, for instance, in regard to the structural hierarchy of a virus, or the quantities
of proteins. Such insights are given by representation forms, such as exploded views or
histograms, that might distort or completely abstract the original given mapping. The

6

1.3. Contributions

more such a representation of the virus differs from the original one, the harder it is for
the user to grasp the relation between both representation forms, especially if the relation
cannot be explored interactively. In presentation scenarios, the generation of insights
cannot rely on user interaction and therefore needs a different approach. The challenge
is to generate visually appealing, yet information-rich, representations for mainly passive
observation. Visual integration via animated transitions is a way to present this relation
in an engaging and intuitive manner. To allow visualization designers the application
of such transitions to a wide range of data sets, we propose a technique for creating all
aspects of such transformations in a re-usable way.

Chapter 6 addresses the challenge of presenting the transition between development
states of molecular models where the actual biochemical process of the transition is not
exactly known or it is too complex to model. These models can be displayed at very high
detail, i.e., at atomic resolution. However, much less is known about how the individual
elements of a model, i.e., proteins and cellular structures, relate to the elements of another
model. There is a discrepancy between the level of detail at which the models and the
relationship between them are described. To handle this issue, we present a technique for
adapting the spatial representation of both models by continuously reducing the detail to
a level at which the relationship between them can be accurately described. We thereby
propose four levels of visual abstraction for molecular data that correspond to different
levels of knowledge about the relationship between two models. Another challenge that
we address in this context is the loss of information when reducing the visual detail of a
model.

Chapter 7 concludes this thesis with a reflection on the visual and functional aspects of
the integration design space in respect to the presented applications and in respect to
the field of visualization in general.

1.3 Contributions
The high level contributions of this thesis are:

• The presentation of a taxonomy for visual and functional integration.
• The presentation of novel visualization techniques and applications for exploration

and presentation scenarios in the context of integration.
• An application of and reflection on the integration taxonomy for the analysis and

comparison of existing work and the presented original work.

The contributions of the individual chapters are:

In Chapter 2:

• The description of the design space of visual integration in the domain of multi-
faceted spatial data, on the level of visual channels.

• A demonstration of decoding visual integration in existing visualization systems.

7

1. Introduction

In Chapter 3:

• The description and exploration of the design space of functional integration based
on a taxonomy of visualization component combinations.

• A demonstration of the range of potential functional integration applications
based on the combination of visualization components, and illustrated by concrete
examples from literature.

• An application of the taxonomy to classify and compare integrated visualization
systems.

In Chapter 4:

• A demonstration of the importance of integration for exploration tasks in the scope
of a design study for decision making in lighting design.

• A problem characterization of the application domain of lighting design. We thereby
relate the domain problem to other areas of simulation-based decision making.

• A novel visualization that allows users to weigh spatial and non-spatial aspects of
the simulation output when ranking multiple decision options.

In Chapter 5:

• A technique for creating temporal integrations, i.e., animated transitions, between
two representation forms of molecular data.

• A description of the six different aspects of such a transition in the form of a
pipeline for animated transitions.

• A set of rules for creating transitions that can be modularly combined and re-applied
to different data sets.

In Chapter 6:

• A technique for creating temporal integrations, i.e., animated transitions, between
molecular models where the actual biochemical process of the transition is not
exactly known or too complex to represent.

• A definition of four levels of visual abstraction for molecular data that correspond
to different levels of knowledge about the biochemical processes.

• A description of how to transition between these levels and between different data
sets at each level.

In Chapter 7:

• A reflection on the design space of integration.
• A description of interesting areas for potential future research.

8

Part I

Integration Strategies

11

CHAPTER 2
Visual Integration

In this chapter, we will equip the reader with the necessary background to understand
the visual integration design space. We thereby refer to terminology from existing work.

The two principal strategies for visually integrating non-inherently mapped attributes
with a spatial context are the adaption of the spatial representation (as discussed in
Section 2.2), and the composition of multiple representations (as discussed in Section 2.3).
The contribution of this chapter is thereby the discussion of the visual integration design
space on the level of individual operations on visual channels (in Section 2.2) and the
relations between individual visual channels (in Section 2.3). The challenges in visual
integration in the context of multifaceted spatial data are presented based on prior work
[OSP+16] in Section 2.4. Before we elaborate these strategies, first we have to understand
the available design space, i.e., the visual channels in spatial data representations, that
we will discuss in the following section.

2.1 Visual Channels in Spatial Data Visualization

The first notion of a graphical vocabulary consisting of marks, positional (spatial), and
retinal channels was defined by Bertin in his Semiology of Graphics [Ber83]. Bertin was
the first to define a strict separation of content from container, i.e., the separation of
data attributes from the graphical properties that encode these attributes. With this
vocabulary, Bertin was addressing visual encodings of information on a "flat sheet of
paper", i.e., no 3D spatial data was yet considered. Other classification schemes followed
that extended Bertin’s work in respect to the capabilities of computationally generated
graphic primitives on computer displays and similar viewing devices. Bartram [Bar97]
added motion as a visual channel and thereby included animation into the design space
of visual representations.

13

2. Visual Integration

In this thesis we rely on the definition of visual channels that was proposed by Ward,
Grinstein, and Keim [WGK10] as a summarization of the definitions found in literature,
i.e., position, shape (mark), size, orientation, color, texture, brightness, and motion.
Each channel is capable of encoding the values of a data attribute through variations
in the respective channel’s visual output, such as variations in brightness or variations
of positions along an axis. As illustrated in Figure 2.1, we split the channels into a set
of spatial and retinal channels. Motion thereby refers to a change of one of the other
seven channels over time. An inherent mapping of motion corresponds to the mapping of
time dependent data to visual channels, where the variations of the channel output over
time signify the change of a data value over time. The mapping to the motion channel
can also be chosen. In this case, motion encodes non time-dependent attributes. For
example, the frequency at which the brightness of a visual mark changes, could encode
the degree of importance of the corresponding data item in order to attract the attention
of the user.

In Section 1.1, we touched upon the separation of visual channels into spatial and
retinal channels. Channels can also be separated into identity channels and magnitude
channels. Identity channels, such as shape, serve visual discrimination, while magnitude
channels, such as size, are better suited for conveying quantities. However, in spatial
data the visual channels do not exclusively serve visual discrimination or the suggestion
of magnitudes. Instead, the channels can carry intrinsic semantics of the data that are
not easily quantifiable. In tumor diagnosis, for instance, the position, shape, and size of
a tumor in a medical image give the radiologist information about the condition of the
patient. Additionally, the texture or intensity values (color, brightness) can suggest the
degree of agressiveness.

Which types of channels are available to encode information depends in general on the
kind of visual mark used. A bar chart, for instance, uses the x-axis of the position channel
to differentiate bars that correspond to different categories. It would not make sense to
encode an additional attribute within the y-axis of the bar position, as the relative length
of the bars would be much harder to read. In spatial data, the given mappings and their
intrinsic semantic create an additional constraint on the mapping. Changing the given
mappings of spatial and, in certain cases, also retinal channels can change the intended
meaning of a visual mark, for instance, when changing the size, shape, or location of the
two-dimensional area mark that represents a country on a map.

Another characteristic of spatial data is that it can consist of hierarchically organized
levels where the meaning of higher levels depend on the faithful depiction of objects or
nodes from the lower levels. The voxels in a volume, for instance, do not convey much on
their own. However, they can be explicitly or implicitly assigned to a hierarchical group
that represents, for instance, an organ or a blood vessel. An explicit assignment of voxels
to a group corresponds to a segmentation of the volume. A correlation of voxels can also
be revealed by tuning the visual mapping of their retinal channels, e.g., with the help of
a transfer function. Such a group carries a semantic that would be lost if the inherent
positions of the individual voxels were to be changed.

14

2.1. Visual Channels in Spatial Data Visualization

POSITION

COLOR

SHAPE

TEXTURE

SIZE

BRIGHTNESS

ORIENTATION

MOTION

S
P

A
T

IA
L

R
E

T
IN

A
L

Figure 2.1: The eight visual channels: position, shape, size, orientation, color, texture,
brightness, and motion.

In other types of spatial data, such as 3D scenes containing geometric meshes, groups
can be explicitly defined, e.g., in the sense of a scene graph, or they can be dynamically
created, e.g., according to data semantics, or spatial proximity. Each hierarchy level can
thereby possess its own set of visual channels. The spatial channels (position, shape, size,
orientation) can be described based on global or local coordinates that correspond to a
certain hierarchy level. A molecular model of a microorganism, for instance, consists of
hierarchical compartments, such as the cell membrane or the nucleus, that correspond
to the biological structures of the microorganisms. These compartments are formed by
individual molecules that are positioned, oriented, and scaled in respect to the center
point of the microorganism (the respective microorganism’s local coordinate system).
The molecules consist of individual atoms that, in turn, are positioned around the
molecule’s center (the respective molecule’s local coordinate system). This differentiation
of visual channels into different hierarchical sets is important when it comes to the visual
abstraction of such spatial data, as we will discuss in Chapter 6.

Considering these characteristics of spatial data, the design space for encoding non-spatial
attributes without an inherent mapping within a spatial representation form is limited.
In the following section, we will explore the ways in which a spatial representation can
be adapted in order to accommodate additional non-spatial information.

15

2. Visual Integration

2.2 Visual Integration Strategy I:
Adapting the Spatial Representation

The given mapping of visual channels in a spatial representation can be deliberately
adapted, in order to increase the expressiveness and effectiveness of a visualization.
The expressiveness determines whether a graphical representation conveys the desired
information, while the effectiveness describes how well the visual encoding utilizes the
capabilities of the display device and the human perceptual and cognitive system [Mac86].
In practice this means that a spatial representation can be adapted in order to make
the essential information that is encoded better readable, e.g., with occlusion handling
techniques, or to embed additional attributes that do not have an inherent mapping
within the representation. This approach is a viable strategy when the essential spatial
and non-spatial information can be expressively conveyed within a spatial context. For
adapting a spatial representation, visualization designers have three types of operations
at their disposal: they can neglect, modify, or re-assign the inherently given mapping.
Neglecting the mapping to a visual channel means entirely removing the inherently
mapped data attribute from the visual encoding. An example is the removal of inherent
retinal attributes from a representation by displaying all visual marks with the same
color. Color, brightness, and texture thus do not encode any information anymore. Such
a removal of visual information can serve the reduction of non-essential details, in order
to streamline a visual representation and to steer the users’ attention towards more
important visual aspects, i.e., to create a more effective visualization. The second type
of operation, the modification of a visual channel, corresponds to a distortion, projection,

(a) (b)

Figure 2.2: Modifying visual channels in illustrative visualization: a) changing the
transparency (in the color channel) of outer layers to reveal skeleton and organs in
importance driven volume rendering [VKG04], (b) changing the position, shape, and
orientation (spatial channels) of parts of a volume to create an exploded view showing
the inner anatomy of a human head [BG06].

16

2.2. Adapting the Spatial Representation

(a) (b)

Figure 2.3: Re-assigning visual channels: a) the retinal channels of the volumetric
depiction of overlapping brain regions are re-assigned to encode the degree and the
area of an overlap between individual regions [SMB+14], b) the retinal channels of the
building’s facade are re-assigned to encode the probability of water exposure during a
flooding [CKS+15].

or other type of change to the original visual encoding without exchanging the data
attribute that the visual channel is associated with. Such operations are often applied
in illustrative visualization in order to reveal important details that would otherwise
remain occluded by less important parts of the data. Depending on which parts of the
data are important, retinal or spatial channels or a combination of both can be adapted.
Figure 2.2a shows an example where the transparency (retinal) of one object is increased
in locations that would occlude other more important objects. Figure 2.2b displays a
situation where the retinal channels are preserved. The spatial channels, in this case,
the position and orientation, are modified in order to remove occluding structures. The
third type of operation for adapting a spatial representation, the re-assignment of visual
channels, exchanges the given mapping of an attribute for a particular visual channel
with another attribute where the mapping is not inherently given. In Figure 2.3a, for
instance, the retinal channels of the volumetric depiction of segmented brain regions
are re-assigned with derived information about areas of overlaps between regions. In
Figure 2.3b, the retinal channels of a building are re-assigned with information about the
probability of rising water levels during a flooding.

We refer to the first two types of operations, i.e., the neglecting and modification of visual
channels, as visual abstraction of a representation. These operations take something
away from a representation or distort it in a way that makes it easier to understand,
i.e., more efficient. The re-assignment of attributes on the other side, differs from these
two operations as it adds something to the representation, i.e., additional information
without a given mapping, in order to make it more expressive. One, more, or all the
visual channels of a spatial data representation can be adapted by these three types of
operations.

17

2. Visual Integration

a)

b)

c)

d)

preserved modifiedneglected re-assigned

unmapped

Figure 2.4: Schematic representation of the adaption operations applied within the
previously discussed examples. The three subdivisions in the spatial channels correspond
to the x, y, and z-axis respectively. a) Importance driven focus of attention (Fig. 2.2a):
only the retinal channels are modified to reveal an occluded focus object. b) Exploded view
(Fig. 2.2b): the spatial channels of the context are modified to reveal the occluded focus
object. c) Figure 2.3: retinal channels are re-assigned to display additional information
within a spatial context. d) Sport analysis (Fig. 2.5): visual abstraction of the spatial
channels. Only the two-dimensional position and orientation as well as their change over
time are preserved.

Figure 2.4 illustrates this design space that the visual channels define. Each column
represents a visual channel. In the case of spatial channels, each column is split into three
sub-columns representing the individual spatial dimensions. Motion is split into seven
sub-columns as it can describe the change over time of each of the remaining channels.
This schematic representation can be used to encode the types of operations that can
be found in a certain representation in order to compare and classify different adaption
approaches. Different colors indicate, whether a mapping was given or chosen, and which
type of operation was applied. We encoded the adaption approaches for the examples
that we discussed so far in this section in Figure 2.4.

In the distribution of modified and preserved channels in Figure 2.4a we can observe, how
the approach in Figure 2.2a aims to convey the accurate spatial context of the displayed
information by preserving the spatial channels. Figure 2.4b on the other hand, reflects
how the approach in Figure 2.2b distorts the spatial mapping and preserves the given
retinal information in order to reveal the data of interest. In both cases, the data is
separated into a focus and a context subset. The adaptions of the mapping are thereby
only applied on the context, to reveal items in focus. Still, neither approach neglects or
re-assigns any of the given mappings. The spatial context therefore remains readable.

18

2.2. Adapting the Spatial Representation

Figure 2.5: An adapted spatial representation of player moves in a soccer game for the
purpose of post game analysis. The two-dimensional position, orientation, and motion of
the players and the ball have been preserved.

The examples from Figure 2.3 can be encoded in this schematic as well. Figure 2.4c is
valid for both examples: the spatial channels are preserved, and the retinal channels
are re-assigned with information that has been derived from the spatial data, i.e., the
amount of overlap between volumes and the probability of water levels.

Another example of adapted spatial representations can be found in the analysis of sports
games, such as the one in Figure 2.5. We can inspect the adaption of mappings in this
representation in the schematic in Figure 2.4d. Here the positions and orientations of
the players and the ball in relation to the playing field, as well as the respective team
affiliations, are the essential attributes for efficiently analyzing team strategies. This is
reflected in the white cells for the x- and y-axis of position and orientation that describe
values in respect to the plane of the soccer field. The z-axis represents the depth in
respect to the top-down perspective and has been neglected for these channels, since
the field is presented in a two dimensional context. The shape is modified into a glyph
that still can convey the rotations by its orientation. The color is modified to represent
the player’s team affiliation. The inherent mapping of motion is preserved for positions
and orientations, as it encodes the movement of the player and ball over time. Further,
the visualization designer can decide to re-assign the speed of a player to the brightness
channel. The remaining inherent information, i.e., size, and texture, are not essential
for the fulfillment of the analyst’s task, and could even distract from the analysis. Their
inherent mapping is therefore neglected.

When regarding the schematic depictions of the presented examples, different high-level
patterns can be observed that are dictated by the respective visualization purpose.
Figure 2.4a represents visualizations where the original shape and size of spatial entities
are necessary to properly assess a data set. Figure 2.4b represents cases where the retinal
properties of an object should be preserved for a proper data analysis. Figure 2.4c
represents scenarios where the spatial channels serve as context for additional information
that is re-assigned to the retinal channels. Figure 2.4d describes representations where the
inherent temporal mapping of spatial channels has to be conveyed. These are just some
examples of potential pattern classifications in the adaption of spatial representations.

19

2. Visual Integration

In scenarios, where the expressiveness of a visualization strongly depends on conveying
non-spatial relationships, the adaption of the spatial representation alone might not
be enough to handle such tasks, as not all non-spatial relationships can be adequately
depicted in a spatial context. Further, it might occur that the number of essential
attributes that need to be displayed, exceeds the number of available visual channels in
the spatial representation. In such cases, additional representations, each with their own
set of visual channels, have to be allocated and integrated with the spatial representation.
In the following section, we therefore discuss the different strategies of how multiple
representations can be visually composed into a single coherent visualization.

2.3 Visual Integration Strategy II:
Composing Multiple Representations

An expressive and effective visualization often requires more than one view on the
data [Rob98]. Different representation forms and different visual mappings can reveal
different types of relationships. While conveying the inherent spatial mapping is often
essential for understanding spatial relationships, spatial data representations have limited
capabilities for revealing non-spatial relationships. In order to reveal non-spatial relation-
ships, a flexible mapping of spatial channels to non-spatial dimensions is required, e.g., for
the axes of a scatterplot. The logical consequence of this situation is to combine multiple
representation forms in order to join their strengths and balance out their weaknesses.

(a) (b) (c) (d)

Figure 2.6: Composite visualization paradigms according to Javed and Elmqvist [JE12]:
juxtaposition, superimposition, overloading, nesting.

There are different ways, in which multiple representation forms can be joined. Javed and
Elmqvist [JE12] define a taxonomy of composite visualization views (CVVs) based on five
different composition strategies: juxtaposition, integration, superimposition, overloading,
and nesting. In the following, we will give a brief description of each strategy. Further,
we will describe what kinds of relationships each strategy is able to convey between
composited representations, as well as the constraints that each type of composition puts
on the mapping of the involved representations’ visual channels.

Juxtaposition (Fig. 2.6a) corresponds to the coordinated multiple view (CMV) paradigm
[Rob07], i.e., placing representations side-by-side in separate views. Juxtaposition poses
no restrictions on the mapping of visual channels in each view. Therefore, they are
well suited for freely exploring relations among multiple data dimensions. However,
the way, in which these relations between visual marks should be conveyed across
views, has to be explicitly defined by the visualization designer. To convey the relation,

20

2.3. Composing Multiple Representations

(a)

view A

view B

(b)

Figure 2.7: Juxtaposition: a) representations are displayed in separate views that are
placed side-by-side [PKH04], b) the retinal channels between representations can be
coordinated in order to encode relations between selected items.

typically certain visual channels are coordinated between views, such as the color of
visual marks that are interactively selected by the user (brushing&linking), as depicted
in Figure 2.7a. As opposed to the other visual integration strategies, in juxtaposed
representations, interaction is thus essential to establish these relations. We illustrate
such a relation between juxtaposed representations in the schematic in Figure 2.7b. Since
users have to switch their attention between multiple views while maintaining a mental
image of the relations between data items, juxtaposition can be straining on the users’
cognition [WBWK00].

Superimposition refers to the overlaying of different representations within the same view
(Fig. 2.6b). All superimpositioned layers thereby share the same spatial frame of reference,
i.e., the spatial channels convey the same meaning for each layer. This restriction is
illustrated by the schematic in Figure 2.8a. Relations between the layered representations
are thus implicitly determined by the relative differences between the values of the spatial

view A

(a) (b) (c)
Figure 2.8: Superimposition: a) the mapping of spatial channels across representations is
restricted, as positions, shapes, sizes, and orientations have to convey the same meaning
across all layers, b) superimposed cartographic layers [Inc], c) glyphs encoding direction
and pressure data of wind predictions are superimposed on a 3D spatial rendering of the
earth [Dol07].

21

2. Visual Integration

channels of each layer. As such, this form of visualization composition is especially well
suited for conveying spatial relationships between the composited representations. A
common example of superimposition is the overlaying of different cartographic layers,
such as a relief map and a street map, in the visualization of geographic information
systems (GIS) (Fig. 2.8b). Another common application is flow visualization, where
glyphs representing, for instance, the flow direction and speed, are rendered on top of a
spatial representation for reference (Fig. 2.8c). Since the visualizations are stacked, each
one can make use of the entire available display space. On the downside, superimposition
does not scale well due to increased occlusion that can occur when overlaying many
visually dense representations.

(a)

(b)

view A

client

host

(c)

Figure 2.9: Overloading: a) a spatial representation of molecules overloaded with his-
tograms of protein type visibilities [LMMS+16] – the spatial relation does not convey
any meaning, b) two time series plots are overloaded with a parallel coordinate plot that
indicates relations between both time series [GRPF16] – the spatial relation between host
and client conveys a meaning, c) if the spatial relation between host and client should
convey a meaning, the mapping of spatial channels is constrained by the host.

22

2.3. Composing Multiple Representations

Overloading (Fig. 2.6c) composes two representations within the same view as well.
However, in this case, the overloaded representation assumes the role of the host, and
the remaining representations are the designated clients. The client representations
are thereby embedded into the spatial frame of reference of the host. As opposed to
superimposition, the values of spatial channels can have different meanings for the host
and the client representations. Nevertheless, just like in superimposition, the relative
positions between the visual marks of host and client can convey a meaning, as well.
However, in this case, the conveyed relations are rather of non-spatial than of spatial
nature. Overloading is therefore well suited to indicate non-spatial relationships within
the host representation through the encoding of the client representation. An example of
overloading is displayed in Figure 2.9b: time series plots are overloaded with a parallel
coordinate plot [GRPF16]. The parallel coordinate plot is bound to the spatial layout
of the time series in order to convey non-spatial relations between them. In order to
create a meaning between the spatial channels of host and client representations, the
visualization designer has to deliberately choose the spatial frame of reference of the
client representation in a way that conveys the intended meaning. The mapping of
spatial channels can thereby be constrained by the host representation, as illustrated in
Figure 2.9c. Figure 2.9a displays a spatial representation of a molecular data set that is
overloaded with histograms that convey the visibility of proteins. However, in this case,
the spatial relation of client and host does not convey any meaning.

Nesting (Fig. 2.6d) can be described as a special form of adapting a host representation,
where the retinal channels of the host are re-assigned to depict an entire client represen-
tation (as opposed to re-assigning a channel with a different attribute). This relation
is depicted in the schematic in Figure 2.10a. A client representation thereby typically
encodes additional information about the data item that corresponds to the mark in
which it is hosted. This pattern is well suited for conveying relationships between the

view A

client

host

(a) (b)

Figure 2.10: Nesting: a) the retinal channels of one representation serve as the host for
another (client) representation, b) volumetric renderings of anatomic structures are hosted
within the visual marks (the nodes) of a graph that encodes the structures’ hierarchical
relationship [BVG10].

23

2. Visual Integration

spatial channels, e.g., the position, of data items in the host representation and the
information that is mapped to the visual channels of the respective client representations.
Figure 2.10, for instance, displays hierarchic clusters of an anatomical 3D model that are
nested within the nodes of a graph hierarchy. The graph hierarchy thereby corresponds
to the 3D model’s hierarchy. The downside of this technique is the limited display space
that is available to each client representation, as it has to be contained within the area
of the visual mark in the host representation. The limited display area of the client is
therefore not well suited for complex representations, as they might be hard to read.

Integration is the final visualization composition pattern proposed by Javed and
Elmqvist [JE12]. Similarly to juxtaposition, this pattern places representations side-by-
side in separate views. However, integration differs in the way in which the relation
between visual marks is established across views. The relation is established via explicit
visual links that connect the visual marks of corresponding data items, as depicted in
Figure 2.11a. These visual links are independent of the visual channels of the respective
views. Due to the visual links, the relations are encoded more explicitly than in juxtapo-
sition. However, integration scales badly as the links have to avoid occlusion of other
data items.
We found that Javed and Elmqvist’s definition of integration is actually redundant, as this
strategy can be described as the combination of two other visual composition strategies:
juxtaposition and overloading. In this sense, juxtaposed representations are simply
overloaded with an additional representation, i.e., a graph, that connects corresponding
marks across juxtaposed representations. The graph is thereby the client representation
and has to adjust its spatial mapping to the host representations (the juxtaposed views)
in order to convey the intended meaning. We illustrate this concept in the schematic in
Figure 2.11b.

(a)

view A

view B

client

host

host

(b)

Figure 2.11: Integration according to Javed and Elmqvist [JE12]: a) explicit encoding of
relations across juxtaposed views with visual links [SWS+11], b) our schematic describes
the visual link as a proper representation layer that is overloading juxtaposed views.

24

2.3. Composing Multiple Representations

(a)

view A

client

host

client

(b)

Figure 2.12: Animated transitions: a) one representation is transformed into another one
over time [HR07], b) the transition is encoded in the motion channel, e.g., by interpolating
the visual channel values of both representations over time.

It should further be noted that the term integration that Elmqvist and Javed use to
describe the above discussed CVV pattern, is used with a different connotation in other
visualization literature. Balabanian [Bal10], for instance, differentiates between integrated
views and linked views. According to his definition, linked views are visualizations that
are placed side-by-side (corresponding to juxtaposition and integration). Integrated views,
on the other side, compose multiple visualizations within the same view (corresponding
to superimposition, overloading, and nesting). In other works [OSS+16, SRH+09], as
well as in the scope of this thesis, integration simply means the visual and functional
coordination of multiple representations, regardless of whether they are composed within
the same view or across multiple views.

The five patterns that were proposed by Javed and Elmqvist solely describe the spatial
composition of representations. However, also a temporal composition of representations
is possible, i.e., in the form of animated transitions. An animated transition integrates
two representations over time within the same view (see Fig. 2.12a). Each representation
can thereby use the entire available display space. This form of composition is capable of
conveying spatial and non-spatial relationships between two representations in an intuitive
and engaging manner [TMB02]. The relation between representations is established by
transforming the mapping of visual channels over time, e.g., via interpolation. The
animation conveys, how a visual mark in representation A transforms to a corresponding
mark in representation B. Animation thereby does not pose any constraints on the
mapping of spatial and retinal channels. However, since the transition is described via
the change of each channel over time, it occupies the motion channel, as indicated in
Figure 2.12b. Due to the transition, the two representations are never shown at the
same time. Animation is therefore rather suitable for presentation tasks and less for
exploration/analysis tasks. Further, special care has to be taken when authoring an
animated transition. Depending on the number of visual marks on display, clutter,
occlusion, and visual stimuli overload can be a challenge. For instance, when too many
elements on the screen are moving at the same time, are occluded, or are moving too
fast, the relation can get lost in transition. We will discuss the different steps that have
to be considered when authoring a transition in Chapter 5.

25

2. Visual Integration

Figure 2.13: A combination of multiple visual integration strategies in the visualization
of potential neuronal connectivity within the fruit fly’s brain [SBS+13]. The visualization
consists of three visually integrated representation layers: the background (layer 1), the
network graph (layer 2), and the nested graphs (layer 3). The schematic depiction of the
applied visual integration strategies can be found in Figure 2.14.

This concludes the description of the six proposed strategies for the visual integration of
representations. The appropriate strategy for a certain task is typically chosen based
on the kind of relationship that should be highlighted between two representations and
based on the type of constraints that a strategy poses on the mapping of the respective
representation’s visual channels. To recap: juxtaposition (and integration) can convey
relationships between arbitrary dimensions but in separate views; superimposition is
suitable for conveying one-to-one spatial relationships; an overloaded client representation
can convey non-spatial relationships within the host representation; nesting conveys the
relation between a host mark and a client representation; animated transitions can convey
relations between different mappings without the need for interactive exploration.

If one of these strategies is not sufficient to convey a specific insight, also combined
approaches are possible (as we saw in the example in Figure 2.11). In Figure 2.13, we
give another example of combined visual integration strategies, where potential neuronal

26

2.3. Composing Multiple Representations

la
y

e
r

2
la

y
e

r
1

la
y

e
r

3

preserved modifiedneglected re-assigned

unmapped

Figure 2.14: The schematic depiction of the visual integration strategies that are applied in
the visualization of potential neuronal connectivity in Figure 2.13. Layer 1 (background):
all spatial channels have been modified to achieve a visually abstracted representation of
the fly’s brain template. Retinal channels have been neglected. Layer 1 is overloaded
with layer 2, i.e., a network of smaller brain regions and the associated neurons. The
graph is a non-spatial representation form, i.e., all spatial channels have been neglected.
Only the modified positional encoding remains to depict the correspondence of the graph
nodes to the larger brain regions in layer 1. The retinal channels in layer 2 are re-assigned
in order to allow nesting of the representations in layer 3. Layer 3 features graphs that
encode the overlap between segmented neuronal volumes in each smaller brain region.
Here, the only preserved spatial attribute is the relative size of the volumes, modified
and mapped to the height of a node. The node’s fill color is re-assigned to represent the
overlap of the volume with a brain region. The brightness of an edge between two nodes
encodes the overlap volume between them.

27

2. Visual Integration

connections in the brain of a fruit fly are displayed. The visualization is composed of
three different representation layers that are all originally based on spatial data, i.e., the
segmented volumes of neurons within the brain. The background (layer 1) is an adapted
spatial representation of the brain template of the fruit fly that is overloaded with a
graph (layer 2) representing connections of neurons (round colored nodes) to smaller
brain regions (large square nodes). The graph’s large nodes are, in turn, each nested
with an additional graph (layer 3) of potential neuronal connections between the neurons
in the respective brain region. The schematic in Figure 2.14 depicts the adaption of the
visual channels as well as the relation between integrated layers.

2.4 Visual Integration Challenges

Before concluding this chapter, we will highlight some of the challenges in visualizations
that are composed of spatial and non-spatial representation forms. We thereby refer
to prior work, in which we address challenges and recurring design questions in such
integrated systems in the scope of a methodology [OSP+16]. The methodology examines
the three visual perception tasks that Elmqvist and Tsigas identified in the context of
a taxonomy of 3D occlusion management techniques [ET08]. These tasks are target
discovery, target access, and spatial relation. In order to illustrate these tasks and the
associated challenges, we will regard them in the context of a tunnel maintenance scenario
(Fig. 2.15) where the cracks in a tunnel wall are the data items of interest.

Target discovery is the task of finding a specific item within a scene. A specific crack
could be located on any of the displayed tunnel walls. Target access is concerned with
retrieving the graphically encoded information that is associated with a target. Accessing
spatial attributes, such as the length, orientation, and diameter of a crack can be essential
for a proper assessment of a tunnel’s stability. Spatial relation refers to the retrieval
of information that is encoded in the spatial relationship between multiple targets and
their spatial context. The constellation of multiple cracks to each other, as well as their
location on a tunnel wall (spatial context), can give critical information about a tunnel’s
stability.

In the context of 3D spatial visualizations, there are four inter-dependent factors that
can impede these three visual perception tasks: the view-frustum, the viewing angle, the
viewing distance, and occlusion. The view frustum is only capable of displaying a small
part of a potentially complex 3D spatial scene (see Fig. 2.15). Without any support, the
task of target discovery, e.g., locating a specific crack in the tunnel, can thereby succumb
to a game of "hide and seek", as objects might lie fully or partially outside the view
frustum. Similarly challenging would be the localization of multiple cracks within the
view frustum when trying to analyze their spatial relation to each other. Viewing angle
and viewing distance can determine whether target access of the spatial properties of an
object, such as a crack in a tunnel wall, is successful or not. If the viewing angle and
the distance are not appropriate, the detailed spatial features of an object might be too
distorted or too small for a proper target access. All three visual perception tasks are

28

2.4. Visual Integration Challenges

Figure 2.15: Tunnel cracks as data items in a non-spatial (A) and spatial (B) context.
While the visual perception tasks of target discovery, target access, and spatial relation
can be easy to solve in a non-spatial representation (A), data items in 3D spatial scenes
might be only readable from a certain viewing angle, they can lie outside the view frustum
(C) or they can be occluded (D) [OSP+16].

further impeded through full or partial occlusion, caused either by other objects or by
the context geometry, e.g., the tunnel walls.

If these obstacles are not properly addressed, also certainty can be impacted in a negative
way, as users have no way of knowing if they discovered all relevant (selected) targets
in the 3D scene. A proper functional integration of spatial and non-spatial views that
explicitly address the aforementioned obstacles, is the key to support the perception
tasks in 3D spatial visualization environments. The non-spatial representation thereby
provides the user with an overview, and the spatial representation supplies the details on
demand. Users can locate an item according to non-spatial or derived spatial attributes
within the overview and then, through special functional integration mechanisms between
spatial and non-spatial views, automatically locate and inspect the item in the spatial
context, thus saving them from manually searching for the item in the spatial view.

In our methodology [OSP+16], we propose several strategies that target the aforemen-
tioned obstacles. Guided navigation automatically adjusts the camera in the spatial view
to either an overview position when multiple entities are selected or to a detail position
when only one entity is selected. The overview position supports the recognition of
spatial relations by keeping entities that have been selected in another (non-spatial) view
within the spatial view-frustum. The detail position supports target discovery and access

29

2. Visual Integration

by displaying a selected tunnel crack in a frontal view at close proximity. Adaptions of
the spatial representation are applied for occlusion handling of context geometry, i.e.,
the tunnel walls, to guarantee that all brushed entities within the spatial view frustum
are visible. Another adaption of the spatial representation is triggered when the camera
distance to selected items is too large to allow a proper visual discrimination. In this
case, the original shape is modified to a glyph representation that allows the user a visual
discrimination even at large distances in order to convey the spatial relation of selected
items.

Here we discussed specific solutions to a specific application scenario. However, the
identified challenges in visualization systems that integrate heterogeneous, i.e., spatial
and non-spatial, representation forms also hold true for other application scenarios. In
Part II of this thesis, we present novel techniques in other concrete integration application
scenarios. Before that we will address another important aspect of integration: the
functional integration of visually integrated representations that is required to enable
linked interactions between the various data representations in a visualization system.

30

CHAPTER 3
Functional Integration

This chapter is based on the following publication:

Johannes Sorger, Thomas Ortner, Harald Piringer, Gerd Hesina, and Eduard Gröller. A
Taxonomy of Integration Techniques for Spatial and Non-Spatial Visualizations. In 20th
International Symposium on Vision, Modeling and Visualization (VMV 2015). October
2015 [SOP+15].

Visual integration enables a visualization system to convey the entire range of at-
tributes that is required to fulfill a task, within the most suitable representation

form. A functional integration between the visually integrated representations is required
in order to actually join the strengths of the involved representations, i.e., by integrating
their functionalities. Functional integration describes, how one or more views on (or
representations of) the data react to the changes in another view or representation. With-
out such functional linking, each representation, no matter if visually integrated or not,
remains an isolated entity. In order to retrieve the desired information from such isolated
representations, the user would have to interact with each one individually. Functionally
integrated representations are enabled to show relevant information in relation to the
information that the user currently interacts with in another representation, e.g., by
filtering or highlighting corresponding data entities.

In this chapter, we explore the ways in which a functional link between two representations
can be established. In the scope of a taxonomy, we thereby describe how a functional
link can be triggered within one representation, and how an integrated representation
can react. A link can determine, what kind of data is shown, how it is shown, and,
especially in spatial representation forms, from which perspective. According to these
three questions, we structure a visualization into three components: the Data, the Visual,
and the Navigation component. The Data component governs which parts of the data
are shown in which granularity. The Visual component is responsible for the way in
which attributes are mapped to visual channels. The Navigation component handles

31

3. Functional Integration

modifications of the view frustum. Each component supports certain interactions and
events that correspond to user intents. A functional integration type is defined by
the specific combination of the component on which an interaction is issued and the
component where as a result an event is triggered. In the remainder of this chapter, we
will refer to functional integration simply as integration for the sake of brevity.

3.1 Introduction
The visual representation of data is traditionally classified into methods that assume
an inherent mapping from data values to spatial coordinates and into methods for
data lacking explicit spatial references, where the spatialization is chosen [TM04]. In
practice, however, users often need to analyze data that contains multiple facets, like
spatio-temporal and multivariate data characteristics [KH13]. In flow visualization, for
instance, non-spatial representation forms are used as an overview to select and highlight
interesting attribute values in a spatial volumetric flow representation [Dol07]. In traffic
simulation and road planning, traffic data is assessed directly within the spatial context
of a 2D or 3D map, while non-spatial views serve the statistic analysis of trends and
non-spatial data correlations [WYL+14].

The benefits of visualizations that integrate spatial and non-spatial data facets have been
repeatedly emphasized in visualization literature [SRH+09, TM04]. These benefits were
also the topic of panel discussions at the IEEE Visualization conferences in 2003 and
2006 [HWM+06, RTM+03]. Fuchs and Hauser make a strong case for the application
of multi-method visualization: "a tight integration of multiple techniques gives a key
advantage towards understanding the investigated data" [FH09]. The authors identify
three main advantages of multi-method visualization: improved effectiveness (each part
of the data is visualized by the most appropriate method), minimizing visual clutter, and
separation between the questions of how and what to visualize. Kehrer and Hauser state
that there is a lack of general concepts for handling the heterogeneity of multifaceted
data [KH13].

While basic coordination techniques like brushing & linking are quite common, the ways
in which spatial and non-spatial representations can benefit through integration are
manifold. With the absence of a proper formalism though, it is difficult to describe
and discuss this design space. We therefore propose such a formalism by describing
the ways in which heterogeneous representation forms can be integrated. We thereby
describe spatial and non-spatial representation forms based on a separation into a Data,
a Visual, and a Navigation component. Our model can classify systems in terms of
how the components of two representations are integrated. While this model holds also
true for the integration of homogeneous representation forms, in the context of this
taxonomy, we will focus on the integration of heterogeneous, i.e., spatial and non-spatial
representations.

32

3.2. Related Work

The contributions of this chapter are:

• The specification of a taxonomy that defines the design space for integrating spatial
and non-spatial representations.

• An in-depth analysis of this design space based on state-of-the-art approaches from
the literature.

• A demonstration of the classification and comparison capabilities of our for real-
world integration scenarios.

3.2 Related Work
Publications that explicitly address the integration of spatial and non-spatial represen-
tations are still rare. In their state-of-the-art report on visualization of multivariate
scientific data, Fuchs and Hauser classify techniques by data type, i.e., scalar, vector
field/flow, and tensor field visualization, and by the stages of the visualization pipeline
where these techniques are applied [FH09]. Kehrer and Hauser give a survey of multi-
faceted scientific data visualization [KH13]. The authors describe five different facets
of scientific data by which the discussed techniques are categorized: spatiotemporal,
multivariate, multimodal, multirun, and multimodel. For each facet, techniques are
divided into approaches for representation, computational analysis, and interaction. Both
surveys stress the importance of multi-method visualizations.

In their high level visualization taxonomy [TM04], Tory and Möller classify visualization
algorithms based on whether they handle data discretely or continuously, and whether
the spatialization is chosen, constrained, or given. With their taxonomy, they aim to
inspire research ideas in hybrid visualization areas.

Boukhelifa et al. [BRR03] propose a model for describing coordination in exploratory
multiple-view visualizations. The model uses the visualization pipeline to convey, which
pipeline stages in connected views are linked through a coordination object. The authors
specify the basics of coordination in a system: coordination entities, type, chronology,
scope, granularity, initialization, updating, and realization. This coordination of individ-
ual pipeline stages across views is an important source of inspiration to us, as we explore
the combination of visualization components across integrated representations. In her
book, Munzner also weighs in on the coordination of juxtaposed views [Mun14]: "The
main design choices for juxtaposed views cover how to coordinate them: which visual
encoding channels are shared between them, how much of the data is shared between them,
and whether the navigation is synchronized." We describe these three aspects by the three
visualization components – as such they represent a high-level view of the visualization
pipeline that the coordination model of Boukhelifa et al. [BRR03] is based on. In contrast
to Munzner and Boukhelifa et al., we do not restrict our model to multiple-view systems,
as all types of composite visualizations can be described.

33

3. Functional Integration

Figure 3.1: Selection in a scatterplot (non-spatial source representation) causes highlight-
ing of the corresponding objects in the 3D view (spatial target representation).

The design space of composite visualizations is described by Javed and Elmqvist [JE12],
as discussed in the previous chapter. The authors suggest a theoretical model that
unifies the coordinated multiple-view paradigm with other strategies for combining visual
representations, i.e., juxtaposition, superimposition, overloading, nesting, and integration.
Functional integration, as we describe it, can take place between all types of composite
visualizations. The works by Javed and Elmqvist [JE12] and Boukhelifa et al. [BRR03]
treat the issue of handling multiple visualizations in a single framework from a visual
and a functional perspective respectively. In this chapter, we go one step further, and
explore the resulting design space in respect to heterogeneous representation forms.

Prior work on analyzing interactions within a heterogeneous visualization system has
been proposed by Balabanian et al. [BVG10]. The authors categorize heterogeneous
visualization techniques based on a 3× 3 matrix that describes whether interactions are
issued within spatial, non-spatial or integrated representations. We explore this design
space in more detail, as we partition each representation into the three visualization
components in order to regard their potential combinations. Furthermore, we do not
consider an integrated space as a third category besides the spatial and the non-spatial
one, as we partition an integrated visualization into the individual spatial and non-spatial
representations from which it is composed.

The design space of integrated representations is acknowledged in the visualization
literature – in respect to visual [JE12] and an functional integration [BVG10, BRR03].
However, save for the work of Balabanian et al. [BVG10] the intricacies of joining spatial
and non-spatial representations are not discussed.

3.3 Model-Based Taxonomy

3.3.1 Overview

We define integration as the coordination of visualization components where each compo-
nent stems from a different representation. In our taxonomy, we focus on the integration
of heterogeneous, i.e., spatial and non-spatial, representation forms. The representation
that a user interacts with is referred to as the source representation. The representation

34

3.3. Model-Based Taxonomy

that is affected through the integration is referred to as the target representation. A
common example of integration between two representations can be seen in Figure 3.1,
where the selection of data points in a scatterplot (non-spatial source representation)
causes the highlighting of the corresponding objects in a three-dimensional view (spatial
target representation). As the key idea of the taxonomy, different types of integration can
be discriminated based on which visualization components are linked in the source and
target representation. In our model, components can be combined like building blocks,
in order to form an integration. Simple integration types consist of only two components.
However, also more complex combinations are possible.

A functional link between two integrated representations is always triggered through
user interaction. In the aforementioned example, the selection of objects in a scatterplot
corresponds to an interaction on the Data component of the non-spatial representation.
The integration affects the Visual component in the spatial target representation by
highlighting the selected objects in the 3D view. Each component supports certain types
of input (interactions) and output (feedback) that are able to fulfill certain types of user
intents. The Data component handles, for instance, the selection of data items, while the
Visual component is responsible for visually indicating selected items.

As interaction is a well studied topic in the visualization community, we rely on es-
tablished definitions, i.e., the user intents by Yi et al. [YaKSJ07], for describing the
types of interactions supported by the individual components (Fig. 3.2). Brehmer and
Munzner [BM13] give a good overview of other works on interaction terminology, as well
as a comparison of definitions that are equivalent to the ones of Yi et al.

3.3.2 Definition of Representation Forms

For spatial representation forms, data attributes are mapped to their inherent posi-
tions in three-dimensional space, e.g., volume- and flow-visualization, real-time rendering,
or GIS. Mapping to two-dimensional space is also considered as spatial, if the third
dimension is negligible, e.g., slicing in volume visualization, 2D maps in GIS, certain
flow visualization scenarios. The mapping from data to 2D or 3D space is therefore
inherent [TM04].

We define non-spatial representation forms as encompassing all types of visualiza-
tions where the spatialization of the data’s representation is chosen [RTM+03]. Explicit
spatial references of non-spatial attributes are either missing or visually abstracted (i.e.,
neglected or re-assigned as discussed in Section 2.2). Temperature in a climate simulation,
for example, can be visualized in a non-spatial context as a histogram or in its inherent
spatial context at the position in the volume where it was measured. Depending on the
data type, non-spatial representations may include multivariate representation forms (e.g.,
parallel coordinates, glyphs), hierarchical representation forms (e.g., TreeMaps [Shn92]),
graph representations, and other representation forms, such as text visualizations.

35

3. Functional Integration

3.3.3 Notation

We abbreviate an integration between two visualization components by their initial
letters, joined by an arrow. The example from Section 3.3.1, where a selection on the
Data component triggered a highlighting operation in the Visual component, is therefore
denoted as D→V. The integration direction, e.g., spatial to non-spatial or non-spatial to
spatial, is indicated in the subscript – "s" corresponds to a spatial representation, and
"a" corresponds to a non-spatial representation: Ds→Va, Da→Vs, and Da/s→Vs/a for
bidirectional integration.

Figure 3.2: The Data, Visual, and Navigation components represent high level groups of
visualization pipeline stages. Each component supports different types of user intents.

3.3.4 Visualization Components

We base our model components on the visualization pipeline as an established concept
for describing the individual stages of a visualization. The pipeline typically consists of
the original data, processed data, mapping, rendering, and image stages [FH09, HM90].
For a more streamlined model, we summarize the data related stages (original data and
processed data) into the Data component, and the stages related to the visual output of a
visualization (mapping, rendering, image) into the Visual component. Some models also
acknowledge an additional view transform (or navigation) stage [BRR03, CR98] in order
to encompass not only interaction with the visualization pipeline stages but also with the
actual view on a 2D or 3D representation. We thus also include a Navigation component
in our model. References to these three components can also be found in literature. Card,
Mackinlay, and Schneiderman [CMS99] present a visualization reference model that also
considers interaction, describing three primary transformations for mapping spatial data
to visual representations: data transformations, visual mappings, view transformations.

Interactions are carried out directly or indirectly [Rob07] on a component in order to fulfill
supported user intents. Indirect interaction is handled via menus or widgets, e.g., sliders
and buttons. Direct interaction takes place directly on the elements of a representation,
e.g., when brushing points in a scatterplot.

36

3.3. Model-Based Taxonomy

Data Component

The Data component (Fig. 3.2a) handles the question of what to visualize [FH09]. It
comprises all parts of a visualization that are directly related to the data which the
visualization is based on, i.e., original and processed data.

Interaction with the Data component supports the user intents of select, filter, and
abstract/elaborate [YaKSJ07]. Select marks interesting data for further examination,
while filter removes data according to user specified conditions. Abstract/elaborate
corresponds to the aggregation of data, as well as the derivation of new data.

As an integration source (D→X), the Data component can supply other components
with information on which data they should process. As an integration target (X→D),
the Data component can receive information on how to process existing data as well as
new data that was generated by other components.

Visual Component

The Visual component (Fig. 3.2b) is concerned with the question of how to visualize
the supplied data. It comprises all parts of a visualization responsible for generating its
final output image, i.e., the mapping, rendering, and image stage [FH09]. The Visual
component defines, which data attributes are mapped to which visual channels in order
to determine the visual appearance of a data item.

Interaction with the Visual component supports the user intents of encode, abstract/
elaborate, and reconfigure [YaKSJ07]. Encode corresponds to assigning visual channels
to data attributes, e.g., changing the color of a visual mark in a flow visualization in
dependence of their velocity. Abstract/elaborate enables users to add or remove detail
from a representation, e.g., by encoding more or fewer attributes in a glyph, or by
visually abstracting a spatial representation. Abstract/elaborate also corresponds to
image processing methods that derive new data from visual attributes, such as visibility.
Reconfigure changes the frame of reference in a representation in order to gain another
perspective on the displayed data. The reconfigure intent in the context of the visual
component thereby corresponds to modification or re-assigning operations on the visual
channels, that we discussed in Section 2.2. Examples for reconfigure are changing the
order of axes in a parallel coordinates plot to reveal hidden patterns, or exploding a view
in a spatial representation to avoid occlusion.

As an integration source (V→X), the Visual component provides the target representation
with information about the mapping or changes thereof, i.e., which data attributes are
being mapped to which visual channels. Further, the Visual component can provide
derived information from image processing as well. As an integration target (X→V), the
Visual component can give visual feedback to interactions in the source representation,
e.g., by adapting a representation in respect to the received input information.

37

3. Functional Integration

Navigation Component

The Navigation component (Fig. 3.2c) is responsible for changing the viewing position
and/or direction on the visualized data. It is simultaneously concerned with the questions
of the Data and the Visual components, i.e., what to see (view port) and how to look
at it (viewing distance, and angle) but without directly affecting the Data or Visual
components. Especially in spatial representations, Navigation is an essential component,
as due to the size of a scene or due to the (self-)occlusion of objects not all relevant data
can be displayed simultaneously.

Navigation of a visualization supports the user intents of explore and reconfigure. Explore
corresponds to interactions like panning on a large graph representation, or flying through
a 3D scene. Reconfigure corresponds to view rotations in spatial representations, e.g.,
rearranging the view on a volume through rotation.

Navigation as an integration source (N→X) can supply the target components with
updates about the viewing position or direction. This information can then be used,
for instance, to steer data aggregation or the visual level of detail. Navigation as an
integration target (X→N) can update the viewing distance or direction in relation to
information supplied by the source representation, for instance, by transforming the
camera so that it captures specified data items.

3.4 Integration Techniques

The pairwise integration of the three visualization components yields nine types of
integration techniques that we will present in the following. We cluster the integration of
visualization components into three categories: Data Operations, Data Indication, and
Visual Consistency.

The technique descriptions are based on state-of-the-art examples that we encountered
during our literature research. The specific examples serve to illustrate the specific
techniques. However, they do by no means represent a complete listing of all potential
permutations of the presented techniques. Instead, the descriptions should provide the
reader with the knowledge on how to devise the required type of integration for a given
task. In this work, we focus on the discussion of examples for integration techniques
between heterogeneous, i.e., spatial and non-spatial, representation forms. However,
each technique that we present in this section remains also valid for the integration of
homogeneous representation forms.

3.4.1 Data Operations

Data Operations describe all integration types that affect the Data component in the
target representation. Data operations can be categorized into data manipulation, i.e.,
selection and filtering, data derivation, and data aggregation.

38

3.4. Integration Techniques

Figure 3.3: A functional link between two Data components can reflect data operations
across integrated representations, i.e., by triggering selection, filter, aggregation (abstract),
and derivation (elaborate) operations in respect to interactions on the data.

D→D enables techniques where operations on the Data component in the source repre-
sentation can be reflected on the Data component in the target representation. Figure 3.3
displays the user intents that can be linked by this type of integration.

Data manipulation: User interactions on the data in the source representation determine
which data items are loaded or filtered in the target representation. The visualization
of traffic trajectory data by Wang et al. [WYL+14] lets users load additional traffic
streams into the spatial view by brushing the non-spatial representations in a histogram
(Da→Ds). The tool for geographical data analysis by Turkay et al. [TSH+14] lets the
user issue spatial queries by drawing a path on a map. non-spatial data that correspond
to the path positions is then loaded into a graph matrix for further analysis (Ds→Da).

Data aggregation: User interactions on the data in the source representation determine
the level of granularity at which data is processed in the target representation. In the
visualization of fiber tracts by Jianu et al. [JDL09], the manipulation of clusters in a
dendrogram is reflected in the level of aggregation of 3D fiber tracts (Da→Ds).

Data derivation: Data that the user interacts with in the source representation is used
for the derivation of new data in the target representation. In their visualization of
mobility in public transportation systems, Zeng et al. [ZFA+14] generate an isoflow tree
representation of traffic data (non-spatial) through selection of a spatial starting point
on a traffic map (Ds→Da).

Figure 3.4: The Visual component can supply information about attribute mappings to
visual channels (encode, reconfigure), as well as aggregated and derived visual information
(abstract/elaborate) to the Data component.

V→D enables the Data component of the target representation to use the Visual
component as an information source (Fig. 3.4).

Data aggregation: Bruckner and Möller [BM10] developed a tool for visual parameter
steering that supports artists in designing complex visual effects based on particle
simulations, such as fire or smoke. After running numerous particle simulations, the
results are clustered based on their visual appearance (Vs→Da).

39

3. Functional Integration

Figure 3.5: A functional link between the Navigation component and the Data component
supports the steering of data in the target representation based on the camera position
and orientation in the source representation. Navigation thereby determines which data
items are situated within the view frustum (explore), and from which distance/angle they
are inspected (reconfigure). This information can be used by the target representation to
select or filter corresponding items, or to abstract/elaborate the data, e.g., based on the
distance.

N→D: enables techniques where navigation in the source representation can steer the
Data component in the target representation. Data in relation to positional or directional
updates, can be selected, filtered, abstracted, or elaborated in the target representation
(Fig. 3.5).

Data aggregation: Chang et al. [CWK+07] use navigation in a 3D view to control the
clustering of demographic data, which in return is visualized in a matrix view and a
parallel coordinates plot (Ns→Da). This type of integration occurs often in combination
with N→V (see Sections 3.4.2 and 3.4.4).

3.4.2 Data Indication

Data indication encompasses integration types that highlight (indicate) data objects in
the target representation that are related to interactions in the source representation.
This indication of related information facilitates orientation between visually integrated
representations.

Figure 3.6: A functional link between the Data component and the Visual component
allows the target representation to visually react to interactions on the data in the source
representation. The target representation can highlight selected data (encode), change
the visual level of detail (abstract/elaborate), or change the mapping of attributes to
visual channels (reconfigure).

D→V encompasses techniques where operations on the data in one view are visually
indicated in another view (Fig. 3.6). Brushing & linking is a common example for this
type of integration. In WEAVE [GRW+00], for instance, non-spatial representations are
used to highlight features in 3D volumes. The volume can also be brushed for highlighting
the corresponding data point in the non-spatial views (Da/s→Vs/a).

40

3.4. Integration Techniques

Since in complex 3D visualizations objects can be occluded or lie outside the view frustum,
it can be challenging for users to locate the 3D representations of data items that have
been selected in an non-spatial view. Berge et al. [SzBBKN14], for instance, visually
abstract the 3D spatial representation in order to make volume segments visible after
they have been selected in the non-spatial representation (Da→Vs).

Another common application of D→V is mapping data values to visual channels. For
many applications, Da→Vs is essential to explore the spatial distribution of non-spatial
values. In scientific visualization, for instance, it is common to use a transfer function
for mapping non-spatial attributes, such as the temperature in the volume data of an
engine block, to color and transparency (Da→Vs) [MFNF01]. Jianu et al. [JDL09] encode
the spatial similarity of brain fiber tracts in a color that is shared among spatial and
non-spatial fiber tract representations (Ds→Va, as well as Ds→Vs)).

Figure 3.7: A functional link between the Data component and the Navigation component
enables guided navigation in the target representation in respect to, e.g., selected, parts
of the data in the source representation.

D→N encompasses techniques where the data component supplies the navigation compo-
nent with information, e.g., about which objects are selected (Fig. 3.7). The navigation
component in the target representation then transforms the selected objects into the
view, in the sense of guided navigation. Guided navigation can help to alleviate issues of
localization and occlusion in both representations. A technique by Viola et al. [VFSG06]
selects an optimal viewpoint from pre-computed camera positions for a specified volume
segment (Da→Ns).

In the context of occlusion, and the question of whether a chosen perspective on a 3D
data representation is meaningful, finding a proper metric for determining viewpoint
optimality is a challenge in 3D spatial data visualization. For non-spatial representations,
the situation is simpler. In BrainGazer [BSG+09], for instance, a list view automatically
scrolls to the entry of a segment that has been selected in the 3D view (Ds→Na).

41

3. Functional Integration

Figure 3.8: N→V supports the adaption of visual encodings in the target representation
in respect to the camera position, and orientation in the source representation. Navigation
thereby determines which data items are situated within the view frustum (explore), and
from which distance/angle they are inspected (reconfigure). This information can be
used by the target representation to highlight items in the view (encode), or to change
the visual level of detail (abstract/elaborate), e.g., in respect to the distance.

N→V can change the displayed visual information based on user navigation (similar to
N→D) (Fig. 3.8). In their comparative blood flow visualization, van Pelt et al. [vPGL+14]
annotate the spatial vessel representation with non-spatial glyphs about local blood
flow information. Zooming in the spatial view changes the type of representation in the
annotations according to the available screen space or to the distance between the camera
and the vessel (Ns→Va).

Figure 3.9: A functional link between two Navigation components enables navigational
slaving between integrated representations.

N→N corresponds to synchronized navigation, i.e., navigational slaving [WBWK00],
across representations. It allows users to simultaneously explore data in both representa-
tions (Fig. 3.9).

To enable an N→N integration, the respective representations either need to have at
least one common dimension in their spatial frame of reference, or a function that maps
transitions along a dimension in one representation to transitions along a dimension in
the other representation. In Biopsy Planner [HMP+12], for instance, users can specify
a needle pathway into the brain. A line graph shows the distance to the closest blood
vessel along this needle pathway. Consequently, the slice views that displays the pathway
and the line graph share a dimension. Users can navigate along the x-axis of the line
graph, which adapts the slicing position of the slice views (Na→Ns).

V→N encompasses techniques where information from the Visual component is used for
steering the Navigation component (Fig. 3.10). For this type of integration, we found no
example in the literature that would integrate a spatial with a non-spatial component.
Viola et al. [VFSG06] apply this technique for spatial-to-spatial integration in volume
visualization by transforming the camera to the optimal viewing position of an occluded
object (Vs→Ns).

42

3.4. Integration Techniques

Figure 3.10: A functional link between the Visual and the Navigation component enables
the adaption of the camera position and orientation in respect to visual information, such
as visibility.

3.4.3 Visual Consistency

Visual Consistency encompasses integration types that support the Rule of Consistency,
i.e., "Make the interfaces for multiple views consistent, and make the states of multiple
views consistent." [WBWK00]. Wang Baldonado et al. state that visual consistency
facilitates the use of coordinated multiple views by making comparisons easier.

V→V enables techniques that visually link items from the source representation to their
counterparts in the target representation, e.g., by using the same visual mapping for
the same data attributes in both representations (Fig. 3.11). An example is a focus-
and-context visualization [SzBBKN14] where volume segments and their non-spatial
counterparts share the same color across representations (Va/s→Vs/a).

V→V also describes certain types of nesting, i.e., when rendered (screen space) infor-
mation from the source representation is mapped to the visual marks in the target
representation. In a visualization of sparse traffic trajectory data [WYL+14], overlays
with traffic flow data are displayed in the spatial context of a 2D street map (Va→Vs).
NeuroLines [AABS+14] displays 3D volume renderings as annotations for a non-spatial
neural pathway representation (Vs→Va).

Figure 3.11: A functional link between two Visual components enables the synchronization
of visual information between integrated representations, as well as the incorporation of
visual information from the source representation.

3.4.4 Integration of Multiple Components

In some scenarios it makes sense that an interaction with a component has multiple
parallel or sequential effects, i.e., the integration of multiple components is required.
An example for parallel integration is integrated semantic zooming. Here, the dis-
tance to a data object determines the aggregation (Ns→Da) and the visual mapping
(Ns→Va) of the data representations in a target representation (see for instance, Chang
et al. [CWK+07]). Sequential integration describes a chain of simple integrations where

43

3. Functional Integration

each target component becomes the source for the next component in the chain. On
a technical level, brushing&linking could for instance be described as a sequence of
Da→Va→Vs or Da→Ds→Vs, depending on the respective implementation. A data item
is selected, the item is visually highlighted in the same representation (Da→Va), and the
highlighting is linked with another representation (Va→Vs).

3.5 Discussion

3.5.1 Model Application

In Table 3.1 we compare the integration techniques that we derived from the cited
literature. The different publications, listed as columns, are grouped by field - Scientific
Visualization, Civil Engineering, and Geospatial Visualization. The rows represent the
nine integration types, which are grouped according to the categorization discussed in
Section 3.4: Data Manipulation (yellow), Data Indication (green), Visual Consistency
(gray). To further illustrate the applicability of our model, we analyze two systems as
representative examples for the two dominant integration directions.

SimVis [Dol07] is a framework for the interactive visual analysis of large, multi-dimensional
flow data that result from Computational Fluid Dynamics (CFD) simulations. Multiple
non-spatial views, such as scatterplots, histograms, or parallel coordinates, enable the
exploration of the simulated flow attributes. The non-spatial views are linked to a spatial
view that displays a three-dimensional representation of the flow data. In SimVis, the
non-spatial views are used to explore the spatial view, i.e., to highlight patterns in the
volume data that could be of interest. The dominance of interaction originating from
the non-spatial representation is also reflected in the relation of blue to red cells in the
respective column of Table 3.1.

UrbanVis [CWK+07] is a visualization tool for the exploration of multi-dimensional data
in an urban context. The tool provides a 3D view for the spatial exploration of an urban
environment, and a non-spatial view for exploring the multi-dimensional information
that is associated with spatial clusters in the 3D scene. The scenario here is the opposite
case to the previous example, i.e., the spatial view is used to explore the non-spatial
data. This manifests itself in a 4:1 ratio of red to blue cells in the respective column in
Table 3.1. Interaction in the spatial view determines, what data (→D) is chosen and
how (→V) it is displayed in the non-spatial view. The non-spatial view itself can then
be explored independently, with no implications on the spatial representation.

44

3.5. Discussion

Ta
bl
e
3.
1:

A
co
m
pa

ris
on

of
in
te
gr
at
ed

in
te
ra
ct
io
ns

de
riv

ed
fro

m
th
e
ci
te
d
lit
er
at
ur
e
in

th
is
ch
ap

te
r.

T
he

di
ffe

re
nt

pu
bl
ic
at
io
ns
,

lis
te
d
as

co
lu
m
ns
,a

re
gr
ou

pe
d
by

fie
ld
.
T
he

ro
w
s
re
pr
es
en
t
ni
ne

ty
pe

s
of

in
te
gr
at
io
n,

w
hi
ch

ar
e
gr
ou

pe
d
ac
co
rd
in
g
to

th
e

ca
te
go
riz

at
io
n
sh
ow

n
in

Se
ct
io
n
3.
4:

D
at
a
M
an

ip
ul
at
io
n
(y
el
lo
w
),
D
at
a
In
di
ca
tio

n
(g
re
en
),
V
isu

al
C
on

sis
te
nc
y
(g
ra
y)
.
B
lu
e

ar
ro
w
s
de

sig
na

te
no

n-
sp
at
ia
l-t

o-
sp
at
ia
l,
an

d
re
d
ar
ro
w
s
sp
at
ia
l-t

o-
no

n-
sp
at
ia
li
nt
eg
ra
tio

n.

45

3. Functional Integration

Integration Patterns

The dominant integration direction in the discussed applications depends on the task
that a user should be able to achieve. The task also determines the role that the source
and target representations will assume.

In SimVis, the task is to analyze simulation results, e.g., in order to find anomalies in
the measurements. The non-spatial source representation is used for interactive data
exploration, while the spatial target representation gives visual feedback. In Table 3.1, this
is reflected in the dominance of non-spatial-to-spatial integration types (blue triangles)
for volume visualization applications. Brushing&linking in volume visualization falls
into this pattern. Here, non-spatial representations, such as histograms of intensity
distributions, are used to select certain attribute ranges in order to change the mapping
of the corresponding 3D spatial glyphs.

In UrbanVis, the user’s task is to analyze census data in order to draw conclusions about
relationships between living conditions and locations. The spatial source representation is
used for the dynamic extraction and derivation of data, whereas the target representation
is responsible for providing contextual detail that supports the analysis of the derived
non-spatial information. This pattern is employed in applications that emphasize spatial
exploration. Here the non-spatial view holds additional information about user defined
regions in the spatial scene. This results in a strong integration from the spatial to the
non-spatial representation, as it can be found in applications from civil engineering and
geospatial visualization. In Table 3.1, this is reflected in the first row, by the strong
spatial-to-non-spatial integration (red triangles) for direct data-to-data integrations
(D→D) in the categories of civil engineering and geospatial visualizations.

Both of these patterns enable a feedback loop [War00], in one case from the non-spatial
to the spatial representation and in the other case from the spatial to the non-spatial
representation. One representation gives thereby feedback to the interactions in the
other representation and enables an iterative refinement of operations on the data. If
integration techniques are applied in both directions, we speak of balanced integration
across representations. Integration techniques thereby complement each other and enable
users to explore the spatial and the non-spatial representation in a back and forth fashion.

Visualization Components

The suitability of a visualization component as an integration source or an integration
target depends on the component’s input and output capabilities, i.e., the user intents
that a component supports in terms of interaction, and the information that a component
can receive, process, and output in order to support a user intent.

Since the user typically interacts directly with the data (D→X) or navigates a view on
the data (N→X), D and N are a very common integration source. Interactions on the
data prevail in Table 3.1 (D→D and D→V). From a technical perspective, it does not
matter if the input information that a component receives comes directly from a user’s

46

3.6. Conclusion and Outlook

interaction or from the output of another component. A component that is a suitable
integration source therefore also represents a suitable integration target.

The Visual component is well suited as an integration target since it can transform the
incoming information into visual feedback. Table 3.1 clearly shows the strong occurrence
of integration techniques with the Visual component as an integration target, especially
for interactions on the Data component in the source representation (D→V).

Direct interactions with the Visual component as integration source, however, are less
frequent, except for V→V . Here, typically a change in the visual mapping is synchronized
between representations, for instance, when trying to reveal patterns through manipulation
of the mapping via transfer functions. The output of the Visual component, however, is
not easily transformed into input for other components. A suitable integration target
therefore is not automatically a suitable integration source. The goal of a system designer
should be to pick the type of integration that supports the user intents required for
fulfilling a given task.

3.5.2 Model Validation

Beaudouin-Lafon describes three metrics by which interaction models can be evalu-
ated [BL04]: descriptive power, evaluative power, and generative power.

We argue that descriptive power is given, since our taxonomy’s model is based on the
general visualization pipeline. This means the taxonomy can describe the integration of
visualization components regardless of the involved representation forms. Moreover, the
taxonomy is not restricted to any particular application domain but may be applied to
all types of data, for example, from computational fluid dynamics, or urban planning.

With the model application in Section 3.5.1, we aim to demonstrate that evaluative
power is given. Different systems can be compared by analyzing their integration
patterns. Alternative implementations can be suggested after identifying the user intents
that are involved in fulfilling a certain task as well as the compatible integration types.

We argue that with the disclosure of the integration design space, generative power
is given, as well. By describing the properties of individual visualization components
in each representation form as well as how they can be combined with each other, the
design space is revealed to the visualization designer.

3.6 Conclusion and Outlook

The integration of representations enables efficient exploration of multifaceted spatial
data. In this chapter, we presented a model that describes the design space resulting from
the combination of visualization components from spatial and non-spatial representations.
Our taxonomy can be applied to draw conclusions and identify patterns and correlations
across visually integrated representations.

47

3. Functional Integration

While we focused on the integration of heterogeneous representation forms, our model
could well be applied to visually integrated representations in general. In terms of future
research perspectives, it would be interesting to apply our taxonomy to a broader suite
of literature in the scope of a state-of-the-art report. By providing a stable base for the
development of novel ideas, we hope to contribute to the understanding of this branch of
research that, while finding more and more applications in today’s scientific community,
has never been discussed and structured on a detailed enough level.

By concluding this chapter, we reached the end of Part I of this thesis. So far, we equipped
the reader with the knowledge about the various ways in which multiple representations
can be visually composed in order to convey the information required to fulfill a task in
the most suitable visual context. Subsequently, we described how interactions or events
can be functionally linked across these visually composed representations in order to
build a coherent visualization system. In Part II of this thesis, we now move on to apply
this knowledge to concrete application scenarios for exploration and presentation tasks.

48

Part II

Applications

49

CHAPTER 4
Integrating Spatial and

Non-Spatial Data Facets
in Parameter Space Exploration

For Exploratory Visualization in Lighting Design

This chapter is based on the following publication:

Johannes Sorger, Thomas Ortner, Christian Luksch, Michael Schwärzler, Eduard Gröller,
and Harald Piringer. LiteVis: Integrated Visualization for Simulation-Based Decision
Support in Lighting Design. IEEE Transactions on Visualization and Computer Graphics,
22(1):290-299, January 2016 [SOL+16].

The first integration application scenario takes us to the domain of lighting design.
State-of-the-art lighting design is based on physically accurate lighting simulations

of scenes such as museums or offices. Simulation outcomes support lighting designers in
the creation of lighting configurations, which must meet contradicting customer objectives
regarding quality and price, while conforming to industry standards. An efficient decision
making process requires rapid feedback cycles between simulation specification and
analysis, and a detailed comparison of multiple configurations. The spatial context
of the simulation, as well as non-spatial representations that enable a quantitative
comparison of simulation results are essential for a proper decision making process.
Multiple visual integration strategies and a tight functional integration are required to
bring the representations of the multifaceted simulation data together in a system that
efficiently enables this task.

51

4. Integration in Parameter Space Exploration

(a) (b)

Figure 4.1: Comparing lighting parametrizations according to different metrics in the
LiteVis workspace. The Simulation View (a) displays a false color rendering encoding
illumination quality. For each desk, floating annotations show a binned histogram of
illumination values from selected simulation runs. The Simulation Ranking View (b) shows
a ranking of simulated lighting parametrizations according to user defined importance
values for spatial measurement surfaces and abstracted result indicators.

In the following Section 4.1, we regard the challenges that emerge in the application
setting of decision making in lighting design and give an overview of the contributions of
this chapter. We discuss related approaches that address specific challenges for parameter
space exploration and multi-objective optimization tasks in Section 4.2. In Section 4.3,
we analyze the data and the tasks that are involved in finding an optimal solution, before
presenting our specific approach to solving the identified challenges in Section 4.4. We
demonstrate the applicability of our approach in Section 4.6 based on a use case scenario.
Finally, we evaluate our solution based on user feedback from lighting design experts as
well as reflections on the design process in Section 4.7.

4.1 Introduction

Architectural lighting design has a strong impact on the atmosphere and aesthetics of
buildings and open spaces. The illumination also affects how working environments
support productivity and creativity. However, finding an acceptable trade-off between
often contradictory customer requests regarding the quality and price of a lighting
setup while conforming to industry standards is a challenging task. Physically accurate
lighting simulations have long been used to support lighting designers in planning and
communicating potential solutions to customers. Given a 3D geometric model of the
scene as well as the position, type, and additional properties of the involved luminaries,
a simulation computes the illuminance for each part of the scene.

52

4.1. Introduction

Commercial software for lighting design [Relb, Rela, Lig] typically takes up to several
hours to compute the result of a single setup, and focuses on inspecting a single solution
rather than comparing many solutions. As a consequence, the workflow in lighting design
has traditionally been restricted to computing a small number of alternative setups in
a trial-and-error fashion. As an additional challenge, the tools that are required for
analyzing aesthetic and financial aspects of a given lighting solution [Zum] are neither
visually nor functionally integrated with each other. How fast a convincing solution could
be found, has therefore been highly dependent on the experience of the lighting designer.

Recent advances in lighting simulation reduced the effort for computing a physically
accurate illumination to a few seconds [LTH+13]. Technologically, this enables significant
improvements in the workflow of lighting designers. First, it is now possible to examine
the design space much more systematically and comprehensively by computing hundreds
of potential solutions as a starting point of the design process. Second, lighting designers
may now define and compute additional setups on-the-fly, e.g., during a workshop with a
customer.

However, existing software tools in lighting design do not support these new possibilities
well. For this reason, we conducted a design study in collaboration with lighting design
experts. The result is LiteVis, a system for efficient decision support in lighting design. In
contrast to existing tools, a focus of LiteVis is the comprehensive comparison of multiple
solutions. LiteVis tightly integrates global illumination-based lighting simulation, a
spatial representation of the 3D scene, as well as non-spatial representations of setup
parameters and result indicators, as depicted in Figure 4.1. Specifically, LiteVis relies on
hierarchically structured measurement surfaces in the 3D scene for defining quantitative
quality indicators (Fig. 4.1b). Weighting these spatial indicators along with non-spatial
indicators, such as monetary costs, supports a holistic view of all relevant decision factors
while making the decision maker’s preference explicit and reproducible.

The contributions of this chapter can be summarized as follows:

• A design study of decision making in lighting design resulting in the system LiteVis.

• A problem characterization of the application domain of lighting design, including an
abstraction that relates the application problem to other areas of simulation-based
decision making.

• A novel visualization for ranking multiple decision options based on weighting
hierarchically structured spatial and non-spatial objectives.

• A report on feedback from domain experts and a reflection on the design process.

53

4. Integration in Parameter Space Exploration

4.2 Related Work

4.2.1 Lighting Design

In the scientific community, several approaches to semi-automatic or user-guided, inter-
active lighting design have been proposed, e.g., sketch-based methods, where the user
“paints” the scene parts to be lit [SDS+93, OMSI07, SC07, PBMF07, LHH+13], as well
as procedural methods [SW14]. Additionally, the direct specification of lighting-induced
features, such as shadows or highlights [PF92, PTG02], have been suggested to trigger
the generation of an ideal lighting solution. While all these approaches tackle the prob-
lem in plausible ways, they have not found their way into today’s industry standard
lighting design tools. Potential reasons are that some constraints are hard to express
mathematically (e.g., regarding aesthetics), or the wish for artistic freedom. Glaser et
al. [GTCD03] have approached the lighting design problem by developing various 2D
visualization prototypes, inspiring our work in terms of analytical aspects, but without
integrating spatial 3D and non-spatial 2D views within a common tool.

Commercial lighting design applications, on the other hand, leave the task of placing
and adjusting the light sources in a scene to the skills of a lighting designer. Tools, such
as Relux [Relb], Dialux [Rela], Agi32 [Lig], rely on Radiosity and/or Raytracing-based
simulation kernels. They visualize the simulated results on measurement areas placed in
the 3D scene using false color visualizations. However, none of them supports the user in
the comparison of different solutions. Separate tools, such as ecoCALC [Zum], tackle
related problem domains like financial aspects. Even though their respective outputs are
needed to form an overall decision, the tools used in the workflow of finding an ideal
lighting solution are often isolated from each other, which makes a holistic exploration of
the problem space cumbersome.

We base our approach on a lighting modeling system that relies on a simulation kernel
recently proposed by Luksch et al. [LTH+13]. By providing a faster lighting simulation as
compared to Radiosity-based approaches, it enables shorter cycles of scene parametrization
and evaluation.

4.2.2 Integrated Visual Parameter Exploration

The field of visual parameter space exploration has shown significant progress in the last
years. Beham et al. [BHGK14] developed a composite visualization that integrates the
non-spatial parameter space of geometry generators with the spatial output space of the
resulting shapes. Illustrative parallel coordinates allow the user to study the sensitivity
of parameters in a global-to-local drill down fashion. Similarly, in LiteVis, the relation
between the input space and the output space can be explored. However, in our case,
both have spatial and non-spatial properties. Coffey et al. [CLEK13] propose a tool for
simulation-based design that provides integration of forward design (input manipulation)
and inverse design. Inverse design lets the user query a database of pre-computed samples
by specifying the desired simulation output directly in the 3D scene. This specification of

54

4.2. Related Work

goals in the 3D scene shares the same principle as the specification of spatial objectives in
LiteVis (see Sec. 4.4.2). Bruckner and Möller [BM10] propose a tool for the exploration
of clustered time series data of physical fluid simulations for visual effects design. The
simulation result is thereby of primary concern to the user. In contrast to the solution
by Bruckner and Möller, we do not have to deal with dynamic scenes but our scenario
demands an input- as well as an output-driven approach.

4.2.3 Multi-Objective Decision Making

In lighting design, multiple objectives must be optimized simultaneously. This is a
common issue in many application domains. For this reason, multi-objective optimization
(MOO) has long been an active field of research (see, e.g., Köksalan et al. [KWZ11] for
a survey). As a single best solution does not exist for MOO-problems, one approach
is to offer the decision maker multiple solutions that have been (semi-)automatically
generated. Miettinen and Mäkelä, for instance, introduced an interactive method called
NIMBUS [MM06] that asks the user to repeatedly examine the values of objective
functions calculated for a current solution.

There are several approaches for visualizing the Pareto Frontier. The Pareto Frontier is
a set of multi-objective optimal solutions. For none of the solutions within the set, the
result of a single objective can be improved without worsening the result of another one.
Korhonen and Wallenius [KW08] stress that visualizing the Pareto Frontier for more
than three objectives is difficult. The authors classify several visualization techniques
for multi-criterion decision making based on the cardinality of the result set. Lotov
et al. [LBK04] employ scatter-plot matrices to show bi-objective slices of the Pareto
Frontier. In order to support decision making, Andrienko and Andrienko [AA01] propose
several extensions to parallel coordinates, the prevalent technique for visualizing Pareto
Frontiers [BC03]. More recently, Chen et al. [CAS+13] employ self-organizing maps for
projecting all Pareto-optimal solutions to a 2D radial visualization. However, most of
these approaches do not scale to a very high number of objectives, e.g., up to hundreds
in lighting design if spatial aspects are taken into account (see Sec. 4.3.1). Moreover,
inspecting the entire set of Pareto-optimal solutions can still be inefficient.

A common approach is therefore to weight the objectives in order to attain a score, which
can then be used for ranking possible solutions for decision making. LineUp [GLG+13] is
an interactive approach for weighting multiple objectives and visualizing the resulting
ranking. While LineUp inspired our approach for decision support, we had to adapt our
ranking approach to the special requirements that arise from the hierarchical structure
of spatial objectives in LiteVis, as we will describe in Section 4.4.2. As an additional
problem for most approaches in lighting design, each solution refers to the illumination
of an entire scene and thus has complex characteristics, such as aesthetics, which are
hard to quantify.

55

4. Integration in Parameter Space Exploration

4.3 Lighting Design Background
This section provides a brief introduction to the field of lighting design as far as necessary
for understanding the design decisions that went into LiteVis. This information is based
on experiences gained from a tight collaboration with experts in lighting design for nearly
five years. After describing the data and the tasks, we motivate the key design goals of
LiteVis. In a problem abstraction, we put the domain specific challenges into a broader
context.

4.3.1 The Data: Simulation in Lighting Design

Modern lighting design is based on lighting simulations which compute an output
illumination for a particular scene and luminary setup. As for many simulation types,
the input of a lighting simulation can be classified as control parameters, environmental
parameters, and model parameters. We refer to a particular assignment of values to all
parameters that are necessary for starting a simulation as parametrization. We refer to a
set of a parametrization and the resulting simulation output as solution or simulation
run.

The control parameters in lighting design, are luminaries and their position and orientation
in the scene. They are placed by designers to achieve certain goals regarding the
appearance and budgetary constraints of a solution. Luminaries are placed using controls
similar to those in geometric modeling tools. Each luminary has several parameters. The
most important ones in the context of this work are:

• Type: Type corresponds to a particular product of a manufacturer, which is typically
classified by the application as, e.g., floor lamps, ceiling lamps, or wall mounted
lamps.

• Wattage: This parameter describes the illumination power and energy consumption
of a luminary.

• Dim profile: A luminary can be dimmed, resulting in lower power consumption and
increased longevity, but also lower performance.

Environmental parameters describe aspects of the simulation which are not directly
controlled by the user or vary over time:

• Scene: Contains the 3D geometry of the scene such as desks, windows, walls, etc.
Geometry can absorb and reflect light based on material properties, and also cast
shadows, i.e., as an occluder.

• Environmental conditions: Such conditions determine external influences, like
sunshine that illuminates a scene based on the time of day/year and the weather
condition. These factors can optionally be included in the simulation.

56

4.3. Lighting Design Background

Model parameters are the implicit parameters of the lighting simulation algorithm respon-
sible for transforming the simulation input into the simulation output. Model parameters
typically define a trade-off between accuracy and speed. An example is the number of
times the light bounces in the calculation of the indirect illumination. These parameters
are not of direct concern to the lighting designer and therefore play a minor role in the
scope of this work.

Task area: 500 lx, 0.6 uniformity

Close surroundings: 300 lx, 0.4 uniformity

Background: 100 lx, 0.1 uniformity

Figure 4.2: A conceptual sketch created by a lighting design expert, defining the location
of the measurement surfaces and their target values in an office scene according to
industry standards [DIN11].

The output of the lighting simulation comprises an illuminance value (measured in lux) for
each texel in the scene. Using this direct output for 3D rendering of the scene is suitable
for a qualitative inspection of the results. However, for most tasks, the direct simulation
output is too detailed. The standard approach in lighting design for condensing the data
and assessing the compliance to industry standards is based on pre-defined measurement
surfaces on top of the geometry. Each measurement surface corresponds to a semantic
part of the scene such as a particular desk, a certain part of the wall, a door, etc. A scene
typically comprises multiple types of surfaces, which are structured hierarchically. For
example, a top-down classification of a particular measurement surface could be "office –
working area – all desks – desk 3".

Measurement surfaces aggregate the illuminance of their geometry to define quantitative
local indicators. The most important local indicators in lighting design are the minimal,
the maximal, and the average illumination, as well as uniformity. Uniformity is defined
as the ratio of the minimal illumination to the average illumination and describes the
evenness of the distribution of illuminance values on a surface.

57

4. Integration in Parameter Space Exploration

It is common to define target values for these local indicators per measurement surface
and to assess the suitability of a solution in terms of the difference to the respective
target values. Different classes of measurement surfaces are subject to varying degrees of
constraints regarding the illumination quality, which is reflected in different target values
for each class (see Fig. 4.2). In addition to a customer-driven specification of target
values, several classes of measurement areas, such as desks, must also meet industry
norms and standards [DIN11].

This description of lighting simulations in the context of lighting design is generally appli-
cable to commercial systems as well as to the underlying simulation in LiteVis [LTH+13].
In all cases, the simulation kernels of various software tools involve global illumination
techniques. In commercial systems, the effort for computing the illumination of a single
parametrization takes up to several hours, depending on the complexity of the scene
and the configuration of the luminaries. Using the GPU and clustering virtual point
lights into a set of virtual polygon lights, the underlying simulation in LiteVis, however,
reduces the effort for obtaining comparable results to a few seconds. We refer to Luksch
et al. [LTH+13] for additional technical details of the lighting simulation.

Besides the raw simulation output and the local result indicators that are derived from
this output, there are global indicators that are not tied to specific spatial (local) parts
of the simulation result. Global indicators of concern to the decision making process are
the investment cost and the run-time cost, i.e., energy consumption of each luminary
type. The collective luminary configuration in a parametrization determines these global
indicators. The accumulated budgetary values typically represent a significant tradeoff
to an excellent illumination quality.

In summary, the key entities of LiteVis are the simulated parametrizations (or simulation
runs). Regarding the data model, each parametrization comprises a multivariate facet
and a geometric facet. The multivariate facet includes (1) the parameters per luminary
such as wattage, (2) environmental variables, such as the simulated time of day, (3) the
local indicators per measurement surface and their deviation from the target values, and
(4) the global indicators describing monetary cost. The geometric facet of the simulation
output describes the spatial properties of the illumination in terms of an illuminance
value per texel.

4.3.2 Task Analysis

Our collaboration with experts in lighting design enabled us to identify the following
recurring tasks (Fig. 4.3). The subsequent list of tasks is based on insights gained from
semi-structured interviews and contextual inquiries [HJ93].

• T0 - Scene setup: After the scene is modeled by a 3D artist, measurement
surfaces are defined on top of the geometry, e.g., for desks and walls. The designer
defines target values and constraints for local result indicators, such as uniformity
per measurement surface, in accordance with customer requirements and industry
norms.

58

4.3. Lighting Design Background

T0
Scene Setup

T3
Multi Run

Comparison

T1
Parametrization

T2
Single Run

Quality Assessment

T4
Decision

Feedback Loop

Figure 4.3: The five steps of the lighting designer’s workflow. After initialization of the
scene (T0), the lighting designer works in an iterative fashion (T1-T3) until he or she
finds a satisfactory solution (T4).

• T1 - Scene parametrization: The lighting designer defines one or more para-
metrizations for a subsequent simulation. This particularly includes the placement
and parametrization of a specific set of luminaries in the scene according to customer
requirements, budget constraints, industry standards, and the designer’s experience
in order to achieve specific aesthetic effects. The designer may also specify certain
environmental conditions, such as the position of the sun. The initial definition
of parametrizations is mainly based on the experience and skill of the designer,
while later iterations are based on insights from previous solutions. In all cases,
the generation of parametrizations may be partly automated based on parameter
variations, e.g., for varying values of luminary wattage.
• T2 - Assessment of single solutions: Once a simulation has been completed,

its qualitative and quantitative output is typically evaluated individually in order to
quickly reject inappropriate solutions. For the qualitative evaluation, the aesthetic
appearance of the illuminated scene is assessed within its original spatial context in
false color renderings that encode, for instance, the strength of shadow gradients.
The quantitative evaluation is based on the assessment of result indicators of
measurement surfaces, for instance, in relation to the upholding of industry norms
or customer defined target values, typically within the context of non-spatial
representation forms. The assessment of both spatial and non-spatial representations
of the simulation data is therefore essential for fulfilling T2.

59

4. Integration in Parameter Space Exploration

• T3 - Comparison of multiple solutions: Multiple candidate solutions are
compared in detail in order to understand in which regard one is superior. One goal
is to further reduce the set of possible candidates by excluding solutions that do
not satisfy certain quantitative criteria. Another goal is to identify key trade-offs,
e.g., between a certain aesthetic aspect and monetary cost. Traditionally, this
task is performed using side-by-side comparisons of false color renderings and the
corresponding data sheets – an approach that scales badly for the comparison of
more than half a dozen of solutions.

• T4 - Decision: In order to arrive at a final decision, it is common to weigh the
various result indicators. Qualitative aspects and a detailed comparison of the
illumination of multiple solutions still play an important role at this stage. In many
cases, this task is performed by the lighting designer together with the customer.

The traditional strategy for decision making in lighting design is based on trial-and-error.
As computing a single solution took up to several hours, only very few alternatives were
typically considered in a rather sequential manner. In some cases, an initial guess that
appeared to be "good enough" was used without further comparison. In other cases, it
could take up to several work days to identify an acceptable solution, especially for less
experienced designers or very complex scenes.

In LiteVis, the description of these tasks remains valid. However, the lighting simulation
underlying LiteVis enables two important improvements to this workflow. First, it
enables to initially specify and compute a set of numerous samples in one step within
T1. For example, hundreds of variations regarding luminary placements, wattages,
and environmental parameters such as external lighting conditions can be simulated
automatically over night. This provides a more global understanding of the space of
possible solutions at a very early stage of the design process. The understanding supports
the fast identification of acceptable designs while avoiding to miss interesting solutions.

Second, the simulation is fast enough to enable the exploration of additional solutions in
real-time. The improved feedback loop makes it possible to reach a decision during a
single meeting with a customer. Previously, multiple consecutive meetings could have
been necessary.

4.3.3 Design Goals of LiteVis

The design goals of LiteVis are motivated by the gap between the state-of-the-art software
in lighting design and the new possibilities for improving the workflow that are enabled
by the fast simulation.

• G1 - Integration of the simulation output space: Currently, separate tools
are necessary for the qualitative inspection of the simulated illumination, the quan-
titative analysis of result indicators, and the examination of budgetary constraints.
This separation makes comparing multiple solutions cumbersome. A goal of LiteVis
is thus to integrate these separate components of the simulation output space within
a single framework in order to provide a convenient access to them.

60

4.3. Lighting Design Background

• G2 - Integration of scene parametrization and evaluation: The lighting
simulation (T0, T1) and the evaluation of the solution (T2, T3, T4) are currently
isolated from each other as well, since they are performed with separate tools. The
lack of integration between these two components impedes an efficient feedback
loop between the creation and the evaluation of a parametrization. Consequently,
a goal of LiteVis is to allow the user to easily trigger new simulation runs based on
the inspection of prior results, and to display new results immediately when they
become available.

• G3 - Effective comparison of multiple solutions: The comparison of solutions
is essential for defining additional iterations and reaching a final decision. However,
current simulation tools in lighting design do not offer the designer appropriate
means to understand, compare, and make decisions based on alternatives. The
status quo for comparing multiple solutions is to assess the corresponding data
sheets side-by-side, which is ineffective for decision making. A goal of LiteVis is to
enable a direct comparison of solutions in regard to their qualitative and qualitative
aspects, as well as a sensitivity analysis to assess the impact of parameter variations.
To support this goal, strategies for the comparison of solutions in a spatial, as well
as in a non-spatial context had to be developed.

• G4 - Explicit and reproducible decision support: Measurement surface types
vary in their target values for illumination indicators and typically carry different
semantic importances for upholding these values. For example, the illumination
quality on a table surface is more important than on a wall. Current tools con-
sider neither distances from local target values, nor semantic importance factors.
Moreover, different stakeholders may put more emphasis either on qualitative or on
financial aspects. A key goal of LiteVis is therefore to support reproducible decision
making based on an explicit preference specification for illumination-related as
well as cost-related indicators. A related goal and a prerequisite is to enable the
specification of target values for indicators.

4.3.4 Problem Abstraction

In this sub-section we characterize the domain of simulation-based lighting design based on
the conceptual framework for visual parameter space analysis by Sedlmair et al. [SHB+14],
in order to offer a more generalized view of the problem space. In the terms of the
framework, the lighting simulation is a deterministic computational input-output model.
Control parameters, environmental parameters, and model parameters are thereby the
input (see Sec. 4.3.1) that generates the illumination per texel as direct output. The
direct simulation output can be considered as a complex object. Apart from a qualitative
assessment, this complex object requires a derivation step for subsequent decision making.
In our context, the derivation is an aggregation of local indicators based on measurement
surfaces.

61

4. Integration in Parameter Space Exploration

(a) (b)

Figure 4.4: a) The Simulation View displaying luminaries and measurement surfaces
(yellow) in an office scene. b) The false color render mode conveys negative and positive
distances to a specified illumination target value.

The strategy for navigating the parameter space has traditionally been an informed
trial-and-error approach. LiteVis supports a shift of the strategy towards a global-to-local
exploration. The primary task of the lighting designer is the optimization of multiple
competing objectives corresponding to the indicators for global and local indicators.
Sensitivity analysis can be of potential interest to lighting designers as well. Due to the
hierarchical structure of the measurement surfaces, the corresponding objectives can also
be considered hierarchical, which has motivated key design decisions of LiteVis.

4.4 Design Study of LiteVis

4.4.1 System Overview

The design of LiteVis comprises two tightly integrated parts, i.e., the spatial Simulation
View, and the non-spatial Analysis Views. The features that we introduce in this section
are demonstrated in motion in the supplemental material video [SOL+].

The Simulation View (Fig. 4.4a) provides a spatial display of the scene. While the 3D
geometry of the scene is modeled externally in a 3D modeling tool, the Simulation View
supports an interactive definition of measurement surfaces for scene setup (T0). It also
supports the parametrization of new simulation runs (T1). To create a parametrization,
the user can create luminaries and interactively place their 3D representations in the
scene via dragging. The user can inspect and modify luminary parameters, such as the
value for wattage. Optionally, the user can specify a value range to define and simulate
multiple parametrizations.

62

4.4. Design Study of LiteVis

After computing simulation results, the Simulation View supports a qualitative assessment
of the direct output of a single simulation run (T2) as well as a comparison of multiple
runs (T3, see Sec. 4.4.3 and Sec. 4.4.4). As an alternative to rendering the illumination
in a realistic way, a visual abstraction of luminance intensities conveys negative and
positive distances to the respective target values in the false color render mode (Fig. 4.4b).
While the comparison of parametrizations in the Simulation View is novel in the lighting
designer’s workflow, the scene parametrization and false color rendering represent familiar
aspects of their routine.

The Analysis Views are a suite of non-spatial representations that enable the compar-
ison, selection, filtering and aggregation of local and global result indicators, as well as
the underlying input parameters of all simulation runs. Most importantly, the Simulation
Ranking View enables a direct comparison of multiple solutions regarding their overall
superiority as defined by a weighting of local and global indicators (see Sec. 4.4.2).
Additionally, various well established representation forms, such as parallel coordinates,
bar charts, and spreadsheets, may be used to explore the multivariate attributes of the
solutions (see for instance Fig. 4.8d).

Integration strategies: in order to tightly couple the Simulation View with the various
Analysis Views, we implemented the following integration strategies. Selecting one or more
simulated solutions in the Analysis Views loads the corresponding parametrizations and
illuminations into the Simulation View for a detailed inspection and spatial comparison.
Depending on whether one, two, or more solutions are selected in an Analysis View,
different visual integration strategies are triggered in the Simulation View in order to
support the inspection of a single solution, the pairwise comparison of two solutions (see
Sec. 4.4.4), or the comparison of many solutions (see Sec. 4.4.3). Additionally, the user
can create variatons of already simulated parametrizations on the fly, and inspect the
differences to the original solution. Creating and simulating a new parametrization
in the Simulation View automatically extends the set of solutions in the Analysis
Views. Selecting simulation run and measurement surface representations in either view,
highlights their respective counterparts in any other view where they are represented.
The visual connection of related entities thereby supports the user in maintaining a
mental connection between individual scene parts and their respective indicators. These
integration strategies enable an efficient feedback loop (G2) between scene parametrization
(T1), the assessment of the result (T2), and a comparison of multiple simulation runs in
a spatial and an non-spatial visual context (T3).

4.4.2 Simulation Ranking View

The Simulation Ranking View (Fig. 4.5) represents one of the contributions of this work.
We designed the view to match the requirements for efficient decision support (G4). The
key idea is to rank multiple simulated solutions based on a weighted scoring of local and
global result indicators. The user should be able to define an emphasis on spatial as well
as non-spatial aspects of the simulation output, i.e., certain surfaces of the scene, as well

63

4. Integration in Parameter Space Exploration

as on certain global and local result indicators. Furthermore, the user should be able to
explore different preference settings by interactively changing the weighting of indicators
in order to see the effect on the ranking of the solutions. While fundamental aspects
of the design were inspired by LineUp [GLG+13], the number of the involved result
indicators as well as the hierarchical relation between them required some significant
extensions.

Score Computation

Before explaining the design of the Simulation Ranking View, it is necessary to understand
the computation of the scores per solution. In this context, we face three main issues:
(1) The score must provide a combined assessment of global indicators as well as local
indicators. Each measurement surface yields a value for each type of local indicator. (2)
The number of objectives that contribute to the score of each simulation run is potentially
large, as it is calculated by n ∗m + o, where n represents the number of measurement
surfaces, m local indicators, and o global indicators. Each of the potentially large number
of measurement surfaces as well as each of the local and global indicator types may be
weighted differently. (3) Each local indicator type may have a different target value on
each measurement surface type.

The total score of a solution is defined as the weighted sum of the scores per objective.
Objectives can be classified into spatial and non-spatial. Non-spatial objectives refer to
global indicators, such as the investment cost and the cost per month. For each indicator,
a scoring function maps the measured indicator value to a score which ranges from zero to
infinity. Our current implementation simply employs linear functions with a user-defined
slope that map a cost of zero to a score value of zero. Smaller score values are therefore
considered better. In other words, the score value of a particular objective represents the
distance of the indicator from a user-defined target value. In the case of monetary costs,
this target value is zero, since low monetary costs are desired.

We note that this definition of score values is different from the one in LineUp [GLG+13],
which maps each indicator to a bounded score ranging from zero to one, with one being
considered as the best score. The main motivation for inverting the scale of the scoring
function and for avoiding an upper bound is to enable the expression of constraints. For
example, mapping very high score values to investment costs above a certain threshold,
will result in a severe penalty for the score of solutions where the indicator value exceeds
the threshold.

Spatial objectives refer to the local indicators of measurement surfaces. These indicators
are called "local", since they are defined per measurement surface (n ∗m). For example,
18 measurement surfaces and four local indicators define a set of 72 spatial objectives.
For each spatial objective, the user may define a separate scoring function. In this case,
the user can define linear as well as non-linear scoring functions. For example, a function
could assign score values of zero for a certain target range while increasing exponentially
with growing distance from that range.

64

4.4. Design Study of LiteVis

(a)

(b)

(c)

Figure 4.5: The Simulation Ranking View: The Spatial Hierarchy (a) allows the user to
specify the individual importance per measurement surface and to select a (focus) subset
of surfaces (colored in red) for detailed inspection. The remaining (context) subsets are
colored in gray. The Indicator Bar (b) displays the weight per indicator type. It also
discriminates between global indicators in green, local indicators (for spatial objectives) in
red, and the accumulated weight of the context objectives outside the spatial focus (gray).
The Ranked Table (c) displays the individual solutions as stacked bars corresponding
to the sum of weighted scores per indicator type. Shorter bars correspond to indicator
values that are closer to a user-defined target.

Weighting enables the user to explicitly specify importance factors for spatial and non-
spatial objectives. Internally, a separate weight is maintained for each objective and all
weights sum up to one. However, exposing several dozens of objectives and corresponding
weights to the user is neither intuitive nor effective. We thus define the per-objective
weights for spatial objectives implicitly as the product of a per-indicator-type weight and
a per-measurement surface weight. For example, the user may specify a weight of 0.3
for uniformity across all surfaces. For the above mentioned scene with 18 measurement
surfaces and four local indicators per surface, the user would have weighting control
over 18 + 4 = 22 objectives (instead of 72 as discussed above). All per-indicator-type
weights sum up to one. The per-measurement surface weights sum up to one, as well.
For example, a per-indicator-type weight of 0.3 for uniformity and a per-measurement
surface weight of 0.1 for the surface of desk X would yield a weight of 0.03 for the spatial
objective referring to maximizing the uniformity of surface X.

65

4. Integration in Parameter Space Exploration

Visual Encoding and Interaction

The Simulation Ranking View consists of three integrated components: the Spatial
Hierarchy, the Indicator Bar, and the Ranked Table. The Spatial Hierarchy (Fig. 4.5a)
provides a hierarchically structured representation of measurement surfaces and their
associated weights. The hierarchy is represented by an icicle plot [MR10] where each
hierarchy level defines a semantic group of measurement surfaces. The root node
corresponds to the entire scene and the leaf nodes represent the individual surfaces. The
length of a node reflects the accumulated size of the underlying per-measurement surface
weight(s). The user can modify these weights on any hierarchy level by dragging on the
node borders. The weight change is evenly distributed between the child nodes. For
example, reducing the size of the "Desks" node in Figure 4.5 would decrease the weights
for the underlying measurement surfaces 01A to 06A, while increasing the weights for
the surfaces that belong to the "Work Environment". By clicking on a node in any
hierarchy level, the user can specify a spatial focus. Besides highlighting the geometric
representations of the corresponding measurement surfaces in the linked Simulation View,
the spatial focus enables the inspection of weighted scores for individual scene parts, as
explained below.

As the second component of the Simulation Ranking View, the Indicator Bar (Fig. 4.5b)
displays the weights of global and local result indicator types. The weights are encoded by
the individual segments of a stacked bar. Vertically, the bar is subdivided into two levels.
The lower level displays the proportions of the specific local and global indicators, such
as uniformity, average illumination, etc. The upper level shows the aggregated weights
for spatial (local) indicators in red and non-spatial (global) indicators in green. Hue is
used to discriminate the individual indicators from each other. Just like in the Spatial
Hierarchy, the user can modify weights by dragging on the borders of a bar segment on
either level.

The relation between the per-measurement surface weights and the local per-indicator-
type weights for spatial objectives is highlighted by the visual link between the Spatial
Hierarchy and the Indicator Bar (Fig. 4.5b). If the Spatial Hierarchy is split into a focus
and a context subset, the subdivision of spatial objectives is also reflected by the gray
area in the Indicator Bar. The per-indicator-type weights, however, remain valid for the
focus and the context subset of spatial objectives.

The Ranked Table (Fig. 4.5c) is the third component of the Simulation Ranking View. It
displays the individual simulation runs as stacked bars, ordered in respect to their total
weighted score. The score is encoded in the length of each stacked bar. The best solution
according to the weighting specified in the Spatial Hierarchy and the Indicator Bar, is the
one with the smallest weighted score, positioned on the top of the list of solutions. The
individual segments of a stacked bar represent the weighted scores per result indicator
type for the particular solution. The color coding is identical to the one in the Indicator
Bar.

66

4.4. Design Study of LiteVis

The subdivision of the stacked bars provides a visual decomposition of the total score.
For each solution, this immediately reveals the indicators types that have the biggest
impact on the score. This can reveal, for instance, that the quality of a particular solution
is affected by cost-related rather than by illumination-related aspects. If the spatial
objectives are split into a focus and a context subset, the stacked bars of each solution
are split accordingly as well. This allows the user to compare the scores of local result
indicators across different parts of the scene – for instance between the working area and
the surrounding area. Changing the focus/context subset does not have any impact on
the ranking – however, changing the weights of the focus/context subsets in the Spatial
Hierarchy does.

Clicking on rows in the Ranked Table selects and highlights the corresponding solutions
in all views of LiteVis. When a single solution is selected, the corrsponding luminaire
parametrization and the resulting simulated illumination are loaded in the spatial Simu-
lation View. Selecting multiple solutions enables the comparison of their illumination
values in the Simulaiton View (see Sec. 4.4.3 and Sec. 4.4.4). Selected solutions are
marked by a red border, and hovered solutions by a blue one.

In conclusion, the Simulation Ranking View is a key element of LiteVis for achieving all
four of our specified design goals. Most importantly, the ability to assign importances
separately for measurement surfaces and result indicators supports an explicit and
reproducible decision making process (G4). Moreover, the Ranked Table enables an
effective comparison of solutions in terms of their weight-based objective scores (G3) and
enables an efficient selection of interesting solutions for a detailed inspection and further
refinement in the Simulation View (G2). Integrating global and local indicators within
one view furthermore supports a holistic overview of relevant aspects of the simulation
output space (G1).

4.4.3 Measurement Surface Annotations

Non-spatial representations of a scene’s illumination quality, such as in the Simulation
Ranking View, is necessary to enable the comparison of multiple solutions. However,
the analysis and comparison of such abstracted information still requires a spatial
context to enable users to form an educated opinion about the investigated solutions.
The measurement surface annotations (MSA) in LiteVis integrate visually abstracted
representations of illumination quality of multiple selected solutions with the spatial
context of the scene. The MSA enable the user to compare the distribution of illumination
values on measurement surfaces from multiple simulation runs directly in the Simulation
View, as displayed in Figure 4.6.

The distribution of illumination values for each measurement surface in the scene is
thereby encoded in a binned histogram bar. Such a set of bars is generated for each
solution that is currently selected in an Analysis View. The bars of selected solutions are
grouped by the corresponding measurement surface and positioned in a floating overlay
that is visually linked to the corresponding surface, as displayed in Figure 4.6. The rows

67

4. Integration in Parameter Space Exploration

Ref_05ARef_05ARef_05BRef_05B

Ref_U_01Ref_U_01

below target value above target valuetarget

Figure 4.6: Measurement Surface Annotations displaying illumination distribution his-
tograms for five selected simulation runs. The annotations enable the comparison of
visually abstracted illumination values in a spatial context across multiple measurement
surfaces and parametrizations.

in such a floating overlay correspond to the current selection of simulated solutions. This
type of visual integration corresponds to overloading the Simulation View with the MSAs.

A single bar consists of eleven bins that are encoded with a brown/white/purple color
scale. Depending on its illumination value, each texel on a surface is assigned to one of
these bins. The central bin is colored white and represents the number of texels that
match the respective lux target value of a surface. Values below/above the target are
assigned to one of the brown/purple bins, depending on their distance from the target.
The color coding that we employ is the same as in the false color render mode (as displayed
in Fig. 4.4b). A bar implicitly encodes information about local result indicators for each
surface and each selected run: apart from the distribution of illumination values around
the target, the colors of the bins inform the user about the minimum and maximum
illumination values on each surface. The uniformity of illumination is encoded in the size
of the bins. An entirely white bar would be most desirable for each surface. Depending
on the use case, values above the target value might also be acceptable. Values below
the target are never desired.

The display of MSA is triggered as soon as more than two parametrizations are selected
in an Analysis View. Mouse selection and hover states on the histogram bars are linked
with the corresponding solutions in the Analysis Views. In order to avoid visual clutter,
MSA are displayed only for surfaces that are part of the current spatial focus in the
Spatial Hierarchy.

68

4.4. Design Study of LiteVis

Selected Run Hovered RunIntersection
Figure 4.7: The False Color Comparison mode allows a detailed comparison of the
optimally illuminated areas between a selected (red) and a hovered (blue) parametrization
in a spatial context. Areas that are optimally illuminated in both parametrizations, are
encoded with a white color.

4.4.4 False Color Comparison

If the illumination related, i.e., spatial, objectives of two simulation runs have the same
score in the Simulation Ranking View, or even the same distribution of bins in an MSA,
they might still differ in detailed qualitative illumination aspects. A purely non-spatial
comparison of illumination results as in the Simulation Ranking View or the MSA is
therefore not sufficient to form a decision. For a complete assessment of a solution, the
analysis of illumination values on the actual scene geometry is therefore indispensable. For
a single run, this is typically done with false color renderings that facilitate the estimation
of illumination values by emphasizing the negative or positive distance to a specified
lux target value of each point in a scene. The comparison of the spatial illumination
distribution of multiple solutions is historically carried out in a side-by-side manner. The
False Color Comparison (FCC) mode (Fig. 4.7) gives the lighting designer the means for
a detailed comparison of the illumination quality between two simulation runs directly
within the simulation environment. The areas where the illumination values of each run
correspond to the respective target value of a surface are rendered in a false color. Red
areas indicate ideal illumination in the currently selected simulation run (conforming
to the red selection color), while blue areas indicate ideal illumination in the currently
hovered run (conforming to the blue hover color). If both runs achieve ideal illumination
on a texel, the texel is rendered in white. In compliance with the lighting designers’
way of thinking, texels are considered as ideally illuminated, if they achieve at least the

69

4. Integration in Parameter Space Exploration

defined industry standard for the respective surface type. However, the acceptable range
above the target value can be adjusted to adhere to special scenario requirements (e.g.,
when high illumination values should be avoided due to energy consumption reasons).
The FCC is triggered when a single run is selected and a second run is hovered in an
Analysis View or MSA.

The direct comparison through the FCC has two advantages for the user. On the one
side, users do not have to switch their focus between multiple views when comparing two
solutions. On the other side, the FCC allows for more efficient feedback on newly created
parametrizations by enabling an instant and detailed comparison of a new simulation
run to a reference parametrization.

4.5 Implementation
LiteVis is built as an extension of multiple frameworks that communicate with each
other via a network protocol. The Simulation View is based on an interactive global
illumination lighting software that was developed with our collaborating domain experts
in the scope of another project [LTH+13]. Its simulation kernel is based on a novel many-
light simulation that allows the resulting illumination to be computed and visualized
within a few seconds. This is achieved by using a GPU-based shadow mapping algorithm
[Wil78] for the visibility calculation concerning both direct and indirect light sources.
The results are collected and stored adaptively in so-called light-map textures that are
mapped onto the scene geometry. After a scene modification, designers get immediate
visual feedback, which continuously improves by converging to the physically accurate
solution.

We extended the simulation with means to store, load, and export simulation data
and added a web-overlay that handles rendering of and interactions with the MSA
(implemented using the d3 toolkit [BOH11]). The Analysis Views are part of a versatile
visual analysis framework [PTMB09] in which we implemented the Simulation Ranking
View. In order to enable the functional integration of the simulation and the analysis
frameworks, both were extended with a network communication interface that manages
the exchange of simulation data and commands, e.g., for coordinating selection states.

70

4.6. Use Case Scenario

4.6 Use Case Scenario
In this section, we demonstrate the applicability of LiteVis based on a real-life use case
scenario from our collaborating lighting designers.

4.6.1 Scenario Description

The simulation setup consists of a 3D office scene with 18 measurement surfaces. These
surfaces are arranged into three semantic groups with different target values according to
industry standards (Fig. 4.2):

• Task area (desks): 500 lx, 0.6 uniformity
• Close surroundings (work environment): 300 lx, 0.4 uniformity
• Background (walls, floor, ceiling): 100 lx, 0.1 uniformity

Further, the lighting designers supplied us with a set of 107 parametrizations that refer to
variations of four different lighting scenarios. A scenario is characterized by the deployed
luminary types that are grouped into light groups (LGs). LG1 is positioned over the
desks. LG2 is positioned over the hallway of the office.

• Scenario A: LG1: pendulum, LG2: downlight
• Scenario B: LG1: double floor lamp, LG2: downlight
• Scenario C: LG1: single floor lamp, LG2: downlight
• Scenario D: built-in ceiling luminaries

We demonstrate how LiteVis supports the decision making process based on a global-to-
local exploration of the supplied parametrizations.

71

4. Integration in Parameter Space Exploration

(a
)

(b
)

(c
)

(d
)

(e
)

(f
)

(g
)

(h
)

R
1 R
2 R

3 R
4

R
1

R
1

R
2

R
3

R
4

R
2

R
3

R
2

R
3

Fi
gu

re
4.
8:

T
he

sc
he

m
at
ic

ov
er
vi
ew

of
th
e
wo

rk
flo

w
in

ou
r
us
e
ca
se

sc
en

ar
io

sh
ow

in
g
an

ex
em

pl
ar
y
pa

th
fo
r
de

ci
sio

n
m
ak

in
g.

a)
In
iti
al

st
at
e
of

th
e
w
ei
gh

ts
fo
r
sp
at
ia
la

nd
no

n-
sp
at
ia
lo

bj
ec
tiv

es
.
b)

D
efi

ni
ng

pe
r-
m
ea
su
re
m
en
t
su
rf
ac
e
w
ei
gh

ts
in

th
e

Sp
at
ia
lH

ie
ra
rc
hy
.
c)

C
ha

ng
in
g
th
e
we

ig
ht
s
of

gl
ob

al
an

d
lo
ca
li
nd

ic
at
or
s
in

th
e
In
di
ca
to
r
B
ar

re
su
lts

in
a
ra
nk

in
g
up

da
te
.
d)

H
ig
hl
ig
ht
in
g
th
e
in
pu

t
pa

ra
m
et
er
s
of

th
e
to
p
fo
ur

ra
nk

ed
so
lu
tio

ns
(R

1-
R
4)

in
an

A
na

ly
sis

V
ie
w
.
e)

A
ss
es
sin

g
th
e
sp
at
ia
l

ill
um

in
at
io
n
di
st
rib

ut
io
n
of

R
1
us
in
g
fa
lse

co
lo
r
re
nd

er
in
g.

f)
C
om

pa
rin

g
th
e
R
1-
R
4
w
ith

M
SA

.g
)
A
ss
es
sin

g
R
2-
R
4
in

th
e

Si
m
ul
at
io
n
V
ie
w
.
h)

Tr
ig
ge
rin

g
th
e
FC

C
fo
r
a
de

ta
ile

d
co
m
pa

ris
on

of
R
2
an

d
R
3
in

a
sp
at
ia
lc

on
te
xt

(w
hi
te

en
co
de
s
id
ea
l

ill
um

in
at
io
n
in

bo
th

R
2
an

d
R
3)
.

72

4.6. Use Case Scenario

4.6.2 Scenario Workflow

As starting point, the provided parametrizations have been loaded in the Simulation
Ranking View. The measurement surfaces in the Spatial Hierarchy are grouped by type
and all surfaces are selected as spatial focus (Fig. 4.8a). The ranking is based on four local
(average illumination, uniformity, maximum, minimum) and two global result indicators
(investment cost, monthly cost).

A typical first step in the workflow is the specification of per-measurement surface
weights in the Spatial Hierarchy. Since the desks and work environments are of primary
importance, the analyst decides to adjust the weights in the following way: Desks 60%,
Work Environment 20%, Floor 10%, Walls 5%, and Ceiling 5% (Fig. 4.8b). As a next
step, the objectives for global and local result indicators are specified in the Indicator
Bar. The analyst first focuses on runs with the best illumination quality, regardless of
budgetary constraints. The analyst therefore sets the weights of the global (financial)
indicators to zero. Among the four local indicators of illumination quality, the analyst
considers average illumination and uniformity on a surface as the most important metrics.
Thus, she adjusts the weights of the four indicators as follows: Average 50%, Uniformity
30%, Maximum 15%, and Minimum 5% (Fig. 4.8c). The Ranked Table now shows
a ranking of the simulation runs with the best illumination quality according to the
specified weighting (Fig. 4.8c). As a next question, the analyst investigates which input
parameters are involved in the highest ranked simulation runs. She selects the four
top-ranked simulation runs. She then creates an Analysis View with a bar chart for each
light group. Each bar represents a luminary type and displays the number of occurrences
of that type within a light group. The bar charts allow her to inspect which luminary
types are used in the top-ranked solutions (Fig. 4.8d). This reveals that R1-R4 are each
using a different luminary type in LG1, while the LG2 luminaries in all four solutions are
parametrized with the same luminary type (highlighted in red in Fig. 4.8d).

The ranking also shows that the local indicator scores are very distinctly distributed in
each of the four simulation runs (Fig. 4.8c). Run R4, for instance, has the best average
illumination but a high cost regarding the minimal illumination value, which the analyst
finds remarkable given the small weight assigned to this objective. She therefore decides
to assess the illumination quality of these four runs directly in the Simulation View.
First, she investigates the distribution of illumination values for R1 using the false color
render mode (Fig. 4.8e). While R1 exhibits a good total score, the rendering exposes
illumination values below the target value on the desk corners.

To compare the illumination distribution to the other top-ranked solutions, the analyst
simultaneously selects the first four runs in the Ranked Table. This triggers the display
of MSA for the selected solutions (Fig. 4.8f). For R1, the illumination distribution
histogram in the MSA confirms that parts of the illumination are below the target value,
while R2, R3 and R4 lie entirely on or above the target on the desks. In fact, their
distributions are very similar. Therefore, the analyst decides to assess their illumination
quality in a spatial context as well. By individually selecting the bars in the MSA, she

73

4. Integration in Parameter Space Exploration

inspects R2-R4 one after another in the Simulation View (Fig. 4.8g). R4 exhibits the most
uniform illumination on the desks. However, as the analyst knows about the customer’s
preference for pendulum lights in this scenario, she does not want to discard R2 and R3
yet. To gain insights about eventual trade-offs between R2 and R3, she compares them
directly in the 3D scene (Fig. 4.8h). The FCC reveals that the ideally illuminated area
of R3 (blue) lies in the center between two desks, while the ideal illumination in R2 (red)
is more evenly distributed across the desk surface. She therefore considers R2 as the
preferred solution in terms of illumination quality.

A satisfactory luminary parametrization has been found. However, the analyst sees
multiple directions for further investigations. For instance, Scenarios C and D were
not present in the top four runs. She could investigate, where the runs are located in
the ranking by selecting all associated runs based on their input parametrization in the
Analysis Views (Fig. 4.8d). She could even create an individual ranking for each scenario
by filtering runs, e.g., by the type of applied luminaries. Similarly, she could eliminate R1
from the ranking by filtering all parametrizations that violate a minimum illumination
threshold on desk surfaces. She could also investigate how the chosen parametrizations
compare against others with respect to financial goals. For this, she would mark the
top-ranked runs as selected in order to track their new ranks after adjusting the weights
of the financial (global) indicators. She could also directly compare multiple objective
prioritizations by creating and comparing multiple Simulation Ranking Views, each with
a different weight distribution. She could check, how the score of local indicators is
distributed among the surfaces in the scene by setting, e.g., the working area as the
spatial focus. Further, she could manipulate a run, e.g., by dimming the wattage and
energy consumption, and see in which respect the resulting lower illumination values and
runtime costs would influence the ranking.

4.7 Evaluation

4.7.1 Design Process

The design process of LiteVis can be described as an iterative cycle characterized by the
three phases of (1) domain problem characterization, (2) data/operation abstraction, and
(3) encoding/interaction technique design [Mun09].

For characterizing our collaborators’ domain problem and refining our understanding
of their workflow, we performed semi-structured interviews during small meetings. As
we observed the lighting designers’ accustomed workflow, contextual inquiries [HJ93]
helped us to clarify tasks and challenges. The study of lighting design literature [DIN11]
helped to increase our knowledge of the associated data. We presented the collective
findings from this phase in Sections 4.3.1 and 4.3.2. While we were able to understand
the overall goal of the lighting designers well, the most challenging part of this phase was
to get a deep understanding of the nuances of each task. Such nuances regard questions
like: what exactly are the independent degrees of freedom for parametrizing a scene,
which particular aspects and metrics in the evaluation of a scene are considered relevant?

74

4.7. Evaluation

The resulting data abstraction can be found in the end of Section 4.3.1, the problem
abstraction is the subject of Section 4.3.4.

Parallel prototyping [DGK+10] of hand-drawn sketches enabled us to refine our under-
standing of the requirements and tasks, and to discuss and validate our abstractions with
the experts. The Simulation Ranking View was subject to the most design iterations.
The basic requirement of providing an overview of local result indicators on different
aggregation levels was addressed already in the first visual prototype. However, the
approach for ranking a large number of simulation runs by these indicators changed
throughout the design process. An early version featured a transposable grid, but turned
out to be cluttered and did not provide a sufficient overview. In the next iteration, we
investigated an icicle-plot layout where each leaf corresponded to a parametrization. The
hierarchy levels represented groupings of parametrizations by input parameters, and
encoded aggregates of the contained result indicators. This structure was still too rigid
due to the inherent hierarchical grouping by input parameters. Finally, we decoupled
the leaves from the hierarchy. The leaves, i.e., parametrizations, were listed as stacked
bars in the Ranked Table. The hierarchy was used to represent groups of measurement
surfaces instead of parameters as in the final version of the Spatial Hierarchy.

Once we settled on the design, we iteratively refined a software prototype and discussed
the progress in monthly intervals with two to three domain experts. The overall design
and implementation process took approximately 15 months. Important feedback during
the design process concerned the automatic grouping of surfaces by type. Depending on
the task, the experts considered other groupings more effective, e.g., by spatial proximity.
We thus added the option to group surfaces manually. Other feedback concerned the
Spatial Hierarchy. The lighting designers had difficulties in understanding the relation
between the surfaces in the Spatial Hierarchy and the local indicators in the Indicator
Bar. The visual link that we subsequently added alleviated this issue. Concerning the
FCC, an initial version encoded illumination values in a certain range above and below
the target value. However, the lighting designers stated that a range that includes values
below the target was not helpful to them. The FCC therefore now only considers values
above the target by default. The range is adjustable as described in Section 4.4.4.

4.7.2 User Feedback

This section reports on user feedback collected during an evaluation workshop with three
lighting design experts. Based on a protocol, we first gave an overview of the system
and explained the individual components as well as how they are integrated with each
other. The demonstration was based on a dataset provided by our collaborators (Sec. 4.6).
After two hours of introduction including questions and discussion, the domain experts
used the system for another two hours including time for feedback and discussion. To
document the feedback, participants completed a questionnaire with qualitative questions
regarding the individual features.

75

4. Integration in Parameter Space Exploration

The overall feedback of the interactive trial session was very positive. All experts agreed
that analysis and comparison of parametrizations are key problems in the lighting design
workflow. All of them considered LiteVis as an effective approach to increase efficiency
and confidence in identifying relevant lighting parametrizations. The most appreciated
component of the visual design included the Simulation Ranking View. The experts
approved the design decisions of summarizing parametrizations by a combined score of
aggregated result indicators as well as the interactive specification of measurement surface
importance. Specifically, the ranking gives them "a never before envisioned overview of
the quality of their simulation data". The specification of objectives concerning result
indicators and measurement surface weights gives them "the necessary means to control
and explore the massive amount of information". Our collaborator’s head of lighting
solutions support pointed out: "The system is very powerful and comprehensive. In
particular the possibilities of an intuitive comparison of lighting solutions are a significant
improvement as compared to other solutions that are currently deployed. It is exactly
what we were looking for."

More critical feedback concerned the MSA in the Simulation View. The experts com-
mented that developing an intuition of the spatial illumination distribution based on the
illumination distribution histograms requires some time for familiarization. However, the
lighting designers were generally able to understand the encoded illumination metrics
and appreciated the feature for comparing the illumination distribution on individual
measurement surfaces. The FCC was appreciated as a useful way to compare the spatial
distribution of illumination values of selected parametrizations, and was regarded as a
good complement to the comparison of non-spatial representations in the Analysis Views
and the MSA.

In summary, the discussions with the domain experts confirmed that we were able to
meet our design goals. In fact, the lighting designers valued our approach so much that
they intended to integrate LiteVis into their workflow.

4.8 Discussion and Future Work

4.8.1 Goals

By summarizing the key components of LiteVis we can illustrate how our design corre-
sponds to the goals stated in Section 4.3.3. We enable a holistic overview of all relevant
features of the parameter space by integrating the qualitative (Simulation View) and
quantitative (Analysis Views) aspects of the simulation output (G1). Through this
integrated approach, it is not only easier for a designer to understand the results, but also
to incorporate additional semantic information, customer requirements, or prioritization
concerns that are not included in the simulation itself. The tight integration of the scene
parametrization with the evaluation of simulation results enables a feedback loop that
allows users to iterate faster towards an optimal solution (G2). The effective comparison
of multiple solutions (G3) is enabled through the MSA, the FCC and especially the
integration with the Analysis Views that can be flexibly adjusted to depict input and

76

4.8. Discussion and Future Work

output values of all sampled simulation runs. This detailed comparison also enables a
sensitivity analysis to assess the impact of parameter variations. Especially our novel
Simulation Ranking View provides explicit and reproducible decision support (G4) by
clearly indicating the distributions of spatial and non-spatial objective weights and the
resulting ranking scores.

4.8.2 Scalability

The scalability of our tool can be analyzed according to different aspects. The number
of global and local result indicators in the Simulation Ranking View’s Indicator Bar
is limited by the horizontal screen space. Due to the aggregation of local indicators,
their number is independent from the number of measurement surfaces. Local indicators
could be further aggregated into categories if they would occupy more than the available
horizontal space. The number of surfaces in the Spatial Hierarchy is limited by the
available screen space, as well. However, since they are hierarchically groupable, they
could be managed in a sort of zoomable icicle plot. In large office scenes, the surfaces
could go into the hundreds. However, these scenes are typically uniformly structured, i.e.,
they consist of repeating patterns of furniture and lighting constellations. Measurement
surfaces can therefore be grouped without losing valuable information. The number of
solutions displayed in the Simulation Ranking View is not an issue concerning scalability
as the most interesting ones (according to the specified objectives) are always ranked at
the top. If an overview of hundreds or thousands of simulation runs is desired, a table
lens could be used to gain a synopsis of all runs. Hierarchical grouping by parameters
could be used to divide a large sample base of simulation runs. One part of LiteVis that
does not scale well are the MSA. The annotations become cluttered when displaying
more than 20 simulation runs within a floating overlay. However, feedback from lighting
designers indicated that an in-depth comparison typically takes place on a smaller set of
runs.

4.8.3 General Applicability

The general applicability of concepts from LiteVis is given especially in our Simulation
Ranking View. The view enables the specification of objectives on two orthogonal
levels. This concept has general applicability in decision making, i.e., in cases where
objectives can be shared by hierarchically superordinate entities. In disaster management,
for instance, a simulation run can represent the results of a parametrizable flooding
simulation. Instead of measurement surfaces, the Spatial Hierarchy could represent
the evacuation prioritization of hierarchically groupable areas. Local indicators could
represent different properties of these areas, such as the degree of damage, or repair cost.

77

4. Integration in Parameter Space Exploration

4.8.4 Future Work

Our evaluation indicates that the current version of LiteVis already has clear benefits
compared to current decision making support tools in lighting design. In our discussions
with domain experts, we identified additional topics that would be interesting to address
in the scope of LiteVis:

• More user guidance: the Spatial Hierarchy could be used to supply the user with
more information about the parameter space. The cells in the Spatial Hierarchy
could be colored to encode how much they contribute to the aggregate of a local
indicator. Another idea would be to use the cells to encode how many places in the
ranking the current selection would change if the respective cell would be assigned
an importance value of 100%.

• More control over spatial objectives: subdivision of measurement surfaces into
sub-areas with individual importances could help the lighting designer to fine-tune
the specification of spatial importance factors. On a desk, for instance, good
illumination in the center is more important than at the corners. Such fine-tuning
is actually already possible but only in the setup phase (T0), i.e., when the
measurement surfaces are defined.

• Analysis of illumination over time: especially in out-door illumination scenarios,
the sun plays an important role. Allowing users to analyze parametrizations at
different times of day and to incorporate day time dependent dimming profiles into
this process, would be an interesting application area to explore.

4.9 Conclusion
In this chapter, we describe the design study of LiteVis – a system aimed at assisting
lighting designers in their decision making process in regard to finding an ideal lighting
solution that adheres to competing qualitative and quantitative objectives. Visual and
functional integration of parameter space representations, i.e., the simulation input, with
representations of all relevant aspects of the simulation output is thereby the key in
enabling an efficient exploration and comparison of lighting parametrizations. Further, we
propose a novel ranking visualization that was inspired by multi-objective decision making
solutions taking into account the special intricacies of the domain’s complex parameter
space. We characterize the problems in the application domain of lighting design and give
a reflection on our design process. A use case illustrates how LiteVis supports decision
making in the context of a database of lighting solutions that would have overwhelmed
lighting designers using conventional lighting design solutions. Qualitative feedback from
domain experts confirmed that we met our design goals and that lighting designers want
to incorporate LiteVis into their daily workflow.

The integration techniques that we applied in this chapter were geared towards enabling
an efficient exploration of multifaceted spatial data. For the visual integration of the
individual data facets, we used juxtaposition for the Simulation and Analysis Views

78

4.9. Conclusion

in order to keep the mapping and the assigned screen real estate of both view types
independent. We chose to overload the Simulation View with the MSA in order to embed
them in the spatial context of the measurement surfaces with which they are associated.
For the comparison of solutions directly within the Simulation View, we adapted the
spatial representation of the scene in order to enable the FCC. The Simulation Ranking
View is actually composed of three visually integrated components: the Spatial Hierarchy,
the Indicator Bar, and the Ranked Table. This allowed us to join the representations
of the weights for the spatial and non-spatial aspects of the ranking, with the ranking
itself. All three components are juxtaposed within the same view. To establish a relation
between the three components, the Spatial Hierarchy and the Indicator bar share the
same meaning for the color (focus and context) and for the size of the area of visual
marks along the x-axis (amount of importance). The Indicator Bar and the Ranked
Table share the same meaning for color (focus, context, and global objectives) as well as
brightness (global and local indicators).

In terms of functional integration, we linked selection and highlighting states across
spatial and non-spatial representations (Ds/a→Va/s). Further, we coordinated mapping
colors for the representations of the MSA and the false color render mode, as well as for
the FCC and the selection states (Vs/a→Va/s) for a better orientation between views. We
enabled the loading of data into the Simulation View via the Analysis Views, and, vice
versa, enabled the extension of the displayed data sets in the Analysis Views with new
simulation runs created in the Simulation View (Ds/a→Da/s). Together the coordination
between selection states, color mapping, and data exchange enable the iterative refinement
of solutions within an integrated feedback loop. The functional integration between the
components within the Simulation Ranking View can be described as DSH→DIB→DRT ,
as the Spatial Hierarchy (SH) propagates weight changes to the Indicator Bar (IB) that,
in turn, propagates weight changes to the Ranked Table (RT).

The scenes that we dealt with were small enough to be navigated manually and could
even be assessed from an overview position that shows the entire setup like in Figure 4.8.
We therefore did not see the need for guided navigation (Da→Ns, as introduced in
Section 2.4) in the spatial view. However, for more complex scenes, such as large offices or
sports stadiums, guided navigation would certainly be required to facilitate the lighting
designers’ workflow. Hereby we conclude the discussion of integration in the context
of this exploration scenario. In the following two chapters, we will investigate how
integration can be applied in presentation scenarios, where user interaction cannot be
relied on in order to fulfill a task.

79

CHAPTER 5
Storytelling Templates

For Temporal Integration
Creating Insights Via Animated Transitions

This chapter is based on the following publication:

Johannes Sorger, Peter Mindek, Peter Rautek, Eduard Gröller, Graham Johnson, Ivan
Viola. Metamorphers: Storytelling Templates For Illustrative Animated Transitions in
Molecular Visualization. In Proceedings of the Spring Conference on Computer Graphics
2017, pages 27-36. May 2017 [SMR+17].

Understanding the different facets of a spatial data set often requires different
representation forms that are suitable for highlighting these aspects. Certain

insights into a multifaceted spatial data set might be better conveyed within a non-spatial
context. In molecular biology, an example for such insights can concern the quantities of
protein types within a microorganism. For such quantitative information, a histogram
would be a suitable representation form. For an untrained observer, the relation between
the protein quantities in the histogram and the original spatial representation of the
microorganism might not be clear anymore. An observer’s mental model of a spatial
data set is typically formed by real life experiences, or in the case of microbiology, from
microscopy, or illustrations from scientific books. The mental model is therefore anchored
in the same visualization space as the physical object. If no obvious relation between
a mental model and a particular representation exists, strategies have to be employed
that help the viewer to relate their mental model to a transformed representation, in
order to better comprehend the intended message. In situations where interaction is
possible or desired, users can engage directly with the data, in order to explore and clarify
these relationships by themselves, provided that the required tools, such as brushing and
linking between representations, are available.

81

5. Storytelling Templates For Temporal Integration

In cases, where interaction is not feasible or very limited, such as in presentation scenarios,
the relation has to be conveyed more explicitly. One way of establishing such relations
can be achieved through annotations and visual links between corresponding parts of
the data. Such representations might be found in info-graphics of scientific textbooks
or in museum displays. If dynamic representation forms are an option, the encoding
can be achieved through an animation that guides the viewer, for instance, through
the continuous transformation of one representation to the other one. In both cases,
visual integration is required to establish the relationship: for static, spatially integrated
representations, for instance, by overloading the representations with visual links; in the
case of dynamic representations, through a temporal integration of both representations.

In this chapter, we present a technique that is able to convey the relation between different
representations of spatial data facets via animated transitions. An animated transition is
thereby defined as a series of animation states, i.e., the individual representations, and
the transitions, i.e., the temporal integration, between them. Our technique supports the
definition of animation states and the transitions between them through the adaption of
the original spatial representation of a molecular model. The original mapping to visual
channels can thereby be neglected, modified, or re-assigned, as discussed in Section 2.2.
The adaption is carried out through a set of operators, the so called metamorphers, that
enable a wide range of visual abstractions or even the transformation of the visualization
space, i.e., the spatial frame of reference. By defining the representation states and
transitions between them based on adaptions of the original representation, metamorphers
can be specified in a way that makes them modular, i.e., flexibly combinable, and re-
usable. These properties yield many advantages in the context of authoring animations
for complex molecular models, as we will discuss in the following.

5.1 Introduction
In recent years, we have seen a rapid increase in the communication of topics from
molecular biology, such as through the work of Drew Berry [Ber], Graham Johnson [JNM],
Gaël McGill [JM13], or Janett Iwasa [Iwa10]. These topics involve complex processes, such
as the copying of DNA, the transport of oxygen in the blood stream, or the comparison

Figure 5.1: Transition of an organic representation of a cell to a more structured one
that conveys the quantities of the cell’s components [JNM].

82

5.1. Introduction

(a) (b)

Figure 5.2: Metamorphers provide a flexible and re-usable interface for the creation of
animated transitions of mesoscale data. Here, two different combinations of metamorphers
are applied to create an exploded view (a) of an HIV model, and a bar chart (b) that
represents protein quantities.

of molecular structures within a cell. Illustrators use animations to communicate these
processes in an explicit and intuitive manner. An example sequence from such an
animation is shown in Figure 5.1 where an organic cell structure is smoothly transformed
into a more diagrammatic representation. The scientific animator [JNM] used this
transformation to promote quantitative aspects of the data over its structural appearance.
To achieve their goals, animators make use of well established visual abstraction techniques
from scientific illustrations. Exploded views, for instance, are suitable for revealing how
hierarchical structures, for example, the compartments of a microorganism, are layered
(Fig. 5.2a). Such animations are typically handcrafted with 3D modeling and animation
tools, such as Maya. These tools offer great flexibility in the variety of achievable results.
However, the low-level approach that they apply, requires a high level of expertise in
illustration, animation, and biology to create an animation that conveys a complex
biological phenomenon. Such a manually key-framed animation cannot be transferred to
other data sets.

Another problem of illustrative animation authoring on a low level arises in the context
of molecular biology. In the visualization of molecular biology, we are dealing with
very complex models, often containing tens of thousands of objects that represent
individual cells, molecules, or atoms. Techniques routinely applied in hand-crafted
scientific illustrations and animations are difficult to apply to such dense and large-scale
data sets.

Besides manual low-level approaches, there are high-level approaches [LRA+07, DMNV12]
that semi-automatically generate a certain visual transformation for a supplied data set.
These approaches relieve the user from manually creating key frames for the thousands of
objects in complex molecular scenes. Further, they can be applied to arbitrary data sets
that share a similar data structure. This advantage comes at the price of the flexibility
that low-level techniques offer in terms of result variability.

83

5. Storytelling Templates For Temporal Integration

Our goal is therefore to develop a technique for authoring animated transitions that unites
the advantages of low-level and high-level approaches. We support flexibility and re-
usability, while providing the means to mask the complexity of low-level approaches from
inexperienced users. To achieve these goals, we propose modular animation operators,
i.e., metamorphers, that act as combinable storytelling templates. Metamorphers belong
to six different classes of operations (data restructuring, layout, morphing, trajectory,
timing, and camera control) that collectively describe the intermediate or target states
of an animation, as well as the transitions between these animation states. A single
metamorpher modifies the properties of the molecular data in regard to one of these
classes. Re-usability ensures that the metamorpher produces an intended result for any
compatible input data. Flexibility ensures that arbitrary metamorphers can be combined
in a modular way to create a wide range of results. Both of these properties allow the user
the combination of multiple metamorphers into higher-level operations. Such high-level
metamorphers are again re-usable and flexibly combineable. A high-level metamorpher
serves as a hierarchical container that masks the complexity of the contained lower-level
metamorphers from the user.

In the remainder of this paper, we describe the technical details that are required to
understand and reproduce metamorphers for the application to the domain of molecular
biology. We illustrate our technique by presenting exemplary metamorphers in the scope
of a proof of concept implementation. Our proof of concept implementation features
a visual scripting interface in the form of a hierarchical node editor that enables the
parametrization and combination of metamorphers as well as the creation of re-usable
high-level metamorphers. Based on our implementation, we demonstrate the flexibility
and re-usability of metamorphers by creating two different animations and re-applying
them to three different data sets from molecular biology. Finally, we reflect on our
technique as well as give some informal feedback that we gathered from domain experts
in illustration, animation, and biology.

5.2 Related Work
Animation and transitions between data representations serve as powerful tools for the
dissemination of complex relations in space, time, and abstract dimensions. They are
frequently used in visual storytelling as well as for the depiction of relations between
different data representations. Kosara and Mackinlay [KM13] emphasize the importance
of storytelling in visualization not only for presentation purposes but also in decision
making and process analysis. They suggest that opening up an animation for interaction
at the story’s end, provides a convenient starting point for exploration and goes beyond
a simple slideshow. Our implementation creates animations of the molecular data that
can be paused and explored in real-time at any point during the transition. Wohlfart
and Hauser [WH07] present a guided interactive volume-visualization approach in terms
of camera path, transfer-function parameters, and annotations. Grimm et al. [GBKG04]
introduce V-Objects as an abstraction of volume data. Their approach enables interactive
specification of key-frames for animation paths, transfer-function fades, light movement,

84

5.2. Related Work

clipping planes, change of data sources, and enabling and disabling of objects. These
approaches do not consider the re-usability of the animations for different data sets as
they are based on the explicit authoring of the key-frames. Hyun et al. [HLL16] propose
a more implicit approach in the context of storytelling, by using grammars to synthesize
the animation of characters. They generate animation sequences for virtual players by
employing a language that captures the behavioral structure of human movements in a
basketball game. The grammar is used to check the validity of a sequence of movements
and to suggest new plausible candidates for the next move. Karp and Feiner [KF93]
present a scripted system that generates animations from communication goals. The
system plans an animation by breaking it down into sequences, scenes, and shots down
to the level of individual frames. Seligman and Feiner [SF91] present a system that
generates technical illustrations using illustration rules. Annotations, highlights, and
rendering styles are chosen to convey the intended information. Mühler et al. [MBP06]
present a scripting language for the generation of illustrations and animations in the
context of medical intervention planning. Mühler and Preim [MP10] introduce keystates
that describe a visualization on an abstract level, including information about visibility,
rendering style, etc. of each structure. Keystates are used to automatically generate
animations and are re-usable for data sets that contain the same structures. Iserhardt-
Bauer et al. [IBHT+02] developed a system that generates video sequences for intra-cranial
aneurysms. Visualization parameters and the camera path are automatically generated
from a standardized predefined protocol.

Figure 5.3: Classes of metamorphers according to the six stages of a pipeline for animated
transitions. The data restructuring, layout, and morphing stages define an animation
state. Trajectory, timing, and camera control define how an animation state transitions
to the next one, and thereby structure the presentation of the transition.

While these approaches convey purely spatial phenomena, other approaches reveal non-
spatial relationships within the 3D spatial data. Hurter et al. [HTCT14] use animation
to interpolate between different (non-spatial) projections of the original data dimensions
in a 3D volume. Basch [Bas11] uses animated transitions of voxels to non-spatial volume
representations, such as histograms of voxel intensity values. With metamorphers we
propose a flexible technique that supports the depiction of spatial, as well as non-spatial
relationships by transforming the spatial data into an non-spatial frame of reference.

85

5. Storytelling Templates For Temporal Integration

5.3 Metamorphers

We describe the complete transformation of an object between two animation states by
six stages of a pipeline for animated transitions (see Fig. 5.3). The first three stages of
the pipeline (data restructuring, layout, and morphing) define, what the original model or
data set should represent in an intermediate or target state of the animated transition. In
the simplest case, an animation is created by linearly interpolating between the animation
states (key frames) of the individual molecules in a scene at the same time. However,
the simultaneous interpolation of tens of thousands of molecules, is hard to read due to
clutter and occlusion. We refer to such an interpolation as an unstructured interpolation.
By spatially and temporally structuring the transition, i.e., with trajectories, timings
of the individual molecule transitions, and by controlling, which parts of the scene the
camera presents to the viewer, a more pleasant animation can be created. The last three
stages of the pipeline (trajectory, timing, and camera control) are thus responsible for
defining, how a state should transform into the next one, and how the transition should
be presented to the viewer.

In this section, we give a definition of how metamorphers can support re-usability and
flexibility. We then describe the molecular data that metamorphers operate on, and we
specify the interface that enables the modular combinations between them. Finally, we
describe the different classes of metamorphers that are necessary to create all aspects of
an animated transition.

5.3.1 Re-usability & Flexibility

In order to support re-usability, a metamorpher has to adhere to two rules to achieve
intended results for arbitrary data sets:

1) A metamorpher has to define an animation state not in an absolute way but relative
to the previous animation state. For instance, a new position Posnew for an object A
should not be defined as Posnew(A) = X, but instead as Posnew(A) = Posold(A) + X.

2) A metamorpher has to define an animation state not explicitly but implicitly, i.e.,
based on inherent properties of the scene and the data set. In the above example, X
should not be an explicit value, e.g., X = 500, but should be given or derived from
inherent properties, e.g., X = width of object A′s bounding box. Exceptions to these
rules occur if absolute and explicit values have the same semantic implication for all data
sets, such as moving an object to the center of the scene.

In order to support flexibility, a metamorpher has to provide a modular interface that
enables arbitrary combinations with other metamorphers. Such a modular interface
is achieved by using the same data structure for the input as well as the output of
each metamorpher. A metamorpher takes a data (sub)set as an input, modifies specific
properties, such as the positions over time, and passes the modified data (sub)set as
output to the next metamorpher.

86

5.3. Metamorphers

Both of these qualities allow metamorphers to mask the complexity of authoring an
animation. Multiple metamorphers can combine their lower-level operations into a single
high-level operation with complex functionality. A high-level metamorpher serves as a
hierarchic container that masks the combined lower-level metamorphers from the user.
For instance, the steps involved in the creation of an exploded view can be summarized
into a high-level metamorpher. A non-expert user can now apply the exploded view to
an arbitrary data set without having to know about the individual operations that are
involved. Flexibility assures that this high-level metamorpher can still be combined with
other metamorphers. These characteristics turn metamorphers into re-usable storytelling
templates that can be flexibly combined to convey diverse messages. At the same time,
the low-level complexity of the operations involved in authoring illustrative animation
sequences is masked.

5.3.2 Molecular Data: Inherent Properties

Our pipeline operates on biological data that is composed of individual proteins. These
proteins collectively form the compartments and inner structures of the microorganisms
that they depict. Proteins are therefore the building blocks of these data sets. The data
set of the HIV virion that is depicted in Figure 5.2, for instance, contains approximately
20.000 molecules distributed across 42 protein types, with an atom count of 60 millions.

The molecular data is organized in a hierarchical structure. The smallest entity is an
atom a of a certain type, i.e., chemical element. It is represented by a sphere that has a
position in its local coordinate system, and a scale that describes its radius. A molecule
m represents a certain protein type and has a position, orientation, and scale in the global
coordinate system. A molecule is represented by a list of atoms m = a1, ..., an that yields
an atom count and a volume. It is contained within the spatial extents of a bounding box
BB. A scene S is comprised of a list of molecules S = m1, ..., mj that can be partitioned
into hierarchical subsets M, describing semantic structures of the microorganism. The
leaf nodes are the individual molecules. Each node in the hierarchy thus contains a list of
subsets or a list of molecules that yields a molecule count and volume, and is contained
in a bounding box.

To support animation, the hierarchic data structure is extended by key frames and time
curves for subsets and molecules. A key frame stores a node’s properties, such as the
position, and bounding box, for an animation state. Time curves determine the start
time and speed at which the properties of a molecule are transformed between each
pair of key frames. Metamorphers manipulate properties of subsets and molecules and
automatically create new key frames and time curves that are interpolated to create an
animation.

87

5. Storytelling Templates For Temporal Integration

5.3.3 Metamorpher Modular Interface

The modular nature of the metamorpher input/output interface supports the flexible
combination of metamorphers. This enables the user to create diverse animation sequences.
The interface takes as input the data hierarchy and a pointer to the parent node of the
subsets that should be processed. The metamorpher then accesses and modifies the
respective properties of the node’s children according to its functionality. The interface
passes on the modified node as a single output node. Multiple outputs have to be used if
the individual subsets of a hierarchy level should be forwarded to different metamorphers
(as shown in Fig. 5.5). In this case, the pointers to the individual subsets are passed
on to separate outputs. Since the separate outputs are explicitly linked to different
metamorphers, the number of outputs has to be known, i.e., it cannot depend on the data
set. A spatial data-restructuring metamorpher, for instance, creates always two subsets
if it splits the space into two parts. If the number of subsets that a data restructuring
metamorpher creates is unknown, the subsets have to be forwarded as the children of a
single node.

5.3.4 Metamorpher Classes

In the following, we elaborate on the six metamorpher classes and we give examples for
concrete implementations for each of them. We thereby use the exploded view and the
transition to a bar chart from Figure 5.2 as guiding examples.

We use the following notation to describe a metamorpher type(param, subset). Type
describes the metamorpher operation, such as rotate for a layout metamorpher that
triggers a rotation. Param describes the parametrization of the metamorpher, which can
be a set of input values, such as the axis and the angle for a rotation. Subset contains
the subset on which the metamorpher will be applied.

Data restructuring Metamorphers

Data-restructuring metamorphers partition the data structure to define, on which parts
of the data, and in which granularity metamorphers from subsequent pipeline stages will
operate, i.e., they create subsets from the list of molecules. The data hierarchy in a target
representation can differ from the one in the initial representation, and therefore has to be
adapted for subsequent operations. A data set can be partitioned semantically, according
to data attributes, such as the protein type, or spatially, according to geometric properties,
such as the bounding box extents. The partitioning creates a scene hierarchy for each
animation state. The original topology is always preserved in the initial animation state.

For the exploded view in Figure 5.2a, for instance, the data first has to be partitioned se-
mantically into the three subsets that represent the layered cell compartments. Split(comp,
S) where S = m1, ...mj , partitions the input data into k cellular compartments so that
S = M1, ..., Mk. The compartments are in our case inherently given in the hierarchy of
the data format. If no such hierarchy is present, segmentation algorithms are needed to
determine semantic clusters.

88

5.3. Metamorphers

In the exploded view in Fig. 5.2a, the compartment subsets are spatially partitioned
into a lower and an upper half. Split(spatial(plane), S), where S = m1, ..., mj assigns
all molecules to subsets Mupper and Mlower depending on which side of a plane they are
located. To achieve a re-usable spatial partitioning, inherent geometric information, such
as the bounding box, can be exploited, e.g, by placing a cutting plane at the center
of the input subset’s bounding box. By providing operations that work on semantic
data properties, the user is not required to have an extensive knowledge of the data
composition.

Layout Metamorphers

Layout metamorphers spatially rearrange subsets of molecules that were defined in the
data restructuring stage, in order to create a desired target representation. Layout
metamorphers define a target state with a sequence of transformations of the positions,
rotations, and scales of the molecules in a given subset.

A rotate(hinge(axis, degree), M) metamorpher needs an implicit axis, such as the axis of
a scene’s coordinate system or the edge of a bounding box, to support re-usable rotations.
In the exploded view (Fig. 5.2a), for instance, we rotate the halves of a compartment
around a common hinge where their bounding boxes align. The rotation angle can be
explicit, since it yields the same results for arbitrary data sets. An angle of, e.g., 90 degrees
between two planar surfaces provides a view into the interior, independent of the data.
Similarly, for a translate(direction, distance, M) metamorpher the translation direction
and distance have to be chosen so that they have the same impact on arbitrary input
data. Such implicit layout operations can mask the complexity of low-level geometric
transformations from the user.

Morphing Metamorphers

Metamorphers from the morphing stage change the visual appearance of individual
molecules (Fig. 5.4a). Such operations are needed in scenarios where the representa-
tion of individual objects needs to be adapted in order to better convey an intended
message. Molecules in mesoscale biological models can be displayed as space-filling
models, stick models, or one of many other representations commonly used in molec-
ular graphics [KKL+15, Goo99, Ric81]. In the bar chart in Figure 5.2a, for instance,
morph(slab, S) transforms proteins into square-shaped slabs that are then stacked upon
each other by a layout metamorpher. In our implementation, a morphing metamorpher
morph(slab|stick|cube|sphere|scale, S) re-assigns the atoms of a given protein to random
positions within the extents of the intended shape. The random positions approximate the
defined shape. Due to the random positioning within the specified geometric boundaries,
the approximated shape appears as the same for arbitrary input molecules. The generated
positions are stored within new key frames for atom positions in the molecule’s local
coordinate system. Morphing metamorphers mask the low-level complexity of molecular
data structures that users would need to access and modify in order to change their
representation.

89

5. Storytelling Templates For Temporal Integration

(a) (b) (c)

Figure 5.4: Schematic representations of the effects of different metamorphers from the
a) morphing, b) trajectory bundling, c) timing stage.

Trajectory Metamorphers

The trajectory stage is the first of the three pipeline stages responsible for structuring the
transition between two animation states (Fig. 5.3). Due to the size of the data (tens of
thousands of molecules), the structure of the transition plays an especially important role,
e.g., for visual clutter reduction, occlusion handling, and the guidance of the viewer’s
attention.

Trajectory metamorphers spatially structure the transition by defining the trajectories
along which the individual molecules of a given subset will move. A common technique
for spatially structuring the transition of particles is trajectory bundling. Bundle(p,
M) reroutes the trajectories of the particles in M through a common point p, i.e., a
bundling point, instead of directly interpolating between their initial and target position
(see Fig. 5.4b). The position of a re-usable bundling point should be derived from the
given data semantics. In the transition to a bar chart (Fig. 5.2b), we define bundling
points with respect to the bounding boxes of the initial and final animation states.

Trajectory metamorphers mask the complexity of manually specifying explicit key frames
for spatially structuring the transition of molecules.

Timing Metamorphers

Timing metamorphers are responsible for the temporal structuring of the transition
between two animation states. Temporal structuring is achieved by manipulating the
start time, duration, and speed of the transitions between key frames. These temporal
manipulations are controlled via time curves that are associated with each pair of key
frames.

90

5.3. Metamorphers

Temporally structuring the transition of thousands of densely packed animated objects
is essential to reduce the cognitive load on the viewer. A staged animation can reduce
occlusion and clutter [HR07]. Staging determines the order and speed at which objects
move, as well as the number of objects that move at the same time. Other temporal dis-
tortions that create more pleasant animations, such as slow-in/slow-out pacing [DBJ+11],
are handled in this stage as well. Timing metamorphers can also be used to convey
information about the chronology of the illustrated events.

A stage(distance(p), d, S) metamorpher, for instance, delays the animation of molecules
in respect to their distance to a certain point p. This distance-based delay temporally
structures the transition so that molecules appear to be peeled away from their original
position, layer by layer. A stage(type, d, S) metamorpher orders the time curves of
the molecules in S by their protein type so that all molecules of the same type are
animated synchronously. A delay d defines how long each molecule waits before starting
its transition (Fig. 5.4c). The delay can be defined explicitly (d = X) or implicitly (for
instance, d = 1/j ∗ Y , where j represents the total number of molecules in a subset, and
Y a scaling factor).

By relying on given semantic or geometric properties, timing metamorphers mask the
complexity of sophisticated animation timing from the user. The resulting temporal
structuring would be very difficult to achieve by manual authoring on the level of
individual protein instances.

Camera Control Metamorphers

Camera control metamorphers govern the camera position and viewing direction at each
time step during an animation sequence. Camera steering is an essential component of non-
interactive explanatory visualizations. It effectively determines, which parts of a dynamic
scene are presented to the viewers when guiding them through a sequence of events, as
well as how these parts are presented, i.e., from which viewing angle and distance. A wide
range of sophisticated semi- and fully-automatic camera control techniques [CON08] have
been developed in the field of computer graphics. Re-usable camera control metamorphers
that automatically react to dynamic changes in an animation, can rely on inherent data
properties, such as molecule types and subsets, as well as their animation states (position,
rotation, scale) at each time step.

A simple camera(follow(BB), S) metamorpher checks the extents of the input subset’s
bounding box and adjusts the camera zoom and look-at vector to keep the subset inside
the view frustum during the animation. In more complex cases, a camera(follow(salience),
S) metamorpher could derive semantic importances from salient features, such as objects
that are currently in motion. Camera control metamorphers that react automatically
to the dynamic changes in an animation, relieve the author from manually specifying
camera paths in complex dynamic scenes.

91

5. Storytelling Templates For Temporal Integration

5.4 Implementation
Our implementation is an extension of the cellVIEW framework [LAPV15], a tool for the
real-time visualization of large mesoscale molecular models that is realized within Unity3D.
The molecular models are loaded from files supplied in the cellPACK format [JAAA+15].
We extend the cellVIEW data structure of atom and molecule types, positions, and
orientations, with the means to create and store hierarchical subsets of molecule instances,
as well as key frames and time curves (as described in Sec. 5.3.2).

The animation pipeline is realized as an application programming interface (API) in the
C# programming language. All metamorphers are executed as parametrized function
calls that operate on arbitrary subsets of the data hierarchy. On the C# level, new
metamorphers can be defined by creating new functions that implement the interface
that we defined in Section 5.3.3.

5.4.1 Interface

To allow users a more intuitive parametrization and combination of metamorphers, we
implemented a node editor (Fig. 5.5) that acts as a visual scripting interface to our API.
Each node in the editor represents a metamorpher. The inputs and outputs of nodes can
be connected (2) to link two metamorphers. Metamorphers can be dragged from the node
shelf on the left onto the canvas (1). Nodes are parametrized via the property window (4)
that is accessed by clicking on a node. While the order of linked metamorphers and the
applied timing operations create an implicit timing for the animation, the editor allows
the user manual fine tuning. The start time and duration of a metamorpher is set via
its anchor (5) to the time line (6) at the bottom of the editor. The time curve (7) for
metamorphers that support timing can be accessed in a node’s property window. The
horizontal axis represents the time, and the vertical axis represents the progress of the
respective operation. Data-restructuring metamorphers do not require timings.

Each node in the editor is associated with an evaluate() function that is called when
the chain of connected metamorpher nodes is traversed upon execution. The evaluate()
function calls the respective metamorpher and uses the parameters that are defined in the
node properties. It passes the metamorpher output to the input of the next connected
metamorpher node in line. For an additional level of control, experienced users can
access and edit the C# code of evaluate() functions and the associated metamorphers
by double clicking on a node. Upon saving, Unity3D will automatically re-compile and
accommodate the changes.

92

5.4. Implementation

5.4.2 High-Level Metamorphers

High-level metamorphers mask the functionality of multiple metamorphers contained in a
hierarchical group node. The node editor enables the user to create and store such group
nodes on the fly. These high-level metamorphers are flexible and re-usable according to
our definition from Section 5.3.1 as well. The contents of a high-level node still can be
accessed and modified by users who have the required expertise and domain knowledge.

5.4.3 Producing the Animation

An animation is defined by a chain of linked metamorphers. The individual frames of
an animation are produced by interpolating the animation states that are stored in the
key frames of individual molecules in consideration of the specified time curves. The
number of generated frames per second can thereby be specified by the user. To create the
sequence of frames for each molecule, the data hierarchy is traversed. The transformations
of higher-level nodes in the hierarchy are propagated to the transformations on lower
levels, down to the individual leaf nodes, i.e., the molecules. For displaying the animation,
the frame sequence is loaded onto the GPU, and the animation is played back in real-time
within cellVIEW. The last state of a metamorpher setup can be inspected at any time
during the authoring process by pressing the evaluate button.

Our current implementation interpolates between key frames on the CPU. Linear in-
terpolations between key frames can be achieved in real-time, i.e., the frame sequence
does not have to be calculated before the animation is played back. If key frames require
cubic interpolations, the sequence has to be calculated prior to playback. The generation
of the frames for the videos in the supplemental material [SMR+] took between 10 and
20 seconds on current consumer hardware.

Figure 5.5: The node editor acts as a visual scripting interface to the metamorpher API
function calls. 1: the canvas for arranging metamorpher nodes, 2: a link between input
& output of two metamorphers, 3: input handle of a metamorpher node, 4: a node’s
property window, 5: a time anchor, 6: the time line, 7: a node’s time curve.

93

5. Storytelling Templates For Temporal Integration

5.5 Results

In this section, we showcase the authoring of the two animations illustrated in Figure 5.2,
i.e., the transition to an exploded view and the transition to a bar chart. We thereby
refer to the metamorphers that we introduced in Section 5.3.4. We demonstrate the
re-usability of our technique by applying each metamorpher setup to three molecular
data sets, i.e., to computational models of the immature HIV virion, the mature HIV
virion, and the mycoplasma bacterium. The resulting animations can be viewed in the
supplementary video [SMR+].

The first two data sets describe different development stages (immature and mature)
of the structural model of the human immunodeficiency virus (HIV), which is built-up
from more than 20.000 macromolecules. The HIV is surrounded by blood serum, and
therefore not visible in the initial state of the data set (Fig. 5.6a). The mature virion
features better defined hierarchical compartments and also differs in the types and spatial
distribution of proteins, in comparison to the immature virion. Both data sets have an
onion-like hierarchical structure. The mycoplasma bacterium, while spherical as well, has
a less developed hierarchy. Most of its proteins are distributed loosely within its interior.

5.5.1 Exploded View

The three data sets that we present are all densely packed. Their outer shells obstruct
the view to inner structures. In this example, we want to reveal the inner structures as
well as the hierarchy in which they are arranged. We therefore create an exploded view
that opens the individual compartments and places them side by side.

We start by creating the data structure that we need for the final transition state. First,
we create molecule subsets that represent the individual compartments. We therefore
feed our initial data S into a split(comp, S) metamorpher that yields i subsets Mi for
S, where i is the number of compartments. Second, we want to split all compartments
horizontally at their center. We achieve this by applying a split(plane(BBcenter), S)
metamorpher that uses a plane at the bounding-box center BBcenter of each subset Mi.

(a) (b) (c) (d)

Figure 5.6: Exploded view transition of the mature HIV dataset.

94

5.5. Results

This will add an additional hierarchy layer to the data structure by splitting each Mi

into an Miupper and Milower
.

Next, we define the layout for the data structure that we created. To explode (or
open up) the individual compartments, we rotate the lower and upper compartment
halves by 45 and -45 degrees respectively. As rotation hinge we use the upper (back)
and lower (back) edge of their bounding boxes. We pass the upper compartment
halves to a rotate(hinge(BBlower, 45), Miupper) metamorpher and the lower ones to a
rotate(hinge(BBupper, -45), Milower

) metamorpher.

To layout the exploded compartments side by side, we use a translate(x-axis, BBwidth, S)
metamorpher. The children of S, i.e., the compartments, will thereby be placed along
the x-axis with respect to their bounding box width. We do not change the appearance
of individual molecules, so no morphing metamorpher is needed.

After defining the target representation, we design the transition to it. We want the
individual compartments to be revealed one by one. We simply apply a stage(subset, S)
metamorpher that individually delays the transition of each compartment, i.e., the
child nodes of S. Since we move individual compartments as a whole, no trajectory
metamorpher is required. We use a camera(maintain, S) metamorpher to guarantee that
the data stays inside the view frustum during the transition.

We group the final chain of metamorphers into a high-level explode(S) metamorpher
that can now be applied to different data sets in order to create an exploded view of
their hierarchical compartments. The resulting transitions can be seen in Figures 5.6a-d
for the mature HIV. Figures 5.7a and 5.7b show the results of the same metamorpher
sequence on the immature HIV and the mycoplasma data set. Even though the number
of compartments and the associated molecule types differ in each data set, our chain

(a) (b)

Figure 5.7: The final animation state for the exploded view of the immature HIV
dataset (a), and of the mycoplasma dataset (b).

95

5. Storytelling Templates For Temporal Integration

of metamorphers creates an appropriate exploded view for each of them. Since the
mycoplasma data set does not have a hierarchical structure, the application of an
exploded view might not be required. Still, even here the result is semantically correct in
regard to the desired target visualization.

5.5.2 Bar Chart

In the bar chart example, we convey knowledge about the quantities of proteins in a
microorganism. We choose to represent these quantities in a bar chart. Each bar in
the chart represents the volume that the respective molecule type occupies in a given
structure.

Since we want to show the quantities per molecule type, we partition the data with a
split(type, S) metamorpher into i subsets Mi, where i represents the number of molecule
types. To create the individual bars, we apply a translate(y-axis, length, Mi) metamorpher
that will stack the molecules of a specific type along the y-axis in intervals of the defined
length. The length is defined by a user-specified maximum bar height, normalized by
the maximal number of molecules among all molecule types. Next, to give the stacked
molecules the appearance of a bar, we use a morph(slabs, S) metamorpher in order to
change the original molecule shapes into square slabs of equal size. To align the bars side
by side along the x-axis, we apply a translate(x-axis, BBwidth, S) metamorpher. The
bounding-box width corresponds to the width of the slabs in each stacked bar.

In order to increase the readability of the animation, we structure the transition spatially
and temporally. For the spatial structure of the transition, we re-route the trajectories
of the molecules so that they do not move though the virus on the way to their target
positions. Instead, we want the molecules to move to trajectory-bundling points to the

(a) (b) (c)

Figure 5.8: The bar chart metamorpher setup applied to the immature HIV data set.

96

5.5. Results

right and left of the initial structure. We therefore partition the data further by applying a
split(plane(BBcenter.yz, S) metamorpher that splits each typed subset Mi at the yz-plane
of the bounding-box center into Mileft

and Miright
halves. The newly created subsets

are now used by a bundle(BBl, Mileft
) and bundle(BBr, Miright

) metamorpher to create
bundling points on the left and right side of the virus structure’s initial bounding-box.

We also want to create the impression of molecules falling into their respective bar from
the top. We achieve this with a bundle(BBtop, S) metamorpher that creates a bundling
point for each subset of S, at the top of each histogram bar. The trajectory-bundling
metamorphers are inserted before (BB of the initial structure) and after the layouting
(BBs of the bars), depending on which structural information they need to relate to.

In order to temporally structure the transition, we first stage the animation per molecule
type (stage(type, S)). Then we apply a distance-based delay per molecule
(stage(distance(BBcenter), S)) to peel away the molecules layer by layer depending on
their distance to the initial bounding-box center. Finally, we use a camera(maintain, S)
metamorpher to guarantee that all molecules stays inside the view frustum during the
transition.

The results of applying this sequence of metamorphers to two different data sets can be
seen in Figures 5.8 for the immature HIV, and Figures 5.9 for the mycoplasma data set.
The result for the mature HIV data set is displayed in Figure 5.2b. The intended result,
i.e., a transition to a bar chart of protein quantities, has been created successfully for
all three data sets. The principal requirement for this is the existence of typed entities
(molecules) in the data.

(a) (b) (c)

Figure 5.9: The bar chart metamorpher setup applied to the mycoplasma data set.

97

5. Storytelling Templates For Temporal Integration

5.6 Discussion

5.6.1 Expert Feedback

In order to judge the feasibility of our technique, we gathered informal feedback on
metamorphers from three experienced biological illustrators. They commented that their
work flow to create complex illustrations would greatly benefit from metamorphers. They
consider the produced results as "incredibly valuable" to communicate knowledge. The
current visual-scripting interface received some criticism for being not very intuitive. One
expert suggested that the interface could benefit from "icons (or animated icons) that
show what each effect is roughly intended to perform".

According to one of the experts, setting up an illustration using his accustomed work flow
"would still take me a minimum of one hour to create a prototype, and then several hours
or a couple of days to refine it" – despite having 17 years of experience with 3D modeling
software. With metamorphers, he claims, he could "iterate on it in real-time in a matter
of minutes". In addition, most of the illustrations that result from the accustomed work
flow are not reusable or portable to other data without significant customization. The
re-usability of animation setups was therefore regarded as highly valuable.

5.6.2 Applicability

While our technique is in principle applicable to different data types, it is especially
valuable for large-scale molecular data. On the one side, the authoring of illustrative
animations for large-scale molecular structures is a cumbersome task, as reported by
domain experts. On the other side, large-scale molecular data bridges the disciplines
of molecular visualization and cellular visualization, as microorganisms are depicted on
molecular/atomic resolution. In terms of molecular visualization, the visual transforma-
tion of individual elements in a data set is common, as many different well established
visualization techniques exist. In the visualization of complex biological structures, illus-
trative abstractions of the organic structures and compartments are commonly applied
to convey specific information about an organism. Metamorphers are especially suitable
for this type of data, as abstractions of both molecular and biological structures are
supported by our approach, i.e., in the morphing and layout stages respectively.

Our technique supports in theory arbitrary animations of typed data with point cloud
characteristics. It is especially well suited for the purpose of creating short illustrative an-
imations, most notably, transitions between different representation forms. Re-usability is
mainly a benefit in application scenarios where the same illustrative technique is frequently
re-applied to different data sets. An example is to highlight a certain characteristic in a
series of related data sets for the purpose of comparison. Stories with a more complex
plot typically do not need to be re-usable, in the sense that the contained animations
and transformations are applied to different data sets. For complex stories, the overhead
of creating metamorphers would most likely outweigh the benefit if re-usability is not a
concern.

98

5.6. Discussion

The re-usability of our technique remains intact as long as the conditions in Section 5.3.1
are met. An explicit description of an animation state might require less effort than
programmatically creating multiple metamorphers from scratch. However, once a meta-
morpher is defined, it can instantly be applied to other compatible data as well. The
modular interface further broadens the scope of achievable results in combination with
already defined metamorphers. The potential results are only limited by transformations
that cannot be defined in relation to implicit semantic or geometric properties of the
data.

5.6.3 Future Work

There are several directions that we consider as possible extensions to the concept of
metamorphers. In terms of general applicability, our method could be adapted to be
used with point clouds, or volumes in general, as the molecular data is represented by
a set of points in 3D space. The topologies of objects that are formed through the
spatial proximity of individual elements in point clouds and volumes are not changed,
e.g., when spatially splitting a data set along a plane. For the application to polygonal
data, however, our approach would have to be extended to support adaptions of the mesh
topology.

Another interesting direction for further research is the transition between multiple scales
at different orders of magnitude, such as the transition from the scale of a blood cell to
the scale of the human body as presented by Hsu et al. [HMC11].

Regarding the categories in the design space for storytelling in visualization that Segel
and Heer formulated [SH10], our technique gives the animation author great flexibility
in terms of visual structuring, highlighting, transition guidance, and ordering of the
presented content. Categories that our technique currently does not support explicitly are
interaction and messaging (annotations). These two aspects are priorities for follow-up
work, in order to further extend the storytelling capabilities of metamorphers. In theory,
interaction with the animation is already possible, since the environment, in which we
implemented our method [LAPV15], renders the animated transitions in real-time.

The continuous presentation of animations supports an intuitive understanding of the
relationship between representation states. If carefully authored, such an animated
transition can be both self-explanatory, and enjoyable to audiences [RFF+08]. However,
the potential downsides of animations are characterized by the fleetingness of the displayed
information, the potential sensory overload, and the distracting nature of badly designed
animations [TMB02]. In consideration of these challenges, another way to extend
our approach would therefore be to compensate the fleetingness of animations. The
metamorpher output could thereby be sparsely sampled in order to produce a series of
static images. This could be achieved, for instance, with object-based key-frame extraction
techniques, as described in previous work [LLWC08, HCHY05]. Automatically generated
glyphs and labels could thereby be integrated with the static images to compensate the
information loss that the sampling of the animation caused, for instance by encoding
directions, velocities and orderings.

99

5. Storytelling Templates For Temporal Integration

Regarding the sensory overload of badly designed animations, an interesting direction
for future work would be the incorporation of user guidance into the authoring tool,
e.g., within the visual scripting interface. By determining, for instance, visibility in the
intermediate animation states, a user could be notified about animation sequences that
could potentially overwhelm or confuse a viewer.

The set of metamorphers that we presented in this paper serves as a proof of concept
to illustrate our technique. As such, it represents by no means a complete feature set.
Therefore, another exciting prospect would be the creation of a data base where users
can share the metamorphers that they defined, as well as find and modify existing ones
that were created by other users, in order to continuously increase the pool of available
story telling templates.

Metamorphers represent a first step in the direction of a formalization of animated
transitions for 3D spatial molecular data sets. As a next step, we intend to publish a
formal grammar describing our animated transition pipeline in general and the individual
metamorpher implementations in particular. The idea is to explore the solution space
that can be created by a set of metamorphers by applying the grammar for the generative
sampling of all potential metamorpher parametrizations.

5.7 Conclusion
Metamorphers allow users to create re-usable animations for molecular data sets. The
re-usability has the advantage that representation states and transitions between them
do not have to be manually re-modeled and key-framed when they are applied to different
data sets. Instead, users can create animations by combining pre-made templates,
i.e., metamorphers. The same chain of metamorphers can thus be used to generate
animations for multiple data sets, while individual metamorphers can be re-used in
different combinations. Domain experts from illustration and animation confirmed the
feasibility of our approach. The set of introduced metamorphers already demonstrates
the flexibility of our technique, but the presented list of operations is by no means
complete. To enable the extension of the list of achievable animations, our interface
provides access to the source code of individual metamorphers. It thereby allows users
with programming expertise to modify existing metamorphers, or to create new ones.
Users that are less experienced in programming, animation, or molecular data can access
the list of existing metamorphers and combine them in the visual scripting editor. The
grouping to high-level metamorphers thereby hides complex low-level animation concepts.
In this way, metamorphers can be exchanged between users from different domains and
of different levels of expertise.

Metamorphers as a visual integration technique enable the adaption of the visual channels
of a spatial representation, as discussed in Section 2.2, as well as the definition of the
temporal integration. The adaption of the visual channels is thereby handled by different
types of metamorphers. The spatial channels are defined by the layout metamorphers.
Morphing metamorphers handle the retinal channels. Morphing also governs shape

100

5.7. Conclusion

transformations on the level of individual molecules. The motion channel is managed
by timing metamorphers, as they can influence how two spatial or retinal channels are
interpolated. The timing of the interpolations thereby temporally structures the transition.
Trajectory metamorphers create intermediate states for the spatial channels in order
to spatially structure the transition. The definition of a temporal integration between
a pair of representations is thus supported by trajectory and timing metamorphers.
Camera control does not describe the integration between visual channels, but rather the
perspective from which the information is presented. As such, it corresponds to a guided
navigation component, as described in Section 2.4.

When regarding the functional integration capabilities of metamorphers, the six animated
transition pipeline stages, i.e., metamorpher types, can be related to the three visualization
components that we defined in Section 3.3.4. The data component corresponds to data
restructuring metamorphers. The visual component corresponds to layout, morphing,
trajectory, and timing metamorphers. The navigation component corresponds to camera
control metamorphers.

Functionally integrated interaction on the individual visualization components is currently
not explicitly supported by metamorphers. The events in the presented scenarios are
neither triggered through user interaction nor coordinated through functional integration,
but rather through the scripted metamorphers. An essential exception to this are camera
control metamorphers that can indeed be functionally integrated with scripted updates of
the other types of metamorphers. They thus correspond to a V→N or D→N integration,
depending on the type of scripted event that triggered the camera adjustment.

In this chapter, we explored an integration technique that is capable of presenting the
relation between two representation forms of a single data set. Next, we will explore a
related approach that concerns the presentation of relations between different states of a
molecular data set.

101

CHAPTER 6
Masking Missing Information

Via Visual Abstraction
In Molecular Visualization

This chapter is based on the following publication:

Johannes Sorger1, Peter Mindek1, Tobias Klein, Graham Johnson, Ivan Viola. Illustrative
Transitions in Molecular Visualization via Forward and Inverse Abstraction Transform.
In Eurographics Workshop on Visual Computing for Biology and Medicine (VCBM),
pages 21-30. September 2016 [SMK+16].

Presenting the relationship between different representations of the same data set
has strong parallels to conveying relationships between different data sets. In both

cases, a relation between the displayed visual marks has to be established. There is one
notable difference, however: the relationship between different representations of the
same data is implicitly given through the data items. Each representation is based on a
different visual encoding or on a different mapping of attributes to visual channels – but
each mark, no matter how the mapping is done, still corresponds to the same data item
across representations.

Between two data sets this relationship does not have to be implicitly given. In structural
biology, for instance, detailed models of viruses or bacteria at different development
stages are generated at a high level of detail. However, the processes that describe the
relation from one stage to another one are harder to re-construct and are therefore often
not clear. If the relation between two models can only be specified at a lower level of
detail than the actual models themselves, the relationship cannot be visualized at the
same visual level of detail as the models.

1Johannes Sorger and Peter Mindek contributed equally to this work.

103

6. Masking Missing Information Via Visual Abstraction

Figure 6.1: The chemical composition of HIV can already be accurately described at the
level of individual molecules for the immature (left), as well as the mature state (right) of
the virus. Comparatively little is known about the maturation process, i.e., how exactly
the two states relate to each other.

In this chapter, we address the challenge of presenting the relation between development
states of molecular models where the actual biochemical process that describes the relation
is not exactly known or it is too complex to model. Our solution proposes the application
of visual abstraction to mask details that cannot be related across two data sets due
to missing information in the description of their relationship. Temporal integration is
thereby used to establish the relationship between the abstracted and the non-abstracted
representation, as well as the relationship between the two data sets. Instead of directly
interpolating between two models that show different states of an organism, we gradually
transform the models into a level of visual abstraction that matches the level of detail
of the modeled relation between them. At this level, the models can be interpolated
without conveying false information.

6.1 Introduction

Biologists often utilize illustrations and 3D animations to communicate their knowledge
to different audiences, such as students or the general public. However, the acquired
scientific knowledge about biological phenomena is often sparse and the processes can
usually not be modeled with absolute accuracy. While a lot is known about a particular
biological system, there is usually still even more unknown. Illustrators therefore have
to deal with uncertainties when utilizing these biological models. In order to avoid the
conveying of false information, they have to respect the information incompleteness when
visualizing biological phenomena.

For instance, we have a relatively good understanding of the chemical composition of
HIV at various stages of its development, such as the immature and mature stages of the

104

6.1. Introduction

Figure 6.2: Visually abstracted representations of the mature HIV virion. (a) The
computational model at atomic detail. (b) A schematic illustration of the virus depicting
the silhouettes of individual proteins. The organic shapes and an impression of the depth
and layered structures are still retained. (c) A stylized illustration of the structural
virus composition. Only certain proteins that are responsible for the characteristic visual
impression of the virus are shown.

virus. We know which proteins from an earlier stage build up structures in later stages.
However, it is not exactly known in which order the chemical reactions are triggered.
Structural biologists are able to build computational models of the immature and mature
HIV, which are relatively accurate. However, they cannot model the process of HIV
maturation, which is the transition between these two stages, with the same level of
accuracy because of the missing information about this process, as depicted in Figure 6.1.
This has to be taken into account when these models are used to illustrate the process of
the transition of the HIV between its development stages.

When the specifics about certain developments are unknown, scientific illustrators can only
show these processes in abstracted ways, e.g., by choosing a viewpoint or representation
where the unknown is not shown. Illustrators reduce the level of detail of the modeled
states to match their knowledge about the process, so that the created animation does
not convey false information. These abstracted representations are created manually,
according to the current knowledge in biology and the illustrator’s artistic expressions.
Figure 6.2 illustrates the sequential visual abstraction of an HIV virion to a more simplified
schematic representation.

The creation and the maintenance of these animations in regard to new research results is
a challenging task. When the current knowledge in biology changes due to new scientific
discoveries, the illustrations and animations may become out of date and they need to
be recreated. This is a time consuming task, since, depending on its complexity, it can
take days or weeks weeks to create a 3D animation describing a biological process.

To avoid the manual re-creation of illustrations and animations when new knowledge
about a phenomenon is gathered, biologists produce complex computational models and
simulations, which describe the biological processes according to their current knowledge.
The communication of these phenomena is then carried out by the visualization of these

105

6. Masking Missing Information Via Visual Abstraction

models. When the biology knowledge changes, the computational models are simply
updated, while the visualization pipeline remains the same [MKS+17]. This enables much
shorter turnaround times for the communication of scientific results with illustrations
and animations.

In this chapter, we propose a method for the automatic creation of visual transitions
between different molecular models. Our method deals with the challenge of conveying
missing information about the relation between two models. The relation describes the
biological process that transforms one model to another one. Our approach supports the
depiction of those processes at multiple levels of visual abstraction, depending on the
degree of information that is available.

To enable the interpolation between models at different levels of visual abstraction, we
automatically generate several representations with varying level of detail, which we refer
to as levels of visual abstraction. It is possible to smoothly interpolate between those
representations in order to continuously reduce the level of detail of a visualized model.
Before transitioning between two models, we therefore first interpolate to a higher level of
visual abstraction, where the interpolation between the models would be meaningful and
would correspond to our knowledge about the process. We then display the transition
between the models at this visual abstraction level, and apply the inverse transformation
back to the original representation of the model, i.e., the lowest level of visual abstraction,
which corresponds to the highest level of detail. The process is depicted in Figure 6.3. In
this way, we are able to perform a meaningful interpolation between two models, which
sparsely represents a biological process or phenomenon. This ensures that the generated
animation does not convey false information about the illustrated biological process.

The main contribution of this chapter is a method for creating illustrative transitions
between molecular models, such as different development stages of a virus, where the
actual process of the transition is not exactly known or it is too complex to model. We
specifically address the following challenges in our design:

• The visual abstraction of multi-scale molecular data.

• The transition between different levels of visual abstraction.

• The transition between different multi-scale molecular models at different levels of
abstraction.

6.2 Related Work

Since our method comprises elements from different visualization areas, the discussion
about related work is split into schematic illustrations of molecular data, and visualization
approaches that illustrate or compare change.

106

6.2. Related Work

6.2.1 Schematic Illustrations of Molecules

Molecular data and corresponding processes on a molecular level are highly complex.
Schematic representations are therefore often utilized to convey knowledge about these
processes on a visually more abstract level in order to allow a focus on the information
that is relevant in the corresponding context. Goodsell [Goo99] separates molecular
representations into atomistic and continuous models. The schematization of atomistic
models usually shows either chemical bonds or the surface of a molecule, whereas
illustrations of continuous models visualize derived properties of the underlying molecules.
Falk et al. [FKRE09] especially emphasize the analysis of signal transduction and therefore
propose a schematic visualization that depicts individual molecules and their tracks,
or reactions. With the introduction of a cartoon representation for molecules [Ric81]
more abstract illustrations [HOF04, WB11] were proposed, especially to schematize the
structure of molecules. Cipriano and Gleicher [CG07] propose a simplification of the
molecular structure that preserves significant shape features. They utilize symbols placed
on the surface to visually encode additional properties. Closely related to our work
is the approach by Zwan et al. [VDZLBI11], which is able to gradually transform the
visualization of one molecule between different degrees of visual abstraction. In contrast
to their approach, we focus our visual abstraction approach on the quantitative and
structural aspects of complete models of viruses and bacteria.

6.2.2 Visualization and Understanding of Change

Comparative Visualization. The comparison and the establishment of relationships
between complex objects is often a challenging task. Comparative visualization pro-
vides support in fulfilling those tasks. The design of comparative visualizations is
traditionally categorized into juxtaposition, superimposition, or explicit encoding of
relationships [GAW+11]. Vivek et. al [VP04] argue that side-by-side comparisons impose
the task of finding and quantifying differences on the user instead of on automation. Since
we are directly comparing two models to each other, we can use a temporal integration
that conveys the relation of organic structures and quantities in an intuitive way.

Small multiples [Tuf90], coordinated multiple views (CMV), and static images in con-
junction with traces and glyphs are typically used to visualize transitions, trends, corre-
spondences or sequences [RFF+08]. Hsu et al. [HMC11] present an automated method
for the illustrative visualization of multi-scale phenomena. They generate an image that
contains multiple levels of detail of one subject by blending the renderings of multiple pin
hole cameras at different zoom levels. VisLink [CC07] establishes relationships between
two 2D data representations by placing them in 3D space and drawing edges between the
corresponding visual marks. Such a visual linking of related objects could also be feasible
for 3D molecular data. However, due to the inherent occlusion in 3D spatial representa-
tions, the linking would need to be established between visible parts of cross-sections of
the individual models.

107

6. Masking Missing Information Via Visual Abstraction

Figure 6.3: Four levels of visual abstraction used to illustrate a transition between
the model of an immature HIV virion (A) and a mature HIV virion (B). The level of
information that is available about the transition between these two states determines, at
which level of visual abstraction the interpolation between the models should take place.
We can smoothly interpolate between the levels of visual abstraction (black arrows), in
order to visually abstract the models to a level, at which the interpolation meaningfully
illustrates our level of knowledge about the transition (red arrows).

Animated Transitions between Visual Representations. Tversky et al. [TMB02]
summarize cognitive studies on the benefits of animation. Although, they conclude
that animation alone has not been convincingly demonstrated to be superior to static
illustrations, other findings of their study suggest a direction for research on animations
in visualization. They report that animation together with basic interaction methods
like pausing, partial re-playing, zooming, and change of perspective might be the key to
enhancing the effectiveness of animations. Robertson et al. [RFF+08] state that animated
transitions of data is more enjoyable and exciting to users. They also found that it was
the fastest technique for conveying trends in presentation scenarios but less exact and
less effective for analyzing data. We give a detailed discussion of animated transition
approaches in Section 5.2.

6.3 Forward & Inverse Abstraction
Illustrators want to show molecular models at the highest level of structural detail that
is available to them. At the same time they want to avoid conveying false information
about the relations between models. Our method addresses this challenge with forward
and inverse abstraction. By abstracting a highly detailed structural model down to
the level of detail, on which the mapping information between development states is

108

6.3. Forward & Inverse Abstraction

Figure 6.4: Transition between model A and models B, C, D. Axis d represents the
incompleteness in the mapping between the models. The more incomplete the mapping
is, the farther away both models are in mapping space. Axis a represents the level of
visual abstraction. The higher the distance in mapping space between two models, the
higher is the level of visual abstraction that is needed to interpolate between them.

available, an interpolation from one state to another one is possible without conveying
false information. We refer to this step as the forward abstraction. After the transition
between the two states is completed on the required level of visual abstraction, we
decrease the degree of abstraction to the highest level of detail available by applying the
inverse abstraction. The procedure is schematically depicted in Figure 6.3. With this
approach we can display both models as well as the relations between the models at the
highest level of detail available.

This strategy is depicted in Figure 6.4. Axis d describes the degree of incompleteness,
in which the relation (or mapping) between the two models is described. The further
away two models are on this axis, the less detail is available in terms of how one model
relates to the other one. We denote this as the distance in mapping space. A distance of
zero in mapping space corresponds to a complete description of the relation between two
models (independent of how detailed the models are). If the models are described on a
higher level of detail than the relations between them, the distance in mapping space
increases. Axis a describes the levels of visual abstraction of a model. The further two
models are apart in mapping space, the higher we have to abstract both models before
we can interpolate them. We have to abstract the models to the level of visual detail that
corresponds to the level of detail, at which the relation between the models is described.

109

6. Masking Missing Information Via Visual Abstraction

This relation between the distance in mapping space and the required level of visual
abstraction is a symmetrical one. We depict this symmetry by the curves that are drawn
between two models in Figure 6.4.

The number of visual abstraction levels, as well as the criteria for measuring distances
in the mapping space between two models depends on the type and complexity of the
presented data. In the case of molecular models at the scale of complex viruses and
simple bacteria, we define four levels of abstraction on Axis a, as well as four discrete
distances in mapping space on Axis d.

6.3.1 Molecular Data

The molecular data, which we demonstrate our method on, describes biological organisms
at atomic resolution. Biologists model their mesoscale data according to so called recipes
[JAAA+15] that describe the molecular and structural composition of a model. These
recipes are executed by a packing algorithm that populates the space with the specified
macro molecules. The result is a 3D molecular model of an organism that consists of
tens of thousands of molecular instances, each comprised of hundreds or even thousands
of atoms. This comparatively large number of molecular instances originates from a
relatively small number of protein types. In the case of the HIV virion, 20.000 molecular
instances are distributed across 42 different types of molecules. The molecules are densely
packed within their respective compartments of the model and also constitute the walls
of the compartments.

For this type of molecular data we devised four levels of visual abstraction, as displayed
in Figure 6.3 for the immature and mature models of the HIV virion models. The
corresponding four discrete distances in mapping space that we identified are depicted in
Figure 6.5. In the following, we describe the four levels of visual abstraction that are
necessary to match two models at different distances in mapping sapce.

6.3.2 Level 0 - Implicit Relations

Distance in Mapping Space: The cellular data is depicted at atomic resolution. A
transition between two models at this level of detail requires a definition of relations
between the individual protein molecule instances in each model. This corresponds to a
distance of zero in mapping space at the lowest level of abstraction. Processes at this
level of detail describe, for instance, how individual proteins split up and merge to form
new proteins and structures, e.g., in the life cycle stages of a cell. The presentation of
processes that transform a biological data set from one state to another one at this level
of detail is typically handled by simulations, i.e., at an implicitly described or procedural
level, as manual matching for up to hundreds of thousands of molecules is virtually
impossible.

110

6.3. Forward & Inverse Abstraction

Figure 6.5: Distance in mapping space: Depending on the amount of available mapping
information, the corresponding level of visual abstraction (levels 0-3) has to be used
for a transition between two models. If only information about high level structure
correspondence is available, we have to perform the transition at visual abstraction
level 3. If we also have information about the relation of protein quantities per structure
across models, we can perform the transition at level 2. If we also know about the protein
pathways that connect the chemical composition of one model to the composition of
the other one, we only have to abstract to level 1 before the transition. If the implicit
relations between individual molecules are given, we do not need to abstract the model
any further to avoid conveying false information.

Forward Abstraction: The lowest level of visual abstraction corresponds to the highest
level of detail that a molecular model is represented in. We therefore do not need to
abstract the model representation. Nevertheless, this level is still represents abstraction
from reality, as the data is not measured but computationally modeled and simulated.
Typically, only macro molecules are represented while smaller, more common molecules,
such as water molecules, are omitted from the presentation.

6.3.3 Level 1 - Pathways

Distance in Mapping Space: If the relation between individual molecule instances
cannot be described accurately, we have to visually abstract a molecular model to level 1.
At this level, the relationship can still be described in terms of protein pathways. This
implies that knowledge about the relation between protein types in each model, as well

111

6. Masking Missing Information Via Visual Abstraction

as the relation between protein quantities is available. For instance, 50% of protein A
combine with 30% of protein B to result in protein C in the other model. This further
implies that the relation between protein shapes, as well as between high level structures
in the biological organism, such as cell membranes, is known.

Protein pathway relations thus require the matching of protein types across models, for
instance, in terms of how they split up in one model to merge into new protein types in
the other model.

Forward Abstraction: This degree of incompleteness of mapping information corre-
sponds to a distance of one in mapping space in respect to the lowest level of abstraction
(level 0). By visually abstracting the model representation to this level, the distance
in mapping space becomes zero and a smooth transition between the two models that
avoids false information is possible.

In order to visually abstract a model from level 0 to level 1, we reduce the number of
displayed molecules to only a few representatives for each type. The representatives
thereby can be used to encode the protein pathway information between models. Through
the reduction of molecules, the implicitly encoded information about protein quantities
is lost. We therefore choose the number of representatives so that it still conveys the
relative quantities between protein types. To convey the relation between two models at
this level of visual abstraction, we interpolate between the shapes of matching protein
types and the shapes of high level structures, as well as between the number and the
localizations of protein type representatives across compartments.

6.3.4 Level 2 - Quantities

Distance in Mapping Space: If protein pathway information is not available, we
cannot relate individual protein types to each other anymore. The molecular models thus
have to be further abstracted before conveying relationships between them. At visual
abstraction level 2, we assume that the relation between protein type quantities and high
level structures across models is known.

This degree of incompleteness of mapping information corresponds to a distance of two
in mapping space with respect to the lowest level of abstraction. We therefore have to
transform the models to the second visual abstraction level before we can interpolate
between them properly.

Forward Abstraction: Since we cannot show the relation between protein types due
to the missing pathway information, we have to remove the representations of individual
proteins from the molecular model in order to visually abstract a model from level 1 to
level 2. What is left is the information about high level structures, i.e., compartments,
in the model. Again we have to substitute the information about protein quantities
that was conveyed by the number of protein representatives in the previous level of
abstraction. Since at this level, we are only left with representations of the structural
compartments of a molecular model, we have to visually integrate this information with

112

6.4. Implementation of Visual Abstraction Levels

the compartment representations. One feasible strategy for the visual integration of
the quantitative information would be to nest the non-spatial quantitative information
within the spatial context of the cellular compartments. The concrete strategy that we
applied in our implementation will be discussed in the following Section 6.4.4.

6.3.5 Level 3 - Structures

Distance in Mapping Space: If the relation between protein type quantities across
molecular models is unknown, we also have to remove this information from the visual
encoding in order to relate two models to each other. At the highest level of visual
abstraction therefore only information about high level structure correspondences remain.

Forward Abstraction: To further increase the level of visual abstraction, we simply
remove the visually integrated information of protein quantities that we introduced in
the previous level to the model. This leaves us with the bare representation of high level
structures that can be interpolated with each other to convey their relation.

6.4 Implementation of Visual Abstraction Levels
In this Section, we describe the implementation of the concept of forward and inverse
abstraction that we introduced in the previous section. The four levels of visual abstraction
applied to two distinct models is displayed in Figure 6.3 for reference. The transitions
between different levels of visual abstractions were scripted in an extended version of the
pipeline for animated transitions that we introduced in Chapter 5. For implementation
details on the pipeline, we refer to Section 5.4.

6.4.1 Level 0 - Implicit Relations

On level 0, the cellVIEW [LAPV15] is used to display the molecular data. No visual
abstraction is yet required. The cellVIEW output is also used as the basis for the
subsequent levels of visual abstraction.

6.4.2 Schematic Representation of Molecular Structures

Visual abstraction levels 1-3 are based on the display of the high level structures that
form the molecular compartments of a microorganim. We create these compartment
shapes in these levels with a special visual abstraction approach. We thereby merge
the 3D information about the individual molecules into aggregated geometrical shapes
representing individual compartments and the compartment hierarchy within the model.

To create the schematic representation, we blur the rendering of the molecular model with
a Gaussian filter including the alpha channel in a post processing step (see Fig. 6.6b). The
radius of the filter specifies, to which degree the compartment shapes will be simplified.
The blurring serves as a fast and easy way to create a smooth structure from the noisy
patterns of the densely packed macro molecules. The coloring of the resulting shapes
results from the blurring of the colors of the individual proteins within each compartment.

113

6. Masking Missing Information Via Visual Abstraction

(a) (b) (c) (d)

Figure 6.6: The steps involved in rendering the schematic representation for a given
molecular subset: the transition from (a) to (b) shows the blurring with a Gaussian filter.
(c) The result after a steep ramp function is applied to the alpha channel to achieve hard
edges. (d) A Sobel operator is applied on the alpha channel to create contours for the
generated shape.

In order to create hard edges for the blurred surfaces, a steep ramp function is applied
to the alpha channel (see Fig. 6.6c). Finally, we apply a Sobel operator on the alpha
channel and use the output to display contours of the generated shape (see Fig. 6.6d).
These contours allow us to distinguish the blurred compartment shapes from each other.

The schematic rendering is applied to all compartments individually, i.e., only the
molecules of a given compartment are rendered in the same pass. The individual
compartments are thereby rendered to separate layers. The layers are subsequently
composed through alpha-blending, as illustrated in Figure 6.7. For the composition
the layers are ordered from outermost to innermost. This ensures that the hierarchy of
the compartments is visible in the schematic representation from any viewing direction,
provided that the underlying model has an onion-like composition of the individual
compartments. If there is too much overlap between compartments, the clarity of the
schematic representation is reduced.

6.4.3 Level 1 - Pathways

In order to enable the display of protein pathway relations across two model states, we
display representative specimen of proteins in the context of their structural compartment
hierarchy. These representative protein specimen serve as examples for the chemical
composition of the individual compartments within the model. We therefore show a
cross-section view of the entire model and we significantly reduce the number of individual
molecules.

By significantly reducing the number of proteins, we free up screen space to enable the
display of pathway information. The remaining protein representatives can now be used
to demonstrate chemical processes, such as the splitting and merging of proteins across
model states.

114

6.4. Implementation of Visual Abstraction Levels

Figure 6.7: The schematic representation of the molecular structure is created for
all compartments individually. The compartments are then rendered in layers and
subsequently composed through alpha-blending.

As we see in Figure 6.8d, the schematic representation of the model is used as background,
on top of which we display selected protein representatives. The representatives are split
into two categories: matrix proteins and membrane proteins. While membrane proteins
compose the hulls (membranes) of the individual compartments, matrix proteins are the
ones encapsulated within these structures.

In order to convey the relative quantities of the proteins, the number of displayed
representatives is proportional to the total number of molecules per protein type and
compartment. Representatives are chosen randomly from all protein instances, in a way
that approximates a uniform distribution within a compartment.

To better convey the shapes of the selected specimen, their orientation is modified so that
they face the current viewpoint. We find the smallest dimension of the minimal bounding
box of each protein type (x, y, or z). Each selected specimen is then rotated so that the
smallest dimension of its bounding box is parallel to the viewing direction. Additionally,
we scale the representative specimen by a constant factor (in our implementation, we use
a factor of two) so that their shapes are better visible (Fig. 6.8d).

Membrane proteins form boundaries between individual compartments. We select repre-
sentatives of membrane proteins so that they convey the shape and molecular composition
of these compartments within the schematic representation. The representatives of the
membrane proteins therefore keep their original orientation and scale. Membrane proteins
are selected as representatives if their principal direction is perpendicular to the viewing
direction.

Since all the selected specimen remain on their original positions, and only their orientation
and scale are changed, it is possible to smoothly interpolate from the first level of
abstraction to the second one without introducing unnecessary visual clutter. The
transition is initiated by displaying the original molecular rendering of the model on
top of the schematic representation with a blurring radius of zero. Subsequently, the

115

6. Masking Missing Information Via Visual Abstraction

orientations and the scales of the selected specimen are interpolated to the desired
values, while the scales of all the other molecules are interpolated towards zero. We use
spherical linear interpolation (SLERP) for interpolating orientations, which are specified
by quaternions. For interpolating the scales, linear interpolation is used. We achieve
an incremental abstraction of the compartment shapes by continuously increasing the
blurring radius of the schematic representation, concurrently with the orientation and
scale interpolations.

The time offset for starting the interpolation of the scales and orientations of the individual
molecules can be made dependent on a distance field, so that not all the molecules are
interpolated at the same time. The interpolation can be performed sequentially for the
individual compartments. This peel-away effect in the resulting transition is depicted in
Figure 6.8.

(a) (b)

(c) (d)

Figure 6.8: The sequence of images shows the transition between the visual abstraction
levels one and two of the mature HIV virion. The noisy and dense high resolution
molecule information is reduced in a delayed peel-away fashion from left to right and for
each compartment. The dense structure makes way for the schematic representation of
the model – the inner structures are revealed one by one. Representatives of each protein
type are enlarged and rotated toward the viewer for better visibility.

116

6.4. Implementation of Visual Abstraction Levels

6.4.4 Level 2 - Quantities

In visual abstraction level 2, we have to establish the relation between protein quantities
and compartment structures. Since pathway information is not available, the representa-
tive protein specimen are removed from the display by scaling their size to zero. Due
to the absence of protein representatives, the implicit encoding of quantities through
protein occurrences has to be replaced with an explicit encoding. We chose to encode the
quantities of protein types per compartment within stacked bars that are nested within
the spatial context of the schematic representation (see Fig. 6.9c and d). The quantity of
a certain protein type is encoded in the height of the bar that corresponds with that type.
The total bar height is scaled to the height of the respective compartment. The bars
thus fill up the entire height of the compartment. As alternatives to the bars, also other
representation forms of the quantities, such as a tree-map or voronoi diagram, could be
nested within the compartments.

The individual bars are colored with each protein type’s given color. Additionally, a
color gradient is applied to each bar, so that the color luminance slightly increases
with decreasing y coordinates. This ensures that there is a visual separation between
consecutive bars, which can be of similar colors, since currently, the protein coloring
is randomized, as there is still no standardized color scheme for these types of macro
molecules. To transform the representation to this level of visual abstraction from either
of the previous levels, the molecules displayed on top of the simplified rendering are
continuously scaled down until they disappear. Simultaneously, the stacked bars are
faded-in through alpha blending. In compartments where the quantitative information
is not of interest, the color saturation is continuously decreased to steer the viewers’
attention towards the stacked bars (see Figure 6.9c and d).

(a) (b) (c) (d)

Figure 6.9: The transition of mycoplasma. (a), (b) and (c) show the transition from
visual abstraction level 0 to level 2. (c) and (d) show a transition at visual abstraction
level 2 between two different model states of the mycoplasma (indicated by the change in
the distribution of different protein quantities).

117

6. Masking Missing Information Via Visual Abstraction

6.4.5 Level 3 - Structures

In visual abstraction level 3, only the relation between the high level structures of the
models remains. The high level structures correspond to the schematic representation
of the model without any overlays, as described in Section 6.4.2. To transform the
representation to this level of abstraction, the molecules displayed on top of the schematic
representation are removed by continuously scaling them down. Stacked bars from the
previous level of abstraction are faded away through alpha blending.

6.5 Results

In this section, we demonstrate the results that we achieved with our method by applying
it to two molecular data sets. The first result depicts the transition of an HIV virion
from its immature to its mature state. The second result depicts the transition between
two simulation states of a mycoplasma bacterium.

6.5.1 HIV Data Set

In this example, we show the relation between the immature and the mature state of an
HIV virion. Partial knowledge about the relation of proteins exists: the large proteins
in the immature model split up into multiple smaller proteins that correspond to three
different compartments in the mature virus: the virus membrane, the capsid, and the
capsid interior. However, we do not have the actual pathway information that describes
the relations between proteins in the different maturity states. While the quantities of
protein types in each model are known, the direct relation between the quantities is not
clear. Many intermediate development steps between the immature and mature states
are unknown. We therefore also cannot depict the relation of quantities accurately.

The relation between both models can therefore only be accurately described on the level
of individual compartments. The immature HIV model thus has to be abstracted to the
highest level of visual abstraction (level 3) before we can show its relation to the mature
HIV model without conveying false information.

The transition between both models at visual abstraction level 3 is shown in Figure 6.10.
The orange, green, and gray structures in (a) correspond to the red, yellow and gray
compartments in (d). We achieve the transition between both models at this level of
visual abstraction simply by scaling the blurred structures in the simplified rendering
of the immature HIV virion to zero, while simultaneously scaling the structures of the
mature HIV virion from zero to their original size. After the transition, we apply the
inverse abstraction on the mature data set back to the lowest level of visual abstraction, as
can be seen in Figure 6.3 B. The transition can be regarded in motion in the supplemental
video [SMK+].

118

6.5. Results

(a) (b) (c) (d)

Figure 6.10: This sequence of images shows the transition between the immature and
mature HIV virion at visual abstraction level 3. We abstract both models to this level,
since we only have information about the compartment to compartment relations between
them. The sequence shows how the orange, green, and gray structures in (a) correspond
to the red, yellow and gray compartments in (d).

6.5.2 Mycoplasma Data Set

In the data set of mycoplasma mycoides (Fig. 6.9a), we have the opposite situation as in
the previous example. Many high resolution simulations of the mycoplasma life cycle
stages are publicly available [KPC14], while the mycoplasma 3D model is still a work
in progress. Biologists have been developing this model for more than one year at the
time of the publication [SMK+16] of this chapter. We therefore only have access to one
incomplete model but to many detailed quantitative simulation results.

In contrast to the previous example, the quantitative information between development
states has been sampled at a high frequency. This means, that interpolating the quantities
between two time steps of the simulated model would not convey false information about
their relationship. The development of protein type quantities across simulation states can
therefore be conveyed at visual abstraction level 2. Even if the detailed protein pathway
information between models would be known, we could not perform the interpolation at
level 1, since there is only a model that corresponds to a single state of the mycoplasma
bacterium.

Once the model is abstracted to visual abstraction level 2, the transition between the time
steps in the development cycle of the mycoplasma is achieved by simply interpolating
between the quantities of proteins. This results in the growing and shrinking of the
corresponding bars that fill the respective compartments. Two time steps are displayed
in Figures 6.9c and 6.9d. The animation can be observed in the supplemental material
video [SMK+]. After the transition, we do not have to apply the inverse abstraction of
the model as we did with the HIV virion, as the singular model does not correspond to
the information that is encoded in the nested stacked bars.

119

6. Masking Missing Information Via Visual Abstraction

6.6 Discussion and Expert Feedback

In this section, we first discuss design choices that are involved in our method and
subsequently present feedback, which we received from two domain experts.

6.6.1 Design Choices

Using animated transitions to demonstrate the relationship between two different model
states provides an implicit way of showing the link between related structures. In some
cases, explicit encoding of these relations might be more desirable, e.g., by drawing edges
that link related objects [WPL+10, CC07]. For a presentation scenario, however, an
animation is the more engaging approach [RFF+08].

The choice of organizing the visualization in four different levels of visual abstraction
results from the characteristics of the molecular data. The data comprises molecular
structures that are organized in different hierarchically ordered compartments. The four
levels result from the different levels of details at which protein-protein relations can be
modeled: on a per-instance level (level 0), on a pathway level (level 1), on a quantitative
level (level 2), and on the level of higher level structures (level 3).

The applicability of our approach is not conceptually limited to molecular data. In theory,
our approach is applicable to any domain that exhibits data with the same characteristics,
namely a possible discrepancy between the modeled or measured detail in the data items
and the relation between these data items. However, in order to apply our method to
data that features different characteristics, the definition and number of abstraction levels
may have to be adjusted.

6.6.2 Domain Expert Feedback

We received feedback from two domain experts, a researcher that specializes in molecular
illustrations and animations, and a researcher with a focus on molecular modeling. Both
were excited about the concept of automatic transitions between molecular data sets, as
they typically have to create such results manually in 3D modeling and animation software,
such as Maya. In fact, the idea and inspiration for our method came from discussions
with one of the researchers during another project. The concept of visually abstracting
two models to matching levels of abstraction based on the relationship information that
is available was well received. One domain expert stated that the abstraction successfully
conveyed the compartmentalizations and compartment-to-compartment relationships
in the virus. Also the "painting style" that the image-space blending achieved was
complemented. The illustrator stated, "This transition does a great job of taking a densely
packed model and simplifying it to reveal the composition of molecules that are isolated to
each compartment, while still retaining a simplified rendition of the compartment." The
transition was stated to give a good impression "where molecular color schemes match the
simpler fills [i.e., the schematic representation] that they become.". The experts further
appreciated that the transition between models conveyed relations more intuitively than

120

6.7. Conclusion and Outlook

a simple juxtaposition of the model states. The transition "does help show what the
different types of molecules look like, because the animation takes away the layers that
obstruct the deeper molecules."

Visual abstraction level 2 received some criticism for the readability of protein quantities.
While the stacked bars enable an efficient comparison between quantities, it is difficult
to associate a protein type with a certain stacked bar solely by its color. We agree
that the identification of the stacked bars is an issue. However, we regard the chosen
representation as a proof of concept for the principle idea of integrating the non-spatial /
quantitative information within the spatial context of the molecular model. Nevertheless,
the generation of annotations and labels in such a dynamic setting are an important
aspect for future work on animated transitions of molecular data, as we also discussed in
Section 5.6.3.

6.7 Conclusion and Outlook
In this chapter, we propose a method that deals with the creation of illustrative transitions
between molecular models, where the actual process of the transition is not or only
partially known. Our method utilizes visual abstraction to achieve smooth transitions
between different models while respecting the known relational information. Instead
of directly interpolating between two different models, we gradually forward transform
the models into a level of visual abstraction that matches the preciseness of information
about the relationship. These transitions provide intuitive connections between the
structural and quantitative characteristics of the two dissimilar models. We exemplary
demonstrate the flexibility of our approach on the basis of data sets of the HIV virion and
the mycoplasma bacterium. We have received positive feedback from domain experts in
the field of biological modeling and animation. The concept of our approach is applicable
to all types of data that exhibit the same characteristics, i.e., where the knowledge about
the model states might not match the knowledge about the relation between those states.

With the proposed method, we started to explore the topic of integrating different states
of molecular data with varying levels of relationship knowledge. The support of transitions
between data sets where the relationship knowledge varies between individual sub-regions
or categories across model states would be a natural advancement of our technique. For
instance, if only the relationship between certain types of molecules is known but not
between others, different levels of abstractions could be blended together.

We demonstrated our results in Section 6.5 on molecular models that are structurally
very similar. An essential next step to test and improve the flexibility of our method in
conveying relations between models is thus the application of our technique to models
that exhibit stronger structural differences. At the time of writing, such models were not
available.

121

6. Masking Missing Information Via Visual Abstraction

The transitions between different visual abstraction levels is handled with an extension
of the pipeline for animated transitions that we introduced in the previous chapter. The
types of transitions required for conveying the relations between data sets in Section 6.5
were chosen based on the four distances in mapping space that we defined (Section 6.3).
An interesting extension of our approach would be the automatic identification of the
distance in mapping space between two models in order to automatically select the
appropriate level of visual abstraction for the transition between them. Such an extension
would require the specification of a data format for storing relationship information at
various levels of detail. We hope our approach inspires further advancements in dealing
with missing information and uncertainty in bio-medical data visualization.

Concerning the relation of this chapter to the topic of visual integration, the statements
from Section 5.7 apply also here, since both approaches are based on the same pipeline
for animated transitions. A notable addition to this discussion concerns the schematic
representation (Section 6.4.2) as well as visual abstraction level 2. The schematic
representation corresponds to the adaption of the spatial representation where the shape
channel of individual molecules is neglected (as discussed in Section 2.2). Molecules
cannot be discriminated from each other anymore based on this visual channel, as they
are blurred into one high level structure. The shapes of the higher level structures, i.e.,
the hierarchical compartments, are thereby preserved. In visual abstraction level 2, we
use nesting to visually integrate the quantitative information of protein type occurrences.
Therefore also the retinal channels of the molecules are neglected in order to provide a
canvas for the nesting of the stacked bar representation.

No functional integration mechanisms are applied in the technique that we presented in
this chapter, as it does not allow for any type of interaction. However, in the context of
functional integration, we could envision interesting future extensions of our technique.
For instance, the user could mark specific protein types or high level structures in one
model so that they are also indicated during and after the transition in the respective
other model (as in Visual Indication D→V , Section 3.4.2) – or the user could trigger the
transformation to the other model state only for the selected subset of proteins / high
level structures (as in Data Manipulation D→D, Section 3.4.1).

With this, we come to the end of Part II. In the following chapter, we conclude this thesis
with a reflection on the presented work in the context of integration.

122

CHAPTER 7
Conclusion

7.1 Summary
This thesis addresses the topic of visualization integration, both from a theoretical point
of view, and in the context of concrete applications for exploration and presentation tasks.
The taxonomy describes the visual and functional aspects of integrating the given and
chosen visual mappings of data attributes across multiple representation forms. The topic
of integration is thereby discussed specifically in regard to the special characteristics that
emerge in the context of multifaceted spatial data. A discussion on this level addresses a
clear gap in the literature, since, to the best of the author’s knowledge, both aspects of
integration are so far only treated on a basic level and not in consideration of the special
challenges and opportunities that the context of spatial data representations generate.

High level discussions of visual integration approaches that go beyond juxtaposition of
multiple views can be found in the works of Javed and Elmqvist [JE12], and Balaba-
nian [Bal10]. The taxonomy in Chapter 2 goes one step further in the exploration of the
concept of visual integration, by dissecting the design space on the level of individual
visual channels. An analysis of the design space at this level of detail enables the classifi-
cation of each type of visual integration in terms of three aspects. Firstly, it enables the
differentiation of techniques based on which visual channels are restricted through the
nature of the technique, and which ones remain available for the visualization designer to
choose the mapping for. Secondly, it enables the description of the relationship types that
an integration method helps to establish between the involved representations. Finally, it
enables the decoding of a representation’s visual encoding by transcribing the individual
operations on visual channels, i.e., whether the mapping to a channel is preserved (given),
neglected, modified, or re-assigned (chosen). An analysis on this level of detail thus
enables an unprecedented way of comparing visualization designs.

123

7. Conclusion

In Chapter 3, the same attention to detail is given for dissecting the design space of
functional integration. Previous approaches in this regard described functional integration
based on the coordination of visualization pipeline stages, and offered general guidelines
for coordination between views [Rob07, BRR03, WBWK00] – but did not explore the
resulting design space. A major aim of the presented taxonomy [SOP+15] is to illustrate
the range of potential applications for functional integration by regarding all potential
combinations of the three high level components of the visualization pipeline, i.e., the
Data, Visual, and Navigation components – and thus to create a deeper understanding
of the solution space in functional integration. Even though the taxonomy is discussed in
the context of multifaceted spatial data, the general principles of visual and functional
integration are not restricted to this data type, and therefore hold general validity.

Part II of this thesis introduces novel visualization concepts in concrete application
scenarios. Integration thereby plays a fundamental role in overcoming obstacles that
impede exploration and presentation tasks.

Chapter 4 presents an application of integration in a decision making scenario in lighting
design [SOL+16]. The proposed solution demonstrates how visual and functional integra-
tion of the different facets of lighting simulation data can enable an efficient exploration,
refinement, and decision making process when compared to the conventional isolated
solutions that are typically employed in this domain. Integration is thereby a key factor
in enabling the comparison of lighting solutions in a spatial context. Another important
aspect of this solution is a novel ranking visualization that integrates the user controls for
assigning importances to spatial parts of the scene and to non-spatial result indicators
within a single representation.

Chapters 5 and 6 address the application of integration strategies in presentation scenarios
for bio-molecular data visualization. Each chapter addresses a specific challenge in the
context of the presentation of insights via temporal integration, i.e, animated transitions.
The goal in Chapter 5 is to intuitively convey relationships between different represen-
tations of the molecular structure and composition of a microorganism. A temporal
integration should thereby establish the relation between two representation forms by
continuously converting one into the other. The addressed challenge in this context is
the creation of transitions that can be re-applied to different molecular data sets, while
achieving the same intended result, such as a certain type of illustrative or quantitative
rendition of the data. This challenge is successfully handled by a technique featuring
six types of modular operators (metamorphers) that describe the stages of a pipeline for
animated transitions [SMR+17]. By adhering to a set of rules, each operator can thereby
be defined in a way that creates the same semantic output for an arbitrary input.

124

7.2. Outlook

The goal in Chapter 6 is to convey relationships between a pair of molecular models
that represent, for instance, different states in the development cycle of a microorganism.
The addressed challenge in this context is caused due to incomplete information in the
description of the relation between the individual elements, i.e., the molecules, between
the model states. The proposed technique [SMK+16] addresses this challenge with a set
of four levels of visual abstraction that correspond to different degrees of incompleteness
in the relationship descriptions. Temporal integration is thereby the means to create
a continuous transformation between the different levels as well as to establish the
relationship between two molecular models at a certain abstraction level. Nesting is
applied at a certain level of abstraction to re-introduce inherent information into the
spatial representation that was lost due to the visual abstraction.

7.2 Outlook
This thesis represents a next step for extending the basic research on the topic of
integration that should give the reader a clearer understanding of the range of possibilities
that this topic has to offer for improving visualization effectiveness and expressiveness.
With the disclosure of the design space for visual and functional integration, many
interesting directions for future research arise, as will be discussed in the following.

While the concept of animated transitions is not a popular one in the visualization
community, its application is important for knowledge dissemination in molecular biology
and other life science fields. In Chapters 5 and 6, temporal integration is the key to
establish relationships between representations for the purpose of knowledge dissemination.
While the presented works do not explicitly address functional integration in this context
(as the techniques were designed to support presentation tasks), considering interaction
for a potential functional integration of temporally integrated representations could
be an interesting area for further research. A central question thereby would be, how
to apply functional integration to the animation in a feasible way. Since the visually
integrated representations are only displayed in intermediate (transitioning) states at the
same time, conventional integration mechanisms that work on persistent representations,
such as brushing and linking, cannot be simply applied to such a dynamic setting. A
re-imagining of functional integration approaches for this setting would thus be necessary.
A potential application could be beneficial in the context of the incorporation of labels
and annotations (i.e., messaging in animation according to Segel and Heer [SH10]). Labels
and annotations could persist throughout the animation. Interaction with them could
trigger, for instance, branching animation paths that would allow a user to further explore
or experience a specific aspect of an animated data set.

125

7. Conclusion

In the scope of this thesis, the application of temporal integration was exclusively discussed
in the context of presentation scenarios. The application of animated transitions in
exploratory visualization is so far only established to a certain degree for purely non-spatial
representation forms [HR07, BOH11]. Interesting follow-up work in this regard could
explore potential benefits of temporal integration between 3D spatial representations in an
exploratory context. For instance, a bio-medical visual analysis framework that supports
the exploration of neuronal brain data could allow the user to switch between different
3D spatial representation forms of the brain, such as the ones depicted in Figures 2.3a
and 2.13, depending on which kinds of information they seek. In upcoming work, we
employed this concept in an exploratory context for bridging multiple representation
forms of DNA nano structures [MLS+17].

Another interesting application area for integration that was not explicitly addressed
in the scope of this thesis is time-dependent data. While successful applications of
integration in this context already exist [CKS+15, WFR+10, RWF+13], no explicit basic
research on the potential benefits of integration in this area has yet been conducted. Also
the exploration of cause-and-effect relationships, such as in parameter space exploration,
can benefit from novel integration techniques, as we saw in Chapter 4. In this regard,
another promising application field for exploring the potential benefits of integration is
the visualization of neural networks, an area that recently gained a lot of traction in
visualization research.

An aspect that the individual works covered in Part II of this thesis have in common is
the way in which the techniques were evaluated. Each technique was validated by its
demonstrative application in use case scenarios, as well as in terms of design reflections
and informal feedback from domain experts. This form of evaluation is well established
in the context of applications and design studies [Mun09], in the sense that it validates
whether the requirements of the intended target users are fulfilled. Since the feedback
in these works was retrieved from very specific audiences, i.e., domain experts, a good
counterpart to this form of validation and an interesting future research direction would be
an evaluation with a broader, more general validity – for instance, in terms of determining,
which data types and tasks are generally best supported by which types of visual and
functional integration. Such results could be retrieved through thorough quantitative
evaluation of various aspects of integration in the scope of formal experiments and
user studies. The taxonomy from Part I would thereby serve as a framework for these
experiments. Studies in this regard would represent an essential next step for basic
visualization research in the context of integration.

The ultimate goal for future efforts concerning the basic and applied research on the
topic of visualization integration would be the creation of a visualization framework that
supports all types of visual and functional integration that were covered in this thesis.
Such a framework could be designed to offer guidance to users in the creation of an
optimal visualization setup for a particular task and data set. A setup wizard could
lead users through an interface that lets them assign different representation forms to
different parts of the data, down to the level of mapping attributes to individual visual

126

7.2. Outlook

channels. For inherently mapped attributes in spatial data representations, the adaption
of the spatial representation in terms of the visual abstraction and the re-assignment
of channels could be supported as well. In a next step, users could be guided through
the selection of visual integration strategies for the chosen representations in order to
find the optimal spatial and temporal composition. Guidance could thereby notify
the user about the types of relations that the individual visual integration strategies
promote between representations. In a final setup step, the system could guide the
user in selecting appropriate functional integration forms for improving the efficiency
of interactions between the composed representations. Such a system would offer the
ideal environment for the aforementioned user studies in order to gain insights into the
suitability of the various techniques. The results of those studies could flow back into
the framework, in order to allow the system to learn and automatically suggest the most
appropriate representation and integration forms for a specific data/task combination.

With the highlighting of interesting future prospects of visualization integration, this
work is now concluded. This thesis hopefully contributes to strengthening the basic
research foundation on the topic of visualization integration – and as such hopefully
supports future works that will build on this foundation in interesting and meaningful
ways.

127

Bibliography

[AA01] Gennady Andrienko and Natalia Andrienko. Constructing parallel coordi-
nates plot for problem solving. In 1st International Symposium on Smart
Graphics, pages 9–14, 2001.

[AAB+10] Gennady Andrienko, Natalia Andrienko, Sebastian Bremm, Tobias Schreck,
Tatiana Von Landesberger, Peter Bak, and Daniel Keim. Space-in-time and
time-in-space self-organizing maps for exploring spatiotemporal patterns.
In Computer Graphics Forum, volume 29, pages 913–922. Wiley Online
Library, 2010.

[AABS+14] Ali K Al-Awami, Justus Beyer, Hendrik Strobelt, Narayanan Kasthuri,
Jeff W Lichtman, Hanspeter Pfister, and Markus Hadwiger. Neurolines:
A subway map metaphor for visualizing nanoscale neuronal connectivity.
Visualization and Computer Graphics, IEEE Transactions on, 20(12):2369–
2378, 2014.

[Bal10] Jean-paul Balabanian. Multi-Aspect Visualization: Going from Linked
Views to Integrated Views. PhD thesis, Dept. of Informatics, Univ. of
Bergen, Norway, 2010.

[Bar97] Lyn Bartram. Perceptual and interpretative properties of motion for
information visualization. In Proceedings of the 1997 workshop on New
paradigms in information visualization and manipulation, pages 3–7. ACM,
1997.

[Bas11] Christian Basch. Animated transitions across multiple dimensions for
volumetric data. Master’s thesis, Institute of Computer Graphics and
Algorithms, Vienna University of Technology, Favoritenstrasse 9-11/186,
A-1040 Vienna, Austria, Oct. 2011.

[BC03] Miguel Bagajewicz and Enmanuel Cabrera. Pareto optimal solutions visual-
ization techniques for multiobjective design and upgrade of instrumentation
networks. Industrial & engineering chemistry research, 42(21):5195–5203,
2003.

129

[BDW+08] T. Butkiewicz, Wenwen Dou, Z. Wartell, W. Ribarsky, and R. Chang. Multi-
Focused Geospatial Analysis Using Probes. Visualization and Computer
Graphics, IEEE Transactions on, 14(6):1165–1172, 2008.

[Ber] Drew Berry. Molecular animations.
http://www.molecularmovies.com/showcase/. Accessed: 2017-09-16.

[Ber83] Jacques Bertin. Semiology of graphics: diagrams, networks, maps. 1983.

[BG06] Stefan Bruckner and M. Eduard Gröller. Exploded views for volume data.
Visualization and Computer Graphics, IEEE Transactions on, 12(5):1077–
1084, September 2006.

[BHGK14] Michael Beham, Wolfgang Herzner, M Eduard Gröller, and Johannes
Kehrer. Cupid: Cluster-based exploration of geometry generators with
parallel coordinates and radial trees. Visualization and Computer Graphics,
IEEE Transactions on, 20(12):1693–1702, November 2014.

[BL04] Michel Beaudouin-Lafon. Designing interaction, not interfaces. In Proceed-
ings of the working conference on Advanced visual interfaces, pages 15–22,
New York, NY, USA, 2004.

[BM10] Stefan Bruckner and Torsten Möller. Result-driven exploration of simulation
parameter spaces for visual effects design. Visualization and Computer
Graphics, IEEE Transactions on, 16(6):1468–1476, 2010.

[BM13] M. Brehmer and T. Munzner. A multi-level typology of abstract visualiza-
tion tasks. Visualization and Computer Graphics, IEEE Transactions on,
19(12):2376–2385, Dec 2013.

[BOH11] Michael Bostock, Vadim Ogievetsky, and Jeffrey Heer. D3 data-driven
documents. Visualization and Computer Graphics, IEEE Transactions on,
17(12):2301–2309, 2011.

[BRR03] N. Boukhelifa, J.C. Roberts, and P.J. Rodgers. A coordination model for
exploratory multiview visualization. In Coordinated and Multiple Views in
Exploratory Visualization, International Conference on, pages 76–85, 2003.

[BSG+09] S. Bruckner, V. Solteszova, E. Gröller, J. Hladuvka, K. Buhler, J.Y. Yu,
and B.J. Dickson. BrainGazer - Visual Queries for Neurobiology Research.
Visualization and Computer Graphics, IEEE Transactions on, 15(6):1497–
1504, 2009.

[BVG10] Jean-Paul Balabanian, Ivan Viola, and Eduard Gröller. Interactive illustra-
tive visualization of hierarchical volume data. In Proceedings of Graphics
Interface 2010, pages 137–144. Canadian Information Processing Society,
2010.

130

[CAS+13] Shahar Chen, David Amid, Ofer M Shir, Lior Limonad, David Boaz, Ateret
Anaby-Tavor, and Tobias Schreck. Self-organizing maps for multi-objective
pareto frontiers. In Proceedings of IEEE Pacific Visualization Symposium
(PacificVis 2013), pages 153–160. IEEE, 2013.

[CC07] Christopher M Collins and Sheelagh Carpendale. Vislink: Revealing rela-
tionships amongst visualizations. Visualization and Computer Graphics,
IEEE Transactions on, 13(6):1192–1199, 2007.

[CG07] Gregory Cipriano and Michael Gleicher. Molecular surface abstraction.
Visualization and Computer Graphics, IEEE Transactions on, 13(6):1608–
1615, 2007.

[CKS+15] Daniel Cornel, Artem Konev, Bernhard Sadransky, Zsolt Horvath, Eduard
Gröller, and Jürgen Waser. Visualization of object-centered vulnerability
to possible flood hazards. In Computer Graphics Forum, volume 34, pages
331–340. Wiley Online Library, 2015.

[CLEK13] Dane Coffey, Chi-Lun Lin, Arthur G Erdman, and Daniel F Keefe. De-
sign by dragging: An interface for creative forward and inverse design
with simulation ensembles. Visualization and Computer Graphics, IEEE
Transactions on, 19(12):2783–2791, 2013.

[CMS99] Stuart K Card, Jock D Mackinlay, and Ben Schneiderman. Readings in
information visualization: using vision to think. Morgan Kaufmann, 1999.

[CON08] Marc Christie, Patrick Olivier, and Jean-Marie Normand. Camera control
in computer graphics. In Computer Graphics Forum, volume 27, pages
2197–2218. Wiley Online Library, 2008.

[CR98] Ed Huai-Hsin Chi and J.T. Riedl. An operator interaction framework for
visualization systems. In Information Visualization, 1998. Proceedings.
IEEE Symposium on, pages 63–70, 1998.

[CWK+07] R. Chang, G. Wessel, R. Kosara, E. Sauda, and W. Ribarsky. Legible
cities: Focus-dependent multi-resolution visualization of urban relationships.
Visualization and Computer Graphics, IEEE Transactions on, 13(6):1169–
1175, 2007.

[DBJ+11] Pierre Dragicevic, Anastasia Bezerianos, Waqas Javed, Niklas Elmqvist,
and Jean-Daniel Fekete. Temporal distortion for animated transitions. In
Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems, pages 2009–2018. ACM, 2011.

[DGK+10] Steven P. Dow, Alana Glassco, Jonathan Kass, Melissa Schwarz, Daniel L.
Schwartz, and Scott R. Klemmer. Parallel Prototyping Leads to Better
Design Results, More Divergence, and Increased Self-efficacy. ACM Trans.
Comput.-Hum. Interact., 17(4):pages 18:1–18:24, December 2010.

131

[DIN11] DIN Standard EN 12464-1: Light and lighting - Lighting of work places -
Part 1: Indoor work places, August 2011.

[DMNV12] J. Díaz, E. Monclús, I. Navazo, and P. Vázquez. Adaptive cross-sections of
anatomical models. Computer Graphics Forum, 31(7):2155–2164, 2012.

[Dol07] Helmut Doleisch. SIMVIS: interactive visual analysis of large and time-
dependent 3D simulation data. In Proceedings of the 39th conference on
Winter simulation, pages 712–720, 2007.

[ET08] Niklas Elmqvist and Philippas Tsigas. A taxonomy of 3d occlusion man-
agement for visualization. Visualization and Computer Graphics, IEEE
Transactions on, 14(5):1095–1109, 2008.

[FH09] R. Fuchs and H. Hauser. Visualization of Multi-Variate Scientific Data.
Computer Graphics Forum, 28(6):1670–1690, 2009.

[FKRE09] Martin Falk, Michael Klann, Matthias Reuss, and Thomas Ertl. Visualiza-
tion of signal transduction processes in the crowded environment of the cell.
In IEEE Pacific Visualization Symposium, pages 169–176. IEEE, 2009.

[GAW+11] Michael Gleicher, Danielle Albers, Rick Walker, Ilir Jusufi, Charles D.
Hansen, and Jonathan C. Roberts. Visual comparison for information
visualization. Information Visualization, 10(4):289–309, 2011.

[GBKG04] Sören Grimm, Stefan Bruckner, Armin Kanitsar, and M. Eduard Gröller.
Flexible direct multi-volume rendering in interactive scenes. In Vision,
Modeling, and Visualization, pages 386–379, 2004.

[GLG+13] Samuel Gratzl, Alexander Lex, Nils Gehlenborg, Hanspeter Pfister, and
Marc Streit. Lineup: Visual analysis of multi-attribute rankings. Visual-
ization and Computer Graphics, IEEE Transactions on, 19(12):2277–2286,
2013.

[Goo99] David S Goodsell. Atomistic vs. continuous representations in molecular
biology. In Visual Representations and Interpretations, pages 146–155.
Springer, 1999.

[GRPF16] Henning Gruendl, Patrick Riehmann, Yves Pausch, and Bernd Froehlich.
Time-series plots integrated in parallel-coordinates displays. In Computer
Graphics Forum, volume 35, pages 321–330. Wiley Online Library, 2016.

[GRW+00] D. L. Gresh, B. E. Rogowitz, R. L. Winslow, D. F. Scollan, and C. K. Yung.
WEAVE: a system for visually linking 3-D and statistical visualizations,
applied to cardiac simulation and measurement data. In Proceedings of the
conference on Visualization ’00, pages 489–492, 2000.

132

[GTCD03] Daniel C. Glaser, Roger Tan, John Canny, and Ellen Yi-Luen Do. Devel-
oping architectural lighting representations. In Information Visualization,
2003. INFOVIS 2003. IEEE Symposium on, pages 241–248, Washington,
DC, USA, 2003. IEEE Computer Society.

[HCHY05] Ke-Sen Huang, Chun-Fa Chang, Yu-Yao Hsu, and Shi-Nine Yang. Key
probe: a technique for animation keyframe extraction. The Visual Computer,
21(8):532–541, 2005.

[HJ93] Karen Holtzblatt and Sandra Jones. Contextual Inquiry: A Participatory
Technique for System Design, pages 177–210. Lawrence Erlbaum Associates,
Hillsdale, 1993.

[HLL16] Kyunglyul Hyun, Kyungho Lee, and Jehee Lee. Motion grammars for
character animation. Computer Graphics Forum, 35(2):103–113, 2016.

[HM90] Robert B Haber and David A McNabb. Visualization idioms: A concep-
tual model for scientific visualization systems. Visualization in scientific
computing, 74:93, 1990.

[HMC11] Wei-Hsien Hsu, Kwan-Liu Ma, and Carlos Correa. A rendering framework
for multi-scale views of 3d models. ACM Transactions on Graphics, 30(6),
December 2011.

[HMP+12] Paul-Corneliu Herghelegiu, V Manta, Radu Perin, Stefan Bruckner, and
Eduard Gröller. Biopsy planner–visual analysis for needle pathway planning
in deep seated brain tumor biopsy. In Computer Graphics Forum, volume 31,
pages 1085–1094. Wiley Online Library, 2012.

[HOF04] Andreas Halm, Lars Offen, and Dieter Fellner. Visualization of complex
molecular ribbon structures at interactive rates. In Information Visualiza-
tion, 2004. INFOVIS 2004. IEEE Symposium on, pages 737–744. IEEE,
2004.

[HR07] J. Heer and G. Robertson. Animated transitions in statistical data graphics.
Visualization and Computer Graphics, IEEE Transactions on, 13(6):1240–
1247, Nov 2007.

[HTCT14] C. Hurter, R. Taylor, S. Carpendale, and A. Telea. Color tunneling:
Interactive exploration and selection in volumetric datasets. In Proceedings
of IEEE Pacific Visualization Symposium (PacificVis 2014), pages 225–232,
March 2014.

[HWM+06] Helwig Hauser, Daniel Weiskopf, Kwan-Liu Ma, Jarke J van Wijk, and
Robert Kosara. Scivis, infovis bridging the community divide. IEEE
Visualization (Panel Proceedings), pages 52–55, 2006.

133

[IBHT+02] S. Iserhardt-Bauer, P. Hastreiter, B. Tomandl, N. Köstner, M. Schemper-
shofe, U. Nissen, and T. Ertl. Standardized Analysis of Intracranial
Aneurysms Using Digital Video Sequences, pages 411–418. Springer Berlin
Heidelberg, Berlin, Heidelberg, 2002.

[Inc] Google Inc. Google maps. https://www.google.at/maps/. Accessed: 2017-
09-16.

[Iwa10] J. H. Iwasa. Animating the model figure. Trends Cell Biology, 20(12):699–
704, Dec 2010.

[JAAA+15] Graham T Johnson, Ludovic Autin, Mostafa Al-Alusi, David S Goodsell,
Michel F Sanner, and Arthur J Olson. cellPACK: a virtual mesoscope to
model and visualize structural systems biology. Nature methods, 12(1):85–
91, 2015.

[JDL09] Radu Jianu, Cagatay Demiralp, and David H Laidlaw. Exploring 3d dti
fiber tracts with linked 2d representations. Visualization and Computer
Graphics, IEEE Transactions on, 15(6):1449–1456, 2009.

[JE12] Waqas Javed and Niklas Elmqvist. Exploring the design space of composite
visualization. In Proceedings of IEEE Pacific Visualization Symposium
(PacificVis 2012), pages 1–8, 2012.

[JJJF07] Mikael Jern, Sara Johansson, Jimmy Johansson, and Johan Franzen. The
gav toolkit for multiple linked views. In Coordinated and Multiple Views in
Exploratory Visualization, 2007. CMV’07. Fifth International Conference
on, pages 85–97. IEEE, 2007.

[JM13] Jodie Jenkinson and Gaël McGill. Using 3D animation in biology education:
Examining the effects of visual complexity in the representation of dynamic
molecular events. Journal of Biocommunication, 39(2):E42–E49, 2013.

[JNM] Graham T. Johnson, Andrew Noske, and Bradley Marsh. Rapid
visual inventory and comparison of complex 3d structures.
https://www.youtube.com/watch?v=Dl1ufW3cj4g. Accessed: 2017-
09-16.

[KF93] Peter Karp and Steven Feiner. Automated presentation planning of anima-
tion using task decomposition with heuristic reasoning. In Proceedings of
Graphics Interface ’93, GI ’93, pages 118–127, Toronto, Ontario, Canada,
1993. Canadian Human-Computer Communications Society.

[KH13] J. Kehrer and H. Hauser. Visualization and Visual Analysis of Multifaceted
Scientific Data: A Survey. Visualization and Computer Graphics, IEEE
Transactions on, 19(3):495–513, 2013.

134

[KKL+15] Barbora Kozlikova, Michael Krone, Norbert Lindow, Martin Falk, Marc
Baaden, Daniel Baum, Ivan Viola, Julius Parulek, Hans-Christian Hege,
et al. Visualization of biomolecular structures: State of the art. In
Eurographics Conference on Visualization (EuroVis)-STARs, pages 061–081.
The Eurographics Association, 2015.

[KM13] Robert Kosara and Jock Mackinlay. Storytelling: The next step for visual-
ization. IEEE Computer, 46:44—-50, 2013.

[KPC14] Jonathan R Karr, Nolan C Phillips, and Markus W Covert. WholeCell-
SimDB: a hybrid relational/hdf database for whole-cell model predictions.
Database, 2014.

[KW08] Pekka Korhonen and Jyrki Wallenius. Visualization in the multiple objective
decision-making framework. In Multiobjective optimization, pages 195–212.
Springer, 2008.

[KWZ11] Murat Koksalan, Jyrki Wallenius, and Stanley Zionts. Multiple criteria
decision making: from early history to the 21st century. World Scientific,
2011.

[LAPV15] Mathieu Le Muzic, Ludovic Autin, Julius Parulek, and Ivan Viola. cel-
lVIEW: a Tool for Illustrative and Multi-Scale Rendering of Large Biomolec-
ular Datasets. In Eurographics Workshop on Visual Computing for Biology
and Medicine, pages 61–70, September 2015.

[LBK04] Alexander V Lotov, Vladimir A Bushenkov, and Georgy K Kamenev. In-
teractive decision maps: Approximation and visualization of Pareto frontier,
volume 89. Springer Science & Business Media, 2004.

[LHH+13] Wen-Chieh Lin, Tsung-Shian Huang, Tan-Chi Ho, Yueh-Tse Chen, and
Jung-Hong Chuang. Interactive lighting design with hierarchical light
representation. Computer Graphics Forum, 32(4):133–142, 2013.

[Lig] Lighting Analysts, Inc. AGi32. http://www.agi32.com/. Accessed: 2015-
03-30.

[LLWC08] T. Y. Lee, C. H. Lin, Y. S. Wang, and T. G. Chen. Animation key-frame
extraction and simplification using deformation analysis. Circuits and
Systems for Video Technology, IEEE Transactions on, 18(4):478–486, April
2008.

[LMMS+16] Mathieu Le Muzic, Peter Mindek, Johannes Sorger, Ludovic Autin, David
Goodsell, and Ivan Viola. Visibility equalizer: Cutaway visualization of
mesoscopic biological models. Computer Graphics Forum, 35(3), 2016.

135

[LRA+07] Wilmot Li, Lincoln Ritter, Maneesh Agrawala, Brian Curless, and David
Salesin. Interactive cutaway illustrations of complex 3d models. ACM
Trans. Graph., 26(3), July 2007.

[LTH+13] Christian Luksch, Robert F. Tobler, Ralf Habel, Michael Schwärzler, and
Michael Wimmer. Fast light-map computation with virtual polygon lights.
In Proceedings of the ACM SIGGRAPH Symposium on Interactive 3D
Graphics and Games, pages 87–94, 2013.

[Mac86] Jock Mackinlay. Automating the design of graphical presentations of
relational information. Acm Transactions On Graphics (Tog), 5(2):110–141,
1986.

[MBP06] Konrad Muehler, Ragnar Bade, and Bernhard Preim. Adaptive script
based animations for intervention planning. In Proceedings of the 9th
International Conference on Medical Image Computing and Computer-
Assisted Intervention - Volume Part I, MICCAI’06, pages 478–485, Berlin,
Heidelberg, 2006. Springer-Verlag.

[MFNF01] Isabel Harb Manssour, Sérgio Shiguemi Furuie, Luciana Porcher Nedel, and
Carla Maria Dal Sasso Freitas. A framework to interact and visualize with
multimodal medical images (st). In Volume Graphics, 2001.

[MKS+17] Peter Mindek, David Kouřil, Johannes Sorger, David Toloudis, Blair Lyons,
Graham Johnson, Meister Eduard Gröller, and Ivan Viola. Visualization
multi-pipeline for communicating biology. Visualization and Computer
Graphics, IEEE Transactions on, PP(99), 2017.

[MLS+17] Haichao Miao, Elisa De Llano, Johannes Sorger, Yasaman Ahmadi, Tadija
Kekic, Tobias Isenberg, Meister Eduard Gröller, Ivan Barisic, and Ivan
Viola. Multiscale visualization and scale-adaptive modification of dna
nanostructures. Visualization and Computer Graphics, IEEE Transactions
on, PP(99):1–1, 2017.

[MM06] Kaisa Miettinen and Marko M Mäkelä. Synchronous approach in interactive
multiobjective optimization. European Journal of Operational Research,
170(3):909–922, 2006.

[MP10] Konrad Mühler and Bernhard Preim. Reusable Visualizations and Anima-
tions for Surgery Planning. Computer Graphics Forum, 2010.

[MR10] Michael J McGuffin and Jean-Marc Robert. Quantifying the space-efficiency
of 2d graphical representations of trees. Information Visualization, 9(2):115–
140, 2010.

[Mun09] T. Munzner. A Nested Model for Visualization Design and Validation.
Visualization and Computer Graphics, IEEE Transactions on, 15(6):921–
928, Nov.-Dec. 2009.

136

[Mun14] Tamara Munzner. Visualization analysis and design. CRC press, 2014.

[OMSI07] Makoto Okabe, Yasuyuki Matsushita, Li Shen, and Takeo Igarashi. Illumi-
nation brush: Interactive design of all-frequency lighting. In Proceedings of
the 15th Pacific Conference on Computer Graphics and Applications, PG
’07, pages 171–180, Washington, DC, USA, 2007. IEEE Computer Society.

[OSP+16] Thomas Ortner, Johannes Sorger, Harald Piringer, Gerd Hesina, and
Eduard Gröller. Visual analytics and rendering for tunnel crack analysis.
The Visual Computer, pages 1–11, 2016.

[OSS+16] T. Ortner, J. Sorger, H. Steinlechner, G. Hesina, H. Piringer, and E. Gröller.
Vis-a-ware: Integrating spatial and non-spatial visualization for visibility-
aware urban planning. Visualization and Computer Graphics, IEEE Trans-
actions on, PP(99):1–1, 2016.

[PBMF07] Fabio Pellacini, Frank Battaglia, R. Keith Morley, and Adam Finkelstein.
Lighting with paint. ACM Trans. Graph., 26(2), June 2007.

[PF92] Pierre Poulin and Alain Fournier. Lights from highlights and shadows. In
Proceedings of the 1992 Symposium on Interactive 3D Graphics, I3D ’92,
pages 31–38, New York, NY, USA, 1992. ACM.

[PKH04] H. Piringer, R. Kosara, and H. Hauser. Interactive focus+context visual-
ization with linked 2D/3D scatterplots. In Coordinated and Multiple Views
in Exploratory Visualization, pages 49–60, 2004.

[PTG02] Fabio Pellacini, Parag Tole, and Donald P. Greenberg. A user interface for
interactive cinematic shadow design. In Proceedings of the 29th Annual
Conference on Computer Graphics and Interactive Techniques, SIGGRAPH
’02, pages 563–566, New York, NY, USA, 2002. ACM.

[PTMB09] Harald Piringer, Christian Tominski, Philipp Muigg, and Wolfgang Berger.
A multi-threading architecture to support interactive visual exploration.
Visualization and Computer Graphics, IEEE Transactions on, 15(6):1113–
1120, 2009.

[Rela] Relux Informatik AG. DIAL GmbH. http://www.dial.de/DIAL/en/dialux/.
Accessed: 2015-03-30.

[Relb] Relux Informatik AG. ReluxSuite. http://www.relux.info/. Accessed:
2015-03-30.

[RFF+08] G. Robertson, R. Fernandez, D. Fisher, B. Lee, and J. Stasko. Effectiveness
of animation in trend visualization. Visualization and Computer Graphics,
IEEE Transactions on, 14(6):1325–1332, Nov 2008.

137

[Ric81] Jane S Richardson. The anatomy and taxonomy of protein structure.
Advances in protein chemistry, 34:167–339, 1981.

[Rob98] Jonathan C Roberts. On encouraging multiple views for visualization. In
Information Visualization, 1998. Proceedings. 1998 IEEE Conference on,
pages 8–14. IEEE, 1998.

[Rob07] J.C. Roberts. State of the Art: Coordinated Multiple Views in Exploratory
Visualization. In Coordinated and Multiple Views in Exploratory Visualiza-
tion, pages 61–71, 2007.

[RTM+03] Theresa-Marie Rhyne, Melanie Tory, Tamara Munzner, Matthew O Ward,
Chris Johnson, and David H Laidlaw. Panel: Information and Scientific
Visualization: Separate but Equal or Happy Together at Last. IEEE
Visualization (Panel Proceedings), pages 611–614, 2003.

[RWF+13] H. Ribicic, J. Waser, R. Fuchs, G. Bloschl, and E. Gröller. Visual Analysis
and Steering of Flooding Simulations. Visualization and Computer Graphics,
IEEE Transactions on, 19(6):1062–1075, 2013.

[SBS+13] Johannes Sorger, Katja Bühler, Florian Schulze, Tianxiao Liu, and Barry
Dickson. neuroMap - Interactive Graph Visualization of the Fruit Fly’s
Neural Circuit. In IEEE Symposium on Biological Data Visualization, pages
73–80, 2013.

[SC07] Amit Shesh and Baoquan Chen. Crayon lighting: Sketch-guided illumi-
nation of models. In Proceedings of the 5th International Conference on
Computer Graphics and Interactive Techniques in Australia and Southeast
Asia, GRAPHITE ’07, pages 95–102, New York, NY, USA, 2007. ACM.

[SDS+93] Chris Schoeneman, Julie Dorsey, Brian Smits, James Arvo, and Donald
Greenberg. Painting with light. In Proceedings of the 20th Annual Confer-
ence on Computer Graphics and Interactive Techniques, SIGGRAPH ’93,
pages 143–146, New York, NY, USA, 1993. ACM.

[SF91] Dorée Duncan Seligmann and Steven Feiner. Automated generation of
intent-based 3d illustrations. SIGGRAPH Comput. Graph., 25(4):123–132,
July 1991.

[SH10] Edward Segel and Jeffrey Heer. Narrative visualization: Telling stories
with data. Visualization and Computer Graphics, IEEE Transactions on,
16(6):1139–1148, Nov 2010.

[SHB+14] Michael Sedlmair, Christoph Heinzl, Stefan Bruckner, Harald Piringer, and
Torsten Möller. Visual parameter space analysis: A conceptual framework.
Visualization and Computer Graphics, IEEE Transactions on, 20(12):2161–
2170, 2014.

138

[Shn92] Ben Shneiderman. Tree visualization with tree-maps: 2-d space-filling
approach. ACM Transactions on graphics (TOG), 11(1):92–99, 1992.

[SMB+14] Nicolas Swoboda, Judith Moosburner, Stefan Bruckner, Y Yu Jai, Barry J
Dickson, and Katja Bühler. Visual and quantitative analysis of higher order
arborization overlaps for neural circuit research. In Eurographics Workshop
on Visual Computing for Biology and Medicine, pages 107–116, 2014.

[SMK+] Johannes Sorger, Peter Mindek, Tobias Klein, Graham Johnson, and
Ivan Viola. Forward & inverse abstractions - supplemental video.
https://goo.gl/1Y7Pvf. Accessed: 2017-09-16.

[SMK+16] Johannes Sorger, Peter Mindek, Tobias Klein, Graham Johnson, and Ivan
Viola. Illustrative Transitions in Molecular Visualization via Forward
and Inverse Abstraction Transform. In Eurographics Workshop on Visual
Computing for Biology and Medicine. The Eurographics Association, 2016.

[SMR+] Johannes Sorger, Peter Mindek, Peter Rautek, Meister Eduard Gröller,
Graham Johnson, and Ivan Viola. Metamorphers - supplemental video.
https://goo.gl/iMo5x8. Accessed: 2017-09-16.

[SMR+17] Johannes Sorger, Peter Mindek, Peter Rautek, Meister Eduard Gröller,
Graham Johnson, and Ivan Viola. Metamorphers: Storytelling templates for
illustrative animated transitions in molecular visualization. In Proceedings
of the Spring Conference on Computer Graphics 2017, pages 27–36, May
2017.

[SOL+] Johannes Sorger, Thomas Ortner, Christian Luksch, Michael Schwär-
zler, Eduard Gröller, and Harald Piringer. Litevis - supplemental video.
https://goo.gl/DvLSZ6. Accessed: 2017-09-16.

[SOL+16] Johannes Sorger, Thomas Ortner, Christian Luksch, Michael Schwärzler,
Eduard Gröller, and Harald Piringer. Litevis: Integrated visualization for
simulation-based decision support in lighting design. Visualization and
Computer Graphics, IEEE Transactions on, 22(1):290–299, 2016.

[SOP+15] Johannes Sorger, Thomas Ortner, Harald Piringer, Gerd Hesina, and
Eduard Gröller. A Taxonomy of Integration Techniques for Spatial and
Non-Spatial Visualizations. In David Bommes, Tobias Ritschel, and Thomas
Schultz, editors, Vision, Modeling & Visualization. The Eurographics Asso-
ciation, 2015.

[SRH+09] Michael Sedlmair, Kerstin Ruhland, Fabian Hennecke, Andreas Butz, Susan
Bioletti, and Carol O’Sullivan. Towards the Big Picture: Enriching 3D
Models with Information Visualisation and Vice Versa. In Smart Graphics,
volume 5531, pages 27–39. Springer Berlin Heidelberg, 2009.

139

[SW14] Michael Schwarz and Peter Wonka. Procedural design of exterior lighting
for buildings with complex constraints. ACM Trans. Graph., 33(5):166:1–
166:16, September 2014.

[SWS+11] Markus Steinberger, Manuela Waldner, Marc Streit, Alexander Lex, and
Dieter Schmalstieg. Context-preserving visual links. Visualization and
Computer Graphics, IEEE Transactions on, 17(12):2249–2258, 2011.

[SzBBKN14] Christian Schulte zu Berge, Maximilian Baust, Ajay Kapoor, and Nassir
Navab. Predicate-based focus-and-context visualization for 3d ultrasound.
Visualization and Computer Graphics, IEEE Transactions on, 20(12):2379–
2387, 2014.

[TM04] Melanie Tory and Torsten Möller. Rethinking Visualization: A High-
Level Taxonomy. In Information Visualization, 2004. INFOVIS 2004.
IEEE Symposium on, pages 151–158, Washington, DC, USA, 2004. IEEE
Computer Society.

[TMB02] Barbara Tversky, Julie Bauer Morrison, and Mireille Betrancourt. Anima-
tion: Can it facilitate? International Journal of Human-Computer Studies,
57(4):247–262, October 2002.

[TSH+14] Cagatay Turkay, Aidan Slingsby, Helwig Hauser, Jo Wood, and Jason
Dykes. Attribute signatures: dynamic visual summaries for analyzing
multivariate geographical data. Visualization and Computer Graphics,
IEEE Transactions on, 20(12):2033–2042, 2014.

[Tuf90] Edward Tufte. Envisioning Information. Graphics Press, Cheshire, CT,
USA, 1990.

[VDZLBI11] Matthew Van Der Zwan, Wouter Lueks, Henk Bekker, and Tobias Isenberg.
Illustrative molecular visualization with continuous abstraction. In Com-
puter Graphics Forum, volume 30, pages 683–690. Wiley Online Library,
2011.

[VFSG06] I. Viola, M. Feixas, M. Sbert, and M.E. Gröller. Importance-Driven Focus
of Attention. Visualization and Computer Graphics, IEEE Transactions
on, 12(5):933–940, 2006.

[VKG04] Ivan Viola, Armin Kanitsar, and Meister Eduard Gröller. Importance-
driven volume rendering. In IEEE Visualization 2004, pages 139–146, Oct
2004.

[VP04] Vivek Verma and Alex Pang. Comparative flow visualization. Visualization
and Computer Graphics, IEEE Transactions on, 10(6):609–624, 2004.

140

[vPGL+14] Roy van Pelt, Rocco Gasteiger, Kai Lawonn, Monique Meuschke, and Bern-
hard Preim. Comparative blood flow visualization for cerebral aneurysm
treatment assessment. In Computer Graphics Forum, volume 33, pages
131–140, 2014.

[War00] Colin Ware. Information visualization, volume 2. Morgan Kaufmann San
Francisco, 2000.

[WB11] Manuel Wahle and Stefan Birmanns. Gpu-accelerated visualization of
protein dynamics in ribbon mode. In IS&T/SPIE Electronic Imaging,
pages 786805–786805. International Society for Optics and Photonics, 2011.

[WBWK00] Michelle Q. Wang Baldonado, Allison Woodruff, and Allan Kuchinsky.
Guidelines for using multiple views in information visualization. In Confer-
ence on Advanced visual interfaces, pages 110–119, 2000.

[WFR+10] Jürgen Waser, Raphael Fuchs, Hrvoje Ribicic, Benjamin Schindler, Gunther
Blöschl, and Eduard Gröller. World Lines. Visualization and Computer
Graphics, IEEE Transactions on, 16(6):1458–1467, 2010.

[WGK10] Matthew Ward, Georges Grinstein, and Daniel Keim. Interactive Data
Visualization: Foundations, Techniques, and Applications. A. K. Peters,
Ltd., Natick, MA, USA, 2010.

[WH07] Michael Wohlfart and Helwig Hauser. Story telling for presentation in
volume visualization. In Proceedings of the 9th Joint Eurographics / IEEE
VGTC Conference on Visualization, EUROVIS’07, pages 91–98. Eurograph-
ics Association, 2007.

[Wil78] Lance Williams. Casting curved shadows on curved surfaces. In Proceed-
ings of the 5th Annual Conference on Computer Graphics and Interactive
Techniques, SIGGRAPH ’78, pages 270–274, New York, NY, USA, 1978.
ACM.

[WPL+10] Manuela Waldner, Werner Puff, Alexander Lex, Marc Streit, and Dieter
Schmalstieg. Visual links across applications. In Proceedings of Graphics
Interface 2010, pages 129–136. Canadian Information Processing Society,
2010.

[WYL+14] Zuchao Wang, Tangzhi Ye, Min Lu, Xiaoru Yuan, Huamin Qu, Jiaxin Yuan,
and Qianliang Wu. Visual exploration of sparse traffic trajectory data.
Visualization and Computer Graphics, IEEE Transactions on, 20(12):1813–
1822, 2014.

[YaKSJ07] Ji Soo Yi, Youn ah Kang, J.T. Stasko, and J.A. Jacko. Toward a Deeper
Understanding of the Role of Interaction in Information Visualization.
Visualization and Computer Graphics, IEEE Transactions on, 13(6):1224–
1231, 2007.

141

[ZFA+14] Wei Zeng, Chi-Wing Fu, Stefan Muller Arisona, Alexander Erath, and
Huamin Qu. Visualizing mobility of public transportation system. Visual-
ization and Computer Graphics, IEEE Transactions on, 20(12):1833–1842,
2014.

[Zum] Zumtobel Lighting GmbH. ecoCALC. http://www.zumtobel.com/com-
en/ecoCALC.html. Accessed: 2015-03-30.

[ZYM+14] Jiawan Zhang, E Yanli, Jing Ma, Yahui Zhao, Binghan Xu, Liting Sun,
Jinyan Chen, and Xiaoru Yuan. Visual analysis of public utility service
problems in a metropolis. Visualization and Computer Graphics, IEEE
Transactions on, 20(12):1843–1852, 2014.

142

Curriculum Vitae

143

Page 1 of 2

Name: Johannes Sorger, Dipl.Ing.
Address: Wasagasse 31/22, 1090 Vienna, Austria
Date of Birth: April 21st, 1983
Nationality: Austrian
Phone: +43(0) 699 190 939 09
Email: johannessorger@gmail.com

Education

03/2013 – 10/2017
(estimated): Doctoral program in Engineering and Computer Sciences

Institute of Computer Graphics and Algorithms
TU Wien (Technical University of Vienna)
Dissertation: “Integration Strategies in the Visualization of Multifaceted Spatial Data”
Advisors: Assoc.Prof. Dipl.Ing. Dr.techn. Ivan Viola,

 Ao.Univ.Prof. Dipl.Ing. Dr.techn. Eduard Gröller

10/2009 – 03/2013: Master’s program in Visual Computing
Specialization: Real Time Graphics and Visualization
TU Wien (Technical University of Vienna)
Master Thesis: "Interactive Graph-Visualization of the Fruit Fly’s Neural Circuit"
Advisors: Ao.Univ.Prof. Dipl.Ing. Dr.techn. Eduard Gröller, TU Wien
 Dipl.Ing. Dr.techn. Katja Bühler, VRVis Research Company

2003 – 2009: Bachelor’s program in Media & Computer Science
Specialization: Design
TU Wien (Technical University of Vienna)

 Bachelor Project: “Audio-Visual Perception in Interactive Virtual Environments”
(in collaboration with INRIA, France), Advisor: Matthias Bernhard, PhD

Work Experience

01/2016 – 10/2017: Project Assistant at the Institute of Computer Graphics and Algorithms, TU Wien
working on basic and applied research in the fields of illustrative and molecular visualization

10/2012 – 01/2016: Researcher at the VRVis Research Company, working on basic and applied research in the
field of visual analytics in spatial and abstract data visualization

02/2011 – 10/2012: Student researcher at the VRVis Research Company, working on biological data
visualization in cooperation with the Institute of Molecular Pathology, Vienna

01/2007 – 09/2011: Sponsorship monitoring at United Synergies, agency for analyzing and appraising presence
and value of advertising

10/2005 – 12/2005: Volunteer at the NGO Poder Ciudadano in Buenos Aires: translations
(English/German/Spanish), research

Awards

Best Overall Concept Award 2017, in the BootCamp for Sciencepreneurs, innovation incubation center (i2c), TU Wien

Austrian Computer Graphics Award 2016 for best technical solution (as a team member of the cellVIEW project)

OCG Incentive Award 2014 (OCG Förderpreis 2014), Austrian Computer Society (OCG)

Best Paper Award, at the 3rd IEEE Symposium on Biological Data Visualization (BioVis), Atlanta, Georgia, USA, 2013

Reviewing History

TVCG (2014), IEEE VIS (2013, 2014, 2015), EuroVis (2014, 2015, 2017), CGI (2013), CHI (2013)

Teaching

Computer Animation (lecture unit on behavioral animation), supervision of bachelor theses and seminar works

Page 2 of 2

Selected Publications and Talks

“Multiscale Visualization and Scale-adaptive Modification of DNA Nanostructures”
Haichao Miao, Elisa De Llano, Johannes Sorger, Yasaman Ahmadi, Tadija Kekic, Tobias Isenberg, Meister Eduard
Gröller, Ivan Barisic, Ivan Viola
in Visualization and Computer Graphics, IEEE Transactions on, 24(1). January 2018

“Visualization Multi-Pipeline for Communicating Biology”
Peter Mindek, David Kouřil, Johannes Sorger, David Toloudis, Blair Lyons, Graham Johnson, Meister Eduard Gröller,
Ivan Viola
in Visualization and Computer Graphics, IEEE Transactions on, 24(1). January 2018

“Metamorphers: Storytelling Templates For Illustrative Animated Transitions in Molecular Visualization”
(with talk at SCCG 2017, Mikulov, Czech Republic)
Johannes Sorger, Peter Mindek, Peter Rautek, Eduard Gröller, Graham Johnson, Ivan Viola
In 33rd Spring Conference on Computer Graphics (SCCG), pages 27-36. May 2017

“Illustrative Transitions in Molecular Visualization via Forward and Inverse Abstraction Transform”
(with talk at VCBM 2016, Bergen, Norway)
Johannes Sorger, Peter Mindek, Tobias Klein, Graham Johnson, Ivan Viola
In Eurographics Workshop on Visual Computing for Biology and Medicine (VCBM), pages 21-30. September 2016.

“LiteVis: Integrated Visualization for Simulation-Based Decision Support in Lighting Design”
(with talk at VIS 2015, Chicago)
Johannes Sorger, Thomas Ortner, Christian Luksch, Michael Schwärzler, Eduard Gröller, Harald Piringer
In Visualization and Computer Graphics, IEEE Transactions on, 22(1):290-299, January 2016.

“Vis-A-Ware: Integrating Spatial and Non-Spatial Visualization for Visibility-Aware Urban Planning”
Thomas Ortner, Johannes Sorger, Harald Steinlechner, Gerd Hesina, Harald Piringer, Eduard Gröller
In Visualization and Computer Graphics, IEEE Transactions on, 2016.

“Visibility Equalizer: Cutaway Visualization of Mesoscopic Biological Models”
Mathieu LeMuzic, Peter Mindek, Johannes Sorger, Ludovic Autin, David Goodsell, Ivan Viola
In Computer Graphics Forum Volume 35 (2016), Number 3

“A Taxonomy of Integration Techniques for Spatial and Non-Spatial Visualizations”
(with talk at VMV 2015, Aachen)
Johannes Sorger, Thomas Ortner, Harald Piringer, Gerd Hesina, Eduard Gröller
In 20th International Symposium on Vision, Modeling and Visualization (VMV 2015). October 2015.

 "neuroMap - Interactive Graph-Visualization of the Fruit Fly's Neural Circuit"
(with talk at BioVis 2013, Atlanta)
Johannes Sorger, Katja Bühler, Florian Schulze, Tianxiao Liu, Barry Dickson
In Biological Data Visualization (BioVis), 2013 IEEE Symposium on , pages 73-80. October 2013.

(Best Paper Award)

Skills

Research Interests: Visual Analytics, Information Visualization, and Scientific Visualization – in the domains of
biological/molecular visualization, geographic information systems, and simulations

Languages: German: first language
French: Berlitz Language Certificate: grade A
English: Berlitz Language Certificate: grade A
Spanish: Berlitz Language Certificate: grade A
Japanese: beginner level

IT Skills: (applied in 2D and 3D visualization, render engine-, GUI-, and game- programming)

proficient: C++, C#, JAVA, JavaScript, LaTeX, yFiles

advanced: Unity3D, database modeling (SQL), OpenGL 1.x – 3.x, ES, GLSL/HLSL (shader
programming), Server/client web applications (AJAX), Web design, audio editing, video
editing, graphic design (Photoshop, Illustrator), Qt, jquery, d3.js

beginner: Image processing (MATLAB), GTK, Adobe Flash, Mobile platform programming
(Android 2.x), 3D modeling and animation (Maya)

Driving License: B

Personal Interests: Traveling, photography, music, literature, outdoor sports, drawing.

	Kurzfassung
	Abstract
	Contents
	Introduction
	Definitions
	Thesis Overview
	Contributions

	Integration Strategies
	Visual Integration
	Visual Channels in Spatial Data Visualization
	Adapting the Spatial Representation
	Composing Multiple Representations
	Visual Integration Challenges

	Functional Integration
	Introduction
	Related Work
	Model-Based Taxonomy
	Integration Techniques
	Discussion
	Conclusion and Outlook

	Applications
	Integration in Parameter Space Exploration
	Introduction
	Related Work
	Lighting Design Background
	Design Study of LiteVis
	Implementation
	Use Case Scenario
	Evaluation
	Discussion and Future Work
	Conclusion

	Storytelling Templates For Temporal Integration
	Introduction
	Related Work
	Metamorphers
	Implementation
	Results
	Discussion
	Conclusion

	Masking Missing Information Via Visual Abstraction
	Introduction
	Related Work
	Forward & Inverse Abstraction
	Implementation of Visual Abstraction Levels
	Results
	Discussion and Expert Feedback
	Conclusion and Outlook

	Conclusion
	Summary
	Outlook

	Bibliography
	Curriculum Vitae

