
Optimized Auto Scaling of Elastic
Processes in the Cloud using

Docker Containers
DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieurin

im Rahmen des Studiums

Wirtschaftsinformatik

eingereicht von

Gerta Sheganaku
Matrikelnummer 1027018

an der
Fakultät für Informatik der Technischen Universität Wien

Betreuung: Ass.-Prof. Dr.-Ing. Stefan Schulte
Mitwirkung: Dr. Ingo Weber

Wien, 10.10.2017
(Unterschrift Verfasserin) (Unterschrift Betreuung)

Technische Universität Wien
A-1040 Wien � Karlsplatz 13 � Tel. +43-1-58801-0 � www.tuwien.ac.at

Die approbierte Originalversion dieser Diplom-/
Masterarbeit ist in der Hauptbibliothek der Tech-
nischen Universität Wien aufgestellt und zugänglich.

http://www.ub.tuwien.ac.at

The approved original version of this diploma or
master thesis is available at the main library of the
Vienna University of Technology.

http://www.ub.tuwien.ac.at/eng

Optimized Auto Scaling of Elastic
Processes in the Cloud using

Docker Containers
MASTER’S THESIS

submitted in partial fulfillment of the requirements for the degree of

Master of Science

in

Business Informatics

by

Gerta Sheganaku
Registration Number 1027018

to the Faculty of Informatics
at the Vienna University of Technology

Advisor: Ass.-Prof. Dr.-Ing. Stefan Schulte
Assistance: Dr. Ingo Weber

Vienna, 10.10.2017
(Signature of Author) (Signature of Advisor)

Technische Universität Wien
A-1040 Wien � Karlsplatz 13 � Tel. +43-1-58801-0 � www.tuwien.ac.at

Erklärung zur Verfassung der Arbeit

Gerta Sheganaku
Westbahnstraße 1B / 17
1070 Wien
Austria

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwende-
ten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der Arbeit -
einschließlich Tabellen, Karten und Abbildungen -, die anderen Werken oder dem Internet im
Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter Angabe der Quelle als Ent-
lehnung kenntlich gemacht habe.

New York, 5. Oktober 2017

(Ort, Datum) (Unterschrift Verfasserin)

i

Acknowledgements

This thesis represents the final project that completes a versatile education in computer science
and business. Throughout the past years, I was granted a variety of opportunities and a lot of
flexibility that helped me in pursuing versatile goals and interests. I am especially grateful for
the opportunity and privilege to develop and write this thesis at Data61 in Sydney. During my
time there, I often ran past a poster installed in front of the Allianz Stadium, reading “Behind
every story of success is an even greater story of support”, feeling very grateful for the many
people that have accompanied and supported me on my journey in various ways and without
whom this work would not have been possible.

First of all, I want to sincerely thank my advisor, Stefan Schulte, for having me at the Dis-
tributed Systems Group, for providing great guidance and valuable inputs throughout the the-
sis, and for always being very responsive to all my inquiries. I am also most grateful to my
co-advisor, Ingo Weber, for providing a pleasant and productive work environment at the Ar-
chitecture & Analytics Platforms Team at Data61 and being available for detailed and insightful
discussions. A very special thanks goes to all my colleagues at Data61, who immediately in-
tegrated me into their team structure, showed interest in my research topic, and gave me the
opportunity to also participate in other exciting research areas. I also want to thank Prof. Hilda
Tellioglu and the International Office at Vienna University of Technology, for granting a mobility
scholarship and co-funding part of my stay in Sydney.

I am very grateful for all the wonderful people I have met throughout my studies and the
friendships that have evolved from following common goals, as well as encouraging and mo-
tivating each other. A particular thanks goes to my dear friend Gerhard Schreihans, who has
not only always been a highly reliable and motivated colleague, but also a master in taking any
situation with a great sense of humor. Furthermore, I want to thank my previous employer and
colleagues, who were highly flexible, very understanding of any time constraints, and gave me
countless opportunities to gain great experiences, valuable to both my studies and future career.

Last but foremost, I want to express my deepest and sincerest gratitude to my family, espe-
cially my loving parents for their sacrifices, encouragements, and unconditional support through-
out my entire life, to always provide me an environment in which I could realize my own po-
tentials. I particularly thank my wonderful partner, Waldemar Hummer, for always being by
my side, with endless emotional support, patience, and encouragement, and for empowering me
to strive for my best every day. A big thank you also goes to all my friends from Vienna and
Sydney, for all the memorable moments that have added a lot of joy and balance to my life.

iii

Abstract

With software services becoming ever more ubiquitous, organizations are increasingly relying
on interconnected business processes that act as a clockwork to orchestrate the interplay of in-
dividual services. Due to the volatility of business process landscapes, the amount of data or
the number of process instances which need to be handled concurrently may vary to a large ex-
tent. Therefore, it is difficult to estimate the ever-changing demand of computational resources,
especially for highly volatile domains. With the advent of cloud computing and the virtually un-
limited availability of computational resources in a utility-like fashion, organizations of any size
and across industries are able to adjust their cloud-based infrastructure rapidly and on-demand.
Besides applications, also complete business processes can be hosted on leased virtual resources,
which enables the realization of so-called elastic processes, i.e., processes which are executed
on scalable cloud infrastructure. Elastic processes can have various areas of application, e.g.,
manufacturing, banking, or healthcare, where flexible and scalable process support is of utter-
most importance for being able to model, instantiate, execute, and monitor cross-organizational
processes. Despite the manifold benefits of elastic processes, there is still a lack of solutions
supporting them. The allocation of resources for elastic processes is done on a rather high level,
i.e., services are allocated to Virtual Machines (VMs) - usually in a 1-to-1 fashion, which leads
to a waste of computational resources. Since elastic processes are part of potentially huge pro-
cess landscapes, optimal resource allocation and process scheduling are complex tasks, usually
solved by defining an optimization model. This poses a difficult computational problem, since
optimization of process tasks under given constraints is a NP-hard problem.

In order to support process owners and cloud operators, this work addresses different chal-
lenges of cost-optimized elastic process enactment, by extending existing methodologies and
algorithms from the fields of elastic processes, operations research, and cloud computing. This
thesis presents a novel solution that enables a fine-grained allocation of services to lightweight
containers instead of complete VMs, leading to a higher level of control over leased computa-
tional resources and thereby to a better resource utilization. Optimization models and heuristics
that consider resource, quality, and cost elasticity, while taking the fine-grained control into
account are provided and realized as part of a newly designed container-based middleware. Ex-
tensive evaluations of the main presented approach for optimized enactments of given process
landscapes under given Quality of Service (QoS) constraints show substantial cost savings and a
better resource utilization while maintaining Service Level Agreements (SLAs), when compared
to recently proposed VM-based approaches.

v

Kurzfassung

Mit der zunehmenden Verbreitung von Software-Services setzen Unternehmen vermehrt auf
vernetzte Geschäftsprozesse, um das Zusammenspiel einzelner Services zu orchestrieren. Auf-
grund der Volatilität von Prozess-Landschaften kann die Datenmenge sowie Anzahl an paralle-
len Prozessinstanzen stark variieren. Daher ist es schwierig, den sich ständig ändernden Bedarf
an Rechenressourcen, insbesondere für hoch-dynamische Domänen, im Voraus abzuschätzen.
Mit dem Aufkommen von Cloud-Computing und der praktisch unbegrenzten Verfügbarkeit von
Rechenressourcen können Unternehmen ihre cloudbasierte Infrastruktur schnell und bedarfsge-
recht anpassen. Neben Anwendungen können auch komplette Geschäftsprozesse auf geleasten
virtuellen Ressourcen gehostet werden, was die Realisierung sogenannter elastischer Prozesse
in einer skalierbaren Cloud-Umgebung ermöglicht. Elastische Prozesse können beispielsweise
in der Produktion, im Bankwesen oder im Gesundheitswesen zum Einsatz kommen, wo flexi-
ble und skalierbare Prozessunterstützung von äußerster Wichtigkeit ist, um organisationsüber-
greifende Prozesse modellieren, instanziieren, ausführen und überwachen zu können. Trotz der
vielfältigen Vorteile elastischer Prozesse fehlt es noch an Lösungen zu deren Unterstützung. Die
Zuweisung von Ressourcen für elastische Prozesse erfolgt mit relativ grober Granularität, d. h.
Dienste werden Virtuellen Maschinen (VMs) zugewiesen - gewöhnlich in einem direkten Ver-
hältnis, was zu einer Unterauslastung von Rechenressourcen führt. Da elastische Prozesse oft ein
Teil potenziell riesiger Prozesslandschaften sind, sind eine optimale Ressourcenallokation und
Prozessplanung komplexe Aufgaben, die in der Regel mittels eines Optimierungsmodells gelöst
werden. Dies führt zu einem schwierigen Berechnungsproblem, da die optimierte Ausführung
von Prozessschritten unter gegebenen Bedingungen ein NP-hartes Problem darstellt.

Zur Unterstützung von Prozesseignern und Cloud-Operatoren befasst sich diese Arbeit mit
der Erweiterung bestehender Methoden und Algorithmen aus den Bereichen elastische Prozesse,
Operations Research und Cloud-Computing. Diese Arbeit stellt eine neuartige Lösung vor, die
eine feingranulare Zuordnung von Diensten zu leichtgewichtigen Containern, anstelle komplet-
ter VMs, ermöglicht. Dies führt zu einer höheren Kontrolle über gemietete Rechenressourcen
und damit einhergehend zu einer besseren Ressourcenausnutzung. Optimierungsmodelle und
Heuristiken, welche die Ressourcen-, Qualitäts- und Kostenelastizität, als auch die feingranula-
re Kontrolle berücksichtigen, werden präsentiert und als Teil einer neu entworfenen Container-
basierten Middleware umgesetzt. Umfangreiche Bewertungen des vorgestellten Hauptansatzes
für optimierte Inszenierungen bestimmter Prozesslandschaften unter vorgegebenen Dienstgüte-
Einschränkungen zeigen erhebliche Kosteneinsparungen und eine bessere Ressourcennutzung
bei gleichzeitiger Einhaltung von Service Level Agreements (SLAs) im Vergleich zu aktuell
vorgeschlagenen VM-basierten Ansätzen.

vii

Contents

Acknowledgements iii

Abstract v

Kurzfassung vii

Contents xii

List of Figures xiii

List of Tables xv

List of Algorithms xvii

Listings xix

List of Listings xix

1 Introduction 1
1.1 Motivation . 1
1.2 Example Scenario . 3
1.3 Problem Statement . 6
1.4 Aim of the Work and Scientific Contribution 7
1.5 Methodological Approach . 8
1.6 Structure of the Work . 9

2 State of the Art 11
2.1 Cloud Computing . 11

2.1.1 Definition and Evolution of Cloud Computing 12
2.1.2 Current Trends and the Future of Cloud Computing 14
2.1.3 Cloud Service Models . 18
2.1.4 Cloud Deployment Models . 20
2.1.5 Virtualization and Containerization Techniques 21
2.1.6 Scalability in Cloud Computing . 30
2.1.7 Elasticity in Cloud Computing . 30

ix

2.2 Business Process Management . 32
2.2.1 Business Process . 32
2.2.2 Business Process Management (BPM) 33
2.2.3 Business Process Management System (BPMS) 33

2.3 Elastic Processes . 34
2.3.1 Elasticity Measures for Elastic Processes 34
2.3.2 Conceptual Architecture for Elastic Processes 36

2.4 Optimization Models . 37
2.4.1 History of Optimization . 37
2.4.2 Areas of Application . 38
2.4.3 Important Concepts and Basic Principles of Optimization 38
2.4.4 Important Classes of Optimization Models and Heuristics 42

3 Related Work 47
3.1 Scheduling and Resource Allocation Approaches for Single Services and Web

Applications in the Cloud . 48
3.1.1 Optimization Approaches using Hypervisor-based Architectures 49
3.1.2 Optimization Approaches using Containerized Architectures 50

3.2 Scheduling and Resource Allocation Approaches for Workflows and Business
Processes in the Cloud . 53
3.2.1 Optimization Approaches using Hypervisor-based Architectures 53
3.2.2 Optimization Approaches using Containerized Architectures 55

3.3 Conclusion . 56

4 Approach 59
4.1 Preliminaries . 61

4.1.1 General Requirements of Elastic Processes 61
4.1.2 System Requirements for the Enactment of Elastic Processes in Container-

based Architectures . 62
4.1.3 BPMS for the Execution of Elastic Processes 63

4.2 Basic Approach and System Model . 67
4.2.1 Basic Approach . 67
4.2.2 System Model . 68

4.3 Working Example . 74
4.3.1 Considered Business Processes . 74
4.3.2 Service Types and Container Types 75
4.3.3 Virtual Machine (VM) Types . 76
4.3.4 Incoming Process Requests . 77

4.4 Multi-Objective Problem Formulation using Mixed Integer Linear Programming
(MILP) . 78
4.4.1 Four Fold Service Instance Placement Problem 78

4.5 Working Example Execution . 93
4.5.1 Execution of the Process Requests of the Working Example 93
4.5.2 Further Scenario to Explain Term 4 of the Objective Function 102

x

5 Implementation 105
5.1 System Overview . 105

5.1.1 Workflow Definition . 106
5.1.2 Process Manager . 106
5.1.3 Data Storage . 106
5.1.4 Triggering the Reasoner . 107
5.1.5 Reasoner Component . 108
5.1.6 Process Execution . 108

5.2 Implementation of the Reduced Optimization Model 110
5.2.1 Mathematical Programming Based Implementation 110
5.2.2 Genetic Algorithm-Based Heuristic 113

5.3 Transformation of the Reduced Model Results for Container-based Execution . 116
5.3.1 General Transformation of the Reduced Model Solution 116
5.3.2 Executing the Transformed Scheduling Plan 117

5.4 Extending ViePEP . 117
5.4.1 Allowing Different Optimization Modes 118
5.4.2 Considering the Time in Optimization Models 119
5.4.3 System Simulation with Time Discretization 120

6 Evaluation and Discussion 125
6.1 Evaluation of the Working Example . 126

6.1.1 Evaluation of the Presented Working Example 126
6.1.2 Evaluation of the Working Example with Pre-Scheduling 126

6.2 Important Observations . 128
6.3 Advantages of Container-Based Approaches compared to Hypervisor-Based Ap-

proaches . 130
6.3.1 Execution of the Working Example using Hypervisor-Based Approaches 130
6.3.2 Strengths of Container-Based Approaches 132

6.4 Quantitative Evaluation . 133
6.4.1 Evaluation Models . 133
6.4.2 Simulated Test Environment . 135
6.4.3 Metrics . 136
6.4.4 Solving the Full Optimization Model with CPLEX 137
6.4.5 Evaluation of the Reduced Model including Transformation 141
6.4.6 Evaluation of the Reduced Model including Transformation for Less

Resource-Intensive Service Types . 145
6.4.7 Multiple Hour Evaluation Run with 60 Minute long Billing Time Units

(BTUs) . 148
6.5 Summary . 151

7 Conclusion and Future Work 153
7.1 Summary of Contributions . 153
7.2 Future Work . 155

xi

A Reduced Optimization Model 159
A.1 System Model . 159
A.2 Objective Function . 164
A.3 Constraints . 165

B Process Model Collection 173

List of Acronyms 177

Bibliography 179

xii

List of Figures

1.1 Example Scenario . 4

2.1 Cloud Service Models . 19
2.2 Virtualization Architectures (adapted from [135]) 23
2.3 Containerized Architecture vs. Hypervisor-Based Architecture (adapted from [18]) 24
2.4 Docker Platform . 28
2.5 Container Cluster Management . 29
2.6 Vertical vs. Horizontal Scaling . 30
2.7 Provisioning under fixed resources and dynamic provisioning (adapted from [8]) . 31
2.8 BPM Lifecycle (taken from [138]) . 33
2.9 Elastic Process Environment (adapted from [44]) 36
2.10 Local vs. Global Optima . 40
2.11 Convex vs. Non-Convex Functions 1 . 41

4.1 MAPE-K loops in self-adaptive software systems (adapted from [82] and [160]) . . 65
4.2 Simplified Business Processes of the Car Manufacturer 75
4.3 Scheduling Deadlines for Process Steps . 94
4.4 System Landscape at t = 0 . 95
4.5 System Landscape at t = 2.5 . 95
4.6 System Landscape at t = 3 . 96
4.7 System Landscape at t = 3.5 . 96
4.8 System Landscape at t = 5.5 . 97
4.9 System Landscape at t = 6 . 97
4.10 System Landscape at t = 6.5 . 98
4.11 System Landscape at t = 7.5 . 99
4.12 System Landscape at t = 9.5 . 99
4.13 System Landscape at t = 10 . 100
4.14 System Landscape at t = 11 . 100
4.15 System Landscape at t = 11.5 . 101
4.16 System Landscape at t = 12 . 101
4.17 System Landscape at t = t0 . 102

5.1 System Architecture Overview . 106
5.2 Triggering the Reasoner . 107

xiii

5.3 Execute Requests . 109
5.4 Genetic Algorithm Evolution . 114
5.5 Interfaces for Different Reasoning and Result Processing Classes 118
5.6 System Simulation with Time Discretization . 123

6.1 Number of Leased VM Cores and Utilization by Containers 126
6.2 Number of leased VM cores and utilization by Containers with early scheduling of

Step P1.1.D . 127
6.3 Number of Leased VM Cores and Utilization for Approach without Containers . . 132
6.4 Solving the Reduced Optimization Problem and Performing the Transformation vs.

Solving the Full Optimization Problem . 138
6.5 Solving the Reduced Optimization Problem and Performing the Transformation vs.

Solving the Full Optimization Problem - Smaller Example 140
6.6 Evaluation Results - Constant Arrival of Resource-Intensive Processes 141
6.7 Evaluation Results - Pyramid Arrival of Resource-Intensive Processes 144
6.8 Evaluation Results - Constant Arrival of Less Resource-Intensive Processes 146
6.9 Evaluation Results - Pyramid Arrival of Less Resource-Intensive Processes 148
6.10 Multiple Hour Evaluation Run with 60 Minute BTUs 150

B.1 Process Model 1 . 173
B.2 Process Model 2 . 173
B.3 Process Model 3 . 173
B.4 Process Model 4 . 174
B.5 Process Model 5 . 174
B.6 Process Model 6 . 174
B.7 Process Model 7 . 175
B.8 Process Model 8 . 175
B.9 Process Model 9 . 175
B.10 Process Model 10 . 176

xiv

List of Tables

2.1 Comparison: VMs vs. Containers . 25

4.1 System Model: Process Variables . 68
4.1 System Model: Process Variables . 69
4.2 System Model: Optimization Time Variables . 69
4.3 System Model: Virtual Machines . 70
4.4 System Model: Containers and Services . 71
4.5 System Model: Startup, Deployment, Execution, and Penalty Times 72
4.5 System Model: Startup, Deployment, Execution, and Penalty Times 73
4.6 System Model: Decision Variables . 73
4.7 Process Steps of the Example System . 75
4.8 VM Types of the Example System . 76
4.9 Incoming Process Requests . 77

6.1 Evaluation Process Models . 134
6.2 Evaluation Services - Resource-Intensive . 134
6.3 Evaluation VM Types . 136
6.4 Solving the Reduced Optimization Problem and Performing the Transformation vs.

Solving the Full Optimization Problem - Constant Arrival with Strict Deadlines . . 139
6.5 Solving the Reduced Optimization Problem and Performing the Transformation vs.

Solving the Full Optimization Problem - More Relaxed Arrival Frequency 140
6.6 Evaluation Results - Constant Arrival (Resource-Intensive Processes) 142
6.7 Evaluation Results - Pyramid Arrival (Resource-Intensive Processes) 144
6.8 Evaluation Services - Less Resource-Intensive . 145
6.9 Evaluation Results - Constant Arrival (Less Resource-Intensive Processes) 146
6.10 Evaluation Results - Pyramid Arrival (Less Resource-Intensive Processes) 147
6.11 Multiple Hour Arrival Pattern . 149
6.12 Multiple Hour Evaluation Run with 60 Minute BTUs 150

A.1 System Model: Process Variables . 159
A.1 System Model: Process Variables . 160
A.2 System Model: Optimization Time Variables . 160
A.3 System Model: Virtual Machines . 160
A.3 System Model: Virtual Machines . 161

xv

A.4 System Model: Decision Variables . 161
A.5 System Model: Containers and Services . 162
A.6 System Model: Startup, Deployment, Execution, and Penalty Times 162
A.6 System Model: Startup, Deployment, Execution, and Penalty Times 163

xvi

List of Algorithms

5.1 Transformation of the Reduced Solution . 116

xvii

Listings

5.1 Using Profiles to Configure the Reasoning . 119
5.2 Capturing the Start of the BPMS as a Start Epoch for Reasoning Calculations . 119
5.3 TimeUtil for Time Discretization - Start Ticking 120
5.4 TimeUtil for Time Discretization - Set Speed 121
5.5 TimeUtil for Time Discretization - Increment Time 121
5.6 TimeUtil for Time Discretization - Get Current System Time 122
5.7 TimeUtil for Time Discretization - Sleep And Notify Waiting Threads 122

xix

CHAPTER 1
Introduction

“Cloud is about how you do computing, not where you do computing.”

– Paul Maritz, VMware CEO

“Cloud computing is empowering, as anyone in any part of the world with internet
connection and a credit card can run and manage applications in the state of the art
global data centers; companies leveraging cloud will be able to innovate cheaper
and faster.”

– Jamal Mazhar, Kaavo Founder and CEO

This chapter provides a general introduction into the topic of elastic process optimization,
presents the main motivation, problem statement and aim for this work and outlines the contri-
butions provided in this thesis.

1.1 Motivation

With the emergence of cloud computing and the theoretically nearly unlimited availability of
computational resources in a utility-like fashion [24], companies and organizations across indus-
tries have the opportunity to rapidly access required resources, well adjusted to their individual
and changing demand. During the past years this has revolutionized the way companies, from
small start-ups to large corporations operate. Anyone has the possibility to make use of high-end
IT infrastructure and increase or decrease the amount of used computational resources without
the need of large upfront capital and time investments. This does not only constitute a driver
for innovation, as it decreases the risks associated with new projects and businesses, but also
fosters mobility and flexibility and allows for the adoption of more agile, resource efficient and
cost-effective modes of operation, by facilitating fast adaptations in changing environments.

1

At the same time, both, wide intra- and inter-organizational cooperations in the business
world, have led to the need of efficient BPM techniques tackling organizational, managerial
and technical aspects of service compositions for effective business process enactment [69].
The Service-Oriented Architecture (SOA) paradigm decouples service providers from service
consumers and offers dynamic binding. It can, for instance, be implemented through the use of
Web Services (WSs) [45] [120] [24]. Due to ever-changing process landscapes, e.g., in terms of
the number of arriving process requests or varying amount of data to be processed, the services
needed to enact business processes often show a massively fluctuating demand for computational
resources. Hence, the ability of cloud computing to provide computational resources in a flexible
manner can provide multiple benefits for the enactment of business processes [138].

By deploying business processes in a virtual cloud infrastructure and executing them using
elastic cloud resources, so-called elastic processes can be realized [44]. Elastic processes can
be applied in very different domains like, e.g., banking or manufacturing, where flexible and
scalable process support is of uttermost importance to be able to model, instantiate, execute and
monitor cross-organizational processes. This leads to new requirements both with regard to the
adaptation of the underlying process models and the runtime support of process instances by
computational resources. One crucial aspect is the elasticity of IT-supported business processes:
As the amount of data or the number of process instances which need to be handled concurrently
may vary to a large extent, it is difficult to estimate the ever-changing demand for computational
resources. This is especially the case in highly volatile domains [138].

To allow scaling of elastic processes, and meet both functional as well as non-functional
requirements like given Service Level Agreements (SLAs), while considering stress factors like
peak time usage, cloud resources need to be allocated and deallocated or reconfigured dynami-
cally on demand. Scaling can be achieved either vertically or horizontally [106], while horizontal
scaling describes a system’s ability to adapt computing power by replicating or adding/removing
system components, whereas vertical scaling refers to changing the computing power of indi-
vidual system components. In general, horizontal scaling in a cloud computing context can be
achieved by leasing and releasing VM instances. To decrease the time and resource overhead as-
sociated with leasing new VMs, recently a new layer of abstraction as an alternative to traditional
operating system virtualization has emerged, with the introduction of lightweight container en-
gines such a Docker1 or CoreOS rkt2. Those containers allow isolating the execution of single
processes, which provides benefits like resource allocation and network, memory or filesystem
isolation without the additional overhead of deploying a full Operating System (OS) [12] [105].
Furthermore, next to additional possibilities for applying horizontal scaling techniques, contain-
ers also facilitate vertical scaling in virtualized environments, as the allocated resources of a
container can easily be adapted during runtime. In contrast, dynamically adjusting the memory
allocation of an OS that runs within a VM has traditionally been difficult, often requiring a full
reboot of the OS [92].

1https://www.docker.com/
2https://coreos.com/rkt

2

https://www.docker.com/
https://coreos.com/rkt

1.2 Example Scenario

To illustrate the manifold application areas for elastic BPM, we describe a simplified example
scenario from the automotive industry.

When first looking at a real world example like the BMW Group and analyzing their annual
report from 2015 [54] we can see that the automative industry is currently making big efforts
towards digitalization and connectivity of more traditional areas like production and logistics
for manufacturing more flexibly and efficiently. Furthermore, automobile groups often operate
in multifaceted business areas. Besides production and retail processes, the BMW Group also
have to manage a huge number of financial processes, as they offer different financial services
like leasing and credit contracts to retail customers. Leased products represent one of the largest
assets on the balance sheet.

Figure 1.1 shows an international fictional car manufacturer with several worldwide dis-
tributed manufacturing sites, retail outlets, repair shops and customer centers in different areas
of the world. Each area hosts their own data centers in form of a private cloud. As many of the
manufacturers’ business and production processes are similar all over the world, it also spans a
broader private cloud over all worldwide data centers, providing services and business processes
used in multiple locations. In peak times, the manufacturers’ computational resources can reach
a limit, therefore additional resources can be leased from a public cloud when needed.

The car manufacturer makes use of a wide range of business processes and services. Some
examples of the services and processes that benefit from a cloud-based elastic process enactment
are the following [51]:

• For the design of new vehicles, the car manufacturer often collaborates with worldwide
offices and design processes often incorporate multiple users in multiple locations request-
ing similar services at the same time. During such processes, there is often the need for
some compute-intensive tasks like image rendering. Services offering such tasks may be
needed in multiple design processes and can often be reused.

• Before starting the manufacturing of a new car, a great number of compute-intensive
crash-test simulations need to be performed. Such simulations can consist of a multitude
of reusable sub-simulations.

• Assuming the car manufacturer operates modern factories and makes use of flexible pro-
duction networks, there will be a sheer number of manufacturing processes that need
cloud-based load balancing techniques. Again, during those manufacturing processes
some process steps are very compute-intensive like image rendering or flexible production-
based calculations.

• The car manufacturer furthermore makes use of both advanced real-time analytics pro-
cesses as well as hourly, daily, and monthly data processing, reporting and analytics for
the manufacturing processes and plant operations. The generated data is used in a mul-
titude of employed automated quality assurance processes including automated feedback
to production plant networks.

3

BPMS for Elastic
Processes

Elastic Reasoning

Business Processes

Company-wide Private Cloud

Business Process 2
Step A

Step B

Step D
Step EStart Goal

SLA

Business Process 1
Step A

Step B Step C

Step D
Start Goal

SLA

Business Process 3
Step B Step C Step EStart Goal

Asia Europe U.S.

Business Process N
Step A Step B Step CStart Goal

Public Cloud

...

lease and release
computational resources,
deploy containers with
isolated services and
execute concurrent
process requests

VM 1 VM 2

... VM N

Public VM 2Public VM 1
...

Container
for Step A
Container
for Step B

Container
for Step B

Container
for Step C

Container
for Step C

Container
for Step D

Container for Step E

Container
for Step A

Step B

Step C

Step E

Step A

BPMS for Elastic
Processes

Elastic Reasoning

Business Processes

Company-wide Private Cloud

Business Process 2

Step
A

Step
B

Step
C

Step
D

Step
EStart Goal

SLA

Business Process 1

Step
A

Step
B

Step
C

Step
D

Start Goal

SLA

Business Process 3

Step
B

Step
C

Step
EStart Goal

SLA

Asia Europe U.S.

Business Process N

Step
A

Step
B

Step
CStart Goal

SLA

Public Cloud

.

.

.

request the execution of business processes

lease/release computational resources,
deploy containers with isolated services
and execute concurrent process requests

receive process requests

VM 1 VM 2

...
VM N

Public VM 2Public VM 1

...
Public
VM N

Container
for Step A

Container
for Step B

Container
for Step B

Container
for Step C

Container
for Step C

Container
for Step D

Container for Step E

Container
for Step A

Step
B

Step
C

Step
E

Step
A

request the execution of
business processes

receive process requests

SLA

SLA

Public
VM N

Figure 1.1: Example Scenario

4

• The manufacturer develops a prototype of a self-driving car. For the monitoring and oper-
ation processes of those cars, digital maps with the real-time vehicle and sensor data are
used.

• Traditional cars are also equipped with Internet of Things (IoT) features. Digital maps are
used in services that enhance customer experience, like automated recommender services,
based on real-time monitored driver behavior, also connecting the real-time data to third
party applications.

• To provide a greater customer satisfaction, the manufacturer deploys processes for auto-
mated vehicle servicing based on monitored sensor data as well as small to large auto-
mated software updates that are rolled out periodically.

• The car manufacturer also employs processes to support its financial services, as a large
number of the vehicles are leased to retail customers. Important services that are often
reused in customer related processes are general customer management services and credit
approval and risk assessment services.

• Like in most other domains, automated backup processes are employed that collect and
persist data from multiple data sources.

As can be seen from the example processes, the car manufacturer has a huge process land-
scape with short and long running processes of different priority, some real-time processes as
well as processes that can be postponed into the future. During peak times many of the processes
are instantiated and need to run concurrently, while some steps can be scheduled for a later ex-
ecution. When executing the services also privacy issues as well as governmental regulations
have to be taken into consideration. This is why certain data can only be processed in certain
locations and may not be transferred to the cloud. The available services can be used in multiple
processes and different context. The amount of processed data and the needed computing power
are hard to predict. This is why the car manufacturer can make use of the benefits of elastic
process enactment, i.e., minimizing the amount of used resources.

To satisfy the aforementioned requirements, the company needs a BPMS as depicted in
Figure 1.1 that takes all the different cost, quality, and resource constraints into account and
allows to allocate computational resources and schedule multiple concurrent business process
requests on the leased resources in an efficient and effective way. A more detailed explanation
of the most important elements of the example scenario as shown in Figure 1.1 can be found in
Chapter 4, with a more detailed illustration in Section 4.3.

It should be noted that the automotive industry is only one of many possible application
domains for elastic processes. Elastic business process enactment can be applied to any domain
that has a large, volatile process landscape, with processes that are composed of a number of
different services and a fluctuating number of process instances that need to be enacted in certain
time frames [138].

Another very typical application domain can, for example, be found in the financial services
sector [71] [87], e.g., banks are known to have huge process landscapes, while their IT costs
amount to around 15% to 20% of operating expenses [95]. Other application areas comprise

5

e.g. the healthcare domain [6] [98], the insurance domain [72], or the manufacturing industry
as a whole [136]. Most of these volatile domains can profit from the realization of elastic pro-
cesses, as they allow for a more efficient use of the IT budget, by minimizing costs spent on
computational resources.

1.3 Problem Statement

As elastic processes can make use of advanced techniques in virtualization, containerization, and
resource allocation, they can offer a large number of benefits. While the concepts of SOA, cloud
computing, and BPM have been trending and widely studied for over a decade, there is still a
lack of solutions supporting cloud-based elasticity with regard to business process executions.
The main reason for this is believed to be the fact that findings from cloud-based application
provisioning cannot be directly mapped to the area of BPM without further adaptations and the
necessary development of new techniques also considering the state of business processes, e.g.,
with regard to their data and control flows [138].

While automated resource allocation and service scheduling are important research problems
for cloud computing [22], only very few approaches take elastic processes into account. Current
approaches mostly focus on single services or Scientific Workflows (SWFs) [138]. Findings
from those domains are valuable but can not be directly mapped to elastic processes. While ap-
proaches that focus on single services and web applications in the cloud [22] [65] [86] [162] do
not account for the process perspective, approaches using cloud resources for Scientific Work-
flows [67] [78] [119] mostly only consider single workflows and are more data flow oriented,
while business process scheduling is applied for complex landscapes of concurrent process re-
quests that are very control flow driven and often share the same services [93].

In terms of elasticity measures, previous research mostly regarded resource elasticity and
the adjustment of machine power in isolation, without also considering other important and
very interdependent elasticity measures like cost and quality elasticity. Resource elasticity looks
at the change of used resources, e.g., CPU and RAM, while cost elasticity accounts for the
change of costs, e.g., regarding pricing models for on-demand instances or spot instances in the
Amazon cloud3. Quality elasticity focuses on the change of the provided Quality of Service
(QoS), e.g., availability, reliability or throughput [144]. When designing a system for enacting
elastic processes those trade-offs should be taken into account [44].

In existing approaches for elastic processes [62] [63], the allocation of resources is done on
a rather coarse-grained level, i.e., services are allocated to VMs – usually in a 1-to-1 fashion,
which may lead to a waste of computational resources and also poses a challenge for the ap-
plication of vertical scaling approaches. The fact that VMs are rather heavy-weight means of
virtualization puts a limit on the ability to provide a highly dynamic execution environment with
optimized resource utilization.

Regarding the more fine-grained control that can be achieved by applying light-weight con-
tainerized architectures, optimization models for finding optimal resource allocation solutions
for single web applications using containers have been proposed [65], but, as already mentioned,
such models do not take the process perspective into consideration.

3https://aws.amazon.com/en/ec2/pricing/

6

https://aws.amazon.com/en/ec2/pricing/

Since elastic processes are part of potentially huge process landscapes, optimal resource
allocation and process scheduling is a complex task which usually requires to define and solve
a formal optimization model [63]. The computational complexity of such optimization models
is crucial for the time required by the solver to find an optimal solution. It has been shown
that optimization for process tasks under given constraints is an NP-hard problem [138] which
cannot be solved in polynomial time (if P 6= NP).

1.4 Aim of the Work and Scientific Contribution

In order to support process owners and cloud operators, this thesis addresses different challenges,
which build the foundation for cost-optimized elastic process enactment taking into considera-
tion trade-offs with regard to quality and resource constraints. The focus is on extending existing
methodologies and algorithms from the fields of elastic processes, operations research, and cloud
computing.

We propose an optimization model and a runtime environment for the execution of elastic
processes in a containerized architecture that optimizes the enactment of given process land-
scapes under given QoS constraints, in particular, process deadlines. An implementation and
evaluation of the presented approach are provided. The goal is to offer a solution for cost-
efficient resource allocation and process scheduling for the enactment of complex elastic pro-
cesses.

For enacting process landscapes we use a research prototype able to launch and terminate
VMs in a public cloud (Amazon Elastic Compute Cloud (EC2)) as well as in an OpenStack-
based private cloud. The prototype was recently extended in order to deploy, launch and resize
Docker containers on VMs. This allows the implementation of Docker-based service deploy-
ments, i.e., services, which are the basic building steps for processes, can be deployed as Docker
containers and invoked concurrently in different process instances. State-of-the-art approaches,
like those presented in [62] or [63], are based on a direct assignment of services to VMs, often
leading to a waste of computational resources since VMs are not fully utilized. In comparison to
the previous work, the optimization approach presented in this thesis makes use of fine-grained
control over computational resources while using a containerized architecture.

Therefore, the primary goal of the thesis is the development and evaluation of an accord-
ing cost-based optimization model that allows conducting a more dynamic resource allocation
and scheduling for elastic processes. Compared to the current state-of-the-art, we make use of
both horizontal as well as vertical scaling techniques. At the same time, a significant level of
complexity is added. Where previously services were mapped to VMs, scheduling and resource
allocation now need to be considered both between services and containers as well as between
containers and VMs.

We model and solve the problem as a linear programming problem, and discuss other heuris-
tic approaches.

7

1.5 Methodological Approach

The methodological approach for achieving a cost-optimized elastic process enactment by mak-
ing use of fine-grained resource control comprises four main parts:

• First, it is necessary to conduct a survey of related work on models for cloud architecture
and application topologies, with a focus on containerized architectures and lightweight
container-based service placement. General approaches for placing applications in Docker
containers will be examined. We illustrate the advantages and disadvantages of different
resource allocation and scheduling techniques for services and business processes. Based
on these theoretical concepts, a solution which allocates services for the realization of
elastic processes to lightweight containers instead of complete VMs is designed.

• Second, an optimization model is conceptualized to allocate resources to services in a cost-
efficient way. Optimization algorithms and heuristics for service and container placements
on cloud infrastructure will be investigated. The optimization concepts will be ported to
and extended for elastic processes.

The optimization model will take into account:

– QoS constraints, especially process deadlines and execution times

– Vertical scaling of Docker containers

– Horizontal scaling of VM resources and Docker containers

– Different workflow patterns [153]:

∗ sequences
∗ parallel splits (AND-splits)
∗ synchronization (AND-join)
∗ exclusive choice (XOR-splits)
∗ simple merge (XOR-join)
∗ arbitrary cycles (loop)

• Third, for a proof of concept the developed optimization model and runtime environment
for resource allocation and process scheduling of elastic processes is integrated into a
corresponding middleware for managing VM and container instances in a public (Amazon
EC2) as well as an OpenStack-based private cloud. Therefore, an extension of an existing
Java-based middleware will be designed, planned and implemented using well-established
software engineering techniques in order to create a stable and robust prototype and to
guarantee timely responses to changing process landscapes.

• Fourth, the prototype will be evaluated in terms of cost analysis for the proposed schedul-
ing approach, taking into account a realistic set of software services to be carried out. The
approach will be compared to existing related work.

8

1.6 Structure of the Work

The remainder of this thesis is structured as follows:

• Chapter 2 gives an overview of the most important concepts that lay a foundation for the
conducted work. Developments from the area of cloud computing with a focus on virtual-
ization and containerization techniques are presented. Furthermore, the main concepts of
BPM and the ideas behind elastic processes are revisited. Additionally, the fundamentals
of optimization models and techniques like linear programming and heuristic problem-
solving approaches are discussed.

• Chapter 3 presents relevant publications and related work regarding models for cloud
architectures and containerized architectures. We discuss current resource allocation and
scheduling approaches for the cloud, also considering work that focuses on container-
based approaches. Approaches that solve scheduling and resource allocation problems by
defining and solving optimization models are presented.

• In Chapter 4, we present our advanced resource allocation and scheduling approach for
elastic processes in containerized architectures. First, we discuss a more fine-grained use
case including example processes, mapping to the scenario depicted in Section 1.2, which
will serve as a working example throughout the following chapters. Furthermore, we dis-
cuss the system requirements for the realization of elastic processes and provide the design
of a container-based architecture for process scheduling and resource allocation. We dis-
cuss possible solution approaches for the realization of optimized process enactments and
provide a detailed system model and an optimization model for elastic processes.

• In Chapter 5 we describe the realization of the designed runtime environment and opti-
mization model for the cost-optimized execution of elastic processes. We also discuss
other possible implementations using genetic algorithm-based heuristics.

• Chapter 6 presents a detailed evaluation and discussion of the designed and implemented
optimization model and containerized runtime environment while using the fine-grained
use case presented in Section 4.3 as a reference. Furthermore it presents an extensive
numerical evaluation of the runtime performance of the designed system using example
processes.

• Finally, Chapter 7 concludes this thesis with final remarks and gives an outlook of future
work.

9

CHAPTER 2
State of the Art

“If you think you’ve seen this movie before, you are right. Cloud computing is based
on the time-sharing model we leveraged years ago before we could afford our own
computers. The idea is to share computing power among many companies and
people, thereby reducing the cost of that computing power to those who leverage it.
The value of time share and the core value of cloud computing are pretty much the
same, only the resources these days are much better and cost effective.”

— David Linthicum, author of Cloud Computing and SOA Convergence in Your Enterprise

This chapter presents the background about the most important concepts that form a basis for
the conducted work and introduces the terminology that is used throughout the thesis. We discuss
concepts from cloud computing, with a focus on virtualization and containerization techniques,
revisit the ideas behind BPM and elastic processes, and give an introduction into optimization
models.

2.1 Cloud Computing

Cloud computing [8] [24] [102] is a paradigm that has strongly evolved during the past decade
and is nowadays omnipresent. It focuses on providing virtualized resources for computation,
storage, and communication of applications. Infrastructure, platforms, applications, and storage
space can be provided as a service. This allows users to utilize as much of an already existing
infrastructure and technologies as they need at a certain point in time, without having to face
expensive and time-consuming tasks with regard to setup, operation, and adaptation of an up to
date computing infrastructure. By sharing a pool of available resources, users only have to pay
for the resources they actually use depending on their individual demands.

11

The range of application areas for cloud computing is extremely wide and ranges from
private use cases like picture and video sharing provided by Flickr1 or YouTube2 to docu-
ment sharing, editing and backup services like those provided by Dropbox3 or Google Docs4,
email services like Gmail5 and commercial use in advertising [23], banking and financial ser-
vices [71] [87], health care [6] [98] and even the insurance sector [72] or the manufacturing
domain [136] to name just a few.

2.1.1 Definition and Evolution of Cloud Computing

The National Institute of Standards and Technology (NIST) defines cloud computing as “[. . .]
a model for enabling ubiquitous, convenient, on-demand network access to a shared pool of
configurable computing resources (e.g., networks, servers, storage, applications, and services)
that can be rapidly provisioned and released [. . .]” [102].

Buyya et al. have previously proposed a definition for cloud computing as follows: “A
Cloud is a type of parallel and distributed system consisting of a collection of inter-connected
and virtualised computers that are dynamically provisioned and presented as one or more unified
computing resources based on service-level agreements established through negotiation between
the service provider and consumers.” [23]

Furthermore, the essential characteristics of cloud computing as defined by the NIST de-
scribe that cloud computing is an on-demand self-service, meaning that consumers can easily
lease needed computational resources like server time, network storage, memory, and band-
width, on-demand from service providers without the need of human interaction. A broad net-
work access makes the resources available over the network and they can be accessed through
standard mechanisms. To serve multiple customers simultaneously, providers use a multitenant
model and the technique of resource pooling by dynamically assigning and reassigning physical
and virtual resources according to the varying demands of different customers. The concept
of rapid elasticity allows to scale the required resources up and down by leasing and releasing
resources depending on the actual demanded. This can happen automatically and the avail-
able resources can appear to be virtually unlimited to the user. To monitor, control and report
the mostly automatically controlled and optimized resource usage of cloud services, they are
offered as measured services [102].

Looking as far back as to the 1960s, we can observe that some of the main concepts of
cloud computing already existed back then under the term time-sharing. Ziegler defined time-
sharing as “[. . .] a technique that permits concurrent utilization of the same installation by two
or more persons working at remote devices capable of direct, online access to the data processing
equipment” [175].

Both cloud computing and time-sharing evolved to offer a similar solution, which is mainly a
model to share computing power among different users and applications in a utility-like fashion
[24] [33], but the motivation and background for the developments are very different. Simply

1https://www.flickr.com/
2https://www.youtube.com/
3https://www.dropbox.com/
4https://docs.google.com/
5https://www.google.com/gmail/

12

https://www.flickr.com/
https://www.youtube.com/
https://www.dropbox.com/
https://docs.google.com/
https://www.google.com/gmail/

by regarding the two mentioned definitions, we can see that the definition of cloud computing
emphasizes the problem of managing a dynamic infrastructure and system landscape, whereas
the definition of time-sharing underlines the necessity of sharing scarce resources among users.

The evolution of similar solutions in a similar setting, while starting from very different
preconditions is also a very common concept in biological science, where convergent evolution
describes how two organisms that are not closely related, independently evolve similar traits
while having to adapt to a similar environment. A prominent example in the literature is the
similarity of the wings of birds and bats, the latter being mammals and not closely related to
birds. Other examples include the very similar body shape of dolphins and sharks, one being a
marine mammal and the other a fish or the similar eyes of the bottlenose dolphin and the octopus,
which also have radically different evolutionary backgrounds [101].

Time-sharing models were developed when computing power was extremely expensive and
scarce. Looking back to the sixties, in 1962 the IBM 7090 and its successor the IBM 7094 were
some of the first main frame computers to be used for time-sharing systems [31] [33]. A typical
IBM 7094 machine, which was designed for large-scale computing at that time, could perform
up to 500 thousand logical decisions per second and was sold for over three million US Dollars
or rented for more than 60 thousand US Dollars per month [70]. Considering the inflation rate,
this can be compared to a selling price of over 23 million US Dollars and a rental price of around
500 thousand US Dollars per month today. Thus only very few large corporations could afford
computing power at that time and even had to share it, because of the cost of the resources.
The IBM 7094 was also used during the Gemini program and the first three unmanned Apollo
missions by the National Aeronautics and Space Administration (NASA), but soon had to be
replaced by the more powerful IBM 360/75 machines [149].

Still, this computing power is hardly comparable to nowadays standards. According to
Google, even one simple Google search today, uses approximately the same computing power,
which was in total available to the NASA, in-flight and on-ground, throughout the entire Apollo
program, consisting of 17 missions, including the first manned moon landing [96]. Since the
start of the computing area, we could observe a tremendous price-performance gain, both with
regard to computing power as well as memory and storage performances, meaning that for the
same price the performance has improved exponentially over time [99].

Today, computing power is so cheap that it can be found everywhere around us. Not only
obvious items like laptops, smartphones, and smartwatches, but even simple household devices
like toasters are increasingly being equipped with processors and memory chips. So today’s
necessity for cloud computing in most cases does not emerge from the pure cost of the computing
power, but mostly from the cost of management and operation of an up to date and secure
computing infrastructure, that allows to efficiently use latest technologies in a fast-paced time
with frequent and often radical changes. Further, the use of cloud services helps to minimize
the risk of failure for new ventures, as it reduces upfront investments and therefore can help
to foster innovation. The use of cloud computing allows to decouple a company’s business
processes from the used hardware and software technologies, so the used technologies do not
represent a limiting factor in business process design and enactment.

13

2.1.2 Current Trends and the Future of Cloud Computing

Like it is the case with other omnipresent technologies like electricity and running water, com-
putation is becoming a utility, meaning that it is possible to pay for it only on demand, by using
cloud computing technologies [8] [24] [44].

IoT

With the decreased cost of computation, we can also observe that over time there has been a
shift from building chips mostly for servers and (personal) computers, to the ubiquitous oper-
ation of interconnected chips all around us, found in cars, clothes, walls, furniture or kitchen
utensils [79]. This coincides with the IoT paradigm, which focuses on the interconnection of
intelligent and self-configuring nodes (things) in a global network infrastructure. Already in
2011, the number of connected devices had exceeded the number of people on earth [55] and
it is expected that by 2020 there will even be around 50 billion connected devices [5]. IoT
operates to a large extent on Machine to Machine (M2M) communication, meaning that two
machines interact with one another, often making use of wireless communication, embedded
computing and cloud computing technologies [1] [17]. Ubiquitous and pervasive computing
scenarios are based on the IoT, with small, distributed, real-world devices which have only lim-
ited computational and storage resources. In contrast to cloud computing, which can virtually
offer unlimited resources, the resource-constrained “things” can often not guarantee important
performance metrics and characteristics like availability, reliability, security or privacy on their
own [17]. Thus the combination of more advanced cloud solutions and the field of IoT might re-
solve many of the limitations. It is expected that the new paradigm referred to as CloudIoT [17]
or Cloud of Things (CoT) [1], which merges the fields of cloud computing and IoT, will widely
change and revolutionize the future internet. Also, the newly evolving paradigm of fog comput-
ing, which evolved from cloud computing but focuses on the edge of the network, is expected
to play an important role in supporting future IoT applications. Fog computing focuses on ap-
plications with latency constraints that need more mobility support, and is designed for a large
number of smaller nodes with a wide geo-distribution and the need for real-time interactions
rather than large batch processing [16] [17]. IoT is expected to have major impacts on everyday
life, both for personal applications and in business scenarios. Use cases are wide and range from
e-health, assisted living, building automation, smart cities, smart mobility, smart transportation
and automotive like self-driving cars to logistics, industrial automation, transportation of goods
as well as security [17].

New Areas of Application for Cloud Services

With all these developments, the trend of using cloud services has also arrived in more tradi-
tional sectors. As an example, in the healthcare industry medical diagnostics of patients can be
accessed around the world and allow for international treatments. Patients can also be monitored
remotely to improve their medical care [32]. Especially through the use of new wearable health-
care sensors but also numerous other healthcare services and applications like e.g., ambient
assisted living, IoT and cloud computing in combination with advanced cloud processing and an-

14

alytics techniques play a crucial role in the development of pervasive healthcare and new health-
care provisioning systems that might soon revolutionize the healthcare sector [41] [59] [73].
Similar trends can also be observed in the manufacturing domain as well as increasingly also in
the educational sector. Although many technologies for those sectors already exist, they often
have not yet been adopted, because of different reasons ranging from currently existing and con-
tradicting regulations, privacy and security reasons, to a lack of knowledge about the application
and use of the new technologies among professionals in different industries [32] [73].

New Evolving Computing Paradigms based on the Cloud

Another recent computing paradigm highly related to cloud computing which is expected to
further shape many future applications in a highly connected world is the blockchain [34] [146]
[161]. A blockchain is a public ledger in the form of a distributed database, consisting of records
of all executed transactions among participating parties which are verified by consensus of a
majority of the participants. A popular application of the blockchain technology is Bitcoin, a
decentralized peer-to-peer digital currency. Besides a wide range of applications in the financial
world [151], like, for example, smart contracts, there are numerous other areas of applications
for the blockchain technology, including jurisdiction, political and government applications as
well as social and scientific domains, e.g., with solutions for decentralized storage, decentralized
proof of documents, decentralized IoT applications and internet applications like decentralized
DNS solutions and even applications in the music industry [34] [146]. The main focus is on
developing democratic open and scalable trust systems instead of centralized authorities and
thereby cutting out the middleman [161].

These attributes of blockchain can provide solutions to some obstacles of IoT applications,
especially with regard to security issues. In general, the blockchain might offer solutions for
many trusted computing problems in society, by giving users control over their personal and
sensitive data without having to trust third parties and without compromising security, while
also giving companies the possibility to make use of data without the need of implementing
additional security measures. Legal and regulatory decisions about the collection, storage, and
sharing of data could be made easier and in some cases also automatically enforced by using
decentralized blockchain technologies [176]. Especially in the field of healthcare, also with
regard to the evolving IoT healthcare solutions, sensitive and personal patient data needs to be
shared frequently. Therefore proposed blockchain technologies that give control and ownership
back to the patients could provide a new way to improve the intelligence of healthcare systems
while taking privacy issues into account [166]. More recently, blockchain technologies have
been proposed for the execution of business processes [49] [104] [130].

We can observe that many of the current and future trends including IoT [55], advance-
ments in Artificial Intelligence (AI) [133] [114] including Machine Learning (ML) [107] and
blockchain solutions [146] either evolved from cloud computing or are strongly dependent on
cloud solutions. To a great extent, we can expect future technologies to be highly interconnected
and to operate on cloud solutions. An advanced integrated application could be a smartwatch that
interacts with smart city traffic sensors and therefore automatically pays for traffic and parking
bills using blockchain-based smart contracts [146].

15

Quantum Computing as a Cloud Service

As already mentioned in the previous section, cloud computing allows to rapidly make the latest
technological developments available on demand to anyone over the internet. This means that
not only large corporations willing to set up and maintain large infrastructures and hire expen-
sive IT staff are now able to make use of cutting edge technologies. Recent developments that
reinforce this advantage of cloud computing can be found in the field of quantum computing.
Although the developments are still in an exploratory beginning phase, IBM has, for example,
already made quantum computing available on its IBM Bluemix 6 cloud platform. This allows
everyone to access the new technology and therefore also help in advancing it, as it is still in an
early stage. The ultimate goal is to create a universal quantum computer, capable of performing
important computing tasks for science and business exponentially faster than classical comput-
ers [129]. This might represent the beginning of a new era in computing as well as change and
extend current cloud computing concepts. Especially such developments as quantum computing
make cloud solutions essential, not only with regard to cost savings because of cheaper, easily
accessible and more efficient resources, but more particularly because it offers access to bleed-
ing edge technologies that are not readily available on the market yet and have not even been
used by large corporations before. When looking at quantum computing, for example, it requires
trained physicists to run quantum computers in very particular surroundings [134]. This again
brings us back to a very comparable precondition as we have already faced it back in the sixties
when time-sharing models were developed and resources had to be shared as they were scarce,
highly expensive and hard to maintain.

It should be noted that although computing power has grown exponentially, there is a limit
to the possible growth for computers as they are built today. Until now, Moore’s law, which,
based on observations, predicted the growth of the number of transistors per computer chip,
has been very accurate. In 1965, Moore predicted that the number of transistors would double
every year for the next decade [108] and in 1975 he adjusted the prediction to a doubling for
every two years [109]. Although also in the recent past the number of transistors per chip and
with it the available processing power has been growing at an exponential rate as described
by Gordan Moore [94], Moore’s law still has a limiting factor, as it is physically impossible to
shrink transistors even further once they have reached the size of atoms. It has been proposed that
when shrinking transistors to the size of electrons, the quantum limit year, according to Moore’s
law and in consideration of Heisenberg uncertainty would already be reached in 2036 [123].
Additionally when following the trend of interpreting Moore’s law with regard to the growth
of computing power and processing speed instead of only the number of transistors on a chip,
there is a considerable bottleneck between very fast CPUs and other components such as RAM
and Hard Disc Drives (HDDs) which can lead to lower performances when Input/Output (I/O)
speed is low for tasks with a high I/O bound. Advancements for minimizing the waiting time
are therefore important and have been addressed by manufacturers by offering fast flash drives
next to HDDs. In most cases, these new technologies are more expensive. Therefore it is often
advantageous to share and access them via cloud-based data centers [11] [134]. The use of cloud
services also facilitates keeping up to date in a fast paced environment and easily making use of

6https://www.ibm.com/cloud-computing/bluemix/

16

https://www.ibm.com/cloud-computing/bluemix/

latest advancements where necessary. Whether or not we will hit a limit of Moore’s law with
regard to an increase in computing power, also regarding the potential of quantum computing and
future developments, is under debate [123], but in any case further rapid changes in technology
are to be expected also in the future, so that cloud models can offer high flexibility and fast
adoption times.

The developments in quantum computing are from an economic perspective a very inter-
esting combination of technology-push and market-pull, also known as demand-pull, strate-
gies [40]. On the one hand, there are companies like IBM pushing the new technology into the
market, but they are doing so at a very early stage, so future users and early adopters can have
a determining influence on the development. On the other hand, by offering the early technolo-
gies in the cloud, users can easily experiment with the possibilities of the technology, state their
demand and therefore dictate the further development of the technology, which corresponds to
the market-pull paradigm.

The future applications for quantum computing can currently at most only be estimated,
but because of the quantum superposition principle, quantum computers will potentially be able
to solve certain problems exponentially faster than today’s computers. Quantum computers
might especially be strong in solving linear systems of equations, which are frequently needed
in nearly all fields of science and engineering. Quantum computing is expected to provide very
large advantages for massive computations as they are needed for optimization problems, for
AI applications including ML solutions or also for simulations like those used in pharmaceuti-
cal research or agent-based models. Also, the development of new cryptographic applications
will be a major research area, as quantum computing is expected to be offered in the cloud
and therefore secure cloud quantum computing encryption methods will be necessary. Current
quantum computing experiments already use the early stage quantum computing cloud services
currently offered by IBM [26] [37] [68] [118]. Soon more advancements in the area of Quantum
Computing as a Service (QCaaS) are to be expected [126].

The successful introduction of powerful quantum computing systems can lead to the need
for adaptation and changes in current systems, especially with regard to security issues. When
looking at the already discussed blockchain technology, which is based on the concept of a com-
putationally tamper-proof ledger [176] that can not be corrupted by a single party, advancements
in quantum computing that provide considerably higher computational resources for complex
mathematical operations could bring such blockchain systems to their knees [34] and very new
quantum encryption methods would need to be developed.

Future Implications

The discussed trends show that different important developments from varying fields are based
on cloud computing services and principles and it can be expected that especially the intercon-
nection of these different developments will play a major role for future cloud applications. As
cloud solutions will form the basis for the success of many innovations, an optimal management
of cloud resources will be a crucial factor for the effective realization and adoption of future
applications and scenarios.

17

2.1.3 Cloud Service Models

Cloud computing providers offer very diverse services in a pay-per-use manner on different
layers of abstraction and for different types of use cases. The architecture of cloud computing
can be split into four layers building upon each other [170]:

• The data center layer consists of the actual hardware and offers physical resources like
CPU, memory, disk and network links.

• the infrastructure layer (also known as the virtualization layer) builds the heart of cloud
computing and offers the underlying resources from the data center layer in the form of
a virtualized pool of resources. Virtualized computational resources are offered using
VMs and storage space is provided in blocks. Therefore a dynamic resource assignment
is possible, without being bound to the static properties of the physical resources. Ama-
zon’s EC27 is a prominent cloud hosting web service for renting VMs, while their Simple
Storage Service (S3)8 is a popular web service for storage space.

• The platform layer can provide OSs and application frameworks, e.g., for Java or .Net and
thus facilitates the deployment of applications in VMs. An example is the Google App
Engine9 that provides API support for implementing web applications.

• The application layer offers actual cloud applications that can easily be accessed and scale
automatically. Prominent examples include Google Apps10, Youtube, or Facebook11.

Based on the four-layered cloud computing architecture, three main categories of cloud ser-
vices, depicted in Figure 2.1, are commonly distinguished. The three cloud service models all
offer very different capabilities for different users and are [102]:

• Infrastructure as a Service (IaaS): An IaaS provider offers a virtualized infrastructure
to the customer. The provider manages networking, storage, and servers and offers the
resources via virtualization techniques like VMs to the customers who can setup, deploy
and run arbitrary OSs, middlewares, runtime environments and applications on the leased
resources, without having to manage the underlying infrastructure. IaaS offers the most
flexible cloud service model and gives developers more control over the infrastructure.
Many IaaS users develop and deploy platforms on top of the provided IaaS and make these
platforms available as Platform as a Service (PaaS) offerings. Users of IaaS of course also
have the possibility to develop and deploy software on top of their own platform layer and
offer Software as a Service (SaaS) solutions. Next to providing IaaS, like Amazon EC2
does, providers can also offer Data as a Service (DaaS), which is a service for storing and
retrieving data in the cloud. A prominent example for DaaS is Amazon S3.

7https://aws.amazon.com/ec2/
8https://aws.amazon.com/s3/
9https://cloud.google.com/appengine/

10https://gsuite.google.com/
11https://www.facebook.com/

18

https://aws.amazon.com/ec2/
https://aws.amazon.com/s3/
https://cloud.google.com/appengine/
https://gsuite.google.com/
https://www.facebook.com/

Se
rv

ic
e

Pr
ov

id
er

Se
rv

ic
e

C
on

su
m

er

Se
rv

ic
e

Pr
ov

id
er

Se
rv

ic
e

C
on

su
m

er

Platform

Application

Configuration ConfigurationConfiguration

Application

IaaS

PaaS

SaaS

Figure 2.1: Cloud Service Models

• PaaS: provides IaaS and a platform layer with OS support and software development
frameworks like, for example, certain middlewares and runtime environments. Typical
users of PaaS offerings could be web developers, who lease a platform offering certain
programming language execution environments, a database, and a web server. PaaS users
can develop software on the given platform and make the software available in form of
SaaS offerings.

• SaaS: targets end users of elastic and scalable cloud software. The user can use the soft-
ware on demand and define configurations, but does not need to worry about any under-
lying technicalities. The SaaS provider takes care of the deployment and functionality of
the application and its data.

When obtaining a packaged software, instead of using a cloud service, a user has to manage
the application and its data, the runtime environment, middleware, and OS, as well as the virtu-
alization layers including the optimization of the utilization of the underlying physical resources
like servers, storage, and the network.

SLAs

Cloud service providers promise certain metrics and levels of performance for their services to
customers by establishing contracts, which are referred to as SLAs. The non-functional QoS

19

guarantees specified in SLAs target important parameters like availability, throughput, down-
time, bandwidth or response time. Service providers have to monitor the defined QoS guarantees
and make sure that they deliver the services such that each defined non-functional requirement
corresponds to the corresponding agreed Service Level Objective (SLO). Furthermore, SLAs
state penalties for the violation of the defined SLOs [24] [81].

2.1.4 Cloud Deployment Models

There are four different cloud deployment models as defined by the NIST [102], differing in
ownership, size, and accessibility. Depending on business requirements, security and privacy
issues [128] [143], users can choose between:

• Private Clouds: A private cloud offers its infrastructure exclusively to one organization,
often set up in an organization’s own data center. Private clouds can also be offered by
third parties and be located off premise. Multiple business units of an organization can
access the private cloud and make use of the cloud’s scalable resources. Well maintained
private clouds can offer high levels of security as the cloud is only exposed to internal
customers. Furthermore, a private cloud facilitates meeting regulatory and security com-
pliances, as the cloud can be managed and controlled by one company.

• Community Clouds: A community cloud is similar to a private cloud with the difference
that the cloud infrastructure is not exclusively utilized by only one organization, but a
community often comprised of multiple organizations with shared concerns, e.g., with the
same policies and compliances.

• Public Clouds: In a public cloud the cloud infrastructure is shared by the general public
and operated by a cloud provider on their premises. A big advantage is that costs can
be shared by the public cloud users on a very fine-grained utility computing basis, using
pay-per-use models. Spikes in a user’s demand for computational resources can be met
without the risk of under-provisioning of the available cloud infrastructure. Public clouds
are often thought to be less secure than private clouds, as it has to be ensured that the
publically shared infrastructure is not maliciously attacked. Furthermore often differing
policies and regulations of the different participants can not always be taken into account.

• Hybrid Clouds: A hybrid cloud is a composition of multiple distinct cloud infrastructures
that are bound together but still remain unique entities. A hybrid cloud enables portabil-
ity of data and applications between the different underlying infrastructures. A typical
example of a hybrid cloud is a company maintaining a private cloud for critical applica-
tions and also using a public cloud for spikes in demand of computational resources, but
also the combination of two or more different public cloud infrastructures can be a hybrid
cloud. A hybrid cloud offers a possibility to combine the advantages of different cloud
infrastructures and even out their limitations.

20

2.1.5 Virtualization and Containerization Techniques

When regarding the definition of cloud computing as discussed in Section 2.1.1 we can derive
that for realizing cloud computing we need a technology that allows to split up and dynamically
share computational resources while providing isolation and control of resources in a multitenant
environment. There are two commonly used technologies for achieving these requirements, on
the one hand, we have the well-known hypervisors that create and manage VMs, but on the other
hand, also containers can provide isolation and multitenancy.

In the following sections we discuss the main features of virtualization and containerization
techniques, compare both concepts with each other and argue how they can be used separately
as well as complementary.

VMs and Hypervisor-based Virtualization

Virtualization builds the basis for the realization of cloud computing techniques and refers to
the ability to abstract physical computing resources such that the resources of single physical
machines, e.g., the available CPU, memory, disk, and bandwidth, can be split and function as
individual logical units. Therefore, multiple VMs can host different isolated operating systems
on virtual hardware on top of the same physical machine.

In the cloud computing architecture, virtualization is implemented in the infrastructure layer
as introduced in Section 2.1.3, by partitioning storage and computational resources and therefore
creating a pool of virtualized resources. Such pools are created by using virtualization technolo-
gies referred to as hypervisors or VM monitors. The OS that runs on virtualized resources is
called the guest OS and is managed by a hypervisor, which takes care of the virtualization and
resource isolation, manages VMs on the physical hardware and coordinates the flow of instruc-
tions between guest OSs and the hardware. By separating the guest OS from the actual hardware,
virtualization offers a possibility to realize the key features of cloud computing, such as the dy-
namic assignment of computational resources while also masking the technological complexity
from the users [24] [135] [170].

There are two main different types of hypervisors that allow to emulate hardware and bring
up guest OSs on top of the virtual resources and therefore decouple the guest OS from the
underlying hardware. The two types are depicted in Figure 2.2 and are [105] [122] [135]:

• Type-1, also known as bare metal or native hypervisors run directly on the underlying
host’s physical hardware, without the need of a host OS. The hypervisor is in most cases
a relatively slim software installed on each host computer and controlled by a manage-
ment software, which can control multiple hypervisors on multiple physical hosts. The
management software can install and manage VM instances’ on a hypervisor, consolidate
physical servers and migrate VM instances from one server to another physical server,
based on the instances needs while considering an optimal server utilization that allows to
turn servers on and off as needed and therefore to minimize power consumption and elec-
tricity bills. Furthermore, the management software can also take fault tolerance issues
into account and hide server crashes from the users. Most new generation type-1 hyper-
visors also allow overallocation, meaning that more total resources than actually available

21

on a host can be allocated to VM instances, while at any time all instances of a host will
not use more than what is actually available on the physical hardware. As the instances
often use fewer resources than they actually claim, this form of dynamic allocation allows
for a better utilization of the physical resources while still being able to provide the allo-
cated resources to VM instances when they need them. Examples for type-1 hypervisors
include VMware ESXi12 which is managed by vShpere13, the Xen hypervisor14 managed
by the Citrix XenServer15, Microsoft Hyper-V16 or Oracle VM Server for x8617 or for
SPARC18. It should be noted that many hypervisors are based on the open source Xen
hypervisor and companies, therefore, offer basic functionalities for their hypervisors for
free but charge for additional features like the discussed overallocation, fault tolerance,
and server consolidation.

• Type-2 or hosted hypervisors can run on top of almost any host OS, e.g., Linux, MacOS or
Windows, while in contrast to type-1 hypervisors also other applications can be installed
and run alongside the hypervisor on the host OS. The hypervisor manages the guest OSs,
which run as processes on the host. Usually, a virtualization application runs as a software
layer in the guest OS and allows to control the virtualization parameters. Therefore no ad-
ditional management software is needed, as it is the case with type-1 hypervisors. Special
attention should be paid during resource allocation for type-2 hypervisors. In contrast to
type-1 hypervisors, the resources allocated to guest OSs on hosted hypervisors are taken
from the underlying host and allocated to the guest instance, no matter if the instance ac-
tually uses the resources or not. Therefore the host system might crash if there are not
enough resources left for the basic functionality of the host OS itself and the other appli-
cations running next to the virtualization environment directly on the host OS. Examples
for type-2 hypervisors include the Oracle VM VirtualBox19, Microsoft’s Windows Virtual
PC20, VMware Fusion21 for Mac, VMware Workstation for Windows22 and for Linux23

or Parallels24 Desktop for Mac.

Other important hypervisors such as the Linux Kernel-based Virtual Machine (KVM)25 are
not easily categorizable as type-1 or type-2 hypervisors. There have been many debates [121]
on how to classify KVM, which is a Linux kernel module. The debates often focus on issues
like performance, latency, security, scalability, and isolation with regard to the classification as

12http://www.vmware.com/products/vsphere-hypervisor.html
13http://www.vmware.com/products/vsphere.html
14https://xenproject.org/
15https://xenserver.org/
16https://www.microsoft.com/en-au/cloud-platform/server-virtualization
17https://www.oracle.com/virtualization/vm-server-for-x86/index.html
18https://www.oracle.com/virtualization/vm-server-for-sparc/index.html
19https://www.virtualbox.org/
20https://www.microsoft.com/en-us/download/details.aspx?id=3702
21http://www.vmware.com/products/fusion.html
22http://www.vmware.com/products/workstation.html
23http://www.vmware.com/products/workstation-for-linux.html
24https://www.parallels.com
25https://www.linux-kvm.org/

22

http://www.vmware.com/products/vsphere-hypervisor.html
http://www.vmware.com/products/vsphere.html
https://xenproject.org/
https://xenserver.org/
https://www.microsoft.com/en-au/cloud-platform/server-virtualization
https://www.oracle.com/virtualization/vm-server-for-x86/index.html
https://www.oracle.com/virtualization/vm-server-for-sparc/index.html
https://www.virtualbox.org/
https://www.microsoft.com/en-us/download/details.aspx?id=3702
http://www.vmware.com/products/fusion.html
http://www.vmware.com/products/workstation.html
http://www.vmware.com/products/workstation-for-linux.html
https://www.parallels.com
https://www.linux-kvm.org/

VM 1 VM 2

Hardware

Bare Metal Hypervisor

Guest OSGuest OS

Application Application

(a) Type-1 Hypervisor Architecture

VM 1 VM 2

Hardware

Host OS

Hosted Hypervisor

Guest OSGuest OS

Application

Application Application

(b) Type-2 Hypervisor Architecture

Figure 2.2: Virtualization Architectures (adapted from [135])

a pure bare metal or hosted hypervisor. As KVM builds upon a general purpose OS, it could
be seen as a type-2 hypervisor. At the same time, if no other applications are installed directly
on the Linux machine, KVM could also be classified as a type-1 hypervisor, as it converts the
host OS into a VM monitor and only the Linux kernel is used to schedule CPU, memory and
I/O, therefore only one translation between the physical hardware and the virtualized resources
is needed for resource isolation, which is a characteristic of type-1 hypervisors [46] [52].

For the realization of their own private clouds, some enterprises often use VMware instal-
lations with an ESXi Hypervisor, but also some public cloud providers make use of ESXi [12].
When looking at well-known cloud providers, we can see that the Xen hypervisor is used by
Amazon Web Services (AWS)26 and Rackspace27, while KVM, which was supported by Linux
more recently as an open source alternative, is used by more lately constructed clouds like those
from AT&T28, HP29 or Comcast30. OpenStack31, and most OpenStack distributions like those
from RedHat32 or Cloudscaling33 also make use of KVM. Microsoft, of course, makes use of its
own Hyper-V for its cloud offerings like Microsoft Azure34.

But the use of hypervisors is not the only possible way to build cloud computing offerings.
Successful cloud platform providers that heavily rely on containerization technologies as intro-
duced in the following section include Google and IBM [12].

26https://aws.amazon.com/
27https://www.rackspace.com/
28https://www.business.att.com/enterprise/Portfolio/cloud/
29https://www.hpe.com/us/en/solutions/cloud.html
30https://business.comcast.com/cloud
31https://www.openstack.org
32http://www.redhat.com/en/insights/openstack
33http://cloudscaling.com/
34https://azure.microsoft.com/

23

https://aws.amazon.com/
https://www.rackspace.com/
https://www.business.att.com/enterprise/Portfolio/cloud/
https://www.hpe.com/us/en/solutions/cloud.html
https://business.comcast.com/cloud
https://www.openstack.org
http://www.redhat.com/en/insights/openstack
http://cloudscaling.com/
https://azure.microsoft.com/

VM 2

Hardware

Hypervisor / Host OS incl. Kernel A

Application

Libraries

Guest OS

Init System

Kernel C

Virtual Hardware

VM 1
Application

Libraries

Guest OS

Init System

Kernel B

Virtual Hardware

(a) Hypervisor Architecture

Application
Container

Hardware

Host OS incl. Kernel A

Application

Libraries

Guest OS

Init System

OS Container

Application

Libraries

Guest OS

Init System

(b) Container Architecture

Figure 2.3: Containerized Architecture vs. Hypervisor-Based Architecture (adapted from [18])

Containerization Technologies and a Comparison to VMs

While hypervisor virtualization technologies are based on emulating hardware and bringing up
another completely new OS on top of virtual hardware (hardware-level virtualization), contain-
ers are about virtualizing the host OS itself and providing the host OS’ services, e.g., networking
and filesystem, in a virtualized manner (OS-level virtualization). Although the underlying basics
of container technologies are not new and the ideas behind container technologies date back to
time-sharing systems, container technologies have only recently gained significant popularity,
especially due to their advantages for service providers in the PaaS space and thanks to success-
ful container technologies like Docker35 [12] [18].

Figure 2.3 compares the architecture of containerized architectures to hypervisor-based ar-
chitectures and illustrates that hypervisors allow to bring up any OS on top of any other OS.
As also the hypervisor will at least have its own kernel or use the underlying host OS’ kernel,
there are always multiple kernels involved when it comes to hypervisor-based virtualization. In
contrast, a container management service like Docker, OpenVZ36 or LXC37 is installed on the
host OS and enables the host’s kernel to manage the isolation between multiple applications and
processes and to provide the OS’ services in a virtualized way. This means that multiple isolated
containers can run on a node sharing a single kernel instance. As there is exactly one kernel
involved when running containers, it is only possible to bring up multiple copies of OSs that are
based on the same kernel on a single node. This means that with containerization technologies it
is for example not possible to bring up a Linux and a Windows OS container on the same node,
as the Windows OS and the Linux OS do not share the same kernel, but it is possible to bring

35https://www.docker.com
36https://openvz.org
37https://linuxcontainers.org

24

https://www.docker.com
https://openvz.org
https://linuxcontainers.org

Table 2.1: Comparison: VMs vs. Containers

VMs Containers
Virtualization hardware-level virtualization,

VMs run on emulated hardware
OS-level virtualization, contain-
ers run on virtualized resources
of the host’s OS

Kernel multiple kernels, one for the host
OS and/or hypervisor and one
additional kernel for each guest
OS in every VM is loaded into
its own memory region

only one kernel is shared by all
guest OSs and the kernel image
is loaded into the physical mem-
ory

Boot process started through standard boot
process leading to a number of
hypervisor processes on the host

started as application processes
on the host directly or through
a container-aware daemon like
systemd

Startup Time boot up in a few minutes boot up in a few seconds
Isolation sharing libraries or files between

guests and between guests and
host not possible

libraries and subdirectories can
be mounted and shared

Storage heavyweight, the whole OS incl.
kernel and programs have to be
installed and run

lightweight, as the base OS is
shared and also libraries can be
shared for application containers

Performance overhead for translating machine
instructions from guest OS to
host OS and poor performance
under resource pressure due to
competing kernels

near-native performance com-
pared to host OS and better re-
source management under high
workloads since resources are
managed by only one kernel

up multiple instances of the same OS or of different OSs that share the same kernel, like e.g.,
CentOS38 and RHEL39, on a single node [12] [18] [42] [90].

As containerization technologies are based on sharing only one single kernel, containers are
less attractive when there is the need for heterogeneous environments, as it is sometimes the case
in the enterprise space, but containers imply a number of advantages for service providers, who
can easily set up larger homogenous groups of machines running the same OS kernel [18].

Comparison of VMs and Containers: The main differences between hypervisor-based sys-
tems using VMs and container-based systems are discussed in Table 2.1 [12] [18] [42] [90] [116].

38https://www.centos.org/
39https://www.redhat.com/en/technologies/linux-platforms/enterprise-linux

25

https://www.centos.org/
https://www.redhat.com/en/technologies/linux-platforms/enterprise-linux

Advantages of Containerized Architectures: One of the biggest advantages of containerized
architectures is that they allow for a higher degree of elasticity on multiple levels. One reason
for this is that the container stack is very light. While application container images mostly only
reach the size of some Megabytes (MBs), VM images that pack the full OS and kernel often
reach the order of Gigabytes (GBs). Therefore, containers are faster to start, stop or migrate and
it is even easily possible to add and remove resources like CPU and memory without the need
to restart or reboot the whole OS which facilitates horizontal scaling and even allows for instant
vertical scaling [12] [18].

Furthermore, containers can provide a higher density on the same node and are able to deliver
the required performance and operate more stable than hypervisor-based systems under high
resource pressure. The reason for this is that there is only one kernel that is put under resource
pressure and a single kernel can better handle limiting constraints and control the resources as
it has full information about what is happening inside of the containers. Therefore, resource
sharing and efficiency can be enhanced, especially as the page cache of the single kernel can
easily be shared. In contrast, when using a hypervisor-based system it can often happen that
the host OS claims pages of memory from the guest OSs and the guests try to reclaim it again
and therefore the whole system can slow down. This is a problem as hypervisor-based systems
were not created with limited resources in mind but to better utilize free resources on running
machines [18] [46].

Another advantage that comes from only having one kernel is that patching problems often
faced when updating VM kernels are easily solved and all container-based guests of one kernel
directly benefit from patches applied to that kernel [18].

OS Containers and Application Containers: An OS container is a virtual environment that
allows isolating processes while still sharing the kernel of the host OS. As the containment does
not only apply to one process but also all child processes, an entire OS can be booted in an OS
container, starting with the init process and providing the same level of isolation and security
as a VM. OS containers can be created using container manipulation technologies like LXC
or OpenVZ which are based on concepts like CGroups for controlling resources in the kernel
(e.g., CPU, memory, devices, etc.) and namespaces for providing isolation inside the kernel
(e.g., network namespaces, PID namespaces, etc.). An application container is very similar to
an OS container, with the difference that application containers are designed to package and run
only one single service instead of multiple processes inside of one container. This also means
that application containers are not meant to pack, ship and deploy full guest OSs. Instead, only
the application and all the required libraries are shipped in one container [18] [42]. To give an
example for this, when deploying a simple Wordpress application, an OS container could include
multiple services like an SSH daemon, the Wordpress theme with libraries, an Apache server,
a mail server, etc. When using application containers there would be a separate container for
each service, e.g., one container only for the Wordpress theme and the required libraries, another
container for the Apache server and so on. These individual containers would then be linked to
communicate with each other. One of the most prominent technologies for creating application
containers is Docker.

26

Application Containers for DevOps and Microservices: One of the main advantages of ap-
plication containers is that they facilitate the realization of DevOps [9] practices and goals.
DevOps focuses on practices to improve the cooperation of “software development” and “IT
operations” such that the time between committing a change to a system and the change being
visible in the production environment is minimized. According to DevOps. software delivery
processes should be automated as much as possible. As continuous deployment practices lead
to a more frequent build, test and release cycle of software, a rapid and reliable deployment of
software and changes has to be guaranteed.

One of the key advantages that application containers provide to developers is that they can
easily pack their applications into standardized container formats and afterwards simply deploy
and run the containers in any environment that supports the container format. For Docker, this
would mean that an application in a Docker container will easily be deployed and behave the
same whether it is shipped, e.g., to EC2 or a private laptop, as all dependencies and libraries are
packaged into the container image.

People working in operations benefit from the use of such containers, as they no longer have
to manage all dependencies and write scripts to match the application’s changing needs. Instead,
they can simply offer the container engine, e.g., the Docker Engine and a basic infrastructure,
so the developers can take care of anything else. This facilitates and speeds up the software
shipping process and continuous deployment practices.

Application containers are lightweight and they are well-suited as a base technology for
implementing microservice architectures. With microservices, larger application architectures
are broken down into independently deployable services that are loosely coupled and can be
mapped to different business processes. Therefore, single large applications can be represented
as a suite of smaller, independently manageable services, communicating with each other [116].

Docker: The Docker project is described as “an open platform for developers and sysadmins
to build, ship, and run distributed applications, whether on laptops, data center VMs, or the
cloud”. The Docker Engine is the most prominent example for a container engine supporting
the creation of application containers. Figure 2.4a illustrates the containerization architecture
when using Docker containers, while Figure 2.4b shows the general structure of Docker Images
and describes their creation process. Figure 2.4c gives an overview of the interplay of different
Docker components in a Docker-based system architecture. The most important components of
Docker as depicted in Figure 2.4 include:

• Docker Objects

Docker Image: A Docker Image is an immutable read-only template for creating
Docker containers. It allows to store the application code and configurations and can be
compared to an executable. The Docker Image can include a snapshot of the application
code and the entire environment in which the application was created, so the application
will behave the same way also when deployed for example in production containers on
other machines. A Docker Image typically consists of several layers. Figure 2.4b illus-
trates the creation of a new Docker image. A Docker Image is created by executing a
Dockerfile that defines the steps to create and run an image. An image can be based on

27

Hardware

Host OS

Application 2

Bins / Libraries

Container A
Application 1

Bins / Libraries

 Engine

Container B

(a) Docker Container Architecture

Base
Image

Image

Image

writable
Container

references
parent
imageadd files,

software packages,
environment variables,

volume mounts, ...

#Docker File
FROM Base Image
RUN …
RUN ...

(b) Docker Images

Docker HostDocker Client

docker build

docker pull

docker run

docker daemon

docker containers docker
images

Docker Registry

2

4

1

3

1

4

(c) Overall Docker Architecture

Figure 2.4: Docker Platform

another image, therefore a base image can be defined in the Dockerfile and customizations
to the base image can be added. An example would be starting with a CoreOS base image,
installing the Apache web server and MongoDB, creating default data directories, expos-
ing default ports and adding the new application including all necessary configurations on
top of the base image. Each instruction in a Dockerfile (e.g., for adding files, software
packages, environment variables, volume mounts, etc.) creates a new layer in the image,
while each layer references its parent layer. This image architecture makes images rela-
tively lightweight, as changing a Dockerfile and rebuilding an image will only rebuild the
layers that have actually changed (and all child layers). Docker Images can be pushed to
a public registry for general availability, or to a private registry with restricted access.

Docker Container: A Docker container can be described as a runnable instance of a
Docker Image that can be created, started, stopped, migrated or deleted. While the image
is immutable, a container is mutable and ephemeral, so when a container is removed the
writable layer depicted in Figure 2.4b is generally also lost, unless the container’s state is
stored in a persistent storage. It is also possible to create new images based on the current
state of a running container. Containers are isolated from other containers and the host

28

Container
Cluster

Manager

Node

Node

Node

Figure 2.5: Container Cluster Management

machine, but the level of isolation is controllable.

• Docker Registry: Docker Images can be stored in a registry. There are public registries,
e.g., on Docker Hub40 or Docker Cloud41 but it is also possible to use a private registry.
When using the docker pull command, the Docker daemon pulls the required images from
a registry and stores them on the Docker host to run containers based on that image.
Multiple containers can be started from the same image, so a Docker Image has to be
pulled only once for all corresponding containers on a Docker host. As the same image
can be used for multiple container instances, the state of those containers will only differ in
their writable layer, and regardless of the more lightweight containerized architecture, less
storage space compared to virtualization with VMs is needed, as VMs typically require a
full dedicated copy of the image in their filesystem.

• Docker daemon: The Docker daemon listens for Docker API requests from a Docker
client and manages Docker objects like Docker Images, containers, networks and volumes
on a Docker host.

• Docker client: A Docker client sends commands to one or multiple Docker daemons.

To build and manage a cluster of containers communicating with each other, and in order
to scale containers across multiple nodes, technologies like Google’s Kubernetes42 or Docker
Swarm43 that also offer replica management and load balancing can be used. The main func-
tionality of such container cluster managers is depicted in Figure 2.5 and consists of scheduling,
packaging and connecting a wide number of user containers on nodes in a dynamic cluster. In
other words, such container cluster management tools can bridge the gap between rather low-
level virtualization technologies like those provided by the Docker Engine or LXC and high-level
application architectures consisting of multiple interconnected and elastic services. Therefore,
container cluster management tools help in building distributed scalable applications out of in-
vokable, addressable and scalable services.

40https://hub.docker.com/
41https://cloud.docker.com/
42https://kubernetes.io/
43https://docs.docker.com/swarm/

29

https://hub.docker.com/
https://cloud.docker.com/
https://kubernetes.io/
https://docs.docker.com/swarm/

scale up

scale down

(a) Vertical Scaling

scale in

scale out

(b) Horizontal Scaling

Figure 2.6: Vertical vs. Horizontal Scaling

2.1.6 Scalability in Cloud Computing

One of the main advantages of the cloud computing paradigm is the concept of rapid elastic-
ity, which allows to allocate and deallocate or reconfigure cloud resources dynamically and on
demand, following a set of predefined rules. Cloud application scalability can be achieved by
either implementing vertical or horizontal scaling techniques [106] [155]. Figure 2.6 illustrates
those two mechanisms.

• Vertical scaling: Vertical scaling allows to scale individual system components up and
down by changing their assigned computational resources, i.e., by adding and removing
virtualized hardware resources to a node. After applying vertical scaling techniques, the
scaled component remains one logical unit. Changing the allocated resources of running
instances, e.g., adding more physical CPU and RAM on-the-fly has been traditionally dif-
ficult when using hypervisor-based virtualization techniques, often requiring a full reboot
of the OS [92] [155]. On-the-fly vertical scaling is facilitated by using lightweight con-
tainer engines as described in the previous section, as allocated resources can easily be
adapted during runtime.

• Horizontal scaling: Horizontal scaling refers to a system’s ability to scale the available
computational resources in and out by changing the number of available system compo-
nents, i.e., by adding/removing server replicas and load balancers to distribute the load.
Horizontal scaling can easily be achieved by using hypervisor-based virtualization tech-
niques as well as more lightweight containerization techniques that can decrease time and
resource overhead associated with leasing new VM instances. As horizontal scaling tech-
niques change the number of logical or physical nodes of a system, the number of nodes
that have to be provisioned by load balancers changes.

2.1.7 Elasticity in Cloud Computing

The scalability features provided by cloud computing environments have led to a wide range of
elastic cloud services like, e.g., offerings for elastic computing by AWS’s EC2. By making use

30

time

capacity

demand

re
so
ur
ce
s

(a) Over-Provisioning
time

re
so
ur
ce
s

capacity
demand

(b) Under-Provisioning
time

re
so
ur
ce
s

capacity
demand

(c) Dynamic Provisioning

Figure 2.7: Provisioning under fixed resources and dynamic provisioning (adapted from [8])

of hosted instances instead of setting up own data centers, customers can not only take advan-
tage of the provided infrastructure and expertise of cloud hosting providers but also benefit from
the elasticity properties of cloud offerings. Virtualized resources in a cloud environment can be
leased from multiple sources for only short time periods and added within minutes, while con-
tainers often even only need a few seconds to be up and running. Therefore the utilized resources
can be matched to the actual workload as well as cost and QoS constraints. In contrast, when
using data centers with static resource capacities users run a very high risk of over-provisioning
or under-provisioning their services and applications which comes with high additional costs
and business-related risks [8].

• Over-provisioning refers to a state where the statically leased or set up resource capacity
is higher than the actual demand for computational resources. This situation is depicted in
Figure 2.7a and can lead to a high amount of unused and therefore wasted computational
resources. Over-provisioning is often implemented for applications to make sure that there
are enough resources available also during request spikes and known or unknown resource
usage peak times. The associated costs for over-provisioning are easy to calculate and
equal to the additional cost that arises from leasing or maintaining the green shaded area
in Figure 2.7a.

• Under-provisioning refers to a state where the statically leased or set up resource capacity
is lower than the actual demand for computational resources. This situation is depicted
in Figure 2.7b by the red shaded area. Under-provisioning leads to situations where the
requested load can not be processed and user requests have to be rejected. The costs of
under-provisioning are harder to calculate as rejected user requests might be serviced by
other providers and therefore dissatisfied customers might be lost in the long run. This can
lead to a less frequent occurrence of request spikes and a decreasing number of requests
in general. Therefore, companies might face the situation of having an unplanned over-
provisioning infrastructure for the decreasing number of requests.

• Dynamic provisioning is depicted in Figure 2.7c and eliminates the risks of over-provisioning
and under-provisioning. Dynamic provisioning can be achieved by using elastic cloud ser-
vices on demand so leased resource capacities can always correspond to the actual load.
No computational resources are wasted and unexpected spikes can also be provisioned
for the time of their occurrence. Therefore, cloud-based dynamic resource provisioning is
ideal for large volatile process landscapes with a varying amount of user requests.

31

2.2 Business Process Management

BPM is an interdisciplinary field, combining various process related organizational and manage-
ment disciplines with computer science and Information Technology (IT) related fields, to enable
the flexible management and transformation of an organization’s internal and external-facing in-
terconnected business processes [131]. Research in the field of BPM has led to a wide variety of
“methods, techniques, and tools to support the design, enactment, management, and analysis of
operational business processes” [154]. Business processes are an essential part of every organi-
zation and consist of tasks, activities, and decisions that can be performed by human-provided
or software-based services. Intelligently designed and well-performed processes have a great
impact on the QoS delivered to customers. Therefore organizations with better designed, flex-
ible and well-executed processes can often outperform other organizations that deliver similar
products and services [43].

2.2.1 Business Process

Dumas et al. [43] define business processes as “a collection of inter-related events, activities
and decision points that involve a number of actors and objects, and that collectively lead to an
outcome that is of value to at least one customer”.

The orchestration of business processes can be specified using formal process models, that
describe the individual process steps, tasks, and activities including relations between them and
execution constraints. An automated sequence of tasks within a process is referred to as a work-
flow and a process instance refers to a concrete running or executed instance of an executable
process model [138].

Processes are commonly distinguished into three categories [131]:

• core processes are business essential and focus on creating value for external customers.
Such value-adding processes include for example highly structured transactional pro-
cesses like order fulfillment and customer service, but also creative processes like product
development.

• enabling processes are also referred to as support processes, as they support and enable
the operation of core processes and create value for internal customers. Such processes
include human resource-related processes, information systems development or financial
reporting.

• governing processes are management processes that are necessary to lead the company,
like strategic planning or risk management processes. BPM also falls into this category.

32

Administration
and

Stakeholders

Evaluation

● Process Mining
● Business Activity

Monitoring

Enactment

● Operation
● Monitoring
● Maintenance

Design
Business Process

Identification and Modelling

Analysis

● Validation
● Simulation
● Verification

Configuration

● System Selection
● Implementation
● Test and Deployment

Figure 2.8: BPM Lifecycle (taken from [138])

2.2.2 BPM

Based on their definition for business processes Dumas et al. further define BPM as “a body
of methods, techniques and tools to discover, analyze, redesign, execute and monitor business
processes”.

BPM considers both intra- and inter-organizational processes and focuses on their dynamic
interplay and improvement in a consistent, continuous and iterative way. The BPM lifecycle is
depicted in Figure 2.8 and typically consists of the phases: design and analysis, configuration,
enactment, and evaluation [138]. In the remainder of this thesis, we will focus on the enactment
phase.

2.2.3 BPMS

To support BPM activities and to enact and manage business processes, software-based BPMSs
are utilized. Van der Aalst et al. define BPMS as “a generic software system that is driven by
explicit process designs to enact and manage operational business processes” [154]. A BPMS
executes process instances according to the defined process models while considering execution
and QoS constraints, like cost metrics and execution deadlines for individual processes or tasks.
A BPMS also takes care of process choreographies to ensure process interoperability between
different participants. The large number of concurrent process instances managed by BPMSs
form an often very volatile process landscape that can also connect multiple organizations and
in most cases is hard to predict [138].

33

2.3 Elastic Processes

An elastic process is a business process that is carried out using elastic cloud infrastructures and
resources [138]. Elastic processes combine the concepts from BPM presented in Section 2.2
with developments from cloud computing as presented in Section 2.1, while especially taking
advantage of the scalability and elasticity features enabled by the advanced resource allocation
and virtualization capabilities of the cloud.

Another recently introduced term often used to describe the cloud-based enactment of elastic
processes is Business Process as a Service (BPaaS). Based on the idea of cloud-based “Process
as a Service” by Wang et al. [156], Accorsi defined BPaaS as “a special SaaS provision model
in which enterprise cloud offerors provide methods for the modelling, utilisation, customisation,
and (distributed) execution of business processes” [4]. Elastic processes and BPaaS can also give
rise to the integration of shared services [10] in flexible process landscapes. Shared services may
be provided by a centralized unit within a multi-site corporation or services can also be shared
across different organizations. For the realization of elastic processes, business processes can be
flexibly composed of a number of services, enacted in scalable cloud infrastructure, that can be
provided using any of the cloud deployment models introduced in Section 2.1.4.

2.3.1 Elasticity Measures for Elastic Processes

The concept of elasticity is well-defined in multiple fields like economics (e.g., price elasticity
[148]) or physics (e.g., material science [15]) and has more recently also been applied to the
computing domain to describe on-demand cloud service provisioning [44]. All definitions of
elasticity commonly describe the sensitivity of one variable in response to the change of some
other variable(s) [61].

The main elasticity measures regarded for elastic processes are resource elasticity (change
of used resources, e.g., CPU and RAM), cost elasticity (change of cost, e.g., regarding pricing
models for on-demand instances or spot instances on Amazon) and quality elasticity (change
of the provided QoS, e.g., availability, reliability or throughput [144]). In previous research,
the focus has been on resource elasticity and the adjustment of machine power in response
to some external stimuli like the number of user requests, but as the three elasticity measures
are strongly interdependent, they should be regarded in combination, taking their trade-offs into
account when designing a BPMS for enacting elastic processes [44]. In the following we present
the three main dimensions that should be considered for elastic processes in more depth.

Resource elasticity

Resource elasticity describes the change in the amount of used resources based on the incoming
demand. Both human and computational resources can provide services for business processes.
Computational resources used for the realization of workflows include CPU, RAM or network
bandwidth, while the demand for the resources changes with the amount of incoming service re-
quests. By leasing and releasing the resources for the individual services, dynamic provisioning
as introduced in Section 2.1.7 can be achieved [44].

34

Cost elasticity

Cost elasticity refers to the change of costs with the changing amount, duration, and type of
provisioned resources, usually caused by a change in service requests, taking into account the
pricing model of the cloud provider. Varying costs can arise in both private as well as public
cloud-based deployment models. Costs incurred from so-called utility computing as it is offered
in public clouds, e.g., by providers like AWS, are covered by pay-as-you-go pricing models [8].
These often dynamic pricing models include the costs for setting up, running and maintaining
the provided infrastructure. Amazon, for example, offer their EC2 instances as on-demand in-
stances with a simple pay-per-use model and no long-term commitments, and spot instances
with fluctuating spot prices and long-term commitments. When leasing spot instances, users can
define what they are willing to pay. Prices fluctuate based on the current demand, and instances
of those users who bid less than the current spot price are terminated during phases of high de-
mand. This allows Amazon to balance their resource usage and lower their maintenance costs
while providing a cost-elastic incentive for users who can delay the execution of their services
to off-peak times [44].

Quality elasticity

Quality elasticity describes the change in the delivered quality of a service in response to fluctu-
ations in the current load of the system. QoS can be defined by regarding execution and response
times, throughput, availability or reliability of a service while constraints may be negotiated be-
tween service providers and service consumers. With regard to elastic processes, the quality
of the overall process and the quality of the enactment of multiple different processes have to
be considered. As processes and workflows are composed of multiple services, the quality of
elastic processes depends on the quality of the component services and their interplay. Quality
elasticity for cloud applications often follows a monotonic trend such that the QoS increases
with the number of utilized resources. A good example of this desired (yet not always fully
achievable) property is the MapReduce framework, which offers elasticity features and offers a
scalable execution speed with an increased number of processing nodes in a distributed file sys-
tem. Quality measures are often strongly related to a cost function such that different customers
can define different preferences for the cost and quality relation of their services [44]. This case
is depicted on the customer side in Figure 2.9 which is further discussed in Section 2.3.2.

Trade-offs between elasticity measures

The three elasticity measures are highly interdependent and changes to one of the measures
come with trade-offs for the other measures. The achievable quality of a service is often in
direct relationship to the utilized resources, which again have an effect on the pricing. In other
words, when regarding the defined elasticity measures for elastic processes as dimensions, the
result space of possible configurations for optimized cloud service delivery forms a surface in
the three-dimensional space defined by the three elasticity measures.

35

BPMS for Elastic
Processes

Elastic Reasoning

Customer 1

Customer n

 .
. .

Service
Provider 1

Service
Provider n

self describing
resources

specification of
constraints and

preferences

Figure 2.9: Elastic Process Environment (adapted from [44])

2.3.2 Conceptual Architecture for Elastic Processes

Figure 2.9 depicts a conceptual architecture for the execution environment of elastic processes.
On the left handside, it shows multiple customers with individual cost-to-quality preference
curves. Customers should be able to specify those QoS and cost preferences and pass them
to a BPMS for the enactment of elastic processes. The system also takes service providers’
resource descriptions including their pricing models for different resources into consideration.
With the dynamic inputs from customers and service providers, an elastic BPMS should be able
to calculate an optimal or fitting solution, considering all given constraints, by using elastic
reasoning mechanisms. The BPMS can, for example, solve an optimization model to identify
optimal service placements and also manage the optimized distribution of the incoming requests
over the deployed service nodes.

It should be noted that it is not a trivial task to build a scalable and elastic system, and if
not properly designed the behavior of the system can lead to unexpected costs or inefficient
resource utilization [84]. Some of the most important parts that should build the basis for a
reliable elastic system are continuously monitoring and re-planning components. Due to the
high complexity and the large size of the search space, exact algorithms often cannot deliver a
result in feasible time and have to be replaced by approximative approaches and heuristics only
considering partial information [44].

36

2.4 Optimization Models

Optimization, also called mathematical optimization or mathematical programming is a field
of applied mathematics that is commonly used in disciplines like computer science, operations
research or finance. Optimization is concerned with finding algorithms for solving numeri-
cal problems to make effective decisions or predictions. Optimization problems are therefore
decision problems that try to find a “best” solution and have to be solved by minimizing or
maximizing a target function, possibly under certain constraints [27] [48] [169].

2.4.1 History of Optimization

The early roots of optimization can be found in the first known appearance of linear equation
systems for solving practical problems 300 BC in China. Later optimization problems built the
foundation for the development of theoretical mechanics and physics. Mid 1700 Euler formal-
ized the principle of least action [47], which can be used to obtain the equations of motion of
natural systems, while the motion can be described by solving a minimization problem. This
principle also builds the basis for quantum mechanics and many other fields of modern physics.
Lagrange also played a crucial role and shaped the notion of duality, which is a central concept in
optimization [13]. In the 1800s, Gauss developed a method for solving least squares problems by
solving normal equations and was also one of the first to actually apply his theoretical optimiza-
tion method to a real-world scenario by predicting the trajectory of a planetoid. The real-world
application of optimization theory during the first centuries of its development was the exception
and not the norm, especially in areas other than physics. Only in the late 1940s, when computers
became available, optimization theory could be applied to a wide variety of practical areas, with
important contributors including, for example, Von Neumann, Householder and Givens [7] [48].
The use of computers pointed out a number of numerical difficulties with optimization con-
cepts created in the past and therefore reshaped some areas in the field of optimization as it led
to the development of newer and improved concepts with wide areas of application in mind.
With the development of efficient FORTRAN packages for solving linear algebra problems like
LINPACK [38] [39] and EISPACK [141] in the 70s and 80s and LAPACK [7] as a prominent
successor that takes advantage of more modern computer architectures, in the 90s, the evolving
interdependence between optimization algorithms and software became omnipresent. Scientific
computing platforms like Matlab 44, R 45, Scilab 46, or Octave 47 finally facilitated the use of the
FORTRAN packages by providing user-friendly interfaces and allowing to formulate problems
in languages very similar to their actual mathematical notation. Linear algebra has also become
a commodity, meaning that only a few experts develop algorithms and techniques that can be
utilized via interfaces by users from different fields to calculate solutions without having to know
details about the underlying procedures [27]. A particularly successful example of a linear alge-
bra application that provides solutions to very large problems is the PageRank algorithm [115],
which is used by Google Search to rank search results [20].

44https://www.mathworks.com/products/matlab.html
45https://www.r-project.org/
46http://www.scilab.org/
47https://www.gnu.org/software/octave/

37

https://www.mathworks.com/products/matlab.html
https://www.r-project.org/
http://www.scilab.org/
https://www.gnu.org/software/octave/

2.4.2 Areas of Application

Optimization is an interdisciplinary field, combining knowledge from a variety of fields like
mathematics, statistics, complexity theory and algorithms, to name a few. The areas of appli-
cation are even wider, with a traditional focus on business and engineering and by now nearly
every branch of science and technology. Optimization is often used for solving diverse planning,
routing, scheduling and assignment problems. Prominent areas of application that commonly
utilize optimization techniques include production planning, engineering design, economics,
transportation, telecommunication, energy, finance, and management. Especially with the huge
data sets that have to be processed in the field of data science, the use of optimized algorithms
is a crucial factor to ensure success and progress when using ML and information retrieval tech-
niques [7] [48].

2.4.3 Important Concepts and Basic Principles of Optimization

Optimization is a mathematical approach for solving decision problems. Decision processes
generally involve the formulation of decision problems and finding (near-)optimal solutions.
Decision models and their decision-making methods are diverse and include e.g., graph-based
decision models like decision trees [125] or also grid analysis [53] that makes use of decision
matrices. Optimization is another form of decision modeling in which one seeks to minimize
or maximize a function by choosing allowed values for variables of a decision problem. The
function to be minimized or maximized is referred to as the objective function and can be subject
to some constraints representing limits for the decision actions [27] [169].

For modeling decision problems, the following three types of variables are used [169]:

• Decision variables can be chosen according to defined constraints and represent alterna-
tive courses of action and the actual decision that has to be made by a decision maker
during the optimization process. An example of decision variables for a scheduling and
resource allocation problem in cloud computing could be the number of leased resources
of a certain type for a certain timeframe as well as the placement decision of services on
leased resources.

• Result variables correspond to the output of the decision process and are represented by
objective functions that have to be minimized (e.g., costs, the number of unused computa-
tional resources) or maximized (e.g., profit, the execution importance of critical services).
Examples from the area of elastic processes would be the minimization of related costs
(e.g., leasing costs and penalty costs), service deployment times considering the state of
leased resources, or resource utilization measures. As can be seen, a decision problem can
be complex and have multiple objectives, which have to be balanced against each other,
while their individual importance can be prioritized by using weighting factors. Such
weighting factors can be classified as uncontrollable variables as described in the next
bullet point. The result variables are determined by the decision defined by the decision
maker by choosing a specific set of values for the decision variables as well as factors
that cannot be controlled by decision makers and the relation among the optimization
variables.

38

• Uncontrollable variables can not be controlled by a decision maker, but have an effect
on the result variables. They can be fixed parameters like the weighting factors mentioned
in the previous bullet point, or they may vary and form constraints for the decision and
result variables. In the area of elastic processes such constraints can be used, e.g., to
limit the number of service requests sent to an instance for processing based on different
considerations of the whole dynamic process landscape.

Standard notation for optimization problems

The previously discussed basic components of optimization models are commonly notated as
follows [27]:

p∗ = min
x
f0(x) (2.1)

subject to:

fi(x) 6 0 , i = 1, . . . , m (2.2)

Equation 2.1 shows an objective function f0(x) with the vector x ∈ Rn as the corresponding
decision variable. The optimal value of the objective function is denoted by p∗. The functions
fi(x), i = 1, . . . ,m shown in Equation 2.2 represent the constraints that limit the objective
function.

Notation of maximization problems as minimization problems

In Equation 2.1, we describe a minimization problem. Similarly, a maximization problem can
be defined, but maximization problems can also easily be cast to minimization problems, when
considering that for every g0 the following Equation 2.3 holds [27] [48]:

p∗ = max
x

g0(x) = −min
x
−g0(x) (2.3)

Therefore any maximization problem can easily be transformed into a minimization form
and written as follows:

−p∗ = min
x
−g0(x) (2.4)

Feasibility of optimization models

An optimization model is said to be feasible if there exists at least one point x that satisfies all
constraints. The feasible set of an optimization problem is defined as:

X = {x ∈ Rn|fi(x) 6 0, i = 1, . . . ,m} (2.5)

If the feasible set is empty or in other words, if there exists no x that satisfies all constraints,
the optimization model is said to be infeasible.

39

x

f0(x)

Global MinimumLocal Minimum

Figure 2.10: Local vs. Global Optima

Optimality of optimization models

An optimal solution of an optimization model refers to a value of the vector x of decision vari-
ables, which attains the optimal value p∗ when used as an input for the objective function. Such
an optimal solution is also called an optimal point. The set of all feasible points for which an
objective function achieves the optimal value p∗ is called the optimal set and defined as follows:

Xopt = {x ∈ Rn|f0(x) = p∗, fi(x) 6 0, i = 1, . . . ,m} (2.6)

If the optimization problem is infeasible, the optimal set is empty.

Suboptimality: Points x are said to be ε-suboptimal if they are ε-close to the optimal value,
which is defined as follows:

p∗ 6 f0(x) 6 p∗ + ε (2.7)

For many optimization problems, numerical algorithms often are only able to compute sub-
optimal solutions and do not reach optimality [27].

Local vs. global optimality: Figure 2.10 shows the difference between a local and a global
optimal solution. Local optimality only considers optimal solutions of the objective function
f0(x) within a defined distance, by comparing nearby points. Local optimal solutions are not
necessarily also the global optimal solution and often represent a challenge for many optimiza-
tion algorithms, which can get trapped in local minima (or maxima) and therefore fail to find the
actual global minimum (or maximum).

Convex optimization models

Figure 2.11a shows the graph of a convex optimization problem where the objective and con-
straint functions are convex. In particular, this means that each move on a downward slope
brings one closer to the global minimum. In contrast, in a concave graph each step on an upward

40

(a) Convex Function (b) Non-convex Function

Figure 2.11: Convex vs. Non-Convex Functions 48

slope brings one closer to the global maximum of the function, which is relevant for maximiza-
tion problems. This also means that for convex problems a local minimum is also the global
minimum and general methods from convex optimization can be applied [27]. Most non-convex
optimization models are hard to solve, as they can have local minima, but there are multiple
methods for solving them, one of the most prominent being the branch-and-bound [30] [111]
technique, where the optimization problem is divided into subclasses which are solved with
convex or linear approximations. These approximations form a lower bound for the cost of the
individual subclasses, which are then further subdivided. This process will lead to an actual
optimal solution whose cost is equal to the best lower bound solution found from any of the sub-
classes. The optimal solution is not necessarily also unique and the process can be terminated in
advance when finding a feasible solution that lies within defined tolerance limits [169].

Linear algebra and matrix theory represent some of the most important building blocks of
convex optimization models [27].

Tractable vs. non-tractable optimization models

Optimization problems for which a solution can be found numerically, while the computational
effort grows with the problem size (i.e., the number of decision variables and constraints) are
called tractable problems. Typically, problems that can be formulated in the form of linear
algebra or in a convex form are tractable while convex problems of a particular structure can be
solved by using reliable numerical solvers [27].

Most optimization models with variables that are constrained to be integers are “hard” and
exact solutions are often unaffordable. Such hard problems can often be defined such that ap-
proximate or relaxed solutions can be found [27] [76].

48adapted from the lecture slides of the EECS department at UC Berkeley for the course “Optimization Models”
from spring 2015

41

2.4.4 Important Classes of Optimization Models and Heuristics

There is a wide range of optimization model classes and solution heuristics.
Optimization models range from convex optimization problems like least squares problems,

linear programs, convex quadratic programs, or geometric programs to non-convex problems
like it is mostly the case for integer optimization problems, non-linear programming problems,
or multi-objective optimization problems [27].

Often, exact optimization algorithms are not efficient and heuristics that solve the problems
faster are preferred. Such heuristics often lead to a good solution, which has the major drawback
that it can not guarantee optimality or completeness [111]. Some well-known heuristical algo-
rithms include tabu search, simulated annealing, genetic algorithms, support vector machines,
swarm intelligence or artificial neural networks.

In the following, we will focus on briefly introducing some important classes of optimization
models and heuristics that are especially relevant for the understanding of this thesis.

Linear programming

One of the most widely used and important optimization models is linear programming, in which
the objective function as well as all constraints form linear relationships. This especially means
that the effect of changes will remain in the order of the modified decision variables. Despite
this restriction, many real-world business problems can be formulated as linear programs, so that
fact-based decisions that produce measurable cost and performance improvements can be made.
Often, this allows the implementation of automated and fast decision processes, especially for
routine matters. Moderate sized linear programming problems can easily be modeled and solved
using convex optimization solvers [27] [48] [169].

Similar to the general problem introduced in Equation 2.1 and Equation 2.2, a linear pro-
gramming model has the following form [27]:

p∗ = min
x

n∑
j=1

cjxj (2.8)

subject to:

n∑
j=1

Aijxj 6 bi , i = 1, . . . , m (2.9)

where cj , bi, and Aij are given real numbers.
The simplex method developed by Dantzig in 1947 [36] [111] [113] for solving linear pro-

gramming problems involves linear equations and shows that optimization played an important
role for the advancement of linear algebra. The simplex method is known to be very efficient
and allows to determine optimal values of the objective function by systematically examining
the vertices of feasible regions.

Linear programming furthermore builds one of the underlying key techniques for solving
other classes of optimization problems and their subproblems.

42

Quadratic programming

Quadratic programming is a form of non-linear programming and represents an extension of
linear programming, where the objective function contains a sum-of-squares.

Quadratic problems are e.g., of high relevance to the finance sector, where the linear term in
the objective function can represent the expected Return on Investment (RoI) while the quadratic
term can model the risk factors [169].

A quadratic programming problem has the following form:

p∗ = min
x

r∑
i=1

 n∑
j=1

Cijxj

2

+
n∑

j=1

cjxj (2.10)

subject to:

n∑
j=1

Aijxj 6 bi , i = 1, . . . , m (2.11)

where Cij , cj , bi, and Aij are given real numbers.
Quadratic programs arise naturally and often in the form of linearly constrained least squares

problems and in this case form convex problems. In general, most convex quadratic-constrained
quadratic programs are relatively easy to solve for medium-sized problems. On the contrary,
quadratic problems can also have a non-convex objective function and non-convex quadratic-
constrained quadratic problems are generally known to be a class of optimization problems that
are very hard to solve [27].

Integer programming and mixed integer linear programming

In many cases, only expressing linear relationships is not enough and decisions involve discrete
and boolean choices like the number of VMs of a certain type that have to be leased at a particular
point in time and whether or not to place a service on a particular leased machine. Integer
programming allows to express such situations, in which variables are constrained to integer
values [111]. Integer programming problems are not convex and therefore considerably harder
to solve than regular linear programs. If a linear programming problem includes both discrete
and continuous decision variables, it is called a MILP problem. Mixed integer problems can also
have convex quadratic objective functions and constraints [27] [48].

In Chapter 4 we will present a detailed MILP model for placing service instances in a vir-
tualized execution environment making use of virtualization and containerization technologies.
For solving our problem, we will use the CPLEX Optimizer49, which makes use of a branch-
and-cut search for solving MILP models. Branch-and-cut manages a search tree consisting of
linear programming subproblems that have to be processed. The branch-and-cut algorithm in-
cludes a branch-and-bound algorithm as briefly introduced in Subsection 2.4.3 and solves the

49https://www-01.ibm.com/software/commerce/optimization/cplex-optimizer/

43

https://www-01.ibm.com/software/commerce/optimization/cplex-optimizer/

subclasses using the simplex method for linear programming problems previously introduced
in this subsection. Furthermore, the branch-and-cut algorithm adds a constraint to the model to
cut the size of the solution domain and to reduce the number of branches necessary to solve the
MILP problem.

It can often be meaningful to mix multiple optimization approaches so their individual
strengths can be combined. Solutions for combining MILP with constraint programming, which
both can solve similar problems in a similar way with their own strengths and weaknesses, have
been proposed to solve problems that would be intractable by trying to solve them by using
either of the individual approaches [76].

Multi-objective optimization problems

Multi-objective optimization programming refers to a process where two or more conflicting ob-
jective functions, subject to certain constraints, are optimized simultaneously [169]. This means
that a solution will not minimize or maximize each objective to its fullest, but each objective
will reach a point where further optimizations will have a negative effect on other objectives
and overall a negative effect on the multi-objective problem. The need for considering multiple
objectives at once is important in all fields that have to take trade-offs into consideration, before
being able to make an optimal decision.

Typical examples include the minimization of weight and the maximization of the strength
of a component, or the maximization of performance and simultaneous minimization of fuel
consumption of a vehicle. An example for elastic processes would be the minimization of costs
for leased resources while maximizing the offered QoS.

For solving multi-objective optimization problems, the weighting method can be used, in
which the different objectives are assigned some weights and put together to form a single
weighted objective function.

It is also possible to solve multi-objective optimization problems using heuristics, like ge-
netic algorithms [83], which are described in the following subsection.

Heuristical approaches and genetic algorithms

Heuristics can be used to find fast approximate solutions when classical algorithms fail to find an
exact solution [111]. In the past, multiple metaheuristics like simulated annealing, tabu search,
swarm algorithms and genetic algorithms have been applied to a wide number of optimization
problems including scheduling problems [66].

Multiple heuristics have been proposed for task-scheduling optimization in cloud comput-
ing, also considering multi-objective optimization models. Solutions using particle swarm opti-
mization can be used for numerical optimization problems and are based on the idea of animal
flocking behavior [127].

Genetic algorithms can be classified under evolutionary algorithms and, among multiple
other areas of application, have been proposed for SaaS placement and resource optimiza-
tion [167], as well as multi-objective scheduling algorithms for workflows in distributed cloud
environments [77], or QoS-aware service composition [28], as they can provide a good trade-

44

off between runtime and solution quality of complex scheduling algorithms while considering
several solutions in parallel.

Like other evolutionary algorithms, genetic algorithms try to adopt the principles of evolu-
tion to find a good solution for optimization problems and make a few assumptions about the
relationships between decision variables as well as the objective function and the constraints.
Genetic algorithms yield different solutions in different runs and are based on non-deterministic
random samples. A population of candidate solutions is maintained and rated according to a
fitness function. Members of the population are selected and mutated by performing different
crossover mutation algorithms using information from current population members called the
parent elements. Such crossover mutations simulate natural selection and reproduction phenom-
ena found in nature, by matching parents according to their fitness functions while also using
probabilities and by combining the parent’s DNA and passing it to new members of the popu-
lation. Random mutations can also be performed on subparts of the population, but in general,
a “survival of the fittest” approach is followed. By using a population of solutions the evolu-
tionary algorithm avoids becoming trapped at local optima. Fitness in constrained optimization
problems can be measured by a solution’s feasibility and its objective function value [111].

45

CHAPTER 3
Related Work

“It is not knowledge, but the act of learning, not possession but the act of getting
there, which grants the greatest enjoyment.”

— Johann Carl Friedrich Gauss

“With the computer and programming languages, mathematics has newly-acquired
tools, and its notation should be reviewed in the light of them. The computer may,
in effect, be used as a patient, precise, and knowledgeable ‘native speaker’ of math-
ematical notation.”

— Kenneth Eugene Iverson

Elastic processes generally can make use of advanced virtualization and containerization
technologies and optimized resource allocation and task-scheduling mechanisms. Under the
terms of BPM, SOA, and cloud computing multiple relevant concepts for optimized scheduling
and resource allocation have been proposed, but despite the many benefits that cloud comput-
ing can bring to the enactment of processes, only little work has been conducted on resource
optimization and scheduling approaches for elastic processes [63].

In the following chapter, we will give an overview of relevant existing work and the most
important approaches in the field of task-scheduling and resource allocation for single services
and web applications as well as for workflows and processes in the cloud. We will introduce
existing optimization approaches and heuristics, which make use of different cloud architec-
tures, virtualization, and containerization technologies. We discuss a number of relevant papers
closely related to the area of elastic processes. In the paper “Elastic Business Process Manage-
ment: State of the Art and Open Challenges for BPM in the Cloud” Schulte et al. [138] give a
comprehensive introduction to the field and discuss many approaches for task-scheduling and
resource allocation, some of which we will also discuss in the following. Furthermore, we will
especially address approaches considering containerized architectures.

47

It should be noted that optimization approaches for the cloud-based enactment of services
and processes can focus on different stakeholders, ranging from infrastructure providers, to plat-
form providers, application providers, and end users. Approaches especially also focus on dif-
ferent types of resources available to cloud providers. Cloud providers can be infrastructure,
platform or service providers who can carry out the VM and container allocation using the avail-
able resources. Such resources can be physical machines that are owned by the cloud provider,
in the case of which we talk about white-box resources, or resources can be leased from other
cloud providers, in the case of which we talk about a black-box resource pool. In both cases, a
single or multiple clouds can be involved in the process. When regarding white-box resources,
the cloud provider is responsible for the optimization of the resources whereas cloud providers
do not have any knowledge about the underlying physical infrastructure of black-box resources
and are therefore not responsible for the optimization of the physical resources. Black-box re-
sources can often be leased using predefined configurations as offered by Amazon EC2, but
there are also providers like ICloud, who offer the definition of own VM configurations. These
differences often require diverse optimization approaches and can lead to varying achievable
efficiencies, especially when regarding the different available pricing schemes [97] [124]. In
our conducted work, we developed a multi-objective optimization approach from the platform
providers’ perspective. We try to minimize the costs of leased black-box computational re-
sources while satisfying SLAs to avoid penalty costs as far as possible and profitable for the
provider.

Finding resource allocation and task-scheduling approaches for the cloud is not trivial, as
it has been proven that deciding on the number of replicas and their placement is an NP-hard
problem [80]. Therefore, we frequently need complex optimization techniques such as linear,
non-linear, and constraint programming or complex heuristics, which can also be extended by
predictive algorithms [91]. The existing literature has proposed primarily heuristic algorithms,
rather than exact optimization approaches. In most cases, exact algorithms formulate problems
using mathematical programming and solve them by utilizing existing solvers. Integer Lin-
ear Programming (ILP) is by far the most commonly used method for formulating such exact
problems [97]. Furthermore, necessary monitoring, goal-comparison, and system adjustment
procedures have to be incorporated [91].

3.1 Scheduling and Resource Allocation Approaches for Single
Services and Web Applications in the Cloud

A multitude of approaches for scheduling and resource allocation have been proposed in the field
of cloud computing for single services and applications [22] [65] [86] [97] [124] [152] [162].
These approaches focus on cost measures based on the actual utilization of resources as well as
breaches of negotiated SLAs, but generally do not consider important process perspectives, such
as the relations and dependencies among multiple process steps and the underlying services.
Therefore, findings from resource allocation and scheduling solutions for single services can not
be directly mapped to elastic processes, but they provide valuable insights and approaches that
can be used as a basis for the optimization of cloud-based process enactments.

48

3.1.1 Optimization Approaches using Hypervisor-based Architectures

The majority of the work on QoS-constrained applications enacted on cloud infrastructure makes
use of basic virtualization technologies using hypervisors.

Wu et al. [162] take the perspective of SaaS providers when proposing a scheduling and
resource allocation policy to maximize profits and customer satisfaction, while considering QoS-
based SLAs. Besides penalty rates for violated SLAs, their scheduling algorithm incorporates
the heterogeneity of VMs in terms of price, startup times, and data transfer times when deciding
which type of VM to assign to incoming requests.

Litoiu et al. [91] propose a cloud optimization architecture that corresponds to the cloud
service model introduced in Subsection 2.1.3. For each layer of the cloud service model, they
introduce an according optimization layer representing the interests and goals of the different
stakeholders.

Van den Bossche et al. [152] propose algorithms that account for cost-efficient scheduling
of deadline-constrained workloads while making use of public cloud providers as well as private
infrastructures. This hybrid cloud support accounts for computational and data transfer costs as
well as bandwidth constraints and also considers that application workloads consist of multiple
parallel tasks.

Lampe et al. [86] propose a cost-effective resource allocation approach for software services,
controlling the number of leased VMs for certain service types and the placement of software
service instances on VM instances. They make use of a Knapsack-based heuristic to solve said
assignment. Furthermore, they propose a binary integer programming-based optimization ap-
proach, which has the drawback of a high computational complexity compared to the heuristic
approach. They further make an important observation that their optimization approach is de-
signed such that it finds an optimal solution with minimal costs for individual optimization peri-
ods, but does not guarantee an optimal distribution strategy over multiple periods, as the optimal
solution over multiple periods can only be computed ex-post with more available information.

In general, there are two main ways to calculate the resources to be allocated to single
services. On the one side, it is possible and popular to simply focus on the incoming load
and choose a reactive approach based on rules [138], on the other side, one can predict the
future load based on the previously collected information. Li and Venugopal [89] focus on
scaling techniques for IaaS providers, by using a reinforcement learning approach, which is
based on ML techniques that assign points for different actions (e.g., migrating services, starting
and stopping of VMs, etc.) if the performed actions lead to a better solution, determined by
comparing the resulting QoS measures.

Other approaches that have been developed use genetic algorithms for resource manage-
ment in the cloud. Yusoh et al. [167] [168] propose evolutionary-based genetic algorithms for
resource optimization, considering SaaS providers that deliver applications in a composite form,
meaning providers who offer a set of services that work together to deliver higher-level soft-
ware applications. As multiple different software instances can share certain services, scaling
decisions can be made on the level of the components instead of considering the load for the
full application instances. Yusoh et al. formulated algorithms for the initial placement and the
scaling of resources, that improve execution times and resource usage while minimizing costs
and satisfying the constraints of the problem.

49

3.1.2 Optimization Approaches using Containerized Architectures

In this subsection, we continue presenting approaches for resource allocation of single services,
but focus on some newer approaches that try to exploit advantages that can come with the use of
containerized architectures as we have already briefly introduced in Section 2.1.5 of the previous
chapter.

In the existing literature, hypervisor-based virtualization technologies are extensively used
for the provisioning of elastic resources. However scaling decisions that are mainly based on
optimizing the direct placement of services on VMs often come with additional costs that also
have to be considered like, for example, the time and resources used for booting a full OS such
that real resource isolation can be attained. In contrast, container-based virtualization technolo-
gies build upon the host’s OS image and therefore do not run a completely new OS. Containers
can also share binaries and libraries to remain as lightweight as possible. Therefore VM-based
resource management approaches can be heavyweight and lead to higher costs for pay-per-use
cloud offerings.

According to [165], the main benefits of container-based approaches for scheduling and
resource allocation, when compared to virtualization technologies that are based on hypervisors
are the following:

• Containers do not virtualize a full OS and are therefore lightweight. Containers can be
created instantly and significantly quicker than VMs.

• Containers can be configured and reconfigured easily so that they correspond to the actual
demand for computational resources. They do not need a full, time-consuming reboot,
as it is the case with VMs. This also means that cloud providers who offer containerized
services instead of offering full VMs do not need to provide a range of predefined sets of
instance types, as it is the case with VM.

• Containers allow implementing an effective DevOps approach and abstract from incon-
sistencies of underlying platforms, by unifying the development, test and production en-
vironments.

Container level scalability in PaaS clouds is analyzed by Vaquero et al. [155], who show that
the use of containers for deploying applications is highly relevant, as PaaS clouds mainly offer
a ready to use execution environment for applications, which allows developers to focus on pro-
gramming rather than on setting up the environment. The relevance of containers and container
middlewares for PaaS clouds is also discussed in detail by Dua et al. [42] and by Pahl [116],
especially pointing out the advantages of container-based isolation over pure VMs-based iso-
lation as well as the possibilities for DevOps and the interoperable orchestration throughout
container clusters. Pahl et al. [117] show that research on cloud container orchestration has
only very recently gained attention, after the introduction of Docker containers in 2013, with
a strong increase in research papers mid 2015. At the same time, Weerasiri et al. [157] have
observed that while infrastructure-focused virtualization approaches tend to adopt OS-level hy-
pervisors, approaches for resource virtualization in PaaS and SaaS environments are moving
towards adopting environment-level container managers.

50

Xu et al. [165] propose a resource scheduling approach for virtualized cloud environments
that solely builds upon virtualization technologies and does not use hypervisor-based virtualiza-
tion. They apply a stable matching model, which is a game theoretic problem that aims to find a
stable mapping between agents with certain preferences. A mapping from containers to physical
machines which aim at reducing the response times for customer requests while improving the
resource utilization of cloud providers is proposed.

Zhao et al. [171] discuss the challenges of scheduling approaches using lightweight container-
based isolation and propose an optimization model for locality-aware scheduling for container-
ized cloud services. They show that round-robin approaches for resource allocation and schedul-
ing are associated with a significant performance overhead for both disk I/O and network traffic,
as they do not consider dependencies of containers. Resources shared by containers on the same
node can become a bottleneck, for example, for HDDs a concurrent access leads to a decreased
I/O throughput, also if the HDD is partitioned for disjoint access, as there only exists one single
head for disk seek and data access. Zhao et al. propose their optimization model based on the
following three observations:

• When scheduling multiple compute-intensive container-based applications on a single
node, there is only a very minimal and neglectable overhead when compared to the execu-
tion of only a single compute-intensive application on the node. This shows the strength
of container-based isolation of CPU resources.

• When scheduling multiple data-intensive applications on the same node, a very high over-
head is created. In the case of two applications that share the same node, the execution
time for both applications practically doubles, compared to the individual execution of the
applications on the node.

• When deploying a compute-intensive and a data-intensive application on the same node,
they only have minimal impact on each other and their individual execution times are
nearly the same as when executing them separately on the same node.

Therefore it is important to find solutions that take points mentioned above into account
when developing scheduling and resource allocation approaches in containerized architectures,
instead of simply incorporating state of the art round-robin policies.

A multi-objective optimization problem for finding an optimal resource allocation and task
scheduling approach of applications, which makes use of both, VMs as they are commonly
offered by infrastructure providers, as well as Docker containers which run on the leased VMs,
is proposed by Hönisch et al. [65]. The authors especially target PaaS providers who make
use of IaaS cloud services like EC2 and need to place applications on the leased resources. The
approach allows for a better and more flexible utilization of the leased VM resources by isolating
applications in containers and placing multiple isolated applications on the leased resources. The
aim is to scale services or web applications running inside of containers, while each application
is deployed in the instance of a corresponding container type. A VM instance can host multiple
container instances of different types and each container type can be deployed on multiple VMs
instances. Different container instances of the same type can have different configurations that

51

define requirements in terms of needed CPU-shares and RAM, which have to be met by the
underlying VM. For each application, a Dockerfile specifies how to start a new container instance
of the type that corresponds to the application. The scaling approach is referred to as “Four-Fold
Auto-Scaling” by the authors as it incorporates four dimensions, by performing both horizontal
and vertical scaling for VMs as well as containers. Horizontal scaling refers to the change in the
number of VM and container instances of the system, while vertical scaling refers to the change
of computational resources available to the same number of VM or container instances in a
system. The optimization problem decides on how many VMs of which types are needed and
how many containers for different applications of which configurations have to be distributed in
which way among the leased VMs. The computed leasing plan and container placement strategy
aims at minimizing costs and meeting given SLAs.

As already mentioned in this section Xu et al. [165] pointed out the advantage of container-
ized architectures that allows cloud providers to offer containerized services in a flexible manner
without having to provide a predefined set of instance types. As Hönisch et al. [65] work with
containers that are assigned a configuration from a predefined set, there might be some room
for improvement in the presented approach, by configuring containers in a more flexible manner
and assigning continuous configuration variables instead of choosing from a rather small dis-
crete set of configurations. The main considerations and structure of our work are comparable
to this container-based solution developed by Hönisch et al., but instead of only regarding the
execution of single applications, we will present a solution for the execution of elastic processes.

The problem of deploying application containers in the cloud, while using an elastic set of
computational resources in the form of VMs, has recently also been addressed by Nardelli et
al. [112]. The authors propose an ILP problem that considers heterogeneous container require-
ments and VM resources when calculating an optimal allocation as well as a runtime reallocation
of containers to the elastic set of leased VMs. The optimization model considers deployment
times and deployment costs for containers as well as multiple QoS metrics which can easily be
reconfigured. The presented approach outperforms the greedy first-fit and round-robin heuris-
tics, which are often used for deploying containers on VMs.

The current research on Docker containers mostly focuses on the deployment at a single
cloud. Cluster managers like Kubernetes 1, Mesos 2, IBM Bluemix Container Service 3, and
Amazon EC2 Container Service 4 mostly do not allow to run containers across multiple clouds
and data centers. This comes with a number of limitations that go beyond the pricing-related
disadvantages that come with a “provider lock-in” [2]: Firstly, it is not easily possible to perform
cloud-bursting by, for example, scaling out to the public cloud when an on-premise private
cloud is busy or unavailable. Secondly, single cloud approaches do not offer fault recovery
mechanisms and do not provide resilience when it comes to zone or data center outages. Thirdly,
privacy regulations that require keeping private data in-house while performing other services
outside of the private cloud can not be enforced. Furthermore, it is not easily possible to optimize
data transfer costs by keeping services near different data sources.

1https://kubernetes.io/
2http://mesos.apache.org/
3https://www.ibm.com/cloud-computing/bluemix/containers
4https://aws.amazon.com/ecs/

52

https://kubernetes.io/
http://mesos.apache.org/
https://www.ibm.com/cloud-computing/bluemix/containers
https://aws.amazon.com/ecs/

Only recently a shift to considering multi-cloud cluster management has been observed,
with Kubernetes now providing a basic support for running a single cluster in multiple failure
zones 5. Abdelbaky et al. [2] propose a prototype framework that uses a constraint programming
model for targeting the limitations mentioned above by allowing the deployment, migration, and
management of containers across clusters in multiple clouds and data centers, while being able
to use any container scheduler and also taking user and provider constraints into consideration.
The model can find a feasible, but not optimal deployment solution.

All the mentioned approaches and strategies in this section are developed for single appli-
cations and do not account for BPM as they do not consider the process perspective with its
different relations among services. Nevertheless, the findings are very relevant and can partly
also be used for the development of our optimization approach for elastic processes.

3.2 Scheduling and Resource Allocation Approaches for
Workflows and Business Processes in the Cloud

Scheduling and resource allocation approaches from cloud-based application provisioning can-
not be directly mapped to the area of BPM without further adaptations. For the realization of
elastic processes, it is especially necessary to develop techniques that also consider the state of
business processes, which means that we also have to account for the data and control flows that
come with the execution of processes [138].

In this section, we present existing approaches for the execution of workflows and business
processes in the cloud and discuss their strengths, limitations, and applicability to the domain
of elastic processes. Generally, there exist very few solutions supporting cloud-based elasticity
with regard to business process executions. The existing approaches also hardly make any use of
containerized architectures, that could allow for the realization of more fine-grained scheduling
and resource allocation approaches.

3.2.1 Optimization Approaches using Hypervisor-based Architectures

A large number of approaches for the execution of SWFs in the cloud [67] [78] have been
proposed. The approaches schedule the workflows on computational resources based on opti-
mization algorithms and heuristics that consider cloud-based characteristics and pricing mod-
els [3] [25] as well as execution and data transfer costs [119]. A number of approaches also
regard the runtime of the SWFs [67] [147] and account for QoS constraints [3]. The main limi-
tation of approaches for SWFs is that they do not consider concurrent workflows, which are the
norm in the area of BPM, but only schedule single workflows. Furthermore, SWF approaches
are generally more data flow-oriented, while business process scheduling is used in complex
landscapes, with concurrent process requests. Such process landscapes often share the same
services and tend to be more control flow-driven [93].

There are only few scheduling and resource allocation approaches that allow for a concurrent
execution of elastic processes in a cloud environment.

5https://kubernetes.io/docs/admin/multiple-zones/

53

https://kubernetes.io/docs/admin/multiple-zones/

Xu et al. [164] developed a solution for scheduling multiple workflows with multiple QoS
constraints on the cloud. Their multiple QoS constrained scheduling strategy for multiple work-
flows accounts for the different quality requirements of different users with concurrent service
requests. The proposed scheduling algorithm considers multiple factors that affect the total
makespan and cost of workflows. It aims at improving the mean execution time and execution
cost of all workflows as well as the scheduling success rate, meaning the number of executed
workflows that could be finished and satisfied their QoS requirements. In our approach, we share
some assumptions that have also been made by Xu et al., for example, that processes can share
single services and concurrent executions of the same processes can occur with varying quality
constraints.

A multi-objective genetic scheduling algorithm of BPEL workflows in distributed cloud en-
vironments was presented by Juhnke et al. [77]. Their approach considers data dependencies
between BPEL workflow steps and uses workflow execution times, composed of computing
times and data transmission times, as well as the costs for the needed cloud-based computa-
tional resources to compute a solution. By using weights, the Pareto-optimal solution of the
multi-objective heuristic can be transformed into a unique solution.

A number of strategies for matching and scheduling that are based on similar assumptions
have also been proposed by Bessai et al. [14]. The authors also aim at scheduling process steps of
business processes using elastic cloud-based resources, while considering the features of cloud
computing and optimizing for execution times and execution costs.

Both the approaches of Juhnke et al. and Bessai et al. provide solutions that allow for a
parallel execution of processes, but in contrast to our work, their approaches do not account for
SLAs like deadlines.

SLAs like deadlines for single tasks and processes have been considered for sequential pro-
cesses by more recent approaches of Wei and Blake [158] [159]. They introduce an adaptive
workflow configuration algorithm for dynamically managing VMs for service-based workflows
in the cloud. Services, which are the building block of workflows, are assigned to VM instances
which are aggregated on physical machines. The algorithms decisions are based on predictive
results. In our approach, we develop an optimization model that also considers SLA for complex
process models.

A scheduling and reasoning algorithm for elastic processes using cloud resources was pro-
posed by Hönisch et al. [64]. They also consider SLAs, in particular, execution deadlines for
computing an efficient scheduling plan. The demand of upcoming process steps of multiple
workflows is calculated to find an appropriate cloud resource allocation plan. Their proposed
scheduling and reasoning approach is executed in ViePEP [137], their BPMS which can execute
workflows consisting of multiple service steps in the cloud. The initially presented algorithm is
also limited to simple sequential processes and only supports one VM type.

Based on their previous work, Schulte et al. [139] have later formulated an optimization
model for scheduling and resource allocation for elastic processes and designed a heuristic that
is based on the proposed model. The heuristic aims at predicting the resource demand of process
steps and the total cost for leasing different types of VMs. Also, this heuristic was integrated
into ViePEP and is limited to sequential workflows.

54

In their later work, Hönisch et al. [63] extended ViePEP and their basic scheduling and
resource allocation approach for elastic processes, by developing an MILP-based optimization
approach. The cost-based optimization problem accounts for complex elastic processes and not
only sequential workflows. It computes a scheduling and resource allocation plan based on
costs and execution deadlines. Their service instance placement model considers a worst-case
scenario of the known process structure and is also integrated into ViePEP. The authors subse-
quently released a similar approach that is also able to operate in hybrid cloud environments [62].

All the mentioned approaches in this subsection use hypervisor-based virtualization to enact
workflows and processes in the cloud. To make use of advantages of container-based virtual-
ization approaches, as discussed in Subsection 3.1.2, we propose a more fine-grained model for
resource allocation and scheduling of elastic processes.

3.2.2 Optimization Approaches using Containerized Architectures

There exists hardly any related work that considers optimization approaches for scheduling and
resource allocation for workflows executed on container-based cloud architectures. The very few
existing approaches have been proposed in the context of SWFs [50] [172]. The reason for this
is that container-based architectures can solve some of the biggest issues for SWF platforms,
who often struggle with heterogeneous applications with different and incompatible external
packages and dependencies during software development and execution. For example, different
versions of Python or R can lead to problems in reproducing experimental results. Furthermore,
developers face an increased difficulty when attempting to reuse methods [50] [150]. Developers
have often tried to solve this problem by offering VM snapshots that capture the entire develop-
ment environment [50]. But as hypervisor-based virtualization is associated with a considerable
overhead on resource utilization and long startup times impose latency on the system [46], a far
better solution would be the isolation of each application’s runtime environment in standardized
lightweight containers. But not only SWFs would benefit from such an approach. In fact, all
workflow execution platforms, including BPMS, have to deal with the fact that each comput-
ing node has to install the execution environment of workflow steps that have to be executed
on them before the execution of a step can be initialized [50]. Especially for workload-based
dynamic allocation of computational resources, these properties become critical, as a solely
hypervisor-based virtualization approach would include an overhead for resizing and rebooting
VMs whereas lightweight containers can drastically cut costs of software deployment and allow
for a more flexible execution of complex process landscapes [150].

Gerlach et al. [50] proposed a solution that uses containers to achieve software isolation for
solving the software deployment problem described above. The authors aim is to find a general
solution that can be applied to all SWF platforms, as they all face the software deployment
problem.

Also, Zheng et al. [172] propose a solution with regard to some main design challenges
for an SWF scheduler. They enable a two-level resource scheduling model, as to facilitate the
sharing of resources among different frameworks. Zheng et al. have come to the conclusion that
deploying and running high throughput SWFs on a container-based scheduling platform leads
to a higher system efficiency and lower performance loss.

55

In our work, we exploit the advantages that can come with task-scheduling and resource al-
location approaches using container-based architectures and propose an elastic BPM framework
and optimization model that allocates resources on a fine-grained level, using containers and not
full VMs for isolating applications.

3.3 Conclusion

In this chapter, we discussed the existing related work on task-scheduling and resource alloca-
tion approaches for cloud environments. We examined the current literature from four main per-
spectives: Firstly, we looked at task-scheduling approaches for single services and applications.
Secondly, we discussed task-scheduling for workflows and processes. Thirdly, we examined
hypervisor-based cloud architectures for realizing such elastic scheduling approaches. Lastly,
we discussed literature that makes use of container-based cloud architectures for more efficient
scheduling solutions.

When summing up the main findings for each of the four perspectives, we can observe the
following:

• Task-scheduling for single services: has been widely addressed from multiple perspec-
tives and with a wide variety of both simple and advanced solution approaches, which con-
sider different cost, resource utilization and SLA-based quality measures. Many findings
from such research studies are of importance and single aspects also have to be consid-
ered when optimizing for elastic processes, but generally scheduling approaches for single
tasks and applications do not take the process perspective into account. This means that
relations and dependencies which exist among process steps in different process models
and process instances are not considered by single service scheduling approaches. How-
ever, as such relations form the basic building block of business processes, it is essential
that a BPMS takes them into account.

• Task-scheduling for workflows: has been less widely addressed with most approaches
being related to SWFs and only a few approaches addressing elastic business processes
and concurrent workflows. SWFs only schedule single large scale workflows. Therefore,
they do not account for concurrent workflows and business processes which can share
elastic resources among different process instances. Some approaches account for con-
current workflows but do not consider SLAs. Only very few approaches also take QoS
constraints and SLAs into account. Some of these solutions consider assumptions that
we also address in our work, one of the most important beeing that multiple process in-
stances of the same or of different processes can share single services concurrently and
with varying QoS constraints. The few existing task-scheduling approaches for concur-
rent workflows and processes allocate resources on a rather coarse-grained level, as they
allocate single services to full VMs and do not account for more flexible light-weight
container-based architectures that can also provide the needed isolation in a fine-grained
manner, while also allowing for more dynamic horizontal and especially vertical scaling
realizations.

56

• Hypervisor-based cloud architectures: are proposed by most related work solutions
for both single applications as well as workflows and processes. These solutions do not
exploit the advantages that come with light-weight container technologies.

• Container-based cloud architectures: can deliver a great number of advantages, as they
offer a more flexible and light-weight deployment and execution environment for services
while allowing the realization of flexible resource allocation approaches. Research on
container technologies is generally still very young and there is a lack of tools supporting
container management and orchestration, especially in clustered clouds [117]. Findings
from VM-based auto-scaling technologies can partially also be used for containers, how-
ever, next to having to consider more flexible solutions, container-based auto-scaling prob-
lems also entail a resource allocation problem, as they have to be scheduled on VMs or
physical machines [124]. Container-based approaches for task-scheduling have only very
recently been addressed by related work focusing on single applications. Except for a few
first container-based task-scheduling approaches in the context of SWFs, container-based
architectures have not been proposed for workflows and processes. To the best of our
knowledge, there do not exist container-based task-scheduling approaches for concurrent
workflows and elastic processes.

Generally, we can observe that for each of the four perspectives, both, heuristics, as well as
optimization algorithms, have been proposed, but the number of presented heuristics far outnum-
bers the number of exact optimization approaches. Many proposed algorithms are rather simple
approaches based on the well-known bin-packing problem for which simple heuristics exist.
Other heuristic approaches make use of more complex algorithms, e.g., by utilizing Knapsack-
based heuristics or advanced evolutionary based algorithms. The problem with heuristic algo-
rithms is that they mostly do not offer any performance guarantees, which can lead to well-
performing experiments in controlled environments, but still yield a rather poor performance in
real settings, especially for larger and highly constrained problems. The proposed exact algo-
rithms on the other hand generally formulate mathematical programming problems which are
solved by appropriate existing commercial or open-source solvers. These exact problems come
with the limitation that they are only applicable to smaller problem sizes, as they often have a
high computational complexity and even mid-sized problem instances can take a long time to be
solved. This lies in the nature that the task placement problem for elastic processes and applica-
tions is an NP-hard problem in the strong sense and therefore exact solutions with polynomial or
pseudopolynomial time can not be formulated, but efficiently solvable special cases can be de-
signed [97]. When using a solver for mathematical programs it will deliver optimal results, but
the input-dependent worst-case runtime can become exponential and therefore large problems
can often not be solved in a reasonable amount of time.

To make use of the possibilities that come with container-based cloud architectures, we
developed a BPMS which makes use of a multidimensional optimization approach for light-
weight and fine-grained resource allocation and task-scheduling and allows for the enactment
of multiple concurrent elastic process instances in flexible cloud architectures. The approach
considers process related quality measures like SLAs and also accounts for complex process
models.

57

CHAPTER 4
Approach

“There’s no way to approach anything in an objective way. We’re completely sub-
jective; our view of the world is completely controlled by who we are as human
beings, as men or women, by our age, our history, our profession, by the state of the
world.”

– Charlie Kaufman

“You must change your approach in order to change your results.”

– Jim Rohn

As already mentioned in the introduction and also illustrated in Section 1.2, BPM plays a
central role for a wide variety of organizations across different industries. For being able to
guarantee an efficient and effective execution of automated processes and workflows, a cloud-
based BPMS has to be designed. Such a BPMS is responsible for scheduling and enacting
all steps of many parallel incoming process requests on available computational resources in a
suitable manner.

The number of required resources depends on the diverse processes and the services they are
composed of. Services are executed concurrently and can be resource-intensive. Processes can
generally be more data-intensive or more compute-intensive, while we focus on requirements for
computational resources like CPU and RAM and do not consider data-transfers. Some processes
or single process steps are urgent and have to be executed immediately, while others can be
postponed to the future and have to be finished by a deadline. Additionally, a number of process
requests might be reoccurring, so a BPMS can plan for them in advance, while many processes
can have highly fluctuating and unpredictable request patterns. The varying number of process
requests of different types and different priorities has a large impact on the type and amount
of needed computational resources over time, with a large number of resources needed during
peak times and fewer resources needed during off-peak times. To avoid the problems related

59

to situations of over-provisioning and under-provisioning as introduced in Subsection 2.1.7, the
computational resources have to be leased, managed, and released by the BPMS on demand.

For a dynamic provisioning for elastic processes in a scalable cloud system, different hor-
izontal and vertical scaling techniques as introduced in Subsection 2.1.6 can be used. The uti-
lization of recent virtualization and containerization technologies as described in more detail in
Subsection 2.1.5, enables the realization of those dynamic scaling techniques, while each tech-
nology offers different advantages and comes with different limitations. By combining various
technologies, their individual strengths can be exploited for designing highly flexible systems
with fine-grained resource allocation capabilities.

The needed computational resources can be deployed using different cloud service and cloud
deployment models as introduced in the Subsections 2.1.3 and 2.1.4 respectively. In this thesis
we take a service provider’s perspective when designing a BPMS for the enactment of elastic
processes. While cloud providers can generally manage both white-box resources, meaning
resources owned by the provider, as well as black-box resources, meaning resource pools from
which VMs can be leased without knowledge about the underlying physical infrastructure [97],
in this thesis, we only focus on cloud service providers utilizing black-box resources. This
means in case the service provider utilizes internally managed computational resources, like a
companies’ own private cloud infrastructure, we assume that this private cloud infrastructure
is managed and internally charged by another functional area of the company. In particular,
we examine ways service providers can make use of cloud resources offered using different
cloud deployment models, but we do not consider scheduling and resource allocation on the
level of physical machine resources. This thesis targets PaaS providers, who offer a platform
for deploying and executing processes composed of different services while scheduling those
services on leased cloud-based resources.

When looking at the related work discussed in Chapter 3, we can not observe any currently
existing task-scheduling and resource allocation approaches targeting cloud-based concurrent
workflows or elastic business processes that make use of containerization technologies. Because
of the fine-grained resource allocation possibilities that can arise from utilizing container-based
architectures and also due to the other advantages of container-based virtualization and task
isolation that we have already discussed in more detail in Subsection 2.1.5 and Chapter 3, we
propose a novel solution which combines both, hypervisor-based as well as container-based
virtualization for task-scheduling and resource allocation of elastic business processes. Our so-
lution implements fine-grained resource allocation techniques and considers concurrent process
and service requests.

Existing scheduling and resource allocation approaches for elastic processes vary in the con-
sidered parameters and assumed preconditions. In the following, we discuss the preliminaries
including necessary background information, assumptions, and parameters of our considered
task-scheduling and resource allocation problem. We present the general requirements for the
realization of elastic processes, the specific system requirements for their enactment in container-
based architectures and the theoretical concepts behind our presented BPMS. We present a sys-
tem model for our approach, discuss important concepts using a working example, and formulate
our approach as a MILP optimization problem. Furthermore, we illustrate the execution of our
designed working example using the presented approach.

60

4.1 Preliminaries

Based on our observations from the related work and state of the art we define some preliminaries
for our task-scheduling and resource provisioning approach for elastic processes in containerized
cloud infrastructures. The presented general preliminaries for elastic processes are similar to
those used by the related work of Hoenisch et al. [63].

4.1.1 General Requirements of Elastic Processes

Elastic processes are often part of wide business process landscapes that consist of a large num-
ber of different business processes. In our approach, we solely refer to automated processes,
which are also known as workflows [88] [93]. Such processes are comprised of multiple process
steps that can be carried out as tasks by software services using machine-based computational
resources without the need for human interaction. Single services are offered as software and
form the building blocks of process models. A service can be used in multiple different process
models. A process model can be requested, leading to an executable process instance. As soon
as a service is deployed on a cloud-based infrastructure, we obtain a service instance. Service
instances are hosted in the cloud in an isolated way. A service invocation describes the unique
invocation and execution of a service instance to serve a requested process instance. A service
invocation can only be executed on one service instance, but multiple service instances for the
same software-service can be deployed in a cloud infrastructure. A service instance can serve
multiple incoming service invocations simultaneously, as long as it has sufficient assigned re-
sources. This means that multiple process instances of the same or different process models can
share service instances for process steps that need the same software service. The shared service
instances allow for a flexible use of the available cloud infrastructure and build one of the key
properties of elastic processes.

Process models can be comprised of complex constructs. We do not only consider the execu-
tion of sequential processes but also allow the definition of arbitrary AND-blocks, XOR-blocks,
and repeated loop sections [153]. We assume that the next step of a process instance is known
as soon as the preceding step has been scheduled.

A client can request the execution of any defined process model and is the process owner
of the so created process instances. The process owner can define QoS constraints in the form
of SLAs for each requested process instance. SLAs can be comprised of multiple SLOs, with
the deadline being one of the most important SLOs. While business-critical processes often
need to be executed immediately, processes that are less critical can have loose deadlines and
their execution may be postponed into the future. Therefore, we allow process owners to set
a deadline by defining the maximum execution time for a requested process instance. In this
thesis, we focus on execution times as SLOs, but we do not explicitly cover other possible QoS
attributes of the processes and their services like availability, reliability, or throughput, which is
in line with previous work [63].

61

4.1.2 System Requirements for the Enactment of Elastic Processes in
Container-based Architectures

Due to the fact that multiple clients can request the execution of a varying number of process
instances at any time, the business process landscape is highly dynamic. Such an ever-changing
process landscape requires different amounts of computational resources during different time
periods. Therefore, the leased cloud-based computational resources need to be optimized for
obtaining a cost and resource efficient system landscape.

As already mentioned, processes are composed of individual process steps that are realized
through software services. The currently existing related work has focused on isolating such
software services by deploying them on individually leased VM instances. Most cloud providers
only allow the leasing of VM instances according to a discrete set of predefined resource sizes
and for predefined time frames. This can lead to a waste of leased computational resources, as
VMs are bound to a certain software service also when only a few number of requests that need
less than the available resources have to be processed. Therefore, the use of lightweight Docker
containers for resource isolation and application deployment comes with the great advantage of
a more fine-grained resource control. Multiple Docker containers can be deployed on different
leased VM instances and starting new container instances only require a fraction of the time
needed to set up running VM instances.

A system for enacting elastic processes that makes use of both containers and VM resources
has to consider multiple preconditions. As discussed in Subsection 2.1.5 and in Chapter 3 dif-
ferent providers offer a multitude of possible leasing models. In the following, we focus on the
basic attributes and requirements of the most frequently offered and used cloud models. We
especially take the following technical considerations into account:

• Computational resources like CPU and RAM can be leased in the form of VMs from
cloud providers according to their discrete resource leasing models. When leasing new
VM instances we have to consider the startup time for instantiating a new VM before it
can be utilized. Cloud providers usually offer VMs for fixed BTUs 1. The leasing duration
can be prolonged by leasing a certain VM for multiple BTUs in a row. The resources of
running VM instances are considered as fixed and cannot be extended during a BTU. If a
larger or smaller instance is required at the end of a BTU the old instance has to be released
and a new instance with updated resource configurations can be leased. This will lead to
an additional VM startup time that has to be considered before the new VM instance can
be utilized. An arbitrary number of VM instances with arbitrary resource configurations
can be leased at any time.

• Software services are not directly deployed on VMs but packed into Docker images. Mul-
tiple Docker containers that offer a specific software service can be created from the cor-
responding Docker image and deployed on different leased and running VM instances.
Service instances in Docker containers can simultaneously be invoked by different re-
quests. Docker containers for the same software service can be deployed on arbitrary
many VM instances but each VM instance can only run Docker containers of different

1https://aws.amazon.com/ec2/pricing/

62

https://aws.amazon.com/ec2/pricing/

service types. Each Docker container can be assigned a varying amount of computational
resources. The assigned resources for a container can be adapted on demand and are only
limited by the actually available resources of the underlying VM.

• When running containers on VMs some important times have to be considered. When a
Docker image is first pulled from a registry onto a leased and running VM instance, the
time for downloading the image on to the VM instance has to be considered. As soon as
an image has once been pulled, it remains on the VM instance for its entire lifetime, until
the VM instance is shut down, or a new version of the image is published in the registry,
which we do not explicitly consider in this work. This especially means that the image of
Docker containers that were once running on a VM, will remain on the VM also after the
associated containers are removed. Docker containers can only be instantiated and started
from existing images on a VM. The actual startup time for such Docker containers is in
the order of a few seconds.

The cloud-based computational resources can be acquired from both private and public cloud
providers, while multiple pricing models can be considered.

4.1.3 BPMS for the Execution of Elastic Processes

To implement a cost optimized task-scheduling and enactment of elastic processes a BPMS
that additionally offers functionalities of a cloud controller and a container cluster manager
as introduced in Subsection 2.1.5 and in Figure 2.5 is required. The BPMS needs to manage
cloud based computational resources, deploy the necessary amount and type of containers with
invokable software services on the leased resources and schedule incoming process requests on
the available service instances. Both the cost for leasing cloud-based computational resources
as well as penalty costs for violated SLAs have to be considered by the BPMS when making
task-scheduling and resource allocation decisions.

The most important responsibilities of such a BPMS and the main goals that have to be
considered when designing a system for the enactment of elastic processes in a container-based
cloud infrastructure can be summed up as follows:

• Concurrent incoming process requests from multiple clients need to be accepted and pro-
cessed.

• A process scheduling plan has to be created and the single process steps of the concurrent
process requests have to be scheduled and executed by corresponding software services.
Therefore, the resource demand of the planned service invocations has to be computed.

• The needed software services have to be assigned a sufficient amount of computational
resources. For allowing a flexible and fine-grained resource allocation, containers should
be used to run the software services in an isolated mode.

• Cloud-based computational resources have to be managed, leased and released based on
the task-scheduling and container deployment plan.

63

• SLAs, in our case deadline constraints, for process instances have to be considered and
met, as a violation of such constraints leads to penalty costs. Process instances with a
closer deadline have to be assigned a higher importance, so their execution can be accom-
plished in time.

• Costs that occur from leasing cloud-based computational resources and violation of dead-
line constraints have to be minimized. To compute the costs, an appropriate cost model
has to be developed and a cost/performance analysis has to be performed when designing
task-scheduling and resource allocation plans.

These listed tasks have to be performed repeatedly as new process requests arrive, when the
process landscape changes, and whenever new process steps have to be scheduled. The careful
computation of a task-scheduling and resource allocation plan is essential to avoid costs that
can arise from leasing additional computational resources for scheduling inefficiently planned
service invocations that can not be delayed any further without causing penalty costs for the
corresponding process instance. Leasing and releasing of computational resources and the exe-
cution of service instances on them should be optimized and task-scheduling and resource allo-
cation have to be replanned continuously. Therefore, it is necessary to implement a self-adaptive
auto-scaling system that optimizes the business process landscape.

Self-adaptive Auto-scaling Systems

In this work, we will extend and reconstruct ViePEP [137], a research prototype that was de-
signed as a BPMS testbed for the execution of elastic processes in public and private cloud
environments. ViePEP currently only considers task-scheduling and resource allocation using
solely hypervisor-based virtualization. The platform has recently been extended and offers the
possibility to place and run Docker containers on leased computational resources, but currently
there exists no optimization approach for making use of the more fine-grained resource allo-
cation possibilities. In our approach, we extend ViePEP and allow for the self-optimization of
process landscapes that make use of fine-grained resource allocation and software service isola-
tion properties that come with the utilization of containerized architectures. We design a BPMS
that automatically provisions a set of VM resources, places different types of isolated containers
for software services on those resources and optimizes the process landscape according to fluctu-
ating application workloads and resource demands. The system dynamically tunes the type and
number of utilized VMs and containers while making sure to meet its performance goals, which
are the minimization of costs for the computational resources and the satisfaction of SLAs, to
minimize penalty costs. These design goals correspond to a classic automatic control problem
which is commonly abstracted as the MAPE-K feedback control loop [82] that continuously
repeats itself over time. MAPE-K refers to the four phases Monitoring, Analysis, Planning, and
Execution that have to be performed over a Knowledge Base which is utilized during all phases.
Feedback loops are the most important entities when designing self-adaptive systems, which can
operate in continuously changing environments with emerging requirements that are often hard
to predict at design time [19].

64

Analyze

Monitor Plan

Execute

Self-Adaptive
Software System

Managing Subsystem

Managed Subsystem

adaptmonitor

Environment
Non-controllable software, hardware, network,

physical context, request patterns

adaptmonitor

monitor

Knowledge
Base

Figure 4.1: MAPE-K loops in self-adaptive software systems (adapted from [82] and [160])

We illustrate MAPE-K feedback control loops in Figure 4.1. Self-adaptation of a software
system is based on the design principle separation of concerns [160]. A self-adaptive system
generally consists of a managed subsystem which is adapted by a managing system. In our
case, the managed subsystem can receive and execute process requests from multiple clients
on different computational resources. The subsystem is able to deploy software containers on
leased VMs and execute concurrent process steps. The managing system operates on top of the
managed subsystem and is responsible for the optimization and adaptation logic. This means
that the managing system decides on the actually needed number and type of VMs, the number
and type of containers that should be placed on the computational resources and their allocated
resource amount, as well as the order and timing of the execution of concurrent process steps to
meet process deadlines, while minimizing costs for leasing computational resources. The man-
aging system makes decisions based on available information about the managed subsystem and
environment parameters outside of the system. For executing its application logic, the managed
subsystem incorporates the feedback from the managing system and also makes use of data that
it monitors from the system’s environment. In our case, the managed subsystem can lease VMs,
deploy Docker containers with software services and perform the necessary process executions
according to the managing system’s plan, while it also makes use of information of existing
leasing contracts with cloud providers to decide if VMs need to be leased for further BTUs, so
they correspond to the given leasing plan.

65

Auto-scalers face different challenges during each phase of the MAPE-K cycle that have
to be considered during the design of such systems [124]. The most important challenges our
approach addresses for each phase are the following:

• Monitor: The system needs to monitor its state, especially the running and scheduled
process instances, the leased computational resources, and the resource usage in terms of
CPU and RAM of deployed containers. Furthermore, the system needs to monitor the
number and type of incoming process requests. The information about the internal system
state and the changes from the external related environment are an essential part of the
feedback loop and form the basis for analyzing and adapting the system.

• Analyze: The monitored data and the current system state are analyzed in order to detect
possible states of over- or under-provisioning and to check if process instances are still
within their defined SLA constraints or whether violations have to be expected.

• Plan: Based on the monitored and analyzed system state and environmental influences
multiple planning steps have to be accomplished. First, the system needs to plan the se-
quence and timing of execution for single process steps in order to meet process deadlines
and make the best possible use of the available infrastructure. Second, the amount and
type of Docker containers that isolate single service instances for executing different ser-
vice invocations have to be calculated. Third, the amount and type of VM instances that
provide computational resources have to be planned. After the planning phase, the system
has to calculate a task-scheduling and resource allocation plan that provides details about
the needed amount of computational resources including necessary leasing times, as well
as the decisions on which VM to place which Docker containers and on which container
instances to schedule the single planned service invocations.

• Execute: The calculated task-scheduling and resource allocation plan has to be executed
by the BPMS. This especially means that different types of VM instances have to be
leased or released and Docker containers with corresponding software services have to be
placed on the available resources according to the plan. Once the resources are set up, the
scheduled tasks can be executed on them.

• Knowledge Base: The information about the systems configuration and current state is
stored in a knowledge base and can be requested throughout the feedback cycle. Such
information includes, for example, the running, queued, and finished process instances,
the current state of execution for each process instance and its process steps, the containers
on which the process instances are deployed, the currently running VM instances and their
leasing time and state, the information which container instance is deployed on which
VM instance, or which container types have ever been deployed on which individual VM
instances.

66

4.2 Basic Approach and System Model

Our approach for the enactment of complex elastic processes aims at finding an optimized exe-
cution plan for task-scheduling, i.e. scheduling of service invocations for realizing elastic pro-
cesses, and resource allocation, i.e. leasing and releasing VM instances and assigning resources
to Docker containers that run software services for executing scheduled tasks.

4.2.1 Basic Approach

Similar to the related work of Hoenish et al. [65] on resource allocation of single software
services, our system for enacting elastic processes follows a four-fold auto-scaling approach.
This means that our system considers scaling over four dimensions when allocating resources.
Both VMs and containers are adjusted horizontally and vertically.

• Horizontal scaling:

– VMs: Horizontal scaling of VMs is accomplished by changing the number of leased
VM instances of the system.

– Containers: Horizontal scaling of containers is realized by changing the number of
deployed container instances offering a certain software service.

• Vertical scaling:

– VMs: Vertical scaling of VMs refers to the change of computational resources of a
system, while the number of deployed VM instances remains unchanged. It has to be
noted that vertical scaling in this context does not refer to single VM instances, but to
the system landscape as a whole, as we do not address problems related to reassign-
ing computational resources to running VM instances, but allow to exchange running
VM instances by VM instances of different types offering different resources.

– Containers: Vertical scaling of containers is realized by resizing deployed container
instances so that they offer more or less computational resources of the underlying
VM instance. The resizing is achieved by changing the assigned CPU-shares to
container instances.

The main goal is to minimize the cost of the system’s process enactments, by considering
costs for leasing computational resources and penalty costs that occur when QoS constraints are
violated. The system needs to optimize its main tasks related to the execution of process requests
with respect to these goals. The system’s main tasks are:

• leasing and releasing of VM instances.

• placement of Docker containers that run software services for executing process steps on
the leased VM instances.

• dynamic assignment and reassignment of minimum guaranteed computational resources
to Docker containers.

• scheduling of service invocations on the running containers.

67

4.2.2 System Model

In order to explain our approach in more detail, we define the used system model for the elastic
process landscape.

Process Variables

Our approach considers multiple process models consisting of multiple different services, which
can be shared across the process models, while each service invocation requires a specific
amount of resources in terms of CPU and RAM. We allow the definition of complex process
models, consisting of sequences, XOR-blocks, AND-blocks, and repeated loop blocks. Simple
sequential processes generally have only one trivial next step. AND-constructs allow the parallel
invocation of multiple next steps from multiple branches. XOR-constructs require the exclusive
invocation of the next step of one branch, which our system will pick randomly. Repeat loop
blocks can be executed repeatedly. Our system will pick the number of repetitions randomly as-
suming a maximum amount of possible repetitions. Our optimization approach will consider a
worst-case analysis when considering future XOR-constructs and repeat loop blocks, meaning it
will assume the longest path. Table A.1 summarizes the used variables for describing processes.

Table 4.1: System Model: Process Variables

Variable Name Description
p ∈ P =

{
1, . . . , p#

}
The set of process models is represented by P , while p indicates
a specific process model.

ip ∈ Ip =
{

1, . . . , i#p
}

The set of process instances of a specific process model p is rep-
resented by Ip, while ip indicates a specific process instance of
the process model p.

jip ∈ Jip =
{

1, . . . , j#ip

}
The set of process steps not yet executed (and not yet started) to
realize a specific process instance ip is represented by Jip , while
jip refers to a specific process step of the process instance ip.

j∗ip ∈ J
∗
ip
⊆ Jip The set of next process steps that have to be scheduled for exe-

cution to realize a specific process instance ip is represented by
J∗ip , while j∗ip refers to a specific next process step of the process
instance ip.
Note: AND-Constructs can execute multiple paths in parallel and
can, therefore, have multiple next process steps in the set J∗ip .

jrunip
∈ Jrun

ip
6⊂ Jip The set of currently running and not finished process steps of a

specific process instance ip is represented by Jrun
ip

, while jrunip
refers to a specific currently running process step of the process
instance ip.

Continued on next page –>

68

Table 4.1: System Model: Process Variables

Note: AND-Constructs can execute multiple paths in parallel and
can, therefore, have multiple currently running process steps in
the set Jrun

ip
.

DLip The deadline for the enactment of the process instance ip, is de-
fined by DLip and refers to a certain point in time.

DLj∗ip
The deadline for starting the enactment of a next process step
j∗ip such that it still meets its process deadline DLip , while per-
forming a worst-case analysis considering all subsequent steps is
defined by DLj∗ip

and refers to a certain point in time.

ωDL The weighting factor for controlling the effect of deadline con-
straints is indicated by ωDL.

rCjip , r
R
jip

The resource demands of a process step j of the process instance
ip in terms of CPU (rCjip) and RAM (rRjip) are indicated by the
respective terms.

Optimization Time Variables

It is important to mention that the optimization approach refers to a certain time period τt and
the parameter t is used to describe the point in time that marks the beginning of a time period.
Table A.2 summarizes the used optimization time variables.

Table 4.2: System Model: Optimization Time Variables

Variable Name Description
t, tjip A specific point in time is specified by t. The point in time at

which a specific service invocation jip was scheduled is referred
to as tjip

τt, τt+1 The current time period starting at a specific point in time t is
indicated by τt. τt+1 refers to the next time period starting at
t + 1. At the beginning of each time period the optimization
model is calculated based on all currently available information
and its results are enacted.

ε The minimum time period that is at least needed between two
optimization runs is defined by ε in milliseconds.

69

Virtual Machines

Our approach accounts for different types of VMs from multiple cloud providers with varying
resources, configurations, and pricing models. A VM may be leased for multiple BTUs while
the length of a BTU may vary for each VM type. Table A.3 summarizes the used variables for
describing VMs.

Table 4.3: System Model: Virtual Machines

Variable Name Description
v ∈ V =

{
1, . . . , v#

}
The set of VM types is represented by V , while v indicates a
specific VM type.

kv ∈ Kv =
{

1, . . . , k#v
}

The set of leasable VM instances of type v is represented by Kv,
while kv is the kth VM instance of type v.
Note: For a time period starting at t, we assume the number of
leasable VMs of type v to be limited with k#v .

BTUv The BTU of a VM instance kv of VM type v is indicated by
BTUv. A BTU is a billing cycle and the minimum leasing du-
ration for a VM instance kv. A VM instance may be leased for
multiple BTUs in a row, but releasing a VM before the end of a
BTU leads to a waste of paid resources.

BTUmax An arbitrary large upper bound of possible leasable BTUs for any
VM instance kv is expressed by the helper variable BTUmax.

cv This variable represents the leasing cost for VM instances of type
v for one full BTU.

γ(v,t) ∈ N+
0 This variable indicates the total number of BTUs to lease any

VMs of type v in the time period τt.
β(kv ,t) ∈ {0, 1} This variable indicates if the VM instance kv is/was already run-

ning at the beginning of the time period τt.
g(kv ,t) ∈ {0, 1} This variable indicates if the VM instance kv was already running

at the beginning of time period τt or is being leased during τt.
d(kv ,t) This variable indicates the remaining leasing duration of the VM

instance kv at the beginning of the time period τt.
ωd The weighting factor for controlling the effect of the remaining

leasing duration on the optimization outcome is indicated by ωd.
sCv , s

R
v The resource supplies of a VM type v in terms of CPU (sCv) and

RAM (sRv) are indicated by the respective terms.
fCkv , f

R
kv

The free resources in terms of CPU (fCkv) and RAM (fRkv) of a
VM instance kv are indicated by the respective terms.

ωC
f , ω

R
f Weighting factors for controlling the effect of free resources in

terms of CPU (ωC
f) and RAM (ωR

f) on the optimization outcome
are indicated by the respective terms.

70

Containers and Services

Our approach deploys single services that are part of processes into containers. Therefore, we
consider multiple container types, each representing a single service. Each container instance
running a specific software service can have different configurations in terms of guaranteed
minimum resources. Table A.5 summarizes the used variables for describing containers.

Table 4.4: System Model: Containers and Services

Variable Name Description
st ∈ ST =

{
1, . . . , st#

}
The set of all container types mapping all possible service types
is represented by ST , while st indicates a specific container type
for a certain service type.

stj The service type of a certain process step j is indicated by stj .

cst ∈ Cst =
{

1, . . . , c#st

}
The set of container instances mapping specific service instances
of type st is represented by Cst, while cst is the cth container
instance of type st.

cstj A container instance of a certain service type st that can run a
process step j is indicated by cstj .

z(st,kv ,t) ∈ {0, 1} This variable indicates if any containers of service type st, i.e.,
any cst ∈ Cst have already been deployed on a VM instance
kv (and hence the container image for starting new container in-
stances of service type st has been downloaded on kv) until the
time period τt.

ωz The weighting factor for controlling the effect of existing images
on VM instances for the optimization outcome is indicated by ωz .

sCcst , s
R
cst The guaranteed minimum resource supplies of a container in-

stance cst in terms of CPU (sCcst) and RAM (sRcst) are indicated
by the respective terms.

ωC
s , ω

R
s Weighting factors for controlling the effect of resource supply of

container instances in terms of CPU (ωC
s) and RAM (ωR

s) on the
optimization outcome are indicated by the respective terms.

M An arbitrary large upper bound of possible container deployments
for any VM instance kv is expressed by the helper variable M .

N An arbitrary large upper bound of possible service invocations for
any container instance cst is expressed by the helper variable N .

71

Startup, Deployment, Execution, and Penalty Times

Our approach considers the execution times of single process steps for calculating execution
times for process instances. Furthermore, the startup times for VMs, the time for pulling new
Docker images onto running VM instances, and the deployment times for starting Docker con-
tainers from Docker images are considered. Our approach is based on a worst-case assumption,
meaning for calculating remaining execution times and scheduling plans the system will assume
the worst-case of having to lease a new VM instance, pull the needed image onto the instance
and deploy a new container for each remaining step. Table A.6 summarizes the used variables
for describing execution times.

Table 4.5: System Model: Startup, Deployment, Execution, and Penalty Times

Variable Name Description
∆v,∆ The time in milliseconds to start a new VM of type v is indi-

cated by ∆v. The maximum VM-startup time of any type, i.e.
maxv∈V (∆v) is expressed by ∆.

∆st The time for pulling a container image for a service type st on a
VM instance for the first time is expressed by ∆st.

∆cst The time for starting a container instance from an existing image
for a service type st on a VM instance is expressed by ∆cst .

eip The remaining execution duration of a process instance ip is ex-
pressed by eip . It does not include the execution and deployment
time of the process steps that will be scheduled for the current
optimization period τt, nor the remaining execution time of the
currently already running steps.

l ∈ L =
{

1 . . . l#
}
, The set of all paths is represented byL, while l indicates a specific

path within a process.
La ∪ Lx ∪RL ⊆ L The set of possible paths for AND-blocks La, XOR-blocks Lx

and repeat loop constructs RL are expressed by the respective
terms.

re The maximum repetitions of a repeat loop are indicated by re.
eseqip

, eLa
ip
, eLx

ip
, eRL

ip
The remaining execution duration of sequences (eseqip

), AND-

blocks (eLa
ip

), XOR-blocks (eLx
ip

) and repeat loop constructs (eRL
ip

)
of the process instance ip are expressed by the respective terms.
The terms do not include the remaining execution time of the cur-
rently running steps nor the execution and deployment times for
process steps that will be scheduled for the current optimization
period τt.

Continued on next page –>

72

Table 4.5: System Model: Startup, Deployment, Execution, and Penalty Times

êsip , ê
l
ip

The remaining combined service execution duration, time for
pulling needed container images, container deployment and VM
startup time for all not yet scheduled service invocations of se-
quences or repeat loop blocks (êsip) and paths in AND- or XOR-
blocks (êlip) that still need to be invoked to finalize the enactment
of the process instance ip are expressed by the respective terms.
Those values do not include the remaining execution time of al-
ready running process steps jrunip

or process steps that are being
scheduled in the current optimization period τt.

exj∗ip The combined execution duration, container deployment and
VM-startup time of the next to be scheduled process step j∗ip is
expressed by exj∗ip .

exjrunip
The remaining execution time of process steps already scheduled
in previous periods and not finished until the start of τt is ex-
pressed by exjrunip

.
epip The penalty time units of a process instance ip, i.e., the execu-

tion duration of ip that occurs beyond the deadline DLip of ip, is
expressed by epip .

cpip The penalty cost per time unit of delay of the process instance ip
is represented by cpip .

Important Decision Variables

The designed system should calculate a solution that answers the questions of how many VM
instances of what VM types to lease, for how many BTUs to lease the VM instances, what
Docker containers of which type and with which configuration to deploy on each leased VM
instance, and what process steps to invoke on which deployed container. Table A.4 summarizes
the used decision variables.

Table 4.6: System Model: Decision Variables

Variable Name Description
y(kv ,t) ∈

{
N+
0

}
This variable indicates how often (i.e., for how many BTUs) the
VM instance kv should be leased in the time period τt.

a(cst,kv ,t) ∈ {0, 1} This variable indicates if the container cst with the service type
st should be deployed on VM kv in the time period τt.

x(jip ,cst,t) ∈ {0, 1} This variable indicates if process step j of process instance ip
should be invoked on container cst in the time period τt.

x(jip ,kv ,t) ∈ {0, 1} This variable indicates if process step j of process instance ip
should be invoked on VM kv in the time period τt.

73

4.3 Working Example

To illustrate the most important features explained in the preliminaries and to aid the explana-
tion of our presented solution approaches, we introduce an example scenario that presents the
components that have to be considered when optimizing container-based system landscapes for
elastic processes in more detail.

This working example is based on the example scenario presented in Section 1.2, but only
considers a very simplified system and process landscape for illustration purposes. Looking at
Figure 1.1, we can see the general structure of a container-based elastic process landscape. Our
international car manufacturer can request the execution of different business processes from
multiple sites and locations simultaneously. The process requests can have different SLAs and
are sent to a BPMS that handles the execution of elastic processes. The BPMS can execute the
incoming process requests on a container-based cloud infrastructure. Therefore, the BPMS has
to calculate the resource demands, lease and release computational resources, allocate containers
and schedule the process steps considering process deadlines while minimizing the costs of the
leased resources.

In the following, we discuss the main functions and responsibilities of the BPMS in more
detail by using the simplified business processes, service and container types, available com-
putational resources in the form of VMs, and incoming request patterns as described in the
subsections below. In the following Section 4.4, we will explain our solution approach for solv-
ing the working example and in Section 4.5 we will illustrate the application of our presented
approach on the working example discussed in this section.

4.3.1 Considered Business Processes

Of the various business processes that the car manufacturer has employed across the multiple
sites and locations, in the following we consider the simplified and generalized business process
models p = 1, 2, 3, and N ({1, 2, 3, N} ∈ P) as depicted in Figure 4.2, which correspond to the
business processes already used for our illustration in Section 1.2.

Each business process can be requested by different users simultaneously, leading to differ-
ent process instances (ip ∈ Ip), while each user may define different SLAs for each business
process instance. The SLO we consider is the process deadline (DLip) which indicates the time
until the execution of an incoming process instance (ip) has to be finished. The BPMS must
schedule all incoming process requests based on their importance. As can be seen in Figure
4.2, multiple process models share process steps of the same service types (st ∈ ST). There-
fore the BPMS can schedule the individual process steps (jip) of different process instances
based on different process models on the same corresponding isolated software services (cst)
in the container-based elastic cloud infrastructure. When calculating an optimized scheduling,
the BPMS has to differentiate between long-running and short-running processes, and processes
with strict SLAs that have to be scheduled as soon as possible and processes with more loose
SLA requirements that can also be postponed into the future if there currently are not enough
computational resources available and an immediate execution would lead to preventable addi-
tional leasing costs for the service provider.

74

Business Processes

Business Process 2
Step A

Step B

Step D
Step EStart Goal

SLA

Business Process 1
Step A

Step B Step C

Step D
Start Goal

SLA

Business Process 3
Step B Step C Step EStart Goal

Business Process N
Step A Step B Step CStart Goal

...

SLA

SLA

Figure 4.2: Simplified Business Processes of the Car Manufacturer

4.3.2 Service Types and Container Types

The depicted process models in Figure 4.2 are composed of individual loosely coupled process
steps of certain service types ({A,B,C,D,E} ∈ ST) following the principles of SOA. Steps of
the same service type st but of different process models and different process instances can share
the same software service instances cst. The functionalities of the process steps are implemented
by the following software services of corresponding service types st as illustrated in Table 4.7.

Table 4.7: Process Steps of the Example System

Service Type CPU Requirement RAM Requirement Makespan
Service Type A 50 CPU points 270 MB 30 sec.
Service Type B 30 CPU points 100 MB 120 sec.
Service Type C 120 CPU points 900 MB 60 sec.
Service Type D 70 CPU points 1024 MB 90 sec.
Service Type E 80 CPU points 630 MB 150 sec.

The instances of each service type have certain CPU requirements (rCjip) which we calculate
as CPU points. CPU points can be interpreted as the percentage of one single CPU core that
one service invocation of a service instance of the service type requires. This means that service
invocations of service type A require half of the resources of one CPU core while service invo-
cations of service type D require 1.2 CPU cores for a successful execution. Each service type
also has different RAM requirements (rRjip) which we consider in our approach but will neglect
in this example for simplifying the problem. Furthermore, we have to consider the makespan
of each service invocation which indicates the time required to execute a corresponding process
step.

75

The BPMS has to schedule the incoming requests on software containers cst that are placed
on VM instances kv which offer the required computational resources (sCv , s

R
v). Each container

cst includes the program code of a certain software service st, therefore, a container can only
execute service invocations of one specific service type. The process steps jip of multiple process
instances can share one container instance cst and its software service as long as the container
offers sufficient resources (sCcst , s

R
cst). While multiple containers for the same service type cst can

be deployed on different VM instances kv, and every VM instance may host multiple containers,
one VM instance can only run containers of distinct service types st.

4.3.3 VM Types

The containers cst that offer computational resources for service invocations have to be placed
on VM instances kv. In our ongoing example, our system can lease and release VM instances of
the following VM types v as shown in Table 4.8.

Table 4.8: VM Types of the Example System

VM Type CPU RAM Leased from Price per BTU BTU
VM Type 1 single core 1024 MB public cloud A 8 5 min
VM Type 2 dual core 2048 MB public cloud A 13 5 min
VM Type 3 quad core 4096 MB public cloud A 18 5 min
VM Type 4 single core 1024 MB private cloud B 5 5 min
VM Type 5 dual core 2048 MB private cloud B 10 5 min
VM Type 6 quad core 4096 MB private cloud B 15 5 min

The service provider can choose from a set of public and private cloud resources when
leasing new VM instances kv. Each VM type offers different types of computational resources
in terms of CPU (sCv), RAM (sRv) and location. In our example, we assume only one private
cloud and only one public cloud provider but generally, a multitude of cloud providers with
different pricing models could be utilized by the service provider. The BTU (btuv) indicates the
amount of time for which a VM instance kv of a certain VM type v can be leased for the given
price. A service provider may lease a VM for multiple BTUs in a row or extend the lease of
a VM instance while it is leased for additional BTUs. When releasing a VM instance after the
last leased BTU, the VM is shut down and its state is discarded. To simplify the example we
assume a general BTU of five minutes for each leasable VM instance but generally infrastructure
providers could easily also define different BTUs for their resources.

Although virtually unlimited, we assume the number of leasable VM instances kv of a certain
VM type v to be limited in a certain time period. For this simple example, we assume that
the service provider is allowed to lease only one VM instance of each specified private cloud
VM type (v ∈ {4, 5, 6}) and up to two VM instances of the specified public cloud VM types
(v ∈ {1, 2, 3}). The two public cloud VM instances of VM type 1 are denoted in the following
as VM1.1 and VM1.2 while the VM instance from the private cloud of Type 4 is referenced to
as VM4.1. We use the same naming convention for the remaining leasable VM instances.

76

4.3.4 Incoming Process Requests

Process requests ip can be sent anytime and concurrently from multiple users to the BPMS. In
this working example, we consider the following process requests as depicted in Table 4.9.

Table 4.9: Incoming Process Requests

Process Instance Name Business Process Time Received Deadline Penalty
P1.1 1 t = 0 t = 11 2
P3.1 3 t = 0 t = 100 2
PN.1 N t = 0 t = 11 2
P3.2 3 t = 5.5 t = 18.5 2
PN.2 N t = 5.5 t = 16.5 2

In the following, we reference the single service invocations of each process instance as
[Process Instance Name].[Service Type Name], so the first step of process instance P1.1 is for
example referred to as P1.1.A.

The indicated timestamps represent minutes. As an example, between the timestamps t = 0
and t = 1 one minute has passed, while between the timestamp t = 0 and t = 1.5 90 seconds
have passed.

Furthermore, the BPMS needs to consider penalty costs for every time unit that the execution
of process requests exceeds the defined deadline. Penalty costs can be individually defined for
each process instance. In this simplified example, we assume linear penalty costs of 2 units
for each time unit that the execution exceeds the defined deadline of any process instance. In
general, it is easily possilbe to define different penalty costs for each process instance.

Our approach aims at finding an optimized resource allocation and scheduling plan for the
execution of the incoming process requests. Due to increased requests over time, the auto scaling
system will have to increase the number of provisioned resources for certain applications and
also deprovision resources when the number of requests decreases. In the following Section 4.4
we present our solution approach for solving the problem outlined in this section. Afterward, we
will demonstrate the execution of this ongoing example using the presented solution approach
in Section 4.5. Later, in Section 6.1 we evaluate the working example, in Section 6.2 we discuss
some important observations and in Section 6.3 we discuss the main advantages compared to
previous work using only VMs.

77

4.4 Multi-Objective Problem Formulation using MILP

In this section, we formulate our task-scheduling and resource allocation problem as a MILP op-
timization problem. The multi objective optimization problem represents the scheduling prob-
lem for one optimization round starting at time t . An optimization round is triggered whenever
new process steps can be scheduled, for example, whenever new process requests arrive or when
previously running steps of process instances are finished. Furthermore the optimization is trig-
gered when SLAs violations can be foreseen.

Our optimization problem takes complex process patterns, penalty costs, container-based
metrics, different pricing models, and BTUs for VMs into consideration. The optimization
problem focuses on minimizing the costs that arise from enacting elastic process landscapes on
container-based cloud infrastructures. Solutions for the problem describe when and on which
containers and service instances to schedule service invocations, on which VMs to place con-
tainers and service instances, and which VMs to lease or release.

4.4.1 Four Fold Service Instance Placement Problem

As discussed in Subsection 4.2.1 we design a system that facilitates the scaling over four dimen-
sions and name it the Four Fold Service Instance Placement Problem (FFSIPP).

Objective Function

In 4.1 we present the objective function which is subject to minimization under the subsequently
following constraints.

min
∑
v∈V

(
cv ∗ γ(v,t)

)
+
∑
p∈P

∑
ip∈Ip

(
cpip ∗ e

p
ip

)
+
∑

st∈ST

∑
cst∈Cst

∑
v∈V

∑
kv∈Kv

(
ωz ∗ (1− z(st,kv ,t)) ∗ a(cst,kv ,t)

)
+
∑

st∈ST

∑
cst∈Cst

∑
v∈V

∑
kv∈Kv

(
ωd ∗ d(kv ,t) ∗ a(cst,kv ,t)

)
+
∑
v∈V

∑
kv∈Kv

(
ωC
f ∗ fCkv + ωR

f ∗ fRkv
)

+
∑

st∈ST

∑
cst∈Cst

∑
v∈V

∑
kv∈Kv

(
(ωC

s ∗ sCcst + ωR
s ∗ sRcst) ∗ a(cst,kv ,t)

)
+
∑
p∈P

∑
ip∈Ip

∑
j∗ip∈Jip

∑
cstj∈Cst

(
ωDL ∗ (DLj∗ip

− τt) ∗ x(jip ,cstj ,t)
)

(4.1)

78

The objective function considers seven terms for calculating a scheduling plan, indicated
by the decision variable x(jip ,cstj ,t), which decides on which container instance to schedule a
service invocation and the decision variable a(cst,kv ,t), which decides on which VM instance to
deploy a container instance. In the following we explain each term:

• Term 1 - minimize total VM leasing costs: The first term, i.e.,
∑

v∈V
(
cv ∗ γ(v,t)

)
, calcu-

lates the total costs for leasing VM instances of each VM type v at time t, by considering
the leasing costs cv for the VM types and the total number of leased BTUs γ(v,t) that VM
instances of the corresponding type v are leased at t. The aim is to minimize the total
costs for leasing VMs.

• Term 2 - minimize penalty costs: The second term, i.e.,
∑

p∈P
∑

ip∈Ip
(
cpip ∗ e

p
ip

)
, cal-

culates the total penalty costs that arise from scheduling decisions that lead to execution
times for process instances beyond their defined deadlines in time t or in the future. The
penalty time epip of a process instance ip is calculated according to a worst-case analysis.
The aim is to minimize such penalty costs and therefore make sure that incoming process
requests are executed in time, as defined in their SLAs.

• Term 3 - minimize container deployment time: The third term minimizes the sum of time
needed for deploying all newly scheduled containers on VM instances kv. This is achieved
by giving a preference to the deployment of container instances on VM instances on which
the image for the container type is cached locally. The term (1−z(st,kv ,t)) makes sure that
the weighting factor ωz is only considered when the cache for container deployment does
not exist on the VM instance kv.

• Term 4 - maximize future resource supply of already leased VMs: The fourth term gives
a preference to deploying containers for service invocations on VMs that have a shorter
remaining leasing duration d(kv ,t) compared to other VMs with already existing longer
leasing durations. Although at time t this preference does not lead to any cost-based
advantages, it assures that the already leased resources offer more long-running resources
for future optimization periods. The term calculates the remaining leasing duration of all
VMs using a weighting factor. As we want to give a preference to deploying containers on
VM instances with a small leasing duration, we minimize the term to maximize the future
remaining leasing durations of available resources.

• Term 5 - minimize sum of unused present VM resources: The fifth term minimizes the
sum of all leased but unused computational resource capacities in terms of CPU (fCkv) and
RAM (fRkv) of all leased VM instances. Due to this term, our approach makes sure to not
only schedule all service invocations that can not be delayed any further without leading
to penalty costs but to also pre-schedule service invocations that may already be executed
but have a distant deadline. We consider this term using weighting factors for CPU and
RAM resources, such that we give more importance on the first two terms of our objective
function.

79

• Term 6 - minimize sum of unused container resources: The sixth term makes sure that
resources in terms of CPU (sCcst) and RAM (sRcst) supplied by containers for scheduling
service invocations are minimized, such that containers do not reserve more resources
than they actually need for guaranteeing the successful execution of scheduled service
instances. Therefore, the term reduces the risk of overprovisioning by demanding to lease
the smallest resources to containers that still fulfill the scheduling demand. Similar to
term 5, we use weighting factors to limit the influence of this term to the overall objective
function.

• Term 7 - maximize the importance of scheduled service invocations: The last term calcu-
lates the difference between the last possible scheduling deadline of the next schedulable
steps when performing a worst-case analysis based on the current time. The term con-
siders all process instances and aims at giving a scheduling preference to process steps
with closer deadlines. The term is responsible for defining the importance of schedulable
process steps that do not necessarily have a pressing process deadline on remaining free
resources. Note that in contrast to the related work [63], we do consider the actual enact-
ment deadline for the next schedulable steps based on the worst-case analysis instead of
simply comparing the overall process deadlines. We also define the term such that past
process deadlines can be considered and steps that are past their deadline receive a higher
scheduling importance. We consider a weighting factor ωDL to assign a lower weight to
the term.

Constraints

The objective function is subject to minimization under the following constraints:

Constraint 4.2 makes sure that deadlines are considered for each process instance ip. The
constraint does not guarantee that deadlines are not violated, but it defines the penalty times epip
of process instances which are subject to minimization in the presented term 2 of the objective
function. The constraint demands that the current time plus the remaining worst-case execution
time of process instances is smaller or equal to the defined deadline plus the potential penalty
time which occurs when process instances finish after their deadline. This constraint considers
the remaining execution time including the time of process steps that are being scheduled during
the current time period and process steps that have already been scheduled in previous periods
and are still running.

τt + exrunjip
+ ex∗jip + eip 6 DLip + epip (4.2)

Constraint 4.3 helps in defining the start of the next optimization period τt+1, by demanding
that the start of the next optimization period τt+1 plus the remaining worst-case execution time
of process instances is smaller or equal to the respectively defined process deadlines plus the
possible penalty times. It should be noted that in contrast to related work [63] our approach only
considers the worst-case execution time of all process steps that have not been scheduled yet

80

until τt and have to be scheduled in a later optimization period τt+1 or later for the calculation
of the start time of the next optimization period τt+1. At this stage, the approach especially
does not consider the execution time of currently running process steps or process steps that
are scheduled for execution in τt, as the earliest possible time when next steps of a process
instance can be scheduled is when the previous steps, already running or scheduled in τt, are
finished. Adding the remaining time of the currently running or scheduled steps to the left side
of Equation 4.3 can potentially lead to triggering premature optimization rounds at a t+1 where
predecessor steps of the next schedulable steps are not finished yet (and hence no new steps can
be scheduled).

Constraint 4.4 makes sure that the next optimization time period τt+1 is defined to be in the
future. We use a value ε > 0 to avoid optimization deadlocks arising from a too small value for
τt+1.

The start of the next optimization period is directly calculated as a result of the previous
optimization rounds. Nevertheless, as this optimization model only refers to one optimization
round and only operates based on the current knowledge, the optimization can also be triggered
by other events, like newly incoming requests or finalized process steps and run earlier than the
here calculated time t+ 1.

τt+1 + eip 6 DLip + epip (4.3)

τt+1 > τt + ε (4.4)

Equation 4.5 calculates the remaining execution duration for all process instances ip. The
remaining execution duration eip does not include the execution and deployment time of the
process steps that will be scheduled for the current optimization period τt, nor the remaining
execution time of the currently already running steps.

eip = eseqip
+ eLa

ip
+ eLx

ip
+ eRL

ip (4.5)

The overall remaining execution duration eip of a process instance ip is the sum of the exe-
cution times of the different process patterns that the process instance is composed of. We aggre-
gate the upper bound execution times of the different process patterns, following the approach
by Jäger et al. [75]. The worst-case execution times for sequences are defined in Equation 4.6,
for AND-blocks in Equation 4.7, for XOR-blocks in Equation 4.8 and for Repeat Loop blocks
in Equation 4.9. For AND-blocks the longest remaining execution time has to be considered
naturally. As we are using a worst-case analysis, we also consider the longest path for the cal-
culation of the remaining execution time of XOR-blocks. For Repeat Loop blocks the sub path
execution time is multiplied by the maximal possible amount of repetitions re.

Equations 4.6 - 4.9 consider the overall remaining execution time of all not yet running
process steps for each process instance ip as defined by the two helper variables êsip for sequences

81

and êlip for XOR- and AND-blocks in Equations 4.11 and 4.12. Since we perform a worst-
case analysis, both equations consider the worst-case VM startup time, the time for pulling
the respective Docker image onto the running VM instance and the time for starting a new
container instance for each remaining process step jip . If a process step j∗ip is being scheduled
in the current time period τt, Equations 4.6 - 4.9 subtract the worst-case execution time of the
scheduled steps as defined in Equation 4.10 from the overall remaining execution time.

eseqip
=

{
êsip − exj∗ip , if x(j∗ip ,cstj ,t) = 1

êsip , otherwise
(4.6)

eLa
ip

=

 max
l∈La

(êlip − exj∗ip) , if x(j∗ip ,cstj ,t) = 1

max
l∈La

(êlip) , otherwise
(4.7)

eLx
ip

=

 max
l∈Lx

(êlip − exj∗ip) , if x(j∗ip ,cstj ,t) = 1

max
l∈Lx

(êlip) , otherwise
(4.8)

eRL
ip =

{
re ∗ êsip − exj∗ip , if x(j∗ip ,cstj ,t) = 1

re ∗ êsip , otherwise
(4.9)

exj∗ip =
∑

cstj∈Cstj

(
(ej∗ip + ∆cstj

+ ∆stj + ∆) ∗ x(j∗ip ,cstj ,t)
)

(4.10)

êsip =
∑

jip∈J
seq
ip

(ejip + ∆cstj
+ ∆stj + ∆) (4.11)

êlip =
∑

jip∈J l
ip

(ejip + ∆cstj
+ ∆stj + ∆) (4.12)

Constraints 4.13 and 4.14 make sure that for all st ∈ ST, cst ∈ Cst, the sum of CPU and
RAM resources required by all the service invocations that either already run or are scheduled
to run on the container instance cst in τt, do not exceed the containers’ guaranteed minimum
resource supply (in terms of CPU and RAM).

∑
p∈P

∑
ip∈Ip

∑
jip∈(Ji∗p∪J

run
ip

)

(rCjip ∗ x(jip ,cstj ,t)) 6 s
C
cstj

(4.13)

82

∑
p∈P

∑
ip∈Ip

∑
jip∈(Ji∗p∪J

run
ip

)

(rRjip ∗ x(jip ,cstj ,t)) 6 s
R
cstj

(4.14)

Constraints 4.15 and 4.16 make sure that for all v ∈ V, kv ∈ Kv, the sum of CPU and RAM
resources required by all containers that run or have to be deployed on a VM instance kv in τt,
do not exceed the capacity of a VM of type v.

∑
st∈ST

∑
cst∈Cst

(sCcst ∗ a(cst,kv ,t)) 6 s
C
v (4.15)

∑
st∈ST

∑
cst∈Cst

(sRcst ∗ a(cst,kv ,t)) 6 s
R
v (4.16)

Constraints 4.17 and 4.18 demand that for all service types st the sum of all supplied re-
sources by all container instances cst of a certain service type st is greater or equal to the sum of
the total resource demand (in terms of CPU and RAM) of all service invocations of the specific
service type st.

∑
v∈V

∑
kv∈Kv

(sCcst ∗ a(cst,kv ,t)) >
∑
p∈P

∑
ip∈Ip

∑
jip∈(Ji∗p∪J

run
ip

)

(rCjip ∗ x(jip ,cstj ,t)) (4.17)

∑
v∈V

∑
kv∈Kv

(sRcst ∗ a(cst,kv ,t)) >
∑
p∈P

∑
ip∈Ip

∑
jip∈(Ji∗p∪J

run
ip

)

(rRjip ∗ x(jip ,cstj ,t)) (4.18)

Constraints 4.19 and 4.20 define for each VM instance v ∈ V, kv ∈ Kv the remaining free
capacities in terms of CPU (fCkv) and RAM (fRkv) that are not reserved and allocated to containers
on the VM instance. As expressed by the variable g(kv ,t) ∈ {0, 1}, which is further defined in
Constraints 4.21 and 4.22, we only consider VM instances that are either already running or are
being leased in τt.

g(kv ,t) ∗ s
C
v −

∑
st∈ST

∑
cst∈Cst

(sCcst ∗ a(cst,kv ,t)) 6 f
C
kv (4.19)

g(kv ,t) ∗ s
R
v −

∑
st∈ST

∑
cst∈Cst

(sRcst ∗ a(cst,kv ,t)) 6 f
R
kv (4.20)

83

Constraints 4.21 and 4.22 define the value of the helper variable g(kv ,t) ∈ {0, 1} which takes
the value of 1 if a VM instance is either already running (βkv = 1) or being leased for at least
one BTU (y(kv ,t) ≥ 1) in τt. g(kv ,t) is restricted to be a boolean variable in Constraint 4.45.

g(kv ,t) 6 β(kv ,t) + y(kv ,t) (4.21)

β(kv ,t) + y(kv ,t) 6 BTU
max ∗ g(kv ,t) (4.22)

Constraint 4.23 makes sure that for all VM instances v ∈ V, kv ∈ Kv a VM instance kv will
be leased or is running if containers are to be placed on it. Therefore, we calculate the number
of containers that are scheduled or already running on kv and make use of our helper variable
g(kv ,t) as defined in Constraints 4.21 and 4.22, as well as a helper variable M that presents an
arbitrarily large number, e.g., 100, as an upper bound of possible container deployments per VM
instance.

∑
st∈ST

∑
cst∈Cst

a(cst,kv ,t) 6 g(kv ,t) ∗M (4.23)

Constraint 4.24 makes sure that for all container instances st ∈ ST, cst ∈ Cst a container
instance cst will be deployed or is already running on a VM instance kv if service invocations
are scheduled for execution on the container. To that end, we calculate the number of service
invocations that will be scheduled or are already running on a container instance cst and make
use of our decision variable a(cst,kv ,t) that indicates whether a container should be deployed on
a VM instance kv, as well as a helper variable N that presents an arbitrarily large number, e.g.,
10,000, as an upper bound of possible parallel service invocations for each container instance.

∑
p∈P

∑
ip∈Ip

∑
jip∈(J∗

ip

⋃
Jrun
ip

)

x(jip ,cst,t) 6 a(cst,kv ,t) ∗N (4.24)

Constraint 4.25 makes sure that for all VM instances v ∈ V, kv ∈ Kv and all container
instances st ∈ ST, cst ∈ Cst a VM instance kv will be leased at least for the full next opti-
mization period if container instances cst are allocated on it. On the lefthand side, we consider
the decision whether or not a container should be deployed on a VM instance kv and calculate
the time until the start of the next optimization period, as computed by the optimization model
with the current knowledge. On the righthand side, we demand that if a VM instance kv is al-
ready leased, its remaining leasing duration d(kv ,t) is greater or equal to the calculated time until
the start of the next optimization period. If the currently remaining leasing duration is smaller,
the corresponding VM instance kv needs to be leased for y(kv ,t) additional BTUs to meet the
equation.

84

a(cst,kv ,t) ∗ (τ(t+1) − τt) 6 d(kv ,t) ∗ β(kv ,t) +BTUkv ∗ y(kv ,t) (4.25)

Due to the multiplication of the binary variable a(cst,kv ,t) with the continuous variable τ(t+1)

Equation 4.25 is nonlinear. Therefore, we need to perform a linearization for the nonlinear term
a(cst,kv ,t) ∗ τ(t+1) and replace it with the new variable a(cst,kv ,t)_times_τ(t+1). The linearization
of the product of the binary variable a(cst,kv ,t) and the continous variable τ(t+1) [56] is expressed
by the Constraints 4.26 - 4.29.

a(cst,kv ,t)_times_τ(t+1) 6 τ(t+1)_UpperBound ∗ a(cst,kv ,t) (4.26)

a(cst,kv ,t)_times_τ(t+1) 6 τ(t+1) (4.27)

a(cst,kv ,t)_times_τ(t+1) + τ(t+1)_UpperBound

> τ(t+1) + τ(t+1)_UpperBound ∗ a(cst,kv ,t)
(4.28)

a(cst,kv ,t)_times_τ(t+1) > 0 (4.29)

Constraint 4.30 makes sure that for all VM instances v ∈ V, kv ∈ Kv, all container instances
st ∈ ST, cst ∈ Cst and all running or schedulable process steps jip ∈ (J∗ip

⋃
Jrun
ip

), the contain-
ers cst with scheduled service invocations jip will not be moved to other VM instances during
their services invocations. On the lefthand side, we consider the remaining execution time of
a process step jip for each process step scheduled on a container instance (a(cst,kv ,t) = 1) and
each container scheduled on a VM instance (x(jip ,cst,t) = 1). In case that the process step jip is
not running yet, we also have to consider the time to pull a new image and starting the needed
container, if the image does not exist and the container is not running on the scheduled VM
instance (z(stj ,kv ,t) = 0). Furthermore, if the required VM instance kv is not up and running
yet (β(kv ,t) = 0) , we also need to add the time for starting the new VM instance kv to our
calculation of the remaining execution time. Similarly to Constraint 4.25, we demand the calcu-
lated remaining execution time to be smaller or equal to the remaining leasing duration d(kv ,t)
of the allocated VM instance kv. Again, if the currently remaining leasing duration is smaller,
the corresponding VM instance kv needs to be leased for y(kv ,t) additional BTUs to satisfy the
equation.

(
ejip + (∆cstj

+ ∆stj) ∗ (1− z(stj ,kv ,t)) + ∆ ∗ (1− β(kv ,t))
)
∗ a(cst,kv ,t) ∗ x(jip ,cst,t)

6 d(kv ,t) ∗ β(kv ,t) +BTUkv ∗ y(kv ,t)
(4.30)

85

Due to the multiplication of the two binary variable a(cst,kv ,t) ∗ x(jip ,cst,t) Equation 4.30 is
nonlinear. Therefore, we need to perform a linearization for the nonlinear term and replace it
with the new variable a(cst,kv ,t)_times_x(jip ,cst,t). The linearization of the product of the two
binary variables a(cst,kv ,t) and x(jip ,cst,t) [142] is expressed by the Constraints 4.31 - 4.33.

a(cst,kv ,t)_times_x(jip ,cst,t) 6 a(cst,kv ,t) (4.31)

a(cst,kv ,t)_times_x(jip ,cst,t) 6 x(jip ,cst,t) (4.32)

a(cst,kv ,t)_times_x(jip ,cst,t) > a(cst,kv ,t) + x(jip ,cst,t) − 1 (4.33)

Similar to Constraint 4.30, Constraint 4.34 together with the Constraints 4.38 and 4.39,
ensure that all service invocations that are already running on certain container instances on a
VM instance at the start of τt, will not be migrated to another container or VM instance during
their invocation. We explicitly reference the already assigned container instance cst and VM
instance kv by the additional indices in Constraint 4.34 and do not need to consider additional
times for pulling container images or starting VM instances.

e
runcst,kv

jip
6 d(kv ,t) ∗ β(kv ,t) +BTUkv ∗ y(kv ,t) (4.34)

Constraint 4.35 defines the variable γ(v,t) for all VM types v ∈ V . γ(v,t) indicates the total
number of BTUs to lease VM instances of type v, meaning it includes the decisions which VM
instances kv to lease and for how long (how many BTUs) to lease them. To define γ(v,t), we
build the sum over all individually leased BTUs for each VM instance of type v.

∑
kv∈Kv

y(kv ,t) 6 γ(v,t) (4.35)

Constraint 4.36 demands for all next schedulable process steps jip ∈ J∗ip that each service
invocation is scheduled on only a single container instance cst corresponding to the service
instances service type stj or postponed for a later optimization period.

∑
cstj∈Cstj

x(jip ,cstj t) 6 1 (4.36)

86

Constraint 4.37 demands for all container instances st ∈ ST, cst ∈ Cst that each container
instance can only be deployed on one VM instance kv.

∑
kv∈Kv

a(cst,kvt) 6 1 (4.37)

Constraint 4.38 sets the decision variable x(jip ,cst,t) for each already running service invoca-
tion jrunip

on a corresponding running container instance crunstj to 1. Furthermore, Constraint 4.39
sets the decision variable a(cst,kv ,t) for each already running container from Constraint 4.38 on a
corresponding running VM instance kv to 1. Those two constraints correspond to inheriting the
scheduling decision already made in a previous period.

x(jrunip
,crunstj

,t) = 1 (4.38)

a(crunstj
,kv ,t) = 1 (4.39)

Constraint 4.40 restricts the decision variable x(jip ,cstj ,t) that decides whether or not to
schedule a service invocation jip on a certain container cst for all p ∈ P, ip ∈ Ip, jip ∈ J∗ip , st ∈
ST, cst ∈ Cst to be a boolean.

x(jip ,cstj ,t) ∈ {0, 1} (4.40)

Constraint 4.41 restricts the decision variable a(cst,kv ,t) that decides whether or not to deploy
a container instance cst on a certain VM instance kv for all st ∈ ST, cst ∈ Cst, v ∈ V, kv ∈ Kv

to be a boolean.

a(cst,kv ,t) ∈ {0, 1} (4.41)

Constraint 4.42 restricts the decision variable y(kv ,t) that decides for how many additional
BTUs to lease a VM instance kv at time t for all v ∈ V, kv ∈ Kv to be a positive integer ≥ 0.

y(kv ,t) ∈ N+
0 (4.42)

87

Constraint 4.43 restricts the decision variable γ(v,t) that decides for how many total BTUs to
lease any VM instances of type v at time t for all v ∈ V to be a positive integer ≥ 0.

γ(v,t) ∈ N+
0 (4.43)

Constraint 4.44 restricts the variable that indicates the penalty execution time epip to be a
positive real number.

epip ∈ R+ (4.44)

Constraint 4.45 restricts the variable g(kv ,t) to be a boolean. The variable has been defined
in Constraints 4.21 and 4.22 and takes the value of 1 if a VM instance is either already running
(βkv = 1) or being leased for at least one BTU (y(kv ,t) ≥ 1) in τt.

g(kv ,t) ∈ {0, 1} (4.45)

Constraint 4.46 restricts the helper variable a(cst,kv ,t)_times_τ(t+1) used for the linarization
of Constraint 4.25 in Constraints 4.26 - 4.29 to be a positive real number.

a(cst,kv ,t)_times_τ(t+1) ∈ R+ (4.46)

Constraint 4.47 restricts the helper variable a(cst,kv ,t)_times_x(jip ,cst,t) used for the linar-
ization of Constraint 4.30 in Constraints 4.31 - 4.33 to be a boolean value.

a(cst,kv ,t)_times_x(jip ,cst,t) ∈ {0, 1} (4.47)

88

Problem Simplification through Additional Restriction

Up until this point the generally defined optimization model does not restrict the deployment of
multiple containers of the same service type on the same VM instance. In our preconditions, we
stated that we only want to allow one single container per service type st on each VM instance.

It should be noted that the deployment of multiple containers of the same service type on
the same VM instance can be desirable and even come with a number of advantages, especially
in terms of security requirements in a multi-tenant environment. It may be required that either
each individual service request or certain specific service requests are executed in isolation.

Typical reasons for demanding stronger isolation of service requests and their used resources
are the following:

• Security: A higher security can be guaranteed for service executions if requests run in
isolated containers [42]. This is especially the case for multi-tenant applications where
situations of cross-tenant data leakage need to be prevented and the associated risks have
to be minimized [21] [105].

• Regulations: Often higher security measures have to be incorporated due to legal and
compliance reasons and data privacy standards [74]. Different regulations, e.g., from
different companies or countries [85], may also impose different requirements to the ex-
ecution of the same services, such that they have to be packed into different container
instances .

• QoS guarantees in multi-tenant environments: The isolation of requests from different
tenants might be necessary for realizing different advanced multi-tenant QoS guarantees
[60] [145]. Other than the already considered execution deadlines, cloud providers can,
for example, offer different QoS levels for storage and encryption [100]. A provider might
have to offer different methods to save the state of containers [60], e.g., some customers
might require persistent state storage while for others saving the state in an ephemeral
storage can be sufficient. Also when offering different encryption methods for encryption
in transit (e.g., using an encrypted connection like HTTPS vs. not offering encrypted data
transmission) and encryption at rest (e.g., offering the possibility to save data in encrypted
storage drives) the use of different containers for the same service types can be helpful.

• Billing: Resource isolation on a tenant basis is also helpful when defining certain resource
limits per tenant, and especially for tracking activities and resource usage on a tenant
basis [57] [140] [174]. Tracking a tenant’s activities and usage is crucial for incorporating
advanced billing mechanisms that allow the usage of on-demand pricing schemes.

It should be noted that also when looking at the advantage of resource sharing while using
SOA for the deployment of business processes, such advantages are still present, even when each
service request runs as an isolated process in its own container instance. The reason for this is
that multiple container instances can be started from the same container image in a neglectable
amount of time and containers can share the resources offered by a VM instance. Therefore, the
additional isolation does not diminish advantages of concurrent execution on shared resources.

89

Nevertheless, current work on task-scheduling and resource allocation for elastic processes
has not focused on these issues. Existing approaches as presented in Chapter 3 mostly utilize
homogeneously configured VM instances for the execution of concurrent process requests. The
closely related work from Hoenisch et. al [65] that makes use of Docker containers for isolation
of applications on VM instances also only accounts for scheduling maximally one container of
a certain application type on a VM instance without accounting for situations where multiple
application containers for the same application could be reasonable.

Our optimization approach as presented so far does not account for decisions that favor
the deployment of a process step on multiple containers in different situations as stated above,
e.g., to meet legal and compliance regulations. Nevertheless, the approach generally allows the
scheduling of multiple container instances of the same service type on a single VM instance,
which offers a basis for introducing further constraints that tackle the above considerations.
Defining and realizing such considerations in more detail goes beyond the scope of this thesis
and should be explored by future work.

Additional restriction: In the work at hand, we provide a solution for the simplified assump-
tion that maximally one container of the same service type st is allowed per VM instance. This
also corresponds to similar assumptions made in related work.

To realize the simplified assumption of this work that for all v ∈ V, kv ∈ Kv each VM
instance may only host one container of the same service type st, we introduce Constraint 4.48.

∑
cst∈Cst

a(cst,kvt) 6 1 (4.48)

Due to this additional restriction, our presented general optimization model can be signif-
icantly simplified. We now can abstract from having to schedule container instances on VM
instances and service invocations on container instances. Instead, we can directly schedule ser-
vice invocations on VM instances, while considering container properties. The actual container
instances can be defined and allocated as needed by the scheduled service invocations.

Issues with current approaches: The related work on scheduling applications on container
instances based on MILP optimization models [65] assumes a discrete set of container instances
with underlying resources that can be assigned according to a predefined and discrete set of
resource variables. Such a discrete pool of containers would also be necessary in our case when
trying to directly solve the optimization problem as defined in this chapter using a MILP solver.
It is important to consider that doing so would be associated with a number of limitations:

• Large number of decision variables: The defined optimization model would have to
handle a very large number of decision variables.

– First, the solver would need to decide for every VM instance in the set of leasable
instances whether or not to lease the VM instance.

90

– Second, the solver would need to decide for every container instance whether or not
to deploy a container with a certain configuration on a certain VM instance.

– Lastly, the solver would need to decide on which deployed container instance to
schedule the service requests.

• High computational complexity: The computational complexity grows exponentially
with the number of incoming requests and also with the number of VM instances and
container instances that have to be managed. This can easily lead to unacceptably long
computation times even for slightly increasing problem sizes.

Previous optimization approaches have only considered scheduling over two dimensions
(e.g., [63]), which entails a lower computational complexity than the problem we consider.
Yet also in simlar previous MILP-based optimization approaches it could be observed that
solutions struggled with increasing problem sizes [97].

• Manage container instances: Maintaining a large enough finite set of container instances
that allow for a flexible system configuration is in itself very expensive. At the same
time, when not enough container instances are available and managed by the system, the
scheduling decisions can be artificially aggravated and lead to poor scheduling outcomes.

Note that this problem did not manifest in the previous work by Hönisch et al. [65] where
only two dimensions are considered and hence the managed finite pool of containers is
considerably smaller than in our case.

To give an example, if the system manages five different container instances with different
configurations for each of ten different service types, the system would already need to manage
and make decisions for 50 different container instances. If the system had a pool of ten differ-
ent VM instances to choose from, for each incoming service request the system would need to
decide on which of the 50 available containers to schedule a service invocation and on which
of the ten available VM instances to deploy the container. This computation is not only highly
expensive but can also lead to ineffective results. By managing a pool of container instances,
the system is restricted, although containers have the potential to provide a high flexibility. Out
of the 50 containers in the pool, only five are actually of relevance to a certain service type
and when a container of a certain service type with a certain configuration is already work-
ing at capacity, the system might have to choose another container that is configured to offer
more computational resources than actually required for the scheduled service invocations. This
would not only lead to a waste of computational resources due to the additional space that the
container guarantees to its service invocations without an actual demand, but could also waste
an even larger amount of resources provided by VM instances, as a larger container might re-
quire the lease of an additional VM instance, although an already leased VM instance might
offer sufficient resources for executing the steps scheduled on a container, but not for offering
the resources the pre-configured container actually demands.

Solving the limitations of discrete container pools: To overcome these limitations of a pre-
defined set of container instances and by making use of the simplified assumption that only one

91

container instance for each service type may be deployed on each VM instance, we implement a
solution that meets all the constraints defined by the optimization model described in this section,
without having to actually manage a pool of containers. Our implementation solves a reduced
problem only considering the scheduling of service invocations on VM instances, while consid-
ering container-based information. The reduced problem may again be formulated as a MILP
optimization problem and solved using a MILP solver. Another possibility is to formulate the
reduced optimization problem as an evolutionary based algorithm, e.g., a genetic algorithm. In
both cases the input for the reduced problem are the process requests, possible container images,
and a pool of VM instances. The output of the reduced model is a task-scheduling and resource
allocation decision stating for all VM instances v ∈ V, kv ∈ Kv what VM instances to lease
for how many BTUs (y(kv ,t)) and for all next schedulable or running process steps jip∈J∗

ip

⋃
Jrun
ip

on which VM instance v ∈ V, kv ∈ Kv to schedule the service invocations (x(jip ,kv ,t)). This
output is transformed using an algorithm that calculates a task-scheduling solution that creates
container instances corresponding to the actual need as computed by the reduced model, such
that no resources are wasted and an unlimited amount of container instances may be used.

Overall optimization approach summary: To sum it up, the overall optimization approach
as presented in this chapter aims at finding a scheduling solution for service invocations on
container instances that are deployed on VM instances. The overall inputs of the optimization
problem are the client requests ip to enact process instances within defined deadlines, a set of
different VM types and a pool of VM instances, and a set of different container images for
different software services. The overall outputs of the optimization problem are the following:

• the decision which VM instances to lease for how many BTUs (y(kv ,t))

• which containers with which configurations to deploy on the VM instances (a(cst,kv ,t))

• which service invocations to schedule on which container instance (x(jip ,cst,t))

Reduced optimization approach summary: To realize the overall optimization approach in
an effective way, we implement a reduced optimization model that processes the inputs of the
overall approach and generates the following outputs:

• the decision which VM instances to lease for how many BTUs (y(kv ,t))

• which service invocations to schedule on which VM instance (x(jip ,kv ,t))

The reduced output already considers container-based information and is transformed by
an algorithm that creates container instances corresponding to the actual need as computed by
the reduced model. The transformation processes the decision variables x(jip ,kv ,t) and creates
the two variables a(cst,kv ,t) and x(jip ,cst,t) as described in the overall optimization output. This
leads to a significantly reduced computational effort for realizing the optimization approach and
also creates containers that perfectly correspond to the actual demand of the scheduled service
invocations. The highly flexible resulting system structure is further discussed in Chapter 5.

92

4.5 Working Example Execution

To facilitate the understanding of the presented MILP optimization approach discussed in Sec-
tion 4.4, in this section we demonstrate how the solution performs on the simplified working
example scenario presented in Section 4.3.

4.5.1 Execution of the Process Requests of the Working Example

We explain the main functionalities and decisions of our BPMS for realizing a self-adaptive auto-
scaling system for the execution of elastic processes in containerized cloud environments, by
illustrating how the system behaves over time for executing the incoming process requests from
Table 4.9 which are composed of service steps of different service types with certain computa-
tional requirements as detailed in Table 4.7, while using the available computational resources
as described in Subsection 4.3.3.

For executing incoming process requests, the BPMS has to take all the details summarized
in Section 4.3 into account. In addition to that, the startup times of VMs and the time to pull
new Docker images on running machines have to be considered. In the following example, we
assume a general VM startup time of two minutes and a container image pull time of 30 sec.
Once a container image exists on a VM we assume a negligible container startup time of very
few seconds and will not consider this in the further illustration of the execution of the ongoing
example.

Our designed BPMS prioritizes the scheduling and execution of process invocations depend-
ing on the corresponding process deadlines. To accomplish this, our system uses a worst-case
analysis to estimate the priority of the next process steps. This means for every step that has to
be executed within a process instance, we consider the makespan of the process step and addi-
tionally, assume that a new VM has to be leased and the corresponding container image has to
be pulled on the new machine for executing the step. Therefore, for each process step we also
consider the VM startup time and container pull time when calculating the latest time a process
step can be scheduled to still meet its deadline.

When looking at the incoming process requests from Table 4.9, we can see that with a worst-
case analysis the process instances P1.1, PN.1, P3.2, and PN.2 have a very strict deadline and
need to be scheduled for execution as soon as they arrive, so they do not violate their deadline
constraints. On the other side, process instance P3.1 has a very lenient deadline and the execution
of the first process step P3.1.B can be postponed for a rather long time to still meet the process
deadline. To facilitate the explanation of scheduling decisions Figure 4.3 shows all incoming
process requests with all process steps and the scheduling deadlines when performing a worst-
case analysis for each process step.

In the following Figures 4.4 to 4.16, the next process steps of process requests that can
be scheduled as soon as their predecessors are finished are outlined by a bold red frame (j∗ip).
Already scheduled but not yet running steps are outlined by a bold black frame (∈ jrunip

). Already
finished process steps and process steps that are currently being executed have a white filling in
the overviews of running process requests. Process steps that are being executed are furthermore
outlined by a bold blue frame (∈ jrunip

) and can be found in containers (cst) on VMs (kv) in the
right part of Figures 4.4 to 4.16, in which the currently leased and running VMs are illustrated.

93

Scheduling Deadlines for Process Steps

P1.1
P1.1.A

t=0

P1.1.B
t=3

P1.1.C
t=7.5

P1.1.D
t=7

Start Goal

deadline: t = 11

P3.1 P3.1.B
t=87

P3.1.C
t=91.5

P3.1.E
t=95Start Goal

PN.1
PN.1.A

t=0
PN.1.B

t=3
PN.1.C
t=7.5Start Goal

deadline: t = 100

deadline: t = 11

P3.2
P3.2.B
t=5.5

P3.2.C
t=10

P3.2.E
t=13.5Start Goal

PN.2
PN.2.A
t=5.5

PN.2.B
t=8.5

PN.2.C
t=13Start Goal

deadline: t = 18.5

deadline: t = 16.5

Figure 4.3: Scheduling Deadlines for Process Steps

VM instances that have been requested but are still booting up, are indicated by a dotted line.
The figures also show the already pulled Docker images (st) on the top right corner for each VM
instance. Docker images that are currently being pulled are also indicated by a dotted line and
shaded in gray.

System Landscape at t = 0

We assume to start with an empty system landscape, with no running process instances and no
leased VM resources. At t = 0, the system receives three new process requests as presented in
Table 4.9 and illustrated in Figure 4.3. The process landscape after all decisions made at t = 0
is depicted in Figure 4.4. To begin with, the system analyzes the first executable process steps
of each received process instance. The requests P1.1 and PN.1 have strict deadlines and require
an immediate scheduling and start of execution for their first process steps P1.1.A and PN.1.A
when performing a worst-case analysis, while P3.1 has a lenient deadline and the execution of
P3.1.B can be postponed into the future. Therefore, the system decides to schedule the process
steps P1.1.A and PN.1.A in an isolated container of image type A on the cheapest available
computational resource VM4.1, which is large enough for both process requests. At t = 0 the
system requests to lease VM4.1, which will only be up and running at t = 2, and leased until the
end of one BTU at t = 7. The execution of the process requests can only be started at t = 2.5
when the image A which allows deploying containers that can execute service invocations of
service type A is pulled on VM4.1.

System Landscape at t = 2.5

At t = 2.5 the system starts the execution of the two scheduled process steps P1.1.A and PN.1.A
on the new container created from image A on VM4.1 as shown in Figure 4.5. Both process steps
will take 30 seconds to be finished.

94

Running Process Requests

P1.1

P1.1.A
P1.1.B P1.1.C

P1.1.D
Start Goal

deadline: t = 11

P3.1
P3.1.B P3.1.C P3.1.EStart Goal

PN.1
PN.1.A PN.1.B PN.1.CStart Goal

deadline: t = 100

deadline: t = 11

Leased VMs, deployed
Containers, running Steps

VM 4.1

Figure 4.4: System Landscape at t = 0

Leased VMs, deployed
Containers, running Steps

Running Process Requests

P1.1

P1.1.A
P1.1.B P1.1.C

P1.1.D
Start Goal

deadline: t = 11

P3.1
P3.1.B P3.1.C P3.1.EStart Goal

PN.1
PN.1.A PN.1.B PN.1.CStart Goal

deadline: t = 100

deadline: t = 11

VM 4.1

PN.1.A

P1.1.A

Img A

Figure 4.5: System Landscape at t = 2.5

System Landscape at t = 3

At t = 3, the execution of P1.1.A and PN.1.A is completed and the system can schedule the
subsequent steps of P1.1 and PN.1 as can be seen in Figure 4.6. When making a scheduling
decision, the system considers all next steps (indicated by a red frame) that may be scheduled
and do not have a preceding step that is still under execution (indicated by a blue frame). Due
to the worst-case analysis, the system needs to schedule the process steps P1.1.B and PN.1.B at
this stage. As VM 4.1 offers enough space for executing all next steps of service type B and no
more process steps of service type A are needed, the system shuts down the running container
of type A on VM4.1 and downloads the image for starting containers of service type B. While
doing so, the already existing image for containers of service type A remains on VM4.1. Note
that the system decides to also schedule the step P3.1.B (indicated by a thick black frame),
although the deadline is in the distant future, as enough computational resources are available
for the execution of the step without incurring any extra costs and while optimizing the systems
utilization. Furthermore, the system decides to postpone the scheduling of P1.1.D, as there are
currently not enough computational resources available for its execution.

95

Leased VMs, deployed
Containers, running Steps

Running Process Requests

P1.1

P1.1.A
P1.1.B P1.1.C

P1.1.D
Start Goal

deadline: t = 11

P3.1
P3.1.B P3.1.C P3.1.EStart Goal

PN.1
PN.1.A PN.1.B PN.1.CStart Goal

deadline: t = 100

deadline: t = 11

VM 4.1 Img A
Img B

Figure 4.6: System Landscape at t = 3

Leased VMs, deployed
Containers, running Steps

Running Process Requests

P1.1

P1.1.A
P1.1.B P1.1.C

P1.1.D
Start Goal

deadline: t = 11

P3.1
P3.1.B P3.1.C P3.1.EStart Goal

PN.1
PN.1.A PN.1.B PN.1.CStart Goal

deadline: t = 100

deadline: t = 11

Process Requests

P1.1

Step A
Step B Step C

Step D
Start Goal

deadline: t = 11

P3.1
Step B Step C Step EStart Goal

PN.1
Step A Step B Step CStart Goal

deadline: t = 100

deadline: t = 11

Leased VMs

VM 4.1

PN.1.B

P1.1.B

Img A
Img B

P3.1.B

Figure 4.7: System Landscape at t = 3.5

System Landscape at t = 3.5

At t = 3.5, the image for containers of type B is fully downloaded on VM4.1 and the system
starts with the execution of the three service invocations of type B as shown in Figure 4.7. At
this stage, 90% of the available CPU resources of VM4.1 are being utilized.

System Landscape at t = 5.5

At t = 5.5, the system receives two new process requests as shown in Figure 4.8. Due to the
worst-case analysis, the first process steps P3.2.B and PN.2.A of these new process requests
need to be scheduled immediately.

Simultaneously, all previously running service invocations of service type B on VM4.1 are
finished. Although the subsequent process steps P1.1.C, P3.1.C, and PN.1.C of the correspond-
ing process instances may now be scheduled by the system, their scheduling is postponed as
there are not enough computational resources available so the scheduling would incur additional
leasing costs and the deadline allows for a later scheduling.

VM4.1 offers enough computational resources for executing the time-critical process steps
P3.2.B and PN.2.A. The system downsizes the currently running container of type B and starts
a new container of type A from the already existing image on VM4.1.

96

Leased VMs, deployed
Containers, running Steps

Running Process Requests

P1.1

P1.1.A
P1.1.B P1.1.C

P1.1.D
Start Goal

deadline: t = 11

P3.1
P3.1.B P3.1.C P3.1.EStart Goal

PN.1
PN.1.A PN.1.B PN.1.CStart Goal

deadline: t = 100

deadline: t = 11

VM 4.1 Img A

P3.2
P3.2.B P3.2.C P3.2.EStart Goal

PN.2
PN.2.A PN.2.B PN.2.CStart Goal

deadline: t = 18.5

deadline: t = 16.5

PN.2.A

Img B

P3.2.B

Figure 4.8: System Landscape at t = 5.5

Leased VMs, deployed
Containers, running Steps

Running Process Requests

P1.1

P1.1.A
P1.1.B P1.1.C

P1.1.D
Start Goal

deadline: t = 11

P3.1
P3.1.B P3.1.C P3.1.EStart Goal

PN.1
PN.1.A PN.1.B PN.1.CStart Goal

deadline: t = 100

deadline: t = 11

VM 4.1 Img A

P3.2
P3.2.B P3.2.C P3.2.EStart Goal

PN.2
PN.2.A PN.2.B PN.2.CStart Goal

deadline: t = 18.5

deadline: t = 16.5

Img B

P3.2.B

Img D

Figure 4.9: System Landscape at t = 6

As the remaining leasing duration of VM4.1 is only 1.5 more minutes and the execution of
P3.2.B requires two minutes, the leasing duration of VM4.1 is extended by one more BTU and
the process steps are both scheduled and executed on VM4.1.

System Landscape at t = 6

At t = 6, the process step PN.2.A is finished and the next process step PN.2.B can be scheduled.
Because no further process steps of type A need to be scheduled, the corresponding container on

97

Leased VMs, deployed
Containers, running Steps

Running Process Requests

P1.1

P1.1.A
P1.1.B P1.1.C

P1.1.D
Start Goal

deadline: t = 11

P3.1
P3.1.B P3.1.C P3.1.EStart Goal

PN.1
PN.1.A PN.1.B PN.1.CStart Goal

deadline: t = 100

deadline: t = 11

VM 4.1 Img A

P3.2
P3.2.B P3.2.C P3.2.EStart Goal

PN.2
PN.2.A PN.2.B PN.2.CStart Goal

deadline: t = 18.5

deadline: t = 16.5

P3.2.B

P1.1.D

Img B
Img D

Figure 4.10: System Landscape at t = 6.5

VM4.1 is closed as shown in Figure 4.9. All next steps that may be scheduled can currently also
be postponed. The system only offers enough resources for the execution of P1.1.D or PN.2.B.
As the deadline of P1.1.D is closer, the system schedules the execution of P1.1.D on VM4.1 and
initiates pulling the image for creating containers of type D on VM4.1.

System Landscape at t = 6.5

At t = 6.5, the image for creating containers of type D is fully pulled and the scheduled process
step P1.1.D is started on a corresponding container as shown in Figure 4.10.

System Landscape at t = 7.5

At t = 7.5, the execution of P3.2.B finishes. The freed up resources on VM4.1 only allow to
schedule and start the execution of PN.2.B as shown in Figure 4.11.

According to a worst-case analysis, the scheduling of P1.1.C and PN.1.C needs to be per-
formed now, as a further delay might lead to a deadline violation. The system schedules the
process steps on VM6.1 as it leads to the smallest additional costs while offering the needed
computational resources for both process steps. As VM6.1 offers more resources than needed
by the two process steps, the system additionally schedules P3.2.C on the free resources. At this
stage, the system initiates leasing the required VM6.1.

System Landscape at t = 8

At t = 8, the execution of P1.1.D finishes and the corresponding container is shut down.

98

Leased VMs, deployed Containers, running
Steps

Running Process Requests

P1.1

P1.1.A
P1.1.B P1.1.C

P1.1.D
Start Goal

deadline: t = 11

P3.1
P3.1.B P3.1.C P3.1.EStart Goal

PN.1
PN.1.A PN.1.B PN.1.CStart Goal

deadline: t = 100

deadline: t = 11

VM 4.1 Img A

P3.2
P3.2.B P3.2.C P3.2.EStart Goal

PN.2
PN.2.A PN.2.B PN.2.CStart Goal

deadline: t = 18.5

deadline: t = 16.5

PN.2.B

P1.1.D

Img B
Img D

VM 6.1

Figure 4.11: System Landscape at t = 7.5

Leased VMs, deployed Containers, running
Steps

Running Process Requests

P1.1

P1.1.A
P1.1.B P1.1.C

P1.1.D
Start Goal

deadline: t = 11

P3.1
P3.1.B P3.1.C P3.1.EStart Goal

PN.1
PN.1.A PN.1.B PN.1.CStart Goal

deadline: t = 100

deadline: t = 11

VM 4.1 Img A

P3.2
P3.2.B P3.2.C P3.2.EStart Goal

PN.2
PN.2.A PN.2.B PN.2.CStart Goal

deadline: t = 18.5

deadline: t = 16.5

Img B
Img D

VM 6.1 Img C

Figure 4.12: System Landscape at t = 9.5

System Landscape at t = 9.5

At t = 9.5, VM6.1 has fully booted up and is running, so the system starts pulling the required
image for deploying containers of type C on the VM as shown in Figure 4.12. Also, the execution
of PN.2.B finishes and the corresponding container is shut down.

System Landscape at t = 10

At t = 10, the image for deploying type C containers is pulled on VM6.1, so the system starts a
container large enough for executing the three scheduled process steps as shown in Figure 4.13.

99

Leased VMs, deployed Containers, running
Steps

Running Process Requests

P1.1

P1.1.A
P1.1.B P1.1.C

P1.1.D
Start Goal

deadline: t = 11

P3.1
P3.1.B P3.1.C P3.1.EStart Goal

PN.1
PN.1.A PN.1.B PN.1.CStart Goal

deadline: t = 100

deadline: t = 11

VM 4.1 Img A

P3.2
P3.2.B P3.2.C P3.2.EStart Goal

PN.2
PN.2.A PN.2.B PN.2.CStart Goal

deadline: t = 18.5

deadline: t = 16.5

Img B
Img D

VM 6.1 Img C

P1.1.C PN.1.C

P3.2.C

Figure 4.13: System Landscape at t = 10

Leased VMs, deployed Containers, running
Steps

Running Process Requests

P3.1
P3.1.B P3.1.C P3.1.EStart Goal

deadline: t = 100
VM 4.1 Img A

P3.2
P3.2.B P3.2.C P3.2.EStart Goal

PN.2
PN.2.A PN.2.B PN.2.CStart Goal

deadline: t = 18.5

deadline: t = 16.5

Img B
Img D

VM 6.1 Img C

P3.1.C PN.2.C

Img E

Figure 4.14: System Landscape at t = 11

System Landscape at t = 11

At t = 11, the execution of P1.1.C, PN.1.C and P3.2.C finishes and the corresponding process
instances P1.1 and PN.1 also finish in time. The system schedules and starts the execution of all
next process steps that can be scheduled, as VM6.1 offers enough computational resources. The
execution of P3.1.C and PN.1.C is directly started on the resized container of type C, while for
executing process step P3.2.E the system initiates pulling the image for creating a corresponding
container of type E, as shown in Figure 4.14.

100

Leased VMs, deployed Containers, running
Steps

Running Process Requests

P3.1
P3.1.B P3.1.C P3.1.EStart Goal

deadline: t = 100
VM 4.1 Img A

P3.2
P3.2.B P3.2.C P3.2.EStart Goal

PN.2
PN.2.A PN.2.B PN.2.CStart Goal

deadline: t = 18.5

deadline: t = 16.5

Img B
Img D

VM 6.1 Img C

P3.1.C PN.2.C

Img E

P3.2.E

Figure 4.15: System Landscape at t = 11.5

Leased VMs, deployed
Containers, running Steps

Running Process Requests

P3.1
P3.1.B P3.1.C P3.1.EStart Goal

deadline: t = 100

P3.2
P3.2.B P3.2.C P3.2.EStart Goal

deadline: t = 18.5

VM 6.1 Img C

P3.2.E P3.1.E

Img E

Figure 4.16: System Landscape at t = 12

System Landscape at t = 11.5

At t = 11.5, the image for starting containers of type E is fully pulled on VM6.1 and the system
starts the execution of the scheduled process step P3.2.E as shown in Figure 4.15.

System Landscape at t = 12

At t = 12, the executions of P3.1.C and PN.2.C end and the process instance PN.2 is finished in
time. The system closes the container of type C and schedules the execution of the next process
step P3.1.E on the resized container instance of type E on VM6.1 as shown in Figure 4.16. At
the same time, VM4.1 is released as it reached the end of its second BTU.

101

Leased VMs, deployed
Containers, running Steps

VM 1.1 Img A

PX.Y.B
Img B

VM 1.2 Img A

PX.Z.B
Img B

remaining leasing
duration: 1

remaining leasing
duration: 0.75

Figure 4.17: System Landscape at t = t0

System Landscape at t = 14

At t = 14, the execution of process step P3.2.E ends and the process instance P3.2 finishes in
time.

System Landscape at t = 14.5

At t = 14.5, the execution of process step P3.1.E ends and the process instance P3.1 finishes
in time. The corresponding container is closed and as VM6.1 reached the end of its BTU it is
released.

Now the system landscape has no leased computational resources and no running process
instance.

Evaluation

We provide an evaluation and a more in depth discussion of the execution of our working exam-
ple in Chapter 6.

4.5.2 Further Scenario to Explain Term 4 of the Objective Function

To clarify the reasoning behind Term 4 of objective function 4.1 that tries to maximize the future
resource supply of already leased VM instances, we demonstrate a short scenario independent
of the remaining presented working example. We start with an initial system structure at time t
which is in a state as shown in Figure 4.17. The shown running steps of type B are assumed to
be finished simultaneously at time t = t0 + 0.75.

At t = t0+0.1, our system needs to initiate the invocation of a process step PX.Y.A of type A
that has a makespan of 30 seconds. As the needed container for this process step is deployed on
both running VM instances VM1.1 and VM1.2, the invocation of process step PX.Y.A would be
finished until t = t0 + 0.6, no matter on which VM instance we were to schedule the step. With
the current system knowledge there would be no cost implications for scheduling the process

102

step on VM1.1 or VM1.2. Due to Term 4 of the objective function, which prefers scheduling
process steps on VM instances that have a shorter remaining leasing duration, the system will
prefer to schedule the process step on VM1.1.

We assume another incoming process request PX.Z.A at t = t0 + 0.5. This process request
can also be immediately scheduled on VM1.2, as it still offers enough resources and a long
enough remaining execution duration.

If we had made a decision against Term 4 of our optimization model, to schedule PX.Y.A on
VM1.2 at time t = 0.1, at t = 0.5 we would face the situation of having a nearly fully utilized
VM1.2 that can not process the invocation of PX.Z.A and also having VM1.1 that offers enough
resources, but does not have a long enough remaining leasing duration. In this case, we would be
forced to lease VM1.1 for another BTU and pay the associated leasing costs, such as to schedule
the invocation of PX.Z.A.

This shows the reasoning and importance of Term 4, which can lead to lower costs in future
optimization rounds.

103

CHAPTER 5
Implementation

“Genius is one percent inspiration, ninety nine percent perspiration.”

– Thomas Edison

“A person who never made a mistake never tried anything new.”

– Albert Einstein

This chapter discusses the implementation of the approach presented in Chapter 4. First,
we introduce the overall system structure and components of the designed BPMS. Second, we
explain the realization of the optimization model as discussed in Section 4.4, differentiating
between the reduced optimization model including corresponding implementation approaches,
and the container-based scheduling algorithm extracted from the reduced optimization solution.
Finally, we present our extension that allows the simulation of process executions while incor-
porating a time discretization model.

5.1 System Overview

The overall system architecture of our BPMS prototype is depicted in Figure 5.1. Clients can
send process requests to the BPMS which schedules the process steps and allocates resources
according to the optimization model presented in Section 4.4. Among the main responsibilities
of the BPMS are the definition and execution of the task-scheduling and resource allocation
plan, which defines (1) the leasing and releasing of backend VM instances, (2) the deployment
of containers on the leased VMs, and (3) the invocation of process steps on the deployed contain-
ers. We extended and reconstructed the research prototype ViePEP [137] to offer the discussed
functionalities. In the following, we explain the implemented solution for the main system com-
ponents.

105

Business Process Request

API
Step A

Step B

Step D
Step EStart Goal

SLA
Client

BPMS VM
Process
Manager

Reasoner

Model
Optimizer

Optimization
Result

Transformer

Data
Storage

VM Action
Executor

Service
Executor

Docker
Controller

Monitoring
Controller

Backend VMs

Docker
Registry

Virtual Machine N

Container
A.N

Container
E.N

Container
N.N

Img A
Img B

Img N

.

.

.

...

Docker
Engine

Img E

Monitoring
Engine

Virtual Machine 2

Container
A.2

Container
B.2

Container
N.2

Img A
Img B

Img N

.

.

.

...

Docker
Engine

Img D

Monitoring
Engine

Virtual Machine 1

Container
A.1

Container
D.1

Container
N.1

Img A
Img B

Img N

.

.

.

...

Docker
Engine

Img D

Monitoring
Engine

.
.

.

Figure 5.1: System Architecture Overview

5.1.1 Workflow Definition

Clients can choose from different process models and create multiple process instances com-
posed of different services. Process execution requests with execution deadline constraints and
penalty cost agreements are sent to the BPMS system. The BPMS provides a REST Applica-
tion Programming Interface (API) that is called from Java using an HTTP client that sends the
defined process instances as XML objects.

5.1.2 Process Manager

The process manager component is part of the BPMS and provides the REST API that receives
the incoming process requests, transforms the XML objects into Java objects representing the
complex elastic processes to be instantiated, and loads all process information into the data stor-
age. This component is responsible for launching the reasoner whenever new process requests
arrive or single process steps of process instances that are being executed are finished.

5.1.3 Data Storage

We make use of an in-memory caching system for a fast application performance. Details about
finished workflow instances are persisted in a MySQL database.

106

Process Manager Reasoner Executor

transform process
requests

receive process
requests

update data storage

set
nextOptimizeTime

to current time

solve optimization
problem

transform
optimization result

lease/release VM
instances

set nextOptimizeTime
to calculated t+1

define scheduling
and allocation plan

deploy/stop/resize
Docker containers

start service
invocations

finish step

wait until
currentTime ≥

nextOptimizeTime

[more running
steps]

[no more
running
steps]

Figure 5.2: Triggering the Reasoner

5.1.4 Triggering the Reasoner

The Reasoner Component that calculates the optimized task-scheduling and resource allocation
plan can be triggered by different events as shown in the UML activity diagram in Figure 5.2.

• When the process manager receives new requests, the reasoner is triggered to calculate a
scheduling plan for the first schedulable process steps of the incoming requests. This is
achieved by setting the nextOptimizeT ime to the current time. Previously schedulable
but postponed steps are also considered in the scheduling decision.

• Whenever the execution of a process step is finished and leased resources are freed up,
the reasoner is triggered to calculate further scheduling decisions for schedulable process
steps. Such steps can either be the subsequent steps of the just finished process step or
previously postponed process steps that have a distant deadline.

• Additionally, the reasoner component calculates the next best time to trigger the optimiza-
tion during an optimization round based on the information available at that time. The
calculated next optimization time τt+1 is especially necessary for finding the best time to
calculate a scheduling for process steps that can already be executed in τt but for which
the scheduling decision and execution was postponed into the future. It should be noted
that if the nextOptimizeT ime is set to an earlier point in time by subsequent actions, the
calculated decision of starting the optimization at τt+1 is overwritten and a new τt+2 will
be calculated during the newly triggered optimization round.

107

5.1.5 Reasoner Component

The reasoner component is responsible for calculating the optimized task-scheduling and re-
source allocation plan and is mainly split into two components, as can be seen in Figure 5.1.
The model optimizer solves a reduced optimization model that schedules steps on VM instances
while considering properties of the containerized architecture. The result of the model optimizer
is transformed into a container-based resource allocation and scheduling plan by the optimiza-
tion result transformer component. In Section 5.2 we present our implemented solution of the
model optimizer and the reduced optimization problem in more detail. We define the reduced
optimization problem using MILP and calculate a solution by utilizing CPLEX as our MILP
solver. The optimization component can be implemented using different approaches, therefore,
we also discuss an alternative evolutionary-based implementation approach for the reduced prob-
lem. In Section 5.3 we explain the implementation of the optimization result transformer and
the creation of the container-based execution plan.

5.1.6 Process Execution

As soon as the reasoner creates the container based resource allocation and scheduling plan, the
BPMS needs to execute it. In Figure 5.3 we depict the execution sequence of incoming process
requests. The calculated execution plan that indicates which steps to place on which container
instance and which container instance to place on which VM instance is handed over to the
Execution Controller which then generates maps of VMs and their deployed containers, as well
as the scheduled service invocations per container instance. The Execution Controller is also
responsible for setting the container configuration, including the minimum guaranteed resources
available to single container instances as to fulfill the scheduled service invocations. The tasks
of the Execution Controller can be regarded as the last transformation step before the actual
execution is initiated. We will go into more detail about the optimization and transformation
steps in the subsequent Sections 5.2 and 5.3. Once the scheduling plan is fully transformed, the
Execution Controller initiates the lease of all VM instances that are not yet leased and running,
as defined by the scheduling plan. Once a VM instance is up and running, the further scheduling
of containers and service invocations can be initiated.

VM Action Executor

The VM Action Executor leases new VM instances or extends the lease of existing instances
according to the scheduling plan. The component is also responsible for releasing VM instances
at the end of their BTU. Furthermore, it initiates the deployment of the needed Docker containers
with the needed configuration by initating the Docker Controller.

Docker Controller

The Docker Controller pulls the required Docker images from the Docker registry onto the run-
ning VM instances as required and makes use of the Docker Engine on the running VM instances
to start, stop or resize container instances such that they correspond to the configurations as de-
fined by the scheduling plan.

108

Process
Manager Reasoner Execution

Controller
User

sd Process Execution

1: send
process
requests

Data
Storage

3: update data
storage

2: transform
requests

4: nextOptimizeTime =
currentTime

[while process requests have
unfinished steps]

loop

5: solve optimization problem,
transform optimization result and

set nextOptimizeTime to t+1

loop [while true]

opt [currentTime ≥ nextOptimizeTime]

VM Action
Executor

Docker
Controller

Service
Executor

6: initiate
scheduling

7.1: lease VM

loop [for each VM in scheduling plan]

opt [VM not leased]

loop

8: initiate
scheduling

[for each container scheduled on VM]
9: container
deployment

plan

7.2: return
running VM

11: invoke
service

10: adjust
containers

loop [for each step scheduled
on container]

12: execute
process step

13: notify about finished process step

15: nextOptimizeTime =
currentTime

14: update
data storage

synchronous call

asynchronous call

Figure 5.3: Execute Requests

Service Executor

Once a container is up and running according to the configuration, the scheduled process steps
can be invoked and executed by the Service Executor. After each service invocation, the Service
Executor notifies the Process Manager Component, so it can update the Data Storage and trigger
a new optimization round by setting the nextOptimizeT ime variable to the current time.

109

5.2 Implementation of the Reduced Optimization Model

In Section 4.4, we introduced the general optimization model for task-scheduling and resource
allocation of elastic processes in container-based cloud environments using MILP. We also dis-
cussed advantages of realizing the scheduling approach by making use of a reduced optimization
model that first schedules tasks on VM instances and afterwards computes a corresponding con-
tainer placement.

In this section, we introduce two possible implementations for the reduced model. First, we
present a MILP-based solution that can be solved using a MILP solver. Second, we discuss an-
other possible implementation of the reduced model using a genetic algorithm-based approach.
In the course of this thesis, we only implement the MILP-based solution. The presented so-
lutions correspond to different possible implementations of the optimization component of our
BPMS as shown in our system’s architecture in Figure 5.1.

The solution of the reduced model, as described in this section, is transformed to the schedul-
ing plan as presented in Section 5.3. The result of the two reasoning steps, meaning, the solution
to a reduced model, and the transformation step, generate a solution for the full optimization
problem as presented in 5.2.1, which corresponds to the solution for one optimization round as
offered by the reasoner component and executed by the respective execution components.

5.2.1 Mathematical Programming Based Implementation

This work focuses on extending existing MILP-based exact optimization approaches for schedul-
ing and resource allocation of elastic processes on hypervisor-based cloud infrastructures [63]
and single applications in Docker-based cloud environments [65]. To achieve the functionality
described in Section 4.4 and to overcome the discussed limitations that arise when directly solv-
ing the general optimization model using a MILP solver, we introduce a reduced MILP problem,
making use of the assumption that only one container of a certain service type shall be deployed
on a VM instance. This assumption has already been made by related work [63]. The reduced
MILP problem directly schedules process steps on VM instances, while considering the cur-
rent information about the deployed containers. The details about the container instances are
afterwards added to the scheduling plan during the transformation step. Generally speaking, the
transformation will make sure that on each VM instance, on which process steps of a certain ser-
vice type are scheduled, one container instance of the same service type will be deployed, which
guarantees the exact resources, as needed by the scheduled service invocations on the VM.

Main Modifications of the General Model to the Reduced Model

In the following, we explain how we transform the general optimization model from Section 4.4
to a reduced model that directly schedules process steps on VM instances. The resulting reduced
optimization Model can be found in Appendix A. We exchange the previous decision variable
x(jip ,cst,t), which referred to scheduling of process steps on certain container instances, with the
variable x(jip ,kv ,t), which refers to the direct scheduling of process steps on VM instances. We
also eliminate all decisions for variables a(cst,kv ,t) which describe the container placement.

110

Reduced Objective Function

The terms of the reduced objective function remain the same for Term 1, Term 2, and Term 5 as
described for the general objective function in Equation 4.1.

The purpose behind Term 3 as presented in Equation 4.1 remains the same, meaning we
still want to minimize the deployment time of containers, but instead of directly considering the
scheduling of container instances, we consider the placement of service steps on the VM instance
and use the service type of the scheduled process steps to calculate the potential deployment time
for container instances that are generated during the transformation step. The new term has the
form

∑
p∈P

∑
ip∈Ip

∑
j∗ip∈Jip

∑
v∈V

∑
kv∈Kv

(
ωz ∗ (1− z(stj ,kv ,t)) ∗ x(jip ,kv ,t)

)
. Again, as the

term is minimized, the system prefers choosing VM instances for assigning service invocations
where the cache for deploying the needed container instance already exists.

Also, Term 4 as presented in Equation 4.1 is modified to serve the same purpose. To max-
imize the future resource supply of already leased VM instances, we now give a preference to
directly scheduling service invocations on VMs with a shorter remaining leasing duration. The
new term has the form

∑
p∈P

∑
ip∈Ip

∑
j∗ip∈Jip

∑
v∈V

∑
kv∈Kv

(
ωd ∗ d(kv ,t) ∗ x(jip ,kv ,t)

)
.

Term 7 as presented in Equation 4.1 is only slightly modified to serve the same purpose,
meaning it still aims at maximizing the importance of scheduled service invocations. Instead of
considering the variable x(jip ,cstj ,t) we now consider the variable x(jip ,kv ,t). The new term has

the form
∑

p∈P
∑

ip∈Ip
∑

j∗ip∈Jip
∑

v∈V
∑

kv∈Kv

(
ωDL ∗ (DLj∗ip

− τt) ∗ x(jip ,kv ,t)
)
.

Term 6 as presented in Equation 4.1 is eliminated from the reduced model, as the sum of un-
used container resources is minimized in the transformation step, where containers are assigned
just as many resources, as the scheduled service invocations actually require.

Reduced Problem Constraints

Many of the constraints needed for the reduced objective function remain the same or are only
slightly modified, compared to the general MILP problem definition, while a large number of
constraints can now be eliminated.

Constraints and Equations 4.2 to 4.12 remain the same, with slight modifications of Equa-
tions 4.6 to 4.10, where we simply need to exchange the decision variable x(jip ,cstj ,t) by the now
used decision variable x(jip ,kv ,t). Equation 4.10 therefore now needs to build the sum over VM
instances instead of over all container instances and the resulting equation has the form as shown
in Equation A.10 in Appendix A.

Constraints 4.13 and 4.14 need to be modified such that they consider for each VM instance
kv the sum of CPU and RAM resources required by all service invocations that either already
run or are scheduled to run in any container on the VM instance in τt. These resources need to
be smaller or equal to the resource supply in terms of CPU (sCv) and RAM (sRv) that is offered
by VM instances of type v. To achieve this, we simply need to exchange the decision variable
x(jip ,cstj ,t) by the now used decision variable x(jip ,kv ,t) on the left side of the Constraints 4.13
and 4.14 and exchange the offered resources of the individually considered container instances
(sCcstj and sRcstj) by the offered VM resources (sCv and sRv) on the right side of the Constraints.
These changes are expressed by Equation A.13 and A.14 as shown in Appendix A.

111

Constraints 4.15 to 4.18 from the general optimization problem can now be eliminated, as we
do not consider the container instances in the reduced model and the fulfillment of the constraints
is later on assured by the transformation step.

Constraints 4.19 and 4.20 need to be modified such that they define for each VM instance
v ∈ V, kv ∈ Kv the remaining free capacities in terms of CPU and RAM that are not directly
allocated to service instances (which are later packed into container instances). The resulting
change is indicated by Constraint A.15 and A.16 in Appendix A.

Constraints 4.21 and 4.22 from the general optimization problem remain the same also for
the reduced model, as we still need the definition of the same helper variables.

Constraint 4.23 is modified such that it expresses that a VM instance kv will be leased or is
running if service invocations are to be placed (within later defined containers) on it. The change
is indicated by Constraint A.19 in Appendix A.

Constraints 4.24 to 4.29 can all be eliminated, as the details about container instances are
not considered in the reduced model and the fulfillment of the constraints is again assured later
by the transformation step.

Constraint 4.30 is only slightly changed in the reduced model, as we again do not need to
consider information about container instances and can remove the decision variable a(cst,kv ,t)
from the constraint. This change of Constraint 4.30 also eliminates Constraints 4.31 to 4.33 as
we no longer need to perform the linearization. The simple change of Constraint 4.30 is shown
in Constraint A.20 in Appendix A.

Constraint 4.34 remains the same, we only need to remove the container instance cst from
the indices, as we do not consider it. Also, Constraint 4.35 remains unchanged.

Constraint 4.36 needs to be changed such that it demands each service invocation to be
scheduled on only one VM instance instead of one container instance. The resulting change is
expressed in Constraint A.23 in Appendix A.

Constraint 4.37 can again be fully eliminated, as we do not need to consider the container
details in the reduced optimization model.

Constraint 4.38 can be changed such that the steps currently running on a VM instance
remain on the VM instance (x(jrunip

,kv ,t) = 1). The related Constraint 4.39 can again be removed
for the reduced model.

Constraint 4.40 only needs to be changed as to consider the variable x(jip ,kv ,t) instead of
the container-based variable x(jip ,cst,t). Constraint 4.41 is eliminated as the decision variable
a(cst,kv ,t) is no longer considered. Constraint 4.42 to 4.45 remain the same and Constraint 4.46
and 4.47 are eliminated as the helper variables are not used in the reduced model.

112

Solving the problem

The reduced optimization problem as fully defined in Appendix A is implemented using Java
ILP1, which provides a Java interface to MILP Solvers. To solve the problem, we utilize IBM
CPLEX2. Compared to the general optimization model, computing an optimal solution to the
reduced model involves a significantly lower computational effort for increasing problem sizes
when using a MILP solver.

A solution to the reduced problem described using MILP can also be modeled and solved
using evolutionary-based algorithms, as we discuss in the following section.

5.2.2 Genetic Algorithm-Based Heuristic

The described problem can be formulated and solved using evolutionary-based algorithms, like,
for example, genetic algorithms. Such algorithms do not guarantee to find an optimal solution,
but, when well designed, they can lead to good solutions in a relatively small amount of time.
Especially for large and complex problems, it is often desirable to accept a good trade off be-
tween the solution quality and the runtime of algorithms. Genetic algorithms can be utilized
as a global search method and are helpful for functions with multiple local optima. Never-
theless, when more specialized algorithms exist for a problem, genetic algorithms may not be
the best optimization tool. In this subsection, we will introduce a possible general design of
a heuristic based on genetic algorithms for solving our task-scheduling and resource allocation
problem. Note, however, that the main focus of this work is on extending existing VM-based ex-
act optimization algorithms for our described purpose of running services in isolated lightweight
container instances. Therefore the evolutionary-based approach will not go into details about the
algorithm configuration and we will not present an according evaluation.

Main components of the genetic algorithm

Genetic algorithms are based on Darwin’s idea of evolution by the principles of natural selection,
which are [110]:

• Variation: A variety of traits is present in the population.

• Selection: A mechanism exists, that selects the “fittest” individuals of a population that
will reproduce and pass their genetic information on to future generations. This principle
is often also known as “survival of the fittest”.

• Heredity: A process exists, by which children inherit genetic properties of their parents.

Figure 5.4 shows the main components of our designed genetic algorithm. The algorithm
starts by initializing a population of possible solutions, evaluates their fitness, performs a selec-
tion and reproduction process with crossover and mutation operations to generate a new popula-
tion, until a fitting solution is found. In the following, we go into the details of every phase and
the necessary steps.

1http://javailp.sourceforge.net/
2http://www-01.ibm.com/software/commerce/optimization/cplex-optimizer/

113

http://javailp.sourceforge.net/
http://www-01.ibm.com/software/commerce/optimization/cplex-optimizer/

Population
4.1 6.1 4.1 6.1 6.1 4.1 1.1 4.1

4.1 4.1 6.1 6.1 4.1 4.1 6.1 6.1

6.1 6.1 4.1 6.1 6.1 4.1 4.1 4.1

.

.

.

Initialize Population

Evaluation

Recombination

Reproduction

Crossover

Mutation

Fitness Value
calculate fitness score for each member
of the population

Fitness Function
apply to each member of the population

Selection
select the fittest members for reproduction (survival of the fittest)

4.1 6.1 4.1 6.1 6.1 4.1 1.1 4.1

6.1 6.1 4.1 6.1 6.1 4.1 4.1 4.1

4.1 6.1 4.1 6.1 6.1 4.1 1.1 4.1 6.1 6.1 4.1 6.1 6.1 4.1 4.1 4.1

4.1 6.1 4.1 6.1 6.1 4.1 4.1 4.1

4.1 6.1 4.1 6.1 6.1 1.2 4.1 4.1

Figure 5.4: Genetic Algorithm Evolution

Population Encoding

Defining the encoding is one of the most important steps when designing a genetic algorithm.
In our case we choose a value encoding, our values being the different leasable VM names, and
the chromosome length corresponding to the number of process steps that may be scheduled
in an optimization round. In other words, each slot in a chromosome as shown in Figure 5.4
corresponds to a process step that may be scheduled during the optimization round, and the
encoding indicates on which VM the process step should be executed. This algorithm has some
similarities to the MILP-based solution we explained in the previous Subsection 5.2.1 and is
based on the same assumptions. Again, this encoding directly decides on which VM to schedule
a process step, but we have to take container-based information into account. The corresponding
containers will afterwards be created such that they can fulfill the designed scheduling. If the
goal is to drop Constraint 4.48 (i.e., allow multiple containers per VM for a single service type),
then the linear value encoding is not sufficient and we suggest using a tree encoding, considering
containers on one level and VMs on another level.

Initialization of a Population

The population needs to be initialized with N different possible chromosomes that correspond
to possible scheduling solutions. The initial population may be created by randomly assigning
any leasable VM instance to the slots. To achieve better performing solutions, the initialization

114

could make sure to only create feasible solution chromosomes, e.g., make sure that not more
process steps than the actual capacity of a VM allows to execute are assigned to a VM instance.

Fitness Function

The fitness function needs to calculate a fitness score for each chromosome in the population. A
fitness score should be high for chromosomes that lead to low scheduling costs and can be cal-
culated by using similar but normalized equations as the ones we use for the objective function
of our reduced optimization problem in Subsection 5.2.1, while leaving out the summation of all
possibilities and only considering one combination as indicated by the chromosome. Values for
the decision variables x(jip ,kv ,t) ∈ {0, 1} of the optimization model can be mapped to our chro-
mosome encoding. The fitness in constrained optimization problems can generally be measured
by a solution’s feasibility and the value of its objective function.

Selection Strategy

The chromosomes with the best fitness scores can be chosen in combination with a probability
function. The chosen chromosomes are used for reproduction and creation of a new population.
In Figure 5.4 we only show the selection of two parents for illustrative reasons, but the selection
strategy, the actual number of needed parents, and the required population size have to be defined
in future work.

Crossover Operation

Different crossover operations may be performed using the selected parents. In Figure 5.4 we
show a simple single point crossover operation, but future work on the topic may also use other
forms of crossover operations, like two-point, uniform, or arithmetic crossovers.

Mutation Operation

After the crossover operation, the new chromosomes can be mutated. The exact mutation algo-
rithm also has to be defined in future work. At this stage, we would design the mutation stage
such that the resulting chromosomes form feasible solutions for our optimization domain.

New Population

At the end of the reproduction algorithms the necessary amount of children have been generated
and combined to a new population, which replace the old population.

Exit Condition

The algorithm is repeated until a good enough solution is found in the population. Generally the
fitness score of the overall population should increase over time. A possible exit condition might
be, that no improvements in the population could be made for a certain number of rounds.

115

5.3 Transformation of the Reduced Model Results for
Container-based Execution

Once a solution for the reduced optimization problem that schedules process steps on VM in-
stances is generated, we need to transform the result and create the final scheduling plan which
also considers the containers for execution. The resulting solution corresponds to the overall
optimization problem as discussed in Section 4.4.

5.3.1 General Transformation of the Reduced Model Solution

The transformation as described in Algorithm 5.1 can generally be applied to the outcome of
any solution approach utilized to solve the reduced optimization problem.

To transform the result of the reduced optimization model to a result for the general opti-
mization problem we need to iterate over all VM instances kv of the reduced scheduling plan
and extract all process steps that are scheduled for execution on a VM instance. For all process
steps jip of the same service type st a container instance cst is defined (line 7) with a configura-
tion that makes sure that the containers minimum resource supply is set to be exactly as large as
the sum of scheduled service invocations of type st on kv (line 13). We can then exchange the
variable x(jip ,kv ,t) from the reduced model solution for the newly introduced variables x(jip ,cst,t)
and a(cst,kvt) which we set to 1 (lines 11, 13). This means, our scheduling plan schedules all
service invocations jip of service type st that were scheduled on kv on the newly defined con-
tainer instance cst, while the container instance cst is scheduled on kv. This transformation,
when starting with an optimal solution for the reduced problem, guarantees an optimal solution
for the full optimization approach as defined in 5.2.1.

Algorithm 5.1: Transformation of the Reduced Solution

1 forall the kv in the reduced scheduling plan do
2 VMServiceMap← new Map(st, List(jip));
3 forall the jip where x(jip ,kv ,t) = 1 do
4 VMServiceMap← (stj , jip)
5 end
6 forall the st in VMServiceMap.getKeys() do
7 cst ← new Container(st);
8 containerSize← 0;
9 forall the jip in VMServiceMap.getValues(st) do

10 containerSize← (containerSize +jip .getNeededResourceSize());
11 x(jip ,cst,t) ← 1;
12 end
13 cst.setSize(containerSize);
14 a(cst,kvt) ← 1;
15 end
16 end

116

5.3.2 Executing the Transformed Scheduling Plan

When executing the transformed scheduling plan, the main tasks of the BPMS are to lease or
release VM instances, to deploy, stop, or adjust containers, and to place the service invocations.
For each task different rules have to be considered.

Executing the VM Plan

Whenever the decision variable y(kv ,t) takes a value > 0 the corresponding VM instance kv
needs to be leased or the lease of the VM instance needs to be extended by more BTUs. If
during an optimization round no containers are scheduled on a VM instance kv, the instance will
still continue to be up and running until the end of its leasing duration.

Executing the Container Plan

The container instances are more flexible than the VM instances. Whenever the reasoner deliv-
ers the solution a(cst,kv ,t) = 1 for a container instance cst, either the deployment of the instance
is initiated by the BPMS if a container of type st is not running on kv at time t, or a currently
running container of type st on kv is potentially resized to match the defined container con-
figuration. If a container instance of service type st on a VM instance kv is currently running
at τt but the scheduling plan does not define a corresponding container scheduling of the form
a(cst,kv ,t) = 1, the running container is immediately shut down to free up resources for other
containers.

Executing the Service Invocation Plan

All scheduled service invocations x(jip ,cst,t) = 1 that are not yet running are invoked by the
BPMS on the defined container cst. As the scheduling plan also contains running steps, the
execution of those service invocations that have already been scheduled for the first time in a
previous optimization round remains unchanged.

5.4 Extending ViePEP

To implement our approach, we extended the research prototype ViePEP [137], such that it offers
both, solely hypervisor-based scheduling as already used for previous work (e.g., [62] [63] [64]),
as well as container-based scheduling as explained in the previous sections of this chapter.

ViePEP was built for the execution of elastic processes in public and private cloud environ-
ments and offers interfaces that allow to lease VMs. Furthermore, ViePEP also offers a simple
simulation mode that provides the functionality to simulate the enactment of elastic processes
on the cloud-based infrastructure.

We extended ViePEP such that it allows the deployment of Docker containers for placing
service invocations. In the following, we explain our extension of ViePEP for allowing to switch
between different optimization modes, changes in considering the time for the optimization
models, and our enhancement of the original simulation mode, to allow for more sophisticated
simulation scenarios by making use of a discrete time model.

117

<<interface>>
ProcessInstancePlacementProblem

BasicProcessInstance
PlacementProblem

DockerProcessInstance
PlacementProblem

DockerLightProcessInstance
PlacementProblem

Result optimize(t : Date)

<<interface>>
ProcessOptimizationResults

BasicProcess
OptimizationResults

DockerProcess
OptimizationResults

DockerLightProcess
OptimizationResults

void processResults(r : Result, t : Date)

Figure 5.5: Interfaces for Different Reasoning and Result Processing Classes

5.4.1 Allowing Different Optimization Modes

Our extension of ViePEP allows an easy exchange of the reasoning component as well as the
processing of the optimization results. ViePEP is implemented using the Spring application
framework3. The class diagram in Figure 5.5 shows the different available implementations for
solving optimization problems and processing the results. We set up the three Spring profiles
‘basic’ for executing the hypervisor-based optimization problem following Hönisch et al. [63],
‘docker’ for utilizing a MILP-based implementation of the full optimization problem without
any further transformation as introduced in Section 4.4, and ‘dockerLight’ for calculating the
reduced optimization model and performing the discussed transformation.

The profiles can easily be changed by setting the active profile using the corresponding
Spring property. The implementation of our approach as discussed in this chapter can be uti-
lized by activating the profile ‘dockerLight’ in the application.properties file (or via
a command line parameter):

spring.profiles.active = dockerLight

Listing 5.1 shows the Spring configuration class for the profile ‘dockerLight’. Similar con-
figurations also exist for the other profiles. The configuration makes sure that when the profile
‘dockerLight’ is activated, Spring initializes and injects the beans corresponding to the chosen
profile. This allows us to change ViePEP’s used optimization approach (i.e., the used implemen-
tation for calculating a solution for an optimization problem and the processing of the optimiza-
tion results) by simply changing the profile.

3https://projects.spring.io/spring-framework/

118

https://projects.spring.io/spring-framework/

Listing 5.1: Using Profiles to Configure the Reasoning� �
1 @Conf igu ra t i on
2 @ P r o f i l e (" d o c k e r L i g h t ")
3 @Proper tySource (v a l u e = " a p p l i c a t i o n−d o c k e r . p r o p e r t i e s ")
4 p u b l i c c l a s s D o c k e r L i g h t O p t i m i z e r C o n f i g u r a t i o n {
5 @Bean
6 p u b l i c P r o c e s s I n s t a n c e P l a c e m e n t P r o b l e m S e r v i c e i n i t i a l i z e P a r a m e t e r s () {
7 re turn new D o c k e r L i g h t P r o c e s s I n s t a n c e P l a c e m e n t P r o b l e m S e r v i c e I m p l () ;
8 }
9 @Bean

10 p u b l i c P r o c e s s O p t i m i z a t i o n R e s u l t s p r o c e s s R e s u l t s () {
11 re turn new D o c k e r L i g h t P r o c e s s O p t i m i z a t i o n R e s u l t s () ;
12 }
13 }� �
5.4.2 Considering the Time in Optimization Models

CPLEX can be numerically sensitive when the difference between the smallest and the largest
variables in the model is rather large [29]. This can lead to the calculation of wrong optimization
results by the solver. In our optimization model, we determine the time at the beginning of an
optimization round τt and try to find the next best time to start the following optimization round
τt+1. The Java implementation of

new Date().getTime();

will deliver the number of milliseconds since January 1, 1970, 00:00:00 GMT (UNIX epoch).
Compared to the other numbers used in the optimization this number is too large and also re-
mains rather large when dividing the outcome by 1,000 and only considering the number of
seconds since the UNIX epoch. To overcome this problem, we calculate with a closer epoch in
our optimization model by using the constant START_EPOCH shown in Listing 5.2 which
captures the number of seconds since the UNIX epoch when our BPMS is started.

Listing 5.2: Capturing the Start of the BPMS as a Start Epoch for Reasoning Calculations� �
1 p u b l i c c l a s s C o n s t a n t s {
2 p u b l i c s t a t i c f i n a l long START_EPOCH = TimeUt i l . now () / 1000 ;
3 }� �

The method call

TimeUtil.now()

will at this point deliver the value of

new Date().getTime();

The class TimeUtil performs the time discretization of our system and we will explain its
functionality in more detail in the following subsection.

119

Our optimization models receive the current time in milliseconds starting from the UNIX
epoch as an input for τt, but immediately transform the time such that only the seconds that have
passed since the start of the BPMS are considered. The transformed time is used as our τt for all
calculations in the optimization model. The transformation is achieved as follows:

tau_t=new Date(((tau_t.getTime()/1000)-START_EPOCH)*1000);

Whenever the optimization model considers other times, for example, the deadline for pro-
cess instances in Constraint A.2, the times need to be adjusted to match the newly introduced
start epoch:

(workflowInstance.getDeadline()/1000)-START_EPOCH;

As the calculated τt+1 is also adjusted to the newly introduced start epoch, after performing
the optimization we need to retransform the calculated start time for the next round to the time
in milliseconds since the UNIX epoch:

tau_t_1=(START_EPOCH+optimize.get("tau_t_1").longValue())*1000;

5.4.3 System Simulation with Time Discretization

We introduce a discrete time model for our system, to facilitate system simulations. The class
TimeUtil is used throughout the BPMS for receiving the current time or performing Thread.sleep(millisec)
operations.

To start the time discretization, the timer has to be activated, e.g., when starting the appli-
cation, by calling startTicking() in TimeUtil, shown in Listing 5.3. The discrete time
will start at the actual current time.

Listing 5.3: TimeUtil for Time Discretization - Start Ticking� �
1 p u b l i c c l a s s T i m e U t i l ex tends Thread {
2 p u b l i c s t a t i c f i n a l AtomicLong TIME = new AtomicLong (−1) ;
3 p u b l i c s t a t i c f i n a l AtomicBoolean RUNNING = new AtomicBoolean () ;
4 [. . .]
5 p u b l i c s t a t i c vo id s t a r t T i c k i n g () {
6 i f (TIME.get () < 0) {
7 TIME.se t (new Date () . g e t T i m e ()) ;
8 }
9 RUNNING.set (t r u e) ;

10 }
11 [. . .]
12 }� �

The discrete Time is incremented as shown in Listing 5.5, according to the adjustable time
ticking speed defined in Listing 5.4. The variable TIME_INCREMENTS_MS indicates the ac-
tual discrete time increment, while the variable SEC_SLEEP_TIME_MS indicates after how
many actually passed real-time milliseconds the time increment should occur. The speed can
be adjusted by using the method setSpeed(speed). Demanding a speed of 1 is equiva-
lent to setting the time ticker to tick in real-time, whereas demanding a speed of 20 sets the

120

time ticker to tick 20 times faster than real-time. When running our BPMS in simulation mode,
which simulates the leasing of VM instances, the placement of Docker containers, and the exe-
cution of service invocations, we set the time ticking speed to 20 for performing the reasoners
task-scheduling and resource allocation plan, but during optimization runs, we demand that the
discrete time ticks in real-time, as to correctly register the fluctuating time needed to solve the
optimization problem.

Listing 5.4: TimeUtil for Time Discretization - Set Speed� �
1 p u b l i c c l a s s T i m e U t i l ex tends Thread {
2 p u b l i c s t a t i c f i n a l long TIME_INCREMENTS_MS = 100 ;
3 p u b l i c s t a t i c f i n a l AtomicLong SEC_SLEEP_TIME_MS = new AtomicLong (1 0) ;
4 [. . .]
5 p u b l i c s t a t i c vo id s e t R e a l T i m e () {
6 s e t S p e e d (1) ;
7 }
8 p u b l i c s t a t i c vo id s e t F a s t T i c k i n g () {
9 s e t S p e e d (2 0) ;

10 }
11 p u b l i c s t a t i c vo id s e t S p e e d (d oub l e speed) {
12 SEC_SLEEP_TIME_MS.set ((long) (TIME_INCREMENTS_MS / speed)) ;
13 }
14 [. . .]
15 }� �

Listing 5.5 shows how the time increment is performed. After each discrete time incre-
ment, all threads waiting for a certain change in the current time are notified. After the time
increment, the timer thread sleeps for SEC_SLEEP_TIME_MS milliseconds before perform-
ing the next time increment. The method doSleepSafe(millisec) performs a real-time
Thread.sleep(millisec) operation.

Listing 5.5: TimeUtil for Time Discretization - Increment Time� �
1 p u b l i c c l a s s T i m e U t i l ex tends Thread {
2 [. . .]
3 @Override
4 p u b l i c vo id run () {
5 [. . .]
6 whi le (t r u e) {
7 i f (RUNNING.get ()) {
8 s y n c h r o n i z e d (TIME) {
9 long d e l t a = TIME_INCREMENTS_MS ;

10 TIME.se t (TIME.get () + d e l t a) ;
11 T I M E . n o t i f y A l l () ;
12 }
13 }
14 d o S l e e p S a f e (SEC_SLEEP_TIME_MS.get ()) ;
15 }
16 }
17 p r i v a t e void d o S l e e p S a f e (long m i l l i s) {
18 t r y {
19 T h r e a d . s l e e p (m i l l i s) ;
20 } ca tch (I n t e r r u p t e d E x c e p t i o n e) {
21 throw new Run t imeExcep t ion (e) ;
22 }
23 }
24 [. . .]
25 }� �

121

Every time the BPMS needs the current time, it calls TimeUtil.now() to either receive
the discrete time when in simulation mode or the actual current time when simulation mode is
turned off as shown in Listing 5.6.

Listing 5.6: TimeUtil for Time Discretization - Get Current System Time� �
1 p u b l i c c l a s s T i m e U t i l ex tends Thread {
2 p r i v a t e s t a t i c T i m e Ut i l INSTANCE ;
3 @Value (" ${ s i m u l a t e } ")
4 p r i v a t e boolean s i m u l a t e ;
5 [. . .]
6 p u b l i c s t a t i c long now () {
7 [. . .]
8 i f (! INSTANCE.simulate | | TIME.get () < 0) {
9 re turn new Date () . g e t T i m e () ;

10 }
11 re turn TIME.get () ;
12 }
13 [. . .]
14 }� �

The BPMS calls TimeUtil.sleep(millisec) shown in Listing 5.7 whenever it needs
to perform a sleep operation, to either wait until the discrete time variable was incremented to
the target time when in simulation mode, or to perform a real Thread.sleep(millisec)
operation using the method doSleepSafe(millisec) introduced in Listing 5.5.

Listing 5.7: TimeUtil for Time Discretization - Sleep And Notify Waiting Threads� �
1 p u b l i c c l a s s T i m e U t i l ex tends Thread {
2 [. . .]
3 p u b l i c vo id s l e e p (long m i l l i s) {
4 [. . .]
5 i f (! s i m u l a t e) {
6 d o S l e e p S a f e (m i l l i s) ;
7 re turn ;
8 }
9 long t a r g e t T i m e = now () + m i l l i s ;

10 t r y {
11 long timeNow = now () ;
12 whi le (t a r g e t T i m e > timeNow) {
13 [. . .]
14 s y n c h r o n i z e d (TIME) {
15 TIME.wait () ;
16 }
17 timeNow = now () ;
18 }
19 } ca tch (I n t e r r u p t e d E x c e p t i o n e) {
20 throw new Run t imeExcep t ion (e) ;
21 }
22 }
23 [. . .]
24 }� �

In simulation mode, the optimization is started with the current simulated time as received
by TimeUtil.now(). During the optimization run, the discrete time ticker is set to tick in
real-time. Afterwards the time ticks faster than real-time to accelerate the simulation of the
task-scheduling and resource allocation plan as shown in the sequence diagram in Figure 5.6.

122

TimeUtil Reasoner

sd Simulated Execution with Time
Discretization

4: optimize(now) and
transform result

VM Action
Executor

Docker
Controller

Service
Executor

6: initiate
scheduling

7.1: sleep(virtualMachine
.getStartupTime())

loop [for each VM in scheduling plan]

opt [VM not leased]

loop

8: initiate
scheduling

[for each container scheduled on VM]

11: invoke
services

loop [for each step scheduled on container]

synchronous call

asynchronous call

loop [while true]

1: increment TIME
TIME.notifyAll()
sleep SLEEP_TIME_MS

2.1: now()

2.2: TIME.get()

3: setRealTime()

5: setFastTicking()

7.2: notify

9.1: sleep(container.getPullTime())
opt [image not pulled onto VM]

9.2: notify

10.1: sleep(container.getStartupTime())

10.2: notify

12.1: sleep(container.getPullTime())

12.2: notify

Figure 5.6: System Simulation with Time Discretization

123

CHAPTER 6
Evaluation and Discussion

“There are two possible outcomes: if the result confirms the hypothesis, then you’ve
made a measurement. If the result is contrary to the hypothesis, then you’ve made
a discovery. ”

– Enrico Fermi

“Everybody is a genius. But if you judge a fish by its ability to climb a tree, it will
live its whole life believing that it is stupid.”

– Albert Einstein

In this chapter, we conduct a qualitative analysis of our approach by presenting an evalu-
ation of the working example from Section 4.3. We discuss the execution as specified by the
optimization model in Section 4.4 and as illustrated in Section 4.5. Additionally, we discuss a
modified solution that allows for pre-scheduling decisions and point out important observations,
some of which can be tackled in future work. As a comparison to previous work, we also discuss
the execution of the working example from Section 4.3 using an hypervisor-based approach and
contrast the advantages of container-based to hypervisor-based approaches.

Furthermore, we present a quantitative evaluation of the implementation of our approach
as presented in Section 4.4 and Chapter 5. Therefore, we define and execute an experimental
design. We discuss the evaluation settings and scenario, the used metrics and final results while
comparing our approach to a baseline.

125

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
t

of leased cores

1

2

3

4

VM
4.1

VM
6.1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
t

of leased cores

1

2

3

4
VM
4.1

VM
5.1

VM
2.1

5

Figure 6.1: Number of Leased VM Cores and Utilization by Containers

6.1 Evaluation of the Working Example

For evaluating the working example, we consider the type and amount of leased resources as
well as their utilization at each point in time and calculate costs that arise from the leasing and
scheduling decisions.

6.1.1 Evaluation of the Presented Working Example

In Figure 6.1, we abstract from the execution of single process steps of the discussed working
example and evaluate the number of leased VM cores and their utilization by deployed contain-
ers. The figure shows us that we leased two VMs. VM4.1 was leased for a total of two BTUs
and VM6.1 was leased for the duration of one BTU. Each deployed container for executing ser-
vice invocations of service type A (green), service type B (blue), service type C (purple), service
type D (orange), and service type E (yellow) is marked in Figure 6.1. The assigned resources to
containers correspond to the respective resource utilization for every point in time.

As we met all deadlines, we do not have to consider any penalty costs and can easily calculate
the costs for the process executions by adding the costs of leasing VM4.1 for two BTUs and
VM6.1 for one BTU. This amounts to a total cost of 25 units.

6.1.2 Evaluation of the Working Example with Pre-Scheduling

As can be seen from the working example, the designed system calculates a scheduling for
process steps only if a scheduling is possible on available and free computational resources
without incurring any additional leasing costs, while prioritizing steps with a close deadline, or
if the worst-case analysis, based on the process deadline as well as the execution and deploy
times of the step and all following steps, requires an immediate scheduling decision.

An alternative approach would be to schedule steps on newly leased computational resources
before their worst-case scheduling deadline if a good enough resource utilization is calculated.
To illustrate this, we look at our example scenario and make only one different pre-scheduling
decision at t = 3, when the worst-case analysis of process instance P1.1 requires the scheduling

126

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
t

of leased cores

1

2

3

4
VM
4.1

VM
5.1

VM
2.1

Figure 6.2: Number of leased VM cores and utilization by Containers with early scheduling of
Step P1.1.D

of P1.1.B, we also pre-schedule the process step P1.1.D in the parallel split branch, although the
process step in the parallel branch could and would be postponed at that stage by our presented
optimization approach as discussed in Section 4.4. Except for this change, all other decisions are
made following the exact same pattern as previously explained. Without going into the details
for each subsequent scheduling decisions, this small change leads to a final system evaluation
over time as demonstrated in Figure 6.2.

We can see that the decision to schedule P1.1.D at t = 3 leads to leasing a dual-core VM
from the private cloud which is up and running at t = 5. The additional resource offered by
VM5.1 leads to an earlier scheduling of process steps of type C and also eliminates the need to
extend the lease of VM4.1. Furthermore, the process steps with close deadlines (t ≤ 20) could
be finished by t = 12.5. While our first described solution, as summarized in Figure 6.1, finishes
all process instances, the changed example summarized in Figure 6.2 does not schedule the last
process step P3.1.E with a distant deadline, as the system does not offer enough resources for its
execution.

If the system does not receive any further process requests, the last process step P3.1.E of
process P3.1 would be scheduled for execution at t = 95 according to its worst-case analysis.
The system would choose the cheapest computational resource VM4.1, which would be up and
running at t = 97. If other process requests enter in the future and require to lease computational
resources before t = 95 and if enough resources are available, the process step might also be
scheduled at an earlier point in time.

When only looking at the illustrated time frames of t ≤ 15 we can see that the alternative
with pre-scheduling leases less computational resources and offers a slightly better resource uti-
lization than the originally presented scheduling approach. Nevertheless, also when disregard-
ing that additional computational resources are needed for the execution of the last process step
P3.1.E, the cost of all computational resources VM4.1 and VM5.1 from the private cloud and
VM2.1 from the public cloud amounts to 28 units, which is higher than the previously calculated
25 units for finalizing all process instances.

127

6.2 Important Observations

When looking at the presented execution of our working example that uses our optimization ap-
proach and when regarding comparisons to other approaches we can make a number of important
observations.

First of all, it should be noted that in the presented execution of our working example we
made some simplifications, like not considering any time for starting, stopping and resizing con-
tainer instances and most importantly we also did not consider any time for actually calculating
the scheduling decision. The calculation of a solution for the MILP optimization problem will
take some time which, depending on the problem size, may range from a few seconds to multiple
minutes and has an impact on the overall system performance.

When abstracting from the simplifications, we can observe the following major points re-
garding the behavior of the system:

• Optimization rounds: Optimization rounds need to be initiated when changes in the
system landscape occur. Such changes include newly arriving process requests and the
finished execution of already scheduled process steps. Furthermore, the start of new op-
timization rounds is also a result of previous optimization rounds and especially also of
postponing decisions.

• Postponing optimization steps: During optimization rounds, the system decides which
of the next schedulable process steps to schedule on which container on the available VM
resources. The system may decide to postpone the scheduling of some schedulable process
steps into another optimization round if scheduling the steps would incur increased costs
due to the requirement of leasing additional computational resources although the process
deadline constraints would allow for a later scheduling without incurring penalty costs.

• Optimization knowledge: The optimizations are based on the system knowledge at the
beginning of an optimization round and depend on previously made optimization deci-
sions and system performances.

• Rescheduling: Sometimes the system is in a state where previously made scheduling
decisions could easily be changed without having to consider any migrations, as the exe-
cution of the process steps could not be started yet. This can happen, for example, when
a process step is scheduled for execution on a certain container on a VM instance and
either the container image is still in the process of being pulled onto the machine or the
VM instance is still in the process of booting up, while a new optimization round is ini-
tiated. This type of rescheduling can lead to some performance gains but is not further
considered in our approach, as we are focusing on the advantages that come from the use
of containers for task-scheduling and resource isolation compared to simple hypervisor-
based approaches and the described rescheduling has not been considered in the related
work discussed in Chapter 3.

128

• Migration: Furthermore, the optimization approach could benefit from considering mi-
grations. Migrations would, for example, be helpful for utilizing remaining free resources
on leased VM instances for service requests that run longer than the remaining leasing
duration of the instances. In that case, the remaining leased resources could be utilized
and at the end of the leasing duration, the running containers could be migrated onto
other available resources, without having to extend the lease of an old and unneeded VM
instance. Approaches considering migrations could also split the execution of service re-
quests such that deadlines are considered but also resources are utilized more efficiently.
Migrations come with a wide number of necessary considerations and additional over-
heads that a BPMS would need to take into account and that also go far beyond the scope
of this thesis.

• Pre-Scheduling: Pre-scheduling refers to the scheduling of process steps before their
scheduling deadline when performing a worst-case analysis. Our system performs pre-
scheduling whenever the system offers sufficient computational resources for schedulable
process steps which may be postponed into the future. This type of pre-scheduling does
not incur any additional leasing costs and allows for a better utilization of the leased
resources. Still, it has to be mentioned that the pre-scheduling decision is solely made
using current information and optimizes the current system state, without considering any
future implications.

Another form of pre-scheduling would allow the scheduling of process steps that may
still be postponed on computational resources which would incur additional leasing costs.
A possible scenario would be if enough schedulable but postponable process steps were
in line such that they could fully utilize a new leased instance. Yet, also in this special
case, the pre-scheduling may lead to an overall worse outcome for the performance of the
system over time, as the scheduled steps may, in future rounds, have been scheduled on
otherwise free remaining computational resources, which were not foreseen in the current
optimization round.

An example of the pre-scheduling scenario that accepts leasing costs ahead of scheduling
deadlines was already discussed in the evaluation of the working example execution in
Section 6.1. As we could observe when comparing the system outcomes from Figure 6.1
and Figure 6.2, the pre-scheduling lead to higher execution costs, although one might have
gained the impression of a better resource utilization. This shows that pre-scheduling de-
cisions can often lead to worse outcomes when only considering the current system state,
but might lead to better scheduling decisions when combined with prediction algorithms.

• Prediction: The presented approach considers the future in terms of making scheduling
decisions that consider future deadlines, including decisions to postpone scheduling of
process steps. When making scheduling decisions for a certain optimization round, the
system analyzes the current utilization of its leased resources, without performing ex-
tended predictions about the systems future state. This may lead to some disadvantages.
A good example for this would be when a process step PX.Y.A needs to be scheduled for
execution at t = x as it cannot be postponed any further without incurring penalty costs.

129

If at t = x there are not enough computational resources available for scheduling the pro-
cess step, the system will lease a new VM instance and pull the corresponding image for
the process step. Therefore, the process step scheduled at t = x will only be able to start
its execution after the VM is up and running, the corresponding Docker image is pulled
and a container is deployed at around t = x + 2.5. If some other process steps would
finish their execution by say t = x + 1 and free up enough computational resources for
the execution of the already scheduled process PX.Y.A, the decision at t = x would have
lead to a longer execution time for process instance PX.Y and might lead to higher total
costs due to leasing the additional VM instance although it might have been prevented, if
a more extended analysis of currently running steps and the future state would have been
performed.

Yet in highly dynamic system landscapes a meaningful prediction would need to consider
more than just the currently available information about scheduled and running process
steps and the future state of currently known process instances and leased resources, as
new process instances can arrive at any time and impact the future system state such
that optimized decisions considering only the future execution of currently known pro-
cess instances might lead to scheduling plans that turn out to be suboptimal in the future
when new requests are processed. The use of predictive analytics and machine learn-
ing approaches might help in finding better overall system enactments over multiple time
periods.

Advanced rescheduling, migration, pre-scheduling and prediction algorithms can help in
developing cost-effective and efficient scheduling techniques, but all of them require a multitude
of further considerations and the discussed related work in Chapter 3 lacks in solutions that
consider such advanced scheduling methods for elastic processes. In this work, we focus on
extending the related work on elastic processes to account for container-based architectures,
therefore, our solution does not directly approach these important observations, although they
should be considered in future work.

6.3 Advantages of Container-Based Approaches compared to
Hypervisor-Based Approaches

In this section we compare the presented container-based scheduling approach to the solely
hypervisor-based scheduling approach for elastic processes as presented by Hoenisch et. al
[63] and explain the main strengths of container-based approaches with regard to scheduling
decisions.

6.3.1 Execution of the Working Example using Hypervisor-Based Approaches

To compare the outcome of our container-based scheduling approach summarized in Figure 6.1
to hypervisor-based scheduling, we demonstrate the execution of the working example using the
scheduling approach presented by Hoenisch et. al [63].

130

Scheduling Assumptions

The main scheduling assumptions and principles remain similar, with the following main differ-
ences:

• In the approach by Hoenisch et. al [63] software services are directly deployed on VM
instances. Each VM instance hosts exactly one software service but a software service
may be deployed on multiple VM instances.

• We again assume a VM startup time of two minutes. Instead of the time of 30 seconds
that we calculated to pull a Docker image onto a VM, we now have to consider the time
it takes to deploy a software service on a VM instance. We again assume the deployment
time to be 30 seconds.

We use the same VM instances, software services, processes and process requests as already
introduced in Section 4.3. In Figure 6.3 we again abstract from the actual execution of the single
process steps of the working example and evaluate the number of leased VM cores and their
utilization by the execution of service invocations. The boxes with bold black frames represent
the leased VM instances for each point in time. As a VM instance can only process requests
of one service type during an uninterrupted leasing period, the shade of the boxes indicates the
service types the VM instances can execute. We use the same color coding as in the previous
chapters, meaning green for service type A, blue for service type B, purple for service type C,
orange for service type D, and yellow for service type E. The smaller filled boxes within the
VM instances indicate the utilization of the VMs by executed service invocations at each point
in time.

Scheduling Results

Looking at Figure 6.3, it is easy to see that we had to lease substantially more computational re-
sources for the execution of the process instances. The utilization of each leased VM is very low,
as each VM instance only allows the scheduling of one certain service type until it is released
and the number of incoming requests in our working example is rather low.

Looking at the scheduling decisions in more detail we can observe that single-core VMs were
leased for a total of six BTUs and one quad-core VM was leased for one BTU. The cheapest
single-core VM (VM4.1) could be leased three times, the first time accepting service requests
of tape A, the second time accepting service requests of type D, the third time accepting service
requests of type E.

Also when abstracting from the container-based solution, we can clearly observe the same
problems that arise from a lack of process predictions as discussed in Section 6.2 in this VM-
based approach. For example, VM1.2 for service type B was unnecessarily leased from t = 7.5
to t = 12.5. The reason for this was that the scheduling decision was made at t = 5.5, when
VM1.1 for service type B was nearly fully utilized and the system had to schedule the next
process step 3.2.B due to the strict process deadline and worst-case analysis. The system did
not consider that the already leased VM1.1 for service type B would soon offer the required
resources, without the need to lease an additional VM instance. The last process step P3.1.E was

131

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
t

of leased cores

1

2

3

4

5

6

7

8

9

1816 17 2119 20
...

9795 96 10098 99 102

VM 4.1
for A

VM 1.1
for B

VM 6.1
for D

VM 1.1
for E

VM 4.1
for E

VM 4.1
for D

VM 1.2
for B

Figure 6.3: Number of Leased VM Cores and Utilization for Approach without Containers

scheduled at its latest possible scheduling deadline, because of the same situation we discussed
in the evaluation of the working example with prescheduling in Subsection 6.1.2, assuming that
no other process requests had to be executed before t = 95.

The total cost of this hypervisor-based task-scheduling and resource allocation approach is
comprised of the total cost for leasing the resources depicted in Figure 6.3. VM4.1 was leased
for a total of three BTUs, each to a cost of 5 units. Public cloud VMs of type 1 (VM1.1 and
VM1.2) cost 8 units and were leased for a total of three BTU. Furthermore, one VM of type 6
was leased for one BTU at the cost of 15 units. This amounts to a total leasing cost of 54 units.
This is more than twice the cost of the presented Docker-based approach of only 25 units.

6.3.2 Strengths of Container-Based Approaches

Next to the many advantages that are related to utilizing lightweight containerized technologies,
as discussed in Subsection 2.1.5 and Chapter 3, like, for example, in the context of DevOps,
the use of containers comes with the following advantages with regard to the presented task-
scheduling and resource allocation approach for elastic processes:

• As lightweight containers can be created instantly from existing images, on running VMs,
a container-based system can better utilize the leased resources, by starting and stopping
containers on demand without wasting many resources for scheduling service steps that
are not executed frequently on separately leased VM instances.

• While the existing hypervisor-based approaches require a full VM instance for each ser-
vice type, in container-based approaches service types with low utilizations can easily

132

share VM instances. Larger VM instances, that offer resources for a lower price than mul-
tiple small instances, can be leased for scheduling a large number of container instances
for the execution of process steps that require a small amount of computational resources.

• The sharing of underlying VM instances by multiple containers is especially favorable
in the case of a low number of process requests, as well as in the case of a rather limited
amount of computational resources available to the system. In such cases, as illustrated by
our working example, container-based approaches can lead to substantially better results.

• When the number of incoming process requests is large and the pool of available resources
is not highly limited, the BPMS can also save a large amount of costs and resources com-
pared to hypervisor-based approaches. In such a case, the container-based resource alloca-
tion approach will most probably lease a sufficient amount of large VM instances, as in our
considered scenario larger VM instances offer the same amount of resources for a cheaper
price than multiple smaller VM instances, and extend the lease for those VM instances as
long as the resources are needed. Once the images for starting containers of certain ser-
vice types are pulled onto the running VM instances, multiple lightweight containers can
be started, resized and stopped as needed, without incurring any additional costs, while
making the best possible use of the rather cheaply leased computational resources.

6.4 Quantitative Evaluation

In the following section, we evaluate the implementation of our proposed approach by conduct-
ing experiments using the research prototype and BPMS testbed ViePEP with the extensions
introduced in Section 5.4.

All test have been executed on a machine with a quad core CPU with 2.50 GHz, 8 GB of
RAM, running Ubuntu 16.04 with Linux kernel 4.8.0.

6.4.1 Evaluation Models

We perform our evaluation using a representative subset of 10 different process models from the
SAP reference model [35], which has been used for multiple scientific papers, e.g., [103], and
provides a solid foundation for our evaluations. From the around 600 process models, we select
10 models with different process patterns and varying levels of complexity, including sequences,
XOR-blocks, AND-blocks, and loops. All XOR- and AND-blocks start with a split and end with
a merge pattern. The merge for AND-blocks is blocking, while the merge for XOR-blocks con-
tinues the process execution as soon as the last process step of 1 optional branch is finished. Our
chosen process models range from simple sequences with 3 process steps to complex process
models with up to 20 process steps and can be found in Appendix B. We generally only consider
software-based services for process steps and no human-provided services.

133

In Table 6.1 we present the most important characteristics of the 10 considered process
models.

Table 6.1: Evaluation Process Models

Process Name |Steps| |XOR| |AND| |Loops|
1 3 0 0 0
2 2 1 0 0
3 3 0 1 0
4 8 0 2 0
5 3 1 0 0
6 9 1 1 0
7 8 0 0 0
8 3 0 1 0
9 4 0 1 1
10 20 0 4 0

The process steps of the used process models consist of a mixture of the following 10 rather
resource-intensive software services as shown in Table 6.2.

Table 6.2: Evaluation Services - Resource-Intensive

Service Type Name CPU Load Service Makespan
in % (µcpu) in sec. (µdur)

A 45 40
B 75 80
C 75 120
D 100 40
E 120 100
F 125 20
G 150 40
H 175 20
I 250 60
J 333 30

A services’ CPU load refers to the required amount of CPU resources in percent of a single
core, meaning all services with a CPU requirement of more than 100, cannot be scheduled
on a single-core VM and the corresponding containers will need to be placed on a multi-core
VM instance. We assume services that are fully parallelizable and an increased number of
available CPU cores to a service’s container instance has no influence on the makespan of a
single step. The values in Table 6.2 represent mean values of general normal distributions with
σcpu = µcpu/10 and σdur = µdur/10.

134

Applied SLAs

For the execution of each process instance, different deadline SLAs may be defined on process
level with regard to the complete process enactment. We evaluate our approach using 2 different
process deadline scenarios. In the first scenario, we use strict deadlines and demand the latest
point in time when the execution of process instances has to be finished to be 1.5 times the
process model’s average makespan from the point in time when the request is sent. The second
scenario allows more lenient SLA values and we demand 2.5 times of the process model’s av-
erage makespan as the maximum execution duration for the BPMS. These values were chosen
to account for the startup time of VM instances and the time to pull Docker images and deploy
container instances.

For calculating penalty costs, we apply a linear cost model which assigns 1 unit of penalty
cost per 10% of time units of delay.

Process Request Arrival Patterns

Our experimental design accounts for 2 different process request arrival patterns. In one scenario
we design a constant arrival pattern, meaning that the same number of process instance requests
arrives in regular time intervals. Specifically, we choose to request 5 process instances every
2 minutes, alternating process instance requests for process models 1 to 5 and 6 to 10 until
50 process instance requests have been sent. In a second scenario, we follow a pyramid-like
function for designing our arrival pattern. We send a total of 100 randomly shuffled process
instance requests in different batch sizes, ranging from 1 to 5 instances at a time in an interval of
1 minute. Equation 6.1 represents the pyramid pattern, n representing the time in minutes used
to calculate a, and a representing the number of new process requests.

f(n) = a

1 if0 ≤ n ≤ 4

d(n+ 1)/4e if5 ≤ n ≤ 17

0 if18 ≤ n ≤ 19

1 if20 ≤ n ≤ 35

d(n− 9)/20e if36 ≤ n ≤ 51

(6.1)

6.4.2 Simulated Test Environment

A rather large amount of research on scheduling and resource allocation problems for the cloud
uses self-constructed simulation environments, but also off the shelf simulation frameworks like,
e.g., CloudSim1 for evaluation purposes [97].

For allowing large and realistic test scenarios over multiple hours and with different pricing
models we perform the optimization runs using the simulation mode of our extended ViePEP
implementation as introduced in Section 5.4.

Our system considers 7 VM types with the characteristics listed in Table 6.3

1http://www.cloudbus.org/cloudsim/

135

http://www.cloudbus.org/cloudsim/

Table 6.3: Evaluation VM Types

VM Type Name Provider CPU Cores Costs per BTU
1 Private 1 10
2 Private 2 18
3 Private 4 30
4 Public A 1 15
5 Public A 2 25
6 Public A 4 35
7 Public A 8 50

As Table 6.3 shows, we assume that leasing a VM instance with x cores is cheaper than
leasing 2 VM instances with x/2 cores.

We assume the system can lease up to 3 VM instances of each type at a time.

Assumptions for Startup and Deployment Times

In our simulation, we generally assume a VM startup time of 60 seconds, a time to pull Docker
images from the central registry onto a VM instance of 30 seconds, and a time to start a new
Docker container and the contained service from an existing image of 2 seconds.

These assumptions are based on existing literature. In earlier work, VM startup times have
been found to take up to several minutes [42]. More recent findings indicate VM startup times
to be below 30 seconds [163], however, there is an intrinsic additional overhead to provision a
VM in a cloud environment. Hence, we assume a VM startup time of 60 seconds when leasing
instances from a cloud provider like AWS. Container startup times have been shown to be in the
range of 1 to 2 seconds, regardless of the image size [173]. Image sizes have been found to often
be in the range of 200 to 300 MBs [58], which, under an assumed download speed of 80 MBit/s,
results in an approximate download time of roughly 20 to 30 seconds.

6.4.3 Metrics

We assess the outcome of our experiments by using the following metrics:

• Total costs: Our optimization approach aims at minimizing the overall costs for cloud
providers and process owners. We compare the total costs from leasing VM instances and
penalty costs arising from delayed process enactments. The total costs include the VM
leasing and penalty costs over all process executions during an experiment’s runtime.

• SLA Adherence: We calculate the percentage of process requests which meet their SLAs,
i.e., the process instances that finish their execution before the defined deadline.

• Makespan: We measure the overall duration for executing all incoming process requests,
from the first received request to the last finished process step.

We also calculate the standard deviation σ for all metrics, by performing 3 different evalua-
tion runs.

136

We present the calculated metrics in our result sections in form of tables and charts. The
tables represent the numerical average values of the evaluation runs and the standard deviations.
The charts plot the leased CPU cores over time and also show the corresponding arrival patterns.
The horizontal axes show the time in minutes. The left vertical axes display the number of leased
CPU cores while the right vertical axes represent the number of parallel process requests. It is
important to distinguish between the total makespan in minutes as discussed in the tables, which
refers to the time for executing all incoming process requests, and the timespan shown in the
charts which refers to the leasing duration of VM instances.

6.4.4 Solving the Full Optimization Model with CPLEX

Before performing the evaluation of the presented implementation approach, in which we de-
fine a reduced optimization model that is solved by the MILP solver CPLEX and afterwards
transformed such that the end result delivers a solution for the full optimization problem, we
discuss the performance of the full optimization problem when directly solved with CPLEX. We
compare the result of the full optimization problem with the transformed result of the reduced
optimization problem.

Additional Considerations for the Test Environment

For calculating the placement of services on Docker containers we need to extend the considered
test environment, such that a set of Docker containers with certain configurations are available
for the solver to calculate an optimal placement.

In the following test runs, we set up the test environment for the full optimization problem
such that it offers 2 containers for each of the 10 Docker images and for each possible resource
configuration of a Docker image. We use 3 simple resource configurations for containers that
guarantee a certain number of resources. We allow configurations that guarantee for each con-
tainer the processing power of 1 core, 2 cores, or 4 cores, of an underlying VM. This allows
our optimization model to choose from 60 different Docker containers for performing the task-
scheduling and resource allocation decisions.

This test environment setup shows a substantial limitation when directly trying to solve the
full optimization problem with a MILP solver like CPLEX. The quality and precision of the
result depend on the number of available container instances. As each container includes the
application code for a service type, we need to consider an increasing amount of container in-
stances for an increasing amount of offered service types. At the same time, the number of
containers increases with each considered configuration. When the system does not consider
enough containers of a certain service type as an input, it might unnecessarily delay schedul-
ing decisions although VM resources might still be available. A discrete set of containers with
discrete configurations strongly limits the scheduling decisions for the BPMS and the scaling
possibilities that can come with using container technologies. When a large amount of contain-
ers with fine-grained configurations is considered to minimize the scheduling restrictions, the
flexibility comes with an exponentially growing overhead for calculating an optimal scheduling
solution.

137

Note that the result of both our reduced model and previous work on VM-based task-
scheduling and resource allocation strongly depend on the number of available VM resources
and the single VM instances have to be considered when calculating an optimization result. In
contrast to container instances, VM instances are generally only available with discrete configu-
rations, which allows to precisely use all possible configurations for the optimization. Neverthe-
less, with an increased number of available resources, an overhead for calculating a scheduling
decision will occur. This overhead can be limited by using heuristics that only use a certain
subset of the available VM resources for performing an optimization run, e.g., only considering
all running VMs and a limited number of unleased resources for each service type, depending
on the number of next schedulable steps.

A comparable heuristic that starts the optimization model with a certain set of configured
containers, depending on the next schedulable steps could help in managing the overhead that
comes with considering single container instances in the optimization problem. Such a heuristic
should be explored in future work that focuses on scheduling decisions that require a certain
isolation of services in containers as discussed in Section 4.4. In our considered special case,
when only 1 container type may be deployed per VM instance, the reduced model followed by
the transformation step offers a scalable solution and will yield the best possible result for the
defined problem, as a continuous assignment and reassignment of computational resources to
containers is realized.

Results and Discussion

When comparing the results of example runs for the full model and the reduced model after
transformation for the evaluation scenario with constant process request arrivals and strict dead-
lines, we achieve results as illustrated in Figure 6.4 and depicted in Table 6.4. Note that in this
subsection we only present and compare the exemplary execution of one evaluation run.

Leased CPU Cores FFSIPP Reduced Model & Transformation

Leased CPU Cores FFSIPP Full Model Process Arrivals

0 5 10 15 20 25 30 35 40

Time in Minutes

0

5

1 0

1 5

2 0

2 5

3 0

3 5

4 0

4 5

Le

as
ed

 C
P

U
 C

or
es

0

1

2

3

4

5

6

7

8

9

1 0

#
 A

rrive
d

 P
ro

ce
sse

s

Figure 6.4: Solving the Reduced Optimization Problem and Performing the Transformation vs.
Solving the Full Optimization Problem

138

Table 6.4: Solving the Reduced Optimization Problem and Performing the Transformation vs.
Solving the Full Optimization Problem - Constant Arrival with Strict Deadlines

Arrival Pattern Constant Arrival
SLA Level strict

FFSIPP
reduced model

and transformation

FFSIPP
solving the full model

Number of Total
Process Requests 50

Interval Between
Process Requests 120 Seconds

Number of Parallel
Process Requests 5

SLA Adherence in % 96 10
Total Makespan in Minutes 28 32
Leasing Cost 1052 2069
Penalty Cost 3 162
Total Cost 1055 2231

The solution of the full optimization problem fully implemented with CPLEX yields a longer
total makespan and leads to leasing costs that are twice as high when compared to the imple-
mented reduced model after transformation. The main issue is the very low SLA adherence of
only 10 percent and the associated penalty costs that are over 54 times higher for the full model.

The main reason for the poor performance is that with the given setting the full model was
not able to calculate an optimal solution in slightly over 32 percent of all optimization rounds,
only considering rounds where process requests existed and processes were still running. We
generally demand every optimization calculation to be performed in under 1 minute. In the
given scenario the solver failed to calculate an optimal solution within the time limit using the
full optimization problem when around 10 or more running process requests had to be man-
aged and scheduled at the same time. The enactments of these suboptimal solutions lead to the
poor overall optimization outcome. In comparison, every result for the reduced optimization
model calculates an optimal solution in under 5 seconds, also when regarding all subsequently
presented evaluation runs.

As a proof of concept and to show the validity of the presented full optimization model, we
perform 2 more example executions with a more relaxed arrival pattern. With a constant arrival
of 2 requests every 3 minutes for a total of 20 process requests with strict deadlines, we achieve
the following optimization results depicted in Figure 6.5 and presented in Table 6.5.

Again not all optimization rounds for the full model could find an optimal solution within the
set time limit of 1 minute, but now only 0.85% of all rounds yield suboptimal feasible solutions.
When calculating solutions with further slight relaxations of the arrival pattern, e.g., 2 requests
every 4 minutes or 1 request every 2 minutes, optimal solutions can be found for all optimization
rounds in under 1 minute.

139

Leased CPU Cores FFSIPP Reduced Model & Transformation

Leased CPU Cores FFSIPP Full Model Process Arrivals

0 5 10 15 20 25 30 35 40

Time in Minutes

0

5

1 0

1 5

2 0

2 5

3 0

3 5

4 0

4 5

Le

as
ed

 C
P

U
 C

or
es

0

1

2

3

4

5

6

7

8

9

1 0

#
 A

rrive
d

 P
ro

ce
sse

s

Figure 6.5: Solving the Reduced Optimization Problem and Performing the Transformation vs.
Solving the Full Optimization Problem - Smaller Example

Table 6.5: Solving the Reduced Optimization Problem and Performing the Transformation vs.
Solving the Full Optimization Problem - More Relaxed Arrival Frequency

Arrival Pattern Constant Arrival
SLA Level strict

FFSIPP
reduced model

and transformation

FFSIPP
solving the full model

Number of Total
Process Requests 20

Interval Between
Process Requests 180 Seconds

Number of Parallel
Process Requests 2

SLA Adherence in % 95 95
Total Makespan in Minutes 32 37
Leasing Cost 669 1000
Penalty Cost 1 1
Total Cost 670 1001

From the performed optimization runs we can see that now the SLA adherence of both, the
full model and the reduced model after transformation are the same, while the full model still
produces higher leasing costs, due to the fact that it does not allow for the same fine-grained
resource allocation as the reduced model after transformation, because only a limited set of
available container instances are provided as input to the full model.

140

6.4.5 Evaluation of the Reduced Model including Transformation

Now we perform the actual evaluation of our presented approach. We evaluate our Docker-based
implementation of the optimization problem using the reduced model and the transformation
against a hypervisor-based baseline optimization approach.

Baseline

We use a slightly modified version of the VM-based resource allocation and task-scheduling
approach presented by Hönisch et al. [63] as a baseline for the evaluation of our presented so-
lution. We already discussed the execution of the MILP-based optimization baseline approach
in Section 6.3. The baseline approach uses an optimization model that directly schedules pro-
cess requests on VM instances, while each leased VM instance is only able to execute process
requests of 1 specific service type. The modifications of the originally presented baseline are
made with regard to the utilized time constraints which we define according to the time con-
straints also used by our approach as presented in A.2 and A.3. Furthermore, we allow the
change of the offered service type of a VM instance during an uninterrupted leasing duration
whenever no more service requests are being executed by a VM instance. When changing the
offered service type, a service deployment time of another 30 seconds is considered and again
only 1 service type is offered at any point in time by a VM instance.

Results and Discussion

Constant Arrival of Resource-Intensive Processes: First, we compare the results for resource-
intensive processes as presented in Table 6.1 and Table 6.2 for the constant arrival pattern, which
are presented in Figure 6.6 and Table 6.6. Figure 6.6a shows the results for process requests with
a strict deadline while Figure 6.6b depicts the results for lenient process requests.

FFSIPP Baseline (SIPP) Process Arrivals

0 5 1 0 1 5 2 0 2 5 3 0 3 5 4 0

Time in Minutes

0

5

1 0

1 5

2 0

2 5

3 0

3 5

4 0

4 5

#
 L

e
a

se
d

 C
P

U
 C

o
re

s

0

1

2

3

4

5

6

7

8

9

1 0

#
 A

rrive
d

 P
ro

ce
sse

s

(a) Strict SLA

FFSIPP Baseline (SIPP) Process Arrivals

0 5 1 0 1 5 2 0 2 5 3 0 3 5 4 0

Time in Minutes

0

5

1 0

1 5

2 0

2 5

3 0

3 5

4 0

4 5

#
 L

e
a

se
d

 C
P

U
 C

o
re

s

0

1

2

3

4

5

6

7

8

9

1 0

#
 A

rrive
d

 P
ro

ce
sse

s

(b) Lenient SLA

Figure 6.6: Evaluation Results - Constant Arrival of Resource-Intensive Processes

141

Table 6.6: Evaluation Results - Constant Arrival (Resource-Intensive Processes)

Arrival Pattern Constant Arrival
FFSIPP Baseline (SIPP)

SLA Level Strict Lenient Strict Lenient
Number of Total
Process Requests 50

Interval Between
Process Requests 120 Seconds

Number of Parallel
Process Requests 5

SLA Adherence in %
(Standard Deviation)

98.67
σ = 1.15

100.00
σ = 0.00

86.00
σ = 2.00

98.67
σ = 1.15

Total Makespan in Minutes
(Standard Deviation)

27.33
σ = 1.15

36.67
σ = 2.08

29.33
σ = 0.58

29.33
σ = 0.58

Leasing Cost
(Standard Deviation)

1148.33
σ = 20.50

1102.00
σ = 14.42

2201.00
σ = 55.56

2052.67
σ = 147.99

Penalty Cost
(Standard Deviation)

1.00
σ = 1.00

0.00
σ = 0.00

15.00
σ = 2.65

0.67
σ = 0.58

Total Cost
(Standard Deviation)

1149.33
σ = 20.01

1102.00
σ = 14.42

2216.00
σ = 57.51

2053.33
σ = 148.37

As we can see from the results, our optimization approach yields a high SLA adherence
of 98.67% with a very small standard deviation of only 1.15 percentage points and only 1 unit
of penalty costs for process requests with strict execution deadlines. Compared to the baseline
which only yields an SLA adherence of 86.00% with a standard deviation of 2.00 percentage
points, and on average 15 units of penalty costs, our approach was considerably stronger in
detecting potential SLA violations and rapidly calculating a good scheduling strategy. Further-
more, when regarding the leasing costs, our approach leads to only about half the costs needed
when using the baseline with also a lower associated standard deviation.

When comparing the result for more lenient deadlines, we can observe a much better SLA
adherence of 98.67% for the baseline (as compared to strict deadlines), but again a better SLA
adherence of 100.00% for all performed runs using our approach. This means our approach
was able to finish all incoming process requests within the defined deadline constraints for all
evaluation runs. The leasing costs of our approach are again nearly half as high compared to
those of the baseline. The low leasing costs of our approach are a result of the near-optimal
resource utilization that is realized through the dynamic assignment and reassignment of Docker
containers for the execution of different service types that only reserve as much space from the
underlying VM instances as they actually require.

142

As expected, the execution of process requests using our approach with lenient process dead-
lines leads to a longer total makespan and lower total leasing costs compared to the execution
of process requests with a strict deadline. When looking at the number of leased resources in
Figure 6.6b, we can clearly observe that our approach leases a smaller amount of computational
resources than the baseline at most points in time, and that our approach was able to postpone
the execution of process steps with a distant deadline, until postponing was no longer possible.
This explains why after 33 minutes the number of leased resources increases after it had already
declined. The baseline approach does not make use of the more distant deadline constraints
in a similarly efficient way. The reason why the makespan for the baseline is similar for both
the strict and the lenient process deadlines is that there are already sufficient computational re-
sources leased at earlier points in time. These resources were not fully utilized and were able to
perform the execution of process steps ahead of their scheduling deadlines.

Pyramid Arrival of Resource-Intensive Processes: Next, we compare the execution results
for resource-intensive processes as presented in Tables 6.1 and 6.2 for the pyramid arrival pattern
as introduced in Function 6.1. We achieve the results as presented in Figure 6.7 and Table 6.7.
Figure 6.7a shows the results for process requests with a strict deadline while Figure 6.7b depicts
the results for lenient process requests.

Again, when compared to the baseline, our approach results in a better SLA adherence and
lower associated penalty costs as well as leasing costs that are approximately half as high. This
time, the difference between the execution of process requests with a strict or a lenient deadline
is relatively small. The explanation for the large saving of leasing costs of our approach is the
same as for the constant arrival pattern and can be attributed to the very fine-grained resource
utilization of our approach. Once again, our approach was also able to postpone steps into the
future, leading to a longer total makespan for process requests with lenient deadlines, when
compared to the baseline.

It should be noted that lenient deadlines lead to better results in both our approach as well
as the baseline, but an important observation can be made when looking at the evaluation more
closely. The performance benefit, especially in terms of costs is much higher when considering
lenient deadlines for the baseline approach. Our approach also yields a slightly better result for
lenient deadlines, but in comparison, this difference is rather small. For the baseline a large
number of requests that have to be executed in close temporal proximity result in having to lease
individual VMs for almost all service types. Some service types might only occupy a small part
of a leased machine while for other service types multiple machines need to be leased. More
lenient deadlines allow the use of already leased machines when computational resources are
freed up in the near future, leading to the observed performance benefit. Depending on the
defined preferences and costs considering penalties, the system can accept higher penalties for
lower leasing costs. The higher the accepted penalties are, the more additional leasing costs
could be saved. In contrast to the baseline, our approach is able to use free resources from
any leased VM to deploy a container of any type with only as many assigned resources as the
invocation of service requests will actually require. This flexible resource utilization leads to
comparable leasing costs for strict and lenient deadlines, as the number of leased but unused
resources is not increased as easily as for the baseline.

143

FFSIPP Baseline (SIPP) Process Arrivals

0 5 1 0 1 5 2 0 2 5 3 0 3 5 4 0 4 5 5 0 5 5 6 0 6 5 7 0 7 5 8 0

Time in Minutes

0

5

1 0

1 5

2 0

2 5

3 0

3 5

4 0

4 5
#

 L
e

a
se

d
 C

P
U

 C
o

re
s

0

1

2

3

4

5

6

7

8

9

1 0

#
 A

rrive
d

 P
ro

ce
sse

s

(a) Strict SLA

FFSIPP Baseline (SIPP) Process Arrivals

0 5 1 0 1 5 2 0 2 5 3 0 3 5 4 0 4 5 5 0 5 5 6 0 6 5 7 0 7 5 8 0

Time in Minutes

0

5

1 0

1 5

2 0

2 5

3 0

3 5

4 0

4 5

#
 L

e
a

se
d

 C
P

U
 C

o
re

s

0

1

2

3

4

5

6

7

8

9

1 0

#
 A

rrive
d

 P
ro

ce
sse

s

(b) Lenient SLA

Figure 6.7: Evaluation Results - Pyramid Arrival of Resource-Intensive Processes

Table 6.7: Evaluation Results - Pyramid Arrival (Resource-Intensive Processes)

Arrival Pattern Pyramid Arrival
FFSIPP Baseline (SIPP)

SLA Level Strict Lenient Strict Lenient
Number of total
Process Requests 100

Interval between
Process Requests 60 Seconds

Number of Parallel
Process Requests f(n) (see 6.1)

SLA Adherence in %
(Standard Deviation)

97.67
σ = 0.58

100.00
σ = 0.00

95.33
σ = 0.58

99.67
σ = 0.58

Total Makespan in Minutes
(Standard Deviation)

63.33
σ = 0.58

69.67
σ = 2.89

62.00
σ = 0.00

61.67
σ = 0.58

Leasing Cost
(Standard Deviation)

2322.00
σ = 39.74

2181.67
σ = 89.44

4413.33
σ = 121.49

3975.00
σ = 118.87

Penalty Cost
(Standard Deviation)

3.33
σ = 1.53

0.00
σ = 0.00

10.67
σ = 1.15

0.33
σ = 0.58

Total Cost
(Standard Deviation)

2325.33
σ = 38.21

2181.67
σ = 89.44

4424.00
σ = 122.32

3975.33
σ = 119.43

The results clearly show the main strength of our task-scheduling approach, which is the bet-
ter resource utilization due to a fine-grained scheduling leading to overall lower leasing costs.
We show this main strength while comparing our approach to an already strong baseline, which
has been shown to deliver considerably better results in terms of cost and SLA adherence than
simple threshold-based ad-hoc scheduling strategies [63]. The baseline approach already deliv-
ers a good SLA adherence as it detects potential violations in time and optimizes the scheduling
decision accordingly. Nevertheless, our approach leads to even lower SLA violations.

144

Both approaches allow SLA violations if the associated penalty leads to lower total costs than
leasing additional resources to finish process executions in time. As our approach allows for a
more flexible scheduling of containers on VMs, it can perform cheaper scheduling decisions and
make better use of already leased resources, resulting in lower SLA violations to leasing cost
conflicts.

Generally, the results do not only depend on the number and type of process request arrivals
and the available resources, but also on the attributes of the process steps. In particular, service
types with larger resource requirements will lead to large containers taking up a great amount
of the offered resources of a VM instance and therefore fewer resources remaining available for
other large service requests of different service types. This consideration leads to the assumption
that our approach is capable of outperforming the baseline even more when service instances
with smaller resource requirements are considered. We evaluate this assumption in the following
subsection.

6.4.6 Evaluation of the Reduced Model including Transformation for Less
Resource-Intensive Service Types

To evaluate the assumption that our approach leads to even better results when considering task-
scheduling problems for service instances with smaller resource requirements, we perform the
same evaluation as already discussed in Subsection 6.4.5, while now using the less resource-
intensive service types introduced in Table 6.8, instead of the previously used service types from
Table 6.2.

Table 6.8: Evaluation Services - Less Resource-Intensive

Service Type Name CPU Load Service Makespan
in % (µcpu) in sec. (µdur)

A 5 40
B 10 80
C 15 120
D 30 40
E 45 100
F 55 20
G 70 40
H 125 20
I 125 60
J 190 30

Constant Arrival of Less Resource-Intensive Processes: Now, we compare the results for
less resource-intensive processes as presented in Tables 6.1 and 6.8 for the constant arrival pat-
tern and achieve the results as presented in Figure 6.8 and Table 6.9. Figure 6.8a shows the
results for process requests with a strict deadline while Figure 6.8b depicts the results for lenient
process requests.

145

FFSIPP Baseline (SIPP) Process Arrivals

0 5 1 0 1 5 2 0 2 5 3 0 3 5 4 0 4 5

Time in Minutes

0

5

1 0

1 5

2 0

2 5

3 0

3 5

4 0

4 5
#

 L
e

a
se

d
 C

P
U

 C
o

re
s

0

1

2

3

4

5

6

7

8

9

1 0

#
 A

rrive
d

 P
ro

ce
sse

s

(a) Strict SLA

FFSIPP Baseline (SIPP) Process Arrivals

0 5 1 0 1 5 2 0 2 5 3 0 3 5 4 0 4 5

Time in Minutes

0

5

1 0

1 5

2 0

2 5

3 0

3 5

4 0

4 5

#
 L

e
a

se
d

 C
P

U
 C

o
re

s

0

1

2

3

4

5

6

7

8

9

1 0

#
 A

rrive
d

 P
ro

ce
sse

s

(b) Lenient SLA

Figure 6.8: Evaluation Results - Constant Arrival of Less Resource-Intensive Processes

Table 6.9: Evaluation Results - Constant Arrival (Less Resource-Intensive Processes)

Arrival Pattern Constant Arrival
FFSIPP Baseline (SIPP)

SLA Level Strict Lenient Strict Lenient
Number of Total
Process Requests 50

Interval Between
Process Requests 120 Seconds

Number of Parallel
Process Requests 5

SLA Adherence in %
(Standard Deviation)

97.33
σ = 1.15

99.33
σ = 1.15

93.33
σ = 2.31

99.33
σ = 1.15

Total Makespan in Minutes
(Standard Deviation)

27.33
σ = 1.15

37.33
σ = 3.06

29.67
σ = 1.15

31.00
σ = 4.36

Leasing Cost
(Standard Deviation)

479.33
σ = 36.07

512.00
σ = 32.14

1316.67
σ = 124.16

1283.67
σ = 187.79

Penalty Cost
(Standard Deviation)

2.33
σ = 0.58

1.33
σ = 2.31

6.67
σ = 1.15

0.33
σ = 0.58

Total Cost
(Standard Deviation)

481.67
σ = 36.12

513.33
σ = 34.44

1323.33
σ = 125.13

1284.0
σ = 188.34

As expected, the results for process requests composed of less resource-intensive process
steps show even higher saving in terms of leasing costs when comparing our approach to the
baseline, with around 2.5 times lower costs. The SLA adherence of our approach for less
resource-intensive processes is comparable to the evaluation of the more resource-intensive pro-
cesses as presented in Subsection 6.4.5, but the baseline shows a higher SLA adherence with the
less resource-intensive service types.

146

The improved SLA adherence for the baseline is easy to explain when considering that
with smaller service types more service invocations of the same type can be executed on a VM
instance, leading to a lower number of penalty cost versus leasing cost conflicts for the baseline
approach. As our approach is able to place requests on any already leased VM instance, there
already exists a relatively large amount of scheduling flexibility for the more resource-intensive
service types, leading to similar SLA adherence values, independent of the required resources
for process steps.

All other observations already discussed in Subsection 6.4.5 for more resource-intensive
process steps can also be observed in the evaluation runs discussed in this section, e.g., the
consequences of more lenient deadlines.

Pyramid Arrival of Less Resource-Intensive Processes: Next, we compare the execution
results for less resource-intensive processes as presented in Tables 6.1 and 6.8 for the pyramid
arrival pattern as introduced in Function 6.1. We achieve the results as presented in Figure 6.9
and Table 6.10. Figure 6.9a shows the results for process requests with a strict deadline while
Figure 6.9b depicts the results for lenient process requests.

Table 6.10: Evaluation Results - Pyramid Arrival (Less Resource-Intensive Processes)

Arrival Pattern Pyramid Arrival
FFSIPP Baseline (SIPP)

SLA Level Strict Lenient Strict Lenient
Number of total
Process Requests 100

Interval between
Process Requests 60 Seconds

Number of Parallel
Process Requests f(n) (see 6.1)

SLA Adherence in %
(Standard Deviation)

97.33
σ = 0.58

100.00
σ = 0.00

98.67
σ = 0.58

100.00
σ = 0.00

Total Makespan in Minutes
(Standard Deviation)

63.67
σ = 2.31

71.67
σ = 0.58

61.67
σ = 1.15

63.33
σ = 4.04

Leasing Cost
(Standard Deviation)

1018.67
σ = 25.97

996.67
σ = 48.33

2619.00
σ = 91.02

2430.33
σ = 114.29

Penalty Cost
(Standard Deviation)

4.33
σ = 1.15

0.00
σ = 0.00

3.6
σ = 0.58

0.00
σ = 0.00

Total Cost
(Standard Deviation)

1023.00
σ = 24.88

996.67
σ = 48.34

2622.67
σ = 90.47

2430.33
σ = 114.29

147

FFSIPP Baseline (SIPP) Process Arrivals

0 5 1 0 1 5 2 0 2 5 3 0 3 5 4 0 4 5 5 0 5 5 6 0 6 5 7 0 7 5 8 0

Time in Minutes

0

5

1 0

1 5

2 0

2 5

3 0

3 5

4 0

4 5
#

 L
e

a
se

d
 C

P
U

 C
o

re
s

0

1

2

3

4

5

6

7

8

9

1 0

#
 A

rrive
d

 P
ro

ce
sse

s

(a) Strict SLA

FFSIPP Baseline (SIPP) Process Arrivals

0 5 1 0 1 5 2 0 2 5 3 0 3 5 4 0 4 5 5 0 5 5 6 0 6 5 7 0 7 5 8 0

Time in Minutes

0

5

1 0

1 5

2 0

2 5

3 0

3 5

4 0

4 5

#
 L

e
a

se
d

 C
P

U
 C

o
re

s

0

1

2

3

4

5

6

7

8

9

1 0

#
 A

rrive
d

 P
ro

ce
sse

s

(b) Lenient SLA

Figure 6.9: Evaluation Results - Pyramid Arrival of Less Resource-Intensive Processes

Again, we can observe that our approach leads to about 2.5 times lower leasing costs for
process requests composed of less resource-intensive process steps when compared to the base-
line. We can also make the same observations for SLA adherences as we already did for the
constant arrival of less resource-intensive processes, as well as the other observations discussed
in Subsection 6.4.5 for more resource-intensive process steps.

In this section, we have demonstrated that the good results presented for resource-intensive
process requests with different arrival patterns in the previous section, can even be outperformed
in terms of leasing cost minimization when regarding less resource-intensive processes. For the
described settings we achieve a high SLA adherence of over 97%, also for strict deadlines.

6.4.7 Multiple Hour Evaluation Run with 60 Minute long BTUs

Finally, we present the exemplary result of an 8 hour long evaluation run that considers more
realistic and common BTUs of 60 minutes. The presented results were achieved using the
resource-intensive service types presented in Table 6.2. The used process request arrival pat-
tern is defined as a mix of all already used arrival patterns and summarized in Table 6.11.

We start with the arrival of 150 process requests with strict deadlines, the first 50 following
the constant arrival pattern and the other 100 following the pyramid arrival pattern. Afterwards,
we send 150 more process requests with lenient deadlines, the first 50 following the constant
arrival pattern and the other 100 following the pyramid arrival pattern. This arrival scenario is
repeated 3 times, resulting in a total of 900 process request arrivals.

148

Table 6.11: Multiple Hour Arrival Pattern

Request Batch
Size

Seconds between
Request Batches

Process
Deadlines

Total
Requests

Minutes
Sent

5 120 strict 50
0-18

144-162
288-306

f(n) (see 6.1) 60 strict 100
20-71

164-215
308-359

5 120 lenient 50
72-90

216-234
360-378

f(n) (see 6.1) 60 lenient 100
92-143
236-287
380-431

The results of the multi-hour evaluation for resource-intensive process requests and hour-
long BTUs are shown in Figure 6.10 and Table 6.12.

We can again observe that our approach was able to cut the leasing costs nearly in half while
maintaining a decent SLA adherence of over 94%. In contrast to the other evaluation runs, the
SLA adherence of our approach is now on average lower than before. A reason for this can be
that for this setting the system sacrifices some more SLA adherence in favor of lower leasing
costs for the VM instances that are leased for a full hour. By defining higher penalty costs for
SLA violations, this behavior can be controlled such that higher leasing costs are accepted for a
better SLA adherence.

In contrast, the baseline approach shows on average a higher SLA adherence than in the
previous runs with short BTUs. This can be explained by the fact that a rather large amount of
computational resources are leased from the beginning, which allows for more pre-scheduling
decisions to be made, such that more process instances are finished ahead of time. When looking
at Figure 6.10, it can be clearly seen that a rather large amount of computational resources were
leased during the first BTU of 60 minutes.

149

Leased CPU Cores FFSIPP Reduced Model & Transformation

Leased CPU Cores Baseline Process Arrivals

0 60 120 180 240 300 360 420 480

Time in Minutes

0

5

1 0

1 5

2 0

2 5

3 0

3 5

4 0

4 5

#
 L

e
a

s
e

d
 C

P
U

 C
o

re
s

0

1

2

3

4

5

6

7

8

9

1 0

#
 A

rriv
e

d
 P

ro
c
e

s
s
e

s

Figure 6.10: Multiple Hour Evaluation Run with 60 Minute BTUs

Table 6.12: Multiple Hour Evaluation Run with 60 Minute BTUs

Arrival Pattern Mixed (see 6.11)
SLA Level Mixed (see 6.11)

FFSIPP Baseline
Number of Total
Process Requests 900

Interval Between
Process Requests 60 to 120 Seconds

Number of Parallel
Process Requests 1 to 5

SLA Adherence in % 94.22 98.78
Total Makespan in Minutes 446 446
Leasing Cost 22759 39063
Penalty Cost 298 22
Total Cost 23057 39085

150

6.5 Summary

In this chapter, we presented an extensive evaluation of our approach, starting with a detailed
discussion of the working example and its results as well as a comparison to other container-
based approaches that allow for an earlier scheduling of process steps. We pointed out some
important observations that could be made from the scheduling decisions and discussed poten-
tial extensions, such as rescheduling, migration, pre-scheduling, and prediction that can help in
finding even better solutions. We also compared the execution and results of the working exam-
ple when using a hypervisor-based approach to the execution and results achieved when using
our approach, pointing out the strengths of container-based approaches.

In our detailed quantitative evaluation, we introduced a number of evaluation process mod-
els, different process request arrival patterns, and system settings and presented the associated
execution results. We discussed the results achieved when directly solving the full model by
using a MILP solver and explained its shortcomings. Afterward, we evaluated the results of the
reduced model after transformation while comparing it to a strong hypervisor-based approach.
We showed that due to the overall more efficient use of leased computational resources, our
approach calculates scheduling results with 2 to 2.5 times lower leasing costs as well as a high
SLA adherence when compared to the baseline.

151

CHAPTER 7
Conclusion and Future Work

“Go as far as you can see; when you get there, you’ll be able to see farther.”

– J.P. Morgan

“Those who have the privilege to know have the duty to act, and in that action are
the seeds of new knowledge.”

– Albert Einstein

In this final chapter, we summarize the main results achieved in this thesis. We outline
our contributions and the way we enhanced the state of the art work in business process task-
scheduling and resource allocation. We conclude the thesis by discussing open topics for future
work and ongoing trends in related research areas which can build on our presented contribu-
tions.

7.1 Summary of Contributions

The advent of cloud computing has lead to a simple, cost-effective, and on-demand access to
supposedly unlimited computational resources for everyone, from small startup companies to
large corporations. Hereby the realization of elastic processes, i.e., business processes that are
carried out on elastic cloud infrastructure, has been enabled. In this thesis, we tackle the prob-
lem of business process enactment on cloud-based infrastructure while making use of Docker
containers to incorporate the benefits that come from the use of lightweight containerization
technologies.

When looking at the state of the art solutions in related fields as presented in Chapter 3,
we discussed a number of heuristics and optimization algorithms that have been proposed for
hypervisor-based cloud architectures. Most solutions present approaches for the enactment of
single services, while only little work has been proposed considering the process perspective.

153

When considering the current work on containerization technologies there exist only a small
number of rather new approaches for single service task-scheduling problems, while, to the best
of our knowledge, no other approaches for container-based scheduling of business processes
have been proposed so far.

In this thesis we introduced multidimensional optimization approaches and heuristics to
allow for the enactment of elastic business processes on container-based cloud architectures,
making use of the lightweight properties of software containers. Our approaches enable a
fine-grained resource allocation and task-scheduling for business processes while scaling the
cloud-based architecture over four dimensions, i.e., horizontally and vertically, each for VM re-
sources and Docker containers. Our solutions consider process-related quality measures defined
in SLAs, in particular execution deadlines, and also account for complex process models.

We formulated a general multi-objective optimization model using MILP for solving schedul-
ing problems during optimization rounds. The general model (also referred to as the full model)
considers enactment costs and allows for an optimal allocation of resources, based on the knowl-
edge during one optimization round, by minimizing states of resource over-provisioning or
under-provisioning. The approach focuses on the minimization of VM leasing costs as well as
penalty costs for SLA violations while considering times for VM and container leasing, startup,
and deployment. Furthermore, the approach minimizes unused leased resources and considers
the importance of scheduled service invocations. We extended the general approach to conform
to our special case which only allows the deployment of one container of a certain service type
on one individual VM instance, while still allowing the deployment of multiple containers of
different service types on the same VM and the deployment of multiple containers of the same
service type on different VM instances.

Furthermore, we proposed an alternative realization of the extended general approach, with
a lower computational complexity. Therefor, we presented a reduced MILP model that directly
schedules service invocations on VM instances, while considering container-based properties,
and afterwards performs a transformation step to transform the result of the reduced model to a
container-based scheduling result of the full model.

As an alternative to a rather heavyweight exact MILP-based optimization solution, we also
proposed a general design of a genetic algorithm-based approach for solving the reduced opti-
mization problem. The result of this genetic algorithm can be transformed in the same way we
transformed the result of the reduced model, such that we receive a result for the full model.

We extended ViePEP, an initially hypervisor-based BPMS research prototype, to allow for
a fine-grained, elastic enactment of concurrent business processes on flexible container-based
cloud architectures. We implemented both, the full model, as well as the reduced model using a
state-of-the-art commercial MILP solver. Furthermore, we implemented the result transformer
for the reduced model.

Additionally, we extended ViePEP to allow for fast and efficient simulations of business
process executions, by developing a new simulated time component that realizes a discretization
of the system’s time. This component can especially help with large-scale simulations that allow
for a better design of representative real world scenarios and will also be helpful for future work.

154

Finally, we extensively evaluated our approach and the developed implementations. To begin
with, we provided a detailed evaluation of the working example. We compared our approach to
an existing hypervisor-based scheduling and resource allocation approach for elastic processes
and discussed multiple important observations regarding scheduling performance and possible
further improvements. Furthermore, we performed multiple evaluations of our implemented
BPMS prototype. We showed the validity of the full model and compared its execution result to
the reduced model after transformation. Multiple evaluations with different settings and precon-
ditions for our container-based reduced model after transformation have demonstrated a strong
performance gain, especially in terms of resource utilization of our approach. When compared
to a hypervisor-based solution following previous work [63], our solution was able to cut leasing
costs in half and in some cases lead to even higher savings.

7.2 Future Work

This thesis examines different approaches to realize the execution of elastic processes on container-
based cloud infrastructure. Throughout this work, we mentioned some relevant points that
should be considered in more detail in future work. Some of these remarks can be found in
Section 6.2, as well as in Sections 4.4 and 5.2. We have identified the following points that
should be considered and evaluated in more detail by future research on the topic of elastic
process execution.

• To allow for better scheduling decisions, a prediction model for future process requests
should be implemented. Such a model could be realized using predictive analytics and
machine learning approaches. We currently use the information about the current and fu-
ture state of the known process requests, but as new process instances can arrive at any
time, a prediction model can help in making better scheduling decisions over multiple
optimization time periods. One possible improvement could involve pre-scheduling deci-
sions of postponable process steps and the early leasing of computational resources, which
can optimize the future system landscape, and minimize total leasing costs.

• To calculate the future workload of indeterministic process executions, our approach cur-
rently performs a worst-case analysis. We consider the worst possible path and assume
that we have to lease additional resources and deploy corresponding containers for all
future process steps. Future work should experiment with with predictive approaches,
and/or consider the average case or even the best case when evaluating the next steps and
making scheduling decisions.

• Whenever a change of the system state is detected, past scheduling decisions that have
not been enacted yet should be revised, leading to potential rescheduling decisions for
scheduled but not running process steps. Such reschedulings can be implemented easily
and could potentially lead to further performance gains.

155

• A more difficult form of rescheduling that may lead to cost savings are migrations of run-
ning process steps along with their container instances. By allowing migrations of con-
tainers from one VM instance to another, remaining leasing durations and free resources
could be utilized more efficiently. At the same time, migrations come with a wide number
of necessary considerations and additional overheads that need to be weighed out [171].
Comparable approaches for migration-aware optimization strategies on the level of VMs
have been proposed recently [132] and could be integrated with our approach.

• As the performance of the proposed model strongly depends on the number of available re-
sources that can be considered for scheduling decisions, the proposed system requires the
realization of further heuristics to easily scale for larger system landscapes. When look-
ing at the set of all available resources, the number and type of considered computational
resources for an optimization round should be limited, according to the next schedulable
process steps.

• We proposed a solution for the extended general MILP-based optimization model from
Section 4.4. By removing the last Constraint 4.48, we would allow the deployment of
multiple containers of the same service type on one VM instance. As already discussed,
this additional isolation can be desirable in many cases, e.g., for regulatory and security
reasons, state isolations, QoS guarantees, and billing in multi-tenant environments. Future
work can build upon this work and introduce additional constraints and heuristics for
realizing such use cases that demand a certain form of isolation for service executions.
For a better system scaling, a comparable heuristic as described in the previous point for
VM instances should also be explored on container level, i.e., an approach that starts the
optimization model with a certain set of configured containers, depending on the next
schedulable steps.

• In Section 5.2 of this thesis we also proposed the general concept and important guidelines
of a genetic algorithm for solving our defined problem. Future work still needs to define
this algorithm in more detail, especially considering the selection strategy, crossover, and
mutation operations. It should be explored and evaluated if the use of such a genetic
algorithm can lead to good results for larger problem instances in a short amount of time.

• Our approach can consider different linear pricing models, VM configurations, and BTUs
for different VM types of multiple cloud providers. As there also exist different pricing
models, e.g., setting individual lease durations for leased resources or bid-based leases like
offered by EC2 spot instances1, future work should consider their effect on optimization
outcomes.

1https://aws.amazon.com/ec2/spot/

156

https://aws.amazon.com/ec2/spot/

• When regarding different cloud offerings, our approach focuses on the leasing costs of the
computational resources. When designing a system for hybrid cloud environments, also
other measures have to be explored. Our approach can be extended to also consider data
transfer costs [62], or to allow for different scheduling strategies for more data-intensive
or more compute-intensive process steps [171]. Future work should also investigate meth-
ods to schedule sensitive data with scheduling restrictions, to optimize communication
pathways between process steps, or to optimize the use of shared storage facilities while
focusing on minimizing communication costs between nodes [97].

• The presented approach is designed for utilizing cloud offerings, while we assume that
company-internal private clouds are provided and billed by an organizational unit, similar
to external cloud offerings. Future work can extend this approach by additionally opti-
mizing the use of internal computational resources on a physical level [97]. Large savings
in terms of energy and maintenance costs may be achieved when also accounting for the
placement of VMs on physical hosts that are directly controlled by a service provider.

• Finally, our approach was designed for standard automated business processes of different
areas like manufacturing, finance, healthcare, or banking, but the presented concepts can
also be applied and should be evaluated for the use in IoT scenarios and for microservice-
based architectures.

157

APPENDIX A
Reduced Optimization Model

For completeness of contents in the following we fully write out the reduced MILP optimization
problem solved by our MILP solver as described in Subsection 5.2.1.

A.1 System Model

This section presents the system model required for solving the reduced optimization problem.

Process, System and Decision Variables

Table A.1: System Model: Process Variables

Variable Name Description
p ∈ P =

{
1, . . . , p#

}
The set of process models is represented by P , while p indicates
a specific process model.

ip ∈ Ip =
{

1, . . . , i#p
}

The set of process instances of a specific process model p is rep-
resented by Ip, while ip indicates a specific process instance of
the process model p.

jip ∈ Jip =
{

1, . . . , j#ip

}
The set of process steps not yet executed (and not yet started) to
realize a specific process instance ip is represented by Jip , while
jip refers to a specific process step of the process instance ip.

j∗ip ∈ J
∗
ip
⊆ Jip The set of next process steps that have to be scheduled for exe-

cution to realize a specific process instance ip is represented by
J∗ip , while j∗ip refers to a specific next process step of the process
instance ip.
Note: AND-Constructs can execute multiple paths in parallel and
can, therefore, have multiple next process steps in the set J∗ip .

Continued on next page –>

159

Table A.1: System Model: Process Variables

jrunip
∈ Jrun

ip
6⊂ Jip The set of currently running and not finished process steps of a

specific process instance ip is represented by Jrun
ip

, while jrunip
refers to a specific currently running process step of the process
instance ip.
Note: AND-Constructs can execute multiple paths in parallel and
can, therefore, have multiple currently running process steps in
the set Jrun

ip
.

DLip The deadline for the enactment of the process instance ip, is de-
fined by DLip and refers to a certain point in time.

DLj∗ip
The deadline for starting the enactment of a next process step
j∗ip such that it still meets its process deadline DLip , while per-
forming a worst-case analysis considering all subsequent steps is
defined by DLj∗ip

and refers to a certain point in time.

ωDL The weighting factor for controlling the effect of deadline con-
straints is indicated by ωDL.

rCjip , r
R
jip

The resource demands of a process step j of the process instance
ip in terms of CPU (rCjip) and RAM (rRjip) are indicated by the
respective terms.

Table A.2: System Model: Optimization Time Variables

Variable Name Description
t, tjip A specific point in time is specified by t. The point in time at

which a specific service invocation jip was scheduled is referred
to as tjip

τt, τt+1 The current time period starting at a specific point in time t is
indicated by τt. τt+1 refers to the next time period starting at
t + 1. At the beginning of each time period the optimization
model is calculated based on all currently available information
and its results are enacted.

ε The minimum time period that is at least needed between two
optimization runs is defined by ε in milliseconds.

Table A.3: System Model: Virtual Machines

Variable Name Description
v ∈ V =

{
1, . . . , v#

}
The set of VM types is represented by V , while v indicates a
specific VM type.

Continued on next page –>

160

Table A.3: System Model: Virtual Machines

kv ∈ Kv =
{

1, . . . , k#v
}

The set of leasable VM instances of type v is represented by Kv,
while kv is the kth VM instance of type v.
Note: For a time period starting at t, we assume the number of
leasable VMs of type v to be limited with k#v .

BTUv The BTU of a VM instance kv of VM type v is indicated by
BTUv. A BTU is a billing cycle and the minimum leasing du-
ration for a VM instance kv. A VM instance may be leased for
multiple BTUs in a row, but releasing a VM before the end of a
BTU leads to a waste of paid resources.

BTUmax An arbitrary large upper bound of possible leasable BTUs for any
VM instance kv is expressed by the helper variable BTUmax.

cv This variable represents the leasing cost for VM instances of type
v for one full BTU.

γ(v,t) ∈ N+
0 This variable indicates the total number of BTUs to lease any

VMs of type v in the time period τt.
β(kv ,t) ∈ {0, 1} This variable indicates if the VM instance kv is/was already run-

ning at the beginning of the time period τt.
g(kv ,t) ∈ {0, 1} This variable indicates if the VM instance kv was already running

at the beginning of time period τt or is being leased during τt.
d(kv ,t) This variable indicates the remaining leasing duration of the VM

instance kv at the beginning of the time period τt.
ωd The weighting factor for controlling the effect of the remaining

leasing duration on the optimization outcome is indicated by ωd.
sCv , s

R
v The resource supplies of a VM type v in terms of CPU (sCv) and

RAM (sRv) are indicated by the respective terms.
fCkv , f

R
kv

The free resources in terms of CPU (fCkv) and RAM (fRkv) of a
VM instance kv are indicated by the respective terms.

ωC
f , ω

R
f Weighting factors for controlling the effect of free resources in

terms of CPU (ωC
f) and RAM (ωR

f) on the optimization outcome
are indicated by the respective terms.

Table A.4: System Model: Decision Variables

Variable Name Description
y(kv ,t) ∈

{
N+
0

}
This variable indicates how often (i.e., for how many BTUs) the
VM instance kv should be leased in the time period τt.

x(jip ,kv ,t) ∈ {0, 1} This variable indicates if process step j of process instance ip
should be invoked on VM kv in the time period τt.

161

Table A.5: System Model: Containers and Services

Variable Name Description
st ∈ ST =

{
1, . . . , st#

}
The set of all container types mapping all possible service types
is represented by ST , while st indicates a specific container type
for a certain service type.

stj The service type of a certain process step j is indicated by stj .
z(st,kv ,t) ∈ {0, 1} This variable indicates if any containers of service type st have

already been deployed on a VM instance kv (and hence the con-
tainer image for starting new container instances of service type
st has been downloaded on kv) until the time period τt.

ωz The weighting factor for controlling the effect of existing images
on VM instances for the optimization outcome is indicated by ωz .

M An arbitrary large upper bound of possible container deployments
for any VM instance kv is expressed by the helper variable M .

N An arbitrary large upper bound of possible service invocations for
any container instance cst is expressed by the helper variable N .

Startup, Deployment, Execution, and Penalty Times

For calculating execution times for process instances, our approach considers the execution times
of single process steps, startup times for VMs, the time for pulling new Docker images onto
running VMs instances, and the deployment times for starting Docker containers from Docker
images. Our approach is based on a worst-case assumption, meaning for calculating remaining
execution times and scheduling plans the system will assume the worst-case of having to lease a
new VM instance, pull the needed image onto the instance and deploy a new container for each
remaining step. Table A.6 summarizes the used variables for describing execution times.

Table A.6: System Model: Startup, Deployment, Execution, and Penalty Times

Variable Name Description
∆v,∆ The time in milliseconds to start a new VM of type v is indi-

cated by ∆v. The maximum VM-startup time of any type, i.e.
maxv∈V (∆v) is expressed by ∆.

∆st The time for pulling a container image for a service type st on a
VM instance for the first time is expressed by ∆st.

∆cst The time for starting a container instance from an existing image
for a service type st on a VM instance is expressed by ∆cst .

eip The remaining execution duration of a process instance ip is ex-
pressed by eip . It does not include the execution and deployment
time of the process steps that will be scheduled for the current
optimization period τt, nor the remaining execution time of the
currently already running steps.

Continued on next page –>

162

Table A.6: System Model: Startup, Deployment, Execution, and Penalty Times

l ∈ L =
{

1 . . . l#
}
, The set of all paths is represented byL, while l indicates a specific

path within a process.
La ∪ Lx ∪RL ⊆ L The set of possible paths for AND-blocks La, XOR-blocks Lx

and repeat loop constructs RL are expressed by the respective
terms.

re The maximum repetitions of a repeat loop are indicated by re.
eseqip

, eLa
ip
, eLx

ip
, eRL

ip
The remaining execution duration of sequences (eseqip

), AND-

blocks (eLa
ip

), XOR-blocks (eLx
ip

) and repeat loop constructs (eRL
ip

)
of the process instance ip are expressed by the respective terms.
The terms do not include the remaining execution time of the cur-
rently running steps nor the execution and deployment times for
process steps that will be scheduled for the current optimization
period τt.

êsip , ê
l
ip

The remaining combined service execution duration, time for
pulling needed container images, container deployment and VM
startup time for all not yet scheduled service invocations of se-
quences or repeat loop blocks (êsip) and paths in AND- or XOR-
blocks (êlip) that still need to be invoked to finalize the enactment
of the process instance ip are expressed by the respective terms.
Those values do not include the remaining execution time of al-
ready running process steps jrunip

or process steps that are being
scheduled in the current optimization period τt.

exj∗ip The combined execution duration, container deployment and
VM-startup time of the next to be scheduled process step j∗ip is
expressed by exj∗ip .

exjrunip
The remaining execution time of process steps already scheduled
in previous periods and not finished until the start of τt is ex-
pressed by exjrunip

.
epip The penalty time units of a process instance ip, i.e., the execu-

tion duration of ip that occurs beyond the deadline DLip of ip, is
expressed by epip .

cpip The penalty cost per time unit of delay of the process instance ip
is represented by cpip .

163

A.2 Objective Function

min
∑
v∈V

(
cv ∗ γ(v,t)

)
+
∑
p∈P

∑
ip∈Ip

(
cpip ∗ e

p
ip

)
+
∑
p∈P

∑
ip∈Ip

∑
j∗ip∈Jip

∑
v∈V

∑
kv∈Kv

(
ωz ∗ (1− z(stj ,kv ,t)) ∗ x(jip ,kv ,t)

)
+
∑
p∈P

∑
ip∈Ip

∑
j∗ip∈Jip

∑
v∈V

∑
kv∈Kv

(
ωd ∗ d(kv ,t) ∗ x(jip ,kv ,t)

)
+
∑
v∈V

∑
kv∈Kv

(
ωC
f ∗ fCkv + ωR

f ∗ fRkv
)

+
∑
p∈P

∑
ip∈Ip

∑
j∗ip∈Jip

∑
v∈V

∑
kv∈Kv

(
ωDL ∗ (DLj∗ip

− τt) ∗ x(jip ,kv ,t)
)

(A.1)

The objective function in A.1 is subject to minimization under the subsequently following
constraints. It considers six terms for calculating a scheduling plan, indicated by the decision
variable x(jip ,kv ,t), which decides on which VM instance to schedule a service invocation.

• Term 1 - minimize total VM leasing costs: The first term, i.e.,
∑

v∈V
(
cv ∗ γ(v,t)

)
, calcu-

lates the total costs for leasing VM instances of each VM type v at time t, by considering
the leasing costs cv for the VM types and the total number of leased BTUs γ(v,t) that VM
instances of the corresponding type v are leased at t. The aim is to minimize the total
costs for leasing VMs.

• Term 2 - minimize penalty costs: The second term, i.e.,
∑

p∈P
∑

ip∈Ip
(
cpip ∗ e

p
ip

)
, cal-

culates the total penalty costs that arise from scheduling decisions that lead to execution
times for process instances beyond their defined deadlines in time t or in the future. The
penalty time epip of a process instance ip is calculated according to a worst-case analysis.
The aim is to minimize such penalty costs and therefore make sure that incoming process
requests are executed in time, as defined in their SLAs.

• Term 3 - minimize container deployment time: The third term minimizes the sum of
time needed for deploying new container instances on VM instances kv. As the actual
container instances are only generated during the transformation step, we cannot directly
consider the scheduling of container instances in the optimization problem. Instead, we
consider the placement of service steps on the VM instance and use the service type of the
scheduled process steps to indirectly calculate the potential deployment time for container
instances that are generated during the transformation step. The subterm (1 − z(stj ,kv ,t))
makes sure that the weighting factor ωz is only considered when the cache for container
deployment does not exist on the VM instance kv. As the full term is minimized, the
system prefers choosing VM instances for assigning service invocations where the cache
for deploying the needed container instance already exists.

164

• Term 4 - maximize future resource supply of already leased VMs: The fourth term tries to
maximize the future resource supply of already leased VM instances, by giving a prefer-
ence to directly scheduling service invocations on VMs with a shorter remaining leasing
duration d(kv ,t) compared to other VMs with already existing longer leasing durations.
Although at time t this preference does not lead to any cost-based advantages, it assures
that the already leased resources offer more long-running resources for future optimization
periods. The term calculates the remaining leasing duration of all VMs using a weighting
factor. As we want to give a preference to deploying containers on VM instances with a
small leasing duration, we minimize the term to maximize the future remaining leasing
durations of available resources.

• Term 5 - minimize sum of unused present VM resources: The fifth term minimizes the
sum of all leased but unused computational resource capacities in terms of CPU (fCkv) and
RAM (fRkv) of all leased VM instances. Due to this term, our approach makes sure to not
only schedule all service invocations that can not be delayed any further without leading
to penalty costs but to also pre-schedule service invocations that may already be executed
but have a distant deadline. We consider this term using weighting factors for CPU and
RAM resources, such that we give more importance on the first two terms of our objective
function.

• Term 6 - maximize the importance of scheduled service invocations: The last term calcu-
lates the difference between the last possible scheduling deadline of the next schedulable
steps when performing a worst-case analysis based on the current time. The term con-
siders all process instances and aims at giving a scheduling preference to process steps
with closer deadlines. The term is responsible for defining the importance of schedulable
process steps that do not necessarily have a pressing process deadline on remaining free
resources. Note that in contrast to the related work [63], we do consider the actual enact-
ment deadline for the next schedulable steps based on the worst-case analysis instead of
simply comparing the overall process deadlines. We also define the term such that past
process deadlines can be considered and steps that are past their deadline receive a higher
scheduling importance. We consider a weighting factor ωDL to assign a lower weight to
the term.

A.3 Constraints

Constraint A.2 makes sure that deadlines are considered for each process instance ip. The con-
straint does not guarantee that deadlines are not violated, but it defines the penalty times epip
of process instances which are subject to minimization in the presented term 2 of the objective
function. The constraint demands that the current time plus the remaining worst-case execution
time of process instances is smaller or equal to the defined deadline plus the potential penalty
time which occurs when process instances finish after their deadline. This constraint considers
the remaining execution time including the time of process steps that are being scheduled during
the current time period and process steps that have already been scheduled in previous periods
and are still running.

165

τt + exrunjip
+ ex∗jip + eip 6 DLip + epip (A.2)

Constraint A.3 helps in defining the start of the next optimization period τt+1, by demanding
that the start of the next optimization period τt+1 plus the remaining worst-case execution time
of process instances is smaller or equal to the respectively defined process deadlines plus the
possible penalty times. It should be noted that in contrast to related work [63] our approach only
considers the worst-case execution time of all process steps that have not been scheduled yet
until τt and have to be scheduled in a later optimization period τt+1 or later for the calculation
of the start time of the next optimization period τt+1. At this stage, the approach especially
does not consider the execution time of currently running process steps or process steps that
are scheduled for execution in τt, as the earliest possible time when next steps of a process
instance can be scheduled is when the previous steps, already running or scheduled in τt, are
finished. Adding the remaining time of the currently running or scheduled steps to the left side
of Equation A.3 can potentially lead to triggering premature optimization rounds at a t+1 where
predecessor steps of the next schedulable steps are not finished yet (and hence no new steps can
be scheduled).

Constraint A.4 makes sure that the next optimization time period τt+1 is defined to be in the
future. We use a value ε > 0 to avoid optimization deadlocks arising from a too small value for
τt+1.

The start of the next optimization period is directly calculated as a result of the previous
optimization rounds. Nevertheless, as this optimization model only refers to one optimization
round and only operates based on the current knowledge, the optimization can also be triggered
by other events, like newly incoming requests or finalized process steps and run earlier than the
here calculated time t+ 1.

τt+1 + eip 6 DLip + epip (A.3)

τt+1 > τt + ε (A.4)

Equation A.5 calculates the remaining execution duration for all process instances ip. The
remaining execution duration eip does not include the execution and deployment time of the
process steps that will be scheduled for the current optimization period τt, nor the remaining
execution time of the currently already running steps.

eip = eseqip
+ eLa

ip
+ eLx

ip
+ eRL

ip (A.5)

166

The overall remaining execution duration eip of a process instance ip is the sum of the ex-
ecution times of the different process patterns that the process instance is composed of. We
aggregate the upper bound execution times of the different process patterns, following the ap-
proach by Jäger et al. [75]. The worst-case execution times for sequences are defined in Equation
A.6, for AND-blocks in Equation A.7, for XOR-blocks in Equation A.8 and for Repeat Loop
blocks in Equation A.9. For AND-blocks the longest remaining execution time has to be con-
sidered naturally. As we are using a worst-case analysis, we also consider the longest path for
the calculation of the remaining execution time of XOR-blocks. For Repeat Loop blocks the sub
path execution time is multiplied by the maximal possible amount of repetitions re.

Equations A.6 - A.9 consider the overall remaining execution time of all not yet running
process steps for each process instance ip as defined by the two helper variables êsip for sequences
and êlip for XOR- and AND-blocks in Equations A.11 and A.12. Since we perform a worst-
case analysis, both equations consider the worst-case VM startup time, the time for pulling
the respective Docker image onto the running VM instance and the time for starting a new
container instance for each remaining process step jip . If a process step j∗ip is being scheduled
in the current time period τt, Equations A.6 - A.9 subtract the worst-case execution time of the
scheduled steps as defined in Equation A.10 from the overall remaining execution time.

eseqip
=

{
êsip − exj∗ip , if x(j∗ip ,kv ,t) = 1

êsip , otherwise
(A.6)

eLa
ip

=

 max
l∈La

(êlip − exj∗ip) , if x(j∗ip ,kv ,t) = 1

max
l∈La

(êlip) , otherwise
(A.7)

eLx
ip

=

 max
l∈Lx

(êlip − exj∗ip) , if x(j∗ip ,kv ,t) = 1

max
l∈Lx

(êlip) , otherwise
(A.8)

eRL
ip =

{
re ∗ êsip − exj∗ip , if x(j∗ip ,kv ,t) = 1

re ∗ êsip , otherwise
(A.9)

exj∗ip =
∑
v∈V

∑
kv∈Kv

(
(ej∗ip + ∆cstj

+ ∆stj + ∆) ∗ x(j∗ip ,kv ,t)
)

(A.10)

êsip =
∑

jip∈J
seq
ip

(ejip + ∆cstj
+ ∆stj + ∆) (A.11)

167

êlip =
∑

jip∈J l
ip

(ejip + ∆cstj
+ ∆stj + ∆) (A.12)

Constraints A.13 and A.14 consider for each VM instance kv the sum of CPU and RAM
resources required by all service invocations that either already run or are scheduled to run in
any container on the VM instance in τt. These resources need to be smaller or equal to the
resource supply in terms of CPU (sCv) and RAM (sRv) that is offered by VM instances of type v.

∑
p∈P

∑
ip∈Ip

∑
jip∈(Ji∗p∪J

run
ip

)

(rCjip ∗ x(jip ,kv ,t)) 6 s
C
v (A.13)

∑
p∈P

∑
ip∈Ip

∑
jip∈(Ji∗p∪J

run
ip

)

(rRjip ∗ x(jip ,kv ,t)) 6 s
R
v (A.14)

Constraints A.15 and A.16 define for each VM instance v ∈ V, kv ∈ Kv the remaining free
capacities in terms of CPU and RAM that are not directly allocated to service instances (which
are later packed into container instances). As expressed by the variable g(kv ,t) ∈ {0, 1}, which
is further defined in Constraints A.17 and A.18, we only consider VM instances that are either
already running or are being leased in τt.

g(kv ,t) ∗ s
C
v −

∑
p∈P

∑
ip∈Ip

∑
jip∈(Ji∗p∪J

run
ip

)

(rCjip ∗ x(jip ,kv ,t)) 6 f
C
kv (A.15)

g(kv ,t) ∗ s
R
v −

∑
p∈P

∑
ip∈Ip

∑
jip∈(Ji∗p∪J

run
ip

)

(rRjip ∗ x(jip ,kv ,t)) 6 f
R
kv (A.16)

Constraints A.17 and A.18 define the value of the helper variable g(kv ,t) ∈ {0, 1} which
takes the value of 1 if a VM instance is either already running (βkv = 1) or being leased for at
least one BTU (y(kv ,t) ≥ 1) in τt. g(kv ,t) is restricted to be a boolean variable in Constraint A.29.

g(kv ,t) 6 β(kv ,t) + y(kv ,t) (A.17)

β(kv ,t) + y(kv ,t) 6 BTU
max ∗ g(kv ,t) (A.18)

168

Constraint A.19 makes sure that for all VM instances v ∈ V, kv ∈ Kv a VM instance kv will
be leased or is running if service invocations are to be placed (within later defined containers) on
it. Therefore, we calculate the number of process steps that are scheduled or already running on
kv and make use of our helper variable g(kv ,t) as defined in Constraints A.17 and A.18, as well
as a helper variable (M ∗ N) that presents an arbitrarily large number, e.g., 100*10,000, as an
upper bound of possible container deployments per VM instance times possible parallel service
invocations per container instance.

∑
p∈P

∑
ip∈Ip

∑
jip∈(J∗

ip

⋃
Jrun
ip

)

x(jip ,kv ,t) 6 g(kv ,t) ∗ (M ∗N) (A.19)

Constraint A.20 makes sure that for all VM instances v ∈ V, kv ∈ Kv and all running or
schedulable process steps jip ∈ (J∗ip

⋃
Jrun
ip

), the scheduled service invocations jip will not be
moved to other VM instances. On the lefthand side, we consider the remaining execution time
of a process step jip for each process step scheduled on a VM instance (x(jip ,kv ,t) = 1). In case
that the process step jip is not running yet, we also have to consider the time to pull a new image
and starting the needed container, if the image does not exist and the container is not running on
the scheduled VM instance (z(stj ,kv ,t) = 0). Furthermore, if the required VM instance kv is not
up and running yet (β(kv ,t) = 0) , we also need to add the time for starting the new VM instance
kv to our calculation of the remaining execution time. We demand the calculated remaining
execution time to be smaller or equal to the remaining leasing duration d(kv ,t) of the allocated
VM instance kv. If the currently remaining leasing duration is smaller, the corresponding VM
instance kv needs to be leased for y(kv ,t) additional BTUs to satisfy the equation.

(
ejip + (∆cstj

+ ∆stj) ∗ (1− z(stj ,kv ,t)) + ∆ ∗ (1− β(kv ,t))
)
∗ x(jip ,kv ,t)

6 d(kv ,t) ∗ β(kv ,t) +BTUkv ∗ y(kv ,t)
(A.20)

Similar to Constraint A.20, Constraint A.21 together with Constraint A.24 ensure that all
service invocations that are already running in a container on a certain VM instance at the start
of τt, will not be migrated to another VM instance (or container) during their invocation. We
explicitly reference the already assigned VM instance kv by the additional indices in Constraint
A.21 and do not need to consider additional times for pulling container images or starting VM
instances.

e
runkv
jip

6 d(kv ,t) ∗ β(kv ,t) +BTUkv ∗ y(kv ,t) (A.21)

169

Constraint A.22 defines the variable γ(v,t) for all VM types v ∈ V . γ(v,t) indicates the total
number of BTUs to lease VM instances of type v, meaning it includes the decisions which VM
instances kv to lease and for how long (how many BTUs) to lease them. To define γ(v,t), we
build the sum over all individually leased BTUs for each VM instance of type v.

∑
kv∈Kv

y(kv ,t) 6 γ(v,t) (A.22)

Constraint A.23 demands for all next schedulable process steps jip ∈ J∗ip that each service
invocation is scheduled on only one VM instance (and later executed within only one container
instance) or postponed for a later optimization period.

∑
v∈V

∑
kv∈Kv

6 1 (A.23)

Constraint A.24 makes sure that all steps currently running on a VM instance kv remain
on the same VM instance. This is achieved by setting the decision variable x(jip ,kv ,t) for each
already running service invocation jrunip

on a VM instance kv to 1. This constraint corresponds
to inheriting the scheduling decision already made in a previous period.

x(jrunip
,kv ,t) = 1 (A.24)

Constraint A.25 restricts the decision variable x(jip ,kv ,t) that decides whether or not to sched-
ule a service invocation jip on a certain VM instance kv for all p ∈ P, ip ∈ Ip, jip ∈ J∗ip to be a
boolean.

x(jip ,kv ,t) ∈ {0, 1} (A.25)

Constraint A.26 restricts the decision variable y(kv ,t) that decides for how many additional
BTUs to lease a VM instance kv at time t for all v ∈ V, kv ∈ Kv to be a positive integer ≥ 0.

y(kv ,t) ∈ N+
0 (A.26)

Constraint A.27 restricts the decision variable γ(v,t) that decides for how many total BTUs
to lease any VM instances of type v at time t for all v ∈ V to be a positive integer ≥ 0.

γ(v,t) ∈ N+
0 (A.27)

170

Constraint A.28 restricts the variable that indicates the penalty execution time epip to be a
positive real number.

epip ∈ R+ (A.28)

Constraint A.29 restricts the variable g(kv ,t) to be a boolean. The variable has been defined
in Constraints A.17 and A.18 and takes the value of 1 if a VM instance is either already running
(βkv = 1) or being leased for at least one BTU (y(kv ,t) ≥ 1) in τt.

g(kv ,t) ∈ {0, 1} (A.29)

171

APPENDIX B
Process Model Collection

For performing our evaluation in Section 6.4 we use the following process models listed in this
chapter.

Task A Task B Task CStart Goal

Figure B.1: Process Model 1

Task A

Task B

Start Goal

Figure B.2: Process Model 2

Task A

Task BStart Goal

Step C

Figure B.3: Process Model 3

173

Task B

Task C

Start GoalTask A

Step E

Step D

Step F

Step G

Step H

Figure B.4: Process Model 4

Task B

Task C

Start GoalTask A

Figure B.5: Process Model 5

Task B

Task C

Start

Goal

Task A

Step G Step H

Step EStep D Step F

Step I

Figure B.6: Process Model 6

174

Task B Task CStart

Goal

Task A

Step G Step H

Step D

Step E Step F

Figure B.7: Process Model 7

Task B

Task C

Start GoalTask A

Figure B.8: Process Model 8

Task B

Task C

Start GoalTask A

Step D

Figure B.9: Process Model 9

175

Task B

Task C

Start

Goal

Step E

Step D

Step F

Step G

Step H

Task A

Step G

Step I

Step J

Task B

Task A

Task C

Step E

Step D

Step F Step G

Step I

Step H

Step J

Figure B.10: Process Model 10

176

List of Acronyms

AI Artificial Intelligence. 15, 17, 173
API Application Programming Interface. 106, 173
AWS Amazon Web Services. 23, 30, 35, 136, 173

BPaaS Business Process as a Service. 34, 173
BPM Business Process Management. x, xiii, 2, 3, 6, 9, 11, 32–34, 47, 53, 56, 59, 173
BPMS Business Process Management System. x, xix, 5, 33, 34, 36, 54–57, 59, 60, 63,

64, 66, 74, 76, 77, 93, 105, 106, 108, 110, 117, 119–122, 129, 133, 135, 137, 155,
173

BTU Billing Time Unit. xi, xiv, xv, 62, 65, 70, 73, 76, 79, 84–88, 92, 94, 97, 101–103,
108, 117, 126, 131, 132, 136, 148–150, 156, 161, 164, 168–171, 173

CoT Cloud of Things. 14, 173

DaaS Data as a Service. 18, 173

EC2 Elastic Compute Cloud. 7, 8, 18, 27, 30, 35, 48, 51, 156, 173

FFSIPP Four Fold Service Instance Placement Problem. 78, 173

GB Gigabyte. 26, 173

HDD Hard Disc Drive. 16, 51, 173

I/O Input/Output. 16, 23, 51, 173
IaaS Infrastructure as a Service. 18, 19, 49, 51, 173
ILP Integer Linear Programming. 48, 52, 173
IoT Internet of Things. 5, 14, 15, 157, 173
IT Information Technology. 32, 173

KVM Kernel-based Virtual Machine. 22, 23, 173

M2M Machine to Machine. 14, 173

177

MB Megabyte. 26, 173
MILP Mixed Integer Linear Programming. x, 43, 44, 55, 60, 78, 90–93, 108, 110, 111,

113, 114, 118, 128, 137, 141, 151, 154, 156, 159, 173
ML Machine Learning. 15, 17, 38, 49, 173

NASA National Aeronautics and Space Administration. 13, 173
NIST National Institute of Standards and Technology. 12, 173

OS Operating System. 2, 18, 19, 21–26, 30, 50, 173

PaaS Platform as a Service. 18, 19, 24, 50, 51, 60, 173

QCaaS Quantum Computing as a Service. 17, 173
QoS Quality of Service. 6–8, 19, 20, 31–33, 35, 36, 44, 49, 52–54, 56, 61, 67, 89, 156,

173

RoI Return on Investment. 43, 173

S3 Simple Storage Service. 18, 173
SaaS Software as a Service. 18, 19, 44, 49, 50, 173
SLA Service Level Agreement. 2, 19, 20, 48, 49, 52, 54, 56, 57, 61, 63, 64, 66, 74, 78,

79, 135, 136, 139, 140, 142–151, 154, 164, 173
SLO Service Level Objective. 20, 61, 74, 173
SOA Service-Oriented Architecture. 2, 6, 47, 75, 89, 173
SOC Service-Oriented Computing. 173
SWF Scientific Workflow. 6, 53, 55–57, 173

VM Virtual Machine. x, xiv, xv, 2, 6–8, 18, 21–26, 29, 30, 43, 48–52, 54–57, 60,
62–67, 70–74, 76–79, 82–94, 99, 102, 103, 105, 108, 110–117, 121, 126–138,
141–143, 145, 147, 149, 154, 156, 157, 160–165, 167–171, 173

WS Web Service. 2, 173

178

Bibliography

[1] Mohammad Aazam, Imran Khan, Aymen Abdullah Alsaffar, and Eui-Nam Huh. Cloud of
things: Integrating internet of things and cloud computing and the issues involved. In Ap-
plied Sciences and Technology (IBCAST), 2014 11th International Bhurban Conference
on, pages 414–419. IEEE, 2014.

[2] Moustafa Abdelbaky, Javier Diaz-Montes, Manish Parashar, Merve Unuvar, and Malgo-
rzata Steinder. Docker containers across multiple clouds and data centers. In Utility
and Cloud Computing (UCC), 2015 IEEE/ACM 8th International Conference on, pages
368–371. IEEE, 2015.

[3] Saeid Abrishami, Mahmoud Naghibzadeh, and Dick HJ Epema. Deadline-constrained
workflow scheduling algorithms for infrastructure as a service clouds. Future Generation
Computer Systems, 29(1):158–169, 2013.

[4] Rafael Accorsi. Business process as a service: Chances for remote auditing. In Com-
puter Software and Applications Conference Workshops (COMPSACW), 2011 IEEE 35th
Annual, pages 398–403. IEEE, 2011.

[5] Ejaz Ahmed, Ibrar Yaqoob, Abdullah Gani, Muhammad Imran, and Mohsen Guizani.
Internet-of-things-based smart environments: state of the art, taxonomy, and open re-
search challenges. IEEE Wireless Communications, 23(5):10–16, 2016.

[6] Sanjay P Ahuja, Sindhu Mani, and Jesus Zambrano. A survey of the state of cloud com-
puting in healthcare. Network and Communication Technologies, 1(2):12, 2012.

[7] Edward Anderson, Zhaojun Bai, Christian Bischof, L Susan Blackford, James Demmel,
Jack Dongarra, Jeremy Du Croz, Anne Greenbaum, Sven Hammarling, Alan McKenney,
et al. LAPACK Users’ guide. SIAM, 1999.

[8] Michael Armbrust, Armando Fox, Rean Griffith, Anthony D Joseph, Randy Katz, Andy
Konwinski, Gunho Lee, David Patterson, Ariel Rabkin, Ion Stoica, et al. A view of cloud
computing. Communications of the ACM, 53(4):50–58, 2010.

[9] Len Bass, Ingo Weber, and Liming Zhu. DevOps: A Software Architect’s Perspective.
Addison-Wesley Professional, 2015.

[10] Bryan Bergeron. Essentials of shared services, volume 26. John Wiley & Sons, 2002.

179

[11] Data Science Department Berkeley School of Information.
https://datascience.berkeley.edu/moores-law-processing-power/. Online: https:
//datascience.berkeley.edu/moores-law-processing-power/, 2014, last visited: 2017-
08-29.

[12] David Bernstein. Containers and cloud: From lxc to docker to kubernetes. IEEE Cloud
Computing, 1(3):81–84, 2014.

[13] Dimitri P Bertsekas. Nonlinear programming. Athena scientific Belmont, 1999.

[14] Kahina Bessai, Samir Youcef, Ammar Oulamara, Claude Godart, and Selmin Nurcan.
Business process scheduling strategies in cloud environments with fairness metrics. In
Services Computing (SCC), 2013 IEEE International Conference on, pages 519–526.
IEEE, 2013.

[15] Maurice Anthony Biot. Theory of elasticity and consolidation for a porous anisotropic
solid. Journal of Applied Physics, 26(2):182–185, 1955.

[16] Flavio Bonomi, Rodolfo Milito, Jiang Zhu, and Sateesh Addepalli. Fog computing and
its role in the internet of things. In Proceedings of the first edition of the MCC workshop
on Mobile cloud computing, pages 13–16. ACM, 2012.

[17] Alessio Botta, Walter De Donato, Valerio Persico, and Antonio Pescapé. Integration of
cloud computing and internet of things: a survey. Future Generation Computer Systems,
56:684–700, 2016.

[18] James Bottomley, Pavel Emelyanov, Antti Kantee, Justin Cormack, Dan Klein, Dina
Bester, Mathew Monroe, and Andy Seely. Operating systems. ;login:, 39(4):6–10, 2014.

[19] Yuriy Brun, Giovanna Di Marzo Serugendo, Cristina Gacek, Holger Giese, Holger M
Kienle, Marin Litoiu, Hausi A Müller, Mauro Pezzè, and Mary Shaw. Engineering self-
adaptive systems through feedback loops. Software engineering for self-adaptive systems,
5525:48–70, 2009.

[20] Kurt Bryan and Tanya Leise. The $25,000,000,000 eigenvector: The linear algebra behind
google. Siam Review, 48(3):569–581, 2006.

[21] Thanh Bui. Analysis of docker security. arXiv preprint arXiv:1501.02967, 2015.

[22] Rajkumar Buyya, Rajiv Ranjan, and Rodrigo N Calheiros. Intercloud: Utility-oriented
federation of cloud computing environments for scaling of application services. In In-
ternational Conference on Algorithms and Architectures for Parallel Processing, pages
13–31. Springer, 2010.

[23] Rajkumar Buyya, Chee Shin Yeo, and Srikumar Venugopal. Market-oriented cloud com-
puting: Vision, hype, and reality for delivering it services as computing utilities. In High
Performance Computing and Communications, 2008. HPCC’08. 10th IEEE International
Conference on, pages 5–13. IEEE, 2008.

180

https://datascience.berkeley.edu/moores-law-processing-power/
https://datascience.berkeley.edu/moores-law-processing-power/

[24] Rajkumar Buyya, Chee Shin Yeo, Srikumar Venugopal, James Broberg, and Ivona
Brandic. Cloud computing and emerging it platforms: Vision, hype, and reality for deliv-
ering computing as the 5th utility. Future Generation Computer Systems, 25(6):599–616,
2009.

[25] Eun-Kyu Byun, Yang-Suk Kee, Jin-Soo Kim, and Seungryoul Maeng. Cost optimized
provisioning of elastic resources for application workflows. Future Generation Computer
Systems, 27(8):1011–1026, 2011.

[26] X-D Cai, Dian Wu, Z-E Su, M-C Chen, X-L Wang, Li Li, N-L Liu, C-Y Lu, and J-W Pan.
Entanglement-based machine learning on a quantum computer. Physical review letters,
114(11):110504, 2015.

[27] Giuseppe C Calafiore and Laurent El Ghaoui. Optimization models. Cambridge university
press, 2014.

[28] Gerardo Canfora, Massimiliano Di Penta, Raffaele Esposito, and Maria Luisa Villani. An
approach for qos-aware service composition based on genetic algorithms. In Proceedings
of the 7th annual conference on Genetic and evolutionary computation, pages 1069–1075.
ACM, 2005.

[29] IBM Knowledge Center. Numeric difficulties. Online: https://www.ibm.com/support/
knowledgecenter/pl/SSSA5P_12.7.1/ilog.odms.cplex.help/CPLEX/UsrMan/topics/cont_
optim/simplex/20_num_difficulty.html, last visited: 2017-08-29.

[30] Jens Clausen. Branch and bound algorithms-principles and examples. Department of
Computer Science, University of Copenhagen, pages 1–30, 1999.

[31] Fernando J Corbató, Marjorie Merwin-Daggett, and Robert C Daley. An experimental
time-sharing system. In Proceedings of the May 1-3, 1962, spring joint computer confer-
ence, pages 335–344. ACM, 1962.

[32] James W Cortada. The Essential Manager: How to Thrive in the Global Information
Jungle. John Wiley & Sons, 2015.

[33] Robert J. Creasy. The origin of the vm/370 time-sharing system. IBM Journal of Research
and Development, 25(5):483–490, 1981.

[34] Michael Crosby, Pradan Pattanayak, Sanjeev Verma, and Vignesh Kalyanaraman.
Blockchain technology: Beyond bitcoin. Applied Innovation, 2:6–10, 2016.

[35] Thomas Curran, Gerhard Keller, and Andrew Ladd. SAP R/3 business blueprint: under-
standing the business process reference model. Prentice-Hall, Inc., 1997.

[36] George B Dantzig, Alex Orden, Philip Wolfe, et al. The generalized simplex method for
minimizing a linear form under linear inequality restraints. Pacific Journal of Mathemat-
ics, 5(2):183–195, 1955.

181

https://www.ibm.com/support/knowledgecenter/pl/SSSA5P_12.7.1/ilog.odms.cplex.help/CPLEX/UsrMan/topics/cont_optim/simplex/20_num_difficulty.html
https://www.ibm.com/support/knowledgecenter/pl/SSSA5P_12.7.1/ilog.odms.cplex.help/CPLEX/UsrMan/topics/cont_optim/simplex/20_num_difficulty.html
https://www.ibm.com/support/knowledgecenter/pl/SSSA5P_12.7.1/ilog.odms.cplex.help/CPLEX/UsrMan/topics/cont_optim/simplex/20_num_difficulty.html

[37] Simon J Devitt. Performing quantum computing experiments in the cloud. Physical
Review A, 94(3):032329, 2016.

[38] Jack J Dongarra, Piotr Luszczek, and Antoine Petitet. The linpack benchmark: past,
present and future. Concurrency and Computation: practice and experience, 15(9):803–
820, 2003.

[39] Jack J Dongarra, Cleve B Moler, James R Bunch, and Gilbert W Stewart. LINPACK
users’ guide. SIAM, 1979.

[40] Giovanni Dosi. Technological paradigms and technological trajectories: a suggested in-
terpretation of the determinants and directions of technical change. Research policy,
11(3):147–162, 1982.

[41] Charalampos Doukas and Ilias Maglogiannis. Bringing iot and cloud computing towards
pervasive healthcare. In Innovative Mobile and Internet Services in Ubiquitous Comput-
ing (IMIS), 2012 Sixth International Conference on, pages 922–926. IEEE, 2012.

[42] Rajdeep Dua, A Reddy Raja, and Dharmesh Kakadia. Virtualization vs containerization
to support paas. In Cloud Engineering (IC2E), 2014 IEEE International Conference on,
pages 610–614. IEEE, 2014.

[43] Marlon Dumas, Marcello La Rosa, Jan Mendling, Hajo A Reijers, et al. Fundamentals of
business process management, volume 1. Springer, 2013.

[44] Schahram Dustdar, Yike Guo, Benjamin Satzger, and Hong-Linh Truong. Principles of
elastic processes. IEEE Internet Computing, 15(5), 2011.

[45] Thomas Erl. Service-oriented architecture. Prentice Hall Englewood Cliffs, 2004.

[46] Wes Felter, Alexandre Ferreira, Ram Rajamony, and Juan Rubio. An updated perfor-
mance comparison of virtual machines and linux containers. In Performance Analysis of
Systems and Software (ISPASS), 2015 IEEE International Symposium on, pages 171–172.
IEEE, 2015.

[47] Richard Phillips Feynman. The principle of least action in quantum mechanics. PhD
thesis, Princeton University Princeton, New Jersey, 1942.

[48] Roger Fletcher. Practical methods of optimization. John Wiley & Sons, 2013.

[49] Luciano García-Bañuelos, Alexander Ponomarev, Marlon Dumas, and Ingo Weber. Op-
timized execution of business processes on blockchain. In International Conference on
Business Process Management, pages 130–146. Springer, 2017.

[50] Wolfgang Gerlach, Wei Tang, Kevin Keegan, Travis Harrison, Andreas Wilke, Jared
Bischof, Mark D’Souza, Scott Devoid, Daniel Murphy-Olson, Narayan Desai, et al.
Skyport: container-based execution environment management for multi-cloud scientific
workflows. In Proceedings of the 5th International Workshop on Data-Intensive Comput-
ing in the Clouds, pages 25–32. IEEE Press, 2014.

182

[51] Martin Glowik, Luca Mentuccia, and Marcello Tamietti. A new era for the automo-
tive industry. Online: https://www.accenture.com/t20150914T170053__w__/us-en/
acnmedia/Accenture/Conversion-Assets/DotCom/Documents/Global/PDF/Industries
18/Accenture-Cloud-Automative-PoV.pdf, 2015, last visited: 2017-08-29.

[52] Charles David Graziano. A performance analysis of xen and kvm hypervisors for hosting
the xen worlds project. 2011.

[53] Salvatore Greco, J Figueira, and M Ehrgott. Multiple criteria decision analysis. Springer’s
International series, 2005.

[54] BMW Group. Annual report 2015. Online: https://www.bmwgroup.com/content/dam/
bmw-group-websites/bmwgroup_com/ir/downloads/en/2016/Annual_Report_2015.pdf,
2015, last visited: 2017-08-29.

[55] Jayavardhana Gubbi, Rajkumar Buyya, Slaven Marusic, and Marimuthu Palaniswami.
Internet of things (iot): A vision, architectural elements, and future directions. Future
generation computer systems, 29(7):1645–1660, 2013.

[56] Akshay Gupte, Shabbir Ahmed, Myun Seok Cheon, and Santanu Dey. Solving mixed
integer bilinear problems using milp formulations. SIAM Journal on Optimization,
23(2):721–744, 2013.

[57] P Harsh, K Benz, I Trajkovska, A Edmonds, P Comi, and T Bohnert. A highly available
generic billing architecture for heterogenous mobile cloud services. In Proceedings of the
International Conference on Grid Computing and Applications (GCA), page 1, 2014.

[58] Tyler Harter, Brandon Salmon, Rose Liu, Andrea C Arpaci-Dusseau, and Remzi H
Arpaci-Dusseau. Slacker: Fast distribution with lazy docker containers. In FAST, vol-
ume 16, pages 181–195, 2016.

[59] Moeen Hassanalieragh, Alex Page, Tolga Soyata, Gaurav Sharma, Mehmet Aktas, Gon-
zalo Mateos, Burak Kantarci, and Silvana Andreescu. Health monitoring and manage-
ment using internet-of-things (iot) sensing with cloud-based processing: Opportunities
and challenges. In Services Computing (SCC), 2015 IEEE International Conference on,
pages 285–292. IEEE, 2015.

[60] Parisa Heidari, Yves Lemieux, and Abdallah Shami. Qos assurance with light
virtualization-a survey. In Cloud Computing Technology and Science (CloudCom), 2016
IEEE International Conference on, pages 558–563. IEEE, 2016.

[61] Nikolas Roman Herbst, Samuel Kounev, and Ralf H Reussner. Elasticity in cloud com-
puting: What it is, and what it is not. In ICAC, pages 23–27, 2013.

[62] Philipp Hoenisch, Christoph Hochreiner, Dieter Schuller, Stefan Schulte, Jan Mendling,
and Schahram Dustdar. Cost-efficient scheduling of elastic processes in hybrid clouds. In
8th International Conference on Cloud Computing, pages 17–24. IEEE, 2015.

183

https://www.accenture.com/t20150914T170053__w__/us-en/_acnmedia/Accenture/Conversion-Assets/DotCom/Documents/Global/PDF/Industries_18/Accenture-Cloud-Automative-PoV.pdf
https://www.accenture.com/t20150914T170053__w__/us-en/_acnmedia/Accenture/Conversion-Assets/DotCom/Documents/Global/PDF/Industries_18/Accenture-Cloud-Automative-PoV.pdf
https://www.accenture.com/t20150914T170053__w__/us-en/_acnmedia/Accenture/Conversion-Assets/DotCom/Documents/Global/PDF/Industries_18/Accenture-Cloud-Automative-PoV.pdf
https://www.bmwgroup.com/content/dam/bmw-group-websites/bmwgroup_com/ir/downloads/en/2016/Annual_Report_2015.pdf
https://www.bmwgroup.com/content/dam/bmw-group-websites/bmwgroup_com/ir/downloads/en/2016/Annual_Report_2015.pdf

[63] Philipp Hoenisch, Dieter Schuller, Stefan Schulte, Christoph Hochreiner, and Schahram
Dustdar. Optimization of complex elastic processes. IEEE Transactions on Services
Computing, 9(5):700–713, 2016.

[64] Philipp Hoenisch, Stefan Schulte, and Schahram Dustdar. Workflow scheduling and re-
source allocation for cloud-based execution of elastic processes. In Service-Oriented
Computing and Applications (SOCA), 2013 IEEE 6th International Conference on, pages
1–8. IEEE, 2013.

[65] Philipp Hoenisch, Ingo Weber, Stefan Schulte, Liming Zhu, and Alan Fekete. Four-fold
auto-scaling on a contemporary deployment platform using docker containers. In Inter-
national Conference on Service-Oriented Computing (ICSOC), pages 316–323. Springer,
2015.

[66] Ingo Hofacker and Rudolf Vetschera. Algorithmical approaches to business process de-
sign. Computers & Operations Research, 28(13):1253–1275, 2001.

[67] Christina Hoffa, Gaurang Mehta, Tim Freeman, Ewa Deelman, Kate Keahey, Bruce Ber-
riman, and John Good. On the use of cloud computing for scientific workflows. In 4th
International Conference on eScience, pages 640–645. IEEE, 2008.

[68] He-Liang Huang, You-Wei Zhao, Tan Li, Feng-Guang Li, Yu-Tao Du, Xiang-Qun Fu,
Shuo Zhang, Xiang Wang, and Wan-Su Bao. Homomorphic encryption experiments on
ibm’s cloud quantum computing platform. arXiv preprint arXiv:1612.02886, 2016.

[69] Michael N Huhns and Munindar P Singh. Service-oriented computing: Key concepts and
principles. IEEE Internet Computing, 9(1):75–81, 2005.

[70] IBM. Frequently asked questions. Online: http://www-03.ibm.com/ibm/history/
documents/pdf/faq.pdf, 2007, last visited: 2017-08-29.

[71] IBM. Cloud computing for banking. Online: https://www-01.ibm.com/common/ssi/
cgi-bin/ssialias?htmlfid=IBW03005USEN, 2013, last visited: 2017-08-29.

[72] IBM. Cloud computing for insurance. Online: https://public.dhe.ibm.com/common/ssi/
ecm/ib/en/ibw03006usen/IBW03006USEN.PDF, 2013, last visited: 2017-08-29.

[73] SM Riazul Islam, Daehan Kwak, MD Humaun Kabir, Mahmud Hossain, and Kyung-Sup
Kwak. The internet of things for health care: a comprehensive survey. IEEE Access,
3:678–708, 2015.

[74] Martin Gilje Jaatun, Siani Pearson, Frédéric Gittler, and Ronald Leenes. Towards strong
accountability for cloud service providers. In Cloud Computing Technology and Science
(CloudCom), 2014 IEEE 6th International Conference on, pages 1001–1006. IEEE, 2014.

[75] Michael C Jaeger, Gregor Rojec-Goldmann, and Gero Muhl. Qos aggregation for web
service composition using workflow patterns. In Enterprise distributed object computing
conference, 2004. EDOC 2004. Proceedings. Eighth IEEE International, pages 149–159.
IEEE, 2004.

184

http://www-03.ibm.com/ibm/history/documents/pdf/faq.pdf
http://www-03.ibm.com/ibm/history/documents/pdf/faq.pdf
https://www-01.ibm.com/common/ssi/cgi-bin/ssialias?htmlfid=IBW03005USEN
https://www-01.ibm.com/common/ssi/cgi-bin/ssialias?htmlfid=IBW03005USEN
https://public.dhe.ibm.com/common/ssi/ecm/ib/en/ibw03006usen/IBW03006USEN.PDF
https://public.dhe.ibm.com/common/ssi/ecm/ib/en/ibw03006usen/IBW03006USEN.PDF

[76] Vipul Jain and Ignacio E Grossmann. Algorithms for hybrid milp/cp models for a class
of optimization problems. INFORMS Journal on computing, 13(4):258–276, 2001.

[77] Ernst Juhnke, Tim Dornemann, David Bock, and Bernd Freisleben. Multi-objective
scheduling of bpel workflows in geographically distributed clouds. In Cloud Comput-
ing (CLOUD), 2011 IEEE International Conference on, pages 412–419. IEEE, 2011.

[78] Gideon Juve and Ewa Deelman. Scientific workflows and clouds. ACM Crossroads,
16(3):14–18, 2010.

[79] Michio Kaku. Physics of the future. Doubleday, 2011.

[80] Magnus Karlsson and Christos Karamanolis. Bounds on the replication cost for qos.
Technical report, Hewlett Packard Labs, 2003.

[81] Alexander Keller and Heiko Ludwig. The wsla framework: Specifying and monitoring
service level agreements for web services. Journal of Network and Systems Management,
11(1):57–81, 2003.

[82] Jeffrey O Kephart and David M Chess. The vision of autonomic computing. Computer,
36(1):41–50, 2003.

[83] Abdullah Konak, David W Coit, and Alice E Smith. Multi-objective optimization using
genetic algorithms: A tutorial. Reliability Engineering & System Safety, 91(9):992–1007,
2006.

[84] Donald Kossmann, Tim Kraska, and Simon Loesing. An evaluation of alternative archi-
tectures for transaction processing in the cloud. In Proceedings of the 2010 ACM SIG-
MOD International Conference on Management of data, pages 579–590. ACM, 2010.

[85] Andreas Kronabeter and Stefan Fenz. Cloud security and privacy in the light of the 2012
eu data protection regulation. In International Conference on Cloud Computing, pages
114–123. Springer, 2012.

[86] Ulrich Lampe, Thorsten Mayer, Johannes Hiemer, Dieter Schuller, and Ralf Steinmetz.
Enabling cost-efficient software service distribution in infrastructure clouds at run time.
In International Conference on Service-Oriented Computing and Applications (SOCA),
pages 1–8. IEEE, 2011.

[87] Ulrich Lampe, Olga Wenge, Alexander Müller, and Ralf Schaarschmidt. On the relevance
of security risks for cloud adoption in the financial industry. In 19th Americas Conference
on Information Systems (AMCIS 2013). AIS, 2013.

[88] Frank Leymann and Dieter Roller. Production workflow: concepts and techniques. 2000.

[89] Han Li and Srikumar Venugopal. Using reinforcement learning for controlling an elastic
web application hosting platform. In Proceedings of the 8th ACM international confer-
ence on Autonomic computing, pages 205–208. ACM, 2011.

185

[90] Wubin Li, Ali Kanso, and Abdelouahed Gherbi. Leveraging linux containers to achieve
high availability for cloud services. In Cloud Engineering (IC2E), 2015 IEEE Interna-
tional Conference on, pages 76–83. IEEE, 2015.

[91] Marin Litoiu, Murray Woodside, Johnny Wong, Joanna Ng, and Gabriel Iszlai. A business
driven cloud optimization architecture. In Proceedings of the 2010 ACM Symposium on
Applied Computing, pages 380–385. ACM, 2010.

[92] Haikun Liu, Hai Jin, Xiaofai Liao, Wei Deng, Bingsheng He, and Cheng-zhong Xu. Hot-
plug or ballooning: A comparative study on dynamic memory management techniques
for virtual machines. IEEE Transations on Parallel and Distributed Systems, 26(5):1350–
1363, 2015.

[93] Bertram Ludäscher, Mathias Weske, Timothy McPhillips, and Shawn Bowers. Scien-
tific workflows: Business as usual? In International Conference on Business Process
Management (BPM), pages 31–47. Springer, 2009.

[94] Chris A Mack. Fifty years of moore’s law. IEEE Transactions on semiconductor manu-
facturing, 24(2):202–207, 2011.

[95] Heike Mai, Bernhard Speyer, Deutsche Bank AG, and Ralf Hoffmann. It in banks: What
does it cost? Deutsche Bank Research, 2012.

[96] Udi Manber and Peter Norvig. The power of the apollo missions in a single google search.
Online: https://search.googleblog.com/2012/08/the-power-of-apollo-missions-in-single.
html, 2012, last visited: 2017-08-29.

[97] Zoltán Ádám Mann. Allocation of virtual machines in cloud data centers—a survey
of problem models and optimization algorithms. ACM Computing Surveys (CSUR),
48(1):11, 2015.

[98] Ronny S Mans, Nick C Russell, Wil MP van der Aalst, Arnold J Moleman, and Piet JM
Bakker. Schedule-aware workflow management systems. In Transactions on Petri nets
and other models of concurrency IV, pages 121–143. Springer, 2010.

[99] John C McCallum. Price-performance of computer technology. In The computer engi-
neering handbook. CRC Press, 2001.

[100] Sean McDaniel, Stephen Herbein, and Michela Taufer. A two-tiered approach to i/o
quality of service in docker containers. In IEEE International Conference on Cluster
Computing (CLUSTER), pages 490–491. IEEE, 2015.

[101] George R McGhee. Convergent evolution: limited forms most beautiful. MIT Press, 2011.

[102] Peter Mell and Timothy Grance. The nist definition of cloud computing. NIST special
publication, 800:145, 2011.

186

https://search.googleblog.com/2012/08/the-power-of-apollo-missions-in-single.html
https://search.googleblog.com/2012/08/the-power-of-apollo-missions-in-single.html

[103] Jan Mendling, HMW Verbeek, Boudewijn F van Dongen, Wil MP van der Aalst, and
Gustaf Neumann. Detection and prediction of errors in epcs of the sap reference model.
Data & Knowledge Engineering, 64(1):312–329, 2008.

[104] Jan Mendling, Ingo Weber, Wil van der Aalst, Jan vom Brocke, Cristina Cabanillas,
Florian Daniel, Soren Debois, Claudio Di Ciccio, Marlon Dumas, Schahram Dustdar,
et al. Blockchains for business process management-challenges and opportunities. arXiv
preprint arXiv:1704.03610, 2017.

[105] Dirk Merkel. Docker: lightweight linux containers for consistent development and de-
ployment. Linux Journal, 2014(239):2, 2014.

[106] M. Michael, J. Moreira, D. Shiloach, and R. Wisniewski. Scale-up x scale-out: A case
study using nutch/lucene. In Parallel and Distributed Processing Symposium (IPDPS),
pages 1–8. IEEE, 2007.

[107] Ryszard S Michalski, Jaime G Carbonell, and Tom M Mitchell. Machine learning: An
artificial intelligence approach. Springer Science & Business Media, 2013.

[108] Gordon E Moore. The experts look ahead. cramming more components onto integrated
circuits. Electronics, 38(8), 1965.

[109] Gordon E Moore. Progress in digital integrated electronics, digest of the 1975 interna-
tional electron devices meeting, 1975.

[110] Timothy A Mousseau, Derek A Roff, et al. Natural selection and the heritability of fitness
components. Heredity, 59(Pt 2):181–197, 1987.

[111] Katta G Murty. Optimization models for decision making: Volume. University of Michi-
gan, Ann Arbor, 2003.

[112] Matteo Nardelli, Christoph Hochreiner, and Stefan Schulte. Elastic provisioning of virtual
machines for container deployment. In Proceedings of the 8th ACM/SPEC on Interna-
tional Conference on Performance Engineering Companion, pages 5–10. ACM, 2017.

[113] John C Nash. The (dantzig) simplex method for linear programming. Computing in
Science & Engineering, 2(1):29–31, 2000.

[114] Nils J Nilsson. Principles of artificial intelligence. Morgan Kaufmann, 2014.

[115] Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Winograd. The pagerank cita-
tion ranking: Bringing order to the web. Technical report, Stanford InfoLab, 1999.

[116] Claus Pahl. Containerization and the paas cloud. IEEE Cloud Computing, 2(3):24–31,
2015.

[117] Claus Pahl, Antonio Brogi, Jacopo Soldani, and Pooyan Jamshidi. Cloud container tech-
nologies: a state-of-the-art review. IEEE Transactions on Cloud Computing, 2017.

187

[118] Jian Pan, Yudong Cao, Xiwei Yao, Zhaokai Li, Chenyong Ju, Hongwei Chen, Xinhua
Peng, Sabre Kais, and Jiangfeng Du. Experimental realization of quantum algorithm for
solving linear systems of equations. Physical Review A, 89(2):022313, 2014.

[119] Suraj Pandey, Linlin Wu, Siddeswara Mayura Guru, and Rajkumar Buyya. A particle
swarm optimization-based heuristic for scheduling workflow applications in cloud com-
puting environments. In 24th International Conference on Advanced Information Net-
working and Applications, pages 400–407. IEEE, 2010.

[120] Mike P Papazoglou. Service-oriented computing: Concepts, characteristics and direc-
tions. In Web Information Systems Engineering, 2003. WISE 2003. Proceedings of the
Fourth International Conference on, pages 3–12. IEEE, 2003.

[121] Beth Pariseau. Kvm reignites type 1 vs. type 2 hypervisor debate.
Online: http://searchservervirtualization.techtarget.com/news/2240034817/
KVM-reignites-Type-1-vs-Type-2-hypervisor-debate, 2011, last visited: 2017-08-
29.

[122] Gerald J Popek and Robert P Goldberg. Formal requirements for virtualizable third gen-
eration architectures. Communications of the ACM, 17(7):412–421, 1974.

[123] James R Powell. The quantum limit to moore’s law. Proceedings of the IEEE,
96(8):1247–1248, 2008.

[124] Chenhao Qu, Rodrigo N Calheiros, and Rajkumar Buyya. Auto-scaling web applications
in clouds: A taxonomy and survey. arXiv preprint arXiv:1609.09224, 2016.

[125] J. Ross Quinlan. Induction of decision trees. Machine learning, 1(1):81–106, 1986.

[126] Mijanur Rahaman and Md Masudul Islam. An overview on quantum computing as a
service (qcaas): Probability or possibility. doi, 10(5815):16–22, 2016.

[127] Fahimeh Ramezani, Jie Lu, and Farookh Hussain. Task scheduling optimization in cloud
computing applying multi-objective particle swarm optimization. In International Con-
ference on Service-Oriented Computing, pages 237–251. Springer, 2013.

[128] Sumant Ramgovind, Mariki M Eloff, and Elme Smith. The management of security in
cloud computing. In Information Security for South Africa (ISSA), 2010, pages 1–7. IEEE,
2010.

[129] IBM Press release. Ibm makes quantum computing available on ibm cloud to acceler-
ate innovation. Online Press release: http://www-03.ibm.com/press/us/en/pressrelease/
49661.wss, 2016, last visited: 2017-08-29.

[130] Paul Rimba, An Binh Tran, Ingo Weber, Mark Staples, Alexander Ponomarev, and Xi-
wei Xu. Comparing blockchain and cloud services for business process execution. In
Software Architecture (ICSA), 2017 IEEE International Conference on, pages 257–260.
IEEE, 2017.

188

http://searchservervirtualization.techtarget.com/news/2240034817/KVM-reignites-Type-1-vs-Type-2-hypervisor-debate
http://searchservervirtualization.techtarget.com/news/2240034817/KVM-reignites-Type-1-vs-Type-2-hypervisor-debate
http://www-03.ibm.com/press/us/en/pressrelease/49661.wss
http://www-03.ibm.com/press/us/en/pressrelease/49661.wss

[131] Michael Rosemann and Jan vom Brocke. The six core elements of business process
management. In Handbook on business process management 1, pages 105–122. Springer,
2015.

[132] Guillaume Rosinosky, Samir Youcef, and François Charoy. Efficient migration-aware
algorithms for elastic bpmaas. 2017.

[133] Stuart Russell, Peter Norvig, and Artificial Intelligence. A modern approach. Artificial
Intelligence. Prentice-Hall, Egnlewood Cliffs, 25:27, 1995.

[134] Greg Satell. Ibm’s new quantum computing move marks a new era for
cloud computing. Online: https://www.forbes.com/sites/gregsatell/2016/05/
04/ibms-new-quantum-computing-move-marks-a-new-era-for-cloud-computing/
#2aac00466b87, 2016, last visited: 2017-08-29.

[135] KA Scarfone. Guide to security for full virtualization technologies, volume 800. DIANE
Publishing, 2011.

[136] Stefan Schulte, Philipp Hoenisch, Christoph Hochreiner, Schahram Dustdar, Matthias
Klusch, and Dieter Schuller. Towards process support for cloud manufacturing. In Enter-
prise Distributed Object Computing Conference (EDOC), 2014 IEEE 18th International,
pages 142–149. IEEE, 2014.

[137] Stefan Schulte, Philipp Hoenisch, Srikumar Venugopal, and Schahram Dustdar. Introduc-
ing the vienna platform for elastic processes. In Performance Assessment and Auditing
in Service Computing Workshop (PAASC 2012) at International Conference on Service-
Oriented Computing (ICSOC), pages 179–190. Springer, 2012.

[138] Stefan Schulte, Christian Janiesch, Srikumar Venugopal, Ingo Weber, and Philipp
Hoenisch. Elastic business process management: State of the art and open challenges
for bpm in the cloud. Future Generation Computer Systems, 46:36–50, 2015.

[139] Stefan Schulte, Dieter Schuller, Philipp Hoenisch, Urlich Lampe, Schahram Dustdar, and
Ralf Steinmetz. Cost-driven optimization of cloud resource allocation for elastic pro-
cesses. International Journal of Cloud Computing, 1(2):1–14, 2013.

[140] Aleksander Slominski, Vinod Muthusamy, and Rania Khalaf. Building a multi-tenant
cloud service from legacy code with docker containers. In Cloud Engineering (IC2E),
2015 IEEE International Conference on, pages 394–396. IEEE, 2015.

[141] Brian T Smith, James M. Boyle, BS Garbow, Y Ikebe, VC Klema, and CB Moler. Matrix
eigensystem routines-EISPACK guide, volume 6. Springer, 2013.

[142] J Cole Smith and Z Caner Taskin. A tutorial guide to mixed-integer programming models
and solution techniques. Optimization in Medicine and Biology, pages 521–548, 2008.

[143] Kuyoro So. Cloud computing security issues and challenges. International Journal of
Computer Networks, 3(5):247–55, 2011.

189

https://www.forbes.com/sites/gregsatell/2016/05/04/ibms-new-quantum-computing-move-marks-a-new-era-for-cloud-computing/#2aac00466b87
https://www.forbes.com/sites/gregsatell/2016/05/04/ibms-new-quantum-computing-move-marks-a-new-era-for-cloud-computing/#2aac00466b87
https://www.forbes.com/sites/gregsatell/2016/05/04/ibms-new-quantum-computing-move-marks-a-new-era-for-cloud-computing/#2aac00466b87

[144] Anja Strunk. Qos-aware service composition: A survey. In 8th European Conference on
Web Services (ECOWS), pages 67–74. IEEE, 2010.

[145] Yu Sun, Jules White, Bo Li, Michael Walker, and Hamilton Turner. Automated qos-
oriented cloud resource optimization using containers. Automated Software Engineering,
24(1):101–137, 2017.

[146] Melanie Swan. Blockchain: Blueprint for a new economy. O’Reilly Media, Inc., 2015.

[147] Claudia Szabo and Trent Kroeger. Evolving multi-objective strategies for task allocation
of scientific workflows on public clouds. In Evolutionary Computation (CEC), 2012 IEEE
Congress on, pages 1–8. IEEE, 2012.

[148] Gerard J Tellis. The price elasticity of selective demand: A meta-analysis of econometric
models of sales. Journal of Marketing Research, pages 331–341, 1988.

[149] James E Tomayko. Computers in spaceflight the nasa experience. Computers in Space-
flight The NASA Experience, 1, 1988.

[150] Andrea Tosatto, Pietro Ruiu, and Antonio Attanasio. Container-based orchestration in
cloud: state of the art and challenges. In Complex, Intelligent, and Software Intensive
Systems (CISIS), 2015 Ninth International Conference on, pages 70–75. IEEE, 2015.

[151] Lawrence J Trautman. Is disruptive blockchain technology the future of financial ser-
vices? 2016.

[152] Ruben Van den Bossche, Kurt Vanmechelen, and Jan Broeckhove. Online cost-efficient
scheduling of deadline-constrained workloads on hybrid clouds. Future Generation Com-
puter Systems, 29(4):973–985, 2013.

[153] Wil MP van der Aalst, Arthur HM Ter Hofstede, Bartek Kiepuszewski, and Alistair Bar-
ros. Workflow patterns. Distributed and Parallel Databases, 14(1):5–51, 2003.

[154] Wil MP Van Der Aalst, Arthur HM Ter Hofstede, and Mathias Weske. Business process
management: A survey. In International conference on business process management,
pages 1–12. Springer, 2003.

[155] Luis M Vaquero, Luis Rodero-Merino, and Rajkumar Buyya. Dynamically scaling appli-
cations in the cloud. ACM SIGCOMM Computer Communication Review, 41(1):45–52,
2011.

[156] MingXue Wang, Kosala Yapa Bandara, and Claus Pahl. Process as a service distributed
multi-tenant policy-based process runtime governance. In Services computing (scc), 2010
ieee international conference on, pages 578–585. IEEE, 2010.

[157] Denis Weerasiri, Moshe Chai Barukh, Boualem Benatallah, Quan Z Sheng, and Rajiv
Ranjan. A taxonomy and survey of cloud resource orchestration techniques. ACM Com-
puting Surveys (CSUR), 50(2):26, 2017.

190

[158] Yi Wei and M Brian Blake. Adaptive service workflow configuration and agent-based
virtual resource management in the cloud. In Cloud Engineering (IC2E), 2013 IEEE
International Conference on, pages 279–284. IEEE, 2013.

[159] Yi Wei and M Brian Blake. Proactive virtualized resource management for service work-
flows in the cloud. Computing, 98(5):523–538, 2016.

[160] Danny Weyns, Bradley Schmerl, Vincenzo Grassi, Sam Malek, Raffaela Mirandola,
Christian Prehofer, Jochen Wuttke, Jesper Andersson, Holger Giese, and Karl M
Göschka. On patterns for decentralized control in self-adaptive systems. In Software
Engineering for Self-Adaptive Systems II, pages 76–107. Springer, 2013.

[161] Aaron Wright and Primavera De Filippi. Decentralized blockchain technology and the
rise of lex cryptographia. 2015.

[162] Linlin Wu, Saurabh Kumar Garg, and Rajkumar Buyya. Sla-based resource allocation
for software as a service provider (saas) in cloud computing environments. In 11th Inter-
national Symposium on Cluster, Cloud and Grid Computing (CCGrid), pages 195–204.
IEEE, 2011.

[163] Bruno Xavier, Tiago Ferreto, and Luis Jersak. Time provisioning evaluation of kvm,
docker and unikernels in a cloud platform. In 16th IEEE/ACM International Symposium
on Cluster, Cloud and Grid Computing (CCGrid), pages 277–280. IEEE, 2016.

[164] Meng Xu, Lizhen Cui, Haiyang Wang, and Yanbing Bi. A multiple qos constrained
scheduling strategy of multiple workflows for cloud computing. In Parallel and Dis-
tributed Processing with Applications, 2009 IEEE International Symposium on, pages
629–634. IEEE, 2009.

[165] Xin Xu, Huiqun Yu, and Xin Pei. A novel resource scheduling approach in container
based clouds. In Computational Science and Engineering (CSE), 2014 IEEE 17th Inter-
national Conference on, pages 257–264. IEEE, 2014.

[166] Xiao Yue, Huiju Wang, Dawei Jin, Mingqiang Li, and Wei Jiang. Healthcare data gate-
ways: found healthcare intelligence on blockchain with novel privacy risk control. Jour-
nal of medical systems, 40(10):218, 2016.

[167] Zeratul Izzah Mohd Yusoh and Maolin Tang. Composite saas placement and resource
optimization in cloud computing using evolutionary algorithms. In Cloud Computing
(CLOUD), 2012 IEEE 5th International Conference on, pages 590–597. IEEE, 2012.

[168] Zeratul Izzah Mohd Yusoh and Maolin Tang. Composite saas scaling in cloud comput-
ing using a hybrid genetic algorithm. In Evolutionary Computation (CEC), 2014 IEEE
Congress on, pages 1609–1616. IEEE, 2014.

[169] Guangquan Zhang, Jie Lu, and Ya Gao. Multi-Level Decision Making. Springer, 2015.

191

[170] Qi Zhang, Lu Cheng, and Raouf Boutaba. Cloud computing: state-of-the-art and research
challenges. Journal of internet services and applications, 1(1):7–18, 2010.

[171] Dongfang Zhao, Nagapramod Mandagere, Gabriel Alatorre, Mohamed Mohamed, and
Heiko Ludwig. Toward locality-aware scheduling for containerized cloud services. In
Big Data (Big Data), 2015 IEEE International Conference on, pages 263–270. IEEE,
2015.

[172] Chao Zheng, Ben Tovar, and Douglas Thain. Deploying high throughput scientific work-
flows on container schedulers with makeflow and mesos. In Proceedings of the 17th
IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing, pages 130–
139. IEEE Press, 2017.

[173] Charles Zheng and Douglas Thain. Integrating containers into workflows: A case study
using makeflow, work queue, and docker. In Proceedings of the 8th International Work-
shop on Virtualization Technologies in Distributed Computing, pages 31–38. ACM, 2015.

[174] Yujian Zhu, Junming Ma, Bo An, and Donggang Cao. Monitoring and billing of a
lightweight cloud system based on linux container. In 37th International Conference
on Distributed Computing Systems Workshops (ICDCSW), pages 325–329. IEEE, 2017.

[175] James R Ziegler. Time-sharing data processing systems. 1967.

[176] Guy Zyskind, Oz Nathan, et al. Decentralizing privacy: Using blockchain to protect
personal data. In Security and Privacy Workshops (SPW), 2015 IEEE, pages 180–184.
IEEE, 2015.

192

	Acknowledgements
	Abstract
	Kurzfassung
	Contents
	List of Figures
	List of Tables
	List of Algorithms
	Listings
	List of Listings
	Introduction
	Motivation
	Example Scenario
	Problem Statement
	Aim of the Work and Scientific Contribution
	Methodological Approach
	Structure of the Work

	State of the Art
	Cloud Computing
	Definition and Evolution of Cloud Computing
	Current Trends and the Future of Cloud Computing
	Cloud Service Models
	Cloud Deployment Models
	Virtualization and Containerization Techniques
	Scalability in Cloud Computing
	Elasticity in Cloud Computing

	Business Process Management
	Business Process
	bpm
	bpms

	Elastic Processes
	Elasticity Measures for Elastic Processes
	Conceptual Architecture for Elastic Processes

	Optimization Models
	History of Optimization
	Areas of Application
	Important Concepts and Basic Principles of Optimization
	Important Classes of Optimization Models and Heuristics

	Related Work
	Scheduling and Resource Allocation Approaches for Single Services and Web Applications in the Cloud
	Optimization Approaches using Hypervisor-based Architectures
	Optimization Approaches using Containerized Architectures

	Scheduling and Resource Allocation Approaches for Workflows and Business Processes in the Cloud
	Optimization Approaches using Hypervisor-based Architectures
	Optimization Approaches using Containerized Architectures

	Conclusion

	Approach
	Preliminaries
	General Requirements of Elastic Processes
	System Requirements for the Enactment of Elastic Processes in Container-based Architectures
	bpms for the Execution of Elastic Processes

	Basic Approach and System Model
	Basic Approach
	System Model

	Working Example
	Considered Business Processes
	Service Types and Container Types
	vm Types
	Incoming Process Requests

	Multi-Objective Problem Formulation using milp
	Four Fold Service Instance Placement Problem

	Working Example Execution
	Execution of the Process Requests of the Working Example
	Further Scenario to Explain Term 4 of the Objective Function

	Implementation
	System Overview
	Workflow Definition
	Process Manager
	Data Storage
	Triggering the Reasoner
	Reasoner Component
	Process Execution

	Implementation of the Reduced Optimization Model
	Mathematical Programming Based Implementation
	Genetic Algorithm-Based Heuristic

	Transformation of the Reduced Model Results for Container-based Execution
	General Transformation of the Reduced Model Solution
	Executing the Transformed Scheduling Plan

	Extending ViePEP
	Allowing Different Optimization Modes
	Considering the Time in Optimization Models
	System Simulation with Time Discretization

	Evaluation and Discussion
	Evaluation of the Working Example
	Evaluation of the Presented Working Example
	Evaluation of the Working Example with Pre-Scheduling

	Important Observations
	Advantages of Container-Based Approaches compared to Hypervisor-Based Approaches
	Execution of the Working Example using Hypervisor-Based Approaches
	Strengths of Container-Based Approaches

	Quantitative Evaluation
	Evaluation Models
	Simulated Test Environment
	Metrics
	Solving the Full Optimization Model with CPLEX
	Evaluation of the Reduced Model including Transformation
	Evaluation of the Reduced Model including Transformation for Less Resource-Intensive Service Types
	Multiple Hour Evaluation Run with 60 Minute long btu

	Summary

	Conclusion and Future Work
	Summary of Contributions
	Future Work

	Reduced Optimization Model
	System Model
	Objective Function
	Constraints

	Process Model Collection
	List of Acronyms
	Bibliography

