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A B S T R A C T

This thesis is concerned with multi-terminal source coding prob-
lems motivated by biclustering applications. We introduce the Shan-
non theoretic multi-clustering problem and investigate its properties,
uncovering connections with many other coding problems in the lit-
erature. The figure of merit for this information-theoretic problem is
mutual information, the mathematical properties of which make the
multi-clustering problem amenable to techniques that could not be
used in a general rate-distortion setting.

We first consider the case of two sources, where we derive single-
letter bounds for the achievable region by connecting our setting to
hypothesis testing and pattern recognition problems in the informa-
tion theory literature. We complement these bounds with cardinality
bounds for the auxiliary random variables, improving upon the re-
sults typically obtained by using the convex cover method. Applying
these improved cardinality bounds to the case of a doubly symmet-
ric binary source, we find a gap between the outer and inner bound,
disproving a conjecture by Westover and O’Sullivan (2008).

We generalize the problem setup to an arbitrary number of sources
and show that a CEO problem with logarithmic loss distortion, which
was previously investigated by Courtade and Weissman (2014), con-
stitutes a special case of this multi-clustering problem. This CEO
problem can be extended by requiring multiple description coding.
Drawing from the theory of submodular functions, we prove a tight
inner and outer bound for the resulting achievable region under a
suitable conditional independence assumption. The single-letter char-
acterization of the achievable region we obtain has some interesting
technical properties. In particular, the rate requirement is in gen-
eral insufficient to ensure successful typicality decoding of the corre-
sponding description.

Furthermore, we present a proof of the two-function case of a con-
jecture by Kumar and Courtade (2013), showing that the inequality
I
(
f(Xn);g(Yn)

)
6 I(X; Y) holds for any two Boolean functions f and

g, where (X, Y) is a doubly symmetric binary source. We also show
that the dictator functions are essentially the only functions achieving
equality. The key step in the proof is a careful analysis of the Fourier
spectrum of the two Boolean functions. This allows us to reduce the
statement to an elementary inequality which we subsequently prove.
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Z U S A M M E N FA S S U N G

Diese Arbeit befasst sich mit Problemen der verteilten Quellenko-
dierung, welche sich von Biclustering Methoden ableiten. Wir definie-
ren dieses Shannon-theoretische verteilte Quellenkodierungsproblem,
bei dem die Transinformation zwischen Codewörtern maximiert wer-
den soll. Die mathematischen Eigenschaften der Transinformation
machen dieses Problem für Techniken zugänglich, die auf allgemeine
Rate-Distortion Probleme nicht anwendbar wären. Wir untersuchen
die erreichbare Region und zeigen dabei Zusammenhänge mit etli-
chen anderen Kodierungsproblemen in der Literatur auf.

Zunächst beschränken wir uns auf zwei Quellen und finden Schran-
ken für die erreichbare Region. Dabei stellen wir Zusammenhänge
mit Problemen des Hypothesentestens und der Mustererkennung her.
Wir ergänzen diese Resultate durch Abschätzungen für die Kardinali-
tät der Hilfsvariablen, wobei wir die üblichen Abschätzungen verbes-
sern, die durch Anwenden der Methode konvexer Überdeckungen
erreicht werden. Die verbesserten Abschätzungen wenden im Fall ei-
ner doppelt symmetrischen binären Quelle an und stellen fest, dass
die inneren und äußeren Schranken nicht übereinstimmen, was eine
Vermutung von Westover und O’Sullivan (2008) widerlegt.

Wir verallgemeinern das Problem für eine beliebige Zahl an Quel-
len und zeigen, dass ein CEO-Problem mit logarithmischem Verlust
als Verzerrung einen Spezialfall darstellt, welcher zuvor von Cour-
tade und Weissman (2014) untersucht wurde. Dieses CEO-Problem
kann erweitert werden, indem man mehrfache Beschreibungen be-
rücksichtigt. Wir verwenden die Theorie submodularer Funktionen
und finden eine single-letter Charakterisierung der erreichbaren Re-
gion für dieses CEO-Problem mit mehrfachen Beschreibungen unter
geeigneten Annahmen bedingter Unabhängigkeit. Die resultierende
Region hat einige interessante technische Eigenschaften. Insbesonde-
re ist die benötigte Rate im Allgemeinen niedriger als für eine erfolg-
reiche typische Dekodierung notwendig.

Weiters präsentieren wir den Beweis einer Vermutung von Kumar
und Courtade (2013) über die maximale Transinformation von zwei
Boolschen Funktionen, die besagt, dass I

(
f(Xn);g(Yn)

)
6 I(X; Y) für

zwei beliebige Boolsche Funktionen gilt, wobei (X, Y) eine doppelt
symmetrische binäre Quelle ist. Wir zeigen, dass, abgesehen von Spe-
zialfällen, die Diktator-Funktionen die einzigen Boolschen Funktio-
nen sind, die Gleichheit erreichen. Der Schlüsselschritt des Bewei-
ses ist eine detailierte Analyse des Fourier-Spektrums der Boolschen
Funktionen, die es erlaubt, die Vermutung auf eine elementare Un-
gleichung zurückzuführen.
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Part I

I N T R O D U C T I O N

This part is organized into two chapters. In Chapter 1 we
motivate the problems that will be studied in this thesis,
provide an informal definition of the setup, and summa-
rize the original findings. Chapter 2 introduces the neces-
sary notation as well as the relevant definitions and results
that will be used throughout the remainder of this thesis.





1
M O T I VAT I O N

This thesis is concerned with the information-theoretic treatment of
a data clustering technique that uses mutual information as its figure
of merit.

The mutual information I
(
X; Y

)
between two random variables X

and Y is a fundamental quantity in information theory and measures
the information one random variable contains about the other. It
has many useful mathematical properties and its definition does not
require any additional structure as it can even be defined for random
variables on arbitrary probability spaces [23, Section 7.4] using the
general definition of relative entropy [23, Section 7.1]. These properties
make relative entropy and mutual information appealing candidates
as objective functions in learning problems.

We adopt an information-theoretic point of view in the investiga-
tion of the biclustering (or co-clustering) technique, a data clustering al-
gorithm. Biclustering was first explicitly considered by Hartigan [28]
in 1972. A historical overview of biclustering including additional
background can be found in [38, Section 3.2.4]. In general, given an
N×M data matrix (anm), the goal of a biclustering algorithm [37]
is to find partitions Bk ⊆ {1, . . . ,N} and Cl ⊆ {1, . . . ,M}, k = 1 . . . K,
l = 1 . . . L such that all the “biclusters” (anm)n∈Bk,m∈Cl are in a
certain sense homogeneous. The measure of homogeneity of the bi-
clusters depends on the specific application. The method received
renewed attention when Cheng and Church [9] successfully applied
it to gene expression data. Many biclustering algorithms have been
developed since (e.g., see [62] and references therein). An introduc-
tory overview of clustering algorithms for gene expression data can
be found in the lecture notes [58]. The information bottleneck method,
which can be viewed as a uni-directional information-theoretic vari-
ant of biclustering, was successfully applied to gene expression data
as well [59].

In 2003, Dhillon et. al. [14] adopted an information-theoretic ap-
proach to biclustering. Specifically, for the special case when the un-
derlying matrix represents the joint probability mass function (p.m.f.)
of two discrete random variables X and Y, i. e., anm = P{X = n, Y = m},
their goal was to find functions f : {1, 2, . . . ,N} → {1, 2, . . . ,K} and
g : {1, 2, . . . ,M} → {1, 2, . . . ,L} that maximize I

(
f(X);g(Y)

)
for specific

K and L. We extend this setup from two to an arbitrary number of ran-
dom variables and, using identically and independently distributed
(i.i.d.) copies of those sources, we define information-theoretic achiev-
ability. The aim of this thesis is to characterize the resulting achievable

3
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X1 W1 = f1(X1)

X2 W2 = f2(X2)

X3 W3 = f3(X3)

X4 W4 = f4(X4)

X5 W5 = f5(X5)

...
...

XK WK = fK(XK)

I
(
WA; WB

)

Figure 1: Information-theoretic clustering.

region of this information-theoretic clustering problem under various
constraints and connect it to other problems in network information
theory. It is a multi-terminal source coding problem that offers a
formidable mathematical complexity and is fundamentally different
from “classical” distributed source coding problems like distributed
lossy compression [16, Chapter 12]. Usually, one aims at reducing
redundant information, i. e., information that is transmitted by mul-
tiple encoders, as much as possible, while still guaranteeing correct
decoding. By contrast, in the clustering problem we are interested in
maximizing this very redundancy. In this sense, the clustering prob-
lem is complementary to conventional distributed source coding.

1.1 problem setup

In this section we will present an informal introduction to the
information-theoretic clustering problem. The formal definitions will
follow in Part II. We will introduce the general problem as well as the
special cases that are treated in this thesis and summarize the major
original findings of this work in Section 1.2.

The input data is modeled by K random vectors X1, X2, . . . , XK,
which are formed by n i.i.d. copies of the discrete random variables
X1, X2, . . . , XK. The clustering is performed by K function f1, . . . , fK,
where fk takes Xk as its input and forms a description Wk = fk(Xk).
These descriptions are then collected into two disjoint, nonempty sets
A,B ⊆ {1, 2, . . . ,K}, which are compared to each other in terms of
mutual information µA,B = I(WA; WB), as depicted in Figure 1.

Without any restrictions on the functions fk, the optimal choice
is the identity function Wk = fk(Xk) = Xk, achieving the maximum
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mutual information I(WA; WB) = I(XA; XB). We therefore restrict the
functions fk and then characterize the achievable mutual information
I(WA; WB) for different pairs of sets (A,B).

In the spirit of Shannon’s work [57], the most natural restriction
is bounding the rate of fk, i. e., requiring 1

n log2|fk| 6 Rk for k ∈ n is the length of the
vector Xk.{1, 2, . . . ,K}, where |fk| is the cardinality of the range of fk and Rk

is the rate in bit. Given the rates R1,R2, . . . ,RK, and values µA,B

for any nonempty disjoint pair A,B ⊆ {1, 2, . . . ,K}, we are interested,
whether the rates Rk are sufficient to achieve 1

n I(WA; WB) > µA,B for
all such pairs (A,B) simultaneously. We call those values achievable
and let R be the set of all achievable points. Note that the achievable
region R ⊆ R3

K−2K+1+K+1 of this multi-clustering problem is a high- There are
3K − 2K+1 + 1

ways to choose the
pair (A,B).

dimensional region that is difficult to characterize. In particular, a
single-letter characterization of this region is currently out of reach, as
quantize-and-bin coding schemes are known to be unable to achieve
the full achievable region in this general setting. It contains a famous
counterexample [34] as a special case. We will therefore provide outer
and inner bounds on the achievable region in the general case and
investigate several special cases of this multi-clustering problem, for
which stronger statements can be made:

For K = 2 sources, the multi-clustering problem turns out be
equivalent to a hypothesis testing problem [25] and a pattern
recognition problem [66]. We explicitly state these equivalences
and exploit them, providing easy proofs of bounds on the achiev-
able region for K = 2.

If K = 2, the subset of the achievable region where R2 = ∞ ad-
mits a single-letter characterization and the associated problem
is known as the information bottleneck problem.

We also investigate the case where K = 2 and (X1, X2) is a dou-
bly symmetric binary source [16, Example 10.1], which was pre-
viously studied in [66, Section VII.A]. Based on novel cardinal-
ity bounds we are able to provide evidence that there is a gap
between the inner and outer bounds, disproving [66, Conjec-
ture 1].

We will investigate a variant of the chief executive officer (CEO)
problem, depicted in Figure 2, which can be obtained from the
multi-clustering problem by requiring certain rates to be infi-
nite and µA,B = 0 for certain sets (A,B). We will provide a
tight single-letter characterization of the achievable region for a
special case of this problem with multiple description coding.

For K = 2 and a doubly symmetric binary source (X1, X2), we also
consider a different type of constraint on the functions (f1, f2), that
is not a rate constraint. Allowing f2 to be arbitrary, but requiring
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X1 W1 = f1(X1)

X2 W2 = f2(X2)

...
...

XJ WJ = fJ(XJ)

Y1

Y2

...

YL

I
(
WA; YB

)

Figure 2: CEO Problem.

f1 to be a Boolean function, i. e., |f1| = 2, one can ask for the max-
imal value of I

(
f1(X1); f2(X2)

)
, that is attainable for any n ∈ N.

Clearly, choosing f2 to be the identity function is optimal, yieldingOptimality follows
from the

data-processing
inequality.

I
(
f1(X1); f2(X2)

)
= I
(
f1(X1); X2

)
. A still open conjecture [10, Conjec-

ture 1] claims that I
(
f1(X1); X2

)
6 I(X1; X2) for any Boolean function

f1. We prove the weaker statement, I
(
f1(X1); f2(X2)

)
6 I(X1; X2)

for any pair of Boolean functions (f1, f2). This result readily follows
from the original conjecture via the data-processing inequality and
was stated as an open problem in [36, Section IV] and [10, Section IV],
and previously investigated in [5].

1.2 original contributions

The following is a summary of the original contributions of this
thesis.

We introduce the multi-clustering problem and provide inner
and outer bounds on the achievable region.

The CEO problem obtained from the general multi-clustering
problem is shown to be equivalent to the CEO problem under
logarithmic loss distortion.

A single-letter characterization of the achievable region of the
multiple description CEO problem is obtained.

We provide a thorough study of the multi-clustering problem
for the case of two sources, relating it to several other problems
in the literature.



1.3 thesis organization 7

Novel cardinality bounds are provided for auxiliary random
variables for both the outer and the inner bound on the achiev-
able region of the multi-clustering problem in the case of two
sources. However, the technique is not limited to K = 2 sources
and might even provide better cardinality bounds for auxiliaries
in other coding theorems.

We performed a thorough analysis of the doubly symmetric bi-
nary source case, enabled by the improved cardinality bounds
on the auxiliary random variables. Our work grants more in-
sight into the achievable region for this particular source distri-
bution, disproving an open conjecture.

We establish the correctness of the Courtade-Kumar conjecture
for two Boolean functions [10, Section IV].

1.3 thesis organization

This thesis covers two main topics, the multi-clustering problem
and the Kumar-Courtade conjecture [36] for the case of two Boolean
functions. Both are presented in Part II.

We first provide some preliminary material in Chapter 2, which
may be safely skipped by a reader familiar with the topic. After intro-
ducing the notation in Section 2.1, Section 2.2 contains the necessary
material on (network) information theory. In particular, we introduce
types, typical sequences and provide results concerning various prob-
lems in network information theory. We largely follow the textbooks
[12], [13], [16]. In Section 2.3, we summarize elementary results from
real analysis required for subsequent proofs. For the sake of com-
pleteness, Section 2.4 contains the elementary definitions and results
of Boolean analysis, taken from the textbook [43]. A small introduc-
tion to submodular functions, taken from the textbook [18], follows
in Section 2.5. This material is used in Section 2.6, when proving a
lemma on a sequence of convex polyhedra. As most results in Chap-
ter 2 are given without proof, we provide a list of references to proofs
in Section 2.7.

We study the multi-clustering problem in the case of two sources
in Chapter 3. We published parts of the material in this chapter in
[48], [52]. After introducing the problem (Section 3.1), we connect it
to a hypothesis testing and to a pattern recognition problem in Sec-
tion 3.2. We then exploit these connections in Section 3.3 to provide
single-letter bounds for the achievable region. These bounds become
tight in a special case, corresponding to the information bottleneck
problem, which is itself equivalent to a source coding problem with
logarithmic loss distortion. We investigate these connections in Sec-
tion 3.4. Section 3.5 deals with the special case of a doubly symmetric
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binary source, where we find strong evidence for a gap between the
outer and inner bounds that were introduced in Section 3.3.

We present a proof for the two-function case of the Kumar-Courtade
conjecture in Chapter 4. Some material in this chapter was published
in our previous work [47], [51]. The main results are stated in Sec-
tion 4.1 and the proof is provided in Section 4.2. In Section 4.3 we fur-
ther show that among the Boolean functions, the dictator functions
are in fact the unique maximizers of mutual information, except in
degenerate cases.

Chapter 5 extends the multi-clustering problem to an arbitrary
number of sources. Part of the material in this chapter appeared
in our papers [49], [50], [52]. We provide generalized outer and inner
bounds in Section 5.1. The proof of the inner bound is deferred to Sec-
tion 5.3. In Section 5.2 we show that the CEO problem with logarith-
mic loss distortion constitutes a special case of the multi-clustering
problem. We generalize this to a multiple description CEO problem
in Section 5.4, where we are able to provide a tight single-letter charac-
terization of the achievable region under suitable Markov constraints.

The findings of this thesis are summarized and discussed in Chap-
ter 6. Additionally, we provide a brief outlook and suggestions for
future work on the topics.

The third and final part of this thesis is the Appendix. Proofs of
some results in Chapters 3 and 5 are deferred to Appendices A and B,
respectively. This is done to improve readability if the proof is rather
technical and not immediately necessary to follow the presentation
in Part II.



2
P R E L I M I N A R I E S

To obtain the results described in this thesis, we had to draw from
several mathematical theories. In this chapter we will provide the
necessary fundamentals. If the reader is already familiar with these
topics, this chapter may be safely skipped.

Most proofs are omitted for brevity, however, references to proofs
in the literature are listed in Section 2.7.

2.1 notation and conventions

We will start by introducing the necessary notation. Commonly
used symbols and notation can be found in the List of Symbols in
Section 2.1.1. A list of acronyms is also available on page xvii.

2.1.1 List of Symbols

0 all-zeros vector 0 ∈ Rn

∅ empty set or constant random variable

[0 :n] interval [0 :n] := {0, 1, 2, . . . ,n} for n ∈ N0
1A indicator of the set A;

1A(a) =

1 a ∈ A

0 otherwise

2E power set of the set E [40, Section §1];
2E := {X : X ⊆ E}

|A| number of elements of the set A;

|A| :=
∑
a∈A 1

ā ā := 1− a for a ∈ R
a ∗ b binary convolution;

a ∗ b := ab̄+ āb for a,b ∈ R (cf. ā)

A+B Minkowski sum of sets A and B;

A+B := {a+ b : a ∈ A,b ∈ B}

a⊕ b binary sum/exclusive or;

a⊕ b = a ∗ b (cf. a ∗ b)

Ac complement of the set (or event) A

A topological closure of the set A [40, Sec-
tion §17]

9
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AT transposition of the matrix A

B(p) Bernoulli distribution with parameter p

cc(S) characteristic cone of the closed, convex
set S

ccy(S) characteristic cone of the convex set S at
y ∈ S

conv(A) convex hull of the set A

dLL(p, x) logarithmic loss distortion;

dLL(p, x) := − log2 p(x)

D(p‖q) Kullback-Leibler divergence;

D(p‖q) :=
∑
x∈X p(x) log2

p(x)
q(x)

DSBS(p) doubly symmetric binary source;

X, Y ∼ B(12) and P{X 6= Y} = p (cf. B(p))

<e <e := {e′ ∈ E : e′ < e} for a total order <
on E; accordingly for w, = and v

ei ith canonical base vector;

ei ∈ Rn : ei,j = 1i(j) (cf. 1A)

E[X] expectation of the random variable X

ext(S) extreme points of the convex set S

E[X|Y] conditional expectation of the random
variable X given Y

H−1(t) inverse of the binary entropy function;

H−1 : [0, 1] → [0, 12 ] and H
(
H−1(t)

)
= t

for all t ∈ [0, 1] (cf. Definition 2.3)

H(p) binary entropy function;
H(p) := −p log2 p− p̄ log2 p̄ for p ∈ (0, 1)
and H(0) := H(1) := 0 (cf. Definition 2.3)

H(pX) H(pX) := H(X) for pX ∈ P(X) and X ∼ p

H(X) entropy of the random variable X in bits

H(X|Y) conditional entropy in bits of the random
variable X given the random variable Y

I(X; Y) mutual information in bits between the
random variables X and Y
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I(X; Y|Z) conditional mutual information in bits
between the random variables X and Y
given the random variable Z

ker(A) kernel of the matrix A

N natural numbers; N := {1, 2, 3, . . . }

[n] interval [n] := {1, 2, . . . ,n} for n ∈ N
N0 non-negative integers; N0 := {0, 1, 2, . . . }

NH(x) number of inequalities satisfied with
equality at x cf. Definition 2.55

N(x|x) counting function; N(x|x) :=
∑n
i=1 1x(xi)

(cf. 1A)

Ω set of all pairs (A,B), where A,B ⊂ [K]

are nonempty and disjoint

P{A} probability of the event A

P{A|B} conditional probability of events A, B

P{A|X} conditional probability of the event A

given X; P{A|X} := E[1A|X]

Π set of all pairs (A,B), where A ⊆ [J] and
B ⊆ [L] are nonempty

P(X) set of all p.m.f.s on the finite set X

pX p.m.f. of the random variable X

R real numbers

rank(A) rank of the matrix A

R− non-positive real numbers;

R− := {x ∈ R : x 6 0}

R+ non-negative real numbers;

R+ := {x ∈ R : x > 0}

sgn(x) sign function; sgn(x) = 1 for x > 0 and
sgn(x) = −1 otherwise

Θ(f;g) co-information of f and g; cf. Defini-
tions 3.1 and 5.1

TnX set of n-sequences with type X

Tn[X]δ set of δ-typical n-sequences w.r.t. X
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Tn[Y|X]δ(x) set of conditionally δ-typical n-sequences
given x

TnY|X(x) set of n-sequences with conditional type
Y given x

T[X]δ set of δ-typical random variables w.r.t. X

U(X) uniform distribution on the finite set X

x 6 y (partial) product order for x,y ∈ RE;

x 6 y ⇐⇒ xe 6 ye for all e ∈ E

X ∼ p the random variable X is distributed ac-
cording to the p.m.f. p

x ⊥ y orthogonal vectors x and y, i. e., xTy = 0

χS basis functions on the Boolean hypercube;
χS(x) :=

∏
i∈S xi

X ⊥ Y the random variables X, Y are indepen-
dent

〈x,y〉 inner product of x and y

X ◦−− Y ◦−− Z the random variables X, Y, and Z form a
Markov chain in this order

2.1.2 Generic Conventions

In general, we use calligraphic type to denote sets and events. We
denote random quantities and their realizations by capital, sans-serif
and lowercase letters, respectively. By convention, empty products
are equal to 1, empty sums are regarded as 0, empty intersections are
equal to the entire ambient space and empty unions are regarded as
the empty set ∅. When there is no possibility of confusion we identify
a singleton set with its element, e. g., we write {1, 2, 3} \ 1 = {2, 3}. We
will use superscript to indicate that a relation follows from a specific

equation, e. g., the inequality a
(42)

6 b follows from equation (42).

2.1.3 Definitions

Let Ω denote the set of all pairs (A,B), where A,B ⊂ [K] are
nonempty and disjoint for K ∈N. Note that |Ω| = 3K − 2K+1 + 1. We
also define Π as the set of all pairs (A,B), where A ⊆ [J] and B ⊆ [L]

are nonempty and J,L ∈N. Hence, we have |Π| = 2J+L − 2J − 2L + 1.
For a total order < on a set E and e ∈ E we will use the notation

=e := {e′ ∈ E : e′ = e} and accordingly for w, < and v. E. g., given the
total order < on {1, 2, 3} with 3 < 1 < 2, we have =3 = {1, 2}, =1 = {2}

and =2 = ∅.
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2.1.4 Vectors, Matrices and Tuples

For an arbitrary set X, an X-valued vector is a function in XE for
some finite set E. Vectors are indicated by bold-face, lower-case type,
e. g., x = (xe)e∈E ∈ XE. Matrices are typeset in bold-face, upper-
case letters, e. g., A ∈ Xm×n. If not otherwise specified, we will deal
with n-vectors, i. e., E = [n]. Subscripts indicate parts of vectors, e. g.,
xA := (xe)e∈A for A ⊆ E.

For x ∈ Xn we further use the common abbreviations xji := x{i,...,j},
xj := xj1 for 1 6 i 6 j 6 n and, if a vector is already carrying a
subscript, it will be separated by a comma, e. g., x53,1 = (x3)

5
1 = (x3)

5.
Additionally, we use subscript sets to denote tuples, e. g., x[K] ∈

RK or xΩ ∈ R3
K−2K+1+1. Naturally, slices of tuples are indexed by

subsets, e. g., xA = (xi)i∈A for a tuple xB and A ⊆ B. This notation
extends naturally to tuples of vectors, where the subscript indices are
separated by a comma, e. g., for x[K] ∈ RnK, we have xkA,l = (xA)kl ∈
R(k−l+1)|A| for A ⊆ [K].

2.1.5 Probability and Information Theory

Random variables/random vectors are assumed to be supported
on finite sets. Given random variables, e. g., (X, Y), unless otherwise
specified, the corresponding boldfaced random n-vectors (X, Y) are n
identically and independently distributed (i.i.d.) copies of (X, Y), i. e.,
(X, Y) = (X, Y)n. We use the same letter for the random variable and
for its support set, e. g., Y takes values in Y and X3 takes values in
X3. Given a random variable X, we write pX for its probability mass
function (p.m.f.). We will also use the notation X = ∅ to indicate that
the random variable X is void, i. e., equal to a constant with proba-
bility one. We will use the usual notation for information-theoretic
quantities, given in the List of Symbols in Section 2.1.1. Information
will be measured in bit.

When generating codebooks we will assume that the codebook size
is an integer to keep the notation simple.

2.2 information theory

We start by noting the following basic fact from probability theory.

Theorem 2.1 (Markov’s inequality). For an arbitrary random variable X,
any function f : X→ R+, and any λ > 0 we have

P{f(X) > λ} 6
E
[
f(X)

]
λ

. (2.1)



14 preliminaries

Proof. We have

E[f(X)] =
∑
x∈X

f(x)p(x) (2.2)

>
∑

x∈X:f(x)>λ

f(x)p(x) (2.3)

>
∑

x∈X:f(x)>λ

λp(x) (2.4)

= λP{f(X) > λ}, (2.5)

where (2.3) follows from f > 0.

A fundamental information-theoretic quantity is Kullback-Leibler di-
vergence [35], sometimes also referred to as relative entropy. It mea-
sures a “distance” between p.m.f.s and can be generalized to arbitrary
probability measures [23, Section 7.1]. Although it is not a metric [54,
Definition 2.15], it has many convenient properties.

Definition 2.2. Let p and q be two p.m.f.s on a common alphabet X. The
Kullback-Leibler divergence between p and q is defined as

D(p‖q) :=
∑
x∈X

p(x) log2
p(x)
q(x)

. (2.6)

Note that we allow D(p‖q) = ∞ and adopt the usual convention
0 · log2 0 = 0 · log2

0
0 = 0.

We can now define the fundamental quantities of information the-
ory, entropy, mutual information and their conditional counterparts
in terms of Kullback-Leibler divergence.

Definition 2.3. For a discrete random variable X ∼ pX on X, define the
entropy of X as

U(X) is the uniform
distribution on X.

H(X) := H(pX) := log2|X|− D
(
pX
∥∥U(X)) (2.7)

= −
∑
x∈X

pX(x) log2 pX(x). (2.8)

For random variables (X, Y, Z) we define conditional mutual information,
mutual information, and conditional entropy as

∅ denotes a random
variable that is

constant.

I(X; Y|Z) := H(XZ) + H(YZ) − H(XYZ) − H(Z), (2.9)

I(X; Y) := I(X; Y|∅) = H(X) + H(Y) − H(XY), (2.10)

H(X|Y) := I(X; X|Y) = H(XY) − H(Y). (2.11)

Slightly abusing notation, we also define the binary entropy function
H : [0, 1] → [0, 1] as H(p) := −p log2 p − p̄ log2 p̄. Accordingly, letā := 1− a

H−1 : [0, 1] → [0, 12 ] be the inverse of the binary entropy function on [0, 12 ],
defined by the relation H

(
H−1(t)

)
= t for all t ∈ [0, 1].
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Entropy and mutual information have several useful properties, which
we collect in the following lemma.

Lemma 2.4. For arbitrary random variables X, Y, Z, X1, X2, . . . , XJ, the
following statements hold.

1. 0 6 H(X) 6 log2|X|.

2. I(X; Y|Z) > 0.
We have
X[J] = (X1, . . . , XJ)
and
Xj1 = (X1, . . . , Xj).

3. H
(
X[J]

∣∣Y) =∑Jj=1H
(
Xj
∣∣Xj−11 Y

)
.

4. I
(
X[J]; Y

)
=
∑J
j=1 I

(
Xj; Y

∣∣Xj−11 )
.

The results in Lemma 2.4 can be used to derive many other iden-
tities, e. g., H(X|Y) > H(X|YZ) (“conditioning reduces entropy”). We
will make extensive use of these results and apply them many times
routinely throughout this thesis. We will often omit an explicit ref-
erence, unless an identity is applied in an unusual way, warranting
additional explanation.

We will also make use of some additional information-theoretic
inequalities, which are given in the following theorems.

Theorem 2.5 (Data-processing inequality). If the Markov chain X ◦−−
Y ◦−− Z holds, then I(X; Y) > I(X; Z).

Theorem 2.6 (Fano’s inequality). If X ◦−− Y ◦−− X̂ form a Markov chain
and ε = P

{
X 6= X̂

}
, then

H(ε) denotes the
binary entropy
function.

H(ε) + ε log2|X| > H(X|X̂) > H(X|Y), (2.12)

which can be weakened to

1+ ε log2|X| > H(X|Y). (2.13)

Theorem 2.7 (Log-sum inequality). Let ai,bi ∈ R+ for i ∈ [n]. Then, [n] = {1, 2, . . . ,n}.

n∑
i=1

ai log2
ai
bi

>

(
n∑
i=1

ai

)
log2

∑n
i=1 ai∑n
i=1 bi

(2.14)

with equality if and only if there exists c ∈ R+, such that ai = cbi for all
i ∈ [n].

Using the log-sum inequality, we can show that entropy H(p) is
not only concave [12, Theorem 2.7.3], but strictly concave.

Lemma 2.8. H(p) is strictly concave in p, i. e., H
(
λp + λ̄q

)
> λH(p) +

λ̄H(q) for any λ ∈ (0, 1) and any two p.m.f.s p 6= q on a common alphabet.
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Proof. Let p and q be two p.m.f.s on a common alphabet X. For
λ ∈ (0, 1), we have

λH(p) + λ̄H(q)
(2.7)
= log2|X|− λD

(
p
∥∥U(X))− λ̄D

(
q
∥∥U(X)) (2.15)

= log2|X|−
∑
x∈X

(
λp(x) log2

λp(x)

λ|X|−1

+ λ̄q(x) log2
λ̄q(x)

λ̄|X|−1

)
(2.16)

6 log2|X|− D
(
λp + λ̄q

∥∥U(X)) (2.17)

= H
(
λp + λ̄q

)
. (2.18)

In (2.17) we applied Theorem 2.7, which also shows that equality in
(2.17) is only possible for p = q.

Theorem 2.9 (Information inequality). Let p and q be two p.m.f.s on a
common alphabet, then D(p‖q) > 0 with equality if and only if p = q.

Theorem 2.10 (Mrs. Gerber’s Lemma). The random variable U is arbi-
trary and X is a binary random variable, i. e., X = {0, 1}. If Z ∼ B(p),
p ∈ [0, 1], such that Z ⊥ (X, U) and Y := X⊕ Z, thena ∗ b := āb+ ab̄.

H−1(t) is the
inverse of the binary

entropy function
(cf. Definition 2.3).

H(Y|U) > H
(
H−1(H(X|U)) ∗ p

)
. (2.19)

We will also define the common information [19], [65], [67] of
two random variables. Loosely speaking, common information is
the amount of information that can be obtained from either random
variable with probability one. When present, it can facilitate certain
coding techniques (cf. [65]).

Definition 2.11. For two random variables X and Y, a random variable Z
is a common component of X and Y if and only if there exist functions
ζ and ξ, such that Z = ζ(X) = ξ(Y) with probability one. The common
information of X and Y is maxZ H(Z), where the maximum is over all
common components of X and Y.

Finally we provide the following two lemmas for future use. The
first shows the existence of a code with low over-all error probability,
when the individual error probabilities can be bounded arbitrarily
close to zero. The second lemma is a technical result on mutual infor-
mation involving four random variables.

Lemma 2.12. For any δ > 0 let Cδ be a random code and (E
(δ)
i )i∈I finitely

many error events associated with the code Cδ. If we have P
{
E
(δ)
i

}
6 δ for

every i ∈ I, then, for any ε > 0 we can find δ > 0 such that there is a code
c with P

{
E
(δ)
i

∣∣Cδ = c} 6 ε for every i ∈ I.
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Proof. We apply Markov’s inequality, Theorem 2.1, to the random
variable P

{
E
(δ)
i

∣∣Cδ} and obtain

P
{

P
{
E
(δ)
i

∣∣Cδ} > √δ} 6
δ√
δ
=
√
δ. (2.20)

Applying the union bound yields

P

{⋃
i∈I

{
P
{
E
(δ)
i

∣∣Cδ} > √δ}
}

6
∑
i∈I

P
{

P
{
E
(δ)
i

∣∣Cδ} > √δ} (2.21)

6 |I|
√
δ. (2.22)

In particular, there exists at least one code c such that P
{
E
(δ)
i

∣∣Cδ =

c
}
<
√
δ for all i ∈ I if |I|

√
δ < 1. Choosing δ = min

{
ε2, 1

2|I|2

}
yields

the desired result.

Lemma 2.13. If U ◦−− X ◦−− Z and X ◦−− Z ◦−− V, then

I(U; X) + I(V; Z) − I(UV; XZ) = I(U; V) − I(U; V|XZ), (2.23)

I(U; X) + I(V; Z) − I(UV; XZ) 6 I(U; Z), (2.24)

I(U; X) + I(V; Z) − I(UV; XZ) 6 I(V; X). (2.25)

If U ◦−− X ◦−− Z ◦−− V then I(U; X) + I(V; Z) − I(UV; XZ) = I(U; V).

Proof. We obtain (2.23) from

I(U; X) + I(V; Z) − I(UV; XZ)

= I(U; XZ) + I(V; XZ) − I(UV; XZ) (2.26)
(2.10)
= H(U) + H(V) − H(UV) − H(U|XZ)

− H(V|XZ) + H(UV|XZ) (2.27)
(2.9)
= I(U; V) − I(U; V|XZ), (2.28)

where (2.26) follows from U ◦−− X ◦−− Z and X ◦−− Z ◦−− V. To show
that (2.24) holds, note that

I(U; X) + I(V; Z) − I(UV; XZ) = I(V; Z) − I(V; XZ|U) (2.29)

= I(U; Z) + I(V; Z) − I(U; Z) − I(V; XZ|U) (2.30)

= I(U; Z) + I(V; Z) − I(U; Z) − I(V; Z|U) − I(V; X|ZU) (2.31)

= I(U; Z) + I(V; Z) − I(UV; Z) − I(V; X|ZU) (2.32)

= I(U; Z) − I(U; Z|V) − I(V; X|ZU) (2.33)

6 I(U; Z), (2.34)

using part 4 of Lemma 2.4 and applying U ◦−− X ◦−− Z in (2.29). The
inequality (2.25) can be shown by interchanging (X, U)↔ (Z, V). The
last claim is a direct consequence of (2.23).
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2.2.1 Types, Typical Sequences and Related Results

Several achievability proofs in this thesis are based on the notion
of robust typicality [45], also used in [25]. For convenience, the neces-
sary notation and relevant results are summarized in this section.

We will introduce the notation for types and typical sequences and
make use of the δ-convention [13, Convention 2.11].

Definition 2.14 (Type; [13, Definition 2.1]). The type of a vector x ∈ Xn

is the random variable X̂ ∼ pX̂ ∈ P(X) defined by

N(x|x) counts the
number of

occurrences of x in x.

pX̂(x) =
1

n
N(x|x), for every x ∈ X. (2.35)

For a random variable X̂, the set of vectors with type X̂ is denoted Tn
X̂

.
For a pair of random variables (X, Y), we say that y ∈ Yn has condi-

tional type Y given x ∈ Xn if and only if (x,y) ∈ TnXY. The set of all
vectors y ∈ Yn with conditional type Y given x will be denoted TnY|X(x).

A key property of types is the following result, known as type count-
ing.

Lemma 2.15 (Type counting). The number of different types of vectors in
Xn is less than (n+ 1)|X|.

Some important properties of types are listed in the following lemma.

Lemma 2.16. For a pair of random variables (X, Y) and x ∈ TnX , the follow-
ing properties hold:

1. If Y = X, we have

Y are n i.i.d. copies
of Y. pY(x) = 2

−n
(

H(X)+D(X‖Y)
)

. (2.36)

2. If TnY|X(x) 6= ∅, then

(n+ 1)−|X||Y|2nH(Y|X) 6
∣∣TnY|X(x)

∣∣ 6 2nH(Y|X). (2.37)

Definition 2.17 (Typicality; [16, Section 2.4]). Consider X ∼ pX ∈ P(X)

and δ > 0. We call the random variable Y ∼ pY ∈ P(X) δ-typical if and
only if Y ∈ T[X]δ with

T[X]δ :=
{

X̃ ∼ pX̃ ∈ P(X) :
∣∣pX̃(x) − pX(x)

∣∣ 6 δpX(x), ∀x ∈ X
}

.

(2.38)

A vector x ∈ Xn is δ-typical if its type X̂ is δ-typical. The set of all
δ-typical vectors is denoted Tn[X]δ.

Given pXY ∈ P(X× Y) we call the elements of Tn[XY]δ the jointly δ-
typical vectors. Furthermore, we define the conditionally typical vectors
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Tn[Y|X]δ(x) := {y ∈ Yn : (x,y) ∈ Tn[XY]δ}. Typical sequences have several
useful properties, which are presented in the following.

Lemma 2.18. The following properties hold for (X, Y) ∼ pX,Y.

1. For any δ > 0, we have

lim
n→∞P

{
X ∈ Tn[X]δ

}
= 1. (2.39)

2. Let δ′ > 0 and for each n ∈N, let x ∈ Tn[X]δ′ . If δ > δ′, we have

lim
n→∞P

{
Y ∈ Tn[Y|X]δ(x)

∣∣∣X = x
}
= 1. (2.40)

Lemma 2.19 (Size of typical sets). The following properties hold for ran-
dom variables X and Y.

1. Using ε(δ) = δH(X),

∣∣Tn[X]δ∣∣ 6 2n(H(X)+ε(δ)
)

. (2.41)

2. For δ > 0, ε′ > 0, n sufficiently large (as a function of ε′ and pX),
and ε(δ) = δH(X),∣∣Tn[X]δ∣∣ > (1− ε′)2n(H(X)−ε(δ)). (2.42)

3. For x ∈ Xn and ε(δ) = δH(Y|X),∣∣Tn[Y|X]δ(x)
∣∣ 6 2n(H(Y|X)+ε(δ)

)
. (2.43)

Remark 1. We will adopt the δ-convention [13, Convention 2.11] and
assume the existence of an adequate sequence (δn)n∈N → 0 for every
set of random variables. We will omit δ in the notation, e. g., we will
write T[X], T

n
[X], and T[X|Y](y).

Lemma 2.20 (Generalized Markov lemma). Let X[K] and U[K] be such
that Uk ◦−− Xk ◦−− (X[K]\k, U[K]\k) for every k ∈ [K] and fix ε > 0. For
n ∈ N and for each k ∈ [K] let Mk ∈ N with Mk > 2nI(Xk;Uk). Fur-
thermore, let Ũk(m)m∈[Mk] be Mk mutually independent random vectors,
also independent of X[K], drawn uniformly from Tn[Uk]

. Then, for sufficiently
large n there exist K functions fk : Xnk × (Unk )

Mk → [Mk] such that, using
Wk = fk(Xk, Ũk(m)m∈[Mk]) and U∗k = Ũk(Wk), we have

P
{
(X[K], U∗[K]) ∈ Tn[X[K]U[K]]

}
> 1− ε. (2.44)



20 preliminaries

2.2.2 (Network) Information Theory

As the multi-clustering problem is connected to several problems
in (network) information theory, we will introduce the relevant topics
in this section. We illustrate the problem statements and provide
fundamental definitions and results.

Most problems in information theory deal with the notion of codes.
These are functions, used to convert a block of input symbols into a
codeword. The size of the range of such an encoding function typi-
cally scales exponentially with the length of the blocks to provide a
constant number of bits per input symbol. This notion is captured by
the following definition.

Definition 2.21. Let X[K] be K random variables, n ∈ N, and R[K] ∈
(R ∪ {∞})K. An (n,R[K]) code for the source X[K] consists of K func-
tions f1, f2, . . . , fK, where fk : Xnk → Mk with finite sets M[K] such that
1
n log2|Mk| 6 Rk for every k ∈ [K].If Rk =∞, then Mk

can be any finite set.

Hypothesis Testing with Data Compression

Hypothesis testing with communication constraints was introduced
in [1] and generalized in [25]. For a good overview of the subject, the
reader is also referred to [26]. We will focus on the simplest case,
a hypothesis test against independence. Given the (generally depen-
dent) sources (X, Z) ∼ pXZ, define the independent random variables
(X∗, Z∗) ∼ pXpZ. Two agents independently observe either the n i.i.d.
copies (X, Z) or (X∗, Z∗). They communicate a rate limited descrip-
tion of their observation to a decoder. Given the two descriptions, the
decoder must correctly (with high probability) decide whether (X, Z)
or (X∗, Z∗) was originally observed. Formally, we state the following
definition.

Definition 2.22. An (n,R1,R2) hypothesis test (HT) for (X, Z) consists of
an (n,R1,R2) code (fn,gn) for (X, Z) and a set An ⊆M1×M2. The typeM1 (M2) denotes

the range of fn (gn). I and type II error probabilities of (fn,gn,An) are defined as

αn := P
{(
fn(X),gn(Z)

)
∈ An

}
, and (2.45)

βn := P
{(
fn(X∗),gn(Z∗)

)
/∈ An

}
, (2.46)

respectively. A triple (µ,R1,R2) is HT-achievable for the source (X, Z) if
and only if, for every ε > 0, there is a sequence of (n,R1,R2) hypothesis
tests (fn,gn,An), n ∈N such that

lim
n→∞αn 6 ε, and (2.47)

lim
n→∞−

1

n
logβn > µ. (2.48)

Let RHT denote the set of all HT-achievable triples.
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The following result provides an inner bound on the HT-achievable
region.

Theorem 2.23. We have (µ,R1,R2) ∈ RHT if there exist random variables
U and V such that U ◦−− X ◦−− Z ◦−− V and

R1 > I(U; X), (2.49)

R2 > I(V; Z), (2.50)

µ 6 I(U; V). (2.51)

Pattern Recognition

Consider the pattern recognition (PR) problem introduced in [66].
For the sake of completeness, we restate the problem here.

Let
(
X(i), Z(i)

)
be n i.i.d. copies of (X, Z), independently generated

for each i ∈ N. We store rate-limited encodings of all vectors X(N),
by applying the same coding function to each vector. The resulting in-
finite codebook is available at the decoder. Fixing µ > 0, we compute
a rate-limited encoding of Z(W), where W is chosen by nature, inde-
pendently at random with W ∼ U([2nµ]). This rate-limited descrip-
tion, together with the infinite codebook, is presented to the decoder,
which has to determine the correct index W with high probability.
The following definition captures this process.

Definition 2.24. A triple (µ,R1,R2) is said to be PR-achievable for the
source (X, Z) if and only if, for any ε > 0, there exists an (n,R1,R2) code
(f,g) for (X, Z) and a function φ : (M1)

N ×M2 → [2nµ] such that, M1 and M1 are the
ranges of f and g.

P
{
W = φ

(
C,g(Z(W))

)}
> 1− ε, (2.52)

where C := f(X(i))i∈N and
(
X(i), Z(i)

)
i∈N

⊥ W ∼ U([2nµ]). Let RPR

denote the set of all PR-achievable triples.

The following two theorems provide an inner and an outer bound
on the region RPR.

Theorem 2.25. We have (µ,R1,R2) ∈ RPR if there exist random variables
U and V, such that U ◦−− X ◦−− Z ◦−− V and

R1 > I(U; X), (2.53)

R2 > I(V; Z), (2.54)

µ 6 I(U; V). (2.55)

Theorem 2.26. If (µ,R1,R2) ∈ RPR, then there exist random variables U
and V, such that U ◦−− X ◦−− Z and X ◦−− Z ◦−− V and

R1 > I(U; X), (2.56)

R2 > I(V; Z), (2.57)

µ 6 I(U; V) − I(U; V|XZ). (2.58)
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Remark 2. We want to point out that the variant of the inner bound for
the pattern recognition problem stated in [66, Theorem 1] is flawed.
To see this, note that the point (Rx = 0,Ry = b,Rc = b) is containedHere we use the

notation of [66]. in Rin (choose U = V = ∅) for any b > 0 even if the random variables
X and Y are independent. But this point is clearly not achievable
in general. However, the region R′in, defined in the right column of
[66, p. 303], coincides with our findings and the proof given in [66,
Appendix A] holds for this region.

Information Bottleneck

In the information bottleneck (IB) problem, an agent observes the
random vector X and intends to provide a rate limited description, as
informative as possible about a different, unobserved random vector
Y. The concept was introduced in [63] and the first coding theorems(X, Y) are n i.i.d.

copies of (X, Y). for the information bottleneck method were obtained in [20]. Here
we will present a slightly different formulation, also used in [11, Sec-
tion III.F], which is more natural to an information theorist than that
of [20]. The resulting achievable region, however, is identical.

Definition 2.27. A pair (µ,R) is IB-achievable for the source (X, Y) if and
only if, there exists an (n,R) code f for X such that

µ 6
1

n
I
(
f(X); Y

)
. (2.59)

Let RIB be the set of all IB-achievable pairs.

CEO Problem with Logarithmic Loss Distortion

The chief executive officer (CEO) problem was introduced in [7].
The setup is motivated by a CEO, who intends to learn random vec-
tors Y[L]. To this end she dispatches J agents, each of them observing
a different random vector Xj, for j ∈ [J]. As the CEO is a very busy(X[J], Y[L]) are n

i.i.d. copies of
(X[J], Y[L]).

person, each agents is only allocated a certain rate Rj for reporting
back to her. Based on the input of agents A, the CEO forms an esti-
mate of YB, subject to a distortion criterion, for every (A,B) ∈ Π.Π is defined in

Section 2.1.3. We will consider the special case of logarithmic loss distortion,
which was recently analyzed in [11]. For (A,B) ∈ Π we consider
a decoding function gA,B : MA → P(YnB) that produces a probabilis-
tic estimate of YB given the output of the encoders A. The quality
of this probabilistic estimate is measured by logarithmic loss (LL) dis-
tortion, defined as dLL(p, x) := − log2 p(x) for a p.m.f. p ∈ P(X) and
x ∈ X.

Definition 2.28. We say that the point (DΠ,R[J]) is LL-achievable for the
source (X[J], Y[L]) if and only if, for some n ∈ N, there exists an (n,R[J])
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code f[J] for X[J] such that for all (A,B) ∈ Π there is a decoding function
gA,B : MA → P(YnB) with

1

n
E[dLL(gA,B(WA), YB)] 6 DA,B, (2.60)

where Wj := fj(Xj), j ∈ [J]. Let RLL be the set of all LL-achievable points.

We note that [11] considers the case where L = 1 and DA,B = ∞
whenever A 6= [J]. For L = 1 and assuming that the random variables
X[J] are independent given Y, we obtain the following single-letter
characterization of the achievable region from [11].

Theorem 2.29. Consider the case L = 1, let Y := Y1, and assume Xj ◦−−
Y ◦−− X[J]\j for every j ∈ [J]. We then have (D,R[J]) ∈ RLL if and only if We identify

D = D[J],1.there exist random variables Q and U[J] such that

Ac = [J] \ A.
∑
j∈A

Rj > I(XA; UA|UAcQ) for all A ⊆ [J], (2.61)

D > H
(
Y
∣∣U[J]Q

)
, (2.62)

with a joint p.m.f. pYX[J]U[J]Q = pYpQ
∏
j∈[J] pXj|YpUj|XjQ.

An important property of logarithmic loss distortion is given in
the following lemma. This simple, yet crucial result appeared in [11,
Lemma 1] and is also essential for the analysis performed in [11].

Lemma 2.30. For two random variables (X, Y) and two functions f : X →
M and g : M→ P(Y), where M is an arbitrary set, we have

E
[
dLL
(
g(f(X)), Y

)]
> H(Y|f(X)) (2.63)

with equality if and only if g(m) = P{Y = · |f(X) = m} for allm ∈M with
P{f(X) = m} 6= 0.

Proof. Define U := f(X) and let m ∈ M with P{U = m} 6= 0. We then
have

E
[
dLL
(
g(f(X)), Y

)∣∣U = m
]
= −E

[
log2 g(m)(Y)

∣∣U = m
]

(2.64)

= −
∑
y∈Y

pY|U(y|m) log2 g(m)(y) (2.65)

= H(Y|U = m) + D
(
pY|U( · |m)

∥∥g(m)
)

(2.66)

> H(Y|U = m), (2.67)

where (2.67) follows from Theorem 2.9. The final result follows by cal-
culating the expectation over U. By Theorem 2.9, g(m) = pY|U( · |m)

is a necessary and sufficient condition for equality.
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X1 Encoder 1

X2 Encoder 2

Y Encoder 3

Decoder Ŷ

f1(X1)

f2(X2)

f3(Y)

Figure 3: Two-help-one lossless source coding.

Körner-Marton Modulo-Two Sum Problem

Consider the two-help-one (TO) distributed lossless source coding
problem depicted in Figure 3. Three random vectors, Y, X1, and
X2 are independently observed by agents, which communicate rate-
limited descriptions to a decoder. The decoder’s task is to reproduce
Y with high accuracy. Formally we define achievability for this two-
help-one problem as follows.

Definition 2.31. We say that the triple (R0,R1,R2) is TO-achievable
for the source (X1, X2, Y) if and only if, for any ε > 0, there exists an
(n,R1,R2,R0) code (f1, f2, f3) for (X1, X2, Y) and a decoding function
g : M1 ×M2 ×M3 → Yn, such that P

{
Ŷ 6= Y

}
6 ε where we definedMk is the range of

the fk. Ŷ := g
(
f1(X1), f2(X2), f3(Y)

)
. Let RTO be the set of all TO-achievable

triples.

Characterizing the achievable region RTO for arbitrary source dis-
tributions is an open problem. However, RTO is known explicitly for
a doubly symmetric binary source. Define the independent random
variables X1 ∼ B(12) and Y ∼ B(p) and let X2 := X1 ⊕ Y. We call
(X1, X2) a doubly symmetric binary source (DSBS) [16, Example 10.1]
with parameter p and write (X1, X2) ∼ DSBS(p). Note that this dis-
tribution is symmetric, i. e., interchanging X1 and X2 yields the same
joint distribution. In [34], Körner and Marton computed the achiev-
able region RTO for this particular input distribution. Remarkably, the
resulting region cannot be achieved by a quantize-and-bin scheme (cf.
[2], [6], [64], [70]) as shown in [34, Proposition 1].

Theorem 2.32. Let (X1, X2) ∼ DSBS(p) and Y := X1 ⊕X2. We then have
(R0,R1,R2) ∈ RTO if and only if R1,R2,R0 > 0, R0 + R1 > H(p), and
R0 + R2 > H(p).
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Theorem 2.33. Let R∗TO be the set of triples (R0,R1,R2) such that there
are random variables Q, U1, and U2, satisfying Q ⊥ X1X2Y, the Markov
chains U1 ◦−− X1Q ◦−− X2U2Y and U2 ◦−− X2Q ◦−− X1U1Y, and

R1 > I(U1; X1|Q), (2.68)

R1 > I(U2; X2|Q), (2.69)

R1 + R2 > I(U1U2; X1X2|Q), (2.70)

R0 > H(Y|U1U2Q). (2.71)

For (X1, X2) ∼ DSBS(p), Y := X1 ⊕ X2, where p ∈ (0, 1) and p 6= 1
2 , we

have RTO 6= R∗TO.

2.3 results from analysis

We begin with the fundamental definitions.

Definition 2.34. Let U ⊆ R be an open, half-open or closed interval. A
function f : U→ R, is called convex if and only if Note that

λ̄ := 1− λ.

λf(u) + λ̄f(v) > f(λu+ λ̄v) (2.72)

for any u, v ∈ U and λ ∈ (0, 1). We call f strictly convex if (2.72) is strict
whenever u 6= v.

Definition 2.35.

1. A set S ⊆ Rn is convex if and only if, for any x,y ∈ S and λ ∈ [0, 1],
we have λx+ λ̄y ∈ S

2. A point x ∈ S is an extreme point of the convex set S ⊆ Rn if and
only if y, z ∈ S, λ ∈ (0, 1), and λy+ λ̄z = x imply x = y = z. We
write ext(S) for the set of all extreme points of S.

3. The convex hull of a set A ⊆ Rn is defined as the set conv(A) :=⋂
{B ⊆ Rn : B convex,A ⊆ B}.

4. A set H ⊆ Rn is a closed halfspace if and only if there exist x ∈ Rn

and a ∈ R, such that H = {y ∈ Rn : xTy 6 a}.

5. A set S ⊆ Rn is line-free if and only if it does not contain a line, i. e.,
a set of the form {x ∈ Rn : x = a+ λb, λ ∈ R} with b 6= 0. 0 is the all-zeros

vector.
Definition 2.36. For a convex set S ⊆ Rn and y ∈ S, define the charac-
teristic cone of S at y as ccy(S) := {x ∈ Rn : y+ λx ∈ S,∀λ ∈ R+}.
If additionally S ⊆ Rn is closed, define the characteristic cone of S as
cc(S) := ccy(S) for an arbitrary y ∈ S. Note that cc(S) is well defined for
a closed convex set S, as ccy(S) is independent of y by [24, Theorem 2.5.2].

We collect several classical results from (convex) analysis in the
following lemma.
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Lemma 2.37.

1. Let X,Y be two metric spaces and f : X → Y continuous. If E ⊆ X is
connected [54, Definition 2.45], then f(X) is connected.

2. Let X,Y be two topological spaces and f : X→ Y continuous. If E ⊆ X

is compact [54, Definition 2.32], then f(X) is compact.

3. A set S ⊆ Rn is compact if and only if it is closed and bounded.

4. A compact, convex set S ⊆ Rn is the convex hull of its extreme points,
i. e., S = conv

(
ext(S)

)
.

5. If A ⊆ Rn is compact, then conv(A) is compact.

6. A closed, convex set S ⊆ Rn is the intersection of all closed halfspacesClosed halfspaces are
defined in part 4

of Definition 2.35.
containing S, i. e., S =

⋂
{H ⊆ Rn : H is a closed halfspace, S ⊆ H}.

7. For a line-free, closed, convex set S ∈ Rn, we have the identity S =A+B denotes the
Minkowski addition

of sets.
cc(S) + conv

(
ext(S)

)
.

8. For sets A,B ⊆ Rn, we have conv(A+B) = conv(A) + conv(B).

9. If A ⊆ Rn is closed and B ⊆ Rn is compact, then A+B is closed.

We will also note the following corollary of Lemma 2.37.

Corollary 2.38. If B ⊆ Rn is closed and convex, and C ⊆ Rn is compact,
we have

A := conv(C+B) = conv(C) +B = A. (2.73)

Proof. We have A = conv(C) + conv(B) = conv(C) + B by part 8

of Lemma 2.37 and the convexity of B. Note that conv(C) is com-
pact by part 5 of Lemma 2.37. A is therefore the sum of a compact set
and a closed set and closed by part 9 of Lemma 2.37.

The following theorem is an extension of Carathéodory’s theorem,
also known as the Fenchel-Eggleston-Carathéodory theorem [16, Ap-
pendix A].

Theorem 2.39. If x ∈ conv(A), where A ⊆ Rn, then there exists a set of
points X ⊆ A, with |X| 6 n+ 1 such that x ∈ conv(X). If additionally A

is a connected set, then the statement is true with |X| 6 n.

The following lemma collects elementary facts about convex/con-
cave functions.

Lemma 2.40. Let f : U → R be a continuous function, defined on the com-
pact interval U = [u1,u2] ⊂ R. Assuming that f is twice differentiable on
V := (u1,u2), the following properties hold.
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1. If f′′(u) > 0 for all u ∈ V, and f′(u∗) = 0 for some u∗ ∈ U, then
f(u) > f(u∗) for all u ∈ U. Furthermore, if additionally f′′(u) > 0
for all u ∈ V, then f(u) > f(u∗) for all u ∈ U\{u∗}.

2. If f′′(u) 6 0 for all u ∈ V, then f(u) > min{f(u1), f(u2)} for all
u ∈ U. Furthermore, if f′′(u) < 0 for all u ∈ V, then f(u) >
min{f(u1), f(u2)} for all u ∈ V.

Proof. To show part 1, note that f is convex on V [53, Theorem I.12.C]
which implies convexity on U by continuity. Thus, f(u∗) is a global
minimum [42, Exercise 1.5.1]. If additionally f′′(u) > 0 for all u ∈ V,
then f is strictly convex on V [53, Theorem I.12.C]. This implies strict
convexity of f on U [53, Problem I.11.A (4)] and f(u∗) is the unique
global minimum.

For part 2, note that −f is convex on V and therefore also on U

by continuity. Thus, for any u ∈ V, we choose λ ∈ (0, 1) such that
u = λu1 + λ̄u2 and have

−f(u) 6 −λf(u1) − λ̄f(u2) (2.74)

6 max{−f(u1),−f(u2)}. (2.75)

If f′′(u) < 0 for all u ∈ V, then −f is strictly convex on U [53, Prob-
lem I.11.A (4)] and the inequality in (2.74) is strict.

Theorem 2.41 (Cauchy-Schwarz inequality). If X is a real inner product
space, then for any x,y ∈ X we have

〈x,y〉2 6 〈x, x〉〈y,y〉 (2.76)

with equality if and only if x and y are linearly dependent.

We obtain the Schwarz inequality as a simple corollary with X = Rn.

Corollary 2.42 (Schwarz inequality). For two real vectors a,b ∈ Rn,∑
i∈[n]

aibi

2 6
∑
i∈[n]

a2i

∑
i∈[n]

b2i

. (2.77)

We also note the following elementary fact for later use.

Lemma 2.43. For x ∈ (0, 1) and y > 0,

f(x,y) :=
1

x−y − 1
+ log(1− xy) > 0. (2.78)
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Proof. Fix y > 0 and observe that limx↓0 f(x,y) = 0. It then suffices to
show that f(x,y) increases in x:

∂f

∂x
(x,y) = −

1

(x−y − 1)2
(−y)x−y−1 +

1

1− xy
(−y)xy−1 (2.79)

=
y

x(x−y − 1)

(
1

1− xy
− 1

)
> 0. (2.80)

2.4 boolean functions

The material in this section follows [43].
Let X and Y be two dependent Rademacher random variables, i. e.,

X, Y ∼ U
(
{−1, 1}

)
are both uniformly distributed on X = Y = {−1, 1}.

Define the correlation coefficient ρ := E[XY], and let the random vec-
tors (X, Y) be n i.i.d. copies of (X, Y). Consider two real functions on
the Hamming cube f,g : {−1, 1}n → R. The set of all such functions
together with the inner product

〈f,g〉 := E
[
f(X)g(X)

]
= 2−n

∑
x∈{−1,1}n

f(x)g(x) (2.81)

forms a real Hilbert space. An orthonormal basis [43, Theorem 1.5] of
this space is given by the 2n functions χS(x) :=

∏
i∈S xi for S ⊆ [n].

Remark 3. We call the function χi(x) = xi for i ∈ [n] the ith dictator
function [43, Definition 2.3].

The Fourier-Walsh transform and the noise operator [43, Defini-
tion 2.46] are defined as follows.

Definition 2.44. For a function f : {−1, 1}n → R, define the Fourier-Walsh
transform

f̂S := 〈f,χS〉
(2.81)
= 2−n

∑
x∈{−1,1}n

f(x)
∏
i∈S

xi (2.82)

for every S ⊆ [n].
The noise operator Tρ with parameter ρ ∈ [0, 1] maps the function f to

the function Tρf : {−1, 1}n → R, with Tρf(x) = E[f(Y)|X = x] for all
x ∈ {−1, 1}n, where ρ = E[XY] is the correlation coefficient.

We collect some important properties of the Fourier expansion and
the noise operator in the following lemma.

Lemma 2.45. For any two function f,g : {−1, 1}n → R, the following prop-
erties hold for all x ∈ {−1, 1}n.

1. f(x) =
∑

S⊆[n] f̂SχS(x)

2. 〈f,g〉 =
∑

S⊆[n] f̂SĝS
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3. T̂ρfS = ρ|S|f̂S

4. 〈f, Tρg〉 = 〈Tρf,g〉 =
〈
T√ρf, T√ρg

〉
=
∑

S⊆[n] ρ
|S|f̂SĝS

If f,g : {−1, 1}n → {−1, 1}, then the following properties also hold.

5.
∑

S⊆[n] f̂
2
S = 1

6. 〈f, Tρg〉 = 2P
{
f(X) = g(Y)

}
− 1

Proof. Part 1 is the Fourier expansion theorem [43, Theorem 1.1] and
part 2 is Plancherel’s Theorem [43, Section 1.4]. Part 3 is the Fourier
representation of the noise operator [43, Proposition 2.47] and part 4

is a direct consequence of parts 2 and 3. Part 5 holds as
∑

S⊆[n] f̂
2
S =

〈f, f〉 = E
[
f(X)2

]
= 1 by part 2. To prove part 6, note that

〈f, Tρg〉
(2.81)
= E[f(X)Tρg(X)] (2.83)

= E
[
f(X)E[g(Y)|X]

]
(2.84)

= E
[
f(X)g(Y)

]
(2.85)

= P
{
f(X) = g(Y)

}
− P
{
f(X) 6= g(Y)

}
(2.86)

= 2P
{
f(X) = g(Y)

}
− 1. (2.87)

Lemma 2.46. Let f : {−1, 1}n → {−1, 1} with f̂∅ = 0 and ρ ∈ (0, 1), then
〈f, Tρf〉 6 ρ, with equality if and only if f = ±χi for some i ∈ [n].

Lemma 2.47. Let f,g : {−1, 1}n → {−1, 1} with f̂∅ = ĝ∅ = 0 and ρ ∈
(0, 1). If |〈f, Tρg〉| = ρ, then f = ±g = ±χi for some i ∈ [n].

Proof. Note that

ρ2 = 〈f, Tρg〉2 (2.88)

=
〈
T√ρf, T√ρg

〉2 (2.89)

6
〈
T√ρf, T√ρf

〉〈
T√ρg, T√ρg

〉
(2.90)

= 〈f, Tρf〉〈g, Tρg〉 (2.91)

6 ρ2, (2.92)

where (2.89) and (2.91) follow from part 4 of Lemma 2.45. We applied
Theorem 2.41 in (2.90) and (2.92) follows from Lemma 2.46. We have
equality in (2.90) and thus T√ρg = λT√ρf for some λ ∈ R by Theo-
rem 2.41. Consequently, g = λf, which is only possible for λ = ±1.
We also have equality in (2.92) and thus, 〈f, Tρf〉 = 〈g, Tρg〉 = ρ, yield-
ing g = ±χi by Lemma 2.46.
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2.5 submodular functions

The material in this section is mainly from [18]. We will, however,
not require the results in [18] in full generality and shall therefore
only study the relevant special cases.

In the following let E be a fixed finite set.

Definition 2.48. A function f : 2E → R is submodular on 2E if and only2E denotes the
power set of E.

Note that (2E, f) is
simple, in the sense
of [18, Section 3.2].

if f(∅) = 0 and

f(A) + f(B) > f(A∪B) + f(A∩B) ∀A,B ⊆ E. (2.93)

The submodular polyhedron and the base polyhedron in |E| dimensional
space RE are defined by

P(f) :=

{
x ∈ RE :

∑
e∈A

xe 6 f(A), ∀A ⊆ E

}
, and (2.94)

B(f) :=

{
x ∈ P(f) :

∑
e∈E

xe = f(E)

}
, (2.95)

respectively. A function f is supermodular if and only if −f is submodular.
The corresponding supermodular polyhedron and base polyhedron are
defined as P(f) := −P(−f) and B(f) := −B(−f).

Lemma 2.49. The base polyhedron B(f) of a submodular (supermodular)
function f is compact.

Proof. B(f) is bounded by [18, Theorem 3.12] and closed by definition,
i. e., compact by part 3 of Lemma 2.37.

Lemma 2.50. For a submodular (supermodular) function f on 2E, the iden-
tity P(f) = B(f) − RE

+ (P(f) = B(f) + RE
+) holds.

Proof. It suffices to prove the statement for submodular functions.
From the definitions (2.94) and (2.95), B(f) − RE

+ ⊆ P(f). By [18, The-
orem 2.3], for each x ∈ P(f), there exists y ∈ B(f) with x 6 y, whichx 6 y if and only if

xe 6 ye,∀e ∈ E. finishes the proof.

Theorem 2.51 (Extreme point theorem). For a submodular (supermodu-
lar) function f on 2E and x ∈ B(f), we have x ∈ ext(B(f)) if and only if
there is a total order < of E, such that xe = f(<e) − f(ve) for all e ∈ E.<e := {e′ : e′ < e}

and ve accordingly.

2.6 convex polyhedra

We will conclude this chapter with some technical results on con-
vex polyhedra, noted here for further use in Section 5.4.

Let H be the closed, convex polyhedron H := {x ∈ Rn : Ax > b}
for an m× n matrix A = (a(1),a(2), . . . ,a(m))

T and b ∈ Rm, where
aT
(j) is the jth row of A.
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Lemma 2.52. For x ∈ Rn we have x ∈ cc(H) if and only if Ax > 0.

Proof. IfAx > 0, y ∈ H and λ > 0,A(y+λx) > Ay > b. On the other

hand, if aT
(i)x < 0, we have aT

(i)(y+λx) < bi for λ >
bi−a

T
(i)y

aT
(i)
x

> 0.

Lemma 2.53. If, for every i ∈ [n], there exists j ∈ [m] such that a(j) = ei ei is the ith
canonical basis
vector.

and a(j) > 0 for every j ∈ [m], then H is line-free and cc(H) = Rn+.

Proof. For any y ∈ Rn+, clearly Ay > 0 and hence y ∈ cc(H) by
Lemma 2.52. If y /∈ Rn+, let yi < 0 and choose j ∈ [m] such that
a(j) = ei. We have aT

(j)y = yi < 0 and therefore y /∈ cc(H) by
Lemma 2.53.

To show that H is line-free assume that x+ λy ∈ H for all λ ∈ R.
This implies ±y ∈ cc(H) = Rn+, i. e., y = 0.

Definition 2.54. A point x is on an extreme ray of the cone cc(H) if and
only if the decomposition x = y+ z with y, z ∈ cc(H) implies that y = λz

for some λ ∈ R.

It is easy to see that the points on extreme rays of Rn+ are λei for any
λ > 0 and i ∈ [n].

Definition 2.55. For x ∈ H, we define the number of inequalities that
are satisfied with equality at x as NH(x) := rank(Ax), where Ax :=

(aT
(j))j∈[m]:aT

(j)
x=bj

.

Lemma 2.56. For x ∈ H, we have x ∈ ext(H) if and only if NH(x) = n.

Proof. Assuming that NH(x) < n, we find 0 6= r ∈ ker(Ax) and thus
x± εr ∈ H for some ε > 0, showing that x /∈ ext(H).

Conversely, let without loss of generality NH(x) 6= 0 and assume
x /∈ ext(H), i. e., x = λx1 + λ̄x2 for λ ∈ (0, 1) and x1, x2 ∈ H, x1 6= x2.
With bx := (bj)j∈[m]:aT

(j)
x=bj

, we have Ax(λx1 + λ̄x2) = bx, which

implies Axx1 = Axx2 = bx and therefore 0 6= x1 − x2 ∈ ker(Ax).

Lemma 2.57. Let x ∈ H with NH(x) = n− 1 and assume that H is line-
free. Then either x = λx1 + λ̄x2 where λ ∈ (0, 1) and x1, x2 ∈ ext(H)

or x = x1 + x2 where x1 ∈ ext(H) and x2 6= 0 lies on an extreme ray of
cc(H).

Proof. We obtain 0 6= r ∈ ker(Ax). Define λ1 := inf{λ : x+ λr ∈ H}

and λ2 := sup{λ : x+ λr ∈ H}. Clearly λ1 6 0 6 λ2. As H is line-free,
we may assume without loss of generality λ1 = −1 and set x1 = x− r.
We now have x1 ∈ ext(H) as otherwise x1 − εr ∈ H for some small
ε > 0.

If λ2 < ∞, define x2 = x + λ2r which yields x2 ∈ ext(H) and
x = λx1 + λ̄x2 with λ = λ2

λ2+1
. Note that λ2 6= 0 as x /∈ ext(H).

If λ2 =∞ we have x− x1 = r ∈ ccx1(H) = cc(H). We need to show
that r is also on an extreme ray of cc(H). Assume r = r1 + r2 with
r1, r2 ∈ cc(H). ThenAxr1+Axr2 = 0 and hence, r1, r2 ∈ ker(Ax) by
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Lemma 2.52. Noting that ker(Ax) is a one-dimensional space finishes
the proof.

Let J ∈ N and K := J + 1. For each j ∈ [0 : J], define the closed[0 : J] = {0, 1, . . . , J}.

convex polyhedron H(j) := {x ∈ RK+j : A(j)x > b(j)}, where A(j) is
a matrix and b(j) a vector of appropriate dimension. We make the
following three assumptions:

1. A(j) and b(j) are defined recursively as

A(j) :=

A
(j−1) 0

0T 1

eT
j 1

, b(j) =

b
(j−1)

c
(j)
1

c
(j)
2

, (2.96)

for j ∈ [J], where ej is the jth unit vector of appropriate dimen-
sion and c(j)1 , c(j)2 ∈ R are arbitrary.

2. Each entry of A(0) equals 0 or 1 and for all k ∈ [K] at least
one row of A(0) is equal to eT

k. Due to assumption 1, this also
implies that each entry of A(j) is either 0 or 1 and for all k ∈
[K+ j] at least one row of A(j) is equal to eT

k.

3. For any extreme point x ∈ ext(H(0)) and any j ∈ [J], assume
xj 6 c

(j)
2 − c

(j)
1 .

Lemma 2.58. Under assumptions 1 to 3, for every k ∈ [0 : J] and every
extreme point y ∈ ext(H(k)) there is an extreme point x ∈ ext(H(0)) and
a subset Ek ⊆ [k] such that yK = xK and for every j ∈ [J],

yj =

xj, j /∈ Ek,

c
(j)
2 − c

(j)
1 , j ∈ Ek,

(2.97)

and for every j ∈ [k],

yK+j =

c
(j)
2 − xj, j /∈ Ek,

c
(j)
1 , j ∈ Ek.

(2.98)

Proof. For every k ∈ [0 : J], H(k) is line-free by assumption 2 and
Lemma 2.53, and can be written as H(k) = cc(H(k))+ conv

(
ext(H(k))

)
by Part 7 of Lemma 2.37. Lemma 2.53 also implies cc(H(k)) = RK+k+ .

Let us proceed inductively over k ∈ [0 : J]. For k = 0 the statement is
trivial. Given any y ∈ ext(H(k)), we need to obtain x ∈ ext(H(0)) and
Ek such that y is given according to (2.97) and (2.98). Let z = yK+k−11

be the truncation of y. We have NH(k)(y) = K+ k by Lemma 2.56,
which is possible in only two different ways:
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Construction I: We assume that NH(k−1)(z) = K+ k− 1, i. e., z ∈
ext(H(k−1)) by Lemma 2.56, and at least one of

yK+k > c(k)1 , (2.99)

yk + yK+k > c(k)2 , (2.100)

is satisfied with equality.

As z ∈ ext(H(k−1)), there exists x ∈ ext(H(0)) and Ek−1 such
that (2.97) holds for every j ∈ [J] and (2.98) holds for j ∈ [k− 1]

by the induction hypothesis. In particular yk = xk. Assum-
ing that (2.100) holds with equality, we have yK+k = c

(k)
2 − xk.

Thus, the point x together with Ek = Ek−1 yields y by (2.97)
and (2.98). Equality in (2.99) implies equality in (2.100) by as-
sumption 3.

Construction II: We assume that both (2.99) and (2.100) are satis-
fied with equality and we have NH(k−1)(z) = K+ k− 2. This can
occur in two different ways by Lemma 2.57.

First consider the case where z = λx+ λ̄x̂ for x, x̂ ∈ ext(H(k−1)),
x 6= x̂ and λ ∈ (0, 1). This implies yK+k = c

(k)
1 and yk =

λxk + λ̄x
′
k = c

(k)
2 − c

(k)
1 , which by assumption 3 leads to xk =

x′k = c
(k)
2 − c

(k)
1 . Thus, (2.99) and (2.100) are satisfied (with

equality) for every λ ∈ [0, 1] and y cannot be an extreme point
as it can be written as a non-trivial convex combination.

We can thus focus on the second option which is that z is on
an extreme ray of H(k−1), i. e., z = x + λek′ for some x ∈
ext(H(k−1)), λ > 0 and k′ ∈ [K+ k− 1]. If k′ 6= k, (2.99)
and (2.100) are satisfied for all λ > 0 and thus y cannot be an
extreme point because it can be written as a non-trivial convex
combination. For k′ = k, the point x with Ek = Ek−1 ∪ k yields
the desired extreme point.
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Part II

I N F O R M AT I O N T H E O R E T I C C L U S T E R I N G

In this part we investigate two different clustering prob-
lems and connect them to well-known problems in the
information theory literature. Chapter 3 focuses on the
multi-clustering problem with two sources. We provide
bounds for the resulting achievable region and investigate
special cases. In Chapter 4 we positively resolve the two
function case of the Kumar-Courtade conjecture concern-
ing the mutual information between Boolean functions. Fi-
nally in Chapter 5, we revisit the multi-clustering problem
and extend it to multiple sources. In particular, we intro-
duce a multiple description CEO problem and provide a
single-letter characterization of its achievable region un-
der a suitable Markov constraint.





3
C L U S T E R I N G W I T H T W O S O U R C E S

In this chapter we will investigate the case of two sources in the
multi-clustering problem, which was informally introduced in Sec-
tion 1.1.

3.1 problem statement

A schematic overview is given in Figure 4. In order to keep notation
simpler, we use X and Z for the random variables and (f,g) for the
code.

Definition 3.1. For an (n,R1,R2) code (f,g) for (X, Z), we define the co- Codes are defined in
Definition 2.21.information of f and g as

Θ(f;g) :=
1

n
I
(
f(X);g(Z)

)
. (3.1)

This co-information serves as a measure of the mutual relevance of
the two encodings f(X) and g(Z). The idea is to find functions f and
g that extract a compressed version of the common randomness in
the observed data X and Z.

Definition 3.2. A triple (µ,R1,R2) ∈ R3 is achievable for the source
(X, Z) if and only if, for some n ∈N, there exists an (n,R1,R2) code (f,g)
for (X, Z) such that

Θ(f;g) > µ. (3.2)

The achievable region R is defined as the closure of the set R of achievable
triples.

Remark 4. Note that a standard time-sharing argument shows that R
is a convex set (see, e. g., [16, Section 4.4]).

X Enc. 1 (rate R1)

Z Enc. 2 (rate R2)

I
(
f(X);g(Z)

)
f(X)

g(Z)

Figure 4: Clustering with two sources.
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We also point out that stochastic encodings cannot enlarge the achiev-
able region as any stochastic encoding can be represented as the con-
vex combination of deterministic encodings and R is convex.

3.2 connection with other problems

The multi-clustering problem with two sources turns out to be con-
nected to a hypothesis testing problem and a pattern recognition
problem. In this section we will clarify these connections explicitly,
using the “multi-letter” region R∗.

Definition 3.3. Let R∗ be the set of triples (µ,R1,R2) such that there exist
n ∈N and random variables U, V satisfying U ◦−− X ◦−− Z ◦−− V and

nR1 > I(U; X), (3.3)

nR2 > I(V; Z), and (3.4)

nµ 6 I(U; V). (3.5)

We will now show that R∗ is in fact the achievable region of the
multi-clustering problem, a hypothesis testing problem, and a pat-
tern recognition problem. As a first step, we show that R∗ is the
multi-letter region of the hypothesis testing problem introduced in
Section 2.2.2.

Theorem 3.4. RHT = R∗.

Proof. Assume (µ,R1,R2) ∈ RHT. For ε > 0, pick an (n,R1,R2) hy-
pothesis test (fn,gn,An) such that αn 6 ε and logβn 6 −n(µ− ε).
The random variables U := fn(X) and V := gn(Z) satisfy the required
Markov chain as well as (3.3) and (3.4). We apply the log-sum in-
equality and obtain for any ε′ > 0, provided that ε is small enough
and n is large enough,

I(U; V) =
∑

u,v∈M1×M2

pUV(u, v) log2
pUV(u, v)

pU(u)pV(v)
(3.6)

=
∑

u,v∈An

pUV(u, v) log2
pUV(u, v)

pU(u)pV(v)

+
∑

u,v∈Ac
n

pUV(u, v) log2
pUV(u, v)

pU(u)pV(v)
(3.7)

> (1−αn) log
1−αn
βn

+αn log
αn

1−βn
(3.8)

= −H(αn) + (1−αn) log
1

βn
+αn log

1

1−βn
(3.9)

> −(1− ε) logβn − ε′ (3.10)

> (1− ε)n(µ− ε) − ε′ (3.11)

> n(µ− ε′), (3.12)
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where Theorem 2.7 was applied twice in (3.7). This shows that (µ−

ε′,R1,R2) ∈ R∗ and consequently (µ,R1,R2) ∈ R∗.
The bound in Theorem 2.23 shows that (nµ,nR1,nR2) is asymptot-

ically HT-achievable for the vector source (X, Z) if (µ,R1,R2) ∈ R∗.
I. e., for any ε, ε′ > 0, there is a sequence of (k,nR1 + ε′,nR2 + ε′)
hypothesis tests (fk,gk,Ak) for (X, Z), k ∈N such that

lim
k→∞αk 6 ε, and (3.13)

lim
k→∞−

1

k
logβk > nµ− ε′. (3.14)

This shows that
(
µ− ε′

n ,R1 + ε′

n ,R2 + ε′

n

)
∈ RHT for the source (X, Z)

and as ε′ was arbitrary, this completes the proof.

We can leverage this equivalence to show that Definition 3.3 is indeed
a multi-letter characterization of R.

Corollary 3.5. R = R∗.

Proof. To prove R ⊆ R∗, assume (µ,R1,R2) ∈ R and choose n, f, and
g according to Definition 3.2. Defining U := f(X) and V := g(Z) yields
inequalities (3.3)–(3.5) and satisfies the required Markov chain.

We will show RHT ⊆ R, which is equivalent to R∗ ⊆ R by The-
orem 3.4. Assuming (µ,R1,R2) ∈ RHT, choose an arbitrary ε > 0

and pick an (n,R1,R2) hypothesis test (fn,gn,An) such that αn 6 ε

and − logβn > n(µ− ε). Pick ε′ > 0 and apply the same reasoning
as in (3.12). Provided that ε is small enough and n is large enough,
the (n,R1,R2) code (fn,gn) achieves Θ(fn;gn) > µ − ε′, implying
(µ,R1,R2) ∈ R.

The multi-clustering problem and the pattern recognition problem
given in Section 2.2.2, also share a multi-letter region.

Proposition 3.6. RPR = R∗.

Proof. Assume (µ,R1,R2) ∈ RPR and for an arbitrary ε > 0 and suf-
ficiently large n ∈ N choose appropriate functions f, g, φ satisfying
(2.52). The random variables U := f(X) and V := g(Z) satisfy the
required Markov chain as well as (3.3) and (3.4). Furthermore,

I(U; V) = I
(
f(X);g(Z)

)
(3.15)

= I
(
C;g(Z(W))

∣∣W) (3.16)

= I
(
C;g(Z(W)), W

)
(3.17)

> I
(
C; W

∣∣g(Z(W))
)

(3.18)

= H
(
W
∣∣g(Z(W))

)
− H

(
W
∣∣C,g(Z(W))

)
(3.19)

> nµ− H
(
W
∣∣φ(C,g(Z(W))

))
(3.20)

(2.52)
> nµ− H(ε) − εnµ. (3.21)
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The equality in (3.16) holds as X(i) ⊥ Z(j) for i 6= j, (3.17) follows
from W ⊥ C, (3.20) follows from W ⊥ Z(W), the fact that H(W) = nµ

and the data processing inequality, Theorem 2.5. Fano’s inequality,
Theorem 2.6, was used in (3.21). This shows (µ,R1,R2) ∈ R∗ as ε was
arbitrary.

To show the other direction, we apply the achievability result from
Theorem 2.25 to the multi-letter source (X, Z). Assuming (µ,R1,R2) ∈
R∗, we know that for some n ∈ N there are random variables (U, V)
satisfying the Markov chain U ◦−− X ◦−− Z ◦−− V and (3.3)–(3.5)
hold. By Theorem 2.25, the triple (nµ,nR1,nR2) is asymptotically
PR-achievable for the source (X, Z) with an arbitrary error probability
ε > 0. For any ε′ > 0 we can find k ∈N, a (k,nR1+ ε′,nR2+ ε′)-code
(f,g) for (X, Z), and a function φ, such that (2.52) is satisfied with
W ∼ U

(
[ek(nµ−ε

′)]
)

. Thus,
(
µ− ε′

n ,R1 + ε′

n ,R2 + ε′

n

)
∈ RPR for the

source (X, Z) and as ε′ was arbitrary, this completes the proof.

3.3 bounds on the achievable region

We first provide outer bounds on the set of achievable triples.

Theorem 3.7. We have R ⊆ Ro ⊆ R′o, where the two regions Ro and R′o
are given by

Ro :=
⋃
U,V

{
(µ,R1,R2) : R1 > I(U; X),R2 > I(V; Z), and

µ 6 I(V; Z) + I(U; X) − I(UV; XZ)
}

, (3.22)

R′o :=
⋃
U,V

{
(µ,R1,R2) : R1 > I(U; X),R2 > I(V; Z), and

µ 6 min{I(U; Z), I(V; X)}
}

, (3.23)

with U and V any pair of random variables satisfying U ◦−− X ◦−− Z and
X ◦−− Z ◦−− V.

Theorem 3.7 follows from the outer bound for the pattern recogni-
tion problem, Theorem 2.26, via the equivalence shown in Proposi-
tion 3.6. Nonetheless, we provide a short, self-contained proof in Ap-
pendix A.1 for the sake of completeness.

The regions Ro and R′o are both convex since a time-sharing ran-
dom variable can be incorporated into U and V. Furthermore, R′o
remains unchanged when U and V are required to satisfy the com-
plete Markov chain U ◦−− X ◦−− Z ◦−− V.

The numerical computation of the outer bounds requires the cardi-
nalities of the auxiliary random variables to be bounded. We there-
fore complement Theorem 3.7 with the following result, whose proof
is provided in Appendix A.2.

Proposition 3.8. We have Ro = conv(So) and R′o = conv(S′o), where
the regions So and S′o are defined as Ro and R′o, respectively, but with the
additional cardinality bounds |U| 6 |X| and |V| 6 |Z|.
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The cardinality bounds in this result are tighter than the usual bounds
obtained with the convex cover method (cf. [16, Appendix C], [2],
[71]), where the cardinality has to be increased by one. Thus, when
dealing with binary sources in Section 3.5, binary auxiliaries suffice.
The smaller cardinalities come at the cost of convexification in Propo-
sition 3.8 since the regions So and S′o themselves are not necessarily
convex.

We next state an inner bound for the achievable region. A more
general inner bound will be proved in Section 5.1 (cf. Theorem 5.4)
for the multi-clustering problem with an arbitrary number of sources.

Theorem 3.9. We have Ri ⊆ R where

Ri :=
⋃
U,V

{
(µ,R1,R2) : R1 > I(U; X),R2 > I(V; Z), and

µ 6 I(U; V)
}

, (3.24)

with auxiliary random variables U, V satisfying U ◦−− X ◦−− Z ◦−− V.

Theorem 3.9 directly follows from Theorem 2.23, leveraging the equiv-
alence detailed in Theorem 3.4 and Corollary 3.5. Alternatively, it also
follows from Theorem 2.25, using Corollary 3.5 and Proposition 3.6.
As usual for Berger-Tung type bounds, the main differences between
the outer and the inner bound lies in the Markov conditions (cf. [64,
Chapter 7] or [16, Section 12.2]). Note that Ro and Ri would coincide
if the Markov condition U ◦−− X ◦−− Z ◦−− V were imposed in the
definition of Ro.

Employing a binning scheme would not enlarge the inner bound
Ri. The intuition is that binning reduces redundant information trans-
mitted by both encoders. In the multi-clustering problem, however,
this quantity should actually be maximized.

A tight bound on the achievable region can be obtained if µ is not
greater than the common information (cf. Definition 2.11) of X and Z,
as stated in the following corollary.

Corollary 3.10. If Y = ζ(X) = ξ(Z) is a common component of X and Common
components are
defined in
Definition 2.11.

Z and 0 6 µ 6 H(Y) then we have (µ,R1,R2) ∈ R if and only if µ 6
min{R1,R2} holds.

Proof. Theorem 3.7 entails µ 6 min{R1,R2} for any (µ,R1,R2) ∈ R.
With U = V = Y, Theorem 3.9 implies (H(Y), H(Y), H(Y)) ∈ R. Using
time-sharing with 0 ∈ R we obtain (µ,µ,µ) ∈ R for 0 6 µ 6 H(Y)
and hence (µ,R1,R2) ∈ R if µ 6 min{R1,R2}.

The inner bound Ri can be improved by convexification. Furthermore,
we incorporate the same strong cardinality bounds as for the outer
bound (cf. Proposition 3.8), thereby enabling us to use binary auxil-
iaries also for the inner bound, when dealing with binary sources in
Section 3.5.
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Proposition 3.11. We have S′i := conv(Si) = conv(Ri) ⊆ R where Si

is defined as Ri, but with the additional cardinality bounds |U| 6 |X|, and
|V| 6 |Z|. Furthermore, S′i can be explicitly expressed as

S′i =
⋃

U,V,Q

{
(µ,R1,R2) : R1 > I(U; X|Q),R2 > I(V; Z|Q), and

µ 6 I(U; V|Q)
}

, (3.25)

where U, V, and Q are random variables with |U| 6 |X|, |V| 6 |Z|, |Q| 6 3,
and a p.m.f. of the form pXZUVQ = pQ pXZ pU|XQ pV|ZQ.

The proof of this result is given in Appendix A.3.

3.4 the information bottleneck method

The information-theoretic problem posed by the information bottle-
neck method (cf. Section 2.2.2) can be obtained as a special case from
the multi-clustering problem. The information bottleneck problem in
turn is equivalent to a CEO problem with logarithmic loss distortion
(cf. Section 2.2.2). In total, we can show the following equivalences.

Proposition 3.12. For a source (X, Z) and a pair (µ,R) ∈ R2, the following
are equivalent:

1. (µ,R) ∈ RIB for the source (X, Z).
We apply

Definition 2.28 with
J = L = 1.

2. (H(Z) − µ,R) ∈ RLL for the source (X, Z).

3. (µ,R,∞) ∈ R for the source (X, Z).

4. There exists a random variable U such that U ◦−− X ◦−− Y, I(X; U) 6 R,
and I(Z; U) > µ.

Proof. The equivalence “1 ⇔ 3” holds as Definition 3.2 collapses to
Definition 2.27 for R2 =∞. “2⇔ 4” is a special case of Theorem 2.29.
To show “3 ⇒ 4” we apply the outer bound R′o of Theorem 3.7 to
obtain a random variable U satisfying the conditions in part 4. The
direction “4 ⇒ 3” can be deduced from Theorem 3.9, choosing the
auxiliary V = Y.

This tradeoff between relevance (µ) and complexity (R) can equiv-
alently be characterized by the IB function (cf. [11], [20]), defined as
µIB(R) := sup{µ : (µ,R) ∈ RIB}. Proposition 3.12 provides

µIB(R) = max
U : I(U;X)6R
U ◦−−X ◦−−Z

I(U; Z). (3.26)

Interestingly, the function (3.26) is the solution to a variety of dif-
ferent problems in information theory. As mentioned in [20], (3.26)
is the solution to the problem of loss-less source coding with one
helper [2], [70]. Witsenhausen and Wyner [68] investigated a lower
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bound for a conditional entropy when simultaneously requiring an-
other conditional entropy to fall below a threshold. Their work was
a generalization of [73] and furthermore related to [2], [3], [69], [72].
The conditional entropy bound in [68] turns out to be an equivalent
characterization of (3.26). Furthermore, µIB characterizes the optimal
error exponent, when testing against independence with one-sided
data compression [1, Theorem 2]. Also in the context of gambling
in the horse race market, (3.26) occurs as the maximum incremental
growth in wealth when rate-limited side-information is available to
the gambler [17, Theorem 3].

3.5 doubly symmetric binary source

We will consider the special case where (X, Z) ∼ DSBS(p) is a DSBS(p) is defined
in Section 2.2.2.doubly symmetric binary source. The cardinality bounds in Propo-

sitions 3.8 and 3.11 will enable us to use binary auxiliaries. We first
show that the inner bound S′i and the outer bound R′o do not coincide.

Proposition 3.13. For the source (X, Z) ∼ DSBS(p) with p ∈ (0, 1) and
p 6= 1

2 , we have S′i 6= R′o.

The proof of this proposition is given in Appendix A.4. We conjecture
that there is also a gap between S′i and the stronger outer bound Ro.

Conjecture 3.14. There exists p ∈ [0, 1], such that S′i 6= Ro for the source
(X, Z) ∼ DSBS(p).

To support Conjecture 3.14, we will introduce a region Sb ⊆ Si and
show that conv(Sb) 6= Ro. Let Sb be defined as

a ∗ b = āb+ ab̄.Sb :=
⋃

06α,β6 1
2

{
(µ,R1,R2) : R1 > 1− H(α),

R2 > 1− H(β), and

µ 6 1− H(α ∗ p ∗β)
}

. (3.27)

By choosing U = X ⊕ N1 and V = Z ⊕ N2, where N1 ∼ B(α) and
N2 ∼ B(β) are independent of (X, Z) and of each other, it follows that
Sb ⊆ Si. To illustrate the tradeoff between complexity (R1, R2) and
relevance (µ), the upper boundary of Sb is depicted in Figure 5 for
p = 0.1.

Based on numerical experiments, we conjecture the following.

Conjecture 3.15. For the source (X, Z) ∼ DSBS(p) with p ∈ [0, 1] we have
S′i = conv(Sb), or equivalently Si ⊆ conv(Sb).

The natural, stronger conjecture that Sb = Si already appeared in [66,
Conjecture 1, Eq. (14)]. However, there is a counterexample [8].

Proposition 3.16. For the source (X, Z) ∼ DSBS(0) we have Sb 6= Si. Note that X = Z for
p = 0.
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Figure 5: Boundary of Sb for p = 0.1.
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Figure 6: Binary channels for the proof of Proposition 3.16.

Proof. For a ∈ [0, 1] we define (U, V) by the binary channels depicted
in Figure 6, satisfying U ◦−− X ◦−− Z ◦−− V. We obtain (µ,R,R) ∈ Si

with R = I(U; X) = I(V; Z) = H
(
a
2

)
− 1
2H(a) and µ = I(U; V) = 2R− a.

For a = 0.8 we have µ ≈ 0.419973 and R ≈ 0.609987. On the other
hand, we obtain µb := max{µ̂ : (µ̂,R,R) ∈ Sb} < 0.412025 using (3.27)
with α = β ≈ 0.07658. As µb < µ we have (µ,R,R) /∈ Sb.

This argument can be verified numerically using interval arithmetic
[39]. Code written in the Octave Programming Language [21] using
its interval package [29] can be found at [46].

Note that Proposition 3.16 concerns the case p = 0 and therefore
does not impact Conjecture 3.15. For p = 0 we have X = Z and Corol-
lary 3.10 implies R =

{
(µ,R1,R2) : R1,R2 > 0 and µ 6 min{R1,R2, 1}

}
.

It is easily verified that R = conv(Sb) and thus Conjecture 3.15 holds
for p = 0 by Proposition 3.11.

In fact, the entire statement [66, Conjecture 1] does not hold. The
second part [66, Conjecture 1, Eq. (15)] claims that conv(Sb) = Ro. In
what follows, we show how to construct a counterexample.

Proposition 3.17. For (X, Z) ∼ DSBS(0.1), we have conv(Sb) 6= Ro.

Proposition 3.17 shows that Conjecture 3.14 follows directly from
Conjecture 3.15.
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Figure 7: Numerical evaluation of µ̂o and µ̂b for p = 0.1.

To prove Proposition 3.17 we construct a point (µ,R,R) ∈ Ro that
satisfies (µ,R,R) /∈ conv(Sb). To this end, define the concave functions
µ̂b(R) := max{µ : (µ,R,R) ∈ conv(Sb)} and µ̂o(R) := max{µ : (µ,R,R) ∈
Ro} for R ∈ [0, 1]. In order to show conv(Sb) 6= Ro, it suffices to find
R̂ ∈ [0, 1] with µ̂b(R̂) < µ̂o(R̂).

It is straightforward to compute an upper bound of µ̂b numerically:
For α,β ∈ [0, 12 ], we compute

R̃1 := 1− H(α) (3.28)

R̃2 := 1− H(β) (3.29)

µ̃ := 1− H(α ∗ p ∗β) (3.30)

on a suitably fine grid and numerically bound the upper concave hull
of the implicitly defined function µ̃(R̃1, R̃2). Evaluating it at R = R̃1 =

R̃2 yields an upper bound of µ̂b(R).
On the other hand, we can obtain a lower bound on µ̂o by numeri-

cally computing (3.22) for specific probability mass functions that sat-
isfy the Markov constraints in Theorem 3.7. Note that based on the
cardinality bound in Proposition 3.8, we can restrict the auxiliaries U
and V to be binary. We randomly sample the binary probability mass
functions that satisfy the Markov constraints in Theorem 3.7 (but not
necessarily the long Markov chain U ◦−− X ◦−− Z ◦−− V) and in doing
so encountered points strictly above the graph of µ̂b. Figure 7 shows
the resulting bounds for p = 0.1 in the vicinity of R = 1. Albeit small,
there is clearly a gap between µ̂b and µ̂o outside the margin of numer-
ical error. This shows that the bounds are not tight and [66, Eq. (15),
Conjecture 1] does not hold.

Proof of Proposition 3.17. We observed the largest gap between the two
bounds at a rate of R̂ ≈ 0.974795. The particular distribution of UV
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u v x z P{U = u, V = v|X = x, Z = z}

0 0 0 0 0.995358146217353406525
0 0 0 1 0.00249767559844423319075
0 0 1 0 0.002498344003957310643325
0 0 1 1 0.00034313919194834475
0 1 0 0 0.002142603857654094275
0 1 0 1 0.99500307447656326760925
0 1 1 0 0.000000905921035188556675
0 1 1 1 0.00215611073304415445
1 0 0 0 0.002142603857654094275
1 0 0 1 0.00000157432654826600925
1 0 1 0 0.995002406071050190156675
1 0 1 1 0.00215611073304415445
1 1 0 0 0.000356646067338404925
1 1 0 1 0.00249767559844423319075
1 1 1 0 0.002498344003957310643325
1 1 1 1 0.99534463934196334635

Table 2: Distribution resulting from random search.

at this rate, resulting from optimizing over the distributions that sat-
isfy the Markov constraints in Theorem 3.7 is given in Table 2 for
reference. Note that this is an exact conditional p.m.f. satisfying
the Markov chains U ◦−− X ◦−− Z and X ◦−− Z ◦−− V. It achieves
I(V; Z) + I(U; X) − I(UV; XZ) ≈ 0.518966 which is ∆ ≈ 2.86472 · 10−4
above the inner bound. Thus, this distribution provides a point x ∈
Ro with x /∈ conv(Sb).

Using interval arithmetic [39] this claim can be verified numerically.
Code written in the Octave Programming Language [21] using its
interval package [29] can be found at [46]. It uses the distribution
given in Table 2.

We firmly believe that a tight characterization of the achievable
region requires an improved outer bound. However, it appears very
difficult to find a manageable outer bound based on the full Markov
chain U ◦−− X ◦−− Z ◦−− V.

3.6 conclusion

We studied the multi-clustering problem with two sources and con-
nected it to a hypothesis testing and a pattern recognition problem.
Exploiting these connections, we provided an outer and an inner
bound on the achievable region. In case one rate is large enough, the
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problem degenerates to the information bottleneck problem and we
obtained tight bounds. This case is also equivalent to a rate-distortion
problem with logarithmic loss distortion. We were able to prove novel
cardinality bounds by combining the convex cover method with the
perturbation method and leveraging ideas similar to [41]. This al-
lowed us to restrict our attention to the extreme points of the achiev-
able region. The resulting cardinality bounds enabled a thorough
study of the doubly symmetric binary source, where we were able to
disprove the conjecture [66, Conjecture 1] and found a gap between
the outer and inner bound. The existence of this gap, however, rests
on the unproven Conjecture 3.15.

We believe that the improved cardinality bounds in Propositions 3.8
and 3.11 can be applied to many bounds in information theory. They
offer a cardinality reduction by one compared to bounds obtained
via the convex cover method, at the cost of additional convexification.
In many cases, as, e. g., in the binary example that was studied here,
numerically computing the upper concave envelope can be computa-
tionally cheaper than optimizing over random variables with larger
cardinality.

Regarding the tightness of the bounds in Theorems 3.7 and 3.9,
we believe that the inner bound conv(Ri) coincides with the achiev-
able region R of the multi-clustering problem and that the outer
bound Ro is loose and needs to be improved. However, obtaining
a good upper bound for the mutual information between two arbi-
trary encodings solely based on their rates is a difficult task. Stan-
dard information-theoretic manipulations appear incapable of han-
dling this dependence well.





4
M U T U A L I N F O R M AT I O N B E T W E E N T W O
B O O L E A N F U N C T I O N S

4.1 introduction and main results

Recently, Kumar and Courtade introduced a conjecture [10], [36]
concerning Boolean functions that maximize mutual information. Their
work was inspired by a similar problem in computational biology [33].

Conjecture 4.1 ([36, Conjecture 1]). Let (X, Y) ∼ DSBS(p) be a doubly
symmetric binary source with p ∈ [0, 1]. Then, for any n ∈ N and any
Boolean function f : {0, 1}n → {0, 1}, we have

(X, Y) are n i.i.d.
copies of (X, Y).

I
(
f(X); Y

)
6 I(X; Y) = 1− H(p). (4.1)

This result appears innocent at first sight and indeed it is trivial to
see that the functions fi(x) = xi for i ∈ [n] achieve equality in (4.1).
However, the conjecture turns out to be much more involved and can-
not be established by standard information-theoretic arguments or by
induction over n (cf. [32, Section 2]). Furthermore, Conjecture 4.1 can
hold only for doubly symmetric binary sources, i. e., a generaliza-
tion to arbitrary binary sources is impossible [5, Section I.A]. Conjec-
ture 4.1 has received significant interest and resisted several efforts
to find a proof (see the discussion “Recent Progress” in [10, Sec-
tion IV]). More recently, Ordentlich et. al. [44] used Fourier-analytic
techniques and leveraged hypercontractivity to improve upon pre-
viously known bounds for I(f(X); Y). This group also recently pub-
lished on a complementary problem concerning quantization to n− 1

bits [30]. Kindler et. al. [32] studied an analogous problem in Gaus-
sian spaces.

The main result of this chapter is a relaxed version of Conjecture 4.1,
involving two Boolean functions. To prove this statement, we will
make use of Fourier analysis for Boolean functions (cf. Section 2.4).
Therefore, it will be will be more convenient to state the problem in
terms of Rademacher random variables. Let X, Y be two dependent
Rademacher random variables (cf. Section 2.4), with correlation coef- We have

X, Y ∼ U
(
{−1, 1}

)
.ficient ρ := E[XY] ∈ [−1, 1].

Theorem 4.2. For any two Boolean functions f,g : {−1, 1}n → {−1, 1},

I
(
f(X);g(Y)

)
6 I(X; Y). (4.2)

49
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Remark 5. Note that Theorem 4.2 is equivalent to

I
(
f̃(X̃); g̃(Ỹ)

)
6 I(X̃; Ỹ), (4.3)

for any pair of functions f̃, g̃ : {0, 1}n → {0, 1}n, where (X̃, Ỹ) ∼ DSBS(p).
This can be shown from (4.2) by introducing the bijective transforma-
tion T(w) := 1−w

2 and identifying p = T(ρ), X̃ = T(X), Ỹ = T(Y),
f̃ = T(f), and g̃ = T(g).

Assuming that Conjecture 4.1 holds and taking into account the
equivalence discussed in Remark 5, Theorem 4.2 readily follows by
noting that

I
(
f(X);g(Y)

)
6 I

(
f(X); Y

)
(4.4)

(4.1)
6 I(X; Y), (4.5)

where (4.4) follows from the data processing inequality (Theorem 2.5).
This shows that Theorem 4.2 is indeed weaker than Conjecture 4.1.
However, Theorem 4.2 was stated as an open problem in [36, Sec-
tion IV] and [10, Section IV], and separately investigated in [5]. A
proof of (4.2) was previously available only under the additional re-
strictive assumptions that f and g are equally biased (i. e., E[f(X)] =

E[g(X)]) and satisfy the condition

P{f(X) = 1,g(X) = 1} > P{f(X) = 1}P{g(X) = 1}. (4.6)

The reader is invited to see [10, Section IV] for further details. Our
proof of Theorem 4.2 builds on these ideas. Using Fourier-analytic
tools we prove (4.2) any additional restrictions on f and g. First, we
suitably bound the Fourier coefficients of f and g and thereby reduce
(4.2) to an elementary inequality, which is subsequently established.
Like Conjecture 4.1, Theorem 4.2 does not hold for arbitrary binary
asymmetric sources: using the counterexample from [5, Section I.A] it
follows that our Fourier-analytic proof will not carry over to p-biased
Fourier analysis [60], [61]. We note that Anantharam et al. [5] showed
that Theorem 4.2 would follow from a conjectured result concerning
the hypercontractivity ribbon of two binary random variables; how-
ever, that conjecture itself remains unproven to date.

A careful inspection of our proof of Theorem 4.2 reveals that in
general, up to sign changes, the dictator functions (cf. Remark 3) χi,The ith dictator is

the function
χi(x) = xi.

i ∈ [n] are the unique maximizers of I
(
f(X);g(Y)

)
.

Proposition 4.3. If 0 < |ρ| < 1, equality in (4.2) is achieved if and only if
f = ±g = ±χi for some i ∈ [n].

For the degenerate case ρ = 0, the upper bound I
(
f(X);g(Y)

)
= 0 is

trivially achieved by any two Boolean functions f, g. Similarly, for the
case ρ = ±1 (deterministically dependent sources), the upper bound
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I
(
f(X);g(Y)

)
= 1 is achieved by any two unbiased Boolean functions

f and g that satisfy g(x) = ±f(ρx).

4.2 proof of theorem 4 .2

Let f and g be two arbitrary functions on the Boolean hypercube,
i. e., f,g : {−1, 1}n → {−1, 1}. Define

f̂ and ĝ denote the
Fourier transforms
(cf. Section 2.4).

a :=
1+ f̂∅
2

= P{f(X) = 1}, b :=
1+ ĝ∅
2

= P{g(X) = 1}, (4.7)

θρ :=
1

4

(
〈f, Tρg〉− f̂∅ĝ∅

)
=
1

4

∑
S:|S|>1

ρ|S|f̂SĝS. (4.8)

Without loss of generality, we may assume f̂∅, ĝ∅ ∈ [0, 1] (or equiva-
lently a,b ∈

[
1
2 , 1
]
), as

I
(
f(X);g(Y)

)
= I
(
sgn(f̂∅)f(X); sgn(ĝ∅)g(Y)

)
(4.9)

= I
(
f∗(X);g∗(Y)

)
, (4.10)

where f∗ := sgn(f̂∅)f and g∗ := sgn(ĝ∅)g with f̂∗∅, ĝ∗∅ ∈ [0, 1]. We
may further assume 1

2 6 a 6 b 6 1 as f and g can be interchanged. Mutual information
is symmetric, i. e.,
I(A; B) = I(B; A).

We also restrict ρ ∈ [0, 1] as

I
(
f(X);g(Y)

)
= I
(
f(X);g(sgn(ρ)Y∗)

)
= I
(
f(X);g∗(Y∗)

)
, (4.11)

where we defined Y∗ := sgn(ρ)Y and g∗(y) = g(sgn(ρ)y), and hence
have E[XY∗] = |ρ|.

Part 6 of Lemma 2.45 allows us to rewrite the probabilities

t̄ := 1− t.P{f(X) = g(Y) = 1} = ab+ θρ, (4.12)

P{f(X) = 1,g(Y) = −1} = ab̄− θρ, (4.13)

P{f(X) = −1,g(Y) = 1} = āb− θρ, and (4.14)

P{f(X) = g(Y) = −1} = āb̄+ θρ. (4.15)

This can be seen as follows. Fist note that for an arbitrary pair of
random variables (A, B) on {−1, 1}2, we have

2P{A = B = 1} = 2P{A = B = 1}+ P{A = 1, B = −1}

+ P{A = −1, B = 1}− P{A 6= B} (4.16)

= P{A = 1}+ P{B = 1}− P{A 6= B} (4.17)
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and thus

P{f(X) = g(Y) = 1}
(4.17)
=

1

2

(
a+ b− P{f(X) 6= g(Y)}

)
(4.18)

=
1

2

(
a+ b−

1

2

(
1− 〈f, Tρg〉

))
(4.19)

(4.8)
=

1

2
(a+ b) −

1− f̂∅ĝ∅
4

+ θρ (4.20)

(4.7)
=

1

2
(a+ b) +

4ab− 2a− 2b

4
+ θρ (4.21)

= ab+ θρ, (4.22)

where (4.19) follows from part 6 of Lemma 2.45. The other identities
(4.13)–(4.15) can be obtained similarly. Using (4.12)–(4.15), we obtain
I
(
f(X);g(Y)

)
= ξ(θρ,a,b) with the continuous function

H(p) = H(Z),
where Z ∼ p.

ξ(θ,a,b) := H(a) + H(b)

− H
(
ab+ θ,ab̄− θ, āb− θ, āb̄+ θ

)
. (4.23)

By the non-negativity of probabilities (4.13) and (4.15), for any ρ ∈
[0, 1],

−āb̄ 6 θρ 6 ab̄. (4.24)

Defining P := {S ⊆ [n] : f̂SĝS > 0} \ {∅} and N := {S ⊆ [n] : f̂SĝS < 0},
we have θ1 = τ+ + τ− with

τ+ :=
1

4

∑
S∈P

f̂SĝS, τ− :=
1

4

∑
S∈N

f̂SĝS. (4.25)

Using the Schwarz inequality we can show

(τ+ − τ−)2
(4.25)
=

1

16

 ∑
S:|S|>1

|f̂SĝS|

2 (4.26)

6
1

16

 ∑
S:|S|>1

f̂2S

 ∑
S:|S|>1

ĝ2S

 (4.27)

=
1

16
(1− f̂2∅)(1− ĝ

2
∅) (4.28)

(4.7)
= aābb̄, (4.29)
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where we applied Corollary 2.42 in (4.27), and (4.28) follows from
part 5 of Lemma 2.45. Combining these results, we obtain

2τ+ = θ1 + τ
+ − τ− (4.30)

(4.29)
6 θ1 +

√
aābb̄ (4.31)

(4.24)
6 ab̄+

√
aābb̄ (4.32)

and, using (4.24) and (4.29), one similarly obtains 2τ− > −āb̄ −√
aābb̄ from 2τ− = θ1 + τ

− − τ+. From the definition of θρ we have

θρ
(4.8)
=
1

4

∑
S:|S|>1

ρ|S|f̂SĝS (4.33)

6
1

4

∑
S∈P

ρ|S|f̂SĝS (4.34)

6 ρ
1

4

∑
S∈P

f̂SĝS (4.35)

= ρτ+, (4.36)

and similarly one can also show θρ > ρτ−. Combining these bounds
with (4.24) yields θρ ∈

[
− θ̂(ρ, ā,b), θ̂(ρ,a,b)

]
, where

θ̂(ρ,a,b) := min
{
ab̄, ρCa,b

}
, with (4.37)

Ca,b :=
ab̄+

√
aābb̄

2
. (4.38)

The function ξ(θ,a,b), defined in (4.23), is convex in θ by the concav-
ity of entropy, Lemma 2.8, and consequently

I
(
f(X);g(Y)

)
= ξ(θρ,a,b) (4.39)

= ξ(tθ̂(ρ,a,b) − t̄θ̂(ρ, ā,b),a,b) (4.40)

6 tξ(θ̂(ρ,a,b),a,b) + t̄ξ(−θ̂(ρ, ā,b),a,b) (4.41)

6 max
θ∈{−θ̂(ρ,ā,b),θ̂(ρ,a,b)}

ξ(θ,a,b), (4.42)

where we used the convexity of ξ in (4.41) and defined t such that
θρ = tθ̂(ρ,a,b) − t̄θ̂(ρ, ā,b). Thus, Theorem 4.2 can be proved by
establishing

1− H
(
ρ+ 1

2

)
− ξ(θ,a,b) > 0 (4.43)
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for θ ∈ {−θ̂(ρ, ā,b), θ̂(ρ,a,b)}. Furthermore, it suffices to consider
1
2 < a < b < 1 by continuity of ξ. Define

φ(ρ,a,b) := 1− H
(
ρ+ 1

2

)
− ξ(ρCa,b,a,b). (4.44)

Theorem 4.2 can now be reduced to the following lemma.

Lemma 4.4. For 0 < α < β < 1 and ρ ∈
[
0, αβ̄Cα,β

]
, φ(ρ,α,β) > 0 with

equality if and only if ρ = 0.

To see this, first observe that we have the identity φ(ρ,a,b) = 1 −

H
(
ρ+1
2

)
− ξ
(
θ̂(ρ,a,b),a,b

)
for ρ ∈

[
0, ab̄Ca,b

]
, and for ρ ∈

[
ab̄
Ca,b

, 1
]

we
have

1− H
(
ρ+ 1

2

)
− ξ
(
θ̂(ρ,a,b),a,b

)
(4.45)

(4.37)
= 1− H

(
ρ+ 1

2

)
− ξ(ab̄,a,b) (4.46)

> 1− H

 ab̄
Ca,b

+ 1

2

− ξ(ab̄,a,b) (4.47)

(4.44)
= φ

(
ab̄

Ca,b
,a,b

)
, (4.48)

where we used the monotonicity of the binary entropy function in
(4.47). Thus, for θ = θ̂(ρ,a,b) we obtain (4.43) from Lemma 4.4
with α = a and β = b. Using the fact that in general ξ(−θ,α,β) =

ξ(θ, ᾱ,β), we obtain for ρ ∈
[
0, āb̄Cā,b

]
cf. (4.23) and use

H(α) = H(ᾱ). 1− H
(
ρ+ 1

2

)
− ξ
(
− θ̂(ρ, ā,b),a,b

)
(4.49)

(4.37)
= 1− H

(
ρ+ 1

2

)
− ξ(ρCā,b, ā,b) (4.50)

(4.44)
= φ(ρ, ā,b) (4.51)

and for ρ ∈
[
āb̄
Cā,b

, 1
]

we have

1− H
(
ρ+ 1

2

)
− ξ
(
− θ̂(ρ, ā,b),a,b

)
(4.52)

(4.37)
= 1− H

(
ρ+ 1

2

)
− ξ(āb̄, ā,b) (4.53)

> 1− H

 āb̄
Cā,b

+ 1

2

− ξ(āb̄, ā,b) (4.54)

(4.44)
= φ

(
āb̄

Cā,b
, ā,b

)
, (4.55)
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where the monotonicity of the binary entropy function was used in
(4.54). Thus, for θ = θ̂(ρ,a,b) we obtain (4.43) from Lemma 4.4 with
α = ā and β = b. Recall the

assumption
1
2 < a < b < 1.Proof of Lemma 4.4. Let I := {(α,β) ∈ R2 : 0 < α < β < 1}, fix (α,β) ∈

I and define

ρ− :=
max{αβ, ᾱβ̄}

Cα,β
, ρ◦ :=

min{αβ, ᾱβ̄}
Cα,β

, ρ+ :=
αβ̄

Cα,β
. (4.56)

We shall adopt the simplified notation φ(ρ) := φ(ρ,α,β), suppressing
the fixed parameters (α,β). For ρ ∈ [0, ρ+), we have the derivatives αβ̄ < ᾱβ follows

from α < β.

φ′(ρ) =
1

2
log2

(
1+ ρ

1− ρ

)
+Cα,β log2

(
(ᾱβ−Cα,βρ)(αβ̄−Cα,βρ)

(αβ+Cα,βρ)(ᾱβ̄+Cα,βρ)

)
(4.57)

φ′′(ρ) =
C2α,β

log 2

(
1

C2α,β(1− ρ
2)

−
1

ᾱβ−Cα,βρ
−

1

αβ̄−Cα,βρ

−
1

ᾱβ̄+Cα,βρ
−

1

αβ+Cα,βρ

)
. (4.58)

Note, that both φ′(ρ+) and φ′′(ρ+) are undefined, but

lim
ρ↑ρ+

φ′(ρ) = lim
ρ↑ρ+

φ′′(ρ) = −∞. (4.59)

Moreover, we have

φ′′(0)
(4.58)
=

C2α,β

log 2

(
1

C2α,β
−
1

ᾱb
−
1

αβ̄
−
1

ᾱβ̄
−
1

αβ

)
(4.60)

=
C2α,β

log 2

(
1

C2α,β
−
αβ̄+ ᾱβ+αβ+ ᾱβ̄

αᾱββ̄

)
(4.61)

=
C2α,β

log 2

(
1

C2α,β
−

1

αᾱββ̄

)
(4.62)

=
1

log 2

(
1−

C2α,β

αᾱββ̄

)
(4.63)

=
1

log 2

1−(√αβ̄+
√
ᾱβ√

ᾱβ+
√
ᾱβ

)2 > 0. (4.64)

We write φ′′(ρ) = p(ρ)
q(ρ) , where both p and q are polynomials in ρ and

choose

q(ρ) = log(2)(1− ρ2)(ᾱβ−Cα,βρ)

× (αβ̄−Cα,βρ)(ᾱβ̄+Cα,βρ)(αβ+Cα,βρ), (4.65)
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satisfying q(ρ) > 0 for ρ ∈ [0, ρ+). By (4.58), p(ρ) is given by

p(ρ) = (ᾱβ−Cα,βρ)(αβ̄−Cα,βρ)(ᾱβ̄+Cα,βρ)(αβ+Cα,βρ)

−C2α,β(1− ρ
2)
(
(αβ̄−Cα,βρ)(ᾱβ̄+Cα,βρ)(αβ+Cα,βρ)

+ (ᾱβ−Cα,βρ)(ᾱβ̄+Cα,βρ)(αβ+Cα,βρ)

+ (ᾱβ−Cα,βρ)(αβ̄−Cα,βρ)(αβ+Cα,βρ)

+ (ᾱβ−Cα,βρ)(αβ̄−Cα,βρ)(ᾱβ̄+Cα,βρ)
)

. (4.66)

This entails deg(p) 6 5 and careful calculation of the coefficients re-
veals deg(p) 6 3.

We will now demonstrate that there is a unique point ρ∗ ∈ (0, ρ+)
with p(ρ∗) = 0. To this end, reinterpret φ′′(ρ) as a rational function
of ρ on R. By q(ρ) > 0, (4.59) and (4.64), we know that the number
of zeros of p in (0, ρ+) is odd and at most equal to its degree, i.e.,
either one or three. We next show that p has at least one zero in
(−∞, 0), ensuring that there is only one zero in (0, ρ+). Depending
on ρ◦ (cf. (4.56)), we distinguish three cases:

1. ρ◦ < 1: We have q(ρ) > 0 for ρ ∈ (−ρ◦, 0), φ′′(0) > 0 and
limρ↓−ρ◦ φ

′′(ρ) = −∞. Thus, there is an odd number of zeros
in (−ρ◦, 0).

2. ρ◦ = 1: Observe that p(−1) = 0.

3. ρ◦ > 1: Let U := (−ρ−,−ρ◦) and observe that q(ρ) > 0 for
ρ ∈ U. Thus, there needs to be an odd number of zeros in U as
limρ↓−ρ− φ

′′(ρ) = −∞ and limρ↑−ρ◦ φ
′′(ρ) =∞.

Figures 8a and 8b qualitatively illustrate the behavior of p(ρ) and
φ′′(ρ) for cases 1 and 3, respectively.

Consequently, φ′′(ρ) > 0 for ρ ∈ (0, ρ∗). By part 1 of Lemma 2.40,
φ(ρ) > φ(0) = 0 for ρ ∈ (0, ρ∗] as φ′(0) = 0. Since φ′′(ρ) < 0 for
ρ ∈ (ρ∗, ρ+), we have φ(ρ) > min{φ(ρ∗),φ(ρ+)} for all ρ ∈ (ρ∗, ρ+),
by part 2 of Lemma 2.40. In total, φ(ρ) > min{0,φ(ρ+)} for ρ ∈
(0, ρ+).

As φ(0) = 0, it remains to show φ(ρ+,α,β) > 0 for (α,β) ∈ I. To
this end, introduce the transformation

(α,β) 7−→ (c, x) :=

 log αβ
log αβ̄ᾱβ

,

√
αβ̄

ᾱβ

, (4.67)

a bijective mapping from I to (0, 1)2 with the inverse

(c, x) 7−→ (α,β) =
(
x2c − x2

1− x2
,
1− x2−2c

1− x2

)
. (4.68)
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−ρ◦ ρ+ ρ

p(ρ)

φ′′(ρ)

(a) ρ◦ < 1

−ρ− −ρ◦ −1 ρ+ 1 ρ

p(ρ)

φ′′(ρ)

(b) ρ◦ > 1

Figure 8: Sketch of p(ρ) and φ′′(ρ).

In terms of c and x, we have φ(ρ+,α,β) = ψ(c, x), where

ψ(c, x) := 1− H
(
1

2
+

x

1+ x

)
− H

(
x2c − x2

1− x2

)
+
1− x2−2c

1− x2
H
(
x2c
)
. (4.69)

We fix a particular x ∈ (0, 1) and use the simplified notation ψ(c) :=
ψ(c, x), obtaining the derivatives

ψ′(c) =
2 log(x)

(x2 − 1) log(2)
(
2x2cc log(x)

+ x2(1−c) log(1− x2c) − x2c log(x2c − x2)
)

(4.70)

ψ′′(c) =
4 log(x)2x2c

(1− x2) log(2)

[(
1

x−2(1−c) − 1
+ log(1− x2(1−c))

)

+
x2

x4c

(
log(1− x2c) +

1

x−2c − 1

)]
. (4.71)

Two applications of Lemma 2.43 yield ψ′′(c) > 0. Thus, ψ(c) > ψ(12)
by part 1 of Lemma 2.40 as ψ′(12) = 0. It remains to show, that
γ(x) := ψ(12 , x) > 0. Note that γ(0) = γ(1) = 0 and

γ′(x) =
1

(1+ x)2
log2

(
(1+ 3x)(1− x)

)
(4.72)

for x ∈ [0, 1). If γ(x) 6 0 for any x ∈ (0, 1) then f necessarily attains
its minimum in (0, 1) and there exists x∗ ∈ (0, 1) with γ(x∗) 6 0 and
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γ′(x∗) = 0. As x∗ = 2
3 is the only point in (0, 1) with γ′(x∗) = 0 and

γ
(
2
3

)
= log2

(
27
25

)
> 0, this concludes the proof.

4.3 proof of proposition 4 .3

We may assume 0 < ρ < 1 and 1
2 6 a 6 b 6 1, using the same

reasoning as in (4.10) and (4.11). Clearly, g = ±f = ±χi for some
i ∈ [n] is a sufficient condition to maximize I

(
f(X);g(Y)

)
. We will

now show that this condition is also necessary.
In the following, we will use the notation of Section 4.2. As b = 1

implies I
(
f(X);g(Y)

)
= 0 < 1− H

(
1+ρ
2

)
, we assume 1

2 6 a 6 b < 1.
For equality in Theorem 4.2, we need

1− H
(
ρ+ 1

2

)
− ξ(θ,a,b) = 0 (4.73)

for either θ = −θ̂(ρ, ā,b) or θ = θ̂(ρ,a,b). For θ = −θ̂(ρ, ā,b), we
apply Lemma 4.4 with α = ā and β = b and see that (4.73) can only
hold if a = b = 1

2 . For θ = θ̂(ρ,a,b) on the other hand, Lemma 4.4Equality requires
α = β by

Lemma 4.4.
with α = a and β = b shows that a = b is necessary for (4.73) to hold.
In this case we have 1−H

(
ρ+1
2

)
− ξ(θ,a,a) = φ(ρ,a,a) and to show

that (4.73) additionally implies a = 1
2 , assume a 6= 1

2 , leading to

φ′(ρ)
(4.57)
=

1

2
log2

(
1+ ρ

1− ρ

)
− aā log2

(
ρ

aāρ̄2
+ 1

)
, (4.74)

φ′′(ρ)
(4.58)
=

ρ(1− 2a)2

log(2)(a+ ρā)(1− aρ̄)(1− ρ2)
> 0. (4.75)

Part 1 of Lemma 2.40 now yields 0 = φ(0,a,a) < φ(ρ,a,a) as φ(0) =
0. The function ξ(θ, 12 , 12) is strictly convex in θ by Lemma 2.8 and
therefore θρ =

〈f,Tρg〉
4 ∈ {θ+ρ , θ−ρ } = ±

ρ
4 . Apply Lemma 2.47 to finish

the proof.

4.4 discussion

The key idea underlying the proof of Theorem 4.2 is to split θ1 =

τ+ + τ− into its positive and negative part (see Section 4.2). After
the problem was reduced to the inequality in Lemma 4.4, the remain-
ing proof is routine analysis. However, Lemma 4.4 might turn out
to be useful in the context of other converse proofs concerning the
optimization of rate regions with binary random variables.

Although we provided a conclusive and complete proof for the
tight upper bound on the mutual information of two Boolean func-
tions, Conjecture 4.1 remains open. Our proof might provide some
insight into the general problem. However, it seems unlikely that the
idea behind our proof can be applied to fully resolve Conjecture 4.1.



5
C L U S T E R I N G W I T H M U LT I P L E S O U R C E S

We now consider the general version of the multi-clustering prob-
lem introduced in Section 3.1. Recall that the case of K = 2 sources
was addressed in Chapter 3. In this chapter we extend the multi-
clustering problem to the case of multiple sources and provide bounds
on the associated achievable region. We will also discuss several spe-
cial cases of the problem.

5.1 problem statement and main results

We start with a formal definition of the multi-clustering problem
with K sources. To this end, we reuse some notation by providing
natural generalizations of the quantities defined in Chapter 3. A
schematic illustration of the problem is shown in Figure 9. Formally,

X1 W1 = f1(X1)

X2 W2 = f2(X2)

X3 W3 = f3(X3)

X4 W4 = f4(X4)

X5 W5 = f5(X5)

...
...

XK WK = fK(XK)

I
(
WA; WB

)

Figure 9: Clustering of multiple sources.

we require the following definitions.

Definition 5.1. Consider an (n,R[K]) code f[K] for X[K] and define Wk :=

fk(Xk) for k ∈ [K]. For any (A,B) ∈ Ω we define the co-information of fA Ω is the set of pairs
(A,B) with
A,B ⊂ [K]

nonempty and
disjoint.

and fB as

Θ(fA; fB) :=
1

n
I(WA; WB). (5.1)

59
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Definition 5.2. A point (µΩ,R[K]) is called achievable for the sources
X[K] if and only if, for some n ∈ N, there exists an (n,R[K]) code f[K] for
X[K] such that for all (A,B) ∈ Ω,

Θ(fA; fB) > µA,B. (5.2)

The achievable region R is the closure of the set R of all achievable points.

Remark 6. The region R is 3K − 2K+1 +K+ 1-dimensional. By exploit-
ing the symmetry of mutual information, i. e., requiring µA,B = µB,A,
the dimension could be reduced to 3K+1

2 − 2K +K. However, we will
not make use of this simplification, to keep the formulation of our
results shorter and more concise.

Remark 7. A standard time-sharing argument can be used to show
that R is a convex set (see, e. g., [16, Section 4.4]).

We first state an outer bound for the achievable region, whose proof
is provided in Appendix B.1.

Theorem 5.3. We have the outer bounds R ⊆ Ro ⊆ R′o. Here, the region
R′o is defined as

R′o :=
⋃
U[K]

{
(µΩ,R[K]) :

∑
k∈A

Rk > I
(
UA; X[K]

∣∣UC

)
for A,C ⊆ [K],

µA,B 6 I(UA; XB) for (A,B) ∈ Ω
}

(5.3)

where the auxiliary random variables U[K] satisfy UA ◦−− XA ◦−− X[K]\A

for every A ⊆ [K]. The region Ro is defined as R′o only that the inequality
for the relevance µA,B is replaced with

µA,B 6 I(UA; XA) + I(UB; XB) − I(UAUB; XAXB). (5.4)

Remark 8. In particular we have the Markov chains UA ◦−− XA ◦−−
XB and UB ◦−− XB ◦−− XA. Using Lemma 2.13 we can write (5.4)
equivalently as

µA,B 6 I(UA; UB) − I(UA; UB|XAXB). (5.5)

The next result provides an inner bound for R.

Theorem 5.4. We have Ri ⊆ R where the region Ri consists of all points
(µΩ,R[K]) for which there exist random variables U[K] satisfying Uk ◦−−
Xk ◦−− (X[K]\k, U[K]\k) for all k ∈ [K] and for all (A,B) ∈ Ω there exist
subsets Ã ⊆ A and B̃ ⊆ B such thatThe index sets Ã and

B̃ implicitly depend
on the pair (A,B).

∑
k∈Â

Rk > I
(
XÂ; UÂ

∣∣∣UA\Â

)
for all Â ⊆ A with Â∩ Ã 6= ∅, (5.6)

∑
k∈B̂

Rk > I
(
XB̂; UB̂

∣∣∣UB\B̂

)
for all B̂ ⊆ B with B̂∩ B̃ 6= ∅, (5.7)

µA,B 6 I
(
U
Ã

; U
B̃

)
. (5.8)
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The proof of Theorem 5.4 will be provide in Section 5.3.
In contrast to the case of two sources, binning does help for K >

2 sources. For illustration, consider the case K = 3 and assume
we are only interested in maximizing Θ(f1, f2; f3). Then any infor-
mation encoded by both f1 and f2 is redundant as it does not in-
crease Θ(f1, f2; f3). The corresponding rate loss can be reduced by a
quantize-and-bin scheme (cf. [2], [6], [64], [70]).

The proof that Ri is indeed achievable uses typicality coding and
binning. The conditions (5.6) and (5.7) ensure that the messages
of encoders Ã and B̃ can be correctly decoded from the output of
the encoders A and B, respectively. By (5.8), these suffice to en-
sure that µA,B is achievable. Intuitively, the encoders A \ Ã and
B \ B̃ act as helpers. The special case Ã = A, B̃ = B for every
(A,B) ∈ Ω corresponds to no binning at all, as (5.6) and (5.7) then
imply Rk > I(Xk; Uk) for all k ∈ [K].

Finally, note that in general Ri is not convex and thus Theorem 5.4
can be strengthened to conv(Ri) ⊆ R. However, it is tedious to char-
acterize conv(Ri) using a time-sharing random variable due to the
freedom of choosing the index sets Ã, and B̃ for each (A,B) ∈ Ω.

The following cardinality bounds show that Ri is computable (see
Appendix B.2 for the proof).

Proposition 5.5. The region Ri remains unchanged if the cardinality bound
|Uk| 6 |Xk|+ 4

K is imposed for every k ∈ [K].

5.2 a special case : the ceo problem

In this section we study a special case of the clustering problem
that corresponds to a variant of the CEO problem [7] in which the
usual distortion criterion is replaced with mutual information. This
problem turns out to be equivalent to the classical CEO problem with
logarithmic loss distortion as analyzed in [11]. The equivalence fol-
lows in the same fashion as the equivalence between the information
bottleneck problem and lossy source coding with logarithmic loss dis-
tortion, shown in Section 3.4. Using results from [11], we will show
that our inner bound becomes tight in this special case.

We consider a CEO problem under a mutual information (MI) con-
straint where random variables X[J] are encoded to be maximally in-
formative about another set of random variables Y[L].

Definition 5.6. We say that the point (νΠ,R[J]) is MI-achievable for the Π is the set of all
pairs (A,B) of
nonempty sets
A ⊆ [J] and
B ⊆ [L].

source (X[J], Y[L]) if and only if, for some n ∈ N, there exists an (n,R[J])
code f[J] for X[J] such that for all (A,B) ∈ Π, we have

1

n
I(WA; YB) > νA,B, (5.9)

where Wj := fj(Xj) for j ∈ [J]. The set of all MI-achievable points is RMI.
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Remark 9. The achievable region RMI is convex by a standard time-
sharing argument (see, e. g., [16, Section 4.4]).

We can show that RMI corresponds to a subset of R.

Proposition 5.7. Letting K := J+ L and X[K] := (X[J], Y[L]), we have

R[J] is a slice of R[K]. RMI =
⋃

(µΩ,R[K])∈R

{
(νΠ,R[J]) : νA,B = µA,J+B, (A,B) ∈ Π

}
. (5.10)

Proof. Let (νΠ,R[J]) ∈ RMI be achieved by the (n,R[J]) code f[J] in the
sense of Definition 5.6. We extend f[J] to an (n,R[K]) code f[K] for
X[K] by setting fk(xk) = xk and choosing Rk = ∞ for k > J. Set
µA,J+B = νA,B whenever (A,B) ∈ Π and µA,J+B = 0 otherwise. The
code f[K] achieves (µΩ,R[K]) ∈ RMI (cf. Definition 5.2).

Let (µΩ,R[K]) ∈ R be achieved by the (n,R[K]) code f[K] (cf. Def-
inition 5.2). The restriction f[J] then provides (νΠ,R[J]) ∈ RMI with
νA,B = µA,J+B for (A,B) ∈ Π (cf. Definition 5.6).

To shorten notation we will introduce the set of random variables

P∗ :=
{
(U[J], Q) : Q ⊥ X[J]Y[L],

Uj ◦−− XjQ ◦−− X[J]\jY[L]U[J]\j for all j ∈ [J]
}

. (5.11)

Using the extended source X[K] = (X[J], Y[L]), we can obtain an
inner bound on RMI directly from Theorem 5.4 as stated in the fol-
lowing corollary.

Corollary 5.8. An inner bound for the achievable region is R
(MI)
i ⊆ RMI

where the region R
(MI)
i is obtained directly from Ri by

R
(MI)
i :=

⋃
(µΩ,R[K])∈Ri

{
(νΠ,R[J]) : νA,B = µA,J+B, (A,B) ∈ Π

}
. (5.12)

Furthermore, R
(MI)
i consists of all points (νΠ,R[J]) such that there exist

random variables (U[J],∅) ∈ P∗ and for every (A,B) ∈ Π there is a set
Ã ⊆ A with∑

k∈Â

Rk > I
(
XÂ; UÂ

∣∣UA\Â

)
for all Â ⊆ A with Â∩ Ã 6= ∅, (5.13)

νA,B 6 I
(
U
Ã

; YB

)
. (5.14)

Proof. The result follows from Theorem 5.4 and Proposition 5.7 with
auxiliaries Uk = Xk for k > J.

Using Theorem 5.3 and Proposition 5.7, one can also formulate a cor-
responding outer bound.

We next argue that the CEO problem introduced in Definition 5.6
is equivalent to the logarithmic loss distortion approach described in
Section 2.2.2.
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Lemma 5.9. We have (DΠ,R[J]) ∈ RLL if and only if (νΠ,R[J]) ∈ RMI,
where νA,B = H(YB) −DA,B for all (A,B) ∈ Π.

Proof. Assume that (νΠ,R[J]) ∈ RMI is achieved by the (n,R[J]) code
f[J], i. e., (5.9) holds for all (A,B) ∈ Π with Wj := fj(Xj). We choose
the decoding functions gA,B(wA) = pYB|WA

( · |wA) and Lemma 2.30

shows

1

n
E
[
dLL(gA,B(WA), YB)

]
=
1

n
H(YB|WA) (5.15)

(5.9)
6 DA,B, (5.16)

implying (DΠ,R[J]) ∈ RLL. To show RLL ⊆ RMI, let (DΠ,R[J]) ∈ RLL

be achieved by the (n,R[J]) code f[J] and the decoding function gA,B,
i. e., (2.60) holds for all (A,B) ∈ Π with Wj := fj(Xj). Lemma 2.30

then implies I(WA; YB) > nνA,B and hence (νΠ,R[J]) ∈ RMI.

For the rest of this section, we assume L = 1 and for brevity
write Y := Y1 and νA := νA,1. We first note the following connec-
tion between the Körner-Marton modulo-two sum problem (cf. Sec-
tion 2.2.2) and the CEO problem with logarithmic loss distortion (cf.
Section 2.2.2).

Theorem 5.10. For J = 2, (X1, X2) ∼ DSBS(p), and Y = X1 ⊕ X2, we
have

RMI =
{
(ν1,ν2,ν{1,2},R1,R2) ∈ R5 : ν1,ν2 6 0,

R1,R2 > 0, and ν{1,2} 6 min{R1,R2, H(Y)}
}

. (5.17)

Proof. Assuming (νΠ,R1,R2) ∈ RMI, we immediately have ν1,ν2 6 0,
which follows from Y ⊥ X1 and Y ⊥ X2. Applying Definition 5.6,
choose an (n,R1,R2) code (f1, f2) for (X1, X2) that achieves nν{1,2} 6
I(f1(X1)f2(X2); Y) 6 nH(Y). Introducing W1 := f1(X1) and W2 :=

f2(X2), we have

nν{1,2} 6 I(W1W2; Y) (5.18)

6 I(W1X2; Y) (5.19)

= I(X2; Y) + I(W1; Y|X2) (5.20)

6 H(W1) (5.21)

6 nR1, (5.22)

where (5.19) follows from Y ◦−−W1X2 ◦−−W2 and (5.21) from Y ⊥ X2.
The inequality ν{1,2} 6 R2 can be proved the same way, by interchang-
ing X1 and X2.

On the other hand, assume ν{1,2} 6 min{R1,R2, H(Y)}. By Theo-
rem 2.32 this shows (H(Y) − ν{1,2},R1,R2) ∈ RTO. We pick an arbi- RTO is defined in

Section 2.2.2.trary ε > 0 and, using Definition 2.31, we can find an (n, H(Y) −
ν{1,2},R1,R2) code (f0, f1, f2) for (Y, X1, X2) and a decoding function
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g such that P{g(f0(Y), f1(X1), f2(X2)) 6= Y} 6 ε. Applying Fano’s in-
equality, Theorem 2.6, yields

nH(Y) − H(ε) − ε 6 I
(
Y; f0(Y)f1(X1)f2(X2)

)
(5.23)

= I
(
Y; f1(X1)f2(X2)

)
+ I
(
Y; f0(Y)

∣∣f1(X1)f2(X2)) (5.24)

6 I
(
Y; f1(X1)f2(X2)

)
+n

(
H(Y) − ν{1,2}

)
. (5.25)

As ε was arbitrary, this completes the proof.

We can now show that the inner bound in Theorem 5.4 cannot
be tight due to the Körner-Marton counterexample. For J = 2, con-
sider (X1, X2) ∼ DSBS(p) and Y = X1 ⊕ X2 with p ∈ (0, 1) and
p 6= 1

2 . The inner bound R
(MI)
i in Corollary 5.8 specializes to all

points (ν1,ν2,ν{1,2},R1,R2) with

R1 > I(X1; U1|U2), (5.26)

R2 > I(X2; U2|U1), (5.27)

R1 + R2 > I(X1X2; U1U2), (5.28)

ν{1,2} 6 I(U1U2; Y), (5.29)

ν1 6 0, (5.30)

ν2 6 0, (5.31)

for random variables U1 and U2, satisfying U1 ◦−− X1 ◦−− X2 ◦−− U2.
Using the characterization of RMI in Theorem 5.10, we have RMI 6=
conv

(
R
(MI)
i

)
by Theorem 2.33. Inequality in this special case shows

that also R 6= conv(Ri).
If we additionally assume Xj ◦−− Y1 ◦−− X[J]\j for all j ∈ [J], the

results in [11] directly apply to the CEO problem with a mutual infor-
mation constraint as consequence of Lemma 5.9.

Lemma 5.11. Assume νA = 0 whenever A 6= [J]. Then (νΠ,R[J]) ∈ RMI

if and only if there exist random variables (U[J], Q) ∈ P∗ and the following
inequalities hold:∑

k∈Â

Rk > I
(
XÂ; UÂ

∣∣U[J]\Â, Q
)

for all Â ⊆ [J], (5.32)

ν[J] 6 I
(
U[J]; Y

∣∣Q). (5.33)

Proof. (νΠ,R[J]) ∈ RMI follows by applying Corollary 5.8 with Ã = ∅
for A 6= [J] and Ã = [J] for A = [J], taking into account the convexity
of RMI (Remark 9). The converse follows from Theorem 2.29 and
Lemma 5.9.

Remark 10. The achievable region of the multiterminal source cod-
ing problem with logarithmic loss distortion, introduced in [11, Sec-
tion II], can be obtained as a special case of RMI as well. Choose
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J = L = 2 and set Yj = Xj, j ∈ {1, 2}. The inner bound R
(MI)
i is also

tight (up to convexification) due to the results in [11].

5.3 proof of theorem 5 .4

The proof of Theorem 5.4 extends the methods developed in [25]
for the hypothesis testing problem (cf. Section 2.2.2) to a setup with
multiple sources. We begin by extending [25, Lemma 8] and incorpo-
rating a binning strategy.

Lemma 5.12. Let ε > 0 and assume Uk ◦−− Xk ◦−− (X[K]\k, U[K]\k)

for all k ∈ [K], and R[K] ∈ RK+. Then, for sufficiently large n ∈ N we
can obtain an (n,R[K] + ε) code f[K] with Wk := fk(Xk) and decoding
functions g

A,Ã : MA → Un
Ã

for each A, Ã ⊆ [K] with ∅ 6= Ã ⊆ A such
that the following two properties hold.

For every (A,B) ∈ Ω and ∅ 6= Ã ⊆ A as well as ∅ 6= B̃ ⊆ B we have∣∣∣(gA,Ã(MA)× g
B,B̃(MB)

)
∩ Tn[U

Ã
U
B̃
]

∣∣∣ 6 2n(I(UÃ
U
B̃

;X
Ã

X
B̃)+ε

)
.

(5.34)

Furthermore, if (5.6) and (5.7) hold, then

P
{(
g
A,Ã(WA), XA, XB,g

B,B̃(WB)
)
/∈ Tn[U

Ã
XAXBU

B̃
]

}
6 ε. (5.35)

The proof of Lemma 5.12 is provided in Appendix B.3.
Furthermore we will need the following set of random variables.

Definition 5.13. For random variables (A, B, C, D) and δ > 0, define the
set of random variables

Sδ(A, B, C, D) :=
{
Ã, B̃, C̃, D̃ : (Ã, B̃) ∈ T[AB]δ,

(C̃, D̃) ∈ T[CD]δ, (Ã, D̃) ∈ T[AD]δ

}
. (5.36)

Consider (µΩ,R[K]) ∈ Ri and choose U[K] as in Theorem 5.4. Fix
ε > 0 and apply Lemma 5.12 to obtain encoding functions f[K] and
decoding functions g

A,Ã. For any pair (A,B) ∈ Ω, find the nonempty

subsets Ã ⊆ A ⊆ A and B̃ ⊆ B ⊆ B such that (5.6)–(5.8) hold. (The
case Ã = ∅ or B̃ = ∅ can be ignored since due to (5.8) it leads
to µA,B 6 0, which is achieved by any code.) Define the functions
h1 := g

A,Ã ◦ fA and h2 := g
B,B̃ ◦ fB. To analyze Θ(fA; fB), we de-

fine D1 := h1(X
n
A) and partition XnA as XnA =

⋃
u

Ã
∈D1

h−11 (u
Ã
). We

may assume without loss of generality that h−11 (u
Ã
) ⊆ Tn[XA|U

Ã
](uÃ

)

whenever u
Ã
∈ Tn[U

Ã
] as this does not interfere with the proper-

ties (5.34) and (5.35) of the code. Defining D2 accordingly, we set
F := (D1 ×D2) ∩ Tn[U

Ã
U
B̃
]. Let us use the shorthand notation Û1 :=

h1(XA) and Û2 := h2(XB), and define pF := P
{
(Û1, Û2) ∈ F

}
and
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qF := P{(U∗1, U∗2) ∈ F} with U∗1 := h1(X∗A), U∗2 := h2(X∗B), where(X∗A, X∗B) are n i.i.d.
copies of (X∗A, X∗B). (X∗A, X∗B) ∼ pXA

pXB
. We then have

(X∗A, X∗B) are
independent, with

the same marginals
as (XA, XB).

nΘ(fA; fB) > nΘ(h1;h2) = I(h1(XA);h2(XB)) (5.37)

=
∑

u
Ã
∈D1,u

B̃
∈D2

pÛ1Û2

(
u
Ã

,u
B̃

)
log2

pÛ1Û2

(
u
Ã

,u
B̃

)
pÛ1

(
u
Ã

)
pÛ2

(
u
B̃

) (5.38)

=
∑

(u
Ã

,u
B̃
)∈F

pÛ1Û2

(
u
Ã

,u
B̃

)
log2

pÛ1Û2

(
u
Ã

,u
B̃

)
pÛ1

(
u
Ã

)
pÛ2

(
u
B̃

)
+

∑
(u

Ã
,u

B̃
)∈Fc

pÛ1Û2

(
u
Ã

,u
B̃

)
log2

pÛ1Û2

(
u
Ã

,u
B̃

)
pÛ1

(
u
Ã

)
pÛ2

(
u
B̃

) (5.39)

> pF log2
pF
qF

+ (1− pF) log2
1− pF
1− qF

(5.40)

= −H(pF) − pF log2 qF − (1− pF) log2(1− qF) (5.41)

> −1− pF log2 qF (5.42)
(5.35)
> −1− (1− ε) log2 qF. (5.43)

Furthermore, (5.37) follows from Theorem 2.5 and (5.40) is a conse-
quence of Theorem 2.7. For each u

Ã
∈ D1 and u

B̃
∈ D2 define

S(u
Ã

,u
B̃
) := {u

Ã
}× h−11 (u

Ã
)× h−12 (u

B̃
)× {u

B̃
} (5.44)

and

S :=
⋃

(u
Ã

,u
B̃
)∈F

S(u
Ã

,u
B̃
). (5.45)

Now, pick any (û
Ã

, x̂A, x̂B, û
B̃
) ∈ S. Let Û

Ã
, X̂A, X̂B, and Û

B̃
be

the type variables corresponding to û
Ã

, x̂A, x̂B, and û
B̃

, respectively.
From part 1 of Lemma 2.16 we know

pX∗AX∗B(x̂A, x̂B) = 2−n
(

H(X̂AX̂B)+D(X̂AX̂B‖X∗AX∗B)
)

. (5.46)

We use κ(u
Ã

,u
B̃

; Û
Ã

, X̂A, X̂B, Û
B̃
) to denote the number of elements

in S(u
Ã

,u
B̃
) that have type (Û

Ã
, X̂A, X̂B, Û

B̃
). Then, by applying

part 2 of Lemma 2.16

κ(u
Ã

,u
B̃

; Û
Ã

, X̂A, X̂B, Û
B̃
) 6 2nH(X̂AX̂B|Û

Ã
Û
B̃
). (5.47)
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Letting κ(Û
Ã

, X̂A, X̂B, Û
B̃
) be the number of elements of S with type

(Û
Ã

, X̂A, X̂B, Û
B̃
), we have

κ(Û
Ã

, X̂A, X̂B, Û
B̃
) =

∑
(u

Ã
,u

B̃
)∈F

κ(u
Ã

,u
B̃

; Û
Ã

, X̂A, X̂B, Û
B̃
) (5.48)

(5.47)
6

∑
(u

Ã
,u

B̃
)∈F

2nH(X̂AX̂B|Û
Ã

Û
B̃
) (5.49)

(5.34)
6 2n

(
I(UÃ

U
B̃

;XAXB)+H(X̂AX̂B|Û
Ã

Û
B̃
)+ε
)

. (5.50)

Thus,

qF
(5.46)
=

∑
Û
Ã

,X̂A,X̂B,Û
B̃

κ(Û
Ã

, X̂A, X̂B, Û
B̃
)

× 2−n
(

H(X̂AX̂B)+D(X̂AX̂B‖X∗AX∗B)
)

(5.51)
(5.50)
6

∑
Û
Ã

,X̂A,X̂B,Û
B̃

2−n
(
k(Û

Ã
,X̂A,X̂B,Û

B̃
)−ε
)

, (5.52)

where the sum is over all types that occur in S and

k(Û
Ã

, X̂A, X̂B, Û
B̃
) := I(Û

Ã
Û
B̃

; X̂AX̂B) − I
(
U
Ã

U
B̃

; XAXB

)
+ D(X̂AX̂B‖X∗AX∗B). (5.53)

Using a type counting argument (Lemma 2.15) we can further bound

qF
(5.52)
6 (n+ 1)|UÃ

||XA||XB||U
B̃
|

× max
Û
Ã

,X̂A,X̂B,Û
B̃

2−n
(
k(Û

Ã
,X̂A,X̂B,Û

B̃
)−ε
)

, (5.54)

where the maximum is over all types occurring in S. For any type
(Û

Ã
, X̂A, X̂B, Û

B̃
) in S, we have by construction (Û

Ã
, X̂A, X̂B, Û

B̃
) ∈

Sδ(UÃ
, XA, XB, U

B̃
) (following the δ-convention, Remark 1) and we

thus conclude

qF
(5.54)
6 (n+ 1)|U[K]||X[K]|

× max
(Ũ

Ã
,X̃A,X̃B,Ũ

B̃
)∈Sδ(UÃ

,XA,XB,U
B̃
)
2−n

(
k(Ũ

Ã
,X̃A,X̃B,Ũ

B̃
)−ε
)

. (5.55)
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Combining (5.43) and (5.55) we have shown that for n large enough

Θ(fA; fB)
(5.43)
> −

1

n
−
1− ε

n
log2 qF (5.56)

(5.55)
> −2ε+ (1− ε) ·mink(Ũ

Ã
, X̃A, X̃B, Ũ

B̃
) (5.57)

> mink(Ũ
Ã

, X̃A, X̃B, Ũ
B̃
) −
(
2+ I(XA; XB)

)
ε, (5.58)

where the minimum is over all random variables (Ũ
Ã

, X̃A, X̃B, Ũ
B̃
)

in Sδ(UÃ
, XA, XB, U

B̃
). To justify the inequality (5.58), observe that

mink(Ũ
Ã

, X̃A, X̃B, Ũ
B̃
) 6 I(XA; XB) by setting (Û

Ã
, X̂A, X̂B, Û

B̃
) =

(U
Ã

, XA, XB, U
B̃
) in (5.53). The expression k(Ũ

Ã
, X̃A, X̃B, Ũ

B̃
) is a con-

tinuous function of pŨ
Ã

,X̃A,X̃B,Ũ
B̃

. By letting n→∞,We have δ→ 0 as
n→∞ by the

δ-convention (cf.
Remark 1). Θ(fA; fB) > mink(Ũ

Ã
, X̃A, X̃B, Ũ

B̃
) −Cε (5.59)

for some fixed constant C, where the minimum is over all random
variables (Ũ

Ã
, X̃A, X̃B, Ũ

B̃
) ∈ S0(UÃ

, XA, XB, U
B̃
). Observe that for

(Ũ
Ã

, X̃A, X̃B, Ũ
B̃
) ∈ S0(UÃ

, XA, XB, U
B̃
) we have

k(Ũ
Ã

, X̃A, X̃B, Ũ
B̃
) = I(Ũ

Ã
X̃A; X̃BŨ

B̃
) (5.60)

> I(Ũ
Ã

; Ũ
B̃
) = I(U

Ã
; U

B̃
). (5.61)

Combining (5.59) and (5.61), we have

Θ(fA; fB) > I
(
U
Ã

; U
B̃

)
−Cε

(5.8)
> µA,B −Cε. (5.62)

We hence obtain (µΩ − Cε,R[K] + ε) ∈ R; since ε was arbitrary, this
completes the proof.

5.4 the multiple description ceo problem

We continue the discussion of the CEO problem of Section 5.2 and
assume L = 1 as well as Xj ◦−− Y := Y1 ◦−− X[J]\j for all j ∈ [J].
To simplify notation we will again use νA := νA,1. Extending the
setup discussed in Section 5.2, we will allow νj > 0 for any j ∈ [J].
Loosely speaking, this requires a multiple description code for the
CEO problem, enabling the CEO to obtain valuable information from
the message of the jth agent alone. Surprisingly, this extension also
permits a single-letter characterization. In particular, for the case J =
2, this allows us to give a full single-letter characterization of the
achievable region, which will be explicitly stated in Corollary 5.16.
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Definition 5.14. For a total order < on [J] and a set E ⊆ [J], let the region Notation regarding
total orders is given
in Section 2.1.3.

R
(<,E)
MI be the set of points (νΠ,R[J]) such that there exist random variables

(U[J],∅) ∈ P∗ with

Rj > I
(
Uj; Xj

∣∣U=j
)
, j ∈ [J], (5.63)

Rj > I
(
Uj; Xj

)
, j ∈ E, (5.64)

νj 6 I
(
Uj; Y

∣∣U=j
)
, j /∈ E, (5.65)

νj 6 I
(
Uj; Y

)
, j ∈ E, (5.66)

ν[J] 6 I
(
U[J]; Y

)
, (5.67)

νA 6 0, 1 < |A| < J. (5.68)

Remark 11. The purpose of the order < is to determine the order of the
messages for successive decoding. Equivalently, Definition 5.14 could
be rephrased using a permutation of [J] in place of a total order.

We are now able to state the single-letter characterization of RMI

with the additional condition that (5.68) holds.

Theorem 5.15. We have the equality {(νΠ,R[J]) ∈ RMI : (5.68) holds} =

conv
(⋃

<,ER
(<,E)
MI

)
, where the union is over all total orders < on [J] and

all sets E ⊆ [J].

The proof of Theorem 5.15 is provided at the end of this section. In
particular, Theorem 5.15 provides a single-letter characterization of
RMI for the case of J = 2 agents. We state this special case separately
in the following corollary to showcase some interesting features of
this single-letter region.

Corollary 5.16. For J = 2, we have RMI = conv
(
R
(1)
MI ∪R

(2)
MI ∪R

(3)
MI

)
,

where (νΠ,R[J]) ∈ R
(i)
MI if, for some (U[J],∅) ∈ P∗, the following inequali-

ties are satisfied

R
(1)
MI : R

(2)
MI : R

(3)
MI :

ν1 6 I(Y; U1) ν1 6 I(Y; U1|U2) ν1 6 I(Y; U1)

ν2 6 I(Y; U2|U1) ν2 6 I(Y; U2) ν2 6 I(Y; U2)

ν{1,2} 6 I(Y; U1U2) ν{1,2} 6 I(Y; U1U2) ν{1,2} 6 I(Y; U1U2)

R1 > I(U1; X1) R1 > I(U1; X1|U2) R1 > I(U1; X1)

R2 > I(U2; X2|U1) R2 > I(U2; X2) R2 > I(U2; X2).

Proof. Assuming 1 < 2, we obtain R
(<,E)
MI = R

(2)
MI if 1 /∈ E and oth-

erwise R
(<,E)
MI = R

(3)
MI . On the other hand, if 2 < 1, we obtain

R
(<,E)
MI = R

(1)
MI if 2 /∈ E and otherwise also R

(<,E)
MI = R

(3)
MI .

Remark 12. Note that the total available rate of encoder 2 is R2 =

I(X2; U2|U1) to achieve a point in R
(1)
MI . Interestingly, this rate is in

general less than the rate required to ensure successful typicality de-
coding of U2. However, ν2 = I(Y; U2|U1) can still be achieved.
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Remark 13. On the other hand, fixing the random variables U1, U2 in
the definition of R(i)

MI shows another interesting feature of this region.
The achievable values for ν1 and ν2 vary across i ∈ {1, 2, 3} and hence
do not only depend on the chosen random variables U1 and U2, but
also on the specific rates R1 and R2.

It is worth mentioning that by setting ν1 = ν2 = 0 the region RMI

reduces to the rate region in Lemma 5.11.
The following proposition shows that R(<,E)

MI is computable, at least
in principle. The given cardinality bound is not optimal, but it im-

plies R
(<,E)
MI = R

(<,E)
MI . The proof of Proposition 5.17 is provided in

Appendix B.4.

Proposition 5.17. The region R
(<,E)
MI remains unchanged if the cardinality

bound |Uj| 6 |Xj|+ 4J is imposed for every j ∈ [J].

The following two theorems provide an inner and an outer bound
for RMI. In order to show that Theorem 5.15 holds, we subsequently
prove that these bounds are indeed tight, assuming that (5.68) holds.

Theorem 5.18. We have R(<,E)
MI ⊆ RMI for any E ⊆ [J] and any total order

< on [J].

Theorem 5.19. If (νΠ,R[J]) ∈ RMI then∑
j∈B

Rj − νA > I(XB; UB|YQ) − I
(
Y; UA\B

∣∣Q) (5.69)

for all A,B ⊆ [J] and some random variables (U[J], Q) ∈ P∗.

The proof of Theorems 5.18 and 5.19 are given in Appendices B.5
and B.6, respectively. We will, however, only require the following
simple corollary of Theorem 5.19.

Corollary 5.20. For any (νΠ,R[J]) ∈ RMI there are random variables
(U[J], Q) ∈ P∗ with

Rj > 0, for all j ∈ [J], (5.70)∑
j∈A

Rj − ν[J] > I(XA; UA|YQ)

− I
(
Y; U[J]\A

∣∣Q), for all A ⊆ [J], (5.71)

Rj − νj > I
(
Xj; Uj

∣∣YQ
)
, for all j ∈ [J], (5.72)

νj 6 I
(
Y; Uj

∣∣Q), for all j ∈ [J]. (5.73)

Proof of Theorem 5.15. We will make use of some rather technical re-
sults on convex polyhedra, derived in Section 2.6.

Assume (νΠ,R[J]) ∈ RMI. We can then find (U[J], Q) ∈ P∗ such
that (5.70)–(5.73) hold. We define ν̃Π := −νΠ to simplify notation. It
is straightforward to check that the inequalities (5.70)–(5.73) define
a sequence of closed convex polyhedra H(k), k ∈ [0 : J] in the vari-
ables (R[J], ν̃Π) that satisfy assumptions 1 and 2 of Lemma 2.58. H(0)
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is defined by (5.70) and (5.71) alone, and for k ∈ [J] the polyhedron
H(k) is given in the K+k variables (R[J], ν̃[J], ν̃1, ν̃2, . . . , ν̃k) by adding
constraints (5.72) and (5.73) for each j ∈ [k]. The set H(0) is a super-
modular polyhedron (Definition 2.48) in the K variables (R[J], ν̃[J]) on
([K], 2[K]) with rank function

f(A) =

0, K /∈ A,

I
(
XA\K; UA\K

∣∣YQ
)
− I
(
Y; U[J]\A

∣∣Q), K ∈ A,
(5.74)

where supermodularity follows via standard information-theoretic ar-
guments. By Theorem 2.51, every extreme point of H(0) is associated
with a total order < on [K]. Such an extreme point is given by

R
(<)
j = 0 for j < K, (5.75)

R
(<)
j = I

(
Uj; Xj

∣∣U=jQ
)

for j = K, (5.76)

ν
(<)
[J]

= I(Y; U=K|Q) − I(Y; U<K|YQ). (5.77)

Assumption 3 of Lemma 2.58 is now verified by

R
(<)
j 6 I

(
Xj; Uj

∣∣YQ
)
+ I
(
Y; Uj

∣∣Q) = I
(
Xj; Uj

∣∣Q). (5.78)

By applying Lemma 2.58 we find that every extreme point of H(J) is
given by a subset E ⊆ [J] and an order < of [K] as

R
(<,E)
j = I

(
Xj; Uj

∣∣Q), j ∈ E, (5.79)

R
(<,E)
j = 0, j /∈ E and j < K, (5.80)

R
(<,E)
j = I

(
Uj; Xj

∣∣U=jQ
)
, j /∈ E and j = K, (5.81)

ν
(<,E)
j = I

(
Uj; Y

∣∣Q), j ∈ E, (5.82)

ν
(<,E)
j = −I

(
Uj; Xj

∣∣YQ
)
, j /∈ E and j < K, (5.83)

ν
(<,E)
j = I

(
Uj; Y

∣∣U=jQ
)
, j /∈ E and j = K. (5.84)

ν
(<,E)
[J]

= I(Y; U=K|Q) − I(Y; U<K|YQ), (5.85)

For each q ∈ Q with P{Q = q} > 0 let the point (ν
(<,E,q)
Π ,R(<,E,q)

[J]
)

be defined by (5.79)–(5.85), but given {Q = q}. By substituting Uj →
∅ if j /∈ E and j < K, we see that (ν

(<,E,q)
Ω ,R(<,E,q)

[J]
) ∈ R

(<,E)
MI and
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consequently (ν
(<,E)
Π ,R(<,E)

[J]
) ∈ conv

(
R
(<,E)
MI

)
. Defining the orthant

O :=
{
(νΠ,R[J]) : νΠ 6 0,R[J] > 0

}
, this implies

(ν[K],R[J]) ∈ conv

⋃
<,E

conv
(
R
(<,E)
MI

)+O (5.86)

= conv

⋃
<,E

R
(<,E)
MI

+ conv(O) (5.87)

= conv

⋃
<,E

R
(<,E)
MI +O

 (5.88)

= conv

⋃
<,E

R
(<,E)
MI

, (5.89)

where (5.88) follows from part 8 of Lemma 2.37 and in (5.89) we used
that R(<,E)

MI + O = R
(<,E)
MI by definition. Together with Theorem 5.18

and the convexity of RMI (Remark 9) we obtain

RMI ⊆ conv

⋃
<,E

R
(<,E)
MI

 ⊆ RMI. (5.90)

It remains to show that conv
(⋃

<,ER
(<,E)
MI

)
is closed. Using Propo-

sition 5.17, we can write R
(<,E)
MI = F(<,E)(P′∗) +O, where

P′∗ :=
{

pYX[J]U[J]
: (U[J],∅) ∈ P∗, |Uj| = |Xj|+ 4

J, j ∈ [J]
}

(5.91)

is a compact subset of the probability simplex and F(<,E) is a contin-
uous function, given by the definition of R(<,E)

MI , (5.63)–(5.68). We can
thus write

conv

⋃
<,E

R
(<,E)
MI

 = conv

⋃
<,E

F(<,E)(P′∗) +O

, (5.92)

which is closed by Corollary 2.38.

5.5 conclusion

We extended the multi-clustering problem to the case of an arbi-
trary number of sources. As in the case of two sources, we provided
outer and inner bounds for the resulting achievable region. However,
these bounds cannot be tight since the famous Körner-Marton prob-
lem constitutes a counterexample. For an analogue of the well-known
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CEO problem, we showed that our bounds are tight in a special case,
leveraging existing results from multiterminal lossy source coding.

Furthermore we considered a multiple description CEO problem
under a suitable Markov constraint, which surprisingly also permits
a single-letter characterization of the achievable region. In deriving
this single-letter characterization we made use of submodularity and
polymatroid theory. The resulting region has the remarkable feature
that it allows to exploit rate that is in general insufficient to guarantee
successful typicality decoding of the corresponding description.





6
D I S C U S S I O N A N D O U T L O O K

We presented a thorough study of two information-theoretic clus-
tering problems, inspired by biclustering algorithms.

A novel multi-terminal source coding problem termed the multi-
clustering problem was introduced. It appears to be fundamen-
tally different from “classical” distributed source coding prob-
lems, where the encoders usually aim at reducing redundancy
as much as possible. In the multi-clustering problem, however,
the encoders strive to maximize this redundant information.

In the case of two sources, the multi-clustering problem turned
out to be equivalent to two other problems in the information
theory literature. Even for two sources, the multi-clustering
problem is of formidable mathematical complexity and an exact
characterization of the achievable region remains elusive. Al-
ready for one of the simplest cases, a doubly symmetric binary
source, we were unable to provide a single-letter characteriza-
tion of the achievable region. Even more so, we found strong
evidence that our inner and outer bounds are loose. In doing
so, we were able to disprove [66, Conjecture 1].

We extended the multi-clustering problem, as well as the outer
and inner bounds for its achievable region, to an arbitrary num-
ber of sources. Using the Körner-Marton binary sum problem
[34] as a counterexample, we showed that these bounds can-
not be tight. However, under a suitable Markov constraint,
tight bounds are known for the CEO problem with logarith-
mic loss distortion [11], which constitutes a special case of the
multi-clustering problem. We extended the CEO problem by re-
quiring a multiple description code and were able to provide a
single-letter characterization of the resulting achievable region
using the same Markov constraint. This characterization also
had some remarkable technical properties.

We furthermore provided a proof for the two-function case of
the Kumar-Courtade conjecture [10, Section IV]. Building upon
previous results, we used Fourier analysis to reduce the conjec-
ture to an elementary inequality, which we subsequently estab-
lished. Furthermore we were able to show that the dictator func-
tions are essentially the unique maximizers, achieving equality.
Although the strategy employed heavily builds upon the joint
properties of two Boolean functions, we hope that the proof can
provide some insight into the general conjecture.

75
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There are several questions this thesis left unanswered. In the con-
text of the multi-clustering problem with a doubly symmetric binary
source, Conjecture 3.14 claims that there is indeed a gap between the
inner bound S′i and the outer bound Ro. This would follow from the
stronger statement in Conjecture 3.15, which asserts that the inner
bound S′i is equal to the region Sb. However, both statements remain
open. Unfortunately, we were only recently made aware of the coun-
terexample [8] provided in Proposition 3.13 and therefore unable to
investigate this problem much further. In Remarks 12 and 13 we
point out some interesting technical properties of the region RMI. In
particular, it appears that it is possible to exploit rate that is in gen-
eral insufficient to assure correct typicality decoding. However, it
remains unclear whether these properties have a fundamental tech-
nical reason or are merely an artifact of our formulation. Evaluating
RMI for a specific source distribution could improve our understand-
ing of this region. Further investigation is also necessary to explore
whether a single-letter characterization as in Theorem 5.15 can be
retained for RMI when allowing νA > 0 for arbitrary A ⊆ [J], i. e.,
when lifting the constraint (5.68). Finally, a resolution for the origi-
nal Kumar-Courtade conjecture on the mutual information between
Boolean functions (Conjecture 4.1) would be appreciated.

It could also be worthwhile to apply the strategy used for deriving
the cardinality bounds in Propositions 3.8 and 3.11 to other problems
in information theory. This could aid the numerical evaluation of
achievable regions.
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A
P R O O F S F R O M C H A P T E R 3

a.1 proof of theorem 3 .7

For (µ,R1,R2) ∈ R, let (f,g) be an (n,R1,R2) code for (X, Z) with
Θ(f;g) > µ. Defining the random variables Ui :=

(
f(X), Xi−1

)
and Θ(f;g) is introduced

in Definition 3.1.

Xi = (X1, . . . , Xi).

Vi :=
(
g(Z), Zi−1

)
for i ∈ [n], we have

nR1 > H
(
f(X)

)
= I
(
f(X); X

)
(A.1)

=

n∑
i=1

I
(
Xi; f(X)

∣∣Xi−1) (A.2)

=

n∑
i=1

I(Xi; Ui), (A.3)

where (A.3) holds because X are i.i.d. and we used part 3 of Lemma 2.4
in (A.2). Analogously, we obtain

nR2 >
n∑
i=1

I(Zi; Vi). (A.4)

From Lemma 2.13 and the Markov chain f(X) ◦−− X ◦−− Z ◦−− g(Z),
we obtain

nµ 6 I
(
f(X);g(Z)

)
(A.5)

(2.23)
= I

(
f(X); X

)
+ I
(
g(Z); Z

)
− I
(
f(X)g(Z); XZ

)
(A.6)

=

n∑
i=1

[
I(Ui; Xi) + I(Vi; Zi) − I(UiVi; XiZi)

]
. (A.7)

Now a standard time-sharing argument (see, e. g., [16, Section 4.5.2])
shows R ⊆ Ro. Lemma 2.13 provides Ro ⊆ R′o.

a.2 proof of proposition 3 .8

Most steps in the proof apply to both Ro and R′o. We thus state the
proof for Ro and point out the modifications required for R′o where
appropriate.

Define the set of p.m.f.s (with finite, but arbitrarily large support)

Q := {pUVXZ : U ◦−− X ◦−− Z and X ◦−− Z ◦−− V} (A.8)

79
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and the compact set of p.m.f.s with fixed alphabet size

Q(a,b) := {pUVXZ ∈ Q : |U| = a, |V| = b}. (A.9)

Define the continuous vector valued function F := (F1, F2, F3) as

F1(pUVXZ) := I(U; X) + I(V; Z) − I(UV; XZ), (A.10)

F2(pUVXZ) := I(U; X), (A.11)

F3(pUVXZ) := I(V; Z). (A.12)

In the proof of R′o = conv(S′o) let F1(pUVXZ) := min
{

I(U; Z), I(V; X)
}

.
We can now write Ro = F(Q) + O and So = F

(
Q(|X|, |Z|)

)
+ O where

O := (R− ×R+ ×R+). Noting that Ro is a convex set, we define the
function ψ(λ) := infx∈Ro λ

Tx and, using part 6 of Lemma 2.37, weWe allow
ψ(λ) = −∞. obtain

conv(Ro) = Ro =
⋂
λ∈R3

{
x ∈ R3 : λTx > ψ(λ)

}
. (A.13)

From the definition of Ro, we have ψ(λ) = −∞ if λ /∈ O, and ψ(λ) =
infp∈Q λ

TF(p) everywhere else. Thus,

Ro =
⋂
λ∈O

{
x ∈ R3 : λTx > ψ(λ)

}
. (A.14)

Using the same argument, one can show

conv(So) =
⋂
λ∈O

{
x ∈ R3 : λTx > ψ̃(λ)

}
, with (A.15)

ψ̃(λ) = min
p∈Q(|X|,|Z|)

λTF(p). (A.16)

The minimum in (A.16) is justified by compactness. We next show
that ψ(λ) = ψ̃(λ) for any λ ∈ O. For any δ > 0, we can find random
variables (Ũ, X, Z, Ṽ) ∼ p̃ ∈ Q with λTF(p̃) 6 ψ(λ)+δ. By compactness
of Q(a,b) and continuity of F, there is p ∈ Q(|Ũ|, |Ṽ|) with

λTF(p) = min
p̃∈Q(|Ũ|,|Ṽ|)

λTF(p̃) 6 λTF(p̃) 6 ψ(λ) + δ. (A.17)

We now show that there exists p̂ ∈ Q(|X|, |Z|) with

λTF(p̂) = λTF(p). (A.18)

As a consequence of the inequalities F1 6 F2 and F1 6 F3 we have
λTF(p) = 0 if λ1+max{λ2, λ3} > 0. Thus, we only need to show (A.18)
for λ ∈ O with λ1 + λ2 < 0 and λ1 + λ3 < 0. To this end we use the
perturbation method [22], [31] and perturb p, obtaining the candidate

(Û, X, Z, V̂) ∼ p̂(u, x, z, v) = p(u, x, z, v)
(
1+ εφ(u)

)
. (A.19)
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We require

1+ εφ(u) > 0, for every u ∈ U, (A.20)

E[φ(U)] = 0, (A.21)

E[φ(U)|X = x, Z = z] = 0, if p(x, z) > 0. (A.22)

The conditions (A.20) and (A.21) ensure that p̂ is a valid p.m.f. and
(A.22) implies p̂ ∈ Q. Observe that for any φ, there is an ε0 > 0

such that (A.20) is satisfied for ε ∈ [−ε0, ε0]. Furthermore, (A.22) is
equivalent to

E[φ(U)|X = x] = 0, for every x ∈ X (A.23)

because of the Markov chain U ◦−− X ◦−− Z. Note also that (A.23)
already implies (A.21). If |U| > |X|+ 1 there is a non-trivial solution
to (A.23), which means there exists φ 6≡ 0 such that (A.20)–(A.22) are
satisfied. We have

λTF(p̂) = λ1
[
I(X; U) − I(UV; XZ) + H(Z) + εHφ(U) − εHφ(UX)

− εHφ(UV) + εHφ(UXZV) + H(V̂) − H(ZV̂)
]

+ λ2[I(X; U) + εHφ(U) − εHφ(UX)]

+ λ3[H(Z) + H(V̂) − H(ZV̂)]. (A.24)

Here, we used the shorthand

Hφ(UX) := −
∑
u,x

p(u, x)φ(u) log2 p(u, x) (A.25)

and analogous for other combinations of random variables. By (A.17),
we have ∂2

∂ε2
λTF(p̂)

∣∣
ε=0

> 0.
Observe that

∂

∂ε

(
H
(
V̂
)
− H

(
ZV̂
))

=
∂

∂ε

∑
z,v

p̂(z, v) log2
p̂(z, v)
p̂(v)

(A.26)

=
1

log 2

∑
z,v

∂p̂(z, v)
∂ε

log
p̂(z, v)
p̂(v)

+ p̂(z, v)
p̂(v)

p̂(z, v)
p̂(v)∂p̂(z,v)

∂ε − p̂(z, v)∂p̂(v)
∂ε

p̂(v)2
(A.27)

=
1

log 2

∑
z,v

∂p̂(z, v)
∂ε

log
p̂(z, v)
p̂(v)

+
∂p̂(z, v)
∂ε

−
p̂(z, v)∂p̂(v)

∂ε

p̂(v)

(A.28)
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and consequently

∂2

∂ε2
λTF(p̂) = (λ1 + λ3)

∂2

∂ε2
(H
(
V̂
)
− H

(
ZV̂
)
) (A.29)

=
λ1 + λ3

log 2

∑
z,v

∂p̂(z, v)
∂ε

p̂(v)
p̂(z, v)

p̂(v)∂p̂(z,v)
∂ε − p̂(z, v)∂p̂(v)

∂ε

p̂(v)2

−
∂p̂(v)
∂ε

∂p̂(z,v)
∂ε p̂(v) − p̂(z, v)∂p̂(v)

∂ε

p̂(v)2
(A.30)

=
λ1 + λ3

log 2

∑
z,v

(
∂p̂(z, v)
∂ε

)2
1

p̂(z, v)

− 2
∂p̂(z, v)
∂ε

∂p̂(v)
∂ε

1

p̂(v)
+

(
∂p̂(v)
∂ε

)2 p̂(z, v)

p̂(v)2
. (A.31)

Here we already used that ∂
2p̂(v)
∂ε2

≡ ∂2p̂(z,v)
∂ε2

≡ 0. It is straightforward
to calculate

∂p̂(v)
∂ε

= p(v)E[φ(U)|V = v], (A.32)

∂p̂(z, v)
∂ε

= p(z, v)E[φ(U)|V = v, Z = z], (A.33)

p̂(z, v)|ε=0 = p(z, v), (A.34)

p̂(v)|ε=0 = p(v), (A.35)

and thus, taking into account that λ1 + λ3 < 0, we have

0 >
∑
z,v

p(z, v)
(
E[φ(U)|V = v, Z = z] −E[φ(U)|V = v]

)2, (A.36)

which implies for any (z, v) ∈ Z×V with p(z, v) > 0 that∑
u

p(u|z, v)φ(u) =
∑
u

p(u|v)φ(u). (A.37)

We conclude that

H
(
V̂
)
− H

(
ZV̂
)
=
∑
z,v

p̂(z, v) log2
p̂(z, v)
p̂(v)

(A.38)

=
∑
z,v,u

p(u, z, v)
(
1+ εφ(u)

)
log2

p̂(z, v)
p̂(v)

(A.39)

=
∑
z,v,u

p(u, z, v)
(
1+ εφ(u)

)
log2

p(z, v)
p(v)

(A.40)

= H(V) − H(ZV) + εHφ(V) − εHφ(ZV), (A.41)
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where we used

Hφ(V) := −
∑
u,v

p(u, v)φ(u) log2 p(v) (A.42)

Hφ(ZV) := −
∑
u,z,v

p(u, z, v)φ(u) log2 p(z, v). (A.43)

and the equality in (A.40) follows from (A.37) by

p̂(z, v)
p̂(v)

=

∑
û p(û, z, v)

(
1+ εφ(û)

)∑
û p(û, v)

(
1+ εφ(û)

) (A.44)

=
p(z, v)

∑
û p(û|z, v)

(
1+ εφ(û)

)
p(v)

∑
û p(û|v)

(
1+ εφ(û)

) (A.45)

=
p(z, v)

(
1+ ε

∑
û p(û|z, v)φ(û)

)
p(v)

(
1+ ε

∑
û p(û|v)φ(û)

) (A.46)

(A.37)
=

p(z, v)
(
1+ ε

∑
û p(û|v)φ(û)

)
p(v)

(
1+ ε

∑
û p(û|v)φ(û)

) (A.47)

=
p(z, v)
p(v)

. (A.48)

Substituting (A.41) in (A.24) shows that λTF(p̂) is linear in ε, and
by the optimality of p it must therefore be constant. We may now
choose ε maximal, i. e., such that there is at least one u ∈ U with
p(u)(1+ εφ(u)) = 0. This effectively reduces the cardinality of Û by
at least one and may be repeated until |Û| = |X| (as then φ ≡ 0). The
same process can be carried out for V and yields p̂ ∈ Q(|X|, |Z|) such
that (A.18) holds.

In the proof of R′o = conv(S′o), we show (A.18) by applying the
support lemma [16, Appendix C] with |X|− 1 test functions fx(pX̂) :=

pX̂(x) (x ∈ X) and with the function

f(pX̂) := λ1min
{

I(V; X), H(Z) − H(Ẑ)
}

+ λ2
(
H(X) − H(X̂)

)
+ λ3I(Z; V), (A.49)

where (Ẑ, X̂) ∼ pX̂pZ|X. Consequently, there exists a random variable
Û with (Û, X, Z, V) ∼ p̂ ∈ Q(|X|, |Ṽ|) and λTF(p̂) = λTF(p). By applying
the same argument to V, we obtain p̂ ∈ Q(|X|, |Z|) such that (A.18)
holds.

By combining (A.17) and (A.18) we obtain

λTF(p̂) = λTF(p) 6 ψ(λ) + δ. (A.50)
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As δ > 0 was arbitrary and Q(|X|, |Z|) is compact, we proved ψ(λ) =
ψ̃(λ), which implies Ro = conv(So) using (A.14) and (A.16). We find

Ro = conv(So) (A.51)

= conv
(
F
(
Q(|X|, |Z|)

)
+O

)
(A.52)

= conv
(
F
(
Q(|X|, |Z|)

))
+O (A.53)

= conv(So) (A.54)

⊆ F(Q) +O (A.55)

= Ro, (A.56)

where (A.53) follows from Corollary 2.38. The relation (A.55) is a
consequence of Q(|X|, |Z|) ⊆ Q and the convexity of F(Q).

a.3 proof of proposition 3 .11

We only need to show conv(Si) = conv(Ri) as the cardinality bound
|Q| 6 3 follows directly from Theorem 2.39 because conv(Ri) is the
convex hull of a connected set in R3 and hence connected by part 1

of Lemma 2.37. We will only show the cardinality bound |U| 6 |X| as
the corresponding bound for |V| follows analogously. Note that the
weaker bounds |U| 6 |X|+ 1 and |V| 6 |Z|+ 1 can be shown directly
using the convex cover method (cf. [16, Appendix C], [2], [71]), i. e., by
applying Theorem 2.39. Define the continuous vector-valued function

F(pUXZV) :=
(
I(U; V), I(X; U), I(Z; V)

)
(A.57)

and the compact, connected sets of p.m.f.s

[0 :n] =

{0, 1, 2, . . . ,n} and
[n] = {1, 2, . . . ,n}.

Q :=
{

pUXZV :U ◦−−X ◦−−Z ◦−−V,U=
[
0 : |X|

]
,V=

[
0 : |Z|

]}
, (A.58)

Q′ :=
{

pUXZV ∈ Q : U =
[
|X|
]}

. (A.59)

To complete the proof of the proposition, it suffices to show

conv
(
F(Q)

)
⊆ conv

(
F(Q′)

)
, (A.60)

since we then have

conv(Ri) = conv
(
F(Q) +O

)
(A.61)

= conv
(
F(Q)

)
+O (A.62)

(A.60)
⊆ conv

(
F(Q′)

)
+O (A.63)

= conv
(
F(Q′) +O

)
(A.64)

= conv(Si), (A.65)
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where (A.62) and (A.64) follow from Corollary 2.38 and we used
O := (R−×R+×R+). The region F(Q) ⊆ R3 is the continuous image
of a compact set and hence compact by part 2 of Lemma 2.37. There-
fore, its convex hull conv

(
F(Q)

)
is compact by part 5 of Lemma 2.37

and can be represented as an intersection of halfspaces using part 6

of Lemma 2.37: For λ = (λ1, λ2, λ3) ∈ R3 we define the function
ψ(λ) := minx∈F(Q) λ

Tx and have

conv
(
F(Q)

)
=
⋂
λ∈R3

{
x ∈ R3 : λTx > ψ(λ)

}
. (A.66)

With the same reasoning we obtain

conv
(
F(Q′)

)
=
⋂
λ∈R3

{
x ∈ R3 : λTx > ψ̃(λ)

}
, (A.67)

where ψ̃(λ) := minx∈F(Q′) λ
Tx. We next show ψ̃(λ) 6 ψ(λ) which

already implies (A.60) due to (A.66) and (A.67).
Let X′ := X \ {x} where x ∈ X is arbitrary. Define the test func-

tions t = (tx)x∈X′ with tx(pX̂) := pX̂(x). Choose any λ ∈ R3 and fix
(U, X, Z, V) ∼ p ∈ Q that achieve λTF(p) = ψ(λ). Define the continu-
ous function

f(pX̂) := λ1
(
H(V) − H(V̂)

)
+ λ2

(
H(X) − H(X̂)

)
+ λ3I(Z; V) (A.68)

where (V̂, Ẑ, X̂) ∼ pV|ZpZ|XpX̂. The point
(
pX(x)x∈X′ ,ψ(λ)

)
lies in

the convex hull of (t, f)
(
Q
)

which is compact and connected due to
parts 1 and 2 of Lemma 2.37. Theorem 2.39 hence implies that |X|

points suffice, i. e., there exists a random variable Ũ with |Ũ| = |X|

(i. e., pŨXZV ∈ Q′) such that EŨ

[
f
(
pX|Ũ( · |Ũ)

)]
= λTF(pŨXZV) = ψ(λ).

This shows ψ̃(λ) 6 ψ(λ).
By applying the same reasoning to V, one can show that |V| = |Z|

also suffices.

a.4 proof of proposition 3 .13

With Ũ = X⊕ N1 and Ṽ = Z⊕ N2, where N1, N2 ∼ B(α) are inde-
pendent of (X, Z) and of each other, it follows that (µ,R,R) :=

(
1− H(p) is the binary

entropy function
and a ∗ b denotes
binary convolution.

H(α ∗ p), 1− H(α), 1− H(α)
)
∈ R′o for α ∈ (0, 12). Assume (µ,R,R) ∈

S′i and choose U, V, and Q according to Proposition 3.11. We then
have

H(X|UQ) > H(α), (A.69)

H(Z|VQ) > H(α), (A.70)

I(U; V|Q) > 1− H(α ∗ p). (A.71)
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Using Mrs. Gerber’s Lemma, Theorem 2.10, we obtain

H−1(t) is the
inverse of the binary

entropy function
(cf. Definition 2.3).

H(X|VQ) > H
(
H−1

(
H(Z|VQ)

)
∗ p
) (A.70)

> H(α ∗ p). (A.72)

Thus, I(X; V|Q) 6 1− H(α ∗ p) and furthermore I(X; V|Q) > I(U; V|Q)

due to U ◦−− XQ ◦−− V. These two inequalities in combination with
(A.71) imply I(X; V|Q) = I(U; V|Q), which amounts to X ◦−− UQ ◦−− V.
We can therefore write the joint p.m.f. of (U, X, V, Q) in two ways, as

pUXVQ(u, x, v,q)

= pX(x)pQ(q)pU|XQ(u|x,q)pV|XQ(v|x,q) (A.73)

= pX(x)pQ(q)pU|XQ(u|x,q)pV|UQ(v|u,q). (A.74)

Assume without loss of generality that pQ(q) > 0 for all q ∈ Q. If
pU|XQ(u|x,q) > 0, then (A.74) necessitates

pV|UQ(v|u,q) = pV|XQ(v|x,q) (A.75)

for v ∈ {0, 1}. Next, we partition Q into three disjoint subsets

Q1 :=
{
q ∈ Q : P{U = X|Q = q} ∈ {0, 1}

}
, (A.76)

Q2 :=
{
q ∈ Q : H(U|Q = q) = 0

}
, (A.77)

Q3 :=
{
q ∈ Q : H(U|X, Q = q) 6= 0

}
. (A.78)

For q ∈ Q3 there is some x ∈ X such that for both u ∈ {0, 1} we have
pU|XQ(u|x,q) > 0. We apply (A.75) twice and obtain

pV|UQ(v|0,q) = pV|XQ(v|x,q) = pV|UQ(v|1,q), (A.79)

i. e., I(U; V|Q = q) = 0, which also holds for q ∈ Q2. We can thus
write

1− H(α ∗ p)
(A.71)
6 I(U; V|Q) (A.80)

=
∑
q∈Q1

pQ(q)I(U; V|Q = q) (A.81)

6
∑
q∈Q1

pQ(q)I(X; Z|Q = q) (A.82)

= P{Q ∈ Q1}
(
1− H(p)

)
, (A.83)
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where (A.82) follows from the Markov chains U ◦−− XQ ◦−− V and
X ◦−− ZQ ◦−− V. On the other hand we have

H(α)
(A.69)
6 H(X|UQ) (A.84)

= 1− I(X; U|Q) (A.85)

6 1−
∑
q∈Q1

pQ(q)I(X; U|Q = q) (A.86)

(A.76)
= 1− P{Q ∈ Q1}. (A.87)

Combining the previous two inequalities leads to

1− H(α ∗ p)
1− H(p)

(A.83)
6 P{Q ∈ Q1}

(A.87)
6 1− H(α), (A.88)

which is a contradiction since 1−H(α∗p)
1−H(p) > 1− H(α).





B
P R O O F S F R O M C H A P T E R 5

b.1 proof of theorem 5 .3

If (µΩ,R[K]) ∈ R we obtain an (n,R[K]) code f[K] for X[K] such
that (5.2) holds. Define Wk := fk(Xk) and the auxiliary random vari-
ables Uk,i :=

(
Wk, Xi−1[K],1

)
for k ∈ [K] and i ∈ [n]. For any two sets

A,C ⊆ [K] we have

n
∑
k∈A

Rk > H(WA) (B.1)

= I
(
WA; X[K]

)
(B.2)

> I
(
WA; X[K]

∣∣WC

)
(B.3)

=

n∑
i=1

I
(
WA; X[K],i

∣∣WCXi−1[K],1

)
(B.4)

=

n∑
i=1

I
(
UA,i; X[K],i

∣∣UC,i
)
, (B.5)

where (B.3) follows from WA ◦−− X[K] ◦−− WC. Furthermore, for any
pair (A,B) ∈ Ω, we have by Lemma 2.13 and WA ◦−− XA ◦−− XB ◦−−
WB that

nµA,B 6 I
(
WA; WB

)
(B.6)

= I
(
WA; XA

)
+ I
(
WB; XB

)
− I
(
WAWB; XAXB

)
(B.7)

=

n∑
i=1

[
I(UA,i; XA,i) + I(UB,i; XB,i)

− I(UA,iUB,i; XA,iXB,i)
]
. (B.8)

Now a standard time-sharing argument shows R ⊆ Ro (see, e. g., [16,
Section 4.5.2]). Lemma 2.13 implies Ro ⊆ R′o.

b.2 proof of proposition 5 .5

Pick an arbitrary k ∈ [K]. For nonempty A,B ⊆ [K] with k ∈ B we
can write H(XA|UB) = EUk

[
fA,B

(
pXk|Uk( · |Uk)

)]
where

fA,B
(
pXk|Uk( · |uk)

)
:= H

(
XA

∣∣UB\k, Uk = uk
)
. (B.9)

89



90 proofs from chapter 5

Furthermore, H(UA|UB) = EUk
[
gA,B

(
pXk|Uk( · |Uk)

)]
where

gA,B
(
pXk|Uk( · |uk)

)
:= H

(
UA

∣∣UB\k, Uk = uk
)
. (B.10)

Observe that both fA,B and gA,B are continuous functions of the
p.m.f. pXk|Uk( · |uk). Apply the support lemma [16, Appendix C] with
the functions fA,B and gA,B for all nonempty A,B ⊆ [K] such that k ∈
B, and |Xk|− 1 test functions, which guarantee that the marginal dis-
tribution pXk does not change. We obtain a new random variable Ûk
with H

(
XA

∣∣UB\kÛk
)
= H(XA|UB) and H

(
UA

∣∣UB\kÛk
)
= H(UA|UB).

By rewriting (5.6)–(5.8) in terms of conditional entropies, it is evident
that the defining inequalities for Ri remain the same when replacing
Uk by Ûk. The support of Ûk satisfies the required cardinality bound:There are (2K − 1)

ways to choose A
and 2K−1 ways to

choose B.
|Ûk| 6 |Xk|− 1+ 2(2

K − 1)2K−1 (B.11)

= |Xk|− 1+ 2
2K − 2K (B.12)

6 |Xk|+ 4
K. (B.13)

The same process is repeated for every k ∈ [K].

b.3 proof of lemma 5 .12

Fix 0 < ε′, ε′′ < ε and set R̃k = I(Xk; Uk) + ε′′/2 for each k ∈ [K].

Encoding: For n ∈ N define M̃k := 2nR̃k . We apply the gen-
eralized Markov lemma (Lemma 2.20) and consider the ran-
dom codebooks Ck := (V(k)

m )
m∈[M̃k]

, which are drawn indepen-
dently uniform from Tn[Uk]

for each k ∈ [K]. Denote the resulting

randomized coding functions as W̃k = f̃k(Xk, Ck) and the cor-
responding decoded value as Ũk := V(k)

W̃k

. If n is chosen large
enough we therefore have

P
{
(Ũ[K], X[K]) /∈ Tn[U[K]X[K]]

}
6 ε′. (B.14)

Next, we introduce (deterministic) binning. If Rk < I(Xk; Uk),
partition [M̃k] into Mk := 2n(Rk+ε

′′) equally sized, consecutive
bins, each of size 2n∆k with

∆k := R̃k − Rk − ε
′′ = I(Xk; Uk) − Rk −

ε′′

2
. (B.15)

The deterministic function βk : [M̃k] → [Mk] maps a codeword
index to the index of the bin, it belongs to. In total the encoding
function becomes fk := βk ◦ f̃k. If Rk > I(Xk; Uk), we do not
require binning and let βk be the identity on [M̃k] and hence
fk := f̃k.
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Decoding: Given the codebooks, we define a decoding proce-
dure g

A,Ã : [MA]→ Un
Ã

for each ∅ 6= Ã ⊆ A ⊆ [K], to be carried We use
[MA] = [Mk]k∈A.out as follows: Given wA ∈ [MA], let m̃A := β−1

k (wk)k∈A ⊆
[M̃A] be all indices that belong to the bins wA. Consider only
the typical sequences V(A)

m̃A
∩Tn[UA] =: Φ ⊆ UnA. If Φ 6= ∅, choose

the lexicographically smallest element of Φ
Ã

, otherwise choose Φ
Ã

is the restriction
of Φ to the indices
Ã.the lexicographically smallest element of V(Ã)

m̃
Ã

.

Let A, Ã,B, B̃ ⊆ [K] be sets of indices such that the conditions (5.6)
and (5.7) are satisfied. Using Wk := fk(Xk, Ck) and the randomized
decodings Û1 := g

A,Ã(WA, CA), Û2 := g
B,B̃(WB, CB), consider the

error event E0 := {(Û1, XA, XB, Û2) /∈ Tn[U
Ã

XAXBU
B̃
]}. Define the other

events

E1 := {(ŨA, XA, XB, ŨB) /∈ Tn[U
Ã

XAXBU
B̃
]}, (B.16)

E2 :=
{∣∣∣(V(A)

WA
∩ Tn[UA]

)
Ã

∣∣∣ > 1}, (B.17)

E3 :=
{∣∣∣(V(B)

WB
∩ Tn[UB]

)
B̃

∣∣∣ > 1}, (B.18)

where we used the random sets of indices WA := β−1
k (Wk)k∈A and

WB := β−1
k (Wk)k∈B. We clearly have E0 ⊆ E1 ∪ E2 ∪ E3 and thus

P{E0} 6 P{E1}+ P{E2|Ec
1}+ P{E3|Ec

1} (B.19)
(B.14)
6 P{E2|Ec

1}+ P{E3|Ec
1}+ ε

′. (B.20)

We can partition WA =
⋃

Â⊆ADÂ into (random) subsets

DÂ
:=
{
w̃A ∈WA : w̃Âc = W̃Âc and w̃k 6= W̃k, ∀k ∈ Â

}
, (B.21)

where we used Âc := A \ Â. Observe that D∅ = {W̃A}. For each set
∅ 6= Â ⊆ A we define the error event

EÂ
:=
{
V(A)

DÂ
∩ Tn[UA] 6= ∅

}
(B.22)

and obtain

E2 ⊆
⋃

Â⊆A:

Â∩Ã 6=∅

EÂ, (B.23)

which implies

P{E2|Ec
1} 6

∑
Â⊆A:

Â∩Ã 6=∅

P
{
EÂ

∣∣Ec
1

}
. (B.24)
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By construction, DÂ has
∏
k∈Â(2n∆k − 1) elements. For w̃A ∈ DÂ we

have that V(Â)
w̃Â

are uniformly distributed on
∏
k∈Â Tn[Uk]

and w̃Âc =

W̃Âc . Given Ec
1, we have in particular ŨA ∈ Tn[UA]. Thus, for any

uÂc ∈ Tn[UÂc ]
, we can conclude,

P
{
EÂ

∣∣∣Ec
1, ŨÂc = uÂc

}
(B.25)

= P

 ⋃
w̃A∈DÂ

{V(A)
w̃A
∈ Tn[UA]}

∣∣∣∣∣∣Ec
1, ŨÂc = uÂc

 (B.26)

6
∑

w̃A∈DÂ

P
{
V(A)
w̃A
∈ Tn[UA]

∣∣∣Ec
1, ŨÂc = uÂc

}
(B.27)

6 2n(
∑
k∈Â∆k)

∣∣∣Tn[UÂ|UÂc ]
(uÂc)

∣∣∣∏
k∈Â

∣∣∣Tn[Uk]∣∣∣ (B.28)

6 2n(
∑
k∈Â∆k)

2n(H(UÂ|UÂc)+ε0(n))

2n(
∑
k∈Â H(Uk)−εk(n))

(B.29)

6 2n(ε(n)+H(UÂ|UÂc)+
∑
k∈Â(∆k−H(Uk))), (B.30)

where ε(n) =
∑
k∈Â∪0 εk(n) goes to zero as n → ∞. Here, (B.29)

follows from parts 2 and 3 of Lemma 2.19. We observe that the defi-
nition of R̃k and (5.6) imply for any ∅ 6= Â ⊆ A with Â∩ Ã 6= ∅ that

∑
k∈Â

∆k 6 −
ε′′

2
− H

(
UÂ

∣∣UÂc

)
+
∑
k∈Â

H(Uk). (B.31)

Marginalize over ŨÂc in (B.30) and use (B.31) to obtain

P
{
EÂ

∣∣Ec
1

}
6 2

n
(
ε(n)− ε′′

2

)
6 ε′ (B.32)

for n large enough. Applying the same arguments to P
{
E3
∣∣Ec
1

}
and

combining (B.20), (B.24) and (B.32), we have

P{E0} 6 ε′ + 2|A|ε′ + 2|B|ε′ 6 2Kε′. (B.33)
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For a set ∅ 6= A ⊆ [K], we next analyze the random quantity LA :=∣∣∣CA ∩ Tn[UA]

∣∣∣. For n large enough, we have for any ṼA ∈ CA

E[LA] 6 E

 ∑
VA∈CA

E
[
1Tn

[UA]
(VA)

∣∣∣CA

] (B.34)

=

(∏
k∈A

M̃k

)
E
[
1Tn

[UA]
(ṼA)

]
(B.35)

=

(∏
k∈A

M̃k

) ∣∣∣Tn[UA]

∣∣∣∏
k∈A

∣∣∣Tn[Uk]∣∣∣ (B.36)

6

(∏
k∈A

M̃k

)
2n
(

H(UA)+ε0(n)
)

2n
(∑

k∈A H(Uk)−εk(n)
) (B.37)

6

(∏
k∈A

M̃k

)
2n
(

H(UA)−
∑
k∈A H(Uk)+ε(n)

)
(B.38)

= 2
n

(
H(UA)+ε(n)+

∑
k∈A I(Uk;Xk)+ ε′′

2 −H(Uk)
)

(B.39)

= 2
n

(
H(UA)+ε(n)+|A| ε

′′
2 −
∑
k∈A H(Uk|Xk)

)
(B.40)

= 2
n
(

I(UA;XA)+ε(n)+|A| ε
′′
2

)
. (B.41)

where ε(n) =
∑
k∈A∪0 εk(n) goes to zero as n → ∞. Here, (B.37)

follows from parts 1 and 2 of Lemma 2.19. Assume that ε′′ is such
that Kε′′/2 < ε. Defining the error event E4 =

{
LA > 2n(I(UA;XA)+ε)

}
,

we apply Markov’s inequality, Theorem 2.1, and obtain for n large
enough

P{E4} 6 2
n
(
ε(n)−ε+|A| ε

′′
2

)
6 ε′. (B.42)

Using (B.33) and (B.42) we can apply Lemma 2.12 and obtain de-
terministic encoding functions fk : Xnk → Mk, and deterministic de-
coding functions g

A,Ã : MA → Un
Ã

such that (5.35) holds whenever
the conditions (5.6) and (5.7) are satisfied. Taking into account that
g
A,Ã(MA) × g

B,B̃(MB) ⊆ C
Ã∪B̃, we also have (5.34). (Note that,

given a specific code, the condition P
{
E4
∣∣C[K] = c[K]

}
< 1 already

implies P
{
E4
∣∣C[K] = c[K]

}
= 0 as the event E4 is determined by the

code C[K] alone.)
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b.4 proof of proposition 5 .17

Pick arbitrary j,k ∈ [J]. For nonempty B ⊆ [J] with j ∈ B we
can write H(Xk|UB) = EUj

[
fk,B

(
pXj|Uj( · |Uj)

)]
as well as H(Y|UB) =

EUj
[
gB
(
pXj|Uj( · |Uj)

)]
, where

fk,B
(
pXj|Uj( · |uj)

)
:= H

(
Xk
∣∣UB\j, Uj = uj

)
, (B.43)

gB
(
pXj|Uj( · |uj)

)
:= H

(
Y
∣∣UB\j, Uj = uj

)
. (B.44)

Observe that fk,B and gB are continuous functions of pXj|Uj

(
·
∣∣uj).

Apply the support lemma [16, Appendix C] with the functions fk,B

and gB for all k ∈ [J], j ∈ B ⊆ [J], and
∣∣Xj∣∣− 1 test functions, which

guarantee that the marginal distribution pXj does not change. We
obtain a new random variable Ûj with H(Xk|UB\jÛj) = H(Xk|UB)

and H(Y|UB\jÛj) = H(Y|UB). By rewriting (5.63)–(5.68) in terms of
conditional entropies, it is evident that the defining inequalities for
R
(<,I)
MI remain the same when replacing Uj by Ûj. The support of Ûj

satisfies the required cardinality bound

There are J ways to
choose k and 2J−1

ways to choose B.

|Ûj| 6
∣∣Xj∣∣− 1+ J2J−1 + 2J−1 (B.45)

6
∣∣Xj∣∣+ 4J. (B.46)

The same process is repeated for every j ∈ [J].

b.5 proof of theorem 5 .18

Pick a total order < on [J], a set E ⊆ [J] and (U[J],∅) ∈ P∗. ToP∗ is defined in
(5.11). obtain a code we apply Lemma 5.12 with K = J + 1, XK = UK =

Y, B = B̃ = {K}, Ã = A for all ∅ 6= A ⊆ [J], and rates Rj =

I
(
Uj; Xj

∣∣U=j
)
, RK = log2|Y|, as suggested by Proposition 5.7. As in

the proof of Lemma 5.12 let f̃j denote the encoding function with-
out binning and with rate n−1 log2

∣∣f̃j∣∣ 6 I
(
Uj; Xj

)
+ ε
2 . Furthermore,

let f′j be the encoding function including binning, obtaining a rate of
n−1 log2 |f

′
j| 6 I

(
Uj; Xj

∣∣U=j
)
+ ε. Finally we obtain the (n,R[J] + ε)

code f[J] by setting fj := f̃j for j ∈ E and fj := f′j for j /∈ E. Let the
decoding functions be gA := gA,A for all ∅ 6= A ⊆ [J]. Furthermore,
for each j ∈ [J], we define the decoding function g̃j, which maps
W̃j := f̃j(Xj) onto its codebook entry, i. e., g̃j(w) = V(j)

w (using the
notation from Appendix B.3). Also let Wj := fj(Xj) and W′j := f

′
j(Xj).

For later use, we note that W′j is a function of Wj, which is in turn a
function of W̃j.
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Let the event S′A be the success event that
(
Y, XA,gA(W′A)

)
∈

Tn[YXAUA] holds. Also let S̃j be the event that
(
Y, Xj, g̃j(W̃j)

)
∈ Tn[YXjUj]

.

For any A = wk, k ∈ [J], and Â ⊆ A, we have∑
j∈Â

Rj =
∑
j∈Â

I
(
Uj; Xj

∣∣U=j
)

(B.47)

>
∑
j∈Â

I
(
Uj; XÂ

∣∣U=j, UA\Â

)
(B.48)

= I
(
UÂ; XÂ

∣∣UA\Â

)
. (B.49)

Thus, condition (5.6) is satisfied and for n large enough we have
P
{
S′A
}
> 1− ε by Lemma 5.12. Clearly also P{S̃j} > 1− ε for each

j ∈ [J] and n large enough, using parts 1 and 2 of Lemma 2.18.
Pick an arbitrary ε′ > 0. Provided that n is large enough and ε In what follows, we

will routinely merge
expressions that can
be made arbitrarily
small (for n large
and ε sufficiently
small) and bound
them by ε′.

small enough, we have for any A = wk

1

n
I(Y; WA) >

1

n
I
(
Y; W′A

)
(B.50)

>
1

n
I
(
Y;gA(W′A)

)
(B.51)

= H(Y) −
1

n
H
(
Y
∣∣gA(W′A)

)
(B.52)

> H(Y) −
1

n
H
(
Y,1S′A

∣∣∣gA(W′A)
)

(B.53)

= H(Y) −
1

n
H
(
1S′A

∣∣∣gA(W′A)
)
−
1

n
H
(
Y
∣∣∣gA(W′A),1S′A

)
(B.54)

> H(Y) − ε′ −
1

n
(1− ε)H

(
Y
∣∣gA(W′A), S′A

)
− εH(Y) (B.55)

> H(Y) − ε′ −
1

n
H
(
Y
∣∣gA(W′A), S′A

)
(B.56)

> H(Y) − ε′

−
1

n

∑
uA

P
{
gA(W′A) = uA

∣∣S′A} log2
∣∣∣Tn[Y|UA](uA)

∣∣∣ (B.57)

> H(Y) − H(Y|UA) − ε′ (B.58)

= I(UA; Y) − ε′. (B.59)

Here, (B.50) and (B.51) follow from the data processing inequality,
Theorem 2.5. We applied part 1 of Lemma 2.4 in (B.57), and part 3

of Lemma 2.19 in (B.58). For A = [J] we specifically obtain

1

n
I
(
Y; W[J]

)
> I
(
U[J]; Y

)
− ε′

(5.67)
> ν[J] − ε

′. (B.60)
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For k ∈ [J] and A = =k we obtain the following chain of inequalities,
where (B.65) and (B.66) will be justified subsequently.

1

n
I(Y; Wk) >

1

n
I
(
Y; W′k

)
>
1

n
I
(
Y; W′k

∣∣W′A) (B.61)

=
1

n
I
(
Y; W′kW

′
A

)
−
1

n
I
(
Y; W′A

)
(B.62)

(B.59)
> I(UAUk; Y) − ε′ −

1

n
I
(
Y; W′A

)
(B.63)

= I(UAUk; Y) − ε′ −
1

n
I
(
XA; W′A

)
+
1

n
I
(
XA; W′A

∣∣Y) (B.64)

> I(UAUk; Y) − ε′ − I(XA; UA)

+ H(XA|Y) −
1

n
H
(
XA

∣∣W′A, Y
)

(B.65)

> I(UAUk; Y) − ε′ − I(XA; UA)

+ H(XA|Y) − H(XA|UA, Y) (B.66)

= I(Uk; Y|UA) − ε′ (B.67)
(5.65)
> νk − ε

′. (B.68)

Equality in (B.64) follows from the Markov chain W′A ◦−− XA ◦−− Y.
In (B.65), we used that for ε small and n large enough, we have

1

n
I
(
XA; W′A

)
=
1

n
H
(
W′A

)
(B.69)

6
1

n

∑
j∈A

H
(
W′j
)

(B.70)

6
∑
j∈A

(
I
(
Uj; Xj

∣∣U=j
)
+ ε
)

(B.71)

6 I(UA; XA) + ε′, (B.72)

where (B.70) follows from part 3 of Lemma 2.4 and Theorem 2.5, and
(B.71) follows from part 1 of Lemma 2.4 and the fact that n−1 log2 |f

′
j| 6

I
(
Uj; Xj

∣∣U=j
)
+ ε. The inequality (B.66) follows similar to (B.59) as for

n large enough and ε small enough,

1

n
H
(
XA

∣∣W′A, Y
)
6
1

n
H
(
XA

∣∣gA(W′A), Y
)

(B.73)

6
1

n
H
(
XA,1S′A

∣∣gA(W′A), Y
)

(B.74)

6 ε′ +
1

n
H
(
XA

∣∣gA(W′A), Y, S′A
)

(B.75)

6 ε′ +
1

n

∑
uA,y

P
{
gA(W′A) = uA, Y = y

∣∣S′A}
× log2

∣∣∣Tn[XA|UA,Y](uA,y)
∣∣∣ (B.76)

6 ε′ + H(XA|UA, Y). (B.77)
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For k ∈ E, we have similarly to (B.59) that

1

n
I(Y; Wk) =

1

n
I
(
Y; W̃k

)
(B.78)

>
1

n
I
(
Y; g̃k(W̃k)

)
(B.79)

= H(Y) −
1

n
H
(
Y
∣∣g̃k(W̃k)

)
(B.80)

> H(Y) −
1

n
H
(
Y,1

S̃k

∣∣g̃k(W̃k)
)

(B.81)

> H(Y) −
1

n
H
(
1
S̃k

)
−
1

n
H
(
Y
∣∣g̃k(W̃k),1S̃k

)
(B.82)

> H(Y) − ε′ −
1

n
H
(
Y
∣∣g̃k(W̃k), S̃k

)
(B.83)

> H(Y) − ε′ −
1

n

∑
uk

P
{
g̃k(W̃k) = uk

∣∣∣S̃k}
× log2

∣∣∣Tn[Y|Uk](uk)
∣∣∣ (B.84)

> H(Y) − ε′ − H(Y|Uk) (B.85)

= I(Uk; Y) − ε′
(5.66)
> νk − ε

′. (B.86)
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b.6 proof of theorem 5 .19

For (νΠ,R[J]) ∈ RMI we apply Definition 5.6, choosing an (n,R[J])
code f[J] for X[J] and define Wj := fj(Xj) for j ∈ [J]. For any A ⊆ [J]

we thus have

1

n
I(WA; Y) > νA. (B.87)

With Uj,i := (Wj, Xi−1j,1 ) and Qi := (Yi−1, Yni+1) we have

n
∑
j∈B

Rj > H(WB) (B.88)

= I(WB; XB) (B.89)

= I(WB; XBY) (B.90)

= I(WB; Y) + I(WB; XB|Y) (B.91)

= I(WAWB; Y) − I
(
WA\B; Y

∣∣WB

)
+ I(WB; XB|Y) (B.92)

= I(WA; Y) + I
(
WB\A; Y

∣∣WA

)
− I
(
WA\B; Y

∣∣WB

)
+ I(WB; XB|Y) (B.93)

(B.87)
> nνA + I

(
WB\A; Y

∣∣WA

)
− I
(
WA\B; Y

∣∣WB

)
+ I(WB; XB|Y) (B.94)

> nνA − I
(
WA\B; Y

)
+ I(WB; XB|Y) (B.95)

=

n∑
i=1

[
νA − I

(
WA\B; Yi

∣∣Yi−1)+ I
(
WB; XB,i

∣∣YXi−1B

)]
(B.96)

>
n∑
i=1

[
νA − I

(
WA\B,i; Yi

∣∣Qi)+ I
(
WB; XB,i

∣∣YXi−1B

)]
(B.97)

=

n∑
i=1

[
νA − I

(
UA\B,i; Yi

∣∣Qi)+ I(UB,i; XB,i|YiQi)
]
. (B.98)

The result now follows by a standard time-sharing argument (see,
e. g., [16, Section 4.5.2]). Note that the required Markov chain and the
independence are satisfied.
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