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1 Introduction

Nuclear reaction theory is well developed for two-body channels. With increasing energy of the incident
particle three-body exit-channels will occur. Especially for light nuclei these break-up reactions are of
importance e.g. 17O(n,2n)1%0 and ?Be(a,np)*!'B which occur in nuclear fusion reaction. Such three-
body exit-channels can be described within the statistical model in the unresolved resonance regime.
However, this model cannot be used for three-body reactions in the resonance regime, which occur at
collisions with light nuclei. In the absence of a quantitative many-body theory of light nuclear reaction
systems, the R-matrix theory [1] is usually applied in the resonance regime. The R-matrix, originally
introduced by Eisenbud and Wigner [1] provides an elegant description of resonances without detailed
information about the internal structure of the collision partners. The R-matrix is well settled for
two-body channels and a complete review is given by Lane and Thomas [2]. Its general idea is to
split up the configuration space into an interior and exterior region, where the Schrédinger equation
is solved separately. In the interior region one expands the wave function over known basis states and
in the exterior region the solution is a combination of the asymptotic forms of Bessel or (for charged
particles) Coulomb functions. Both solutions are connected at the borderline via suitable boundary
conditions.

However, the inclusion of channels with three particles has not been established yet. Up to now
three-body processes have been treated as small perturbations and have mostly been omitted. An
approximation for three-body channels was given by Lane and Thomas in [3] in the frame of two
particle R-matrix theory. They consider the three-body process as having two particles in the exit
channel, where one of them has sufficient energy to decay into two fragments. Usually in two-particle
R-matrix theory one transforms integrals over the interior region into an integral over a surface S.
This is chosen to be drawn far enough out in configuration space and can be therefore expressed as
a sum of channel surfaces S, with a finite radius a., respectively, which do not overlap. For two
bound fragments in the exit channels with localized wave functions, a. can be assigned some finite
value. However, if one of them disintegrates in two bodies, its wave function becomes delocalized in
configuration space and one is faced with the problem of defining a finite matching radius a.. At that
point approximations have to be introduced. One demands that the scattering wave function of the
disintegrating fragment is (negligibly) small in all unbound channels so that a. can be chosen to be
finite. This implies an extended lifetime of the decaying body which turns the three-body break-up
process into two successive two-body break-up processes. In that manner three-body decay processes
can be covered by two-body R-matrix theory. The formalism only has to be extended to the occurrence
of scattering wave functions in the exit channel which must be chosen to fulfill certain orthogonality
conditions. This model of successive decay was successfully applied to three-body reactions but even
to processes with up to seven reaction products in the exit channel [4]. However, this way does
not really provide a satisfying solution for three-body break-up processes because of approximations.
In 1976 Walter Glockle suggested a way to solve the three-body problem in the frame of R-matrix
theory for three identical particles [6] based on the theory of Faddeev [7]. Outgoing from the Faddeev

equations in coordinate space and the asymptotic form of the Faddeev amplitudes, he deduces a set



of four equations for the three-body on-shell T-matrix elements and the expansion coefficients of the
interior wave functions. The scattering process is therefore treated in the sense of quantum mechanical
coherence and is no longer considered to run sequentially. Glockle’s work will be the foundation of
this thesis.

After a theoretical introduction to three-body scattering theory and Faddeev equations in Section 2,
we will study and comment Glockle’s ideas and present more detailed derivations of the various
results. This, together with a short discussion about the relation between T-matrix elements and the
experimentally accessible cross section will be covered in Section 3.2. The main goal of the thesis,
however, will be the generalization to a three-body R-matrix theory for (three) arbitrary particles. In
Section 4 we will derive generic expressions for the three Faddeev components and their asymptotics
in various orders. Finally we will establish a set of four equations by making use of a three-body R-
matrix method. From these equations one should be able to determine the essential T-matrix elements

that enter into the cross section.



2 Theoretical background

The content of this section will essentially follow [8]. First, we will give a short overview of three
particle systems in general. The main part then will be the derivation of the Faddeev equations for

various operators and the scattering states, which will be the foundation for the following sections.

2.1 Three-body systems and the Lippmann-Schwinger equation

We consider a three-particle system in the entrance channel, which is composed of a bound state
between two-particles and the third one moving freely. After a reaction took place, we have five
possible exit channels, one elastic channel, three rearrangement channels, one break-up channel and
a bound channel, which will be omitted. The two-particles j and k in the bound subsystems interact
via a two-body potential v; = v(j, k), while particle i moves freely. Generally, two-particle operators
that act in a two-particle subsystem are denoted by small letters, whereas three-particle operators are
represented by capital letters (except for channel Hamilton operators). Vectors will be represented
by bold letters. In natural Jacobi coordinates (which will be introduced later) the total Hamilton

operator reads (i = 1,2,3)

2 ~2
p. i
= — L =h Vv 2.1
2/~Li+2Mi+U1+U2+U3 o+ V, (2.1)
where 52 e
hg = — L 2.2
0= 5. T onr, (2.2)
and
V:’Ul+’l)2+”03. (23)

The motion of the center of mass is trivial and thus neglected. p; is the relative momentum between
particles j and k (if they form a bound state, p; will be complex) and q; the momentum of particle 7 in
the center of mass system of all three-particles. p; and §; are the corresponding momentum operators.

For the total energy of the three-body system both relative motions are added up and yield

2 2
b; 4q;
= ! 2.4
o Foag (2.4)
The reduced masses are
g = Mk M = malmy ) (2.5)
mj + my m; +m; +my
There are channel Hamilton operators for each channel,
52 A2
Pa 9o
ho = —= o - 2.6
e 2M, " (2.6)



with the asymptotic channel states as eigenfunctions,

ha|¢am> = Ea‘¢am> . (27)

They are related to the total Hamilton operator according to

H=h,+V,, (2.8)
with the definition
Va=V-va=> v, (2.9)
ay

In each channel there is an interaction between two-particles, which is expressed by the respective
potentials v,, that are identical to v; from above. In the asymptotic area of the break-up channel all

particles are free, there is no interaction between any of them and thus
vo =0. (2.10)

This is valid since nuclear forces act over very short distances only (= 1fm). The problem of charged
particles with a Coulomb interaction of infinite range is not treated in this thesis.

The essential equation of scattering theory is the Lippmann-Schwinger equation. We now want to
derive it for the three-particle case via the resolvent G(z), with z = FE +ie. The full resolvent of the

three-particle system G(z) is defined as
G(z)=(z—H)™'. (2.11)

We get two equations for G(z) using the channel resolvent g, (2) = (2 — ha) ™%,

G(Z) = goc(z) + ga(z)VaG(z) = goc(z) + G(Z)Vagoz(z) . (2'12)

They can be verified by multiplying for instance the second equation in (2.12) by G~1(z) from the
left and using the identity

9. () -G ) =2 —hy—2—-H=V,, (2.13)
which yields

=G 2)ga(2) + Vaga(z)

) _ _ (2.14)
1= (g, (2) = Va)ga(2) + Vaga(z) = 1.
The scattering state in channel « is defined as
ESAE lim £ieG (E £ i€)|pam) - (2.15)
€—>



It is a three-particle wave packet with a subsystem of two-particle being in their m' bound state
and the third one moving freely. Inserting the first resolvent equation (2.12) into Eq. (2.15) leads,
after executing the limits, to the Lippmann-Schwinger equation for a three-particle scattering state

in channel «
|1/}((x:1t72> = EE}(I) iiega(z)|¢am> + lg% iiega(Z)VaG(Z)|¢am> = |¢am> + ga(E + iO)VaW((ﬁD . (2'16)

We used the fact that |¢am) is an eigenstate of h, and thus

. . . . - . +ie

ll_rf(l) ile.ga(z”(bam) = lg% ilE(Z - ha) 1‘¢am> = ll_rf(l) m|¢am> = |¢am> .
However, this equation exhibits a problem since it is not uniquely solvable. The reason is that the
homogeneous equation

W5 = 9a(E £10)Valp5) (2.17)

has non-trivial solutions in the region of scattering energies, where £ > 0. This can be shown by

writing down the Lippmann-Schwinger equation (2.16) for the scattering state of another channel

B #a,
W) = lim Fiega (2)|dpn) + lim tiega (2)VaG(2)ésn) = ga(E £10)Valtf,)) (2.18)

Since |¢pn) is not an eigenstate of hq, go(2)|@sn) remains finite for e approaching 0. Hence, what

remains after performing the limit ¢ — 0 in Eq. (2.18), is the solution of the homogeneous equation
+ T (E
[05)) = ga (B £10)Valy5) . (2.19)

It is an additional solution to \w&ﬂfﬁ) and can be added to it. In the two-particle case, there exist
non-trivial solutions of the homogeneous Lippmann-Schwinger equation too. However, these solutions
are found at discrete binding energies of the two-particle system (Ejp;,q < 0), not in the positive energy
region where scattering takes place.

There are further equations beside the Lippmann-Schwinger equation [9], which are satisfied by
the scattering state |¢&3:‘72>, They result from inserting the second resolvent equation of (2.12) for G(z),

but now for a different channel than «, like S,

[0 = lim i€G(E +i€)|Gam) = lim iegs(E + i) ¢am) + lim iegs(E +ie)V s G(E +i€)|[dam)
: (2.20)

ie —

=lim —— E+i Cony.
el—I>Ig)E+i6—hﬁ|¢am>+gﬂ( +i0)Vs|Yam)

The first term vanishes since |@qm) is not an eigenstate of hg. Hence, the denominator remains finite

while the numerator approaches to 0 in the. Finally, in the limit e — 0 the product ¢z|¢am) vanishes,

which is known as the Lippmann identity. A similar equation is obtained by using the ~-resolvent.



Glockle found out that adding these two equations to the Lippmann-Schwinger equation,

|%m> |Pam) + ga(E + iO)V |'l/)(+)>
W) = 95(E +10)V | H) (2.21)

|1/)am> = Gy (B + 10)Vv|¢&72>

the scattering solution |w((;{,2> becomes unique [5]. These additional equations introduce physical
boundary conditions to the Lippmann-Schwinger equation which guarantee that there are no incoming
waves in channels 8 and . In the the break-up channel the behavior of |1/)(+)> is determined by each
of the three equations (2.21). Alternatively one can use the form (2.20) with 8 = 0, to describe |¢$§2>

in the break-up channel,

[WSE) = GoVolulh)) = GoVIwSh)) . (2.22)

This state again guarantees a purely outgoing wave in the break-up channel [9]. Moreover, the

structure of (2.22) gives rise to a decomposition of Wéﬁ) into components |¢((;{,2>1,
G = GoVIvGL) ZGVW“ (2.23)

which are called Faddeev components of the scattering wave function.

However, there are still problems remaining. The integral kernel of Eq. (2.16), goV 4, and the
integral kernels of the equations in (2.21) do not have a finite Schmidt norm (see below) and they are
not compact. Latter is caused by the occurrence of delta functions in the kernel, which in a graphical
representation appear as disconnected parts of the system, that should not appear in useful integral
equations. The delta function arises from the fact that the channel resolvent g, acts in the two-
particle subsystem of the three-particle system, and does not affect particle o. This can be expressed

by writing down the matrix elements of the resolvent (bold letters represent vectors)

(Palalga(2)IPaas) = 8(da — d,) (Paldal 2M )Ipa> : (2.24)

Here, g, is a two-particle operator living in two-particle space, while g, is a two-particle operator in
three-particle space.
Faddeev was the first to realize these problems, which indicated him to look for new equations,

the so-called Faddeev equations, subject of the following subsections.

2.2 Faddeev equations for the T-operator

We consider the three-particle T-operator,

T(z) =V +VG(z)V (2.25)



and the three-particle resolvent

G(2) = g0(2) + 90(2)T(2)go(2) - (2.26)
Combining them yields two integral equations for the T-operator, i.e.

T(z) =V +Vgo(2)T(z),

(2.27)
T(z) =V +T(2)go(2)V.
Faddeev suggested to split the T-operator into three components,
T; = v; +v;90T, (2.28)

where V' = v1 + vo + v3 and thus T = T + T3 + T5. However, the integral kernel remains the same

as before and is still non compact. We can arrange the equations for the three components in matrix

from
Tl V1 v1 U1 U1 Tl
TQ = (%) + V2 V2 V2 | 90 T2 . (229)
T3 U3 V3 VU3 Vs T3

In the following some manipulations to this matrix equation are performed in order to make the

integral kernel less singular. We pick out the first line of the matrix equation
Tl =1 + UlgO(Tl + T2 + T3) (230)

or equivalent
(]. — vlgO)Tl =1 + Ulgo(TQ + Tg) . (231)

Next, we multiply this equation by (1 —v1go)~! from the left which leads to
T1 = (1 - vlgo)_lvl + (1 - ’Ulgo)_lvlgo(Tg + Tg) ; (232)

or
Ty =t +tigo(T2 + T3) , (2.33)

with the two-particle t-operators
ti = (1 —wigo) 'vi, (2.34)



acting in the three-particle space. The same procedure can be carried out for the second and third

line and we end up with the matrix equation

T t1 0 t1 t1 Ty
T2 =1t | + |12 0 ta | 90 T2 . (235)
T; ts ts t3 0 T;

These are the Faddeev equations for the T-matrix. They can be alternatively written as

3
Ti(z) = ti(2) + Z Fij(2)g0(2)Ty(2) (2.36)
with the Faddeev operator
Fij(2) = (1 = 8ij)ti(2) - (2.37)

The potentials v; have been totally replaced by the two-particle operators t; acting in the three-particle
space. Two particle operators, like ¢; that act only in subsystem i, always enter off-shell into three-
body scattering amplitudes because of the energy shift z — g2 /2M; in subsystem i. As a consequence,
there is more information contained in three-particle scattering data than in two-particle data alone.
Additionally, when performing the operator product ¢;go7; one has to integrate over all intermediate

states |p}) and |q;), where
2 "2 '2
P 4; b;
L — = L 2.38

The kernel of Egs. (2.35) and (2.36), t;goT}, is still not compact and does not have a finite Schmidt

norm. This is due to the exclusive action of ¢; in subsystem ¢, which causes d-functions occurring in

the matrix elements,

2
(prclt (2)Iptatl) = 8lcta — ) (pilfi (= — 52 )l (2.39)

The existence of the Schmidt norm of an operator K (r,r’) is defined as

1/2
IK|s = [Tr(KTK)]l/z — [//drOdr’K(nr’)F , (2.40)

and is a sufficient condition for compactness of the integral kernel. Latter is an important feature of
the kernel as it is a necessary condition to enable the Fredholm theory and other methods of integral
equation theory to be applied. After a first iteration of Eq. (2.35), not carried out here, there occur
operator products such as t;got; with ¢ # j. Such a product implies an integration over intermediate
energy states, where the 6-functions disappear and the particles get linked together. Further problems
and details are treated in [8], however, we can proceed using the form (2.36) of the Faddeev equations

for the T-operator. If we continue iterating Eq. (2.35), we get the Neumann series of the Faddeev



equations, which is [8],
[ee]

T(z) =) t(=) (E(2)g0(2)t())" , (2.41)

v=0
where doubly underlined quantities represent matrices and singly underlined quantities vectors. The
Neumann series and its graphical representation (see [8]) reveal the meaning of the Faddeev equations.
The Faddeev equations describe the three-particle scattering process as a two-body multiple scattering
process, where the individual two-body scattering occurs on-shell or off-shell.
In the next step we will derive Faddeev equations for the three-particle resolvent G;(z) and the

scattering wave function |4 ).

2.3 Faddeev equations for the resolvent and scattering states

We start with the resolvent G(z) from Eq. (2.26) and replace the operator T' by the sum of its three
components T; (2.2),

3
G(2) = go(2) + Y _ g0(2)Ti(2)g0(2) - (2.42)
=1

With the definition of components G;(2),

Gi(2) = 90(2)Ti(2)go(2) (2.43)
we can rewrite Eq. (2.42)
3
G(2) = go(2) + D _Gil2). (2.44)

Equations that determine G;(z) can be obtained by inserting the Faddeev equations (2.36) for the

T-operator into Eq. (2.43) (omitting the argument z of the resolvents and operators),

3

Gi = gotigo + 9o Z Fij90T}g0 - (2.45)
j=1

We proceed by including a relation that follows form extending the resolvent equation in two-particle

space
9(2) = go(2) + go(2)t(2)go(2) (2.46)

into three-particle space,
goligo = gi — go - (2.47)

Then,
3
Gi(z) = gi(2) — go(2) + Z Fijg90T;90 (2.48)
j=1



and with Eq. (2.43) we obtain

Gi(2) = gi(= +Zgo Gi(2). (2.49)

Let us now find Faddeev equations for the scattering state
[452) = lim +ieG(E £ i6)| o) (2.50)
e—

by inserting the splitting of the resolvent (2.44), which yields

3
[ G3)) = lim Liego( £ i€) | $am) + lim ie ; Gi(E £i€)|am) - (2.51)
We define
(o) = lim iegi (B & i€)|danm) (2:52)
and
W5 = lim £ieGy(E £ i) |dam) (2.53)
e—

(%)

iom

with ¢ = 1,2, 3. The state |x;.. ) with @ # 0 can be simplified by performing the limit ¢ — 0,

(&) _ -
|X7,am> - g*}(]m|¢am> - 6io¢|¢o¢m> 3 1= 07172a3a (254)
which is true since |¢pam) is an eigenfunction of h; if i = a. a # 0 means an incoming state consisting
of a bound pair and one particle moving freely. This case will be considered in the following. For
« = 0, which describes an incoming state consisting of three free particles, we get different results for
| Xgib, which, however, will not concern us further. As a consequence the scattering state is split into

components
+
(852 = xboam) + Z e (2.55)
With the Faddeev equations for the resolvent (2.49), these components become

3
[Ny, = lim +ie | g;(E £ ie) — go(E £ ie) + > 90(E +i€)Fyj(E +i€)G;(E % ie) | [dam) . (2.56)
€—
j=1

For an incoming state consisting of a bound pair and one particle moving freely we obtain

3
(05 = Sialdam) + Y _ g0(E £i0)F;(E £i0)[v ) (2.57)
j=1

10



and the total scattering wave function is a coherent sum of the three Faddeev components,
3
WS =D WG (2.58)
i=1

These are the Faddeev equations for the scattering state that we will use in the following.

11



3 The Glockle R-matrix approach to the three-body problem

3.1 Introduction

In the first part of this section, we follow Glockle’s way to derive a set of equations for the three-body
on-shell T-matrix elements by the R-matrix method. His idea will be the basis for our generalization of
the three-body R-matrix approach to different masses of the three interacting particles. However, we
present a more detailed derivation of the results provided in [6] before generalizing them to arbitrary
particle masses.

The total scattering wave function ¥(+) is decomposed according to Faddeev [7] into three wave

functions which in coordinate space representation are

T = oy (r1, Ry) + a(r2, Ro) + 3(r3, R3), (3.1)

where r; and R;, i = 1,2, 3 denote Jacobi coordinates (bold letters denote vectors). The three sets of

Jacobi coordinates are defined as

MmaoXo + M3X3

ry =X, — X3, Ri=x - —F—"= (3.2)
mo + M3
mgXs + miX;
ry = X3 — X1, Ro=xg————7—, (3.3)
mi +ms
mi1Xq1 + moXo
rs = X; — X, Ry=x3— ——=, (3.4)

mi + mo

where x; represent Cartesian coordinates. The different sets of Jacobi coordinates are illustrated in
Fig. 1

3

Figure 1: Definition of Jacobi coordinates

12



The Faddeev equation for the scattering wave function (2.57) reads

3
th(x:i:rbz = 6ia|¢ocm> + ZgOFij| (i)> = 6wz|¢am + ZQO (1- za)t W) >
j=1 j=1
3
= 6ia|¢am> + Z gOt W)(i))
J(#i)=1

with
Yom) Z [ (36)
Here we used the identity F;; = (1 — 6;;)t;. From (2.34) it follows
ti = (1 —vigo) 'v; (3.7)
and after a slight manipulation of the resolvent equation,

9i(2) = go(2) + gi(2)vigo(2) (3.8)

one arrives at
gi = (1 —vigo) g0 (3.9)

Dividing Eq. (3.7) by Eq. (3.9) we get

li i
g goli = giv; (3.10)
9: 9o
and Eq. (3.5) can be rewritten
3
|w(i)>' = dia|Pam) + givi Z |’l/1(i)> . (3.11)
J(#i)=1

First, following Glockle [6, 9] we restrict ourselves to the simplified model of three identical spinless
(bosonic) particles with s-wave interaction only. This assumption is primarily valid in the energy
regime near the break-up threshold. In Sec. 4 we generalize the results for scattering of three distin-
guishable particles with different masses also interacting by s-wave interaction only. In the following,
we use the coordinate space representations of the various physical scattering wave functions |w(+)>

and suppress the indices v and m

il Ry) = o(e R[5 (3.12)

The index i = 1,2,3 and j denote the Faddeev component and a certain set of Jacobi coordinates,

13



respectively. In the next sections we change the notation for two-particle Green’s functions and two-

body potentials from small to capital letters while leaving their definitions unchanged and set i = 1.

3.2 Three interacting identical spinless bosons

In this subsection we assume equal masses m; = mg = mg3 and units m; = 1, h = 1.
Further we define permutation operators P;; that interchange particles ¢ and j. Following [9], the

definition of the Faddeev components (2.23) leads to the relationships

¢2(P2,R2) = 2<I‘2R2|G0V2LD> = 2<I‘2R2|P12P23|G0V1W> = 2<F2R2|P12P23\1/11>

(3.13)
1(raRol11) = ¢1(ra, Ry)

In the second and last equality of Eq. (3.13) we make use of the fact that the bosonic scattering
wave function is symmetric under permutation of particles. Additionally we use the invariance of the
Green’s function Gy under permutation of particles and the identity P2 Pa3V; = V5. In the third step
we reinsert the definition of the Faddeev components. Analogously we get

Y3(r3, R3) = 3(r3R3|GoVs¥) = 3(rsR3| P13 Pe3|GoV1¥) = 3(r3Rs| P13 Pas|tn)

(3.14)
= 1(r3R3|¢1) = ¥1(r3, Ra)

As indicated in the last two equations, all three Faddeev components have the same functional form, if
they are expressed in Jacobi coordinates. Consequently, instead of three coupled Faddeev equations,
we obtain three separate equations that can be solved independently. For v (ri,R;), for instance,

according to (3.11), we obtain [9]
br(r,Ry) = 61 (v, Ry) + / e / R, (11 Ry |G e, RVA () [ (b, RY) + 1 (. RS)] . (3.15)

From a practical point of view, one would solve Eq. (3.15) only and substitute the coordinates in the
result in order to obtain the solution for the other Faddeev components v (r2, Rg) and ¢4 (rs, R3).
So we can define 91 (r1,R1) = ¢(r1,Rq), ¢¥1(r2, Ra) = 9¥(ra2, Re) and 91 (rs, R3) = ¢(r3,R3). The

Jacobi coordinates now read

rs = X9 — X3 r9g = X3 — X1 rs = X1 —Xa
1 1 1 (3.16)
R1=X1—§(X2+X3) R2=X2—§(X3 +x1) R3=X3—§(X1 + X3),

which follow from Egs. (3.2)- (3.4) for m; = mg =mg3 = 1.

The three-particle scattering wave function ¥(r;, R;) can be separated into a radial and an angular

part,

[SSHINeS) l 14
Yy, Ry) =4y > i Ry (r, Rysk) Y Vi (R)Yim(Ry) Y Y (#), (3.17)
m!/=—1'

1=01'=0 m=—I

14



where [ denotes the angular momentum quantum number, m the magnetic quantum number and Y},

the spherical harmonics. The wave number of the free relative motion of the single particle with respect

to the bound pair with binding energy FEj is k = %(E — E3). The radial function Ry (r;, R;j; k) is
written as (r R k)
w7y, 153
Ry (rj, Rjj k) = ————=. 3.18
1l (ij j ) riR;k ( )

The inhomogeneous term ¢;(r1,Ry) in Eq. (3.15) refers to the incoming flux in the entrance channel,
¢1(r1,R1) = By (r1) - (k, Ry) = Pp(ry) -

l
up (r . kR
— )y, () an Z 1) S Vi (R (Ry),

r
1 =0 m=—1

(3.19)

where 7;(kR;) are the spherical Bessel functions in Ricatti form. It describes the free relative mo-
tion of a single particle, represented by its wave function ¢ (k,R;) and a bound pair of particles,
expressed by the binding wave function ®,(r1). Latter is square integrable and normalized to 1, i.e.

J d3r1[®,(r1)]? = 1, which provides a normalization condition for the binding wave function uy (r1),

= /d3r1[¢’b(r1)]2 = /d?’rl (W)Qiﬁfm/(fl)y’m’(fl)

7 (r1)]2 ® (3.20)
= /drl wa/dfﬂfl/ (B1) Yy (B1) = /dfrl up(r)]*=1.
0

1
0

=1

The solution wuy (r1) satisfies the equation

o (- ) v wo = - (5 - ) v ) = B 2y

2123 r T

where

Moms 1
—— 3.22
Has mo + mg3 2 ( )

is the reduced mass of the subsystem consisting of particles 2 and 3. In partial wave decomposition,

15



Eq. (3.15) becomes

l/
l+l’ Ull’ 7"17R17
47IZ Rk Z Yim(k Ylm Rl Z Yo (E1)

I=01'= m/=—1'
o l
7uz/(7"1) jl le , , L, ,
oy Yirm (£ Z kR Z Y, (k Ylm Rl) dridR(r;R4|G1|r R VI(r])
! =0 L —
wte (o, R p (3.23)
41 ’ 27 27
4”22 ook Z Vi (K)Yim(Ra) > Vi (f2)+
1=010'=0 m/=—1'
l/
r Uy T3>R37
47[22 oy s i ) Z Vi Vi (B) 3 Vi ¢ ﬂ
I=01'= m/=—1'

In order to get rid of inessential difficulties in further calculations we introduce simplifications. The
first is the restriction to the state of total angular momentum L = 0. The partial-wave decomposition
of the various incoming and scattering wave functions then contain the s-wave part of the two relative
motions (particle 2 versus particle 3 and particle 1 versus the system of particles 2 and 3 in a bound or
scattering state) only which means [ =’ = 0. The potential V' (r1) is also assumed to act only in the
s-wave. Consequently, ¥1(r1, R1) and ¢1(r1, Ry) depend on the magnitudes r; = |r1| and Ry = |R4]|
only which leads to a dependence of the amplitudes under the integral in (3.15) of r = |r}|, Ry = |R}],

ry = |r4| and R; = |Rj%|. Relations between different sets of Jacobi coordinates are given by

1 1
rp=—-r1 — Ry Rzzzrl—*Rla
2 ; 2 (3.24)
I'3:7§I‘1 +R1 Rgifzrlngl.
It follows that
1 1
ro(z) = \/41"1 + R? + Rqr; = \/47’% + R? + Ryriw (3.25)
and
9 , 3 \/ , 9 3
- - 22 . 2
Ro(x) = 16 r?+ R R1r1 4R + 16 4R1r11: (3.26)
where z is the cosine of the angle between rq and R;. For r3(x) and R3(x) we get
L, 2 Lo 2
ra3(x) = Zrl + Ri —Ryr; = 17“1 + R} — Ryrix (3.27)
and
Rs(z) = ) 2+ R2+ Rr \/1R2—|—9r2—|—3Rr1: (3.28)
° 6! i T '

The magnitudes 2, R2, r3 and Rz depend on z = ¥ - Rl, the cosine of the angle between r; and
R;. Hence, the six-dimensional integral in Eq. (3.15) reduces to a three-dimensional one, because the

integration over the remaining three angles ©,® and ¢ becomes trivial under these simplifications
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/ & / 0 Ry (1R |G [ RV (7)) [ (. RS) + b (¢, RY)]

27t lad fe%e] 27 27t [e%s)
=/d<1>/d@ sm@/dR’1 R’f/de sine/dx’/drg r2(r1 Ry |Gy |r, R VA ()
0 0 0 0 0 0

X [1hy(rh, RS) + 1 (r5, Ry)]

(3.29)

o0 (e’ 1
— 8n2/dr1 r'f/de R;Q/dx'<r1R1|G1|r’1R’1>v1(r’1)[¢1(r’2,R;)l:() + 1 (rh, RY)1=0] -
0 0 —1

The wave functions in last line of Eq.(3.29) only contain the s-wave part of the relative motions. We
have also changed the integrations variables from (1}, ¢, ) to (r}, ®’',n = $—0) because the magnitudes
rh, RY, rh and R} appearing as arguments of the wave functions under the integral, depend on the
relative angle n = arccosx between r; and R;.

We can also find the partial wave decomposition of the Green’s function matrix element [10] in
Eq. (3.23)

A\

1
(r1Ry|G1 [T\ R)) = (rlRl\G1|r’1R/>R71R, ZA Yy, (81) Yo (Ry) /ZN Yy (8) Yo (RY)
(ri, Ry, 7, Ry k 1
= —2/,1/1 23 Z Z g)\)\ ! L 1 1 ) 7 Z Y/\H YAM R1 Z Y/\/ / Y/\/N (Rl)
k 71 R17"1R
A=0X'=0 E5Y ==X
(3.30)
This is essentially the generalization of the Green’s function for two free particles
Golr, ', k) = —— emlr o aulr Z Vit (£)Yim () (3.31)
o\t,1, 47_[ |I' . lm lm ) .
where
no 1 i (+)
gulryr) = =2 ailkr<)hy ™ (kr>) (3.32)
Ju(x) +) b ()
with the spherical Bessel function j;(x) = “—— and the spherical Hankel function h; " (z) = IT

Inserting the results of Eqgs. (3.29) and (3.30) into Eq. (3.23) and considering only s-waves in both
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relative motions (I =1' =X = X =0), Eq. (3.23) reduces to

u(rl, Rl; k) ].

4
T Tlle‘ (47‘()3/2

1 sin(kRp) 1

') 0o 1
_ up(r1) 2 ‘2 P
= - 547{]{:7}%1& + 87 /d?"ll T del R1 d.T/ <7’1R1|G1|7’/1R/1>m (47_[)2 V1(7"I1)
0 0 -1
47_[u(r%, /'2; k) 1 N 47Tu(r%, /g;k) 1
M Ryk (4m)3/2 P RLE (4m)3/2

(3.33)

with wj—,y=0(r1, R1; k) = u(r1, R1; k), the binding wave function uy—o(r1) = up(r1) and Y=g m=0 =

1
4

Comparing Eq. (3.25) with Eq. (3.27) and Eq. (3.26) with Eq. (3.28) we conclude that
r3(z) = ra(—2) (3.34)

and

These relations simplify the integral in Eq. (3.33) significantly. Considering the integration over x

only, it turns out that the sum under the integral can be written as one single term,

u(re(x), Ra(x); k) 1 u(rs(x), R3(x); k)
ro(z)Ra(x) + /dx r3(z)R3(x)

,_.\H
o

u(ra(@), Ra(@):k) [, u(ra(—), Ro(~2): k)
e (0) Ra(a) v ra(—)Ra(—2)

u(ra(x), Ra(x); k)

ro(2) Ra () (3.36)

r2(2) Ra(z)

|
| | |
H\»—I "'\»—‘ "‘\»—A
o
&
_|_
—
|
S~—
£
=
V)
—
s
oy
[\
—
s
=
~—

1 ra(2), Ro(): ) / 4y U2 (0). Fal)iF)

u(ry(x), Ro(x); k)
ro(z)Ro(z)

I

\]
)—‘\H

[o])

8
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where we substituted y = —z = dy = —dz. Finally Eq. (3.33) becomes

u(ry, Risk) 1 up(ry) 1 sin(kRy)

7“1R1]<i (47’[)1/2 o 71 (47‘[)1/2 le

o0 oo

1
2R? 1 LRy k)1
+8n2/dr’1/dR’1 (rR|Gulry Ry) —L L Vl(r’l)/dx’Qu(TQ’ 2 )
-1

Ry R, (4m0)2 PRk (4m)L/2

0 0
. s oo (3.37)
up(ry) 1 sin(kR;) 9 ri R}
= - (4701/2 5 + 87 dr de <T1R1|G1|T1R’> Vl( )
0 0
1
/d /u(r27 2’k) 1
rhRyk  (4m)l/2”
21
Multiplying both sides of Eq. (3.37) with r1 R1k gives the final form

o] 0o 1

. / / !/ u 71/27 )

u(ry, Ry k) :ub(r1)81n(kR1)+/d7" /de (r1 R1|G1|ri Ry Ry VA () /dx . R’
2
©n -t (3.38)
= u(ra)sin(bRn) + [ drf [ dR; (B Galrt BVA()QU, )
0 0
with the source term .
R

Q(r, Ry) = /de;R;u(rg,Rg). (3.39)

-1

The argument k in the wave functions u(rq, Ri; k) and u(re, Ra; k) is not essential for the following
consideration and will be suppressed. We can derive the differential form of the simplified Faddeev
equation (3.38) using the channel Hamiltonian H; = T} + V/(r1) in coordinate space representation,
. 1 d? 1 d? 1 a2
= ~2(my + mg +mg3) dR2,,  2ugz dr? 2141 (23) dR? V)
1 d? d2 3 d?
C6dRZ,  d? 4dR}

(3.40)

It describes the dynamic of a bound or scattered state between particles 2 and 3 and particle 1 moving

freely. With the chosen units the reduced mass i;(23) is simply

ml(mz + m3) 2
_ Tms) _ £ 3.41
H1(23) my + mo + mg3 3 ( )

The motion of the center of mass is trivial an will be neglected in the following.
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Acting with (E — H;) on both sides of Eq. (3.38) gives a partial integrodifferential equation,

2 3 a2 42 3 a2 ,
7 T 1dm +V(r1) — E|u(r,Ry) = l @2 1R +V(r1) — E|up(r) sin(kRy)]
00 00 ) ) 1 . (3.42)
—I—/dr’l/dR’l N (r1R1|G1|r'R’>V(r’)/dx’ Nl e Ry
dr? 4 dR? /R bRy 22
0 0 —1

The fact that the incoming state u(r1)sin(kR;) is an eigenstate of H; and the identity

. . 1,
(E — Hy)(r1R1|G1|r Ry) = (E — H1)<7’131\ﬁ|r133> =8(r; —r})d(R1 — RY) (3.43)

- 1

lead to the concise expression

2 3
[_ch“%_4cmf+‘/l(r1)_E u(ry, Ry)
[e%e} o) 1 ’R/ 1 R
_ —/dr’l/dR’l §(ry — 1))8(Ry —R’l)Vl(r'l)/dﬂc’ T}R}u(ré,R'Q) - —Vl(rl)/dm D (ra, Ry)
0 0 —1 "2 —1 2
(3.44)

with boundary conditions for outgoing scattered waves. After having carried out the integration over
both delta-functions, 5 — 2 and R}, — Rs because ry and Ry are functions of 1 and Ry (Eqgs. (3.25)
and (3.26)).

3.2.1 Asymptotic behavior

We are interested in the asymptotic behavior of w(ry, Ry) for Ry — oo and r; — oo, which can be

deduced from Eq. (3.44) in its asymptotic limit,

’U,(’I"l, Rl) =0. (345)

One introduces polar coordinates

r1=pCosy,

\/g . (3.46)
R, = ZPsing.
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The factor \/g in the second line of Eq. (3.46) results from the reduced mass, appearing in the Green’s

function (3.54a). The asymptotic form of u(p, ) in the limit p — oo reads

eiVEP
ulp,p) =, —r Alp), (3.47)
0<p<m/2 p

where A(p) is an unspecified function in ¢. This can be verified by transforming the asymptotic
Hamiltonian from Eq. (3.45) into polar coordinates (Eq. (3.46)) and let it act onto u(p,¢) from
Eq. (3.47),
2 1d 1 & eVEp
-—— - - =——-F| | —=A — 0. 3.48
a2 pdp  p2dp? ] ( PE (%) oo (3.48)
The detailed calculation is shown in Appendix A.

The convergence of the integral with respect to R} in Eq. (3.38), exclusively depends on the source
term Q(r1, R1) (Eq. (3.39)) as the potential V' (r]) only confines r}, the distance between particles 2
and 3. So we have to investigate the source term’s behavior for Ry — oo, while assuming a finite
range of interaction rg, limiting 7] to that value. For that purpose we need the asymptotic form of

u(ra, Re) given in Eq. (3.47). The transformation of Ry and r into polar coordinates reads
To = pPCOSp

3 (3.49)
Ry = \/;p sin .

Considering the relation between Jacobi coordinates in Eq. (3.24) we can write (compare Eqs. (3.25)-
(3.28))

1 1
ro(z) \/47’% + R? + Ryr; = \/47"% + R? + Ryrix

- ) (3.50)
r 1 T1
= 1+ + —z~ 14+ — )= =
Ryy/ +4Rf+R1x Ry( +2R1x+ ) R1+2rlm+

and analogously

9 1 3 1 9 3
RQ(SC) = ET%+ ZR% — Zerl = \/4R% ET%+ ZRlTll'
1 9r2 1 3 1 3 (351
T T1 1
=Ry 14+ -3 tsrR(1-"Lao+.)==R —°
2R1\/ +4R§ 3R11’ 2R1( 2R1x+ ) 2R1 4r1z+ ,

where x is the cosine of the angle between r; and R;. The Taylor approximation is valid for Ry — oco.
With the help of Egs. (3.50) and (3.51) we can determine the angle ¢ in Eq. (3.49) by keeping only
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the first terms of the expansions,

Ry 4NR1\/Z_\/T B 1
tangow\/;NZRl 3= 3:><pfarctan\/§f30. (3.52)

In order to establish the asymptotic form of Q(r1, R1) we approximate Rqo(z) and ro(z) by the first
term of the expansions in Egs. (3.50) and (3.51), respectively and use the form (3.47) for u(rz, Ra).
This is valid because for Ry — oo it follows from Eq. (3.24) that both, r2 and Rs tend towards infinity.
Together with the transformation (3.49), we finally obtain,

1 1

rify rif VE3R1\/3/sin30° ( 1 )
7R = d 7R = d A 1 N
QiR = [a Btk = [ R gy arctan -

|=

1
2 Ry sin 30°

el rqfixed 1 3
[ 2 oVEER2VE 1 h 3\t eVirh 1
= /de—l/4—A (arctan ) = /dx 2 (4) TlWA (arctan )
-1 ! (%) \/ %R12 V3 ] Ry V3
3 1/4 RVEY 1
=4 1 erA arctanﬁ .

(3.53)

We find a Rf?’/ 2-dependence in the asymptotic form of Q(r1, R1) which assures absolute convergence
of the integral over R} when calculating u(r1, R1) in Eq. (3.56).

The R-matrix approach, we want to establish in Subsections 3.2.2 and 3.2.3, requires the asymptotic
form of the solution w(rq, R1) of Eq.(3.44), for Ry — oo and 71 fixed and for r; — oo and R; fixed,
respectively. Each of the two forms can be established by using different representations of the Green’s
function Gy = (E — Hy)~* [6],

(r1 Ra| Gl Ry) = (1) (—ge% m@gjd) (1))
9 00 - 4 . R o
+ E/dk w () <3eleR> Sm(g,id> g (1) (3.54a)
0
= %/dK sin(K Ry) (—;(uf]‘;)(r<)qu (r>)> sin(KR}), (3.54b)

where Rs = max(R,R'), R« = min(R, R’) and r~ = max(r,7’), r« = min(r,7’). In Eq. (3.54a)
there appears the free Green’s function for angular momentum [ = 0 (compare (3.31)) of particle 1
versus the subsystem formed by particles 2 and 3, which is characterized by a complete set of bound-,
up(r1), and scattering states u,(c_)(rl). The second form (3.54b) represents the influence of bound-
and scattering states in the subsystem consisting of particles 2 and 3 on the motion of particle 1. The
bound- and scattering states u((”i() (r) and wyg, (r) are normalized as ugi) (r) = 9@ sin(qr+4(q)) and

wq(r) v 9. The relations between the different wavenumbers occurring in the two representations
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of G read

1 1 1 1 1 1
= ot 2 =g = S It o
1(23) 1 (23) H(23) H1(23) H(23) H1(23) (3.55)
3 3 3
E:Eb+ZQ2:k2+ZQ%ZQ%+ZK27

2

214(23) -
Inserting Eq. (3.54a) into Eq. (3.38) yields the the asymptotic form of u(r1, Ry) for Ry — oo and r

fixed,

where we inserted the reduced masses, Egs. (3.22) and (3.41), in the second line and set

R1 . , oo
u(ry, R1) = up(ry) sin(QRy) — %ub(rl)eiQRl /dR’1 Sm@Q)RQ /dr’l up(r)V (r)Q(ry, RY)
0 0

4 i T o [
— 3ur) ™) Largoom [ar w)venant &)
Ry 0

VE Ry

4 2 _ . ; R o .
0o R, o
4 2 _ . . / N
— 32 [avdDenden farg R oo 6viu m)
VE 0 0
4 2 r — i A . T —)*
-3 E/dk u]g )(Tl)snl(gile)/del eleR1/d7,./1 Ué ) (Tll)V(TI])Q(TllgR/l)
0 R, 0

The sixth term on the right hand side of Eq. (3.56) vanishes for Ry — oo because the lower limit
of the integral over R} then tends to infinity as well as the upper one and the value of the integral

becomes zero. The third term of Eq. (3.56) will be treated separately,

[oe] T0

4 i - R
m(r) = —3 [arg BB ZIL [t itu 7)
R1 0
) . . (3.57)
m431/A t 1 e §ER11 d// /V/
= -4 arc an% ?E’ ry riup(ry)V(r]) .

0
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as well as the fifth one,

427 O
s ) =32 [akaf e [am SR Lo 0 oviaus, 7
JE 0 0
8 (3 1/4 elVibh 7 (=) 1
= - <4) A(arctan \/5) R3/2 /dkuk (ﬁ)ﬁ (3.58)
vE

X /dr’1 r’lu;_)*(rll)V(rll) +0 (é) )
1
0

Due to E = k2 + %Q% it is evident that in the interval [\/E, oo] the wavenumber @) appears as a
complex quantity in Ha(r1, R1). Detailed calculations of the integrals over R} in Egs. (3.57) and (3.58)
are shown in Appendix B. In both terms we have to insert the asymptotic form (3.53) of Q(r1, Ry1)
since Ry — oo and thus R} becomes sufficiently large in the respective integration intervals, while 7}
is limited by the range ro of the potential V.

According to [6] we define

1/4
C,=4 (i) A (arctan \}§> Eib/dr rup(r)V(r) (3.59)
0
and
3\ '/* 1) 1 (<)
Ck)=4 <4) A <arctan \/5) W /dr ruy, ' (r)V(r). (3.60)
0
and rewrite (3.56) by using the T-amplitudes
/ dR / ar QR v Qe R) (3.61)
0
and
/ dR / sin( QkR W (MV(r)Q(r, R) (3.62)

in the following way

VE
u(ry, Ry) 2 up(r) sin(QRy) — %ub( )el@Riy — % % / dk ué_)(rl)eiQ"’RlT(k)
0
N (3.63)
ei\/%iERl ( )C+2/dk (_)( )C(k‘) —|—O<1>
RT/Q Up\T1)Cp T[ U "M R?

vE
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Eq. (3.63) reveals T}, being the elastic (or rearrangement) scattering amplitude. After having estab-
lished the asymptotic form of u(ry, Ry) for Ry — oo and 7 fixed, we study its asymptotic behavior
for R; fixed and r; — oo which is required for the R-matrix formalism. To that end we insert the
second form of the Green’s function (Eq. (3.54b)) into Eq. (3.38) which gives

&

T1 o0

(+)

u(ry, Ry) :—72[ / dK sin(KRl)qu(rl)/dr’ Uar (1) /dR' sin(K R})V (r)Q(r}, R})
0 0 0
- / dK sin(KRl)qu(rl)/dr' . /dR' sin(KR})V (r})Q(r}, Ry) (3.64)
/%E 0 0

oo

/dK sin(K Ry )ulH (r 1)/ ! qu /dR’ sin(KR)V () Q(r,, R})
0 0

71

:Hl\D

In the limit r; — oo the lower bound of the r{-integral in the last term continuously approaches the
upper one, which leads to a vanishing integral and the term can be neglected. The second term is
considered to be a correction term and is treated in Appendix B. Using the asymptotic form of wq(r)

from above, wy(r) = €'7", one obtains

VE _— 1
u(ry, Ry) = —x / dK sin(KRy) 1qu1/ /1 LA 12 /de sin(KR)V (r)Q(ry, R))+0O (7"2> )
1

0 0
(3.65)
Introducing the amplitude T'(K)
)
/ dR / dr sin(KR) "V (r)Q(r R) (3.66)
provides a compact form of u(ry, Ry), which reads
2 : 1
u(ry, Ry) =« - / dK sin(KRp)e'™"T(K)+ O (2) . (3.67)
™

Having defined the T-amplitudes, we can establish some relation between T'(k)
R) (-«
/ dR/ B v Qe

and T(K), which are similar with respect to their functional form. First, we write T'(k) as a function
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of qr,

T(gx) = /dR/d ng()sin(QqKR)V(T)Q(r, R). (3.68)
0 0

In order to proceed, we have to clarify the meaning of @4, . Therefore we consider the energy-wave

number relation, Eq. (3.55), including the equality

3 3
E=k+ ZQ% =gk + ZK2 (3.69)
from which we can conclude @4, = K. This can be interpreted as follows: @)} is the wave number
of particle 1 associated to the wave number k from the subsystem of particles 2 and 3 via the energy

relation. Similarly Qg is related to gx, and is called, according to Eq. (3.69), K. Thus,
Ug (1) .
T(gx)= | dR [ dr — sin(KR)V(r)Q(r, R) . (3.70)
0 0

Comparing Eq. (3.66) with Eq. (3.70), one finds the relationship,

T(K) = 2 T(gr). (3.71)
aK

In order to provide a relationship between T'(¢x) and T'(k), we use an argument, valid for the asymp-
totic area with r; — oo and R; fixed. Latter describes the break-up channel, where particles 2 and 3
move freely with the distance between them tending to infinity. In that case, the bound state wave
function completely disappears in both forms of the Green’s function G in Egs. (3.54a) and (3.54b).
This allows us to identify k=qx and Q=K. That means we have a one to one correspondence be-
tween the wave numbers on each side of Eq. (3.69), not only the sum of the squares, but also the wave
numbers themselves become equal. Consequently, in that limit T'(¢x) and T'(k) will also be equal to

each other. Hence, Eq. (3.67) can be rewritten as

ol
3

u(ry, Ry) = — dK sin(KR;)e'™™"T(K)+ O <

l—t[\.')‘ =

)

Al
@O\

2 K 1

— igKT1

- / dK sin(KRj)e qKT(QK)—’_O(r%)
0 (3.72)
0

2 K 1

— )= igrry - _

- / dgx ( ) sin(K Ry)e qKT(qK) +0 ( %)

VE

8 1
— 7/ dk sin(KRy) "mT(k)Jro(Q) .
37 T
0

26



In the second equality we made use of Eq. (3.71). Then the integration variable K was substituted

by g according to Eq. (3.69). Differentiating Eq. (3.69) with respect to ¢x and K yields

3
0= 2qxdg + J2KdK

dK = <§> 9 gk .

(3.73)

In the last equality qx was replaced by k due to the one to one correspondence of the wave numbers
discussed above. Thus we succeeded to express the asymptotic form of u(ry, R1) by the three-body
on-shell T-matrix elements T}, and T'(k) for both cases, Ry — oo, r1 fixed and R; fixed, 71 — co. The
next step towards an R-matrix formalism is to extract the leading behavior of u(rq, Ry) in the limit
r1 — oo and R; — oo, equivalent to the break-up channel. This is achieved by the method of steepest
descent [11] or saddle point method, applied to the integrals in Eqs. (3.63) and (3.72). It is useful to

transform both, Jacobi coordinates and momenta, into polar coordinates.

1= pCcosy, gk =VEcosa,
3 1 (3.74)
Ry = zpsinap, K= §Esina.

Hence, u(ry, Ry) from Eq. (3.72) becomes

/2
1 [4 ; = 4
Ih=——1/-FE / doy ePVE cos(a=¢) oq o T —FEsina | . (3.75)
myV 3 3

—7/2

A detailed derivation of Eq. (3.75) is provided in Appendix C.

The leading terms of the integral Iy for the case that p tends to infinity will be calculated via
the method of steepest descent. The limit p — oo implies that 7, — co and Ry — o0, equivalent to
the asymptotics of the break-up channel. The method of steepest descent allows one to approximate
integrals of the type

I= / dz g(z)eth®) | (3.76)

r

where t — oco. It extends the idea of Laplace’s method [11] to integrals in the complex plane [12].
Cauchy’s integral theorem states, that the value of contour integrals is not changed by continuous
deformation of the contour unless it contains any singularities of the integrand and the end points
remain the same. The contour I' is deformed in a way that the maximum of Re g(z), characterized
by the complex derivative ¢’(z) = 0, becomes a stationary point of Im h(z). We integrate along that
path in which we pass the maximum of Re g(z) in the direction of steepest descent. In the vicinity
of that point the integral can be approximated by a series expansion [11] and calculated up to the
desired order of the parameter ¢.

In the case of the complex integral I, we extend the integration interval into the complex plane and
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integrate along the contour ¢ — o = 7e~"/4, The saddle point is located at o = ¢. We find that g =

© + ¢1, where ¢ = exp [%Tlfi — %iarg (dd:zh(ap)” = exp [%ni — %iarg(—i)] = exp [%ni — %i%ﬂ] =

exp [i%] . Then,

[2 = [4_ &PVE —( [4 i1 d —( [4
Is =/ =€t/ - E—— lcosgoT( Esin<p> — coscpT( Esingp) + ...
T 3 1/2 3 2 o/ E dy? 3
(p ﬁE) pVE dp

(3.77)

These are the leading terms of the integral in Eq. (3.75).

Furthermore it is interesting to investigate how the asymptotic form of u(ry, Ry) for r; — oo and R;
fixed approaches the result from Eq.(3.77). In order to study this question, we transform the momenta
appearing in u(rq, R1) from Eq. (3.72) into polar coordinates according to the transformation (3.74),

while leaving the spatial coordinates unchanged and obtain

/2
2 /4 4 ; ; = 4
IQ:—fwl—E/da sin | 4/ s ER;sina erVEcosa qog T \/zEsina | . (3.78)
V3 3 3
0

The leading terms are again extracted by integrating along the path of steepest descent (which we do

not carry out explicitly) starting from o = 0. With T(0) = 0 we obtain the result [6]

92 . 4 3/2 eiT1\/E d —
I/ —€e2 | =F —_—r —T(K . 3.79
2=V (3 > (VB2 dK ( )‘K_O (3.79)

Expanding the first term in Eq. (3.77) into a Taylor series at ¢ = 0, or equivalently at K = 0. Using

the expression K = %E sin ¢ one obtains

2,z /4 eiPVE =
I = \/;e a4/ 3EWE)1/2COS@T(K)
2 . [4_ VB 2
VE
2 fEd /4 eip\/E ()02 d = 1/4 1
B \/;e ’ 3EW <1 2 * ) <O+ dKT(K)’K—o gEbm@ T (3.80)
. ipVE 2
-2 (-5
")

2 (4 )3/2 o VE d — '

=2t (2E) ———5 R ——T(K)

Tt 3 3/2°7 dK
(nvF)

INE]

In the second last equality we inserted the transformation Ry = \/gp sinp from Eq. (3.74). In the
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last line of Eq. (3.80) we performed the limit ¢ — 0, or equally K — 0, and kept the leading terms
only.

Eq. (3.77) exhibits the leading terms of the u(ry, R1) in the asymptotic range where r; — oo and
Ry — oo. The limit ¢ — 0 implies r1 = pcosp ﬁ p and consequently p — co. In turn this means

that Ry = \/gp sin ¢ becomes finite. The leading term of of u(ry, Ry) for r1 — oo and R; fixed,
however, is presented in Eq. (3.79). Hence, for ¢ — 0 the results of Eq. (3.80) and Eq. (3.79) have to
be consistent and so the second derivative term in Eq. (3.77) must vanish in higher order for ¢ — 0.

The leading contributions from the first integral in Eq. (3.63),

8
— B?/dk uy, ) (r1)e' T (K) (3.81)
0

in the break-up channel, i.e. 71 — 0o and R; — oo can be determined in an analogous way. Applying

the following transformation to the integral,

r1 = psinf, k=+VFEsin?,
3 4 (3.82)
R, = chosﬂ, Qr = gECOSﬁ7
we get
\/» 7t/2
4V E .
L = ——— dY cos ) elPVEcos@=B)p (\/Esin 19) . (3.83)
3mi
—7/2

A detailed calculation of (3.83) is provided in Appendix D. Again I; is approximated by the contri-
bution arising from the saddlepoint ¥ = 3 in the frame of the method of steepest descent. We set
¥ = =Z — p and after integration along the path of steepest descent we obtain a result similar to
Eq. (3.77),

1p\/ 2

4
Ilﬁ 17\/7

3V = (p\/») 172 [Sin@ T (\/ECOS@> - ;p\iﬁdch sinp T (\/Ecos 90) + } . (3.84)

Inserting the relation T’ <\/%»Esin gp) = \/gsm Ly (\/E cos <p>, which is Eq. (3.71) with transformed
cos @
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momenta according to Eq. (3.74), into Eq. (3.77) yields

2 .. [4 inVE 4 si
=yt e 3 (o)
(vE) g

i 1 d2 4 si
! S \/;SIH@T(\/ECOSQO)—F...

— —————cos
2 pV/E dg? cos
2

zgﬁeﬂ@(fi;/;/g [SingoT(\/Ecosgo) — ;p\;EdO:ﬂ sinng(\/Ecosgo) +] )
VE

(3.85)

So starting with either the asymptotic form of u where r; — oo and R; fixed or with u where 71 fixed
and Ry — oo leads to the same result for the break-up channel (r; — oo and R; — o0), which one
would also expect. Thus, we can write down the wave function u(ry, R;) for the break-up channel,

w(r,Ry) = o 25 (VB 3.86
Lf) = gy e i/ sin ¢ cosy) . (3.86)

pP—00

In the break-up channel, the three-particles can no longer interact in the asymptotic region (Fig. 2).
Thus, the total energy F is split up into the two relative motions, characterized by the wavenumbers
k and Q. For every situation there is a defined ratio of 71 /Ry, which determines a specific angle ¢; in
polar coordinates and consequently a specific value for the momentum k; = v/E cos ¢;. Because ro, Ry
and r3, R3 are connected with 71, Ry by the relations (3.24), ko = V'E cos 3 and ks = V'E cos @3, get
fixed too. The function T;(k) gives a spectrum of the partition of energy into the two relative motions.

A spectrum of the partition of energy into the two relative motions is given by the function T'(k). We

break-up channel

Figure 2: Break-up channel
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proceed in calculating the break-up amplitude of one Faddeev component,

u(ry, R 4 /2 n elPVE 1
w(rl,Rl):M ) \/;e14E1/4 i sin ¢ T(k1)

T1R1 p—=oo 3 7“1R1
4 [2 i« iV E 4 1 1
=3 Zeifpl/al 7 sincplf . T (k1)
T p 3psing; p  cospy
——
:cos(gfﬁl) (387)

_ é 82 2 iz 1/4eip\/E T(k1) é 302 z iz 1/4eipﬁ@

= e'1 F = e'1 [ T(kl)
3 T p5/2 sindy 3 T P52 ky

_ (4" \Feifi E3/4 VE (k)

S \3 T o2k

We used the transformations (3.74) and (3.82) and the saddle point condition ¥ = § — ¢, resulting

from the integration along the line of steepest descent. Due to the symmetry of the total wave

: (+)
function Wbmak_up,

component, which occurs three times, each depending on one different set of Jacobi coordinates. This

the number of Faddeev components reduces from three different ones to one single

has already been discussed in Section 3.2 and means that once we have calculated ¢ (ry, Ry) we have
solved the scattering problem for a certain channel and can calculate the scattering wave function
according to Eq. (3.1), which is W(*) = ¢)(ry, Ry) + 9 (r2, R2) + 1(r3, R3). For the break-up channel
we coherently sum up the leading asymptotic parts of the Faddeev component 1 in the limit r; — oo
and R; — oo with i = 1,2,3 (Eq. (3.87)) and obtain (p depends on r;)

3 3/2 ipvVE
4 2 . elP T(ky) T(ko) = T(ks3)
) = Ry = = Zeli 3/ . .
o ;w(r“R,) 5 (3) ,/ne 3 P72 S S (3.88)

i

The magnitude p is defined according to (3.46) and depends on r; and R; in the following way

i = pcos i,

\/g ' (3.89)
R;, = 1Psinei.

3.2.2 Towards R-matrix theory - interior region and basis states

The key feature of R-matrix theory [13] is the division of the configuration space into two parts: an

interior region and an exterior region with the borderlines

Ci: R=A and 0<r<a

(3.90)
Cy:r=a and O0<R<A

between them. Graphically we get a two-dimensional rectangular area for the interior region, bounded
by the lines C; and Cs (Fig 3). The Schrodinger equation is solved separately in the interior and

exterior region which are connected at the borderlines by suitable boundary conditions following in
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the next subsection 3.2.3.
The set of all points with » > 0 and R > 0 that are located inside that area is called D and we

choose 11, Ry € D. Moreover we require the second set of Jacobi coordinates (r2, Ro) being located

R
A

C
///////1/////
-
b e,
-
0000000000000

> r
a

Figure 3: Illustration of the interior region D with boundary lines C; and Cs.

in D as well. The potential V(r1) occurs on the right hand side of Eq. (3.44) due to its finite range
ro confines the maximum magnitude of r; to that value. Outgoing from the relations between Jacobi

coordinates (3.24) and using the upper bound approximation for the magnitudes ro and Rs,

|ar1 + bR1| = \/((17’1)2 + 2ab(r1 . Rl) + (bR1)2 =~ \/((1’/‘1)2 + 2abr1R1 + (bR1)2 =ary + bR1 s (391)

the requirement 79, Re € D, ie. ro ., <aand Ry, < A, leads to
1 1
a)rg=—-r; — R4 — —ro+A<a
2 ro in D 2 (3 92)
D) Ro= or — SRy —»  Srotid<a '
=-r] —— - = .
2T T Rywp 40727
Expressing A explicitly from relation b) and inserting it into relation a) we get (with § > 0)
3 3
b)AZ§r0 = A:§r0+6
. (3.93)
a) §r0+§r0§a:>a22r0:>a:2r0+5.

Thus, by confining r, Rs to D the boundary parameters a and A can be expressed by the range of
the potential rg and a parameter § > 0. Latter can be chosen such that the asymptotic forms of u,
Eq. (3.63) and Eq.(3.72), are valid on the lines C; and Cy. In the interior region a complete set of
basis states ¢, (r, R) is introduced, which fulfill the equation

d? 3 d2

——+V

dr2 (’I“) - ZTRQ - Eu @u(ra R) =0. (3.94)
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with the boundary conditions

Op,(r, R) _ O¢,(r, R)
or OR ReA

r=a

<Pu(07 R) = (pu(r7 O) =

=0. (3.95)
Moreover, these states can be chosen real and should fulfill the orthonormalization condition
/ /D drdR @, (r, R)pu (1. R) = Sy (3.96)
We choose the introduced basis states ¢, (r, R) as product states
@u(rv R) = X (T)Yuz (R), (3.97)

where the functions X, (r) and Y, (R) are solutions to the equations

V)~ 6] X () =0 (3.99)
and [_ % ddT; _%} Y. (8) =0. (3.99)

The total energy E, is split into the energy of the two relative motions, €,, (particle 2 relative to
particle 3) and €,, (particle 1 relative to particle 2 and 3). It is advantageous, to order the set
[ = i1, b2 in that way that the total energy E, = €,, + €,, is approximately constant [6].

Hence, in the interior region the Faddeev amplitude u can be expanded as
u(ri,Ri) = Y cupu(ra, Ri) (3.100)
”w
with
e = // drdR ¢, (r, R)u(r,R) . (3.101)
D

Eq. (3.101) results from integrating both sides of Eq. (3.100) over the region D and using the or-
thonormalization condition, Eq. (3.96).
3.2.3 Equations for three-body R-matrix theory

In this section we want to establish a set of equations in the frame of three-body R-matrix theory, that
allow us to calculate the coefficients ¢, and thus the wave functions in the interior and the three-body

on-shell T-matrix elements T and T}j, which determine the experimentally accessible cross section
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(see Subsection 3.2.4). We multiply Eq. (3.44) from the left by ¢, (r1, R1),

1

2 d2 7’1R1
ou(ri, R1) _dT"f +V(r) - ZT]%% —E|u(ry, R1) = —pu(r1, R1)V(r) /dx T2R2u(r2,R2).
21
(3.102)

For clarity we do not explicitly write down the dependencies of u and ¢, in their derivatives, i.e.

u=u(r,R) and ¢, = ¢,(r, R). We perform the integration of Eq. (3.102) over the domain D

/ drdR ¢, (m Rl){ d—2+V( 1) — §d—Q—E u(ry, Ry)
b plrn ar? 1dR2 ’
. (3.103)
_ 7// drdR gaﬂ(rl,Rl)V(rl)/dx Nl Ry
D roRay

-1

After some manipulations and the calculation of the various integrals, which can be found in Ap-

pendix E, one finally arrives at

r=a

a A
3 du
(Eu - E)C/L - /dr ‘P/L(T A) dR /dR go,t(a, R) ar
0 0

L . (3.104)
= // dTlde 90# 7’1,R1 /dx 1 TQ,RQ)
raRs
21
The right hand side of (3.104) can be further treated
1
// dTlde QDIL Tl,Rl /dl’ 7"2R2 T‘Q,RQ)
- (3.105)

riRy
- dridR R)V( d E oy Ry).
//D ridfy @u(ﬁ, )V (r /1 x roRs — Cw P (r2, R2)

Because the variables ro and Ry are confined to D which is ensured by the choice of the values (3.93)
for the parameters A and a, we can expand u(rq, Rs) in the source term. After introducing the matrix

element

1
riRy
Viw = // dridRy @u(rl,Rl)V(Tl)/dx 1o Ry ——pu(r2, Ra) (3.106)

-1
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Eq. (3.103) in its final form becomes

a A
3 du du
1 /dr ou(r 4) 35 . + /dR ¢ula, R) d?“‘ra =(Eu—E)ey+ Y Ve . (3.107)

0 = 0 = W

Two asymptotic forms of the wave function u have already been established in Eqs. (3.63) and (3.72)
and are now inserted for u on the borderlines C; and Cs in Eq. (3.107). This yields

/dr ou(r, A)up(r)Q cos(QA) — /dr O (1, A)uy (r)iQe' AT,

a VE

342 o iOuA ibA
~13n dr @u(r, A) dku ( )iQre T(k) — 4 A3/2 dr ¢, (r, A)up(r)Cy
0 0
3VIEA 1 o | T 3.108
_ 4143/21\/3>E7T/dr %(r,A)/dk A (1) Ck) (3.108)
0 0
04 A vE
-3 / dR ¢,(a, R) / dk sin(QyR)ike*T (k)
0 0
=(Ey— E)ep + Z Viw
H/

where we neglected terms ~ R~ with a > 3. Correction terms of the order O(1/r?) and O(1/R?)
occurring in the asymptotic forms of u are ignored either. In order to set the numbers C and C(k)

into relation with the T-amplitudes we compare Eqgs. (3.86) and (3.47) and conclude that

4

Alp) = 3\/ZeigE1/4 sin g T(VE cos ¢) (3.109)

1 Y
A (arctan \/§> = g\/Zel4El/4T (\/ ZE) . (3.110)
3 1/48\/5.ﬂ 1/a S\ 1
Cy = (4) 3\ e 1 B4 (\/4E) E/dr rup(r)V(r) (3.111)
0

or specifically

Thus,

and

O(k) = <Z)1/4 gﬁeii‘El/‘*T <\/2>E) % /dr rul )V (). (3.112)
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For reasons of clarity we introduce the following abbreviations,

a

My = /dr oulr, A)up(r)
MYy = /dr u(r, Auf” (r) (3.113)

Mg = / 4R g,(a, R) sin(QR).
0

Then we obtain the final form of Eq. (3.108),

VE
3 , ; 2 , gy
(Bu = B)ey + Y Viwew = 7QMyp cos(QA) —iQMue' 4T, — / dk iQx M, QAT (k)
w 0

/2 1/4 e
3elVaFA g /3 8 /2 ix 14 3 1
BN <4) 3\/;G4E/T(,/4E) MubE/drrub(r)V(r)
0
3eVEEA [1 9 /3\Yis [2 .. . fip L[
-1 gE% (4) 3V =° 4E/T< )/dkMHk k;Q/drru,C (r)V(r)
0 0

24 v
-3 / dk ik M,q, ™ T (k)

0

VvE
; 2 0 4 .

= ZQMH;) cos(QA) —1QM e 9Ty, — - / dk [iQkM( )e‘QkA+i3kMMlelk“} T(k)

iei@A 7 ? (=)s
_N(E)A3/2T( ) Nb—/dr rup (T 7r/dk; Mﬂk e /dr ruy, (r)V(r)| ,

0 0 0
(3.114)
with

N(E) = <2E) o i\/zeil‘ . (3.115)

In analogy to two-particle scattering we define the three-particle R-matrix according to

Ry (E) = 0 (B — E) + Vi - (3.116)
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form since V), is defined as Considering the definition

1

R
Vi —// dridRy @#(Tth)V(rl)/dx ;R;@#’(T%R?)

—1

from above, one realizes R,,,/(E) to be the matrix representation the Faddeev equations inside the
region D.

Eq. (3.114) is the first equation for the R-matrix formalism and connects the expansion coefficients
of the interior wave functions, c,, with the elements of the T-matrix. Further equations follow by
matching the interior and exterior form of u at the boundary lines C and Cs, respectively. We
therefore reduce u to its flux conserving terms and ignore terms ~ 1/ R3/2? and the correction terms
of higher order. Furthermore we set up(a) &~ 0 because the binding state wave function is spatially
located and nearly vanishes at the boarder line Cy. This assumption was already made when we
derived the form (3.86) of u from Eq. (3.63) for p — oo,

E

8
31

(=) (- )iQx R S E R VE
dk uy, ' (ry)e Tk)(+...) = —e iF sinp T (VEcosg

U(?"l, Rl) =z = p—oo 3 p1/2

o

(3.117)
We neglected the terms containing the binding wave function uy(r) in Eq. (3.63) before extracting the
leading terms via the method of steepest descent and called the new integral I; (see Appendix D).

Thus, we may conclude that [ dr ub(r)u,(;)(r) ~ 0 on the line C;. Hence, projecting Eq. (3.63) onto
0

up(r) and making use of u (r) = up(r) (the binding wave function is real) yields

/ drup(r) Y cupu(r, A) = / dr Jup(r)[> sin(QA) — % / dr Juy(r) 694,
0 1% 0 A

(3.118)
8
~ 3 / dk/dr up(r (r) e AT (k) .
0 0
~0
Again, using the abbreviations from Eq. (3.113), we finally get
Z M,pc, 2 sin(QA) — ‘QATb (3.119)

The crucial point is the expansion of u(r1, R;) into basis states ¢, on the left hand side of Eq. (3.118),
which is only valid inside the region D. On the right hand side, we have the asymptotic form of u
outside the region D. Both are set equal on the line C, which provides another equation in R-matrix

formalism. A similar relation for the break-up amplitude T'(k) cannot be established via projection on
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the scattering states ul™) (r), because they are not mutually orthogonal on the finite interval 0 < r < a.

However, we can use the asymptotic form of u in Eq. (3.63),

W W~

VE
: 4 i - i
ulri, i) 2 () sin(QRy) — gup(r)e! 9T, - / dk uj” (r1)e 9P T (k)
0

1—00

with the asymptotic expansion (3.86) of the k-integral, outlined in Eq. (3.117)

4 [2 iz ye?VE
u(ry, R1) = = ;{eliEl/4 sinng(vEcosgo)
)

p—+00

to interrelate the expansion coefficients ¢, with the T-matrix elements 7'(k). When matching the

wave function u inside D with u outside D on the line C, we obtain a further relation,

. 4 AN (2 i aeeaVE A r
Zcuapu(r, A) — up(r) [sm(QA) — 3e‘QATb} S (3) \/;e’4 EY4 Rl (@) )
m

p4- PA PA

(3.120)

A
with pa = 4/r2 + %AQ and sing|,, = \/§? On the line C5 one gets in the same manner,
A
: 4 3/2 2 . ipa VE R
Zcugpu(a,R) = uy(a) [sin(QR) — e T}] + (3) \/;e’4E1/4el/2 T (\/Ea)
12 p, Pa
: P (3.121)

4 3/2 2 e ipa\/E
- () \feuEl/‘*e " R op (@“) ,
3 s Pa Pa Pa

with p, = 1/a? + 3 R? and uy(a) ~ 0.

We have derived a set of four equations for the determination of ¢, and the on-shell T-matrix elements,
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(B, — E)c, + Z Vi
7%
vE

3 . i . =) iQr A4 ika
= TQM,c08(QA) — 1QMue QA — 2 [ dk {1QkM;(Lk)e @A 4 igkMq,e k } T(k)

Al
o\

jeiV/5 B4 1 2 7 Ji
_N(E)WT (\/ZE) M“bfb/dr rup(r)V(r) + - /dk: Ml(lk)k-Q /dr rufC )*( YV (r)
0 VE 0

Z ubCp 2 sin(QA) — 3 IQATb
, . AN 2 . eiraVE 4 r
3) Zcugou(r, A) —up(r) [sin(QA) — e QATb] a (3> \/;e ipl/4 114/2 — T (\/E>
m

4\ 2 i evaVE R a
4)> " cupula, R) = <3) \/;e L 7 e T (*/Ep) :

m

(3.122)

The solutions will be the expansion coefficients ¢, and the three-body on-shell T-matrix elements
T, and T'(k), which determine the interior wave function as well as the cross section. Numerical meth-
ods will be presented in the near future. In the energy region below the break-up threshold E = 0,
the set of equations simplifies essentially, as the break-up part of w, the amplitude T'(k) becomes
exponentially small at the boarder lines C7 and C5 and can be neglected there. Then, one has to
calculate ¢, and T}, only, which are determined by 1) and 2) in the set of equations above. Below all
thresholds where no reactions take place any more, the binding energies of the system are given by

the eigenvalues of R,/ (E).

3.2.4 From the T-matrix elements to the cross section

The T-matrix elements play an important role in scattering theory, as they are needed for the calcu-

lation of the cross section [9],

do

=2 = 2m)m|T, wal” = (270) m‘ (W2, |V|w<+>> , (3.123)

with £, = FE,, for the on-shell T-matrix elements. Here, m is the mass of the projectile and V' is

(+)

the scattering potential. ¥, is the outgoing scattering state, the physical solution of the scattering

problem. It is generated from a momentum eigenstate 1/12 by the definition [9]
|¢(+)> = lim <

0
_ 3.124
1 (3.124)
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and is the solution of the stationary Schrodinger equation

(H—E)#) =0

q bl

(3.125)

with H = Hy + V. The final state 1/12 ;s characterized by the wavenumber g;. It is an eigenstate of
Hy as well as 1/)2 .
The definition for the T-matrix elements, given in Eq.(3.123), is valid in two-particle scattering

theory. The three-body transition amplitude between channel o and £ is defined as
Tha = (05VP10SH). (3.126)

The channel potential
VB:VQ+V7+‘/213 O‘#ﬂ#fy’

is defined according to Section 2, but using capital letters instead of small ones. The break-up
channel conveniently carries the index 0 with the corresponding potential Vy = 0 and thus V° =
Vi+ Vo + Vs + (V).

The T-amplitudes T, and T'(k), which were derived for channel 1 in Section 3.2.1 obey exactly the

definition given in Eq. (3.126). With ¢1 = jo(QR1)ws(r1) , o = kjo(kr1)jo(QrR1), pu(r) = o(7) we
switch to the abstract vector notation in configuration space and rewrite
T, = / dR [ dr Sm(gR) up(r)V (r)Q(r, R)
0 0
as
Ty = (1|Valoz + ¥3) = (1| ViGo(Va + V3) | D)) = (41|Va + V3|@(H)) . (3.127)

This expression is valid for distinguishable particles because for the source term @) we inserted the
sum 9 + 13, which simplifies to 11 in the case of identical particles. In the first equality we inserted

the definition of the Faddeev components
[t:) = GoVi|w'™)
and in the second equality we made use of the relation

GoVisldg) = |ds) - (3.128)
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To show its validity we multiply both sides of Eq. (3.128) by G;* from the left side which leads to

G GoVilos) = Gy t|og)
Vslgs) = (E — Ho)lgp)
Vlos) = (B — Eo)|¢s)
Velos) = Valos) -

Here, Hz = Hy + V3 with the eigenstate |¢5), Hg|¢p) = E|¢g), with E = Ey+ V. From the result of
Eq. (3.127) we learn that the total asymptotic behavior of the wave function in channel 1 is contained
in the Faddeev component [¢)1). This can be seen by calculating the amplitude T}, for transitions into
channel 1 (= a) according to Eq. (3.126) (5 and - denote channel 2 and 3)

Ty = (ol VEZD) = (¢a|Vs + V, @) . (3.129)

This yields exactly the same result as obtained in Eq. (3.127), where we inserted the functional form
of T}, corresponding to |11).
Next, we want to show that the break-up amplitude

/ dR / ap S0 Q’fR W)V (1) Q(r, R)

is in agreement with the definition (3.126). In order to demonstrate this statement we switch to the

vector notation and obtain for the first Faddeev component
T(k) = (¢ [Vila + vs) - (3.130)

The scattering state \¢,(€+)> is a solution of the Lippmann-Schwinger equation

657) = ox) + GoValoy” = lox) + lim El—HO Vilop") (3.131)

where |¢y,) is the solution of the homogenous equation (E—Hy)|¢x) = 0 and (E—IAJO)|¢§€+)> =W |q5,(€+)).

The total solution of the scattering problem
Hi|¢{7) = Bloy) (3.132)
is given by the Lippmann-Schwinger equation (3.131). It can be represented as

165H) = |k) + GaValow) (3.133)
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which follows from the formal solution of the Lippmann-Schwinger equation

—1 . 7
() _ -1 o . % ) T E+1€7H0
= (1- GV, = (1—tm — ~ lim :
6£7) = (1= Govi) M) = (1= lim == ) ) = fiy =T
E +ie — Hy . B+ Vi+ie—Ey : Vi
=lim ——— = lim = =lim ——— = G1V; .
i ™ T prie—m M T Mg 00 = Gl

(3.134)

Here, |¢y) is a momentum eigenstate of Hy with Ho|¢y) = Ex|ér) and \gzb,(f)} is an eigenstate of the
total Hamiltonian H; = Hy + Vi with Hl|¢§€+)> = E|¢,(€+)>. Thus, T'(k) can be rewritten as

T(k) = (¢r V1|2 + ¥3) + (¢ |ViG1 Vi |t + b3) = (@ |Vi|the + ¥3) + (dr| Vi1 — 1)

(3.135)
= (o [VAZT)) — (dr|Vi| 1) -

The second term in the last line vanishes on-shell due to strong surface oscillations that do not
contribute to the cross section. The first term is the contribution to the break-up amplitude from
channel 1, because we used the form (3.62). Adding up all three channels we get the total break-up
amplitude

T(k) = (6alVi + Vo + VaJ0) = (3 [V D) (3.136)

according to Eq (3.126) with 8 = 0 for the break-up channel.
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4 Generalization of the Glockle approach to three interacting

distinguishable spinless particles

The total wave function ¥t for a specific channel is again decomposed into three so called Faddeev
components [8]. Each component represents a sub-system, where two particles j, k interact via a
two-body potential Vj;(r;) and the third one moves freely. Finally all three components are summed
up to get the total solution.

In Section 3.2 we could show that all three Faddeev components can be represented by one single
component 1 after applying permutation operators and using the symmetry in the total wave function
of a specific channel. The system of three coupled equations was then reduced to one single equation
for ©¥(r1,R1). These arguments are no longer valid in this section as the symmetry in the total
wave function gets lost when the particles are non identical. Therefore we have to determine three
different Faddeev components v;(r;, R;), which depend on each other. Hence, a system of three
coupled (integral or differential) equations has to be solved to get the total wave function ¥+ for
a certain channel. In the R-matrix formalism we will again obtain a set of equations to determine
expansion coefficients for the interior wave functions and the T; amplitudes.

The microscopic Hamiltonian for the three-body system reads (A =1)

g 1

1
2m1 ! 2m2

Hopier = — V3— —Vi+Vas+ Va1 + Via + Vi, (4.1)
2m3
where the m; stand for the mass of the particles, respectively and the V;, (i # j) denote the pair
interaction between particles ¢ and j. Vj is the three-body force, which will not be considered in the
following calculations. Following Faddeev [7] we split the total scattering wave function for a certain
channel \W(gﬂ) into three so called Faddeev components |i),,);, where |W(§+)) = [Ya)1 + [Va)2 + [Ya)s3-

We change from Cartesian coordinates to natural Jacobi coordinates,

X1,X2,X3 — ri;Ri;Rcm (42)

and choose the coordinate space representation ¥;(r;, Ri)o = <I‘iRi|”L/J((1+)>i for the Faddeev amplitudes

|¢é+)>i. Here, R, is the vector pointing to the center of mass is neglected since its motion is trivial.

The three sets of Jacobi coordinates are defined as

MoXg + M3X3

r{ = Xg — X3, R =x 4.3
1 2 3 1 1 . (4.3)
maXs + m1X
ry = X3 — X1, Ry=x; — — (4.4)

m1+m3
m1X; + MaXg
rs = X1 — X3, Ry=x3———, (4.5)

m1+m2

where x; represent Cartesian coordinates.

Each component ;(ri, R;i), represents one subsystem (Fig. 4) and is an eigenfunction of the
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Figure 4: Three subsystems characterized by different sets of Jacobi coordinates.

corresponding Hamilton operator H’i,

~ 1 = 1 -
H1:— Via — Vi +‘/23T17
2u23 1 2p1(e3) ()
N 1 - 1 =
Hy = — Vi, — Vs +Vsi(re), 4.6
2ust 0 2z 2 (r2) (46)
N 1 = 1 -
H3:7 Viz, — S +‘/12T33
2uz 0 2uga12) (rs)
with the reduced masses
Lo = moms u _ my(ma + ms)
2 mo + M3 ’ 129) m1 + ma + ms3 ’
msmi mz(mg + ml)
=21 == - /. 4.7
K31 s+ my H2(31) My + 1 + s (4.7)
1y = mimsa I _ ms(my 4+ ma)
12 mi + mg’ (3012) mi + ma + ms '

Again, we have five exit channels, three two-body fragmentation channels «, 8, v (Fig. 5), the break-up

channel with index 0 (Fig. 6) and a channel B where all three particles form one bound state:
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\)

Final cannel « : Elastic channel

—
~—
—_

Final cannel 8 : Rearrangement channel

N
~—
N

N /\C‘a/‘\
N~ ~—

1
3) 3 9 Final cannel v : Rearrangement channel
4) 1,2,3 Final cannel O : Break-up channel

1
5) 2 Final cannel B : Bound channel

3

The particles in the brackets in 1), 2) and 3) interact via a two-body potential Vji(r;) and form a
bound state. Although there exist quite a few light nuclei that can be considered as three-particle
bound states, like for instance ppn = 3He, pnn = 3H, ann= SHe and apn = SLi (n denotes a neutron

and p a proton), we neglect channel B in this thesis.
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! 2 ! 3
channel a: 1(23) channel : 2(31); channel y: 3(12)

Figure 5: Two-body fragmentation channels

break-up channel

Figure 6: Break-up channel
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So having, for instance, an incoming state in channel a which consists of a bound state of particles
2 and 3 and particle 1 moving freely, the scattering process can lead to four possible exit channels
depicted in Figs. 5 and 6.

The Faddeev equations (3.11) in coordinate space representation for channel a read

br(r1 Ry = (1, Ra)a + / & / 0 R, (01 Ry |G [, R )WVas (7)) [0a (. R o + (. RS )]

Uo(r, Ra)o = / @) / 0 R (2R Gl R Vs (7)1 (2 R o + i3y, RS )]
3(r3,Ra)q = /d?’?“é/d3R§<P3R3|Gs|réR§>V12(7”§)[¢1(r/1=Ri)a + a(ry, Rb)al
(4.8)
for channel
r (e, Ry)g = / @ / 0 R (1R G 1R Vas () 2, RS) 5 + b (', RY)

Pa(r2, R2)p = ¢2(r2, Ra)p + /d3T§ /dBR§<r2R2|G2|r/2R'2>V31(7"2)Wl(1“'17Rﬁ)ﬁ + 3(r3, Ry) ]

P(rs, Ra)s = / ar / 0 Ry {r3Ra |G [Ty RE) Vaa () [0 (7 R )5 + oo, RS)a]
(4.9)

and for channel ~

i(r Ry, = / @ / R, (11 Ry |G [y R )WVas () 2 (5, RY ) + 10 (x, RS
Uo(r, Ra), = / ar / 0 R (rRo| Gl R Vi () [ (2, RY )y + 0 (x, RY). ]
Ua(rs, Ra), = da(ra, Ra)y + / dr / 0 R (2R3 |GlrhR) Vi () [ (7 RS ) + oy, RY). .

(4.10)

The wave function in the break-up channel again follows from coherently summing up the leading
contributions of all three Faddeev components in the limit r; — oo and R; — oo, which are extracted
by the method of steepest descent. Again, we restrict ourselves to a total angular momentum state
with L = 0, the s-wave part of the potential Vji(r;), and define v, (r;, R;) = %ﬁ and z; = #;-R;.
Furthermore we introduce the abbreviations Vag(r1) = Vi(r1), Vai(re) = Vg(rg)zarzld Via(rs) = Vi(r3),
or generally Vji(r;) = Vi(r;). This notation where the three-particles are represented by the set i, j, k
will be used throughout Section 3. It enables us to establish generic results valid for all three Faddeev
components and thus provides a compact way to set up a R-matrix theory for three distinguishable

particles.
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In channel « (the index ” o “ will be omitted in the following) we obtain for the Faddeev components

00 00
Ui(T’i, Rz) zéﬂub(ri) sm(QRz) + /dT‘;/dR; <T‘,RZ|GZ|T;R;>‘/Z(T‘,Z)
0 0

1
1
dz'ri R, =
X/ xT’L 22

-1

i (ry, By)  ug(ry, Ry)
7“;- R;- . R,

(4.11)

—up(rs) sin(QR;) + / ar! / AR, (riRi| Gl RYVi(r) Q{1 RY)

0 0

with the source term

3
Qi(ri, Ri) = /dxi n > s ). (4.12)

For instance, the first Faddeev component is given by

oo

u1(r1, Ry) =ub(ry) sin(QRy) +/dr’1/dR'1 (r1R1|G1|ri RV (1))
0 0

1
1 Tualrh, By)  ua(r )
" R~ ’ ’ 4.13
/ iy | (419)

oo

—ul(ry) sin(QRy) + / ar, / AR, (r R |G |\ ROV ()@ (7). R))
0 0

Applying (E — H;) on both sides of Eq. (4.11) and using the identity

N . 1
(E — H;)(riR;|Gi|riR;) = (E — Hz‘)<?”z'Ri|E 7 iR} = 8(r; — r})8(R; — R})
yields
1 d? 1 d?
- -5 = —53 T Vilri) — Efui(ri, R;
[ 2 dr?  2pq(5k) AR} ) (i f2)
[e'e} [ele} 1 ’[“/R/ 3 Uj(’l’/~ R,)
—— [ar [dR 5(r; — ¥)6(R, — ROVi(+ Tilli Y
- /drz/dRz 6(rl rz)é(RZ Rz)‘/l(rz)/dx’b 2 Z TI»R/» <414)
0 0 21 j=t 7
J7#i
Lo | >y, Ry)
wilr: R
= i) [ day R, S YT 1)
2V(T‘)/ xrRZ mR,
—1 j=1
J#i

with boundary conditions for outgoing scattered waves.
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4.1 Asymptotic behavior

In the following we introduce the polar coordinates

1
ri= pcos i ,
2415k
(4.15)
1
R, = psinp; .
20k

The asymptotic form of u;(p, ;) results to be the same as for identical particles, Eq. (3.47),

eVEip
ui(p, i) o500 WA(%) : (4.16)

0<p<mt/2

This can be verified by applying the transformation (4.15) to Eq. (4.14). In the asymptotic range
(Vi(r;) ~ 0) one can show that the form (4.16) fulfills the equation, which is demonstrated in Ap-
pendix A.

The energies E; appearing in the different Faddeev components clearly have the same magni-
tude F, since we describe the same system, but using different sets of Jacobi coordinates in each
component. The composition of each energy value E;, however, is different and thus, we get three

energy-momentum relations, each corresponding to one Faddeev component,

2 2 2 k2 2 2 K2
E—p—-tly @ B + OF _ k| Ch _ 0k, K (4.17)
2p23  2p1(23) 2p11(23) 223 2u1(23)  2p23  2H1(23)

2 2 2 k2 2 2 K2
BeB=-2y @ _pm, & _ B O Gk, K (4.18)
2puz1 0 2p2(31) 2931y 2M31 0 2pee31) 2M31 2H2(31)

2 2 [ 2 2 2 2 K2
E=FE;=— K3 + & —_ Eég’) 4 Q?) _ 3 + ks e 3 ) (419)
2p1e - 2u3(12) 2p3(12)  2u12 2p3012)  2p12 0 2u3(12)

These relations can be generalized to
2 2 . 2 k2 2 2 K2
E=p=—"ti ¢ @ _po, G Ly Gu 9K 'l (4.20)

 2u ey k) 2k 2MiGk) 2Mgk 2MaiGk)

In the following, unless otherwise declared, all wavenumbers in Section 4, are related to component ¢
and we set Q; = Q, ki =k, Qk, = Qk, gk, = gk, I; = K, in order to avoid confusions due to indices.
In order to establish the asymptotic form of the source term Q;(r;, R;) (4.12) in the limit R; — oo
and r; fixed, we need relations that express two sets of Jacobi coordinates r;, R; (j # i) as functions
of the remaining one r;, R;. The three sets of Jacobi coordinates have been defined in Eqgs. (4.3)-(4.5).
For i = 1,2 one finds (i # j # k and i # k)

m; . MMy + mimy + mepmy, ' m;

rj=——2—r,— (-1/R;, R, = (-1) r; —
Tomy (1R =1 (mi +mu)(mg +mi) " mi

Ri, (4.21)
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and for i =3 (i #£ j # k and i # k)

m; : SMMy + MMy, + memy m;
ri=———r;+(—1)’R;, R, =—(—1) r; — R;,. (4.22
/ m; +my (-L'R: ’ (=1 (mi +mg)(m; +my) " om+my (4.22)

For instance, if we set ¢ = 1, we obtain
ry = — mao r — R, R, = mims + maoms + mgms ry — my R,
ma + mg3 ’ (m1 +mgz)(ma + ms3) my+ms (4.23)
™ R R :_m1m2+m2mz+m3m2rl_ ™R, '
3 Mo +ms © L 3 (my + ma)(ma + ms3) miy +ma

which is the generalized form of Eq. (3.24) for three distinguishable particles. The magnitudes for
(.ﬁi = f‘i . Rl) are

(i) ST R G0 LT Y O (RN R Y G L
ri(Ti) = i - Rixi = Ry —5 —T;
J mj; + mg B m; + mg m; + mg R? mj; + mg R;

(3

_ -
x4 .. ) =Ri+ (-1 —L—rz; + ...
it (1

) ) 2 ) 2 —N\irr (s .
Ry(z:) = mimy + mimg + memg 7“) n ( m; Ri) B 2(=1)im;(msmy + mime + memg) Rures
(mi + ma)(my + ms) mi + mp (mi + mu)(mi + my) (my + my)
miRi
T omy +my,

X

14 (mg + my) (mamy + mymy + mgme) n)z _2(=1)3(mi + mue) (mame + myme + mamy) iz
mg(mi + my)(m; + my) R; ms(mi + my)(m; + my) R;

v g (1= () (i) (mam & e i) T )
mi + mg mi(m; + mg)(mj +myg) R;
m; i MM + MM + MMy 75
- Ri — (—1)? J —x; + ...
m; +my (=1 (ms +ma)(m; +mi) R; ’

(4.24)
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where i = 1,2 (i # j # k and i # k) and

m; P o (=1)im m; 2 (=1)7m; 7
rj(xi) = T +R; =2 riRixi = Riy |1+ | ———— oo 22—
m; + my mj + my mj +myi ) R; mj; +my R;

(3

o -
~R;[1— (-1 9 flﬂ,’i + > =R, —(—1 9 TiTi + ...
(1- v (1

Rj(x;) = \/(mzmk o+ 5T T Mt i)Q + ( i R¢>2 + A=1)7mi(mamy. + mymu + mme) Ririx;

(mi +my)(m; +my) m; + my (ms + mi)(ms + mg)(m; + mi)
m; + Mg

X

\/1 n ((mi + mg) (mimg, + mymy + memy) n)z 4 2(=1)3(mi + mu) (mymy + mime + meme) riz;

mi(mi + mk)(m; + mu) R; mg(mg + my)(my + my) R;
(1 ap e ) )
mi 4 mg mi(m; +my)(m; + my) R;
m; i MM + MM + MMy 75
= —" R+ (-1) J — T+ ...,
m; + my (=) (ms + ma) (my; + ms,) R

(4.25)

fori =3 (i # j # k and i # k). The expansions in Eqgs. (4.24) and (4.25) are valid in the case R; — oo.
For the asymptotic form of the source term Q;(r;, R;) we approximate the quantities r;(x;), R;(x;)
by the first term of their Taylor series. Thus, for the following we do not distinguish between the two
cases i = 1,2 and i = 3, because in this approximation we find unique relations for the magnitudes,

ri(z;) = R;, Rj(x;) = #kaRi with ¢ = 1,2,3. After changing to polar coordinates

/1
ri =4/ =——pCcosy;,
J 2Mkﬂ Pj
. (4.26)
R; = psinp;,
! \/ 245 ik) !

these first order approximations fix the angles ¢; to a constant value, depending on the reduced

tan @} = HiGik) By ~ Hitk) _ ;= arctan i Hi(ik) (4.27)
J Wik T mi+me \| ik J mi+me \ ik ) '

In the asymptotic form of Q;(r;, R;) we replace the Faddeev components u;(r;, R;) by their asymptotic

masses,

form (4.16), which is justified, since R; — oo implies r; and R; tending towards infinity. Including

Eq. (4.26) and the first order approximations for r; and R; from above, we can calculate Q;(r;, R;)
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in the limit R; — oo and r; fixed,

1
3
1 u;j(r;, Rj)
; dw; riRy S V)
T R / i T 2 ; Tj(xi)Rj(.Ti)
- i
3 1\/@1/2pj(ik)R2(x)/sinapj
2 / IS ——Alp)
rifixed 21 J 17"2 )RQ(x)(2Mj(ik))l/4 511217

J#i

1 m o
ol V/213 (i) B i, R/ sin ¢
/da:Z riR; = E

A(p])

]?él R’m +mkR (2MJ(7k) 1/ \/Rzm +my /Sln(p2
VE)
3
T _ My + Mg . /20500 B R,/ sin o7 "
= 27— 2 Catiany) i+ )y [ sinpg VA BRI A ().
i i j=1 4
J#i

(4.28)

We know two different representations of the Green’s function, suitable to establish two different
asymptotic forms of u, Ry — oo, 1 fixed and r; — 00, Ry fixed, respectively. The matrix element in

coordinate space representation reads

(riR;|G;|ri R) :u?(ri) (—Q,ui(jk)elQm> SIH(Q<)) ul?(r'»)

Q 1 7
2 T — i i 7 — )%
+ f/dk u; )(m) (2ui(jk)eleRi> Sm(Qde) ué ) () (4.29a)
T Qr
0
2 : N2 (+) : /
= dK sin(KR;) T (ric)wep (ri>) | sin(KR;), (4.29b)
4K
0

where R;~ = max(R;, R;), Ri« = min(R;, R,) and r;> = max(r;,7}), ri« = min(r;,r;) and i, m,n
denote the different particles (i # j # k and i # k), respectively. The functions u((ff()(r) and wy, (1)
form a complete set of bound- and scattering states and are normalized as u( )( ) et19(9) gin(gr +
§(g)) and wy(r) = €' for r — co. However, these expressions are only valid if Coulomb interaction is

neglected. Inserting the form (4.29a) of the Green’s function into Eq. (4.11) we obtain the asymptotic
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form of w;(r;, R;) in the limit R; — oo, r; fixed,

R; oo
/
Wiy Be) = (1) sin(QRY) — 2ptagyy () OF / R M SR / ar! u (Vi) Qu(rl, BY)
0 0
— 2yt ) [argdart [ ar o) veQul R)
R; 0
N o
4 % — Si / —)*
ZHitk) / dk u )elQrfti /dR’ sin(Qrft;) /dr§ RGN ACATo N 3
P Qx
0 0
4 . oo . R; . , oo N
S0 [ gk e [ar PR a0 gvieaied 1)
v/ 2pikE 0 0
Cdmgn [ T,
10 [ uf ) 2D / a9 [ ar a5 Vi1 R
k
0 R; 0

(4.30)

In compliance with Subsection 3.2.1, the last term in Eq. (4.30) can be neglected for R, — oo.
We find three flux conserving terms in Eq. (4.30), the first, second and fourth term. These terms
describe the incoming state, elastic and rearrangement processes (77) and break-up scattering (7;(k)).
The T-amplitudes are defined in Eqgs. (4.33) and (4.34) below. The third term without the binding

wavefunction u?(r;) and the

. m; -
m; +m 5/2 o /2“.7’(ik)E7mi+mk R;/sin ¢}

R3/2 (4.31)
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and the fifth term

00 R; oo
Ay _ . R))
HP (13, i) = — =20 / dk ul7) (r;)ei QR /dR’ sin Q’“ /dr Vi(r))Qi(rl, R)
‘/2ILLJ;CE 0 0
4 & 2 —1/4 My + Mg 8/2 ino* Ao eimﬁ&/sm%
Jj= 7
J#i

T0i

o 1 .

/ dk uk 7’1) 5 /dré u,i ) (rHv ()
Hjik) mig

V215 E mk —2E+ 2MJ( k) E ((mi+mk)sin @j) 0

oli)

are treated separately. We make use of the asymptotic form (4.28) of the source term Q;(r;, R;) in
both, Hi(l)(Ri) and H¢(2) (r;, R;). This is justified, since R; — oo implies large values for R} in the

respective integration intervals, while 7] is bounded by the maximum range ro; of the potential V;.

W\

(4.32)

Detailed calculations are carried out in Appendix F.

Introducing the T-amplitudes

T = /dR/dr %Uf(r)‘@(r)@i(ﬁ R) (4.33)
0 0
and - o
Ty(k) = /dR/dr sm(g’“mu,g‘)*(r)m(r)c),;(r, R). (4.34)
0 0 i
and the numbers
. 5/2 2
Ch = (Q,Uj(ik))*l/‘l <ml+mk sin@j) A(p]) MZ /dr u; (r), (4.35)
g Hj(ik) (E - N7(1k) SOJ
and
3/2
—1/4 { My + M . * * 1
Cik) = (2ngan) ™" ()T iy AGe)) 2
; k2 —2F 12 p ( S . S0;) .

/dr u,(g )*( YWi(r).
0

enables us to write the Faddeev component w;(r;, R;) in the limit R; — oo and r; fixed in a compact
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form

1/2,ujkE
. i ) 4 — i .
ui(ri, R;) = uf(ri) sin(QR;) — 2,ui(jk)ug(ri)e QR’TZ-I’ - ;,ui(jk) / dk u,i )(ri)e Q’“RlTi(k)
0

3 e \/WWR / sin ¢} , , 2 o0 o )
=

R2
1/2/ijE

(4.37)

T? and T;(k) contain the source term Q;(r;, R;) (4.12), which in turn is made up of the sum of Faddeev

amplitudes, 23: u;j(r;, R;). Thus, the three u; depend on each other which is a crucial difference to
2

the case of three interacting identical particles. The last two terms of Eq. (4.37) are of higher order as

they are based on the sum of the asymptotic forms of u; which (in their functional form) are essentially

the same for all three Faddeev components. Therefore these terms do not lead to a coupling between

the u;.

In order to obtain a form of u;(r;, R;) convenient to study the limit r; — oo and R; fixed, we insert

the form (4.29b) of the Green’s function into Eq. (4.11) which yields

VEE C
4Mjk . ; Ugk (T;) /s / ’ !l
ui(ri, R;) = — — dK sin(KR))wg, (r;) [ drj ——— [ dR; sin(K R;)Vi(r;)Q:i(r;, R;)
0 0 qK J
~ 4/? / dK sin(K Ri)w,,, (r:) / dr;“qZW / AR, sin(KR)Vi(r)Qi(r, R)
K
V200 E 0 0
- /
K
0 T 0

4/1'jk r . (+) r / ’qu( ,) Ji / / / 1Y
i dK sm(KRi)qu (rq) | dr; —/==—2 | dR; sin(KR;)V;(r;)Q:(r;, R;) .
qK

(4.38)

The last two terms in Eq. (4.38), where , > r;, vanish in the limit r; — oo (see Subsection 3.2.1).
The K-integration interval in the second term determines the wavenumber qx to be complex, which
g, K’
+
2k 2Mik)
after [6], can be estimated to be of the order of O (%) With the asymptotic form wg(r) = el of

can be seen from the relation F =

. Its leading behavior results from gqx = 0 and

95



the scattering state function wy(r) we can finally write Eq. (4.38) in the form

V20iGnE
44 . 1
ui(’f‘i,Ri) el —% / dK Sin(KRi)GIQKHT( ) + O (2> (439)
0 (]
with
. 7 ot
T,(K) = / dR / dr sin(K R) V(1) Q;(r, R). (4.40)
adK
0 0

Again we can find some relation between the functions Tj(k) and T;(K). First we consider Tj(k) as a

function of ¢,

o) = [ar [[ar 5D sinQu RV(IQ (1.41)
QQK
0 0
and from
po M Q@ G K (4.42)
2p5 - 2piGry  2M5k 2H4GK)
we can identify Q4,, = K. This leads to
o uge"(r) 1O,
Ti(qx) = [ AR | dr % sin(KR)V;(r)Q.(r, R) (4.43)
0 0
and finally one finds the relation
— K
Ti(K) = 2 Ty(grc). (1.44)
aK

In an asymptotic area where r; — oo and R; is fixed, T;(qx ) and T;(k) become equal, what we already

argued in Subsection 3.2.1. Hence, Eq. (4.39) becomes

V201G B
Ui(V’i,Ri)f—LLl;gk / dK; sin(KR;)e' %" T;(K )+O<7}2)
0
V20in B
4:“]!@

K 1
dK sin(KR;)e' %" —T(qr) + O (2)
T qK %

0/
4 r K
_ Ak / dgx ( “1(Jk)> sin(K R, )eldxmi =T +0 (
p Lin K ( 1) ax (QK)
\/QMJkE

2/1,7kE

(4.45)

S| —

)

Ap
- ’“J"f / dk sin(K R;)e lk”n(k)+0<
0

S| —
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In the second line of Eq. (4.45) we made use of Eq. (4.44). Then the integration variable K was

transformed to gk according to relation (4.42) and

1
0= 2qxdqr + 2KdK
2k 2043 (k) (4.46)
Hi(jk) 9K
dK = ———=~—d
e K 4K

In the last line of Eq. (4.45) we used the asymptotic equality of gx and k. Next, we want to extract
the leading behavior of the Faddeev amplitudes in the break-up channel, that means r; — oo and
R; — co. Again, this is achieved by the method of integration along the line of steepest descent [11],
also known as the saddle point method. This is a generalization of Laplace’s method for integrals in
the complex plane. Before applying it to the wave functions w;(r;, R;), it is useful to transform both,

Jacobi coordinates and momenta, into polar coordinates.

=4/ cos ¢; ,

2ujkp v gr = /21 E cos o,

1 K = ./2p; ) Esina.
psing;

(4.47)

d(sina) sin(psina - sin @;)elP €S Picos Ty (, [2415(j1) E sin a)

(4.48)

Il
i
SRS
Ead
[\
o
=
s}
O\%

With regard to its functional form the integrand of Eq. (4.48) is the same as in I5 in Eq. (3.75), which
is treated in Appendix C. Analogously we get

/2
205 . . _
Ii(Q) = —%\/Q,ui(jk)E / da eiPVE cos(@=¢1) coq T; (1 /203Ky E sin a) . (4.49)
i
—7/2

In order to extract the leading behavior for p — oo, which implies r; — oo and R; — oo, the formalism
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of the saddle point method can be applied. In analogy to Subsection 3.2.1 one obtains
ipVE

2 2 in e
? ”‘\/;e 12050/ 20 (k) B 72
(+7)
X |cos T(,/2 FE'si ) i—l —dz cos T(,/Z E'si )Jr
i 1 1mn ©; —_ = i ; 11 1 .
Pi H1(23) Pi Qp\/E dw? Pi i H1(23) Pi

The second term again vanishes in higher order for ¢; — 0. This can be shown by transforming the
)

(4.50)

wavenumbers in IZ.(2 only and leaving the spatial coordinates unchanged,

/2

4415 . _
IZ@ = —%, 2430k E / da sin (. /2485 (jk) B R; sin a) eiriVEcosa ooq T; (, /2ui(jk)Esinoz) .
0

(4.51)

Then one integrates along the line of steepest descent starting from a = 0 and obtains exactly the same

result when expanding the first term of Eq. (4.50) for ¢; — 0. Consequently the second derivative

term in Eq. (4.50) must vanish in higher order for ¢; — 0. A more detailed treatment is presented in
Subsection 3.2.1.

Another possible way to derive the leading behavior of u;(r;, R;) in the break-up channel is to use

the form

\/QHJ-;CE
Apag s _ :
[i(l) _ .uT([Jk) / dk u’(C )(m)eleRiTi(k)
0

(4.52)

which is part of ; in the limit R; — oo and r; fixed (Eq. (4.37)). Clearly, the binding wave functions

ub(r;) vanish in the break-up channel and u(f)(ri) is replaced by its asymptotic form u(f)(ri) o

e 9(0) sin(kr; + 6(k)) since both Jacobi variables tend towards infinity. Again we transform the

integral according to

.
Zujkpbmﬁ“ k= /2u;,Esind,

R; = pcos i, e V SR 08
21k

(4.53)
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which results in

7t/2

Aty . }
Ii(l) =— %x/lujkE / A9 cos e OW 21k Esind) gin (\/E sin 8; sin 9 + 5(1/2pjx E sin0))
(4.54)
0

« eipV/E cos B cos O (\/m sin 19) .

This is exactly the same form as found for I; in Subsection 3.2.1. Hence, the integral in Eq. (4.54)

can similarly be treated as in Appendix D, which results in

/2
204504 .
]z(l) = _%m / d Cosﬁelp\/ﬁcos(ﬂ_ﬁ’)Ti (\/Q/ijESiIl’ﬂ> . (455)
—7/2

The asymptotic behavior of I; is again dominated by the contribution from the saddlepoint 9 = pb;
and can be calculated in the frame of the method of steepest descent. We set ¥ = 5; = T — ¢; and

after integration along the path of steepest descent we obtain
E

( VE) - (4.56)
1

. d2
X {sin w; T; (\/Z,ujkEcos gpi) — %pﬁ@ sing; T; <w/2ﬂjkE cos <pi) + ] .

i Hi(jk) \/ v 2pijpE———7

This result is - as expected - closely related to Eq. (4.50) and by applying relation (4.44) in the form

T; (/21ijryEsin ;) = 7%(]]:) %:‘ZTZ (v/21j1E cos ;) to (4.50), one can show the equality of both

results,

l Ly M
@ o, 268 Y Bl  VHiGk) singi ( A A)
I e 20050/ 2pi iy B ( )1/2 [cos 0; T cos gl T; | /2051 F cos @;

i1 d? VIiGk) sin @;
————=—5 COS ©; T; (\/2/1 kEcosgpz)—ﬁ—...
2 pWVE dc,oZ VIjE €OSp; J

1pf
_2Mz(]k \/7 /2Mng< [singpi T; (\/2/,ijECOS 4,01')

(4.57)

i 1 a2

—————sin iTi(\/2 . E cos 1)—&— =1.

The second derivative term vanishes for ¢; — 0.
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Hence, we found the Faddeev amplitude w;(r;, R;) in the break-up channel,

ipvVE
ui (1, Ry) S 20iGky V/ 215k e i g1/l 72 sinp; T; (\/ 2pk E cos %) : (4.58)

The particles can no longer interact in the asymptotic range (r; — oo and R; — o0) of the break-
up channel and the total energy is split in a certain ration r;/R; into the two relative motions.
Definite values for the lengths r; and R; fix p and the angle ¢; (via Eq. (4.15)), which determines the
wavenumber k; = \/m cos ; and via the relations between the different sets of Jacobi coordinates
(Egs. (4.21) and (4.22)) also k; = /2u;,E cosg; with j # . The function T;(k) gives a spectrum
of the partition of energy into the two relative motions. We proceed in calculating the break-up

amplitude of the Faddeev component 1,

'UJZ(T'Z,Rz) 1 4ep‘ﬁ ].
R = 2“”’“)\/2%;6\/76 igY e smgpi—riRiTi(ki)
1

= 2/’% (Jk) V 2Mjk *e 1 E1/4 1/2 sin Piv/ 2Mz (4k) \/ E(kz>

psm Wi P COS;
~——

7/1z'(7'1"Ri) =

:cos(%fﬁl)
i 4.59
_(2 " )/ 9 E1/4ep\/ET(k) ( )
= \EHiGk) ik 7¢ p®/2 sind;
irVE
3/2 i e’ \/2ung
= (2uiGr)) 2/%\/»6 B 7k

ipVE
8/2 [2 im0V F Ti(k:)
= (4niGi st VR E / P2k

We used the transformation (4.47) and (4.53) and the saddle point condition ¥; = § — ¢;, resulting
from the integration along the line of steepest descent. The total wave function for the break-up

channel is obtained by coherently summing up the three (different) Faddeev components, ¥;(r;, R;),

3 ipVE 3
+) N CRES 3/2 Ti(ki)
Lpbreak up Zl/}z(ruRz) s S0 Ee 4E3/4 p5/2 (4ﬂi(jk)ﬂljk) i (460)

R;—o00 =1

4.2 Interior region and basis states for R-matrix formalism
We define an interior and exterior region that are separated by the boarder lines

Ci: Ri=A4;, and 0<r;<aq;

(4.61)
Co:ri=a; and O0<R;<A;.

The set of all points with r; > 0 and R; > 0 that are located inside that area is called D and we choose
ri, R; € D. We want to find values for the boundary parameters a; and A; that confine r;, R; (j # 1)
to D as well. The potential V;(r;) occurs on the right hand side of Eq. (3.44) and has a maximum
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Figure 7: Interior region D with boundary lines Cy and Cs.

range of rg,. This value is used for r; in the Jacobi relations (4.21) and (4.22), which then determine

Tjans 10 We use an upper bound approximation for the magnitudes r;, R;

Imaz*

|arz- + sz| = \/(ari)Q + 2(16(1‘1' . Rl) + (bRZ)Q ~ \/((1’/‘02 + 2abriRi + (le)Q =ar; + sz y (462)

which makes it redundant to discriminate between the cases i = 1,2 and i = 3 for the determination

of the boundary parameters. Hence,

mj . mj
a) T mj—&—mkrl ( ) t r; in D mj—karOZ—’_ =
MM + MMy + MMy m;
b)R; =(-1)) — . r; — —R;, — (4.63)
(m; +my)(mj +mg) m; + myp R; in D
mimg + m;img + mpmyg roi + m; A, < A,
(m; + mu)(my + my) mg + my

Expressing A explicitly from relation b) we get (with 6 > 0)

b) A; > MM T X T roi = My 0= A= T 0i 0 (4.64)
(my + my)my (m; + my) (m; + my)
Inserting b) in a) gives
a) i roi + mi+mj+mk?‘0i <a;p=a; > mi + 2m; + M 0i = Q; = m2+2m]+mkro+§
m; + mg (mj + mk.) (mj + mk) (mj + mk)
(4.65)
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Thus, by choosing the boundary parameters,

m; +2m; +m
aFS,ﬂP{W’"“}”’
g

(4.66)
mi; +m; +my

A; =
m; + my

Toi + 0,

rj, R; are confined to D. The value of § is chosen to be large enough for the asymptotic forms of
u;(ri, R;), Eq. (4.37) and Eq.(4.45) to be valid on the lines C; and Cs. In the interior region D we
expand the three Faddeev components w;(r;, R;) over a complete sets of basis states,

m

Each Faddeev component is therefore characterized by a certain set of expansion coefficients cff),
whereas the functions ¢, (r;, R;) remain the same for all u;(r;, R;). These basis states ¢, (r;, R;) obey

the equation

_L‘LQJFV.(T.)_#LQ_E@) (ri, Ri) = 0 (4.68)
2y dr? YT gy dRz T e | Pt = '
with the boundary conditions
@u(ria Rz) 890;1(7“1” Rz)
0,R;) = i,0) = ———= = " =0, 4.69
@M( , ) o <T ) ari Ti=a; 6R1 R;=A; ( )
and are chosen to be real and orthonormal,
//D drdR ¢, (r, R)gu (r, R) = 0 - (4.70)
Thus, the expansion coefficients can be calculated as
cff) = //D drdR ¢, (r, R)u;(r, R) . (4.71)

In analogy to the case of three identical particles (Subsection 3.2.2) the introduced basis states

@u(r, R) can be chosen as product states
SOM(T’ R) = th (T)Yltz (R) ’ (472)

where the functions X, (r) and Y),, (R) are solutions to the equations

1@ i
[— 21y dr? +Vi(r) — 621)] Xy, (r) =0 (4.73)

and
L ® )y (R) =0 (4.74)
2415(j%) AR? Cpz | 2T = '
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The total energy E,(j) is split into the energy of the two relative motions, e&l) (particle j relative to
particle k) and 682) (particle 7 relative to particle j and k). The set u = 1, uo is arranged in that way

that the total energy E,(f) = e;(fl) + eﬁg is approximately constant [6].

4.3 Equations for three-body R-matrix theory for arbitrary particle masses

We want to derive a set of equations that determine both, the expansion coefficients c/(f ) and con-
sequently the wave functions in the interior region D and the on-shell T-matrix elements. First, we

multiply both sides of Eq. (4.14) from the left with ¢, (r;, R;),

(ri, R;) L& + Vi(ri) — L& —E| ui(ri, R;) =
Ppu\Ti, L4 2,Ujkd7’2 T 2[/41]]@) dR2 i\Tiy L) —
4.75
— u(r; /d rilti uj(Tj’Rj) ( )
g 7l
J;ﬁl
and then integrate over the domain D,
1 d? 1 d?
drdR T'i,Ri *77+m Ti - —F Uj T’i,Ri =
//D ol )[ 2p5 dr} () 2ptijr) AR )
! 3 (4.76)
riR; uj(r;, Rj)
— drdR ¢, (r:, R;)Vi(r; /dxi CAN AT
J[ arar oy Vi) [
B J#i

For the left hand side of Eq. (4.75) we can apply the results from Appendix E since the terms differ

from those in Eq. (3.103) only in factors resulting from the different reduced masses,

a; A;

, . 1 du; du;
EW — E)e® / dr ¢, (r, A;) — - / dR ¢, (a;, R) — , (4.77)
( g ) g 2”’(]1‘3) 0 N( ) dR R=A; 2/'ij 0 H( ) dr r=a;
where cff) and El(f) originate from Egs. (4.71) and (4.68).
The right hand side of Eq. (4.76) reads
[ o, 7o (15, By)
riR: wi(rs Rs
- drdR; i Ri)Vi(rs) [ doy —— e
//D T Rgoﬂ(r,R)V(r)/ Ti =5 Z "
21 J=1
7 (4.78)
1 RO (J/)SD (rj, R;)
— // dr;dR; <p# i, Ry) /dxi ! ZZ “ p .
! J#Z g

The expansion of u;(r;, R;) in the source term is valid since r; and R; are located inside D, which is
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ensured by the values (4.66) for the boarder parameters A; and a;. With the matrix element

(i5) _ ) ) ) Pu’ (rjaR )

Vi = /Ddrzde ou(ri, Ri)Vi(r; /dxl ri R; W, (4.79)

Eq. (4.76) finally becomes
1 d 7 d
E@ _ i) 4 V(za) (J/ _ /dr (r, A, dui + /dR a;, R aui
( M Zz; Ni(jk) ‘P;( z) dR e 2Njk ‘Pu( i ) dr .
g 0 0
(4.80)

The index ”¢“ in Vu(/i»];) indicates the potential that occurs in the matrix element. Inserting the
asymptotic forms (4.37) and (4.45) on the boarder lines Cy and Cs into the right hand side of Eq. (4.80)
yields

(E 7E +ZZ‘/(U) (J)

wog=1
J#i
/dr oulr, Ai)u b(1)Q cos(QA;) /dr ou(r, Ai)u b(1)iQel A T?
2/~Lz<yk>
V2B
/dr wu(r, A4;) / dk uy ) (r)iQure' QA T; (k)
0
3 e,/Qp,j(ik)EW R;/sing} m; (481)
_Zl R3/2 11/2M](2k)E7ml+mk/Slng0J
J#i
X /dr ©u(r, A)ub(r)CP + /dr ou(r, A;) / dk ué_)(r)ci(k)
0 0 2k E
A; vV 2pkE
i
_ ik / dR ¢, (ai, R / dk sin(QyR)ike* T, (k)
TiHk 0 0

Terms of the order R~ with « > 3/2 were neglected. We can replace the numbers C' in Eq. (4.81)
by T-matrix elements, respectively. Comparing Eqs. (4.58) and (4.16) reveals that the function A is
somehow related to T'(k),

A(@7) = 24igir) \/ 245k e TEYsing! T, (\/ 2u1E cos ﬁ) : (4.82)



Consequently,

5/2
2 i _ m; + mg . % «
Cf’ =4/ Ee T 20(jk) Qltjk(QHj(ik)) 1/4 <) (sin Sﬁj)7/2E1/4Ti (\/ 2u;kE cos @j)

m;
) s (4.83)
x Ml(;;i 5 /dr ) (r)Vi(r),
Hij(ik) (E T am S 90?) 0
and
2 1/4 [ m; +my 3/2
Ci(k) Z\/;el“?/u(jk) V 205k (245ik)) (lm sin w}f) EY*T, (\/ 2pjx E cos @§>
. 00 (4.84)
X 5 /dr u,(;)*(r)VZ—(r).
1 7.2 Hj(ik) m;
Hik k*—2E+ 2uz(,~k> B ((mi+mk)Si“ V’f) 0
Using these results for the numbers C' and the shortcuts
Mus = [ dr ol Al r)
0
M) = |4 AN )
i T u(r, Auy, (1 (4.85)
0
A;
Mg = /dR vulai, R)sin(QR) ,
0
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Eq. (4.81) turns into

(B = D)+ 3" TV = 3 Y R 1) = S QM c0s(QA:) — QM N TY
Jj=1 u’ j=1 u' 'u(Jk)
J#i J#i

/ dk iQuM ) QAT (k)
0
3 GWWR/SIH% m; .
o i W2 B
i
. 5
X (\/ZeiZQMi(jk)\/ 20071 (21tiy) T <m2+mk) (Sin@;)%E%MubTi (\/WCOS @j)

m;
2
X Hi (Jk /dr Uu;
Hi(ik) (E N F‘J(ﬂv) sin

3
2\? iz - /mi+mg .
+<) e'% 2ui (1) v/ 20 (2150i)) (m_sm%) E

vl

I

s

1
/ d le(Lk)Tl (\/QujkE cos cp;‘) 5
L Hjik) ms
s Lk2—2F 4208 p (<mi+mk>51w;)
A2 E

(oo} 2 .

o) - [
0 ! 0

1

=5 QM cos(QA;) — iQ M, @A T?
Hi(jk)

_2 / dk {iQkM( 1QkA1+
T nk
0

m; .
ie i/ Qﬂj(ik)EWRi/ sin ¢}

LikM,q ’“] T(k)
/~ij

T; (\/QﬂjkE cos w?)

3/2
7j=1 Rz/
J#i

20
< No(B) My il / dr !
Mj(ik) ( H;(m) (70]
2 =) L (—)*
+ ENk(E) M, 5 [ dru, " (r)Vi(r) |,
1 Hi(ik) m;
\/QujkE Hik k —2F + 2,u1 Jk)E ((TYL@'-‘rmk)singa; 0

(4.86)
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with

3
2 I 1 m; +m 2 : #\3 3
Ny(E) = \ =€ T 205 (2005 ik ) # <mk> (Smsﬂj)gEi ) (4.87)
and )
2 = Limi+my . L \? s
Ni(B) = |~ F 2 /208 (2115019) (m’“ smgoj) Ef. (4.88)

We define the three-particle R-matrix for arbitrary particle masses according to
Ry (E) = 6530,0 (B, — E) + V). (4.89)

which is the matrix representation of the Faddeev equations inside the region D. Thus, Eq. (4.86)
relates the Faddeev equations in matrix form inside the domain D on the left hand side with the
logarithmic derivatives of the asymptotic wavefunction u;(r;, R;) on the boundary lines C; and Cy
on the right hand side. It is the first of a set of four equations in R-matrix theory to calculate the
expansion coeflicients cff) and the T-matrix elements T and T; (k).

The remaining three equations arise from equating the interior and exterior wave functions on the
two boundary lines C; and Cs, respectively. Initially, we will ignore terms of the order R~3/2 occurring
in the asymptotic form (4.37) of u;. However, later they can be considered in order to improve the
accuracy of the results.

Proceeding from Eq. (4.37), we expand the wave function w;(r;, R;) inside the region D on the left
hand side in basis functions ¢, (r, R). On the right hand side, we have its asymptotic form outside
D. On the line C7 with R = A; we require the interior and exterior wave function to be equal, which

after projecting onto the (real) binding wave function u?, leads to

a; a; a;

i i i ]2 o i (]2 wiQA;
/dr up (1) E cft)cp#(r, A;) :/dr lug(r)|” sin(QA;) —QM(jk)/dr |uy (r)] el QAiT?
0 H 0 0
— ——
-1 =1

5 . (4.90)
4 ; _ (O A
gy [k [ 6)de A,

0 0

~0

a;
where we used orthonormality of the bound states u? and approximated [ dr ub(r)u(f) (r) = 0 on the
0

line C;. Latter is justified since the bound states are spatially localized and therefore up(a;) =~ 0 on
the line Cy with sufficiently large a;. This approximation has already been used when deriving the
asymptotic form (4.58) in the break-up channel from Eq. (4.37). Including Eq. (4.85) yields the final
form

Z Mubcff) « sin(QA;) — 2ui(jk)eiQA7‘Tib , (4.91)
n



which connects cﬁf) with the T-matrix elements 7. Once more we start with the asymptotic form of
u;(r;, R;) in the limit R; — oo and 7; fixed (without terms ~ R~3/2),

\/2/,ijE
. i 4 - QL R:
wi(ri, B) 2w} (ri) sin(QRs) — 2prigyuyu (ri)e' O T — — iy / dk 07 (ri) I T (k)
0

and now replace the integral by its asymptotic expansion (4.58). Then, on the line Cy, where the

interior and exterior wave functions are set to be equal, we get

> D (ri, Ag) — ub(r;) [sin(QA;) — 241y e’ @4 TP
" (4.92)

/ 1/4epA\/EAZ‘ \/7Ti
2 (2ik))> N 2105k 64E 1/2 pjTi 2p 5k Epj ,

A;
with pg = \/Q;LJkr + 2ul(]k)A and sin <pz|C = /2p;(jky—- The same procedure is carried out on
pa

the line C; and provides the fourth equation,
Zcu pulai R
. iOR, 3/2 |2 iz oiraVE R
= ub(a;) [sin(QR;) — €T + (2pi(jn)) / \/;e TEl/A 7 (2,ujk\r > (4.93)

Pa
ipa VE
3/2 2 i e'Pa Rz a;
= (2mi)) \/;64E1/4 p1/2 p*aTi 2#jkVEE )

with p, = \/Qujkaf + 24y R? and u?(a;) ~ 0. Hence, we have found a set of four equations for

channel «,
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DB - B+ 3 v

Jj=1
J#i
1 i
= QM cos(QA;) — iQM#belQAiTib
2k

Q/2,Jz]kE

/ dk [iQleﬁpeiQkAi + 2k :f’” ikMque“mi} T, (k)
ik
0

?—HI\D

3 iel’ /2,uj(,ik)E#Ri/sin w5
*
E 7 T; (\/QMjkEcosgoj)

)

EANSN

i

2/”'1 ik
x (Nb(E)M,ﬂ, G ) / dr b o)
Hj(ik) ( 1 (m) <pj

o0 T0

: ;[ ui”*(rmm)

2 _
+ ZNy(E) dk M)
T e _opqomung ( m; )
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m
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It determines the expansion coefficients c,(f) and the T-matrix elements T} for the bound states and
T;(k) for the scattering states. By solving this system of equations we can calculate the cross section
and the wave function inside the area D. Again, in low energy regions, there occur some simplifica-

tions, which have already been discussed in Sec. 3.2.3.
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5 Conclusion

W. Glockle has established a R-matrix method for three-particle channels on the basis of Faddeev
equations. He has found a set of four equations (3.122) that allows us to calculate the expansion
coefficients of the interior wave functions and the T-matrix elements. In this thesis we extended the
three body R-matrix method to three arbitrary particle masses and finally obtained a similar set of
equations (4.94).

In our formalism we can describe all reactions (except for a three-particle bound state) that take
place when a projectile hits a two-particle bound state. In Subsection 3.2.4, we found that the
total asymptotic behavior of the wave function in a certain channel (except for the break-up and the
three-particle bound channel) is contained in the Faddeev component corresponding to that channel.
Hence, for instance in channel «, the cross section for elastic scattering is obtained by calculating the
amplitude T} with ¢ = o and for rearrangement processes via the amplitude 7} with i = 8 or i = 7.
The cross section for break-up reactions is the coherent sum over the squared matrix elements T; (k).
This shows that contributions to the break-up channel arise from all three Faddeev components. A
theoretically existing fifth channel where all particle stick together and form one bound state has been
neglected.

For the (numerical) solution of the set (4.94) one has to note that for three arbitrary particles
the equations are coupled. That means that one Faddeev component depends on the others via the
T-amplitudes that contain a source term ;. In (3.122) this is different, since for three identical
particles the number of Faddeev components reduce from three to one. Methods of solution have not

yet been established, but will follow in the near future.
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Appendix

A Verification of Eq. (3.48)

We want to show that the asymptotic form (3.47) of the wave function u(p, ) satisfies Eq. (3.48),
S 1d 1@ g fevE )
dp?  pdp  p?de? Pz
“ﬁp VEp? — L )2 1. 12, L 39 - 1/2 1
2p p+ izx/Ep JrZ’D p— Z\/Ep

1 d2A(y) eVEP
1/2 —1/2 - _
ke ) a2 U Al)

@]
o o

, 1 1 . _ 1
_ ez\/EpA(gO) <Ep1/2 i ii [Ep=3/2 — §i [Ep=3/2 — 1p70/2 +iVEp 32 - 5 5/2
1 1 d2A(y) e!VEP 1 d%2A(p)
i/ —-3/2 - =5/2 —-1/2 _ _ _
BT e b ) p? de?  4pP)? Al P2 dp? s 0-

(A1)

In the case of three distinguishable particles the procedure remains the same. The asymptotic form

of u from its functional form is the same as for identical particles, only the reduced masses change.
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B Additional terms of asymptotic u(r, Ry)

Inserting the asymptotic form of the source term Q(r1, R1) (Eq. (3.53)) into the first line of Eq. (3.57)
and omitting non R}-dependent terms, yields

4 7 , sin[Q(R; — R})] e'V 3ER,
dR, .

==
3 Q R/13/2

Ry

We integrate by parts the first time and obtain

[ 1 SVIERT 3 T I VIER; (i, [tER] - g)
T= | EcoslQ(Rr - RO || - —/dR’l cos|Q(Ry — R))]
372 102 1572
3Q | @ R, e 2 R,
1 [ GVEER] g T iy[4E VIR
~ 1 o= - / AR, cos[Q(Ry — R))] :
32 Ri’/2 %Q2Rl R13/2

(B.2)
The term proportional to R/l_s/ % in the second line of Eq. (B.2) is neglected in the following as it

decreases faster to zero for Ry — oo than the others. Integrating the second term in Eq. (B.2) once
more by parts

1 oo i /%E.ei@Ri
- 7/(13’1 cos[Q(Ry — RY)| 77—
Ry

1 By
1 1 ) i\/%TE VAR
7 | @ URPP x
1
(oo} . ’
o [y QU R VP (-3%) (B3)
Q2 3R1 Q R’13/2 3
[o'e) . !
Lo+ L2 /dR’ sin[Q(R, — Ry)] V3R ip
502 Q’3 ! Q R? \3
Ry
REREY o VP (1)
= 5 |3 1 ’3/2 3
Q3] Q R, 3
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Thus, the integral we started with is reproduced and enables us to write down the solution

1 elVsER 1I4E
4Q2 R3/2 @ 3

1-( 14) 1 ViBR

Q2 3 3Q2 R3/2
3 elﬁRl (B4)
I- (4@2_]5) =
Rl
=—F,
1 ¢V 3ER:
Ey RY?

In the last equality of Eq. (B.4) we used Ep = E— %QQ following from Eq. (3.55). The total expression
for the first additional term of the asymptotic form of u(ry, Ry) in the limit Ry — oo and r; fixed,

Hy(R)) 4(3>1/4A<a ta )“ERI L 7dr’ Py (K )V () (B.5)
1(Ry) =41+ rctan — 1 rup(r] 1. .
1 3) R B

reads

Next, we want to derive the second term Hy(r1, R;1) presented in Eq. (3.58). Because now the inte-
gration interval goes from VE to infinity, from E = k% + 3Q2 it follows that Q; must be a complex

quantity. To be consistent with [6] we introduce the following notation,
2 3.2 2 3.
with
Qr=iK and E=QK (B.7)

where K, Qk and k are real quantities. Differentiating the second relation in Eq. (B.6) leads to

2k dk = 2§KdK
(B.8)
3 K
dk = - - —dK,
4 k
where we used k=Q k. So we can transform the integrals over k from Eq. (3.56),
42 7 y RY) T
—g-g/dk u,(c_)(rl)eiQ"Rl/ dR; sin Qk B it 24 /dr uy, W(rHQ(ry, Ry)
VE 0 0
42 7 in(QuR)) [ ()
2 LSO Fapg gam [t o v . ).
vE Ry 0
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into

oo (-) Ry oo
4 2 3 K u T . )
(r1, Ry) 3 / K 70 % K / dR] sin(iKR}) + sin(iK R;) / AR ¢ KR
1
0 0 Ry

x / arf ul ) (M)V (r)Q(r, RY)
0

(=)
uy . (r
=— —/dK QK( ) e K /dR’ isinh(K R}) + isinh(K Ry) /dR' —KR

ik
Ry
T0
< [t a5 eV )
0
9 %) u(_) (’rl) R4 [e%) ,
=— - / dK ?57 e K / dR} sinh(KR}) + sinh(KR;) / dR] e K1
K J
ro
< [ @t VDR ).
0
(B.10)
00 Ko(Ry1) oo
The integration over K is split according to [dK = [ dK+ [ dK with Ko(R1) Ry — o0
0 0 Ko(Rl)

and Ko(Ry) — 0 for Ry — oo. For K > K\ we carry out the integration over R} by parts and use
the asymptotic form of Q(r1, R1) from Eq. (3.53) (the R;- dependent part only),

< . oV/3ER, h(K iW/3IER, ~KR! |~ 1
H2(1)(7’1,R1) :sinh(KRl)/del e*KR1e ,33/2 1 _ sSin. ( Rl) ) e'V s /3;2 1 L0 L
Ry Rl 1\/ %E - K Rl R Rl
i\/iER —KR iv/2ER
~0-1 (efHr — o= KR — A + O (em 2okt

1
2 R (i gE—K>:§'R§/2(K—i\/§7E)

(B.11)
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and

R}
1 / /
HQ(Z) (r1,Ry) =e K /dR’1 3 (eKRl — e*KRl)

0

eV 3 ER}
’3/2
Ry

e—KR1

1
2K +i\/4E
e~ KR oK R +iy/3ER]
'3/2
K+1i,/ %E Ry /

1 iV EER:
2 ,3/2 . '
R (K +1\/4E)

Terms of order Ry ® with a > 2 are neglected in Egs. (B.11) and (B.12). In Eq. (B.12) we put
R,y d Ry
J dR} = [dR} + [ dRj}, where d is such that the asymptotic form of Q(r1, R1) can be applied. In
0 0 d

Ry
1
+0 ( )
0 Rl/

K R1+iy/SER] e~ KR+ 3ER,
3/2 - 3/2
RY RrY

Ry

I$

N |

+ O (6721{031)

[$

the interval 0 < K < K we only keep the leading part of Hy(r1, R1) which is

(3) QUEQ_)(Tl) 7 1o (=)k 0 / Y,

B (1, ) = =229 [ W6V ()QU+ i)

0

. m . (B.13)

X / dK |e K / dR] sinh(KR}) + sinh(K R;) / AR} e K
0 0

Ry

and can be estimated, according to [6], to be of the order O (#) for Ry — 00. Qp, or more precisely
@K, is independent of K and the greatest value of ) in the interval 0 < K < K, thus it has to be
considered in the leading term Hég)(rl, R1). The total term Hs(r1, Ry) is composed of HQ(I)7 HQ(Z) and

(0]



H2(3) and includes the total asymptotic form of @,

o ( ) 1/4 iER,
Hy(r,Ry) = — 7i/dK Q(7“1)4 (3> A (arctan \/:7,) er

K 4 Ri‘/Q

0

1 | / 1
X = + drluQK r)V(r )+O< >
2 |k -i,/iE K+1 R

BENEAR V*ERI [ i Manlr) 2K
A [ arctan — — = dK 1

0

N (B.14)
X /dr'l ug;*(r’)V( D+0 (;2>
0

4 3\ V5 ER uh ) (r1) 2K
- — <3) A <arctan ) ¢ / dK QK v -
3 3/2

n\4

/drluQK v +0(55)

where we have used the relation E = Q% — 2K? in the last equality of Eq.(B.14). Performing the
back transformation of the various quantities according to

3 3
E:Q}-ZK2—>E=1:2+EQ§ (B.15)

and Eq. (B.7) yields the final form of Hs(r1, Ry),

8 3\ e\ﬁRl 4 u) () K
HQ(Tlle)f—ﬂ(Zl) A(arctan\/g) / dk — s S Tm

SN

(B.16)

To
s 1
></d7°’1u§€ eV )+O(R2) :
0

Because Ko(R1) — 0 for R; — oo the lower integral boundary of the k-integral in Eq. (B.16) due to
Eq. (B.15) becomes VE.

In the limit 71 — oo and R; fixed, the K-integration interval [w/ %E; oo] was not considered in
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Eq. (3.64) and yields the correction term

0o r 0o
C(r1,Ry) = —7% / dK sin(KRl)qu(rl)/drll %/d}%ﬁ sin(KR)V (r)Q(r}, RY) .
ViE 0 0
(B.17)
to the wave function u(ry, Ry) in Eq. (3.65). The wave number ¢k is now considered to be imaginary
because of E = q%( + ZK 2. We are not interested in calculating the integrals in Eq. (B.17), but we

want to determine the leading behavior of C(r1, R1) for large values of 1, which results from gk =~ 0.

(+)
Then one has lim ug_(r)
q—0 q

the order O (%) [6].

= O(1) from [6] which allows us to estimate the correction term to be of
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C Transformation of Eq. (3.72) into polar coordinates

The coordinates and momenta are transformed according to Eq. (3.74),

1 = pPCosy qx = VE cosa
3 4
Ry = \/;psinap K = §Esina.
2 . _
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T 3 2i 3

0
- _ E, /%E / da l (eip\/icos(o‘_@”) - e_i’)\/ESin(aJ“")) cos(a) T ﬁsina
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0
/2
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=——\/zFE / da —ePVE cos(a—ep) cos(a) T | 1/ s Esina
V3 2i 3
0
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In the sixth equality we used the fact that T(K) is an odd function of K.
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D Transformation of Eq. (3.63) into polar coordinates
The transformation equations of the coordinates and momenta in Eq. (3.82) read

r1 = psin g k=+Esnv

3 /4
Rlz\/;pcosﬁ Qr = gEcosﬁ.

For uge_)(rl) we use its asymptotic form u,(f_)(rl) e OF) gin(kr 4+ §(k)), as we investigate the case

where both coordinates r; and R; tend to infinity.

vE
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(D.1)

We now focus on the integral in the second term of the fourth equality of Eq. (D.1),
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(D.2)
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We made use of the fact that (k) and e ) T(k) are odd functions of k& = v/Esind and of the
identity cos(x £+ y) = cosz cosy F sina siny. Finally Eq.(D.1) reads

7t/2 0

4/ F . .

L =—- e / A9 cos 9 ePVEcos(@=B)p (\/Esinﬁ‘) + / do cos etPVEcos(9=B) (\/Esinﬁ)

0 —7t/2
/2

4/ F .

= ——— / dd cos eV Ecos(9=B)p (\/Esinﬁ> .
3
—7t/2
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E Detailed treatment of Eq. (3.103)

In this section we consider the left hand side of Eq. (3.103),

/ ardR o, R) |- vy - 2L Bl ry
O et a2 T\ T idRe WA
A a a A E.1
d’u 3 d?u (E1)
=— [ dR [ dr p,(r, R)w ~1 dr [ dR @, (r, R)W + ¢, (r, R)[V(r) — Elu(r, R)
0 0 0o 0

and solve the occurring integrals. We can rewrite the terms containing second derivatives in Eq. (E.1)
using the product rule twice (suppressing factors and the dependencies of the functions on spatial

coordinates)

ar " TR

T ) = 33 ut —k

d2 d (dey, du d25"u dp, du  dy, du d%u
— - E.2
( ) a2 " " AR ar T AR ar TP ame (E2)

and isolate the term which occurs in Eq. (E.1),

Yrarz =

e - R dr T A "

2 2 2
d®u d 2d<pu du  d%p, (E.3)
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Using relation (E.3), the integrals in the second line of Eq. (E.1) can be calculated beginning with the

second one,

A
du 3 d? de, du  d3%p,
_7/dR@M T, R)dR2 __Z/dR |:dR2 [@M(T?R)U(T?R)]_ dRﬁ_ dR2 U:|
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0 0

We integrated by parts in the second line of Eq. (E.4) and in the fifth and sixth line we made use of
the boundary conditions (3.95),

Op,(r, R)
or

_ Op,(r, R) _0.

‘Pu(ov R) = (pu(r7 O) = OR
r=a R=A

Additionally, u(r,0) = 0 since we integrate over the domain D and inside D we have

0) = cupu(r,0) =0, (E.5)
“w
Finally we get the result
3 i d?u 3 du 3 i d?p,
Z/dR ou(r, R)dR2 = Zgoﬂ(r, A) iR o + Z/dR u(r, R) iR (E.6)
0
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and analogously

y 2
+ / dr u(r, R) ddf; . (E.7)

’ d2u du
/dr ou(r, R)—dr2 = pu(a, R) i
0 0

r=a

Inserting them into Eq. (E.1) yields

A a
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°\> St~ °\> St~ °\> -

In the third equality we applied Eq. (3.94),

d? 3 d?
[_er V- i

- B putrm =0

and in the last line we used the definition of the expansion coefficients (3.101) for the interior wave

function,

¢ = / /D drdR (. R)u(r, R).
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F Calculation of the terms Hi(l)(Ri) and HZ-(Q)(TZ', R;) in Eqgs. (4.31)

and (4.32)
We start with the integral neglecting constant factors

i\/2 E—— sin
SlIl R R/ e Hj(ik) m+mk z/ 99
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and define

oo
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Q R/‘?)/Q
R; v
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In analogy to Appendix B we integrate by parts two times, yielding
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—5/2

Again, the term proportional to R; in the second line of Eq. (F.3) was neglected in the following

equalities. From Eq. (F.3) we can calculate the integral I,

1 m; .2 % 2#7,(]]@) ei\/mml%i%&/sin Lp;
I; — @bmu]‘(ik)E/ sin® @} = — o R?/Q
1 mi .9 2/%(]’]@) eim,ﬂﬁRi/sin ®;
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L& & gl msint g VI ) )
_Z J_Zm. B (E— 27 2 *) 72 (F.5)
=t iman (B - 55 st e) f

The total expression for the first additional term of the asymptotic form of u;(r;, R;) in the limit

R; — oo and r; fixed, reads

. m; P
ol /2,uj(ik)EWRi/ sin ¢
3/2
RY

3 m; -+ 5/2
1 — 7 . * *
H(R;) =3 (ujan) (m Sln¢j> A(p})

(F.6)

T0i
DL
% MZ(;;; . /dré iU (TQ)VZ(T;) .
H’J(Zk) (E - Hj(ik) s Sﬁ;k) 0

The second term HZ-(z) (ri, R;) (Eq. (4.32)) is obtained by integrating over the k-interval [ /245 E; 0],
1 1
where the wavenumber Q; due to E = k2 + Qz becomes a complex quantity,
205k 2005k

Q=K and  k=Qg, (F.7)

while K and Qi are real quantities. Then,

Lo 1, 1, L o

25k 2pi(ik) ¥ 2k 24tijk)
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Differentiating the second relation in Eq. (F.8) leads to

1

okdk = IOKdK
245 2p5(5k) (F.9)
k= Pk K
HiGky K

where we used k=Q. So we can transform the integrals over k, resulting when inserting the Green’s
function (4.29a) into Eq. (4.11),
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L HiGik) K iK
Ri oo
x [el K / dR;sin(iKR;) + sin(iK R;) / dRje / driugy,)” (r)Vi(r))Qu(r, BY)
0 R;
4 ug, (ri) T 7 ,
=— - / dK ik ffk e KH / dR}i-sinh(KR}) +1i-sinh(KR;) / dR] e KR
1
0 0 R;
)
< [ ar g v Qi )
0
4 “S)(ﬁ') i 7
=-- / dK ik 5 e KH / dR] sinh(KR}) + sinh(KR;) / dR] e KR
0 K 0 R;
T0
< [ a5 GOVeD@ L R
0
(F.11)
oo Ko(R:)
The integration over K is split according to [dK = [ dK + f dK with Ko(R;) - R; — oo
0 0 Ko(R:)

and Ko(R;) — 0 for R; — oo. For K > K we solve the integral over R} via integration by parts and
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use the asymptotic form of @Q;(r;, R;) from Eq. (4.28) (considering R;-dependent terms only),

o0 .
3 V2150 B Ry sin o)
Y (r;, R;) = sinh(KR;) / dR} e~ KT ¢ -

N IFEE
R; 7
T . KR ei\/mm&/sin ©;
= Slnh(KRi) dR: e~ i
732
R; i
sinh(KR;) e \/Wm%/sin o KR

1
z +0< ! )
72
R; R,

i

B ™ Jdnot — K '3/2
I/ 2u0j(m B -/ singl — K R,
i,/2uj(ik)Em%%€Ri/simp;—KRi
3/2 /
R; ( 20150k) B —— R /smgoj K)
ei~/2p‘7(ik)E%Ri/sinap;

1
2 Rf/Q (K — /205G B/ sin cp;‘)

my +mk

+ O (e_2K°R'i) .
(F.12)

Finally ﬁi(l)(ri7 R;), which is the sum over ﬁfjl)(ri, R;) with all parts of asymptotic Q;(r;, R;), reads

ol /211 (k) B g R/ sin 05
3/2 . m; )
R; (K —1y/20(im) B/ sin cpj)

(F.13)
The remaining term (including the R;-dependent part of asymptotic Q;(r;, R;) only) is calculated as

m;

H(l 123: 9 —1/4 (M + Mg 3/2(. *)5/2
rl) z 2 /’L] 2k: Sln@j
Jj=1
VED)

R, 4 . -
KR, _ o—KR; v/ 2Nj(ik)E#}nkR;/S“] ©;
/

/dR 5 R,3/2

0 7

K + \/ QMJ(“V) m; +mk/bln<pj
KRiJrl, /2Hj(ik)E7""i+1"k R}/sing; efKRngi, /2105 im) E m’i"iz;”fk R;/sin @}

r7(2) _—KR;
Hij (ri,Ri) =

R;
1
+0< ! )
72
0 Rl

X
|—| [\9“_‘

’3/2
R
. ; .o Ri
1 e—KRi eKR'/£+1‘/2“J'(ik)E7mirilmk R,/i/smgaj KR
=5 + O (e 20fh)
; — o P '3/2
2K +i Zu](zk)Eimi+mk/81ng0j R, 0

1 ei,/mj(ik)EmfﬁRi/sin ©y
2 Rf/2 (K—i—i« /2uj(ik)EmTL7nk /smgo])

IS

(F.14)
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Again, ﬁi@)(m, R;) is the sum over f[;f)(ri, R;) and contains the total asymptotic form of Q;(r;, R;),
oIV 21 B Ri/ sin ¢
K +iy/20500 Bt/ sin )

(F.15)

(2) ]. 3 m; + mg 3/2 5/2

1 —1/4 (T T Mk in o

HY (ry, Ry) =3 ; 245k ) ( o ) (sin ) I=E (
j#i '

Terms of order R;* with o > 2 are neglected in Egs. (F.12) and (F.14). In Eq. (F.14) we put

R; d R;
[ dR}, = [dR] + [ dR], where d is such that the asymptotic form of Q;(r;, R;) can be applied and
0 0 d
the lower boundary does not contribute. In the interval 0 < K < K, again we can estimate the

1
correction term to be of the order O (R ) for R; — oco. The the total term H( )(rl, R;) is obtained

)

1
by inserting H ) and H ) into Eq. (F.11) and adding the estimated correction term of order O ( RQ) ,

4
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yielding

R?

7

)
A ~ Ve 1
H?(ri, R; :——/d 15 QK )Hi(l)(ri,Ri)+HZ-(2)(ri,Ri)/dr§ uly) (r;)V(r;)+o<>
0

)1 —1/4 { M; + My 8/2 . N
©w— = /dK Or 24 (25(iny) <ml) sin @} A(¢j)
J#l
o 1 n 1
K =i\ 206 B0/ sing) K +13/ 20560 B -/ sin g
ei,/2p‘j(ik)EﬁRi/sin<p; o ( 1
!/ —)* !/
x 7 [tz v ()+0<R%>

0

2 S 1/4 (m; +my Y " V2 B Bl sin o
=- ;Z (25im)) sin % A(})

=1
J#z
o0 ( ) T0
i 2K s 1
o [ ar s s [ariuls) wvied +0 ()
Ko ®OR2 4 20 B (77" )

(mi+my) sin ¢

B 9 3 ) s My + g 3/2 : Al ei‘ /QHJ-(ik)EW'imkRi/sin ga;
=T Z ( ,Uj(ik)) T, S @ (@j) e
Jj=1 7
J#i

/dK p QK i) 2K

ik 2
HiGGk) )2 m;
,u;k Q 2#Z(Jk)E + 2”1(7k)E ((mﬁ»mk)sin Lp;)

s 1
x/dr;uggK YV (r )+0<R2)
0

9 3 C1ja (Mg + 3/2 . - X eiw/Zuj(ik)EﬁRi/singa;
=== Cuwan) (T sing; Alv))

i=1 i R}®
J#i
® (=)
% / dk M ]k) K/ijk:Uk k(r ) 5
Hik HiGk) 1.2 9, > i
\/m ! ik k QMZ(J]“)E + 2'“’](”“)E ((mi-i-nfbr;i)sin Lp;)

(F.16)
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. my -
o /2uj(ik)EmRi/sm »;

) 1 —1/4 (M +my 82
H;"(ri, R;) = — p Z (2u5¢i)) <z> sin pf A(pj)

i=1 i R}
J#i
oo 1 T0
<[ — — @ v
L _ (1 m;
\2uikE #jkk 2B+ 2#7:<jk)E ((mierk)Sin@;) 0
1
e (2> |
(F.17)
. 1 5 1 2 o _ Hi(Gk) 2o :
We made use of the relation E = Q% — K* = K* = ——Q% — 2uui(jr)E in the fourth
2k 205 5k) ik
equality of Eq.(F.16) and performed the back transformation according to
1 1 1 1
2 K* —E k* + z (F.18)

T 2up N 20 (5k)  2pk 205(5%)

by using Egs. (F.7) and (F.9) in the fifth equality of Eq.(F.16). Because Ky(R;) — 0 for R; — oo the
lower integral boundary of the k-integral in Eq. (F.16) due to Eq. (F.18) becomes /2u;iE.
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