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THE STOCHASTIC HEAT EQUATION IN TWO DIMENSIONS

ApsTrAcT. For the equation dv(t) = (%Av + Ft) dt + Vv - dWy in 2 dimen-

sions with Fi¢ := fg ¢(—Wyr — ) dr, we will show the existence and uniqueness
of a solution in the sense of tempered distributions. Further, a connection be-
tween this solution and the self-intersection local time of a planar Brownian
motion will be establised. We will also show that the first and second moment
of the solution satisfy, in the sense of tempered distributions, certain PDEs
and the moment generating function satisfies a certain PDE in the sense of
distributions. A byproduct of this result is the existence of the moment gen-
erating function of the self-intersection local time Elexp(682(z,t))] for points
z # 0 and certain values of 6 .
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1. INTRODUCTION

In this work, we will try to look at the stochastic heat equation in two dimensions.
As this is a rather broad topic, I already have to disappoint the reader by narrowing
it down to a special case, which was (to my knowledge) first introduced in their
studies of the limit order book by Hubalek, Krithner and Rheinlénder. In [22] and
[23], they considered the equation

dv(t) = (;DQU(t) + f) dt + Do(t) W,

v(0) =0,

where f = §, for some p € Ry in order to describe the accumulation of orders at
specific levels. Here W, is a one-dimensional Brownian motion. Their study revealed
that a (in a certain sense) weak solution is directly connected to the Brownian local
time and the moments of the solution satisfy certain PDEs.

The initial goal was to find a similar representation when we consider the same
equation in the two-dimensional case (R?, planar Brownian motion). Unfortunately
this task proved rather difficult and the obtained results will therefore only be
mentioned in the Appendix. The assumption that such a L2-representation of a
solution, if it existed, could be connected to the self-intersection local time (SILT)
of a planar Brownian motion lead then to a slightly different SPDE, which turned
out to be slightly easier to handle than the originally proposed equation.

The equation studied was derived by the attempt to find a possible connection
between the ‘fundamental solution” (f = J.) and the SILT. We also take a look at
the first two moments of the solution, but first we will introduce the concept of SILT
and collect results from different approaches, which will prove to be rather useful
later on. Another chapter will be devoted to the theory of SPDEs. The approach
taken in this chapter is rather old for this subject and doesn’t use the more “hip”
semigroup approach which is known from [28, 13], but provides results about the
existence and uniqueness of distributional solutions. Nonetheless, the Ansatz used
by Hubalek, Kriihner and Rheinldnder to find an explicit representation of the
solution which we will follow too, is rooted in Duhamel’s principle and thereby
closely related to the semigroup-approach.
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2. A CRASH COURSE IN SPDESs

In this part we want to consider SPDEs on R? of the following form:

(2.1)

d d d
Ou ou &
= lz:; Jz:; al]m+; bz£+cu+fdt+ <;) <Z Uzk —|— VU + gk> th )

Remark 1. We will try to find solutions in the Sobolev-Space W2P(R?). An incon-
venience which arises is that W2"(R%) < C"~%(R?) if and only if 2n > d. It can
be shown that the solution belongs to W2 (R?) only if the coefficients are n — 2
times continuously differentiable with respect to z € R%, so we have to suppose
that our coefficients are more than m + % — 2 times continuously differentiable even

if the free terms belong to C3°(R%). At the same time, W™P(R%) — C™ 5 (RY)
if pn > d. By taking p sufficiently large, we see that the solutions have almost as
many usual derivatives as weak ones.

Let us rewrite equation (2.1) into a more compact form:

du(t) = (Lu + f) dt + (Agu + gg) dWF >0,

where

Lu _ZZ Ui a +Zb

i=1 j=1
Apu = Z (Z U,k —‘r l/ku> .
k=0

We assume W} to be independent Brownian motions.

Considering the (deterministic) case, where all oy, v, and g vanish, it would be
adequate to recall some aspects, coming from the theory of parabolic PDEs.

With D, we will denote the space of real valued Schwarz distributions on R?,
defined on C§°(RY). For a given p € (1,00) and n € (—o0, 00), the space H™P?(R%)
is defined as the space of (generalized) functions, such that (1 — A)%u € LP(R?).
To give a proper meaning to this definition, let us introduce the term (1 — A)? in
a slightly different way. Let « € (0, 1), then, for a constant ¢, and all z < 0

o —t tz)—11
(oo [T ORI 1L,
0 e
By a formal substitution of A instead of z, we get the followmg definition

 exp(t)Tyu

(2.2) (1- A)°u = ca/ ept)Tru—ul ,)
; to t

where T, denotes the semigroup generated by A. We formally substituted et
which is the solution of the ODE f’ = zf by the solution of T} = AT;.
As a quick reminder, T} is given by

(2.3) Tiu(zx) := (47r1t)§ /Rd u(y) exp <_41t T — y|2) d




THE STOCHASTIC HEAT EQUATION IN TWO DIMENSIONS 4

Similarly, we define for any « > 0

e 1
(2.4) (1-A4)" % =d, / e exp(—t)TtuE dt,
0

with an appropriate constant d,. It turns out that these formulas are sufficient
to consistently define (1 — A)? for any n € (—oo, 00).

The application of (1 — A)% to an f € LP is defined as a limit of the respective
truncated integral in (2.2) or (2.4). We say that a distribution v € H™?, if there
exists an f € LP, such that u = (1 — A)? f in the sense of distributions.

For v € H™P, we introduce the following norm

lullog 2= [[(1 = 2) %],

where ||.||, denotes the usual L” norm.
It can be shown ([39]) that H™P as defined above is a Banach space and C§° lies

dense.
For fixed T > 0, we introduce the space H}?(T) = H"*((0,T), H*?(R?)) as

T
u(tz) : |l s, = /

22
Proposition 2. For any f € LP((0,T) x R?) and uo € H, * there exists a unique
solution u € H)*(T) of the (deterministic) heat equation

ou

E(t’ )

P T
dt+/ lu(t, )5, dt < oo}.
p O

ou
A
on (0,T) x R with initial data u(0) = ug.

In addition,

(2.5)

’ 0%u
1,2,p < N(d,p, T)(Hf”LP((O,T)XRd) + ||u0H2—%,p)'

2
Remark 3. For integers n > 0 the space H™P coincides with the Sobolev space
WP,

< N(dp) (Il o (0,7) xRa) + lluollz—2 ),
LP((0,T)xR4)

|5
Lr((0T)xRY) | OF

[[u

Let (2, F,P) be a complete probability space, (F;, t > 0); an increasing filtration
of o fields F; C F containing all P null subsets of 2 and P the predictable o field
generated by by (F;, t > 0);. Let {W}; k =1,2,...} be a family of independent
one dimensional F; adapted Brownian motions defined on (Q, F,P). We fixap > 2
and an integer d > 1 and consider a distribution u and a function ¢ € Cg°. We
observe that, for u € H™? and ¢ € C§°, by definition we get

(u,p) = <(1 — A)%u, (1- A)_%¢> = /Rd ((1 - A)%u) (x)(1 - A)_%¢ dz.

Since (1 — A)2u € LP, (u, $) can be defined for any ¢ whose derivatives vanish
sufficiently fast at infinity.
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We can apply the same definition to /2 valued functions h (/2 being the real
valued sequence space of square summable sequences).
For this section, let us define the following norm

Al = 118l s Al = 1= 2)% Al
For stopping times 7, we denote (0, 7] := {(w,t) : 0<t< 7(w) }and

H™P(7) := LP((0,7], P, H™"),
H™P := H"P (),
H™P(r,1%) = LP((0, 7], P, H™P(R%, %)),

L(...):=H"2(..).

These spaces are equipped with the natural/obvious norms. Out of convenience,
we treat the elements of these spaces as functions and, if for a given element, there
exists a modification with “better” properties, we will always immediately consider
this modification.

Although the spaces H"™? carry some familiarity, elements of the space H™?(r,[?)
need not be defined on, or belong to H™? for all (w,t) € (0,7]. These properties
are, as usual, only needed for almost all (w,t).

For n € R and

(f,9) € F™P(1) := H"™P(1) x H" 22 (1,1?),

we define

(£, 9)]

Definition 4. For a D valued function u € (o H"P(r A T), we write u €
HYP(7), if Uz, € HP=2P(7), u(0,-) € LP(Q,}'O,an%’p) and there exists a pair
(f,g) € F*~2P(71) such that for any ¢ € C§°, the equality

Fro(r) = | fllane ) + 9llanrio ).

t
(26)  {ult.),6) = (0., 6) + [ (Fs.)0hds+ Z / 91(s,),6) AW
0
holds for all ¢ < 7 with probability 1. We also deﬁne

HoP (1) = HMP(T ﬂ{u : -) = 0},

lullzennry = ltsellin-20r) + (£, 9) -2 + (B [0, )12, )"
As always, if 7 = 0o, we drop it in H™P(7) and F™P(T).

Remark 5. The elements of H™P(7), which is obviously a linear space, can be
assumed to be defined for all (w,t) and to take values in D. Two elements of
H™P(T) are, as usual, identified with each other, if [|u1 — ua|lpnr(ry = 0. It is

also worth noting that the series of stochastic integrals > -, f0t<gk(s, ), @)y dWE
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converges uniformly in ¢ in probability on [0,7 A T] for any finite T, since its
quadratic variation satisfies

oo TAT 0o TAT . o
;/O <gk(s,.),¢>2d5—’;/o <(1—A) 2 gk(s,.),(l_A)T@ s

, (1—A)12"¢\> ds

2

TAT oo ) 2\ 2
SN/ (Z‘(I—A)n?gk(s,-)‘ ) ds < o0 a.s.,
0 k=1

P

1—

2n¢>H1 H(l - A)l_Tn(qu , ¢ := 5¥5. We have also used that

with N := H(l — A)
p=>2.

(u(t, ), ¢) is continuous in ¢ on [0,7 A T, as a consequence of the uniform con-
vergence for any finite T' (a.s.).

Remark 6. The pair (f, g) is unique, as otherwise 0 could be written as the sum of
a continuous process of finite variation and a continuous local martingale, which is
only possible, if both processes vanish.

Remark 7. The operator (1 — A)% maps H™P isometrically onto H™~ P for any
n and m. The previous remarks also show, that the same relation holds true for
H™P(7), since for any given u € H™P(7), we can take functions ¢ whose derivatives
vanish exponentially fast at infinity and substitute ¢ with (1 — A)% ¢, which gives
us this result. We also have the same result for H™? (7).

Definition 8. If (2.6) holds for v € H™P(r), we write f = Au, g = Bu and also
t oo} t
u(t) = u(0) +/ Au(s) ds + Z/ BFu(s) dWk t<r,
0 k=170

du=fdt+» gtdwl t<r.
k=1
Remark 9. A is a continuous operator from H™P(7) to H*~2P(7) and B is a con-
tinuous operator from H™P(7) to H""2P(1,l3) (which follows directly from the

definitions). Even though we don’t know that much about H™?(r), it is obvious,
that H'2P(1) C H>P (7).
Theorem 10. The spaces H™P (1) and HyP(T), equipped with the norm
1
lllaenory =tz llan-2o0r) + | (F, 9120y + (B |02, )"

are Banach spaces. If 7 < T for a finite T, then for w € H™P(1) the following
holds

(2.7) ullgn sy < N(d, T)||wllagnre ),



THE STOCHASTIC HEAT EQUATION IN TWO DIMENSIONS 7

(2.8) E igPllU(tw)Hﬁfz,p < N(d, T)llull gy

Proof. Obviously, |[ullgr.r-) = [[(1 = A)ullgn—2.0() < [ulln-—250r) + |6llgne )
We will remind ourselves of the previous remarks and assume n = 2. Let us take
a nonnegative p € C2° with integral equal to 1 and define p.(z) = p(f),
functions u, let u(®) () := u* p(z). u'® is still a continuous, infinitely differentiable
function for any distribution u. If we plug p.(- — x) into (2.6) instead of ¢, we get

for any x that the following equality holds almost surely

(2.9) w9 (t) = u9(0 / (s, ) ds—i—Z/ (s,2) dWF t<T.

If necessary, we redefine the stochastic integral in such a way, that (2.9) holds
for all w, t and x, such that ¢t < 7.

B (120, )z] < B [1u(0.)15) < B [0 )s | < Bl

where we used that, by Minkowski’s inequality, ||2(9]|, < ||pell1]|Pll, = ||]l,-
Similarly

(s, z) ds

/t (s, x) ds
0

p

p T
<7t / |f () (s, )P ds,
0

t
< TP~ E U
0

By Burkholder-Davis-Grundy inequalities,

(¢) P P17
7O, ds} < TP a2y -

t<rt

E lsup

P
2

oo + p T oo
B lsup Y- [ g o) awt] [ <NE|| [0 10 (s ds
IST =170 0 k=1

= NE U | 9o, ds ]
0

As above ((2.9) gives again sense to the first term below)

\S/ ] dx
t<t
I T % T %
<e| [ \ | g9, ds dx]sma (/ H|g<6><s,->||inds>]
_Rd 0 0 2
T 2 g
2| ([ o] as)"| < ve [ [ oo as]
0

" p
g(e)k(s, x) de

E |sup sup Z/ g(6 (s, )

t<t
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< NIGIE, (r1) < Nllullannr-
Along with (2.9), this leads to

(2.10) B s 11| < Ml

Using the fact, that ||A(9 — AV, — 0 for h € LP, when €, v — 0, considering
uli) —u(%) | we see that u(s) (t A7, z) is a Cauchy sequence in LP(Q, B([0, T, LP)).
Let us denote the limit in this space by v. For a subsequence m’, we have ulsr) (t,) —
v(t,-) in LP for t < 7, with probability 1. On the other hand u() (¢, ) — ul(t, -),
in the sense of distributions for all w, ¢, such that ¢ < 7(w). Therefore, it holds for
t < 7, with probability 1, that u(¢,-) € LP. For n = 2, (2.10) and Fatou’s lemma
give us the second inequality of the Theorem.

Let us check now the completeness of H™P(7). If we take a Cauchy sequence u;
in H™P(7), then it is also a Cauchy sequence in H"?(7 A T) for any T and there
exists a u € Ny>oH™P (1T AT), such that ||u—u;|mnrar) — 0. Additionally, 88—:21”
form a Cauchy sequence and therefore converge in H"~2?(7), from which follows,

9. 9
that ’ 57 Wi aIZU‘ () — 0.

For w;(0), fi, g, corresponding to w;, there exist u(0) € LP(Q, Fo, H"—%vp) and
(f,g) € F*=2P(1), such that

E[lju(0) = wO)IF_5 | =0,

n—ypP

If = fillan—2p) = 0,

g = gillmn—15(7,1,) = 0.
By using the remark directly after (2.6), one can show that for any ¢ € C§°,
(2.6) holds in (0, 7| almost everywhere.
On the other hand, the previously proven inequalities imply that (at least for a
modification of) u

E | sup lu(t,) —ui(t,)ln_zp,| =0,
t<TtAT
for any constant ¢t < co. Remarking, that the processes (u;(t,-), ¢) are a.s. con-
tinuous, we can conclude, that (u(t,-), ¢) is also a.s. continuous. Thus, (2.6) holds
not only in (0, 7] almost everywhere, but also for all ¢ < 7 almost surely. Hence
u € H™P(7) and u; — w in H™P (7). O

Theorem 11. Let g € H™?(l3), then there exists a sequence g; € H™P(l3), such
that ||g — gillun.ra,) and

gF = i Xri_, (gl k<
Z 0 k>

where 7}71 < T; are bounded stopping times and ggk € Cx.
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Proof. Due to the argument in Remark 7 and the density of C2° in any H™P, we

only need to consider the case n = 0. Further, we can easily see, that the set of

g € LP(ly) for which this statement holds is a linear, closed subspace L of LP(lz).

What remains to show is that I = L?(l). If this was not true then there exists,
p

by Riesz’s theorem, a nonzero h € L%(ly) (with ¢ = ;27) such that

E {/OOC/W<h7g>Z2 dxdt} =0

for any g € L. In particular

EL/ XMﬂ(/“hhgwo ﬁ}zo
0 R4

for any bounded stopping time 7, £ > 1 and g € Cg°. Since fRd hE, g dx is
(almost everywhere equal to) a predictable function, it follows that [, h* gdr =0
on (0, c0](a.e.).

Taking g from a countable subset G C C¢° that is dense in L?, we get that on a
subset of (0, 00] of full measure

/ ¥ gde =0 VgegG, k>1.
R4
But then h* =0 (a.e.) on (0,00] x R%, which contradicts h # 0. O

Theorem 12. Let T' € (0,00). If u; € H™P(T), i =1,2,..., and ||u;||3nrr) < K
for a finite constant K, then there exists a subsequence i' and a function u €
H"™P(T), such that

()
Uy — U inH™P(T),
U4t (0’ ) N U(O, ) m LP(Q, ang,p%
Auy — Au inH"~2P(T),
Buy = Bu  inH"""M(T, ).
(ii)
l[ullggnn(ry < K.

For any ¢ € C° and any t € [0,T], we have {(p,u; (t,-)) — (¢, u(t,-)) in LP(Q).

Proof. From the properties of the L? spaces, the existence of a subsequence and 7/
and the weak convergence to some u, u(0,-), Au, Bu in the respective spaces. For
any ¢ € Cg°, the expressions in

(0 (1:).0) = (0 0.0.0) + [ (Aui(s).0) ds+ 3 [ (Brus(s.).0) aw,
k=1
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converge in the corresponding spaces. Since integration and stochastic integra-
tion can be consider as continuous linear operators (which means that they are also
weakly continuous operators), we have that for any ¢ € CS°,

Q1) {ult.). ) = (u0.).0) + [ (Au(s..0) ds+ 3 [ (Buls.).) aw,
k=1

for almost all (w,t) € Q x [0,T].

By the Banach-Saks theorem, there exists a sequence (v, Av;, Bvy) of convex
combinations of (u;, Au;, Bu; ), which converges strongly to (u, f,g) in HP(T') x
H"=2P(T) x H*~1P(T,l3). From (2.8), it follows that

E [sup s - vjui_z,p] =0
t<T

as i, j — oo. Therefore, there exists a H"~2P valued function v on Q x [0, 7],
such that

E [sup [lv; — U||’Zr)7,—2,p:| — 0.
t<T

In particular, we have that for any ¢ € C° (v;(¢,-),¢) — (v(t,-), ) uniformly
on [0,7T] in probability. On the other hand, the strong convergence of v; to u in
H™P(T) implies that (v;(t,-),®) — (u(t,-),¢) on Q x [0,T] in measure. From this,
we can conclude that (v;(t,-), ¢) — (u(t,-), ¢) a.e.. Because ¢ was arbitrary and by
the density of C'° in the spaces conjugate to HP(T), u = v a.e. on Q x [0,T] (as
generalized functions).

Thus, we have v € H™?(T) and as (v;(t), ¢) are given by equations, similar to
(2.11), implies that (v;(t), ¢) is (a.s.) continuous in ¢. The uniform convergence of
(vi(t), @) to (v(t), @) yields the a.s. continuity of (v(t), ¢). By the above, (2.11) still
holds for almost all (w,t) € Q x [0, 7], if (u(t), ¢) is replaced by (v(t), ¢). Since the
latter is continuous and the right hand side of (2.11) is continuous as well, (v(t), ¢)
equals the right hand side of (2.11) for all ¢ € [0,7] (a.s.). Hence, v € H™P(T),
which shows (i) for v instead of u, but this is irrelevant.

(ii) follows from the a.e. equality of u = v on Q x [0,7] and from the fact that
the norm of the weak limit is less or equal to the liminf of the norms of the sequence
(Banach-Steinhaus).

For (iii), we take a ¢ € C2° and a ¢ € L1(Q) with ¢ = ;£5 and write

E [ ((uilt, ), 0))]

=E[¢ ((ui(0,-), $))]+E [¢ </Ot<‘4“i(5’ ) @) dsﬂ +]E

W (; /0 (B*u(s,"), $) de)] :

By the previously stated properties of the operators and (i),

lim E [y ((ui(t,-), )]

i/ — 00
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(32 [ ey ant )
k=170

¥ (Z / (B*u(s, ), 8) dwfﬂ

i’ —00

~ Jim (E o (a0, .00+ v ([ {Aus(s, ), ) i)|+

This proves (iii). O

Now, we want to look for functions u € Hy"(7), such that A, B are of the form
Au=Lu+ f,

Bu=Cu+g.

So (2.1) will basically be of the form

(2.12)

d d 2u N
du(t) = Zzaij(t)m +cu+ fdt+ <Z (
iU

i=1 j=1 k=0

d ou

i=1

In order to make things a bit easier, we consider the special case

N
(2.13) du(t,z) = Au(t,z) + f(t,x) dt + (Z gk thk> t>0.

k=0
In the following, the operators T; are defined by (2.3) and p > 2.
Lemma 13. Let —0co < a < b < o0, g€ LP((a,b) x R 1y), then
Sia J2 (S IV Timcg(s )@ ds)* dtde < N(dp) [ ) lg(t.2)], dt da.
Proof. [?]. O

Theorem 14. For f € H™ 1P, g € LP(ly),
(i) (2.13) with zero initial condition has a unique solution u € HP (7).
(ii) For this equation we have

0%
0x0x

(2.14) ’

= N(d, p)([| flla-1» + llgllLa,))-
H-1.p

(iii) For this solution we have u € Cjyc([0,00), LP) almost surely, and for any
AT >0,

p—2
ul 7

T
E {ilg(exp(p)\t)||u(t,~)|§)] +E [/0 exp(—pAt)

(2.15) < N(d,p,N) (Il exp(-AD S + lexp(=AglE 7s,)) -
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Proof. There exists a linear operator
P H™bP — (LP)4H1
such that if h € H=%? and Ph = (ho, h',...,h?%), then h = hg + div(h) and

(2.16)  [A]1” + [lholl” < N(d:p) [Pl 1,05 1216 < N(dsp)(R]]7 + [[Bo]I?)-

Actually, we can choose h = —V((1—A)~'h) and hg = h—div(h) = (1—A)"'h.
Indeed, ||holl, = [|R||l-2,, < ||R||-1,p. Also, the fact, that 8%i is a bounded
operator from H™P to H"TLP for any n (|39]) means that 6%1(1 —A)zis a
bounded operator from H™? to H™P and 6%(1 —A)lisa bounded operator from

H™P to H" P, This is the reason, why [|h||, < N(d,p)||h||_1,. This results in
the first estimate of (2.16). On the other hand (1 — A)~2h = (1 — A)"2hg +
div (a%i(l - A)_%) h and both operators on the right hand side are bounded on
LP.

Define (fo, f) = Pf. Equation (2.13) takes the form

(2.17) du = (Au+ fo+div(f))dt+>_ g* dWF,
k

and we supply it with zero initial condition. Now we will prove, that for arbitrary
fo, f € LP, our assertions hold for (2.17) instead of (2.13). Obviously, in (2.14) and

(215), f = fo + div().

First we consider the (very particular) case, in which
(2.18) folt;2) = Y Xrir.m)(8) foi(®),
i=1
.f(ta ZL’) = Z X(T,-,l,‘ri] (t)fl(x)7
i=1

g(t,l‘) = ng(ta I)hka

k=1

gk (t7 1‘) = Z X(Tifl,Ti] (t)g’Lk ('r)7
=1

where {hy} is the standard orthonormal basis in Iy, m < oo, 7; are bounded
stopping times with 7,_y < 7; and fo,, f, g € C°.

Set
ota) = [ o) awk =30 ) (Wh - W)
k0 i=1 k=1
(2.19) u(t, z))v(t, ) +/O Ti—s(Av + f)(s,-)(x)ds, Vt>0.

It is easy to see that, by definition, the function u — v is infinitely often differen-
tiable in (¢, ) and satisfies the equation
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0z
E—Az-i-Av—f—f.

For any z, it follows that, the function u(t, x) satisfies almost surely

(2.20) u(t, ) :/0 (Au(s,xz) + f(s,x)) ds+ Z/o g*(s,z) dWF.
k=1

Now, we want to obtain some bounds on the norms of u, for that we define

uy(t, ) z/ Ti—sf(s,x) ds.
0

By Proposition (2), dealing with the deterministic case, for any w,

(2.21) < NI fllee @y m-10)-

LP(Ry, H=1:P)

82U1
02

1

Using once again, that the operators 52-(1 — A)~z are bounded in L” for any
p>1

(2.22)

Pu Py ||P ou  Ouy ||f ou Ouy

au_ <N|E -2 =N ot .
’ 0x?  0x?% ||go1p — ’ dx Oz ||y, / /Rd [ Ox } (¢, @) dw dt

We will make further transformations to this formula. If z¥ = 2¥(z) are bounded
Borel functions, then by Ito’s formula, applied to the increment over [0, t] of

t
</ Tt—Szk d8> (Wf/\‘rg WT]‘C/\Tl)

as a function of r, we obtain a.s.

t ¢ .
0 = — / (Wf/\Tz - W’r’/\‘rl) Tt 'r'Z d?“ + / (7-177—2] (’I’) (/ ﬂiszk dS) de
0 ,

Either by using this for our particular g, or by using the stochastic version of
the Fubini theorem and coming back to (2.19), for any ¢ > 0 and = € R?, we get
(almost surely)

%(t7x) 381;1@ x) = tz /Tt QZ/A 9" (r, ) deds

v rtrtd dg* =t dg*
—(t —Ty g ds dW} = Ty —— dwpr.
o +y [ [ en e asawt = 3 [ 1, S ) aw
k=1 k=1
By the Burkholder-Davis-Grundy inequality
2 b
dr)

t m

) - G0 | () < NE </ >

Tts 7)

?|
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t 2 %
= NE / dr
0 ly

Applying this to (2.22) and applying Lemma (13),

p 00 t m
<ve | [ LA
Lr 0 Rd<0k¥1

< NHgH]IPiP(lQ)'

Along with (2.21), this gives us (2.14). We do not know yet, if u € H»P. We
want to prove (2.15) for sufficiently large .
From (2.20) and Ito’s formula, we get

a k
T S ()

aul

Ju dg*
H(%(t7x)ax(t7x) Tt—s%(nx)

2 5
dr) dx dt

t
fu(t, )P exp(~At) = / exp(— ) (plul?~2udbu + plufP~?uf
0

1 _
+5p(p = D2 glZ, = Alul?)(s, 2) ds

t
+p Z/ exp(—At)|uP~2ug” (s, z) dWF.
k<m 0
We integrate with respect to x, use the stochastic Fubini theorem and the fact
that w(t,z), g(t,z) and their derivatives decrease very fast, when |z| — co. Then

we integrate by parts in f |u|P~2uAu dz and notice that for ¢ = ﬁ

/]Rd |u|p*2uf(s,x)dx =—(p—1) /Rd |u|p2?;(t,x)-f(s,x)dw+/w |u|p72uf0(s,x)dx,

|u|p_2%(t7ﬂv) . f(s, x) dx

Rd
2 g p—2 ~
< [ (1= [Feea]) s ao v ol
1 ) N
p=2 |OU P
< Nl‘f(s")llzil,p+N1||u(57')||£+ 9 |u| P 7(1571') (S,-) )
2 Ox
p
[ s, 2 uts, o) fo(s,2) de < ool + s, )
< NI, 2+ s,
For )
Az plp— 1M +p+p(p2_ )
we get
2 p
—1 ¢ p—2 [Oul|?
s, esp(-a) + P2 s | 24 (s | expl-as) ds
0
p
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< [P + s, 1) exp(-2) ds

+p2/ exp(—As) (/ lulP~2ug” (s, x) dx) dwk,

k<m

where N = N(p). After this, we basically just have to take the expectation and

apply certain transformations based on the Burkholder-Davis-Grundy inequalities.
More can be found in [26].

The assumption about the arbitrariness of A in (2.15) can be justified by a
rescaling argument, when instead of f,g and w, we take (c?f,cg), (c*t,cx) and
Lwe2, and get u(c?t, cz) instead of u(t, z).

From our explicit formulas and from the particular choices of f and g, it follows
that u € Cloc([0, 00), H™P) for any n (and any w). This proves (iii).

From (2.14) and (2.15), it follows that u € Ny~oH"P(T). Furthermore, by the
stochastic Fubini theorem, we get from (2.20), that u solves (2.13) in the sense of
Definition 4. Hence u € H'?, which proves (i). The uniqueness is a consequence
from setting f = g = 0 and arriving at the heat equation for which the uniqueness
of the solution in our class of functions is a standard fact. This completes the proof
if f, g are step functions.

In the general case, the uniqueness is proven in the exact same way. Concerning
the other points, we will use Theorem 11 and Remark 9.

If we consider all functions fy, f7, ¢* as one sequence then by Theorem 11,
we can approximate the by functions fy,, f , g% of type (2.18). Let u; be the
corresponding solutions of (2.17). By the result for the particular case, u; is a
Cauchy sequence in H? and by Theorem 10, there exists a u € ’}I-)ll’p to which w;
9%u 82u1

2 — — 0 show
H-1.p

converges in H'P. Remark 9 and the convergence 52— Far

that Au = Au+ f and Bu = g. In particular, this proves (i).

(ii) follows from the construction of w. From (iii) in the particular case, we
get that u; is a Cauchy sequence in LP(Q, C([0,T], L?)) for any T. Therefore, it
converges in this space to a function v. It follows, that for any ¢ € C

C ?

(v(t,), 6) = / ((v(s. ), Ad) + (£ (s, ds+Z / 0) AW,

for all ¢ (a.s.). Thereforeu — v is a generalized solutlon to the heat equation
with zero initial condition and with bounded LP-norm (a.s.). This implies that
[|(w —v)(¢,-)|l, =0 for all ¢ (a.s.), so that w € C([0,T], L?) for all T (a.s.). Finally,
we get (2.15) by Fatou’s lemma, taking into account that

/OT/Rd|V(u—ui)dedt:/OT/Rd|v(1_A)5(1_A)§(u_ui)pdxdt

<N/ / (1— A)2 (u— )| do dt — 0
Rd

in probability for any 7". This proves the theorem. [
Remark 15. Although (2.5) holds for p € (1, 00), Lemma 13 is false for p < 2.
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Let us look at the task of dealing with equations with constant coefficients for-
mally. We will try to make these observations more rigorous further on.
Assume, we have

(2.23) du(t,z) = f(t,x) dt + Y _ gi(t,x) AW],
k

and we define a process z; and a function v by

t
(2.24) ! ;:Z/ oir(s)dWE  i=1,....d,
k 0

v(t, z) == u(t,z — x¢).
Applying Ito’s formula to v, we get

(2.25)

0
dv(t,z) = | f(t,z — x¢) +Z Zam 8:0 &c ——(t,x) — <aj(t7$—$t)70¢(t)>
i 7 4 l

2

+Z <gk(t>$ —Ty) — Z <§;(t,x)ai,k(t)>> dWk.
k i g

This shows, ho to introduce the terms g—; and o; ) in equation (2.23) and also

illustrates the necessity of g having a first derivative in . If we had Au + f
in (2.23) instead of f, then we would get the second order differential operator
226+ ai,j)#;lj which coefficients strongly relate to the coefficients of %’i
and o; 1 (t). We could get around this problem, if we managed to start off with an
equation with more general linear operators L instead of A.

If, instead of (2.23), we consider

du(t7 Z‘) = (Au + f) dt + ng(t7 J?) thka
k
and take expectations in the (2.25) counterpart, then, assuming o to be nonran-
dom, we get an equation for E[v(t, z)] with operator L different from A.

Definition 16. Denote by D the set of all D-valued functions u (u(t, x)) 2 x [0, 00),
such that for any ¢ € C2°,

(i) the function (u, ¢) is P - measurable,

(ii) for any w € Q and T € (0, 00), we have

T
(2.26) /0 sup |(u(t,-), ¢(- — z))|* dt < .

z€R?
In the same way, we define D(l5) by considering l>-valued linear functionals on
C° and replacing | - | by || - ||i,-

Remark 17. We note that (u(t,-),#(- — z)) is continuous in x and Borel in ¢, so
(2.26) makes sense. Also, for p > 2, g = % and any n,

dt
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T T
/ sup |(u(t, ), é(- — )| dt < / sup [Ju(t, |12
0 0

zERY zERd

( 7I)H—nq

2 T P
(2.27) < 6|2, 1" (/ |u<t,->|r;,pdt> |

This shows, that if v € H™P, condition (2.26) is satisfied (at least for almost
all w). If w € H™P, then (2.6) holds true, which in turn shows, that (u(t,-), ¢)
is indistinguishable from a predictable process, which holds true for any ¢ € C°.
From the separability of H ™1, it follows that we can modify w on a set of measure
zero and get a function belonging to D. In this sense, we write

(2.28) H™P C D.
Definition 18. Let f, u € D and g € D(l3). We say that the equality

(2.29) du(t,z) = f(t,x) dt + g(x,t) AWy t>0,

oo

holds in the sense of distributions, if for any ¢ € C2°, with probability 1 for all

t > 0, we have

t
230)  (u(t.).0) = (u(0.).0) + [ (f(s.).0)ds+ Z / 8 aw.
0
Since [|(g, ¢)[|7, is locally summable in ¢, the last series in (2.30) converges uni-

formly in ¢ in probability over every finite interval in time.

Note that, if u € H™P and u satisfies (2.30) in the sense of distributions, then
by (2.28), u € D and (2.29) holds in the sense of distributions.

Lemma 19. Let f, u € D and g € D(l3). Assume the definitions in (2.24),
then (2.23) holds (in the sense of distributions), if (2.25) holds (in the sense of
distributions).

Proof. Remember that for a distribution v (z) and y € RY, we interpret 1 (z — y)
as the distribution defined by (¢, ¢(- + y)). From
0%
<U(t, ')7 @( - $)>

T 82,0 T
A R ) KA
32
<u(tv ')a 87;3( - y)>

T 82¢7 2 T
:/ sup < (t,-), 82(+xty)> dt:/ sup
0 yeRd 0 yeRd

T _ ’
[ al((Eae o) w-v) o

2 2

dt

2
dt < oo
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[ s (X2 —epot ). Yeit)) | a
0 yeRd O - 7 Z Iz

T 2
S/O ||01(t)||?2dt/ sup <Zaxz = ay), ¢>(-—y)>

it follows that v(t, z), f(t,x —x;) and <Zl (%’i(t, c—xy), (- — y)>l belong to D,
2

g(t,x —x;) and Y, 2 7 (L, -)o! belong to D(lz). Furthermore, for any ¢ € C°, the
function F(t,z) := <u(t — x)¢) has a stochastic differential in ¢ for any x and is
infinitely often differentiable with respect to z. The assertion we made now follows
immediately from Ito’s formula applied to F(t, x). O

dt < oo,

l2

Remark 20. If, instead of (2.23), u satisfies the equation

Z;Zi: a 8ac + h(t,x) dt+<z<20m th>>,

k=0

then (2.25) takes the form

0 4 & 0%
(2:31) oot 2) = DD (aii(t) — aij(t)) m(t, z)+h(t,z—x) >0,

i=1 j=1

and can be considered on each w separately. If a(t) < «(t), then the initial value
problem v(0) = vy is ill-posed.

This shows, that the operators appearing in the stochastic part should be, in a
certain sense, subordinated to the operators appearing in the deterministic part of
the equation. This is essential, when constructing an LP-theory.

In spite of what we just said, if we take d = 1 and a one dimensional Brownian
motion Wy, and consider the following equation

du(t, ) = duy(t, ) AWy,

then this equation has a somewhat nice solution for initial data ug € L?. We
use the Fourier transform and it turns out that (¢, &) = ug(€) exp(§W; — 3|¢[%¢) is
the Fourier transform of the solution. We see that it decays very fast for |{| — oo,
showing us that u(t,x) is infinitely differentiable in x. Taking expectations, we
also see, that E[u(t,z)] = wug(x), if up is non random, and in this case, we get
a representation of any L? function as an integral over 2 of functions u(w,1,z)
which are infinitely often differentiable in . However, a major drawback from such
equations is, that E[|u(t, 0)|P] = oo for any p > 1 if, for example, 1(§) > exp(—AE),
where )\ is a constant.

Lemma 21. Let f € D, g € D(l3) and ug be a D-valued function on ), then the
following assertions hold true

(i) There can only exist one solution to (2.12) in D with initial condition u(0,-) =
Uup-.
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(ii) Let Fy = WiV By for t > 0, and assume that the o-fields W, and By form in-
dependent increasing filtrations. Let W and B be sets, such that WUB = {1,2,...}.
Assume that (WF, W) and (W], B;) are Wiener processes for k € W and r € B.
Let u € D satisfy equation (2.12) in the sense of distributions and let a, f, o, g be W;-
adapted. Finally, assume that there exists an n € (—oo,00) such that f € H™?(T)
and g € H™2(T\,l3) for any t € (0,00) and u(0,-) is Wo-measurable and

E [[lu(0,)]I7,2] < oo

Then there exists a unique solution u, in D, of the equation

(2.32)

" 0*u o1 .
di = Zzaijm+f dt+ (Zoikw+gk> AWy, t>0.
i g Lt i

keWw %

In addition, for any ¢ € C2° and t > 0,

(2.33) (a(t,-), ¢) = E[(u(t,-), o)[Wi] (a.5.).

Proof. (i) As usual, we will set f = ¢ = 0 and ug = 0 and use Lemma 19, it suffices
to consider only the case where o = 0. For any given ¢ € C° we have

(ult, ), ¢) = / (u(s, ). L(s)g) ds, ¢ >0,

almost surely. Substituting ¢ with ¢(- — ) and noting that both sides are
continuous and bounded in (¢,7) on [0,T] x R? for any T < oo, we get that the
function F(t,z) := (u(t,-),¢(- — x)) is bounded in (¢t,z) on [0,T] x R? for any
T < o0, infinitely often differentiable in z, and almost surely satisfies the equation

F(t,x) = /0 L(s)F(s,x) ds Vi, x.

From the theory of parabolic equations, F(t,z) = 0, V¢, x (a.s.), follows. This
means, that (u(t,-),¢) = 0 for all ¢ almost surely. Let us now take ¢ with integral
1, then for any = and n with probability 1, we have (u(t,-), n¢¢(n(- — x))) = 0 for
all . By the continuity of this function in z, we get that it is 0 for all ¢ and x with
probability 1. Finally, (u(t,-),n%¢(n(- — x))) — u(t,z) as n — oo for all (w,t,z) in
the sense of distributions, implying that with probability 1, we have (¢, ) = 0 for
all ¢, as stated.

(ii) We first notice that according to [26] equation (2.12) has a unique solution v
in the space H"~1%(T), for any T. The definition of solutions in this space in [26]
is slightly continuous, but v is continuous (a.s.) as an H™2-valued process and

(2.34) E [sup lo(t, )||312} < 00 VT < oo,
t<T

so that v is a D solution of (2.12). It follows from (i) that our function wu
coincides with v and therefore belongs to H"~1:2(T'), for any 7" and (2.34) holds for
u. Furthermore, with probability 1 for all ¢ at once,
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(Z

%

u(t) = u(O)—!—/O ZZ a;;( (%v axj( + f(s ds—l—/ Z

kew

where all integrals are taken in the sense of the Hilbert space H" 2. By the
Hilbert-space counterpart of Theorem 1.4.7 in [26], there exists an H" ™12~ valued,
W;-predictable function @(t), such that for almost all ¢, we have (a.s.)

a(t) = E[u(t) W],

Se0 = | .
Sa0-z]Ttwl]
and
(2.35)
a(t):u(0)+/0 ZZ a;( 833 8,@ ———(s) + f(s ds+/ > (Zozk
J kEW \ i

for almost all t and w. The right hand side is a continuous H™~12-valued process,
which we will denote by @ and we will show that @ is indeed the function we were
looking for.

By definition and the equality @ = @ (a.e.), @ satisfies (2.35) for all ¢ with
probability 1 and is also a continuous process in H" 2. This implies that @ € D
and @ is a solution of (2.32). To prove (2.33) for any ¢, it remains to observe that
again by Theorem 1.4.7 in [26], the conditional expectation E[u(t)|W,] is equal to
the right hand side of (2.35), almost surely. O

Theorem 22. Taken € R, f € H* 1P and g € H"?(l5), then
(i) equation (2.12) with zero initial condition has a unique solution u € H" TP,
(i) for this solution, we have

0%u
92 < N(If len-10 + lgllmmr22))s

(2.36) ‘
Hnr—1.p

miie < N[(f,9)]

[[ul

where N = N(d,p,0,K),
(iii) we have u € Cyyc([0,00), H™P) almost surely and for any X\, T > 0,

Fn—1,p,

(2.37)

E [sup exp(—pA)u(t, Ny | < N exp(=A) F 21y Hl XD )

t<T

where N = N(d,p, 0, K, \).

<s>> v,

(5)> dwy,
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Proof. Since one can apply the operator (I —A)% to both sides of (2.12), it suffices
to prove the theorem only for n = 0. As we have already noticed, any function
u € HP also belongs to . This and Lemma 21 prove the uniqueness in (i). The
translation invariance of our norms, combined with Lemma 19, shows that in order
to prove existence in (i) and all the other assertions, we only need to consider the
case 0 = 0. As in the proof of Theorem 14, we can assume f, g as in (2.18).

In this case, we know from [26], equation (2.12) has a unique D-valued solution
u that belongs to Cy ([0, T] x R?) and C((0, T], L?) almost surely for any 7' < oc. It
follows, that v € C([0,T], L?) almost surely for any 7' < oco. Estimate (2.37) also
follows from [26], as in the proof of theorem 14). Now, it only remains to prove,
that u € H? and (2.36) holds. Since we already know that u is a ID solution, it
suffices to show that u € HY?(T') for any T < oo, in order for it to be an element
of HP.

Since the matrix a is uniformly non-degenerate, by making a nonrandom time
change, we can reduce the general case to the case a > I. On this case, define the
matrix-valued function &(¢) = *(t) > 0 as the solution of he equation 2 (t) +2I =
2a(t). Without loss of generality, we can assume that on our probability space we
are also given a d-dimensional Wiener process By, which is independent of F;.

Now we consider the equation

(2.38)

dv(t,z) = (Av(t,x) +f <t,z - /Ot &(s) dBS>) dt+zk: Ok (t,x — /Ota(s) dBS> A

with zero initial condition. We replace the predictable o-field P with the pre-
dictable o-field generated by F V o(Bs : s < t). The space H™? becomes larger.
By Theorem 14, there exists a solution v of (2.38) possessing properties (i)-(iii)
listed in the theorem. We use again that, after changing, if necessary, v on a set of
probability zero, the function v becomes a D-solution of (2.38). By Lemma 19, the

function z(¢,z) := v (t x+ fo s) dBy ) is a D-solution of

ZZ a;j( (t x)+ f(t, ) dt—|—ng YdW +ZZUU

and by Lemma 21, there exists a solution @ € D of

ZZalj (t$)+ft:€ dt+ngtx

which is (2.12) in our case. In addition, for any ¢ € C° and ¢t > 0, (a.s.)

(i(t,).0) = Bstt, ). 007 =B (o (14 | 50s) 8.).0) 17|

In particular, it follows from this equality that @ is a D-solution with respect to
the initial predictable o-field P, and from the uniqueness, we get @ = u. Therefore,

(a.s.)

t x)dB!,
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(2.39) (u(t,-),¢) =FE |:<U <t, <+ /Ota*(s) dBS) ,¢> |}'t] .

Further, it follows that

(2.40) [ut, ), )" <E o, )7 1 7] 16171,

(a.s.) for any ¢ € C¢° and t > 0, where ¢ = ﬁ.

Next, we take a countable family ® C C2°, which is dense in CZ°. We observe
that, given a distribution 1, we have @ € H'P if and only if, for any ¢ € ®
we have |(,#)| < N||¢||-1,, with a constant N independent of ¢. In this case
exists a bounded linear functional [ on H~%9, such that I(¢) = (v, ¢) for any
¢ € ®. Since I(¢) = (1 — A)"2h,¢) with an h € LP and ® dense in C2°, we have
¢ = (1—A)"2h € H'P. This also implies, that the set {(w, ) : w(w,t,-) € H?}
is measurable (even predictable) for any w € D;say w = u.

We also know that v € H', which implies that E [[Ju(t,-)[} ] < oo for almost
all t. We now fix such a t. Then there exists a set ' of probability 1 such that
E [||v(t,')||’1’$p\}"t] < oo on Q' and (2.40) holds for all w € ' and ¢ € ®. Hence
u(t,-) € HP for the chosen t and all w € Q. In particular, u(t,-) € H'? for almost
all (w,t) and from (2.40) it follows that

lut, )T, SE[lE TR (as.),
ullgre () < [Jvllare ) < oo
Thus, v € HYP(T) for any T < oo and u € HP.
Similarly, from the equality

<Zj§;<t,.>,¢> =E Kg:;(t,.) <t,.+/0t6(5) st) ,¢> |]-"t] (as.),
Pu - v

we get
5|, <= ||5e| m] (05

This and the properties of v, immediately yield (2.36). O

p p

<E
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3. SELF INTERSECTION LocAL TiMES (SILTS) oF BROWNIAN MOTIONS

In the first part of this section we will follow the more “traditional” way of
defining the notion of SILTs as it is presented in [18, 4, 32].

Formally, the self intersection local time of a planar Brownian motion on the
Borel set B C R2, is defined as

Ba(x, B) : //50W W, —x)drds zcR* tcR,.

More precisely, it is defined as

Ba2(x —hm//pEW W, —x) dr ds,

e—0

where

oxp (127
2e
e
Rosen [32] showed that B2(z, B), where B is a bounded Borel set in R? () :=
{(s,t) : 5,6 >0, |s —t| > ¢} for an € > 0, is a continuous function in x.
We will not deal with general Borel sets and remain on the set {¢, s e R |0 <
s <t} and introduce the following notation

t s
Ba(x,t) := lim/ / pe(Xe— X, —z)drds zcR* tcR,.
0

e—0 0

Remark 23.

E[/Ot/ospe(Xs—Xr—x)drds} :/(:/OSE[,OE(WS_WT_@] I ds
/ / /Rz pelz (51— ) exp <2(22'fw) dz dr ds.

Letting e — 0, we get

[ o (o) s

We already see, that for z = 0, the points on the diagonal are problematic, as
the integral will not be finite any longer.

To deal with those problematic points one can introduce, like it was first done
by [4], the so-called regularized version of the SILT,

(=, —g(//psW W, —z)drds—E [//peVV W—x)drdsD.

Sometimes, slightly different normalizations are used, which differ from this one
by, at most, a constant times ¢.

Through this regularization /normalization, we obtain convergence a.s. and con-
tinuity of the limit in ¢.
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Remark 24. A rather trivial but, for our purposes, important result, is that 55(0,t)
is, in law, equal to t£32(0,1).

at s
Bs(at, x) == / / pe(Ws — W, — ) drds
o Jo
¢

= /Oa h(s) ds = /075 h(sa)a ds

t as t s
:a/ / pe(Wsq — W, — ) drds:aZ/ / Pe(Wsq — Wy — ) dr ds
0 Jo o Jo

t s t s
—d a2/ / peWe(s—ry — ) drds = a2/ / pe(vVaWs_, — x) dr ds
o Jo o Jo

t s T 3 t S T
e (Wsp — — ) dr d:s:af/ / i <Ws_r> dr ds
/0 /0 pﬁ( \/&> o Jo P Va

More general results regarding scaling can be found in [11, 10].

We will now make a small excursion into the potential theory of Brownian mo-
tions, in order to remind ourselves of some results, which will be of importance in
the next section.

Let W, denote a Brownian motion in R%.

N

=a’a”

Definition 25. A point € Q is called regular for the closed set Q C R? if the
first hitting time T := inf{t > 0 : W; € Q} satisfies P,(Tq = 0) = 1. A point
which is not regular is called irregular.

Theorem 26. Suppose 2 C R? is a bounded domain and ¢ 1s a continuous function
on 0Q. Define T :=1inf{t > 0 : W, € 0Q} and defineu : Q@ — R by

u satisfies the following three points:

(a) A solution to the Dirichlet problem ezists if and only if the function u is a
solution to the Dirichlet problem with boundary condition ¢.

(b) u is a harmonic function on Q with u(x) = ¢(x) for all x € 0N and is
continuous at every point x € 0S) that is regular for the complement of 2.

(¢) If every x € O is regular for the complement of Q, then u is the unique

continuous function u : Q — R which is harmonic on Q such that u(x) = ¢(x) for
all x € 00) .

Proof. [29]. O

Theorem 27. Let Q C R? be a bounded domain and v : Q — R be a continuous
function, which is twice continuously differentiable on Q. Let g : Q — R be
continuous. Then u is said to be the solution of Poisson’s problem for g if u(x) =0
for all x € 02 and

f%Au(as) = g(x) Vel
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Proof. [29]. O

Remark 28. For bounded g, the solution u of the Poisson problem, if it exists,
equals

u(z) =E,

A
/ g(Wy) dt] forz € Q,
0

where A = inf{t >0 : W; ¢ Q}. Conversely, if ¢ is Holder continuous and every
x € 0N is regular for the complement of €2, then u solves the Poisson problem for
g.

If u solves Poisson’s problem for g = 1 in a domain Q C R?, then u(z) = E,[A]
is the average time it takes a Brownian motion started in x to leave the set €.

Remark 29.
(3.1)
ko (5 B+ kos (|5 - HE]) w0 wyeBOR)
gr(,y) =9 :
—7 log (| %) z=0,y€B(0,R)

Which can, in the first case, be rewritten as

G(z) = —5 log(Ja])

__ 1 z_yp_ L1 z|ly _ &
gr(z,y) 27T10g(‘R RD 27Tlog<‘R = ]2]2>
2
= _ ] %1% % — 2
1 z _ Y 1 =
__27T10g 3 Rm —Elog y|§|
‘%| %_ e ‘R_R|
%
z |2 z |2 a2 (|u|? 1 o9z %
’ﬁ’ %_‘gp _|R| <’R| +|%‘2 2R|§|2)
z _y|? o |z — L2
R R R R
BB 1258 O+ [ED20 4[]
B x _ y|? a c  y|2
ROR R™R

z|2 |y b

/ 1 ’R’ R |%|2
— log dy.

pisn AT -4

We change the scaling of the coordinates (Z := ) in order to arrive at
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2
— 2 T

R/ L log —|$| ‘y _ ﬁ
ly|<1 47 |z — yl?

Now we choose coordinates, so Z = (.5,0) and y = r(cos(¢), sin(¢)).
The integral becomes

wfl ) s (S e ) o
:C(R)47T/0 r(I(1,rS) —I(r,R)) dr

where I(z,y) is defined as

I(z,y) = /0 ' log(z? + y? — 2y cos(¢)) d¢ = 47 max{log(z), log(y)}.

With 0 < r and S < 1, it follows that I(1,7S) = 0. Therefore the integral
becomes

1 1 1
—/ r max{log(r),log(S)} dr = —log(S)/ rdr — / rlog(r) dr = i(l - S5?).
0 0 5
This tells us that

sup / l9(2,y)| dy < R.
|Z|<1 J|y|<1

Although we already defined the notion of SILTs, we want to use an alternative
(potentially more elegant) way to approach them and derive some important results.

Let X;,Y; be two independent Brownian motions in R? and gg(z,y) the Green
function (3.1) of a Brownian motion killed on exiting the ball B(0, R).
Set
TR = TR(X) = inf{t : |Xt| Z R}

For each € R? and u < 1, we define the random measure

(3.2) [ u(A) ;:/ xa(X, +z)dr AcCR2
0

Lemma 30. For each e € (0,1] and almost every w, there exists a K (w) such that

(3.3) fzu(B(y, 5)) () < Ke(w) (s A1),
for all y € R?.

Proof. We have that 15, (R?) < u, so we will assume s < 1. Let R > 2 + 2|z| and
let

tATRr
At = / XB(y,s) (XT + Z‘) dr.
0

( Proposition 5.6 in [30] tells us the following)
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Ey [AT,] = Ey [fOTR XB(y,s)(Xy + ) dr| = uw(w — ), where u(z) is the solution
of the Poisson problem

1
7§AUZXB(y,S)("E) VS B(O7R)a

u(z) =0 x € 0B(0, R).
Tr
/0 X{IX,+o—y|<s} d?“]

1
= / log ( > dz.
B(y—=,s) |’U} - Z‘

As gr(w,2) <c (1 V log (#)> ,if w € B(0, R),

[w—z]

Eu[Ar,] < c/ <1 V log <1)> dz
B(y—=z,s) ‘w - Z|
1 1
Sc/ (1\/log< )) dzgc/ 10g<) dx
B(y—=z,s) |w - Z| B(0,s) ‘Z|
1
< cs® log () .
s

Since A; is an additive functional, the above implies

Tr
Ew [ATR] = ]Ew / XB(y,s) (X’l“ + SC) dr| = Ew
0

EO[ATR — At‘]:t] S EXt [ATR] S supEw[ATR] S 082_5
w

By [16, 15], we have that Eq[exp(AAr,)] < 2, if A < £ sup,, Ey[Ar,]. By Cheby-
chev’s inequality, we get

(3.4) PO(Ar, > ¢1527¢) < 2exp(—cas™ 2).

Looking at B(0,3R), then we can cover this set with N = cs~¢ balls of radius 2s
and we denote them by Bj,..., By. Every ball B(y, s), y € B(0,2R) is contained
in one of the B;’s.

Defining

Dpr := {sup|X¢| < R},
t<1

(3.4) yields (for some y € B(0,2R))
]PO(,U':&,U(B(yv 8)) > 613276; DR)
< P(pe,u(By) > e15°% D)

< cps Y exp(—c3s72).
By the Borel-Cantelli lemma with s =27%i=0,1,2,...,
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0 /Ll”uB(yﬂQ_i)
P ( (2—i)2—e

Hence, for w € Dg, exists some K g(w), such that

> C;DR> =0.

frzu(B(y,27) < Kep(w)(279)27,

for all y € B(0,2R) and ¢ = 0,1,2,.... If s € (0,1], then obviously s €
(2=0+1D 27] for some i. This leads to (provided w € Dp)

(3.5) pou(B(y,s)) < Ker(w)(27)*7° < Kep(w)s® ™"

If we Dg and y ¢ B(0,2R), then u, ,(B(y,s)) = 0. Noting that each w is in
a Dg, for sufficiently large R, together with our estimates (3.5), yields the desired
result (3.3). O

Define
L= {1/) s ap:RY = [—1,1], ||¢]lee < 1, and Lipschitz with Lipschitz constant 1}

b

and

dr(p,v) = zlég{‘/wdu—/d)du

Lemma 31.

dL(Mm,ua /J/w,v) S |u - U|a
dL(/Lm,uaNy,u) S u|x - y|

Proof. The first inequality is obvious by the definition of dj,.
The second inequality follows from

‘ [ e )

:/0 (X + ) — $(X, + )| dt < ulz —y].
[}

Remark 32. Lemma 30 implies that for w not in the exceptional set, grits (%) is
continuous and bounded ([5]). Let az(x, -, u) be the continuous additive functional
of Y; associated with p, .. That is the continuous additive functional, such that
Eolaz(x, Tr(Y),u)] = grite,u(2),

for all z and R ([8]). The stochastic interpretation of this functional is the
following: as(w,-,u) is the increasing part of the supermartingale gr iz v (Yiary (v))-

We will state one result regarding the joint Holder continuity of as in each
variable here, further results can be found in [6].

Claim 33. Assume ¢y > 0 and p being a positive measure, satisfying jiz ,(B(y, s)) <
c(s?72F7Al) for all s € (0,00),y € R Let LY be the associated continuous additive
functional, then L} is Holder continuous in ¢ a.s..

Proof. [6]. O
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Proposition 34. There exists a null set N, such that if w ¢ N,

(3.6) F@)an(@, ru)(w) dz = / / FVa(w) — Xo(w)) ds dt,
R2 o Jo
for all bounded and measurable f.

Proof. Let f,h be continuous and compactly supported and define

u

u
Bk ;:/ h(X; — z) dt.
0

The potential of B*" on the ball with radius R is

E.[B3!] = / or(= )y - =) dy.

So the potential of [ f(z)BZ" dx is

[ [ oncns@mty - o) dyis = [ [ gntehia)fty - o) dy da,

which is the potential of [ h(z)B%/ dz. Referring to [8], if two additive function-
als of a Brownian motion have the same potential, they are already equal. Hence

/h(x)ij’f dx:/f(x)Bff’h dz as.,

or

a0 [ ([ run) o= [0 ([ o) an

The right hand side of (3.6) is equal to [ (| f(—y)u—v,u(dy))ds. So its potential
in B(0, R), considered as a continuous additive functional of Y, is

/93(27y) (/ f(—w)uy,u(dw)> dy.

By (3.7), this equals

[ 160 ([ amteimsatan) do = [ rgnnnatc) dz

which is the potential on the left hand side of (3.6). Since R was arbitrary, this
proves the claim. (I

We will now show a (Yor-Rosen-) Tanaka formula for the the ILT of two Brownian
motions in R2.
Define

(3.8) Glz) = %log (é) .

Obviously, G(z) is symmetric in z.
By [9],
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(3'9) gR,Uzc,u(Yt/\TR) — 9RMz,u (YO)

tATR
= / ng,ux,u(Ye) ~dYs — 042(1:; tANTg, U)
0
Since G(-—y)—gr(+,y) is harmonic in B(0, R) for each y, s0is Gz o () —gr s u ()
and we have ([9])

(3.10) (Gﬂx,u - gRHw,u)(Y;t/\TR) - (Gﬂx,u - gRNI,u)(YO)

tATRr
0

Gltz.ult) = [ Gy~ 2asuld)
Adding (3.9) and (3.10) and letting R — oo,

t
G'uavu()/t) - G,sz7u(Y0) = / VGMx7u()/s) : d}/S - az(x7t7u)'
0

Recalling the definition of p ,,, yields

(3.11) /OMG(YtXTx)dr/UuG(YOXTx)dr

= /Ot </OUVG(YS ~ X, — ) dr) -dY, — as(z,t,u).

Theorem 35. Let Y, be a two dimensional Brownian motion. There exists a b > 0
(independent of p) and constants c(p), such that if p > 1, v € R? and o < 1, that

bp

1
(3.12) P [ /0 X5y (Ye) C(dr) > A] < ep) 35

Where we suppose, that ((t) is a nondecreasing continuous process with ((0) = 0,
which satisfies, that for each p > 1, there exists an a > 0 and a K(p) > 1, such
that

(3.13) E[(C(t) = C(s)))P < K(p)[t —s|*” st < 1.
Proof. Assume that A > 20, otherwise the result becomes rather trivial. Fix « € R?

and define Ry := |Y; — z|. Let e = {5 and define

Sy :=inf{t : R, <o}, Ty :=inf{t > S, : R, > o'~}
and
Sip1 i=inf{t >T; : Ry <o}, Tiyq :=inf{t > S;11 : Ry > o' ¢}

Let
D, :=inf{i : S; > u},
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so D, is greater or equal to the number of upcrossings of [, 0'~¢] by R; up to

time w. Since log(R;) is a martingale, we can use the upcrossing inequality ([12])

E. [|log(Fy)| + |log(o)]] _
[og(o—) —log(o)]

supE.[D;] = E,[D;] <

Using Cebychev’s inequality,

N | =

supP, (D1 > 2¢1) <

Applying the strong Markov property at inf{¢t : D; > 2nc; },

1
supP. (D1 > 2¢1(n+1)) < isupIP’z(Dl > 2e1n),

which leads to

P.(Dy > n) < coexp(—csn), n>1.

Applying the strong Markov property applied at S; and standard estimates on
Brownian motion,

(3.14) P(T; — S; > Ko*73¢) < Py(Th > Ko 73) < cyexp(—cs K).

Let h € [0,1]. If ¢((t + h) A1) — ¢(t) > Lh% for some t € [0,1], then ¢(((j +
2)h) A1) —((jh) > Lh?% for some j < [+]+ 1. The assumptions of this proposition
imply

BC() ~ ¢(s) 2 Ll — i) < K(p) 25
If p > po = £, then
(3 15) P(Su (C((t+h)/\1) 7<(t)) >Lh%) <K( )2h% < K( )Qh%
| =t B = 8w = R

Note Ry, > o'7¢ and R; doesn’t return to the interval [0, o] until time S;1, so
if Y, € B(z,0), then r € [S;,T;] for some i. Hence

1 oo
(3.16) || b 6lar) £ 36T AT = ¢(S A D).
0 i=1
Set n = (2)?, K = n%, h = Ko?>™° and L = ’\% , where we will choose d

appropriately later. If the sum on the right hand siée is bigger than A, one of the
following must hold:
(a) D;i>n,
(b) T;,—S; > Ko?3¢ for some i < n,
(¢) (T; A1) —=(S;iA1)> 3 (and maxj<,(T; — S;) < Ko?73¢) for somei < n.
As a quick reminder 0 < 1, A > 20 and € = 1—16, SO

d
b= Ko*5 = [ 2] 0275 > Ko* %, Also S;A1=1= T; A1 =1, which

[ea
leads us to
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(C(Ti A1) = C(Si A1) < sup(C((E+h) A1) —=((2)),

t<1
implying

PC(TI A1) — ((Si A1) < B (sup<<<<t CRAL) - (1) > A) |

t<1 2n
So,

1
P [/ XB(z,0)(Yz) dr > /\} < P(D; > n)4+nsupP(T;—S; > Ko? %) +P ((Tz A1) = (S; A1) > 22)
0 i

< coexp(—cgn) + negexp(—cs K) + P (igg)((((t +h)A1)—((t) > 2);1)

P

2h°F
Lr -

Substituting for n, K, h and L, we recall that A > 20 and ¢ < 1. So, taking

d sufficiently small, we obtain the result for all p > py. The result for p € [1, pg)

follows, since o < A. a

< cpexp(—c3n) + neg exp(—c; K) + K(p)

Remark 36. The previous result obviously holds true for ((t) = ¢ (by choosing d
appropriately small), which we will use in the following results.

For € € (0,1), define

™

(3.17) Ge(z) :=G(z) A ! log (1) ;

H (z):= G(z) — G(z).

Proposition 37. Assume a > 0. There exists a d > 0 and ¢y < 1 such that for
p>landg>1

u P
E [( [ - x, —x)qdr> ] < (p.q)e,
0
if uel0,1] and € < €.

Proof. Set V = [/ |[Ho(X, — X; —)|%dr and Y, = X,, — X,. Let n = [§]+4, where
b is the constant from Theorem 35.
First, we note that

Hi(z+z)<c Z JIXB(2-1)(2)-

{j:2-9<e}

Also, if A > ei, with € being sufficiently small and 277 < ¢, then W > 2714,
Using Theorem 35

a [ A
]P[V > )\] < Z P l:CL]q/ XB(m,2*j)(Yr) dr > 2072
{j:277<e} 0 !
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—j bnp
< ¢(np) Z %

bnp
{7:279<e} (W)

2-i%
=c(p,q) Z \onp

{j:279<e}
dip

d €
< clpa)en

if € is small enough.
Multiplying by pAP~! and integrating from €% to oo, gives

E [Vvagei] < c(p, q)e™.
Since
E|VPx,_ | < cp.a)e®,
adding up the two terms, gives the result. O

Let Uy = M; — V;, where M, is a martingale with mean 0 and V; is a non-
decreasing process with V) = 0. Furthermore, U, M and V have right-continuous
paths with left limits and are adapted to a filtration satisfying the usual conditions.

Lemma 38. Suppose that for an a > 0 and p > 1, there exists a K(p), such that

(3.18) EU] < K(p),  t<1

(3.19) E[|U, — U] < K@)t — s,  s,t<1

Let K = K(p)V K(p + 1), then there exists a b > 0, independent of p, and
constants c(p), such that for p > 1

(3.20) E[Vi?] < ¢(p)K (p)
(3:21) E[V; — Vi!] < e(p)K(p)|t — o[, st <1
2

Proof. We focus on the case p > pg = £, since the result for p < pg follows from
applying Jensen’s inequality.
Using a chaining argument, like in the proof of Kolmogorov’s theorem the first

two inequalities would imply, that we find a version of U;, such that

a’

Efsup [U21] < c(p)K (p).
As Uy and —V; only differ by ; martingale, for ¢t < 1, we have
E[Vi — V4| F] = E[U; — Uy | F] < 2E[sup |Us| | F)-

Using the inequality [3] (Lemma 2.3), we get
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E[V] < C(p)E[Slip U]

Together with (3.18), this proves (3.20).
In a similar fashion,

E[ sup |U, — U] < c(p)K(p)|t — s|P*.

s<r<t
_If we apply the above argument to V. := Vi, — Vi, U, 1= Ugyr — Uy and
M, := Mgy, — M, r <t—s, we get the second inequality. O

Remark 39. Setting p > %, implies, that V; is Holder continuous a.s. on a dense

subset. As V; was assumed to be increasing, it turns out to be continuous a.s..
Suppose now, that U} = Mj -V}, i =1,2and V¢, M" as above. Set V; = V,! —V?

and analogously M, and U,.

Proposition 40. Let a,b,§ € (0,1). Assuming, that for each p, there exists a

K(p), such that

E[U{F] < K(p), t<1,i=12

E[U; — UJP) < K(p)|t — s|P*,  s,t<1,i=1,2

and

(3.22) E[|U,|P] < K(p)é*®,  t<1.
Then there exists a d > 0, such that

(3:23) EVi) < c(p)K(p)s™,  t<1.
Proof. Again, we suppose that p > % + 2. As in the preceding proof,

E[ - |Uz—U;p} < e(p) R (p)|H]P".
s<t<s+h

Forn > 1,

2
sup|Ut|<bup|U;|+Zbup sup |U} — ]|

j<n 11]<n% t§+

It follows, that

E[St;p |Ut|”]

< (p)nsup]EHUJ [P] + 2¢(p)n max supE
j<n 1<3 <2]<n

i %
sup U/ = Uj |
%Stgjj;l n

< clp)nR ()" + 2nc(p) K (p) ().

Since ap > 2, we set n = [~ 2] + 1 in order to get
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abp

(3.24) Blsup U] < c(p)K (p)3"F

Define Z = sup, |U;| and W = 1+ V{! + V2, then by the preceding Lemma 38,
we get W € LP for all p.

Ift<1,

[E[V1 = Vi|A]| = [E[U: — Uh|R]| < 2E[Z | 7]
Referring to the proof [2] (Lemma 2.3),
1
(3.25) E[(Vi — V3)?|F] = 2E [/ W =Vy) stFt}
¢
1
~ s [ [ B - voiz) aviz]
¢

< 2R { / ELZ\F V) + V£>|ft} -

Now set Y; = E[(V1 — V5)|Fs], Ny = E[(V1)|Fs], such that Y; = N, — V;. We take
the right continuous versions of Y and N. Jensen’s inequality implies, that

Y7 = (B[(Vi = Vo)IFD® < E[(Vi = Vo)*| 7] < 2E(WZ|Fy].
Further, if we apply Ito’s lemma, we get

1
y12,y;2:2/ Y, dYs + (N)1 — (N)y,
t

which in turn tells us, that
1
HWNM—%N%VHSWDf—YﬂEH+ﬂH/‘%dﬂﬁm
t

1
§4mwzug+2ﬁ{/ﬂéﬂﬂﬂ]
t

g4mwzuu+2ﬁ{leZfJa%“H@NE}

< 8E[W Z|F].
By applying Lemma 2.3 from [3] and Lemma 38,

— abp

<c(p)K(2p)i=.

Applying Jensen’s inequality ones more, we get

Therefore,
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E[[Ve[*] < c(p)E[|Ne[*] + c(p)E[|Y:[*]

bp

< c(p)E[(N)}] + c(p)E[[Vi[*] < c(p)K(2p)57".
By setting d = %b, the proof is completed. O

We now want to use some of the results obtained in the study of the intersection
of two planar Brownian motions, in order to study the SILT for double points of a
single Brownian motion.
Let ¢ be fixed, A, = 27" and set s; = ti4,, for i = 0,...,2". Setting Y,
(Xsjir — Xs,) + X5, = Xg4r 0 <7 < A. For an z € R?, let p,,(A) =
Osi X4(X,) dr. There now exists, with the same argumentation, a continuous,
additive functional of Y,., we will call a*(z,-) , such that, if A, ;. = ab(z, A,),
then

(3.26) /O " (G(Xas = X — 1) = G(Xo, — X, — ) dr

Sit+1 Si
= / (/ VG(Xs — X, —x) dr> dXs —Ania
Si 0

Furthermore, it holds that A, ; , > 0, continuous in = and

Sit1  [Si
(3.27) / F@) Anie dz = / / F(Xy — X,) ds dr.
84 0
Let
"1 g,
Ul =0 (z) = Z / (G(Xs,,, — Xy —2) — G(X,, — X — 2)) dr,
i=0 70
Sit1 S4
M = M (z) ::/ / VG (X, — X, —x) dr dX,
Si 0

2" —1

6?($) = Z An,i,a:;
=0
Uy = U () = /O (G(Xs — X — ) — G(—2)) dr,

t s
M, = M, () ::/ / VG(X, — X, — 2) dr dX,.
0 0

Summing over all ¢ in (3.26), we get

(3.28) U = My - B2 (a).
Proposition 41. If x # 0, U* — Uy in LP for p > 1.
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Proof.
2" —14=1 L5y,
ur=>" Z/ (G(Xsiy, — Xr — ) = G(X,, — X, —)) dr
i=0 j=0"%i
2" —1 2" -1

- Z Z /igj-H (G(X8i+1 - Xr = J}) - G(Xsi - X, - .Z')) dr

§=0 i=j+1"%
2" -1

Si+1
= / (G(X; — X, —2) - G(X,,,, — X, —2)) dr.
7=0 7%
Defining the function
2" 1

hy = Z (G(—x) - G(X, 1 — X — x)) X(S_f»5.7+1)(r)7
Jj=0
it suffices to prove that

t
/ h'dr —0  in LP.
0

By applying the generalized triangle inequality, as well as Holder’s inequality,

¢ P t 3
/hﬁdr <<IE [/ h:}Q”er 21,
0 0

We have to show, that

E

2" —1

eo)  E|Y [ TG - 6K, - X )P ar| 0
j=0 7%

S

For a z € B(z, %), choose € small enough, such that G(z) = G.(z).

2" —1

(3.30) E Z /SM [(Ge(—2) — Ge(Xs,,, — Xr — @) dr
j=0 7%

S

2" —1

Sj+1
< VG R | S / dr sup  |Xu— Xo|]
=0 7%

u <1, lu—v|<A,

(NI

-2
SCauchy—Schwarz ce P (E

4
sup | X — Xo|*P
w1 lu—v|<A,

<ce AP,
We define the set

x
V= sup |Xu—Xv|>u .
w,w<l,Ju—v|<A, 2

By our choice of €, we get that H.(—z) = 0 and
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2" —1

(331) Z /€J+1 Vc| ) E(XSJ‘+1 - Xr - x))|2p dr| =0.

Also, by

1 —1
E{(Y 2] | <2'E|> 2°| <2*"supE[Z]],
; ; J

we get

Si+1
(3.32) Z/ xvIH (X, — Xp —z)|* dr

j=0 v 5i
2\ 2
2"~ Sj+1 1
< |E Z/ [He(Xs, 0 — X, —x)[*dr (P(V))*?
j=0 “Si
1
2\ 2

2771 esjn
<2"% supE Z / H (X, — X, — z)|* dr exp (— 1!{2' )
Sj n

< 2"cex (— 2] )
= P\ 7164, )

Here, we used Proposition (37). Adding up the results from our inequalities

1
(3.30), (3.31), (3.32) and letting ¢ = ¢(n) — 0, as n — oo, such that A2 < e(n)?,
we get the desired result. O

Proposition 42. (j*(x) is increasing as n — oo and denote the limit by Pa(x,t).
For a function f, which is continuous and has compact support, the following equal-
ity holds almost everywhere,

(3.33) /f )Ba(x, 1) d:c—//fX — X,)dr ds.

Proof. Let ¢. be a Dirac sequence, then by (3.27)

2" —1

(3.34) /¢>E 20)B7(x) dz = Z / LH/ b(X, — X, — x0) dr ds.

For each n, as € — 0, the left hand 51de converges almost surely to 8} (z), since
A, i» is continuous in z. For each fixed ¢, the right hand side of (3.34) is increasing
with respect to n. This means, that for each z¢ # 0, 8*(x) increases, as n — 0.
We call the limit S5(z,t). Using the monotone convergence theorem, we get

[ H@atantydo =t [ 5()55 @) ds
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t s t s
= lim / / f(X7 - XS)X{TSSi}X{SiSSSSi+1} drds = / / f(XT - XS) drds.
n—=o0 Jo Jo o Jo

O

If we define B(z,t) as the limit of 8}'(z) for each 2 € R\{0}and rational ¢, by
Proposition 42, it is not difficult to see, that Sa(x,t) > Sa(z, s) a.s. for t > s. For
t €10,1], let

Ba(z,t) = inf ﬂ_g(z,u).

u>t, ueQ

Lemma 43. For each p > 1, there ewxists a v(p), such that

E(|U(2)]”] < e(p)(1V [G(2))"P, <1,

There exists an a > 0, such that

E(|U(z) — Us(@)[”] < e(p)(L V |G(2))" D[t = s, st < 1.

Proof. Obviously, G(x)t has moments of all orders. We choose € small but fixed.
By Proposition 37,
fot H.(X; — X, — x) dr has a pth moment. At the same time, it holds that

t
1
|/ G (X — X, — ) dr| < clog(-)t.
0 €
The first claim directly follows.
Regarding the second claim,

t
U= U < IG@I(E—5) +| | H(X = X, ~ ) dr]
0
s t
+|/ He(XSerfx)dr|+|/ G (X — X, — ) dr|
0 0

+| /OS(Ge(Xt =Xy — 1) = G(Xs — X, — ) dr|.

By Proposition 37,

B{U: ~ U7} < eGPl - sl + clp)e®”
1 S
relplion (3 ) Ple = s + IVGPEL [ dr X, - X,
0
d 1 p 1
< (Y IG@IPIE ol + ep)e® + e 10g (£ ) Pt = s +-elt = 5175

We used Cauchy Schwarz in order to arrive at the last term on the right hand
side. Choosing € = |t — s|® for a suitable b proves the claim. O
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Theorem 44. For p > 1, there exists a v(p), such that

E[B2(x,)"] < c(p)(1 V|G (2)))'™,  t<1.

There exists an a > 0, such that
E[(B2(z,t) — Ba(@, 8))"] < e(p)(1V|G()])" |t — sP*, st < 1.
Proof. As we have
E[f1 (x) = B¢ (2)"| 7] = E[Uf (2) = UY' (2) ),
we can make use of the monotone convergence of 37*(x) to Ba(x,t) for rational

t, the monotonicity of B2(z,t) and the LP convergence of U*(z) to U,(z) in order
to get

E[(B2(z,1) = Ba(x,1))[Fe] = E[Us(2) — U (x)|F].
We see, that M; = U(x) + B2(x,t) is a martingale. The result now follows from
Lemma 38. O

Theorem 45. The following (Yor-Rosen-) Tanaka formula holds

(3.35) /0 (G(Xy — Xy —z) — G(—x)) dr

_ /Ot (/0 VG(X. — X, — ) dr) X, — Bo(z,1).

Proof. Since Bj*(x) converges to B2(x,t) and Ba(x,t) is in LP, the convergence hap-
pens in LP. Since also U}*(x) — U(z) in LP, we can conclude, that M;*(z) converges
in LP to some N;.

As .
M) = [ hedx.,
0
with
h? = / VG(XS - Xr - x)X{rSsi}X{sigsgslurl} d’l",
0
then

t
/ |h — R * ds = (M™ — M™), — 0.
0

As h? converges for each s to hy = [ VG(X,—X,—x)dr, then fot |h?—h™|?ds —
0. It follows, that N; must be equal to M;(x). We get the full formula by simply
applying a limit to (3.28). O

Despite having already looked at two approaches to derive the notion of SILTs,
we will, rather briefly, look at a third one. This approach is outlined in [38] and
although we will not go into much detail here, there is one rather astonishing result
(the occupation times formula) which we will make use of later on.

In [38] the following (Yor-Rosen-) Tanaka formula was shown,
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(3.36)
/log(|Wt dr—// |W W — ‘ dr dW + tlog(z) 4+ 7 B2(t, ),

as the limit of embedded random walks.
Also the renormalized version of the SILT is introduced

Ba(t, ) — 110g(|x\> z 70

1

a(t,z) == ¢
llmx_)o ﬁg(t,x) — %log (|$|) x=0

It was shown by LeGall [27] that this limit exists almost everywhere and in L2
A consequence is the following “occupation times formula”, which is pretty similar
to the one obtained before

Corollary 46. Let f : R?2 = R be a bounded Borel function, then

/ /Sf<ws—wr>drds= f@a(tx)de = [ fle)altz) — L log(|z])) da
0 0 R2 R2 e

Or, alternatively

[ [ v, = wo —eirov - wohards = [ st - Elata) do
Proof. [38]. O

Lemma 47. Y(t,z) := fo IN M dr dWy is a continuous L% martingale

with expectation 0 as a function of t € [0, K] for any fived y € R2.

Proof.
]E[IY(t,w)IQ]:/O El m

/ (/ W, - Wsr—xP )Q] “ </0|W1_x|2dr)2]

By symmetry and the independence of increments of W,

t t 1
EYt,gﬂgﬂE[// drgdrl}
i)l A S —

lz2—21

), ek

exp ( . exp p——

= 2t/ 72/ 2lra=r1) dre dze dry dzy.
[ [r1,

04 xR2 27T1[21 — 7| xr2 27(ra — 71)[22 — 7|

S W, — W, — 2

ds

Writing zo = x 4+ n(cos(0),sin(d)) , z1 = x + p(cos(),sin(y)) and r = ro —ry, we
obtain, for the inner integral,

27 .
/ / / exp( U 2””08(9 7)>d d0 dr
7T




THE STOCHASTIC HEAT EQUATION IN TWO DIMENSIONS 42

t—ry 27 e’} _ 2 1 1 1
<2 / / / (—(” P) ) dn— df— d
<V2r ; - exp o G U NG r

S 2 27T(t—7“1).

Thus,

t 2m ] 2
1 1
E[|Y (¢, 2)*] < 2t/ / / exp (_p) 2y/2n(t —r1) dp— dy— dr
o Jo 0 2r1 2 'r

<8TK?(0 <t < K, z € R?).
Lemma 48. X (t,z) := fg log(|W; — W, —z|)dr (t >0, z € R?), then

x|? xf? ’
E[X(t,x)]:tlog(|x|>—WT+%Ei <_|2t) _;texp< 5 > 7o

t
lin% E[X(t,z)] = E[X(t,0)] = §(log(2t) —C-1),
T—
where Ei denotes the exponential integral function and C is Euler’s constant.

Proof. For any fixed t, W, := W, — W,_, is a planar Brownian motion starting
from 0. Thus

E[X (¢, 2)] = / llog (W, — )] dr—//RZlOg ‘Qyw;x' Xp( |gz>d dr

t fe%s) 2m 1 2 2 2 9 _ 2
:/ / / nlog(r” + p” = 2npcos(0 =) (_n) 48 dn dr.
o Jo Jo 4dmr 2r

where we substituted x = n(cos(6),sin(f)), y = p(cos(y),sin(y)). As the last
integral doesn’t depend on 7y, we can replace it by 0. Since

27
1
/O 7 log(n® + p* = 2mpcos(6 — ) df = log(n V p),

it follows, that
2
X (t,x)] // —e p( 2>log(n\/p)dndr.

This gives exactly the desired results. O

Remark 49. Although looking at all of these different approaches might not seem
very educational or even confusing (regarding the notation), each offers a different
insight and thereby very useful results. As we have seen, the “functional approach”
results in rather nice bounds for the moments, whereas the approach used in [38]
delivers a more general version of the occupation times formula. The main point,
which connects all these approaches and justifies the “mixing” of these results, is
the (Yor-Rosen-)Tanaka formula.
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4. AN INTERESTING SPDE

In this section, we will focus on a particularly interesting example of a 2 di-
mensional heat equation and a rather explicit form of its (in a certain sense) weak
solution .

Before we dive into the SPDE itself, we will require some results in order to
properly state the weak formulation.

We will require the following Lemma:

Lemma 50. Let 1 < p < oo and k > 0, then the space C°(R?) of test functions
is a dense subspace of W*P(R?),

Proof. Tt is clear that C°(R%) is a subspace of W*P?(R%). First, we show that
C2 (R N WkEP(RY) is dense in W*P(R9) and then, in turn that C"X’(Rd) is dense

loc
in C2 (RY) N WkP(RY).

Let f € W*P(R?) and let ¢,, be a sequence of smooth, compactly supported
approximation of the identity with respect to the convolution (Dirac sequence).
Since f € LP(R?), f * ¢,, converges to f in LP(R?). Since V7 f is also an element
of LP(R%), we have that (V7 f) * ¢,,(= VI(f * ¢,,)) converges to V7 f in LP(R9). It
follows that f * ¢,, converges to f in W*P?(R%) and as f * ¢,, is smooth (due to the
smoothness of ¢,,), the first claim follows.

Let f now be a smooth function in W*?(R%) (V7 f is also an element of LP(R%)
for 0 < j < k). Let ¢ € C2°(R?) be a compactly supported function, which equals 1
near the origin (bump function). Now, consider the functions fz(z) := f(z)y (%)
for R > 0; these functions clearly are members of C°(R9). Letting R — oo,
via the dominated convergence theorem, fr converges to f in LP(R?). Applying
the product rule, Vfr(z) = (Vf)(@)¢ (%) + £/ (x)(Ve) (%). We see that the
first term converges to Vf in LP(RY), by the dominated convergence theorem,
while the second term converges to 0. Thus, V fr(z) converges to Vf in LP(R?).
An analogous argument shows the convergence of V7 fr to V7 f in LP(R?) for all
0 < j < k, which gives us the convergence of fr to f in W*P(R?), and the claim
follows. O

Remark 51. We also see that the space S(R?) is dense in W*P?(R?).
Theorem 52. Let Q = RY, then the embedding W1P(Q) — L1(Q) is continuous,
if1<p<q<oo, 4—1<% and (p,g) ¢ {(d,00), (1. 7%

Proof. Again, we show the claim for all test functions f € C5°(R?) and by density,
it will extend to W1P(R9). From

|f(z+ sw) — |—‘/ —fx—i—tw dt’

follows

/sw-Vf(m—l—tw)dt ,
0

|f(z)] = /Ooow~Vf(x+rw)dr

for any € R? and any w € S4~'. Applying the generalized triangle inequality

(@) < / V£t )| dr



THE STOCHASTIC HEAT EQUATION IN TWO DIMENSIONS 44
Hence, averaging over all directions w gives us

/Sdl |dS</ /d1|sz+rw)|d1defr

Substituting and changing coordinates gives

f@I< [ s@las< [ 95—l d

/|Vf<x )| ildy<c</ V@) dy)?.
Rd | | Rd

The claim now follows.
We now handle the cases, when % —-1< % <
inequality

g. Here we look at the following

R
f(x):f(quRw)f/O w-Vf(x+rw)dr,

for any R > 0. Hence,

R
F@)] < |fx+ Rw)| + / IV f(z+ rw)| dr.

For any specific value of R, this corresponds to averaging f over a sphere with
this radius, which will not give us the nicest expressions. Instead, we average, for
instance, over a range of R’s between 1 and 2. This leads to

(x)|§/l |f(x+Rw)|dR+/0 IV f (@ + rw)| dr.

Averaging over all directions w and converting back to Cartesian coordinates
gives us

1
— d \V4 — — dy.
(@) < /1<|y<2|f(:v ¥ dy + /|| =) s

Thus we can bound f pointwise, up to a constant, by the convolution of |f|
with the kernel K;(y) := X{i<|y|<2} Plus the convolution of |V f| with the kernel
Ks(y) = X{Mgg}lyl%. It is easy to check, that K; and K, both lie in L"(R9),

. . . 1 _ 1 1 . d
where r is a result of Young’s inequality, stl=5+7 (especially 1 < r < 5%7).
An application of Young’s inequality gives us that

[ fllze@ey < CUfllzemay + IV FllLrgay)-

Remark 53. WP c Whp
Theorem 54. W%H(R?) — Cy(R?) continuous ¥ d > 1
Proof. Let f € C2°(R%), then from

f(xl,...,a:j,...,xd) :/ &ij(xl,...,tj,...,a:d)dtj
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X1 Tq
:/ / Oy - Op (1, .. ta) dty .. dtg,

which yields

0
o < — < 1,d.
11 < | 5o gmt] <

The result follows from the density of C§°. O

Theorem 55. The embedding WP (R?) — WH4(R?) is continuous, if
0<I<k
l<p<qg<oo —k —1
l<p<qg<oo ¢k -1

SRISWS[sH
QR ]

IN A

Proof. [19]. O

Remark 56. Throughout this section, compared to the notation used in the first
section, H? := H??2.
Remark 57. Regarding the embeddings:

(Theorem 52)d =p =2, 0 < 2, so we can choose ¢ = 1.

H? = W22(RY) ¢ WL2(RY) — LY (RY) continuous.

(Theorem 54, 55)d = k = p =1 = 2, choose ¢ = 1,

then —-1=2-2<2-2=0.

H? =~ W22(R?) — W2L(RY) — Cy(R?) continuous.

Let us now consider the equation
(4.1) do(t) = (;Av + Ft> dt + Vo - dW,
v(0) = vy =0,
Fi: L*(R*) N Cy(R?) — R,

(42) ﬂW:Aﬁ@wawn

Proposition 58. Let T be arbitrary, but fized and finite. For t € [0,T], F; as
defined above is a continuous functional on H?2.



THE STOCHASTIC HEAT EQUATION IN TWO DIMENSIONS 46

Proof. Let ¢ € H?. Due to Remark 57, we know that we can find a continuous (and
bounded) representative for any H? function and hence the point evaluation and
translation /shift ¢ — ¢(—W, — ) for any r € [0,7T] and u € R? are well defined.
Further, it shall be noted that the point evaluation is a linear functional. Since we
are integrating a bounded function over a compact set, it is finite, which guarantees
that Fy is well defined and obviously linear on H?2.

p) dri < t)|glloc < tC|0]| 2

Remark 59. The Lemma obviously still holds if we choose ¢ € S.

We can now state the weak formulation for ¢ € H?:

(43)  d(w(t).6) = ( (A, /"¢ C—W) :)w+wv¢vwdww

By, rather formally, applying Duhamel’s principle, we can get a decent impression
about the structure of the solution.

We define Us,t = TW(s) o T—W(t) and Ut,s = TW(t) o T—W(s) for any 0<s< t,
where T is the usual shift operator on the space L2.

We will try to show that

t
u(t) :== Upruo +/ UsFs ds
0

is a weak (or rather distributional) solution of the above equation.
From now on, we will refer to the dual space of H2 by H 2.

Lemma 60. Let g, f. be sequences in H—2, converging to g and f respectively,
then un(t) := Up+gn + fot Ussfnds — u(t) :=Uptg+ fot Ussfds in L2([0,T], H2).

Proof. Let t > s > 0. Uy sf, is still an element of H=2, as H? is invariant with
respect to translations and we have (Uy s fn, ®) = (fn,Us,¢) for ¢ € H?

t
1Tt = Us,s 22 o,,0-2) = /0 U5 (fr = )72 ds.

As the mapping (¥s)sefo,¢ — fot s ds from L2([0,t], H2) to H~? is linear and
continuous, it suffices to consider the terms inside the integral:

t
1U,s(fr = PZ2(0,0,0-2) = /o 1Ut,s(fn = P72 ds

¢
< [ 1= Pl ds = el = Ty 0.
0
In total, this gives us u,(t) — u(t). O

Remark 61. In the case of our specific (time dependent) F', we can almost use
the same proof. In order to clarify the notation: For s > 0, we interpret Fs as
the composition of an integral operator, a translation T" and a point-evaluation g
F, = fot oT o). Further we will denote the “actions inside the integral” by f
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(f ~ T og) and the point evaluation by g. The sequence F™ is chosen rather
specifically: F* = fot Tygn ds.

t
U F" = U Pl L2 0,0,0-2) = /0 U5 (Fs = Fy)|[ -2 ds
2
ds

t t s 2 t
< / | P —Fy |12, ads = / / oo foar| ds— /
0 0 0 H-2 0 H-2

t s 2 t s 2 3
</ ( 1 (g — 9)l1 11— dr) is< [ ( g — gl dr) ds = £ lgu—gl% .
0 0 0 0 3

One can replace g,, by an appropriate delta sequence.

/ Ur(gn - g) dr
0

Lemma 62. Let  C R? X, Y be Banach spaces and A a linear, closed operator
A: D(A) CX =Y. Further g : Q — D(A), then

/ Ag(z) dx = A/ g(z) dz.
Q Q
Proof. [20], Theorem 3.7.12, page 83. |

Proposition 63. Let ¢ € H%, t € [0,T] and assume F; as defined by (4.2), then
t s
WeaFusd) = [ [ oW =W, — (W) dr s,
0o Jo

t s
<Ut,SFsﬂ ¢> = /0 /0 ¢(Ws -W, - (M - Wt)) dr ds.

Proof. Following the notation from Lemma 62, Q = [0, s], g(-) = ¢(—=W. — p) and
the translation operator U defined earlier replaces A. We can clearly see, due
to the continuity of all the operations involved and the previously stated Sobolev
embeddings, that F; maps ¢ from H?(R?) into C|0,T]. By the following simple
estimate, we also see that Fi¢ lies in LP[0,T] for any p > 1

(Fi)? = ( /O "W, — ) ds)p

t P
< (/ sup (¢) d5> < tPCP.
0 z€eR?

By simply differentiating with respect to t, we see that Fi¢ lies in fact in
W1P[0, T for any p > 1.

As linear and bounded operators are trivially closed, we can use Lemma 62 to
justify exchanging the integral and translation, interpreting each action on either
the space C[0,T] or WH2[0,T]. So

t t t
(u(t), ) = (Uosdr g) + /0 (Us i Fo, d) ds = /O U, /0 S(—= Wy — ) dr ds
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=/Ot/osUs,t¢<—Wr—u)drdsz/ot/osdmws—WT—<u+Wt))drds.
O

At this point, referring back to Proposition 42, one could already see that a
potential weak solution could have a connection with the self-intersection local
time (SILT) of a planar Brownian motion:

t s t s
(4.4)/0/0(b(—Wt—i-WS—WT—,u)drds:/o/o¢(WS—WT—(M+Wt))drds

- /}R (@) ol + 1+ Wi 1) d,

Remark 64. For p # 0, the condition p + W; # 0 holds with probability 1.
Let t > 0, u#0,

0<PW;+p=0)<P(peW[0,t])

1
P(ue\/;W[O,IO =P \}LTEW[O,I] = 0.

Where the last equality stems from the following Lemma.
Lemma 65. For any z, y € R?, we have P,(y € W[0,1]) = 0.
Proof. For any fixed y € R?, by Fubini’s theorem,

/ P,(z € W0, 1]) dz = E, [£2(W[0,1])] = 0.
RQ

Hence, for almost every z € R? we have P,(z € W/0,1]) = 0. By symmetry of
the Brownian motion,

Py(z € WI0,1]) = Po(z —y € WI[0,1]) = Po(y —x € WI[0,1]) = Po(y € W[0,1]).

We infer that P,(y € W|0,1]) = 0 for Ls-almost every point x. For any ¢ > 0
we thus have, almost surely, Pg_(y € W/0,1]) = 0.
Hence,

Pa(y € W(0,1)) = lim Bo(y € Wle, 1)) = lim B [Po(y € W[0, 1~ )] =0,

where we have used the Markov property in the second step. [
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Remark 66. We encounter certain issues:

The smoothness of 35 in order to qualify as a weak solution and of course the
smoothness of ¢, in order to even be able to apply Ito’s formula. We leave the ques-
tion regarding the application of Tto’s formula unanswered for the case of H?(R?),
but supply a short treatment of the case f € T/V1 P(R") for p > 1+ % in the
Appendix.

A possible way out would be to consider ¢ € C°(R?) and interpret the solution
as a distribution. If we followed this approach, all steps made before certainly hold,
and even (4.4) holds, as shown by [6]. As ¢ € C2° is quite restrictive, we will try to
work with functions ¢ € S and interpret the solution as a tempered distribution.

Remark 67. As S is a dense subspace of any of our usual Sobolev spaces, the
previous lemmata and propositions obviously still hold, if we replace ¢ € H? by
pes.

Remark 68. As we will turn our attention to the existence of an actual solution
in a moment, we will refer to regarding the uniqueness to Theorem 22 (and the
preceding Lemma).

Proposition 69. Let ¢ € S and consider the set up from equation (4.3), then we
have

d(u(t), o) = ( (Ad, u( /gb —u—W,) )dt+<V¢,u(t)th>

for any t > 0 and u(0) = 0.
Proof.

(w(t), 8) = (Uo.,9) + / (UysFa 6) ds = / . / O(— W, — ) dr ds

= [ [[vasstw—yaras= [ ["ow.—w, — s wiy) aras.

We note that .
[
0

and
d¢(Ws - Wr - (M + Wt)) = %A(b(Ws - Wr - (,u + Wt)) dt
—iqs(w - W, —( +W))dwl—i¢(w — W, — (p + W) dW?
o1 s r M t ¢ D s r M t t -

As we have chosen ¢ € S, we can exchange the differentiation and integration
and obtain
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du(t), ¢) = ( (Ad, u( /<b —pu—W,) )dt+<V¢>,u(t)th>.

Let us define the following two quantities:
For any ¢ € S, u € R?\{0} and t > 0,

NADE //¢W W, — p) dr ds,

ag(t, ) == Ap(t, p — Wy).

Based on [38], formula (4.4) holds and we obtain

Agtt) = [ [ o w, =y dras = [ ot psat,) da

= e o(x)Ba(t, x + p) da = (¢, T, B2(1))-
Hence, we get

ag(t, 1) = (¢, Tyuyw, B2(t)).

Prop051t10n 70. For any f € H?, € R*\{0} and t > 0, ays(t,-) is a version of
fo fo stTw, f drds.
Proof. Let ¢ € H?,

<af(t,~)7¢>>=/ ar(t,y)o dy—/w/ / O(y)Uso f dr ds dy
-1/ t / 0y (W= W, —(y+W4))drdsdy = [/ t / (Wt Wy W,—2) () drdsds
:/Rz f(2) /Ot /O gb(—Wt—l—Ws—W,.—z)drdsdz—/ / / Us 6~ W, —2)drdsdz

/Rsz / / Ut sT-w,I-¢ drdsdz—/Wf(z)/o?Ut’stvqs)dsdz
= <f, /Ot /O Ut,ST_WTI_¢ds> - <¢,/Ot /O Uy T, f ds>,
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Corollary 71. Let € R*\{0}and f = 5_,, then a(t,-) is a version of u(t).

Proof. We can choose f,, to be a Dirac sequence of C2° functions, which are clearly
in H%. As f, — 0_, in H %, we can use Lemma 60 and see that u, () — u(t) in
H~!. The previous proposition states that ay, (¢, ) is a version of u,(t). We obtain
that ay, (t,-) = a(t,-) (Proposition 70) point wise and therefore, a(t,-) is a version
of u(t). O

Remark 72. Until now, we have avoided talking about the regularity of the solution
u(t,z). It is well known ([35]) that, away from 0, fS2(z,t) is Holder continuous in
(z,t), but a more rigorous investigation regarding its regularity (if it could, in fact,
be regular enough to qualify as a proper weak solution) is far beyond this work.

4.1. The First Moment. Let us, formally, take the expectations on both sides of
equation (4.1), for t > 0, z € R?\{0}, we end up with

(4.5) [u(t, )] = %AE[U(TZJJ)} + E[f(t,2)],

a]E

E[u(0,2)] = 0.

In our case, f(t,r) € H~!. Another aspect of this is that fot Vu(z,t) - dW;
needs to be a proper martingale and not just a strictly local one, in order for the
expectation to vanish.

What we have to show is that E [foT(Vu)2 dt} < oo for every T' > 0. As we

already have a (candidate for) a weak solution, our task becomes a bit easier.

Lemma 73. For ¢ € S, f € L? there exists a constant, dependent on ¢, such that

(/¢fdx)2 <c [ o s

Proof. We use

(1] or dx|)2 <([1els dw)2

= “lollflde) = ([ [6]dz fldz) .
(f fisenas) = (f i) (f pitzionse)

As [ f\g% dr =1, we can use Jensen’s inequality to obtain

[ )2 6] (2 ,
d dx = dz.
C< f|¢|d:c|f‘ z| <C f|¢|dx|f| T C/\¢||f\ x
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Remark 74. In law we have

(4-6) - ¢($)62($ +p+ Wi, t) dx = <¢a SWtSHB(t7 )> = <S*Wt ?, Suﬁ(tv )> )

where S. denotes the translation/shift-operator.
Further,

T T
E [/ <v¢762(t;x+wt+:u)>2 dt| =E / <S—th'¢aﬁ2(x+uvt)>2 dt
0 0

T
oz — Wy))Ba(x 2l dz
gc/o /R21E[(V O — W) Bal + o, t)?] et

< C/O /RQE[(V.¢(a:—Wt))2]%E[/62(I+M,t)4]% ot

The first inequality stems from Jensen’s inequality, as shown in the previous
Lemma and the second is just a routine application of the Cauchy-Schwartz in-
equality.

We note that for f, g€ S, fg€ S and f*g € S, so ¢?> € S. Further,

exp (1o
|, Blota =iy = Pl e ) P

R2 27t

which lies again in S.

Proposition 75. For all ¢ € S,

E VO (V- ¢, By (x,t))> dt] < 00,

form=1,2,....

Proof. We actually just have to show, as a consequence of Fubini’s theorem, Jensen’s
inequality and the Cauchy-Schwartz inequality, that there exists a finite constant
C, such that

/R (V- 0o — WP H(ElBa(e + 1, 0)") do < Ch(),

where h € L'(0,T) for every finite 7.
In the next steps we suppress the translation by y, as we can shift this translation
to the respective function ¢ € S and define it as ¢(-) := (- — p). Further, we will
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work with a generic ¢y € S, which can obviously be replaced by the desired partial
derivative of ¢ and its powers.

We now have the choice to either use the (Yor-Rosen-)Tanaka formula in order

to express B2(x,t) and derive our estimates this way, or to use the previously stated
estimates (Theorem 44), together with the scaling argument (Remark 24) from the

beginning of the previous section, to obtain
I~ 2n
—, 1
s () ]

< t3¢(2n) <1 v ‘G (j{) )v@n)

< t37¢(2n) (1 % (’ilog(lﬁ)‘ + IG(w)I)>

In the case of p = 2n, v(2n) = 2n and due to the positivity of all terms in the
last expression,

(1 (| osivn| + |G<w>))v(%) < (1+ [Froutvip| + |G<x>)2n.

Regarding the integral over R?, we only have to deal with integrals of the form
cfw z)) dx, j=1,...,2n, where 1) € S. These integrals can be evaluated

snmlarly to the ones in Remark 29.
J
]R2 | |

27 s} 1 J
/ Y(r, p) |log (2> rdrdp
0 0 r

_ /0% (/Olw(r,p)log (;)jrdr—i—/loow(r,p) log (:2)] rdr) dp

2m
<27  sup rp|+/ / Y(r, p)27r|log(r)|?| dr dp < oo
(r,p)€B(0,1)

E[Ba(x,1)%"] =t T E

v(2n)

()|G ()l do

1 27
<C J / / (r, p)|27rI T dr dp < oo.

The way we conclude the existence for each of these integrals is the following:
We actually just split the integral with respect to r, up into an integral over (0, 1)
and (1, 00).
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Due to the continuity of ¢, we can estimate
1 1
/ [0 (r, p)|rlog(r)? dr < C/ rlog(r)? dr.
0 0
Asp eSS,
o .
[t
1

< / [ (r, p)rj+1| dr < oo.
0

Regarding the integration with respect to ¢, the only integrals we have to deal
with are of the form C’fOT t™ dt or C’fOT t™ log(y/t)" dt. Evaluating these integrals
from 0 to T gives us

T
/ t™ log(|V/t|)" dt
0
(=DM 4+m) "I (1 +n) +T(1 +n,—(1 +m)log(T)) log(T)"(—(1 + m)log(T)) ™™
N 27(1 4 m) '
This proves our claim. O

Corollary 76. Forallp € S and T > 0,

E

/T<V : d),ﬁg(xat»Q th‘| =0.
0

Let us set, for a Dirac sequence p. and = # 0 outside the support of p., ¢(:) =
pe(z — ).

Bl )0 = 5 | Bl g o—uts, Nast | [ [ oo = (cumwoop)aras].

By Lebesgue’s theorem, we can interchange the expected value and integration
on the left-hand side, due to the knowledge about the explicit form of w, which
results in

[ pelo — u)Bluts. )] dy - Bfu(s, )],

in the sense of distributions.
On the right-hand side, we use the same argument to exchange the expectation
and integration

3 | (Gne=).Biu(s. ).

E| [ pet—(n-wyar| = [ Elpe-z+ (W, - ) dr
0 0
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:/()S/Rzpe(z—(—u—x))erexp( ';f) dz dr.

Letting e — 0, we get

s 1 2 2
/ L <_lu+l’|) dr =T (0, IMHI) _
o 2mr 2r S
The estimate

i+ ] /t 1 i+ ]
— drds <t — — d
// 27r7’ ( 2r ras = o 2mr P 2r "

ensures the following Proposition is true.

Proposition 77. E[u(t,z)] is a solution of the PDE (4.5) in the sense of tempered
distributions.

4.2. The Second Moment. We now try to find an expression for the second
moment of the solution E[u(t, x)?].
If we formally apply Ito’s formula to u?,

du(t, r)* = (uAu + (Vu)? + uF; + Fyu) dt + 2uVu - dW;.

We set u?(0,z) = 0.
Formally taking expectations, defining ms(t, ) := E[u?(t,2)] and noticing that

o o (o
dx2 7 92 ox )’

oy o
or oz

2uVu - dW, = Vu? - dWy,

1
du(t,z)? = (2Au2 + uF}; + Ftu> dt + Vu? - dW;.
For ¢ € S (should also hold for ¢ € H?),

d(u?(t), ¢) =

( (Ap, u? /R/qb —p—W,) drumtda:—&—/Rz/ —Wr,t)drqb(x)dx)dt

+(V, u?(t)) dW;.
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For the “new” integral terms, it holds that

/Rz /()t¢(_“_ W) dru(z) dz| < /]R /Ot [¢(—p = Wy )u(x)| dr de

<[/ o(—u— WP dr / u@)? dr i < OF(1) [ (@) do < .

where f € L]

e, Since

/|¢> =W dr <t sup [o(—p— W)
s€[0,t]

An analogous estimate can be made for the second term, as the explicit expres-
sion for u is continuous.
We obtain

(4.7) ma(t,z) = %Amg(t, %)+ Elu(t, 2)Fs + Fru(t, z)),

ot
as the expectation of the stochastic integral vanishes due to the estimate
[ BT oo = W) E{Ga(a + )" do < O,

R2

which we already showed in Proposition 75.
In order to proof the existence of the remaining expectations, we finally make use
of 46, as we could apply it to the first double integral with the constant 1 function

t s t2
/ l-u(x,t)dxz// lduds = —.
R2 o Jo 2

We are left with

E[/Otpe(y—&-u+WT.)dr]

|2

=At42pe(x—<—y—u>>wdxdr.

taking the limit, this is equal to

\*ufyIQ)

t exp (777" 2

/—2 drzr(o,“”).
0 27'(-7" t

In total, we get
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t 2\ 42
]E[/ /pe(y—I—u—&—Wr)dru(x,t)dx] :F<O, i+ 2] )t.
R2 JO t 2

For the second integral, (as u is continuous in both components and we integrate
over the compact set [0,¢] and by using the same estimate, as for the first moment,
for the appearing double integral)

E UR /Otu(—u—Wr,t) dr poly — ) dm]

s€[0,t]

<E [t sup {u(—p — Wi, t)} /R2 pe(y — ) dw] :

Although these estimates are not very elegant, they provide us with what we
need to state the following Proposition:

Proposition 78. ma(t,z) = E[u?(t,z)] is a solution, in the sense of tempered
distributions, of the PDE (4.7).

4.3. The Moment Generating Function. Let 6§ > 0 and consider the function
M(t,x,0) := Elexp(Qu(t, z))]. We formally apply Ito’s formula

dexp(u(t,z)) =

% (exp(Qu(t, z)) (0 Au(t, z) + OF, + 6> (Vu(t, x))?)) dt+6 exp(Qu(t, z)) Vul(t, z)-dWs,

exp(fu(0,x)) = 1.

Using the fact that Aexp(Qu(t,z)) = exp(Qu(t, z))(0Au(t, ) + 62(Vu(t,z))?),
we should be able to obtain that

(4.8) O M(t,2,0) = L(AM(1,2,0) +0F,),

M(0,2,0) = 1.

As in the previous sections, what we need to show is that f(f 0 exp(Ou)Vu - dWy
is a martingale or, more specifically,

t 0 ; Lo ;
/0 0 exp(Qu) axiu dw; = /0 oz, exp(Ou) dW;

is a martingale for i = 1, 2.
First, we will state a rather useful Lemma.
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Lemma 79. Let M = {M, : t > 0} be a continuous local martingale, such that
My = 0. Suppose, that for some o > 0 and p € (0,1] we have Elexp(a(M)¥)] < oo.
Then,

1.) if p=1, for any A < /5, Elexp(A|M])] < oo and

2.) if p <1, Elexp(A|M|P)] < oo for all X > 0.

Proof. Set X = |M,|P. For any constant ¢ > 0, we can write

Blesp(0¥)] = | TP(X > y)rexp(Ay) dy

- / T(BX 2y, (M) < cy) + BX >y, (M) > cy))Aexp(Ay) dy

1

0o - 0o p
< / 2 exp <— Y 1> Aexp(Ay) dy +/ +P (<M>t > cy) Aexp(Ay) dy
0 0

2cP c

oo L )\
:/ 2Xexp [ Ay — ypl dy—&—IE{exp ((M)f)] .
0 2cr c
To complete the proof, we simply choose ¢ = % ([

Remark 80. The constant C' which will be used in the following Proposition, might
change from line to line, in order to account for appearing constants.

Proposition 81. Let ¢ € C°, T > 0, we have, for all 0 < 6 < 6y,

/o 2
E /0 <8%¢,exp(0ﬂ2(a:+u+wt,t))> dt]<oo.

Proof. Out of convenience, we will replace the partial derivatives %¢ again with

a function ¢ € C2° and, also “shift” the translation, with respect to WW;, onto our
test function as in (4.6). We are left with

E |0 = W) exsp(6s(a + )] < C [ EI = T0)] (Blexp(08a(w-+p,)) ) da-

We can deal with the first expectation the same way we did in Proposition 75.
Regarding the second one, we will use the Yor-Rosen-Tanaka formula (3.35, 3.36).

E[exp(0Bs(x + 1, t))%]

—E [exp (—49 ( /Ot (G(W; = W, — 2) — G(—w)) dr — /0 t ( /0 RN d?“) dWs))]
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t
— U
=F 40 [ log(|Wy — W, — z — dr dW, — t1
{@qo( /Oog(l ! x—pl)d // |W W_x_ ik Og(|w+ul)>}

<E [exp (80/Otlog(Wt —Wr—x—ul)drﬂ
[eXp< 89// .o, _x_ﬁzdrdw)r

X E [exp (=166t log(|x + u|))]% :

Nl

We will treat each of these terms individually.

Regarding the first term:

As we are testing with functions from Cg°, our estimates are not required to be
optimal, which leaves us a bit of space. Another way to deal with the first term,
using an estimate from [23], will be mentioned in a following Remark.

Let A : R™ — R be a convex function and X; be a process in R™ with continuous
paths.

We consider the expression h (f(f Xs ds). Seeing that the term inside the func-

tion h exists for every w, we apply Jensen’s inequality for every sample path and

arrive at
t [t 1/t
h(/ X, ds) < 7/ h(tXs) ds.
tJo tJo

From this follows that P (h (fot X ds) > ;v) <P (% fot h(tXs) ds > x) for every

z € R.
Hence,

([ ) <ol onrs]

In our case, this means

E [exp (80 /Ot log([Wy — Wy — 2 — ) drﬂ :

<E{exp(80tlog</ot Wt—W;—x_M‘ d’”)?r
<>89t</ W - —r—u|dr)89T.

<E
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We will assume that 86¢ < 1, which will turn out to be a reasonable assumption
once we arrive at the end of the proof. Hence,

1 t 80t %
E l(t)sgt (/0 Wy — W, —a — p dr) ]

86t

1

<E (7)8“ t sup 2|Ws| + t|z| + t|y]
t s€(0,t]

N

[NIE

86t
<E|C ( sup |WS|> + Cla* + Clu>
s€[0,t]

Considering sup,ejo, [Wsl = supyepo.q /(W + (W) < 2sup,epo 41/ (Bs)?,

where B denotes a one dimensional Brownian motion, we obtain the following
estimate for the previous term

80t
<E|C| | sup [Bs]| + a3 + >
s€[0,t]

To calculate the appearing moments, we can rely on the calculations for the
moments of the supremum of a reflected Brownian motion, which are related to
Gamma functions. We will use the estimates presented in [14], Proposition 1.1 (ii),

Y 1 v (v+1\ .
sup |Bs < —=2'tar ( ) tz.
<s€[0,t] 6> VT 2

. 1
E[exp (80/ 1og(Wt—WT—x—u|)dr>} <C( %5 4 |z |ST+|/L|8M)
0

E

Summing up,

When integrating with respect to z and ¢, we can use 0 < Set < 1 in order to

dominate the respective terms to dominate the integrands based on the region of
integration.
Let us now consider the second term:

slow (o [ [ i)

We know that the term in the exponent is a continuous L? martingale (Lemma
47) with mean zero.

Referring to Lemma (79), let us consider the second variation of the term inside
the exponential.
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—
L= —80 dr dW,,
// IW VV*fL’*uI2 '

”MWEZ/Q(/|Wf )

We will treat each term of the sum separately. Out of convenience, we omit the
index 7 and define y := = + p.
2
dr) ds

t S W_W y t s
ogmaz/ (/ Sdr) ds§092/ (/
o \Jo [Ws—=W, —yl? o \Jo
s 1 2 2
<C’92/ </ dr) dSSCGZ/ (/ dr) ds
Wy — W, —y W, — Wsr Yl
2 ! 1 ’
=Cot /dr).
<0 ‘Wr—y|
t 1 2
ex Y:)) <ex Ct /dr) .
p(v(Y1)) Pl (0 T

We use Ito’s formula with R; := |W; — y| and h(z) :=

then

Ws_Wr_y
Wy — W, —yl?

rE

gm»wmmaéﬂmM&+Ammma

We get that g(r) = 2r. So

1t 1
— ——dr = X; — — B;.
5, = e B

X denotes a 2-dimensional Bessel process and B a standard 1-dimensional Brow-
nian motion. We see that
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E [exp (’th </Ot WI_M dr)2>] =E [exp (fth (Xt — |yl — Bt)2)} .
Further,
) o (vot (X, — Iyl - B)*)
 [exp (vCt (X~ lyl = B)*) | =B | 3 -

QEiw&W&+M+ﬁWW.

n!

n=1
By using the discrete version of Jensen’s inequality, we obtain

i (O™ (Xt + (ly| + [Bt])) i (O3 (3X7" + glyl*" + 31B:*")
‘ n! n!

This leaves us with the task of finding suitable bounds for the even moments of

a 2-dimensional Bessel process, and a Brownian motion.
It goes without saying, that the “suitable” ~ for each of the 3 terms X;, | B;| and

ly| will be different, but out of convenience, we will not change the notation. It
shall further be noted, that we choose the smallest value of v obtained from the 3

following estimates, when we proceed.
Regarding the Bessel process X, we know that

2 ]. m
/ |z|™ exp <|x|> de =~ 2T (1 + T) .
R2 (o 4 2

2
As we only calculate even moments, this is in turn equal to ial‘*?m!.
Therefore,

ctyn32nixzn np(14n)
]E|:(’Y ) 3<*t :| S ('YCt) 2 n S('VCTQ)R,

n! n!

3 T>1
tion over n converges.
Considering now | B,

oo 2
E [\Bt|2”] < C/o |2|?™ exp (;) dz

1 T<1
where o := { For v < ﬁ, yCT* < 1, which means that a summa-

Q

1 C 1 !
- +"I‘ ~ 4+ —— 3 T
2 (2t) (2 n) 2 (Qt) nl4n \F

From this we obtain
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(108" 320 (20! _

(,th)n32n%‘Bt|2n .

E{ n! = n! nl4n — (yCTR)",
L 17«1
where 8 := { 2 .
3 T>1

It is easy to check that the term % is bounded by 1 for every n = 1,2, ...
and goes to 0, as n approaches infinity.

Hence, we can choose 7 again small enough, such that the sum over (yCT?)"
converges.

The only terms we are left with, are the ones containing |y|*".

(yC"325lyI*" ] _ (yCtlyl)"
n! - n! )

E

Combining all the three terms indicates that there exists a 6y, which depends on
T, such that the expectation of the exponential exists for every 0 < 6 < 6.

(Proceeding, we will choose our 6 as the minimum of the 6y obtained above and
g The reason for this will soon become obvious.)

For the third term,

[N

= E [exp (— log(|z + u|'%"))] ?

o o )|

!
RN

E [exp (—166t log(|x + p|))]

It should be noted that, by Young’s inequality,
1 1 1 1

L _ < .
Wl V2 VP el T V2l

Roughly summing up, by the previous estimates and Lemma 79

Elexp(682( + p,t))"]

860t 86t 860t

80t 86t 80t 1
< Cl (t 2 4+ |J?| 2+ |[L‘ 2 ) (0279 +C31’Y +exp(703|:z: +,LL|2)) <l‘+/1,89t> .

When dealing with the integrability regarding =, we see that the terms which
appear when we perform the previous steps (including the steps in the proof of
Lemma 79 for the second term), are of the form y® for a > 0, exp(Cy?) and

ﬁ with 3 < 1. As we are multiplying with a C2° function, the first two terms

are negligible and the only term requiring attention is ﬁ. Let ¢ € C with
—p € supp(¥),
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1

1 1
Y(x) —————- dr = Y(x — p)—r doe < C _—
fo o g = [ Ve~ 0 Ba(0) T

Br(0) denotes a ball around 0 with radius R, such that the support of (- — p)
lies inside it.

We see that this value is finite by either changing to polar coordinates and noting
that # is integrable on a ball around 0 for any o < 1, or by applying Young’s
inequality, as mentioned before.

Integrating with respect to ¢, results obviously in a finite value as, by all previous
estimates and because 0 < 86t < 1, we are left with a polynomial in ¢, which we
integrate over [0, T]. O

Proposition 82. The moment generating function M(t,z,0) := Elexp(Ou(t, z))]
for 8 < 6y, can be obtained as a distributional solution of (4.8) .

Proof. Let y # 0 and p. again the normal approximation of the Dirac delta.

E[(exp(0u(s, z)), pe(- — )]

— % (E [/Ot<exp(0u(s,:v))7dpe(‘ - y}] + QE/OtKF‘“pe(' — )l ds) '

It only remains to justify the exchange of the integrals and the expectation in
the first integral on the right hand side. The argumentation for the left hand side
is the same as in the case of the first moment, where we also have already dealt
with the term including F' on the right hand side. By Tonelli’s theorem for positive
functions (as the term inside the inner product remains positive),

|| {exp(Bu(s, 7)), Ap.(- — 1) w| = [ (Elexp(Ou(s, )], Ap.(- — ) ds.

What is left now is using Lebesgue’s theorem, letting ¢ — 0 and differentiating
with respect to t. ([

Remark 83.

1
2

E [exp (80 /Ot log([Wy — Wy — 2 — ) drﬂ

t 3
<E {exp <80/ 14+ Wiy —x— ) dr)]
0

< (]E [exp (86t) exp (89 /Ot (Wir| + |2[ + |1 dT>D2

_ (E [exp (80£(1 + |2] + |u])) exp (89/0t|W}_r| 4 |Wt2_r|dr>D ,

as for a, b > 0+/a+b < \/a+ vb holds.
We will replace Wi, i = 1,2 by B.

N
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t
IBi| = |Bo + / sen(B.) dB, — L,
0

where L denotes the local time of a Brownian Motion.
As L is increasing,

E [exp (/Ot 86| B,| ds)] =E [eXp (89 Ot |Bo| + /0 sgn(B,) dB, — L, dsﬂ
<E [exp (89 (/B ds+tLt>)]

1

t 3 1
<E [exp <160/ B; ds)] E [exp (1660t L;)]?
0

N

< (exp <25602t€3>) : (2exp (86°))7 .

The estimate leading to the last inequality was taken from [23].

Remark 84. Another way to approach the previous problem, is to expand the
exponent

Elexp(652)] = Elexp(052 — 0E[B2]) exp(0E[f2])]
and use the Clark-Ocone formula to deal with the expectation involving the renor-
malized SILT, as in [21]. From there we get the following representation for

L := $5(0,T) — E[B2(0,T)],

Z/ (// e = dsdt) aB;.

The quadratic variation of this stochastic integral is

2 T T ,rr i i 2
1 Bi - B |B, — Bo|
_ —r s —— = ) dsdt]| d
= </T [ e () - > '
T‘B B| ‘BT7B8|2
—— " ) dsdt]| d
4772 (// (t—1r)? P 2(t—r) i "
1 T " 1 |B7“_-Bs|2
— - —————— ) ds| d
w2/o </ |Br—Bs|eXp< 2<T—r>) > '
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1 [T/ 1
< — _ .
—47r2/o (/ |BrBsd5> ar

A quick application of Ito’s formula shows that

| 1
———ds = —— (X, — b,),
A|&f&|sd7ﬂ )

where X, has the law of the modulus of a d—dimensional Brownian motion at
time r (d—dimensional Bessel process), and b, has a normal N(0,1) law. We can

write
- 1 [T > [ [T 1 2
< — -
it o (5 ([ i) ) o

which implies the existence of some Ao, such that E[exp(A(L})] < oo for all A <
Ao- From Lemma (79), we obtain the existence of a 3y, such that E[exp(ﬁ|f/|)] < o0
for all 8 < By. Although we are not able to obtain the critical exponent explicitly
this way, we still obtain its existence.

We would proceed similarly in order to obtain our desired result.

Corollary 85. The previous estimates also indicate that there exists a 6y, such
that for all 8 < 6y, the moment generating function of the SILT at a point x # 0
and a time t > 0, exists.
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5. APPENDIX
5.1. A weak form of Ito’s Lemma.

Lemma 86. Let

1 2
nexp(—m), t>0, zeR",

L) = o 2t

then p € L9((0,T) x R™) for every g € (0,1+ 2) and T > 0.

Proof.
T T 2
1 q|z|
I(t dx dt = —_— — dx dt
/0 /n/)(,a?) z /0 /n (27rt)3(41>exp< 57 ) x dt,

by the change of variables y = ﬁ, we get

_1/T1dt/ ( ||2)d
T2 )y (2030 @[, SRy

This expression is finite for % <landg>0,ie. 0<g<1l+ % O

Lemma 87. Assume that f € W2P(R"), with p < 1 + 5, then f is (Hélder)
continuous and we have

1.) if p<n then [Vf|> € LY(R"™) for some ¢ >1+%,

2.) if p>n then Vf € C(R™) N L>*(R").

Proof. If p > n, the claim follows from the usual Sobolev(-Morrey) embedding, [1]
Theorem A.168 (as Theorem 52 is a bit too specific). If 1 + § < p < n then, nec-
essarily, n > 2 and by the previously mentioned Theorem, we have Vf € L?7(R")
with

n n n n(n + 2
n—p p- I n-

This proves that |V f|? € LY(R") for some ¢ > 1 + 5 and consequently, by [1]
Theorem A.168, f is Holder continuous. O

Proposition 88. Let X, Y be a.s. right-continuous stochastic processes. If X
is a modification of Y, then X, Y are indistinguishable. In particular, we can
equivalently write

X =Y: a.s foreveryt

or

X, =Y: foreveryt a.s..

Proof. We refer to [1], Proposition 3.25 on page 108. O

Proposition 89. Let f € W2P(R™) with p > 1+ 2, then we have

(5.1) F(W) = £(0) + /O V(W) W+ /O AF(W,) dWW.,.
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Proof. Let us first consider the case n > 2. Let f, be a regularizing sequence for

f, which we obtained by a convolution with the usual mollifier. Then by Lemma
50, fn € C*°(R™) and f,, converges to f, uniformly on compact sets, so that

for any ¢t > 0. By the standard Ito formula, we have

FuW) = £, 070)+ [ V107 - a5 [ AL W) ds

Further, by the Ito isometry,

E

( / (VAa(W2) — VW) dWs)Q]
- /OtIEUan(WS) = VW)’ ds

¢
= / / IV fn(z) — Vf(2)]?p(s,2) da ds =: I,,.
0 n
If p > n, we have

lim I,, =0

n—oo

by Lebesgue’s theorem, since by Lemma (87) Vf € CNL>, and so the integrand
converges to zero pointwise and is dominated by the integrable function ||V f, —
VfH%oc(Rn)P-

On the other hand, if 1 + 2 < p < n, by Lemma (87) we have [V f|* € LY(R"™)
for some ¢ > 1+ %. Let ¢’ the conjugate exponent of ¢, then we have

1 2
¢ =1+——<1+=
p—1 n

and therefore, by Lemma (86), p € Lq,((O, T) x R™). By Holder’s inequality, we
obtain

I” S |||an - vf|2HLq((07T)><Rn) HPHLLI’((O,T)X]RTL) —n—00 0.

?| |

< / E[|Af,(W.) — AF(W,))[] ds
0

Finally,

/O (Afa (W) — AF(W,)) ds
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N /Ot /n |Afu(x) = Af(2)|p(s, ) dx ds.

By applying Holder’s inequality with the conjugate exponent of p, which we call
p’, the last term is

< ||Afn - A.f”LP((O,T)X]R")||,D||L11’((0)T)><Rn) —n—o0 03

since f,converges to f in W2P(R") and the assumption p > 1 + % implies
p' <1+ 2. By Lemma (86), we have

ol Lo 0,7y xmm) < 00

In conclusion, we showed that (5.1) holds a.s. for every ¢t > 0, and by 88 this is
sufficient.

In the case n < 2, the hypothesis p > 1 + 4 implies that p > n and the claim
can be proved as before. O

Remark 90. The previous proof can easily be adapted to functions f, which also de-
pends on time, i.e. for functions in the parabolic Sobolev space Hllo’f((07 T); Hfof (R™)).
5.2. Some results regarding a “Fundamental solution”.

Remark 91. Most steps in this part are rather short and formal, but can be made
more rigorous by applying results from the previous section.

Consider the equation
1
dut = §Aut + 5*# dt + Vut . th,

u(0) = wo,
on R2, where W, is again a planar Brownian motion as in the previous part. By
the same argumentation as in the previous section (Remark 57, Proposition 58), the
weak formulation is, again, well defined on H2. Once again, we can use Duhamel’s
principle in order to obtain a general form of the solution

t
u(t) = Up ruo —|—/ Us +Fs ds,
0

again with Us s := Ty () o T_w () and Uy s := Ty ) o T_w(s)-

Lemma 60 can be applied directly in this case.

Once again, we switch to ¢ € S in order to apply Ito’s formula (as in Proposition
69) more easily,

afu(t), ) = d ( / Wi~ Wy — ) dr)

- (qs(m v / CAGW, ~ W, — ) ds) dt
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+ (/t V(;S(Wt - Wr - [L) d8> th
0

- (;(A¢,u(t)> +¢(—u)> dt = (Vo, u(t)) dW:.

Very formal, one could say that, this potential solution raises somewhat the
hope, that we find a connection to the SILT,

(u(t), ¢) = % (/Ot /0 Wy — W, — p) dr ds) = ;lt ( g o()Ba(x — 1, t) dx)

= /. (b(x)% (hm/ot/ospe(Ws—Wr—(x—M)) d?“ds) dx

e—0

:/R2¢(x) <li_r>r(1)/0tp5(Wt—W5+u—x)ds> dz
- /RQ o(x)n(z — p,t) da.

Unfortunately, I have not been able to show the existence of the last limit in L?
for all times, which is the reason this equation isn’t treated as extensively. Although
there are some, more or less satisfactory, results which I would like to mention
(explicit proofs/calculations can be supplied at request). First, a “renormalized”
version of this limit exists, namely lim._,o I. — E[I]. Proving this is rather tedious,
but can be done following the steps in [40]. Second, for sufficiently large values of ¢
the inequality f(f exp(—a?|t —s|)ds < fg s exp(—a?|s —r|) dr ds holds, which could
be used after a non-determinism argument in order to show convergence in rather
specific cases.

5.3. A list of useful integrals.
1\" 1 1
/rlog <r2> dr:§F (n—|—1,10g (7‘2>> .
/t og (L) ar = Lr(n+ 1, ~2108(1))
= r=— — .
. rlog | 3 g\ g

T
/ t™ log(|V/t|)™ dt

0

(D" 4+m)"T(1+n)+TA+n,—(1+m)log(T))log(T)*(—(1 +m)log(T)) ™
27(1 +m) ’

/tm log(|Vt|)"™ dt

P(1+mn,—(m+1))log(t))log(t)(—(1 + m)log(t)) ™
27(1 4 m) '

oo 2
/ exp(—ax? + bx + ¢) dx = exp (b + c) \/?
oo 4a a

Let A be a positive, symmetric and invertible matrix, then




L.

oo
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exp(—(Az,z) + (b,z) + ¢) doz = exp (;(b, A71D) — c)

™

det(A)’

71
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