
Diplomarbeit

Sparse Bayesian Learning for Directions of
Arrival on an FPGA

ausgeführt zum Zwecke der Erlangung des akademischen Grades eines
Diplom-Ingenieurs

von

Herbert Groll, BSc.
Matrikelnummer: 0725518

am
Institute of Telecommunications

Fakultät für Elektrotechnik und Informationstechnik
Technische Universität Wien

unter der Leitung von
Univ.Prof. Ing. Dipl.-Ing. Dr.-Ing. Christoph Mecklenbräuker

Wien, November 2017

Die approbierte Originalversion dieser Diplom-/
Masterarbeit ist in der Hauptbibliothek der Tech-
nischen Universität Wien aufgestellt und zugänglich.

http://www.ub.tuwien.ac.at

The approved original version of this diploma or
master thesis is available at the main library of the
Vienna University of Technology.

http://www.ub.tuwien.ac.at/eng

Acknowledgements

My deepest gratitude goes to Peter Thorwartl from so-logic electronic consulting for
guiding me through the FPGA world, his support during my studies, and providing the

necessary tools and hardware to enable this research.

*

To Nina, my family, friends, and colleagues. Without you I would not have survived
my studies.

*

Special thanks to Erich Zöchmann for fruitful discussions on the topic, and to Gogo for
comments.

˜

Abstract

A directions of arrival (DOA) estimator based on sparse Bayesian learning (SBL) is im-
plemented as a fixed-point prototype for an FPGA platform. The prototype is developed
mainly using high-level synthesis (HLS) of C++ based model specifications. Prototyp-
ing possibilities are explored for incremental verification with well known computing
environments. For modeling, the equations of the algorithm are reduced to arithmetic
operations considering the signal flow within the iterative structure. The relevant as-
pects of the used HLS tool, Vivado HLS, concerning fixed-point data types, methods
for creating hierarchical designs, and specific modeling techniques are discussed. The
prototype is presented in detail. Scheduling of each module is done as soon as possi-
ble to make use of the parallel FPGA architecture. Different fixed-point word length
assumptions are explained and implementation results are shown in terms of resources,
latency, and power consumption estimates.
Finally, a representative DOA source example is simulated and tested with the imple-

mented prototype hardware in the loop. The comparison with a floating-point reference
implementation is found to have good agreement with the fixed-point implementation.

3

Kurzfassung

Ein Schätzer für Richtungserkennung basierend auf sparse Bayesian learning (SBL)
wird prototypisch in Festpunktarithmetik auf einer FPGA-Plattform implementiert.
Dabei wird gleichzeitig die Methodik der Hardware-Synthese durch Hochsprachen (HLS)
angewendet um mittels C++ Programmiersprache eine Spezifikation für ein Modell der
digitalen integrierten Schaltung zu erstellen. Diese Abstraktion erlaubt es einerseits,
nicht relevanten Implementierungsaufwand zu automatisieren und andererseits, Entwürfe
eines Prototyps schnell mittels bekannter computerunterstützte Entwicklungsumgebun-
gen der Numerik zu verifizieren. Die Modellierung des Schätzers erfolgt durch ein Vere-
infachen und Umsetzen der Gleichungen des Algorithmus in arithmetische Operationen.
Diese werden mit bedacht auf den Signalfluss der digitalen integrierten Schaltung und des
iterativen Charakters des Algorithmus entwickelt. Die dabei benötigten Aspekte werden
für das verwendete HLS Softwarepaket, Vivado HLS, hervorgehoben. Darunter fallen die
Festpunktdatentypen, die Anbindung mehrerer aufgeteilter Module und spezielle Mod-
ellierungsarten. Die prototypische Implementierung wird diskutiert. Ein Steuermodul
für den Ablauf stellt die nebenläufige Berechnung durch die Module sicher, um von
der parallelen FPGA-Architektur zu profitieren. Verschiedene Annahmen bezüglich der
benutzten Wortlängen werden untersucht. Danach wird der Ressourcenverbrauch, die
Latenz und der erwartete Leistungsverbrauch ermittelt.
Abschließend wird ein representatives Szenario für die Richtungsschätzung simuliert.

Der Prototyp des in Festpunktarithmetik implementierten Schätzers am FPGA wird
mit einer Referenzimplementierung in Gleitpunktarithmetik verglichen. Die vorgestellte
Implementierung erreicht hierbei eine gute Übereinstimmung.

4

Contents

1. Introduction 9
1.1. Problem Formulation . 9

1.1.1. Bayesian Formulation . 10
1.1.2. SBL Algorithm . 10

1.2. Motivation . 11
1.3. Fields of Interest . 12

2. Sparse Represenation of Signals 13
2.1. Linear Measurements . 13
2.2. Sparse Representation . 13
2.3. Multiple Measurement Vectors . 13
2.4. Direction of Arrival Estimation on Sensor Arrays 14

2.4.1. Sparse Representation in DOA . 14
2.4.2. Array SNR . 15

3. High-Level Synthesis 16

4. HLS Prototyping 18
4.1. TCP/IP . 19
4.2. MATLAB / Prototype Interface . 19

4.2.1. MATLAB fi-object to Vivado HLS Arbitrary Precision 19
4.3. C-Simulation Platform . 20
4.4. Hardware Prototyping Platform . 20

5. Algorithms 22
5.1. Data sample covariance matrix . 22
5.2. Data covariance matrix . 22
5.3. Inverse data covariance matrix . 23
5.4. SBL1 and SBL . 23
5.5. Active set . 24
5.6. Noise Variance . 25

5.6.1. Projection Matrix . 25
5.6.2. Trace . 25

5.7. Convergence rate . 26

6. Vivado HLS 27
6.1. Arbitrary Precision Data Type . 27

6.1.1. Quantization Adjustment . 29

5

Contents

6.1.2. Overflow Modes . 29
6.2. Linear Algebra Library . 30

6.2.1. Complex class . 30
6.2.2. Matrix Multiplication . 31
6.2.3. Cholesky Factorization . 32
6.2.4. Forward Substitution . 32
6.2.5. Back Substitution . 32
6.2.6. Square Root . 32

6.3. Hierarchical Design . 33
6.3.1. Interfaces . 33

6.4. Dataflow Optimization . 37
6.5. ROM . 38
6.6. Reset . 38
6.7. Pipeline Optimization . 39
6.8. Scheduling . 39

7. Implementation 40
7.1. Overview . 40
7.2. Simplifications . 40
7.3. Configuration . 41
7.4. SBL Scheduler . 41
7.5. Bit-width . 42
7.6. FPGA Resources . 43
7.7. Latency . 44
7.8. Power Estimation . 46

8. Simulation Results 48
8.1. Settings . 48
8.2. Results for SBL1 . 48

8.2.1. Moving 3rd source . 51
8.3. Convergence . 53

9. Conclusion 55

A. Appendix 56
A.1. SBL1 and SBL – Numerator . 56
A.2. Projection Matrix Decomposition . 57
A.3. Trace . 57

Acronyms 59

Bibliography 62

6

List of Figures

2.1. Directions of arrival (DOA) for two plane waves with wavenumber km

impinging on four sensors given by position pn. 14

4.1. Network adapter for design under test (DUT). The dashed line shows the
dataflow. The solid line shows the use of threads to achieve continuous
streaming of data. 20

4.2. Hardware prototyping platform. 21

6.1. Two standalone Vivado HLS projects . 33

7.1. Dataflow including memories between HLS blocks. Input: yl, outputs:
noise variance σ̂2, active set M, variance γ̂, convergence criteria ε ≤ εmin.
The blocks in the dashed rectangle are evaluated only once for a single
multiple measurement vector (MMV). 40

7.2. System finite-state machine . 41
7.3. Block finite-state machine. 42
7.4. Concurrency of HLS blocks of DOA estimator. 43
7.5. FPGA device occupation . 45
7.6. (a) Latency and (b) resources for the SBL1 block depending on design

parameter (M,N). The number of DSP slices stays at 284. 47

8.1. (a) RMSE of DOA and (b) mean iterations at stop criteria ε ≤ εmin
depending on SNR . 49

8.2. (a) Estimated σ̂2 and (b) RMSE of estimated γ̂ at stop criteria ε ≤ εmin
depending on SNR. RMSE between HLS and MATLAB implementation
is shown as dotted line. 50

8.3. DOA estimation of the sources. The detected peaks are marked. The
dashed lines show the sources of the signal model. 50

8.4. Estimated γ̂ for 3rd source positioned near one end of spatial spectrum. . 51
8.5. Minimum relative angle between 3rd source and −90°/90°/−3°/2° for

DOA RMSE ≤ 1° . 51
8.6. Estimated γ̂ of SBL for different array SNR. 1st and 2nd source are fixed,

dotted lines. Position of 3rd source is varied. 52
8.7. Convergence of parameter γ̂ with SBL1 and SBL implemented with HLS

and MATLAB. The source positions are marked with (). Array SNR =
2 dB. 53

8.8. Convergence of ε towards εmin = −30 dB. Comparison between SBL1 and
SBL implemented with HLS and MATLAB. Array SNR = 2 dB 54

7

List of Tables

7.1. Configuration of the FPGA implementation. 41
7.2. FPGA resources of individual HLS blocks 44
7.3. Latency of each HLS block. 46

8

1. Introduction

1.1. Problem Formulation
A method for estimating the directions of arrival (DOA) of waves is presented in [1].
The signal model assumes aK-sparse signal xl ∈ CM which is a vector ofM dimensions

with K nonzero complex source amplitudes xlm, with m ∈ [1, . . .M]. M is the number
of points of a grid which defines the DOA of the source amplitudes of K traveling waves
where K � M . Each wave is modeled with narrowband far-field assumption at a fixed
frequency ω and velocity of propagation c. Multiple single snapshots of xl are combined
to a matrix X = [x1, . . . ,xL] ∈ CM×L with L being the number of snapshots. The
indices of the K nonzero sources of xl define a set of active sources, the support of xl or
active set Ml = {m ∈ N|xml 6= 0} = {m1,m2, . . . ,mK}. The model requires the sources
to be stationary so that the active set Ml = M is constant across all L snapshots.
Sources xl can not be observed directly. Instead a sensor array consisting of N sensors
observe a transformation of the complex source amplitudes. A single snapshot of the
array data is yl ∈ CN , the multisnapshot array data is then Y = [y1, . . . ,yL] ∈ CN×L.
The array data model yl = Axl + nl is a linear transformation of xl with the transfer
matrix A and additive noise nl due to the sensors. For the multisnapshot array data
the model is [1, eq. (1)]

Y = AX + N (1.1)

The linear transformation with transfer matrix A describes the impinging of multi-
ple wave fronts, each from a different direction θm, on the sensor array. Each direc-
tion has its column am in A = [a1, . . . ,aM] ∈ CN×M which describes the time delay
τm = [τm1, . . . , τmN] for a wave front of direction θm with respect to the sensors. For
a uniform linear array (ULA), the element spacing d of sensors is equal. Therefore,
Anm = e−jωτnm = e−j(n−1)ωd

c
sin θm . Each element Nnl of the multisnapshot additive

noise N = [n1, . . . ,nL] ∈ CN×L is assumed to be idenpendent and identically distributed
(i.i.d.) complex Gaussian, CN (0, σ2), across sensors and snapshots. The number of sen-
sors N is assumed to be much smaller than the number of DOA positions M . Therefore
the transfer matrix A is a non-invertible operator and (1.1) is a underdetermined system
of linear equations. Solving the linear problem (1.1) for N � M via approximation e.g.
with a Wiener Filter would result in a high mean squared error (MSE) because it does
not consider the sparse source. In [1] the sparse Bayesian learning (SBL) framework
of [2] is used to solve the linear problem with multiple measurement vectors.

9

1. Introduction

1.1.1. Bayesian Formulation
The problem of solving the underdetermined system is tackled using Bayesian inference.
This involves determining the posterior distribution of the complex source amplitudes
X from the likelihood and prior model [1].
A Gaussian likelihood function of Y |X is defined [1, eq. (3)] under the assumption of

the additive complex Gaussian noise in (1.1).

p(Y |X;σ2) =
exp(− 1

σ2 ‖Y − AX‖2F)
(πσ2)NL

(1.2)

with variable variance σ2.
The unknown complex source amplitudes xml are assumed to be independent both

across DOA and snapshots l. Therefore, the prior distribution of xml is modeled to
follow a zero-mean complex Gaussian distribution CN (0, γm) with variance γm as a
prior hyperparameter, which is varying with directional index m but stationary across
different snapshots l.

pm(xml; γm) =

{
δ(xml), for γm = 0
1

πγm
e−|xml|

2/γm , for γm > 0
(1.3)

Writing (1.3) as a multivariate prior distribution of X leads to [1, eq. (5)]

p(X;γ) =
L∏
l=1

CN (0,) (1.4)

With γ = [γ1, . . . , γM]T being the hyperparameters of the prior distribution and =
E[xlxH

l ;γ] being the covariance matrix of the complex source amplitude vector xl. As
the sources xml are assumed uncorrelated, Γ = diag(γ). Each hyperparameter γm ≥ 0
represents source power at directional index m. From (1.3) follows for γm = 0, P{xml =
0} = pm(0; 0) = 1. For γm > 0, an active set M = {m ∈ N|γm > 0} is defined
equivalently to the active set of complex source amplitudes. The SBL algorithm in [1]
estimates the source power of X by estimating the hyperparameters Γ.

1.1.2. SBL Algorithm
The algorithm for estimating the DOA of complex Gaussian sources using SBL was
presented in [1, Table 1].

1: while ε > εmin and j < jmax do
2: j = j + 1, γold = γnew, γ = γnew

3: Σy = σ2IN + AΓAH

4: γnew
m = choose [1, eq. (SBL1) or (SBL)]

5: M = {m ∈ N | K largest peaks inγnew} = {m1, . . . ,mK}
6: AM = [am1 , . . . ,amK]
7: (σ2)new = 1

N−K tr((IN − AMA+
M)Sy)

10

1. Introduction

8: ε = ‖γnew−γold‖1/‖γold‖1
9: end while

10: Output: M, γnew, (σ2)new

The algorithm tries to find a sparse solution for an observed Y by iteratively updating
estimated variances γm and estimated noise σ2. The two variants for updating γm
are [1, eq. (SBL1)]

γnew
m =

γold
m√
L

∥∥YHΣ−1
y am

∥∥
2
/
√

aH
mΣ−1

y am, (SBL1)

and [1, eq. (SBL)]

γnew
m =

γold
m√
L

∥∥YHΣ−1
y am

∥∥
2
/
√

aH
mS−1

y am. (SBL)

How to implement the algorithm for an actual hardware realization, was left as an
open task. A target platform of interest for such an application is a FPGA, especially
because those devices start to be tightly integrated with analog-digital converters (ADCs)
nowadays.

1.2. Motivation
The SBL for DOA estimator presented in [1] can be a useful component for real world
applications which need localization of wave emitting sources with high spatial or tempo-
ral resolution. To our knowledge, the algorithm is only implemented as MATLAB code
so far, which limits its use to the processing of offline data. Moreover, an application is
tied to a workstation or laptop. An implementation of the estimator suitable for tight
integration with measurement equipment could simplify complex measurement systems
or even enable its use in new fields of application. Online measurements for the charac-
terization of wireless channels, for example could benefit from the dimension-reduction
the SBL DOA estimator has to offer. Important aspects of a prototype are usability,
mobility, power consumption, costs, and suitability for real-time processing.
The use of an FPGA platform is an obvious choice for the prototype of a DOA esti-

mator as it provides power efficient parallel processing, allows flexible interfacing with a
wide range of communication protocols, and enables rapid prototyping by reconfigura-
tion. For these reasons, FPGA devices are used in nearly all professional measurement
equipment today.
The traditional way of FPGA programming is through a low-level hardware description

language (HDL), which allows to model the hardware in high detail. The linear algebra of
the SBL algorithm [1] is a rather high-level description which needs to be refined towards
lower architectural levels. However, this can be a painful and error-prone task with
enormous complexity. HLS tools for FPGA allow to specify a task on the algorithmic
level and generate a derived low-level description. Moreover, parameters and different
implementation variants can be evaluated easily which makes it promising for rapid
prototyping.

11

1. Introduction

Power efficiency and cost for the FPGA implementation should be kept moderate.
Therefore, a realization in fixed-point arithmetic is preferred over floating-point arith-
metic.

1.3. Fields of Interest
This work combines aspects of sparse signal representation, array processing, and high-
level synthesis to create a FPGA based platform for DOA estimation. Furthermore,
is has the potential for a future use in the analysis of data sets from millimeter wave
channel sounders to characterize the wave propagation channel.

12

2. Sparse Represenation of Signals

2.1. Linear Measurements
A measurement system acquires n measurements as a vector y ∈ Rn which are observed
from a linear system Ax = y where A is a sensing matrix with A ∈ Rn×m and x ∈ Rm is
an unobservable signal. A linear system of that kind is underdetermined if there are more
unknowns than equations, i.e. n < m. In that case, A has reduced the dimensionality of
x. If A has full-rank, indefinitely many solutions exist for a higher-dimensional x ∈ Rm.
In order to arrive at a unique solution, additional criteria have to be added. A very
popular solution is the minimization of the squared Euclidean norm ‖x‖22 with respect
to the given equation, Ax = y, which results in the pseudo-inverse AT (AAT) = A+

and the unique solution x̂ = A+y. Although this least square solution is very popular
in a lot of fields, it is not always a good choice. Especially for sparse x, where the least
squares method minimizes the energy of x̂ instead of promoting sparseness [3].

2.2. Sparse Representation
If a signal, described by the vector x, consists of at most k nonzero elements, i.e. ‖x‖0 ≤ k
we say it is k-sparse. Most real-world signals are not sparse as such. However, if a sparse
representation x̂, which is now k-sparse, can be found to be a good approximation, the
signal is said to be compressible, approximately sparse, or relatively sparse [4]. The task
for the inverse problem is now to find good approximate sparse solutions with methods1

that seek sparse solutions and are computationally tractable. One possible method is the
use of a Bayesian framework to arrive at sparse solutions for regression analysis known
as SBL [6].

2.3. Multiple Measurement Vectors
A measurement system takes linear measurements yl from the measurement system to
obtain a single measurement vector (SMV). The sparse representation of the signal has
few non-zero coefficients in xl. A combined matrix X = [x1,x2, . . . ,xL] which has
constant indices of their non-zero coefficients of each xl across snapshots, is said to be
row-sparse. For row-sparse X, multiple snapshots of yl can be combined into a multiple
measurement vector (MMV) Y to benefit from jointly processing the measurements
during recovery under some conditions.

1Compressed-Sensing is a branch of sparse and redundant representations which is often confused with
being the whole field of theory [5].

13

2. Sparse Represenation of Signals

2.4. Direction of Arrival Estimation on Sensor Arrays
Locating a number of sources is the task of direction finding where the directions of
arrival (DOA) of waves is estimated by measuring wavefields with sensor arrays. The
waves are restricted to plane waves, i.e. farfield assumption, propagating in a locally
homogeneous medium and the sensors of the array are assumed to be isotropic. Sensors
are placed on points pn ∈ R3 in space and a signal yn(t,pn) is measured independently
at each sensor n ∈ {1, 2, . . . , N}. Each plane wave differs in its time of arrival at
the various sensors. For a single narrowband wave with wavenumber k ∈ R3, where
|k|2 = ω/c = 2π/λ, the signal with propagation delay at each sensor n is described by
yn(t,pn) = y(t)e−jkT ·pn . The signals of all used sensors are stacked to a SMV y(t,P) =
y(t)a(k) and measured as a single snapshot, where vector a(k) is the steering vector2

incorporating all spatial characteristics of the array [7]. The DOA is estimated by finding
the direction of k through y(t,P).

y

z

p1

p2

p3

p4

k(θm1)

θ

k(θm2)

Figure 2.1.: Directions of arrival (DOA) for two plane waves with wavenumber km im-
pinging on four sensors given by position pn.

2.4.1. Sparse Representation in DOA
In a 2-dimensional Euclidean space DOA is estimated by finding the polar angle θ of plane
waves with corresponding wavenumber k(θ). Hence, the steering vector is a(k) = a(θ).
All possible directions θ ∈ [θmin, θmax], posed as a finite-dimensional vector θ ∈ RM

with M possible directions, form a collection of steering vectors, the steering matrix
A ∈ RN×M . The signals of the sensor array are the SMV y. A single plane wave
impinging on the array with directional angle θm, with m ∈ {1, 2, . . . ,M}, leads to a
y which can be sparsely represented by a vector x ∈ CM with a single non-zero entry.
The situation for K plane waves with different directions, impinging on the sensor array
is then a linear combination of K single-entry vectors xm(t) = xm(t) · em or a sparse
representation with a vector x(t) which has K non-zero coefficients. The steering matrix
A serves as a dictionary of all possible source locations. For fewer sensors (N) in the
array than possible source locations (M), the linear system

y(t) = Ax(t)
2steering vector or array manifold vector or replica vector

14

2. Sparse Represenation of Signals

is underdetermined. However, for small K compared to M , sparse recovery techniques
can be utilized.

2.4.2. Array SNR
The sensor array adds signals coherently and noise incoherently to improve signal-to-
noise ratio (SNR) [7]. Array SNR in decibel for a single snapshot of the sensor array is
defined as [1]

SNR = 10 log10
E[‖Axl‖22]
E[‖nl‖22]

(2.1)

A important performance measure for the quality of DOA estimation is the root mean
squared error (RMSE) of the estimated directions to the real K directions given by the
signal test setting and evaluated for J realizations.

DOA RMSE =

√√√√ 1

K

1

J

K∑
k

J∑
j

|θk,j − θ̂k,j |2 (2.2)

A low DOA RMSE is desirable for good resultion of a localization system.

15

3. High-Level Synthesis

FPGAs have a compute paradigm which is not deviated from the von Neumann architec-
ture. Although they can be programmed to mimic common architectures which might
be advantageous during development of those, FPGAs have a flexible interconnection
between digital elements and are thus good at using a datapath paradigm for signal
processing problems. Instructions don’t have to be fetched because they are inherintly
defined by the configured datapath. The flexibility allows application-specific architec-
tures. The switching frequencies of an FPGA with only a few 100MHz is slow compared
to those of a GPU or a CPU with several GHz. However, their effectiveness in terms
of latency and power consumption on bit manipulation, stream processing, pipelining,
and providing tightly placed on-chip memory makes them a preferable technology for a
great number of applications.
High-level synthesis (HLS) for FPGAs is the translation of algorithmic or behavioral

descriptions to application-specific architectures, which consist of datapath and control
unit [8]. A sequence of operations is described on a higher abstract level in a program-
ming language or a subset supported by the HLS tool from which a generated digital
system is described at the register-transfer level (RTL) in the form of a hardware de-
scription language (HDL).
The HLS process undergoes several phases for a source module.

Analysis Processes the HLS source code analogous to a software compiler to create an
intermediate representation. After higher-level optimization, a control flow graph (CFG)
is created for assuring strict control dependency due to loop and branching conditions.
Between nodes of the CFG are basic blocks with a defined entry point, exit point, and
multiple operations in between. A data flow graph (DFG) is created for each block to
capture data dependency between operations or possible parallel operations. A combined
control/data flow graph (CDFG) from CFG and DFG is now used for actual hardware
synthesis.

Scheduling Finds the control steps from the CDFG for each DFG (independently or
combined). Memory access, as load-store operations, also need to be scheduled and
technology limits have to be obeyed. Different scheduling algorithms are possible to
achieve a trade-off between few control steps with high parallel execution of operations,
and more control steps with chances of operator sharing1. This affects throughput,
latency, and needed resources of the module.

1Operator sharing is not necessarily the best way to reduce needed hardware resources for FPGAs as
additional control logic with multiplexers can exceed the resources from the cut down operators.

16

3. High-Level Synthesis

Allocation The minimum number of needed operations and storage elements are used
to allocate functional units with corresponding hardware resources.

Binding Assigns the functional units to operators and storage elements and adds mul-
tiplexers to select them for the scheduled control step.

The control steps for a module are realized by a controller, i.e. a finite-state machine,
and added to the resulting register-transfer level (RTL) description.
In order to arrive at an efficient synthesis result, the HLS compiler has to apply

a plethora of compiler optimizations [8]. However, some improvements can only be
achieved at the algorithmic level by the programmer.

17

4. HLS Prototyping

Sensor array data is usually sampled by ADCs and processed by a directly connected
digital signal processor or FPGA. The algorithms which use the data are usually designed
with tools and programming languages at higher levels of abstraction. When prototyping
an algorithm, stimuli are generated for the higher-level software model and the results
are verified. The software model is iteratively improved until the errors are sufficiently
small. The next step is to create a prototype which is compatible with the hardware
platform. Likewise, a hardware simulation of the prototype is verified with a testbench,
to produce the same output as a reference obtained from a higher-level model, the golden
reference. If the output does not match the golden reference, the higher-level model has
to be refined for the next iteration. Finding the root cause of an error can be difficult,
especially when a higher-level model is not bit-accurate compared to a derived hardware
description. It is therefore advantageous to design algorithm prototypes directly with
bit-accurate high-level languages which offer automated transformation into hardware
descriptions. Furthermore, hardware description language (HDL) produce bit- and cycle-
accurate hardware simulations. As this simulates every clock transition, it makes the
simulation unnecessary slow for algorithm prototyping. The behavioral modeling with
high-level synthesis (HLS) offers a huge reduction in simulation time.
For HLS with Vivado HLS, the C/C++ sources of the design use only a subset of

the programming language combined with the headers from Vivado HLS for which the
compiler can create synthesizeable code. Vivado HLS allows bit-accurate C simulation of
design entries. The gcc and clang compilers can be used for a behavioral C simulation. A
testbench creates stimuli and verifies a design under test (DUT). The testbench for the
C simulation does not need to be synthesizeable and can therefore be any piece of code
which can call the C design entry of the DUT with necessary arguments. Moreover,
the DUT itself can be enhanced by simulation-only code for further verification1 for
prototyping purposes, e.g. to create self-checking modules.
The most simple testbench for a DUT is probably a C program with a main func-

tion which initializes the arguments to zero, calls the design entry function and quits.
Wrappers for other programming languages, scripting languages or inter-process com-
munication with other processes can also be used as long as the required binary format of
the design entry arguments can be created. An obvious choice for a device-independent
inter-process communication protocol is the ubiquitous TCP/IP stack. A transport con-
trol protocol (TCP) and user datagram protocol (UDP) server is created which receives
the arguments for a DUT from a remote process, calls the design entry, and sends the
results back to the remote process.

1A useful library for enhancing C simulation for verification was Armadillo [9], a C++ linear algebra
library.

18

4. HLS Prototyping

4.1. TCP/IP
When using MATLAB to aid in developing numerical algorithms, the MATLAB MEX
interface allows to exchange data between MATLAB and foreign piece of code. This
approach is used in [10] to send data from MATLAB to the design entry of a DUT and
receive the results. MATLAB also allows to communicate with remote hosts via the
TCP/IP protocol to send and receive data. For an algorithm prototype accessible via
TCP/IP, MATLAB can create and send complex stimuli to the prototype and evaluate
the results received from the prototype utilizing all powerful features included within
the MATLAB integrated development environment.
TCP/IP communication can be achieved in MATLAB for TCP with a tcpclient ob-

ject which has write and read methods. UDP communication is also implemented in
MATLAB in several toolboxes, e.g. the DSP System Toolbox2. Both protocols can be
used as an interface to the prototype. TCP is the more convenient protocol for proto-
typing if the algorithm can not cope with packet loss, as it is connection-oriented and
has flow-control built-in. UDP, on the other hand, can be implemented with a less
complex protocol stack and is therefore more easily integrated, e.g. as a full hardware
implementation.
Care has to be taken when crossing boundaries of TCP packets, as a connector to the

DUT needs to re-align payload of fragmented packets.

4.2. MATLAB / Prototype Interface
The binary format needs to be compatible between MATLAB and the prototype. Com-
mon binary formats between Vivado HLS and MATLAB are unsigned integer types
(uint8_t, uint16_t, uint32_t, uint64_t), signed integer types (int8_t, int16_t, int32_t,
int64_t), and floating point types single- and double-precision floating point refering to
the IEEE 754 binary32 and binary64 formats. Other structures need to have a fixed
memory layout based on the compatible data types.

4.2.1. MATLAB fi-object to Vivado HLS Arbitrary Precision
MATLAB has a data type for fixed-point number objects (fi). This data type is compat-
ible as an exchange format with Vivado HLS’s ap_(u)fixed data type when used with
restrictions. A value V can be used to create a fixed-point numeric object with signed
property S, word length W , and fraction length F , with the command fi(V,S,W,F).
For real numbers and S = true, fi(V,true,W,F) maps to ap_fixed<W,W-F>, for real
numbers and S = false, fi(V,false,W,F maps to ap_ufixed<W,W-F>.
For vectors, each fixed-point number with word length W is aligned to the next word

length WB ∈ {8, 16, 32, 64, 128}bits in memory. When mapping complex numbers to the
hls::x_complex container, real and imaginary part are interleaved with real value first
in memory.

2The DSP System Toolbox provides a UDP sender (dsp.UDPSender) and receiver (dsp.UDPReceiver)
object for bidirectional communication with raw data.

19

4. HLS Prototyping

4.3. C-Simulation Platform
A C++ application is implemented as a connector to a higher level testbench for a DUT
implemented with HLS. It provides a TCP server to receive stimuli from the remote
host and send back results. In [10], input data is received, the design entry of the DUT
is called and only upon return, data is sent back to the remote host, which introduces
high latency. To be able to stream data continuously, two threads are spawned which
act as TCP receiver and TCP sender. Execution of the DUT is carried out in parallel
as shown in Figure 4.1. Input data from TCP is passed to an input FIFO of the DUT.
Data from the output FIFO of the DUT is sent back while execution can still continue.
This enables the remote host to get intermediate results as soon as they are available.

spawn threads

TCP receiver DUT TCP sender

end

from testbench to testbench

Figure 4.1.: Network adapter for design under test (DUT). The dashed line shows the
dataflow. The solid line shows the use of threads to achieve continuous
streaming of data.

4.4. Hardware Prototyping Platform
Similar to the C-simulation platform, the synthesized HLS DUT can be evaluated on an
FPGA by receiving stimuli and sending back results through a TCP or UDP connector
on the hardware. The connector passes input and output data between TCP/UDP and
the DUT through FIFOs.
Embedded protocol stacks for TCP and UDP exist which allow the realization of such

a connector with little logic resources, cf. [11]. If the prototyping hardware platform has
enough resources, a soft-core microcontroller can be added to the FPGA design to make
use of free widely available software protocol stacks. In this work a MicroBlaze soft-core
microcontroller, an Ethernet-lite IP and a DDR3 memory controller are used together
with the lwIP stack to implement the TCP connector for the DUT. The hardware proto-
typing platform is shown in Figure 4.2. There is no dependency on using this technology
for interfacing the DUT, which means the platform could be substituted with any other
TCP/UDP to AXI4-Streaming converter.

20

4. HLS Prototyping

to/from
testbench

Ethernet
PHY

Ethernet
Core

µC DUT

Memory

input

output
FPGA

Figure 4.2.: Hardware prototyping platform.

21

5. Algorithms

This chapter breaks down the algorithm into multiple blocks to simplify and specialize its
linear algebra for implementation with HLS. An important insight is the independence of
the number of snapshots L. The multisnapshot Y can be substituted by Sy throughout
the equations.

5.1. Data sample covariance matrix
The data sample covariance matrix Sy arises from multiple snapshots yl of an N sensor
array. By assuming, that data for snapshot l = 1 is available before snapshot l = 2 and
so on, it is advantageous to fully process each snapshot and discard the data before the
next arrives to minimize latency and memory requirements. The sample covariance of
the multisnapshot is therefore the sum of its single snapshots.

Sy =
YYH

L
= SH

y (5.1)

YYH =

L∑
l=1

ylyH
l (5.2)

ylyH
l =


y1,ly

∗
1,l y1,ly

∗
2,l . . . y1,ly

∗
N,l

y2,ly
∗
1,l y2,ly

∗
2,l . . . y2,ly

∗
N,l

.
yN,ly

∗
1,l yN,ly

∗
2,l . . . yN,ly

∗
N,l

 (5.3)

Moreover, as Sy is Hermitian, only the upper triangle needs to be evaluated and stored.

5.2. Data covariance matrix
The data covariance matrix Σy is defined as [1, eq. 13]

Σy = (σ2)newIN + AΓAH (5.4)

where Γ = diag(γnew) and γnew = [γnew
1 , . . . , γnew

M]T . Each γnew
m ∈ γnew is updated by

the SBL algorithm [1, eq. (SBL1) and (SBL)] in a sequential way, i.e. first γnew
1 , then

22

5. Algorithms

γnew
2 up to γnew

M . Therefore, equation (5.4) can be formulated as

[Σy]ij =
M∑

m=1

[amaH
m]ijγ

new
m i 6= j (5.5)

[Σy]ii =

M∑
m=1

[amaH
m]iiγ

new
m + (σ2)new (5.6)

where only the lower triangle or upper triangle and the diagonal have to be calculated
as Σy is Hermitian. The noise power estimate (σ2)new is evaluated after the last value
of γnew

m is available, i.e. γnew
M . Thus, it is added to the diagonal as a last step.

5.3. Inverse data covariance matrix
The inverse of the data covariance matrix Σy is needed in calculation of [1, eq. (SBL1)
and (SBL)]. If a matrix inverse operation is used in compound with a matrix or vector
product the inverse is not explicitly needed.1 Instead a linear system Ax = b needs
to be solved for x only. Σy as defined in (5.4) is derived from the expectation of
(1.1). It is therefore the sum of uncorrelated noise σ2I and E[AxlxH

l AH]. The first is
clearly a positive definite matrix, the second is a Gram matrix2 with elements aiΓaH

j =

aiΓ
−1/2

(
ajΓ

−1/2
)H for j, i = [1, . . . ,M]. As a Gram matrix is always positive semidef-

inite [12, Theorem 3.1], the sum of a positive definite and a positive semidefinite matrix
is also positive definite if each one and the sum is bigger than 0, cf. [12, Definition 3.1].
Therefore, Σy is positive definite if σ2 > 0 and xHAΓAHx ≥ 0 for all x 6= 0. We
can do a Cholesky factorization of Σy = LΣLH

Σ and make use of the lower triangular
Cholesky factor LΣ where

Σ−1
y = L−H

Σ L−1
Σ (5.7)

is needed.

5.4. SBL1 and SBL
The common numerator of the two different equations for updating γnew

m , [1, eq. (SBL1)
and (SBL)] is

‖YHΣ−1
y am‖2√
L

=

√
bH
mSybm. (5.8)

Due to the Hermitian matrix Sy, the implemented arithmetic operations accesses only
the upper triangle of Sy, cf. appendix A.1. The vector bm = Σ−1

y am is calculated with
(5.7) by first solving

LΣãm = am (5.9)
1In MATLAB editor, a tooltip immediately notifies the user about the performance gain of using x=A\B

instead of x=inv(A)b when solving Ax = b for x.
2The names Grammian matrix, Gramian matrix or Gram matrix have all been found in literature.

23

5. Algorithms

for ãm with forward substitution and, second, solving

LH
Σbm = ãm (5.10)

for bm with back substitution. For [1, eq. (SBL1)], the intermediate result ãm can be
used to calculate aH

mΣ−1
y am for every index m and iteration as

aH
mΣ−1

y am = aH
mL−H

Σ L−1
Σ am = ãH

mãm = ‖ãm‖22. (5.11)

For [1, eq. (SBL)], the term aH
mS−1

y am needs to be calculated for every index m only
once, for all iterations of the multisnapshot. The Cholesky factorization of Sy=RH

Sy
RSy

helps again to reduce calculation complexity.

aH
mS−1

y am = aH
mR−1

Sy
R−H

Sy
am =

(
R−H

Sy
am

)H (
R−H

Sy
am

)
= ‖R−H

Sy
am‖22 (5.12)

5.5. Active set
Constructing the active set M, thus finding the K peaks in γnew, is a filtering and a
selection problem. The filtering makes sure to identify neighbouring points as being a
peak or no peak. A trivial peak detecting filter algorithm is
if γnew

m−1 < γnew
m ≤ γnew

m+1 then
γnew
m is a peak, γfilter

m = γnew
m

else
γnew
m is no peak, γfilter

m = 0
end if

With limited precision in calculating γnew, small bumps near a bigger peak would falsely
be identified as several peaks and could prevent smaller peaks from being selected. There-
fore, additional pre-filtering is used with a moving averaging window FIR filter. The
division in averaging can be skipped, because ultimatively we are just interested in the
index m of the peak. With a window size of 3, improved results could be achieved. For
an input xγ [m], the output yγ [m− 1] is

yγ [m− 1] =

2∑
i=0

xγ [m− i] xγ [m] =


γnew
1 , for m ≤ 1

γnew
m , for 1 < m < M

γnew
M , for m ≥ M

(5.13)

After filtering and identifying of the peaks, the largest peaks have to be selected.
The selection could be done in a parallel way by, e.g. a sorting network [13] with
minimal total number of cycles. However, the time between calculating the result
of γnew

m and γnew
m+1 is assumed to be larger than linearly comparing one value γnew

m

with previous Mnew
γm−1

, the set of K largest peaks up to index m − 1. Therefore, the
following linear selection, used iteratively M times, is found to be sufficiently fast.

1: for all m ∈ [1, . . . ,M] do

24

5. Algorithms

2: find min (Mγnew
m−1

)
3: if γnew

m > min (Mγnew
m−1

) then
4: replace min (Mγnew

m−1
) with γnew

m

5: replace argmin (Mγnew
m−1

) with m
6: end if
7: end for

This adds only minimal delay after the last value, i.e. γnew
M , was calculated, because the

smallest element, i.e. min (Mγnew
M−1

), is already selected in advance.

5.6. Noise Variance
The noise variance estimation, as hyperparameter σ2, is calculated in [1, eq. (27)] us-
ing the estimated active steering vectors, combined in AM, and the sample covariance
matrix Sy.

(σ2)new =
1

N −K
tr((IN − AMA+

M)Sy) (5.14)

The term 1
N−K is simply a multiplication with a constant and A+

M is the pseudo-inverse
of AM .

5.6.1. Projection Matrix
A projection matrix P = AMA+

M is defined in [1, eq. (25)] which can be decomposed
using Cholesky decomposition of AH

MAM = RH
MRM with the Cholesky factor RM in

its upper triangle matrix version, cf. appendix A.2.

P = AM(RH
MRM)−1AH

M = QQH (5.15)
with

RH
MQH = AH

M (5.16)
The matrix Q can be retrieved by solving (5.16), which is of dimension N × K.

Alternatively, a different matrix Q can be derived by a QR-decomposition of AM =
QRM (cf. thin QR Factorization [14, Theorem 5.2.3]). However, Vivado HLS does
only include a floating point version of the QR-decomposition so we continue using the
Cholesky factorization for the decomposition.

5.6.2. Trace
For the evaluation of the trace

tr((IN − P)Sy) = tr(Sy)− tr(PSy),

calculating tr(Sy) involves just summing up the diagonal elements [Sy]nn, which can be
done once for a matrix Sy. The other term can be calculated with (5.16) as

tr(PSy) =
K∑
k=1

qH
k Syqk, (5.17)

25

5. Algorithms

with the same underlying arithmetic operations but without the square root as in (5.8),cf.
appendix A.3.

5.7. Convergence rate
The convergence rate ε is defined as [1, eq. 25]

ε = ‖γnew−γold‖1/‖γold‖1 (5.18)

As each value γnew
m is calculated in series, a iterative formulation is useful. Furthermore,

as we only need to compare ε with a minimum convergence rate εmin, we can reformulate
the problem to elimitate a costly divide operation.

∆γM = ‖γnew − γold‖1 =
M∑
m

|γnew
m − γold

m |

∆γm = ∆γm−1 + |γnew
m − γold

m |
∆γ0 = 0

(5.19)

The convergence can be evaluated when the last value, i.e. γnew
M , is calculated.

ε > εmin

‖γnew − γold‖1 > εmin · ‖γold‖1
∆γM > εmin · ‖γold‖1

(5.20)

26

6. Vivado HLS

The algorithms developed in chapter 5 are implemented using Xilinx Vivado HLS, a high-
level synthesis (HLS) tool targeting Xilinx FPGAs based on the HLS tool AutoPilot. It
allows to create a hardware specification based on the C programming language1 which
can be transformed into a specification on the RTL level by the HDLs, VHDL and
Verilog. Thus, development can focus on the algorithmic level.
In this chapter, the utilized fixed-point data types are analyzed and abstracted for

linear algebra. Ways of splitting a large Vivado HLS project into multiple standalone
projects are explored. Finally, other useful implementation techniques are discussed.

6.1. Arbitrary Precision Data Type
Fixed-point operations are typically faster, need less hardware resources, and consume
less power than floating-point operations which lead to cheaper devices. The HLS block
for e.g. calculating the unscaled sample covariance matrix YYH without further archi-
tectural optimization takes 14 DSP Slices compared to 4 DSP Slices and needs at least
1.25 more cycles when half-precision floating-point is used instead of a 16 bit fixed-point
data type. Therefore, fixed-point implementations can lead to more efficient digital
systems.
Binary fixed-point numbers, when used in software, are stored in registers and memory

with a data width which is suitable for the underlying processor architecture, e.g. usually
8 bit, 16 bit, 32 bit, 64 bit, or a multiple of that. Vivado HLS defines arbitrary precision
data types, which are bit-accurate and therefore a better hardware description of a
binary fixed-point number for digital design. Those data types store a number in its
two’s complement representation at adjustable data width. The arbitrary precision data
type is further subdivided into integers ap_(u)int<W> and fractional type for binary
fixed-point numbers ap_(u)fixed<W,I>, each with a signed and an unsigned variant [15].
The fractional binary fixed-point data types ap_(u)fixed<W,I> are of special interest
to our application as they allow us to describe numbers for a given word length of W
bits to have a given integer length of I bits and a fractional length of W − I bits. This
is basically a scaled version of an integer with the same word length W , scaled by a
factor of 2−(W−I), which means there is no difference in a storage point of view. The
scaling factor is a power of 2 which, for binary numbers stored in two’s complement, can
be achieved efficiently by bit-shifting. However, it is often advantageous to have scaling
implicitly defined by the data type, especially when writing digital signal processing
(DSP) algorithms with distinct data types of different scale. In Vivado HLS, a lot of

1C, C++, and SystemC can be used.

27

6. Vivado HLS

arithmetic operations are defined for the arbitrary precision data type which respect
different word length and integer length of the operands.
The following set of numbers can be represented by ap_ufixed<W,I>

u · 2−(W−I), u ∈ {x ∈ N | 0 ≤ x ≤ 2W − 1} (6.1)

and for ap_fixed<W,I>

i · 2−(W−I), i ∈ {x ∈ N | − 2W−1 ≤ x ≤ 2W−1 − 1}. (6.2)

This representation is analogous to the sfixed and ufixed types2 of the fixed-point
package [16, fixed_pkg.vhdl] added in VHDL 2008.

Precision Traits

The result of arithmetic operations with fixed-point numbers may need a higher word
length or precision to prevent errors due to overflows, underflows and rounding. A
multiplication of c = a · b = 3 · 7 = 21, with (a = 3, Wa = 2, Ia = 2) and (b = 7, Wb = 3,
Ia = 3), needs at least a word length of Wc = Wa+Wb with an integer length of Ic = Ia+
Ib, for example. Manual bit width accounting would be a cumbersome and error-prone
way of specifying the widths of each variable. Instead, a C++ template programming
technique called traits [17] helps with determining the widths of operation results. Traits
for the arbitrary precision data types are provided with the type hls::x_traits<type1,
type2>::operator_T from the header files in the Vivado HLS library package.

typedef ap_ufixed<2,2> a_t ;
typedef ap_ufixed<3,3> b_t ;
typedef typename h l s : : x_tra i t s<a_t , b_t>: :MULT_T c_t ;

a_t a = 3 ;
b_t b = 7 ;
c_t c ;

c = a * b ; // 21

The implicit scaling also allows to set I > W or I ≤ 0 which can be seen in the following
example.

typedef ap_ufixed<2,5> d_t ;
typedef ap_ufixed<2,−2> e_t ;
typedef typename h l s : : x_tra i t s<d_t , e_t >: :MULT_T f_t ;

d_t d = 16 ;

2Instead of word length W and integer length I, the bit position of most significant bit (MSB) and
least significant bit (LSB) relative to the decimal point is specified for VHDL 2008 types sfixed and
ufixed.

28

6. Vivado HLS

e_t e = e_t (”0b0 .0001 ”) ; // 1/(2^4)
f_t f ;

f = d * e ; // f = 1 , ap_ufixed <2+2,5+(−2)>

The precision traits permit a convinient way to get the resulting widths for one operation.
For operations like b = ‖a‖1 =

∑
_ai ∈ A|ai|, the final bit-width respecting the dimen-

sion of a can be retrieved with the trait hls::x_traits_d<type, dimension>::ACCUM_T.
If an algorithm includes a feedback, exact computation without error is not possible any-
more for unbounded input because the data width can not grow indefinitely. In that
case, the precision of results has to be reduced which can also be done with the help
of traits. Custom modify traits have been implemented to change the integer or frac-
tion part of the fixed-point data type, e.g. if we know the result of operation y = a · x
with resulting data type ap_ufixed<W,I>, with W = Wa +Wx and I = Ia + Ix, to be
bounded to integer width Iy, we can remove (Ia + Ix) − Iy unnecessary integer bits by
using hls::x_mod_traits<ap_ufixed<W,I>, Iy>::INT_SET_T to modify the data type
to W − (Ia + Ix) + Iy and Iy.

6.1.1. Quantization Adjustment
A reduction of precision in the fraction part is a quantization which is subject to round-
ing. The rounding behavior can be modified for each specialized data type. The default
rounding mode for ap_(u)fixed is rounding by truncation, AP_TRN, which does not
need extra hardware resources. The recommended mode for numerical calculations is
unbiased rounding [18], e.g. the round to even mode, AP_RND_CONV, which is used in the
Cholesky factorization hls::cholesky.

6.1.2. Overflow Modes
If the result of an operation needs a larger data width than available, overflows occur.
Different overflow modes can be used for each specialized data type which define how
the result will be modified. The default overflow mode for ap_(u)fixed is wrap around,
AP_WRAP. For an unsigned data type, adding 1 to the highest number wraps around
to the smallest number, subtracting 1 from the smallest number wraps around to the
highest number. For a signed data type, adding 1 to the highest number wraps around
to the most negative number and vice versa.
Another very useful overflow mode is saturation, AP_SAT. When a result exceeds the

highest representable number, it saturates at the highest number. Saturation is also
used for Cholesky factorization. Furthermore, the assignment of γnew and σ2 in each
iteration uses saturation to prevent overflows.

29

6. Vivado HLS

6.2. Linear Algebra Library
Vivado HLS offers a linear algebra library [15] for basic matrix computation. Although
the library is of limited utility when using the ap_(u)fixed data type, we still use
its class for complex numbers, hls::x_complex, the matrix multiplication function,
hls::matrix_multiply, and a Cholesky factorization, hls::cholesky. Moreover, it is
a good starting point for developing our own algorithms based on the techniques used
in the library, especially when dealing with precision traits.

6.2.1. Complex class
The complex class hls::x_complex<type> is a container for complex number with a real
and imaginary part of a common data type. Basic operations on the complex number
and precision traits are also defined next to the complex class. The ap_fixed<W,I> data
type can be used as a specialization of the complex class. However, care has to be taken
when the defined operators are used, as they can not always handle binary operations
with different data types. To deal with this deficiency, operands can be casted to the
precision of the result before performing the operation, or a two-step operation can be
used by first loading the first operand and then executing an assignment operation, e.g.
multiplication assignment ∗ =.

typedef h l s : : x_complex<ap_fixed <3,3> > a_t ;
typedef h l s : : x_complex<ap_fixed <4,4> > b_t ;
typedef typename h l s : : x_tra i t s<a_t , b_t>: :MULT_T c_t ;

a_t a = a_t (3 ,−4) ;
b_t b = b_t(−8 , −7);
c_t c , cast_a , cast_b ;

c = a * b ; // does not compi le

c = a ;
c *= b ; // c = 4+53 i

c = b ;
c *= a ; // c = 4+53 i

cast_a = a ; cast_b = b ;

c = cast_a * cast_b ; // c = 4+53i , ap_fixed <3+4+1,3+4+1>

The three correct expressions are equal and produce the same hardware results.

30

6. Vivado HLS

6.2.2. Matrix Multiplication
The linear algebra library uses two-dimensional C-style arrays of a data type to represent
matrices. Matrices AM×N and BN×O, where each element is a complex fixed-point
number, can be defined as

typedef h l s : : x_complex<ap_fixed<WA, IA> > a_t ;
typedef h l s : : x_complex<ap_fixed<WB, IB> > b_t ;
a_t A[M] [N] ;
b_t B[N] [O] ;

where each row am is an array of lengthN . The function template hls::matrix_multiply
can be used for matrix multiplication of a matrix A with a matrix B. Similar to the
multiplication of two scalars, we need to specify a data type for the result. A trait is
used again to derive the resulting type, which depends on the type of A, type of B and
their dimensions. A transposition type is also specified for each matrix to allow normal,
transpose and conjugate transpose access of the input elements. The trait provided in
the library, hls::matrix_multiply_traits, accepts only a single input type. There-
fore, the input precision has to be equal or greater than both input precisions to prevent
overflow or quantization errors. A extended trait, hls::matrix_multiply_ap_traits,
and a extended multiply function, hls::matrix_multiply_ap, is implemented, which
respects different input types. The following example determines the data type for the
elements in the resulting matrix C = AB.

typedef h l s : : matrix_multiply_ap_traits<h l s : : NoTranspose ,
h l s : : NoTranspose , M, N, N, O, a_t , b_t> mult_config_t ;

typedef typename mult_config : :ACCUM_T c_t ;

c_t C[M] [O] ;

Furthermore, the container class MArray2d_hls for a matrix with traits MArray2d_hls_traits
is implemented, which keeps track of precision and dimension of a matrix. It allows to
derive the data type more comfortable. The following example defines the matrix con-
tainers, their data type and finally calculates the matrix multiplication.

typedef MArray2d_hls<a_t , M, N> Matrix_A_t
typedef MArray2d_hls<b_t , N, O> Matrix_B_t ;
typedef typename MArray2d_hls_traits<Matrix_A_t ,

Matrix_B_t>: :MULT_NN_T Matrix_C_t ;

Matrix_A_t A;
Matrix_B_t B;
Matrix_C_t C;

MArray2d_hls_mult_nn<Matrix_A_t , Matrix_B_t ,
Matrix_C_t>: : mult (A, B, C) ;

31

6. Vivado HLS

6.2.3. Cholesky Factorization
The Cholesky factorization hls::cholesky from the linear algebra library is used to
get the Cholesky factor L of a positive definite matrix A = LLH . It uses the complex
version of [19, eq. (2.9.4) and (2.9.5)]

Lii =

(
Aii −

i∑
k=1

LikL∗
ik

)1/2

(6.3)

Lji =
1

Lii

(
Aij −

i∑
k=1

LikL∗
jk

)
, j = i+ 1, i+ 2, . . . , N (6.4)

where the reciprocal diagonal 1/Lii is stored as intermediate result. A modification of
hls::cholesky allows us to use 1/Lii outside of the function. This is beneficial when
we use the Cholesky factor L to solve the equation Ly = b by forward substitution or
LHx = y by back substitution, which allows us to replace a time consuming division
with a multiplication by 1/Lii. It is harder to set a precision when using (6.3). From [14,

Section 4.2.6] L2
ji ≤

i∑
k=1

L2
ik = Aii follows if we keep the real diagonal of A in [−1, 1] then

real and imaginary parts L will also stay in [−1, 1]. Therefore, only 2 integer bits are
needed. For fraction length, things are not so easy as can be seen in [20]. We just use a
sufficiently wide fixed length, which leaves room for optimizations.

6.2.4. Forward Substitution

Based on a simple forward substitution algorithm yi =

(
bi−

i−1∑
k=0

Likyk

)
/Lii, a HLS function

is implemented, which makes use of the diagonal reciprocals 1/Lii provided as input next
to lower triangular L and b.

6.2.5. Back Substitution

Based on a simple backsubstitution algorithm xi =

(
yi−

N∑
k=i+1

Rikxk

)
/Rii, a HLS function

is implemented, which makes use of the diagonal reciprocals 1/Rii provided as input next
to upper triangular R and b.

6.2.6. Square Root
The square root operator, used in the Cholesky Factorization and in [1, eq. (SBL) and
(SBL1)], is taken from hls_sqrt.h. Is uses a simple digit-by-digit algorithm to de-
rive the square root. This leaves room for speed optimizations by using square root
approximation algorithms, not further investigated in this work.

32

6. Vivado HLS

6.3. Hierarchical Design
Ultimatively, Vivado HLS transforms C/C++/SystemC design entries into Verilog/VHDL
entities. It is possible to create a hierarchical HLS project with several structural mod-
ules inside. However, some techniques are hard or inefficient to model within one HLS
project alone. Another reason for breaking down the problem into several HLS modules
is the reduction of complexity, to reduce compilation time for single modules, and to
avoid running out of memory on the workstation due to complexity scaling problems of
the tool or other limits.

6.3.1. Interfaces
One module’s output is the input of another module. Which interface mode is possible
for a module’s single port depends on the argument type, i.e. scalar, array, or reference.
Some of the techniques used in this work are mentioned below.

module
A

module
B

standalone project

ap_ctrl ap_ctrl

Figure 6.1.: Two standalone Vivado HLS projects

Output Reference

Module A can use an reference (or pointer) to set a value at an output port a_out.
Without handshake interface (ap_none or ap_stable), the data port is valid at latest
when the control signal of module A signals the end of operation. The default behaviour
for an output reference port [15] is a one-way handshake (ap_vld)), i.e. a valid pulse,
that the data is safe to read by module B. This works only if module B is scheduled
prior to the valid pulse otherwise the pulse is never registered. A one-way handshake
allows to distribute the data to one or more than one module at a time but lacks the
possibility to synchronize the producer module with the consumer. An optional register
can be used on the port to hold data valid until the next valid pulse arrives. Sometimes
a two-way (ap_hs) handshake interface is the better choice when only two modules need
to exchange data or synchronize. An additional acknowledges signal (ap_ack) completes
the data transaction for a single value, i.e. producer and consumer are synchronized.
The following example shows design entries of a module A with an output port with two-
way handshake and a corresponding module B with the same data type and two-way
handshake on an input port.

void module_a (a_t & a_out)
{
#pragma HLS INTERFACE ap_hs port=a_out

33

6. Vivado HLS

a_out = do_generate_result_a () ;
}

void module_b(a_t a_in)
{
#pragma HLS INTERFACE ap_hs port=a_in
do_use_result_a (a_in) ;

}

The a_out and a_in port of module A and B need to be connected in the RTL flow,
e.g. by using a Vivado IP Integrator Block Design.

Return Value

The HLS module B can use the return value of another HLS module A as input when
model A uses ap_ctrl_hs or ap_ctrl_chain as its block interface and the two modules
are scheduled correctly. The return value of A is available as the signal ap_return when
the control signal ap_done goes high.

ap_ctrl_hs For ap_ctrl_hs, ap_return becomes invalid when ap_done goes low, i.e.
the next clock cycle, unless a register is used on the return port.

result_a_t module_a (. . .)
{

#pragma HLS INTERFACE register port=return
return do_generate_result_a (. . .) ;

}

This ensures that ap_return stays valid until the next rising-edge of ap_done.

void module_b(result_a_t resu l t_a)
{

#pragma HLS INTERFACE ap_vld register port=resu l t_a
do_use_result_a (resu l t_a) ;

}

A module B can use the return value of A starting with the rising edge of ap_done from
A until the next rising edge.

ap_ctrl_chain The ap_ctrl_chain block interface is the recommended way of chaining
HLS modules [15]. When it is used, an additional ap_continue signal allows to postpone
further operation of the block as soon as the ap_done signal goes high. It will stay high
and ap_return is held valid.

result_a_t module_a (. . .)
{

34

6. Vivado HLS

#pragma HLS INTERFACE ap_ctrl_chain port=return
return do_generate_result_a (. . .) ;

}

void module_b(result_a_t resu l t_a)
{

#pragma HLS INTERFACE ap_hs register port=resu l t_a
do_use_result_a (resu l t_a) ;

}

Memory

If a larger block of data is shared between two HLS modules, a dual-port memory can be
used for communication. Usually, but not necessarily, one module is the producer and
the other the consumer of the data. Each module needs a suitable memory interface,
the memory itself needs to be instantiated, and the interfaces have to be connected.
When using a Vivado IP Integrator Block Design, the block RAM (BRAM) interface is
a natural choice which permits to connect the HLS modules with a memory as two edges
between three nodes [15]. In Vivado HLS, a port of a module can be set as memory
interface if it corresponds to an array argument of the design entry function. By knowing
type and size of the array, memory address calculation is implicitly done with the array
index. This also works if the array is two-dimensional or nested in a container, e.g. the
MArray2d container for matrices. The following example reads from a BRAM through
input argument A_in and read-writes to a different BRAM through output argument
L_out.

void decompose (Matrix_A_t & A_in , Matrix_L_t & L_out)
#pragma HLS i n t e r f a c e bram port=A_in
#pragma HLS re sou r c e va r i ab l e=A_in core=ROM_1P
#pragma HLS i n t e r f a c e bram port=L_out
#pragma HLS re sou r c e va r i ab l e=L_out core=RAM_1P

do_decompose (A_in , L_out) ;
}

The bram interface is set via an HLS pragma directive on each port. HLS is free to
decide if it uses one or two ports of a single external BRAM. To be able to exchange
data between two modules, the resource of the external BRAM has to be constrained to
a single-ported interface, e.g. ROM_1P or RAM_1P.

Stream

Streaming data through a processing pipeline is a very efficient way of using HLS for
FPGAs. A stream is unidirectional and has therefore a strict producer or consumer

35

6. Vivado HLS

role. In Vivado HLS, a port can have a stream interface if access on an argument of the
design entry function is sequential, exclusively-read or exclusively-write, and each value
is accessed in sequence conversly to a random access memory (RAM). If those condi-
tions are not met, either by mistake of the user or the tool, a special access container,
hls::stream, can be used to enforce compatibility. Vivado and Vivado HLS have a
good support for the AXI4-Streaming (axis) protocol with all kind of FIFOs, converters,
and switches to use it as a streaming interconnect between various modules in a system.
By using the axis interface on a port, two modules can be connected by a single edge
between two nodes in a Vivado IP Integrator Block Design [15]3. The following exam-
ple reads from two streams and writes its sum and difference to two different output
streams. It shows two different ways of using input and output arguments compatible
for streaming.

void sum_diff (a_t a , h l s : : stream<b_t> & stream_b ,
h l s : : stream<c_t> & stream_sum , d_t & d i f f)

{
#pragma HLS i n t e r f a c e ax i s port=arr_a
#pragma HLS i n t e r f a c e ax i s port=stream_b
#pragma HLS i n t e r f a c e ax i s port=stream_sum
#pragma HLS i n t e r f a c e ax i s port=a r r_d i f f

a_t interna l_a ; b_t interna l_b ;

interna l_a = a ;
interna l_b = stream_b . read () ;

d i f f = (interna l_a − interna l_b) ;
stream_sum . wr i t e (inte rna l_a + interna l_b) ;

}

If we need to read a single value from a stream twice, the condition for a streaming
interface would be violated. Instead, we can use a stored version of the stream, e.g.
implemented with a shift register, and read each value of the stream only once for storing
it. If the samples are processed in bursts, reading and writing scalars does not correctly
model the behavior. Therefore, arrays or pointers are used instead of the scalars.

void multirate_sum_dif f (a_t arr_a [BURST_SIZE] ,
h l s : : stream<b_t> & stream_b ,
h l s : : stream<c_t> & stream_sum , d_t * a r r_d i f f)

{
#pragma HLS i n t e r f a c e ax i s port=arr_a

3The ap_fifo interface is the HLS native streaming type and more lightweight than axis. The axis
interface allows greater interoperability between modules. Arbitrary precision data types are sign-
extended to the next byte [15], for example, which makes it easy to combine HLS modules with other
AXI4 infrastructure or when accessing data with a processor.

36

6. Vivado HLS

#pragma HLS i n t e r f a c e ax i s port=stream_b
#pragma HLS i n t e r f a c e ax i s port=stream_sum
#pragma HLS i n t e r f a c e ax i s depth=BURST_SIZE port=a r r_d i f f

for (unsigned int idx=0; idx < BURST_SIZE; idx++) {
a_t interna l_a ; b_t interna l_b ;

interna l_a = arr_a [idx] ;
interna l_b = stream_b . read () ;

a r r_d i f f [idx] = (interna l_a − interna l_b) ;
stream_sum . wr i t e (inte rna l_a + interna l_b) ;

}
}

Each function call in the example reads now a burst of values from the input streams.
The array arr_a can be treated as a stream because each element is read in sequential
order and only once. The streams modeled with hls::stream use the same argument
type as in the previous single value example. Care has to be taken when using pointers
because they can be used for dereferencing a scalar or an array which results in dif-
ferent behavior. Moreover, the depth of the arr_diff port can not be determined
automatically and has to be specified, otherwise RTL simulation can stall4.

6.4. Dataflow Optimization
The dataflow optimization analyzes statements in a scope and arranges them as dif-
ferent blocks in a pipeline according to the data dependency. The optimization works
best if each block produces data on n ports for n connected consumer blocks. A corre-
sponding DFG should show unidirectional data flow without feedback loops. Dataflow
optimization is activated by placing directives at the desired scope.

#pragma HLS dataf low

It is sometimes cumbersome to get some trivial algorithms working with the dataflow
optimization enabled. Loading a value from a memory A or a memory B into a register R
depending on a flag, for example, is interpreted as an unsupported conditional execution.
However, loading register RA from A, RB from B, and conditionally assigning R from
RA or RB is permitted.

4It is better to model the port as hls::stream or as reference to an array of fixed size, i.e. d_t (&
arr_diff)[BURST_SIZE]

37

6. Vivado HLS

6.5. ROM
If elements of an array are read-only, then the array can be implemented as a lookup-
table. The array can be initialized by a classic C-style array-initializer or a separate
function. The following example specializes and instantiates a sine lookup-table of length
16 and type a_t from a generic rom template.

template<typename T, int N>
struct rom {

T va lue s [N] ;
stat ic rom<T,N> in i t_ s i n e (void) {

rom<T,N> tmp ;
for (int i =0; i<N; i++) {
double theta = ((double) i *2*M_PI) / ((double)N) ;
tmp . va lue s [i] = T(s i n (theta)) ;

}
return tmp ;

}
} ;

rom<a_t , 16> s ine_lut = rom<a_t , 16 >:: i n i t_ s i n e () ;

The initializer init_sine() is executed during the transformation step of synthesis,
therefore no calculation is done in hardware. Care has to be taken when the initializer is
too complex, as the ROM generation process can silently fail. However, a hardware co-
simulation with a proper testbench quickly reveals a deviation from software simulation.
In that case, the initializer could be simplified, for example with an intermediate step.
First, a separate program generates header files or coefficient files which are already
parameterized. Second, a simple initializer uses the generated ROM header files or
reads the values from the coefficient file.

6.6. Reset
HLS functions can have static variables which keep their values across multiple function
calls. The same is true for global variables. Static and global variables are initialized
as the FPGA is programmed. Additionally, they can be reinitialized together with the
inherent control logic of the function when the reset directive is added for a variable [15].
The control logic itself is generated with reset capability and can be set to a defined state
by asserting the ap_rst signal. Reset polarity can be active high or low. It is desirable
to explicitly set the reset polarity of the HLS project so that it is equal across multiple
HLS blocks5.

5The default behavior is to use active high reset. Using any AXI interface on any port sets reset to
active low.

38

6. Vivado HLS

6.7. Pipeline Optimization
Sequential operations on an input value need one operation to finish before the next
operation can be executed. If this sequence is executed again for a different input, i.e.
an input independent of the previous output, then it is possible to pipeline the operations.
This permits each operation to start as soon as an input is available and reduces the time
the sequence can process new data, also known as initiation interval (II). The hardware
resources for each operation need to exist in parallel which is a natural thing when
using an FPGA. HLS distinguishes between two types of pipeline optimizations, task
pipelining and loop pipelining [15], with the same underlying principle. Both optimize
for a specified or low II to improve the total throughput of a task (function) or loop.
For a stream of data, the total latency can be reduced, whereas the latency for a single
output value in the scope of the pipeline stays nearly the same6.

6.8. Scheduling
Several independent operations can be scheduled to run in parallel. This is done auto-
matically if it is obvious for the HLS tool. For the example in 6.3.1 HLS automatically
schedules reading from ports a and b on the first, calculation of a + b and a − b on the
second, and writing to ports sum and diff on the last clock cycle.

6However, pipeline optimization of a loop or a function on a lower level can improve latency of a single
output value at the upper level.

39

7. Implementation

7.1. Overview
The algorithm is implemented, consisting of submodules created with Xilinx Vivado HLS
2017.2, and combined into a complete prototype with connecting memory blocks and a
custom scheduler using Xilinx Vivado 2017.2. Figure 7.1 shows the dataflow of the SBL
algorithm with memory elements between HLS blocks. The FPGA design is completed
with an TCP connector for a full hardware prototyping platform as shown in 4.2.

yl Sy Sy tr(Sy) σ̂2 σ̂2

Σy Σy LΣLH
Σ LΣ

γ̂
(SBL/SBL1) M M

ε ≤ εmin end

γ̂

Figure 7.1.: Dataflow including memories between HLS blocks. Input: yl, outputs: noise
variance σ̂2, active set M, variance γ̂, convergence criteria ε ≤ εmin. The
blocks in the dashed rectangle are evaluated only once for a single multiple
measurement vector (MMV).

7.2. Simplifications
The number of snapshots (L) is a power of two L = 2Lb . As L appears only as a
divisor y = x/L, this permits a division of a fixed point value x to be transformed into
a bit-shift by Lb positions and y = x · 2−Lb . If Lb is known during compilation it is a
mere reinterpretation of the bit vector with no extra operation involved1. Number of
sensors (N) and directions of arrival (M) are a power of 2 for architectural optimization
reasons. This can be advantageous, e.g. for efficient memory usage due to address
layout of memory blocks. The transfer matrix A is pre-calculated during compilation

1Changing L only effects Sy. It would be possible to allow a dynamic number of snapshots by setting
L to a maximum value L = 2Lb,max with Lb ∈ {1, 2, . . . , Lb,max} and put a configurable bit-shifter on
the read port of the Sy memory.

40

7. Implementation

Parameter Name Value

M DOA 512
N sensors 16
L snapshots 64
K sources 3
fclk clock frequency 150MHz

Table 7.1.: Configuration of the FPGA implementation.

and implemented as a ROM in hardware. It is instantiated for each HLS module which
uses A to avoid the need of bus arbitration and to minimize the access time.

7.3. Configuration
The FPGA prototype uses a configuration which is derived from the example given in [1]
and modified to fulfill the previous described simplifications.
The input to the system are quantized 16 bit complex values sampled from a sensor

array.

7.4. SBL Scheduler
The building blocks of the implemented system for SBL for DOA estimation have inde-
pendent control signals which need to be asserted in the correct order for the intended
application.

reset start cov wait cov start trace

done

Figure 7.2.: System finite-state machine

Figure 7.2 shows the finite-state machine (FSM), which schedules calculation of the
covariance matrix Sy first, waits for the results to be done, schedules calculation of
intermediate results which are valid for a multisnapshot, i.e. trace tr(Sy) (SBL1 and
SBL) and Cholesky factorization of Sy (SBL). The memory for Sy is organized as a
ping-pong buffer to allow pipelined calculation of the covariance matrix for the next
multi-snapshot.
Each multisnapshot needs multiple iterations for calculating the estimates. A second

FSM, figure 7.3, takes care of the correct control flow between the components of the
SBL algorithm [1, Table 1]. A block can be scheduled as soon as its preconditions are
met, i.e. data is available.
Figure 7.4 shows the relationship between schedule times of the blocks.

41

7. Implementation

reset
init blocks

wait Sy, LΣ

start sbl

wait sbl
wait M, tr(Sy)

start σ̂2

send results last

send results

Figure 7.3.: Block finite-state machine.

7.5. Bit-width
A hardware implementation needs to have known word lengths during compilation for
each input, output, memory and register. This is necessary in order to allocate and bind
hardware resources for each storage element and operation. As described in 6.1, most
operations using fixed-point numbers lead to a higher word length of the result compared
to the word lengths of the operands. The concatenation of operations would quickly lead
to unfeasible high resource requirements. Certain trade-offs concerning precision have
to be made in order to meet resource constraints.
The fixed-point implementation of the SBL DOA estimator assumes input data from

the sensor array Y as 16 bit word length complex, for real and imaginary part each, and
2 bit integer length2 to allow signed values in [−1, 1]. The calculated outputs are γ̂ with
48 bit word length and 18 bit integer length, σ̂2 with 32 bit word length and 2 bit integer
length, and three indices of the identified peaks as 16 bit unsigned integer.
The transfer matrix A is usually normalized by 1/

√
M to simplify analysis due to

|a|2 = 1 [3]. The normalization leads to a reduction of the integer length, hence for A
we use a 16 bit word length and (2− log2 M/2)bit integer length.
Σy is set to the same precision as σ̂2 due to AΓAH with absolute value of its elements

|aH
l Γai| ≤ ‖al‖2‖Γai‖2 ≤ max

m
γ̂m. However, ‖Γai‖2 ≤ 1 is expected as Γ is sparse.

The Cholesky factors LΣ, RSy , and RM need a 2 bit integer length as described in
6.2.3, a 48 bit word length was used for LΣ, RSy , 32 bit RM, which was sufficient to get
good results.

22 bit integer length is used because otherwise +1 would not be representable with 1 bit integer length
in ap_fixed<W,1>, cf. section 6.1

42

7. Implementation

Sy

tr(Sy)

Σy

LΣ init

SBL1/SBL γ̂1 γ̂2 . . . γ̂M γ̂1 . . .

ε < εmin

find M

σ̂2

send res.

Figure 7.4.: Concurrency of HLS blocks of DOA estimator.

The sample covariance matrix Sy is derived from the multisnapshot Y which is in the
interval [−1, 1]. It is therefore sufficient to reduce the integer length to 2 bit.
The result of forward substitution ãm was set to 32 bit word length with 4 bit integer

length. However, the result of the subsequent back substitution bm needed a wider
integer length as numerical problems during simulation have shown. bm was set to
48 bit word length and 20 bit integer length.

7.6. FPGA Resources
The Xilinx KC705 evaluation board is used for the implementation of the SBL DOA
estimator. It features a Xilinx 7 Series Kintex-7 XC7K325T FPGA and peripheral
components, of which only an ethernet PHY and a DDR3 SO-DIMM are utilized for
interfacing the prototype. There is no strict dependence on the KC705. Therefore,
it can be easily replaced by any other off-the-shelf board with a comparable FPGA,
ethernet connection and memory. The most important resources of the FPGA for DSP
algorithms are dedicated blocks of multipliers with additional specialized logic called
DSP Slices, or DSP48E1 Slices for Xilinx 7 Series FPGAs. The XC7K325T has 840
DSP48E1 Slices.
Table 7.2 shows the used resources of each HLS block.
Figure 7.5 shows the FPGA resource occupation for the SBL1 variant with highlighted

HLS blocks. Blocks with a high multiplier count distribute themselves along the DSP

43

7. Implementation

Slice LUTs Slice Registers DSP Slices BRAM (18Kb)
Sy 266 289 4
LΣ 4259 4765 104 12
ε 497 753 3
filter 516 552
M 682 796
γ (SBL1) 7232 8285 284 16
γ (SBL) 13970 14624 476 32
σ2 6878 7669 164 20
Σy 438 979 22 16
tr(Sy) 54 94
Memγ 4
MemSy 24
MemΣy 4
MemLΣ

14
total SBL1 20822 24182 581 110
total SBL 27560 30521 773 126
total available 203800 407600 840 890

Table 7.2.: FPGA resources of individual HLS blocks

slices columns present on the chip. The high DSP utilization of the γ̂ calculating block
(SBL1) is distributed over a large chip area. The memory elements used to exchange
random access data between HLS blocks are not shown. They occupy BRAM resources,
a on-chip memory with dual ports.
As HLS enables easier exploration of the design space, we modify the parameters M

and N for the resource intensive SBL1 block to analyze an impact on the hardware
resource count. Figure 7.6b shows the resources for several design parameter pairs
(M,N). Occupation of look-up tables (LUTs) and registers remain at a similar level.
BRAM usage is increasing for greater M and N due to larger ROMs for the steering
matrix A and higher memory usage for intermediate results. The number of DSP slices
is not shown but does not change at all.

7.7. Latency
The latency of a block depends on the number of control step (CS), each CS’s latency, and
how loops are placed to repeat some of the steps. HLS generates C synthesis reports with
minimum and maximum latency of a block and each sub-module. The difference between
minimum and maximum arises from the fact that loops can have variable bounds which
lead to a variable number of iterations. Even tough some nested loops have fixed bounds,
e.g. iterating over the lower triangle elements of a two dimensional array, sometimes they

44

7. Implementation

γ̂ (SBL1)

LΣ

σ̂2

Sy

Σy

ε

M

filter

send res.

.

Figure 7.5.: FPGA device occupation

cannot be resolved by the HLS tool as such3. Therefore it is more convenient to take
latency results from an RTL simulation or hardware co-simulation. It is important to
note that the latency of each block also depends on the target clock frequency. This is
because HLS is scheduling and pipelining the operations of a block depending on a given
timing constraint, i.e. the clock period, to meet the technology limit. Table 7.3 shows
the total or added latency of each HLS block in clock cycles.
Some blocks are scheduled together with other blocks. Hence, those don’t contribute

directly to the total latency of a single iteration but only add a small latency to the total
latency as shown in Figure 7.4. During the first iteration of a multisnapshot, the blocks
SBL1 and SBL make use of pre-calculated LΣ from initial values of σ̂2 = σ2

0 and γ̂ = γ0.
Thus the latency of the first iteration is smaller than those of the following iterations of
the same multisnapshot.
Latency differentiation between first iteration, following iteration, SBL1 and SBL

can be neglected due to the small differences compared to the high number of cycles
needed in this implementation. At 150MHz, approximately 43 iterations/s are possible
compared to 24 iterations/s for the floating-point reference implementation in MATLAB
and 30 iterations/min for the HLS C simulation4 using a Intel Xeon CPU E5-2690 v3
at 2.60GHz. The bottleneck is clearly the slow calculation of 512 different γ̂m in each
iteration j, which has great potential for improving performance. For hard real-time
requirements on the input of the system, a maximum number of iterations jmax has
to be considered which constrains the rate RY of producing a new sample covariance

3It was not possible for Vivado HLS 2017.2 to calculate the exact latency of iterating over all rows in
a loop 1 and over all columns ≤ row in nested loop 2. For small loops, an indexing ROM can help to
convert 2 dimensional deterministic indexing to 1 dimensional linear indexing.

4Only a single CPU thread is used for C simulation.

45

7. Implementation

operation SBL1 SBL

cycles % cycles %
Sy 62 145 1.8 62 145 1.8
tr(Sy) 35 <1 35 <1
LΣ 8731 <1 8731 <1
γ̂ 3 484 161 99.6 3 471 870 (4 433 042) 99.6
find M γ̂M + 49 <1 γ̂M + 49 <1
ε < εmin γ̂M + 3 <1 γ̂M + 3 <1
σ̂2 5987 <1 5987 <1
Σy σ̂2 + 33 <1 σ̂2 + 33 <1
send res. σ̂2 + 3 <1 σ̂2 + 3 <1
1. iteration 3 552 342 4 501 223
iteration niter 3 498 961 100 3 486 670 100

Table 7.3.: Latency of each HLS block.

matrix Sy.

RY ,max(jmax) ≤
1

Tjmax
=

fclk
niter · jmax

The calculation of Sy reduces data from N × L to N(N+1)/2 which is process parallel to
the iterations of the SBL algorithm. Therefore, by increasing the number of snapshots
L of the MMV, the maximum rate of the SMV, Ry,max, is also increased.

Ry,max(jmax) = L ·RY ,max(jmax) ≤
L · fclk

niter · jmax

For jmax = 100 and L = 64, the maximum rate Ry,max(100) = 27.4 SMV per second.
Figure 7.6a shows the impact in latency for the HLS block SBL1 when changing the

design parameters M and N . For this implementation, all pairs (M,N) are approx-
imately on a line where nSBL1 ∝ M · N (N/2 + 1). This relation indicates sequential
processing within the module. Clearly, the loop for calculating the M different γ̂m could
be processed (partially) in parallel to reduce latency. Furthermore, finer pipeline opti-
mization could be applied within the module to reduce the II between γ̂m and γ̂m+1.
However, this has to be done with a trade-off between latency and resources. Finally, fur-
ther reduction in latency of a single γ̂m could be achieved by reducing precision through
approximations or smaller word length.

7.8. Power Estimation
The implementation of the algorithm is estimated to consume less than 1.5W when
operated at a clock frequency of 150MHz on the Kintex-7 XC7K325T FPGA, according

46

7. Implementation

0

0.5

1

1.5
·107

(512, 16)

(128, 8)

(512, 32)

design parameter

la
te

nc
y

(c
yc

le
s)

(M,N)

∝ M ·N
(

N
2

+ 1
)

(a)

(1
2
8
,8

)

(1
2
8
,1

6
)

(2
5
6
,1

6
)

(5
1
2
,8

)

(3
6
1
,2

0
)

(5
1
2
,1

6
)

(5
1
2
,3

2
)

0

2,000

4,000

6,000

8,000

design parameter

Sl
ic

e
LU

Ts
,S

lic
e

R
eg

is
te

rs
0

10

20

30

40

B
R

A
M

(1
8K

b)

LUTs
Registers
BRAM

(b)

Figure 7.6.: (a) Latency and (b) resources for the SBL1 block depending on design pa-
rameter (M,N). The number of DSP slices stays at 284.

to the Xilinx Vivado Power Report.

47

8. Simulation Results

The fixed-point prototype of the algorithm [1] implemented with Vivado HLS, cf. Chap-
ter 7, is compared with a reference floating-point implementation in MATLAB. A Xilinx
Kintex 7 FPGA board is configured with the prototype and connected as DUT to the
MATLAB environment via TCP/IP as shown in Figure 4.2. Although a C simulation of
the prototype leads to identical results in terms of accuracy to the implemented design
on an FPGA, the FPGA design is much faster, thus more suitable for long running
measurements.

8.1. Settings
Based on the example scenario of [1], K = 3 independent sources are placed on an an-
gular grid in the interval θ ∈ [−90, 90]° with M = 512 different DOA positions. The
sources, with magnitudes 12 dB, 22 dB, and 20 dB, are placed on the nearest grid-point
with respect to the angles −3°, 2°, and 75°. All three sources together are observed on an
equally spaced sensor array of N = 16 sensors with an array SNR = 20 log10 ‖Axl‖2/nrel

where nrel is the relative noise level of the additive i.i.d. complex Gaussian noise. Mul-
tiple snapshots L = 64 are concatenated to a single multisnapshot Y which serves as
the input argument to the system. The sources are stationary across snapshots. The
transfer matrix A, with elements an,m = 1√

M
exp (−j(n− 1)π sin (π(m−1)/(M−1) − π/2)),

is known in advance to the system and does not change between snapshots. Initial values
for the algorithm are σ2

0 = 0.1 and γ0 = 1. As another difference to [1], Y is scaled
so that Re(Y) ∈ [−1, 1] and Im(Y) ∈ [−1, 1] according to the used data format of
the implementation. This scaling is applied equally to the fixed-point implementation
in Vivado HLS and the floating-point reference implementation in MATLAB. This has
implications to the initial values of γ̂ and σ̂2 which are not further investigated in this
work.

8.2. Results for SBL1
A Monte Carlo simulation with J = 100 realizations is carried out for the SBL1 variant.
The root mean squared error (RMSE) of the DOA in Figure 8.1a shows good spatial
resolution for array SNR ≥ 1 dB for the fixed-point prototype implemented with Vivado
HLS with little difference to the floating-point implementation in MATLAB. The RMSE
surge at 1 dB for this configuration is at higher SNR compared to −1 dB in [1, Fig. 1c]
due to differences in the settings. The mean number of iterations for reaching the stop

48

8. Simulation Results

−5 0 5 10 15 20
0

2

4

6

8

10

array SNR (dB)

D
oA

R
M

SE
[◦

]
hls
matlab

(a)

−5 0 5 10 15 20
0

100

200

300

400

array SNR (dB)

it
er

at
io

ns

hls
matlab

(b)

Figure 8.1.: (a) RMSE of DOA and (b) mean iterations at stop criteria ε ≤ εmin depend-
ing on SNR

criterion ε ≤ εmin = 0.001 is shown in Figure 8.1b. εmin is reached with fewer iterations
the higher the array SNR, likewise for HLS and MATLAB.
The estimated noise power σ̂2, as shown in Figure 8.2a, is underestimated as already

described in [1]. Figure 8.2b shows the RMSE of estimated γ̂ for the fixed-point and
floating-point implementation. The deviation of the fixed-point implementation com-
pared to the floating-point reference is higher for higher array SNR.
Figure 8.3 shows the spatial spectrum of estimated γ̂ for different array SNR. The

three sources are well resolved by the detected peaks in γ̂ for array SNR above 1 dB.
Below 1 dB, falsely detected peaks become more likely and lead to a higher DOA RMSE.

49

8. Simulation Results

−5 0 5 10 15 20
0

0.5

1

array SNR (db)

σ
2
/σ

2 T

hls
matlab

(a)

−5 0 5 10 15 20

10

15

20

array SNR (dB)

γ
R

M
SE

(d
B

)

hls
matlab
hls-matlab

(b)

Figure 8.2.: (a) Estimated σ̂2 and (b) RMSE of estimated γ̂ at stop criteria ε ≤ εmin
depending on SNR. RMSE between HLS and MATLAB implementation is
shown as dotted line.

−80 −60 −40 −20 0 20 40 60 80

−5

0

5

10

15

20

DoA [◦]

ar
ra

y
SN

R
(d

B
)

−30

−20

−10

0

10

20

γ̂
(d

B
)

Figure 8.3.: DOA estimation of the sources. The detected peaks are marked. The dashed
lines show the sources of the signal model.

50

8. Simulation Results

8.2.1. Moving 3rd source
The same setting as before is used again with sources at −3° and 2° but the 3rd source
is now swept over the range of θ ∈ [−90°, 90°]. Here, J = 10 realizations are carried out.
Figure 8.6 shows the region where the 3rd source is close to the other 2 sources at

different array SNR. Near both ends of the spatial spectrum, the sensor array loses the
ability to resolve sources, as shown in Figure 8.4 for −90°. Therefore, the 3rd source
needs to keep distanced from the ends of the spatial spectrum, i.e. −90° and 90°, and
from the sources at −3° and 2°. Figure 8.5 shows the limits for the DOA estimator to
resolve all three sources correctly up to a DOA RMSE of ≤ 1°.

−90 −85 −80

−90

−85

−80

DoA [◦]

3r
d

so
ur

ce
po

si
ti

on
[◦

]

80 85 90

DoA [◦]

−20

0

20

γ̂
(d

B
)

Figure 8.4.: Estimated γ̂ for 3rd source positioned near one end of spatial spectrum.

302010

−4

−2

0

2

4

array SNR (dB)

∆
θ

[◦
]

−3° matlab
2° matlab

−90° matlab
90° matlab

Figure 8.5.: Minimum relative angle between 3rd source and −90°/90°/−3°/2° for DOA
RMSE ≤ 1°

51

8. Simulation Results

−10 0 10

−10

0

10

3r
d

so
ur

ce
po

si
ti

on
[◦

]

−20

0

20

(a) array SNR = 30 dB

−10 0 10

−20

0

20

γ̂
(d

B
)

(b) array SNR = 20 dB

−10

0

10

3r
d

so
ur

ce
po

si
ti

on
[◦

]

−30

−20

−10

0

10

(c) array SNR = 10 dB

−30

−20

−10

0

γ̂
(d

B
)

(d) array SNR = 0 dB

−10 0 10

−10

0

10

DoA [◦]

3r
d

so
ur

ce
po

si
ti

on
[◦

]

−30

−20

−10

γ̂
(d

B
)

(e) array SNR = −5 dB

Figure 8.6.: Estimated γ̂ of SBL for different array SNR. 1st and 2nd source are fixed,
dotted lines. Position of 3rd source is varied.

52

8. Simulation Results

8.3. Convergence
The convergence of the estimated parameter γ̂ for array SNR of 2 dB is shown in Fig-
ure 8.7. Sparse solutions, i.e. peaks in γ̂, are promoted by the SBL algorithm. The
peaks in the fixed-point implementation with HLS of SBL and SBL1 remain at a higher
level compared to the floating-point with MATLAB. This could be due to the limited
dynamic range of fixed-point numbers. Furthermore, SBL shows a higher rate of change
for the first iterations compared to SBL1.
The convergence rate ε in Figure 8.8 shows the relative change of γ̂ for each iteration.

The convergence for the fixed-point implementations of SBL and SBL1 approximately
follows the floating-point implementations.

iteration 1 5 10 20 50 100 200

−50 0 50

−20

0

20

DoA [◦]

γ̂
(d

B
)

(a) SBL1 HLS

−50 0 50

DoA [◦]

(b) SBL1 MATLAB

−50 0 50

−20

0

20

DoA [◦]

γ̂
(d

B
)

(c) SBL HLS

−50 0 50

DoA [◦]

(d) SBL MATLAB

Figure 8.7.: Convergence of parameter γ̂ with SBL1 and SBL implemented with HLS and
MATLAB. The source positions are marked with (). Array SNR = 2 dB.

53

8. Simulation Results

5 10 15 20 25 30 35 40 45 50
−30

−20

−10

0

iteration

ε
(d

B
)

SBL hls
SBL matlab
SBL1 hsl
SBL1 matlab

Figure 8.8.: Convergence of ε towards εmin = −30 dB. Comparison between SBL1 and
SBL implemented with HLS and MATLAB. Array SNR = 2 dB

54

9. Conclusion

The sparse Bayesian learning algorithm for directions of arrival estimation of [1] is suit-
able for a fixed-point implementation on an FPGA. Several signal processing steps ben-
efit from the datapath paradigm and parallelism inherent to the architecture of FPGAs.
The presented prototype reaches good agreement with the reference floating-point im-
plementation in terms of detection quality, measured in DOA root mean squared error
(RMSE), and convergence rate at nearly twice the speed.
Developing the prototype on the algorithmic level using HLS reduces time and effort

of transforming the algorithm to a synthesizable hardware description. The division into
multiple independent HLS blocks decreases complexity further and increases testability.
The high-level modeling facilitates easier modification of parameters for design space
exploration.
Using fixed-point throughout the processing chain is feasible for SBL, although for

some cases it is difficult to set appropriate word and integer length. Verification with
high-level languages is essential for evaluating results. The HLS prototype can easily be
enhanced with verification frameworks for C simulation, or a connector can be attached
to the DUT and perform platform independent verification.

Outlook The latency introduced by each iteration of the algorithm is still quite high.
Some arithmetic operations with large latency could possibly be replaced by approxi-
mated versions, e.g. 1/x or 1/

√
x. Moreover, pipeline optimization needs to be reviewed

for some modules to improve dataflow.
To reduce costs, resource sharing can be explored to save hardware resources and

target smaller FPGA devices. Although this can be achieved by HLS at the operator
level, for bigger functional units it must be considered on the algorithmic level. However,
variable word length of fixed-point data types often prevent reuse of operators. The word
lengths of the fixed-point data types can be reviewed for more detailed error analysis to
reduce resources.
Furthermore, optimizations for special sensor arrays arrangements can be considered

to get more compact descriptions of the transfer matrix A and save hardware resources.
In the future, this implementation will be tested further on real-world data acquired

by a 60GHz channel sounder built at the Institute of Telecommunications.

55

A. Appendix

A.1. SBL1 and SBL – Numerator
The common numerator, mentioned in section 5.4, for updating γnew

m can be developed
as follows

‖YHΣ−1
y am‖2√
L

=

√
(YHΣ−1

y am)HYHΣ−1
y am

L
=

√
(Σ−1

y am)HYYHΣ−1
y am

L

=

√
bH
mYYHbm

L
=

√
bH
mSybm.

By expanding the inner product bH
m(Sybm) further we get

bH
mSybm =

(
b∗m,1 b∗m,2 . . . b∗m,N

)
Sy


bm,1

bm,2

. . .
bm,N


=bm,1b

∗
m,1[Sy]11 + bm,1b

∗
m,2[Sy]

∗
12 + bm,1b

∗
m,3[Sy]

∗
13 + · · ·+ bm,1b

∗
m,N [Sy]

∗
1N

+ bm,2b
∗
m,1[Sy]12 + bm,2b

∗
m,2[Sy]22 + bm,2b

∗
m,3[Sy]

∗
23 + · · ·+ bm,1b

∗
m,N [Sy]

∗
3N

+ . . .

+ bm,Nb∗m,1[Sy]1N + bm,Nb∗m,2[Sy]2N + · · ·+ bm,Nb∗m,N [Sy]NN

=

N∑
n=1

[
bm,nb

∗
m,n[Sy]nn +

N∑
i=n+1

(
bm,nb

∗
m,i[Sy]

∗
ni + bm,ib

∗
m,n[Sy]ni

)]

=

N∑
n=1

[
bm,nb

∗
m,n[Sy]nn + 2

N∑
i=n+1

Re
(
bm,ib

∗
m,n[Sy]ni

)]

Further simplifications can be achived with

bm,nb
∗
m,nRe([Sy]nn) = [Sy]nn

(
Re(bm,n)

2 + Im(bm,n)
2
)
,

56

A. Appendix

with real diagonal elements [Sy]nn = Re([Sy]nn), and expansion of

Re
(
bm,ib

∗
m,n[Sy]ni

)
=Re([Sy]ni)Re(bm,ib

∗
m,n)− Im([Sy]ni)Im(bm,ib

∗
m,n)

=Re([Sy]ni) [Re(bm,n)Re(bm,i) + Im(bm,n)Im(bm,i)]

+ Im([Sy]ni) [Im(bm,n)Re(bm,i)− Re(bm,n)Im(bm,i)]

Finally, bH
mSybm is calculated by

bH
mSybm =

N∑
n=1

Re([Sy]nn)
(
Re(bm,n)

2 + Im(bm,n)
2
)

+ 2
N∑

n=1

N∑
i=n+1

Re([Sy]ni) [Re(bm,n)Re(bm,i) + Im(bm,n)Im(bm,i)]

+ 2

N∑
n=1

N∑
i=n+1

Im([Sy]ni) [Im(bm,n)Re(bm,i)− Re(bm,n)Im(bm,i)]

(A.1)

where only the upper triangle of Sy is needed.

A.2. Projection Matrix Decomposition
The projection matrix P from (5.15) with AM = QRM is

P = AMA+
M = AM(AH

MAM)−1AH
M

= AM(RH
MRM)−1AH

M

= AMR−1
MR−H

M AH
M

= (AMR−1
M)(AMR−1

M)H

= QQH

(A.2)

A.3. Trace
Calculating the trace in (5.14) is done by

tr((IN − P)Sy) = tr(Sy − PSy).

57

A. Appendix

The trace is a linear function, hence tr(B + C) = tr(B) + tr(C). If both matrices BC
and CB exist, tr(BC) = tr(CB) holds. Therefore,

tr(Sy − PSy) = tr(Sy)− tr(PSy)

= tr(Sy)− tr(QQHSy)

= tr(Sy)− tr(QHSyQ)

= tr(Sy)−
K∑
k=1

qH
k Syqk.

The second term can be calculated by using the same approach as for (A.1) and extend
for multiple columns.

K∑
k=1

qH
k Syqk =

N∑
n=1

Re([Sy]nn)

(
K∑
k=1

Re(qnk)2 +
K∑
k=1

Im(qnk)
2

)

+ 2

N∑
n=1

N∑
i=n+1

[
Re([Sy]ni)

K∑
k=1

Re(qikq∗nk)

]

+ 2

N∑
n=1

N∑
i=n+1

[
Im([Sy]ni)

K∑
k=1

Im(qikq
∗
nk)

] (A.3)

with
K∑
k=1

Re(qikq∗nk) =
K∑
k=1

Re(qik)Re(qnk) + Im(qik)Im(qnk)

K∑
k=1

Im(qikq
∗
nk) =

K∑
k=1

Im(qik)Re(qnk)− Re(qik)Im(qnk)

58

Acronyms

ADC analog-digital converter.

BRAM block RAM.

CFG control flow graph.

CDFG control/data flow graph.

CS control step.

DFG data flow graph.

DOA directions of arrival.

DSP digital signal processing.

DUT design under test.

FPGA field-programmable gate array.

FSM finite-state machine.

HDL hardware description language.

HLS high-level synthesis.

II initiation interval.

i.i.d. idenpendent and identically distributed.

MMV multiple measurement vector.

MSB most significant bit.

MSE mean squared error.

LSB least significant bit.

LUT look-up table.

RAM random access memory.

RMSE root mean squared error.

RTL register-transfer level.

59

Acronyms

SBL sparse Bayesian learning.

SMV single measurement vector.

SNR signal-to-noise ratio.

UDP user datagram protocol.

ULA uniform linear array.

TCP transport control protocol.

60

Bibliography

[1] Peter Gerstoft, Christoph F. Mecklenbräuker, A. Xenaki, and S. Nannuru. Mul-
tisnapshot sparse bayesian learning for doa. IEEE Signal Processing Letters,
23(10):1469–1473, Oct 2016.

[2] D. P. Wipf and B. D. Rao. An empirical bayesian strategy for solving the simul-
taneous sparse approximation problem. IEEE Transactions on Signal Processing,
55(7):3704–3716, July 2007.

[3] Angeliki Xenaki, Peter Gerstoft, and Klaus Mosegaard. Compressive beamforming.
The Journal of the Acoustical Society of America, 136(1):260–271, 2014.

[4] Y.C. Eldar and G. Kutyniok. Compressed Sensing: Theory and Applications. Com-
pressed Sensing: Theory and Applications. Cambridge University Press, 2012.

[5] M. Elad. Sparse and Redundant Representations: From Theory to Applications in
Signal and Image Processing. Springer New York, 2010.

[6] Michael E. Tipping and Alex Smola. Sparse bayesian learning and the relevance
vector machine, 2001.

[7] Harry L. van Trees. Detection, estimation, and modulation theory : 4. Optimum
array processing. Wiley, Hoboken, NJ [u.a.], 2002.

[8] D. Koch, F. Hannig, and D. Ziener. FPGAs for Software Programmers. Springer
International Publishing, 2016.

[9] Conrad Sanderson. Armadillo: An open source c++ linear algebra library for fast
prototyping and computationally intensive experiments. Technical report, 2010.

[10] A. Suardi, E. C. Kerrigan, and G. A. Constantinides. Fast fpga prototyping toolbox
for embedded optimization. In 2015 European Control Conference (ECC), pages
2589–2594, July 2015.

[11] P. Födisch, B. Lange, J. Sandmann, A. Büchner, W. Enghardt, and P. Kaever. A
synchronous Gigabit Ethernet protocol stack for high-throughput UDP/IP applica-
tions. Journal of Instrumentation, 11:P01010, January 2016.

[12] T.K. Moon and W.C. Stirling. Mathematical Methods and Algorithms for Signal
Processing. Prentice Hall, 2000.

[13] Donald E. Knuth. The Art of Computer Programming, Volume III: Sorting and
Searching. Addison-Wesley, 2nd edition, 1998.

61

Bibliography

[14] Gene H. Golub and Charles F. Van Loan. Matrix computations. Johns Hopkins
studies in the mathematical sciences. Johns Hopkins Univ. Press, Baltimore, Md.,
4. ed. edition, 2013.

[15] Xilinx. Vivado Design Suite User Guide: High-Level Synthesis, June 2017. UG902
(v2017.2).

[16] IEEE Computer Society. Ieee standard vhdl language reference manual. IEEE Std
1076-2008 (Revision of IEEE Std 1076-2002), pages c1–626, Jan 2009.

[17] Todd Veldhuizen. Techniques for scientific c++. Technical Report 542, Indiana
University Computer Science, 2000.

[18] Donald E. Knuth. The Art of Computer Programming, Volume II: Seminumerical
Algorithms. Addison-Wesley, 3rd edition, 1998.

[19] W.H. Press. Numerical Recipes 3rd Edition: The Art of Scientific Computing.
Cambridge University Press, 2007.

[20] M. Martel, A. Najahi, and G. Revy. Toward the synthesis of fixed-point code
for matrix inversion based on cholesky decomposition. In Proceedings of the 2014
Conference on Design and Architectures for Signal and Image Processing, pages
1–8, Oct 2014.

62

Declaration of Authorship

Hiermit erkläre ich, dass die vorliegende Arbeit gemäß dem Code of Conduct – Regeln
zur Sicherung guter wissenschaftlicher Praxis (in der aktuellen Fassung des jeweiligen
Mitteilungsblattes der TU Wien), insbesondere ohne unzulässige Hilfe Dritter und ohne
Benutzung anderer als der angegebenen Hilfsmittel, angefertigt wurde. Die aus anderen
Quellen direkt oder indirekt übernommenen Daten und Konzepte sind unter Angabe der
Quelle gekennzeichnet.
Die Arbeit wurde bisher weder im In- noch im Ausland in gleicher oder in ähnlicher

Form in anderen Prüfungsverfahren vorgelegt.

Wien, am 10.11.2017
Herbert Groll

	Introduction
	Problem Formulation
	Bayesian Formulation
	SBL Algorithm

	Motivation
	Fields of Interest

	Sparse Represenation of Signals
	Linear Measurements
	Sparse Representation
	Multiple Measurement Vectors
	Direction of Arrival Estimation on Sensor Arrays
	Sparse Representation in DOA
	Array SNR

	High-Level Synthesis
	HLS Prototyping
	TCP/IP
	MATLAB / Prototype Interface
	MATLAB fi-object to Vivado HLS Arbitrary Precision

	C-Simulation Platform
	Hardware Prototyping Platform

	Algorithms
	Data sample covariance matrix
	Data covariance matrix
	Inverse data covariance matrix
	SBL1 and SBL
	Active set
	Noise Variance
	Projection Matrix
	Trace

	Convergence rate

	Vivado HLS
	Arbitrary Precision Data Type
	Quantization Adjustment
	Overflow Modes

	Linear Algebra Library
	Complex class
	Matrix Multiplication
	Cholesky Factorization
	Forward Substitution
	Back Substitution
	Square Root

	Hierarchical Design
	Interfaces

	Dataflow Optimization
	ROM
	Reset
	Pipeline Optimization
	Scheduling

	Implementation
	Overview
	Simplifications
	Configuration
	SBL Scheduler
	Bit-width
	FPGA Resources
	Latency
	Power Estimation

	Simulation Results
	Settings
	Results for SBL1
	Moving 3rd source

	Convergence

	Conclusion
	Appendix
	SBL1 and SBL – Numerator
	Projection Matrix Decomposition
	Trace

	Acronyms
	Bibliography

