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Abstract

Nowadays, recent advances in modern techniques have resulted in data collections that
are huge in both size and dimension. Such a trend emerges new challenges for statistical
learning procedures designed to extract key information from a large amount of data.
This thesis particularly addresses current challenges of unsupervised learning in the sense
of data clustering and presents procedures that follow new trends in data clustering.
Identifying a group structure of any real-world data becomes nowadays problematic due
to several aspects. Firstly, it is well known that standard clustering procedures, e.g. k-
means, are usually efficient on clean data, i.e. data without outliers, but the performance
of such methods is highly affected by the presence of outliers deviating from the true
underlying group structure. Hence, there is a need for a clustering method which is more
robust against outliers. Furthermore, in some application domains, e.g. media domain,
outliers as observations of high interest commonly form groups of very small sizes. In this
context, not only the identification of such observations but also their group structure is
required. Secondly, data clustering gets more difficult in high-dimensional space where
the standard dissimilarity measures commonly fail. In order to overcome such limitation,
dimension reduction or variable selection techniques are usually employed during data
clustering. Finally, most existing clustering method commonly assume either specific
group characteristics, e.g. group sizes, or even required for the number of clusters. Such
assumptions might, however, be difficult to fulfill in case of real-world data. Although
the main goal of this thesis is data clustering, the introduced clustering procedures
additionally aim at outlier detection. For this reason, a discussion of identifying outliers
in the context of a simple group structure is elaborated as well. The development of all
introduced procedures is motivated by real application scenarios and the advantages of
the methods are demonstrated on real-world data examples.
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Kurzfassung

Die neuesten Fortschritte in modernen Techniken resultieren in riesigen Datensammlungen
in Bezug auf Größe als auch Dimension. Dieser Trend lässt neue Herausforderungen für
statistische Lernverfahren entstehen, welche für die Gewinnung von Schlüsselinformation
einer großen Menge von Daten verantwortlich sind. Die vorliegende Dissertation themati-
siert die aktuellen Anforderungen an unüberwachtes Lernen bezüglich Daten-Clustering
und zeigt Verfahren auf, welche neue Trends in Daten-Clustering verfolgt werden. Die Iden-
tifikation der Gruppen-Struktur beliebiger realer Daten erscheint aufgrund verschiedener
Ursachen als sehr schwierig. Zum einen ist es bekannt, dass übliche Clustering-Verfahren,
wie zum Beispiel k-means, normalerweise für saubere Daten die keine Ausreißer besitzen,
eine gute Effizienz aufweisen. Die Performance dieser Methoden hängt jedoch maßgeb-
lich von der Präsenz von Ausreißern ab, die unterschiedlich zur wahren vorhandenen
Gruppen-Struktur vorliegen. Daraus folgt, dass man eine Clustering-Methode benötigt,
die unempfindlicher gegenüber Ausreißern ist. Darüber hinaus können Ausreißer, die als
Beobachtungen von höchstem Interesse gelten, in gewissen Anwendungsbereichen wie
etwa Audio- oder Video-Medien, nur sehr kleine Gruppen bilden. Folglich benötigt man
nicht nur die Identifikation dieser Untersuchungen, sondern auch Kenntnis über deren
Gruppenstruktur. Zum anderen wird Daten-Clustering zunehmend schwieriger wenn
hochdimensionale Daten vorliegen, weil allgemein gewöhnliche Unähnlichkeits-Messungen
fehlschlagen. Um diese Einschränkungen umgehen zu können werden während dem Daten-
Clustering Methoden wie Dimensionsreduzierung oder Variablen-Selektion angewendet.
Letztendlich nehmen die meisten der existierenden Clustering-Methoden im Allgemeinen
an, dass eine spezielle Gruppen-Charakteristik, wie z.B. Gruppengröße oder Anzahl der
Cluster, vorliegt. Solche Annahmen sind jedoch schwer zu erfüllen, wenn man mit realen
Daten arbeitet. Obwohl das Hauptziel der vorliegenden Arbeit auf Daten-Clustering
gerichtet ist, versuchen die vorgestellten Clustering-Verfahren zusätzlich die Detektion
von Ausreißern zu verwirklichen. Aus diesem Grund wird die Identifikation von Ausreißern
an der zugrundeliegenden Gruppenstruktur ebenfalls besprochen. Die Entwicklung aller
vorgestellten Methoden wird durch Anwendungsszenarios motiviert und deren Vorteil
anhand von realen Daten demonstriert.
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CHAPTER 1
Introduction

This chapter focuses on different challenges when clustering real data, and provides an
overview of recent developments. Since robustness to outlying observations is the main
focus of this thesis, a brief overview of outlier detection methods is provided as well.

1.1 Cluster analysis
Cluster analysis is one of the most important analysis tools which allows revealing the
underlying data structure in an unsupervised fashion, where – in contrast to classification
tasks – no prior information is available in terms of class labels. In general, clustering
aims at grouping observed data of similar characteristics into meaningful clusters. This
technique has been used in various application domains. The clustering method can, for
example, help to segment customers with similar interests into groups and to group images
capturing similar landscape. The definition of a similarity measure highly depends on
the type of method employed. For example, distance-based methods determine similarity
by employing a traditional distance measure, such as the Euclidean distance. In contrast,
model-based approaches assign observations into the same group if they originate from
the same distribution with a high likelihood.

1.1.1 Challenges in data clustering

Despite the numerous proposed approaches and the long history of data clustering, there
are still challenges that need to be taken into account when developing new clustering
procedures. Most problems are caused by recent technical developments, but some
challenges were already recognized decades ago (Ertöz et al., 2003). This section discusses
several challenges for clustering and the following open questions: 1) how to select the
number of clusters or any parameters in general; 2) how to discover clusters of various
characteristics, e.g. sizes or densities; 3) how to handle data of high-dimensions; and 4)
how to cope with data outliers.
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1. Introduction

The problem of determining the number of clusters is typical for most clustering algorithms
(Vineet et al., 2009). While in the case of two- and three- dimensional data sets,
visualization might provide valuable insights into the group structure, this can be
particularly difficult in the case of high-dimensional data sets. Figure 1.1 shows three
data sets with different numbers of groups; these data are publicly available in R
packages: ruspini, Iris, and DutchUtility. While ruspini is a two-dimensional
data set and is therefore visualized in the original data space, the next two data sets are
transformed into a two-dimensional data space using principal component analysis (PCA)
with the first two principal components (PC), since the dimensionality is higher (i.e. 3
and 240, respectively). Clearly, the visualization of ruspini indicates the presence of
four groups. Although the two-dimensional representation of Iris shows some grouping,
the number of clusters might be wrongly selected as two. Note that the colors represent
the true clusters, i.e. the species of the iris flowers, but this kind of information is not
known in an unsupervised setting. The limitation of this exploratory technique is more
evident for DutchUtility, where it is impossible to see any group structure. In such
situations, either a different visualization technique or internal validity indices (Sugar
and James, 2003) might be more appropriate.
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Figure 1.1: Visualization of three real-world data sets in the two-dimensional data space

Discovering groups of various characteristics (i.e. sizes, shapes, and densities) poses
several additional challenges. Without proper visualization (as demonstrated previously)
or pre-knowledge about the nature of the underlying groups, it is hard to state any
reliable assumptions about the cluster characteristics. However, some clustering methods
are built upon such assumptions. For example, model-based clustering methods usually
assume that the clusters are a mixture of Gaussian densities (Bock, 1996; Fraley and
Raftery, 2000). As a consequence, the detected clusters are often of convex (or elliptical)
shapes. Nevertheless, model-based approaches exhibit the advantage of estimating a
proper model in the sense of optimal number of clusters as well as optimal distribution
parameters (Galimberti et al., 2017) by means of employing a criterion such as the BIC
(Bayesian Information Criterion). In contrast to model-based clustering approaches,
density-based methods are designed to detect clusters of arbitrary shapes, densities, and
possibly varying sizes due to nonparametric estimation of the densities, often by using
the concept of the nearest neighbors (Kriegel et al., 2011). In general, clusters are defined
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1.1. Cluster analysis

as regions of high density separated by areas of considerably lower densities. Although
density-based methods usually do not assume any specific cluster characteristics, the
estimation of density commonly depends on at least one predefined parameter (Kriegel
et al., 2011), e.g. the number of nearest neighbors (Gan et al., 2007). Nevertheless,
these methods demonstrate some robustness to imbalanced data where the groups are of
considerably different sizes. Detecting groups of very small sizes might, however, still be
problematic (He and Ma, 2013).

Data clustering in high-dimensional space has recently received a lot of attention due
to the technical developments that allow measuring of an enormous number of features
(variables) describing the observations (Gan et al., 2007). As far as such collected data
sets are concerned, many of the extracted features are typically irrelevant for the purpose
of clustering (Kriegel et al., 2009b; Sim et al., 2013). The increasing proportion of
irrelevant (noise) variables decreases the effectiveness of the distance measure employed
in conventional clustering methods. As the distances between the observations become
more and more similar in higher dimensions, it is hard to determine whether or not
the observations are actually similar in terms of the relevant (non-noise) features. A
natural solution is to employ either dimension reduction (e.g. PCA) or variable selection
techniques aiming at removing less important variables (Parsons et al., 2004). However, if
different subsets of variables are relevant for different groups, global dimension reduction
or variable selection techniques are usually not useful, as they only compute one global
subspace in which data clustering is subsequently employed (Zimek, 2008). In such
situations, local techniques are more appropriate to be incorporated, leading to the
so-called subspace and projected clustering methods (see e.g. Aggarwal and Reddy, 2013;
Sim et al., 2013; Kriegel et al., 2009b). Despite the fact that these approaches are
exclusively designed to discover clusters in various data subspaces, their performance
typically depends on tuning parameters (Sim et al., 2013).

The task of revealing group structure in data containing outliers poses different challenges.
The presence of data outliers completely violates the general assumption of clustering
methods, namely that data naturally form groups of similar observations. Outliers are
observations which typically differ from the other observations, and can therefore easily
destroy a clustering performance. In order to cope with this, it might be logical to
apply the outlier detection procedure to exclude deviating observations, and to continue
to proceed with cluster analysis. However, coping with outliers in such a way might
be complicated due to the parameter specification, which is commonly required by
most existing clustering (e.g. the number of clusters) as well as by outlier detection
methods (Aggarwal, 2013). Alternatively, density-based clustering methods can be useful,
since they commonly consider outliers (or noise) to be observations located in regions
of considerably lower densities. Another way of dealing with outliers is to exclude a
predefined proportion of deviating observations while applying a clustering method. The
idea of excluding observations which usually do not fit to an assumed model refers to the
so-called trimming-based clustering approaches. In some application domains, outliers
might be of a high interest due to their atypical content, and additional information

3



1. Introduction

about the degree of outlyingness (deviation) can help with better understanding of the
behavior of the data. However, such information can usually be provided neither by
density- nor by trimming-based approaches. Therefore, Campello et al. (2015) have
recently introduced a hierarchical clustering method which directly incorporates the
measure of outlyingness through data clustering.

Obviously, there is no such technique that would be suitable for all kinds of applications,
as different algorithms address different aspects using various concepts. In the following
section, several existing methods are discussed. Generally, the selected methods cover
four types of clustering approaches.

• Distance-based clustering algorithms assign nearby (similar) observations to
one cluster, whereas distinct (dissimilar) observations are kept in separate clusters.
These methods are very popular due to their simplicity, their performance is,
however, commonly destroyed, when the cluster algorithm cannot cope with the
various characteristics of the underlying groups, outliers and noise variables. For
such situations, several methods have been modified, as presented in Section 1.1.3.

• Model-based clustering methods assume that data arise from a process which
can be described by a finite mixture of parametric distributions. Gaussian distribu-
tions are often assumed, resulting in the detection of elliptically shaped clusters.
Some modifications for both contaminated and high-dimensional data have been
introduced in the literature (see Section 1.1.4).

• Density-based clustering approaches define clusters as regions of high density
separated by areas of considerably lower densities. The densities are determined in
non-parametric and often local fashion. Hence, these methods can handle arbitrarily
shaped clusters and are able to deal with contaminated data. Performance of several
methods is demonstrated in Section 1.1.5.

• Subspace and projected clustering procedures are designed to reveal clusters
in high-dimensional data, within which the clusters are located in different data
subspaces. While subspace clustering methods seek for all clusters in all subspaces,
projected approaches attempt to find such a projection in which a cluster can be
detected (Aggarwal and Reddy, 2013). The general idea of several existing methods
is provided in Section 1.1.6.

It should be noted that many further methods have been developed using different
concepts. For example, spectral clustering employs a graph-based data representation,
which is subsequently partitioned into clusters. Such methods have been successfully
applied in image processing (Shi and Malik, 2000), text mining (Dhillon, 2001), and
many other applications (Aggarwal and Reddy, 2013). Another type of methods typically
applied in biology is bi-clustering, often employed to analyze gene expression data. Bi-
clustering approaches aim at clustering both genes (observations) and various biological
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1.1. Cluster analysis

conditions (variables) simultaneously (Madeira and Oliveira, 2004; Aggarwal and Reddy,
2013).

1.1.2 Real high-dimensional data example

In the following sections, a real data example is taken to demonstrate the performance of
some existing clustering methods. A brief data description is provided here; a detailed
description is available in Chapter 4. The data set consists of 180 archaeological glass
vessels (Janssens et al., 1998), each of which is described by a 1920 dimensional extracted
variable vector. The following calibration technique recovered four main groups by means
of chemical concentrations (Lemberge et al., 2000) as shown in Figure 1.2. However,
during the extraction, a different tool was installed, leading to the presence of two sodic
subgroups; see Figure 1.2. Taking this fact into account, the number of groups can
be considered to be five. It should be noted that no other information (such as the
number of relevant variables or outliers) about the data is available. Therefore, the
performance of the selected methods will be evaluated in terms of clustering solution
achieved on on the original data set with 1920 variables. To assess the quality of
the cluster solutions, a comparison with the grouping information shown in the two-
dimensional visualization from Figure 1.2 is made. Note that most employed methods
require parameter specifications. For this reason, information about the underlying group
structure is used to optimize the parameters.
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Figure 1.2: Group structure of glass vessels based on chemical concentrations (Lemberge
et al., 2000).

1.1.3 Distance-based clustering algorithms

Due to their simplicity, distance-based methods are widely used and very popular. They
often employ the Euclidean distance as similarity measure. Generally, such methods can
be categorized into two classes: hierarchical and partitioning methods. While hierarchical
clustering methods successively search for nested clusters resulting in a cluster hierarchy
(a tree-like structure), partitioning algorithms find clusters simultaneously with the use
of partitioning representatives, i.e. cluster centers.
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1. Introduction

Hierarchical clustering methods

The most frequently used hierarchical algorithms build clusters in an agglomerative
fashion – starting with each observation representing its own cluster, and merging the
most similar clusters until all observations form one cluster. Various popular criteria can
be employed for merging, e.g. single-linkage, complete-linkage. While single-linkage is
able to detect non-elliptical and elongated clusters, complete-linkage tends to generate
spherical clusters. Another measure is considered in Ward’s hierarchical clustering
Murtagh and Legendre (2014): it merges those two clusters which contribute the most to
the increase of the within-cluster sum of squares. In contrast, CURE (Guha et al., 1998)
starts with clusters represented by well-scattered observations and continues merging
them using the single-linkage approach. Alternatively, Chameleon (Karypis et al., 1999)
uses a graph-based representation of data and is considered one of the best hierarchical
methods in terms of discovering clusters of arbitrary shapes (Aggarwal and Reddy, 2013).

Sparse hierarchical clustering has recently been introduced by Witten and Tibshirani
(2010) in order to cope with a large proportion of noise variables affecting the efficiency
of a distance measure. The idea behind this approach is to first find the dissimilarity
matrix calculated with respect to the variables which are relevant for data clustering,
and to subsequently apply a standard merging technique to build a cluster hierarchy.
Formally, let X = (x1, . . . ,xn)> be an n× p data matrix, where xi = (xi1, . . . , xip)> for
i = 1, . . . , n, and let D ∈ Rn2×p denote a distance matrix consisting of the distances
between all observations with respect to each variable, then the approach searches for a
variable weight vector w = {wj ≥ 0, j = 1, . . . , p} and a dissimilarity matrix U ∈ Rn×n

such that
u>Dw→ max

w,u
, (1.1)

subject to ||u||2 ≤ 1, ||w||2 ≤ 1, ||w||1 ≤ l for w = {wj ≥ 0,∀j} and l ∈ (1,√p],
where u ∈ Rn2 can be rewritten as the n × n matrix U. Such a matrix represents a
new dissimilarity measure employed in hierarchical clustering. The tuning parameter l
controls the L1 bound on w, i.e. the degree of sparsity. The lower the value of l, the
higher the degree of sparsity and thus the higher the number of zero elements in w (i.e.
the lower the number of variables involved in the calculation of U). To achieve the
optimal degree of sparsity, Witten and Tibshirani (2010) also present an approach for
estimating the optimal tuning parameter.

Figure 1.3 shows the results of sparse hierarchical clustering using single- and complete-
linkage for the glass vessels data. Both methods are implemented in the R package
sparcl (Witten and Tibshirani, 2013). The procedure for selecting the sparsity pa-
rameter l (Witten and Tibshirani, 2010) results in 85 variables of non-zero weights, i.e.
informative variables. The obtained clustering hierarchy is cut in such a way to produce
5 clusters. The resulting clustering assignments are distinguished by different colors and
symbols. Figure 1.3 clearly indicates that regardless of the merging techniques employed,
sparse hierarchical clustering completely fails in discovering the groups of glass vessels.
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1.1. Cluster analysis
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Figure 1.3: The true (original) group structure of the glass vessels (left) and the resulting
cluster memberships achieved by sparse hierarchical clustering with complete-linkage
(middle) and single-linkage (right).

Partitioning clustering methods

The popular k-means partitioning approach iteratively assigns each observation to the
closest cluster center calculated as the arithmetic mean of the observations in one cluster.
The Euclidean distance is employed to assign observations to their respective cluster
center. There are some variations of k-means, mainly employing different partitioning
representatives. For example, k-medians and k-medoids (also known as PAM, see
Kaufman and Rousseeuw, 2005) use the median and an original observation of a cluster,
respectively. The fuzzy C-means approach (Bezdek, 2013) is another popular k-means
clustering method resulting in cluster memberships ranging between 0 and 1, where 1
indicates the strongest assignment of an observation to a respective cluster center.

Sparse k-means (Witten and Tibshirani, 2010) was introduced to tackle with a large
number of irrelevant variables. The method searches for such a variable weight vector w
and partitioning that renders the maximal weighted between-cluster sum of squares. As
in sparse hierarchical clustering, the L1 bound is imposed on the vector w, controlled by
the sparsity parameter l (see Chapter 4 for more details).

Trimmed k-means (Cuesta-Albertos et al., 1997) is a robust extension of k-means designed
to enhance the performance of k-means on contaminated data. During the iterative
procedure of k-means, [nα] observations with the largest distance to their respective
clusters are trimmed. The remaining untrimmed observations are subsequently used to
calculate new cluster centers as the arithmetic mean. The trimming assures that the
calculation of new centers is not affected by trimmed observations, which are expected to
be outliers. A detailed description of trimmed k-means as well as a sparse version thereof
are provided in Chapter 4.

Both methods are, once again, applied to the glass vessels data set. The R implementation
of sparse k-means is available in sparcl (Witten and Tibshirani, 2013). The procedure
for the estimation of l results in no sparsity for the variable weight vector. Trimmed
k-means can be computed with the R code from the package RSKC (Kondo et al., 2016).
The trimming parameter α = 0.10 has been selected. Figure 1.4 displays the final cluster
memberships and the actual group assignments. The methods seem to be capable of
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1. Introduction

discovering the two sodic subgroups, although the first subgroup appears to be divided
into two clusters. While sparse k-means has difficulties to differentiate between the
calcic and potasso-calcic groups, trimmed k-means cannot separate potassic glass from
potasso-calcic glass samples. Therefore, a combination of both could possibly lead to a
more reliable solution.
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Figure 1.4: The underlying (original) group structure of the glass vessels (left), and the
resulting cluster memberships achieved by trimmed (middle) and sparse (right) extensions
of k-means.

1.1.4 Model-based clustering methods

The model-based approaches view observations as independent multivariate observations
generated from a mixture model with a finite number of components. Usually, a mixture
of Gaussian distributions is assumed (one component distribution for each cluster).
Hence, the task of searching for clusters transforms into the task of estimating the
Gaussian parameters, i.e. the means and the covariance matrices. Various cluster
characteristics (shape, volume, and orientation) can be controlled by imposing constraints
(parametrization) on the covariances, e.g. through the eigenvalue decomposition (Banfield
and Raftery, 1993; Celeux and Govaert, 1995; Fraley and Raftery, 2000). Usually, the
parameters are estimated via maximum likelihood using the Expectation-Maximization
(EM) algorithm (Dempster et al., 1977), and the optimal number of clusters with the
optimal parametrization is commonly selected based on the Bayesian information criterion
(BIC).

Robust model-based approaches

In general, there are two commonly employed strategies to robustify model-based ap-
proaches (Bock, 2002). The first approach adds an additional mixture of components into
a model in order to model outliers (or noise). The second concept aims at excluding a
certain proportion (α) of the most outlying observations. While in the first case, outliers
are included in a model by fitting them with, for example, the Poisson (Banfield and
Raftery, 1993) or the t-distribution (McLachlan and Peel, 2004), the second approach
completely removes outliers from a model (Peel and McLachlan, 2000).
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1.1. Cluster analysis

TCLUST (García-Escudero et al., 2008), which falls into the second category, searches for
k clusters by maximizing

k∏
r=1

∏
i∈Kr∩L

πrf(xi; µr,Σr), (1.2)

where f(·; µr,Σr) denotes the density function of the p-variate normal distribution
with mean µr and covariance matrix Σr, considered for each cluster. The clusters are
represented by the sets Kr, r = 1, . . . , k, and πr corresponds to the cluster weights
(prior probabilities) allowing for different cluster sizes. The set L contains the indices
of [n(1 − α)] (untrimmed) observations generated by a probability density function
f(·). The remaining (trimmed) observations are supposed to be generated by a different
probability density function and are thus discarded. By imposing a restriction on the
eigenvalues-ratio of the covariances, the method can handle different scattering of the
groups and deviations from spherically shaped groups. Both parameters k and α can be
optimized using maximum likelihood curves developed by García-Escudero et al. (2011).

Further types of restrictions in this context are equal scatter matrices (Gallegos and
Ritter, 2009), or constraining the determinants of the cluster scatter matrices (Gallegos,
2002). Other related algorithms can be found in the literature (see e.g. Neykov et al.,
2007; García-Escudero et al., 2013).

Model-based methods in the context of high-dimensional data

It is well-known that the presence of noise variables degrades the efficiency of (not only)
model-based clustering. In order to overcome this, a variable selection is commonly
employed to detect a small proportion of variables that are relevant to discover the
underlying group structure as well as to provide a better interpretation. Two possibilities
of variable selections can be incorporated (Bouveyron and Brunet-Saumard, 2014). The
variables are selected either by using the BIC or by penalizing the objective function
leading to sparsity in the variables.

Variable selection based on BIC was employed by Raftery and Dean (2006) who introduced
a greedy search algorithm, which compares two nested models on the full data set. A
variable is included in the set of potential clustering variables if it contributes to the
improvements in clustering, measured by the BIC. In contrast, noise variables are excluded
if the clustering solution is not enhanced, considering all selected variables. At each stage
of the search, an optimal model is chosen by means of the selected variables, the number
of groups, and the parametrization of the cluster covariances.

Penalization of the objective function was incorporated by Bouveyron and Brunet-Saumard
(2014) in the discriminative latent mixture model (Bouveyron and Brunet, 2012), which
aims at finding the latent subspace that best discriminates the groups, using Fisher’s
criterion (Fisher, 1936). The subspace is, however, spanned by latent variables which
are a linear combination of the original variables. This makes the interpretation of the
results difficult. In order to enhance the interpretation, Bouveyron and Brunet-Saumard
(2014) have proposed three procedures incorporating the L1 penalty.
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1. Introduction

Futher approaches for dealing with high-dimensional data are based on performing
subspace extraction. An overview of such methods can be found in Bouveyron et al. (2007)
or Bouveyron and Brunet (2012). Bouveyron et al. (2007) also presents a method which
combines the idea of subspace clustering and parsimonious modeling. The introduced
method estimates a specific subspace for each group modeled by a Gaussian probability
density function.

Figure 1.5 shows the performance of three model-based methods for the glass vessels data:
Mclust, TCLUST, and variable selection for Mclust using BIC. The R implementation
of Mclust can be found in the package mclust (Fraley et al., 2012). The optimal
model is selected using the BIC. The R code for TCLUST is available in the package
tclust (Fritz et al., 2012). The clustering solution shown here corresponds to the
setting α = 0.10. Finally, variable selection for Mclust using the BIC is available in the
package clustvarsel (Scrucca and Raftery, 2014). The method selects 8 variables to
be relevant for model-based clustering.

All the methods are applied with 5 clusters. The Mclust approach seems to have difficulties
to detect the calcic and potasso-calcic groups as two separated clusters. Therefore, the
largest sodic group (named as sodic2) is divided into two clusters as opposed to the smaller
sodic group which appears to be well recovered. In contrast, TCLUST cannot detect any
glass vessels group. The performance of the method indicates a rather random assignment.
Moreover, TCLUST does not consider a group assignment of outliers (cluster with 0
assignment). Providing similarities of outliers with respect to clusters can be beneficial
for better understanding of the data structure. It should also be noted that TCLUST
was not able to provide any results based on the original data, and therefore PCA was
applied with two principal components which explain about 90% of the variability in
order to decrease the dimensionality. Regarding the performance of the variable selection
procedure, Figure 1.5 clearly indicates that the procedure does not improve the clustering
solution obtained by Mclust, as it might be expected.

1.1.5 Density-based clustering approaches

In contrast to model-based clustering, density-based procedures do not assume any
parametric probability densities to group the observations. In fact, clusters are defined
as areas of high densities separated from the regions of considerably low densities. The
notation of density region is determined by local density of each observation commonly
using nearest neighbor density estimation. Such methods can handle clusters of various
characteristics and do not require pre-specification of the number of clusters.

DBSCAN (Ester et al., 1996) determines density of an observation by counting the
number of its closest observations within a pre-specified radius. Observations with higher
density than the pre-specified threshold are called core observations. In contrast, the
observations with lower density are considered non-core observations. Such observations
are excluded from data clustering and are often classified as noise or outliers. The
remaining (core) observations are used to build clusters in such a way that the cluster is
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Figure 1.5: The original (true) group structure of the glass vessels data and the clustering
solution obtained by three model-based methods.

formed by the core observations which are neighbors of each other. In order to employ
DBSCAN, two parameters need to be specified in advance: radius, and threshold. They
need to be pre-specified in order to find core observations. The method seems to be
very efficient when it comes to discovering clusters of various sizes and shapes. Different
cluster densities may, however, lead to poor clustering solutions (Ertoz et al., 2002).

SNN (Ertoz et al., 2002) was designed to overcome the DBSCAN limitation for situations
when the clusters are of different densities. Instead of using nearest neighbors, the method
employs sharing nearest neighbors. Hence, the density measure is given by the number of
neighbors shared by two observations. The way of discovering both outliers and clusters
is conducted in the same fashion like in case of DBSCAN.

A further approach that extends DBSCAN has been developed by Ankerst et al. (1999).
The proposed OPTICS algorithm aims to successively build clusters based on reachability
distances of observations. Therefore, it can be seen as a combination of hierarchical- and
density-based clustering. Recently, Campello et al. (2015) have introduced HDBSCAN
as an extension of OPTICS. The method directly incorporates the outlyingness measures
for the purpose of outlier detection. Furthermore, in contrast to previously described
approaches, the method only requires the number of nearest neighbors as input parameter.
The interested readers are referred to the comprehensive overview by Aggarwal and
Reddy (2013) for alternative approaches.

Figure 1.6 visualizes the resulting cluster membership obtained by the DBSCAN and
SNN approaches. Both methods are implemented in R package dbscan. The required
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parameters are optimized in terms of misclassification rate (see Section 1.1.7) using the
true group labels. As the methods do not require the number of clusters, the number of
resulting clusters differs. While DBSCAN produced 2 groups and recovered the largest
sodic group well, SNN was able to detect both sodic groups sufficiently. The smaller
three glass vessels groups are mostly assigned to one cluster.
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Figure 1.6: The original (true) group structure of the glass vessels data and the clustering
solution obtained by two density-based approaches.

1.1.6 Subspace and projected clustering procedures

Clustering high-dimensional data is addressed by subspace and projected clustering
procedures. Although some modifications of distance-based or model-based clustering
could fall into the same category, this section intends to provide the basic ideas of
data-mining techniques.

Subspace clustering techniques

The goal of subspace clustering techniques is to find all possible clusters in all subspaces.
As a consequence, an observation can be assigned to more clusters and clusters can also
have an overlapping subset of variables.

The very first approach of this kind was devolved by Agrawal et al. (1998). The introduced
CLIQUE method combines density-based and grid-based concepts. The term grid-based
refers to a technique which partitions each attribute into several equi-width units. Such
units that contain more than a pre-specified fraction of observations are subsequently
used to form clusters. The method defines a cluster as a set of connected dense units.
Instead of counting the number of points, entropy-based measures can be employed to
identify dense units, as proposed by (Cheng et al., 1999) in the ENCLUS approach.
Despite the fact that there are further modifications of CLIQUE and different subspace
techniques for mining clustering in high-dimensional data, the benefits of these methods
are highly questionable. As the subspace techniques result in a large set of both clusters
and their respective variables, obtaining such information might be redundant rather
than useful in practice (Aggarwal and Reddy, 2013). Moreover, the performance of these
techniques is often highly sensitive to the specifications of parameters (Moise et al., 2009).
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1.1. Cluster analysis

Projected clustering techniques

In contrast to subspace clustering approaches, projected clustering techniques allow
assigning an observation to one cluster only. In addition, the methods often result in a
non-overlapping subset of variables. Usually, such methods require parameters which are
often difficult to set and which are highly sensitive to their respective choices (Parsons
et al., 2004; Moise et al., 2009).

One of the first approaches was introduced by Aggarwal et al. (1999). The presented
PROCLUS approach randomly selects the pre-specified number of potential cluster
centers. Subsequently, k observations (representing medoids) are sampled. For each
medoid a relevant subset of variables is determined. In each selected variable, the
distances of the respective medoid have the smallest standard deviation of distances of
the considered medoid to its nearest neighbors. Such procedure is iteratively repeated
until the clustering quality of the solution remains unchanged. To assess the quality,
the average distance between observations and their nearest medoid is employed. The
method additionally detects outliers as observations distant from their respective medoids.
Instead of searching for clusters in axis parallel subspaces, ORCLUS (Aggarwal and Yu,
2000) seeks for clusters in non-axis parallel subspaces. Further existing approaches can
be found in the comprehensive overviews by Parsons et al. (2004); Moise et al. (2009);
Kriegel et al. (2009b).

Figure 1.7 shows 5 clusters obtained by PROCLUS. The R implementation is available in
subspace (Hassani and Hansen, 2015). The dimensionality of a subset was selected as
500, leading to the lowest misclassification rate. Although the calcic group seems to be
well recovered, the other two small glass vessels groups are once again difficult to identify.
As the method is forced to detect 5 clusters, the largest sodic group is divided into two
clusters. Nevertheless, the smallest sodic group can be sufficiently identified. In addition,
the method detects several outliers (denoted as the cluster with 0 membership), like for
the TClust approach. Considering the performance of the previously employed methods,
it seems that small groups are extremely difficult to find.
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Figure 1.7: The original (true) group structure of the glass vessels data and the clustering
solution obtained by the PROCLUS algorithm.
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1.1.7 Evaluation measures

Just like in the case of any other statistical task (e.g. classification, outlier detection), it
is also necessary to evaluate the quality of the obtained solution in data clustering. In
the case of clustering, the quality of a result is assessed using either external or internal
clustering evaluation indices, depending on whether or not the true group labels are
known (Aggarwal and Reddy, 2013). While external indices measure to what degree the
true group labels match the discovered cluster labels, internal indices validate to what
extent the observations from one cluster are close to each other and distant from other
clusters.

External evaluation indices

There are numerous external validity indices. Widely used indices are, for example, Purity
(P ) (Zhao and Karypis, 2002), F-measure (F ), V-measure (Rosenberg and Hirschberg,
2007) incorporating homogeneity (H) and completeness (C) scores, and the Rand index
(RI) (Hubert and Arabie, 1985). Purity measures to what degree the detected clusters
consist of observations from a single group (i.e. homogeneity of a clustering solution).
However, it does not reflect whether all observations from one group are assigned to a
single cluster (i.e. completeness of a clustering solution). Therefore, the purity of the
detected clusters gets higher values with an increasing number of clusters. In particular,
the purity is the highest (i.e. 1) when each observation builds its own cluster. In contrast,
the F-measure is independent of the number of clusters. It combines the concepts of
precision and recall from Information Retrieval: precision measuring how homogeneous
the clusters are and recall evaluating completeness of the clustering solution. Similarly, the
entropy-based V-measure does not depend on the number of clusters, since it represents
the harmonic mean of homogeneity and completeness scores. Finally, the Rand index is
based on counting pairs of observations which agree or disagree in terms of true group
labels and discovered cluster labels. All indices range between zero and one. Low value
corresponds to a poor clustering solution, while large value indicates a clustering solution
of high quality. Alternately, the misclassification rate (CER) can be used to evaluate the
quality of a clustering solution. The measure is defined as 1-RI, therefore low values are
preferable, indicating high performance.

de Souto et al. (2012) investigated several measures in the context of imbalanced groups,
i.e. the group sizes are significantly different, and found out that most indices do not
account for the so called class (group) size imbalance effect, i.e. when an evaluation
index should reflect whether or not an object that belongs to a large (or small) group is
assigned to a small (or large) cluster in an imbalanced data setting. Hence, de Souto
et al. (2012) introduced a modification of the RI. However, the authors suggest excluding
clusters of size one from the calculation of the RI, which can be an inappropriate solution,
especially if the underlying data set contains groups of size one. Similarly, Moreno
and Dias (2015) presented a modification of the B-cubed index (Bagga and Baldwin,
1998) for an imbalanced data set. Nevertheless, the adapted B-cubed index might not
be suitable for highly imbalanced scenarios, since it does not even consider clusters of

14
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size two for clustering evaluation. In addition, the proposed modifications evaluate a
clustering solution as a whole. In contrast, it would be more interesting to use such
an index that can reflect the ability of a clustering method to correctly detect small
groups. In some applications, e.g. in the media domain, groups of smaller sizes are
often of high interest, as it is hard to find them. Additionally, such small groups often
contain observations typically different from those located in large groups with common
content. One possibility to perform such an evaluation is to employ a modification of the
F-measure.

Let {Kr|r = 1, . . . , k} be a set containing the indices of observations assigned to the rth

cluster by a clustering method, where k denotes the number of clusters, and {Gt|t =
1, . . . , g} the set consisting of indices of observations from the tth true underlying group
(also called class), where g corresponds to the true number of groups. We denote ntr as
the number of common observations in a group Gt and a cluster Kr, and |Kr| (|Gt|) as
the number of observations in a cluster Kr (in a group Gt). The original F-measure is
defined as:

F =
g∑

t=1

|Gt|
n

max
r
{F (Gt,Kr)}, F (Gt,Kr) = 2 Re(Gt,Kr) Pr(Gt,Kr)

Re(Gt,Kr) + Pr(Gt,Kr) (1.3)

where Re(Gt,Kr) = ntr/|Gt| corresponds to the recall, measuring the proportion of all
observations from one group assigned to a single cluster (similar to completeness) and
Pr(Gt,Kr) = ntr/|Kr| corresponds to the precision, assessing to what degree a cluster
contains observations from a single group (similar to homogeneity and purity). The
weighted F-measure, wF , weights F (Gt,Kr) according to the size of the true groups
(instead of taking the maxima) in order to account for varying size distribution:

wF =
g∑

t=1

|Gt|
n

k∑
r=1

wrF (Gt,Kr), wr = ntr

|Gt|
. (1.4)

The measure particularly allows evaluation of the ability of a clustering algorithm to
detect small and big groups separately. Let T s (T b) be the index set of (true) groups
being of smaller (bigger) sizes and Rs (Rb) the index set of detected clusters containing
observations from smaller (bigger) groups. The weighted F-measure with respect to small
groups is defined as:

wF s =
∑
t∈T s

|Gt|
n

∑
r∈Rs

wrF (Gt,Kr), wr = ntr

|Gt|
, t ∈ T s, r ∈ Rs. (1.5)

With respect to bigger groups, the weighted F-measure is calculated in the same way,
employing the index sets T b and Rb. The same procedure can easily be applied in the
case of both precision and recall. For example, the weighted precision measuring to what
degree the small clusters contain observations from small groups is defined as:

wPrs =
∑
t∈T s

|Gt|
n

∑
r∈Rs

wrPr(Gt,Kr), wr = ntr

|Gt|
, t ∈ T s, r ∈ Rs. (1.6)
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Similarly, the weighted recall assessing to what degree all observations from one small
group are assigned to a single cluster is defined as:

wRes =
∑
t∈T s

|Gt|
n

∑
r∈Rs

wrRe(Gt,Kr), wr = ntr

|Gt|
, t ∈ T s, r ∈ Rs. (1.7)

The weighted measures range between zero and one with higher values indicating a good
clustering result and lower values corresponding to a poor clustering solution.

Internal evaluation indices

Internal validity indices play an essential role in data clustering, as they evaluate the
quality of clustering methods when there is no prior knowledge available. Hence, they
are often employed to estimate optimal parameters, e.g. the number of clusters. Usually,
a clustering approach is performed for a predefined range of a parameter. Then, the
optimal choice of the parameter is selected based on minimizing or maximizing the
predefined criterion. The general aim of the indices is to evaluate the resulting clusters in
terms of two measures: compactness and separation, often based on pairwise distances or
density-based measures. While compactness measures how close (related) the observations
in a cluster are, separation evaluates how far the observations are from two different
clusters. For example, the Silhouette index (Rousseeuw, 1987), as one of the most popular
indices (Wiwie et al., 2015), determines the compactness of a cluster using the average
within-cluster distances, whereas the separation of two clusters is based on the average
between-cluster distances. In contrast, the Davies Bouldin (Davies and Bouldin, 1979)
index employs the average distances between observations and their respective cluster
centers.

Although a large number of further indices has been developed, the most appropriate
index has not been introduced yet (Aggarwal and Reddy, 2013). Nevertheless, several
comparisons of internal indices have been conducted. Such comparisons can be very
helpful for selecting a proper index in practice. For example, Stegmayer et al. (2012)
and Wiwie et al. (2015) compared the performance of common indices in the context
of biomedical data, whereas Aggarwal and Reddy (2013) investigated 12 widely used
indices on synthetic data considered with arbitrary shaped clusters or clusters of different
densities and sizes.

1.2 Outlier detection in high-dimensional data space

Outlier detection is another essential unsupervised statistical and data mining technique
that aims at identifying such observations that considerably deviate from the remaining
data. These atypical observations – often called outliers – are very likely to appear
in any real data. Depending on the situation, outliers can either represent unwanted
errors which can be harmful for data clustering (see Section 1.1) as well as for other data
analyses, or they can be a valuable source of information due to their atypical behavior.
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To some extent, identification of outliers is related to data clustering. On the one hand,
an outlier can be seen as a cluster of its own, several outliers can even form clusters of
very small sizes. Therefore, many concepts employed in data clustering can also be found
in outlier analysis. On the other hand, outlier detection can be recast to the task of
grouping data into two groups: outliers and non-outliers. While outliers represent a class
of observations with atypical behavior, the non-outliers form a class of observations with
content which is typical for the analyzed data.

Outlier detection gets considerably difficult in a high-dimensional space of possible low
sample size, since data become sparse and the traditional distance measures lose their
ability to distinguish between outliers and non-outliers. Hence, assuming that there
are not many noise variables, PCA-based outlier detection techniques may improve the
effectiveness of distance measures. In the case of a large proportion of noise variables,
some of the last principal components may already explain the variability of the noise
part. This could lead to unreliable outlier detection results. Therefore, if a large subset
of irrelevant variables for revealing outliers is present, a better approach is to employ
subspace-based outlier detection which can exclude these noise variables. Moreover, in
the presence of multiple group structure, most PCA-based approaches are expected to fail,
as they often assume a single group structure. In the following section, the description of
several methods is provided.

1.2.1 Detection of outliers for a simple data structure using PCA

PCA is a well-studied and widely employed approach for dimensionality reduction (see
Jolliffe, 2002). The column-centered data matrix X ∈ Rn×p is transformed into a subspace
defining a new coordinate system T = XP + E, with the p× k loading matrix P, the
n× k scores matrix T, and the error matrix E. The j-th column of P is chosen in such a
way that the variance λj of the corresponding j-th column of T is maximized, subject to
orthogonality to the previous columns of P. The dimensionality of the newly constructed
subspace is determined by a pre-specified number k ≤ min{n, p} of PCs, i.e the first k
score vectors.

ROBPCA

Hubert et al. (2005) introduced the robust PCA method ROBPCA and two different
distances for measuring the outlyingness of observations. While the score distance SD
measures outlyigness of an observation with respect to the center of the data in the
robustly estimated PC space, the orthogonal distance OD represents the distance of the
observations to the constructed PC space. The two distances are formally defined as

SD
(k)
i =

√√√√√ k∑
j=1

t2ij
λj
, OD

(k)
i = ||xi −Pti||, (1.8)

for i = 1, . . . , n, where ti = (ti1, . . . , tik)> are the score vectors in the PC space. In order
to decide whether or not an observation is an outlier, two corresponding thresholds are
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derived using the χ2 distribution and the normal distribution for SD and OD respectively
(see Chapter 2 for more details). If either threshold is exceeded, the respective observation
is classified as an outlier.

PCOut

Filzmoser et al. (2008) have developed a method for outlier identification in high-
dimensions, called PCOut. The method robustly estimates PCs which are then weighted
with respect to their kurtosis in order to calculate the Euclidean norms of observations
in the weighted PC subspace. The norms represent Mahalanobis distances in the original
data space and are subsequently transformed into the weights reflecting how much an
observation is a location outlier. The weights for identifying scatter outliers are derived
in the same way but without taking the kurtosis into account. Filzmoser et al. (2008)
finally combine both weights in order to classify the observations with low weight (smaller
than 0.25) as an outlier.

Illustrative data example

To illustrate both described methods, a simple data set of 200 observations following a
multivariate normal distribution is simulated. The data set is described by 20 informative
variables to which 30 noise variables are added. Additionally, 10% of the observations is
contaminated by outliers corresponding to replacing them by some uniformly distributed
values. Figure 1.8 visualizes the data structure using 2 PCs and shows outliers and
non-outliers in different colors and symbols. In addition, the results of the two PCA-based
methods are displayed as well. While the result of ROPBCA is visualized by means of
score and orthogonal distances with their respective thresholds (two dashed lines), the
result obtained by PCOUT is represented in terms of the final weights and the cut-off
value 0.25. Although the group of outliers seems to be distinct from the non-outliers,
both methods misclassify several non-outliers as outliers. Nevertheless, all outliers are
easily detectable for both approaches even if the proportion of noise variables is quite
high. Chapter 2 provides a comprehensive comparison of further existing robust PCA
methods for the purpose of outlier detection.
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Figure 1.8: Illustrative data example displayed in PC space, and results from outlier
detection by ROBPCA and PCOUT. The lines correspond to the cut-off values for
classifying observations as outliers.
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1.2.2 Data mining outlier detection for multiple group data structure

Data mining techniques are often designed to detect outliers in a data set exhibiting
multiple group structure. Furthermore, they commonly result in an outlying score and
do not provide any threshold resulting in binary labels: outliers and non-outliers. The
approach discussed in this section assesses the outlyingness of observations with respect
to their locality and therefore such techniques are based on the nearest neighbors.

LOF

Although the LOF (Local Outlier Factor) (Breunig et al., 2000) determines the degree
of outlyingness of an observation with respect to its neighborhood in all dimensions,
Zimek et al. (2012) demonstrated that LOF achieves promising results if the number of
informative variables in the high-dimensional data space is not too low. Since Chapter 3
and 4 introduce clustering approaches incorporating LOF, the method is described in
more detail.

The general idea of LOF is to compare the density of each observation with the densities
of their respective nearest neighbors. If the difference between the densities is small, the
observation is located in a homogeneous region (i.e. in a cluster) and its corresponding
factor is approximately one. In contrast, big difference between the densities indicates that
the observation is distant from its neighbors and, therefore, its factor gets considerably
higher. Formally, Breunig et al. (2000) first determined the q-neighborhood of each
observation xi ∈ Rp, i = 1, . . . , n, which is defined as

Nq(xi) = {x ∈ X|d(xi,x) ≤ dq(xi)}, (1.9)

where dq(xi) = d(xi,xi
q) denotes the Euclidean distance of xi to its qth nearest neighbor,

xi
q, and is called q-distance of xi. Let |Nq(xi)| be the number of observations contained in
Nq(xi). Note that this number can be more than q in case of ties. Next, the reachability
distance of xi with respect to its neighbor x, dreachq (xi,x), determines at which distance
xi is reachable from its neighboring observations x and is defined as:

dreachq (xi,x) = max{dq(x), d(xi,x)}. (1.10)

Figure 1.9 visualizes the concept of reachability distance of xi with respect to one of its
neighbors x for q = 3 for two different situations (Breunig et al., 2000). The three closest
neighbors of xi are located in the circle around xi, including x as well. The radius of the
circle around x corresponds to the d3(x) and the arrow indicates dreach3(xi,x). In the
first scenario, Figure 1.9 (left), the observation xi is far from its neighbor x. Therefore,
the reachability distance of xi from its neighbor x is set to the true distance between
them. In contrast, in the second scenario, if the observation xi is close enough to x, the
reachability distance of xi from x is set to the q-distance of x, d3(x), see Figure 1.9 (right).
In the next step, the local (reachability) density of an object xi is calculated,

lrdq(xi) = |Nq(xi)|∑
x∈Nq(xi) dreachq (xi,x) . (1.11)
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Figure 1.9: Two different situations for the reachability distance of xi w.r.t one of its
neighbors x for q=3. The reachability distance of xi w.r.t. x is represented by an arrow,
the radius of the red circle around x corresponds to the q-distances of x, d3(x), and the
three closest neighbors of xi are located in the gray circle around xi. The reachability
distance of xi w.r.t. x is set to the true distance between them (left). The reachability
distance of xi w.r.t. x is set to d3(x) (right).

The larger the distance between xi and its neighbors, the lower the local density of xi.
Finally, the LOF score (Breunig et al., 2000) is computed as the ratio of local densities
of the q neighbors and the local density of xi normalized by the q-neighborhood size,

LOFq(xi) = 1
Nq(xi)

∑
x∈Nq(xi)

lrdq(x)
lrdq(xi)

. (1.12)

If xi belongs to a cluster, LOF (xi) ≈ 1 since xi has a similar local density as the local
density of its neighbors. In contrast, if xi deviates from a cluster, i.e. if xi is a local
outlier, LOF (xi) >> 1, since the local density of xi is much lower than the local densities
of its q neighboring observations (Breunig et al., 2000).

As the LOF is the first local approach for outlier detection, it has inspired many
researchers to extend or modify the method (Campos et al., 2016). For example, LOCI
(Papadimitriou et al., 2003) defines the neighborhood based on the observations located
within an ε range, so called ε-neighborhood. Since the method considers various values of
ε, it is less sensitive to input parameters. In contrast, INFLO (Jin et al., 2006) employs
the q reverse nearest neighbors. Other local approaches can be found in the study by
Schubert et al. (2014).
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1.2. Outlier detection in high-dimensional data space

Subspace Outlier Detection (SOD)

SOD (Kriegel et al., 2009a) aims at identifying outliers in axis-parallel subspaces of
high-dimensional data. In general, the approach evaluates to what extent each observation
fits its relevant subspaces spanned by its h shared nearest neighbors selected from q
nearest neighbors, thus h ≥ q. For each observation, a relevant subspace is defined by
the variables which exhibit low variance, taking h neighbors into account. Consequently,
the subspace outlier degree of an observation is defined as the Euclidean distance of the
observation to the reference subspace normalized by the dimensionality of the selected
subspace. While a value close to 0 indicates that an observation is a non-outlier, much
higher values (up to 1) suggest that observations are outliers. Another approach called
feature bagging (Lazarevic and Kumar, 2005) randomly selects a predefined number of
variables to create a subspace in which LOF (or an alternative outlier detection procedure)
is subsequently applied. This is done several times and finally, the resulting values of
LOF are combined. Further approaches operating the axis-parallel subspaces can be
found in (Aggarwal, 2013).

Correlation Outlier Probability (COP)

In contrast to identifying outliers in axis-parallel subspaces, COP (Kriegel et al., 2012)
detects outliers in arbitrarily oriented subspaces. The approach appears to be the first
method considering local correlations of variables by constructing the PC space in a local
fashion. For each observation, the q nearest neighbors are determined in order to estimate
the local covariance structure for the following construction of PC components. Only the
last components are used to calculate the probability of an observation to be an outlier
with respect to a constructed hyperplane. A value close to 1 indicates that an observation
is an outlier, in contrast to a value close to 0 suggesting a non-outlier. It should be noted
that the input parameter q needs to be 3 times larger than the dimensionality of the data
set. Hence, the method cannot be applied on flat data (i.e n << p). A comprehensive
discussion on outlier detection in generalized subspaces is provided by Aggarwal (2013).

Illustrative data example

To show the performance of the outlier detection algorithms LOF, SOD, and COP, one
additional group is added to the data example considered in Section 1.2.1. The added
group has a different location, as visualized in the PC space in Figure 1.10. The results
of LOF are obtained using the R implementation in dbscan(Hahsler and Piekenbrock,
2017), considering q = 10. The R code for SOD is available in HighDimOut (Fan, 2015),
and the provided solution is achieved with q = 50 and h = 40. The method COP is
implemented in ELKI, freely available at http://elki.dbs.ifi.lmu.de/, and the
result corresponds to the setting q = 300.

While most outliers receive considerably higher score than non-outliers (i.e. observations
forming groups) within SOD and LOF, this is not the case for the scores obtained by COP.
It seems that some non-outliers could be wrongly considered to be outliers, indicated
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by their high COP scores. Although LOF takes all variables into account, the method
assigns the highest scores to all outliers. Of course, the results might slightly change with
different choices of the parameters. Nevertheless, the parameters are supposed to be set
in such a way that the differences between outliers and non-outliers are most evident.
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Figure 1.10: Illustrative date example containing 2 groups as well as outliers displayed in
PC space, and the achieved outlier scores by LOF, SOD, and COP. The true group and
outlier membership is represented by different colors and symbols.

1.3 Outline of the thesis

This thesis introduces new robust clustering methods that are compared to existing
clustering approaches. In addition, several existing robust PCA-based outlier detection
methods are evaluated in the thesis. The introductory chapter provides an overview
of existing techniques for data clustering that attempt to address various clustering
challenges. The second chapter aims at investigating the performance of existing PCA
methods used to detect unusual sounds in a large audio collection. The third chapter
presents a clustering approach developed to discover highly imbalanced groups in high-
dimensional data. The last chapter introduces a robust and sparse k-means algorithm
which tries to detect clusters, outliers, and informative variables simultaneously in high-
dimensional data. All developed procedures and graphics were created with the software
R (R Core Team, 2016).

Chapter 2 provides a profound evaluation of various PCA algorithms for detecting
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unusual instances in high-dimensional audio data. The supervised framework for PCA-
based outlier detection is introduced for the following evaluation with respect to various
proportions of outliers, the presence of subgroups, and the amount of available information
in the form of true class labels.

Brodinová Š, Ortner T, Filzmoser P, Zaharieva M, Breiteneder C (2016).
Evaluation of robust PCA for supervised audio outlier detection. In: A. Colubi, A.
Blanco, C. Gatu, and G. Gonzalez-Rodriguez, editors, Proceeding of the 22nd International
Conference on Computational Statistics (COMPSTAT), pp. 183-194.

Chapter 3 introduces a clustering approach designed to discover highly imbalanced
media groups in high-dimensional data with the special focus on mining very small groups
containing potentially interesting information. The introduced procedure incorporates an
existing conventional clustering approach in order to find a large number of homogeneous
initial clusters, which are then successively merged into a smaller number of final
clusters. To merge a pair of clusters, LOF is employed for evaluating whether two
close initial clusters share the same local densities and thus need to be merged. A
thorough empirical study demonstrates the advantage of identifying the group structure
over existing clustering methods.

Brodinová Š, Zaharieva M, Filzmoser P, Ortner T, Breiteneder C (2017).
Clustering of imbalanced high-dimensional media data. Advances in Data Analysis and
Classification. To appear.

Chapter 4 presents a k-means based algorithm developed to identify the group structure
in high-dimensional contaminated data, possibly containing a large number of noise
variables. The concept of assigning weights to observations and variables is incorporated
during k-means clustering. While observation weights are used to downweight the effect of
outlying observations, the variables weights are employed to reflect their contribution to
group separation. The procedure for estimating the parameters is eventually introduced
and tested on a variety of simulated data sets. Comparisons with existing k-means based
approaches show a great ability to discover clusters in real high-dimensional data.

Brodinová Š, Filzmoser P, Ortner T, Breiteneder C, Zaharieva M (2017). Ro-
bust and sparse k-means clustering for high-dimensional data. Submitted for publication.

Chapter 5 presents functionality of two R packages: IClust and wrsk. The packages
implement robust clustering methods presented in Chapter 3 and 4.

Unpublished.
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CHAPTER 2
Evaluation of robust PCA for

supervised audio outlier detection

Abstract: Outliers often reveal crucial information about the underlying
data such as the presence of unusual observations that require for in-depth
analysis. The detection of outliers is especially challenging in real-world
application scenarios dealing with high-dimensional and flat data bearing
different subpopulations of potentially varying data distributions. In the
context of high-dimensional data, PCA-based methods are commonly applied
in order to reduce dimensionality and to reveal outliers. Thus, a thorough
empirical evaluation of various PCA-based methods for the detection of
outliers in a challenging audio data set is provided. The various experimental
data settings are motivated by the requirements of real-world scenarios, such
as varying number of outliers, available training data, and data characteristics
in terms of potential subpopulations.

Key words: Outlier detection; Robust PCA; Audio data; Experiments

Co-authors: Thomas Ortner, Peter Filzmoser, Maia Zaharieva, Christian
Breitender

2.1 Introduction

Outlier identification is an essential data mining task. Outliers do not only contaminate
distributions and, thus, estimations based on the distributions, moreover, they often
are the prime focus of attention. In many fields outliers carry significant, even crucial
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2. Evaluation of robust PCA for supervised audio outlier detection

information for applications such as fraud detection, surveillance, and medical imaging.
In this paper, we employ outlier detection in an automated highlight detection application
for audio data. This is a first step towards the identification of key scenes in videos,
where the audio is a fundamental component.

Outlier detection gets considerably more difficult in a high-dimensional space or when
there are less observations than variables available (flat data). In a high-dimensional space,
data becomes sparse and distances between observations differ very little. The situation
becomes even more complex when groups of outliers are present due to the emerging
masking effect (Becker and Gather, 1999). To justify the application of distance-based
similarity measures in such a situation, the reduction of dimensionality is an inevitable
course of action. A well-established approach for this purpose is the use of principal
component analysis (PCA), which transforms the original variables to a smaller set of
uncorrelated variables keeping as much of the total variance as possible (Jolliffe, 2002).
This step removes the curse of high dimensionality for this subspace. Nevertheless, it has
been shown, that even though in theory distance functions loose their meaningfulness in
high dimensionality, the orthogonal complement of the principal component (PC) space
might still hold crucial differences in the distance and, thus, important information for
outlier detection (Zimek et al., 2012).

The focus of this paper is the thorough empirical comparison of PCA-based methods for
high-dimensional and flat data, that are suitable for outlier detection in audio data. We
compare classical PCA with its robust versions in terms of sensitivity regarding changes
in the setup such as the percentage of outliers and the size or the distribution of the
data sets. A crucial aspect in this context is the proper choice of number of components
used for the construction of the PC space. We propose to manually label a small number
of observations and to use those labels to estimate the best possible number of PCs
without any prior knowledge of the data structure. This concept creates a reasonable
situation for real-world applications. Thus, an estimation for the optimal number of
components is performed throughout all the experiments including an analysis regarding
the number of pre-labeled observations itself. Furthermore, we outline an approach for
the optimization of critical values used for outlier detection by employing the additional
information from the labeled observations, which can greatly increase the robustness of
the outlier detection towards the number of chosen components.

2.2 Related work

Several authors perform simulation studies to explore the performance of the classical
and various robust PCA-based methods in different scenarios in the context of outlier
detection, such as varying degree of data contamination, data dimensionality, and missing
data, e.g. (Pascoal et al., 2010)(Sapra, 2010)(Serneels and Verdonck, 2008)(Xu et al.,
2013). For example, Pascoal et al. (2010) compare the classical PCA approach (Jolliffe,
2002) with five robust methods: spherical PCA (Locantore et al., 1999), two projections
pursuit techniques (Croux et al., 2007)(Croux and Ruiz-Gazen, 2005), and the ROBPCA
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approach (Hubert et al., 2005) in different contamination schemes. The results show that
ROBPCA outperforms the compared methods in terms of estimated recall. Similarly,
Sapra (2010) shows that a robust PCA approach based on projection pursuit (Filzmoser
et al., 2006) outperforms the classical PCA even for data sets with more variables
than observations. In a recent simulation study, Xu et al. (2013) show that for the
generated data settings the performance of ROBPCA and techniques based on projection
pursuit degrades substantially in terms of expressed variance as the dimensionality of the
data increases. However, the authors only consider the first few principal components
and focus on a data setting where the observations and the variables are of the same
magnitude. Usually, simulation studies are performed for very specific data settings,
e.g. all observations/variables follow a predefined distribution. However, real data have
more complex data structures than synthetic data and, thus, outlier detection on real
data is even more challenging. Current evaluations on real data sets are often limited by
the number of available data. As a result, a thorough investigation of different outlier
detection methods for various data settings is barely feasible. For example, Sapra (2010)
performs an evaluation on a small set of financial data with 120 observations. Hubert et al.
(2005) report evaluations on three low-sampled real data sets with varying dimensionality.
While evaluations on multiple data sets provide an estimation of the robustness of the
investigated approaches, no general conclusions about the sensitivity to specific data
aspects can be made. Experiments with larger real data sets are commonly tailored to the
evaluation of the performance of outlier detection methods for a particular data without
any variation of the experimental settings, e.g. (Filzmoser et al., 2008)(Shyu et al., 2003).
In contrast, we employ a large real data set in the simulation of different experimental
settings and perform a thorough evaluation of the sensitivity of the explored approaches
with respect to varying data aspects.

2.3 Evaluation setup

2.3.1 Compared approaches

In general, algorithms for estimating the PC space are based on either eigenvector
decomposition of the empirical covariance matrix, singular value decomposition (SVD) of
the (mean-centered) data matrix, or on projection-pursuit (PP) technique. We compare
several approaches including both classically and robustly estimated PCs which are
suitable for high-dimensional flat data. PCA-based outlier detection can be employed
using two different distances for each observation derived from the PC space Hubert et al.
(2005): score distance, SD, and orthogonal distance, OD:

SD
(k)
i =

√√√√√ k∑
j=1

t2ij
λj
, OD

(k)
i = ||xi −Pti||, i = 1, . . . , n, (2.1)

where ti = (ti1, . . . , tik)> are the score vectors in the PC space, λj denotes the variance of
the corresponding jth column of the score matrix T = {tij , j = 1, . . . , k}, P represents the
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p×k loading matrix, xi is the ith observation of the data matrix X ∈ Rn×p, and the index
k refers to the number of PCs. While SD represents the distance of observations in the
estimated subspace to the center of data, OD measures the distance of the observations
to the subspace. Two thresholds are used to detect outliers. For the SD, the 97.5%
quantile of the χ2 distribution with k degrees of freedom, i.e. c(k)

SD = (χ2
k,0.975)1/2, and for

the OD, 97.5% quantile of the standard normal distribution, c(k)
OD = (µ̂+ σ̂z0.975)3/2, can

be taken as the critical values. The estimation of µ̂ (resp. σ̂) can be obtained using the
median (resp. MAD) of the values of OD2/3

i (see (Hubert et al., 2005) for more details).
If either threshold is exceeded, the respective observation is classified as an outlier.

clPCA: Classical (non-robust) PCA (Jolliffe, 2002) for flat data is performed
by means of SVD which is directly related to eigenvalue decomposition of the classical
empirical covariance Wall et al. (2003). The columns of the loading matrix P are the right
singular vectors and the variance λj corresponding to the j-th singular value. However,
the classical covariance is sensitive to outliers (Hubert et al., 2005) and the resulting PCs
do not describe the true data structure.

OGK PCA (Maronna and Zamar, 2002) is a PCA-based approach using robust
covariance matrix estimation. The method starts by robustly scaling the data, Y = XD−1,
where D = diag{σ̂(X1) . . . σ̂(Xp)} is the robustly estimated univariate dispersion of each
column Xj of the data matrix X, and σ̂ is computed by using τ -estimation of univariate
dispersion. Next, the Gnanadesikan-Kettenring estimator (Gnanadesikan and Kattenring,
1972) is computed for all variable pairs of Y resulting in a robust correlation matrix, U,
where Ujk = cov(Yj , Yk), j, k = 1, . . . , p. The eigenvector decomposition of the correlation
matrix U = EΛE> allows for the projection of the data onto the directions of the
eigenvectors, Z = YE. Finally, the covariance matrix is transformed back to the original
space, SX = DELE>D>, where L = diag{σ̂(Z1) . . . σ̂(Zp)} and DE is the loading
matrix of p orthogonal eigenvectors of dimension k and corresponds to the direction of
the principal components.

GRID PCA (Croux et al., 2007) is a robust PCA approach using the GRID search
algorithm. It employs the PP method to project the data on a direction which maximizes
the robust variance of the projected data (Li and Chen, 1985). GRID first sorts the
variables in decreasing order according to the robust dispersion. The first projection
direction is found in the plane spanned by the first two sorted variables and it passes
through the robust center and a grid point. The remaining variables successively enter the
search plane to obtain the first optimal direction. The algorithm searches the subsequent
directions in a similar way by imposing orthogonality until there is no improvement in
maximizing the robust variance.

ROBPCA Hubert et al. (2005) combines robust PP techniques (Li and Chen, 1985)
with robust covariance estimation. First, the data space is reduced to an affine subspace
using a SVD (Hubert et al., 2002). In the next step the least outlying observations are
identified using the univariate Minimum Covariance Determinant (MCD) location and
scale estimator (Rousseeuw, 1984). The covariance matrix, S0, of the least outlying
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points is subsequently used to select a number of components k and to project the
data on the subspace determined by the first k eigenvectors of S0. The FAST-MCD
algorithm (Rousseew and van Driessen, 1999) is employed to obtain a robust scatter
matrix, S = PLP>, where P is the loading matrix of p orthogonal eigenvectors of
dimension k and L the diagonal matrix of k eigenvalues.

PCOut (Filzmoser et al., 2008) is a method already comprising an outlier detection
algorithm, in contrast to the previously described approaches. First, the observations
being far away from the center of the main body of the data are identified, i.e. location
outliers. Then, the detection of scatter outliers generated from a model with the same
location as the main data but with a different covariance structure is conducted. Outlier
detection is performed in the subspace using the robustly scaled PCs which contribute to
about 99% of the total variance.

2.3.2 Performance measures

We evaluate the performance of the compared approaches in terms of true positive rate,
TPR, and false positive rate, FPR:

TPR = TP/(TP + FN), FPR = FP/(FP + TN), (2.2)

where TP denotes true positives (correctly identified outliers), FN indicates false negatives
(outliers declared as normal observations), FP corresponds to false positives (normal
observations declared as outliers), and TN refers to true negatives (correctly identified
normal observations). Additionally, we calculate the area under the Receiver Operating
Characteristics (ROC) curve (AUC) representing the trade-off between TPR and FPR
by a single value. Figure 2.1 illustrates the construction of a ROC curve for an example
evaluation A. The estimation of the corresponding AUC of A is obtained in such way
that the area is divided into regular shapes and summed up which results in AUC =
1/2 (1 + TPR− FPR). Note that when the algorithm does not detect any outlier (i.e.
both TPR and FPR are zero) the AUC according to the above formula is equal to
0.5. Although the two extreme scenarios (no outlier detected and random prediction)
are not identical, they are both not desired output in terms of effectiveness of outlier
detection approaches. It should also be noted that the number of regular observations
is much higher than the number of outliers. Thus, the defined AUC measure is much
more sensitive towards changes in the total number of positively identified than towards
negatively identified outliers. While this looks disproportional at first, the focus of the
performed evaluations is the successful detection of outliers. Therefore, in this concept
the high sensitivity towards single changes in TP is a welcome side effect.

2.3.3 Data set

We employ a high-dimensional, real-world audio data set of approximately 8, 700 ob-
servations to construct different experimental settings, i.e. flat data, varying number
of outliers, varying size of available training data, etc. The data set covers the three
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Figure 2.1: ROC curve construction.

fundamental audio types: music, speech, and environmental sounds. Each observation is
represented by a set of 50 (partially) multi-dimensional features, i.e. each feature consists
of one or more variables, resulting in a feature vector of 679 dimensions in total. Features
were selected in order to capture a wide range of audio properties and to represent the
particular qualities of the three audio types equally well. The feature set comprises
features that operate in the temporal and frequency domains, e.g. features for zero
crossings, amplitude or brightness, features from the MPEG7 standard, perceptional
features, and various cepstral coefficients.

The observations are approximately equally distributed across the three audio types.
However, the underlying data structures are strongly varying due to present subpopu-
lations of different sizes, e.g. different genres in the music samples and different voices
in the speech samples. When constructing the data sets for the experiments and for
the performance evaluation of the employed approaches for outlier detection, we exploit
the available labels, e.g. we define TV speech data, the largest subpopulation, as main
group and select observations from environmental sounds as "outliers". This is a very
challenging approach: While, usually, speech and music recordings can be easily separated
by the employment of suitable features, this does not hold for environmental sounds.
Environmental sounds cover a wide range of noises that sometimes have great similarities
with speech data, sometimes with music and often they are just different.

The outlier detection approaches based on the two distance measures (OD and SD)
employ three data sets: training, validation, and test set. The PC space spanned
by k components is constructed with the observations coming from the training set.
Additionally, we calculate the two critical values for the orthogonal distance, ck

OD, and for
the score distance, ck

SD. These measures are exclusively derived from loadings and scores
of the training data. Next, the observations from the validation set are projected onto the
constructed PC space spanned by k PCs. An observation having an orthogonal or score
distance larger than the respective critical value is declared as an outlier. This procedure
is conducted with varying number of components k to select the optimal number of
components, kopt, in terms of maximizing AUC. The use of validation set in this context
prevents potential overfitting of the estimated parameter, kopt, to the characteristics of
the training data. Finally, we perform an evaluation on the test data with respect to the
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optimal number of components kopt from the validation set and the PC space spanned
by kopt determined by observations from the training set.

We rescale the data to make variables comparable using the mean and standard deviation
of the variables in the training set. The reason for applying a non-robust scaling is the
presence of many variables which are almost constant but a small proportion of values
has huge deviations. The robust MAD for such variables would be very small and this
would artificially increase the whole data range during the scaling. As a consequence,
many of the regular observations would be made indistinguishable from real outliers. The
assignment of the observations to training, validation, and test sets is done randomly
and all evaluations are based on 100 replications. Since we have a larger pool of available
data, independent training and validation data were constructed repeatedly. We think
this is preferable over cross-validation, which would typically be used in situations where
independent validation data are not available.

2.4 Experimental results
In this section we present the results of the performed experiments. We explore the
sensitivity of the investigated approaches with respect to the percentage of outliers, size
of training and validation sets, and data characteristics. We report results in terms of
AUC, TPR, FPR, number of PCs, and the corresponding standard errors (SE) over the
100 randomly initialized replications for each experiment.

2.4.1 Sensitivity to the percentage of outliers

For this evaluation we consider TV recordings (the biggest speech subgroup) as regular
observations and we randomly select observations from both environmental and music
samples as outliers. We split the data equally into training, validation, and test sets,
corresponding to approximately 360 regular observations per set.

In a first experiment, we calculate the PC space using only the regular observations from
the training set and we consider different percentage of outliers for the validation and
test sets: 2%, 5%, and 10% of the main observations (see Table 2.1). The results show
that clPCA performs similar or better than the robust PCA methods, while PCOut is
capable of finding only approximately half of the outliers (indicated by the low TPR).
Although the performance of clPCA and its robust counterparts degrades slightly by
decreasing the percentage of outliers, ROBPCA does not indicate such dependency. SE
remains at a very low level during the experiments for all methods.

In a second experiment, we consider that the training set is not free of outliers in order to
explore their impact on the constructed PC space. The results show that the robust PCA
methods clearly outperform clPCA. PCOut performs as poorly as in the first experiment.
While the number of outliers does not show any clear dependency on the resulting AUC,
this is not the case for the number of PCs. GRID PCA reduces the number of selected
PCs with decreasing contamination in contrast to the remaining methods. ROBPCA
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tends to select a considerably lower number of PCs than its counterparts. The achieved
results in terms of AUC suggest that the use of robust PCA methods is recommended
when there is no guarantee that the training set is free of outliers. In a real-world scenario
this can not always be satisfied. Therefore, we take this into account and all further
experiments consider training set containing outliers.

Table 2.1: Evaluation results for different percentage of outliers (%).

% Method Pure training set Training set with outliers
AUC (SEAUC) k (SEk) TPR (SETPR) FPR (SEFPR ) AUC (SEAUC) k (SEk) TPR (SETPR) FPR (SEFPR)

10

clPCA 0.948 (0.002) 122 (1) 0.953 (0.005) 0.058 (0.003) 0.531 (0.005) 152 (16) 0.067 (0.011) 0.004 (0.001)
GRID PCA 0.943 (0.002) 144 (2) 0.943 (0.004) 0.056 (0.002) 0.921 (0.003) 140 (1) 0.896 (0.006) 0.053 (0.001)
ROBPCA 0.907 (0.002) 57 (2) 0.918 (0.007) 0.103 (0.004) 0.891 (0.004) 75 (3) 0.887 (0.007) 0.106 (0.005)
OGK PCA 0.936 (0.002) 191 (4) 0.946 (0.005) 0.074 (0.003) 0.929 (0.003) 281 (4) 0.926 (0.006) 0.068 (0.002)
PCOut 0.602 (0.006) - (-) 0.516 (0.060) 0.311 (0.002) 0.624 (0.004) - (-) 0.351 (0.007) 0.103 (0.002)

5

clPCA 0.946 (0.003) 136 (2) 0.949 (0.007) 0.057 (0.003) 0.557 (0.007) 205 (15) 0.124 (0.015) 0.009 (0.002)
GRID PCA 0.942 (0.003) 163 (2) 0.937 (0.007) 0.054 (0.002) 0.933 (0.003) 152 (2) 0.923 (0.007) 0.057 (0.002)
ROBPCA 0.916 (0.003) 51 (2) 0.929 (0.006) 0.097 (0.004) 0.918 (0.004) 54 (3) 0.928 (0.008) 0.092 (0.004)
OGK PCA 0.931 (0.003) 168 (5) 0.931 (0.008) 0.070 (0.003) 0.925 (0.003) 203 (6) 0.918 (0.008) 0.067 (0.004)
PCOut 0.609 (0.007) - (-) 0.538 (0.016) 0.320 (0.006) 0.621 (0.006) - (-) 0.359 (0.012) 0.118 (0.005)

2

clPCA 0.912 (0.007) 164 (4) 0.865 (0.016) 0.040 (0.003) 0.565 (0.009) 173 (15) 0.141 (0.019) 0.011 (0.002)
GRID PCA 0.937 (0.007) 190 (4) 0.860 (0.015) 0.039 (0.003) 0.914 (0.006) 174 (4) 0.872 (0.013) 0.044 (0.002)
ROBPCA 0.913 (0.005) 39 (3) 0.911 (0.010) 0.085 (0.005) 0.918 (0.005) 39 (3) 0.916 (0.011) 0.081 (0.005)
OGK PCA 0.905 (0.007) 129 (6) 0.862 (0.015) 0.052 (0.004) 0.908 (0.007) 139 (7) 0.865 (0.016) 0.050 (0.004)
PCOut 0.604 (0.009) - (-) 0.531 (0.021) 0.323 (0.006) 0.615 (0.009) - (-) 0.420 (0.022) 0.191 (0.011)

2.4.2 Sensitivity to the size of training, validation, and test sets

In this experiment, we investigate whether varying the size of training, validation, and
test sets considerably influences the performance of the compared approaches. Again,
we consider the biggest speech subgroup as main observations and we add 5% from
the instances from music and environmental sounds as outliers. We divide the data
into training, validation, and test sets according to different partitions ranging from
0.33/0.33/0.33 to 0.05/0.05/0.90 corresponding to the size of sets from 378/378/380 to
57/57/1022 observations. Note that the percentage of outliers is the same in each data
set.

Figure 2.2 (left) shows the results of the evaluation in terms of AUC and number of
PCs necessary to distinguish outliers from main observations. clPCA fails since the
training set contains outliers. The performance of the robust PCA methods decreases
with the reduction of the size of training and validation sets. GRID PCA achieves a high
AUC and outperforms the remaining methods even if the size of the available training
set is reduced to 170 instances. AUC falls rapidly when considering smaller data size.
In contrast, ROBPCA yields still a reasonable AUC in the most extreme setting (57
observations). For a more detailed investigation, we visualize the distribution of the
resulting AUC during the 100 replications for each method.

Figure 2.3 illustrates that PCOut and clPCA perform similar in each situation since the
distribution of observed intervals is almost identical. This does not hold for the other
three methods. The proportion of AUC ranging from 0.9 to 1 representing the results of
ROBPCA decreases with the size reduction of training and validation sets. Considering
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Figure 2.2: Evaluation results for varying size of training, validation, and test sets in
terms of AUC (left) and the number of PCs (right).

the performance of OGK PCA, we observe that the largest proportion of AUC between
0.9 and 1 is attained when the sample size of training set is 283, and subsequently reduced
size to 57 instances causes that the majority of AUC achieves the values between 0.5 and
0.8. The results of GRID PCA reveal very large proportion of AUC from the interval
(0.9, 1] in the first three situations. However, when the size of training and validation sets
is reduced from 113 to 57, almost half of the AUC values are in the interval (0.7, 0.4].
Figure 2.2 (right) shows that the number of PCs selected by ROBPCA is independent
from the size of the sets and it tends to choose fewer PCs while the number of components
in case of the other methods is affected by decreasing the number of observations in the
training and validation sets. This is given by the method itself but also by the size of
the employed training set. Moreover, the number of PCs selected by clPCA deviates
considerably during the replications in the first three situations. In contrast, GRID PCA
indicates small SE of the selected numbers of components.

2.4.3 Sensitivity to the size of the validation set

Our last experiment employed a training set containing outliers to construct the PC space
and calculate two critical values. That means, the available information about labels is
required only for the validation set to select the optimal number of PCs. Additionally,
the results from the experiment indicated that some of the compared approaches perform
well even if the size of validation set is reduced to 170 or 57 instances. These findings
motivated us to explore how many observations in the validation set need to be labeled to
achieve satisfying results. We fix training and test sets to the same size, 378 observations,
and vary the number of observation in the validation set from 21 up to 378 instances.
We simulate the biggest speech subgroup as the main observations and we add 5% from
the other two audio groups as outliers. PCOut is not included to this experiment since it
does not use a validation set.

Figure 2.4 (left) shows that both GRID PCA and OGK PCA are sensitive to the size of
the validation set. Additionally, the AUC deviates considerably with decreasing size of
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Figure 2.3: Detailed investigation of the resulting AUC during the replications for
different partitions of training, validation, and test set (training/validation/test set) cor-
responding to the following size of sets: 1: 378/378/380, 2: 283/283/570, 3: 170/170/796,
4: 113/113/910, and 5: 57/57/1022 observations.

the validation set. In contrast, ROBPCA performs well independently from the number
of instances in the validation set and achieves a high AUC even if the size of the validation
set is small in comparison to the training and test set. In general, the number of PCs (see
Figure 2.4 (right)) decreases with reducing the size of validation set and deviates during
the replications. ROBPCA indicates both small SE and slight decline in the selected
number of PCs.
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Figure 2.4: Evaluation results for varying sizes of the validation set in terms of AUC
(left) and the number of PCs (right). Main observations are randomly selected from the
speech sample.

To stress our conclusion that available labeled validation data set can be small to achieve
reasonable results, we change the main group to music and perform the same experiment.
The size of training and test set is fixed to 168 instances. Figure 2.5 indicates very
similar performance and ROBPCA outperforms the remaining methods in all investigated
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Figure 2.5: Evaluation results for varying sizes of the validation set in terms of AUC (left)
and the number of PCs (right). The speech data are considered as main observations.

2.4.4 Sensitivity to the data characteristics

In this experiment we explore the sensitivity of the compared approaches to the underly-
ing data characteristics with respect to varying data structures given by the different
subpopulations in the audio dataset. We simulate the main observations consisting of
three randomly selected audio subgroups with different sample size and the percentage
of outliers is fixed to 5% of the corresponding main observations. We investigate the case
of one majority subgroup present in the main observations and, in a next step, several
subgroups.

Figure 2.6 shows that the performance is slightly better when a single majority group
is considered. Although ROBPCA and GRID PCA achieve a higher AUC, the results
indicate that these two methods face difficulties in coping with multi-group data structures.
clPca completely fails with AUC of 0.5. Additionally, the values for the the SE of AUC
are considerably higher than in the previous experiments. Overall, there is no clear
dependency between the number of PCs and the different multi-group data structure.
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Figure 2.6: Evaluation results for different data structures in terms of AUC (left) and
the number of PCs (right).
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2.5 Discussion on critical values
The critical values are given by the quantiles of a χ2 distribution for the SDs and the
quantiles of the unknown distribution for the ODs which can be estimated by a robust
Wilson-Hilferty approximation. Both critical values are based on the assumption of
multivariate, normally distributed main observations. Those critical values are always an
approximation since the distribution itself is estimated from the given observations. The
central χ2 distribution of the SDs and the non-central χ2 distribution of ODs get distorted
if the assumptions of normality are violated. In our experiments, we clearly observed
data structures, which do not follow a normal distribution. We partly absorb this effect
by using robust estimations. Therefore, the majority of observations can be properly
modeled based on a normal distribution. To cope with the distorted distributions of
the distances in addition to using robust estimations, we suggest to take advantage of
the availability of validation data and to adjust the critical values. For this purpose, we
can maximize the AUC performance for each fixed number of components, varying the
critical values for SDs and ODs. Note, that the only meaningful critical values are the
distances given by pre-labeled outliers. All other possible values will increase the FPR,
without affecting the TPR. Thus, the necessary computational effort is very acceptable.

The main benefit of this procedure is the resulting robustness towards the number of
chosen PCs. Figure 2.7 shows this effect for ROBPCA for one example of speech main
observations with 5% outliers. The experiment indicates that performing the outlier
detection for a low number of PCs is sufficient. Thus, even though the adjustment
needs computation time, the total computational effort decreases, since it is no longer
necessary to calculate a whole range of different numbers of PCs. At the same time,
the risk of choosing an inappropriate number of PCs vanishes with increasing number
of observations. It can be easily shown that the adjustment will asymptotically always
perform at least as good as the theoretical critical values with increasing numbers of
validation observations. If the theoretical assumptions of multivariate normal distribution
holds where observations with large Mahalanobis distance are classified as outliers, the
adjustment converges to the provided theoretical critical value due to the law of large
numbers. For any non-normal distribution it converges to the respective true critical
value and, therefore, it outperforms the theoretical critical values, derived from false
assumptions. However, for large number of observations, especially outlying observations,
the adjustment converges. Thus, the method should only be used to analyze setups where
enough outlying observations allow for a proper estimation of the ROC curve.

2.6 Conclusion
In this paper we compared different PCA-based algorithms for outlier detection in the
context of a high-dimensional audio data set. Since the classical PCA (Jolliffe, 2002) is sen-
sitive to the presence of outliers in the training data, we employed several, well-established
robust PCA methods, such as GRID PCA (Croux et al., 2007), ROBPCA (Hubert et al.,
2005), OGK (Maronna and Zamar, 2002), and PCOUT (Filzmoser et al., 2008), to better
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Figure 2.7: Comparison of AUC values depending on the number of components. While
the quality of the classification for the classical critical values is highly depending on the
chosen number of components, the adjusted critical values remains at an almost constant
level.

reveal outlying samples. We performed a thorough investigation of the sensitivity of the
employed approaches with respect to different data properties, percentage of outliers,
and size of the available training data. In all of those settings, ROBPCA performed at
the same level as the GRID and OGK algorithms. However, ROBPCA showed much
lower sensitivity towards changes in the number of available training and validation
observations. The reason for this property is the fewer necessary number of PCs to
properly model the data structure. If the number of available observations is too low to
create the necessary PCA space or to properly evaluate the used PCA space, the quality
of the outcome decreases. We therefore recommend the usage of ROBPCA for outlier
detection in similar setups where few pre-labeled observations allow for the individual
estimation of a proper number of PCs. Further utilization of pre-labeled observations
is possible by adjusting the critical values for outlier detection if the observations do
not follow a normal distribution. In such a situation, if the number of observations,
especially outliers, is big enough, the adjustment can significantly improve the quality of
the proposed procedures, providing a more robust set of critical values, which are able to
cope with skewed distributions.
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CHAPTER 3
Clustering of imbalanced

high-dimensional media data

Abstract: Media content in large repositories usually exhibits multiple
groups of strongly varying sizes. Media of potential interest often form
notably smaller groups. Such media groups differ so much from the remaining
data that it may be worthy to look at them in more detail. In contrast,
media with popular content appear in larger groups. Identifying groups of
varying sizes is addressed by clustering of imbalanced data. Clustering highly
imbalanced media groups is additionally challenged by the high dimensionality
of the underlying features. In this paper, we present the Imbalanced Clustering
(IClust) algorithm designed to reveal group structures in high-dimensional
media data. IClust employs an existing clustering method in order to find
an initial set of a large number of potentially highly pure clusters which are
then successively merged. The main advantage of IClust is that the number
of clusters does not have to be prespecified and that no specific assumptions
about the cluster or data characteristics need to be made. Experiments on
real-world media data demonstrate that in comparison to existing methods,
IClust is able to better identify media groups, especially groups of small sizes.

Key words: Clustering; Imbalanced data; High-dimensional data; Media
data; LOF

Co-authors: Maia Zaharieva, Peter Filzmoser, Thomas Ortner, Christian
Breiteneder

39



3. Clustering of imbalanced high-dimensional media data

3.1 Introduction

Nowadays, large media repositories, such as YouTube1 and Vimeo2, are facing continuous
additions of new, unknown material. Media, such as videos, sounds, and images, are
straightforward to capture and share due to recent developments and advances of existing
technologies. The processing and analysis of large amounts of unknown material is very
challenging when trying to understand media content and when there is no prior knowledge
available. Additionally, media of potential interest can easily get lost in the mass of
available data. In this context, interestingness is a data-driven concept describing content
which is that much different from the remaining data and, therefore, it is potentially
worthy to look at in more detail. As any other data collection, media data commonly
exhibits multiple groups. The underlying groups of media have strongly varying sizes,
and therefore such a data set is considered as highly imbalanced. While larger groups
represent a common type of media (e.g. video recordings of a popular music band), very
small groups (even a size of one) commonly indicate atypical content and, thus, potential
interesting material (e.g. video recordings of a non-famous street musician). The task of
identifying small groups is additionally challenged by the characteristics of multimedia
content. Media data are commonly represented by means of high-dimensional features.
Conventional clustering methods based on traditional model assumptions usually fail
in such a situation (Kriegel et al., 2009b). Therefore, the focus of this paper is on
developing a cluster algorithm which addresses two core challenges: 1) clustering in a
high-dimensional data space and 2) clustering imbalanced data with special attention on
mining small groups.

Detecting clusters in high-dimensional space is commonly addressed by subspace or
projected clustering algorithms which search for clusters in a subset of dimensions.
Therefore, such methods are suitable for high-dimensional data where there is a large
proportion of noise variables. However, these methods usually require for a parameter
specification (Parsons et al., 2004) which may be problematic, especially for media
data where no prior knowledge is available. On the contrary, if the number of noise
variables is not too high, model-based clustering methods (e.g. Fraley and Raftery, 2000)
or density-based algorithms (Kriegel et al., 2011), could still achieve promising results.
Nevertheless, density-based approaches might be more appropriate for media data. Such
methods commonly do not rely on any prior knowledge (e.g. number of clusters, shapes
of clusters, and distribution of clustered points), which might be very beneficial when
clustering media data.

Clustering imbalanced data, where group sizes are very different, causes additional
challenges. Even though the research area of imbalanced clustering is not recent, there are
still open issues which need to be addressed in the development of new methods (Krawczyk,
2016). A very first problem addressed by Krawczyk (2016), which usually occurs in
centroid-based methods, is the so-called uniform effect. This means that a clustering

1http://www.youtube.com
2http://www.vimeo.com
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algorithm generates clusters of similar sizes. Some observations from larger groups
are mixed with those from smaller groups. In order to prevent the effect, Krawczyk
(2016) proposed a hybridization of centroid-based and density-based methods. Another
proposal can be found in literature (e.g. Wang and Chen, 2014; Qian and Saligrama,
2014). However, most approaches assume prior knowledge of the number of clusters in
order to handle varying levels of imbalanced data. Finally, Krawczyk (2016) pointed
out on the potential of discovering very small groups which could be useful for further
analysis. Indeed, media collection is a good example of imbalanced data where small
groups are of potential interest.

In this paper, we propose the Imbalanced Clustering (IClust) algorithm, an approach
which is able to identify data groups of potentially strongly varying sizes. The procedure
first employs an existing method which is forced to produce a large initial set of potentially
pure clusters. Subsequently, clusters are successively merged using two merging conditions
based on the outlier detection method - Local Outlier Factor (LOF) (Breunig et al.,
2000). The algorithm stops when two merging conditions are not satisfied and, therefore,
the final number of clusters does not need to be pre-specified. This is an advantage over
most existing methods. Moreover, the proposed approach detects clusters of strongly
varying sizes without any specific assumptions about the cluster or data characteristics,
which is very important for clustering media data. Eventually, we employ a modification
of the standard F-measure (Larsen and Aone, 1999) in order to better assess the ability
of a clustering approach to find small and, thus, potentially interesting groups.

The remainder of this paper is organized as follows. Section 3.2 motivates the design
of the proposed algorithm and describes it in detail. In Section 3.3, we select optimal
parameters for the proposed algorithm, and results on real-world media data sets are
presented in Section 3.4. Section 3.5 concludes the paper.

3.2 Proposed clustering algorithm

The idea for our algorithm originates in the need to efficiently detect small groups in
media data, containing potentially interesting information. Small groups can easily get
lost in a large media collection exhibiting groups of strongly varying sizes. In order to
identify highly imbalanced groups, we employ the Local Outlier Factor (LOF) (Breunig
et al., 2000), which was originally designed to reveal outliers deviating from clusters.

3.2.1 Background on Local Outlier Factor (LOF)

Preliminary experiments indicated that LOF is a highly effective approach for the
identification of very small groups in media data as outliers in comparison to other
existing approaches. In general, LOF determines the degree of outlyingness of an
observation. The degree reflects to which extent an observation is isolated from its
predefined number of the nearest observations. Let X = (x1, . . . ,xn)> ∈ Rp be a data
set of n observations from the Euclidean space of p dimensions. The LOF score for each
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observation xi, i = 1, . . . , n, is defined according to Breunig et al. (2000) as:

LOFq(xi) = 1
Nq(xi)

∑
x∈Nq(xi)

lrdq(x)
lrdq(xi)

, (3.1)

where Nq(xi) denotes the local neighborhood for xi defined by its q nearest observations,
i.e. neighbors, and lrdq(xi) corresponds to so-called local (reachability) density of xi.
The local density of xi reflects how distant xi is with respect to its q nearest neighbors on
average, taking into account the distances of its neighbors to their nearest observations,
see Breunig et al. (2000) for more details. In general, if xi belongs to a cluster, i.e. xi

is surrounded by or close enough to its neighbors x ∈ Nq(xi), the local density of xi is
similar to the local densities of its neighbors. As a consequence, LOFq(xi) achieves a
value of approximately 1. In contrast, an observation xi deviating from a cluster has
considerably different local densities than its neighbors since xi is highly isolated from
its neighbors. Therefore, such an observation receives LOFq(xi) >> 1 and can thus be
declared as outlier.

In addition to the ability of LOF to detect outliers based on large LOF scores, the LOF
approach exhibits several properties which might be very useful in clustering imbalanced
data. First, LOF considers both distances between observations and local densities of
observations, and, therefore, it is suitable for the contaminated data with the clusters of
varying sizes and densities (Hasan et al., 2009). Second, the decision of declaring a point
as an outlier seems to be insensitive to the choice of the predefined number of neighbors
necessary for calculating LOF scores (Hasan et al., 2009). Next, LOF does not rely on
any specific assumptions on the cluster characteristics (Breunig et al., 2000), which is
particularly important for high-dimensional media data where such assumptions could
not be verified. Finally, Zimek et al. (2012) demonstrated that LOF achieves promising
results if the number of informative variables in the high-dimensional data is not too low.
We expect that media data also contain many informative variables, while, for example,
for gene expression data this might not necessarily be the case.

Despite the mentioned advantages of LOF and the fact that the method is capable of
detecting very small groups in media data as outliers, we still need to adjust the usage of
LOF in order to recover a whole group structure in imbalanced media data.

3.2.2 Naive approaches

A naive idea would be to remove the detected outliers from the data, and to use existing
cluster methods for clustering the larger groups. However, this leads to difficulties
since the resulting group sizes might still be very different and because many clustering
algorithms assume a certain shape of the clusters. Another idea would be a recursive
identification of the clusters, by starting to build the first cluster in the most dense
and compact region. In the following, LOF can be used to decide which points are still
members of this cluster, and which point is too far away (outlier) in order to form a new
cluster. However, this decision can become unreliable as illustrated in Figure 3.1. Suppose
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that there are two groups C1 and C2 with different sizes and densities (left picture).
Assume that the first cluster K has been constructed and it needs to be decided whether
or not observation x still belongs to cluster K (middle picture). If the neighborhood size
used to compute the LOF score is not small enough, the point x would be assigned to
cluster K because of the different point densities of the underlying clusters (right picture).
Using a very small neighborhood size instead would again be unreliable because the
decision would be based on too little information. Therefore, for being able to identify
groups of very small sizes, even of size one, we need to modify the concept, which leads
to the proposed IClust approach.

C1

C2

x

K

C2

x

K

C2

Figure 3.1: Example of a data set with two groups of different sizes and densities, C1
and C2 (left); the correctly identified group C1 as a cluster K with its next closest point
x from group C2 displayed in black color (middle); a wrong assignment of x to K due to
a LOF-based decision (right).

3.2.3 The IClust algorithm

The proposed algorithm is conducted in two steps. In the first step of IClust, we identify
a large number of initial clusters by employing an existing clustering method. We suggest
to take a simple existing method which allows to control the number of clusters, e.g.
k-means. The large number of initial clusters leads to potentially highly pure regions
of comparable densities of clustered points. In the second step, we merge clusters by
employing the LOF approach. In each merging step it is investigated if two closest
clusters share the same local densities; if this is the case, the clusters are merged. This
avoids the wrong assignment as indicated in Figure 3.1. The algorithm iteratively tries
to merge the next two closest clusters until there are no clusters to be merged. We give
a detailed description of each step in the following sections.

3.2.4 Identifying the initial set of clusters

In the first step, the data set is split into an initial set of clusters by applying an
existing clustering algorithm to subdivide the underlying data set into a large number of
clusters. Although such a partitioning leads to over-clustering of the data, it allows for
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the detection of (highly) pure clusters. We propose to use such a clustering algorithm
that is less computationally demanding and requires for the number of clusters only in
order to enable to control the number of initial clusters and not to be influenced by a
wrong choice of parameters which is usually data-dependent, e.g. k-means.

The number of initial clusters kinit needs to be set large enough (larger than the true
underlying number of clusters) in order to increase the probability of obtaining highly
pure clusters. However, the value of kinit should not be too large to have a sufficient
number of observations, i.e. information, in most clusters for the merging procedure.
There are several possibilities for the determination of the number of initial clusters.
For example, Bloisi and Iocchi (2008) suggest to partition the data into n/4 clusters.
Owsiński and Mejza (2007) recommend the number to be set to n1/2. In Section 3.3
we investigate different selection strategies for kinit and their influence on the clustering
solution.

We will experiment with several well-known clustering methods to identify the optimal
choice for a starting clustering algorithm in Section 3.3. We consider two partitioning
methods, k-means (Hartigan and Wong, 1979)3 and Partitioning Around Medoids (Kauf-
man and Rousseeuw, 2005)4, two hierarchical methods, complete linkage and Ward’s
method (Murtagh and Legendre, 2014)5, and the model-based clustering method Mclust.
All methods have certain drawbacks in terms of generating specifically shaped clusters
and they suffer from the so-called uniform effect. By incorporating these methods in the
first step we can enhance their performance in a highly imbalanced scenario. A large
number of clusters generated by these methods avoids the uniform effect. Furthermore,
over-clustering can prevent from being affected by the assumption about the shapes of
clusters.

To illustrate both aspects, we apply k-means on an imbalanced data set. We consider
a simple 2D data set with three groups of different sizes as shown in Figure 3.2 (left).
Applying k-means with the true number of clusters, i.e. k = 3, results in the wrong
assignment of observations from the large group to the smaller groups, see Figure 3.2
(middle), because k-means tends to produce spherically shaped clusters. In contrast,
k-means with a larger number of clusters, e.g. k = 6, results in a solution as shown in
Figure 3.2 (right), where the smaller groups are correctly detected and the large group is
split into four small but pure clusters. Therefore, in the next step, we aim at merging
small clusters that likely belong to the same group while keeping well-isolated and, thus,
potentially correctly detected small groups.

3.2.5 Merging procedure

The aim of the second step is to iteratively merge clusters that are close to each other
and share the same local densities. The underlying assumption is that such clusters

3k-means is implemented in R package stats (R Core Team, 2016).
4PAM is implemented in the R package cluster (Maechler et al., 2015).
5Complete linkage and Ward’s method are implemented in the R package cluster (Maechler et al.,

2015).
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3.2. Proposed clustering algorithm

Figure 3.2: The effect of k-means applied on a 2D imbalanced data set. Imbalanced data
set with three groups (left), k-means with three clusters (middle) and k-means with six
clusters (right).

contain observations from the same group. In order to consider both distances and local
densities, we propose to investigate if a point from one cluster can be considered as part
of a second cluster and vice versa by employing the LOF. The purpose of investigating
two clusters twice is to avoid that a cluster of low density is merged with a cluster of
high density, as discussed at the beginning of this section. Therefore, we introduce the
two merging conditions which need to be satisfied to merge the two closest clusters.

Let X = (x1, . . . ,xn)> be a data set of n observations and {Kr|r = 1, . . . , kinit} the
initial set of clusters, where Kr = {xir |ir ∈ Ir} contains observations from the index set
Ir = {1r, 2r, . . . , |Kr|r}. The merging procedure starts by finding the two closest clusters,
Kl and Km, based on the minimum distance between each pair of observations coming
from different clusters (single linkage approach). In addition, the two closest points,
xo ∈ Kl and xp ∈ Km, are identified such that

d(xo,xp) = min
xil
∈Kl,xim∈Km

d(xil
,xim). (3.2)

Subsequently, we investigate whether or not the two clusters should be merged.

For illustration, we consider the simple example in Figure 3.3 (left) showing two clusters
Kl and Km with the corresponding closest points xo ∈ Kl and xp ∈ Km. Figure 3.3
(middle) shows the idea of investigating whether or not xp can be part of Kl considering
that the neighborhood is defined by three closest neighbors, denoted as q = 3. The
plot particularly indicates that xp is close to its three neighbors from Kl, which are
located in the circle around xp. In addition, it seems that the observations located in the
neighborhood (displayed as circles) form a compact region of similar local densities. As a
result, the LOF score of xp should be approximately 1. In such a case, we conclude that
xp can be considered as part of the second cluster Kl.

Formally, we calculate the LOF score for observations from Kl and the point xp according
to (Breunig et al., 2000) for a predefined range of the number of nearest neighbors q,
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Figure 3.3: Illustration of the proposed merging procedure for two clusters Kl and Km

with the corresponding closest points xo ∈ Kl, xp ∈ Km (left). The neighborhood of xp

with its three nearest neighbors is displayed as circles. xp is close to its three neighbors
(from Kl) located in the circle around xp (middle). xo is highly isolated from its three
neighbors (from Km) located in the circle around xo (right).

determined by the maximal number of nearest neighbors qmax:

LOFq(xi), i ∈ {Il ∪ p}, q = 1, 2, . . . , qmax, (3.3)

This results in several values of the LOF score for each observation depending on the
range of q. The reason for considering different choices of q is to obtain more information
about the local densities with respect to various sizes of the neighborhood. Subsequently,
we calculate a representative value, lof(xi):

lof(xi) = 1
|q|
∑

q

LOFq(xi) i ∈ {Il ∪ p}, q = 1, 2, . . . , qmax, (3.4)

where |q| denotes the number of different choices of q. We provide an empirical study
on the proper choice of q in Section 3.3. For now, suppose that q is given. The value of
lof(xi) describes the average similarity between the local density of an observation xi

and the local densities of its neighbors. In addition, lof(xi) has similar properties as the
LOF score since it is a linear combination of the original scores. The higher the value of
lof(xp), the more different are the local densities of xp with respect to neighbors from
Kl, and the more likely xp is an outlier with respect to Kl, i.e. xp cannot be a part of
Kl. In order to decide if the compared local densities are similar, i.e. xp can be part of
Kl, it is necessary to determine how large lof(xp) still can be to consider xp as part of
Kl . The most convenient option would be to decide on the basis of the resulting LOF
scores. Therefore, we estimate a critical value cvp from the values of LOFq(xi), where
i ∈ {Il ∪ p} and q = 1, 2, . . . , qmax. There are several possibilities for the determination
of the critical value, such as using the arithmetic mean and standard deviation or robust
versions thereof. The optimal strategy for the estimation of the critical value is presented
in Section 3.3. For now, we assume that cvp is given and we test if the first merging
condition, lof(xp) < cvp, holds. If the first condition is fulfilled, we consider the compared

46



3.3. Selection of parameters

local densities similar and apply the same comparison on xo with respect to Km, i.e. we
investigate if xo can be considered as part of the opposite cluster Km.

Figure 3.3 (right) shows that xo is considerably isolated from its three closest neighbors
fromKm and that the observations do not build any compact region. In such a case we can
conclude that there are huge differences in the local densities. Therefore, LOFq(xo)� 1
which indicates that xo can not be considered as a part of the second cluster Km.
Formally, we calculate the LOF score for the observations from Km and the point xo

for the predefined range q = 1, 2, . . . , qmax. The critical value cvo is estimated in the
same way as cvp. Subsequently, we test if the second merging condition, lof(xo) < cvo, is
satisfied. If this condition is not fulfilled, the two clusters, Km and Kl, are not merged
and the next two closest clusters are investigated. The merging procedure stops if the
two conditions are not satisfied for any pair of clusters.

The proposed IClust algorithm exhibits several advantages. First, the number of final
clusters does not need to be pre-specified due to the employed merging procedure. Second,
the proposed procedure makes no assumptions about the cluster characteristics. The
local densities are estimated in a non-parametric way following the definition of LOF.
Finally, IClust detects clusters of partly strongly varying sizes. By using an existing
clustering algorithm with a large number of clusters, we avoid the so-called uniform
effect. For illustration, we consider the 2D imbalanced data set and apply k-means with
k = 6 to generate an initial set of clusters as in our first example in Figure 3.2 (right).
Figure 3.4 shows each merging of the two next closest clusters. The final result indicates
that both smaller and larger groups are correctly detected.

Figure 3.4: The merging procedure successively merges clusters that are close to each
other and share the same distribution. The final solution indicates that the detected
clusters correspond to the actual group structure.

3.3 Selection of parameters
In this section, we investigate different strategies for the parameter selection. The IClust
algorithm requires for four input parameters: 1) the critical value, cvo (cvp), 2) the
range of the nearest neighbors, q, 3) the number of initial clusters, kinit, and 4) the
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3. Clustering of imbalanced high-dimensional media data

starting clustering algorithm. While the first two parameters are employed in the merging
procedure, the last two parameters are used to partition the data set into an initial set
of clusters. Since two parameters depend on each other, we always fix one parameter
to investigate the second one and vice versa. The optimal parameter setting is chosen
based on thorough empirical experiments employing the audio data set.

The audio data set consists of 4780 observations which is a collection of 12 different
audio sounds. Each observation is represented by a feature vector of 679 dimensions.
The extracted features capture a wide range of audio properties and operate in the
temporal and frequency domains, i.e. the data include features such as zero crossings,
amplitude, brightness, features from the MPEG7 standard, perceptional features, and
various cepstral coefficients. In our experiments we randomly sample observations from
the original groups to create imbalanced data sets. The variables of each constructed
data set are normalized to mean 0 and standard deviation 1.

3.3.1 Critical value

The first experiment investigates different strategies for the estimation of the critical
values, cvo and cvp, employed in the merging procedure. The critical values determine
whether or not two clusters should be merged. Both critical values are estimated in
the same way, therefore, let cv be a general estimation of the critical value. The value
of cv is supposed to be automatically derived from the LOF scores calculated for the
observations from two clusters. We consider several possibilities for the estimation of
cv including arithmetic mean, mean(), empirical standard deviation, std(), and robust
versions, such as the median, median() and the median absolute deviation, mad():

cv1 = median
q,i

(LOFq(xi)) + 2 mad
q,i

(LOFq(xi)) (3.5)

cv2 = mean
q,i

(LOFq(xi)) + 2 std
q,i

(LOFq(xi)) (3.6)

cv3 = median
i

(lof(xi)) + 2 mad
i

(lof(xi)) (3.7)

cv4 = mean
i

(lof(xi)) + 2 std
i

(lof(xi)), (3.8)

where i is either from the index set {Il ∪ p} for the first merging condition or from
{Im∪o} for the second merging condition. The range for the number of nearest neighbors
determined by qmax is fixed tomin(|{Il∪p}|−1, 5) andmin(|{Im∪o}|−1, 5), respectively.

Since cv determines whether or not two clusters should be merged, we investigate two
situations. We first simulate the situation when two clusters should not be merged, i.e.
the underlying observations are from two different groups. The second situation considers
two clusters containing observations from the same group and, therefore, the two clusters
are supposed to be merged. For this experiment we employ observations from the audio
data. We randomly sample two clusters either from two different audio groups or from
the same audio group. The sampled clusters are of varying sizes of 30, 25, 20, 15, 10, 5, 3, 1.
We investigate each possible pairwise combination thereof and perform 10 replications
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for each combination. The percentage of correct decisions is considered as a performance
indicator for the different strategies for the estimation of the critical value, cv.

The results of this experiment are presented in Figure 3.5. For all strategies, the
percentage of correct decisions is higher when the two investigated clusters are sampled
from the same group, see the right (white) boxplot for each strategy, in comparison to
the situation when the clusters are sampled from different groups, see the left (gray)
boxplot for each strategy. In general, the robustly estimated critical values, i.e. cv1 and
cv3, outperform their standard counterparts. Since there is no clear difference between
the two robust strategies, we select cv1 as the estimation of the critical values for all our
following experiments.
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Figure 3.5: Comparison of different strategies for the estimation of the critical value cv.
For each cv two boxplots are displayed. The left (gray) boxplot represents the results
when two clusters are sampled from two different groups and the right (white) boxplot
when the two clusters are sampled from the same group.

3.3.2 Number of nearest neighbors

The aim of the second experiment is to determine the optimal range for the number of
nearest neighbors, q = 1, 2, . . . , qmax, considered in the merging procedure. We investigate
three options for the maximal number of nearest neighbors, qmax = 5, 10, 15. We employ
the same clusters as in the previous experiment and the percentage of correct decisions
as an indicator for the optimal choice of qmax.

Figure 3.6 summarizes the results of the experiment. In general, all choices of qmax lead
to a high percentage of correct decisions and no clear difference can be observed. As a
result, we choose qmax = 5 for all our following experiments for computational reasons.
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Figure 3.6: Comparison of different maximal numbers of nearest neighbors, qmax. Two
boxplots are shown for each qmax. The left (gray) boxplot represents the results when
two clusters are sampled from two different groups and the right (white) boxplot when
the two clusters are sampled from the same group.

3.3.3 Number of initial clusters

The goal of this experiment is to identify the best strategy for the selection of the number
of initial clusters, kinit, employed in the first step of the proposed IClust algorithm. The
parameter is used to partition a given data set into a number of potentially highly pure
clusters which are successively merged in the second step of IClust. In general, kinit is
supposed to be larger than the actual number of groups in the data set. The actual
number of groups is usually not known in advance and the only available information
about the data set is the sample size, n. Therefore, we determine kinit as a function of
n. One possible approach is to set kinit to be linear dependent on n, e.g. kinit = n/4.
However, if the size of a data set is very large, the parameter kinit will get considerably
high which will notably increase the computational effort of the merging procedure. In
addition, a large kinit value leads to a small size of the initial clusters which might affect
the efficiency of the merging procedure.

We investigate various options for kinit to be non-linearly dependent on n, kinit =
5 log(n), 10 log(n), 15 log(n). This experiment is again based on 10 replications of an
imbalanced data set sampled from audio data. In each replication, we randomly select 7
audio groups with 3 bigger groups of the size: 100, 75, 50, and 4 smaller groups of the size:
4, 3, 2, 1, resulting in 235 observations in total. We used Ward’s hierarchical clustering
algorithm to obtain the initial set of clusters.

In order to assess the influence of the different settings for kinit on the final clustering
solution, we select several well-known evaluation measures: Purity (Zhao and Karypis,
2002), F-measure combining the concepts of precision and recall, and V-measure (Rosen-
berg and Hirschberg, 2007) incorporating homogeneity and completeness scores. Such
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measures evaluate a clustering solution as a whole and do not reflect the ability of a
clustering method to correctly detect small groups. For this reason, we also employ
weighted measures which can assess the performance of a clustering method in terms of
detecting small and big groups separately. Table 3.1 contains all employed measures. All
measures range between zero and one with higher values indicating a good clustering
result and lower values corresponding to a poor clustering solution. Additionally, we
provide two reference values representing potential extremes. The first value corresponds
to a clustering solution when all detected clusters are of size one, while the second value
corresponds to a clustering solution when all observations are assigned to a single cluster.
We report the results before and after applying the merging procedure to demonstrate
the performance of the IClust approach in comparison to the initial clustering solution.

Table 3.1: Overview of employed evaluation measures with corresponding abbrevia-
tions (abbr).

evaluation measure abbr weighted evaluation measure abbr
purity P F-measure - big groups wF b

F-measure F precision - big groups wPrb

V-measure V recall - big groups wReb

homogeneity H F-measure - small groups wF s

completeness C precision - small groups wPrs

recall - small groups wRes

Figure 3.7 depicts the results of the experiments using the conventional clustering
evaluation measures. In general, IClust always improves the initial clustering solution
indicated by the notable raise of the F-measure (F ) and the V-measure (V ) which is
directly influenced by the completeness (C) of the corresponding clustering solution.
Additionally, the scores for P and H show that the purity and homogeneity of the initial
clusters are comparable to those of the final clusters. In general, a low number of initial
clusters, kinit = 5 log(n), leads to a high completeness (C) but also to a lower homogeneity
(H) of the final clusters, i.e. final clusters partly consists of observations from different
groups. On the opposite, a higher number of initial clusters, kinit = 15 log(n), results in
purer clusters (see P and H). Additionally, V , C, and F are only slightly lower than
for kinit = 10 log(n). This may indicate that kinit = 10 log(n) is the proper choice. To
further explore the influence of the different settings for kinit, we additionally consider
the weighted clustering evaluation measures.

Figure 3.8 summarizes the results of the weighted evaluation measures. The high
scores for wPrb indicate highly pure clusters containing observations from bigger groups
independently of kinit. However, the corresponding recall (wReb) decreases with an
increasing number of initial clusters which reveals that bigger groups are represented by
several clusters in the final clustering solution. This indicates that there are not enough
observations in most initial clusters leading to difficulties for a proper merging. As a
result, a high number of initial cluster, kinit = 15 log(n), results in a lower F-measure
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Figure 3.7: Comparison of the clustering results for different numbers of initial clusters,
kinit, using purity (P ), V-measure (V ), homogeneity (H), completeness (C), F-measure
(F ), and number (#) of clusters. For each kinit two boxplots are displayed. The results
of the final clusterings correspond to the left (gray) boxplot and the results of the
initial clusterings to the right (white) boxplot. The lines indicate two extreme clustering
solutions. Solid lines: all clusters are of size one. Dashed lines: all observations are
assigned to a single cluster.

(wF b) in comparison to the extreme situation all observations build a single final cluster.
With respect to small clusters, with an increasing number of initial clusters the precision,
wPrs, increases while the recall, wRes, decreases slightly. A too low number of initial
clusters, such as kinit = 5 log(n), results in a poor clustering solution indicated by the
lower median of wF s in comparison to the potential extreme situation with all final
clusters of size one. Therefore, we set kinit = 10 log(n) for all our following experiments.

3.3.4 Initial clustering algorithm

The last experiment focuses on the selection of the starting clustering algorithm employed
in the first step of IClust to partition the provided data set into a number of initial clusters.
For this evaluation we consider the following clustering methods (see Section 3.2.4): k-
means (KM), Partitioning Around Medoids (PAM), Mclust (MC), and a hierarchical
clustering with Ward’s criterion (W) and complete linkage (CL). The experiment is again
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Figure 3.8: Comparison of the clustering solutions for different numbers of initial clusters,
kinit, using the weighted measures for F-measure (wF ), precision (wPr), and recall (wRe)
with respect to small (s) and big (b) clusters. For each kinit two boxplots are displayed.
The results of the final clusterings correspond to the left (gray) boxplot and the results
of the initial clusterings to the right (white) boxplot. The lines indicate two extreme
clustering solutions. Solid lines: all clusters are of size one. Dashed lines: all observations
are assigned to a single cluster.

based on 10 replications of an imbalanced data set randomly sampled from the audio
data. The employed data sets are identical to the data sets in the previous experiment.

Figure 3.9 presents the results using the conventional clustering evaluation measures. In
general, the proposed IClust algorithm improves the initial clustering solution indepen-
dently of the employed starting clustering method. This seems to confirm our assumption
that IClust can enhance the performance of methods suffering from the uniform effect.
The high scores for purity (P ) and homogeneity (H) indicate the IClust results in highly
pure clusters. Although the F measure indicates slightly better clustering results for
PAM than for its counterparts, overall, the results do not show any clear differences
across the employed starting clustering algorithms.

Figure 3.10 summarizes the results using the weighted clustering evaluation measures.
The high precision scores (wPrb) indicate that clusters containing observations from
bigger groups are highly pure. However, the lower recall (wReb) and, in following, the
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Figure 3.9: Comparison of the performance of different initial clustering algorithms, k-
means (KM), PAM, Mclust (MC), and a hierarchical clustering with Ward’s criterion (W)
and complete linkage (CL) using the conventional clustering evaluation measures: purity
(P ), V-measure (V ), homogeneity (H), completeness (C), F-measure (F ), and number
(#) of clusters. Two boxplots are shown for each algorithm. The results of the final
clusterings correspond to the left (gray) boxplot and the results of the initial clusterings
to the right (white) boxplot. The lines indicate two extreme clustering solutions. Solid
lines: all clusters are of size one. Dashed lines: all observations are assigned to a single
cluster.

lower F-measure (wF b) show that bigger groups are commonly partitioned into multiple
clusters. The PAM clustering method slightly outperforms the other employed methods
in terms of wF b. However, wF s indicates that PAM cannot reveal smaller groups since
the median is below the value representing the extreme clustering result with all final
clusters of size one. Similarly, complete linkage (CL) and k-means (KM) achieve a wF s

close to the extreme clustering solution. Both methods generate clusters containing
observations from more than a single group. Therefore, the precision with respect to
smaller groups (wPrs) achieves low scores and directly influences the F-measure (wF s).
Ward’s method (W) and Mclust (M) better facilitate the detection of small groups in
terms of wF s. For all our following experiments we select Ward’s method (W) as the
starting clustering approach since it is less computationally demanding than the Mclust
(MC) algorithm.

54



3.4. Experimental comparison

wF
b

wPr
b

wRe
b

wF
s

wPr
s

wRe
s

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.4

0.6

0.8

1.0

KM PAM W CL MC KM PAM W CL MC KM PAM W CL MC

KM PAM W CL MC KM PAM W CL MC KM PAM W CL MC

initial clustering algorithm

v
a

lu
e

s

Figure 3.10: Comparison of the performance of different initial clustering algorithms,
k-means (KM), PAM, Mclust (MC), and a hierarchical clustering with Ward’s criterion
(W) and complete linkage (CL) respectively using the weighted measures for F-measure
(wF ), precision (wPr), and recall (wRe) with respect to small (s) and big (b) clusters.
Two boxplots are shown for each algorithm. The results of the final clusterings correspond
to he left (gray) boxplot and the results of the initial clusterings to the right (white)
boxplot. The lines indicate two extreme clustering solutions. Solid lines: all clusters are
of size one. Dashed lines: all observations are assigned to a single cluster.

3.4 Experimental comparison

In this section, we compare the proposed IClust approach to several clustering methods
on four real-media data sets. In our comparison, we considered several existing, well-
established clustering methods: Affinity Propagation (AP) (Frey and Dueck, 2007), Mclust
(MC) (Fraley and Raftery, 2000), and x-means(XM) (Ishioka, 2000). We restrict the
selection of compared methods to parameter-free approaches to ensure that a clustering
solution is not affected by a wrong choice of parameters since a parameter setting
commonly depends on the nature of the underlying data. The empirical simulation study
in Section 3.3 indicated that the Ward’s algorithm (W) seems to be an optimal initial
clustering approach. Therefore, we also include the method in our final comparison. The
number of clusters for the W method is taken as the true number of groups (WT) and it
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is also estimated using three clustering indices6: Davies-Bouldin (WDB), gap statistic
(WG), and Silhouette (WS) (Rousseeuw, 1987). In order to have a fair comparison, the
upper boundary of a predefined range of the number of clusters is set to the same number
of initial clusters employed in IClust, i.e. 10 log(n). Note that the same upper boundary
is considered for Mclust (MC) which estimates the optimal number of clusters based
on the largest BIC value. IClust is employed with the previously determined settings,
cv = cv1, q = 1, 2, . . . , 5, kinit = 10 log(n), and Ward’s hierarchical clustering as the
initial clustering approach.

In addition to audio data, we employ three media data sets publicly available in UCI
machine learning repository7, see Table 3.2. For each media set we randomly select
observations from the original groups to construct a similar imbalanced data sets. The
ratios between group sizes are kept the same among the constructed datasets, but the
sizes of the groups are different. The idea behind this setup is to see whether or not the
compared methods are affected by different amounts of information, i.e. the number
of observations, in the groups. All experiments are based on 10 replications. Since
similarities among the considered evaluation measures were observed, we report the
results using five clustering evaluation measures: V-measure (V ), homogeneity (H),
completeness (C), as well as the weighted F-measures with respect to big and small
clusters (wF b and wF s).

Table 3.2: Overview of the employed real-world data sets in terms of number of observa-
tions (n), dimensionality (p), and number (#) of groups.

n× p ×#groups group size
min max

Audio 4780 × 679 × 12
10299 × 561 × 6
10992 × 16 × 10
6435 × 36 × 6

102 2164
Human Activity Recognition 1406 1944
Pen-Based Recognition 1055 1144
Statlog Landsat Satellite 626 1533

3.4.1 Comparison on the audio data

We first construct 10 imbalanced data sets from the high-dimensional audio data. Each
setting includes 10 groups with 3 bigger groups of the sizes: 100, 75, 50, and 7 smaller
groups of the sizes: 4, 3, 3, 2, 2, 1, 1, resulting in 241 observations in total.

Figure 3.11 indicates poor performance of some centroid-based approaches, such as
x-means (XM) and the Ward’s method with Silhouette Width (WS), in clustering highly
imbalanced media (audio) groups. The methods detect a lower number of clusters than
the actual number of groups (cp. WT approach) leading to low homogeneity (H). High

6All clustering indices are implemented in the R package clusterSim (Walesiak and Dudek, 2015).
7UCI Machine Learning Repository: http://archive.ics.uci.edu/ml/
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values wF b indicate that the methods can reasonably reveal bigger groups but low wF s

show difficulties regarding the detection of smaller groups. Similarly, the Mclust (MC)
cannot reveal small audio groups indicated by the lowest wF s. In contrast, high wF b

indicate appropriate handling of bigger groups. The performance of Ward’s method with
the true number of groups (WT) seems to be also affected by the presence of strongly
varying group sizes. Even though the method still generates homogeneous clusters (see
H), slightly low wF s indicate difficulties in identifying very small groups. Although
WDB achieves the highest homogeneity (H) and weighted F-measure with respect to
smaller groups (wF s), the underlying clustering solutions are suboptimal due to the high
number of final clusters leading to the lowest completeness (C) and consequently low
V-measure (V ). Surprisingly, Ward’s method with the Gap statistic (WG) appears to
reasonably detect both smaller and larger audio groups (see wF s and wF b).

The proposed IClust approach outperforms WG in terms of revealing smaller groups
(see wF s). In addition, IClust is capable of finding bigger groups as well (see wF b)
in comparison to methods achieving high homogeneity (H), such as WG and Affinity
Propagation (AP).
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Figure 3.11: Clustering results on the audio data set in terms of V-measure (V ), homo-
geneity (H), completeness (C), the weighted F-measures wF b and wF s with respect to
big and small groups respectively, and the number (#) of detected clusters.
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3. Clustering of imbalanced high-dimensional media data

3.4.2 Comparison on the pen-based recognition data

The second experiment employs 10 imbalanced data sets constructed from the pen-based
recognition data. Each setting contains 10 groups with 3 bigger groups of the sizes:
1000, 750, 500, and 7 smaller groups of the sizes: 40, 30, 30, 20, 20, 10, 10, resulting in a
total sample size of 2380.

Figure 3.12 shows that Ward’s method with the Silhouette Width (WS) and the Davis-
Bouldin index (WDB) seem to have troubles to reveal small groups indicated by low wF s.
Moreover, the methods produced a considerably lower number of clusters leading to low
homogeneity (H) scores. Although the model-based MC and x-means (XM) generate
to some extent homogeneous clusters (see H), low wF b as well as low wF s demonstrate
that the methods completely fail in detecting the considered media groups.

As expected, the proposed IClust method appears to identify both smaller and bigger
groups indicated by high wF s and wF b. Although IClust produces a larger number of
clusters than the true number of groups leading to low completeness (C), the methods
outperform the remaining approach (i.e. WT, AP and WG) in terms of the V-measure (V ).
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Figure 3.12: Clustering results on the pen-based recognition data set in terms of V-
measure (V ), homogeneity (H), completeness (C), the weighted F-measures wF b and
wF s with respect to big and small groups respectively, and the number (#) of detected
clusters.
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3.4.3 Comparison on the human activity recognition data

The next comparison is applied on 10 imbalanced data sets randomly sampled from the
human activity recognition data. Each setting consists of 6 groups with 3 bigger groups
of the sizes: 200, 150, 100, and 3 smaller groups of the sizes: 8, 6, 4, resulting in a total
sample size of 468.

Figure 3.13 shows that Ward’s method with Silhouette Width (WS) and Davies-Bouldin
(WDB) index have again difficulties in clustering imbalanced media groups as in the
previous experiment. Similarly, the performance of x-means (XM) and the model-based
MC appears to be violated by strongly varying group sizes indicated by low homogeneity
(H). The performance of Ward’s method (WT) seems to be also affected like in case of
audio data indicated by low wF s.

The proposed IClust algorithm is slightly worse than the best performing methods, such
as AP and WG, in terms of generating homogeneous clusters (see H). The methods
also detect more clusters than the true number of groups (cp. WT approach) leading to
low completeness (C) and the V-measure (V ). All three methods demonstrate the best
performance regarding the detection of small groups (see wF s).

3.4.4 Comparison on the satellite data

The last experiment compares the employed methods on 10 imbalanced data sets randomly
generated from the satellite data. For each setting we sample 6 groups with 3 bigger
groups of the sizes: 300, 225, 150, and 3 smaller groups of the sizes: 12, 9, 3, resulting in
669 observations in total.

Figure 3.14 shows that identifying media groups is again challenging for WS, WDB and
MC indicated by low homogeneity (H). The detection of small groups is more problematic
than revealing larger groups (see wF s versus wF b) for these methods. Surprisingly,
x-means (XM) generates highly homogeneous clusters. However, this is caused by over-
clustering the considered media data sets leading to the lowest completeness (C) and
thus low V-measure (V ). The low homogeneity (H) scores for WT demonstrate that a
prior knowledge about the actual number of groups does not necessarily lead to a correct
clustering solution in a highly imbalanced scenario.

The proposed IClust algorithm outperforms Affinity Propagation (AP) and the Ward’s
method with the Gap statistic (WG) with respect to handling bigger clusters in terms
of wF b. Regarding the detection of smaller groups, IClust demonstrates comparable
performance (see wF s).

3.5 Discussion and conclusions

We summarize our main findings based on the quality of the compared methods in terms
of the weighted F-measures (wF b and wF s). Unlike conventional clustering evaluation

59



3. Clustering of imbalanced high-dimensional media data

V H C

wF
b wF

s # of clusters

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0

20

40

60

XM MC AP WS WG WDB WT IClust XM MC AP WS WG WDB WT IClust XM MC AP WS WG WDB WT IClust

XM MC AP WS WG WDB WT IClust XM MC AP WS WG WDB WT IClust XM MC AP WS WG WDB WT IClust

clustering method

va
lu

e
s

Figure 3.13: Clustering results on the human activity recognition data set in terms of
V-measure (V ), homogeneity (H), completeness (C), the weighted measures wF b and
wF s with respect to big and small groups respectively, and the number (#) of detected
clusters.

measures, the weighted F-measures allow to inspect the ability of clustering methods to
identify big and small groups.

Figure 3.15 shows the obtained results in terms of the median performance of wF b

and wF s achieved during the previously performed experiments. Overall, there is no
clear dependence between the performance of the methods and the sizes of employed
data sets. However, the results indicate a dependency between identifying bigger and
smaller groups. The methods capable of identifying big groups, such as WS and WDB,
show considerably weaker ability to detect small groups. This supports the fact that
centroid-based methods as well as validity indexes might not be suitable for clustering
imbalanced high-dimensional data. Similarly, the model-based MC demonstrates poor
performance in terms of finding smaller groups. On the opposite, Affinity Propagation
(AP), which does not assume any specific cluster characteristics, appears to be among
the best performing methods in terms of revealing small groups (see dark shades of gray
in Figure 3.15, right). However, the method turns out to poorly detect bigger groups
(see light shades of gray in Figure 3.15, left).

In contrast to all investigated method, the proposed IClust approach shows the best
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Figure 3.14: Clustering results on the satellite data set in terms of V-measure (V ),
homogeneity (H), completeness (C), the weighted measures wF b and wF s with respect
to big and small groups respectively, and the number (#) of detected clusters.

performance in terms of finding small groups and, in addition, the method can still
reasonably identify bigger groups (see dark shades of gray in Figure 3.15, left).

Although any real-world data set exhibits a multiple group structure, it may be difficult
to determine, whether or not the groups are of different sizes if there is no prior knowledge
available. This leads to the question if the proposed IClust algorithm can identify groups
of approximately the same sizes (balanced data setting). For this reason, we perform
an additional experiment on the balanced pen-based recognition data set which was
used to evaluate various clustering methods for high-dimensional data (Müller et al.,
2009). Müller et al. (2009) considered 10 groups of similar sizes resulting in a total size
of 7494. Table 3.3 presents the performance of the compared methods in terms of the
conventional evaluation measures. Although IClust shows slightly worse performance
than the best performing XM, MC, AP, and WG in terms of purity (P ) and homogeneity
(H), the proposed method partitions the data set into a lower number of clusters. This
is indicated by higher completeness (C) as well as higher V-measure (V ). In addition,
the F-measure suggests that IClust may also be used to reveal a group structure in a
balanced data setting.

The proposed method also has limitations. First, IClust takes four input parameters.
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Figure 3.15: Summary of all employed experiments in terms of the weighted F-
measures wF b (left) and wF s (right) with respect to big and small groups. Dark shades
of gray indicate good performance and light shades of gray indicate poor performance.

Table 3.3: Clustering quality of the compared methods on the balanced pen-based
recognition data set with respect to purity (P ), V-measure (V ), homogeneity (H),
completeness (C), F-measure (F ), and the number (#) of clusters.

P V H C F # of clusters
XM 0.916 0.653 0.881 0.518 0.496 79
MC 0.937 0.670 0.930 0.523 0.428 72
AP 0.981 0.615 0.971 0.450 0.218 165
WS 0.795 0.767 0.774 0.760 0.757 12
WG 0.970 0.700 0.959 0.551 0.422 67
WDB 0.626 0.693 0.635 0.763 0.663 8
WT 0.750 0.759 0.739 0.780 0.736 10
IClust 0.823 0.769 0.862 0.693 0.673 35

Although we provided a thorough empirical study to select optimal parameters, the
parameter setting may be tuned for other data sets. Second, IClust tends to generate a
larger number of clusters than the actual number of groups in the data. This might be due
to the estimation of critical values employed in the merging procedure. A possible solution
for improvement could be either to adjust the critical values to the size of the clusters
which are merged during the procedure or to incorporate different robust counterparts
to arithmetic mean and standard deviation. Despite the mentioned limitations, the
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proposed IClust algorithm exhibits also some advantages over existing methods. IClust
does not require a pre-specification of the number of final clusters. This algorithm also
does not assume any specific cluster and data characteristics. Moreover, the experiments
demonstrated that the choice of parameters seems to be reasonable in both imbalanced and
balanced scenarios. This indicates that IClust is a useful clustering method for media data,
and it is a promising method also for other application domains. The R implementation
of the algorithm is also freely available at https://github.com/brodsa/IClust.
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CHAPTER 4
Robust and sparse k-means

clustering for high-dimensional
data

Abstract: In real-world application scenarios, the identification of groups
poses a significant challenge due to possibly occurring outliers and existing
noise variables. Therefore, there is a need for a clustering method which
is capable of revealing the group structure in data containing both outliers
and noise variables without any pre-knowledge. In this paper, we propose a
k-means-based algorithm incorporating a weighting function which leads to
an automatic weight assignment for each observation. In order to cope with
noise variables, a lasso-type penalty is used in an objective function adjusted
by observation weights. We finally introduce a framework for selecting both
the number of clusters and variables based on a modified gap statistic. The
conducted experiments on simulated and real-world data demonstrate the
advantage of the method to identify groups, outliers, and informative variables
simultaneously.

Key words: Clusters; Outliers; Noise variables; High-dimensions; Gap
statistic
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4. Robust and sparse k-means clustering for high-dimensional data

4.1 Introduction
The identification of groups in real-world high-dimensional datasets reveals challenges due
to several aspects: 1) the presence of outliers; 2) the presence of noise variables; 3) the
selection of proper parameters for the clustering procedure, e.g. the number of clusters.
Whereas we have found a lot of work addressing the three aspects separately, a much
smaller number of studies is available in case all three aspects are treated simultaneously.
Indeed, in any large and high-dimensional complex dataset, not only outliers but also
noise variables are very likely to appear. Hence, a clustering method needs to be designed
in such a way that both aspects are taken into account, no matter if outliers are considered
as highly interesting observations due to their typically different content or just as noise.
The data complexity in terms of the number of groups and the proportion of outliers as
well as the number of noise variables very much depends on the dataset itself. Therefore,
a clustering procedure should ideally be data-independent. In other words, no information
about the data complexity should be assumed. The goal of this paper is to introduce a
clustering method designed for such an application scenario.

Considering the task of revealing the group structure in contaminated data, i.e. data
with outliers, a natural step is to first apply an outlier detection procedure to exclude
deviating observations for the following cluster analysis. However, coping with outliers in
such a way might be complicated due to the parameter specification, which is commonly
required by most existing clustering (e.g. the number of clusters) as well as outlier
detection methods (Aggarwal, 2013). A better alternative is to use a clustering method
which directly incorporates a measure of outlyingness through data clustering in order
to reveal clusters and outliers simultaneously as proposed by Campello et al. (2015).
Another possibility to deal with outliers in the context of clustering is to exclude a certain
proportion of deviating observations while applying a clustering method. The idea of
excluding observations, which usually do not fit to an assumed model, lead to so-called
trimming-based clustering approaches. An overview of such methods can be found in the
review by García-Escudero et al. (2010). In order to apply a trimming concept, not only
the number of clusters but also the trimming level, i.e. the proportion of observations
supposed to be discarded, need to be specified in advance. Although García-Escudero
et al. (2011) introduce a diagnostic plot for selecting both parameters using classification
trimmed likelihood curves, the procedure depends on the choice of a data-dependent
parameter that controls the way how potential outliers should be handled. Determining
such a parameter might however be again difficult for real-world data.

The problem of data clustering in the presence of noise variables is usually addressed by
sparse- and variable selection-based clustering approaches. The methods generally aim
at removing noise variables that can easily mask a group structure (Gordon, 1999). An
overview of such methods can be found in the study by Galimberti et al. (2017) with
a special focus on model-based clustering. Although the number of clusters in model-
based clustering is commonly estimated based on the Bayesian information criterion, the
methods usually assume that the size of a group is typically larger than the dimensionality
of the data space where a group is located. Therefore, such approaches might have
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troubles to sufficiently discover groups when a large number of noise variables exist,
which may lead to high-dimensional low sample size groups. A suitable method for
such a situation is introduced by Witten and Tibshirani (2010). The method imposes a
lasso-type penalty on incorporated variable weights in the objective function of k-means
leading to the sparse k-means algorithm. In order to apply the sparse k-means, the
number of clusters needs to be determined in advance, which is hardly possible for most
real-world application scenarios.

The task of identifying groups becomes even more problematic when both outliers
and noise variables are present. For this situation, Kondo et al. (2012) introduce the
robust and sparse k-means (RSKC) that robustifies the sparse k-means by Witten and
Tibshirani (2010) by incorporating a trimming concept. However, the approach assumes
prior knowledge about the number of clusters, the degree of sparsity, and the trimming
level in order to correctly detect clusters. Furthermore, the method has been tested only
in terms of clustering and no evaluation has been performed regarding the detection
of outliers. Such observations may additionally provide useful information about the
analyzed datasets since they usually differ from the main group structure.

In contrast to RSKC, we introduce a robust and sparse k-means-based procedure that is
capable of finding the true underlying structure in very complex data, i.e. data containing
clusters, outliers, and noise variables simultaneously. The presented k-means-based
algorithm incorporates a weighting function employing a measure of outlyingness in order
to automatically assign a weight to each observation. While a high weight indicates
that an observation is part of a cluster, a low weight refers to a potential outlier. The
advantage of using a weighting function is that we do not have to pre-specify any trimming
level as for trimming-based approaches. To exclude noise variables, we use a lasso-type
penalty imposed on the variable weights in an objective function adjusted by observation
weights. In order to correctly detect groups, we eventually propose a framework aiming
at the determination of the optimal parameters, such as the degree of sparsity and the
number of clusters.

The rest of this paper is organized as follows. Section 4.2 briefly reviews k-means-based
clustering approaches and motivates the proposed clustering procedure which is described
in detail in Section 4.3. The parameter selection is presented in Section 4.4 and thoroughly
tested on simulated data sets in Section 4.6. We compare the proposed method with other
k-means-based clustering methods on a real-world dataset in Section 4.7. Section 4.8
concludes the paper.

4.2 k-means-based algorithms

Despite the large number of developed clustering procedures, k-means remains one of
the most popular and simplest partition algorithms (Jain, 2010). Given a data matrix
X = {xij}, i = 1, . . . , n, j = 1, . . . , p, with n observations described by p variables,
the task of finding k clusters based on k-means was originally established using the
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within-cluster sum of squares W k for the given number of clusters k as

W k
j =

k∑
r=1

∑
i∈Kr

(xij −mjr)2, W k =
p∑

j=1
W k

j → min
K1,...,Kk

, (4.1)

where W k
j corresponds to the within-cluster sum of squares in the jth variable and the set

Kr contains the indices of the observations assigned to the rth cluster, for r = 1, . . . , k.
Note that such an optimization problem can also be reformulated with respect to the
between-cluster sum of squares Bk (Witten and Tibshirani, 2010) as

Bk
j =

n∑
i=1

(xij −mj)2 −
k∑

r=1

∑
i∈Kr

(xij −mjr)2, Bk =
p∑

j=1
Bk

j → max
K1,...,Kk

, (4.2)

where Bk
j denotes Bk in the jth variable, mj is the jth coordinate of the overall data

center, and mjr denotes the center of the rth cluster in the jth variable.

Although k-means is very popular, it has several disadvantages that need to be taken
into account when developing a clustering procedure. The first drawback of k-means is
the random initialization of cluster centers, which may lead to non-optimal solutions.
This can be overcome by using an appropriate initialization method; an overview of
such approaches can be found in a study by Celebi et al. (2013). For our method, we
incorporate the ROBIN (ROBust INitialization) approach by Mohammad et al. (2009).
The method is able to find optimal centers in a small number of runs unlike the original
k-means. ROBIN seeks for initial centers that are located in the most dense region and
are simultaneously far away from each other in order to avoid the selection of outliers
as initial centers. In order to identify the observations in highly dense regions, ROBIN
uses LOF (Local Outlier Factor) proposed by Breunig et al. (2000). LOF was primarily
introduced to measure a degree of outlyingness of observations in complex data where
observations tend to form groups. The method compares local densities of observations
with the local densities of their q nearest neighbors using various ratios of the Euclidean
distances. The resulting outlyingness, lofq(xi), of an observation xi close to 1 indicates
that xi is potentially part of a cluster and, therefore, a candidate for an initial cluster
center, as proposed by ROBIN. In contrast, lofq(xi)� 1 suggests that xi is a possible
outlier and thus xi should not be considered as an initial center.

The second limitation of k-means is the employed sample mean that suffers from a lack
of robustness. As a result, k-means is also not resistant against outliers and even a
single deviating observation can affect the final clustering solution (García-Escudero and
Gordaliza, 1999). In order to robustify k-means, Cuesta-Albertos et al. (1997) proposed
a trimmed version defined as

tBk
j =

∑
i∈L

(xij −mj)2 −
k∑

r=1

∑
i∈Kr∩L

(xij −mjr)2, tBk =
p∑

j=1

tBk
j → max

K1,...,Kk,L
, (4.3)

where tBk =
∑p

j=1
tBk

j represents the between-cluster sum of squares calculated on the
untrimmed observations, L denotes the set containing indices of [n(1− α)] (untrimmed)
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observations that have the smallest distance to their closest cluster center, and α is
the trimming level. Such a robustification excludes the α fraction of observations, i.e.
potential outliers, for calculating the cluster centers in order to achieve an accurate
clustering solution if α is chosen correctly according to the true outlier proportion.
Determining α may however be problematic for real-world data. In order to avoid
the parameter-dependent robust k-means, we propose to incorporate a measurement of
outlyingness which leads to a clear decision on determining outliers. Such a concept was
introduced by Filzmoser et al. (2008) in case of a one group data structure resulting in
observation weights. The weights reflect how much an observation is outlying on the
[0, 1]-scale with a low weight indicating a potential outlier. We incorporate the concept
of observation weights in k-means in order to robustify the method in such a way that
no parameter pre-specification is required.

The last disadvantage of k-means occurs when a group structure is detectable only in a
small subset of variables. In order to find such variables, Witten and Tibshirani (2010)
introduced a framework for sparse k-means based on a lasso-type penalty leading to the
problem of maximizing the weighted Bk for a given k and a sparsity parameter l as

Blk =
p∑

j=1
wjB

k
j → max

K1,...,Kk,w
, (4.4)

subject to ||w||2 ≤ 1, ||w||1 ≤ l for w = {wj ≥ 0} ∀j and l ∈ (1,√p ], which can be
solved in an iterative way as proposed by Witten and Tibshirani (2010). The parameter
l controls the degree of sparsity in the variable weight vector, i.e. the values of wj . The
more important (informative) the jth variable, the higher the value of wj . Our method
also uses a lasso-type penalty in the objective function, but the value of Blk is additionally
adjusted by observation weights in order to achieve robustness. Although, the proposed
method is similar to RSKC by Kondo et al. (2012), our procedure can be seen as a better
alternative since no trimming level is required. In addition, we aim at analyzing the data
structure more thoroughly, i.e. discovering clusters, outliers, and informative variables
simultaneously.

4.3 Proposed algorithm
The introduced method is an iterative three-step approach. In the first step, k-means
employing a weighting function is applied on the data space spanned by the variables
with some contribution to a cluster separation (i.e. with the variables having wj > 0,
see Equation (4.4)). The incorporated weighting function robustifies k-means and results
in observation weights reflecting the outlyingness. The second step aims at updating the
variable weights with respect to both clusters and observation weights from the first step.
The two steps are iteratively repeated until the variable weights stabilize. In the third
step, the observations are clustered with respect to the identified informative variables
and the observations with small weights are classified as outliers. The detailed description
of the algorithm is given in the following subsections.
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4.3.1 Step 1: Downweighting outlying observations

The aim of the first step is to robustify k-means by incorporating a weighing function in
order to downweight the influence of potential outliers. Assuming that the number of
clusters k is known, we apply ROBIN with q = 10 (Mohammad et al., 2009) on weighted
data, wX = {wxi} = {wj xij}, ∀i,∀j, where w = {wj = 1/√p},∀j, in order to find the
first k cluster centers. Note that these initial values for wj are considered only in the first
iteration as recommended by Witten and Tibshirani (2010), but in the next iteration wj

will be already different and will better reflect the contribution to a cluster separation.

After applying ROBIN, each observation is assigned to its closest cluster center leading to
the corresponding cluster membership K1, . . . ,Kk. We then propose to apply a weighting
function on the detected clusters to reveal outliers. The weighting function should be a
monotonic decreasing function using an outlyingness measure as an argument in order to
obtain observation weights that range between 0 and 1, with a low weight indicating a
potential outlier. Hence, it is essential to choose both a suitable outlyingness measure
and an appropriate weighting function.

A naive approach is to calculate the Euclidean distance of an observation to its closest
cluster center. However, using the Euclidean distance provides the information about how
far an observation is from its closest center rather than how much an observation deviates
or to what degree it is an outlier. In fact, such information can be easily obtained by
applying LOF on each detected cluster as lof(wxi) := lofq(wxi), i ∈ Kr, ∀r, with q = 10
as recommended by Breunig et al. (2000); Mohammad et al. (2009).

The LOF scores are then standardized as

lof∗i = lof(wxi)−mean(lof(wxi), i ∈ Kr)
sd(lof(wxi), i ∈ Kr) (4.5)

to be suitable for the weighting function with the mentioned properties. Preliminary
studies indicated good empirical results when the observation weights, denoted as v(1)

i ,
were obtained using the translated bi-weight function (Rocke, 1996) as follows

v
(1)
i =


0, lof∗i ≥ c(

1−
(

lof∗i −M
c−M

)2
)2

, M < lof∗i < c,

1, lof∗i ≤M

(4.6)

where i ∈ Kr,∀r, M = med(lof∗i , i ∈ Kr) +MAD(lof∗i , i ∈ Kr), and c = 2. The obtained
weights correspond to the measure of outlyingness values in [0, 1]. While a value close
to 1 indicates that an observation is part of a cluster, v(1)

i ≈ 0 suggests that xi is an
outlier with respect to the detected cluster. The weights based on LOF better express
the degree of deviation than e.g. using a simple Euclidean distance of an observation to
the closest cluster as in RSKC. In addition, the weights should be more robust against
elliptically-shaped clusters due to the properties of LOF; see Breunig et al. (2000). If
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the shape of a cluster is slightly elliptical, RSKC might exclude observations which are
further away from the cluster center but still part of a cluster. After assigning weights to
observations from each detected cluster according to Equation (4.5) and (4.6), we plug
the weights v(1)

i into the weighted between-cluster sum of squares for a given w, and
optimize the cluster assignment as

v(1)
Bk

j =
n∑

i=1
v

(1)
i

(
xij −

1∑n
i=1 v

(1)
i

n∑
i=1

v
(1)
i xij

)2

−
k∑

r=1

∑
i∈Kr

v
(1)
i

(
xij −

1∑
i∈Kr

v
(1)
i

∑
i∈Kr

v
(1)
i xij

)2
(4.7)

p∑
j=1

wj
v(1)

Bk
j → max

K1,...,Kk

. (4.8)

in order to robustify k-means. We can clearly see from Equation (4.7) that if an
observation is a potential outlier, i.e v(1)

i ≈ 0, the distance of such an observation to its
closest cluster center is downweighted by the corresponding value of v(1)

i . In contrast, an
observation with v(1)

i ≈ 1 highly contributes to the maximization. The observation weights
are also used to determine the next cluster centers, i.e. 1∑

i∈Kr
v

(1)
i

∑
i∈Kr

v
(1)
i xij ,∀r, in a

robust way by using the weighted mean of observations in each coordinate. The cluster
centers with the corresponding cluster assignment are iteratively updated until a local
optimum is reached during a certain number of iterations in the sense of maximization of
Equation (4.8). In our experiments the method is allowed to search for the local optimum
during 15 iterations, but also a higher number can be considered. Note that the local
optimum is achieved on the weighted data, i.e. in a data space spanned by the variable
vector with wj > 0 adjusted by the values of wj .

We illustrate the efficiency of the weighting function on an example dataset that consists
of three groups with the same sizes of 40 observations. The group structure is described
by 50 variables leading to high-dimensional low sample size groups. We add 750 noise
variables and contaminate 10% of the observations from each group in the informative
variables and in 75 noise variables; a detailed description of the data setup is provided
in Section 4.6 and corresponds to the first simulation study. Figure 4.1 visualizes the
generated dataset in the space spanned by the first two principal components; the
group membership and outliers are differentiated by colors and symbols. The final
weights, obtained during two iterations given the initial cluster centers by ROBIN, are
shown in Figure 4.2 in decreasing order to visualize the shape of the weighting function.
Importantly, the observation weights are calculated in the data space defined by 50
informative variables. In other words, we now assume that w is known beforehand in
order to demonstrate the concept of the weighting function. We can see in Figure 4.2 that
all observations from group 3 are correctly assigned to cluster 1 because no observations
from group 3 are visible in the following plots. The plot particularly indicates that the
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4. Robust and sparse k-means clustering for high-dimensional data

weighting function works properly since all non-outliers obtain a weight around 1. In
contrast, outliers placed in informative variables receive a weight around 0 and can thus
be easily identified. A similar conclusion can be made in case of the other two clusters;
see Figure 4.2 and Figure 4.2. The plots may suggest that the non-outliers with a weight
smaller than 1 could be located on the edge of a cluster or slightly further from the other
clustered observations. However, we cannot reveal outliers placed in noise variables as
indicated by their weights equal to 1, since the noise variables are not involved in the
clustering due to their zero weights.
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Figure 4.1: The generated dataset shown in the principal component space. The
observations from 3 groups, outliers placed in informative and noise variables are displayed
in different colors and symbols.
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Figure 4.2: Illustration of incorporating the weighting function in k-means in order to
reveal outliers as observations with low v

(1)
i and to detect 3 clusters on the weighted

data.

In order to identify outliers in noise variables as well, we additionally apply the proposed
weighting function on unweighted data clusters, consisting of the data matrices Xr =
{xij}, i ∈ Kr, ∀j = 1, r = 1, . . . , k, leading to the second observation weights v(2)

i .
Figure 4.3 shows the second resulting observation weights obtained on the data example
shown in Figure 4.1. The three plots clearly indicate that all outliers placed in noise
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variables receive considerably lower weights in contrast to both non-outliers and outliers
present in informative variables.
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Figure 4.3: Illustration of applying the weighting function on the 3 unweighted data
clusters in order to reveal outliers in noise variables as observations with low v

(2)
i .

As a consequence of applying the weighting function for the second time, each observation
has two weights, v(1)

i and v(2)
i , which are finally combined in a single weight

vi = min{v(1)
i , v

(2)
i }. (4.9)

Determining vi in this way ensures that all outliers receive low weights and that we can
easily identify whether or not an observation is an outlier as indicated by zero weights
for all outliers in Figure 4.4.
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Figure 4.4: Illustration of combining the two observations weights leading to the final
observation weights vi calculated on 3 clusters.

4.3.2 Step 2: Variable selection

The purpose of the second step is to update wj according to the maximization of Equa-
tion(4.4) for a given sparsity parameter l and the observation weights vi. Incorporating
vi assures that the variable selection is not affected by outliers. Indeed, the presence of
an outlier apparent even in one variable can considerably increase the between-cluster
sum of squares. As a result, such a variable receives a high weight although the variable
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4. Robust and sparse k-means clustering for high-dimensional data

does not contribute to the cluster separation but rather to the separation between an
outlier and a cluster (Kondo et al., 2012).

Therefore, for the obtained cluster assignment K1,. . . , Kk, the observation weights vi

from the first step, and for a given l, we update the weights wj according to

vBkl =
p∑

j=1
wj

vBk
j → max

||w||2≤1,||w||1≤l
, (4.10)

where vBk
j corresponds to Equation (4.7) with vi instead. In order to optimize Equa-

tion (4.10) with respect to w for a given tuning parameter l, we follow the procedure
suggested by Witten and Tibshirani (2010). Whereas small l leads to high sparsity, i.e.
wj = 0 for most variables, a high value of l results in almost no sparsity corresponding
to wj > 0 for most variables. High wj suggests that the jth variable is informative and,
thus, it contributes to the maximization of Equation (4.10). In contrast, wj = 0 indicates
that the jth variable is not informative for the cluster separation and it is thus excluded
in Equation (4.10).

Once the variable weights w are updated, the first iteration is completed and the algorithm
continues with the first step with respect to updated weights wj . This means that the
ROBIN approach is again applied on wX = {wxi} with updated w in order to find the
next cluster centers. The reason for the re-initialization is that ROBIN is not primarily
designed to deal with a large number of noise variables. Therefore, the selection of the first
cluster centers is very likely to be affected by noise variables due to w = {wj = 1/√p},∀j
in the first step. After obtaining the next centers, the method continues as described.
The two steps of the proposed approach are iteratively repeated until convergence for wj

is reached according to the stopping criterion (Witten and Tibshirani, 2010).

4.3.3 Step 3: Detection of groups and outliers

The last step aims at determining the cluster membership K1, . . . ,Kk by assigning
observations to their closest cluster center in the data space spanned by variables with
wj > 0, adjusted by their corresponding final weights. We estimate the final observation
weights vi as described in Section 4.3.1 in order to classify observations with low weights
as outliers. This classification can be made based on visualization of the resulting
observation weights against the corresponding observation index, as shown in Figure 4.4,
and the following search for a cut-off value which clearly separates low weights from high
weights. Nevertheless, we recommend to use vi < 0.5 for the identification of outliers as
we observed good empirical results for such a choice.

4.4 Selection of parameters
We have so far assumed pre-knowledge about the number of clusters k as well as the
tuning parameter l determining the variable weights wj . Such information is usually
not available beforehand for most real-world data and, therefore, there is a need for a
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systematic way of estimating both parameters. The problem of selecting the optimal k
has been widely studied for data where the assumption is that all variables are involved
in data clustering; an overview of such procedures can be found in the studies by Sugar
and James (2003) and Xu and Wunsch (2005). However, we have not found much work
dedicated to the optimization of k in case that the sizes of groups are much lower than
the dimensionality of the data space describing the group structure and at the same time
the group structure is hidden in a large number of noise variables.

We discuss the effect when k is optimized with and without taking the contribution of
variables into account using the gap statistic (Tibshirani et al., 2001). The gap statistic,
Gapk, is calculated for a clustering solution obtained by a clustering algorithm, e.g.
k-means, for a given k and can be formulated as

Gapk =
p∑

j=1
wj

( 1
A

A∑
a=1

log(aW
k
j )− log(W k

j )
)
, (4.11)

where wj = 1,∀j since all variables are assumed to contribute equally, aW
k =

∑
j aW

k
j

corresponds toW k =
∑

j W
k
j calculated on the clustering solution obtained on the dataset

with independently permuted observations in each variable (Witten and Tibshirani, 2010),
and A represents the number of permuted datasets. In our experiments we consider
A = 10. Gapk is generally calculated for a clustering solution with varying k and the
optimal number of clusters is chosen as the smallest k for which Gapk ≥ Gapk+1 − sek+1
is fulfilled (Tibshirani et al., 2001), where sek denotes the standard error of log(aW

k).
From Equation (4.11) it is obvious that Gapk does not only depend on k but also on
w representing the contribution of each variable. Since all variables are assumed to be
informative, Gapk might be considerably affected if a dataset contains a large number of
noise variables. Moreover, the presence of deviating observations can lead to an unreliable
decision on k as well.

Figure 4.5 demonstrates the effect of noise variables and outliers on the choice of k
based on the gap statistic. We consider the same data example as in Section 4.3.3 and
apply k-means with ROBIN initialization for the numbers of clusters k = 2, . . . , 6. The
gap statistic is calculated for each clustering solution in order to select the optimal k
as described above. Figure 4.5 (left) shows the values of Gapk with the corresponding
standard errors calculated on the data example with both outliers and noise variables.
As expected, the presence of both disturbing factors leads to a wrong choice of the
optimal k corresponding to 5 clusters. Moreover, even if only the 50 informative variables
are taken into account, the choice of k is also influenced by outliers as illustrated in
Figure 4.5 (middle) resulting in k = 4. In contrast, Figure 4.5 (right) shows Gapk when
downweighting outlying observations and noise variables leading to a correct decision, i.e
k = 3.

The example indicates that both disturbing factors have to be considered when selecting
an optimal k for k-means. In the proposed k-means-based clustering approach, we directly
downweight the effect of outliers by observation weights vi. However, the impact of noise
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Figure 4.5: The effect of noise variables and outliers when estimating the optimal number
of clusters. The values of Gapk applied on a data set with both noise variables and
outliers (left); the resulting Gapk from a dataset where the effect of noise variables
is eliminated (middle); the obtained Gapk when both noise variables and outliers are
neglected (right).

variables, which is reflected by their corresponding variable weights wj , can be neglected
only if the sparsity parameter l, see Equation (4.10), is correctly selected. In order to
optimize l, Witten and Tibshirani (2010) introduced the gap statistic Gapl, which is
defined for given k as

Gapl = log(Blk)− 1
A

A∑
a=1

log(aB
lk), (4.12)

where aB
lk denotes the weighted between-cluster sum of squares calculated, compare

Equation (4.4), with respect to a clustering solution obtained on a permuted dataset.
Obviously, the calculation of Gapl is impossible if the number of clusters k is unknown
which is often the case for real data. Moreover, the presence of outliers might also
influence the correct estimation of l. Therefore, we propose to adjust Gapl by observation
weights vi in order to downweight the influence of outliers leading to the modified gap
statistic vGaplk calculated as

vGaplk = log(vBlk)− 1
A

A∑
a=1

log(v
aB

lk), (4.13)

where v
aB

lk represents vBlk obtained on a permuted dataset. We calculate vGaplk for a
clustering solution not only with various l but also various k in order to first optimize
the degree of sparsity l for each k. The value of vGapl∗k for the optimal parameter l∗ is
compared with the largest vGaplk such that vGapl∗k ≥ vGaplk − selk, where sek refers
to the standard error of log(v

aB
lk). The optimization of l leads to k values of vGapl∗k for

which the largest value corresponds to an optimal k.

Figure 4.6 (left) depicts the gap statistic for both tuning parameters when applying the
proposed method on the data example in Section 4.3.1 with k = 2, . . . , 6. The value of
l starts at 1.1 and increases in steps of 0.5 to such a value that leads to no sparsity in
the variable weights, i.e wj 6= 0,∀j. We show the optimal l for each k by larger symbols

76



4.5. Evaluation setup

in Figure 4.6 (left). As expected, the optimal degree of sparsity l differs almost for all
k. We select the optimal parameter setting which leads to the largest vGapl∗k resulting
in k = 3 and l = 6.6. Indeed, such choices correspond to the correct number of clusters
as well as appropriate values of wj leading to non-zero weights for all 50 informative
variables as shown in Figure 4.6 (right). Considering higher values of l, more and more
noise variables obtain non-zero weights. The plot additionally illustrates that a smaller
choice of l, e.g. l = 4.1, results in an incorrect number of clusters when following the rule
for optimizing k based on Gapk according to Tibshirani et al. (2001). This supports the
fact that both parameters need to be optimized at the same time in order to correctly
identify groups.
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Figure 4.6: Selection of the tuning parameter l and the number of clusters k based on
vGaplk (left), and the variable weights corresponding to the optimal l = 6.6 and k = 3
(right).

4.5 Evaluation setup

We evaluate the performance of the proposed method in terms of the clustering solution,
outlier detection, and the identification of informative variables. The clustering solution
is evaluated based on the Classification Error Rate (CER), also used by Witten and
Tibshirani (2010). CER compares the true group membership with the resulting cluster
membership. While CER=0 refers to the best cluster solution, CER=1 corresponds to
the poorest performance. In order to evaluate the ability of our method to detect outliers,
we report the mean value of observation weights vi separately for the true non-outliers,
i.e v̄nonout, and outliers, denoted as v̄out. The weights for outliers are supposed to be
considerably lower than the weights for non-outliers. Since we recommend to use the
final weights vi for classifying outliers as the observations with vi < 0.5, we calculate
True Positive and False Positive Rates (TPR and FPR) ranging between 0 and 1. TPR
is defined as the proportion of the number of correctly identified outliers and the actual
number of outliers present in a given dataset. High TPR indicates a good ability to
identify outliers while low TPR demonstrates poor performance. FPR is calculated
as the ratio between the number of non-outliers wrongly declared as outliers and the
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number of the actual non-outliers in an analyzed dataset. Hence, low values of FPR are
preferable over high values. The performance regarding the variable selection is evaluated
by comparing the mean value of wj for informative variables, w̄ inf , with the mean value
of wj that are different from zero, denoted as w̄ non0. The higher and more similar the
values, the better the ability to correctly select informative variables. We provide a
similar evaluation for noise variables and calculate the mean of their weights, w̄ noise,
which is supposed to be close to zero.

Since the clustering procedure employs k-means, we compare the method with several exist-
ing k-means-based clustering algorithms, such as k-means (K)1, trimmed k-means (TKC)1

by Cuesta-Albertos et al. (1997), and sparse k-means (SKC)2 by Witten and Tibshirani
(2010). The proposed weighted robust and sparse k-means (WRSK) is also compared
with trimmed and sparse k-means (RSKC)2 by Kondo et al. (2012). Although our
algorithm is designed in a similar way as RSKC, we avoid to pre-specify the trimming
level by incorporating the proposed weighted function. Since no procedure for selecting
the optimal k and l has been presented by Kondo et al. (2012) for RSKC in case that no
information about data is available, we employ the modified gap statistic considering zero
weights for trimmed observations and weights equal to one for untrimmed observations.
Note that all trimming-based algorithms require for the pre-specification of a trimming
level α, therefore, when applying these methods we consider α as the true percentage of
outliers present in a simulated dataset and α = 0.10 for real-world data as recommended
by Kondo et al. (2012) being a suitable choice for most cases.

4.6 Simulation study

In this section, we explore the ability of the proposed clustering method to correctly
reveal the complex data structure in three simulation studies. We first show the efficiency
of the gap statistic to properly select l and k. Then, we test the method on the datasets
containing various percentages of outliers. Finally, the proposed method is compared
with several existing k-means-based approaches.

We now describe the general setting of the simulated datasets considered in the three
studies. Each dataset consists of n observations described by the informative as well as
uninformative part in terms of the group separation. The observations in the informative
part form g groups of sizes nt, t = 1, . . . , g. The groups are described by pinf variables and
are generated following a Gaussian model with parameters µt ∈ Rpinf and Σt ∈ Rpinf×pinf .
The elements of the mean vector µt = (µt1, . . . , µtpinf

) are constructed as

µtj =
{
µ, j = az,

0, else
(4.14)

1 We employed the code implemented in the R package RSKC (Kondo et al., 2016).
2 The used code for sparse k-means as available in the R package sparcl (Witten and Tibshirani,

2013)
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where µ is randomly chosen from the uniform distribution in [−6,−3] ∪ [3, 6], i.e
U [−6,−3]∪ U [3, 6]. az represents the arithmetic sequence defined as az+1 = az +g, a1 = t
meaning that the first nonzero element of µt is placed on the tth position and the following
nonzero elements, i.e. µ, are always on the position increased by g with respect to the pre-
vious index of the nonzero element. Considering, for example, 4 groups of 10 dimensions,
the mean vectors of the first two clusters are constructed as µ1 = (µ, 0, 0, 0, µ, 0, 0, 0, µ, 0, 0)
and µ2 = (0, µ, 0, 0, 0, µ, 0, 0, 0, µ, 0). The covariance matrix Σt is generated according to
Campello et al. (2015) as

Σt = Q


1 ρt . . . ρt

ρt
. . . . . . ...

... . . . . . . ρt

ρt . . . ρt 1

Q>, (4.15)

where Q denotes a random rotation matrix satisfying Q> = Q−1 and the off-diagonal
elements ρt are random numbers from U [0.1, 0.9]. To the informative part, we also add
pnoise noise variables that follow univariate standard normal distributions leading to a
total dimensionality of p = pinf + pnoise.

Such an obtained dataset is finally contaminated by replacing a certain percentage of
observations in each group by outliers. We create two types of outliers in the informative
variables. While uniformly distributed outliers are generated as random values from
U [−12, 6]∪U [6, 12], the scattered outliers follow a Gaussian model with the same location
as a group, i.e. µt, but a different covariance structure σI ∈ Rpinf×pinf . The parameter σ
is randomly generated from an uniform distribution in [3, 10]. We also replace a certain
proportion of observations from each group in the noise variables by uniformly distributed
outliers, according to U [−12, 6] ∪ U [6, 12]. Note that the observations contaminated
in the informative variables differ from those in the noise variables. Furthermore, we
always replace (contaminate) the first observations from each group in the informative
variables, whereas observations in the noise variables are randomly selected for the
following contamination.

4.6.1 Simulation 1: Selection of parameters

n the first study, we investigate the ability of the modified gap statistic to correctly select
the number of clusters k and the sparsity parameter l when applying the introduced
algorithm. We consider 100 datasets of 800 dimensions in which the first 50 variables
describe the group structure. In order to explore the performance of the gap statistic,
3 situations with different numbers of groups are considered, i.e. g = 3, 4, 5. The
sizes of the observations in the groups are randomly selected, ranging from 50 to 150.
The contamination strategy corresponds to replacing the first 10% of observations from
each group in all informative variables by scattered outliers. In contrast, the uniformly
distributed outliers are placed in 75 randomly selected noise variables.
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The proposed method is applied with k = 2, . . . , 7 and various l going from 1.1 up to √p
in steps of 0.5, in order to calculate the gap statistic and to select optimal parameters.
The results are evaluated in terms of the estimated number of clusters and the evaluation
measures described in Section 4.5. It should be noted that CER is calculated with respect
to the group membership before contamination. Since each group is contaminated by
scatter outliers, such outliers have the same location as a group and, therefore, they
should be assigned to the corresponding group.

Figure 4.7 summarizes the resulting optimal k selected by the gap statistic as histograms,
for the three different numbers of underlying groups (g = 3, 4, 5). While the gap statistic
works perfectly in case of 3 groups, its performance gets slightly worse for a higher
number of groups. Nevertheless, the last two histograms clearly indicate that the optimal
k is correctly chosen in most cases.
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Figure 4.7: Evaluation of the results in terms of the optimal k selected by the gap
statistic, for different numbers of groups, i.e. g = 3, 4, 5. The reported values are based
on 100 simulated datasets for each g.

Figure 4.8 summarizes the results based on the evaluation measures. In general, there is
no clear dependence between the considered numbers of groups and the resulting values
of evaluation measures. Overall, low CER indicate that the proposed procedure can
correctly identify the group structure. In addition, high as well as similar values of w̄ inf

and w̄ non0 demonstrate the appropriate selection of l. Hence, it seems that most of
the informative variables can be correctly identified. The high performance of variable
selection is also supported by zero values of w̄ noise suggesting that the method is able
to discard all noise variables. We also evaluate the method regarding the detection of
outliers. We can see that outliers receive on average considerably low weights in contrast
to non-outliers; compare v̄out and v̄nonout. Therefore, classifying the observations with
vi > 0.5 as outliers seems to be a reasonable choice. Indeed, such a cut-off value leads to
a great ability to identify outliers indicated by high TPR as well as low FPR. Considering
the values of the evaluation measures, we can conclude that the method as well as the
parameter selection work efficiently.
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Figure 4.8: Evaluation of the results based on the optimal parameter selection determined
by the modified gap statistic, for different numbers of groups, i.e. g=3, 4, 5. The reported
values of the evaluation measures and the selected k represent all 100 simulated datasets.

4.6.2 Simulation 2: Resistance against outliers

The second simulation study aims at investigating how resistant the proposed method as
well as the modified gap statistic are against various proportions of outliers. For this
study, we generate 100 datasets that consist of 3 groups of different sizes ranging between
50 and 150 (randomly selected). The data space is defined by 170 informative variables
and 830 noise variables, leading to 1000 dimensions in total. Overall, we consider 8
contamination strategies in terms of different percentages of outliers. The datasets in the
first strategy are free of outliers. In contrast, the second strategy considers 5% of scatter
outliers in all informative variables and no outliers in noise variables. The datasets in
the remaining strategies are contaminated with 10%, 15%, 20%, 30%, and 40% scatter
outliers, respectively, in the informative variables. In addition, the proportion of outliers
in the 83 (10%) noise variables is always kept as 10%.

Again, the proposed algorithm is applied with the different numbers of clusters (k =
2, 3, 4, 5, 6) and various l. Subsequently, the gap statistic is employed to estimate the
optimal parameter settings. The performance is finally evaluated by the measures
described in Section 4.5 as well as the selected k. As in the previous study, we calculate
CER by taking the true group membership before contamination into account.

Figure 4.9 shows the optimal number of clusters estimated by the proposed gap statistic
for each contamination strategy. The histograms clearly indicate that the gap statistic
allows to correctly select the number of clusters, i.e. k = 3, even if data sets contain 40%
outliers in total. Although the selection of k seems to be affected by the highest level
of contamination corresponding to 50% outliers, such a large proportion of outliers is
however very extreme and unrealistic in practice.

Figure 4.10 summarizes the performance in terms of evaluation measures and demon-
strates a great ability to discover the group structure independently of the number of
outliers, reflected by low CER. The low CER can also be observed in case of the highest
contamination. This might indicate that even if the gap statistic estimates a higher
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Figure 4.9: Evaluation of the ability to correctly estimate k, considering different per-
centages of outliers in informative and in noise variables (x/x). The reported values of
evaluation measures represent all 100 simulated datasets.

number of clusters than the actual number of groups (see Figure 4.9), the detected
clusters seem to be to some extent still homogeneous. The great performance of the
gap statistic is additionally supported by similar values of w̄non0 and w̄inf , indicating
highly efficient variable selection. Furthermore, zero values of w̄noise imply that most
noise variables are discarded for data clustering. Therefore, we can assume that the
sparsity parameter l is appropriately estimated. Regarding the detection of outliers, the
method can identify most outliers indicated by TPR around 1. However, TPR is slightly
below 1 for the extremely contaminated data sets (i.e. 40/10). Such low TPR can be a
consequence of high observation weights for outliers, reflected by higher v̄out. This might
indicate that the weights of some outliers are similar to the weights of non-outliers, or
the cut-off value 0.5 needs to be increased in order to achieve perfect outlier detection for
a large contamination level. Although the method misclassifies around 10% of normal
observations in case of no contamination (0/0), it is able to correctly classify almost
all non-outliers in contaminated datasets indicated by zero FPR. Based on the overall
evaluation, the method demonstrates a great ability to identify a complex data structure
in contaminated datasets.

4.6.3 Simulation 3: Comparison

In the last study, we compared the proposed weighted robust and sparse k-means (WRSK)
algorithm with other k-means-based approaches, such as k-means (KC), trimmed k-means
(TKC), sparse k-means (SKC) and its trimmed version (RSKC) on 30 simulated datasets.
Each dataset is represented by 4 groups of various sizes ranging between 15 and 150.
The generated observations are described by 4000 variables. Since the additional goal
is to investigate the influence of different proportions of informative variables, three
settings are considered, such as a percentage of 1%, 2%, and 5% of informative variables.
Moreover, 20% of the observations are replaced by uniformly distributed outliers in the
first 20% of the informative variables, and 10% of other observations are contaminated
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Figure 4.10: Evaluation of the results considering different percentages of outliers in
informative and in noise variables (x/x). The reported values of evaluation measures
represent all 100 simulated datasets.

in 20% of randomly selected noise variables.

When applying the methods on the generated datasets, we assume prior knowledge of the
number of clusters and optimize l in case of sparse-based algorithms. The trimming level
for both TKC and RSKC corresponds to the total percentage of outliers, i.e. α = 0.30. We
evaluate the clustering solution by CER, and if appropriate, the performance regarding
the outlier detection by TPR and FPR. Note that CER is again calculated with respect
to the true group memberships before contamination. Since the outliers are placed only
in the subset of informative variables, there is still some information about the group
separation in non-contaminated variables.

Figure 4.11 summarizes the result based on 30 simulations. In general, in comparison to
the remaining k-means-based methods, both the proposed method and RSKC seem to
be resistant against the different percentages of informative variables. The clustering
performance of KC, TKC, and SKC increases with an increasing proportion of informative
variables, indicated by decreasing CER. In addition, CER shows that the proposed
method outperforms the remaining methods in terms of identifying the underlying group
structure reflected by the lowest CER for most simulated datasets. Although lower TPR
demonstrate that our WRSK is not capable of identifying all outliers in comparison
to the trimmed-based methods, the proposed method misclassifies fewer non-outliers
indicated by the lowest FPR. Considering the performance, it seems that our method is
able to sufficiently identify the group structure even if a large amount of noise variables
is present in a data set.

4.7 Analyzing the group structure of glass vessels
The proposed algorithm is particularly useful in the situation where a large number of
variables is present as in the case of archaeological glass vessels from the 16th and 17th

centuries, which were excavated in Antwerp being one of the most important historical
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Figure 4.11: Evaluation of various k-means based clustering methods, considering various
proportions of informative variables (pinf ). The reported values of the evaluation measures
correspond to the 30 simulated datasets.

centers of both glass manufacturing and trade. In 1997, chemical analysis was conducted
in order to get better insight into the glass collection, including also the possible origin
of the various glass samples. For this reason, the glass vessels were analyzed by an
electron-probe X-ray micro-analysis (EXPMA) to measure spectra at different energy
levels (Janssens et al., 1998). Consequently, traditional calibration methods were applied
on spectra to extract major chemical elements resulting in the separation of four glass
vessels groups, i.e. sodic, potasso-calcic, calcic, and potassic. The connection between
element concentrations of glass vessels and their origin was discussed by Janssens et al.
(1998). Lemberge et al. (2000) used their findings on an extended dataset consisting of
180 glass samples described by 1920 variables (different energy levels) in order to predict
the same concentrations of the major elements as Janssens et al. (1998), using partial
least squares. In this paper we employ the extended dataset consisting of 4 groups as
well, as shown in Figure 4.12. The plot additionally shows that the largest group (sodic)
is split into two subgroups that are not clearly separated in the two-dimensional space of
chemical concentrations. The two subgroups are caused by the installation of different
detector efficiencies in the EXPMA. Detecting the subgroup of glass samples analyzed
after the installation has been investigated e.g. by Serneels et al. (2005) and Filzmoser
et al. (2008).

Our focus is to detect an entire group structure, i.e. 5 groups, which might be hidden in the
high-dimensional data space. Note that there is no pre-knowledge about the informative
variables, neither of outliers in each group. In addition, the group membership based
on the chemical concentrations does not necessarily have to reflect the group structure
based on the origin of the glass samples. However, there exist some assumptions about
the connection between the chemical elements - the glass manufacturing process - and
the origin (Janssens et al., 1998). Therefore, we evaluate the performance in terms
of CER with respect to the group membership shown in Figure 4.12, and the cluster
membership obtained by k-means-based algorithms with k = 5. Although it is not sure
whether or not the dataset contains outliers, we set the trimming level to 0.10 for the
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Figure 4.12: Group membership of analyzed glass vessels, based on element concentrations
(Lemberge et al., 2000).

Table 4.1: Evaluation of the clustering performance of k-means-based clustering methods.

method WRSK KC TKC RSKC SKC
CER 0.039 0.183 0.166 0.191 0.167

trimming-based methods as suggested by Kondo et al. (2012). The optimal sparsity
parameter for RSKC and WRSKC is selected from 1.5 to √p in steps of 0.1 based on the
gap statistic described in Section 4.4. The evaluation of the resulting clustering solution
is presented in Table 4.1, which clearly shows that WRSK outperforms the remaining
methods indicated by the lowest CER. Incorporating the trimming concept or sparsity
seem to improve the performance of k-means (KC) as demonstrated by slightly larger
CER for TKC or SKC. RSKC shows the worst performance. The reason might be that
either important variables have been excluded, or that wrong observations have been
trimmed, or a combination of both.

We also examine the final variable weights obtained by the sparse k-means-based algo-
rithms. Figure 4.13 shows the final weights for each sparse method. The resulting values
of the weights demonstrate that SKC completely fails in terms of achieving sparsity
in the variable weight vector, as wj > 0 for almost all variables. Nevertheless, there
are several variables that receive a higher weight than in case of RSKC; see two peeks
highlighted by dashed lines. This may indicate that there could be useful information
about the group separation in the last energy levels of the measured spectra. A very
similar conclusion can be made for the weights obtained by the proposed WRSK. In
addition, WRSK results in a slightly sparse variable weight vector and at the same time
can appropriately identify 5 groups as indicated by the lowest CER.

In order to investigate the final variable weights obtained by the proposed method in more
detail, we examine how the centers of the detected clusters are distinguishable at each
energy level of the spectra, i.e. for each variable. For this reason, we calculate the cluster
centers as a weighted mean of the observations in each variable with the corresponding
observation weights and the identified cluster membership. The resulting centers are
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Figure 4.13: The final variable weights obtained by sparse k-means-based clustering
methods.

displayed as spectra in Figure 4.14 (left) and are distinguished by different colors based
on the final cluster membership visualized in Figure 4.14 (right). Figure 4.14 (left)
particularly indicates that the centers appear to be well separated already at the low
energy levels, i.e. in the first part of the variable vector. Furthermore, the center of cluster
3 appears to be well separated from other centers in the higher energy levels, highlighted
by two dashed lines. In fact, the proposed WRSK is capable of identifying this informative
part of the spectra; see Figure 4.13. Although the proposed method does not lead to high
sparsity in the variable weight vector, the final cluster membership visualized in Figure 4.14
(right) indicates a great ability of WRSK to correctly identify informative variables since
all 5 glass vessels groups are well recovered with only 5 misclassified observations. Whereas
the misclassified calcic glass sample has an observation weight equal to 1, the remaining
four misclassified potassic glass samples obtain weights considerably smaller than 1, i.e.
0.06, 0.00, 0.60, 0.76. This might indicate that although these observations are originally
from the potassic group, their chemical structure seems to be different from the remaining
observations of that group.
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Figure 4.14: Cluster centers calculated for each variable with respect to the final cluster
membership obtained by WRSK (left) and the corresponding cluster membership (right).
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4.8 Conclusion
We propose a k-means-based clustering procedure that endeavors to simultaneously detect
groups, outliers, and informative variables in high-dimensional data. The motivation
behind our method is to improve the performance of the popular k-means method for
real-world data that possibly contain both outliers and noise variables. (Kondo et al.,
2012) have addressed both issues in the robust (trimmed) and sparse k-means procedure,
but our method goes even further. Firstly, our method aims to identify clusters, outliers,
and noise variables at the same time. Secondly, the proposed procedure is designed in
such a way that the required parameters are automatically estimated and, therefore,
no pre-knowledge about the data is required. By incorporating the weighting function
in k-means, each observation automatically receives a weight reflecting the degree of
outlyingness based on which the outliers are identified. In order to correctly detect the
informative variables, we employ a sparsity concept adjusted by observation weights. The
proposed modified gap statistic is employed to optimize both the sparsity parameter and
the number of clusters.

The introduced method together with the modified gap statistic has thoroughly been
tested on a variety of simulated data sets as well as on a high-dimensional real data
set. The conducted experiments indicated a great ability of the proposed procedure
to discover the group structure. The presented clustering algorithm as well as the
data generating processes are implemented in the R package wrsk, freely available at
https://github.com/brodsa/wrsk.

Future research includes extending the analysis of a data structure to identify the variables
which are responsible for outliers. Such an idea is closely related to cell-wise outlier
detection by Rousseeuw and Bossche (2016) for the situation of a single group data
structure. A similar concept was introduced by Farcomeni (2014) in the context of
clustering. The aim was to demonstrate that cell-wise contamination does not affect
the introduced approach. However, the method has been tested in terms of clustering
only, and no investigation has been conducted with respect to cell-wise outlier detection.
Considering that outliers are commonly highly interesting observations due to their
typically different content, it is even more important to find out which variables are
behind this unusual behavior.
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CHAPTER 5
R implementation

This chapter briefly describes the implementation of two clustering methods: IClust and
WRSK, presented in Chapter 3 and Chapter 4, respectively. Both methods are imple-
mented in two separated packages created with devtools and roxygen2 in R - an open
source statistical software. The IClust package provides a function for data clustering
when the true underlying groups are of highly different sizes. The wrsk package includes
a k-means-based clustering algorithm which is robust against outliers and noise variables.
This package also provides a function to generate simulated data. Both packages are freely
available at https://github.com/brodsa. In order to install them, the devtools
package must be loaded. This enables installing the packages from GitHub using
install_github(“brodsa/IClust”) or install_github(“brodsa/wrsk”).

5.1 IClust package
The IClust package includes an implementation of IClust (Imbalanced Clustering)
designed to reveal groups of highly imbalanced sizes. The method is performed in two
steps. While the first step uses an existing clustering method to produce a large number
initial clusters, the second step employs the Local Outlier Factor (Kriegel et al., 2009b)
in order to assess whether or not two close clusters should be merged. The merging
procedure is repeated until no clusters can be merged. For further details, the readers
are referred to the help file and to Chapter 3.

In this section, a brief introduction of the available functions in the package is provided,
see also the help file for more details. For simplicity, an illustrative data example is taken.
The data set is also included in the package as ExampleData and it consists of 4 groups
of highly varying sizes: 300, 30, 10, 3. To visualize the data set, a PCA representation is
considered due to the high dimensionality of the data set, corresponding to 300 variables
in total. The following code produces Figure 5.1.
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5. R implementation

library(IClust)
library(ggplot)

data(ExampleData)
dim(data)
# [1] 343 300

## vizualisation

pca <- prcomp(data,center=FALSE) # pca representation

pca_data <- data.frame(as.data.frame(data %*%
pca$rotation[,1:2]),group=as.factor(label))

ggplot(pca_data,aes(x=PC1,y=PC2,color=group,shape=group))+
geom_point()
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Figure 5.1: Visualization of the illustrative data consisting of 4 groups. The group
membership of each observation is distinguished by different color and symbol.

The function IClust, applied on the data with standardized values, does not require
to specify any parameters as they are set to the optimal values (see Section 3.3). The
clustering result obtained by executing IClust(data) is shown in Figure 5.2 including
the results obtained by k-means and Ward’s hierarchical clustering in order to demonstrate
the advantage of IClust. Figure 5.2 clearly indicates that IClust outperforms the remaining
methods in terms of identifying both small and lager groups. Note that the other two
methods are advised to produced 4 clusters, i.e. the actual number of groups.

Although the parameters are set to the optimal values based on the experimental investi-
gation in Section 3.3, all considered parameter choices are included in the implementation
as well. Table 5.1 presents the tuning parameters of the IClust function. The number
of initial clusters and the initial clustering algorithm are needed for the first step to
partition the data into a large number of small, potentially homogeneous, clusters. The
critical value and the number of the nearest neighbors are used in the second step in
order to merge two close clusters to get a final clustering solution.
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Figure 5.2: Clustering results obtained by the methods IClust, k-means, and Ward’s
hierarchical clustering. The cluster assignment of each observation is visualized by
different color and symbol.

Table 5.1: Arguments of the function IClust with the optimal (default) setting.

function argument description default setting
k.init number of initial clusters 10*log(nrow(data))
method initial clustering method “ward”
cv critical value cv1, see Section 3.3
q.max maximal number of neighbors 5

5.2 wrsk package

The wrsk package provides the function wrsk for k-means-based clustering in case of
contaminated and high-dimensional data in which a group data structure is described by
a small subset of clustering variables. The package additionally contains the function
SimData for generating a synthetic data set. This section shortly describes the usage
of the functions of the wrsk package. More details about the method and the data
generating process are provided in Chapter 4 and the help files of wrsk.

5.2.1 SimData function

The SimData function generates a synthetic data set for the purpose of data clustering.
The generated groups are described by the informative variables following Gaussian
distributions. Besides informative variables, noise variables are simulated, following
univariate standard normal distributions. Optionally, a data contamination can be
performed by replacing a certain proportion of observations from each group with outliers.
The outliers are either random uniformly distributed values or scatter outliers.

For instance, the following code produces 3 groups that are described by 50 informative
variables and 750 noise variables. Each group consists of 40 observations from which 10%
are contaminated by scatter outliers in 30 informative variables and by random values in
75 noise variables.
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library(wrsk)

d <- SimData(size_grp=c(40,40,40),p_inf=50,p_out_inf=30,
pct_out=0.10, scatter_out=TRUE,
p_noise=750,p_out_noise=75,noise_pct_out=0.1)

## dimensionality

dim(d$x)
# [1] 120 800

## group and outlier membership (outlier:0)

table(d$lb)
# 0 1 2 3

# 24 32 32 32

5.2.2 wrsk function

The wrsk function is the implementation of WRSK (Weighted Robust and Sparse k-
means) that aims at identifying groups, outliers, and noise variables simultaneously. The
implemented method incorporates a concept of assigning weights to both observations
and variables, resulting in downweighting the effect of outlying observations and noise
variables, respectively.

The code below leads to the clustering solution obtained on the synthetic data set
described in the previous section. The two function arguments must be specified: the
number of clusters (k=3) and the sparsity parameter controlling the contribution of
variables for data clustering (s=7). The result represented by the confusion matrix
indicates an excellent performance of IClust.

res <- wrsk(data=scale(d$x), k=3, s=7)

## confusion matrix representig the results (0: outliers)

table(groups=d$lb,cluster=res$outcluster)
# cluster

# groups 0 1 2 3

# 0 24 0 0 0

# 1 2 0 0 30

# 2 0 32 0 0

# 3 0 0 32 0

The function returns the values of observation and variable weights, which are accessible
by executing res$obsweights and res$varweights, respectively. The resulting
weights are displayed in Figure 5.3. Different colors and symbols are used to distinguish
the true type of a variable (i.e. informative or noise) and whether or not an observation is
a true outlier. Figure 5.3 clearly shows that all informative variables received a non-zero
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weight. Such variables are involved in data clustering and the remaining are excluded.
Regarding the observation weights, Figure 5.3 indicates that the weights for all outliers
are lower than for most non-outliers. The influence of these outliers is downweighted
during k-means clustering. Note that observations with a weight lower than 0.5 are
declared as outliers as suggested in Section 4.2.
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Figure 5.3: Both observation and variable weights obtained by IClust. The actual two
types of variables and observations (outliers, non-outliers being part of a group) are
differentiated by different colors and symbols.

5.2.3 wrskGap

The wrsk package additionally provides the function wrskGap for estimating the optimal
number of clusters as well as the optimal degree of sparsity. The function compares the
quality of a clustering solution with the expected quality obtained on permuted data and
uses an one-standard error rule to estimate the parameters, see Section 4.4 for further
details. Table 5.2 lists all arguments of wrskGap.

Table 5.2: Arguments of the function wrskGap.

function argument description
data data matrix of standardized values
K number of clusters
S numeric vector containing the choices of the sparsity parameter
n.permute number of permuted data sets
cores number of cores used for parallel computing

The following code estimates the optimal sparsity parameter, leading to the clustering
solution represented by a confusion table. The estimated parameter s=6.6 results in
the same variables with non-zero weights as in case of considering s = 7. The clustering
solution and the detected outliers also correspond to the results shown previously. In order
to optimize the number of clusters, the readers are referred to help(wrskGap).
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## applying the estimating procedure

S_val <- seq(1.1,sqrt(ncol(d$x)),0.5)
k3 <- wrskGap(data=scale(d$x),K=3,S=S_val,npermut=10,cores=3)

## selecting the optimal sparsity parameter

id.max.k3 <- which.max(k3$gap)
id.opt.k3 <- which(k3$gap[1:id.max.k3]> (k3$gap[id.max.k3] -

k3$se[id.max.k3]))[1]
S_val[id.opt.k3]
# [1] 6.6

## clustering solution (0:outliers)

table(d$lb,k3$resFinal[[id.opt.k3]]$outclusters)
# 0 1 2 3

# 0 24 0 0 0

# 1 2 0 30 0

# 2 0 0 0 32

# 3 0 32 0 0
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