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1 Introduction

Nuclear reaction theory is well developed for two-body channels. With increasing energy of the incident

particle three-body exit-channels will occur. Especially for light nuclei these break-up reactions are of

importance e.g. 17O(n,2n)16O and 9Be(α,np)11B which occur in nuclear fusion reaction. Such three-

body exit-channels can be described within the statistical model in the unresolved resonance regime.

However, this model cannot be used for three-body reactions in the resonance regime, which occur at

collisions with light nuclei. In the absence of a quantitative many-body theory of light nuclear reaction

systems, the R-matrix theory [1] is usually applied in the resonance regime. The R-matrix, originally

introduced by Eisenbud and Wigner [1] provides an elegant description of resonances without detailed

information about the internal structure of the collision partners. The R-matrix is well settled for

two-body channels and a complete review is given by Lane and Thomas [2]. Its general idea is to

split up the configuration space into an interior and exterior region, where the Schrödinger equation

is solved separately. In the interior region one expands the wave function over known basis states and

in the exterior region the solution is a combination of the asymptotic forms of Bessel or (for charged

particles) Coulomb functions. Both solutions are connected at the borderline via suitable boundary

conditions.

However, the inclusion of channels with three particles has not been established yet. Up to now

three-body processes have been treated as small perturbations and have mostly been omitted. An

approximation for three-body channels was given by Lane and Thomas in [3] in the frame of two

particle R-matrix theory. They consider the three-body process as having two particles in the exit

channel, where one of them has sufficient energy to decay into two fragments. Usually in two-particle

R-matrix theory one transforms integrals over the interior region into an integral over a surface S.

This is chosen to be drawn far enough out in configuration space and can be therefore expressed as

a sum of channel surfaces Sc with a finite radius ac, respectively, which do not overlap. For two

bound fragments in the exit channels with localized wave functions, ac can be assigned some finite

value. However, if one of them disintegrates in two bodies, its wave function becomes delocalized in

configuration space and one is faced with the problem of defining a finite matching radius ac. At that

point approximations have to be introduced. One demands that the scattering wave function of the

disintegrating fragment is (negligibly) small in all unbound channels so that ac can be chosen to be

finite. This implies an extended lifetime of the decaying body which turns the three-body break-up

process into two successive two-body break-up processes. In that manner three-body decay processes

can be covered by two-body R-matrix theory. The formalism only has to be extended to the occurrence

of scattering wave functions in the exit channel which must be chosen to fulfill certain orthogonality

conditions. This model of successive decay was successfully applied to three-body reactions but even

to processes with up to seven reaction products in the exit channel [4]. However, this way does

not really provide a satisfying solution for three-body break-up processes because of approximations.

In 1976 Walter Glöckle suggested a way to solve the three-body problem in the frame of R-matrix

theory for three identical particles [6] based on the theory of Faddeev [7]. Outgoing from the Faddeev

equations in coordinate space and the asymptotic form of the Faddeev amplitudes, he deduces a set
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of four equations for the three-body on-shell T -matrix elements and the expansion coefficients of the

interior wave functions. The scattering process is therefore treated in the sense of quantum mechanical

coherence and is no longer considered to run sequentially. Glöckle’s work will be the foundation of

this thesis.

After a theoretical introduction to three-body scattering theory and Faddeev equations in Section 2,

we will study and comment Glöckle’s ideas and present more detailed derivations of the various

results. This, together with a short discussion about the relation between T -matrix elements and the

experimentally accessible cross section will be covered in Section 3.2. The main goal of the thesis,

however, will be the generalization to a three-body R-matrix theory for (three) arbitrary particles. In

Section 4 we will derive generic expressions for the three Faddeev components and their asymptotics

in various orders. Finally we will establish a set of four equations by making use of a three-body R-

matrix method. From these equations one should be able to determine the essential T -matrix elements

that enter into the cross section.
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2 Theoretical background

The content of this section will essentially follow [8]. First, we will give a short overview of three

particle systems in general. The main part then will be the derivation of the Faddeev equations for

various operators and the scattering states, which will be the foundation for the following sections.

2.1 Three-body systems and the Lippmann-Schwinger equation

We consider a three-particle system in the entrance channel, which is composed of a bound state

between two-particles and the third one moving freely. After a reaction took place, we have five

possible exit channels, one elastic channel, three rearrangement channels, one break-up channel and

a bound channel, which will be omitted. The two-particles j and k in the bound subsystems interact

via a two-body potential vi = v(j, k), while particle i moves freely. Generally, two-particle operators

that act in a two-particle subsystem are denoted by small letters, whereas three-particle operators are

represented by capital letters (except for channel Hamilton operators). Vectors will be represented

by bold letters. In natural Jacobi coordinates (which will be introduced later) the total Hamilton

operator reads (i = 1, 2, 3)

H =
p̂2
i

2µi
+

q̂2
i

2Mi
+ v1 + v2 + v3 ≡ h0 + V , (2.1)

where

h0 =
p̂2
i

2µi
+

q̂2
i

2Mi
(2.2)

and

V = v1 + v2 + v3 . (2.3)

The motion of the center of mass is trivial and thus neglected. pi is the relative momentum between

particles j and k (if they form a bound state, pi will be complex) and qi the momentum of particle i in

the center of mass system of all three-particles. p̂i and q̂i are the corresponding momentum operators.

For the total energy of the three-body system both relative motions are added up and yield

E =
p2
i

2µi
+

q2
i

2Mi
, (2.4)

The reduced masses are

µi =
mjmk

mj +mk
Mi =

mi(mj +mk)

mi +mj +mk
. (2.5)

There are channel Hamilton operators for each channel,

hα =
p̂2
α

2µα
+

q̂2
α

2Mα
+ vα . (2.6)
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with the asymptotic channel states as eigenfunctions,

hα|φαm〉 = Eα|φαm〉 . (2.7)

They are related to the total Hamilton operator according to

H = hα + V α , (2.8)

with the definition

V α = V − vα =
∑
α6=γ

vγ . (2.9)

In each channel there is an interaction between two-particles, which is expressed by the respective

potentials vα, that are identical to vi from above. In the asymptotic area of the break-up channel all

particles are free, there is no interaction between any of them and thus

v0 ≡ 0 . (2.10)

This is valid since nuclear forces act over very short distances only (≈ 1 fm). The problem of charged

particles with a Coulomb interaction of infinite range is not treated in this thesis.

The essential equation of scattering theory is the Lippmann-Schwinger equation. We now want to

derive it for the three-particle case via the resolvent G(z), with z = E ± iε. The full resolvent of the

three-particle system G(z) is defined as

G(z) ≡ (z −H)−1 . (2.11)

We get two equations for G(z) using the channel resolvent gα(z) = (z − hα)−1,

G(z) = gα(z) + gα(z)V αG(z) = gα(z) +G(z)V αgα(z) . (2.12)

They can be verified by multiplying for instance the second equation in (2.12) by G−1(z) from the

left and using the identity

g−1
α (z)−G−1(z) = z − hα − z −H = V α , (2.13)

which yields

11 = G−1(z)gα(z) + V αgα(z)

11 = (g−1
α (z)− V α)gα(z) + V αgα(z) = 11 .

(2.14)

The scattering state in channel α is defined as

|ψ(±)
αm〉 = lim

ε→0
±iεG(E ± iε)|φαm〉 . (2.15)
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It is a three-particle wave packet with a subsystem of two-particle being in their mth bound state

and the third one moving freely. Inserting the first resolvent equation (2.12) into Eq. (2.15) leads,

after executing the limits, to the Lippmann-Schwinger equation for a three-particle scattering state

in channel α

|ψ(±)
αm〉 = lim

ε→0
±iεgα(z)|φαm〉+ lim

ε→0
±iεgα(z)V αG(z)|φαm〉 = |φαm〉+ gα(E ± i0)V α|ψ(±)

αm〉 . (2.16)

We used the fact that |φαm〉 is an eigenstate of hα and thus

lim
ε→0
±iεgα(z)|φαm〉 = lim

ε→0
±iε(z − hα)−1|φαm〉 = lim

ε→0

±iε

E ± iε− Eα
|φαm〉 = |φαm〉 .

However, this equation exhibits a problem since it is not uniquely solvable. The reason is that the

homogeneous equation

|ψ(±)
αm〉 = gα(E ± i0)V α|ψ(±)

αm〉 (2.17)

has non-trivial solutions in the region of scattering energies, where E > 0. This can be shown by

writing down the Lippmann-Schwinger equation (2.16) for the scattering state of another channel

β 6= α,

|ψ(±)
βn 〉 = lim

ε→0
±iεgα(z)|φβn〉+ lim

ε→0
±iεgα(z)V αG(z)|φβn〉 = gα(E ± i0)V α|ψ(±)

βn 〉 . (2.18)

Since |φβn〉 is not an eigenstate of hα, gα(z)|φβn〉 remains finite for ε approaching 0. Hence, what

remains after performing the limit ε→ 0 in Eq. (2.18), is the solution of the homogeneous equation

|ψ(±)
βn 〉 = gα(E ± i0)V α|ψ(±)

βn 〉 . (2.19)

It is an additional solution to |ψ(±)
αm〉 and can be added to it. In the two-particle case, there exist

non-trivial solutions of the homogeneous Lippmann-Schwinger equation too. However, these solutions

are found at discrete binding energies of the two-particle system (Ebind < 0), not in the positive energy

region where scattering takes place.

There are further equations beside the Lippmann-Schwinger equation [9], which are satisfied by

the scattering state |ψ(±)
αm〉, They result from inserting the second resolvent equation of (2.12) for G(z),

but now for a different channel than α, like β,

|ψ(+)
αm〉 = lim

ε→0
iεG(E + iε)|φαm〉 = lim

ε→0
iεgβ(E + iε)|φαm〉+ lim

ε→0
iεgβ(E + iε)V βG(E + iε)|φαm〉

= lim
ε→0

iε

E + iε− hβ
|φαm〉+ gβ(E + i0)V β |ψ(+)

αm〉 .
(2.20)

The first term vanishes since |φαm〉 is not an eigenstate of hβ . Hence, the denominator remains finite

while the numerator approaches to 0 in the. Finally, in the limit ε→ 0 the product gβ |φαm〉 vanishes,

which is known as the Lippmann identity. A similar equation is obtained by using the γ-resolvent.
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Glöckle found out that adding these two equations to the Lippmann-Schwinger equation,

|ψ(+)
αm〉 = |φαm〉+ gα(E + i0)V α|ψ(+)

αm〉

|ψ(+)
αm〉 = gβ(E + i0)V β |ψ(+)

αm〉

|ψ(+)
αm〉 = gγ(E + i0)V γ |ψ(+)

αm〉

(2.21)

the scattering solution |ψ(+)
αm〉 becomes unique [5]. These additional equations introduce physical

boundary conditions to the Lippmann-Schwinger equation which guarantee that there are no incoming

waves in channels β and γ. In the the break-up channel the behavior of |ψ(+)
αm〉 is determined by each

of the three equations (2.21). Alternatively one can use the form (2.20) with β = 0, to describe |ψ(+)
αm〉

in the break-up channel,

|ψ(+)
αm〉 = G0V 0|ψ(+)

αm〉 = G0V |ψ(+)
αm〉 . (2.22)

This state again guarantees a purely outgoing wave in the break-up channel [9]. Moreover, the

structure of (2.22) gives rise to a decomposition of |ψ(+)
αm〉 into components |ψ(+)

αm〉i,

|ψ(+)
αm〉 = G0V |ψ(+)

αm〉 =

3∑
i=1

G0Vi|ψ(+)
αm〉i , (2.23)

which are called Faddeev components of the scattering wave function.

However, there are still problems remaining. The integral kernel of Eq. (2.16), gαV α, and the

integral kernels of the equations in (2.21) do not have a finite Schmidt norm (see below) and they are

not compact. Latter is caused by the occurrence of delta functions in the kernel, which in a graphical

representation appear as disconnected parts of the system, that should not appear in useful integral

equations. The delta function arises from the fact that the channel resolvent gα acts in the two-

particle subsystem of the three-particle system, and does not affect particle α. This can be expressed

by writing down the matrix elements of the resolvent (bold letters represent vectors)

〈pαqα|gα(z)|p′αq′α〉 = δ(qα − q′α)〈pα|ĝα(z − q2
α

2Mα
)|p′α〉 . (2.24)

Here, ĝα is a two-particle operator living in two-particle space, while gα is a two-particle operator in

three-particle space.

Faddeev was the first to realize these problems, which indicated him to look for new equations,

the so-called Faddeev equations, subject of the following subsections.

2.2 Faddeev equations for the T -operator

We consider the three-particle T -operator,

T (z) = V + V G(z)V (2.25)
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and the three-particle resolvent

G(z) = g0(z) + g0(z)T (z)g0(z) . (2.26)

Combining them yields two integral equations for the T -operator, i.e.

T (z) = V + V g0(z)T (z) ,

T (z) = V + T (z)g0(z)V .
(2.27)

Faddeev suggested to split the T -operator into three components,

Ti = vi + vig0T , (2.28)

where V = v1 + v2 + v3 and thus T = T1 + T2 + T3. However, the integral kernel remains the same

as before and is still non compact. We can arrange the equations for the three components in matrix

from T1

T2

T3

 =

v1

v2

v3

+

v1 v1 v1

v2 v2 v2

v3 v3 v3

 g0

T1

T2

T3

 . (2.29)

In the following some manipulations to this matrix equation are performed in order to make the

integral kernel less singular. We pick out the first line of the matrix equation

T1 = v1 + v1g0(T1 + T2 + T3) (2.30)

or equivalent

(1− v1g0)T1 = v1 + v1g0(T2 + T3) . (2.31)

Next, we multiply this equation by (1− v1g0)−1 from the left which leads to

T1 = (1− v1g0)−1v1 + (1− v1g0)−1v1g0(T2 + T3) , (2.32)

or

T1 = t1 + t1g0(T2 + T3) , (2.33)

with the two-particle t-operators

ti = (1− vig0)−1vi , (2.34)

7



acting in the three-particle space. The same procedure can be carried out for the second and third

line and we end up with the matrix equationT1

T2

T3

 =

t1t2
t3

+

 0 t1 t1

t2 0 t2

t3 t3 0

 g0

T1

T2

T3

 . (2.35)

These are the Faddeev equations for the T -matrix. They can be alternatively written as

Ti(z) = ti(z) +

3∑
i=1

Fij(z)g0(z)Tj(z) (2.36)

with the Faddeev operator

Fij(z) = (1− δij)ti(z) . (2.37)

The potentials vi have been totally replaced by the two-particle operators ti acting in the three-particle

space. Two particle operators, like ti that act only in subsystem i, always enter off-shell into three-

body scattering amplitudes because of the energy shift z− q2
i /2Mi in subsystem i. As a consequence,

there is more information contained in three-particle scattering data than in two-particle data alone.

Additionally, when performing the operator product tig0Tj one has to integrate over all intermediate

states |p′i〉 and |q′i〉, where

p2
i

2µi
6= z − q

′2
i

2Mi
6= p

′2
i

2µi
. (2.38)

The kernel of Eqs. (2.35) and (2.36), tig0Tj , is still not compact and does not have a finite Schmidt

norm. This is due to the exclusive action of ti in subsystem i, which causes δ-functions occurring in

the matrix elements,

〈piqi|ti(z)|p′iq′i〉 = δ(qα − q′α)〈pi|t̂i(z −
q2
i

2Mi
)|p′i〉 . (2.39)

The existence of the Schmidt norm of an operator K(r, r′) is defined as

‖K‖S =
[
Tr(K†K)

]1/2
=

[∫∫
dr0 dr′|K(r, r′)|2

]1/2

, (2.40)

and is a sufficient condition for compactness of the integral kernel. Latter is an important feature of

the kernel as it is a necessary condition to enable the Fredholm theory and other methods of integral

equation theory to be applied. After a first iteration of Eq. (2.35), not carried out here, there occur

operator products such as tig0tj with i 6= j. Such a product implies an integration over intermediate

energy states, where the δ-functions disappear and the particles get linked together. Further problems

and details are treated in [8], however, we can proceed using the form (2.36) of the Faddeev equations

for the T -operator. If we continue iterating Eq. (2.35), we get the Neumann series of the Faddeev
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equations, which is [8],

T (z) =

∞∑
ν=0

t(z)
(
F (z)g0(z)t(z)

)ν
, (2.41)

where doubly underlined quantities represent matrices and singly underlined quantities vectors. The

Neumann series and its graphical representation (see [8]) reveal the meaning of the Faddeev equations.

The Faddeev equations describe the three-particle scattering process as a two-body multiple scattering

process, where the individual two-body scattering occurs on-shell or off-shell.

In the next step we will derive Faddeev equations for the three-particle resolvent Gi(z) and the

scattering wave function |ψ±αm〉.

2.3 Faddeev equations for the resolvent and scattering states

We start with the resolvent G(z) from Eq. (2.26) and replace the operator T by the sum of its three

components Ti (2.2),

G(z) = g0(z) +
3∑
i=1

g0(z)Ti(z)g0(z) . (2.42)

With the definition of components Gi(z),

Gi(z) = g0(z)Ti(z)g0(z) (2.43)

we can rewrite Eq. (2.42)

G(z) = g0(z) +

3∑
i=1

Gi(z) . (2.44)

Equations that determine Gi(z) can be obtained by inserting the Faddeev equations (2.36) for the

T -operator into Eq. (2.43) (omitting the argument z of the resolvents and operators),

Gi = g0tig0 + g0

3∑
j=1

Fijg0Tjg0 . (2.45)

We proceed by including a relation that follows form extending the resolvent equation in two-particle

space

g(z) = g0(z) + g0(z)t(z)g0(z) (2.46)

into three-particle space,

g0tig0 = gi − g0 . (2.47)

Then,

Gi(z) = gi(z)− g0(z) +

3∑
j=1

Fijg0Tjg0 (2.48)
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and with Eq. (2.43) we obtain

Gi(z) = gi(z)− g0(z) +

3∑
j=1

g0(z)Fij(z)Gj(z) . (2.49)

Let us now find Faddeev equations for the scattering state

|ψ(±)
αm〉 = lim

ε→0
±iεG(E ± iε)|φαm〉 (2.50)

by inserting the splitting of the resolvent (2.44), which yields

|ψ(±)
αm〉 = lim

ε→0
±iεg0(E ± iε)|φαm〉+ lim

ε→0
±iε

3∑
i=1

Gi(E ± iε)|φαm〉 . (2.51)

We define

|χ(±)
iαm〉 = lim

ε→0
±iεgi(E ± iε)|φαm〉 (2.52)

and

|ψ(±)
αm〉i = lim

ε→0
±iεGi(E ± iε)|φαm〉 , (2.53)

with i = 1, 2, 3. The state |χ(±)
iαm〉 with α 6= 0 can be simplified by performing the limit ε→ 0,

|χ(±)
iαm〉 = lim

ε→0

±iε

E ± iε− hi
|φαm〉 = δiα|φαm〉 , i = 0, 1, 2, 3 , (2.54)

which is true since |φαm〉 is an eigenfunction of hi if i = α. α 6= 0 means an incoming state consisting

of a bound pair and one particle moving freely. This case will be considered in the following. For

α = 0, which describes an incoming state consisting of three free particles, we get different results for

|χ(±)
iαm〉, which, however, will not concern us further. As a consequence the scattering state is split into

components

|ψ(±)
αm〉 = |χ(±)

0αm〉+

3∑
i=1

|ψ(±)
αm〉i . (2.55)

With the Faddeev equations for the resolvent (2.49), these components become

|ψ(±)
αm〉i = lim

ε→0
±iε

gi(E ± iε)− g0(E ± iε) +

3∑
j=1

g0(E ± iε)Fij(E ± iε)Gj(E ± iε)

 |φαm〉 . (2.56)

For an incoming state consisting of a bound pair and one particle moving freely we obtain

|ψ(±)
αm〉i = δiα|φαm〉+

3∑
j=1

g0(E ± i0)Fij(E ± i0)|ψ(±)
αm〉j (2.57)
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and the total scattering wave function is a coherent sum of the three Faddeev components,

|ψ(±)
αm〉 =

3∑
i=1

|ψ(±)
αm〉i . (2.58)

These are the Faddeev equations for the scattering state that we will use in the following.
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3 The Glöckle R-matrix approach to the three-body problem

3.1 Introduction

In the first part of this section, we follow Glöckle’s way to derive a set of equations for the three-body

on-shell T -matrix elements by the R-matrix method. His idea will be the basis for our generalization of

the three-body R-matrix approach to different masses of the three interacting particles. However, we

present a more detailed derivation of the results provided in [6] before generalizing them to arbitrary

particle masses.

The total scattering wave function Ψ (+) is decomposed according to Faddeev [7] into three wave

functions which in coordinate space representation are

Ψ (+) = ψ1(r1, R1) + ψ2(r2, R2) + ψ3(r3, R3), (3.1)

where ri and Ri, i = 1, 2, 3 denote Jacobi coordinates (bold letters denote vectors). The three sets of

Jacobi coordinates are defined as

r1 = x2 − x3 , R1 = x1 −
m2x2 +m3x3

m2 +m3
, (3.2)

r2 = x3 − x1 , R2 = x2 −
m3x3 +m1x1

m1 +m3
, (3.3)

r3 = x1 − x2 , R3 = x3 −
m1x1 +m2x2

m1 +m2
, (3.4)

where xi represent Cartesian coordinates. The different sets of Jacobi coordinates are illustrated in

Fig. 1

1

1

1

3

3

3

2

2

2

R
1

R
2

R
3

r
1

r
2

r
3

Figure 1: Definition of Jacobi coordinates
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The Faddeev equation for the scattering wave function (2.57) reads

|ψ(±)
αm〉i = δiα|φαm〉+

3∑
j=1

g0Fij |ψ(±)
αm〉j = δiα|φαm〉+

3∑
j=1

g0(1− δij)ti|ψ(±)
αm〉j

= δiα|φαm〉+

3∑
j(6=i)=1

g0ti|ψ(±)
αm〉j ,

(3.5)

with

|ψ(±)
αm〉 =

3∑
i=1

|ψ(±)
αm〉i . (3.6)

Here we used the identity Fij = (1− δij)ti. From (2.34) it follows

ti = (1− vig0)−1vi (3.7)

and after a slight manipulation of the resolvent equation,

gi(z) = g0(z) + gi(z)vig0(z) , (3.8)

one arrives at

gi = (1− vig0)−1g0 . (3.9)

Dividing Eq. (3.7) by Eq. (3.9) we get

ti
gi

=
vi
g0
⇒ g0ti = givi (3.10)

and Eq. (3.5) can be rewritten

|ψ(±)
αm〉i = δiα|φαm〉+ givi

3∑
j(6=i)=1

|ψ(±)
αm〉j . (3.11)

First, following Glöckle [6, 9] we restrict ourselves to the simplified model of three identical spinless

(bosonic) particles with s-wave interaction only. This assumption is primarily valid in the energy

regime near the break-up threshold. In Sec. 4 we generalize the results for scattering of three distin-

guishable particles with different masses also interacting by s-wave interaction only. In the following,

we use the coordinate space representations of the various physical scattering wave functions |ψ(+)
αm〉i

and suppress the indices α and m

ψi(rj ,Rj) ≡ i〈rjRj |ψ(+)
αm〉i . (3.12)

The index i = 1, 2, 3 and j denote the Faddeev component and a certain set of Jacobi coordinates,

13



respectively. In the next sections we change the notation for two-particle Green’s functions and two-

body potentials from small to capital letters while leaving their definitions unchanged and set ~ ≡ 1.

3.2 Three interacting identical spinless bosons

In this subsection we assume equal masses m1 = m2 = m3 and units mi = 1, ~ = 1.

Further we define permutation operators Pij that interchange particles i and j. Following [9], the

definition of the Faddeev components (2.23) leads to the relationships

ψ2(r2,R2) = 2〈r2R2|G0V2Ψ〉 = 2〈r2R2|P12P23|G0V1Ψ〉 = 2〈r2R2|P12P23|ψ1〉

= 1〈r2R2|ψ1〉 = ψ1(r2,R2)
(3.13)

In the second and last equality of Eq. (3.13) we make use of the fact that the bosonic scattering

wave function is symmetric under permutation of particles. Additionally we use the invariance of the

Green’s function G0 under permutation of particles and the identity P12P23V1 = V2. In the third step

we reinsert the definition of the Faddeev components. Analogously we get

ψ3(r3,R3) = 3〈r3R3|G0V3Ψ〉 = 3〈r3R3|P13P23|G0V1Ψ〉 = 3〈r3R3|P13P23|ψ1〉

= 1〈r3R3|ψ1〉 = ψ1(r3,R3)
(3.14)

As indicated in the last two equations, all three Faddeev components have the same functional form, if

they are expressed in Jacobi coordinates. Consequently, instead of three coupled Faddeev equations,

we obtain three separate equations that can be solved independently. For ψ1(r1,R1), for instance,

according to (3.11), we obtain [9]

ψ1(r1,R1) = φ1(r1,R1) +

∫
d3r′1

∫
d3R′1〈r1R1|G1|r′1R′1〉V1(r′1)[ψ1(r′2,R

′
2) + ψ1(r′3,R

′
3)] . (3.15)

From a practical point of view, one would solve Eq. (3.15) only and substitute the coordinates in the

result in order to obtain the solution for the other Faddeev components ψ1(r2,R2) and ψ1(r3,R3).

So we can define ψ1(r1,R1) ≡ ψ(r1,R1), ψ1(r2,R2) ≡ ψ(r2,R2) and ψ1(r3,R3) ≡ ψ(r3,R3). The

Jacobi coordinates now read

r1 = x2 − x3 r2 = x3 − x1 r3 = x1 − x2

R1 = x1 −
1

2
(x2 + x3) R2 = x2 −

1

2
(x3 + x1) R3 = x3 −

1

2
(x1 + x2) ,

(3.16)

which follow from Eqs. (3.2)- (3.4) for m1 = m2 = m3 = 1.

The three-particle scattering wave function ψ(rj ,Rj) can be separated into a radial and an angular

part,

ψ(rj ,Rj) = 4π

∞∑
l=0

∞∑
l′=0

il+l
′
Rll′(rj , Rj ; k)

l∑
m=−l

Y ∗lm(k̂)Ylm(R̂j)

l′∑
m′=−l′

Yl′m′(r̂j) , (3.17)
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where l denotes the angular momentum quantum number, m the magnetic quantum number and Ylm

the spherical harmonics. The wave number of the free relative motion of the single particle with respect

to the bound pair with binding energy Eb is k =
√

4
3 (E − Eb). The radial function Rll′(rj , Rj ; k) is

written as

Rll′(rj , Rj ; k) =
ul(rj , Rj ; k)

rjRjk
. (3.18)

The inhomogeneous term φ1(r1,R1) in Eq. (3.15) refers to the incoming flux in the entrance channel,

φ1(r1,R1) = Φb(r1) · ψ(k,R1) = Φb(r1) · eikR1

=
ul′(r1)

r1
Yl′m′(r̂1) · 4π

∞∑
l=0

il
̂l(kR1)

kR1

l∑
m=−l

Y ∗lm(k̂)Ylm(R̂1) ,
(3.19)

where ̂l(kR1) are the spherical Bessel functions in Ricatti form. It describes the free relative mo-

tion of a single particle, represented by its wave function ψ(k,R1) and a bound pair of particles,

expressed by the binding wave function Φb(r1). Latter is square integrable and normalized to 1, i.e.∫
d3r1[Φb(r1)]2 = 1, which provides a normalization condition for the binding wave function ul′(r1),

1 =

∫
d3r1[Φb(r1)]2 =

∫
d3r1

(
ul′(r1)

r1

)2

Y ∗l′m′(r̂1)Yl′m′(r̂1)

=

∞∫
0

dr1 r
2
1

[ul′(r1)]2

r2
1

∫
dr̂1Y

∗
l′m′(r̂1)Yl′m′(r̂1)︸ ︷︷ ︸

=1

⇒
∞∫

0

dr1[ul′(r1)]2 = 1 .
(3.20)

The solution ul′(r1) satisfies the equation[
− 1

2µ23

(
d2

dr2
− l(l + 1)

r2

)
+ V (r)

]
ul(r) =

[
−
(

d2

dr2
− l(l + 1)

r2

)
+ V (r)

]
ul(r) = Ebul(r) , (3.21)

where

µ23 =
m2m3

m2 +m3
=

1

2
(3.22)

is the reduced mass of the subsystem consisting of particles 2 and 3. In partial wave decomposition,
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Eq. (3.15) becomes

4π

∞∑
l=0

∞∑
l′=0

il+l
′ ull′(r1, R1; k)

r1R1k

l∑
m=−l

Y ∗lm(k̂)Ylm(R̂1)

l′∑
m′=−l′

Yl′m′(r̂1)

=
ul′(r1)

r1
Yl′m′(r̂1) · 4π

∞∑
l=0

il
̂l(kR1)

kR1

l∑
m=−l

Y ∗lm(k̂)Ylm(R̂1) +

∫
dr′1dR′1〈r1R1|G1|r′1R′1〉V1(r′1)

×

[
4π

∞∑
l=0

∞∑
l′=0

il+l
′ ull′(r2, R2; k)

r2R2k

l∑
m=−l

Y ∗lm(k̂)Ylm(R̂2)

l′∑
m′=−l′

Yl′m′(r̂2)+

4π

∞∑
l=0

∞∑
l′=0

il+l
′ ull′(r3, R3; k)

r3R3k

l∑
m=−l

Y ∗lm(k̂)Ylm(R̂3)

l′∑
m′=−l′

Yl′m′(r̂3)

]
.

(3.23)

In order to get rid of inessential difficulties in further calculations we introduce simplifications. The

first is the restriction to the state of total angular momentum L = 0. The partial-wave decomposition

of the various incoming and scattering wave functions then contain the s-wave part of the two relative

motions (particle 2 versus particle 3 and particle 1 versus the system of particles 2 and 3 in a bound or

scattering state) only which means l = l′ = 0. The potential V (r1) is also assumed to act only in the

s-wave. Consequently, ψ1(r1,R1) and φ1(r1,R1) depend on the magnitudes r1 = |r1| and R1 = |R1|
only which leads to a dependence of the amplitudes under the integral in (3.15) of r′2 = |r′2|, R2 = |R′2|,
r′3 = |r′3| and R′3 = |R′3|. Relations between different sets of Jacobi coordinates are given by

r2 = −1

2
r1 −R1 R2 =

3

4
r1 −

1

2
R1,

r3 = −1

2
r1 + R1 R3 = −3

4
r1 −

1

2
R1 .

(3.24)

It follows that

r2(x) =

√
1

4
r2
1 +R2

1 + R1r1 =

√
1

4
r2
1 +R2

1 +R1r1x (3.25)

and

R2(x) =

√
9

16
r2
1 +

1

4
R2

1 −
3

4
R1r1 =

√
1

4
R2

1 +
9

16
r2
1 −

3

4
R1r1x . (3.26)

where x is the cosine of the angle between r1 and R1. For r3(x) and R3(x) we get

r3(x) =

√
1

4
r2
1 +R2

1 −R1r1 =

√
1

4
r2
1 +R2

1 −R1r1x (3.27)

and

R3(x) =

√
9

16
r2
1 +

1

4
R2

1 +
3

4
R1r1 =

√
1

4
R2

1 +
9

16
r2
1 +

3

4
R1r1x . (3.28)

The magnitudes r2, R2, r3 and R3 depend on x = r̂1 · R̂1, the cosine of the angle between r1 and

R1. Hence, the six-dimensional integral in Eq. (3.15) reduces to a three-dimensional one, because the

integration over the remaining three angles Θ,Φ and φ becomes trivial under these simplifications
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(x′ = r̂′1 · R̂′1),∫
d3r′1

∫
d3R′1〈r1R1|G1|r′1R′1〉V1(r′1)[ψ1(r′2,R

′
2) + ψ1(r′3,R

′
3)]

=

2π∫
0

dΦ

π∫
0

dΘ sin Θ

∞∫
0

dR′1 R
′2
1

2π∫
0

dθ sin θ

2π∫
0

dx′
∞∫

0

dr′1 r
′2
1 〈r1R1|G1|r′1R′1〉V1(r′1)

× [ψ1(r′2,R
′
2) + ψ1(r′3,R

′
3)]

−→ 8π2

∞∫
0

dr1 r
′2
1

∞∫
0

dR1 R
′2
1

1∫
−1

dx′〈r1R1|G1|r′1R′1〉V1(r′1)[ψ1(r′2, R
′
2)l=0 + ψ1(r′3, R

′
3)l=0] .

(3.29)

The wave functions in last line of Eq.(3.29) only contain the s-wave part of the relative motions. We

have also changed the integrations variables from (r′1, φ, θ) to (r′1, φ
′, η = φ−θ) because the magnitudes

r′2, R′2, r′3 and R′3 appearing as arguments of the wave functions under the integral, depend on the

relative angle η = arccosx between r1 and R1.

We can also find the partial wave decomposition of the Green’s function matrix element [10] in

Eq. (3.23)

〈r1R1|G1|r′1R′1〉 = 〈r1R1|G1|r′1R′1〉
1

r1R1r′1R
′
1

λ∑
µ=−λ

Y ∗λµ(r̂1)Yλµ(R̂1)

λ′∑
µ′=−λ′

Y ∗λ′µ′(r̂
′
1)Yλ′µ′(R̂

′
1)

= −2µ1(23)

∞∑
λ=0

∞∑
λ′=0

gλλ′(r1, R1, r
′
1, R

′
1; k)

k

1

r1R1r′1R
′
1

λ∑
µ=−λ

Y ∗λµ(r̂1)Yλµ(R̂1)

λ′∑
µ′=−λ′

Y ∗λ′µ′(r̂
′
1)Yλ′µ′(R̂

′
1) .

(3.30)

This is essentially the generalization of the Green’s function for two free particles

G0(r, r′, k) = − 1

4π

eik|r−r
′|

|r− r′|
= 2µ

∞∑
l=0

gl(r, r
′)

rr′

l∑
m=−l

Y ∗lm(r̂)Ylm(r̂′) , (3.31)

where

gl(r, r
′) = −1

k
̂l(kr<)ĥ

(+)
l (kr>) , (3.32)

with the spherical Bessel function jl(x) =
̂l(x)

x
and the spherical Hankel function h

(+)
l (x) =

ĥ
(+)
l (x)

x
.

Inserting the results of Eqs. (3.29) and (3.30) into Eq. (3.23) and considering only s-waves in both
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relative motions (l = l′ = λ = λ′ = 0), Eq. (3.23) reduces to

4π
u(r1, R1; k)

r1R1k

1

(4π)3/2

=
ub(r1)

r1

√
1

4π
4π

sin(kR1)

kR1

1

4π
+ 8π2

∞∫
0

dr′1 r
′2
1

∞∫
0

dR′1 R
′2
1

1∫
−1

dx′ 〈r1R1|G1|r′1R′1〉
1

r1R1r′1R
′
1

1

(4π)2
V1(r′1)

×

[
4π
u(r′2, R

′
2; k)

r′2R
′
2k

1

(4π)3/2
+ 4π

u(r′3, R
′
3; k)

r′3R
′
3k

1

(4π)3/2

]
.

(3.33)

with ul=0,l′=0(r1, R1; k) ≡ u(r1, R1; k), the binding wave function ul′=0(r1) ≡ ub(r1) and Yl=0,m=0 =√
1

4π .

Comparing Eq. (3.25) with Eq. (3.27) and Eq. (3.26) with Eq. (3.28) we conclude that

r3(x) = r2(−x) (3.34)

and

R3(x) = R2(−x) . (3.35)

These relations simplify the integral in Eq. (3.33) significantly. Considering the integration over x

only, it turns out that the sum under the integral can be written as one single term,

1∫
−1

dx
u(r2(x), R2(x); k)

r2(x)R2(x)
+

1∫
−1

dx
u(r3(x), R3(x); k)

r3(x)R3(x)

=

1∫
−1

dx
u(r2(x), R2(x); k)

r2(x)R2(x)
+

1∫
−1

dx
u(r2(−x), R2(−x); k)

r2(−x)R2(−x)

=

1∫
−1

dx
u(r2(x), R2(x); k)

r2(x)R2(x)
+

−1∫
1

(−dy)
u(r2(y), R2(y); k)

r2(y)R2(y)

=

1∫
−1

dx
u(r2(x), R2(x); k)

r2(x)R2(x)
+

1∫
−1

dy
u(r2(y), R2(y); k)

r2(y)R2(y)

= 2

1∫
−1

dx
u(r2(x), R2(x); k)

r2(x)R2(x)
,

(3.36)
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where we substituted y = −x⇒ dy = −dx. Finally Eq. (3.33) becomes

u(r1, R1; k)

r1R1k

1

(4π)1/2
=
ub(r1)

r1

1

(4π)1/2

sin(kR1)

kR1

+ 8π2

∞∫
0

dr′1

∞∫
0

dR′1 〈r1R1|G1|r′1R′1〉
r
′2
1 R

′2
1

r1R1r′1R
′
1

1

(4π)2
V1(r′1)

1∫
−1

dx′ 2
u(r′2, R

′
2; k)

r′2R
′
2k

1

(4π)1/2

=
ub(r1)

r1

1

(4π)1/2

sin(kR1)

kR1
+ 8π2

∞∫
0

dr′1

∞∫
0

dR′1 〈r1R1|G1|r′1R′1〉
r′1R

′
1

r1R1
V1(r′1)

×
1∫
−1

dx′
u(r′2, R

′
2; k)

r′2R
′
2k

1

(4π)1/2
.

(3.37)

Multiplying both sides of Eq. (3.37) with r1R1k gives the final form

u(r1, R1; k) = ub(r1) sin(kR1) +

∞∫
0

dr′1

∞∫
0

dR′1 〈r1R1|G1|r′1R′1〉r′1R′1V1(r′1)

1∫
−1

dx′
u(r′2, R

′
2; k)

r′2R
′
2

= ub(r1) sin(kR1) +

∞∫
0

dr′1

∞∫
0

dR′1 〈r1R1|G1|r′1R′1〉V1(r′1)Q(r′1, R
′
1)

(3.38)

with the source term

Q(r1, R1) :=

1∫
−1

dx
r1R1

r2R2
u(r2, R2) . (3.39)

The argument k in the wave functions u(r1, R1; k) and u(r2, R2; k) is not essential for the following

consideration and will be suppressed. We can derive the differential form of the simplified Faddeev

equation (3.38) using the channel Hamiltonian Ĥ1 = T1 + V (r1) in coordinate space representation,

Ĥ1 = − 1

2(m1 +m2 +m3)

d2

dR2
cm

− 1

2µ23

d2

dr2
1

− 1

2µ1(23)

d2

dR2
1

+ V (r1)

= −1

6

d2

dR2
cm

− d2

dr2
1

− 3

4

d2

dR2
1

+ V (r1) .

(3.40)

It describes the dynamic of a bound or scattered state between particles 2 and 3 and particle 1 moving

freely. With the chosen units the reduced mass µ1(23) is simply

µ1(23) =
m1(m2 +m3)

m1 +m2 +m3
=

2

3
. (3.41)

The motion of the center of mass is trivial an will be neglected in the following.
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Acting with (E − Ĥ1) on both sides of Eq. (3.38) gives a partial integrodifferential equation,[
− d2

dr2
1

− 3

4

d2

dR2
1

+ V (r1)− E

]
u(r1, R1) =

[
− d2

dr2
1

− 3

4

d2

dR2
1

+ V (r1)− E

]
[ub(r1) sin(kR1)]

+

∞∫
0

dr′1

∞∫
0

dR′1

[
− d2

dr2
1

− 3

4

d2

dR2
1

+ V (r1)− E

]
〈r1R1|G1|r′1R′1〉V1(r′1)

1∫
−1

dx′
r′1R

′
1

r′2R
′
2

u(r′2, R
′
2) .

(3.42)

The fact that the incoming state ub(r1) sin(kR1) is an eigenstate of Ĥ1 and the identity

(E − Ĥ1)〈r1R1|G1|r′1R′1〉 = (E − Ĥ1)〈r1R1|
1

E − Ĥ1

|r′1R′1〉 = δ(r1 − r′1)δ(R1 −R′1) (3.43)

lead to the concise expression[
− d2

dr2
1

− 3

4

d2

dR2
1

+ V1(r1)− E

]
u(r1, R1)

= −
∞∫

0

dr′1

∞∫
0

dR′1 δ(r1 − r′1)δ(R1 −R′1)V1(r′1)

1∫
−1

dx′
r′1R

′
1

r′2R
′
2

u(r′2, R
′
2) = −V1(r1)

1∫
−1

dx
r1R1

r2R2
u(r2, R2) ,

(3.44)

with boundary conditions for outgoing scattered waves. After having carried out the integration over

both delta-functions, r′2 → r2 and R′2 → R2 because r2 and R2 are functions of r1 and R1 (Eqs. (3.25)

and (3.26)).

3.2.1 Asymptotic behavior

We are interested in the asymptotic behavior of u(r1, R1) for R1 → ∞ and r1 → ∞, which can be

deduced from Eq. (3.44) in its asymptotic limit,[
− d2

dr2
1

− 3

4

d2

dR2
1

− E

]
u(r1, R1) = 0 . (3.45)

One introduces polar coordinates

r1 = ρ cosϕ ,

R1 =

√
3

4
ρ sinϕ .

(3.46)
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The factor
√

3
4 in the second line of Eq. (3.46) results from the reduced mass, appearing in the Green’s

function (3.54a). The asymptotic form of u(ρ, ϕ) in the limit ρ→∞ reads

u(ρ, ϕ) w
ρ→∞

0<ϕ<π/2

ei
√
Eρ

ρ1/2
A(ϕ) , (3.47)

where A(ϕ) is an unspecified function in ϕ. This can be verified by transforming the asymptotic

Hamiltonian from Eq. (3.45) into polar coordinates (Eq. (3.46)) and let it act onto u(ρ, ϕ) from

Eq. (3.47), [
− d2

dρ2
− 1

ρ

d

dρ
− 1

ρ2

d2

dϕ2
− E

](
ei
√
Eρ

ρ1/2
A(ϕ)

)
−→
ρ→∞

0 . (3.48)

The detailed calculation is shown in Appendix A.

The convergence of the integral with respect to R′1 in Eq. (3.38), exclusively depends on the source

term Q(r1, R1) (Eq. (3.39)) as the potential V (r′1) only confines r′1, the distance between particles 2

and 3. So we have to investigate the source term’s behavior for R1 → ∞, while assuming a finite

range of interaction r0, limiting r′1 to that value. For that purpose we need the asymptotic form of

u(r2, R2) given in Eq. (3.47). The transformation of R2 and r2 into polar coordinates reads

r2 = ρ cosϕ

R2 =

√
3

4
ρ sinϕ.

(3.49)

Considering the relation between Jacobi coordinates in Eq. (3.24) we can write (compare Eqs. (3.25)-

(3.28))

r2(x) =

√
1

4
r2
1 +R2

1 + R1r1 =

√
1

4
r2
1 +R2

1 +R1r1x

=R1

√
1 +

r2
1

4R2
1

+
r1

R1
x ≈ R1(1 +

r1

2R1
x+ ...) = R1 +

1

2
r1x+ ...

(3.50)

and analogously

R2(x) =

√
9

16
r2
1 +

1

4
R2

1 −
3

4
R1r1 =

√
1

4
R2

1 +
9

16
r2
1 +

3

4
R1r1x

=
1

2
R1

√
1 +

9r2
1

4R2
1

− 3
r1

R1
x ≈ 1

2
R1(1− 3r1

2R1
x+ ...) =

1

2
R1 −

3

4
r1x+ ... ,

(3.51)

where x is the cosine of the angle between r1 and R1. The Taylor approximation is valid for R1 →∞.

With the help of Eqs. (3.50) and (3.51) we can determine the angle ϕ in Eq. (3.49) by keeping only
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the first terms of the expansions,

tanϕ =
R2

r2

√
4

3
≈ R1

2R1

√
4

3
=

√
1

3
⇒ ϕ = arctan

1√
3

= 30◦ . (3.52)

In order to establish the asymptotic form of Q(r1, R1) we approximate R2(x) and r2(x) by the first

term of the expansions in Eqs. (3.50) and (3.51), respectively and use the form (3.47) for u(r2, R2).

This is valid because for R1 →∞ it follows from Eq. (3.24) that both, r2 and R2 tend towards infinity.

Together with the transformation (3.49), we finally obtain,

Q(r1, R1) =

1∫
−1

dx
r1R1

r2R2
u(r2, R2) w

R1→∞
r1fixed

1∫
−1

dx
r1R1

R1
1
2R1

ei
√
E 1

2R1

√
4
3/ sin 30◦(

4
3

)1/4√ 1
2R1

1
sin 30◦

A

(
arctan

1√
3

)

=

1∫
−1

dx
2r1

R1

ei
√
E 1

2R12
√

4
3(

4
3

)1/4√ 1
2R12

A

(
arctan

1√
3

)
=

1∫
−1

dx 2

(
3

4

)1/4

r1
ei
√

4
3ER1

R
3/2
1

A

(
arctan

1√
3

)

= 4

(
3

4

)1/4

r1
ei
√

4
3ER1

R
3/2
1

A

(
arctan

1√
3

)
.

(3.53)

We find a R
−3/2
1 -dependence in the asymptotic form of Q(r1, R1) which assures absolute convergence

of the integral over R′1 when calculating u(r1, R1) in Eq. (3.56).

The R-matrix approach, we want to establish in Subsections 3.2.2 and 3.2.3, requires the asymptotic

form of the solution u(r1, R1) of Eq.(3.44), for R1 → ∞ and r1 fixed and for r1 → ∞ and R1 fixed,

respectively. Each of the two forms can be established by using different representations of the Green’s

function G1 = (E − Ĥ1)−1 [6],

〈r1R1|G1|r′1R′1〉 = ub(r1)

(
−4

3
eiQR>

sin(QR<)

Q

)
ub(r

′
1)

+
2

π

∞∫
0

dk u
(−)
k (r1)

(
−4

3
eiQkR>

sin(QkR<)

Qk

)
u

(−)∗
k (r′1) (3.54a)

=
2

π

∞∫
0

dK sin(KR1)

(
− 1

qK
u(+)
qK (r<)wqK (r>)

)
sin(KR′1) , (3.54b)

where R> = max(R,R′), R< = min(R,R′) and r> = max(r, r′), r< = min(r, r′). In Eq. (3.54a)

there appears the free Green’s function for angular momentum l = 0 (compare (3.31)) of particle 1

versus the subsystem formed by particles 2 and 3, which is characterized by a complete set of bound-,

ub(r1), and scattering states u
(−)
k (r1). The second form (3.54b) represents the influence of bound-

and scattering states in the subsystem consisting of particles 2 and 3 on the motion of particle 1. The

bound- and scattering states u
(±)
qK (r) and wqK (r) are normalized as u

(±)
q (r) w e±iδ(q) sin(qr+δ(q)) and

wq(r) w eiqr. The relations between the different wavenumbers occurring in the two representations
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of G1 read

E = − 1

2µ(23)
κ2 +

1

2µ1(23)
Q2 =

1

2µ(23)
k2 +

1

2µ1(23)
Q2
k =

1

2µ(23)
q2
K +

1

2µ1(23)
K2

E = Eb +
3

4
Q2 = k2 +

3

4
Q2
k = q2

K +
3

4
K2 ,

(3.55)

where we inserted the reduced masses, Eqs. (3.22) and (3.41), in the second line and set
−κ2

2µ(23)
≡ Eb.

Inserting Eq. (3.54a) into Eq. (3.38) yields the the asymptotic form of u(r1, R1) for R1 → ∞ and r1

fixed,

u(r1, R1) = ub(r1) sin(QR1)− 4

3
ub(r1)eiQR1

R1∫
0

dR′1
sin(QR′1)

Q

∞∫
0

dr′1 ub(r
′
1)V (r′1)Q(r′1, R

′
1)

− 4

3
ub(r1)

sin(QR1)

Q

∞∫
R1

dR′1 eiQR′1

∞∫
0

dr′1 ub(r
′
1)V (r′1)Q(r′1, R

′
1)

− 4

3
· 2

π

√
E∫

0

dk u
(−)
k (r1)eiQkR1

R1∫
0

dR′1
sin(QkR

′
1)

Qk

∞∫
0

dr′1 u
(−)∗
k (r′1)V (r′1)Q(r′1, R

′
1)

− 4

3
· 2

π

∞∫
√
E

dk u
(−)
k (r1)eiQkR1

R1∫
0

dR′1
sin(QkR

′
1)

Qk

∞∫
0

dr′1 u
(−)∗
k (r′1)V (r′1)Q(r′1, R

′
1)

− 4

3
· 2

π

∞∫
0

dk u
(−)
k (r1)

sin(QkR
′
1)

Qk

∞∫
R1

dR′1 eiQkR1

∞∫
0

dr′1 u
(−)∗
k (r′1)V (r′1)Q(r′1, R

′
1) .

(3.56)

The sixth term on the right hand side of Eq. (3.56) vanishes for R1 → ∞ because the lower limit

of the integral over R′1 then tends to infinity as well as the upper one and the value of the integral

becomes zero. The third term of Eq. (3.56) will be treated separately,

H1(R1) = −4

3

∞∫
R1

dR′1
sin[Q(R1 −R′1)]

Q

r0∫
0

dr′1 r
′
1ub(r

′
1)V (r′1)Q(r′1, R

′
1)

w −4

(
3

4

)1/4

A

(
arctan

1√
3

)
ei
√

4
3ER1

R
3/2
1

1

Eb

r0∫
0

dr′1 r
′
1ub(r

′
1)V (r′1) .

(3.57)
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as well as the fifth one,

H2(r1, R1) =− 4

3
· 2

π

∞∫
√
E

dk u
(−)
k (r1)eiQkR1

R1∫
0

dR′1
sin(QkR

′
1)

Qk

∞∫
0

dr′1 u
(−)∗
k (r′1)V (r′1)Q(r′1, R

′
1)

w − 8

π

(
3

4

)1/4

A

(
arctan

1√
3

)
ei
√

4
3ER1

R
3/2
1

∞∫
√
E

dk u
(−)
k (r1)

1

k2

×
r0∫

0

dr′1 r
′
1u

(−)∗
k (r′1)V (r′1) +O

(
1

R2
1

)
.

(3.58)

Due to E = k2 + 3
4Q

2
k it is evident that in the interval [

√
E;∞] the wavenumber Qk appears as a

complex quantity in H2(r1, R1). Detailed calculations of the integrals over R′1 in Eqs. (3.57) and (3.58)

are shown in Appendix B. In both terms we have to insert the asymptotic form (3.53) of Q(r1, R1)

since R1 →∞ and thus R′1 becomes sufficiently large in the respective integration intervals, while r′1

is limited by the range r0 of the potential V .

According to [6] we define

Cb = 4

(
3

4

)1/4

A

(
arctan

1√
3

)
1

Eb

r0∫
0

dr rub(r)V (r) (3.59)

and

C(k) = 4

(
3

4

)1/4

A

(
arctan

1√
3

)
1

k2

r0∫
0

dr ru
(−)∗
k (r)V (r) . (3.60)

and rewrite (3.56) by using the T -amplitudes

Tb =

∞∫
0

dR

∞∫
0

dr
sin(QR)

Q
ub(r)V (r)Q(r,R) (3.61)

and

T (k) =

∞∫
0

dR

∞∫
0

dr
sin(QkR)

Qk
u

(−)∗
k (r)V (r)Q(r,R) (3.62)

in the following way

u(r1, R1) w ub(r1) sin(QR1)− 4

3
ub(r1)eiQR1Tb −

4

3
· 2

π

√
E∫

0

dk u
(−)
k (r1)eiQkR1T (k)

− ei
√

4
3ER1

R
3/2
1

ub(r1)Cb +
2

π

∞∫
√
E

dk u
(−)
k (r1)C(k)

+O

(
1

R2
1

)
.

(3.63)
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Eq. (3.63) reveals Tb being the elastic (or rearrangement) scattering amplitude. After having estab-

lished the asymptotic form of u(r1, R1) for R1 → ∞ and r0 fixed, we study its asymptotic behavior

for R1 fixed and r1 → ∞ which is required for the R-matrix formalism. To that end we insert the

second form of the Green’s function (Eq. (3.54b)) into Eq. (3.38) which gives

u(r1, R1) =− 2

π

√
4
3E∫

0

dK sin(KR1)wqK (r1)

r1∫
0

dr′1
u

(+)
qK (r′1)

qK

∞∫
0

dR′1 sin(KR′1)V (r′1)Q(r′1, R
′
1)

− 2

π

∞∫
√

4
3E

dK sin(KR1)wqK (r1)

r1∫
0

dr′1
u

(+)
qK (r′1)

qK

∞∫
0

dR′1 sin(KR′1)V (r′1)Q(r′1, R
′
1)

− 2

π

∞∫
0

dK sin(KR1)u(+)
qK (r1)

∞∫
r1

dr′1
wqK (r′1)

qK

∞∫
0

dR′1 sin(KR′1)V (r′1)Q(r′1, R
′
1)

(3.64)

In the limit r1 → ∞ the lower bound of the r′1-integral in the last term continuously approaches the

upper one, which leads to a vanishing integral and the term can be neglected. The second term is

considered to be a correction term and is treated in Appendix B. Using the asymptotic form of wq(r)

from above, wq(r) w eiqr, one obtains

u(r1, R1) w − 2

π

√
4
3E∫

0

dK sin(KR1)eiqKr1

∞∫
0

dr′1
u

(+)
qK (r′1)

qK

∞∫
0

dR′1 sin(KR′1)V (r′1)Q(r′1, R
′
1)+O

(
1

r2
1

)
.

(3.65)

Introducing the amplitude T (K)

T (K) =

∞∫
0

dR

∞∫
0

dr sin(KR)
u

(+)
qK

qK
V (r)Q(r,R) (3.66)

provides a compact form of u(r1, R1), which reads

u(r1, R1) w − 2

π

√
4
3E∫

0

dK sin(KR1)eiqKr1T (K) +O

(
1

r2
1

)
. (3.67)

Having defined the T -amplitudes, we can establish some relation between T (k)

T (k) =

∞∫
0

dR

∞∫
0

dr
sin(QkR)

Qk
u

(−)∗
k (r)V (r)Q(r,R)

and T (K), which are similar with respect to their functional form. First, we write T (k) as a function

25



of qK ,

T (qK) =

∞∫
0

dR

∞∫
0

dr
u

(−)∗
qK (r)

QqK
sin(QqKR)V (r)Q(r,R) . (3.68)

In order to proceed, we have to clarify the meaning of QqK . Therefore we consider the energy-wave

number relation, Eq. (3.55), including the equality

E = k2 +
3

4
Q2
k = q2

K +
3

4
K2 (3.69)

from which we can conclude QqK ≡ K. This can be interpreted as follows: Qk is the wave number

of particle 1 associated to the wave number k from the subsystem of particles 2 and 3 via the energy

relation. Similarly QqK is related to qK , and is called, according to Eq. (3.69), K. Thus,

T (qK) =

∞∫
0

dR

∞∫
0

dr
u

(−)∗
qK (r)

K
sin(KR)V (r)Q(r,R) . (3.70)

Comparing Eq. (3.66) with Eq. (3.70), one finds the relationship,

T (K) =
K

qK
T (qK) . (3.71)

In order to provide a relationship between T (qk) and T (k), we use an argument, valid for the asymp-

totic area with r1 →∞ and R1 fixed. Latter describes the break-up channel, where particles 2 and 3

move freely with the distance between them tending to infinity. In that case, the bound state wave

function completely disappears in both forms of the Green’s function G1 in Eqs. (3.54a) and (3.54b).

This allows us to identify k=̂qK and Qk=̂K. That means we have a one to one correspondence be-

tween the wave numbers on each side of Eq. (3.69), not only the sum of the squares, but also the wave

numbers themselves become equal. Consequently, in that limit T (qk) and T (k) will also be equal to

each other. Hence, Eq. (3.67) can be rewritten as

u(r1, R1) w − 2

π

√
4
3E∫

0

dK sin(KR1)eiqKr1T (K) +O

(
1

r2
1

)

= − 2

π

√
4
3E∫

0

dK sin(KR1)eiqKr1
K

qK
T (qK) +O

(
1

r2
1

)

= − 2

π

0∫
√
E

dqK

(
−4

3

)
qK
K

sin(KR1)eiqKr1
K

qK
T (qK) +O

(
1

r2
1

)

= − 8

3π

√
E∫

0

dk sin(KR1)eikr1T (k) +O

(
1

r2
1

)
.

(3.72)
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In the second equality we made use of Eq. (3.71). Then the integration variable K was substituted

by qK according to Eq. (3.69). Differentiating Eq. (3.69) with respect to qK and K yields

0 = 2qKdqK +
3

4
2KdK

dK =

(
−4

3

)
qK
K

dqK .
(3.73)

In the last equality qK was replaced by k due to the one to one correspondence of the wave numbers

discussed above. Thus we succeeded to express the asymptotic form of u(r1, R1) by the three-body

on-shell T -matrix elements Tb and T (k) for both cases, R1 →∞, r1 fixed and R1 fixed, r1 →∞. The

next step towards an R-matrix formalism is to extract the leading behavior of u(r1, R1) in the limit

r1 →∞ and R1 →∞, equivalent to the break-up channel. This is achieved by the method of steepest

descent [11] or saddle point method, applied to the integrals in Eqs. (3.63) and (3.72). It is useful to

transform both, Jacobi coordinates and momenta, into polar coordinates.

r1 = ρ cosϕ ,

R1 =

√
3

4
ρ sinϕ ,

qK =
√
E cosα ,

K =

√
4

3
E sinα .

(3.74)

Hence, u(r1, R1) from Eq. (3.72) becomes

I2 = − 1

πi

√
4

3
E

π/2∫
−π/2

dα eiρ
√
E cos(α−ϕ) cosα T

(√
4

3
E sinα

)
. (3.75)

A detailed derivation of Eq. (3.75) is provided in Appendix C.

The leading terms of the integral I2 for the case that ρ tends to infinity will be calculated via

the method of steepest descent. The limit ρ → ∞ implies that r1 → ∞ and R1 → ∞, equivalent to

the asymptotics of the break-up channel. The method of steepest descent allows one to approximate

integrals of the type

I =

∫
Γ

dz g(z)eth(z) , (3.76)

where t → ∞. It extends the idea of Laplace’s method [11] to integrals in the complex plane [12].

Cauchy’s integral theorem states, that the value of contour integrals is not changed by continuous

deformation of the contour unless it contains any singularities of the integrand and the end points

remain the same. The contour Γ is deformed in a way that the maximum of Re g(z), characterized

by the complex derivative g′(z) = 0, becomes a stationary point of Imh(z). We integrate along that

path in which we pass the maximum of Re g(z) in the direction of steepest descent. In the vicinity

of that point the integral can be approximated by a series expansion [11] and calculated up to the

desired order of the parameter t.

In the case of the complex integral I2, we extend the integration interval into the complex plane and
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integrate along the contour ϕ− α = τe−iπ/4. The saddle point is located at α = ϕ. We find that g =

ϕ + φτ , where φ = exp
[

1
2πi − 1

2 i arg
(

d2

dα2h(ϕ)
)]

= exp
[

1
2πi − 1

2 i arg(−i)
]

= exp
[

1
2πi − 1

2 i 3
2π
]

=

exp
[
iπ4
]
. Then,

I2 w

√
2

π
ei π4

√
4

3
E

eiρ
√
E(

ρ
√
E
)1/2

[
cosϕ T

(√
4

3
E sinϕ

)
− i

2

1

ρ
√
E

d2

dϕ2
cosϕ T

(√
4

3
E sinϕ

)
+ ...

]
.

(3.77)

These are the leading terms of the integral in Eq. (3.75).

Furthermore it is interesting to investigate how the asymptotic form of u(r1, R1) for r1 →∞ and R1

fixed approaches the result from Eq.(3.77). In order to study this question, we transform the momenta

appearing in u(r1, R1) from Eq. (3.72) into polar coordinates according to the transformation (3.74),

while leaving the spatial coordinates unchanged and obtain

I2 = − 2

π

√
4

3
E

π/2∫
0

dα sin

(√
4

3
ER1 sinα

)
eir1
√
E cosα cosα T

(√
4

3
E sinα

)
. (3.78)

The leading terms are again extracted by integrating along the path of steepest descent (which we do

not carry out explicitly) starting from α = 0. With T (0) = 0 we obtain the result [6]

I2 w

√
2

π
ei π4

(
4

3
E

)3/2
eir1
√
E

(r1

√
E)3/2

r1
d

dK
T (K)

∣∣∣∣
K=0

. (3.79)

Expanding the first term in Eq. (3.77) into a Taylor series at ϕ = 0, or equivalently at K = 0. Using

the expression K =
√

4
3E sinϕ one obtains

I2 w

√
2

π
ei π4

√
4

3
E

eiρ
√
E(

ρ
√
E
)1/2

cosϕ T (K)

w

√
2

π
ei π4

√
4

3
E

eiρ
√
E(

ρ
√
E
)1/2

(
1− ϕ2

2
+ ...

)(
T (0) +

d

dK
T (K)

∣∣∣∣
K=0

(K − 0) + ...

)

=

√
2

π
ei π4

√
4

3
E

eiρ
√
E(

ρ
√
E
)1/2

(
1− ϕ2

2
+ ...

)(
0 +

d

dK
T (K)

∣∣∣∣
K=0

√
4

3
E sinϕ+ ...

)

=

√
2

π
ei π4

4

3
E

eiρ
√
E(

ρ
√
E
)1/2

(
1− ϕ2

2
+ ...

)(
d

dK
T (K)

∣∣∣∣
K=0

R1

ρ

√
4

3
+ ...

)

=

√
2

π
ei π4

(
4

3
E

)3/2
eir1
√
E(

r1

√
E
)3/2

R1
d

dK
T (K)

∣∣∣∣
K=0

.

(3.80)

In the second last equality we inserted the transformation R1 =
√

4
3ρ sinϕ from Eq. (3.74). In the
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last line of Eq. (3.80) we performed the limit ϕ → 0, or equally K → 0, and kept the leading terms

only.

Eq. (3.77) exhibits the leading terms of the u(r1, R1) in the asymptotic range where r1 →∞ and

R1 → ∞. The limit ϕ → 0 implies r1 = ρ cosϕ −→
ϕ→0

ρ and consequently ρ → ∞. In turn this means

that R1 =
√

3
4ρ sinϕ becomes finite. The leading term of of u(r1, R1) for r1 → ∞ and R1 fixed,

however, is presented in Eq. (3.79). Hence, for ϕ→ 0 the results of Eq. (3.80) and Eq. (3.79) have to

be consistent and so the second derivative term in Eq. (3.77) must vanish in higher order for ϕ→ 0.

The leading contributions from the first integral in Eq. (3.63),

I1 = − 8

3π

√
E∫

0

dk u
(−)
k (r1)eiQkR1T (k) , (3.81)

in the break-up channel, i.e. r1 →∞ and R1 →∞ can be determined in an analogous way. Applying

the following transformation to the integral,

r1 = ρ sinβ ,

R1 =

√
3

4
ρ cosβ ,

k =
√
E sinϑ ,

Qk =

√
4

3
E cosϑ ,

(3.82)

we get

I1 = −4
√
E

3πi

π/2∫
−π/2

dϑ cosϑ eiρ
√
E cos(ϑ−β)T

(√
E sinϑ

)
. (3.83)

A detailed calculation of (3.83) is provided in Appendix D. Again I1 is approximated by the contri-

bution arising from the saddlepoint ϑ = β in the frame of the method of steepest descent. We set

ϑ = β = π
2 − ϕ and after integration along the path of steepest descent we obtain a result similar to

Eq. (3.77), i.e.

I1 w
4

3

√
2

π
ei π4
√
E

eiρ
√
E(

ρ
√
E
)1/2

[
sinϕ T

(√
E cosϕ

)
− i

2

1

ρ
√
E

d2

dϕ2
sinϕ T

(√
E cosϕ

)
+ ...

]
. (3.84)

Inserting the relation T
(√

4
3E sinϕ

)
=
√

4
3

sinϕ

cosϕ
T
(√

E cosϕ
)

, which is Eq. (3.71) with transformed
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momenta according to Eq. (3.74), into Eq. (3.77) yields

I2 w

√
2

π
ei π4

√
4

3
E

eiρ
√
E(

ρ
√
E
)1/2

[
cosϕ

√
4

3

sinϕ

cosϕ
T
(√

E cosϕ
)

− i

2

1

ρ
√
E

d2

dϕ2
cosϕ

√
4

3

sinϕ

cosϕ
T
(√

E cosϕ
)

+ ...

]

=
4

3

√
2

π
ei π4
√
E

eiρ
√
E(

ρ
√
E
)1/2

[
sinϕ T

(√
E cosϕ

)
− i

2

1

ρ
√
E

d2

dϕ2
sinϕ T

(√
E cosϕ

)
+ ...

]
.

(3.85)

So starting with either the asymptotic form of u where r1 →∞ and R1 fixed or with u where r1 fixed

and R1 → ∞ leads to the same result for the break-up channel (r1 → ∞ and R1 → ∞), which one

would also expect. Thus, we can write down the wave function u(r1, R1) for the break-up channel,

u(r1, R1) w
ρ→∞

4

3

√
2

π
ei π4 E1/4 eiρ

√
E

ρ1/2
sinϕ T

(√
E cosϕ

)
. (3.86)

In the break-up channel, the three-particles can no longer interact in the asymptotic region (Fig. 2).

Thus, the total energy E is split up into the two relative motions, characterized by the wavenumbers

k and Qk. For every situation there is a defined ratio of r1/R1, which determines a specific angle ϕ1 in

polar coordinates and consequently a specific value for the momentum ki =
√
E cosϕi. Because r2, R2

and r3, R3 are connected with r1, R1 by the relations (3.24), k2 =
√
E cosϕ2 and k3 =

√
E cosϕ3, get

fixed too. The function Ti(k) gives a spectrum of the partition of energy into the two relative motions.

A spectrum of the partition of energy into the two relative motions is given by the function T (k). We

break-up channel

1

3

2

Figure 2: Break-up channel
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proceed in calculating the break-up amplitude of one Faddeev component,

ψ(r1, R1) =
u(r1, R1)

r1R1
w

ρ→∞

4

3

√
2

π
ei π4 E1/4 eiρ

√
E

ρ1/2
sinϕ1

1

r1R1
T (k1)

=
4

3

√
2

π
ei π4 E1/4 eiρ

√
E

ρ1/2
sinϕ1

√
4

3

1

ρ sinϕ1

1

ρ cosϕ1︸ ︷︷ ︸
=cos(π

2−ϑ1)

T (k1)

=

(
4

3

)3/2
√

2

π
ei π4 E1/4 eiρ

√
E

ρ5/2

T (k1)

sinϑ1
=

(
4

3

)3/2
√

2

π
ei π4 E1/4 eiρ

√
E

ρ5/2

√
E

k1
T (k1)

=

(
4

3

)3/2
√

2

π
ei π4 E3/4 eiρ

√
E

ρ5/2

T (k1)

k1
.

(3.87)

We used the transformations (3.74) and (3.82) and the saddle point condition ϑ = π
2 − ϕ, resulting

from the integration along the line of steepest descent. Due to the symmetry of the total wave

function Ψ
(+)
break−up, the number of Faddeev components reduces from three different ones to one single

component, which occurs three times, each depending on one different set of Jacobi coordinates. This

has already been discussed in Section 3.2 and means that once we have calculated ψ(r1, R1) we have

solved the scattering problem for a certain channel and can calculate the scattering wave function

according to Eq. (3.1), which is Ψ (+) = ψ(r1, R1) + ψ(r2, R2) + ψ(r3, R3). For the break-up channel

we coherently sum up the leading asymptotic parts of the Faddeev component ψ in the limit ri →∞
and Ri →∞ with i = 1, 2, 3 (Eq. (3.87)) and obtain (ρ depends on ri)

Ψ
(+)
break−up =

3∑
i=1

ψ(ri, Ri) w
ri→∞
Ri→∞

(
4

3

)3/2
√

2

π
ei π4 E3/4 eiρ

√
E

ρ5/2

[
T (k1)

k1
+
T (k2)

k2
+
T (k3)

k3

]
. (3.88)

The magnitude ρ is defined according to (3.46) and depends on ri and Ri in the following way

ri = ρ cosϕi ,

Ri =

√
3

4
ρ sinϕi .

(3.89)

3.2.2 Towards R-matrix theory - interior region and basis states

The key feature of R-matrix theory [13] is the division of the configuration space into two parts: an

interior region and an exterior region with the borderlines

C1 : R = A and 0 ≤ r ≤ a

C2 : r = a and 0 ≤ R ≤ A
(3.90)

between them. Graphically we get a two-dimensional rectangular area for the interior region, bounded

by the lines C1 and C2 (Fig 3). The Schrödinger equation is solved separately in the interior and

exterior region which are connected at the borderlines by suitable boundary conditions following in
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the next subsection 3.2.3.

The set of all points with r ≥ 0 and R ≥ 0 that are located inside that area is called D and we

choose r1, R1 ∈ D. Moreover we require the second set of Jacobi coordinates (r2, R2) being located

C
1

r

a

A

R

C
2DD

Figure 3: Illustration of the interior region D with boundary lines C1 and C2.

in D as well. The potential V (r1) occurs on the right hand side of Eq. (3.44) due to its finite range

r0 confines the maximum magnitude of r1 to that value. Outgoing from the relations between Jacobi

coordinates (3.24) and using the upper bound approximation for the magnitudes r2 and R2,

|ar1 ± bR1| =
√

(ar1)2 ± 2ab(r1 ·R1) + (bR1)2 ≈
√

(ar1)2 + 2abr1R1 + (bR1)2 = ar1 + bR1 , (3.91)

the requirement r2, R2 ∈ D, i.e. r2max
≤ a and R2max

≤ A, leads to

a) r2 = −1

2
r1 −R1 −→

r2 in D

1

2
r0 +A ≤ a

b) R2 =
3

4
r1 −

1

2
R1 −→

R2 in D

3

4
r0 +

1

2
A ≤ A .

(3.92)

Expressing A explicitly from relation b) and inserting it into relation a) we get (with δ > 0)

b) A ≥ 3

2
r0 ⇒ A =

3

2
r0 + δ

a)
3

2
r0 +

1

2
r0 ≤ a⇒ a ≥ 2r0 ⇒ a = 2r0 + δ .

(3.93)

Thus, by confining r2, R2 to D the boundary parameters a and A can be expressed by the range of

the potential r0 and a parameter δ > 0. Latter can be chosen such that the asymptotic forms of u,

Eq. (3.63) and Eq.(3.72), are valid on the lines C1 and C2. In the interior region a complete set of

basis states ϕµ(r,R) is introduced, which fulfill the equation[
− d2

dr2
+ V (r)− 3

4

d2

dR2
− Eµ

]
ϕµ(r,R) = 0 . (3.94)
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with the boundary conditions

ϕµ(0, R) = ϕµ(r, 0) =
∂ϕµ(r,R)

∂r

∣∣∣∣
r=a

=
∂ϕµ(r,R)

∂R

∣∣∣∣
R=A

= 0 . (3.95)

Moreover, these states can be chosen real and should fulfill the orthonormalization condition∫∫
D

dr dR ϕµ(r,R)ϕµ′(r,R) = δµµ′ . (3.96)

We choose the introduced basis states ϕµ(r,R) as product states

ϕµ(r,R) = Xµ1
(r)Yµ2

(R) , (3.97)

where the functions Xµ1
(r) and Yµ2

(R) are solutions to the equations[
− d2

dr2
+ V (r)− εµ1

]
Xµ1

(r) = 0 (3.98)

and [
−3

4

d2

dR2
− εµ2

]
Yµ2(R) = 0 . (3.99)

The total energy Eµ is split into the energy of the two relative motions, εµ1
(particle 2 relative to

particle 3) and εµ2
(particle 1 relative to particle 2 and 3). It is advantageous, to order the set

µ = µ1, µ2 in that way that the total energy Eµ = εµ1
+ εµ2

is approximately constant [6].

Hence, in the interior region the Faddeev amplitude u can be expanded as

u(ri, Ri) =
∑
µ

cµϕµ(ri, Ri) , (3.100)

with

cµ =

∫∫
D

dr dR ϕµ(r,R)u(r,R) . (3.101)

Eq. (3.101) results from integrating both sides of Eq. (3.100) over the region D and using the or-

thonormalization condition, Eq. (3.96).

3.2.3 Equations for three-body R-matrix theory

In this section we want to establish a set of equations in the frame of three-body R-matrix theory, that

allow us to calculate the coefficients cµ and thus the wave functions in the interior and the three-body

on-shell T -matrix elements Tb and Tk, which determine the experimentally accessible cross section
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(see Subsection 3.2.4). We multiply Eq. (3.44) from the left by ϕµ(r1, R1),

ϕµ(r1, R1)

[
− d2

dr2
1

+ V (r1)− 3

4

d2

dR2
1

− E
]
u(r1, R1) = −ϕµ(r1, R1)V (r1)

1∫
−1

dx
r1R1

r2R2
u(r2, R2) .

(3.102)

For clarity we do not explicitly write down the dependencies of u and ϕµ in their derivatives, i.e.

u ≡ u(r,R) and ϕµ ≡ ϕµ(r,R). We perform the integration of Eq. (3.102) over the domain D∫∫
D

dr dR ϕµ(r1, R1)

[
− d2

dr2
1

+ V (r1)− 3

4

d2

dR2
1

− E
]
u(r1, R1)

= −
∫∫

D

dr dR ϕµ(r1, R1)V (r1)

1∫
−1

dx
r1R1

r2R2
u(r2, R2) .

(3.103)

After some manipulations and the calculation of the various integrals, which can be found in Ap-

pendix E, one finally arrives at

(Eµ − E)cµ −
3

4

a∫
0

dr ϕµ(r,A)
du

dR

∣∣∣∣
R=A

−
A∫

0

dR ϕµ(a,R)
du

dr

∣∣∣∣
r=a

= −
∫∫

D

dr1dR1 ϕµ(r1, R1)V (r1)

1∫
−1

dx
r1R1

r2R2
u(r2, R2) .

(3.104)

The right hand side of (3.104) can be further treated

−
∫∫

D

dr1dR1 ϕµ(r1, R1)V (r1)

1∫
−1

dx
r1R1

r2R2
u(r2, R2)

= −
∫∫

D

dr1dR1 ϕµ(r1, R1)V (r1)

1∫
−1

dx
r1R1

r2R2

∑
µ′

cµ′ϕµ′(r2, R2) .

(3.105)

Because the variables r2 and R2 are confined to D which is ensured by the choice of the values (3.93)

for the parameters A and a, we can expand u(r2, R2) in the source term. After introducing the matrix

element

Vµµ′ =

∫∫
D

dr1dR1 ϕµ(r1, R1)V (r1)

1∫
−1

dx
r1R1

r2R2
ϕµ′(r2, R2) , (3.106)
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Eq. (3.103) in its final form becomes

3

4

a∫
0

dr ϕµ(r,A)
du

dR

∣∣∣∣
R=A

+

A∫
0

dR ϕµ(a,R)
du

dr

∣∣∣∣
r=a

= (Eµ − E)cµ +
∑
µ′

Vµµ′cµ′ . (3.107)

Two asymptotic forms of the wave function u have already been established in Eqs. (3.63) and (3.72)

and are now inserted for u on the borderlines C1 and C2 in Eq. (3.107). This yields

3

4

a∫
0

dr ϕµ(r,A)ub(r)Q cos(QA)− 3

4

4

3

a∫
0

dr ϕµ(r,A)ub(r)iQeiQATb

− 3

4

4

3

2

π

a∫
0

dr ϕµ(r,A)

√
E∫

0

dk u
(−)
k (r)iQkeiQkAT (k)− 3

4

ei
√

4
3EA

A3/2
i

√
4

3
E

a∫
0

dr ϕµ(r,A)ub(r)Cb

− 3

4

ei
√

4
3EA

A3/2
i

√
4

3
E

2

π

a∫
0

dr ϕµ(r,A)

∞∫
0

dk u
(−)
k (r)C(k)

− 2

π

4

3

A∫
0

dR ϕµ(a,R)

√
E∫

0

dk sin(QkR)ikeikaT (k)

= (Eµ − E)cµ +
∑
µ′

Vµµ′cµ′ ,

(3.108)

where we neglected terms ∼ R−α with α > 3
2 . Correction terms of the order O(1/r2) and O(1/R2)

occurring in the asymptotic forms of u are ignored either. In order to set the numbers Cb and C(k)

into relation with the T -amplitudes we compare Eqs. (3.86) and (3.47) and conclude that

A(ϕ) =
4

3

√
2

π
ei π4 E1/4 sinϕ T (

√
E cosϕ) (3.109)

or specifically

A

(
arctan

1√
3

)
=

2

3

√
2

π
ei π4 E1/4T

(√
3
4E

)
. (3.110)

Thus,

Cb =

(
3

4

)1/4
8

3

√
2

π
ei π4 E1/4T

(√
3
4E

)
1

Eb

r0∫
0

dr rub(r)V (r) (3.111)

and

C(k) =

(
3

4

)1/4
8

3

√
2

π
ei π4 E1/4T

(√
3
4E

)
1

k2

r0∫
0

dr ru
(−)∗
k (r)V (r) . (3.112)
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For reasons of clarity we introduce the following abbreviations,

Mµb =

a∫
0

dr ϕµ(r,A)ub(r)

M
(−)
µk =

a∫
0

dr ϕµ(r,A)u
(−)
k (r)

MµQ =

A∫
0

dR ϕµ(a,R) sin(QR) .

(3.113)

Then we obtain the final form of Eq. (3.108),

(Eµ − E)cµ +
∑
µ′

Vµµ′cµ′ =
3

4
QMµb cos(QA)− iQMµbe

iQATb −
2

π

√
E∫

0

dk iQkM
(−)
µk eiQkAT (k)

− 3

4

ei
√

4
3EA
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4

3
E
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(√
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4E

)
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1

Eb

r0∫
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dr rub(r)V (r)

− 3

4

ei
√

4
3EA

A3/2
i

√
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3
E

2

π

(
3

4

)1/4
8

3

√
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π
ei π4 E1/4T

(√
3
4E

) ∞∫
0

dk M
(−)
µk

1

k2

r0∫
0

dr ru
(−)∗
k (r)V (r)

− 2

π

4

3

√
E∫

0

dk ikMµQk
eikaT (k)

=
3

4
QMµb cos(QA)− iQMµbe

iQATb −
2

π

√
E∫

0

dk

[
iQkM

(−)
µk eiQkA + i

4

3
kMµQk

eika

]
T (k)

−N(E)
iei
√

4
3EA

A3/2
T

(√
3
4E

)Mµb
1

Eb

r0∫
0

dr rub(r)V (r) +
2

π

∞∫
0

dk M
(−)
µk

1

k2

r0∫
0

dr ru
(−)∗
k (r)V (r)

 ,
(3.114)

with

N(E) =

(
3

4
E

)3/4
8

3

√
2

π
ei π4 . (3.115)

In analogy to two-particle scattering we define the three-particle R-matrix according to

Rµµ′(E) ≡ δµµ′(Eµ − E) + Vµµ′ . (3.116)
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form since Vµµ′ is defined as Considering the definition

Vµµ′ =

∫∫
D

dr1dR1 ϕµ(r1, R1)V (r1)

1∫
−1

dx
r1R1

r2R2
ϕµ′(r2, R2)

from above, one realizes Rµµ′(E) to be the matrix representation the Faddeev equations inside the

region D.

Eq. (3.114) is the first equation for the R-matrix formalism and connects the expansion coefficients

of the interior wave functions, cµ, with the elements of the T -matrix. Further equations follow by

matching the interior and exterior form of u at the boundary lines C1 and C2, respectively. We

therefore reduce u to its flux conserving terms and ignore terms ∼ 1/R3/2 and the correction terms

of higher order. Furthermore we set ub(a) ≈ 0 because the binding state wave function is spatially

located and nearly vanishes at the boarder line C2. This assumption was already made when we

derived the form (3.86) of u from Eq. (3.63) for ρ→∞,

u(r1, R1) w − 8

3π

√
E∫

0

dk u
(−)
k (r1)eiQkR1T (k)(+...) w

ρ→∞

4

3

√
2

π
ei π4 E1/4 eiρ

√
E

ρ1/2
sinϕ T

(√
E cosϕ

)
(3.117)

We neglected the terms containing the binding wave function ub(r) in Eq. (3.63) before extracting the

leading terms via the method of steepest descent and called the new integral I1 (see Appendix D).

Thus, we may conclude that
a∫
0

dr ub(r)u
(−)
k (r) ≈ 0 on the line C1. Hence, projecting Eq. (3.63) onto

ub(r) and making use of u∗b(r) = ub(r) (the binding wave function is real) yields

a∫
0

dr ub(r)
∑
µ

cµϕµ(r,A) w

a∫
0

dr |ub(r)|2︸ ︷︷ ︸
=1

sin(QA)− 4

3

a∫
0

dr |ub(r)|2︸ ︷︷ ︸
=1

eiQATb

− 8

3π

√
E∫

0

dk

a∫
0

dr ub(r)u
(−)
k (r)

︸ ︷︷ ︸
≈0

eiQkAT (k) .

(3.118)

Again, using the abbreviations from Eq. (3.113), we finally get

∑
µ

Mµbcµ w sin(QA)− 4

3
eiQATb . (3.119)

The crucial point is the expansion of u(r1, R1) into basis states ϕµ on the left hand side of Eq. (3.118),

which is only valid inside the region D. On the right hand side, we have the asymptotic form of u

outside the region D. Both are set equal on the line C1, which provides another equation in R-matrix

formalism. A similar relation for the break-up amplitude T (k) cannot be established via projection on
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the scattering states u
(−)
k (r), because they are not mutually orthogonal on the finite interval 0 ≤ r ≤ a.

However, we can use the asymptotic form of u in Eq. (3.63),

u(r1, R1) w
R1→∞

ub(r1) sin(QR1)− 4

3
ub(r1)eiQR1Tb −

4

3
· 2

π

√
E∫

0

dk u
(−)
k (r1)eiQkR1T (k)

with the asymptotic expansion (3.86) of the k-integral, outlined in Eq. (3.117)

u(r1, R1) w
ρ→∞

4

3

√
2

π
ei π4 E1/4 eiρ

√
E

ρ1/2
sinϕ T

(√
E cosϕ

)
to interrelate the expansion coefficients cµ with the T -matrix elements T (k). When matching the

wave function u inside D with u outside D on the line C1, we obtain a further relation,

∑
µ

cµϕµ(r,A)− ub(r)
[
sin(QA)− 4

3
eiQATb

]
w
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√
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ei π4 E1/4 eiρA
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ρ
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(√
E
r

ρA

)
,

(3.120)

with ρA =
√
r2 + 4

3A
2 and sinϕ|C1

=
√

4
3

A

ρA
. On the line C2 one gets in the same manner,

∑
µ

cµϕµ(a,R) w ub(a)
[
sin(QR)− eiQRTb

]
+

(
4
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√

2

π
ei π4 E1/4 eiρa

√
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ρ
1/2
a

R

ρa
T
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w

(
4
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π
ei π4 E1/4 eiρa

√
E
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1/2
a

R

ρa
T

(√
E
a

ρa

)
,

(3.121)

with ρa =
√
a2 + 4

3R
2 and ub(a) ≈ 0.

We have derived a set of four equations for the determination of cµ and the on-shell T -matrix elements,
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1)(Eµ − E)cµ +
∑
µ′

Vµµ′cµ′

=
3

4
QMµb cos(QA)− iQMµbe

iQATb −
2

π

√
E∫

0

dk

[
iQkM

(−)
µk eiQkA + i

4

3
kMµQk

eika

]
T (k)

−N(E)
iei
√

4
3EA

A3/2
T

(√
3
4E

)Mµb
1

Eb

r0∫
0

dr rub(r)V (r) +
2

π

∞∫
√
E

dk M
(−)
µk

1

k2

r0∫
0

dr ru
(−)∗
k (r)V (r)


2)
∑
µ

Mµbcµ w sin(QA)− 4

3
eiQATb

3)
∑
µ

cµϕµ(r,A)− ub(r)
[
sin(QA)− eiQATb

]
w

(
4

3

)3/2
√

2

π
ei π4 E1/4 eiρA

√
E

ρ
1/2
A

A

ρA
T

(√
E
r

ρA

)

4)
∑
µ

cµϕµ(a,R) w

(
4

3

)3/2
√

2

π
ei π4 E1/4 eiρa

√
E

ρ
1/2
a

R

ρa
T

(√
E
a

ρa

)
.

(3.122)

The solutions will be the expansion coefficients cµ and the three-body on-shell T -matrix elements

Tb and T (k), which determine the interior wave function as well as the cross section. Numerical meth-

ods will be presented in the near future. In the energy region below the break-up threshold E = 0,

the set of equations simplifies essentially, as the break-up part of u, the amplitude T (k) becomes

exponentially small at the boarder lines C1 and C2 and can be neglected there. Then, one has to

calculate cµ and Tb only, which are determined by 1) and 2) in the set of equations above. Below all

thresholds where no reactions take place any more, the binding energies of the system are given by

the eigenvalues of Rµµ′(E).

3.2.4 From the T -matrix elements to the cross section

The T -matrix elements play an important role in scattering theory, as they are needed for the calcu-

lation of the cross section [9],

dσ

dΩ
= (2π)4m

∣∣Tqfq∣∣2 = (2π)4m
∣∣∣〈ψ0

qf
|V |Ψ (+)

q 〉
∣∣∣2 , (3.123)

with Eq = Eqf for the on-shell T -matrix elements. Here, m is the mass of the projectile and V is

the scattering potential. Ψ
(+)
q is the outgoing scattering state, the physical solution of the scattering

problem. It is generated from a momentum eigenstate ψ0
q by the definition [9]

|Ψ (+)
q 〉 = lim

ε→0

iε

Eq + iε− Ĥ
|ψ0
q 〉 (3.124)
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and is the solution of the stationary Schrödinger equation

(Ĥ − Eq)Ψ (+)
q = 0 , (3.125)

with Ĥ = Ĥ0 + V . The final state ψ0
qf

is characterized by the wavenumber qf . It is an eigenstate of

Ĥ0 as well as ψ0
q .

The definition for the T -matrix elements, given in Eq.(3.123), is valid in two-particle scattering

theory. The three-body transition amplitude between channel α and β is defined as

Tβα = 〈φβ |V β |Ψ (+)
α 〉 . (3.126)

The channel potential

V β = Vα + Vγ + V4, α 6= β 6= γ ,

is defined according to Section 2, but using capital letters instead of small ones. The break-up

channel conveniently carries the index 0 with the corresponding potential V0 = 0 and thus V 0 =

V1 + V2 + V3 + (V4).

The T -amplitudes Tb and T (k), which were derived for channel 1 in Section 3.2.1 obey exactly the

definition given in Eq. (3.126). With φ1 = j0(QR1)ϕb(r1) , φk = kj0(kr1)j0(QkR1), ϕb(r) =
ub(r)

r
we

switch to the abstract vector notation in configuration space and rewrite

Tb =

∞∫
0

dR

∞∫
0

dr
sin(QR)

Q
ub(r)V (r)Q(r,R)

as

Tb = 〈φ1|V1|ψ2 + ψ3〉 = 〈φ1|V1G0(V2 + V3)|Ψ (+)〉 = 〈φ1|V2 + V3|Ψ (+)〉 . (3.127)

This expression is valid for distinguishable particles because for the source term Q we inserted the

sum ψ2 + ψ3, which simplifies to ψ1 in the case of identical particles. In the first equality we inserted

the definition of the Faddeev components

|ψi〉 = G0Vi|Ψ (+)〉

and in the second equality we made use of the relation

G0Vβ |φβ〉 = |φβ〉 . (3.128)

40



To show its validity we multiply both sides of Eq. (3.128) by G−1
0 from the left side which leads to

G−1
0 G0Vβ |φβ〉 = G−1

0 |φβ〉

Vβ |φβ〉 = (E − Ĥ0)|φβ〉

Vβ |φβ〉 = (E − E0)|φβ〉

Vβ |φβ〉 = Vβ |φβ〉 .

Here, Ĥβ = Ĥ0 +Vβ with the eigenstate |φβ〉, Ĥβ |φβ〉 = E|φβ〉, with E = E0 +Vβ . From the result of

Eq. (3.127) we learn that the total asymptotic behavior of the wave function in channel 1 is contained

in the Faddeev component |ψ1〉. This can be seen by calculating the amplitude Tb for transitions into

channel 1 (=̂α) according to Eq. (3.126) (β and γ denote channel 2 and 3)

Tb = 〈φα|V α|Ψ (+)〉 = 〈φα|Vβ + Vγ |Ψ (+)〉 . (3.129)

This yields exactly the same result as obtained in Eq. (3.127), where we inserted the functional form

of Tb corresponding to |ψ1〉.
Next, we want to show that the break-up amplitude

T (k) =

∞∫
0

dR

∞∫
0

dr
sin(QkR)

Qk
u

(−)∗
k (r)V (r)Q(r,R)

is in agreement with the definition (3.126). In order to demonstrate this statement we switch to the

vector notation and obtain for the first Faddeev component

T (k) = 〈φ(−)
k |V1|ψ2 + ψ3〉 . (3.130)

The scattering state |φ(+)
k 〉 is a solution of the Lippmann-Schwinger equation

|φ(+)
k 〉 = |φk〉+G0V1|φ(+)

k = |φk〉+ lim
ε→0

1

E + iε− Ĥ0

V1|φ(+)
k 〉 , (3.131)

where |φk〉 is the solution of the homogenous equation (E−Ĥ0)|φk〉 = 0 and (E−Ĥ0)|φ(+)
k 〉 = V1|φ(+)

k 〉.
The total solution of the scattering problem

Ĥ1|φ(+)
k 〉 = E|φ(+)

k 〉 (3.132)

is given by the Lippmann-Schwinger equation (3.131). It can be represented as

|φ(+)
k 〉 = |φk〉+G1V1|φk〉 , (3.133)
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which follows from the formal solution of the Lippmann-Schwinger equation

|φ(+)
k 〉 = (1−G0V1)−1|φk〉 =

(
1− lim

ε→0

V1

E + iε− Ĥ0

)−1

|φk〉 = lim
ε→0

E + iε− Ĥ0

E + iε− Ĥ0 − V1

|φk〉

= lim
ε→0

E + iε− Ĥ0

E + iε− Ĥ1

|φk〉 = lim
ε→0

Ek + V1 + iε− Ek
E + iε− Ĥ1

|φk〉 = lim
ε→0

V1

E + iε− Ĥ1

|φk〉 = G1V1|φk〉 .

(3.134)

Here, |φk〉 is a momentum eigenstate of Ĥ0 with Ĥ0|φk〉 = Ek|φk〉 and |φ(+)
k 〉 is an eigenstate of the

total Hamiltonian Ĥ1 = Ĥ0 + V1 with Ĥ1|φ(+)
k 〉 = E|φ(+)

k 〉. Thus, T (k) can be rewritten as

T (k) = 〈φk|V1|ψ2 + ψ3〉+ 〈φk|V1G1V1|ψ2 + ψ3〉 = 〈φk|V1|ψ2 + ψ3〉+ 〈φk|V1|ψ1 − φ1〉

= 〈φk|V1|Ψ (+)〉 − 〈φk|V1|φ1〉 .
(3.135)

The second term in the last line vanishes on-shell due to strong surface oscillations that do not

contribute to the cross section. The first term is the contribution to the break-up amplitude from

channel 1, because we used the form (3.62). Adding up all three channels we get the total break-up

amplitude

T (k) = 〈φk|V1 + V2 + V3|Ψ (+)〉 = 〈φk|V 0|Ψ (+)〉 (3.136)

according to Eq (3.126) with β = 0 for the break-up channel.
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4 Generalization of the Glöckle approach to three interacting

distinguishable spinless particles

The total wave function Ψ (+) for a specific channel is again decomposed into three so called Faddeev

components [8]. Each component represents a sub-system, where two particles j, k interact via a

two-body potential Vjk(ri) and the third one moves freely. Finally all three components are summed

up to get the total solution.

In Section 3.2 we could show that all three Faddeev components can be represented by one single

component ψ after applying permutation operators and using the symmetry in the total wave function

of a specific channel. The system of three coupled equations was then reduced to one single equation

for ψ(r1, R1). These arguments are no longer valid in this section as the symmetry in the total

wave function gets lost when the particles are non identical. Therefore we have to determine three

different Faddeev components ψi(ri, Ri), which depend on each other. Hence, a system of three

coupled (integral or differential) equations has to be solved to get the total wave function Ψ (+) for

a certain channel. In the R-matrix formalism we will again obtain a set of equations to determine

expansion coefficients for the interior wave functions and the Ti amplitudes.

The microscopic Hamiltonian for the three-body system reads (~ = 1)

Ĥmicr = − 1

2m1

~∇2
1 −

1

2m2

~∇2
2 −

1

2m3

~∇2
3 + V23 + V31 + V12 + V4 , (4.1)

where the mi stand for the mass of the particles, respectively and the Vij , (i 6= j) denote the pair

interaction between particles i and j. V4 is the three-body force, which will not be considered in the

following calculations. Following Faddeev [7] we split the total scattering wave function for a certain

channel |Ψ (+)
α 〉 into three so called Faddeev components |ψα〉i, where |Ψ (+)

α 〉 = |ψα〉1 + |ψα〉2 + |ψα〉3.

We change from Cartesian coordinates to natural Jacobi coordinates,

x1,x2,x3 −→ ri,Ri,Rcm (4.2)

and choose the coordinate space representation ψi(ri,Ri)α = 〈riRi|ψ(+)
α 〉i for the Faddeev amplitudes

|ψ(+)
α 〉i. Here, Rcm is the vector pointing to the center of mass is neglected since its motion is trivial.

The three sets of Jacobi coordinates are defined as

r1 = x2 − x3 , R1 = x1 −
m2x2 +m3x3

m2 +m3
, (4.3)

r2 = x3 − x1 , R2 = x2 −
m3x3 +m1x1

m1 +m3
, (4.4)

r3 = x1 − x2 , R3 = x3 −
m1x1 +m2x2

m1 +m2
, (4.5)

where xi represent Cartesian coordinates.

Each component ψi(ri,Ri)α represents one subsystem (Fig. 4) and is an eigenfunction of the
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Figure 4: Three subsystems characterized by different sets of Jacobi coordinates.

corresponding Hamilton operator Ĥi,

Ĥ1 = − 1

2µ23

~∇~r1 −
1

2µ1(23)

~∇~R1
+ V23(r1) ,

Ĥ2 = − 1

2µ31

~∇~r2 −
1

2µ2(31)

~∇~R2
+ V31(r2) ,

Ĥ3 = − 1

2µ12

~∇~r3 −
1

2µ3(12)

~∇~R3
+ V12(r3) ,

(4.6)

with the reduced masses

µ23 =
m2m3

m2 +m3
, µ1(23) =

m1(m2 +m3)

m1 +m2 +m3
,

µ31 =
m3m1

m3 +m1
, µ2(31) =

m2(m3 +m1)

m1 +m2 +m3
,

µ12 =
m1m2

m1 +m2
, µ(3(12) =

m3(m1 +m2)

m1 +m2 +m3
.

(4.7)

Again, we have five exit channels, three two-body fragmentation channels α, β, γ (Fig. 5), the break-up

channel with index 0 (Fig. 6) and a channel B where all three particles form one bound state:
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1) 1

(
2

3

)
Final cannelα : Elastic channel

2) 2

(
3

1

)
Final cannelβ : Rearrangement channel

3) 3

(
1

2

)
Final cannel γ : Rearrangement channel

4) 1, 2, 3 Final cannel 0 : Break-up channel

5)

1

2

3

 Final cannel B : Bound channel

The particles in the brackets in 1), 2) and 3) interact via a two-body potential Vjk(ri) and form a

bound state. Although there exist quite a few light nuclei that can be considered as three-particle

bound states, like for instance ppn =̂ 3He, pnn =̂ 3H, αnn =̂ 6He and αpn =̂ 6Li (n denotes a neutron

and p a proton), we neglect channel B in this thesis.
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Figure 5: Two-body fragmentation channels

break-up channel
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Figure 6: Break-up channel
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So having, for instance, an incoming state in channel α which consists of a bound state of particles

2 and 3 and particle 1 moving freely, the scattering process can lead to four possible exit channels

depicted in Figs. 5 and 6.

The Faddeev equations (3.11) in coordinate space representation for channel α read

ψ1(r1,R1)α = φ1(r1, R1)α +

∫
d3r′1

∫
d3R′1〈r1R1|G1|r′1R′1〉V23(r′1)[ψ2(r′2,R

′
2)α + ψ3(r′3,R

′
3)α]

ψ2(r2,R2)α =

∫
d3r′2

∫
d3R′2〈r2R2|G2|r′2R′2〉V31(r′2)[ψ1(r′1,R

′
1)α + ψ3(r′3,R

′
3)α]

ψ3(r3,R3)α =

∫
d3r′3

∫
d3R′3〈r3R3|G3|r′3R′3〉V12(r′3)[ψ1(r′1,R

′
1)α + ψ2(r′2,R

′
2)α] ,

(4.8)

for channel β

ψ1(r1,R1)β =

∫
d3r′1

∫
d3R′1〈r1R1|G1|r′1R′1〉V23(r′1)[ψ2(r′2,R

′
2)β + ψ3(r′3,R

′
3)β ]

ψ2(r2,R2)β = φ2(r2, R2)β +

∫
d3r′2

∫
d3R′2〈r2R2|G2|r′2R′2〉V31(r′2)[ψ1(r′1,R

′
1)β + ψ3(r′3,R

′
3)β ]

ψ3(r3,R3)β =

∫
d3r′3

∫
d3R′3〈r3R3|G3|r′3R′3〉V12(r′3)[ψ1(r′1,R

′
1)β + ψ2(r′2,R

′
2)β ] ,

(4.9)

and for channel γ

ψ1(r1,R1)γ =

∫
d3r′1

∫
d3R′1〈r1R1|G1|r′1R′1〉V23(r′1)[ψ2(r′2,R

′
2)γ + ψ3(r′3,R

′
3)γ ]

ψ2(r2,R2)γ =

∫
d3r′2

∫
d3R′2〈r2R2|G2|r′2R′2〉V31(r′2)[ψ1(r′1,R

′
1)γ + ψ3(r′3,R

′
3)γ ]

ψ3(r3,R3)γ = φ3(r3, R3)γ +

∫
d3r′3

∫
d3R′3〈r3R3|G3|r′3R′3〉V12(r′3)[ψ1(r′1,R

′
1)γ + ψ2(r′2,R

′
2)γ ] .

(4.10)

The wave function in the break-up channel again follows from coherently summing up the leading

contributions of all three Faddeev components in the limit ri →∞ and Ri →∞, which are extracted

by the method of steepest descent. Again, we restrict ourselves to a total angular momentum state

with L = 0, the s-wave part of the potential Vjk(ri), and define ψi(ri, Ri) =
ui(ri, Ri)

riRi
and xi = r̂i ·R̂i.

Furthermore we introduce the abbreviations V23(r1) ≡ V1(r1), V31(r2) ≡ V2(r2) and V12(r3) ≡ V3(r3),

or generally Vjk(ri) ≡ Vi(ri). This notation where the three-particles are represented by the set i, j, k

will be used throughout Section 3. It enables us to establish generic results valid for all three Faddeev

components and thus provides a compact way to set up a R-matrix theory for three distinguishable

particles.
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In channel α (the index ”α“ will be omitted in the following) we obtain for the Faddeev components

ui(ri, Ri) =δi1ub(ri) sin(QRi) +

∞∫
0

dr′i

∞∫
0

dR′i 〈riRi|Gi|r′iR′i〉Vi(r′i)

×
1∫
−1

dx′r′iR
′
i

1

2

[
uj(r

′
j , R

′
j)

r′jR
′
j

+
uk(r′k, R

′
k)

r′kR
′
k

]

=ub(ri) sin(QRi) +

∞∫
0

dr′i

∞∫
0

dR′i 〈riRi|Gi|r′iR′i〉Vi(r′i)Qi(r′i, R′i)

(4.11)

with the source term

Qi(ri, Ri) =

1∫
−1

dxi
riRi

2

3∑
j=1
j 6=i

uj(rj , Rj)

rjRj
. (4.12)

For instance, the first Faddeev component is given by

u1(r1, R1) =ub1(r1) sin(QR1) +

∞∫
0

dr′1

∞∫
0

dR′1 〈r1R1|G1|r′1R′1〉V (r′1)

×
1∫
−1

dx′r′1R
′
1

1

2

[
u2(r′2, R

′
2)

r′2R
′
2

+
u3(r′3, R

′
3)

r′3R
′
3

]

=ub1(r1) sin(QR1) +

∞∫
0

dr′1

∞∫
0

dR′1 〈r1R1|G1|r′1R′1〉V1(r′1)Q1(r′1, R
′
1) .

(4.13)

Applying (E − Ĥi) on both sides of Eq. (4.11) and using the identity

(E − Ĥi)〈riRi|Gi|r′iR′i〉 = (E − Ĥi)〈riRi|
1

E − Ĥi

|r′iR′i〉 = δ(ri − r′i)δ(Ri −R′i)

yields [
− 1

2µjk

d2

dr2
i

− 1

2µi(jk)

d2

dR2
i

+ Vi(ri)− E

]
ui(ri, Ri)

= −
∞∫

0

dr′i

∞∫
0

dR′i δ(ri − r′i)δ(Ri −R′i)Vi(r
′
i)

1∫
−1

d x′i
r′iR
′
i

2

3∑
j=1
j 6=i

uj(r
′
j , R

′
j)

r′jR
′
j

= −1

2
Vi(ri)

1∫
−1

dxi riRi

3∑
j=1
j 6=i

uj(rj , Rj)

rjRj
,

(4.14)

with boundary conditions for outgoing scattered waves.
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4.1 Asymptotic behavior

In the following we introduce the polar coordinates

ri =

√
1

2µjk
ρ cosϕi ,

Ri =

√
1

2µi(jk)
ρ sinϕi .

(4.15)

The asymptotic form of ui(ρ, ϕi) results to be the same as for identical particles, Eq. (3.47),

ui(ρ, ϕi) w
ρ→∞

0<ϕ<π/2

ei
√
Eiρ

ρ1/2
A(ϕi) . (4.16)

This can be verified by applying the transformation (4.15) to Eq. (4.14). In the asymptotic range

(Vi(ri) ∼ 0) one can show that the form (4.16) fulfills the equation, which is demonstrated in Ap-

pendix A.

The energies Ei appearing in the different Faddeev components clearly have the same magni-

tude E, since we describe the same system, but using different sets of Jacobi coordinates in each

component. The composition of each energy value Ei, however, is different and thus, we get three

energy-momentum relations, each corresponding to one Faddeev component,

E = E1 = − κ2
1

2µ23
+

Q2
1

2µ1(23)
= E

(1)
b +

Q2
1

2µ1(23)
=

k2
1

2µ23
+

Q2
k1

2µ1(23)
=

q2
K1

2µ23
+

K2
1

2µ1(23)
(4.17)

E = E2 = − κ2
2

2µ31
+

Q2
2

2µ2(31)
= E

(2)
b +

Q2
2

2µ2(31)
=

k2
2

2µ31
+

Q2
k2

2µ2(31)
=

q2
K2

2µ31
+

K2
2

2µ2(31)
(4.18)

E = E3 = − κ2
3

2µ12
+

Q2
3

2µ3(12)
= E

(3)
b +

Q2
3

2µ3(12)
=

k2
3

2µ12
+

Q2
k3

2µ3(12)
=

q2
K3

2µ12
+

K2
3

2µ3(12)
. (4.19)

These relations can be generalized to

E = Ei = − κ2
i

2µjk
+

Q2
i

2µi(jk)
= E

(i)
b +

Q2
i

2µi(jk)
=

k2
i

2µjk
+

Q2
ki

2µi(jk)
=

q2
Ki

2µjk
+

K2
i

2µi(jk)
. (4.20)

In the following, unless otherwise declared, all wavenumbers in Section 4, are related to component i

and we set Qi ≡ Q, ki ≡ k,Qki ≡ Qk, qki ≡ qk,Ki ≡ K, in order to avoid confusions due to indices.

In order to establish the asymptotic form of the source term Qi(ri, Ri) (4.12) in the limit Ri → ∞
and ri fixed, we need relations that express two sets of Jacobi coordinates rj ,Rj (j 6= i) as functions

of the remaining one ri,Ri. The three sets of Jacobi coordinates have been defined in Eqs. (4.3)-(4.5).

For i = 1, 2 one finds (i 6= j 6= k and i 6= k)

rj = − mj

mj +mk
ri − (−1)jRi , Rj = (−1)j

mimk +mjmk +mkmk

(mi +mk)(mj +mk)
ri −

mi

mi +mk
Ri, (4.21)
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and for i = 3 (i 6= j 6= k and i 6= k)

rj = − mj

mj +mk
ri + (−1)jRi , Rj = −(−1)j

mimk +mjmk +mkmk

(mi +mk)(mj +mk)
ri −

mi

mi +mk
Ri . (4.22)

For instance, if we set i = 1, we obtain

r2 = − m2

m2 +m3
r1 −R1 , R2 =

m1m3 +m2m3 +m3m3

(m1 +m3)(m2 +m3)
r1 −

m1

m1 +m3
R1,

r3 = − m3

m2 +m3
r1 + R1 , R3 = −m1m2 +m2m2 +m3m2

(m1 +m2)(m2 +m3)
r1 −

m1

m1 +m2
R1 ,

(4.23)

which is the generalized form of Eq. (3.24) for three distinguishable particles. The magnitudes for

(xi = r̂i · R̂i) are

rj(xi) =

√(
mj

mj +mk
ri

)2

+R2
i + 2

(−1)jmj

mj +mk
riRixi = Ri

√
1 +

(
mj

mj +mk

)2
r2i
R2

i

+ 2
(−1)jmj

mj +mk

ri
Ri

xi

≈ Ri

(
1 + (−1)j

mj

mj +mk

ri
Ri

xi + ...

)
= Ri + (−1)j

mj

mj +mk
rixi + ...

Rj(xi) =

√(
mimk +mjmk +mkmk

(mi +mk)(mj +mk)
ri

)2

+

(
mi

mi +mk
Ri

)2

− 2(−1)jmi(mimk +mjmk +mkmk)

(mi +mk)(mi +mk)(mj +mk)
Ririxi

=
miRi

mi +mk

×

√
1 +

(
(mi +mk)(mimk +mjmk +mkmk)

mi(mi +mk)(mj +mk)

ri
Ri

)2

− 2(−1)j(mi +mk)(mimk +mjmk +mkmk)

mi(mi +mk)(mj +mk)

rixi

Ri

≈ mi

mi +mk
Ri

(
1− (−1)j

(mi +mk)(mimk +mjmk +mkmk)

mi(mi +mk)(mj +mk)

ri
Ri

xi + ...

)
=

mi

mi +mk
Ri − (−1)j

mimk +mjmk +mkmk

(mi +mk)(mj +mk)

ri
Ri

xi + ... ,

(4.24)
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where i = 1, 2 (i 6= j 6= k and i 6= k) and

rj(xi) =

√(
mj

mj +mk
ri

)2

+R2
i − 2

(−1)jmj

mj +mk
riRixi = Ri

√
1 +

(
mj

mj +mk

)2
r2i
R2

i

− 2
(−1)jmj

mj +mk

ri
Ri

xi

≈ Ri

(
1− (−1)j

mj

mj +mk

ri
Ri

xi + ...

)
= Ri − (−1)j

mj

mj +mk
rixi + ...

Rj(xi) =

√(
mimk +mjmk +mkmk

(mi +mk)(mj +mk)
ri

)2

+

(
mi

mi +mk
Ri

)2

+
2(−1)jmi(mimk +mjmk +mkmk)

(mi +mk)(mi +mk)(mj +mk)
Ririxi

=
miRi

mi +mk

×

√
1 +

(
(mi +mk)(mimk +mjmk +mkmk)

mi(mi +mk)(mj +mk)

ri
Ri

)2

+
2(−1)j(mi +mk)(mimk +mjmk +mkmk)

mi(mi +mk)(mj +mk)

rixi

Ri

≈ mi

mi +mk
Ri

(
1 + (−1)j

(mi +mk)(mimk +mjmk +mkmk)

mi(mi +mk)(mj +mk)

ri
Ri

xi + ...

)
=

mi

mi +mk
Ri + (−1)j

mimk +mjmk +mkmk

(mi +mk)(mj +mk)

ri
Ri

xi + ... ,

(4.25)

for i = 3 (i 6= j 6= k and i 6= k). The expansions in Eqs. (4.24) and (4.25) are valid in the case R1 →∞.

For the asymptotic form of the source term Qi(ri, Ri) we approximate the quantities rj(xi), Rj(xi)

by the first term of their Taylor series. Thus, for the following we do not distinguish between the two

cases i = 1, 2 and i = 3, because in this approximation we find unique relations for the magnitudes,

rj(xi) ≈ Ri, Rj(xi) ≈
mi

mi +mk
Ri with i = 1, 2, 3. After changing to polar coordinates

rj =

√
1

2µik
ρ cosϕj ,

Rj =

√
1

2µj(ik)
ρ sinϕj ,

(4.26)

these first order approximations fix the angles ϕj to a constant value, depending on the reduced

masses,

tanϕ∗j =

√
µj(ik)

µik

Rj
rj
≈ mi

mi +mk

√
µj(ik)

µik
⇒ ϕ∗j = arctan

(
mi

mi +mk

√
µj(ik)

µik

)
. (4.27)

In the asymptotic form of Qi(ri, Ri) we replace the Faddeev components uj(rj , Rj) by their asymptotic

form (4.16), which is justified, since Ri → ∞ implies rj and Rj tending towards infinity. Including

Eq. (4.26) and the first order approximations for rj and Rj from above, we can calculate Qi(ri, Ri)
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in the limit Ri →∞ and ri fixed,

Qi(ri, Ri) =

1∫
−1

dxi riRi
1

2

3∑
j=1
j 6=i

uj(rj , Rj)

rj(xi)Rj(xi)

w
Ri→∞
rifixed

1∫
−1

dxi riRi
1

2

3∑
j=1
j 6=i

ei
√
E
√

2µj(ik)R2(x)/ sinϕj

r2(x)R2(x)(2µj(ik))1/4
√

R2(x)
sinϕj

A(ϕj)

=

1∫
−1

dxi riRi
1

2

3∑
j=1
j 6=i

e
i
√

2µj(ik)E
mi

mi+mk
Ri/ sinϕ∗j

Ri
mi

mi+mk
Ri(2µj(ik))1/4

√
Ri

mi

mi+mk
/ sinϕ∗2

A(ϕ∗j )

=
ri

R
3/2
i mi

3∑
j=1
j 6=i

(2µj(ik))
−1/4(mi +mk)

√
mi +mk

mi
sinϕ∗j e

i
√

2µj(ik)E
mi

mi+mk
Ri/ sinϕ∗j A(ϕ∗j ) .

(4.28)

We know two different representations of the Green’s function, suitable to establish two different

asymptotic forms of u, R1 →∞, r1 fixed and r1 →∞, R1 fixed, respectively. The matrix element in

coordinate space representation reads

〈riRi|Gi|r′iR′i〉 =ubi (ri)

(
−2µi(jk)e

iQRi>
sin(QRi<)

Q

)
ubi (r

′
i)

+
2

π

∞∫
0

dk u
(−)
k (ri)

(
−2µi(jk)e

iQkRi>
sin(QkRi<)

Qk

)
u

(−)∗
k (r′i) (4.29a)

=
2

π

∞∫
0

dK sin(KRi)

(
−2µjk
qK

u(+)
qK (ri<)wqK (ri>)

)
sin(KR′i) , (4.29b)

where Ri> = max(Ri, R
′
i), Ri< = min(Ri, R

′
i) and ri> = max(ri, r

′
i), ri< = min(ri, r

′
i) and i,m, n

denote the different particles (i 6= j 6= k and i 6= k), respectively. The functions u
(±)
qK (r) and wqK (r)

form a complete set of bound- and scattering states and are normalized as u
(±)
q (r) w e±iδ(q) sin(qr +

δ(q)) and wq(r) w eiqr for r →∞. However, these expressions are only valid if Coulomb interaction is

neglected. Inserting the form (4.29a) of the Green’s function into Eq. (4.11) we obtain the asymptotic
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form of ui(ri, Ri) in the limit Ri →∞, ri fixed,

ui(ri, Ri) =ubi (ri) sin(QRi)− 2µi(jk)u
b
i (ri)e

iQRi

Ri∫
0

dR′i
sin(QR′i)

Q

∞∫
0

dr′i u
b
i (r
′
i)Vi(r

′
i)Qi(r

′
i, R
′
i)

− 2µi(jk)u
b
i (ri)

sin(QRi)

Q

∞∫
Ri

dR′i eiQR′i

∞∫
0

dr′i u
b
i (r
′
i)V (r′i)Q(r′i, R

′
i)

−
4µi(jk)

π

√
2µjkE∫
0

dk u
(−)
k (ri)e

iQkRi

Ri∫
0

dR′i
sin(QkR

′
i)

Qk

∞∫
0

dr′i u
(−)∗
k (r′i)Vi(r

′
i)Qi(r

′
i, R
′
i)

−
4µi(jk)

π

∞∫
√

2µjkE

dk u
(−)
k (ri)e

iQkRi

Ri∫
0

dR′i
sin(QkR

′
i)

Qk

∞∫
0

dr′i u
(−)∗
k (r′i)Vi(r

′
i)Qi(r

′
i, R
′
i)

−
4µi(jk)

π

∞∫
0

dk u
(−)
k (ri)

sin(QkR
′
i)

Qk

∞∫
Ri

dR′i eiQkRi

∞∫
0

dr′i u
(−)∗
k (r′i)Vi(r

′
i)Qi(r

′
i, R
′
i) .

(4.30)

In compliance with Subsection 3.2.1, the last term in Eq. (4.30) can be neglected for Ri → ∞.

We find three flux conserving terms in Eq. (4.30), the first, second and fourth term. These terms

describe the incoming state, elastic and rearrangement processes (T bi ) and break-up scattering (Ti(k)).

The T -amplitudes are defined in Eqs. (4.33) and (4.34) below. The third term without the binding

wavefunction ubi (ri) and the

H
(1)
i (Ri) =2µi(jk)

∞∫
Ri

dR′i
sin[Q(Ri −R′i)]

Q

∞∫
0

dr′i r
′
iu
b
i (r
′
i)Vi(r

′
i)Qi(r

′
i, R
′
i)

w
3∑
j=1
j 6=i

(2µj(ik))
−1/4

(
mi +mk

mi
sinϕ∗j

)5/2

A(ϕ∗j )
e
i
√

2µj(ik)E
mi

mi+mk
Ri/ sinϕ∗j

R
3/2
i

×
2µi(jk)

µj(ik)

(
E − 2Q2

µj(ik)
sin2 ϕ∗j

) r0i∫
0

dr′i r
′
iu
b
i (r
′
i)Vi(r

′
i) ,

(4.31)
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and the fifth term

H
(2)
i (ri, Ri) =−

4µi(jk)

π

∞∫
√

2µjkE

dk u
(−)
k (ri)e

iQkRi

Ri∫
0

dR′i
sin(QkR

′
i)

Qk

∞∫
0

dr′i u
(−)∗
k (r′i)Vi(r

′
i)Qi(r

′
i, R
′
i)

w− 4

π

3∑
j=1
j 6=i

(
2µj(ik)

)−1/4
(
mi +mk

mi

)3/2√
sinϕ∗j A(ϕ∗j )

e
i
√

2µj(ik)E
mi

mi+mk
Ri/ sinϕ∗j

R
3/2
i

×
∞∫

√
2µjkE

dk u
(−)
k (ri)

1

1
µjk

k2 − 2E + 2
µj(ik)

µi(jk)
E
(

mi

(mi+mk) sinϕ∗j

)2

r0i∫
0

dr′i u
(−)∗
k (r′i)V (r′i)

+O

(
1

R2
i

)
,

(4.32)

are treated separately. We make use of the asymptotic form (4.28) of the source term Qi(ri, Ri) in

both, H
(1)
i (Ri) and H

(2)
i (ri, Ri). This is justified, since Ri → ∞ implies large values for R′i in the

respective integration intervals, while r′1 is bounded by the maximum range r0i of the potential Vi.

Detailed calculations are carried out in Appendix F.

Introducing the T -amplitudes

T bi =

∞∫
0

dR

∞∫
0

dr
sin(QR)

Q
ubi (r)Vi(r)Qi(r,R) (4.33)

and

Ti(k) =

∞∫
0

dR

∞∫
0

dr
sin(QkR)

Qk
u

(−)∗
k (r)Vi(r)Qi(r,R) . (4.34)

and the numbers

Cbi = (2µj(ik))
−1/4

(
mi +mk

mi
sinϕ∗j

)5/2

A(ϕ∗j )
2µi(jk)

µj(ik)

(
E − 2Q2

µj(ik)
sin2 ϕ∗j

) ∞∫
0

dr ubi (r)Vi(r) , (4.35)

and

Ci(k) =
(
2µj(ik)

)−1/4
(
mi +mk

mi

)3/2√
sinϕ∗j A(ϕ∗j )

1

1
µjk

k2 − 2E + 2
µj(ik)

µi(jk)
E
(

mi

(mi+mk) sinϕ∗j

)2

×
∞∫

0

dr u
(−)∗
k (r)Vi(r) .

(4.36)

enables us to write the Faddeev component ui(ri, Ri) in the limit R1 →∞ and r1 fixed in a compact
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form

ui(ri, Ri) w ubi (ri) sin(QRi)− 2µi(jk)u
b
i (ri)e

iQRiT bi −
4

π
µi(jk)

√
2µjkE∫
0

dk u
(−)
k (ri)e

iQkRiTi(k)

−
3∑
j=1
j 6=i

e
i
√

2µj(ik)E
mi

mi+mk
Ri/ sinϕ∗j

R
3/2
i

ubi (ri)Cbi +
2

π

∞∫
√

2µjkE

dk u
(−)
k (ri)Ci(k)

+O

(
1

R2
i

)
.

(4.37)

T bi and Ti(k) contain the source term Qi(ri, Ri) (4.12), which in turn is made up of the sum of Faddeev

amplitudes,
3∑
j=1
j 6=i

uj(rj , Rj). Thus, the three ui depend on each other which is a crucial difference to

the case of three interacting identical particles. The last two terms of Eq. (4.37) are of higher order as

they are based on the sum of the asymptotic forms of uj which (in their functional form) are essentially

the same for all three Faddeev components. Therefore these terms do not lead to a coupling between

the ui.

In order to obtain a form of ui(ri, Ri) convenient to study the limit ri → ∞ and Ri fixed, we insert

the form (4.29b) of the Green’s function into Eq. (4.11) which yields

ui(ri, Ri) =− 4µjk
π

√
2µi(jk)E∫

0

dK sin(KRi)wqK (ri)

ri∫
0

dr′i
u

(+)
qK (r′i)

qK

∞∫
0

dR′i sin(KR′i)Vi(r
′
i)Qi(r

′
i, R
′
i)

− 4µjk
π

∞∫
√

2µi(jk)E

dK sin(KRi)wqK (ri)

ri∫
0

dr′i
u

(+)
qK (r′i)

qK

∞∫
0

dR′i sin(KR′i)Vi(r
′
i)Qi(r

′
i, R
′
i)

− 4µjk
π

√
2µi(jk)E∫

0

dK sin(KRi)u
(+)
qK (ri)

∞∫
ri

dr′i
wqK (r′i)

qK

∞∫
0

dR′i sin(KR′i)Vi(r
′
i)Qi(r

′
i, R
′
i)

− 4µjk
π

∞∫
√

2µi(jk)E

dK sin(KRi)u
(+)
qK (ri)

∞∫
ri

dr′i
wqK (r′i)

qK

∞∫
0

dR′i sin(KR′i)Vi(r
′
i)Qi(r

′
i, R
′
i) .

(4.38)

The last two terms in Eq. (4.38), where r′i > ri, vanish in the limit ri → ∞ (see Subsection 3.2.1).

The K-integration interval in the second term determines the wavenumber qK to be complex, which

can be seen from the relation E =
q2
K

2µjk
+

K2

2µi(jk)
. Its leading behavior results from qK ≈ 0 and

after [6], can be estimated to be of the order of O
(

1
r2i

)
. With the asymptotic form wq(r) w eiqr of
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the scattering state function wq(r) we can finally write Eq. (4.38) in the form

ui(ri, Ri) w −
4µjk
π

√
2µi(jk)E∫

0

dK sin(KRi)e
iqKriTi(K) +O

(
1

r2
i

)
, (4.39)

with

Ti(K) =

∞∫
0

dR

∞∫
0

dr sin(KR)
u

(+)
qK

qK
Vi(r)Qi(r,R) . (4.40)

Again we can find some relation between the functions Ti(k) and Ti(K). First we consider Ti(k) as a

function of qK ,

Ti(qK) =

∞∫
0

dR

∞∫
0

dr
u

(−)∗
qK (r)

QqK
sin(QqKR)Vi(r)Qi(r,R) (4.41)

and from

E =
k2

2µjk
+

Q2
k

2µi(jk)
=

q2
K

2µjk
+

K2

2µi(jk)
(4.42)

we can identify QqK ≡ K. This leads to

Ti(qK) =

∞∫
0

dR

∞∫
0

dr
u

(−)∗
qK (r)

K
sin(KR)Vi(r)Qi(r,R) (4.43)

and finally one finds the relation

Ti(K) =
K

qK
Ti(qK) . (4.44)

In an asymptotic area where ri →∞ and Ri is fixed, Ti(qK) and Ti(k) become equal, what we already

argued in Subsection 3.2.1. Hence, Eq. (4.39) becomes

ui(ri, Ri) w −
4µjk
π

√
2µi(jk)E∫

0

dKi sin(KRi)e
iqKriTi(K) +O

(
1

r2
i

)

= −4µjk
π

√
2µi(jk)E∫

0

dK sin(KRi)e
iqKri

K

qK
T (qK) +O

(
1

r2
i

)

= −4µjk
π

0∫
√

2µjkE

dqK

(
−
µi(jk)

µjk

)
qK
K

sin(KRi)e
iqKri

K

qK
T (qK) +O

(
1

r2
i

)

= −
4µi(jk)

π

√
2µjkE∫
0

dk sin(KRi)e
ikriTi(k) +O

(
1

r2
i

)
.

(4.45)
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In the second line of Eq. (4.45) we made use of Eq. (4.44). Then the integration variable K was

transformed to qK according to relation (4.42) and

0 =
1

2µjk
2qKdqK +

1

2µi(jk)
2KdK

dK = −
µi(jk)

µjk

qK
K

dqK .
(4.46)

In the last line of Eq. (4.45) we used the asymptotic equality of qK and k. Next, we want to extract

the leading behavior of the Faddeev amplitudes in the break-up channel, that means ri → ∞ and

Ri →∞. Again, this is achieved by the method of integration along the line of steepest descent [11],

also known as the saddle point method. This is a generalization of Laplace’s method for integrals in

the complex plane. Before applying it to the wave functions ui(ri, Ri), it is useful to transform both,

Jacobi coordinates and momenta, into polar coordinates.

ri =

√
1

2µjk
ρ cosϕi ,

Ri =

√
1

2µi(jk)
ρ sinϕi ,

qK =
√

2µjkE cosα ,

K =
√

2µi(jk)E sinα .
(4.47)

Starting with Eq. (4.39), we get

ui(ri, Ri) w−
4µjk
π

√
2µi(jk)E∫

0

dK sin(KRi)e
iqKriTi(K)

=− 4µjk
π

√
2µi(jk)E

π/2∫
0

d(sinα) sin(ρ sinα · sinϕi)eiρ cosϕi·cosαTi

(√
2µi(jk)E sinα

)
(4.48)

With regard to its functional form the integrand of Eq. (4.48) is the same as in I2 in Eq. (3.75), which

is treated in Appendix C. Analogously we get

I
(2)
i = −2µjk

πi

√
2µi(jk)E

π/2∫
−π/2

dα eiρ
√
E cos(α−ϕi) cosα Ti

(√
2µi(jk)E sinα

)
. (4.49)

In order to extract the leading behavior for ρ→∞, which implies ri →∞ and Ri →∞, the formalism
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of the saddle point method can be applied. In analogy to Subsection 3.2.1 one obtains

I
(2)
i w

√
2

π
ei π4 2µjk

√
2µi(jk)E

eiρ
√
E(

ρ
√
E
)1/2

×
[
cosϕi Ti

(√
2µ1(23)E sinϕi

)
− i

2

1

ρ
√
E

d2

dϕ2
i

cosϕi Ti

(√
2µ1(23)E sinϕi

)
+ ...

]
.

(4.50)

The second term again vanishes in higher order for ϕi → 0. This can be shown by transforming the

wavenumbers in I
(2)
i only and leaving the spatial coordinates unchanged,

I
(2)
i = −4µjk

π

√
2µi(jk)E

π/2∫
0

dα sin
(√

2µi(jk)ERi sinα
)

eir1
√
E cosα cosα Ti

(√
2µi(jk)E sinα

)
.

(4.51)

Then one integrates along the line of steepest descent starting from α = 0 and obtains exactly the same

result when expanding the first term of Eq. (4.50) for ϕi → 0. Consequently the second derivative

term in Eq. (4.50) must vanish in higher order for ϕi → 0. A more detailed treatment is presented in

Subsection 3.2.1.

Another possible way to derive the leading behavior of ui(ri, Ri) in the break-up channel is to use

the form

I
(1)
i =−

4µi(jk)

π

√
2µjkE∫
0

dk u
(−)
k (ri)e

iQkRiTi(k)

=−
4µi(jk)

π

√
2µjkE∫
0

dk e−iδ(k) sin(kri + δ(k))eiQkRiTi(k) ,

(4.52)

which is part of ui in the limit Ri →∞ and ri fixed (Eq. (4.37)). Clearly, the binding wave functions

ubi (ri) vanish in the break-up channel and u
(−)
k (ri) is replaced by its asymptotic form u

(−)
k (ri) w

e−iδ(k) sin(kri + δ(k)) since both Jacobi variables tend towards infinity. Again we transform the

integral according to

ri =

√
1

2µjk
ρ sinβi ,

Ri =

√
1

2µi(jk)
ρ cosβi ,

k =
√

2µjkE sinϑ ,

Qk =
√

2µi(jk)E cosϑ ,
(4.53)
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which results in

I
(1)
i =−

4µi(jk)

π

√
2µjkE

π/2∫
0

dϑ cosϑ e−iδ(
√

2µjkE sinϑ) sin(
√
E sinβi sinϑ+ δ(

√
2µjkE sinϑ))

× eiρ
√
E cos βi cosϑTi

(√
2µjkE sinϑ

)
.

(4.54)

This is exactly the same form as found for I1 in Subsection 3.2.1. Hence, the integral in Eq. (4.54)

can similarly be treated as in Appendix D, which results in

I
(1)
i = −

2µi(jk)

πi

√
2µjkE

π/2∫
−π/2

dϑ cosϑ eiρ
√
E cos(ϑ−βi)Ti

(√
2µjkE sinϑ

)
. (4.55)

The asymptotic behavior of I1 is again dominated by the contribution from the saddlepoint ϑ = βi

and can be calculated in the frame of the method of steepest descent. We set ϑ = βi = π
2 − ϕi and

after integration along the path of steepest descent we obtain

I
(1)
i w2µi(jk)

√
1

πi
ei π4
√

2µjkE
eiρ
√
E(

ρ
√
E
)1/2

×
[
sinϕi Ti

(√
2µjkE cosϕi

)
− i

2

1

ρ
√
E

d2

dϕ2
i

sinϕi Ti

(√
2µjkE cosϕi

)
+ ...

]
.

(4.56)

This result is - as expected - closely related to Eq. (4.50) and by applying relation (4.44) in the form

Ti
(√

2µi(jk)E sinϕi
)

=

√
µi(jk)
√
µjk

sinϕi
cosϕi

Ti
(√

2µjkE cosϕi
)

to (4.50), one can show the equality of both

results,

I
(2)
i w

√
2

π
ei π4 2µjk

√
2µi(jk)E

eiρ
√
E(

ρ
√
E
)1/2

[
cosϕi

√
µi(jk)
√
µjk

sinϕi
cosϕi

Ti

(√
2µjkE cosϕi

)

− i

2

1

ρ
√
E

d2

dϕ2
i

cosϕi

√
µi(jk)
√
µjk

sinϕi
cosϕi

Ti

(√
2µjkE cosϕi

)
+ ...

]

=2µi(jk)

√
2

π
ei π4
√

2µjkE
eiρ
√
E(

ρ
√
E
)1/2

[
sinϕi Ti

(√
2µjkE cosϕi

)

− i

2

1

ρ
√
E

d2

dϕ2
i

sinϕi Ti

(√
2µjkE cosϕi

)
+ ...

]
= I1 .

(4.57)

The second derivative term vanishes for ϕi → 0.
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Hence, we found the Faddeev amplitude ui(ri, Ri) in the break-up channel,

ui(ri, Ri) w
ρ→∞

2µi(jk)

√
2µjk

√
2

π
ei π4 E1/4 eiρ

√
E

ρ1/2
sinϕi Ti

(√
2µjkE cosϕi

)
. (4.58)

The particles can no longer interact in the asymptotic range (ri → ∞ and Ri → ∞) of the break-

up channel and the total energy is split in a certain ration ri/Ri into the two relative motions.

Definite values for the lengths ri and Ri fix ρ and the angle ϕi (via Eq. (4.15)), which determines the

wavenumber ki =
√

2µjkE cosϕi and via the relations between the different sets of Jacobi coordinates

(Eqs. (4.21) and (4.22)) also kj =
√

2µikE cosϕj with j 6= i. The function Ti(k) gives a spectrum

of the partition of energy into the two relative motions. We proceed in calculating the break-up

amplitude of the Faddeev component i,

ψi(ri, Ri) =
ui(ri, Ri)

riRi
w

ρ→∞
2µi(jk)

√
2µjk

√
2

π
ei π4 E1/4 eiρ

√
E

ρ1/2
sinϕi

1

riRi
Ti(ki)

= 2µi(jk)

√
2µjk

√
2

π
ei π4 E1/4 eiρ

√
E

ρ1/2
sinϕi

√
2µi(jk)

√
2µjk

1

ρ sinϕi

1

ρ cosϕi︸ ︷︷ ︸
=cos(π

2−ϑi)

Ti(ki)

=
(
2µi(jk)

)3/2
2µjk

√
2

π
ei π4 E1/4 eiρ

√
E

ρ5/2

Ti(ki)

sinϑi

=
(
2µi(jk)

)3/2
2µjk

√
2

π
ei π4 E1/4 eiρ

√
E

ρ5/2

√
2µjkE

ki
Ti(ki)

=
(
4µi(jk)µjk

)3/2√ 2

π
ei π4 E3/4 eiρ

√
E

ρ5/2

Ti(ki)

ki
.

(4.59)

We used the transformation (4.47) and (4.53) and the saddle point condition ϑi = π
2 − ϕi, resulting

from the integration along the line of steepest descent. The total wave function for the break-up

channel is obtained by coherently summing up the three (different) Faddeev components, ψi(ri, Ri),

Ψ
(+)
break−up =

3∑
i=1

ψi(ri, Ri) w
ri→∞
Ri→∞

√
2

π
ei π4 E3/4 eiρ

√
E

ρ5/2

3∑
i=1

(
4µi(jk)µjk

)3/2 Ti(ki)
ki

(4.60)

4.2 Interior region and basis states for R-matrix formalism

We define an interior and exterior region that are separated by the boarder lines

C1 : Ri = Ai and 0 ≤ ri ≤ ai
C2 : ri = ai and 0 ≤ Ri ≤ Ai .

(4.61)

The set of all points with ri ≥ 0 and Ri ≥ 0 that are located inside that area is called D and we choose

ri, Ri ∈ D. We want to find values for the boundary parameters ai and Ai that confine rj , Rj (j 6= i)

to D as well. The potential Vi(ri) occurs on the right hand side of Eq. (3.44) and has a maximum
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Figure 7: Interior region D with boundary lines C1 and C2.

range of r0i. This value is used for ri in the Jacobi relations (4.21) and (4.22), which then determine

rjmax
, Rjmax

. We use an upper bound approximation for the magnitudes rj , Rj ,

|ari ± bRi| =
√

(ari)2 ± 2ab(ri ·Ri) + (bRi)2 ≈
√

(ari)2 + 2abriRi + (bRi)2 = ari + bRi , (4.62)

which makes it redundant to discriminate between the cases i = 1, 2 and i = 3 for the determination

of the boundary parameters. Hence,

a) rj =− mj

mj +mk
ri − (−1)jRi −→

rj in D

mj

mj +mk
r0i +Ai ≤ ai

b) Rj =(−1)j
mimk +mjmk +mkmk

(mi +mk)(mj +mk)
ri −

mi

mi +mk
Ri −→

Rj in D

mimk +mjmk +mkmk

(mi +mk)(mj +mk)
r0i +

mi

mi +mk
Ai ≤ Ai

(4.63)

Expressing A explicitly from relation b) we get (with δ > 0)

b) Ai ≥
mimk +mjmk +mkmk

(mj +mk)mk
r0i =

mi +mj +mk

(mj +mk)
r0i ⇒ Ai =

mi +mj +mk

(mj +mk)
r0i + δ (4.64)

Inserting b) in a) gives

a)
mj

mj +mk
r0i +

mi +mj +mk

(mj +mk)
r0i ≤ ai ⇒ ai ≥

mi + 2mj +mk

(mj +mk)
r0i ⇒ ai =

mi + 2mj +mk

(mj +mk)
r0 + δ

(4.65)
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Thus, by choosing the boundary parameters,

ai = sup
j 6=i

{
mi + 2mj +mk

mj +mk
r0i

}
+ δ ,

Ai =
mi +mj +mk

mj +mk
r0i + δ ,

(4.66)

rj , Rj are confined to D. The value of δ is chosen to be large enough for the asymptotic forms of

ui(ri, Ri), Eq. (4.37) and Eq.(4.45) to be valid on the lines C1 and C2. In the interior region D we

expand the three Faddeev components ui(ri, Ri) over a complete sets of basis states,

ui(ri, Ri) =
∑
µ

c(i)µ ϕµ(ri, Ri) . (4.67)

Each Faddeev component is therefore characterized by a certain set of expansion coefficients c
(i)
µ ,

whereas the functions ϕµ(ri, Ri) remain the same for all ui(ri, Ri). These basis states ϕµ(ri, Ri) obey

the equation [
− 1

2µjk

d2

dr2
i

+ Vi(ri)−
1

2µi(jk)

d2

dR2
i

− E(i)
µ

]
ϕµ(ri, Ri) = 0 , (4.68)

with the boundary conditions

ϕµ(0, Ri) = ϕµ(ri, 0) =
ϕµ(ri, Ri)

∂ri

∣∣∣∣
ri=ai

=
∂ϕµ(ri, Ri)

∂Ri

∣∣∣∣
Ri=Ai

= 0 , (4.69)

and are chosen to be real and orthonormal,∫∫
D

dr dR ϕµ(r,R)ϕµ′(r,R) = δµµ′ . (4.70)

Thus, the expansion coefficients can be calculated as

c(i)µ =

∫∫
D

dr dR ϕµ(r,R)ui(r,R) . (4.71)

In analogy to the case of three identical particles (Subsection 3.2.2) the introduced basis states

ϕµ(r,R) can be chosen as product states

ϕµ(r,R) = Xµ1
(r)Yµ2

(R) , (4.72)

where the functions Xµ1(r) and Yµ2(R) are solutions to the equations[
− 1

2µjk

d2

dr2
+ Vi(r)− ε(i)µ1

]
Xµ1

(r) = 0 (4.73)

and [
− 1

2µi(jk)

d2

dR2
− ε(i)µ2

]
Yµ2

(R) = 0 . (4.74)
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The total energy E
(i)
µ is split into the energy of the two relative motions, ε

(i)
µ1 (particle j relative to

particle k) and ε
(i)
µ2 (particle i relative to particle j and k). The set µ = µ1, µ2 is arranged in that way

that the total energy E
(i)
µ = ε

(i)
µ1 + ε

(i)
µ2 is approximately constant [6].

4.3 Equations for three-body R-matrix theory for arbitrary particle masses

We want to derive a set of equations that determine both, the expansion coefficients c
(i)
µ and con-

sequently the wave functions in the interior region D and the on-shell T -matrix elements. First, we

multiply both sides of Eq. (4.14) from the left with ϕµ(ri, Ri),

ϕµ(ri, Ri)

[
− 1

2µjk

d2

dr2
i

+ Vi(ri)−
1

2µi(jk)

d2

dR2
i

− E
]
ui(ri, Ri) =

− ϕµ(ri, Ri)Vi(ri)

1∫
−1

dxi
riRi

2

3∑
j=1
j 6=i

uj(rj , Rj)

rjRj

(4.75)

and then integrate over the domain D,∫∫
D

dr dR ϕµ(ri, Ri)

[
− 1

2µjk

d2

dr2
i

+ Vi(ri)−
1

2µi(jk)

d2

dR2
i

− E
]
ui(ri, Ri) =

−
∫∫

D

dr dR ϕµ(ri, Ri)Vi(ri)

1∫
−1

dxi
riRi

2

3∑
j=1
j 6=i

uj(rj , Rj)

rjRj
.

(4.76)

For the left hand side of Eq. (4.75) we can apply the results from Appendix E since the terms differ

from those in Eq. (3.103) only in factors resulting from the different reduced masses,

(E(i)
µ − E)c(i)µ −

1

2µi(jk)

ai∫
0

dr ϕµ(r,Ai)
dui
dR

∣∣∣∣
R=Ai

− 1

2µjk

Ai∫
0

dR ϕµ(ai, R)
dui
dr

∣∣∣∣
r=ai

, (4.77)

where c
(i)
µ and E

(i)
µ originate from Eqs. (4.71) and (4.68).

The right hand side of Eq. (4.76) reads

−
∫∫

D

dridRi ϕµ(ri, Ri)Vi(ri)

1∫
−1

dxi
riRi

2

3∑
j=1
j 6=i

uj(rj , Rj)

rjRj

= −
∫∫

D

dridRi ϕµ(ri, Ri)Vi(ri)

1∫
−1

dxi
riRi

2

3∑
j=1
j 6=i

∑
µ′

c
(j)
µ′ ϕ

(j)
µ′ (rj , Rj)

rjRj
.

(4.78)

The expansion of uj(rj , Rj) in the source term is valid since rj and Rj are located inside D, which is
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ensured by the values (4.66) for the boarder parameters Ai and ai. With the matrix element

V
(ij)
µµ′ =

∫∫
D

dridRi ϕµ(ri, Ri)Vi(ri)

1∫
−1

dxi riRi
ϕµ′(rj , Rj)

2rjRj
, (4.79)

Eq. (4.76) finally becomes

(E(i)
µ −E)c(i)µ +

∑
µ′

3∑
j=1
j 6=i

V
(ij)
µµ′ c

(j)
µ′ =

1

2µi(jk)

ai∫
0

dr ϕµ(r,Ai)
dui
dR

∣∣∣∣
R=Ai

+
1

2µjk

Ai∫
0

dR ϕµ(ai, R)
dui
dr

∣∣∣∣
r=ai

.

(4.80)

The index ”i“ in V
(ij)
µµ′ indicates the potential that occurs in the matrix element. Inserting the

asymptotic forms (4.37) and (4.45) on the boarder lines C1 and C2 into the right hand side of Eq. (4.80)

yields

(Eµ − E)c(i)µ +
∑
µ′

3∑
j=1
j 6=i

V
(ij)
µµ′ c

(j)
µ′

=
1

2µi(jk)

ai∫
0

dr ϕµ(r,Ai)u
b
i (r)Q cos(QAi)−

ai∫
0

dr ϕµ(r,Ai)u
b
i (r)iQeiQAiT bi

− 2

π

ai∫
0

dr ϕµ(r,Ai)

√
2µjkE∫
0

dk u
(−)
k (r)iQkeiQkAiTi(k)

−
3∑
j=1
j 6=i

e
i
√

2µj(ik)E
mi

mi+mk
Ri/ sinϕ∗j

R
3/2
i

i
√

2µj(ik)E
mi

mi +mk
/ sinϕ∗j

×


ai∫

0

dr ϕµ(r,Ai)u
b
i (r)C

b
i +

ai∫
0

dr ϕµ(r,Ai)

∞∫
√

2µjkE

dk u
(−)
k (r)Ci(k)



−
2µi(jk)

πµjk

Ai∫
0

dR ϕµ(ai, R)

√
2µjkE∫
0

dk sin(QkR)ikeikaiTi(k)

(4.81)

Terms of the order R−α with α > 3/2 were neglected. We can replace the numbers C in Eq. (4.81)

by T -matrix elements, respectively. Comparing Eqs. (4.58) and (4.16) reveals that the function A is

somehow related to T (k),

A(ϕ∗i ) = 2µi(jk)

√
2µjk

√
2

π
ei π4 E1/4 sinϕ∗i Ti

(√
2µjkE cosϕ∗i

)
. (4.82)
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Consequently,

Cbi =

√
2

π
ei π4 2µi(jk)

√
2µjk(2µj(ik))

−1/4

(
mi +mk

mi

)5/2

(sinϕ∗j )
7/2E1/4Ti

(√
2µjkE cosϕ∗j

)
×

2µi(jk)

µj(ik)

(
E − 2Q2

µj(ik)
sin2 ϕ∗j

) ∞∫
0

dr ubi (r)Vi(r) ,

(4.83)

and

Ci(k) =

√
2

π
ei π4 2µi(jk)

√
2µjk

(
2µj(ik)

)−1/4
(
mi +mk

mi
sinϕ∗j

)3/2

E1/4Ti

(√
2µjkE cosϕ∗j

)
× 1

1
µjk

k2 − 2E + 2
µj(ik)

µi(jk)
E
(

mi

(mi+mk) sinϕ∗j

)2

∞∫
0

dr u
(−)∗
k (r)Vi(r) .

(4.84)

Using these results for the numbers C and the shortcuts

Mµb =

ai∫
0

dr ϕµ(r,Ai)u
b
i (r)

M
(−)
µk =

ai∫
0

dr ϕµ(r,Ai)u
(−)
k (r)

MµQ =

Ai∫
0

dR ϕµ(ai, R) sin(QR) ,

(4.85)
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Eq. (4.81) turns into

(Eµ − E)c(i)µ +

3∑
j=1
j 6=i

∑
µ′

V
(j)
µµ′c

(j)
µ′ ≡

3∑
j=1
j 6=i

∑
µ′

Rµµ′(E)c
(j)
µ′ =

1

2µi(jk)
QMµb cos(QAi)− iQMµbe

iQAiT bi

− 2

π

√
2µjkE∫
0

dk iQkM
(−)
µk eiQkAiTi(k)

− 1

2µi(jk)

3∑
j=1
j 6=i

e
i
√

2µj(ik)E
mi

mi+mk
Ri/ sinϕ∗j

R
3/2
i

i
√

2µj(ik)E
mi

mi +mk
/ sinϕ∗j

×

(√
2

π
ei π4 2µi(jk)

√
2µjk(2µj(ik))

− 1
4

(
mi +mk

mi

) 5
2

(sinϕ∗j )
7
2E

1
4MµbTi

(√
2µjkE cosϕ∗j

)

×
2µi(jk)

µj(ik)

(
E − 2Q2

µj(ik)
sin2 ϕ∗j

) r0i∫
0

dr ubi (r)Vi(r)

+

(
2

π

) 3
2

ei π4 2µi(jk)

√
2µjk

(
2µj(ik)

)− 1
4

(
mi +mk

mi
sinϕ∗j

) 3
2

E
1
4

×
∞∫

√
2µjkE

d kM
(−)
µk Ti

(√
2µjkE cosϕ∗j

) 1

1
µjk

k2 − 2E + 2
µj(ik)

µi(jk)
E
(

mi

(mi+mk) sinϕ∗j

)2

×
∞∫

0

dr u
(−)∗
k (r)Vi(r)

)
−

2µi(jk)

πµjk

√
2µjkE∫
0

dk ikMµQk
eikaiTi(k)

=
1

2µi(jk)
QMµb cos(QAi)− iQMµbe

iQAiT bi

− 2

π

√
2µjkE∫
0

dk

[
iQkM

(−)
µk eiQkAi +

µi(jk)

µjk
ikMµQk

eikai

]
Ti(k)

−
3∑
j=1
j 6=i

ie
i
√

2µj(ik)E
mi

mi+mk
Ri/ sinϕ∗j

R
3/2
i

Ti

(√
2µjkE cosϕ∗j

)

×

(
Nb(E)Mµb

2µi(jk)

µj(ik)

(
E − 2Q2

µj(ik)
sin2 ϕ∗j

) r0i∫
0

dr ubi (r)Vi(r)

+
2

π
Nk(E)

∞∫
√

2µjkE

M
(−)
µk

1

1
µjk

k2 − 2E + 2
µj(ik)

µi(jk)
E
(

mi

(mi+mk) sinϕ∗j

)2

∞∫
0

dr u
(−)∗
k (r)Vi(r)

)
,

(4.86)
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with

Nb(E) =

√
2

π
ei π4
√

2µjk(2µj(ik))
1
4

(
mi +mk

mi

) 3
2

(sinϕ∗j )
5
2E

3
4 , (4.87)

and

Nk(E) =

√
2

π
ei π4 2µi(jk)

√
2µjk

(
2µj(ik)

) 1
4

(
mi +mk

mi
sinϕ∗j

) 1
2

E
3
4 . (4.88)

We define the three-particle R-matrix for arbitrary particle masses according to

Rµµ′(E) = δijδµµ′(Eµ − E) + V
(j)
µµ′ . (4.89)

which is the matrix representation of the Faddeev equations inside the region D. Thus, Eq. (4.86)

relates the Faddeev equations in matrix form inside the domain D on the left hand side with the

logarithmic derivatives of the asymptotic wavefunction ui(ri, Ri) on the boundary lines C1 and C2

on the right hand side. It is the first of a set of four equations in R-matrix theory to calculate the

expansion coefficients c
(i)
µ and the T -matrix elements T bi and Ti(k).

The remaining three equations arise from equating the interior and exterior wave functions on the

two boundary lines C1 and C2, respectively. Initially, we will ignore terms of the order R−3/2 occurring

in the asymptotic form (4.37) of ui. However, later they can be considered in order to improve the

accuracy of the results.

Proceeding from Eq. (4.37), we expand the wave function ui(ri, Ri) inside the region D on the left

hand side in basis functions ϕµ(r,R). On the right hand side, we have its asymptotic form outside

D. On the line C1 with R = Ai we require the interior and exterior wave function to be equal, which

after projecting onto the (real) binding wave function ubi , leads to

ai∫
0

dr uib(r)
∑
µ

c(i)µ ϕµ(r,Ai) w

ai∫
0

dr
∣∣uib(r)∣∣2︸ ︷︷ ︸
=1

sin(QAi)− 2µi(jk)

ai∫
0

dr
∣∣uib(r)∣∣2︸ ︷︷ ︸
=1

eiQAiT bi

− 4

π
µi(jk)

√
2µjkE∫
0

dk

ai∫
0

dr uib(r)u
(−)
k (r)

︸ ︷︷ ︸
≈0

eiQkAiTi(k) ,

(4.90)

where we used orthonormality of the bound states ubi and approximated
ai∫
0

dr ub(r)u
(−)
k (r) ≈ 0 on the

line C1. Latter is justified since the bound states are spatially localized and therefore ub(ai) ≈ 0 on

the line C2 with sufficiently large ai. This approximation has already been used when deriving the

asymptotic form (4.58) in the break-up channel from Eq. (4.37). Including Eq. (4.85) yields the final

form ∑
µ

Mµbc
(i)
µ w sin(QAi)− 2µi(jk)e

iQAiT bi , (4.91)
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which connects c
(i)
µ with the T -matrix elements T bi . Once more we start with the asymptotic form of

ui(ri, Ri) in the limit Ri →∞ and ri fixed (without terms ∼ R−3/2),

ui(ri, Ri) w ubi (ri) sin(QRi)− 2µi(jk)u
b
i (ri)e
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4

π
µi(jk)

√
2µjkE∫
0

dk u
(−)
k (ri)e

iQkRiTi(k) ,

and now replace the integral by its asymptotic expansion (4.58). Then, on the line C1, where the

interior and exterior wave functions are set to be equal, we get∑
µ

c(i)µ ϕµ(ri, Ai)− ubi (ri)
[
sin(QAi)− 2µi(jk)e

iQAiT bi
]
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√
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)
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(4.92)

with ρA =
√

2µjkr2
i + 2µi(jk)A

2
i and sinϕi|C1

=
√

2µi(jk)
Ai
ρA

. The same procedure is carried out on

the line C2 and provides the fourth equation,∑
µ

c(i)µ ϕµ(ai, Ri)

w ubi (ai)
[
sin(QRi)− eiQRiT bi

]
+
(
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√
E

ρ
1/2
a

Ri
ρa

Ti
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E
ai
ρa

)
,

(4.93)

with ρa =
√

2µjka2
i + 2µi(jk)R

2
i and ubi (ai) ≈ 0. Hence, we have found a set of four equations for

channel α,
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1)(Eµ − E)c(i)µ +
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j 6=i

∑
µ′

V
(j)
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=
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2)
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µ
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(i)
µ w sin(QAi)− 2µi(jk)e

iQAiT bi
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c(i)µ ϕµ(ri, Ai)− ubi (ri)
[
sin(QAi)− 2µi(jk)e

iQAiT bi
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√
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π
ei π4 E1/4 eiρa
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(√
E
a
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)
,

(4.94)

It determines the expansion coefficients c
(i)
µ and the T -matrix elements T bi for the bound states and

Ti(k) for the scattering states. By solving this system of equations we can calculate the cross section

and the wave function inside the area D. Again, in low energy regions, there occur some simplifica-

tions, which have already been discussed in Sec. 3.2.3.
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5 Conclusion

W. Glöckle has established a R-matrix method for three-particle channels on the basis of Faddeev

equations. He has found a set of four equations (3.122) that allows us to calculate the expansion

coefficients of the interior wave functions and the T -matrix elements. In this thesis we extended the

three body R-matrix method to three arbitrary particle masses and finally obtained a similar set of

equations (4.94).

In our formalism we can describe all reactions (except for a three-particle bound state) that take

place when a projectile hits a two-particle bound state. In Subsection 3.2.4, we found that the

total asymptotic behavior of the wave function in a certain channel (except for the break-up and the

three-particle bound channel) is contained in the Faddeev component corresponding to that channel.

Hence, for instance in channel α, the cross section for elastic scattering is obtained by calculating the

amplitude T ib with i = α and for rearrangement processes via the amplitude T ib with i = β or i = γ.

The cross section for break-up reactions is the coherent sum over the squared matrix elements Ti(k).

This shows that contributions to the break-up channel arise from all three Faddeev components. A

theoretically existing fifth channel where all particle stick together and form one bound state has been

neglected.

For the (numerical) solution of the set (4.94) one has to note that for three arbitrary particles

the equations are coupled. That means that one Faddeev component depends on the others via the

T -amplitudes that contain a source term Qi. In (3.122) this is different, since for three identical

particles the number of Faddeev components reduce from three to one. Methods of solution have not

yet been established, but will follow in the near future.
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Appendix

A Verification of Eq. (3.48)

We want to show that the asymptotic form (3.47) of the wave function u(ρ, ϕ) satisfies Eq. (3.48),

[
− d2
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=
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(A.1)

In the case of three distinguishable particles the procedure remains the same. The asymptotic form

of u from its functional form is the same as for identical particles, only the reduced masses change.
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B Additional terms of asymptotic u(r1, R1)

Inserting the asymptotic form of the source term Q(r1, R1) (Eq. (3.53)) into the first line of Eq. (3.57)

and omitting non R′1-dependent terms, yields

I =
4

3

∞∫
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dR′1
sin[Q(R1 −R′1)]

Q

ei
√

4
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. (B.1)

We integrate by parts the first time and obtain
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(B.2)

The term proportional to R
′−5/2
1 in the second line of Eq. (B.2) is neglected in the following as it

decreases faster to zero for R1 → ∞ than the others. Integrating the second term in Eq. (B.2) once

more by parts
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Thus, the integral we started with is reproduced and enables us to write down the solution
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(B.4)

In the last equality of Eq. (B.4) we used Eb = E− 3
4Q

2 following from Eq. (3.55). The total expression

for the first additional term of the asymptotic form of u(r1, R1) in the limit R1 → ∞ and r1 fixed,

reads
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Next, we want to derive the second term H2(r1, R1) presented in Eq. (3.58). Because now the inte-

gration interval goes from
√
E to infinity, from E = k2 + 3

4Q
2
k it follows that Qk must be a complex

quantity. To be consistent with [6] we introduce the following notation,

E = k2 +
3

4
Q2
k −→ E = Q2

K −
3

4
K2 , (B.6)

with

Qk=̂iK and k=̂QK (B.7)

where K,QK and k are real quantities. Differentiating the second relation in Eq. (B.6) leads to

2k dk = 2
3

4
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3

4
· K
k

dK ,

(B.8)

where we used k=̂QK . So we can transform the integrals over k from Eq. (3.56),
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into
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The integration over K is split according to
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and K0(R1) → 0 for R1 → ∞. For K ≥ K0 we carry out the integration over R′1 by parts and use
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and
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Terms of order R−α1 with α > 3
2 are neglected in Eqs. (B.11) and (B.12). In Eq. (B.12) we put

R1∫
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d∫
0

dR′1 +
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dR′1, where d is such that the asymptotic form of Q(r1, R1) can be applied. In
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and can be estimated, according to [6], to be of the order O
(

1
R2

1

)
for R1 →∞. Q0, or more precisely

QK0
, is independent of K and the greatest value of Q in the interval 0 ≤ K ≤ K0, thus it has to be

considered in the leading term H
(3)
2 (r1, R1). The total term H2(r1, R1) is composed of H

(1)
2 , H

(2)
2 and
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2 and includes the total asymptotic form of Q,
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where we have used the relation E = Q2
K − 3

4K
2 in the last equality of Eq.(B.14). Performing the

back transformation of the various quantities according to
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and Eq. (B.7) yields the final form of H2(r1, R1),
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(B.16)

Because K0(R1)→ 0 for R1 →∞ the lower integral boundary of the k-integral in Eq. (B.16) due to

Eq. (B.15) becomes
√
E.

In the limit r1 → ∞ and R1 fixed, the K-integration interval
[√

4
3E;∞

]
was not considered in

76



Eq. (3.64) and yields the correction term
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to the wave function u(r1, R1) in Eq. (3.65). The wave number qK is now considered to be imaginary

because of E = q2
K +

3

4
K2. We are not interested in calculating the integrals in Eq. (B.17), but we

want to determine the leading behavior of C(r1, R1) for large values of r1, which results from qK ≈ 0.

Then one has lim
q→0

u
(+)
q (r)

q
= O(1) from [6] which allows us to estimate the correction term to be of

the order O
(

1
r21

)
[6].
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C Transformation of Eq. (3.72) into polar coordinates

The coordinates and momenta are transformed according to Eq. (3.74),
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3
E sinα

)
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π

√
4

3
E

π/2∫
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dα
1

2i

(
eiρ
√
E cos(α−ϕ) − e−iρ

√
E sin(α+ϕ)

)
cos(α) T

(√
4

3
E sinα

)
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π

√
4

3
E

π/2∫
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dα
1

2i
eiρ
√
E cos(α−ϕ) cos(α) T

(√
4

3
E sinα

)

+
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π

√
4

3
E

−π/2∫
0

d(−α)
1

2i
eiρ
√
E cos(−α+ϕ) cos(−α) T

(√
4

3
E sin(−α)

)

=− 2

π

√
4

3
E

π/2∫
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dα
1

2i
eiρ
√
E cos(α−ϕ) cos(α) T

(√
4

3
E sinα

)
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π

√
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3
E

−π/2∫
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1
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eiρ
√
E cos(α−ϕ) cos(α) (−1) · T

(√
4

3
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)
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π

√
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3
E

π/2∫
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dα
1
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eiρ
√
E cos(α−ϕ) cos(α) T

(√
4

3
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− 2

π

√
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3
E

0∫
−π/2

dα
1

2i
eiρ
√
E cos(α−ϕ) cos(α) T

(√
4

3
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)

=− 1

πi

√
4

3
E

π/2∫
−π/2

dα eiρ
√
E cos(α−ϕ) cos(α) T

(√
4

3
E sinα

)
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(C.1)
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In the sixth equality we used the fact that T (K) is an odd function of K.
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D Transformation of Eq. (3.63) into polar coordinates

The transformation equations of the coordinates and momenta in Eq. (3.82) read

r1 = ρ sinβ

R1 =

√
3

4
ρ cosβ

k =
√
E sinϑ

Qk =

√
4

3
E cosϑ .

For u
(−)
k (r1) we use its asymptotic form u

(−)
k (r1) w e−iδ(k) sin(kr + δ(k)), as we investigate the case

where both coordinates r1 and R1 tend to infinity.

I1 =− 8

3π

√
E∫

0

dk u
(−)
k (r1)eiQkR1T (k) = − 8

3π

√
E∫

0

dk e−iδ(k) ei(kr1+δ(k)) − e−i(kr1+δ(k))

2i
eiQkR1T (k)

=− 8

3π

1

2i

√
E

π/2∫
0

dϑ cosϑ e−iδ(
√
E sinϑ)

(
ei(ρ
√
E sin β sinϑ+δ(

√
E sinϑ)) − e−i(ρ

√
E sin β sinϑ+δ(

√
E sinϑ))

)
× eiρ

√
E cos β cosϑT

(√
E sinϑ

)
=− 8

3π

1

2i

√
E

π/2∫
0

dϑ cosϑ eiρ
√
E sin β sinϑeiρ

√
E cos β cosϑT

(√
E sinϑ

)

+
8

3π

1

2i

√
E

π/2∫
0

dϑ cosϑ e−iδ(
√
E sinϑ)e−i(ρ

√
E sin β sinϑ+δ(

√
E sinϑ))eiρ

√
E cos β cosϑT

(√
E sinϑ

)
(D.1)

We now focus on the integral in the second term of the fourth equality of Eq. (D.1),

−π/2∫
0

d(−ϑ) cos(−ϑ)e−iδ(
√
E sin(−ϑ))e−iρ

√
E sin β sin(−ϑ)eiρ

√
E cos β cos(−ϑ)e−iδ(

√
E sin(−ϑ))T

(√
E sin(−ϑ)

)

= −
−π/2∫
0

dϑ cosϑ e−iδ(−
√
E sinϑ)eiρ

√
E(sin β sinϑ+cos β cosϑ) e−iδ(−

√
E sinϑ)T

(
−
√
E sinϑ

)
︸ ︷︷ ︸

odd function of k=
√
E sinϑ

= −
−π/2∫
0

dϑ cosϑ eiδ(
√
E sinϑ)eiρ

√
E cos(ϑ−β)(−1)e−iδ(

√
E sinϑ)T

(√
E sinϑ

)

= −
0∫

−π/2

dϑ cosϑ eiρ
√
E cos(ϑ−β)T

(√
E sinϑ

)
.

(D.2)
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We made use of the fact that δ(k) and e−iδ(k)T (k) are odd functions of k =
√
E sinϑ and of the

identity cos(x± y) = cosx cos y ∓ sinx sin y. Finally Eq.(D.1) reads

I1 = −4
√
E

3πi

 π/2∫
0

dϑ cosϑ eiρ
√
E cos(ϑ−β)T

(√
E sinϑ

)
+

0∫
−π/2

dϑ cosϑ eiρ
√
E cos(ϑ−β)T

(√
E sinϑ

)
= −4

√
E

3πi

π/2∫
−π/2

dϑ cosϑ eiρ
√
E cos(ϑ−β)T

(√
E sinϑ

)
.

(D.3)

81



E Detailed treatment of Eq. (3.103)

In this section we consider the left hand side of Eq. (3.103),∫∫
D

dr dR ϕµ(r,R)

[
− d2

dr2
+ V (r)− 3

4

d2

dR2
− E

]
u(r,R)

= −
A∫

0

dR

a∫
0

dr ϕµ(r,R)
d2u

dr2
− 3

4

a∫
0

dr

A∫
0

dR ϕµ(r,R)
d2u

dR2
+ ϕµ(r,R)[V (r)− E]u(r,R)

(E.1)

and solve the occurring integrals. We can rewrite the terms containing second derivatives in Eq. (E.1)

using the product rule twice (suppressing factors and the dependencies of the functions on spatial

coordinates)

d2

dR2
(ϕµu) =

d

dR

(
dϕµ
dR

u+ ϕµ
du

dR

)
=

d2ϕµ
dR2

u+
dϕµ
dR

du

dR
+

dϕµ
dR

du

dR
+ ϕµ

d2u

dR2
(E.2)

and isolate the term which occurs in Eq. (E.1),

ϕµ
d2u

dR2
=

d2

dR2
(ϕµu)− 2

dϕµ
dR

du

dR
− d2ϕµ

dR2
u . (E.3)
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Using relation (E.3), the integrals in the second line of Eq. (E.1) can be calculated beginning with the

second one,

−3

4

A∫
0

dR ϕµ(r,R)
d2u

dR2
= −3

4

A∫
0

dR

[
d2

dR2
[ϕµ(r,R)u(r,R)]− 2

dϕµ
dR

du

dR
− d2ϕµ

dR2
u

]

=− 3

4

d

dR
(ϕµ(r,R)u(r,R))

∣∣∣∣A
0

+
3

2

A∫
0

dR
dϕµ
dR

du

dR
+

3

4

A∫
0

dR u(r,R)
d2ϕµ
dR2

=− 3

4

(
u(r,R)

dϕµ
dR

+ ϕµ(r,R)
du

dR

)∣∣∣∣A
0

+
3

2

ϕµ(r,R)
du

dR

∣∣∣∣A
0

−
A∫

0

dR ϕµ(r,R)
d2u

dR2


+

3

4

A∫
0

dR u(r,R)
d2ϕµ
dR2

=− 3

4

u(r,A)
dϕµ
dR

∣∣∣∣
R=A︸ ︷︷ ︸

=0

−u(r, 0)︸ ︷︷ ︸
=0

dϕµ
dR

∣∣∣∣
R=0

+ ϕµ(r,A)
du

dR

∣∣∣∣
R=A

− ϕµ(r, 0)︸ ︷︷ ︸
=0

du

dR

∣∣∣∣
R=0


+

3

2
ϕµ(r,A)

du

dR

∣∣∣∣
R=A

− 3

2
ϕµ(r, 0)︸ ︷︷ ︸

=0

du

dR

∣∣∣∣
R=0

− 3

2

A∫
0

dR ϕµ(r,R)
d2u

dR2
+

3

4

A∫
0

dR u(r,R)
d2ϕµ
dR2

=
3

4
ϕµ(r,A)

du

dR

∣∣∣∣
R=A

− 3

2

A∫
0

dR ϕµ(r,R)
d2u

dR2
+

3

4

A∫
0

dR u(r,R)
d2ϕµ
dR2

.

(E.4)

We integrated by parts in the second line of Eq. (E.4) and in the fifth and sixth line we made use of

the boundary conditions (3.95),

ϕµ(0, R) = ϕµ(r, 0) =
∂ϕµ(r,R)

∂r

∣∣∣∣
r=a

=
∂ϕµ(r,R)

∂R

∣∣∣∣
R=A

= 0 .

Additionally, u(r, 0) = 0 since we integrate over the domain D and inside D we have

u(r, 0) =
∑
µ

cµϕµ(r, 0) = 0 . (E.5)

Finally we get the result

3

4

A∫
0

dR ϕµ(r,R)
d2u

dR2
=

3

4
ϕµ(r,A)

du

dR

∣∣∣∣
R=A

+
3

4

A∫
0

dR u(r,R)
d2ϕµ
dR2

(E.6)
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and analogously
a∫

0

dr ϕµ(r,R)
d2u

dr2
= ϕµ(a,R)

du

dr

∣∣∣∣
r=a

+

a∫
0

dr u(r,R)
d2ϕµ
dr2

. (E.7)

Inserting them into Eq. (E.1) yields

−
A∫

0

dR ϕµ(a,R)
du

dr

∣∣∣∣
r=a

−
A∫

0

dR

a∫
0

dr u(r,R)
d2ϕµ
dr2

− 3

4

a∫
0

dr ϕµ(r,A)
du

dR

∣∣∣∣
R=A

− 3

4

a∫
0

dr

A∫
0

dR u(r,R)
d2ϕµ
dR2

+ ϕµ(r,R)[V (r)− E]u(r,R)

=−
A∫

0

dR ϕµ(a,R)
du

dr

∣∣∣∣
r=a

− 3

4

a∫
0

dr ϕµ(r,A)
du

dR

∣∣∣∣
R=A

+

A∫
0

dR

a∫
0

dr u(r,R)

[
− d2

dr2
+ V (r)− 3

4

d2

dR2
− E

]
ϕµ(r,R)

=−
A∫

0

dR ϕµ(a,R)
du

dr

∣∣∣∣
r=a

− 3

4

a∫
0

dr ϕµ(r,A)
du

dR

∣∣∣∣
R=A

+

A∫
0

dR

a∫
0

dr (Eµ − E)u(r,R)ϕµ(r,R)

=−
A∫

0

dR ϕµ(a,R)
du

dr

∣∣∣∣
r=a

− 3

4

a∫
0

dr ϕµ(r,A)
du

dR

∣∣∣∣
R=A

+ (Eµ − E)cµ

(E.8)

In the third equality we applied Eq. (3.94),[
− d2

dr2
+ V (r)− 3

4

d2

dR2
− Eµ

]
ϕµ(r,R) = 0

and in the last line we used the definition of the expansion coefficients (3.101) for the interior wave

function,

cµ =

∫∫
D

dr dR ϕµ(r,R)u(r,R) .
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F Calculation of the terms H
(1)
i (Ri) and H

(2)
i (ri, Ri) in Eqs. (4.31)

and (4.32)

We start with the integral neglecting constant factors

I = 2µi(jk)

∞∫
Ri

dR′i
sin[Q(Ri −R′i)]

Q

3∑
j=1
j 6=i

e
i
√

2µj(ik)E
mi

mi+mk
R′i/ sinϕ∗j

R
′3/2
i

(F.1)

and define

Ij = 2µi(jk)

∞∫
Ri

dR′i
sin[Q(Ri −R′i)]

Q

e
i
√

2µj(ik)E
mi

mi+mk
R′i/ sinϕ∗j

R
′3/2
i

. (F.2)
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In analogy to Appendix B we integrate by parts two times, yielding

Ij =
2µi(jk)

Q

[
1

Q
cos[Q(Ri −R′i)]

e
i
√

2µj(ik)E
mi

mi+mk
R′i/ sinϕ∗j

R
′3/2
i

]∣∣∣∣∣
∞

Ri

−
2µi(jk)

Q2

∞∫
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dR′i cos[Q(Ri −R′i)]
e
i
√

2µj(ik)E
mi

mi+mk
R′i/ sinϕ∗j

(
i
√

2µj(ik)ER
′
i

mi

mi+mk
/ sinϕ∗j − 3

2

)
R
′5/2
i

w
2µi(jk)

Q2

[
0− e

i
√

2µj(ik)E
mi

mi+mk
Ri/ sinϕ∗j

R
3/2
i

]

−
2µi(jk)

Q2

∞∫
Ri

dR′i cos[Q(Ri −R′i)]
i
√

2µj(ik)E
mi

mi+mk
/ sinϕ∗j · e

i
√

2µj(ik)E
mi

mi+mk
R′i/ sinϕ∗j

R
′3/2
i

=−
2µi(jk)

Q2

e
i
√

2µj(ik)E
mi

mi+mk
Ri/ sinϕ∗j

R
3/2
i

−
2µi(jk)

Q2

− 1

Q
sin[Q(Ri −R′i)]

i
√

2µj(ik)E
mi

mi+mk
/ sinϕ∗j · e

i
√

2µj(ik)E
mi

mi+mk
R′i/ sinϕ∗j

R
′3/2
i

∣∣∣∣∣∣
∞

Ri

−
2µi(jk)

Q2

∞∫
Ri

dR′i
sin[Q(Ri −R′i)]

Q

e
i
√

2µj(ik)E
mi

mi+mk
R′i/ sinϕ∗j

R
′3/2
i

(
− mi

mi +mk
µj(ik)E/ sin2 ϕ∗j

)

=−
2µi(jk)

Q2

e
i
√

2µj(ik)E
mi

mi+mk
Ri/ sinϕ∗j

R
3/2
i

−
2µj(ik)

Q2
[0− 0]

+
2µi(jk)

Q2

∞∫
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dR′i
sin[Q(Ri −R′i)]

Q

e
i
√

2µj(ik)E
mi

mi+mk
R′i/ sinϕ∗j

R
′3/2
i

mi

mi +mk
µj(ik)E/ sin2 ϕ∗j

=−
2µi(jk)

Q2

e
i
√

2µj(ik)E
mi

mi+mk
Ri/ sinϕ∗j

R
3/2
i

+
1

Q2

2µi(jk)

∞∫
Ri

dR′i
sin[Q(Ri −R′i)]

Q

e
i
√

2µj(ik)E
mi

mi+mk
R′i/ sinϕ∗j

R
′3/2
i

 mi

mi +mk
µj(ik)E/ sin2 ϕ∗j .

(F.3)
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Again, the term proportional to R
′−5/2
i in the second line of Eq. (F.3) was neglected in the following

equalities. From Eq. (F.3) we can calculate the integral Ij ,

Ij −
1

Q2
I2

mi

mi +mk
µj(ik)E/ sin2 ϕ∗j = −

2µi(jk)

Q2

e
i
√

2µj(ik)E
mi

mi+mk
Ri/ sinϕ∗j

R
3/2
i

Ij

(
1− 1

Q2

mi

mi +mk
µj(ik)E/ sin2 ϕ∗j

)
= −

2µi(jk)

Q2

e
i
√

2µj(ik)E
mi

mi+mk
Ri/ sinϕ∗j

R
3/2
i

Ij

(
E −

Q2(mi +mk) sin2 ϕ∗j
miµj(ik)

)
=

2µi(jk)

µj(ik)

mi +mk

mi
sin2 ϕ∗j

e
i
√

2µj(ik)E
mi

mi+mk
Ri/ sinϕ∗j

R
3/2
i

Ij =
2µi(jk)(mi +mk) sin2 ϕ∗j

miµj(ik)

(
E − 2Q2

µj(ik)
sin2 ϕ∗j

) e
i
√

2µj(ik)E
mi

mi+mk
Ri/ sinϕ∗j

R
3/2
i

.

(F.4)

Consequently,

I =

3∑
j=1
j 6=i

Ij =

3∑
j=1
j 6=i

2µi(jk)(mi +mk) sin2 ϕ∗j

miµj(ik)

(
E − 2Q2

µj(ik)
sin2 ϕ∗j

) e
i
√

2µj(ik)E
mi

mi+mk
Ri/ sinϕ∗j

R
3/2
i

. (F.5)

The total expression for the first additional term of the asymptotic form of ui(ri, Ri) in the limit

Ri →∞ and ri fixed, reads

H
(1)
i (Ri) =

3∑
j=1
j 6=i

(2µj(ik))
−1/4

(
mi +mk

mi
sinϕ∗j

)5/2

A(ϕ∗j )
e
i
√

2µj(ik)E
mi

mi+mk
Ri/ sinϕ∗j

R
3/2
i

×
2µi(jk)

µj(ik)

(
E − 2Q2

µj(ik)
sin2 ϕ∗j

) r0i∫
0

dr′i r
′
iu
b
i (r
′
i)Vi(r

′
i) .

(F.6)

The second termH
(2)
i (ri, Ri) (Eq. (4.32)) is obtained by integrating over the k-interval

[√
2µi(jk)E;∞

]
,

where the wavenumber Qk due to E =
1

2µjk
k2 +

1

2µi(jk)
Q2
k becomes a complex quantity,

Qk=̂iK and k=̂QK , (F.7)

while K and QK are real quantities. Then,

E =
1

2µjk
k2 +

1

2µi(jk)
Q2
k −→ E =

1

2µjk
Q2
K −

1

2µi(jk)
K2 . (F.8)
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Differentiating the second relation in Eq. (F.8) leads to

1

2µjk
2kdk =

1

2µi(jk)
2KdK

dk =
µjk
µi(jk)

K

k
dK ,

(F.9)

where we used k=̂QK . So we can transform the integrals over k, resulting when inserting the Green’s

function (4.29a) into Eq. (4.11),

− ·
4µi(jk)

π

√
2µjkE∫
0

dk u
(−)
k (ri)e

iQkRi

Ri∫
0

dR′i
sin(QkR

′
i)

Qk

∞∫
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dr′i u
(−)∗
k (r′i)Vi(r

′
i)Qi(r

′
i, R
′
i)

− ·
4µi(jk)

π

√
2µjkE∫
0

dk u
(−)
k (ri)

sin(QkR
′
i)

Qk

∞∫
Ri

dR′i eiQkRi

∞∫
0

dr′i u
(−)∗
k (r′i)Vi(r

′
i)Qi(r

′
i, R
′
i) ,

(F.10)

into integrals over K

H
(2)
i (ri, Ri) =−

4µi(jk)

π

∞∫
0

dK
µjk
µi(jk)

K

k
·
u

(−)
QK

(ri)

iK

×

ei2KRi

Ri∫
0

dR′i sin(iKR′i) + sin(iKRi)

∞∫
Ri

dR′ie
i2KR′i

 r0∫
0

dr′iu
(−)∗
QK

(r′i)Vi(r
′
i)Qi(r

′
i, R
′
i)

=− 4

π

∞∫
0

dK µjk
u

(−)
QK

(ri)
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e−KRi

Ri∫
0

dR′i i · sinh(KR′i) + i · sinh(KRi)

∞∫
Ri

dR′i e−KR
′
i


×

r0∫
0

dr′i u
(−)∗
QK

(r′i)Vi(r
′
i)Qi(r

′
i, R
′
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=− 4

π

∞∫
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u

(−)
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e−KRi

Ri∫
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dR′i sinh(KR′i) + sinh(KRi)

∞∫
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′
i
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×

r0∫
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(−)∗
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(r′i)Vi(r
′
i)Qi(r

′
i, R
′
i) .

(F.11)

The integration over K is split according to
∞∫
0

dK =
K0(Ri)∫

0

dK +
∞∫

K0(Ri)

dK with K0(Ri) · Ri → ∞

and K0(Ri)→ 0 for Ri →∞. For K ≥ K0 we solve the integral over R′i via integration by parts and
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use the asymptotic form of Qi(ri, Ri) from Eq. (4.28) (considering Ri-dependent terms only),

H̃
(1)
ij (ri, Ri) = sinh(KRi)

∞∫
Ri

dR′i e−KR
′
i
e
i
√

2µj(ik)E
mi

mi+mk
R′i/ sinϕ∗j

R
′3/2
i

= sinh(KRi)

∞∫
Ri

dR′i e−KR
′
i
e
i
√

2µj(ik)E
mi

mi+mk
R′i/ sinϕ∗j

R
′3/2
i

=
sinh(KRi)

i
√

2µj(ik)E
mi

mi+mk
/ sinϕ∗j −K

· e
i
√

2µj(ik)E
mi

mi+mk
R′i/ sinϕ∗j −KR′i

R
′3/2
i

∣∣∣∣∣
∞

Ri

+O

(
1

R
5/2
i

)

w 0− 1

2

(
eKRi − e−KRi

) e
i
√

2µj(ik)E
mi

mi+mk
Ri/ sinϕ∗j−KRi

R
3/2
i

(
i
√

2µj(ik)E
mi

mi+mk
R′i/ sinϕ∗j −K

)
=

1

2

e
i
√

2µj(ik)E
mi

mi+mk
Ri/ sinϕ∗j

R
3/2
i

(
K − i

√
2µj(ik)E

mi

mi+mk
/ sinϕ∗j

) +O
(
e−2K0Ri

)
.

(F.12)

Finally H̃
(1)
i (ri, Ri), which is the sum over H̃

(1)
ij (ri, Ri) with all parts of asymptotic Qi(ri, Ri), reads

H̃
(1)
i (ri, Ri) =

1

2

3∑
j=1
j 6=i

(2µj(ik))
−1/4

(
mi +mk

mi

)3/2 (
sinϕ∗j

)5/2 e
i
√

2µj(ik)E
mi

mi+mk
Ri/ sinϕ∗j

R
3/2
i

(
K − i

√
2µj(ik)E

mi

mi+mk
/ sinϕ∗j

) .
(F.13)

The remaining term (including the Ri-dependent part of asymptotic Qi(ri, Ri) only) is calculated as

H̃
(2)
ij (ri, Ri) =e−KRi

Ri∫
0

dR′i
eKR

′
i − e−KR

′
i

2

e
i
√

2µj(ik)E
mi

mi+mk
R′i/ sinϕ∗j

R
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i

=
1
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K + i
√

2µj(ik)E
mi

mi+mk
/ sinϕ∗j

×

[
e
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√
2µj(ik)E
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R′i/ sinϕ∗j − e
−KR′i+i

√
2µj(ik)E

mi
mi+mk

R′i/ sinϕ∗j

R
′3/2
i

]∣∣∣∣∣
Ri

0

+O

(
1

R
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i

)

w
1

2

e−KRi

K + i
√

2µj(ik)E
mi

mi+mk
/ sinϕ∗j

e
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mi
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R′i/ sinϕ∗j
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(
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)
w

1

2
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Ri/ sinϕ∗j
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i

(
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mi

mi+mk
/ sinϕ∗j

) .
(F.14)
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Again, H̃
(2)
i (ri, Ri) is the sum over H̃

(2)
ij (ri, Ri) and contains the total asymptotic form of Qi(ri, Ri),

H̃
(2)
i (ri, Ri) =

1

2

3∑
j=1
j 6=i

(2µj(ik))
−1/4

(
mi +mk

mi

)3/2 (
sinϕ∗j

)5/2 e
i
√

2µj(ik)E
mi

mi+mk
Ri/ sinϕ∗j

R
3/2
i

(
K + i

√
2µj(ik)E

mi

mi+mk
/ sinϕ∗j

)
(F.15)

Terms of order R−αi with α > 3
2 are neglected in Eqs. (F.12) and (F.14). In Eq. (F.14) we put

Ri∫
0

dR′i =
d∫
0

dR′i +
Ri∫
d

dR′i, where d is such that the asymptotic form of Qi(ri, Ri) can be applied and

the lower boundary does not contribute. In the interval 0 ≤ K ≤ K0 again we can estimate the

correction term to be of the order O

(
1

R2
i

)
for Ri →∞. The the total term H

(2)
i (ri, Ri) is obtained

by inserting H̃
(1)
i and H̃

(2)
i into Eq. (F.11) and adding the estimated correction term of order O

(
1

R2
i

)
,
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yielding

H
(2)
i (ri, Ri) =− 4

π
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(F.16)
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H
(2)
i (ri, Ri) =− 4

π

3∑
j=1
j 6=i

(
2µj(ik)

)−1/4
(
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(F.17)

We made use of the relation E =
1

2µjk
Q2
K −

1

2µi(jk)
K2 ⇒ K2 =

µi(jk)

µjk
Q2
K − 2µi(jk)E in the fourth

equality of Eq.(F.16) and performed the back transformation according to

E =
1

2µjk
Q2
K −

1

2µi(jk)
K2 −→ E =

1

2µjk
k2 +

1

2µi(jk)
Q2
k (F.18)

by using Eqs. (F.7) and (F.9) in the fifth equality of Eq.(F.16). Because K0(Ri)→ 0 for Ri →∞ the

lower integral boundary of the k-integral in Eq. (F.16) due to Eq. (F.18) becomes
√

2µjkE.
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