
Signature of Professor

Master Thesis

Boosting Classifications with
Imbalanced Data

Submitted at the TU Wien,

Institute of Statistics and Mathematical Methods in Economics

under the supervision of

Univ. Prof. Dipl.-Ing. Dr.techn. Peter Filzmoser

by

Philipp Rudolf Bauer

Date Signature

Die approbierte Originalversion dieser Diplom-/
Masterarbeit ist in der Hauptbibliothek der Tech-
nischen Universität Wien aufgestellt und zugänglich.

http://www.ub.tuwien.ac.at

The approved original version of this diploma or
master thesis is available at the main library of the
Vienna University of Technology.

http://www.ub.tuwien.ac.at/eng

Acknowledgements

Firstly, I would like to express my gratitude to Prof. Filzmoser for his kind support
and helpful advice in writing this thesis.

I would also like thank my proofreaders, Prof. Filzmoser, my mother and my father,
who spent a significant amount of time to guarantee that this thesis is almost free
of spelling errors.

A special thanks to my father who not only provided critical input but who also
encouraged and motivated me in my studies.

Also, I would like to thank my friends and colleagues for their support and friend-
ship during my time at university.

Lastly, I would like to thank both my parents for supporting me in all my endeav-
ours, being unnaturally patient with me at times and being there for me whenever
I needed them.

2

Abstract

Boosting is an ensemble method which uses a “weak” classifier to create a
“strong” one, based on the theory of Robert Schapire’s work in 1990 (see Schapire
1990). It appears similar to bagging yet is fundamentally different.

This thesis will start with a short introduction followed by a chapter describing
the theory and methodology behind boosting. This is followed by a chapter pre-
senting a set of boosting algorithms, applicable to binary, multi-class and regression
problems.

The major focus of this thesis is to examine the performance of boosting algo-
rithms on imbalanced data sets. The issue with these data sets is that classifiers tend
to emphasize the larger classes, which leads to significant class distribution skews.
An established general solution to this issue is to apply sampling methods. After
introducing these, the simulations chapter demonstrates that boosting algorithms
work well with minority sampling in binary classification, whereas majority sampling
appears to be preferable in the multi-class problem. However, it will be shown that
in the multi-class setting the inbuilt re-weighting of hard to classify problems of the
boosting algorithms AdaBoost.M1 and SAMME, is sufficient to handle imbalances
in the data set, without any sampling necessary.

3

Contents

1 Introduction 6

1.1 Function Estimation . 6

1.1.1 Basic Principle of Regression and Classification 6

1.1.2 Additive Models . 7

1.2 Ensemble Methods . 8

2 Boosting 10

2.1 PAC Models . 10

2.2 AdaBoost . 12

2.3 Boosting Properties . 15

2.3.1 Training Error Bounds . 15

2.3.2 Generalization Error Bounds 16

2.3.3 Exponential Loss Function . 17

2.4 Weak Learners . 19

2.4.1 Choice of Weak Learner . 21

2.5 Regularization . 24

2.6 Boosting Interpretations . 25

2.6.1 A Bayesian Interpretation . 25

2.6.2 A Game-theoretical Interpretation 26

2.7 Gradient Boosting . 28

2.7.1 General Case . 28

2.7.2 AdaBoost as Steepest Decent Algorithm 29

2.7.3 The generic FGD Algorithm 30

3 Algorithms and Expansions 33

3.1 Binary Boosting . 33

3.1.1 Real AdaBoost - RealBoost 33

3.1.2 LogitBoost . 35

3.1.3 Gentle AdaBoost - GentleBoost 36

3.2 Multi-class Boosting . 38

3.2.1 AdaBoost.M1 . 38

3.2.2 AdaBoost.M2 . 40

3.2.3 SAMME . 42

3.2.4 Logit k Classes . 44

3.3 Regression Boosting . 46

3.3.1 AdaBoost.R . 46

3.3.2 LS, LAD and M - Boosting 49

4

CONTENTS

4 Simulations 51
4.1 Imbalanced Data . 51

4.1.1 Under-sampling . 52
4.1.2 Naive-sampling . 52
4.1.3 Over-sampling . 52
4.1.4 Same-size-sampling . 53

4.2 Binary Experiment . 53
4.2.1 Data Set . 54
4.2.2 Binary Simulation . 55
4.2.3 Conclusions . 63

4.3 Multiclass Experiment . 66
4.3.1 Meteorite Data . 66
4.3.2 Multiclass Simulation . 68
4.3.3 Conclusions . 78

Appendix R Code 82

Bibliography 89

5

Chapter 1

Introduction

This introductory chapter establishes the basics behind classification and regression
problems. It introduces ensemble methods and the basics behind boosting while
comparing it’s modus operandi with other ensemble methods such as bagging or
random forests.

1.1 Function Estimation

1.1.1 Basic Principle of Regression and Classification

A basic prediction problem can be described as a system consisting of an input
x ∈ X and an output y ∈ Y , where x and y are realisations of random variables X
and Y respectively. Using a training sample {(xi, yi)}i=1,...,n of size n, the goal is to
find a function, an estimation, F (X) to predict Y as good as possible given values
of the input X. This approximation must be chosen such that it minimizes the
expected value of a specified loss function L(Y, F (X)) over their joint distribution:

F̂ = arg min
F

EX,Y (L(Y, F (X))) = arg min
F

EX
[
EY |X(L(Y, F (X)))|X

]
. (1.1.1)

Some of the most well known and convenient loss functions are squared error
L(Y, F (X)) = (Y − F (X))2 and absolute loss L(Y, F (X)) = |Y − F (X)|, both fre-
quently used in regression and exponential loss L(Y, F (X)) = e−Y F (X) and binomial
log-likelihood L(Y, F (X)) = log(1 + e−2Y F (x)) used in classification.

Depending on the output set Y , the individual outputs vary and can be a quan-
titative value Y ⊂ R, such as a measurement in height or weight, or a qualitative
distinction Y = {1, 2, . . . , k}, such as blood-type. Here k denotes the number of
possible realisations of Y , referred to as classes or labels. If for example k = 2,
then the classification problem at hand is referred to as a binary problem. These
classes are often descriptive labels rather and are often denoted as numbers for sake
of simplicity. Due to their distinctiveness, they are called categorical or discrete
variables. The prediction is termed a regression if dealing with quantitative outputs
and a classification when dealing with categorical outputs.

6

1.1. FUNCTION ESTIMATION

For now let (x1, . . . , xp) denote the independent input and y ∈ Rp as the depen-
dent output, both of dimension p. Then the classical linear regression model would
be

y = F (x1, . . . , xp; β) + ε = β0 +

p∑
j=1

xiβi (1.1.2)

with an error of ε and the parameters, or coefficients, β = (β0, . . . , βp) which describe
the position of the function F in the p-dimensional space. The goal now is to find an
estimate ŷ = F (x1, . . . , xp; β̂) to approximate the true y. A good estimate ŷ would
have to have a small error ε. Hence, a linear model can be solved by minimizing the
error term with respect to the coefficients β.
Given a data set {yi, xi1, . . . , xip}ni=1 of size n and using matrix notation X =
(x1, . . . , xn)>, y = (y1, . . . , yn)> and ε = (ε1, . . . , εn)>, with xi = (xi1, . . . , xip)

>

for i = 1 . . . , n the model can be written as

y = Xβ + ε.

Using the method of least squares, where those coefficients are chosen that minimize
the residual sum of squares

RSS(β) =
n∑
i=1

(yi − x>i β)2 = (y −Xβ)>(y −Xβ),

the following solution for β is calculated as

β̂ = (X>X)−1X>y.

In the case of classification, the problem is identifying to which of a set of cat-
egories, referred to j = 1, . . . , k classes, the observations (yi)i=1,...,n belong to. Ob-
servations within a class should have similar properties, while those of other classes
should differ. Therefore, if the estimator F (·) will take values in the discrete set
Y = {1, 2, . . . , k}, then the input space X can be categorized into k regions accord-
ingly. For example, given a binary k = 2 problem, one way is to treat the target
Y = {−1, 1} as a quantitative output. As the estimates will generally lie within the
interval [−1, 1], the class assigned to an observation x will be determined whether
or not ŷ > 0. Using more than one boarder, this approach can be generalized to k
classes.

1.1.2 Additive Models

Focusing on the regression problem, where the response y is quantitative, with a
number of n observations, x and y have some joint distribution, and the objective is
to try to model the mean E(y|x) = F (x). The additive model (see Friedman 2001)
has the form

F (x) =
n∑
i=1

fi(xi), (1.1.3)

where each input variable xi has a separate function fi(xi) for every i = 1, . . . , n.

7

1.2. ENSEMBLE METHODS

A more general procedure is to restrict the additive model F (x) to be a member
of a parametrized class of functions F (x;P), where P is a finite (t = 1, . . . , T) set of
parameters whose joint values identify individual class members. The fi(·) are to be
simple parametrized functions ft(x) = αth(x, βt) of parameters βt and multipliers
αt. Then the additive model in (1.1.3) becomes

FT (x) =
T∑
t=1

αth(x, βt). (1.1.4)

Generally, these sets of functions {h(x, βt)}Tt=1 are called “basis functions” since
they span a function subspace.
The individual terms differ in the joint values βt chosen for these parameters. Such
functions (1.1.4) are the foundations of many function approximations.

1.2 Ensemble Methods

In statistics, enemble methods use a combination of multiple base estimators or clas-
sification algorithms in order to achieve a better predictive performance compared
to that of single algorithms. While there is an increase in computation time for
ensemble methods as compared to using a single algorithm, they compensate the
weak performance of a single algorithm with additional computations. Basically
all common types of ensembles can be separated into two categories (see Pedregosa
et al. 2011):

1. The first and straight-forward approach to ensemble methods are averaging
methods, where a set of various estimators are built independently from one
another and then the average of their final predictions is used. This procedure
leads to a combined estimator with a reduced variance. For example, probably
the two most well known and established averaging methods are:
Bagging, derived from bootstrap aggregating, is an ensemble learning method
whereby a multitude of different regression or classification models are evalu-
ated and their results aggregated repeatedly using weights depending on the
individual models.
Random forests are an ensemble learning method for classification and regres-
sion that construct a multitude of decision trees and output the class that is
either the mode of the classes or mean prediction of the individual trees.

2. Instead of building the estimators independently as was done in bagging,
boosting creates an ensemble by sequentially training each new estimator
to emphasize the training instances that previous models misclassified.

The general principal behind boosting, is starting with a base procedure, also re-
ferred to as a weak learner, to generate multiple predictions from re-weighted data,
which are then aggregated (linear/convex combination, majority voting) to obtain
the final prediction (see Bühlmann and Geer 2011).

The first step is to choose which weak learner to use for the construction of a
first estimate or prediction f̂(·) based on the input of data (Xi, Yi)i=1,...,n, with co-
variates Xi and responses Yi (independent and dependant variables, respectively).

8

1.2. ENSEMBLE METHODS

This crucial choice of base procedure, which for example could be linear regression,
component wise smoothing splines or regression trees, source of which will be dis-
cussed in detail in a later chapter (refer to Section 2.4.1).

The chosen procedure is then applied to data (xi, yi)i=1,...,n to calculate the

predicition f̂(·) and use f̂(·) to obtain weights for the n sample points. Thus,
creating re-weighted data, upon which the base procedure is used again to create
new weights (see Bühlmann and Geer 2011).

(xi, yi)i=1,...,n
base procedure−−−−−−−−→ f̂(·)

re weighted data 1
base procedure−−−−−−−−→ f̂1(·)

re weighted data 2
base procedure−−−−−−−−→ f̂2(·)

...
base procedure−−−−−−−−→ ...

re weighted data T
base procedure−−−−−−−−→ f̂T (·)

After this cycle is repeated a number of t = 1, . . . , T (iterations) times the T
predictors are aggregated using suitable coefficients α1, . . . , αT

F̂ (·) =
T∑
t=1

αtf̂t(·) (1.2.1)

to obtain the boosting predictor F̂ (·).

The specification of the re-weighting mechanism, the combination of linear coeffi-
cients (αt)t=1,...,T , choice of the base procedure and other various choices characterize
different boosting schemes. What all of them have in common is the fact, that the
data weights in step t only depend on the results of the previous iteration t− 1.

9

Chapter 2

Boosting

This chapter starts off by discussing some general ideas on boosting as an ensem-
ble method and introducing the first algorithm, AdaBoost. Its properties, such as
bounds of its training and generalization error will be presented. Following that, the
core concept, examples of weak learners and the importance of regularization are
discussed. Furthermore, two different interpretations of boosting will be shown, to
merit the approach of boosting it will demonstrated, that the AdaBoost algorithm
can be represented as a steepest decent algorithm in a function space.

2.1 PAC Models

To further elaborate on some basic ideas of boosting and ensemble methods this
section will focus on binary classification as opposed to multiple classification and
regression, which will be elaborated in Section 3.2.

In a binary classification setting, given a set of observations the goal is to find
a way of assigning an object to one of two different classes. Using the notation
of X (often X ⊆ Rp) being the input space of observations xi ∈ X and denoting
Y = {−1,+1} as the possible outputs of a hypothesis. The objective is to estimate
a function f : X → Y , using the training data pairs of size n of the input and out-
put generated independently at random from an unknown probability distribution
P (x, y), (x1, y1), . . . , (xn, yn) ∈ Rp × {−1,+1}, such that f will correctly predict
future unseen samples (x, y). Thus, a label for an input x will be assigned as f(x).
Meir and Rätsch (see Meir and Rätsch 2003) defined, in the case of Y = {−1,+1},
this as a hard classifier. On the other hand, the case if Y = R, where the label
assigned corresponds to sign(f(x)), this is referred to as a soft classifier. The true
performance of a classifier f is assessed by the risk function

R(f) = EPL(f) =

∫
L((f(x), y))dP (x, y) , (2.1.1)

where L denotes an appropriately chosen loss function (see Section 1.1). An appro-
priate choice of loss function L(·) in the case of binary classification is the 0/1-loss
defined as L(f(x), y) = 1(yf(x) ≤ 0), where 1(E) = 1 if the event E occurs and
zero otherwise. As the risk R(f) measures the expected loss with respect to exam-
ples which were not observed in the training set, it is termed as the generalization
error. In machine learning and statistical learning theory the generalization error

10

2.1. PAC MODELS

(also called out-of-sample error) is a measure of how accurately an algorithm is able
to predict outcome values for previously unseen data.

Since the probability distribution P (x, y) in (2.1.1) is unknown, the risk cannot
be minimized directly to obtain the optimal function f . Thus, f has to be approxi-
mated based on the properties of the function class F and the available information
{(xi, yi)}i=1,...,n. A simple solution to this problem would be using empirical risk

R̂n(f) =
1

n

n∑
i=1

L(f(xi), yi) (2.1.2)

and calculating the minimum of it, instead of using the minimum of the risk func-
tion (2.1.1). As the law of large numbers states, that the average of the results
obtained from a large number of trials should be close to the expected value, one
can infer that the empirical risk (2.1.2) converges to the risk (2.1.1): R̂(f)→ R(f)
as n → ∞. This however, does not guarantee that the function which satisfies
f̃n = arg minf∈F R̂n(f) is the asymptotic minimum of R(f). A sufficient condition

to achieve convergence is the uniform convergence of R̂n over F to R(f). If not, a
function f with arbitrarily small error on the sample set can be chosen, which leads
to poor generalization. Even providing sufficient conditions such that the function
which minimizes the empirical risk will perform optimally, for small sample sizes
large deviations are possible and over-fitting might occur and a small generalization
error cannot be obtained by simply minimizing the training error (2.1.2).

Therefore, to avoid the dilemma of over-fitting mentioned above, the complexity
of the class of functions F needs to be controlled which is called regularization.
The intent is to restrict the size of function class F , such that the complexity of the
chosen f is reduced. Regularization is justified as it attempts to impose Occam’s
razor1 on the solution. It will be shown in Section 2.3 that a complex function is
less preferable than a “simple” function that explains less of the data.

It seems that boosting algorithms, such as (1.2.1), when using an ensemble of
many weak learners, produce an increasingly more complex function. Surprisingly
this is not the case under certain conditions, as will be shown in Theorem 2.3.3.
Again one has to be careful, as this observation could lead to thinking, that due to
the limitation of the complexity of a boosting algorithm, over-fitting does not occur,
which is not the case and regularization will be necessary (see Section 2.5).

Before introducing the first boosting algorithm AdaBoost, PAC-models, which
stands for “Probably Approximately Correct”, are introduced. Here a solution should
be close enough (approximately) in most of the cases (probably). The definitions
taken from Meir and Rätsch (see Meir and Rätsch 2003) of a strong and weak PAC
algorithm are as follows:

Definition 2.1.1 Given a sample of n data points {(xi, yi)}ni=1, with xi random and
independently generated from some distribution P (x), yi = f(xi) and f is from a

1Occam’s razor states that among competing hypotheses, the one with the fewest assumptions
should be selected (“The simplest solution is the most likely”). This principle is attributed to
William of Ockham (c. 1287–1347)

11

2.2. ADABOOST

class of binary functions F . Now if for every distribution P , every f ∈ F and every
0 ≤ ε, δ ≤ 1/2 with probability larger than 1− δ, the algorithm outputs a hypothesis
h such that P [h(x) 6= f(x)] ≤ ε, then the algorithm is a strong PAC learning
algorithm.

Definition 2.1.2 A weak PAC learning algorithm is essentially the same as
a strong one and is defined analogously, except that it is only required to satisfy the
conditions for particular ε and δ, rather than all pairs.

2.2 AdaBoost

The AdaBoost algorithm was formulated 1996 by Yoav Freund and Robert Schapire
in their publication “A Decision-Theoretic Generalization of On-Line Learning and
an Application to boosting” (see Freund and Schapire 1997) and they received the
Gödel Prize2 in 2003 for their work. They called it such, short for adaptive boost ing,
as unlike previous algorithms it adjusts adaptively to the errors of the weak hypoth-
esis returned by the weak learner. It is arguably the most well known boosting
algorithm and is generally considered as a first step towards more practical boosting
algorithms.

The algorithm considers the input of data (x1, y1), . . . , (xn, yn), with covariates
xi and labels yi chosen randomly according to a fixed but unknown distribution P
on X × Y , where X is a p-dimensional space and Y is the label set. In the case of
AdaBoost the label set will be Y = {−1, 1}. The extensions to the multi class and
real valued case will be discussed at a later stage (see Chapter 3). The goal is to
learn to predict the correct label y given an observation x, by finding a hypothesis
H which is consistent with most of the sample. The case refereed to as “overfit-
ting”, where a hypothesis is accurate within the training set but inaccurate with
data outside of the training sample, can occur. This can be avoided by restricting
the hypothesis to be simple (see Section 2.3).

One of the main ideas of the algorithm is to maintain a distribution or a set of
weights over the training set. The weight of this distribution on training example
i = 1, . . . , n on round t = 1, . . . , T is denoted by wt(i). Initially, all weights are
set equally, but on each round, the weights of incorrectly classified examples are
increased so that the weak learner is forced to focus on the hard to classify examples
in the training set.

AdaBoost calls a given weak learner repeatedly in a series of t = 1, . . . , T iter-
ations. At each step t of the iteration, the weak learner’s job is to produce a weak
hypothesis ht : X → {−1, 1}, appropriate for the distribution wt, with which the
individual hypothesis (ht(xi))i=1,...,n for each sample in the training set are created.
Then the weights αt for each individual ht are chosen. This is done by minimizing
the sum of the training error

2The Gödel Prize is an annual prize for outstanding papers in the area of theoretical computer
science.

12

2.2. ADABOOST

εt(ht, wt) = Pi∼wt [ht(xi) 6= yi] =
∑

i:ht(xi)6=yi

wt(i) (2.2.1)

which measures the goodness of a base procedure with respect to the distribution
wt (see Freund and Schapire 1999). Generally this can be written as

εt =
∑
i

L[Ht−1(xi) + αth(xi)], (2.2.2)

where L is a loss/error function, Ht−1(x) the boosted classifier up to the previous
iteration and αth(x) is the weighted weak learner which is considered to be added
to the final classifier.

Assuming exponential loss, the weights αt, which minimize the training error
(2.2.2), can be derived. As the boosted classifier of iteration t−1 will be of the form

Ht−1(xi) = α1h1(xi) + . . .+ αt−1ht−1(xi),

it follows that the classifier of the t’th iteration can then be written as

Ht(xi) = Ht−1(xi) + αtht(xi). (2.2.3)

Thus, the total error ε of Ht will be the sum of its exponential loss on each data
point and from (2.2.2) one obtains

ε =
n∑
i=1

e−yiHt(xi) (2.2.4)

where

−yiHt(xi) =

{
−1 if correctly classified yi = Ht(xi)

1 if incorrectly classified yi 6= Ht(xi)

determines a true or a false classification. While using the equality of (2.2.3) and
substituting w1(i) = 1 , wt(i) = e−yiHt−1(xi) into the total error (2.2.4) and then
splitting the sum into the correctly and the incorrectly classified cases by ht the
following is obtained

ε =
n∑
i=1

wt(i)e
−yiαtht(xi) =

∑
i:ht(xi)6=yi

wt(i)e
αt +

∑
i:ht(xi)=yi

wt(i)e
−αt . (2.2.5)

Differentiating those two sums and setting the differential to zero

dε

dαt
= 0 =

∑
i:ht(xi)=yi

wt(i)e
αt −

∑
i:ht(xi)6=yi

wt(i)e
−αt .

and solving this for αt yields the following result for the alphas

αt =
1

2
ln

(
1− εt
εt

)
13

2.2. ADABOOST

Algorithm 1 AdaBoost

1: Initialize the weights for the individual sample points as w1(i) = 1/n for all
i = 1, . . . , n.

2: for t = 1 to T do
3: Using a weighted fitting, train the classifier with respect to the weighted data

and obtain the classifier ht
4: Calculate the misclassification rate of ht

εt =
∑

i:ht(xi) 6=yi

wt(i) /
n∑
i=1

wt(i)

5: Set

αt =
1

2
ln

(
1− εt
εt

)
6: Update the weights

wt+1 =
wt(i)

Zt
×

{
e−αt if correctly classified yi = ht(xi)

eαt if incorrectly classifiedyi 6= ht(xi)
=
wt(i)e

−αtyiht(xi)

Zt
,

where Zt is a normalization factor, chosen such that wt will be a distribution∑N
t=1wt+1(i) = 1

7: end for
8: Output the final hypothesis

H(x) = sign

(
T∑
t=1

αtht(x)

)

as the negative logit function of εt multiplied by 1
2
.

Therefore, given a set of data (x1, y1), . . . , (xn, yn), where xi ∈ X and yi ∈ Y =
{−1,+1}, AdaBoost works as shown in Algorithm 1.

To choose the classifier ht in step 3 one has to consider the following. The
training error sum in (2.2.5) can also be written as

εt =
n∑
i=1

wt(i)e
−αt +

∑
i:ht(xi)6=yi

wt(i)(e
αt − e−αt).

Here only the second sum is dependent on ht. Thus, it follows that the ht which
minimizes

∑
i:ht(xi)6=yi wt(i) also minimizes the training error ε. In other words, the

weak classifier with the lowest weighted error is chosen.

After the first step of initializing the weights of the sample points and receiving
the weak hypothesis ht in step 3, AdaBoost chooses a parameter αt as in the pseudo
code provided above. Intuitively, αt measures the importance that is assigned to ht.
It is to note, that αt ≥ 0 if εt ≤ 1

2
and αt gets smaller the larger εt gets and vice versa.

14

2.3. BOOSTING PROPERTIES

In step 6 the distribution of wt+1 is next updated as shown in the code. The
effect of this rule is to increase the weight of examples misclassified by ht, and to
decrease the weight of correctly classified examples. Hence, this forces the following
classifiers to focus on those xi which are “hard” to classify.

Lastly, the final or combined hypothesis H computes the sign of a weighted
combination of weak hypotheses

F (x) =
T∑
t=1

αtht(x) (2.2.6)

where αt is the weight assigned to ht. This is equivalent to saying that H is computed
as a weighted majority vote of the weak hypotheses ht where each is assigned weight
αt.

2.3 Boosting Properties

2.3.1 Training Error Bounds

If one considers a hypothesis which randomly guesses each observation’s class, it is
intuitively obvious that the hypothesis has an error rate of 1/2 (see Definition 2.4.1).
Hence, we can write the error εt of ht as 1

2
− ηt. We call ηt the edge, which measures

how much better than random are ht’s predictions. Freund and Schapire (see Freund
and Schapire 1997) proved the following theorem, concerning the training error (the
fraction of mistakes on the training set) of the final hypothesis H:

Theorem 2.3.1 Assuming the weak learner generates hypotheses with errors ε1, . . . , εT
according to the AdaBoost (Algorithm 1) in step 4. Then the final hypothesis H out-
puted by the algorithm has an error bounded by

εT = Pi∼wt [HT (xi) 6= yi] ≤ 2T
T∏
t=1

√
εt(1− εt). (2.3.1)

Thus, if each weak hypothesis is slightly better than random such that ηt > 0,
then the training error drops exponentially fast.

Replacing εt with 1/2−ηt, the bound of the error term in (2.3.1) can be rewritten
as follows,

2T
T∏
t=1

√
εt(1− εt) =

T∏
t=1

√
1− 4η2t = exp

(
−

T∑
t=1

KL(1/2||1/2−ηt)
)
≤ exp

(
−2

T∑
t=1

η2t
)
,

(2.3.2)
where KL(a||b) = aln(a/b) + (1 − a)ln

(
(1 − a)/(1 − b)

)
is the Kullback-Leibler

divergence3. In the case where the errors of all the hypotheses are equal to εt =
1/2− η, for a set η > 0, the Equation (2.3.2) is further simplified as

3Also referred to as relative entropy, it is a measure of how one probability distribution diverges
from a second expected probability distribution.

15

2.3. BOOSTING PROPERTIES

εT ≤ (1− 4η2)T/2 = exp(−T ·KL(1/2||1/2− η)) ≤ e−2Tη
2

, (2.3.3)

where the last inequality is achieved by a form of the Chernoff bound for the prob-
ability that less than T/2 coin flips turn out “heads” in T tosses of a random coin
whose probability for “heads” is 1/2− η.
With this last Equation (2.3.3) a number of iterations sufficient for AdaBoost to
achieve error ε of HT can be obtained as (see Freund and Schapire 1997)

T =

⌈
1

KL(1/2||1/2− η)
ln

1

ε

⌉
≤
⌈

1

2η2
ln

1

ε

⌉
. (2.3.4)

2.3.2 Generalization Error Bounds

Theorem 2.3.1 guarantees that the error of the final hypothesis H on the given
training sample is small. This however often does not suffice, as the generalization
error of H, which is the error of H over the whole instance space X instead of just
the input data (x1, y1), . . . , (xn, yn), has to be taken into consideration. The gener-
alisation error will be denoted as εg.

Freund and Schapire (see Freund and Schapire 1997) used the training error ε,
the sample size n, the VC-dimension4 d of the weak hypothesis space and the num-
ber of boosting rounds T to bound the generalization error of the final hypothesis.
To get the εg close to the training error ε, the first approach is to restrict the weak
learner to choose its hypothesis from some simple class of functions. Freund and
Schapire argue that (see Freund and Schapire 1997) this restriction/choice is spe-
cific to the concurrent learning problem and should reflect the knowledge about the
properties of the unknown concept. Secondly to restrict the number of iterations T ,
and therefore the number of weak hypothesis ht that are combined to form H. One
method is to use an upper bound on the VC-dimension of the concept class.

There exist different types of VC-dimension bounds. One version, which is an
improved boundary from the classic result of Vampnik and Chervonenkis5, taken
from Bartlett and Mendelson (see Bartlett and Mendelson 2002) is:

Theorem 2.3.2 Let F be a class of {−1,+1}-valued functions defined on a set X,
let P be a probability distribution on X × {−1,+1}, and suppose that n samples
S = {(xi, yi)}i=1,...,n are chosen independently according to P . Then, there is an
absolute constant c such that for any integer n, with probability at least 1 − δ over
samples of length n, every function f ∈ F satisfies

P (y 6= f(x)) ≤ P̂n(y 6= f(x)) + c

√
V Cdim(F) + log(1/δ)

n
, (2.3.5)

4The VC-dimension (for Vapnik–Chervonenkis dimension) is a standard measure of the “com-
plexity” of a space of functions that can be learned by a statistical classification algorithm. It
was originally introduced 1971 by V. Vapnik and A. Chervonenkis in their collaboration: “On the
Uniform Convergence of Relative Frequencies of Events to Their Probabilities”.

5V. Vapnik and A. Y. Chervonenkis. “On the uniform convergence of relative frequencies of
events to their probabilities. Theory of Probability and its Applications”, 16 (2): pages 264-280,
1971.

16

2.3. BOOSTING PROPERTIES

where

P̂n(S) =
1

n

n∑
i=1

1S(xi, yi).

It is important to note, that this bound is distribution free, namely it holds
independently of the underlying probability measure P .

Generalization Error as a function of Margin Distribution

Taking into account that a sample (x, y) was correctly classified if its margin was
positive, Schapire et al. (see Schapire et al. 1998) argued that if that margin was
large, then minor changes to the weights were unlikely to change the label and used
the margins of the training sample to create a better generalization error bound.
The margin of sample (x, y) is

marginH(x, y) :=
y
∑

t αtht(x)∑
t |αt|

∈ [−1,+1]. (2.3.6)

In their work, Schapire et al. (see Schapire et al. 1998) interpreted the magnitude
of the margin as a measure of confidence in the classification and proved that larger
margins on the training set translate into a better upper bound on the generalization
error.

Theorem 2.3.3 Given samples S = {(xi, yi)}i=1,...,n of size n chosen independently
at random according to P . Assuming the base hypothesis space H is finite, and let
δ > 0. Then with probability greater or equal 1 − δ over the random choice of the
training set S and every weighted average function f of the convex hull of H the
following bound (taken from Schapire et al. 1998) holds for all θ > 0:

P (yf(x) ≤ 0) ≤ P̂n(yf(x) ≤ 0) +O

(
1√
n

(
ln(n)ln(|H|)

θ2
+ ln(1/δ)

)1/2
)
.

For finite H, with VC-dimension d the following, less complex, bound holds:

P (yf(x) ≤ 0) ≤ P̂n(yf(x) ≤ 0) +O

(√
d

nθ2

)
. (2.3.7)

What is important to note, is that these bounds are entirely independent of the
number of iterations T used in the boosting algorithm.

2.3.3 Exponential Loss Function

A primary benefit of exponential loss in additive modeling is computational as it
leads to the simple modular re-weighting of the AdaBoost algorithm. AdaBoost
minimizes the exponential loss,

1

n

n∑
i=1

eyiF (xi) (2.3.8)

17

2.3. BOOSTING PROPERTIES

where F (x) =
∑T

t=1 αtht(x) was already given in Equation (2.2.6). Hence, the
choices of αt and ht would be chosen such, as to minimize Equation (2.3.8). This
was first observed by Breiman (see Breiman 1999). It is therefore relevant to study
the statistical properties of the exponential loss.

It seems clear that, using exponential loss as the loss function L(·) prioritises the
choice of a function F for which the sign of H(xi) = sign(F (xi)) is likely to agree
with the correct label yi. In other words, it achieves the desired effect of trying to
minimize the number of mis-classifications. Friedman et al. (see Friedman, Hastie,
and Tibshirani 2000) showed that

f̃(x) = arg min
f(x)

EY |x =
1

2
ln

P (Y = 1|x)

P (Y = −1|x)
, (2.3.9)

by trying to improve an estimate F (x) with a new one F (x) + f(x) by minimizing
E(e−yF (x)e−yf(x)|x) for every x. This can be rewritten as

E(e−yF (x)e−yf(x)|x) = e−f(x)E
(
e−yF (x)

1[y=1]|x
)

+ ef(x)E
(
e−yF (x)

1[y=−1]|x
)
.

Dividing this by E(e−yF (x)|x) and setting the derivative with respect to f(x) to zero
and solving for f(x) yields the desired result in Equation (2.3.9), which is equivalent
to

P (Y = 1|x) =
1

1 + e−2f̃(x)
. (2.3.10)

With this it becomes clear, what the exponential loss is estimating: Namely one
half of the log-odds of P (Y = 1|x). Which justifies the initial intuition of using its
sign as the classification rule in step 8 of Algorithm 1.

A different possible loss function which could be used, that has the same popu-
lation minimizer is the negative binomial log-likelihood (referred to as deviance).

Setting ỹ = y+1
2
∈ {0, 1} and parametrize the binomial probabilities as

p(x) =
1

1 + e−2f(x)
=

ef(x)

ef(x) + e−f(x)
,

the binomial log-likelihood loss function and the deviance are then respectively given
as

l(ỹ, p(x)) = ỹln(p(x)) + (1− ỹ)ln(1− p(x)) and

−l(ỹ, p(x)) = ln(1 + e−2yF (x))
(2.3.11)

Therefore, the population minimizers of the exponential loss E(e−yF (X)) and of
the deviance −El(ỹ, p(x)) are the same, because the expected log-likelihood is max-
imized at the true probabilities p(x) = P (ỹ = 1|x), which defined the logit F (x),
which is excactly the same as the minimizer of the exponential loss due to Equation
(2.3.10). Hence, it doesn’t matter which criterion is chosen as they both lead to the
same solution at the population level.

18

2.4. WEAK LEARNERS

A palpable suggestion might arise, as to estimate H using the squared error
E(y − F (x))2. Friedman et al. (see Friedman, Hastie, and Tibshirani 2000) have
found that non monotonicity of the squared error is inferior to monotone loss criteria.
It yields correct classifications, but with yF (x) > 1 the loss increases for increasing
values of |F (x)|. Hence, correct classifications that are “too clear” are penalized as
much as the misclassification errors.

2.4 Weak Learners

An important property of boosting is the fact that all boosting algorithms have
the weak learning assumption in common. This means, that a weak learning
algorithm, used by boosting as a subroutine, can always do better than random
guessing on the distributions presented to it. Without this condition, boosting
would fail to work both in theory and in practice and it is therefore critical to
ensure that the boosting algorithm is supplied by a “good” weak learner. It has
already been shown that AdaBoost (Algorithm 1) works by forming a re-weighting
w of the data at each step t = 1 . . . , T and constructs a base learner based on the
weight distribution. Before properly defining a weak learner and its assumption, the
definition of a baseline learner (as defined by Meir and Rätsch 2003) is given:

Definition 2.4.1 Let w = (w(1), . . . , w(n)) be a probability weighting of the data
points S = {(xi, yi)}i=1,...,n and let W+ be the subset of the positively labeled points,
and analogue for W−. Set W+ =

∑
i:yi=+1w(n) and similarly for W− =

∑
i:yi=−1w(n).

The baseline classifier fBL is defined as fBL(x) := sign(W+ −W−) for all x. In
other words, the baseline classifier predicts +1 if W+ ≥ W− and −1 otherwise. It
becomes clear, that for any weighting w, the error of the baseline classifier is at most
1/2.

In contrast to the strong and weak PAC algorithms defined in section 2.1 (Def-
inition 2.1.1 and 2.1.2 respectively) in this review, the definition of a weak learner
is not as limited as the PAC definition for most applications. It is defined by Meir
and Rätsch as follows (see Meir and Rätsch 2003):

Definition 2.4.2 A learner is a weak learner for sample S if, given any weighting
w on S, it is able to achieve a weighted classification error (see (2.2.5)) of εt(ht, wt) <
1/2− η, where 0 < η < 1/2 is a fixed value called the edge.

Therefore, a weak learner achieves an accuracy which is slightly but strictly bet-
ter than that of random guessing of a baseline classifier. This property is what is
meant by the weak learner assumption. The edge value η in Definition 2.4.2 quanti-
fies this difference of the performance of the weak learner from the baseline classifier.

In his earlier work “The Strength of Weak Learnability” (see Schapire 1990)
Schapire proved that any weak learning algorithm can be efficiently converted,
termed “boosted”, into a strong one (see Definition 2.1.1). The main result of his
paper is:

Theorem 2.4.1 A problem is weakly learnable if and only if it is strongly learnable.

19

2.4. WEAK LEARNERS

The first statement of this equivalence is trivial, as a strong learner is automat-
ically a weak learner for the same problem. However, to prove the reverse of the
statement is more difficult. Schapire’s approach was to use an algorithm for trans-
forming a weak learner into a strong one. Starting off with a class of weak learners,
a mechanism is used to boost the accuracy by a small amount and this mechanism
is then applied recursively to make the error arbitrarily small (for the full proof refer
to Schapire’s work (Schapire 1990)).

A prerequisite for a boosting algorithm to work well, is the existence of a weak
learner. In the case of binary classification, as in Algorithm 1, the condition is
that the weighted empirical error of every weak learner is strictly smaller than
εt(ht, wt) < 1

2
− η, where η is an edge parameter first introduced in Definition

2.4.1. A weak learner constructs a binary classifier H based on a data set, S =
{(xi, yi)}i=1,...,n, where each pair (xn, yn) is weighted by a non-negative weight w(i).
Then the following must hold,

εt(h,w) =
∑

i:h(xi)6=yi

w(i) ≤ 1

2
− η , (η > 0). (2.4.1)

Without making restrictions about the data set S, it may be impossible to find
a strictly positive value of η > 0 for which the Equation (2.4.1) is true, given a
simple weak learner. To illustrate this, Meir and Rätsch (see Meir and Rätsch
2003), considered the following example:

A two-dimensional problem with n = 4 observations, x1 = (−1,−1), x2 =
(+1,+1), x3 = (−1,+1), x4 = (+1,−1), and corresponding labels {−1,−1,+1,+1}.
Now if the weak h is restricted to be an axis-parallel half-space, then it is obvious
that no such h can achieve an error smaller than 1/2 with a uniform weighting over
the examples.

Yoav Freund shows, in his work (see Freund 1995), that if a class H of binary
hypothesis is highly correlated with the target function f , then f can be exactly
represented as a convex combination of a small number of functions from H. In
other words this means, that the empirical error can be expected to approach zero,
after a sufficiently large number of boosting iterations. Let f be denote a Boolean
function, from the binary p-dimensional cube {−1,+1}p to {−1,+1} and H be a
set of binary hypotheses ht to approximate f . D shall be the distribution over the
cube {−1,+1}p, and defining the correlation between f and H with respect to D as

CorrDH(f) = sup
h∈H

ED(f(x)h(x)),

and the distribution free correlation as

CorrH(f) = inf
h∈H

CorrDH(f).

Using this notation, Yoav Freund then stated the following theorem

Theorem 2.4.2 Let f be a Boolean function over {−1,+1}p and H be a set of
functions over the same domain. Then if the number of iterations T is

T > 2ln(2)nCorrH(f)−2

20

2.4. WEAK LEARNERS

then f can be represented as

f(x) = sign

(
T∑
t=1

ht(x)

)
.

2.4.1 Choice of Weak Learner

As the concept of weak learners is an essential part of boosting, it is important for ev-
ery algorithm to specify a weak learner. The decision of what weak learner to choose
is mostly driven by the consideration of the structural properties of the boosting es-
timate H or by optimizing the predictive capacity. Even though weak learners/base
procedures are central in boosting, the emphasis of the theory of choosing an ade-
quate weak learner, is considerably less compared to the magnitude of work put in
surrounding boosting’s other facets. In most practical experiments the choice was
mostly based on the evaluation of the error rate and not based on the mathematical
properties of the weak learner. The first analysis concerning the choice of a weak
learner was done by Lev Reyzin in his paper (see Reyzin 2014).

If one considers the workings of the weak learning algorithm as doing empirical
risk minimization, over some hypothesis class H, then the algorithm depending on
a labelled sample (x,y) returns an hypothesis h ∈ H such that

h = arg min
h∈H

Px[h(x) 6= y].

A more lenient criterion would be to find an approximate empirical risk minimization
hypothesis. With this in mind, Lev Reyzin in his paper (see Reyzin 2014) argued
that the following properties are important for an effective weak learner:

Coverage: All parts of the hypothesis space should be “covered” by a weak learner.
Thus, no areas that are sparsely covered should exist. With high coverage,
diversity is easier to achieve.

Diversity: A weak learner should have many hypotheses that disagree on a large
fraction of examples in their predictions. A reason for this is AdaBoost’s
update rule which makes the distriubtion wt+1 be such that

P(x,y)∼wt+1 [ht(x) = y] = P(x,y)∼wt+1 [ht(x) 6= y] = 1/2.

Therefore, hypotheses highly correlated with ht will likely have a small edge
as well, making the weak learning condition harder to satisfy.

Error: As mentioned before, the weak learner assumption must hold.

Evaluability: The weak learner should be efficiently evaluable for it to be usable
in practice.

Richness: It is advantageous if a linear combination of hypotheses from H is able
to represent a rich set of functions.

Optimizability: Finding an approximate empirical risk minimization over the weak
learners should be easy to control.

21

2.4. WEAK LEARNERS

Simplicity: For a finite H, its cardinality #H should be as small as possible, while
an for infinite one it’s VC dimension (or similar measure) should be small.

It is to note that some of the conditions reinforce each other, while others are
in contest with one another. For example, a way to achieve diversity is to ensure
coverage, whereas diversity is in direct conflict with simplicity. Therefore, a good
weak learner must balance out among these. For instance, the set of all Boolean
functions, while achieving great diversity, coverage, richness, and efficiency fails the
error and simplicity requirements, making for an ineffective weak learner. As the
final boosting estimator is a sum of base procedure estimates (see for example Al-
gorithm 1 step 8), the structural properties of the boosting function estimator are
induced by a linear combination of structural characteristics of the base procedure.

Some important examples of weak learners/base procedures yielding desirable
structures for the boosting estimator are presented:

Decision stumps

A natural class for weak learners to look at are decision stumps. They are simple
weak learners that examine only one (binary) feature value. They are commonly
used as base classifiers in boosting and all have the same complexity by most any
measure. Decision stumps can be viewed as single node decision trees. Meaning,
it is a decision tree with one internal node (the root) which is immediately con-
nected to the terminal nodes. Therefore, the connotation of a decision “stump” as
it only contains the root and no further branches or leaves of a whole “tree”. A deci-
sion stump makes a prediction based on the value of just a single input feature and
thus examines only one binary value and predicts either its occurrence or its absence.

Due to the vote in AdaBoost, and other ensemble methods, the sum over the
iterations T can be rewritten as a sum over the weak learners in finite space

H(x) = sign

(
T∑
t=1

αtht(x)

)
= sign

(∑
i

α̂ihi(x)

)

with appropriate coefficients α̂i > 0. Since this is a linear function when stumps are
used and many functions cannot be predicted with sufficient accuracy via a linear
combination, decision stumps can be rather limited in their usage.

Despite the simplicity of decision stumps and their afore mentioned downside,
they have proven useful in practice, early on in the original work of Freund and
Schapire (1995) and probably most notably in the state-of-the-art Viola–Jones face
detection algorithm, which employs AdaBoost with decision stumps as weak learners
(see Viola and Jones 2003).

Trees

As a follow up of simple stumps are classification and regression trees, in short
CART. The term CART was first introduced by Breiman et al. (see Breiman et al.
1984). CART is a non-parametric tree learning technique that produces regression

22

2.4. WEAK LEARNERS

or classification trees, depending on whether the outcome variable is numeric or cat-
egorical. As compared to stumps they present a more complex form of weak learner
and are perhaps the most popular general weak learner.

Although the usage of trees as weak learners in boosting has proven to be
competitive, generally outperforming stumps, for example shown by Caruana and
Niculescu-Mizil in 2006 (see Caruana and Niculescu-Mizil 2006), they are also prone
to overfitting. To avoid over complex trees and as a consequence of over-fitting, the
decision trees are needed to be pruned by removing nodes, thus reducing their size
and their complexity. Another drawback of trees is their non-robustness in some
cases, wherein small changes in the training data can result in large changes in the
final predictions.

Sparse parities

Due to the afore mentioned drawbacks of trees, Lev Reyzin (see Reyzin 2014) pro-
posed using sparse parity functions, as weak learners in boosting.

Considering that any Boolean function f : {0, 1}n → {−1, 1}n using Fourier
analysis can be uniquely written as

f(x) =
∑

S∈{0,1}n
f̂SχS(x) (2.4.2)

with the characters

χS(x) = (−1)S·x,

over the Galois field consisting of two elements. This function can simply be seen
as the changing with the parity of S · x.
If all 2n of the Fourier coefficients f̂S, of the corresponding characters of f , are
specified, then f can be reconstructed. The degree of f̂S is equal to ||S||1.

Reyzin’s proposed technique can approximately recover targets whose Fourier-
weight is concentrated on the low degree characters. These functions f therefore
satisfy

W≤d(f) :=
∑

S∈{0,1}n : ||S||≤d

f̂ 2
S ≥ 1− ε0,

for a suitable choice of ε0 as a function of the target error rate.

Reyzin noticed the similiarities between Equation (2.4.2) and the final hypothesis
H of boosting

H(x) = sign

(
T∑
t=1

αtht(x)

)
.

Now setting the class of weak learners Hd to be the characters of degree ≤ d (d-
parities), including their negations, one gets a correspondence between the α’s and
the f̂ ’s, as well as between the h’s and the χS. Therefore, boosting will try to find
a low degree Fourier approximation of the target function, if it exists.

23

2.5. REGULARIZATION

In Reyzin 2014 it is shown that the sparse parities, as a weak learner, meet the
diversity, coverage, simplicity, efficiency, error and richness properties. To satisfy
the optimizability criterion, all the

(
n
d

)
elements need to be tried. An extension

to the parity function to the multi-class case, with k classes, is using the function
x · c(mod k). Then x will take integer values, splitting the numerical values of x into
k classes.

Componentwise linear least squares for generalized linear models

Another weak learner is mentioned by Bühlmann and van de Geer (2011). When
trying to fit a high dimensional generalized linear model (dimension p and x(j)

denotes the column j of x and x
(j)
i the i’th element of x(j))

g(E[Yi|x]) =

p∑
j=1

βjx
(j) , with Y1, . . . , Yn independent,

boosting can be useful when using the weak learner

ĝ(x) = ŷĵx
(ĵ),

with

ŷj =

∑n
i=1 x

(j)
i ỹi∑n

i=1(x
(j)
i)2

, ĵ = arg min
j=1,...,p

(
ỹ − ŷjx(j)i

)
= arg max

j=1,...,p

|
∑n

i=1 x
(j)
i ỹi|2∑n

i=1(x
(j)
i)2

and the current negative gradient vector ỹ of the loss. In the case of centred variables
x̄ = 0, the ĵ is choosen that maximizes the absolute correlation with the residual
vector. The weak learner selects the best variable according to ordinary least squares
(refer to Section 1.1.1).

Componentwise smoothing splines for additive models

As a non-parametric weak learner for function estimation, least squares cubic smooth-
ing spline estimates can be used (see Bühlmann and Geer 2011). The cubic smooth-
ing spline estimate ĝ of the function g is the minimizer of

ĝj(·) = arg min
f

(n∑
i=1

(yi − f(xi))
2 + λ

∫
(f ′′)2dx

)
,

where λ ≥ 0 is a smoothing parameter, which is often estimated by cross validation
and f ′′ is the second derivative of f . The weak learner is

ĝ(x) = ĝj(x
(ĵ)) , with ĵ = arg min

j=1,...,p

n∑
i=1

(
ỹi − ĝj(x(j)i)

)
.

2.5 Regularization

As has already been mentioned, a common issue when minimizing a loss function
is overfitting the model on the training set. To avoid this problem, it has become
standard to regularize the problem. In other words, to constrain or modify the size

24

2.6. BOOSTING INTERPRETATIONS

of the function class, thereby reducing complexity and emphasizing smoothness.

As was already seen in Section 2.2, the AdaBoost algorithm’s final hypothesis is
constructed by a linear combination F of weak hypotheses

F (x) =
T∑
t=1

αtht(x).

This F (x) is chosen over all such linear combinations, as to minimize the exponential
loss. Schapire proposed (see Schapire 2013), that one way to regularize is to choose
the objective to be the minimization of this same loss, but subject it to the con-
straint that the weak hypotheses weights appearing in F , when viewed collectively
as a vector, have l1-norm bounded by some pre-set parameter B > 0. As opposed
to the l1-norm, which is sometimes called the “lasso”6, a different norm could be
used as well.
This constraint to those weights is referred to as shrinkage. For example, while us-
ing a boosting algorithm, with trees as weak learners, the contribution of each tree
is scaled by a factor v ∈ (0, 1). Friedman (see Friedman 2001) empirically showed
that smaller values of v produce better test errors, but require a larger number of
iterations T respectively.

AdaBoost doesn’t explicitly regularize, as there are no limitations to the weights
on the weak hypothesis. However, Schapire (see Schapire 2013) argues that the
AdaBoost has an implicit form of regularization, as he shows how a simple variant
of the algorithm, when stopped after any number of rounds t, can often be viewed
as providing an approximate solution to l1-regularized minimization of exponential
loss. Thus, overfitting is avoided implicitly.
The two downsides of this are, that firstly this only applies to a variant of Adaboost
in which the weights are set to a constant and secondly that AdaBoost is stopped
after a relatively small number of rounds.

To summarize, a few ways to achieve regularization are: The modification of
the function class, the limitation of boosting iterations T (as it can be related to a
l1-regularization) or by shrinkage.

2.6 Boosting Interpretations

2.6.1 A Bayesian Interpretation

In one of their earlier papers Freud and Schapire (see Freund and Schapire 1997)
showed that the final hypothesis generated by AdaBoost is similar to one suggested
by Bayesian analysis.

In the binary setting of AdaBoost, given some examples (x, y) that have been
generated by the distribution on X×{−1, 1}, and a set of {−1, 1}-valued hypotheses

6Robert Tibshirani introduced in 1996 the lasso (short for least absolute shrinkage and selection
operator) in his work “Regression Shrinkage and Selection via the lasso”. It is a regression method
that performs both variable selection and regularization.

25

2.6. BOOSTING INTERPRETATIONS

h1, . . . , hT . The objective is to combine these hypotheses in an optimal way to obtain
the final hypothesis H.

After having achieved this and then given a new observation x and the hypothesis
prediction ht(x), the Bayes optimal decision rule says that the label, which has
the highest probability/likelihood should be chosen, given the hypothesis values.
Therefore, according to the Bayes optimal decision rule it should predict 1 if

P [y = 1|h1(x), . . . , hT (x)] > P [y = −1|h1(x), . . . , hT (x)], (2.6.1)

and −1 otherwise.

If the event ht(x) 6= y is conditionally independent of the actual true label y and
of the predictions of all the other hypotheses h1(x), . . . , ht−1(x), ht+1(x), . . . , hT (x),
then the errors of the different hypotheses are independent of one another and of
the target concept. Under those conditions, by applying Bayes rule, the Bayes
optimal decision rule (Equation 2.6.1) will be relatively easy to compute and can be
expressed in the simple form in which 1 is predicted if

P [y = 1]
∏

t:ht(x)=−1

εt
∏

t:ht(x)=1

(1− εt) > P [y = −1]
∏

t:ht(x)=−1

(1− εt)
∏

t:ht(x)=1

εt

and −1 otherwise. Here, the error term εt refers to the probability εt = P [ht(x) 6= y].
Adding to the set of hypotheses the trivial hypothesis h0 which always predicts the
value 1, the probability P [y = 0] can be replaced by ε0. Then taking the logarithm
of both sides of this inequality and rearranging the terms, the Bayes optimal decision
rule is revealed to be identical to the combination rule that is generated by AdaBoost.
In the opposite case, if the errors of the different hypotheses are dependent, then
the Bayes optimal decision rule becomes a lot more complex. Even though the
prerequisites of independence are not met, the above mentioned simple rule is used.
In statistics and machine learning this is referred to as the “naive Bayes” (or simple
Bayes). Freud and Schapire offered an alternative to the practice of “naive Bayes”,
as to use AdaBoost to find a combination rule which has a guaranteed non-trivial
accuracy due to Theorem 2.3.1.

2.6.2 A Game-theoretical Interpretation

The behavior of AdaBoost, or boosting in general, can also be understood in a
game-theoretic setting. Freund and Schapire presented in their paper (see Freund
and Schapire 1996b) the close connection between boosting and game theory7).

A two person game in normal form, is defined by a matrix M. The first player,
called row-player, chooses a row i and the other player, the column-player, simul-
taneously chooses a column j. The result or outcome of the game is given in the
selected entry Mij, which describes the loss of the row-player. The goal of the row-
player is to minimize the loss, whereas the column-player tries to maximize it, which

7Roger Myerson defined game theory as: “the study of mathematical models of conflict and
cooperation between intelligent rational decision-makers” (Game Theory: Analysis of Conflict,
Harvard University Press, 1991

26

2.6. BOOSTING INTERPRETATIONS

is called a “zero-sum” game. An easy to understand and well known example would
be “Rock, Papers, Scissors” where the loss matrix is

M =


R P S

R 1
2

1 0
P 0 1

2
1

S 1 0 1
2

.
The two players are also allowed to play randomly. That is, the row-player

chooses a distribution P and (simultaneously) the column-player chooses another
distribution Q, over the loss matrix M. Hence, the row-player’s expected loss is

M(P,Q) = PTMQ =
∑
i,j

PiMijQj,

where Pi is the row-players probability of choosing of row i and Qj that of the
column-player’s of choosing column j. With sequential play, where the column-
player can make his choice after the row-player has made his, the column-player will
want to maximize the loss by his choice of Q as maxQ M(P,Q). Since the row-player
knows this, he will choose P accordingly to minimize the loss minP maxQ M(P,Q).
A strategy P∗ which realizes this is called a minmax-strategy. Analogues if the
column-player where to choose first, one’d arrive at a maxmin-strategy Q∗ which
satisfies maxQ minP M(P,Q).
Although one would assume that the player who chooses last is at a disadvantage,
Von Neumann proved in his minmax Theorem8 that this is not the case, as

min
P

max
Q

M(P,Q) = max
Q

min
P

M(P,Q) = v , (2.6.2)

where v is called the value of the game M.

Boosting can be viewed as repeated play of t = 1, . . . , T rounds of a particular
game matrix. To apply the game-theoretical thinking to boosting, the row-player
will be called a learner, representing the boosting algorithm, and the column-player
the environment, representing the weak learner. Thus, the distribution P is the
boosting algorithm’s choice of a distribution Dt over training examples, while the
choice of a column j (Q) becomes the weak learner’s choice of hypothesis ht. As-
suming a finite set of m binary weak hypotheses h1, . . . , hm and a fixed training set
(xi, yi)i=1,...,n the matrix M has n rows and m columns where

Mij =

{
1 if hj(xi) = yi

0 else
.

Applying this matrix M to Von Neumanns theorem (2.6.2) and reinterpreting it in
the boosting setting (see Freund and Schapire 1996b and Schapire 1999) lead to the
following. If there is a weak hypothesis with error at most 1/2− γ, for any distribu-
tion over the examples, then there exists a convex combination of weak hypotheses
with a margin of at least 2γ on all training examples. AdaBoost seeks to find such a

8John von Neumann “Zur Theorie der Gesellschaftsspiele”, Math. Annalen. 100, 1928, pages
295–320

27

2.7. GRADIENT BOOSTING

hypothesis by combining many weak hypotheses; so in a sense, the minmax theorem
tells us that AdaBoost at least has the potential for success since, given a “good”
weak learner, there must exist a good combination of weak hypotheses. Going fur-
ther, AdaBoost can be shown to be a special case of a more general algorithm for
playing repeated games, or for approximately solving matrix games. This shows
that, asymptotically, the distribution over training examples as well as the weights
over weak hypotheses in the final hypothesis have game-theoretic intepretations as
approximate minmax or maxmin strategies.

2.7 Gradient Boosting

In this section it will be shown that the AdaBoost algorithm can be represented
as a steepest decent algorithm in a function space, which can be called functional
gradient decent (short: FDG). This was first shown by Breiman (see Breiman 1999)
and Friedman (see Friedman 2001) continued this by developing a more general,
statistical framework, which shows that boosting can be interpreted as a method for
estimating functions.

2.7.1 General Case

Continuing the notation where (x, y) denotes an example from X × Y , where X is
the space of measurements and Y denotes the space of classes/labels. F shall be a
function F : X → Y mapping X to Y and 〈·, ·〉 be an inner product on the set of
all linear combinations of functions like F . The goal is to find a function F , which
minimizes the function

Φ(F) = E (L(F (x), y)) (2.7.1)

where L is a chosen loss function (Φ(·) is also referred to as cost functional, see
Mason et al. 1999).

This minimization process can be done iteratively via a gradient decent proce-
dure. Starting with a given function F1, the objective is to find a new f to add to F0

such that the cost Φ(F1 + cf) is less than that of F0, where c is some small constant.
Hence, the incentive is to find the f , the “direction” such that Φ(F0 + pf) decreases
the fastest. The desired direction f will be obtained via steepest-decent, where to
find a local minimum of a function one takes steps proportional to the negative of
the gradient of the function at the current point. Let the m’th step be composed as
fm = −cmgm(x), with the multipliers cm and the gradient gm(x) is

gm(x) = ∇Φ(F (x)) =

[
∂Φ(F (x))

∂F (x)

]
F (x)=Fm−1

, (2.7.2)

with

Fm−1(x) =
m−1∑
i=1

fi(x).

28

2.7. GRADIENT BOOSTING

The multipliers cm of fm = −cmgm(x) can be calculated by a simple line search

cm = arg min
c

Ey,xL(y, Fm−1(x)− cgm(x)). (2.7.3)

Since the choice of a new function f is restricted in some cases, in general it
can not be chosen as the negative gradient as mentioned above. Instead a function
f will be chosen with the greatest inner product with −∇Φ(F (x)) (here for sake
of simplicity the multiplier cm was omitted). Thus, a function f which maximizes
−〈∇Φ(F), f〉 will be chosen to substitute as the negative gradient. As a motivation
for this procedure, consider after an optimizing a c, one obtains Φ(F +cf) = Φ(F)+
c〈∇Φ(F), f〉 and thus, the greatest reduction in cost will occur for the f which
maximizes −〈∇Φ(F), f〉.

2.7.2 AdaBoost as Steepest Decent Algorithm

Restricting the functions f , the base hypotheses, to mappings to Y = {−1,+1} and
the inner product to

〈F,G〉 :=
1

n

n∑
i=1

F (xi)G(xi)

for two functions F and G and a training sample (xi, yi)i=1,...,n generated by some

unknown distribution P on X×Y . The unchanged goal is to find a function F̂ such
that the misclassification probability

Px,y[sgn(F (x)) 6= y]

is minimal.
For this section, let the margin of F on an example (x, y) be defined as yF(x) (as
opposed to Equation (2.3.6)).
Considering margin cost-functionals (such as exponential loss for AdaBoost, see
Section 2.3.3) defined by

Φ(F) :=
1

n

n∑
i=1

L(yiF (xi))

where L : R→ R is a differentiable real-valued function of the margin. Using these
definitions, the negative inner product of the gradient and f is calculated as

−〈∇Φ(F), f〉 = − 1

n2

n∑
i=1

yif(xi)L
′(yiF (xi)).

Since positive margins correspond to examples being correctly labelled by sgnF and
negative margins to be incorrectly labelled examples, any sensible cost function of
the margin will be monotonically decreasing. It follows that therefore −L′(yiF (xi))
will always be positive and dividing it by −

∑n
i=1 L

′(yiF (xi)), it becomes clear that
finding an f maximizing −〈∇Φ(F), f〉 is equivalent to finding an f which minimizes
the weighted error term∑

i:f(xi) 6=yi

wt(i) where wt(i) :=
L′(yiF (xi))∑n
i=1 L

′(yiF (xi))
for i = 1, . . . , n.

This is the same/similar procedure used in AdaBoost, where the sum of the training
error is minimized, see (2.2.1).

29

2.7. GRADIENT BOOSTING

2.7.3 The generic FGD Algorithm

In the general case of finite data, wherein the non-parametric approach expectations
such as Ey[·|x] cannot be estimated accurately by its data value at each xi, and even
if it could, one would like to estimate F (x) at x values other than the training sample
points.
This issue can be overcome by using nearby data points to impose smoothness on
the solution. One way to do this is to assume a parametrized form such as

F (x; {βm, am}) =
M∑
m=1

bmh(x; am)

where the (generic) function h(x; a) is usually a simple parameterized function of
the input variables x, characterized by parameters a = (a1, a2, . . .). The individual
terms differ in the joint values am chosen for these parameters. Then a parameter
optimization is done to minimize the corresponding data based estimate of expected
loss,

{βm, am}Mm=1 = arg min
{β′m,a′m}

M
1

N∑
i=1

L

(
yi,

M∑
m=1

β′mh(xi; a
′
m)

)
.

In situations where this is applicable one can try a “greedy stagewise” approach.
For m = 1, . . . ,M the parameters are obtained as

(βm, am) = arg min
β,a

N∑
i=1

L
(
yi, Fm−1(xi) + βh(xi; a)

)
(2.7.4)

and at the m’th step the function will be

Fm(x) = Fm−1(x) + βmh(x; am). (2.7.5)

Assuming now, that for a given loss function L(y, F) and/or a particular base
learner h(x; a) the solution to (2.7.4) is difficult to obtain. For any approximation
Fm−1(x), the function βm(x; am) in (2.7.4) and (2.7.5) can be viewed as the best
greedy step toward the data-based estimate of

F ∗ = arg min
F

Ey,xL(y, F (x)) (2.7.6)

under the condition that the step “direction” h(x; am) be a member of the pa-
rameterized class of functions h(x; a). Therefore, it can be regarded as a steepest
descent-decent as in (2.7.2). Substituting the loss function L(yi, F (xxi)) into (2.7.2)
and assuming sufficient regularity such that the differentiation and the integration
become interchangeable one obtains

−gm(xi) = −
[
∂L(yi, F (xi))

∂F (xi)

]
F (x)=Fm−1(x)

.

Although this gives the best steepest-decent step direction in the n-dimensional data
space at Fm−1(x), this gradient is only defined at the n training data points and
cannot be generalized to other x values.
A way to overcome this problem, is to choose a member of the parameterized class
h(x; am) that produces hm = {h(xi, am)}ni=1 which is most parallel to −gm, i.e. the

30

2.7. GRADIENT BOOSTING

h(x, a) most highly correlated with −gm over the data distribution. Specifically it
can be obtained from the solution of

am = arg min
a,β

n∑
i=1

[ỹi − βh(xi; a)]2 (2.7.7)

where the constrained negative gradient h(x, am) is used instead of the unconstrained
on −gm. The line search (2.7.3) is then preformed as

pm = arg min
p

n∑
i=1

L(yi, Fm−1(xi) + ph(xi; am) (2.7.8)

and finally the approximation is updated

FM(x) = Fm−1(x) + pmh(x; am).

In essence, the idea is instead to obtain a solution under a smoothness constraint
(2.7.4), the constraint is applied to the unconstrained solution first by fitting h(x, a)
to the “pseudo-responses” {ỹi = −gm(xi)}ni=1. This allows the replacement of the
difficult function minimization problem (2.7.4) by a least-squares function minimiza-
tion (2.7.7) and only a single parameter optimization based on the original criterion
(2.7.8). Thus, for any h(x; a) for which a feasible least-squares algorithm exists for
solving (2.7.7), one can use this approach to minimize any differentiable loss L(y, F)
in conjunction with forward stage-wise additive modeling.

Algorithm 2 Generic FGD Algorithm

1: Initialize F̂0(x) with an offset value: F̂0(x) = arg minp
∑n

i=1 L(yi, p) or F̂0(x) ≡ 0
2: for m = 1 to M do
3: Compute the negative gradient and evaluate at F̂m−1(x):

ỹi = −
[
∂L(yi, F (xi))

∂F (xi)

]
F (x)=F̂m−1(x)

, i = 1, . . . , n

4: Calculate the parameters

am = arg min
a,β

n∑
i=1

[ỹi − βh(xi; a)]2

and

pm = arg min
p

n∑
i=1

L(yi, Fm−1(xi) + ph(xi; am))

5: Update the function

Fm(x) = Fm−1(x) + pmh(x; am)

6: end for
7: Output

FM

31

2.7. GRADIENT BOOSTING

Using the notation above, Friedman (see Friedman 2001) has given the following
Algorithm 2 which will be referred to as the FGD (functional gradient decent)-
algorithm.

The number of iterations m, which is a main tuning regularization parameter,
can be determined via cross-validation. Depending on the choice of loss functions
in the generic FDG-Algorithm 2, various boosting algorithms can be defined (refer
to section 3.3.2).

32

Chapter 3

Algorithms and Expansions

The focus of this chapter is the introduction of various boosting algorithms, some
of which will be used in the simulations of Chapter 4.
It will start with presenting alternative algorithms to the AdaBoost in a binary
setting, thereby introducing the Real- and Gentle-AdaBoost, as well as the Logit
Boost. After that, the expansion to the multi-class setting is given. This will
introduce multiclass algorithms such as AdaBoost.M1, SAMME and Logit - k class.
Lastly, the final expansion to the regression problem will be covered as well.

3.1 Binary Boosting

The introduction of the AdaBoost algorithm by Freund and Schapire, sparked a
significant amount of further research on this type of learning technique (boosting),
since the theoretical properties and practical performances of it were promising.
Thus, a lot of different variants arose, which follow the basic structure of AdaBoost,
but change several aspects, such as the weight updates or the choice of loss function.

In this section some variants besides AdaBoost (Algorithm 1) for binary clas-
sification will be shown and described in detail. In the binary setting, the pos-
sible output space will be a set of only two possible outcomes: Y = {−1,+1}.
This could possibly translate to output variables such as Y = {“no”, “yes”} or
Y = {“positive”, “negative”}, for example.

3.1.1 Real AdaBoost - RealBoost

Starting off with the Real AdaBoost algorithm, which was formulated by Friedman,
Hastie, and Tibshirani (see Friedman, Hastie, and Tibshirani 2000). Out of sim-
plicity and to avoid confusion with the original AdaBoost, the Real AdaBoost will
be referred to as RealBoost in this thesis. The RealBoost alorithm, taken from
Friedman, Hastie, and Tibshirani 2000, is presented as Algorithm 3.

The name “real” refers to the fact that in RealBoost, the class probability esti-
mate is converted, using half the log ratio, to a real valued scale (as seen in step 4 of
Algorithm 3). This value or scale can be seen as the probability, that a given input
y belongs to a class, considering the current weight distribution w for the training

33

3.1. BINARY BOOSTING

Algorithm 3 Real AdaBoost

1: Initialize weights wi = 1/n for i = 1, . . . , n
2: for t = 1 to T do
3: Using weights wt, fit the classifier to obtain a class probability estimate
pt(x) = P̂w(y = 1) ∈ [0, 1]

4: Set ft(x) as

ft(x) =
1

2
log

(
pt

1− pt

)
∈ R

5: Update the weights as

wt+1 =
wte

−yft(x)

Zt

where Zt is a normalization factor, chosen such that wt will be a distribution∑n
i wt+1(i) = 1.

6: end for
7: Output the final classifier as

sign(F (x)) = sign(
T∑
t=1

ft(x)).

set. This value pt(x) is then used to represent an observation’s contribution to the
final overall model.
Just like in AdaBoost, observation weights for subsequent iterations are updated
in step 5 according to the exponential loss function of AdaBoost, thus trying to
minimize the expectation of e−yF (x).

The major difference between AdaBoost (Algorithm 1) and RealBoost (Algo-
rithm 3), are in the steps 3 and 4 of Algorithm 3. While standard AdaBoost classifies
the input patterns and computes the weighted error rate, RealBoost uses weighted
probability estimates to update the additive logistic model, rather than the classifi-
cations themselves.

Given a current estimate F (x) and the objective is to obtain an improved
estimate F (x) + f(x) through minimization of J(F (x) + f(x)) at each x, with
J(F) = E[e−yF (x)], the following can be done:

J(F (x) + f(x)) = E[e−yF (x)e−yf(x)|x]

= e−f(x)E[e−yF (x)I[y=1]|x]E[e−yF (x)I[y=−1]|x]

Dividing this result by E[e−yF (x)|x], then calculating the derivative with respect to
f(x) and setting it to zero, one obtains:

f(x) =
1

2
log

(
Ew[1[y=1]|x]

Ew[1[y=−1]|x]

)
=

1

2
log

(
Pw(y = 1|x)

Pw(y = −1|x)

)
,

with weights w(x, y) = e−yF (x), which are updated as w(x, y)← w(x, y)e−yf(x). With
this, Friedman, Hastie, and Tibshirani proved the following result (see Friedman,
Hastie, and Tibshirani 2000):

34

3.1. BINARY BOOSTING

Theorem 3.1.1 The Real AdaBoost algorithm fits an additive logistic regression
model by stagewise and approximate optimization of J(F) = E[e−yF (x)].
Furthermore, at the optimal F (x), the weighted conditional mean of y is 0 as

δJ(F (x))

δF (x)
= −E(e−yF (x))y = 0.

3.1.2 LogitBoost

LogitBoost is another boosting algorithm which was formulated by Hastie, Tib-
shirani and Friedman (2000) The Logit Boost variant consists of using adaptive
Newton steps to fit an additive logistic model. As compared to gradient descent,
Newton’s method also uses curvature information to take a more direct route, there-
fore requiring the second derivative aswell. At each iteration one approximates the
desired function F (x) by a quadratic function and then takes a step towards the
minimum of that quadratic function. Instead of minimizing the exponential loss,
LogitBoost minimizes the logistic loss (negative conditional log-likelihood)

L(y, F) = ln(1 + e−yF (x)).

In their paper Friedman et al. (see Friedman, Hastie, and Tibshirani 2000)
consider a two-class case with response yi ∈ Y = {0, 1} and represent the probability
of y = 1 by p(x) where

p(x) =
eF (x)

eF (x) + e−F (x)
.

Again considering an update to a function, as in the previous sections, as F (x)+f(x)
the expected log-likelihood is

El(F + f) = E[2y(F (x) + f(x))− log(1 + e2(F (x)+f(x))]

and the first and second derivatives at f(x) = 0 respectively are

s(x) =
∂El(F (x) + f(x))

∂f(x)
|f(x)=0 = 2E(y − p(x)|x)

and

H(x) =
∂2El(F (x) + f(x))

∂2f(x)
|f(x)=0 = −4E(p(x)(1− p(x))|x).

The Newton Update then works as follows

F (x)← F (x)−H(x)−1s(x) = F (x) +
1

2

E(y − p(x)|x)

E(p(x)(1− p(x)|x)

=
1

2
Ew

(
y − p(x)

p(x)(1− p(x))
|x
) (3.1.1)

with w(x) = p(x)(1− p(x)).

With this, one arrives at the boosting Algorithm 4, referred to as LogitBoost,
which uses Newton steps for fitting an additive logistic model by maximum likeli-
hood.

35

3.1. BINARY BOOSTING

Algorithm 4 LogitBoost (2 classes)

1: Initialize weights wi = 1/n for i = 1, . . . , n
2: for t = 1 to T and while F 6= 0 do
3: Compute the working responses zi and the weights wi

zi =
yi − p(xi)

p(xi)(1− p(xi))
, wi = p(xi)(1− p(xi))

4: Fit ft(x) by a weighted least-squares of zi to xi with weights wi
5: Update the function: F (x) = F (x) + 1

2
fm and set p(x) = eF (x)

eF (x)+e−F (x)

6: end for
7: Output the final classifier as

F (x) = sign(
M∑
m=1

fm(x))

3.1.3 Gentle AdaBoost - GentleBoost

As a final addition, the Gentle AdaBoost algorithm will be shown, which was also
formulated by Friedman, Hastie, and Tibshirani 2000. Continuing the abbreviation
of Section 3.1.1 with the RealBoost, out of simplicity the Gentle AdaBoost algo-
rithm will be referred to as GentleBoost in this thesis. The GentleBoost alorithm,
taken from Friedman, Hastie, and Tibshirani 2000, is presented as Algorithm 5.

As opposed to proceeding like the RealBoost, by optimizing E(e−y(F (x)+f(x)))
with respect to f at each iteration t, the GentleBoost takes adaptive Newton steps
just like the LogitBoost algorithm described in the previous Section 3.1.2. Therefore,
instead of fitting a class probability estimate, GentleBoost in step 3 uses weighted
least-squares regression at each iteration.

Even though RealBoost and GentleBoost are optimizing the same loss function
and perform similarly on identical data sets (as will be seen later in Section 4.2.2),
GentleBoost is numerically superior because it doesn’t require the computation of
log-ratios which can be numerically unstable, as they involve quotients, with the pos-
sibility of the denominator approaching zero. The algorithm GenleBoost is called
“gentle” because it is considered to be both conservative and more stable as com-
pared to the RealBoost algorithm.

In their paper, Friedman, Hastie, and Tibshirani (2000) showed that since,

δJ(F (x) + f(x))

δf(x)

∣∣∣∣
f(x)=0

= −E(e−yF (x)y|x) and

δ2J(F (x) + f(x))

δf(x)2

∣∣∣∣
f(x)=0

= E(e−yF (x)|x) (as y2 = 1)

36

3.1. BINARY BOOSTING

Algorithm 5 GentleBoost

1: Initialize weights wi = 1/n for i = 1, . . . , n and set F0(x) = 0.
2: for t = 1 to T do
3: Using weights wt, fit the regression function ft(x) by weighted least-squares

of yi to xi.
4: Update the function F (x) as

Ft(x) = Ft−1(x) + ft(x).

5: Update the weights as

wt+1 =
wte

−yft(x)

Zt

where Zt is a normalization factor, chosen such that wt will be a distribution∑n
i wt+1(i) = 1.

6: end for
7: Output the final classifier as

sign(F (x)) = sign(
T∑
t=1

ft(x)).

the Newton update will be

F (x)← F (x) +
E(e−yF (x)y|x)

E(e−yF (x)|x)
= F (x) + Ew(y|x),

with weights w(x, y) = e−yF (x) and consequently they obtained the following result:

Theorem 3.1.2 The GentleBoost algorithm uses Newton steps for minimizing J(F) =
E[e−yF (x)].

As one could imagine, since both algorithms are using Newton steps, there is a
similarity between the updates for the GentleBoost and those for the LogitBoost.
Using the following notation

P = P (y = 1|x) and p(x) =
eF (x)

(eF (x) + e−F (x))
,

the Newton step update of GentleBoost can be written as

E(e−yF (x)y|x)

E(e−yF (x)|x)
=
e−F (x)P − eF (x)(1− P)

e−F (x)P + eF (x)(1− P)
=

P − p(x)

(1− p(x))P + p(x)(1− P)
, (3.1.2)

and analogous those for LogitBoost (see Equation (3.1.1)) as

1

2

P − p(x)

(1− p(x))p(x)
. (3.1.3)

If p(x) ≈ 1/2, then the two expressions (3.1.2) and (3.1.3) are nearly the same.
However, if p(x) become extreme, such as p(x) ≈ 0 and P ≈ 1, then (3.1.3) can
grow to enormous size, while (3.1.2) will always remain in its interval of [−1, 1].

37

3.2. MULTI-CLASS BOOSTING

3.2 Multi-class Boosting

This section will focus on the extension of boosting to the multi-class problem, with
emphasis to the expansions of AdaBoost.
In the previous sections only binary classification problems were considered, where
the set of labels Y contained only two elements {−1, 1}. However, in most practical
learning problems the set Y will be a finite set of size k, of Y = {l1, . . . , lk} class
labels or a real bounded interval Y ∈ R. Thus, in general one will be faced with a
multi-class or a regression problem respectively.
Although not a focus of this thesis, a third case called the multi-label case is possi-
ble, where each observation x ∈ X may belong to multiple labels in Y . Hence, an
observation x will be paired with a subset Yi ⊆ Y of all possible labels. If #Yi = 1
for all i = 1, . . . , n, then it returns to a single-label or simply called a multi-class
problem.

The first presented multi-class extensions of AdaBoost (see Algorithm 1) are Ad-
aBoost.M1 and AdaBoost.M2, which were introduced by Schapire and Freud in
1997 (see Freund and Schapire 1997). The difference between them is the way they
treat each class by using different loss functions. In AdaBooost.M1 the weight of
a base classifier is a function of the error rate, while in AdaBoost.M2 the sampling
weights are increased for instances for which the pseudoloss exceeds 1/2.

This is followed by an expansion of the LogitBoost to k classes - Logit k-class,
which was presented by Friedman, Hastie and Tibshirani in their work (see Fried-
man, Hastie, and Tibshirani 2000). This boosting algorithm uses quasi-Newton
steps for fitting an additive symmetric logistic model by maximum-likelihood.

Lastly, SAMME a new algorithm for multi-class boosting was proposed in 2006
by Zhu et. al. referred to as SAMME - Stagewise Additive Modeling using a
Multi-class Exponential loss function - or simply called Multi-class AdaBoost. It
directly extends the AdaBoost algorithm to the multi-class case without reducing it
to multiple two-class problems.

3.2.1 AdaBoost.M1

The first, simpler expansion AdaBoost.M1 was presented by Freud and Schapire in
1996 (see Freund and Schapire 1996a).

Again the problem will consist of a training set of size n, {(xi, yi)}i=1,...,n , with
input values xi ∈ X , output values yi ∈ Y and a weak learner. Here X denotes
some space and Y is a finite set of cardinality k (number of classes).

In AdaBoost.M1 the initial weight distriubtion w1 is uniform over the data. The
αt are computed similiarly to AdaBoost, as was done in Section 2.2, as a function
of the error term εt. To compute the weights wt+1 from the previous weights wt and
the weak hypothesis ht, the weight of sample i is multiplied by some number αt if
ht was able to correctly classify, otherwise the weight is left unchanged. Therefore,
samples which were “easily” classified by the previous hypothesis get a lower weight,

38

3.2. MULTI-CLASS BOOSTING

while those that were “hard” to classify get a higher weight. Hence, AdaBoost.M1
like the original AdaBoost focuses on those samples which were hardest for the weak
learner in the previous iteration.
At each iteration t = 1, . . . , T , the chosen weak learner is provided with the distri-
bution of the weights over the training set, and constructs a hypothesis ht which
minimizes the training error εt (which is measured with respect to the distriubtion
of wt). The final hypothesis H(X) is again a weighted vote of the weak hypotheses,
where the class y is chosen, which maximizes the sum of weights of weak hypotheses
predicting the class.
As a result, the AdaBoost.M1 - Algorithm 6 - was stated by Freud and Schapire in
their work “Experiments with a New Boosting Algorithm”, in 1996 (see Freund and
Schapire 1996a).

Algorithm 6 AdaBoost.M1

1: Initialize the weights for the individual sample points as w1(i) = 1/n for all
i = 1, . . . , n.

2: for t = 1 to T do
3: Using the weak learner with the distribution of wt, train the classifier with

respect to the weighted data and obtain the classifier ht : X → Y
4: Calculate the error of ht

εt =
∑

i:ht(xi)6=yi

wt(i)

if εt >
1
2
, then set T = t− 1 and stop the loop.

5: Set

αt =
1

2
ln

(
1− εt
εt

)
6: Update the weights wt:

wt+1 =
wt(i)

Zt
×

{
e−αt if correctly classified yi = ht(xi)

eαt if incorrectly classifiedyi 6= ht(xi)
,

where Zt is a normalization factor, chosen such that wt will be a distribution∑N
t=1wt+1(i) = 1

7: end for
8: Output the final hypothesis

H(x) = arg max
y∈Y

∑
t:ht(x)=y

αt

The major drawback of AdaBoost.M1 is, that the error εt of the weak hypoth-
esis ht has to be less or equal to 1/2. In the binary case k = 2, this can easily be
achieved, as the weak hypothesis have to be slightly better than random guessing.
It was shown in Section 2.3, that if the weak hypotheses have an error better than
1/2, then the training error of the final hypothesis H falls to zero exponentially fast
(refer to Theorem 2.3.1). Hence for binary classification problems, this means that

39

3.2. MULTI-CLASS BOOSTING

the weak hypotheses need only be slightly better than random guessing.
For multi-class hypotheses with k > 2 the expected error of random guessing is
1− 1

k
, which increases with the number of possible classes k. Thus, the requirement

of an error to be less than 1/2 is strong and often not met.

It is important to note, that while the training error of AdaBoost.M1 is small,
this does not imply that the test error is small as well. However, Schapire and Freud
showed that if the weak hypotheses are “simple” and the number of iterations T
is “small”, then the difference between the training and test errors can also be
theoretically bounded (see Freund and Schapire 1997). In their work (see Freund
and Schapire 1997), Schapire and Freund presented a proof to the following theorem:

Theorem 3.2.1 Suppose a weak learner, when called by AdaBoost.M1 (Algorithm
6), generates hypotheses with errors ε1, . . . , εT , where εt is defined as in Algorithm 6
and assuming εt ≤ 1/2, for all t = 1, . . . , T .
Then the error ε of the final hypothesis H(·) is bounded by

ε = Pi∼wt [H(xi) 6= yi] ≤ 2T
T∏
t=1

√
εt(1− εt). (3.2.1)

3.2.2 AdaBoost.M2

The motivation of Schapire’s and Freund’s (see Freund and Schapire 1997) sec-
ond multi-class algorithm - AdaBoost.M2 - is to overcome the difficulty of an error
term less than 1/2 for the weak learners which are required in AdaBoost.M1. This
is done by extending the communication between the boosting algorithm and the
weak learner. Therefore the difference between M1 and M2 is in the way they treat
each class. In the M1 variant, the weight of a weak learner is a function of the error
rate. In M2, the sampling weights are increased for instances for which the error
exceeds 1/2.

The first step is to allow the weak learner to generate more expressive hypotheses,
which, rather than identifying a single label in Y , instead choose a set of “plausible”
labels. This can often be easier than simply choosing just one single label. The
weak learner does this by creating a vector [0, 1]k to indicate a “degree of plausi-
bility”, where values close to 1 represent high plausibility and those close to 0 low
plausibility. It is important to note, that this vector is not a probability vector, as
the sum of the components does not have to be equal to one.

In addition to the weak learner becoming more expressive, a more complex re-
quirement is placed on the performance of the weak hypotheses. Instead of using
the prediction error, the weak hypothesis ht must do well with respect to a measure
called the pseudo-loss. While the ordinary error is computed with respect to a dis-
tribution over examples, the pseudo-loss is computed with respect to a distribution
over the set of all pairs of examples and incorrect labels. Therefore, the algorithm
focuses not only on the samples which are hard to classify but especially on the
incorrect classes that are hard to discriminate.
Analogous to the weak learning assumption (see Section 2.4), it will be shown that,

40

3.2. MULTI-CLASS BOOSTING

the boosting algorithm AdaBoost.M2, which is based on these ideas, achieves boost-
ing if each weak hypothesis has pseudo-loss slightly better than random guessing.

εt =
1

2

∑
(i,y)∈B

w(t)(i, y) (1− ht(xi, yi) + ht(xi, y)) (3.2.2)

To define the pseudo-loss, one must first describe B as the set of all mislabels
B = {(i, y) : i ∈ {1, . . . , n} , y 6= yi}, while a mislabel is a pair (i, y) where y is an
incorrect label/class associated with example/data point i. A mislabel distribution
is a distribution defined over the set B of all mislabels.

One can interpret the mislabel (i, y) as representing a binary question. For a
fixed training example (xi, yi), a given hypothesis h is used to answer k − 1 binary
questions. Each question asking if the class/label of sample xi is the correct class yi
or one of the incorrect labels y. In other words, it is asked that the correct label yi
will be discriminated from the incorrect label y. Hence, the weight wt(i, y) assigned
to this mislabel represents the importance of distinguishing the incorrect label y on
example xi.

Values of ht in (0, 1) are to be interpreted as probabilities. Assuming for sim-
plicity that ht only takes values in {0, 1}. Then, if it holds for the weak hypothesis
ht that ht(xi, yi) = 1 and ht(xi, y) = 0, it means that ht has correctly predicted xi’s
class as yi and not y. Conversely, if ht(xi, yi) = 0 and ht(xi, y) = 1 then the weak
hypothesis has predicted incorrectly. Lastly if ht(xi, yi) = ht(xi, y) then the weak
hypothesis can be considered a random guess and be chosen uniformly at random.

However, if instead a more general case is considered, where the weak hypothesis
h takes values in [0, 1], then h(x, y) can be interpreted as a randomized decision for
the procedure mentioned previously above. In other words, that means that, first a
random bit b(x, y) is chosen which is 1 with probability h(x, y)and 0 otherwise (see
Freund and Schapire 1997),

P (b(x, y) = 1) = h(x, y) , P (b(x, y) = 0) = 1− h(x, y).

Applying the reasoning above to a stochastically chosen binary function b. The
probability of choosing the incorrect answer y to the question above is

P
(
b(xi, yi) = 0 ∧ b(xi, y) = 1

)
+ P

(
b(xi, yi) = b(xi, y)

)
=

1

2
(1− h(xi, yi) + h(xi, y)).

(3.2.3)

Therefore, if considering all k−1 binary questions as equally important, one can
define the loss of the weak hypothesis to be the average over all k − 1 questions, of
the probability of an incorrect answer (3.2.3):

1

k − 1

∑
(i,y)∈B

1

2
(1− h(xi, yi) + h(xi, y)) =

1

2

1− h(xi, yi) +
1

k − 1

∑
(i,y)∈B

h(xi, y)

 .

(3.2.4)

41

3.2. MULTI-CLASS BOOSTING

As already mentioned previously, a motivation of introducing pseudo-loss is to
make it easier to discriminate similar labels/classes, i.e. put an emphasis on those
binary questions which are the most difficult to answer. This is achieved by at-
taching a weight to the different questions. Then for each instance xi and mislabel
(i, y) a weight w̃(i, y) is assosiated with the question that discriminates the label y
from the correct label yi. Here w̃ : {1, . . . , n} × Y → [0, 1] is a function, refered to
as label weighting function, which assigns a probability distribution over the k − 1
discrimination problems, binary questions, mentioned above

∑
(i,y)∈B w̃(i, y) = 1.

The average in (3.2.4) is then replaced with a w̃(i, y) weighted average to obtain1 :

Definition 3.2.1 The pseudo-loss of h on training instance i with respect to the
label weighting function q is defined as:

plosst(h, i) :=
1

2

∑
(i,y)∈B

w̃(i, y) (1− h(xi, yi) + h(xi, y)) . (3.2.5)

In AdaBoost.M2 the weak learner’s goal is to minimize the expected pseudo-loss
(3.2.5) for given distribution w and weighting function q.

Schapire and Freund showed (see Freund and Schapire 1997), that a weak learner
can be boosted if it can consistently produce weak hypotheses with pseudo-losses
smaller than 1/2. Note that pseudo-loss 1/2 can be achieved trivially by any unin-
formative hypothesis. Furthermore, a weak hypothesis h with pseudo-loss ε ≥ 1/2
is also beneficial to boosting since it can be replaced by the hypothesis 1− h whose
pseudo-loss 1− ε < 1/2.

Analogous to their statement about the error bound of AdaBoost.M1, in their
work (see Freund and Schapire 1997), Schapire and Freund presented a proof to the
following theorem:

Theorem 3.2.2 Suppose a weak learner, when called by AdaBoost.M2 (Algorithm
7), generates hypotheses with pseudo-losses ploss1, . . . , plossT , where plosst is de-
fined as in Algorithm 6.
Then the error ε of the final hypothesis H(·) is bounded by

ε = Pi∼wt [H(xi) 6= yi] ≤ (k − 1)2T
T∏
t=1

√
plosst(1− plosst). (3.2.6)

3.2.3 SAMME

In their 2006 paper, “Multi-class AdaBoost” (see Zhu et al. 2009), Zhu, Rosset, Zou
and Hastie present SAMME - Stagewise Additive Modeling using a Multi-class
Exponential loss function. The algorithm’s purpose is to naturally extend the orig-
inal AdaBoost to the multi-class case without reducing it to a multiple two-class
problem.

1Definition taken from Freund and Schapire’ works, see Freund and Schapire 1996a

42

3.2. MULTI-CLASS BOOSTING

Algorithm 7 AdaBoost.M2

1: Initialize the weights for the individual sample points as w̃1(i, y) = 1/|B| for all
mislabels (i, y) ∈ B.

2: for t = 1 to T do
3: Using the weak learner with the distribution of w̃t, train the classifier with

respect to the weighted data and obtain the hypotheses ht : X × Y → [0, 1].
4: Calculate the pseudo-loss of ht

plosst(h, i) :=
1

2

∑
(i,y)∈B

w̃(i, y) (1− h(xi, yi) + h(xi, y)) .

5: Set

αt =
1

2
ln

(
1− εt
εt

)
6: Update the weights w̃t:

w̃t+ 1(i, y) =
w̃t(i, y)

Zt
· exp(−αt)

1
2
(1+h(xi,yi)+h(xi,y))

where Zt is a normalization factor, chosen such that w̃t+1 will be a distribution∑N
t=1 w̃t+1(i) = 1

7: end for
8: Output the final hypothesis

H(x) = arg max
y∈Y

T∑
t=1

αtht(x, y)

The algorithm is equivalent to a forward stagewise additive modeling algorithm
that minimizes a novel exponential loss for multi-class classification. The algorithm
is highly competitive in terms of misclassification error rate. It is worth noting that
if the number of classes is k = 2, SAMME reduces to AdaBoost.

A difference between the SAMME Algorithm 8 and the standard AdaBoost -
Algorithm 1 - is in the weights

αt = log(
1− εt
εt

) + log(k − 1). (3.2.7)

The parameters αts are positive if either εt <
k−1
k

or the accuracy of the weak clas-
sifiers is better than random guessing. With this, the new algorithm puts more
weight on the misclassified data points than AdaBoost, and the new algorithm also
combines weak classifiers a little differently than AdaBoost.

With the addition of the term log(k − 1), the SAMME algorithm puts more
weight on the misclassified data points than the previously mentioned variations of
the AdaBoost Algorithm M1 and M2. Consequently it also combines weak classi-
fiers a little differently to obtain the final classifier C(x), by the addition of the term
log(k − 1)

∑T
t=1 1(ht(x) = y).

43

3.2. MULTI-CLASS BOOSTING

Algorithm 8 SAMME

1: Initialize the weights of the observations w1(i) = 1
n
, for i = 1, . . . , n

2: for t = 1 to T do
3: Fit a classifier ht(x) to the training data using the weights wt(i)
4: Calculate the error of ht(x):

εt =
n∑

i:ht(xi) 6=yi

wt(i) /
n∑
i=1

wt(i)

5: Calculate

αt = log(
1− εt
εt

) + log(k − 1)

6: Set the new weights as

wt+1(i) =
wt(i)

Zt
×

{
1 if correctly classified yi = ht(xi)

eαt if incorrectly classifiedyi 6= ht(xi)
, i = 1, . . . , n

where Zt is a normalization factor, chosen such that wt will be a distribution∑n
i=1wt+1(i) = 1

7: end for
8: Output

C(x) = arg max
k

T∑
t=1

αt1(ht(x) = y)

This addition of the term log(k − 1) in (3.2.7) is not arbitrary, since it makes
the SAMME algorithm equivalent to fitting a forward stagewise additive model
using a multi-class exponential loss function. As was already shown, see (2.3.9),
the population minimizer of the exponential loss function is one half of the logit
transformation. In their work (see Zhu et al. 2009) they show that the Bayes optimal
classification rule in terms of minimizing the misclassification error, is equivalent to
the population minimizer.

3.2.4 Logit k Classes

In their work, Friedman, Hastie and Tibshirani (see Friedman, Hastie, and Tibshi-
rani 2000) considered k mutually exclusive classes yj for a k-class problem, each
taking values in {−1,+1}. Then similar to the previous sections the probability of
yj = 1 is set as pj(x) = P (yj = 1|x). Friedman et al. defined the symmetric multiple
logistic transformation as

Definition 3.2.2 Given a k class problem , let pj(x) = P (yj = 1|x). The symmetric
multiple logistic transformation is defined as

Fj(x) = ln(pj(x))− 1

k

k∑
j=1

ln(pj(x)) (3.2.8)

or equivalently,

44

3.2. MULTI-CLASS BOOSTING

pj(x) =
eFj(x)∑k
j=1 e

Fj(x)
where

k∑
j=1

Fj(x) = 0 (3.2.9)

By pinning down the Fj’s with the centering condition in (3.2.9), numerical sta-
bility is to be achieved. If this was not done, then one could add an arbitrary
constant to each Fj and the probabilities would remain the same.

The LogitBoost for k-classes uses quasi-Newton steps for fitting an additive sym-
metric logistic model by maximum-likelihood. As supposed to the “normal” Newton
method, the quasi-Newton method can also be used if the Hessian or Jacobian are
unavailable or too cumbersome to compute for every iteration. Instead of calculat-
ing the matrizes directly they are merely approximated.

Algorithm 9 LogitBoost (k classes)

1: Initialize weights wij = 1/n for i = 1, . . . , n and j = 1, . . . , k
2: for t = 1 to T and while F 6= 0 do
3: for j = 1 to k do
4: Compute the working responses zij and the weights wij

zij =
yij − pj(xi)

pj(xi)(1− pj(xi))
, wij = pj(xi)(1− pj(xi))

5: Fit ftj(x) by a weighted least-squares of zij to xi with weights wij
6: end for
7: Set ftj(x) = k−1

k
(ftj(x)− 1

k

∑k
j=1 ftj(x)), and Fj(x) = Fj(x) + ftj(x)

8: Update pj(x) = eFj(x)∑k
j=1 e

Fj(x)
, where

∑k
j=1 Fj(x) = 0

9: end for
10: Output the final classifier as

F (x) = arg max
j

Fj(x)

Algorithm 9 is a natural generalization of the LogitBoost Algorithm 4 using k-
classes.

Friedman et al. derived this Algorithm 9 by fist presenting the score and Hessian
for the Newton algorithm corresponding to a standard multi-logit parametrization

Gj(x) = log
P (yj = 1|x)

P (yk = 1)

with Gk(x) = 0, where the choice of the base class k is arbitrary. The expected
conditional log-likelihood is

E((l)(G+ g)|x) =
k−1∑
j=1

E(yj|x)(Gj(x) + gj)− log(1 +
k−1∑
j=1

eGj(x)+gjk(x))

45

3.3. REGRESSION BOOSTING

with

sj(x) = E(yj − pj(x)|x) , j = 1, . . . , k − 1

and the Hessian as

Hj,i(x) = −pj(x)(δji − pi(x)) , j, i = 1, . . . , k − 1.

As it is quasi-Newton, Friedman et al. used a diagonal approximation to the Hessian,
producing the updates

gj(x) =
E(yj − pj(x)|x)

pj(x)(1− pj(x))
, j = 1, . . . , k − 1.

Now to convert the symmetric parametrization, it is to note that gj = 0 and

set fj(x) = gj − 1
k

∑k
i=1 gi(x). Again, any class could be used as a base for this

procedure. By averaging over all choices for the base class the update will be

fk(x) =
k − 1

k

(
E(yj − pj(x)|x)

pj(x)(1− pj(x))
− 1

k

k∑
j=1

E(yj − pj(x)|x)

pj(x)(1− pj(x))

)
.

The advantage of quasi-Newton steps is the removing of the dependency of choosing
a base class.

3.3 Regression Boosting

As the previous Section 3.2 introduced a few possible multi-class expansions to
boosting, this chapter will show boosting in the setting of a regression problem.
However, it is not a focus of this thesis and will not be presented in the experiments
of Chapter 4.

In the regression case, given a set of data {(xi, yi)}i=1,...,n, the label space Y will
be a subset of the real numbers R, as opposed to being restricted to a finite set of
labels in the binary or multi-class scenario.

3.3.1 AdaBoost.R

One of, if not the first application of boosting to a regression problem was done by
Freund and Schapire in their paper (see Freund and Schapire 1997) in 1996, where
their idea was to convert the regression problem into a classification one.

If the label space is the closed interval Y = [0, 1] and the sample (x, y) is chosen
at random according to some distribution, then the goal is to find a function H :
X → Y which predicts the value of y, for a given value x. This is done by minimizing
a loss function L. Probably the most popular choice is to find an H with small mean
squared error (MSE)

H = arg min
h∈H

E[(h(x)− y)2] (3.3.1)

46

3.3. REGRESSION BOOSTING

which, given a set of data S = {(xi, yi)}i=1,...,n equates to minimizing the empircial
MSE

H = arg min
h∈H

1

n

n∑
i=1

(h(xi)− yi)2 . (3.3.2)

Freund and Schapire (see Freund and Schapire 1997) reduced the regression
problem to a binary classification problem, and then applied their AdaBoost. The
general informal idea is to map each example (xi, yi) to an infinite set of binary
questions, one for each y ∈ Y , and each asking if the correct label yi is bigger or
smaller than y. Therefore, for every example (xi, yi) a set of examples are defined
and indexed by pairs (i, y) for all y ∈ [0, 1]: the associated instance is x̃i,y = (xi, y),
and the label is ỹi,y = Iy≥yi(y). Even though one must maintain an infinitely large
training set, this method can be implemented efficiently (see Freund and Schapire
1997), as the extension from finite sets to infinite training sets is straightforward.
Every hypothesis h : X → Y is equally reduced to a binary valued hypothesis
h̃ : X × Y → {0, 1},

h̃(x, y) =

{
1 if y ≥ h(x)

0 if y < h(x)
.

In this sense, h̃ attempts to answer these binary questions in a natural way using
the estimated value h(x).

As it was done with classification problems, a distribution w over the training
set is assumed, which is often considered uniform w(i) = 1/n. In compliance with
the previous reductions, this distribution is mapped to a density w̃ over pairs (i, y),
such that the minimization of classification error in the reduced space is equivalent
to minimization of the MSE for the original problem. This is done by defining

w̃(i, y) =
w(i)|y − yi|

Z

with Z as a normalization constant,

Z =
n∑
i=1

w(i)

∫ 1

0

|y − yi|dy.

Now if calculating the binary error of h̃ with respect to the density w̃,

n∑
i=1

∫ 1

0

|ỹ(i, y)− h̃(x̃i,y)|w̃(i, y)dy =
1

Z

n∑
i=1

w(i)

∣∣∣∣ ∫ h(xi)

yi

|y − yi|dy
∣∣∣∣

=
1

2Z

n∑
i=1

w(i)(h(xi)− yi)2,
(3.3.3)

one can see that it is directly proportional to the mean squared error.

Using this principle of reduction, Freund and Schapire presented the boosting
Algorithm AdaBoost.R (see Freund and Schapire 1997). There, for every pair (i, y),
AdaBoost.R maintains a weight wt(i, y), which is initialized by the weight w̃(i, y),

47

3.3. REGRESSION BOOSTING

Algorithm 10 AdaBoost.R

1: Initialize the weight vector for the pair (i, y) as

w̃1(i, y) =
w(i)|y − yi|

Z

for all i = 1, . . . , n, y ∈ Y and with normalization constant Z

Z =
n∑
i=1

w(i)

∫ 1

0

|y − yi|dy.

2: for t = 1 to T do
3: Normalize the weights

w̄t =
wt∑n

i=1

∫ 1

0
wt(i, y)dy

4: Using the weak learner with the distribution of w̄t, train the classifier with
respect to the weighted data and obtain the hypotheses ht : X × Y .

5: Calculate the loss of ht

εt =
n∑
i=1

∣∣∣∣ ∫ ht(xi)

yi

w̄t(i, y)

∣∣∣∣
if the error εt > 1/2, then set T = t− 1 and abort the loop.

6: Set

αt =
1

2
ln

(
1− εt
εt

)
7: Update the weights w̃t for every pair (i, y):

wt+1(i, y) =

{
wt(i, y) if yi ≤ y ≤ ht(xi) or if yi ≥ y ≥ ht(xi)

wt(i, y)αt else
.

8: end for
9: Output the final hypothesis

H(x) = inf

{
y ∈ Y

∣∣∣∣ ∑
t:ht≤y

αt ≥
1

2

∑
t

αt

}
.

48

3.3. REGRESSION BOOSTING

defined above. Those weights are then normalized to obtain the w̄t, which are con-
sequently used by the weak learner to obtain a weak hypothesis ht, which minimizes
the loss ε. Then the weights updated as described by the reduction.

Similar to the AdaBoost.M2 algorithm, AdaBoost.R not only varies the distri-
bution over the examples (xi, yi), but also modifies in every round the definition
of the loss suffered by a hypothesis on each example. Therefore, even though the
goal is to minimize the squared error, the weak learner must be able to handle loss
functions that are more complicated than MSE.

Since the reduced weak hypothesis h̃(x, y) are non decreasing as a function of y,
a final hypotheses h̃ as the threshold of a weighted sum of these hypothesis is also
non-decreasing as a function of y. With a binary output of h̃, for every x there is
one value of y for which f̃(x, y) = 0 for all y′ < y and f̃(x, y) = 1 for all y′ > y. This
is equivalent to the value of y given H(x), which was defined in the AdaBoost.R
(Algorithm 10).

There is still the conundrum of maintaining weights wt(i, y) over an infinity set
of points y. If those weights are viewed as a function of y, the weights wt(i, y) be-
come a piece-wise linear function. At the first iteration t = 1, w1(i, y) has two linear
pieces, and each update at step 7 of Algorithm 10 has the potential to break one of
the parts in two at the point ht(xi). The storing and updating of such piece-wise lin-
ear functions are all straightforward operations. Furthermore, the integrals can be
evaluated explicitly since these only involve integration of piece-wise linear functions.

Freund and Schapire stated the following theorem in their work (see Freund and
Schapire 1997), which describes the performance of AdaBoost.R, by providing an
upper bound for the error.

Theorem 3.3.1 Suppose a weak learner, when called by AdaBoost.R (Algorithm
10), generates hypotheses with errors ε1, . . . , εT , where εt is defined as in Algorithm
10
Then the mean squared error ε of the final hypothesis H(·) is bounded by

ε = E[(H(xi)− yi)2] ≤ 2T
T∏
t=1

√
εt(1− εt). (3.3.4)

3.3.2 LS, LAD and M - Boosting

Several loss criteria can be applied to the Generic FDG Algorithm (refer to Algo-
rithm 2 in Section 2.7.3) to obtain different regression boosting algorithms.
In his work Friedman presented a handful of algorithms some of which will be briefly
mentioned here (for further details and actual presentations of the algorithms refer
to Friedman 2001 or Bühlmann and Geer 2011):

LS Boost

The LS(least-sqaures) Boost, or sometimes referred to as L2 Boost(see Bühlmann
and Geer 2011) is a functional gradient descent algorithm, using the squared error

49

3.3. REGRESSION BOOSTING

as a loss function L(y, F) = (y − F)2/2.

LAD Boost

The LAD (least-absolute-deviation) Boost, analogue to the LS Boost uses the ab-
solute error as a loss function L(y, F) = |y − F |.

M Boost

Lastly the M Boost, analogue to the other two uses the Huber’s loss2(M) as a loss
function

L(y, F) =

{
1
2
(y − F)2 |y − F | ≤ θ

θ(|y − F | − θ/2) |y − F | > θ.

2Defined by Peter Huber in 1964 in his work “Robust Estimation of a Location Parameter”.

50

Chapter 4

Simulations

In this section all calculations in the simulations will be done with the open source
programming language for statistical computing R (see R-Core-Team 2013).

4.1 Imbalanced Data

To refer to a data set as “imbalanced data”, generally implies a classification problem
where the classes are not represented equally. Suppose a given binary problem has
a total of n = n1 +n2 observations, where n1 and n2 represent the number of obser-
vations which are part of the first and second class, respectively. In most cases these
data sets will not exactly have the equal number of instances in each class, though
a small difference n1 ≈ n2 often does not matter and will have little effect. Now if
one of the two is significantly greater than the other, n1 � n2, then the data of the
classification problem will be referred to as imbalanced. Building models based on
such data sets tend to emphasize these observations belonging to the bigger class
(n1). This imbalance can occur in multi-class classification problems as well as in
binary/two-class problems.

In many situations, imbalanced data sets are not just exceptions, but occur more
often than expected. This is especially the case in medical research, as the relevant
data sets have two classes for the main outcome, of a feature being present or not.
This feature, could be a positive or negative result of an examination to determine
if the patient had signs of cancer or not. Hopefully, the majority of patients will be
healthy, while the rest will be diagnosed positively. Another example, which will be
discussed in detail in Section 4.2, would be data concerning the outcome of a sale
effort of a subscription. The number of successful sales will make up only a small
percentage of all attempts.

As was the case in the examples mentioned before, the goal of a certain classifi-
cation problem might not just be to achieve an overall low error rate. It might be
more crucial to rightly determine one class as opposed to the others, i.e. assigning
different levels of importance to the classes. With such imbalanced problems, often
more important than an overall low error rate is the correct classification of the
minority class.

Since the usual classifier tends to be more sensitive to detecting the majority

51

4.1. IMBALANCED DATA

class and less so the minority class, it becomes necessary to pre-process imbalanced
data before it is used in a model. Therefore, if nothing is done beforehand the clas-
sification will output a prediction which will be biased towards the majority class,
which can be seen later in Section 4.2.2.

Chen, Liaw and Breiman (see Chen, Liaw, and Breiman 2004) suggested two
common approaches to accommodate the problem of imbalanced data. The first
solution is to assign a higher cost to misclassification of the minority class, and si-
multaneously trying to minimize the overall cost. In a way this is already indirectly
done in boosting algorithms through the re-weighting of examples which were hard
to classify in each iteration.
The second proposed solution is to use a pre-sampling method, thereby either re-
ducing the sampling size of the majority class (under- or down-sampling), increasing
the size of the minority class (over-sampling) or as a middle ground doing both at
the same time.

It is important to note that, if such sampling/balancing methods are to be ap-
plied, then the sampling has the be done after the data was split into a training and
a test data set. This is done because otherwise the independence of training and
test set is not guaranteed.

4.1.1 Under-sampling

Maybe the most popular strategy to apply to imbalanced data sets is to “under-
sample”. Here all classes are downsized by reducing the size of the majority classes
down to a number of observations equal to the number of observations in the mi-
nority class. As a result, every class will have the same number of observations.

In detail, given a training set, denoted as Xtrain, a sample of size nmin (the size
of the minority class) for each class will be drawn from Xtrain with replacement,
thus, resulting in a new set X̃train, with nmin observations for each class. As a con-
sequence of the reduced sample size, the more imbalanced the dataset is the more
samples will be discarded when under-sampling is applied, thus loosing potentially
useful information.

4.1.2 Naive-sampling

“Naive-sampling”, just like under-sampling, downsizes all classes to the size of the
minority class nmin. However, instead of drawing with replacement from the train-
ing set Xtrain, it will be done without replacement.

4.1.3 Over-sampling

Conversely, over-sampling implies the increase of all classes, which are smaller than
the majority class. This results in every class having as many observations as the

52

4.2. BINARY EXPERIMENT

majority class.

Analogous to under-sampling, a sample of size nmax (the size of the majority
class) for each class will be drawn from Xtrain with replacement. The final set
X̃train will contain nmax observations for each class. As each class will have as
many observations as the majority class, this method can be very computationally
intensive, especially compared to under-sampling.

4.1.4 Same-size-sampling

A combination of under- and over-sampling, “same-size-sampling” downsizes “big”
classes, such as the majority class, and increases the “small” ones such as the mi-
nority class. The goal is to maintain the same size of the training data and to have
the same number of observations for each class.

Assuming there are k different classes and a total of n observations in the training
set Xtrain. Then, depending if the class has observations greater or less than dn/ke,
it will either be downsized or increased to dn/ke observations. Hence, each class will
have the same number of observations and the total number will not have changed
#X̃train = #Xtrain, as it did in under- and over-sampling.

4.2 Binary Experiment

This section will show the application of boosting on an imbalanced data set, con-
taining a binary response (“no” or “yes”). It will start off with an explanation of the
chosen data set and will then proceed with the simulation of the boosting algorithms.

Three boosting algorithms AdaBoost, RealBoost and GentleBoost, which
were described in Section 3.1, will be applied to the data set, to obtain different
results. The reasoning behind the choice of those particular three is the following.
AdaBoost is chosen because it is the first boosting algorithm conceived and is the
foundation of all successors. As it computes the weighted error rate, it is of interest
to compare it with an algorithm which uses something different, namely weighted
probability estimates to update an additive logistic model. Therefore, the second
choice will be RealBoost. Lastly, GentleBoost (just like LogitBoost) uses Newton
steps and uses weighted least-squares regression and since it therefore doesn’t re-
quire the computation of log-rations, which can be numerically unstable, it will be
the third choice. As classification or regression trees (CART, refer to Section 2.4.1)
are arguably the most popular they will be the choice of weak-learner for each of
the chosen boosting methods.

The simulations of these three boosting algorithms will be done using the R-
function“ada” which is provided by the R-package ada (see Culp, Johnson, and
Michailidis 2016 and R-Core-Team 2013).

53

4.2. BINARY EXPERIMENT

4.2.1 Data Set

The Bank dataset provided by Moro, Cortez and Rita, is publicly available1 for
research (for further details see Moro, Cortez, and Rita 2014 and Moro, Laureano,
and Cortez 2011).

The data is the result of direct marketing campaigns of a Portuguese banking
institution, which used direct marketing to promote their product. Within a cam-
paign, the internal contact centre had human agents use the telephone, to contact
clients to sell the bank term deposit and each time a contact was established, a set
of attributes was stored. The sale was motivated by offering an attractive long-term
deposit deal, with good interest rates. Occasionally, more than one contact to the
same client was required, in order to assess if the bank term deposit would be (’yes’)
or would not be (’no’) subscribed.
As this type of marketing has the drawback of possibly generating a negative at-
titude among customers towards banks due to the intrusion of privacy, it was of
importance to improve efficiency: an approximate number of successes should be
achieved with the fewest number of contacts possible. Therefore the classification
goal is to predict whether or not the client will subscribe a term deposit (variable
y), based on previous experiences.

The individual campaigns were integrated and outputted together, as single cam-
paigns were merged together. The data used in this simulation, will be a subset of
the 79354 contacts which were accumulated during 17 campaigns.
It consists of 45211 observations with no missing values, 16 variables (see Table
4.1), both categorical and numerical, and the binary result y of either (’yes’) or
(’no’). This dataset is unbalanced, as less than 12% (11.7%) records are related
with successes (see the Table 4.2).

Table 4.1: Variable description of bank data

Variable Type Description

age numeric age of participant

job categorical type of job

martial categorical marital status (”married”,”divorced”,”single”)

education categorical type of education (”unknown”,”secondary”,”primary”,”tertiary”)

default categorical has credit in default? (binary: ”yes”,”no”)

balance numeric average yearly balance, in euros

housing categorical has housing loan? (binary: ”yes”,”no”)

loan categorical has personal loan? (binary: ”yes”,”no”)

contact categorical contact communication type (”unknown”,”telephone”,”cellular”)

day numeric last contact day of the month

month categorical last contact month of year (categorical: ”jan”,...,”nov”, ”dec”)

duration numeric last contact duration, in seconds (numeric)

campaign numeric number of contacts performed during this campaign and for this client

pdays numeric number of days that passed after client was last contacted previously

previous numeric number of contacts performed before this campaign and for this client

poutcome categorical outcome of the previous marketing campaign (”unknown”,”other”,”failure”,”success”)

1The dataset can be found at the UC Irvine Machine Learning Repository (UCI):
https://archive.ics.uci.edu/ml/datasets/Bank+Marketing

54

4.2. BINARY EXPERIMENT

Table 4.2: Bank responses

no yes
39922 5289

4.2.2 Binary Simulation

The dataset is split (sed.seed(1308)) into a training set, consisting of 70% of the
observations and into a test set, made out of the remaining 30% (which results in
31647 training-observations and 13564 test-observations). Each of the three boost-
ing algorithms (AdaBoost, RealBoost and GentleBoost) is given the same training
dataset to model a final hypothesis, which is then used on the test set.

Using the aforementioned separation into training and test set, the AdaBoost,
after T = 100 iterations, returns the following result, illustrated in a confusion
matrix:

Table 4.3: AdaBoost test set

Actual class
class-labels no yes total

Predicted class
no

11659 885 12544
97.05% 57.06% 92.48%

yes
354 666 1020

2.95% 42.94% 7.52%

total
12013 1551 12325
88.57% 11.43% 90.87%

The misclassification rate of the training set2 is 8.99% (2845 out of 31647) and
using Table 4.3, the misclassification rate of the test set is 9.13% (1239 out of
13564). Here the misclassification rate3 of the test result refers to the percentage
of incorrectly classified observations: With 885 incorrectly labeled as “no” and 354
as “yes”, there were 1239 false labels out of 13564 predictions. As this difference
between training and test error is very small, overfitting is not an issue in this first
simulation.

There are 354 predictions in which AdaBoost incorrectly assumed a client of the
bank to be interested in a subscription, thus possibly alienating or mildly annoying
someone. This is often referred to as a false positive. Conversely, in 885 cases inter-
ested costumers where labelled as “not interested” in a subscription, even though
they would have been. Therefore, missing the chance of obtaining new costumers,
which is arguably economically worse than annoying someone. Analogous to the
previous connotation, this is called a false negative.

Of the 885+666 = 1551 possible subscribers, AdaBoost achieved a correct “yes”-
classification of 42.94%, which can also be called the true positive rate. Conversely,

2Out of simplicity, to save space and to focus on the essential, the tables of the training results
will be omitted.

3This term will be used interchangeably with test (training) error in this thesis.

55

4.2. BINARY EXPERIMENT

354 were incorrectly labelled, but that only equates to a misclassification of 2.95%
of the 11659 + 354 = 12013 observations not interested in a subscription. In other
words, the true negative rate is low with 2.95%. Therefore, the goal should be to
increase the percentage of the correct “yes”-classification, while possibly keeping
the wrongly classified “yes” observations low.

The next attempt, continuing with the same training and test set and the same
number of iterations (T = 100), the boosting algorithm RealBoost has the following
results:

Table 4.4: RealBoost test set

Actual class
class-labels no yes total

Predicted class
no

11641 878 12519
96.90% 56.61% 92.30%

yes
372 673 1045

3.10% 43.39% 7.70%

total
12013 1551 12314
88.57% 11.43% 90.78%

Using Table 4.4, the misclassification rate of the test set is 9.22% (1250 out of
13564), while that of the training is 9.01% (2851 out of 31647). Once again quite
similar. It is to note, that the test error is slightly lower than the training error.
Which is not unheard of and can be used to rule out overfitting.

Comparing this with the results of AdaBoost, the RealBoost model achieves a
missclassifcation rate slightly worse. However, the percentage of a correct “yes”-
classification, which is 43.39%, is slightly better than AdaBoost’s 42.94%. In other
words, having predicted 7 more possible subscriptions compared to AdaBoost.

Lastly, the final attempt, makes use of GentleBoost, applied once more on the
same training and test set and the same number of iterations (T = 100), with the
following confusion table:

Table 4.5: GentleBoost test set

Actual class
class-labels no yes total

Predicted class
no

11735 1008 12743
97.69% 64.99% 93.95%

yes
278 543 821

2.31% 35.01% 6.05%

total
12013 1551 12314
88.57% 11.43% 90.52%

In this case the misclassification rate of the training error is 9.63% (3049 out of
31647) and using Table 4.5 that of the test error is 9.48% (1286 out of 13564). Once
again, a similar error, with a slightly smaller test error.

56

4.2. BINARY EXPERIMENT

Comparing this with the results of AdaBoost, an increase of roughly 0.5%-points
in both training and test error, can be seen. Although, only 278 were incorrectly la-
belled as “yes”, as opposed to 354 (AdaBoost), GentleBoost only achieved a correct
“yes”-classification of 35.01%, whereas RealBoost had 43.39%. Hence, GentleBoost
predicted 130 less possible subscriptions as compared to RealBoost.

Summarizing after this first simulation, it seems choosing either AdaBoost or
RealBoost over GentleBoost is preferable. This is due to the lowest misclassifica-
tion rate (both training and test), as well as the clearly better “yes”-classification
percentage.

The result of only 43.39% (RealBoost) correct prediction of possible subscribers
is rather disappointing. As was mentioned already, the bank’s goal is primarily to
increase the percentage of the correct “yes”-classification and only secondarily to
keep the wrongly classified “yes” observations low, as this is approach is more eco-
nomical. In other words, it is more crucial to rightly determine the “yes” class as
opposed to the “no”. Therefore the theory of Section 4.1 will be applied, to assign
different levels of importance to the class, through the usage of pre-sampling meth-
ods.

All four sampling methods, under-, naive-, over- and same-size-sampling will be
used on the same training sample as before (70− 30 separation and set.seed(1308)),
and then given to AdaBoost to compare the different results.

The first experiment used under-sampling, where 3738 observations are drawn
from the training samples with replacement for each class, thus resulting in a new
training set with 7476 observations. It’s nmin = 3738, since the training sample
contained as many observations assigned to the “yes” class.

Table 4.6: AdaBoost - under-sample - test set

Actual class
class-labels no yes total

Predicted class
no

10165 207 10372
84.62% 13.35% 76.47%

yes
1848 1344 3192

15.38% 86.65% 23.53%

total
12013 1551 11509
88.57% 11.43% 84.85%

Comparing this new Table 4.6, with the tables without any pre-sampling, Table
4.3 for example, one can already see a clear improvement concerning the correct
classification of the second class.
Even though there is an increase in training and test error to 11.46% and 15.15%
respectively, one cannot argue against the vast improvement of a correct “yes” clas-
sification rate of 86.65% compared to the previous best 42.94% of AdaBoost. Hence,
the number of possible new subscriptions for the bank more than doubled.
On the downside though, the false positves now represent 15.38% compared to the
2.95% of AdaBoost without special consideration of sampling.

57

4.2. BINARY EXPERIMENT

Opposed to the first case of under-sampling, only the procedure of the other
three pre-sampling methods will be described but their results will only shown in
comparison with the others in Table 4.7.

The second experiment uses the pre-sampling method naive-sampling, which just
like before has 3738 observations for each class drawn from the training samples but
this time without replacement. Therefore it also has a total of 7476 observations for
the training set which is then used by the algorithm.
The third experiment is over-sampling, where 27909 observations are drawn from
the training samples with replacement for each class, thus resulting in a larger new
training set with 55818 observations. This time, nmax = 27909, as the training sam-
ple contained as many observations assigned to the majority “no” class.
Lastly, the fourth experiment of same-size-sampling uses 15824 observations, drawn
from the training samples with replacement for each class, as a new training set.
Since the size of the original training sample is n = 31647 and there are k = 2
classes, each class will have d31647/2e = 15824 observations.

The comparison for AdaBoost of not using one (none) and using one of the four
pre-sampling method is shown in Table 4.7. It shows the misclassification rate of
the training and test set, as well as the correct “yes” classification percentage of the
test set.

Table 4.7: AdaBoost results with different pre sampling methods

Sampling method
none under naive over same-size

Training error 8.99% 11.46% 13.12% 13.11% 12.75%
Test error 9.13% 15.15% 14.78% 14.66% 14.72%

“yes”-percentage 42.94% 86.65% 86.53% 86.53% 86.78%

This comparison of AdaBoost, being applied four times to the same training set
with different pre sampling method, doesn’t show big differences between the sam-
pling methods (except not using one). Additionally it was only done once to a single
training and test set. Thus, it is clear, that it is necessary to chose one of the four
pre-sampling methods but it isn’t sufficient enough to choose a specific sampling
method. Furthermore, since neither Real- nor GentleBoost were considered, it is
necessary to preform repeated simulations with all possible combinations to provide
more conclusive evidence and use it to come to a better conclusion.

Therefore, the next step will be to compare the three algorithms in repeated
(100 runs) simulations for each of the four sampling methods. In every single run,
a new split of training and test set (70/30%), is re sampled according to one of the
four sampling methods and then given to AdaBoost, RealBoost and GentleBoost,
who then produce a boosting model with T = 100 iterations. Hence, there will
be twelve different combinations of boosting algorithms (three) and pre-sampling
method (four).

58

4.2. BINARY EXPERIMENT

0 20 40 60 80 100

0.
14

0.
16

0.
18

0.
20

Under−sampling test error

Iterations

AdaBoost
RealBoost
GentleBoost

0 20 40 60 80 100

0.
14

0.
16

0.
18

0.
20

Naive−sampling test error

Iterations

AdaBoost
RealBoost
GentleBoost

0 20 40 60 80 100

0.
14

0.
16

0.
18

0.
20

Over−sampling test error

Iterations

AdaBoost
RealBoost
GentleBoost

0 20 40 60 80 100

0.
14

0.
16

0.
18

0.
20

Same−size−sampling test error

Iterations

AdaBoost
RealBoost
GentleBoost

Figure 4.1: Test errors mean of the respective algorithms, as a function of the
number of iterations t = 1, . . . , T , for each sampling method, obtained from 100
different simulations.

In Figure 4.1 the result of the repeated simulation is shown for each sampling
method in a separate line plot. In each plot the mean of the test error is shown
as a function of the number of iterations (t = 1, . . . , 100) for all three algorithms.
The boosting algorithms are forthwith colour coded: AdaBoost as red, RealBoost
as blue and GentleBoost as green. It can be seen, that the test error of Gentle-
Boost is the worst by quite a margin and AdaBoost slightly outperforms RealBoost.
This is true for every single pre-sampling method. Besides this, it also shows that
GentleBoost does not improve as much as the other two algorithms with increasing
iterations and it seems to stagnate after about 30 iterations. As a rule of thumb
or lower bound, one could argue that for each sampling method and algorithm at
least 20 iterations are necessary for each method to significantly reduce the test error.

Figure 4.2, which in the upper plot presents the results of the individual test
errors in boxplots for each algorithm and sampling method. In the lower second
plot the percentage of correct classification of the “yes” class is shown in a similar
manner as above.
While AdaBoost outperforms the other two with respect to the test error, its “yes”
classification performance is inferior to the other algorithms. Depending on the
choice of pre sampling method either RealBoost or GentleBoost are shown to achieve
higher curve of classification. Thus, a case for choosing either could be made. How-

59

4.2. BINARY EXPERIMENT

●

●
●

●

●

●

●

●

●

●●
●

●

●

●

●

Same Over Under Same Over Naive Under Naive Under Naive Same Over

0.
14

0.
15

0.
16

0.
17

0.
18

Test error

AdaBoost
RealBoost
GentleBoost

●

●

●

●

●

●
●●

●
●

●

●

●

●
●

●●

Naive Naive Under Same Over Same Under Naive Over Same Under Over

0.
84

0.
86

0.
88

0.
90

Yes classification percentage

AdaBoost
RealBoost
GentleBoost

Figure 4.2: Boxplots of the test errors and the percentage of the correct classification
of the “yes” class for each sampling method and each boosting algorithm, obtained
from 100 different simulations.

60

4.2. BINARY EXPERIMENT

ever, since the test error of GentleBoost is worse, RealBoost seems the best prag-
matic choice out of the three.

The previous Figure 4.2 suggests some kind of pattern to govern the relationship
between the different algorithms and sampling methods. This becomes more clear
in Figure 4.3, where the medians of the percentage of correct “yes” classification is
plotted against the medians of test errors.

0.860 0.865 0.870 0.875 0.880 0.885

0.
15

0
0.

15
5

0.
16

0
0.

16
5

0.
17

0

Medians

Rate of correct classification of 'yes' class

Te
st

 e
rr

or
 r

at
e

AdaBoost.under

RealBoost.under

GentleBoost.under

AdaBoost.over

RealBoost.over

GentleBoost.over

AdaBoost.same

RealBoost.same

GentleBoost.same

AdaBoost.naive

RealBoost.naive

GentleBoost.naive

Figure 4.3: Comparison of the test errors and the percentage of the correct classi-
fication of the “yes” class for each sampling method and each boosting algorithm,
obtained from 100 different simulations.

This plot can be used to identify the “best” and most appropriate sampling
method. Since the primary goal of this classification is to obtain as many new sub-
scriptions as possible, a higher percentage of correct “yes” prediction is imperative.
The naive-sampling method appears best as it is furthest to the right (higher per-
centage) for each algorithm. While either same-size (AdaBoost and RealBoost) or
under (GentleBoost) could be considered second depending on the choice of boost-
ing algorithm.

In conclusion to the analysis done above on Figures 4.2 and 4.3, RealBoost
pre sampled with the naive-method warrants to be the considered the best choice.
Besides this combination the following three are worth considering as well: same-
sized-sampled RealBoost, naive-sampled GentleBoost and under-sampled Gentle-
Boost. Out of simplicity the four combinations will be subsequently referred to as
naive-Realboost, same-size-Realboost, naive-GentleBoost and under-GentleBoost.

After having established the four most promising combinations of algorithms

61

4.2. BINARY EXPERIMENT

●

●●
●

●

●

●

●●●

●●

pr
ev

io
us

ca
m

pa
ig

n

ag
e

ba
la

nc
e

pd
ay

s

du
ra

tio
n

de
fa

ul
t

jo
b

da
y

po
ut

co
m

e

ed
uc

at
io

n

m
on

th

co
nt

ac
t

ho
us

in
g

m
ar

ita
l

lo
an

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Naive−RealBoost − variable importance

●

●●

●
●
●

● ●
●
●

●

●●

●
● ●

●

pr
ev

io
us

ca
m

pa
ig

n

ba
la

nc
e

pd
ay

s

ag
e

jo
b

da
y

du
ra

tio
n

po
ut

co
m

e

de
fa

ul
t

m
on

th

ed
uc

at
io

n

co
nt

ac
t

ho
us

in
g

m
ar

ita
l

lo
an

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Naive−GentleBoost − variable importance

●

●

●

●●

●
●

●

●

pr
ev

io
us

ba
la

nc
e

ag
e

ca
m

pa
ig

n

du
ra

tio
n

pd
ay

s

jo
b

po
ut

co
m

e

da
y

de
fa

ul
t

m
on

th

co
nt

ac
t

ed
uc

at
io

n

ho
us

in
g

m
ar

ita
l

lo
an

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Same−size−RealBoost − variable importance

●

●

●

●
●

● ●
●

●

●

●
● ●

● ●●

●●
●

●

● ●

pr
ev

io
us

ca
m

pa
ig

n

ba
la

nc
e

pd
ay

s

ag
e

du
ra

tio
n

da
y

jo
b

po
ut

co
m

e

de
fa

ul
t

m
on

th

ed
uc

at
io

n

co
nt

ac
t

ho
us

in
g

m
ar

ita
l

lo
an

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Under−GentleBoost − variable importance

Figure 4.4: Boxplots of the variable importance scores of all variables for each afore
mentioned combination of boosting algorithm and sampling method.

and sampling methods, it is interesting to illustrate the variable importance for
each method. Figure 4.4 shows the box plots of scores for the variables for each
method mentioned. The importance scores are defined by Hastie, Tibshirani and
Friedman in their work “The Elements of Statistical Learning” (see Hastie, Tibshi-
rani, and Friedman 2008). It is a rather standard measure for determining variable
importance. The more often a variable is selected for boosting the more likely the
variable contains useful information for classification.

In Figure 4.4 one can see that for all four methods, out of the 16 different
variables, the variables “previous”, “balance”, “campaign”, and “age” are always
within the top five, albeit in slightly different sequence. However, a minor emphasis
on “previous”, describing the number of contacts performed before the campaign for
this client (refer to Table 4.1 for an explanation of variables), can be seen as it is
clearly a step above the others. This seems logical, as it might indicate if the person
called had already been a (“previous”) client and therefore might be more inclined
to agree to another subscription. Similarly, “campaign” describes the number of
contacts performed during the campaign. Thus, describing the attention given to a
certain customer, to convince him of the possible benefits of a subscription. The im-
portance of “balance”, being the average yearly balance in Euro, is self explanatory
as the contacted person should be able to afford the subscription. The importance
of the variable “age”, indicates the existence of certain age groups to be more or

62

4.2. BINARY EXPERIMENT

●

●

●
●

●

●

●
●

●

pr
ev

io
us

ba
la

nc
e

ca
m

pa
ig

n

ag
e

pd
ay

s

du
ra

tio
n

jo
b

po
ut

co
m

e

da
y

de
fa

ul
t

m
on

th

co
nt

ac
t

ed
uc

at
io

n

ho
us

in
g

m
ar

ita
l

lo
an

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

RealBoost − variable importance

●

● ●

●●●●
●●

●
●●
●●

pr
ev

io
us

ca
m

pa
ig

n

pd
ay

s

ba
la

nc
e

da
y

ag
e

jo
b

po
ut

co
m

e

du
ra

tio
n

m
on

th

de
fa

ul
t

ed
uc

at
io

n

co
nt

ac
t

ho
us

in
g

lo
an

m
ar

ita
l

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

GentleBoost − variable importance

Figure 4.5: Boxplots of the variable importance scores of all variables for RealBoost
and GentleBoost without any pre sampling method applied.

less interested in a new subscription.

Conversely, “loan”, “marital” and “housing” are always least relevant by a visi-
ble margin.
Thus, it doesn’t seem to matter much if a person has or hasn’t a personal (“loan”)
or a housing loan(“housing”).
Lastly, the low importance of the variable “marital” shows that being either married,
divorced/widowed or single doesn’t affect the targets willingness to buy a subscrip-
tion.

It is to note, that since all four methods applied to data pre-sampled, these
variable importance plots represent such models which placed a focus on the minority
class (“yes”). An additional step is to compare these with the variable importance
of a simulation of RealBoost and GentleBoost without any of the pre-sampling
methods. The result of this (again 100 runs and T = 100 boosting iterations) can
be seen in Figure 4.5.
However, there doesn’t seem to be that much of a difference between the two. This,
can be seen more clearly in Table 4.8 where the ranking of each variable is displayed
according to the method used.

4.2.3 Conclusions

Now to summarize the results of the three boosting algorithms which were applied to
the imbalanced binary bank data set. With the analysis done in Section 4.2.2 it can
be concluded, that RealBoost, sampled with the naive method, provided the best
results in regards to the correct classification of the “yes” class and had a reasonably
low test error. Three alternatives to this to consider are RealBoost with same-size or
GentleBoost either naive-sampled or under-sampled. AdaBoost generally achieved
the best test errors but had the lowest percentages of correct “yes” classification.
Since the primary objective of this classification was to achieve a high rate for this
percentage, the algorithm AdaBoost fails in comparison to the other two boosting
algorithms.

The minority method naive-sampling proved to have the highest percentages of

63

4.2. BINARY EXPERIMENT

Table 4.8: Ranking of variable importance

Sampling - Algorithm Combination

variable Naive-Real Same-Real Naive-Gentle Under-Gentle None-Real None-Gentle

age 3 3 5 5 4 6

job 8 7 6 8 7 7

marital 15 15 15 15 15 16

education 11 13 12 12 13 12

default 7 10 10 10 10 11

balance 4 2 3 3 2 4

housing 14 14 14 14 14 14

loan 16 16 16 16 16 15

contact 13 12 13 13 12 13

day 9 9 7 9 9 5

month 12 11 11 11 11 10

duration 6 5 8 6 6 9

campaign 2 4 2 2 3 2

pdays 5 6 4 4 5 3

previous 1 1 1 1 1 1

correct classification of the “yes” class of the four sample methods to overcome the
issue of the imbalance in the present data set. It is quite interesting, that the major-
ity method of over-sampling showed better results than under-sampling only in the
case of RealBoost, whereas it was the worst for both GentleBoost and AdaBoost. In
Section 4.3.2 it will be shown however, that the majority method will consistently
lead to better results in multi-class simulations as compared to the minority method.
Regardless of the existence of this special case of RealBoost, one could argue for the
use of minority methods in binary boosting settings and majority methods in multi
class boosting. However, the assumption of primarily using minority sampling on
imbalanced binary data sets and the apparent anomaly of RealBoost would warrant
further study outside of the scope of this thesis.
What can be said, is that same-size-sampling generally appears to be a safe choice of
sampling method to deal with the issue of imbalanced data sets for all three boosting
algorithms. As will also be shown in section 4.3.2, it does fairly well in a multi-class
as-well. Hence, it is arguably a first go-to method for binary and multiclass boosting
problems with imbalanced data sets.

The research done in Section 4.2.2 can be expanded upon by applying other vari-
ants of boosting algorithms and to compare the results. This can be done by using
different boosting algorithms altogether, such as LogitBoost (refer to Section 3.1.2),
or by evaluating the same three boosting algorithms with different weak learners
than the classification trees that were used. For example, the tree’s themselves
could be pruned to produce different trees, the sparse parities (refer to Reyzin 2014)
could be used or any other weak learner mentioned in Section 2.4.1.
Thereby possible combinations of boosting algorithm and weak learner might show
promise. In other words, the goal is to determine what boosting algorithm works
well with which weak learner, in the case of imbalanced binary data sets. This train
of thought could be continued by applying this procedure to a variety of categorized

64

4.2. BINARY EXPERIMENT

(size, number of variables, degree of imbalance, etc.) data sets. The final objective
of this, is to be able to provide a recommendation of a boosting algorithm with a
certain weak learner, depending on the properties of the data set and the focus of
the classification at hand.

65

4.3. MULTICLASS EXPERIMENT

4.3 Multiclass Experiment

Just like the previous Section 4.2, this section will show the application of boosting
on an imbalanced data set but unlike before it will contain multiple responses, i.e.
it will be a multiclass experiment. First a new data set will be introduced, which
has a response variable with elven different possible outcomes (k = 11), then two
multi-class boosting algorithms will be applied to estimate a classification models.

The two boosting algorithms chosen for the multiclass experiment are: Ad-
aBoost.M1 and SAMME, which were described in Section 3.2. These algorithms
will be applied to the data set and their results compared.

As was mentioned, AdaBoost.M1 is Freund and Schapire’s first expansion of their
original AdaBoost algorithm to the multi-class problem (see Freund and Schapire
1996a). Another later extension to the AdaBoost came with the SAMME algo-
rithm (see Zhu et al. 2009), which just like AdaBoost.M1 reduces to AdaBoost in
a two-class problem setting. Compared to AdaBoost.M1 it puts more weights on
misclassified observations and thus, combines the weak classifiers differently (refer
to Section 3.2.3).

The weak learners will once more be classification or regression trees (CART,
refer to Section 2.4.1), as they already were used in the binary simulation of Section
4.2. The simulations of both algorithms AdaBoost.M1 and SAMME will be done
using the R-function“boosting”, which is provided by the R-package adabag (see
Alfaro, Gamez, and Garcia 2013).

4.3.1 Meteorite Data

The meteorite data set originates from the CoMeCs Project 2017 (see CoMeCS-
Project 2017), where it was referred to as “comecs data set”. It was provided by
Brandstätter, Ferrière, and Koeberl from the Natural History Museum (Vienna,
Austria). The samples were prepared by Engrand from the Centre de Sciences
Nucléaires et de Sciences de la Matière (Orsay, France). Helchenbach from the Max
Planck Institute for Solar System Research (Göttigen, Germany) took the TOF-
SIMS4 measurements. A formatted data set was provided by Anna Sofia Kircher
(see Kircher 2016).

The dataset contains 1035 observations of 297 variables all of which are numer-
ical containing normed spectra, mass numbers5. There are no mass numbers for

4Time-of-Flight Secondary Ion Mass Spectrometry (TOF-SIMS) is a surface-sensitive analytical
technique that focuses a pulsed beam of primary ions onto a sample surface to remove molecules
from its atomic monolayers (secondary ions). These particles are then accelerated into a “flight
tube” and their mass is determined by measuring the exact time at which they reach the ctor
detector (mass spectrum). Refer to Kircher 2016 for more detailed information.

5The mass number, nucleon number or also called atomic mass, is the total number of nuceleons
(all protons and neutrons) in an atomic nucleus, which is different for each isotope of a chemical
element. It is to note that, the mass number is not the same as the atomic number, which denotes
the number of protons in a nucleus, and thus uniquely identifies an element.

66

4.3. MULTICLASS EXPERIMENT

m23,m115 and m197 as these spectra were removed for chemical reasons, therefore
only 297 of 300 inorganic mass bins were considered.

The classes are made up by ten different meteorites6 and the eleventh class is
gold, referred to as “substrate” in the data set. Gold is added, because as an element
its spectral composition is distinctive and therefore should be distinguishable from
the others. A number of corns from each meteorite (or a gold corn) is placed on
four different gold plates (presented as the target variable), each containing multiple
corns from at least two meteorites. The targets with the corns are then used for
TOF-SIMS-measurements resulting in the observations of mass numbers.
The spectra of the corns and the target are measured along a grid (see Figure 4.6).
As the corns are smaller than the mesh size of the grid, it is a priori not clear
whether the measurements are from the gold-plate or from the corn of the meteorite
itself. In other words, it was necessary to perform a classification to determine if an
observation was from said corn/meteorite or from the target and therefore belongs
to the class substrate.

Figure 4.6: Image of Target 4E1 and eleven corns belonging to different meteorites
placed upon it, taken from CoMeCS-Project 2017.

The data is imbalanced on different levels, due to the fact that not only does
every meteorite have a different number of observations, which are unequally dis-
tributed on a different number of corns but these are also placed differently on a
number of gold-plates. The imbalance of the data set is illustrated in Table 4.9.
As can be seen in Table 4.9, the data is imbalanced as “substrate” has almost
nine times as many observations as “tieschitz”. Furthermore, another imbalance
can be seen, as some meteorites such as “renazzo” only have two corns and one

6For example, Tamdakht was a meteorite which fell down on earth on the 20th of December in
2008 in Marokko, named after the village nearby.

67

4.3. MULTICLASS EXPERIMENT

target/gold-plate, while the other meteorites “pultusk” and “tamdakht” have elven
and nine corns respectively.

Table 4.9: This table shows the number of total corns, the number of different gold
plates they were placed on and the total observations for each of the elven classes.

Nr. of corns Nr. of targets Total observations
allende 4 2 170
lance 3 2 77
mocs 6 2 66

murchison 2 2 85
ochansk 1 1 44
pultusk 11 2 78
renazzo 2 1 66

substrate 4 240
tamdakht 9 2 94
tieschitz 2 1 27
tissint 6 1 88

4.3.2 Multiclass Simulation

Applying the procedure used in Section 4.2.2, the meteorite dataset will be split
(set.seed(1308)) into a training set, consisting of 70% of the observations and into a
test set, made out of the remaining 30% (which results in 724 training-observations
and 311 test-observations). Each of the boosting algorithms (AdaBoost.M1 and
SAMME) is given the same training dataset to model a final hypothesis, which is
then used on the test set.

Using the aforementioned separation into training and test set (without any pre-
sampling methods applied), the AdaBoost.M1, after T = 100 iterations, returns
the following result, illustrated with the help of a confusion matrix:

Table 4.10: AdaBoost.M1 test set

Actual class
class-label allende lance mocs murchison ochansk pultusk renazzo substrate tamdakht tieschitz tissint

P
re

d
ic

te
d

cl
as

s

allende 47 6 1 2 0 2 0 0 1 0 0
lance 0 12 0 0 0 0 0 0 0 0 0
mocs 1 2 13 1 0 0 0 0 0 0 0

murchison 0 0 0 21 0 0 0 0 0 0 0
ochansk 0 0 0 0 10 0 0 0 0 1 1
pultusk 0 0 0 0 0 18 0 0 2 0 0
renazzo 0 0 0 0 0 0 24 0 0 0 0

substrate 0 0 0 0 0 0 0 91 0 0 1
tamdakht 0 0 0 0 0 0 0 0 27 0 0
tieschitz 0 0 0 0 0 0 0 0 0 4 0
tissint 0 0 0 0 1 0 0 0 0 0 22

ccp 97.9% 60.0% 92.9% 87.5% 90.9% 90.0% 100% 100% 90.0% 80.0% 91.7%

The misclassification rate of the training set is 0% (0 out of 724), meaning that
there were no misclassifications within the training set. From Table 4.10 the misclas-
sification rate of the test set can be seen as 7.1% (22 out of 311). As the training set

68

4.3. MULTICLASS EXPERIMENT

was predicted “perfectly” and the test error is rather low considering the imbalance,
one could consider this a good result.

However, the correct class percentages7, in short ccp, vary substantially depend-
ing on the different classes. While substrate and renazzo achieve a perfect result of
100%, lance only has a ccp of 60%. However, the reason for the low ccp of lance
does not lie within the imbalance of the data set, since it had 57 observations in the
training set, while meteorites tieschitz and ochansk only had 22 and 33 respectively
and achieved better results. It is to note, that substrate (i.e. the observations of
the gold plates) was correctly identified in each instance of the test set. Hence, it
stands to reason that its distinctive properties of its spectral composition held true
to be easily distinguishable from the others.

Proceeding with the second experiment using the same training and test set and
the same number of iterations (T = 100) and applying the the boosting algorithm
SAMME leads to the following results.

Table 4.11: SAMME test set

Actual class
class-label allende lance mocs murchison ochansk pultusk renazzo substrate tamdakht tieschitz tissint

P
re

d
ic

te
d

cl
as

s

allende 47 5 1 2 0 4 0 0 1 0 0
lance 0 12 0 0 0 0 0 0 0 0 0
mocs 1 1 13 1 0 0 0 0 0 0 0

murchison 0 1 0 21 0 0 0 0 0 0 0
ochansk 0 0 0 0 11 0 0 0 0 1 1
pultusk 0 1 0 0 0 16 0 0 1 0 0
renazzo 0 0 0 0 0 0 24 0 0 0 0

substrate 0 0 0 0 0 0 0 91 0 0 1
tamdakht 0 0 0 0 0 0 0 0 28 0 0
tieschitz 0 0 0 0 0 0 0 0 0 4 0
tissint 0 0 0 0 0 0 0 0 0 0 22

ccp 97.9% 60.0% 92.9% 87.5% 100% 80.0% 100% 100% 93.3% 80.0% 91.7%

Using Table 4.11, the misclassification rate of the test set is 7.1% (22 out of 311),
while that of the training is 0% (0 out of 724). These errors are equal to the previous
result of AdaBoost.M1. However, their results still differ, in regard to where the
misclassifications occurred.

Comparing the two results of Table 4.11 and 4.10 the following can be observed.
The two algorithms seem to have the biggest issue in predicting the lance meteorite,
as in both instances the ccp of 60% is the lowest of all other classes. Therefore, the
discrepancy of varying ccp’s can be seen here as well. Although it had the lowest
number of observations in the test set, ochansk was correctly classified everytime
by SAMME. Just as before with AdaBoost.M1, the classes of substrate and renazzo
were correctly identified for every observation of the test set.

As the two boosting algorithms performed almost identically in these first two
simulation, a decision as to which algorithm is better can not be made without
further investigation. Furthermore, the issue of the imbalance of the data set was
not yet directly addressed with any pre-sampling methods. The idea of Section 4.1

7The correct class percentages represent the percentages of a certain class, which were correctly
labelled. In the previous Section 4.2.2 this was presented as the percentage of correct “yes”
classification

69

4.3. MULTICLASS EXPERIMENT

will be applied once more and different levels of importance will be assigned to the
classes, through the usage of different sampling methods.

The four mentioned sampling methods, under-, naive-, over- and same-size-
sampling will be used on the same training sample as before (70 − 30 separation
and set.seed(1308)), and then given to AdaBoost.M1 and SAMME to compare the
different results.

The first experiment used under-sampling, where 22 observations are drawn from
the training samples with replacement for each class, thus resulting in a new training
set with 242 observations. The class tieschitz had the lowest number of observations
with nmin = 22 in the training set, which determined the number of samples drawn
for each class while under-sampling.

Table 4.12: AdaBoost.M1 - under-sample - test set

Actual class
class-label allende lance mocs murchison ochansk pultusk renazzo substrate tamdakht tieschitz tissint

P
re

d
ic

te
d

cl
as

s

allende 41 0 1 2 0 3 0 0 1 0 0
lance 4 18 0 0 0 0 1 0 1 0 0
mocs 1 1 11 0 0 1 0 0 0 0 0

murchison 0 0 0 21 0 2 0 0 0 0 0
ochansk 0 0 0 0 10 0 0 0 1 0 2
pultusk 0 1 2 1 0 13 0 0 1 0 0
renazzo 0 0 0 0 0 0 23 0 0 1 0

substrate 1 0 0 0 1 0 0 91 0 0 2
tamdakht 0 0 0 0 0 1 0 0 26 0 0
tieschitz 2 0 0 0 0 0 0 0 0 4 0
tissint 0 0 0 0 0 0 0 0 0 0 20

ccp 85.4% 90.0% 78.6% 87.5% 90.9% 65.0% 95.8% 100% 86.7% 80.0% 83.3%

Comparing this new Table 4.12 with the Table 4.10 without any pre-sampling,
the previous imbalance of ccp seems to have been reduced a bit, as the class of lance
went up from 60% to 78.6%. However, at the same time the ccp of pultusk went
down from 80% to 65%.

As expected the error rates went up. The training and test error are 12.7% and
10.6% respectively, thus drastically increasing for the training set and slightly so for
the test set. These two rates are now closer to each other and contrary to before
(not using pre-sampling) one could arguably rule out overfitting.

The results of under-sampling with SAMME can be seen in Table 4.13.

Table 4.13: SAMME - under-sample - test set

Actual class
class-label allende lance mocs murchison ochansk pultusk renazzo substrate tamdakht tieschitz tissint

P
re

d
ic

te
d

cl
as

s

allende 42 2 4 3 0 3 0 0 1 0 0
lance 3 15 0 0 0 1 1 0 1 0 0
mocs 1 0 9 0 0 1 0 0 2 0 0

murchison 0 0 0 21 0 2 0 0 0 0 0
ochansk 0 0 0 0 9 0 0 0 1 0 4
pultusk 0 2 1 0 0 13 0 0 2 0 0
renazzo 0 0 0 0 1 0 24 0 0 1 1

substrate 1 0 0 0 1 0 0 91 0 0 1
tamdakht 0 0 0 0 0 1 0 0 23 0 0
tieschitz 2 2 0 0 0 0 0 0 0 4 0
tissint 0 0 0 0 0 0 0 0 0 0 18

ccp 87.5% 75.0% 64.3% 87.5% 81.8% 65.0% 100% 100% 76.7% 80.0% 75.0%

70

4.3. MULTICLASS EXPERIMENT

Just like AdaBoost.M1 the ccp’s seem to be more equally distributed. However,
the training and test errors are slightly worse, with 15.3% and 13.6% respectively.
It is worth mentioning, that in both under-sampling cases (AdaBoost.M1 and SAMME)
the class substrate still was correctly classified in each instance. Thus, the special
spectral composition of substrate (gold) still remains, even when pre-sampling is
applied.

The remaining three sampling methods, had the following numbers of observa-
tions for each class in the training set for their respective experiment. The second
experiment uses the pre-sampling method naive-sampling, which just like before has
22 observations for each class drawn from the training samples but this time with-
out replacement. The third experiment with over-sampling, where 149 (substrate
had 149 observations in the training set) observations are drawn from the training
samples with replacement for each class, thus resulting in a larger new training set
with 1639 observations. Lastly, the fourth experiment of same-size-sampling uses
66 observations, drawn from the training samples with replacement for each class,
as a new training set. Since the size of the original training sample is n = 724 and
there are k = 11 classes, each class will have d724/11e = 66 observations.

The comparison for AdaBoost.M1 and SAMME of not using a sampling method
and using one of the four pre-sampling methods is shown in Table 4.14. The table
shows the ccp of the test set for each class, the mean of the ccp and the respective
test error.

Table 4.14: Test results of all boosting algorithms (with T = 100 iterations) with
different pre-sampling methods, with the same training and test set set.seed(1308).

Correct classification of individual class

sampl allende lance mocs murchison ochansk pultusk renazzo substrate tamdakht tieschitz tissint mean error rate

M
1

none 97.9% 60.0% 92.9% 87.5% 90.9% 90.0% 100% 100% 90.0% 80.0% 91.7% 89.2% 0.071

under 85.4% 90.0% 78.6% 87.5% 90.9% 65.0% 95.8% 100% 86.7% 80.0% 83.3% 85.7% 0.106

naive 89.6% 75.0% 57.1% 87.5% 90.9% 80.0% 79.2% 100% 86.7% 80.0% 91.7% 83.4% 0.116

same 97.9% 60.0% 92.9% 87.5% 90.9% 90.0% 100% 100% 90.0% 80.0% 91.7% 89.2% 0.071

over 93.8% 70.0% 100% 91.7% 100% 85.0% 95.8% 100% 90.0% 80.0% 91.7% 90.7% 0.068

S
A

M
M

E

none 97.9% 60.0% 92.9% 87.5% 100% 80.0% 100% 100% 93.3% 80.0% 91.7% 89.4% 0.071

under 83.3% 85.0% 78.6% 91.7% 90.9% 45.0% 100% 100% 80.0% 80.0% 70.8% 82.3% 0.135

naive 87.5% 90.0% 71.4% 87.5% 90.9% 55.0% 95.8% 100% 80.0% 80.0% 91.7% 84.5% 0.113

same 97.9% 60.0% 92.9% 87.5% 100% 80.0% 100% 100% 93.3% 80.0% 91.7% 89.4% 0.071

over 95.8% 55.0% 92.9% 91.7% 90.9% 85.0% 100% 100% 90.0% 80.0% 95.8% 88.8% 0.074

Although a decision between AdaBoost.M1 and SAMME cannot be made as
the differences between their respective correct classification rates don’t look to be
significant, a certain structure of the sampling methods can be seen. Under- and
naive-sampling perform visibly worse than the other two sampling methods and
arguably worse than “none”(not pre-sampling at all) as well. This discrepancy is
shown in the error rates and in the means of the ccp’s, as the under and naive have
about five percent points less average correct classification.

The results from Table 4.14 only show the results of a single training and test set,
which isn’t sufficient enough to choose a specific sampling method and algorithm.
It is therefore necessary to preform repeated simulations analogous to the binary
simulations of Section 4.2.
Thus, the next step will be to compare AdaBoost.M1 and SAMME in repeated

71

4.3. MULTICLASS EXPERIMENT

(100 runs) simulations with and without one of the four sampling methods. Each
run will use a new split of training and test set (70/30%), which is consequently
re sampled (or not) according to one of the four sampling methods and then given
to AdaBoost.M1 and SAMME, to produce a boosting model with T = 100 itera-
tions. The result of these repeated simulations will be ten different combinations of
boosting algorithm (two) and the option of pre sampling (four methods) or no pre
sampling.

0 20 40 60 80 100

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

No sampling − test error

Iterations

AdaBoost.M1
SAMME

0 20 40 60 80 100

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

Under−sampling − test error

Iterations

AdaBoost.M1
SAMME

0 20 40 60 80 100

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

Naive−sampling − test error

Iterations

AdaBoost.M1
SAMME

0 20 40 60 80 100

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

Over−sampling − test error

Iterations

AdaBoost.M1
SAMME

0 20 40 60 80 100

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

Same−size−sampling − test error

Iterations

AdaBoost.M1
SAMME

Figure 4.7: Test errors means of the respective algorithms, as a function of the
number of iterations t = 1, . . . , T , for each sampling method, obtained from 100
different simulations.

The result of the repeated simulation is shown for each sampling method in a
separate line plot in Figure 4.7. In each plot the mean of the test error is shown for

72

4.3. MULTICLASS EXPERIMENT

●

no
ne

ov
er

no
ne

ov
er

sa
m

e

sa
m

e

na
iv

e

un
de

r

na
iv

e

un
de

r

0.05

0.10

0.15

0.20

0.25

Test error

AdaBoost.M1
SAMME

Figure 4.8: Boxplots of the test errors for each sampling method and boosting
algorithm, obtained from 100 different simulations.

●

●

●

●

●

●

●

●
●

●
●●●
●

●

●

●

●

●●

● ●●
●
●

●

●
●●●
●
●●
●●
●
●
●

●

●●

●
●

●

●

●

●

●

●●

●

●
●
●●

●
●
●●
●●
●

●
●
●

●

●●
●●●
●

●
●

●

●

●
●
●

●

●

●

●

●

no
ne

ov
er

no
ne

ov
er

sa
m

e

sa
m

e

na
iv

e

un
de

r

na
iv

e

un
de

r

0.0

0.2

0.4

0.6

0.8

1.0

Class proportions

AdaBoost.M1
SAMME

Figure 4.9: Boxplots of the class percentages for each sampling method and boosting
algorithm, obtained from 100 different simulations.

AdaBoost.M1 and SAMME as a function of the number of iterations (t = 1, . . . , 100).
To ensure coherence, the two boosting algorithms are forthwith colour coded: Ad-
aBoost.M1 as red and SAMME as blue.
In every instance/plot AdaBoost.M1 has a lower test error as compared to SAMME.
Furthermore, the aforementioned three methods of not sampling (referred to as
“none” forthwith), over and same maintain their lower error rates compared to
under- or naive-sampling. Similiar to the binary plot of Figure 4.1 in Section 4.2.2,
it can be seen, that SAMME (as RealBoost before) has an unstable start and needs
at least 10 iterations before stabilizing. Further, one could argue that, the rule of
thumb of a lower bound for the number of boosting iterations is T = 20. These num-
ber of iterations are necessary for each sampling method and boosting algorithm, to
significantly reduce the test error.

Figure 4.8 presents the results of the individual test errors as boxplots for the two
boosting algorithms at the final iteration (t = T = 100) and each sampling method.
It is no surprise, that the test error is lowest if no sampling method (“none”) was

73

4.3. MULTICLASS EXPERIMENT

used, as there was no extra emphasis of the minority classes. The sampling methods
applied can be separated in two groups. One comprising none, over and same the
other under and naive.

In Figure 4.9 the boxplots of the combined ccp for each combination of boost-
ing algorithm at the final iteration (t = T = 100) and sampling method is shown.
From Figure 4.8 and 4.9 the dominance of group one over group two can be inferred.
In both instances, test error and class percentages, AdaBoost.M1 outperforms SAMME
by a small margin for every sampling method. Therefore it seems, that AdaBoost.M1
applied with a sampling method from group one is preferable.

This relationship between the different algorithms and sampling methods is illus-
trated in Figure 4.10, where the medians of the correct class percentages is plotted
against the medians of test errors.

0.80 0.85 0.90

0.
08

0.
10

0.
12

0.
14

0.
16

0.
18

0.
20

Medians

Rate of correct classification of each class

Te
st

 e
rr

or
 r

at
e

M1_none

M1_under

M1_naive

M1_over

M1_same

SAMME_none

SAMME_under

SAMME_naive

SAMME_over

SAMME_same

Figure 4.10: Comparison of the test errors and the percentages of the correct clas-
sification of the individual classes for each sampling method and each boosting
algorithm, obtained from 100 different simulations.

This plot can be used to identify the “best” in terms of ccp and test error and
thus the most appropriate sampling method. In ranking order, the sampling meth-
ods of none, over and same clearly outperform the other two(under and naive).
Hence, providing further evidence to the previous conclusions made. In addition,
the AdaBoost.M1 algorithm appears to provide a slightly but visibly better classi-
fication in comparison with SAMME.

To summarize the analysis done using Figures 4.8, 4.9 and 4.2, the AdaBoost.M1
either not sampled at all or over-sampled, warrants to be considered the best pos-

74

4.3. MULTICLASS EXPERIMENT

sible combination. The results of the SAMME algorithm, with the same sampling
methods applied, is only slightly worse and thus worth consideration as well. The
sampling method same with either boosting algorithm, though worse than the other
two(over and none) will also be examined as a means of comparison. Out of sim-
plicity the six combinations will be subsequently referred to as none-AdaBoost.M1,
over-AdaBoost.M1, same-AdaBoost.M1, none-SAMME, over-SAMME and same-
SAMME.

It is interesting to note, that this order of sampling methods is almost the com-
plete opposite of was observed in the simulations of the binary problem of Section
4.2.2. There, the naive-sampling method appeared best for each algorithm and ei-
ther under or same-size were considered second depending on the choice of boosting
algorithm.

The correct class percentages of none-AdaBoost.M1, over-AdaBoost.M1, same-
AdaBoost.M1, none-SAMME, over-SAMME and same-SAMME are shown in Figure
4.11. Viewing the boxplot of the ccp’s of the six combinations, no substantial dif-
ferences can be seen.
The class of substrate, which represents observations made from the gold plate, was
with a few exception classified correctly for each observation and chosen method.
Thus, confirming that its spectral composition as an element is distinctive and there-
fore it’s distinguishable from the meteorites. Similiarly, the algorithms appear to
be effective with classifying the meteorites renazzo and tissint, as their ccp is quite
high. Arguably the most difficult meteorite to classify is pultusk, as its median is
lowest. These assumptions can be verified with Table 4.15, where the medians of
the ccp’s, their total means (of the medians) and the standard deviation (sd) of the
individual ccp’s is presented.

Table 4.15: Shows the medians of the correct classification percentage -ccp- of the
six combinations of boosting algorithm and sampling method, for each of the elven
classes, obtained from 100 different simulations.

Standard Deviation of ccp’s of individual class Overall

Sampling allende lance mocs murchison ochansk pultusk renazzo substrate tamdakht tieschitz tissint mean sd

M
1

none 92.31% 85.71% 84.81% 89.83% 88.89% 83.60% 100% 100% 90.91% 87.50% 100% 91.23% 6.19

over 90.70% 85.71% 85.45% 91.49% 88.56% 82.61% 100% 100% 90.00% 87.50% 96.30% 90.76% 5.81

same 86.89% 83.94% 84.81% 91.30% 87.50% 80.00% 95.83% 100% 87.50% 87.50% 96.49% 89.25% 6.03

S
A

M
M

E none 92.94% 81.82% 83.33% 88.12% 83.33% 78.26% 98.33% 100% 89.09% 85.71% 100% 89.17% 7.66

over 91.23% 84.21% 86.19% 88.68% 81.82% 77.53% 100% 100% 83.30% 87.50% 96.43% 89.17% 7.22

same 86.54% 81.98% 80.95% 89.47% 81.82% 76.46% 96.23% 100% 85.19% 87.50% 96.43% 87.51% 7.41

The standard deviations of the ccp’s of each class for every combination are
shown in Table 4.16. In this table the standard deviation of the percentages (100%)
and not of the percentage points (1.00) are calculated. Once more the means and
standard deviation for each row (algorithm and sampling combination) are shown
at the end.

With the two Tables 4.15 and 4.16 are clear decision can be made. Starting
of with the choice of algorithm, AdaBoost.M1 outperforms SAMME. It not only
has higher average ccp’s but they don’t vary as much (sd) either. Only in a few

75

4.3. MULTICLASS EXPERIMENT

●
● ●

●
●●

●●●
●●●

●
●
●●●●●●

●

●

●
al

le
nd

e

la
nc

e

m
oc

s

m
ur

ch
is

on

oc
ha

ns
k

pu
ltu

sk

re
na

zz
o

su
bs

tr
at

e

ta
m

da
kh

t

tie
sc

hi
tz

tis
si

nt

0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

None−AdaBoost.M1 − class proportions

●

●

●
●

●

●●

●
●
●●●●

●

●●

al
le

nd
e

la
nc

e

m
oc

s

m
ur

ch
is

on

oc
ha

ns
k

pu
ltu

sk

re
na

zz
o

su
bs

tr
at

e

ta
m

da
kh

t

tie
sc

hi
tz

tis
si

nt

0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

None−SAMME − class proportions

●●

●

●

●

●
●
●

●

●
●●●
●

●●●●●●●●●●●●●●●
●●

●

●●

●

al
le

nd
e

la
nc

e

m
oc

s

m
ur

ch
is

on

oc
ha

ns
k

pu
ltu

sk

re
na

zz
o

su
bs

tr
at

e

ta
m

da
kh

t

tie
sc

hi
tz

tis
si

nt

0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Over−AdaBoost.M1 − class proportions

●
●

●
●

●

●●

●
●

●●

●●●●●●●●●●●●●●●●●●●

●
●●●

●

al
le

nd
e

la
nc

e

m
oc

s

m
ur

ch
is

on

oc
ha

ns
k

pu
ltu

sk

re
na

zz
o

su
bs

tr
at

e

ta
m

da
kh

t

tie
sc

hi
tz

tis
si

nt

0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Over−SAMME − class proportions

●
●

●

●
●

●●

●

●●●●

●●●●●●●
●●●●●●●
●●
●
●●●●●
●
●

●●●

al
le

nd
e

la
nc

e

m
oc

s

m
ur

ch
is

on

oc
ha

ns
k

pu
ltu

sk

re
na

zz
o

su
bs

tr
at

e

ta
m

da
kh

t

tie
sc

hi
tz

tis
si

nt

0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Same−size−AdaBoost.M1 − class proportions

●
●●

●

●

●

●

●
●

●

●
●

●●●●●●●●●●
●
●
●
●
●●●●●●●●●●

●●●●

●●●

al
le

nd
e

la
nc

e

m
oc

s

m
ur

ch
is

on

oc
ha

ns
k

pu
ltu

sk

re
na

zz
o

su
bs

tr
at

e

ta
m

da
kh

t

tie
sc

hi
tz

tis
si

nt

0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Same−size−SAMME − class proportions

Figure 4.11: Boxplots of percentages of correct prediction of each class for the
AdaBoost.M1 and SAMME algorithm.

cases, such as with class tissint and substrate in the “none” sampling scenario, does
SAMME have slightly better results.
As for the choice of sampling method a case for either none or over can be made.
While none produces better overall results, these vary more depending on the ob-
served class. However, one could prefer not to sample at all, i.e. using the none
method. The argument for this choice, is that even though the results vary, depend-
ing on the class (6.19 vs 5.81 for the medians of Table 4.15 and 3.2454 vs 2.9770
for the sd of Table 4.16), this deviation is not significantly bigger than that of the

76

4.3. MULTICLASS EXPERIMENT

over -sampling method. This pay-off is arguably worth the slight increase of per-
formance, as the mean of the ccp’s is 91.23% (none) against that of 90.75% (over)
and the mean of the standard deviations in each class is 6.3029 (none) opposed to
6.7375 of over. Thus, its not only more accurate in its classification but individual
results do not vary as much either. Furthermore, one could argue that due to the
re-weighting of boosting in each iteration to focus on the observations which were
hard to classify, an additional step to combat the imbalance in the data set with
pre-sampling is not necessary.

Table 4.16: Shows the standard deviation of the correct classification percentage -
ccp- of the six combinations of boosting algorithms and sampling methods, for each
of the elven classes, obtained from 100 different simulations.

Standard Deviation of ccp’s of individual class Overall

Sampling allende lance mocs murchison ochansk pultusk renazzo substrate tamdakht tieschitz tissint mean sd

M
1

none 3.6641 7.9682 7.9751 5.8577 9.2390 8.2687 3.9437 0.8996 6.3461 12.1710 2.9993 6.3029 3.2454

over 4.6254 7.4748 9.6293 6.5100 9.5949 8.5531 4.8876 0.9347 6.3662 11.2603 4.2765 6.7375 2.9770

same 5.1965 8.0529 9.8796 6.5754 12.9269 8.6982 5.6354 1.2624 7.0302 10.6013 3.9543 7.2558 3.2734

S
A

M
M

E none 3.8022 8.8217 8.8633 6.7418 11.6718 8.8122 5.1929 0.8282 6.5134 12.3982 2.8981 6.9585 3.6019

over 4.6247 8.1453 10.8458 6.8701 12.6412 9.0097 5.0233 0.8609 6.9360 11.5216 3.5076 7.2715 3.6201

same 5.4454 8.9033 10.4545 7.7383 13.5219 10.0913 6.4194 1.0075 7.0748 10.7771 3.7667 7.7464 3.5429

After having established the most promising combination of algorithm and sam-
pling method, being AdaBoost.M1 without any sampling, it is interesting to
illustrate the variable importance. The R-package adabag (see adabag) quantifies
the importance of the variables with consideration of the gain of the Gini index8

given by a variable in a tree and the weight of this tree in the case of boosting.

In Figure 4.12 one can see the 15 out of 297 most important variables (spectra -
mass numbers) for each of the four shown methods. Out of these, the most impor-
tant variable is m40 , which is followed exclusively by m52 for every combination.
These two are followed by m27, m56 and m58 in no particular order.

The most important variable m40, shown in Figure 4.13, could for example be
used to distinguish the classes murchison, ochansk, renazzo and tissint from the
remaining ones. Likewise m52 adds to the classifcation of ochansk and tissint and
m68 to that of arguably lance. The spectras m27 and especially m56 can be used
to differentiate the gold plate class substrate from the meteorites as can be seen in
Figure 4.15.

Contrary to the important variables, for example m284 (the least important
variable for AdaBoost.M1 without sampling), hardly add anything to the classifica-
tion. It can be seen in Figure 4.14, that the observations for each class are scattered
and therefore no clear distinction can be made between them. The data set is quite
noisy as this is the case for many variables.

8The Gini-index is a measure of impurity, as it measures how often a randomly chosen element
from the set would be incorrectly labelled if it was randomly labelled according to the distribution
of labels in the subset (see Kircher 2016).

77

4.3. MULTICLASS EXPERIMENT

●●

●

●

●

●

●●
●

m
40

m
52

m
56

m
27

m
58

m
24

m
57

m
28

m
39

m
47

m
67

m
69

m
48

m
60

m
68

0

2

4

6

8

10

12

None−AdaBoost.M1 − variable importance

●

●

●
●●

●

●●
●●

m
40

m
52

m
56

m
58

m
27

m
24

m
57

m
28

m
47

m
48

m
39

m
67

m
31

m
29

m
71

0

2

4

6

8

10

12

None−SAMME − variable importance

●
●

●

●
●●

●

●

●
●●●

● ●

●

●● ●● ●

m
40

m
52

m
27

m
56

m
58

m
24

m
57

m
28

m
39

m
47

m
67

m
69

m
60

m
48

m
31

0

2

4

6

8

10

12

Over−AdaBoost.M1 − variable importance

●
●

●

●●

●●

●
● ●●● ●

m
40

m
52

m
58

m
56

m
27

m
24

m
57

m
28

m
48

m
47

m
39

m
67

m
71

m
60

m
54

0

2

4

6

8

10

12

Over−SAMME − variable importance

Figure 4.12: Variable Importance boxplots of AdaBoost.M1 and SAMME for the
two relevant pre-sampling methods of the 15 most important variables.

4.3.3 Conclusions

The investigation of the performance of the two boosting algorithms, applied to
the imbalanced multi-class data set comecs proved to be quite interesting. It was
concluded in Section 4.3.2 that the AdaBoost.M1 algorithm, without any sampling
method, led to the most favourable results concerning the test data. AdaBoost.M1
but with over-sampling the training set came in second. This can be interpreted
such, that it was not necessary to use a sampling method to counter the imbalance,
as “not sampling” was superior to over-sampling on this data set. It can be argued,
that AdaBoost.M1’s inbuilt re-weighting of hard to classify observations, was suffi-
cient to overcome the issue of imbalance an no additional corrective pre sampling
was necessary. Recalling the results from Section 4.2.2, this was not the case in
the binary example, where the major focus was to increase the classification of the
“yes” class. However, it was shown in Table 4.15, that the choice of AdaBoost.M1
without pre-sampling was superior for almost all eleven classes, except for a few
exceptions. Therefore, even if the primary objective was to correctly classify a cer-
tain meteorite, the decision of choosing AdaBoost.M1 without sampling is still valid.

The boosting algorithm SAMME performed slightly worse than AdaBoost.M1
in this classification simulation of the imbalanced data set comecs. However, it has

78

4.3. MULTICLASS EXPERIMENT

●●●

●
●●●●
●
●●●
●

●●
●
●

●
●●
●
●
●

●

●●
●●●
●●●●
●●
●

●●
●
●●●
●
●
●●
●
●
●

●●●

●
●

●●●●●●
●
●

●●●
●●

●●●
●●

●
●
●

●
●●
●●
●

●●
●●

●●●
●●

●

●

●

●●

●●●
●●●

●

●●
●

●

●
●

●

●●
●
●
●
●●●●
●
●●
●●●●●●●●●●
●●●●●●●
●●

●
●
●

●

●
●
●

●

●

●●

●

●

●

●
●●●●●
●
●●
●●●●
●●
●●
●●
●●●●
●
●●●●●●●●●●●●●

●
●●
●●●●●●
●
●

●●●●
●●●●
●
●
●●
●
●●●
●●●
●
●
●●●●
●●●
●
●
●
●●●●
●

●●●●●●

●
●●

●●●●●

●●
●
●●●

●●●
●●

●●

●●
●●●
●

●
●●●
●

●●●
●
●●●
●●
●
●

●

●

●
●

●●
●

●

●
●●●●
●●●●

●

●●●●●●●●

●

●

●
●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●●

●

●

●

●
●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●
●

●
●●

●

●

●

●

●
●●●
●

●

●
●

●

●

●

●

●
●

●

●
●

●●

●
●●

●

●

●

●
●●

●

●

●

●

●

●

●
●

●●
●

●

●

●

●●

●●●●●●●●●●●●
●●●●●●●
●●●
●●●
●
●
●●●●
●
●●
●●●●
●●●●●●●
●●
●

●●●●●●
●
●
●

●

●
●●●●●
●

●●
●●

●

●

●

●

●●
●

●

●

●●

●●●

●●
●
●●●●●

●●
●●

●●

●●
●●

●●●
●
●●●●
●●●●●

●

●●

●

●

●●
●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●●

●

●

●
●

●
●

●
●

●

●
●

●

●
●

●
●
●

●●

●

●●

●

●
●●
●

●●●●●
●

●●
●
●●

●

●●
●
●●●●
●
●●
●
●
●

●
●●

●
●
●
●●

●●
●●●
●●●●●●●
●
●●●
●
●●●
●●●●

●●
●●
●●●●●●
●●●●

●●●●

●●
●
●

●
●

●●
●
●

●

●●●●
●●●
●

●
●●●
●●
●
●●●
●●●●
●●

●
●

●
●

●●●
●●
●

●●●●●
●

●●
●
●●

●

●●
●
●●●●
●
●●
●
●
●

●
●●

●
●
●
●●

●●
●●●
●●●●●●●
●
●●●
●
●●●
●●●●

●●
●●
●●●●●●
●●●●

●●●●

●●
●
●

●
●

●●
●
●

●

●●●●
●●●
●

●
●●●
●●
●
●●●
●●●●
●●

●
●

●
●

●●

●
●●●
●●●●

●●●
●●
●●●
●●●
●
●
●
●
●●●●

●●
●
●
●
●●
●
●
●

●

●●

●

●
●
●
●●

●
●
●
●

●

●●
●
●
●
●●●
●
●

●●●●

●

●
●

●

●
●●

●●●●●
●
●
●
●

●
●

●
●
●

●

●
●●

●

●●

●
●

●●
●

●

●●
●

●●

●●●

●

●●●●

●

●
●●●●

●●
●

●

●●

●

●●

●

●

●

●

●●●
●●

●

●
●

●

●●
●

●

●●●●
●
●

●●
●●
●

●
●●●
●
●
●
●
●
●

●●

●●●

●●
●
●
●

●

●
●

●

●

●
●
●

●

●
●
●

●
●

●

●

●

●

●

●

●●

●

●
●●
●
●

●
●
●

●

●

●

0 200 400 600 800 1000

5
10

20
30

Variable m40
m

as
s

nu
m

be
r

allende
lance
mocs
murchison
ochansk
pultusk

renazzo
substrate
tamdakht
tieschitz
tissint

Figure 4.13: Variable plot of the important spectrum m40 for all observations in
the data set.

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●●
●●
●●

●

●

●
●●
●

●●

●●●

●

●

●

●

●

●

●

●

●

●●

●●

●
●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●●

●●
●
●
●●

●

●●
●

●
●
●
●

●

●

●

●●●
●

●●

●
●

●

●

●
●

●●

●●

●

●●

●

●

●

●●
●●
●●

●

●●
●

●
●

●

●●

●

●●
●
●

●
●

●

●●

●●
●●

●
●
●●

●

●

●
●●
●
●

●

●●●●●

●

●
●●●●
●

●

●●

●

●●

●
●

●

●

●
●

●

●
●

●●
●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●●
●●

●

●

●
●

●
●

●
●

●

●
●

●

●
●
●

●●
●●

●
●

●●
●
●

●

●

●

●●

●
●

●●●●●●
●●

●

●

●

●●

●

●

●●

●

●

●

●
●
●

●
●

●

●

●
●

●

●

●

●

●●●
●
●●●
●
●
●

●

●●
●

●

●

●

●

●

●

●●
●

●

●

●

●●●●●●

●

●

●●●●
●

●●●

●

●

●

●

●

●

●
●

●

●
●

●

●●●

●
●
●
●●
●
●

●

●

●●●

●

●

●

●

●

●

●
●●
●●●●

●●

●
●
●

●
●
●●

●
●

●
●

●
●
●

●
●
●●
●●
●
●

●
●
●
●
●●●●
●

●●

●

●

●

●

●

●
●
●

●

●

●●

●●

●

●
●
●
●

●

●
●
●●

●

●

●
●
●
●
●

●

●
●

●●
●
●●●●●

●

●
●●
●●

●

●●●●●

●
●
●●●●●
●

●

●

●

●

●

●
●

●●
●
●

●

●●
●

●●

●

●

●

●

●

●●

●

●●●●
●

●

●

●

●●

●

●

●
●
●●
●
●
●

●

●

●●●
●
●

●
●●
●
●
●
●
●

●
●●
●●
●

●

●
●

●

●

●

●

●

●
●●●●

●
●
●●●●
●
●●●●●

●

●
●●
●

●
●
●●
●
●

●

●
●

●

●

●●
●

●

●●

●
●●

●

●

●
●
●●
●●
●

●

●

●●

●
●●●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●●
●
●

●
●

●

●

●

●

●

●

●●●

●

●
●
●

●

●

●
●
●
●●●

●

●

●

●

●
●●

●●

●
●●
●

●

●

●●

●

●●

●

●

●

●

●

●

●
●●●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●
●
●
●

●
●

●

●●

●
●
●

●

●●
●●
●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●●
●
●

●
●

●

●

●

●

●

●

●●●

●

●
●
●

●

●

●
●
●
●●●

●

●

●

●

●
●●

●●

●
●●
●

●

●

●●

●

●●

●

●

●

●

●

●

●
●●●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●
●
●
●

●
●

●

●●

●
●
●

●

●●
●●
●

●

●●
●
●
●
●●

●●●●
●
●

●

●●

●●

●●
●

●

●

●●

●

●

●

●
●
●

●

●●●

●

●

●

●
●

●

●

●

●

●●

●

●

●●

●

●●●●

●

●●
●

●
●
●

●

●

●

●●

●

●●●

●
●
●

●

●●●●
●

●
●

●

●

●

●

●●●●

●
●●

●

●●
●
●
●●
●
●●●
●●
●●●
●
●●●
●
●●

●

●●●●
●

●

●
●
●

●

●●
●
●

●

●●
●●

●●●●

●

●

●

●

●

●
●●●
●

●

●●
●
●
●
●●
●
●●

●

●

●

●

●●●

●●

●
●
●

●●

●●

●

●●
●●●
●

●

●

●

●●

●●
●
●●
●●

●●●
●

●●●
●●

●

●

●

●

●●

0 200 400 600 800 1000

0.
00

0.
10

0.
20

0.
30

Variable m284

m
as

s
nu

m
be

r

allende
lance
mocs

murchison
ochansk
pultusk

renazzo
substrate
tamdakht

tieschitz
tissint

Figure 4.14: Variable plot of the least important spectrum m284 for AdaBoost.M1
without sampling, for all observations in the data set.

a similar behaviour with regards to the choice of sampling method, as it was best
to not sample, followed by over-sampling and then to use same-size.

The minority methods of under-and naive-sampling clearly had the worst results
of the five considered methods. It is interesting to note, that this is the opposite of

79

4.3. MULTICLASS EXPERIMENT

what occurred in the previous binary simulation of Section 4.2.2. There, the best
option was to naive-sample RealBoost or GentleBoost, followed by either same-size
or under-sampling depending on the chosen boosting algorithm. Same-size generally
appears to a safe choice of sampling method to deal with the issue of imbalanced
data sets, as it was only slightly worse than over-sampling and it likewise performed
well in the binary simulation. Furthermore it is computationally superior and has
less tendency to overfit compared to over-sampling.

Further studies could encompass the use of different weak learns with AdaBoost.m1
and other boosting algorithms, instead of the classification trees which were used.
A quick way to test a different base procedure is by changing the tree’s properties
such as the maximum depth of any node of the final tree, maybe even reducing to
stumps. Various other weak learners can used as well, preferably those that satisfy
the recommended properties of Section 2.4.1.
Of course other multi-class boosting algorithms could be used to possibly achieve
better results than with AdaBoost.M1 or SAMME.

80

4.3. MULTICLASS EXPERIMENT

●
●
●

●
●
●●●

●

●

●

●
●

●●
●
●●

●

●

●
●

●●

●
●●●●
●
●●

●

●

●
●

●●
●
●
●
●

●

●

●●●●●
●

●●

●
●
●
●
●
●

●
●

●
●●●

●
●

●

●●●●
●
●

●

●
●

●●●

●

●●
●

●
●

●●

●
●

●

●

●

●

●
●
●

●●

●●
●

●

●●
●

●

●
●
●

●●●
●●
●●●●

●●
●●
●●
●

●
●
●
●

●
●

●

●●
●

●

●●
●

●
●
●

●

●●
●
●

●

●

●
●

●

●

●

●●●
●●●

●

●

●●●●●
●
●

●●

●
●

●
●
●●

●
●

●

●
●

●

●
●
●

●●
●

●●●

●●
●

●

●●
●
●

●
●
●●●

●

●
●

●●
●

●

●

●●

●

●
●

●
●
●

●●

●
●
●●
●
●
●●
●●●
●●
●
●
●
●●●●●
●●●

●●●●

●
●
●●●●●
●●
●●
●

●●

●●

●●

●
●●●●●●
●●●●
●●●●
●●

●

●
●

●●
●●●●

●
●

●

●●
●

●

●

●
●

●

●

●

●

●
●
●●

●●●●●
●●
●●
●
●
●●
●●
●
●
●●●●
●
●
●
●
●
●●
●
●
●

●●
●●
●
●

●
●
●●

●●
●●●●●
●●
●

●
●
●●●
●●●●
●
●●
●
●●

●
●●
●●●

●●
●●
●
●

●●
●
●●●●

●●

●●

●

●
●
●
●

●
●
●

●
●

●●●

●

●

●
●

●
●

●

●●●

●●●

●
●
●●
●●●●
●
●●●●●

●●●●●●●●

●●●●
●●●●●●
●●
●●
●●
●●●●●
●●
●●●●●●
●●
●●●●

●
●●
●
●
●
●
●●

●
●

●
●
●

●
●
●
●●

●●●●
●●●●●●●

●
●●●●

●
●

●●
●●

●●●●●
●●●●●
●●●
●
●
●
●

●

●
●●●
●

●

●
●
●●

●

●
●
●●

●
●
●●
●
●

●

●

●

●

●
●
●

●
●

●

●
●

●
●●●

●

●
●●

●●
●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●
●●●●●●●●●
●
●●●●●●●●●●●●●●●●●

●
●●●●●●●●●●
●●●
●
●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●

●●●●●●●●●
●
●●●●●●●●●●●●●●●●●

●
●●●●●●●●●●
●●●
●
●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●

●

●
●
●
●

●
●●

●●●

●

●
●
●

●
●●
●

●
●
●
●

●

●

●●

●

●

●

●●

●●
●

●●

●
●●

●
●
●

●

●

●●

●

●

●
●
●

●
●

●

●
●

●

●
●

●

●
●●

●
●

●

●

●
●
●●●

●●●●

●●●
●

●●
●

●

●

●

●

●
●
●
●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●●

●

●

●
●●

●

●●●
●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●●●●●●●●
●●●
●

●

●

●
●
●

●●
●
●●●●●
●
●
●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●
●●●

●

●
●●●●

●

●●
●

●

●

0 200 400 600 800 1000

5
10

15

Variable m27

m
as

s
nu

m
be

r

allende
lance
mocs

murchison
ochansk
pultusk

renazzo
substrate
tamdakht

tieschitz
tissint

●
●

●

●●
●
●
●

●

●

●

●

●

●●
●
●●

●

●
●

●

●●

●

●

●●

●

●

●
●

●

●

●

●

●●
●●●

●

●

●

●●
●●
●●

●●

●
●
●●

●

●

●
●

●

●
●
●

●
●
●

●●●●
●

●
●●●

●●
●

●

●●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●●
●

●

●●

●

●

●

●

●

●●
●
●
●
●●●●

●●
●●

●●

●

●

●●

●

●

●

●

●
●
●

●

●
●
●

●●

●

●

●
●

●

●

●

●

●
●

●

●

●

●
●
●●●

●

●

●

●●●●●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●●●
●

●

●

●●

●

●

●●●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●●
●●●●
●

●

●

●

●

●

●

●
●
●●

●
●
●●

●

●●
●
●

●
●●

●

●

●
●

●●●●●

●●

●●

●

●

●

●
●●

●●●

●●●●

●

●

●●●
●
●
●●
●●

●

●●●●●
●●
●

●

●

●
●
●

●

●

●
●

●

●
●

●
●
●

●

●
●
●●
●

●

●

●
●

●●●●

●

●

●

●

●

●●

●

●

●
●
●●

●●
●●

●

●
●●●

●

●
●
●●

●
●
●
●

●

●●●

●

●

●

●

●●●●

●●

●
●

●

●

●●

●●

●

●
●●●

●●
●●●●
●
●
●
●
●
●

●●●
●●●
●●
●

●

●●●

●
●●●●●

●
●
●
●●●
●
●
●●●

●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●

●

●

●

●

●●

●

●
●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●●●

●

●●

●●●●

●

●

●

●

●●
●

●●●
●

●
●●
●●
●●●
●●
●●●●●●●

●

●
●
●

●

●

●

●

●
●●

●

●

●
●●

●
●

●
●
●
●

●

●

●

●

●
●●

●
●

●

●

●

●
●
●

●

●

●

●
●

●

●●

●

●●●●
●●●

●●
●
●
●●
●
●
●●
●●●●●●

●
●●

●
●
●
●●
●●●

●●●●●

●
●
●●
●●
●
●
●
●
●●
●
●
●

●
●
●●●
●

●●

●●●●

●

●●●●●●●●●
●●
●●

●
●

●
●●●●
●●●●
●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●●

●●

●
●

●

●

●●●●

●
●
●
●
●
●●●

●
●●
●●●
●●●

●●●
●

●
●●●●●●●●●●●●●●

●●●
●
●●●●●●●●●
●
●
●●●●●●
●●●●●
●●●●●●●●●●●
●
●●●●
●●●●●

●

0 200 400 600 800 1000

0
5

10
20

30

Variable m56

m
as

s
nu

m
be

r

allende
lance
mocs

murchison
ochansk
pultusk

renazzo
substrate
tamdakht

tieschitz
tissint

Figure 4.15: Variable plot of the important spectra m27 and m56 for all observations
in the data set.

81

Appendix R Code

The custom R-function sample unb is used to apply the different sampling methods
of Section 4.1. In the case of the binary and multi-class simulations the input will
be the training set and the output will be a vector of indices of the training set,
which are then used by the boosting algorithm to build the model.

sample_unb - samples data according to the chosen method

Input:

data...data set which shall be sampled

method..."under", "naive", "sss"(same size sampling) or "over"

Output:

fin_ind... indices of data which were sampled by method

sample_unb <- function (data , method =’naive’) {

n <- nrow(data)

data_ind <- c(1:n)

repl <- TRUE

naive methode

if(method == ’naive’){

repl <- FALSE

n_s <- min(table(data[, ncol(data)]))

}

under sample

if(method == ’under’){

n_s <- min(table(data[, ncol(data)]))

}

over sample

if(method == ’over’){

n_s <- max(table(data[, ncol(data)]))

}

same sample size

if(method == ’sss’){

n_class <- length(table(data[, ncol(data)]))

n_s <- round (n/n_class ,0)

}

fin_ind <- tapply(data_ind, data[, ncol(data)],function (i){

sample (i, size = n_s , replace = repl) })

return(unlist(fin_ind))

}

82

The custom R-function Binary Run is used to achieve the binary simulations of
Section 4.2.2. The input consists of the bank data of Section 4.2.1, the number of
iterations(It = T = 100), the type of sampling method used and a number indicating
how many runs shall be done(100). The output includes the training and test errors,
the percentages of correct “yes” classification and the variable importance for each
algorithm.

Binary_Run - simulation of binary experiment

Input:

data...data set which shall be sampled

It...number of iterations for each boosting algorithm

runs...number of simulation runs

p... split variable of training/test set.

Output:

ans... list containing all the relevant results

Binary_Run <- function (data, It = 100, runs = 100, method =’none’,

p=0.7,...) {

INITIALIZE

Error Test/Training

Ada_errTe <- Ada_errTr <- Gen_errTe <- NULL

Gen_errTr <- Rea_errTe <- Rea_errTr <- NULL

Ada_yes <- Gen_yes <- Rea_yes <- NULL # test "yes"-classification-rate

Ada_vip <- Gen_vip <- Rea_vip <- NULL # variable importance

n <- dim(data)[1] # number of observation’s

l <- ncol(data) # number of variables + 1

Start runs

TIME MANAGEMENT

ptm0 <- proc.time()

for(i in 1:runs){

Training and Test Set

trind<-sample(1:n,floor(p*n),FALSE)

teind<-setdiff(1:n,trind)

Unbalanced Sampling method

if(method %in% c("over","under","naive","sss")){

data_tr <- data[trind,]

sampl <- sample_unb(data_tr, method=method)

}else{

data_tr <- data[trind,]

sampl <- c(1:nrow(data_tr))

}

Boosting

########### ADABOOST

BankAdaBoost <- ada(y~., data=data_tr[sampl,], iter=It, type="discrete",

83

loss="e")

BankAdaBoost <- addtest(BankAdaBoost, data[teind,-l], data$y[teind])

########### Gentle BOOST

BankGentle <- ada(y~., data=data_tr[sampl,], iter=It, type="gentle",

loss="e")

BankGentle <- addtest(BankGentle, data[teind,-l], data$y[teind])

########## Real BOOST

BankReal <- ada(y~., data=data_tr[sampl,], iter=It, type="real",

loss="e")

BankReal <- addtest(BankReal, data[teind,-l], data$y[teind])

TRAINING AND TEST ERROR = ## MISS-CLASSIFICATION %

ADA

Ada_errTeTr <- BankAdaBoost$model

Ada_errTeTr <- Ada_errTeTr$errs

Ada_errTe <- cbind(Ada_errTe,Ada_errTeTr[,3]) # Test Error

Ada_errTr <- cbind(Ada_errTr,Ada_errTeTr[,1]) # Training Error

Gentle

Gen_errTeTr <- BankGentle$model

Gen_errTeTr <- Gen_errTeTr$errs

Gen_errTe <- cbind(Gen_errTe,Gen_errTeTr[,3]) # Test Error

Gen_errTr <- cbind(Gen_errTr,Gen_errTeTr[,1]) # Training Error

Real

Rea_errTeTr <- BankReal$model

Rea_errTeTr <- Rea_errTeTr$errs

Rea_errTe <- cbind(Rea_errTe,Rea_errTeTr[,3]) # Test Error

Rea_errTr <- cbind(Rea_errTr,Rea_errTeTr[,1]) # Training Error

TEST ERROR of class "yes"

b_true <- data[teind,l]

ADA

AdaFitTest <- predict(BankAdaBoost, newdata=data[teind,-l])

d <- table(data.frame(AdaFitTest,b_true))

Ada_yes <- rbind(Ada_yes,d[4]/(d[3]+d[4]))

GEN

AdaFitTest <- predict(BankGentle, newdata=data[teind,-l])

d <- table(data.frame(AdaFitTest,b_true))

Gen_yes <- rbind(Gen_yes,d[4]/(d[3]+d[4]))

REA

AdaFitTest <- predict(BankReal, newdata=data[teind,-l])

d <- table(data.frame(AdaFitTest,b_true))

Rea_yes <- rbind(Rea_yes,d[4]/(d[3]+d[4]))

Variable Importance

vip_tmp <- varplot(BankAdaBoost, plot.it = FALSE, type = "scores")

vip_tmp <- vip_tmp[order(names(vip_tmp))]

Ada_vip <- cbind(Ada_vip, vip_tmp)

vip_tmp <- varplot(BankGentle, plot.it = FALSE, type = "scores")

84

vip_tmp <- vip_tmp[order(names(vip_tmp))]

Gen_vip <- cbind(Gen_vip, vip_tmp)

vip_tmp <- varplot(BankReal, plot.it = FALSE, type = "scores")

vip_tmp <- vip_tmp[order(names(vip_tmp))]

Rea_vip <- cbind(Rea_vip, vip_tmp)

ITERATION Number and time passed

ptm1=proc.time() - ptm0 # Time of individual step i

jnk=as.numeric(ptm1[3])

cat(’Total Runtime:’, jnk, "Loop at run", i,’\n’)

}

#################### End of for-loop ####################

Convert Information

Test/Training Error, development

Ada_Tr <- apply(Ada_errTr,1,mean)

Ada_Te <- apply(Ada_errTe,1,mean)

Rea_Tr <- apply(Rea_errTr,1,mean)

Rea_Te <- apply(Rea_errTe,1,mean)

Gen_Tr <- apply(Gen_errTr,1,mean)

Gen_Te <- apply(Gen_errTe,1,mean)

Test/Training Error, final iteration=It

Comb_Tr <- cbind(Ada_errTr[It,],Rea_errTr[It,],Gen_errTr[It,])

colnames(Comb_Tr) <- c("AdaBoost", "RealBoost","GentleBoost")

Comb_Te <- cbind(Ada_errTe[It,],Rea_errTe[It,],Gen_errTe[It,])

colnames(Comb_Te) <- c("AdaBoost", "RealBoost","GentleBoost")

Yes-classification of training

Comb_Yes <- cbind(Ada_yes, Rea_yes, Gen_yes)

colnames(Comb_Yes) <- c("AdaBoost", "RealBoost","GentleBoost")

Save

ans <- list(Ada_Tr = Ada_Tr,Ada_Te = Ada_Te,

Rea_Tr = Rea_Tr,Rea_Te = Rea_Te,

Gen_Tr = Gen_Tr,Gen_Te = Gen_Te,

Comb_Tr = Comb_Tr,Comb_Te = Comb_Te,

Comb_Yes = Comb_Yes,

Ada_vip = Ada_vip, Gen_vip = Gen_vip,

Rea_vip = Rea_vip

)

return(ans)

}

Analogous to Binary Run, the custom R-function Multi Run is used to achieve
the multi class simulations of Section 4.3.2. The input consists of the meteorite
data of Section 4.3.1, the number of iterations(It = T = 100), the type of sampling
method used and a number indicating how many runs shall be done(100). The
output includes the training and test errors, the correct classification percentages
and the variable importance for each algorithm.

85

Multi_Run - simulation of multi-class experiment

Input:

data...data set which shall be sampled

It...number of iterations for each boosting algorithm

runs...number of simulation runs

p... split variable of training/test set.

Output:

ans... list containing all the relevant results

Multi_Run <- function (data, It = 100, runs = 100, method =’none’,

p=0.7,...) {

INITIALIZE

Variables

var_names <- colnames(data[,-298])

Test/Training Error by Iterations

M1_errTr <- M1_errTe <- NULL

M2_errTr <- M2_errTe <- NULL

Class Errors

M1_ClTe <- SAMME_ClTe <- NULL

Variable Importance

M1_vip <- SAMME_vip <- NULL

n <- dim(data)[1] # number of observation’s

l <- ncol(data) # number of variables + 1

TIME MANAGEMENT

ptm0 <- proc.time()

for(i in 1:runs){

Training and Test Set

trind<-sample(1:n,floor(p*n),FALSE)

teind<-setdiff(1:n,trind)

Imbalanced Sampling method

if(method %in% c("over","under","naive","sss")){

data_tr <- data[trind,]

sampl <- sample_unb(data_tr, method=method)

}else{

data_tr <- data[trind,]

sampl <- c(1:nrow(data_tr))

}

Boosting

################### AdaBoost.M1

Met_M1 <-boosting(names ~., data=data_tr[sampl,] , mfinal = It,

coeflearn = "Breiman")

################### SAMME

Met_SAMME <- boosting(names ~., data=data_tr[sampl,] , mfinal = It ,

coeflearn = "Zhu")

86

TRAINING AND TEST ERROR = ## MISS-CLASSIFICATION %

M1

ErTr_M1 <- errorevol(Met_M1,newdata=data[trind,])

ErTe_M1 <- errorevol(Met_M1,newdata=data[teind,])

M1_errTr <- cbind(M1_errTr,ErTr_M1$error)

M1_errTe <- cbind(M1_errTe,ErTe_M1$error)

SAMME

ErTr_SAMME <- errorevol(Met_SAMME,newdata=data[trind,])

ErTe_SAMME <- errorevol(Met_SAMME,newdata=data[teind,])

SAMME_errTr <- cbind(SAMME_errTr,ErTr_SAMME$error)

SAMME_errTe <- cbind(SAMME_errTe,ErTe_SAMME$error)

Individual Class Test Errors

M1

M1_pred <- predict.boosting(Met_M1, newdata = data[teind,])

M1_table <- M1_pred$confusion

M1_ClTe <- cbind(M1_ClTe, diag(M1_table)/apply(M1_table, 2, sum))

SAMME

SAMME_pred <- predict.boosting(Met_SAMME, newdata = data[teind,])

SAMME_table <- SAMME_pred$confusion

SAMME_ClTe <- cbind(SAMME_ClTe, diag(SAMME_table)/apply(SAMME_table,

2, sum))

Variable Importance

M1

tmp_1 <- Met_M1$importance

tmp_1 <- tmp_1[var_names]

M1_vip <- cbind(M1_vip, tmp_1)

SAMME

tmp_1 <- Met_SAMME$importance

tmp_1 <- tmp_1[var_names]

SAMME_vip <- cbind(SAMME_vip, tmp_1)

ITERATION Number and time passed

ptm1=proc.time() - ptm0 # Time of individual step i

jnk=as.numeric(ptm1[3])

cat(’Total Runtime:’, jnk, "Loop at run", i,’\n’)

}

#################### End of for-loop ####################

Convert Information

Test/Training Error, development

M1_Tr <- apply(M1_errTr,1,mean)

M1_Te <- apply(M1_errTe,1,mean)

SAMME_Tr <- apply(SAMME_errTr,1,mean)

SAMME_Te <- apply(SAMME_errTe,1,mean)

Test/Training Error, final iteration=It

87

Comb_Tr <- cbind(M1_errTr[It,],SAMME_errTr[It,])

colnames(Comb_Tr) <- c("AdaBoost.M1", "SAMME")

Comb_Te <- cbind(M1_errTe[It,],SAMME_errTe[It,])

colnames(Comb_Te) <- c("AdaBoost.M1", "SAMME")

Save

ans <- list(M1_Tr = M1_Tr,M1_Te = M1_Te,

SAMME_Tr = SAMME_Tr,SAMME_Te = SAMME_Te,

Comb_Tr = Comb_Tr,Comb_Te = Comb_Te,

M1_ClTe = M1_ClTe, SAMME_ClTe = SAMME_ClTe,

M1_vip = M1_vip, SAMME_vip = SAMME_vip

)

return(ans)

}

88

Bibliography

Alfaro, E., M. Gamez, and N. Garcia (2013). adabag: An R Package Ada for Clas-
sification with Boosting and Bagging. R package version 4.1.

Bartlett, P. and S. Mendelson (2002). “Rademacher and Gaussian Complexities:
Risk Bounds and Structural Results”. Journal of Machine Learning Research 3,
pp. 463–482.

Breiman, L. (1999). “Prediction games and arcing classifiers”. Neural Computation
Vol 11(7), pp. 1493–1517.

Breiman, L., J. Friedman, R. Olshen, and C. Stone (1984). Classification and re-
gression trees. Monterey, CA: Wadsworth, Brooks/Cole Advanced Books, and
Software.

Bühlmann, P. and S. van de Geer (2011). Statistics for High Dimensional Data.
Zürich: Springer.

Caruana, R. and A. Niculescu-Mizil (2006). “An empirical comparison of supervised
learning algorithms”. In Proc. 23 rd Intl. Conf. Machine learning (ICML’06),
pp. 161–168.

Chen, C., A. Liaw, and L. Breiman (2004). Using Random Forest to Learn Imbal-
anced Data. Tech. rep. Department of Statistics, Berkeley, University of Califor-
nia.

CoMeCS-Project (2017). Comet and Meteorite Materials - Studied by Chemometrics
of Spectroscopic Data. url: http://www.lcm.tuwien.ac.at/comecs/ (visited
on 12/09/2017).

Culp, M., K. Johnson, and G. Michailidis (2016). ada: The R Package Ada for
Stochastic Boosting. R package version 2.0-5.

Freund, Y. (1995). “Boosting a weak learning algorithm by majority”. AT&T Bell
Laboratories, New Jersey.

Freund, Y. and R. Schapire (1996a). “Experiments with a New Boosting Algorithm”.
Machine Learning: Proceedings of the Thirteenth International Conference.

— (1996b). “Game Theory, On-line Prediction and Boosting”. Proceedings of the
Ninth Annual Conference on Computational Learning Theory, pp. 325–332.

— (1997). “A Decision-Theoretic Generalization of On-Line Learning and an Ap-
plication to Boosting”. Journal of computer and system sciences 55, pp. 119–
139.

— (1999). “A Short Introduction to Boosting”. Journal of Japanese Society for
Artificial Intelligence, pp. 771–780.

Friedman, J. (2001). “Greedy Function Approximation: A Gradient Boosting Ma-
chine”. The Annals of Statistics Vol. 29, pp. 1189–1232.

Friedman, J., T. Hastie, and R. Tibshirani (2000). “Additive Logistic Regression: a
Statistical View of Boosting”. Annals of Statistics, pp. 337–407.

89

BIBLIOGRAPHY

Hastie, T., R. Tibshirani, and J. Friedman (2008). The Elements of Statistical Learn-
ing. Stanford California: Springer.

Kircher, A. (2016). “Random Forest for Unbalanced Multiple-Class Classification”.
MA thesis. Wien: Technischen Universität Wien.

Mason, L., P. Bartlett, J. Baxter, and M. Frean (1999). “Boosting Algorithms as
Gradient Descent”. Proceedings of the 12th International Conference on Neural
Information Processing Systems, pp. 512–518.

Meir, R. and G. Rätsch (2003). “An Introduction to Boosting and Leveraging”.
Advanced Lectures on Machine Learning. Ed. by Mendelson and Smola. Berlin,
Heidelberg: Springer.

Moro, S., P. Cortez, and P. Rita (2014). “A Data-Driven Approach to Predict the
Success of Bank Telemarketing. Decision Support Systems”. Decision Support
Systems, 62:22-31.

Moro, S., R. Laureano, and P. Cortez (2011). “Using Data Mining for Bank Direct
Marketing: An Application of the CRISP-DM Methodology”. Proceedings of the
European Simulation and Modelling Conference, pp. 117–121.

Pedregosa, F. et al. (2011). “Scikit-learn: Machine Learning in Python”. Journal of
Machine Learning Research 12, pp. 2825–2830.

R-Core-Team (2013). R: A Language and Environment for Statistical Computing.
R Foundation for Statistical Computing. Vienna, Austria. url: http://www.R-
project.org/ (visited on 05/08/2017).

Reyzin, L. (2014). “On Boosting Sparse Parities”. Proceedings of the Twenty-Eighth
AAAI Conference on Artificial Intelligence, pp. 2055–2061.

Schapire, R. (1990). “The Strength of Weak Learnability”. Machine Learning, pp. 197–
227.

— (1999). “Theoretical Views of Boosting”. Computational Learning Theory: Fourth
European Conference, EuroCOLT 99, pp. 1–10.

— (2013). “Explaining AdaBoost”. Empirical Inference. Ed. by B Schölkopf, Z. Luo,
and V. Vovk. Springer, Berlin, Heidelberg, pp. 37–52.

Schapire, R., Y. Freund, P. Bartlett, and W. Sun Lee (1998). “Boosting the margin:
A new explanation for the effectiveness of voting methods”. Annals of Statistics
Volume 26, pp. 1651–1686.

Viola, P. and M. Jones (2003). “Robust Real Time Face Detection”. International
Journal of Computer Vision 57, pp. 137–154.

Zhu, J., S. Rosset, H. Zou, and T. Hastie (2009). “Multi-class AdaBoost”. Statistics
and its Interface, pp. 349–360.

90

