
Mobile Peer Model
A mobile peer-to-peer communication and

coordination framework - with focus on mobile
design constraints

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Software Engineering & Internet Computing

eingereicht von

Peter Tillian, BSc
Matrikelnummer 01026312

an der Fakultät für Informatik

der Technischen Universität Wien

Betreuung: Ao.Univ.Prof. Dipl.-Ing. Dr.techn. Eva Kühn
Mitwirkung: Projektass. Dipl.-Ing. Stefan Craß

Wien, 10. Oktober 2017
Peter Tillian Eva Kühn

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.ac.at

Die approbierte Originalversion dieser Diplom-/
Masterarbeit ist in der Hauptbibliothek der Tech-
nischen Universität Wien aufgestellt und zugänglich.

http://www.ub.tuwien.ac.at

The approved original version of this diploma or
master thesis is available at the main library of the
Vienna University of Technology.

http://www.ub.tuwien.ac.at/eng

Mobile Peer Model
A mobile peer-to-peer communication and

coordination framework - with focus on mobile
design constraints

DIPLOMA THESIS

submitted in partial fulfillment of the requirements for the degree of

Diplom-Ingenieur

in

Software Engineering & Internet Computing

by

Peter Tillian, BSc
Registration Number 01026312

to the Faculty of Informatics

at the TU Wien

Advisor: Ao.Univ.Prof. Dipl.-Ing. Dr.techn. Eva Kühn
Assistance: Projektass. Dipl.-Ing. Stefan Craß

Vienna, 10th October, 2017
Peter Tillian Eva Kühn

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.ac.at

Erklärung zur Verfassung der
Arbeit

Peter Tillian, BSc
Schußwallgasse 1/10/13, 1050 Wien

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 10. Oktober 2017
Peter Tillian

v

Acknowledgements

Firstly, I would like to thank my thesis advisor Ao.Univ.Prof. Dipl.-Ing. Dr.techn.
Eva Kühn and my thesis assistant Projektass. Dipl.-Ing. Stefan Craß of the Space
Based Computing Research Group from the TU Wien, who both supported me from the
beginning of my project.

Furthermore, I would also like to thank Martin Planer, Matthias Schwayer and Gerson
Joskowicz for the useful comments in the weekly technical board meetings or during
presentations of the current implementation status of the framework. Mention should
also be made here of Konrad Steiner who used early versions of the framework and gave
great feedback for improvements.

Next, a big thank you to my best friend since years, Jörg Schoba, for making this
collaboration thesis a success. Thanks for the interesting discussions and not to forget
for giving me a couple of motivation boosts.

I would also like to thank Sabrina and Daniela for their patience while proofreading the
quite long thesis.

Finally, I want to express my very profound gratitude to my family, my father Arnold, my
mother Sabine and my sister Marlene with her boyfriend Manfred for all the support in
the last years. And last but not least, a big thank you to my girlfriend Anita, who always
stood behind me - I hope in the next time we can compensate some long nights in front
of the computer with some more activities together. Without you all, the completion of
my study would not have been possible. Thank you!

vii

Abstract

Various peer-to-peer coordination models and frameworks have evolved in the last 20 years,
facilitating the design and implementation of complex coordination and collaboration tasks
in highly distributed systems. However, none of them were specifically designed for mobile
environments and they do not cope with typical constraints, like battery consumption,
limited processing power and discontinuous availability. Nowadays, a mobile device
can act as an autonomous node in such a distributed network and is also capable of
performing complicated tasks due to increasing capabilities in hardware and software.
Therefore, in the course of this work, a coordination framework has been implemented
which is particularly tailored for mobile devices. The Peer Model developed at the TU
Wien has been chosen as the underlying coordination model, for which also a reduced
feature set has been elaborated as part of this work. By using the provided framework,
application developers are supported in terms of P2P communication and coordination
logic and can hence focus on the application logic only. The framework is implemented
for the Android platform, but is developed with cross-platform considerations in mind.
In addition to a proof-of-concept Android messenger application, the framework has been
evaluated with performance benchmark tests.

ix

Kurzfassung

In den letzten 20 Jahren wurden diverse Peer-to-Peer-Koordinationsmodelle und Fra-
meworks entwickelt, die Designer und Entwickler von Applikationen beim Koordinieren
von komplexen Datenflüssen unterstützen. Keine der bisherigen Lösungen wurde jedoch
speziell für mobile Geräte in einem verteilten Netzwerk konzipiert und behandelt typische
Einschränkungen wie z.B. limitierte Akkulaufzeit, schwächere Prozessorgeschwindigkeit
und begrenzte Netzwerkverfügbarkeit. Heutzutage können mobile Endgeräte, aufgrund
immer stärker werdender Hardware und ausgereifter Betriebssysteme, allerdings bereits
komplizierte Aufgaben in einem P2P-Netzwerk übernehmen. Aus diesem Grund wurde im
Zuge dieser Arbeit ein speziell für mobile Geräte optimiertes Koordinations-Framework
entwickelt. Als zugrundeliegendes Koordinationsmodell wurde das an der TU Wien entwi-
ckelte Peer Model ausgewählt, für welches auch ein reduziertes und für ein mobiles Umfeld
optimiertes Feature-Set ausgearbeitet wurde. Mit Hilfe des bereitgestellten Frameworks
werden Entwickler und Designer, die eine P2P-Kommunikationsarchitektur benötigen
und außerdem den Datenfluss zwischen verschiedenen Peers im verteilten Netzwerk koor-
dinieren möchten, beim Entwurf und der Implementierung von mobilen Applikationen
unterstützt. Einerseits wird die Entwicklungszeit verringert und andererseits können
sich Entwickler auf die Applikationslogik konzentrieren. Das Framework steht für die
Android-Plattform zur Verfügung, plattformübergreifende Aspekte wurden jedoch von
Beginn des Softwareentwicklungsprozesses an beachtet. Das Framework wurde neben einer
Proof-of-Concept Messenger Applikation für Android Geräte auch mit Benchmark-Tests
evaluiert.

xi

Contents

Abstract ix

Kurzfassung xi

Contents xiii

1 Introduction 1
1.1 Motivation and problem statement . 1
1.2 Aim of the work . 2
1.3 Structure of the work . 2

2 Analysis of existing approaches and background technologies 5
2.1 Review process . 5
2.2 Structured P2P overlay networks . 6
2.3 Unstructured P2P overlay networks . 14
2.4 Coordination frameworks and models . 14
2.5 General P2P frameworks and protocols . 15

3 Requirements on the MPM and selection of background technologies 23
3.1 Requirements on the Mobile Peer Model 23
3.2 Evaluation and selection of background technologies 27

4 The Peer Model 33
4.1 The Peer Model . 33

5 Design 39
5.1 Distribution of work . 39
5.2 The Mobile Peer Model . 40
5.3 Overall system architecture . 43
5.4 Architecture of an MPM host . 46
5.5 Architecture of the Runtime-Peer . 47
5.6 Mobile design considerations . 55
5.7 Modeler and code generation . 65

xiii

6 Implementation 67
6.1 Execution environments . 67
6.2 Software artifacts . 68
6.3 Runtime-Peer . 70
6.4 Notifier-Peer . 81
6.5 Registration . 82
6.6 Mobile design considerations . 82
6.7 Tests . 98

7 Proof of concept application 101
7.1 A secure P2P messenger app with the MPM framework 101
7.2 A coordination focussed Android app with the MPM framework 113

8 Evaluation and critical reflection 115
8.1 Benefits of the framework . 115
8.2 Runtime-Peer and persistence performance 118
8.3 Open issues . 124
8.4 Fulfilment of imposed requirements . 126

9 Conclusion 127
9.1 Summary . 127
9.2 Future work . 128

List of Figures 131

List of Tables 136

Acronyms 137

Bibliography 141

CHAPTER 1
Introduction

The Space Based Computing Research Group from the TU Wien is developing a pro-
gramming model that facilitates the design and implementation of complex coordination
and collaboration tasks in highly distributed environments.

The design of the so-called Peer Model [KCJ+13] is inspired by tuple-space communication,
data-driven workflow and a staged, event-driven architecture. In a nutshell, the main
components of the system are structured, re-usable and addressable constructs called
Peers. They can exchange data with each other, encapsulated in so-called Entries, and
have an internal coordination mechanism (Wiring). Only communication and coordination
parts of the system are described in the model in order to enable separation of concerns
and let application developers focus mainly on business logic.

1.1 Motivation and problem statement

In the last couple of years, the capabilities of mobile devices have been enhanced drastically.
This is due to increasing processing performance, higher network availability and data
transmission speed on the one hand and the usage of sophisticated mobile operating
systems on the other hand. Therefore, a mobile device might act as an autonomous node
in a highly distributed network and is also capable of performing complicated tasks.

The integration of mobile devices in a peer-to-peer network modeled by the Peer Model
seems also certainly conceivable. However, the design of the model and also the current
implementations are focussing on desktop and server environments. Although the
capabilities are increasing steadily, a mobile device has still several limitations in contrast
to desktop or server machines. These constraints, like limited processing power, battery
consumption and uncontinuous availability, were not taken into account when designing
and implementing the current profiles of the model. Furthermore, a thorough research

1

1. Introduction

confirms the lack of existing P2P coordination frameworks that are designed specifically
for mobile environments.

The Peer Model has to be modified in a way that the coordination principles and the
semantics mostly remain the same, while typical mobile limitations are considered. On
the one hand, the framework shall be usable for desktop and server applications to realize
i.e. a central service, but on the other hand, it shall be possible to seamlessly integrate it
into a current mobile platform. There, it shall not consume too much system resources
even under heavy load in order to maintain usability. This is particularly important
if the application is running in the background of a mobile device. Furthermore, in
contrast to applications that are executed on a desktop or server machine, applications
and especially background threads or services on a mobile device might be terminated
by the mobile operating system at any point in time. The lifetime of a background
process on a mobile device depends among other things on the amount of currently used
resources, the hardware performance of the device and also the version of the operating
system.

1.2 Aim of the work
The main goal of this thesis is the design and implementation of a framework that
facilitates the development of applications that make use of P2P communication and
coordination/collaboration functionality, while considering mobile limitations and con-
straints. As pointed out in the previous section, mobile devices can definitely act as
autonomous peers in such a network due to increasing capabilities in hardware and
software. Together with the technical board of the Space Based Research Group from
the TU Wien, a reduced version of the original Peer Model shall be formulated, which is
particularly designed for mobile environments. This model shall act as the underlying
coordination model of the framework. On the one hand the framework shall be usable on
any machines that can run a Java virtual machine (i.e. desktop or server) and on the
other hand it shall also be possible to seamlessly integrate with the Android platform.
Although it is only developed for one mobile platform, cross-platform considerations will
be taken into account from the beginning of the software development lifecycle.

Before starting with the implementation of the Mobile Peer Model framework (MPM),
existing coordination models and frameworks shall be evaluated and compared with the
original Peer Model. Also peer-to-peer overlay network protocols and further potential
background technologies shall be analysed and compared to each other.

1.3 Structure of the work
This master thesis is performed in cooperation with Jörg Schoba, also a software engi-
neering student at the TU Wien. Individual areas of responsibility have been established
before starting to impose requirements on the framework. However, some parts are
conducted in close collaboration and those results will therefore be described in each work.

2

1.3. Structure of the work

My area of responsibility is the core framework (including coordination functionality and
important system components), mobile design considerations (i.e. how to integrate the
core module in current mobile operating systems) and the persistence layer. Jörg’s focus
is on the communication and serialization layer as well as the security and scalability
aspects of the system.

Before the implementation phase of the project started, we conducted a scientific literature
research on P2P overlay networks, protocols and other background technologies that
might be utilized in the framework. Also existing P2P frameworks and coordination
models are presented and evaluated in Chapter 2. The subsequent Chapter 3 first deals
with the functional and non-functional requirements on the framework (Section 3.1.1
and Section 3.1.2) and then covers an evaluation process if the found P2P systems and
background technologies are suitable in accordance to the imposed requirements. An
overview and relevant features of the existing coordination framework, the Peer Model,
which shall act as the underlying coordination model for the framework is presented in
Chapter 4. Chapter 5 describes the design part of the software development process. It
starts by defining a reduced mobile version of the Peer Model, followed by an overview
about the overall system architecture and important components. Then, crucial mobile
design decision are discussed. Chapter 6 deals with the implementation of the framework
and gives deeper insights into some particular parts of the system. In Chapter 7 important
setup steps and implementation details of a proof-of-concept Android application are
described. The subsequent chapter points out the benefits of the developed software
solution by comparing the implementation effort of the presented P2P application with
and without the MPM framework. Additionally, this chapter provides a brief performance
analysis of the persistence layer. Chapter 9 contains a short summary and provides some
ideas on future work.

3

CHAPTER 2
Analysis of existing approaches

and background technologies

The first part of this chapter aims to find and present popular peer-to-peer overlay
networks and their implementations. Then, more advanced peer-to-peer coordination
frameworks and relevant background technologies of P2P systems are presented.

The research is performed in close collaboration with Jörg Schoba [Sch17a]. The peer-to-
peer overlay networks are split up, me focusing on structured networks whereas Jörg is
presenting the unstructured ones. Likewise, background technologies and more advanced
coordination/collaboration frameworks are split up into two parts.

2.1 Review process
The review process is conducted in a structured and well defined way. The literature re-
search is mainly performed via Google’s search engine Scholar1, which delivers results from
different scientific literature pages. The search includes terms like ’peer-to-peer networks’,
’mobile peer-to-peer’, ’internet peer-to-peer’, ’android peer-to-peer’, ’iOS peer-to-peer’,
’peer-to-peer protocol’, ’internet peer-to-peer’, ’mobile peer-to-peer communication’ and
’mobile coordination framework’.

Most results linked to academic journals, books and papers of the digital libraries of
IEEE Xplore2, Springer3 and the ACM 4. Articles, papers and books that solely deal with
Peer-To-Peer (P2P) communication in distributed systems, like P2P overlay networks,
and additionally more advanced frameworks that also have an internal coordination

1https://scholar.google.at/ accessed: 2016-10-01
2http://ieeexplore.ieee.org accessed: 2016-10-01
3http://http://link.springer.com accessed: 2016-10-01
4http://dl.acm.org accessed: 2016-10-01

5

https://scholar.google.at/
http://ieeexplore.ieee.org
http://http://link.springer.com
http://dl.acm.org

2. Analysis of existing approaches and background technologies

mechanism are included. As a quality measure the citation count of the papers has been
considered.

Works that describe technologies or frameworks applicable only in a Local Area Network
(LAN) and not for distributed systems are excluded from the research. Also informal
documents, like web forums or wikis, were not used. Official websites of reviewed
technologies are added as an additional information source for the reader.

2.2 Structured P2P overlay networks

In the following subsections some important structured P2P network protocols that
gained popularity in the last couple of years are presented and evaluated. In contrast to
unstructured P2P networks, the content in all structured P2P networks is well organized.
Nearly all of them make use of so-called Distributed Hash Tables (DHT), which store
information about the location of objects. More precisely, for each data item a unique key
is generated, which is then mapped to a specific peer. With this approach, an efficient
discovery of data items is possible. Furthermore, the protocols define the behavior of the
system when nodes join or leave the network to stay in a consistent state.

In Chapter 3 it is analyzed if the presented protocols can be chosen or easily adapted for
a mobile environment, especially in the context of the requirements of the Mobile Peer
Model (MPM).

2.2.1 Content Addressable Network (CAN)

The Content Addressable Network (CAN) [RFH+01] is a distributed P2P infrastructure
and was one of the first implemented DHTs, developed in 2001. It is designed in a
decentralized way and its key characteristics are scalability, fault-tolerance and self-
organization.

Architecture and lookup mechanism: As described in [LCP+05], a CAN network
uses a d-dimensional coordinate space to store key-value pairs of available files. The
space is partitioned among multiple zones where each participating peer is responsible
for a distinct part of the stored data (see Figure 2.1). The shared deterministic hash
function maps a key K of a value V onto a point P in the coordinate space and can
be applied by any peer. Each peer stores the coordinates of its immediate neighbors in
the coordinate space. In a d-dimensional space two nodes are adjacent to each other if
their coordinates overlap along d-1 dimensions. If there is a lookup request on a peer for
a data item whose calculated point P is not within its assigned coordinates, the peer
routes the request to the closest neighbor peer by using a greedy forwarding approach.
In such a situation a so-called CAN message is sent, which already holds the calculated
coordinates of the items destination. In case a peer actually holds a requested data item,
the item’s value V is routed back in the same way through the network.

6

2.2. Structured P2P overlay networks

Leaving and joining the network: The architecture of CAN allows nodes to leave
and join arbitrarily. A new node, that wants to join, has to know at least one node of
the network and generates a random new point NP in the space. Then a JOIN request is
sent through the network with the routing procedure mentioned above until it reaches
the node which is responsible for the point NP. Next, this node is splitting up its zone
and one half is assigned to the new node. As a last step, all nodes adjacent to the new
node and the new node itself have to update their routing tables. The new node uses
the routing information of the node that was split up before to get its neighbors and
finally both the new node and the one that was split up send out update messages to
their current neighbors.

In the event that a node wants to leave the network its neighbor’s Internet Protocol
(IP) addresses and the hash table have to be transferred to one of its adjacent nodes
[ATS04]. The new owner of the zone then merges the zone of the leaving node and
notifies its new neighbors about the change in the node structure. Apart from that, if a
node unexpectedly fails and is not able to notify its neighbors about leaving the network,
a periodical update message technique will detect the absence of a node with the result
that a controlled takeover mechanism will be enforced. Under normal circumstances the
neighbor of the unexpectedly failed node that is currently responsible for the smallest
zone will take over the orphaned zone. In the unlikely case that more than one node is
failing, an expanding ring search mechanism is initiated.

Further information: In [RWBB05] Reidemeister et al. reveal several attack vectors
of the CAN protocol and provide some counter measures, for example for a Man In
The Middle (MITM) attack. However, they do not deal with attacks on the application
level (i.e. inserting unwanted content into a node). Potential applications built upon
the CAN protocol are large distributed storage management systems that need fast
retrieval and insertion of files. Different research work on CANs could be found - one
implementation is for example the P2P Information Exchange Retrieval (PIER) query
engine [HHL+03], but none of them are still in production or in development. Aside from
that, no implementation for a mobile platform could be found.

7

2. Analysis of existing approaches and background technologies

Figure 2.1: A 2-d CAN coordinate space partitioned into (a) 5 nodes or (b) 6 nodes after
node F joined the network [ATS04].

2.2.2 Chord

Chord [SMK+01] is another P2P overlay network protocol based on a Distributed Hash
Table (DHT) and was introduced by a group of researchers at Massachusetts Institute of
Technology (MIT) in 2001.

Architecture and lookup mechanism: Chord makes use of a variant of so-called
consistent hashing, which was first described by Karger et al. in [KLL+97]. Generally,
the advantage of consistent hashing is that when the size of the hash table changes, on
average only K/N keys instead of K have to be remapped, where K is the number of
already hashed keys and N is the number of different containers used. In the case of
Chord this means that if a node joins or leaves the network, only a fraction of already
hashed keys has to be transferred to another node. Additionally, consistent hashing
ensures a normal distribution of keys on participating peers.

For each key and also each node an m-bit long Identifier (ID) is generated, according
to [CC10] and [DGKW10]. This integer m is depending on the used hash function – for
example if SHA-1 is used the length of m is 160. Identifiers are ordered on an identifier
circle modulo 2M and range from 0 to 2M−1 (see Figure 2.2). A key K gets stored on the
first node whose identifier is equal to or follows K regarding the identifier space. This
node is then called the successor node of key K, denoted by successor(K). Conversely,
the predecessor node predecessor(K) of a key is the next node in the identifier circle in
the counter-clockwise direction. In the simplest implementation each node only needs
the routing information of its successor node on the circle. For a given key K, the query

8

2.2. Structured P2P overlay networks

is then routed along the circle from successor to successor until a node contains the
requested key.

Leaving and joining the network: When a node n joins the network, specific keys
that were previously assigned to the successor of n must be reassigned to the new node
[ATS04]. Aside from that, if a node n gracefully leaves the network all its keys have to
be moved to its successor.

Improvements: The implementation mentioned above, where each node simply stores
its successor as routing information, has some disadvantages. First of all, the lookup speed
is quite slow (by traversing over all nodes) and furthermore the availability decreases
if different nodes fail simultaneously. Therefore, Chord introduces a second routing
table per peer. The so-called finger table contains, apart from the node’s successor and
predecessor, m links to other peers of the network. Let’s assume a node with ID n, then
the i-th entry in the finger table points to the n + 2i-th node. On an unsuccessful lookup
request with key K on node n this node now forwards the lookup to the highest node
with ID between n and k. As a result, the time required for resolving lookups is O(logN).
In Figure 2.2 a sample lookup request is illustrated.

Further information: There are several open-source implementations of the Chord
DHT in different programming languages (Java, C, C#, etc.). The reference implementa-
tion The Chord Project5 is written in the C language. Projects in Java are for example
Open Chord6 and Chordless7. Unfortunately, there is no ongoing development on any
of the projects. In addition, it has been proposed as a good candidate as an overlay
technology used for P2PSIP (see Section 3.2.7). In [ZO09] some improvements for the
protocol were presented to better support real-time communication systems.

Open-source implementations of Chord for the Android8 and the iOS platform9 exist,
but those can be seen as experimental activities only. Nevertheless, plenty of research
has been conducted regarding the Chord DHT, for example a distributed Domain Name
System (DNS) application built upon the Chord infrastructure as described in [CMM02].
Moreover, there exists a version of Chord with the goal of providing censorship resistance
by restricting the knowledge of the network for each node [HA02]. It makes use of a
similar approach as the Darknet mode of the unstructured P2P protocol Freenet, which
is described in more detail by Jörg in [Sch17a].

5https://github.com/sit/dht/ accessed: 2016-10-01
6http://open-chord.sourceforge.net/ accessed: 2016-10-01
7https://sourceforge.net/projects/chordless/ accessed: 2016-10-01
8https://github.com/puneetar/Chord---A-Distributed-Hashing-Technique--Android-

accessed: 2016-10-01
9https://github.com/jeremytregunna/Outset accessed: 2016-10-01

9

https://github.com/sit/dht/
http://open-chord.sourceforge.net/
https://sourceforge.net/projects/chordless/
https://github.com/puneetar/Chord---A-Distributed-Hashing-Technique--Android-
https://github.com/jeremytregunna/Outset

2. Analysis of existing approaches and background technologies

Figure 2.2: Example of a Chord identifier circle, including the finger table of node N8
[DGKW10]. On the left-hand side the routing possibilities of N8 are shown. The image
on the right-hand side depicts the sequence of routing steps for a lookup with key 53
starting from node N8. Note that the finger table in the image is not correct. The value
for entry N8+16 should be N32 and the correct value for N8+32 is N43.

2.2.3 Pastry

Another self-organizing decentralized P2P overlay network called Pastry [RD01] was
introduced by Microsoft Research Ltd. and the Rice University in 2001.

Architecture and lookup mechanism: Similar to the previously presented protocol
Chord (Section 2.2.2), Pastry generates randomly and normally distributed IDs (with
128-bit length) for each participating node by hashing i.e. the IP address of the node.
According to [SMR12], the node ID ranges from 0 to 2128−1 and is used to define the
position in a circular identifier space.

To route messages, Pastry makes use of prefix matching (introduced by Plaxton et al.
in [PRR99]). Therefore, each participating peer manages a routing table with logB N
rows and B-1 columns. Variable B is a system parameter with the typical value of 16,
defining the base of the chosen identifer (in this example hexadecimal). Each entry in
row r defines a link to a node whose ID shares the first r digits with the present node
(see also Figure 2.3). With that information Pastry routes a message to the peer whose
ID matches the largest prefix of a given key. In addition, each node keeps a so-called leaf
set L containing |L|/2 numerically closest larger node IDs and |L|/2 numerically closest
smaller node IDs, in relation to the present node’s ID [DGKW10]. Furthermore, a node
manages a neighborhood set M, which contains the node IDs and the IP addresses of
the |M | closest peers, according to a proximity metric described in [RD01]. The size
of L and M is typically B or a multiple of B – and therefore usually bigger than 16.
By using those three routing properties eventual message delivery is guaranteed, unless

10

2.2. Structured P2P overlay networks

|L|/2 adjacent nodes fail simultaneously. With larger number of nodes in the leaf and
neighborhood sets, reliability and fault resilience increase, but also the configuration
effort. The maximum hop count from peer to peer for a lookup request is O(logN).

Leaving and joining the network: When a new peer with ID X wants to join the
network it has to send a JOIN message to an arbitrary peer. This message is routed to
the node with ID numerically closest to the new node’s ID. All nodes which are visited
during the join request update their routing tables accordingly and also the new node
initializes its three routing properties with the received information. Finally, the new
node sends routing information to all nodes that need to know about its arrival. When
all tables are in a consistent state, periodical keep-alive messages are exchanged between
connected nodes. If a node failure is detected, all connected nodes must be informed to
update their routing tables as well as their leaf and neighborhood sets.

Further information: Several applications with different purposes built upon Pastry
exist, i.e. group communication/event notification, archival storage, co-operative web
caching, high-bandwidth content distribution and more. All of them can be accessed
via the website of the open-source Java implementation FreePastry10, developed by the
Rice University (last version from 2009). Other implementations in various programming
languages exist and a lot of research applications were developed built using Pastry.
No mobile applications could be found, neither for the Android nor the iOS platform.
Generally, an adaptation of FreePastry, which is written in Java 5, to a mobile platform
would be possible. Nevertheless, necessary firewall and port-forwarding configurations11

could not be performed in a public Wireless Local Area Network (W-LAN) - thus a
mobile application would work only with restrictions.

10http://www.freepastry.org/ accessed: 2016-10-02
11http://www.freepastry.org/FreePastry/nat.html accessed: 2016-10-03

11

http://www.freepastry.org/
http://www.freepastry.org/FreePastry/nat.html

2. Analysis of existing approaches and background technologies

Figure 2.3: Example of a Pastry’s routing table (left) and an identifier circle (right)
[DGKW10]. On the right side a lookup chain is shown: the peer with ID 859fdc is
requested for an item with key d57b2d. Because the key shares 0 digits with the current
node the 0 -th row is chosen and the column with the common prefix (here d) is selected.
A routing message to the node is sent, which is stored under this index (here d13a14)
in the table and the lookup process is continued. This procedure is repeated until node
d57b0c is reached, which holds the key.

2.2.4 Tapestry

A similar structured P2P overlay network as the previously mentioned Pastry (see Section
2.2.3) is Tapestry [ZKJ01]. Also developed in 2001 by a team of researchers from MIT,
University of California and Berkeley, the main goal of Tapestry is to provide a high-
performant, scalable and location-independent message routing system. Its main routing
mechanism is the same as in Pastry by using prefix matching, presented by Plaxton et al.
[PRR99] in 1999.

The main difference between the two overlay protocols is the handling of network
locality. Tapestry constructs optimal routing tables with focus on local proximity of
different nodes [LA10]. A further difference is the possibility of using data replicas to
optimize performance, as described in [DGKW10]. In Tapestry the lookup mechanism
distinguishes between several replicated items using metrics that can be defined for each
specific application.

Similar to other P2P systems introduced before, Tapestry is self-organizing and also
remains in a consistent state if nodes join or leave the network.

Further information: One implementation of Tapestry is Chimera12. It is a light-
weight C implementation that uses functionality of Pastry and Tapestry. OceanStore13

12http://current.cs.ucsb.edu/projects/chimera/ accessed: 2016-10-04
13http://oceanstore.cs.berkeley.edu/ accessed: 2016-10-04

12

http://current.cs.ucsb.edu/projects/chimera/
http://oceanstore.cs.berkeley.edu/

2.2. Structured P2P overlay networks

is a global persistent data storage system that is built upon the design and protocol of
Tapestry [ZHS+04]. No application for a current mobile platform could be found.

2.2.5 Kademlia

Another decentralized P2P system that can be categorized as a structured P2P overlay
network is Kademlia [MM02]. Its main features are consistency and performant queries
within a distributed fault-prone environment by using an XOR-based metric topology.

Architecture and lookup mechanism: According to [LCP+05] and [CC10] Kadem-
lia uses the same approach as other implemented DHTs, by assigning 160-bit random
IDs to nodes and keys. Key-value pairs are stored on peers whose ID is close to the key.
To lookup a key in the network, an XOR-based algorithm is used which is able to find an
item in O(logN). Two nodes are further apart from each other if the result of the XOR
operation between their node IDs is higher. For each bit i in the node ID, the routing
table contains a separate list (called bucket), which stores contact information to nodes
that differ in the i-th bit from the present node. All other first n-1 bits are matching the
ID of the present node. For example, the distance between the node with ID 1010 and
a key with ID 1100 would be 0110. Hence, the requested node would contact a subset
of nodes of the second bucket next, because the present node ID and the key start to
differ in the second bit. This approach is similar to the prefix matching approach used
by Pastry (see Section 2.2.3) and Tapestry (see Section 2.2.4), but a Kademlia node
sends the requests in parallel using asynchronous messaging. Another difference is that a
requested node will not go on searching for the target node, but responds with a node
ID that is closest to the searched key. The node that originated the request will then
contact the nodes it has learned about and can so reduce the distance to a node by half
for each iteration until the target node is found (see Figure 2.4). With the concurrent
lookup mechanism, lookup latency can be shortened, but with the drawback of higher
demand in the system.

Leaving and joining the network: In case a new node wants to join, it has to know
one existing node within the network. The new node n first inserts the already known
peer m into the appropriate bucket and afterwards performs a lookup request for peer
m. The new node successively inserts contact information of other nodes based on the
responses of lookup requests and at the same time fills up its node ID and address in
buckets of contacted nodes. When a node leaves the network, no systematic mechanism
takes effect. On a lookup request, a node initially creates a PING message to check if
the peer is still alive - in case of unavailability the reference to the node in the specific
bucket is simply removed.

Further information: As described, when a Kademlia node receives a message request
or response from another node, it will update the sender’s contact information. As a

13

2. Analysis of existing approaches and background technologies

result of that, peers handling a lot of messages are widely known and will therefore take
on more workload in the network [LA10].

The protocol specified in the Kademlia paper [MM02] of 2002 was implemented with
several different programming languages in a lot of of different projects. A very early
Python application is for example Khashmir14. A quite young implementation from 2014,
which is still in ongoing development, can be found on GitHub15. Here the developer
claims to evade known Network Address Translation (NAT) problems by using Remote
Procedure Calls (RPC) over User Datagram Protocol (UDP). This setup does imply,
however, that message arrival is not guaranteed.

Further applications in production and in ongoing development are i.e. RetroShare16

(a decentralized private and secure platform for filesharing, chatting and messaging) or
telehash17 (a decentralized and interoperable protocol which enables secure networking).
TomP2P18 is a Kademlia implementation in Java 6 that was also successfully tested on
Android devices.

Moreover, popular implementations of unstructured P2P overlay networks (see Section
2.3) like BitTorrent, Gnutella and Overnet (a successor of eDonkey) use principles of
Kademlia. IP addresses of peers are stored in a DHT and the put and get requests
to insert or request those addresses are realized with the Kademlia algorithm. For
example, client implementations of BitTorrent exist for all current mobile platforms. For
more information on those network protocols and current development states see section
Unstructured P2P overlay networks in the thesis of Jörg Schoba [Sch17a].

2.3 Unstructured P2P overlay networks

Unlike Structured P2P systems, several unstructured P2P overlay networks exist, where
no algorithm controls the distribution of content and logic. More precisely, peers may join
and leave the network without affecting any other peer’s configuration or responsibilities,
as it is the case for all structured networks reviewed above. A detailed discussion and
evaluation on unstructured overlay networks and their implementations can be found in
the same chapter in the thesis of Jörg ([Sch17a]), including Napster, Gnutella, FastTrack,
Freenet, eDonkey and BitTorrent.

2.4 Coordination frameworks and models

Several frameworks could be found that facilitate the coordination of data flow in
highly distributed networks, for example DataSpaces [DPK12], TuCSoN [OZ99], DTuples

14http://khashmir.sourceforge.net/ accessed: 2016-10-04
15https://github.com/bmuller/kademlia accessed: 2017-01-18
16https://github.com/RetroShare/RetroShare accessed: 2016-10-04
17http://telehash.org/ accessed: 2016-10-04
18https://tomp2p.net/ accessed: 2016-01-18

14

http://khashmir.sourceforge.net/
https://github.com/bmuller/kademlia
https://github.com/RetroShare/RetroShare
http://telehash.org/
https://tomp2p.net/

2.5. General P2P frameworks and protocols

Figure 2.4: Example of a lookup request in the Kademlia overlay network [MM02]. The
node with ID-prefix 0011 finds the node with ID-prefix 1110 by sequentially learning and
querying closer nodes. Kademlia makes use of an XOR-metric to calculate the distance
between two IDs.

[JXJY06] and Comet [LP05]. Many of them are based on tuple-spaces and a large part
makes use of DHTs (Distributed Hash Tables), which were described in more detail in
Section 2.2. In particular, reference is made here to Jörg’s thesis [Sch17a], where these
and other coordination frameworks are described in a more detailed fashion and also to
[Alt16], in which Altschach describes dozens of tuple-space-based middleware systems in
great detail.

2.5 General P2P frameworks and protocols
To conduct a complete research and analysis of existing technologies, also existing P2P
frameworks and protocols were searched and examined. Here, focus is laid on higher-
level distributed systems and those which only work in intra-process environments were
excluded.

2.5.1 JADE - a platform for P2P agent based applications

The Java Agent DEvelopment framework (JADE) is an open-source framework for
simplifying the development of interoperable multi-agent based applications. It was first
introduced by Bellifemine et al. in 1999 [BPR99] and is a trademark of Telecom Italia19.
Many applications in the research area are built upon the JADE agent-based platform
(i.e. [UVG05]), but also mission critical applications in the telecommunication area (i.e.
Italy and Britain) are implemented on JADE.

19http://www.telecomitalia.com/ accessed: 2016-10-12

15

http://www.telecomitalia.com/

2. Analysis of existing approaches and background technologies

Characteristics and architecture

The conceptual model of the JADE platform contains on the first hand peer-to-peer
networking and on the other hand the multi-agent paradigm. The communication of
JADE is FIPA-compliant20. FIPA is a computer society standards organization, which
intends to promote the interoperation of heterogeneous agents and the services that they
represent. Agents can therefore operate across platform boundaries. The agent paradigm
basically needs the peer-to-peer communication, because agents need to communicate
with other agents to achieve their objectives. According to [BCP+03], an agent is an
autonomous, proactive and social software component. Consequently, an agent may
change its behaviour and take own decisions (autonomous), is able to take initiative
(proactive) and in order to accomplish its tasks it has to interact with other agents
(social).

Each JADE agent is located within a JADE runtime (container) and the set of all
containers is called platform [BCP+03]. Each agent is able to perform basic service
invocations like discovery of and communication with other agents. Furthermore, each
agent has a unique ID and may implement a set of services, which can be provided
to other agents. Asynchronous messaging enables temporal independence between two
agents. If an agent is currently not available or even does not exist yet, the message is
being cached in the container. Besides the agent abstraction, JADE provides a skeleton
of typical interaction patterns, i.e. execution and composition of specific tasks including
negotiations and auctions. Aspects that are not strictly related to application logic
(i.e. synchronization issues, timeout handling, error conditions) can be neglected by the
application developers.

To facilitate debugging and deployment phases, JADE includes graphical tool support to
configure and control platforms and containers. Moreover, with the help of the so-called
sniffer agent (GUI application) messages between agents can be eavesdropped.

According to Chmiel et al. in [CGK+05] the JADE agent platform is very efficient. They
ran experiments with thousands of agents and could demonstrate that the processing
time linearly increases with the number of agents or exchanged messages.

Implementations

In [UTG08] and [BCG14] sample applications for the Android platform were developed
with the help of Add-ons, which contain additional classes and replacements for the
JADE core module. Those Add-ons enable the deployment on Java-enabled cell-phones
and the current version of the Android Add-on is also compliant with the core JADE. In
contrast to previous versions, interaction between mobile and core agents is no problem
any more. The so-called Lightweight and Extensible Agent Platform (LEAP) Add-on
tries to optimize the communication mechanism by splitting up the JADE containers
running on mobile devices into a front-end and back-end container. This improves

20http://www.fipa.org/ accessed: 2016-10-13

16

http://www.fipa.org/

2.5. General P2P frameworks and protocols

high workload situations since the mobile client does not necessarily have to handle all
incoming messages and with this approach additionally NAT traversal issues can be
circumvented. However, a server part has to be implemented and as another drawback
the resource-poor mobile device has to maintain a permanent bi-directional connection.
On connection losses a re-establishment functionality is implemented, but no wake-up
mechanism for long idle phases is implemented (see Section 5.6 and Section 6.6). An
Android tutorial with sample applications can be found on the offical homepage21. No
implementation for the iOS platform exists or is planned. However, interoperability with
the currently available Android platform or other mobile platforms would be possible,
due to the usage of FIPA compliant message communication. Nevertheless, the JADE
platform is already rather complex and an adaptation would mean a great deal of time
and human resources.

Furthermore, two more advanced agent-based platforms exist, which are based on JADE,
namely Workflows and Agents DEvelopment framework (WADE)22 and Agent-based
Multi-User Social Environment (AMUSE)23. WADE is specialized for workflow and
task execution applications and AMUSE is focused on distributed social applications,
especially multi-player online games. Furthermore, the Android platform is supported by
both frameworks.

In the last couple of years, a quite large community has gathered around the JADE
project. The current stable versions of all three projects can be downloaded from the
official JADE website. The software bundles are licensed under the GNU Lesser General
Public License (LGPL), which is a corporate-friendly open-source license.

2.5.2 Juxtapose

Another generic open-source P2P framework is Juxtapose (JXTA). Jörg is performing a
detailed evaluation of this framework in his thesis [Sch17a].

2.5.3 P2P communication using XMPP

The Extensible Messaging and Presence Protocol (XMPP) [SA05] was originally developed
in 1999 as a project called Jabber by an open-source community. An advanced version
of the protocol got standardized by the Internet Engineering Task Force (IETF) in
2002 with the name XMPP. In summary, it can be described as an application profile
of the Extensible Markup Language (XML) protocol that facilitates near real-time
communication to exchange extensible data between two or more network units. Because
of its openness, flexibility and extensibility, it can be seen as a protocol of choice
for internet real-time communication applications. The great built-in functionalities
regarding security (authentication, access control, privacy) are another main advantage
of the protocol.

21http://jade.tilab.com/ accessed: 2016-10-13
22http://jade.tilab.com/wadeproject/ accessed: 2016-10-13
23http://jade.tilab.com/amuseproject/ accessed: 2016-10-13

17

http://jade.tilab.com/
http://jade.tilab.com/wadeproject/
http://jade.tilab.com/amuseproject/

2. Analysis of existing approaches and background technologies

In this section, the XMPP architecture, the core protocol and its functionalities, including
communication primitives for messaging (see XML stanza), authentication, channel
encryption and network availability, are discussed. A considerable number of client and
server implementations have been developed in the last couple of years - popular ones
are listed and reviewed in the last part of this section.

Architecture and core protocol

XMPP based networks make use of a distributed client-server architecture, see Figure 2.5.
Here, clients can establish connections to several servers (which are also connected with
each other) in order to exchange so-called XML stanzas. Message passing is implemented
in an asynchronous way over direct and persistent XML streams. According to [SA11]
the following steps have to be performed to open a stream:

• First of all the initiating entity has to open a connection (usually via Transmission
Control Protocol (TCP)) to the server IP address and port by using an addressing
scheme similar to that used for emails. Each XMPP entity (that can be a client,
server or an additional service) has a unique address of the following form: <lo-
calpart@domainpart/resourcepart>. The localpart specifies a unique user account
(i.e. peter) within a domain and resource. The domainpart defines the server name
that can be resolved by a DNS, whereas also fixed IP addresses can be used. The
resourcepart, as last part, is required if different services shall be hosted on one
server or if concurrent server connections should be possible. For historical reasons
this form of an XMPP address is called full Jabber ID (JID), whereas the short
form without the resourcepart is called bare JID. A possible full JID for a sample
application may look like the following: peter@tuwien-chat.at/chat.

• The initiated entity then opens an XML stream (over TCP) by sending a stream
header. After the receiving entity replied with a stream header response, a multi-
stage negotiation process gets started. This process depends on the particular
protocol interactions that the receiving entity (which must be a server after all)
requires or provides. Authentication (i.e. via Simple Authentication and Security
Layer (SASL)) is always mandatory, because services on a specific domain can be
only used if the identity of the XMPP entity had been verified. Further optional
protocol interactions are application-layer compression or encryption (i.e. via
Transport Layer Security (TLS)).

• To properly address the previously authenticated client, the server has to bind a
specific resource to the stream. This ensures that the client can send and receive
XML stanzas to other registered clients within the same resourcepart.

• After a successful stream negotiation and resource mapping, each XMPP party can
send and receive different kinds of XML stanzas, which are described in the next
subsection.

18

2.5. General P2P frameworks and protocols

Figure 2.5: Example of an XMPP network [XM12]. The communiciation from client to
client is logically peer-to-peer, but physically the data might be routed over different
relay servers.

Under normal circumstances a connection gets closed by sending a </stream:stream>
tag from the client to the server. Otherwise, if any unexpected stream errors occur, the
connection is automatically destroyed.

In Figure 2.5 a potential XMPP network is shown. A client is able to exchange messages
with another client over multiple XMPP servers, but can also transfer messages to
non-XMPP instant messaging services via a gateway server, which is responsible for
translating the XMPP protocol.

XML stanza

After a successful stream negotiation, two XMPP parties (i.e. client and server or two
servers) can exchange three types of messages:

• Message stanza: The most commonly used stanza type is message. It is compara-
ble with a PUSH -mechanism, where one entity pushes some information to another.
The attribute to is necessary and assigns the desired receiver of the message. The
attribute from can be specified by the sender, but must be exchanged by the server
on message forwarding with the id of the actual sending entity to prevent message
spoofing. A message stanza may include a generated value for the optional attribute
id. In this case the response or error message for that particular message has to
match the id of the originated stanza.

• Presence stanza: XMPP comes with a built-in availability information system for
entities, especially clients. It is realized with a publish-subscribe mechanism, where

19

2. Analysis of existing approaches and background technologies

entity A, which subscribes for the status information of an entity B, gets notified
if B changes its state. To signal availability, an entity sends an empty presence
message to the server. To change the presence state or to manage subscriptions,
an entity uses the type attribute with typical values like unavailable, subscribe or
unsubscribe. Similarly to the message stanza the id attribute is optional.

• IQ (info/query) stanza: To enable a similar request-response approach like the
Hypertext transfer protocol (HTTP), XMPP introduced IQ stanzas. Entity A may
request information of entity B by sending an IQ stanza with a specific purpose
(i.e. get, set) and a mandatory child element that specifies the semantics of this
particular request. This data payload can be of an arbitrary type and must be
defined by a schema or another structural definition. To match a response, the id
attribute is mandatory for this message type.

XMPP extensions

The IETF is responsible for the design and development of the XMPP core specifications.
In addition, the XMPP Standard Foundation (XSF), formerly the Jabber Software Foun-
dation (JSF), develops XMPP extensions in its XMPP Extension Protocols (XEP) series.
With those additional standardized protocols, more sophisticated but still interoperable
applications can be developed. The official website24 lists all XEPs, including obsolete,
rejected, experimental, draft (appropriate for deployment, but minor changes are possible)
and final (stable) versions.

At the time of writing (September 2016), 142 extensions were in the state experimental,
draft or final. Some extensions that gained popularity in the last couple of years are for
example:

• XEP-0060: Publish-Subscribe (State Draft) With this generic protocol exten-
sion XMPP gets the possibility to create topics at specific service endpoints where
information can be published. Entities subscribed to a particular topic are then
notified with a broadcast message on any service publications. A typical application
using this kind of extension would be for example a news feed.

• XEP-0030: Service Discovery (State Final) This specification describes a
robust protocol extension for determining features and information about other
XMPP entities.

• XEP-0045: Multi-User Chat (State Draft) This extension enables XMPP
entities to take part in a room or channel to communicate with multiple users,
similar to a Internet Relay Chat (IRC). Beside the standard chatroom features
(i.e. room topics and invitations) also room administrators and moderators can
be nominated, which can control the room by requiring user registration and
authentication or by kicking and banning users.

24https://xmpp.org/extensions accessed: 2016-10-22

20

https://xmpp.org/extensions

2.5. General P2P frameworks and protocols

• XEP-0096: SI File Transfer (State Draft) This protocol adds the functionality
of exchanging files between entities. Also details about the transport negotiation
and the exchange of file information is defined by this protocol.

Security

The XMPP core specification [SA11] also describes the basic security aspects for the
communication. To achieve confidentiality and data integrity TLS (at the time of writing
TLS 1.2 [Die08] is the stable and recommended version) should be used. By applying
this security layer, each stream is encrypted, which makes eavesdropping and tampering
impossible. The second security protocol described in the core specification is SASL,
which ensures mutual authentication. In [Nie06] the detailed security setup process with
TLS and SASL is described. In order to connect and exchange data with any other
party, each participating entity must verify its identity. If only SASL is used (without
encrypting the communication with TLS), packets of the authentication procedure could
be intercepted and an attacker could record username and password. By using both
layers of security, the communication is only truly safe if the server can be fully trusted.
The reason for this is that the server holds different connections with two communicating
clients (A and B). The server first decrypts the payload of entity A and is therefore able
to store or tamper data before forwarding the message to entity B.

If the server part can not be trusted, end-to-end encryption is necessary. This means the
payload is encrypted by the sending client and can be only decrypted by the receiver.
In fact, if TLS is used as channel encryption, the server decrypts the message of entity
A as before, but is no longer able to interpret the payload. One big disadvantage of
XMPP is the lack of native end-to-end encryption support. However, several extensions
regarding end-to-end encryption have been proposed and used in recent years, as it can
be seen on the official XMPP website25. The first attempt, which was based on Pretty
Good Privacy (PGP), was done in XEP-0027 - Current Jabber OpenPGP Usage. It got
voted down to the state Obsolete in 2014 since it did not provide protection against
replay attacks and messages were not signed26. Further effort to enable end-to-end
encryption was taken in XEP-0116 - Encrypted Session Negotiation or XEP-0200 -
Stanza Encryption. All of them are in development state Deferred. Another possibility
to enable end-to-end encryption is Off-the-Record Messaging (OTR). This cryptographic
protocol [otr] provides real end-to-end encryption, deniability and forward secrecy. More
details regarding XMPP security and end-to-end encryption can be found in the thesis of
Jörg Schoba [Sch17a].

Implementations

Numerous chat and IM network management applications, but also other mission-critical
business applications, like real-time trading systems in the financial industry, are using

25https://xmpp.org/extensions accessed: 2016-10-22
26http://wiki.xmpp.org/web/XMPP_E2E_Security accessed: 2016-10-23

21

https://xmpp.org/extensions
http://wiki.xmpp.org/web/XMPP_E2E_Security

2. Analysis of existing approaches and background technologies

XMPP [XM12]. The main reason for that are the inherent security features in the core
protocol and the decentralized architecture (similar to an email network), which allows
people and organizations to take control over their own communication.

There exists a vast number of XMPP server and client implementations. The official
XMPP website27 is a good starting point for a quick comparison of existing popular
open-source and proprietary XMPP servers and their implemented extensions. The
Erlang Jabber Dameon (ejabberd)28 server, written in Erlang, seems to support the
most extensions and according to several internet forums and the book XMPP: The
Definitive Guide [SASTT09] it is also very scalable, due to its clustering feature and the
used concurrent functional programming language Erlang. A robust but easy to configure
server implementation with a short learning curve is Openfire29, which is written in Java.
The official XMPP website also mentions established client products30, including some
for the Android and iOS platform. Furthermore, lots of code libraries are listed on the
official XMPP website31. A popular library, fully working on the Android platform is
for example Smack32. The so-called XMPPFramework is written in Objective-C and is
suitable for programming XMPP client applications for the iOS platform. Beyond the
XMPP core protocol it also supports more than 30 extensions33.

2.5.4 P2P communication using SIP

Another popular protocol for peer-to-peer communication that also facilitates Voice Over
IP (VOIP) and Instant Messaging (IM) is the Session Initiation Protocol (SIP). Jörg is
describing this protocol in more detail in [Sch17a].

27https://xmpp.org/software/servers.html accessed: 2016-10-24
28https://www.ejabberd.im/ accessed: 2016-10-24
29https://www.igniterealtime.org/projects/openfire/ accessed: 2016-10-24
30http://xmpp.org/software/clients.html accessed: 2016-10-24
31http://xmpp.org/about/technology-overview.html accessed: 2016-10-24
32https://www.igniterealtime.org/projects/smack/ accessed: 2016-10-24
33https://github.com/robbiehanson/XMPPFramework accessed: 2016-10-24

22

https://xmpp.org/software/servers.html
https://www.ejabberd.im/
https://www.igniterealtime.org/projects/openfire/
http://xmpp.org/software/clients.html
http://xmpp.org/about/technology-overview.html
https://www.igniterealtime.org/projects/smack/
https://github.com/robbiehanson/XMPPFramework

CHAPTER 3
Requirements on the MPM and

selection of background
technologies

In this chapter the requirements on the Mobile Peer Model are defined. To cover a lot
of important requirements for mobile applications, some possible sample applications
that could be built with the MPM were considered. Those include a simple messaging
app, a distributed master worker example, which is also able to run in a background
process without any user interaction and a multi-player game that has to communicate
with multiple entities in real-time.

After defining the requirements, the technologies described in Chapter 2 are analysed
and examined for suitability in accordance to these requirements (see Section 3.2).

The focus in this thesis is laid on general functional requirements and on those which
are related to constraints found in a mobile environment. Nevertheless, all essential
requirements, including those which are focussing on scalability and security, are listed
here. The found technologies of Chapter 2 are evaluated against all imposed requirements,
however, only those in my area of responsibility are described in more detail in the
subsequent design and implementation chapters.

3.1 Requirements on the Mobile Peer Model

3.1.1 Functional requirements

Basically, the requirements are separated in functional and non-functional requirements.
The functional requirements describe particular tasks or functions the system under
construction shall be able to perform.

23

3. Requirements on the MPM and selection of background technologies

Coordination (FR 1)

The framework shall provide suitable concepts and components to support an application
developer in coordinating the data flow and execution of business logic in a distributed
system. At least the following functionality must be provided:

• Transport messages from one host to another.
• A message shall have a coordination-type for a proper classification.
• A message may hold an arbitrary payload.
• A message may be valid only for a specific duration.
• The developer shall be able to define rules that affect the execution of particular
business logic. Such a rule may look like the following: If one message of type A
and two messages of type B are present -> execute service X.
• The business logic may execute arbitrary code and may create new messages that

are sent locally or remotely to initiate further tasks.

Running in the background (FR 2)

The framework should support building applications that can run entirely or partially in
the background of the mobile device. In the first place this means that an application
with no graphical user interface can be installed on a mobile phone that performs a
particular background task (i.e. processing a specific work task or just calculating and
transferring the current position for tracking purpose). Additionally, the framework
should support that the runtime continues to run in the background, even if the user
closed the application. The desired handling can be chosen by the application developer.

Autonomous startup (FR 3)

The application does not have to be explicitly started by a user, but may be started if a
specific event occurs. Such an event can be device-specific (like a successful device start-
up), but may also emerge from the outside world (like an incoming message). Especially
the second one (event from the outside) is important, because on a resource-poor mobile
device the application or its underlying P2P middleware should not run permanently in
the background, or at least no permanent connection should be maintained all the time.

Decoupling from application (FR 4)

The framework shall be decoupled from an application that uses the framework. Further-
more, the library containing the framework shall be available as an independent module
that can be imported in a standard Java or Android project.

Connectivity with local and mobile carrier networks (FR 5)

The framework should be able to communicate in any possible network constellation
without further configuration effort taken by the end-user. In particular, this refers to

24

3.1. Requirements on the Mobile Peer Model

unrestricted functionality regarding communication in public W-LANs, where NAT is
used. In addition, automatic re-establishment of the internet connection shall be managed
seamlessly and as soon as possible by the framework.

3.1.2 Non-functional requirements

The second part of the requirements specification deals with non-functional requirements.
In contrast to a functional requirement that specifies a particular behaviour, a non-
functional requirement may describe constraints or desired quality characteristics on the
system to build. Therefore, they are also known as quality attributes.

Licensing (NFR 1)

The license for the MPM framework, including the specification and the provided reference
implementation, shall be of type Copyleft. In practice, this means that everybody has the
right to access the publicly available source code and can modify and distribute that work,
but with the restriction that the Copyleft license has to be preserved in any software
derivation. As a result of that requirement, all libraries used in the MPM framework
have to possess a similar or less restrictive license type (i.e. a similar protective Copyleft
license like the General Public License (GNU) or more permissive ones like the MIT or
Berkeley Software Distribution (BSD) license).

Scalability (NFR 2)

The system should scale in relation to participating users and their data sent over the
wire. This means, that the system should be able to manage an increasing number of
users and workload without losing effectiveness.

Security (NFR 3)

The framework should provide optional channel encryption to prevent eavesdropping and
manipulation of data. Furthermore, end-to-end encryption can be activated to completely
ensure private data exchange. In addition, Denial Of Service (DOS) attacks on a specific
user shall be prevented by means of blocking concrete hosts in the network.

Simple API (NFR 4)

The Application Programming Interface (API) of the MPM framework shall be intuitive
and meaningful, by using well defined interfaces for all components of the software.

Debugging and documentation (NFR 5)

The communication part shall be implemented as a two-way approach. One implemen-
tation should focus on performance by serializing the transferring data into a fast and
compact binary format and one should facilitate debugging by preserving the data in a

25

3. Requirements on the MPM and selection of background technologies

human-readable form. Furthermore, the code, which is open-source by requirement NFR
1, shall be well documented. In particular, this means the complete documentation of in-
terfaces, classes and their methods. Complex parts with more sophisticated functionality
shall be supplemented with additional explanatory comments. As an additional part of
documentation, well designed test cases shall be added in a separate test package.

Exchangeability of components (NFR 6)

As already described in requirement NFR 5, the framework developer should be able to
decide the concrete communication implementation (performance or readability). By using
interfaces, all important components shall be exchangeable by different implementations.
Nevertheless, there should be a reasonable reference implementation of all components.
Replaceable components are for example the communication layer, optional end-to-end
encryption layer, serialization and deserialization as well as the persistence layer.

Design to work with a modeler (NFR 7)

The API of the MPM framework shall be designed in a way that a code generation tool
or modeling application is able to generate the coordination specific part of an MPM
application. Nevertheless, the code shall be clearly legible and also modifiable by an
application developer.

Operability on popular mobile platforms (NFR 8)

The framework shall be designed in a way that allows its implementation on different
mobile platforms. Those include in particular the current big players on the mobile
OS market Android and iOS. Moreover, as already described in requirement NFR 5 a
compatible data exchange between different platforms is of great importance.

Benefit in comparison to own implementation (NFR 9)

By using the provided framework the development of mobile P2P applications shall be ac-
celerated significantly. Application developers shall be able to focus mainly on application
logic, the communication and coordination part is abstracted by the framework.

Resource-efficient implementation (NFR 10)

The coordination framework shall not consume too much resources, including processing
load and memory usage. Furthermore, if the app is running in the background and
is in an idle state, no processing power shall be needed. Nevertheless, as described in
requirement FR 3, the runtime shall be able to resume from an idle state to a running
state by reacting to internal and external events.

26

3.2. Evaluation and selection of background technologies

Reliability (NFR 11)

The framework shall work in a failsafe fashion. This includes in the first place the correct
and continuous execution of the MPM runtime if a mobile related event occurs (i.e. a
phone call or a battery charging warning). Furthermore, in any other unexpected failure
situation the data currently available in the framework shall be stored and reconstructed
after the restart in a consistent manner. Such a situation may be the abrupt termination of
the application by the Android platform because of resource bottlenecks or the shutdown
of the device when the battery is empty.

3.2 Evaluation and selection of background technologies

From Sections 2.2 to 2.4, existing structured peer-to-peer overlay networks, P2P-frameworks
and established communication protocols were introduced and analyzed. In [Sch17a] Jörg
Schoba did the same with unstructured P2P overlay networks and further potentially
helpful frameworks and protocols. In this section, those research results are evaluated
regarding usability in the Mobile Peer Model. Finally, the actual technology selection
process, which was also conducted in collaboration with Jörg, is described.

3.2.1 Structured P2P overlay networks

Although DHTs in structured P2P networks provide effective and quite reliable search
capabilities, they fail entirely or suffer from different problems when it comes to multiple-
keyword queries, including unbalanced load, hot spots, high network load and storage
redundancy. Implementations exist that are built upon a keyword index approach as
described in [JYF07] and further improvements with distance based pruning techniques
for keyword lists as introduced by Kim in [KK07]. Nevertheless, structured P2P systems
are not widely used, as the complexity increases drastically if effort is made to avoid
problems in the protocol and additionally there is a lack of common use cases.

Structured P2P protocols also suffer from different security issues that are listed and
discussed by Sit et al. in [SM02], which include lookup and storage attacks, denial of
service attacks and problems that emerge if malicious nodes do not follow the protocol
in the right way. Castro et al. in [CDG+02] reveals other problems regarding secure
routing. However, this is beyond the scope of this thesis.

CAN: The main focus of CAN lies on large distributed storage management systems
with fast retrieval and insertion of files. Furthermore, no ongoing development and no
mobile implementation was found. Therefore, it will not serve as underlying technology
for the framework.

Chord: Chord is a famous structured P2P overlay network that makes use of consistent
hashing to achieve lookup resolution in O(logN). Also improvements to better support
real-time communication systems were presented in [ZO09]. Nevertheless, the NAT
traversal problem was still not solved with these enhancements and only a prototype

27

3. Requirements on the MPM and selection of background technologies

implementation for this version of the protocol exists. Additionally, only experimental
versions for mobile platforms were found so that Chord is excluded as possible background
technology for the MPM implementation.

Pastry/Tapestry: Two self-organizing decentralized P2P overlay networks are Pastry
and the very similar Tapestry, which use prefix matching to route messages within their
networks. Both protocols suffer from the NAT traversal problem and no mobile clients
for any platform could be found, which implies the exclusion of the technologies for the
MPM implementation.

Kademlia: Kademlia is the most popular member of structured P2P overlay networks
in terms of implementations, possibly because of its low complexity and the performant
lookup procedure. In contrast to other network representatives, the routing algorithm is
conducted from one single node until the searched item is found and is therefore easier
and quicker to implement and to debug. Secondly, parallel and asynchronous messaging is
reflected by higher lookup speed and the preferability of choosing faster and long-standing
nodes over new ones also prevents attacks (i.e. by ignoring a new malicious node). Two
quite promising ongoing implementations of the protocol (kademlia1 in Python and
TomP2P2 in Java) also tackle the NAT traversal problem by using RPCs over UDP. This
setup, though, implies that message arrival is not guaranteed, because of the unreliable
and connection-less communication characteristic of the UDP. However, since this is a
fundamental requirement on the Mobile Peer Model this disqualifies the protocol as a
background technology for the framework implementation.

3.2.2 Unstructured P2P overlay networks

In [Sch17a] Jörg Schoba went through the same process by first presenting and then
evaluating P2P overlay networks, where his focus lay on unstructured ones. No popular
player, including Napster, Gnutella or BitTorrent, could comply with the majority
of the imposed requirements on the MPM. Reasons for this were similar to the ones
presented in the previous section, such as no ongoing development, security vulnerabilities,
additional firewall and network configurations, proprietary licenses or lack of open-source
implementations.

3.2.3 Coordination frameworks and models

In Section 2.4 some frameworks and models have been presented that facilitate the
coordination of data flow in distributed systems. A more detailed analysis has been
conducted by Jörg in his thesis [Sch17a]. Also the comparison and evaluation of the
introduced frameworks and models can be found in his work. However, the reasoning for
the selection of the underlying coordination model of the framework is described in the
last section of this chapter.

1https://github.com/bmuller/kademlia accessed: 2017-01-18
2https://tomp2p.net/ accessed: 2017-01-18

28

https://github.com/bmuller/kademlia
https://tomp2p.net/

3.2. Evaluation and selection of background technologies

3.2.4 JADE

The Java Agent DEvelopment framework can comply with a lot of requirements imposed
in the previous section. The framework is open-source and has a corporate-friendly
license. In addition, JADE has gathered a fairly large community and some further
platforms that are built upon the core framework have been developed, implying that
the framework is usable and reliable. Furthermore, implementations on Android are
possible, whereas also the NAT traversal problem can be circumvented by splitting up
JADE containers into a front-end and back-end container. With that relaying approach,
however, a server part has to be implemented.

Drawbacks are in the first place the complexity of the framework, the resulting steep
learning curve and the usage of the programming language Java, which means that iOS
is currently not supported. However, adding an iOS implementation would not imply a
radical communication refactoring, because JADE is Foundation for Intelligent Physical
Agents (FIPA) compliant. Therefore, JADE is a potential candidate for the final selection
of technologies.

3.2.5 XMPP

The Extensible Messaging and Presence Protocol is known for its openness, flexibility
and extensibility, making it a protocol of choice for internet real-time communication
applications.

XMPP is compliant with all the requirements on the MPM. The high significant re-
quirement FR 5 (3.1.1) in regard to availability within a public W-LAN (NAT traversal)
and all other network configurations can be fulfilled with the XMPP relay server. The
server also provides identity management, blocking of specific users and group chats.
Concerning the requirement of scalability (NFR 2) XMPP supports server clusters.
Furthermore, many open-source server and client implementations exist and the core
protocol defines important security measures, namely channel encryption (TLS) and
mutual authentication (SASL). In summary, XMPP is a very promising candidate as an
underlying technology for the framework (see the final selection in Section 3.2.9).

3.2.6 JXTA - A general purpose P2P framework

As described in more detail by Jörg Schoba in [Sch17a], Juxtapose (JXTA) is "a candidate
to base the framework on". The NAT traversal problem can be solved, adequate security
measures have been implemented and a successful adaptation for the Android platform
has been performed. Nevertheless, the final selection decision is discussed in Section
3.2.9.

3.2.7 SIP and P2PSIP

Details about SIP and the peer-to-peer version of that protocol (Peer-to-Peer Session
Initiation Protocol (P2PSIP)) were introduced by Jörg Schoba. Although it first looked

29

3. Requirements on the MPM and selection of background technologies

C
A
N

C
ho

rd

Pa
st
ry

Ta
pe

st
ry

K
ad

em
lia

JA
D
E

X
M
PP

FR 1 - Coordination - - - - - ∼ -
FR 5 - Connectivity - ∼ - - ∼ + +
NFR 1 - Licensing - + + + + + +
NFR 2 - Scalability + + + + + + +
NFR 3 - Security ∼ ∼ ∼ ∼ ∼ ∼ ∼

NFR 8 - Operability - ∼ - - ∼ + +
NFR 10 - Resource-efficient ∼ ∼ ∼ ∼ - - ∼

Table 3.1: Probable fulfilment of requirements by the presented P2P technologies.

as a promising candidate, due to Android providing a built-in SIP API3 and several
existing clients on iOS, it could not make it into the final selection (for more details
check the section Evaluation and selection of background technologies in the partner work
[Sch17a]).

3.2.8 Overview of technologies and fulfilment of requirements

Table 3.1 contains a short summary about whether the presented technologies of Chapter
2 can fulfil the most important requirements of the framework. (+) means that the
requirement can be fulfilled, (∼) stands for a partial fulfillment or that this requirement
could be met with an acceptable additional effort and (-) denotes that this requirement
can not be fulfilled with this technology.

Only with JADE it is possible to control the execution of business logic by defining the
behaviour of agents (FR 1 Coordination). However, the definition of rules as required by
FR 1 is not possible. The important requirement Connectivity (FR 5) can only be fulfilled
by JADE and XMPP. Also only those two technologies have successful implementations
for current popular mobile operating systems (NFR 8). All presented protocols and
frameworks are scalable (NFR 2) and all of them have implemented some security
countermeasures (NFR 3). However, none of them provide real end-to-end encryption.
Furthermore, none of the technologies is designed explicitly for mobile devices (NFR 10).

Summarizing, there is no technology that meets all requirements and therefore an own
solution has to be implemented. To reduce the implementation effort, suitable existing
technologies shall be used.

3https://developer.android.com/guide/topics/connectivity/sip.html accessed:
2016-01-18

30

https://developer.android.com/guide/topics/connectivity/sip.html

3.2. Evaluation and selection of background technologies

3.2.9 Final selection of technologies

After the elimination of most of the discovered technologies, the final selection was
performed in consultation with Jörg. Since XMPP is compliant with all requirements on
the MPM and the protocol provides a lot of useful built-in functionalities, XMPP has
been selected as baseline technology. To recapitulate the main advantages from Section
3.2.5, the protocol provides identity management, blocking of specific users, group chats,
server clusters and optional channel encryption. Several server and client implementations
exist, both open-source as well as proprietary ones. Furthermore, P2P communication
works in every network configuration, because the XMPP server acts as relay and routes
messages from one peer to the other.

Although JADE and JXTA have reached the final selection phase, they were not selected
as technology to build the framework on. Both frameworks were designed for desktop and
server applications. Even though adaptations for the Android platform exist, the frame-
works are too heavy-weight and would require more memory space and computational
power.

XMPP does not limit any requirement on the MPM. The only drawback of XMPP that
could be found during the final evaluation process is the dispensable payload sent over
the wire. First of all, XMPP is a text-based protocol, which means there is a network
overhead compared to pure binary solutions. Additionally, XML uses so-called tags for
encapsulating data, where the closing tag is redundant. However, that minor drawback
is negligible, as the main focus does not lie on transmission speed and rate.

As underlying coordination model, the Peer Model (PM) has been chosen. This model
provides a high-level programming abstraction, facilitates software reuse and strictly
separates business and coordination logic. With the constructs of the PM it is possible to
model the data flow and the execution of business logic as required by FR 1 (see Section
3.1.1). Furthermore, the model is relatively easy to understand and an adaptation to a
mobile profile seems definitely feasible. In addition, the thesis advisor and assistant, Eva
Kühn and Stefan Craß, were primarily responsible for the design of the PM. Therefore,
they can provide support when elaborating and defining the reduced, mobile version of
the model. For more details on the original model see Chapter 4, a deeper insight into
the mobile profile is given in Section 5.2.

31

CHAPTER 4
The Peer Model

To cope with the complexity of modeling and designing distributed and concurrent
software systems, several coordination models have been developed in the last decades.
Many of them are focusing on the coordination part and abstract away the communication
aspects of the system. In Section 2.4 (further coordination frameworks and models) some
popular frameworks are listed. In addition, Eva Kühn et al. examined some models in
[KCS15], for example Petri Nets [KCJ98], Reo [Arb04], the Actor model [HBS73] and
Web Service - Business Process Execution Language (WS-BPEL) [JEA+07].

However, all of the approaches mentioned above have some drawbacks, i.e. too low-level
programming abstraction, insufficient support of software reuse or mixing business logic
with coordination logic. Therefore, another concurrent coordination model has been
developed at the TU Wien in 2013. The so-called Peer Model [KCJ+13] and its Domain-
Specific Language (DSL), presented by Eva Kühn, Stefan Craß, Gerson Joskowicz,
Alexander Marek and Thomas Scheller, facilitate the design and implementation of
complex integration patterns in large distributed environments.

This chapter is devoted to the model presented in 2013, which got extended and improved
until 2017. In the next chapter the scope and functionality of the reduced mobile version
of the Peer Model is introduced (see Section 5.2).

4.1 The Peer Model

The design of the Peer Model is inspired by tuple-space communication, data-driven
workflow and a staged event-driven architecture [KCH14]. In a nutshell, the main
components of the system are structured, re-usable and addressable constructs called
Peers. One Peer has an input and an output space container, which are used to store data.
The data is encapsulated in so-called Entries and can be transported between different

33

4. The Peer Model

containers via an internal coordination mechanism (Wiring). Only communication and
coordination parts of the system are described in the model, but no application logic.

4.1.1 Entry

Data objects in the Peer Model are represented as Entries, which may represent an event,
a message or a request. They are a coherent entity, consisting of an application- and a
coordination-specific part. The coordination part holds necessary system meta-information
and has the following properties:

• type: The coordination-type of this Entry. It is used to query and select Entries
from a container and it is used to control the coordination flow in the system.

• origin: The URI of the Peer that created the Entry.
• from: The URI of the Peer that sent this Entry to another Peer.
• dest: The URI of the Peer that this Entry is sent to.
• tts: The time-to-start property, which defines from which point in time the Entry

is valid.
• ttl: The time-to-live property, which defines for how long an Entry is valid.
• flow identifier: The flow identifier property is part of each Entry in a specific

global task (workflow). More details about flows can be found in Section 4.1.5.

Application specific properties include:

• data-type: The data type of the application object stored in that Entry.
• data: Defines the actual data object of that Entry.

Consider the two different type and data-type properties. The first one is for coordination
purpose and the second one defines the actual type of the data object encapsulated in
that Entry.

4.1.2 Space and Container

The Peer Model uses a space-based middleware, which is used to store and query data of
the system. As described in [CKS09], the space consists of shared containers that provide
a flexible API for writing and fetching Entries. More precisely, Entries can be fetched and
removed (TAKE), fetched without removal from a container (READ) and written into a
container (WRITE). A container supports different coordination principles that define
in which order Entries are fetched (i.e. First-In-First-Out (FIFO), by key, by template
matching or by an Structured Query Language (SQL)-like query statement). Each TAKE
operation may also contain the Entry’s coordination-type property to restrict the Entry
by type and a parameter to define the quantity of Entries to be fetched. These are the
exact number (=), a minimum (> or >=) or a maximum (< or <=) of desired Entries.

34

4.1. The Peer Model

Figure 4.1: The graphical notation of a Peer without any components [KCJ+13].

The semantic of = should be clear, >= means all Entries of the container but at least n
and <= stands for retrieving a maximum of n Entries. Further features provided by the
space-based middleware are the support for transactions and bulk data processing.

4.1.3 Peer

A Peer is the main component of the Peer Model (see its notation in Figure 4.1) and
is addressable in the network by a unique Uniform Resource Identifier (URI) with the
format <protocol>://<host-name>/<peer-name>. It is constructed with the following
elements:

• Containers: For storing Entries, a Peer holds exactly one Peer-In-Container (PIC)
and one Peer-Out-Container (POC), which are referenced by a unique URI.

• Wirings: The active parts of a Peer are its Wirings. In a nutshell, they control
which Entries move through the Peer and which Services are executed. The
behaviour and the tasks of a Wiring are described in detail in Section 4.1.4.

• Services: During the execution of a Wiring, additional business code can be
executed, which may be split up in several Services.

• Sub-Peers: Within a Peer several Sub-Peers can be created in order to divide the
functionality into different parts.

If the Peer receives an Entry from another Peer, it is stored in the single PIC of that
particular Peer. Those Entries can then be moved to PICs and POCs of different Peers
and Sub-Peers by executing the Peer’s Wirings (internal collaboration). Additionally,
inter-peer collaboration takes place between the POC of a global Peer (not a Sub-Peer)
and the PIC of another global Peer. All existing Peers on one particular host (the
Peer-Space) are placed in a special runtime environment, called the Runtime-Peer (RTP).
Its API also provides the dynamic creation and deletion of Peers and Wirings.

35

4. The Peer Model

4.1.4 Wiring

Wirings are the only active parts of the system and are responsible for the transport of
Entries between containers. A Wiring is composed of the following three sections:

• Guard-Links: The first part of a Wiring is responsible for reading or taking
Entries of containers. The coordination-type of the desired Entries and a count
can be specified and when the Wiring is executed, it tries to fulfill all defined
Guard-Links. Those Entries are then added to a temporary space container, termed
Entry Collection (EC). If at least one link can not be satisfied, the Wiring execution
is stopped.

• Service (optional): A Wiring can have zero, one or more Services. In the case
that all Guard-Links can be satisfied, the constructed EC constructed is passed
to the first Service of that Wiring. A Service may change the EC by removing
or adding new Entries and hands over the EC to the next Service. After the
completion of the last Service or if there has not been a Service, the EC is passed
to the third and last part of the Wiring.

• Action-Links (optional): The Action-Links of a Wiring are responsible to write
Entries from the previously constructed or filled EC into specific target containers
of local or remote Peers. If the Entry shall be inserted into a local Peer, the target
container has to be specified explicitly. In the case that the Entry shall be sent
to a remote Peer, the destination property has to be set with the Peer-URI of the
target Peer.

Each Wiring is associated with a transaction. On successful Wiring execution, the
transaction is being committed and all Entry changes take affect. Furthermore, it can be
configured that locked Entries are committed already after the Guard or Service phase.
Those early commits can improve concurrency by releasing Entries for other Wirings
that are waiting for particular locked Entries. Generally, an arbitrary number of Wiring
instances can run in parallel, enabling very high concurrency. In reality there is a limit
for parallel executions, which can be realized by configuring a thread pool size. By
the design of the Peer Model, a Wiring connects a Peer with a Service in a dynamic
fashion and data-driven way, which enables high decoupling. Furthermore, the Service
implementations are provided by the developer to separate business logic explicitly from
the coordination logic.

In Figure 4.2 a Peer with the name SamplePeer, two Wirings, two Services and one
Sub-Peer are shown. The Wiring Wiring1 contains two Guard-Links, the filled circle
represent a Link that takes exactly two Entries with the type T from the PIC, the unfilled
one represents a READ operation with at least one Entry of type U. In the case that
all specified Entries are available in the PIC, the Entries are added to a newly created
EC and the two Services are executed in sequential order. The EC is passed to the first
Service, which can read and take Entries from the EC or write new Entries to it. As it can

36

4.1. The Peer Model

Figure 4.2: The graphical notation of the Peer SamplePeer with two Wirings Wiring1
and Wiring2.

be seen in Figure 4.2, the logic of the Service is not modeled. Nevertheless, it is assumed
that the Wiring’s Action-Links are performed and three Entries of type V and one Entry
of type W are written into the POC of the Peer after successful Service executions. If any
Service was not working correctly, not all Action-Links might be performed successfully
and for example only the Entry of type W would be written into the POC, whereas
all three Entries of type V were skipped. However, the Wiring’s transaction would be
committed anyway, as the whole execution is considered to be successful. The second
Wiring (Wiring2), takes exactly one Entry of type X and forwards it to the PIC of the
Sub-Peer without executing a Service. The Sub-Peer may have additional Wirings that
were not modeled here due to lack of space.

4.1.5 Flow identifier

A number of consecutive Wiring executions in not necessarily the same Peer-Space can be
seen as a workflow that, collectively, solves a global task. To facilitate the realization of a
workflow, each Entry can have a flow identifier. As described in [KCH14], all Guard-Links
of a Wiring then only read or take Entries with the same flow identifier or Entries without
a flow ID.

37

4. The Peer Model

4.1.6 Further enhancements of the model

In [CJK15] Craß et al. present a flexible access control model to enable authorization of
autonomous peers in a distributed system. Furthermore, it is shown how this model can
be integrated into the architecture of the Peer Model.

Another remarkable concept, extending the Peer Model, was presented in [KCS15] and
enables the design and implementation of distributed systems via generic, flexible and
reusable coordination patterns. The concept introduces an extension mechanism where
generic patterns can be configured at the time of deployment. In a nutshell, a pattern is
reusable, parameterizable and can be composed of other patterns. As a proof of concept
a MapReduce framework was built using different basic patterns, which also demonstrate
the scalability of that approach.

38

CHAPTER 5
Design

Subsequent to the evaluation and selection of background technologies as well as the
presentation of the underlying model that will serve as a fundamental coordination basis
for the framework, this section describes the design phase of the software engineering
process.

In the first part of this chapter a reduced mobile profile of the Peer Model and its
characteristics are presented (see Section 5.2). In the second part important design
decisions regarding the MPM framework are discussed. More precisely, the overall
architecture of an MPM distributed system (including necessary system hosts as the
Notifier-Peer and the registration application, see Section 5.3.3) is presented, followed by
the architecture of a single MPM host (including important components as the Runtime-
Peer, Peers and Wirings, see Sections 5.4 and 5.5). The last part of the design chapter
deals with mobile design considerations (Section 5.6), including user interaction and
persistence and possible code generation using a modeler (Section 5.7).

5.1 Distribution of work

The whole engineering process is conducted in close collaboration with Jörg Schoba
[Sch17a], as it has been the case in Chapters 2 (analysis of existing background tech-
nologies) and 3 (requirements on the Mobile Peer Model). In this work the main focus
regarding design and implementation is laid on the architecture of the Runtime-Peer
(RTP), mobile constraints, user interaction and persistence. Jörg focuses on the com-
munication and serialization and provides deep insights into scalability and security
considerations.

39

5. Design

5.2 The Mobile Peer Model

In Chapter 4 the specification of the Peer Model from 2013 was presented. The coordina-
tion model, introduced by Kühn et al., has been designed and developed for applications
in the desktop and server area. The focus was laid mainly on complex and highly concur-
rent applications with high throughput capacity. In mobile environments, however, other
requirements have higher priority, for example lower resource consumption. Also some
assumptions cannot be applied to a mobile environment, like a reliable and continuous
internet connection. Therefore, a reduced profile of the Peer Model was elaborated in
cooperation with the designers of the original Peer Model. In several meetings with Eva
Kühn and Stefan Craß some functionalities of the original model have been eliminated,
whereas also some new mobile supportive features were added.

In the following subsections the main components of the adapted Mobile Peer Model
are presented. Worth mentioning is that the feature decision was made in consideration
of some mobile applications (i.e. a distributed master worker example or an online
interaction multi-player game). The resulting profile was elaborated in a detailed fashion,
nevertheless, it might be enhanced with further features in the future.

5.2.1 Entry

As described in Section 4.1.1, Entries represent data objects in the Peer Model that might
be an event, a message or a request. In contrast to an Entry in the original Model, flow
identifiers are not supported in the first version of the mobile profile. Furthermore, the
mobile version supports two system-defined Exception-Entry types, namely the ones for
Time to live (TTL) expirations and potential send exceptions.

TTL expiration

An absolute timestamp in milliseconds since 1970-01-01 (Universal Time Coordinated
(UTC)) defines the point in time when an Entry loses its validity (TTL property).
The default value for that property is -1, meaning the Entry is always valid. Relative
timestamps are not applicable in a mobile environment with a relay server, because the
server can cache Entries, which means that the relative time might not be valid anymore
on the receiving side. It is assumed that all clocks are synchronized.

An Entry can expire while it is stored in the PIC of a Peer or during a Wiring execution.
In such a case, the Entry gets wrapped into an Exception-Entry with type exception
when it is read or taken from a container or EC. Secondly, an Entry can expire during
the send process. In this case, the Entry gets wrapped into an Exception-Entry when it
is written into a container of the receiving Peer. Furthermore, an Entry may expire while
it is stored on a persistent storage. When this happens, the Entry gets wrapped into
an Exception-Entry while the Peer’s containers are filled on RTP startup. More details
about exceptions and how developers can handle them can be found in Sections 5.5.6
and 6.3.6.

40

5.2. The Mobile Peer Model

Potential Send exception

The second possible exception type of an Entry is POTENTIAL_SEND_EXCEPTION
and may occur while an Entry is sent to a remote host (more details can be found in
Sections 5.5.6 and 5.6.7).

5.2.2 Space and Container

Also the MPM uses concepts of space-based computing, whereas the shared memory
in the MPM framework is simply called container. Those containers can be described
as a repository of Entries which are accessible in a concurrent manner. In comparison
to the specification of the original Peer Model, which assumes a tuple space-based
communication middleware to be present, no existing implementation is used. The main
reason is that existing middleware aims at processing speed and high concurrency, which
also implies more resource consumption. By designing the container technology and its
behaviour by ourselves, the space-based shared memory can be optimized for mobile and
light-weight devices.

Like in the Peer Model, a container offers three operations (READ, TAKE, WRITE). A
count argument can be specified to retrieve exactly n (n >= 1), greater or equal n (n >=
0) or less or equal n (n >= 1) elements. When fetching an Entry, the coordination-type
of the Entry has to be specified, which is the only possible selection criteria. Other
space-based middleware implementations often also offer more sophisticated selection
opportunities (selectors). Another feature that is not provided for GET operations is
the specification of a coordination principle, which defines the order of fetched Entries
(i.e. FIFO), as for example the EXtensible Virtual Shared Memory (XVSM)1 does.
Transaction support is not needed by the container in the MPM, because a Peer does
not support the concurrent execution of Wirings.

Further details on containers can be found in Section 6.3.1, where the main focus is laid
on the actual API and the implementation details.

5.2.3 Peer

In contrast to the original model presented in Chapter 4, a Peer in the MPM can not
have any Sub-Peers. As a result of that, also no POC is necessary, because Wirings
between different Peers are not supported. However, apart from that restriction, a Peer
has exactly one PIC and holds a list of Wirings, which may transport Entries and execute
external Services, as it is the case in the original model.

Every Peer within the Runtime-Peer has a unique URI, which is of the form <protocol>://
<host-name>/<peer-name>. As the communication layer shall be exchangeable, the
first part of the URI shall define the used protocol. The second part (host-name) defines
the actual user or host running an application that uses the MPM framework. Finally,

1http://www.mozartspaces.org/ accessed: 2016-10-01

41

http://www.mozartspaces.org/

5. Design

the last part of the URI (peer-name) identifies a specific Peer running on that host.
Consequently, every Peer has a globally unique URI. Although a Peer in the MPM has
actually no POC, the same graphical notation for a Peer is used as shown in Figure
4.1. An Action-Link that is pointing to the POC of the Peer illustrates an external
Action-Link, meaning that the specified Entries will be written into the PIC of another
local Peer or sent to a Peer of a remote host, according to their dest property.

5.2.4 Wiring

As described in the original paper of Kühn in [KCJ+13] "... wirings are the only active
part of the system." In comparison to the original Peer Model, the mobile profile has
some reductions regarding Wirings.

The original model allows the concurrent execution of Wirings, even a single Wiring can
be executed in parallel within a Peer. Because mobile devices have restricted processing
power on the first hand and restricted battery life on the second hand, in the MPM
only one Wiring per Peer is allowed to run at the same time. Consequently, a Peer
gives control of the current process (or thread) from one Wiring to the next, meaning
no concurrent executions are possible on the Wiring level. Furthermore, one Wiring
can only have exactly one Service associated. However, to realize multiple serial Service
executions, as it is possible with the original Peer Model, all Services only need to be
called from one single Service, that passes the returned EC from the previous Service to
the next.

In addition, flows (see Section 4.1.5) are not supported by the first version of the mobile
profile. On Entry retrieval in Guards or Actions only the Entry’s type and no flow
identifier are considered. To model the behaviour of a workflow in the Mobile Peer Model,
the developer or modeler of an application has to emulate flows with a flow identifier
encapsulated in the Entry’s data object. Nevertheless, then also an advanced Service
implementation, which handles the logic for fetching only Entries with a specific flow ID,
would be needed. For a Wiring the same graphical notation as for the Wiring shown in
Chapter 4 is used.

In newer publications of Eva Kühn (i.e. in [Küh17]) the notation Guard is synonymous
for Guard-Link. However, in this thesis a Guard is used to describe all Guard-Links of
a Wiring. The same notation applies for Action-Links. Therefore, in the course of this
work, an Action may be constructed of several Action-Links.

5.2.5 Runtime-Peer (RTP)

The so-called Runtime-Peer was already described in the first paper of Kühn in [KCJ+13]:

"Together, all peers of a site form a “Peer Space”, whose runtime environment
is bootstrapped via a runtime peer (RTP), the name of which refers to the
URI of the local site."

42

5.3. Overall system architecture

This definition can be completely adopted. As described in the quote above, the RTP
is the main component of the MPM and holds all user-added Peers of a local side
and also system-defined Peers, like the IO-Peers (see Sections 6.3.4 and 6.3.5) and the
Exception-Peer (Section 6.3.6). In addition, the RTP exposes an interface that can be
used by the surrounding environment to start and stop the runtime or to inform the
RTP about events from the outside (for example when the internet connection has been
established on a mobile device).

5.3 Overall system architecture

In this section important system components of the MPM framework are presented. As
the framework is developed to work in a mobile environment, the communication part
between volatile mobile peers is quite challenging and needs some additional components
accordingly. Discontinuous availability has to be considered by providing the seamless
re-establishment of the communication with a participant. Due to requirement NFR 1
(see Section 3.1.2), an unrestricted and reliable communication that is working properly in
every network constellation is needed. As described in Section 3.2 (selection of background
technologies), XMPP was chosen as communication protocol, which requires a relaying
server to route messages. In this scenario every peer has to establish the connection
on its own initiative. Due to the fact that applications on mobile devices should not
run permanently in the background in order to save processing power and to reduce
battery consumption, the devices also need some kind of notification approach to wake
the application up if another peer has sent some data.

Figure 5.1 shows two application-specific hosts (Host 1 and Host 2) and all system
components in the MPM reference implementation that are needed to guarantee a reliable
communication. Those include the central XMPP server, the registration server and
the Notifier-Peer, which are in the responsibility of an MPM developer, and the third
party Firebase Cloud Messaging (FCM) server that is needed for sending notifications
to mobile devices. More details about those components are supplied in the following
subsections, more details about the communication layer is provided in the thesis of Jörg
[Sch17a].

5.3.1 Communication between peers

The two components in the upper section of Figure 5.1 represent two hosts in an MPM
application. Each of them might be a mobile device, a desktop PC or a server component
(more details about the different execution environments of an application built upon the
MPM framework are presented in Section 6.1).

If Host 1 wants to send data to another host in the network, it first needs to establish an
authenticated connection with the XMPP server. For now, it is assumed that Host 1 is
authorized to communicate to the server (Section 5.3.3 deals with new users). Host 1
then sends the actual message to Host 2 via the XMPP server (message M1). In case the

43

5. Design

Figure 5.1: The overall architecture of an application that uses the MPM framework
with two hosts and the mandatory system components (XMPP server, registration server,
Notifier-Peer and the FCM server).

receiving peer Host 2 is currently also connected to server, the message is immediately
forwarded and the peer can do its work. This direct communication is marked with blue
arrows in Figure 5.1.

5.3.2 Notifier-Peer

However, in case that the receiving peer Host 2 is not connected to the XMPP server,
the actual message of Host 1 is cached on the server until the receiver comes online again.
Because a receiving peer does not know when a new message is delivered, the Notifier-Peer
component is used to wake up the receiver of a message. With that approach repeating
reconnections to the XMPP server (active polling) can be avoided, which would in the
first place increase battery life of the device and in the second place is not as accurate as
the notification approach, because a message might be sent exactly between the polling
attempts.

44

5.3. Overall system architecture

In order to be able to notify a member in the network, the Notifier-Peer has to maintain
a list of hosts (in the reference implementation a host is identifiable via its XMPP
username) and its associated unique FCM token (see Section 5.6.5). Therefore, each
mobile host has to deliver its FCM token to the Notifier-Peer whenever the token changes
or the host connects to the XMPP server for the first time. More details about FCM
push notifications and tokens are discussed in the design chapter (Section 5.6.5) and in
the implementation part (Section 6.6.3).

Let’s assume that the notifier component is running and the FCM token of host Host
2 is available. Therefore, the Notifier-Peer is ready to receive a notification message
with the information about which peer has to be notified. This notification message N1
is sent at the same time as the actual message M1 and is immediately forwarded to
the Notifier-Peer, which is assumed to be always online and might also be redundantly
deployed. With the username contained in message N1, the Notifier-Peer performs a
lookup for the associated FCM token of the receiving peer Host 2. That token is then
sent via an HTTP request to a Google Firebase Server, which in turn sends a notification
to the receiving device Host 2. Subsequently, a callback method will be invoked by the
operating system on the receiving device Host 2, forcing the application to reconnect to
the XMPP server to receive the cached message (more details about this callback method
and FCM can be found in Sections 5.6.5 and 6.6.3).

The main advantage of this notification approach is that a device only has to maintain
one single long-living connection to the FCM server.

A reliable communication is only given with at least one Notifier-Peer deployed. Nev-
ertheless, in a mobile environment there are several other possible circumstances why
a host cannot be notified at a specific point in time, for example if the mobile network
is temporary unavailable, the phone is turned off or the battery is empty. However,
after the successful reconnection to the FCM server, a device will receive pending push
notifications and will subsequently start the RTP to receive incoming messages.

5.3.3 Registration

In the example above it is assumed that Host 1 and Host 2 are already registered
users, meaning that usernames and passwords are successfully stored in the XMPP user
database. Applications with a static user base are of course conceivable, but especially
in the volatile mobile environment dynamic joining of new users might be necessary.
Therefore, in addition to the MPM-Core, the Notifier-Peer and an Android library, also
a registration component is delivered. More details about all provided software artifacts
can be found in Section 6.2.

In comparison to the Notifier-Peer, this component is not a host within the MPM network,
because new joining peers are not registered yet and can thus not communicate over
XMPP.

45

5. Design

Figure 5.2: The architecture of a host that uses the MPM framework with its four layers
[Sch17a].

5.4 Architecture of an MPM host
After the description of the overall architecture of system components involved in P2P
applications that are built upon the MPM framework, this section will describe the
architecture of a single host (i.e. Host 1 in Figure 5.1).

5.4.1 Communication and security layer

Figure 5.2 depicts the four layers of a host that is based on the MPM framework. At
the bottom, the transport or communication layer is located, which is responsible for
exchanging Entries with remote hosts. In the reference implementation this layer is using
the Extensible Messaging and Presence Protocol (XMPP) with the TCP/IP transport
binding. The data sent over the communication layer itself can be encrypted by activating
TLS. Additionally, an optional encryption layer is placed on top of the communication
layer to enable end-to-end encryption between two hosts. In comparison, when using
only the channel encryption of the communication layer (TLS over XMPP) the server
has to be fully trusted, because the server could still eavesdrop packages between two
hosts. In [Sch17a] Jörg is describing this layer in greater detail.

5.4.2 Serialization layer

The purpose of the next layer is to serialize and deserialize String data to Entries and
vice versa. As defined in requirement NFR 5 (see Section 3.1.2), two exchangeable

46

5.5. Architecture of the Runtime-Peer

serialization layer implementations are delivered. The first one serializes the Entry into a
human readable format and the second one, aiming at performance, serializes the data
into a non-readable binary form (encoded as String). Each implementation itself is again
split into two parts: the serialization of the Entry and its properties on the first hand
and the serialization of the Entry’s data on the second hand. A more precise description
of this layer can be found in the design and implementation part of Jörg Schoba’s thesis
[Sch17a].

5.4.3 Runtime-Peer layer

The layer on top of the stack is the actual Runtime-Peer. It contains all necessary system
Peers (IO-Peers and Exception-Peer) and all user-defined Peers and Wirings. Detailed
insights into the structure and the components of the RTP are given in the subsequent
Section 5.5 and in Section 6.3 of the implementation part. As shown in the architectural
diagram the RTP exposes an interface in order to allow the enclosing application to
communicate with it. Such an encapsulating application can be e.g. a simple Java
program, a Spring application or an Android application. In particular, any device that
is running a compatible Virtual Machine (VM) to interpret the Java 1.7 bytecode of the
reference implementation can use the framework. The different execution environments
are topic of Section 6.1 of the implementation chapter.

All layers are implementing well defined interfaces so that they can be exchanged by
different concrete implementations, as it is required by NFR 6 in Section 3.1.2.

5.5 Architecture of the Runtime-Peer

In the third part of the architectural overview the Runtime-Peer is described. Figure
5.3 shows the interface of the RTP to the enclosing application, the system Peers, all
user-added Peers and the flow of Entries between these components. The following
subsections describe fundamental insights and important components of the RTP in
greater detail.

5.5.1 Overview

The RTP is the main component of the MPM framework and in each execution environ-
ment (VM) only one RTP exists. This single instance acts as container for all Peers of
this host (including the three internal system Peers) and controls the execution of the
underlying Peers and Wirings.

The blue, green, yellow arrows in Figure 5.3 represent Entries and illustrate the data-flow
between different components. The blue ones represent Entries that are received from or
sent to a remote host (external), the green illustrate Entries that are created within this
RTP and yellow ones illustrate Entries that are transported from one Peer of this RTP
to another Peer (internal).

47

5. Design

Figure 5.3: Architecture and important components of the MPM Runtime-Peer [Sch17a].

5.5.2 Interface of the Runtime-Peer

The interface of the RTP allows the surrounding application to call the start() and stop()
methods. On startup, the RTP initializes and starts all internal Peers and a connection
to the XMPP server is established. Each Peer gets its own thread within the process and
tries to execute its Wirings. When the stop() method is called, the connection to the
server is closed and the RTP forces the currently running Peers to stop and consequently
to stop the running thread. Apart from the important start() and stop() methods, the
RTP exposes the following essential methods:

• createPeer(String name): A Peer can only be created by using this method on
the RTP instance, assuring that the Peer gets initialized with the correct values
(i.e. Peer-URI). At the same time the new Peer is added to the internal list of local
Peers.

• onNetworkConnected(): This method can be called to inform the RTP that
the network connection is available again, since a stable connection can not be
guaranteed in a mobile environment. To avoid recurring and unsuccessful recon-
nection attempts in a predefined interval, the RTP will only try to re-establish
the connection if the surrounding application requests the RTP to do so. The two
currently predominant mobile operating systems, Android and iOS, provide an easy

48

5.5. Architecture of the Runtime-Peer

subscribe mechanism for network change events. A notification about the network
availability can then be forwarded to the RTP.

• injectData(String entryType, Serializable data, PeerURI dest): In the
mobile profile of the Peer Model there shall also be the possibility to insert data
from the surrounding application into the system. In the original model this was
only possible via Services and Actions of predefined Wirings. The injected data is
wrapped into an Entry and forwarded immediately to the internal Sender-Peer (see
Section 5.5.5). Depending on the dest property, specified during the injectData()
call, the Sender-Peer either inserts the Entry into the PIC of a local Peer or sends
the Entry over the wire to a remote Peer.

5.5.3 Peers and Wirings

In Section 5.2 the concepts of a Peer and a Wiring were already introduced. Some further
details, especially the functionality and the precise workflow of Wirings, including Guard,
Service and Action, are described in this subsection. A Peer within a RTP can be seen
as a self-contained and dedicated entity that separates the execution of different tasks or
responsibilities. In order to be able to fulfil this task, a Peer contains a list of Wirings,
each of them representing a simple and isolated execution step. As described in Section
5.2, the mobile version of the Peer Model only allows the execution of one Wiring per
Peer at the same time. Therefore, each Peer is executed in an own thread and the control
is given to each Wiring in a serial execution order. In the case that in one iteration no
Wiring could be executed (because not all desired Entries for that Wiring have been
available in the container), the thread gets suspended until a new Entry is written to
the PIC of that Peer. A Wiring defines the flow of Entries from its Peer’s PIC to other
internal containers or to external hosts and may execute Services. It is constructed of
the following parts:

Guard

The Guard of a Wiring defines whether the Service and Action of that Wiring shall be
executed or not (see Figure 5.4). It consists of one or more READ or TAKE operations,
whereby at least one consuming TAKE operation is mandatory to avoid unwanted endless
loops. All defined Link-Operations are performed on the PIC of the Wiring’s Peer. In
the event that all operations could be successfully performed, the Guard is seen as
satisfied. Afterwards, the fetched Entries are added to a so-called Entry-Collection (EC)
and are forwarded to the next part of the Wiring - the Service. In the case that not
all Link-Operations can be performed, the Wiring is stopped at this position and the
next Wiring gets executed. All Entries that have already been taken from the PIC in an
unsuccessful Guard execution are written back to the container.

49

5. Design

Figure 5.4: A sample Guard with two Link-Operations. Link 1 takes exactly one Entry
of type message. Link 2 reads at least one Entry with type ack.

Service (optional)

Each Wiring can have zero or exactly one Service (see Figure 5.5) - this is a further
restriction in contrast to the original Peer Model. Nevertheless, the developer can call
various Services on its own within the single Service that is registered for a Wiring.
The Service is only called if the Guard of that Wiring was successful. In that case, the
constructed EC is passed as parameter to the execute() method of the Service. The
Service may then use the Entries of the EC and can add new Entries or remove existing
ones. The EC is actually a special kind of container similar to the PIC of a Peer and
provides the same interface. The Service execution is sandboxed by the Wiring in order
to avoid that unexpected errors have a negative influence on the system. Nevertheless, if
a Service crashes unexpectedly, the Wiring will still try to execute the successive Action.

Figure 5.5: A sample Service that reads and takes Entries from the EC and writes two
Entries with type new_type to the EC. After the execution there are three Entries in
the EC - one with type message and two with type new_type. The Entry with type ack
is taken during the Service execution and could therefore not be used in a subsequent
Action.

Action (optional)

The last part of the Wiring is the optional Action (see Figure 5.6). Either the Service or
the Action has to be defined, otherwise the Wiring is not valid and cannot be added to a
Peer.

50

5.5. Architecture of the Runtime-Peer

Figure 5.6: A sample Action with one internal and one external Link-Operation.

An Action can have 0, 1 or more Link-Operations. One Action-Link defines the amount
and type of Entries that shall be transferred from the resulting EC of the Service (or
the Guard, in the case no Service is defined). In the MPM the Entries involved in an
Action are always taken from the EC, whereas in the original Peer Model also a read
operation can be performed on the EC. An Action-Link can be internal or external with
respect to the current Peer. An internal Action will take an Entry with the defined Entry
type from the EC and inserts it to the PIC of the inherent Peer. An external Action
will write Entries with the defined Entry type to the PIC of a Peer within the current
(RTP) or to the Peer of a remote host. The actual destination Peer is depending on the
dest property of the Entry taken from the EC. In contrast to the Guard-Links, not all
Action-Links must be successful. For example, if the Action defines three Links and the
second Link-Operation is not possible (i.e. because the Service did not add the desired
Entry with a specific type), only the first and third Links are being performed.

The sequence diagram in Figure 5.7 illustrates the full execution of a Wiring. The second
part is only executed if the Guard was successful. The EC is generated in the Guard and
passed to the (optional) Service and finally to the (optional) Action.

5.5.4 Receiver-Peer

There are three automatically added system Peers in each RTP. One of them is the
Receiver-Peer, which is responsible for receiving Entries from the XMPP server and
forwarding it into the appropriate container of a local Peer. This special Peer is constructed
as any other user-added Peer. The main difference is that the single Wiring of the Peer
is predefined and added during the Runtime-Peer’s creation. The Wiring comprises one
Guard-Link that takes exactly one Entry of type START_RECEIVER, one Service that
actually listens for incoming Entries, and no Action. On runtime startup one Entry
of type START_RECEIVER is written into the PIC of the Receiver-Peer, forcing the
Service to be executed exactly once. This is because the Guard operation is of type
TAKE and therefore the Entry is also removed from the PIC after the first successful
Wiring execution. The ReceiverService only registers a message processor for incoming
Entries by using the interface of the communication layer.

51

5. Design

Figure 5.7: The sequence diagram of a Wiring.

5.5.5 Sender-Peer

The second system Peer that is automatically provisioned is the Sender-Peer. Its function
is to transfer each Entry from its PIC to the Peer defined in the dest property of the
specific Entry. Because the task of the two system Peers (Receiver and Sender) involves
input and output of Entries, they are also termed as Input/Output (IO)-Peers. To achieve
its objective, the Sender-Peer has one predefined Wiring, comprised of one consuming
Guard-Link (TAKE) and one Service. The special Guard-Link of the Sender-Peer does
not define any Entry type. This is because every Entry shall be sent - independently of
its Entry type and data. The Link-Count is defined as GREATEREQUALS(1) so that
in one Wiring execution all pending Entries are sent. The Service then iterates over all
Entries of the delivered EC and either writes them to the PIC of a local Peer or sends
them to a remote host (by calling the send() method of the communication layer). If the
device is currently not connected to the internet or any other communication exception
occurs, the Entries are added to a list of pending entries (see Section 6.3.5).

Send exceptions

As it is described in more detail in Section 5.6.7, the whole RTP (including the state
of all containers) can be optionally persisted. The send process and the deletion of

52

5.5. Architecture of the Runtime-Peer

the Entry from the persistence should be performed in one single transaction to avoid
dropping an Entry or sending the Entry twice. This might happen if the application is
killed unexpectedly exactly while one of these statements are executed. To fully avoid
this behaviour, distributed transactions would be required. Nevertheless, depending on
the current application, one case is usually more problematic than the other. It has
been decided to let the software developer decide if the Entry shall be resent or not, by
enclosing the send() method of the communication layer with a local transaction. In the
very unlikely case that the transaction can not be committed (again this can only happen
if the application is abruptly terminated exactly during the send process) the system will
recognize the failed transaction on the next runtime startup. In this case, the Entry that
was probably not sent is being wrapped into a special Exception-Entry and forwarded to
the third predefined system Peer - the Exception-Peer. Depending on the application and
on the importance of the concerned Entry, the software developer can decide whether the
probable loss of the Entry or the duplicated transfer of the Entry cause less problems in
the system. A more detailed description about this transaction process is provided in
Section 5.6.7 in this chapter and in the implementation part (Section 6.6.5).

5.5.6 Exception-Peer

The third automatically added system Peer is the Exception-Peer. As the name suggests,
it is responsible to manage exceptions that might occur while the Runtime-Peer is running.
The idea behind the Exception-Peer is to forward all exceptions to a central component,
where the developer can decide which specific action should be taken in consequence. In
the version of the mobile profile of the Peer Model the concept of a so-called Exception-
Entry is introduced. It extends a simple Entry by the exception-type property and restricts
the coordination-type to the value exception. The actual Entry that was involved in an
exception is stored in the object value of the Exception-Entry. Such an exception can be
the expiration of the TTL property (TTL_EXCEPTION) or the previously described
unlikely situation during the send process (POTENTIAL_SEND_EXCEPTION).

In a nutshell, every Peer (except the Exception-Peer) has one predefined Wiring that
takes Entries with type exception from the PIC of the Peer and forwards it to the PIC of
the Exception-Peer. There, the countermeasure for a specific error can be performed by
the application developer. In order to achieve that the developer can define a particular
Service (and Action) for the Exception-Peer. More details about the interface of the
Exception-Peer and how such a Service and Action can be added to the Peer are described
in the implementation chapter (see Section 6.3.6).

• TTL_EXCEPTION: The time-to-live TTL property specifies the point in time
when an Entry loses its validity (see Section 5.2.1). During the attempt to read
or take an Entry, the container checks if the available Entry is valid (no expired
TTL property). To reduce resource consumption, this check is only done when
container operations are performed, as otherwise a maintenance task would have to
permanently check Entries for validity. In the case of a TTL expiration, the Entry

53

5. Design

is immediately wrapped into an Exception-Entry and is not returned by the read()
or take() method. In fact, this means that the Entry stays in the container, but
gets transformed to an Exception-Entry. Instead, the next Entry in the container is
checked and is again only returned by a read() or take() method if the TTL is valid.
Existing Exception-Entries are then transported via a predefined Wiring to the
Exception-Peer. This Wiring is added automatically to every Peer. It consists of a
Guard that takes all available Entries with type exception from the PIC of that Peer
and an Action that writes those Entries into the PIC of the Exception-Peer. Entries
that expire during the execution of a Wiring are forwarded to the Exception-Peer
with a predefined Action-Link that is automatically added to each Action of a
Wiring. This Link takes all Entries of type exception from the EC and writes them
to the PIC of the Exception-Peer. The predefined Wiring of the Exception-Peer will
then be executed subsequently. This works also if the Entry expires just after the
Service execution, at the time when the Action tries to take the Entries from the EC.
This is because this predefined Link is executed as last Action-Link - so all Entries
that might have been expired before are already wrapped into Exception-Entries
and are then taken by the final exception Link from the EC.

The last possible situation, where an Entry can expire, is while the Action tries
to write the previously valid Entry into the defined container. In that case, the
container will check the validity of the Entry before it is added and wraps it, if
necessary, into an Exception-Entry and the whole Entry itself as data property.
Again, the predefined Wiring that is added to each Peer automatically will take
this Entry and forward it to the Exception-Peer.

• POTENTIAL_SEND_EXCEPTION: As already described in Section 5.5.5,
the send process is executed in a local transaction. In the case that the application
crashes during the send process, the message could have either been sent or not. A
potentially not sent Entry is not automatically resent, to avoid duplicated message
delivery. In fact, the designated Entry is wrapped into an Exception-Entry and
written into the PIC of the Exception-Peer. A predefined Guard takes the Entry
from the PIC and executes a Service and a consecutive Action that, together,
define the countermeasure. Because there is no adequate solution that fits for all
applications, the actual Service and Action can be defined by the developer on its
own.

5.5.7 Lifecycle of the Runtime-Peer

In Section 5.5.2 the most important methods of the Runtime-Peer were already described,
including the essential start() and stop() methods, which control the execution of Peers
and their associated Wirings. Figure 5.8 shows a coarse lifecycle overview of the RTP.

As initialization steps, the hostname and the password have to be defined, so that a
successful connection to the XMPP server can be established and all local Peers can
be added via the method createPeer(String name). If there is any problem with the

54

5.6. Mobile design considerations

Figure 5.8: The lifecycle of the Runtime-Peer.

connection establishment on RTP startup, an exception is thrown. The developer can
then perform an individual action depending on that exception (i.e. a pop-up for the
user that the credentials were wrong or that there is currently no internet connection
available). If the authentication was successful and the connection could be established,
firstly the system Peers (Receiver, Sender and Exception-Peer) and secondly all locally
added Peers are started. The start() method will also initialize all added Peers with
Entries that were persisted during the last RTP execution (if persistence is enabled - see
Section 5.6.7). After the RTP was started for the first time within an execution context,
it is seen as initialized. From that time on no further Peers and Wirings can be added.
As described in Section 5.5.3, each Peer has an own thread and will now try to execute
its Wirings in a cyclic fashion.

If the RTP is being stopped the stop request is forwarded to all Peers. In that case,
the Peer will not execute any further Wirings and will try to stop the running thread
as soon as possible. However, a currently running Wiring will run until it has done its
job. This depends mostly on the associated Service implementation. If the developer
is doing any long-running calculations, a Service (and therefore a Peer) may still run
in the background, although the RTP is stopped already. Any Entry transmission to a
remote host would not succeed in such a case, because the connection was already closed.
Although, on a successive start() call the Entry would be sent, because undelivered
Entries are cached in the Sender-Peer. If the program is completely destroyed, those
pending Entries are resent only if the persistence is enabled (see Section 5.6.7).

5.6 Mobile design considerations
Many P2P communication networks and frameworks are designed for desktop and server
applications. This can be also seen as almost no work mentioned in Chapter 2 is directly
usable in a mobile environment. As discussed before, a central XMPP server is used,

55

5. Design

Figure 5.9: The compressed lifecycle of an Android Activity. The rectangles represent
the possible states of the Activity.

which acts as a relay to assure reliable communication in any network configuration. Also
most coordination models and frameworks are designed for non-mobile devices. This is
why in Section 5.2 a mobile profile of the used coordination model has been elaborated
that takes into account some limitations in mobile environments, like limited processing
power or battery usage. Further mobile design decisions are discussed in this section.
Since the reference implementation is provided for the Android platform, only Android
specific background knowledge and considerations are presented here.

5.6.1 Application and Activity lifecycle

An Android application is built upon different fundamental components, while the so-
called Activity2 is playing a central role. An Activity represents a single page in an
application and is usually responsible for user interaction. Unlike in different programming
languages, where a program is started via a main() function, an Android app starts a
declared Main-Activity of the app. As described in the Android developer guide3, the
developer has to extend from the predefined Activity class and can override different
callback methods. As depicted in Figure 5.9, the first callback method (also known as
lifecycle hook) is the onCreate() method where a developer can place code that should
be executed before the Activity is created. Another important callback is the onPause()
method, which is called when the Activity has lost the focus.

In the Android developer guide4 the lifecycle of a whole Android application and its
process is described. It is important to know that the lifetime of an Android application
can not be directly controlled by a developer. In fact, the system’s hardware configuration,

2https://developer.android.com/reference/android/app/Activity.html accessed:
2017-03-16

3https://developer.android.com/guide/components/activities/index.html ac-
cessed: 2017-03-16

4https://developer.android.com/guide/topics/processes/process-lifecycle.
html accessed: 2017-03-17

56

https://developer.android.com/reference/android/app/Activity.html
https://developer.android.com/guide/components/activities/index.html
https://developer.android.com/guide/topics/processes/process-lifecycle.html
https://developer.android.com/guide/topics/processes/process-lifecycle.html

5.6. Mobile design considerations

the currently installed operating system and the concrete user behaviour are affecting the
overall lifetime. Furthermore, the relevance of an Android application or component in
the system differ depending on the kind and the current state of the process. Therefore,
the Android system categorizes each process into an importance hierarchy:

• Foreground process: This is most likely the Activity the user is currently
interacting with, but might also be a foreground Service or a component that is
executed on the special User Interface (UI)-thread at the moment (i.e. a callback
function of a BroadcastReceiver or Service). The number of such processes in the
system is very low.

• Visible process: The user is currently aware of this process, although it is not
the Activity at the top of the screen. This might be an Activity in the state Paused
or a special Service that was started via the method startForeground(). There are
usually also only a few such processes in the system.

• Service process: A Service is not directly visible to the user, but is doing
important work in the background that the user cares about (see Section 5.6.3).

• Cached process: This last kind of process defines an application that was previ-
ously running, but is currently in the Stopped state and is not important to the
user anymore. Those processes are kept in an Least-Recently-Used (LRU)-list and
on application restart the app will start much faster than at the first execution.

The Android system will terminate applications from the list of cached processes first, if
memory is needed elsewhere. Usually there are a lot of cached processes, especially on
newer devices with at least 2 GB of Random-Access-Memory (RAM). So the operating
system will hardly reach a state where it has to kill service processes or even visible or
foreground processes.

5.6.2 Android Context

According to the Android reference documentation5, the Android Context is, as the
name suggests, ’an interface to global information about an application environment.’ It
provides access to shared preferences and local files, system-level services (like sensors,
network manager, ...) and it has to be used to execute application-level operations (like
starting new activities or sending broadcast messages). Many system-provided methods
need a Context reference as parameter to use those functionalities.

Therefore, the Context is also fundamental for the MPM framework, because an applica-
tion developer may very likely want to use features mentioned above in its MPM-Service
implementations. Fortunately, each Activity and also each Android Service extends from
the system-provided class Context.

5https://developer.android.com/reference/android/content/Context.html ac-
cessed: 2017-03-17

57

https://developer.android.com/reference/android/content/Context.html

5. Design

5.6.3 Android Service

Let’s recap the important functional requirement Running in the background (FR 2)
from Section 3.1.1. By solely using the MPM-Core (see Section 6.2) that is specifically
built for the Android platform (see left path of Figure 6.1), this requirement is already
fulfilled, because the Runtime-Peer would already run in the background. More precisely,
it will spawn a dedicated thread for each Peer assigned to it. However, if it is assumed
that the Activity that created and started the Runtime-Peer is being closed, the Activity
would switch to the state Stopped (see Figure 5.9) and the application’s process would
be added to the LRU-list of cached processes. The started RTP would still run in the
background to do its work and could still receive Entries from a remote host. However,
the Android system may kill the running threads and release the memory space used by
the application. The point in time of this cleanup operation is undefined. It is depending
on the concrete device and its hardware specification, the version of the operating system
and moreover on the usage behaviour of end users (i.e. which and how many apps and
services are running).

Therefore, to ensure a continuous and reliable execution of the RTP, another solution
has to be found. Fortunately, Android offers so-called Services6 that meet exactly the
requirements of the MPM framework:

"A Service is an application component that can perform long-running opera-
tions in the background, and it does not provide a user interface."

A Service can be started from any application component that has access to a valid
Context object (see Section 5.6.2) and even if the user switches to another app, the
Service remains running in the background. Components can also communicate with the
Service in both directions. More details about the different possibilities to start a Service
and its lifecycle are discussed in the implementation part (see Section 6.6.2).

As already described in Section 5.6.1, a currently running Service process is stopped by
the operating system only if there is a memory shortage and a more important Service or
a visible or foreground process needs the resources. According to the Android developer
guide7, a long-running Service (30 minutes and more) lowers its position in the importance
hierarchy over time. Therefore, the longer the Service runs, the more likely it will be
killed by the system. The reason for that is to avoid Services with memory leaks or other
misbehaviour that possibly would consume too much RAM so that other applications
could not use the benefits of cached processes. However, if specified, the Service will be
restarted by the operating system as soon as the resources are available again. Because
the application developer that uses the MPM framework will decide how long the Service
shall run in the background and it is not known how much resources will be available on

6https://developer.android.com/guide/components/services.html accessed: 2017-03-
19

7https://developer.android.com/guide/topics/processes/process-lifecycle.
html accessed: 2017-03-17

58

https://developer.android.com/guide/components/services.html
https://developer.android.com/guide/topics/processes/process-lifecycle.html
https://developer.android.com/guide/topics/processes/process-lifecycle.html

5.6. Mobile design considerations

each device later on, the Android Service has to be designed in a way that unexpected
force-stops and subsequent restarts of the Service are gracefully handled. To guarantee
reliability (i.e. no lost Entry in any container) the current state has to be persisted
permanently. Therefore, also a persistence layer has been implemented that is described
in more detail in Section 5.6.7.

5.6.4 Runtime-Service

With the introduction and analysis of fundamental concepts and important components
of the Android platform it has been shown that the Runtime-Peer will only run long-term
in a reliable way if it is started it in the context of an Android Service. As an Android
Service is a subtype of the Android Context class, important application-specific resources
are accessible and application-level operations can be executed. Therefore, a predefined
Android Service is provided that can be used out-of-the-box by any MPM Android
application developer. Necessary lifecycle hooks of the Android Service are already
implemented, which will start and stop the RTP. Additionally, essential system event
listener are pre-registered, for example a listener to receive network state changes of
the device. The provided Runtime-Service (RTS) class has some abstract methods that
have to be overriden by developers in a concrete subclass. In particular, those methods
deal with coordination-related configurations (i.e. creating and adding Peers or inserting
initial Entries). Figure 5.10 illustrates the Android RTS and its relationship to other
components. The filled rectangle on the left side represents the abstract Runtime-Service.
Other components of an Android application, like an Activity, can start the Runtime-
Service and therefore also the RTP. Furthermore, components can bind to the Service in
order to call methods, for example to inject new data into the RTP.

5.6.5 FCM Services

The application developer can decide if the Android Service (and therefore also the RTP)
shall run permanently in the background or only while a specific Activity is displayed.
For long running configuration tasks it might be a good decision to run the Service
permanently in the background. However, if there is no workload expected when the
Activity is closed, the Service should be stopped to save memory and processing resources.
In this case, though, also the connection to the XMPP server is disconnected, meaning
that incoming messages can not be received any longer.

In order to make use of both features, namely stopping the Service to save resources,
but still be able to receive incoming Entries at the same time, notifications are used.
The overall big picture and the architecture of the notification approach with FCM8 was
already described in Section 5.3.2 (Notifier-Peer). There are two Android Services that
have to be implemented by an application developer to use FCM. The first is used to
notify the application about the creation of a new unique FCM token and the second

8https://firebase.google.com/ accessed: 2017-05-20

59

https://firebase.google.com/

5. Design

Figure 5.10: Overview of the provided Android Runtime-Service and its relationships to
other components.

one implements the actual code that shall be executed on incoming notification messages.
Both Services are described in detail in the implementation chapter (see Section 6.6.3).

Together with the Runtime-Service, described in the previous section, both mandatory
Android Services are delivered fully implemented to application developers with the MPM-
Android library artifact (see Section 6.2). These two Services can be used by an application
developer out-of-the-box. Not a single line of code needs to be implemented - only a
few simple setup steps have to be completed (see Section 6.6.3). If properly performed,
the MPM RTP will be successfully notified on any incoming message, presuming that a
correctly configured Notifier-Peer instance is deployed.

FCM is also available for the iOS platform and could be also used in simple web apps
running in a browser. Thus, this notification approach is not disqualified by requirement
Operability on popular mobile platforms NFR 8 (Section 3.1.2). As concluding remark,
FCM is only usable on devices with Android 4.0 or higher. However, at the time of
writing only 1.0% of all Android devices were using a lower Android version9.

9https://developer.android.com/about/dashboards/index.html accessed: 2017-03-21

60

https://developer.android.com/about/dashboards/index.html

5.6. Mobile design considerations

5.6.6 User interaction

Now that we have a clearer understanding of the Android system and which techniques
and components are used for the framework, the communication between the Graphical
User Interface (GUI) and the MPM framework is discussed.

In the previous section, the Runtime-Service has been introduced, which controls the
execution of the RTP and therefore also holds a local variable of its single instance.
New Entries can be inserted into the RTP with the method injectData(String entryType,
Serializable data, Peer-URI dest, long tts, int ttl). This method, which is also available
on the Runtime-Service class, creates a new Entry with the specified properties and
inserts the Entry into the PIC of the local or remote Peer defined in the dest property.
This means that this method allows the delivery of an Entry to a remote host without
defining a Wiring. Usually, a dedicated Action-Link (with a specific type and count) has
to be defined to achieve this goal. The origin property of the injected Entry is, in that
case, the name of a pseudo system Peer (denoted as UI_PEER).

Because the method injectData() also exists on the Runtime-Peer, it could be called
directly on that instance object too. However, the developer is responsible to ensure
that the runtime is actually initialized and running at that moment. By using the
Runtime-Service, this precondition is inherently satisfied because the Runtime-Service is
only running if the underlying Runtime-Peer is started.

Communication from within the MPM system to the surrounding Android application
is more complicated. The only place where this may happen is during the execution
of an MPM Service. However, all Peers, Wirings and Services have to be added to the
Runtime-Peer at a point in time where the GUI components (like activities or fragments)
have most likely not been created yet. Furthermore, the Runtime-Peer could also be
started in the background. Therefore, in general, no concrete object reference of a GUI
component can be added to the MPM Service.

Fortunately, Android offers so-called broadcasts10 to send and receive messages between
different Android components. Those messages can be sent locally or even across
application boundaries to inform the receivers about an event of interest. To receive a
broadcast message, apps or components have to register for the desired event with a String
identifier, similar to the well known publish-subscribe pattern. Obviously, when sending
a broadcast, the same String identifier has to be declared to ensure only the desired
subscribers receive the message. In the implementation part more details regarding this
broadcast mechanism is explained and some code snippets are shown (see Section 6.6.4).

Also the Android system sends broadcasts when important events occur, for example when
the device has been successfully started (android.intent.action.BOOT_COMPLETED) or
the internet connection state has changed (android.net.conn.CONNECTIVITY_CHANGE).
A broadcast receiver for the latter event is already implemented in the abstract Runtime-

10https://developer.android.com/guide/components/broadcasts.html accessed: 2017-
03-25

61

https://developer.android.com/guide/components/broadcasts.html

5. Design

Service. However, an application developer might override the lifecycle methods of the
Service to register further events of interest.

5.6.7 Persistence

The Entries in all containers can be seen as the current state of the Runtime-Peer.
However, this data is only available in the volatile memory (RAM) of the device, meaning
that all Entries would be lost when the application is stopped completely or if there is a
complete shutdown of the device.

The need for a persistence layer

When conceptualizing the fundamentals and the architecture of the MPM framework
in the first place, a persistence layer was not part of the core design. It was seen as a
convenient feature that could be implemented in a future work. During a more detailed
elaboration of the Android platform (see Sections 5.6.1 to 5.6.3), however, it has been
found out that the operating system may kill the Runtime-Service (that contains the
RTP) without any prior notification, resulting in an unreliable product. This unwanted
behaviour particularly applies to devices with low hardware capabilities and if long-term
tasks are running in the background. In respect thereof, the only way to preserve data
consistency and reliability is to steadily persist the current state of all containers. For
this purpose, each write or take operation has to be reflected with a persist or remove
operation on a persistent storage.

Persistence during a Wiring execution

Inserted or taken Entries change the current state of containers in different parts of the
framework. First of all, an Entry received from a remote host is immediately inserted
into its destination’s PIC container by the ReceiverService (see Section 6.3.4). Here, the
Entry has to be added to the persistence as well, in fact just before the Entry is actually
written into the PIC. The reason for this is that any container modification immediately
triggers the thread of the affecting Peer. Consequently, a recently inserted Entry might be
involved in the execution of a Wiring, leading to inconsistencies in the persistence (if the
insertion of the Entry has not yet been completed in the persistence). The same situation
applies for Entries that are added to the system via the Runtime-Peer’s injectData()
method. Inside the method a new Entry is created and inserted into the PIC of the
Sender-Peer. Again, the Entry must be persisted immediately before writing it to the
container to avoid a race condition. For both cases the persistence layer has to provide a
method with the following interface: persist(IEntry entry, IContainer container).

As already described in Section 5.2.2, no transaction handling is necessary on the container
level, because only one Wiring per Peer can be executed at the same time. However,
when introducing a persistence layer, Entries taken by a Guard and Entries written by
the same Wiring’s Action have to be persisted/removed in one single transaction to
avoid inconsistencies in the persistence (see method removeAndPersist() in Figure 5.11).

62

5.6. Mobile design considerations

Figure 5.11: The sequence diagram of a Wiring execution with the call to the Persis-
tenceManager.

Entries that are taken from a container could get lost if the application is unexpectedly
terminated during a Wiring’s execution if they are removed from the persistence without
any transaction handling.

Figure 5.11 illustrates the call to the persistence layer during a Wiring’s execution.
The RTP can be terminated at any point in time - data integrity is always guaranteed.
Prerequisite for this is the atomicity of the method removeAndPersist() (see Section 6.6.5
how this is guaranteed in the Android persistence implementation). If an application
crashes before this method is called, the Entries taken by the Guard are still associated
with the PIC of the Wiring’s Peer in the persistence and would be reinitialized into that
PIC on application restart. After calling the method removeAndPersist() all affected
Entries that were taken by the Guard and that will be written by the Action are already
removed from or inserted in the persistent storage. If the application fails after this
point in time and the Runtime-Peer is started again, the affected containers would be
initialized with the state of the containers after the Wiring’s execution.

Persistence during the send process

In all previously mentioned situations data consistency can be preserved. However, when
Entries leave the system, distributed transactions would be necessary to ensure this
in every exceptional situation. As this kind of transaction handling is quite complex

63

5. Design

Figure 5.12: The sequence diagram of the transaction handling during the send process.

and also increases resource consumption, a compromise was made. Data integrity need
not be guaranteed in every case, but failures during the send process shall be detected.
Therefore, a transaction handling with the three methods beginSend(), endSend() and
rollbackSend() has been introduced.

Figure 5.12 shows the sequence diagram of the send procedure in the SenderService. The
Entry to be sent is marked in the persistence layer by calling the method beginSend().
If the app is unexpectedly terminated at this point in time, the Entry could probably
not have been sent and the Entry is still marked in the persistence, meaning that
the Entry is not valid anymore in the persistence context. On the next Runtime-Peer
start this marked Entry gets wrapped into an Exception-Entry and forwarded to the
Exception-Peer. The application developer can then decide further steps by defining
a Wiring in the Exception-Peer. This Wiring can have an arbitrary Service, which,
for example, just ignores or resends the Entry if the exception-type of the Entry is
POTENTIAL_SEND_EXCEPTION. The actual countermeasure is depending on the
current application and cannot be decided for all use cases. In case that the send()
procedure already returned, implying that the Entry was successfully sent, but the
endSend() method was not called (e.g. because the app got stopped by the system just
between those two statements), also a send failure is detected. Again, the developer can
decide which action should be taken on the next RTP startup.

If there is a problem with the internet connection, the send()method of the communication
layer will throw a CommunicationException. In such a case the rollbackSend() method

64

5.7. Modeler and code generation

of the persistence layer is called, which simply removes the mark of the stored Entry,
making it valid again. In the Sender-Service this Entry is then stored in a list of pending
Entries. All unsuccessfully sent Entries will be sent again if the internet connection could
be re-established and have to go through the same call sequence as an Entry that is
sent for the first time (beginSend() -> rollbackSend()/endSend()). Eventually, after a
successful send process, the method endSend() removes the delivered Entry from the
persistent storage.

Enable/Disable the persistence layer

In the first version of the MPM framework reference implementation only a persistence
implementation for the Android platform is provided (see Section 6.6.5), due to the
potential unexpected termination of the Runtime-Service.

As persisting data to the local persistent storage also means considerable extra cost in
terms of processing time, the persistence layer is optional and can be disabled.

5.7 Modeler and code generation
As required by NFR 7 (see Section 3.1.2), the API of the MPM framework shall be
designed in such a way that coordination-related code can easily be generated by a
modeler. However, the code shall be still easily legible and modifiable by a developer.

IPeer peer = runtimePeer.createPeer("peer1");

IGuard guard = new Guard();
guard.addLink(LinkOperation.TAKE, EntryCount.exactly(1), "type1");
IAction action = new Action();
action.addExternalLink(EntryCount.exactly(1), "type1");
IService service = new TestService();

IWiring wiring = new Wiring(guard, service, action);
peer.addWiring(wiring);

Listing 5.1: Sample code to create a Peer and a Wiring.

In Listing 5.1 the code to create one Peer with one simple Wiring (containing of a Guard,
Service and Action) is illustrated. Although the code might be generated by a modeler, it
is still readable and maintainable by an application developer. By the design of the Peer
Model, the business logic (here TestService) shall be separated from the coordination
logic and has to be implemented by the application developer.

65

CHAPTER 6
Implementation

In the previous chapter the profile of the MPM was introduced and important design con-
siderations of the framework were presented. Furthermore, the overall system architecture
and important system components have been described.

This chapter deals with the technical implementation of the framework and gives deeper
insights into some particular parts of the system. The communication layer including
serialization and deserialization of Entries, as well as more information on security aspects
of the system, like channel encryption and end-to-end encryption, are described in Jörg
Schoba’s thesis [Sch17a].

Not a lot of code snippets are presented, as the source-code will be publicly available and
well-documented. Focus is laid on essential interfaces and classes of core components and
on the implementation details of some more complex parts of the framework.

Before going into detail about the implementation, all possible execution environments
for applications built upon the MPM framework are presented (Section 6.1), followed
by an illustration of the different software artifacts that are provided by the reference
implementation (Section 6.2).

6.1 Execution environments

As required by NFR 8 (Operability on popular mobile platforms) the framework shall
be designed in a way that it is implementable on different platforms and it should be
possible to communicate across platform boundaries. Therefore, the language-independent
data format JavaScript Object Notation (JSON)1 and as a more performant alternative
Google’s Protocol Buffer2, which is also available for various programming languages, is

1http://www.json.org/ accessed: 2017-03-02
2https://developers.google.com/protocol-buffers/ accessed: 2017-03-02

67

http://www.json.org/
https://developers.google.com/protocol-buffers/

6. Implementation

used in the reference implementation. More details about those technologies and how
they have been utilized in the framework are described in Jörg’s thesis ([Sch17a]).

The reference implementation is implemented in the Java programming language. The
main reason for that is that the currently biggest player on the mobile market, Android,
provides a comprehensive Software Development Kit (SDK) that is written in Java.
Applications for the Android operating system can be developed with Java in language
level 6, 7 or 8. All features of Java version 7 are supported. Starting with version 7.0
(API Level 24) of the Android platform, also a subset of features of Java version 8 is
supported3. However, the Android platform versions 7.0 or higher are only used by 1.2%
of all Android users at the time of writing4. Therefore, it has been decided to write the
framework with Java 7.

The framework is usable on any device that is able to interpret the byte code produced
by Java in version 7. For this purpose, any kind of VM or some other bytecode translator
is needed. In practice, this will be the Java Virtual Machine (JVM) for simple Java
programs and the Dalvik Virtual Machine (DVM) or the Android RunTime (ART) for
Android applications. The DVM is used on the Android platform from version 1.0 (Base)
to 4.4 (KitKat) and was designed particularly for embedded and low power systems.

An Android program has a more complicated compilation process than a normal Java
application. First, the Java files are compiled to Java bytecode, which would be inter-
pretable by a usual JVM. Next, this bytecode gets translated to Dalvik bytecode, stored in
Dalvik EXecutable (DEX) files, which is then interpretable by Android’s virtual machine
(DVM). The successor of the DVM is the Android Runtime (ART), used by version
5.0 (Lollipop) and upwards. It can use the same DEX bytecode, meaning that apps
compiled for older versions should work also when running with ART on newer devices.
ART makes use of Ahead-Of-Time (AOT) compilation, which improves app performance
by translating the bytecode of the produced DEX-files to native machine instructions.
Google states5 further advantages over the older Dalvik-VM, including improved garbage
collection, debugging enhancements and reduction of power consumption.

6.2 Software artifacts
In the previous section different environments were described in which the reference
implementation of the MPM framework may be implemented. Since some libraries used
by the framework only work on Android, in particular the communication libraries, two
different artifacts have to be provided - the first one for Android and the second one for
environments that use a normal JVM. Furthermore, another wrapper around the MPM
framework is provided that simplifies the development for the Android platform. The
reason for this is the special lifecycle of Android applications, which has to be considered.

3https://developer.android.com/guide/platform/j8-jack.html#
supported-features accessed: 2017-03-02

4https://developer.android.com/about/dashboards/index.html accessed: 2017-03-02
5https://source.android.com/devices/tech/dalvik/ accessed: 2017-03-02

68

https://developer.android.com/guide/platform/j8-jack.html#supported-features
https://developer.android.com/guide/platform/j8-jack.html#supported-features
https://developer.android.com/about/dashboards/index.html
https://source.android.com/devices/tech/dalvik/

6.2. Software artifacts

Figure 6.1: Overview of the delivered software artifacts.

More details about this artifact, including an abstract Android Service that can be
integrated into an Android project, are described in Sections 5.6 and 6.6.

Figure 6.1 gives an overview of delivered software artifacts. At the top there is the
MPM-Core project, which includes the source-code of the framework. Depending on the
target platform (Android or standard Java program), this code base is assembled with
different library-dependencies. The assembled library for standard Java programs can be
directly used by any Java program. For example, the Notifier project of the reference
implementation, which is also provided, uses the standard MPM-Core within its Spring
Boot application. Spring Boot facilitates working with databases and encourages a rapid
application development and deployment (more details can be found in Section 6.4).

On the left side in Figure 6.1 the Android MPM-Core artifact is shown, assembled
specifically for the Android platform. This library could be used out of the box for any
Android application. The provided Runtime-Peer could be used as in any other Java
program, but the developer may face some difficulties. Especially if user interaction is
needed (in the context of an MPM Service), if the runtime should run permanently in
the background or if the RTP should be notified about important events of the Android
system, a developer would have to add a lot of additional code on his own. To facilitate
this functionality and to make sure that the developer does not have to care about those
features, an Android library (Android Archive (AAR)) is provided that can be imported
by any Android project.

69

6. Implementation

Figure 6.2: The class diagram of the Runtime-Peer.

The last software artifact included in the reference implementation is the registration
project. Similar to the Notifier project it is using the popular Java Framework Spring Boot
that also facilitates web application development. The main purpose of the registration
application is to add new users to the XMPP identity database (see Section 5.3.3).

As demanded by requirement NFR 1, the source code of the MPM reference implemen-
tation has to be publicly available. Additionally, the fully assembled libraries will be
uploaded to a public repository like maven central6 or jcenter7. In order to use the MPM
framework for an Android app, a developer will therefore only need to define one line of
code in the build file, e.g. if gradle is used, the line could look like:
compile ’at.ac.tuwien:mpm-androidlibrary:1.7.0’.

6.3 Runtime-Peer

To recapitulate from Section 5.5, the Runtime-Peer (RTP) is the main component of
the system and controls the execution of all Peers and Wirings. For each execution
environment (VM) only one single instance of the RTP can exist. The RTP class is
therefore implemented as a Singleton, to ensure that only one such object can be created.
The class diagram in Figure 6.2 shows important members and methods of the RTP
class.

6https://search.maven.org/ accessed: 2017-03-03
7https://bintray.com/bintray/jcenter accessed: 2017-03-03

70

https://search.maven.org/
https://bintray.com/bintray/jcenter

6.3. Runtime-Peer

6.3.1 Container

Before going into greater detail about the implementation of a Peer and its components
(Wiring, Guard, Service and Action), the used tuple space technology is presented. The
tuple-based memory space is simply called container and is able to store and access
Entries with arbitrary data payload concurrently. Containers are used for the PIC of a
Peer, but also as bucket to transport Entries through a Wiring, called Entry-Collection
(EC). A new EC is created after a successful Guard execution, is forwarded to the optional
Service and is finally used by the Action to send the Entries to internal or external Peers.

Existing middleware

There are several space-based middleware implementations in Java 7 available - for exam-
ple Mozartspaces8, which was developed by the Space Based Computing Research Group
of the TU Wien or EXtreme Application Platform (XAP)9, developed by GigaSpaces.
They provide high performance in-memory data spaces with several features like querying
Entries with different coordination principles (like FIFO or template matching) and
transaction handling.

Although these software solutions bring a lot of benefits, they have been developed
for desktop and server applications. All of them have a considerable high resource
consumption and are not applicable for mobile devices. Furthermore, transactions are not
necessary by the design of the MPM, because each Wiring of a Peer is executed one after
the other in one single thread. Various coordination principles would be a nice-to-have,
but in the first mobile profile of the PM only the Type-Coordinator has to be available,
which returns Entries of a specific type in a random order (if available).

Implementation details

A Container in the mobile profile of the PM has a similar interface as the JavaSpaces10

API, but is tailored for the use in the MPM. In Figure 6.3 the class diagram of the
Container reference implementation is shown.

As Entries can be written from Actions of different Peers concurrently and at the same
time also read or take method calls can happen, the data structure that is used to store
the Entries has to be thread-safe. Therefore, a ConcurrentHashMap11 is used with the
Entry’s coordination-type as key. The value of each Entry in the map is again thread-safe,
namely a ConcurrentLinkedQueue12. This type of queue orders elements in the FIFO

8http://www.mozartspaces.org/ accessed: 2016-10-01
9https://docs.gigaspaces.com/xap100/ accessed: 2016-10-01

10http://www.oracle.com/technetwork/articles/java/javaspaces-140665.html ac-
cessed: 2017-04-12

11https://docs.oracle.com/javase/7/docs/api/java/util/concurrent/
ConcurrentHashMap.html accessed: 2017-04-23

12https://docs.oracle.com/javase/7/docs/api/java/util/concurrent/
ConcurrentLinkedQueue.html accessed: 2017-04-23

71

http://www.mozartspaces.org/
https://docs.gigaspaces.com/xap100/
http://www.oracle.com/technetwork/articles/java/javaspaces-140665.html
https://docs.oracle.com/javase/7/docs/api/java/util/concurrent/ConcurrentHashMap.html
https://docs.oracle.com/javase/7/docs/api/java/util/concurrent/ConcurrentHashMap.html
https://docs.oracle.com/javase/7/docs/api/java/util/concurrent/ConcurrentLinkedQueue.html
https://docs.oracle.com/javase/7/docs/api/java/util/concurrent/ConcurrentLinkedQueue.html

6. Implementation

Figure 6.3: The class diagram of the Container implementation. The EntryCollection is
a special Container that is used to store and transport Entries between parts of a Wiring
(Guard -> Service -> Action).

order. However, this coordination principle is not guaranteed when fetching Entries in a
Guard (READ or TAKE), because Entries might be written back after an unsuccessful
Guard execution. By the definition of the MPM, the Entries don’t have to be returned
in a specific order anyway.

For one Container several ContainerObserver objects can be registered that are notified
on each WRITE operation. This concept is used to inform a Peer about the modification
of its PIC so that the potentially waiting thread of that Peer can be continued.

When an Entry with a non-negative Time-to-start (TTS) property is written to a
container, a Timer13 is created that will notify all observers of that container on the
point in time this Entry becomes valid. As it is the case for the TTL property, a TTS
property is an absolute timestamp, as relative timestamps are not usable when an Entry
is cached on the server for some time. When an Entry with an expired TTL property
is written to a container, the Entry gets wrapped into an Exception-Entry and is then
automatically forwarded to the Exception-Peer with the help of a predefined Wiring
(see Sections 5.5.6 and 6.3.6). During a read or take operation on a container the TTL
property of all affected Entries are checked. Again, in the case that the Entry has expired,
it is wrapped into an Exception-Entry and forwarded to the Exception-Peer.

The reference Container implementation can be replaced with another implementation
quite easily, as the interface IContainer is used where possible. If a more sophisticated
solution is desired in a future profile of the MPM, for example the support for different

13https://docs.oracle.com/javase/7/docs/api/java/util/Timer.html accessed 2017-
04-24

72

https://docs.oracle.com/javase/7/docs/api/java/util/Timer.html

6.3. Runtime-Peer

Figure 6.4: The class diagram of the Peer implementation.

coordination principles, changes on the IContainer interface as well as on the concrete
implementation of the Guards and Actions have to be performed.

6.3.2 Peer

In the design chapter the scope of a Peer and the execution flow of Wirings have
already been described (see Section 5.5.3). Here some details on the implementation are
presented. Figure 6.4 illustrates the inheritance hierarchy of classes and interfaces of
the package at.ac.tuwien.mobilepeermodel.peer. The class Peer is a concrete subclass
of the abstract class AbstractPeer and is used if an application developer calls the
IRuntimePeer.createPeer(String peerName) method. On the created Peer instance the
developer can then add Wirings to model the desired coordination behaviour. The
three system Peers (Receiver-Peer, Sender-Peer and Exception-Peer) also extend the
AbstractPeer class, where the necessary functionality to act as a Peer in the system is
implemented. In addition, predefined Wirings are added, to define the specific task of
that Peers. Details about these preconfigured Wirings are described in the subsequent
Sections 6.3.4, 6.3.5 and 6.3.6.

Implementing the Runnable Interface

In the Java programming language a class has to implement the special Runnable interface,
if its instances shall be executed in an own thread. The interface defines the single no-

73

6. Implementation

arguments method run()14. As each Peer in the MPM shall run in an own thread, the
Peer has to implement this run() method.

On a successful RTP start, all assigned Peers are also started by calling the Peer’s start()
method. In this method each Peer creates a new thread and passes the this reference as
argument, forcing the run() method of the Peer to be executed. The AbstractPeer class
is defining the default implementation of the run() method, forcing all user-added Peers
and system Peers to be executed in the same way.

The run() method is immediately entering an infinite loop, whereas in each iteration all
Wirings are executed one after the other. If in one loop pass no Guard of a Wiring has
been successful, the thread is suspended by calling the wait() method on the Peer object.
The thread will remain in this state until there is a container modification in the Peer’s
PIC. Each Peer is implementing the IContainerObserver interface and registers itself as
an observer for container updates of its PIC. On each WRITE operation, the method
containerUpdated(), defined in the interface, is called, which will continue the waiting
thread by calling the notify() method on the Peer’s object.

6.3.3 Wiring

Figure 6.5 shows the class diagram of a Wiring and its three fundamental components.
The two important implementation parts of a Wiring are the constructor and the
execute(IPeer peer) method.

The constructor of the form public Wiring(final IGuard guard, final IService service, final
IAction action) assigns the passed parameters to final, private member variables of the
class in order to prevent manipulation of the variables after initialization. During the
creation of a Wiring object also a preconfigured Action-Link with Entry count >= 1
and Entry type exception is added to the list of Links in the Action. This Link assures
that all Entries that expire during the Wiring execution (in Guard, Service or Action)
are forwarded to the Exception-Peer’s PIC. Furthermore, the ArrayLists of Links in the
Guard and Action are transformed into unmodifiable lists15 so that the behaviour of a
Guard or Action can not be changed after the Wiring’s creation.

To enable reusability of Wiring objects, a Wiring is not associated with a specific Peer
and can be used by different Peers at the same time. Therefore, on each execution of the
method execute(IPeer peer) the Peer reference has to be passed as parameter so that the
Wiring is executed in the right context.

Guard

The most important methods and variables of a Guard are visualized in Figure 6.5. Each
Guard can have one or more Guard-Links, where the Link-Operation is restricted to

14https://docs.oracle.com/javase/8/docs/api/java/lang/Runnable.html accessed:
2017-04-23

15https://docs.oracle.com/javase/7/docs/api/java/util/Collections.html#
unmodifiableCollection(java.util.Collection) accessed: 2017-05-02

74

https://docs.oracle.com/javase/8/docs/api/java/lang/Runnable.html
https://docs.oracle.com/javase/7/docs/api/java/util/Collections.html#unmodifiableCollection(java.util.Collection)
https://docs.oracle.com/javase/7/docs/api/java/util/Collections.html#unmodifiableCollection(java.util.Collection)

6.3. Runtime-Peer

Figure 6.5: The class diagram of the Wiring implementation.

READ or TAKE and to be valid at least one TAKE operation must exist. The count can
be defined with one of the predefined static methods of the class EntryCount (exactly(int
number), largerEquals(int number) or lessEquals(int number)). The entryType can be an
arbitrary non-empty String. However, Guard-Links can only be added to a Guard until
the Guard is added to a Wiring to avoid changes in the behaviour at runtime.

A Guard-Link is independent of a Guard and can therefore be used in different Guards.
The variables of the Guard-Link are declared as final and can not be changed after
creation to prevent modification or manipulation of Links at runtime. Furthermore, a
Guard is a self-contained component and may be used in different Wirings. No reference
to a Wiring or Peer is stored in the object.

The method verify(IPeer peer, IWiring wiring) tries to satisfy all associated Links of
the Guard and returns an object of type IGuardResult. If a Guard can be successfully
satisfied, the result delivers the boolean value true, all taken Entries (which are needed
for a persistence related task) and the newly created EC containing all Entries that have
been read or taken by the Guard. The EC is actually a special kind of container, similar
to the PIC of a Peer, with the only difference that no observer is registered that is notified
on container updates. If one Guard-Link can not be fulfilled, the result returns an empty
EC and the boolean value false.

75

6. Implementation

Figure 6.6: The inheritance hierarchy and relationship of Links.

Service

The IService interface defines the two methods execute(IEntryCollection ec, IEntryfactory
ef) and stop(). If the Guard could be satisfied, the Wiring calls the execute() method of
the Service and passes the created EC and an Entry-Factory as arguments. The provided
EC may be changed by the application developer during the Service execution, because
it is used as basis for the Action afterwards. The second parameter (Entry-Factory) can
be used to create new Entries in the system and assures that newly created Entries are
initialized with correct properties. To be exact, the factory defines the property values
for origin and from with the Peer-URI of the Peer the Service is executed in. Apart from
the injectData() method of the RTP the usage of an Entry-Factory is the only possibility
to create new Entries. There is no public constructor defined for the class Entry to assure
that no Entries exist with undefined or wrong properties. Furthermore, and similar to the
Guard, each Service object is independent of any Peer or Wiring to facilitate reusability.

The execution of a Service is surrounded by a try-catch block to circumvent any failure or
unexpected behaviour in the system. In case of an error, the thrown exception is caught,
the stack trace is printed and the execution of the Wiring is continued. However, the
subsequent Action might not be fully performed if the EC does not contain all required
Entries after the execution of the Service. A rollback mechanism does not make sense in
such a situation, as Entries that are written back to the originating PIC of the Wiring
would most likely trigger the same Wiring in the next Peer’s execution loop again.

76

6.3. Runtime-Peer

As depicted in Figure 6.5, an application developer may implement the IService interface
or extend from the provided Service class to define a concrete Service. When using the
Service class the stop() method is already implemented so that the developer can focus
on the execute() method. The stop() method of the Service is invoked from the Service’s
Peer just after the RTP has been stopped if the Service is currently running. In this case,
the application developer should ensure the immediate termination of the Service (which
is not always possible though). After the Service has been stopped, the Wiring’s Action
is executed as usual and available Entries are inserted into their destination containers.
However, it can not be guaranteed that Entries are also sent to a remote Peer, because
the server connection has been most likely closed at this point in time. Then, on a
subsequent restart of the RTP and after the connection has been successfully established
again, the pending Entries are sent over the wire. If the persistence layer is enabled, the
state of all containers and therefore also potentially not sent entries would be reinitialized
also after a complete device shutdown (see Section 6.6.5).

Action

The interface definition of an Action is shown in Figure 6.5. Similar to a Guard, an Action
can have one or more Action-Links. To add a new Link, one of these three methods can be
used: addLink(IActionLink link), addInternalLink(ContainerType container, IEntryCount
count, String entryType) or addExternalLink(IEntryCount count, String entryType). An
internal link has to be used if one or more Entries (specified with the IEntryCount
parameter) shall be written into the PIC of the Peer the Action is executed in. For
external links, again the count and the Entry type has to be defined, the actual destination
Peer of a local or remote host must be specified in the concrete Entry’s dest property.
Entries of internal links are directly inserted into the PIC of the designated Peer, Entries
of external links are forwarded to the Sender-Peer’s PIC. The class hierarchy of Links
and their relationship with the Action is visualized in Figure 6.6.

As it is the case for the Guard, the list of Action-Links is exchanged with an unmodifiable
view of the list, as soon as the Action is added to a Wiring. Just before this finalization
step (performed by the Wiring), a special preconfigured Action-Link is added as last
element to the list. It is defined as

addExternalLink(EntryCount.largerEquals(1), EXCEPTION_TYPE);

and will take all Exception-Entries (with type exception) from the EC and forward them
to the PIC of the Exception-Peer. With this setup, it does not matter at which point in
time an Entry expires (in a Peer’s PIC or during a Wiring execution), it will eventually
end up in the PIC of the Exception-Peer.

Moreover, an Action-Link does not belong to one single Action and additionally each
Action is a self-contained component so that they can be reused for different Actions/
Wirings.

77

6. Implementation

The perform() method of an Action iterates through all Action-Links and constructs a
list of Entries that can be actually inserted into the desired containers. If persistence is
enabled, those Entries are first written in the persistence layer and simultaneously all
taken Entries are removed from the persistence to avoid any inconsistencies. Only then,
the Entries are actually written into the desired containers.

Simple and understandable API

In contrast to the domain-specific language (DSL) of the Peer Model, defined in [KCJ+13],
the API of the Mobile Peer Model reference implementation seems clearer and easier
to use. Some error prone situations, like the usage of references for containers, can be
avoided. However, one reason for that is the reduced feature set of the MPM in contrast
to the original one.

In the case that the application designer/developer is using the currently developed
graphical modeling tool of the PM [Sch17b], the coordination-related code (creation of
Peers, Wirings and their relationships) can be generated automatically. In this case, a
more complicated API would not mean a considerable disadvantage in the first place.
Nevertheless, simplicity and better readability can improve maintenance tasks. The
modeling tool could also generate some necessary configurations, like the registration of
mappings between coordination-types and Java class types. More details about the need
for this data type registration process and the concrete implementation is described in
[Sch17a].

6.3.4 Receiver-Peer

Figure 6.4 shows the class and interface hierarchy of Peers in the reference implementation.
The ReceiverPeer class extends the abstract classes AbstractPeer and IOPeer. Details on
the implementation of the AbstractPeer, which is the super type of all other Peers, was
already introduced in Section 6.3.2. Therefore, the Receiver-Peer acts in the same way as
any other Peer concerning execution behaviour. The only difference is the automatically
added preconfigured Wiring, illustrated in Figure 6.7. The Guard of the Receiver-Peer’s
single Wiring takes one Entry of type START_RECEIVER and executes the Service
ReceiverService. One Entry of that type is inserted into the PIC of the Receiver-Peer on
the first Runtime-Peer start to activate the ReceiverService once.

ReceiverService

The ReceiverService only registers a message processor for incoming Entries on the
communication layer. The message processor callback is then called for each incoming
Entry. The implementation of the callback function is simple: check the dest property of
the Entry and then insert it into the specified local Peer. As simple validation step it is
checked if the addressed Peer has at least one Guard-Link registered in any of its Wirings
with the type of the received Entry. If no such Link exists or if no local Peer with the
desired destination Peer-URI is available in the list of local Peers, currently just a log

78

6.3. Runtime-Peer

Figure 6.7: The graphical notation of the Receiver-Peer with its single Wiring. The only
objective of the Wiring is to start the ReceiverService once, which registers a message
listener for incoming Entries.

message (WARN) is printed and the received Entry gets ignored. This application layer
security feature has been introduced to prevent memory overflows in peer-in-containers if
an attacker tries to flood a host with arbitrary Entries that would never be processed by
a Guard.

6.3.5 Sender-Peer

Similarly to the Receiver-Peer, the Sender-Peer has a preconfigured Wiring with one
Guard and one Service, see Figure 6.8. The special characteristic of the single Guard-Link
is that no Entry type is defined, because the SenderService shall be able to send every
Entry to a remote or local Peer, regardless of its Entry type and data payload. The count
of the link is defined as GREATEREQUALS(1), meaning that in one Wiring execution
all Entries of the Sender-Peer’s PIC will be processed.

SenderService

The Service iterates over all Entries that are delivered via the EC and decides if the
Entry can be sent internally, by just writing the Entry to the PIC of a local Peer, or
if the send() method of the communication layer has to be called to actually send the
Entry over the wire. Before that, it is checked if the dest property is correctly set and
formatted. If notifications are enabled, a further Entry is transmitted to the Notifier-Peer,
immediately after an Entry is sent to a remote host, in order to wakeup the receiving
device.

Send exceptions

If an Entry cannot be sent (i.e. because no active internet connection is available), it
is cached until there is a call to the RTPs onNetworkConnected() method. In this case
the RTP notifies the Sender-Peer about the re-established internet connection and the
Sender-Peer forwards this information to the SenderService, which, after all, resends the

79

6. Implementation

Figure 6.8: The graphical notation of the Sender-Peer with its single Wiring. The
responsibilities of the SenderService are the insertion of Entries to the PIC of a local
Peer (if the Entry’s destination Peer is within the current runtime) and the transmission
of Entries to remote hosts.

pending Entries. This special behaviour is not modeled via a dedicated Wiring, although
it would be possible of course.

In Section 5.6.7 the procedures to guarantee data consistency and how to recover data
in the case of system failures are described. To ensure data consistency in every failure
situation (also during the send process), distributed transactions would be necessary.
As illustrated in more detail in the design section with Figure 5.12, data consistency
during the send process is not guaranteed, but failures immediately before or after the
transmission can be detected. The application developer can then decide how to proceed
(i.e. resend the possibly not sent Entry on the next RTP start or ignore the failure
situation). Such an exceptional situation is very unlikely and can only happen if the
application is killed unexpectedly or the device has to perform an abrupt shutdown
during a low battery condition.

6.3.6 Exception-Peer

The Exception-Peer is the third automatically provisioned system Peer that comes with
a preconfigured Wiring. In the design chapter the concept of the Exception-Peer and the
scope of an Exception-Entry have already been introduced. Also the two currently sup-
ported exception types TTL_EXCEPTION and POTENTIAL_SEND_EXCEPTION
were presented.

Interface of the Exception-Peer

To allow an application dependent exception handling for developers, the interface of
the Exception-Peer is extended with two methods. The first method (setExceptionSer-
vice(IService service)) defines the Service of the Exception-Peer and the second one
(setExceptionServiceAndAction(IService service, IAction action)) sets the Service and
the Action. The Guard of the single Wiring of the Exception-Peer is already defined
and cannot be changed - exactly one Entry of type exception is taken from the PIC. If

80

6.4. Notifier-Peer

Figure 6.9: The graphical notation of the Notifier-Peer with its two Wirings.

no Service or Action is specified by the developer, a default Service is used that is just
doing nothing (NO-OP). Consequently, the Entries are removed from the PIC, because it
would not make sense to maintain them in the PIC if there is no applications specific
exception handling anyway. Also this avoids the overflow of the PIC in very error-prone
applications.

The Wiring of the Exception-Peer is the only Wiring in the system that has no au-
tomatically added Action-Link of type exception. This Action-Link is responsible for
forwarding Exception-Entries, that were created i.e. because of a TTL-expiration, to
the Exception-Peer. This restriction prevents an infinite cyclic loop in the Exception-
Peer if an exception occurs during the Wiring of the Exception-Peer. Apart from that,
Exception-Entries cannot expire by definition.

6.4 Notifier-Peer

The notification approach used in the MPM framework was introduced in Section 5.3.
The so-called Notifier-Peer component that is shipped together with the MPM-Core
notifies other MPM hosts in the system about incoming messages. The Notifier-Peer
is built upon the MPM framework and has one single local Peer with two dedicated
Wirings and Services. The first Wiring is responsible for storing/updating the FCM
token of a host and the second one for sending notification requests to the Firebase
server (see Figure 6.9). In the reference implementation the Spring framework is used to
facilitate the work with the FCM token database. More details about the Notifier-Peer
and instructions on how to correctly set up and run the Spring Boot application are
provided in Section 7.1.1. The second step of the notification infrastructure setup process,
i.e. how to create an FCM project via the Google FCM console and which steps are
necessary to configure the Android application, is described in Section 6.6.3.

81

6. Implementation

Figure 6.10: The lifecycle of an Android Service. A Service can either be started explicitly
with a call to startService() or implicitly when a component wants to bind to the Service.

6.5 Registration

The registration component is implemented as a Java Spring web application that exposes
some REpresentational State Transfer (REST) endpoints. The black arrow R1 in Figure
5.1 of the design chapter illustrates a REST-call (POST) to register a new user. The
web method associated with that call then inserts the new username and the password
into the XMPP user database if no such user exists. If the registration succeeded, the
user will get the HTTP-Status 201 (CREATED) as result. Consequently, the user can
establish a connection to the XMPP server.

6.6 Mobile design considerations

In Section 5.6 important insights into the Android platform and its application components
have been given. In the following subsections the provided Runtime-Service and the
two FCM Services are described in more detail, including a description of the interfaces
and which steps have to be performed by an application developer in order to use the
provided components correctly.

6.6.1 Android Services

This section introduces the lifecycle of an Android Service and gives insights into concrete
API calls and important callback functions.

Each application component that has a valid reference to a Context object can start
a Service. If desired, this is even possible by components from other applications. To
interact with the Service a component can also set up a two-way binding. Figure 6.10
shows the two possible lifecycles of an Android Service. It can be either started by a call

82

6.6. Mobile design considerations

to startService() or bindService(). Both methods are available on object references of
type Context (remember that each Activity and Service extends from the abstract class
Context).

The way in which the Service is started has influence on the method callbacks that
are executed on Service startup and also affects how the Service can be terminated. If
a Service is started with the bindService() method, the Android system will bind the
Service to a specific component (usually an Activity or an immediate member variable).
This also allows communication between the component and the Service. Once created,
further components can bind to the same Service and it will run as long as there is at
least one component bound. To close the connection to a Service the method unbind()
must be called.

A Service that is started with the explicit startService() method will run until there is a
call to Context.stopService() from outside or to Service.stopSelf() from within the Service
implementation. Moreover, the Service can be bound to various components, as it is
the case for a Service that was started with bindService(). If bound, the Service cannot
be stopped until all components have closed their connections again. However, in this
constellation a call to stopService() or stopSelf() is still needed, because the Service was
started explicitly.

6.6.2 Runtime-Service

The RTP can only run in a reliable way in the background if it is executed in the context
of an Android Service. This process is only stopped by the Operating System (OS) if
resources are very limited and they are needed by other foreground Activities or Services.

Interface of the Runtime-Service

Figure 6.11 shows the class diagram of the provided Android Runtime-Service and some
of its related components. In this section some important methods are described and the
necessary steps of an application developer to use and configure a concrete subclass of
the Service in an Android app are demonstrated.

The abstract class MPMRuntimeService extends the system-defined component Service
that comes with predefined callback methods to control its execution and state.

The onCreate() method called immediately after the Service object is instantiated by
the OS and is the proper place to initialize important member variables. The method is
comparable with the constructor of a normal Java class, however, Android components
(like an Activity or Service) should not be created with their constructors. Instead, the
Android system forces application developers to use methods of the Android Context
object (see Section 5.6.2) to create components, in order to correctly register it in the
system. Important methods on the Context object are for example startActivity (Intent
intent), startService (Intent intent) and bindService(Intent intent, ...). In the onCreate()
method, the provided MPMRuntimeService class initializes a BroadcastReceiver with

83

6. Implementation

Figure 6.11: The class overview of the abstract MPMRuntimeService and its related
components.

the two IntentFilter16 actions ConnectivityManager.CONNECTIVITY_ACTION and
MPMConstants.PREF_FCMTOKEN_UPDATED. The first is emitted by the system on
network change events and the second is sent out by the provided MPMFirebaseInstan-
ceIDService when the unique FCM token got rotated by the FCM engine (see Section
6.6.3). Also the IBinder is created at this point. If a Service allows clients to interact
with it, the method onBind(Intent intent) has to be defined, which specifies how other
components can communicate with the Service. As the MPMRuntimeService allows
client communication, it returns an object that extends the system class Binder with the
method getService(). This method returns an object of type RuntimeServiceBinder, which
defines the methods bound components can call, for example injectData(...) (see Figure
6.11). Finally, the onCreate() method registers a concrete Android PersistenceManager
for the MPM framework.

Further important callback functions of a Service are the methods onStartCommand()
and onBind() - both are called by the system immediately after onCreate() has returned.

16https://developer.android.com/guide/components/intents-filters.html accessed:
2017-05-10

84

https://developer.android.com/guide/components/intents-filters.html

6.6. Mobile design considerations

As already discussed in the previous section, there are two different ways how a Service
can be started. This also influences the lifecycle of the Service and the methods that are
called during its creation (see Figure 6.10).

The method onStartCommand(Intent intent, ...) is executed if the Service is created
explicitly via a call to startService(). This method will actually start the Runtime-Peer
and afterwards returns an integer value that indicates the behaviour of the system if
the Service had to be terminated unexpectedly. In the provided MPMRuntimeService
implementation the returned value is START_STICKY, which will force the system to
restart the Service as soon as possible if it was terminated due to a resource bottleneck.
In such a case, the state of all containers in the MPM is preserved (if persistence is
enabled) and the RTP will continue its work immediately after the restart of the Service.
The method onBind() is called every time a component wants to bind to the Service and
the Service will run only as long as there is at least one component bound to it.

Both methods (onStartCommand() and onBind()) receive an Intent17 parameter, which
can be supplied with an optional username and password property, so that the RTP can
authenticate against the server. This data is stored in the Android’s SharedPreference
store, so that subsequent Runtime-Service starts do not need username or password
arguments.

As next step, either within onStartCommand() or onBind(), the Runtime-Peer singleton
is created and the username and password is set. Then, some abstract methods of the
MPMRuntimeService are called which have to be overridden by application developers in
a concrete subclass of the MPMRuntimeService. Those methods are:

• initializeTypeRegistry(): Remember that an Entry may have an arbitrary
payload, which means that any user defined Java class may be used. To enable
a functioning and performing serialization and deserialization of Entries, each
possible coordination-type of an Entry has to be mapped to a concrete data-type,
representing the Java class of the Entry’s payload object. More details about the
type registry and the serialization and deserialization mechanism are shown in
the thesis of Jörg Schoba. Listing 7.3 in Chapter 7 demonstrates the usage of the
MPMRuntimeService.initializeTypeRegistry() method.

• initializePeers(): Here all coordination-related code must be inserted by the
application developer. In practical terms, that means that all additional Peers and
Wirings shall be created here and have to be added to the RTP. The RTP instance
is a protected member variable of the MPMRuntimeService class and can therefore
be used in any subclass with a usual variable reference. Again, in Chapter 7 an
example implementation of this method is shown (see Listing 7.4).

• initializeExceptionPeer(): This protected method is the right place to add
a Service and Action to the internal Exception-Peer. An application developer

17https://developer.android.com/guide/components/intents-filters.html accessed:
2017-05-10

85

https://developer.android.com/guide/components/intents-filters.html

6. Implementation

does not have to override the method, as it is not declared as abstract in the
MPMRuntimeService class. If the method is not overridden and no Service is added
to the Exception-Peer, a default Service just takes all Exception-Entries from the
PIC and does nothing.

• insertInitialEntries(): Entries that shall be inserted into a specific Peer on the
very first RTP start must be defined in this method. This might be necessary to
trigger particular tasks only once. If the persistence layer is enabled, these Entries
are not inserted again after the first RTP start, even after a complete device restart.
This does not work with persistence disabled, though.

To receive FCM push notification messages (see details about the needed Android Services
in Section 6.6.3), each RTP host has to transmit its current unique FCM token to the
Notifier-Peer. In the protected method initializeTokenUpdatePeer() the Peer with name
TOKENUPDATEPEER is created and two Wirings necessary for the token update process
are defined. Specifically, one Wiring with Guard, Service and Action is responsible for
sending the FCM token to the Notifier-Peer and the second one takes an Entry with type
tokenupdate_ack from the PIC that is received from the Notifier-Peer after a successful
token update and executes the Service TokenAckReceivedService. This Service simply
removes a boolean value in the Android SharedPreferences that determines if the FCM
token has been updated by the FCM engine, so that the token update Entry won’t be
sent again to the Notifier-Peer on the next RTP start.

How to use the Runtime-Service

The MPMRuntimeService class is delivered via the MPM-Android library (see Figure 6.1
in Section 6.2 on the left side). An application developer has to perform the following
steps to use the Service:

• Add library dependency: In the build.gradle file the dependency to the name of
the MPM-Android library has to be defined, so that the library can be downloaded
by the gradle build tool. When using the recommended Integrated Development
Environment (IDE)18 Android Studio or IntelliJ IDEA, the right build.gradle
file is located in the app module in the Android project. The single line an
application developer has to add to the dependencies section is for example: compile
’tuwien.ac.at:mpmandroid:2.0.0’. The library will be publicly available in at least
one of the popular repositories maven19 or jcenter20, which are used to store
artifacts and dependencies of varying programming languages.

• Extend the abstract MPMRuntimeService: The delivered abstract MPM-
RuntimeService class has to be extended in order to create a concrete Android

18https://developer.android.com/studio/index.html accessed: 2017-05-19
19https://search.maven.org/ accessed: 2017-05-19
20https://bintray.com/bintray/jcenter accessed: 2017-05-19

86

https://developer.android.com/studio/index.html
https://search.maven.org/
https://bintray.com/bintray/jcenter

6.6. Mobile design considerations

Service. All three abstract methods, initializeTypeRegistry(), initializePeers() and
insertInitialEntries() have to be implemented. The developer may also override the
methods initializeExceptionPeer() and initializeTokenUpdatePeer().

• Register the MPMRuntimeService: The concrete Service class has to be
declared in the file AndroidManifest.xml in order to let the system instantiate it at
runtime (see Chapter 7 for a sample code).

• Start the RuntimeService: Basically, the concrete Runtime-Service can be
started in two different ways, by calling the startService(Intent intent) method
or by binding to the Service in order to communicate with it (bindService(Intent
intent)).

• Stop the RuntimeService: Depending on how the Service was started, it must
either be stopped explicitly by calling stopService() or it is automatically stopped
by the system when all bound components have closed the binding (unbind()). It
is the responsibility of the application developer to determine the right lifecycle,
which depends on the concrete use case. Sometimes the Runtime-Service only has
to be started while a visual application component is shown, where binding to the
Service is surely the better approach. Other applications, however, might require
the Service to run long-term in the background. In this situation the developer
should start and stop the Service explicitly. Nevertheless, a developer always has
to bear in mind that a running Runtime-Peer might slow down the whole system
and drain the battery unnecessarily, among other things because a permanent
connection to the server has to be maintained. Also starting and stopping the
Runtime-Peer for several times successively might not be the ideal behaviour. That
is because on each Runtime-Peer start several new threads are created, implying a
considerable additional resource consumption.

Additionally, the already implemented callback functions of the MPMRuntimeService
can be overridden by the developer, for example the onBind() method to return another
interface in order to call further methods on the Service or the onCreate() to initialize
additional resources used in the Service. In such a case, the developer has to ensure
that the super() method is called, which initializes mandatory functionalities (like the
registration of system event listeners).

Further necessary configuration steps, especially regarding push notifications, can be
found in Section 6.6.3. Demonstrated with the example of a P2P messenger, Chapter 7
illustrates some descriptive sample code of coordination logic. This sample application
will be provided in the MPM repository and can be used easily as starting point for new
Android applications. Then, only the coordination part and the server configuration have
to be replaced.

87

6. Implementation

Further information

The Runtime-Service sends a local broadcast message that informs the user about the
success or failure of the Service (and RTP) startup. If the RTP could be started
successfully, the delivered Intent21 has an Extra with type MPMStartResult.SUCCESS.
Further possible result types that might be sent out during a Runtime-Service start
are: AUTHENTICATION_EXCEPTION, COMMUNICATION_EXCEPTION and
RUNTIME_EXCEPTION. Application developers can register for those messages and
react as desired. For example in a messaging app, the user should be notified about wrong
credentials (AUTHENTICATION_EXCEPTION is thrown) on the login page. Those
exceptions have to be emitted via a broadcast message, because Android Service callbacks
shall not be directly called by an application developer and exceptions that occur during
such a callback can not be caught via the standard Java try-catch mechanism.

The lifecycle of the RTP is also shown in Figure 5.8 of the design chapter. Also
noteworthy at this point is that the Service’s callback functions are called on the main
UI-thread. Resource consuming initializations and tasks would slow down the whole
user experience drastically, because the UI might not react to any user input in the
meantime. Therefore, the RTP is created and initialized in an own thread. The startup
of the RTP must be performed in a background thread anyway, because the Android
system does not allow network operations on the main thread and would throw a
NetworkOnMainThreadException.

Another possibility to decrease the probability that a Service is terminated by the
operating system on low memory, is to transform the Service into a foreground Service, as
described in the Android developer reference22. While such a Service is running, the user
is aware of the execution, because a notification is shown in the Android notification bar.
The system will very unlikely stop such a Service, as it is seen as very important to the
user (see also the Android process importance hierarchy in Section 5.6.1). To configure a
foreground Service the method startForeground() has to be called from within the Service.
Therefore, if desired, the onCreate() or onBind() method has to be overridden by the
application or framework developer in order to use this feature.

6.6.3 FCM Services

In the design chapter in Section 5.6.5 the background knowledge and the need for push
notifications were introduced. In order to save processing resources by stopping the
Runtime-Service if it is not needed, but still getting notifications about incoming messages,
the MPM-Android library comes with a predefined notification approach that requires
a minimal configuration effort for application developers. Firebase Cloud Messaging
(FCM)23 simplifies the delivery of push notifications to Android, iOS and web applications.

21https://developer.android.com/guide/components/intents-filters.html accessed:
2017-05-10

22https://developer.android.com/reference/android/app/Service.html accessed:
2017-05-10

23https://firebase.google.com/ accessed: 2017-05-20

88

https://developer.android.com/guide/components/intents-filters.html
https://developer.android.com/reference/android/app/Service.html
https://firebase.google.com/

6.6. Mobile design considerations

Furthermore, this approach is very battery-efficient, because the Android device only has
to maintain one single connection to a server, which can be used by different applications.

Google delivers an AAR library project containing all necessary classes and Android
Services that are needed to use FCM. The two mandatory Android Services (Fireba-
seInstanceIdService and FirebaseMessagingService)24 an application developer has to
implement, are described in the following sections.

FirebaseInstanceIdService

The first Service that has to be implemented for an Android app that makes use of FCM
notifications must be a subclass of the FirebaseInstanceIdService25 from the package
com.google.firebase.iid. This Service is an extension of a basic Android Service with
the method onTokenRefresh(), which is called by the system each time the FCM token
changes. This will happen on application installation, if the app data is cleared or the
FCM SDK decides to rotate the token. The token itself is a unique ID to identify each
client app instance.

Usually, the just generated token is sent immediately to an application server for later
notification activities. However, this is not possible in the MPM framework, because
the Notifier-Peer, where the FCM messages are stored, might not be reachable from the
current device (remember the Notifier-Peer is a special host in the system also built upon
the MPM framework). This is because the hostname and password might not to be set
for the Runtime-Peer at the moment of token creation and a connection establishment
to the XMPP server and consequently message delivery to any host is not possible.
Therefore, only a key-value pair with name PREF_FCMTOKEN_UPDATED is set to
true in the Android SharedPreference store. On each successful Runtime-Peer start, this
preference is evaluated and if the value is true, the token is delivered to the Notifier-Peer.
To achieve this, a special Entry with coordination-type tokenupdate and the token as
payload-data is injected into the RTP. The dest property is set to the automatically
added local Peer TOKENUPDATEPEER that is responsible for transferring the token to
the Notifier-Peer. In the onTokenRefresh() method of the MPM implementation also a
broadcast message with an Intent-Extra26 PREF_FCMTOKEN_UPDATED is sent out.
A running Runtime-Service has registered for such broadcast messages (in the onCreate()
method, see Section 6.6.2) and would immediately initiate the token update process in
that case.

24https://firebase.google.com/docs/cloud-messaging/android/client accessed:
2017-03-20

25https://firebase.google.com/docs/reference/android/com/google/firebase/
iid/FirebaseInstanceIdService accessed: 2017-03-19

26https://developer.android.com/guide/components/intents-filters.html accessed:
2017-05-10

89

https://firebase.google.com/docs/cloud-messaging/android/client
https://firebase.google.com/docs/reference/android/com/google/firebase/iid/FirebaseInstanceIdService
https://firebase.google.com/docs/reference/android/com/google/firebase/iid/FirebaseInstanceIdService
https://developer.android.com/guide/components/intents-filters.html

6. Implementation

FirebaseMessagingService

The second mandatory FCM Service actually deals with receiving FCM notifications,
as described in the official Firebase Reference27. In principle, there are two different
types of messages that can be sent from an FCM server to a client: notification messages
and data messages28. A simple notification message contains up to 2 KB payload with a
set of predefined keys and is automatically displayed as an Android notification on the
user’s device. When receving that kind of notification message, the callback function
onMessageReceived() is only executed if the application is currently in the foreground. A
data message may deliver up to 4 KB of data (custom key-value pairs) and forces the
onMessageReceived() method to be invoked. For that type of notification message the
developer is responsible for taking further steps. For example, the developer may decide
to display a message in the Android notification bar if a specific property is set in the
payload of the received message or the received data is simply stored in the local app
storage for later usage. Note, that iOS apps in the background will only receive the data
message immediately, if the content_available property of the FCM notification message
is set to true.

The predefined implementation of the onMessageReceived() callback method is simple, by
just starting the Runtime-Service. In Section 6.6.2 the method onStartCommand() was
described that requires an integer return value. If the Runtime-Service is explicitly started
from the user outside of the FirebaseMessagingService, the method will return the system-
defined value START_STICKY, forcing the Runtime-Service to restart immediately after
it has been killed by the operating system. When the Service is started automatically after
an FCM push notification retrieval in the method onMessageReceived(), the predefined
integer START_NOT_STICKY is returned meaning that the Service will not be recreated
if killed by the OS. The start of the Runtime-Service will automatically start the RTP,
which in turn will establish the XMPP connection to receive the pending message. The
credentials for the XMPP connection had been already set before, because otherwise the
FCM token registration on the Notifier-Peer would not have been possible. In the case
that the Runtime-Service is currently running and an FCM notification is received, the
startService() call will just have no effect. The Runtime-Service will ignore consecutive
Service starts.

How to use the FCM Services

Both Services (MPMFirebaseInstanceIdService and MPMFirebaseMessagingService) are
delivered with the MPM-Android library artifact and app developers only have to perform
the following simple steps to use the FCM notification approach29

27https://firebase.google.com/docs/reference/android/com/google/firebase/
messaging/FirebaseMessagingService accessed: 2017-03-20

28https://firebase.google.com/docs/cloud-messaging/concept-options accessed:
2017-03-22

29https://firebase.google.com/docs/cloud-messaging/android/client accessed:
2017-05-21

90

https://firebase.google.com/docs/reference/android/com/google/firebase/messaging/FirebaseMessagingService
https://firebase.google.com/docs/reference/android/com/google/firebase/messaging/FirebaseMessagingService
https://firebase.google.com/docs/cloud-messaging/concept-options
https://firebase.google.com/docs/cloud-messaging/android/client

6.6. Mobile design considerations

Figure 6.12: The class overview of the provided FCM Services.

• Create Firebase project: There is a good description on the official website on
how to add Firebase to an Android project30. The easiest approach is to simply
use the pre-existing wizard in the Android Studio. Otherwise, a Firebase project
has to be created online in the Firebase Console31. The thereby generated google-
services.json file has to be downloaded and copied into the Android projects app
module.

• Add FCM dependency: The newest version of the FCM messaging library has
to be added to the dependency section of the app-level build.gradle file: i.e. compile
’com.google.firebase:firebase-messaging:10.2.6’

• Add Services to AndroidManifest.xml: The two provided Services from the
MPM-Android library have to be registered in the AndroidManifest.xml configura-
tion file of the Android app (see Listing 7.9).

After performing those three steps, the MPM RTP will be successfully notified on
any incoming message, presuming that a correctly configured Notifier-Peer instance is
deployed.

30https://firebase.google.com/docs/android/setup accessed: 2017-05-21
31https://console.firebase.google.com/ accessed: 2017-05-21

91

https://firebase.google.com/docs/android/setup
https://console.firebase.google.com/

6. Implementation

Overridable Services

With the steps described in the previous section, an application developer has a working
notification mechanism for the MPM. However, it may be necessary to change the provided
FCM Services. For example, the developer might want to use the FCM messages also
for additional use cases in the application or the developer may decide to first show a
notification in the Android notification bar and only if the user clicks on it, the Runtime-
Service or the app is started (in order to let the user control the background Service
execution). In such a situation the MPMFirebaseMessagingService can be exchanged or
extended.

Another possibility why a developer might not want to use the FCM notification approach
is because of data protection reasons, as Google is hosting the FCM servers and can
record the whole data flow of the Peer Model. To use a different notification approach,
the FCM Services simply should not be registered in the AndroidManifest.xml and the
developer has to implement an own mechanism. Furthermore, the Notifier-Peer is build
upon the MPM framework and the FCM-Services of the preconfigured Wirings can
be easily exchanged, so that the different approach can be implemented without much
additional effort.

Further information

When an Android Service is started, the fully qualified class name of the Service has
to be specified. For example, to start a concrete Runtime-Service with name MyRun-
timeService, defined in package at.test.mpm, the Service must be started by invoking
the method startService(new Intent(this, at.test.mpm.MyRuntimeService.class)). As
the developer has to extend the abstract MPMRuntimeService class at development
time, the concrete subclass has to be called by the MPMFirebaseMessagingService to
start the concrete Service. However, the name of the concrete subclass is not known
when compiling the MPM-Android library. Therefore, the class name is stored to the
Android SharedPreference store when the Runtime-Service is created at the first time.
On incoming FCM messages the fully qualified class name of the Runtime-Service is
loaded from the local store and the Service can be started.

Unfortunately, this approach has one drawback, namely, if the user wipes the local data
storage of the app, the concrete class name is also removed from the Preference store.
Consequently, when receiving subsequent FCM notifications the concrete Service can
not be started from the MPMFirebaseMessagingService, because the class name is not
available. In such a case, the application has to be started again explicitly by the user to
initialize the class name again. Otherwise, to avoid this behaviour, the app developer has
to override or exchange the MPMFirebaseMessagingService and start the Runtime-Service
with the concrete class name. The reason why this approach is still implemented in that
way is, because the developer does not have to concern about the FCM implementation
at all and only has to register the Service in the manifest.

92

6.6. Mobile design considerations

6.6.4 User interaction

Peers and Wirings have to be added to the RTP before it is started. At that point in
time, GUI components, which have to be notified about Entries that are being processed
during the MPM execution, might not have been initialized. Therefore, and as already
described in Section 5.6.6, one possibility to send data from an MPM Service to a GUI
component is the usage of so-called broadcasts32.

This communication mechanism is similar to the publish-subscribe messaging pattern.
Data packages are transported within an Intent33 that is identified by a well-defined
String identifier, similar to a topic in the publish-subscribe pattern. In order to receive
some desired data packages, components can register themselves on a BroadcastManager
with a specific String. For both actions, send and receive, a Context is needed. Therefore,
an MPM-Service that wants to communicate with a GUI component via broadcasts
must have a reference to a Context object. Because the Runtime-Service extends from
the system class Context, this object can be easily passed to each MPM-Service via its
constructor. The Context object is also necessary to make use of other application- or
system-specific features inside an MPM-Service, like i.e. storing data to a local database.

If broadcasts are not intended to go beyond the application boundaries, a local broadcast
should be performed. It is more efficient, because no inter-process communication is
needed and, even more important, security considerations can be neglected, as local
broadcasts are only sent out to components of the current application. When using
the LocalBroadcastManager to send messages, its method sendBroadcast(Intent intent)
returns a boolean value, determining if there was at least one receiving component. In
the case that the method returned false, meaning that no component was receiving the
message, an application developer can realize that the application is not in the foreground
at the moment and could store the Entry (or its data) to a local file or database for
later retrieval. When using this mechanism it is very important, though, to unregister a
previously registered BroadcastReceiver to avoid losing messages on outdated receivers.

The code snippet in Listing 6.1 is taken from the method onTokenRefresh() of the
delivered MPMFirebaseInstanceIDService that sends out a broadcast message to inform
the possibly running Runtime-Service about the rotation of the FCM token. In this
example no payload is added to the Intent, because the FCM token can be obtained via
a call to the static method FirebaseInstanceId.getInstance().getToken() at the receiver,
which has been registered in the Runtime-Service.

Intent newTokenIntent = new Intent(MPMConstants.FCMTOKEN_UPDATED);
LocalBroadcastManager.getInstance(this).sendBroadcast(newTokenIntent);

Listing 6.1: Everytime the FCM engine generates a new token, a broadcast message is
emitted.

32https://developer.android.com/guide/components/broadcasts.html accessed: 2017-
03-25

33https://developer.android.com/guide/components/intents-filters.html accessed:
2017-05-10

93

https://developer.android.com/guide/components/broadcasts.html
https://developer.android.com/guide/components/intents-filters.html

6. Implementation

In the onCreate() method of the MPMRuntimeService a BroadcastReceiver is registered
(see Listing 6.2).

BroadcastReceiver receiver = new RuntimeServiceReceiver();
IntentFilter filter = new IntentFilter();
filter.addAction(ConnectivityManager.CONNECTIVITY_ACTION);
filter.addAction(MPMConstants.FCMTOKEN_UPDATED);
this.registerReceiver(receiver, filter);

Listing 6.2: Registration of the BroadcastReceiver in the MPMRuntimeService.

First, the concrete RuntimeServiceReceiver, that implements the method onReceive(Context
context, Intent intent), is created. Then, the two topics that this receiver is register-
ing for are defined (ConnectivityManager.CONNECTIVITY_ACTION and MPMCon-
stants.FCMTOKEN_UPDATED). Finally, to actually register the BroadcastReceiver the
method registerReceiver() has to be called on a Context object. Here, the this variable
refers to the current MPMRuntimeService object, which is a subtype of Context. On an
incoming message, the onReceive() method is invoked by the LocalBroadcastManager.
For example, the onReceive() method of the RuntimeServiceReceiver is invoked after the
code in Listing 6.1 is executed. In that case, a new Entry is injected into the RTP with
the FCM token as payload data in order to update the token on the Notifier-Peer host.
Of course, inside the onReceive() method the actual String identifier, ConnectivityMan-
ager.CONNECTIVITY_ACTION or MPMConstants.FCMTOKEN_UPDATED, has to
be checked before.

6.6.5 Persistence

A persistence layer, responsible for reflecting the state of the RTP’s containers to a
non-volatile memory, is a necessary requirement to provide a reliable product. Further
reasons for implementing a persistence layer are described in detail in Section 5.6.7.

Interface of the persistence layer

As pointed out above, a persistence solution had to be integrated into the core framework.
Particular methods of the persistence layer interface (see Figure 6.13) are called at relevant
parts during the RTP execution. However, as sudden terminations of the Runtime-Peer
are only expected in an Android environment, a concrete persistence implementation has
been only developed for the Android platform at the moment. Applications that only use
the core framework (see MPM-Core on the right side of Figure 6.1) have to implement
and register an additional persistence implementation to store data permanently on the
persistent storage.

Figure 6.13 shows the persistence related packages of the MPM-Core and the MPM-
Android library and their relationships. In the following list some important methods
are enumerated.

94

6.6. Mobile design considerations

Figure 6.13: On the right side the IPersistenceManager interface and the PersistenceMan-
ager singleton is shown. The left side illustrates the concrete AndroidPersistenceManager
of the MPM-Android library that makes use of a SQLite database to store Entries to the
hard disk.

• persist(IEntry entry, IContainer c): If new Entries are inserted into a local
Peer, for example if an Entry is received from a remote host or a new Entry is
injected via the method injectData(), the Entry is also inserted in the persistence
layer.

• removeAndPersist(ContainerUpdate toRemove, List<ContainerUpdate>
toPersist): Figure 5.11 in the design section illustrates the sequence diagram of
a Wiring execution with the call to the persistence layer enabled. The method
removeAndPersist() removes Entries from the persistence that are taken from the
PIC by a Guard and inserts all Entries into the persistent storage that shall be
written to containers by the Wiring’s Action. To guarantee data consistency in
the persistence at any point in time, this method has to be executed in a single
transaction, meaning that either all container modifications are reflected in the
persistence or none. One ContainerUpdate object contains a list of Entries and the
affected container. The first argument (toRemove) holds all Entries taken by the
Guard and the second argument (toPersist) holds all Entries that are written to
(possibly different) containers.

• beginSend(IEntry entry), rollbackSend(), endSend(): Those methods are
called on the PersistenceManager during the send process in the Sender-Service.

95

6. Implementation

Figure 5.12 in the design section illustrates the sequence diagram of the send process
including calls to the persistence layer. Also in the design chapter (see Section
5.6.7), all possible exceptional situations that might occur while an Entry is being
sent are elaborated and presented.

• getNotSuccessfullySentEntry(): If a send transaction could not be successfully
committed, a potential send exception should be detected. To achieve this, each
Entry is marked in the persistence layer while the Entry is transmitted to the
server. If any exception occurs during this procedure, the Entry is still marked
on the next RTP start. Therefore, the method getNotSuccessfullySentEntry() will
return the Entry that might not have been delivered successfully to the server. The
RTP then wraps the returned Entry into an Exception-Entry and forwards it to
the Exception-Peer, where further actions can be defined via a dedicated Service
and Action (see Section 6.3.6).

• initializePeers(IRuntimePeer runtimePeer): If the persistence layer is en-
abled and the RTP is restarted, the state of all containers is restored during the
startup. The method initializePeers() should therefore iterate over all local and
system Peers and write the persisted Entries of the permanent memory to the
defined containers of the respective Peer.

The PersistenceManager singleton

Figure 6.13 shows the relationship between the IPersistenceManager interface, the
singleton PersistenceManager and the concrete class AndroidPersistenceManager. Here,
the proxy design pattern is used, where one object (the proxy) holds another object with
the same interface [Gra03]. Method calls on the proxy are then forwarded to the concrete
object, if certain conditions are fulfilled. In this case, calls are only forwarded from the
PersistenceManager proxy to the concrete AndroidPersistenceManager if persistence is
enabled. In the core framework there is no concrete persistence implementation available
and therefore the singleton proxy PersistenceManager just ignores all method calls.

When using the MPM-Core, an application developer can easily implement a concrete
PersistenceManager for standard Java applications that stores Entries on the file system
of any operating system, like Windows or Linux. The concrete implementation can either
be added via a call to PersistenceManager.setInstance(IPersistenceManager newInstance)
or by specifying the fully qualified class name in the file general.properties (i.e. persisten-
ceImplementation=at.myapp.persistence.ConcretePersistenceManager). This file must be
located under src\main\resources. Additionally, the persistence layer can be enabled or
disabled in this file (persistenceEnabled=true|false).

Android persistence implementation

The AndroidPersistenceManager is provided via the delivered MPM-Android library
and is registered for the RTP in the onCreate() method of the Runtime-Service. The

96

6.6. Mobile design considerations

reference implementation of the Android persistence layer makes use of an SQLite
database. The Android platform provides classes that facilitate the work and man-
agement with local databases34. The class EntryDataSource (see Figure 6.13) acts
as Data Access Object (DAO) and provides some convenient methods to insert and
remove Entries in/from the local database. Its private member variable db of type
android.database.sqlite.SQLiteDatabase also supports transaction handling. When re-
moving and inserting Entries at the same time, the methods db.beginTransaction(),
db.setTransactionSuccessful() and db.endTransaction() ensure that either all container
updates are reflected on the disk or none (atomic commit)35. Furthermore, SQLite can be
safely used in applications with multiple threads36. This feature is necessary, as different
Peers may use the database concurrently. However, only one thread can write to the
database at the same time, which can drastically decrease the overall system performance.

The current database model contains only a single table with 4 columns that is used
to store all Entries. The columns are hash_code, container_id, entry and sending.
The first column contains the hash code of the Entry’s object and is used to identify
an object during the deletion. The hash code value is obtained via the method Sys-
tem.identityHashCode(Object o)37, which will always return the value that the default
method hashcode() of the root object Object would return. This method is used, because
an application developer might override the Entry object and introduce an own hash code
function to the subclass, which would possibly corrupt the persistence implementation.
Obviously, the container_id represent the unique id of the container (PIC) and also
contains an information about its Peer.

The entry column is used to store the Entry, serialized as String (or byte array). For
serialiazing/deserializing, two predefined implementations exist (see Section 5.4.2) that
can be activated by setting the concrete class name in the general.properties configuration
file. More details about the serialization components can be found in Jörg’s thesis
[Sch17a]. By default, the Gson serialization is used, because for that approach no
additional TypeAdapter has to be developed, which are responsible for transforming a
generated protobuf message object to a Java first-class object and vice versa. However,
application developers can also implement an own serializer for the persistence layer, the
class only has to be compliant with the interface IEntrySerializer of the serialization
layer.

The last column is used to mark an entry as currently sending. The value in all rows
with a container_id different to the one of the Sender-Peer will always have 0 as value.
An Entry that is sent to a remote host at the very moment will have the value 1 assigned,
until the Entry is completely deleted after successful transmission. On each RTP start it

34https://developer.android.com/training/basics/data-storage/databases.html
accessed: 2017-05-25

35http://www.sqlite.org/atomiccommit.html#_introduction accessed: 2017-05-25
36http://www.sqlite.org/threadsafe.html accessed: 2017-05-25
37https://docs.oracle.com/javase/7/docs/api/java/lang/System.html accessed:

2017-05-26

97

https://developer.android.com/training/basics/data-storage/databases.html
http://www.sqlite.org/atomiccommit.html#_introduction
http://www.sqlite.org/threadsafe.html
https://docs.oracle.com/javase/7/docs/api/java/lang/System.html

6. Implementation

is checked if there exists a row with the value 1, and if one exists it is wrapped into an
Exception-Entry and forwarded to the Exception-Peer (see 6.3.6). Also at each RTP start,
all Entries in the table are fetched and inserted into the specific container to initialize
the runtime with its latest state. At the same time, the hash_code column is updated
with the hash code value of the newly created (deserialized) Entry.

One could argue that using one single table for storing the Entries is inefficient, because
if several threads of different Peers want to write to the database, they have to wait for
the previous transaction to finish, as the table is locked. However, SQLite is no database
management system comparable with server or desktop solutions, like i.e. MySQL38

or PostgreSQL39, and only allows one thread to write data to the database at once.
No concurrency control mechanism and optimization strategies are implemented40, as
this is beyond the scope of the SQLite project and would also mean too much resource
consumption. Nevertheless, there exist a lot of features, as it can be seen on the official
website41.

Additional overhead

Reflecting all container updates immediately in the persistence also means a lot of
additional overhead. Therefore, the persistence can be disabled by setting the property
persistenceEnabled in the file general.properties to false. An application developer should
be aware of that limitation and it is recommended that in systems with a high data flow
the persistence layer is only activated if it is really necessary. Furthermore, the detection
of failures during the send process can be disabled explicitly by the configuration variable
sendTransactionEnabled. Apart from that, an application developer might enhance the
existing implementation or exchange it with an optimized one. As discussed earlier, the
concrete persistence implementation can be set directly via the PersistenceManager class
or by defining the fully qualified name of the Java class in the general.properties file.

In Chapter 8 several tests have been performed to measure the additional overhead
the persistence layer is generating with the provided solution. Although there is a
considerable overhead, it can be shown that the solution with the SQLite database is not
much slower as another promising, but more complicated approach, which just appends
the serialized Entry to a file (see Section 8.2.3 for more details).

6.7 Tests

First of all, the correct functionality of the core framework is intensively tested. Especially
for important components (Peer, Wiring, Guard and Action) a lot of test cases exist.
Unit tests for small independent parts as well as integration tests for the interactions

38https://www.mysql.com accessed: 2017-05-27
39https://www.postgresql.org/ accessed: 2017-05-27
40https://sqlite.org/lockingv3.html accessed: 2017-05-27
41https://www.sqlite.org/features.html accessed: 2017-05-27

98

https://www.mysql.com
https://www.postgresql.org/
https://sqlite.org/lockingv3.html
https://www.sqlite.org/features.html

6.7. Tests

between several components can be performed and are available in the test package of
the project. The integration tests also demonstrate different use cases and can also serve
as additional documentation.

The container implementation is exhaustively tested, with around 60 test cases, including
high concurrency scenarios with around 1000 threads that are writing and taking entries
at the same time.

Also the Notifier-Peer has some test cases, in the first place, to prove the correct behaviour
of the two provided MPM-Services (NotifyUserService and UpdateUserTokenService) via
unit tests and in the second place, to completely test the functionality of the Runtime-Peer
with all its Peers and Wirings via integration tests.

Finally, the MPM-Android library project contains some test cases in its test package.
Unit tests for the persistence layer and integration tests for different example Runtime-
Services have been implemented. They can be executed on a Universal Serial Bus
(USB)-connected physical device or on an emulator, meaning that Android framework
API’s and information (as the target app’s Context object) can be accessed42. With
the help of Firebase Test Lab43 the tests can also be run simultaneously in a cloud-
based infrastructure on several different devices to cope with the wide variety of device
configurations. It is even possible to test an application in the Test Lab, if not a single
test case has been implemented. In this so-called intelligent robo test, the system will try
to crash the app by automatically interacting with the user interface.

42https://developer.android.com/training/testing/unit-testing/
instrumented-unit-tests.html accessed: 2017-05-28

43https://firebase.google.com/docs/test-lab/ accessed: 2017-05-28

99

https://developer.android.com/training/testing/unit-testing/instrumented-unit-tests.html
https://developer.android.com/training/testing/unit-testing/instrumented-unit-tests.html
https://firebase.google.com/docs/test-lab/

CHAPTER 7
Proof of concept application

In order to illustrate a possible use case for an Android P2P application and to demonstrate
the functionality and usability of the created software solution, a sample application built
upon the MPM framework is presented in this chapter. All necessary steps that have to
be carried out by a developer are described in detail. Therefore, this chapter also serves
as a manual for new application developers.

7.1 A secure P2P messenger app with the MPM
framework

As proof of concept application, a simple Android messenger app is implemented that
makes use of FCM push notifications to notify the receiver about a new incoming message.
Additionally, full end-to-end encryption is supported, meaning that not even the server
can read the payload of the delivered messages.

In this section, the most important setup steps for the project and fundamental code
snippets are presented. The full sources of the sample application will be provided in
the publicly available source code repository along with the sources of the MPM-Core,
the MPM-Android library, the Notifier-Peer and the web application for registering new
users.

7.1.1 Infrastructure setup

Figure 5.1 of the design chapter illustrates all participating entities in an MPM application.
Important components, apart from user-added hosts, are the relay server, the Notifier-Peer
and the registration web application.

101

7. Proof of concept application

Server setup

In the reference implementation XMPP is used as protocol to communicate with the
server. Therefore, any server that supports this protocol can be used. Openfire is a well
known XMPP server, written in Java, that can be easily and quickly configured1. In a
nutshell, the server has to be installed on any operating system of choice and a short
web-based installation wizard has to be completed. Here the server port, the service
name (see Section 2.5.3) and the user database get configured. For experimental tests
also an in-memory database can be chosen.

Notification setup

The Notifier Spring Boot project has to be checked-out together with the MPM-Core
to enable the provided notification approach. The only necessary part of the project
for an application developer is the folder src\main\resources, where all settings can be
configured. First the Notifier user has to be created in the XMPP user database. The
name can be arbitrary, however, the MPM-Core has configured the name of that system
host as notifier_peer by default. It can be changed by setting a key-value pair in the
general.properties file in the MPM project later (i.e. notifier_hostname=myNotifierName).
The password of the Notifier user has to be configured in the file application.properties
in the Notifier project. Also the database that is used to store the FCM tokens has to
be configured there (URL, username, password). The data model of the database can
be automatically created by the Spring framework and again there is the possibility to
start an in-memory database for testing purposes. As next step, an FCM project has
to be created on the official Firebase website2 and the thereby generated API key must
be configured in the file firebase.properties. Finally, the Spring Boot application can be
deployed and the first MPM host should be able to successfully start the Runtime-Peer.

7.1.2 Android project setup

To write Android applications an Android project has to be created in the first place.
This can be either done with a wizard in any supporting IDE or by copying a sample
application from the online repository. If the latter is used, the next step (adding the
MPM-Android dependency) is not needed.

Adding MPM-Android dependency

There are two possibilities how to use the MPM-Android library for an Android project.
Firstly, to download the sources of the library and mark it as dependency in the module
window of the IDE. Or secondly, and the far better and easier solution, to add the
dependency of the library in the app module’s build.gradle file (see Listing 7.1).

1http://download.igniterealtime.org/openfire/docs/latest/documentation/
install-guide.html accessed: 2017-05-26

2https://firebase.google.com/docs/android/setup accessed: 2017-05-26

102

http://download.igniterealtime.org/openfire/docs/latest/documentation/install-guide.html
http://download.igniterealtime.org/openfire/docs/latest/documentation/install-guide.html
https://firebase.google.com/docs/android/setup

7.1. A secure P2P messenger app with the MPM framework

dependencies {
compile ’tuwien.ac.at:mpmandroid:2.0.1’
...

}

Listing 7.1: The MPM-Android library can be easily used in an Android project by
defining a dependency in the gradle build file.

With this single line, the build tool gradle will download the library with the specified
version from a repository (like maven or jcenter) and compile the library together with
the Android source code.

Configuring necessary properties

Next, the XMPP settings, defined in the previous step, have to be configured in the
xmpp.properties file under src\main\resources. This file might look like Listing 7.2:

host=ec2-35-164-176-148.us-west-2.compute.amazonaws.com
port=5222
service=mpmmessenger
security=enabled

Listing 7.2: A sample XMPP property file.

Further settings can be configured in the general.properties file, i.e.:

persistenceEnabled=true
sendNotifications=true
...

Additionally, also the Connection class of the communication layer and the serialization
implementation can be defined in this property file. If those properties are not specified,
the default implementations are used. More details about these features can be found
in the thesis of Jörg Schoba [Sch17a]. For this proof of concept application, the default
implementations are absolutely sufficient. The persistence layer is only needed in the
sample messenger application to detect errors during the send process (see Section 7.1.3).
Otherwise, this feature would not be necessary, because messages received from other
hosts are stored in a local SQLite database. However, they could also be stored in a local
Peer and fetched via dedicated Wirings, but this would mean to permanently hold all
Entries in the RAM, which is not beneficial. Notifications are enabled by default, here it
is just listed for demonstration purpose.

In the case that there shall also be a non-Android host in the system (i.e. another server
host like the Notifier) or a host running on a desktop computer, the MPM-Core library
can be used for a standard Java project instead.

103

7. Proof of concept application

7.1.3 Extending the MPMRuntimeService

The delivered MPMRuntimeService that is used as a wrapper around the actual Runtime-
Peer is an abstract class. Therefore, a concrete subclass has to be derived from the
MPMRuntimeService implementing all abstract methods. Section 6.6.2 describes the
methods of the MPMRuntimeService in detail. In the following, some sample code of the
MPM messenger Runtime-Service is shown.

Initializing the type registry

In order to properly serialize and deserialize the data payload of Entries, each coordination-
type has to be mapped to a data-type, which is actually the Java class of the payload.
In the MPM messenger app there is only one user-defined class necessary for now. The
class Message simply holds the actual message as String and a unique ID as long. The ID
is needed to identify the message and to send back a confirmation about the successful
arrival of the message. As the payload of this confirmation Entry only contains the
message ID, there is no need to register it as own type. System types like String, int,
long or boolean are automatically added to the type registry.

The actual serialization layer implementation shall be configurable by requirement NFR
5 (see Section 3.1.2) and at least one human-readable and one binary implementation,
aiming at performance, shall be provided. The code in Listing 7.3 is sufficient for the
default JSON-serializer (see Section 5.4.2) that serializes the payload into a human-
readable format. If the second provided serialization implementation is used, which
converts the data into a non-readable and binary format, the developer has to implement
particular type adapters to convert the Java objects into protobuf3 messages. Jörg
describes the need for these adapters in more detail in his thesis [Sch17a].

@Override
protected void initializeTypeRegistry() {

DataTypeRegistry.putMapping("message", Message.class);
}

Listing 7.3: Code to map the coordination-type message to the Java class Message.class
in order to enable the correct serialization/deserialization of Entries with a payload of
that type.

Here the coordination-type message is mapped with the user-defined Java class Mes-
sage.class. Every time an Entry with the coordination-type message has to be serialized,
the concrete serializer obtains the mapped Java class from the DataTypeRegistry. This is
the case when Entries are sent to a remote host or, if the persistence layer is enabled,
also during each Wiring execution.

3https://developers.google.com/protocol-buffers/ accessed: 2017-05-27

104

https://developers.google.com/protocol-buffers/

7.1. A secure P2P messenger app with the MPM framework

Initializing local Peers

All coordination-related code must be inserted in this method. More specifically, local
Peers and their Wirings shall be created and added to the Runtime-Peer here.

@Override
protected void initializePeers() {

//create Peer
IPeer peer = runtimePeer.createPeer("messenger_peer");

//create Wiring to receive messages
IGuard grd = new Guard();
grd.addLink(LinkOperation.TAKE, EntryCount.exactly(1), "message");
IService service = new MessageReceivedService(this);
IAction action = new Action();
action.addExternalLink(EntryCount.exactly(1), "message_ack");
peer.addWiring(new Wiring(grd, service, action));

//create Wiring to receive message confirmations
IGuard guardAck = new Guard();
guardAck.addLink(LinkOperation.TAKE, EntryCount.exactly(1),

"message_ack");
IService serviceAck = new MessageAckReceivedService(this);
peer.addWiring(new Wiring(guardAck, serviceAck, null));

}

Listing 7.4: Code that creates a Peer with name messenger_peer and two Wirings.

The code in Listing 7.4 should be straightforward and clear. A Peer with the name
messenger_peer is created. Then, two Wirings (with Guard, Service and Action) are
created and added to the Peer. The first Wiring takes one Entry of type message from
the PIC of the Peer and executes the Service MessageReceivedService (see Listing 7.5).
After the Service completed, the Action is executed, which will try to send an Entry with
coordination-type message_ack to a remote host. The second Wiring is responsible for
fetching and handling this acknowledgement Entry.

The MessageReceivedService of the first Wiring is a bit more complicated (see Listing
7.5). First, the message payload is extracted from the received Entry with type message.
Then, the message is sent out via broadcast to any component that is registered for the
Intent-Action message_received_action. The message payload is actually delivered via an
Intent-Extra with identifier message_received_extra and can be extracted from the Intent
in the receiving BroadcastReceiver (see Section 7.1.5). The method sendBroadcast() on
the LocalBroadcastManager returns true if at least one component could successfully
receive the data. In that case, the app is currently shown to the user and the message
was delivered to the GUI component. Apart from that, if the method returns false, an
Android notification is created that shall make the user aware of an incoming message,
as known from any messenger app. The full source code for the creation of a notification

105

7. Proof of concept application

can be seen in the source of the sample application or on the Android developer website4.

...

@Override
public void execute(IEntryCollection ec, IEntryFactory entryFactory)

throws Exception {

//take the Entry from the EC and get the message payload
IEntry receivedEntry = ec.take("message");
Message message = (Message) receivedEntry.getData();

//put the received message into an Intent and send it via
broadcast to any registered receiver.

Intent localIntent = new Intent("message_received_action");
localIntent.putExtra("message_received_extra", received);
boolean success = LocalBroadcastManager.getInstance(context)

.sendBroadcast(localIntent);

//if no component received the message -> a notification will be
shown in the Android notification bar.

if(!success) {
NotificationCompat.Builder mBuilder =

new NotificationCompat.Builder(context)
.setContentTitle("New message")
.setContentText("You received a new message");

//define what should happen, if the user clicks on the
notification Entry (i.e. just open the app).

...
}

//add Ack-Entry that is sent back to the sender
IEntry ackEntry = entryFactory.create("message_ack");
ackEntry.setData(message.getId());
ackEntry.setDest(new

PeerURI(receivedEntry.getFrom().getHostName(),
"messenger_peer"));

ec.write(ackEntry);

//here the received message could also be stored to a local
database for later retrieval.

...
}

Listing 7.5: Parts of the code of the MessageReceivedService.

4https://developer.android.com/training/notify-user/build-notification.
html accessed: 2017-05-27

106

https://developer.android.com/training/notify-user/build-notification.html
https://developer.android.com/training/notify-user/build-notification.html

7.1. A secure P2P messenger app with the MPM framework

As next step, an Entry with coordination-type message_ack is created and added to the
EC in order to inform the sending host about the successful arrival of the message. The
ID of the message is set as payload and the destination for the Entry is the originating
Peer. Finally, all receiving messages might be inserted into a local database so that they
can be fetched later on.

The Service MessageAckReceivedService is similar to the Service shown above, but much
simpler. The message ID is extracted from the Entry and a broadcast is sent out to
inform currently shown components that the message with the given ID has been received
by the opposite host. Then the column ack_received is updated in the local database.

The code in method initializePeers() might be completely generated by the modeling
tool, currently developed by Matthias Schwayer [Sch17b], whereby the application logic
in the MPM-Services has to be implemented always by the developer.

Initializing the Exception-Peer

The developer can decide which action should be taken if any exception occurs during
the runtime execution. This might be the expiration of Entries or an unsuccessful
transaction during the send process. In the MPM messenger sample app no Entries
with a positive TTL property are defined, meaning that TTL exceptions can be ig-
nored. However, for the case of a potentially not transmitted Entry (exception-type
POTENTIAL_SEND_EXCEPTION), the functionality that the Entry is resent on
the next Runtime-Peer start is added to the Exception-Peer. Therefore, the code of
Listing 7.6 is added in the method initializeExceptionPeer() of the Runtime-Service,
which registers the MPM-Service ResendExceptionService (see Listing 7.7) and an Action
at the Exception-Peer.

@Override
protected void initializeExceptionPeer() {

IService service = new ResendExceptionService();
IAction action = new Action();
action.addExternalLink(EntryCount.largerEquals(1), "message");
runtimePeer.getExceptionPeer()

.setExceptionServiceAndAction(service, action);
}

Listing 7.6: Registration of a Service and Action for the Exception-Peer in the method
initializeExceptionPeer() of the MPMRuntimeService.

The Service of the Exception-Peer is very simple (see Listing 7.7). It takes the Entry
from the EC and parses it to an Exception-Entry (a subtype of Entry). Then it is assured
that the exception-type of the Exception-Entry is POTENTIAL_SEND_EXCEPTION.
Actually this verification would not be necessary, because the second currently supported
exception with type TTL_EXCEPTION can never occur in this application. Finally,
the Entry’s data payload is written to the EC which is actually the potentially not sent

107

7. Proof of concept application

Entry with type message. In this scenario, the developer has to consider though that
an Entry might be sent twice. The transaction surrounding the send procedure of the
communication layer can only detect that the send process could not be completed, but
not whether the Entry could be actually delivered or not.

@Override
public void execute(IEntryCollection ec, IEntryFactory entryFactory)

throws Exception {

ExceptionEntry entry = (ExceptionEntry) ec.take("exception");
if(entry.getExceptionType() ==

ExceptionEntryType.POTENTIAL_SEND_EXCEPTION) {
ec.write((IEntry) entry.getData());

}
}

Listing 7.7: The MPM-Service of the Exception-Peer, which simply resends a potentially
not delivered Entry.

Inserting initial Entries

The last method that can be overridden by application developers is insertInitialEntries().
All Entries that shall be inserted at the very first time the application is started can be
defined here. This feature is not needed in the sample application and thus, nothing is
added in this method’s body.

Registering the RuntimeService

As last step, the concrete Service MyRuntimeService has to be registered in the An-
droidManifest.xml file, in order to let the Android system instantiate it at runtime (see
Listing 7.8). The attribute exported=false ensures that the Service can not be invoked by
components of other applications.

...
<service

android:name=".service.MyRuntimeService"
android:exported="false" />

...

Listing 7.8: Registration of the concrete Runtime-Service in the AndroidManifest.xml
configuration file.

7.1.4 Registering the FCM-Services

To use the FCM notification approach, the two provided Services of the MPM-Android
library have to be added to the app’s AndroidManifest.xml file (see Listing 7.9). Further-

108

7.1. A secure P2P messenger app with the MPM framework

more, the google-services.json file that was generated when creating the FCM Project on
the Firebase website (see Section 7.1.1) must be inserted into the Android projects app
folder.

...
<service

android:name="at.ac.tuwien.mpmandroid
.service.MPMFirebaseInstanceIDService"

android:exported="false">
<intent-filter>

<action android:name="com.google.firebase.INSTANCE_ID_EVENT"/>
</intent-filter>

</service>
<service

android:name="at.ac.tuwien.mpmandroid
.service.MPMFirebaseMessagingService"

android:exported="false">
<intent-filter>

<action android:name="com.google.firebase.MESSAGING_EVENT"/>
</intent-filter>

</service>
...

Listing 7.9: Registration of the two FCM-Services in the AndroidManifest.xml file.

To recapitulate, the MPMFirebaseInstanceIDService is responsible for the update process
of newly generated or rotated FCM tokens and the MPMFirebaseMessagingService will
receive notification messages via its onMessageReceived(RemoteMessage remoteMessage)
method. Then, simply the Runtime-Service is started in order to receive the pending
message from the server.

7.1.5 Building the GUI

The purpose of this section is not to illustrate how a graphical user interface for Android
applications can be built, but rather how the communication between GUI components
and the Runtime-Service or the MPM-Services looks like. Otherwise, the sample applica-
tion in the online repository or the Android developer training5 are very good starting
points for how to build the graphical user interface.

Receiving broadcasts from an MPM-Service

The MessageReceivedService (see Listing 7.5) is sending out a broadcast message if an
incoming message has been successfully transported via a dedicated Wiring from the
PIC of the Peer messenger_peer to the MPM-Service. In order to receive a broadcast

5https://developer.android.com/training/basics/firstapp/building-ui.html ac-
cessed: 2017-05-28

109

https://developer.android.com/training/basics/firstapp/building-ui.html

7. Proof of concept application

message in a GUI component, a BroadcastReceiver has to be registered via the method
Context.registerReceiver(BroadcastReceiver receiver, IntentFilter filter). The best place
to do this is the onResume() method that is called whenever the GUI component (in the
sample application a Fragment6 is used) comes to the foreground. The app will stay in
this state until the user decides to leave this component or if any system event occurs so
that the focus is taken away from the app. Such a system event may be an incoming
phone call or the notification about a low battery state. More details on the Activity
(and Fragment) lifecycle can be found in Section 5.6.1 and on the Android developer
website7.

@Override
public void onResume() {

super.onResume();
LocalBroadcastManager.getInstance(getActivity())

.registerReceiver(chatReceiver, chatIntentFilter);
}

Listing 7.10: Registration of a BroadcastReceiver in the lifecycle method onResume().

The variable chatReceiver of Listing 7.10 is a subtype of BroadcastReceiver and imple-
ments the method onReceive(), which is invoked by the system if a broadcast has been
sent out. In the GUI component, the message is added to a list of messages which is
managed by a ListAdapter8 (see Listing 7.11).

private class ChatReceiver extends BroadcastReceiver {

@Override
public void onReceive(Context context, Intent intent) {

Message m = (Message) intent
.getSerializableExtra("message_received_extra");

//update the list of messages so that the new message is shown
chatAdapter.add(m);
chatAdapter.notifyDataSetChanged();

}

Listing 7.11: The implementation of the ChatReceiver.

The variable chatIntentFilter of Listing 7.10 is of type IntentFilter and defines which
broadcast messages (Intents) shall be received by a BroadcastReceiver. In the example
above only Intents with action message_received_action are filtered.

6https://developer.android.com/guide/components/fragments.html accessed: 2017-
05-28

7https://developer.android.com/guide/components/activities/
activity-lifecycle.html accessed: 2017-05-28

8https://developer.android.com/reference/android/widget/ListAdapter.html ac-
cessed: 2017-05-28

110

https://developer.android.com/guide/components/fragments.html
https://developer.android.com/guide/components/activities/activity-lifecycle.html
https://developer.android.com/guide/components/activities/activity-lifecycle.html
https://developer.android.com/reference/android/widget/ListAdapter.html

7.1. A secure P2P messenger app with the MPM framework

As last step, it is very important to unregister the ChatReceiver when the app is closed
or the focus is taken away from it (see Listing 7.12). The right place to do this is either
the onPause() or the onStop() method. If the receiver is not registered anymore, the
method sendBroadcast(localIntent) in the MessageReceivedService will return false and
therefore an Android notification is shown to inform the user about the new message.

@Override
public void onPause() {

super.onPause();
LocalBroadcastManager.getInstance(getActivity())

.unregisterReceiver(chatReceiver);
}

Listing 7.12: The ChatReceiver is unregistered in the lifecycle method onPause().

Communication with the Runtime-Service

The previous subsection dealt with the communication from an MPM-Service to Android
GUI components. Here, the communication from GUI components to the Runtime-Service
is shown. In order to allow clients to communicate with an Android Service, the onBind()
method has to be overridden (see Section 6.6.2). A good place to actually bind to a
Service is the onStart() callback function (see Listing 7.13). However, this depends on
the actual use case, for example sometimes it would be better to bind to the Service after
a specific button was clicked.

@Override
public void onStart() {

super.onStart();

runtimeServiceConnection = new MPMRuntimeServiceConnection();
Intent intent = new Intent(getActivity(), MyRuntimeService.class);
getActivity().bindService(intent, runtimeServiceConnection,

Context.BIND_AUTO_CREATE);
}

Listing 7.13: To communicate with the Runtime-Service a ServiceConnection has to be
established.

The MPMRuntimeServiceConnection is responsible for managing the connection between
the Service and a component. The Context.BIND_AUTO_CREATE indicates that the
Service should be created if it is not currently running. The callback function onService-
Connected(ComponentName className, IBinder service) is executed by the system if the
connection could be established successfully (see Listing 7.14).

111

7. Proof of concept application

private class MPMRuntimeServiceConnection implements
ServiceConnection {

@Override
public void onServiceConnected(ComponentName className, IBinder

service) {

MPMRuntimeService.RuntimeServiceBinder binder =
(MPMRuntimeService.RuntimeServiceBinder) service;

runtimeService = binder.getService();
serviceBound = true;

}

@Override
public void onServiceDisconnected(ComponentName className) {

serviceBound = false;
}

}

Listing 7.14: The method onServiceConnected(...) is called automatically by the operating
system after a successful service connection.

After onServiceConnected() has been invoked, the Runtime-Service can be used to
inject new data into the Runtime-Peer. Such a call looks like the following in the
MPM messenger example app: runtimeService.injectData("message", message, new
PeerURI(receiver, "messenger_peer"));

Finally, the connection to a GUI component has to be closed at some point (unbind).
A good place to do this is generally the onStop() method. If the Service has been
created with a call to bindService(), the Service will be stopped automatically if the last
component has unbound from it.

7.1.6 Activate end-to-end encryption

One important non-functional requirement of the MPM framework is NFR 3 (Security).
Besides the optional channel encryption that can be used to prevent the unauthorized
interception and eavesdropping of packages by third parties, this requirement demands an
optional end-to-end encryption in order to ensure that not even the server can interpret
the forwarded data. This requirement was in Jörg’s area of responsibility. Therefore,
reference is made at this point to Jörg’s thesis [Sch17a], which describes the design and
implementation of this part of the software.

To use end-to-end encryption, an application developer only has to write the line
e2e_encryption_enabled=true in the encryption.properties file. As it is the case for
all resource files, it has to be located in the app-module’s folder src\main\resources.

112

7.2. A coordination focussed Android app with the MPM framework

7.2 A coordination focussed Android app with the MPM
framework

The MPM messenger application described in the previous section does not utilize the
whole potential of the provided framework, as the coordination mechanism is almost
only used to map incoming messages to a specific MPM-Service. Jörg has developed
an Android application that makes use of the master-slave pattern. The master and
each slave are represented by an MPM host in the network and their interactions and
collaborations are modeled via constructs of the Mobile Peer Model (Peers and Wirings).
A sophisticated problem shall be solved by dividing it into smaller sub-tasks so that each
slave only has to process a small portion of the problem and the heavy computational
workload can be distributed. In the sample application the non-polynomial Travelling
Salesman Problem (TSP) shall be solved by using a Genetic Algorithm (GA)-based
optimization technique [Sch17a].

113

CHAPTER 8
Evaluation and critical reflection

This chapter demonstrates on the one hand the benefits of the built software solution
and on the other hand provides a critical reflection of the framework, revealing some
important considerations for framework and application developers.

Firstly, it is pointed out which additional effort is needed by an application developer to
setup the infrastructure and to implement specific use cases of an Android application
comparable to the P2P Android messenger application presented in Chapter 7 without
the provided MPM framework.

Secondly, the Android persistence layer is evaluated in respect of additional overhead
and scalability. Moreover, a second more sophisticated persistence implementation is
analyzed and compared with the current one.

Finally, the chapter closes with a critical reflection on the built software solution, including
some disadvantages and limits of the framework.

8.1 Benefits of the framework
The MPM framework simplifies and accelerates the development of Android applications
that make use of peer-to-peer communication and collaboration tasks to a great extent.
The time and implementation effort that can be saved by using the framework is
demonstrated in this section.

8.1.1 Server setup

Without the MPM framework, the developer has the choice to select an arbitrary server
implementation and protocol. This seems as a huge advantage at the first glance, but as
existing background technologies for P2P networks in mobile environments (see Chapters
2 and 3) have already been elaborated thoroughly, the usage of an XMPP relay server is

115

8. Evaluation and critical reflection

definitely one of the best existing options. So, unnecessary long research activities can
be skipped in good conscience.

8.1.2 Communication layer

After a communication protocol and a concrete server implementation have been chosen,
a client library must be found to enable a reliable communication with the server. Then,
a communication layer has to be designed and implemented, which can be quite time-
consuming, especially if good software engineering patterns shall be applied. Quite
important is also that the serialized messages can be interpreted by different operating
systems in order to support all current mobile platforms. Jörg describes in his closing
words that the effort for the platform-independent serialization implementation was
relatively high.

If the MPM framework is used, the only thing an application developer has to bother
about is the deployment of an XMPP server (i.e. Openfire1) and the registration of
important configuration values in the file xmpp.properties under src\main\resources (i.e.
server URL, port, etc.).

8.1.3 Error handling

Mobile environments also stand for restricted availability and therefore error handling is
a very important topic with regard to sending data. If the message cannot be transmitted
to the server because of a missing internet connection, the message must be cached and
after a successful re-connection (in Android the system broadcasts an event with action
android.net.conn.CONNECTIVITY_CHANGE) the message can be resent. In the case
that the message could not be sent and the application (already in the background) is
killed by the operating system because of a memory shortage or if the battery is empty,
the cached message also have to be persisted so that it does not get lost.

The MPM framework handles all those error cases out of the box and will eventually deliver
the message to the server, even if the application was killed or the device was completely
restarted (when the optional persistence layer is enabled). Furthermore, the MPM
framework detects any irregularities during the send procedure of the communication
layer and will forward this information to the Exception-Peer on the next Runtime-Peer
start so that the message can be resent, if desired (see Section 7.1.3).

8.1.4 Push notifications

In Section 5.6.5 the need for push notifications in mobile environments is explained
in order to stay connected with other hosts while saving processing power. The main
advantage of this approach is that no constant connection has to be held with the server.

1https://www.igniterealtime.org/projects/openfire/ accessed: 2017-06-09

116

https://www.igniterealtime.org/projects/openfire/

8.1. Benefits of the framework

Without the MPM framework developers first have to thoroughly research the different
messaging capabilities of Google’s Firebase Cloud Messaging (FCM) or a similar noti-
fication techniques. In the case that FCM has been chosen, first an FCM project has
to be created on the official FCM website. Then, a web application has to be created
that stores all unique FCM tokens of end devices and which communicates with Google
servers in order to notify a concrete device. This application certainly needs a database or
something similar to map users to their devices, which has to be designed and constructed.
In the Android project the Firebase client library has to be included in the project and
at least two Android Services (described in Section 6.6.3) must be implemented to get
the notification approach running.

To use this feature in the MPM framework, only the FCM project must be created online,
the Notifier-Peer (see Section 6.4) project has to be deployed on an application server
and the two FCM-Services provided via the MPM-Android library must be registered in
the AndroidManifest.xml file. No further configuration settings have to be performed,
even the data model of the token database for the Notifier-Peer application can be
automatically generated via the Spring Data JPA plugin.

8.1.5 End-to-end encryption

By using the optional channel encryption of the XMPP protocol only eavesdropping
of data packages by third parties can be prevented. In this scenario the XMPP relay
server could still intercept data packages, because only the connection between client
and server and vice versa are encrypted. Jörg has worked also on an effective and
exchangeable end-to-end encryption implementation [Sch17a] (see also Figure 5.2 in
Section 5.4). The OTR protocol was chosen after comparing several possible end-to-end
encryption candidates. As described in Section 7.1.6, when using the MPM framework
a single line in the file encryption.properties is sufficient to enable a secure end-to-end
encryption between all participating peers in the network.

8.1.6 Further security countermeasures

In the course of Jörg’s thesis, different known security vulnerabilities in internet-scale
applications and entworks are described [Sch17a]. The MPM framework supports counter
measures against eavesdropping, data modification, replay attacks, identity spoofing,
MITM and DOS attacks, as well as spam. In order to implement these features in an
application from scratch, obviously a lot of effort has to be made.

8.1.7 Coordinating the data flow

The sample application of Chapter 7 does not exploit the full potential of the provided
coordination mechanism of the MPM framework. However, with a simple and intuitive
API application designers and developers can easily control the data flow and the execution
of specific business logic.

117

8. Evaluation and critical reflection

8.1.8 Summary

To recapitulate, in order to use the MPM framework for an Android project, only
the library has to be added to the build.gradle file in the app-module, the provided
Services of the library have to be registered in the AndroidManifest.xml and the abstract
MPMRuntimeService class has to be extended to configure the coordination-related tasks.
Of course, the XMPP server and the notification peer (if desired) have to be deployed
and the configuration values have to be registered in the appropriate files.

Apart from that, with the proof of concept messenger application one can see that the
MPM framework does not only facilitate the development of distributed collaboration
tasks that need a sophisticated underlying coordination mechanism. Also applications
that simply need a reliable and secure P2P communication can profit from the framework.
If an Entry has been added to the Runtime, eventual transmission to its destination is
guaranteed.

8.2 Runtime-Peer and persistence performance
The Android operating system may kill a running background thread without any prior
notice, even an Android background Service can be terminated by the system if available
resources are low or the Service has been running for too long in the background (see
Section 5.6.1). Therefore, a persistence layer can be optionally activated at compile time
to reflect the current state of data containers on a permanent memory. In the end of
Section 6.6.5, it was already mentioned that a noticeable additional overhead has to be
expected, when the persistence layer is activated.

Several test cases have been implemented to demonstrate the additional computation
time that is required if persistence is enabled. As only the AndroidPersistenceManager
(see Section 6.6.5) has been developed at the moment, concrete evaluation results are
only available for the Android platform. For a desktop and server environment, a more
sophisticated solution might be appropriate that makes us of a database server.

8.2.1 Infrastructure

Three devices have been used to measure the additional calculation time of the persistence
layer, two emulators and one real device:

• Device 1: emulated device, quad core CPU 64 bit, 1536MB RAM, Android 7.1.1

• Device 2: emulated device, duo core CPU 64 bit, 1024MB RAM, Android 5.1

• Device 3: real device, quad core CPU 64 bit, 2048MB RAM, Android 6.0.1

The emulated devices have been hosted on a Windows 10 desktop computer with an Intel
Core i7-6700K 4x4.40 GHz processor and 16GB DDR4-RAM. These specifications are

118

8.2. Runtime-Peer and persistence performance

mentioned, because they probably have an impact on the performance of the emulated
Android devices, as they perform much faster than a real smartphone (see the results in
Section 8.2.4).

8.2.2 Test cases

No real use-cases are needed to measure the additional overhead of the persistence layer.
Therefore, two simple Runtime-Service implementations are used in order to achieve this
objective.

• EchoService 1: Holds a Runtime-Peer with one Peer and a single Wiring that takes
one Entry of type "message", executes a Service (which appends a short String to
the Entry’s String payload) and performs an Action that sends the Entry back to
its sender.

• EchoService 2: From the outside, this Runtime-Service acts identically as the
EchoService 1 by just echoing a received message with a small additional information
back to its sender. However, this Runtime-Peer contains three Peers, where each of
them has one Wiring that forwards the Entry to the next Peer. The last Peer then
sends the Entry back to the sender. The flow of an Entry inside this Runtime-Peer
can be illustrated more clearly by listing the Peers that have to be passed:
Receiver-Peer –> Peer1 –> Peer2 –> Peer3 –> Sender-Peer.

The second Runtime-Peer constellation is used to analyze the performance of the per-
sistence when concurrently accessed. To reach such a situation (when three Peers want
to persist Entries at the same time) a lot of Entries have to be available in the runtime.
Therefore, also the time between each sent Entry can be configured:

• Single mode: An Entry is sent to the Runtime-Peer, gets processed and is returned
to the origin. Then the next Entry is sent.

• Flooding mode: All Entries are sent simultaneously to the Runtime-Peer.

Altogether, always 100 Entries are sent so that a meaningful average execution time can
be calculated. For the first test, the method removeAndPersist() (see Section 6.6.5) of the
PersistenceManager is measured, which is called during a Wiring execution and removes
the Entry from the current Peer’s PIC and persists the new Entry into the Sender-Peer’s
PIC (or the PIC of Peer2 or Peer3 in EchoService2). Furthermore, the payload size of
each Entry can be configured (0 KB, 10 KB, 100 KB or 1000 KB).

All tests have been performed with the provided Gson-Serializer that does not need
any additional type adapter implementations for the Entry’s payload (see thesis of
Jörg [Sch17a]). By using the more performant protobuf implementation, the additional
overhead of the persistence layer could be reduced, but this was not tested in the course
of this evaluation.

119

8. Evaluation and critical reflection

Finally, also the overall execution time of each Runtime-Service (EchoService 1 and
EchoService 2) for 100 incoming Entries is measured with persistence enabled and
disabled.

8.2.3 Alternative version

As already mentioned in the implementation part of the persistence layer (see Section
6.6.5), the SQLite database used in the AndroidPersistenceManager only allows one
single writer at a time2. Therefore, and to compare the provided solution with another
one, a second experimental approach has been tested in the course of this evaluation
chapter.

In the alternative implementation, all container updates are just appended as information
to a file on the persistent storage. For example the deletion of an Entry with hash
code 1234 from container with id cont6 would just append the following line to the
file: remove;cont6;1234. Similarly, if an Entry with hash code 5678 shall be persisted
to container cont7 for example the following line would be appended to the file: per-
sist:5678,cont7,<serialized entry>. With this approach no database transaction handling
and locking have to be performed and the data could also be written concurrently, if
several files are used.

However, this approach is more complicated. In fact, the developer has to implement
an own transaction handling to ensure that all container updates have been actually
persisted to the file or none. Furthermore, the file has to be processed in order to stay
in a consistent and manageable state. This is because the file is growing over time and
might waste too much memory, which is usually extremely scarce anyway on mobile
devices. This processing step should take place in the background at a point in time
when the mobile device is not doing any intense computation tasks to not unnecessarily
slow down the whole system. Moreover, this approach would lead to longer Runtime-Peer
startup phases, as the whole file content has to be processed first in order to get the
current valid Entries of all containers.

This approach has been tested in an experimental implementation, where the removeAnd-
Persist() method is just appending the current container update to a file instead of using
the SQLite database. This method is used during a Wiring execution and the execution
times are measured in the same way as described above (100 times in single mode and
100 times in flooding mode). The comparison of the two approaches can be found in the
next section. Note that only the method removeAndPersist() has been implemented and
the described issues (i.e. transaction handling and continuous maintenance tasks) have
not been realized.

2https://sqlite.org/lockingv3.html accessed: 2017-06-21

120

https://sqlite.org/lockingv3.html

8.2. Runtime-Peer and persistence performance

8.2.4 Results

Overhead of one Wiring execution

The following two Figures 8.1 and 8.2 illustrate the additional overhead of one Wiring
execution when persistence is enabled. All three devices proportionally show the same
results. Surprisingly, the emulated device 2, which has a slightly weaker hardware
configuration and an older version of the Android operating system than the emulated
device 1, is the fastest tested device. However, the difference between the two emulated
devices is very low and therefore only the diagram of the slightly faster device 2 is shown.

Although both of the emulated devices have less RAM and a similar Central Processing
Unit (CPU), they perform much better than the real device. The reason for that might
be the quite performant execution environment of the emulators, which acts as underlying
resource provider (see Section 8.2.1).

Figure 8.1: The additional overhead of one Wiring execution in milliseconds when
persistence is enabled, measured on device 2.

As expected, one can see that the provided approach with the SQLite database is
performing not that good when concurrent write operations are performed - see the
yellow bar (EchoService 2 in flooding mode). This is especially the case if smaller payload
data is used (0 KB to 10 KB), with payloads greater than 100 KB the two tested
approaches (SQLite and file append) converge, most likely because the storage medium
reaches its limit. The alternative approach clearly performs better than the implemented

121

8. Evaluation and critical reflection

version with the SQLite database. However, as already described in the section above,
the file appending approach comes with other problems, for example a maintenance
task that has to be performed in the background when the system is not fully utilized
at the moment or the implementation of an own transaction handling. In addition, by
the design of the MPM, not that many concurrent Peers are expected to write data
concurrently, as one Peer can only execute one Wiring at a time. If, however, a lot of
different Peers need to perform tasks at the same time and persistence is really needed,
the developer can implement another approach by defining an own PersistenceManager.

The real device is performing very badly with large data payload, the test cases took
longer than 200 ms with a data payload of 1000 KB. In the flooding mode (yellow and
light blue), the Runtime-Peer even threw a CommunicationException, as the XMPP
library could not manage the 100 MB of data in such a short period of time.

Figure 8.2: The execution time of the persistence layer of a single Wiring on a real
device (Samsung Galaxy A5 2016). Entries with payload of 1000 KB exceeded the 200
milliseconds limit, the precise execution time is therefore not shown to provide a clear
visualization of the other results.

Total overhead

Figure 8.3 shows the different execution times (in seconds) of the two tested Runtime-
Peers when 100 Entries are sent in flooding mode to the emulated Android device 1. The
tests have been performed 10 times and the average execution time is depicted in the
figure. Again, different payload data sizes were used.

122

8.2. Runtime-Peer and persistence performance

Figure 8.3: The overall execution time of the two tested Runtime-Peers when 100 Entries
are sent with and without persistence, measured on device 1.

One can see that the elapsed time between EchoService 1 (one Peer) and EchoService
2 (three Peers) is almost the same if persistence is disabled. This is, because during a
Wiring execution only the object reference of the payload data has to be added to the
newly created Entry. However, if persistence is enabled, after each Wiring execution
the whole Entry has to be persisted in order to correctly reflect the state of the Peer’s
container. As it could be seen in the previous two diagrams, the test with EchoService 2
is performing significantly worse than the one with EchoService 1.

With bigger data payload, the execution time of EchoService 1 (one Peer) with and
without persistence enabled is almost the same, because the transmission and the
deserialization of the incoming Entries are approximately as expensive as the persistence
overhead. Especially EchoService 1 with payload data of 10 KB is only marginally slower,
if persistence is enabled.

Again, the communication layer threw a CommunicationException when the test was
performed with 1000 KB of payload data. Therefore, this data size is not shown in Figure
8.3.

Overall throughput

As last performance benchmark, the amount of Entries that can be processed in one
minute by a Runtime-Peer on a real device (Device 3) is measured. A RTP with only

123

8. Evaluation and critical reflection

one Peer and one Wiring (EchoService 1) could receive, process and send back 40593
Entries without data payload in 60 seconds, if persistence is disabled. The test has been
performed five times and the average number of processed Entries was used.

If the persistence layer is enabled, the RTP crashes after receiving around 700 Entries,
because too many threads that are spawned in the communication layer (for each received
Entry a new thread is created) try to write the serialized Entry into the database. The
SQLite database can not write data concurrently and is not able to handle so many
threads that have to wait for inserting the data. Therefore, a timeout of 12 milliseconds
has been added between sending Entries to the device. In this constellation the RTP
could process 4320 Entries in 60 seconds after all.

Summary

As the overhead for the persistence layer on real devices can become very high, especially
if Entries with huge payload data are used or several Peers are working concurrently,
the persistence should be only activated if really necessary. In addition to the higher
execution time, of course also the battery will be drained considerably faster.

The test cases can be found in the test package of the MPM-Android library project.
However, the exact test results might vary on a different execution environment.

8.3 Open issues

The provided MPM framework has been carefully tested with automated unit as well as
integration tests (see Section 6.7) and two proof of concept Android applications have
been developed to prove the correctness and the usability of the solution. This section,
on the other hand, tries to reveal some limits of the framework.

The MPM RTP is running in the background and might consume a considerable amount
of resources. In the first place, this is depending on the coordination-related code of the
concrete application and its MPM-Services. Therefore, application developers have to
take this into account when designing and developing their solutions for a mobile device
in order to not negatively influence the overall system performance.

The current Android Runtime-Service gets automatically restarted by the operating
system if it was killed due to a resource bottleneck or when it was running for too long in
the background (see the return value START_STICKY in Section 6.6.2). Unfortunately
this feature, the automatic relaunch of a Service after it was unexpectedly killed by the OS,
can be used only in Android versions prior to 8. According to a statement on the official
Android developer website3, the new Android version (Android O - expected release date
in August 2017) imposes some limitations regarding the execution of background services.
Many running background services with resource-intensive tasks might decrease the user

3https://developer.android.com/preview/features/background.html accessed: 2017-
05-07

124

https://developer.android.com/preview/features/background.html

8.3. Open issues

experience drastically. Therefore, in the new version of the Android operating system,
the Service is killed after a few minutes by an automatic call of the Service.stopSelf()
method. With the chosen approach in the MPM framework, data consistency can still be
ensured, but the application developer has to have the knowledge about these limitations
for future Android versions.

The iOS system is also quite restrictive regarding the execution of background services
and allows them to live only a relatively short period of time until they are killed by the
OS4.

In addition, the life span of an Android background Service is varying from device to
device. The current state of the device including the amount of apps installed and the
number of currently running apps and services, the hardware capabilities and the version
of the operating system have direct influence on the point in time when the operating
system may kill a background Service.

The communication between an MPM-Service and the GUI components of an Android
app is not very intuitive in the first place. However, as GUI components might not have
been initialized when the coordination-related Peers and Wirings are being created, the
approach with the Android broadcasts is the most promising one.

Troubleshooting or debugging might also be quite difficult at first. The error might
originate from a misconfigured Wiring or the incorrect implementation of an MPM-
Service. Especially if a number of concurrent Wiring executions have to be debugged,
error tracing can become fairly complex.

One feature that an Android application developer might desire is the immediate notifi-
cation about the non-availability of the internet connection. Usually, developers are used
to build a try-catch block around the code responsible for a simple internet request and
expect an IOException on any communication failures. If an application developer tries
to request an information with the constructs of the MPM, but the internet connection
is not available, the injected request (Entry) is cached in the MPM as long as there is no
connection (if no TTL property is specified). The developer does not know if the Entry
was successfully sent or not, only the eventual delivery of the Entry is guaranteed by the
design of the model.

One exceptional situation is currently not implemented, namely the automatic re-
establishment of the XMPP connection if the server was temporary down. However, the
cached Entries are resent if the network connection on the mobile device changes or if
another Entry could be transmitted successfully.

A potential bottleneck of an MPM distributed system is the Notifier-Peer. On each
incoming notification request, the database is queried to fetch the particular FCM token

4https://developer.apple.com/library/content/documentation/iPhone/
Conceptual/iPhoneOSProgrammingGuide/BackgroundExecution/BackgroundExecution.
html accessed: 2017-06-29

125

https://developer.apple.com/library/content/documentation/iPhone/Conceptual/iPhoneOSProgrammingGuide/BackgroundExecution/BackgroundExecution.html
https://developer.apple.com/library/content/documentation/iPhone/Conceptual/iPhoneOSProgrammingGuide/BackgroundExecution/BackgroundExecution.html
https://developer.apple.com/library/content/documentation/iPhone/Conceptual/iPhoneOSProgrammingGuide/BackgroundExecution/BackgroundExecution.html

8. Evaluation and critical reflection

of the receiving peer. The tokens should be cached in order to increase performance and
to prevent failure of the component.

8.4 Fulfilment of imposed requirements
In this section a short assessment of whether the imposed requirements of Section 3.1 are
fulfilled by the provided framework is made.

The Peer Model [KCJ+13] has been chosen as underlying coordination model and
by implementing the features of this model (including the RTP, Peers and Wirings)
requirement FR 1 (Coordination) could be fulfilled. An Android library is provided that
contains an Android Service that acts as a wrapper for the RTP so that it can be used
to build applications that are executed solely in the background of a mobile device (FR
2). FCM is used to notify an application about an incoming message, which means that
requirement FR 3 is met. By using the RTP for standard Java programs or the RTS
for Android applications requirement FR 4 (decoupling) is fulfilled. FR 5 (Connectivity
with local and mobile carrier networks) can be fulfilled by using an XMPP relay server,
which enables a reliable communication in every network constellation, especially if a
host is located behind a local W-LAN network that uses NAT.

The provided MPM framework and all additional software artifacts (see Section 6.2)
will be published under a Copyleft license (NFR 1). Requirements NFR 2 and NFR 3
(scalability and security) have been implemented and evaluated by Jörg, see his thesis for
more details [Sch17a]. The API of the framework has been kept as simple as possible and
is intuitive (NFR 4), a reason for this is certainly the reduced feature set of the mobile
version of the Peer Model. The provided code is well documented and furthermore several
unit and integration tests exist that can be seen as an additional part of documentation
(NFR 5). Important layers of the implementation can be exchanged easily by providing
the class name of the concrete implementation in a configuration file (NFR 6). The
coordination-related code is structured and can be generated by a modeler (NFR 7).
As required by NFR 8, the framework is available for the Android platform and two
proof-of-concept applications have been developed. In Section 8.1 of this chapter, the
benefits of the framework have been discussed in detail (NFR 9). Resource efficiency
(NFR 10) is a very important requirement for mobile devices in general, but is even
more important for services that can run in the background. This requirement could
be fulfilled on the first hand by elaborating a reduced mobile version of the Peer Model
so that a resource-saving implementation is possible (i.e. no concurrent execution of
Wirings or no transactions on the container level) and on the second hand by the usage
of a notification approach in order to let an application switch into an idle state, but still
be able to get notified about incoming messages. The last requirement (reliability, NFR
11) could be met by designing and implementing a persistence layer that is reflecting the
state of the RTP at any point in time on a persistent storage.

126

CHAPTER 9
Conclusion

This final chapter shortly recapitulates the benefits and the achievement of the resulting
MPM framework. Finally, some possible ideas on future work are given.

9.1 Summary

The presented MPM framework facilitates rapid development of P2P applications, espe-
cially in mobile environments. With the help of the integrated coordination model the
data flow and the execution of business logic can be controlled easily in a distributed
system. The infrastructure setup as well as the configuration and deployment of important
system components can be completed very quickly.

A detailed analysis about coordination and communication frameworks as well as protocols
has revealed the need for a relay server in a mobile environment. In the MPM reference
implementation XMPP as protocol and Openfire as relay server have been chosen. To
fulfil further requirements regarding mobile limitations, a reduced version of the selected
underlying coordination model (the Peer Model) has been elaborated.

In the course of this thesis, the core framework has been designed and implemented,
which consists of several components. Firstly, a core module is provided that can
be used for standard Java applications, deployable on any OS that runs a Java VM
with version 1.7 or higher. Secondly, an Android AAR module is delivered, which
comprises an Android Service that can be used out-of-the-box for Android applications
to guarantee the reliable execution of the RTP in the background. Furthermore, a
notification approach has been implemented to notify a RTP about incoming data. Also
the server part for the implemented push notification approach and a web application for
registering new hosts in the system are provided. Because a mobile operating system
might terminate a background service without any prior notice, a persistence layer has
been introduced, which is responsible for reflecting the state of all containers of a RTP to

127

9. Conclusion

a persistent memory. For now, the framework is only available for the Android platform,
but cross-platform considerations have been taken into account from the beginning of
the software development lifecycle. As proof-of-concept a P2P messenger application has
been implemented with the MPM framework.

The benefits of the provided framework have been pointed out in the evaluation chapter,
according to which a software developer can save a lot of research and development
effort. A performance evaluation showed the relatively high throughput of the RTP
in a mobile test application. Furthermore, the persistence implementation has been
analyzed in respect of additional execution time. It has been shown that persisting all
Entries permanently to a persistent storage is notably slower on a mobile device, but
that enabling the persistence layer is certainly applicable for applications with small data
payloads.

9.2 Future work

As last part of this thesis, some possible extensions and improvements of the framework
shall be provided.

First of all, the coordination profile of the MPM that was elaborated in the course of
this work might be extended. In particular, one student that is already using the MPM
framework for his master thesis requested the flow functionality (see Section 4.1.5) to
simplify the development of a coordination-related problem. It is planned to implement
this feature in the next version of the framework.

Secondly, the functionality of the container implementation (see Sections 5.2.2 and 6.3.1)
might be enhanced to also allow different selection principles, like for example a FIFO, a
Last-In-First-Out (LIFO) or a Key-Selector.

No persistence implementation for standard Java applications in a server or desktop
environment is currently available and this might be an important future work for highly
secure applications.

In addition, the level of battery consumption or CPU load for different use cases could
be measured (with and without persistence enabled).

Some open issues were already described in Section 8.3. For example a caching func-
tionality in the Notifier-Peer and automatic reconnections to the XMPP server after a
temporary server shut down could be implemented.

One focus of Jörg’s thesis was the analysis and elimination of security vulnerabilities in
an MPM application in respect of the communication part of the system. In addition,
security concepts on the application layer might be elaborated and integrated in the
framework, i.e. to restrict the size of a container in order to circumvent overflow errors.

Finally, porting the framework to the iOS platform would be a conceivable future work.
However, this would mean a lot of additional effort, as the MPM-Core and also the

128

9.2. Future work

wrapper around the RTP (assuming that the architecture of the framework is the same
as the current one) have to be implemented in a new programming language.

As described in Section 8.3, some additional constraints regarding the execution of
Android Services are being introduced with the new Android version O (planned release
date in August 2017), see the official statement on the official Android website1. In order
to ensure that the MPM framework is working properly also in future Android versions,
the framework has to be maintained steadily and new features and restrictions have to
be considered.

1https://developer.android.com/preview/features/background.html accessed: 2017-
07-10

129

https://developer.android.com/preview/features/background.html

List of Figures

2.1 A 2-d CAN coordinate space partitioned into (a) 5 nodes or (b) 6 nodes after
node F joined the network [ATS04]. 8

2.2 Example of a Chord identifier circle, including the finger table of node N8
[DGKW10]. On the left-hand side the routing possibilities of N8 are shown.
The image on the right-hand side depicts the sequence of routing steps for
a lookup with key 53 starting from node N8. Note that the finger table in
the image is not correct. The value for entry N8+16 should be N32 and the
correct value for N8+32 is N43. 10

2.3 Example of a Pastry’s routing table (left) and an identifier circle (right)
[DGKW10]. On the right side a lookup chain is shown: the peer with ID
859fdc is requested for an item with key d57b2d. Because the key shares 0
digits with the current node the 0 -th row is chosen and the column with the
common prefix (here d) is selected. A routing message to the node is sent,
which is stored under this index (here d13a14) in the table and the lookup
process is continued. This procedure is repeated until node d57b0c is reached,
which holds the key. 12

2.4 Example of a lookup request in the Kademlia overlay network [MM02]. The
node with ID-prefix 0011 finds the node with ID-prefix 1110 by sequentially
learning and querying closer nodes. Kademlia makes use of an XOR-metric
to calculate the distance between two IDs. 15

2.5 Example of an XMPP network [XM12]. The communiciation from client to
client is logically peer-to-peer, but physically the data might be routed over
different relay servers. 19

4.1 The graphical notation of a Peer without any components [KCJ+13]. 35
4.2 The graphical notation of the Peer SamplePeer with two Wirings Wiring1

and Wiring2. 37

5.1 The overall architecture of an application that uses the MPM framework with
two hosts and the mandatory system components (XMPP server, registration
server, Notifier-Peer and the FCM server). 44

5.2 The architecture of a host that uses the MPM framework with its four layers
[Sch17a]. 46

131

5.3 Architecture and important components of the MPM Runtime-Peer [Sch17a]. 48
5.4 A sample Guard with two Link-Operations. Link 1 takes exactly one Entry of

type message. Link 2 reads at least one Entry with type ack. 50
5.5 A sample Service that reads and takes Entries from the EC and writes two

Entries with type new_type to the EC. After the execution there are three
Entries in the EC - one with type message and two with type new_type. The
Entry with type ack is taken during the Service execution and could therefore
not be used in a subsequent Action. 50

5.6 A sample Action with one internal and one external Link-Operation. 51
5.7 The sequence diagram of a Wiring. 52
5.8 The lifecycle of the Runtime-Peer. 55
5.9 The compressed lifecycle of an Android Activity. The rectangles represent the

possible states of the Activity. 56
5.10 Overview of the provided Android Runtime-Service and its relationships to

other components. 60
5.11 The sequence diagram of a Wiring execution with the call to the Persistence-

Manager. 63
5.12 The sequence diagram of the transaction handling during the send process. . 64

6.1 Overview of the delivered software artifacts. 69
6.2 The class diagram of the Runtime-Peer. 70
6.3 The class diagram of the Container implementation. The EntryCollection is

a special Container that is used to store and transport Entries between parts
of a Wiring (Guard -> Service -> Action). 72

6.4 The class diagram of the Peer implementation. 73
6.5 The class diagram of the Wiring implementation. 75
6.6 The inheritance hierarchy and relationship of Links. 76
6.7 The graphical notation of the Receiver-Peer with its single Wiring. The only

objective of the Wiring is to start the ReceiverService once, which registers a
message listener for incoming Entries. 79

6.8 The graphical notation of the Sender-Peer with its single Wiring. The respon-
sibilities of the SenderService are the insertion of Entries to the PIC of a local
Peer (if the Entry’s destination Peer is within the current runtime) and the
transmission of Entries to remote hosts. 80

6.9 The graphical notation of the Notifier-Peer with its two Wirings. 81
6.10 The lifecycle of an Android Service. A Service can either be started explicitly

with a call to startService() or implicitly when a component wants to bind to
the Service. 82

6.11 The class overview of the abstract MPMRuntimeService and its related com-
ponents. 84

6.12 The class overview of the provided FCM Services. 91

132

6.13 On the right side the IPersistenceManager interface and the PersistenceM-
anager singleton is shown. The left side illustrates the concrete AndroidPer-
sistenceManager of the MPM-Android library that makes use of a SQLite
database to store Entries to the hard disk. 95

8.1 The additional overhead of one Wiring execution in milliseconds when persis-
tence is enabled, measured on device 2. 121

8.2 The execution time of the persistence layer of a single Wiring on a real device
(Samsung Galaxy A5 2016). Entries with payload of 1000 KB exceeded the
200 milliseconds limit, the precise execution time is therefore not shown to
provide a clear visualization of the other results. 122

8.3 The overall execution time of the two tested Runtime-Peers when 100 Entries
are sent with and without persistence, measured on device 1. 123

133

List of Listings

5.1 Sample code to create a Peer and a Wiring. 65
6.1 Everytime the FCM engine generates a new token, a broadcast message is

emitted. 93
6.2 Registration of the BroadcastReceiver in the MPMRuntimeService. 94
7.1 The MPM-Android library can be easily used in an Android project by

defining a dependency in the gradle build file. 103
7.2 A sample XMPP property file. 103
7.3 Code to map the coordination-type message to the Java class Message.class

in order to enable the correct serialization/deserialization of Entries with
a payload of that type. 104

7.4 Code that creates a Peer with name messenger_peer and two Wirings. . . 105
7.5 Parts of the code of the MessageReceivedService. 106
7.6 Registration of a Service and Action for the Exception-Peer in the method

initializeExceptionPeer() of the MPMRuntimeService. 107
7.7 The MPM-Service of the Exception-Peer, which simply resends a poten-

tially not delivered Entry. 108
7.8 Registration of the concrete Runtime-Service in the AndroidManifest.xml

configuration file. 108
7.9 Registration of the two FCM-Services in the AndroidManifest.xml file. . . 109
7.10 Registration of a BroadcastReceiver in the lifecycle method onResume(). . 110
7.11 The implementation of the ChatReceiver. 110
7.12 The ChatReceiver is unregistered in the lifecycle method onPause(). . . . 111
7.13 To communicate with the Runtime-Service a ServiceConnection has to be

established. 111
7.14 The method onServiceConnected(...) is called automatically by the oper-

ating system after a successful service connection. 112

135

List of Tables

3.1 Probable fulfilment of requirements by the presented P2P technologies. . . . 30

136

Acronyms

AAR Android Archive. 69, 89, 127

AMUSE Agent-based Multi-User Social Environment. 17

AOT Ahead-Of-Time. 68

API Application Programming Interface. 25, 34, 35, 41, 71, 82, 99, 117, 126

ART Android RunTime. 68

BSD Berkeley Software Distribution. 25

CAN Content Addressable Network. 6, 7

CPU Central Processing Unit. 121, 128

DAO Data Access Object. 97

DEX Dalvik EXecutable. 68

DHT Distributed Hash Table. 8, 9, 13–15, 27

DNS Domain Name System. 9, 18

DOS Denial Of Service. 25, 117

DSL Domain-Specific Language. 33, 78

DVM Dalvik Virtual Machine. 68

EC Entry Collection. 36, 40, 42, 49–52, 54, 71, 75–77, 79, 107

ejabberd Erlang Jabber Dameon. 22

FCM Firebase Cloud Messaging. 43, 45, 59, 60, 81, 82, 84, 86, 88–94, 101, 108, 117,
125, 126

137

FIFO First-In-First-Out. 34, 41, 71, 128

FIPA Foundation for Intelligent Physical Agents. 29

GA Genetic Algorithm. 113

GNU General Public License. 25

GUI Graphical User Interface. 61, 93, 105, 109–112, 125

HTTP hypertext transfer protocol. 20, 45

ID identifier. 8, 89

IDE Integrated Development Environment. 86, 102

IETF Internet Engineering Task Force. 17, 20

IM Instant Messaging. 22

IO Input/Output. 52

IP Internet Protocol. 7, 18, 46

IRC Internet Relay Chat. 20

JADE Java Agent DEvelopment framework. 15, 29, 30

JID Jabber ID. 18

JSF Jabber Software Foundation. 20

JSON JavaScript Object Notation. 67, 104

JVM Java Virtual Machine. 68

JXTA Juxtapose. 17, 29

LAN Local Area Network. 6

LEAP Lightweight and Extensible Agent Platform. 16

LGPL GNU Lesser General Public License. 17

LIFO Last-In-First-Out. 128

LRU Least-Recently-Used. 57, 58

MIT Massachusetts Institute of Technology. 8, 25

138

MITM Man In The Middle. 7, 117

MPM Mobile Peer Model. 6, 23, 25, 28, 31, 39, 41–43, 45, 47, 51, 57–62, 65, 67–72, 81,
84–96, 99, 101–104, 107–109, 111–113, 115–118, 122, 124–129, 133

NAT Network Address Translation. 14, 17, 25, 27–29, 126

OS Operating System. 83, 90, 124, 125, 127

OTR Off-the-Record Messaging. 21, 117

P2P Peer-To-Peer. 5, 6, 8–10, 12–15, 17, 24, 26–28, 30, 31, 46, 55, 87, 101, 115, 118,
127, 128, 136

P2PSIP Peer-to-Peer Session Initiation Protocol. 29

PGP Pretty Good Privacy. 21

PIC Peer-In-Container. 35, 36, 40, 41, 49–54, 61–63, 71, 72, 74–77, 79–81, 86, 95, 97,
105, 109, 119

PIER P2P Information Exchange Retrieval. 7

PM Peer Model. 31, 71, 78

POC Peer-Out-Container. 35, 41, 42

RAM Random-Access-Memory. 57, 58, 62, 103, 121

REST REpresentational State Transfer. 82

RPC Remote Procedure Calls. 14, 28

RTP Runtime-Peer. 35, 40, 43, 45, 47–49, 51, 52, 54, 55, 58–64, 69, 70, 74, 76, 77, 79,
80, 83, 85, 86, 88–91, 93, 94, 96–98, 123, 124, 126–129

RTS Runtime-Service. 59, 126

SASL Simple Authentication and Security Layer. 18, 21

SDK Software Development Kit. 68, 89

SIP Session Initiation Protocol. 22, 29, 30

SQL Structured Query Language. 34

TCP Transmission Control Protocol. 18, 46

TLS Transport Layer Security. 18, 21, 46

139

TSP Travelling Salesman Problem. 113

TTL time to live. 40, 53, 54, 72, 81, 107

TTS time-to-start. 72

UDP User Datagram Protocol. 14, 28

UI User Interface. 57, 88

URI Uniform Resource Identifier. 35, 41, 42, 76

USB Universal Serial Bus. 99

UTC Universal Time Coordinated. 40

VM Virtual Machine. 47, 68, 70, 127

VOIP Voice Over IP. 22

W-LAN Wireless Local Area Network. 11, 25, 29, 126

WADE Workflows and Agents DEvelopment framework. 17

WS-BPEL Web Service - Business Process Execution Language. 33

XAP eXtreme Application Platform. 71

XEP XMPP Extension Protocols. 20

XML Extensible Markup Language. 17

XMPP Extensible Messaging and Presence Protocol. 17, 19, 21, 29–31, 43, 45, 46, 51,
54, 55, 59, 70, 82, 89, 90, 102, 103, 115–118, 122, 125–128, 131

XSF XMPP Standard Foundation. 20

XVSM eXtensible Virtual Shared Memory. 41

140

Bibliography

[Alt16] Marion Altschach. Classification of space based computing systems. Master’s
thesis, TU Wien, 2016.

[Arb04] Farhad Arbab. Reo: a channel-based coordination model for component
composition. Mathematical structures in computer science, 14(03):329–366,
2004.

[ATS04] Stephanos Androutsellis-Theotokis and Diomidis Spinellis. A survey of peer-
to-peer content distribution technologies. ACM Comput. Surv., 36(4):335–
371, 2004.

[BCG14] Federico Bergenti, Giovanni Caire, and Danilo Gotta. Agents on the move:
Jade for android devices. In Procs. Workshop From Objects to Agents,
volume 2, 2014.

[BCP+03] Fabio Bellifemine, Giovanni Caire, Agostino Poggi, Giovanni Rimassa, and
A Jade. Jade - a white paper. Telecom Italia EXP magazine Vol, 3, 2003.

[BPR99] Fabio Bellifemine, Agostino Poggi, and Giovanni Rimassa. Jade–a fipa-
compliant agent framework. In Proceedings of PAAM, volume 99, page 33.
London, 1999.

[CC10] C.-F. Michael Chan and S.-H. Gary Chan. Distributed hash tables: Design
and applications. Handbook of Peer-to-Peer Networking, pages 257–280,
2010.

[CDG+02] Miguel Castro, Peter Druschel, Ayalvadi Ganesh, Antony Rowstron, and
Dan S. Wallach. Secure routing for structured peer-to-peer overlay networks.
SIGOPS Oper. Syst. Rev., 36(SI):299–314, 2002.

[CGK+05] Krzysztof Chmiel, Maciej Gawinecki, Pawel Kaczmarek, Michal Szymczak,
and Marcin Paprzycki. Efficiency of jade agent platform. Scientific Program-
ming, 13:159–172, 2005.

[CJK15] Stefan Craß, Gerson Joskowicz, and Eva Kühn. A decentralized access
control model for dynamic collaboration of autonomous peers. In Security

141

and Privacy in Communication Networks – 11th International Conference
(SecureComm), pages 519–537, 2015.

[CKS09] Stefan Craß, Eva Kühn, and Gernot Salzer. Algebraic foundation of a data
model for an extensible space-based collaboration protocol. In Interna-
tional Database Engineering and Applications Symposium (IDEAS), ACM
International Conference Proceeding Series, pages 301–306. ACM, 2009.

[CMM02] Russ Cox, Athicha Muthitacharoen, and Robert Morris. Serving dns using a
peer-to-peer lookup service. In Revised Papers from the First International
Workshop on Peer-to-Peer Systems, IPTPS ’01, pages 155–165. Springer-
Verlag, 2002.

[DGKW10] Krishna Dhara, Yang Guo, Mario Kolberg, and Xiaotao Wu. Overview
of structured peer-to-peer overlay algorithms. Handbook of Peer-to-Peer
Networking, pages 223–256, 2010.

[Die08] Tim Dierks. The transport layer security (tls) protocol version 1.2. https:
//tools.ietf.org/html/rfc5246, 2008. accessed: 2016-10-22.

[DPK12] Ciprian Docan, Manish Parashar, and Scott Klasky. Dataspaces: an interac-
tion and coordination framework for coupled simulation workflows. Cluster
Computing, 15(2):163–181, 2012.

[Gra03] Mark Grand. Patterns in Java: a catalog of reusable design patterns illus-
trated with UML. John Wiley & Sons, 2003.

[HA02] S. Hazel and Wiley B. Achord. A variant of the chord lookup service for use
in censorship resistant peer-to. peer publishing systems. In: Proc. of the 1st
Int’l Workshop on Peer-to-Peer Systems (IPTPS 2002). Cambridge, 2002.

[HBS73] Carl Hewitt, Peter Bishop, and Richard Steiger. A universal modular actor
formalism for artificial intelligence. In Proceedings of the 3rd International
Joint Conference on Artificial Intelligence, IJCAI’73, pages 235–245. Morgan
Kaufmann Publishers Inc., 1973.

[HHL+03] Ryan Huebsch, Joseph M. Hellerstein, Nick Lanham, Boon Thau Loo, Scott
Shenker, and Ion Stoica. Querying the internet with pier. In Proceedings of
the 29th International Conference on Very Large Data Bases - Volume 29,
VLDB ’03, pages 321–332. VLDB Endowment, 2003.

[JEA+07] Diane Jordan, John Evdemon, Alexandre Alves, Assaf Arkin, Sid Askary,
Charlton Barreto, Ben Bloch, Francisco Curbera, Mark Ford, Yaron Goland,
et al. Web services business process execution language version 2.0. OASIS
standard, 11(120):5, 2007.

142

https://tools.ietf.org/html/rfc5246
https://tools.ietf.org/html/rfc5246

[JXJY06] Y. Jiang, G. Xue, Z. Jia, and J. You. Dtuples: A distributed hash table based
tuple space service for distributed coordination. In 2006 Fifth International
Conference on Grid and Cooperative Computing (GCC’06), pages 101–106,
2006.

[JYF07] Yuh-jzer Joung, Li-wei Yang, and Chien-tse Fang. Keyword search in
dht-based peer-to-peer networks. IEEE Journal on Selected Areas in Com-
munications, 25(1):46–61, 2007.

[KCH14] Eva Kühn, Stefan Craß, and Thomas Hamböck. Approaching coordination
in distributed embedded applications with the peer model DSL. In 40th EU-
ROMICRO Conference on Software Engineering and Advanced Applications
(EUROMICRO-SEAA), pages 64–68, 2014.

[KCJ98] Lars M. Kristensen, Soren Christensen, and Kurt Jensen. The practitioner’s
guide to coloured petri nets. International Journal on Software Tools for
Technology Transfer, 2(2):98–132, 1998.

[KCJ+13] Eva Kühn, Stefan Craß, Gerson Joskowicz, Alexander Marek, and Thomas
Scheller. Peer-Based Programming Model for Coordination Patterns. In
Rocco De Nicola and Christine Julien, editors, 15th International Conference
on Coordination Models and Languages (COORDINATION), held as part
of the 8th International Federated Conference on Distributed Computing
Techniques (DisCoTec), volume 7890 of Lecture Notes in Computer Science,
pages 121–135. Springer, 2013.

[KCS15] Eva Kühn, Stefan Craß, and Gerald Schermann. Extending a peer-based
coordination model with composable design patterns. In 23rd Euromicro
International Conference on Parallel, Distributed, and Network-Based Pro-
cessing (PDP), pages 53–61, 2015.

[KK07] Byungryong Kim and Kichang Kim. Keyword search in dht-based peer-to-
peer networks. In Hai Jin, Omer F. Rana, Yi Pan, and Viktor K. Prasanna,
editors, Algorithms and Architectures for Parallel Processing: 7th Interna-
tional Conference, pages 338–347. Springer Berlin Heidelberg, 2007.

[KLL+97] David Karger, Eric Lehman, Tom Leighton, Rina Panigrahy, Matthew Levine,
and Daniel Lewin. Consistent hashing and random trees: Distributed caching
protocols for relieving hot spots on the world wide web. In Proceedings of
the Twenty-ninth Annual ACM Symposium on Theory of Computing, STOC
’97, pages 654–663. ACM, 1997.

[Küh17] Eva Kühn. Flexible transactional coordination in the peer model. 7th IPM
International Conference on Fundamentals of Software Engineering (FSEN).
Springer, 2017. (to appear).

143

[LA10] Lu Liu and Nick Antonopoulos. From client-server to p2p networking.
Handbook of Peer-to-Peer Networking, pages 71–89, 2010.

[LCP+05] Eng Keong Lua, J. Crowcroft, M. Pias, R. Sharma, and S. Lim. A survey and
comparison of peer-to-peer overlay network schemes. IEEE Communications
Surveys Tutorials, 7(2):72–93, 2005.

[LP05] Zhen Li and M. Parashar. Comet: a scalable coordination space for decen-
tralized distributed environments. In Second International Workshop on Hot
Topics in Peer-to-Peer Systems, pages 104–111, 2005.

[MM02] Petar Maymounkov and David Mazières. Kademlia: A peer-to-peer infor-
mation system based on the xor metric. In Revised Papers from the First
International Workshop on Peer-to-Peer Systems, IPTPS ’01, pages 53–65.
Springer-Verlag, 2002.

[Nie06] Pin Nie. An open standard for instant messaging: extensible messaging and
presence protocol (xmpp). In TKK T-110.5190 Seminar on Internetworking,
pages 1–6, 2006.

[otr] Otr | off-the-record messaging. https://otr.cypherpunks.ca/. ac-
cessed: 2016-10-23.

[OZ99] Andrea Omicini and Franco Zambonelli. Coordination for internet application
development. Autonomous Agents and Multi-Agent Systems, 2(3):251–269,
1999.

[PRR99] G. C. Plaxton, R. Rajaraman, and W. A. Richa. Accessing nearby copies
of replicated objects in a distributed environment. Theory of Computing
Systems, 32(3):241–280, 1999.

[RD01] Antony I. T. Rowstron and Peter Druschel. Pastry: Scalable, decentralized
object location, and routing for large-scale peer-to-peer systems. In Pro-
ceedings of the IFIP/ACM International Conference on Distributed Systems
Platforms Heidelberg, Middleware ’01, pages 329–350. Springer-Verlag, 2001.

[RFH+01] Sylvia Ratnasamy, Paul Francis, Mark Handley, Richard Karp, and Scott
Shenker. A scalable content-addressable network. SIGCOMM Comput.
Commun. Rev., 31(4):161–172, 2001.

[RWBB05] T. Reidemeister, P. A. S. Ward, K. Bohm, and E. Buchmann. Malicious
behaviour in content-addressable peer-to-peer networks. In 3rd Annual
Communication Networks and Services Research Conference (CNSR’05),
pages 319–326, 2005.

[SA05] P. Saint-Andre. Streaming xml with jabber/xmpp. IEEE Internet Computing,
9(5):82–89, 2005.

144

https://otr.cypherpunks.ca/

[SA11] Peter Saint-Andre. Extensible Messaging and Presence Protocol (XMPP):
Core. https://tools.ietf.org/html/rfc6120, 2011. accessed:
2016-10-22.

[SASTT09] Peter Saint-Andre, Kevin Smith, Remko Tronçon, and Remko Troncon.
XMPP: the definitive guide. O’Reilly Media, Inc., 2009.

[Sch17a] Jörg Schoba. Mobile Peer Model: A mobile peer-to-peer communication and
coordination framework - with focus on scalability and security. Master’s
thesis, TU Wien, 2017. (in preparation).

[Sch17b] Matthias Schwayer. Towards a visual design and development environment
for the peer model. Master’s thesis, TU Wien, 2017. (in preparation).

[SM02] Emil Sit and Robert Morris. Security considerations for peer-to-peer dis-
tributed hash tables. In Revised Papers from the First International Workshop
on Peer-to-Peer Systems, IPTPS ’01, pages 261–269. Springer-Verlag, 2002.

[SMK+01] Ion Stoica, Robert Morris, David Karger, M. Frans Kaashoek, and Hari
Balakrishnan. Chord: A scalable peer-to-peer lookup service for inter-
net applications. In Proceedings of the 2001 Conference on Applications,
Technologies, Architectures, and Protocols for Computer Communications,
SIGCOMM ’01, pages 149–160. ACM, 2001.

[SMR12] Anil Saroliya, Upendra Mishra, and Ajay Rana. A pragmatic analysis of peer
to peer networks and protocols for security and confidentiality. International
Journal of Computing and Corporate Research, 2(6), 2012.

[UTG08] M. Ughetti, T. Trucco, and D. Gotta. Development of agent-based, peer-
to-peer mobile applications on android with jade. In Mobile Ubiquitous
Computing, Systems, Services and Technologies, 2008. UBICOMM ’08. The
Second International Conference on, pages 287–294, 2008.

[UVG05] Y. Upadrashta, J. Vassileva, and W. Grassmann. Social networks in peer-
to-peer systems. In Proceedings of the 38th Annual Hawaii International
Conference on System Sciences, pages 200–209, 2005.

[XM12] Bai Xuefu and Yang Ming. Design and implementation of web instant
message system based on xmpp. In 2012 IEEE International Conference on
Computer Science and Automation Engineering, pages 83–88, 2012.

[ZHS+04] B. Y. Zhao, Ling Huang, J. Stribling, S. C. Rhea, A. D. Joseph, and J. D.
Kubiatowicz. Tapestry: a resilient global-scale overlay for service deployment.
IEEE Journal on Selected Areas in Communications, 22(1):41–53, 2004.

[ZKJ01] Ben Y. Zhao, John D. Kubiatowicz, and Anthony D. Joseph. Tapestry: An
infrastructure for fault-tolerant wide-area location and. Technical report,
2001.

145

https://tools.ietf.org/html/rfc6120

[ZO09] X. Zheng and V. Oleshchuk. Improving chord lookup protocol for p2psip-
based communication systems. In 2009 International Conference on New
Trends in Information and Service Science, pages 1309–1314, 2009.

146

	Abstract
	Kurzfassung
	Contents
	Introduction
	Motivation and problem statement
	Aim of the work
	Structure of the work

	Analysis of existing approaches and background technologies
	Review process
	Structured P2P overlay networks
	Unstructured P2P overlay networks
	Coordination frameworks and models
	General P2P frameworks and protocols

	Requirements on the MPM and selection of background technologies
	Requirements on the Mobile Peer Model
	Evaluation and selection of background technologies

	The Peer Model
	The Peer Model

	Design
	Distribution of work
	The Mobile Peer Model
	Overall system architecture
	Architecture of an MPM host
	Architecture of the Runtime-Peer
	Mobile design considerations
	Modeler and code generation

	Implementation
	Execution environments
	Software artifacts
	Runtime-Peer
	Notifier-Peer
	Registration
	Mobile design considerations
	Tests

	Proof of concept application
	A secure P2P messenger app with the MPM framework
	A coordination focussed Android app with the MPM framework

	Evaluation and critical reflection
	Benefits of the framework
	Runtime-Peer and persistence performance
	Open issues
	Fulfilment of imposed requirements

	Conclusion
	Summary
	Future work

	List of Figures
	List of Tables
	Acronyms
	Bibliography

