
Mobile Peer Model
A mobile peer-to-peer communication and

coordination framework - with focus on scalability
and security

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Software Engineering & Internet Computing

eingereicht von

Jörg Schoba, BSc
Matrikelnummer 01026309

an der Fakultät für Informatik

der Technischen Universität Wien

Betreuung: Ao.Univ.Prof. Dipl.-Ing. Dr.techn. Eva Kühn
Mitwirkung: Projektass. Dipl.-Ing. Stefan Craß

Wien, 10. Oktober 2017
Jörg Schoba Eva Kühn

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.ac.at

Die approbierte Originalversion dieser Diplom-/
Masterarbeit ist in der Hauptbibliothek der Tech-
nischen Universität Wien aufgestellt und zugänglich.

http://www.ub.tuwien.ac.at

The approved original version of this diploma or
master thesis is available at the main library of the
Vienna University of Technology.

http://www.ub.tuwien.ac.at/eng

Mobile Peer Model
A mobile peer-to-peer communication and

coordination framework - with focus on scalability
and security

DIPLOMA THESIS

submitted in partial fulfillment of the requirements for the degree of

Diplom-Ingenieur

in

Software Engineering & Internet Computing

by

Jörg Schoba, BSc
Registration Number 01026309

to the Faculty of Informatics

at the TU Wien

Advisor: Ao.Univ.Prof. Dipl.-Ing. Dr.techn. Eva Kühn
Assistance: Projektass. Dipl.-Ing. Stefan Craß

Vienna, 10th October, 2017
Jörg Schoba Eva Kühn

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.ac.at

Erklärung zur Verfassung der
Arbeit

Jörg Schoba, BSc
Donaufelderstraße 8/1/12 1210 Wien

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 10. Oktober 2017
Jörg Schoba

v

Acknowledgements

I thank my thesis advisor Ao.Univ.Prof. Dipl.-Ing. Dr.techn. Eva Kühn and the thesis
assistant Projektass. Dipl.-Ing. Stefan Craß of the Space Based Computing Research
Group from the TU Wien for their support from the beginning of the diploma thesis.
Without their expert knowledge the completion of the work would have hardly been
possible. Special appreciation is also extended to Stefan for his great reviews of the
thesis.

I also thank Martin Planer, Matthias Schwayer and Gerson Joskowicz for their partic-
ipation in the technical board meetings, where they discussed issues and passed their
comments on important decisions regarding the thesis. Furthermore I want to mention
Konrad Steiner for testing early versions of the implemented framework and giving
feedback on it. I hope he will also finish his thesis with success.

A big thank you goes to Peter Tillian, my best friend since years, who made this
collaboration work a success. The synergy we developed in our whole study at the TU
Wien was to our mutual advantage and a big factor for our accomplishments.

Last but not least I want to pay a tribute to my mother Dagmar, my father Heimo
and all other members of my family for the support in all the years of school and study.
Moreover I express my gratitude to my girlfriend Christina and her family. I hope after
finishing this long period of hard work I can find more time for all of you and I want
you to be aware that without your support and patience all this would not have been
possible. Thanks!

vii

Abstract

Peer-to-peer (P2P) communication and coordination is an emerging paradigm in next
generation distributed systems. An analysis of the state of the art of conceptualized
and existing P2P communication and coordination frameworks, which are applicable for
widely distributed systems and support deployment on current mobile devices, reveals
that most of these approaches do not provide sufficient developer support, are only
applicable for specific use cases, are designed for local area networks, are deprecated
or not easily deployable on mobile devices. Therefore, a coordination framework for
mobile devices based on P2P communication is designed and implemented, intended
to support developers in creating internet-scale, distributed mobile applications. The
reference implementation is conducted for Android devices, because Android currently
has the highest market share of mobile operating systems. Nevertheless, the system is
designed to be implementable also on other mobile platforms and generally is compliant to
mobile constraints. Compared to a system running on a desktop or server machine these
constraints include, e.g., the battery consumption, the limited processing power and the
limited network connectivity. These aspects have been considered in the technical system
design. Also, because P2P communication shall be possible in an internet-scale network,
appropriate security measures have been taken. Moreover, the system is designed to be
able to traverse any network address translation (NAT) of a network without having
to configure a router or firewall, which enables P2P communication in any network
constellation.

This work delivers a framework that supports a developer of a mobile P2P application
by providing the middleware components that abstract communication and coordination
logic of the application and let the developer focus on application logic only.

ix

Kurzfassung

P2P-basierte Kommunikation und Koordination ist ein zukunftsträchtiges Paradigma
in verteilten Systemen der nächsten Generation. Eine Analyse der derzeit existierenden
Frameworks für P2P-basierte Kommunikation und Koordination von mobilen Geräten in
einem global verteilten Netzwerk zeigt, dass die meisten Ansätze entweder für Entwickler
keine wirklichen Vorteile bringen, nur für spezielle Anwendungsfälle konzipiert sind, nur
in lokalen Netzwerken angewandt werden können, veraltet sind oder nicht auf mobilen
Geräten implementiert werden können. Deshalb wurde in dieser Arbeit ein auf P2P-
Kommunikation basierendes Koordinations-Framework für mobile Geräte entworfen und
implementiert. Die Referenz-Implementierung wurde für die Android-Plattform entwi-
ckelt, weil Android zurzeit den größten Marktanteil unter den mobilen Betriebssystemen
hält. Nichtsdestotrotz ist das Framework so konzipiert, dass es auch auf anderen gängigen,
mobilen Betriebssystemen implementiert werden kann und ist generell auf mobile Geräte
optimiert. Einschränkungen im Vergleich zu einem System, welches auf einer Desktop-
oder Server-Maschine läuft, sind z.B. die beschränkte Akkulaufzeit, die limitierte Prozes-
sorgeschwindigkeit und die limitierte Netzwerkkonnektivität. Diese Aspekte wurden beim
technischen Entwurf des Framework berücksichtigt. Da eine Kommunikation auch über
das öffentliche Internet möglich sein soll, wurden auch spezielle Sicherheits-Maßnahmen
getroffen, welche für eine sichere Kommunikation in diesem Fall unerlässlich sind. Das
Framework wurde so entworfen, dass eine Kommunikation in Netzwerken mit beliebigen
NAT-Konstellationen möglich ist, ohne einen Router oder eine Firewall konfigurieren zu
müssen.

Das entwickelte Framework unterstützt den Programmierer bei der Entwicklung einer
mobilen Applikation, welche auf P2P-Kommunikation basiert und liefert die Middleware-
Komponenten, welche die Kommunikations- und Koordinationslogik abstrahieren und es
dem Entwickler ermöglichen, sich auf die Applikationslogik zu fokussieren.

xi

Contents

Abstract ix

Kurzfassung xi

Contents xiii

1 Introduction 1
1.1 Motivation . 1
1.2 Problem statement . 2
1.3 Aim of the work . 2
1.4 Structure of the work . 3

2 Analysis of existing approaches and background technologies 5
2.1 Review process . 5
2.2 P2P systems characteristics . 6
2.3 Unstructured P2P overlay networks . 7
2.4 General purpose P2P protocols . 23
2.5 Coordination frameworks and models . 30

3 Requirements and selection of background technology 33
3.1 Requirements . 33
3.2 Evaluation and selection of background technology 37

4 The Peer Model 43
4.1 Characteristics . 43

5 Design 47
5.1 Mobile profile of the Peer Model (PM) . 47
5.2 Architectural overview and separation of engineering tasks 50
5.3 Architecture of communication and identity management 54
5.4 Architecture of serialization . 59
5.5 Security concept . 63
5.6 Scalability concept . 69

xiii

6 Implementation 75
6.1 Class overview . 75
6.2 Communication and identity management 79
6.3 Serialization . 83
6.4 Security . 88
6.5 Scalability . 92
6.6 Integration with partner work . 94

7 Proof-of-concept implementation of mobile application 97
7.1 Background . 97
7.2 Design . 98
7.3 Implementation . 99

8 Evaluation 105
8.1 Scalability evaluation . 105
8.2 Performance of end-to-end (E2E) encryption 112
8.3 Security assessment . 113
8.4 Fulfilment of imposed requirements . 117

9 Conclusion 119
9.1 Summary . 119
9.2 Lessons learned . 120
9.3 Future work . 120

List of Figures 123

List of Tables 124

Acronyms 125

Bibliography 129

CHAPTER 1
Introduction

P2P communication and coordination approaches became popular in the early 2000s
with file-sharing platforms, which did not require centralized servers or only a part of the
network was centralized. Ever since, P2P communication has been a good alternative
to usual server-client communication in specific scenarios. By design such systems are
more dynamic, scalable and failure-resistant. Although the time of file-sharing networks
seems to be over, P2P paradigms are still in wide use, e.g. in communication networks
like instant messaging (IM) and voice over IP (VoIP). Moreover, coordination amongst
different self-contained nodes seems to be a concept with much potential when integrated
with the P2P paradigm. Kühn et al. have proposed the Peer Model (PM) in [KCJ+13]
as a tool to design systems that incorporate both P2P communication and coordination
patterns for communicating nodes. This work has been the inspiration to develop a
framework which abstracts underlying P2P communication and coordination logic to a
level that lets developers concentrate on the application logic and along with that enables
them to create widely distributed applications much easier on mobile platforms.

1.1 Motivation
Internet-scale, P2P based communication networks like Skype are also available on mobile
platforms and there exist mobile applications to e.g. share computational power of the
device like BOINC 1. This shows that mobile devices nowadays have enough potential
to act as self-contained nodes in a network and also have enough computational power
to contribute. Still, mobile devices have several constraints compared to stationary
computers like e.g. limited connectivity or battery consumption. This means, that such
applications need to be specially tailored for mobile usage. Despite there exists a large
variety of protocols for P2P communication and there also exist frameworks and models

1https://play.google.com/store/apps/details?id=edu.berkeley.boinc&hl=en
accessed 03.2017

1

https://play.google.com/store/apps/details?id=edu.berkeley.boinc&hl=en

1. Introduction

to coordinate the participating peers, research shows that most of the frameworks and
protocols are not designed for or have not yet been implemented on current mobile
platforms.

1.2 Problem statement

Available resources on mobile devices are increasing continuously. This enables imple-
mentation of computational complex applications that can make use of steadily rising
amounts of network bandwidth. It seems worthwhile to design models and frameworks
for easy development of mobile applications that follow the P2P paradigm and offer
functionality for coordination of those mobile peers. In such networks, application and
coordination logic is solely running on the mobile peer and those peers communicate with
other peers. Unfortunately, it seems that no frameworks for mobile application developers
exist, which support the development of such applications that might be distributed over
internet-scale P2P networks on current mobile platforms. Such a framework has to be
compliant with the constraints of such devices. The technical challenges are to design
the framework to use resources like battery and processing power efficiently as well as to
be able to handle an instable network connectivity while still offering enough developer
support. Also, security measurements have to be implemented in the framework to
appropriately secure the communication over a public network. The public network might
only be accessible using NAT to a local area network (LAN). Such constellations usually
require configuration of a router or firewall to enable P2P communication traversing the
NAT. To be able to use applications based on the framework in any network setup, it
has to be designed so that no such configuration is necessary, because this is for example
not possible in a public LAN. Furthermore, probably needed central components of the
network based on the designed framework have to be scalable to cope with increasing
load and to guarantee an appropriate amount of reliability.

1.3 Aim of the work

The aim of this work is to design and implement an open-source framework to develop
mobile applications that are based on P2P communication of active peers running the
application logic. The framework shall be designed to support internet-scale communica-
tion networks. Additionally, it shall offer possibilities to specify coordination patterns
amongst those peers and shall be implementable on currently popular mobile operating
systems.

Detailed requirements on the framework are provided in Chapter 3. Generally, the
framework shall be open-source and implementable on popular mobile platforms with
an appropriate amount of effort. Probably needed central parts shall be scalable and
communication over the network shall offer a suitable amount of security for public
networks. In comparison to not using the framework, a developer shall have a clear
benefit in terms of abstractions, which allow the developer of a mobile P2P application to

2

1.4. Structure of the work

focus on application logic and not on coordination and communication. Already existing
background technology that has been researched and evaluated is selected considering
the proposed requirements and integrated as components of the framework.

1.4 Structure of the work
This master thesis is realized as a cooperation work with Peter Tillian [Til17]. Responsi-
bilities have been defined for both for the whole process of the literature reviews and
also the software engineering process of the reference implementation. The general focus
points of this work are scalability and security of the designed framework. The whole con-
ceptualization and implementation of the communication layer are also part of this work.
Detailed information on the distribution of work are made clear in each of the chapters
of this work and each of us deals with his focus points in his own thesis. References are
used whenever appropriate. Despite each work can be understood independently, all
details of the whole project are clear when reading both.

Both works are structured the same way, so it is also possible to read chapter by chapter
in each work, following the references provided. After the introductory first chapter,
the second chapter is a systematic literature review of existing background technologies
for usage in the framework. This involves P2P frameworks and protocols as well as
coordination frameworks and models. Here, focus points have been set for both of us
and are explained in the chapter. The requirements for the framework to be designed are
specified in chapter three. Here also the found background technology is evaluated and
selected based on those requirements. Chapter four provides insights on the PM that has
been selected as coordination model to be used in the framework. Chapter five and six
deal with the design and the implementation phases of the software engineering process,
specifically the design and programming of the reference implementation for Android.
Additionally, a proof-of-concept implementation of a mobile application that is based on
the implemented framework is done by both of us in an own software engineering process
in chapter seven. In chapter eight, evaluations on the framework are done related to the
focus points of the thesis. The last chapter concludes about the whole work and gives
incitements about future work.

3

CHAPTER 2
Analysis of existing approaches

and background technologies

In this chapter an analysis of existing approaches on P2P networks and frameworks is
done. The research is performed in a systematic way and shall firstly help to get an
overview of the related work and background technologies in this field. Then, existing
approaches, techniques, frameworks and protocols that could be used as a reference, core
component or supporting technology for the proposed framework shall be identified. In
the selection process the found approaches, frameworks and protocols shall be evaluated
respecting the requirements imposed to the Mobile Peer Model (MPM) framework in
Chapter 3.

2.1 Review process

The review is framed by specific inclusion and exclusion criteria as well as specific sources
and search queries. Sources for the literature review have been mainly the search engine
of IEEE Xplore1, Springer2, ACM Digital Library3, ScienceDirect4 and Google Scholar5

as meta search index. The search terms used for querying papers proposing probably
useful approaches were mainly: "peer-to-peer networks", "mobile peer-to-peer", "peer-
to-peer middleware", "android peer-to-peer", "iOS peer-to-peer", "peer-to-peer protocol",
"internet peer-to-peer", "mobile peer-to-peer communication", "coordination framework"
and "mobile coordination framework".

1http://ieeexplore.ieee.org/ accessed 09.2016
2http://link.springer.com/ accessed 09.2016
3http://dl.acm.org/ accessed 09.2016
4http://www.sciencedirect.com/ accessed 09.2016
5https://scholar.google.at/ accessed 09.2016

5

http://ieeexplore.ieee.org/
http://link.springer.com/
http://dl.acm.org/
http://www.sciencedirect.com/
https://scholar.google.at/

2. Analysis of existing approaches and background technologies

2.1.1 Inclusion criteria

Included are articles from scientific journals, books or book chapters and conference and
workshop proceedings, which deal with communication protocols and frameworks that
could contribute to this work, not necessarily also including coordination models. Here,
only approaches are enclosed which are applicable in widely distributed systems over
wide area networks (WANs) like the internet. When gathering papers from the named
widely acknowledged publication platforms, care is taken that the papers also have been
cited by other authors as a measurement for fair quality and appropriate impact factor.
Additionally, uniform resource locators (URLs) from official websites, code repositories
and wikis of found technologies are included if necessary, always providing dates of last
access to the sites.

2.1.2 Exclusion criteria

Not included in the research process are informal surveys or information from online
forums, weblogs and wikis with no respective references to the source of information.
Approaches that deal with protocols and frameworks only applicable in LANs like mobile
ad hoc networks operating over Wi-Fi, near field communication (NFC), bluetooth and
comparable technology are also excluded.

2.2 P2P systems characteristics
P2P is a decentralized communication model. In comparison to standard client-to-server
communication, where a client sends a request and a server answers with a response, in
the P2P communication model each participant may act as a server and client at the same
time. When talking about a peer in this work, this refers to that kind of fully qualified
participant in a P2P network. Each peer may initiate a new communication session
with another one. In typical P2P networks these peers may join and disconnect form
the network at any time without destructing the network structure or disrupting other
peers. In a P2P system, all or almost all of the needed computational power, storage
and bandwidth are provided by the joint peers. Because of this, P2P networks can grow
almost without any limitation. In a client-server environment it would be necessary
to upgrade or scale the existing server infrastructure. The peers are not controlled
by a central authority, but usually by independent individuals that join the network
voluntarily. P2P networks are usually also more resilient to faults and attacks, because
there are no or only a few nodes that are critical to the system’s operation. Nonetheless,
the P2P concept faces many challenges that originate from the decentralized design of
these systems itself including manageability, security and jurisdiction. In the past there
have been many applications based on the P2P paradigm, many of them designed for
large-scale data sharing, content distribution and other multicast distributed systems.
Typically, P2P overlay networks are divisible in two structural categories. First there are
structured overlays, where content and logic is placed in a structured way on all joined
peers. That means it is controlled by an algorithm which peers are responsible for which

6

2.3. Unstructured P2P overlay networks

content and logic and where it is possibly mirrored. Secondly there are unstructured
overlays, where responsibilities are placed arbitrarily. Peers can join and leave the network
without prior knowledge of the topology and without affecting other peer’s responsibilities.
Furthermore, one can categorize P2P networks as pure, hybrid or centralized. Pure
in this context means that the network is completely decentralized with no server or
hierarchically superior components. Decentralized networks consist only of completely
equitable peers. Hybrid P2P networks consist of more than just one flat structure of
equal peers, usually they have one more layer of overlying super-peers or servers, which
are not fixed and which provide coordination services for the underlying peers like indexes
for data localization. In many cases, these servers or super-peers are hosted by volunteers
that upgrade their normal peer to a super-peer and probably use an own software for
these components. In contrast to that, centralized P2P networks have a consistently
addressable and dedicated server or server farm that provides the coordination services.
These characteristics have been extracted and can be comprehended in more detail in
[RD10] and [LCP+05]

Peter Tillian [Til17] in his literature research and evaluation focuses on structured P2P
overlay networks while this work focuses on unstructured ones. Furthermore, there
exist some more P2P frameworks and protocols that offer not just P2P communication
but more services like e.g. peer discovery, peer grouping and so on. There exist also
some important communication protocols that are not purely P2P but also interesting
as background technologies. The found approaches that could not be categorized in
structured or unstructured P2P communication protocols have been split up for detailed
evaluation by both of us also in this chapter.

2.3 Unstructured P2P overlay networks
In this section an overview of existing P2P protocols used to create unstructured overlay
networks is provided. The focus lies on protocols that also have gained publicity and have
been used by P2P applications. Also, a comparison and analysis of these technologies is
done. When gathering information about the approaches, already the requirements for
the proposed MPM framework are considered, including such aspects as publication of
the protocol, development state, existing ports to mobile platforms or NAT bypassing
techniques. Scalability and security aspects, which are my responsibilities for the MPM
framework, are also examined for the found technologies.

2.3.1 Napster

The idea of P2P networks was first implemented and used in a global way with the
concept of Napster (see [LCP+05]) in 1999. The purpose of the system was decentralized
file-sharing with a central registry for filenames, the network therefore can be categorized
as centralized. The central registry offered a search facility and features for contributing
peers to publish the names of the files available at their local storage. In that way, the
demand for bandwidth at the central registry could be decreased drastically compared to

7

2. Analysis of existing approaches and background technologies

a system where data is directly hosted at a server. Users were able to search for keywords
in the filenames on the registry and got the addresses for matching peers to download
the files from. The actual sharing of files was then accomplished by a direct connection
between the matched peers. Figure 2.1 shows the communication model used by Napster,
where P defines a peer, S a central server, Q a request with a search query, R a response
with addresses of matching peers and D the actual data exchange between peers. The
architecture of Napster can be seen as a combination of client-server and P2P models
because it uses a centralized server or server pool for discovery of resources. The client
software typically has built-in server addresses to connect, but allows also adding of
further servers. Napster also implemented P2P messaging, chat rooms and hot lists. Hot
lists represent a kind of favorite peer register, which every peer can maintain. Regarding
traversal of NATs, Napster used the server as a connection broker for clients, described
by Son and Livny in [SL03]. When an uploading peer is located behind a firewall or
NAT, the downloading peer asks the server to send a notification to the uploading peer
to establish a connection and actively upload the file.

Finally, a lawsuit forced Napster to shut down their application in 2001 because of
copyright infringement. Napster announced itself bankrupt in 2002. However, the idea
of P2P file-sharing was carried on and improved in other systems. The main problem
of Napster might be its bottleneck and single point of failure in the static centralized
registry for file discovery. The brand of Napster was later sold to a digital media company
and is now used as name for their music service6.

As one might deduce easily, the architecture of Napster is vulnerable against censorship,
technical failure and denial of service (DoS) attacks, because of its static central com-
ponents like discussed in [ATS04]. Also, one can think about that it is easy to harvest
internet protocol (IP) addresses of participating users by searching for popular files and
collecting the matching peers. Later on, attacks could be driven against those peers.
Because Napster focuses on media files only, distribution of malware was not easy to
achieve, like stated in [TC06], but of course there is no guarantee that these media files
are not altered or polluted.

There exist open-source implementations of the Napster server like OpenNap7. This
server is implemented as a console application for multiple platforms. Unfortunately
there has not been any ongoing development since many years. Slavanap8 is another
server implementation with a current version from 2013, but is only available for the
Microsoft Windows platform and is closed source. A few other server implementations
could be found, but none where open-source and in progressive state. Regarding Napster
client software, many existing open-source implementations for various platforms exist,
including implementations in Java like XNap9 or XNapster10 with current versions from

6http://napster.com accessed 09.2016
7http://opennap.sourceforge.net/ accessed 09.2016
8https://sourceforge.net/projects/slavanap2/ accessed 09.2016
9https://sourceforge.net/projects/xnap/ accessed 09.2016

10https://sourceforge.net/projects/xnapster/ accessed 09.2016

8

http://napster.com
http://opennap.sourceforge.net/
https://sourceforge.net/projects/slavanap2/
https://sourceforge.net/projects/xnap/
https://sourceforge.net/projects/xnapster/

2.3. Unstructured P2P overlay networks

Figure 2.1: Napster communication model [SGG03]

2015. In the research no ports of Napster client applications for current mobile platforms
were found, but most likely trying to port a Java implementation to Android would be
the best choice here. For further insights on Napster see [LCP+05], [RD10] and [SMR12].

2.3.2 Gnutella

In contrast to the Napster P2P approach, the Gnutella open-source protocol (see the
protocol definition11) does not support a client-server search mechanism, file discovery and
exchange are both done by a pure P2P paradigm. Like stated in [LA10] and [LCP+05],
the network forms an overlay of equal peers that can send messages to neighbouring peers.
In the original protocol, query flooding was used for content and host discovery. This
means that a peer sends a query message for a specific file to all its known neighbours, the
neighbours send the query to their neighbours and so on until one peer matches the query
and sends a query hit response to the originating peer back on the same route. After
that, the actual file exchange happens between those two peers over hypertext transfer
protocol (HTTP). Also, query messages are tagged with a time-to-live (TTL) property,
which is decreased at each forwarding. If the TTL property reaches zero, the message
gets discarded. Moreover, a message identifier (ID) is propagated with each message
to be able to avoid rebroadcasting. Using these mechanisms, the network load can be
reduced. For discovering new peers, specific ping messages are used. Peers that receive
a ping message send a pong response to the sender, which then can add the peer as a
valid neighbour. Using the same flooding approach for ping and pong messages like for
query messages, a big set of currently available peers can be discovered. For initial peer
discovery, applications that are based on the Gnutella protocol are usually shipped with
a fixed number of well-known Gnutella hosts that are very likely available. Starting by
connecting to them, the peer can then build the required search-neighbourhood. Figure
2.2 shows the flooding based communication model of Gnutella. The left one of the
marked peers represents the initiator of a query. This structure overcomes the problem

11http://rfc-gnutella.sourceforge.net/developer/stable/ accessed 10.2016

9

http://rfc-gnutella.sourceforge.net/developer/stable/

2. Analysis of existing approaches and background technologies

with the centralization described in the Napster network, but suffers from higher network
load and the fact that existing files in the network might not be found, because the search
method does not explore the whole search-space. Also, by design of the protocol, several
disjoint Gnutella overlay networks might exist in parallel around the globe.

To overcome firewall and NAT problems, so-called push messages have been introduced
in the protocol. Like Zeinalipour-Yazti stated in [ZY02], whenever it is not possible for
a peer to connect directly to another peer to download a file, it sends a push request
back on the same route where it received the answer to the query. If the servant peer
then receives the push request containing the address of the requesting peer, it opens a
connection to this peer and sends the data.

It was also investigated in [ZY02] that security was not a real concern when developing
the Gnutella protocol. It is vulnerable for distributed denial of service (DDoS) attacks
trough spamming peers with faked query hit messages, which then try to download
non-existent files. Also, like mentioned, it is easy to discover a large amount of peers by
using ping messages. This technique can be used by malicious attackers for IP address
harvesting and performing malicious attacks on the discovered hosts like it has been
shown by [SGG03]. Also, there exists an option for attackers to distribute malicious
code to peers by using the described push request mechanism. When faking a query hit
message from a peer behind a firewall, the attacked peer might send a push request to the
attacker. Usually the requester will then blindly accept what is sent in the established
connection by the sender peer, e.g. not the wanted file but a virus or trojan.

There are several applications supporting the Gnutella protocol but only a few that
are not proprietary and in further development. One such example, that also supports
multiple platforms, is gtk-gnutella12. Nevertheless, it is written in C, so it will not be
easily runnable on current mobile devices unless it is cross-compiled for the concrete
architecture used (e.g. advanced RISC machine (ARM) processor on Android). A further
ongoing project is WireShare13, which was written in Java. There have even been some
efforts on porting Gnutella to the Android platform with some adjustments, like proposed
in e.g. [TVHVL13].

There also exists a successor protocol named Gnutella2 14, but this protocol differs from
the original Gnutella protocol. For more insights see [LA10, LCP+05]. It was completely
rewritten and introduced a hybrid part with super-peers called hubs. Every peer keeps
only one or more connections to such hubs. Hubs maintain a register of the files that
peers host and also distribute these meta-data to other hubs, as well as lists of available
hubs. When querying for files, a peer first gets a list of hubs from its connected hub and
then sequentially contacts those hubs with its search query, until possibly one hub has
an address of a peer providing the file. The number of allowed hubs to contact in these
search process is limited by the protocol. The used transport protocol in Gnutella2 is

12http://gtk-gnutella.sourceforge.net/ accessed 09.2016
13https://sourceforge.net/projects/wireshare/ accessed 09.2016
14http://g2.doxu.org/index.php/Main_Page accessed 09.2016

10

http://gtk-gnutella.sourceforge.net/
https://sourceforge.net/projects/wireshare/
http://g2.doxu.org/index.php/Main_Page

2.3. Unstructured P2P overlay networks

Figure 2.2: Gnutella communication model [LCP+05]

the user datagram protocol (UDP). WireShare and gtk-gnutella also support Gnutella2.
There exists an implementation of a Gnutella2 client for Android named DroidG2 15

from 2011, based on a C++ implementation of the protocol for Linux. Nevertheless, the
application seems not to be in further development and seems not to work properly on
every device. No implementations of the Gnutella protocol for the iOS platform could
be found.

2.3.3 Freenet

Freenet16, which also originated around the year 2000, is also an open-source P2P overlay
network, but it differs from e.g. Napster and Gnutella in many aspects. Freenet is heavily
focused on security and anonymity. It can be seen as a semi-structured overlay network,
because individual peers do not decide which data of the network they store, but also
there is no global algorithm for data location. In fact, peers provide a part of their local
storage to the network. Then, whenever a data file gets uploaded to the network, it gets
hashed and by this gets a unique content-hash key (CHK) identifying the file. The files
are then stored on the peer that is most responsible for that CHK. This happens by a
routing mechanism where a peer forwards the file to the neighbour which is responsible
for storing files hashed to the most similar key. In a nutshell that means a file that one
uploads might get stored at another peer which is reachable through neighbourhoods and
holds similar CHKs. So after time, specific peers automatically specialize on specific keys.
Moreover, the actual file is encrypted by a randomly generated encryption key. The idea
behind that is that peer hosters could deny any knowledge of the Freenet data stored on
their machine. For querying files, a descriptive text of the data is necessary. Therefore,
so-called signed-subspace keys (SSKs) are generated out of a short descriptive text, that

15https://play.google.com/store/apps/details?id=org.toxiclab.droidg2 accessed
09.2016

16https://freenetproject.org/ accessed 09.2016

11

https://play.google.com/store/apps/details?id=org.toxiclab.droidg2
https://freenetproject.org/

2. Analysis of existing approaches and background technologies

the uploader provides for the namespace where the corresponding CHKs are stored. Also,
for each of these namespaces an asymmetric key-pair is generated. So, everyone can
verify that a file really originates from this space by verifying with the associated public
key. Therefore, the space owner signs the file keys with the space’s private key. With this
mechanism only the owner can upload and update files in the namespace. By design of
the network also big files can be split up into many smaller parts. For each part an own
CHK is generated. The owner then provides an indirect file, which points to all of these
parts. Querying data happens with the same routing mechanism used for uploading data.
When requesting a specific CHK, the query gets forwarded to only the one neighbour
which is responsible for the most similar keys. If no more better neighbours are reachable
by a peer, the peer returns a backtracking failed request message to the sender. The
sender might then choose an alternative neighbour. Figure 2.3 shows the Freenet routing
model, where peer A is the initiator of a request and numbers from 1 to 12 show the
routing trace. When finally a peer that holds the file is found, the file is sent back on
the inverse route to the originator. Also, it gets cached on each of the peers it passes on
the way to the initiator of the request, so for next queries not the whole route has to
be taken again. Mentionable is also the aspect that no peer can know if the sender of a
message is the originator or only a peer that forwards it, so anonymity of originating
peers can be retained. A similar approach to reduce network load like in Gnutella is
used. All messages are tagged with unique message IDs to prevent re-forwarding and a
TTL is added to limit the hops a message can take. Freenet avoids any kind of central
index like in Napster and also avoids a distribution of a message to all neighbouring peers
like in Gnutella. Therefore, it might be less attackable and more scalable than those
two approaches. Nevertheless, one could think about that it still might be vulnerable
to man-in-the-middle (MitM) attacks or malware injection, which is also mentioned in
[LCP+05].

Not only file-sharing applications have been implemented based on Freenet, the whole
network is designed in an approach similar to the world wide web (WWW). The counter-
part of a website in the Freenet is a Freesite17. On a Freesite there can be links to other
Freesites or other data reachable by a data key. An email system18 and an IM system19

are examples of further implementations based on Freenet.

In the ongoing development of Freenet, two running modes have been implemented,
namely Opennet and Darknet mode, like explained in [RSHS14]. In the Opennet, new
joining nodes connect to the network through publicly known seed nodes that then forward
their requests based on the location of the new node to establish a local neighbourhood.
In the Darknet mode neighbours that want to connect have to be invited or granted
access by joint nodes and have to be trusted explicitly. As a result of this design, it can
be made difficult for attackers on the network, e.g. governmental institutions, to harvest
addresses of nodes of the network. Also, if some Darknet nodes hold connections to

17https://wiki.freenetproject.org/Freesite accessed 09.2016
18https://freenetproject.org/freemail.html accessed 09.2016
19https://freenetproject.org/frost.html accessed 09.2016

12

https://wiki.freenetproject.org/Freesite
https://freenetproject.org/freemail.html
https://freenetproject.org/frost.html

2.3. Unstructured P2P overlay networks

Figure 2.3: Freenet routing model [LCP+05]

Opennet nodes, all of their trusted Darknet neighbours can also access all the content of
the Opennet but not vice versa. With this hybrid approach, benefits of both networks can
be used. When installing a Freenet client there are usually two possibilities to connect to
others, there exists a built-in, predefined search mechanism for stranger neighbours to
connect to, or there exists the mentioned manual possibility to enter addresses of trusted
friends to connect to.

The Freenet protocol is still in development and is available for multiple platforms. Even
though it is written in Java and also available for Linux, during the research no successful
efforts to port it to e.g. the Android platform could be identified. Presumably this is due
to the design of the network, which prefers a stable network connection, a considerable
amount of storage and possibly needs for firewall and port-forwarding configurations
to function properly (see the Freenet help website20 for more information on necessary
configuration). So, for Freenet to work behind a router with NAT you have to manually
forward ports on the router. Freenet can also forward the port automatically if Universal
Plug and Play (UPnP) is enabled. Nevertheless, this is a problem for mobile devices,
which are e.g. in a public wireless local area network (W-LAN) where the firewall cannot
be configured. For more insights on Freenet see also [CSWH01] and [CMH+02].

20https://freenetproject.org/help.html accessed 09.2016

13

https://freenetproject.org/help.html

2. Analysis of existing approaches and background technologies

2.3.4 FastTrack

The proprietary FastTrack P2P network (see [JC10]) is based on the concept of Gnutella,
but extends the network by an additional overlay. Each node that has enough storage,
bandwidth and computing power can become a super-peer [SMR12]. Like Jin and Chan
stated in [JC10], super-peers form a second overlay on the normal peers and maintain a
meta-data index of available files stored on the normal peers, the network is therefore
semi-centralized. When joining the network, a peer usually gets a predefined set of
available super-peers from the client application and then uploads a list of its offered files
to one super-peer. When searching for specific files, the query is propagated also to this
super-peer like stated in [LCP+05]. Super-peers on the other hand operate in the same
manner as peers in the Gnutella network. They query for the file by a broadcast search.
The detailed protocol how super-peers communicate is not publicly known, because the
source code of the system is encrypted. When the file is finally found in the meta-data
list of a super-peer, a response is sent back to the sender with the address(es) of the
peer(s) hosting the file and the actual data exchange happens via HTTP by a direct
connection. Figure 2.4 shows the two-layered data upload and data lookup approach
used in FastTrack. Here Peer 1 requests a file Object2 from its super-node and gets
the address of Peer 2 as response. Then it downloads Object2 directly from Peer 2.
Explained by Li in [Li08], the protocol implements the UUHash hash function so that
users can download a file from multiple sources at the same time. This is possible because
this hash function allows hashing of file parts, but therefore is also vulnerable to collision
attacks, leading to FastTrack being vulnerable to pollution attacks, which was heavily
used by the Recording Industry Association of America (RIAA) to distribute fake or
corrupted files.

Liang et al. show in [LKR06] how FastTrack can circumvent firewalls and NATs. Newer
client implementations use random port numbers to prevent static port blocking at the
firewall. The randomly selected port is then published to the super-peer of the peer for
others to retrieve. Furthermore, if a peer is behind a NAT router and a direct connection
cannot be established, a requesting client instead contacts the super-peer, which in return
contacts the destination peer to actively establish a connection with the requesting peer
to send data. This concept is also used by other P2P protocols that include servers or
higher level peers and is called connection reversal.

Obviously FastTrack suffers from comparable security issues like Gnutella, e.g. DDoS,
because it also uses query flooding at super-peer level [LCP+05]. Also, fake content and
malware can be distributed. Furthermore, popular FastTrack clients like KaZaA have
been identified to contain spyware, like discussed in [BCJ04]. Liang et al. also discuss
in [LNR06] how index poisoning can be done in FastTrack. Index poisoning means the
insertion of fake records into the index of a central authority and thereby achieving a
DoS. The paper also deals with how to harvest IP addresses and ports in the FastTrack
network.

In the research no efforts to implement the FastTrack protocol on a current mobile device

14

2.3. Unstructured P2P overlay networks

Figure 2.4: FastTrack two-layered P2P network [LCP+05]

could be identified. A reason therefore is probably that FastTrack is proprietary and many
of the FastTrack clients are having issues because of illegal use for file-sharing or have
even been shut down. The most popular application implementing the FastTrack protocol
was KaZaA. The application was closely coupled with the protocol and developed by the
same programmers. The last stable release was in 2006 and the KaZaA website21 has
been shut down. There exist further proprietary FastTrack clients that are not in further
development or have been shut down due to copyright infringement like e.g. Grokster.

2.3.5 eDonkey

The eDonkey P2P protocol (see the protocol definition on the jmule website22) defines a
centralized overlay network with eDonkey servers and client peers. Servers maintain lists
of meta-data from files that client peers provide. At start-up, a client connects to one or
more server and uploads the meta-data of its files providing to others. Usually eDonkey
client software is shipped with some well known eDonkey servers to connect to, further
servers can be added by getting their addresses from e.g. websites. The protocol differs
from Napster by not using a single server or server farm. Instead dedicated servers are
run by power users. Servers communicate with each other by exchanging server lists and
their presence state via UDP. In contrast to FastTrack’s super-peer structure, the servers
do not exchange or cache file meta-data from other servers. Also, the server software is
an independent application and is proprietary. After connecting to a server, the client
peer can retrieve a list of further servers where it can also search for files. The actual
search is done by a simple full text search on the file name and some additional file
properties in the server meta-data list of files. The server then responds with a list of
files that matched the query including the hash of the file content. After the user has
chosen a file and initiated the download, the client application sends the hash of the file
to the server and gets as response a list of addresses and ports of peers hosting the file

21http://www.kazaa.com/ shut down
22http://www.jmule.org/files/eDonkey-protocol-0.6.2.html#File%20info accessed

10.2016

15

http://www.kazaa.com/
http://www.jmule.org/files/eDonkey-protocol-0.6.2.html#File%20info

2. Analysis of existing approaches and background technologies

data. This happens repeatedly after some time to get new addresses and ports from
peers that host the file. After that, a direct connection to some of the sources is opened
and a simultaneous download of the file is started. Also here, the file gets split up in
chunks so different parts can be downloaded from different sources.

Like already mentioned, the server software of the eDonkey protocol is proprietary. There
have been some freeware implementations created by reverse engineering, but they have
not been published as open-source. For peers behind a firewall, which cannot be contacted
directly by another peer, a special mechanism exists. Like stated in [HB02], such peers
receive a so-called low-id. When a peer wants to contact a low-id peer it has to send a
request to the server to send a push notification to that peer over their existing server-peer
connection. After that, the peer contacts the requesting peer and the data exchange can
happen. Nevertheless, two low-id peers cannot receive data from each other, at least
one of them must be reachable directly by design of the original eDonkey protocol. To
be reachable from outside, port forwarding of the ports that an eDonkey client needs
has to be done if the peer is behind a firewall. Therefore, usually the user has to have
administrator permissions on the firewall or router.

Thommes and Coates describe in [TC06] how they could harvest IP addresses and ports
of eDonkey users. Also, like the most other P2P file-sharing networks, it suffers from
pollution and malware distribution. Also, because the structure of eDonkey is comparable
with that of FastTrack, it is vulnerable to index poisoning which can similarly result in
DoS.

There exist open-source multi-platform implementations of eDonkey clients like JMule23

where the last release was in 2010. No ports of an eDonkey client to Android or iOS
platform could be found, a reason could be that the protocol is basically designed for
file-sharing, which is currently still not particularly established on mobile platforms
because of mobile network limitations. That can be derived because there already exist
e.g. some Android applications to manage an eDonkey client application that is running
on a personal computer. One example for such an application is MLAndroid24. JMule,
though, could be the most suitable client to try to port to e.g. the Android platform,
because it is open-source and written in Java.

Because of increasing load on eDonkey servers, a successor protocol, Overnet, has been
designed. It can operate completely without servers using the Kademlia distributed hash
table (DHT) algorithm, for further explanations on Kademlia and DHTs see the work
of Tillian [Til17]. No ongoing development on the protocol could be identified, server
software is not open-source and there are no official statements on usage or versions.
Research on clients supporting the eDonkey network showed that latest releases are years
ago. You can read more about eDonkey in [HBMS04], [LCP+05] and [HKLF+06].

23http://www.jmule.org/ accessed 09.2016
24https://play.google.com/store/apps/details?id=com.mme.mlandroid accessed

09.2016

16

http://www.jmule.org/
https://play.google.com/store/apps/details?id=com.mme.mlandroid

2.3. Unstructured P2P overlay networks

2.3.6 BitTorrent

BitTorrent is a collaborative and centralized file-sharing protocol25 that originated in
2001. The founder of the protocol, Bram Cohen, describes the concept of the protocol in
a detailed way in [Coh03]. Content is distributed in the network by so-called torrent files
with the file extension .torrent or .tor. These files are usually distributed on torrent file
exchange platforms (usually websites) on the internet [LCP+05]. The torrent file contains
the address of one or more trackers, which are responsible for the distribution of the data
file or the bunch of related data files the peer wants to download. It also contains a list
of checksums of segments of the data file(s). Now, when a peer wants to download data,
it connects to the tracker and the tracker adds the peer to a list of collaborating peers,
also called swarm, for the corresponding data file(s). The downloading peer now gets
from the tracker a list of other peers, where it can download parts of the data file(s),
usually in chunks of several kilobytes. Using this method, a peer can download parts of
the file from different other peers of the swarm that already downloaded these parts and
can check for integrity by using the checksums of the parts from the torrent file. When a
part has been successfully downloaded and checked, the peer reports this to the tracker
and now can also provide this part of the data file for other peers as a so-called seeder.
In a nutshell this means that a peer acts as an uploader and downloader of the same
data file simultaneously, like described by Saroliya et al. in [SMR12]. Figure 2.5 shows
how different peers form a swarm around a tracker that is addressed by a torrent file.
With this technique, the more peers already have downloaded parts of the file the more
the distribution performance can be improved. Also, the protocol implements means to
reward peers with good upload rates by providing them with good download rates. This
principle of reciprocity has been driven forth by implementing functionality to ban peers
from the network that only download data but do not contribute to the P2P principle
by also providing the data to others. A metric to measure this was for example by
providing bonus points to the peer for a specific time interval of uploads that then could
be redeemed in download time. By design of the protocol, many disjoint BitTorrent
networks may exist globally, by building swarms around many different trackers that
provide specific files. There has been also an implementation of a DHT algorithm for the
BitTorrent protocol, which then runs without any trackers. The function of the tracker
in this case is done by the BitTorrent client application itself.

Because the BitTorrent specification is free to use, many open-source clients have
been implemented for various operating systems. An example for an Android client
is aTorrent26. For iOS it is not so easy to install a BitTorrent client, because Apple
blocks them from their AppStore. Still, there are possibilities to download and install a
BitTorrent client for iOS platform like iTransmission, downloadable from the iemulators
website 27. Also for the Windows Phone platform, a BitTorrent client (downloadable from

25http://www.bittorrent.org/beps/bep_0003.html accessed 09.2016
26https://play.google.com/store/apps/details?id=com.mobilityflow.torrent

accessed 09.2016
27http://iemulators.com/ accessed 09.2016

17

http://www.bittorrent.org/beps/bep_0003.html
https://play.google.com/store/apps/details?id=com.mobilityflow.torrent
http://iemulators.com/

2. Analysis of existing approaches and background technologies

Figure 2.5: BitTorrent architecture with .torrent file, tracker and peers [LCP+05]

the Microsoft Store28) exists. Not only there exist many BitTorrent clients in ongoing
development, also the open protocol itself is continuously enhanced. There exists an own
website29 where BitTorrent Enhancement Proposals to the protocol are managed, so the
protocol is steadily extended.

In [KBM07] Konrath et al. show how a swarm can be attacked by malicious peers and
hindered or taken out of service with modest amounts of resources, which can be seen
as a DoS attack. Here, attacking peers lie about possession of data pieces and make
them artificially rarer. Defrawy et al. show in [EDGM07] how BitTorrent can be used to
launch DDoS attacks by using modified trackers. Santos et al. state in [SdCCGB10] how
BitTorrent also suffers from heavy pollution and malware distribution.

Regarding firewalls and NAT bypassing, various BitTorrent clients implemented different
techniques to accomplish that. For example µTorrent30, like many others, suggests
manual port forwarding or using UPnP or NAT port mapping protocol (NAT-PMP) for
automatic port forwarding (see the µTorrent help center31). This client also implements
the UDP based µTP protocol, explained in more detail in [TR11]. This enhancement to
the BitTorrent protocol is trying to increase performance of data exchange by decreasing
delay times. Compatibility to this protocol has also been added to other BitTorrent
clients later. UDP hole punching is also supported in connection with µTP to bypass
NATs (see the BitTorrent help center32).

28https://www.microsoft.com/en-us/store/p/wptorrent/9wzdncrfj4cw accessed
09.2016

29http://www.bittorrent.org/beps/bep_0000.html accessed 09.2016
30http://www.utorrent.com/intl/en/ accessed 09.2016
31http://help.utorrent.com/customer/portal/articles/1753715 accessed 09.2016
32http://help.bittorrent.com/customer/portal/articles/163493-client-

features accessed 09.2016

18

https://www.microsoft.com/en-us/store/p/wptorrent/9wzdncrfj4cw
http://www.bittorrent.org/beps/bep_0000.html
http://www.utorrent.com/intl/en/
http://help.utorrent.com/customer/portal/articles/1753715
http://help.bittorrent.com/customer/portal/articles/163493-client-features
http://help.bittorrent.com/customer/portal/articles/163493-client-features

2.3. Unstructured P2P overlay networks

2.3.7 Summary on unstructured P2P networks

In this section a compact summary on the analyzed P2P networks is done in form of
Table 2.1. Additional to the main characteristics of the respective network, like e.g.
structure and search algorithms, also features essential for later evaluation of usability as
base technology for the MPM framework like e.g. publication, development state, NAT
traversal and existing implementations on current mobile devices are compared.

19

2.
A

nalysis
of

existing
approaches

and
background

technologies

Napster Gnutella Freenet FastTrack eDonkey BitTorrent
Central-
ization

centralized
with servers

fully decen-
tralized

fully decen-
tralized

centralized
with

super-peers

centralized
with servers

centralized
with

trackers
Structure static,

provider-
hosted
servers

flat and
pure ad-hoc

P2P
network

semi-
structured,
flat and
pure P2P
network

two-layered
with

user-hosted
super-peers

customized,
user-hosted
servers

dynamic,
user-
hosted
trackers

Boots-
trapping

predefined
server list
by client
software,
manual
adding of
servers
possible

predefined
set of very

likely
available
Gnutella
hosts by
client

software

predefined
search by
application
or manual
connect to
trusted
users in
Darknet
mode

predefined
set of likely
available

super-peers
by client

application

predefined
set of

servers by
client

application,
manual
adding
possible

retrieve
tracker
address

from.torrent
file

Search
and

retrieve
data

text string
search on
server,
direct

download

query
flooding
and direct
download

hashes of
files with
routing to

best
neighbour,
inverse

routing to
get data

index on
super-peer,
super-peers
communi-
cate to

locate file

search on
server,
retrieve
further
servers

from server,
direct

download

get peers
from

tracker for
direct

download

20

2.3.
U
nstructured

P2P
overlay

netw
orks

Napster Gnutella Freenet FastTrack eDonkey BitTorrent
Publi-
cation

originally
proprietary,
open-source
implemen-
tations
exist

open-source open-source proprietary server
software is
proprietary,
open-source

client
software
exists

open
protocol,
many
open-
source

implemen-
tations
exist

Devel-
opment

no server
develop-

ment since
years, some
clients seem
to be in

progressive
state

no develop-
ment on
protocol

since years,
some clients
in ongoing
develop-
ment

in ongoing
develop-
ment

no ongoing
develop-
ment on

protocol or
client

software
found

no official
develop-
ment on
reverse

engineered
servers,

clients no
release

since years

ongoing
extension
of protocol
and devel-
opment of

client
software

Vulnera-
bilities

DoS
attacks,

censorship,
technical
failure, IP
harvesting,
polluted

media files

DDoS
attacks,

malware /
pollution
distribu-
tion, IP

harvesting

MitM
attacks,

malware /
pollution

distribution

DDoS
attacks,

malware /
pollution
distribu-
tion,

spyware in
clients, IP
harvesting

DoS
attacks,

malware /
pollution
distribu-
tion, IP

harvesting

DoS
attacks,
initiate
DDoS
attacks,

malware /
pollution
distribu-
tion

21

2.
A

nalysis
of

existing
approaches

and
background

technologies

Napster Gnutella Freenet FastTrack eDonkey BitTorrent
NAT

traversal
connection
reversal

using server

inverse
route push
requests

manually
by port

forwarding
or UPnP

connection
reversal
using

super-peer

port
forwarding

or
connection
reversal

using server

manually
by port

forwarding
or

UPnP/NAT-
PMP,

UDP hole
punching

Ported
to

mobile

none found existing for
Gnutella2
on Android

none found none found none found existing
for

common
platforms

Table 2.1: Comparison of popular unstructured P2P protocols, state at 09.2016

22

2.4. General purpose P2P protocols

2.4 General purpose P2P protocols

From the former section it can be derived that use-cases for the existing unstructured
P2P overlay networks are mainly file-sharing and content distribution, although e.g. pure
P2P communication has already been implemented using the described protocols or
could be realized. Still, there also exist protocols and frameworks that are more general
and offer functionality for building P2P based applications. Besides the communication
handling, some offer additional P2P services like peer discovery, forming of peer groups,
and so on. After some research Peter Tillian and me selected the four most popular,
widely-used and probably applicable representatives. Juxtapose (JXTA) and session
initiation protocol (SIP) are discussed in this thesis, Java agent development framework
(JADE) and the extensible messaging and presence protocol (XMPP) are addressed in
the thesis of Peter [Til17].

2.4.1 Juxtapose - A general purpose P2P framework

The open-source P2P framework JXTA (see the protocol specification33) has gained
some popularity in P2P approaches and research. The development was started in 2001
by Sun Microsystems Inc. and it was set up as a logical overlay of several extensible
markup language (XML) based protocols over IP and non-IP networks, like Harjula et al.
explain in [HYAK+04]. The network is more generic in comparison to e.g. the Gnutella
or BitTorrent P2P approaches because it is not dedicated to a specific purpose like in
that case file-sharing.

Characteristics

The JXTA protocol consists of six XML based protocols. The Peer Resolver Protocol
enables peers to send messages to one or more other peers and also receive one or multiple
answers. The Endpoint Routing Protocol is responsible for the routing mechanism to
deliver messages to a destination peer. The Peer Discovery Protocol is used to discover
the services and resources that a peer advertises. The Rendezvous Protocol is responsible
for propagating messages in a group of peers. The Peer Information Protocol is used
to query state information of a peer and finally the Pipe Binding Protocol is used to
establish connections, in JXTA named pipes, between two peers. These pipes can be seen
as an abstraction layer over the Endpoint Routing Protocol, hiding the logic of routing the
messages. The Pipe Binding Protocol can use a variety of underlying transport protocols
such as HTTP, TCP/IP or bluetooth. All messages exchanged over such pipes are XML
documents that can also contain binary codes [BX11].

The structure of the framework is comparable to FastTrack or Gnutella2, forming a two-
layered network with so-called rendezvous peers and relay peers, which are super-peers,
and normal edge peers, like stated in [LA10]. Rendezvous peers maintain lists of their edge
peers and their offered resources and services. In contrast to FastTrack or eDonkey, JXTA

33https://tools.ietf.org/html/draft-duigou-jxta-protocols-02 accessed 10.2016

23

https://tools.ietf.org/html/draft-duigou-jxta-protocols-02

2. Analysis of existing approaches and background technologies

uses a DHT technique for distribution of these indices to other rendezvous peers. Now,
when an edge peer searches for a resource or service, a query is sent to the rendezvous
peer and also a multicast to all the peers in the same subnet. If the rendezvous peer
finds the resource in its local cache, it notifies the peer(s) hosting the resource and the
peers will respond directly to the requester peer by establishing a pipe. If the resource
cannot be found at the local rendezvous peer’s index, the same DHT function is used to
locate the rendezvous peer that stores the index for the resource. Then a pipe between
the hosting edge peer and the requesting edge peer is established using the mentioned
Endpoint Routing Protocol. NAT and firewall traversal is achieved by relay peers. So,
whenever a network consists of more than one subnets with NAT, at least one relay peer
is needed to connect edge peers of those networks. A rendezvous peers can at the same
time also serve as a relay peer.

Figure 2.6 shows the trace of a resource lookup and data transfer within the JXTA
routing model. Edge peer A initiates a query and sends it to its rendezvous peer RP1.
Since RP1 does not hold the index for the queried resource, it forwards the query to its
own rendezvous peer RP3. RP3 has the information that some of rendezvous peer RP4s
edge peers hosts the resource and forwards the query to RP4, which has the corresponding
index and forwards it to edge peer B. Because B is in a different subnet behind firewall
and NAT, it establishes a pipe with A using RP4 as a relay. As can easily be seen in
this example, the DHT mechanism called shared resource distributed index (SRDI) used
by these rendezvous peers can be hierarchical, allowing a rendezvous peer having its own
rendezvous peer as super-peer [HYAK+04]. This model differs from other hybrid P2P
models like FastTrack having a flat super-peer layer. Also, the network is semi-structured
using a loosely coupled DHT technique at the super-peer level with a local routing table
like implemented also by Freenet.

JXTA supports forming of peer groups providing a shared environment for participating
peers, like Barolli et al. state in [BX11]. Here, own policies for membership can be
applied, where peers can belong to more than one group at the same time.

Security

Arnedo-Moreno and Herrea-Joancomartí [AMHJ09] have done a fine-grained survey on
security in JXTA applications. Several security mechanisms have been integrated in
the framework, e.g. signed advertisements of resources and services on edge peers to
avoid spoofing, MitM attacks or replay attacks. Moreover, they implemented an own
version of transport layer security (TLS) on the transport layer to avoid eavesdropping
of messages. Furthermore, it implements crypto-based JXTA transfer (CBJX), proposed
by Bailly in [Bai02]. CBJX provides a lightweight and secure message source verification
by enriching messages with the sending peer’s digital signature ensuring data integrity
and authentication. By that means, spoofing, MitM attacks and replay attacks can be
prevented for the message exchange part of the framework. Nevertheless, this only is
valid for unicast messages, multicast messages for groups of peers are not reliably and
not secure, like Bailly also states in [Bai02]. [AMHJ09] also reveals that the core JXTA

24

2.4. General purpose P2P protocols

protocol has several vulnerabilities in the basic peer operations. By traffic analysis it is
possible to identify important peers, no masquerading mechanism exists. There exists no
encryption mechanism for advertisements of resources and services by edge peers, the
advertisements are transmitted in plain text and last but not least authentication is not
enforced in the peer group joining mechanism. It is possible for malicious peers to join
any group.

Implementations

JXSE34 is the official Java implementation of the JXTA framework. The last stable
release is currently version 2.7 from March 2011. According to a news entry on the official
version control system (VCS) of Sun Microsystems Inc.35 , Oracle, which acquired Sun
Microsystems Inc., announced withdrawal from the JXTA projects including JXSE. Since
Oracle refused to transfer the JXTA trade name and project to the Apache Software
Foundation, like the community wanted to, there has been a voting for a new name:
Chaupal36. According to the official Chaupal wiki37, the JXSE code is still under the
JXTA license which cannot be changed, extensions to JXSE are governed under the
Apache License 2.0 and published in an own repository, where currently the last commit
was in July of 2015.

There also exists a C/C++/C# implementation of the JXTA framework, namely jxta-c38,
but with the last release in 2007 it seems quite abandoned. This extends also to the
Java Platform Micro Edition (J2ME) implementation called JXME39, with the last
contributions in 2009. These implementations might be insignificant because they are
deprecated and seem in no further development. Also, according to the statistics on
the Netmarketshare website40, the market share of J2ME in mobile and tablet operating
systems is below 1.5 percent and decreasing. JXME has been designed by the JXTA
community as a light version of JXTA, because the protocol is quite heavyweight for thin
peers [HYAK+04].

There has been a porting of the JXME implementation to the Android platform, named
peerdroid, which is downloadable at the Google code archive41. The last commit to
the source code was in July of 2010. Filbert shows in [Fil10] how he implemented a
multi-purpose P2P chat application for the Android platform using peerdroid. In the
peerdroid implementation a peer represents only an edge peer. A rendezvous peer must
be implemented using JXSE and therefore be run on a desktop computer.

34https://java.net/projects/jxta-jxse/sources/svn/show accessed 10.2016
35https://kenai.com/projects/jxse/pages/LatestNews accessed 10.2016
36https://github.com/chaupal accessed 10.2016
37http://chaupal.github.io/wiki/contents.html accessed 10.2016
38https://java.net/projects/jxta-c/sources/svn/show accessed 10.2016
39https://java.net/projects/jxta-jxme/sources/svn/show accessed 10.2016
40https://www.netmarketshare.com/operating-system-market-share.aspx?qprid=

9&qpcustomb=1 evaluated 06.10.2016
41https://code.google.com/archive/p/peerdroid/ accessed 10.2016

25

https://java.net/projects/jxta-jxse/sources/svn/show
https://kenai.com/projects/jxse/pages/LatestNews
https://github.com/chaupal
http://chaupal.github.io/wiki/contents.html
https://java.net/projects/jxta-c/sources/svn/show
https://java.net/projects/jxta-jxme/sources/svn/show
https://www.netmarketshare.com/operating-system-market-share.aspx?qprid=9&qpcustomb=1
https://www.netmarketshare.com/operating-system-market-share.aspx?qprid=9&qpcustomb=1
https://code.google.com/archive/p/peerdroid/

2. Analysis of existing approaches and background technologies

Figure 2.6: JXTA resource lookup [HYAK+04]

2.4.2 P2P communication using Session Initiation Protocol

SIP (see the RFC42), which is widely used as a communication protocol for multimedia
data transmission, including internet telephony with audio and video calls, but also IM
over IP networks, is presented in this section. The original version of this text-based,
open protocol is client-server based with different types of servers that is discussed shortly
in this section, but there are efforts of using the protocol in a P2P manner, defining it
as peer-to-peer session initiation protocol (P2PSIP), which is developed by the Internet
Engineering Task Force (IETF) in an own work group and is based on resource location
and discovery (RELOAD) (see the RFC43) as the P2P overlay network protocol.

Characteristics

The SIP is used to establish sessions between two or more participants. It can traverse
NATs and firewalls and can address users independently of their network IP address. The
underlying transport protocol can be transmission control protocol (TCP) or UDP. For
endpoint resolution it uses different, logical server roles, like Wierzbicki et al. explain in
[WDŻR10]. The proxy server role is responsible for the address resolution, it also works
as gateway to other networks or domains. Optionally, it also stores some information
for clients like failed requests to establish a session by others (e.g. missed SIP calls) or
reports about usage. The registrar server role contains the definite information for SIP
address resolution, the IP address of the client. SIP clients must register to this server

42https://www.ietf.org/rfc/rfc3261.txt accessed 10.2016
43https://tools.ietf.org/html/rfc6940.html accessed 10.2016

26

https://www.ietf.org/rfc/rfc3261.txt
https://tools.ietf.org/html/rfc6940.html

2.4. General purpose P2P protocols

first to be able to establish sessions. The protocol resembles the HTTP protocol, but
in contrast it is possible for client users to act as a SIP sender that sends requests and
also as server that sends responses at the same time. The users are identified by uniform
resource identifiers (URIs) in the form of sip:user@domain [BAD06]. The redirect server
role allows proxy servers to redirect session establishment invitations also to clients on
an external domain. The location server role is responsible for translating the client
SIP URIs to the possible location of a client. It therefore maintains a database of
SIP-address/IP-address mappings. Figure 2.7 shows how a session is established between
two SIP clients within different domains. The numbers 1 to 14 show the message flow.
The initiating user agent contacts its proxy server, which furthermore contacts the redirect
server to redirect the traffic to the proxy server of the destination client’s domain. Then
the location server is used to find the proxy server that is used to traverse the NAT
of the destination client. When the destination client is available, the session between
the clients can be established. In a physical layout, different server roles can also be
integrated on one host.

SIP, which supports endpoint locating and also establishment, termination and modifica-
tion (e.g. adding further participants) of sessions, is decoupled of the protocol used for
the actual media transport. Often the real-time transport protocol (RTP) is used for this
purpose. It is a streaming protocol based on UDP that supports streaming of multimedia
datastreams like audio, video but also text. SIP has gained widespread acknowledgement
and deployment in services like VoIP, IM, collaboration and for push-to-talk services
[BAD06].

P2PSIP

The aim of P2PSIP is to provide the functionality of SIP without the use of a server
infrastructure. The conceptual model of the system is that peers are coupled with SIP
entities like proxy or redirect servers and operate in a P2P overlay network. When a
peer wants to join the network, it must locate a P2PSIP peer that has already joined
the network by using a cached list, multicast or public bootstrap nodes. After that,
it has to authenticate itself and register itself in the overlay directly or contact a peer
that serves as a proxy if that is not possible. The role of the registrar server in this
concept is distributed in the overlay network, usually using a structured DHT-based P2P
approach. When a peer discovers another peer over the network, initiation of sessions
use the standard SIP functionality independent of the P2PSIP protocol, but possibly
using proxy or gateway peers (e.g. for NAT traversal).

The IETF is developing a generic P2P protocol that can be used to achieve P2PSIP
functionality and named it RELOAD. It represents an overlay network with a pluggable
topology, that means that the overlay topology algorithm can be implemented as a
plugin in the protocol, allowing different structured overlay implementations like Chord
or Kademlia to be used with the protocol, having Chord as mandatory standard imple-
mentation. For more information on those two protocols see [Til17]. The plugin offers
abstract messages to e.g. join and leave the overlay network or request the responsible

27

2. Analysis of existing approaches and background technologies

Figure 2.7: Session initiation over SIP [BAD06]

peer to route a message directly to a given destination. Like explained in detail by Roly
in [Rol09], the protocol also provides a service to store and retrieve information in the
structured overlay network using the topology plug-in. In the protocol, each participant
node has a node ID. To replace the SIP registrar server, the plugin’s storage service
can be used to publish the mapping from SIP address to the node ID in the overlay
network [TSIS12]. Then, when a client has identified the node ID of the user it wishes to
contact, it uses the message routing system of RELOAD to set up a direct connection
and exchange SIP messages. For this concept to work, the clients must have a RELOAD
implementation running on their hosts. If this is not possible, they may also use a
pure SIP client to connect to one peer that has the RELOAD implementation running,
acting as a proxy/registrar and making the overlay transparent to the client. For further
information on structured overlay networks and their possible usability for the MPM
framework see the work of Peter Tillian [Til17].

The P2PSIP specification documents are still on standards-track, but the concept seems
emerging and promising to become an internet standard any time soon, since the
documents of the IETF seem to be work in progress (for more information see the
P2PSIP status pages on the IETF website44).

44https://tools.ietf.org/wg/p2psip/ accessed 10.2016

28

https://tools.ietf.org/wg/p2psip/

2.4. General purpose P2P protocols

Security

P2PSIP in conjunction with RELOAD is designed for very large networks over the internet
where security should be a big factor in system design. Therefore, connections between
peers use TLS and datagram transport layer security (DTLS). Also, each message and
object in the structured overlay network is signed by a certificate. The certificate can be
found in the overlay configuration file, which can be downloaded from a secured server
[Rol09].

Touceda et al. survey in [TSIS12] in detail the possible attacks and defenses on P2PSIP
networks. These include e.g. possible attacks on the access control like ID mapping
attacks, where an attacker in the overlay is responsible for storing the ID mapping
information for other users and therefore for example could deny any attempt from a
user to contact other users (DoS). Even if the responsibilities for storing the mapping
information gets distributed in the network using the DHT or if users get assigned new
IDs periodically, still attackers can use sybil attacks on the system. A sybil attack
means that attackers try to control a lot of nodes in a P2P network to have an influence
on decisions. In that case this approach could be used to take over a big portion of
the system and disrupt resolution of IDs to addresses. Also, for a new node, when
bootstrapping the system (joining for the first time), Touceda analyses possible attacks
like the fake bootstrapping attack, where a new peer’s first contact is a malicious peer,
giving it a fake initial view on the system. For access control and bootstrapping attacks,
the author mentions a central authority for identity and certificate management as a
possible solution. For secure bootstrapping, even an external system mechanism like
used by BitTorrent with the .torrent files is conceivable. The author also emphasizes
approaches in the RELOAD protocol that prevent attacks on the overlay network like
MitM, eavesdropping and message replay by using encryption, digital signatures on
messages and also message counters. All communications shall use TLS or DTLS. This
also extends to the media transmission protocol if used. For the storage service of the
overlay network, the author recommends again the use of a centralized access control
model and, to increase availability, the replication of user’s contact information. Moreover,
it is suggested to implement a functionality to create buddy lists. This would make it
possible to create a sort of optional white-listing to prevent DoS and spamming. The
conclusion of the work is that establishing security is not easy in a P2P system and usually
more difficult and resource consuming than in a centralized approach. An extensive
analysis of the developed system is important to be able to balance countermeasures to
security threats and performance.

Implementations

The Android platform has integrated an SIP client implementation since version 2.3. A
description of the application programming interface (API) can be found at the official

29

2. Analysis of existing approaches and background technologies

Android developer website45. For iOS, there is no integrated API but there exist open-
source implementations of the protocol that can be compiled to work with iOS like
PJSIP (see the official website 46). PJSIP is also usable with Android. The variety of
SIP clients is high, but in the client-server implementation also at least one dedicated
SIP server is needed, or even more servers with different server roles. There exist several
open-source implementations of SIP servers, e.g. OpenSIPS (see the official website 47),
for different platforms.

Some proof of concept implementations of the P2PSIP approach, like the Columbia P2PP
Project (see the project website 48), can be found. It is an open-source implementation
of a VoIP and IM system following the P2PSIP principle, using an own implementation
of Kademlia DHT as overlay topology. It has been implemented in C++ and is available
for Windows and Linux operating systems. Cohrs [Coh08] shows in his work another
proof of concept implementation using the Ruby programming language. Roly [Rol09]
did a partial implementation of the RELOAD protocol and showed some obstacles of the
implementation in Java. Because SIP can be used with current mobile devices, running
e.g. Android, the P2PSIP client protocol could be implemented on these devices to
connect to fully functional peers as clients. No usable full peer implementations for
current mobile platforms of a complete P2PSIP protocol together with an overlay plug-in
(like in RELOAD) could be found.

2.5 Coordination frameworks and models

This section deals with coordination frameworks. Coordination in this context is un-
derstood as the controlling and directing of data flow and corresponding computation
of data in a network of self-contained nodes. Nodes here mean physical hosts and not
virtual nodes in an intra-process model. When conducting the research on related work,
some existing approaches for coordination in distributed systems could be identified.
There exist some modelling tools, which include modelling of coordination parts of a
system, but the focus is on higher level models or even implemented frameworks, which
could be applicable for coordination of nodes in a highly distributed P2P network.

2.5.1 DataSpaces

DataSpaces [DPK12] is one approach to be mentioned here. It is a distributed framework
and consists of dynamic sets of nodes. The main purpose of the framework is to support
coordination in distributed systems, where the nodes produce massive amounts of data
(like large simulations on super-computers). The lookup of nodes is implemented by
using a DHT. The communication layer is modular. Existing communication frameworks

45https://developer.android.com/guide/topics/connectivity/sip.html accessed
10.2016

46http://www.pjsip.org/ accessed 10.2016
47http://www.opensips.org/ accessed 10.2016
48http://www1.cs.columbia.edu/~salman/peer/ accessed 10.2016

30

https://developer.android.com/guide/topics/connectivity/sip.html
http://www.pjsip.org/
http://www.opensips.org/
http://www1.cs.columbia.edu/~salman/peer/

2.5. Coordination frameworks and models

for distributed shared data like message passing or shared memory can be used. The
communication layer together with the DHT form a virtual shared space at a higher
abstraction level. In this space, data is specified as key-value pairs and stored at a
virtual address. The actual addressing scheme of the DHT is specific to the application.
The DataSpaces query engine supports and optimizes complex queries on the virtual
shared space and also supports notification of data availability. Coordination between
application components is realized using a model similar to TupleSpaces [DSMPR03],
optimized for grid computing. In contrast to the centralized, globally shared space of
TupleSpaces, DataSpaces shared space is decentralized at the data store layer and data
can be inserted, retrieved and filtered in a decoupled and asynchronous way.

2.5.2 TuCSoN

TuCSoN [OZ99] is another example of a coordination concept that is based on tuple
spaces, furthermore it is agent-based. The basis are distributed tuple spaces called tuple
centers, which are constructed with enhanced Linda spaces [Gel85]. Tuple centers are
distributed through the network and separated in specific domains. The meta-data of
these domains is populated by a tuple center on a gateway node and the application data
is hosted on connected tuple center nodes called places. Gateway tuple centers can keep
track of which tuple centers reside in the neighbourhood. Tuple centers can be addressed
in the internet uniquely by the identifier of the hosting node and the identifier of the tuple
center. The actual coordination policies are applied depending on the currently contained
tuples in the tuple spaces (the state of the space). These tuple spaces additionally to the
abstraction also support modularity, information hiding and security. State transitions
happen as reactions to communication events from actors in the system, therefore a
reaction specification language is used, which links communication events from actors to
reactions and possible state transitions of the tuple centers.

2.5.3 DTuples

Another agent-based approach that uses the concept of tuple spaces in a distributed
manner is DTuples [JXJY06]. Like DataSpaces, it uses an underlying DHT as distributed
storage. In the prototype implementation FreePastry is used as underlying P2P overlay
network. Agents communicate through tuples in shared spaces. Sub-spaces (with own
name or subject) can be created and bound to one or more agents so that private spaces
with own DHT (and subject) can be hierarchically defined. Additionally, there exists a
global shared space. Coordination is done by template matching on a string identifier
and on some further tuple parameters. In the matching procedure also the information
hiding by the sub-spaces (with own subjects and contributors) is considered.

2.5.4 Comet

A similar approach to DTuples is proposed by Li and Parashar in [LP05] and called
Comet. It is also Linda [Gel85] based and uses a DHT. The prototype implementation

31

2. Analysis of existing approaches and background technologies

is based on the JXTA P2P framework and a DHT mechanism that is aware of context
localities. That means that data is stored considering proximity, e.g. tuples that originate
from the same geographical region. These context localities could be important for mobile
applications. In Comet, so-called transient spaces can be defined, which support scope
constraints (e.g. to be hosted in the same geographical region) with membership and
authentication mechanisms for peers participating in a concrete space. Applications
can switch at runtime between such transient spaces and a globally accessible space.
Coordination is similar to DTuples with the additional benefit of content locality in
comparison to the subject spaces of DTuples.

2.5.5 CArtAgO

Another approach, which is once again agent-based and possibly also makes use of tuple
spaces, is presented by Ricci et al. in [RPV11]. Nevertheless, it differs from the presented
approaches. It is based on a concept that is called agents and artifacts (A&A) and is
implemented in a computational framework named CArtAgO. Artifacts can be used by
agents and offer operations and observable properties. Events might be triggered by
actions on artifacts and might be perceived by other agents. For coordination between
agents so-called coordination artifacts are used in the environment. In the work it is
proposed that Linda-like tuple spaces might be integrated using their space-operations for
coordination artifacts. All artifacts can be dynamically instantiated and expose resources
and tools to agents. The model is independent of the used agent programming platform.
The authors show that the concepts of shared data objects, shared resources and also
communication are implementable by using artifacts.

2.5.6 The Peer Model

Kühn, Craß, Joskowicz, Marek and Scheller proposed the PM in [KCJ+13] as a design
tool for parallel and distributed applications. The model assumes an underlying space-
based middleware. On top of that, in the model peers act as self-contained components,
which interact by exchanging so-called entries that contain application and coordination
information. Each peer stores received entries and outgoing entries in local containers (e.g.
implemented as Linda-like spaces) and is globally addressable. The model, in contrast
to the agents and artifacts approach from above, strictly separates application from
coordination logic. In comparison to other coordination modeling tools, like coloured
petri nets [JKW07] or Reo [Arb04], it is more high-level as it takes assumptions on the
domain. This results in higher scalability and robustness of the model. At the moment,
there is one finished C# [Rau14] implementation and some ongoing implementations of
the model. More details on the PM are provided in Chapter 4.

32

CHAPTER 3
Requirements and selection of

background technology

In this chapter the requirements on the proposed framework are defined. They are based
on the problem statement and the aim of the work from the introductive chapter of
this thesis and are also influenced by some insights obtained during the background
technology research. In the second section of this chapter the evaluation and the selection
of the researched background technology to be used in the proposed framework is done.

3.1 Requirements

Besides the functional requirements also the non-functional requirements (quality at-
tributes) for the framework are included. All requirements have been stated in accordance
with Peter Tillian (see the requirements chapter in [Til17]) and are listed in both works.
Nevertheless, details on specific requirements that are regarding focus points of the works
are referenced.

3.1.1 Functional requirements (FRs)

The functional requirements describe the functionality that the framework offers for
developers and end-users. They define how the framework shall operate and which
functions and tasks the framework shall provide.

FR1: Coordination

The framework shall abstract coordination logic of an application and offer an API to
coordinate the data-flow and the execution of business logic in the system. Further details
on the requirement can be found in [Til17].

33

3. Requirements and selection of background technology

FR2: Running in background

The framework shall offer an Android service that can run the MPM runtime in the
background. That means that no graphical user interface has to be opened on the
Android device. Because this is also in the scope of Peter’s work see [Til17] for further
requirement details.

FR3: Autonomous startup

Besides a manual start by a user an autonomous startup of the MPM runtime shall be
possible. This shall be done when specific events, like an incoming message, occur at
the device. The reason for this requirement is to save resources on the mobile device by
making it possible to shut down the application and still react to incoming messages and
by not maintaining a constant connection to the MPM network.

FR4: Decoupling from application

An application built on top of the framework should be decoupled from it. The implemen-
tation of the framework should be importable as an independent module using a build-tool
or directly as a library. The network operations and system calls happening inside the
framework logic shall not block or disrupt the outside application code. Nevertheless,
there shall be possibilities for the developer to react to occurring exceptions or important
events in the framework.

FR5: Connectivity with local and mobile carrier networks

Applications built on top of the framework shall be able to operate seamlessly in mobile
W-LANs as well as networks of mobile carriers. Connection handover to another network
shall be handled automatically and transparently by the framework. On loss of connection,
re-establishment shall happen as soon as possible. No configuration on network firewalls
or on a NAT box shall be necessary for the communication layer of the framework to
work properly, as this is in most cases not possible in public wireless networks. Also, if a
network is used where network configuration by the end-user is principally possible, it
might be a hard task for an average home user without specific IT knowledge to do the
needed configuration.

3.1.2 Non-functional requirements (NFRs)

The non-functional requirements describe how the framework shall operate in terms of
quality attributes. In contrast to the functional requirements, which describe what the
framework shall do, the non-functional requirements specify criteria that can be used to
judge the operation of the framework.

34

3.1. Requirements

NFR1: Licensing

The specification as well as the code of the reference implementation of the framework
shall be published under a copyleft license and as open source software, making it
unrestrictedly usable by the P2P community as long as no copyright restrictions are
added on any changes or further developments on the framework. This requirement
implies that all used external code, e.g. libraries, has to be under a compliant license too.
The source code and documentation of the framework shall be publicly downloadable by
everyone.

NFR2: Scalability

As mentioned in Section 2.2, a P2P network might not only consist of pure P2P compo-
nents, which are scalable by design, but also of centralized components like super-peers
or servers. There should be possibilities to scale such centralized components with
acceptable effort, if they are needed in the system design.

NFR3: Security

As peers using the framework should be able to communicate over the internet, appropriate
security measures shall be provided by the framework. In the communication layer
possibilities for encrypting the network traffic shall be available as a countermeasure to
eavesdropping. Signatures on encrypted messages shall prevent manipulation of data.
Together with some kind of identity provider for peers, this shall also avoid spoofing.
There shall be means to tackle spamming by blocking specific other peers or only allowing
communication with specific peers, preventing also DoS to some amount. Optional end-
to-end encryption shall offer additional security and privacy to end-users of applications
built on the framework. If possible, functionality shall be offered by the framework to
perform some kind of communication partner verification to circumvent false identity
and MitM attacks.

NFR4: Simple API

The API of the framework shall be as simple and intuitive as possible, designed by
exposing exchangeable, reusable and documented interfaces to the developer, hiding the
inner logic in a black-box. The API shall also offer methods to propagate important events
happening in an application onwards into the framework logic. Events that might happen
in an outside application or operating system that are important for the framework are
e.g. connectivity events like establishment of connection to a LAN or mobile network.

NFR5: Debugging and documentation

A developer shall be able to debug an application that is based on the framework,
therefore the source code of the application shall be publicly available to be retrieved by
the debugger of the integrated development environment (IDE). Moreover, there shall be

35

3. Requirements and selection of background technology

an option for a developer to configure a human readable form of serialization for network
messages. Public interfaces shall be documented sufficiently in the source code and test
cases shall be delivered with the source code as additional documentation and test basis
for further extensions and changes to the framework.

NFR6: Exchangeability of components

The framework shall be designed so that important components are exchangeable by
implementing interfaces. Possibilities to configure the used implementations shall be
provided where appropriate. An example for such a component is the communication
layer of the framework, which implements the used communication protocol and possibly
also the identity management. The serialization component is another example. At least
one implementation of all important components shall be delivered by the first version of
the frameworks reference implementation. Decisions for the choice of the implementations
shall be reasonable and described in this work.

NFR7: Design to work with a modeler

The API and configuration of the framework shall be designed in a way such that a
model of a system based on the framework could be defined by a corresponding modeler.
The scaffold of the application code shall be generated out of that model. The developer
should only need to implement the application code, but cooperation or communication
related logic shall be generated where possible. The implementation of the mentioned
modeler is not within the scope of this work.

NFR8: Operability on popular mobile platforms

The framework shall be designed to be implementable on popular mobile platforms.
Therefore, a reference implementation of the framework on Android shall be delivered
as a part of this thesis. Operability on other mobile platforms shall be analyzed and
considered.

NFR9: Benefit in comparison to own implementation

A developer shall have a significant benefit when implementing a mobile application for an
appropriate use-case using the framework in comparison to implementing all functionality
offered by the framework. This shall be achieved by abstracting the communication
and coordination logic needed by a mobile application so that the developer can mainly
concentrate on application logic and configuration of the framework. Appropriate security
countermeasures shall also be abstracted by the framework and be configurable for
the developer. Altogether, implementation of the application shall be faster and more
efficient.

36

3.2. Evaluation and selection of background technology

NFR10: Resource-efficient implementation

The MPM framework shall be optimized to save resources on a mobile device (storage,
processing power and network bandwidth). No permanent connection to the MPM
network shall be needed and the mobile operating system shall be able to suspend or close
the MPM application when resources are needed. When this happens the application
shall still be reactive to incoming messages, no data shall be lost and no resources shall
be consumed in that state.

NFR11: Reliability

Whenever the MPM runtime is stopped (manually, by a failure or outside event) the
data and state of the MPM runtime shall not be lost, shall be reconstructable and the
processing shall correctly continue after a restart. For more details see the requirement
in [Til17].

3.2 Evaluation and selection of background technology
The following section is about evaluation of the presented background technologies
against the formulated requirements on the framework to be implemented. Based on
the evaluation, useful technologies shall be selected to serve as basis for the design and
prototype implementation of the framework. The process is done in correspondence with
the work of Peter Tillian [Til17].

3.2.1 Selection of underlying P2P network technology

In Section 2.3 some important P2P overlay networks have been presented and analyzed,
considering multiple factors. Meanwhile, Peter has analyzed prominent representatives
of structured overlay networks. Furthermore, in this work JXTA has been presented as a
general P2P programming framework. The possibilities of using SIP in the context of P2P
networks have been presented in Section 2.4.2. Moreover, in [Til17] two more important,
probably useful, technologies, namely JADE and XMPP have been discussed. JADE
is, like JXTA, a general P2P framework, which in contrast is agent based. XMPP is a
communication protocol that enables real-time P2P communication with authenticated
partners. It uses an XMPP server for relaying messages and as an identity provider.

In the following sections, found background technologies from this thesis are evaluated
against the proposed requirements on the framework. Peter evaluated the systems in his
scope in [Til17].

Napster

The assessment begins with Napster. The network concentrates only on media file-
sharing and also no open-source implementations of Napster servers that are in further
development could be found. Also, no implementation of the protocol on a mobile

37

3. Requirements and selection of background technology

platform could be identified. Moreover, the centralized architecture with static servers
makes the network highly vulnerable and not inherently scaleable. Therefore, Napster is
excluded from the possible candidates for selection.

Gnutella

For the Gnutella protocol there exist open-source implementations and for Gnutella2
there even exists one implementation for the Android platform. Also, scalability is given
because of the pure P2P approach. Nevertheless, found implementations for Gnutella are
not in further development and hard to port to current mobile platforms. The Gnutella2
implementation for Android seems also to be abandoned by developers and not applicable
on all devices. Security is hardly a topic in the network, e.g. malicious code distribution
and eavesdropping are easily possible. Also, the protocol is trimmed on the purpose of
file-sharing and not on general data exchange. Moreover, the query flooding approach of
the protocol is not very resource efficient. Therefore, Gnutella and its successor protocol
are excluded from further considerations.

Freenet

Freenet in contrast to Gnutella is highly focused on security and the Darknet mode even
offers a concept of trusted peers. There exist open-source implementations, which are
also still in development and could probably be ported to current mobile platforms with
reasonable effort. The network is by design not only focused on file-sharing. Still, the
main use-case is content distribution, where peers do not decide which content they store.
This is not the intended use-case for the proposed framework. Additionally, participants
have to contribute large amounts of local storage. The protocol needs firewall or router
configurations for clients to work properly. Although the network might be a very
interesting choice for content distribution over a static and stable connection and when
the network and firewall can be configured, it can be excluded as possible background
technology for the framework implementation.

FastTrack

The major issue with FastTrack is, that the protocol is proprietary. This also applies to
the client and super-node implementations. Also, they are not in further development or
even have been shut down because of legal issues with file-sharing, which is once again
the main purpose of the protocol. Therefore, there have also been no efforts to support
any mobile platforms. Because of these aspects, FastTrack is excluded from the list of
possibly useful background technologies.

eDonkey

Similar to FastTrack, also the eDonkey protocol is proprietary. There have been some
freeware implementations of eDonkey server software, but they are not open-source. Also,

38

3.2. Evaluation and selection of background technology

there is no ongoing development on eDonkey clients since years. The same issues extend
to the successor protocol Overnet. Configuration of the firewall is needed for two peers
behind different NATs to be able to communicate. These protocols are therefore no
choice for a possible useful technology for the proposed framework.

BitTorrent

BitTorrent in contrast is open-source and the protocol is in ongoing development. Further-
more, there exist open-source clients, even for mobile platforms, that are also in further
development. There have been other use-cases for the protocol than just P2P file-sharing,
e.g. for the vuze BitTorrent client there exists a chat plugin that works in a P2P manner
on the current BitTorrent swarm (see the vuze website1 for more details). The problem
when considering the formulated requirements on the framework is that with BitTorrent
it is not possible to bypass NAT in every constellation. Different clients use different
techniques like port forwarding, UPnP or UDP hole punching to achieve that. Eventually,
either a configuration at the router or firewall is needed or hole punching techniques
have to be applied, which also do not work on every NAT setup, for more details why
see [Til17]. Also the scalability is an issue of the protocol, because one swarm always
belongs to one central tracker, which could probably become a bottleneck. Because of all
these reasons, BitTorrent cannot be the technology of choice for communication in the
framework implementation.

JXTA

JXTA seems to be a quite good candidate for selection as background technology. It
is open-source and supports many P2P features additionally to communication. NAT
traversal is possible with the framework by using peers as relays. Multiple different,
underlying transport protocols can be used. Security measures have been implemented in
the framework in an adequate manner, at least for unicast P2P messaging. Also, at least
edge peers have already been ported to Android. Porting of other components to Android
seems feasible. The contras of JXTA as a choice may be that it is quite heavy-weight and
the state and licensing of the implementation seems obscure and chaotic at the moment.
Also, a framework based on JXTA would need a complete re-implementation of all the
features offered by JXTA on an iOS implementation. Nevertheless, JXTA is a candidate
to base the proposed framework on.

P2PSIP

P2PSIP seems to be a quite promising concept and the ongoing work on the RELOAD
implementation of it might bring this concept to wider popularity in the future, but
it still seems too early to base another framework for mobile devices on it. There are
still some important missing parts, e.g. the implementation of a fully working P2PSIP
client on a mobile device. Additionally, RELOAD needs an underlying structured P2P

1https://wiki.vuze.com/w/Chat_plugin accessed 01.2017

39

https://wiki.vuze.com/w/Chat_plugin

3. Requirements and selection of background technology

N
ap

st
er

G
nu

te
lla

Fr
ee
ne

t

Fa
st
Tr

ac
k

eD
on

ke
y

B
itT

or
re
nt

JX
TA

P2
PS

IP

FR1 - Coordination - - - - - - - -
FR5 - Connectivity + + - + + - + +
NFR1 - Licensing ∼ + + - - + + +
NFR2 - Scalability ∼ + + + ∼ ∼ + +
NFR3 - Security - - ∼ - - - ∼ ∼

NFR8 - Operability ∼ ∼ ∼ - - + + ∼

NFR10 - Resource-efficient + - ∼ + + + ∼ ∼

Table 3.1: Probable fulfilment of requirements by presented P2P technology

network as a plugin. Choosing this concept as background technology would mean having
to implement the full protocol for a mobile platform, also including the plugin for the
underlying structured network. This seems to be too much effort and too risky for a
protocol that is not even fully defined. Moreover, using mobile devices solely as SIP
clients, which have to connect to a super-peer running the full P2PSIP software, is not
compliant with the intentions of the mobile peer being self-contained and a first-class
component of the framework. This concept is therefore no candidate for selection.

Overview of technology and fulfilment of requirements

Table 3.1 shows which of the most important requirements from Chapter 3 regarding the
P2P communication technology could be fulfilled (+), fulfilled partly or with additional
effort (∼) and not fulfilled (-) by which presented technology. The most important
requirements have been selected considering which requirements are essential for the
proposed framework and when not fulfilled by the background technology would cause
big implementation efforts or would break the whole design. The requirement FR1 could
not be fulfilled by any of the described P2P protocols and frameworks, which made it
necessary to additionally chose a coordination framework or implement a coordination
model and integrate it with the P2P technology.

Coordination frameworks and models

In Section 2.5 several coordination frameworks and models have been presented, on which
the proposed framework could be built on. Effectively, all of them are based on some sort
of space-based technology or do suggest to use one for the data storage layer. DataSpaces
is intended to be used in a scenario, where nodes produce massive amounts of data in
a grid-computing environment. Furthermore, like also DTuples and Comet, the data
storage in the formed network is distributed with a DHT, that means that nodes do not
decide which data they store, this is managed by an overlying algorithm. TuCSoN and

40

3.2. Evaluation and selection of background technology

Comet are additionally quite restrictive on the used underlying space-based technology,
defining it as a concrete Linda based approach with specific functionality. Only CArtAgO
and the PM are not restrictive on the underlying data storage technology and also do not
use a distributed storage, which contradicts the intention for a peer in the framework to
be self-contained. Therefore, CArtAgO and the PM seem to be the best candidates as
coordination models to base the proposed framework on.

Selection

After a mutual discussion with Peter Tillian on the final selection of technology and
evaluation of the possible candidates that emerged from both researches, the outcome
was that XMPP is the best choice as underlying technology. The protocol offers P2P
communication with an authenticated partner over an XMPP server or server cluster, so
the centralized part is scalable. The server role includes relaying of messages and identity
management. There exist open-source client implementations for Android and iOS,
which are in further development. Moreover, there exist open-source XMPP relay server
implementations. Security measures include optional traffic encryption and blocking of
specific peers, as well as a central identity provider including a user presence protocol.
NAT traversal is possible by design in any network constellation because of the relay
server. For further details on the XMPP protocol see [Til17].

The reason XMPP has been preferred to JXTA is that also JXTA needs a relay peer
(analogous to the XMPP server role) to bypass any NAT, but it is more heavy-weight.
JXTA, besides just P2P communication and identity management, offers many features
that would probably not be needed by the framework implementation and need more
storage and computing power on a mobile device. XMPP fulfils the imposed require-
ments without making a client application too heavy-weight. Furthermore, the P2P
communication layer can be implemented with low effort on Android and iOS, because
of existing client libraries, whereas there are no implementations of JXTA for e.g. iOS.
Also, the limbo state of the JXTA project at Oracle is not promotive.

The PM is chosed as coordination model. There are different reasons for this choice.
Firstly, the advisor and the assistance advisor of this thesis are both among the authors
of the PM at the TU Wien and besides their personal support also weekly meetings of the
PM technical board can be used to discuss the implementation of the model. Secondly,
without consideration of that, the PM also seems to be the most intuitive and pragmatic
model amongst the found approaches compliant to the stated requirements. The model is
quite easy to understand, is P2P based with self-contained peers and can be adapted to
a mobile profile of the original full specification to be compliant to restrictions of mobile
devices most effectively. Furthermore, there has already been a successful implementation
of the model for the .Net platform [Rau14] and there are ongoing implementations for
Java and Go. With help of the thesis advisor Prof. Dr. Eva Kühn also the support of
the authors of these implementations can be used.

41

CHAPTER 4
The Peer Model

This chapter is dedicated to the PM, that has been proposed and determined by Kühn,
Craß, Joskowicz, Marek and Scheller in [KCJ+13]. The intention of this work is to
design an optimized, compatible profile of the model for mobile devices and deliver an
implementation of it for the Android platform. The MPM thus represents the mobile
profile of the PM with its adaptations and optimizations for mobile devices. In this
chapter the original and full PM is presented.

4.1 Characteristics

The PM defines a programming model inspired by tuple space communication and event-
as well as data-driven architectures, especially targeted on heavily distributed applications.
By design of the model, any business logic is treated as a black-box within so-called
services. Only coordination and communication parts of the system are described. To
bootstrap the model, an underlying tuple-space is assumed to be present to store the
data and requests that flow from the input, through the internal logic to the output stage
of a peer in the PM. A space as described in [CKS09] is used, which provides shared
containers offering configurable coordination mechanisms, like explained in [KMKS09],
and a flexible API. Similar space-based technologies may also be used in the model.

Entry

Entries are objects that represent data and requests in the PM. There are system
properties (coordination data) and application properties attached to each entry. System
entry properties are always existent, application properties can be defined and added
by a developer modelling a specific application. Subsequently, the system properties of
every entry shall be explained.

43

4. The Peer Model

Every entry has an entry-type property that is queryable and used for selection of entries
in the model. It differs from the type of the application data transported by the entry.
Besides the entry-type (type), the application-data-type (dataType) and the application-
data-object (data), there exist further system properties like the URI of the peer that
originally created the entry (origin). Furthermore, if the entry has been received from
another peer, the URI of that peer is stored in the from property. When sending an entry
to another peer, the destination peer’s URI is stored in the dest property. Moreover,
a profile of the PM usually defines a time-to-start (TTS) (tts) and a TTL (ttl) on the
entries to be able to define spans of validity. Entries will only be processed in the model
if their TTS has been reached and their TTL has not yet been reached. The dataType,
the origin and the from properties have not been defined in the original paper but are
extensions proposed by the PM technical board.

Container

Containers are used in the PM to hold data and requests represented as entry objects and
are part of the underlying space-based technology. Containers are referenced by a URI in
the network and provide an API to write (put into), read (retrieve without remove) and
take (retrieve and remove) entries. These operations are carried out in transactions and
also support bulk processing by specifying a counter on the operations to apply to specific
amounts of entries (exact number, a minimum or a maximum). The operation also
always includes a type identifier to match a specific entry-type. Selection order of read
and take operations is configurable, depending on the underlying space-based technology.
The designers of the PM suggest usage of an underlying space-based middleware like
proposed in [CKS09], which offers several predefined selectors like the any-selector (no
order guaranteed) or the first in - first out (FIFO)-selector (first in - first out order).
These selectors can be combined and besides others there exists also a query-selector
where custom queries can be defined on entry properties.

Peer

The peer represents a node in the PM network and is addressable by a URI. Two containers
are part of a peer. There is a peer-in-container (PIC), where entries are received and a
peer-out-container (POC), where processed entries are stored. The processing is handled
by services within one or more so-called wirings of the peer. Processed entries can then
be delivered from the POC to the PIC of another peer (destination URI). Peers may also
contain one or more sub-peers within their scope. All peers of a local site referred by a
URI form a peer space, whose runtime environment is bootstrapped via a runtime peer
(RTP).

Wiring

Wirings handle the transport of entries between the containers of a peer (and contained
sub-peers) and a communication with a remote peer is possible using the dest property

44

4.1. Characteristics

of an entry. A wiring consists of guards, services and actions. Guards and actions consist
of guard links and action links and define specific operations on those (the terminology
of the original PM paper [KCJ+13] is used in this work). The link operations on a
guard specify which types of and how many entries are taken or read from the PIC of a
peer or the POC of a sub-peer using the internal API of the container, where at least
one take operation must be specified to avoid easy creation of endless loops. All the
guard links must be satisfied in sequential order for the wiring to be executed in an own
transaction. If that is not possible, the wiring will not be executed. If all guard links can
be satisfied, the entries are taken or read and stored in a temporary entry collection (EC)
visible to this wiring, which has the same functionality as a space container. The EC is
then handed over to the service(s) of the wiring, which are executed sequentially and
have access to the EC for processing the entries and writing resulting entries to. After
processing all services, the action links are executed in sequential order. They define
which and how many entries in the resulting EC are distributed to either the PIC or the
POC of the peer or the PIC of a sub-peer. Not all action links must succeed, they are
just executed if they can be satisfied, otherwise they are skipped.

Figure 4.1 shows an example of a peer P1 having one sub-peer P2 in the graphical
notation of the PM. The peer contains a single wiring W1. If the guard of the wiring
can be satisfied, it takes one entry of type T1 and reads all available entries of type T2
from the PIC. The entries are collected in the EC and handed over to the two services
S1 and S2 of the wiring. After execution of those two services, one entry of type T4
and all entries of type T3 are taken from the EC by the action links (if these entries are
available) and are placed in the POC of the peer to be distributed to other peers. One
entry of type T1 is handed over to the PIC of sub-peer P2, if the entry is available in
the EC after processing. As you can see, entries with type T3 and T4 might be created
by the services, whereas T1 and T2 might be provided by another peer or by the RTP
at start-up.

The processing code of the services is defined by the developer and contains logic that is
not part of the PM. Nevertheless, within the service the entries that have been handed
over to it in the EC can be accessed and the dest, data, TTL and TTS properties can be
set or new entries can be created. Wirings connect peers and services in a data-driven
way that provides high decoupling. All the wirings of a peer can run concurrently and
represent the only active part of the PM.

Flows

To model global tasks, so-called flow identifiers are attached to entries that belong to
one flow, corresponding to a workflow in an enterprise system. Each wiring only fetches
entries in its guard links that belong to the same flow, identified by this unique identifier.
With that concept multiple different workflow instances can be processed in parallel, e.g.
data from different users.

45

4. The Peer Model

Figure 4.1: Example: Graphical notation of a peer with one sub-peer, one wiring and
two services

46

CHAPTER 5
Design

The aim of this work is to implement a mobile P2P communication and coordination
framework. After background technologies have been researched, evaluated and selected
in Chapter 2 and 3 and the PM, on which the framework shall be based on, has been
introduced in Chapter 4, the integral parts of the software engineering process regarding
the conceptual design of the framework shall be described in this chapter.

The engineering process has started with the assessment of the requirements on the MPM
in Chapter 3. In the following sections, important details on the design of the framework
are provided. The two engineering processes are done in cooperation and synchronization
with the work of Peter Tillian [Til17]. Detailed insights on who has done which parts
and tasks are provided.

Both scalability and security are main focus points of this work and are emphasized in
the design phase.

5.1 Mobile profile of the PM

In Chapter 4 an overview of the full formal specification of the PM with some important
features has been provided. In several meetings agreements with Eva Kühn and Stefan
Craß, who developed the PM, have been made to establish an adjusted profile of the
model, suitable for mobile devices and use cases. The outcome was a reasonably trimmed
model, having only needed and supportable features for mobile platforms. Nevertheless,
the mobile profile and the reference implementation of it are just an initial version and
might be extended by additional features in the future. In this section, the features of
the MPM in contrast to the full PM shall be presented.

47

5. Design

5.1.1 Runtime peer (RTP)

There is a single RTP on every node participating in an MPM network. The RTP is
not a usual peer in the MPM. It offers interfaces to create peers, contains all local peers
forming a peer space on the mobile host and can be started and stopped. Local peers
are uniquely addressable by a peer name in the namespace of the RTP. Moreover, the
RTP exposes an interface to communicate with an outer system or user interface (UI).
The concept of the RTP has already been introduced by Kühn et al. in [KCJ+13].

5.1.2 Entry

In contrast to the entries of the full PM, presented in Section 4.1, the MPM does not
support additional, queryable application specific properties on entries that can be defined
by a developer. All system properties of an entry are the same as in the full specification,
including the data type, the data object, TTS and TTL.

5.1.3 Container

The underlying space-based technology is implemented by the reference implementation,
no existing implementation of such a model is used. Reasons are that underlying space
containers can be defined and optimized for the concrete purpose of the MPM and do not
use unnecessary storage and computational resources in the optimized and lightweight
mobile framework, like an implementation of a sophisticated space-based middleware in
the manner of the proposed approach from [CKS09] would do. Nonetheless, the design
allows the replacement of the underlying container technology by an implementation that
supports the mentioned operations below by easily disposable interfaces.

Containers, like in the PM (see Section 4.1), provide an interface to put (write), non-
destructively retrieve (read) and destructively retrieve (take) entries. Retrieving opera-
tions offer a string type parameter on the operation to match entry types (an empty string
will match any entry type). Bulk operations are supported on the retrieving operations
by applying a count parameter. The parameter specifies the selection of a specific amount
(exactly n, where n > 0) of entries greater than zero or an amount greater than or equal
to a specific number (>= n, where n >= 0). The >= n count operator would select as
many entries as possible but at least n to be satisfied, otherwise the operation would not
be successful. Additionally, there exists the possibility to specify a maximum amount
of entries for a bulk operation (<= n, where n > 0). If more entries than the specified
maximum and type would be present in the container, the operation would still only be
performed with the specified maximum number of entries but would be successful.

A wiring specifying link operations with a count >= 0 or a count <= n have to specify
at least also one take guard link with count >= n where n > 0 or count = n where
n > 0 to avoid easy creation of endless loops in the execution of the wiring. This is
necessary because such guards would always be satisfied and the wiring execution would
loop forever.

48

5.1. Mobile profile of the PM

5.1.4 Peer

A peer in the MPM is, like in the PM (see Section 4.1), a self-contained part of a local
peer space contained in a locally hosted RTP. The peer holds two containers, PIC and
POC, like in the full PM specification. Nevertheless, the POC in the implementation
of the MPM is only a virtual container. Internally action links will forward respective
entries to the PIC of a system-defined input/output (IO) peer, which then transports
the entries to the container of the designated peer or internally to the PIC of the same
peer. For better understandability and encapsulation the POC will still be shown in the
following graphical notations of the MPM like in the full PM notation. Wirings with
guards, services and actions are defined analogously and are using the operations offered
by containers of the MPM. Inter-peer communication is possible by sending entries to
local peers or to external peers hosted in a remote RTP.

The peer URI of the MPM, by which a peer is uniquely addressable in an internet scale
network, is a combination of the host name of the device hosting the local RTP and
the local name of the addressed peer, both represented as strings. The structure of
the host name depends on the used communication protocol and possibly used identity
provider. Therefore, also the used communication protocol shall be encoded in the
peer URI. Ultimately, the peer URI shall be encodable as a string <protocol>://<host-
name>/<peer-name>.

In contrast to the full PM specification, the MPM does not support sub-peers in the first
version. The only peer that contains other peers is the special RTP.

In the MPM there are statically defined system peers, which are provisioned automatically
in every RTP and are bootstrapped like usual local peers, but have special tasks. These
system peers include IO peers for sending and receiving entries to and from external
peers, as well as an exception peer, which is responsible for handling exceptions that
might occur within the framework.

5.1.5 Wiring

Wirings are defined analogously to the wirings from the PM (see Section 4.1). The
difference regarding wirings is that no sub-peers can exist, so wirings cannot deliver
entries to the PIC of a sub-peer or retrieve wirings from a sub-peer’s POC. Furthermore,
only one service is part of a wiring, so multiple services within one wiring, like in the full
PM, have to be combined in one.

Flows (see Section 4.1) are not supported by the MPM in the first version, so guards
in wirings do not consider flow IDs when retrieving entries from the container. Entries
cannot contain a flow ID. Therefore, in the prototype reference implementation workflows
with different peers would have to be handled by the application logic (data object of the
entry). Nevertheless, the support of flows has the highest priority of planned extensions
to the framework.

49

5. Design

Figure 5.1: Global market share of operating systems for mobile devices1

5.2 Architectural overview and separation of engineering
tasks

This section provides an architectural overview of the system by means of simplified
figures and explanations. Moreover, information is given on which components and
architectural layers of the framework have been implemented by whom, because the
software engineering process, like mentioned, is a cooperation work.

5.2.1 Decisions on background technology

In Section 3.2.1 detailed information and reasoning have been provided why XMPP has
been chosen as background technology for communication and identity management
for the reference implementation and why the framework implements a mobile version
of the PM. The operating system for the host of a RTP is Android in the reference
implementation, because firstly Android at the moment has the highest market share of
mobile operating systems (87.8% at Q3 of 2016), like shown in Figure 5.1. Secondly, the
implementation of the core MPM framework is then in Java, which also can be run on
any machine that supports the installation of a Java virtual machine (JVM), which is
possible on nearly every desktop and server operating system.

1https://www.statista.com/statistics/266136/global-market-share-held-by-
smartphone-operating-systems/accessed01.2016

50

https://www.statista.com/statistics/266136/global-market-share-held-by-smartphone-operating-systems/ accessed 01.2016
https://www.statista.com/statistics/266136/global-market-share-held-by-smartphone-operating-systems/ accessed 01.2016

5.2. Architectural overview and separation of engineering tasks

Figure 5.2: Components of the MPM framework including communication with enclosing
application and remote nodes

5.2.2 Architecture of a node

Figure 5.2 shows the architecture of a node in the reference implementation of the MPM.
The framework runs on top of the underlying JVM, either on an Android device or on any
other machine that can run a JVM. The core framework itself consists of four components,
which build on one another. The communication component is implemented using XMPP.
It encapsulates the whole remote communication functionality, the exchange of entries
with remote peers over XMPP. For security reasons, an encryption component is placed
on top of the communication component. The component offers optional E2E encryption
of entries. To be able to send entries to remote peers over the network, the entries
have to be serialized at the sender and de-serialized at the receiver. Therefore, the next
component on the stack is the serialization component, which takes care of serializing
and de-serializing entries. The actual RTP is then placed on top of the serialization
component. Like explained in Section 4.1, it contains special IO peers that receive entries
from the bottom to the top in the component stack and send entries from the top to
the bottom in their implementations. Also, the RTP offers an API to interact with an
enclosing application, e.g. an Android service or a UI.

51

5. Design

5.2.3 Distribution of work

Design and implementation have been separated between the work of Peter Tillian
[Til17] and me in the following way. Peter Tillian was responsible for the design and
implementation of the MPMRTP with all its contained components as well as optimization
of the framework regarding restrictions of mobile devices in comparison to desktop or
server machines. Also, Peter was responsible for the RTP to be able to be encapsulated
in an Android service and to be able to interact with the UI. One of his tasks was also the
delivery of a ready-to-use Android service that encapsulates the MPM RTP and offers all
necessary interfaces to be able to interact with an outside Android application using the
service.

My task in the work was the design and implementation of the communication, the
E2E-encryption and the serialization components, as well as designing the system to
be scalable. This includes research, evaluation, selection and integration of appropriate
protocols for each of the components. Furthermore, all considerations about the security
aspects in the framework were my responsibility. Although, engineering processes have
been separated, we kept in contact to support each other with tasks and discuss important
decisions.

5.2.4 Architecture of the RTP

Although detailed design and implementation decisions are in the scope of Peters work,
some broad outlines on design decisions have been made in mutual agreement. The coarse
overview of the design of the RTP with its important components shall be presented also
in this work to be able to understand the following chapters.

Figure 5.3 shows the architecture of the RTP with its components and also the flow
of entries into, inside and out of the RTP. On the bottom of the graphics you can see
the RTP object, where all the components explained above are contained. The object
holds a list of local peers as well as an interface for an external system (in this case
called user interface). It offers functionality for peer creation and for connectivity event
propagation from an outside system. The RTP can receive entries from remote peers
via the receiver peer, which has an interface to the underlying communication protocol.
The receiver peer reads the destination property (dest) of the incoming entry, looks up
the addressed local peer in the peer lookup list of the RTP and delivers the entry to the
PIC of the right local peer. The externally received and sent entries are marked with
an E in the figure. The receiver peer is, like the sender peer and the exception peer, a
local system peer, which is automatically provisioned for every runtime. The RTP can
furthermore contain several local peers that are addressable by name in the name-space
of the RTP, forming a local peer space. These local peers have to be created by an
application developer using a provided peer creation interface on the RTP at design time.
All of them contain a PIC and can contain several wirings with guard, service and action,
like explained in Section 5.1.5. Entries flowing through wirings can be received externally
(E), from another local peer (I) or be newly created inside a service or by the user

52

5.2. Architectural overview and separation of engineering tasks

Figure 5.3: Architecture of the MPM RTP including important components and flow of
entries

interface (N). When an action fires, the entries get delivered to the sender system peer,
which investigates the destination property of the entry (dest). If the destination is a
remote peer, it forwards the entry to the underlying communication protocol for network
delivery. If the destination is a local peer, it directly writes the entry to the PIC of this
peer. Last but not least, there exists the exception system peer, which is like the other
two system peers bootstrapped like a common local peer, but already has predefined
wirings. If an exception happens inside a service of a wiring, the application developer
might want to handle that exception. Therefore, there exists the possibility to wrap the
entry on which the exception occurred into an exception entry, which then gets delivered
to the exception system peer. This can happen in every MPM peer except the exception
peer (exception entry flow is not shown in the figure). In the service of the exception
peer, it is up to the application developer to handle those exceptions. An exception that
can occur already in the scope of the framework is the expiration of the TTL of an entry.
The framework automatically wraps such entries into exception-entries and propagates
them to the exception peer to be handled by the developer in the exception peer’s service.
How exceptions can be handled by the developer in the exception peer and what happens
when an uncaught exception is thrown inside of a service is described in detail by Peter
[Til17].

53

5. Design

5.3 Architecture of communication and identity
management

This section presents the design of the communication between nodes of the MPM
framework. Because the requirements state that communication should work in an
internet-scale network and from behind any NAT, the task is quite sophisticated. Fortu-
nately, XMPP offers quite a large set of features that help fulfil a set of requirements.
The communication is relayed over an XMPP server and therefore NAT traversal is
guaranteed. Also, it serves as an identity provider and offers scalability by clustering of
the server and security by encryption over TLS. Details on how an identity is provided for
a joining node and how communication is set up in the proposed framework are provided
in the following section.

5.3.1 Joining the network and communication with other peers

In Figure 5.4 a detailed overview of the communication model is given. There are three
different peers involved, two client peers (Client Peer A and Client Peer B) that want to
communicate with each other, as well as a notification peer. Furthermore, three different
servers are part of the communication model, a registration server, the XMPP server
and the Google Firebase cloud messaging (FCM) server.

The numbering from (1) to (14) indicates the information flow from registration of Client
Peer A in the MPM network until a successful communication with Client Peer B is done
by sending an entry. The starting situation of the shown graph is that Client Peer A has
not yet registered and joined the network, but wants to send an entry to Client Peer B,
which has already joined.

5.3.2 Registration

The first action that has to be performed is the registration and creation of an identity
for Client Peer A at the XMPP server. Because Client A does not yet have an XMPP
identity, it cannot communicate in the network by sending entries over XMPP, therefore
an external registration has to be done, which is the purpose of the registration server
role and is not in the scope of the network. The registration server uses the user creation
API provided by the XMPP server and exposes it in an adequate and secure manner
to a client peer. In combination with the core MPM framework, a registration server
implementation in Java is delivered, which offers all needed registration functionality
over HTTP endpoints. Different implementations of the registration server that use the
user creation API of the XMPP server may easily be implemented. In the registration
process, a client sends a registration request (1) to the registration server, which then
creates an identity in the XMPP database (2). This database is used as identity database
by the XMPP server. After successful registration, an acknowledgement message (not
shown in the graph) is sent back to the new client by the registration server. Now the
client has a valid identity to join the network. Of course, the registration server must be

54

5.3. Architecture of communication and identity management

Figure 5.4: Architecture of the access control and communication in the MPM network

trusted and communication with the client must be secured by encryption and verified
by a trustable server certificate. Also, the registration server role can be hosted at the
same physical machine as the XMPP server and be validated by the same cryptographic
server certificate. Figure 5.5 shows a sequence diagram of the registration process a new
node has to go through.

After successful registration in the network, the user can join the network by connecting
and authenticating to the XMPP server (3). This is done by credential based authen-
tication (username and password). After the connection to the relay server has been
established, the client is able to send data, represented as entries, in the scope of the
MPM network.

5.3.3 Notifications

The next important communication component that shall be explained here is the role of
the notifier peer. This special peer is bootstrapped as a normal MPM peer and has a

55

5. Design

Figure 5.5: Sequence diagram of a new node registering at the registration server

well-known, configurable XMPP identity so that it can be addressed by all nodes. The
task of the notifier peer is to notify users about availability of an entry at the XMPP relay
server. The notifier peer can be hosted on any server machine that can run a JVM and is
a peer in the network like any other peer but contains predefined wirings and services to
provide the notification functionality for the network. Client peers shall not be required to
maintain a constant TCP connection to the relay server. The concept of notifications has
been elaborated in synchronization with the research of Peter Tillian, who analyzed issues
with network connectivity of mobile devices. Mobile peers understandably cannot achieve
static network connectivity, because the device might be offline for various reasons, like
connection handover, no phone coverage or the termination of the mobile MPM based
application by the user or by the mobile operating system. For example, the current
Android version might easily terminate a service to save battery and to free memory.

To enable the possibility to awaken a mobile application or to notify the user and
the application about new incoming data, the Android platform maintains a constant
connection with the Google FCM network2. Over this connection the device might get
notifications as soon as network connectivity is established. After that, the programming
model of an Android application allows handling of such notifications and binding
them to a specific application on the device by using a unique token, which is called
notification token in this work. By binding the incoming notification from the constantly
established FCM connection to an application, the Android operating system might start
the application or might just display a notification for the user to open it. This concept
is also used in the MPM framework. Here, the developer can configure if a notification
shall be displayed or not. By default, the RTP is started, but no notification is displayed.
Then, whenever the MPM based application is opened, the RTP automatically connects

2https://firebase.google.com/docs/cloud-messaging/ accessed 08.2017

56

https://firebase.google.com/docs/cloud-messaging/

5.3. Architecture of communication and identity management

to the XMPP server and receives the newly available entries. The FCM network uses
also XMPP or optionally HTTP. The concept enables Android devices to maintain only
one open TCP connection and still offers the opportunity to notify and start applications
when incoming data arrives.

At first start of an application that is based on the MPM framework, a globally unique
FCM notification token is generated using the functionality of the FCM libraries provided
by Google and sent to the notifier peer, wrapped in a notification token entry T (4).
This peer manages a database with a mapping between identities of peers and their FCM
tokens. Whenever the cache of the Android application gets cleaned, the application
is re-installed or the FCM service renews the token (FCM server sends a notification
about that to the device), an FCM token update with a new notification token is sent
to the notifier peer. The notifier peer receives (5) the notification token entry T, stores
the identity - notification token binding in the database (6) and sends a notification
token acknowledge entry TA back to the client peer (7). After the client has received the
acknowledgement entry TA (8), it can be sure that other peers might send notifications
to it using the functionality of the notifier peer and the FCM network. As the reference
implementation of the core MPM framework is runnable on any operating system that
can host a JVM, the notifier peer might be hosted e.g. on a cloud virtual machine (VM)
or cloud container service.

5.3.4 Sending and receiving entries

When Client Peer A sends an entry X (9) to Client Peer B this automatically triggers
an additional notification entry N, containing the identity of the destination peer B, to
be sent to the notifier peer (9). Both entries get cached at the relay server. Client Peer
B might not be online at the moment, but at least one notifier peer should always be
available, which receives the notification entry N containing the identity of Client Peer
B that shall be notified. The notifier peer looks up the FCM token of Client Peer B
in the database (11) and sends an FCM notification request to the Google FCM server
(12). The destination peer’s connection to this server and the binding of the token to
the device of the destination peer is handled by the destination peer’s Android platform,
which has registered the token also at the FCM server. Therefore, the FCM server can
lookup the connection bound to the token and forward the notification request to Client
Peer B. As soon as peer B receives the notification request from its FCM connection, the
Android system looks up to which application the incoming token is bound and calls a
callback function that opens the RTP, which then connects to the XMPP relay server
and receives the designated entry X (14) and all other entries that have been received at
the relay server from Client Peer A or other participating peers. Logically, notifications
over the FCM connection can be ignored if the RTP is already running and connected to
the relay server as it then will instantly receive entries.

The sequence diagram in Figure 5.6 shows the delivery process of an entry from one peer
to another. First, the entry and the additionally generated notification entry are sent
to the XMPP server in parallel. Then, two different sequences can follow, depending

57

5. Design

Figure 5.6: Sequence diagram of a client peer sending an entry to another client peer

on whether the destination peer is online or not. The sending peer can not know if
the destination peer is online when sending the entry, therefore a notification entry has
to be sent to ensure that the destination peer gets notified. If the destination peer is
online, it can just ignore the incoming notification entry. If it is not online, the notifier
peer receives the notification entry containing the destination peer’s identity, looks up
the destination’s FCM token (message exchange with the database is not shown in the
diagram) and then notifies the destination peer over the FCM network to go online and
receive the entry from the relay server. This sequence of messages happens in this strict
order. If the destination peer is already online, the entry might even be received before
the notification entry arrives (second, parallel sequence in the diagram). The messages
that are automatically sent when a peer is connecting to the relay server are not shown
in the sequence diagram (e.g. when the destination peer gets notified and connects to
the XMPP server). These messages are specific to the communication protocol and are
handled by the XMPP implementation in the framework (see [Til17] for further details
on XMPP).

58

5.4. Architecture of serialization

5.4 Architecture of serialization

This section gives information how entries are delivered in the network. To be able
to transport entries to remote peers by means of the communication component of
the framework, they have to be serialized at the sending peer and de-serialized at the
receiving peer. In the reference implementation, at least one widely used and very
efficient option for serialization and additionally one human readable form of serialization
shall be provided. The human readable serialization is mainly intended for debugging
purposes. During research on serialization protocols that work well on mobile devices,
it became clear that human readable formats are usually based either on JavaScript
object notation (JSON) or XML in American Standard Code for Information Interchange
(ASCII) encoding. Then, there exist protocols that provide binary formats. Usually, the
serialization and de-serialization performance of ASCII-based formats is much lower than
of binary-based formats and the used storage size for ASCII-encoded formats is much
higher. The question may arise why the framework implementation does not just use
programming language provided serialization, like e.g. Java object serialization. The
reason is simply that it should be possible to send data to heterogeneous peers, which
might be implemented in another programming language. Therefore, there has to be an
agreement on the data format that both can interpret.

5.4.1 Research

Sumaray and Makki did a comparison on efficiency of serialization formats on a mobile
platform (Android) in [SM12]. Another one has been done by Maeda in [Mae12]. There,
besides XML and JSON, I identified Google protocol buffers (protobuf) and Apache Thrift
as prominent and widely used candidates. They are also very often included in publicly
available open-source performance benchmark tests like this one on GitHub (see the
project website3). Another possible candidate that has been identified is Apache Avro.
All three are acknowledged examples of efficient binary serialization formats, but as
Apache Avro does not support Objective-C or Swift (programming languages for iOS)
(see the Apache documentation website4), it gets excluded, because then no serializer for
Avro would be available for a mobile peer on an iOS device.

5.4.2 Selection

As the provided references and the benchmark comparison for the JVM show, JSON
serializers are almost always faster than XML serializers. So JSON is the format of
choice for the human readable implementation of the serialization component for the
MPM framework. When doing research on Android forums and blog sites, two candidates
seemed to be widely used and approved JSON serializers for the platform, namely

3https://github.com/eishay/jvm-serializers/wiki accessed 01.2017
4https://cwiki.apache.org/confluence/display/AVRO/Supported+Languages ac-

cessed 01.2017

59

https://github.com/eishay/jvm-serializers/wiki
https://cwiki.apache.org/confluence/display/AVRO/Supported+Languages

5. Design

Google Gson (see the project website on GitHub5) and Jackson (see the project website
on GitHub6). They are both open-source, in continuous development and seem to be
the most complete libraries for Java to JSON conversion, supporting deep inheritance
structures and Java generics etc. Both are licensed under the Apache license 2.0 (see
the license specification on the Apache website7), which fulfils the requirements on the
licensing. Although Jackson seems to perform insignificantly faster on large files, the
API of Gson looks more simple, having only a toJson(instance) and fromJson(String,
class) interface for the serialization and de-serialization. Also, the project size is more
lightweight. As the JSON serializer is easily implementable and for plain Java classes
does not need any additional implementation, Google Gson has been chosen for the
framework implementation, which could be extended and exchanged with Jackson with
very low effort.

Apache Thrift and Google protobuf both support Java, Objective-C, C, C++, Go and
further important programming languages and are both open-source. Google protobuf is
licensed under the 3-Clause BSD license (see the license specification on the opensource.org
website8) and Apache Thrift is licensed under the Apache license 2.0. Therefore, both
licenses meet the requirements. Both frameworks do not produce self-describing serialized
objects, which means that for de-serialization descriptive schema files are needed on the
system. In the concrete case of the MPM framework this means that the type information
(schema) must be present on the sending and receiving peer for a serialized entry and also
the contained serialized data object to be de-serializable. Protobuf stores that information
in text files with extension .proto, Thrift does the same with extension .thrift. Both
frameworks offer an own interface description language (IDL) for the type specifications
in these files. The IDLs are slightly different, but in both systems a code generator for
those files is used to produce code for the various target languages. For example, on
an implementation of the MPM in Java for Android, code for serialization of objects
could be generated by means of the IDL specification files, whereas on an Objective-C
implementation for iOS, the code for serialization could be generated with the same files.
Necessarily, the same specification files have to be known to both platforms to be able to
interpret the exchanged data within the entries.

For more information on the Thrift IDL see the Thrift documentation at the the Apache
Thrift website9 and for information on how code can be generated out of that files for
specific languages see the documentation about that on the same website10. Information
on the protobuf IDL can be found in the tutorial at the Google developers website11 and
for information on how code can be generated out of that files for specific languages see

5https://github.com/google/gson accessed 01.2017
6https://github.com/FasterXML/jackson accessed 01.2017
7https://www.apache.org/licenses/LICENSE-2.0 accessed 01.2017
8https://opensource.org/licenses/BSD-3-Clause accessed 01.2017
9https://thrift.apache.org/docs/idl accessed 01.2017

10https://thrift.apache.org/ accessed 01.2017
11https://developers.google.com/protocol-buffers/docs/proto3 accessed 01.2017

60

https://github.com/google/gson
https://github.com/FasterXML/jackson
https://www.apache.org/licenses/LICENSE-2.0
https://opensource.org/licenses/BSD-3-Clause
https://thrift.apache.org/docs/idl
https://thrift.apache.org/
https://developers.google.com/protocol-buffers/docs/proto3

5.4. Architecture of serialization

the documentation for different languages at the same website12.

The main differences between Apache Thrift and Google protobuf are e.g. that Thrift
supports exception definitions and protobuf not, whereas protobuf can handle extended
types better. That means, if an incoming type has additional fields not known to the
local protobuf schema, they are just ignored. So, extensions to types can be made easily
without losing backwards compatibility. Moreover, definitions of remote procedure call
(RPC) services for automatic generation of server and client skeletons are integrated into
the Apache Thrift framework, whereas in protobuf they have to be added by a plugin.
The most prominent protobuf compatible RPC implementation is gRPC (see the project
website on GitHub13). For the proposed framework no RPC code generation and also
no exception definitions are needed. Only entries and protocol-specific messages of the
communication and encryption components are sent over the network. Because Google
protobuf has a more extensive online documentation, performs slightly better than Thrift
in the benchmarks and provides all needed functionality for the requirements, protobuf is
chosen for the reference implementation. However, the system shall be designed so that
this component is easily exchangeable by another framework like Apache Thrift.

5.4.3 Serialization process and needed registries

For non self-descriptive serialization formats like Google protobuf, schema files have to
be present on every host that wants to serialize and de-serialize the respective data.
Therefore, an application developer has to define all needed schema files at design time.
Code has to be generated for the files on every platform supported by the application
and the generated files have to be shipped together with the application. Protobuf needs
type adapters to convert the de-serialized protobuf Messages to first-class Java objects
that can be used in the system. To be able to find the right protobuf adapter for a
specific Java object, a protobuf type adapter registry is needed. Additionally, to be able
to lookup which dataType string from an entry (see Section 4.1) is bound to which Java
class in the system, a dataType registry is needed. This registry is also necessary for the
Gson implementation of the serialization component. For the protobuf serialization to
work, all descriptive schema files have to be present and compiled to protobuf Message
classes on each participating peer, all protobuf type adapters have to be present and
registered in the system and all types of data objects that can be received by a peer have
to be registered in the dataType registry. For further details on the serialization process
with protobuf and on the needed registries see Section 6.3 in the implementation chapter.

Figure 5.7 depicts the activity diagram of a de-serialization process of an incoming entry
byte stream at a receiving peer. One can clearly see the purpose of the two needed
registries, the dataType registry that is needed by all implementations of serialization
and the protobuf type adapter registry to convert from protobuf Messages to first-class
objects, which is needed especially by the protobuf implementation. The serialization

12https://developers.google.com/protocol-buffers/docs/tutorials accessed 01.2017
13https://github.com/grpc accessed 01.2017

61

https://developers.google.com/protocol-buffers/docs/tutorials
https://github.com/grpc

5. Design

Figure 5.7: Activity diagram of de-serialization of entry and contained data object with
protobuf

process works analogously, but in the other direction. To understand the depicted process
it is additionally important to know that when deserializing the entry byte stream to
a protobuf entry Message the object contains the byte stream of the entry data object
in a field. Therefore the deserialization of the entry data byte stream has to happen in
an own process. First the data byte stream has to be deserialized to a protobuf data
Message and then converted to a data first-class object and is injected into the entry
first-class object, which is deserialized separately.

5.4.4 Separation of entry serializer and data serializer

In the example of Figure 5.7, the serialization and de-serialization has been done with
protobuf for the entry as well as for the contained data object. The framework is designed
in a way that for an application it can be configured which implementation for serialization
shall be used for entries and which one for the contained data objects. This separation
of serializers allows that e.g. an application could serialize entries with their system
properties using a JSON format and serialize the contained data object using Google
protobuf. Participating remote peers have to be configured the same way or have to get
information about the used serialization strategy to be compatible when communicating.

62

5.5. Security concept

5.5 Security concept

In this section the security concept for the framework shall be discussed. As the framework
is intended for internet-scale P2P collaboration and peers might be connected to the
internet over public LANs, security is an essential aspect in the design of the framework.
Based on the discussed security threats from the research done in Chapter 2, a concept
of security countermeasures has been developed. It mainly consists of four aspects, an
identity provider for peers joining the network, encryption between the relay server and
peers, countermeasures against DoS attacks and optional E2E encryption between peers.

5.5.1 Identity concept

For MPM peers to be able to address each other in a WAN, they need to have an identity.
In the reference implementation of the communication layer, the XMPP server acts as
an identity provider in the network in addition to the relaying of messages. How peers
can obtain an identity and join an MPM network has already been discussed in Section
5.3.2. XMPP as an identity provider is already a good countermeasure against e.g. fake
bootstrapping attacks, like discussed in Section 2.4.2. Of course, the XMPP identity
server role must be trusted to be effective as a secure identity provider.

5.5.2 Encryption on the transport layer

To avoid eavesdropping of exchanged data, encryption is used between a peer and the
relay server. Out-of-the-box, the XMPP server offers encryption of network traffic using
TLS. The option to use encryption on the XMPP communication layer can be switched
on and off as a property of an XMPP connection. As TLS uses a public-key-infrastructure
(PKI), the public key of the relay server has to be verifiable by the client peer. Therefore,
the relay server should be equipped with a certificate signed by a certificate authority
(CA). If the XMPP server holds a valid trusted certificate, peers in the network that are
relaying messages over the server can be sure that the traffic is not exposed to anyone
else than the server that is dedicated in the certificate.

5.5.3 Countermeasures against DoS and spamming

As can be derived from the presented research on security in Chapter 2, it is generally
very hard or impossible to completely avoid DoS or DDoS attacks. Nevertheless, some
means shall be provided to application developers and end-users of the MPM framework
to take counteractions against possible DoS or spamming. These means are effective in
the viewpoint of a peer in an MPM network. If a peer receives large amounts of unwanted
messages from another peer, there shall be the possibility to block incoming traffic from
that peer. Also, a white-list of peers shall be definable, which enumerates the peers that
are allowed to contact a specific peer. Incoming messages from peers not contained in
the list get blocked. Details on the implementation of these features are presented in
Chapter 6. Although peers might block other peers or even only allow a specific set of

63

5. Design

peers to contact them, the relay server might still be target of a DDoS attack. This is a
general vulnerability of all publicly addressable hosts, like the relay server, and cannot
be avoided easily.

5.5.4 End-to-end encryption

It is obvious that if all peers encrypt their traffic by using TLS with a certified XMPP
relay server, still the server is able to see the transferred data in plain-text. In general,
users of an application that operates in that way would have to trust the owner of the relay
server to treat the transferred data confidentially and to not expose it to third parties.
Also, further implementations of the communication layer in the MPM framework might
not support encryption out-of-the-box. The framework therefore offers an interface to
optionally encrypt the data between two communicating peers (end-to-end). If transferred
data is E2E encrypted, also the relay server is not able to look into any data, it only
relays the encrypted messages. There exist several protocols for E2E encryption. The
reference implementation of the MPM framework implements one of these protocols, but
is easily extendible by others.

Research on existing protocols

When doing research about existing protocols usable to achieve E2E encryption, several
popular examples have been identified including pretty good privacy (PGP), with its
open-source alternative specification named OpenPGP (see the official website14), and
secure/multi-purpose internet mail extensions (S/MIME) (see the RFC15), both especially
designed for email encryption. In contrast, off-the-record messaging (OTR) (see the
official protocol specification16) and Signal (see the specification on the WhisperSystems
website17) are popular protocols specifically for encrypting instant messages. Ermoshina
et al. have done an overview of current E2E encryption protocols in [EMH16] dealing with
all of them. There is an open-source implementation of the GnuPG suite, which supports
PGP and S/MIME for the Android platform (see the project website on GitHub18). Also
for iOS there exists a PGP implementation (see the project website on GitHub19) and
it natively implements support for S/MIME messages in the development API (see the
developer API reference on the Apple website20). Open-source Signal implementations
for both Android and iOS can be found on GitHub (see the projects website21). One
open-source implementation of the OTR protocol for Java and Android is also available

14http://openpgp.org/ accessed 02.2017
15https://tools.ietf.org/html/rfc5751 accessed 02.2017
16https://otr.cypherpunks.ca/Protocol-v3-4.0.0.html accessed 02.2017
17https://whispersystems.org/docs/ accessed 02.2017
18https://github.com/guardianproject/gnupg-for-android accessed 02.2017
19https://github.com/krzyzanowskim/ObjectivePGP accessed 02.2017
20https://developer.apple.com/reference/security/cryptographic_message_

syntax_services accessed 02.2017
21https://github.com/WhisperSystems accessed 02.2017

64

http://openpgp.org/
https://tools.ietf.org/html/rfc5751
https://otr.cypherpunks.ca/Protocol-v3-4.0.0.html
https://whispersystems.org/docs/
https://github.com/guardianproject/gnupg-for-android
https://github.com/krzyzanowskim/ObjectivePGP
https://developer.apple.com/reference/security/cryptographic_message_syntax_services
https://developer.apple.com/reference/security/cryptographic_message_syntax_services
https://github.com/WhisperSystems

5.5. Security concept

on GitHub (see the project website22) and is called Otr4j. For iOS one can be found in
the GitHub repository at the project website23.

Encryption properties

There are some security aspects the framework can provide by using E2E encryption. The
first one is confidentiality, that assures that no one else but the designated destination
can read a sender’s messages and furthermore authentication, which assures that the
identity of the sender is really the originator of the message in terms of the user account.
Moreover, there is the property of verification, which shall assure that the identity of the
sender is really the person or service that it claims to be. In contrast to authentication,
verification means to verify that the authenticated logical entity is the real-world entity
that it claims to be. Last but not least, there is message integrity, which means more
precisely checking whether a message has not been altered since it was created and if it
has actually been sent by the declared sender.

To understand the following sections, some knowledge about asymmetric and symmetric
encryption with the corresponding encryption primitives is assumed. Moreover, a reader
should have some insights on the basics of the PKI and hash functions. A good source to
get some detailed overview of cryptographic concepts and algorithms is [BF11].

PGP and S/MIME

Both PGP (see the RFC24) and S/MIME (see the RFC25) offer the property of confi-
dentiality by encrypting the traffic with asymmetric or hybrid encryption mechanisms.
In both concepts communicating partners each hold a public and a private key, where
messages encrypted with the public key can only be decrypted with the private key
of the designated participator. Public keys, like the name already says, are public to
everyone and private keys are always confidential to the holder and shall never be ex-
posed. The actual authentication is done implicitly by the asymmetric encryption system,
because when encrypting with the public key of the destination, only the destination
can read the contained data, because only the destination can decrypt with the private
key. Additionally, cryptographic certificates are used in both protocols for verification
that the public key is really owned by the claimed identity. These certificates can be
signed by a chain of trusted CAs or following the web-of-trust concept, where the trust
originates from many different participants signing the public key and thereby confirming
the key-identity mapping. The web-of-trust concept is not supported by the S/MIME
concept. Message authentication and integrity checking happens by digital signatures.
Therefore, the sender calculates a unique hash-code of the plain text of the message and
signs the hash with its private key and appends it to the message content. When the
receiver decrypts the message with his private key, it can check integrity and authenticity

22https://github.com/jitsi/otr4j accessed 02.2017
23https://github.com/ChatSecure/OTRKit accessed 02.2017
24https://tools.ietf.org/html/rfc4880 accessed 08.2017
25https://tools.ietf.org/html/rfc5751 accessed 08.2017

65

https://github.com/jitsi/otr4j
https://github.com/ChatSecure/OTRKit
https://tools.ietf.org/html/rfc4880
https://tools.ietf.org/html/rfc5751

5. Design

by decrypting the hash-code with the sender’s public key, calculate the hash-code on the
decrypted plain text and compare the two hashes. These roughly explained concepts are
supported by both PGP and S/MIME.

OTR

When Borisov, Goldberg and Brewer proposed the OTR protocol in 2004 [BGB04], they
discussed the advantages of the protocol in comparison with e.g. PGP and S/MIME,
especially for instant messaging. They highlight that those systems use long-lived
encryption keys, which when compromised can be used to decrypt all future and also past
traffic, if it has been stored. Furthermore, the digital signatures are a strong, jurisdictional
proof of authorship of messages, which might not always be wanted, especially in social
communications. Additionally to the properties offered by the described cryptographic
systems, OTR has further interesting features. Perfect forward secrecy ensures that also
if the private key of one participant gets compromised, past messages cannot be recovered,
because every message is encrypted with a different short-term key that is derived from
former keys. Message signatures in contrast to the other protocols have the additional
property that they prove the authorship of the message to the designated partner, but not
to any third party. More precisely, in contrast to the other protocols, OTR uses a different
encryption scheme that provides confidentiality and authenticity for the communication
partners internally, but lets a third party theoretically forge a message very easily to look
like it has been sent by one of the partners. The concept is called malleable encryption
and shall guarantee deniability of communication. The feature of deniability is offered in
the first version of the framework in contrast to accountable communication for reasons
of privacy. Developers might want to guarantee this to users in social applications
where transferred data has to be absolutely confidential and communication has to be
deniable (e.g. in countries with strict governmental cencorship). Nevertheless, another
E2E encryption protocol that offers accountability of communication can be added to
the framework by implementing the encryption module.

Signal

Signal (former TextSecure, see [CGCD+17] for more details), developed by Open Whisper
Systems, is a relatively new protocol that can be seen as a successor of OTR. It is used
by the famous WhatsApp chat application to E2E encrypt messages. It basically offers
the same properties as the OTR protocol, but additionally also backward secrecy and
asynchronous establishment of secure sessions, which means, that also future messages
cannot be decrypted when a short-term secret key is compromised and for establishment
of a secure channel not both communication partners have to be on-line. Nevertheless,
although there are some additional features in the Signal protocol, an own additional
server role is needed for the protocol to work. For detailed descriptions and comparisons
of OTR and Signal see [FMB+16].

66

5.5. Security concept

Protocol selection

Although a relay server role is already needed for communication over XMPP, there might
be implementations of different communication protocols within the MPM framework,
which do not need a server but still want to encrypt E2E. In the conceptual design of the
framework’s reference implementation it is not a requirement that peers can be off-line
when establishing a secure channel. Therefore, for the reference implementation the
OTR protocol is preferred over Signal. Also, in the latest version of the OTR protocol
there exists an option to use the socialist millionaire problem (SMP) to verify that an
identity is really the person or service it claims to be, like explained in more detail
in [AG07]. Signal does not support this natively and when verifying public keys they
have to be compared manually (like possible with WhatsApp by comparing bar-codes).
Generally, the rigid concept of certificates for verification like in PGP and S/MIME is
not applicable to dynamic, mobile networks. The additional features, like forward secrecy
and deniable communication, that OTR and Signal offer, also seem to make sense for
mobile and possibly social applications. Ultimately, because it does not need a server
role and supports verification using the SMP without having to compare public keys
manually, OTR is chosen as the first implementation of E2E encryption in the MPM.
Still, the framework is designed that this component is easily exchangeable by another
implementation like Signal.

Establishment of secure sessions with OTR

Figure 5.8 shows in detail how the cryptographic handshake of two peers (called Bob
and Alice) looks like in OTR. It is based on the sign and mac (SIGMA) protocol. What
happens first is a common Diffie-Hellman key exchange procedure. Both SIGMA and
Diffie-Hellman are explained in further detail in [Kra03]. The advanced encryption
standard (AES) is used to encrypt the traffic. From the shared secret created by the
Diffie-Hellman exchange further shared secrets are created later on. By exchanging a
message authentication code (MAC) and the long-term public keys, both clients can then
authenticate each other.

Secure data exchange using OTR

If the secure OTR session has been established between the two authenticated, com-
municating peers, the confidential data exchange can happen with data messages from
Alice and Bob. Figure 5.9 shows the components of such a data message. In every
AES-encrypted message a new Diffie-Hellman key exchange is performed so that always
a new shared secret can be created for future messages. Every message is signed with a
MAC to guarantee integrity. The MAC key of the previous message is sent to the partner
as well in plain text. This technique offers perfect forward secrecy, because for every
message a different shared secret is generated and also deniable communication, because
when publishing the previous key, a third party could forge a message and sign it by

26http://matthewdgreen.tumblr.com/ accessed 02.2017 original from [BM06]

67

http://matthewdgreen.tumblr.com/

5. Design

Figure 5.8: Sequence diagram of OTR handshake between Bob and Alice (see the post of
matthewdgreen on tumblr26)

creating a MAC with that key. The special streaming encryption-cypher used in this
variant of AES allows changes to a specific character in the encrypted text resulting in
only a specific change in the plain text and without scrambling the whole message, so
the encrypted cypher text is actually malleable.

Verification of the secure session

An OTR session authenticates the communication partner and also authenticates every
message for the receiver, but makes a prove of authorship to third parties impossible.
Nevertheless, one can think of the situation where a communication partner holds a
key and fakes an identity from the beginning of a conversation. Authentication in that
case is no problem, because the key exchange with the attacker can happen legitimately.
A solution to that is a comparison of a secret on another channel, which is possibly
an insecure channel. Of course, one solution is to meet physically and compare the
public key by hand, which is supported by e.g. WhatsApp. Nevertheless, if two partners
already have a shared secret, the SMP offers a possibility for verification also on an

27http://matthewdgreen.tumblr.com/ accessed 02.2017 original from [BM06]

68

http://matthewdgreen.tumblr.com/

5.6. Scalability concept

Figure 5.9: Sequence diagram of OTR data exchange and key publication between Bob
and Alice (see the post of matthewdgreen on tumblr27)

insecure channel and without having to meet personally. Basically, the protocol offers
the opportunity to compare if two secrets x and y are equal (x = y) on an insecure
channel without a third party being able to learn one of the secrets. The actual secret
(answer) is never transmitted on the channel. Formal details on how this can be achieved
are presented in [BST01]. The big advantage of the current OTR version 3 is that it
supports the SMP for verification. By that means, e.g. a question "Where did we meet
first?" could be asked to a partner and the answers (secrets) are compared by using SMP.
Each side can then verify the secure session and now has a proof that the communication
partner really has the identity that he or she claims to have.

5.6 Scalability concept

The following section is about the concept how scaling could work in an application that
is based on the MPM framework. Basically, a pure P2P approach is scalable by design,
but because communication shall be possible also from behind any NAT, a relay server
role has been introduced to the communication layer reference implementation. Also, a
registration server role is included to obtain an identity and a notification peer is used
to send notifications to peers over the FCM framework (see Figure 5.4). Because these
system defined components are necessary for operability of every participating peer, they
need to be scalable if the number of peers in the network or the amount of network traffic

69

5. Design

increases to ensure an appropriate performance of the application.

5.6.1 Scaling the relay server role

When choosing the implementation of the XMPP server, a main factor for the decision was
that functionality to scale the server should be available. The Openfire28 implementation
of the XMPP server has the possibility for horizontal scaling by clustering the relay and
identity server role. To achieve this, a special plug-in can be installed on the server named
Hazelcast Clustering Plug-in (see the Hazelcast documentation on the IgniteRealtime
website29). When the plug-in is installed on several XMPP servers, they can be joined
together to a cluster by listing their addresses in a configuration file of the plug-in. The
plug-in will then take care that all servers in the cluster will communicate with each
other, e.g. to deliver messages to users connected to other servers within the cluster.

In the proposed architecture, a load balancer is needed to connect a user to one of the
XMPP servers defined in the cluster. For that purpose, any load balancer that is able to
do TCP load balancing can be used, but at least it should also support TLS, because
this is necessary for encryption between peers and the relay server. For the scalability
tests (see Section 8.1) the HAProxy high performance TCP/HTTP load balancer (see
the HAProxy website30) is used. This load balancer needs to be configured with all the
addresses from the single server instances in the cluster and also with the balancing
algorithm to use for instance selection, e.g. round robin or least connection algorithms (see
the "<algorithm>" argument in configuration documentation at the HAProxy website31

for further details). When TLS is enabled, HAProxy e.g. offers TLS passthrough, that
means it just opens a TCP tunnel to the chosen server and lets the client and server
negotiate and handle the TLS traffic. Figure 5.10 shows the design of a scaled XMPP
server role with 3 relay servers. When clients want to connect to the network, they have
to connect to the load balancer, which will establish a connection with one of the servers
in the relay cluster by using the specified balancing algorithm. After that, as long as
connected, the peer will relay all communication within the MPM network over that
XMPP server. The clustering software will manage to deliver messages to peers that
are connected to different server instances. Also, HAProxy performs health checks on
the clustered instances and does not establish connections to instances that are down at
the moment, but only when they are on-line or become available again. When hosting
an XMPP cluster the instances have to be located within the same LAN-based network
infrastructure. That means they have to be within one locally switched network or in a
virtual LAN, e.g. within a private or public cloud, like offered by Amazon Virtual Private
Cloud (see the virtual private cloud (VPC) description on the Amazon website32).

28https://www.igniterealtime.org/projects/openfire/documentation.jsp accessed
08.2017

29https://www.igniterealtime.org/projects/openfire/plugins/hazelcast/readme.
html accessed 02.2017

30http://www.haproxy.org/ accessed 02.2017
31http://www.haproxy.org/download/1.7/doc/configuration.txt accessed 02.2017
32https://aws.amazon.com/vpc/details/ accessed 02.2017

70

https://www.igniterealtime.org/projects/openfire/documentation.jsp
https://www.igniterealtime.org/projects/openfire/plugins/hazelcast/readme.html
https://www.igniterealtime.org/projects/openfire/plugins/hazelcast/readme.html
http://www.haproxy.org/
http://www.haproxy.org/download/1.7/doc/configuration.txt
https://aws.amazon.com/vpc/details/

5.6. Scalability concept

Figure 5.10: Architecture diagram of XMPP clustering for scalability of the MPM
framework

All instances have to use the same identity database. The amount of database operations
is negligible in comparison to the data exchange operations in the MPM network,
e.g. database operations are necessary when a user registers or logs in to a server.
Therefore, there is no particular focus on scaling the XMPP identity databases in the
tests. Nevertheless, although scaling the database is probably not a big factor for
performance, it is important for availability of the whole cluster. Therefore, the identity
database should also be replicated in a database cluster, like shown in Figure 5.10. For
example, Amazon offers cloud database clusters with Amazon Aurora DB (see the Amazon
Aurora DB documentation on the Amazon website33). Clustering the database with e.g.
Amazon Aurora provides good scaling for read operations used by the XMPP cluster and
also increases availability of the database. Amazon Aurora distinguishes one primary
instance, which is mirrored in milliseconds to the secondary instances. Access to the
database cluster is completely transparent and available over standard client database
connectors, looking like connecting to a single instance.

33http://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/CHAP_GettingStarted.
CreatingConnecting.Aurora.html accessed 02.2017

71

http://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/CHAP_GettingStarted.CreatingConnecting.Aurora.html
http://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/CHAP_GettingStarted.CreatingConnecting.Aurora.html

5. Design

5.6.2 Scaling the registration server

Peer registrations happens sparsely in comparison to the joining of and communication
between existing peers. In the reference implementation of the MPM the registration
server role is a web API that offers functionality to create a new identity in the application
scope, like shown in Figure 5.5 via HTTP endpoints. This system component, as much
as the identity database, does not play a role in the scalability tests. Nevertheless, the
registration server has to be available to guarantee a new peer to be able to join the
network. To guarantee availability and also some additional amount of performance, the
registration server could be clustered as multiple web API instances. A good option to
accomplish that is e.g. to use a clustered container service like Amazon EC2 Container
Service (see the Amazon EC2 developer guide at the Amazon website34). These containers
act like light-weight virtual machines that can perform specific tasks like hosting the
registration server API. Amazon offers out-of-the-box load balancers on such container
clusters (see the blog post about load balancing on EC2 instances on the Amazon
website35).

5.6.3 Scaling the notifier peer

Since the notifier is an important system peer in the scope of an MPM framework based
application, needed by every application that wants to notify users about incoming
entries, this centralized peer shall be scalable as well. The notifier peer, depending on the
overall network traffic, might become a bottleneck, because a notification entry is sent to
and processed by it for every other sent entry on the system. Therefore, depending on the
application, it might be desirable to add more notifiers to the network, so that network
and computational load can be distributed amongst them. The concept here is depending
on the implementation of the communication layer. In the reference implementation with
XMPP, multiple notifiers can just join the network with the same login name. With
XMPP it is possible to set a globally unique identifier (GUID) for every connecting user.
It is also possible to have multiple connections of a user at the same time, by specifying
an XMPP resource (the mentioned GUID) (e.g. when connecting from different devices).
In the MPM such a GUID is set on every different connection to the network. Now,
when multiple notifier peers join the network, all other peers can request all the different
joint notifier peers by getting all different resource GUIDs of them. This functionality is
offered by the XMPP server. A main advantage is that new notifier peers can join the
network dynamically and their resource GUID is delivered to peers that want to send
notifications. To achieve load balancing, connecting peers select one currently available
notifier peer at random.

Figure 5.11 shows a client peer logging in to an MPM network where two notifier peers
are available, requesting their resource addressed from the XMPP server (1). After the

34http://docs.aws.amazon.com/AmazonECS/latest/developerguide/Welcome.html ac-
cessed 02.2017

35https://aws.amazon.com/de/blogs/compute/microservice-delivery-with-
amazon-ecs-and-application-load-balancers/ accessed 02.2017

72

http://docs.aws.amazon.com/AmazonECS/latest/developerguide/Welcome.html
https://aws.amazon.com/de/blogs/compute/microservice-delivery-with-amazon-ecs-and-application-load-balancers/
https://aws.amazon.com/de/blogs/compute/microservice-delivery-with-amazon-ecs-and-application-load-balancers/

5.6. Scalability concept

Figure 5.11: Diagram of a client peer randomly choosing one notifier amongst two
available ones

server delivers the list of available notifiers (2), the client chooses one notifier at random
(3). Notification entries are sent to this notifier peer in this session of the client peer (4).
The graphic also shows that all notifier peers in an MPM use the same database for the
mapping between identities and their FCM tokens. This database could be clustered
analogously to the XMPP identity database to ensure availability of the notification
service. Still, for scalability tests of the MPM this database is single instanced. Results of
calls to this database are cached in the notifier peer’s memory because when notifications
are enabled there are many database queries.

73

CHAPTER 6
Implementation

After evaluating the background technology, establishing the requirements, clarifying the
distribution of work and developing a system design for communication, serialization and
security, this chapter shall expose some relevant details on the programming phase of the
software engineering process. As the source code of the framework will be open, publicly
available and documented, not so many code listings of the core model are presented
in the paper. Important instructions on the configuration of system components and
details on how to set up needed server roles, as well as insights on the most important
interfaces of the exchangeable core components are discussed. As it has been described
in Section 5.2.3, Peter Tillian focuses on the implementation details of the RTP with all
its components, on the persistence and also on the integration with the Android platform.
This section deals with my responsibilities in the framework development, which are
the communication layer, serialization, scalability and security. Details on used external
libraries and systems are provided.

6.1 Class overview

In this section a class overview of the implementation is given. Information is provided
as unified modelling language (UML) class diagrams, only showing the most important
packages with their included interfaces and classes. Also their inheritance structure and
dependencies on each other are shown.

6.1.1 Communication and encryption components

The diagram in Figure 6.1 displays the most important classes and interfaces of the
communication and encryption packages in the MPM reference implementation (package
at.ac.tuwien.mobilepeermodel). The IConnection interface represents the exchangeable
communication layer used in the MPM implementation. The XmppConnection class is

75

6. Implementation

the provided implementation of this interface for the first version of the MPM framework.
It is using the XMPPTCPConnection from the Smack XMPP client library for Java (see
the Smack documentation website1), which is the default implementation in this package
for connections to an XMPP server. Smack is an open-source XMPP client library that is
in ongoing development and is provided by Ignite Realtime, who also publish the Openfire
XMPP server.

The encryption package is integrated with the communication layer, as it is extending
the IConnection interface to a ISecureConnection interface, which additionally to the
communication functionality offers all the functionality to perform the E2E encryption.
The OtrSecureConnection class is the delivered implementation of this interface for
the first version of the framework. It is dependent on the OtrEngineHostImpl, which
implements the OtrEngineHost interface of the Otr4j library (see Section 5.5.4). This
class is responsible for managing all OTR encrypted sessions to other peers in the
network over a secure connection. That means, when sending an entry to another peer
over an OtrSecureConnection, a secure session gets instantiated on the OtrEngineHost
with the peer in the dest property of the entry. Moreover, the OtrSecureConnection is
using an underlying IConnection to send the encrypted data, e.g. an XmppConnection
or another implementation. The actual implementation of the Session class, which
represents such a secure OTR session, is not shown in the diagram and done by the
Otr4J library. Furthermore, to store all needed keys used by the OTR protocol (see
Section 5.5.4), the OtrKeyManagerStore interface of the Otr4j library is implemented by
the encryption package of the MPM framework (OtrKeyManagerStoreImpl class) and
used by the OtrEngineHostImpl class.

6.1.2 Serialization component

As has been stated in Section 5.4.4, serialization shall be configurable separately for entries
and the data object probably contained in an entry. Also, a reference implementation
for both entry serializer and data object serializer shall be provided with Google Gson
and Google protocol buffers (see Section 5.4.2). Figure 6.2 shows the most important
interfaces and classes of the serialization packages for data object serialization (package
at.ac.tuwien.mobilepeermodel.data.serialization) as well as for entry serialization (package
at.ac.tuwien.mobilepeermodel.entry.serialization).

All implementations of a data object serializer have to implement the interface IDataSerial-
izer. In the reference implementation, a GsonDataSerializer and a ProtobufDataSerializer
that implement this interface are provided. As has been discussed in Section 5.4.3,
every implementation of an IDataSerializer is dependent on a data type registry (class
DataTypeRegistry) with mappings from the entry type property to objects of the MPM
framework.

1https://www.igniterealtime.org/projects/smack/documentation.jsp accessed
07.2017

76

https://www.igniterealtime.org/projects/smack/documentation.jsp

6.1. Class overview

Figure 6.1: Main classes of communication and encryption of the MPM framework with
their dependencies (packages yellow, interfaces green, classes gray)

Analogously to the data serializer, every implementation of an entry serializer has
to implement the interface IEntrySerializer. Also here, a GsonEntrySerializer and a
ProtobufEntrySerializer are provided. As has also already been described, a registry
for protobuf type adapters has to be implemented (class ProtobufTypeAdapterRegistry),
which holds all protobuf type adapters (package adapters) defined by the application
developer. The protobuf data serializer needs this registry in order to convert protobuf
messages (imported from com.google.protobuf.Message) to first-class data objects of
the MPM framework. While protobuf adapters for data objects have to be defined by
the application developer, the ProtobufEntryTypeAdapter, used to serialize entries with
protobuf, is already implemented in the system and used by the ProtobufEntrySerializer
class.

Google Gson does not need adapters to convert from objects to JSON strings by default,
because it uses matching of field names in the objects to property names in the JSON
string. As you can see in the diagram, the only thing needed by the Gson data and
entry serializer classes is the implementation of the Google Gson serializer from the
com.google.gson package.

77

6. Implementation

Figure 6.2: Main classes of the serialization component of the MPM framework with
dependencies (packages yellow, interfaces green, classes gray)

6.1.3 Other components

There are further important components of the core MPM framework. These are the
at.ac.tuwien.mobilepeermodel.peer package, containing the implementation of the RTP
with its local peers and system peers, as well as the at.ac.tuwien.mobilepeermodel.persistence
package, which manages persistence of entries and data-loss prevention. The overview of
these parts and also the design of the Android service integrating an MPM RTP, which
is delivered together with the core framework, is done by Peter Tillian [Til17], because
these packages are within his responsibilities.

78

6.2. Communication and identity management

6.2 Communication and identity management

This section explains the important components of the communication layer. The first
one is the IConnection interface, which is used by the RTP to connect to the network
and has to be implemented by an MPM communication component. In the reference
implementation this is the XmppConnection. Here the usage of the Smack XMPP library
is shown. Furthermore, some installation and configuration instructions on how to set-up
and configure the used XMPP server Openfire are presented. Also, some insights on the
implementation of the notifier peer are given.

6.2.1 IConnection interface with its XmppConnection
implementation

The communication component of the MPM framework is an important and exchangeable
part. It offers all functionality to connect peers to an MPM network and enables
sending entries to other peers. Figure 6.3 shows the IConnection interface, exposing all
methods needed to connect, disconnect, send and receive entries to and from other peers.
The method addMessageListener is used to register an EntryMessageProcessor on the
connection, which has a single method processEntry(IEntry) that is called when a new
entry arrives from a remote peer. There exists a method setAllowedSenders, where a list
of peer URIs can be provided to the connection. The EntryMessageProcessor then only
is called on incoming entries from that specific list of remote peers. By that means, some
sort of white-listing of peers allowed to send entries to the local RTP can be achieved,
which is a countermeasure to e.g. spamming. Moreover, the method blockUnblockIdentity
can be used to block or unblock a specific remote peer, identified by a provided IIdentity
object. In this case this is the whole MPM RTP identified by an XMPP host-name. It
is also a countermeasure against spamming and DoS attacks, like discussed in Section
5.5.3. Last but not least, there is also the possibility to send not only entries (method
send(IEntry)), but also String messages to other peers (method send(String, IIdentity)).
This is needed by overlying E2E encrypted connections that are using this connection.
An overlying ISecureConnection can be registered with the method setSecuredConnection
in the underlying IConnection. This is necessary because when traffic is encrypted the
IConnection that receives an incoming encrypted entry or an encryption control message
has to hand it over to the ISecureConnection for further processing. A secure connection
might need some kind of preceding handshake or conversation like Diffie-Hellman key
exchange, where String messages have to be exchanged. These are used to establish
a secure session and no coordination logic is needed for those messages, so it is more
efficient to send them as plain strings.

The presented interface has been designed to be as general as possible, implementable
also by other protocols than XMPP over TCP, which is used in the reference imple-
mentation. E.g., a pure socket based implementation for a LAN based MPM network
without additional identity management or authentication might as well be realized
as a bluetooth-based network. In the first implementation the XMPPTCPConnection

79

6. Implementation

Figure 6.3: The IConnection interface

(see the Smack documentation 2) of the open-source XMPP library Smack is used. Be-
sides other functionality, this class exposes some important methods to be used by the
XmppConnection, which is implementing the IConnection interface:

• connect() - used to establish a connection with the XMPP server

• disconnect() - used to disconnect from the XMPP server

• login() - used to authenticate the client on the XMPP server

• sendStanza(Stanza) - used to send XMPP stanzas (stanzas are XMPP messages,
see [Til17] for further details)

• addAsyncStanzaListener(StanzaListener) - used to register a listener that processes
incoming stanzas

6.2.2 Configuration of the XMPP communication component

Basically, the methods from the Smack implementation, which have been enumerated
above, provide the main functionality used by the implementation of the IConnection
interface. Nevertheless, for the establishment of an XMPP connection with a server,
further properties are important. These include the address where the XMPP server
or server cluster is reachable, the TCP port where the XMPP server role is running
on that host, as well as the service name for the application on that XMPP server,
representing the name-space where user-names have to be unique. These services are
represented as domain specifications (<domain>.<top-level-domain>) and can also be
used for resolution with the Domain Name System (DNS). For further details on the
XMPP service definition see [Til17]. Furthermore, it can be configured whether the

2http://download.igniterealtime.org/smack/docs/latest/javadoc/ accessed 02.2017

80

http://download.igniterealtime.org/smack/docs/latest/javadoc/

6.2. Communication and identity management

traffic with the server shall be encrypted using TLS, if additional compression shall be
done on the XMPP messages (provided by the XMPP protocol) and if log messages shall
be printed for debugging purposes. All these properties have default values specified in
the file xmpp-default.properties in the resource folder of the MPM core framework. An
application developer can override them by specifying them in the resource folder of the
developed application project in the file xmpp.properties with the same names for the
properties. The MPM framework automatically detects that and use the overwritten
values.

6.2.3 Installing and configuring the XMPP server

Like already mentioned, the Openfire XMPP server implementation and the Smack
XMPP client library are used. Both are licensed under the open-source Apache 2.0
license and thus are compatible with the licensing requirements. While the usage of the
Smack library has already been explained, this section gives some information on how to
set-up and configure the Openfire server. Insights on how clustering of the server can be
done is provided in the following chapter.

The Openfire server can be downloaded for Windows, Linux and Mac OS from the Ignite
Realtime website3, the source code is also available from there. Detailed installation
instructions are available on the website’s installation guide4. The server also needs a
database for storing the XMPP identities. Details on how to set up the database can
be found at the database installation guide5. After the installation, the server can be
configured in a web-based administrator console. There also the used ports are configured,
which also have to be activated on the server’s firewall.

6.2.4 Setup of the notification infrastructure

The concept of notifications, like proposed in Section 5.3.3, specifies the role of a notifier
peer in the system, which pushes notifications to other peers. The notifier peer is
implemented as a self-contained peer in the system and is bootstrapped as a usual MPM
peer. The only difference is that this special peer has a fixed address in any MPM network.
This is defined in a configuration file and compiled for every peer in an MPM application.
The implementation, including the sources, of the notifier is delivered accompanying the
MPM core model framework in an own open-source project.

Basically, the notifier peer runs in an MPM RTP, like every other peer in an MPM network,
as shown in Figure 5.3. This predefined peer has only one local peer with exactly two
wirings containing two services. The two wirings exactly represent the two responsibilities
of the notifier peer. These are, like explained in Figure 5.4, the storing of users’ FCM

3https://www.igniterealtime.org/downloads/index.jsp#openfire accessed 02.2017
4http://download.igniterealtime.org/openfire/docs/latest/documentation/

install-guide.html#database accessed 02.2017
5http://download.igniterealtime.org/openfire/docs/latest/documentation/

database.html accessed 02.2017

81

https://www.igniterealtime.org/downloads/index.jsp#openfire
http://download.igniterealtime.org/openfire/docs/latest/documentation/install-guide.html#database
http://download.igniterealtime.org/openfire/docs/latest/documentation/install-guide.html#database
http://download.igniterealtime.org/openfire/docs/latest/documentation/database.html
http://download.igniterealtime.org/openfire/docs/latest/documentation/database.html

6. Implementation

tokens and the sending of notifications to peers. These wirings are triggered when either
an entry with the type TOKENUPDATE_TYPE or NOTIFICATION_TYPE, both
system-predefined, are sent to the notifier peer. The entries, accordingly, must contain a
data object, which is simply a string and is then either the FCM token or the host-name
of the peer that shall be notified.

After arrival of a token update entry, the token update service of the notifier peer stores
the new token of the user, which is represented in the from property of the entry, in
a database. This mapping-database has to be set up by the infrastructure provider.
Then, a TOKENUPDATE_ACK entry is sent back to the sender to notify it about the
successful storing of the mapping.

When a notification entry has arrived, the notification service of the wiring looks up the
FCM token of the peer to be notified in the database and sends a request to the Google
FCM servers containing that token, which then notify the remote peer.

The notifier is implemented as a Spring Boot (see the Spring Boot on-line documentation6)
application with a dependency to Hibernate (see the Hibernate website7) for object-
relational mapping of Java objects to the database.

There are only a few steps that an application developer has to perform to set up the
notification infrastructure. First, the notifier code, provided as an own project beside of
the core MPM framework, has to be downloaded. In the application.properties file of
the project (resource folder), the database settings have to be configured (e.g. host and
port of the database and the database user credentials). Hibernate creates the database
schema automatically when the notifier is started. Secondly, on the XMPP server, a
peer identity (username and password) has to be created for the notifier peer (e.g. over
the Openfire administrator console). The default host and peer name of the notifier are
notifier_peer and notifier. They are defined in the general_default.properties file in the
resource folder of the MPM core framework and can be overridden in a general.properties
file within an application that is dependent on the MPM framework. This file has to
be created by the application developer in the project if default properties shall be
overwritten. The password for the notifier to join the network is configured in the
mobilepeermodel.properties file of the notifier project and has to be set to the chosen
password. The last step of the setup is to create an FCM project on the Google FCM
servers and configure an FCM server key and server URL in the firebase.properties file of
the notifier project. As FCM in the reference implementation works directly together
with the Android platform, it is in the scope of the work of Peter Tillian [Til17]. Details
on how to create an FCM project and get the server key and URL are explained there.

When the explained steps have been taken, the notifier application can be executed
on a host by just starting the Spring Boot application. This host does not have to
be publicly available, because an MPM peer using XMPP, like the notifier, can be
contacted from everywhere if it is connected to the same XMPP network. Still, the

6https://projects.spring.io/spring-boot/ accessed 03.2017
7http://hibernate.org/orm/ accessed 03.2017

82

https://projects.spring.io/spring-boot/
http://hibernate.org/orm/

6.3. Serialization

host should have a stable internet connection. By default, a notification entry is sent
to the notifier peer whenever a peer sends an entry to another peer. To switch off this
functionality, an application developer can override the general_default.properties file in
the file general.properties in the sending peer and set the value of sendNotifications to
false (default is true).

Avoiding the massive overhead of keeping a secure session with every participating peer,
all sessions with the notifier peer are not E2E encrypted. Anyway, the only data that
is sent to the notifier are host-names of peers and FCM tokens, so no payload could
be eavesdropped. Moreover, it is recommended to have several redundant notifiers
running on different hosts to guarantee some amount of performance and availability in
a productive application. See Section 5.6.3 on how to scale the notifier peer.

6.3 Serialization

A concept for the serialization of entries and data objects within the MPM framework
has been developed in Section 5.4. In this section implementation specific details on
the serialization process with protobuf, which needs schema files and type adapters, are
provided. Also, important interfaces of the serialization component are described for
framework developers to be able to develop new implementations of this component
besides the provided Google protobuf and Google Gson implementation. Furthermore, it
is shown how an application developer can configure the serialization component.

6.3.1 Details on the serialization process with protobuf

In the framework’s reference implementation, protobuf generates Java protobuf Message
classes, which are immutable and can be instantiated by using generated Builder classes.
Listing 6.1 shows an example of the protobuf IDL definition of a Person type with a
string property name. After running the Java code generator for protobuf, a Person.java
class is generated containing a Person.Builder subclass, partly shown in Listing 6.2. The
Builder subclass contains getter and setter methods for the Person. The Builder then
also exposes an interface Builder.build() (not shown in the listing), which instantiates
the object and returns the immutable Person object shown partly in Listing 6.3. It only
contains getter methods.

1 //proto IDL type definition for a Person (person.proto)
2 message Person {
3 string name = 1;
4 }

Listing 6.1: Example of a protobuf definition of a Person object (.proto file)

83

6. Implementation

1 (...)
2 //part of the generated code inside the Person.Builder class for

Java (Person.java)
3 public boolean hasName();
4 public java.lang.String getName();
5 public Builder setName(String value);
6 public Builder clearName();

Listing 6.2: Example of a protobuf generated Builder subclass of a Person object (.java
file)

1 (...)
2 //part of the generated code inside the Person class for Java

(Person.java)
3 public boolean hasName();
4 public String getName();

Listing 6.3: Example of a protobuf generated Message class of a Person object (.java file)

Those generated Java files can get quite complex and are immutable. Therefore, they are
not suitable as first-class objects to treat in the runtime of a peer. Furthermore, in that
case the whole framework would depend on the protobuf framework and the serialization
component would not be exchangeable. Suitable representations of those objects are
needed and have to be written by the application developer. For instance, in this case
the developer has to write the Person.java definition again as a usual Java class and has
to provide an adapter that can convert from a protobuf Message to that Java first-class
instance. Entry objects always have the same properties and therefore the adapter for
entry objects is predefined in the framework. The developer has to provide only the type
adapters for the contained data objects.

The serialization component uses a type adapter registry to look up the right type
adapter of a Message to be converted to the first-class object and vice versa. The protobuf
Message class exposes an interface to convert to and from a byte stream that can be
sent over the network. The receiving peer knows that an incoming Message is an entry
protobuf Message so it can always use the predefined entry protobuf type adapter to
de-serialize the received byte stream to an entry. Every entry has a dataType string
property that defines the type of the contained data object. So, the second registry
besides the protobuf adapter registry is the dataType registry that maps dataType strings
to first-class objects. By looking up the Java class for a dataType string in the dataType
registry, the de-serializer can now also lookup the right protobuf adapter for that class
and de-serialize also the contained custom data object. A precondition for this whole
process to work is that the developer has implemented and registered the Java classes for
the data objects and has implemented and registered a protobuf type adapter for each of
them. All peers that want to participate must have these types and adapters registered.

84

6.3. Serialization

Figure 6.4: The IEntrySerializer interface

6.3.2 IEntrySerializer interface with its implementations

Figure 6.4 shows the very compact interface of an entry serializer. It only exposes two
methods serialize(IEntry), which converts a provided entry to a String, and deserial-
ize(String), which converts a String to an entry. An implementation of the interface
has to take care that all the properties defined for an entry in the MPM framework
are serialized and deserialized properly (see Section 5.1.2). Entries are intended to be
serialized to base64 encoded Strings, so that they can be sent properly over the internet.
Both the Gson and protobuf implementations of the IEntrySerializer interface finally
encode the outcome of serialization to the base64 format.

As the intention of the system design is to instantiate only one entry serializer for the whole
system, there exists a class EntrySerializer in the framework, which follows the Singleton
programming pattern and implements the IEntrySerializer interface. It instantiates the
entry serializer implementation that has been configured by the application programmer
in the general.properties file of the application projects resource folder. Therefore, it also
follows the Proxy programming pattern. If no file has been created or the value of the
entrySerializerImplementation property has not been provided as a full valid class name
of an entry serializer implementation, the default implementation Google Gson is used to
serialize entries.

6.3.3 IDataSerializer interface with its implementations

The IDataSerializer, shown in Figure 6.5, is used by an implementation of the IEntrySe-
rializer and is necessary to serialize the possibly contained data object of the entry, which
can be any serializable object. The method serialize(Serializable) is used to serialize
these first-class objects to be embedded in a serialized entry object by the entry serializer.
In case of the protobuf implementation, a byte array is returned by the method to be
further processed by the entry serializer when called on the data object, when using Gson
a String is returned. Data objects are not base64 encoded, because this is done by the
entry serializer in the end. The deserialize method of the interface represents the inverse
function. The important thing is that besides the serialized representation of the object,
also the instance class type of the object has to be provided to the data serializer to know
which class should be instantiated. This is necessary because Gson and also protobuf do
not serialize to fully self-describing formats, so no type information is directly included.
The class type is provided as a parameter to the deserialize method, when called by the

85

6. Implementation

Figure 6.5: The IDataSerializer interface

deserialize method of the entry serializer on the data object. It is requested using the
dataType property of the entry, which is a string and can be mapped to the instance class
using the dataType registry (see Section 5.4.3). Finally, the entry serializer also needs
to know which type of object the data serializer returns when serializing. For now, the
possibilities are only Strings (Gson) and byte arrays (protobuf), but to be flexible for
future implementations, the getSerializedClassType method shall provide this information
when called. The entry serializer can then act depending on what is delivered by the
data serializer.

Analogously to the entry serializer, also the data serializer is a Singleton Proxy class,
which instantiates the configured full class name of the IDataSerializer implementation
in the general.properties file. The default is again the Gson implementation.

6.3.4 Protobuf type adapters

In Section 5.4.3 it has been explained that protobuf serialization needs type adapters to
convert protobuf Messages to first-class instance objects and the other way around. This
means that for every data object that shall be sent within an entry to another peer, a
protobuf type adapter has to be defined by the application developer. The class diagram
in Figure 6.6 shows the abstract class ProtobufTypeAdapter, which has to be extended
by the specific type adapters of the application developer. As can be seen, the abstract
class has type parameters for the serializable first-class data type (S) and the protobuf
Message class type (M), which has been generated using the .proto file defined by the
application developer, like explained in Section 5.4.3. The methods toProtobufMessage(S)
and fromProtobufMessage(M) have to be implemented by the concrete type adapters and
use the protobuf Builder and Messages classes, like also explained in Section 5.4.3, to
convert from instance objects to protobuf Messages and vice versa. There exist some
predefined type adapters in the core framework to e.g. convert simple string data objects.

6.3.5 DataType and protobuf adapter registries

In Section 5.4.3 it has been shown that two different registries are needed in the system.
One general dataType registry to map from dataType entry properties to Java instance
classes and one protobuf type adapter registry to map from protobuf Messages to Java
instance classes, needed only if protobuf is configured for data object serialization. Besides

86

6.3. Serialization

Figure 6.6: The abstract class ProtobufTypeAdapter

some system defined data objects and protobuf adapters, it is the responsibility of the
application developer to register all needed mappings in the dataType registry and if
protobuf is configured to implement the needed adapters and register them.

The dataType registry (class DataTypeRegistry) is a simple class that exposes one
important static method putMapping(String, Class<? extends Serializable>), which
adds a mapping of a dataType property of an entry to the corresponding Java instance
class. So, e.g., if a String is sent over the network inside the data property of an entry
and the definition for the data object type is e.g. the name "string", then there has
to be a registration in the dataType registry with putMapping("string", String.class).
Some primitive dataTypes like boolean, String, Long, etc. have already been registered,
also the system defined classes like Entry.class and ExceptionEntry.class, as well as
byte arrays, have been added. The dataType registry is used by the implementations of
the IDataSerializer interface to get information to which class a data object inside an
incoming entry shall be deserialized to. One could argue that it would probably be a
good idea to just use the Java class name for the dataType property, de-serialize to an
object of the class with that full name (including packages) and thereby get rid of this
registry. Nevertheless, such an approach would not be inter-operable with e.g. an iOS
implementation and also always the full name of a Java class would have to be transferred
on the network with every entry (instead of a short name). Therefore, the decision has
been made to introduce this registry.

The protobuf type adapter registry (class ProtobufTypeAdapterRegistry) is used to reg-
ister type adapters to convert from protobuf Messages to Java instance classes. The
class exposes one important static method registerAdapter(Class<? extends Proto-
bufTypeAdapter>), which can be used to register type adapters extending the abstract
ProtobufTypeAdapter class in the system. This is necessary to be used by the protobuf
implementation of the IDataSerializer interface. As implementations of such adapters
have type parameters for the protobuf Message class and the Java instance class, the
mapping between them can be automatically done by the protobuf type adapter registry,
when registering an adapter.

87

6. Implementation

6.4 Security

The security concept for the framework, like proposed in Section 5.5, is based on four
important aspects:

• Identity concept - realized with XMPP identities in the reference implementation

• Encryption on the transport layer - realized with XMPP using TLS functionality

• Countermeasures against DoS and spamming - realized with white-listing and
blocking of identities

• E2E encryption - realized with the OTR protocol implementation in the library
Otr4j

This section provides insights in the implementation details that might be relevant for
application or framework developers of the MPM framework.

6.4.1 Identity concept

Identities in the reference implementation of the MPM framework use XMPP as identity
provider (see Section 5.5.1). Identities are obtainable for joining peers by using a trusted
registration server role, like shown in Figure 5.4. Communication with this server can
be encrypted using TLS and certified using a PKI certificate. As the XMPP server acts
as an identity provider, the only action that an application developer has to perform
here is to set up the registration server role and obtain a certificate for the server if
wanted. The source code of an example registration server is delivered as an own project
accompanying the MPM core framework code and is a Spring Boot (see the Spring Boot
project website8) application that offers a web API to perform user registrations on the
XMPP server. Details on the registration server role implementation and on how to
install the server are delivered by Peter Tillian [Til17].

6.4.2 Encryption on the transport layer

XMPP, as the chosen communication protocol, offers client to server encryption out-
of-the-box by making it possible to enable TLS on a connection. By default, TLS is
turned off in the system, but can be enabled by the application developer by setting the
property security=enabled in the file xmpp.properties in the resource folder of the project.
Additionally, in the file a TrustManager and a HostnameVerifier can be configured.

The TrustManager is an implementation of the javax.net.ssl.X509TrustManager interface
and is responsible to check if the certificate published by the server is valid and has not
yet expired. This is done by the isServerTrusted method of the interface.

8https://projects.spring.io/spring-boot/ accessed 03.2017

88

https://projects.spring.io/spring-boot/

6.4. Security

The HostnameVerifier is responsible to verify the host name of the server provided in
the context of the TLS session with the configured XMPP service domain. It is an
implementation of the javax.net.ssl.HostnameVerifier interface and exposes one method
verify. The method is responsible to check if the host name of the server is matching the
server’s authentication scheme in the TLS session and also matches the XMPP servers
defined service domain.

The properties trustManagerImplementation and hostnameVerifierImplementation in
the xmpp.properties file specify which implementation of those interfaces to use for
securing the connection with the XMPP server over TLS (full Java class name). There
are two predefined implementations AcceptAllCertificatesTrustManager and AcceptAll-
HostnameVerifier in the MPM core framework, which are implemented to accept all
kinds of PKI certificates and host names of a server. If an application developer wants
to implement a trustworthy TLS communication, a valid certificate from a CA has to
obtained and installed on the server. Then the TrustManager and HostnameVerifier
have to be implemented in the application as described and have to be configured in the
xmpp.properties file.

6.4.3 Countermeasures against DoS and spamming

As has been shown in Section 6.2.1, there exists the functionality to block and unblock
specific other peers in the network or even allow only a list of peers to be able to
communicate with a peer. This functionality is offered by the IConnection interface of
the communication layer in the MPM framework. Still, it would be possible to flood the
XMPP server with requests.

Every peer in the MPM framework has exactly one RTP. Every RTP, when communicating
over XMPP, has exactly one connection to the XMPP server. This connection can be
accessed by the application developer from the RTP and the two methods to white-list
peers or to block and unblock peers can be called. The white-list has to be provided to
the RTP before it is started. Blocking and unblocking of specific peers can be done at
runtime. These are features of the XMPP protocol and the configuration is stored on the
server. To be more precise, the server stores a privacy list with this configuration and
checks the list on every arrival of a message for the peer.

6.4.4 End-to-end encryption

The reasoning about introducing optional E2E encryption in the system and the selection
of the OTR protocol as choice for the reference implementation has been discussed in
Section 5.5.4. Also, the functional principle of establishing secure sessions and verifying
them with SMP has been shown in detail. In the MPM framework, the IConnection
interface (see Section 6.2.1) has been extended to an ISecureConnection interface to offer
additional functionality to establish an E2E encrypted channel.

In Figure 6.7 the interface is depicted. The methods from the IConnection interface are
not shown again in the diagram. An implementation of the ISecureConnection manages

89

6. Implementation

an underlying IConnection. With this concept the used IConnection can be exchanged
by another implementation without affecting the encryption and the functionality of
the communication has not to be implemented again by the ISecureConnection. Here,
the secure connection just passes method calls on to the underlying connection to offer
the same functionality as the IConnection interface but with additional E2E encryption.
The only exception is the method send(IEntry), here the entry has to be encrypted first.
Then the send(String, IIdentity) method has to be called with the encrypted cypher-text.
The diagram shows the methods introduced by the ISecureConnection interface. Before
being able to send E2E encrypted messages, a secure session with a specific remote IIden-
tity has to be established (method establishSecureChannel(IIdentity)). In the reference
implementation this can happen manually by a call to the method or automatically
when the send(IEntry) method is called. When an encrypted cypher-text arrives at
the underlying insecure connection of a destination peer, the insecure connection passes
on the cypher-text to the overlying secure connection and calls the handleIncomingEn-
cryptedMessage(String, IIdentity) method. The encrypted text might be part of some
handshake or key exchange of the E2E protocol or might be an encrypted entry. If it
is an entry, it gets decrypted and handed over to the EntryMessageProcessor of the
underlying connection to be processed in the RTP. The verifySecureChannel(IIdentity)
method is intended to offer functionality to verify the identity of both partners of an
established secure channel. Usually some kind of common secret among those is necessary
to do this. Therefore, a IRequireSecretProcessor can be registered on the connection
with registerRequestSecretProcessor(IRequestSecretProcessor). An implementation of the
IRequestSecretprocessor implements two methods requireQuestion(IIdentity) and requireS-
ecret(String, IIdentity). In the implementation of the verifySecureChannel(IIdentity)
method a developer might call those methods to get a specific question to ask to a specific
communication partner from the application user and as a counterpart might ask a user
for the answer (secret) to a specific question. The verifySecureChannel method is then
responsible to verify if those secrets are the same or not. Furthermore, it is possible to
use and configure an application-wide secret to use for verification if wanted. All other
methods of the interface are self-explaining.

In the OtrSecureConnection implementation of the ISecureConnection interface that is de-
livered with the first version of the MPM framework, the establishSecureChannel(IIdentity)
is implemented like described in detail in Section 5.5.4. When the OTR handshake has
been successfully performed, encrypted entries can be sent with send(IEntry) following
the secure data exchange using OTR, like explained in Section 5.5.4. The functionality
of this secure session is offered by the SessionImpl class of the Otr4j library.

All the secure sessions an MPM RTP has established with other peers are managed within
the OtrEngineHostImpl class, which is an implementation of the Otr4j OtrEngineHost
interface. This host keeps track of all sessions and receives events on all of them
(e.g. when a session is successfully established or when verification succeeded or failed
etc.). It is also responsible for storing the exchanged keys of the OTR protocol for
later reuse, if another secure session shall be established between two peers. Therefore,

90

6.4. Security

Figure 6.7: The ISecureConnection interface

an implementation OtrKeyManagerStoreImpl has been done in the MPM framework
according to the OtrKeyManagerStore interface of Otr4j. This implementation offers
methods to store private and public encryption keys and also boolean properties in
password secured files. The verification of sessions (verifySecureChannel method) in the
OtrSecureConnection is implemented using the SMP protocol, which is offered out-of-the-
box by the OTR protocol version 3 and the Otr4j library (see Section 5.5.4 for further
details on how the verification process works).

The most important methods of the SessionImpl class of the Otr4j library are:

• startSession() - initiates the establishment of a secure OTR session

• transformSending(String) - encrypts a String according to the session keys

• transformReceiving(String) - decrypts a String according to the session keys

• injectMessage(AbstractMessage) - sends a message

• initSmp(String, String) - initiates the SMP protocol with a question and secret

• respondSmp(String, String) - answers a SMP request with a question and secret

All the necessary configuration for the E2E encryption within an MPM framework based
application can be configured in an encryption.properties file in the resource folder of an
application.

Performing the configuration in that file, an application developer can easily set up E2E
encryption with OTR. The only additional action to do is to register the IRequestSe-
cretProcessor when using verification of sessions with SMP. When a session calls the
processor, it can be used to e.g. print a dialog box to the user of the application to enter

91

6. Implementation

the secret for a question of a sender. Additional implementations of the E2E encryption
are possible for a framework developer by implementing the ISecureConnection interface
and configuring the implementation in the encryption.properties file.

6.5 Scalability

The proposed scalability concept from Section 5.6 stated that central parts of the network
shall be scalable. These are the XMPP server and the notifier peer. Furthermore, also
the identity database of the XMPP server as well as the database of the notifier and the
registration server are central parts. Nevertheless, as has been discussed in Section 5.6,
they are not crucial to the performance of the system, but for the availability. Both the
clustered XMPP server as well as all notifier peer instances are each designed to use one
common database connection. It has been explained how these two databases can be
clustered, e.g. in the cloud, to increase availability. In a large, productive application
that is based on the MPM framework it would be essential to do so. Moreover, also
the registration server role could be clustered to ensure availability of initial accession
of peers to a network. It has also been explained in Section 5.6 how the registration
server, which in its reference implementation is basically a web API offering registration
functionality running as a Spring Boot application, can be clustered in the cloud.

This section deals with the scalability of the relay server and the notifier peer, which
are the components that are essential for performance of an MPM framework based
application. In Section 8.1 the outcome of some scalability tests is shown and evaluated
to examine the system behavior under load.

6.5.1 Setup of the XMPP cluster

The detailed concept of how the relay server can be scaled has been introduced in Section
5.6.1. Like stated there, a clustering plug-in can be installed on the Openfire XMPP
server very easily. After installing that plug-in, it has to be configured in a configuration
file. Furthermore, a load-balancer has to be installed on a server, if the cluster is not
already hosted in a cloud service, where a load-balancer can be switched on for the cluster
usually by just a few clicks. For the tests on the local infrastructure an own load-balancer
has been installed and configured.

The clustering plug-in for the Openfire server is called Hazelcast, which is licensed under
the open-source Apache License 2.0. Details on the possible configuration are provided
in the Hazelcast documentation on the Ignite Realtimewebsite 9. Basically it is enough to
enumerate all member addresses of the cluster in this file, these can be IP addresses or
host names. Listing 6.4 shows an example of a cluster configuration with two members
provided as public routable host names running the XMPP server at default XMPP port
5222. Additionally, very important for the cluster to work is that the server-to-server

9https://www.igniterealtime.org/projects/openfire/plugins/hazelcast/readme.
html accessed 03.2017

92

https://www.igniterealtime.org/projects/openfire/plugins/hazelcast/readme.html
https://www.igniterealtime.org/projects/openfire/plugins/hazelcast/readme.html

6.5. Scalability

communication port, which has been configured in the Openfire administrator console
(default is 5269), is enabled at every server’s firewall.

1 ...
2 <join>
3 <multicast enabled="false"/>
4 <tcp-ip enabled="true">
5 <member>server1.domain.at:5222</member>
6 <member>server2.domain.at:5222</member>
7 </tcp-ip>
8 <aws enabled="false"/>
9 </join>

10 ...

Listing 6.4: Example of a cluster member listing in hazelcast-cache-config.xml

After the cluster has been set up successfully, connections have to be distributed amongst
the server instances. This means that a load balancer has to be installed, like depicted
in Figure 5.10. An application developer might use a cloud clustering service to host
the XMPP cluster, where a load balancer can usually just be switched on. Nevertheless,
some details on how a load balancer can be installed and configured to work with an
Openfire cluster shall be described. An open-source load balancer, namely HAProxy (see
the HAProxy homepage10), which is licensed under the GPL v2 license (see the license
specification on the gnu.org website11), is used. Details on how HAProxy works have
been provided in Section 5.6.1. To configure the load balancer for the XMPP cluster it
is necessary to bind every incoming TCP connection on the used XMPP port (default
5222) to one instance of an XMPP server. Furthermore, the algorithm can be specified
according to which the connections shall be distributed to the back-end servers. An
example of a configuration can look like this (part of the haproxy.cfg file):

1 ...
2 frontend xmpp
3 bind *:5222
4 mode tcp
5 default_backend xmpp-servers
6
7 backend xmpp-servers
8 balance roundrobin
9 server server1 server1.domain.at:5222 check

10 server server2 server2.domain.at:5222 check

Listing 6.5: Example HAProxy configuration for an XMPP cluster with two servers

As can be seen in the listing above, every incoming (frontend) TCP connection on port
5222 is bound by a round-robin (one after another) algorithm to servers specified in the

10http://www.haproxy.org/ accessed 03.2017
11https://www.gnu.org/licenses/old-licenses/gpl-2.0.en.html accessed 03.2017

93

http://www.haproxy.org/
https://www.gnu.org/licenses/old-licenses/gpl-2.0.en.html

6. Implementation

back-end xmpp-servers. For further details on other available balancing algorithms see
the documentation of HAProxy. Also, the balancer performs health checks on each of
the back-end instances and only distributes to servers that are available.

6.5.2 Scaling the notifier peer

In Section 5.6.3 it has been explained how the notifier peer can be scaled in an MPM
framework based network. As every instance of a notifier gets a unique resource GUID
when communicating over XMPP and every RTP randomly selects one of the available
notifiers by requesting all those notifier resources at start-up, the notifier peer is scalable
by just starting different instances of it on different hosts. Load is automatically be
distributed amongst them, additional notifiers can be added dynamically. When imple-
menting another communication protocol for the network, the lookup for notifier peers
might be implemented in a different way.

XMPP offers presence information about users via the Roster class (see Smack doc-
umentation on the Ignite Realtime website12). In this class there exists a method
getPresences(String user), which delivers all presences of a user. In this way, e.g. by
getting the presences of notifier-peer@domain.at, all different notifiers with their resources
would be delivered, e.g.:

• notifier-peer@domain.at/c0eb483f-946e-4c28-b7b1-d6745a71c2d6

• notifier-peer@domain.at/277aab13-4d07-477b-8ce6-41b93a7377ed

The resource GUID is always appended after the full XMPP name. When a peer is
connecting to the network, after retrieval of all the notifiers and randomly selecting one,
it sends all notification requests to this specific notifier resource. In the first version of
the framework implementation there is no automatic fail-over when a notifier resource
fails. Peers that use a notifier that fails will be able to send notifications again when
restarting the RTP and selecting a new notifier resource.

6.6 Integration with partner work
This section shall briefly describe how the different components in the range of responsibil-
ity of this work and the work [Til17] integrate to the first version of the MPM framework.
In Section 5.2.3 it has been defined how responsibilities for the engineering process are
distributed.

6.6.1 Integration of communication and encryption

The first integration point of the MPM framework, which has been designed by Peter
Tillian, is that every RTP instantiates exactly one Connection or SecureConnection

12http://download.igniterealtime.org/smack/docs/latest/javadoc/ accessed 06.2017

94

http://download.igniterealtime.org/smack/docs/latest/javadoc/

6.6. Integration with partner work

instance (Singleton Proxy instance that instantiates the concrete class), depending on the
E2E encryption configuration. Depending on which Java classes have been configured in
the general.properties file for an unencrypted connection and in the encryption.properties
for an encrypted connection, an implementation is chosen and instantiated, defaults are
XmppConnection and OtrSecureConnection. This instantiation happens at RTP start-up
and afterwards the IO peers (receiver and sender peer) use the exposed methods of this
IConnection to receive and send entries. Encryption is completely transparent to the RTP
and happens automatically when sending over an instance of SecureConnection. Also,
serialization of entries to be sent on the network happens transparently. An instance
of IEntrySerializer accordingly is used by the implementations of the IConnection
interface. Furthermore, the RTP exposes a method to get the used IConnection instance
(getConnection()). Thereby, e.g. it is possibly for an application developer to use the
functionality of blocking and unblocking other peers, setting up a white-list or using
SMP to verify secure channels by calling the exposed methods of the IConnection or
ISecureConnection.

6.6.2 Integration of serialization and persistence

Secondly, there is another integration point, the implementation of persistence in the
system is using the serialization part to store entries efficiently. Like all other components,
the persistence management of the MPM framework is represented by an exchangeable
interface IPersistenceManager, which offers all functionality to persist entries on a
host to lose no data when a RTP is shut down or has a failure. Peter Tillian has
implemented a reference implementation of the interface for Android, which makes use of
the IEntrySerializer interface to serialize the entries efficiently (e.g. with protobuf) and
store them in a database.

95

CHAPTER 7
Proof-of-concept implementation

of mobile application

This chapter gives an overview of a proof-of-concept implementation of a mobile applica-
tion for Android that is based on and leverages the functionality of the MPM framework.
The intention of this implementation is to show that the framework is usable for produc-
tive development and shall give an example for a possible use case. Also, it shall serve as
an incentive for possible usage of the framework. The code of the application is delivered
as an own project together with the code of the MPM framework.

7.1 Background

The reference application is an instance of the master-slave pattern. In this pattern one
or more masters partition a task into sub-tasks and send them to a list of slaves to process
the sub-tasks and send the results back to the master. By that means, computation power
of many slaves can be used to solve a computationally intensive task collectively and in
parallel. A precondition for such a model is that the task is dividable into sub-tasks.

The computation time of the fitness function of individuals in genetic algorithms (GAs)
can be computationally complex. In [SP94] the concept of GAs is explained. Basically,
a GA is a technique to search for and optimize a solution to a hard problem, which is
usually not solvable in polynomial time in reference to the size of the problem. The
GA generates a set (called population) of random solutions (called individuals) to the
problem. Then, some or all individuals are selected for the so-called crossover. Here,
usually two individuals are selected to produce one or more child-solutions that inherit a
partial solution of their parents. After that, all the new individuals usually are mutated
a little bit, that means that the solution gets only slightly changed to gain more diversity.
By crossover and mutation a new generation of individuals is created out of the old

97

7. Proof-of-concept implementation of mobile application

Figure 7.1: The master-slave model of a GA [GCZ+15]

population. Usually a selection for the replacement of the old population is done by
evaluating the fitness of the new individuals, which is the quality of the solution in terms
of optimizing the problem, while favoring better solutions to be in the next generation.
This approach is called genetic, because that is basically what happens with the genes of
creatures in the nature. The steps of crossover, mutation and selection are clarified in
the section of the implementation.

Like mentioned, the evaluation of the fitness of individuals is important for the selection
part of a GA. Depending on the problem, this evaluation might be the most computa-
tionally intensive part of the algorithm. Because the fitness evaluation is done for every
solution separately, there exists the possibility to distribute the evaluation of the whole
set of newly created individuals to workers who do the evaluation and send the result
back to the master(s). In [GCZ+15] Gong et al. have done a survey on different models
of such distributed evolutionary algorithms. Besides other models also the master-slave
GA is explained. Figure 7.1 shows the master-slave model for a distributed GA. The
master takes the steps of initial creation, selection of parents, crossover to create children,
mutation of children and selection for the new generation. Before selection happens, the
individuals are sent to the slaves for evaluation of their fitness.

7.2 Design

The application uses the reference implementation of the MPM framework for Android
embedded in an Android service. It is a simplified example on how the framework
can be used to implement a distributed GA on mobile devices. For the purpose of
understandability, a well-known and quite easy non-polynomial solvable problem is used,
namely the travelling salesman problem (TSP) [LKM+99]. The problem is about finding
the shortest round trip in a set of given cities (or generally locations), where every city has
to be visited once. One can think about the fitness evaluation of one of these tours, which
is just the summation of the distances from one city to the other in the tour. Although
this evaluation is not very complex in computation, this problem has been chosen because
it is easier to understand, implement and evaluate than most other non-polynomial
optimization problems. Also, the application-specific code is easily exchangeable for other

98

7.3. Implementation

problems by still using the same MPM, because the model strictly separates application
from coordination code. The selection of the problem therefore does not lead to a loss of
generality.

In the system there are a master and slave peers as well as individuals (solutions to the
problem) to be evaluated. Individuals are exchanged between the peers within the data
objects of entries. The master maintains a list of all known slave workers and distributes
the solutions to them by using a balancing algorithm, e.g. round robin. Figure 7.2
shows the communication flow between the UI, the master and a worker WorkerX, which
represents the one or more worker peer(s) in the system. The user starts the master by
sending a start command to the master service by using the UI interface of the RTP.
The wanted population size is passed as a parameter. More parameters for the GA, like
e.g. type of selection, could be added for configuration here, but for the demonstration
the population size is enough. While the master gets started and initiates the population,
workers may send a join request to the master to be selected for fitness evaluation. In
the diagram this means that WorkerX gets registered if a join request is received by the
master from this worker. This also might occur while a GA is already running. After
the master has received this request by the worker it will start distributing solutions
for evaluation to the joined worker. The actual GA is running as a loop. It starts with
the crossover and mutation of the population at the master. Then, all currently joined
workers, selected by a balancing algorithm, get the created solutions for evaluation in
an inner loop. When all solutions have been evaluated by the workers and have been
sent back to the master, the selection and replacement steps are performed at the master
and the current best solution within the population is propagated to the UI. The whole
process is running until it gets interrupted by a stop command from the UI. The UI of
the peers is not shown in the diagram, it is only used to log in to the system with the
peer’s credentials. The master in this reference implementation is distinguished from the
workers when logging in, because of a preconfigured master peer name. The application
code is the same for worker and master peers, but different MPM services are executed
at them.

7.3 Implementation
Some important details on the implementation of the distributed GA mobile application
that is based on the MPM framework are discussed in this section. For any further remarks,
please refer to the provided source-code of the application including documentation.

7.3.1 Master peer

The master peer is one of the two different roles that the RTP of the distributed GA
application can take, depending on if a master user-name is used to log in or not. In
this simplified scenario, the master peer contains three different wirings. The scaffold
of the Android service, which contains the MPM framework, is implemented by Peter
Tillian in his work [Til17]. When extending this Android service, there exists a method

99

7. Proof-of-concept implementation of mobile application

Figure 7.2: Sequence diagram of a master and worker communication of the distributed
GA

initializePeers() where the structure of the RTP (local peers and wirings) can be defined
by a programmer or generated by a modeler.

Listing 7.1 shows the content of the initializePeers() method that is relevant for the
master peer in this application. First, the local peer masterPeer gets created. Then the
first wiring for the peer initialization is added to the peer. The guard of the wiring needs
an INIT_MASTER entry that comes from the UI (user presses start) and at least one
JOIN entry from a worker to start the InitDistributedTSPMasterService MPM service.
The details of this service are not explained, but basically it just generates a specified
amount of random Tours for the TSP, wraps them in entries of type EVALUATE and
addresses each to a worker that comes from the worker registry at the master peer,
selected in a round-robin manner. The action of this wiring then sends all created entries
of type EVALUATE to the designated worker peers.

The second wiring specifies what happens when an entry of type JOIN arrives at the
master peer from a worker. The guard takes the entry and starts the joinWorkerService,
which does nothing else than adding the worker that sent the entry to the worker registry

100

7.3. Implementation

at the master.

After all the individual solutions have been evaluated in terms of fitness by the workers
and have been sent back to the master, the guard of the third wiring continuously
takes entries of type EVALUATED in the specified amount of the population size and
calls the service TSPDistributedGeneticAlgorithmService, which performs the steps of
crossover and mutation. The new individuals again get wrapped into entries of type
EVALUATE and represent the new generation of the population, which again get sent to
the workers for evaluation. Besides the action to send the entries to evaluate, there exists
an additional action on this wiring, which writes possible entries of type EVALUATED
back to the PIC of the master peer. This is done because by configuration the continuous
GA service might keep the fittest individual(s) always also in the next generation.

1 (...)
2 IPeer masterPeer = runtimePeer.createPeer(Constants.masterPeerName);
3
4 //MASTER INITIALIZATION
5 IGuard initMasterGuard = new Guard();
6 initMasterGuard.addLink(LinkOperation.TAKE,

EntryCount.largerEquals(1), EntryTypes.INIT_MASTER);
7 initMasterGuard.addLink(LinkOperation.TAKE,

EntryCount.largerEquals(1), EntryTypes.JOIN);
8 IService initMasterService = new

InitDistributedTSPMasterService(this);
9 IAction sendToursToEvaluateToWorkers = new Action();

10 sendToursToEvaluateToWorkers.addExternalLink(EntryCount.largerEquals(1),
EntryTypes.EVALUATE);

11 masterPeer.addWiring(new Wiring(initMasterGuard, initMasterService,
sendToursToEvaluateToWorkers));

12
13 //MASTER JOINING OF WORKER PEER
14 IGuard joinWorkerGuard = new Guard();
15 joinWorkerGuard.addLink(LinkOperation.TAKE,

EntryCount.largerEquals(1), EntryTypes.JOIN);
16 IService joinWorkerService = new JoinWorkerService(this);
17 masterPeer.addWiring(new Wiring(joinWorkerGuard, joinWorkerService,

null));
18
19 //MASTER CONTINUOUS GENETIC ALGORITHM
20 IGuard takeEvaluatedGenerationGuard = new Guard();
21 takeEvaluatedGenerationGuard.addLink(LinkOperation.TAKE,

EntryCount.exactly(populationSize), EntryTypes.EVALUATED);
22 IService geneticAlgorithmService = new

TSPDistributedGeneticAlgorithmService(this);
23 IAction sendForEvaluationAction = new Action();
24 sendForEvaluationAction.addExternalLink(EntryCount.largerEquals(1),

EntryTypes.EVALUATE);
25 sendForEvaluationAction.addInternalLink(ContainerType.PIC,

101

7. Proof-of-concept implementation of mobile application

EntryCount.largerEquals(1), EntryTypes.EVALUATED);
26 masterPeer.addWiring(new Wiring(takeEvaluatedGenerationGuard,

geneticAlgorithmService, sendForEvaluationAction));

Listing 7.1: Wirings for the master peer defined in the initializePeers() method of the
Android service for the application.

7.3.2 Worker peer

The worker peer in comparison to the master peer is quite simple. It has one wiring that
takes all available entries of type EVALUATE. Then it executes the EvaluateIndividu-
alsService that computes the fitness of the individual(s). The action of the wiring then
sends the entry with the new type EVALUATED back to the master peer. Listing 7.2
shows the code inside the initializePeers() method that is relevant for the worker peer.

1 (...)
2 IPeer workerPeer =

runtimePeer.createPeer(WorkerRegistry.workerPeerName);
3 IGuard takeIndividualsToEvaluateGuard = new Guard();
4 takeIndividualsToEvaluateGuard.addLink(LinkOperation.TAKE,

EntryCount.largerEquals(1), EntryTypes.EVALUATE);
5 IService evaluateIndividualsService = new

EvaluateIndividualsService(this);
6 IAction sendEvaluatedIndividualsToMasterAction = new Action();
7 sendEvaluatedIndividualsToMasterAction
8 .addExternalLink(EntryCount.largerEquals(1),

EntryTypes.EVALUATED);
9 workerPeer.addWiring(new

Wiring(takeIndividualsToEvaluateGuard,
evaluateIndividualsService,
sendEvaluatedIndividualsToMasterAction));

Listing 7.2: Wiring of the worker peer defined in the initializePeers() method of the
Android service for the application.

7.3.3 The TSPDistributedGeneticAlgorithmService

The most relevant MPM service of the application is the TSPDistributedGeneticAlgo-
rithmService. It performs the generation of new individuals out of the old population by
crossover and mutation and runs in a wiring in the master peer. The service implements
the abstract class AbstractDistributedGeneticAlgorithmService. The class contains the
execute() method of the service, which performs the steps of getting the fittest individual
and sending it to the UI, selecting parents and creating new individuals by crossover of
the parents, mutating the new individuals, wrapping them in an entry of type EVAL-
UATE and addressing them to workers from the worker registry with a round-robin
algorithm. This is done until the whole new population has been created and addressed.

102

7.3. Implementation

The implementation TSPDistributedGeneticAlgorithmService of this abstract class just
implements the crossover and mutation operators of the GA. Other problems could be
implemented easily by a developer, who has to create an implementation for the new
optimization problem by extending the abstract class.

Generally, a developer has to implement the representation class (in case of the TSP a
class Tour) of the problem and has to provide an implementation of the crossover and
mutation operators in a class extending the AbstractDistributedGeneticAlgorithmService.
Moreover, the initialization service for the master peer has to be implemented. Then, the
developer has to exchange these two services in the initializePeers() method (see listing
above) and the whole system will be able to optimize a different problem. The worker
peers are completely general and do not have to be redefined. Only the representation of a
solution must extend the abstract class Individual, which exposes one method getFitness()
that is called by the worker peer for fitness evaluation, no matter which optimization
problem the individual instantiates.

Crossover and mutation operators and representation of a City and Tour for the TSP
have been implemented based on the blog article by Jacobson on the theprojectspot.com
website1. The used crossover operator for two parents is the order crossover [Cic06].
Mutation is done at a configurable mutation probability for each city inside the tour
by just swapping the city with another randomly selected city, this guarantees some
additional diversity of new individuals. In the code it is also configurable whether the
fittest solution is always kept in the next generation.

7.3.4 The UI

The UI for this demonstration application can be used for master and worker peers as
shown in Figure 7.3. The user has to provide the credentials to log in to the network and
has to specify a population size for the GA. When pressing start, the Android service gets
started with the population size as a parameter. Depending on whether the user is logged
in with the configured master user name, a INIT_MASTER or a JOIN entry is injected
to the RTP and the system starts. On the master peer, at every new generation the
currently fittest solution is sent to the UI like described and printed out to the user. In
this example application, the cities for the TSP are provided in the static class Constants
and the list is retrieved from there by the MPM service that initiates the master. In the
graphics you can see the optimization result for 29 cities, including all EU cities and
also Bern with their real coordinates. The tour in this demonstration is fetched from a
configuration file where it has been hard-coded. After around 30 minutes of evaluation
the master in a network with two workers already shows the overall geographical linear
distance of a tour through all cities with 15,617 km. After that, the evaluation has been
canceled. A further improvement to the application could be to show the evaluated best
tour in a list or another graphical representation.

1http://www.theprojectspot.com/tutorial-post/applying-a-genetic-algorithm-
to-the-travelling-salesman-problem/5 accessed 04.2017

103

http://www.theprojectspot.com/tutorial-post/applying-a-genetic-algorithm-to-the-travelling-salesman-problem/5
http://www.theprojectspot.com/tutorial-post/applying-a-genetic-algorithm-to-the-travelling-salesman-problem/5

7. Proof-of-concept implementation of mobile application

Figure 7.3: User interface of the distributed GA application that is based on the MPM

7.3.5 Further considerations

The distributed GA demonstration application is kept quite simple, here some further
consideration shall be made on how to improve the application. First, more parameters
could be configurable using the UI and not only a configuration file to let the end user
adjust the GA more dynamically. An example for such parameters could be the mutation
rate or if the fittest individual shall always survive to the next generation. The second
aspect is that it is possible for workers to join the network at any time to contribute
to the evaluation of individuals. Nevertheless, if a worker crashes or disconnects in this
scenario, the master might not receive all evaluated individuals that are necessary. Here,
it might be advantageous to implement some sort of time-out at the master in which a
worker has to respond with evaluated individuals. If the worker does not respond in time
the master would then remove the worker from the worker registry, fill up the population
again with random solutions and let the other workers evaluate them. A scenario to use
such a master-slave pattern using the MPM framework in a public application would in
this case not necessarily trigger any security issues as usually no secret data is transferred,
although it would probably be a good idea to somehow check if a slave is returning
reasonable results and is not trying to pollute a generation of individuals.

104

CHAPTER 8
Evaluation

In this chapter an evaluation of my main responsibilities of this work shall be done.
Therefore, scalability of the centralized parts of the system are tested. The concept for
scalability for the reference implementation of the framework has been discussed in Section
5.6. Tests are performed in a local area network and also in a cloud environment. Details
on the used hardware and set-up constellation are provided. The aim of the scalability
evaluation is to measure how the system components of the MPM implementation,
especially the communication and serialization components, perform under heavy load in
a single instance and in a horizontally scaled set-up.

Furthermore, an assessment regarding the security of the implemented framework is done
and analyzed in accordance to some main attack scenarios that have been discussed in
Chapter 2.

8.1 Scalability evaluation
The evaluation of scalability of the central parts in the communication layer are done
in this section. Accordingly, a test application has been programmed, which simulates
a configurable number of client runtime peers that communicate with each other by
exchanging entries. This test application is implemented to run on a desktop or server
machine and not on an Android device as the purpose is to test only the central parts
of the MPM network. Configurable parameters to the test application are the number
of client peers to simulate, the amount of payload data (string data in bytes) that shall
be sent in each exchanged entry and also the amount of time (milliseconds) that a peer
shall pause after receiving an entry before sending a reply entry. A fixed and randomly
selected communication partner peer is assigned to each peer in the test application and
these peers then exchange entries in a ping-pong manner, that means after receipt of an
entry an answer entry is sent back to the sender and so on. By controlling the amount of
peers and the pause time between receipt and answer, the general throughput of the relay

105

8. Evaluation

XMPP server or server cluster can be measured. Furthermore, by configuring the payload
of the entries, also the performance of the serialization component can be tested to some
amount. The throughput of a single server instance and also of clustered instances shall
be compared in a local and in a cloud environment.

Notification functionality is disabled in the tests, because when notifications are switched
on, simply the amount of entries that are sent is doubled, because each sent entry triggers
a notification entry being sent to the notifier peer(s). Instead, a stability test is performed
on a notifier peer in a local and in a cloud environment. It is also shown that scaling the
notifier by just starting more notifier peers in the network reduces the load on each of
them.

8.1.1 Infrastructure

Local environment

The testing devices of the local scalability tests are named like shown in the list below.
In the consecutive sections these names are used to refer to the specific hardware:

• host1 : quad-core Intel Core i7-4770K processor with 4 Ghz , 8 GB DDR-3 RAM,
Windows 10

• host2 : dual-core Intel Core i7-4600U processor with 2.1 Ghz, 8 GB DDR-3 RAM,
Windows 10

• host3 : dual-core Intel Core i5-2467M processor with 1.6 Ghz, 4 GB DDR-3 RAM,
Windows 10

• host4 : dual-core AMD E2-1800 APU processor with 1.7 Ghz, 8 GB DDR-3 RAM,
Windows 10

The hosts are locally connected in a wireless LAN of the standard 802.11n.

The load balancer used in the local environment is hosted on a Hyper-V virtual machine
running Ubuntu 16.10 on host1. It has been configured to be able to use up to 1 GB
of RAM and up to 50% of the available processor power of all 4 cores. The used load
balancing software is HAProxy (see the HAProxy website1) and is configured to use
a TCP round-robin balancing algorithm to the clustered instances on port 5222 (see
Section 6.5). The database for the XMPP servers is hosted on host1 and is a PostgreSQL
database of version 9.5.

1http://www.haproxy.org/ accessed 04.2017

106

http://www.haproxy.org/

8.1. Scalability evaluation

Cloud environment

The cloud infrastructure is hosted on Amazon web services (AWS) elastic cloud computing
(EC2) instances of type t2.micro. The hardware of these instances is a virtual Intel Xeon
E5-2676 processor with 2,4 Ghz and 1 GB of RAM. The instances are configured as
shared, which means that they are hosted together with other EC2 instances of other
Amazon Cloud users on one dedicated machine (this does not mean that all the VMs
for the test run on the same host). For horizontal scaling, 3 of these instances have
been provisioned in an Amazon VPC (see the VPC description on the Amazon website2).
This means that they are hosted in a virtually isolated area of the AWS, where they can
connect to each other via private IP addresses like in a LAN. The Openfire XMPP servers
are hosted on these machines running a Windows Server 2016 operating system. The test
application described above runs locally on host1. When performing the tests against
the cloud environment, the used internet connection provides effectively around 90 Mbps
upload and around 8.7 Mbps download rate from the side of the local internet service
provider. The AWS EC2 instances are hosted in the AWS region US West (Oregon).
The database for the XMPP servers is a PostgreSQL 9.5 database hosted on an Amazon
relational database service (RDS) (see the RDS description on the Amazon website3) in
the same VPC.

8.1.2 Scaling the relay server

Throughput of communicating peers

Tests on average throughput of entries and average server CPU usage have been performed
for a local single and clustered XMPP server and also for a single and clustered XMPP
server hosted in the cloud. There have been 38 measurements in the local environment and
46 measurements in the cloud environment. Every measurement has been performed with
different amounts of communicating peers in the described ping-pong manner for exactly
10 minutes without a pause time between receiving and sending entries. An average of
entries received and sent per minute has been calculated over these 10 minutes by the
test application. Average CPU usage in percent for the Openfire server process has been
calculated using the built-in Windows performance monitor tool for each measurement
timeslot. All measurements have been performed one time with entries without payload
data (data property) and one time with 100 KB of text data.

The statistics in Figure 8.1 shows the results of all measurements in the local environment.
For these tests, the test application and the XMPP database have been run on host1.
The single instance relay server tests have been performed with the XMPP server running
on host4 and the clustered tests with servers running on host2, host3 and host4. The
HAProxy load balancer has been hosted on a virtual Ubuntu 16.10 machine on host1.
The results for the single instance tests is kept in blue color in the diagrams, the results
for the 3 instance tests in orange. The first column of the figure shows results for entries

2https://aws.amazon.com/vpc/ accessed 05.2017
3https://aws.amazon.com/rds/ accessed 05.2017

107

https://aws.amazon.com/vpc/
https://aws.amazon.com/rds/

8. Evaluation

without payload and the second column for tests with entries with 100 KB of payload
data. The first row shows the average throughput of entries per minute at each peer for
specific amounts of communicating peers. The second row depicts the average, overall
throughput of entries per minute of the server(s) for specific amounts of peers. The last
row shows the average server processes CPU usage in percent for specific amounts of
peers. Please notice that only the y-axis is linear for reasons of scaling. The maximum
amounts of participating peers in the tests have been adjusted to each scenario (cloud or
local and data or no data). The amount of the users has not been increased any more
when the average throughput of entries per user per minute reached 1 or below or when
connectivity became unstable, e.g. when single users lost connection to the server.

Figure 8.2 demonstrates the results of the server throughput tests where server instances
have been hosted in the cloud. The test application is once again run on host1 and the
XMPP database is hosted on Amazon RDS. For load-balancing an AWS Classic Load
Balancer (see the load balancer description on the AWS website4) has been used. It can
easily be configured to distribute TCP connections (on port 5222 for XMPP) to EC2
instances in the same VPC. The scheme of the statistics diagrams is analogous to the
results of the local environment.

When analyzing the throughput statistics you might notice that in the local environment
for fewer users a single instance can even outperform a cluster of three XMPP servers,
this obviously is due to the overhead that the control messages of the clustering software
add. Still, at 700 communicating peers the cluster can already exceed the single instance
by around 33% for entries without payload. For entries with payload of 100 KB the
cluster of 3 instances unexpectedly does not perform better in terms of throughput. This
might be due to a network bottleneck at the hosts with the additional overhead of the
clustering control messages. Especially host3 and host4 have quite limited resources (5
year old low budget notebook and 5 year old tablet computer) and seem to slow down the
whole clustering control mechanism. At least the cluster consistently shows a much lower
CPU workload of the XMPP server process on each instance, especially for the tests with
payload data, where the serialization component generates workload. Here, with roughly
the same results for throughput at higher amount of participants, at least the CPU load
of the single instance is around 285% of the same clustered instance (measured on host4).

In the cloud environment the throughput measurements for clustered and for a single
instance showed roughly the same results without payload data. Also, the throughput
increased with a higher amount of participants, but it happened that connections became
unstable for some users in the clustered scenario with no payload when reaching 400
participants. With payloads of 100 KB, the clustered server performed better than the
single instance with lower amount of users. When increasing the participants, the single
instance scenario even outperformed the cluster for some range of user numbers. Here
again probably the reason is the overhead that the clustering control messages add. The
server CPU load was, analogous to the local environment tests, always much lower for
clustered instances.

4https://aws.amazon.com/elasticloadbalancing/classicloadbalancer/

108

https://aws.amazon.com/elasticloadbalancing/classicloadbalancer/

8.1. Scalability evaluation

Figure 8.1: Statistics of throughput and server CPU usage of local XMPP server(s)

109

8. Evaluation

Figure 8.2: Statistics of throughput and server CPU usage of XMPP server(s) hosted on
AWS

110

8.1. Scalability evaluation

Studying the results one might argue that besides better reliability in the chosen cloud
environment the cluster only shows a performance benefit of lower CPU load on all the
instances, but not in terms of entry throughput. Nevertheless, it has to be considered that
the tests have been performed on quite undersized cloud machines with low resources.
Probably, the network interface becomes the bottleneck here where cluster control
messages counterbalance a possible increase in throughput of the cluster. It would be
interesting to perform the same tests on large-scale cloud machines and with more than
3 servers in the cluster.

Simultaneously connecting peers

In a productive system it might occur that many client peers try to connect in a small
timespan. Therefore, a test has been conducted where many peers try to connect quasi
simultaneously to a network in order to be able to determine which amount of connecting
peers a server or cluster can handle without producing communication exceptions on
one or more of them. The test has been performed with the test application running on
host1 and has been executed 10 times with a configured amount of peers to determine if
the establishment of the connection is repeatedly successful. Then, the amount of users
has been increased by 10 and the test has been reiterated. The already described test
application has been configured to start the specific amount of runtime peers as threads
from a thread pool in a loop, which then immediately try to connect to the server.

In a local set-up with 1 XMPP server instance running on host3 up to 220 peers were able
to connect in the timespan of start-up of all peers without issues. At 230 and more peers
communication exceptions occurred in at least one test run of the 10 iterations. When
adding one more XMPP server role on host2, the number of peers being able to connect
without issues could already be increased to 320. At 330 and more peers communication
exceptions occurred. With one additional instance this is an increase of around 45%.

Hosting one relay server in the AWS cloud, 30 peers were able to connect in the timespan
of their simultaneous start-up, whereas exceptions occurred at 40 or more. With 2
clustered cloud instances already 50 peers were able to connect, exceptions occurred at
60 or more connecting peers in one or more of the test runs. That is an increase of about
66%.

These tests at least prove that clustering the relay server roles significantly increases
the amount of peers that can simultaneously connect to the network without getting
communication exceptions.

8.1.3 Scaling the notifier

When notifications are enabled, each connecting client peer automatically selects one
connected notifier peer from all currently available notifiers. The notifiers can be identified
by their host-name, which is configurable in the framework. The performance of the
notifier is dependent on the hosting machine and on the number of incoming notification

111

8. Evaluation

entries. For every sent entry on a network, a notification entry is sent to one notifier
peer, which then calls the FCM servers for user notification.

In the local environment a single notifier has been hosted on host4 and has been put under
heavy load by communicating peers. They have been simulated by the test application,
the notifier database and a single XMPP server all running on host1. At a throughput of
around 37.500 notification entries per minute, created by 20 connected peers, the notifier
crashes after 17 minutes with a memory exception. When adding 2 more notifiers on
host2 and host3, the first notifier (on host4) only crashes after 53 minutes with the same
exception. This is an increase of around 311%.

In the cloud environment the notifiers and the XMPP servers have been hosted on
separate EC2 t2.micro instances in the same VPC. The notifier PostgreSQL 9.5 database,
like the XMPP database, is also hosted on Amazon RDS in the same VPC. A single
notifier crashes after 16 minutes at a load of around 49.000 notification entries per minute,
created by 500 connected peers from the test application running on host1. With the
same amount of notification entries a scaled notifier with 3 instances did not crash also
after 3 hours of test run, when the test was aborted. An overload on the scaled notifier
was not possible, because the probably needed throughput could not be reached by the
relay server.

8.2 Performance of E2E encryption

A performance test has been executed on the E2E encryption module. The described
test application has been used running on host1. Two communicating peers have been
started to exchange as many entries as possible (without pause between receiving an
sending) for 15 minutes. The tests have been performed with and without encryption
and with and without payload. The XMPP server has been running on host3 and the
identity database has been running on host1, notifications have been disabled. The tests
showed the following results (showing avg. CPU usage of host1 and avg. send/received
entries per minute):

• No encryption and no payload: avg. 8855 entries/user/min and 1% CPU usage

• No encryption and 100 KB payload: avg. 316 entries/user/min and 2% CPU usage

• Encryption and no payload: avg. 3070 entries/user/min and 13% CPU usage

• Encryption and 100 KB payload: avg. 209 entries/user/min and 3% CPU usage

Analysing the results it can be derived that enabling the OTR E2E encryption decreases
the throughput by around 65% when no payload is sent and by around 34% with 100 KB
of payload. When additionally considering that the CPU usage increased drastically when
encryption is enabled with no payload and did not increase significantly with payload it

112

8.3. Security assessment

can be deduced that encryption has a much higher impact on the throughput and on the
workload than the serialization component. Nevertheless, it could be examined how the
serialization component performs on more complex data objects (than just string data)
in the future.

8.3 Security assessment
A security assessment on the first version of the delivered framework is done in this
section. The framework is measured against different possible attacks that have been
discussed when evaluating possible background technology in Chapter 2. Different kinds
of attacks are grouped and assessed in attack classes below.

8.3.1 Eavesdropping

An attacker might eavesdrop the traffic in a network and might get access to the
transmitted data in clear-text. To avoid that, the framework communication layer offers
encryption of network traffic with TLS over XMPP, which can be configured to be
enabled for all communication. In this case, the server needs to provide a trustable
and verifiable PKI certificate. The framework offers the opportunity to implement an
X509TrustManager interface to verify the server certificate and to specify which CAs
signing the certificate are allowed. Also, the framework allows implementation of a
HostnameVerifier, which allows verification of allowed hostnames of the server in an
existing TLS session.

It might be the case that the server cannot be trusted because it does not provide a
trustworthy certificate or that a developer wants to implement an application where the
relay server does not need to be trusted by the application users at all. When using
TLS over XMPP only, the server might still read the transmitted data in clear-text. To
avoid eavesdropping completely for all other entities but just the two communicating
partners, the framework offers the possibility to implement an interface ISecureConnection
over that any transmission of data is E2E encrypted. Here, keys for encrypting the
data are generated on the communicating devices and are bound to that devices only.
The framework offers an implementation of this interface using the OTR protocol, like
described in Section 6.4.4.

8.3.2 Data modification and replay

An attacker might modify the transmitted data without knowledge of the sender or
receiver. The provided OTR implementation of E2E encryption adds a MAC to each
transmitted, encrypted message, which makes it possible for the sender to verify the
authenticity and integrity of every single received message. See Section 5.5.4 for more
details.

Furthermore, an attacker might repeatedly send (replay) data packets to trigger some
malicious side-effects in the application. This is also prevented by the OTR protocol,

113

8. Evaluation

which uses new shared secrets on every message, so that a repeatedly sent message would
be identified as invalid already at the communication layer level of the receiving peer.
See Section 5.5.4 for more details.

8.3.3 Identity spoofing and MitM

Attacks on the identity include forging of data packets that appear to originate from a
different identity in the network, taking over completely the identity of a specific node
and receiving and transmitting data on their behalf during a conversation or even faking
an identity from the beginning of an initial conversation with a partner and claiming to
be someone else. To address these attacks, the chosen communication protocol, XMPP,
serves as a central identity provider and offers a mapping of an authenticated (with user
credentials) connection to a username in the network. When additionally E2E encryption
with OTR is switched on for communication, it is impossible to forge the origin of a
packet or to take over someone’s identity during an established secure conversation,
because only the two communicating peers hold the necessary secret keys to encrypt and
authenticate a message and following messages. Any forged message would be identified
by the receiving peer.

One could argue that the initial handshake of an E2E encrypted channel could be
intercepted by a MitM, e.g. an untrusted relay server, and key negotiation could happen
with that attacker instead of the real identity by both communication partners, making
it possible for the attacker to decrypt all exchanged data. A second scenario could be
that a communication partner claims to be a specific identity from the beginning of
the registration at the network but instead is an attacker. The framework integrates
the possibility to use the SMP in conjunction with OTR to verify the identity of a
communication partner by proving that both hold a common secret that only those
two can know. This assumes that such a secret exists and is done without actually
transmitting the secret. The framework provides an API that offers this functionality in
a usable way to the application developer, making it possible to verify the channel in
a simple question and answer manner for the user. Once a verification is done, future
communication channels can be verified automatically if the secret is locally stored by
both devices. By that means, any identity spoofing and MitM attacks can be avoided.

8.3.4 Compromising secret keys and passwords

As E2E encryption is based on the concept that identities hold private keys, an attacker
that compromises this key might be able to establish secure channels with others on the
behalf of that identity. Nevertheless, if the private key got compromised but the password
for the identity provider did not get compromised and the relay server is trustable, the
attacker would have to forge packets on behalf of that identity and additionally would
have to make them look like having been received from the relay server, which altogether
is not an easy task and has the assumption that no additional TLS with the server
is enabled. In the framework implementation, the private secret key is stored in an

114

8.3. Security assessment

encrypted and password protected key file. In the first implementation the same password
as for the identity provider is used. An attacker would therefore have to get access to the
device to steal the private key of the user and additionally would have to know the user’s
password to be able to decrypt the file. With that information the attacker would be
able to establish secure channels with communication partners, but would only be able
to verify those channels if also the common secret is known to the attacker or has been
cached by the application using the framework. By design, the OTR protocol makes it
possible to decrypt future messages but no sent messages. An attacker in possession of
the private key would therefore not be able to decrypt past messages. The other way
around, if an attacker would compromise the user’s password for the identity provider, it
would still not be possible to verify a secure channel without additionally knowing the
common secret for the SMP, also when connection from a different device with a newly
generated private key is allowed (this is the case in the first implementation but could be
made configurable to the application developer in future versions). Thus, as the attacker
is not able to verify the secure channel, the communicating user would recognize at least
that the channel is not verified, also when private key and the password are compromised.

8.3.5 Deniability and Privacy

It might be of interest to users of specific applications based on the implemented framework
to not only preserve the confidentiality of the transmitted data, but also of their own
identity. A registration at the relay server might generally be possible anonymously,
depending on the used communication channel to the registration server role. Still, the
relay server has to be trusted, because it knows the IP address of the connecting peer.
The framework itself in the first version does not offer a user-configurable proxy server
to hide the IP from an untrusted relay server, this might be done in future work. Also
interesting would be to integrate the possibility to e.g. tunnel all traffic through the
Tor (see the Tor project website5) network to the relay server. This could be done by
providing a proxy configuration for the framework and using a transmitter application
like Orbot (see the Orbot application6) to redirect any traffic from that application
first through the Tor network. When traffic is additionally E2E encrypted, the relay
server would only be able to see which usernames are communicating, but not their real
identities (IP addresses). Additionally, anyone that would spy the traffic from outside
would not be able to identify that a specific IP is communicating with the relay server,
avoiding also any possibilities of IP harvesting. Even when Tor is not yet integrated, only
a very general identity harvesting would be possible to an outside spy when monitoring
the E2E encrypted traffic. To be exact, a harvesting of all IPs communicating with a
specific relay server could be achievable.

What is already a feature of the OTR E2E encryption implementation of the framework is
the deniability of sent messages. There might be a scenario where, e.g., a law enforcement
or governmental institution wants to prove that someone has sent a specific message to

5https://www.torproject.org/accessed05.2017
6https://guardianproject.info/apps/orbot/ accessed 05.2017

115

https://www.torproject.org/ accessed 05.2017
https://guardianproject.info/apps/orbot/

8. Evaluation

someone. This could be possible by proving that the MAC of a specific message originates
from a specific private key on a personal device. Nevertheless, as OTR publishes the
MAC key of a previous message with the current message in clear-text, anyone sniffing
the traffic could have forged messages, signing it with the MAC and making it look like
it originates from that sender. Therefore, deniability for messages is guaranteed to the
outside, but also authenticity of a message is still verifiable for the intended receiver at
the time of the communication.

8.3.6 DoS and spam

An attacker might flood central parts of a network to disrupt the whole network traffic
and even prevent users from joining the network. Also, an attacker might run a DoS
attack on specific users or send them spam messages. The implemented framework offers
an API to block single peers that try to perform a DoS attack or send spam already at the
relay server. The functionality is provided by the XMPP server implementation Openfire.
Also, a white-list of communication partners can be defined to be able to contact a
specific peer. This functionality has to be disclosed to an end-user by the application
developer in the UI. Nevertheless, avoiding DoS on central parts of a public network is a
hard problem and is not generally solvable. It is the same with other public server roles
on the internet like e.g. web-servers. Avoiding DoS on the XMPP server(s) and on the
notifiers are in scope of the administrator of the machines hosting these central network
roles.

8.3.7 Application-layer attacks

Application-layer attacks subsume all attacks that happen on the application layer, like
e.g. abnormally terminating the application or operating system or reading, adding,
editing or deleting data in an unauthorized way. The first version of the framework does
not provide many application layer security countermeasures out-of-the-box. It accepts
all entries of non-blocked or white-listed users and checks if the from property of the
XMPP message matches the from property of the received entry. Then it delivers the
entry to the local peer that is designated in the dest property of the entry, if it exists. In
all other cases and also when the type of the entry data object is not registered in the
local type registries the entry gets ignored. Moreover, when an entry gets delivered to a
specific local peer, containers of the peer only accept the entry, if there exists any wiring
in the peer that might take or read entries of that entry type from that container. This
is a small countermeasure against an attacker trying to flood a peer with entries that
will always stay in a container without ever being taken, e.g. to let the peer run out of
memory.

For future versions of the framework further application layer security countermeasures
could be tackled, e.g. a general boundary for container sizes to avoid running out of
memory. Also, a security concept for the peers or containers itself could be introduced,

116

8.4. Fulfilment of imposed requirements

where only specific senders are able to write entries to specific local peers and containers
like proposed by Craß et al. in [CJK15].

Regarding further application layer security, the application developer is responsible, e.g.
what happens to the data in the entries, which other side-effects are triggered in the
implemented services or if a garbage collection of old entries in containers is performed
(e.g. by appropriate TTL properties or clean-up wirings).

8.4 Fulfilment of imposed requirements

In this section a short conclusion about the fulfilment of the imposed requirements from
Chapter 3 is drawn, beginning with the non-functional requirements.

The source-code of the provided implementation of the MPM framework is sufficiently
documented and covered by unit and integration tests, is licensed under a copyleft license
and will be published (requirements NFR1, NFR5). The framework core project has
been designed in a modular way, making it possible to exchange important components,
e.g. the communication, encryption and serialization that were in my scope (requirement
NFR6). Besides pervasive tests, functionality of the framework has been proven by
implementing two example applications based on the framework (proof-of-concept of
requirement NFR8). All important interfaces of the components have been designed
intuitively and have been discussed in the thesis paper to provide an additional information
source for future framework developers (requirement NFR4). When implementing the
framework based applications, it has been discussed in the thesis how the framework code
is structured and how it can be generated by a modeller in the future (requirement NFR7).
Peter has evaluated the benefit using the framework in comparison to implementing all
functionality in his thesis (requirement NFR9). Also in his scope was the resource efficient
implementation of the framework in terms of storage, battery consumption and network
bandwidth (requirement NFR10), which could be fulfilled by using concepts like allowing
the application to be suspended at any moment and the concept of the notification system.
Reliability (requirement NFR11) can still be guaranteed by offering an implementation
for persistence (also in the scope of [Til17]). The concept, implementation and evaluation
of scalability for the central parts of the system as well as for appropriate security in an
internet-scale network has been provided in this work (requirements NFR2, NFR3).

As Peter was responsible to design and implement the functionality of the MPM RTP, the
requirements for coordination (requirement FR1), for the RTP being able to run in the
background (requirement FR2), possible autonomous start-up of the RTP (requirement
FR3) and the decoupling of the RTP to an outside Android application by implementing
an Android service (requirement FR4) have been fulfilled in his work [Til17]. Requirement
FR5, which states that the framework shall offer connectivity with local and mobile
carrier networks, has been fulfilled in this work by using an XMPP server for relaying
and thereby making it possible to work behind any NAT without any needed network
configuration. The automatic handover when a new connection is re-established has been

117

8. Evaluation

implemented in the communication part of the framework integrating with an outside
application triggering the appropriate events.

118

CHAPTER 9
Conclusion

In this conclusive chapter, a summary of the outcome and the results of the thesis is
done. Also, some lessons learned are presented to give hints and insights for probable
future work. Finally, some suggestions are made for probable future work based on the
thesis and the delivered framework.

9.1 Summary
The outcome of the thesis is a P2P coordination framework for mobile environments. In
the preceding literature review possible background technologies like P2P communication
protocols and coordination frameworks have been researched and evaluated. The selection
of technologies for communication, serialization, security, scalability and the coordination
model has been done by evaluation against imposed requirements on the framework and
the outcome was to use XMPP as communication protocol and the PM as coordination
model. A mobile profile of the PM has been specified in accordance with the PM technical
board.

The reference implementation for the proposed framework has been implemented for
Android with respect to interoperability with probable implementations for iOS or
with other profiles of the PM. The communication component was implemented using
XMPP to guarantee operability in any network constellation. Besides encryption at the
transport layer (TLS over XMPP) an additional E2E encryption module has been added
to the framework, offering an OTR implementation in the first version of the framework.
Furthermore, a concept for scalability of the needed central parts of the communication
layer (XMPP server and notifier-peer) has been developed.

In the evaluation phase it has been shown that the central parts of the system are
scalable by performing several load tests. The results of the scalability tests showed
that the central parts when hosted in a local environment as well as when hosted in a

119

9. Conclusion

cloud environment perform better when horizontally scaled (clustered) in terms of entry
throughput and stability. A performance test on the encryption layer has shown that
enabling E2E encryption decreases the performance in terms of throughput by 63% with
entries without payload and by 34% with entries with 100 KB of payload. Moreover, the
security countermeasures offered by the framework have been evaluated in respect to
common security threats.

Additionally, an example application (master-worker pattern to evaluate the fitness
in a distributed GA) has been developed based on the implemented framework. The
application, together with the second example application by Peter Tillian [Til17], serves
as a proof-of-concept and provides some possible use-cases for the framework.

9.2 Lessons learned
Some lessons learned shall be recorded here for future developers to consider. Firstly, the
serialization component with its two implementations Google gson and protobuf has been
an unexpectedly high effort in the engineering process. Besides the selection among a
very broad pool of available protocols, also the reading up on the functionality was a lot
of effort, especially for binary serialization concepts like protobuf. A lot of considerations
about serialization with the necessary registries for data types have also been discussed
in the PM technical board before finding a way to go.

A good test coverage turned out to be very important during the software engineering
process in this complex project. Without being able to execute regression tests on the
whole project after some parts have been developed or adapted, the development would
not have been successful, especially when relying on components of another developer.
Furthermore, the tests serve as an additional source of documentation.

In the evaluation phase the testing of scalability was a higher effort than expected, that
includes set-up of the testing infrastructure, implementation of a test application and
execution of the tests, while doing the measurements on all devices. Also, the tests did
not show the expected results in all scenarios. Nevertheless, in the end it could be shown
that the chosen design of the network is scalable and also reliability and availability of
the central parts can thereby be increased.

Moreover, it became clear that it is an additional organizational effort to do a collaboration
on a thesis project, but on the other hand it was very helpful to get a second opinion
before taking an important decision.

9.3 Future work
There are several suggestions for future work related to my responsibilities on the thesis.
Firstly, framework developers can develop further implementations of exchangeable
components like the communication, serialization and E2E encryption. To provide some
examples, there could be a SIP implementation of the communication module or an

120

9.3. Future work

implementation for local communication with bluetooth or ethernet. Different serialization
modules could be implemented, e.g. using Apache Thrift or an XML based approach.
Other E2E encryption protocols than OTR, e.g. Signal, could also be supported by
implementing the corresponding interface.

Also, the general features of the MPM could be extended. During the development of the
thesis another master student was already using the framework for his thesis, it turned
out that supporting flows (see Chapter 4) in the framework would be a feature he would
like to have for his application. The plan is to integrate this feature in the next version
of the framework.

For interoperability with other profiles of the PM a consistent way for addresses of peers
and used protocols in networks as well as a consistent naming scheme for properties of
entries have to be formally specified together with the PM technical board.

The scalability of the XMPP implementation of the communication component could be
tested with a different XMPP server than Openfire, which probably also uses another
clustering middleware than Hazelcast. Also, maybe the suggested set-up performs better
on machines with more resources than have been used for the scalability tests.

Regarding security there could also be enhancements, like e.g. offering a configurable
proxy server over which all traffic is routed first. This would also be a first step to
integrate with the Tor network, like already discussed in Section 8.3.5. Moreover, further
application layer security concepts could be introduced, e.g. an access control management
for containers based on senders of entries like described in [CJK15].

121

List of Figures

2.1 Napster communication model [SGG03] . 9
2.2 Gnutella communication model [LCP+05] . 11
2.3 Freenet routing model [LCP+05] . 13
2.4 FastTrack two-layered P2P network [LCP+05] 15
2.5 BitTorrent architecture with .torrent file, tracker and peers [LCP+05] 18
2.6 JXTA resource lookup [HYAK+04] . 26
2.7 Session initiation over SIP [BAD06] . 28

4.1 Example: Graphical notation of a peer with one sub-peer, one wiring and two
services . 46

5.1 Global market share of operating systems for mobile devices1 50
5.2 Components of the MPM framework including communication with enclosing

application and remote nodes . 51
5.3 Architecture of the MPM RTP including important components and flow of

entries . 53
5.4 Architecture of the access control and communication in the MPM network . 55
5.5 Sequence diagram of a new node registering at the registration server 56
5.6 Sequence diagram of a client peer sending an entry to another client peer . . 58
5.7 Activity diagram of de-serialization of entry and contained data object with

protobuf . 62
5.8 Sequence diagram of OTR handshake between Bob and Alice (see the post of

matthewdgreen on tumblr2) . 68
5.9 Sequence diagram of OTR data exchange and key publication between Bob

and Alice (see the post of matthewdgreen on tumblr3) 69
5.10 Architecture diagram of XMPP clustering for scalability of the MPM framework 71
5.11 Diagram of a client peer randomly choosing one notifier amongst two available

ones . 73

6.1 Main classes of communication and encryption of the MPM framework with
their dependencies (packages yellow, interfaces green, classes gray) 77

6.2 Main classes of the serialization component of the MPM framework with
dependencies (packages yellow, interfaces green, classes gray) 78

6.3 The IConnection interface . 80

123

6.4 The IEntrySerializer interface . 85
6.5 The IDataSerializer interface . 86
6.6 The abstract class ProtobufTypeAdapter . 87
6.7 The ISecureConnection interface . 91

7.1 The master-slave model of a GA [GCZ+15] 98
7.2 Sequence diagram of a master and worker communication of the distributed GA100
7.3 User interface of the distributed GA application that is based on the MPM . 104

8.1 Statistics of throughput and server CPU usage of local XMPP server(s) . . . 109
8.2 Statistics of throughput and server CPU usage of XMPP server(s) hosted on

AWS . 110

List of Tables

2.1 Comparison of popular unstructured P2P protocols, state at 09.2016 22

3.1 Probable fulfilment of requirements by presented P2P technology 40

124

Acronyms

AES advanced encryption standard. 67, 68

API application programming interface. 29, 30, 33, 35, 36, 44, 45, 51, 54, 60, 64, 71, 88,
92, 114, 116

ARM advanced RISC machine. 10

ASCII American Standard Code for Information Interchange. 59

AWS Amazon web services. 107, 108, 110, 111, 124

CA certificate authority. 63, 65, 89, 113

CBJX crypto-based JXTA transfer. 24

CHK content-hash key. 11, 12

DDoS distributed denial of service. 10, 14, 18, 21, 63, 64

DHT distributed hash table. 16, 17, 24, 27, 29–32, 40

DNS Domain Name System. 80

DoS denial of service. 8, 14, 16, 18, 21, 29, 35, 63, 79, 88, 89, 116

DTLS datagram transport layer security. 29

E2E end-to-end. xiv, 51, 52, 63–67, 76, 79, 83, 88–92, 95, 112–115, 119–121

EC entry collection. 45

EC2 elastic cloud computing. 107, 108, 112

FCM Firebase cloud messaging. 54, 56–58, 70, 73, 81–83, 112

FIFO first in - first out. 44

GA genetic algorithm. 97–101, 103, 104, 120, 124

125

GUID globally unique identifier. 72, 73, 94

HTTP hypertext transfer protocol. 9, 14, 23, 27, 54, 57, 70, 71

ID identifier. 9, 12, 28, 29, 49

IDE integrated development environment. 35

IDL interface description language. 60, 83

IETF Internet Engineering Task Force. 26–28

IM instant messaging. 1, 12, 26, 27, 30

IO input/output. 49, 51, 95

IP internet protocol. 8, 10, 14, 16, 21, 23, 26, 27, 93, 107, 115

J2ME Java Platform Micro Edition. 25

JADE Java agent development framework. 23, 37

JSON JavaScript object notation. 59, 60, 62, 77

JVM Java virtual machine. 50, 51, 56, 57, 59

JXTA Juxtapose. 23–25, 32, 37, 39–41, 125

LAN local area network. 2, 6, 35, 63, 71, 79, 106, 107

MAC message authentication code. 67, 68, 113, 116

MitM man-in-the-middle. 12, 21, 24, 29, 35, 114

MPM Mobile Peer Model. 5, 7, 19, 28, 34, 37, 43, 47–57, 59, 60, 63, 64, 67, 70–73,
75–79, 81–83, 85, 88–92, 94, 95, 97–100, 102–105, 117, 121, 123, 124

NAT network address translation. ix, xi, 2, 7, 8, 10, 13, 14, 18, 19, 22, 24, 26, 27, 34,
39, 41, 54, 70, 117

NAT-PMP NAT port mapping protocol. 18, 22

NFC near field communication. 6

OTR off-the-record messaging. 64, 66–69, 76, 88–92, 112–116, 119, 121, 123

P2P peer-to-peer. ix, xi, xiii, 1–3, 5–9, 11, 13–17, 19–27, 29–32, 35, 37–41, 47, 63, 70,
119, 123, 124

126

P2PSIP peer-to-peer session initiation protocol. 26–30, 39, 40

PGP pretty good privacy. 64–67

PIC peer-in-container. 44, 45, 49, 52, 53, 101

PKI public-key-infrastructure. 63, 65, 88, 89, 113

PM Peer Model. xiii, 1, 3, 32, 41, 43–45, 47–50, 119–121

POC peer-out-container. 44, 45, 49

RDS relational database service. 107, 108, 112

RELOAD resource location and discovery. 26–30, 39

RIAA Recording Industry Association of America. 14

RPC remote procedure call. 61

RTP real-time transport protocol. 27, 48, 49, 56

RTP runtime peer. 44, 45, 48–53, 56, 57, 75, 78, 79, 81, 89–91, 94, 95, 99, 100, 103, 117,
123

S/MIME secure/multi-purpose internet mail extensions. 64–67

SIGMA sign and mac. 67

SIP session initiation protocol. 23, 26–30, 37, 40, 120

SMP socialist millionaire problem. 67, 69, 90–92, 95, 114, 115

SRDI shared resource distributed index. 24

SSK signed-subspace key. 11

TCP transmission control protocol. 26, 56, 57, 70, 79, 80, 93, 94, 106, 108

TLS transport layer security. 24, 29, 54, 63, 64, 70, 81, 88, 89, 113, 114, 119

TSP travelling salesman problem. 98, 100, 103

TTL time-to-live. 9, 12, 44, 45, 48, 53, 117

TTS time-to-start. 44, 45, 48

UDP user datagram protocol. 11, 15, 18, 22, 26, 27, 39

UI user interface. 48, 51, 52, 99, 100, 102–104, 116

127

UML unified modelling language. 75

UPnP Universal Plug and Play. 13, 18, 22, 39

URI uniform resource identifier. 27, 44, 49, 79

URL uniform resource locator. 6, 82

VCS version control system. 25

VM virtual machine. 57, 107

VoIP voice over IP. 1, 27, 30

VPC virtual private cloud. 71, 107, 108, 112

W-LAN wireless local area network. 13, 34

WAN wide area network. 6, 63

WWW world wide web. 12

XML extensible markup language. 23, 59, 121

XMPP extensible messaging and presence protocol. 23, 37, 41, 50, 51, 54–58, 63, 64,
67, 70–73, 76, 79–82, 88, 89, 92–94, 106–114, 116, 117, 119, 121, 123, 124

128

Bibliography

[AG07] Chris Alexander and Ian Goldberg. Improved user authentication in off-the-
record messaging. In Proceedings of the 2007 ACM Workshop on Privacy
in Electronic Society, WPES ’07, pages 41–47, New York, NY, USA, 2007.
ACM.

[AMHJ09] Joan Arnedo-Moreno and Jordí Herrera-Joancomartí. A survey on security
in jxta applications. Journal of Systems and Software, 82(9):1513–1525,
2009.

[Arb04] Farhad Arbab. Reo: a channel-based coordination model for component
composition. Mathematical structures in computer science, 14(03):329–366,
2004.

[ATS04] Stephanos Androutsellis-Theotokis and Diomidis Spinellis. A survey of
peer-to-peer content distribution technologies. ACM computing surveys
(CSUR), 36(4):335–371, 2004.

[BAD06] Nilanjan Banerjee, Arup Acharya, and Sajal Das. Seamless sip-based
mobility for multimedia applications. IEEE Network, 20(2):6–13, 2006.

[Bai02] Damien Bailly. Cbjx: Crypto-based jxta. Technical report, Sun Laborato-
ries Europe, 2002.

[BCJ04] Martin Boldt, Bengt Carlsson, and Andreas Jacobsson. Exploring spyware
effects. In Nordsec 2004, 2004.

[BF11] Aiden A. Bruen and Mario A. Forcinito. Cryptography, information theory,
and error-correction: a handbook for the 21st century, volume 68. John
Wiley & Sons, 2011.

[BGB04] Nikita Borisov, Ian Goldberg, and Eric Brewer. Off-the-record communica-
tion, or, why not to use pgp. In Proceedings of the 2004 ACM workshop
on Privacy in the electronic society, pages 77–84. ACM, 2004.

[BM06] Joseph Bonneau and Andrew Morrison. Finite-state security analysis of
otr version 2. Technical report, Stanford University. Stanford, CA, 2006.

129

[BST01] Fabrice Boudot, Berry Schoenmakers, and Jacques Traoré. A fair and
efficient solution to the socialist millionaires’ problem. Discrete Applied
Mathematics, 111(1–2):23 – 36, 2001.

[BX11] Leonard Barolli and Fatos Xhafa. Jxta-overlay: A p2p platform for dis-
tributed, collaborative, and ubiquitous computing. IEEE Transactions on
Industrial Electronics, 58(6):2163–2172, 2011.

[CGCD+17] Katriel Cohn-Gordon, Cas Cremers, Benjamin Dowling, Luke Garratt, and
Douglas Stebila. A formal security analysis of the signal messaging protocol.
In Security and Privacy (EuroS P), pages 451–466. IEEE, 2017.

[Cic06] Vincent A. Cicirello. Non-wrapping order crossover: An order preserving
crossover operator that respects absolute position. In Proceedings of the 8th
Annual Conference on Genetic and Evolutionary Computation, GECCO
’06, pages 1125–1132, New York, NY, USA, 2006. ACM.

[CJK15] Stefan Craß, Gerson Joskowicz, and Eva Kühn. A decentralized access
control model for dynamic collaboration of autonomous peers. In Inter-
national Conference on Security and Privacy in Communication Systems,
pages 519–537. Springer, 2015.

[CKS09] Stefan Craß, Eva Kühn, and Gernot Salzer. Algebraic foundation of a data
model for an extensible space-based collaboration protocol. In Proceedings
of the 2009 International Database Engineering & Applications Symposium,
IDEAS ’09, pages 301–306, New York, NY, USA, 2009. ACM.

[CMH+02] I. Clarke, S. G. Miller, T. W. Hong, O. Sandberg, and B. Wiley. Protecting
free expression online with freenet. IEEE Internet Computing, 6(1):40–49,
Jan 2002.

[Coh03] Bram Cohen. Incentives build robustness in bittorrent. In Workshop on
Economics of Peer-to-Peer systems, volume 6, pages 68–72, 2003.

[Coh08] Kai Michael Cohrs. Implementation and evaluation of the peer-to-peer-
protocol (p2pp) for p2psip. Master’s thesis, Computer Networks Group,
Institute of Computer Science, Georg-August-University of Göttingen,
Göttingen, Germany, 2008.

[CSWH01] Ian Clarke, Oskar Sandberg, Brandon Wiley, and Theodore W Hong.
Freenet: A distributed anonymous information storage and retrieval system.
In Designing privacy enhancing technologies, pages 46–66. Springer, 2001.

[DPK12] Ciprian Docan, Manish Parashar, and Scott Klasky. Dataspaces: an
interaction and coordination framework for coupled simulation workflows.
Cluster Computing, 15(2):163–181, 2012.

130

[DSMPR03] H. De Sterck, R. S. Markel, T. Phol, and U. Rüde. A lightweight java
taskspaces framework for scientific computing on computational grids. In
Proceedings of the 2003 ACM Symposium on Applied Computing, SAC ’03,
pages 1024–1030, New York, NY, USA, 2003. ACM.

[EDGM07] Karim El Defrawy, Minas Gjoka, and Athina Markopoulou. Bottorrent:
Misusing bittorrent to launch ddos attacks. SRUTI, 7:1–6, 2007.

[EMH16] Ksenia Ermoshina, Francesca Musiani, and Harry Halpin. End-to-end
encrypted messaging protocols: An overview. In International Conference
on Internet Science, pages 244–254. Springer, 2016.

[Fil10] James Filbert. Developing a multi-purpose chat application for mobile dis-
tributed systems on android platform. Bachelor thesis, Helsinki Metropolia
University of Applied Sciences, 2010.

[FMB+16] T. Frosch, C. Mainka, C. Bader, F. Bergsma, J. Schwenk, and T. Holz.
How secure is textsecure? In 2016 IEEE European Symposium on Security
and Privacy, pages 457–472, March 2016.

[GCZ+15] Yue-Jiao Gong, Wei-Neng Chen, Zhi-Hui Zhan, Jun Zhang, Yun Li, Qingfu
Zhang, and Jing-Jing Li. Distributed evolutionary algorithms and their
models: A survey of the state-of-the-art. Applied Soft Computing, 34:286–
300, 2015.

[Gel85] David Gelernter. Generative communication in linda. ACM Transactions
on Programming Languages and Systems (TOPLAS), 7(1):80–112, 1985.

[HB02] Oliver Heckmann and Axel Bock. The edonkey 2000 protocol. Multimedia
Communications Lab, Darmstadt University of Technology, Tech. Rep.
KOM-TR-08-2002, 2002.

[HBMS04] Oliver Heckmann, Axel Bock, Andreas Mauthe, and Ralf Steinmetz. The
edonkey file-sharing network. GI Jahrestagung (2), 51:224–228, 2004.

[HKLF+06] S. B. Handurukande, A.-M. Kermarrec, F. Le Fessant, L. Massoulié, and
S. Patarin. Peer sharing behaviour in the edonkey network, and implications
for the design of server-less file sharing systems. In Proceedings of the 1st
ACM SIGOPS/EuroSys European Conference on Computer Systems 2006,
EuroSys ’06, pages 359–371, New York, NY, USA, 2006. ACM.

[HYAK+04] Erkki Harjula, Mika Ylianttila, Jussi Ala-Kurikka, Jukka Riekki, and
Jaakko Sauvola. Plug-and-play application platform: towards mobile peer-
to-peer. In Proceedings of the 3rd international conference on Mobile and
ubiquitous multimedia, pages 63–69. ACM, 2004.

[JC10] Xing Jin and S-H Gary Chan. Unstructured peer-to-peer network architec-
tures. Handbook of Peer-to-Peer Networking, pages 117–142, 2010.

131

[JKW07] Kurt Jensen, Lars Michael Kristensen, and Lisa Wells. Coloured petri
nets and cpn tools for modelling and validation of concurrent systems.
International Journal on Software Tools for Technology Transfer, 9(3-
4):213–254, 2007.

[JXJY06] Y. Jiang, G. Xue, Z. Jia, and J. You. Dtuples: A distributed hash table
based tuple space service for distributed coordination. In 2006 Fifth
International Conference on Grid and Cooperative Computing (GCC’06),
pages 101–106, Oct 2006.

[KBM07] Marlom A. Konrath, Marinho P. Barcellos, and Rodrigo B. Mansilha.
Attacking a swarm with a band of liars: evaluating the impact of attacks
on bittorrent. In Seventh IEEE International Conference on Peer-to-Peer
Computing (P2P 2007), pages 37–44. IEEE, 2007.

[KCJ+13] Eva Kühn, Stefan Craß, Gerson Joskowicz, Alexander Marek, and Thomas
Scheller. Peer-based programming model for coordination patterns. In
International Conference on Coordination Languages and Models, pages
121–135. Springer, 2013.

[KMKS09] eva Kühn, Richard Mordinyi, László Keszthelyi, and Christian Schreiber.
Introducing the concept of customizable structured spaces for agent coor-
dination in the production automation domain. In Proceedings of The 8th
International Conference on Autonomous Agents and Multiagent Systems -
Volume 1, AAMAS ’09, pages 625–632, Richland, SC, 2009. International
Foundation for Autonomous Agents and Multiagent Systems.

[Kra03] Hugo Krawczyk. Sigma: The ‘sign-and-mac’approach to authenticated
diffie-hellman and its use in the ike protocols. In Annual International
Cryptology Conference, pages 400–425. Springer, 2003.

[LA10] Lu Liu and Nick Antonopoulos. From client-server to p2p networking.
Handbook of Peer-to-Peer Networking, pages 71–89, 2010.

[LCP+05] Eng Keong Lua, J. Crowcroft, M. Pias, R. Sharma, and S. Lim. A survey
and comparison of peer-to-peer overlay network schemes. IEEE Communi-
cations Surveys Tutorials, 7(2):72–93, Second 2005.

[Li08] Jin Li. On peer-to-peer (p2p) content delivery. Peer-to-Peer Networking
and Applications, 1(1):45–63, 2008.

[LKM+99] P. Larrañaga, C.M.H. Kuijpers, R.H. Murga, I. Inza, and S. Dizdarevic.
Genetic algorithms for the travelling salesman problem: A review of rep-
resentations and operators. Artificial Intelligence Review, 13(2):129–170,
1999.

132

[LKR06] Jian Liang, Rakesh Kumar, and Keith W. Ross. The fasttrack overlay: A
measurement study. Computer Networks, 50(6):842–858, 2006.

[LNR06] Jian Liang, Naoum Naoumov, and Keith W Ross. The index poisoning
attack in p2p file sharing systems. In INFOCOM, pages 1–12, 2006.

[LP05] Zhen Li and M. Parashar. Comet: a scalable coordination space for
decentralized distributed environments. In Second International Workshop
on Hot Topics in Peer-to-Peer Systems, pages 104–111, July 2005.

[Mae12] Kazuaki Maeda. Performance evaluation of object serialization libraries in
xml, json and binary formats. In Digital Information and Communication
Technology and it’s Applications (DICTAP), 2012 Second International
Conference on, pages 177–182. IEEE, 2012.

[OZ99] Andrea Omicini and Franco Zambonelli. Coordination for internet ap-
plication development. Autonomous Agents and Multi-Agent Systems,
2(3):251–269, 1999.

[Rau14] Dominik Rauch. Peerspace.net. Master’s thesis, TU Wien, 2014.

[RD10] Rodrigo Rodrigues and Peter Druschel. Peer-to-peer systems. Commun.
ACM, 53(10):72–82, October 2010.

[Rol09] Antoine Roly. Analysis and prototyping of the ietf reload protocol onto a
java application server. Master’s thesis, Facultés Universitaires Notre-Dame
de la Paix de Namur, 2009.

[RPV11] Alessandro Ricci, Michele Piunti, and Mirko Viroli. Environment program-
ming in multi-agent systems: an artifact-based perspective. Autonomous
Agents and Multi-Agent Systems, 23(2):158–192, 2011.

[RSHS14] Stefanie Roos, Benjamin Schiller, Stefan Hacker, and Thorsten Strufe.
Measuring freenet in the wild: Censorship-resilience under observation. In
International Symposium on Privacy Enhancing Technologies Symposium,
pages 263–282. Springer, 2014.

[SdCCGB10] Flávio Roberto Santos, Weverton Luis da Costa Cordeiro, Luciano Paschoal
Gaspary, and Marinho Pilla Barcellos. Choking polluters in bittorrent file
sharing communities. In 2010 IEEE Network Operations and Management
Symposium-NOMS 2010, pages 559–566. IEEE, 2010.

[SGG03] Stefan Saroiu, Krishna P. Gummadi, and Steven D. Gribble. Measuring
and analyzing the characteristics of napster and gnutella hosts. Multimedia
Systems, 9(2):170–184, 2003.

133

[SL03] Sechang Son and Miron Livny. Recovering internet symmetry in distributed
computing. In Cluster Computing and the Grid, 2003. Proceedings. CCGrid
2003. 3rd IEEE/ACM International Symposium on, pages 542–549. IEEE,
2003.

[SM12] Audie Sumaray and S. Kami Makki. A comparison of data serialization
formats for optimal efficiency on a mobile platform. In Proceedings of the
6th international conference on ubiquitous information management and
communication, page 48. ACM, 2012.

[SMR12] Anil Saroliya, Upendra Mishra, and Ajay Rana. A pragmatic analysis
of peer to peer networks and protocols for security and confidentiality.
International Journal of Computing and Corporate Research, 2(6), 2012.

[SP94] M. Srinivas and L. M. Patnaik. Genetic algorithms: a survey. Computer,
27(6):17–26, June 1994.

[TC06] Richard W. Thommes and Mark Coates. Epidemiological modelling of
peer-to-peer viruses and pollution. In INFOCOM, volume 6, pages 1–12,
2006.

[Til17] Peter Tillian. Mobile peer model - a mobile peer-to-peer communication and
coordination framework. Master’s thesis, TU Wien, 2017. (in preparation).

[TR11] Claudio Testa and Dario Rossi. On the impact of utp on bittorrent com-
pletion time. In Peer-to-Peer Computing (P2P), 2011 IEEE International
Conference on, pages 314–317. IEEE, 2011.

[TSIS12] D. S. Touceda, J. M. Sierra, A. Izquierdo, and H. Schulzrinne. Survey of
attacks and defenses on p2psip communications. IEEE Communications
Surveys Tutorials, 14(3):750–783, 2012.

[TVHVL13] Ha Manh Tran, Khoa Van Huynh, Khoi Duy Vo, and Son Thanh Le.
Mobile peer-to-peer approach for social computing services in distributed
environment. In Proceedings of the Fourth Symposium on Information and
Communication Technology, pages 227–233. ACM, 2013.

[WDŻR10] AdamWierzbicki, Anwitaman Datta, Łukasz Żaczek, and Krzysztof Rzadca.
Supporting collaboration and creativity through mobile p2p computing. In
Handbook of Peer-to-Peer Networking, pages 1367–1400. Springer, 2010.

[ZY02] Demetrios Zeinalipour-Yazti. Exploiting the security weaknesses of the
gnutella protocol. Technical report, Department of Computer Science,
University of California, 2002.

134

	Abstract
	Kurzfassung
	Contents
	Introduction
	Motivation
	Problem statement
	Aim of the work
	Structure of the work

	Analysis of existing approaches and background technologies
	Review process
	p2p systems characteristics
	Unstructured p2p overlay networks
	General purpose p2p protocols
	Coordination frameworks and models

	Requirements and selection of background technology
	Requirements
	Evaluation and selection of background technology

	The Peer Model
	Characteristics

	Design
	Mobile profile of the pm
	Architectural overview and separation of engineering tasks
	Architecture of communication and identity management
	Architecture of serialization
	Security concept
	Scalability concept

	Implementation
	Class overview
	Communication and identity management
	Serialization
	Security
	Scalability
	Integration with partner work

	Proof-of-concept implementation of mobile application
	Background
	Design
	Implementation

	Evaluation
	Scalability evaluation
	Performance of e2e encryption
	Security assessment
	Fulfilment of imposed requirements

	Conclusion
	Summary
	Lessons learned
	Future work

	List of Figures
	List of Tables
	Acronyms
	Bibliography

