
Neural Models
For Monitoring and Control
with Applications in Automotive Domain

PhD THESIS

submitted in partial fulfillment of the requirements for the degree of

Doctor of Technical Sciences

within the

Vienna PhD School of Informatics

by

Dipl.Ing. Konstantin Selyunin
Registration Number 01228206

to the Faculty of Informatics

at the TU Wien

Advisor: Univ.Prof. Dipl.-Ing. Dr.rer.nat. Radu Grosu
Second advisor: Asst.-Prof. Dr. Ezio Bartocci
Industrial Co-advisor: Dr. Thang Nguyen

External reviewers:
Prof. Dr. Martin Leucker. Universität zu Lübeck, Germany.
Assc. Prof. Ph.D. Yliés Falcone. Univ. Grenoble Alpes, France.

Vienna, 9th October, 2017
Konstantin Selyunin Radu Grosu

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.ac.at

Die approbierte Originalversion dieser
Dissertation ist in der Hauptbibliothek der
Technischen Universität Wien aufgestellt und
zugänglich.
http://www.ub.tuwien.ac.at

The approved original version of this thesis is
available at the main library of the Vienna
University of Technology.

http://www.ub.tuwien.ac.at/eng

Declaration of Authorship

Dipl.Ing. Konstantin Selyunin
1040 Wien, Treitlstr. 3, CPS Group

I hereby declare that I have written this Doctoral Thesis independently, that I have
completely specified the utilized sources and resources and that I have definitely marked
all parts of the work - including tables, maps and figures - which belong to other works
or to the internet, literally or extracted, by referencing the source as borrowed.

Vienna, 9th October, 2017
Konstantin Selyunin

iii

Acknowledgements

This thesis represents the accomplishments of my academic-research career at the Cyber-
Physical-Systems Group of the TU Wien. Looking back to the past five years of my PhD
Study with the Vienna PhD School of Informatics and the CPS Group, I see this time
as a fantastic experience which broadened and deepened my expertise in cyber-physical
systems, robotics, neural models, runtime monitoring, and in computer science in general.

I would like to thank Prof. Hannes Werthner, Prof. Hans Tompits, Prof. Andreas
Steininger and Ms. Clarissa Schmid for organizing and smoothly running the “Vienna
PhD School of Informatics”, a program that gave me the opportunity to conduct the
research at the Faculty of Informatics of the TU Wien. During my studies Ms. Clarissa
Schmid and Ms. Gerda Belkhofer helped me in organizational and administrative issues.
I would like to equally express my gratitude to Prof. Radu Grosu and Dr. Ezio Bartocci
that agreed to work with me, accepted me at the Cyber-Physical Systems Group, and
guided me through my research and studies. I am also thankful to Dr. Thang Nguyen
who became my industrial co-advisor, and gave his valuable advice and guidance to shape
my work in a way to be applicable in automotive electronic industry.

Furthermore, I thank all my colleagues from the Cyber-Physical-Systems Group and the
PhD School for the fruitful discussions, support and collaboration. Notably, I appreciate
Denise Ratasich, Alena Rodionova, Stefan Jaksic, Anna Lukina, Haris Isakovich, Bernhard
Frömel, Christian Hirsch, and Aysylu Gabdulkhakova for their help in shaping my research
and inspiring discussions that contributed to the results presented in this thesis.

I am also grateful for the financial support from the Vienna PhD School of Informatics
and the project HARMONIA (845631), funded by a national Austrian grant from FFG
(Österreichische Forschungsförderungsgesellschaft) under the program IKT der Zukunft.

My special thanks are devoted to my family and friends, in particular to Lyudmila
Selyunina, Ekaterina Lashmanova, Rostislav Zabolotnyi, Maryna Kostikova, Ivan Zykov,
and Roland Mayr who helped me to overcome difficulties and supported me emotionally,
shared with me adventures, organized vacations, and helped to recharge.

v

Abstract

Cyber-physical systems (CPS), which incorporate physical as well as computational
components, are a grand challenge of academia and industry in terms of their development,
verification, and maintenance. In order for CPS to serve their purpose and ultimately
make human lives safer, easier, more enjoyable, and convenient, both academia and
industry needs to develop new methods for control and monitoring of such systems. Neural
models are a very promising and far looking direction for the design of CPS controllers
and monitors. In this thesis we first show how neural models can be applied in CPS
control to quantify the uncertainty of the system. We then present how digital spiking
neural model, called TrueNorth, can be used in the runtime monitoring of temporal-logic
specifications for mission-critical systems. In order to be able to deliver not only a
qualitative verdict, but also to reason in a quantitative way, we propose an approach for
modeling arithmetic-functions with spiking neurones, and implement neural monitors for
(signal) temporal logic specifications based on circular convolution.

In the applied part of the thesis we demonstrate how runtime monitoring can speed up
the verification and validation phases in automotive electronic development. We identify
phases where runtime monitoring can facilitate both pre- and post-silicon verification
and testing. To build runtime monitors that are capable of keeping up with the speed of
the physical sensors, we developed an approach to convert formalized requirements to
hardware monitors, which are then synthesized in an FPGA. The results of this work
enable long-term requirements evaluation and foster reuse of the monitors from pre- to
post-silicon verification phases using high-level synthesis. We illustrate our approach by
formalizing, creating hardware monitors, and evaluating the results in the lab environment
for electrical and timing requirements of the industrial SENT and SPC protocols.

vii

Contents

Abstract vii

Contents ix

List of Figures xi

List of Tables xiv

Thesis Publications xvi

1 Introduction 1
1.1 Motivation . 2
1.2 Problem Statement . 3
1.3 Research Questions . 4
1.4 Scientific Contributions . 5
1.5 Structure of the Work . 7

2 Background 11
2.1 Neural Models . 11
2.2 Runtime Verification . 15
2.3 Automotive Electronic Development 18

3 State of the Art Analysis 21
3.1 Related Work on CPS Control with Neural Models 21
3.2 Related Work on Neural Models in Monitoring 23
3.3 Related Work on Runtime Verification in Automotive 25
3.4 Related Work on Protocol Verification 27

4 Neural Models for Control & Quantifying Uncertainty 31
4.1 Preliminaries . 33
4.2 Key Components of Neural Programs 34
4.3 Bayesian-Network Learning . 38
4.4 Case studies . 41
4.5 Summary . 49

ix

5 Neural Models for Qualitative Monitoring 51
5.1 Qualitative Monitoring with the TrueNorth model 52
5.2 Neural Temporal Testers . 55
5.3 Case Study and Experimental Results 59
5.4 Summary . 61

6 Neural Models for Quantitative Monitoring 63
6.1 Neuron and Synapse Modeling . 64
6.2 Computations with Neural Models . 66
6.3 Neural filters as temporal logic monitors 70
6.4 Summary . 73

7 Runtime Monitoring in Automotive Electronic Development 75
7.1 Use Case 1: Runtime Monitors in Simulation 78
7.2 Use Case 2: Runtime Monitors for Lab Evaluation 78
7.3 Case Study: Automotive Sensor Interface 79
7.4 Summary . 80

8 Industrial Case studies and Evaluation 83
8.1 Timed Regular Expressions . 84
8.2 Formalization of the SENT and SPC Protocols 85
8.3 Runtime Monitoring with Recovery . 92
8.4 Runtime Monitoring of SENT and SPC protocols 95
8.5 Summary . 99

9 Conclusions and Future Work 101
9.1 Summary of Contributions . 101
9.2 Critical Reflections . 102
9.3 Research Questions Revisited . 103
9.4 Future Work . 104

Glossary 105

Acronyms 107

Bibliography 111

Appendix: SENT/SPC Monitoring 131
Installation Instructions . 131
Tutorial . 134
SENT/SPC Monitoring: Details . 142
Behavioral Code and Test data . 147
User Study . 149

Curriculum vitæ 151

List of Figures

1.1 Thesis contributions . 6
1.2 Outline of the thesis . 9

2.1 Biophysical and Artificial neurons: a Bird’s Eye View 13
2.2 Runtime Monitoring: System’s overview 16
2.3 STL past and future temporal operators 18

3.1 High-level overview of the related work . 29

4.1 Left plot: “Soft” (colored lines) and “hard” (bold black line) thresholds; Right
plot: PDFs and the quantiles for x = 1 and a = 0 36

4.2 Passing RVs through conditions . 37
4.3 Gaussian Bayesian Network for parking 39
4.4 Example trajectories for the parking task 39
4.5 Experimental platform: Pioneer Rover . 42
4.6 Parking system architecture . 43
4.7 Tap withdrawal circuit of C. Elegans . 45
4.8 Deterministic simulations of potentials of AVA and AVB neurons (left); stochas-

tic simulations using nif condition (right) 47
4.9 Controller for parallel parking as a neural circuit 48

5.1 Neural Monitor Generation Flow . 53
5.2 Two input TrueNorth circuit . 56
5.3 Neural Temporal Testers . 58
5.4 Missile timing property specification . 60
5.5 Missile monitor: simulation results . 60
5.6 Experimental setup (see [osc] for oscillograms) 61

6.1 Normalized EPSC in response to pre-synaptic action potentials (Vpre) . . 65
6.2 Neural models for computations on spike rates 66
6.3 Addition in the spike rates using the TrueNorth model 67
6.4 Addition of spike rates with the Hodgkin-Huxley model 68
6.5 Constant multiplication and division of the spike rates with the TrueNorth

model: 2 · blue = green, 1
3 · blue = red (n1 – blue; n2 – green; n3 – red) . 69

xi

6.6 Constant multiplication of the spike rates with the Hodgkin-Huxley model 69
6.7 Subtraction in the spike rates with the TrueNorth model: blue− green = red

(n1 – blue; n2 – green; n3 – red). 70
6.8 Computing min/max using the TrueNorth model: r4 = max(r1, r2) + r3, and

r5 = min(r1, r2)− r3 . 70
6.9 Circular Convolution using TrueNorth: the Circuit 71
6.10 Computing Q[a,b] using TrueNorth . 72
6.11 Computing `[a,b] using TrueNorth . 73
6.12 Computing pS [a,b]q using TrueNorth . 74

7.1 Electronic power steering application . 76
7.2 Electronic Throttle Control for Engine Management 77
7.3 Runtime Monitoring Generation Flow . 78
7.4 The runtime monitor in simulation: setup and results 80
7.5 Runtime Monitor in Hardware: Lab Setup 81
7.6 Runtime Monitor in Hardware: Chip Scope Results 82

8.1 A SENT frame starts with a synchronisation pulse (SYNC), followed by a
status nibble (ST), data nibbles (D1, D2, D3), rolling counters (RC1, RC2),
bit inverse of D1 (ND1), cyclic redundancy check (CRC), and finishes with
an optional pause. 86

8.2 SENT nibble pulse: A pulse starts (Nstart) with a falling edge f, followed by
a low region l, followed by a rising edge r, followed by a high region h. . 86

8.3 SPC bus mode: Specification signal for two sensors: ID0 and ID3 – communi-
cation starts with the trigger pulse, which is followed by a response from a
sensor . 87

8.4 SPC trigger pulse: A pulse of duration tmtr starts with a low duration tmlow,
which encodes the sensor id, followed by a high region 88

8.5 Monitoring an asynchronous serial protocol with recovery1 93
8.6 Monitor Generation . 95
8.7 Runtime Monitoring of the SENT: Hardware Setup 97
8.8 Runtime TRE monitoring: Vivado functional simulation 98
8.9 Runtime monitoring of SPC protocol . 99
8.10 Runtime monitoring of the STL requirements 100

1 Installation Directory Structure . 132
2 Workspace launcher . 133
3 COSIDE Environment . 133
4 COSIDE GUI . 135
5 Expanded ‘sent_spc_python_gui’ project 135
6 Launching the SENT/SPC Monitor GUI 136
7 SENT/SPC Monitor GUI . 136
8 Applying ‘sent_config_Vdd5500_DUT2.ini’ configuration 137
9 Plotting original sensor data . 138

10 Plotting signals from the monitor_dump.vcd 139
11 Loading the SPC configuration . 141
12 SPC Monitoring Results . 142
13 Specifying the parameters of the protocol and defining the frame structure 144
14 Right panel: elements for the monitor generation 145
15 Plot panel . 146
16 Bottom panel . 146
17 Excerpt from the monitoring report . 147
18 Example configuration file . 148
19 Behavioral code structure . 149
20 Summary of user study results . 150

List of Tables

4.1 BN variances and coefficient dependences 45
4.2 Comparison of simulation results . 48

5.1 Neural Parameters of Logical Operators 57
5.2 Neural Temporal Testers . 59
5.3 Missile monitor: implementation results . 61

6.1 Parameters of neuron and synapse model 65
6.2 Parameters of the TrueNorth Model . 71

8.1 SENT Requirements in natural language 87
8.2 SPC Requirements in natural language . 89
8.3 STL Monitors Generation: FPGA & HLS resources 99

xiv

Thesis Publications

The thesis is based on the author’s work published in scientific conferences and workshops.
For quick-reference and brevity reasons, these core papers, which build the foundation of
the thesis, are listed here once and for all, and will not generally be explicitly referenced
again. Parts of these papers are contained in the thesis in verbatim.

• Konstantin Selyunin, Denise Ratasich, Ezio Bartocci, Md. Ariful Islam, Scott
A. Smolka, Radu Grosu: “Neural Programming: Towards Adaptive Control in
Cyber-Physical Systems.” In Proceedings of the 54th IEEE Conference on Decision
and Control (CDC 2015), Osaka, Japan. pp.6978-6985, December 15-18, 2015.

• Konstantin Selyunin, Thang Nguyen, Ezio Bartocci, Dejan Nickovic, and Radu
Grosu: “Monitoring of MTL Specifications With IBM’s Spiking-Neuron Model.”
In Proceedings of the 19th Design, Automation and Test in Europe Conference and
Exhibition (DATE 2016), Dresden, Germany. pp.924–929, March 14-18, 2016.

• Konstantin Selyunin, Thang Nguyen, Ezio Bartocci, Radu Grosu: “Applying
Runtime Monitoring for Automotive Electronic Development.” In Proceedings
of the 16th International Conference on Runtime Verification (RV 2016), Madrid,
Spain. pp.462-469, September 23-30, 2016.

• Thang Nguyen, Ezio Bartocci, Dejan Nickovic, Radu Grosu, Stefan Jaksic, Kon-
stantin Selyunin: “The HARMONIA Project: Hardware Monitoring for Automo-
tive Systems-of-Systems.” In Proceedings of the 7th International Symposium on
Leveraging Applications of Formal Methods, Verification and Validation: Discussion,
Dissemination, Applications (ISoLA 2016) Corfu, Greece. pp.371-379, October
10-14, 2016.

• Konstantin Selyunin, Thang Nguyen, Andrei Daniel Basa, Ezio Bartocci, Dejan
Nickovic, Radu Grosu: “Applying High-Level Synthesis for Synthesizing Hardware
Runtime STL Monitors of Mission-Critical Properties.” In Proceedings of the 13th
Design and Verification Conference and Exhibition (DVCon 2016), San Jose, CA,
USA. pp.1-8, February 28-March 3, 2016.

xv

• Konstantin Selyunin, Ramin M, Hasani, Ezio Bartocci, Radu Grosu: “Comput-
ing with Biophysical and Hardware-efficient Neural Models.” In Proceedings of the
14th International Work-Conference on Artificial Neural Networks (IWANN 2017),
Cadiz, Spain. pp.535-547, June 14-16, 2017.

• Konstantin Selyunin, Stefan Jaksic, Thang Nguyen, Christian Reidl, Udo Hafner,
Ezio Bartocci, Dejan Nickovic, Radu Grosu: “Runtime Monitoring with Recovery
of the SENT Communication Protocol.” In Proceedings of the 29th International
Conference on Computer Aided Verification, (CAV 2017), Heidelberg, Germany.
pp.336-355, July 24-28, 2017.

CHAPTER 1
Introduction

Herbert A. Simon [Sim96] outlined the fundamental difference between the natural
sciences and the “sciences of the artificial” as follows: While a natural scientist starts
from the physical world and tries to build a model of the phenomenon under study,
possibly by revising the model, an engineer starts with the model and tries to realize the
model in the physical world, possibly revising realizations.

Despite of this fundamental difference, and dating back to Leonardo da Vinci’s flying
machine in the “Codex on the Flight of Birds” (c.a. 1505, itself very much inspired by
the bat’s wings), inspiration from nature greatly affected technological development.
Unlike market economy, nature is not under strict time-to-market pressure, and crafts its
solutions by millions of years of evolution. This makes its results optimal with respect to
energy usage, environmental adaptation, perception, and robustness to failure.

Employing solutions from nature resulted in scientific disciplines such as biomimicry[Ben02]
and bionics[NW15]. Their goal is to study the application of ideas from biological sys-
tems in the engineering context, with prominent examples such as hair sensors for flow
control [GS12], running-dog robots from Boston Dynamics [RBNP08], or self-cleaning
nano-materials [GT11] (inspired by the lotus flower). These successes encourage the
application of principles mastered by nature in Cyber-Physical Systems (CPS), too.

CPS [BG12] pose grand challenges in terms of managing system complexity, ensuring
safety, and developing optimal solutions. The large number of interconnected devices, and
the huge amount of data generated by their components, result in considerable obstacles
for processing and reasoning about CPS. In this thesis, we are primarily concerned with
the cyber component of CPS. This has to be reliable, fault tolerant, and satisfy strict safety
requirements. Although formal verification [BK08] and model-based design [BKKS12],
are in principle capable of providing a formal-correctness proof for a software component
of the cyber part, these methods have limitations when applied to real-world industrial
problems, due to the sheer complexity of the associated systems.

1

1. Introduction

1.1 Motivation

From the “sciences of the artificial” perspective, it is vital to understand how the principles
adopted by nature can be applied in the context of the “design sciences”.

An animal’s brain, which is a very prominent area of investigation[GKNP14, DA05], is an
excellent example of the astonishing progress of research: From the early beliefs (e.g. when
nerve cells were considered to be pipes transferring the “spirituous liquor”, William Croone,
1667, [Ros32]), to the birth of the neuroscience in 1888 by Ramón y Cajal [She15], and to
state-of-the-art methods like the connectomics [Per14], optogenetics [HQB+09] and brain-
machine interfaces [CLC+03], we are witnessing nowadays a much deeper understanding
of the brain’s function: From the micro scale perspective (e.g. release of neuro-transmitters
and change of ionic concentrations during generation of an action potential), to the macro-
scale perspective (e.g. modelling the cortical activity of a macaque’s brain [PWD+12]).
This is all possible due to the incredible research progress in neuroscience.

These advancements have important implications: Neurons are now seen as plastic
devices [Doi07], constantly adapting and changing their function, according to the
external stimuli. Starting from the paper of McCulloch & Pitts [MP43], the advances
in brain research provide a source of inspiration for different fields of computer science.
The concept of a neuron, as a universal computing device that is capable to dynamically
adapt to the external changes, is particularly promising for designing solutions for CPS.

As CPS operate in dynamic uncertain environments, where computational components
are tightly coupled with the physical world, it is important to develop controllers for CPS
that are capable of taking into account the uncertainty of the environment, together with
the prior knowledge about the system. From the computational perspective, CPS are
regarded as reactive systems [AILS07]. For them, it is vital not only to provide control
inputs, but also to provide mechanisms for monitoring properties of interest at runtime,
in order to capture and report violations, and to trigger recovery mechanisms.

To leverage neuronal functional/structural plasticity, it is essential to understand how
models of neurons (the universal information processing elements in biological systems),
can be used from the “sciences of the artificial” perspective, in the context of CPS.

From a practical point of view, it is necessary to cope with the complexity and the
sheer amount of data generated by the CPS. For example, in the automotive electronic-
development domain, which is responsible for producing the CPS components (consider
the angular sensors based on the Hall effect and their associated controllers) it is of utter
importance to develop methods that speed up the testing process, and eliminate errors
at the early stages of the development cycle. Manufacturers strive for additional safety
barriers to capturing violations during product verification phases, aim for automated
solutions and reduced workload for an engineer, during the design and testing process.

2

1.2. Problem Statement

1.2 Problem Statement
The aforementioned research/applications challenges uncover a broad range of questions
that have to be solved. To narrow down the scope of the thesis, we outline the main
research problems in this section, and specify a list of research questions in Section 1.3.

From a control perspective, we need to address the decisions that have to be made
under uncertainty in CPS. We aim to use neural models that are capable quantify the
uncertainty, and give on average “smooth” control decisions.

From a monitoring perspective, it is necessary to develop methods allowing the use of
neural circuits as monitors, to check the properties of CPS at runtime. In recent years, we
have seen the emergence of new, brain-inspired computer-hardware architectures [SMN11,
WHTvS14, CMA+13]. We target the application of state-of-the-art spiking neural-
architecture models, for monitoring temporal properties of CPS. We do this for both
qualitative and quantitative properties, with the same neural model, by reconfiguring its
parameters. This approach leverages the functional plasticity of the neural models.

To cope with the system’s complexity, and to provide an additional safety mechanism, it
is important in many practical scenarios, to show at runtime, that the system has not
violated its safety requirements. Runtime verification [Leu12], a light-weight state-of-
the-art verification technique, treats the system under investigation as a black-box, and
reports system’s conformance to formal requirements in a current run. In the automotive
electronic-development domain, it is necessary to speedup the testing process for sensing
products. In particular, runtime verification solutions are of great interest, since they are
non-intrusive, and in principle, capable to check in real-time, the specification conformance
of sensing blocks at various abstraction layers, or collect and report violations.

The main theoretical goal of this thesis, is to study neural models for the control and
monitoring of CPS. The main practical goal of this thesis is to build efficient runtime
monitors in hardware and software, that are applicable to the state-of-the-art components
of CPS, in particular, of the automotive electronic-development domain CPS.

These research-statement goals imply that the solutions to be developed within the scope
of this thesis, should possess the attributes of:

1. Simplifying controller design in CPS while taking into account both, the uncertainty
about the environment, and prior knowledge about the system;

2. Unifying qualitative- and quantitative-monitoring techniques for checking temporal
system-properties, by exploiting plasticity of neural models;

3. Speeding up product testing by allowing the runtime monitoring of the CPS under
investigation, in both hardware and software.

Solutions with the aforementioned attributes are attractive from two perspectives. First,
they facilitate the design of CPS controllers as well as CPS monitors by using neural

3

1. Introduction

models as a common basis. Second, they allow to introduce additional safety mechanisms,
which are not only capable to catch errors (during several phases of product development),
but also speed up the testing process of CPS (e.g. angular sensing product).

1.3 Research Questions
The research work that is conducted within the scope of this thesis is mainly aligned
around the following research questions:

RQ 1: How does one design controllers for CPS using neural models?

The ability of neurons to adapt to an uncertain and dynamically changing environment
through structural and functional plasticity [DPM+11], renders their models as a very
natural candidate for CPS controller design. CPS controllers also operate in an uncertain
and dynamically changing environment, and they also need to adapt.

Efficient designs should consider controllers that are capable to adapt through plasticity
(i.e. learning), while taking into account uncertainty and prior experience. It is therefore
very important to understand how nature’s principles, discovered by neuroscience, can
be mapped to CPS controller design. One of them is for example, the availability of
a measure, quantifying controller’s uncertainty. This can be used whenever deciding
which action to take. From a practical point of view, the measure has to be representable
through programming constructs, that are familiar to software engineers.

Summarizing, the aim of this work is to develop adaptive CPS controllers inspired by
neural models. These should quantify their uncertainty when taking decisions. Moreover,
they should aim towards smooth average decisions, thus increasing their robustness.

RQ 2: How does one perform qualitative and quantitative monitoring of
temporal CPS properties, at runtime, when using neural models?

The evolution of CPS observable outputs as well as the one of CPS inferred states,
must satisfy the CPS requirements specification (RS). Deviations from these RS might
manifest errors in the system, which could lead to failures with possibly catastrophic
consequences (e.g. if the CPS is safety-critical [Kop11]). Monitoring the evolution of the
CPS in real-time, allows to catch important deviations from the RS early on, and opens
the possibility to bringing the CPS back to a safe state. Temporal logics [Lon89] allow
to formally define an RS, as the set of all permissible CPS evolutions in time. Thus, they
provide a formal notation for RS compliance.

CPS with mixed-critical properties [BD13] require not only a qualitative “pass-fail”
verdict, but also a quantitative verdict, measuring the amount of satisfaction/violation
of the RS. This could signify, for instance, a level of service degradation, for non-safety-
critical requirements. Quantitative interpretations of the RS assess the distance from
satisfaction/violation. This can be viewed as an additional robustness metric.

The use of neural models for monitoring CPS allows to unify the qualitative and quanti-
tative measurement of temporal logic properties. Moreover, neurons as universal atomic

4

1.4. Scientific Contributions

components for building monitors, allow to apply both functional and structural changes,
in order to configure the best circuit producing the monitoring verdict.

RQ 3: How does one speed up testing within automotive electronic development?

From the industrial point of view, e.g. for Infineon [Inf17], which is an automotive Tier 2
supplier, it is important to reduce CPS testing time and engineering effort. Developing
solutions that meet such needs, by introducing safety mechanisms capable of capturing
errors in different phases of the design process, is of utmost importance. They allow CPS
suppliers to meet strict safety standards (e.g. ISO 26262 [iso11]).

Although testing is an accepted industrial practice, it involves substantial manual work.
Moreover, it is by no means complete, as it is mainly performed over short fragments of
recorded data. Together with post-silicon verification, testing accounts up to 60-70% of
total development time [NN16]. Shortening this while also increasing coverage is crucial.

Since monitors are capable to check the requirements at the system’s runtime, they bring
substantial potential for reducing the amount of data stored. They help identifying the
relevant portions of data to be saved (as opposed to post-processing of the recorded
data). Runtime monitoring also provides a way for checking classes of requirements at
different abstraction layers. Hence, it is necessary to identify how runtime monitoring
can be incorporated in the existing design practice in the automotive electronic industry.

RQ 4: What are the necessary steps to building efficient runtime monitors in
hardware that are applicable in the industrial state-of-the-art practice?

For runtime monitoring to be accepted in the existing industrial practice, it needs to be
expressive enough, in order to formalize the RS of real products, provide sufficient perfor-
mance to keep up with the speed of monitoring systems (enable real-time data processing),
facilitate easy reconfiguration, and present monitoring results in a comprehensive way.

Current industrial practice relies on RSs that are written using natural language and
graphics. An engineer has to interpret these requirements, and develop the corresponding
tests. In order to eliminate ambiguities in RS interpretation, it is possible to specify the
temporal evolution of a system in a suitable variant of temporal logic, which as an added
benefit, allows the automatic translation of the RS to the monitoring code.

It is very important to develop a methodology enabling the translation of formal RSs to
hardware-monitor implementations, capable of giving their verdicts in real time.

1.4 Scientific Contributions
This section gives more details about the scientific contributions of this thesis. Figure 1.1
is a “birds-eye-view” of the work, which is then elaborated in more detail.

Contribution 1: We develped a design method for adaptive CPS control,
which is based on either artificial or biological neural models. We show the

5

1. Introduction

Runtime
Monitoring

Neural
Models

Automotive
Electronic
Devel-
opment

CPS

Thesis

DATE’2016

IWANN’2017

CDC’2015

CAV’2017

RV’2016

DVCon’2016

ISoLA’2016

Figure 1.1: Thesis contributions

utility of (neural) programs which contain branching statements that are capable to
incorporating and quantifying uncertainty. The method consists of two steps. In the first
step, one writes a program (a controller) skeleton, whose sigmoidal stochastic branching
statements leave their mean and variance unspecified. In the second step, one learns
the proper means and their associated variances in a supervised fashion, from (good)
teacher’s traces.

This adaptive-controller design method has been validated, by developing and testing
a parallel-parking controller for a Pinoneer 3-AT rover, which is available in our CPS
laboratory. We used artificial neural-networks models for the learning purpose, as well as
biological neural-networks models based on the C.elegans nematode’s neurons.

Details on applying neural models in the design of adaptive CPS controllers are discussed
in Chapter 4. Contribution 1 has been published in [SRB+15].

Contribution 2: We developed both qualitative and quantitative techniques
for CPS monitoring, based on spiking-neurons networks models. Spiking neu-
ral networks [Vre03], which were pioneered by the analysis of the action potential of the
giant squid by Hodgkin and Huxley [HH52], have now became the classical biophysical
model of a neuron. A digital spiking neural model, as proposed by [CMA+13], allows
efficient realizations of neural circuits in the digital state-of-the-art hardware.

We developed a method that allows to create a neural circuit and configure its neurons
to perform runtime monitoring of temporal logic properties of analog signals. The
circuit receives the input signal and outputs the monitoring verdict for a temporal logic
specification. For quantitative evaluation we show how to perform fundamental arithmetic
operations over spike rates using neural models. These operations are the necessary

6

1.5. Structure of the Work

components for computing quantitative semantics of a temporal logic specification at
runtime. If the entire (or sufficiently large portions of the) signals are given in advance,
we show how a temporal logic semantics, defined using convolution, can be utilized for
constructing neural circuits that are capable to compute the monitoring verdict.

Details on qualitative monitoring using spiking neurons are discussed in Chapter 5.
Quantitative monitoring with spiking neurons are presented in Chapter 6. The results of
Contribution 2 have been published in [SNB+16a, SHR+17].

Contribution 3: We applied and validated our runtime verification techniques
in the automotive electronic-development domain. As discussed in Section 1.3,
it is very important to develop methods that are capable to speed up CPS testing. We
analyzed the design and production phases of an automotive sensing component, showed
how runtime verification can be applied, and what benefits and limitations it brings. Our
results show that during the testing process, runtime monitoring can be applied in the
pre-silicon concept-design phase, as well as in the post-silicon verification phase, to check
the requirements conformance of the manufactured sensing component.

The non-intrusive nature of runtime monitoring allows one to use it as an additional
safety mechanism and integrate it into existing design practice. Details on applying
runtime monitoring for automotive electronic development are discussed in Chapter 7.
The results of Contribution 3 have been presented in [SNBG16, NBN+16].

Contribution 4: We formalized the industrial-strength protocols Single Edge
Nibble Transmission (SENT) and Short PWM Code (SPC), automatically
generated monitors out of this formalization, and checked the conformance
with these protocols of an Infineon’s angular-sensing component at runtime.
To show the applicability of the results on the industry-relevant case study, we illustrate
the process of runtime monitoring requirements for the SENT and SPC protocols.

For these protocols we implemented the full flow from the analysis of existing documenta-
tion, formalization of requirements classes, creating simulation environment and violation
scenarios, software/hardware implementation of runtime monitors and testing monitors
on the real test data in industrial environment. For a subclass of asynchronous serial
protocols we also defined a procedure to construct runtime monitors that are capable (i)
to recover after violations, (ii) collect and report error types to the user.

Electrical and timing requirements of SENT and SPC protocols were formalized using two
formalisms and compared in terms of resources, speed and conciseness of the formalized
specifications. Details on runtime monitoring of the SENT and SPC protocols are
discussed in Chapter 8. Contribution 4 was published in [SJN+17, SNB+16b].

1.5 Structure of the Work
The remainder of the thesis is organized as follows (see also Figure 1.2):

7

1. Introduction

• Chapter 2 provides background information, and introduces the terminology and
concepts used throughout the thesis. In particular, it reviews types of neural models,
runtime monitoring, and testing processes in automotive electronic development.

• Chapter 3 gives an overview of the existing scientific and industrial work, that is
related in some way to the contributions of this thesis.

• Chapter 4 describes neural programs, how to define their skeleton, and how to
learn means and variances of their branching statements. It also shows the use of
stochastic branching in quantifying the uncertainty of adaptive CPS controllers.

• Chapter 5 focuses on performing qualitative monitoring of CPS using a digital
spiking neural model, and presents a method for constructing a monitoring circuit,
which computes a verdict of the temporal-logic properties.

• Chapter 6 discusses quantitative monitoring using digital spiking neural models,
and the method for configuring neurons to perform computations over spike rates.

• Chapter 7 elaborates on the applications of runtime monitoring in the very rich
and important domain of automotive electronic development.

• Chapter 8 discusses the formalization of the SENT and SPC protocols as industrial
case studies, and the use of this formalization in runtime verification. It also provides
details on recovery after detecting violations in asynchronous serial protocols.

• Chapter 9 concludes the thesis, offers a critical summary of the work, and discusses
future research directions that emerged as a consequence of this work.

8

1.5. Structure of the Work

Chapter 1:
Introduction

Chapter 2:
Background

Chapter 3:
State of the
Art Analysis

Chapter 4:
Neural Models
for control &
quantifying
uncertainty

Chapter 5:
Neural Models
for qualitative
monitoring

Chapter 6:
Neural

Models for
quantitative
monitoring

Chapter 7:
Runtime

Monitoring in
Automotive
Electronic

Development

Chapter 8:
Industrial
Case stud-
ies and

Evaluation

Chapter 9:
Conclu-
sion and

Future Work

Figure 1.2: Outline of the thesis
9

CHAPTER 2
Background

This chapter summarizes information about well-established concepts and methodologies
that form the basis of the thesis and are essential for understanding the remaining part
of the work. In Section 2.1 we elaborate on neural models, emphasizing similarities and
fundamental differences between artificial and biological neurons. The aforementioned
neuronal models will then be used in Chapters 4, 5, and 6 for designing controllers
and monitors for the cyber part of CPS. We then recap basic notions of the runtime
monitoring in Section 2.2, discuss the specification languages for defining properties and
online monitoring approaches. We will then use neural models for performing runtime
monitoring in Chapters 5 and 6. In Section 2.3 we provide the details about the testing
process in automotive electronic development, and then build up on this information in
Chapters 7 and 8 when talking about industry-relevant parts of the work.

2.1 Neural Models

Although the history of the scientific development of neuron theory can be reconstructed
since the XIX century with the fundamental breakthroughs of Camillo Golgi [She15],
Ramón y Cajal [LMBA06], Hodgkin & Huxley [HH52], and many other scientists [She15]
who contributed both theoretically and experimentally to the development of the neu-
roscience, in the field of informatics neurons start attracted significant attention from
the 1943 paper of McCulloch & Pitts [MP43], where neuronal “all-or-none” activity was
discussed as as a property for building logical calculus. Since then, advances in artificial
neural networks are showcased by their successful applications in different types of tasks,
e.g., classification (handwritten digits recognition [LBD+90]), speech [GrMH13] and
image recognition [SZ14], artistic style transfer [GEB15] and many others [DY14]. The
main conceptual differences of the models and architectures of biophysical and artificial
neurons and networks are discussed in subsequent section.

11

2. Background

2.1.1 Biophysical and Artificial Neurons Models and Networks

As already mentioned in Chapter 1, from biophysical point of view the primary concern
is to discover “how things are”, while to solve practical problems in the field of computer
science it is necessary to understand “how things ought to be”. Both perspectives
see neurons as non-linear information processing elements and the interaction of these
elements allows to solve complex tasks. In this section we refer to a neuron with a
radial-basis activation function as an “artificial neuron”; we also refer to a generalization
of Hodgkin & Huxley [HH52] model (which is not limited to sodium and potassium ionic
channels, e.g. [DMSS11]) as a “biophysical model”. Formally, the artificial neuron can be
described as a tuple: (x,w, f, out), where x = {x0, x1, . . . , xn} and w = {w0, w1, . . . , wn}
are respectively n-dimensional vectors of inputs and weights; an activation function
f : D1 → D2 defines neural computation and maps inputs to an output, D2 is usually
normalized to [0, 1]; out ∈ D2 is a variable that holds the computation result:

out = f(wTx). (2.1)

The biophysical neural model is a tuple (V, s, Iin,g,params, fg,Ei, Cm), where V is the
membrane potential of the cell; s is the spike output; Iin represents input stimulus
current; g = {g1, g2, . . . , gm} is a vector of conductances for each ionic channel gi, (also
leak channel); a tuple params = (params1, . . . ,paramsm) holds auxiliary parameters
for describing temporal evolution of the conductances gi; a vector f (g) = {f (g)

1 , . . . , f
(g)
m }

defines functions f (g)
i : paramsi → R that capture specific time dependence of each

ionic channel, Ei = {E1, . . . , Em} represents potentials of each ionic channel; Cm is a
membrane capacitance. Membrane potential of a neuron is then described by the ordinary
differential equation (ODE):

Cm
dV

dt
= Iin −

m∑
i=1

gif
(g)
i (paramsi) [V − Ei] . (2.2)

The output of an artificial neuron (see Figure 2.1 and Equation 2.1) is a value of the
activation function, computed over a weighted sum of inputs, while the output of a
neuron in a biological simulation is a rapid depolarization of the membrane potential
called action potential (or spike), which can be seen as an “all-or-none” event. The
neuron outputs a spike when the following two conditions are met: (i) the membrane
potential from the Equation 2.2 is above the pre-defined threshold (usually in the range
40-60 mV), (ii) the membrane potential reaches the local maximum.

The artificial model introduces two simplifications: (i) the model is untimed and mem-
oryless (i.e., no time dependence in Equation 2.1), while for the biophysical model
(Equation 2.2) the temporal evolution of the membrane potential is an essential property;
(ii) each artificial neuron has access to the state of the parent’s neuron (i.e., the “out”
variable), while in the biophysical model the state (the membrane potential) and output

12

2.1. Neural Models

(spike) are decoupled: communication between neurons happens via spikes, which lead to
neuro-transmitter release and opening of ionic channels that, in turn, cause the flux of
currents in the membrane. The synaptic transmission in the artificial neuron is modelled
as excitatory (or inhibitory) weights, values of which are obtained during training phase,
while in the biophysical model the synapses have much more intricate structure [DA05].
In the aforementioned biophysical model the synaptic transmission can be represented
via introducing additional ionic channels (e.g. Ca [Lli99]) or as an external stimulus
current Iin.

x0
w0

x1 w1

xi

wi

xn

wn

out

Artificial “point” neuron

Neurons in the cerebral cortex, Ramon y Cajal
Image credit: Instituto Cajal del Consjo Superior de Inves-
tigaciones Cientificas, Madrid/CSIC

Artificial neural network

Figure 2.1: Biophysical and Artificial neurons: a Bird’s Eye View

The Hodgkin-Huxley Neuron Model

A seminal model presented by Hodgkin and Huxley in [HH52] can be seen as a refinement
of the biophysical model described in Section 2.1.1. The model qualitatively describes
the dynamics of the membrane potential as a function of activation and deactivation of
sodium and potassium ionic channels. Membrane potential is defined as an ODE, which
relates ionic currents of the neuron of giant squid axon (for the detailed description the
reader is referred to [HH52]). The membrane potential is computed as follows [HH52]:

Cm
dVm
dt

= Iin − (ḡKn4(Vm − EK) + ḡNam
3h(Vm − ENa) + ḡL(Vm − EL)), (2.3)

where the vector of conductances (see Section 2.1.1) g = {gNa, gK , gL} comprises of
sodium, potassium and leak conductances; E = {ENa, EK , EL} represents reversal

13

2. Background

potentials of the sodium, potassium and the leak channels respectively; params =
({m,h}Na, {n}K , {1}L) are auxiliary voltage-gated variables to describe channels acti-
vation and deactivation; the temporal dependence of the parameters is guided by the
functions f (g) = {{m,h} −−→

Na
m3h, {n} −→

K
n4, 1 −→

L
1}.

The model possesses the following important properties: (i) the internal state (membrane
potential) and output are decoupled; (ii) at each time step neuron integrates its membrane
potential together with the inputs; (iii) the membrane potential stabilizes at the resting
value in absence of external stimuli; (iv) the frequency of outputting spikes is governed
by the refractory period, during which no spike can be initiated.

To make the model computationally efficient for large-scale simulations and applicable
in the context of “design sciences” various simplifications and abstractions has been
proposed. For instance, the programmable reset of the integration after emitting action
potential is described by nonlinear integrate-and-fire models [Izh04, GKNP14]. To be
able to run this type of model on the cyber components of CPS, careful complexity
reduction is required: avoiding computationally-expensive operations in digital hardware
(e.g., floating point operations). In the subsequent section we describe the spiking neural
model that is suited for implementation on the digital hardware, while still possessing
the necessary properties of the biophysical model.

The TrueNorth Neuron Model

The TrueNorth model is proposed by IBM [CMA+13] and describes a digital spiking neu-
ron, which follows the properties of the biophysical model introduced in previous section.
All the parameters of the model are either integer or boolean values, which facilitates the
implementation of the model in digital hardware (e.g., in Field-Programmable Gate Array
(FPGA)). The model performs three computational steps: (i) the synaptic integration of
the current membrane potential and the incoming inputs from the pre-synaptic neurons;
(ii) the leak integration to model the dissipation of energy in absence of input; (iii) the
“threshold-fire-reset” defines the reset behavior of the model upon reaching the thresholds.
The model has deterministic and stochastic modes; we review the deterministic part
of the TrueNorth model below. For an extended explanation, the reader is referred
to [CMA+13].

Synaptic Integration is the first computational step where every neuron sums up the
products of its inputs Ai(t) and weights sij . Every input is enabled by a flag wij . The
result is added to its previous membrane potential Vj(t− 1). Although in the original
model the maximum number of inputs bounded by 255, we drop this restriction and
assume that every neuron has a configurable N ∈ N number of inputs (the original
assumption comes from the chip restrictions):

Vj(t) = Vj(t− 1) +
N∑
i=0

Ai(t)wij sij (2.4)

14

2.2. Runtime Verification

Leak Integration accounts for energy dissipation, self-stimulation, and convergence to
an equilibrium in the absence of input. A TrueNorth neuron nj can exhibit negative, zero
or positive leak λj . To express divergent and convergent leak behaviors the leak reverse
flag εj can be set: in this case the leak changes its sign with the membrane potential’s
sign (i.e., when the signs are different, the leak forces Vj converge to zero) [CMA+13]:

Ωj = (1− εj) + εjsgn(Vj(t)) (2.5)

Vj(t) = Vj(t) + Ωjλj (2.6)

Threshold, Fire, Reset is computed at each time step to generate the binary “all-
or-none” output (spike or no spike). A neuron nj possesses a positive threshold αj
and a negative threshold βj . When the membrane potential Vj exceeds αj , the spike is
generated, and the membrane potential is reset. The TrueNorth model is extended with
three reset modes γj : (0) normal, (1) linear, or (2) non-reset. When Vj falls below the
negative threshold βj , no spike is generated, although the membrane potential is updated
depending on the reset mode γj and the saturation flag κj .

if Vj(t) ≥ αj (2.7)
Spike (2.8)
γj = 0 : Vj(t) = Rj

γj = 1 : Vj(t) = Vj(t)− αj
γj = 2 : Vj(t) = Vj(t) (2.9)

elseif Vj(t) < −βj (2.10)
if κj = 1

Vj(t) = −βj
else

γj = 0 : Vj(t) = −Rj
γj = 1 : Vj(t) = Vj(t) + βj

γj = 2 : Vj(t) = Vj(t) (2.11)

2.2 Runtime Verification

Runtime verification1 [Leu12, FZ12, Mal16, BLS11] is a lightweight verification technique,
which is concerned with a derivation of a verdict for a formally-expressed correctness
property ϕ. To derive a verdict, a monitor is attached to the observable outputs of the
system under scrutiny. Figure 2.2 shows a general way of integrating runtime monitoring
with an existing system: based on the observations from the Hardware/Software System,
a monitor delivers a verdict if a predefined specification is satisfied/violated. Runtime

1The terms “runtime verification” and “runtime monitoring” are used interchangeably in the thesis

15

2. Background

monitoring is non-intrusive and outputs whether the system satisfies its formal require-
ments. If, on the other hand, violation of the specification triggers control actions from
the observer to the system (i.e. the dashed line in Figure 2.2) the observer is seen as a
runtime enforcer [FMFR11, PFJ+13] of the property. The questions about enforcement
of formal properties are beyond the scope of the thesis.

Apart from the model checking, which, in general, tries to answer the question whether
all possible runs of a hardware or software system adhere to given correctness properties,
runtime monitoring [Leu12] tackles a more modest problem: “Does the current execution
meet a correctness property ?”. Stating the problem that way allows one to ensure that
actual implementation (apart from the model) satisfies the correctness properties and
employ runtime monitoring as a redundancy mechanism in safety-critical systems.

Hardware /
Software System Monitor Verdict

3 7

ϕ

Figure 2.2: Runtime Monitoring: System’s overview

Runtime monitoring usually deals with finite traces, and in online case the traces increase
in size with the progress of time [BLS11]. In Section 2.2.2 we review the differences of
monitoring hardware and software systems. As the monitor checks the formally defined
property ϕ, in the Section 2.2.1 we discuss formal specification of system’s properties.

2.2.1 Specifications of Temporal Properties

Although in state-of-the-art engineering practice still significant fraction of requirements
are expressed using combination of natural language and pictures (e.g. the requirements
for the SENT and SPC protocols), this way of specifying requirements is subject to
ambiguities and mis-interpretations between different communicating parties, and can be
a source of potential errors. Languages with formal semantics enable an unambiguous
interpretation of the properties in question and facilitate automatic monitor generation.

The relation of predicates over progression of time can be formulated using temporal
logics [Lon89]. Linear Temporal Logic (LTL) [MP92] is a well-established formalism that
allows to reason about temporal relations of events over infinite traces: (i) the notion of
time in LTL is rather logical then physical, (ii) temporal operators are unbounded and in
general only a subset of formulae can be evaluated over a finite prefixes – these main
motivations fostered extensions of the logic to be applicable in the domain of real-time
systems. Metric Temporal Logic (MTL) [OW08] is a real-time extension of LTL, which
introduced bounded temporal operators. For analog-mixed signal components (which
usually interface physical and cyber components of CPS) not only the time, but also the
input variables are usually in domain of reals. We now consider the extension of MTL
that is used in the thesis for specifying temporal behavior of analog-mixed signal systems.

16

2.2. Runtime Verification

Signal Temporal Logic (STL) [DMB+12] allows to specify mixed-signal properties
of analog/digital components. The syntax of an STL formula ϕ with past and future
operators over a set of boolean variables P = {p1, · · · , pm} and real-valued variables
X = {x1, · · · , xn} is defined by the following grammar [NN14]:

ϕ := p |x ∼ c | ¬ϕ |ϕ1 ∨ ϕ2 |ϕ1U Iϕ2 |ϕ1 S Iϕ2, (2.12)

where p ∈ P , x ∈ X; c ∈ Q is a constant; ∼ is a binary relation of the form: {≤, <,=, >
,≥}; interval I is of the form [a, b], where a, b ∈ N and 0 ≤ a ≤ b. An STL specification
ϕ is interpreted over a mixed signal w which is a partial function: w : T → Bm × Rn,
where T is an interval [0, T) with arbitrary finite value T i.e. a signal is a combination
of boolean and real-valued variables that are at most T in length.

The semantics of an STL formula w.r.t. to a signal w at a time point i is defined as
follows (where wx[i] we denote xth component of w):

(w, i) |= p ⇐⇒ p[i] = > (2.13)
(w, i) |= x ∼ c ⇐⇒ wx[i] ∼ c (2.14)
(w, i) |= ¬ϕ ⇐⇒ (w, i) 6|= ϕ (2.15)
(w, i) |= ϕ1 ∨ ϕ2 ⇐⇒ (w, i) |= ϕ1 or (w, i) |= ϕ2 (2.16)
(w, i) |= ϕ1U Iϕ2 ⇐⇒ ∃j ∈ (i+ I) ∩ T : (w, j) |= ϕ2

and ∀i < k < j, (w, k) |= ϕ1 (2.17)
(w, i) |= ϕ1 S Iϕ2 ⇐⇒ ∃j ∈ (i− I) ∩ T : (w, j) |= ϕ2

and ∀j < k < i, (w, k) |= ϕ1. (2.18)

Other STL operators are derived from the definition in a standard way: > = ϕ ∨ ¬ϕ;
⊥ = ¬>; eventually 1I ϕ = >U Iϕ; once QI ϕ = >S Iϕ; always 0I ϕ = ¬1I ¬ϕ; his-
torically `I ϕ = ¬QI ¬ϕ. Temporal operators: eventually, always, once and historically
also admit a natural direct definition of their semantics:

(w, i) |=1I ϕ ⇐⇒ ∃j ∈ (i+ I) ∩ T : (w, j) |= ϕ (2.19)
(w, i) |= 0I ϕ ⇐⇒ ∀j ∈ (i+ I) ∩ T : (w, j) |= ϕ (2.20)
(w, i) |=QI ϕ ⇐⇒ ∃j ∈ (i− I) ∩ T : (w, j) |= ϕ (2.21)
(w, i) |= `I ϕ ⇐⇒ ∀j ∈ (i− I) ∩ T : (w, j) |= ϕ. (2.22)

From now on we consider all STL specifications of the form 0 ϕ, for brevity of notation
we omit the implicit globally operator from the specification if it is clear from the context.
Figure 2.3 shows examples of STL future and past temporal operators: at the time instant
ti, we look either forward (future) or backward (past) over the time axis to evaluate
the corresponding operator. Monitoring of the future STL formulae is acausal, i.e. the
evaluation of the formula at a time instant ti might depend on time interval ti + I.

17

2. Background

a b

1I ϕ []
ϕti

a b

0I ϕ []
ϕ ϕ ϕ ϕ ϕti

a b

ϕ1U Iϕ2 []
ϕ1 ϕ1 ϕ1 ϕ1 ϕ1 ϕ1 ϕ2ti

b a

QI ϕ []
ϕ ti

ab

`I ϕ []
ϕ ϕ ϕ ϕ ϕ ϕ ti

ab

ϕ1 S Iϕ2 []
ϕ1 ϕ1 ϕ1 ϕ1 ϕ1ϕ2 ti

Figure 2.3: STL past and future temporal operators

2.2.2 Runtime Monitoring in Software and Hardware

Programming a software application and designing a hardware component involve various
technology stacks, and base on different abstraction layers. A view of a program as an
abstract entity, which maps inputs to outputs with a termination as a desired property
differs from a view of reactive systems, where hardware and software components are
tightly coupled with ongoing interaction with the environment. It is usually the case that
the speed of processing events is significantly larger in hardware systems, e.g. in Chapter
8 runtime monitor of the sensor interface evaluates the specification at the rate of ≈ 106

times per second, which cannot be achieved in a software system.

2.3 Automotive Electronic Development
In order to comply with strict safety standards (e.g. ISO 26262 [iso11]) manufacturers
in the automotive electronic industry often follow a variant of the V-model [RSB+14],
where the development process starts with identifying requirements from the Original
Equipment Manufacturer (OEM) or Tier 1 partner, designing a concept or a prototype,
followed by the implementation and evaluation activities, testing, and possibly iterating
back to the design phases.

The Verification and Validation (V & V) phase in this type of design cycle accounts up
to 60% of the total development [NN16], and it is necessary to plan V & V activities
early on, alongside with first iterations of the concept development. Main activities
include [NN14] (i) pre-silicon verification, where the proposed solution is simulated,
both at component and system level; (ii) emulation of the developed hardware on the
existing hardware platform to assess implementation bottlenecks before manufacturing;
(iii) post-silicon verification, where the manufactured component is evaluated – as seen
from these activities, the V & V phase in the state-of-the-art industrial environment
comprises extensive product testing under different scenarios, including stress conditions –
which is different from verification in a sense of model checking where an formal evidence

18

2.3. Automotive Electronic Development

(e.g. a proof) is obtained that the investigated system will not violate safety properties.
Although model-based design (e.g. SCADE [MSH+13]) can be used to generate C-code
alongside with the proof, this approach is not directly applicable in the context of
integrated circuit development.

To reduce the V & V time without sacrificing coverage it is important to automate
the testing phase for the engineer, and to reuse verification scenarios and tools across
validation and verification phases.

19

CHAPTER 3
State of the Art Analysis

This chapter provides an overview and analysis of existing approaches related to the topic
of the thesis. Since the presented contributions are closely connected with several research
fields, state of the art analysis has the following structure: (i) we first discuss related work
concerning adaptive software control of CPS and neural programs in particular; (ii) we
then elaborate on applications of neural models for performing qualitative and quantitative
runtime monitoring. For the industry-relevant parts of the work we analyze existing
approaches for protocol verification, formalization, and hardware runtime monitoring
related to the SENT and SPC communication protocols.

3.1 Related Work on CPS Control with Neural Models

In order to apply key concepts of neural models in the context of CPS control (Chapter 4)
we elaborate on state-of-the-art methods for creating controller software for CPS. Adaptive
and intelligent control are established fields in control theory [AW94, AP93], which aim
respectively to adjust the parameters of the controller during system’s runtime and use
methods from Artificial Intelligence (AI) for achieving control objectives. Components of
CPS operate in dynamic and uncertain environments, which should be reflected in design
of controller software. From the computer science perspective, we aim to incorporate
properties of neurons as functional plasticity and learning in the controller design.

In our work we propose special neural-inspired control-flow statements for controller
software (namely nif and nwhile statements, discussed in detail in Chapter 4), which can
be explicitly related within a Gaussian Bayesian network (GBN) and allow functional
plasticity (i.e. adapting) of a controller during system’s runtime. Moreover, we also
considered how to encode within the proposed framework a biological controller of the
C. Elegans neural circuit, and implemented the framework on top of the Robot Operating
System (ROS), which enabled adaptive parallel parking of the Pioneer [Ade] robot.

21

3. State of the Art Analysis

Although probabilistic programs, GBNs and neural networks were studied before, the de-
velopment of control and simulation programs with smooth thresholds and the associated
learning part is, to the best of our knowledge, new and not considered before.

Probabilistic programs introduced in [GHNR14] differ from “traditional” ones by the
ability to sample at random from the distribution and condition the values of variables
via observations, with the result of the program equals to the expectation of the return
value. This approach requires static analysis to give an output of the program, which
is unpractical for controlling CPS subsystems, since controlling such systems should
be done in real-time together and provide capabilities of adapting the outputs of the
controller. Kaminski et. al. [KK17] studied execution of probabilistic programs with
random variables and the expected values after program termination, and proposed
extension of pre-expectation calculus for dealing mixed-signed post-expectations.

In [CSL10], the authors adapted the signal and image processing technique called Gaussian
smoothing (GS), for program optimization. Using GS, a program could be approximated
by a smooth mathematical function, which is a convolution of a denotational semantics of
a program with a Gaussian function. This approximation facilitates solving the parameter
synthesis problem. In [CSL11] this idea was extended to define soundness and robustness
of smooth interpretation of programs. In these works the authors do not consider any
methods for eliminating the re-normalization step of the Probability Density Function
(PDF) when a variable is passed through a conditional branch in the execution trace.
Moreover, they did not consider to apply their approach for simulating neuronal circuits
and in particularly tap withdrawal circuit of C. Elegans.

Our framework allows to associate a GBN with the program skeleton, and learn param-
eters of the network. In general, learning Bayesian Networks comprises different tasks
and problem formulations: i) Learning the structure of the network, ii) Learning the
conditional probabilities for the given structure, and iii) Performing querying-inference
for a given Bayesian Network [Nea03]. In [HG95] the authors introduce a unified method
for both discrete and continuous domains to learn the parameters of Bayesian Network,
using a combination of prior knowledge and statistical data. We adapt this method, and
use it for updating variances about each control action during the system run.

Fuzzy control [PY97] and our neural control method have different ontological commit-
ments: within our approach statements about the world are either true or false, and
partial knowledge renders controller’s beliefs to be probabilistic. In fuzzy-logic control
the statements about the world are fuzzy (have a continuous domain of values) whereas
the knowledge about the world is total. Moreover, fuzzy logic implicitly assumes (in
the definition of conjunction) that variables are independent, whereas we do not require
this assumption. In fact the dependence between variables plays a key role in learning
parameters of a GBN and identifying variances about control decisions.

As every controller, a neural controller must be aware of the internal state of the process
to be able to robustly control the CPS. Sensors measure the outputs of a process, whereof
the state can be estimated. The measurements are distorted by noise and the environment

22

3.2. Related Work on Neural Models in Monitoring

may be unpredictable. State estimators [Mit07, TBF06, AMGC02] and in particular
Kalman filters [TBF06, WVdM00] are commonly used methods to increase the confidence
of the state estimate evaluated out of raw sensor measurements.

In Chapter 4 we showcase our framework on the parallel parking case study of the mobile
robot. Various formulations of a mobile parking problem were extensively studied for
robots with different architectures [IMDACPR+12, JS99, KD05, SGC+12, LYW+10].
In [LYW+10] the authors use a custom spatial configuration of the ultrasonic sensors
and binaural method to perceive the environment and park the robot using predefined
rules. Another approach [KD05] is to approximate the trajectory for the parking task
with a polynomial curve, that the robot could follow with the constraints satisfied, and
minimize the difference between specified trajectory and actual path. In [ACN10] the
authors try to infer a “hidden trajectory” from a series of observations, while in our
setting in order to adapt we allow all admissible trajectories.

3.2 Related Work on Neural Models in Monitoring

In Chapters 5 and 6 we apply neural models for qualitative and quantitative runtime
monitoring of temporal logic properties. Acceptable overhead of runtime monitoring, the
ability to check a system as a “black-box” without the system’s model, made it appealing
both from theoretical [SBS+12, KBS+13] and practical perspectives [WH08, BLMA+05].

The authors in [SBS+12] explore overhead-accuracy trade-off of a runtime software
monitor and use Hidden Markov Models (HMMs) to retain high probability of being
accurate while introducing gaps in observations. In [MN13a] the authors provide a
procedure to directly check properties of signals in continuous time and monitor mixed-
signal specifications. Fast, hardware-based, online monitoring has also drawn a great
deal of attention in recent years [RFB14, DGG+05a, CES13]. In particular: 1) Synthesis
of monitors for safety and liveness LTL properties [CES13], 2) Design of sophisticated
architectures to record events for MTL property checking [RFB14], 3) Synthesis of
checkers for Property Specification Language (PSL) assertions [DGG+05a]. Although
concerned with hardware monitoring, all these works did not, however, consider applying
neuronal architectures for the task.

Identifying a suitable neural model for runtime monitoring should be done with care:
From a biophysical point of view each neuron has on the order of 104 of synapses [SP89];
state-of-the art models account about 20 ionic channels, 150 state variables and 500
parameters [DMSS11]. Moreover, since the synapses are structurally and functionally
plastic devices, the dendritic spines of the neuron [TCK+02] and the efficacy of synapses
change during the operation (e.g. spike-time dependent plasticity [DP06]). We are aware
that taking into account geometrical topology allows to increase the expressiveness and
e.g. perform orientation selectivity in the dendritic inputs [JRCK10], though to remain
computationally efficient we consider only the single-compartment neural models [Bre15].

In the seminal paper [HH52] Hodgkin and Huxley presented a conductance-based spiking

23

3. State of the Art Analysis

neural model that describes the dynamics of generating an action potential, the role
and function of sodium and potassium ionic channels. The model of Hodgkin and
Huxley is biophysically accurate [Izh04], and has been refined with other type of ionic
channels [DMSS11]. A neuron is modelled as an active RC-circuit, in which the opening
of ion channels follows in response to influx of external current stimulus. The membrane
potential, inward (sodium), and outward (potassium) currents are modelled as a set of
differential equations. Although numerous software and hardware implementations (e.g.
[Hin93, GD07] and [SWM92, GBL04, ILBH+11, MH15] respectively) of the Hodgkin and
Huxley model are available, to the best of our knowledge we are not aware of the works
that study computations with spike rates and explicitly compare the biophysical model
with hardware-optimized spiking models.

The leaky-integrate-and-fire (LIF) models approximate biophysical single-compartment
neural models, and capture relevant behaviors of neurons [GKNP14]: 1) Neuronal
dynamics can be seen as summation process (i.e. integration); 2) Membrane potential
of neurons leaks over time to its resting value; 3) Neurons communicate information
via spikes, the form of which is not important, and only their number over time is of
relevance. The approximation of the neuron behavior can then be summarized as follows:

• Synaptic Integration: gather inputs from other neurons;

• Leak: decrease membrane potential by a leak amount;

• Firing & Reset: spike and reset of excited neurons.

Although the LIF models approximate biological behaviors, with approximations often
being vague, empiric, and facing simplification trade-offs due to enormous parameter
space, the LIF models have also been analyzed using formal methods and tools. Aman et.
al. [AC16] and Ciatto [CMG17] independently from each other developed formalization
of the LIF models as timed automata, and then used UPPAAL to check the properties of
neural networks defined as temporal logic formulae. The authors in [AC16] identified and
checked path properties, such as particular assignments of output neurons after performing
the computation. Ciatto [CMG17] formalized a subset of biophysical firing patterns in
CTL, and used UPPAAL to verify whether given parameters satisfy specification.

As far as underlying hardware implementation is concerned, Cassidy et. al. [CMA+13],
Esser et. al. [EAA+13], and Amir et. al. [ADR+13] in a series of papers introduced the
TrueNorth hardware architecture, which is based on a versatile spiking neuron model
briefly introduced in Section 2.1.1. The TrueNorth model [CMA+13] is digital with all
the parameters being either integers or boolean values, since floating point computations
are expensive in hardware. The proposed TrueNorth model is an extension of the LIF
models. The model, beside reproducing relevant biological behaviors, can also be used
for deterministic and stochastic computations. While the use of the TrueNorth model
in capturing biological behaviors is described in some depth in [CMA+13], this is not
the case for the definition of logical or arithmetic functions. In Chapters 6 and 7 we

24

3.3. Related Work on Runtime Verification in Automotive

investigate how to configure the model to obtain the behaviors of interest: quantitative
monitors and computational blocks.

In [ADR+13] the authors present a corelet: a programming framework and an abstraction
that encapsulates neurons performing a specific task. In [EAA+13] the authors consider
the application of IBM’s neuronal architecture for digit and tone recognition, HMM
sequence modelling, and eye detection, with special spiking retina sensors. The application
leveraged the presented programming model, which combined “corelets” corresponding to
the different functions. Their description does not reveal implementation details and is
not reproducible, the authors also did not consider monitoring as a possible application.
In contrast, we build our monitors on top of the TrueNorth neural model starting from
single neurons, combining them into a hierarchy: In Chapter 5 of the thesis we look at
the problem in a different way and present a method to evaluate MTL specifications ϕ
using a neural circuit of spiking neurons.

Although the authors in [CMA+13, ADR+13, EAA+13] implemented the architecture
on the dedicated hardware chip, it is not publicly available on the market. We aim,
on the contrary, to develop neuromorphic hardware accelerators on FPGAs and ZYNQ
architecture in particular, which are widely available, have an established design flow, and
allow Advanced eXtensible Interface (AXI)-style communication between the processing
system and the programmable logic. We also implemented a python open-source simu-
lation of both biophysical and digital models which steps towards the target hardware
implementation of neuromorphic accelerators on a ZYNQ FPGA processing system.

The work of [RBNG16] draws connection between temporal logic and convolution. In
order to compute compliance of a signal with a specification ϕ, one can obtain the
results by performing convolution of the signal of interest with a specific window, which
is directly derived from ϕ. Using min/max interpretation of a product/sum, classical
qualitative MTL semantics is obtained. We follow on this result and develop a circuit,
which we can use for evaluating past MTL formulae. We have developed implementation
of this semantics using the TrueNorth neural model.

3.3 Related Work on Runtime Verification in Automotive

Runtime verification of formally defined properties, in its general view, is an extremely
diverse research area in terms of requirements-specification languages [Eis07, VR14,
DMB+12, MN13b, FMNU15], approaches to construct the monitors [TRV12, SMR15,
BZ06, PZ08a], and target applications [JKN10, NN16, KFL15, RRS14].

Evaluating a temporal logic specification ϕ over a trace or a signal is usually asso-
ciated with either automata construction [NP10, MNP06] or a concept of temporal
testers [PZ08a] by Pnueli. In [NP10] the authors presented a technique to build a de-
terministic timed automaton that accepts the traces that satisfy an MTL formula ϕ.
Heffernan et. al. [HMF14] analyzed how functional safety properties, identified in the
ISO 26262 standard, can be runtime-checked for a gear shift controller by an automaton-

25

3. State of the Art Analysis

based monitor for past-LTL specifications, however the gear-control automaton does
not scale well when the number of requirements increase further, which is vital for life
cycle system support. Pnueli et.al. [PZ08a] proposed a compositional, a “transducer”-like
way of evaluating temporal logic formulae, which was successfully applied in hardware
runtime monitoring, e.g. in [JBG+15]. In the thesis, this way of building monitors is
used extensively, as it allows to build the monitoring system hierarchically.

The FoC framework of IBM [DGG+05b, Eis07] allows to generate monitors for PSL
assertions. Although PSL allows to specify the evolution of a system, the formal
semantics is based on the sequence of states and does not include a notion of time
explicitly. STL [MNP08] and Timed Regular Expressions (TRE) [ACM02], on the other
hand, were designed to deal with real time, and allow to precisely identify time intervals
of interest and bound temporal modalities to these intervals.

In automotive industry, strict safety standards (e.g. ISO 26262 [iso11]) require from
manufacturers (OEM, Tier 1, Tier 2 suppliers) to provide assurance guarantees of safety
properties for corresponding Automotive Safety Integrity Levels (ASILs). Although, as
pointed out by Dijkstra [Dij70], “Program testing can be used to show the presence of bugs,
but never to show their absence!”, it is still a highly-accepted and predominant practice
for providing a witness of requirements conformance. The use of formal verification and
model-based design (although have shown their strengths [MSH+13]) have still limited
applicability due to complexity and heterogeneity of the associated systems. In [KF12]
the authors elaborate on employing static analysis techniques for checking properties of
programs to comply with ISO 26262, yet without concrete examples or evaluation.

To facilitate finding errors, several testing techniques have been proposed. Fainekos
et. al. [FSUY12] used guided stochastic search for inputs and parameter space of the
model under test to steer the simulation to a falsifying trajectory. The steering relies
on minimizing a robustness metric which measures distance between a temporal logic
specification and a trace. In general, the proposed method can be seen as an extension of
“constraint random verification” [YPA06], where to reduce test creation time and remove
human bias the Design Under Test (DUT) is run against restricted random stimuli.

Automotive electronic components combine digital and analog parts, which could create
intricate influences and hard-to-discover failures, and, in practice, are often needs to be val-
idated over long-term runs. Hardware [SLB+08, NN14, NW14] and software [DWPM11]
emulation is increasingly used to speed up the testing process and verify system com-
ponents in isolation. Drolia et. al. in [DWPM11] developed an automotive testbed,
that connects Electronic Control Units (ECUs) with a car simulation environment and a
middleware for diagnosis and evaluation. The authors collected runtime information and
evaluated modelled and implemented controllers, although they did not define properties
to evaluate in a formal way. FPGA-based development [NN14, NW14, NBHT14] acceler-
ates model evaluation and enables real-time testing in safety critical automotive electronic
system development at an early stage and helps to overcome simulation bottlenecks.

Hardware runtime monitors [JBG+15, GRS14, RFB14] are usually generated directly in

26

3.4. Related Work on Protocol Verification

Hardware Description Languages (HDLs) (i.e. VHDL or Verilog). High-Level Synthesis
(HLS) is an alternative way that transforms behavioral code (e.g. C/C++/SystemC) to
Register-Transfer Level (RTL) cycle-accurate hardware implementation. As shown in
Chapter 7, HLS facilitates the reuse of monitors in different stages of automotive sensor
development and helps speeding up the testing process. In addition, the application
domains of previous works in hardware temporal logic monitoring [GRS14, RFB14] are
quite different from the chip design for the automotive industry.

As far as hardware implementation is concerned, Schumann et. al. [SMR15] propose
an FPGA implementation of runtime monitors for the Unmanned Aerial Vehicle (UAV)
applications. The authors construct FPGA monitors for security requirements and
specify possible attacks that a UAV might undergo. A Bayesian network on top of MTL
monitoring allows to estimate system health. The authors do not take into account neither
the recovery of monitors after violations nor the electrical characteristics of signals, and
define their properties on a higher level of abstraction. On the contrary, in Chapter 8 we
focus on formalizing the electrical and timing requirements of low-level SENT and SPC
protocols, with an emphasis on monitor recovery after capturing specification violations.

In a similar context we refer to the work of Reinbacher et al. [RFB12]. The authors
present a framework for monitoring past-time MTL specifications. In order to achieve the
reconfigurability of the system, they introduce an over-complex hardware architecture.
In our case, we specifically target asynchronous serial protocols, for which we find the
TRE formalization with simpler, automaton-based architecture more appropriate.

3.4 Related Work on Protocol Verification
The need to assure fulfillment of specific protocol requirements is reflected in literature
in describing a protocol in Domain Specific Languages (DSLs), (e.g. an early work
on LDP [Hof80] and more recent studies on applying DSLs for cache, network, and
distributed protocols [CRL99, BBHM09, Adh13]), in applying model checking [DSO13],
and formalizing requirements in temporal logics (LTL, MTL) and their extensions e.g.
PSL [JMB17]. While, in general, deadlock and liveness properties play crucial roles in
protocol verification, validating not only logical, but also physical requirements is essential
for correct data transfer. In automotive systems, it is equally important to ensure that
the timing and electrical parameters of the protocol are met by the communicating
parties in order to guarantee the correct data transmission. In Chapter 9 we elaborate
on formalization of requirements and verifying the SENT and SPC protocols.

UPPAAL [BDL04, BDL+11] is a well-established tool for verifying real-time systems which
can be modeled as a composition of timed automata. This tool provides a description
language for modelling, a simulator, and a model checker. The works of [BGK+02,
RNPH05, PGZ+14] showed successful application of the UPPAAL in verifying properties
of protocols. The high-level summary of approaches in [BGK+02, RNPH05, PGZ+14]
is as follows: (i) to model the communication protocol or its parts within the UPPALL
framework; (ii) to define error scenarios; and (iii) verify the model against these scenarios.

27

3. State of the Art Analysis

The CPS, which embody complex interactions between analog and digital components
are often difficult yet almost impossible to model in detail in terms of this formalism,
and the bugs that may arise due to interface interactions may be left undiscovered by
UPPAAL. In contrast, the goal of the applied part of the thesis is to create standalone
monitors for verifying a discrete time system at runtime. Our monitors are ignorant of
the model of the system, and check the actual implementation apart from the model.

We are aware of several case studies on monitoring temporal logic specifications - the
automotive bus standard [NN14], the DDR2 memory interface [JKN10], and automotive
controllers functional requirements [FSUY12]. The authors in [NN14] formalized a part
of the discovery mode of the 3rd generation Distributed System Interface (DSI3) in STL
and check pre-generated simulation traces. Jones et. al. [JKN10] showed how clock jitter
and data strobe alignment properties are formulated in a PSL/STL specification. All
of these works focus on offline monitoring and continuous-time semantics, which covers
STL and does not consider specifications based on regular expressions, and omit monitor
recovery aspects after capturing a violation. In Chapter 9 we compare two formalisms
and implementations, to increase integration readiness level for the monitor itself and
eliminate the “single source of truth” aspect from the monitoring system.

In [FMNU15] the authors also use TREs with events to evaluate the performance of a
controller and sensor implementation. Orthogonally to our work, they define measurement
specifications over timed patterns.

Figure 3.1 shows high-level overview of the related work.

28

3.4. Related Work on Protocol Verification

CPS Control

Intelligent
Control

Clawson
et. al.

[CFFW16]

State
estimation

Stoller
et. al.

[SBS+12]

Probabilistic
Models

Probabilistic
Programs

Gordon
et. al.

[GHNR14]

Kaminski
et. al.

[KKMO16]

Gaussian
Smoothing

Chaudhuri
et. al.
[CSL10]

Hidden
Markov
Models

Stoller
et. al.

[SBS+12]

Neural Models

Artificial

McCulloch,
Pitts
[MP43]

Cassidy
et. al.

[CMA+13]

Biophysical

Hodgkin
& Huxley
[HH52]

Gerstner
[GKNP14]

Drion
et. al.

[DMSS11]

Izhikevich
[Izh03]

Cassidy
et. al.

[CMA+13]

Automotive

Parallel
Parking

Automotive
Electronic

Development

Nguyen &
Nickovic
[NN14]

Fainekos
et. al.

[FSUY12]

Runtime
Verification

Temporal
Testers

Pnueli
& Zaks
[PZ08b]

Jaksic
et. al.

[JBG+15]

Hardware
Monitors

Jaksic
et. al.

[JBG+15]

Schumann
et. al.

[SMR15]

Reinbacher
et. al.

[RFB12]

Figure 3.1: High-level overview of the related work

29

CHAPTER 4
Neural Models for Control &

Quantifying Uncertainty
To equip CPS with the ability to adapt and act in uncertain environments, various
researchers investigated whether current CPS analysis, design and implementation tech-
niques possess sufficient adaptability capabilities. Parnas, Chaudhuri and Lezama identi-
fied in a series of papers [Par85, CSL10, CSL11] that smoothing program executions is
a promising method for reasoning about programs that operate random variables. In
this chapter, we use techniques inspired by smooth program interpretations [CSL10] and
inherent smoothness of the neuron’s activation functions to address the first research
question of the thesis (RQ 1), which was discussed in detail in Chapter 1, to develop
methodology that support, on average, “smooth” decisions for CPS controllers.

In a simple decision of the form if(x>a), the predicate x>a acts like a step function
(the bold black line in Fig. 4.1), with infinite plateaus to the left and right of the
discontinuity point x= a. The nesting of if-then-else statements leads to a highly nonlinear
program state space inducing a large number of plateaus separated by discontinuous
jumps. This has important implications for CPS controller software, which operates in
uncertain environments and receive noisy input measurement data.

From a CPS design point of view, where one is interested to find the values of a
variable for which an optimization criterion is satisfied, plateaus in the program state
space lead to difficulties in CPS optimization. To alleviate this problem, Chaudhuri and
Lezama [CSL10] proposed to smoothen the steps by passing a Gaussian input distribution
through the CPS. The authors, however, stop short of proposing new methodology
that includes neural programming constructs, which act smoothly, similar to a neuron
activation function, and are capable to quantify uncertainty of a controller action.

From a CPS implementation point of view, when dealing with random variables and
noisy measurements of CPS it is important to be able to (i) adapt to a changing input
in a long term, and (ii) tolerate short-term disturbances. In the AI community, where
steps are called hard neurons and sigmoid curves are called soft neurons, adaptation

31

4. Neural Models for Control & Quantifying Uncertainty

and robustness is achieved by learning a particular form of Bayesian networks with
soft-neuron distributions. Such networks have recently achieved noteworthy performance,
for example in recognition of sophisticated patterns [CMS12, EBC+10].

Having identified the major challenges in the design and implementation of CPSs, we
propose a combined approach for developing adaptive CPS controller software using
Neural Programming Constructs (NeuralP)1. In the NeuralP framework, a controller
(program skeleton) is written representing an underlying neural network. Additional
knowledge about the thresholds in the controller’s nif and nwhile conditions, the key
NeuralP constructs, is then encoded as a GBNs and updated during the system run.

In contrast to traditional deterministic program controllers, which capture only one
execution for any given input, NeuralP controllers capture a set of valid executions. For
example, if one has enough space between two cars, there are multiple ways to parallel
park, all of which are valid (i.e. result of a car being parked at a dedicated parking spot
without collision). There is no reason to restrict the parking task to only one trajectory
(as in the traditional controller case), because a small perturbation (for example sliding
or target point overshooting), may lead to an invalid trajectory (i.e. trajectory leading to
collision). In NeuralP, a small perturbation may eliminate a part of the valid trajectories,
but leave enough of the valid ones such that the controller can still finish the mission
and adapt. By adaptation we understand the ability to react on environment’s change
by eliminating trajectories over time that are no longer valid.

To validate our CPS controller design, we define three controllers for two case studies:
Parallel parking from [CSL] and the Tap Withdrawal neural circuit of C. Elegans [WRR96].
In the parallel parking case study, we show how to achieve robustness by expressing the
controller as a NeuralP, where the associated GBN helps to compensate for perturbations
in the environment. We provide a technique for learning the parameters of a GBN from
traces. In the second case study, the controller is C. Elegans’ neural circuit for tap
withdrawal, expressed in terms of NeuralP. Each synaptic link of a neuron can either
fire or not, which corresponds to a nif statement. Since NeuralP is a general concept,
it can be used as a language for expressing controllers or to model the system. In the
third case study, we use knowledge gained from the C. Elegans circuit to provide a
controller for parallel parking, expressed as a neural circuit, where the voltage, current,
and conductance become position (or angle), velocity, and control flow, respectively.

The main contributions of this chapter can be summarized as follows:

1. We propose NeuralP, a new programming framework for the development of CPS
controllers where step guards are replaced by smooth counterparts (nif and nwhile).

2. We demonstrate the versatility of this new framework on two case studies: an
adaptive parallel parking controller for a Pioneer rover (the YouTube videos are
available at [neu]), a tap-withdrawal neural circuit for C. Elegans, and a parallel-
parking neural-circuit.

1Hereafter we use NeuralP to abbreviate both a neural program and neural programming framework

32

4.1. Preliminaries

The rest of the chapter has the following structure. Section 4.1 provides the necessary
preliminaries. Section 4.2 introduces our programming framework. Section 4.3 focuses on
learning parameters of the GBN. Section 4.4 presents our case studies, implementation
platform, and experimental results. Section 4.5 gives the chapter summary.

4.1 Preliminaries
Bayesian Networks A probabilistic system is completely characterized by the joint
probability distribution of all of its (possibly noisy) components. However, the size of this
distribution typically explodes, and its use becomes intractable. In such cases, the Bayes’
rule allows to successively decompose the joint distribution according to the conditional
dependences among its random variables (RVs). These are both discrete or continuous
variables, which associate to each value (or infinitesimal interval) in their range, the rate
of its occurrence. Networks of conditional dependencies among random variables are
known as Bayesian networks (BNs), and they have a very succinct representation.

Syntactically, a BN is a direct acyclic graph G = (V,E), where each vertex vi ∈ V
represents a random variableXi and each edge eij ∈ E represents a conditional dependence
of the variable Xj on the variable Xi. To avoid the complications induced by the use
of the joint probability distribution (or density), each variable Xi is associated with a
conditional probability distribution (CPD) that takes into account dependencies only
between the variable and its direct parents [RN10, KF09]. Such a compact representation
keeps information about the system in a distributed manner and makes reasoning tractable
even for large number of variables. The variables of a BN could have discrete (e.g. fault
detection, a device might have only a finite number of diagnosable errors, caused by
a finite set of faults), or continuous distributions (e.g. in the parallel parking running
example, a Pioneer rover starting from an initial location, needs to execute a sequence of
motion primitives, and which have continuous distribution).

Gaussian Distributions Any real measurement of a physical quantity is affected by
noise. Hence, the distances and the angles occurring in the parking example are naturally
expressed as continuous RVs. We assume that variables have Gaussian distribution (GD).

An univariate Gaussian distribution (UGD) is denoted by N (µ, σ2) and it is characterized
by two parameters: The mean µ and the variance σ2. In our example, the desired distance
in the first motion is associated with µ, which is perturbed by noise with variance σ2.
The PDF of a RV X with values x is defined as follows:

pdfµ,σ2(x) = 1√
2πσ

exp

(
−(x− µ)2

2σ2

)
. (4.1)

Parallel parking includes a sequence of motion primitives that are mutually dependent.
To express these dependencies we use a multivariate Gaussian distribution (MGD) [GS85],
which generalizes the Gaussian distribution to multiple dimensions. For a n-dimensional
vector of random variables X the probability density function is characterized by a

33

4. Neural Models for Control & Quantifying Uncertainty

n-dimensional mean vector µ and a symmetric positive definite covariance matrix Σ. To
express the probability density of a multivariate Gaussian distribution we use the inverse
of covariance matrix, called precision matrix T = Σ−1, which will be helpful later during
the learning phase. The probability density then can be written as follows[Nea03]:

pdfµ,σ2(x) = 1
(2π)n/2(det(T−1))1/2 exp

(
−1

2∆2(x)
)
, (4.2)

where ∆2(x) = (x− µ)TT(x− µ).

A GBN is a BN where random variables X associated to each node in the network have
associated a Gaussian distribution, conditional on their parents Xi.

Probit Distributions In order to smoothen the decisions in a NeuralP framework, we
choose a function without plateaus and discontinuities. Since we operate with Gaussian
random variables, the natural candidate is their cumulative distribution function (CDF).
This is an S-shaped function or a sigmoid (see Figure 4.1), whose steepness is defined by
σ2, where erf denotes the error function:

cdfµ,σ2(x) = 1
2

(
1 + erf

(
x− µ
σ
√

2

))
, (4.3)

For a particular value x of X, the function cdfµ,σ2(x) returns the probability that a
random sample from the distribution N (µ, σ2) will belong to the interval (−∞, x].

Since the sensors and actuators of the Pioneer rover are noisy, the trajectories it follows
are each time different from the optimal one (assuming that such difference is tolerated
by the parking configuration), even if the optimal trajectory of the parking example
is known. To be adaptive we use a combined approach: we incorporate probabilistic
control structures in the program (introduced in the Section 4.2) and sample commands
from a GBN, whose parameters were learned experimentally. To detect changes in the
environment and get more accurate position estimates, data from various sensors are
combined with a sensor fusion algorithm.

4.2 Key Components of Neural Programs
Traditional inequality relations (e.g. >, ≥, ≤, <) define sharp (or firm) boundaries on
the satisfaction of a condition, and can therefore be seen as step functions (see Fig. 4.1).
Using firm decisions in a program operating on Normal RVs cuts distributions in half,
resulting in unnormalized and invalid PDFs; see Fig. 4.2. In this figure, the upper-
right plot shows what happens to the PDF of a Normal RV after passing it through a
traditional conditional statement (if or while). To avoid such situations and maintain
valid probability density one needs to re-normalize the PDF.

To quantify uncertainty of making each decision in a CPS controller software, and avoid
re-shaping its PDF each time an RV x is passed through a conditional, we introduce a

34

4.2. Key Components of Neural Programs

new control structure called neural if, or nif for short. The name is coined to express the
key novelty of our approach: we propose to use smooth conditionals cdfµ,σ2(x), which
resemble a smooth neural activation function, instead of firm ones.

Let # range over the set of comparison operators {>,≥,≤, <}. Nif statements are of the
form nif(x # a,σ2) S1 else S2, where x # a is a predicate and σ2 is a variance. With
every nif statement, we associate a boolean RV (also called nif) with the evaluation
of (x # a,σ2). Specifically, if RV nif(x # a,σ2) evaluates to 1 with variance σ2,
statement S1 will be taken; otherwise S2.

The evaluation of nif statements is performed in two steps: (i) Find an R-interval I
representing the confidence in which S1 will be taken. (ii) Check if a sample from the
GD N (0, σ2) falls within I. For the limit case where σ2 → 0 (no uncertainty), we require
the nif statement to behave as a traditional if statement. Note that nif statements
define a family of RVs parameterized by #, a, and σ2.

To find the I in (i), we calculate the difference diff(x,a) between x and a as follows,
where ε is a pre-defined small value:

diff(x,a) =

x - a− ε if # is >,

x - a if # is ≥,
a - x− ε if # is <,

a - x if # is ≤ .

Informally, the confidence is characterized by the difference: the larger the value of
diff(x,a), the more confident we are about executing S1, and the larger the probability
of executing S1. The probability of nif(x # a,σ2) = 1 (the probability of executing
S1) is given by cdf0,σ2(diff(x,a)) and defines the interval [q1; q2] by calculating two
symmetric quantiles q1 and q2 such that:∫ q2

q1
pdf0,σ2(x)dx = cdf0,σ2(diff(x,a)). (4.4)

In step (ii), a random sample is taken from the distribution N (0, σ2) and tested to see if
it belongs to the confidence interval [q1; q2]. If it is within the interval, S1 is executed;
otherwise S2 is executed. The probability to execute S1 is influenced by the variance σ2

(see Fig. 4.1). The dependence is twofold: diff(x,a) shows how confident we are in
making the decision, and σ2 characterizes the uncertainty.

For the case σ2 → 0, the nif statement is equivalent to the if statement. In this case,
the PDF is expressed as a Dirac function δ(x), which essentially concentrates all of the
probability density (PD) in a single point x= 0. Hence, the cdf0,σ2→0(x) becomes a
step function (the bold black line in Fig. 4.1). The two possible cases for evaluating nif
statements without uncertainty are: (i) diff(x,a)≥ 0 and (ii) diff(x,a)< 0. In the
first case, the probability of executing S1 is equal to 1; hence the interval is (−∞; +∞)
and includes every sample. For the second case, the probability of taking S1 is 0; hence
the interval is empty and cannot contain any sample.

35

4. Neural Models for Control & Quantifying Uncertainty

To illustrate the evaluation of nif statements, consider the following example, where x,
a ∈ R, and σ2 ∈ R+.

nif(x >= a, σ2) S1 else S2

Suppose in the current execution x = 1 and a = 0. Figure 4.1 illustrates how decisions
are made if σ2 is 0.42, π, 42. Since diff(x,a) = 1, the probability of executing S1
is defined by cdf0,σ2(1) and for the above cases is equal to 0.994, 0.714 and 0.599,
respectively. The intervals I are [-1.095;1.095], [-1.890; 1.890], and [-3.357; 3.357]. In the
second step, we sample from the GDs with the corresponding σ2 (N (0, 0.42), N (0, π),
and N (0, 42)), and check if the value lies within the intervals. The plot in Fig. 4.1 shows
the quantiles and the corresponding intervals I for various values of σ2.

10 5 0 5 10
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

diff(1,0)

σ = 0.4
σ =
√
π

σ = 4

P
(
n
i
f
=
1
)

diff(x, 0)
10 5 0 5 10

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

σ = 0.4
σ =
√
π

σ = 4

q1(0,4) q2(0,4)

q1(0,
√
π) q2(0,

√
π)

q1(0,0.4) q2(0,0.4)

P
D
F

(x
)

x

Figure 4.1: Left plot: “Soft” (colored lines) and “hard” (bold black line) thresholds;
Right plot: PDFs and the quantiles for x = 1 and a = 0

So far we have been concerned with execution of single samples x ∼ N (µ, σ2) on nif

statements. Fig. 4.2 illustrates what happens at the distribution level; in particular, the
difference between passing a GD RV x ∼ N (0, 0.1) through the statements if(x >=
0.15) and nif(x >= 0.15, 0.1). Since the input RV x has a GD, and a GD is used
to evaluate the condition, the result is a product of two GDs, scaled by some constant
factor k. Using our approach, the GD is not cut in undesirable ways (upper-right plot in
Fig. 4.2), and maintains its GD form after passing the nif statement.

We can apply “soft” thresholds to loops. The neural while nwhile(x # a, σ2) { P1 }

statement takes a predicate (x # a) and a variance σ2 and executes the program P1
according to the following rules: (1) Compute diff(x # a), find interval I and quantiles
q1, q2 according to Eq. 4.4. (2) Check if a random sample x ∼ N (0, σ2) is within the
interval [q1; q2]. (3) If the sample belongs to the interval, execute P1 and go to step (1);
else exit. The nwhile is an extension of the traditional while statement that introduces
a quantitative measure of uncertainty of executing a loop iteration.

36

4.2. Key Components of Neural Programs

0.4 0.2 0.0 0.2 0.4
0

100

200

300

400

500

600

700

800

S
a
m
p
l
e
s

x

x ∼ N (0, 0.1)

0.4 0.2 0.0 0.2 0.4
0

20

40

60

80

100

120

S
a
m
p
l
e
s

x

0.4 0.2 0.0 0.2 0.4
0

20

40

60

80

100

S
a
m
p
l
e
s

x

if(x ≥ 0.15)
x;

nif(x ≥ 0.15, 0.1)
x;

Figure 4.2: Passing RVs through conditions

Since the nif and nwhile statements subsume the behavior of traditional if and while
statements (the case σ2 → 0), we use them to define an imperative language with
probabilistic control structures. Binary operators bop (e.g. addition, multiplication), unary
operators uop (negation), and constants c are used to form expressions E. A program P
is a statement S or combination of statements.

E ::= xi | c | bop(E1, E2) | uop(E1)
S ::= skip | xi := E | S1;S2 |

nif(xi # c, σ2) S1 else S2 |
nwhile(xi # c, σ2){ S1 }

To illustrate CPS controller design using the proposed language, we consider the first
case study involving the parallel parking of a mobile robot. The basic operations required
are: Go backwards up to a point l1, turn up to an angle α1, go backwards up to l2, turn
up to α2, and go backwards up to l3. The control-program skeleton for this application
can be specified as a sequence of nwhile statements, as shown in Listing 4.1.

The versatility of this approach is that the program skeleton is written only once and
constitutes and infinite number of controllers (when the distance l1 is smaller then the

37

4. Neural Models for Control & Quantifying Uncertainty

target, the next locations to be visited will be re-sampled in order to compensate for the
difference, as discussed in Sections 4.3 and 4.4). The question we next need to answer is:

What are the distances and turning angles for each action and how uncertain are we
about each of these parameters?

To find the unknown parameters in Listing 4.1, namely the target locations and variances,
we use the learning procedure described in Section 4.3.

Listing 4.1: Parallel parking program skeleton
nwhile(currentDistance < targetLocation1, sigma1){

moving();
currentDistance = getPose();
}

updateTargetLocations();
nwhile(currentAngle < targetLocation2, sigma2){

turning();
currentAngle = getAngle();
}

updateTargetLocations();
nwhile(currentDistance < targetLocation3, sigma3){

moving();
currentDistance = getPose();
}

updateTargetLocations();
nwhile(currentAngle < targetLocation4, sigma4){

turning();
currentAngle = getAngle();
}

updateTargetLocations();
nwhile(currentDistance < targetLocation5, sigma5){

moving();
currentDistance = getPose();
}

4.3 Bayesian-Network Learning

In the proposed approach, we start by defining a neural program as a skeleton, and in
the next step we identify the corresponding GBN and learn its parameters. To illustrate
the process on CPS controller design, we elaborate on the first case study, which is
performing parallel parking of a mobile robot.

Parking can be seen as a sequence of moves and turns, where each action depends on
the previous one: e.g. the turning angle typically depends on the previously driven
distance. Due to sensor noise and imprecision, inertia and friction forces, and also many
possible ways to perform a parking task starting from one initial location, we assume
that the dependence between actions is probabilistic, and in particular, the RVs are
distributed according to GD. We represent the dependencies between actions as the GBN

38

4.3. Bayesian-Network Learning

in Figure 4.3, where li or αj denotes a distance or a turning angle of the corresponding
action and bij is a conditional dependence between consecutive actions.

l1 α1 l2 α2 l3
b21 b32 b43 b54

Figure 4.3: Gaussian Bayesian Network for parking

In order to learn the CPD of the GBN in Figure 4.3, and to fill in the targetLocations
and the sigmas in Listing 4.1, we record trajectories of the successful parkings done
by a human expert. Figure 4.4 illustrates a set of trajectories used during the learning
phase. Informally, given an expert knowledge and a program skeleton, in the first step
we learn from experience of a domain expert to give estimates of unknown parameters.

0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
1

0.5

0

0.5

Figure 4.4: Example trajectories for the parking task

We than use the fact that any GBN can be converted to a MGD [Nea03] in our learning
process. Identifying the parameters of the GBN can be divided into three steps:

1. Convert the GBN to the corresponding MGD,

2. Update the precision matrix T = Σ−1 of the MGD,

3. Extract σ2s and conditional dependences from T.

1. Conversion step. To construct MGD one needs to obtain the mean vector µ and the
precision matrix T. The mean vector µ comprises the means of all the variables from the
GBN. To find the symbolic form of the precision matrix, we use the recursive notation
from [HG95], where values of the coefficients bi, will be learned in the update step below.

39

4. Neural Models for Control & Quantifying Uncertainty

Ti+1 =

Ti + bi+1bTi+1
σ2
i+1

−bi+1
σ2
i+1

−bTi+1
σ2
i+1

1
σ2
i+1

 (4.5)

In order to apply Equation 4.5 we define an ordering starting with the initial node l1,
which precision matrix is 1

σ2
1
. The vector bi+1 in Equation 4.5 comprises dependence

coefficients for node i on all its immediate parents it in the ordering.

Since each action in the parking task depends only on the previous one, we can generalize
the precision matrix for the arbitrary number of moves. For a GBN with k moves,
all non-zero elements of the precision matrix T ∈ Rk;k can be found according to the
Equation 4.6, where T(r, c) is a c-th element in a r-th row of the precision matrix:

T(i, i− 1) = −
bi(i−1)
σ2
i

,where i ∈ {2, .., k};

T(i, i) = 1
σ2
i

+
b2(i+1)i
σ2
i+1

,where i ∈ {2, .., k};

T(i, i+ 1) = −
b(i+1)i
σ2
i+1

where i ∈ {1, .., k}.

(4.6)

Following this approach, the precision matrix for the last action of parking controller has
the following form (Equation 4.7):

T5 =

1
σ2

1
+ b2

21
σ2

2
− b21
σ2

2
0 0 0

− b21
σ2

2

1
σ2

2
+ b2

32
σ2

3
− b32
σ2

3
0 0

0 − b32
σ2

3

1
σ2

3
+ b2

43
σ2

4
− b43
σ2

4
0

0 0 − b43
σ2

4

1
σ2

4
+ b2

54
σ2

5
− b54
σ2

5
0 0 0 − b54

σ2
5

1
σ2

5

(4.7)

2. Update step. Once we derived the symbolic form of the precision matrix, we use the
training set in order to learn the actual values of its parameters, as described in the
algorithm from [Nea03]. Each training example x(i) corresponds to a vector of lengths
and turning angles for a successful parking task performed by a human expert. The total
number of examples in the training set is M . The procedure allows us to learn iteratively
and adjust the prior belief by updating the values of the mean µ and covariance matrix
β of the prior, where v is a size of a training set for the prior belief, and α = v − 1.

β = v(α− n+ 1)
v + 1 T−1, (4.8)

40

4.4. Case studies

The updated mean value µ∗ incorporates prior value of the mean µ and the mean value of
the new training examples x. In this way the CPS controller can adapt, if the environment
conditions changed, since the new samples will affect the parameter values learned so far.

x =
∑M
i=1 x(i)

M

µ∗ =vµ+Mx
v +M

(4.9)

The size of the training set v∗ is updated to its new value:

v∗ = v +M (4.10)

The updated covariance matrix β∗ combines the prior matrix β with the covariance
matrix of the training set s:

s =
M∑
i=1

(
x(i) − x

) (
x(i) − x

)T
β∗ =β + s+ rm

v +M

(
x(i) − x

) (
x(i) − x

)T (4.11)

Finally, the new value of the matrix β is used to calculate the covariance matrix (T∗)−1,
where α∗ = α+M .

(T∗)−1 = v∗ + 1
v∗(α∗ − n+ 1)β

∗ (4.12)

3. Extraction step. The new parameters of the GBN can now be retrieved from the
updated mean vector µ∗ and from (T∗)−1. If new traces are available at hand, one
can update the distributions by recomputing µ∗ and (T∗)−1 using Equations 4.9-4.12.
Unknown parameters from the program skeleton are learned from successful traces and
these dependencies are used during the execution phase to sample the commands.

4.4 Case studies

We illustrate the proposed framework on the following case studies: (i) parallel parking
of a Pioneer Rover, and (ii) simulation of tap withdrawal neural circuit of a nematode,
(iii) controller for parallel parking as a neural circuit.

41

4. Neural Models for Control & Quantifying Uncertainty

4.4.1 Parallel parking

We performed the experiments on a Pioneer P3AT-SH mobile rover from Adept
MobileRobots[Ade] (see Figure 4.5). The rover uses the Carma Devkit from SECO
with Tegra 3 ARM CPU & GPU running the ROS on Ubuntu 12.04.

Raspberry PI with
accelerometer & gyroscope

Sonars

Carma Board with
ROS on Ubuntu

Bumpers

Figure 4.5: Experimental platform: Pioneer Rover

We use the following dymanics model of the rover for estimating the state of the robot:

x(k + 1) = x(k) + v(k)∆tcos [Θ(k + 1)] + wx∆t (4.13)

y(k + 1) = y(k) + v(k)∆tsin [θ(k + 1)] + wy∆t (4.14)

Θ(k + 1) = Θ(k) + ω∆t+ wΘ∆t (4.15)

v(k) = ωL(k)rw + ωR(k)rw

2 + a∆t (4.16)

ω(k) = ωL(k)rw − ωR(k)rw

Rb
, (4.17)

where wx, wy and wΘ are zero mean Gaussians taking into account noise during the
observations; ωL and ωR are angular velocities of left and wheels respectively, rw is a
radius of a wheel and Rb is a base (0.3 m).

Structure of the Parking System

The parking system can be separated into several building blocks (see Figure 4.6). The
Rover Interface block senses and controls the rover, that is, it establishes an interface to
the hardware. The block Sensor Fusion takes the sensor values from the Rover Interface
block, and provides the estimated pose of the rover to the high-level controller Engine.

42

4.4. Case studies

The Engine uses the GBN block to update the motion commands based on the estimated
pose. Furthermore, the Engine maps the (higher level) motion commands to velocity
commands needed by the Rover Interface to control the rover.

GBN
(distributions)

Engine

nwhile(..){
moving() .. }

nwhile(..){
turning() .. }

Sensor
Fusion

Rover
Interface

velocity
commands

x, y, θ

vl, vr, ω, a

initial commands

resampled commands

robot pose

Figure 4.6: Parking system architecture

The Gaussian Bayesian Network Block The goal of the GBN block in Figure 4.6, is
to generate motion commands for the Engine to execute. A motion command corresponds
to a driving distance or a turning angle.

The distribution of the first move l1 is independent from any other move and has the form
N (µ1, σ

2
1). Starting from the second move α1, each motion depends on the previous one:

For motion number n, the distribution has the form N (µn− bn,n−1 ∗ xsampled
n−1 , σ2

n). The
initial command vector is obtained by sampling from l1, and each subsequent command
vector is obtained by taking into account the previous sample.

As the rover and its environment are uncertain (i.e., sensors are disturbed by noise)
we use the pose provided by the sensor fusion unit to update the motion commands.
Hence the motion commands are constantly adapted to take into account the actual
driven distance (which could be different from the planned one due to the aforementioned
uncertainty of the CPS). This allows us to incorporate the results of the sensor fusion
algorithm in the updated commands.

The Engine Block During the run we execute a motion command according to the
semantics of the nwhile loop. In particular, the estimated pose is passed from the Sensor
Fusion block to the Engine and compared with the target location, specified as a point
on a 2-D plane. Since the rover is affected by noise its path can deviate and never come
to the target location. To be able to detect and overcome this problem we estimate
the scalar product of two vectors: The first one is the initial target location, and the
second one is the current target location. This product becomes negative after passing
the goal even on a deviating path. In an nwhile statement we check the distance (or

43

4. Neural Models for Control & Quantifying Uncertainty

angle) and detect if we should process the next command. After executing each command
we resample the pose to take into account actual driving distance in subsequent moves.

The Rover Interface Block The block Rover Interface implements the drivers for
sensors and actuators. The wheel velocities are measured by encoders, already supplied
within the Pioneer rover. A built-in microcontroller reads the encoders and sends
their value to the Carma Devkit. Additionally the rover is equipped with an inertial
measurement unit (IMU) including an accelerometer, measuring the linear acceleration,
and a gyroscope, measuring the angular velocity of the rover. The Raspberry Pi
samples the accelerometer and gyroscope, and forwards the raw IMU measurements to
the Carma Devkit. The rover is controlled by the incoming velocity commands.

The Sensor Fusion Block The current pose is observed by sensors, which suffer from
uncertainty. Measurements are distorted by noise, e.g., caused by fluctuations of the
elements of the electrical circuit of the sensors. The environment may be unpredictable,
e.g., the rover may slip over water or ice when parking. To overcome such problems
sensor fusion techniques are applied, i.e., several sensors are combined to estimate
a more accurate state. A common method is state estimation (also called filtering)
[Mit07, TBF06]. In this application, an unscented Kalman filter (UKF) [WVdM00]
is used. This filter combines the measurements from sensors with a dynamics model
describing the relations from the measured variables to the pose of the rover.

We implemented the architecture described above using ROS [QCG+09], which is a
meta-operating system that provides common functionality for robotic tasks including
process communication, package management, and hardware abstraction. The system
components (see Fig. 4.6) are implemented as ROS-nodes, which communicate with each
other by passing messages. The proposed framework differs from existing approaches
described in Section 3.1 in a way that the GBN block uses information about the current
state of the rover provided by a sensor fusion to issue a command which takes into
account the environment.

Parameters of the GBN

After the learning phase, we obtain the parameters of the GBN that we use in the
program skeleton (Table. 4.1). Since we track the position using the data from the sensor
fusion and each movement has the experimentally learned uncertainty, we are resistive to
the perturbation of the actual driving distances and angles.

4.4.2 Tap withdrawal circuit of C.elegans

The proposed framework and introduced control structures are general enough to be
applied for modelling and simulations of biological systems. In the second case study we
illustrate how using NeuralP for simulation of neural activity can facilitate modelling
individual synaptic connections, and providing consistent results on average. We choose

44

4.4. Case studies

− b21 0.7968 b32 -0.2086 b43 0.5475
σ2

1 0.0062 σ2
2 0.0032 σ2

3 0.0019 σ2
4 0.022

b54 -0.0045 b65 1.1920 b76 -0.0968
σ2

5 0.0008 σ2
6 0.0178 σ2

7 0.0013

Table 4.1: BN variances and coefficient dependences

to model tap withdrawal neural circuit of Caenorhabditis elegans (C. Elegans), a model
organism, whose neural topology is known and does not change among adult species.

Wicks et al. in [WRR96] presented a neural model of a tap withdrawal circuit (Fig. 4.7).
Three mechanosensory neurons (AVM, PLM, ALM) can be stimulated with external
current Istim. The fourth sensory neuron PVD reacts on harsh touch or cold temperatures
and is not stimulated in our case. The stimuli propagate through the network (see
Fig. 4.7) via currents towards the cells responsible for the locomotion: PVC and AVB for
the forward movement; AVA and AVD for the backward movement. DVA plays the role in
maintenance of the overall activity of the circuit.

PLM

REV FWD

PVD ALM AVM

AVA

DVA

AVB

PVC

2
1

2

1

1
2

55 5
1

1

28
27

9

10

12

2
27

28108

1

4
4

14

27
270

AVD

Figure 4.7: Tap withdrawal circuit of C. Elegans

The model by Wicks [WRR96] defines membrane potentials and currents of a neuron i
according to equations 4.18 - 4.21:

dV (i)

dt
= VLeak − V (i)

R
(i)
m C

(i)
m

+
∑N

j=1(I(ij)
syn + I

(ij)
gap) + I

(i)
stim

C
(i)
m

(4.18)

45

4. Neural Models for Control & Quantifying Uncertainty

I(ij)
gap = w(ij)

gap g
(ij)
gap (Vj − Vi) (4.19)

I(ij)
syn = w(ij)

syn g
(ij)
syn(V (i)) (E(ij) − V (j)) (4.20)

g(ij)
syn(V (j)) = ḡsyn

1 + e
K

(
V (j)−Veqj

Vrange

) (4.21)

Change of a membrane potential dV (i) of the neuron i is affected by all the currents flowing
into the neuron, current potential V (i) and leakage potential VLeak of the cell. Resistance
R

(i)
m and conductance C(i)

m of a membrane of each neuron characterize the strength of a
dependence on voltage and current. The neurons have two types of connections: synaptic
and gap junction (respectively solid and dashed lines on Fig. 4.7). Gap junction current
I

(ij)
gap from a neuron j to a neuron i is characterized by a difference of membrane potentials,
constant conductance g(ij)

gap , and number of gap junctions w(ij)
gap . This current characterises

instantaneous resistive connection between neurons and comprises a linear combination of
inputs. Synaptic current I(ij)

syn is of chemical nature, characterized by a weight w(ij)
syn or a

number of synaptic connections from neurons i to j, conductance g(ij)
syn(V (i)) and difference

of potentials. Synaptic conductance g(ij)
syn(V (i)) has a sigmoid shape, parametrized by

constant K, presynaptic voltage range Vrange, and equilibrium Veq.

The output of Wicks’ model characterizes the direction of movement, either forward or
backward after applying stimulus current to mechanosensory neurons. The continuous
model above shows an average behavior of the circuit. In [DS13] the authors claim
that biological processes possess inherent stochasticity and should be modeled using
appropriate tools. Given the network structure on Fig. 4.7 we rewrote differential
equations as a neural program and captured behavior of each synaptic connection
(Eq. 4.21) with a nif statement: we also claim our method better reflects the reality since
a decision for each synaptic connection if it is open or closed is made probabilistically
based on a semantics of a nif statement and takes into account inherent noise in each
neuron. Two simulations produce on average the same results (Table 4.2), but for the
case of NeuralP the simulation incorporates a probabilistic choice of each synapse to
release neuro-transmitter, which is closer to biophysical description of synapse function.

The listing 4.2 presents the simulation of the tap withdrawal circuit of C. Elegans in
a NeuralP framework. For simplicity the computation only for one neuron is shown,
and all the neurons from Fig. 4.7 compute in parallel. For each time step we compute
currents flowing from one neuron to another and the difference of membrane potentials.
Whenever the exact number of operations is required, we exploit the limit case of nwhile
statement with zero uncertainty. Table 4.2 shows the difference between ODE simulation
and average output of a neural program, and time for executing a simulation in MATLAB
and C++. The row ∗ in Table 4.2 denotes stimulation of all three input neurons.

46

4.4. Case studies

Listing 4.2: C. Elegans tap withdrawal simulation as NeuralP
nwhile(t ≤ tdur, 0){

compute I
(ij)
gap using Equation 4.19

nwhile(k ≤ w(ij)
syn, 0){

nif(V (j) ≤ Veq, K/Vrange){
g

(ij)
syn ← g

(ij)
syn + gsyn

}
}

compute I
(ij)
syn using Equation 4.20

compute dV (i) using Equation 4.18
V (i) ← V (i) + dV (i)

t← t+ dt
}

AVB
AVA

AVB
AVA

AVB
AVA

AVB
AVA

-16

-18

-22

-20

-24

-26

-28

-30

M
em

br
an

e
po

te
nt

ia
l o

f
N

eu
ro

ns
, m

V

M
em

br
an

e
po

te
nt

ia
l o

f
N

eu
ro

ns
, m

V
M

em
br

an
e

po
te

nt
ia

l o
f

N
eu

ro
ns

, m
V

M
em

br
an

e
po

te
nt

ia
l o

f
N

eu
ro

ns
, m

V

Membrane potentials: Numerical Integration Membrane potentials: Neural Program

Time, sTime, s

Time, sTime, s

Membrane potentials: Neural ProgramMembrane potentials: Numerical Integration

-16

-14

-18

-22

-20

-24

-26

-28

-30
0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16 0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16

Figure 4.8: Deterministic simulations of potentials of AVA and AVB neurons (left);
stochastic simulations using nif condition (right)

47

4. Neural Models for Control & Quantifying Uncertainty

Neuron ODE.out Av.out Diff.% tMATLAB tC++, s
AVM -0.0326 -0.0330 1.35 59.06 0.395
ALM -0.0314 -0.0320 2.00 59.06 0.403
PLM 0.0807 0.0811 0.38 59.04 0.418
* -0.0272 -0.0266 2.25 60.12 0.420

Table 4.2: Comparison of simulation results

4.4.3 Reflections: Parallel Parking as a Neural Circuit

In this section we draw analogy between the two case studies and express an adaptive
proportional controller for parallel parking as a neural circuit. We define the following
variable mapping between the two case studies: (i) voltages V (i) from the second case
study are mapped to the distances x and turning angles θ in the first case study; (ii)
synaptic currents I(ij)

syn from the neural circuit are mapped to the linear v and angular
velocities ω in the first case study; (iii) synaptic conductance g(ij)

syn defines a control flow
in parallel parking controller; (iv) synaptic potentials E(ij) are mapped to the target
locations (thresholds) l(i) and α(i). Neurons have only synaptic connections (see Fig. 4.9).

n1 n2 n3 n4 n5

Figure 4.9: Controller for parallel parking as a neural circuit

Linear and angular velocities are defined as follows:

dx(1)

dt
= w(1)(l(1) − x(1)) (4.22)

dθ(i)

dt
= w(i,i−1) g(i,i−1)(x(i)) (α(i) − θ(i)) (4.23)

dx(i)

dt
= w(i,i−1) g(i,i−1) (θ(i))(l(i) − x(i)) (4.24)

g(i,i−1)(θ(i)) = nif(θ(i) > α(i), σ2
i) 1 else 0 (4.25)

The circuit (see Fig. 4.9) acts as a proportional controller with proportionality constant
w(i,i−1): the velocity of the rover is proportional to the difference between current and
target locations (i.e. the error). A neuron i executes its corresponding control policy
(Eq. 4.22 for the first neuron, Eq. 4.23 and Eq. 4.24 for even and odd neurons respectively).
The controller operates as follows: at a starting time point the neuron n1 is active. Each
neuron represents the one motion primitive in parallel parking procedure. First neuron
is active until (x1 > l1, σ

2
1) evaluates to 0 according to nif semantics, and then g(21) fires

the second neuron. The second neuron stays active until nif(θ1 > α1, σ
2
2) evaluates to 0

and so on. A neuron i is activated by synaptic conductance g(i,i−1) and stays active until
the rover reaches the corresponding target location up to a variance σ2

i .

48

4.5. Summary

4.5 Summary
In this chapter we showed how taking inspiration from neural smooth activation functions
facilitates CPS controller design in neural programming framework (NeuralP). The
neural programming constructs and an underlying network facilitate writing robust
and adaptive CPS controllers. The key of the framework is: (i) the use of smooth
probability distributions in conditional and loop statements, instead of their classic
stepwise counterparts; and (ii) the use of Gaussian Bayesian networks for capturing the
dependencies among probability distributions.

We validated the utility of NeuralP by developing a CPS controller for a robot that is
able to adapt to changing environment. Simulation of the tap-withdrawal response of C.
elegans as an NeuralP program yields the same result as the differential-equations model
and allows one to directly address the stochastic nature of each synaptic connection
between two neurons. We also showed analogy between case studies by expressing a
controller of the first problem as a neural circuit.

49

CHAPTER 5
Neural Models for Qualitative

Monitoring

In the previous chapter we have identified how to use smooth sigmoidal functions
incorporated in programming structures for designing CPS controllers. We developed the
approach, where the controllers are defined as a program skeleton and a corresponding
GBN, where the parameters of the latter can be learned from good executions.

To build safe, fault-tolerant CPS not only control, but also monitoring the system at
runtime is required. In this chapter we tackle research questions RQ 2 and RQ 4, as
defined in Chapter 1, and develop a method to use neural models to check qualitatively,
at runtime, whether a predefined safety properties are fulfilled.

We use the versatile TrueNorth neuron model, which was proposed in [CMA+13] and
reviewed in Section 2.1, as the main computational component for our monitors. In a
series of papers [CMA+13, EAA+13, ADR+13], IBM has revealed its novel, brain-inspired
TrueNorth hardware architecture. The advantage of the TrueNorth model, is that it (i)
incorporates temporal dimension in the function of neurons, (ii) employ operations, that
can be efficiently mapped to digital hardware (e.g. FPGA). We believe that brain-inspired
architectures are a novel dimension of technological development with a great research
potential, and it is of importance to show, how such architectures and models can be
used to perform a numerous tasks in CPS infrastructure, including monitoring.

However, neither neuro-synaptic hardware nor its simulation environment are available
today for public use. In this work we implemented the spiking TrueNorth neural model
from [CMA+13] in C++, and make it available to the research community. We also
show how the deterministic part of the model can be used to monitor MTL properties,
translated to synthesizable HDL code, and deployed in FPGA.

The universality of the TrueNorth model is particularly appealing: It allows both
deterministic and stochastic computation, depending on the neurons’ configuration. This

51

5. Neural Models for Qualitative Monitoring

chapter is dedicated to show how the TrueNorth model can be applied for runtime
monitoring of MTL properties. Having identified how to recognize MTL operators with
TrueNorth, we are able to build neural monitors from MTL formulae. This is a first
step towards building hardware monitors that provide both qualitative and quantitative
information, with regard to a mixed-signal and a STL specification.

The contributions of this chapter can be summarized as follows:

1. We present a view of the MTL runtime-monitoring problem in terms of spiking neu-
rons and their circuits, and provide the complete flow from the C++ implementation
of neural circuits to synthesizable in FPGA monitors.

2. We demonstrate the usefulness of the proposed approach on a case study, the
launching of a missile from battle ship. We consider this as a proof of concept, that
will be used in industrial case study and evaluation in Chapter 8.

The rest of the chapter is organized as follows: Section 5.1 formulates the problem and
presents the hardware generation flow. Section 5.2 focuses on applying the TrueNorth
model for monitoring MTL specifications. Section 5.3 presents the case study and the
experimental results. Section 5.4 gives a summary of the chapter.

5.1 Qualitative Monitoring with the TrueNorth model

The TrueNorth neural model has both deterministic and stochastic modes of operation, in
this chapter we consider only its deterministic part. The model extends all the stages of
the LIFmodel and operates in purely digital fashion. The reader is referred to Section 2.1
or [CMA+13] for model description. We now formulate the problem and present the
top-level view of the solution.

5.1.1 Problem Definition

Let T denote a discrete finite time interval [0, r] ∩ N, B ∈ {0, 1}. A Boolean signal is
a function w : T→ Bn. A TrueNorth neuron ni = (paramsi, Vi, si, li) is characterised
by (i) a set of parameters paramsi = {αi, βi, Ri, λi, εi, κi, si,M}, (ii) its membrane
potential Vi, (iii) a binary spike output si, and (iv) a label li ∈ {in, interm, out}
of a neuron. For a neural network N = {n1, · · · , nm} of m neurons we define its
computation C over a time interval [0, r] in the following way: C : [0, r] 7→ V m ∪ Sm,
where V m = {V1, · · · , Vm} and Sm = {s1, · · · , sm} are membrane potentials and spikes
of neurons in the network N respectively. Given a MTL specification ϕ and a signal
w, out task is to devise a monitor that delivers a verdict whether w violates ϕ. The
architecture of the monitor is a neural circuit N of TrueNorth neurons, with the labelled
out neuron manifesting the formula satisfaction via sequence of spikes. Moreover, the
resulted monitor should allow synthesizable in FPGA hardware realization.

52

5.1. Qualitative Monitoring with the TrueNorth model

We use neurons to recognize sub-formulae of ϕ: a neural circuit then represents a monitor.
At each time step a TrueNorth neuron either spikes or not, which can be seen as outputting
a binary signal. Since neurons compute on outputs of parent neurons, we can supply an
external signal w into the circuit using special “input“ neurons (which have label in,
MockTrueNorthNeuron’s in our implementation) which behave in accordance with
w. At each time step the neural monitor accepts w as input and outputs a Spike if
the specification has been fulfilled. The absence of a Spike at the output of the neural
monitor corresponds to a specification violation.

In order to build neural monitors for MTL specifications using TrueNorth, we have to be
able to express logical and (bounded) temporal operators in terms of the model [CMA+13].

5.1.2 Solution: Top Level View

In this section we describe the flow from getting a natural language specification of a
property to a hardware TrueNorth neural monitor in an FPGA (see Fig. 5.1).

Formalizing
requirements

Eng. ϕ

Simplification,
pastification

ϕ Π(ϕ)

Neural circuit
construction

Simulating
neural circuit

TrueNorth
neural model

C++

Simulation
results

n1
n2

High-level
Synthesis

 RTL IP

HW Monitor

Debug

Figure 5.1: Neural Monitor Generation Flow

Formalizing requirements

In the first step natural-language requirements must be converted to an MTL formula to
eliminate ambiguity and possible misinterpretations. It is a non-trivial problem how to
devise a formula from a textual description and still an open issue [CRST09, VBG06].
To express mutual dependencies and temporal behavior we rely on expert knowledge,

53

5. Neural Models for Qualitative Monitoring

who translates requirements to a formal language. Requirements engineering [vL09] is
a broad research subject on its own, and is beyond the scope of the thesis. We assume
that for a CPS or its sub-parts requirements are already defined. The formalization step
is illustrated in the case study in Section 5.3 and elaborated in more detail in Chapter 8.

Pastification, Simplification

As we are able to devise a verdict based on the behavior that has already happened, every
bounded future formula must be pastified to obtain an equisatisfiable formula containing
only past operators. Duplicate sub-trees in a formulae parse tree are eliminated. This
pre-processing step is necessary for hardware realization to make the resulting resource-
efficient. We use two-step pastification procedure from [MNP07]: (i) compute temporal
depth D of the formula and (ii) convert a bounded-future formula to a past one.

Constructing a neural monitor

We then define a circuit topology based on the formulae from the previous step, and
instantiate the parameters of TrueNorth neurons that will correspond to a monitor of
a past-MTL1 specification. We use configuration parameters for logical and temporal
operators from Section 5.2 and traverse the parse tree of the formulate replacing each
node in the tree with a corresponding neural sub-monitor.

Circuit simulation

We implemented the model described in Section 2.1.1 in C++ and use this implemen-
tation to simulate circuits of TrueNorth neurons (available in [sou]). Each neuron is
an instance of the TrueNorthNeuron class, with pre-defined parameter values and
neurons’ connections. We then test the circuit on the external input and observe outputs
for every neuron, which is useful for debugging and attesting neurons’ configurations.
The results of the simulation are stored in text files, which are then visualized.

HLD code generation with High-Level Synthesis

Given the circuit from the simulation step and C++ implementation of TrueNorth model,
our task in this step is to obtain an FPGA-ready synthesizable representation of a neural
monitor. This is the final step of hardware implementation of a neural monitor. We
use the HLS from Xilinx [Inc] to convert a C++ description of a neural circuit to a
synthesizable HDL code (Verilog or VHDL). Given a C++ function that represents a
monitor for a sub-formula of the initial specification, we generate HDL code with HLS
according to the following steps: 1) Define a test suite to compare a function that uses
hardware-specific (bit-precise) data types with a “golden” function that uses generic
software types; 2) Generate HDL with RTL synthesis. 3) Compare the functionality
of the synthesized code from 2) with the “golden” function. 4) Export the synthesized

1We refer to a past-MTL formula as a formula with past-temporal operators only

54

5.2. Neural Temporal Testers

code as an intellectual property (IP) (available upon request). These IPs can be then
imported in development tools (e.g. Vivado or PlanAhead) for bit-stream generation.

5.2 Neural Temporal Testers
In this chapter we show how to use TrueNorth neurons as temporal testers [PZ08a] for
evaluation MTL formulae. The logic is interpreted over discrete time, which is a necessary
requirement for FPGA realizations. We first give a formal definition of MTL and then
show how to build temporal testers for past fragment of it using the TrueNorth model.
Using the conversion procedure [MNP07] we are not restricted only to past but are also
able to monitor formulae, equisatisfiable to bounded future-MTL specifications, after
linear time preprocessing in the size of the formula. The authors in [AH90] showed that
MTL is decidable in discrete time.

5.2.1 Metric Temporal Logic

The syntax of an MTL formula ϕ with past and future operators over a set of boolean
variables P = {p1, · · · , pm} is defined by the following grammar [MNP06]:

ϕ := p | ¬ϕ |ϕ1 ∨ ϕ2 |ϕ1U Iϕ2 |ϕ1 S Iϕ2,

where p ∈ P , I is [a, b], a, b ∈ N and 0 ≤ a ≤ b. Other MTL operators are derived from
the definition in a standard way: > = ϕ ∨ ¬ϕ; ⊥ = ¬>; eventually 1I ϕ = >U Iϕ; once
QI ϕ = >S Iϕ; always 0I ϕ = ¬1I ¬ϕ; historically `I ϕ = ¬QI ¬ϕ.

The semantics of an MTL formula is defined as follows:

(w, i) |= p ↔ p[i] = >
(w, i) |= ¬ϕ ↔ (w, i) 6|= ϕ
(w, i) |= ϕ1 ∨ ϕ2 ↔ (w, i) |= ϕ1 or (w, i) |= ϕ2
(w, i) |= ϕ1U Iϕ2 ↔ ∃j ∈ (i+ I) ∩ T : (w, j) |= ϕ2

and ∀i < k < j, (w, k) |= ϕ1
(w, i) |= ϕ1 S Iϕ2 ↔ ∃j ∈ (i− I) ∩ T : (w, j) |= ϕ2

and ∀j < k < i, (w, k) |= ϕ1

5.2.2 Parameter synthesis for neural monitors as ILPs

To configure TrueNorth neurons as monitors of MTL specifications, we need to find
their parameters paramsi = {αi, βi, Ri, λi, εi, κi, si,M}, (i.e. synaptic weights, leak,
thresholds, etc.). For each function (either logical or bounded temporal) our goal is to
devise constraints that characterize its behavior: If, for example, for given combination
of inputs we require a neuron to output a spike sj then at the current time step the
value of a membrane potential Vj of a neuron j after synaptic and leak integration steps
should exceed positive threshold αj . The configuration task can be seen as a search in
parameter space for a point that satisfies all the constraints. Since all the parameters of

55

5. Neural Models for Qualitative Monitoring

the TrueNorth model [CMA+13] are either integers or booleans, the configuration problem
for a TrueNorth neuron can be stated as an Integer Linear Program (ILP) [Van01] with
zero objective function (i.e. finding a feasible solution).

Logical Operators with TrueNorth

To configure neurons for executing logical functions, we need to impose memoryless
behavior on the TrueNorth model, which has memory (i.e. membrane potential Vj).
This is achieved by forcing a neuron j to reset its internal state Vj at every time point
by executing either positive or negative reset steps in the reset mode 0 (γj = 0): At
each time step a combination of inputs should either exceed αj (when spike sj on this
particular combination of inputs is required) or stay below βj (when no spike is required
on the input). By assigning Rj = 0 we keep Vj = 0 at the beginning of every computation.
One neuron is required to compute AND, OR, NOT, NAND, NOR and implication.

Example: 2-NAND To illustrate our approach, we configure a TrueNorth neuron to
perform a two input NAND operation (see Fig. 5.2). The input neurons n0, n1 provide
stimulus to the neuron n2, the parameters of which we need to find in this example.

n0

V0

λ0

n1

V1

λ1

n2

V2

λ2

Spike

s0

s1

Figure 5.2: Two input TrueNorth circuit

To reproduce the behavior of interest, the output neuron n2 must spike at every time step
unless both n0 and n1 are active: in this case n2 must be inhibited and its membrane
potential V2 must fall below β2; In all other cases V2 after leak integration V2 must exceed
α2. The left-hand side of the inequalities represent the value of V2 after synaptic and
leak integration for different combination of inputs. The ILP is given in Equation 5.1.

min 0 s.t.

λ2 ≥ α2
+s1 +λ2 ≥ α2

s0 +λ2 ≥ α2
s0 +s1 +λ2 < β2,

(5.1)

where s0 and s1 are synaptic weights of neurons n0 and n1 respectively; λ2 is a leak
weight of n2; α2 and β2 are positive and negative thresholds of n2 respectively. This
problem can be now solved using a standard ILP solver (e.g. we use intlinprog from
MATLAB). By similar argument we devise constraints and find parameters of different

56

5.2. Neural Temporal Testers

logical functions (see Table 6.2 for the results for two-input case). Cases with more input
and composed logical functions can be also stated as ILPs and solved analogously.

Table 5.1: Neural Parameters of Logical Operators

s0 s1 λ2 α2 β2 γ2 cλ2 ε2 M2 κ2
AND 9 9 -14

4 -4 0 0 0 0 0

OR 9 9 -5
NOT -4 - 4
NOR -9 -9 4
NAND -9 -9 13
→ 9 -9 -5

Temporal Operators with TrueNorth

We employ the idea of temporal testers [PZ08a] to construct monitors for MTL specifica-
tions in a compositional way. We build temporal testers on top of the TrueNorth model,
i.e. use TrueNorth neurons to recognize past-LTL and past-MTL operators by leveraging
the internal state Vj and different reset modes.

The Once Operator Q The semantics of the Once operator according to [MP92] is
as follows: (w, i) |=Q p iff (w, k) |= p for some k, 0 ≤ k ≤ i. The temporal tester for Q
spikes continuously after p has happened. We need one TrueNorth neuron for this task.
Fig. 5.3 shows a circuit where n1 computesQ p, where p denotes a predicate “n0 spikes”.
The constraints that govern behavior of n1 are as follows:

• To be non-forgetful, leak weight λ1 must be zero,

• To fire when the first Spike from n0 arrives, s01 ≥ α1;

• To continue firing after the first occurrence of Spike on n0, reset mode 0 with
R1 > α1, (see Table 5.2).

The Previous Operator � A neural temporal tester ψ =�φ needs to postpone a
satisfaction of φ for one time step. The circuit consists of two neurons (see Fig. 5.3) that
compute in an inverse order: At each time step, n2 computes on input from n1, and n1
compute on input neuron n0, which results in shifting satisfaction of φ by one time step.

The Punctual Once Operator Q{a} Since ψ = Q{a} ϕ postpones satisfaction of
ϕ over a time steps, we implement this operator as a cascade of previous operators as
in [JBG+15]. This implementation requires 2a neurons.

Q{a} ϕ = �� . . .�︸ ︷︷ ︸
a

ϕ

57

5. Neural Models for Qualitative Monitoring

The Bounded Once Operator Q[0,a] The temporal tester for ψ =Q[0,a] ϕ uses six
TrueNorth neurons. According to its semantics, the tester should spike when ϕ is satisfied,
and output spikes for a time steps after the last satisfaction of ϕ. We build a circuit of
four neurons that captures last satisfaction of ϕ: ¬ϕ ∧�ϕ. Its output activates special
“bounded once” neuron, which operate in non-reset mode, has one leak weight and input
weight from auxiliary circuit of a. Setting R to 1 allows us obtain a concecutive spikes
after last satisfaction of ϕ. The output of the tester is an OR neuron, that combines input
with output from a “bounded once” neuron.

n0

V0

λ0

n1

V1

λ1

n2

V2

λ2

` p

¬p Spikes01

s02

s12
n0

V0

λ0

n1

V1

λ1

Q p

Spike

s01

n0

V0

λ0
n1

V1

λ1
n2

V2

λ2

� p

Spike
s01 s12

Figure 5.3: Neural Temporal Testers

The Historically Operator ` A temporal tester for ψ = ` ϕ takes a neuron n0
and its an inverse n1 as inputs (see Fig. 5.3). According to the semantics from [MP92],
whenever a Spike from n1 arrives at the tester, its membrane potential should fall below
β2 and its output never produces a Spike. To configure a neuron as a tester, we find
parameters that satisfy the following constraints (see the Equation 5.2 for constraints
and possible parameter assignment in Table 5.2):

+s02 +λ2 ≥ α2
+s12 +λ2 < β2

+R2 +s02 +λ2 ≥ α2
+R2 +s12 +λ2 < β2
−R2 +s02 +λ2 < β2
−R2 +s12 +λ2 < β2

(5.2)

The bounded Historically Operator `[0,a] To construct a temporal tester for
ψ = `[0,a] φ we use the circuit in Fig. 5.3 but configure n2 differently. We use the reset
mode 2 and set the positive threshold α2 = as02: this allows us to count satisfaction of φ
over consecutive time steps. To be able to reset the state of n2 when φ gets violated we
set the negative threshold to zero, use saturate mode (κ2 = 1) and the largest negative

58

5.3. Case Study and Experimental Results

weight possible for s12 to execute negative reset mode (see Tab. 5.2). To check satisfaction
on [a, b] we use the fact that `[a,b] φ =Q{a}`[0,b−a] φ.

The Since Operator S To build a temporal tester for ψ = φ1 Sφ2 we need four
neurons. The definition states that φ2 happened at some time in the past and φ1
held at every time point from the occurrence of φ2 till present. We use an argument
from [JBG+15] for constructing the tester: the tester must satisfy φ2(t)⇔ ψ(t) at the
first time step and ψ(t)⇔ (φ2(t)∨ (φ1(t)∧ ψ(t− 1))) starting from the second time step.
The tester comprises ∧, ∨ and � neurons.

The bounded Since Operator S [0,b] We implement a tester for ψ = φ1 S [0,b] φ2
using a rewriting rule from [JBG+15]: φ1 S [0,b]φ2 = (φ1 Sφ2)∧Q[0,b] φ2. As a combination
of two testers, this tester requires 11 neurons.

Table 5.2 summarizes the configuration of TrueNorth neurons as temporal testers and
gives parameter assignment. Note, that we consider only deterministic mode in this
chapter, hence M = 0 for all the testers (omitted from the Table for clarity).

Table 5.2: Neural Temporal Testers
in0 in1 λi αi βi γi Ri εi κi

Q 7 - 0 4 -4 0 5 0 0
� 1 - 0 1 0 0 0 0 0

1 - 0 1 0 0 0 0 0
Q{a} a chain of �
Q[0,a] combination of �,∧,¬,∨ and a “core” neuron (below)

INT_MIN a -1 1 0 2 0 0 1
` 0 -18 4 4 -4 0 9 0 0
`[0,a] 1 INT_MIN 0 a 0 2 0 0 1
S combination of ∧,∨,�
S [0,b] combination of ∧, S ,Q[0,a]

5.3 Case Study and Experimental Results
The purpose of the case study is to show the possibility of applying the proposed in
Section 5.1.2 flow for obtaining hardware monitors with acceptable resource utilization.
In Chapter 8 we consider application of runtime monitoring for real industrial case studies.
In this section we illustrate how to build a hardware neural monitor for a safety property
that describes the launch of a missile from a ship. Suppose that the launch is governed
by three signals: “launch enable”: `, “fire enable”: f and “detonation”: d. The signal `
characterizes whether the missile is allowed to be launched; the signal f describes the
moment when a missile has been fired; the d signal is sent to trigger detonation.

The property we monitor is a safety property of the ship in a sense that it describes
correct order of actions, timing and absence of damage to the ship from its missile:

59

5. Neural Models for Qualitative Monitoring

“When the missile received the launch enable signal, it must see the fire enable signal
followed within the next four time points. After fire en has arrived, no detonation is
allowed for the next five time points.” (see Fig. 5.4).

at most 4
at least 5

detonation

fire_en

launch_en

Figure 5.4: Missile timing property specification

The natural-language specification above can be almost directly expressed in MTL: the
relation that the rising edge of f must appear within four time steps after the edge of
` is by definition bounded eventually; no detonation for five time points is a bounded
always of negation of d signal:

↑ `→1[0;4]

(
↑ f ∧0[0;5] ¬d

)
, (5.3)

where ↑ ϕ is a shortcut for the MTL formula ϕ ∧�¬ϕ which denotes a rising edge of ϕ.

We then convert the bounded future MTL formula (Eq. 5.3) to an equisatisfiable past
one. After performing a Step 5.1.2 we obtain an equisatisfiable past MTL specification:

Q{9} ↑ `→Q[0,4]

(
Q{5} ↑ f ∧`[0;5] ¬d

)
(5.4)

In the next step we construct a neural circuit which represents a monitor. Each sub-
formula from Eq. 5.4 is converted to a corresponding neural circuit. After composing a
neural circuit we simulate it using our C++ implementation of TrueNorth model (Fig. 5.5
shows simulation results).

0 50 100 150 200

n0
n1
n2
n3
n4
n5
n6
n7
n8
n9

n10

Active neurons

Figure 5.5: Missile monitor: simulation results

We use Zedboard from Xilinx and Vivado System Edition [viv] (University License)
for generating neural monitors (see Fig. 5.6). During HLS conversion we leveraged
hardware specific data types to assign all the flags in the model exactly one bit-width

60

5.4. Summary

and reduced native data types proportional to the width of Xilinx multipliers to save
hardware resources. Each temporal operator has been synthesized separately to foster
reuse for other specifications. We then implemented the demonstrator on FPGA which
generates `, f and d signals and checks the monitor under nominal conditions and fault
injections. FPGA resources for each operator are listed in Table 5.3 (FF and LUT stand
for flip-flop and look-up tables, respectively). Figure 5.6 shows experimental setup.

Figure 5.6: Experimental setup (see [osc] for oscillograms)

Table 5.3: Missile monitor: implementation results

Operator # of neurons FPGA resources
FF LUT

→ 1 25 82
Q{9} 18 443 1623
↑ ` 4 98 325
Q[0,4] 6 146 1085
∧ 1 25 82
Q{5} 10 246 920
↑ f 4 98 325

`[0;5] ¬d 2 48 164
Total: 46 1129 (1.1%) 4606 (8.6%)

5.4 Summary
In this chapter we showed how digital spiking neural model, called TrueNorth, can be
applied for qualitative monitoring of signals against MTL specifications. We presented
the flow to formalize natural language requirements to a formula and showed how to

61

5. Neural Models for Qualitative Monitoring

build neural testers for each of logical and temporal components of MTL specifications.
We also showed how the validated neural circuit can be synthesized in FPGA and used to
monitor requirements in real time. This work demonstrates application of neural models
for qualitative monitoring of cyber parts of CPS. We also demonstrated applicability
our approach on a case study where we build a neural hardware runtime monitor for a
missile launch from natural language requirement.

62

CHAPTER 6
Neural Models for Quantitative

Monitoring

In this chapter we further elaborate on the research question RQ 2, and show how to
perform computations using neural models. We consider two neural models: biophysically-
accurate yet computationally plausible Hodgkin & Huxley [HH52] neural model, extended
with the synapse model from [RvR09], and hardware-efficient digital TrueNorth [CMA+13]
model; these two models use a spike as a mechanism to communicate between neurons.

Neuroscience and computer engineering are fundamentally different: while, in general,
the purpose of a neuroscientist is to understand a nervous system and to develop models
capable of explaining its function (from the physical world to models), the purpose of a
computer engineer to realize a hardware system that would satisfy initial requirements
(from models to the physical world). Despite the differences, from the papers of McCulloch
& Pitts [MP43] neural networks are influencing the development of computer hardware,
which result in dedicated chip architectures [SMN11, WHTvS14, CMA+13].

Neuromorphic hardware accelerators [DBDRC+15] that co-exist together with the tradi-
tional CPU infrastructure enable new functionality of hardware systems, add flexibility
to existing designs, retain established design flow, and reduce overall costs when imple-
mented on a commercial off-the-shelf (COTS) general purpose hardware. To build efficient
hardware implementation, it is essential to understand how to perform fundamental
arithmetic operations, as those set the basis for the higher-level complex processing.

As temporal logic can be viewed as filtering [RBNG16], allowing both qualitative and
quantitative semantics, depending on the choice of windowing function, we show how to
implement temporal logic monitors for MTL using the TrueNorth model.

The contributions of this chapter can be summarized as follows:

63

6. Neural Models for Quantitative Monitoring

• we show how arithmetic operations can be implemented both using biophysical and
digital neural models;

• we elaborate on the role of assumptions on inputs to obtain the correct computation
results for both models;

• we present temporal logic monitors based on the TrueNorth model for convolutional
semantics of MTL.

The rest of this chapter is organized as follows: Section 6.1 provides a short description
of the spiking models under study. Section 6.2 elaborates on performing computations
with Hodgkin-Huxley and TrueNorth neural models. Section 6.3 presents the temporal
logic monitoring using convolution. Section 6.4 offers concise summary of the presented
results.

6.1 Neuron and Synapse Modeling
In this section we recap the biophysical Hodgkin-Huxley neural model and synapse models
under study. Description of the TrueNorth model is given in Chapter 2.

6.1.1 The Hodgkin-Huxley neuron model

The model qualitatively describes the dynamics of the membrane potential as a function
of activation and deactivation of ionic channels such as sodium and potassium together
with the leak channel [HH52], e.g. ODE describe the evolution of the membrane potential:

Cm
dVm
dt

= −[ḡKn4(Vm − EK) + ḡNam
3h(Vm − ENa) + ḡl(Vm − El)] + Iin, (6.1)

where Cm and Vm are the membrane capacitance and potential; ḡK , ḡNa and ḡl are the
conductances of the potassium, sodium and leak channels, respectively; EK , ENa and El
represent the reversal potential of the channels; n, m and h are voltage-dependent gating
variables for the potassium channel activation, sodium channel activation and sodium
channel inactivation, respectively. The detailed description is presented in original paper
of Hodgkin & Huxley [HH52].

6.1.2 Modeling Synapses

In order to model the current flow between neurons in the Hodgkin-Huxley model (as
it accounts for external current stimulus), we implemented three models of synaptic
conductance gsyn from [RvR09] and assume that Isyn ∝ gsyn. The first model (exponential
decay) assumes that ionic channels open instantaneously upon an arrival of a presynaptic
action potential and then gsyn decays exponentially:

gsyn(t) = ḡsyne
−(t−t0)/τ . (6.2)

64

6.1. Neuron and Synapse Modeling

npre

MHH
params1
Vpre, s1
in

npost

MHH
params3
Vpost, s3
out

Isyn

Postsynaptic current:
Exp. decay
Alpha function
Diff. of two exp.

0 200 400 600 800 1000
80

60

40

20

0

20

40

60

0 200 400 600 800 1000
0.0

0.2

0.4

0.6

0.8

1.0

1.2

EP
SC

V
pr

e

t (ms)

Figure 6.1: Normalized EPSC in response to pre-synaptic action potentials (Vpre)

The alpha function [VVAE94] takes into account that the opening of ionic channels is
not instantaneous without introducing additional parameters into the model:

gsyn(t) = ḡsyn
t− t0
τ

e1−(t−t0)/τ . (6.3)

A more comprehensive representation of the dynamics of synaptic conductance can be
modeled by the difference of exponentials where the rise and decay times are explicitly
introduced [RvR09]:

gsyn(t) = ḡsyn(e−(t−t0)/τdecay − e−(t−t0)/τrise). (6.4)

We implement the above models of synaptic conductance (Eq.6.2-6.4) and employ them in
the design of arithmetic operations using the Hodgkin-Huxley model. Figure 6.1 depicts
the normalized excitatory post-synaptic current (EPSC) for synapse models in response
to the presynaptic action potential; Tab. 6.1 lists the parameters of the models studied
in this work.

Table 6.1: Parameters of neuron and synapse model

Model Parameters
Hodgking-Huxley model Cm, ḡK , ḡNa, ḡl, EK , ENa, El, α{K,Na}, β{K,Na}
TrueNorth model Aj , wj , sj , λj , εj , γj , αj , βj , κj
Exponential Decay

ḡsyn, τAlpha function
Double-exp Synapse ḡmaxs , τrise, τdecay

65

6. Neural Models for Quantitative Monitoring

6.2 Computations with Neural Models
As we study computation for both biophysical and digital neural models, we assume that:
(i) biophysical model operates over real time and real-value domain (it is simulated with
a pre-defined rational-value integration step ∆t = q

r , where q, r ∈ N), (ii) to be efficiently
hardware-realizable, the digital neural model operates over discrete time and finite-value
domain. A trial is an execution of a neural circuit for a time interval [0, T]. Each neuron
ni = (M,paramsi, Vi, si, li) is characterised by (i) an underlying modelM, (ii) a set of
parameters paramsi, (iii) its membrane potential Vi, (iv) a binary spike output si, and
(v) a label li ∈ {in, interm, out} of a neuron. For a neural network N = {n1, · · · , nm}
of m neurons we define its computation C over a time interval in the following way:
C : [0, T] 7→ V m∪Sm, where V m = {V1, · · · , Vm} and Sm = {s1, · · · , sm} are membrane
potentials and spikes of neurons in the network N respectively.

A spiking activity of a neuron ni over a trial is defined as a mapping [0, T] 7→ si. We
assume that a neuron ni encodes numbers in a spike-count rate [DA05], and measure
spiking activity over a time window w ⊆ [0, T] of the length ‖w‖:

ri =
∑
t∈w si[t]
‖w‖

. (6.5)

The task of computing a function f in a neural network N then can be formulated as
follows: for a given neural modelM find number of neurons with labels interm, out
and their corresponding parameters params such that r{out1,···outn} = f(r{in1,··· ,inm}).

The circuit topology for the two-argument operations is shown in Fig. 6.2. The TrueNorth
model (left) assumes that neurons are connected with discrete weights. For Hodgkin &
Huxley model (right) we introduce the synaptic connections between neurons. Input
neurons (blue and green) provide spikes with rates r1 and r2 to the computing neuron
n3, which outputs the result f(r1, r2).

r1

n1
MTrN
params1
V1, s1
in

r2

n2
MTrN
params2
V2, s2
in

n3

MTrN
params3
V3, s3
out

r1+r2

w1

w2

weights

r1

n1
MHH

params1
V1, s1
in

r2

n2
MHH

params2
V2, s2
in

n3

MHH
params3
V3, s3
out

r1+r2

synapses

Figure 6.2: Neural models for computations on spike rates

6.2.1 Computing Addition

Addition using the TrueNorth model is realized as follows: we configure the output
neuron n3 in the linear reset mode (γ = 1), the input weights and the positive threshold

66

6.2. Computations with Neural Models

are set to one. This allows to: (i) generate a spike in the out neuron whenever an action
potential is generated by the in neurons; (ii) memorize in the membrane V3 if two spikes
happened at the same time instant, and temporally separate output spikes over the
adjacent time steps.

Without any assumptions on input, if the membrane potential is empty at the end of the
trial, then the result of addition is correct. If, however, the both inputs arrive at the end
of the trial, the output neuron may not be able to generate the correct result when the
number of the remaining time steps in the trial is less the value of the membrane potential.
This can be mitigated by extending the length of the trial for the output neuron, which
we aim to avoid to keep the hierarchical composition simple. In this work we assume
random arrival of input, which is implemented in the TrueNorth model as the “rate-store”
function [CMA+13]. Fig. 6.3 shows the simulation results: blue + green = red (n1 – blue;
n2 – green; n3 – red). We performed 1000 simulation trails for 1000 time steps each.
The leftmost plot shows the dependence between input and output spike rates for all the
trials. Subsequent 1000 × 1000 plots present the spiking activity of input and output
neurons over time during all the trials: a black pixel with coordinates (i, j) denotes a
spike in trial i (horizontal axes) at a time step j (vertical axes).

0 200 400 600 800 1000
0

100

200

300

400

500

600

0 200 400 600 800 1000
0

200

400

600

800

1000

0 200 400 600 800 1000
0

200

400

600

800

1000

0 200 400 600 800 1000
0

200

400

600

800

1000

#
o
f

s
p
i
k
e
s

t
i
m
e

s
t
e
p
s

simulations simulations (n1) simulations (n2) simulations (n3)

Figure 6.3: Addition in the spike rates using the TrueNorth model

Addition using the Hodgkin-Huxley model crucially depends on the underlying synapse
model. Unlike the TrueNorth, the biophysical Hodgkin-Huxley model is not able to
memorize the occurrences of two simultaneous spikes from both inputs in the membrane
potential Vm. Furthermore, one needs to account for the refractory period, in which no
action potential can be initiated. To obtain correct results it is vital to distribute the
synaptic current over the time, such that after the refractory period the output neuron
still receives enough stimulation. The alpha function and the difference of two exponential
can be used to perform the addition with Hodgkin-Huxley model. Fig. 6.4 shows the
simulation result of a trial, where the synapse are modelled as the alpha function: the
profile of the pre-synaptic voltage profile for the input neurons (blue and cyan), the
superposed synaptic current (green), the post-synaptic voltage profile (red).

The fact that at the end of the trial the membrane potential Vm stabilizes at the resting

67

6. Neural Models for Quantitative Monitoring

value for a time Tstable ∼ 10ms is necessary but not sufficient requirement for producing
the correct results.

0 200 400 600 800 1000
80

60

40

20

0

20

40

60

0 200 400 600 800 1000
0
2
4
6
8

10
12
14
16
18

0 200 400 600 800 1000
80

60

40

20

0

20

40

V
pr

e
I s

yn
V

po
st

t (ms)

Figure 6.4: Addition of spike rates with the Hodgkin-Huxley model

6.2.2 Computing Constant Multiplication

Constant multiplication using the TrueNorth model is implemented as follows: for each
occurrence of the input spike, the output neuron generates C spikes, hence the strength
of the connection (i.e. its weight) is proportional to C. The output neuron n3 is set to
the non-reset mode (i.e. γ = 2) to be able to store all the spikes seen so far. The negative
leak λ and the saturate flag κ ensure that the membrane potential will converge to zero
in the absence of input. In the case of constant factor division, we need to output one
spike for each C spikes seen so far. To do so, we set a positive threshold α proportional
to C and weight s0 to one. We also set the leak to zero and linear reset mode (γ = 2);
see Fig. 6.5 for the simulation results.

Constant multiplication using the Hodgkin-Huxley model can only be performed if the
synaptic current and the input spike rate satisfy the following requirements: (i) the
length of the synaptic current pulse must be proportional to the multiplication constant
C; (ii) the input arrival rate is low enough to allow synaptic current attenuate to its
resting value before the arrival of the next spike from the pre-synaptic neuron. To satisfy
the first requirement it is necessary to control both the amplitude and the width of the
synaptic current, as the “difference of two exponentials” allows to adjust both rise and
decay times of the synaptic current, this model shows the best results. Fig. 6.6 shows
the simulation trial of performing the multiplication of the input rate by four: the profile
of the pre- and post-synaptic membrane potentials (magenta and green, respectively),
and the total synaptic current (red).

68

6.2. Computations with Neural Models

0 200 400 600 800 1000
0

200

400

600

800

1000

0 200 400 600 800 1000
0

200

400

600

800

1000

0 200 400 600 800 1000
0

200

400

600

800

1000

0 200 400 600 800 1000
0

200

400

600

800

1000

#
o
f

s
p
i
k
e
s

t
i
m
e

s
t
e
p
s

simulations simulations (n1) simulations (n2) simulations (n3)

Figure 6.5: Constant multiplication and division of the spike rates with the TrueNorth
model: 2 · blue = green, 1

3 · blue = red (n1 – blue; n2 – green; n3 – red)

0 200 400 600 800 1000
80

60

40

20

0

20

40

0 200 400 600 800 1000
0

2

4

6

8

10

12

14

16

V
pr

e
V

po
st

I s
yn

t (ms)

Figure 6.6: Constant multiplication of the spike rates with the Hodgkin-Huxley model

6.2.3 Computing Subtraction and min/max

Subtraction using the TrueNorth model is realized analogously to addition: the subtrahend
though receives the weight of −1. Such implementation is inherently sensitive to the
input timing: if the spikes from the subtrahend neuron happen before the spikes of the
minuend neuron, the circuit computes max(0, r1 − r2), i.e. if the actual difference is
negative, no spikes are outputted.

Conversely, if at a time step ti the output neuron receives the spike from the minuend, it
needs to compute the running result and the correct way would be also to generate an
action potential, although a spike from the subtrahend after an arbitrary silence interval
would make the running result incorrect until the next spike from the minuend. The
necessary and sufficient condition to ensure the correctness of the result is V = 0 at the
end of the trial. Fig. 6.7 shows the simulation results for the randomized input.

Subtraction using the Hodgkin-Huxley model can only be performed when the following
assumptions on the inputs are met: since the model does not have a mechanism to
memorize the occurrences of spikes from the input neurons, all action potentials of the

69

6. Neural Models for Quantitative Monitoring

0 200 400 600 800 1000
0

200

400

600

800

1000

0 200 400 600 800 1000
0

200

400

600

800

1000

0 200 400 600 800 1000
0

200

400

600

800

1000

0 200 400 600 800 1000
0

200

400

600

800

1000
#

o
f

s
p
i
k
e
s

t
i
m
e

s
t
e
p
s

simulations simulations (n1) simulations (n2) simulations (n3)

Figure 6.7: Subtraction in the spike rates with the TrueNorth model: blue− green = red
(n1 – blue; n2 – green; n3 – red).

subtrahend neuron should coincide (up to the small time difference) with the action
potential of the minuend neuron.

Minimum/Maximum using the TrueNorth model is based on the fact, that the subtraction
actually computes max(0, r1 − r2). We now can construct the minimum and maximum
operators compositionally as follows: min(r1, r2) = r1−max(0, r1−r2), andmax(r1, r2) =
r2+max(0, r1−r2). Fig. 6.8 shows the simulation results of performing these computations:
the neuron n3, which generates an offset of 200 spikes per trial on average, is added to
separate the results from the inputs. Table 6.2 shows parameters of the TrueNorth model
to perform the presented arithmetic operations.

0 200 400 600 800 1000
0

200

400

600

800

1000

0 200 400 600 800 1000
0

200

400

600

800

1000

0 200 400 600 800 1000
0

200

400

600

800

1000

#
o
f

s
p
i
k
e
s

t
i
m
e

s
t
e
p
s

simulations simulations (n4) simulations (n5)

n1: in1

n2: in2

n3: in3

n4: out1

n5: out2

Figure 6.8: Computing min/max using the TrueNorth model: r4 = max(r1, r2) + r3,
and r5 = min(r1, r2)− r3

6.3 Neural filters as temporal logic monitors

The task of multiplying two spike rates f0 · f1 is the most challenging one among
arithmetic computations with the TrueNorth model. We use the fact from the convolution

70

6.3. Neural filters as temporal logic monitors

Table 6.2: Parameters of the TrueNorth Model

s0 s1 λ2 α2 β2 γ2 ε2 M2 κ2
f0 + f1 1 1 0 1 0 1 0 0 0
f0 − f1 1 -1 0 1 0 1 0 0 0
f0 · C C+1 - -1 1 0 2 0 0 1
f0/C 1 - 0 C 0 1 0 0 0

theorem [Lyo11] to tackle this problem: performing convolution of inputs in time domain
allows us to obtain multiplication in the frequency domain.

Fig. 6.9 shows the circuit of TrueNorth neurons for performing circular convolution.
Inputs u and v of a trial of the length T are supplied in parallel to the convolution circuit.
Neurons for computing pairwise product (which terms of TrueNorth spikes correspond to
a logical AND) are shown on the red background. Output neurons (purple background)
perform summation and store in membrane potential Vj the result of a convolution in a
time step j.

0

2
3

T
T-1

1

0

2

3

T

T-1

u*v
fu· fv

1

u

0

2
3

T
T-1

1

v

Figure 6.9: Circular Convolution using TrueNorth: the Circuit

To use the circuit from Fig. 6.9 for computing pairwise product of input signals that are
observed over time, we implement additional delay circuitry with TrueNorth to store the
signal for the period T .

The circuit from Fig. 6.9 gives the exact product of two numbers over a period T , without
any assumptions about inputs (i.e. spikes can appear anywhere in T , therefore we buffer
the signal for one period and supply it in parallel). The price we pay for exact value of
the product is the size of the circuit, which requires in general O(T 2) neurons.

71

6. Neural Models for Quantitative Monitoring

6.3.1 Using TrueNorth to monitor MTL Temporal Operators

In [RBNG16] it is proven that convolution can be used to compute the satisfaction of an
MTL formula with respect to a signal, and the semantics of past temporal operators can
be defined as follows:

Jx,QI ϕK[i] =
∑
j ∈TJx, ϕK[j] · w−I [i− j]

Jx,`I ϕK[i] = minj ∈ i−IJx, ϕK[j]

Jx, ϕS IψK[i] = 1
|I|
∑
j ∈ I(Jx,`[1,j−1] ϕK[i] · Jx,Q{j} ψK[i])

where w−[a,b] is a discrete-time window defined as a sum of the δ Kronecker function:

w−[a,b] = 1
b− a

b∑
i=a

δ(s− i) (6.6)

Interpreting × and + as min and max allows to use convolution to compute whether the
signal satisfies an MTL specification ϕ. If the assumption holds that the spiking activity
at the end of the trial T is given, we can reuse the circuit from Fig. 6.9 with a minor
modification: we reconfigure the sum neurons (on the purple background) for computing
max (equivalent to the logical OR in the quantitative case).

The Bounded Once Operator Q[a,b]

To compute a satisfaction signal of the formula Q[a,b] p, we perform a convolution of p
with a window w−[a,b], which is derived from the interval [a, b] (Eq. 6.6). We supply the
signal to the input u of the circuit from Fig. 6.9. We then use use an interval [a, b] of
the bounded once operator to form a window w−[a,b] as follows: neurons in v with indices
i ∈ [a, b] must spike, others not. Fig. 6.10 shows an input signal, a window and the
output of the circuit for two examples.

0 5 10 15 20 25

0 5 10 15 20 25

p

w−[1,3]
Q[1,3] p

p

w−[0,1]
Q[0,1] p

Figure 6.10: Computing Q[a,b] using TrueNorth

The Bounded Historically Operator `[a,b]

Given a signal w of a length T represented with spikes and a bounded historically
formula `[a,b] p, to compute the satisfaction signal with the circuit from Fig. 6.9 we

72

6.4. Summary

proceed as follows:
(i) supply the signal to the input u;
(ii) construct a window w−[a,b] (Eq. 6.6) in which a neuron i spikes if i ∈ [a, b]. This

window then is supplied to v;
(iii) deactivate circular connections from Fig. 6.9 to obtain standard (non-circular)

convolution;
(iv) reconfigure summation neurons (on a purple background in Fig. 6.9) to output

spike if and only if the number of spikes in the input is greater of equal to b− a. This is
done by increasing the positive threshold α to b− a while keeping weights value at one
in the normal reset mode (γ = 0).

Although we are not computing convolution in its pure sense, (a minimum in a moving
window according to the semantics from [RBNG16]), the versatility of the TrueNorth
model allows to reuse the same circuit with different configuration of neurons to accomplish
this task (see Fig. 6.11 for simulation results).

0 5 10 15 20 25

0 5 10 15 20 25

p

w−[1,3]
`[1,3] p

p

w−[0,1]
`[0,1] p

Figure 6.11: Computing `[a,b] using TrueNorth

The Bounded Since Operator S [a,b]

The satisfaction of the MTL formula ϕ = pS [a,b]q according to its semantics from [RBNG16]
is defined as a union of pairwise products of bounded historically and bounded once op-
erators. For each j ∈ [a, b] we compute `[1,j−1] p (see Sec. 6.3.1) and Q{j} q (Sec. 6.3.1).
Using T neurons we perform a pairwise AND between `[1,j−1] p and Q{j} q thus obtain
the result for a time step j in the interval of interest. We obtain the final result by
performing a sum over all j computed before. Figure 6.12 shows the simulation results of
computing pS [a,b]q for two different signals and intervals.

6.4 Summary

In this chapter we showed how inherently different models of spiking neurons that
come from neuroscience and computer engineering can be configured to perform the
computations on the spike rates. The correctness of the computational results for both
models depends on the operation being performed and the spike profile of the inputs.
According to the results, the assumption on inputs for obtaining the correct computation
results with the TrueNorth model are less restrictive then for the Hodgkin-Huxley model.

73

6. Neural Models for Quantitative Monitoring

0 5 10 15 20 25

0 5 10 15 20 25

p

q

w−[3,6]

pS [3,6]q

p

q

w−[2,4]

pS [2,4]q

Figure 6.12: Computing pS [a,b]q using TrueNorth

The model of the synaptic transmission is crucial to perform the computation and obtain
correct results using the biophysical neural model.

We then developed an approach how to implement circular convolution using the
TrueNorth neurons, and then use the obtained circuit to monitor MTL specifications.
We used convolution of an original signal and a windowing function, defined from the
formula to obtain the satisfaction signal.

74

CHAPTER 7
Runtime Monitoring in
Automotive Electronic

Development

This chapter elaborates on applied results of the thesis. We consider research questions
RQ 3 and RQ 4, and discuss the applications of runtime monitoring in the industrial
design practice. The chapter aims to show how automotive electronic development can
benefit from applying semi-formal techniques, as runtime monitoring, and gives two use
cases which forster monitor reuse from early design prototype to post-silicon verification.

Verification & Validation of complex mixed-signal integrated circuit products in industrial
practice accounts for 60-70% of project development time. It is known that simulation,
which is the dominant method for pre-silicon verification, does not scale due to immense
computing requirements. The increasing trend to overcome the simulation bottleneck is
to complement it with the emulation based approach: the designed system is replaced by
an early prototype implemented using FPGA allowing long-term/stress testing and whole-
range parameter variations, which is usually limited to small examples with simulation-
based verification [BBNS15, BBN13, Don10, ALFS11]. Design emulation techniques
also allow one to approximate an analog component with discretized behavioral model,
therefore enabling end-to-end testing early on. However, verification techniques used
with the emulation-based approach involve manual tasks, making them error-prone and
time consuming. To improve the verification techniques in this scenario, we propose
combining assertion-based runtime verification with design emulation. In this framework
we employ STL [MN13a] as specification language to express the desired requirements.

Electronic components and software systems in the automotive industry are increasingly
prominent: They already encompass up to 35% of the costs of a car and they will
continue to expand [KS14]. The compliance with the stricter safety standards (e.g. ISO

75

7. Runtime Monitoring in Automotive Electronic Development

26262[iso11]), the increase in the number of functions that the electronic systems of
a vehicle must fulfill (ADAS [OKT14], X-by-wire [San13]), the tight time-to-market
schedule, and the enlarged system complexity challenge the automotive electronic industry
as never before. To overcome these challenges, chip manufacturers strive for solutions
that help capture errors at all stages of the development cycle.

Sensors build up the front-end between the analog world and the digital electronic systems.
They provide the required level of safety and comfort while driving: E.g., they detect
the rotation angle of a steering wheel, the position of pedals, the pressure for launching
airbags [AG16], the distance to surrounding objects (high-speed radar sensor), air pressure
in tires (tire pressure monitor sensor, TPMS), etc. This chapter is dedicated to illustrate
how runtime verification [Leu12], a light-weight state-of-the-art technique for checking
compliance between a specification and a system at runtime, can be applied during sensor
chip development. We consider a sensor that measures a magnetic field, from which the
angle of the steering wheel can be calculated in an electronic power-steering application
(Fig. 7.1: two magnetic sensors measure the rotation angle of the steering wheel. The
rotation angle is then sent to the electronic control unit (ECU). Based on the speed and
the sensor data, the ECU activates the motor. The lower the speed, the more the motor
is activated. This affects the ease of rotating the steering wheel). Measuring angular
information is also required in electronic throttle control (Fig. 7.2) where the sensor is
used to detect the position of the pedal.

Steering Wheel

Motor

ECU

Steering Gear

Velocity

Wheel

Runtime Monitor
of communication

requirements between
the sensor and the ECU

Figure 7.1: Electronic power steering application

According to the state-of-practice, verification and validation (lab evaluation) of such
sensor interfaces become challenging for the following reasons:

• Verification for the sensor interfaces has to cover real-time mixed signal domains;

• Failure during the reception, decoding and processing of sensor data in the system
can lead to unexpected or false events which might put human safety in danger;

76

ECU

Accelerator Pedal
Position Sensor

Throttle
Position Sensor

Throttle
Motor Control

Fuel Injection

Figure 7.2: Electronic Throttle Control for Engine Management

• Most of the functionality of sensor interfaces can only be verified at the system
level of the chip and at the system application level. Using classical mixed-signal
simulation approach becomes a bottleneck;

• Many verification scenarios of the sensor interfaces such as long-term verification run
with checking of millions sensor data frames are not suitable using computer-based
simulation as well as manual sensor data evaluation/checking.

The contributions of this chapter can be summarized as follows:

1. We showcased runtime verification techniques in automotive sensor chip design and
provide two use cases: Simulation and lab measurement.

2. In the first use case, the runtime monitors which are formalized and generated from
product requirements are embedded in the test bench of a chip concept simulation.
The implementation’s correctness with respect to the requirements is then possible
to monitor during simulation runtime.

3. In the second use case, the runtime monitors are reused and synthesized into an
FPGA hardware for monitoring implementation correctness in the lab.

We now elaborate on how runtime monitoring of STL requirements can be applied for
both checking the conformance of a chip model and for testing the chip later on against
the formalized requirements.

Fig. 7.3 shows the flow of the runtime-monitors generation for the two use cases. In a
first step, we formalize time-invariant product requirements, and obtain a set of temporal
logic formulas. We use bounded-time STL as a specification language, due to its ability
to handle analog-mixed-signal properties. The formulae to be hardware-synthesizable
need to be converted to a specific form (containing only past temporal operators i.e.
pastified) and simplified (eliminate duplicate sub-trees to save the hardware resources).
Hence, in this step we produce an equisatisfiable past STL formula [MNP07], which will
be used as a formal specification for the use cases.

77

7. Runtime Monitoring in Automotive Electronic Development

Behavioral

Temporal Operators

Lib C++STL Temporal

Operators Modeling

Formalized System

Properties in STL

STL Formula Sets

System

Requirements

HW Runtime

Monitors TopLevel

Offline Monitoring

framework

S
T

L
 V

a
li
d

a
ti

o
n

F
o

rm
a
l

S
y
s
te

m
 E

v
a
lu

a
ti

o
n

HW Runtime

Monitors Generation

Realization on a

specific HW platform

High-level Synthesis

UC1: Runtime

Lab Evaluation

Time Invariant

Simplification

Pastification

Sim_Past

Synthesizable

Temporal Operators

Lib C++

UC2: Runtime

Monitoring in SIM

Post-SI Verification Support

Figure 7.3: Runtime Monitoring Generation Flow

7.1 Use Case 1: Runtime Monitors in Simulation
The first use case, Runtime Monitors in Simulation, checks the implementation correctness
of the developing electronic product. The use case draws inspiration from the offline
monitoring framework [NN14]. However, simulation traces are simultaneously generated
and checked against the product’s requirements during the simulation runtime. Monitors
are embedded in the toplevel test bench and are being simulated together with the DUT.
This allows one to run the chip model and the monitors at once and observe whether the
chip model satisfies its formalized specification for different test cases (that correspond
to modelling various environmental conditions, power supply quality or fault injections).
This application allows design teams at an early stage assess whether the sensor prototype
adheres to the formal requirements.

We use the SystemC implementation of the STL temporal-operators (“behavior” Fig. 7.3).
This allows us to simulate both chip design prototype and monitor within the SystemC
simulation kernel, speed up the implementation by using the facilities of the SystemC
and C++ libraries.

7.2 Use Case 2: Runtime Monitors for Lab Evaluation
At a later phase of the product manufacturing, the chip is taped-out in the so-called
engineering samples. These samples still need to be verified in the lab environment.

78

7.3. Case Study: Automotive Sensor Interface

The key concept of use case 2 is to synthesize monitors from use case 1 into FPGAs,
to be used as an extended lab-equipment support for lab evaluation activities. This is
especially valuable for the scenarios in which errors can be seen only after a certain test
time. For example, hardware runtime errors, or scenarios including large amounts of
data exchange between sensor and ECU. The aim at this stage is to guarantee that the
implementation satisfies the requirements, under its operational condition, and sometimes
under a stress condition.

In this use case runtime monitors are synthesized in an FPGA and run in parallel with
the test hardware to keep up with the real-time sensor-ECU data exchange requirements.
The C++ code (“synthesizable” in Fig. 7.3) is supplied to High-Level Synthesis [Inc]
to generate RTL that can be put in FPGA. To be able to obtain efficient hardware
implementation the code must use hardware precise data types, must not dynamically
allocate memory. This approach allows to reuse monitors across product design phases.

7.3 Case Study: Automotive Sensor Interface

We implemented the use cases described in Sections 7.1 and 7.2 to show the applicability
of the proposed approach both in simulation and in hardware for a chip model and an
engineering sample of the magnetic sensor used in electronic power steering (Fig. 7.1).

In this section we show how two fundamental electrical requirements, which define a
shape of a synchronization pulse and a sensor response of Peripheral Sensor Interface 5
(PSI5), can be checked in a lab environment using the proposed approach. The ECU
sends synchronization pulse to the sensor via the voltage line. The sensor produces the
reply by modulating the current. We monitor both, the voltage from the ECU and the
current from the sensor: raise and fall time of these pulses must not exceed trise. These
requirements can be written in the past-STL as follows:

rise_req: enter(high)→ transS [0,trise]exit(low)
fall_req: enter(low)→ transS [0,trise]exit(high),

where enterϕ and exitϕ are syntactic sugar for �¬ϕ ∧ ϕ and �ϕ ∧ ¬ϕ.

Fig. 7.4 shows the simulation setup and the result of a run of the chip model, which
illustrates the proposed application of runtime monitors during the chip concept design
phase. We simulate both the SystemC model of the chip and the runtime monitor,
obtaining the monitoring results at the end of the simulation run. A magnetic field -
Signal 1 in Fig. 7.4 - is an input for the sensor. Then the field values are sampled by an
Analog-to-digital converter (ADC) and passed through a filter for internal processing
in a sensor, Signals 2-4. After powering the chip and a passed stabilization time, the
ECU sends synchronization pulses to the sensor (Signal 5, Fig. 7.4). In synchronization
mode, each synchronization pulse sent by the ECU is responded by modulated sensor
frames: Signal 6. Signals 7-12 in Fig. 7.4 are intermediate outputs of the sub-formula
of the specification “rise_req” (“fall_req” is omitted from the picture for conciseness).

79

7. Runtime Monitoring in Automotive Electronic Development

Magnetic
Field
Source

Magnetic
Field
Source

Sensor
Model
Sensor
Model

PSI5

Signal

Signal

Signal

GND
ECU

Model
ECU

Model

Rutime
Monitor
Rutime
Monitor

1

1 2-4

7-12, 13

5

6

2

3

4

5

6

7

8

9

10

11

12

13Signal

Signal

Signal

Signal

Signal

Signal
Signals

Signals

Signal

Figure 7.4: The runtime monitor in simulation: setup and results

Signal 13 is the output of the monitor, which, in this case, indicates that the requirement
has been met.

To demonstrate the second use case, we generated the runtime monitors in FPGA and
check the test chip. Fig. 7.5 illustrates the lab setup: To emulate the ECU we use a
signal generator that sends synchronization pulses to the test chip. The sensor replies
with data packets, which are handled by an Analog Front-End (AFE). In the FPGA
the transmission line between the sensor and the ECU is modeled (Fig. 7.1) to facilitate
an evaluation of various system integration scenarios. We generate hardware monitors
using Vivado HLS and integrate them to the output of the transmission line, where we
check the same requirements as in the chip simulation (i.e. “req_rise”). We use the
Xilinx debug core to observe the communication between the sensor and the ECU and
the outputs of our monitors on the ChipScope (Fig. 7.6).

7.4 Summary
This chapter elaborated on the two use cases of runtime monitoring in the automotive
electronic development, and demonstrated their applicability in industrial context by
checking the communication interface requirements of a steering-wheel magnetic sensor.
We showed that runtime monitors can be included in a chip-concept simulation and
monitors can be later reused for hardware-monitoring in-the-lab after applying HLS.
Runtime monitoring in automotive electronic industry can be used as a tool to speed up
the verification process and should be considered as an additional mechanism to capture
runtime bugs which could be challenging to catch by classical in-the-lab approaches.

80

7.4. Summary

Magnetic
Field
Source

Magnetic
Field
Source

PSI5

Line Emulator®

GND

Signal
Generator

(ECU
Sync pulse)

Signal
Generator

(ECU
Sync pulse)

Test
Chip
Test
Chip

AFEAFE

FPGAFPGA

Runtime
Monitor
Runtime
Monitor

Transmission
Line

Model

Transmission
Line

Model

Figure 7.5: Runtime Monitor in Hardware: Lab Setup

81

7. Runtime Monitoring in Automotive Electronic Development

Figure 7.6: Runtime Monitor in Hardware: Chip Scope Results

82

CHAPTER 8
Industrial Case studies and

Evaluation

Previous chapter described the context of applying runtime monitoring in automotive
electronic development, focusing on use cases at a system-level. In this chapter we
elaborate in detail on runtime monitoring for two industrial protocols: the Single-Edge
Nibble Transmission (SENT) and the Short PWM Code (SPC). We formalized and then
runtime-monitored the subset of electrical and timing requirements of these protocols both
in simulation and hardware. The protocols under study are mainly used in automotive
applications, for instance, in an electronic power steering (EPS), or an electronic braking
system (EBS). In these applications sensors transfer data about rotation of a steering
wheel or position of a braking pedal, respectively; hence ensuring the correct information
transfer and runtime error detection is of utter importance.

The current industry practice relies on hard-crafted checkers, that lack diagnostics
information and do not runtime-check the signals on the electrical level. Existing tools
for offline trace verification (e.g. the AMT [NM07]) are not directly applicable in this
context, due to the excessive size of the resulting traces: e.g. if one records an analog
signal, sampled at 70MHz, for an hour of runtime in an array of 16-bit integers, the trace
will result in 504Gb of data. Moreover, it is also often the case that a long-term test
takes several days of real-time execution. In order to be able to speed up the checking
process and to produce the monitoring results during the execution of the system, we
translate high-level specifications into monitors implemented in FPGA and run them in
parallel with the system under investigation. We developed an approach that allows to
observe the monitoring results in real time, track requirements to implementation, and
report violation and debugging information for the higher level analysis.

To ease acceptance of runtime monitoring in industrial practice, we developed a graphical
user interface (GUI) for substituting parameters in formalized STL specifications. We

83

8. Industrial Case studies and Evaluation

also compared two formalisms: STL and TRE to formalize the requirements of interest.

Main contributions of this chapter can be summarized as follows:

1. We developed a framework for generating monitors with recovery from a class of
high-level specifications;

2. We formalized the electrical and timing requirements of the SENT and SPC;

3. We evaluated our framework on the real-world case study, demonstrating the
synergy between formal methods and industrial practice in a real-world setting.

We use the definition of STL from Chapter 2 and introduce two useful macros in our
notation, which capture the change in evaluation of a boolean component of w: for p ∈ P ,
enter(p) = �¬p ∧ p and exit(p) = � p ∧ ¬p. The standard semantics of the future
operators, i.e. ϕ1U Iϕ2, 1I ϕ, 0I ϕ is defined s.t., the satisfaction of the formulae at
the time step i depends on events that happen in the future, namely at (i + I) ∩ T,
which makes monitoring of these specifications acausal. To overcome such limitation,
our hardware monitors comprise only past-temporal operators, and we use a procedure
from [MNP07] to convert a formula with future operators to an equi-satisfiable past one.

As the goal of the case study is to produce runtime monitors in digital hardware (FPGA),
the monitors operate on a finite representation of originally real-valued signals (ADC is
used for quantization and sampling of continuously evolving voltage). For this purpose we
interpret STL over discrete time and finite-valued domain. Let w be a multi-dimensional
signal of a finite length, w : [0, d] 7→ Pn ∪Xm, where d ∈ N is a duration of the signal;
Pn = {p1, · · · , pn} and Xm = {x1, · · · , xm} are boolean (digital) and finite-domain
(analog) variables respectively. Analog variables Xm are interpreted over a domain
D = [0, γ] ⊆ N, where γ = 2r − 1, r ∈ N is defined by a resolution of an ADC. The
projection of the signal w to a component e ∈ P ∪X is denoted by πe(w).

In the following section we briefly recap the TRE, the formalism that we use to obtain
alternative formulation of electrical and timing requirements of the protocols.

8.1 Timed Regular Expressions
Timed regular expressions (TRE) [ACM02] allow to pattern-match a specification over
a signal. As the authors in [FMNU15] mentioned, the fundamental difference between
STL and TREs comes from a fact that the satisfaction of an STL formula is computed
for a time point, while the match of a TRE results in a time interval. In this work we
adapt the definition of TREs from [FMNU15] with an assumption of interpreting TREs
over discrete time. To adhere to the definition from [FMNU15] and to allow negation in
TREs, we make the following assumption: for every boolean variable pj ∈ Pn we admit a
definition of a complementary variable p¬j with an opposite value of pj (to which we refer
as ¬pj). Every analog variable xj ∈ Xm is allowed to be used in TREs only in the form

84

8.2. Formalization of the SENT and SPC Protocols

of xj ∼ c, where ∼∈ {< . ≤} and c ∈ D. With every xj ∼ c we associate the boolean
satisfaction variable pxj∼c; we then analogously define p¬xj∼c and refer to it as ¬(xj ∼ c).

A timed regular expression ψ is defined according to the following syntax [FMNU15]:

ψ := ε | q | ψ1 · ψ2 | ψ1 ∪ ψ2 | ψ1 ∩ ψ2 | ψ∗ | 〈ψ〉I

where q is of the form p, ¬p, x ∼ c or ¬(x ∼ c); I is a time interval [a, b] ⊆ N.

For improved readability, we will refer to discrete time instance i · T , where T is discrete
time step, simply as i. The semantics of timed regular expression ϕ with respect to
discrete signal w and time instances i ≤ i′ is given in terms of satisfaction relation
(w, i, i′) |= ϕ:

(w, i, i′) |= ε ↔ i = i′

(w, i, i′) |= q ↔ i ≤ i′ and ∀i′′ s.t. i ≤ i′′ < i′, πp(w)[i′′] = 1
(w, i, i′) |= ϕ1 · ϕ2 ↔ ∃i′′ s.t. i ≤ i′′ < i′, (w, i, i′′) |= ϕ1 and (w, i′′, i′) |= ϕ2
(w, i, i′) |= ϕ1 ∪ ϕ2 ↔ (w, i, i′) |= ϕ1 or (w, i, i′) |= ϕ2
(w, i, i′) |= ϕ1 ∩ ϕ2 ↔ (w, i, i′) |= ϕ1 and (w, i, i′) |= ϕ2
(w, i, i′) |= ϕ∗ ↔ (w, i, i′) |= ε or (w, i, i′) |= ϕ · ϕ∗
(w, i, i′) |= 〈ϕ〉I ↔ i′ − i ∈ I and (w, i, i′) |= ϕ

We reuse the notation {a} for intervals of the form [a, a]. We introduce the following
macros for describing transitions of a boolean signal: enter(p)= 〈¬p〉{1} · 〈p〉{1} and
exit(p)= 〈p〉{1} · 〈¬p〉{1}. We also use a superscript with a TRE to denote a number of
concatenations of this TRE (e.g. if ψ is a TRE, then ψ3 stands for ψ · ψ · ψ). Finally, we
use ψ+ as syntactic sugar for ψ · ψ∗.

8.2 Formalization of the SENT and SPC Protocols

In this section we introduce the communication protocols under study: the Single Edge
Nibble Transmission Protocol (SENT), and the Short PWM Code (SPC), and then
formalize a subset of their electrical and timing requirements.

8.2.1 Single Edge Nibble Transmission Protocol

The SENT protocol is an industry standard (SAE J2716 [Int16]) for transmitting data
between a sensor and a controller. SENT communication is unidirectional from a sensor
to a controller; the information is partitioned into frames with the structure shown in
Fig. 8.1. The transmitted data is split in four-bit data chunks, so-called nibbles, which
encode the data in their length. Each nibble has the shape depicted in Fig. 8.2, where
the length of the ’H’ region determines the transmitted value (from 0 to 15). In the
case study we build runtime monitors for magnetic sensors based on Hall effect, which
transfer angular information encoded in the three data nibbles D1-D3.

85

8. Industrial Case studies and Evaluation

PAUSE SYNC ST D1 D2 D3 RC1 RC2 ND1 CRC PAUSE SYNC
FramexFramex−1 Framex+1

Figure 8.1: A SENT frame starts with a synchronisation pulse (SYNC), followed by a
status nibble (ST), data nibbles (D1, D2, D3), rolling counters (RC1, RC2), bit inverse
of D1 (ND1), cyclic redundancy check (CRC), and finishes with an optional pause.

The SAE J2716 standard admits several frame configurations (e.g. the number of data
nibbles may vary). SENT devices are configured prior to operation, and the configuration
does not change on-the-fly; we take this into account and also assume that the frame
structure is static and cannot change at runtime.

Fig. 8.2 shows a SENT nibble and graphically depicts the requirements to be checked.
Table 8.1 presents in natural language a subset of electrical and timing requirements of
the SENT protocol.

hi2

hi1

ml2

ml1
lo2
lo1

low

mid

high

0

1

2

3

4

5

6

Tfall
Trise

Tlow

Thigh
Nstart NendF L R H

Figure 8.2: SENT nibble pulse: A pulse starts (Nstart) with a falling edge f, followed by
a low region l, followed by a rising edge r, followed by a high region h.

8.2.2 Short PWM Code

The SPC is an extension of the SENT protocol that allows bi-directional communication
between a sensor and a controller. An SPC master (an ECU) initiates data transmission
with a trigger pulse and a sensor responds with a SENT data packet. This allows to
share the physical line between an ECU and up to four sensors, which transmit request
and response as a modulated voltage. The SPC trigger pulse can either be of a variable
or a fixed length, and the length of the low region of the pulse (tmlow) identifies sensor id.

86

8.2. Formalization of the SENT and SPC Protocols

Table 8.1: SENT Requirements in natural language

Electrical Interface Requirements
1 The fall time from V1 to V2 must be no longer than Tfall µs F
2 The rise time from V2 to V1 must be no longer than Trise µs R

3
The signal stabilization time below low threshold V1 or above high
threshold V2 must be at least Tstable µs

STlow,L
SThigh

Transmission Properties of Synchronization & Nibble Pulses
4 The synchronization pulse shall have a nominal period of 56 clock ticks. SYNC
5 Five clock ticks of the synchronization pulse shall be driven low. L

6
All remaining clock ticks of the calibration / synchronization pulse shall
be driven high.

SYNC,
Hsync

7 Five clock ticks of the nibble pulse shall be driven low. L

8 All remaining clock ticks of the nibble pulse shall be driven high. NIBBLE,
Hnibble

9 The minimum pulse period of the nibble pulse shall be 12 clock ticks. NIBBLE,
Hnibble

10 The maximum pulse period of the nibble pulse shall be 27 clock ticks. NIBBLE,
Hnibble

Figure 8.3 shows the SPC frames for the bus mode, and figure 8.4 shows the SPC trigger
pulse and its requirements. Table 8.2 summarizes configuration of the SPC modes: we
also assume that the configuration is static and cannot change at runtime.

SENSOR ID0

SENSOR ID3

PAUSE TRIGGER SYNC STD1 D2 D3RC1CRC PAUSE

SPC Request SENT Response

Figure 8.3: SPC bus mode: Specification signal for two sensors: ID0 and ID3 – communi-
cation starts with the trigger pulse, which is followed by a response from a sensor

To be able to correctly decode sensor data, a controller needs to receive a signal that
satisfies electrical and timing requirements of the SENT protocol. For a sensor to respond

87

8. Industrial Case studies and Evaluation

low

mid

high

0

1

2

3

4

5

6

tmlow

tmtr

tmtr − tmlow

SPCstart SPCend

Figure 8.4: SPC trigger pulse: A pulse of duration tmtr starts with a low duration tmlow,
which encodes the sensor id, followed by a high region

to a request, the trigger pulse needs to satisfy the requirements for the SPC trigger pulse
for a corresponding sensor ID. We now state these requirements formally, both in STLand
TRE and elaborate on checking the frame correctness.

8.2.3 Formalization of the SENT requirements in STL

Electrical Interface Requirements specify the duration of the slopes, as well as the
minimum stable time of the SENT signal. The STL formulae (Eq. 8.1-8.4) capture the
temporal order in which the signal should cross voltage regions from Fig. 8.2. F and
R (Eq. 8.1, 8.2) are the formal representations of falling and rising time requirements
(Tab. 8.1,Req.1,2). The signal stabilization requirement (Tab. 8.1,Req.3) is mapped
to two STL formulae (Eq. 8.3, 8.4) that deal separately with both thresholds. The
STL formulae are written using past temporal operators: in this type of formulation a
consequent should have happened before an antecedent (i.e. the form “whenever at a
time step i ϕ holds, ψ should have held at (i− I) ∩ T”).

F= enter(low)→ midS [0,Tfall] exit(high) (8.1)
R= enter(high)→ midS [0,Trise] exit(low) (8.2)
STlow = exit(low)→ `[0,Tstable] low (8.3)
SThigh = exit(high)→ `[0,Tstable] high (8.4)

Transmission Properties of Synchronization & Nibble Pulses. The synchro-
nization and the nibble pulse requirements (Tab.8.1, 4-6 and 7-10 respectively) describe
the timing properties these pulses should adhere to. A synchronization pulse has a
pre-defined length and is considered as the start of a SENT frame. The shape of
synchronization and nibble pulses is to be checked as well (see Fig.8.2).

To verify the form of the synchronization, nibble, and pause pulses, we split each pulse in
regions f, l, r, h (see Fig 8.2), check requirements for the corresponding region and the

88

8.2. Formalization of the SENT and SPC Protocols

Table 8.2: SPC Requirements in natural language

Common Case Physical & Timing Requirements
1 Rising and falling thresholds V (th)

rising = 0.5Vdd and V (th)
falling = 0.35Vdd

2 SPC unit time (UT): 1.5 ≤ UT ≤ 3.0 µs, configurable in steps of 0.5µs
3 Sensor ID0 low time tmlow in range from 9 to 12 UT
4 Sensor ID1 low time tmlow in range from 19 to 23 UT
5 Sensor ID2 low time tmlow in range from 35.5 to 40.5 UT
6 Sensor ID3 low time tmlow in range from 61.5 to 67.5 UT
Config 1: single sensor with fixed length of the trigger pulse
7 The total trigger time tmtr is 90 UT
8 Default sensor ID is 0 with tmlow in range from 9 to 12 UT
Config 2: single sensor with variable length of the trigger pulse
9 The total trigger time tmtr = tmlow + 12 UT
10 Default sensor ID is 0 with tmlow in range from 9 to 12 UT
Config 3: multiple sensor with fixed length of the trigger pulse
11 The total trigger time tmtr is 90 UT
12 From two to four sensors on the bus with IDs from 0 to 3
13 The low time tmlow for each sensor corresponds to requirements 3-6
Config 4: multiple sensor with variable length of the trigger pulse
14 The total trigger time tmtr = tmlow + 12 UT
15 From two to four sensors on the bus with IDs from 0 to 3
16 The low time tmlow for each sensor corresponds to requirements 3-6

temporal precedence of the regions. The total length of the pulses and the length of the
low region l are given in “clock ticks” (Tab. 8.1, 4-5, 7, 9-10), which are generated by a
sensor’s internal clock. The “clock tick” is also called unit time (UT), which is in the
range between 1.5 and 3.0 µs with steps of 0.5 µs (see Req. 2 in Tab. 8.2). Let us denote
δ = (Trise + Tfall), then the allowed durations of the h region for the nibble pulse and
synchronization pulse are [7tick− δ, 22tick− δ] and (51tick− δ), respectively. Similarly,
the length of the h region of the pause pulse is: [7tick− δ, 122tick− δ].

Requirements for L and H regions can be written directly in past-STL:

L= exit(low)→ `[0,5ticks] low (8.5)
Hsync = exit(high)→ highS {51tick−δ} enter(high) (8.6)
Hnibble = exit(high)→ highS [7tick−δ,22tick−δ] enter(high) (8.7)
Hpause = exit(high)→ highS [7tick−δ,122tick−δ] enter(high) (8.8)

The general way of capturing precedence relation in STL is by using the bounded until

89

8. Industrial Case studies and Evaluation

operator U I . As the authors in [JBG+15] show, the hardware implementation of U I is
not scalable w.r.t. operator time bounds. In order to overcome this issue, we avoid using
nested U I operators in the formulation, and reformulate the properties. Each SYNC,
NIBBLE, and PAUSE patterns of the SENT protocol are the requirements F, L, R, and
the corresponding H{sync|nibble|pause} requirement put in a sequence. In order to attain
efficient hardware implementation, we (i) re-state assertions from ϕ → ψ to ψ ∧ ϕ, to
capture the events when the corresponding requirement has been satisfied; (ii) we then
define precedence relation with following macro:

ϕ1before[t1,t2]ϕ2 = ϕ2 ∧`[0,t1] ¬ϕ1 ∧Q[t1,t2] ϕ1. (8.9)

This allows to use hardware-cheap bounded historically `[0,t1] and bounded onceQ[t1,t2]
operators and significantly reduce hardware resources.

The requirement for NIBBLE is then defined as follows (STL formulae for SYNC and
PAUSE are constructed analogously):
NIBBLE = (F∧enter(low)) before[t1,t2] (L∧exit(low)) before[t3,t4]

(R∧enter(high)) before[t5,t6] (Hnibble∧exit(high))

The top-level FRAME requirement captures precedence relation between SYNC, NIBBLEs,
and the PAUSE, and manifests that requirements for the frame has been fulfilled:
FRAME = SYNC before[t7,t8] ST before[t9,t10] D1 before[t9,t10] D2 before[t9,t10] D3

before[t9,t10] RC1 before[t9,t10] RC2 before[t9,t10] ND1 before[t9,t10] CRC
before[t9,t10] PAUSE

The monitor construction is compositional: each sub-formula produces a satisfaction
signal that is accepted at an upper level of hierarchy – a frame correctness is reported
only when all the lower-level requirements for all the frame components (SYNC, NIBBLEs,
PAUSE) are met. Time bounds t1 − t10 are derived from Equations 8.1-8.8.

8.2.4 Formalization of the SPC requirements in STL

According to the Tab. 8.2 SPC protocol supports four different static configurations,
which define timing requirements for the SPC pulse from Fig. 8.4. To capture these
requirements, we first formalize the low time requirement Tmlow:

Tmlow = exit(mid)∧ high ∧ (low ∨ mid)S [tmlow,L,tmlow,H] enter(low), (8.10)

where tmlow,L, tmlow,H are the limits from Table 8.2 (e.g. 9 and 12 UT for the ID0). The
formula 8.10 is satisfied whenever the tmlow for the corresponding sensor ID is met. We
can now use this requirement to check the total time of the trigger pulse:

Tmtr = exit(high)∧ mid ∧ highS [ttmtr−tmlow,H ,ttmtr−mlow,L]Tmlow (8.11)

For each configuration from Tab. 8.2 we check the requirements 8.10 and 8.11 with the
time bounds corresponding to the sensor ID.

90

8.2. Formalization of the SENT and SPC Protocols

8.2.5 Formalization of the SENT requirements in TRE

Although it is possible to formulate TREs in an STL-like style and express the same
intent: e.g. the requirements F† and R† (Eq. 8.13 and 8.15) match falling and rising
time intervals of the signal; using the syntax features of the TRE and composing the
requirements hierarchically allows to obtain a concise formalization for the properties of
interest. F and R regions (Eq. 8.12-8.14) are defined as follows:

F= 〈mid〉[0,Tfall] (8.12)
F†= exit(high)· 〈mid〉[0,Tfall] ·enter(low) (8.13)
R= 〈mid〉[0,Trise] (8.14)
R†= exit(low)· 〈mid〉[0,Trise] ·enter(high) (8.15)

The L TRE (Eq. 8.16) combines the requirements 3 and 5 from Table 8.1. The H TRE
(Eq. 8.17) will match when the requirement 3 is fulfilled. The two are the necessary
building blocks for checking the shape of pulses:

L= 〈low〉[Tstable,5tick] (8.16)
H= 〈high〉[Tstable,123tick) (8.17)

We are now able to define the TRE for synchronization, nibble, and pause pulses as
a concatenation of regions, restricting the length of the pulses with appropriate time
bounds. The SYNC TRE (Eq. 8.18) will match only when the requirements 1-6 (Tab. 8.1)
are met. The sensor signal will match the NIBBLE TRE (Eq. 8.19) if the requirements
1-3, 7-10 are fulfilled. The pause pulse requirements are captured by Eq. 8.20):

SYNC = 〈F ·L · R · H〉{56tick} (8.18)
NIBBLE = 〈F ·L · R · H〉[12tick,27tick] (8.19)
PAUSE = 〈F ·L · R · H〉[12tick,127tick] (8.20)

The frame and protocol requirements in TRE are formulated as follows:

SENT_FRAME = SYNC ·NIBBLE8 · PAUSE (8.21)
SENT_PROTOCOL = (SENT_FRAME)+ (8.22)

8.2.6 Formalization of the SPC requirements in TRE

The requirements for the SPC trigger pulse are formalized in Eq. 8.23 and 8.24. The
corresponding TREs match sequences of events; each requirement formalizes the temporal

91

8. Industrial Case studies and Evaluation

order in which the signal should cross voltage regions from Fig. 8.4. For a bus mode, a
monitor with the time bounds corresponding to the sensor ID will be constructed:

Tmlow = 〈low ·mid 〉[tmlow,L,tmlow,H] (8.23)
Tmtr = 〈Tmlow · high〉{tmtr} (8.24)

8.3 Runtime Monitoring with Recovery
A runtime monitor typically partitions the execution traces in those that either satisfy
or violate system’s specification, possibly providing a quantitative metric of satisfaction
(violation). However, for data-driven applications, such as serial protocols, test executions
may last for hours and it is required to continue monitoring even after detecting errors,
and not stop after the first violation, marking a trace as invalid, since even some amount
of errors might be foreseen by protocol designers and should be tolerated. Similarly to
compilers, a monitor in such a case must be able to recover after observing a violation,
collect the encountered errors, and report them to the user.

For a class of serial protocols, the asynchronous serial protocols (e.g. SENT [Int16],
RS-232 [Axe07], DMX512 [R2008], etc.), we propose a procedure to construct monitors
with error recovery. To apply monitoring with recovery, the protocol must fulfil the
following requirement: the devices communicate over a single line, where synchronization
symbol, control and payload data, respectively, are multiplexed in time. As control
signals are absent, the devices rely on the synchronization symbol to successfully capture
the beginning of a useful portion of a frame.

By creating runtime monitors with recovery, we are able to: (i) Continue monitoring after
detecting violations; (ii) Collect the errors and report them with their violation type.

8.3.1 TRE Monitors with Recovery

In the case of asynchronous serial protocols, the devices communicate with sequences that
form certain patterns over time; the communication is cyclic, where the data is split in
subsequently following frames. These protocols admit a formalization in TREs: A frame
begins with a unique synchronization pattern (START), followed by n PAYLOAD patterns,
and ends with a STOP pattern. The asynchronous serial protocol is then defined as a
sequence of frames:

ASYNC_SERIAL_PROTOCOL= FRAME+, (8.25)
FRAME= START· PAYLOADn · STOP. (8.26)

The above expression exactly generalizes the TRE formalization of the SENT protocol
from Section 8.2.5 (Eq. 8.21 and 8.22). It is important to mention that the Kleene star

92

8.3. Runtime Monitoring with Recovery

(*) operator should not be used in the specification of START, PAYLOAD and STOP in
TREs, as these patterns are finite sequences of symbols; we use the Kleene star operator
only at the top TRE (i.e. Eq. 8.25).

START

PAYLOAD1

PAYLOAD{2..n}

STOP

START_REC

ERR_REC

ok cstart1

ok cstarti

ok_start cstartm

ERR

¬cstart1
errstart1
¬cstarti
errstarti

¬cstartm
errstartm

ε

ok cpayload1

ok cpayloadj

ok_payload1 cpayloadp

ε

ERR

¬cpayload1
errp1
¬cpayloadj

errpj
¬cpayloadp

errpp

ε

ok cstop1

ok cstopk

ok_frame cstopq

ERR

¬cstop1
errstop1
¬cstopk
errstopk

¬cstopq
errstopq

rec cstart1

rec cstarti

ok_start cstartm

¬cstart1
rec

¬cstarti
rec

¬cstartm
rec

ε

ε

ε

Figure 8.5: Monitoring an asynchronous serial protocol with recovery1

The sketch of construction procedure for a monitor with recovery is shown in Fig. 8.5.
For each of the START, PAYLOAD, and STOP patterns, we construct the corresponding
automata with discrete-time clocks Astart, Apayload, and Astop, respectively. We also
create an additional copy of Astart, called Arec, which enables the runtime monitor
to recover from an error. In this work we take an optimistic approach, and use a weak
interpretation of regular expression over finite traces. In case when a trace ends and only
a prefix of the regular expression is matched, we decide to accept the input sequence.
Therefore all the states in Astart, Apayload, and Astop are accepting. The automaton-
construction procedure from a given TRE, is adopted from [ACM02] to the discrete
interpretation of time. The state transitions are protected by a set C of symbolic transition
guards C, where C = {cstart1 , . . . , cstartm , cpayload1 , . . . , cpayloadp , cstop1 , . . . , cstopq }.

1For clarity of the presentation, we keep ε-transitions in the Figure 8.5; these transitions are removed
in implementation though keeping the monitor deterministic.

93

8. Industrial Case studies and Evaluation

For each ci ∈ C we associate a complementary transition ¬ci to the global error state.
The error state silently transitions to the starting state of the recovery automaton Arec

which consumes garbage symbols until a correct synchronization symbol is observed. The
correct START pattern is a necessary pre-requisite for a monitor to analyze subsequent
frames, and for the decoder to analyze the transferred data: as long as the synchronization
symbol of the next frame is not received, Arec goes back to the error state.

We introduce a diagnostic variable out, defined over a finite set of symbolic values:
{ok, ok_start, ok_payload1,...,N , ok_frame, rec, err1,...,m }. The values have
the following meaning: ok: the trace has been correct so far; ok_start: the starting
synchronization symbol has been matched; ok_payloadi: the ith payload symbol has
been matched; ok_frame: the frame has met all the requirements; rec: the monitor is
in the recovery state; erri: the specification is violated by an error of type i.

We then transform Astart, Apayload, Astop and Arec to transducers A′start, A′payload,
A′stop and A′rec as follows: (i) For each transition in Ai, we output ok value; (ii) For each
transition leading to a sink state, we output appropriate ok_{start|payload|frame}
value; (iii) For each transition guarded by ¬ci we output erri; (iv) For each recovery
automaton transition, except the synchronization symbol matching transition, we asso-
ciate rec value. The transition in A′rec which matches synchronization symbol outputs
ok_start (see Fig. 8.5). For the top-level expression FRAME, we create the automaton
Aframe by concatenating the Astart, Apayload, and Astop with ε transitions. This way
the user is capable to receive the information about the number of frames that meet the
specification, as well as errors and their type.

8.3.2 STL Monitors with Recovery

The STL monitors are transducers (temporal testers [PZ08a]) by construction and are
composed hierarchically to output the satisfaction signal of the top-level requirement.
The sketch of construction procedure for monitoring with recovery is as follows: (i) we
first formalize the START, PAYLOAD, and STOP patterns in STL; (ii) we then change the
semantic meaning of STL assertions from (1) ϕ→ ψ to (2) ϕ∧ψ: in the first formulation
the transducer outputs ‘1’ even if the requirement has never been checked, and ‘0’ when
the requirement has been violated (e.g. the f requirement from Sec. 8.2.4 is fulfilled even
the line stays always at ‘1’); the second case the transducer manifests with the signal the
precise time stamp when the requirement has been satisfied (i.e. outputting ‘1’ when
the correct falling edge occurred); (iii) for each requirement we identify a set of possible
violations and assign an error code erri to each violation type. Each violation is guarded
by an STL assertion ϕ∧¬ψ ∧ vi, where vi identifies a violation type (e.g. mid S [Tfall+1,∞)
exit(high) is a vi clause to capture the violation of the type “too slow falling time”
for the STL assertion f from Sec. 8.2.4).

Finally we check the temporal precedence of the START, n PAYLOAD sequences and the
STOP pattern with the before[t1,t2] macro defined in Sec. 8.2.4. Using temporal testers

94

8.4. Runtime Monitoring of SENT and SPC protocols

allows to monitor all the requirements in parallel, and extending with violation clauses
vi provides the necessary debugging information.

8.4 Runtime Monitoring of SENT and SPC protocols

This section describes building runtime monitors in FPGA and evaluating the results in in-
dustrial environment. A general overview of the framework is followed by implementation
and evaluation details. Appendix A gives details of performing runtime monitoring.

8.4.1 From Requirements to Hardware Monitors

Fig. 8.6 summarizes the process of creating runtime monitors; the proposed framework is
not limited to the SENT, or the SPC and can be applied for other protocols as well.

Requirements Formalization Offline Evaluation FPGA Realization

System Re-
quirements

STL
Formulae

TRE
Formulae

Simplification

Pastification

Recovery
Automaton
Contruction

Offline Monitor-
ing Framework

STL Monitor
Construction

Behavioral STL
Lib SystemC

Synthesizable
STL Lib
SystemC

Runtime Lab
Evaluation

Realizatioin
on Specific

HW platform

HLS
Runtime
Monitors
Generation

TRE
Runtime
Monitor
TopLevel

STL
Runtime
Monitor
TopLevel

Figure 8.6: Monitor Generation

Requirements Formalization. The initial step for creating runtime monitors is to
obtain formal representation of the system requirements. Formal semantics allows to
eliminate ambiguities in interpretations and precisely define what is to be monitored. In
order to evaluate the power of different formalisms, and to eliminate “single source of

95

8. Industrial Case studies and Evaluation

truth” from the system we used two specification languages: STL and TRE. This phase
results in a set of formulae (STL & TRE) which describe natural-language requirements.

For STL requirements we admit an automated pre-processing step (see Fig. 8.6) to
obtain formulae that allow efficient hardware realization: on the parse tree of the formula
we (i) eliminate duplicate sub-trees (Simplification); (ii) apply a recursive procedure
from [MNP07] to convert bounded future STL temporal operators to an equi-satisfiable
past operators, resulting in a causal formula with the past temporal operators only
(Pastification). The second step is achieved by (i) calculating the temporal depth D of
the formula; (ii) re-writing a formula with past operators which results in postponing
a monitoring verdict by D. For electrical and timing requirements some of the timing
parameters are given in UT, at this step the time bounds in monitor clock are calculated.

Offline Evaluation. In this phase we evaluate monitors offline on short trace fragments,
previously recorded from an oscilloscope or an ADC via the Chipscope [Inc16] in order
to speed-up debugging and identify implementation bottlenecks.

The monitors for STL formulae are built compositionally from the formula parse
tree [PZ08a]. With each node of the STL parse tree, which represents either a temporal or
a logical operator, we associate a transducer T which takes as inputs satisfaction signals
of its child nodes and outputs the satisfaction signal for the corresponding operator. The
satisfaction signal of the root node produces output of the monitor. Behavioral STL
Lib SystemC (see Fig. 8.6) is a SystemC implementation of STL transducers, which are
used to obtain a monitor. We use SystemC simulation kernel to run the monitor on the
pre-recorded traces.

The runtime monitors for the TRE requirements are also implemented in hierarchical
fashion: the A′sync, A′nibble, and A′stop transducers are combined in the top-level recovery
automaton described in Section 8.3.1. We use Vivado Behavioural Simulation to evaluate
VHDL code of the top-level A′frame transducer.

Runtime Monitoring in FPGA During this final phase the monitors are synthesized
in a digital reconfigurable hardware and evaluated in the lab environment. After the
off-line phase we obtain the validated monitors for STL and TRE, which follow different
paths of hardware implementation.

In case of STL monitoring, we use High-Level Synthesis [Inc] (HLS) to generate HDL
code for monitors written in SystemC. During the HLS step, the SystemC monitors are
transformed to an equivalent synthesizable VHDL or Verilog. We use an alternative
implementation of transducers (Synthesizable STL Lib SystemC, Fig. 8.6), which is
suitable for HDL code generation. Behavioral and Synthesizable implementations are
functionally equivalent, but HLS imposes constraints on the SystemC code to be hardware-
synthesizeable. Keeping behavioral and synthesizable versions allows quick prototyping
using all C++ features and then produce a hardware-optimized synthesized version.

96

8.4. Runtime Monitoring of SENT and SPC protocols

Since transducers A′sync, A′nibble, A′stop, and A′frame in the TRE approach are imple-
mented in VHDL, we directly use Vivado Synthesis, Logic & Power Optimization, Place
& Route tools to obtain a bitstream for FPGA programming.

8.4.2 FPGA Implementation

We implemented runtime monitors for the SENT protocol in Xilinx Virtex 7 FPGA. The
monitors are embedded in the Line Emulizer hardware (see Fig. 8.7), which combines an
AFE capable to interface various sensors with a high-performance Virtex 7 FPGA. This
hardware also models a physical transmission line with adjustable parameters between a
sensor and an ECU.

Angular sensor (SENT)

Angular sensor (SPC)

SystemC & Vivado XSim

Chipscope (Mon. results)

Runtime Monitors (FPGA)

Transmission
Line Model

STL & TRE
Runtime
Mon.

Line Emulizer R©

S
E
N
T

A
FE

Figure 8.7: Runtime Monitoring of the SENT: Hardware Setup

The signal from the SENT sensor (see Fig. 8.7) comes to the Line Emulizer, where it
is passed through the AFE and sampled with a high-speed ADC, which results in its
finite value representation. During operation in a car, a sensor and an ECU are placed in
different locations, hence the sensor signal is affected by a transmission line. To take into
account the effects of physical wires, the sensor signal is passed through a digital model
of a transmission line. We attach the STL and TRE runtime monitors at the end of the
transmission line model (see Fig. 8.7), to be able to report specification conformance at
the receiver side, which is important for proper signal decoding.

The STL and TRE monitors observe at 70 MHz the sensor signal affected by the physical
line, calculate verdicts at every clock cycle (i.e. 70 million times per second), and output
the result to the user via the Chipscope (Fig. 8.7). We performed experiments with
different models of the line, and conclude that the appropriate line parameters are critical

97

8. Industrial Case studies and Evaluation

for ensuring the specification compliance. The sensor signal passed through a line with a
higher capacitance violates the specification, since the falling and rising times are not
met, which can be directly observed from the monitor.

Sensor input

Voltage regions

Payloadi matched

Sync TRE (Eq.13) matched
Nibble TRE (Eq.14) matched

Figure 8.8: Runtime TRE monitoring: Vivado functional simulation

Table 8.3 reports the estimated FPGA hardware resources (flip-flops, FF & look-up tables,
LUT), and the estimated maximum clock period of the runtime monitors. For each
HLS-generated monitor we also present its generation time and peak memory usage during
HDL-code generation. The monitors in HLS are constructed in a hierarchic fashion, hence
the FRAME monitor (see Tab. 8.3) subsumes monitors for other requirements and results
the highest hardware footprint. The last row of the Tab. 8.3 reports the total hardware
resources consumed by the top-level TRE monitor: the direct hardware implementation
results in an order of magnitude lower footprint.

Fig. 8.8 shows a result of offline evaluation for TRE requirements. The original SENT
signal is observed by the monitor, which outputs OK_NIBBLE, OK_SYNC and the corre-
sponding ERR signals. The figure depicts a nominal case, where all the requirements are
met. Runtime Monitoring of the SPC protocol is illustrated in Fig. 8.9, which captures
nominal and violation scenario of a missing frame. In this case an ECU sends a trigger
pulse, but sensor does not respond back with a data packet. Runtime monitor is capable
to capture this rare event, and then statistics over a time period can be collected.

Runtime monitoring of the SENT signal against STL requirements is shown in the Fig. 8.10.
For this test case the optional pause pulse was deactivated, hence the correct frame
is manifested after observing eight correct nibbles (signals OK_NIBBLE, OK_SYNC,
OK_FRAME). The OK_NIBBLE signal is asserted when the corresponding precedence
between the requirements F, L, R, and H is met. The output of the monitors F, L, R, and

98

8.5. Summary

Figure 8.9: Runtime monitoring of SPC protocol

Table 8.3: STL Monitors Generation: FPGA & HLS resources

Requirement FF LUT Clock HLS: Time HLS: Mem-
ory

F

HLS

61 118 5.81ns 114.203s 225MB
L 53 85 4.24ns 96.490s 159MB
R 61 113 5.81ns 109.784s 224MB
Hnibble 125 249 5.81ns 175.716s 225MB
Hsync 28 407 5.81ns 253.507s 224MB
Hpause 73 98 4.24ns 162.637s 212MB
NIBBLE 435 1123 7.7ns 394.671s 611MB
SYNC 207 1062 7.7ns 723.690s 605MB
PAUSE 217 710 7.7ns 206.767s 317MB
FRAME 1198 4322 7.7ns 1675.52s 1.39GB
FRAME TRE 68 350 4.5ns - -

H, and the corresponding sub-formulae are presented in the lower part of the Fig. 8.10.

8.5 Summary
The case study focuses on assessing STL and TRE for formalizing requirements of the
SENT and SPC protocol and obtaining hardware monitors for these requirements. We
showed the application flow of runtime monitoring for industrial-standard protocols from
formalization of electrical and timing requirements to generating hardware monitors.

The hardware resource consumption in Tab. 8.3 shows that (i) both approaches can be
easily mapped to state-of-the-art FPGAs, (ii) STL-based monitors consume an order of
magnitude more resources than the TRE monitors. Obtaining hardware monitors based
on STL Synthesizable-SystemC library requires an intermediate transformation using
HLS, which comes at price of increased hardware footprint.

99

8. Industrial Case studies and Evaluation

Time

mon_in_meas[31:0]

high_meas
trans_meas
low_meas

OK_FRAME
OK_SYNC
OK_NIBBLE

N_mon_o
F_before_L_
L_before_R_
R_before_H_

F_enter_low_o
F_exit_high_o
F_since_o
F_mon_o

L_exit_low_o
L_hist_low_o
L_mon_o

R_enter_high_o
R_exit_low_o
R_since_o
R_mon_o

H_enter_high_o
H_exit_high_o
H_since_o
H_mon_o

(i) Analog sensor input

(ii) Voltage regions

(v) Top-level frame STL req. satisfied(iii) Sync STL req. satisfied

(iv) Nibble STL req. satisfied

(vi) Checking temporal precedence between F, L, R, H

(vii) F (Eq.1) requirement is met

(viii) L (Eq.5) requirement is met

(ix) R (Eq.2) requirement is met

(x) H (Eq.7) requirement is met

Figure 8.10: Runtime monitoring of the STL requirements

Besides low-level hardware monitoring, which both of the approaches facilitate, SystemC
STL monitors can be re-used to check SystemC models. Trace verification in this setting
happens during the runtime of the simulation kernel and the monitoring results are
obtained at the end of the run. The re-usability of HLS-based monitors though comes at
price of FPGA resource consumption.

We found both formalisms applicable for the SENT requirements formalization. TREs
allow natural formulation of requirements that are concerned with repetitive sequences of
groups of symbols, while formalizing precedence constraints with STL requires in general
additional effort to be hardware-efficient.

100

CHAPTER 9
Conclusions and Future Work

The chapter summarizes the results and concludes the thesis. Section 9.1 outlines the
research results and presented solutions. Section 9.2 gives critical reflections, discusses
the limitation and possible improvements of the work. Section 9.3 aligns the research
questions, defined in Section 1.3 with the outcomes of the thesis. Section 9.4 presents
directions for future research, that can be performed using the results of the thesis.

9.1 Summary of Contributions

Challenges in CPS require development of novel approaches in design, analysis, and
maintenance of such systems. Architectures based on neural models are getting more
traction both in research and industry, allowing to solve complex problems [Amp10]. In
the thesis we addressed how neural models can be used in CPS control and monitoring,
as well as developed a flow to runtime monitor industrial protocols in FPGA hardware.

First, we considered how uncertainty in making decisions in CPS can be incorporated
in the controller and put in correspondence with neural circuits. This allows updating
the parameters of neural models from successful traces and adapting using controllable
variance, which changes during the run of the system.

Second, we showed how TrueNorth spiking neural model, which allows efficient hardware
implementation, can be used to monitor temporal logic specifications. We started with
qualitative approach, and then showed how the model can be used for computations of
arithmetic functions over the spike rates, and introduced a way compute quantitative
semantics with the TrueNorth model using circular convolution.

Third, we developed a flow to runtime monitor requirements of industrial protocols in
FPGA. To speed up the testing process and enable long-term tests, we implemented a
procedure to create HDL monitors using HLS from formal requirement representation,

101

9. Conclusions and Future Work

and showed its applicability for SENT and SPC protocols. We also formalized the
electrical and timing requirements of the aforementioned protocols.

9.2 Critical Reflections

9.2.1 Reflections on neural models for monitoring

The authors describe a dedicated chip in [CMA+13] for synthesizing TrueNorth neurons
directly in hardware, which is not available at the moment. Using FPGA although allows
to create neural monitors, should be compared with the dedicated TrueNorth chip as the
programmable logic of the Zynq chip uses general purpose logic cells.

Rate encoding when performing arithmetic operations and quantitative monitoring illus-
trates the trade-off between time delay and a number of TrueNorth neurons. Performing
operations in over spike rates results in a more compact circuit. Yet for the cases, when
the input is available reading and processing it in parallel can be faster, which comes at
price of an increased hardware footprint.

9.2.2 Reflections on runtime monitoring in electronic development

The case study presented in Chapter 8 received high evaluation score from Infineon,
where it has been evaluated by a concept design engineer and a verification engineer (the
results of a user study after the evaluation are summarized in Appendix 2). The work
during the case study though revealed several open issues, which are described below.

On the conceptual level there is a gap between textual and formal requirements, which
means that on one hand, it is the state-of-the-art practice to have textual requirements
as a binding contract between the parties during product design, and, on the other
hand having unambiguous formal representation requires significant expert knowledge,
and often poses difficulties to electrical engineers without additional training when
first time exposed to the formal specification languages. The ways to mitigate the
problem are: (i) applying parametric STL [ADMN12], where the core functionality is
formalized by an expert, and the parameters for particular protocol, timing and voltage
levels are substituted by an engineer. This option, which would lead the most rapid
acceptance, though requires an expert to formalize each protocol separately. (ii) providing
formal training for verification engineers in the long run, (iii) developing techniques in
specification mining to extract common patterns from typical requirements of the sensor
products, and provide common building blocks in a form of a assertions library.

On the implementation level, the limitations of the HLS code generation allows only
partial re-use between the synthesizable and behavioral code. All the parameters of the
monitor should be known at compile time, to be able to generate the hardware using
HLS. The fact that the HDL code for the monitor should be generated first, and then
integrated in the hardware design, which needs to be re-synthesized each time the monitor

102

9.3. Research Questions Revisited

code changes is also seen as a limitation. To tackle this problem and shorten hardware
synthesis cycles, exploration of partial reconfiguration of FPGA parts is required.

9.3 Research Questions Revisited
RQ 1: How to design controllers for CPS using neural models?

This research question has been addressed in Chapter 4. We showed that neural models
can be put in correspondence with the programming structures for CPS controller design.
The parameters of the neural controller then can be updated incrementally, based on
results of the experiments. Each action, taken by a controller, is characterized by an
variance σ which quantifies uncertainty of making decisions.

RQ 2: How to perform qualitative and quantitative monitoring of temporal
properties of CPS at runtime using neural models?

We have addressed this question in Chapters 5 and 6, where we showed how to apply
digital spiking neural model for qualitative monitoring of temporal logic specifications.
Configuring parameters of the TrueNorth neuron allows to obtain temporal testers, which
are then combined hierarchically to obtain a monitor for the specification of interest. In
Chapter 5 we interpreted neural spikes as events on the time axis. In the continuation of
this work in Chapter 6 we considered encoding in spike rates, which allows representing
quantitative data in a simulation trial. Based on this representation we showed how to
compute arithmetic functions over spike rates and use circular convolution to perform
quantitative monitoring of temporal logic formulae.

RQ 3: How to speed up the testing process in automotive electronic development?

This research question has been addressed in Chapter 7. Since current industry practice
relies on hand-written manual checkers and data post-processing, we proposed to monitor
formally defined properties of the DUT during runtime. This, on one hand, removes
ambiguities from the specifications, and, on the other hand, eliminates costly post-
processing step. We showed how runtime monitoring can be applied both during chip
concept design and post-silicon verification phases. During chip concept design, monitors
are attached to the SystemC model of the sensor prototype and provide results during
simulation runtime; during post-silicon verification the monitors are synthesized in FPGA
hardware and attached to the engineering sample. This enables to perform long-term
tests, and also to reuse the monitors between verification phases.

RQ 4: What are the necessary steps to build efficient runtime monitors in
hardware that are applicable in the industrial state-of-the-art practice?

This research question has been addressed in Chapter 8, where we showed how to runtime
monitor the SENT and SPC protocols and apply results in industrial lab environment.
We started with electrical and timing requirements of the protocols, formalized these in
STL and perform necessary transformation steps to obtain formula in a way that can be
efficiently mapped to FPGA. We then used pre-recorded sensor data to test the monitors

103

9. Conclusions and Future Work

and include this data in a test bench to generate runtime monitor using HLS. After this
step we obtained the HDL code that is included in the hardware which models transmission
medium between sensor and an ECU. For the results to be applicable in the industrial
context, we addressed “inhibitors of adopting the tools”: (i) we embedded monitor
generation in the tool chain that is used at Infineon (see Appendix 1), connected monitor
generation with the design process of the electronic sensor product, and demonstrated
industrial-strength evidence on the SENT and SPC protocols.

9.4 Future Work
In the thesis we have presented approaches for control, and runtime monitoring of
CPS. We also showed how runtime monitoring can be applied in automotive electronic
development for checking conformance of requirements of industrial protocols. The
presented results uncover a range of research directions can be addressed in future work:

• Based on Chapter 4 and [CFFW16] where the authors applied neural models to
construct an LQR controller for a flapping robot, we see as an extension of this
work to develop a neural model predictive controller for a mobile robot;

• We are interested to extend the work in Chapters 5 and 6 to develop computational
procedure for evaluating other quantitative semantics of STL and how different
spike encoding strategies (e.g. “time to the first spike”, “phase” [GK02]) can be
applied to facilitate the computation;

• In the context of Chapters 7 and 8, and over the course of development the
industrial case study, we have identified difficulties in in converting natural language
requirements for automotive sensor products to their formal representation. The
future work needs to facilitate this conversion, with the possible improvements on
specification mining and identifying relevant patterns in the specification. Another
direction for future work is related to works of [SKK+13] where a user graphically
specifies a property and it is then converted to a temporal logic formula;

• Based on the research on applying runtime verification in automotive electronic de-
velopment, a project proposal has been submitted to continue this work and develop
methods to bridge the gap between natural language and formal requirements.

104

Glossary

C. Elegans – Caenorhabditis elegans, a nematode, whose adult individual has exactly 302
neural cells. The absence of variability in the neural structure, relatively low number
of cells made C. elegans a perfect model organism in gerontology, developmental,
evolutional and neuro- biology, and, recently, in formal verification [IDFF+15]. xi,
21, 22, 32, 45, 46

reactive system – According to “Reactive Systems: Modelling, Specification and Veri-
fication” by Luca Aceto, Anna Ingolfsdottir, Kim G. Larsen, and Jirí Srba, reactive
system is an inherently non-terminating system, which behavoir cannot be described
with a function from inputs to outputs. 2

sciences of the artificial – Herbert A. Simon in “The Sciences of the Artificial” opposes
“natural sciences” which “are concerned with how things are” with the “design
sciences” which are “concerned with how things ought to be, with devising artifacts
to attain goal”. 2

Tier 1 – Hardware and Software components providers, which provide their outcomes
directly to the OEM. 26

Tier 2 – Hardware and Software components providers, which do not provide their
outcomes directly to the OEM, but to the Tier 1 suppliers, who in turn integrate
the components from Tier 2 and provide systems to the OEM. 5, 26

105

Acronyms

ADC Analog-to-digital converter. 79, 84, 96, 97

AFE Analog Front-End. 80, 97

AI Artificial Intelligence. 21, 31

ASIL Automotive Safety Integrity Level. 26

AXI Advanced eXtensible Interface. 25

BN Bayesian network. 33, 34

COTS commercial off-the-shelf. 63

CPD conditional probability distribution. 33, 39

CPS Cyber-Physical Systems. 1–8, 11, 14, 16, 21, 22, 28, 31, 32, 34, 37, 38, 41, 43, 49,
51, 54, 62, 101, 103, 104

DSI3 3rd generation Distributed System Interface. 28

DSL Domain Specific Language. 27

DUT Design Under Test. 26, 78, 103

EBS electronic braking system. 83

ECU Electronic Control Unit. 26, 79, 80, 86, 97, 98, 104

EPS electronic power steering. 83

FPGA Field-Programmable Gate Array. 14, 25–27, 51–55, 61, 62, 75, 79, 80, 83, 84, 95,
97–103

GBN Gaussian Bayesian network. 21, 22, 32–34, 38–41, 43, 44, 51

GD Gaussian distribution. 33, 35, 36, 38

107

GS Gaussian smoothing. 22

GUI graphical user interface. 83

HDL Hardware Description Language. 27, 51, 54, 96, 98, 101, 102, 104

HLS High-Level Synthesis. 27, 54, 60, 80, 96, 98–102, 104

HMM Hidden Markov Model. 23, 25

ILP Integer Linear Program. 56

IMU inertial measurement unit. 44

IP intellectual property. 55

LIF leaky-integrate-and-fire. 24, 52

LTL Linear Temporal Logic. 16, 23, 27, 57

MGD multivariate Gaussian distribution. 33, 39

MTL Metric Temporal Logic. 16, 23, 25, 27, 51–55, 57, 60–64, 74

NeuralP Neural Programming Constructs. 32, 34, 44, 46, 49

ODE ordinary differential equation. 12, 13, 46, 64

OEM Original Equipment Manufacturer. 18, 26

PD probability density. 35

PDF Probability Density Function. 22, 33–35

PSI5 Peripheral Sensor Interface 5. 79

PSL Property Specification Language. 23, 26–28

ROS Robot Operating System. 21, 42, 44

RS requirements specification. 4, 5

RTL Register-Transfer Level. 27, 54, 79

RV random variable. 33–36, 38

SENT Single Edge Nibble Transmission. 7, 8, 16, 21, 27, 83–88, 90, 92, 95, 97–99,
102–104, 131, 150

108

SPC Short PWM Code. 7, 8, 16, 21, 27, 83–88, 90, 91, 95, 98, 99, 102–104, 131, 150

STL Signal Temporal Logic. 17, 26, 28, 52, 75, 77–79, 83, 84, 88–91, 94, 96–100, 102–104

TRE Timed Regular Expressions. 26, 27, 84, 88, 91–93, 96–100

UAV Unmanned Aerial Vehicle. 27

UGD univariate Gaussian distribution. 33

UKF unscented Kalman filter. 44

UT unit time. 89, 90, 96

V & V Verification and Validation. 18, 19

109

Bibliography

[AC16] Bogdan Aman and Gabriel Ciobanu. Modelling and verification of
weighted spiking neural systems. Theoretical Computer Science, 623:92
– 102, 2016.

[ACM02] Eugene Asarin, Paul Caspi, and Oded Maler. Timed regular expressions.
J. ACM, 49(2):172–206, 2002.

[ACN10] Pieter Abbeel, Adam Coates, and Andrew Y. Ng. Autonomous heli-
copter aerobatics through apprenticeship learning. Int. J. Rob. Res.,
29(13):1608–1639, 2010.

[Ade] MobileRobots Pioneer 3-AT (P3AT) research robot platform.
http://www.mobilerobots.com/ResearchRobots/P3AT.aspx (Accessed
19.04.2017).

[Adh13] Pooja Adhikari. A Domain Specific Language Based Approach for Gen-
erating Deadlock-free Parallel Load Scheduling Protocols for Distributed
Systems. PhD thesis, Mississippi State, MS, USA, 2013. AAI3558892.

[ADMN12] Eugene Asarin, Alexandre Donzé, Oded Maler, and Dejan Nick-
ovic. Parametric Identification of Temporal Properties, pages 147–160.
Springer Berlin Heidelberg, Berlin, Heidelberg, 2012.

[ADR+13] Arnon Amir, Pallab Datta, William P. Risk, Andrew S. Cassidy, Jef-
frey A. Kusnitz, Steve K. Esser, Er Andreopoulos, Theodore M. Wong,
Myron Flickner, Rodrigo Alvarez-icaza, Emmett Mcquinn, Ben Shaw,
Norm Pass, and Dharmendra S. Modha. Cognitive Computing Pro-
gramming Paradigm: A Corelet Language for Composing Networks
of Neurosynaptic Cores. In International Joint Conference on Neural
Networks (IJCNN). IEEE, 2013.

[AG16] Infineon Technologies AG. Sensing the world: Sensor solutions for
automotive, industrial and consumer applications. Infineon Technologies
AG, 2016.

111

http://www.mobilerobots.com/ResearchRobots/P3AT.aspx

[AH90] R. Alur and T.A. Henzinger. Real-time logics: complexity and expres-
siveness. In Logic in Computer Science, 1990. LICS ’90, Proceedings.,
Fifth Annual IEEE Symposium on e, pages 390–401, Jun 1990.

[AILS07] Luca Aceto, Anna Ingólfsdóttir, Kim Guldstrand Larsen, and Jiri Srba.
Reactive Systems: Modelling, Specification and Verification. Cambridge
University Press, New York, NY, USA, 2007.

[ALFS11] Y. S. R. Annapureddy, C. Liu, G. E. Fainekos, and S. Sankaranarayanan.
S-taliro: A tool for temporal logic falsification for hybrid systems. In
Proc. of TACAS 2011: the 17th International Conference on Tools and
Algorithms for the Construction and Analysis of Systems, volume 6605
of LNCS, pages 254–257. Springer, 2011.

[AMGC02] M.S. Arulampalam, S. Maskell, N. Gordon, and T. Clapp. A Tutorial on
Particle Filters for Online Nonlinear/Non-Gaussian Bayesian Tracking.
IEEE Transactions on Signal Processing, 50(2):174–188, 2002.

[Amp10] Nicholas Ampazis. Large Scale Problem Solving with Neural Networks:
The Netflix Prize Case, pages 429–434. Springer Berlin Heidelberg,
Berlin, Heidelberg, 2010.

[AP93] Panos J. Antsaklis and Kevin M. Passino, editors. An Introduction
to Intelligent and Autonomous Control. Kluwer Academic Publishers,
Norwell, MA, USA, 1993.

[AW94] Karl Johan Astrom and Bjorn Wittenmark. Adaptive Control. Addison-
Wesley Longman Publishing Co., Inc., Boston, MA, USA, 2nd edition,
1994.

[Axe07] Jan Axelson. Serial Port Complete: COM Ports, USB Virtual COM
Ports, and Ports for Embedded Systems; 2nd ed. Lakeview Research,
Madison, WI, 2007.

[BBHM09] S. Bhatti, E. Brady, K. Hammond, and J. McKinna. Domain spe-
cific languages (dsls) for network protocols (position paper). In 2009
29th IEEE International Conference on Distributed Computing Systems
Workshops, pages 208–213, June 2009.

[BBN13] Ezio Bartocci, Luca Bortolussi, and Laura Nenzi. A temporal logic
approach to modular design of synthetic biological circuits. In Proc.
of CMSB 2013: the 11th International Conference on Computational
Methods in Systems Biology, volume 8130 of LNCS, pages 164–177.
Springer, 2013.

[BBNS15] Ezio Bartocci, Luca Bortolussi, Laura Nenzi, and Guido Sanguinetti.
System design of stochastic models using robustness of temporal prop-
erties. Theor. Comput. Sci., 587:3–25, 2015.

112

[BD13] Alan Burns and Robert Davis. Mixed Criticality Systems - A Review.
University of York, Tech. Rep, 2013.

[BDL04] Gerd Behrmann, Alexandre David, and Kim G. Larsen. A tutorial on
UPPAAL. In Marco Bernardo and Flavio Corradini, editors, Formal
Methods for the Design of Real-Time Systems: 4th International School
on Formal Methods for the Design of Computer, Communication, and
Software Systems, SFM-RT 2004, number 3185 in LNCS, pages 200–236.
Springer–Verlag, September 2004.

[BDL+11] Gerd Behrmann, Alexandre David, Kim Guldstrand Larsen, Paul Pet-
tersson, and Wang Yi. Developing UPPAAL over 15 years. Softw.,
Pract. Exper., 41(2):133–142, 2011.

[Ben02] Janine M. Benyus. Biomimicry: Innovation Inspired by Nature. Harper
Perennial, New York, USA, 2002.

[BG12] M. Broy and E. Geisberger. Cyber-physical systems, driving force for
innovation in mobility, health, energy and production. Acatech: The
National Academy Of Science and Engineering, 2012.

[BGK+02] Johan Bengtsson, W.O. David Griffioen, Kåre J. Kristoffersen, Kim G.
Larsen, Fredrik Larsson, Paul Pettersson, and Wang Yi. Automated
verification of an audio-control protocol using uppaal. The Journal of
Logic and Algebraic Programming, 52:163 – 181, 2002.

[BK08] Christel Baier and Joost-Pieter Katoen. Principles of Model Checking
(Representation and Mind Series). The MIT Press, 2008.

[BKKS12] Manfred Broy, Helmut Krcmar, Sascha Kirstan, and Bernhard Schätz.
What is the Benefit of a Model-Based Design of Embedded Software Sys-
tems in the Car Industry? In Emerging Technologies for the Evolution
and Maintenance of Software Models, pages 310–337, 2012.

[BLMA+05] D. Borrione, Miao Liu, K. Morin-Allory, P. Ostier, and L. Fesquet.
On-line assertion-based verification with proven correct monitors. In
Information and Communications Technology, 2005. Enabling Technolo-
gies for the New Knowledge Society: ITI 3rd International Conference
on, pages 125–143, Dec 2005.

[BLS11] Andreas Bauer, Martin Leucker, and Christian Schallhart. Runtime ver-
ification for ltl and tltl. ACM Trans. Softw. Eng. Methodol., 20(4):14:1–
14:64, September 2011.

[Bre15] Romain Brette. What is the most realistic single-compartment model
of spike initiation? PLOS Computational Biology, 11(4):1–13, 04 2015.

113

[BZ06] M. Boule and Z. Zilic. Efficient automata-based assertion-checker
synthesis of psl properties. In 2006 IEEE International High Level
Design Validation and Test Workshop, pages 69–76, 2006.

[CES13] K. Claessen, N. Een, and B. Sterin. A circuit approach to LTL model
checking. In Formal Methods in Computer-Aided Design (FMCAD),
2013, pages 53–60, Oct 2013.

[CFFW16] Taylor S. Clawson, Silvia Ferrari, Sawyer B. Fuller, and Robert J. Wood.
Spiking neural network (SNN) control of a flapping insect-scale robot.
In 55th IEEE Conference on Decision and Control, CDC 2016, Las
Vegas, NV, USA, December 12-14, 2016, pages 3381–3388, 2016.

[CLC+03] Jose M Carmena, Mikhail A. Lebedev, Roy E. Crist, Joseph E.
O’Doherty, David M. Santucci, Dragan F. Dimitrov, Parag G. Patil,
Craig S. Henriquez, and Miguel A.L. Nicolelis. Learning to control a
brain–machine interface for reaching and grasping by primates. PLOS
Biology, 1(2), 10 2003.

[CMA+13] Andrew S. Cassidy, Paul Merolla, John V. Arthur, Steve K. Esser, Bryan
Jackson, Rodrigo Alvarez-icaza, Pallab Datta, Jun Sawada, Theodore M.
Wong, Vitaly Feldman, Arnon Amir, Daniel Ben dayan Rubin, Emmett
Mcquinn, William P. Risk, and Dharmendra S. Modha. Cognitive
computing building block: A versatile and efficient digital neuron model
for neurosynaptic cores. In in International Joint Conference on Neural
Networks (IJCNN). IEEE, 2013.

[CMG17] Giovanni Ciatto, Elisabetta De Maria, and Cinzia Di Giusto. Modeling
third generation neural networks as timed automata and verifying their
behavior through temporal logic. In [Research Report] Universit’e Cote
d’Azur, pages 1 – 68, CNRS, I3S, France, 2017. <hal-01473941>.

[CMS12] D. Ciresan, U. Meier, and J. Schmidhuber. Multi-column deep neural
networks for image classification. In Computer Vision and Pattern
Recognition (CVPR), 2012 IEEE Conference on, pages 3642–3649,
2012.

[CRL99] S. Chandra, B. Richards, and J. R. Larus. Teapot: a domain-specific
language for writing cache coherence protocols. IEEE Transactions on
Software Engineering, 25(3):317–333, May 1999.

[CRST09] Alessandro Cimatti, Marco Roveri, Angelo Susi, and Stefano Tonetta.
Formalization and validation of safety-critical requirements. In Proceed-
ings FM-09 Workshop on Formal Methods for Aerospace, FMA 2009,
Eindhoven, The Netherlands, 3rd November 2009., pages 68–75, 2009.

114

[CSL] Swarat Chaudhuri and Armando Solar-Lezama. Smooth Interpreta-
tion: Presentation Slides. http://people.csail.mit.edu/asolar/Talks/
PLDI2010Final.pptx (Accessed 14.03.2015).

[CSL10] Swarat Chaudhuri and Armando Solar-Lezama. Smooth interpretation.
In PLDI, pages 279–291, 2010.

[CSL11] Swarat Chaudhuri and Armando Solar-Lezama. Smoothing a program
soundly and robustly. In CAV, pages 277–292, 2011.

[DA05] Peter Dayan and L. F. Abbott. Theoretical Neuroscience: Computa-
tional and Mathematical Modeling of Neural Systems. The MIT Press,
2005.

[DBDRC+15] Zidong Du, Daniel D. Ben-Dayan Rubin, Yunji Chen, Liqiang He, Tian-
shi Chen, Lei Zhang, Chengyong Wu, and Olivier Temam. Neuromorphic
accelerators: A comparison between neuroscience and machine-learning
approaches. In In Proc. of the 48th International Symposium on Mi-
croarchitecture, MICRO-48, pages 494–507, New York, NY, USA, 2015.
ACM.

[DGG+05a] A. Dahan, D. Geist, L. Gluhovsky, D. Pidan, G. Shapir, Y. Wolfsthal,
L. Benalycherif, R. Kamidem, and Y. Lahbib. Combining system level
modeling with assertion based verification. In Quality of Electronic
Design, 2005. ISQED 2005. Sixth International Symposium on, pages
310–315, March 2005.

[DGG+05b] Anat Dahan, Daniel Geist, Leonid Gluhovsky, Dmitry Pidan, Gil Shapir,
Yaron Wolfsthal, Lyes Benalycherif, Romain Kamdem, and Younes
Lahbib. Combining system level modeling with assertion based verifica-
tion. In 6th International Symposium on Quality of Electronic Design
(ISQED) 21-23 March 2005, San Jose, CA, USA, pages 310–315, 2005.

[Dij70] Edsger W. Dijkstra. Notes On Structured Programming, pages 0–88.
Technological University Eindhoven, The Netherlands, Department of
Mathematics, T.H.-Report (EWD249), 70-WSK-03, 1970.

[DMB+12] Alexandre Donze, Oded Maler, Ezio Bartocci, Dejan Nickovic, Radu
Grosu, and Scott Smolka. On Temporal Logic and Signal Processing.
In Automated Technology for Verification and Analysis, Lecture Notes
in Computer Science, pages 92–106. Springer Berlin Heidelberg, 2012.

[DMSS11] Guillaume Drion, Laurent Massotte, Rodolphe Sepulchre, and Vincent
Seutin. How modeling can reconcile apparently discrepant experimen-
tal results: The case of pacemaking in dopaminergic neurons. PLoS
Computational Biology, 7(5), 2011.

115

http://people.csail.mit.edu/asolar/Talks/PLDI2010Final.pptx
http://people.csail.mit.edu/asolar/Talks/PLDI2010Final.pptx

[Doi07] Norman Doidge. The brain that changes itself: stories of personal
triumph from the frontiers of brain science. Viking, New York, USA,
2007.

[Don10] Alexandre Donzé. Breach, a toolbox for verification and parameter
synthesis of hybrid systems. In Proc. of CAV 2010: the 22nd Inter-
national Conference on Computer Aided Verification, volume 6174 of
LNCS, pages 167–170. Springer Berlin, 2010.

[DP06] Yang Dan and Mu-Ming Poo. Spike timing-dependent plasticity: From
synapse to perception. Physiological Reviews, 86(3):1033–1048, 2006.

[DPM+11] Alex Dranovsky, Alyssa M. Picchini, Tiffany Moadel, Alexander C. Sisti,
Atsushi Yamada, Shioko Kimura, E. David Leonardo, and Rene Hen.
Experience dictates stem cell fate in the adult hippocampus. Neuron,
70(5):908 – 923, 2011.

[DS13] Susanne Ditlevsen and Adeline Samson. Introduction to stochastic
models in biology, pages 3–34. Lecture Notes in Mathematics. Springer,
2013. 2013; 1.

[DSO13] Krishnaji Desai, Kenneth S. Stevens, and John O’Leary. Symbolic
verification of timed asynchronous hardware protocols. In IEEE Com-
puter Society Annual Symposium on VLSI, ISVLSI 2013, Natal, Brazil,
August 5-7, 2013, pages 147–152, 2013.

[DWPM11] Utsav Drolia, Zhenyan Wang, Yash Pant, and Rahul Mangharam.
Autoplug: An automotive test-bed for electronic controller unit testing
and verification. In 14th International IEEE Conference on Intelligent
Transportation Systems, ITSC 2011, Washington, DC, USA, October
5-7, 2011, pages 1187–1192, 2011.

[DY14] Li Deng and Dong Yu. Deep learning: Methods and applications. Found.
Trends Signal Process., 7(3–4):197–387, 2014.

[EAA+13] Steven K. Esser, Alexander Andreopoulos, Rathinakumar Appuswamy,
Pallab Datta, Davis Barch, Arnon Amir, John V. Arthur, Andrew Cas-
sidy, Myron Flickner, Paul Merolla, Shyamal Chandra, Nicola Basilico,
Stefano Carpin, Tom Zimmerman, Frank Zee, Rodrigo Alvarez-Icaza,
Jeffrey A. Kusnitz, Theodore M. Wong, William P. Risk, Emmett
McQuinn, Tapan K. Nayak, Raghavendra Singh, and Dharmendra S.
Modha. Cognitive computing systems: Algorithms and applications for
networks of neurosynaptic cores. In IJCNN, pages 1–10. IEEE, 2013.

[EBC+10] Dumitru Erhan, Yoshua Bengio, Aaron Courville, Pierre-Antoine Man-
zagol, Pascal Vincent, and Samy Bengio. Why does unsupervised

116

pre-training help deep learning? J. Mach. Learn. Res., 11:625–660,
March 2010.

[Eis07] Cindy Eisner. PSL for Runtime Verification: Theory and Practice. In
Runtime Verification, 7th International Workshop, RV 2007, Vancouver,
Canada, March 13, 2007, Revised Selected Papers, pages 1–8, 2007.

[FMFR11] Yliès Falcone, Laurent Mounier, Jean-Claude Fernandez, and Jean-Luc
Richier. Runtime enforcement monitors: composition, synthesis, and
enforcement abilities. Formal Methods in System Design, 38(3):223–262,
2011.

[FMNU15] Thomas Ferrère, Oded Maler, Dejan Ničković, and Dogan Ulus. Mea-
suring with Timed Patterns, pages 322–337. Springer International
Publishing, Cham, 2015.

[FSUY12] Georgios E. Fainekos, Sriram Sankaranarayanan, Koichi Ueda, and
Hakan Yazarel. Verification of automotive control applications using
S-TaLiRo. In American Control Conference, ACC 2012, Montreal, QC,
Canada, pages 3567–3572, 2012.

[FZ12] Yliès Falcone and Lenore D. Zuck. Runtime Verification: The Appli-
cation Perspective, pages 284–291. Springer Berlin Heidelberg, Berlin,
Heidelberg, 2012.

[GBL04] EL Graas, EA Brown, and Robert H Lee. An fpga-based approach to
high-speed simulation of conductance-based neuron models. Neuroin-
formatics, 2(4):417–435, 2004.

[GD07] Marc-Oliver Gewaltig and Markus Diesmann. Nest (neural simulation
tool). Scholarpedia, 2(4):1430, 2007.

[GEB15] Leon A. Gatys, Alexander S. Ecker, and Matthias Bethge. A neural
algorithm of artistic style. CoRR, abs/1508.06576, 2015.

[GHNR14] Andrew D. Gordon, Thomas A. Henzinger, Aditya V. Nori, and Sri-
ram K. Rajamani. Probabilistic programming. In International Confer-
ence on Software Engineering (ICSE Future of Software Engineering).
IEEE, May 2014.

[GK02] Wulfram Gerstner and Werner M. Kistler. Spiking Neuron Models:
Single Neurons, Populations, Plasticity. Cambridge University Press,
2002.

[GKNP14] Wulfram Gerstner, Werner M. Kistler, Richard Naud, and Liam Panin-
ski. Neuronal Dynamics: From Single Neurons to Networks and Models
of Cognition. Cambridge University Press, New York, NY, USA, 2014.

117

[GrMH13] A. Graves, A. r. Mohamed, and G. Hinton. Speech recognition with
deep recurrent neural networks. In 2013 IEEE International Conference
on Acoustics, Speech and Signal Processing, pages 6645–6649, May 2013.

[GRS14] Johannes Geist, Kristin Y. Rozier, and Johann Schumann. Runtime
Observer Pairs and Bayesian Network Reasoners On-board FPGAs:
Flight-Certifiable System Health Management for Embedded Systems.
In Borzoo Bonakdarpour and Scott A. Smolka, editors, Proc. of Runtime
Verification: 5th International Conference, RV 2014, pages 215–230.
Springer International Publishing, 2014.

[GS85] G. Grimmett and D. Stirzaker. Probability and random processes. Oxford
science publications. Clarendon Press, 1985.

[GS12] Sebastian Große and Wolfgang Schröder. Deflection-based flow field
sensors — examples and requirements, pages 393–403. Springer Vienna,
Vienna, 2012.

[GT11] Changdong Gu and Jiangping Tu. One-step fabrication of nanostruc-
tured ni film with lotus effect from deep eutectic solvent. Langmuir,
27(16):10132–10140, 2011.

[HG95] David Heckerman and Dan Geiger. Learning bayesian networks: A
unification for discrete and gaussian domains. In UAI, pages 274–284,
1995.

[HH52] A. L. Hodgkin and A. F. Huxley. A quantitative description of membrane
current and its application to conduction and excitation in nerve. The
Journal of physiology, 117(4):500–544, 1952.

[Hin93] Michael Hines. Neuron a program for simulation of nerve equations.
Neural Systems: Analysis and Modeling, pages 127–136, 1993.

[HMF14] Donal Heffernan, Ciaran MacNamee, and Padraig Fogarty. Runtime
verification monitoring for automotive embedded systems using the ISO
26262 functional safety standard as a guide for the definition of the
monitored properties. IET Software, 8(5):193–203, 2014.

[Hof80] Miguel García Hoffmann. Hardware implementation of communication
protocols: A formal approach. In Proceedings of the 7th Annual Sympo-
sium on Computer Architecture, ISCA ’80, pages 253–263, La Baule,
USA, 1980. ACM.

[HQB+09] Xue Han, Xiaofeng Qian, Jacob G. Bernstein, Hui hui Zhou, Gio-
vanni Talei Franzesi, Patrick Stern, Roderick T. Bronson, Ann M. Gray-
biel, Robert Desimone, and Edward S. Boyden. Millisecond-timescale
optical control of neural dynamics in the nonhuman primate brain.
Neuron, 62(2):191 – 198, 2009.

118

[IDFF+15] Md. Ariful Islam, Richard De Francisco, Chuchu Fan, Radu Grosu,
Sayan Mitra, and Scott A. Smolka. Model Checking Tap Withdrawal in
C. Elegans, pages 195–210. Springer International Publishing, Cham,
2015.

[ILBH+11] Giacomo Indiveri, Bernabé Linares-Barranco, Tara Julia Hamilton,
André Van Schaik, Ralph Etienne-Cummings, Tobi Delbruck, Shih-Chii
Liu, Piotr Dudek, Philipp Hafliger, Sylvie Renaud, et al. Neuromorphic
silicon neuron circuits. Frontiers in neuroscience, 5:73, 2011.

[IMDACPR+12] M.-A Ibarra-Manzano, J.-H. De-Anda-Cuellar, C.-A Perez-Ramirez,
O.-I Vera-Almanza, F.-J. Mendoza-Galindo, M.-A Carbajal-Guillen,
and D.-L. Almanza-Ojeda. Intelligent algorithm for parallel self-parking
assist of a mobile robot. In Electronics, Robotics and Automotive
Mechanics Conference (CERMA), 2012 IEEE Ninth, pages 37–41, Nov
2012.

[Inc] Xilinx Inc. Vivado High-Level Synthesis.
http://www.xilinx.com/products/design-tools/vivado/integration/esl-
design.html (Accessed 25.09.2016).

[Inc16] Xilinx Inc. Vivado Design Suite Tutorial, Programming and Debugging.

http://www.xilinx.com/support/documentation/sw_manuals/xilinx2016_2/

ug936-vivado-tutorial-programming-debugging.pdf, 2016. [Online; Accessed
12-October-2016].

[Inf17] Semiconductor and System Solutions - Infineon Technologies, 2017.
http://www.infineon.com/ (Accessed 14.03.2017).

[Int16] SAE International. SENT - Single Edge Nibble Transmission for Au-
tomotive Applications, J2716, Standard. http://standards.sae.
org/j2716_201001/, 2016. [Online; Accessed 3-October-2016].

[iso11] ISO 26262: "Road vehicles – Functional safety". International Organi-
zation for Standardization (ISO), 2011.

[Izh03] Eugene M. Izhikevich. Simple model of spiking neurons. IEEE Trans.
Neural Networks, pages 1569–1572, 2003.

[Izh04] Eugene M. Izhikevich. Which model to use for cortical spiking neurons.
IEEE Transactions on Neural Networks, 15:1063–1070, 2004.

[JBG+15] Stefan Jaksic, Ezio Bartocci, Radu Grosu, Reinhard Kloibhofer, Thang
Nguyen, and Dejan Nickovic. From Signal Temporal Logic to FPGA
Monitors. In Proc. of 13. ACM/IEEE International Conference on
Formal Methods and Models for Codesign, pages 218–227, 2015.

119

http://www.xilinx.com/support/documentation/sw_manuals/xilinx2016_2/ug936-vivado-tutorial-programming-debugging.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx2016_2/ug936-vivado-tutorial-programming-debugging.pdf
http://www.infineon.com/
http://standards.sae.org/j2716_201001/
http://standards.sae.org/j2716_201001/

[JKN10] Kevin D. Jones, Victor Konrad, and Dejan Nickovic. Analog property
checkers: a DDR2 case study. Formal Methods in System Design,
36(2):114–130, 2010.

[JMB17] Fatemeh Negin Javaheri, Katell Morin-Allory, and Dominique Borrione.
Synthesis of regular expressions revisited: From PSL seres to hardware.
IEEE Trans. on CAD of Integrated Circuits and Systems, 36(5):869–882,
2017.

[JRCK10] Hongbo Jia, Nathalie L. Rochefort, Xiaowei Chen, and Arthur Konnerth.
Dendritic organization of sensory input to cortical neurons in vivo.
Nature, 464(7293):1307–1312, 4 2010.

[JS99] K. Jiang and L.D. Seneviratne. A sensor guided autonomous parking
system for nonholonomic mobile robots. In Robotics and Automation,
1999. Proceedings. 1999 IEEE International Conference on, volume 1,
pages 311–316 vol.1, 1999.

[KBS+13] Kenan Kalajdzic, Ezio Bartocci, ScottA. Smolka, ScottD. Stoller, and
Radu Grosu. Runtime Verification with Particle Filtering. In Axel
Legay and Saddek Bensalem, editors, Runtime Verification, volume
8174 of Lecture Notes in Computer Science, pages 149–166. Springer
Berlin Heidelberg, 2013.

[KD05] M. Khoshnejad and K. Demirli. Autonomous parallel parking of a
car-like mobile robot by a neuro-fuzzy behavior-based controller. In
Fuzzy Information Processing Society, 2005. NAFIPS 2005. Annual
Meeting of the North American, pages 814–819, June 2005.

[KF09] Daphne Koller and Nir Friedman. Probabilistic Graphical Models: Prin-
ciples and Techniques - Adaptive Computation and Machine Learning.
The MIT Press, 2009.

[KF12] Daniel Kästner and Christian Ferdinand. Static verification of non-
functional software requirements in the iso-26262. In Automotive -
Safety and Security, pages 39–53, 2012.

[KFL15] Ali Kassem, Yliès Falcone, and Pascal Lafourcade. Monitoring electronic
exams. In Runtime Verification - 6th International Conference, RV 2015
Vienna, Austria, September 22-25, 2015. Proceedings, pages 118–135,
2015.

[KK17] Benjamin Lucien Kaminski and Joost-Pieter Katoen. A weakest pre-
expectation semantics for mixed-sign expectations. Collected Abstracts
of the 2nd Workshop on Probabilistic Programming Semantics (PPS
2017), January 2017.

120

[KKMO16] Benjamin Lucien Kaminski, Joost-Pieter Katoen, Christoph Matheja,
and Federico Olmedo. Weakest precondition reasoning for expected
run-times of probabilistic programs. In Programming Languages and
Systems - 25th European Symposium on Programming, ESOP 2016,
Held as Part of the European Joint Conferences on Theory and Practice
of Software, ETAPS 2016, Eindhoven, The Netherlands, April 2-8, 2016,
Proceedings, pages 364–389, 2016.

[Kop11] Hermann Kopetz. Real-Time Systems: Design Principles for Distributed
Embedded Applications. Springer Publishing Company, Incorporated,
2nd edition, 2011.

[KS14] Marko Kolbe and Jonathan Schoo. Industry Overview: The Automotive
Electronics Industry in Germany. Germany Trade and Invest, 2014.

[LBD+90] Yann LeCun, Bernhard E. Boser, John S. Denker, Donnie Henderson,
R. E. Howard, Wayne E. Hubbard, and Lawrence D. Jackel. Handwritten
digit recognition with a back-propagation network. In D. S. Touretzky,
editor, Advances in Neural Information Processing Systems 2, pages
396–404. Morgan-Kaufmann, 1990.

[Leu12] Martin Leucker. Teaching Runtime Verification. In Sarfraz Khurshid
and Koushik Sen, editors, Proc. of Runtime Verification: Second Inter-
national Conference, RV 2011, pages 34–48. Springer Berlin Heidelberg,
2012.

[Lli99] Rodolfo R. Llinas. The squid giant synapse : a model for chemical
transmission. Oxford University Press, New York, 1999.

[LMBA06] Francisco López-Muñoz, Jesús Boya, and Cecilio Alamo. Neuron theory,
the cornerstone of neuroscience, on the centenary of the Nobel Prize
award to Santiago Ramón y Cajal . Brain Research Bulletin, 70(4–6):391
– 405, 2006.

[Lon89] Derek Long. A review of temporal logics. The Knowledge Engineering
Review, 4(2):141–162, 1989.

[Lyo11] Richard G. Lyons. Understanding Digital Signal Processing 3rd Edition.
Prentice Hall, Upper Saddle River, NJ, USA, 3rd edition, 2011.

[LYW+10] T.S. Li, Ying-Chieh Yeh, Jyun-Da Wu, Ming-Ying Hsiao, and Chih-
Yang Chen. Multifunctional Intelligent Autonomous Parking Controllers
for Carlike Mobile Robots. Industrial Electronics, IEEE Transactions
on, 57(5):1687–1700, May 2010.

[Mal16] Oded Maler. Some Thoughts on Runtime Verification, pages 3–14.
Springer International Publishing, 2016.

121

[MH15] Ramin M. Hasani. Design of cmos silicon neurons for noise assisted
computation in spiking neural networks. Politesi Digital Library of
PhD and Post Graduate Theses, Politecnico di Milano, 2015.

[Mit07] H.B. Mitchell. Multi-Sensor Data Fusion - An Introduction. Springer,
Berlin, Heidelberg, New York, 2007.

[MN13a] Oded Maler and Dejan Nickovic. Monitoring properties of analog and
mixed-signal circuits. International Journal on Software Tools for
Technology Transfer, 15(3):247–268, 2013.

[MN13b] Oded Maler and Dejan Ničković. Monitoring properties of analog
and mixed-signal circuits. International Journal on Software Tools for
Technology Transfer, 15(3):247–268, 2013.

[MNP06] Oded Maler, Dejan Nickovic, and Amir Pnueli. From MITL to Timed
Automata. In Eugene Asarin and Patricia Bouyer, editors, Proc. of
Formal Modeling and Analysis of Timed Systems, volume 4202 of Lecture
Notes in Computer Science, pages 274–289. Springer Berlin Heidelberg,
2006.

[MNP07] Oded Maler, Dejan Nickovic, and Amir Pnueli. On Synthesizing Con-
trollers from Bounded-Response Properties. In Werner Damm and
Holger Hermanns, editors, Computer Aided Verification, volume 4590
of Lecture Notes in Computer Science, pages 95–107. Springer Berlin
Heidelberg, 2007.

[MNP08] Oded Maler, Dejan Nickovic, and Amir Pnueli. Checking Temporal
Properties of Discrete, Timed and Continuous Behaviors. In Pillars of
Computer Science, volume 4800 of Lecture Notes in Computer Science,
pages 475–505. Springer Berlin Heidelberg, 2008.

[MP43] Warren S. McCulloch and Walter Pitts. A logical calculus of the ideas
immanent in nervous activity. The bulletin of mathematical biophysics,
5(4):115–133, 1943.

[MP92] Zohar Manna and Amir Pnueli. The temporal logic of reactive and
concurrent systems - specification. Springer, 1992.

[MSH+13] L. Märtin, M. Schatalov, M. Hagner, U. Goltz, and O. Maibaum. A
methodology for model-based development and automated verification
of software for aerospace systems. In 2013 IEEE Aerospace Conference,
pages 1–19, March 2013.

[NBHT14] T. Nguyen, A. Basa, D. Hammerschmidt, and Dittfeld T. Advanced
Mixed-Signal Emulation for Complex Automotive ICs. In AIRBAG
Conference, pages 1–8, 2014.

122

[NBN+16] Thang Nguyen, Ezio Bartocci, Dejan Nickovic, Radu Grosu, Stefan
Jaksic, and Konstantin Selyunin. The HARMONIA project: Hardware
monitoring for automotive systems-of-systems. In Proc. of Leveraging
Applications of Formal Methods, Verification and Validation: Discus-
sion, Dissemination, Applications - 7th International Symposium, ISoLA
2016, Corfu, Greece, October 10-14, pages 371–379, 2016.

[Nea03] Richard E. Neapolitan. Learning Bayesian Networks. Prentice-Hall,
Inc., Upper Saddle River, NJ, USA, 2003.

[neu] Parking Videos. http://youtu.be/xNOj_ARSEYs?list=PLP5Gx6r7g
K2cxjKv0K2V5fBedovfo8_3y (Accessed 12.03.2015).

[NM07] Dejan Nickovic and Oded Maler. Amt: A property-based monitoring
tool for analog systems. In Jean-François Raskin and P.S. Thiagarajan,
editors, Formal Modeling and Analysis of Timed Systems, volume 4763
of Lecture Notes in Computer Science, pages 304–319. Springer Berlin
Heidelberg, 2007.

[NN14] Thang Nguyen and Dejan Nickovic. Assertion-Based Monitoring in
Practice – Checking Correctness of an Automotive Sensor Interface. In
Proc. of Formal Methods for Industrial Critical Systems, pages 16–32.
Springer, 2014.

[NN16] Thang Nguyen and Dejan Nickovic. Assertion-based monitoring in
practice - checking correctness of an automotive sensor interface. Sci.
Comput. Program., 118:40–59, 2016.

[NP10] Dejan Nickovic and Nir Piterman. From MTL to Deterministic Timed
Automata. In Krishnendu Chatterjee and Thomas A. Henzinger, editors,
Proc. of Formal Modeling and Analysis of Timed Systems, volume 6246
of Lecture Notes in Computer Science, pages 152–167. Springer Berlin
Heidelberg, 2010.

[NW14] Thang Nguyen and Stuart N. Wooters. FPGA-Based Development for
Sophisticated Automotive Embedded Safety Critical System. In SAE
International Journal of Passenger Cars - Electronic and Electrical
Systems, pages 125–132, 2014.

[NW15] Werner Nachtigall and Alfred Wisser. Bionics by Examples. Springer
International Publishing, 2015.

[OKT14] R. Okuda, Y. Kajiwara, and K. Terashima. A survey of technical trend
of adas and autonomous driving. In Proc. of International Symposium
on VLSI Design, Automation and Test (VLSI-DAT) 2014, pages 1–4,
April 2014.

123

http://youtu.be/xNOj_ARSEYs?list=PLP5Gx6r7gK2cxjKv0K2V5fBedovfo8_3y
http://youtu.be/xNOj_ARSEYs?list=PLP5Gx6r7gK2cxjKv0K2V5fBedovfo8_3y

[osc] Oscillograms and Lab Results. https://www.dropbox.com/sh/
s3jy1zux5y9uvk5/AAC9KOAWFzYSAXOJntR6CosIa?dl=0 (Accessed
05.01.2016).

[OW08] Joël Ouaknine and James Worrell. Some Recent Results in Metric
Temporal Logic. In Proceedings of the 6th International Conference
on Formal Modeling and Analysis of Timed Systems, FORMATS ’08,
pages 1–13. Springer-Verlag, 2008.

[Par85] David Lorge Parnas. Software aspects of strategic defense systems.
Commun. ACM, 28(12):1326–1335, December 1985.

[Per14] Jeffrey M. Perkel. Mapping Neural Connections. BioTechniques,
57(5):230–236, 2014.

[PFJ+13] Srinivas Pinisetty, Yliès Falcone, Thierry Jéron, Hervé Marchand, An-
toine Rollet, and Omer Landry Nguena Timo. Runtime Enforcement
of Timed Properties, pages 229–244. Springer Berlin Heidelberg, Berlin,
Heidelberg, 2013.

[PGZ+14] Can Pan, Jian Guo, Longfei Zhu, Jianqi Shi, Huibiao Zhu, and Xinyun
Zhou. Modeling and verification of can bus with application layer using
uppaal. Electronic Notes in Theoretical Computer Science, 309:31 – 49,
2014.

[PWD+12] Robert Preissl, Theodore M. Wong, Pallab Datta, Myron Flickner,
Raghavendra Singh, Steven K. Esser, William P. Risk, Horst D. Simon,
and Dharmendra S. Modha. Compass: A scalable simulator for an
architecture for cognitive computing. In Proceedings of the International
Conference on High Performance Computing, Networking, Storage and
Analysis, SC ’12, pages 54:1–54:11, Los Alamitos, CA, USA, 2012. IEEE
Computer Society Press.

[PY97] Kevin M. Passino and Stephen Yurkovich. Fuzzy Control. Addison-
Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1st edition,
1997.

[PZ08a] A. Pnueli and A. Zaks. On the Merits of Temporal Testers. In Orna
Grumberg and Helmut Veith, editors, 25 Years of Model Checking,
volume 5000 of Lecture Notes in Computer Science, pages 172–195.
Springer Berlin Heidelberg, 2008.

[PZ08b] Amir Pnueli and Aleksandr Zaks. On the merits of temporal testers.
In 25 Years of Model Checking - History, Achievements, Perspectives,
pages 172–195, 2008.

124

https://www.dropbox.com/sh/s3jy1zux5y9uvk5/AAC9KOAWFzYSAXOJntR6CosIa?dl=0
https://www.dropbox.com/sh/s3jy1zux5y9uvk5/AAC9KOAWFzYSAXOJntR6CosIa?dl=0

[QCG+09] Morgan Quigley, Ken Conley, Brian Gerkey, Josh Faust, Tully B. Foote,
Jeremy Leibs, Rob Wheeler, and Andrew Y. Ng. ROS: an open-source
robot operating system. In ICRA Workshop on Open Source Software,
2009.

[R2008] ANSI E1.11-2008 R2013. Entertainment Technology – USITT DMX512-
A – Asynchronous Serial Digital Data Transmission Standard for Con-
trolling Lighting Equipment and Accessories . http://webstore.ansi.org/

RecordDetail.aspx?sku=ANSI+E1.11-2008+(R2013), 2008. [Online; Accessed 2-
October-2016].

[RBNG16] Alena Rodionova, Ezio Bartocci, Dejan Nickovic, and Radu Grosu.
Temporal Logic as Filtering. In 19th ACM International Conference
on Hybrid Systems: Computation and Control, HSCC 2016, Vienna,
Austria, April 12-14, 2016, Proceedings, pages 11–20, 2016.

[RBNP08] Marc Raibert, Kevin Blankespoor, Gabriel Nelson, and Rob Playter.
Bigdog, the rough-terrain quadruped robot. IFAC Proceedings Volumes,
41(2):10822 – 10825, 2008. 17th IFAC World Congress.

[RFB12] Thomas Reinbacher, Matthias Függer, and Jörg Brauer. Real-time
runtime verification on chip. In Runtime Verification, Third Interna-
tional Conference, RV 2012, Istanbul, Turkey, September 25-28, Revised
Selected Papers, pages 110–125, 2012.

[RFB14] Thomas Reinbacher, Matthias Függer, and Jörg Brauer. Runtime
verification of embedded real-time systems. Formal Methods in System
Design, 44(3):203–239, 2014.

[RN10] S. Russell and P. Norvig. Artificial Intelligence: A Modern Approach.
Prentice-Hall, 3rd edition, 2010.

[RNPH05] G. Rodriguez-Navas, J. Proenza, and H. Hansson. Using uppaal to
model and verify a clock synchronization protocol for the controller
area network. In 2005 IEEE Conference on Emerging Technologies and
Factory Automation, volume 2, pages 8 pp.–502, Sept 2005.

[Ros32] Charles Rosen. The Origin of the Conception of the Nervous Impulse.
Canadian Medical Association Journal, 27(1):66 – 70, 1932.

[RRS14] Thomas Reinbacher, Kristin Yvonne Rozier, and Johann Schumann.
Temporal-logic based runtime observer pairs for system health man-
agement of real-time systems. In Proc. of Tools and Algorithms for
the Construction and Analysis of Systems - 20th Int. Conf., (TACAS),
Grenoble, France, pages 357–372, 2014.

125

http://webstore.ansi.org/RecordDetail.aspx?sku=ANSI+E1.11-2008+(R2013)
http://webstore.ansi.org/RecordDetail.aspx?sku=ANSI+E1.11-2008+(R2013)

[RSB+14] Rakesh Rana, Miroslaw Staron, Christian Berger, Jörgen Hansson,
Martin Nilsson, and Fredrik Törner. Early Verification and Validation
According to ISO 26262 by Combining Fault Injection and Mutation
Testing, pages 164–179. Springer Berlin Heidelberg, Berlin, Heidelberg,
2014.

[RvR09] Arnd Roth and Mark CW van Rossum. Modeling synapses. Computa-
tional modeling methods for neuroscientists, 6:139–160, 2009.

[San13] M. Sans. X-by-wire park assistance for electric city cars. In Proc. of
World Electric Vehicle Symposium and Exhibition (EVS27), 2013, pages
1–9, Nov 2013.

[SBS+12] ScottD. Stoller, Ezio Bartocci, Justin Seyster, Radu Grosu, Klaus
Havelund, ScottA. Smolka, and Erez Zadok. Runtime Verification with
State Estimation. In Sarfraz Khurshid and Koushik Sen, editors, Run-
time Verification, volume 7186 of Lecture Notes in Computer Science,
pages 193–207. Springer Berlin Heidelberg, 2012.

[SGC+12] N. Scicluna, E. Gatt, O. Casha, I Grech, and J. Micallef. Fpga-based
autonomous parking of a car-like robot using fuzzy logic control. In Elec-
tronics, Circuits and Systems (ICECS), 2012 19th IEEE International
Conference on, pages 229–232, Dec 2012.

[She15] Gordon M Shepherd. Foundations of the Neuron Doctrine. Oxford
University Press, New York, NY, 25th Anniversary edition, 2015.

[SHR+17] Konstantin Selyunin, Ramin M. Hasani, Denise Ratasich, Ezio Bartocci,
and Radu Grosu. Computing with biophysical and hardware-efficient
neural models. In Submitted to the Advances in Computational In-
telligence - 14th International Work-Conference on Artificial Neural
Networks, IWANN 2017, Cadiz, Spain, June 14-16, pages 1–12, 2017.

[Sim96] Herbert A. Simon. The Sciences of the Artificial (3rd Ed.). MIT Press,
Cambridge, MA, USA, 1996.

[SJN+17] Konstantin Selyunin, Stefan Jaksic, Thang Nguyen, Christian Reidl,
Udo Hafner, Ezio Bartocci, Dejan Nickovic, and Radu Grosu. Runtime
monitoring with recovery of the sent communication protocol. In
Submitted, Under Review, pages 1–17, 2017.

[SKK+13] S. Srinivas, R. Kermani, K. Kim, Y. Kobayashi, and G. Fainekos. A
graphical language for ltl motion and mission planning. In 2013 IEEE
International Conference on Robotics and Biomimetics (ROBIO), pages
704–709, Dec 2013.

126

[SLB+08] Sergio Saponara, Nicola E. L’Insalata, Tony Bacchillone, Esa Petri,
Iacopo Del Corona, and Luca Fanucci. Hardware/software fpga-based
network emulator for high-speed on-board communications. In 11th
Euromicro Conference on Digital System Design: Architectures, Methods
and Tools, DSD 2008, Parma, Italy, September 3-5, 2008, pages 353–
359, 2008.

[SMN11] Rodrigo Martins da Silva, Luiza de Macedo Mourelle, and Nadia Nedjah.
Compact yet efficient hardware architecture for multilayer-perceptron
neural networks. SBA: Controle & Automacao Sociedade Brasileira de
Automatica, 22:647 – 663, 12 2011.

[SMR15] Johann Schumann, Patrick Moosbrugger, and Kristin Y. Rozier. R2U2:
Monitoring and Diagnosis of Security Threats for Unmanned Aerial
Systems, pages 233–249. Springer International Publishing, Cham, 2015.

[SNB+16a] Konstantin Selyunin, Thang Nguyen, Ezio Bartocci, Dejan Nickovic,
and Radu Grosu. Monitoring of MTL Specifications With IBM’s Spiking-
Neuron Model. In The 19th Design, Automation and Test in Europe
Conference and Exhibition, DATE 2016, Dresden, Germany, March
14-18, 2016, Proceedings, 2016.

[SNB+16b] Konstantin Selyunin, Thang Nguyen, Andrei Daniel Basa, Ezio Bar-
tocci, Dejan Nickovic, and Radu Grosu. Applying High-Level Synthesis
for Synthesizing Hardware Runtime STL Monitors of Mission-Critical
Properties. In Electronic Proc. of the 13th Design and Verification Con-
ference and Exhibition (DVCon 2016), San Jose, CA, USA, February
28- March 3, pages 1–8, 2016.

[SNBG16] Konstantin Selyunin, Thang Nguyen, Ezio Bartocci, and Radu Grosu.
Applying Runtime Monitoring for Automotive Electronic Development,
pages 462–469. Springer International Publishing, 2016.

[sou] Source Code. https://github.com/selyunin/truenorth_cpp_hls.git.

[SP89] Almut Schüz and Günther Palm. Density of neurons and synapses in the
cerebral cortex of the mouse. The Journal of Comparative Neurology,
286(4):442–455, 1989.

[SRB+15] Konstantin Selyunin, Denise Ratasich, Ezio Bartocci, Md. Ariful Islam,
Scott A. Smolka, and Radu Grosu. Neural programming: Towards
adaptive control in cyber-physical systems. In 54th IEEE Conference
on Decision and Control, CDC 2015, Osaka, Japan, December 15-18,
2015, pages 6978–6985, 2015.

[SWM92] Rahul Sarpeshkar, Lloyd Watts, and Carver Mead. Refractory neuron
circuits. Caltech Authors, 1992.

127

https://github.com/selyunin/truenorth_cpp_hls.git

[SZ14] Karen Simonyan and Andrew Zisserman. Very deep convolutional
networks for large-scale image recognition. CoRR, abs/1409.1556, 2014.

[TBF06] S. Thrun, W. Burgard, and D. Fox. Probabilistic Robotics. MIT Press,
Cambridge, 2006.

[TCK+02] Joshua T Trachtenberg, Brian E Chen, Graham W Knott, Guoping
Feng, Joshua R Sanes, Egbert Welker, and Karel Svoboda. Long-term
in vivo imaging of experience-dependent synaptic plasticity in adult
cortex. Nature, 420(6917):788–794, 2002.

[TRV12] Deian Tabakov, Kristin Y. Rozier, and Moshe Y. Vardi. Optimized
temporal monitors for systemc. Formal Methods in System Design,
41(3):236–268, 2012.

[Van01] Robert J. Vanderbei. Linear Programming: Foundations and Exten-
sions. Department of operations and research and financial engineering,
Princeton university, 2001.

[VBG06] Sergiy A. Vilkomir, Jonathan P. Bowen, and Aditya K. Ghose. For-
malization and assessment of regulatory requirements for safety-critical
software. Innovations in Systems and Software Engineering, 2(3):165–
178, Dec 2006.

[viv] Vivado System Edition. http://www.xilinx.com/products/design-
tools/vivado.html (Accessed 05.01.2016).

[vL09] Axel van Lamsweerde. Requirements Engineering: From System Goals
to UML Models to Software Specifications. Wiley Publishing, 1st edition,
2009.

[VR14] Srikanth Vijayaraghavan and Meyyappan Ramanathan. A Practical
Guide for SystemVerilog Assertions. Springer Publishing Company,
Incorporated, 2014.

[Vre03] Jilles Vreeken. Spiking neural networks, an introduction. Technical
report, 2003.

[VVAE94] Carl Van Vreeswijk, LF Abbott, and G Bard Ermentrout. When inhibi-
tion not excitation synchronizes neural firing. Journal of computational
neuroscience, 1(4):313–321, 1994.

[WH08] C. Watterson and D. Heffernan. A runtime verification monitoring
approach for embedded industrial controllers. In Industrial Electronics,
2008. ISIE 2008. IEEE International Symposium on, pages 2016–2021,
June 2008.

128

http://www.xilinx.com/products/design-tools/vivado.html
http://www.xilinx.com/products/design-tools/vivado.html

[WHTvS14] R. Wang, T. J. Hamilton, J. Tapson, and A. van Schaik. An fpga
design framework for large-scale spiking neural networks. In 2014 IEEE
International Symposium on Circuits and Systems (ISCAS), pages 457–
460, June 2014.

[WRR96] S. R. Wicks, C. J. Roehrig, and C. H. Rankin. A dynamic network sim-
ulation of the nematode tap withdrawal circuit - Predictions concerning
synaptic function using behavioral criteria. Journal of Neuroscience,
16:4017–4031, 1996.

[WVdM00] E.A. Wan and R. Van der Merwe. The Unscented Kalman Filter
for Nonlinear Estimation. In Adaptive Systems for Signal Processing,
Communications, and Control Symposium 2000. AS-SPCC. The IEEE
2000, pages 153–158, 2000.

[YPA06] Jun Yuan, Carl Pixley, and Adnan Aziz. Constraint-based verification.
Springer, 2006.

129

Appendix: SENT/SPC
Monitoring

This manual gives a detailed introduction to runtime monitoring of the requirements of
the SENT and the SPC communication protocols.

Installation Instructions
The current implementation of the monitoring framework is based on the COSIDE tool.
The COSIDE include an eclipse-like environment together with a suite of pre-installed
tools (e.g. gcc, SystemC, python, svn-client, etc.).

Install COSIDE

Unzip the COSIDE archive into your home directory (i.e. C:\Users\yourlastname\).
It is important to use the provided archive, since it includes pre-installed plotting libraries
(i.e. matplotlib), this way the dependencies for the GUI will be met. As the result of this
step, a folder ‘coside-2.1.1_mingw32_ifx’ is present in the home directory.

Copy Source Code

If your home directory (i.e. C:\Users\yourlastname\) has NO folder with the
name workspace, then unzip the provided ‘workspace’ archive (keep in mind that
paths in windows are case-insensitive i.e. for the OS WORKSPACE and WorkSpace and
workspace are all the same). If there is a folder workspace in your home directory,
then create a folder ‘harmonia_ws’, and copy ‘coside-2.1.1_mingw32_ifx’ to
‘harmonia_ws’ and unzip the workspace archive inside the ‘harmonia_ws’ folder.

As the result of this step, one should have the following structure (see Fig. 1):

COSIDE First launch

Important: Before proceeding with the first launch, we need to change the installation
path of COSIDE to the path on your PC. In the ‘coside-2.1.1_mingw32_ifx’
directory the following files needs to be modified:

131

http://www.coseda-tech.com/coside-overview
https://matplotlib.org/

your_installation_folder

coside-2.1.1_mingw32_ifx

backup

doc

examples

ext

ide

lib

tools

coside.bat

other files

workspace

HLS_code

manual

PDF_report

sent_python

sent_spc_python_gui

SystemC_Runtime_MON_PoC

Vivado_Runtime_MON_PoC

texmfs

texstudio-2.12.4-win-portable-qt5.6.2

other files and folders

Figure 1: Installation Directory Structure

• coside.bat
• coside_bash.bat
• coside_compile.bat
• coside_gen_hw.bat
• coside_gen_report.bat
• coside_gen_report_tcsh.bat
• coside_shell.bat
• coside_simulate.bat

In each of these files, the line 21:
“set COSIDE_INSTALL_PATH=C:/Users/selyunin/COSIDE~1.1_M”
should be changed to your installation path i.e.
“set COSIDE_INSTALL_PATH=C:/Users/yourlastname/COSIDE~1.1_M”
or
“set COSIDE_INSTALL_PATH=C:/path/to/your/coside/COSIDE~1.1_M”.
This is important, otherwise the COSIDE will not launch

132

Go to ‘coside-2.1.1_mingw32_ifx’ folder and double-click ‘coside.bat’ file, the
workspace launcher should pop-up (see Fig. 2):

Figure 2: Workspace launcher

In the Workspace field (Fig. 2) point to the workspace directory from Section 9.4.

As the result of this step, COSIDE working environment should open (see Fig. 3).

Figure 3: COSIDE Environment

133

Xilinx Tools

For offline SENT/SPC monitoring no installation of Xilinx tools is required. In order to
generate RTL code (VHDL or Verilog) for online hardware monitoring, Vivado HLS is
necessary: one needs to download and install Xilinx Vivado 2016.2 from the Xilinx archive
website. Vivado HLS will be installed together with Vivado. The default installation
path of the Xilinx tools is: C:\Xilinx.

Tutorial

General

This section provides a step-by-step tutorial to get familiar with the SENT/SPC moni-
toring. We first perform off-line monitoring of the SENT and SPC protocols, and then
discuss available options/capabilities/limitations.

SENT Tutorial

In this short tutorial we perform requirements monitoring of the pre-recorded data for the
SENT protocol. Prerequisite for this tutorial is preparing the environment as described
in Sections 9.4-9.4.

1. Launch the COSIDE tool. (Go to the ‘coside-2.1.1_mingw32_ifx’ folder
and double click the ‘coside.bat’ file). The COSIDE GUI will be launched (see
Fig. 4)

2. Expand ‘sent_spc_python_gui’ project (projects SENT_MON_HW_Xilinx,
sent_python, sent_spc_python_gui, SystemC_Runtime_MON_PoC, etc.
are located on the left panel, Fig. 5).

3. Run ‘gui_main.py’ file (i.e. right-click on the ‘gui_main.py’ file, and select
Run As → 1. Python Run see Fig. 6).
As the result of this step, the GUI window for the SENT/SPC protocol monitoring
should appear (see Fig. 7). The SENT/SPC Monitor GUI is an interface to the
underlying SystemC code, and consists of: (i) the left panel, where parameters of
the protocol can be set; (ii) the central plotting panel for visualizing the results;
(iii) the bottom panel for configuring electrical parameters and thresholds, (iv) the
right panel for configuring and executing the simulation and hardware generation.

4. Load ‘sent_config_Vdd5500_DUT2.ini’ configuration: In the GUI click File
→ Open, select ‘sent_config_Vdd5500_DUT2.ini’ file and click Open. As
the result of this step, the GUI change configuration as in Fig. 8.

SENT and SPC protocols allow various configurations (e.g. number of nibbles, unit
time may vary, and also simulation settings). All these parameters can be configured

134

https://www.xilinx.com/support/download/index.html/content/xilinx/en/downloadNav/vivado-design-tools/archive.html

Figure 4: COSIDE GUI

Figure 5: Expanded ‘sent_spc_python_gui’ project

in the GUI, but in order to save time, one can preset configuration of the sensor
and simulation parameters in a special “*.ini” file, which is a human-friendly
plain text format. Whenever opened, these files are read and parsed, and the

135

Figure 6: Launching the SENT/SPC Monitor GUI

Figure 7: SENT/SPC Monitor GUI

136

Figure 8: Applying ‘sent_config_Vdd5500_DUT2.ini’ configuration

configuration from these files is applied to the GUI. In similar way, one can also
save a current configuration of the GUI to a configuration file (i.e. File → Save or
File → Save as).

5. Plot the recorded signal from the data file: Click the button “0. Plot original
data / extract from mat” on the right panel of the GUI. As the result, the recorded
SENT signal is printed in the central plot of the GUI, see Fig. 9.

Currently supported data formats are MATLAB (*.mat) and CSV (comma sepa-
rated format). For a MATLAB file (*.mat), it is necessary to specify a variable
name (e.g. SENT_data in our case) that holds data values. If a CSV file is used as
a simulation data source, it is necessary to specify the column number for the data
to plot. Plotting original data is necessary, and should be performed each time
whenever a data file is changed (since this way the input data files are evaluated).

6. Update monitor parameters & simulation settings of the SystemC project: Click
the button “1. Update SystemC source files” on the right panel of the GUI.

During this step configurations of monitors (e.g. internal buffer sizes, slope times,
frame structure, etc) will be applied to the SystemC project.

137

Figure 9: Plotting original sensor data

7. Compile SystemC project: Click the button “2. Compile SystemC project” on the
right panel of the GUI. A terminal window “COSIDE TCSH” will pop-up, and the
necessary compilation steps will be performed. Do not close the terminal window,
it will disappear after the compilation is finished.

In this step we compile a SystemC testbench and a runtime monitor, which will
check the requirements of the SENT protocol.

8. Run the SystemC simulation: Click the button “3. Simulate SystemC executable”
on the right panel of the GUI. A terminal window “COSIDE TCSH” will pop-up,
and the simulation will be launched. Do not close the terminal window, it will
disappear after the simulation is finished.

In this step we run SystemC executable, play the recorded sensor data to the monitor,
and save monitoring results in the *.vcd file: monitor_dump.vcd. We also cre-
ate log file analysis_log.txt, store decoded values in analysis_short.csv.
All the files are created in
\workspace\SystemC_Runtime_MON_PoC\DEBUG\testbench\

9. Plot simulation results: Click the button “4. Plot simulation results” on the right

138

panel of the GUI. Plotting might take some time, please be patient, During this
step the GUI parses the monitor_dump.vcd file and it might take a while.

Figure 10: Plotting signals from the monitor_dump.vcd

As the result of this step, one should see the data signal (but in a slightly different
color), and a list of signals in the field below the button “4. Plot simulation results”
(i.e. the signals SYNC_out, N_mon_o, SENT_out, SENT_err).
We then plot these signals in the GUI: Select ‘SYNC_out’ signal from the list,
and click “Place below” button. The signal will be plotted under the sensor
data. We then repeat this procedure for other signals: Fig. 10 shows the expected
result.
SYNC_out, N_mon_o, SENT_out are binary signals with the following meaning:
SYNC_out – synchronization pulse, N_mon_o – nibble pulse, SENT_out – SENT
frame. “1” on each on these signals means that the correct pulse (or frame) has
been detected and all the requirements for this pulse (or frame) are met.

10. Examine log files: Go to the directory
\workspace\SystemC_Runtime_MON_PoC\DEBUG\testbench\, and open
in a text editor (e.g. Notepad++) files ‘analysis_log.txt’, and
‘analysis_short.csv’.

139

https://notepad-plus-plus.org/

11. Generate PDF report: Click the button “6. Create monitoring PDF report” on
the right panel of the GUI. A terminal window “COSIDE TCSH” will pop-up, and
the report generation will be launched. Do not close the terminal window, it will
disappear after the creation of the PDF report. The PDF report is located under:
workspace\PDF_report\report.pdf.

Important: Always close the file report.pdf (i.e. exit Adobe Viewer) before
generating new PDF report. As report generation results in report.pdf, the file
cannot be updated, if it is opened in another program. This also means, that in
order to keep the report for the later, it should be copied in a separate location.

This is the end of the short SENT tutorial. We have seen the general flow of the off-line
monitoring, and performed the required steps. We used GUI as an interface to the
underlying SystemC monitor code, we checked previously recorded signal, specified the
data file, configured the monitor and updated the parameters in the SystemC project,
compiled and simulated the SystemC project. After simulation finished we checked the
monitor outputs and summarized the monitoring results in a report.

SPC Tutorial

SENT offline monitoring (Section 9.4) is a prerequisite for this tutorial. Section 9.4
introduces the key concepts and outlines the off-line monitoring procedure, hence we try
to reduce repetitions as much as possible. To start with this tutorial, it is necessary to
perform the steps 1, 2, 3 from the SENT tutorial. As a result, the SENT/SPC Monitoring
GUI is launched (see Fig. 7).

1. Load configuration ‘spc_config_Vdd4850_fix_DUT4.ini’: In the GUI click
File → Open, select ‘spc_config_Vdd4850_fix_DUT4.ini’ file and click
Open. As the result of this step, the GUI change configuration as in Fig. 11.

As seen from Fig. 11, SPC trigger pulse is now active. According to the specification,
the pulse length can be either fixed or variable. In this example we consider
configuration with the pulse of fixed length. Since the SPC communication is
initiated by a microcontroller, one or more (up to four) sensors can be on the bus.
The mode of operation can be selected: either single or bus. An SPC response frame
can have different configurations (e.g. temperature nibbles, rolling counters may
be present or absent). At the bottom of the left GUI panel, one can select a sensor
configuration (01 - 16). For reference, the frame structure for each configuration
are summarized under the top menu Protocol → SPC.

2. Plot the recorded signal from the data file ‘DUT4_Ta_25_Vdd4850_R2k2.mat’:
Click the button “0. Plot original data / extract from mat” on the right panel of
the GUI. As the result of this step, SPC data signal should appear on the plotting
panel.

140

Figure 11: Loading the SPC configuration

3. Update the SystemC project: Click the button “1. Update SystemC source files”.

4. Compile SystemC project: Click the button “2. Compile SystemC project”.
Do not close “COSIDE TCSH” window.

5. Run the SystemC simulation: Click the button “3. Simulate SystemC executable”.
Do not close “COSIDE TCSH” window.

6. Plot simulation results: Click the button “4. Plot simulation results”. It might take
some time to plot the results, as the file monitor_dump.vcd needs to be parsed.
Important: By default only a short list of signals is displayed in the GUI. To
display all recorded signals, go to the top menu View, select Display all signals,
and then press the button “4. Plot simulation results”.
Display all recorded signals as described above, and plot below the sensor data (by
selecting the signal and clicking the button Place below) the following signals:

a) SPC_tmlow_s – monitor output for SPC tmlow requirement;
b) SPC_mon_s – monitor output for SPC trigger pulse;
c) SYNC_out – monitor output for the SYNC pulse;

141

d) N_mon_o – monitor output for the NIBBLE pulse;
e) SENT_out – monitor output for the SENT response frame.

As a result of this step, the GUI window displays the sensor data together with the
monitoring signals (see Fig. 12).

Figure 12: SPC Monitoring Results

7. Generate the PDF report: Click the button “6. Create monitoring PDF report”.
Do not close “COSIDE TCSH” window.
The PDF report is located under: workspace\PDF_report\report.pdf.
One can also examine log files, as described in step 10 of the SENT tutorial.

This is the end of the SPC tutorial.

SENT/SPC Monitoring: Details
The monitoring framework aims to provide runtime monitors of formally defined properties.
For a past-STL property a monitor can be constructed from temporal operator Lib.
and simulated on a previously recorded data (either from an oscilloscope or from the

142

Chipscope). The synthesizable version contains tcl-scripts for generating HLD (VHDL
or Verilog) code from the SystemC monitor using High-Level Synthesis (HLS).

The HLS imposes the restrictions on the SystemC source code, hence the current state is
two versions of temporal operator libraries: behavioral & synthesizable. The behavioral
one allows to prototype a solution with all the available SystemC/C++ features, and
then use it as a reference for generating hardware monitors with synthesizable version.

The GUI is based on a cross-platform tcl-tk library and implemented in python. For
interfacing with tcl-tk we use the tkinter package, and for plotting we rely on
matplotlib. This design decision allows to fully leverage shipped software with the
COSIDE and reduce to a minimum additional required packages.

Core Capabilities and Functionality

The main functionality of the SENT/SPC offline monitoring GUI is follows:

1. Runtime Monitor (in SystemC simulation runtime) SENT or SPC protocols;

2. Monitoring of electrical interface requirements and timing requirements for the
synchronization pulse, nibble pulses and pause pulse;

3. Monitoring electrical interface requirements and timing requirements for the SPC
trigger pulse (if SPC protocol is selected);

4. Reading the recorded traces in .csv or MATLAB .mat file formats in float, integer
or binary (Chip Scope) representation;

5. Separate clocks for the recorded data and the monitor during the simulation runtime

6. Specification of the Unit Time (UT);

7. Compiling, simulating, and visualizing simulation results from the SystemC backend;

8. Loading and saving the pre-configured settings file (.ini format);

9. Data decoding of the SENT frames and generation of a monitoring report;

GUI: Detailed look

Left panel: Specification of the Frame

The SENT standard allows multiple configurations of the frame (i.e. the number of data
nibbles may vary, rolling counter may be present/absent, and the pause pulse may be
omitted. The shape of the SPC trigger pulse depends on the single/bus mode, a sensor
id, and whether the SPC trigger pulses if of fixed or variable length. All these options
for the protocols can be specified on the left panel (see Fig. 13).

143

As the original specifications give only absolute values for the nominal case, even a
tiny deviation would result in the false positive. To remedy this effect, we introduce
controllable tolerance intervals δ which the user can specify for nibbles, sync and pause
pulses (Fig. 13).

SENT frame structure

Tolerance specification

SPC pulse

Figure 13: Specifying the parameters of the protocol and defining the frame structure

Right Panel: Monitor Generation

The primary purpose of the GUI is to ease the interaction of the SystemC backend. The
SystemC backend emulates hardware monitoring system, creates runtime monitor and
necessary simulation infrastructure. In order to create a test bench, a user needs to define
a signal to be monitored. The GUI supports both .csv and MATLAB .mat files. In
the case of the .csv file a user needs to specify a number of the column that corresponds
to the signal; in the case of the MATLAB file the user needs to specify a signal variable
name in the mat file (see Fig. 14). For the monitoring to be correct, the user needs to
specify simulation timing parameters (see Fig. 14) the clock frequency, at which the data
was recorded, the clock frequency of the monitor and the unit time (protocol parameter).

The generation of the monitor and the offline monitoring is done in three steps: (i)
updating the SystemC source files; (ii) compiling the SystemC monitor project; (iii)
running the SystemC simulation of the monitor. After simulation has been finished,
the user can visualize the results and plot the simulation signals (e.g. the signals that
correspond to the detection of synchronization, nibble pulses, SENT frames, or error
signals).

144

Simulation trace properties

Simulation timing

Monitor generation

Monitoring results visualization

Hardware & Report Generation

Figure 14: Right panel: elements for the monitor generation

Plot Panel: Vizualizations

The plot panel (see Fig. 15) was developed to display three types of information: (i)
structure of the protocol frame; (ii) the original recorded signal; (iii) the results of the
SystemC simulation. The panel consist of two plots, the first plot represents the frame
structure, and the second plot is either used to display the original signal or the simulation
results. When the simulation is finished, the user can plot signals from the list of signals.

Bottom panel: Electrical interface requirements

At the bottom panel the user can specify electrical interface requirements, such as the
falling and rising times, together with the corresponding comparator levels (see Fig. 16).
The STL requirements for these formulae stay fixed, only the parameters in the source
files are updated.

Data Decoding and Monitoring Report

After the SystemC simulation is finished, one can examine the monitoring report and the
decoded data, that are available in a plain text format (see Fig. 17 and step 10 of the
SENT tutorial).

145

Frame struc-
ture

Simulation
results

Figure 15: Plot panel

Electrical interface requirements

Figure 16: Bottom panel

146

@ 1312.05 us: CRC nibble seen
Electrical & timing requirements for the NIBBLE pulse satisfied
CRC = 7
NIBBLE pulse length: 28.5 us (19 UT)
+++
@ 1312.15 us: Correct frame seen
STATUS = 4; D1 = 6; D2 = 1; D3 = 0; RC1 = 1; CRC = 7;
Angle value: 1552
###
===
@ 1641.95 us: SPC trigger for sensor ID 0 seen
STL requirements for the SPC trigger pulse satisfied
SPC pulse length: 41.2 us (27.4667 UT)

Figure 17: Excerpt from the monitoring report

Configuration *.ini Files

Configuration files are structured human-friendly text files, that are used to save and
restore the parameters of the monitoring framework. These files are split in sections,
see Fig. 18 for a configuration file example. The default location of configuration files:
\workspace\sent_spc_python_gui\config\.

If the configuration is not applied (e.g. spc_protocol = no), then the related param-
eters are ignored (the same is valid for MATLAB/CSV file parameters.)

Behavioral Code and Test data

Behavioral SystemC Code

The goal of this section is to sketch the architecture of the monitoring framework. The
Figure 19 shows the directory tree structure for the behavioral code.
Test Data

The recorded traces are located: \workspace\SystemC_Runtime_MON_PoC\meas_traces\.

meas_traces

chipscope_data_*.csv

osci_data_*.csv

matlab_data_*.mat

Runtime monitoring framework can handle: MATLAB files, recordings from the oscillo-
scope, or recorded signals from the Chipscope (e.g. from the Line Emulizer).

Important: There should be no heading information in CSV files (i.e. the first line of
the file should be data, and not ASCII names of the signals, frequency of recording, etc.).
Floating point numbers should be separated with commas.

147

[SIMULATION_TRACE]
sim_filename_relative = workspace/SystemC_Runtime_MON_PoC/meas_traces/SENT/5014_single_SENT_default.csv
sim_filename_short = 5014_single_SENT_default.csv
sim_freq = 10.0
is_mat_file = no
is_csv_file = yes

[MATFILE]
mat_variable = SENT_data

[CSVFILE]
csv_column = 5
encoding = float

[VCDFILE]
vcd_filename = ../SystemC_Runtime_MON_PoC/DEBUG/testbench/monitor_dump.vcd
vcd_target_timescale = ns

[SENT.FRAME]
sync_present = yes
status_present = yes
D1_present = yes
D2_present = yes
D3_present = yes
D4_present = no
D5_present = no
D6_present = no
RC1_present = yes
RC2_present = yes
ND1_present = yes
CRC_present = yes
pause_present = yes
pause_fixed_len = yes

[SENT.TIMING]
mon_freq = 10.0
ut_time = 3.0
sync_tolerance_lim = 12
nibble_tolerance_lim = 12
pause_tolerance_lim = 5
fixed_pause_len = 27
variable_min_pause = 14
variable_max_pause = 98
falling_time_us = 6
rising_time_us = 18
falling_upper_threshold = 4.1
rising_upper_threshold = 4.1
falling_lower_threshold = 1.35
rising_lower_threshold = 1.35

[SPC]
spc_protocol = no
spc_sensor_id = 0
spc_is_fixed_length = no
spc_amplitude = 0.0
spc_pulse_tolerance_lim = 0.0
spc_bus_mode = no
spc_id0 = yes
spc_id1 = no
spc_id2 = no
spc_id3 = no
spc_id0_config = 01
spc_id1_config = 01
spc_id2_config = 01
spc_id3_config = 01

Figure 18: Example configuration file

148

sent_src_systemc

meas_traces

chipscope_data_*.csv

README.md

sent_data

oscilloscope_data_*.csv

signal_preprocessing

average.h

downsampling.h

mon_data_preprocessing.h

temp_op_systemc

sc_[temp_op].h

testbench

data_samples.[h,cpp]

sc_tb.[h,cpp]

sc_main.cpp

waveform_configuration.gtkw

toplevel_mon

comparator.h

sent

comparator.h

mon_F.h

mon_H.h

mon_L.h

mon_nibble.h

mon_R.h

mon_sent_packet.h

mon_sync.h

SENT_config.h

Figure 19: Behavioral code structure

1,0,111101111111,111111111100,111111111100
2,0,111100001100,111111111100,111111111100
3,0,111100100100,111111111110,111111111110

-6.46982000e-004,1.01999994e-002
-6.46980000e-004,1.09999994e-002
-6.46978000e-004,1.09999994e-002

4.64000000
5.04000000
5.12000000

User Study

The developed software within the work on the applied part of the thesis was evaluated at
Infineon by a verification engineer and a concept design engineer within the HARMONIA

149

project (Hardware monitoring for automotive). Each user was asked to fill in the
questionnaire and evaluate runtime monitoring of the SENT and SPC protocols w.r.t.
the following criteria: (1) usefulness; (2) ease of use; (3) ease of learning; (4) satisfaction.

Questionnaire is based on two previously published works: (i) USE Questionnaire:
Usefulness, Satisfaction, and Ease of use / Lund, A.M. (2001) Measuring Usability with
the USE Questionnaire. STC Usability SIG Newsletter, 8:2; (ii) Perceived Usefulness,
Perceived Ease of Use, and User Acceptance of Information Technology / Davis, F. D.
MIS Quarterly 1989 v.13 n.3 p.319-340. A user gives his response on a Likert scale, the
results are summarized in Fig. 20.

Usefullness

Ease of Use

Ease of Learning

Satisfaction

S
t
r
o
n
g
l
y
d
i
s
a
g
r
e
e

D
i
s
a
g
r
e
e

N
e
u
t
r
a
l

A
g
r
e
e

S
t
r
o
n
g
l
y
a
g
r
e
e

Figure 20: Summary of user study results

150

Curriculum vitæ

151

Konstantin Selyunin
Curriculum vitæ

Treitlstr. 3, CPS Group
1040 Vienna, Austria
T +43 (1) 58801 - 18225
M +43 (660) 4627 103
E kselyunin@acm.org
W www.selyunin.com

Education
PhD Candidate, Vienna University of Technology,
Vienna, Austria.

2012–till Present

{ student of Vienna PhD School of Informatics
{ 15 PhD & Master Courses (54 ECTS) successfully completed, 1.06 average

(“1” corresponds to the excellent note)
{ the research results presented at AVM’15, CDC’15, DATE’16, DVCON’16,

MTCPS’16, DAC’16, RV’16, IWANN’17, CAV’17, group and project meetings
Dipl.Ing., Omsk State Transport University, Omsk, Rus-
sia, with Distinction.

2005–2010

Speciality: “Automation remote control and communications on railway transport”.
Major “Microprocessor- and information control systems”.

Experience
Project Assistant, Vienna University of Technol-
ogy, Vienna, Austria.

2014–till Present

Development of hardware runtime monitors for checking formal properties ex-
pressed in Signal Temporal Logic within the HARMONIA FFG project.
{ Application of High-Level Synthesis of synthesizing hardware runtime monitors
- A complete flow from natural language specification to hardware generation
- Application IBM’s TrueNorth model for creating MTL monitors

{ Embedding SystemC runtime monitors in a chip concept
{ Project Website administrator and maintainer http://harmonia-project.com/

University Assistant, Omsk State Transport University,
Omsk, Russia.

2010–2012

Teaching assistant for the “Foundations of Microprocessor Technology” course.
Preparing course content, labs, supervising students.

Technical Skills
Programming languages: C/C++, Cuda C, Python, Ruby, Bash, R,
Scala, MATLAB/Simulink, Octave, Mathcad, VHDL
Operating Systems: Linux (preferred), Windows
GNU tools: make, gcc, gdb
Robotic frameworks: ros
IDEs: Eclipse, Vivado

1/3

Text typesetting: vim, LATEX, MS Office if required
Bugtracking systems: redmine (configuration & maintenance)
PAAS, IAAS: Heroku, Amazon EC2, S3

Publications
[NBN+16] Thang Nguyen, Ezio Bartocci, Dejan Nickovic, Radu Grosu, Stefan Jaksic,

and Konstantin Selyunin. The HARMONIA project: Hardware monitoring
for automotive systems-of-systems. In Proc. of Leveraging Applications of
Formal Methods, Verification and Validation: Discussion, Dissemination,
Applications - 7th International Symposium, ISoLA 2016, Corfu, Greece,
October 10-14, pages 371–379, 2016.

[SHR+17] Konstantin Selyunin, Ramin M. Hasani, Denise Ratasich, Ezio Bartocci,
and Radu Grosu. Computing with biophysical and hardware-efficient neural
models. In Proc. of the 14th International Work-Conference on Artificial
Neural Networks, IWANN 2017, Cadiz, Spain, June 14-16, pages 535–547,
2017.

[SJN+17] Konstantin Selyunin, Stefan Jaksic, Thang Nguyen, Christian Reidl, Udo
Hafner, Ezio Bartocci, Dejan Nickovic, and Radu Grosu. Runtime mon-
itoring with recovery of the sent communication protocol. In Proc. of
the 29th International Conference on Computer Aided Verification, (CAV
2017), Heidelberg, Germany, July 24-28, pages 1–18, 2017.

[SNB+16a] Konstantin Selyunin, Thang Nguyen, Ezio Bartocci, Dejan Nickovic, and
Radu Grosu. Monitoring of MTL Specifications With IBM’s Spiking-Neuron
Model. In Proc. of the 19th Design, Automation and Test in Europe
Conference and Exhibition, DATE 2016, Dresden, Germany, March 14-
18, 2016.

[SNB+16b] Konstantin Selyunin, Thang Nguyen, Andrei Daniel Basa, Ezio Bartocci,
Dejan Nickovic, and Radu Grosu. Applying High-Level Synthesis for Syn-
thesizing Hardware Runtime STL Monitors of Mission-Critical Properties.
In Electronic Proc. of the 13th Design and Verification Conference and
Exhibition (DVCon 2016), San Jose, CA, USA, February 28- March 3,
pages 1–8, 2016.

[SNBG16] Konstantin Selyunin, Thang Nguyen, Ezio Bartocci, and Radu Grosu.
Applying runtime monitoring for automotive electronic development. In
Proc. of the International Conference on Runtime Verification, RV 2016,
Madrid, Spain, September 23-30, 2016, pages 462–469, 2016.

[SRB+15] Konstantin Selyunin, Denise Ratasich, Ezio Bartocci, Md. Ariful Islam,
Scott A. Smolka, and Radu Grosu. Neural programming: Towards adaptive
control in cyber-physical systems. In Proc. of the 54th IEEE Conference
on Decision and Control, CDC 2015, Osaka, Japan, December 15-18,
2015, pages 6978–6985, 2015.

2/3

Conference Presentations
{ 2017, The 29th International Conference on Computer Aided Verification,
(CAV 2017), Heidelberg, Germany [SJN+17]

{ 2017, The 14th International Work-Conference on Artificial Neural
Networks (IWANN 2017), Cadiz, Spain [SHR+17]

{ 2016, The 16th RV conference and exhibition (RV 2016), Madrid,
Spain [SNBG16]

{ 2016, The 53rd DAC conference and exhibition (DAC 2016), Austin,
Texas, United States (Work-in-progress presentation)

{ 2016, The 19th DATE conference and exhibition (DATE 2016), Dresden,
Germany [SNB+16a]

{ 2016, The 28th Design and Verification conference and exhibition (DV-
Con 2016), San Jose, CA, United States [SNB+16b]

{ 2015, The 54th IEEE Conference on Decision and Control (CDC 2015),
Osaka, Japan [SRB+15]

Seminars, Meetings & Workshops
{ 2016, Workshop on Monitoring and Testing of Cyber-Physical Systems
(MTCPS), Vienna, Austria

{ 2015, Automatic Verification and Analysis of Complex Systems 2nd
AVACS Autumn School, Oldenburg, Germany

{ 2015, Alpine Verification Meeting, Attersee, Austria
{ 2013, Dagstuhl Seminar 14122 : Verification of Cyber-Physical Systems,
Schloss Dagstuhl Leibniz-Zentrum für Informatik GmbH, Germany

Peer-reviewing conference papers
RV’2017, CMSB’2017, SPIN’2017, RTNS’2016, ICCP’2016, NFM’2016,
DATE’2016, FORMATS’2015, ISORC’2015, ICFEM’2014, RV’2014.

Languages
English: Fluent Full professional proficiency
German: Advanced C1 certificate
Russian: Fluent Mother language

3/3

	Abstract
	Contents
	List of Figures
	List of Tables
	Thesis Publications
	Introduction
	Motivation
	Problem Statement
	Research Questions
	Scientific Contributions
	Structure of the Work

	Background
	Neural Models
	Runtime Verification
	Automotive Electronic Development

	State of the Art Analysis
	Related Work on CPS Control with Neural Models
	Related Work on Neural Models in Monitoring
	Related Work on Runtime Verification in Automotive
	Related Work on Protocol Verification

	Neural Models for Control & Quantifying Uncertainty
	Preliminaries
	Key Components of Neural Programs
	Bayesian-Network Learning
	Case studies
	Summary

	Neural Models for Qualitative Monitoring
	Qualitative Monitoring with the TrueNorth model
	Neural Temporal Testers
	Case Study and Experimental Results
	Summary

	Neural Models for Quantitative Monitoring
	Neuron and Synapse Modeling
	Computations with Neural Models
	Neural filters as temporal logic monitors
	Summary

	Runtime Monitoring in Automotive Electronic Development
	Use Case 1: Runtime Monitors in Simulation
	Use Case 2: Runtime Monitors for Lab Evaluation
	Case Study: Automotive Sensor Interface
	Summary

	Industrial Case studies and Evaluation
	Timed Regular Expressions
	Formalization of the SENT and SPC Protocols
	Runtime Monitoring with Recovery
	Runtime Monitoring of SENT and SPC protocols
	Summary

	Conclusions and Future Work
	Summary of Contributions
	Critical Reflections
	Research Questions Revisited
	Future Work

	Glossary
	Acronyms
	Bibliography
	Appendix: SENT/SPC Monitoring
	Installation Instructions
	Tutorial
	SENT/SPC Monitoring: Details
	Behavioral Code and Test data
	User Study

	Curriculum vitæ

