
Master’s Thesis

Technische Universität Wien

Institute of Telecommunications

Deriving a Network Perspective of Cellular
Mobile Networks Based on Crowd

Sourced Benchmark Tests

Author:
Vaclav Raida

Supervisors:
Univ.Prof. Dipl.-Ing. Dr.techn. Markus Rupp

Projektass. Dipl.-Ing. Dr.techn. Philipp Svoboda

November 9, 2017

Die approbierte Originalversion dieser Diplom-/
Masterarbeit ist in der Hauptbibliothek der Tech-
nischen Universität Wien aufgestellt und zugänglich.

http://www.ub.tuwien.ac.at

The approved original version of this diploma or
master thesis is available at the main library of the
Vienna University of Technology.

http://www.ub.tuwien.ac.at/eng

Declaration of Authorship
I hereby declare that this thesis has been composed by me and is based on my own work,
unless stated otherwise. No other person’s work has been used without acknowledgment
in this thesis. All references have been quoted, and all sources of information, including
figures, have been specifically acknowledged.

Date: Signature:

Abstract
The concept of crowdsourced measurements allows service providers to outsource the ex-
pensive and time consuming task of performance measurements to the end user device.
This approach is obviously appealing for the industry, though giving up the control on the
experiment in favor. In this thesis we took a first step into the analysis of crowdsourced
data sets in order to build up a view of the current status of the network. This work aims
at answering the question whether it is possible to use crowdsourced data to meaningfully
characterize properties of the network.

The thesis i) introduces theoretical concepts for systematic description and processing
of data rate series based on data volume samples; ii) describes implementation of generic
framework allowing for repeated measurements and benchmarking various measurement
tools; iii) analyzes results of controlled measurements produced by the same tools which are
used for crowdsourced measuremnts; iv) analyzes results of crowdsourced measurements.

Controlled measurements reveal great potential of crowdsourced open data, yielding
positive answer to the stated question. The use of real data set collected by the regulatory
body in Austria, RTR, proofed to be challenging due to multiple factors:

The first element is the pollution of the data set by systematic events, e.g. operator
tests at special locations, operator optimizations in user profiling and many more. The
second element is the dynamic of the data set in temporal and spatial dimension. The
analysis and the reference measurements reveal clear time of day effects, e.g. clear diurnal
load cycles in the cells.

Finally, current implementation of RTR data is recorded in a lossy fashion. The
analysis shows that the information loss cannot be recovered. Therefore, limitations due
to user tariffs and network dynamics cannot be precisely removed.

However, this work shows that even considering all these effects it is possible to already
use the data set to gather network performance benchmark figures.

Contents

Introduction 1

1 Benchmarking Methodology for Mobile Cellular Networks 3
1.1 Introduction . 3
1.2 Terminology . 3
1.3 LTE . 4

1.3.1 Physical Layer Measurements at UE 4
1.4 TCP . 5

1.4.1 Round-Trip Time . 5
1.4.2 Bandwidth-Delay Product . 5
1.4.3 Flow Control . 6
1.4.4 Congestion Control . 6
1.4.5 Overview of Congestion Avoidance Algorithms 9

1.5 Active Performance Measurements in Standardization 10
1.5.1 IETF – Framework for TCP Throughput Testing 10
1.5.2 3GPP – UE Application Layer Data Throughput Performance . . . 12

1.6 First Analysis: TCP Related Effects . 13
1.6.1 Measurement Setup . 13
1.6.2 Flow Control Limitation . 13
1.6.3 Impact of Bufferbloat . 14
1.6.4 Congestion Control Limitation . 15

1.7 Comparison of iPerf3, HTTP and FTP Throughput 19
1.7.1 Setup . 20
1.7.2 Results . 20

2 On the Connection of Data Volumes and Rates in Networks 21
2.1 From Volume to Rate . 21

2.1.1 Basic Definitions . 21
2.1.2 Resampling . 23
2.1.3 Multiple Connections: Merging . 25
2.1.4 Resampling and Merging Combined 27
2.1.5 Summary . 27

2.2 Smoothing: Reducing Uncertainty of Binned Data 29
2.2.1 Definitions . 29
2.2.2 Worst Case Uncertainty . 30
2.2.3 Smoothing . 30

2.3 Thinning . 33
2.3.1 Thinning Algorithm . 34
2.3.2 Implementation of Thinning Algorithm 34
2.3.3 Remarks . 35

2.4 Oscillations . 37

i

2.4.1 Model . 37
2.4.2 Spectrogram . 37
2.4.3 Reducing Oscillations . 38

2.5 Extracting Network Performance From User Tests 40
2.5.1 Traffic Shaping Detectors (Existing Method) 40
2.5.2 Modified Traffic Shaping Detector 41

3 Measurement Framework and Tools 42
3.1 The Measurement Framework (CMPT) . 42

3.1.1 Android Application . 43
3.1.2 Web Interface . 49
3.1.3 Server . 49
3.1.4 Tools of Third Parties . 50
3.1.5 Examples of Use Cases . 50
3.1.6 Outlook and Limitations . 51

3.2 RMBT . 52
3.2.1 Test procedure . 52
3.2.2 Thinning . 54
3.2.3 More Control: Open-RMBT TU.2.2.12 55
3.2.4 Open-RMBT Applications in Different Countries 55

4 Evaluation of Controlled Measurements 56
4.1 Simplified Notation . 56
4.2 Presence of Data Rate Oscillations . 56

4.2.1 Measurement Setup 1 . 57
4.2.2 Measurement Setup 2 . 57
4.2.3 Conclusion and Possible Cause of Offset 61

4.3 Systematic Removing of Oscillations . 62
4.3.1 Automatized Measurements . 62
4.3.2 Minimizing MSD with Respect to Reference Signal 63
4.3.3 Suppressing Oscillations Without Knowing Reference 63
4.3.4 Numerical Evaluation . 64

4.4 Oscillations and Thinning Combined . 66
4.4.1 Discussion of Oscillations Model . 66
4.4.2 Better Than Model. 68

4.5 Extension of Traffic Shaping Detection . 68
4.5.1 Repeated Measurements . 68
4.5.2 Outlook . 68

4.6 Rate as a Function of Signal Strength and Time of Day 70
4.6.1 Reference Cell Measurements . 70
4.6.2 Measurements in Live Network . 73

4.7 Test Shortening . 76

5 Crowdsourced Data for Network Performance Metrics 77
5.1 Structure of Open Data . 77

5.1.1 Passively Active Measurements . 77
5.1.2 Feature Filtering . 77
5.1.3 Outlook: Possible Solutions . 78

5.2 Tariff Limitation . 78
5.2.1 Controlled Measurements . 79
5.2.2 Open Data . 79

5.3 Operator Benchmarking Using the RTR Data Set 81

ii

5.3.1 Filtering Spurious Test Entries . 82
5.3.2 Conclusion . 82

Summary and Outlook 84

A Volumes and Rates 86
A.1 Alternative Merging Algorithm . 86
A.2 Comparison of Both Merging Algorithms 87

A.2.1 Data Rate Examples . 88
A.3 Mean Squared Difference, Maximum Difference 90

iii

Introduction

Motivation

In the recent years the telecommunication industry shifted their benchmarking portfolio
from pure drive tests to an outsource of performance measurements to the end user. In
this context we speak about crowdsourcing the benchmarking task.

In this approach the work is divided between several participants to achieve a result
with combined efforts. The participants in that case are an undefined group of people out in
the public. In the research community since the early 2010 many research groups started
to adopt the methods to collect valuable information from end users, e.g. performance
results, see [1].

In Austria the Austrian Regulatory Authority for Broadcasting and Telecommunica-
tions (RTR) is operating a system (RTR-NetTest) collecting data from end users. This
data is provided as open data for download to any interested party. The data set contains
not only performance results of each end user test, but also further meta information,
e.g. the signal strength of the UE throughout the measurement.

RTR-NetTest is based on TCP over IP throughput measurements. Because our ulti-
mate goal is analysis of RTR’s open data, we focus on the same setup in the whole thesis.
Another reason why to prefer TCP is UDP throttling observed in networks of some ISPs
[2]. All controlled measurements performed in this work are static.

In this thesis we answer the research question, to which extent crowdsourced results
of data rate measuremnts in LTE networks allow via postprocessing to derive appropriate
benchmark metrics. In order to build new metrics on crowdsourced results, for which
many factors are unknown (was the measurement static, was there any crosstraffic caused
by other users or by the user him/herself, what was the cell load, was there any handover
etc.), we perform our own measurements to calibrate and reference what we see in the
open data.

Thesis Overview

In chapter 1 we give an overview of two important standards for throughput measurements
and investigate some properties of our network under test (NUT). The first standard is by
IETF and is focused on TCP throughput testing in managed business-class IP networks.
The second standard is by 3GPP, it focuses on mobile networks, more specifically on UE
average application layer data rates in a repeatable lab-based environment, and reuses
some of IETF’s ideas. Measurements performed in live network are more realistic but
loosening standards’ requirements leads to lower reproducibility:

• Lab environment: Most accurate, most reproducible.

• Drive tests: Performed by engineers in live networks, special equipment needed,
mainly outdoor, high operational expenditure (OPEX) for operator [3].

1

• Measurements with conventional UEs: Our case. Minimization of drive tests (MDT)
[4] has been released by 3GPP to support operator’s OPEX outsourcing. MDT
standard specifies how UE logs measurements which it needs to collect anyway.

Since we are interested in measurements in live LTE network with conventional UEs, it
is clear that we can’t fulfill all requirements given by the standards, still we need to fulfill
as many as feasible. In crowdsourced measurements the situation is even more challenging
because we often can’t verify which requirements were satisfied and which were violated.
Now, being aware of the limitations and room for improvement we can proceed with more
controlled measurements.

In chapter 2 we develop a systematic approach for processing data rate time series to be
able to handle results of different tools in the same way. We have to master resampling,
rebinning, meaningful representation of data rate as a time continuous trend function,
merging data rate series of multiple connections in order to estimate the aggregate data
rate. We detect tariff limits and discuss also some problems which occur later when using
specific tools: removing data rate oscillations caused by unknown time offset of separate
TCP connections, compression of data rate series, etc. Even though we later apply the
concepts developed in this chapter to specific problems, we keep the whole chapter as
general as possible.

In chapter 3 we introduce Android application called CMPT (Crowdsourcing Mobile
Performance Tool) which we developed in order to schedule and execute our own mea-
surements as well as measurement tools of third parties. CMPT also collects information
about user’s mobile cell and neighboring cells (signal strength, cell id, etc.), about bat-
tery state, device memory, CPU load,. . . CMPT uploads all results to CouchDB database
which is JSON-based in order to avoid fixed column structure and allow more flexibility
during development. We also briefly mention different third-parties’ tools which we used:
FLARP, iPerf3, Open-RMBT.

In chapter 4 we apply the concepts of chapter 2 to our controlled measurements. We
analyze removing of oscillations caused by different time offsets of RTR-NetTest’s TCP
connections and discuss the impact of RTR’s compression algorithm. We propose an
extension to tariff limitation detection algorithm. And finally, analyze diurnal patterns in
long-term repeated measurements.

In chapter 5 we make use of crowdsourced open data [5] collected by RTR-NetTest
and made public by RTR. Because of very rough subsampling of the data rate series of
available results we will have to modify algorithm for detection of tariff limits. Even
though we managed to solve impairments of OpenData (chapter 3), future solutions need
to be lightweight and robust to allow fast processing of millions of test results. We propose
one example of such lightweight metric for comparison of different operators and we will
recognize that automatized tests are present in networks of some operators.

2

Chapter 1

Benchmarking Methodology for
Mobile Cellular Networks

1.1 Introduction
This chapter summarizes necessary minimum required for understanding of TCP through-
put measurements in mobile LTE networks. In section 1.2, to avoid confusion and ambi-
guities, we list some key terms which are in different contexts used synonymously

Sec. 1.3 introduces LTE and physical layer parameters which are collected by CMPT
(see chapter 3). In sec. 1.4 we will discuss TCP thoroughly.

Section 1.5 introduces two important standards – IETF’s standard for TCP throughput
testing and 3GPP’s standard for UE appliation layer data throughput testing.

In sec. 1.6 we analyze, based on first measurements, TCP related effects.
Finally in sec. 1.7 we perform first automatized measurements. At this point it will

become clear that it is not possible to fulfill all requirements of measurement standards for
wired networks and lab based environment when measuring in live mobile network. We
can however perform repeated measurements to analyze differences between, e.g. different
numbers of TCP connections or between different applications.

1.2 Terminology
BS: Base station. Since we focus on LTE networks only, we will use BS

and eNodeB interchangeably.

RAN: Radio access network. We will use it interchangeably with EUTRAN
(evolved universal terrestrial radio access network).

UE: User equipment. For most of the measurements in this thesis we
used smart-phones LG F60 and LG K4.

DL and UL: Downlink (/uplink) denotes the connection used for signal transmis-
sion from UE to BS (/ from BS to UE). We use the same abbrevia-
tions also for directions of data rate tests, i.e. DL for download (data
flow from server to client) and UL for upload (from client to server).

Bandwidth, rate: We will prefer the term data rate (or rate), expressed in bit/s, when-
ever possible, in order to avoid confusion with frequency bandwidth,
expressed in Hz. However, we need to reference quantities bottleneck
bandwidth (BB) and bandwidth delay product (BDP) presented in
RFC 6349 [6] and therefore bandwidth and data rate will be used
interchangeably in this chapter.

3

Peak data rate: Also bottleneck bandwidth (BB) [6], or maximum achievable (data)
rate. The lowest data rate along the complete path between the
sender and receiver.

Flight size, in-flight: The amount of data that has been sent but not yet cumulatively ac-
knowledged: FlightSize = last bytes sent − last byte acknowledged.
The term flight size (or FlightSize) is used in RFC 5681 [7]. The
same quantity is called in-flight bytes, “commonly referred to as the
send socket buffer” in RFC 793 [8] or also transmit window.

1.3 LTE
LTE (Long Term Evolution) is mobile network standard released by 3GPP (3rd Generation
Partnership Project). It is based on OFDMA (orthogonal frequency division multiple
access).1 With higher order modulation (max. 64QAM) and large bandwidths (up to 20
MHz) high data rates can be achieved. The highest theoretical peak data rate on the
transport channel is 75Mbit/s in UL and 300Mbit/s (in case of 4x4 spatial multiplexing)
in DL [9]. QoS (quality of service) provisions allow transfer latency < 5ms in the RAN.

1.3.1 Physical Layer Measurements at UE
Here we give brief overview of several physical layer related parameters which can be
accessed in Android from application layer. Android’s class CellSignalStrengthLte
allows us to access following parameters: RSRP, RSRQ, RSSNR, CQI and TA [10].

Unfortunately RSSNR, CQI and TA were reported just as 2147483647 (highest 32-bit
signed value) on all devices we’ve ever tested (LG F60, LG K4, several Samsung devices,
Ulefone Power,. . .).

RSRP (Reference Signal Received Power)

Average over the power contributions (in [W]) of the resource elements that carry cell-
specific reference signals within the considered measurement frequency bandwidth [11].

I.e. RSRP = 1
N

∑N
i=1 PRS,i where PRS,i is the power of i-th resource element carrying

reference signal and N is the total number of REs which contain RS. RSRP is calculated
only over those REs which containin RS. It provides information about DL path loss.

RSSI (Received Signal Strength Indicator)

E-UTRA Carrier Received Signal Strength Indicator (RSSI), comprises the linear average
of the total received power (in [W]) observed only in OFDM symbols containing reference
symbols for antenna port 0, in the measurement bandwidth, over N number of resource
blocks by the UE from all sources, including co-channel serving and non-serving cells,
adjacent channel interference, thermal noise etc [11].

RSRQ (Reference Signal Received Quality)

Ratio N · RSRP/RSSI, where N is the number of RBs of the E-UTRA carrier RSSI
measurement bandwidth. The measurements in the numerator and denominator shall be
made over the same set of resource blocks [11].

1In DL. In UL SC-FDMA (single carrier frequency division multiple access) is used.

4

CQI (Channel Quality Indicator)

CQI is a four-bit number reported by UE to the BS to indicate the channel quality. Based
on CQI the BS picks modulation and coding scheme (MCS) which determine the DL data
rate [12].

SINR (Signal to Interference and Noise Ration)

According to [13]: SINR is not standardized by 3GPP (therefore it is not reported to the
BS) but is measured by UEs (definition is vendor specific, SINR may be measured over
different REs) to internally determine the CQI because it better quantifies the relationship
between RF conditions and Throughput

The Android’s class provides method getRssnr, the documentation is unfortunately
not very detailed: “getRssnr(): Get reference signal signal-to-noise ratio,” so we can’t
be sure whether this is SINR value on which the CQI calculation is based.

TA (Timing Advance)

Timing advance is reported by BS to the UE to adjust UL signal transmission timing.

1.4 TCP
Transmission Control Protocol (TCP) is a transport protocol, which provides a reliable,
connection-oriented service to the invoking application. One end of the TCP connection
is attached to the client socket, the other end is attached to a server socket. TCP socket is
identified by a four-tuple (source IP address, source port number, destination IP address,
destination port number).

This section, mostly based on [8], [7], [6] and [14], summarizes some of TCP’s concepts
which will be referenced in later sections. The fundamentals, like header format, three
way handshake, TCP reliability, closing a connection, etc. are assumed to be well known
and they will not be presented here.

1.4.1 Round-Trip Time
Round-trip time (RTT) is the elapsed time between the clocking in of the first bit of a
TCP segment sent and the receipt of the last bit of the corresponding TCP ACK.

The RTT dataset needs to be baselined during off-peak hours in order to obtain a
reliable figure of the inherent network latency. Otherwise, additional delay caused by
network buffering can occur. The minimum measured value serves as the baseline round-
trip time RTTbaseline. This will most closely estimate the real inherent RTT [6].

The most accurate method for estimating RTT would be using test equipment on each
end of the network, so that a packet stream can be measured from end to end.

Easier to realize but less accurate are ICMP pings. Some limitations with ICMP ping
may include ms resolution and whether or not the network elements are responding to
pings. Also, ICMP is often rate-limited or segregated into different buffer queues. ICMP
is not as reliable and accurate as in-band measurements.

1.4.2 Bandwidth-Delay Product
Bandwidth-delay product (BDP) is the product of a data link’s capacity (BB) and its
end-to-end delay (inherent RTT of non-congested network):

BDP = BB · RTTbaseline.

5

BDP is calculated to provide estimates of the TCP RWND (see next subsection) and send
socket buffer sizes that are used in data rate tests. BB can be achieved only if TCP
connection is able to fill network’s BDP.

1.4.3 Flow Control
Flow control means matching of data rate at which sender is sending against the rate at
which the receiver application is reading. The maximum number of unacknowledged bytes
the sender can transmit is given by a variable called the receive window (RWND):

FlightSize ≤ RWND. (1.1)

RWND is fed back from receiver to sender in ACK messages and corresponds to the
number of free bytes in receiver’s receive buffer.

Window Scaling

The RWND field in the TCP header is two bytes [8], the maximum RWND value is thus

RWNDmax =
(
216 − 1

)
B = 65535 B = 64 KiB− 1 B.

As pointed out in [15], for a standard 64KiB RWND and 20ms RTT, the achievable
data rate would be limited at ca 65535 B

20 ms = 26.214 Mbit/s for a single TCP connection. This
limitation can be mitigated with multiple concurrent TCP connections or with enlarging
the RWND through TCP window scaling [16].

As specified in [8]: In the options field of TCP header, the option-kind is one byte,
the option-length is one byte and the option-data is (option-length− 2) bytes. I.e. option-
length determines the length of whole option, including option-kind and option-length
fields.

RFC 7323 [16] introduces window scale option: option-kind = 3, option-length = 3,
option-data = WindShift. If this option is used, the value RWNDscaled, calculated by
left-shifting the RWND by WindShift bits,

RWNDscaled = RWND · 2WindShift,

is used for flow control. The scale option may be sent in a SYN segment and SYN-ACK
segment. Sender’s WindShift and receiver’s WindShift values remain unchanged during
the whole connection.

WindShift = 0 means no scaling. The maximum allowed value is WindShift = 14. It
follows that maximum receive window size is

RWNDscaled,max =
(
214+16 − 1

)
B = 1 GiB− 1 B.

To make the notation more concise, also the scaled receive window (if window scaling
enabled) will be denoted as RWND.

1.4.4 Congestion Control
Congestion control means that each sender limits the rate at which it sends traffic into its
connection based on perceived network congestion. The sender keeps track of an additional
variable – congestion window (CWND). The amount of unacknowledged data at the sender
is limited as follows:

FlightSize ≤ min{CWND,RWND}.
The RFC 5681 [7] specifies four congestion control algorithms: slow start, congestion

avoidance, fast retransmit and fast recovery.

6

Slow Start Threshold

Another state variable, the slow start threshold (ssthresh), determines which algorithm is
used to control data transmission. Slow start algorithm is used when CWND < ssthresh,
congestion avoidance algorithm is used when ssthresh > CWND.2 The initial ssthresh
value can be set arbitrarily high but it must be reduced in response to congestion: if
sender detects segment loss (retransmission timer timeout), the value of ssthresh must be
set to no more than

ssthresh = max{FlightSize/2, 2 ·MSS}, (1.2)

where Maximum Segment Size (MSS) is the size of the largest segment that the sender
can transmit (it can be based on MTU of the network, the path MTU discovery algorithm
– RFC 4821 [17] – or other factors) and FlightSize is the amount of data that has been
sent but not yet cumulatively acknowledged.

Slow Start

The slow start algorithm is used at the beginning of a transmission into a network with
unknown conditions or after repairing loss detected by the retransmission timer in order
to slowly probe the network to determine the available capacity and avoid congesting the
network with an inappropriately large burst of data. At the beginning of a transmission
CWND is set to IW (Initial Window). Upon receipt of an ACK covering new data, the
recommended (RFC 5681 [7]) increase of CWND is:

CWND += min{N,MSS},

where N is the number of previously unacknowledged bytes acknowledged in the incoming
ACK. Details regarding the size of IW are specified in RFC 3390 [18]

Congestion Avoidance

Congestion avoidance algorithm increases the size of CWND less rapidly, ca one full-sized
segment per RTT. During congestion avoidance, CWND must not be increased by more
than MSS bytes per RTT.

The recommended way is to count the number of bytes that have been acknowledged
by ACKs for new data (an additional state variable has to be maintained) – when the
number of bytes acknowledged reaches CWND, then CWND can be incremented by up to
MSS bytes.

Upon a timeout CWNDmust be set to no more than the loss window, LW, which equals
one full-sized segment (regardless of the value of IW). Therefore, after retransmitting the
dropped segment the TCP sender uses the slow start algorithm to increase the CWND
from LW to the new value of ssthresh, at which point congestion avoidance again takes
over.

Fast Retransmit

The fast retransmit algorithm uses the arrival of three duplicate ACKs as an indication
that a segment has been lost. After receiving three duplicate ACKs, TCP performs a re-
transmission of what appears to be the missing segment, without waiting for the expiration
of that segment’s retransmission timer (the timeout period can be relatively long).

2When ssthresh = CWND, sender may use either slow start or congestion avoidance.

7

3.7 • TCP CONGESTION CONTROL 275

MSS, and thus, the value of the congestion window will have increased by one MSS
after ACKs when all 10 segments have been received.

But when should congestion avoidance’s linear increase (of 1 MSS per RTT)
end? TCP’s congestion-avoidance algorithm behaves the same when a timeout
occurs. As in the case of slow start: The value of cwnd is set to 1 MSS, and the
value of ssthresh is updated to half the value of cwnd when the loss event
occurred. Recall, however, that a loss event also can be triggered by a triple dupli-
cate ACK event. In this case, the network is continuing to deliver segments from
sender to receiver (as indicated by the receipt of duplicate ACKs). So TCP’s behav-
ior to this type of loss event should be less drastic than with a timeout-indicated loss:
TCP halves the value of cwnd (adding in 3 MSS for good measure to account for

Slow
start

duplicate ACK

dupACKcount++

duplicate ACK

dupACKcount++

timeout

ssthresh=cwnd/2
cwnd=1 MSS
dupACKcount=0

cwnd=1 MSS
ssthresh=64 KB
dupACKcount=0

timeout

ssthresh=cwnd/2
cwnd=1
dupACKcount=0

timeout

ssthresh=cwnd/2
cwnd=1 MSS
dupACKcount=0

cwnd ≥ ssthresh

Congestion
avoidance

Fast
recovery

new ACK

cwnd=cwnd+MSS •(MSS/cwnd)
dupACKcount=0

transmit new segment(s), as allowed

new ACK

cwnd=cwnd+MSS
dupACKcount=0

transmit new segment(s), as allowed

retransmit missing segment

retransmit missing segment dupACKcount==3

ssthresh=cwnd/2
cwnd=ssthresh+3•MSS

retransmit missing segment

duplicate ACK

cwnd=cwnd+MSS

transmit new segment(s), as allowed

dupACKcount==3

ssthresh=cwnd/2
cwnd=ssthresh+3•MSS

retransmit missing segment

retransmit missing segment

new ACK

cwnd=ssthresh
dupACKcount=0

Λ

Λ

Figure 3.52 � FSM description of TCP congestion controlFigure 1.1: State diagram of TCP congestion control algorithm. Source: [14], figure 3.52.

8

Fast Recovery

The receiver can generate a duplicate ACK only when a segment has arrived, i.e. that
segment has left the network and is in the receiver’s buffer, it is no longer consuming
network resources.3 This is the reason why, after the fast retransmit, the fast recovery
algorithm (instead of slow start) governs the transmission of new data until a non-duplicate
ACK arrives.

After receiving the third duplicate ACK, ssthresh is set to no more than allowed by
eq. (1.2). The “lost” segment is retransmitted and CWND is set to ssthresh + 3 ·MSS.
This artificially inflates the CWND by the number of segments that have left the network.
For each additional duplicate ACK received (after the third), CWND is incremented by
MSS (CWND again inflated to reflect the additional segment leaving the network).

When previously unsent data is available and the new value of CWND and the RWND
allow, TCP sends 1 ·MSS bytes of previously unsent data.

When the next ACK acknowledging previously unacknowledged data arrives, CWND
is set to ssthresh. This is termed “deflating” the window. This ACK serves as the ac-
knowledgment elicited by the retransmission of the “lost” segment – one RTT after the
retransmission. Additionally, this ACK should acknowledge all the intermediate segments
sent between the lost segment and the receipt of the third duplicate ACK, if none of these
were lost.

Fast recovery is a recommended, but not required, component of TCP. An early version,
TCP Tahoe, enters the slow start phase after triple duplicate ACK. The newer version,
TCP Reno, incorporated fast recovery.

1.4.5 Overview of Congestion Avoidance Algorithms
This subsection is not an exhaustive list of all congestion avoidance algorithms. We sum-
marize TCP Tahoe and Reno, which were already mentioned in previous section. We
mention also New Reno, which was used by default in Linux kernels before 2.6.8 and
SACK which allows retransmission of multiple lost segments in one RTT and is widely
deployed. BIC is used by default in Linux kernels 2.6.8 – 2.6.18. CUBIC is used by default
in Linux kernel 2.6.19 and later.

This subsection is based on [14], [19], [20], [21], [22] and [23]. List of many other
algorithms can be found for example at [24].

TCP Tahoe

• 3 duplicate ACKs⇒ fast retransmit, ssthresh = CWND
2 , CWND = 1MSS, slow start

• ACK timeout (retransmission timeout, RTO) ⇒ slow start, CWND = 1MSS

TCP Reno

Adds fast recovery in order to not empty CWND every time a packet is lost:

• Three duplicate ACKs⇒ fast retransmit, CWND = CWND
2 , ssthresh = CWND, fast

recovery (wait for ACK of entire transmit window, then congestion avoidance; or
timeout, then slow start)

• RTO ⇒ slow start, CWND = 1MSS

3Although a segment duplication by the network can invalidate this conclusion.

9

TCP New Reno

Extension of TCP Reno, improved retransmission during fast recovery phase:

• if entire transmit window acknowledged⇒ CWND = ssthresh, congestion avoidance

• if partial ACK ⇒ assume that the next segment was lost, retransmit that segment,
set number of duplicate ACKs to zero, reset timeout timer

Compared to Reno, the New Reno is able to fill multiple gaps in the transmit window,
i.e. it overcomes the problem of reducing CWND multiple times.

TCP SACK

Selective ACKs instead of cumulative ACKs: Each ACK has a block which describes
which segments are being acknowledged ⇒ multiple lost segments can be sent in one
RTT. Disadvantage: SACK requires modification of the receiver.

TCP BIC

Binary Increase Congestion control. It solves the problem of slow response (i.e. unused
bandwidth) of TCP in fast long distance networks.

Main feature of BIC is unique window growth function. The algorithm tries to find
the maximum where to keep the window at for a long period of time, by using a binary
search algorithm [25].

TCP CUBIC

The window growth function of BIC, which consists of different phases (additive increase,
binary search), is replaced by cubic function

CWNDcubic = C(t−K)3 + CWNDmax,

where CWNDmax is window size just before the last window reduction, K and C are some
constants and t is the elapsed time from the last window reduction ⇒ CWND growth is
thus independent of RTT.

CUBIC retains stability and scalability of BIC and simplifies the window control.

1.5 Active Performance Measurements in Standardization
RFC 6349 [6] focuses on TCP throughput testing in managed business-class IP networks.
TR 37.901 [26] introduces procedures for measuring average application-layer data rate
under simulated realistic network scheduling and radio conditions in a repeatable lab-based
environment

1.5.1 IETF – Framework for TCP Throughput Testing
TCP testing is performed in addition to traditional layer 2/3 tests such as RFC 2544 [27]
(updated by RFC 6201 [28] and RFC 6815 [29]) or other methods of network stress tests
which are required to verify the integrity of the network before conducting TCP tests.
Examples of layer 2/3 tests: iPerf (UDP mode) and manual packet-layer test techniques
where packet throughput, loss, and delay measurements are conducted.

It is not possible to make an accurate TCP Throughput measurement when the network
is dysfunctional – in case of high packet loss and/or high jitter the TCP throughput testing

10

will not be meaningful. As a guideline, 5% packet loss and/or 150ms of jitter may be
considered too high for an accurate measurement.

The framework is designed for measuring end-to-end TCP throughput in managed
business-class IP networks, e.g. Ethernet-terminated services with Service Level Agree-
ment (SLA) provided from the network operator – TCP throughput must achieve the data
rate guaranteed by the SLA.

End-users with “best effort” access could use this methodology, but this framework
and its metrics are intended to be used in a predictable managed IP network.

TCP Throughput

The achievable TCP throughput is that amount of data per unit of time that TCP trans-
ports when in the TCP equilibrium state. It can be estimated from RWND and RTT:

Throughput = RWND
RTT ,

assuming that RWND size is large enough (TCP connection is able to fill network’s BDP)
– if a smaller RWND is used, then the TCP throughput cannot be optimal.

The TCP throughput test is required to characterize performance at different times of
the day and also to last long enough to properly exercise network buffers (greater than 30
seconds).

Methodology

1. Identify the path maximum transmission unit (MTU) so that the test device is
configured properly to avoid fragmentation during all subsequent tests. A robust
method for path MTU discovery is standardized in RFC 4821 [17].

2. Determine the RTTbaseline and BB, calculate the BDP, estimate the RWND and send
socket buffer sizes that is used.

3. TCP connection throughput tests.

Metrics

Definition 1.5.1. Transfer time ratio (TTR): The ratio between the actual TCP transfer
time (ATT) versus the ideal TCP transfer time (ITT). ATT is the time it takes to transfer
a block of data across TCP connection(s). ITT is the predicted time for which a block of
data should transfer across TCP connection(s), considering the BB.

TTR = ATT
ITT

The ITT is derived from the maximum achievable TCP throughput, which is related to
the BB and layer 1/2/3/4 overheads associated with the network path.

Definition 1.5.2. TCP efficiency η : Percentage of bytes that were not retransmitted.

η = transmitted bytes− retransmitted bytes
transmitted bytes

Transmitted bytes are the total number of TCP bytes to be transmitted, including the
original and the retransmitted bytes.

Network congestion causing packet loss may be inferred from a poor TCP Efficiency.
Higher η means less packet loss.

11

Definition 1.5.3. Buffer Delay Percentage: Represents the increase in RTT during a
TCP throughput test versus the inherent (baseline) RTT.

buffer delay percentage = RTT− RTTbaseline
RTTbaseline

The average round-trip time RTT is derived from the total of all measured RTTs during
the whole test and from the test duration T.

RTT =
∑
i RTTi

T
.

Network congestion causing an increase in RTT may be inferred from the buffer delay
percentage (0% means no increase in RTT over baseline).

1.5.2 3GPP – UE Application Layer Data Throughput Performance
3GPP TR 37.901 [26] defines test procedures to measure UE average application layer data
rates in a repeatable lab-based environment using lab-based simulators (faders, AWGN
sources, etc.).

Definition 1.5.4. The measured UE application layer throughput T is the number of use-
ful user data bits per unit of time delivered by the network from the source end point to the
destination end point, excluding protocol overhead (TCP, UDP, etc.) and retransmitted
data packets.

• Radio connection is limited to LTE and W-CDMA Rel-5 (HSDPA).

• For TCP tests only the FTP application protocol is proposed in order to reduce
the amount of testing (e.g. HTTP testing is seen as redundant, similar results are
expected).

• For UDP the raw data transfer is proposed (no streaming protocol) to simplify the
UDP transfer application requirements.

• Tests are performed separately in DL, UL and bi-directional.

Test Times

In UTRAN Each minimum test time is derived from the speed in the profile. The longest
time 164 s for the slow speed fading profiles. In LTE the minimum test time is simulated
for each test case.4 Most of the layer 1 receiver and performance tests in UTRAN and
LTE are governed by the test time due to fading.

Since the statistics of T are unknown it is not possible to give a variance of the measured
throughput around the true throughput, i.e. it is not possible to give a confidence level of
the measurement when given a predefined test time and to calculate a minimum test time
for a given confidence level.

Therefore, for HSPA, the recommendation for minimum test time is 164 seconds which
is derived from lowest speed fading (crossing of 990 wavelengths when travelling with the
speed given in the fading profile). For static testing, 60 seconds is recommended.

For LTE, the recommended minimum test time for static testing is also set to 60 s.

4Longest: 150 000 minimum number of active samples = 1500 s net test time.
Shortest: 1366 minimum number of active samples = 13.66 s net test time.

12

Limitations

Here we briefly present requirements recommended in the standard which are however out
of our control when measuring in live LTE network. For different scenarios the standard
defines specific:

• signal levels,

• fading profiles (for LTE: static, EPA5, EVA5,. . .),

• noise and interference levels,

• received signal energy per resource element (RE) at antenna port,

• power spectral density of a white noise at antenna port,

• downlink power allocation,
...

1.6 First Analysis: TCP Related Effects
In this section we will discuss the first measurements and analyze how many parallel TCP
connections are required to properly measure the achievable data rate in the network under
test (NUT).

We will see that full throughput is already achieved with a single connection due to
TCP window scaling, we will encounter the consequences of large buffers and finally we
learn that different number of TCP connections changes initial ramp up phase because of
congestion control algorithm.

1.6.1 Measurement Setup
To get more information about the NUT we performed several active TCP measurements
with iPerf3 [30] on an Android smart phone LG F60. For capturing packets from cellular
connection we used tcpdump binary for Android [31]. Packet captures were analyzed with
Wireshark [32]. With Android application Kernel Adiutor [33] we found out that UE uses
TCP CUBIC algorithm. This is no surprise since Android is based on Linux kernel and
CUBIC is the default TCP algorithm in Linux kernel since version 2.6.19, as mentioned
in subsection 1.4.5.

We measured in live LTE network of operator A1, using data rate unlimited tariff.
The expected bottleneck is in radio access network (RAN), since wired connections in
the backbone network to which both, operator and university network, are connected, are
usually overprovisioned.5 We used our own iPerf3 server connected to university network
in order to make sure, there are no parallel tests running on the server. We use Linux
server, TCP algorithm is also CUBIC.

1.6.2 Flow Control Limitation
Each TCP connection has its own RWND. The bottleneck data rate can be achieved only
if TCP connections are able to fill NUT’s BDP, i.e. if

N∑
i=1

RWNDi ≥ BDP,

5This will be confirmed by measurements in reference cell which will be discussed later.

13

where RWNDi denotes the RWND of i-th TCP connection and N the total number of
TCP connections.

The minimum RTT which we measured during off-peak hours (7:20–7:25, Tuesday:
March 7, 2017) was RTTbaseline = 18 ms. We can thus conclude that the real inherent
network RTT is not larger than 18ms.

The UE we use is LTE UE category 4 [34], i.e. the maximum data rate it is capable of
is RDL,max = 150 Mbit/s in DL and RUL,max = 50 Mbit/s in UL [35].6 We do not expect
higher data rates in our NUT,7 whose bottleneck is in the radio access network (RAN).
Using these values, we can calculate upper bounds for BDP in both directions:

BDPDL ≤ RDL,max · RTTbaseline ≤
150 · 18

8 kB = 337.5 kB, (1.3)

BDPUL ≤ RUL,max · RTTbaseline ≤
50 · 18

8 kB = 112.5 kB. (1.4)

In our setup, both – the server and the UE – support TCP window scaling. In DL the
UE’s RWND of a single TCP connection reaches 522.88 kB in less than 0.2 s (fig. 1.3) and
in UL the server’s RWND of a single TCP connection reaches 185.856 kB in less than 0.2 s
(fig. 1.2). In both directions RWND further increases – in DL up to 1019.392 kB, in UL
up to 996.224 kB.

We can conclude that RWND (i.e. flow control, eq. (1.1)) is not the limiting factor in
our data rate measurement, after 0.2ms the RWND is larger than BDP in both directions.
From the perspective of flow control there is no need to use more than one connection.

0 4 8 12 16 20 24 28
Time (s)

0

150000

300000

450000

600000

750000

900000

1050000

W
in

do
w

 S
iz

e
(B

)

Figure 1.2: Wireshark trace of server’s RWND during an iPerf3 UL test.

1.6.3 Impact of Bufferbloat
Examining buffers was not within the primary scope of this work, however, we encountered
it when measuring RTTbaseline. In this subsection we bring few brief comments.

In fig. 1.4 we can notice that RTT is increasing during the first three seconds and
remains significantly higher than RTTbaseline for the rest of the test. This behavior is
known as bufferbloat [36]: When buffers along the path start to fill, TCP overestimates
available bandwidth because BDP appears to be larger due to additional queuing delays,
i.e. CWND further increases although the throughput does not increase anymore, since
BB was already reached earlier. This leads to increase of RTT without further increasing
throughput.

6Maximum number of DL-SCH transport block bits received within a TTI is 150751. Maximum
number of UL-SCH transport block bits transmitted within a TTI is 51024. SCH = shared channel. TTI
= transmission time interval. TTI = 1 ms.

7If we would ever observed values which are close to this limit, we would have to use UE of different
category to assure that UE is not the limiting factor in the data rate measurement.

14

0 4 8 12 16 20 24 28
Time (s)

0

150000

300000

450000

600000

750000

900000

1050000
W

in
do

w
 S

iz
e

(B
)

Figure 1.3: Wireshark trace of UE’s RWND during an iPerf3 DL test.

In our measurement the situation is not so critical as in [36], where excessive buffers
were present and RTTs larger than one second were measured. In fig. 1.4 the longest RTT
is just 210 ms, the principle is however the same.

At the beginning of this test the RTT was ca 25ms, after reaching its maximum
(full buffer) it fluctuated around the mean of ≈ 120 ms. The corresponding throughput
(fig. 1.5) was ≈ 20 Mbit/s. For both we consider the steady phase t ∈ [16, 28] s. Denoting
the RTT-increase caused by bufferbloat as

∆RTT , RTT− RTTbaseline ≈ 100 ms,

we can roughly estimate the sum of sizes of all buffers along the path as follows:

V = ∆RTT · Throughput ≈ 2 Mbit = 250 kB.

If a packet arrives to a full buffer of size V, it has to wait for ∆ RTT = V
Throughput until

all previous packets will be departed. We can also calculate the buffer delay percentage
≈ 567 % according to def. 1.5.3.

The calculation above is based on an assumption that buffers along the path have
constant size in terms of data volume. Interesting findings are presented in paper [37],
where authors discovered that some mobile Internet service providers (ISPs) employ buffers
which are not constant in terms of data volume but in terms of number of packets. This
can be detected by several measurements with different packet sizes: For every packet size
we would measure different data-volume-size of buffer. Dividing this data-volume-size by
packet size would lead to the same number of packets in the buffer for every measurement,
independently of chosen packet size.

For another ISP the authors discovered active queue management (AQM) – measured
buffer size was linear function of throughput, packets that spent more than 800ms in the
buffer would be dropped.

Note that the cited paper used UDP only and it focused on buffers in DL, the same
hypothesis may be applied in case of TCP. In our measurement we investigated UL, because
it was easier to collect Wireshark traces at the UE and directly determine RTT based on
the time difference between sent TCP fragment and corresponding ACK.

1.6.4 Congestion Control Limitation
Because the CWND is an internal variable which is not contained in TCP header and the
packets were captured at the UE, we have to analyze UL test in order to see the CWND
size. In this subsection we compare an iPerf3 UL test with one TCP connection to an
iPerf3 UL test with five parallel TCP connections, we will call them the “1-connection
test” and the “5-connection test.”

15

Fig. 1.10 shows the number of in-flight bytes of the 1-connection test, fig. 1.11 shows
the number of in-flight bytes of a single connection of the 5-connection test. The green line,
which is higher than in-flight bytes during the whole test, indicates the size of RWND – the
number of in-flight bytes thus corresponds to CWND only. The RWND is not a limiting
factor as already mentioned in the subsection “1.6.2 Flow Control Limitation.” Note: the
test duration was 30 s in both cases, fig. 1.10, 1.11 show just first ≈ 12 s in order to see
the initial phase in more detail, in the rest of the test the number of in-flight bytes looks
very similar.

In fig. 1.6, 1.7 and 1.8 we compare TCP throughput of 1-connection and 5-connection
test in different phases. We aligned both tests so that the first packet corresponds to t = 0.
Fig. 1.6 shows details of both tests in different phases, we can recognize individual packet
bursts.8 Fig. 1.7 displays smoothed tests – moving average (MA) with window size of 1 s
– in order to visualize the throughput trend.

In fig. 1.8 attempted to characterize the initial ramp-up phase of both tests by a
continuous function: we fitted linear and quadratic functions (denoted as “reference”) to
the ramp-up phase of smoothed throughput (right plot) and then performed deconvolution
(left plot). This representation has certain advantages: In fig. 1.6 it is not possible to
easily recognize any throughput trend, whereas in fig. 1.7 it looks like that 5-connection
test ramps-up continuously which is however misleading, because this successive increase
is caused solely by the smoothing. After deconvolution of the reference we see a sudden
jump in throughput of 5-connection test.

0 4 8 12 16 20 24 28

Time (s)

35

70

105

140

175

210

R
o
u
n
d
 T

ri
p
 T

im
e
 (

m
s)

Figure 1.4: Wireshark trace of TCP RTT during an iPerf3 UL test.

0 4 8 12 16 20 24 28

Time (s)

0

250

500

750

1000

1250

1500

S
e
g
m

e
n
t

Le
n
g
th

 (
B
)

0

4·106

8·106

1.2·107

1.6·107

2·107

2.4·107

A
v
e
ra

g
e
 T

h
ro

u
g
h
p
u
t (b

its/s)

Figure 1.5: Wireshark trace of TCP throughput (right vertical axis) of the same test as
in fig. 1.4. (Moving average with window size of 1 s.)

8Throughput traces were exported from Wireshark with the highest possible resolution: 1ms. In
fig. 1.6 we applied moving average with window size of 10ms in order to broaden the bursts for easier
visualization.

16

0 0.1 0.2 0.30
0.2
0.4
0.6
0.8

1
T

hr
ou

gh
pu

t/
(M

bi
t/

s)
1 connection
5 connections

0.2 0.3 0.4 0.50

20

40

60

1 2 3 40

50

100

t/s
9.8 10 10.2 10.40

50

100

t/s

Figure 1.6: Comparison of TCP throughputs of iPerf3 UL test with a single TCP connec-
tion (red solid) and with five parallel connections (blue dashed). Each subplot is zoomed
to different test phase.

0 10 20 300

20

40

t/s

T
hr

ou
gh

pu
t/

(M
bi

t/
s)

Whole tets

1 connection
5 connections

0 1 2 30

5

10

15

20

t/s

Detail: Ramp-up phase

Reference: 1 c.
Reference: 5 c.

Figure 1.7: The same 1- and 5-connection tests as in fig. 1.6, this time smoothed using
moving average with windows size of 1 s in order to visualize the throughput trend. Left:
whole test; duration 30 s. Right: detail showing the initial ramp-up phase, including
reference (see fig. 1.8).

0 0.5 1 1.5 20

5

10

15

20

t/s

T
hr

ou
gh

pu
t/

(M
bi

t/
s)

Before smoothing

Reference: 1 c.
Reference: 5 c.

0 0.5 1 1.5 20

5

10

15

20

t/s

After smoothing

Figure 1.8: We fit linear and quadratic functions (right plot) to the smoothed throughput
(fig. 1.7, right) in order to represent the ramp-up phase in terms of continuous functions.
The left plot shows, how these fitted functions look like without smoothing.

17

Round Trip Time for 46.206.192.3:39046 → 128.131.67.65:5201

0 4 8 12 16 20 24 28

Time (s)

60

120

180

240

300

360

R
o
u
n
d
 T

ri
p
 T

im
e
 (

m
s)

iperf_ul_5thr_2.pcap

Figure 1.9: RTT of a single TCP connection during 5-connection iPerf3 UL test.

Detailed Analysis

The smoothed rates in fig. 1.7 are shown in order to see the long term trends and em-
phasize that throughput varies during whole test. The sudden increase in throughput of
1-connection test at t ≈ 25 s might be caused by getting more resources at base station
(BS), e.g. if other users release their resources or leave the cell.

Top left plot in fig. 1.6 shows first 300ms of both tests. We first observe few smaller
bursts. At t = 0.2 s the burst size of the 1-connection test significantly increases, in the 5-
connection test this happens ≈ 100 ms later. In top right plot we see this 100ms difference
as well as the fact that the bursts of the 5-connection test are higher. The reference (fig. 1.8,
left) shows that the 5-connection test reaches the full throughput almost immediately at
t = 0.3 ms, whereas in case of the 1-connection test we observe approximately linear
increase of the throughput – full throughput is reached at t ≈ 1.8 s.

Another interesting thing happens at t ≈ 2 s (5-connection test) and t ≈ 3 s (1-
connection test): bursts increase to more than double size (fig. 1.6, bottom left plot)
although the throughput doesn’t change much (fig. 1.7). Full throughput was already
reached earlier. This is caused by bufferbloat: In fig. 1.4 and 1.10 after ≈ 3 s (1-connection
test) and in fig. 1.9 and 1.11 after ≈ 2 s (5-connection test) the buffer is filled, i.e. RTT
and CWND reach the maximum, don’t increase anymore and fluctuate around quite sta-
ble average. Filling the buffers along the path results in higher RTT and larger CWND,
because TCP overestimates the bottleneck bandwidth as explained in subsection 1.6.3.

Comparing fig. 1.4 (RTT of 1-conn. test) and fig. 1.9 (RTT of a single conn. of 5-
conn. test), we can see that 5-conn. test has higher RTT. Comparing CWND in fig. 1.10
and fig. 1.11, we find out that 5-conn. test has lower CWND of a single connection. This
is quite obvious, since the five connections in the 5-conn. test share the same path and
bottleneck bandwidth, therefore the RTT of each separate connection has to be larger
and throughput (CWND) has to be smaller than in case of the 1-conn. test. Note that
CWND of the 1-connection test fluctuates around ≈ 300 kB, whereas a single connection
of the 5-connection test around ≈ 60 kB, which is one fifth – this was expected since TCP
assures fair share among multiple connections.

If we compare behavior of 1-conn. and 5-conn. test around t = 10 s (fig. 1.6, bottom
right) where both tests have the same throughput (fig. 1.7, left), we see no difference
– both tests show bursts of approximately same size and spacing. Different number of
connections has no visible impact in this phase.

Conclusion

It is not wise to draw general conclusions from single tests. It is however good to validate
what to expect before we continue with systematic testing and processing of hundreds or

18

Window Scaling for 92.248.79.54:36846 → 128.131.67.65:5201

0 2 4 6 8 10 12

Time (s)

0

60000

120000

180000

240000

300000

360000
W

in
d
o
w

 S
iz

e
 (

B
)

iperf_ul_1thr_1.pcap

Figure 1.10: CWND size during the 1-connection iPerf3 UL test. Green line = RWND
size.

Window Scaling for 46.206.192.3:39046 → 128.131.67.65:5201

0 2 4 6 8 10 12

Time (s)

0

20000

40000

60000

80000

100000

120000

W
in

d
o
w

 S
iz

e
 (

B
)

iperf_ul_5thr_2.pcap

Figure 1.11: CWND size of a single TCP connection during the 5-connection iPerf3 UL
test. Green line = RWND size.

thousands of test results. As argued in previous sections, multiple parallel TCP connec-
tions shouldn’t lead to higher throughput than tests with a single connection.

What can be impacted is the initial phase (in our example ≈ 1.5 s) before the connec-
tion ramps-up. With higher number of connections we expect faster ramp-up. For certain
number of connections which doesn’t need to be very high (in our example 5) the ramp-up
duration is negligible. We have also seen that more connections fill the buffers along the
path faster.

1.7 Comparison of iPerf3, HTTP and FTP Throughput

Since the above cited IETF standards reference iPerf and the 3GPP standard recommends
HTTP and FTP for measuring achievable throughput, we set up simple measurement to
compare throughput differences between these three applications. At the same time we try
out different numbers of TCP connections. The expected output (based on the theoretical
analysis in previous sections) is that we should observe no difference in average throughput
for different numbers of connections if the measurement is long enough, so that the different
ramp up phases have negligible impact on the total average throughput. We also expect
that there will be no significant difference between HTTP and FTP, as explained in the
3GPP standard.

19

1.7.1 Setup
Measurements were static. For every application (HTTP, FTP, iPerf3) the test duration
was set to 180 s (three times more than recommended in the 3GPP standard). UE was LG
F60. Since the measurements were carried out in live LTE network, we cycle through all
three applications regularly to assure that tests of every application are spread regularly
over the whole day. (As will become clear in chapter 4, section 4.6, it is not good idea to
test, e.g., HTTP on Friday and iPerf3 on Staturday.)

Measurements were performed 10.–12. 2. 2017, ≈ 70 hours. For every application we
tested both directions (UL and DL). We collected ≈ 220 measurements per application
per direction (DL/UL). For iPerf3 we tried 1, 5 and 10 TCP connections, there we have
therefore ≈ 70 measurements per configuration.

1.7.2 Results
For every test we estimated the average throughput. Results are plotted in fig. 1.12 and
1.13. The first empirical CDF indicates that HTTP and FTP really achieve the same
throughput in both directions. In UL also iPerf3 achieves the same performance. In DL
iPerf3 reaches ≈ 7 % higher throughput than HTTP and FTP.

Fig. 1.13 confirms that in long term the different numbers of connections reach the same
throughput in both directions (up to some discrepancies around 5Mbit/s in UL, which
may be caused by the fact that we have just ≈ 70 measurements per iPerf3 configuration
per direction).

0 10 20 30 400

0.2

0.4

0.6

0.8

1

R/(Mbit/s)

EC
D

F

Downlink

iPerf3
HTTP
FTP

0 2 4 6 80

0.2

0.4

0.6

0.8

1

R/(Mbit/s)

Uplink

iPerf3
HTTP
FTP

Figure 1.12: Empirical CDF plots of iPerf3, HTTP and FTP throughput in DL and UL.
For iPerf3 we took all configurations together here.

0 10 20 30 400

0.2

0.4

0.6

0.8

1

R/(Mbit/s)

EC
D

F

iPerf3: Downlink

All tests
1 connection
5 connections
10 connections

0 2 4 6 80

0.2

0.4

0.6

0.8

1

R/(Mbit/s)

iPerf3: Uplink

Figure 1.13: ECDF of iPerf3 throughput using different number of TCP connections.

20

Chapter 2

On the Connection of Data
Volumes and Rates in Networks

One of the most important metrics for measuring performance of computer networks is
the throughput, in general in bytes over time. We start from scratch defining quantities
volume, cumulative volume and rate.

As our focus is on benchmarking in mobile network under test, our goal is to derive
a time series of data rate for each user on the same time time grid (with highest possible
granularity) which will allow us not only to merge TCP connections of single user but also
to merge tests of multiple users, e.g. in order to derive current network load at a certain
point in time.

Later on we will put these definitions in context of the RTR’s open data we are going
to use. The concepts we develop are however not limited to throughput only, therefore we
formulate the problems and the notation as general as possible.

In the rest of this chapter we discuss specific problems, which occur in RTR’s open
data: thinning, presence of oscillations and presence of traffic shaping.

2.1 From Volume to Rate
2.1.1 Basic Definitions
Definition 2.1.1 (The true time-continuous rate r(t)). Real function r(t) : R → R+

0 ,
which is bounded:

rmin ≤ r(t) ≤ rmax ∀t ∈ R,
rmin = inf

t
r(t), rmax = sup

t
r(t).

Note: The most of the theory can be easily extended to r(t) : R → R. In the following
chapters we are however interested only in the nonnegative rates, therefore we limit the
image of the function to the set of nonnegative real numbers.
Definition 2.1.2 (The time-location of the k-th sample: t[k]).

t[k] ∈ R ∧ t[k − 1] < t[k] < t[k + 1] ∀k ∈ Z.

Definition 2.1.3 (The k-th time interval I[k] and its size |I[k]|).
I[k] , (t[k − 1], t[k]], |I[k]| , t[k]− t[k − 1].

Definition 2.1.4 (Binning). Let r[k] denote the k-th bin of size |I[k]|. The bin replaces
all values of r(t) within the argument interval t ∈ I[k] by their mean:

r[k] , 1
|I[k]|

∫
I[k]

r(t) dt = 1
t[k]− t[k − 1]

∫ t[k]

t[k−1]
r(t) dt.

21

t[0] t[1] t[2] t[K − 1] t[K] t

r̂(t)

· · ·

r[1]

r[2]
r[3]

r[K − 1]
r[K]

Figure 2.1: r̂(t) is the time-continuous estimate of the true rate r(t). The k-th time discrete
sample r[k] represents the average of the true rate in time interval I[k] = (t[k − 1], t[k]].

Definition 2.1.5 (Volume). The total volume in the k-th interval I[k] is defined as:

v[k] ,
∫
I[k]

r(t) dt = |I[k]| · r[k].

Definition 2.1.6 (The time-continuous estimate of the true rate.). If we know just sam-
ples r[k] and not the true rate r(t), we define the time-continuous estimate r̂(t) of the true
rate:

r̂(t)|t∈I[k] , r[k] ∀k ∈ Z. (2.1)

I.e. the time-continuous function r̂(t) is stepwise constant, for every t ∈ I[k] it is equal to
the sample value r[k]. This definition emphasizes that the value r[k] does not characterize
just a single time point t[k] but the whole interval I[k].

The reason for such definition is, that we have no prior knowledge about statistics of
r(t), we know only r[k] – the mean of r(t) in interval I[k]. It is therefore reasonable to
pick the least informative variant and distribute the volume v[k] uniformly over the whole
interval I[k]. The relationship between r̂(t) and r[k] is illustrated in fig. 2.1 for a special
case with K samples, i.e. k ∈ {1, . . . ,K}.

Definition 2.1.7 (Cumulative volume). In special case where r(t) = 0 ∀t < 0, we fix
t[0] , 0 (from previous definitions then follows t[k] = 0 and v[k] = 0 ∀k ≤ 0) and define
cumulative volume samples w[k] :

w[k] ,
∫ t[k]

0
r(t) dt =

k∑
i=0

v[i] =
k∑
i=0
|I[i]| · r[i] =

∫ t[k]

0
r̂(t) dt. (2.2)

Note: w[k] = 0 ∀k ≤ 0. The second, third and fourth equality follow directly from the
previous definitions.

Remark. Binning in def. 2.1.4 is a specific way of sampling. It is probably not the best
way, but in cases where it occurs we often have no other choice, see examples below.

Example 1 (A weather station measuring precipitation rate r(t)). A weather station has
a rain gauge which gathers precipitation for a certain time period T and then estimates
the precipitation rate in the k-th interval by dividing the total precipitation volume by
the period: r[k] = 1

T

∫ kT
(k−1)T r(t) dt.

Example 2 (Data rate estimation at the receiver.). At irregularly spaced time points t[k]
the receiver receives blocks of data of size v[k] bits. We need to characterize the throughput
of the connection by some time-continuous function (data rate). Since we know only the
sizes of the received blocks and the inter arrival times, it is reasonable to distribute the
received volume v[k] uniformly over the corresponding interval: r̂(t)|t∈I[k] = v[k]/|I[k]|.

22

2.1.2 Resampling
For implementation purposes we prefer time-discrete rate representation r[k]. Because it
is problematic to compare two time-discrete sequences with different time-locations of
the samples and it is much more convenient to work with equidistantly spaced samples
(for example when calculating time-discrete convolution), we need to resample our data
at some point. We first present the proposed resampling algorithm and then bring few
comments.

Definition 2.1.8 (Resampling). Let T ∈ R+ denote the resampling period, r̃[k] the re-
sampled rate and t̃[k] = kT ∀k ∈ Z the corresponding equidistantly spaced time-locations
of the samples. Time intervals after resampling are Ĩ[k] =

(
t̃[k − 1], t̃[k]

]
= ((k − 1)T, kT]

and their size is constant
∣∣∣Ĩ[k]

∣∣∣ = T. The values r̃[k] are chosen such that the following
equality holds:

r̃[k] , 1∣∣∣Ĩ[k]
∣∣∣
∫
Ĩ[k]

r̂(t) dt = 1
T

∫ kT

(k−1)T
r̂(t) dt.

Definition 2.1.9 (Resampled time-continuous rate r̃(t)). Analogous to def. 2.1.6:

r̃(t)|t∈Ĩ[k] , r̃[k] ∀k ∈ Z.

Remark. If the true rate r(t) is known, i.e. r̂(t) = r(t) (we know all, in general infinitely
many, samples), than the resampling in def. 2.1.8 is consistent with the sampling in
def. 2.1.4. If r(t) is unknown we use at least its time-continuous estimate r̂(t).

Another benefit of such resampling is, that it preserves average rate in all intervals
t ∈ [aT, bT], where a, b ∈ Z and a ≤ b :

1
(b− a)T

∫ bT

aT
r̃(t) dt = 1

b− a
b∑

k=a+1
r̃[k] = 1

(b− a)T

∫ bT

aT
r̂(t) dt. (2.3)

The first equality follows from def. 2.1.9, the second one from def. 2.1.8. If it furthermore
happens that there are some i, j ∈ Z such that aT = t[i] and bT = t[j] than also following
holds:

1
(b− a)T

∫ bT

aT
r̃(t) dt = 1

(b− a)T

∫ bT

aT
r(t) dt.

In fig. 2.2 we illustrate the resampling of r[k] (i.e. also of corresponding r̂(t)). Our
resampling corresponds to rebinning which assures that the total volume in each interval
Ĩ[k] is the same before and after rebinning.

A more naive approach (direct subsampling from r̂(t), in fig. 2.3) is not a good idea –
it has the disadvantage that it can change the total volume in every interval significantly.
Example: If a user would perform a data rate test and would apply the direct resampling
of r̂(t), the mean data rate of the whole test, which is an important indicator for quality
of service (QoS), would be changed – in some cases very significantly.

· · ·

t

r̃(t)
r̂(t)

0 T 2T 3T 4T KT

r̃[1] r̃[2]
r̃[3] r̃[4]

r̃[5]
r̃[K]

Figure 2.2: “Correct” resampling corresponds to rebinning of the time-continuous estimate
r̂(t) in such a way that the mean of resampled rate r̃(t) is equal to the mean of r̂(t) in
every time interval [(k − 1)T, kT].

23

· · ·

t

ř(t)
r̂(t)

0 T 2T 3T 4T KT

ř[1] = r̂(T
)

ř[2] = r̂(2T
)

ř[3] = r̂(3T
)

ř[4] = r̂(4T
)
ř[5] = r̂(5T)

ř[kT] = r̂(KT)

Figure 2.3: An example of “wrong,” direct resampling ř[k] = r̂(kT). In this example the
mean rate in the interval [0, T] is significantly larger after resampling.

Definition 2.1.10 (Resampled volume).

ṽ[k] ,
∫
Ĩ[k]

r̃(t) dt = T r̃[k] =
∫
Ĩ[k]

r̂(t) dt.

The second equality follows directly from def. 2.1.9, the third equality from def. 2.1.8.

Definition 2.1.11 (Resampled cumulative volume). Posing the same restriction as in
def. 2.1.7, i.e. r(t) = 0 ∀t < 0 and t[0] , 0 (this leads to r̂(t) = 0 ∀t < 0 and thus
r̃[k] = 0 ∀k ≤ 0), we define resampled cumulative volume:

w̃[k] ,
∫ kT

0
r̃(t) dt =

k∑
i=0

ṽ[k] = T
k∑
i=0

r̃[k].

Theorem 1. Resampling of time-discrete rate r[k] (or correspondingly of r̂(t)) is equiva-
lent to linear interpolation of cumulative volume w[k].

Proof. To be consistent with def. 2.1.7 and def. 2.1.11 we pose the same restrictions:
r(t) = 0 ∀t < 0 and t[0] , 0. Note that this is needed because when we consider cumulative
quantity we have to set some time point from which we start to cumulate. We will therefore
consider only k > 0 and t[i] > 0. Note: Any practical physical process has some starting
point (e.g. time where we start to measure).

Case 1: For given k ∃i ∈ N such that t[i] = kT. In this case the new sample location
t̃[k] = kT coincides with an old sample location t[i] :

w̃[k] =
∫ kT

0
r̃(t) dt =

∫ kT

0
r̂(t) dt =

∫ t[i]

0
r̂(t) dt = w[i].

The second equality follows from eq. (2.3), the third from fact that t[i] = kT , the fourth and
the first follow from definitions of cumulative volume and resampled cumulative volume.

Case 2: For given k there is no i ∈ N fulfilling t[i] = kT, i.e. t[i] 6= kT ∀i ∈ N. In this
case we can find some j ∈ N such that t[j − 1] < kT < t[j]. I.e. the new sample location
lies between two old sample locations. Then it follows:

w̃[k] =
∫ t[j−1]

0
r̂(t) dt︸ ︷︷ ︸

w[j−1]

+
∫ kT

t[j−1]
r̂(t) dt︸ ︷︷ ︸

(kT−t[j−1])·r[j]

= w[j − 1] + kT − t[j − 1]
t[j]− t[j − 1](w[j]− w[j − 1]). (2.4)

In the first equality we just reuse second equality from case 1, split the integral and use
w[j − 1] =

∫ t[j−1]
0 r̂(t) dt and the fact that r̂(t) = r[j] ∀t ∈ (t[j − 1], t[j]]. In the second

equality we express r[j] as v[j]
|I[j]| = w[j]−w[j−1]

t[j]−t[j−1] .

24

2.1.3 Multiple Connections: Merging
In this subsection we will consider rate consisting of C ∈ Z+ connections (e.g. data rate
and multiple parallel TCP connections, data rate and multiple UDP streams, rate of fluid
flow and multiple pipes,. . .). The index c ∈ {1, . . . , C} shall denote the c-th connection.

We extend the notation established in previous two subsections: rc(t), tc[k], rc[k] and
r̂c(t), vc[k] and wc[k] are the true rate, sampling times, sampled rate and corresponding
time-continuous estimate, volume and cumulative volume of the c-th connection. The
bounds of the true rate may differ for different connections: rmin,c ≤ rc(t) ≤ rmax,c ∀t.

Similarly for the resampled quantities: t̃c[k], r̃c[k] and r̃c(t), ṽc[k] and w̃c[k] are the
resampling time-location, resampled rate samples and corresponding time-continuous func-
tion, resampled volume and cumulative volume of the c-th connection. Note that t̃c[k] =
t̃[k] = kT, i.e. for all connections we use the same resampling time-locations.

Definition 2.1.12. The total true rate r(t) is given by the sum of true rates of individual
connections:

r(t) =
C∑
c=1

rc(t).

Note: r(t) as well as every rc(t) separately fulfill all the previous relationships. This
definition builds an additional relation between the total true rate r(t) and true rates of
individual connections rc(t).

Merging of Cumulative Volume Sequences

Let’s assume that Kc ∈ Z+ cumulative volume samples are given for each connection,
i.e. (tc[k], wc[k])k∈{1,...,Kc} is known ∀c ∈ {1, . . . , C}. We require that rate rc(t) is zero for
t < 0 for all connections, thus we can formally set tc[0] , 0, wc[0] , 0 ∀c. Since the last
known sample is (tc[Kc], wc[Kc]), we assume rc(t) = 0 for t > tc[Kc] and formally define
additional cumulative volume sample wc[Kc + 1] , wc[Kc] with time location, which is
larger than any given time location tc[Kc + 1] > maxc′{tc′ [Kc′]} but otherwise arbitrary.

After this preparation we can formulate our problem: How to represent the total rate
if only samples (tc[k], wc[k]) are given for every connection? We propose the following
merging algorithm.

Definition 2.1.13 (Merging algorithm).

r̂(t) =
C∑
c=1

r̂c(t). (2.5)

Theorem 2. Cumulative volume samples obtained by the merging algorithm in eq. (2.5)
are given by sum of linearly interpolated cumulative volumes of individual connections

w[k] =
C∑
c=1

(
wc[ic] + t[k]− tc[ic]

tc[ic + 1]− tc[ic]
(wc[ic + 1]− wc[ic])

)

with time locations

{t[1], . . . , t[K]} = {t1[1], . . . , t1[K1]} ∪ {t2[1], . . . , t1[K2]} ∪ · · · ∪ {tC [1], . . . , tC [KC]},

t[1] < t[2] < · · · < t[K],

where k ∈ {1, . . . ,K} and ic ∈ {0, . . . ,Kc} such that tc[ic] < t[k] ≤ tc[ic + 1].

25

t

r̂(t)

r̂2(t)

r̂1(t)

· · ·

· · ·

· · ·

0 t[1] t[2] t[3] t[4] t[K − 1] t[K]

0 t2[1] t2[2] t2[K2]

0 t1[1] t1[2] t1[3] t1[K1]

Figure 2.4: Merging rates of two connections: r̂(t) = r̂1(t) + r̂2(t). First connection can be
represented by K1 pairs (t1[k], r1[k]), second connection by K2 pairs (t2[k], r2[k]) and the
merged sequence by K pairs (t[k], r[k]).

Proof. The merging algorithm in def. 2.1.13 is illustrated in fig. 2.4 for the case of two
connections. We immediately see, that sample locations of the merged sequence are given
by time points where discontinuities of r̂(t) occur, i.e. at time points

{t[1], . . . , t[K]} = {t1[1], . . . , t1[K1]} ∪ {t2[1], . . . , t1[K2]} ∪ · · · ∪ {tC [1], . . . , tC [KC]} (2.6)

which are sorted as follows:
t[1] < t[2] < · · · < t[K].

Because tc[0] = 0, wc[0] = 0 ∀c, we can formally set also t[0] = 0, w[0] = 0.
The cumulative volume values w[k] can be calculated according to the last expression

of eq. (2.2), then we apply eq. (2.5) and exchange the summation and integration. For
a given t[k], k ∈ {1, . . . ,K}, we can find for every connection an index ic ≥ 0 such that
tc[ic] < t[k] ≤ tc[ic + 1] and split the integral into two parts. Then we apply eq. (2.2)
to the first integral. For the second integral we use eq. (2.1) which tells us that r̂c(t) is
constant and equal to rc[ic + 1] in the whole interval Ic[ic + 1] = (tc[ic], tc[ic + 1]]. Finally
we rewrite the rate sample rc[ic + 1] as wc[ic+1]−wc[ic]

tc[ic+1]−tc[ic] :

w[k] =
∫ t[k]

0
r̂(t) dt =

C∑
c=1

∫ t[k]

0
r̂c(t) dt =

=
C∑
c=1

(∫ tc[ic]

0
r̂c(t) dt︸ ︷︷ ︸

wc[ic]

+
∫ t[k]

tc[ic]
r̂c(t) dt︸ ︷︷ ︸

(t[k]−tc[ic])rc[ic+1]

)
=

=
C∑
c=1

(
wc[ic] + t[k]− tc[ic]

tc[ic + 1]− tc[ic]
(wc[ic + 1]− wc[ic])

)
(2.7)

The final expression is a sum of linearly interpolated cumulative volume sequences of
individual connections.

Note: From eq. (2.6) follows t[K] = maxc{tc[Kc]}. The index ic which fulfills tc[ic] <
t[k] ≤ tc[ic+1] always exists for k ∈ {1, . . . ,K} ∀c because we set tc[0] = 0 and tc[Kc+1] >
maxc′{tc′ [Kc′]} for every connection c. In cases where t[k] = tc[ic+1], the second summand
in eq. (2.7) disappears.

26

2.1.4 Resampling and Merging Combined
Theorem 3. Merging and resampling commute.

Proof. Recall that w̃[k] =
∫ kT

0 r̃(t) dt and that resampling is characterized by following
equation (follows from eq. (2.3)):∫ kT

0
r̃(t) dt =

∫ kT

0
r̂(t) dt.

Now we can write:

w̃[k] =
∫ kT

0
r̃(t) dt =

∫ kT

0
r̂(t) dt =

∫ kT

0

(
C∑
c=1

r̂c(t)
)

dt =

=
C∑
c=1

∫ kT

0
r̂c(t) dt =

C∑
c=1

∫ kT

0
r̃c(t) dt =

C∑
c=1

w̃c[k]. (2.8)

Since r̃[k] = (w̃[k]− w̃[k − 1])/T we immediately obtain from eq. (2.8) also

r̃[k] =
C∑
c=1

r̃c[k]. (2.9)

On the left hand side we have resampled version of merged rate, on the right hand side
merged version of resampled rates.

We’ve just proved that the two block diagrams in fig. 2.5 are equivalent. The merging
operation in the diagram b) is defined by eq. (2.5) and can be expressed in terms of
cumulative volume in closed form as in eq. (2.7). At the input of both block diagrams
there are sequences of two-tuples because we have to specify also time locations which are
in general different for every connection and not equidistantly spaced. At the output there
is a sequence of just “one-tuples,” because the index k is sufficient in order to determine
the corresponding time location t = kT.

Because in this subsection we consider merging and resampling together for the first
time, we have to distinguish between K, the number of samples after merging without
resampling, and K̃, the number of samples after resampling. We don’t have to “store”
index k = 0 because in our assumptions all samples are zero at time t = 0. Also after the
last sample the rate is assumed to be zero (or unknown).

Different representation of algorithms a) and b) is possible in terms of stepwise contin-
uous rates r̂c(t), r̃c(t), r̂(t) and r̃(t) – fig. 2.6. Every time-continuous rate is equivalent to
corresponding discrete rate rc[k], r̃c[k], r[k] and r̃[k] and corresponding cumulative volume
sequence. The resampling of rate is performed in such a way that mean rate in interval
[aT, bT] is same before and after resampling for every a, b ∈ Z, a < b, as follows from
eq. (2.3) (which follows from def. 2.1.8 and 2.1.9).

2.1.5 Summary
In this section we established a time-continuous representation of rate based on limited
number of volume or cumulative volume samples (measurements). We proposed an al-
gorithm for resampling the rate and for merging rates of multiple connections. We have
shown that both algorithms commute.

We derived closed form expressions for cumulative volume after resampling in eq. (2.4)
and after merging in eq. (2.7). Thank to these expressions we need no time-continuous rate
– for implementation purposes we prefer resampled discrete cumulative volume sequences.

27

The time-continuous rates however helped us to build an intuition behind the merging and
resampling and in some cases they are mathematically more convenient – e.g. in eq. (2.5).

Note: There are other possibilities how to merge multiple connections, e.g. [38]. In ap-
pendix A.1 we introduce this alternative merging algorithm. In appendix A.2 we compare
both merging algorithms and argue that the one we proposed is based on more reasonable
assumptions.

a)(w1[k], t1[k])k∈{1,...,K1}

(w2[k], t2[k])k∈{1,...,K2}

...

(wC [k], tC [k])k∈{1,...,KC}

LIN. INT.
+ RES.
LIN. INT.
+ RES.

...
LIN. INT.
+ RES.

(w̃1[k])k∈{1,...,K̃}

(w̃2[k])k∈{1,...,K̃}
...

(w̃C [k])k∈{1,...,K̃} w̃
[k

]=
C ∑ c
=

1
w̃

c
[k

]

(w̃[k])k∈{1,...,K̃}

b)(w1[k], t1[k])k∈{1,...,K1}

(w2[k], t2[k])k∈{1,...,K2}

...

(wC [k], tC [k])k∈{1,...,KC}

M
ER

G
IN

G

(w[k])k∈{1,...,K}

LI
N
.I
N
T
ER

P.

+

R
ES

A
M
PL

IN
G

(w̃[k])k∈{1,...,K̃}

Figure 2.5: Two equivalent algorithms for calculating the total resampled cumulative
volume sequence. The merging is defined by eq. (2.5) and can be expressed as in eq. (2.7).

a)r̂1(t)

r̂2(t)

...

r̂C(t)

RESAM-
PLING
RESAM-
PLING

...
RESAM-
PLING

r̃1(t)

r̃2(t)

...

r̃C(t)

C∑
c=1

r̃(t)

b)r̂1(t)

r̂2(t)

...

r̂C(t)

C∑
c=1

r̂(t) RESAM-
PLING

r̃(t)

Figure 2.6: Representation of algorithms from fig. 2.5 in terms of stepwise continuous rates.
Resampling of rate r̂(t)→ r̃(t) is given by def. 2.1.8 and 2.1.9. For time-continuous rates
the merging operation is replaced by summation, which is convenient for mathematical
description but not suitable for discrete implementation.

28

2.2 Smoothing: Reducing Uncertainty of Binned Data
The true rate r(t) is unknown. In this section we assume only equidistant sampling at
times τ + kT where τ is a constant offset. We also assume that we can obtain only one
bin sequence with one given offset τ.

Example 3 (Weather station ctd.). Let us recall the example 1 with the weather station
measuring precipitation rate. The problem is that we obtain different sequences r[k]τ for
different offsets τ, i.e., it does matter whether we start to measure at 8:01 or at 8:03 if the
sampling period is, e.g., T = 5 min.

As we will see later, the worst case per-bin-average-error (or uncertainty) compared
to all other possible shifts τ ∈

(
−T

2 ,
T
2

]
can be expressed as εwc = rmax−rmin

2 . In case
where rmin = 0 this means that if we observe a bin with maximum precipitation rate of
r̂τ = maxk r[k]τ , we understand that maximum 5-minute-average of r(t) was between r̂τ

and 2 · r̂τ .

2.2.1 Definitions
Let us remind that according to def. 2.1.1 the true rate t(t) is bounded:

rmin ≤ r(t) ≤ rmax ∀t ∈ R.

In what follows, for sake of simplicity, we specialize the definition 2.1.4 to an equidistant
binning – i.e. t[k − 1] = τ + (k − 1)T and t[k] = τ + kT :

Definition 2.2.1 (Equidistant Binning). Let r[k]τ
T denote the k-th bin of size T with an

offset τ. The bin replaces all values of r(t) in the time-interval t ∈ (τ + (k − 1)T, τ + kT]
by their mean:

r[k]τ
T ,

1
T

∫ τ+kT

τ+(k−1)T
r(t) dt,

T ∈ R+, τ ∈
(
−T

2 ,
T
2

]
, k ∈ Z.

Definition 2.2.2 (Time-continuous representation of bin sequence).

r(t)τ
T |t∈(τ+(k−1)T,τ+kT] , r[k]τ

T ∀k ∈ Z.

Remark. The reason why we limit the shift to τ ∈
(
−T

2 ,
T
2

]
is, that any shift ∈ R can

be written as τ + lT, l ∈ Z, which leads to: rτ+lT
T [k] = rτT [k + l] (follows directly from

def. 2.2.1). Only indexing is different, the shape of bins is the same, both sequences lead
to identical time-continuous representation r(t)τ

T .

Definition 2.2.3 (Per-bin average uncertainty).

ε[k]τ1,τ2
T ,

1
T

∫ τ1+kT

τ1+(k−1)T
| r(t)τ1
T − r(t)τ2

T |dt = 1
T

∫ τ1+kT

τ1+(k−1)T
| r[k]τ1
T − r(t)τ2

T |dt.

The second equality follows from the fact that r(t)τ1
T is constant and equal to r[k]τ1

T in the
whole integration interval according to def. 2.2.2.

Remark. The value ε[k]τ1,τ2
T characterizes average difference between r(t)τ1

T and r(t)τ2
T at

the time interval corresponding to bin r[k]τ1
T . I.e. it tells us what is the average uncertainty

(or error) of the k-th bin obtained with offset τ1 compared to binning with a different offset
τ2. Note that ε[k]τ1,τ2

T 6= ε[k]τ2,τ1
T .

29

t

r(t) r̂τ1
T (t)

rmin

rmax

rτ1
T [i]

rτ1
T [i + 1]

rτ1
T [i + 2]

t

r(t) r̂τ2
T (t)

rmin+rmax
2

rmin

rmax

rτ2
T [i] rτ2

T [i + 1]

rτ2
T [i + 2]

τ1 + iT τ1 + (i+ 1)T τ2 + (i− 1)T τ2 + iT

Figure 2.7: Illustration showing the worst case error. Left: binning of the true rate
r(t) with offset τ1. Right: binning with offset τ2. Bin size T is constant but otherwise
arbitrary. We obtain the worst case error for |τ1− τ2| = T/2. The yellow area corresponds
to T · ε[i+ 1]τ1,τ2

T . Thus ε[i+ 1]τ1,τ2
T = rmax−rmin

2 .

2.2.2 Worst Case Uncertainty

Theorem 4 (Worst case uncertainty). The worst case uncertainty (where uncertainty is
defined by the def. 2.2.3) is εwc = rmax−rmin

2 and it does not depend on the bin size T.

Proof. We obtain the largest average difference in a particular bin if we consider situation
illustrated in fig. 2.7, i.e. for first offset τ1 we choose such bin locations that whole i-th
bin is filled with the minimum true rate rmin and the whole (i + 1)-th bin is filled with
the maximum true rate rmax. The largest per-bin average difference is then obtained for
τ2 such that |τ1 − τ2| = T

2 , i.e. when the center of a bin corresponding to sampling with
offset τ2 is located exactly in the middle (its hight is therefore rmin+rmax

2) – at the location
where the true rate jumps from rmin to rmax or vice versa. For the bin r[i+ 1]τ1

T we then
observe constant difference (compared to shift τ2) rmax − rmin+rmax

2 = rmax−rmin
2 .

Remark. This construct is very artificial and it is not very clear if we will ever encounter
such specific true rate r(t) (which is moreover unknown and we can observe only binned
samples). More useful metric would be an expected per-bin average error. But since we
don’t have any prior knowledge about the statistics of the true rate (the only requirement
is that it is bounded), we can state only the worst case error.

2.2.3 Smoothing

Definition 2.2.4 (Rectangular window of size n). If n is odd, i.e., n = 2L + 1, L ∈ Z+
0 ,

we define rectangular window gn[l] as

gn[l] ,
{ 1
n , −L ≤ l ≤ L,
0, otherwise.

(2.10)

If n is even, n = 2L, L ∈ Z+, we define gn[l] as

gn[l] ,
{ 1
n , −L ≤ l ≤ L− 1,
0, otherwise.

(2.11)

Definition 2.2.5 (Smoothed bin sequence).

s
τ (n)
T [k] , (rτT ∗ gn)[k] =

∞∑
l=−∞

r[k − l]τ
T gn[l]. (2.12)

30

Note: We use the right superscript (n) to denote the size of rectangular window which
was used for smoothing. The brackets are included in order to not to confuse the window
size with exponentiation. The right subscript can still be used for distinguishing different
connections, i.e. s

τ (n)
T c [k] , (rτT c ∗ gn)[k].

Theorem 5.

s
τ (n)
T [kn− L+m] = r[k]τ+mT

nT , m ∈ {0, 1, . . . , n− 1}, (2.13)

where L = n
2 if n is even and L = n−1

2 if n is odd.

Proof. We start with the definition of the smoothed rate in eq. (2.12)

s
τ (n)
T [k] =

∞∑
l=−∞

r[k − l]τ
T gn[l],

and plug in the expression for odd rectangular window (eq. (2.10)) and for even rectangular
window (eq. (2.11)):

s
τ (n)
T [k] =



1
n

L∑
l=−L

r[k − l]τ
T = 1

nT

∫ τ+(k+L)T

τ+(k−L−1)T
r(t) dt, n odd; (2.14a)

1
n

L−1∑
l=−L

r[k − l]τ
T = 1

nT

∫ τ+(k+L)T

τ+(k−L)T
r(t) dt, n even. (2.14b)

The second equality in both, eq. (2.14a) and (2.14b), follows from the definition 2.2.1.
Now, when we modify index k to kn− L+m, we obtain:

s
τ (n)
T [kn− L+m] =



1
nT

∫ τ+(kn+m)T

τ+(kn−2L−1+m)T
r(t) dt, n odd; (2.15a)

1
nT

∫ τ+(kn+m)T

τ+(kn−2L+m)T
r(t) dt, n even. (2.15b)

Let’s notice that the upper integration bound is the same for both, eq. (2.15a) and (2.15b).
In eq. (2.15a) n is odd, thus in the lower integration bound we obtain −2L− 1 = −n. In
eq. (2.15b) n is even, i.e. −2L = −n in the lower integration bound. With this substitution
also the lower bounds coincide and we can write

s
τ (n)
T [kn− L+m] = 1

nT

∫ τ+mT+knT

τ+mT+(k−1)nT
r(t) dt = r[k]τ+mT

nT .

for both cases (n even or n odd). The second equality is again just application of def. 2.2.1.

Remark. The statement of theorem 5 means that the sequence s
τ (n)
T [k] contains binning

r[k]τ ′
nT , with bin size nT for n different shifts τ ′ ∈ {τ, τ + T, . . . , τ + (n− 1)T} :

s
τ (n)
T [kn− L] = rτnT [k],

s
τ (n)
T [kn− L+ 1] = rτ+T

nT [k],
...

s
τ (n)
T [kn− L+ n− 1] = r

τ+(n−1)T
nT [k].

31

In other words: We increased the bin size n times. But compared to direct binning of
r(t) we obtain n sequences r[k]τ ′

nT corresponding to n different shifts τ ′ = τ +mT. This is
illustrated in fig. 2.8

Different shifts τ ∈
[
−T

2 ,
T
2

)
still lead to different sequences s

τ (n)
T [k] but the worst case

error is reduced, as we will see.
s
τ

(n
)

T
[k

]

s
τ (n)
T [k] rτ+m1T

nT [k] rτ+m2T
nT [k]

0

5

10

15

20

t

r
τ

′
n
T

(t
)

rτ+m1T
nT (t) rτ+m2T

nT (t)

Figure 2.8: The upper plot shows s
τ (n)
T [k] (gray) – the smoothed version of rτT [k]. By

subsampling of s
τ (n)
T [k] according to eq. (2.13) we obtain n different binnings rτ

′
nT [k] with

τ ′ ∈ {τ, τ + T, . . . , τ + (n − 1)T}. Here we illustrate two different subsamplings: with
τ ′ = τ +m1T (blue) and τ ′ = τ +m2T (red), where m1 = 0, m2 = (n− 1)/2 and n = 101.
The upper plot shows discrete representations rτ

′
nT [k] and the lower plot corresponding

time-continuous representations rτ
′

nT (t). The samples in the upper plot are aligned with
the lower plot such that k-th sample of s

τ (n)
T [k] corresponds to time t = kT – the time

locations of samples in upper plot then correspond to the centers of the time-continuous
bins in the lower plot.

Theorem 6 (Reduced worst case uncertainty). The worst case uncertainty after smooth-
ing with gn[l] (rectangular window of size n samples) equals

(
1
n − 1

2n2

)
(rmax − rmin).

Proof. We again assume such real rate r(t) and such binning with offset τ1 and bin size
nT, that the bin rτ1

nT [i + 1] is whole filled with rmax and bins rτ1
nT [i] and rτ1

nT [i + 2] with
rmin (fig. 2.9).

Up to this point the approach was the same as the last time. The difference is, that even
with larger bin size nT, we get the worst case uncertainty for |τ1 − τ2| = T/2. The reason
is, that the smoothed rate sτT n[k] contains binnings with all offsets ∈ {τ, τ + T, . . . , τ +
(n−1)T}. I.e. if τ2 would equal e.g. τ1 +3T/4, the sequence rτ2

nT [k] would be already closer
to rτ1+T

nT [k] and would correspond to offset difference of −T/4.
The worst case per-bin average uncertainty corresponds to the yellow area in fig. 2.9

divided by the bin duration nT. First we calculate the hight of bin rτ2
nT [i+ 1] :

rτ2
nT [i+ 1] = (n− 1/2)T · rmax + T/2 · rmin

nT
= (2n− 1)rmax + rmin

2n ,

and similarly for the bin rτ2
nT [i] :

rτ2
nT [i] = (2n− 1)rmin + rmax

2n .

32

t

r(t) r̂τ1
nT (t)

rmin

rmax

rτ1
nT [i]

rτ1
nT [i+ 1]

rτ1
nT [i+ 2]

τ 1
+ i
nT

τ 1
+ (i+

1)n
T

rτ2
nT [i]

rτ2
nT [i+ 1]

rτ2
nT [i+ 2]

τ 2
+ i
nT

(τ 1
+ T

) + i
nT

Figure 2.9: Deriving the worst case uncertainty after convolution with rectangular win-
dow of size n. Even though the bin duration is now nT, we still observe the worst case
uncertainty for the offset difference |τ1 − τ2| = T/2.

The yellow area is then equal to

(rmax − rτ2
nT [i])T2 + (rmax − rτ2

nT [i+ 1])
(
n− 1

2

)
T =

= (2n− 1)rmax − (2n− 1)rmin
2n

T

2 + rmax − rmin
2n

(
n− 1

2

)
T =

= (rmax − rmin)2n− 1
2n T = (rmax − rmin)

(
1− 1

2n

)
T.

Now we divide the yellow area by the bin size nT and obtain the worst case uncertainty
after smoothing: (1

n
− 1

2n2

)
(rmax − rmin).

Example 4 (Weather station ctd.). In the example 3 we assumed weather station mea-
suring precipitation rate with period T = 5 min and some offset τ, |τ | ≤ 2.5. With
r̂τT = maxk r[k]τ

T , we could only say that the maximum 5-minute-average of r(t) was
anything between r̂τT and 2 · r̂τT .

If we now convolve the measured sequence rτT [k] with rectangular window g6[k], we
get s

τ (6)
T [k] = (rτT ∗ g6)[k], which characterizes thirty-minute binnings (nT = 6 · 5) with

six different offsets {τ, τ + 5, . . . , τ + 25}. Assuming rmin = 0, we obtain the reduced worst
case uncertainty

(
1
n − 1

2n2

)
rmax = 11

72rmax.

I.e. if we observe ŝ = maxk s
τ (6)
T [k], we can say that the maximum 30-minute average

of the true rate r(t) was anything between ŝ and 72
61 ŝ. (In the worst case ŝ = rmax− 11

72rmax.)

2.3 Thinning

In this section we introduce a compression algorithm which we call “thinning.” We don’t
claim that it is a good compression algorithm, but we need to analyze it because in later
chapters we will have to deal with results delivered by this algorithm.

33

2.3.1 Thinning Algorithm
Expressed in words: For given cumulative volume sequence and corresponding time loca-
tions (in general not equidistant) the thinning algorithm drops minimum necessary number
of cumulative volume samples in order to achieve spacing of non-dropped samples > ∆min,
where ∆min is a constant time interval.

The thinning algorithm is applied for every connection c independently, therefore we
omit the lower index c in this section.

Definition 2.3.1 (Thinning algorithm). For a given sequence of pairs (w[k], t[k])k∈{1,...,K}
the thinning algorithm with spacing ∆min ∈ R+ is a mapping

T : (w[k], t[k])k∈{1,...,K} → (w′[k], t′[k])k∈{1,...,K′}

which fulfills these three conditions:

1. ∀k ∈ {1, . . . ,K ′} ∃l ∈ {1, . . . ,K} such that (w′[k], t′[k]) = (w[l], t[l]).

2. ∀k ∈ {2, . . . ,K ′} : t′[k]− t′[k − 1] > ∆min.

3. K ′ is maximum number ∈ Z+
0 such that 1. and 2. is fulfilled.

Remark. The first condition tells us that the thinned sequence contains only samples which
were contained in the original sequence. The second one specifies the spacing. The third
one tells us that we shall not drop more sample than necessary, i.e. we drop the minimum
of samples such that fist two conditions are fulfilled.

2.3.2 Implementation of Thinning Algorithm
The first sample is (w[1], t[1]) with w[1] > 0, t[1] > 0. The sample (w[0], t[0]) isn’t stored
anywhere, but it is assumed to be zero at zero time, we make the same assumption for
the thinned sequence:

t′[0] , t[0] , 0, w′[0] , w[0] , 0.

The first nonzero sample is initialized as follows:

t′[1] , t[1], w′[1] , w[1].

We also initialize two counters i, j and variable t∗ holding the last non-dropped sample:

i := 2, j := 2, t∗ := t[1].

Then we repeat following two steps, while i ≤ K :

• If (t[i]− t∗) > ∆min:

t′[j] , t[i],
w′[j] , w[i],
t∗ := t[i],
j += 1.

Else: do nothing.

• i += 1.

Described in words: Given t′[j − 1] = t[i], we drop so many samples (choose t′[j] = t[l]
with l > i such) that t′[j]− t′[j − 1] > ∆min for all j ∈ {2, . . . ,K ′}.

34

2.3.3 Remarks
Given two consecutive samples of thinned sequence (w′[k], t′[k]) = (w[l+m], t[l+m]) and
(w′[k − 1], t′[k − 1]) = (w[l], t[l]) with some k, l,m ∈ Z+, m > 1 (i.e. m − 1 samples were
dropped because t[l+m]− t[l] > ∆min and t[l+m− 1]− t[l] ≤ ∆min) we can express the
k-th volume sample of thinned sequence as follows:

v′[k] = w′[k]− w′[k − 1] = w[l +m]− w[l] =
l+m∑
i=0

v[i]−
l∑

i=0
v[i] =

l+m∑
i=l+1

v[i]. (2.16)

The thinning thus means that we take the total volume measured in the time interval
(t[l], t[l +m]] and move it to a single sample located at t[l +m]. This again shows that it
is reasonable to define the rate as a constant during whole interval (t[l], t[l + m]] – if we
know only total volume in this interval we distribute it uniformly over whole interval.

Comparing Thinned and Non-Thinned Rate

The thinned rate r′[k] = (w′[k]−w′[k−1])/(t′[k]−t′[k−1]) corresponds to resampled version
of r[k], because it fulfills our resampling condition (mean rate before and after resampling
shall be equal within resampling intervals), which can be shown using eq. (2.16). We again
use the time-continuous representation from eq. (2.1):

∫ t′[k]

t′[k−1]
r̂′(t) dt = v′[k] =

l+m∑
i=l+1

v[i] =
∫ t[l+m]

t[l]
r̂(t) dt =

∫ t′[k]

t′[k−1]
r̂(t) dt.

The only problem is that “resampling period” equals

t′[k]− t′[k − 1] = ∆min + e[k − 1], with some e[k − 1] ∈ R+,

which is in general different for every resampling interval.
Now we choose T such that ∆min = nT with some n ∈ Z+. If the error is small enough,

we obtain
t′[k]− t′[k − 1] ≈ ∆min = nT. (2.17)

The first idea could be to compare r′[k] with r̃nT [k] (or equivalently r̂′(t) with r̃nT (t)),
where the left subscript nT shall denote the resampled version of r[k] (or r̂(t)) with resam-
pling period nT. The problem is that the error e is cumulative:

t′[k] = t′[1] + (k − 1)∆min +
k−1∑
i=1

e[i].

I.e. even though the first time location would be t′[1] = qnTs with some q ∈ N and all
resampling intervals t′[k]− t′[k − 1] would be close to nT, the later samples would slowly
drift out of the resampling grid t = knT.

Noisy Subsampling from the Smoothed Rate

The way out of this is the smoothed rate s
(n)

T [k] = (r̃T ∗ gn)[k].1 As explained in subsec.
2.2.3, this smoothed rate represents n rate sequences obtained by resampling of r̃T [k] by
using larger bin size nT with different offsets: r̃0nT [k], r̃TnT [k], . . . , r̃

(n−1)T
nT [k].2

1Note that we take the resampled version of r[k] because the definition 2.2.5 is valid only for equidistant
binning. We also leave out the shift τ for simplicity.

2Please note that here r̃T [k] is the resampled version of r[k] (resampling period T) and r̃mT
nT [k] is the

resampled version of r̃T [k] with offset mT (resampling period nT).

35

s(n
)

T
[k

]

s
(n)

T [k] r′[k]

t

r̂′ (t
)

r̂′(t)

Figure 2.10: Representation of thinned sequence r′[k] as noisy subsampling from s
(n)

T [k]
(upper plot) and r̂′(t) – time-continuous representation of r′[k] (lower plot).

In ideal case, every sample of r′[k] would be drawn from one of the functions (for every
k possibly different function) r̃mT

nT [k], m ∈ {0, 1, . . . , (n − 1)T}. The samples r′[k] can of
course still be located out of the grid, but now we have n-times finer grid, t = kT instead
of t = knT.

In other words: Every bin size t′[k]− t′[k − 1] is close to nT. With smoothed rate we
can compensate for the cumulative time-offset of the thinned bins because we can always
pick one of n binnings with bin size nT and offset mT.

We can get rid of the remaining offset τ ∈
(
−T

2 ,
T
2

]
as follows: We introduce

t2 = mT + inT with m ∈ {0, . . . , n− 1}, i ∈ Z+
0 s.t. |t2 − t′[k]| minimized, (2.18)

then we choose

t1 = mT + (i− 1)nT. (2.19)

Interval (t1, t2] corresponds to bin r̂mT
nT [i] which corresponds to sample s

(n)
T [in− L+m]

(eq. (2.13)). Thus we replaced the interval (t′[k − 1], t′[k]] by the interval (t1, t2] which is
not the same but hopefully very similar and we write:

r′[k] = r̂mT
nT [i] + z[k] = s

(n)
T [in− L+m] + z[k], (2.20)

where z[k] ∈ R is some error.
The idea is that if our assumption in eq. (2.17) is fulfilled, the error shouldn’t be too

large and we can represent the sequence r′[k] as noisy subsampling from the sequence
s

(n)
T [l] at locations l = in− L+m, as stated in eq. (2.20).

Recall that L = n
2 or L = n−1

2 depending on the parity of n; T and n are chosen such
that ∆min = nT (the larger n and the smaller T the better); and i and m are given by
eq. (2.18). This noisy subsampling is illustrated in fig. 2.10.

The goal is actually not to obtain r′[k] from s
(n)

T [l] but to reconstruct s
(n)

T [l] from
(r′[k], t′[k])k∈{1,...,K′}. If we have a model then we can apply for example least squares to
obtain s

(n)
T [l] from noisy samples.

36

2.4 Oscillations
2.4.1 Model
In this section we consider a special case of rates of individual connections. Let’s assume
that the total rate consists of three connections: r̂(t) = ∑3

c=1 r̂c(t). Further we assume
resampling with period T, i.e. r̃(t) = ∑3

c=1 r̃c(t) which is equivalent to r̃[k] = ∑3
c=1 r̃c[k].

And finally smoothing with rectangular window of size n. Because convolution is linear
operation, we can write

s
(n)

T [k] =
3∑
c=1

s
(n)

T c [k]. (2.21)

Now we model s
(n)

T c [k] as an exponential chirp with frequency function

f(t) = α+ βe−γt, α, β, γ ∈ R+
0 , (2.22)

which corresponds to phase function

φ(t) = φ0 + 2π
∫ t

0
f(τ) dτ = φ0 + 2π

(
αt− β

γ

(
e−γt − 1

))
. (2.23)

Finally we require that s
(n)

T c [k] has support {0, . . . ,K} with K even and we thus obtain

s
(n)

T c [k] = (a+ b · sin(φ(kT))) · rect
[
k − K

2 ; K2
]
, ∀k, (2.24)

where a, b ∈ R+, a > b and

rect[k;L] ,
{

1, |k| ≤ L;
0, otherwise.

We choose arbitrarily φ0 = 0 and for the frequency function we use α = 2.254, β =
9.605, γ = 0.5331 (this will become clear in sec. 4.4, chapter 4), further we have T = 1 ms
and K = 7000. Constant a represents DC part of the signal s

(n)
T c [k] and constant b scales

the amplitude. For our later problem statement these two constants are not important,
in fig. 2.11 we chose a = 6, b = 5.

2.4.2 Spectrogram
Since the frequency is function of time, we have to use a spectrogram (discrete short
time Fourier transform (STFT) [39], [40], [41]) in order to visualize them in the frequency

0 1 2 3 4 5 6 70

5

10

t/s

s(n
)

T
c

[k
]/

(M
bi

t/
s)

2 4 60

5

10

15

t/s

f
/H

z

0

10

20

30

PS
D

/(
M

bi
t/

s)
2

Figure 2.11: The non-zero part of the signal s
(n)

T c [k] = (a+ b · sin(φ(kT)))·rect
[
k − K

2 ; K2
]

(left) and its spectrogram (right). T = 1 ms, t = kT.

37

domain. In figure 2.11 and in what follows in next chapters we used Hamming window of
length 1024, overlap of 1023 samples, FFT was calculated always over 2048 samples (in
order to get nicer picture with higher resolution) and T was 1ms.

Since we use DFT, the transformed quantity F{x[i]} has the same unit as x[i], i.e. in
case of rate or smoothed rate Mbit/s. Similarly power spectral density (PSD) has unit
(Mbit/s)2, it is power per sample (observation) not power per Hz. We use following defi-
nition of DFT:

X[k] = 1
N

N−1∑
n=0

x[n]e−2πj nk
N , x[n] =

N−1∑
k=0

X[k]e2πj nk
N ,

which has the advantage that transformed quantity X[k] does not grow with number of
samples, for example A cos

(
2πm
N n

)
A
2 δ[k − m] + A

2 δ[k + m − N], i.e. for one sided
representation (real signal, symmetric spectrum) we display just Aδ[k −m], the factor A
corresponds to the amplitude of the signal in time domain. For power we have factor (A/2)2

in both terms in case of two-sided representation. In case of one-sided representation we
obtain factor A2

2 which corresponds to the power of the sine wave with amplitude A.
Note that the definition of DFT above leads to the following form of Parseval’s theorem:∑N−1
n=0 |x[n]|2 = N

∑N−1
k=0 |X[k]|2.

In literature often the following form of the DFT is used X[k] = ∑N−1
n=0 x[n]e−2πj nk

N

and x[n] = 1
N

∑N−1
k=0 X[k]e2πj nk

N .

2.4.3 Reducing Oscillations
First we define following shorthand notation:

Definition 2.4.1.

s
κ (n)
T [k] ,

C∑
c=1

s
(n)

T c [k − κc],

with shift-vector κ = (κ1, . . . , κC)ᵀ.

Remark. In whole section we will use only C = 3 connections and assume only shifts of
the second and the third one, i.e. κ = (0, κ2, κ3)ᵀ.

Problem Statement

Let’s assume that we want to minimize oscillations of s
(n)

T [k] in the interval t ∈ [0,KT]
by shifting s

(n)
T 2 [k] by κ2 and s

(n)
T 3 [k] by κ3. Motivation of this step will become clearer

in next chapters.
By minimizing oscillations we understand finding shift-vector κ̂ = (0, κ̂2, κ̂3)ᵀ such

that the variance (power of non-DC components) of the signal in the interval t ∈ [0,KT],
i.e. k ∈ {0, . . . ,K} is minimized:

κ̂ = (0, κ̂2, κ̂3)ᵀ = arg min
(κ2,κ3)∈Z2

1
K + 1

K∑
k=0

(
s

κ (n)
T [k]−

(
1

K + 1

K∑
k=0

s
κ (n)
T [k]

))2

. (2.25)

Alternatively, if a (minimum-oscillation) reference sref [k] is given, we can minimize
mean squared difference between s

κ (n)
T [k] and the reference:

κ̂ = (0, κ̂2, κ̂3)ᵀ = arg min
(κ2,κ3)∈Z2

1
K + 1

K∑
k=0

(
s

κ (n)
T [k]− sref [k]

)2
. (2.26)

38

500
0

-500 -500
0

500

20

60

100

κ2/ms κ3/ms

va
r/

(M
bi

t/
s)

2

-500

0

500

-500 0 500
20

40

60

80

100

κ3/ms

κ
2/

m
s

va
r/

(M
bi

t/
s)

2

Figure 2.12: Objective function of minimization problem in eq. (2.25) using model from
subsec. 2.4.1. Note: var in the axes labels is shorthand for variance of s

κ (n)
T calculated for

k ∈ {0, . . . ,K}. With our resampling period T = 1 ms, the shift of κ samples corresponds
to time shift of κms.

0 1 2 3 4 5 6 70

10

20

30

40

t/s

s
κ̂

(n
)

T
[k

]/
(M

bi
t/

s)

2 4 60

5

10

15

t/s

f
/H

z

0

100

200

300

PS
D

/(
M

bi
t/

s)
2

Figure 2.13: Minimum variance solution s
κ̂ (n)
T [k] obtained from minimization problem in

eq. (2.25) by exhaustive search (κ2, κ3) ∈ {−500, . . . , 500}2.

Brute Force Solution

Since we have no analytic solution for the minimization problem in eq. (2.25), we perform
an exhaustive search over all possible shifts (κ2, κ3) ∈ {−500, . . . , 500}2. The objective
function is shown in fig. 2.12.

There are six global minima. We pick κ2 = −81, κ3 = −166 and plot the minimum
variance solution s

κ̂ (n)
T [k] (fig. 2.13). Oscillations are not removed completely but they are

reduced compared to zero shift-vector κ = 0 which would lead to amplitude 3·b = 15. This
imperfect solution with remaining oscillations shows certain room for model improvement
to better characterize problems in later chapters. However, we will still use the notation
and concepts established in this section.

The model is nonlinear, minimization problem is nonconvex and the brute force algo-
rithm has complexity O(n2).
Phase Shift

If we consider phase shifts instead of time shifts, oscillations are completely removed for
any phase function φ(t) by choosing shifts φ1 = 0, φ2 = 2π

3 , φ3 = 2 · 2π
3 :

ejφ(t) + ej(φ(t)+ 2π
3) + ej(φ(t)+2· 2π3) = ejφ(t)

(
1 + ej 2π

3 + ej2 2π
3
)

︸ ︷︷ ︸
=0

= 0

39

5
0 -5 -5 0 5

20

60

100

φ2/rad φ3/rad

va
r(rφ

) /(M
bi

t/
s)

2

-5

0

5

-5 0 5

20

40

60

80

100

φ3/rad

φ
2/

ra
d

va
r(rφ

) /(M
bi

t/
s)

2

Figure 2.14: Variance of s
(n)

T [k] when considering phase shifts φ2, φ3 instead of index
shifts κ2, κ3. The phase shift φ1 was fixed to 0. The obtained pattern is 2π-periodic and
we would see similar results also for different phase functions φ(t).

which is well known e.g. from three phase power system, where φ(t) = ωt. Phase shift
solution is not very helpful for us, we just mention it here, because in later chapters we
will observe objective function similar to fig. 2.14 (even though we will not consider phase
shifts there).

2.5 Extracting Network Performance From User Tests
The limitation of crowdsourced performance measurements as a replacement for drive tests
lies in the fact that the UE will show various effects impacting the measurement. One
of these effects is the tariff limitation of a standard user. These limitations are typically
considering traffic volume per period of time as well as maximum granted data rate. In
Austria the later typically accounts for limits like 10, 20, 40Mbit/s depending on the tariff
pricing. Such limits are well below the data rate an LTE link can offer and therefore we
might rather measure the user profile than the network performance we are interested in.
This would render non-treated results in the RTR’s open data useless in such context.

However, a detailed look into the methods of traffic shaping reveals that these methods
need a certain time span to evaluate the current data rate of the user, e.g. the first bunch
of packets. In the following we used this fundamental property of traffic shaping tools to
build and automatized traffic shaping detector. This detector allows us to detect both,
the network performance as well as the data rate due to the user profile.

2.5.1 Traffic Shaping Detectors (Existing Method)
A method how to detect traffic shaping is described in [42], it works in cases where token
bucket is implemented, e.g. in order to allow a user to exceed the service rate ρ for a
limited burst size. The method estimates σ – bucket size (maximum burst size), ρ – token
generation rate (shaping rate) and C – link capacity (peak rate).3

The main ideas are illustrated in fig. 2.15: When a user starts to transmit and the
token bucket of size σ is full, we first observe the peak rate C, until the bucket is emptied.
Then only transmission with token generation rate ρ is possible.

The method relies on detection of beginning (index kb) and end (index ke) of level shift
in the binned sequence r̂T [k]. The peak rate is estimated as the median of all rate bins

3We don’t distinguish separate connections in this section, there is therefore no danger of confusing
peak rate and total number of connections.

40

before the level shift
Ĉ = med

k∈{1,...,kb−1}
r̂T [k], (2.27)

the shaping rate as the median of all rate bins after the level shift

ρ̂ = med
k∈{ke+1,...,K}

r̂T [k], (2.28)

and the bucket size as the yellow area in fig. 2.15:

σ̂ =
kb∑
k=1

(r̂T [k]− ρ̂)T. (2.29)

Level Shift Detection

Assuming first n samples of r̂T [k], the index kb is detected if it fulfills:
1. kb ∈ {nL + 1, . . . , n− nR − 1}, nL, nR ∈ Z+ (enough samples before and after kb),

2. r̂T [i] ≥ r̂T [j] ∀i ∈ {1, . . . , kb − 1}, j ∈ {kb + 1, . . . , n},
3. medi∈{1,...,kb} r̂T [i] > γmedj∈{kb,...,n} r̂T [j], with suitable threshold γ.

The number n is initialized as nL + nR + 2, so that in the first iteration we have only one
candidate kb ∈ {nL + 1}. If there is no index fulfilling conditions 1–3, n is increased by
one and we proceed with next iteration.

End of level shift, index ke, is detected in similar way; it is the last index > kb which
fulfills condition 1.

2.5.2 Modified Traffic Shaping Detector
The bin size has to be large enough (in the paper T = 300 ms) to suppress noise to such
extent that in case of traffic shaping all samples on the left side of kb are larger than all
samples on the right side of kb (condition 2).

We extend the algorithm [42] by making use of our representation s
(n)

T [k] with T =
1 ms and different values of n.4 In subsec. 2.2.3 we saw that s

(n)
T [k] represents n different

sequences – binnings rmT
nT [k] with n possible offsets mT, m ∈ {0, . . . , (n − 1)}. For every

offset we get different sequence (recall fig. 2.8) and therefore different estimates Ĉ, ρ̂, σ̂.
From 301 estimates we should get more information than from single binning with one
offset. Measurement results can be found in chapter 4.

Another idea which we haven’t tested yet would be to detect level shift jointly, con-
sidering all binnings with different offsets together.

0 1000 2000 3000 4000 5000 6000 70000
10
20
30
40

σ̂

Ĉ

ρ̂

t/ms

r̂
τ T

(t
)/

(M
bi

t/
s) r̂τT (t)

Beginning of level shift
End of level shift

Figure 2.15: An example of traffic shaping. Ĉ ≈ 30.38 Mbit/s is the estimate of peak rate,
ρ̂ ≈ 9.65 Mbit/s is the estimate of token generation rate and σ̂ ≈ 14.38 Mbit ≈ 1.8 MB
(the yellow area) is the estimate of the token bucket size.

4We prefer odd span of smoothing window because of easier implementation in MATLAB [43].

41

Chapter 3

Measurement Framework and
Tools

The topic of crowdsourced performance measurement for mobile networks can be con-
sidered a very young discipline. There exits many different methods and approaches to
measure performance in a distributed way. In order enable big data processing we need
to gain a better understanding on how to merge these different data sources into a large
set of data, e.g. data rate tests from different countries and regulatory bodies.

In first part of this chapter we introduce a framework that offers the functionality to
compare different tools and configure each of them in a flexible way. Although we already
published the concept in [44], there were some changes and improvements implemented.
Therefore we present here the whole CMPT framework in its current state.

RTR Mobile Broadband Test (RMBT), the second part of the chapter, plays essential
role because it is the application which produces publicly available crowdsourced RTR’s
open data we use in the final chapter. It is widely deployed in Austria and its compilations
are used also in Slovakia, Slovenia and Serbia (more details in subsection 3.2.4).

3.1 The Measurement Framework (CMPT)
The Crowdsourcing Mobile Performance Tool (CMPT) framework (fig. 3.1) consists of
CMPT Android application, user friendly web interface and CMPT server. The CMPT

Results

CMPT
Server

Settings
Configuration

Upload Results

Test
Server

Web Interface

Test
ServerTest

Server

UE
CMPT
App

UE
CMPT
App

UE
CMPT
App

Figure 3.1: The CMPT framework: Configuration is specified via web interface. The
UEs running CMPT application obtain configurations from the CMPT server, perform
various measurements targeting different servers and upload measurement results back to
the CMPT server. Author of this picture: Philipp Svoboda.

42

server has three components: settings database, results database and script for automatic
configuration changes. CMPT further uses applications of third parties (more details in
3.1.4) to perform additional tasks (measurements, data collection).

These applications of third parties may target different test servers which don’t have
to be under our control (e.g. iPerf3 public test servers [45]). If we target our own test
servers, we can merge results from these test servers with CMPT results database.

3.1.1 Android Application
The core of the CMPT Android application is a background service, which keeps running
even if no application window is opened. In order to work properly it requires API level
18 or higher, superuser (SU) rights (the device has to be rooted), BusyBox 1.26 or higher
[46], and countless permissions (access location, read/write external storage,. . .). The app
was implemented in Java using Android Studio [47] with great assistance of [48] and [49].

Appearance

The CMPT app has four different screens (fig. 3.2 and 3.3): the main screen, list of
available WLANs, settings, miscellaneous. Brief overview of each screen follows:

The main screen is divided in three parts. The uppermost part contains a button
to start or stop the CMPT background service, list of third parties applications1 (sub-
sec. 3.1.4) and countdown indicating when which applications is going to be executed
(more information in paragraph “Scheduling”) if the CMPT background service is run-
ning. The middle part contains a statistic showing how many JSON documents with
test results were successfully uploaded, how many uploads were unsuccessful, the ID and
upload status (ok/failed) of the last JSON document and a button which can reset this
statistic. The lower part contains overview of passively collected information (more in
paragraph “Passive Monitoring”).

The WLAN screen displays a list of available WLANs (if UE’s WiFi is turned on) and
their RSSI in dBm. This feature is just experimental, in future it can be used to passively

Figure 3.2: CMPT application menu (left) and the main screen (right).

1The screenshot 3.2 contains an application called ABE (Available Bandwidth Estimation). This is
just an old working title for FLARP which is described in subsection 3.1.4.

43

Figure 3.3: CMPT application screens. Left: List of available WLANs (experimental
feature). Middle: Overview of test configurations. Right: Miscellaneous.

monitor RSSI levels of available WLANs over time (and upload collected results together
with other measurements).

The settings screen shows current configuration of the CMPT and of the third parties
applications. In the current version all settings are disabled on the UE side in order to
avoid conflicts with remote settings which is described in 3.1.2. In the future version it
should be possible to choose on the UE side anytime, whether the local or the remote
settings shall be used.

The miscellaneous screen contains basic UE information (IMEI,2 device model, An-
droid version and API level), SIM3 information (IMSI,4 serial number), information about
installed CMPT version and the latest available version, copyright and finally, test but-
tons. The test buttons are present for debugging, they allow to check SU permissions
and to execute third party apps individually without scheduling. The CMPT background
service has to be stopped when using test buttons.

Scheduling

In this section we describe how the CMPT application schedules its own tasks together
with execution of applications of third parties. CMPT app’s tasks are: results upload
& configuration download, precharge, final slot and link reset. Third parties’ apps we
curently use are: ICMP ping, iPerf3, FLARP and Open-RMBT (more details are given in
subsection 3.1.4). In the rest of this section we will call the CMPT app’s tasks and apps
of third parties jointly as “tasks.”

The CMPT background service is as an infinite loop which is repeated every second.
Scheduling works in 300 s blocks, one after another. Beginning of every block is located
at time t which is divisible by 300 s, i.e. time t such that t/s mod 300 = 0.

One block is illustrated in fig. 3.4. In every block a fixed-length slot is assigned to every
task, such that no slots are overlapping. The length of every slot is hard coded based on
requirements of the corresponding task. If the task is going to be executed in current

2International Mobile Equipment Identity
3Subscriber Identity Module
4International Mobile Subscriber Identity

44

Position Fixed Task Slot length
0 s yes Precharge 5 s
10 s no ICMP ping 15 s
25 s no iPerf3 30 s
55 s no FLARP 15 s

110 s no Results upload, config. download 30 s
140 s no Open-RMBT 120 s
275 s yes Link reset —
280 s yes Final slot 20 s

Table 3.1: List of CMPT tasks.

block (based on test period, see subsec. 3.1.2, settings), it is started at the beginning of
its slot. If any task is not finished at the end of its slot, it is terminated by the CMPT
app. The positions of precharge, link reset and final slot are fixed. Positions of all other
tasks can be either fixed or randomized, depending on settings.

Table 3.1 summarizes the tasks, their slot lengths and indicates whether every task
is fixed or not. The slot of fixed task always starts at time location given by the table.
For non-fixed tasks the slot starts either at time given in the table (if randomization is
disabled), or at random time (if randomization is enabled).

If randomization is enabled, the scheduling algorithm works like this: In every block
there is an available time interval t ∈ [5, 275] (duration D = 270) which is not occupied
by any fixed slot. Let’s assume there are n non-fixed tasks with the total duration of all
their slots dt seconds. The rest of the available interval will be filled with n + 1 random
gaps with total duration dg = ∑n

i=0 dg,i = D − dt. We randomly shuffle the order of all n
tasks (i.e. decide which one will be the first, second,. . . , n-th). We insert a gap between
every two neighboring tasks plus one gap before the first task and one gap after the last
task. These n+ 1 gaps are initialized empty. We perform dg iterations, in every iteration
random i ∈ {0, 1, . . . , n} is selected and corresponding dg,i is incremented by one.

• Results upload, configuration download: CMPT app connects to the CMPT
server, uploads all collected data from the previous 300 s block and downloads con-
figuration for the next 300 s block. HTTPS requests are scheduled using external
Volley library [50], which also supports gzip compression to make results uploads
and configuration downloads more efficient.

• Link reset: If active, the airplane mode is switched on and off in order to disconnect
from the mobile network and connect again. The slot doesn’t have fixed duration.
From our experience it takes not longer than 20 s to connect again. With 5 s reserve,
the next 300 s block can start 25 s after the link reset is initiated. The link reset is
partially overlapping with the final slot in which no Internet connection is needed.

• Precharge: In order to bring connection to an “active” state, e.g. HS-DSCH in
UMTS [51] or DL-SCH in LTE [52], a file download is initiated. At the end of the
slot the download is interrupted and the downloaded part of the file is deleted.

• Final slot: The configuration downloaded in the “UL results, DL conf.” slot is
checked and if there are any changes, new settings is applied for the next 300 s
block. All data and test results collected in the current block are stored to a JSON
file and are prepared to be uploaded in the “UL results, DL conf.” slot of the next
300 s block. New slot positions, based on new configuration, are generated for the
next block.

45

0 5 280 300 t/s mod 300

F
LA

R
P

15 s

O
pe

n-
R

M
B

T

120 s

U
PL

O
A

D
R

ES
U

LT
S,

D
O

W
N

LO
A

D
C

O
N

F.

30 s

IC
M

P
pi

ng

15 s

iP
er

f3

30 s

R
ES

ET
LI

N
K

27
5

FI
N

A
L

SL
O

T

PR
EC

H
A

RG
E

Random order
Legend:

Random gap
Reserved

Cell info
CPU
Location
Battery
QAT

Figure 3.4: CMPT scheduling (upper block) and passive monitoring (lower block).

Passive Monitoring

Together with scheduling of different tasks, CMPT application also persistently collects
additional data in passive way, this is illustrated in the lower block of fig. 3.4.

The Android’s cell information is updated every two seconds, however we sample them
every seconds in order to don’t miss any sample – even though the infinite loop is supposed
to be executed every second, timing is not precise and there is certain drift in order of
milliseconds. In case of LTE, cell info includes cell identity (MCC, MNC, CI, PCI, TAC)
and signal values (RSRP, RSRQ, RSSNR, CQI, TA) of the cell to which the device is
connected as well as of all neighboring cells which are in reach. Analogous values are
collected also in case of 2G and 3G.

CPU load and additional information obtained by shell command busybox uptime are
collected every 5 s.

Network location and GPS location as well as battery state (voltage, temperature) are
sampled only when the values change – we use Android’s LocationListener and Broadcas-
tReceiver.

The RSRP values in dBm and RSRQ values in dB are rounded to whole numbers.
Since we were interested in signal strength data with finer time and value resolution,
Michael Rindler compiled a binary called QAT,5 which – once executed – retrieves (in
case of LTE) the RSRP and RSRQ values in the cell to which the device is connected.
QAT is running for specified time interval with specified sampling period. Results are
outputted in JSON format when program finishes. The default sampling period is 300 ms.
We kept QAT running in every block from t = 0 to t = 280 so that the results were ready
at the beginning of the final slot.

The QAT feature is experimental and is currently disabled by default, because it is
limited to just some of Qualcomm’s chip sets. We used it on LG F60. Comparing values
reported by Android and by QAT, we found out that Android values are on average about
0.5 dB higher. Explanation is, that Android drops the decimal part. Since RSRP in dBm
and RSRQ in dB are negative, this corresponds to the ceiling operation dxe. Indeed, when
we took QAT values, performed ceiling operation and than compared two-second averages
with the values reported by Android, the 0.5 dB difference disappeared.

5Working title derived from qualcommAT, since Michael discovered how to obtain signal strength
values from Qualcomm chipset on some devices.

46

Figure 3.5: Screenshot of the CMPT settings web interface.

47

Periods: Open-RMBT: 0, ICMP ping: 5, FLARP: 10, iPerf3: 20

ping
FLARP
iPerf3

ping ping
FLARP

ping ping
FLARP
iPerf3

ping
. . .

t/min0 5 10 15 20 25 30

Figure 3.6: An example of different test periods. ICMP ping period is 5min, FLARP
period is 10min and iPerf3 period is 20min. This means that ICMP ping will be executed
in every block, FLARP in every second and iPerf3 in every fourth. Open-RMBT test
period was set to 0, which means disabled.

UE1: offset: 0, Open-RMBT period: 10, iPerf3 period: 5, other periods: 0

RMBT
iPerf3 iPerf3

RMBT
iPerf3 iPerf3

RMBT
iPerf3 iPerf3

. . .

t/min0 5 10 15 20 25 30

UE2: offset: 5, Open-RMBT period: 10, iPerf3 period: 5, other periods: 0

iPerf3
RMBT
iPerf3 iPerf3

RMBT
iPerf3 iPerf3

RMBT
iPerf3

. . .

t/min0 5 10 15 20 25 30

Figure 3.7: Example of two UEs with identical settings of test periods. The only difference
is that the block offset of the UE1 was set to 0min and the block offset of the UE2 was
set to 5min.

Figure 3.8: A screenshot showing part of JSON document uploaded by CMPT application
to the CouchDB database.

48

3.1.2 Web Interface
The web interface for changing CMPT configurations was implemented in php and is ac-
cessible via http://lisi4.nt.tuwien.ac.at/logger_settings/. After logging in, user
can select any IMEI from the list of registered devices and change UE’s configuration.
Before applying any changes, the script checks and validates user’s input and informs the
user about the result.

Settings

The settings web page is shown in fig. 3.5. The first part (general settings) is well described
in the screenshot, moreover we already talked about enabled/disabled randomization and
link reset in paragraph “Scheduling.” The applications of third parties (FLARP, iPerf3,
Open-RMBT and ICMP ping) will be discussed later, QAT feature was already explained
in paragraph “Passive Monitoring”.

What remains is to explain the meaning of the test period which can be specified for
every task and the block offset in the general settings.

The period of every task specifies how often this task is going to be executed. If the
period of a task is 5min, the task will be executed every 5 minutes, i.e. in every 300 s
block. If the period is 10min, the task will be executed only in every second block, etc.
The period 0 means, that the task is deactivated, it will be never executed. The period
has to be nonnegative whole number divisible by 5. An example is shown in fig. 3.6 Note
that the period only determines in which block the corresponding task is going to be
executed, the location of the task slot within the block is still fixed or randomized, based
on randomization settings.

The block offset can be used to shift the beginning of all blocks on the time axis by
certain number of minutes to the right. This can be particularly useful in combination
with proper settings of the test periods. An example is shown in fig. 3.7, where the Open-
RMBT period is set to 10min for two devices. By setting the block offset of UE1 to 0min
and the offset of UE2 to 5min we make sure that the Open-RMBT tests will never overlap
on the server side. Since the iPerf3 period is 5min in our example, the different offset
which is divisible by block duration will have no impact on iPerf3 test locations. It is also
possible to set block offsets which are not divisible by 5min, for this we have however not
found any usage.

3.1.3 Server
Databases

Both, the settings database and the results database, are non relational6 document-
oriented CouchDB [53] databases. Every entry is a JSON document with arbitrary struc-
ture. An example of one database entry (one JSON document) is shown in fig. 3.8. In
order to extract data from the database one can use so called “views.” We implemented
them in JavaScript.

The document-oriented structure has the advantage, that we can easily add new tests
and features to the CMPT Android app without need to do any modifications in the
database – all collected data are simply stacked to single JSON document in the final slot
and uploaded in the “UL results, DL config.” slot to the database over HTTPS request.

Similarly, any new settings entries can be added without having to care about database
structure, only the web interface and the CMPT app have to be modified. CMPT app
downloads settings over HTTPS request in “UL results, DL config.” slot.

6Also called NoSQL.

49

Automatic Configuration Changes

If the auto configuration option is activated in the settings (fig. 3.5, part General), than
the script auto_conf.php which is located on the server is allowed to change configuration
automatically. The script is executed by Cron every five minutes (i.e. once per block) and
can perform arbitrary configuration changes. In the subsection “3.1.5 Examples of Use
Cases” we explain how this can be useful.

3.1.4 Tools of Third Parties
The compiled binary files and the Android .apk files are stored on the server and their
versions are stored in the settings database. If we want to replace some third party app
with newer version, we just replace the file on the server and increase the version number
in the settings database. The CMPT Android app than recognizes that version number
has been changed and automatically downloads (and in case of .apk files also installs) the
new file.

• iPerf3: Binary file. We already mentioned iPerf3 in the first chapter several times.
The documentation can be found at [30]. In the settings the following can be
changed: test duration, protocol selection (TCP or UDP), number of parallel TCP
connections or UDP streams, target server and port. In the iPerf3 slot one DL test
of given duration and one UL test of given duration is performed. Slot duration is
30 s, i.e. selected test duration must not be larger than 15 s.

• Open-RMBT TU: Android .apk file. The whole section 3.2 is dedicated to this
compilation of Open-RMBT. We should take care that test duration is not set too
high. RMBT slot is 120 s, but the Open-RMBT performs ping test, quality of service
test7 (QoS), throughput DL and UL test. The test duration applies only to DL test
and UL test (it is the same for both), the rest is fixed.

• FLARP: Binary file. Fast Lightweight Available Rate Probing, which was developed
by Michael Rindler [54]. It is included because Michael used CMPT for his own
measurements. In this thesis we don’t analyze FLARP results.

• ICMP8 ping: Invokes the Android’s (i.e. Linux) built-in ping shell command with
count, spacing and target server specified in the configuration settings. Since this
thesis focuses on TCP over IP throughput measurements, we don’t analyze ping
results in following chapters.

3.1.5 Examples of Use Cases
In this subsection we demonstrate the versatility of the CMPT framework by mentioning
several different scenarios in which it was applied.

Passive Monitoring

The first version of CMPT was used in MobComWeather project to passively collect signal
strength data of all reachable mobile cells. The signal strength data were than compared
with precipitation measured by nearby weather stations to find out whether there is any
correlation.

7Loading some web pages, etc.
8Internet Control Message Protocol

50

Randomized Sampling

The idea behind the randomization within every block is that we want to avoid periodic
sampling when performing throughput tests like iPerf3 and RMBT. Randomized sampling
has the advantage that it can capture different frequencies of the measured process.

In the end we have a trade off between random sampling and periodic scheduling –
periodic scheduling assures that a test is performed in every k-th block, randomization
assures that the position within each block is random. The position can’t be completely
random because we need some block structure in order to upload results at some point
and e.g. also limit the number of performed tests to control the mobile data consumption.

Assuring no Interference

Sometimes we want to run tests on several different devices and we want to make sure
that e.g. not more than one RMBT test is running at the same time in one mobile cell
/ against one RMBT server, etc. We can set appropriate test periods and block offsets
similarly to fig. 3.7. In case of, for example, four UEs we would set test period to 20min
and block offsets to 0, 5, 10 and 15 for UE1, 2, 3 and 4.

Intended Interference

This is the opposite of the previous case. In one measurement scenario Michael wanted to
compare test results without interference and test results with interference. Measurements
were performed in reference cell of operator A1 in order to make sure, there are no other
active users in the cell.

On the UE1 the test period was set to 5min, on UE2 the test period was set to 10min.
Randomization was disabled, therefore in every odd block all tests on the UE1 and UE2
started at the same time. In every even block there were no tests running on the UE2.

Automatic Configuration Changes

In another scenario we wanted to compare how the throughput measurements are influ-
enced by different number of parallel TCP connections. We measured in live LTE network.
Because of the time-of-day effect9 we made sure that different configurations are tested
close to each other (testing one configuration on Friday and another one on Saturday
wouldn’t be good idea, as the results will differ due the cell load).

Changing the configurations of several devices every five minutes manually wouldn’t be
very practical, therefore we used the script for automatic configuration changes to modify
configuration after every 300 s block. This method was also used in [55].

3.1.6 Outlook and Limitations
In the future we would like to make the CMPT framework open source. At this point the
framework is quite generic but some changes like adding a new third party application can
be achieved only by modifications of the source code. It shouldn’t be too challenging to
modify the CMPT app and the web interface in such a way, that user could define his/her
own block length, specify sources of his/her own binary files or apk files, specify which
tasks should be fixed and which should be randomized.

Currently there is just one script for automatic configuration changes, which can be
only enabled or disabled for every UE. Modifications have to be done directly at the script
file. It would be better if every user could define multiple scripts for any of his/her UEs.

9Between 2 and 3am the mobile cell is almost empty, whereas in the afternoon we share the cell with
many other users. Moreover different days have different trends. We will see that in the next chapter.

51

The CMPT application is not optimized for usage in 2G networks and other scenarios
where the maximum achievable data rate does not allow to finish the upload within the 30 s
“UL results, DL conf.” slot. A hand on solution is to perform e.g. just passive monitoring
in order to reduce the amount of data uploaded. Another solution would be to store results
locally at the device (this however requires large amount of free storage at the UE and
additional efforts, someone has to take the UE and copy results to the database manually).
A viable solution to extend the CMPT framework such that user could configure the length
of the “UL results, DL conf.” slot as needed, or to extend the CMPT framework in such
a way that the device would perform measurements in e.g. 2G network and then connect
to some faster link (if available; e.g. to WLAN or LTE) to upload the results.

3.2 RMBT
Austrian Regulatory Authority for Broadcasting and Telecommunications (RTR)10 pro-
vides an Android application RTR-NetTest which informs users about the current service
quality (UL data rate, DL data rate, ping, signal strength) of their Internet connection
[56].

The RTR-NetTest is available as open source under the name Open-RMBT [57].
RMBT stands for RTR Multithreaded Broadband Test. It was developed by alladin-IT
GmbH and financed by the RTR.

The reason why we focus on RMBT—and the results generated by it—is, that we would
like to use RTR’s Open Data – a publicly accessible database which contains measurement
results of RTR-NetTest from many users at different locations. The RTR tool is itself a
testing suite conducting several performance tests: TCP RTT measurement, UL and DL
data rate measurement,. . . In the following we will provide a detailed overview of the
procedure and the test phases.

3.2.1 Test procedure
A single RMBT test consists of seven phases. Detailed RMBT’s documentation is available
at [58]. The phases 2–6 are marked in fig. 3.9.

Phase 1: Initialization

A connection between client and server is established. An encrypted tunnel is created in
order to avoid any tempering in the communication.

Phase 2: Downlink Pretest

Duration of pretest is 2 s. Three TCP connections are established. They remain opened
even after the pretest to be used for the actual DL test. The pretest ensures that the
Internet connection is in an “active” state, e.g. HS-DSCH in UMTS [51] or DL-SCH in
LTE [52], before the DL test. Pretest gives a rough estimate of the data rate. If the
data rate is low, two connections will be closed and the test will continue with a single
connection.

Phase 3: Latency Test

Tries to estimate TCP RTT. The client sends a short string to the server ten times in
short intervals. Only one TCP connection is used, the other two (if not already closed at
the end of the pretest) remain idle. The client measures the time between sending and

10Die Rundfunk und Telekom Regulierungs-GmbH.

52

28 30 32 34 36 38 40 42 44 46 48 50
0

200
400
600
800

t/s

R
(t

)/
(M

bi
t/

s) DL test: Server sending
UL test: Server receiving

31.8 32.2 32.60

0.5

1

1.5

2

t/s

2

3

4
5

6

3

Figure 3.9: Wireshark’s packet capture on the server side showing the phases 2–6 of the
RMBT’s test. The time on the x-axis is relative to the start of the packet capture.

0 tc[1] tc[2] tc[Kc − 1] ∆t tc[Kc] t

r̂c(t)

· · ·

(∆t− tc[Kc − 1])rc[Kc]

Figure 3.10: Average data rate of c-th connection in an interval [0,∆t] is calculated as
R̄c =

∫∆t
0 r̂c(t) dt. It is equal to (wc[Kc − 1] + c.t.)/∆t, where c.t. stands for a correction

term corresponding to the area marked with gray color.

receiving the return message, the server measures the time between sending its return
message and the client’s reception response. Note that this test typically differs from the
ICMP ping used by, e.g. CMPT.

Phase 4: Downlink RMBT

Within each TCP connection the server continuously sends fixed-size data blocks of 4096B.
For every connection the client records Kc 2-tuples (tc[k], wc[k]), where k ∈ {1, . . . ,Kc}.
All transmissions start at the same time, which is denoted as relative time 0, i.e. tc[0] , 0,
wc[0] , 0.

The default test duration is ∆t = 7 s. After ∆t the server stops sending on all connec-
tions. This means that tc[Kc] can be larger than the nominal test duration ∆t because it
takes some time until the data propagate through the network and arrive at the client.

The value taken as an approximation of the download rate for c-th connection is

R̄c = 1
∆t

∫ ∆t

0
r̂c(t) dt =

= 1
∆t(wc[Kc − 1] + (∆t− tc[Kc − 1])rc[Kc]) =

= 1
∆t

(
wc[Kc − 1] + ∆t− tc[Kc − 1]

tc[Kc]− tc[Kc − 1](wc[Kc]− wc[Kc − 1])
)
. (3.1)

This is illustrated in fig. 3.10. Note: we modified the notation used in [58] in order to be
consistent with our notation established in chapter 2.

The approximation of the total download rate, for all connections together, is

R̄ =
C∑
c=1

R̄c. (3.2)

53

Phase 5: Uplink Pretest

Analogous to phase 2 but with client sending for a duration of 2 s. The client opens three
TCP connections to the server (if connections from phase 4 were already terminated; in
other case the connections are reused). If the number of connections was reduced to one
at the end of the phase 2, it will be reduced to one also at the end of this phase.

Phase 6: Uplink RMBT

Analogous to phase 4 but with client sending. Nominal test duration ∆t = 7 s. The main
difference is that the server has to report the measurements back to the client. The total
download rate is calculated again according to eq. (3.1) and (3.2).

Phase 7: Finalization

The client sends the collected data to the server. . The report is stored in a centralized
database containing all the details of the measurement, e.g. packet time stamps.

3.2.2 Thinning

When a user executes an RMBT test, the main result he/she is interested in is probably the
total DL and UL data rate given by eq. (3.1), (3.2). To know more details, like the shape
of the data rate curve, we need to work with as many (ideally all) samples (tc[k], wc[k]) as
possible.

Upload of the test results from client to Open Data database consumes additional
mobile data of the user. In order to reduce this overhead the RMBT performs compression
before uploading the tc[k] and wc[k] samples.

This feature is not documented in [58], but we analyzed the source code [57], namely the
files RMBTClient.java and RMBTTest.java located in the directory RMBTClient/src/at/
alladin/rmbt/client/.

In the first file, in the method runTest, we find out that the total number of stored
samples is limited to K ′c,max = ∆t/∆min = 7 s/100 ms = 70 for every connection. Because
∆min = 100 ms, there will not be more than 10 samples per second for every connection,
i.e. not more than 70 samples per second for the whole test.

The second file, in the method addResult, contains the compression algorithm itself. It
is the thinning algorithm T : ((tc[k], wc[k]))k∈{1,...,Kc} → ((t′c[k], w′c[k]))k∈{1,...,K′c} described
in chapter 2, section 2.3.

Command Meaning Default value

––ez DISABLE_THINNING <bool> See sec. 3.2.2. false
(thinning enabled)

––ei NUMBER_OF_THREADS <int>
Number of TCP connection

3used for UL & DL test.

––ei TEST_DURATION <int>
Duration of UL & DL test

7in seconds.

––ei NUMBER_OF_PINGS <int>
How many times the client

10sends a string to the server
in phase 3.

Table 3.2: Arguments which can be used when executing Open-RMBT TU.2.2.12.

54

3.2.3 More Control: Open-RMBT TU.2.2.12
In order to fully understand the properties of the system and to develop processing al-
gorithms, we first focus on non-thinned sequences. As soon as we start to analyze Open
Data results, we will have to deal with thinned sequences.

Open-RMBT TU.2.2.12 is a modified version of the client compiled by Leonhard Wim-
mer for internal usage of our working group. The main difference is, that when invoking
Open-RMBT TU from Android’s command line, additional arguments (see tab. 3.2) can
be specified. Open-RMBT TU has also the advantage, that it stores test results in JSON
format to device memory, where CMPT can access it.

Furthermore we use our own RMBT measurement and database server11 to make sure
that there are not too many parallel tests running on the server side and also to have a
possibility of controlling the server and retrieving packet captures when needed.

3.2.4 Open-RMBT Applications in Different Countries
We already mentioned RTR-NetTest and Open-RMBT TU. We have however discovered
other tools which are just compilations of Open-RMBT with different appearance and
slightly changed test configurations. This allows us to access even more open data from
other countries.

Slovenian Agency for Communication Networks and Services (AKOS) provides AKOS
Test Net [59], open data are available at [60]. Slovakian Regulatory Authority for Elec-
tronic Communications and Postal Services provides MobilTest operated by SPECURE
GmbH [61], open data are available at [62]. Serbian Regulatory Agency for Electronic
Communications and Postal Services (RATEL) provides RATEL NetTest [63], no open
data were found.

In the table 3.3 we summarize list of tools which are all based on Open-RMBT.

App name and country Test duration TCP conns. Version
RTR-NetTest (Austria) 7 s 3 RMBTws 0.8.0
AKOS Test Net (Slovenia) 5 s 3 RMBTws 0.3
MobilTest (Slovakia) 5 s 3 not specified
RATEL NetTest (Serbia) 5 s 3 RMBTws 0.3
TU-RMBT (TU Wien) arbitrary arbitrary Open-RMBT TU.2.2.12

Table 3.3: An overview of different Open-RMBT compilations comparing duration and
number of parallel TCP connections of DL and UL data rate test.

11Many thanks to Leonhard Wimmer and Michael Rindler!

55

Chapter 4

Evaluation of Controlled
Measurements

In chapter 1 we performed just a limited number of measurements in a manual setup not
using CMPT framework to analyze the properties of the network under test. Now, after
introducing the notation and theoretical concepts of chapter 2, we are finally ready to
evaluate large measurement campaigns conducted with CMPT framework described in
chapter 3.

4.1 Simplified Notation
In this chapter, wherever possible, we simplify notation of chapter 2 to achieve better
readability. Lower index c still denotes separate connections, its absence means that we
talk about merged quantity. Resampling period T = 1 ms, size of smoothing window
n = 101.

Resampled rate is plotted in time-continuous representation and denoted R(t).We use
discrete representation R[k] when talking about short time Fourier transformation and
index shifts. This shouldn’t cause any confusion, since there is always one to one mapping
between time-discrete representation R[k] and time-continuous representation R(t).

Smoothed rate will be denoted as S(t), even though it is discrete function we place the
samples such that k-th sample corresponds to time t = kT. In cases where different size
of smoothing window or different shape are used it will be explicitly stated, but we still
use the same notation S(t).

4.2 Presence of Data Rate Oscillations
In many RMBT’s results we observed strong oscillations (fig. 4.1, second and third row)
of the total resampled data rate R which are not supported by the basic theoretical
assumptions made in chapter 1. Therefore we decided to collect packet captures on client
side and server side and compare them with results reported by RMBT. We will see that
oscillations can be suppressed by proper time shift of individual TCP connections.

Measurements were conducted in LTE network of operator A1, in Vienna, using UE
model LG F60. In this section we couldn’t use the CMPT framework yet, because we
needed to collect packet captures and analyze every test individually.

In addition to smoothing with rectangular window, which can be interpreted as ex-
plained in subsec. 2.2.3, we use also quadratic window.1 Quadratic window has no such

1It corresponds to smoothing three times with rectangular window. The shape of quadratic window is
similar to cosine window.

56

straightforward interpretation but it leads to visually clearer trends (fig. 4.1, third row).

4.2.1 Measurement Setup 1
In the first, lightweight scenario the packet captures were collected using tcpdump on a
smart phone (LG F60) while running RMBT data rate test. This measurement reveals
that oscillations which are present in RMBT’s data rate (fig. 4.1, red) do not occur in
Wireshark’s captures (fig. 4.1, green). The results support the theory that in fact the
RMBT recording of packet events is the source of the observed oscillations.

We identified the following method to remove the oscillations. Figure 4.2 depicts
resampled rate Rc(t) for every connection separately. We noticed that Wireshark’s data
rate bins (fig. 4.2, lower plot) look, despite slightly different shape,2 very similar to those
of RMBT (upper plot). The main difference is, that the relative positions of the three
connections differ. If we shift connection 1 by 31ms and connection 3 by 32ms (middle
plot) and then sum them up, the oscillations disappear also in the smoothed rate S (fig. 4.1,
purple). The mean squared difference between RMBT’s and Wireshark’s data rate is
reduced:3

Smoothing MSD before shift MSD afer shift
no 4708.6 (Mbit/s)2 3091.0 (Mbit/s)2

1 · 101 22.4 (Mbit/s)2 6.0 (Mbit/s)2

3 · 101 6.8 (Mbit/s)2 3.1 (Mbit/s)2

This is of course no general result but only one specific test. It should however demon-
strate that RMBT’s oscillations are caused by some time offsets of individual connections.

4.2.2 Measurement Setup 2
To compare the data rate on the client side with the data rate on the server side and assure
that both traces are time synchronized, we have to design more complex measurement
setup (fig. 4.3).4 We use an additional switch to mirror traffic in both directions, incoming
and outgoing from the server’s perspective. Mirrored traffic is captured on the laptop by
Wireshark. On the laptop we also run CLI version of Open-RMBT TU.2.2.12 and collect
packet captures from the client’s perspective. In order to connect the laptop to LTE
network we used a smart phone (LG F60) which tethers an Internet connection via USB.

An example of Wireshark’s packet captures is shown in fig. 4.4. We have to discuss
two issues: First problem is that in DL direction on the client side (upper plot: client
receiving, dark green) we observe that measured data rate is limited to ≈ 120 Mbit/s. The
“cut-off” is caused by USB limiting the maximum throughput. This is visible for rate R
with T = 1 ms. If we however calculate average data rate over longer period (smoothed
rate S in lower plot) the limitation disappears because LTE network under test doesn’t
reach such high average data rates in intervals longer than few ms.

2Bins of RMBT are lower, ca 150 Mbit/s, and wider, 2–4T. Wireshark’s bins are narrow, 1–2T, and
higher. Different shape could be caused by relative time offset < T which would lead to different bins
when resampling with period T, recall fig. 2.8, lower plot. Another difference is that Wireshark’s captures
are collected on network interface or at the network card driver, whereas RMBT obtains the packets after
they are transmitted from network card to CPU. The constant difference in the smoothed rate is caused
probably by header overhead.

3Before calculating MSD between Wireshark’s and RMBT’s data rate, and also before plotting fig. 4.1,
the Wireshark’s trace is shifted to match the time axis of RMBT’s trace, i.e. such time shift that correlation
between data rate of RMBT and Wireshark is maximized.

4Many thanks to Michael Rindler for his help with the measurement on the server side.

57

0

50

100

150

200

R
(t

)/
(M

bi
t/

s) Wireshark RMBT RMBT after shift

0

20

40

S
(t

)/
(M

bi
t/

s)

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500 6000 6500 70000

20

40

t/ms

S
(t

)/
(M

bi
t/

s)

Figure 4.1: Comparison of rate reported by Wireshark (green) with rate reported by
RMBT – before shift (red) and after shift of individual connections (purple). Top: Rate R
with T = 1 ms. Middle: Smoothed with rectangular window of size 101 (g101[k]). Bottom:
Smoothed with quadratic window (∗ g101[k] three times).

0 20 40 60 80 100 120 140 160 180 2000
50

100
150
200

R
c
(t

)/
(M

bi
t/

s) RMBT

0 20 40 60 80 100 120 140 160 180 2000
50

100
150
200

R
c
(t

)/
(M

bi
t/

s) RMBT: After Shiftc = 1
c = 2
c = 3

4240 4260 4280 4300 4320 4340 4360 4380 4400 44200
100
200
300
400

t/ms

R
c
(t

)/
(M

bi
t/

s) Wireshark

Figure 4.2: Detail of first 200ms of RMBT’s data rate test. Data rates are plotted for
every connection separately. Upper plot: The resampled rates Rk of individual RMBT’s
connections. Middle plot: Connections 1 and 3 are shifted in order to match the Wire-
shark’s data rates. Upper and middle plot: Time zero corresponds to beginning of the DL
test as reported by RMBT. Lower plot: Time zero corresponds to the beginning of the
packet capture.

58

Second problem is that during DL test the client receives more data than server sends.
This can be recognized from fig. 4.4, where the trace “DL test: Client receiving” (dark
green) drops to zero ca 0.5 s later than the trace “DL test: Server sending” (lighter blue)
and obviously leads to larger area below the curve. Also CDV plot in fig. 4.5 confirms this.
The difference is probably caused by packet fragmentation – higher header overhead in
receiver compared to sender. Although we found TCP segments of maximum length 23168
in captures at the server and segments of maximum length 1448 at the client, we have
to be careful with the interpretation due to segmentation offloading at network interface
card (NIC) [64], [65] (and very nice blog post [66]). To get more details we would have to
collect captures at the link out of the hosts, for which we would need additional hardware.

Despite these two problems the comparison between what Wireshark captures and
what RMBT reports clearly shows that the data rate trend during both – UL & DL test
– is very similar, with the main difference that RMBT rates contain strong oscillations.
Here we choose a test with stronger oscillations in order to show that smoothing with
quadratic window does not help in such case (fig. 4.6 and 4.7).

This confirms observations from the first measurement setup: Data rate function recon-
structed from CDV samples collected by RMBT contains in some cases strong oscillations
which are not present in data rate reconstructed from Wireshark’s captures.

Also in the example presented in figures 4.4–4.7 the oscillations can be removed by
appropriate time shift of individual connections, similarly to fig. 4.1, in this case connection
1 by 65ms. MSD between Wireshark’s data rate and RMBT’s data rate is significantly
improved:

Smoothing MSD before shift MSD afer shift
no 1628.6 (Mbit/s)2 500.8 (Mbit/s)2

1 · 101 91.1 (Mbit/s)2 2.3 (Mbit/s)2

3 · 101 32.7 (Mbit/s)2 2.0 (Mbit/s)2

LTE
Network

The
Internet

Institute’s
Network

BS

USB Tethering RMBT
Test

Server

Ethernet

Et
h

e
rn

e
t

Ethernet: Mirrored Traffic

Figure 4.3: Measurement setup 2. LTE UE tethers an Internet connection to the laptop
on which we run RMBT test and capture packets on the USB interface. The laptop
also captures packets, which are mirrored from the server by a switch, on the Ethernet
interface. Solid lines show the path the packets have to travel during the data rate test.
Connection drawn as a dashed line is used just to capture packets also on the server side.

59

0
200
400
600
800

1000
R

(t
)/

(M
bi

t/
s) DL test: Server sending

DL test: Client receiving
UL test: Client sending
UL test: Server receiving

28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 510

20

40

t/s

S
(t

)/
(M

bi
t/

s)

Figure 4.4: Wireshark’s captures on the client (green) and server side (blue). Upper plot:
R, Ts = 1 ms. Lower plot: S, quadratic window (3·span 101; used to clearly visualize trends
despite zoomed-out x-axis). In upper representation we can clearly see time boundaries of
DL pretest, latency test, DL test, etc. Smoothing introduces certain broadening, on the
other hand it clearly shows the trend – we can thus recognize that mean data rate during
DL was ≈ 30 Mbits. Times on x-axis are relative with respect to the capture beginning.

0 1 2 3 4 5 6 7 80

5

10

15

20

25

t/s

b[
i]/

M
B

Wireshark – Server: sent
Wireshark – Client: received
RMBT – Client: received

Figure 4.5: CDV vs time during RMBT DL test. We see that client receives more data
than server sends. Samples reported by RMBT end around t = 7 s and already CDV trace
indicates some oscillations. The different slopes of RMBT’s and Wireshark’s CDV are
caused by header overhead.

60

28 29 30 31 32 33 34 35 36 37 38 39 40 41
0

20

40

t/s

S
(t

)/
(M

bi
t/

s)
Wireshark: Client receiving RMBT: DL test (time shifted)

Figure 4.6: Comparison of RMBT’s DL test. Red: S (quadratic window) based on CDV
samples reported by RMBT. Green: S based on Wireshark’s capture. The RMBT trace
is shifted in time in order to match the DL test captured by Wireshark. The Wireshark
trace contains also DL pretest.

40 41 42 43 44 45 46 47 48 49 50 510

10

20

t/s

S
(t

)/
(M

bi
t/

s)

Wireshark: Server receiving RMBT: UL test (time shifted)

Figure 4.7: Comparison of RMBT’s UL test. Red: S (quadratic window) based on CDV
samples reported by RMBT. Blue: S based on Wireshark’s capture. Here we compare
RMBT with what the server is receiving, because RMBT’s samples are collected on the
server side during UL test and then transmitted back to client, see phase 6 in subsec. 3.2.1.
RMBT trace is shifted in order to match the UL test captured by Wireshark. The Wire-
shark trace contains also UL pretest and results upload.

4.2.3 Conclusion and Possible Cause of Offset

We saw that RMBT data rate tests show strong oscillations which are not present in
Wireshark captures. By finding a proper shift for every TCP connection we can remove
RMBT’s oscillations and obtain curves which are very similar to Wireshark’s captures.

We suspect that the time offsets of individual connections are caused by the RMBT
client. As explained in sec. 3.2.1, the RMBT client (or server in UL) records pairs
(wc[k], tc[k])k∈{1,...,Kc} for every connection. The time locations and cumulative volumes
are measured relative to wc[0] = 0, tc[0] = 0 which correspond to the beginning of the
DL or UL test. Our suspicion is that actually t1[0] 6= t2[0] 6= t3[0], due to scheduling
of operating system or NIC. In the source code of the RMBT client the connections are
programmed to start to transmit at the same time point but in reality there must be some
switching between the connections – first connection transmits certain amount of data,
then second connection transmits, then third and again first, second, third etc.

The switching between connections can be recognized in the shape of the data rate
of individual connections of a multiple-connection test (fig. 4.8): Data are transmitted
only in certain intervals on connection c = 1, followed by gaps where data are transmitted
on the other connections. The shape shown in fig. 4.8 is similar also for the remaining

61

connections. With different number of connections (higher than one) the periods change
but the principle is still the same and the alternating behavior remains.

For comparison, fig. 4.9 displays typical data rate trend of a single-connection test. It
is not completely flat, there are notches followed by overshoots (probably larger number of
segments passed to application after filling in a gap caused by lost or out-of-order packet),
but we do not observe such regular, wide oscillations as in case of multiple-connection test.

In case of multiple-connection test the oscillations disappear after merging with proper
offsets due to “destructive interference” – peak of one connection falls to notch of other
connections. With wrong initial offsets we can get “constructive interference” instead.

0 1000 2000 3000 4000 5000 6000 70000
10
20
30
40

t/ms

S
1(

t)
/
(M

bi
t/

s)

RMBT Wireshark

Figure 4.8: Smoothed rate on connection c = 1 in an RMBT DL test consisting of C = 3
connections.

0 1000 2000 3000 4000 5000 6000 70000

20

40

60

t/ms

S
1(

t)
/
(M

bi
t/

s)

RMBT

Figure 4.9: Smoothed rate of an RMBT DL test consisting of only one connection.

4.3 Systematic Removing of Oscillations
4.3.1 Automatized Measurements
To perform numerical evaluation we need to consider more than single tests in the previous
section. For this purpose we implemented simple Android app (not the CMPT yet) which
repeatably executes RMBT test with three TCP connections and duration of seven seconds
(same setup as for results in RTR’s open data) and at the same time collects Android’s
traffic statistics [67] to provide us an oscillation-free reference.

Traffic statistics are collected every ≈ 10 ms (time interval is not precise) and they
consist of timestamp in milliseconds, number of bytes received and number of bytes trans-
mitted (cumulative data volumes). The collecting starts when the RMBT is executed and
stops after RMBT finishes. We have to detect the actual DL and UL test in these traffic
statistics because we don’t know the exact beginning of the RMBT’s DL and UL test
because of different RMBT’s phases. The detection algorithm marks all samples which
correspond to rate lower than threshold (we picked 0.01Mbit/s) and then identifies the
beginning of the DL / UL test as the longest interval which does not contain more than
10 consecutive marked samples.

In this way we obtained around 50 tests with oscillation-free references. Reference
signals and RMBT signals were resampled to T = 1 ms. Next we identify the time offsets for

62

RMBT’s connections which minimize mean squared difference between RMBT’s merged
rate and the reference, eq. 2.26. Then we implement an approach without reference,
eq. 2.25.

Despite the automatized measurement approach we still have to manually check the
results of the detection algorithm and exclude wrongly estimated reference signals to make
sure that we do not compare RMBT’s test to traffic statistics corresponding to different
test phase (e.g. pretest or result upload).

4.3.2 Minimizing MSD with Respect to Reference Signal
Here we solve the optimization problem in eq. 2.26 by exhaustive search. We are looking
for κ̂ = (0, κ̂2, κ̂3) which minimizes the MSD between RMBT’s rate obtained by merging
shifted rates of individual connections Rκ [k] and the reference signal Rref [k].

An example of objective function is shown in fig. 4.12.5 For every pair of connection
shifts (κ2, κ3) ∈ {−100, . . . , 100}2 we calculate the MSD to reference signal. A compli-
cation is that the MSD is very sensitive to relative offset λ between Rκ [k] and Rref [k]
(fig. 4.10). For every (κ2, κ3) we thus find the lowest possible MSD. The computational
complexity is therefore O(n3). Due to the detection algorithm described above the relative
shift λ should be hopefully close to zero.

The objective function shows one clear global optimum. We also notice that κ2 and κ3
can be optimized independently in this case (vertical and horizontal line), decreasing the
computational complexity order by one. The diagonal line corresponds to optimal relative
shift between connection 2 and connections 3.

4.3.3 Suppressing Oscillations Without Knowing Reference
The ultimate goal is to get rid of oscillations without knowing the reference signal.

Variance of Non-Smoothed Signal

Here we aim to minimize variance of non-smoothed signal R[k], eq. 2.25, assuming that the
oscillation-free signal should have minimum variance. This assumption may not be valid
(e.g. if the unknown reference signal contains some high frequency components) but we
have not much more options left. An example of objective function is shown in fig. 4.13.

The objective function shows similar pattern compared to fig. 4.12 – we can recognize
traces of the same horizontal, vertical and diagonal line. But since the function jumps
between local minima and maxima even for shifts by one sample, there is no obvious
simplification possible, our only chance is the exhaustive search for all possible (κ2, κ3).

Power in Frequency Band 2–15 Hz

An alternative approach is minimization of the energy just in a certain frequency band – we
take 2–15Hz. This is motivated by the fact that the oscillations we want to suppress have
relatively low frequency. Fig. 4.11 shows spectrogram of the merged rate R[k] before the
shift of individual connections and after the shift. The y-axis is zoomed only to frequencies
0–15Hz. Because T = 1 ms, the maximum frequency in the spectrogram is 500Hz, but
at such zoom level we wouldn’t see much. The higher frequencies are much weaker than
what is shown.

The corresponding objective function is displayed in fig. 4.14. Similar result is to be
expected for minimization of variance of low-pass filtered (i.e. smoothed) signal – removing

5We plot the objective functions multiplied with −1 here for better visibility of the global optimum.
Minimizing of MSD thus corresponds to maximizing −MSD.

63

all frequencies above 15Hz and calculating power above 2Hz should approximately equal
power of non-DC components, i.e. variance, of low-pass filtered signal.

Note that also for this objective functions we see some traces similar to the horizontal,
vertical and diagonal line as in case of the first objective function in fig. 4.12.

−600 −500 −400 −300 −200 −100 0 100 200 300 400 500 600

3000

4000

5000

λ

M
SD

/(
M

bi
t/

s)
2

Figure 4.10: An example of mean squared difference between R[k − λ] and Rref [k] as a
function of shift λ, which shows that MSD is very sensitive to relative offset between the
merged rate and the reference.

2 4 60

5

10

15

t/s

f
/H

z

Before shift

2 4 60

5

10

15

t/s

After shift

0

200

400

PS
D

/(
M

bi
t/

s)
2

Figure 4.11: Left: Spectrogram of the merged rate R[k]. Right: Spectrogram of Rκ̂ [k]
with κ̂ minimizing the MSD between Rκ [k] and reference Rref [k].

4.3.4 Numerical Evaluation
In this subsection we compare the resulting mean squared difference when optimizing
different objective functions. This comparison is done only for DL, where the automatic
test location detection operates reliable due to the presence of a larger gap between the
pretest and the actual test (ping phase, recall fig. 3.9).

The rows of table 4.1 show: MSD – average mean squared difference (among all tests)
between the given signal and reference signal; ∆MSD – average MSD after subtracting
minimum MSD; ∆rel,MSD – relative difference between MSD and MSDmin.

∆MSD = (MSD−MSDmin),

∆rel,MSD = (MSD−MSDmin)/MSDmin · 100 %.
MSDmin is obtained when minimizing MSD w.r. to reference signal, in our case the average
MSDmin = 767, 51 (Mbit/s)2 (first row, second column). In the first row we obtain such
high numbers because we considered non-smoothed signals, the reference has lower gran-
ularity than RMBT results (collecting traffic statistics with lower period than 10ms was
already causing lagging of our simple measurement app) and Android’s traffic statistics
report values at the network layer, i.e. including TCP headers.

64

κ3/ms
-100 -50 0 50 100

κ
2/

m
s

-100

-50

0

50

100

κ2/ms
κ3/ms

-3.8

-3.4

-3.0

-2.6
×103

−
M

SD
((κ

) R
,R

re
f) /(

M
bi

t/
s)

2

50
0

-50
-100 -80 -40 0 40 80

Figure 4.12: Mean squared difference w.r. to reference as a function of connection-shifts
κ2 and κ3. The global optimum is κ2 = −31, κ3 = 1, corresponding to −31 ms and 1 ms
in time-continuous representation.

κ3/ms
-100 -50 0 50 100

κ
2/

m
s

-100

-50

0

50

100

−
va

r((κ
) R
) /(

M
bi

t/
s)

2 ×103

-1.8

-1.7

-1.6

-1.5

100 50 0 -50 -100 -100 -50 0 50

κ2/ms κ3/ms

Figure 4.13: Variance of the resampled rate R[k] as a function of shifts of 2nd and 3rd
connection. The global optimum is κ2 = −36, κ3 = −2.

κ3/ms
-100 -50 0 50 100

κ
2/

m
s

-100

-50

0

50

100

-100 -50 0 50
80 40 0 -40 -80

-1.8

-1.4

-1.0

-0.6

×103

−
po

w
((κ

) R
) /(

M
bi

t/
s)

2

κ2/ms κ3/ms

Figure 4.14: Total power in band 2–15Hz as a function of connections shifts. The global
optimum is κ2 = −31, κ3 = 2.

65

The second and third row show performance decrease when considering different signal
than the one minimizing MSD. If we don’t shift the connections at all, the average MSD
increase is 105.77 (Mbit/s)2 (corresponding to 13,75% difference). When we minimize
total power in band 2–15Hz, average MSD is increased by 66.25 (Mbit/s)2 (8.63%). And
when minimizing variance, MSD is worsened by 20.07 (Mbit/s)2 (2.62%).

This supports the idea to minimize the variance in case of an unknown reference, as
it results in lower MSD increase than when doing nothing or minimizing power in band
2–15Hz. However compared to variance, the power objective function has the advantage
that it is smooth. With grid search techniques we could decrease the number of tried shift
combinations, therefore decrease the computational time in exchange for ≈ 6 % worse
performance.

before minimizing minimizing minimizing
shift MSD to ref. pow. 2–15Hz variance

MSD/(Mbit/s)2 873.28 767.51 833,76 787.58
∆MSD/(Mbit/s)2 105.77 0.00 66.25 20.07

∆rel,MSD 13.78 — 8.63 2.62

Table 4.1: Performance comparison of MSD, variance of non-smoothed rate R[k] and
power in the frequency band 2–15Hz.

4.4 Oscillations and Thinning Combined
Now we tackle both limitations of RTR’s open data together: oscillations and thinning.
Fig. 4.15 shows resampled and smoothed rates of all three connections after the proper
shift, κ̂cSc[k], and thinned rates obtained after the same shift, κ̂cR′c[k]. In first three rows
we do not plot non-shifted rates R′c they have same shape as κcR′c and differ just in a
time offset. As already mentioned in sec. 2.3.3, the thinning can be interpreted as noisy
subsampling of Sc[k] at given locations. As it can be seen in the first three plots, sometimes
we hit a peak, sometimes local minimum but most of the times some value in between.

The problem is that the noisy subsampling at time locations with the spacing > ∆min =
100 ms (which are moreover different for every connection) does not capture enough details
of the smoothed rates Sc[k] therefore even with proper shifts we don’t observe complete
destructive interference.

If we compare the total thinned rate with shift (κ̂)R′[k] (lower plot, magenta) to the
total thinned rate without shifting R′[k] (orange), there is no obvious improvement caused
by the shift.

4.4.1 Discussion of Oscillations Model
The thinning obviously violates the Nyquist sampling theorem. Reconstruction of the
smoothed rate out of the noisy samples would be possible only with certain model of Sc
which would allow us to derive the shape of Sc, e.g. by LS fit.

In fig. 4.16 we again show smoothed rates of individual connections (gray) with thinned
rates as noisy samples (orange), this time without the merged rate and with spectrograms
of rates of individual connections. We attempted to build a simple model in sec. 2.4.1. The
coefficients of exponential chirp were based on the red line in fig. 4.16 (fit of exponential
function α+ β · exp(−γt) to strongest frequency components larger than 2 Hz).

The introduced model was not detailed enough to achieve complete removal of oscil-
lations. Despite the model’s simplicity we still obtained nonlinear model and nonconvex
optimization problem with brute force complexity O(n2). Interestingly we can find sim-
ilarities in objective functions of the model and of the real tests. Fig. 2.12 has similar

66

0

10

20 Connection c = 1

0

10

20

κ̂
c
S
c
(t

),
κ̂

c
R

′ c(
t)

/
/(

M
bi

t/
s) Connection c = 2

0

10

20 Connection c = 3

0 1000 2000 3000 4000 5000 6000 70000
20
40

t/msκ̂
S

(t
),

R
′ (t

),
κ̂

R
′ (t

)/
/(

M
bi

t/
s) Merged

Non-thinned AS Thinned BS Thinned AS

Figure 4.15: BS = before shift, AS = after shift. In first three rows we see resampled
smoothed shifted rates κcSc and resampled thinned shifted rates κcRc of all three connec-
tions. The last row shows the total smoothed rate κ̂S after shift which removes oscillations.
For the sum of thinned rates (magenta = after shift, orange = before shift) we don’t see
such improvement as in fig. 4.1 for the non-thinned rates.

0
10
20
30

0
10
20
30

S
c
(t

),
R

′ c
[k

]/
(M

bi
t/

s)

0 1000 2000 3000 4000 5000 6000 70000
10
20
30

t/ms

0

5

10

f
/H

z

0

50

100

0

5

10

f
/H

z

0

100

200

PS
D

/
(M

bi
t/

s)
2

2 4 60

5

10

t/s

f
/H

z

0
20
40
60
80

Figure 4.16: Smoothed rates Sc (gray) of individual connections, the corresponding spec-
trograms of Rc[k] and thinned rates R′c (orange) represented as noisy subsampling from Sc.
The red line in the top spectrogram shows which data points we used for the exponential
fit to construct the model in sec. 2.4.1.

67

vertical, horizontal and diagonal line as objective functions 4.12 (and to some extent also
as fig. 4.13 and 4.14). In fig. 4.14 (and also in fig. 4.13) we observe regularly spaced local
minima similar to objective function of phase shift 2.14 (with the difference that there we
had opposite sign of the objective function).

4.4.2 Better Than Model. . .
Actually the best solution of the oscillations problem would be to figure out how to elimi-
nate different time offsets directly at the RMBT client. The simplest solution would be to
use just one TCP connection which is able to fill the BDP when window scaling is used.6

Regarding the thinning problem the best solution would be to report all samples us-
ing some clever compression technique to not increase the upload overhead much when
reporting the results back to the server. Or, if the number of samples is supposed to be
reduced, at least a resampling method proposed in sec. 2.1.2 could be used in order to
have the same time grid for all connections.

4.5 Extension of Traffic Shaping Detection
In this section we provide an extension of token bucket traffic shaping detection from
subsec. 2.5.2 using the concept of smoothed rate S from sec. 2.2.3.

Because the smoothed rate represents n = 101 different binnings with offsets mT,
m ∈ {0, 1, . . . , (n− 1)}, we obtain n different estimates of C, and in cases where level shift
is successfully detected also estimates of ρ and σ. Fig. 4.17 shows an example of smoothed
rate. Fig. 4.18 displays different estimates obtained for all 101 binnings.

The idea is following: Why should we prefer one binning and ignore all other offsets?
Picking just one fixed bin position basically leads to randomly selecting one of many
estimates. In fig. 4.18 in 25 cases no traffic shaping is detected. Using all estimates
together gives us better opportunity to decide whether traffic shaping was present or not.

4.5.1 Repeated Measurements
We performed multiple measurements (151) with the same tariff. Using the idea of soft
information processing, we don’t hard-decide for a single estimate for every test but keep
all estimates.

We tried different bin sizes (31, 51, 101 and 151ms) and plotted the resulting histograms
for estimates of C, ρ and σ (fig. 4.19). For C all bin sizes show similar distribution (strong
peak at ≈ 10 Mbit/s corresponds to non-detected level shifts, in which case the C is
estimated as an average rate of whole test). In case of ρ we obtained the most narrow
distribution for bin size 101ms.

Problematic is the estimation of σ where we obtain drift of distribution mode – larger
bin size gives us larger mode. Problem is that smaller bin sizes can underestimate the
bucket size due to earlier level shift detection caused by noisiness of the smoothed rate
curve. Larger bin sizes can overestimate the bucket size.

4.5.2 Outlook
In previous paragraphs we briefly described the idea how to utilize the knowledge of
multiple binnings with different offsets. The evaluation is still an unfinished task. We
have to figure out which bin size does not underestimate / overestimate the bucket size –
for this it would be good to know the ground truth, i.e. contact the ISP and ask them about

6This might have side effects. On some devices we saw that 1-connection RMBT tests are terminated
earlier than after 7 s. It is difficult to say whether this is a vendor specific issue or a bug of RMBT client.

68

the implementation of their traffic shaping algorithm. Another possible modification is to
soften the condition 1 in subsec. 2.5.1, as softer interpretation will allow to avoid detecting
the level shift too early.

In the future we would like to evaluate also different approach: Use the smoothed rate
to detect level shift location jointly for all binning offsets, rather than for every binning
separately.

0 1000 2000 3000 4000 5000 6000 70000

10

20

30

40

t/ms

s
(n

)
T

c
[k

]/
M

bi
t/

s

Figure 4.17: Example of smoothed rate S representing 101 different binnings with bin size
of 101 ms in presence of token bucket traffic shaping. The different binnings are obtained
by index mapping in theorem 5, subsection 2.2.3.

5 10 15 20 25
0

5

10

15

20

C/(Mbit/s)

101 samples

9.4 9.5 9.6 9.7 9.8
0

2

4

6

ρ/(Mbit/s)

76 samples

9.5 10 10.5 11 11.5
0

2

4

σ/Mbit

76 samples

Figure 4.18: 101 estimates of peak rate C based on 101 different binnings of rate R (left).
Level shift was detected in 76 cases – for these different estimates of shaping rate ρ (middle)
and bucket size σ (right) are obtained.

0 20 40 600

100

200

300

400

C/(Mbit/s)
8 9 10 110

100
200
300
400
500
600

ρ/(Mbit/s)

31 ms bins 51 ms bins 101 ms bins 151 ms bins

0 20 400

200

400

600

800

σ/Mbit

Figure 4.19: Histograms of estimates of 151 tests. For every bin size n we obtain n esti-
mates per test, i.e. 151n estimates in total – this explains different heights of distributions.

69

4.6 Rate as a Function of Signal Strength and Time of Day
In order to allow for merging of data samples we analyze two main contributions. First,
the relation between signal strength reported by the UE and the data rate reported by
the test servers.7 Second, we analyze the impact of diurnal patterns, e.g. cell load, on the
data rate measurements.

This section describes results of systematic CMPT measurements over longer time
period. First we discuss situation in an unloaded reference cell in subsec. 4.6.1 where the
measuring UE was the only active user and where the situation is easier. Then we go
to measurements in live network in subsec. 4.6.2 and construct weekly trends of RSRP,
RSRQ and DL and UL rate.

4.6.1 Reference Cell Measurements
Setup

Measurements were set up by M. Rindler who used them for analysis of his FLARP
application. Since he used the CMPT framework we were able to schedule also RMBT
and iPerf3 measurements and collect RSRP and RSRQ samples.

The setup was following: A shielding box contained the measuring UE and an antenna
connected directly to base station over a cable with an attenuator. The link between the
UE and the antenna was wireless because Michael then tested also other scenarios where
multiple UEs were connected to the BS. In the scenario below there were no other devices
connected to the BS. The attenuator was used to change the attenuation level at 2am
every day.

iPerf3 and RMBT measurements were taken every ten minutes, i.e. in every second
CMPT’s block.

Results

Fig. 4.20 shows six days of measurements. The upper plot displays data rate measured
by iPerf3 and RMBT in UL and DL (one point represents average data rate of the whole
test). The middle plot displays RSRP in dBm and the lower plot RSRQ in dB (one point
corresponds to five minute average – i.e. average RSRP / RSRQ in one CMPT’s block).

The reason why we see fluctuations in RSRQ is the presence of noise (thermal noise
+ the shielding box can’t fully attenuate interference from outside). RSRP stays more or
less constant.

For the fifth attenuation level (RSRP ≈ −110.5 dBm) both, the DL and UL rate, are
very stable during the whole day cycle. From this we can conclude that the daily and
weekly trends we will see in next subsection are caused solely by situation in the RAN.
The wired network links between the BS and test server are overprovisioned compared to
the wireless link.

The larger variance of DL rate at other attenuation levels is caused probably by switch-
ing between different modulation schemes. We can’t verify this directly because Android
does not provide the information about measured SINR and calculated CQI. But if we have
a look at average smoothed data rate curve at attenuation level 1 (RSRP ≈ −122.7 dBm)
in fig. 4.21, we see two clear modes in DL – this could correspond to two different modu-
lation schemes leading to different throughput. Similar bimodal distributions we observe
also for other attenuation levels with exception of level 5 (RSRP ≈ −110.5 dBm), see
fig. 4.22.

7Note that the signal strength reported by the device is coded as integer ASU (arbitrary strength unit)
∈ {0, . . . , 95} which is mapped to RSRP/dBm = ASU− 140 and leads to 1 dB resolution [68].

70

With our UE of LTE category 4 it makes no sense to test lower attenuation than
shown because in UL we already reach UE’s maximum of 50Mbit/s and in DL we closely
approach the limit of 150Mbit/s.

In tables 4.2 and 4.3 we list means and standard deviations of values plotted in fig. 4.20.
The variance of data rate in case of reference cell is the minimum variance to be expected
for certain signal strength level – in case of a real cell it only gets higher. We also conclude
that there is no significant difference between RMBT’s and iPerf3’s mean data rate.

−125

−120

−115

−110

R
SR

P/
dB

m

10
-M

ay
06

:0
0

12
:0

0
18

:0
0

11
-M

ay
06

:0
0

12
:0

0
18

:0
0

12
-M

ay
06

:0
0

12
:0

0
18

:0
0

13
-M

ay
06

:0
0

12
:0

0
18

:0
0

14
-M

ay
06

:0
0

12
:0

0
18

:0
0

15
-M

ay
06

:0
0

12
:0

0
18

:0
0

16
-M

ay

−12

−11

−10

−9

R
SR

Q
/
dB

0

50

100

150

R̄
/(

M
bi

t/
s)

iPerf DL RMBT DL
iPerf UL RMBT UL

Figure 4.20: Measurements in reference cell between May 10, 2017 and May 16, 2017.

0 1000 2000 3000 4000 5000 6000 7000

20

40

60

S
/
(M

bi
t/

s)

RMBT Download
0

20

40

60

80

0 1000 2000 3000 4000 5000 6000 700010

15

20

25

30

t/ms

S
/
(M

bi
t/

s)

RMBT Upload
0
20
40
60
80
100

Figure 4.21: For every RMBT measurement we calculate the smoothed rate S[k]. The
figure shows 2D histogram (left) of all tests at attenuation level 1 (RSRP ≈ −122.7 dBm).
The right subplots show histogram of all test samples. The two modes in DL indicate
usage of two different modulation schemes.

71

0 1000 2000 3000 4000 5000 6000 700080
100
120
140
160
180

S
/
(M

bi
t/

s)

RMBT Download
0

20

40

60

80

0 1000 2000 3000 4000 5000 6000 7000

40

50

60

t/ms

S
/
(M

bi
t/

s)

RMBT Upload
0
20
40
60
80
100

Figure 4.22: Averaged curves at attenuation level 5 (RSRP ≈ −110.5 dBm).

Attenuation RSRP RSRQ
level µ σ µ σ

1 -122.70 0.26 -11.57 0.18
2 -119.61 0.22 -10.76 0.21
3 -116.47 0.20 -10.14 0.30
4 -113.42 0.20 -9.88 0.30
5 -110.49 0.20 -9.61 0.35
6 -108.02 0.02 -9.56 0.36

Table 4.2: Means and standard deviations (don’t confuse with token bucket size σ) of
RSRP (in dBm) and RSRQ (in dB) for the six attenuation levels shown in fig. 4.20.

Att. lvl. RMBT DL iPerf3 DL RMBT UL iPerf3 UL
µ σ µ σ µ σ µ σ

1 42.88 4.26 42.23 3.61 18.79 1.11 19.77 0.38
2 56.95 2.88 56.90 2.38 25.48 1.24 23.46 1.09
3 76.67 2.98 76.01 2.95 39.13 1.13 38.42 0.70
4 98.88 3.82 98.84 4.03 48.45 1.26 47.52 1.12
5 110.21 0.98 111.59 0.99 – – – –
6 133.39 3.60 134.12 6.02 – – – –

Table 4.3: Means and standard deviations in Mbit/s for DL and UL mean rate R̄ of RMBT
and iPerf3. In UL we give only values up to 4th attenuation level, at which the UE’s limit
is already reached.

72

Conclusion

In a reference cell in absence of other active UEs we obtain nearly constant data rates
confirming that the bottleneck of whole path is the RAN, leading to the conclusion that
also weekly and daily trends seen in next subsection are caused by cell load in the RAN.

The observed variations in data rate are caused with highest probability by BS’s switch-
ing between two different modulation schemes, which we deduced from the two modes of
averaged data rate curves. For average data rate at attenuation level 5 we detected only
one mode leading to the standard deviation of ≈ 0.98 for RMBT and ≈ 0.99 for iPerf3 in
DL (tab. 4.3, bold).

Note: RSRP and RSRQ means and std. deviations are already based on five-minute
averages corresponding to CMPT’s scheduling blocks.

Power of reference signal is determined by the attenuation level leading to stable RSRP.
Presence of noise causes larger variations in RSRQ. Noise also causes variations in SINR
and therefore possibly different CQI leading to different modulation and / or coding scheme
used by BS. Android unfortunately doesn’t provide SINR or CQI information at appli-
cation level which makes whole analysis much more challenging, especially in a real cell
occupied by other users.

4.6.2 Measurements in Live Network
Setup

Measurements were taken as a part of MobCom Weather project during September 8 –
November 7, 2016 in Kindberg, Austria (rural area). UE running CMPT collected RSRP
and RSRQ samples (every second) and executed iPerf3 and RMBT tests every hour.

Results

Fig. 4.23 shows one week of measurements. The behavior of RSRP, RSRQ and data rates
is “wilder” than in case of reference cell (compare to fig. 4.20). Moreover occasionally a
handover happens.8 Every RSRP, RSRQ point in fig. 4.23 represents average value in one
CMPT’s 5-minute block. I.e. if UE is registered in cell A for 40 s and in cell B for 260 s,
the plotted point is an average of 40 samples from cell A and of 260 samples from cell B.

Since Android does not provide SINR, neither CQI, neither number of assigned resource
blocks we can only take RSRQ as an indicator of changing cell load. This might work
in cases where RSRP is stable, i.e. stable reference signal power, then RSRQ changes are
caused only by changes of RSSI. More active users in cell increase RSSI, therefore we see
decrease in RSRQ. Still we don’t know modulation scheme and number of assigned REs,
therefore we can’t relate average rate and RSRQ directly.

In fig. 4.24–4.26 we see weekly trend of RSRP, RSRQ and of data rates. For RSRQ
and RSRP we have one sample for every second, therefore we constructed smaller bins (1
hour) for the weekly trend. For data rates we needed larger bin size (3 hours) to reduce
variations to some reasonable level. Vertical bars in all three plots show the standard
deviation.

It is little bit naive to talk about distribution and standard deviation since we had
only eight weeks of measurements (i.e. we have for every 1 hour or 3 hour bin only eight
samples), but still we were able to show clear trend in cell load as a function of time of
day and correlation between RSRQ and average data rate in case of stable RSRP.

The UE receives signal from multiple BSs, in fig. 4.24 and 4.25 we show two BSs for
which the UE collected the highest number of samples. Despite the occasional handovers

8Another complication.

73

we conclude—based on the black RSRQ-line in the fig. 4.23 representing trend of PCI9
16—that the UE was connected to the PCI 16 for most of the time (which is no surprise
due to stronger RSRP and RSRQ). In RSRP plot we observer larger deviation between
temporal 5-minute averages and weekly trend.

Conclusion

In this measurement scenario RSRP was quite stable therefore RSRQ changes are probably
caused mainly by cell load changes leading to high correlation between RSRQ and DL /
UL rate.

Such construction of weekly trends and such nice correlation between RSRQ and data
rates is not always possible, especially in urban areas. We need a relatively stable RSRP
level and similar cell load behavior for several weeks (i.e. no holidays, no summer/winter
time shift, etc., which usually change users’ behavior).

The whole problem is complicated moreover by the fact that UE selects different base
stations (in this case two), e.g. due to changing cell load and interference caused by
neighboring cells.

Outlook

Ideas for further work are following. First, subtract the weekly trend to allow fairer (ideally
cell-load independent) comparison of measurements taken at different days and day-times.
Second, model weekly trend to allow subtraction also in cases where we have not so many
consecutive repeated measurements.

In case there are larger deviations of measurement values from the weekly trend (like
in case of RSRQ in fig. 4.23) the trend subtraction can be used to reveal anomalies due
to irregular events in the network.

0
10
20
30
40
50

R̄
/(

M
bi

t/
s)

iPerf3 DL RMBT DL iPerf3 UL RMBT UL

−99

−98

−97

−96

R
SR

P/
dB

m

12
-S

ep
06

:0
0

12
:0

0
18

:0
0

13
-S

ep
06

:0
0

12
:0

0
18

:0
0

14
-S

ep
06

:0
0

12
:0

0
18

:0
0

15
-S

ep
06

:0
0

12
:0

0
18

:0
0

16
-S

ep
06

:0
0

12
:0

0
18

:0
0

17
-S

ep
06

:0
0

12
:0

0
18

:0
0

18
-S

ep
06

:0
0

12
:0

0
18

:0
0

19
-S

ep

−12
−11
−10
−9
−8

R
SR

Q
/
dB

Figure 4.23: One week of measurements (September 12 – September 19, 2016) in Kindberg,
Austria in a live LTE network. Black lines represent trends from figures 4.24–4.26.

9Physical Cell Identity. The trend was taken from fig. 4.25.

74

M
ON 6:0

0
12

:00
18

:00
TU

E
6:0

0
12

:00
18

:00
W

ED 6:0
0

12
:00

18
:00

TH
U

6:0
0

12
:00

18
:00 FR

I
6:0

0
12

:00
18

:00 SA
T

6:0
0

12
:00

18
:00 SU
N

6:0
0

12
:00

18
:00

−102

−100

−98

−96

R
SR

P/
dB

m

PCI 16 PCI 319

Figure 4.24: Weekly trend of RSRP for two nearest base stations.

M
ON 6:0

0
12

:00
18

:00
TU

E
6:0

0
12

:00
18

:00
W

ED 6:0
0

12
:00

18
:00

TH
U

6:0
0

12
:00

18
:00 FR

I
6:0

0
12

:00
18

:00 SA
T

6:0
0

12
:00

18
:00 SU
N

6:0
0

12
:00

18
:00

−16

−14

−12

−10

−8

R
SR

Q
/
dB

PCI 16 PCI 319

Figure 4.25: Weekly trend of RSRQ for two nearest base stations.

M
ON 6:0

0
12

:00
18

:00
TU

E
6:0

0
12

:00
18

:00
W

ED 6:0
0

12
:00

18
:00

TH
U

6:0
0

12
:00

18
:00 FR

I
6:0

0
12

:00
18

:00 SA
T

6:0
0

12
:00

18
:00 SU
N

6:0
0

12
:00

18
:00

0

10

20

30

40

50

R̄
/(

M
bi

t/
s)

iPerf DL RMBT DL iPerf UL RMBT UL

Figure 4.26: Weekly trend of UL and DL data rates measured by iPerf3 and RMBT.

75

4.7 Test Shortening
In [55] we discussed a possibility of shortening data rate tests without significantly impact
the measured data rate. We performed only 30 s measurements and by cutting off last
30−n seconds we were able to emulate shorter tests of duration n seconds. Measurement
results have shown that there is a trade-off between test duration and measurement error.

We compared also different numbers of TCP connections, the results support the idea
of merging performance tests with different configurations.

Room for improvement: First, to come up with a model describing the error as a
function of test duration. Second, find more suitable reference with lower bias – in the
paper the reference was part of the test. Bootstrapping can’t be used because data rate
is not stable in live network (recall fig. 1.7, red curve). For future work it might be
interesting to derive reference from averaged curves (e.g. fig. 4.21) but only if we don’t
observe multiple modes.

76

Chapter 5

Crowdsourced Data for Network
Performance Metrics

In the previous chapters we’ve seen that fixing impairments of open data and processing
every test separately is very challenging and time expensive, requiring hight computational
complexity.

An alternative way is to come up with lightweight metrics which extract just few
important parameters to characterize the whole test. There is no straightforward recipe
how to accomplish such task, what we need are clever ideas. Up to this point we have
come up with two lightweight metrics which are presented in sections 5.2 and 5.3. First
we briefly describe structure of open data set in sec. 5.1.

5.1 Structure of Open Data

RTR’s open data provide not only thinned cumulative volume sequences of all test connec-
tions, but also GPS coordinates, UE model, network operator, network technology, signal
strength (indicators depend network technology), etc. Exhaustive list is stated at the of-
ficial documentation [38]. Not all parameters are always reported – user may e.g. decline
to share GPS location, certain UEs don’t report their model,. . .

5.1.1 Passively Active Measurements

RTR-NetTest performs active measurements. The passivity rests in the fact that we have
no control when and where which user starts a test. Daily trend in fig. 5.2 (taken from
[69]) illustrates that most of the tests is started in the afternoon, the minimum of tests is
started in early morning.

The depicted trend might be a good indicator of cell load during the day. It is inverse
of the daily trend of RSRQ and data rate (fig. 4.25, 4.26). I.e. open data are biased in the
sense that most of the tests is conducted at high cell load leading to lower average rate.

5.1.2 Feature Filtering

Fig. 5.1 depicts all LTE tests in Vienna between August 6–17, 2017 (i.e. 12 days). There
were 1547 of them. If we further filter for a single operator, select smaller time span
(e.g. 24 hours) or more specific location, we run out of samples very quickly, even if we
allow all UE models, all signal strength levels, etc.

77

5.1.3 Outlook: Possible Solutions
A solution for diurnal patterns could be a model of the daily trend which would be sub-
tracted from the data rate as already mentioned. For creating more spatial samples, an
interpolation using Gaussian processes could be used. This is however beyond the scope
of this thesis.

Figure 5.1: RTR-NetTest spatial distribu-
tion example. Source: internal software
tool of Mobile Comm. group, Institute of
Telecommunications, TU Wien.

02:00 06:00 10:00 14:00 18:00 22:00
0

100

200

300

400

A B C

Time of Day (UTC)
N
u
m
b
er

o
f
T
es
ts

Fig. 5. Number of tests started using RTR-Netztest versus time of day
(aggregate over 2014–2015, bin:1min)

is possible to identify certain daily trends on the part of end
users, such as regions of low, medium, and high number of
incoming requests, with a peak between 17:15:30 and 18:15:30
Coordinated Universal Time (UTC). The average arrival rate
per 20 s, and the average DL and UL data rates for a number
of representative periods are provided in Table III.

B. Implementing Slotted ALOHA

The requirement for slotted ALOHA is that users agree on
slot boundaries (e.g. RTR-Netztest client can be rewritten in
such a way that users synchronize over fixed-length intervals).
At this point, we make the following assumptions: the fixed
frame time is 20 s (taking into account the nominal durations
of the measurement phases), new frames generated by the
stations (i.e. measurement requests coming from end users)
are well modeled by a Poisson distribution with mean G, and
the population (i.e. number of end users) is infinite so that
even as the users get blocked the mean does not change.

Assuming that a link can handle K concurrent measure-
ments at the same time, the probability that the link will not be
overloaded can be written as the following for pure and slotted
ALOHA, where k is the number of concurrent measurements
in the system, and G is the arrival rate:

P [k <= K]pure = e−2G
bKc∑

i=0

2Gi

i!

P [k <= K]slotted = e−G
bKc∑

i=0

Gi

i!

(8)

Fig. 6 shows these probabilities for different G and K
values. Note that K corresponds to the link capacity divided
by the average data rate (e.g. around 25 during time period A,
111 during time period D, and 43 overall in the DL direction
assuming a link capacity of 1Gbit/s).

0 20 40 60 80 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Arrival Rate (frames/frame time)

P
ro
b
ab

il
it
y
of

S
er
ve
r
N
ot

B
ei
n
g
O
ve
rl
oa
d
ed

K=10, Pure

K=10, Slotted

K=25, Pure

K=25, Slotted

K=50, Pure

K=50, Slotted

Fig. 6. Probability of the server not being overloaded with respect to arrival
rate, for different K values

There is a decrease in the failure probability from left to
right, as indicated by the increased arrival rates that can be
safely handled by the benchmarking system. This improved
performance can be achieved either by increasing K, which
corresponds to hardware improvement (increasing physical
link capacity by renting more lines), as indicated by the pairs
of curves for a certain K value appearing to the right of the
ones for any lower K value, or by simply changing from a
pure ALOHA scheme to a slotted ALOHA scheme under the
same K, as indicated by the dashed curves surpassing the solid
curves of the same color.

The latter is a significant improvement, since up to a
ten-fold hardware improvement (e.g. updating link capacity
from 1Gbit/s to 10Gbit/s) could be matched by simply
moving from a pure ALOHA scheme to a slotted ALOHA
scheme. Existing network benchmarking systems can exploit
this scheduling gain without needing to invest further in
hardware.

C. Discussion

There are roughly 2498 tests per day between 2014–2015
in the RTR Open Data, which, considering that there are
13.3 million mobile subscribers in Austria [22], does not even
correspond to an arrival rate of 1 per subscriber per year. This
means that the RTR-Netztest benchmarking system has not yet
faced the potentially risky situations that can be brought on
by the massive increase in the number of end devices with
network connectivity.

We present in Fig. 7 the number of tests carried out with
the RTR-Netztest, as well as the average DL and UL data rate,
per month. All curves show a trend towards increasing values,
signaling the potential threat of server link overload in the near
future.

We believe that these observations should serve as a moti-
vation for further research on scheduling algorithms aiming at

993

Figure 5.2: Number of RTR-NetTest tests
started (aggregate 2014–2015) as a function
of time of day. Source: [69].

5.2 Tariff Limitation
The first metric is called peak to average ratio (PAR), which we define as follows:

Definition 5.2.1 (Peak to average ratio).

PAR , R̂/R̄,

where R̂ is the maximum 100ms average rate in the first two seconds of the test:

R̂ , max
k∈{n−L,...,20n−L}

{
s

(n)
T [k]

}
with n = 100 and T = 1 ms,1 (5.1)

and R̄ is the average rate of the whole test as defined in 3.2.

In case of open data only thinned sequences are given and we therefore use following
approximation:

R̂ ≈ max
k : t′[k]<2 s

{
r′[k]

}
. (5.2)

Remark. Now we explain the choice of the constants. We limit the peak rate to be located
within the first 2 s: If there is a token bucket traffic shaping, then from our experience
(recall fig. 2.15) the level shift does not happen later than at 1 s + accounting for some
reserve.

The thinning interval ∆min used in the open data is 100 ms. According to subsec. 2.3.3
we choose nT = ∆min such that the thinned sequence can be interpreted as noisy subsam-
pling from the smoothed resampled non-thinned rate s

(n)
T [k]. This justifies the approxi-

mation in eq. (5.2).

1The index range k ∈ {n− L, . . . , 20n− L} follows from the mapping in eq. (2.13).

78

0 5 10 15 20 25 30 35 40 45 50 550

1

2

3

4

5

γ

R̄ is
tarrif
limited

network
limited

R̄/(Mbit/s)

PA
R

K4 Basement: Unlim. F60 Basement: Unlim.
F60 Office: Unlim. F60 Office: Limited
F60 Office: Unlim.

Figure 5.3: Scatter plot of peak to average ratio versus average rate. One mark in scatter
plot corresponds to one test. Different colors distinguish different measurement scenarios.
Traffic shaping is detected if PAR ≥ γ.

0 0.05 0.1 0.15 0.20.8

0.85

0.9

0.95

1

γ = 1.72

PFA

P D

Figure 5.4: Empirical ROC (receiver operating characteristics). We picked γ = 1.72 (red
point) since it is closest to perfect detection (PFA,PD) = (0, 1). PD denotes true positive
rate, PFA denotes false positive rate. Since we base ROC on empirical data we can’t talk
about detection probability and false alarm probability.

5.2.1 Controlled Measurements

First we apply the PAR to our controlled measurements. We took 300–400 static Open-
RMBT TU measurements for every scenario. We tested two different device models (LG
K4 and LG F60) at two different locations (office in the first floor and basement). In
the basement we expect worse signal reception, therefore lower rate. In one measurement
scenario we used tariff limited SIM card, in other scenarios tariff unlimited SIMs.

Results are shown in fig. 5.3. For every test we display the PAR versus average rate as
one point in scatter plot. Such representation is particularly useful for representing sets
of tests, because we can immediately read out the shaping rate on the x-axis at locations
where we observe vertical peaks. We can immediately recognize, that in the “purple set”
of tests the data rate was tariff limited with shaping rate of ≈ 9.6 Mbit/s.

As a reasonable threshold for traffic shaping detection we pick γ = 1.72 (based on
receiver operating characteristics in fig. 5.4 constructed from our controlled measurements
for which we know the ground truth) and detect tariff limitation if PAR ≥ γ.

5.2.2 Open Data

In the case of RTR open data only C thinned sequences (w′c[k], t′c[k])k∈{1,...,Kc} with C = 3
(or C = 1 if connection is too slow, as explained in sec. 3.2) are available. Therefore we

79

ISP Tests
Downlink Uplink

TS tests R̄ of all R̄ without TS TS tests R̄ of all R̄ without TS
A 1879 15% 57.91 63.42 20% 24.90 27.98
B 1128 6% 80.55 83.95 7% 35.47 35.92
C 943 2% 53.24 53.72 6% 30.94 31.29

Table 5.1: Number of tests, percentage of detected traffic shaped (TS) tests, average rate
of all tests and average rate of non traffic shaped tests for ISP A, B, C in both, DL and
UL.

first calculate the merged sequence (w′[k], t′[k])k∈{1,...,K} and then use approximation in
eq. (5.2). The average rate is already given in the database so we don’t have to calculate
it. We applied this approach to LTE tests of three major Austrian mobile operators.

RTR open data provide network MCC/MNC and SIM MCC/MNC (part of IMSI) as
well as network type. For every operator we pulled only tests conducted in LTE network
with MCC = 232 (Austria) and MNC corresponding to given operator,2 such that network
MCC/MNC equals the SIM MCC/MNC in order to not consider roaming. We took tests
in the time range from 2016-08-01 00:00:01 to 2016-11-01 00:00:00. For ISP A we obtained
1879 results, for ISP B 1128 and for ISP C 943.

Scatter plots are shown in fig. 5.5. Numerical results are provided in table 5.1. The
strongest evidence of traffic shaping was found in tests of ISP A in both directions, DL
and UL. In DL we see multiple vertical lines which correspond to different shaping rates
(probably different user tariffs). In case of ISP B there is some traffic shaping happening
in DL, the evidence in UL is not very convincing. Finally for operator C the algorithm
did not detect almost any traffic shaping, which however doesn’t mean that ISP C is not
limiting rate of its users.

The RTR’s statistics [70] show only average rate of all tests fulfilling filter criteria
(time, location, ISP, etc.). With additional traffic shaping detection we can compare only
non traffic shaped tests, obtaining different average rates (tab. 5.1).

Limits of the PAR Method

The detection whether a tariff limitation is in place or not depends on a detectable level
change at the beginning of the time series. If the operators use a more smooth traffic
shaping method a reliable detection currently seems not possible.

Another problem is following: Let’s imagine we find in the open data two tests with
high signal strength (e.g. RSRP = −80 dBm) but poor average rate (e.g. 10 Mbit/s in
DL). In one case the poor rate could be caused by tariff limitation in the other by user’s
crosstraffic (e.g. user watching YouTube video when conducting the test).

ISPs’ Benchmark Detection and Optimization

More detailed analysis of traffic shaping in case of ISP C revealed, that data rates are
higher (corresponding to rates of e.g. ISP A in tariff unlimited case) when running RTR-
NetTest towards official RTR server than when running OpenRMBT TU towards our own
server. We didn’t observe such difference for IPS A and B.

This suggests that ISP C recognizes IP address of RTR’s server and provides users
with full rate in order to reach better results public statistics of RTR [70]. This highlights
one of the challenges in crowdsourcing, as the clients and even the network can not be

2Some operators have multiple MNCs. We select the one which has the most database entries, the
other MNCs show usually only few tests.

80

0 50 100 150 200 2500

2

4

R̄/(Mbit/s)

PA
R

Operator A: DL

0 10 20 30 400

2

4

R̄/(Mbit/s)

Operator A: UL

0 50 100 1500

2

4

R̄/(Mbit/s)

PA
R

Operator B: DL

0 10 20 30 400

2

4

R̄/(Mbit/s)

Operator B: UL

0 50 100 150 2000

2

4

R̄/(Mbit/s)

PA
R

Operator C: DL

0 10 20 30 400

2

4

R̄/(Mbit/s)

Operator C: UL

Figure 5.5: Comparison of PAR vs mean rate in DL and UL in LTE networks of three
major Austrian mobile ISP.

trusted to behave neutral. Randomized test servers could be used to detect such traffic
shaping.

5.3 Operator Benchmarking Using the RTR Data Set
In the previous section we considered only the shape of the data rate curve. From theory
we expect that users with higher RSRP, which is also reported in open data,3 achieve
higher throughput. Figure 5.6 shows mean rate R̄ versus RSRP as a 2D histogram of all
LTE tests of ISP A. The histogram is logarithmic to achieve better visibility large range
of values – color of each bin represents natural logarithm of number of tests with mean
rate and mean RSRP falling into that bin. Bin size was chosen 2 dB× 2 (Mbit/s). This is
set empirical, based on the resolution seen in the data-set.

In order to analyze the maximum network performance offered by the mobile networks,
we only consider the best tests (highest average rate) for every RSRP level and construct
a “capacity curve” for each operator. To exclude spurious outliers we applied median
filter and then found bin with highest R̄ and value > 0 (i.e. more than one test in bin
due to logarithm) for every RSRP. Fig. 5.6 shows capacity curves (red) for different sizes

3Not for all tests, from unknown reason, maybe due to implementation. We only consider entries with
valid signal strength information.

81

of median filter at histogram of ISP A. We picked the filter size 30× 30 to get rid of the
strong vertical lines between −90 and −60 dBm and above 160 Mbit/s. More comments
on this will follow in subsec. 5.3.1.

We obtained capacity curves also for other two ISP in DL and UL. Result is shown in
fig. 5.7. What is also plotted are mean data rates in DL for six different attenuation levels
from previous measurements in reference cell of ISP A (subsec. 4.6.1). The results show
that the reference measurement matched the data collected from the crowdsourced data
sample for ISP A. Furthermore it shows significant differences between the operators. At
the current status we cannot name the source of the difference. However, further analysis
will target to analyze urban / rural areas, network deployment and interference analysis,
e.g. note the different performance in uplink.

The reason why we select only the best tests for given signal strength is that we
don’t know all the details of single tests like presence of crosstraffic, tariff limitation in
absence of rate overshoot, BS handover, speed of the UE,. . . which can severely decrease
the measured rate. This method has however disadvantage that it can be manipulated;
see next subsection.

5.3.1 Filtering Spurious Test Entries
The high peaks observed in fig. 5.6 seem to originate from a process that is purely deter-
ministic, e.g. caused by measurements in a static reference scenario. In case of standard
measurement samples we would expect the variance to decrease for an increasing sample
set. Here the opposite is the case. In fact the peaks’ grow is an increasing sample set
biasing the whole population.

The indications for the source are many tests performed at different constant RSRP
levels – similar to our reference cell measurements.4 From our experience we hardly observe
RSRP better than −80 dBm, even for rooftop measurements where we should have line of
sight connection with base station. Another cause could be some buggy UE model which
reports constant nonsense RSRP values.5

5.3.2 Conclusion
The presented lightweight metrics allow fast processing on large sets of tests. The analysis
showed that it is crucial to choose proper filter criteria, like network MCC/MNC matching
SIM MCC/MNC. On the other hand the publicly available benchmark data sets shouldn’t
be too simple – e.g. average rate of all LTE tests of ISP X together [70] – otherwise
operator benchmarking can become just competition which operator is able to inject more
tests with higher rate.

Based on comparison in fig. 5.7 we conclude that crowdsourced data can be used to
obtain similar results as the measurements in reference network.

4We avoid influencing open data by using our own RMBT measurement and database server.
5What is also very suspicious is the bright “hot spot” at ≈ (−76 dBm, 140 Mbit/s) in fig. 5.6.

82

−140−120−100 −80 −60 −400

100

200

300

R̄
/(

M
bi

t/
s)

median filter 5 × 5

0

1

2

3

−140−120−100 −80 −60 −400

100

200

300 median filter 10 × 10

0

1

2

3

−140−120−100 −80 −60 −400

100

200

300

RSRP/dBm

R̄
/(

M
bi

t/
s)

median filter 20 × 20

0

1

2

3

−140−120−100 −80 −60 −400

100

200

300

RSRP/dBm

median filter 30 × 30

0

1

2

3

Figure 5.6: 2D histogram showing distribution of LTE tests of ISP A as a function of
RSRP and mean rate R̄. The red curve characterizes the highest average rate for given
RSRP after using median filter to get rid of outliers.

−130 −120 −110 −100 −90 −800

25

50

75

100

125

150

175

RSRP/dBm

R̄
/(

M
bi

t/
s)

Download

ISP A
ISP B
ISP C
ISP A: ref.

−130 −120 −110 −100 −90 −800

10

20

30

40

50

RSRP/dBm

R̄
/(

M
bi

t/
s)

Upload

Figure 5.7: Comparison of “capacity curves” of different operators. The triangles in the
left plot show measurements performed in unloaded reference cell of operator A.

83

Summary and Outlook

Summary

The concept of crowdsourced measurements allows service providers to outsource the ex-
pensive and time consuming task of performance measurements to the end user device.
This approach is obviously appealing for the industry, though giving up the control on the
experiment in favor. In this thesis we took a first step into the analysis of crowdsourced
data sets in order to build up a view of the current status of the network. We try to answer
the question whether it is possible to use crowdsourced data to meaningfully characterize
properties of the network.

In the first chapter we presented a review of existing methods, discussed properties of
TCP as well as the standards for benchmarking mobile networks. We identify that there is
a trade-off between precision, service protocol and duration of the tests. We perform first
measurements and verify that a single TCP connection is enough to fill the bandwidth
delay product of the network under test. We also see that different applications (iPerf3
vs HTTP and FTP) deliver different results. Loosening the standards’ conditions makes
measurements more flexible but at the same time reduces reproducibility.

As we identify the need for repeatable measurements we have developed a measurement
framework. The framework consists of an application part running on an Android smart
phone, a server hosting the results and benchmark servers. The framework allows to collect
measurements in a hybrid fashion, combining the idea of crowdsourced end-terminals with
the planning of regular measurements intervals.

Performance measurements in networks are in general based on time-series of trans-
mitted packets. In second chapter we established notation and proposed systematic meth-
ods for merging sequences of multiple connections of single user as well as resampling
to equidistant time grid in order to compare time series of different users. We also dis-
cussed compression algorithm which is implemented in RTR’s NetTest and makes the
whole problem more challenging.

In the fourth chapter we analyzed controlled measurements, replicating collection of
crowdsourced data in order to get more insight how the RTR’s open data are produced.
Loosening standards’ requirements is partially compensated by possibility of large number
of repeated measurements. With slight modifications of RTR NetTest we are able to obtain
detailed results showing there is large potential in crowdsourced data.

In the fifth chapter we extend our analysis to the open data set and apply more
lightweight metrics to gain overview of the network. The answer to the question is that
open data have great potential but we need to be very careful which samples we select. We
have to face many obstacles – RTR’s compression algorithm dropping most of the cumu-
lative volume samples; RTR-NetTest’s unknown offset of individual connections causing
data rate series oscillations which can be removed only with high computational expenses;
ISPs performing automatized tests and ISPs switching off tariff limitation during connec-
tion to RTR’s server and thus biasing the benchmarking process.

84

Outlook
There is room for further work left. This thesis provides only the ground. As a first step
we can understand that the thinning process should be improved to allow us to reconstruct
the original time series. We shall propose a modification to RTR.

Second the discrimination of data rate tests due to user tariff and due to network
condition allow further analysis of the health and performance of a network under test.

Third the preprocessing of the data set enables further research on extrapolation,
e.g. with Gaussian process regression in time, as well as root cause analysis of findings,
e.g. via machine learning with deep neural networks.

85

Appendix A

Volumes and Rates

A.1 Alternative Merging Algorithm

We could think of a different merging strategy which does not use any interpolation.
The volume samples of merged sequence are obtained by union of volume samples of
individual connections (in case some volume samples have the same time location they are
just summed up). It sounds more natural than algorithm in subsection 2.1.3. We will use
subscript am to distinguish the alternative merging algorithm from the one presented in
subsec. 2.1.3.

The alternative merging algorithm is used for example in [38]: cumulative volume
sample of merged sequence is given by “the sum of all bytes transferred since the start of
the test phase.” The sum of all bytes is here meant on all connections together.

The merged cumulative volume sequence is initialized as follows:

tam[0] := 0,
wam[0] := 0,
Kam := 0.

In every iteration we find the smallest unused time location t∗ among all time locations of
all connections:

kmin,c := arg min
k∈{1,...,Kc}

tc[k] s.t. tc[k] unused, ∀c ∈ {1, . . . , C};

c∗ := arg min
c∈{1,...,C}

tc[kmin,c];

t∗ := tc∗ [kmin,c∗];

where the word “unused” means that tc[k] has not been assigned to t∗ in any previous
iteration. The volume received at the time t∗ on the c∗-th connection is denoted by v∗ :

v∗ := wc∗ [kmin,c∗]− wc∗ [kmin,c∗ − 1].

Now there are two possibilities:

1. Either tam[Kam] = t∗ : In this case the time sample t∗ already exists in the merged
sequence an we just need to increase the corresponding cumulative volume sample
of the merged sequence by the volume received at time t∗ on the c∗-th connection:

wam[Kam] += v∗.

86

2. Or tam[Kam] 6= t∗ : In this case the time location t∗ is not contained in the merged
sequence and we have to add it:

Kam += 1;
tam[Kam] := t∗;
wam[Kam] := wam[Kam − 1] + v∗.

We continue with next iteration until there are no unused samples left.
The algorithm above is described in terms of cumulative volumes. It can be easily

described also in terms of volume samples of separate connections which are placed to a
common time axis (graphical representation in fig. A.1, top right).1

t1[p] t

v1[k]
r̂1(t) v1[p]

r1[p]

t2[q] t

v2[k]
r̂2(t)

v2[q]
r2[q]

t3[r] t

v3[k]
r̂3(t)

v3[r]
r3[q]

t
t[l]

t[l
+ 1]

t[l
+ 2]

r̂(t)
r[l]

r[l
+ 1]

r[l
+ 2]

t

t am
[l]

t am
[l +

1]

t am
[l +

2]

vam[k] v am
[l] v am

[l +
1]

v am
[l +

2]

t

t am
[l]

t am
[l +

1]

t am
[l +

2]

r̂am(t)

ram[l]

r am
[l +

1]

r am
[l +

2]

A
lte

rn
at
iv
e
m
er
gi
ng

M
er
gi
ng

Figure A.1: Comparison of two different merging algorithms. The first merging algorithm
is based on sum of time-continuous rates of individual connections – equations (2.5), which
leads to the expression (2.7). The alternative merging algorithm is based on an idea that
we stack volume samples of all connections to a single sequence without modifying their
time locations.

A.2 Comparison of Both Merging Algorithms
The time locations are identical for both algorithms: tam[k] = t[k], ∀k. The fig. A.1 proves
that cumulative volume samples (and therefore also rate samples) are in general different,
w[k] 6= wam[k]. There are several reasons why we preferred the first merging algorithm:

• Linearity: The sum of time-continuous rates r̂c(t) of individual connections is equal
to the total rate r̂(t). This is not true for the alternative merging algorithm.

• TCP connection example: For every connection the k-th data rate sample is calcu-
lated as vc[k]/(tc[k] − tc[k − 1]), i.e. the data rate is assumed to be constant in the

1If there would be two samples with the same time, e.g. tc1 [k1] = tc2 [k2], we would have to sum both
volume samples vc1 [k1] + vc2 [k2] before placing them to the merged sequence.

87

interval (tc[k−1], tc[k]) in which we don’t observe any data volume samples. In ideal
case, the spaces tc[k]− tc[k− 1] between consecutive samples vc[k] would correspond
to RTT. By merging we increase number of time locations and thus create new,
shorter intervals. If we apply alternative merging algorithm, then we divide data
volume by these shorter intervals when calculating data rate. The shorter intervals,
which lead to higher data rate peaks, don’t represent any RTT as in case of separate
connections.

• Thinning: If we don’t know all samples (like in case of thinning in sec. 2.3) it is
reasonable to assume that the rate was constant in a given interval – e.g. we know
wc[k] at time tc[k] and wc[k+m] at time tc[k+m] but nothing in between; we assume
that rate is equal to (wc[k + m] − wc[k])/(tc[k + m] − tc[k]) within whole interval.
We can add this rate to the rates of other connections.

If we use alternative merging instead, it can happen that there is a connection d with
a sample wd[l] at time td[l] which is just a little bit smaller than tc[k+m], resulting
in very short interval and very high rate – in other words: instead of distributing
the difference wc[k+m]−wc[k] to the whole interval (tc[k], tc[k+m]] uniformly, we
shrink it to possibly much smaller interval (td[l], tc[k +m]].

⇒ In alternative merging algorithm the sample positions of one connection impact
the rate of other connections!

A.2.1 Data Rate Examples

In this subsection we compare both algorithms using real data. We took results of Opne-
RMBT TU with c = 3 TCP connections and test duration of ∆t = 7 s.

Qualitatively we can say that for both algorithms the most of the samples are lower
or equal to 200 Mbit/s (fig. A.3). Also the shape of irregularly wide bins is similar, as can
be seen in the detail in the right part of the figure. In our example r̂am(t) has more peaks
which are much higher compared to r̂(t). If we zoom out (fig. A.2, y-axis is in Gbit/s) we
see that r̂am(t) has peaks in order of tens of Gbit/s, whereas peaks of r̂(t) in fig. A.3 are
not larger than 400Mbit/s.

To get some feeling how different or similar both results are, we compare the MSD
between them. Plugging the merged data rates ram[k] and r[k] into eq. (A.2) we obtain
MSD ≈ 3287.83 (Mbit/s)2. As said the rate r[k] reaches maximum rates of ≈ 400 Mbit/s
whereas ramfk] shows peaks up to ≈ 90 Gbit/s. These peaks are very narrow and therefore
they are weighted with smaller factor (t[k]− t[k − 1]), the MSD is however still quite large.

0 1000 2000 3000 4000 5000 6000 70000
20
40
60
80

100

t/ms

r̂ a
m

(t
)/

(G
bi

t/
s)

Figure A.2: Data rate r̂am(t) produced by alternative merging algorithm. The y-axis is
represented in Gbit/s with just few very narrow and very high peaks. In the intervals
where the data rate appears to be zero we can still observe some nonzero values after
zooming in (fig. A.3).

88

0

100

200

300

400
r̂ a

m
(t

)/
(M

bi
t/

s)

0

100

200

300

400

0 1000 2000 3000 4000 5000 6000 70000

100

200

300

400

t/ms

r̂(
t)

/
(M

bi
t/

s)

3506 3510 35140

100

200

300

400

t/ms

Figure A.3: Comparison of data rate r̂am(t) (top) and r̂(t) (bottom).

Resampling and Smoothing, Thinning

After resampling with T = 1 ms we obtain r̃, r̃am with ∆max ≈ 60.26 Mbit/s (see def. A.3.2
and eq. (A.5)) and MSD ≈ 57.68 (Mbit/s)2. Comparison of s

(n)
T and s

(n)
T am – average

data rates in intervals of n = 101 ms considering 101 different offsets mT – results in
∆max ≈ 2.97 Mbit/s and MSD ≈ 0.05 (Mbit/s)2. We thus understand that with averaging
intervals large enough the impact of peaks can be suppressed due to their narrowness and
sparsity and we obtain similar results for both algorithms. This is no proof, but it again
suggests that the smoothed rate s

(n)
T is a suitable quantity for representing the data rate.

In fig. A.4 in the upper plot we visualize s
(n)

T am [k] obtained by smoothing (n = 101)
of resampled (T = 1 ms) total rate obtained by alternative merging ram[k]; and time-
continuous rate r̂′am(t) obtained by thinning of cumulative volume sequences, merging
them using alternative merging and calculating rate out of them.

In the lower plot we visualize same quantities, with the only difference that the regular
merging algorithm was used. We see that alternative merging leads to very high peaks
when applied to thined sequences, because it artificially creates very short intervals as
explained in sec. A.2.

0

20

40

60

s(n
)

T
am

(t
),

r̂′ am
(t

)/
/(

M
bi

t/
s)

0 1000 2000 3000 4000 5000 6000 70000

20

40

60

t/ms

s(n
)

T
(t

),
r̂′ (t

)/
/(

M
bi

t/
s)

Figure A.4: Smoothed rates after merging and resampling; and thinned rates after thinning
and merging. We plot discrete samples such that the k-th one corresponds to t = kT.

89

A.3 Mean Squared Difference, Maximum Difference
Definition A.3.1. Given two functions f, g : R→ R with support [0,∆t], we define mean
squared difference (MSD) as follows:

MSD(f, g) , 1
∆t

∫ ∆t

0
(f(t)− g(t))2 dt. (A.1)

Because time locations are identical for both merging algorithms, tam[k] = t[k],

MSD(r̂am, r̂) = 1
∆t

∫ ∆t

0
(r̂am(t)− r̂(t))2 dt =

= 1
∆t

K∑
k=1

(t[k]− t[k − 1])(ram[k]− r[k])2, (A.2)

where t[K] = ∆t and t[0] = 0.
Assuming ∆t = nTs, n ∈ N+, and any two quantities x1[k], x2[k] (and their time-

continuous representations x̂1(t), x̂2(t)) obtained by resampling with period T we can
further simplify the expression A.2:

MSD(x1, x2) = 1
nT

∫ nT

0
(x̂1(t)− x̂2(t))2 dt = 1

n

K∑
k=1

(x1[k]− x2[k])2. (A.3)

Definition A.3.2. Given two function f, g : R→ R we define their maximum difference

∆max(f, g) , max
t
|f(t)− g(t)|. (A.4)

Assuming time-continuous representations x̂1(t), x̂2(t) based on samples (x1[k], t1[k]),
(x2[k], t2[k]) which have identical time locations, i.e. t1[k] = t2[k]∀k, the maximum differ-
ence can be rewritten in terms of time discrete samples:

∆max(x̂1, x̂2) = max
t
|x̂1(t)− x̂2(t)| = max

k
|x1[k]− x2[k]|. (A.5)

90

List of Figures

1.1 State diagram of TCP congestion control algorithm. Source: [14], figure 3.52. 8
1.2 Wireshark trace of server’s RWND during an iPerf3 UL test. 14
1.3 Wireshark trace of UE’s RWND during an iPerf3 DL test. 15
1.4 Wireshark trace of TCP RTT during an iPerf3 UL test. 16
1.5 Wireshark trace of TCP throughput (right vertical axis) of the same test

as in fig. 1.4. (Moving average with window size of 1 s.) 16
1.6 Comparison of TCP throughputs of iPerf3 UL test with a single TCP con-

nection (red solid) and with five parallel connections (blue dashed). Each
subplot is zoomed to different test phase. 17

1.7 The same 1- and 5-connection tests as in fig. 1.6, this time smoothed using
moving average with windows size of 1 s in order to visualize the throughput
trend. Left: whole test; duration 30 s. Right: detail showing the initial
ramp-up phase, including reference (see fig. 1.8). 17

1.8 We fit linear and quadratic functions (right plot) to the smoothed through-
put (fig. 1.7, right) in order to represent the ramp-up phase in terms of
continuous functions. The left plot shows, how these fitted functions look
like without smoothing. 17

1.9 RTT of a single TCP connection during 5-connection iPerf3 UL test. 18
1.10 CWND size during the 1-connection iPerf3 UL test. Green line = RWND

size. 19
1.11 CWND size of a single TCP connection during the 5-connection iPerf3 UL

test. Green line = RWND size. 19
1.12 Empirical CDF plots of iPerf3, HTTP and FTP throughput in DL and UL.

For iPerf3 we took all configurations together here. 20
1.13 ECDF of iPerf3 throughput using different number of TCP connections. . . 20

2.1 r̂(t) is the time-continuous estimate of the true rate r(t). The k-th time
discrete sample r[k] represents the average of the true rate in time interval
I[k] = (t[k − 1], t[k]]. 22

2.2 “Correct” resampling corresponds to rebinning of the time-continuous esti-
mate r̂(t) in such a way that the mean of resampled rate r̃(t) is equal to
the mean of r̂(t) in every time interval [(k − 1)T, kT]. 23

2.3 An example of “wrong,” direct resampling ř[k] = r̂(kT). In this example
the mean rate in the interval [0, T] is significantly larger after resampling. . 24

2.4 Merging rates of two connections: r̂(t) = r̂1(t) + r̂2(t). First connection
can be represented by K1 pairs (t1[k], r1[k]), second connection by K2 pairs
(t2[k], r2[k]) and the merged sequence by K pairs (t[k], r[k]). 26

2.5 Two equivalent algorithms for calculating the total resampled cumulative
volume sequence. The merging is defined by eq. (2.5) and can be expressed
as in eq. (2.7). 28

91

2.6 Representation of algorithms from fig. 2.5 in terms of stepwise continuous
rates. Resampling of rate r̂(t) → r̃(t) is given by def. 2.1.8 and 2.1.9.
For time-continuous rates the merging operation is replaced by summa-
tion, which is convenient for mathematical description but not suitable for
discrete implementation. 28

2.7 Illustration showing the worst case error. Left: binning of the true rate
r(t) with offset τ1. Right: binning with offset τ2. Bin size T is constant but
otherwise arbitrary. We obtain the worst case error for |τ1−τ2| = T/2. The
yellow area corresponds to T · ε[i+ 1]τ1,τ2

T . Thus ε[i+ 1]τ1,τ2
T = rmax−rmin

2 . . . 30
2.8 The upper plot shows s

τ (n)
T [k] (gray) – the smoothed version of rτT [k]. By

subsampling of s
τ (n)
T [k] according to eq. (2.13) we obtain n different bin-

nings rτ
′

nT [k] with τ ′ ∈ {τ, τ + T, . . . , τ + (n− 1)T}. Here we illustrate two
different subsamplings: with τ ′ = τ +m1T (blue) and τ ′ = τ +m2T (red),
where m1 = 0, m2 = (n− 1)/2 and n = 101. The upper plot shows discrete
representations rτ

′
nT [k] and the lower plot corresponding time-continuous

representations rτ
′

nT (t). The samples in the upper plot are aligned with the
lower plot such that k-th sample of s

τ (n)
T [k] corresponds to time t = kT –

the time locations of samples in upper plot then correspond to the centers
of the time-continuous bins in the lower plot. 32

2.9 Deriving the worst case uncertainty after convolution with rectangular win-
dow of size n. Even though the bin duration is now nT, we still observe the
worst case uncertainty for the offset difference |τ1 − τ2| = T/2. 33

2.10 Representation of thinned sequence r′[k] as noisy subsampling from s
(n)

T [k]
(upper plot) and r̂′(t) – time-continuous representation of r′[k] (lower plot). 36

2.11 The non-zero part of the signal s
(n)

T c [k] = (a+ b · sin(φ(kT)))·rect
[
k − K

2 ; K2
]

(left) and its spectrogram (right). T = 1 ms, t = kT. 37
2.12 Objective function of minimization problem in eq. (2.25) using model from

subsec. 2.4.1. Note: var in the axes labels is shorthand for variance of s
κ (n)
T

calculated for k ∈ {0, . . . ,K}. With our resampling period T = 1 ms, the
shift of κ samples corresponds to time shift of κms. 39

2.13 Minimum variance solution s
κ̂ (n)
T [k] obtained from minimization problem

in eq. (2.25) by exhaustive search (κ2, κ3) ∈ {−500, . . . , 500}2. 39
2.14 Variance of s

(n)
T [k] when considering phase shifts φ2, φ3 instead of index

shifts κ2, κ3. The phase shift φ1 was fixed to 0. The obtained pattern is 2π-
periodic and we would see similar results also for different phase functions
φ(t). 40

2.15 An example of traffic shaping. Ĉ ≈ 30.38 Mbit/s is the estimate of peak
rate, ρ̂ ≈ 9.65 Mbit/s is the estimate of token generation rate and σ̂ ≈
14.38 Mbit ≈ 1.8 MB (the yellow area) is the estimate of the token bucket
size. 41

3.1 The CMPT framework: Configuration is specified via web interface. The
UEs running CMPT application obtain configurations from the CMPT
server, perform various measurements targeting different servers and up-
load measurement results back to the CMPT server. Author of this picture:
Philipp Svoboda. 42

3.2 CMPT application menu (left) and the main screen (right). 43
3.3 CMPT application screens. Left: List of available WLANs (experimental

feature). Middle: Overview of test configurations. Right: Miscellaneous. . . 44
3.4 CMPT scheduling (upper block) and passive monitoring (lower block). . . . 46

92

3.5 Screenshot of the CMPT settings web interface. 47
3.6 An example of different test periods. ICMP ping period is 5min, FLARP

period is 10min and iPerf3 period is 20min. This means that ICMP ping
will be executed in every block, FLARP in every second and iPerf3 in every
fourth. Open-RMBT test period was set to 0, which means disabled. 48

3.7 Example of two UEs with identical settings of test periods. The only dif-
ference is that the block offset of the UE1 was set to 0min and the block
offset of the UE2 was set to 5min. 48

3.8 A screenshot showing part of JSON document uploaded by CMPT appli-
cation to the CouchDB database. 48

3.9 Wireshark’s packet capture on the server side showing the phases 2–6 of the
RMBT’s test. The time on the x-axis is relative to the start of the packet
capture. 53

3.10 Average data rate of c-th connection in an interval [0,∆t] is calculated as
R̄c =

∫∆t
0 r̂c(t) dt. It is equal to (wc[Kc − 1] + c.t.)/∆t, where c.t. stands for

a correction term corresponding to the area marked with gray color. 53

4.1 Comparison of rate reported by Wireshark (green) with rate reported by
RMBT – before shift (red) and after shift of individual connections (purple).
Top: Rate R with T = 1 ms. Middle: Smoothed with rectangular window
of size 101 (g101[k]). Bottom: Smoothed with quadratic window (∗ g101[k]
three times). 58

4.2 Detail of first 200ms of RMBT’s data rate test. Data rates are plotted
for every connection separately. Upper plot: The resampled rates Rk of
individual RMBT’s connections. Middle plot: Connections 1 and 3 are
shifted in order to match the Wireshark’s data rates. Upper and middle
plot: Time zero corresponds to beginning of the DL test as reported by
RMBT. Lower plot: Time zero corresponds to the beginning of the packet
capture. 58

4.3 Measurement setup 2. LTE UE tethers an Internet connection to the laptop
on which we run RMBT test and capture packets on the USB interface. The
laptop also captures packets, which are mirrored from the server by a switch,
on the Ethernet interface. Solid lines show the path the packets have to
travel during the data rate test. Connection drawn as a dashed line is used
just to capture packets also on the server side. 59

4.4 Wireshark’s captures on the client (green) and server side (blue). Upper
plot: R, Ts = 1 ms. Lower plot: S, quadratic window (3 · span 101; used to
clearly visualize trends despite zoomed-out x-axis). In upper representation
we can clearly see time boundaries of DL pretest, latency test, DL test,
etc. Smoothing introduces certain broadening, on the other hand it clearly
shows the trend – we can thus recognize that mean data rate during DL
was ≈ 30 Mbits. Times on x-axis are relative with respect to the capture
beginning. 60

4.5 CDV vs time during RMBT DL test. We see that client receives more
data than server sends. Samples reported by RMBT end around t = 7 s
and already CDV trace indicates some oscillations. The different slopes of
RMBT’s and Wireshark’s CDV are caused by header overhead. 60

4.6 Comparison of RMBT’s DL test. Red: S (quadratic window) based on
CDV samples reported by RMBT. Green: S based on Wireshark’s capture.
The RMBT trace is shifted in time in order to match the DL test captured
by Wireshark. The Wireshark trace contains also DL pretest. 61

93

4.7 Comparison of RMBT’s UL test. Red: S (quadratic window) based on
CDV samples reported by RMBT. Blue: S based on Wireshark’s capture.
Here we compare RMBT with what the server is receiving, because RMBT’s
samples are collected on the server side during UL test and then transmitted
back to client, see phase 6 in subsec. 3.2.1. RMBT trace is shifted in order
to match the UL test captured by Wireshark. The Wireshark trace contains
also UL pretest and results upload. 61

4.8 Smoothed rate on connection c = 1 in an RMBT DL test consisting of
C = 3 connections. 62

4.9 Smoothed rate of an RMBT DL test consisting of only one connection. . . . 62
4.10 An example of mean squared difference between R[k − λ] and Rref [k] as a

function of shift λ, which shows that MSD is very sensitive to relative offset
between the merged rate and the reference. 64

4.11 Left: Spectrogram of the merged rate R[k]. Right: Spectrogram of Rκ̂ [k]
with κ̂ minimizing the MSD between Rκ [k] and reference Rref [k]. 64

4.12 Mean squared difference w.r. to reference as a function of connection-shifts
κ2 and κ3. The global optimum is κ2 = −31, κ3 = 1, corresponding to
−31 ms and 1 ms in time-continuous representation. 65

4.13 Variance of the resampled rate R[k] as a function of shifts of 2nd and 3rd
connection. The global optimum is κ2 = −36, κ3 = −2. 65

4.14 Total power in band 2–15Hz as a function of connections shifts. The global
optimum is κ2 = −31, κ3 = 2. 65

4.15 BS = before shift, AS = after shift. In first three rows we see resampled
smoothed shifted rates κcSc and resampled thinned shifted rates κcRc of all
three connections. The last row shows the total smoothed rate κ̂S after
shift which removes oscillations. For the sum of thinned rates (magenta
= after shift, orange = before shift) we don’t see such improvement as in
fig. 4.1 for the non-thinned rates. 67

4.16 Smoothed rates Sc (gray) of individual connections, the corresponding spec-
trograms of Rc[k] and thinned rates R′c (orange) represented as noisy sub-
sampling from Sc. The red line in the top spectrogram shows which data
points we used for the exponential fit to construct the model in sec. 2.4.1. . 67

4.17 Example of smoothed rate S representing 101 different binnings with bin
size of 101 ms in presence of token bucket traffic shaping. The different
binnings are obtained by index mapping in theorem 5, subsection 2.2.3. . . 69

4.18 101 estimates of peak rate C based on 101 different binnings of rate R (left).
Level shift was detected in 76 cases – for these different estimates of shaping
rate ρ (middle) and bucket size σ (right) are obtained. 69

4.19 Histograms of estimates of 151 tests. For every bin size n we obtain n esti-
mates per test, i.e. 151n estimates in total – this explains different heights
of distributions. 69

4.20 Measurements in reference cell between May 10, 2017 and May 16, 2017. . . 71
4.21 For every RMBT measurement we calculate the smoothed rate S[k]. The

figure shows 2D histogram (left) of all tests at attenuation level 1 (RSRP ≈
−122.7 dBm). The right subplots show histogram of all test samples. The
two modes in DL indicate usage of two different modulation schemes. 71

4.22 Averaged curves at attenuation level 5 (RSRP ≈ −110.5 dBm). 72
4.23 One week of measurements (September 12 – September 19, 2016) in Kind-

berg, Austria in a live LTE network. Black lines represent trends from
figures 4.24–4.26. 74

4.24 Weekly trend of RSRP for two nearest base stations. 75

94

4.25 Weekly trend of RSRQ for two nearest base stations. 75
4.26 Weekly trend of UL and DL data rates measured by iPerf3 and RMBT. . . 75

5.1 RTR-NetTest spatial distribution example. Source: internal software tool
of Mobile Comm. group, Institute of Telecommunications, TU Wien. 78

5.2 Number of RTR-NetTest tests started (aggregate 2014–2015) as a function
of time of day. Source: [69]. 78

5.3 Scatter plot of peak to average ratio versus average rate. One mark in
scatter plot corresponds to one test. Different colors distinguish different
measurement scenarios. Traffic shaping is detected if PAR ≥ γ. 79

5.4 Empirical ROC (receiver operating characteristics). We picked γ = 1.72
(red point) since it is closest to perfect detection (PFA,PD) = (0, 1). PD
denotes true positive rate, PFA denotes false positive rate. Since we base
ROC on empirical data we can’t talk about detection probability and false
alarm probability. 79

5.5 Comparison of PAR vs mean rate in DL and UL in LTE networks of three
major Austrian mobile ISP. 81

5.6 2D histogram showing distribution of LTE tests of ISP A as a function of
RSRP and mean rate R̄. The red curve characterizes the highest average
rate for given RSRP after using median filter to get rid of outliers. 83

5.7 Comparison of “capacity curves” of different operators. The triangles in
the left plot show measurements performed in unloaded reference cell of
operator A. 83

A.1 Comparison of two different merging algorithms. The first merging algo-
rithm is based on sum of time-continuous rates of individual connections
– equations (2.5), which leads to the expression (2.7). The alternative
merging algorithm is based on an idea that we stack volume samples of all
connections to a single sequence without modifying their time locations. . . 87

A.2 Data rate r̂am(t) produced by alternative merging algorithm. The y-axis is
represented in Gbit/s with just few very narrow and very high peaks. In
the intervals where the data rate appears to be zero we can still observe
some nonzero values after zooming in (fig. A.3). 88

A.3 Comparison of data rate r̂am(t) (top) and r̂(t) (bottom). 89
A.4 Smoothed rates after merging and resampling; and thinned rates after thin-

ning and merging. We plot discrete samples such that the k-th one corre-
sponds to t = kT. 89

95

List of Tables

3.1 List of CMPT tasks. 45
3.2 Arguments which can be used when executing Open-RMBT TU.2.2.12. . . 54
3.3 An overview of different Open-RMBT compilations comparing duration and

number of parallel TCP connections of DL and UL data rate test. 55

4.1 Performance comparison of MSD, variance of non-smoothed rate R[k] and
power in the frequency band 2–15Hz. 66

4.2 Means and standard deviations (don’t confuse with token bucket size σ) of
RSRP (in dBm) and RSRQ (in dB) for the six attenuation levels shown in
fig. 4.20. 72

4.3 Means and standard deviations in Mbit/s for DL and UL mean rate R̄ of
RMBT and iPerf3. In UL we give only values up to 4th attenuation level,
at which the UE’s limit is already reached. 72

5.1 Number of tests, percentage of detected traffic shaped (TS) tests, average
rate of all tests and average rate of non traffic shaped tests for ISP A, B,
C in both, DL and UL. 80

96

References

[1] M. Hirth, T. Hofeld, and P. Tran-Gia, “Anatomy of a crowdsourcing platform – us-
ing the example of microworkers.com,” Fifth International Conference on Innovative
Mobile and Internet Services in Ubiquitous Computing, 2011.

[2] F. P. Tso, J. Teng, W. Jia, and D. Xuan, “Mobility: A double-edged sword for HSPA
networks,” Proceedings of MobiHoc ’10, 2010.

[3] M. Tomala, I. Keskitalo, G. Bodog, and C. Sartori, LTE Self-Organising Networks
(SON). John Wiley & Sons, Ltd, 2011.

[4] “Universal mobile telecommunications system (UMTS); LTE; Universal terrestrial
radio access (UTRA) and evolved universal terrestrial radio access (E-UTRA); radio
measurement collection for minimization of drive tests (MDT); Overall description;
Stage 2,” 3GPP TS 37.320 v11.1.0, 2012.

[5] “RTR-NetTest | Open Data.” https://www.netztest.at/en/Opendata. Accessed:
2017-03-09.

[6] B. Constantine, G. Forget, R. Geib, and R. Schrage, “Framework for TCP throughput
testing,” IETF RFC 6349, 2011.

[7] M. Allman, V. Paxson, and E. Blanton, “TCP congestion control,” IETF RFC 5681,
2009.

[8] J. Postel, “Transmission control protocol,” IETF RFC 793, 1981.

[9] “LTE.” http://www.3gpp.org/technologies/keywords-acronyms/98-lte. Ac-
cessed: 2017-11-08.

[10] “CellSignalStrengthLte | Android Developers.” https://developer.android.com/
reference/android/telephony/CellSignalStrengthLte.html. Accessed: 2017-
11-08.

[11] “LTE; Evolved universal terrestrial radio access (E-UTRA); Physical layer; Measure-
ments,” 3GPP TS 36.214 v12.3.0, 2016.

[12] “LTE; Evolved universal terrestrial radio access (E-UTRA); Physical layer proce-
dures,” 3GPP TS 36.213 v8.8.0, 2009.

[13] “RSRQ to SINR relation.” https://www.laroccasolutions.com/
164-rsrq-to-sinr/. Accessed: 2017-11-08.

[14] J. F. Kurose and K. W. Ross, Computer networking: a top-down approach. Pearson
Education, 6th ed., 2014.

[15] H. Holma and A. Toskala, LTE for UMTS: Evolution to LTE-Advanced. John Wiley
& Sons, 2nd ed., 2011.

97

[16] D. Borman, B. Braden, V. Jacobson, and R. Scheffenegger, “TCP extensions for high
performance,” IETF RFC 7323, 2014.

[17] M. Mathis and J. W. Heffner, “Packetization layer path MTU discovery,” IETF RFC
4821, 2007.

[18] M. Allman, S. Floyd, and C. Partridge, “Increasing TCP’s initial window,” IETF
RFC 3390, 2002.

[19] T. Henderson, S. Floyd, A. Gurtov, and Y. Nishida, “The NewReno modification to
TCP’s fast recovery algorithm,” IETF RFC 6582, 2012.

[20] M. Mathis, J. Mahdavi, S. Floyd, and A. Romanow, “TCP selective acknowledgment
options,” IETF RFC 2018, 1996.

[21] “BIC and CUBIC | Networking Research Lab.” https://research.csc.ncsu.edu/
netsrv/?q=content/bic-and-cubic. Accessed: 2017-10-23.

[22] S. Ha, I. Rhee, and L. Xu, “CUBIC: A new TCP-friendly high-speed TCP variant,”
SIGOPS Oper. Syst. Rev., 2008.

[23] “A comparative analysis of TCP Tahoe, Reno, New-Reno, SACK and Vegas.”
http://materias.fi.uba.ar/7543/dl/Paper_Congestion_Algorithms.pdf. Ac-
cessed: 2017-10-23.

[24] “TCP congestion control.” https://en.wikipedia.org/wiki/TCP_congestion_
control. Accessed: 2017-10-23.

[25] “BIC TCP.” https://en.wikipedia.org/wiki/BIC_TCP. Accessed: 2017-10-23.

[26] “User equipment (UE) application layer data throughput performance,” 3GPP TR
37.901 v11.6.1, 2013.

[27] S. Bradner and J. McQuaid, “Benchmarking methodology for network interconnect
devices,” IETF RFC 2544, 1999.

[28] R. Asati, C. Pignataro, F. Calabria, and C. O. Morales, “Device reset characteriza-
tion,” IETF RFC 6201, 2011.

[29] S. Bradner, K. Dubray, J. McQuaid, and A. Morton, “Applicability statement for
RFC 2544: Use on production networks considered harmful,” IETF RFC 6815, 2012.

[30] “iPerf.” https://iperf.fr/. Accessed: 2017-03-04.

[31] “Android tcpdump.” http://www.androidtcpdump.com/. Accessed: 2017-03-04.

[32] “Wireshark.” https://www.wireshark.org/. Accessed: 2017-03-04.

[33] “Kernel Adiutor.” https://github.com/Grarak/KernelAdiutor. Accessed: 2017-
10-23.

[34] “D390N LG F60.” http://www.lg.com/at/mobiltelefone/lg-D390N-f60. Ac-
cessed: 2017-03-07.

[35] “User equipment (UE) radio access capabilities,” 3GPP TS 36.306 v14.1.0, 2016.

[36] J. Gettys and K. Nichols, “Bufferbloat: Dark buffers in the internet,” Queue, 2011.

98

[37] Y. Xu, Z. Wang, W. K. Leong, and B. Leong, “An end-to-end measurement study of
modern cellular data networks,” Passive and Active Measurement: 15th International
Conference, PAM 2014, Los Angeles, CA, USA, March 10-11, 2014, Proceedings,
2014.

[38] “RTR-NetTest open data interface documentation.” https://www.netztest.at/en/
OpenDataSpecification.html. Accessed: 2017-10-31.

[39] “Spectrogram using short-time Fourier transform – MATLAB spectrogram.” https:
//www.mathworks.com/help/signal/ref/spectrogram.html. Accessed: 2017-05-
09.

[40] A. V. Oppenheim, R. W. Schafer, and J. R. Buck, Discrete-Time Signal Processing.
Prentice Hall, 1989.

[41] L. R. Rabiner and S. R. W., Digital Processing of Speech Signals. Prentice Hall, 1978.

[42] P. Kanuparthy and C. Dovrolis, “Shaperprobe: End-to-end detection of isp traffic
shaping using active methods,” Proceedings of the 2011 ACM SIGCOMM Conference
on Internet Measurement Conference, 2011.

[43] “Smooth response data – MATLAB smooth.” https://www.mathworks.com/help/
curvefit/smooth.html. Accessed: 2017-04-20.

[44] S. Homayouni, V. Raida, and P. Svoboda, “CMPT: A methodology of comparing
performance measurement tools,” 2016 8th International Congress on Ultra Modern
Telecommunications and Control Systems and Workshops (ICUMT), 2016.

[45] “iPerf – Public iPerf3 servers.” https://iperf.fr/iperf-servers.php. Accessed:
2017-03-04.

[46] “Releases - meefik/busybox - github.” https://github.com/meefik/busybox/
releases. Accessed: 2017-10-27.

[47] “Android Studio.” https://developer.android.com/studio/index.html. Ac-
cessed: 2017-10-26.

[48] “Android Developers.” https://developer.android.com/index.html. Accessed:
2017-10-27.

[49] “Stack overflow.” https://stackoverflow.com/. Accessed: 2017-10-26.

[50] “Transmitting network data using Volley | Android Developers.” https://
developer.android.com/training/volley/index.html. Accessed: 2017-10-27.

[51] H. Holma and A. Toskala, HSDPA/HSUPA for UMTS: High Speed Radio Access for
Mobile Communications. John Wiley & Sons, 2006.

[52] H. Holma and A. Toskala, LTE for UMTS – OFDMA and SC-FDMA Based Radio
Access. John Wiley & Sons, 2009.

[53] “Apache CouchDB.” https://couchdb.apache.org/#about. Accessed: 2017-10-27.

[54] M. Rindler, P. Svoboda, and M. Rupp, “FLARP, fast lightweight available rate prob-
ing: Benchmarking mobile broadband networks,” 2017 IEEE International Confer-
ence on Communications (ICC), 2017.

99

[55] S. Homayouni, V. Raida, P. Svoboda, and M. Rupp, “The impact of duration and
settings of tcp measurements on available bandwidth estimation in mobile networks,”
IEEE International Symposium on Personal, Indoor and Mobile Radio Communica-
tions, Montreal, 2017.

[56] “RTR-NetTest.” https://www.netztest.at/en/. Accessed: 2017-03-09.

[57] “Open-RMBT.” https://github.com/alladin-IT/open-rmbt. Accessed: 2017-03-
09.

[58] “RMBT: Specification.” https://www.netztest.at/doc/. Accessed: 2017-03-09.

[59] “AKOStest.” https://www.akostest.net/en/. Accessed: 2017-10-27.

[60] “AKOStest – Open-Data.” https://www.akostest.net/en/opendata. Accessed:
2017-10-27.

[61] “Merač internetu.” https://www.meracinternetu.sk/en/about. Accessed: 2017-
10-27.

[62] “Merač internetu | open data.” https://www.meracinternetu.sk/en/opendata. Ac-
cessed: 2017-10-27.

[63] “RATEL NetTest.” https://www.nettest.ratel.rs/en/about. Accessed: 2017-10-
27.

[64] A. P. Foong, T. R. Huff, H. H. Hum, J. R. Patwardhan, and G. J. Regnier, “TCP per-
formance re-visited,” 2003 IEEE International Symposium on Performance Analysis
of Systems and Software. ISPASS 2003., 2003.

[65] B. Wun and P. Crowley, “Network i/o acceleration in heterogeneous multicore proces-
sors,” 14th IEEE Symposium on High-Performance Interconnects (HOTI’06), 2006.

[66] “The drawbacks of local packet captures | packet foo.” http://blog.packet-foo.
com/2014/05/the-drawbacks-of-local-packet-captures/. Accessed: 2017-11-
07.

[67] “TrafficStats | Android Developers.” https://developer.android.com/reference/
android/net/TrafficStats.html. Accessed: 2017-04-18.

[68] “ASU Wert – Signalstaerke messen und interpretieren.” http://www.lte-anbieter.
info/technik/asu.php. Accessed: 2017-11-09.

[69] C. Midoglu, L. Wimmer, and P. Svoboda, “Server link load modeling and request
scheduling for crowdsourcing-based benchmarking systems,” 2016 International Wire-
less Communications and Mobile Computing Conference (IWCMC), 2016.

[70] “RTR-NetTest | Statistics.” https://www.netztest.at/en/Statistik. Accessed:
2017-03-09.

100

