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THE STOCHASTIC HEAT EQUATION IN TWO DIMENSIONS

Abstract. For the equation dv(t) =
(
1
2
∆v + Ft

)
dt +∇v · dWt in 2 dimen-

sions with Ftφ :=
´ t
0 φ(−Wr−µ)dr, we will show the existence and uniqueness

of a solution in the sense of tempered distributions. Further, a connection be-
tween this solution and the self-intersection local time of a planar Brownian
motion will be establised. We will also show that the �rst and second moment
of the solution satisfy, in the sense of tempered distributions, certain PDEs
and the moment generating function satis�es a certain PDE in the sense of
distributions. A byproduct of this result is the existence of the moment gen-
erating function of the self-intersection local time E[exp(θβ2(x, t))] for points
x 6= 0 and certain values of θ .
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1. Introduction

In this work, we will try to look at the stochastic heat equation in two dimensions.
As this is a rather broad topic, I already have to disappoint the reader by narrowing
it down to a special case, which was (to my knowledge) �rst introduced in their
studies of the limit order book by Hubalek, Krühner and Rheinländer. In [22] and
[23], they considered the equation

dv(t) =

(
1

2
D2v(t) + f

)
dt+Dv(t) dWt,

v(0) = 0,

where f = δµ for some µ ∈ R+ in order to describe the accumulation of orders at
speci�c levels. HereWt is a one-dimensional Brownian motion. Their study revealed
that a (in a certain sense) weak solution is directly connected to the Brownian local
time and the moments of the solution satisfy certain PDEs.

The initial goal was to �nd a similar representation when we consider the same
equation in the two-dimensional case (R2, planar Brownian motion). Unfortunately
this task proved rather di�cult and the obtained results will therefore only be
mentioned in the Appendix. The assumption that such a L2-representation of a
solution, if it existed, could be connected to the self-intersection local time (SILT)
of a planar Brownian motion lead then to a slightly di�erent SPDE, which turned
out to be slightly easier to handle than the originally proposed equation.

The equation studied was derived by the attempt to �nd a possible connection
between the �fundamental solution� (f = δ·) and the SILT. We also take a look at
the �rst two moments of the solution, but �rst we will introduce the concept of SILT
and collect results from di�erent approaches, which will prove to be rather useful
later on. Another chapter will be devoted to the theory of SPDEs. The approach
taken in this chapter is rather old for this subject and doesn't use the more �hip�
semigroup approach which is known from [28, 13], but provides results about the
existence and uniqueness of distributional solutions. Nonetheless, the Ansatz used
by Hubalek, Krühner and Rheinländer to �nd an explicit representation of the
solution which we will follow too, is rooted in Duhamel's principle and thereby
closely related to the semigroup-approach.
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2. A Crash course in SPDEs

In this part we want to consider SPDEs on Rd of the following form:

(2.1)

du(t) =

d∑
i=1

d∑
j=1

aij
∂u

∂xi∂xj
+

d∑
i=1

bi
∂u

∂xi
+cu+fdt+

(
N∑
k=0

(
d∑
i=1

σik
∂u

∂xi
+ νku+ gk

)
dW k

t

)

Remark 1. We will try to �nd solutions in the Sobolev-Space W 2,p(Rd). An incon-

venience which arises is that W 2,n(Rd) ↪→ Cn−
d
2 (Rd) if and only if 2n > d. It can

be shown that the solution belongs to W 2,n(Rd) only if the coe�cients are n − 2
times continuously di�erentiable with respect to x ∈ Rd, so we have to suppose
that our coe�cients are more than m+ d

2 −2 times continuously di�erentiable even

if the free terms belong to C∞0 (Rd). At the same time, Wn,p(Rd) ↪→ Cn−
d
p (Rd)

if pn > d. By taking p su�ciently large, we see that the solutions have almost as
many usual derivatives as weak ones.

Let us rewrite equation (2.1) into a more compact form:

du(t) = (Lu+ f) dt+ (Λku+ gk) dW k
t t > 0,

where

Lu :=

d∑
i=1

d∑
j=1

aij
∂u

∂xi∂xj
+

d∑
i=1

bi
∂u

∂xi
+ cu,

Λku =

N∑
k=0

(
d∑
i=1

σik
∂u

∂xi
+ νku

)
.

We assume W k
t to be independent Brownian motions.

Considering the (deterministic) case, where all σk, νk and gk vanish, it would be
adequate to recall some aspects, coming from the theory of parabolic PDEs.

With D, we will denote the space of real valued Schwarz distributions on Rd,
de�ned on C∞0 (Rd). For a given p ∈ (1,∞) and n ∈ (−∞,∞), the space Hn,p(Rd)
is de�ned as the space of (generalized) functions, such that (1 −∆)

n
2 u ∈ Lp(Rd).

To give a proper meaning to this de�nition, let us introduce the term (1−∆)
n
2 in

a slightly di�erent way. Let α ∈ (0, 1), then, for a constant cα, and all z < 0

(1− z)α = cα

ˆ ∞
0

exp(−t) exp(tz)− 1

tα
1

t
dt.

By a formal substitution of ∆ instead of z, we get the following de�nition

(2.2) (1−∆)αu = cα

ˆ ∞
0

exp(t)Ttu− u
tα

1

t
dt,

where Tt denotes the semigroup generated by ∆. We formally substituted ezt

which is the solution of the ODE f ′ = zf by the solution of T ′t = ∆Tt.
As a quick reminder, Tt is given by

(2.3) Ttu(x) :=
1

(4πt)
d
2

ˆ
Rd
u(y) exp

(
− 1

4t
|x− y|2

)
dy.
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Similarly, we de�ne for any α > 0

(2.4) (1−∆)−αu = dα

ˆ ∞
0

tα exp(−t)Ttu
1

t
dt,

with an appropriate constant dα. It turns out that these formulas are su�cient
to consistently de�ne (1−∆)

n
2 for any n ∈ (−∞,∞).

The application of (1−∆)
n
2 to an f ∈ Lp is de�ned as a limit of the respective

truncated integral in (2.2) or (2.4). We say that a distribution u ∈ Hn,p, if there
exists an f ∈ Lp, such that u = (1−∆)

n
2 f in the sense of distributions.

For u ∈ Hn,p, we introduce the following norm

‖u‖n,p :=
∥∥(1−∆)

n
2 u
∥∥
p
,

where ‖.‖p denotes the usual Lp norm.
It can be shown ([39]) that Hn,p as de�ned above is a Banach space and C∞0 lies

dense.
For �xed T > 0, we introduce the space H1,2

p (T ) = H1,p((0, T ), H2,p(Rd)) as{
u(t, x) : ‖u‖p1,2,p :=

ˆ T

0

∥∥∥∥∂u∂t (t, ·)
∥∥∥∥p
p

dt+

ˆ T

0

‖u(t, ·)‖p2,p dt <∞

}
.

Proposition 2. For any f ∈ Lp((0, T )×Rd) and u0 ∈ H
2− 2

p
p there exists a unique

solution u ∈ H1,2
p (T ) of the (deterministic) heat equation

∂u

∂t
= ∆u+ f,

on (0, T )× Rd with initial data u(0) = u0.
In addition,

(2.5)∥∥∥∥∂2u

∂x2

∥∥∥∥
Lp((0,T )×Rd)

+

∥∥∥∥∂u∂t
∥∥∥∥
Lp((0,T )×Rd)

≤ N(d, p)(‖f‖Lp((0,T )×Rd) + ‖u0‖2− 2
p ,p

),

‖u‖1,2,p ≤ N(d, p, T )(‖f‖Lp((0,T )×Rd) + ‖u0‖2− 2
p ,p

).

Remark 3. For integers n ≥ 0 the space Hn,p coincides with the Sobolev space
Wn,p.

Let (Ω,F ,P) be a complete probability space, (Ft, t ≥ 0)t an increasing �ltration
of σ �elds Ft ⊂ F containing all P null subsets of Ω and P the predictable σ �eld
generated by by (Ft, t ≥ 0)t. Let {W k

t ; k = 1, 2, . . . } be a family of independent
one dimensional Ft adapted Brownian motions de�ned on (Ω,F ,P). We �x a p ≥ 2
and an integer d ≥ 1 and consider a distribution u and a function φ ∈ C∞0 . We
observe that, for u ∈ Hn,p and φ ∈ C∞0 , by de�nition we get

(u, φ) =
〈
(1−∆)

n
2 u, (1−∆)−

n
2 φ
〉

=

ˆ
Rd

(
(1−∆)

n
2 u
)

(x)(1−∆)−
n
2 φ dx.

Since (1−∆)
n
2 u ∈ Lp, (u, φ) can be de�ned for any φ whose derivatives vanish

su�ciently fast at in�nity.
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We can apply the same de�nition to l2 valued functions h (l2 being the real
valued sequence space of square summable sequences).

For this section, let us de�ne the following norm

‖‖h‖‖p = ‖ ‖h‖l2 ‖p, ‖‖h‖‖n,p := ‖‖(1−∆)
n
2 h‖l2‖p.

For stopping times τ , we denote (0, τK := {(ω, t) : 0<t≤ τ(ω)}and

Hn,p(τ) := Lp((0, τK,P, Hn,p),

Hn,p := Hn,p(∞),

Hn,p(τ, l2) = Lp((0, τK,P, Hn,p(Rd, l2)),

L(. . . ) := H0,2(. . . ).

These spaces are equipped with the natural/obvious norms. Out of convenience,
we treat the elements of these spaces as functions and, if for a given element, there
exists a modi�cation with �better� properties, we will always immediately consider
this modi�cation.

Although the spaces Hn,p carry some familiarity, elements of the space Hn,p(τ, l2)
need not be de�ned on, or belong to Hn,p for all (ω, t) ∈ (0, τK. These properties
are, as usual, only needed for almost all (ω, t).

For n ∈ R and

(f, g) ∈ Fn,p(τ) := Hn,p(τ)×Hn+1,p(τ, l2),

we de�ne

‖(f, g)‖Fn,p(τ) := ‖f‖Hn,p(τ) + ‖g‖Hn+1,p(τ,l2).

De�nition 4. For a D valued function u ∈
⋂
T>0 Hn,p(τ ∧ T ), we write u ∈

Hn,p(τ), if uxx ∈ Hn−2,p(τ), u(0, ·) ∈ Lp(Ω,F0, H
n− 2

p ,p) and there exists a pair
(f, g) ∈ Fn−2,p(τ) such that for any φ ∈ C∞0 , the equality

(2.6) 〈u(t, ·), φ〉 = 〈u(0, ·), φ〉+

ˆ t

0

〈f(s, ·), φ〉 ds+

∞∑
k=1

ˆ t

0

〈gk(s, ·), φ〉 dW k
s

holds for all t ≤ τ with probability 1. We also de�ne

Hn,p0 (τ) := Hn,p(τ)
⋂
{u : u(0, ·) = 0},

‖u‖Hn,p(τ) := ‖uxx‖Hn−2,p(τ) + ‖(f, g)‖Fn−2,p(τ) +
(
E
[
‖u(0, ·)‖p

n− 2
p ,p

]) 1
p

.

As always, if τ =∞, we drop it in Hn,p(τ) and Fn,p(τ).

Remark 5. The elements of Hn,p(τ), which is obviously a linear space, can be
assumed to be de�ned for all (ω, t) and to take values in D. Two elements of
Hn,p(τ) are, as usual, identi�ed with each other, if ‖u1 − u2‖Hn,p(τ) = 0. It is

also worth noting that the series of stochastic integrals
∑∞
k=1

´ t
0
〈gk(s, ·), φ〉 dW k

s
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converges uniformly in t in probability on [0, τ ∧ T ] for any �nite T , since its
quadratic variation satis�es

∞∑
k=1

ˆ τ∧T

0

〈gk(s, ·), φ〉2 ds =

∞∑
k=1

ˆ τ∧T

0

〈
(1−∆)

n−1
2 gk(s, ·), (1−∆)

1−n
2 φ

〉2

ds

≤
∥∥∥(1−∆)

1−n
2 φ

∥∥∥
1

ˆ τ∧T

0

∞∑
k=1

〈∣∣∣(1−∆)
n−1
2 gk(s, ·)

∣∣∣2 , ∣∣∣(1−∆)
1−n
2 φ

∣∣∣〉 ds

≤ N
ˆ τ∧T

0

∥∥∥∥∥∥
( ∞∑
k=1

∣∣∣(1−∆)
n−1
2 gk(s, ·)

∣∣∣2) 1
2

∥∥∥∥∥∥
2

p

ds <∞ a.s.,

with N :=
∥∥∥(1−∆)

1−n
2 φ

∥∥∥
1

∥∥∥(1−∆)
1−n
2 φ

∥∥∥
q
, q := p

p−2 . We have also used that

p ≥ 2.
〈u(t, ·), φ〉 is continuous in t on [0, τ ∧ T ], as a consequence of the uniform con-

vergence for any �nite T (a.s.).

Remark 6. The pair (f, g) is unique, as otherwise 0 could be written as the sum of
a continuous process of �nite variation and a continuous local martingale, which is
only possible, if both processes vanish.

Remark 7. The operator (1−∆)
m
2 maps Hn,p isometrically onto Hn−m,p for any

n and m. The previous remarks also show, that the same relation holds true for
Hn,p(τ), since for any given u ∈ Hn,p(τ), we can take functions φ whose derivatives
vanish exponentially fast at in�nity and substitute φ with (1−∆)

m
2 φ, which gives

us this result. We also have the same result for Hn,p(τ).

De�nition 8. If (2.6) holds for u ∈ Hn,p(τ), we write f = Au, g = Bu and also

u(t) = u(0) +

ˆ t

0

Au(s) ds+

∞∑
k=1

ˆ t

0

Bku(s) dW k
s t ≤ τ,

du = f dt+

∞∑
k=1

gk dW k
s t ≤ τ.

Remark 9. A is a continuous operator from Hn,p(τ) to Hn−2,p(τ) and B is a con-
tinuous operator from Hn,p(τ) to Hn−2,p(τ, l2) (which follows directly from the
de�nitions). Even though we don't know that much about Hn,p(τ), it is obvious,
that H12,p(τ) ⊂ H2,p(τ).

Theorem 10. The spaces Hn,p(τ) and Hn,p0 (τ), equipped with the norm

‖u‖Hn,p(τ) := ‖uxx‖Hn−2,p(τ) + ‖(f, g)‖Fn−2,p(τ) +
(
E
[
‖u(0, ·)‖p

n− 2
p ,p

]) 1
p

,

are Banach spaces. If τ ≤ T for a �nite T , then for u ∈ Hn,p(τ) the following
holds

(2.7) ‖u‖Hn,p(τ) ≤ N(d, T )‖u‖Hn,p(τ),
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(2.8) E
[
sup
t≤τ
‖u(t, ·)‖pn−2,p

]
≤ N(d, T )‖u‖2Hn,p(τ).

Proof. Obviously, ‖u‖Hn,p(τ) = ‖(1−∆)u‖Hn−2,p(τ) ≤ ‖u‖Hn−2,p(τ) + ‖u‖Hn,p(τ).
We will remind ourselves of the previous remarks and assume n = 2. Let us take

a nonnegative ρ ∈ C∞c with integral equal to 1 and de�ne ρε(x) =
ρ( xε )

ε , and for

functions u, let u(ε)(x) := u∗ρε(x). u(ε) is still a continuous, in�nitely di�erentiable
function for any distribution u. If we plug ρε(· − x) into (2.6) instead of φ, we get
for any x that the following equality holds almost surely

(2.9) u(ε)(t) = u(ε)(0) +

ˆ t

0

f (ε)(s, x) ds+

∞∑
k=1

ˆ t

0

g(ε)k(s, x) dW k
s t ≤ τ.

If necessary, we rede�ne the stochastic integral in such a way, that (2.9) holds
for all ω, t and x, such that t ≤ τ .

E
[
‖u(ε)(0, ·)‖pp

]
≤ E

[
‖u(0, ·)‖pp

]
≤ E

[
‖u(0, ·)‖pn−2

p ,p

]
≤ ‖u‖Hn,p(τ),

where we used that, by Minkowski's inequality, ‖h(ε)‖p ≤ ‖ρε‖1‖h‖p = ‖h‖p.
Similarly ∣∣∣∣ˆ t

0

f (ε)(s, x) ds

∣∣∣∣p ≤ T p−1

ˆ τ

0

|f (ε)(s, x)|p ds,

E

[
sup
t≤τ

∥∥∥∥ˆ t

0

f (ε)(s, x) ds

∥∥∥∥p
p

]
≤ T p−1E

[ˆ t

0

∥∥∥f (ε)(s, x)
∥∥∥p
p
ds

]
≤ T p−1‖u‖pHn,p(τ).

By Burkholder-Davis-Grundy inequalities,

E

[
sup
t≤τ

∣∣∣∣∣
∞∑
k=1

ˆ t

0

g(ε)k(s, x) dW k
s

∣∣∣∣∣
p]
≤ NE

∣∣∣∣∣
ˆ τ

0

∞∑
k=1

|g(ε)k(s, x)|2 ds

∣∣∣∣∣
p
2


= NE

[∣∣∣∣ˆ τ

0

‖g(ε)(s, x)‖2l2 ds
∣∣∣∣
p
2

]
.

As above ((2.9) gives again sense to the �rst term below)

E

sup
t≤τ

∥∥∥∥∥
∞∑
k=1

ˆ t

0

g(ε)k(s, x) dW k
s

∥∥∥∥∥
p

p

 | ≤ ˆ
Rd

E

[
sup
t≤τ

∣∣∣∣∣
∞∑
k=1

ˆ τ

0

g(ε)k(s, x) ds

∣∣∣∣∣
p]

dx

≤ NE

[ˆ
Rd

∣∣∣∣ˆ τ

0

‖g(ε)(s, x)‖2l2 ds
∣∣∣∣
p
2

dx

]
≤ NE

[(ˆ τ

0

∥∥∥‖g(ε)(s, ·)‖2l2
∥∥∥
p
2

ds

) p
2

]

= NE

[(ˆ τ

0

∥∥∥‖g(ε)(s, ·)‖l2
∥∥∥2

p
ds

) p
2

]
≤ NE

[ˆ τ

0

∥∥∥‖g(ε)(s, ·)‖l2
∥∥∥p
p
ds

]
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≤ N‖g‖pLp(τ,l2) ≤ N‖u‖Hn,p(τ).

Along with (2.9), this leads to

(2.10) E
[
sup
t≤τ
‖u(ε)(t, ·)‖pp

]
≤ N‖u‖pHn,p(τ).

Using the fact, that ‖h(ε) − h(γ)‖p → 0 for h ∈ Lp, when ε, γ → 0, considering

u( 1
m )−u( 1

k ), we see that u( 1
m )(t∧ τ, x) is a Cauchy sequence in Lp(Ω, B([0, T ], Lp)).

Let us denote the limit in this space by v. For a subsequencem′, we have u( 1
m′ )(t, ·)→

v(t, ·) in Lp for t ≤ τ , with probability 1. On the other hand u( 1
m )(t, ·) → u(t, ·),

in the sense of distributions for all ω, t, such that t ≤ τ(ω). Therefore, it holds for
t ≤ τ , with probability 1, that u(t, ·) ∈ Lp. For n = 2, (2.10) and Fatou's lemma
give us the second inequality of the Theorem.

Let us check now the completeness of Hn,p(τ). If we take a Cauchy sequence ui
in Hn,p(τ), then it is also a Cauchy sequence in Hn,p(τ ∧ T ) for any T and there

exists a u ∈ ∩T≥0Hn,p(τ ∧T ), such that ‖u−ui‖Hn,p(τ∧T ) → 0. Additionally, ∂2

∂x2ui
form a Cauchy sequence and therefore converge in Hn−2,p(τ), from which follows,

that
∥∥∥ ∂2

∂x2ui − ∂2

∂x2u
∥∥∥
Hn−2,p(τ)

→ 0.

For ui(0), fi , gi, corresponding to ui, there exist u(0) ∈ Lp(Ω,F0, H
n− 2

p ,p) and
(f, g) ∈ Fn−2,p(τ), such that

E
[
‖u(0)− ui(0)‖p

n− 2
p ,p

]
→ 0,

‖f − fi‖Hn−2,p(τ) → 0,

‖g − gi‖Hn−1,p(τ,l2) → 0.

By using the remark directly after (2.6), one can show that for any φ ∈ C∞0 ,
(2.6) holds in (0, τ‖ almost everywhere.

On the other hand, the previously proven inequalities imply that (at least for a
modi�cation of) u

E
[

sup
t≤τ∧T

‖u(t, ·)− ui(t, ·)‖pn−2,p

]
→ 0,

for any constant t <∞. Remarking, that the processes 〈ui(t, ·), φ〉 are a.s. con-
tinuous, we can conclude, that 〈u(t, ·), φ〉 is also a.s. continuous. Thus, (2.6) holds
not only in (0, τK almost everywhere, but also for all t ≤ τ almost surely. Hence
u ∈ Hn,p(τ) and ui → u in Hn,p(τ). �

Theorem 11. Let g ∈ Hn,p(l2), then there exists a sequence gi ∈ Hn,p(l2), such
that ‖g − gi‖Hn,p(l2) and

gki =

{∑i
j=1 χ(τ ij−1,τ

i
j ]

(t)gjki k ≤ i
0 k > i

,

where τ ij−1 ≤ τ ij are bounded stopping times and gjki ∈ C∞c .
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Proof. Due to the argument in Remark 7 and the density of C∞c in any Hn,p, we
only need to consider the case n = 0. Further, we can easily see, that the set of
g ∈ Lp(l2) for which this statement holds is a linear, closed subspace L of Lp(l2).
What remains to show is that L = Lp(l2). If this was not true then there exists,
by Riesz's theorem, a nonzero h ∈ Lq(l2) (with q = p

p−1 ) such that

E
[ˆ ∞

0

ˆ
Rd
〈h, g〉l2 dx dt

]
= 0

for any g ∈ L. In particular

E
[ˆ ∞

0

χ(0,τ ]

(ˆ
Rd
hk, g dx

)
dt

]
= 0

for any bounded stopping time τ, k ≥ 1 and g ∈ C∞c . Since
´
Rd h

k, g dx is

(almost everywhere equal to) a predictable function, it follows that
´
Rd h

k, g dx = 0
on (0,∞K(a.e.).

Taking g from a countable subset G ⊂ C∞c that is dense in Lp, we get that on a
subset of (0,∞K of full measure

ˆ
Rd
hk, g dx = 0 ∀ g ∈ G, k ≥ 1.

But then hk = 0 (a.e.) on (0,∞K× Rd, which contradicts h 6= 0. �

Theorem 12. Let T ∈ (0,∞). If ui ∈ Hn,p(T ), i = 1, 2, . . . , and ‖ui‖Hn,p(T ) ≤ K
for a �nite constant K, then there exists a subsequence i′ and a function u ∈
Hn,p(T ), such that

(i)

ui′ ⇀ u inHn,p(T ),

ui′(0, ·) ⇀ u(0, ·) in Lp(Ω, Hn− p2 ,p),

Aui′ ⇀ Au inHn−2,p(T ),

Bui′ ⇀ Bu inHn−1,p(T, l2).

(ii)

‖u‖Hn,p(T ) ≤ K.
(iii)
For any φ ∈ C∞c and any t ∈ [0, T ], we have 〈φ, ui′(t, ·)〉⇀ 〈φ, u(t, ·)〉 in Lp(Ω).

Proof. From the properties of the Lp spaces, the existence of a subsequence and i′

and the weak convergence to some u, u(0, ·), Au, Bu in the respective spaces. For
any φ ∈ C∞c , the expressions in

〈ui′(t, ·), φ〉 = 〈ui′(0, ·), φ〉+

ˆ t

0

〈Aui′(s, ·), φ〉 ds+

∞∑
k=1

ˆ t

0

〈
Bkui′(s, ·), φ

〉
dW k

s ,
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converge in the corresponding spaces. Since integration and stochastic integra-
tion can be consider as continuous linear operators (which means that they are also
weakly continuous operators), we have that for any φ ∈ C∞c ,

(2.11) 〈u(t, ·), φ〉 = 〈u(0, ·), φ〉+

ˆ t

0

〈Au(s, ·), φ〉 ds+

∞∑
k=1

ˆ t

0

〈
Bku(s, ·), φ

〉
dW k

s ,

for almost all (ω, t) ∈ Ω× [0, T ].
By the Banach-Saks theorem, there exists a sequence (vi′ , Avi′ , Bvi′) of convex

combinations of (ui′ , Aui′ , Bui′), which converges strongly to (u, f, g) in Hn,p(T )×
Hn−2,p(T )×Hn−1,p(T, l2). From (2.8), it follows that

E
[
sup
t≤T
‖vi − vj‖pn−2,p

]
→ 0

as i, j → ∞. Therefore, there exists a Hn−2,p valued function v on Ω × [0, T ],
such that

E
[
sup
t≤T
‖vi − v‖pn−2,p

]
→ 0.

In particular, we have that for any φ ∈ C∞c 〈vi(t, ·), φ〉 → 〈v(t, ·), φ〉 uniformly
on [0, T ] in probability. On the other hand, the strong convergence of vi to u in
Hn,p(T ) implies that 〈vi(t, ·), φ〉 → 〈u(t, ·), φ〉 on Ω× [0, T ] in measure. From this,
we can conclude that 〈vi(t, ·), φ〉 → 〈u(t, ·), φ〉 a.e.. Because φ was arbitrary and by
the density of C∞c in the spaces conjugate to Hn,p(T ), u = v a.e. on Ω× [0, T ] (as
generalized functions).

Thus, we have v ∈ Hn,p(T ) and as 〈vi(t), φ〉 are given by equations, similar to
(2.11), implies that 〈vi(t), φ〉 is (a.s.) continuous in t. The uniform convergence of
〈vi(t), φ〉 to 〈v(t), φ〉 yields the a.s. continuity of 〈v(t), φ〉. By the above, (2.11) still
holds for almost all (ω, t) ∈ Ω× [0, T ], if 〈u(t), φ〉 is replaced by 〈v(t), φ〉. Since the
latter is continuous and the right hand side of (2.11) is continuous as well, 〈v(t), φ〉
equals the right hand side of (2.11) for all t ∈ [0, T ] (a.s.). Hence, v ∈ Hn,p(T ),
which shows (i) for v instead of u, but this is irrelevant.

(ii) follows from the a.e. equality of u = v on Ω × [0, T ] and from the fact that
the norm of the weak limit is less or equal to the liminf of the norms of the sequence
(Banach-Steinhaus).

For (iii), we take a φ ∈ C∞c and a ψ ∈ Lq(Ω) with q = p
p−1 and write

E [ψ (〈ui(t, ·), φ〉)]

= E [ψ (〈ui(0, ·), φ〉)]+E
[
ψ

(ˆ t

0

〈Aui(s, ·), φ〉 ds
)]

+E

[
ψ

( ∞∑
k=1

ˆ t

0

〈Bku(s, ·), φ〉 dW k
s

)]
.

By the previously stated properties of the operators and (i),

lim
i′→∞

E [ψ (〈ui′(t, ·), φ〉)]
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= lim
i′→∞

(
E [ψ (〈ui′(0, ·), φ〉)] + E

[
ψ

(ˆ t

0

〈Aui′(s, ·), φ〉 ds
)]

+ E

[
ψ

( ∞∑
k=1

ˆ t

0

〈Bkui′(s, ·), φ〉 dW k
s

)])

= E [ψ (〈u(0, ·), φ〉)]+E
[
ψ

(ˆ t

0

〈Au(s, ·), φ〉 ds
)]

+E

[
ψ

( ∞∑
k=1

ˆ t

0

〈Bku(s, ·), φ〉 dW k
s

)]

= E [ψ (〈u(t, ·), φ〉)] .
This proves (iii). �

Now, we want to look for functions u ∈ Hn,p0 (τ), such that A,B are of the form
Au = Lu+ f,
Bu = Cu+ g.
So (2.1) will basically be of the form

(2.12)

du(t) =

d∑
i=1

d∑
j=1

aij(t)
∂2u

∂xi∂xj
+ cu+ f dt+

(
N∑
k=0

(
d∑
i=1

σik(t)
∂u

∂xi
+ gk

)
dW k

t

)
.

In order to make things a bit easier, we consider the special case

(2.13) du(t, x) = ∆u(t, x) + f(t, x) dt+

(
N∑
k=0

gk dW
k
t

)
t > 0.

In the following, the operators Tt are de�ned by (2.3) and p ≥ 2.

Lemma 13. Let −∞ ≤ a < b ≤ ∞, g ∈ Lp((a, b)× Rd, l2), then´
Rd
´ b
a

(´ t
a
‖∇Tt−sg(s, ·)(x)‖2l2 ds

) p
2

dt dx ≤ N(d, p)
´
Rd
´ b
a
‖g(t, x)‖pl2 dt dx.

Proof. [?]. �

Theorem 14. For f ∈ H−1,p, g ∈ Lp(l2),
(i) (2.13) with zero initial condition has a unique solution u ∈ H1,p(τ).
(ii) For this equation we have

(2.14)

∥∥∥∥ ∂2u

∂x∂x

∥∥∥∥
H−1,p

≤ N(d, p)(‖f‖H−1,p + ‖g‖L(l2)).

(iii) For this solution we have u ∈ Cloc([0,∞), Lp) almost surely, and for any
λ, T > 0,

E
[
sup
t≤T

(exp(−pλt)‖u(t, ·)‖pp)
]

+ E

ˆ T

0

exp(−pλt)

∥∥∥∥∥|u| p−2
p

∣∣∣∣∂u∂x
∣∣∣∣ 2p (t, ·)

∥∥∥∥∥
p

p


(2.15) ≤ N(d, p, λ)

(
‖ exp(−λt)f‖pH−1,p + ‖ exp(−λt)g‖pL(T,l2)

)
.
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Proof. There exists a linear operator
P : H−1,p → (Lp)d+1,

such that if h ∈ H−1,p and Ph = (h0, h̃
1, . . . , h̃d), then h = h0 + div(h̃) and

(2.16) ‖h̃‖p + ‖h0‖p ≤ N(d, p)‖h‖−1,p, ‖h‖−1,p ≤ N(d, p)(‖h̃‖p + ‖h0‖p).

Actually, we can choose h̃ = −∇((1−∆)−1h) and h0 = h−div(h̃) = (1−∆)−1h.
Indeed, ‖h0‖p = ‖h‖−2,p ≤ ‖h‖−1,p. Also, the fact, that ∂

∂xi
is a bounded

operator from Hn,p to Hn+1,p for any n ([39]) means that ∂
∂xi

(1 − ∆)−
1
2 is a

bounded operator from Hn,p to Hn,p and ∂
∂xi

(1−∆)−1 is a bounded operator from

Hn,p to Hn−1,p. This is the reason, why ‖h̃‖p ≤ N(d, p)‖h‖−1,p. This results in

the �rst estimate of (2.16). On the other hand (1 − ∆)−
1
2h = (1 − ∆)−

1
2h0 +

div
(

∂
∂xi

(1−∆)−
1
2

)
h̃ and both operators on the right hand side are bounded on

Lp.
De�ne (f0, f̃) = Pf . Equation (2.13) takes the form

(2.17) du = (∆u+ f0 + div(f̃)) dt+
∑
k

gk dW k
t ,

and we supply it with zero initial condition. Now we will prove, that for arbitrary
f0, f̃ ∈ Lp, our assertions hold for (2.17) instead of (2.13). Obviously, in (2.14) and

(2.15), f = f0 + div(f̃).
First we consider the (very particular) case, in which

(2.18) f0(t, x) =

m∑
i=1

χ(τi−1,τi](t)f0i(x),

f̃(t, x) =

m∑
i=1

χ(τi−1,τi](t)f̃i(x),

g(t, x) =

m∑
k=1

gk(t, x)hk,

gk(t, x) =
m∑
i=1

χ(τi−1,τi](t)g
ik(x),

where {hk} is the standard orthonormal basis in l2, m < ∞, τi are bounded

stopping times with τi−1 ≤ τi and f0i, f̃ , g
ik ∈ C∞c .

Set

v(t, x) =
∑
k

ˆ t

0

gk(s, x) dW k
s =

m∑
i=1

m∑
k=1

gik(x)
(
W k
t∧τi −W

k
t∧τi−1

)
,

(2.19) u(t, x))v(t, x) +

ˆ t

0

Tt−s(∆v + f)(s, ·)(x) ds, ∀t ≥ 0.

It is easy to see that, by de�nition, the function u− v is in�nitely often di�eren-
tiable in (t, x) and satis�es the equation
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∂z

∂t
= ∆z +∆v + f.

For any x, it follows that, the function u(t, x) satis�es almost surely

(2.20) u(t, x) =

ˆ t

0

(∆u(s, x) + f(s, x)) ds+

m∑
k=1

ˆ t

0

gk(s, x) dW k
s .

Now, we want to obtain some bounds on the norms of u, for that we de�ne

u1(t, x) =

ˆ t

0

Tt−sf(s, x) ds.

By Proposition (2), dealing with the deterministic case, for any ω,

(2.21)

∥∥∥∥∂2u1

∂x2

∥∥∥∥
Lp(R+,H−1,p)

≤ N‖f‖Lp(R+,H−1,p).

Using once again, that the operators ∂
∂xi

(1 − ∆)−
1
2 are bounded in Lp for any

p > 1.

(2.22)∥∥∥∥∂2u

∂x2
− ∂2u1

∂x2

∥∥∥∥p
H−1,p

≤ N
∥∥∥∥∂u∂x − ∂u1

∂x

∥∥∥∥p
Lp

= N

ˆ ∞
0

ˆ
Rd

E
[∣∣∣∣∂u∂x − ∂u1

∂x

∣∣∣∣p] (t, x)dxdt.

We will make further transformations to this formula. If zk = zk(x) are bounded
Borel functions, then by Ito's formula, applied to the increment over [0, t] of(ˆ t

r

Tt−sz
k ds

)(
W k
r∧τ2 −W

k
r∧τ1

)
as a function of r, we obtain a.s.

0 = −
ˆ t

0

(
W k
r∧τ2 −W

k
r∧τ1

)
Tt−rz

k dr +

ˆ t

0

χ(τ1,τ2](r)

(ˆ t

r

Tt−sz
k ds

)
dW k

r .

Either by using this for our particular g, or by using the stochastic version of
the Fubini theorem and coming back to (2.19), for any t ≥ 0 and x ∈ Rd, we get
(almost surely)

∂u

∂x
(t, x)− ∂u1

∂x
(t, x) =

∂v

∂x
(t, x) +

ˆ t

0

Tt−s

m∑
k=1

ˆ t

0

∆
∂gk

∂x
(r, x) dW k

r ds

=
∂v

∂x
(t, x) +

m∑
k=1

ˆ t

0

ˆ t

0

d

ds
Tt−s

∂gk

∂x
(r, x) ds dW k

r =

m∑
k=1

ˆ t

0

Tt−r
∂gk

∂x
(r, x) dW k

r .

By the Burkholder-Davis-Grundy inequality

E
[∣∣∣∣∂u∂x (t, x)− ∂u1

∂x
(t, x)

∣∣∣∣p] (t, x) ≤ NE

(ˆ t

0

m∑
k=1

∣∣∣∣Tt−s ∂gk∂x (r, x)

∣∣∣∣2 dr
) p

2


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= NE

(ˆ t

0

∥∥∥∥Tt−s ∂gk∂x (r, x)

∥∥∥∥2

l2

dr

) p
2

 .
Applying this to (2.22) and applying Lemma (13),

∥∥∥∥∂u∂x (t, x)− ∂u1

∂x
(t, x)

∥∥∥∥p
Lp
≤ NE

ˆ ∞
0

ˆ
Rd

(ˆ t

0

m∑
k=1

∣∣∣∣Tt−s ∂gk∂x (r, x)

∣∣∣∣2 dr
) p

2

dx dt


≤ N‖g‖pLp(l2).

Along with (2.21), this gives us (2.14). We do not know yet, if u ∈ H1,p. We
want to prove (2.15) for su�ciently large λ.

From (2.20) and Ito's formula, we get

|u(t, x)|p exp(−λt) =

ˆ t

0

exp(−λt)(p|u|p−2u∆u+ p|u|p−2uf

+
1

2
p(p− 1)|u|p−2‖g‖2l2 − λ|u|

p)(s, x) ds

+p
∑
k≤m

ˆ t

0

exp(−λt)|u|p−2ugk(s, x) dW k
s .

We integrate with respect to x, use the stochastic Fubini theorem and the fact
that u(t, x), g(t, x) and their derivatives decrease very fast, when |x| → ∞. Then
we integrate by parts in

´
|u|p−2u∆u dx and notice that for q = p

p−1

ˆ
Rd
|u|p−2uf(s, x)dx = −(p−1)

ˆ
Rd
|u|p−2 ∂u

∂x
(t, x)·f̃(s, x)dx+

ˆ
Rd
|u|p−2uf0(s, x)dx,∣∣∣∣ˆ

Rd
|u|p−2 ∂u

∂x
(t, x) · f̃(s, x) dx

∣∣∣∣
≤
ˆ
Rd

(
|u|

p−2
2

∣∣∣∣∂u∂x (t, x)

∣∣∣∣)q |u|q( p−2
2 ) dx+ ‖f̃(s, ·)‖pp

≤ N‖f(s, ·)‖p−1,p +N1‖u(s, ·)‖pp +
1

2

∥∥∥∥∥|u| p−2
p

∣∣∣∣∂u∂x (t, x)

∣∣∣∣ 2p (s, ·)

∥∥∥∥∥
p

p

,

ˆ
Rd
|u(s, x)|p−2u(s, x)f0(s, x) dx ≤ ‖f0(s, ·)‖pp + ‖u(s, ·)‖pp

≤ N‖f(s, ·)‖p−1,p + ‖u(s, ·)‖pp.
For

λ ≥ p(p− 1)N1 + p+
p(p− 1)

2
,

we get

‖u(s, ·)‖pp exp(−λt) +
p(p− 1)

2

ˆ t

0

∥∥∥∥∥|u| p−2
p

∣∣∣∣∂u∂x
∣∣∣∣ 2p (s, ·)

∥∥∥∥∥
p

p

exp(−λs) ds
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≤ N
ˆ t

0

(
‖f(s, ·)‖p−1,p + ‖g(s, ·)‖pp

)
exp(−λs) ds

+p
∑
k≤m

ˆ t

0

exp(−λs)
(ˆ

Rd
|u|p−2ugk(s, x) dx

)
dW k

s ,

where N = N(p). After this, we basically just have to take the expectation and
apply certain transformations based on the Burkholder-Davis-Grundy inequalities.
More can be found in [26].

The assumption about the arbitrariness of λ in (2.15) can be justi�ed by a
rescaling argument, when instead of f, g and ω, we take (c2f, cg), (c2t, cx) and
1
cωc2t and get u(c2t, cx) instead of u(t, x).
From our explicit formulas and from the particular choices of f and g, it follows

that u ∈ Cloc([0,∞), Hn,p) for any n (and any ω). This proves (iii).
From (2.14) and (2.15), it follows that u ∈ ∩T>0H1,p(T ). Furthermore, by the

stochastic Fubini theorem, we get from (2.20), that u solves (2.13) in the sense of
De�nition 4. Hence u ∈ H1,p, which proves (i). The uniqueness is a consequence
from setting f = g = 0 and arriving at the heat equation for which the uniqueness
of the solution in our class of functions is a standard fact. This completes the proof
if f, g are step functions.

In the general case, the uniqueness is proven in the exact same way. Concerning
the other points, we will use Theorem 11 and Remark 9.

If we consider all functions f0, f̃
j , gk as one sequence, then by Theorem 11,

we can approximate the by functions f0i, f̃
j
i , g

k
i of type (2.18). Let ui be the

corresponding solutions of (2.17). By the result for the particular case, ui is a
Cauchy sequence in H1,p and by Theorem 10, there exists a u ∈ H1,p to which ui

converges in H1,p. Remark 9 and the convergence
∥∥∥∂2u
∂x2 − ∂2u1

∂x2

∥∥∥p
H−1,p

→ 0 show

that Au = ∆u+ f and Bu = g. In particular, this proves (i).
(ii) follows from the construction of u. From (iii) in the particular case, we

get that ui is a Cauchy sequence in Lp(Ω, C([0, T ], Lp)) for any T . Therefore, it
converges in this space to a function v. It follows, that for any φ ∈ C∞c ,

〈v(t, ·), φ〉 =

ˆ t

0

(〈v(s, ·), ∆φ〉+ 〈f(s, ·), φ〉) ds+

∞∑
k=1

ˆ t

0

〈gk(s, ·), φ〉 dW k
s ,

for all t (a.s.). Thereforeu − v is a generalized solution to the heat equation
with zero initial condition and with bounded Lp-norm (a.s.). This implies that
‖(u− v)(t, ·)‖p = 0 for all t (a.s.), so that u ∈ C([0, T ], Lp) for all T (a.s.). Finally,
we get (2.15) by Fatou's lemma, taking into account that

ˆ T

0

ˆ
Rd
|∇(u− ui)|p dx dt =

ˆ T

0

ˆ
Rd
|∇(1−∆)−

1
2 (1−∆)

1
2 (u− ui)|p dx dt

≤ N
ˆ T

0

ˆ
Rd
|(1−∆)

1
2 (u− ui)|p dx dt→ 0

in probability for any T . This proves the theorem. �

Remark 15. Although (2.5) holds for p ∈ (1,∞), Lemma 13 is false for p < 2.
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Let us look at the task of dealing with equations with constant coe�cients for-
mally. We will try to make these observations more rigorous further on.

Assume, we have

(2.23) du(t, x) = f(t, x) dt+
∑
k

gk(t, x) dW k
t ,

and we de�ne a process xt and a function v by

(2.24) xit :=
∑
k

ˆ t

0

σi,k(s) dW k
s , i = 1, . . . , d,

v(t, x) := u(t, x− xt).
Applying Ito's formula to v, we get

(2.25)

dv(t, x) =

f(t, x− xt) +
∑
i

∑
j

ai,j(t)
∂2v

∂xi∂xj
(t, x)−

〈
∂g

∂xi
(t, x− xt), σi(t)

〉
l2

 dt

+
∑
k

(
gk(t, x− xt)−

∑
i

(
∂v

∂xi
(t, x)σi,k(t)

))
dW k

t .

This shows, ho to introduce the terms ∂v
∂xi

and σi,k in equation (2.23) and also
illustrates the necessity of g having a �rst derivative in x. If we had ∆u + f
in (2.23) instead of f , then we would get the second order di�erential operator∑
i

∑
j(δi,j +αi,j)

∂2

∂xi∂xj
which coe�cients strongly relate to the coe�cients of ∂v

∂xi

and σi,k(t). We could get around this problem, if we managed to start o� with an
equation with more general linear operators L instead of ∆.

If, instead of (2.23), we consider

du(t, x) = (∆u+ f̄) dt+
∑
k

gk(t, x) dW k
t ,

and take expectations in the (2.25) counterpart, then, assuming σ to be nonran-
dom, we get an equation for E[v(t, x)] with operator L di�erent from ∆.

De�nition 16. Denote by D the set of all D-valued functions u (u(t, x)) Ω× [0,∞),
such that for any φ ∈ C∞c ,

(i) the function 〈u, φ〉 is P - measurable,
(ii) for any ω ∈ Ω and T ∈ (0,∞), we have

(2.26)

ˆ T

0

sup
x∈Rd

|〈u(t, ·), φ(· − x)〉|2 dt <∞.

In the same way, we de�ne D(l2) by considering l2-valued linear functionals on
C∞c and replacing | · | by ‖ · ‖l2 .

Remark 17. We note that 〈u(t, ·), φ(· − x)〉 is continuous in x and Borel in t, so
(2.26) makes sense. Also, for p ≥ 2, q = p

p−1 , and any n,
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ˆ T

0

sup
x∈Rd

|〈u(t, ·), φ(· − x)〉|2 dt ≤
ˆ T

0

sup
x∈Rd

‖u(t, ·)‖2n,p‖φ(· − x)‖2−n,q dt

(2.27) ≤ ‖φ‖2−n,qT
p−2
p

(ˆ T

0

‖u(t, ·)‖pn,p dt

) 2
p

.

This shows, that if u ∈ Hn,p, condition (2.26) is satis�ed (at least for almost
all ω). If u ∈ Hn,p, then (2.6) holds true, which in turn shows, that 〈u(t, ·), φ〉
is indistinguishable from a predictable process, which holds true for any φ ∈ C∞c .
From the separability of H−n,q, it follows that we can modify u on a set of measure
zero and get a function belonging to D. In this sense, we write

(2.28) Hn,p ⊂ D.

De�nition 18. Let f, u ∈ D and g ∈ D(l2). We say that the equality

(2.29) du(t, x) = f(t, x) dt+ g(x, t) dWt t > 0,

holds in the sense of distributions, if for any φ ∈ C∞c , with probability 1 for all
t ≥ 0, we have

(2.30) 〈u(t, ·), φ〉 = 〈u(0, ·), φ〉+

ˆ t

0

〈f(s, ·), φ〉 ds+

∞∑
k=1

ˆ t

0

〈gk(s, ·), φ〉 dW k
s .

Since ‖〈g, φ〉‖2l2 is locally summable in t, the last series in (2.30) converges uni-
formly in t in probability over every �nite interval in time.

Note that, if u ∈ Hn,p and u satis�es (2.30) in the sense of distributions, then
by (2.28), u ∈ D and (2.29) holds in the sense of distributions.

Lemma 19. Let f, u ∈ D and g ∈ D(l2). Assume the de�nitions in (2.24),
then (2.23) holds (in the sense of distributions), if (2.25) holds (in the sense of
distributions).

Proof. Remember that for a distribution ψ(x) and y ∈ Rd, we interpret ψ(x − y)
as the distribution de�ned by 〈ψ, φ(·+ y)〉. From

ˆ T

0

sup
y∈Rd

∣∣∣∣〈∂2v

∂x2
(t, ·), φ(· − y)

〉∣∣∣∣2 dt =

ˆ T

0

sup
y∈Rd

∣∣∣∣〈v(t, ·), ∂
2φ

∂x2
(· − x)

〉∣∣∣∣2 dt
=

ˆ T

0

sup
y∈Rd

∣∣∣∣〈u(t, ·), ∂
2φ

∂x2
(·+ xt − y)

〉∣∣∣∣2 dt =

ˆ T

0

sup
y∈Rd

∣∣∣∣〈u(t, ·), ∂
2φ

∂x2
(· − y)

〉∣∣∣∣2 dt <∞
ˆ T

0

sup
y∈Rd

∣∣∣∣∣∣
〈〈∑

i

∂g

∂xi
(t, · − xt),

∑
i

σi(t)

〉
l2

, φ(· − y)

〉∣∣∣∣∣∣
2

dt
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=

ˆ T

0

sup
y∈Rd

∣∣∣∣∣∣
〈〈∑

i

∂g

∂xi
(t, · − xt), φ(· − y)

〉
,
∑

σii(t)

〉
l2

∣∣∣∣∣∣
2

dt

≤
ˆ T

0

‖σi(t)‖2l2 dt
ˆ T

0

sup
y∈Rd

∥∥∥∥∥
〈∑

i

∂g

∂xi
(t, · − xt), φ(· − y)

〉∥∥∥∥∥
2

l2

dt <∞,

it follows that v(t, x), f(t, x−xt) and
〈∑

i
∂g
∂xi

(t, · − xt), φ(· − y)
〉
l2
belong to D,

g(t, x − xt) and
∑
i
∂v
∂xi

(t, ·)σi belong to D(l2). Furthermore, for any φ ∈ C∞c , the

function F (t, x) := 〈u(t, · − x)φ〉 has a stochastic di�erential in t for any x and is
in�nitely often di�erentiable with respect to x. The assertion we made now follows
immediately from Ito's formula applied to F (t, xt). �

Remark 20. If, instead of (2.23), u satis�es the equation

u(t) =

 d∑
i=1

d∑
j=1

aij(t)
∂2u

∂xi∂xj
+ h(t, x)

 dt+

(
N∑
k=0

(
d∑
i=1

σik(t)
∂u

∂xi
) dW k

t

))
,

then (2.25) takes the form

(2.31)
∂

∂t
v(t, x) =

d∑
i=1

d∑
j=1

(aij(t)− αij(t))
∂2v

∂xi∂xj
(t, x) + h(t, x− xt) t > 0,

and can be considered on each ω separately. If a(t) < α(t), then the initial value
problem v(0) = v0 is ill-posed.

This shows, that the operators appearing in the stochastic part should be, in a
certain sense, subordinated to the operators appearing in the deterministic part of
the equation. This is essential, when constructing an Lp-theory.

In spite of what we just said, if we take d = 1 and a one dimensional Brownian
motion Wt, and consider the following equation

du(t, x) = iux(t, x) dWt,

then this equation has a somewhat nice solution for initial data u0 ∈ L2. We
use the Fourier transform and it turns out that û(t, ξ) = u0(ξ) exp(ξWt − 1

2 |ξ|
2t) is

the Fourier transform of the solution. We see that it decays very fast for |ξ| → ∞,
showing us that u(t, x) is in�nitely di�erentiable in x. Taking expectations, we
also see, that E[u(t, x)] = u0(x), if u0 is non random, and in this case, we get
a representation of any L2 function as an integral over Ω of functions u(ω, 1, x)
which are in�nitely often di�erentiable in x. However, a major drawback from such
equations is, that E[|u(t, 0)|p] =∞ for any p > 1 if, for example, û0(ξ) ≥ exp(−λξ),
where λ is a constant.

Lemma 21. Let f ∈ D, g ∈ D(l2) and u0 be a D-valued function on Ω, then the
following assertions hold true

(i) There can only exist one solution to (2.12) in D with initial condition u(0, ·) =
u0.
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(ii) Let Ft =Wt∨Bt for t ≥ 0, and assume that the σ-�elds Wt and Bt form in-
dependent increasing �ltrations. LetW and B be sets, such thatW∪B = {1, 2, . . . }.
Assume that (W k

t ,Wt) and (W r
t ,Bt) are Wiener processes for k ∈ W and r ∈ B.

Let u ∈ D satisfy equation (2.12) in the sense of distributions and let a, f, σ, g beWt-
adapted. Finally, assume that there exists an n ∈ (−∞,∞) such that f ∈ Hn,2(T )
and g ∈ Hn,2(T, l2) for any t ∈ (0,∞) and u(0, ·) is W0-measurable and

E
[
‖u(0, ·)‖2n,2

]
<∞.

Then there exists a unique solution ũ, in D, of the equation

(2.32)

dũ =

∑
i

∑
j

aij
∂2ũ

∂xi∂xj
+ f

 dt+
∑
k∈W

(∑
i

σik
∂ũ

∂xi
+ gk

)
dW k

t , t > 0.

In addition, for any φ ∈ C∞c and t ≥ 0,

(2.33) 〈ũ(t, ·), φ〉 = E [〈u(t, ·), φ〉|Wt] (a.s.).

Proof. (i) As usual, we will set f = g = 0 and u0 = 0 and use Lemma 19, it su�ces
to consider only the case where σ = 0. For any given φ ∈ C∞c we have

〈u(t, ·), φ〉 =

ˆ t

0

〈u(s, ·), L(s)φ〉 ds, t ≥ 0,

almost surely. Substituting φ with φ(· − x) and noting that both sides are
continuous and bounded in (t, x) on [0, T ] × Rd for any T < ∞, we get that the
function F (t, x) := 〈u(t, ·), φ(· − x)〉 is bounded in (t, x) on [0, T ] × Rd for any
T <∞, in�nitely often di�erentiable in x, and almost surely satis�es the equation

F (t, x) =

ˆ t

0

L(s)F (s, x) ds ∀ t, x.

From the theory of parabolic equations, F (t, x) = 0, ∀ t, x (a.s.), follows. This
means, that 〈u(t, ·), φ〉 = 0 for all t almost surely. Let us now take φ with integral
1, then for any x and n with probability 1, we have 〈u(t, ·), ndφ(n(· − x))〉 = 0 for
all t. By the continuity of this function in x, we get that it is 0 for all t and x with
probability 1. Finally, 〈u(t, ·), ndφ(n(· − x))〉 → u(t, x) as n→∞ for all (ω, t, x) in
the sense of distributions, implying that with probability 1, we have u(t, ·) = 0 for
all t, as stated.

(ii) We �rst notice that according to [26] equation (2.12) has a unique solution v
in the space Hn−1,2(T ), for any T . The de�nition of solutions in this space in [26]
is slightly continuous, but v is continuous (a.s.) as an Hn,2-valued process and

(2.34) E
[
sup
t≤T
‖v(t, ·)‖2n,2

]
<∞ ∀ T <∞,

so that v is a D solution of (2.12). It follows from (i) that our function u
coincides with v and therefore belongs to Hn−1,2(T ), for any T and (2.34) holds for
u. Furthermore, with probability 1 for all t at once,
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u(t) = u(0)+

ˆ t

0

∑
i

∑
j

aij(s)
∂2u

∂xi∂xj
(s) + f(s)

 ds+

ˆ t

0

∑
k∈W

(∑
i

σik(s)
∂u

∂xi
(s) + g(s)

)
dW k

s ,

where all integrals are taken in the sense of the Hilbert space Hn−1,2. By the
Hilbert-space counterpart of Theorem 1.4.7 in [26], there exists an Hn+1,2- valued,
Wt-predictable function ū(t), such that for almost all t, we have (a.s.)

ū(t) = E [u(t)|Wt] ,

∂ū

∂x
(t) = E

[
∂u

∂x
(t)|Wt

]
,

∂2ū

∂x2
(t) = E

[
∂2u

∂x2
|Wt

]
and

(2.35)

ū(t) = u(0)+

ˆ t

0

∑
i

∑
j

aij(s)
∂2ū

∂xi∂xj
(s) + f(s)

 ds+

ˆ t

0

∑
k∈W

(∑
i

σik(s)
∂ū

∂xi
(s) + g(s)

)
dW k

s ,

for almost all t and ω. The right hand side is a continuousHn−1,2-valued process,
which we will denote by ū and we will show that ũ is indeed the function we were
looking for.

By de�nition and the equality ū = ũ (a.e.), ũ satis�es (2.35) for all t with
probability 1 and is also a continuous process in Hn−1,2. This implies that ũ ∈ D
and ũ is a solution of (2.32). To prove (2.33) for any t, it remains to observe that
again by Theorem 1.4.7 in [26], the conditional expectation E[u(t)|Wt] is equal to
the right hand side of (2.35), almost surely. �

Theorem 22. Take n ∈ R, f ∈ Hn−1,p and g ∈ Hn,p(l2), then
(i) equation (2.12) with zero initial condition has a unique solution u ∈ Hn+1,p,
(ii) for this solution, we have

(2.36)

∥∥∥∥∂2u

∂x2

∥∥∥∥
Hn−1,p

≤ N(‖f‖Hn−1,p + ‖g‖Hn,p(l2)),

‖u‖Hn+1,p ≤ N‖〈f, g〉‖Fn−1,p ,

where N = N(d, p, σ,K),
(iii) we have u ∈ Cloc([0,∞), Hn,p) almost surely and for any λ, T > 0,

(2.37)

E
[
sup
t≤T

exp(−pλt)‖u(t, ·)‖pn,p
]
≤ N(‖ exp(−λt)f‖pHn−1,p(T )+‖ exp(−λt)g‖pHn,p(T,l2))

),

where N = N(d, p, δ,K, λ).
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Proof. Since one can apply the operator (I−∆)
n
2 to both sides of (2.12), it su�ces

to prove the theorem only for n = 0. As we have already noticed, any function
u ∈ H1,p also belongs to D. This and Lemma 21 prove the uniqueness in (i). The
translation invariance of our norms, combined with Lemma 19, shows that in order
to prove existence in (i) and all the other assertions, we only need to consider the
case σ = 0. As in the proof of Theorem 14, we can assume f, g as in (2.18).

In this case, we know from [26], equation (2.12) has a unique D-valued solution
u that belongs to Cb([0, T ]×Rd) and C((0, T ], L2) almost surely for any T <∞. It
follows, that u ∈ C([0, T ], Lp) almost surely for any T < ∞. Estimate (2.37) also
follows from [26], as in the proof of theorem 14). Now, it only remains to prove,
that u ∈ H1,p and (2.36) holds. Since we already know that u is a D solution, it
su�ces to show that u ∈ H1,p(T ) for any T < ∞, in order for it to be an element
of H1,p.

Since the matrix a is uniformly non-degenerate, by making a nonrandom time
change, we can reduce the general case to the case a ≥ I. On this case, de�ne the
matrix-valued function σ̄(t) = σ̄∗(t) ≥ 0 as the solution of he equation σ̄2(t) + 2I =
2a(t). Without loss of generality, we can assume that on our probability space we
are also given a d-dimensional Wiener process Bt, which is independent of Ft.

Now we consider the equation

(2.38)

dv(t, x) =

(
∆v(t, x) + f

(
t, x−

ˆ t

0

σ̄(s) dBs

))
dt+

∑
k

gk

(
t, x−

ˆ t

0

σ̄(s) dBs

)
dW k

t

with zero initial condition. We replace the predictable σ-�eld P with the pre-
dictable σ-�eld generated by F ∨ σ(Bs : s ≤ t). The space Hn,p becomes larger.
By Theorem 14, there exists a solution v of (2.38) possessing properties (i)-(iii)
listed in the theorem. We use again that, after changing, if necessary, v on a set of
probability zero, the function v becomes a D-solution of (2.38). By Lemma 19, the

function z(t, x) := v
(
t, x+

´ t
0
σ̄(s) dBs

)
is a D-solution of

dz(t, x) =

∑
i

∑
j

aij(t)
∂2z

∂xi∂xj
(t, x) + f(t, x)

 dt+
∑
k

gk(t)dW k
t +
∑
i

∑
j

σij(s)
∂z

∂xi
(t, x)dBjt ,

and by Lemma 21, there exists a solution ũ ∈ D of

dũ(t, x) =

∑
i

∑
j

aij(t)
∂2ũ

∂xi∂xj
(t, x) + f(t, x)

 dt+
∑
k

gk(t, x) dW k
t ,

which is (2.12) in our case. In addition, for any φ ∈ C∞c and t ≥ 0, (a.s.)

〈ũ(t, ·), φ〉 = E [〈z(t, ·), φ〉|Ft] = E
[〈
v

(
t, ·+

ˆ t

0

σ̄(s) dBs

)
, φ

〉
|Ft
]
.

In particular, it follows from this equality that ũ is a D-solution with respect to
the initial predictable σ-�eld P, and from the uniqueness, we get ũ = u. Therefore,
(a.s.)
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(2.39) 〈u(t, ·), φ〉 = E
[〈
v

(
t, ·+

ˆ t

0

σ̄(s) dBs

)
, φ

〉
|Ft
]
.

Further, it follows that

(2.40) |〈u(t, ·), φ〉|p ≤ E
[
‖v(t, ·)‖p1,p|Ft

]
‖φ‖p−1,p

(a.s.) for any φ ∈ C∞c and t ≥ 0, where q = p
p−1 .

Next, we take a countable family Φ ⊂ C∞c , which is dense in C∞c . We observe
that, given a distribution ψ, we have ψ ∈ H1,p if, and only if, for any φ ∈ Φ
we have |〈ψ, φ〉| ≤ N‖φ‖−1,q with a constant N independent of φ. In this case
exists a bounded linear functional l on H−1,q, such that l(φ) = 〈ψ, φ〉 for any

φ ∈ Φ. Since l(φ) = 〈(1−∆)−
1
2h, φ〉 with an h ∈ Lp and Φ dense in C∞c , we have

ψ = (1−∆)−
1
2h ∈ H1,p. This also implies, that the set {(ω, t) : w(ω, t, ·) ∈ H1,p}

is measurable (even predictable) for any w ∈ D,say w = u.
We also know that v ∈ H1,p, which implies that E

[
‖v(t, ·)‖p1,p

]
< ∞ for almost

all t. We now �x such a t. Then there exists a set Ω′ of probability 1 such that
E
[
‖v(t, ·)‖p1,p|Ft

]
< ∞ on Ω′ and (2.40) holds for all ω ∈ Ω′ and φ ∈ Φ. Hence

u(t, ·) ∈ H1,p for the chosen t and all ω ∈ Ω′. In particular, u(t, ·) ∈ H1,p for almost
all (ω, t) and from (2.40) it follows that

‖u(t, ·)‖p1,p ≤ E
[
‖v(t, ·)‖p1,p|Ft

]
(a.s.),

‖u‖H1,p(T ) ≤ ‖v‖H1,p(T ) <∞.
Thus, u ∈ H1,p(T ) for any T <∞ and u ∈ H1,p.
Similarly, from the equality〈

∂2u

∂x2
(t, ·), φ

〉
= E

[〈
∂2v

∂x2
(t, ·)

(
t, ·+

ˆ t

0

σ̄(s) dBs

)
, φ

〉
|Ft
]

(a.s.),

we get ∥∥∥∥∂2u

∂x2
(t, ·)

∥∥∥∥p
−1,p

≤ E

[∥∥∥∥∂2v

∂x2
(t, ·)

∥∥∥∥p
−1,p

|Ft

]
(a.s.).

This and the properties of v, immediately yield (2.36). �
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3. Self Intersection Local Times (SILTs) of Brownian Motions

In the �rst part of this section we will follow the more �traditional� way of
de�ning the notion of SILTs as it is presented in [18, 4, 32].

Formally, the self intersection local time of a planar Brownian motion on the
Borel set B ⊂ R2

+, is de�ned as

β2(x,B) :=

ˆ ˆ
B

δ0(Ws −Wr − x) dr ds x ∈ R2, t ∈ R+.

More precisely, it is de�ned as

β2(x,B) := lim
ε→0

ˆ ˆ
B

ρε(Ws −Wr − x) dr ds,

where

ρε(x) :=
exp

(
− |x|

2

2ε

)
2πε

.

Rosen [32] showed that β2(x,B), where B is a bounded Borel set in R2
+(ε) :=

{(s, t) : s, t ≥ 0, |s− t| > ε} for an ε > 0, is a continuous function in x.
We will not deal with general Borel sets and remain on the set {t, s ∈ R+ | 0 ≤

s ≤ t} and introduce the following notation

β2(x, t) := lim
ε→0

ˆ t

0

ˆ s

0

ρε(Xs −Xr − x) dr ds x ∈ R2, t ∈ R+.

Remark 23.

E
[ˆ t

0

ˆ s

0

ρε(Xs −Xr − x) dr ds

]
=

ˆ t

0

ˆ s

0

E [ρε(Ws −Wr − x)] dr ds

=

ˆ t

0

ˆ s

0

ˆ
R2

ρε(z − x)
1

2π(s− r)
exp

(
− |z|2

2(s− r)

)
dz dr ds.

Letting ε→ 0, we get

ˆ t

0

ˆ s

0

1

2π(s− r)
exp

(
− |x|2

2(s− r)

)
dr ds.

We already see, that for x = 0, the points on the diagonal are problematic, as
the integral will not be �nite any longer.

To deal with those problematic points one can introduce, like it was �rst done
by [4], the so-called regularized version of the SILT,

γ(x, t) := lim
ε→0

(ˆ t

0

ˆ s

0

ρε(Ws −Wr − x) dr ds− E
[ˆ t

0

ˆ s

0

ρε(Ws −Wr − x) dr ds

])
.

Sometimes, slightly di�erent normalizations are used, which di�er from this one
by, at most, a constant times t.

Through this regularization/normalization, we obtain convergence a.s. and con-
tinuity of the limit in t.
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Remark 24. A rather trivial but, for our purposes, important result, is that β2(0, t)
is, in law, equal to tβ2(0, 1).

βε2(at, x) :=

ˆ at

0

ˆ s

0

ρε(Ws −Wr − x) dr ds

=

ˆ at

0

h(s) ds =

ˆ t

0

h(sa)a ds

= a

ˆ t

0

ˆ as

0

ρε(Wsa −Wr − x) dr ds = a2

ˆ t

0

ˆ s

0

ρε(Wsa −Wra − x) dr ds

=d a2

ˆ t

0

ˆ s

0

ρε(Wa(s−r) − x) dr ds = a2

ˆ t

0

ˆ s

0

ρε(
√
aWs−r − x) dr ds

= a2a−
1
2

ˆ t

0

ˆ s

0

ρ ε√
a

(
Ws−r −

x√
a

)
dr ds = a

3
2

ˆ t

0

ˆ s

0

ρ ε√
a

(
Ws−r −

x√
a

)
dr ds

= a
3
2 β

ε√
a

2

(
t,

x√
a

)
.

More general results regarding scaling can be found in [11, 10].
We will now make a small excursion into the potential theory of Brownian mo-

tions, in order to remind ourselves of some results, which will be of importance in
the next section.

Let Wt denote a Brownian motion in Rd.

De�nition 25. A point x ∈ Ω is called regular for the closed set Ω ⊂ Rd if the
�rst hitting time TΩ := inf{t ≥ 0 : Wt ∈ Ω} satis�es Px(TΩ = 0) = 1. A point
which is not regular is called irregular.

Theorem 26. Suppose Ω ⊂ Rd is a bounded domain and φ is a continuous function
on ∂Ω. De�ne τ := inf{t ≥ 0 : Wt ∈ ∂Ω} and de�ne u : Ω̄→ R by

u(x) := Ex[φ(Wτ )].

u satis�es the following three points:
(a) A solution to the Dirichlet problem exists if and only if the function u is a

solution to the Dirichlet problem with boundary condition φ.
(b) u is a harmonic function on Ω with u(x) = φ(x) for all x ∈ ∂Ω and is

continuous at every point x ∈ ∂Ω that is regular for the complement of Ω.
(c) If every x ∈ ∂Ω is regular for the complement of Ω, then u is the unique

continuous function u : Ω̄→ R which is harmonic on Ω such that u(x) = φ(x) for
all x ∈ ∂Ω .

Proof. [29]. �

Theorem 27. Let Ω ⊂ Rd be a bounded domain and u : Ω̄ → R be a continuous
function, which is twice continuously di�erentiable on Ω. Let g : Ω̄ → R be
continuous. Then u is said to be the solution of Poisson's problem for g if u(x) = 0
for all x ∈ ∂Ω and

−1

2
∆u(x) = g(x) ∀ x ∈ Ω.
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Proof. [29]. �

Remark 28. For bounded g, the solution u of the Poisson problem, if it exists,
equals

u(x) = Ex

[ˆ A

0

g(Wt) dt

]
for x ∈ Ω,

where A = inf{t ≥ 0 : Wt /∈ Ω}. Conversely, if g is Hölder continuous and every
x ∈ ∂Ω is regular for the complement of Ω, then u solves the Poisson problem for
g.

If u solves Poisson's problem for g = 1 in a domain Ω ⊂ Rd, then u(x) = Ex[A]
is the average time it takes a Brownian motion started in x to leave the set Ω.

Remark 29.
(3.1)

gR(x, y) :=

{
− 1

2π log
(∣∣ x
R −

y
R

∣∣)+ 1
2π log

(∣∣∣ x|x| − |x|yR2

∣∣∣) x 6= 0, x, y ∈ B(0, R)

− 1
π log

(∣∣ y
R

∣∣) x = 0, y ∈ B(0, R)
.

Which can, in the �rst case, be rewritten as

G(x) := − 1

2π
log(|x|)

g(x, y) = G(y − x)−G
(
|x|
(
y − x

|x|2

))

gR(x, y) = − 1

2π
log
(∣∣∣ x
R
− y

R

∣∣∣)− 1

2π
log

(∣∣∣ x
R

∣∣∣ ∣∣∣∣∣ yR − x
R∣∣ x
R

∣∣2
∣∣∣∣∣
)

= − 1

2π
log


∣∣ x
R −

y
R

∣∣∣∣ x
R

∣∣ ∣∣∣∣ yR − x
R

| xR |2
∣∣∣∣
 =

1

4π
log


∣∣ x
R

∣∣2 ∣∣∣∣ yR − x
R

| xR |2
∣∣∣∣2∣∣ x

R −
y
R

∣∣2
 .

∣∣ x
R

∣∣2 ∣∣∣ yR − x
R

| xR |2

∣∣∣2∣∣ x
R −

y
R

∣∣2 =

∣∣ x
R

∣∣2(∣∣ y
R

∣∣2 + 1

| xR |2
− 2 xR

y
R

| xR |2
)

| xR −
y
R |2

=

∣∣ x
R

∣∣2 ∣∣ y
R

∣∣2 + 1− 2 xR
y
R∣∣ x

R −
y
R

∣∣2 = 1 +
(1 +

∣∣ x
R

∣∣)2(1 +
∣∣ y
R

∣∣)2∣∣ x
R −

y
R

∣∣2 .

We see that the logarithm is always positive. Consider

ˆ
|y|≤R

1

4π
log


∣∣ x
R

∣∣2 ∣∣∣∣ yR − x
R

| xR |2
∣∣∣∣2∣∣ x

R −
y
R

∣∣2
 dy.

We change the scaling of the coordinates (x̄ := x
R ) in order to arrive at
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R

ˆ
|y|≤1

1

4π
log

 |x̄|2
∣∣∣y − x̄

|x̄|2

∣∣∣2
|x̄− y|2

 dy.

Now we choose coordinates, so x̄ = (S, 0) and y = r(cos(φ), sin(φ)).
The integral becomes

R

ˆ 1

0

ˆ 2π

0

1

4π
log

(
1 + r2S2 − 2rS cos(φ)

S2 + r2 − 2rS cos(φ)

)
r dφ dr

= c(R)
1

4π

ˆ 1

0

r(I(1, rS)− I(r,R)) dr,

where I(x, y) is de�ned as

I(x, y) =

ˆ 2π

0

log(x2 + y2 − 2xy cos(φ)) dφ = 4πmax{log(x), log(y)}.

With 0 ≤ r and S ≤ 1, it follows that I(1, rS) = 0. Therefore the integral
becomes

−
ˆ 1

0

rmax{log(r), log(S)} dr = − log(S)

ˆ 1

0

r dr −
ˆ 1

S

r log(r) dr =
1

4
(1− S2).

This tells us that

sup
|x̄|≤1

ˆ
|y|≤1

|g(x̄, y)| dy ≤ R.

Although we already de�ned the notion of SILTs, we want to use an alternative
(potentially more elegant) way to approach them and derive some important results.

Let Xt, Yt be two independent Brownian motions in R2 and gR(x, y) the Green
function (3.1) of a Brownian motion killed on exiting the ball B(0, R).

Set

TR = TR(X) := inf{t : |Xt| ≥ R}.
For each x ∈ R2 and u ≤ 1, we de�ne the random measure

(3.2) µx,u(A) :=

ˆ u

0

χA(Xr + x) dr A ⊂ R2.

Lemma 30. For each ε ∈ (0, 1] and almost every ω, there exists a Kε(ω) such that

(3.3) µx,u(B(y, s))(ω) ≤ Kε(ω)(s2−ε ∧ 1),

for all y ∈ R2.

Proof. We have that µx,u(R2) ≤ u, so we will assume s ≤ 1
2 . Let R ≥ 2 + 2|x| and

let

At :=

ˆ t∧TR

0

χB(y,s)(Xr + x) dr.

( Proposition 5.6 in [30] tells us the following)
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Ew [ATR ] = Ew
[´ TR

0
χB(y,s)(Xr + x) dr

]
= u(w − x), where u(x) is the solution

of the Poisson problem

−1

2
∆u = χB(y,s)(x) x ∈ B(0, R),

u(x) = 0 x ∈ ∂B(0, R).

Ew [ATR ] = Ew

[ˆ TR

0

χB(y,s)(Xr + x) dr

]
= Ew

[ˆ TR

0

χ{|Xr+x−y|≤s} dr

]

=

ˆ
B(y−x,s)

log

(
1

|w − z|

)
dz.

As gR(w, z) ≤ c
(

1 ∨ log
(

1
|w−z|

))
, if w ∈ B(0, R),

Ew[ATR ] ≤ c
ˆ
B(y−x,s)

(
1 ∨ log

(
1

|w − z|

))
dz

≤ c
ˆ
B(y−x,s)

(
1 ∨ log

(
1

|w − z|

))
dz ≤ c

ˆ
B(0,s)

log

(
1

|z|

)
dx

≤ cs2 log

(
1

s

)
.

Since At is an additive functional, the above implies

E0[ATR −At|Ft] ≤ EXt [ATR ] ≤ sup
w

Ew[ATR ] ≤ cs2− ε2

.
By [16, 15], we have that E0[exp(λATR)] ≤ 2, if λ ≤ 1

8 supw Ew[ATR ]. By Cheby-
chev's inequality, we get

(3.4) P0(ATR > c1s
2−ε) ≤ 2 exp(−c2s−

ε
2 ).

Looking at B(0, 3R), then we can cover this set with N = cs−d balls of radius 2s
and we denote them by B1, . . . , BN . Every ball B(y, s), y ∈ B(0, 2R) is contained
in one of the Bi's.

De�ning

DR := {sup
t≤1
|Xt| ≤ R},

(3.4) yields (for some y ∈ B(0, 2R))

P0(µx,u(B(y, s)) ≥ c1s2−ε;DR)

≤ P0(µx,u(Bi) ≥ c1s2−ε;DR)

≤ c2s−d exp(−c3s−
ε
2 ).

By the Borel-Cantelli lemma with s = 2−i i = 0, 1, 2, . . . ,
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P0

(
µx,uB(y, 2−i)

(2−i)2−ε ≥ c;DR

)
= 0.

Hence, for ω ∈ DR, exists some KεR(ω), such that

µx,u(B(y, 2−i)) ≤ KεR(ω)(2−i)2−ε,

for all y ∈ B(0, 2R) and i = 0, 1, 2, . . . . If s ∈ (0, 1], then obviously s ∈
(2−(i+1), 2−i] for some i. This leads to (provided ω ∈ DR)

(3.5) µx,u(B(y, s)) ≤ KεR(ω)(2−i)2−ε ≤ KεR(ω)s2−ε.

If ω ∈ DR and y /∈ B(0, 2R), then µx,u(B(y, s)) = 0. Noting that each ω is in
a DR, for su�ciently large R, together with our estimates (3.5), yields the desired
result (3.3). �

De�ne

L =
{
ψ : ψ : Rd → [−1, 1], ‖ψ‖∞ ≤ 1, and Lipschitz with Lipschitz constant 1

}
and

dL(µ, ν) := sup
ψ∈L

{∣∣∣∣ˆ ψ dµ−
ˆ
ψ dν

∣∣∣∣} .
Lemma 31.

dL(µx,u, µx,v) ≤ |u− v|,

dL(µx,u, µy,u) ≤ u|x− y|.

Proof. The �rst inequality is obvious by the de�nition of dL.
The second inequality follows from∣∣∣∣ˆ ψ d(µx,u − µy,u)

∣∣∣∣ =

ˆ u

0

|ψ(Xt + x)− ψ(Xt + y)| dt ≤ u|x− y|.

�

Remark 32. Lemma 30 implies that for ω not in the exceptional set, gRµx,y(z) is
continuous and bounded ([5]). Let α2(x, ·, u) be the continuous additive functional
of Yt associated with µx,u. That is the continuous additive functional, such that
E0[α2(x, TR(Y ), u)] = gRµx,u(z),

for all z and R ([8]). The stochastic interpretation of this functional is the
following: α2(x, ·, u) is the increasing part of the supermartingale gRµx,u(Yt∧TR(Y )).

We will state one result regarding the joint Hölder continuity of α2 in each
variable here, further results can be found in [6].

Claim 33. Assume cγ > 0 and µ being a positive measure, satisfying µx,u(B(y, s)) ≤
c(sd−2+γ∧1) for all s ∈ (0,∞), y ∈ Rd. Let Lµt be the associated continuous additive
functional, then Lµt is Hölder continuous in t a.s..

Proof. [6]. �
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Proposition 34. There exists a null set N , such that if ω /∈ N ,

(3.6)

ˆ
R2

f(x)α2(x, r, u)(ω) dx =

ˆ u

0

ˆ r

0

f(Ys(ω)−Xt(ω)) ds dt,

for all bounded and measurable f .

Proof. Let f, h be continuous and compactly supported and de�ne

Bx,hu :=

ˆ u

0

h(Xt − x) dt.

The potential of Bx,hu on the ball with radius R is

Ez[Bx,hTR ] =

ˆ
gR(z, y)h(y − x) dy.

So the potential of
´
f(x)Bx,hu dx is

ˆ ˆ
gR(z, y)f(x)h(y − x) dy dx =

ˆ ˆ
gR(z, y)h(x)f(y − x) dy dx,

which is the potential of
´
h(x)Bx,fu dx. Referring to [8], if two additive function-

als of a Brownian motion have the same potential, they are already equal. Hence

ˆ
h(x)Bx,fu dx =

ˆ
f(x)Bx,hu dx a.s.,

or

(3.7)

ˆ
f(x)

(ˆ
h(y)µ−x,u(dy)

)
dx =

ˆ
h(x)

(ˆ
f(y)µ−x,u(dy)

)
dx.

The right hand side of (3.6) is equal to
´ r

0
(
´
f(−y)µ−Ys,u(dy))ds. So its potential

in B(0, R), considered as a continuous additive functional of Y , is

ˆ
gR(z, y)

(ˆ
f(−ω)µ−y,u(dω)

)
dy.

By (3.7), this equals

ˆ
f(−x)

(ˆ
gR(z, y)µ−x,u(dy)

)
dx =

ˆ
f(x)gRµx,u(z) dz,

which is the potential on the left hand side of (3.6). Since R was arbitrary, this
proves the claim. �

We will now show a (Yor-Rosen-) Tanaka formula for the the ILT of two Brownian
motions in R2.

De�ne

(3.8) G(x) :=
1

π
log

(
1

|x|

)
.

Obviously, G(x) is symmetric in x.
By [9],
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(3.9) gRµx,u(Yt∧TR)− gRµx,u(Y0)

=

ˆ t∧TR

0

∇gRµx,u(Ys) · dYs − α2(x, t ∧ TR, u).

SinceG(·−y)−gR(·, y) is harmonic in B(0, R) for each y, so isGµx,u(·)−gRµx,u(·)
and we have ([9])

(3.10) (Gµx,u − gRµx,u)(Yt∧TR)− (Gµx,u − gRµx,u)(Y0)

=

ˆ t∧TR

0

∇(Gµx,u − gRµx,u)(Ys) · dYs.

Gµx,u(y) :=

ˆ
G(y − z)µx,u(dz).

Adding (3.9) and (3.10) and letting R→∞,

Gµx,u(Yt)−Gµx,u(Y0) =

ˆ t

0

∇Gµx,u(Ys) · dYs − α2(x, t, u).

Recalling the de�nition of µx,u, yields

(3.11)

ˆ u

0

G(Yt −Xr − x) dr −
ˆ u

0

G(Y0 −Xr − x) dr

=

ˆ t

0

(ˆ u

0

∇G(Ys −Xr − x) dr

)
· dYs − α2(x, t, u).

Theorem 35. Let Yr be a two dimensional Brownian motion. There exists a b > 0
(independent of p) and constants c(p), such that if p ≥ 1, x ∈ R2 and σ < 1, that

(3.12) P
[ˆ 1

0

χB(x,σ)(Yr) ζ(dr) > λ

]
≤ c(p)σ

bp

λbp
.

Where we suppose, that ζ(t) is a nondecreasing continuous process with ζ(0) = 0,
which satis�es, that for each p ≥ 1, there exists an a > 0 and a K(p) ≥ 1, such
that

(3.13) E[(ζ(t)− ζ(s))]p ≤ K(p)|t− s|ap s, t ≤ 1.

Proof. Assume that λ > 2σ, otherwise the result becomes rather trivial. Fix x ∈ R2

and de�ne Rt := |Yt − x|. Let ε = 1
16 and de�ne

S1 := inf{t : Rt ≤ σ}, T1 := inf{t > S1 : Rt ≥ σ1−ε}
and

Si+1 := inf{t > Ti : Rt ≤ σ}, Ti+1 := inf{t > Si+1 : Rt ≥ σ1−ε}.
Let

Du := inf{i : Si > u},
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so Du is greater or equal to the number of upcrossings of [σ, σ1−ε] by Rt up to
time u. Since log(Rt) is a martingale, we can use the upcrossing inequality ([12])

sup
z

Ez[D1] = Eσ[D1] ≤ Ez[| log(R1)|+ | log(σ)|]
| log(σ1−ε)− log(σ)|

≤ c1.

Using Cebychev's inequality,

sup
z

Pz(D1 ≥ 2c1) ≤ 1

2
.

Applying the strong Markov property at inf{t : Dt ≥ 2nc1},

sup
z

Pz(D1 ≥ 2c1(n+ 1)) ≤ 1

2
sup
z

Pz(D1 ≥ 2c1n),

which leads to

Pz(D1 ≥ n) ≤ c2 exp(−c3n), n ≥ 1.

Applying the strong Markov property applied at Si and standard estimates on
Brownian motion,

(3.14) P(Ti − Si > Kσ2−3ε) ≤ P0(T1 > Kσ2−3ε) ≤ c4 exp(−c5K).

Let h ∈ [0, 1]. If ζ((t + h) ∧ 1) − ζ(t) ≥ Lh
a
2 for some t ∈ [0, 1], then ζ(((j +

2)h)∧ 1)− ζ(jh) ≥ Lh a2 for some j ≤ [ 1
h ] + 1. The assumptions of this proposition

imply

P(ζ(t)− ζ(s) ≥ L|t− s| a2 ) ≤ K(p)
|t− s|

ap
2

Lp
.

If p > p0 = 8
a , then

(3.15) P(sup
t≤1

(ζ((t+ h) ∧ 1)− ζ(t)) ≥ Lh a2 ) ≤ K(p)
2h

ap
2

hLp
≤ K(p)

2h
ap
4

Lp
.

Note RTi ≥ σ1−ε and Rt doesn't return to the interval [0, σ] until time Si+1, so
if Yr ∈ B(x, σ), then r ∈ [Si, Ti] for some i. Hence

(3.16)

ˆ 1

0

χB(x,σ)(Yr) ζ(dr) ≤
∞∑
i=1

(ζ(Ti ∧ 1)− ζ(Si ∧ 1)).

Set n = (λσ )p, K = nd, h = Kσ2−5ε and L = λ

2h
a
2 n

, where we will choose d

appropriately later. If the sum on the right hand side is bigger than λ, one of the
following must hold:

(a) D1 > n,
(b) Ti − Si ≥ Kσ2−3ε for some i ≤ n,
(c) (Ti ∧ 1)− (Si ∧ 1) > λ

2n (and maxj≤n(Tj − Sj) < Kσ2−3ε) for some i ≤ n.
As a quick reminder σ < 1, λ ≥ 2σ and ε = 1

16 , so

h := Kσ2−5ε =
[
λd

σd

]d
σ2−5ε > Kσ2−3ε. Also Sj ∧ 1 = 1 ⇒ Tj ∧ 1 = 1, which

leads us to
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(ζ(Ti ∧ 1)− ζ(Si ∧ 1)) ≤ sup
t≤1

(ζ((t+ h) ∧ 1)− ζ(t)),

implying

P(ζ(Ti ∧ 1)− ζ(Si ∧ 1)) ≤ P
(

sup
t≤1

(ζ((t+ h) ∧ 1)− ζ(t)) >
λ

2n

)
.

So,

P
[ˆ 1

0

χB(x,σ)(Yr) dr > λ

]
≤ P(D1 ≥ n)+n sup

i
P(Ti−Si > Kσ2−3ε)+P

(
(Ti ∧ 1)− (Si ∧ 1) >

λ

2n

)

≤ c2 exp(−c3n) + nc4 exp(−c5K) + P
(

sup
t≤1

(ζ((t+ h) ∧ 1)− ζ(t)) >
λ

2n

)

≤ c2 exp(−c3n) + nc4 exp(−c5K) +K(p)
2h

ap
4

Lp
.

Substituting for n, K, h and L, we recall that λ > 2σ and σ < 1. So, taking
d su�ciently small, we obtain the result for all p ≥ p0. The result for p ∈ [1, p0)
follows, since σ < λ. �

Remark 36. The previous result obviously holds true for ζ(t) = t (by choosing d
appropriately small), which we will use in the following results.

For ε ∈ (0, 1), de�ne

(3.17) Gε(x) := G(x) ∧ 1

π
log

(
1

ε

)
,

Hε(x) := G(x)−Gε(x).

Proposition 37. Assume a > 0. There exists a d ≥ 0 and ε0 < 1 such that for
p ≥ 1 and q ≥ 1

E
[(ˆ u

0

|Hε(Xr −Xs − x)|q dr
)p]

≤ c(p, q)εdp,

if u ∈ [0, 1] and ε ≤ ε0.

Proof. Set V =
´ u

0
|Hε(Xr−Xs−x)|q dr and Yr = Xu−Xr. Let n = [ 4

b ]+4, where
b is the constant from Theorem 35.

First, we note that

Hq
ε (z + x) ≤ c1

∑
{j : 2−j≤ε}

jqχB(x,2−j)(z).

Also, if λ ≥ ε 1
4 , with ε being su�ciently small and 2−j ≤ ε, then λ

40c1j2+q
≥ 2−

j
2 .

Using Theorem 35

P[V > λ] ≤
∑

{j : 2−j≤ε}

P
[
c1j

q

ˆ u

0

χB(x,2−j)(Yr) dr >
λ

20j2

]
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≤ c(np)
∑

{j : 2−j≤ε}

(
2−j
)bnp(

λ
20j2+q

)bnp
= c(p, q)

∑
{j : 2−j≤ε}

2−j
p
2

λbnp

≤ c(p, q)εd1p ε
d1p

λp+2
,

if ε is small enough.
Multiplying by pλp−1 and integrating from ε

1
4 to ∞, gives

E
[
V pχ

V≤ε
1
4

]
≤ c(p, q)εdp.

Since

E
[
V pχ

V≤ε
1
4

]
≤ c(p, q)εdp,

adding up the two terms, gives the result. �

Let Ut = Mt − Vt, where Mt is a martingale with mean 0 and Vt is a non-
decreasing process with V0 = 0. Furthermore, U, M and V have right-continuous
paths with left limits and are adapted to a �ltration satisfying the usual conditions.

Lemma 38. Suppose that for an a > 0 and p ≥ 1, there exists a K(p), such that

(3.18) E[|Ut|p] ≤ K(p), t ≤ 1

(3.19) E[|Ut − Us|p] ≤ K(p)|t− s|pa, s, t ≤ 1

.
Let K̄ = K(p) ∨ K(p + 1), then there exists a b > 0, independent of p, and

constants c(p), such that for p ≥ 1

(3.20) E[V1
p] ≤ c(p)K̄(p)

(3.21) E[Vt − Vsp] ≤ c(p)K̄(p)|t− s|pb, s, t ≤ 1

Proof. We focus on the case p ≥ p0 = 2
a , since the result for p < p0 follows from

applying Jensen's inequality.
Using a chaining argument, like in the proof of Kolmogorov's theorem the �rst

two inequalities would imply, that we �nd a version of Ut, such that

E[sup
t≤1
|Ut|p] ≤ c(p)K̄(p).

As Ut and −Vt only di�er by a martingale, for t ≤ 1, we have

E[V1 − Vt|Ft] = E[Ut − U1|Ft] ≤ 2E[sup
s
|Us| |Ft].

Using the inequality [3] (Lemma 2.3), we get



THE STOCHASTIC HEAT EQUATION IN TWO DIMENSIONS 34

E[V p1 ] ≤ c(p)E[sup
t
|Ut|p].

Together with (3.18), this proves (3.20).
In a similar fashion,

E[ sup
s≤r≤t

|Ur − Us|p] ≤ c(p)K̄(p)|t− s|pa.

If we apply the above argument to V̄r := Vs+r − Vs, Ūr := Us+r − Us and
M̄r := Ms+r −Mr r ≤ t− s, we get the second inequality. �

Remark 39. Setting p > 1
b , implies, that Vt is Hölder continuous a.s. on a dense

subset. As Vt was assumed to be increasing, it turns out to be continuous a.s..
Suppose now, that U it = M i

t−V it , i = 1, 2 and V i,M i as above. Set Vt = V 1
t −V 2

t

and analogously Mt and Ut.

Proposition 40. Let a, b, δ ∈ (0, 1). Assuming, that for each p, there exists a
K(p), such that

E[|U it |p] ≤ K(p), t ≤ 1, i = 1, 2

E[|U it − U is|p] ≤ K(p)|t− s|pa, s, t ≤ 1, i = 1, 2

and

(3.22) E[|Ut|p] ≤ K(p)δpb, t ≤ 1.

Then there exists a d > 0, such that

(3.23) E[V1
p] ≤ c(p)K̄(p)δdp, t ≤ 1.

Proof. Again, we suppose that p ≥ 2
a + 2. As in the preceding proof,

E
[

sup
s≤t≤s+h

|U it − U is|p
]
≤ c(p)K̄(p)|h|pa.

For n ≥ 1,

sup
t≤1
|Ut| ≤ sup

j≤n
|U j

n
|+

2∑
i=1

sup
j≤n

sup
j
n≤t≤

j+1
n

|U it − U ij
n

|.

It follows, that

E[sup
t
|Ut|p]

≤ c(p)n sup
j≤n

E[|U j
n
|p] + 2c(p)n max

1≤i≤2
sup
j≤n

E

[∣∣∣∣∣ sup
j
n≤t≤

j+1
n

|U it − U ij
n

|

∣∣∣∣∣
p]

≤ c(p)nK̄(p)δbp + 2nc(p)K̄(p)(
1

n
)ap.

Since ap > 2, we set n = [δ−
b
2 ] + 1 in order to get
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(3.24) E[sup
t
|Ut|p] ≤ c(p)K̄(p)δ

abp
2 .

De�ne Z = supt |Ut| and W = 1 + V 1
1 + V 2

1 , then by the preceding Lemma 38,
we get W ∈ Lp for all p.

If t ≤ 1,

|E[V1 − Vt|Ft]| = |E[Ut − U1|Ft]| ≤ 2E[Z |Ft].
Referring to the proof [2] (Lemma 2.3),

(3.25) E[(V1 − Vt)2|Ft] = 2E
[ˆ 1

t

(V1 − Vs) dVs|Ft
]

= 2E
[ˆ 1

t

E[(V1 − Vs)|Fs] dVs|Ft
]

≤ 2E
[ˆ 1

t

E[Z|Fs] d(V 1
s + V 2

s )|Ft
]
.

Now set Yt = E[(V1−Vs)|Fs], Nt = E[(V1)|Fs], such that Yt = Nt−Vt. We take
the right continuous versions of Y and N . Jensen's inequality implies, that

Y 2
t = (E[(V1 − Vs)|Fs])2 ≤ E[(V1 − Vs)2|Fs] ≤ 2E[WZ|Fs].

Further, if we apply Ito's lemma, we get

Y 2
1 − Y 2

t = 2

ˆ 1

t

Ys dYs + 〈N〉1 − 〈N〉t,

which in turn tells us, that

E[〈N〉1 − 〈N〉t|Ft] ≤ |E[Y 2
1 − Y 2

t |Ft]|+ 2|E[

ˆ 1

t

Ys dYs|Ft]|

≤ 4E[WZ|Ft] + 2

∣∣∣∣E [ˆ 1

t

Ys dVs|Ft
]∣∣∣∣

≤ 4E[WZ|Ft] + 2

∣∣∣∣E [ˆ 1

t

E[Z|Fs] d(V 1
s + V 2

s )|Ft
]∣∣∣∣

≤ 8E[WZ|Ft].
By applying Lemma 2.3 from [3] and Lemma 38,

E[〈N〉p1] ≤ c(p)
√
E[Z2p]

√
E[W 2p]

≤ (c(2p)K̄(2p)δ
2abp

2 )
1
2 (K̄(2p))

1
2

≤ c(p)K̄(2p)δ
abp
2 .

Applying Jensen's inequality ones more, we get

E[|Yt|2p] ≤ E[2E[WZ|Ft]p] ≤ c(p)E[(WZ)p] ≤ c(p)K̄(2p)δ
abp
2 .

Therefore,
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E[|Vt|2p] ≤ c(p)E[|Nt|2] + c(p)E[|Yt|2p]

≤ c(p)E[〈N〉p1] + c(p)E[|Yt|2p] ≤ c(p)K̄(2p)δ
abp
2 .

By setting d = ab
4 , the proof is completed. �

We now want to use some of the results obtained in the study of the intersection
of two planar Brownian motions, in order to study the SILT for double points of a
single Brownian motion.

Let t be �xed, ∆n = 2−n and set si = ti∆n for i = 0, . . . , 2n. Setting Yr =
(Xsi+r − Xsi) + Xsi = Xsi+r 0 ≤ r ≤ ∆. For an x ∈ R2, let µx,u(A) =´ si

0
χA(Xr) dr. There now exists, with the same argumentation, a continuous,

additive functional of Yr, we will call α
ni
2 (x, ·) , such that, if An,i,x := αni2 (x,∆n),

then

(3.26)

ˆ si

0

(
G(Xsi+1 −Xr − x)−G(Xsi −Xr − x)

)
dr

=

ˆ si+1

si

(ˆ si

0

∇G(Xs −Xr − x) dr

)
dXs −An,i,x.

Furthermore, it holds that An,i,x ≥ 0, continuous in x and

(3.27)

ˆ
f(x)An,i,x dx =

ˆ si+1

si

ˆ si

0

f(Xr −Xs) ds dr.

Let

Unt = Unt (x) :=

2n−1∑
i=0

ˆ si

0

(
G(Xsi+1

−Xr − x)−G(Xsi −Xr − x)
)
dr,

Mn
t = Mn

t (x) :=

ˆ si+1

si

ˆ si

0

∇G(Xs −Xr − x) dr dXs,

βnt (x) :=

2n−1∑
i=0

An,i,x,

Ut = Ut(x) :=

ˆ t

0

(G(Xt −Xr − x)−G(−x)) dr,

Mt = Mt(x) :=

ˆ t

0

ˆ s

0

∇G(Xs −Xr − x) dr dXs.

Summing over all i in (3.26), we get

(3.28) Unt = Mn
t − βnt (x).

Proposition 41. If x 6= 0, Unt → Ut in L
p for p > 1.
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Proof.

Unt =

2n−1∑
i=0

i−1∑
j=0

ˆ sj+1

sj

(
G(Xsi+1 −Xr − x)−G(Xsi −Xr − x)

)
dr

=

2n−1∑
j=0

2n−1∑
i=j+1

ˆ sj+1

sj

(
G(Xsi+1 −Xr − x)−G(Xsi −Xr − x)

)
dr

=

2n−1∑
j=0

ˆ sj+1

sj

(
G(Xt −Xr − x)−G(Xsj+1 −Xr − x)

)
dr.

De�ning the function

hnr :=
2n−1∑
j=0

(
G(−x)−G(Xsj+1

−Xr − x)
)
χ(sj ,sj+1)(r),

it su�ces to prove that

ˆ t

0

hnr dr → 0 in Lp.

By applying the generalized triangle inequality, as well as Hölder's inequality,

E

[∣∣∣∣ˆ t

0

hnr dr

∣∣∣∣p
]
≤
(
E
[ˆ t

0

|hnr |2p dr
]) 1

2

t2p−1.

We have to show, that

(3.29) E

2n−1∑
j=0

ˆ sj+1

sj

|(G(−x)−G(Xsj+1 −Xr − x))|2p dr

→ 0.

For a z ∈ B(x, |x|2 ), choose ε small enough, such that G(z) = Gε(z).

(3.30) E

2n−1∑
j=0

ˆ sj+1

sj

|(Gε(−x)−Gε(Xsj+1 −Xr − x))|2p dr


≤ ‖∇Gε‖2pE

2n−1∑
j=0

ˆ sj+1

sj

dr

 sup
u,v≤1,|u−v|≤∆n

|Xu −Xv|2p]

≤Cauchy-Schwarz cε−2p

(
E

[
sup

u,v≤1,|u−v|≤∆n
|Xu −Xv|4p

]) 1
2

≤ cε−2p∆p
n.

We de�ne the set

V :=

{
sup

u,v≤1,|u−v|≤∆n
|Xu −Xv| >

|x|
2

}
.

By our choice of ε, we get that Hε(−x) = 0 and
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(3.31) E

2n−1∑
j=0

ˆ sj+1

sj

χV C |(Hε(−x)−Hε(Xsj+1 −Xr − x))|2p dr

 = 0.

Also, by

E


2n−1∑

j=0

Zj

2
 ≤ 2nE

2n−1∑
j=0

Zj
2

 ≤ 22n sup
j

E[Z2
j ],

we get

(3.32) E

2n−1∑
j=0

ˆ sj+1

sj

χV |Hε(Xsj+1 −Xr − x)|2p dr



≤

E

2n−1∑
j=0

ˆ sj+1

sj

|Hε(Xsj+1
−Xr − x)|2p dr

2


1
2

(P(V ))
1
2

≤ 2nc

sup
j

E

2n−1∑
j=0

ˆ sj+1

sj

|Hε(Xsj+1
−Xr − x)|2p dr

2


1
2

exp

(
− |x|

16∆n

)

≤ 2nc exp

(
− |x|

16∆n

)
.

Here, we used Proposition (37). Adding up the results from our inequalities

(3.30), (3.31), (3.32) and letting ε = ε(n) → 0, as n → ∞, such that ∆
1
2
n ≤ ε(n)2,

we get the desired result. �

Proposition 42. βnt (x) is increasing as n → ∞ and denote the limit by β2(x, t).
For a function f , which is continuous and has compact support, the following equal-
ity holds almost everywhere,

(3.33)

ˆ
f(x)β2(x, t) dx =

ˆ t

0

ˆ s

0

f(Xr −Xs) dr ds.

Proof. Let φε be a Dirac sequence, then by (3.27)

(3.34)

ˆ
φε(x− x0)βnt (x) dx =

2n−1∑
i=0

ˆ si+1

si

ˆ si

0

φε(Xr −Xs − x0) dr ds.

For each n, as ε→ 0, the left hand side converges almost surely to βnt (x0), since
An,i,x is continuous in x. For each �xed ε, the right hand side of (3.34) is increasing
with respect to n. This means, that for each x0 6= 0, βnt (x) increases, as n → ∞.
We call the limit β2(x, t). Using the monotone convergence theorem, we get

ˆ
f(x)β2(x, t) dx = lim

n→∞

ˆ
f(x)βn2 (x) dx
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= lim
n→∞

ˆ t

0

ˆ s

0

f(Xr −Xs)χ{r≤si}χ{si≤s≤si+1} dr ds =

ˆ t

0

ˆ s

0

f(Xr −Xs) dr ds.

�

If we de�ne β̄2(x, t) as the limit of βnt (x) for each x ∈ R\{0}and rational t, by
Proposition 42, it is not di�cult to see, that β̄2(x, t) ≥ β̄2(x, s) a.s. for t ≥ s. For
t ∈ [0, 1], let

β2(x, t) = inf
u≥t, u∈Q

β̄2(x, u).

Lemma 43. For each p ≥ 1, there exists a v(p), such that

E[|Ut(x)|p] ≤ c(p)(1 ∨ |G(x)|)v(p), t ≤ 1,

There exists an a > 0, such that

E[|Ut(x)− Us(x)|p] ≤ c(p)(1 ∨ |G(x)|)v(p)|t− s|pa, s, t ≤ 1.

Proof. Obviously, G(x)t has moments of all orders. We choose ε small but �xed.
By Proposition 37,´ t

0
Hε(Xt −Xr − x) dr has a pth moment. At the same time, it holds that

|
ˆ t

0

Gε(Xt −Xr − x) dr| ≤ c log(
1

ε
)t.

The �rst claim directly follows.
Regarding the second claim,

|Ut − Us| ≤ |G(x)|(t− s) + |
ˆ t

0

Hε(Xt −Xr − x) dr|

+|
ˆ s

0

Hε(Xs −Xr − x) dr|+ |
ˆ t

0

Gε(Xt −Xr − x) dr|

+|
ˆ s

0

(Gε(Xt −Xr − x)−Gε(Xs −Xr − x)) dr|.

By Proposition 37,

E[|Ut − Us|p] ≤ c(p)|G(x)|p|t− s|p + c(p)εdp

+c(p)| log

(
1

ε

)
|p|t− s|p + ‖∇Gε‖pE[(

ˆ s

0

dr |Xt −Xs|)p]

≤ (1 ∨ |G(x)|)p|t− s|p + c(p)εdp + c(p)| log

(
1

ε

)
|p|t− s|p + c|t− s|

p
2

1

εp
.

We used Cauchy Schwarz in order to arrive at the last term on the right hand
side. Choosing ε = |t− s|b for a suitable b proves the claim. �
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Theorem 44. For p ≥ 1, there exists a v(p), such that

E[β2(x, t)p] ≤ c(p)(1 ∨ |G(x)|)v(p), t ≤ 1.

There exists an a > 0, such that

E[(β2(x, t)− β2(x, s))p] ≤ c(p)(1 ∨ |G(x)|)v(p)|t− s|pa, s, t ≤ 1.

Proof. As we have

E[βn1 (x)− βnt (x)p|Ft] = E[Unt (x)− Un1 (x)|Ft],
we can make use of the monotone convergence of βnt (x) to β̄2(x, t) for rational

t, the monotonicity of β2(x, t) and the Lp convergence of Unt (x) to Ut(x) in order
to get

E[(β2(x, 1)− β2(x, t))|Ft] = E[Ut(x)− U1(x)|Ft].
We see, that Mt = Ut(x) + β2(x, t) is a martingale. The result now follows from

Lemma 38. �

Theorem 45. The following (Yor-Rosen-) Tanaka formula holds

(3.35)

ˆ t

0

(G(Xt −Xr − x)−G(−x)) dr

=

ˆ t

0

(ˆ s

0

∇G(Xs −Xr − x) dr

)
dXs − β2(x, t).

Proof. Since βnt (x) converges to β2(x, t) and β2(x, t) is in Lp, the convergence hap-
pens in Lp. Since also Unt (x)→ Ut(x) in Lp, we can conclude, thatMn

t (x) converges
in Lp to some Nt.

As

Mn
t (x) =

ˆ t

0

hns · dXs,

with

hns =

ˆ s

0

∇G(Xs −Xr − x)χ{r≤si}χ{si≤s≤si+1} dr,

then

ˆ t

0

|hns − hms |2 ds = 〈Mn −Mm〉t → 0.

As hns converges for each s to hs =
´ s

0
∇G(Xs−Xr−x)dr, then

´ t
0
|hns−hms |2ds→

0. It follows, that Nt must be equal to Mt(x). We get the full formula by simply
applying a limit to (3.28). �

Despite having already looked at two approaches to derive the notion of SILTs,
we will, rather brie�y, look at a third one. This approach is outlined in [38] and
although we will not go into much detail here, there is one rather astonishing result
(the occupation times formula) which we will make use of later on.

In [38] the following (Yor-Rosen-) Tanaka formula was shown,
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(3.36)ˆ t

0

log(|Wt −Wr − x|) dr =

ˆ t

0

ˆ s

0

Ws −Wr − x
|Ws −Wr − x|2

dr dWs + t log(x) + πβ2(t, x),

as the limit of embedded random walks.
Also the renormalized version of the SILT is introduced

α(t, x) :=

β2(t, x)− 1
π log

(
1
|x|

)
x 6= 0

limx→0 β2(t, x)− 1
π log

(
1
|x|

)
x = 0

It was shown by LeGall [27] that this limit exists almost everywhere and in L2.
A consequence is the following �occupation times formula�, which is pretty similar

to the one obtained before

Corollary 46. Let f : R2 → R be a bounded Borel function, then

ˆ t

0

ˆ s

0

f(Ws −Wr) dr ds =

ˆ
R2

f(x)β2(t, x) dx =

ˆ
R2

f(x)(α(t, x)− t

π
log(|x|)) dx.

Or, alternatively

ˆ t

0

ˆ s

0

(f(Ws −Wr)− E[f(Ws −Wr)]) dr ds =

ˆ
R2

f(x)(α(t, x)− E[α(t, x)]) dx.

Proof. [38]. �

Lemma 47. Y (t, x) :=
´ t

0

´ s
0

Ws−Wr−x
|Ws−Wr−x|2 dr dWs is a continuous L2 martingale

with expectation 0 as a function of t ∈ [0,K] for any �xed y ∈ R2.

Proof.

E[|Y (t, x)|2] =

ˆ t

0

E

[∣∣∣∣ˆ s

0

Ws −Wr − x
|Ws −Wr − x|2

dr

∣∣∣∣2
]
ds

≤
ˆ t

0

E

[(ˆ t

0

1

|Ws −Ws−r − x|2
dr

)2
]
ds = tE

[(ˆ t

0

1

|Wr − x|2
dr

)2
]
.

By symmetry and the independence of increments of W ,

E[|Y (t, x)|2] ≤ tE
[ˆ t

0

ˆ t

0

1

|Wr1 − x||Wr2 − x|
dr2 dr1

]

= 2t

ˆ
[0,t]×R2

exp
(
− |z1|

2

2r1

)
2πr1|z1 − x|

ˆ
[r1,t]×R2

exp
(
− |z2−z1|

2

2(r2−r1)

)
2π(r2 − r1)|z2 − x|

dr2 dz2 dr1 dz1.

Writing z2 = x+ η(cos(θ), sin(θ)) , z1 = x+ ρ(cos(γ), sin(γ)) and r = r2− r1, we
obtain, for the inner integral,

ˆ t−r1

0

ˆ 2π

0

ˆ ∞
0

exp

(
−η

2 + ρ2 − 2rρ cos(θ − γ)

2r

)
dη

1

2π
dθ

1

r
dr
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≤
√

2π

ˆ t−r1

0

ˆ 2π

0

ˆ ∞
0

exp

(
− (η − ρ)2

2r

)
1√
2πr

dη
1

2π
dθ

1√
r
dr

≤ 2
√

2π(t− r1).

Thus,

E[|Y (t, x)|2] ≤ 2t

ˆ t

0

ˆ 2π

0

ˆ ∞
0

exp

(
− ρ2

2r1

)
2
√

2π(t− r1) dρ
1

2π
dγ

1

r1
dr1

≤ 8πK2(0 ≤ t ≤ K, x ∈ R2).

�

Lemma 48. X(t, x) :=
´ t

0
log(|Wt −Wr − x|) dr (t ≥ 0, x ∈ R2), then

E[X(t, x)] = t log(|x|)− |x|
2 + 2t

4
Ei

(
−|x|

2

2t

)
− 1

2
t exp

(
−|x|

2

2t

)
x 6= 0,

lim
x→0

E[X(t, x)] = E[X(t, 0)] =
t

2
(log(2t)− C − 1),

where Ei denotes the exponential integral function and C is Euler's constant.

Proof. For any �xed t, W̄r := Wt − Wt−r is a planar Brownian motion starting
from 0. Thus

E[X(t, x)] =

ˆ t

0

E
[
log(|W̄r − x|)

]
dr =

ˆ t

0

ˆ
R2

log(|y − x|)
2πr

exp

(
−|y|

2

2r

)
dy dr

=

ˆ t

0

ˆ ∞
0

ˆ 2π

0

η log(η2 + ρ2 − 2ηρ cos(θ − γ))

4πr
exp

(
−η

2

2r

)
dθ dη dr,

where we substituted x = η(cos(θ), sin(θ)), y = ρ(cos(γ), sin(γ)). As the last
integral doesn't depend on γ, we can replace it by 0. Since

ˆ 2π

0

1

4π
log(η2 + ρ2 − 2ηρ cos(θ − γ)) dθ = log(η ∨ ρ),

it follows, that

E[X(t, x)] =

ˆ t

0

ˆ ∞
0

η

4πr
exp

(
−η

2

2r

)
log(η ∨ ρ) dη dr.

This gives exactly the desired results. �

Remark 49. Although looking at all of these di�erent approaches might not seem
very educational or even confusing (regarding the notation), each o�ers a di�erent
insight and thereby very useful results. As we have seen, the �functional approach�
results in rather nice bounds for the moments, whereas the approach used in [38]
delivers a more general version of the occupation times formula. The main point,
which connects all these approaches and justi�es the �mixing� of these results, is
the (Yor-Rosen-)Tanaka formula.
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4. An Interesting SPDE

In this section, we will focus on a particularly interesting example of a 2 di-
mensional heat equation and a rather explicit form of its (in a certain sense) weak
solution .

Before we dive into the SPDE itself, we will require some results in order to
properly state the weak formulation.

We will require the following Lemma:

Lemma 50. Let 1 ≤ p < ∞ and k ≥ 0, then the space C∞c (Rd) of test functions
is a dense subspace of W k,p(Rd).

Proof. It is clear that C∞c (Rd) is a subspace of W k,p(Rd). First, we show that
C∞loc(Rd)∩W k,p(Rd) is dense in W k,p(Rd) and then, in turn that C∞c (Rd) is dense
in C∞loc(Rd) ∩W k,p(Rd).

Let f ∈ W k,p(Rd) and let φn be a sequence of smooth, compactly supported
approximation of the identity with respect to the convolution (Dirac sequence).
Since f ∈ Lp(Rd), f ∗ φn converges to f in Lp(Rd). Since ∇jf is also an element
of Lp(Rd), we have that (∇jf) ∗ φn(= ∇j(f ∗ φn)) converges to ∇jf in Lp(Rd). It
follows that f ∗ φn converges to f in W k,p(Rd) and as f ∗ φn is smooth (due to the
smoothness of φn), the �rst claim follows.

Let f now be a smooth function in W k,p(Rd) (∇jf is also an element of Lp(Rd)
for 0 ≤ j ≤ k). Let ψ ∈ C∞c (Rd) be a compactly supported function, which equals 1
near the origin (bump function). Now, consider the functions fR(x) := f(x)ψ

(
x
R

)
for R > 0; these functions clearly are members of C∞c (Rd). Letting R → ∞,
via the dominated convergence theorem, fR converges to f in Lp(Rd). Applying
the product rule, ∇fR(x) = (∇f)(x)ψ

(
x
R

)
+ 1

Rf(x)(∇ψ)
(
x
R

)
. We see that the

�rst term converges to ∇f in Lp(Rd), by the dominated convergence theorem,
while the second term converges to 0. Thus, ∇fR(x) converges to ∇f in Lp(Rd).
An analogous argument shows the convergence of ∇jfR to ∇jf in Lp(Rd) for all
0 ≤ j ≤ k, which gives us the convergence of fR to f in W k,p(Rd), and the claim
follows. �

Remark 51. We also see that the space S(Rd) is dense in W k,p(Rd).

Theorem 52. Let Ω = Rd, then the embedding W 1,p(Ω) ↪→ Lq(Ω) is continuous,

if 1 ≤ p ≤ q ≤ ∞, dp − 1 ≤ d
q and (p, q) /∈

{
(d,∞),

(
1, d

d−1

)}
.

Proof. Again, we show the claim for all test functions f ∈ C∞0 (Rd) and by density,
it will extend to W 1,p(Rd). From

|f(x+ sω)− f(x)| =
∣∣∣∣ˆ s

0

d

dt
f(x+ tω) dt

∣∣∣∣ =

∣∣∣∣ˆ s

0

ω · ∇f(x+ tω) dt

∣∣∣∣ ,
follows

|f(x)| =
∣∣∣∣−ˆ ∞

0

ω · ∇f(x+ rω) dr

∣∣∣∣
for any x ∈ Rd and any ω ∈ Sd−1. Applying the generalized triangle inequality

|f(x)| ≤
ˆ ∞

0

|∇f(x+ rω)| dr.
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Hence, averaging over all directions ω gives us

ˆ
Sd−1

|f(x)| dS ≤
ˆ ∞

0

ˆ
Sd−1

|∇f(x+ rω)|r
d−1

rd−1
dS dr.

Substituting and changing coordinates gives

|f(x)| ≤
ˆ
Sd−1

|f(x)| dS ≤
ˆ
Rd
|∇f(x− y)| 1

|y|d−1
dy.

ˆ
Rd
|∇f(x− y)| 1

|y|d−1
dy ≤ C(

ˆ
Rd
|∇f(y)|p dy)

1
p .

The claim now follows.
We now handle the cases, when d

p − 1 < d
p <

d
q . Here we look at the following

inequality

f(x) = f(x+Rω)−
ˆ R

0

ω · ∇f(x+ rω) dr,

for any R > 0. Hence,

|f(x)| ≤ |f(x+Rω)|+
ˆ R

0

|∇f(x+ rω)| dr.

For any speci�c value of R, this corresponds to averaging f over a sphere with
this radius, which will not give us the nicest expressions. Instead, we average, for
instance, over a range of R's between 1 and 2. This leads to

|f(x)| ≤
ˆ 2

1

|f(x+Rω)| dR+

ˆ 2

0

|∇f(x+ rω)| dr.

Averaging over all directions ω and converting back to Cartesian coordinates
gives us

|f(x)| ≤
ˆ

1≤|y|≤2

|f(x− y)| dy +

ˆ
|y|≤2

|∇f(x− y)| 1

|y|d−1
dy.

Thus we can bound f pointwise, up to a constant, by the convolution of |f |
with the kernel K1(y) := χ{1≤|y|≤2} plus the convolution of |∇f | with the kernel

K2(y) := χ{|y|≤2}
1

|y|d−1 . It is easy to check, that K1 and K2 both lie in Lr(Rd),
where r is a result of Young's inequality, 1

q + 1 = 1
p + 1

r (especially 1 < r < d
d−1 ).

An application of Young's inequality gives us that

‖f‖Lq(Rd) ≤ C(‖f‖Lp(Rd) + ‖∇f‖Lp(Rd)).

�

Remark 53. W 2,p ⊂W 1,p

Theorem 54. W d,1(Rd) ↪→ Cb(Rd) continuous ∀ d ≥ 1

Proof. Let f ∈ C∞c (Rd), then from

f(x1, . . . , xj , . . . , xd) =

ˆ xj

−∞
∂xjf(x1, . . . , tj , . . . , xd) dtj
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=

ˆ x1

−∞
. . .

ˆ xd

−∞
∂x1

. . . ∂xdf(t1, . . . , td) dt1 . . . dtd,

which yields

‖f‖∞ ≤
∥∥∥∥ ∂

∂x1 . . . ∂xd
f

∥∥∥∥
L1

≤ ‖f‖W 1,d .

The result follows from the density of C∞0 . �

Theorem 55. The embedding W k,p(Rd) ↪→W l,q(Rd) is continuous, if
0 ≤ l ≤ k {

1 < p < q ≤ ∞ d
p − k <

d
q − l

1 < p ≤ q <∞ d
p − k ≤

d
q − l

.

Proof. [19]. �

Remark 56. Throughout this section, compared to the notation used in the �rst
section, H2 := H2,2.

Remark 57. Regarding the embeddings:
(Theorem 52)d = p = 2, 0 ≤ 2

1 , so we can choose q = 1.

H2 ≈W 2,2(Rd) ⊂W 1,2(Rd) ↪→ L1(Rd) continuous.
(Theorem 54, 55)d = k = p = l = 2, choose q = 1,
then −1 = 2

2 − 2 < 2
1 − 2 = 0.

H2 ≈W 2,2(Rd) ↪→W 2,1(Rd) ↪→ Cb(Rd) continuous.

Let us now consider the equation

(4.1) dv(t) =

(
1

2
∆v + Ft

)
dt+∇v · dWt,

v(0) = v0 = 0,

Ft : L2(R2) ∩ Cb(R2)→ R,

(4.2) Ftφ :=

ˆ t

0

φ(−Wr − µ) dr.

Proposition 58. Let T be arbitrary, but �xed and �nite. For t ∈ [0, T ], Ft as
de�ned above is a continuous functional on H2.
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Proof. Let φ ∈ H2. Due to Remark 57, we know that we can �nd a continuous (and
bounded) representative for any H2 function and hence the point evaluation and
translation/shift φ 7→ φ(−Wr − µ) for any r ∈ [0, T ] and µ ∈ R2 are well de�ned.
Further, it shall be noted that the point evaluation is a linear functional. Since we
are integrating a bounded function over a compact set, it is �nite, which guarantees
that Ft is well de�ned and obviously linear on H2.∣∣∣∣ˆ t

0

φ(−Wr − µ) dr

∣∣∣∣ ≤ t‖φ‖∞ ≤ tC‖φ‖H2 .

�

Remark 59. The Lemma obviously still holds if we choose φ ∈ S.

We can now state the weak formulation for φ ∈ H2:

(4.3) d〈v(t), φ〉 =

(
1

2
〈∆φ, v(t)〉+

ˆ t

0

φ(−µ−Wr) dr

)
dt+ 〈∇φ, v(t) dWt〉

By, rather formally, applying Duhamel's principle, we can get a decent impression
about the structure of the solution.

We de�ne Us,t := TW (s) ◦ T−W (t) and Ut,s := TW (t) ◦ T−W (s) for any 0 ≤ s ≤ t,

where T· is the usual shift operator on the space L2.
We will try to show that

u(t) := U0,tu0 +

ˆ t

0

Us,tFs ds

is a weak (or rather distributional) solution of the above equation.
From now on, we will refer to the dual space of H2 by H−2.

Lemma 60. Let gn, fn be sequences in H−2, converging to g and f respectively,

then un(t) := U0,tgn +
´ t

0
Ut,sfn ds→ u(t) := U0,tg+

´ t
0
Ut,sf ds in L

2([0, T ], H−2).

Proof. Let t ≥ s > 0. Ut,sfn is still an element of H−2, as H2 is invariant with
respect to translations and we have 〈Ut,sfn, φ〉 = 〈fn, U∗s,tφ〉 for φ ∈ H2.

‖Ut,sfn − Ut,sf‖2L2([0,t],H−2) =

ˆ t

0

‖Ut,s(fn − f)‖2H−2 ds.

As the mapping (ψs)s∈[0,t] 7→
´ t

0
ψs ds from L2([0, t], H−2) to H−2 is linear and

continuous, it su�ces to consider the terms inside the integral:

‖Ut,s(fn − f)‖2L2([0,t],H−2) =

ˆ t

0

‖Ut,s(fn − f)‖2H−2 ds

≤
ˆ t

0

‖fn − f‖2H−2 ds = t‖fn − f‖2H−2 → 0.

In total, this gives us un(t)→ u(t). �

Remark 61. In the case of our speci�c (time dependent) F , we can almost use
the same proof. In order to clarify the notation: For s > 0, we interpret Fs as
the composition of an integral operator, a translation T and a point-evaluation g

(Ft =
´ t

0
◦T ◦ δ). Further we will denote the �actions inside the integral� by f
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(f ∼ T ◦ g) and the point evaluation by g. The sequence Fn is chosen rather

speci�cally: Fnt =
´ t

0
Tsgn ds.

‖U·,tFn· − U·,tF·‖2L2([0,t],H−2) =

ˆ t

0

‖Ut,s(Fns − Fs)‖2H−2 ds

≤
ˆ t

0

‖Fns −Fs‖2H−2ds =

ˆ t

0

∥∥∥∥ˆ s

0

fns − fs dr
∥∥∥∥2

H−2

ds =

ˆ t

0

∥∥∥∥ˆ s

0

Ur(gn − g) dr

∥∥∥∥2

H−2

ds

≤
ˆ t

0

(ˆ s

0

‖Ur(gn − g)‖H−2 dr

)2

ds ≤
ˆ t

0

(ˆ s

0

‖gn − g‖H−2 dr

)2

ds =
t3

3
‖gn−g‖2H−2 .

One can replace gn by an appropriate delta sequence.

Lemma 62. Let Ω ⊂ Rd, X, Y be Banach spaces and A a linear, closed operator
A : D(A) ⊂ X → Y . Further g : Ω→ D(A), then

ˆ
Ω

Ag(x) dx = A

ˆ
Ω

g(x) dx.

Proof. [20], Theorem 3.7.12, page 83. �

Proposition 63. Let φ ∈ H2, t ∈ [0, T ] and assume Ft as de�ned by (4.2), then

〈Us,tFs, φ〉 =

ˆ t

0

ˆ s

0

φ(Ws −Wr − (µ+Wt)) dr ds,

〈Ut,sFs, φ〉 =

ˆ t

0

ˆ s

0

φ(Ws −Wr − (µ−Wt)) dr ds.

Proof. Following the notation from Lemma 62, Ω = [0, s], g(·) = φ(−W· − µ) and
the translation operator U de�ned earlier replaces A. We can clearly see, due
to the continuity of all the operations involved and the previously stated Sobolev
embeddings, that Ft maps φ from H2(R2) into Cb[0,T]. By the following simple
estimate, we also see that Ftφ lies in Lp[0, T ] for any p ≥ 1

(Ftφ)p =

(ˆ t

0

φ(−Ws − µ) ds

)p

≤
(ˆ t

0

sup
x∈R2

(φ) ds

)p
≤ tpCp.

By simply di�erentiating with respect to t, we see that Ftφ lies in fact in
W 1,p[0, T ] for any p ≥ 1.

As linear and bounded operators are trivially closed, we can use Lemma 62 to
justify exchanging the integral and translation, interpreting each action on either
the space C[0, T ] or W 1,2[0, T ]. So

〈u(t), φ〉 = 〈U0,tφ, g〉+

ˆ t

0

〈Us,tFs, φ〉 ds =

ˆ t

0

Us,t

ˆ t

0

φ(−Wr − µ) dr ds
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=

ˆ t

0

ˆ s

0

Us,tφ(−Wr − µ) dr ds =

ˆ t

0

ˆ s

0

φ(Ws −Wr − (µ+Wt)) dr ds.

�

At this point, referring back to Proposition 42, one could already see that a
potential weak solution could have a connection with the self-intersection local
time (SILT) of a planar Brownian motion:

(4.4)

ˆ t

0

ˆ s

0

φ(−Wt +Ws −Wr − µ) dr ds =

ˆ t

0

ˆ s

0

φ(Ws −Wr − (µ+Wt)) dr ds

=

ˆ
R2

φ(x)β2(x+ µ+Wt, t) dx,

if µ+Wt 6= 0 R2.

Remark 64. For µ 6= 0, the condition µ+Wt 6= 0 holds with probability 1.
Let t > 0, µ 6= 0,

0 ≤ P(Wt + µ = 0) ≤ P(µ ∈W [0, t])

= P

(
µ ∈

√
1

t
W [0, 1]

)
= P

 µ√
1
t

∈W [0, 1]

 = 0.

Where the last equality stems from the following Lemma.

Lemma 65. For any x, y ∈ R2, we have Px(y ∈W [0, 1]) = 0.

Proof. For any �xed y ∈ R2, by Fubini's theorem,

ˆ
R2

Py(x ∈W [0, 1]) dx = Ey[L2(W [0, 1])] = 0.

Hence, for almost every x ∈ R2 we have Py(x ∈ W [0, 1]) = 0. By symmetry of
the Brownian motion,

Py(x ∈W [0, 1]) = P0(x− y ∈W [0, 1]) = P0(y − x ∈W [0, 1]) = Px(y ∈W [0, 1]).

We infer that Px(y ∈ W [0, 1]) = 0 for L2-almost every point x. For any ε > 0
we thus have, almost surely, PBε(y ∈W [0, 1]) = 0.

Hence,

Px(y ∈W [0, 1]) = lim
ε→0

Px(y ∈W [ε, 1]) = lim
ε→0

Ex[Px(y ∈W [0, 1− ε])] = 0,

where we have used the Markov property in the second step. �
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Remark 66. We encounter certain issues:
The smoothness of β2 in order to qualify as a weak solution and of course the

smoothness of φ, in order to even be able to apply Ito's formula. We leave the ques-
tion regarding the application of Ito's formula unanswered for the case of H2(R2),

but supply a short treatment of the case f ∈ W 2,p
loc (Rn) for p > 1 + n

2 in the
Appendix.

A possible way out would be to consider φ ∈ C∞c (R2) and interpret the solution
as a distribution. If we followed this approach, all steps made before certainly hold,
and even (4.4) holds, as shown by [6]. As φ ∈ C∞c is quite restrictive, we will try to
work with functions φ ∈ S and interpret the solution as a tempered distribution.

Remark 67. As S is a dense subspace of any of our usual Sobolev spaces, the
previous lemmata and propositions obviously still hold, if we replace φ ∈ H2 by
φ ∈ S.

Remark 68. As we will turn our attention to the existence of an actual solution
in a moment, we will refer to regarding the uniqueness to Theorem 22 (and the
preceding Lemma).

Proposition 69. Let φ ∈ S and consider the set up from equation (4.3), then we
have

d〈u(t), φ〉 =

(
1

2
〈∆φ, u(t)〉+

ˆ t

0

φ(−µ−Wr) dr

)
dt+ 〈∇φ, u(t) dWt〉

for any t ≥ 0 and u(0) = 0.

Proof.

〈u(t), φ〉 = 〈U0,tφ, g〉+

ˆ t

0

〈Ut,sFs, φ〉 ds =

ˆ t

0

Ut,s

ˆ t

0

φ(−Wr − µ) dr ds

=

ˆ t

0

ˆ s

0

Us,tφ(−Wr − µ) dr ds =

ˆ t

0

ˆ s

0

φ(Ws −Wr − (µ+Wt)) dr ds.

We note that
d

dt
〈u(t), φ〉 =

ˆ t

0

φ(−Wr − µ) dr,

and

dφ(Ws −Wr − (µ+Wt)) =
1

2
∆φ(Ws −Wr − (µ+Wt)) dt

− ∂

∂x1
φ(Ws −Wr − (µ+Wt)) dW

1
t −

∂

∂x2
φ(Ws −Wr − (µ+Wt)) dW

2
t .

As we have chosen φ ∈ S, we can exchange the di�erentiation and integration
and obtain
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d〈u(t), φ〉 =

(
1

2
〈∆φ, u(t)〉+

ˆ t

0

φ(−µ−Wr) dr

)
dt+ 〈∇φ, u(t) dWt〉 .

�

Let us de�ne the following two quantities:
For any φ ∈ S, µ ∈ R2\{0} and t ≥ 0,

Aφ(t, µ) :=

ˆ t

0

ˆ s

0

φ(Ws −Wr − µ) dr ds,

aφ(t, µ) := Aφ(t, µ−Wt).

Based on [38], formula (4.4) holds and we obtain

Aφ(t, µ) =

ˆ t

0

ˆ s

0

φ(Ws −Wr − µ) dr ds =

ˆ
R2

φ(x− µ)β2(t, x) dx

=

ˆ
R2

φ(x)β2(t, x+ µ) dx = 〈φ, Tµβ2(t)〉.

Hence, we get

aφ(t, µ) = 〈φ, Tµ+Wt
β2(t)〉.

Proposition 70. For any f ∈ H2, µ ∈ R2\{0} and t ≥ 0, af (t, ·) is a version of

u(t) :=
´ t

0

´ s
0
Us,tTWr

f dr ds.

Proof. Let φ ∈ H2,

〈af (t, ·), φ〉 =

ˆ
R2

af (t, y)φ(y) dy =

ˆ
R2

ˆ t

0

ˆ s

0

φ(y)Us,tf dr ds dy

=

ˆ
R2

ˆ t

0

ˆ s

0

φ(y)f(Ws−Wr−(y+Wt))drdsdy =

ˆ
R2

ˆ t

0

ˆ s

0

φ(−Wt+Ws−Wr−z)f(z)drdsdz

=

ˆ
R2

f(z)

ˆ t

0

ˆ s

0

φ(−Wt+Ws−Wr−z)drdsdz =

ˆ
R2

f(z)

ˆ t

0

ˆ s

0

Us,tφ(−Wr−z)drdsdz

=

ˆ
R2

f(z)

ˆ t

0

ˆ s

0

Ut,sT−WrI−φ(z) dr ds dz =

ˆ
R2

f(z)

ˆ t

0

〈Ut,sFs, φ〉 ds dz

=

〈
f,

ˆ t

0

ˆ s

0

Ut,sT−Wr
I−φ ds

〉
=

〈
φ,

ˆ t

0

ˆ s

0

Us,tTWr
f ds

〉
.
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�

Corollary 71. Let µ ∈ R2\{0}and f = δ−µ, then a(t, ·) is a version of u(t).

Proof. We can choose fn to be a Dirac sequence of C∞c functions, which are clearly
in H2. As fn → δ−µ in H−2, we can use Lemma 60 and see that un(t) → u(t) in
H−1. The previous proposition states that afn(t, ·) is a version of un(t). We obtain
that afn(t, ·)→ a(t, ·) (Proposition 70) point wise and therefore, a(t, ·) is a version
of u(t). �

Remark 72. Until now, we have avoided talking about the regularity of the solution
u(t, x). It is well known ([35]) that, away from 0, β2(x, t) is Hölder continuous in
(x, t), but a more rigorous investigation regarding its regularity (if it could, in fact,
be regular enough to qualify as a proper weak solution) is far beyond this work.

4.1. The First Moment. Let us, formally, take the expectations on both sides of
equation (4.1), for t ≥ 0, x ∈ R2\{0}, we end up with

(4.5)
∂

∂t
E[u(t, x)] =

1

2
∆E[u(t, x)] + E[f(t, x)],

E[u(0, x)] = 0.

In our case, f(t, x) ∈ H−1. Another aspect of this is that
´ t

0
∇u(x, t) · dWt

needs to be a proper martingale and not just a strictly local one, in order for the
expectation to vanish.

What we have to show is that E
[´ T

0
(∇u)2 dt

]
< ∞ for every T > 0. As we

already have a (candidate for) a weak solution, our task becomes a bit easier.

Lemma 73. For φ ∈ S, f ∈ L2 there exists a constant, dependent on φ, such that(ˆ
φf dx

)2

≤ C
ˆ
f2|φ| dx.

Proof. We use (
|
ˆ
φf dx|

)2

≤
(ˆ
|φ||f | dx

)2

=

(ˆ ´ |φ| dx´
|φ| dx

|φ||f | dx
)2

=

(ˆ
|φ| dx

)2(ˆ |φ|´
|φ| dx

|f | dx
)2

.

As
´ |φ|´
|φ| dx dx = 1, we can use Jensen's inequality to obtain

C

(ˆ
|φ|´
|φ| dx

|f | dx
)2

≤ C
ˆ

|φ|´
|φ| dx

|f |2 dx = C

ˆ
|φ||f |2 dx.

�
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Remark 74. In law we have

(4.6)

ˆ
R2

φ(x)β2(x+ µ+Wt, t) dx = 〈φ, SWtSµβ(t, ·)〉 = 〈S−Wtφ, Sµβ(t, ·)〉 ,

where S· denotes the translation/shift-operator.
Further,

E

[ˆ T

0

〈∇ · φ, β2(t, x+Wt + µ)〉2 dt

]
= E

[ˆ T

0

〈S−Wt
∇ · φ, β2(x+ µ, t)〉2 dt

]

≤ C
ˆ T

0

ˆ
R2

E[(∇ · φ(x−Wt))β2(x+ µ, t)2] dx dt

≤ C
ˆ T

0

ˆ
R2

E[(∇ · φ(x−Wt))
2]

1
2E[β2(x+ µ, t)4]

1
2 dx dt.

The �rst inequality stems from Jensen's inequality, as shown in the previous
Lemma and the second is just a routine application of the Cauchy-Schwartz in-
equality.

We note that for f, g ∈ S, fg ∈ S and f ∗ g ∈ S, so φ2 ∈ S. Further,

ˆ
R2

E[φ(x−Wt)
2] =

ˆ
R2

φ(x+ y)2
exp

(
− |y|

2

2t

)
2πt

dy =

(
φ2 ∗ exp

(
−| · |

2

2t

))
(x),

which lies again in S.

Proposition 75. For all φ ∈ S,

E

[ˆ T

0

〈∇ · φ, βn2 (x, t)〉2 dt

]
<∞,

for n = 1, 2, . . . .

Proof. We actually just have to show, as a consequence of Fubini's theorem, Jensen's
inequality and the Cauchy-Schwartz inequality, that there exists a �nite constant
C, such that

ˆ
R2

E[(∇ · φ(x−Wt))
2]

1
2 (E[β2(x+ µ, t)4n])

1
2 dx ≤ Ch(t),

where h ∈ L1(0, T ) for every �nite T .
In the next steps we suppress the translation by µ, as we can shift this translation

to the respective function ψ ∈ S and de�ne it as ψ̃(·) := ψ(· − µ). Further, we will
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work with a generic ψ ∈ S, which can obviously be replaced by the desired partial
derivative of φ and its powers.

We now have the choice to either use the (Yor-Rosen-)Tanaka formula in order
to express β2(x, t) and derive our estimates this way, or to use the previously stated
estimates (Theorem 44), together with the scaling argument (Remark 24) from the
beginning of the previous section, to obtain

E[β2(x, t)2n] = t
6n
2 E

[
β2

(
x√
t
, 1

)2n
]

≤ t3nc(2n)

(
1 ∨

∣∣∣∣G( x√
t

)∣∣∣∣)v(2n)

≤ t3nc(2n)

(
1 ∨

(∣∣∣∣ 1π log(|
√
t|)
∣∣∣∣+ |G(x)|

))v(2n)

.

In the case of p = 2n, v(2n) = 2n and due to the positivity of all terms in the
last expression,

(
1 ∨

(∣∣∣∣ 1π log(|
√
t|)
∣∣∣∣+ |G(x)|

))v(2n)

≤
(

1 +

∣∣∣∣ 1π log(|
√
t|)
∣∣∣∣+ |G(x)|

)2n

.

Regarding the integral over R2, we only have to deal with integrals of the form
c
´
R2 ψ(x)|G(x)|j dx, j = 1, . . . , 2n, where ψ ∈ S. These integrals can be evaluated

similarly to the ones in Remark 29.∣∣∣∣ˆ
R2

ψ(x)|G(x)|j dx
∣∣∣∣ =

∣∣∣∣∣
ˆ
R2

ψ(x)

∣∣∣∣∣log

(
1

|x|

)j∣∣∣∣∣ dx
∣∣∣∣∣

=

∣∣∣∣∣
ˆ 2π

0

ˆ ∞
0

ψ(r, ρ)

∣∣∣∣∣log

(
1

r2

)j∣∣∣∣∣ r dr dρ
∣∣∣∣∣

=

∣∣∣∣∣
ˆ 2π

0

(ˆ 1

0

ψ(r, ρ) log

(
1

r2

)j
r dr +

ˆ ∞
1

ψ(r, ρ)

∣∣∣∣∣log

(
1

r2

)j∣∣∣∣∣ r dr
)
dρ

∣∣∣∣∣
≤ 2π sup

(r,ρ)∈B(0,1)

|ψ(r, ρ)|+
ˆ 2π

0

ˆ ∞
1

|ψ(r, ρ)2jr| log(r)|j | dr dρ <∞

≤ C Γ(j + 1)

2
+

ˆ 2π

0

ˆ ∞
1

|ψ(r, ρ)|2jrj+1 dr dρ <∞.

The way we conclude the existence for each of these integrals is the following:
We actually just split the integral with respect to r, up into an integral over (0, 1)
and (1,∞).
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Due to the continuity of ψ, we can estimateˆ 1

0

|ψ(r, ρ)|r log(r)j dr ≤ C
ˆ 1

0

r log(r)j dr.

As φ ∈ S, ∣∣∣∣ˆ ∞
1

|ψ(r, ρ)rj+1| dr
∣∣∣∣ ≤ ˆ ∞

0

|ψ(r, ρ)rj+1| dr <∞.

Regarding the integration with respect to t, the only integrals we have to deal

with are of the form C
´ T

0
tm dt or C

´ T
0
tm log(

√
t)n dt. Evaluating these integrals

from 0 to T gives us

ˆ T

0

tm log(|
√
t|)n dt

=
(−1)n(1 +m)−nΓ(1 + n) + Γ(1 + n,−(1 +m) log(T )) log(T )n(−(1 +m) log(T ))−n

2n(1 +m)
.

This proves our claim. �

Corollary 76. For all φ ∈ S and T > 0,

E

[ˆ T

0

〈∇ · φ, βn2 (x, t)〉2 dWt

]
= 0.

Let us set, for a Dirac sequence ρε and x 6= 0 outside the support of ρε, φ(·) =
ρε(x− ·).

E[〈u(t, ·), ρε〉] =
1

2

ˆ t

0

E[〈∆ρε(x−·), u(s, ·)〉]ds+E
[ˆ t

0

ˆ s

0

ρε(x− (−µ−W (r))) dr ds

]
.

By Lebesgue's theorem, we can interchange the expected value and integration
on the left-hand side, due to the knowledge about the explicit form of u, which
results in

ˆ
R2

ρε(x− y)E[u(s, y)] dy → E[u(s, x)],

in the sense of distributions.
On the right-hand side, we use the same argument to exchange the expectation

and integration

1

2

ˆ t

0

〈∆ρε(x− ·),E[u(s, ·)]〉.

E
[ˆ s

0

ρε(x− (−µ−Wr)) dr

]
=

ˆ s

0

E[ρε(−x+ (−Wr − µ))] dr
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=

ˆ s

0

ˆ
R2

ρε(z − (−µ− x))
1

2πr
exp

(
−|z|

2

2r

)
dz dr.

Letting ε→ 0, we get

ˆ s

0

1

2πr
exp

(
−|µ+ x|2

2r

)
dr = Γ

(
0,
|µ+ x|2

s

)
.

The estimate

ˆ t

0

ˆ s

0

1

2πr
exp

(
−|µ+ x|2

2r

)
dr ds ≤ t

ˆ t

0

1

2πr
exp

(
−|µ+ x|2

2r

)
dr,

ensures the following Proposition is true.

Proposition 77. E[u(t, x)] is a solution of the PDE (4.5) in the sense of tempered
distributions.

4.2. The Second Moment. We now try to �nd an expression for the second
moment of the solution E[u(t, x)2].

If we formally apply Ito's formula to u2,

du(t, x)2 = (u∆u+ (∇u)2 + uFt + Ftu) dt+ 2u∇u · dWt.

We set u2(0, x) = 0.
Formally taking expectations, de�ning m2(t, x) := E[u2(t, x)] and noticing that

∂u2

∂x2
= 2u

∂u2

∂x2
+ 2

(
∂u

∂x

)2

,

∂u2

∂x
= 2u

∂u

∂x
,

2u∇u · dWt = ∇u2 · dWt,

du(t, x)2 =

(
1

2
∆u2 + uFt + Ftu

)
dt+∇u2 · dWt.

For φ ∈ S (should also hold for φ ∈ H2),

d〈u2(t), φ〉 =

(
1

2
〈∆φ, u2(t)〉+

ˆ
R2

ˆ t

0

φ(−µ−Wr) dr u(x, t) dx+

ˆ
R2

ˆ t

0

u(−µ−Wr, t) dr φ(x) dx

)
dt

+〈∇φ, u2(t)〉 dWt.
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For the �new� integral terms, it holds that∣∣∣∣ˆ
R2

ˆ t

0

φ(−µ−Wr) dr u(x) dx

∣∣∣∣ ≤ ˆ
R2

ˆ t

0

|φ(−µ−Wr)u(x)| dr dx

≤
ˆ
R2

ˆ t

0

|φ(−µ−Wr)|2 dr
ˆ t

0

|u(x)|2 dr dx ≤ Cf(t)

ˆ
R2

|u(x)|2 dx ≤ ∞,

where f ∈ L1
loc, sinceˆ t

0

|φ(−µ−Wr)|2 dr ≤ t sup
s∈[0,t]

|φ(−µ−Ws)|2.

An analogous estimate can be made for the second term, as the explicit expres-
sion for u is continuous.

We obtain

(4.7)
∂

∂t
m2(t, x) =

1

2
∆m2(t, x) + E[u(t, x)Ft + Ftu(t, x)],

as the expectation of the stochastic integral vanishes due to the estimate

ˆ
R2

E[(∇ · φ(x−Wt))
4]

1
2E[β2(x+ µ, t)8]

1
2 dx ≤ Ch(t),

which we already showed in Proposition 75.
In order to proof the existence of the remaining expectations, we �nally make use

of 46, as we could apply it to the �rst double integral with the constant 1 function

ˆ
R2

1 · u(x, t) dx =

ˆ t

0

ˆ s

0

1 du ds =
t2

2
.

We are left with

E
[ˆ t

0

ρε(y + µ+Wr) dr

]

=

ˆ t

0

ˆ
R2

ρε(x− (−y − µ))
exp

(
− |x|

2

2r

)
2πr

dx dr.

taking the limit, this is equal to

ˆ t

0

exp
(
− |−µ−y|

2

2r

)
2πr

dr = Γ

(
0,
|µ+ x|2

t

)
.

In total, we get
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E
[ˆ

R2

ˆ t

0

ρε(y + µ+Wr) dr u(x, t) dx

]
= Γ

(
0,
|µ+ x|2

t

)
t2

2
.

For the second integral, (as u is continuous in both components and we integrate
over the compact set [0, t] and by using the same estimate, as for the �rst moment,
for the appearing double integral)

E
[ˆ

R2

ˆ t

0

u(−µ−Wr, t) dr ρε(y − x) dx

]

≤ E

[
t sup
s∈[0,t]

{u(−µ−Ws, t)}
ˆ
R2

ρε(y − x) dx

]
.

Although these estimates are not very elegant, they provide us with what we
need to state the following Proposition:

Proposition 78. m2(t, x) := E[u2(t, x)] is a solution, in the sense of tempered
distributions, of the PDE (4.7).

4.3. The Moment Generating Function. Let θ > 0 and consider the function
M(t, x, θ) := E[exp(θu(t, x))]. We formally apply Ito's formula

d exp(θu(t, x)) =

1

2

(
exp(θu(t, x))(θ∆u(t, x) + θFt + θ2(∇u(t, x))2)

)
dt+θ exp(θu(t, x))∇u(t, x)·dWt,

exp(θu(0, x)) = 1.

Using the fact that ∆ exp(θu(t, x)) = exp(θu(t, x))(θ∆u(t, x) + θ2(∇u(t, x))2),
we should be able to obtain that

(4.8)
∂

∂t
M(t, x, θ) =

1

2
(∆M(t, x, θ) + θFt),

M(0, x, θ) = 1.

As in the previous sections, what we need to show is that
´ t

0
θ exp(θu)∇u · dWs

is a martingale or, more speci�cally,ˆ t

0

θ exp(θu)
∂

∂xi
u dW i

s =

ˆ t

0

∂

∂xi
exp(θu) dW i

s

is a martingale for i = 1, 2.
First, we will state a rather useful Lemma.
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Lemma 79. Let M = {Mt : t ≥ 0} be a continuous local martingale, such that
M0 = 0. Suppose, that for some α > 0 and p ∈ (0, 1] we have E[exp(α〈M〉pt )] <∞.
Then,

1.) if p = 1, for any λ <
√

α
2 , E[exp(λ|Mt|)] <∞ and

2.) if p < 1, E[exp(λ|Mt|p)] <∞ for all λ > 0.

Proof. Set X = |Mt|p. For any constant c > 0, we can write

E[exp(λX)] =

ˆ ∞
0

P(X ≥ y)λ exp(λy) dy

=

ˆ ∞
0

(P(X ≥ y, 〈M〉pt < cy) + P(X ≥ y, 〈M〉pt ≥ cy))λ exp(λy) dy

≤
ˆ ∞

0

2 exp

(
− y

1
p

2c
1
p

)
λ exp(λy) dy +

ˆ ∞
0

+P
(
〈M〉pt
c
≥ cy

)
λ exp(λy) dy

=

ˆ ∞
0

2λ exp

(
λy − y

1
p

2c
1
p

)
dy + E

[
exp

(
λ

c
〈M〉pt

)]
.

To complete the proof, we simply choose c = λ
α . �

Remark 80. The constant C which will be used in the following Proposition, might
change from line to line, in order to account for appearing constants.

Proposition 81. Let φ ∈ C∞c , T > 0, we have, for all 0 < θ < θ0,

E

[ˆ T

0

〈
∂

∂xi
φ, exp(θβ2(x+ µ+Wt, t))

〉2

dt

]
<∞.

Proof. Out of convenience, we will replace the partial derivatives ∂
∂xi

φ again with
a function ψ ∈ C∞c and, also �shift� the translation, with respect to Wt, onto our
test function as in (4.6). We are left with

E
[
〈ψ(· −Wt), exp(θβ2(x+ µ, t))〉2

]
≤ C

ˆ
R2

E[(ψ(x−Wt))
2]

1
2 (E[exp(θβ2(x+µ, t))4])

1
2 dx.

We can deal with the �rst expectation the same way we did in Proposition 75.
Regarding the second one, we will use the Yor-Rosen-Tanaka formula (3.35, 3.36).

E[exp(θβ2(x+ µ, t))4]

= E
[
exp

(
−4θ

(ˆ t

0

(G(Wt −Wr − x)−G(−x)) dr −
ˆ t

0

(ˆ s

0

∇G(Ws −Wr − x) dr

)
dWs

))]
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= E
[
exp

(
4θ

ˆ t

0

log(|Wt −Wr − x− µ|) dr −
ˆ t

0

ˆ s

0

Ws −Wr − x− µ
|Ws −Wr − x− µ|2

dr dWs − t log(|x+ µ|)
)]

≤ E
[
exp

(
8θ

ˆ t

0

log(|Wt −Wr − x− µ|) dr
)] 1

2

×E
[
exp

(
−8θ

ˆ t

0

ˆ s

0

Ws −Wr − x− µ
|Ws −Wr − x− µ|2

dr dWs

)] 1
2

×E [exp (−16θt log(|x+ µ|))]
1
2 .

We will treat each of these terms individually.
Regarding the �rst term:
As we are testing with functions from C∞c , our estimates are not required to be

optimal, which leaves us a bit of space. Another way to deal with the �rst term,
using an estimate from [23], will be mentioned in a following Remark.

Let h : Rn → R be a convex function and Xt be a process in Rn with continuous
paths.

We consider the expression h
(´ t

0
Xs ds

)
. Seeing that the term inside the func-

tion h exists for every ω, we apply Jensen's inequality for every sample path and
arrive at

h

(
t

t

ˆ t

0

Xs ds

)
≤ 1

t

ˆ t

0

h(tXs) ds.

From this follows that P
(
h
(´ t

0
Xs ds

)
> x

)
≤ P

(
1
t

´ t
0
h(tXs) ds > x

)
for every

x ∈ R.
Hence,

E
[
g

(ˆ t

0

Xs ds

)]
≤ E

[
1

t

ˆ t

0

g(tXs) ds

]
.

In our case, this means

E
[
exp

(
8θ

ˆ t

0

log(|Wt −Wr − x− µ|) dr
)] 1

2

≤ E
[
exp

(
8θt log

(ˆ t

0

∣∣∣∣Wt −Wr − x− µ
t

∣∣∣∣ dr))]
1
2

≤ E

[(
1

t

)8θt(ˆ t

0

|Wt −Wr − x− µ| dr
)8θt

] 1
2

.
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We will assume that 8θt < 1, which will turn out to be a reasonable assumption
once we arrive at the end of the proof. Hence,

E

[
(
1

t
)8θt

(ˆ t

0

|Wt −Wr − x− µ| dr
)8θt

] 1
2

≤ E

(
1

t
)8θt

(
t sup
s∈[0,t]

2|Ws|+ t|x|+ t|µ|

)8θt
 1

2

≤ E

C ( sup
s∈[0,t]

|Ws|

)8θt

+ C|x|8θt + C|µ|8θt
 1

2

.

Considering sups∈[0,t] |Ws| = sups∈[0,t]

√
(W 1

s )
2

+ (W 1
s )

2 ≤ 2 sups∈[0,t]

√
(Bs)

2
,

where B denotes a one dimensional Brownian motion, we obtain the following
estimate for the previous term

≤ E

C
( sup

s∈[0,t]

|Bs|

)8θt

+ |x|8θt + |µ|8θt
 1

2

.

To calculate the appearing moments, we can rely on the calculations for the
moments of the supremum of a re�ected Brownian motion, which are related to
Gamma functions. We will use the estimates presented in [14], Proposition 1.1 (ii),

E

[(
sup
s∈[0,t]

|Bs|

)ν]
≤ 1√

π
21+ ν

2 Γ

(
ν + 1

2

)
t
ν
2 .

Summing up,

E
[
exp

(
8θ

ˆ t

0

log(|Wt −Wr − x− µ|) dr
)] 1

2

≤ C
(
t
8θt
2 + |x| 8θt2 + |µ| 8θt2

)
.

When integrating with respect to x and t, we can use 0 < 8θt
2 < 1 in order to

dominate the respective terms to dominate the integrands based on the region of
integration.

Let us now consider the second term:

E
[
exp

(
−8θ

ˆ t

0

ˆ s

0

Ws −Wr − x− µ
|Ws −Wr − x− µ|2

dr dWs

)] 1
2

.

We know that the term in the exponent is a continuous L2 martingale (Lemma
47) with mean zero.

Referring to Lemma (79), let us consider the second variation of the term inside
the exponential.
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Yt := −8θ

ˆ t

0

ˆ s

0

Ws −Wr − x− µ
|Ws −Wr − x− µ|2

dr dWs,

then

〈Yt〉 = 64θ2
2∑
i=1

ˆ t

0

(ˆ s

0

(Ws −Wr − x− µ)i
|Ws −Wr − x− µ|2

dr

)2

dsi.

We will treat each term of the sum separately. Out of convenience, we omit the
index i and de�ne y := x+ µ.

0 ≤ 64θ2

ˆ t

0

(ˆ s

0

Ws −Wr − y
|Ws −Wr − y|2

dr

)2

ds ≤ Cθ2

ˆ t

0

(ˆ s

0

∣∣∣∣ Ws −Wr − y
|Ws −Wr − y|2

∣∣∣∣ dr)2

ds

≤ Cθ2

ˆ t

0

(ˆ s

0

1

|Ws −Wr − y|
dr

)2

ds ≤ Cθ2

ˆ t

0

(ˆ t

0

1

|Ws −Ws−r − y|
dr

)2

ds

= Cθ2t

(ˆ t

0

1

|Wr − y|
dr

)2

.

exp(γ〈Yt〉) ≤ exp

(
γCt

(ˆ t

0

1

|Wr − y|
dr

)2
)
.

We use Ito's formula with Rt := |Wt − y| and h(x) := 1
x ,

g(Rt)− g(R0) =

ˆ t

0

g′(Rs) dBs +

ˆ t

0

h(Rs) ds,

g(0) = 0.

g′(r) =
2

r

ˆ r

0

uh(u) du =
2

r

ˆ r

0

u

u
du = 2.

1

2

(
g′(r)

r
+ g′′(r)

)
= h(r).

We get that g(r) = 2r. So

1

2

ˆ t

0

1

|Wr − y|
dr = Xt − |y| −Bt.

X denotes a 2-dimensional Bessel process and B a standard 1-dimensional Brow-
nian motion. We see that
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E

[
exp

(
γCt

(ˆ t

0

1

|Wr − y|
dr

)2
)]

= E
[
exp

(
γCt (Xt − |y| −Bt)2

)]
.

Further,

E
[
exp

(
γCt (Xt − |y| −Bt)2

)]
= E

 ∞∑
n=1

(
γCt (Xt − |y| −Bt)2

)n
n!



≤ E

[ ∞∑
n=1

(γCt)n (Xt + (|y|+ |Bt|))2n

n!

]
.

By using the discrete version of Jensen's inequality, we obtain

E

[ ∞∑
n=1

(γCt)n (Xt + (|y|+ |Bt|))2n

n!

]
≤ E

[ ∞∑
n=1

(γCt)n32n
(

1
3X

2n
t + 1

3 |y|
2n + 1

3 |Bt|
2n
)

n!

]
.

This leaves us with the task of �nding suitable bounds for the even moments of
a 2-dimensional Bessel process, and a Brownian motion.

It goes without saying, that the �suitable� γ for each of the 3 terms Xt, |Bt| and
|y| will be di�erent, but out of convenience, we will not change the notation. It
shall further be noted, that we choose the smallest value of γ obtained from the 3
following estimates, when we proceed.

Regarding the Bessel process X, we know that

ˆ
R2

+

|x|m exp

(
−|x|

2

σ

)
dx =

1

4
σ1+m

2 Γ
(

1 +
m

2

)
.

As we only calculate even moments, this is in turn equal to 1
4σ

1+m
2 m!.

Therefore,

E
[

(γCt)n32n 1
3X

2n
t

n!

]
≤ (γCt)nt(1+n)n!

n!
≤ (γCTα)n,

where α :=

{
1 T < 1

3 T ≥ 1
. For γ < 1

CTα , γCT
α < 1, which means that a summa-

tion over n converges.
Considering now |Bt|,

E
[
|Bt|2n

]
≤ C

ˆ ∞
0

|x|2n exp

(
−x

2

2t

)
dx

≤ C

2
(2t)

1
2 +nΓ

(
1

2
+ n

)
=
C

2
(2t)

1
2 +2n (2n)!

n!4n
√
π.

From this we obtain
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E
[

(γCt)n32n 1
3 |Bt|

2n

n!

]
≤ (γCt)n

n!
t
1
2 +2n (2n)!

n!4n
≤ (γCT β)n,

where β :=

{
1
2 T < 1

3 T ≥ 1
.

It is easy to check that the term (2n)!
(n!)24n is bounded by 1 for every n = 1, 2, . . .

and goes to 0, as n approaches in�nity.
Hence, we can choose γ again small enough, such that the sum over (γCT β)n

converges.
The only terms we are left with, are the ones containing |y|2n.

E
[

(γCt)n32n 1
3 |y|

2n

n!

]
≤ (γCt|y|2)n

n!
.

Combining all the three terms indicates that there exists a θ0, which depends on
T , such that the expectation of the exponential exists for every 0 < θ < θ0.

(Proceeding, we will choose our θ0 as the minimum of the θ0 obtained above and
1

8T . The reason for this will soon become obvious.)
For the third term,

E [exp (−16θt log(|x+ µ|))]
1
2 = E

[
exp

(
− log(|x+ µ|16θt)

)] 1
2

= E
[
exp

(
log

(
1

|x+ µ|16θt

))] 1
2

=
1

|x+ µ|8θt
.

It should be noted that, by Young's inequality,

1

|y|
=

1√
y2

1 + y2
2

=
1√

|y1|2 + |y2|2
≤ 1√

2|y1||y2|
.

Roughly summing up, by the previous estimates and Lemma 79

E[exp(θβ2(x+ µ, t))4]

≤ C1

(
t
8θt
2 + |x| 8θt2 + |µ| 8θt2

) (
C2,θ + C3,γ + exp(γC3|x+ µ|2)

)( 1

|x+ µ|8θt

)
.

When dealing with the integrability regarding x, we see that the terms which
appear when we perform the previous steps (including the steps in the proof of
Lemma 79 for the second term), are of the form yα for α ≥ 0, exp(Cy2) and

1
|y|β with β < 1. As we are multiplying with a C∞c function, the �rst two terms

are negligible and the only term requiring attention is 1
|y|β . Let ψ ∈ C∞c with

−µ ∈ supp(ψ),
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ˆ
R2

ψ(x)
1

|x+ µ|8θt
dx =

ˆ
R2

ψ(x− µ)
1

|x|8θt
dx ≤ C

ˆ
BR(0)

1

|x|8θt
dx.

BR(0) denotes a ball around 0 with radius R, such that the support of ψ(· − µ)
lies inside it.

We see that this value is �nite by either changing to polar coordinates and noting
that 1

|r|α is integrable on a ball around 0 for any α < 1, or by applying Young's

inequality, as mentioned before.
Integrating with respect to t, results obviously in a �nite value as, by all previous

estimates and because 0 ≤ 8θt < 1, we are left with a polynomial in t, which we
integrate over [0, T ]. �

Proposition 82. The moment generating function M(t, x, θ) := E[exp(θu(t, x))]
for θ < θ0, can be obtained as a distributional solution of (4.8) .

Proof. Let y 6= 0 and ρε again the normal approximation of the Dirac delta.

E[〈exp(θu(s, x)), ρε(· − y〉]

=
1

2

(
E
[ˆ t

0

〈exp(θu(s, x)), ∆ρε(· − y〉
]

+ θE
ˆ t

0

[〈Fs, ρε(· − y)〉] ds
)
.

It only remains to justify the exchange of the integrals and the expectation in
the �rst integral on the right hand side. The argumentation for the left hand side
is the same as in the case of the �rst moment, where we also have already dealt
with the term including F on the right hand side. By Tonelli's theorem for positive
functions (as the term inside the inner product remains positive),

E
[ˆ t

0

〈exp(θu(s, x)), ∆ρε(· − y〉 ds
]

=

ˆ t

0

〈E[exp(θu(s, x))], ∆ρε(· − y〉 ds.

What is left now is using Lebesgue's theorem, letting ε → 0 and di�erentiating
with respect to t. �

Remark 83.

E
[
exp

(
8θ

ˆ t

0

log(|Wt −Wr − x− µ|) dr
)] 1

2

≤ E
[
exp

(
8θ

ˆ t

0

(1 + |Wt−r − x− µ|) dr
)] 1

2

≤
(
E
[
exp (8θt) exp

(
8θ

ˆ t

0

|Wt−r|+ |x|+ |µ| dr
)]) 1

2

=

(
E
[
exp (8θt(1 + |x|+ |µ|)) exp

(
8θ

ˆ t

0

|W 1
t−r|+ |W 2

t−r| dr
)]) 1

2

,

as for a, b > 0
√
a+ b ≤

√
a+
√
b holds.

We will replace W i, i = 1, 2 by B.
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|Bt| = |B0|+
ˆ t

0

sgn(Bs) dBs − Lt,

where L denotes the local time of a Brownian Motion.
As L is increasing,

E
[
exp

(ˆ t

0

8θ|Bs| ds
)]

= E
[
exp

(
8θ

ˆ t

0

|B0|+
ˆ s

0

sgn(Br) dBr − Ls ds
)]

≤ E
[
exp

(
8θ

(ˆ t

0

Bs ds+ tLt

))]

≤ E
[
exp

(
16θ

ˆ t

0

Bs ds

)] 1
2

E [exp (16θtLt)]
1
2

≤
(

exp

(
256θ2 t

3

6

)) 1
2 (

2 exp
(
8θ2t

)) 1
2 .

The estimate leading to the last inequality was taken from [23].

Remark 84. Another way to approach the previous problem, is to expand the
exponent

E[exp(θβ2)] = E[exp(θβ2 − θE[β2]) exp(θE[β2])]

and use the Clark-Ocone formula to deal with the expectation involving the renor-
malized SILT, as in [21]. From there we get the following representation for

L̃ := β2(0, T )− E[β2(0, T )],

L̃ := − 1

2π

2∑
i=1

ˆ T

0

(ˆ T

r

ˆ r

0

Bir −Bis
(t− r)2

exp

(
−|Br −B2|2

2(t− r)

)
ds dt

)
dBir.

The quadratic variation of this stochastic integral is

〈L̃〉 =
1

4π2

2∑
i=1

ˆ T

0

(ˆ T

r

ˆ r

0

Bir −Bis
(t− r)2

exp

(
−|Br −B2|2

2(t− r)

)
ds dt

)
dr

≤ 1

4π2

ˆ T

0

(ˆ T

r

ˆ r

0

|Br −Bs|
(t− r)2

exp

(
−|Br −Bs|

2

2(t− r)

)
ds dt

)
dr

=
1

π2

ˆ T

0

(ˆ r

0

1

|Br −Bs|
exp

(
−|Br −Bs|

2

2(T − r)

)
ds

)
dr
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≤ 1

4π2

ˆ T

0

(ˆ r

0

1

|Br −Bs|
ds

)
dr.

A quick application of Ito's formula shows that

ˆ r

0

1

|Br −Bs|
ds =

1

d− 1
(Xr − br),

where Xr has the law of the modulus of a d−dimensional Brownian motion at
time r (d−dimensional Bessel process), and br has a normal N(0, 1) law. We can
write

exp(λ〈L̃〉) ≤ 1

T

ˆ T

0

exp

(
Tλ

π2

(ˆ r

0

1

|Br −Bs|
ds

)2
)
dr,

which implies the existence of some λ0, such that E[exp(λ〈L̃〉)] ≤ ∞ for all λ ≤
λ0. From Lemma (79), we obtain the existence of a β0, such that E[exp(β|L̃|)] ≤ ∞
for all β < β0. Although we are not able to obtain the critical exponent explicitly
this way, we still obtain its existence.

We would proceed similarly in order to obtain our desired result.

Corollary 85. The previous estimates also indicate that there exists a θ0, such
that for all θ < θ0, the moment generating function of the SILT at a point x 6= 0
and a time t > 0, exists.
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5. Appendix

5.1. A weak form of Ito's Lemma.

Lemma 86. Let

ρ(t, x) =
1

(2πt)
n
2

exp

(
−|x|

2

2t

)
, t > 0, x ∈ Rn,

then ρ ∈ Lq((0, T )× Rn) for every q ∈ (0, 1 + 2
n ) and T > 0.

Proof.
ˆ T

0

ˆ
Rn
ρq(t, x) dx dt =

ˆ T

0

ˆ
Rn

1

(2πt)
n
2 (q−1)

exp

(
−q|x|

2

2t

)
dx dt,

by the change of variables y = x√
2t
, we get

=
1

π
nq
2

ˆ T

0

1

(2t)
n
2 (q−1)

dt

ˆ
Rn

exp(−q|y|2) dy.

This expression is �nite for n(q−1)
2 < 1 and q > 0, i.e. 0 < q < 1 + 2

n . �

Lemma 87. Assume that f ∈ W 2,p(Rn), with p < 1 + n
2 , then f is (Hölder)

continuous and we have
1.) if p ≤ n then |∇f |2 ∈ Lq(Rn) for some q > 1 + n

2 ,
2.) if p > n then ∇f ∈ C(Rn) ∩ L∞(Rn).

Proof. If p ≥ n, the claim follows from the usual Sobolev(-Morrey) embedding, [1]
Theorem A.168 (as Theorem 52 is a bit too speci�c). If 1 + n

2 < p < n then, nec-

essarily, n > 2 and by the previously mentioned Theorem, we have ∇f ∈ L2q(Rn)
with

2q =
pn

n− p
=

n
n
p − 1

>
n

n
1+n

2
− 1

=
n(n+ 2)

n− 2
> n+ 2.

This proves that |∇f |2 ∈ Lq(Rn) for some q > 1 + n
2 and consequently, by [1]

Theorem A.168, f is Hölder continuous. �

Proposition 88. Let X, Y be a.s. right-continuous stochastic processes. If X
is a modi�cation of Y , then X, Y are indistinguishable. In particular, we can
equivalently write
Xt = Yt a.s. for every t
or
Xt = Yt for every t a.s..

Proof. We refer to [1], Proposition 3.25 on page 108. �

Proposition 89. Let f ∈W 2,p
loc

(Rn) with p > 1 + n
2 , then we have

(5.1) f(Wt) = f(0) +

ˆ t

0

∇f(Ws) · dWs +
1

2

ˆ t

0

∆f(Ws) dWs.
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Proof. Let us �rst consider the case n > 2. Let fn be a regularizing sequence for
f , which we obtained by a convolution with the usual molli�er. Then by Lemma
50, fn ∈ C∞(Rn) and fn converges to f , uniformly on compact sets, so that

lim
n→∞

fn(Wt) = f(Wt),

for any t ≥ 0. By the standard Ito formula, we have

fn(Wt) = fn(W0) +

ˆ t

0

∇fn(Ws) · dWs +
1

2

ˆ t

0

∆fn(Ws) ds.

Further, by the Ito isometry,

E

[(ˆ t

0

(∇fn(Ws)−∇f(Ws)) · dWs

)2
]

=

ˆ t

0

E
[
|∇fn(Ws)−∇f(Ws)|2

]
ds

=

ˆ t

0

ˆ
Rn
|∇fn(x)−∇f(x)|2ρ(s, x) dx ds =: In.

If p > n, we have

lim
n→∞

In = 0

by Lebesgue's theorem, since by Lemma (87) ∇f ∈ C∩L∞, and so the integrand
converges to zero pointwise and is dominated by the integrable function ‖∇fn −
∇f‖2L∞(Rn)ρ.

On the other hand, if 1 + n
2 < p ≤ n, by Lemma (87) we have |∇f |2 ∈ Lq(Rn)

for some q > 1 + n
2 . Let q

′ the conjugate exponent of q, then we have

q′ = 1 +
1

p− 1
< 1 +

2

n

and therefore, by Lemma (86), ρ ∈ Lq′((0, T )× Rn). By Hölder's inequality, we
obtain

In ≤
∥∥|∇fn −∇f |2∥∥Lq((0,T )×Rn)

‖ρ‖Lq′ ((0,T )×Rn) →n→∞ 0.

Finally,

E
[∣∣∣∣ˆ t

0

(∆fn(Ws)−∆f(Ws)) ds

∣∣∣∣]

≤
ˆ t

0

E [|∆fn(Ws)−∆f(Ws))|] ds
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=

ˆ t

0

ˆ
Rn
|∆fn(x)−∆f(x)|ρ(s, x) dx ds.

By applying Hölder's inequality with the conjugate exponent of p, which we call
p′, the last term is

≤ ‖∆fn −∆f‖Lp((0,T )×Rn)‖ρ‖Lp′ ((0,T )×Rn) →n→∞ 0,

since fnconverges to f in W 2,p(Rn) and the assumption p > 1 + 2
n implies

p′ < 1 + 2
n . By Lemma (86), we have

‖ρ‖Lp′ ((0,T )×Rn) <∞.

In conclusion, we showed that (5.1) holds a.s. for every t > 0, and by 88 this is
su�cient.

In the case n ≤ 2, the hypothesis p > 1 + n
2 implies that p > n and the claim

can be proved as before. �

Remark 90. The previous proof can easily be adapted to functions f , which also de-
pends on time, i.e. for functions in the parabolic Sobolev spaceH1,p

loc ((0, T );H2,p
loc (Rn)).

5.2. Some results regarding a �Fundamental solution�.

Remark 91. Most steps in this part are rather short and formal, but can be made
more rigorous by applying results from the previous section.

Consider the equation

dut =
1

2
∆ut + δ−µ dt+∇ut · dWt,

u(0) = u0,

on R2, where Wt is again a planar Brownian motion as in the previous part. By
the same argumentation as in the previous section (Remark 57, Proposition 58), the
weak formulation is, again, well de�ned on H2. Once again, we can use Duhamel's
principle in order to obtain a general form of the solution

u(t) := U0,tu0 +

ˆ t

0

Us,tFs ds,

again with Us,t := TW (s) ◦ T−W (t) and Ut,s := TW (t) ◦ T−W (s).
Lemma 60 can be applied directly in this case.
Once again, we switch to φ ∈ S in order to apply Ito's formula (as in Proposition

69) more easily,

d〈u(t), φ〉 = d

(ˆ t

0

φ(Wt −Wr − µ) dr

)

=

(
φ(−µ) +

1

2

ˆ t

0

∆φ(Wt −Wr − µ) ds

)
dt
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+

(ˆ t

0

∇φ(Wt −Wr − µ) ds

)
dWt

=

(
1

2
〈∆φ, u(t)〉+ φ(−µ)

)
dt− 〈∇φ, u(t)〉 dWt.

Very formal, one could say that, this potential solution raises somewhat the
hope, that we �nd a connection to the SILT,

〈u(t), φ〉 =
d

dt

(ˆ t

0

ˆ s

0

φ(Ws −Wr − µ) dr ds

)
=

d

dt

(ˆ
R2

φ(x)β2(x− µ, t) dx
)

=

ˆ
R2

φ(x)
d

dt

(
lim
ε→0

ˆ t

0

ˆ s

0

ρε(Ws −Wr − (x− µ)) dr ds

)
dx

=

ˆ
R2

φ(x)

(
lim
ε→0

ˆ t

0

ρε(Wt −Ws + µ− x) ds

)
dx

=

ˆ
R2

φ(x)η(x− µ, t) dx.

Unfortunately, I have not been able to show the existence of the last limit in L2

for all times, which is the reason this equation isn't treated as extensively. Although
there are some, more or less satisfactory, results which I would like to mention
(explicit proofs/calculations can be supplied at request). First, a �renormalized�
version of this limit exists, namely limε→0 Iε−E[Iε]. Proving this is rather tedious,
but can be done following the steps in [40]. Second, for su�ciently large values of t

the inequality
´ t

0
exp(−a2|t−s|)ds ≤

´ t
0

´ s
0

exp(−a2|s−r|)dr ds holds, which could
be used after a non-determinism argument in order to show convergence in rather
speci�c cases.

5.3. A list of useful integrals.ˆ
r log

(
1

r2

)n
dr =

1

2
Γ

(
n+ 1, log

(
1

r2

))
.

ˆ t

0

r log

(
1

r2

)n
dr =

1

2
Γ(n+ 1,−2 log(t)).

ˆ T

0

tm log(|
√
t|)n dt

=
(−1)n(1 +m)−nΓ(1 + n) + Γ(1 + n,−(1 +m) log(T )) log(T )n(−(1 +m) log(T ))−n

2n(1 +m)
.

ˆ
tm log(|

√
t|)n dt

=
Γ(1 + n,−(m+ 1)) log(t)) log(t)(−(1 +m) log(t))−n

2n(1 +m)
.

ˆ ∞
−∞

exp(−ax2 + bx+ c) dx = exp

(
b2

4a
+ c

)√
π

a
.

Let A be a positive, symmetric and invertible matrix, then
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ˆ ∞
−∞

exp(−〈Ax, x〉+ 〈b, x〉+ c) dx = exp

(
1

2
〈b, A−1b〉 − c

)√
π

det(A)
.
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