
Diplomarbeit

Development of a Robust Algorithm for the
Numerical Description of Gas Permeation Systems

ausgeführt zum Zwecke der Erlangung des akademischen Grades eines
Diplom-Ingenieurs unter der Leitung von

Ass.Prof. Dipl.-Ing. Dr. Michael Harasek

und der Betreuung von

Projektass. Dipl.-Ing. Werner Liemberger

E166
Institut für Verfahrenstechnik, Umwelttechnik und Technische Biowissenschaften

eingereicht an der Technischen Universität Wien
Fakultät für Maschinenwesen und Betriebswissenschaften

von

Daniel Halmschlager
Matrikelnummer 0926984

Wien, November 2017

Die approbierte Originalversion dieser Diplom-/
Masterarbeit ist in der Hauptbibliothek der Tech-
nischen Universität Wien aufgestellt und zugänglich.

http://www.ub.tuwien.ac.at

The approved original version of this diploma or
master thesis is available at the main library of the
Vienna University of Technology.

http://www.ub.tuwien.ac.at/eng

Abstract

Within the project HylyPure®, a process for the separation of hydrogen from a
mixture with methane has been developed at the Institute of Chemical, Environ-
mental, and Biological Engineering at TU Wien. This enables the usage of the
natural gas grid for the co-transport of hydrogen. The HylyPure® process includes
gas permeation and pressure swing adsorption steps. A test facility for both steps
was developed at TU Wien. For further optimization of the process, a solution
to efficiently simulate large parameter sets and complex flow sheets is required.
An algorithm for the numerical solution of gas permeation was developed and
published at the institute some years ago, but does not fulfill all the current needs.

This thesis presents vectorized gas permeation (vecgp), an enhanced algorithm
based on the finite difference method. Vecgp not only ensures stable calculations for
a wide range of gas permeation cases, but also significantly improves performance
and is able to solve multi component systems and configurations with high recovery
rates efficiently.

The new object oriented and modular implementation in MATLAB is designed
to allow easy expansion and re-usage of code while simultaneously improving user-
friendliness. Besides evaluating the mass transfer through membrane modules,
vecgp also provides pressure drop and energy balance calculation and allows
inclusion of real gas properties based on the best currently available models.

The core feature set is well tested and validated against the existing algorithm
and has successfully been used to simulate complex multi component processes
without any stability issues.

iii

Kurzfassung

Im Rahmen des Projektes HylyPure® wurde am Institut für Verfahrenstechnik,
Umwelttechnik und Technische Biowissenschaften ein Verfahren entwickelt um
Wasserstoff aus einer Mischung mit Erdgas zurückzugewinnen und so das Erdgas-
netz zum Wasserstoffkotransport zu nutzen. Der HylyPure®-Prozess besteht aus
Gaspermeations- und Druckwechseladsorptionsschritten. Eine Versuchsanlage
für beide Teile wurde and der TU Wien entwickelt. Zur weiteren Optimierung
des Prozesses wird eine Lösung zur effizienten Simulation großer Parameterfelder
und komplexer Fließschemata erforderlich. Ein Algorithmus zur Simulation von
Gaspermeation wurde vor einigen Jahren am Insistut entwickelt und publiziert,
welcher jedoch nicht alle derzeitigen Anforderungen erfüllt.

Diese Diplomarbeit stellt vecgp vor, einen aktualisierten und verbesserten Al-
gorithmus basierend auf der Finite-Differenzen-Methode. Vecgp ermöglicht nicht
nur stabile Berechnungen für eine große Anzahl an möglichen Prozesskonfigu-
rationen, sondern ist auch deutlich schneller und kann Multikomponentenfälle,
sowie Membranmodule mit hohen Rückgewinnungsraten effizient simulieren.

Die neue objektorientierte und modulare Implementierung in MATLAB stellt
sicher, dass der Code einfach erweitert und wiederverwendet werden kann. Ne-
ben der Simulation des Stofftransportes in Membranmodulen erlaubt vecgp auch
Druckverlust- und Energiebilanzberechnungen und ermöglicht die Verwendung
von Realgasdaten basierend auf den genauesten derzeit verfügbaren Modellen.

Die Kernfunktionen sind ausgiebig getestet und gegen den existierenden Algo-
rithmus validiert. Außerdem wurde vecgp auch schon erfolgreich zur Simulation
von komplexen mehrstufigen Prozessen eingesetzt.

v

Acknowledgement

I wish to thank Werner Liemberger for coming up with the idea and making this
thesis possible. Thank you for challenging and pushing my ideas, for providing
guidance when I was stuck, and for making sure that the code is well-tested (yes, I
am talking about the 100 000-something cases that kept the servers busy).

Additionally, I would like to thank Michael Harasek for giving me the freedom
to define the focus of the work myself while making sure that it is up to scientific
standards and has potential for impact.

Furthermore, I want to express my gratitude to the colleagues of the research
group Computational Fluid Dynamics for providing me with an inspiring place
to work and great conversations while the code was running – or while it was
producing errors.

A large thank you is also due for my family. To my parents Susanne and Günter
for supporting me on every step despite all distractions and delays, and to my sister
Verena who impressively showed me that a great master thesis does not need to
take one and a half years.

Last but not least to Eva. Thank you for all the emotional support, for keeping
me grounded, and for enduring my weird ways in (occasionally) stressful times.

vi

Contents

Abstract iii

Kurzfassung v

Acknowledgement vi

1 Introduction 1
1.1 Motivation and Problem Statement 1
1.2 Objectives of this Work . 2

2 Basics of Gas Permeation 3
2.1 Principles of Membrane Separation 3
2.2 Mathematical Description . 3
2.3 Concentration Polarization . 5

3 Numerical Approach 9
3.1 Basics of Numerical Modeling . 9

3.1.1 Classes of Differential Equations 9
3.1.2 Initial Value Problems and Boundary Value Problems 9
3.1.3 Solutions for Differential Equations 10
3.1.4 The Finite Difference Method 10
3.1.5 Iterative Solvers . 11
3.1.6 Relaxation . 13

3.2 General Approach . 13
3.2.1 Basics of Algorithm . 13
3.2.2 Flow Regimes . 14
3.2.3 Discretization . 14
3.2.4 Application of Finite Difference Schemes 16

3.3 Transmembrane Flux and Mass Balance 19
3.3.1 Governing Equations . 19
3.3.2 Boundary Conditions . 21
3.3.3 Discretization . 21
3.3.4 Ensuring Mass Balance by Limiting Flux 21

3.4 Pressure Drop Calculation . 23
3.4.1 Governing Equations . 23
3.4.2 Boundary Conditions . 26

vii

Contents

3.4.3 Discretization . 26
3.5 Energy Balance . 27

3.5.1 Governing Equations . 27
3.5.2 Boundary Conditions . 31
3.5.3 Discretization . 31

3.6 Full Algorithm . 35
3.6.1 Definition of the Problem . 35
3.6.2 Initialization . 36
3.6.3 Solution Procedure . 36

4 Implementation Details 41
4.1 Adaption of Under-Relaxation . 41
4.2 Calculation of Mixed Gas Properties 45

4.2.1 Basics of Property Calculation 45
4.2.2 Sources of Real Gas Properties 46
4.2.3 Fugacity Coefficients and Partial Pressures 47
4.2.4 Molar Volume and Density 47
4.2.5 Viscosity . 50
4.2.6 Thermal Conductivity . 51
4.2.7 Enthalpy and Heat Capacities 51

4.3 Delayed Activation of Pressure Drop and Energy Balance Calculation 52
4.4 Numerical Effects . 53
4.5 Performance Optimization . 54
4.6 Structure of Code . 55
4.7 Sanitization of Inputs . 56
4.8 Usage Examples . 57

4.8.1 Basic Setup of a Calculation 57
4.8.2 Using Real Gas Properties 59
4.8.3 Using External Loops to Solve for Non-Default Parameters . 60
4.8.4 Example of a Two-Stage Process 60

5 Validation of Algorithm 63
5.1 Comparison with Existing MATLAB Code 63

5.1.1 Description of Existing MATLAB Code 63
5.1.2 Definition of Test Cases . 63
5.1.3 Comparison of Results . 67
5.1.4 Comparison of Calculation Performance 67

5.2 Comparison with CFD . 78
5.2.1 Description of CFD Code . 78
5.2.2 Definition of Test Cases . 78
5.2.3 Comparison of Results . 79

viii

Contents

6 Parameter Variation 89
6.1 Description of Test Cases . 89
6.2 Variation of Cell Numbers . 89
6.3 Variation of Flux Limit Application 92
6.4 Variation of Cell Property Evaluation Mode 92
6.5 Ideal and Real Gas Properties at Different Pressure Levels 93
6.6 Pressure Drop and Energy Balance Calculation 93

7 Results and Discussion 95
7.1 Overview . 95
7.2 Variation of Cell Numbers . 95
7.3 Variation of Flux Limit Application 100
7.4 Variation of Cell Property Evaluation Mode 100
7.5 Ideal and Real Gas Properties at Different Pressure Levels 101
7.6 Pressure Drop and Energy Balance Calculation 101

8 Conclusion and Outlook 103

List of Figures 105

List of Tables 107

List of Symbols 109

List of Acronyms 111

References 113

ix

1 Introduction

1.1 Motivation and Problem Statement

A critical challenge the world is facing today is global warming, mainly driven by
human-caused green house gas emissions. One way to mitigate (or at least slow
down) this situation is to gradually shift energy sources away from fossil fuels
towards renewables. The generation of energy from renewable sources like wind
and solar power typically fluctuates, which makes balancing supply and demand
increasingly difficult. Amongst various other possible ways, excess electric energy
can be stored with the power-to-gas concept by producing hydrogen through
electrolysis of water.

In order to efficiently transport hydrogen, the HylyPure® process concept was
developed at the Institute of Chemical, Environmental, and Biological Engineering
at TU Wien in cooperation with OMV AG. The core of the concept is injecting
hydrogen into the existing natural gas grid at allowed concentrations (4 % (v/v) in
Austria, ÖVGW 2001, and 5 % (v/v) in Germany, DVGW 2013) and transporting
it with the stream. To efficiently extract the hydrogen, a hybrid process based on
membrane separation and pressure swing adsorption was designed. Additionally,
a test facility was developed that can operate with gas mixtures provided by OMV’s
Auersthal site (Liemberger et al. 2016; BMVIT 2015). Based on this test facility,
extensive experimental trials were conducted that showed promising results (Liem-
berger et al. 2017) . Additionally to the experiments, it was an objective to be able
to accurately simulate the process in order to allow easy parameter variations and
interconnection of multiple stages.

For the simulation of separation of gas mixtures with membranes, a solver
exists within the research group. This was developed by Makaruk and Harasek
(2009), focusing on a slightly different process. While this code works well for easy
cases, there are issues with stability in more complex cases (especially multiple
components) and at high recovery rates of single components. Additionally, the
implementation is not designed to allow simple interconnectivity with simulation
code for the adsorption stage, as no externally usable interfaces are provided.

While the focus of this work is on the membrane separation step of the HylyPure®

process, membranes are widely used for gas separation processes in various re-
newable energy applications (Makaruk et al. 2010; Scholz et al. 2013b; Abels et al.
2013; Chen et al. 2015).

1

1 Introduction

Simulation of gas permeation in general is a recently intensively researched
topic. Some authors use a very general numerical approach (Ahmad et al. 2015;
Binns et al. 2016; Feichtinger et al. 2014; Lock et al. 2014; Sharifian et al. 2016),
while others apply computational fluid dynamics (cfd) methods to membrane
separation processes (Haddadi Sisakht et al. 2016; Ahmad et al. 2015; Alkhamis
et al. 2013; Alkhamis et al. 2015). Additional research is focused on very specific
separation applications (often biogas) (Ahsan and Hussain 2015; T. G. Lassmann
2015; T. Lassmann et al. 2016; Lock et al. 2015a; Lock et al. 2015b; Ohenoja and
Sorsa 2015; Scholz et al. 2015). And there are also publications addressing specific
membrane shapes or aspects of the transport process (Hosseini et al. 2016a; P. K.
Kundu et al. 2013; Magnanelli et al. 2016; M. Szwast and Z. Szwast 2015; Xu and
Agrawal 1996b).

Overall, it seems a well-performing and flexible simulation algorithm might be
of high interest in many fields.

1.2 Objectives of this Work

The main objective of this work was to develop a new algorithm (and a reference
implementation), that addresses the shortcomings of the solver by Makaruk and
Harasek (2009). Given the circumstances, the most important factor to consider
was calculation stability for a wide range of cases, but in general the goals were
defined as:

• Algorithmic improvements to address complex cases

• Implementation with focus on modularity and performance

• Handling of multiple components, sweep gas streams, and variable permeate
outlet locations

• Capability to simulate complex multi-stage processes

• Development and inclusion of new features (like pressure drop and energy
balance calculation)

The aim of this thesis is to describe the developed algorithm. Its intention is to
thoroughly show the underlying mathematics and assumptions as well as some
key aspects of the implementation. While there are some usage examples and test
cases given in later chapters, this shall not be considered as a full documentation
of the implementation.

2

2 Basics of Gas Permeation

2.1 Principles of Membrane Separation

The following chapter focuses on the basics of gas permeation that are required to
derive the model used in chapter 3. A full introduction into membrane separation
would be out of scope for this thesis, but good coverage of these topics is available
in standard literature such as, e.g., Baker (2012) or Melin and Rautenbach (2007).

In general, membranes are layers that are able to separate substances by allowing
some components to permeate easier than others. For a transport process to occur
through a membrane, some kind of driving force is required. These driving forces
can be gradients in (partial) pressure, concentration, electrostatic charge, or, more
generalized, chemical potential. Depending on the application and material, mem-
branes can be dense or microporous. Electrically or chemically active membranes
are also possible (Baker 2012).

Various different types of membrane separation can be distinguished, depending
on the nature of the driving force and the type of substance to separate. Com-
monly used examples besides gas permeation are reverse osmosis, ultrafiltration,
microfiltration, pervaporation, and electrodialysis.

Membrane materials can be organic or inorganic and are a heavily researched
topic (Baker and Low 2014). For commercial membrane manufacturers, the exact
material compositions are typically strictly guarded trade secrets.

The final categorization criterion for membrane modules is the type of module
construction. While many different shapes are available, a primary distinction can
be made between flat and tubular modules (Melin and Rautenbach 2007).

Going forward, the focus of this work will only be on the type of module that
is modeled in the subsequent chapters, namely a hollow fiber module for gas
permeation based on a dense, organic membrane. Typical schematics of such a
hollow fiber module are shown in Fig. 2.1.

2.2 Mathematical Description

The transport process in dense membranes is typically described by the solution-
diffusion model (Baker 2012). Within this model it is assumed that when a com-
ponent permeates through the membrane, it is first dissolved in the membrane

3

2 Basics of Gas Permeation

Figure 2.1: Scheme of a Hollow Fiber Module (adapted from Melin and Rautenbach
2007, p. 163)

material and then transported through the membrane via diffusion. On the other
side of the membrane the component desorbs then again.

The diffusive transport is generally described by Fick’s law

�̇�″
𝑗 = −𝐷𝑗

𝑑𝑐𝑗

𝑑𝑧
(2.1)

where �̇�″
𝑗 is the diffusive flux of component 𝑗, 𝐷𝑗 is the diffusion coefficient, 𝑐𝑗 is

the concentration of component 𝑗 in the membrane, and 𝑧 is the coordinate through
the membrane.

Integrating over the thickness of the membrane, one obtains

�̇�″
𝑗 = 𝐷𝑗

𝑐𝐹,𝑗 − 𝑐𝑃,𝑗

𝑑𝑓
(2.2)

where 𝑐𝐹,𝑗 and 𝑐𝑃,𝑗 denote the concentration of the respective component in the
membrane.

At the interface between the membrane and the fluid, there has to be an equi-
librium of component 𝑗 in the fluid and in the membrane. Choosing a sorption
coefficient 𝐾 in the correct units, the concentration in the membrane can be related
to the partial pressure in the fluid:

𝑐𝐹,𝑗 = 𝐾𝑗 ⋅ 𝑝𝐹,𝑗 (2.3)
𝑐𝑃,𝑗 = 𝐾𝑗 ⋅ 𝑝𝑃,𝑗 (2.4)

The partial pressures 𝑝𝐹,𝑗 and 𝑝𝑃,𝑗 follow Dalton’s law for ideal gases:

𝑝𝐹,𝑗 = 𝑥𝐹,𝑗 𝑝𝐹 𝑝𝑃,𝑗 = 𝑥𝑃,𝑗 𝑝𝑃 (2.5)

4

2 Basics of Gas Permeation

It is also possible to handle non-ideal cases by introducing fugacity coefficients
𝜑:

𝑝𝐹,𝑗 = 𝜑𝐹,𝑗 𝑥𝐹,𝑗 𝑝𝐹 𝑝𝑃,𝑗 = 𝜑𝑃,𝑗 𝑥𝑃,𝑗 𝑝𝑃 (2.6)

Substituting the concentrations in (2.2) with the terms from (2.3) and (2.4), one
obtains:

�̇�″
𝑗 = 𝐷𝑗

𝐾𝑗 ⋅ 𝑝𝐹,𝑗 ⋅ 𝜑𝐹,𝑗 − 𝐾𝑗 ⋅ 𝑝𝑃,𝑗 ⋅ 𝜑𝑃,𝑗

𝑑𝑓
= 𝐷𝑗𝐾𝑗

𝑝𝐹,𝑗 ⋅ 𝜑𝐹,𝑗 − 𝑝𝑃,𝑗 ⋅ 𝜑𝑃,𝑗

𝑑𝑓
(2.7)

or in the ideal case

�̇�″
𝑗 = 𝐷𝑗𝐾𝑗

𝑝𝐹,𝑗 − 𝑝𝑃,𝑗

𝑑𝑓
(2.8)

The diffusion coefficient 𝐷, the sorption coefficient 𝐾, and the membrane thick-
ness 𝑑𝑓 can be combined into a single value, the membrane permeance Π:

Π𝑗 =
𝐷𝑗𝐾𝑗

𝑑𝑓
(2.9)

Thus the transmembrane flux can be described as

�̇�″
𝑗 = Π𝑗 (𝑝𝐹,𝑗 ⋅ 𝜑𝐹,𝑗 − 𝑝𝑃,𝑗 ⋅ 𝜑𝑃,𝑗) (2.10)

or in the ideal case
�̇�″

𝑗 = Π𝑗 (𝑝𝐹,𝑗 − 𝑝𝑃,𝑗) (2.11)

Equation (2.10) describes the local transmembrane flux based on the local partial
pressures. In order to apply this local equation to full membrane module, some
additional steps are required. This is shown in detail in chapter 3.

2.3 Concentration Polarization

Concentration polarization describes the effect that a concentration gradient forms
in the fluid phases (Baker 2012). This means that the fluid that interacts with the
membrane does not necessarily have the same composition as the fluid in the bulk,
as is shown in Fig. 2.2.

The effect occurs when the transport of components within the fluid is slower
or not significantly faster than the mass transport through the membrane and
therefore a boundary layer is formed. Concentration polarization affects separation
processes with liquids (e.g., reverse osmosis) more severely, as the rate of diffusion
in liquids is much lower than in gases. Nevertheless, the effect is observable in gas

5

2 Basics of Gas Permeation

Figure 2.2: Concentration Polarization: Concentration gradients exist in the fluid
phases (Baker 2012, p. 180)

6

2 Basics of Gas Permeation

phases as well. A detailed description including mathematical models is giving in
Baker (2012).

The algorithm presented in this work does not directly consider concentration
polarization effects, but it might be possible to emulate the behavior using the flux
limit introduced in section 3.3.4.

7

3 Numerical Approach

3.1 Basics of Numerical Modeling

3.1.1 Classes of Differential Equations

In order to “calculate” real world processes, mathematical models have to be found
that describe the relevant phenomena. Many of these processes (especially in mass
transfer operations) are based on some quantities changing over space and/or
time. The mathematical description for these changes typically involves differential
equations (des).

Generally, des can be split into ordinary differential equations (odes), which
only contain derivatives in one variable, and partial differential equations (pdes),
which have partial derivatives in two or more variables. An additional way of
classifying des is into linear and nonlinear ones. Linear des only consist of linear
combinations of the unknown variable and its derivatives, whereas for nonlinear
des any combination is possible. Finally, des can be classified by the highest order
of the occurring derivatives and whether a single de or a system of equations is
considered. As shown in Bärwolff (2016, p. 233), any de of higher order can easily
be transformed into a first order de system.

3.1.2 Initial Value Problems and Boundary Value Problems

Solutions for des themselves are not unique, as they typically include arbitrary
constants (for odes) or arbitrary functions (for pdes). In order to obtain a unique
solution it is required to impose some additional restrictions on the solution. There
are two possible ways to specify these additional restrictions: One is to define
conditions for the solution on one single location in the domain of the independent
variable, which leads to an initial value problem (ivp). The other is to define the
conditions on (different) boundaries of the domain, which leads to a boundary
value problem (bvp).

Note that a single first order ode cannot really be transformed into a bvp, as only
a single constant exists in the solution. Therefore, only one “boundary” condition
can be specified, which leads to a plain ivp. This changes when a first order de
system is considered, as a condition for every single equation can be set there.

9

3 Numerical Approach

3.1.3 Solutions for Differential Equations

While it is possible to solve some classes of des analytically (especially simple
linear ones), there are many des which are either unfeasible or downright not
possible to solve analytically. Rather than trying to find an analytical solution,
many disciplines of engineering now focus on calculating approximate numerical
solutions for their models.

The methods by which numerical solutions can be acquired are manyfold. Bär-
wolff (2016) and Bornemann (2016) give concise introductions to numerical meth-
ods in general, whereas Deuflhard and Hohmann (2003), Freund and Hoppe
(2007), and Dahmen and Reusken (2008) are somewhat more detailed. Alterna-
tively, Lindfield and Penny (2012) and Mathew and Fink (2004) introduce the topic
in a practical way using MATLAB.

The basic numerical methods (e.g. the Euler method or Runge-Kutta solvers)
typically cannot be used directly to solve bvps, as these solvers start at one specific
point in the domain and calculate the solution from there. A simple approach to
solve bvps is found in the shooting method, which starts with guesses for the initial
values, calculates the solution using some basic numerical method and checks if
the boundary conditions are met. If not, new initial values are chosen and the
solution is calculated again. While this method is quite efficient for linear problems,
as linear interpolation between two guesses is possible, the efficiency for nonlinear
problems can vary greatly. An alternative, widely-used approach for solving bvp is
the finite element method (see Grossmann et al. 2007; Larsson and Thomée 2009).

The algorithm presented in the following sections employs another commonly
used approach, the finite difference method (fdm). In previous work of the research
group that this thesis originates in, Makaruk and Harasek (2009) also used the
fdm in their algorithm. Their algorithm serves as a basis for this work and is
subsequently referred to as (makaruk).

3.1.4 The Finite Difference Method

When applying the fdm to solve a bvp, the domain of the solution is discretized into a
finite number of grid points. The derivatives in the des are approximated with finite
differences, which transforms the de system into a system of algebraic equations.
It is possible to derive the finite differences to substitute arbitrary derivatives by
using the Taylor Series expansion (see Lindfield and Penny 2012, p. 187). As the des
under consideration only contain first order derivatives, higher order derivatives
will not be considered in the following part.

There exist three simple finite difference approximations for first order differ-

10

3 Numerical Approach

ences:

Forward differencing: 𝑓 ′(𝑥) ≈
𝑓 (𝑥 + Δ𝑥) − 𝑓 (𝑥)

Δ𝑥

Backward differencing: 𝑓 ′(𝑥) ≈
𝑓 (𝑥) − 𝑓 (𝑥 − Δ𝑥)

Δ𝑥

Central differencing: 𝑓 ′(𝑥) ≈
𝑓 (𝑥 + 1

2Δ𝑥) − 𝑓 (𝑥 − 1
2Δ𝑥)

Δ𝑥
When deriving these approximations using Taylor Series expansion it can be

shown that forward and backward differencing have errors of 𝒪 (Δ𝑥), while central
differencing has an error of 𝒪 (Δ𝑥2).

A simplification in notation can be made if it is assumed that all grid points are
spaced evenly (with a distance of Δ𝑥):

𝑓 (𝑥𝑖) = 𝑓𝑖
𝑓 (𝑥𝑖 + Δ𝑥) = 𝑓𝑖+1

𝑓 (𝑥𝑖 − Δ𝑥) = 𝑓𝑖−1

𝑓 (𝑥𝑖 + 2Δ𝑥) = 𝑓𝑖+2

𝑓 (𝑥𝑖 +
1
2

Δ𝑥) = 𝑓𝑖+ 1
2

⋯

Forward differencing: 𝑓 ′
𝑖 ≈

𝑓𝑖+1 − 𝑓𝑖
Δ𝑥

(3.1)

Backward differencing: 𝑓 ′
𝑖 ≈

𝑓𝑖 − 𝑓𝑖−1

Δ𝑥
(3.2)

Central differencing: 𝑓 ′
𝑖 ≈

𝑓𝑖+ 1
2

− 𝑓𝑖− 1
2

Δ𝑥
(3.3)

When these approximations are applied at all 𝑛 grid points, one obtains a system
of algebraic equations in 𝑓1, 𝑓2, … , 𝑓𝑛, where the specified boundary conditions can
be included easily. If a de system has to be solved, the approximations have to be
applied to each of the coupled equations, which in turn also results in a system
of algebraic equations. Whether the obtained system of equations is linear or
not depends directly on the underlying de (a linear de leads to a linear system
of equations and vice versa). As the differencing schemes mentioned above only
depend on the values of the neighboring grid points, the resulting system of
equations is typically sparse.

3.1.5 Iterative Solvers

There are many methods available for solving systems of algebraic equations, both
linear and nonlinear (see e.g. Bärwolff 2016). Commonly used iterative methods

11

3 Numerical Approach

are the Jacobi method and the Gauss-Seidel method. Both of these methods have
initially been developed for solving systems of linear equations, but have also
been successfully applied to solve nonlinear systems. The basic approach for
both methods is similar: Each of the 𝑛 variables can be expressed in terms of the
other variables (and the boundary conditions). For nonlinear cases, it is often not
possible to explicitly express a variable, but rather using an implicit equation. In
consequence, this means the variable can be expressed in terms of itself, the other
variables, and the boundary conditions.

So for the linear case, one can write

𝑓𝑖 =
𝑛

∑
𝑗=1
𝑗≠𝑖

(𝑐𝑖,𝑗 ⋅ 𝑓𝑗) + 𝑏𝑖 (3.4)

where 𝑐𝑖,𝑗 describes the coefficients with which the other variables are considered
and 𝑏𝑖 describes the boundary conditions (if applicable). In a more general, nonlin-
ear case, the equation can be written as

𝑓𝑖 = 𝑔 (𝑓1, 𝑓2, … , 𝑓𝑛, 𝑏1, 𝑏2, … , 𝑏𝑛) (3.5)

where 𝑏𝑖 again represents the boundary conditions.
For one single iteration step 𝑘 + 1, each of the 𝑛 variables is calculated one after

the other, where the right-hand side (rhs) of (3.4) or (3.5) is assumed constant at
previously calculated values. The difference between the Jacobi method and the
Gauss-Seidel method lies in the choice of the values for the rhs. While the Jacobi
method always uses all values from the previous (𝑘th) iteration, the Gauss-Seidel
method uses the values already calculated in the current ((𝑘 + 1)th) iteration for
variables where these values are available. Assuming that the iteration step starts
at variable 1 and moves towards 𝑛 this means that once variable 𝑖 is reached, the
values of variables 1 to 𝑖 − 1 are already calculated in the current iteration step and
can be used.

Mathematically, one iteration step can be described as follows:

Jacobi:

Linear: 𝑓 (𝑘+1)
𝑖 =

𝑛
∑
𝑗=1
𝑗≠𝑖

(𝑐𝑖,𝑗 ⋅ 𝑓 (𝑘)
𝑗) + 𝑏𝑖 (3.6)

Nonlinear: 𝑓 (𝑘+1)
𝑖 = 𝑔 (𝑓 (𝑘)

1 , 𝑓 (𝑘)
2 , … , 𝑓 (𝑘)

𝑛 , 𝑏1, 𝑏2, … , 𝑏𝑛) (3.7)

Gauss-Seidel:

Linear: 𝑓 (𝑘+1)
𝑖 =

𝑖−1
∑
𝑗=1

(𝑐𝑖,𝑗 ⋅ 𝑓 (𝑘+1)
𝑗) +

𝑛
∑

𝑗=𝑖+1
(𝑐𝑖,𝑗 ⋅ 𝑓 (𝑘)

𝑗) + 𝑏𝑖 (3.8)

Nonlinear: 𝑓 (𝑘+1)
𝑖 = 𝑔 (𝑓 (𝑘+1)

1 , … , 𝑓 (𝑘+1)
𝑖−1 , 𝑓 (𝑘)

𝑖 , 𝑓 (𝑘)
𝑖+1, … , 𝑓 (𝑘)

𝑛 , 𝑏1, … , 𝑏𝑛) (3.9)

12

3 Numerical Approach

3.1.6 Relaxation

For systems of linear equations, a sufficient condition for the convergence of (3.6)
and (3.8) is an irreducible diagonally dominant matrix, although both methods
may also converge if these conditions are not fulfilled (Bärwolff 2016, pp. 197–199).
In the nonlinear case, a general condition for convergence cannot be given as this
depends on the local behavior of the iteration function at the desired solution. In
order to improve the convergence behavior, an additional step called relaxation
can be introduced into both the Jacobi and the Gauss-Seidel method. First, let the
result 𝑓 (𝑘+1)

𝑖 of (3.6) to (3.8) be denoted as ̂𝑓 (𝑘+1)
𝑖 . Then the relaxation step can be

described as
𝑓 (𝑘+1)
𝑖 = 𝜔 ⋅ ̂𝑓 (𝑘+1)

𝑖 + (1 − 𝜔) ⋅ 𝑓 (𝑘)
𝑖 (3.10)

where 𝜔 is called the relaxation parameter. Using an 𝜔 > 1 the resulting step
is called over-relaxation, whereas 𝜔 > 1 results in under-relaxation. Generally,
convergence is possible for 0 < 𝜔 < 2 Bärwolff (see 2016, p. 201), but as stated
above, not all systems do actually converge for any given 𝜔. There is no universal
recommendation for values of 𝜔 as this is heavily dependent on the specifics of
the system to solve. Over-relaxation can significantly improve convergence speed
for systems where convergence is not a problem. Under-relaxation, on the other
hand, can result in convergence for otherwise not converging systems (at the price
of lower convergence speeds).

Considering the effects stated above, it can be seen that the choice of 𝜔 heavily
impacts the convergence speed. It is therefore advisable to make sure the selected
𝜔 results in favorable convergence behavior.

3.2 General Approach

3.2.1 Basics of Algorithm

Based on the foundations presented in section 3.1, the remainder of this chapter will
be used to introduce an algorithm that is able to solve the flux equations introduced
in section 2.2 for hollow fiber membrane modules. Additionally, calculation of
pressure drop is handled as well as solving the energy balance (also taking into
account the Joule-Thomson effect if required). In this chapter the focus will be on
a general description of the algorithm, whereas specific details of the reference
implementation will be described in Chapter 4.

In the Algorithm, the basic working element is a stream. Each stream consists of
a set of properties: the molar flows for each component, temperature, pressure,
and a list of components (i.e. the single pure gases). All other properties required
by calculations are computed, either using formulae or by looking them up in

13

3 Numerical Approach

interpolation tables. A detailed description of property calculation is given in
section 4.2.

3.2.2 Flow Regimes

As stated by Melin and Rautenbach (2007, pp. 152 sqq.), there is a variety of possible
flow configurations in a module. This algorithm only focuses on co-current and
counter-current flow regimes (as shown in Fig. 3.1 and does not provide means
for direct calculation of cross-flow regimes. The selection of co-current or counter-
current flow is not binary, though. Rather, it is possible to specify the permeate
outlet location as a continuous value between 0 (at feed inlet) and 1 (at retentate
outlet). This splits the module in two parts: The first part between the feed inlet and
the permeate outlet is considered to be co-current flow, whereas the second part
from the permeate outlet to the retentate outlet is considered to be counter-current
flow. Pure co-current or counter-current flow can be specified by setting the outlet
parameter location to 1 or 0 respectively. A visual representation of the possible
configurations is given in Fig. 3.1.

3.2.3 Discretization

The idea behind the discretization in this algorithm is to split the membrane
module into 𝑛 cells on both the feed and permeate side. In each cell, all properties
are assumed to be constant and ideally mixed. Both the first (index 1) and last
(index 𝑛) cell do not represent parts of the membrane module, but are only used to
store boundary conditions. This means that the membrane area and length of the
module are split into 𝑛 − 2 equally sized cells. The index of the permeate outlet
cell is calculated from the (continuous) permeate outlet 𝑜 as:

𝑜𝑢𝑡 = ⌊2 + 𝑜 ⋅ (𝑛 − 3)⌉ with 𝑜 ∈ [0, 1] (3.11)

The model of cells by itself is, though, not suitable to describe a discretization
that can be used with the fdm. As stated in section 3.1.4, the fdm does use grid
points (i.e. locations in the domain) for discretization rather than cells (i.e. elements
that span finite parts of the domain).

The link between the easy to understand cell model and a mathematically suit-
able grid model is now defined as follows: Grid points are always located at the
downstream end of a cell. This means that on the feed side, the grid point 𝑖 is
located at the interface between cells 𝑖 and 𝑖 + 1. On the permeate side, the relation
is different for the co-current and the counter-current section. In the co-current
section the grid point 𝑖 is also located at the interface between cells 𝑖 and 𝑖 + 1.
In the counter-current section, though, the grid point 𝑖 is located at the interface
between cells 𝑖 and 𝑖 − 1. As the permeate outlet cell marks the border between the

14

3 Numerical Approach

(a) Pure Co-Current Flow

(b) Pure Counter-Current Flow

(c) Partly Co-Current / Partly Counter-Current Flow

Figure 3.1: Possible Flow Regime Configurations in the Modeled Module

15

3 Numerical Approach

co-current and the counter-current section, both faces to the neighboring cells are
considered to be upstream. Therefore, the grid point 𝑜𝑢𝑡 represents the permeate
leaving the module (which actually is the “downstream” value of the outlet cell).
The location of storage points is visualized in Fig. 3.2.

Figure 3.2: Location of Grid Points in Discretization

3.2.4 Application of Finite Difference Schemes

Having defined a mathematically suitable grid, one can now apply the finite differ-
ence approximations on it. By shifting the evaluation points, and assuming the
approximations to be equations one can rewrite (3.1) to (3.3) as:

Forward differencing: 𝑓 ′
𝑖−1 =

𝑓𝑖 − 𝑓𝑖−1

Δ𝑥

Backward differencing: 𝑓 ′
𝑖 =

𝑓𝑖 − 𝑓𝑖−1

Δ𝑥

Central differencing: 𝑓 ′
𝑖− 1

2
=

𝑓𝑖 − 𝑓𝑖−1

Δ𝑥

Compared to the original equations now the rhs is the same for all three differencing
schemes, but the evaluation point of the derivative has changed in the left-hand
side (lhs). Rearranging the equations in order to isolate 𝑓𝑖 on the lhs leads to:

Forward differencing: 𝑓𝑖 = 𝑓𝑖−1 + Δ𝑥 ⋅ 𝑓 ′
𝑖−1

Backward differencing: 𝑓𝑖 = 𝑓𝑖−1 + Δ𝑥 ⋅ 𝑓 ′
𝑖

Central differencing: 𝑓𝑖 = 𝑓𝑖−1 + Δ𝑥 ⋅ 𝑓 ′
𝑖− 1

2

These expressions are now in a form that can be used by an iterative solver. It can
be seen that the difference between the schemes now only lies in the evaluation
point of the derivative in the rhs. In the previous expressions, the values were

16

3 Numerical Approach

expressed in terms of the previous grid point. Alternatively, it is also possible to
express them in terms of the following grid point to allow calculating backwards:

Forward differencing: 𝑓𝑖 = 𝑓𝑖+1 − Δ𝑥 ⋅ 𝑓 ′
𝑖

Backward differencing: 𝑓𝑖 = 𝑓𝑖+1 − Δ𝑥 ⋅ 𝑓 ′
𝑖+1

Central differencing: 𝑓𝑖 = 𝑓𝑖+1 − Δ𝑥 ⋅ 𝑓 ′
𝑖+ 1

2

The transport equations under consideration typically define the term 𝑓 ′
𝑖 as a

function of properties 𝐱 at location 𝑖 and location independent properties 𝐲:

𝑓 ′
𝑖 = 𝑔 (𝐱𝑖, 𝐲)

Evaluating the function 𝑔 is trivial for forward and backward differencing, as all
location-dependent properties 𝐱 are stored at each grid point and are therefore
available at location 𝑖. For central differencing, no values of 𝐱 are available at
location 𝑖 − 1

2 (or 𝑖 + 1
2). Central differencing might be preferable to use, though, as

it provides second order accuracy, whereas forward and backward differencing
only provide first order accuracy. In order to bypass the issue, 𝑔 (𝐱𝑖− 1

2
, 𝐲) can

be estimated using 𝐱𝑖−1 and 𝐱𝑖 by averaging the result. Two possible options for
averaging come into mind:

̄𝑔 (𝐱𝑖− 1
2
, 𝐲) = avg (𝑔 (𝐱𝑖−1, 𝐲) , 𝑔 (𝐱𝑖, 𝐲))

̄𝑔 (𝐱𝑖− 1
2
, 𝐲) = 𝑔 (avg (𝐱𝑖−1, 𝐱𝑖) , 𝐲)

The first option evaluates the function 𝑔 for both locations 𝑖 − 1 and 𝑖 and then
averages the result. The second option averages the parameters at locations 𝑖−1 and
𝑖 and then evaluates the function 𝑔 with the averaged parameters. If the averaging
operation (e.g. arithmetic mean) and the function 𝑔 are linear, then both options
lead to identical results. This is not the case when either the averaging operation
(e.g. logarithmic mean) or the function 𝑔 are nonlinear.

Although the first option shows some ideas similar to the tried and tested Crank-
Nicolson method (Crank et al. 1947), it cannot be decided upfront which of the
two options is preferable, as the results depend heavily on the specific functions.
Under the assumption that the function 𝑔 is computationally significantly more
expensive than the averaging operation, applying the averaging operation on all
properties is probably cheaper than calling the function 𝑔 twice.

The presented algorithm allows the choice of 4 different options for evaluating
the function 𝑔:

Upstream The function 𝑔 is evaluated at the upstream end of a cell, which means
forward differencing in flow direction. As the flow is directed in negative
direction in the counter-current section of the permeate side, this implies
backward differencing in terms of the grid coordinates in this section.

17

3 Numerical Approach

Downstream The function 𝑔 is evaluated at the downstream end of a cell, which
means backward differencing in flow direction. As the flow is directed in
negative direction in the counter-current section of the permeate side, this
implies forward differencing in terms of the grid coordinates in this section.

Arithmetic average The function 𝑔 is evaluated with an arithmetic average of the
downstream and upstream properties. A compact notation for an arithmetic
average is:

arithm.
𝐱⟨𝑖−1, 𝑖⟩ =

𝐱𝑖−1 + 𝐱𝑖

2

Logarithmic average The function 𝑔 is evaluated with an logarithmic average of the
downstream and upstream properties. A compact notation for a logarithmic
average is:

log.
𝐱⟨𝑖−1, 𝑖⟩ =

⎧{{
⎨{{⎩

𝐱𝑖−1 − 𝐱𝑖

ln 𝐱𝑖−1 − ln 𝐱𝑖
if 𝐱𝑖−1 ≠ 𝐱𝑖

𝐱𝑖 if 𝐱𝑖−1 = 𝐱𝑖

For both averaging options, averaging is typically applied at the level of interme-
diary properties. This means that if the function 𝑔 depends on for example the
partial pressures, then the averaging is applied directly for the partial pressures
and not for the underlying properties (total pressure and molar fraction). Detailed
descriptions which properties are averaged are given in the respective sections.

As the choice of evaluation location is present in many equations throughout
the algorithm, a notation is introduced which indicates that the property is calcu-
lated according to the selected method: 𝐱⟨𝑖⟩. This notation evaluates to a different
expression depending on the choice of evaluation, whether it is a feed side or a
permeate side property, and the location of 𝑖. It is only defined for 2 ≤ 𝑖 ≤ 𝑛 − 1, as
𝑖 = 1 and 𝑖 = 𝑛 do not correspond to cells, but are only the boundary values. For
the feed side, any property 𝐱𝐹,⟨𝑖⟩ evaluates to:

𝐱𝐹,⟨𝑖⟩ =

⎧{{{{
⎨{{{{⎩

𝐱𝐹,𝑖−1 if upstream
𝐱𝐹,𝑖 if downstream

arithm.
𝐱𝐹,⟨𝑖−1, 𝑖⟩ if arithmetic average

log.
𝐱𝐹,⟨𝑖−1, 𝑖⟩ if logarithmic average

(3.12)

On the permeate side, the expression depends on the location of 𝑖. The evaluation
location for the outlet cell is always the downstream value, as there is no unique
upstream side.

18

3 Numerical Approach

For 𝑖 < 𝑜𝑢𝑡:

𝐱𝑃,⟨𝑖⟩ =

⎧{{{{
⎨{{{{⎩

𝐱𝑃,𝑖−1 if upstream
𝐱𝑃,𝑖 if downstream

arithm.
𝐱𝑃,⟨𝑖−1, 𝑖⟩ if arithmetic average

log.
𝐱𝑃,⟨𝑖−1, 𝑖⟩ if logarithmic average

(3.13)

For 𝑖 = 𝑜𝑢𝑡:

𝐱𝑃,⟨𝑖⟩ = 𝐱𝑃,𝑖 (3.14)

For 𝑖 > 𝑜𝑢𝑡:

𝐱𝑃,⟨𝑖⟩ =

⎧{{{{
⎨{{{{⎩

𝐱𝑃,𝑖+1 if upstream
𝐱𝑃,𝑖 if downstream

arithm.
𝐱𝑃,⟨𝑖+1, 𝑖⟩ if arithmetic average

log.
𝐱𝑃,⟨𝑖+1, 𝑖⟩ if logarithmic average

(3.15)

3.3 Transmembrane Flux and Mass Balance

3.3.1 Governing Equations

The formulation of the equations for transmembrane flux are based on Makaruk
and Harasek (2009). One general change is that the unit used to describe the flows
in the feed and permeate channel is mole flows (mol s−1) rather than standard
temperature and pressure (stp) volume flows.

If it can be assumed that the only change happening inside the feed and permeate
channel is due to transmembrane flux, the local mass conservation equations can
be written as

𝑑 ̇𝑛𝐹,𝑗

𝑑𝑙
= −�̇�′

𝑗

𝑑 ̇𝑛𝑃,𝑗

𝑑𝑙
= �̇�′

𝑗 (3.16)

where �̇�′
𝑗 denotes the length-specific transmembrane flux. As described in sec-

tion 2.2, the transmembrane flux can be described using the solution-diffusion
model:

�̇�′
𝑗 = �̇�″

𝑗 ⋅ 𝐴′ = Π𝑗 ⋅ (𝑝𝐹,𝑗 − 𝑝𝑃,𝑗) ⋅ 𝐴′ (3.17)

In general, the permeance Π of component 𝑗 can be a function of pressure, temper-
ature, and composition on both the feed and permeate side:

Π𝑗 = Π𝑗 (𝑝𝐹, 𝑝𝑃, 𝑇𝐹, 𝑇𝑃, 𝑥𝐹,1, … , 𝑥𝐹,𝑚, 𝑥𝑃,1, … , 𝑥𝑃,𝑚)

19

3 Numerical Approach

There have been many attempts to model variable permeances, but these models
typically depend on various parameters that have to be determined experimentally
(Bounaceur et al. 2017; Scholz et al. 2013a; Ahmad et al. 2013; Hosseini et al. 2016b;
P. Kundu et al. 2013).

As conducting experiments to find these parameters is not part of the scope
of this work and using such models without sensible values for the parameters
would not lead to results that can be validated, the per-component permeances
were modeled to be constant. The implementation was, however, designed to be
adaptable so that any variable permeance model can easily be implemented in the
future.

The partial pressures of component 𝑗 can be expressed as

𝑝𝐹,𝑗 = 𝑥𝐹,𝑗 𝑝𝐹 𝑝𝑃,𝑗 = 𝑥𝑃,𝑗 𝑝𝑃 (3.18)

for ideal gases that follow Dalton’s law. As stated in section 2.2, non-ideal cases
can be handled by introducing fugacity coefficients 𝜑:

𝑝𝐹,𝑗 = 𝜑𝐹,𝑗 𝑥𝐹,𝑗 𝑝𝐹 𝑝𝑃,𝑗 = 𝜑𝑃,𝑗 𝑥𝑃,𝑗 𝑝𝑃 (3.19)

The local mass conservation equations for single components are coupled by the
definition of the molar fraction 𝑥𝑗 of a component:

𝑥𝐹,𝑗 =
̇𝑛𝐹,𝑗

𝑚
∑
𝑙=1

̇𝑛𝐹,𝑙

𝑥𝑃,𝑗 =
̇𝑛𝑃,𝑗

𝑚
∑
𝑙=1

̇𝑛𝑃,𝑙

(3.20)

These expressions are essential to the algorithm as they link the component specific
mass conservation equations (3.16) to the other components. While there may
be other sources of nonlinearity, like variable permeance models, non-ideal gas
behavior, or the calculation of pressure drop and energy balance introduced in
Sections 3.4 and 3.5, these expressions are the primary reason that even the most
simple calculation results in a nonlinear de system.

Finally, 𝐴′ denotes the length specific membrane area and can be calculated as:

𝐴′ =
𝐴
𝑙

= 𝑛𝑓 ⋅ 𝐷𝐴 ⋅ 𝜋 (3.21)

It has to be noted that these equations only cover transport across the membrane
from the feed channel to the permeate channel (and vice versa). Inside both chan-
nels, the only transport considered is the flow. Diffusion alongside the channels
is not considered. For the geometries under consideration, though, the speed of
the convective transport with the flow is typically much higher than the speed of
diffusion. Thus the neglect of these effects is justified.

20

3 Numerical Approach

3.3.2 Boundary Conditions

The relevant boundary conditions for the equations describing transmembrane
flux are of Dirichlet type and located at all three module inlets (feed, co-current
sweep gas – 𝑆𝑤𝑒𝑒𝑝0, counter-current sweep gas – 𝑆𝑤𝑒𝑒𝑝1). There the molar flows
for each component are fully specified:

̇𝑛𝐹,𝑗,1 = ̇𝑛𝐹𝑒𝑒𝑑,𝑗 ̇𝑛𝑃,𝑗,1 = ̇𝑛𝑆𝑤𝑒𝑒𝑝0,𝑗 ̇𝑛𝑃,𝑗,𝑛 = ̇𝑛𝑆𝑤𝑒𝑒𝑝1,𝑗 (3.22)

Therefore, the direction of calculation has to be from the inlets towards the outlets,
which means from the feed inlet to the retentate outlet on the feed side and from
both sweep gas inlets to the permeate outlet on the permeate side.

3.3.3 Discretization

Using the notation introduced in section 3.2.4, the mass conservation
equations (3.16) can be discretized as

̇𝑛𝐹,𝑗,𝑖 =
⎧{
⎨{⎩

̇𝑛𝐹,𝑗,𝑖−1 − �̇�𝑗,𝑖 for 2 ≤ 𝑖 ≤ 𝑛 − 1
̇𝑛𝐹,𝑗,𝑖−1 for 𝑖 = 𝑛

(3.23)

̇𝑛𝑃,𝑗,𝑖 =

⎧{{
⎨{{⎩

̇𝑛𝑃,𝑗,𝑖−1 + �̇�𝑗,𝑖 for 2 ≤ 𝑖 ≤ 𝑜𝑢𝑡 − 1
̇𝑛𝑃,𝑗,𝑖−1 − ̇𝑛𝑃,𝑗,𝑖+1 + �̇�𝑗,𝑖 for 𝑖 = 𝑜𝑢𝑡
̇𝑛𝑃,𝑗,𝑖+1 − �̇�𝑗,𝑖 for 𝑜𝑢𝑡 + 1 ≤ 𝑖 ≤ 𝑛 − 1

(3.24)

where
�̇�𝑗,𝑖 = �̇�′

𝑗,𝑖Δ𝑙 = Π𝑗,⟨𝑖⟩ ⋅ (𝑝𝐹,𝑗,⟨𝑖⟩ − 𝑝𝑃,𝑗,⟨𝑖⟩) ⋅ 𝐴′Δ𝑙 (3.25)

As Π𝑗,𝑖 is assumed to be a constant Π𝑗 in the current implementation, dependency on
location specific property does not exist. If one wants to integrate such dependency,
the properties to be used are to be subject to the selection of evaluation location
like 𝑝𝐹,𝑗,⟨𝑖⟩ and 𝑝𝑃,𝑗,⟨𝑖⟩.

The remaining variables substitutions can be transferred directly from equa-
tions (3.18), (3.19), (3.20), and (3.21). Thus the discretization is fully described.

3.3.4 Ensuring Mass Balance by Limiting Flux

The discretized version can lead to specific issues when solved iteratively. During
a single iteration step, �̇�𝑗,𝑖 is assumed to be constant. There are parameters in
equation (3.25) that can reach arbitrarily high values (e.g. 𝐴′ or Π𝑗,𝑖), which means
that �̇�𝑗,𝑖 can reach arbitrarily high values. For the feed side, this leads to a prob-
lematic state when �̇�𝑗,𝑖 becomes larger in value than ̇𝑛𝐹,𝑗,𝑖−1. This would mean that

21

3 Numerical Approach

the amount of mass flowing through the membrane is higher than the amount of
mass reaching the segment of the membrane, which is a clear violation of the mass
balance. The result would be that ̇𝑛𝐹,𝑗,𝑖 becomes negative and therefore, due to the
equations linking molar fractions to component flows (3.20), the calculated molar
fractions would become negative. In turn, severe numerical issues would arise,
which typically result in a non-converging solution.

Furthermore, the transmembrane flux �̇�𝑗,𝑖 is not necessarily positive, as situa-
tions where the permeate side partial pressure is higher than the feed side partial
pressure are possible. Therefore the same adverse effects are also possible on the
permeate side.

It has to be noted, that ̇𝑛𝑃,𝑗,𝑖 is typically negative in the region of counter-current
flow (for 𝑖 ≥ 𝑜𝑢𝑡 + 1) due to the way the streams are described mathematically.
There the issues arise when single values of ̇𝑛𝑃,𝑗,𝑖 become positive.

A possible solution for these issues would be to algorithmically force the signs
of ̇𝑛𝐹,𝑗,𝑖 and ̇𝑛𝑃,𝑗,𝑖, but this would lead to inconsistent solution behavior as the value
of �̇�𝑗,𝑖 would not correspond to the change of ̇𝑛𝐹,𝑗,𝑖 and ̇𝑛𝑃,𝑗,𝑖 anymore.

The approach taken in the presented algorithm is to introduce a new value, ̂�̇�𝑗,𝑖
which is a limited transmembrane flux that avoids the numerical issues described
above. The basic idea is to compare the calculated transmembrane flux to the
corresponding available amount on the feed or permeate side.

The algorithm allows for two possible options to calculate the limited flux:

• applying a hard cut at the reference value

• dampening the transmembrane flux with a smooth function

First, the reference value has to be selected:

�̇�𝑟𝑒𝑓 ,𝐹,𝑗,𝑖 = ̇𝑛𝐹,𝑗,𝑖−1 (3.26)

�̇�𝑟𝑒𝑓 ,𝑃,𝑗,𝑖 =

⎧{{
⎨{{⎩

̇𝑛𝑃,𝑗,𝑖−1 for 2 ≤ 𝑖 ≤ 𝑜𝑢𝑡 − 1
̇𝑛𝑃,𝑗,𝑖−1 − ̇𝑛𝑃,𝑗,𝑖+1 for 𝑖 = 𝑜𝑢𝑡

− ̇𝑛𝑃,𝑗,𝑖+1 for 𝑜𝑢𝑡 + 1 ≤ 𝑖 ≤ 𝑛 − 1
(3.27)

The hard limit can then be applied as:

̂�̇�𝑗,𝑖 =
⎧{
⎨{⎩

min (�̇�𝑗,𝑖, �̇�𝑟𝑒𝑓 ,𝐹,𝑗,𝑖) if �̇�𝑗,𝑖 ≥ 0

max (�̇�𝑗,𝑖, −�̇�𝑟𝑒𝑓 ,𝐹,𝑗,𝑖) if �̇�𝑗,𝑖 < 0
(3.28)

22

3 Numerical Approach

The soft limit is applied as:

̂�̇�𝑗,𝑖 = ⎛⎜
⎝

1
1 + 𝑅𝑗,𝑖

𝑞
⎞⎟
⎠

−𝑞

⋅ �̇�𝑗,𝑖 (3.29)

where

𝑅𝑗,𝑖 =

⎧{{{{
⎨{{{{⎩

�̇�𝑗,𝑖

�̇�𝑟𝑒𝑓 ,𝐹,𝑗,𝑖
if �̇�𝑗,𝑖 ≥ 0

�̇�𝑗,𝑖

−�̇�𝑟𝑒𝑓 ,𝑃,𝑗,𝑖
if �̇�𝑗,𝑖 < 0

and 𝑞 ∈]0, ∞[denotes the dampening exponent.

Fig. 3.3 shows the effects of the hard limit and soft limits with different dampening
parameters. As can be seen from the equations, the soft limit is computationally
more expensive. It might lead to more favorable convergence behavior as the
transition from non-limited to limited flux is smoother. Setting low values for the
dampening parameter can significantly change the calculations, as is shown in
section 5.2. Universally applicable recommendations cannot be given, though, as
the convergence behavior heavily depends on the specific case.

3.4 Pressure Drop Calculation

3.4.1 Governing Equations

In contrast to the fluxes described in the previous section, pressures are not de-
scribed by a transport equation and there is also no “conservation” of pressures.
Rather, pressure drop occurs as a “by-product” of mass flow and is dependent on
the viscosity of the fluid and the geometry (e.g., for a pipe the inner diameter).

The equations implemented in the current algorithm are based on the assumption
of laminar flow. During the development of the algorithm, no case was observed
where the Reynolds number would indicate turbulence. It has to be noted, though,
that a check of the local Reynolds numbers is advisable on a case by case basis.

The pressure drop in a hollow fiber module is calculated for sides (bore and
shell). Bore side, the model assumes flow through a pipe and shell side, flow
parallel to tube bundles is considered.

Laminar flow in a pipe is described by the Hagen-Poiseuille law (VDI 2013,
p. 1223). Using the viscosity of the bore side fluid (𝜇𝑏), the volumetric flow rate
(�̇�𝑏), and the inner fiber diameter (𝐷𝐼), this can be applied to the bore side channel

23

3 Numerical Approach

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

Calculated Relative Flux (-)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

C
o

rr
e

c
te

d
 R

e
la

ti
v
e

 F
lu

x
 (

-)

uncorrected

hard limit (q=)

soft limit (q=20)

soft limit (q=8)

soft limit (q=4)

soft limit (q=2)

soft limit (q=1)

soft limit (q=0.5)

Figure 3.3: Effect of Different Settings for Flux Limit on the Calculated Flux

24

3 Numerical Approach

as
𝑑𝑝𝑏

𝑑𝑙
=

32 𝜇𝑏 �̇�𝑏

𝐷𝐼
2 𝐴𝑥

𝑏

with the cross sectional area

𝐴𝑥
𝑏 = 𝑛𝑓 ⋅

𝐷𝐼
2 𝜋
4

which leads to
𝑑𝑝𝑏

𝑑𝑙
=

128 𝜇𝑏 �̇�𝑏

𝑛𝑓 𝜋 𝐷𝐼
4 . (3.30)

For the flow in a tube bundle the approach is based on the calculation of pressure
drop in the shell of a heat exchanger without baffles in VDI (2013, p. 1271). This
leads to similar equations, where a hydraulic diameter is used instead of the pipe
inner diameter.

𝑑𝑝𝑠

𝑑𝑙
=

32 𝜇𝑠 �̇�𝑠

𝐷𝐻
2 𝐴𝑥

𝑠
(3.31)

with the cross sectional area

𝐴𝑥
𝑠 =

(𝐷𝑀
2 − 𝑛𝑓 𝐷𝑂

2) 𝜋
4

(3.32)

and the hydraulic diameter

𝐷𝐻 =
𝐷𝑀

2 − 𝑛𝑓 𝐷𝑂
2

𝐷𝑀 + 𝑛𝑓 𝐷𝑂
(3.33)

These equations were only written in terms of bore side and shell side properties.
In order to apply these to the properties of the feed and permeate side, it has to
be distinguished between bore side feed and shell side feed. For bore side feed,
equations (3.30) and (3.31) transform into

𝑑𝑝𝐹

𝑑𝑙
=

128 𝜇𝐹 �̇�𝐹

𝑛𝑓 𝜋 𝐷𝐼
4

𝑑𝑝𝑃

𝑑𝑙
=

32 𝜇𝑃 �̇�𝑃

𝐷𝐻
2 𝐴𝑥

𝑠
(3.34)

whereas for shell side feed the correct equations are

𝑑𝑝𝐹

𝑑𝑙
=

32 𝜇𝐹 �̇�𝐹

𝐷𝐻
2 𝐴𝑥

𝑠

𝑑𝑝𝑃

𝑑𝑙
=

128 𝜇𝑃 �̇�𝑃

𝑛𝑓 𝜋 𝐷𝐼
4 (3.35)

The equations describing the shell side cross sectional area (3.32) and hydraulic
diameter (3.33) remain the same for both cases.

25

3 Numerical Approach

3.4.2 Boundary Conditions

For the calculation of pressure drop, the relevant boundary conditions are the feed
pressure and the permeate pressure:

𝑝𝐹,1 = 𝑝𝐹𝑒𝑒𝑑 𝑝𝑃,𝑜𝑢𝑡 = 𝑝𝑃𝑒𝑟𝑚 (3.36)

It has to be noted that compared to the flux equations (see section 3.3.2), here the
boundary condition is set at the permeate outlet rather than the sweep gas inlets.
This has been chosen to make typical calculation scenarios easily achievable, as
there the permeate pressure is typically a given parameter.

Therefore the direction of calculation remains from the feed inlet to the retetnate
outlet on the feed side, but a different direction of calculation is required on the
permeate side. There the direction of calculation has to be from the permeate outlet
towards the two sweep gas inlets.

3.4.3 Discretization

Discretization of equations (3.34) and (3.35) leads to:

𝑝𝐹,𝑖 =
⎧{
⎨{⎩

𝑝𝐹,𝑖−1 − Δ𝑝𝐹,𝑖 for 2 ≤ 𝑖 ≤ 𝑛 − 1
𝑝𝐹,𝑖−1 for 𝑖 = 𝑛

(3.37)

𝑝𝑃,𝑖 =

⎧{{{
⎨{{{⎩

𝑝𝑃,𝑖+1 for 𝑖 = 1
𝑝𝑃,𝑖+1 − Δ𝑝𝑃,𝑖 for 2 ≤ 𝑖 ≤ 𝑜𝑢𝑡 − 1
𝑝𝑃,𝑖−1 − Δ𝑝𝑃,𝑖 for 𝑜𝑢𝑡 + 1 ≤ 𝑖 ≤ 𝑛 − 1
𝑝𝑃,𝑖−1 for 𝑖 = 𝑛

(3.38)

The pressure drop terms depend on whether the feed is bore side or shell side. For
bore side feed, one obtains

Δ𝑝𝐹 =
128 Δ𝑙

𝑛𝑓 𝜋 𝐷𝐼
4 ⋅ 𝜇𝐹,⟨𝑖⟩ �̇�𝐹,⟨𝑖⟩ Δ𝑝𝑃 =

32 Δ𝑙
𝐷𝐻

2 𝐴𝑥
𝑠

⋅ 𝜇𝑃,⟨𝑖⟩ �̇�𝑃,⟨𝑖⟩ (3.39)

whereas for shell side feed the equations are:

Δ𝑝𝐹 =
32 Δ𝑙

𝐷𝐻
2 𝐴𝑥

𝑠
⋅ 𝜇𝐹,⟨𝑖⟩ �̇�𝐹,⟨𝑖⟩ Δ𝑝𝑃 =

128 Δ𝑙
𝑛𝑓 𝜋 𝐷𝐼

4 ⋅ 𝜇𝑃,⟨𝑖⟩ �̇�𝑃,⟨𝑖⟩ (3.40)

For the cell specific properties 𝜇 and �̇�, again the notation introduced in section 3.2.4
was used.

The (constant) geometry properties 𝐴𝑥
𝑠 and 𝐷𝐻 can be taken directly from equa-

tions (3.32) and (3.33). So far undefined are the viscosity 𝜇 and volume flow �̇� of

26

3 Numerical Approach

the mixed gas. No universally applicable descriptions can be given. The volume
flow can be derived from the other properties using an equation of state. For an
ideal gas mixture this can simply be the ideal gas law using a mixed molar mass, but
once non-ideal effects are assumed, both the properties of single components and
interaction parameters have to be considered. For viscosities the situation is even
more complex, no easily applicable equation was found in literature, not even for
ideal gases and the usable approximations all heavily depend on the specific case.
The reference implementation therefore relies on setting fixed pure gas viscosities
and relies on these to calculated mixed gas viscosities. The calculation of properties
in the reference implementation is described in detail in section 4.2.

Assuming a method for calculating the mixed gas properties is specified, the
discretization is now fully described.

3.5 Energy Balance

3.5.1 Governing Equations

Energy balance, like flux, is described by conservation and transport equations. The
difference is that only one quantity (enthalpy) is transported, whereas in flux there
are multiple distinct components that are transported. Furthermore, there are two
possible distinct means of enthalpy transport, namely enthalpy transported with
mass flow and heat transfer. Heat transfer is described according to Section B2 4.2
of VDI (2013, pp. 34 sqq.). Thermal radiation is not considered, as it is negligibly
small compared to the other means of heat transport for the typical operating
conditions of hollow fiber modules (temperatures well below 100 ∘C). Additionally,
as is the case in transmembrane flux, no thermal conduction is considered in
longitudinal direction in the feed and permeate channels.

Convective transport is considered by calculating the enthalpy of the trans-
membrane flow. As transmembrane flux is not restricted in its direction, the case
can happen that some components can travel from the feed to the permeate side,
whereas simultaneously other components can travel from the permeate to the
feed side at a given location in the module. This case is handled in the algorithm
by calculating the enthalpy of both the “forward” and the “backward” stream
separately.

It is important to note, that as stated in section 3.2.1, the algorithm internally
stores temperatures and pressures, but not enthalpies. This means that both en-
thalpies have to be calculated from the stored temperatures and in the end the
resulting enthalpies have to be converted back to temperatures. Depending on the
underlying model for enthalpy, these conversions can lead to additional mathemat-
ical challenges, as is described in section 4.2.

Given that the energy balance equations are written in terms of enthalpy, a

27

3 Numerical Approach

conversion from and to the basic stream properties has to be defined:

�̇�𝐹 = ̇𝑛𝐹 ⋅ ℎ𝑚
𝐹 �̇�𝑃 = ̇𝑛𝑃 ⋅ ℎ𝑚

𝑃 (3.41)

ℎ𝑚
𝐹 = ℎ𝑚 (𝑝𝐹, 𝑇𝐹, 𝑥𝐹,1, ⋯ , 𝑥𝐹,𝑚) ℎ𝑚

𝑃 = ℎ𝑚 (𝑝𝑃, 𝑇𝑃, 𝑥𝑃,1, ⋯ , 𝑥𝑃,𝑚) (3.42)

The conversion from molar enthalpies back to temperatures is also required:

𝑇𝐹 = 𝑇 (𝑝𝐹, ℎ𝑚
𝐹, 𝑥𝐹,1, ⋯ , 𝑥𝐹,𝑚) 𝑇𝑃 = 𝑇 (𝑝𝑃, ℎ𝑚

𝑃, 𝑥𝑃,1, ⋯ , 𝑥𝑃,𝑚) (3.43)

The underlying differential energy conservation equations for the feed and perme-
ate channel can be written as

𝑑�̇�𝐹

𝑑𝑙
= − ̇𝑞′ 𝑑�̇�𝑃

𝑑𝑙
= ̇𝑞′ (3.44)

where the length specific enthalpy flow rate ̇𝑞′ consists of the conduction and
convection terms:

̇𝑞′ = ̇𝑞′
”𝐹𝑃 − ̇𝑞′

”𝑃𝐹 + ̇𝑞′
ℎ (3.45)

̇𝑞′
”𝐹𝑃 denotes the enthalpy transported with mass flow from the feed channel to

the permeate channel, whereas ̇𝑞′
”𝑃𝐹 denotes the enthalpy transported with mass

flow in the opposite direction. The overall heat transfer is described by ̇𝑞′
ℎ. The

enthalpy transported with mass primarily depends on the transmembrane flux,
but considers both directions separately.

̇𝑞′
”𝐹𝑃 = �̇�′

”𝐹𝑃 ⋅ ℎ𝑚
”𝐹𝑃 ̇𝑞′

”𝑃𝐹 = �̇�′
”𝑃𝐹 ⋅ ℎ𝑚

”𝑃𝐹 (3.46)

As this calculation should be self contained and available separated from a trans-
membrane flux calculation, a definition of transmembrane flux is included here
again, that only depends on stream properties:

�̇�′
𝑗 = −

𝑑 ̇𝑛𝐹,𝑗

𝑑𝑙
=

𝑑 ̇𝑛𝑃,𝑗

𝑑𝑙
(3.47)

�̇�′
”𝐹𝑃,𝑗 = max (0, �̇�′

𝑗) �̇�′
”𝑃𝐹,𝑗 = min (0, �̇�′

𝑗) (3.48)

�̇�′
”𝐹𝑃 =

𝑚
∑
𝑗=1

�̇�′
”𝐹𝑃,𝑗 �̇�′

”𝑃𝐹 =
𝑚

∑
𝑗=1

�̇�′
”𝑃𝐹,𝑗 (3.49)

As the molar enthalpy ℎ𝑚 is dependent on the stream properties, it has to be defined,
which values are to be assumed for these properties:

ℎ𝑚
”𝐹𝑃 = ℎ𝑚 (𝑝𝐹, 𝑇𝐹, 𝑥 # ”𝐹𝑃,1, ⋯ , 𝑥 # ”𝐹𝑃,𝑚) (3.50)

ℎ𝑚
”𝑃𝐹 = ℎ𝑚 (𝑝𝑃, 𝑇𝑃, 𝑥 # ”𝑃𝐹,1, ⋯ , 𝑥 # ”𝑃𝐹,𝑚) (3.51)

28

3 Numerical Approach

𝑥 # ”𝐹𝑃,𝑗 =
�̇�′

”𝐹𝑃,𝑗

�̇�′
”𝐹𝑃

𝑥 # ”𝑃𝐹,𝑗 =
�̇�′

”𝑃𝐹,𝑗

�̇�′
”𝑃𝐹

(3.52)

This means that the composition is calculated separately for both part streams.
Temperature and pressure are from the channel side where the flow originates
from.

As there is a significant difference between the pressures in the feed and permeate
channels in typical gas permeation applications, often a change of temperature can
be observed due to the Joule-Thomson effect (Melin and Rautenbach 2007, p. 477).
This is handled implicitly in the underlying property model linking enthalpies
to pressures and temperatures. The algorithm just assumes that the gas passes
through the membrane isenthalpicly.

In order to calculate heat transfer through the membrane, the hollow fiber module
is assumed as a tube bundle, as it is for the pressure drop calculation. For a single
fiber the heat transfer is computed as for a single pipe. The overall heat transfer
is then evaluated as the sum of the single fiber heat transfers. Heat transfer for a
single pipe is defined by three components (VDI 2013, pp. 34 sqq.):

• Convective heat transfer on the inside (bore side)

• Heat conduction through the wall (membrane)

• Convective heat transfer on the outside (shell side)

Heat conduction through the membrane is straightforward, as long as the thermal
conductivity of the membrane material 𝜆𝑓 is known.

For the convective heat transfer on both sides of the membrane, the heat transfer
coefficient is calculated using Nusselt numbers. On the inside, the Nusselt number
to choose is relatively clear: Assuming a laminar flow through a pipe with a low
Reynolds number and a long (compared to the diameter) pipe, it takes a constant
value (VDI 2013, pp. 785 sqq.):

Nu 𝑏 =
𝛼𝑏𝐷𝐼

𝜆𝑏
= 3.66 (3.53)

On the outside of the membrane, the situation is not that straightforward. VDI do
not give values for flow in a tube bundle parallel to the tubes. The assumption taken
for this algorithm was to model the hollow fiber module using the correlations for
concentric annular ducts (VDI 2013, pp. 793 sqq.). The employed model assumes
one single fiber in the shell and considers this the concentric annular. Assuming
an adiabatic outside shell, the correlation describing heat transfer is:

Nu 𝑠 =
𝛼𝑠 (𝐷𝑀 − 𝐷𝑂)

𝜆𝑠
= 3.66 + 1.2(

𝐷𝑂

𝐷𝑀
)

−0.8

(3.54)

29

3 Numerical Approach

An alternative approach would be to take the actual hydraulic diameter of the shell
𝐷𝐻 as reference length instead of the difference between the module and single
fiber diameter (𝐷𝑀 − 𝐷𝑂).

Nu 𝑠 =
𝛼𝑠𝐷𝐻

𝜆𝑠
= 3.66 + 1.2(

𝐷𝑂

𝐷𝑀
)

−0.8

(3.55)

For 𝑛𝑓 = 1, both (3.54) and (3.55) have the same result. With growing numbers of
fibers, the heat transfer calculated with (3.55) is continuously higher than the one
calculated with (3.54). Neither of these equations could be validated so far. The
reference implementation uses (3.54) until some kind of validation (e.g. using cfd)
is possible. If one wants to use (3.55), the expression (𝐷𝑀 − 𝐷𝑂) has to be replaced
with 𝐷𝐻 in the following equations (3.56) and (3.57).

As these values are related to bore side and shell side properties, it has to be
distinguished between bore side feed and shell side feed.

For bore side feed, the bore side properties correspond with the feed side prop-
erties and the shell side properties correspond with permeate side properties:

𝛼𝑏 =
Nu 𝑏𝜆𝐹

𝐷𝐼
𝛼𝑠 =

Nu 𝑠𝜆𝑃

(𝐷𝑀 − 𝐷𝑂)
(3.56)

For shell side feed, the opposite is the case:

𝛼𝑏 =
Nu 𝑏𝜆𝑃

𝐷𝐼
𝛼𝑠 =

Nu 𝑠𝜆𝐹

(𝐷𝑀 − 𝐷𝑂)
(3.57)

Combining the equations for heat conduction through the membrane and con-
vective transport on both sides, a product of overall heat transfer coefficient and
membrane area can be defined (VDI 2013, p. 34):

𝛼𝐴 =
𝑙 𝑛𝑓 𝜋

(𝛼𝑏𝐷𝐼)
−1 +

ln (𝐷𝑂/𝐷𝐼)
𝜆𝑓

+ (𝛼𝑠𝐷𝑂)−1
(3.58)

As the differential equations use length specific heat transfer, a product overall heat
transfer coefficient and length specific area is required. This can be described as:

𝛼𝐴′ =
𝑛𝑓 𝜋

(𝛼𝑏𝐷𝐼)
−1 +

ln (𝐷𝑂/𝐷𝐼)
𝜆

+ (𝛼𝑠𝐷𝑂)−1
(3.59)

Using this value, the (differential) overall heat transfer is calculated as:

̇𝑞′
ℎ = 𝛼 𝐴′ (𝑇𝐹 − 𝑇𝑃) (3.60)

30

3 Numerical Approach

3.5.2 Boundary Conditions

The boundary conditions for the energy balance calculation are defined at the
stream inlets, as for the flux calculation. On a basic stream level, the temperatures
are prescribed:

𝑇𝐹,1 = 𝑇𝐹𝑒𝑒𝑑 𝑇𝑃,1 = 𝑇𝑆𝑤𝑒𝑒𝑝0
𝑇𝑃,𝑛 = 𝑇𝑆𝑤𝑒𝑒𝑝1

(3.61)

As the algorithm uses enthalpy flows for calculation, the boundary conditions for
temperature can be translated into boundary conditions for enthalpy flows:

�̇�𝐹,1 = �̇�𝐹𝑒𝑒𝑑 �̇�𝑃,1 = �̇�𝑆𝑤𝑒𝑒𝑝0
�̇�𝑃,𝑛 = �̇�𝑆𝑤𝑒𝑒𝑝1

(3.62)

3.5.3 Discretization

The discretization of the energy balance equations is not as straightforward as it is
for the flux and pressure drop calculations. This is mainly affected by two aspects:

1. When performing energy balance calculations before the flux equations are
fully converged (see section 3.6), mass balance is not necessarily fulfilled.
Even more so, as the calculation is subject to numerical errors, mass balance
will never be exactly fulfilled.

This especially means that in the discretized form of equation (3.47) (�̇�′
𝑗 =

−
𝑑�̇�𝐹,𝑗

𝑑𝑙 =
𝑑�̇�𝑃,𝑗

𝑑𝑙) the two rhs expressions are not equal. One approach would
be to just take one of the expressions and calculate the enthalpy flows with
that value. This would mean, though, that on the other side the assumed
enthalpy flows do not correspond with the actual mass flows, which can
lead to severe errors in the calculation, especially when the mass flows are
small. In the reference implementation this is circumvented by calculating
the energy balance separately for the feed and permeate side – each time
using the transmembrane flux calculated from that side’s mole flows. This
means that the energy balance is fulfilled inside each cell on both the feed
and permeate side, but might not be fulfilled across the membrane. The
amount of enthalpy “leaving” the feed side might not be equal to the amount
of enthalpy “entering” the permeate side (and vice versa). Once the mass
balance closes, the energy balance will close as well.

2. Heat transfer is subject to similar issues as mass transfer when being dis-
cretized: the transferred heat influences the temperature and therefore its
own driving force. In contrast to the transmembrane flux, though, only one
quantity (enthalpy) is transferred. As this leads to simpler equations, direct
formulae to account for this effect are given in VDI (2013).

31

3 Numerical Approach

These corrections, though, are designed in pure heat transfer scenarios and
do not deliver accurate results when being applied simultaneously with
calculation enthalpy transported with mass. Therefore, both effects have to
be considered separately. Furthermore, heat transfer directly depends on the
temperature difference as driving force, but enthalpy transport with mass
acts on the enthalpies. In order to apply both calculations after each other, a
linking step between temperatures and enthalpies is required.

In contrast to the flux and pressure drop calculations, here often both values of cell
contents and borders of some properties are used. As introduced in section 3.2.4,
an index noted as ⟨𝑖⟩ refers to the value of the cell contents and is subject to the
chosen method for selection of the evaluation location. Plain indices 𝑖 always refer
to the value at the downstream border of a cell (as it is stored).

The discretization of the governing conservation equations (3.44) is then given
as follows:

�̇�𝐹,𝑖 =
⎧{
⎨{⎩

�̇�𝐹,𝑖−1 − ̇𝑞𝐹,𝑖 for 2 ≤ 𝑖 ≤ 𝑛 − 1
�̇�𝐹,𝑖−1 for 𝑖 = 𝑛

(3.63)

�̇�𝑃,𝑖 =
⎧{{
⎨{{⎩

�̇�𝑃,𝑖−1 + ̇𝑞𝑃,𝑖 for 2 ≤ 𝑖 ≤ 𝑜𝑢𝑡 − 1
�̇�𝑃,𝑖−1 − �̇�𝑃,𝑖+1 + ̇𝑞𝑃,𝑖 for 𝑖 = 𝑜𝑢𝑡
�̇�𝑃,𝑖+1 − ̇𝑞𝑃,𝑖 for 𝑜𝑢𝑡 + 1 ≤ 𝑖 ≤ 𝑛 − 1

(3.64)

where
̇𝑞𝐹,𝑖 = ̇𝑞′

𝐹,𝑖 Δ𝑙 = ̇𝑞 # ”𝐹𝑃,𝐹,𝑖 − ̇𝑞 # ”𝑃𝐹,𝐹,𝑖 + ̇𝑞ℎ,𝑖 (3.65)

̇𝑞𝑃,𝑖 = ̇𝑞′
𝑃,𝑖 Δ𝑙 = ̇𝑞 # ”𝐹𝑃,𝑃,𝑖 − ̇𝑞 # ”𝑃𝐹,𝑃,𝑖 + ̇𝑞ℎ,𝑖 (3.66)

The enthalpy flows are connected to other stream properties as described in the
governing equations:

�̇�𝐹,𝑖 = ̇𝑛𝐹,𝑖 ⋅ ℎ𝑚
𝐹,𝑖 �̇�𝑃,𝑖 = ̇𝑛𝑃,𝑖 ⋅ ℎ𝑚

𝑃,𝑖 (3.67)

ℎ𝑚
𝐹,𝑖 = ℎ𝑚 (𝑝𝐹,𝑖, 𝑇𝐹,𝑖, 𝑥𝐹,𝑖,1, ⋯ , 𝑥𝐹,𝑖,𝑚) (3.68)

ℎ𝑚
𝑃,𝑖 = ℎ𝑚 (𝑝𝑃,𝑖, 𝑇𝑃,𝑖, 𝑥𝑃,𝑖,1, ⋯ , 𝑥𝑃,𝑖,𝑚) (3.69)

𝑇𝐹,𝑖 = 𝑇 (𝑝𝐹,𝑖, ℎ𝑚
𝐹,𝑖, 𝑥𝐹,𝑖,1, ⋯ , 𝑥𝐹,𝑖,𝑚) (3.70)

𝑇𝑃,𝑖 = 𝑇 (𝑝𝑃,𝑖, ℎ𝑚
𝑃,𝑖, 𝑥𝑃,𝑖,1, ⋯ , 𝑥𝑃,𝑖,𝑚) (3.71)

First the expressions for enthalpy transported with mass flow (̇𝑞 # ”𝐹𝑃,𝐹,𝑖, ̇𝑞 # ”𝑃𝐹,𝐹,𝑖, ̇𝑞 # ”𝐹𝑃,𝑃,𝑖,
̇𝑞 # ”𝑃𝐹,𝑃,𝑖) are covered. For the reasons stated above, these are calculated separately

32

3 Numerical Approach

for the feed and the permeate side. Corresponding to the governing equations, the
discretization for the feed side is as follows:

̇𝑞 # ”𝐹𝑃,𝐹,𝑖 = �̇� # ”𝐹𝑃,𝐹,𝑖 ⋅ ℎ𝑚
”𝐹𝑃,𝐹,𝑖 ̇𝑞 # ”𝑃𝐹,𝐹,𝑖 = �̇� # ”𝑃𝐹,𝐹,𝑖 ⋅ ℎ𝑚

”𝑃𝐹,𝐹,𝑖 (3.72)

where

�̇�𝐹,𝑗,𝑖 =
⎧{
⎨{⎩

̇𝑛𝐹,𝑗,𝑖−1 − ̇𝑛𝐹,𝑗,𝑖 for 2 ≤ 𝑖 ≤ 𝑛 − 1
0 for 𝑖 = 𝑛

(3.73)

�̇� # ”𝐹𝑃,𝐹,𝑗,𝑖 = max (0, �̇�𝐹,𝑗,𝑖) �̇� # ”𝑃𝐹,𝐹,𝑗,𝑖 = min (0, �̇�𝐹,𝑗,𝑖) (3.74)

�̇� # ”𝐹𝑃,𝐹 =
𝑚

∑
𝑗=1

�̇� # ”𝐹𝑃,𝐹,𝑗,𝑖 �̇� # ”𝐹𝑃,𝐹 =
𝑚

∑
𝑗=1

�̇� # ”𝑃𝐹,𝐹,𝑗,𝑖 (3.75)

The properties defining the molar enthalpy ℎ𝑚 are defined according to the govern-
ing equations (3.50) to (3.52).

ℎ𝑚
”𝐹𝑃,𝐹,𝑖 = ℎ𝑚 (𝑝𝐹,⟨𝑖⟩, 𝑇𝐹,⟨𝑖⟩, 𝑥 # ”𝐹𝑃,𝐹,1,𝑖, ⋯ , 𝑥 # ”𝐹𝑃,𝐹,𝑚,𝑖) (3.76)

ℎ𝑚
”𝑃𝐹,𝐹,𝑖 = ℎ𝑚 (𝑝𝑃,⟨𝑖⟩, 𝑇𝑃,⟨𝑖⟩, 𝑥 # ”𝑃𝐹,𝐹,1,𝑖, ⋯ , 𝑥 # ”𝑃𝐹,𝐹,𝑚,𝑖) (3.77)

𝑥 # ”𝐹𝑃,𝐹,𝑗,𝑖 =
�̇� # ”𝐹𝑃,𝐹,𝑗,𝑖

�̇� # ”𝐹𝑃,𝐹,𝑖
𝑥 # ”𝑃𝐹,𝐹,𝑗,𝑖 =

�̇� # ”𝑃𝐹,𝐹,𝑗,𝑖

�̇� # ”𝑃𝐹,𝐹,𝑖
(3.78)

The permeate side is discretized analog to the feed side:

̇𝑞 # ”𝐹𝑃,𝑃,𝑖 = �̇� # ”𝐹𝑃,𝑃,𝑖 ⋅ ℎ𝑚
”𝐹𝑃,𝑃,𝑖 ̇𝑞 # ”𝑃𝐹,𝑃,𝑖 = �̇� # ”𝑃𝐹,𝑃,𝑖 ⋅ ℎ𝑚

”𝑃𝐹,𝑃,𝑖 (3.79)

�̇�𝑃,𝑗,𝑖 =

⎧{{
⎨{{⎩

̇𝑛𝑃,𝑗,𝑖 − ̇𝑛𝑃,𝑗,𝑖−1 for 2 ≤ 𝑖 ≤ 𝑜𝑢𝑡 − 1
̇𝑛𝑃,𝑗,𝑖+1 + ̇𝑛𝑃,𝑗,𝑖 − ̇𝑛𝑃,𝑗,𝑖−1 for 𝑖 = 𝑜𝑢𝑡
̇𝑛𝑃,𝑗,𝑖+1 − ̇𝑛𝑃,𝑗,𝑖 for 𝑜𝑢𝑡 + 1 ≤ 𝑖 ≤ 𝑛 − 1

(3.80)

�̇� # ”𝐹𝑃,𝑃,𝑗,𝑖 = max (0, �̇�𝑃,𝑗,𝑖) �̇� # ”𝑃𝐹,𝑃,𝑗,𝑖 = min (0, �̇�𝑃,𝑗,𝑖) (3.81)

�̇� # ”𝐹𝑃,𝑃 =
𝑚

∑
𝑗=1

�̇� # ”𝐹𝑃,𝑃,𝑗,𝑖 �̇� # ”𝐹𝑃,𝑃 =
𝑚

∑
𝑗=1

�̇� # ”𝑃𝐹,𝑃,𝑗,𝑖 (3.82)

ℎ𝑚
”𝐹𝑃,𝑃,𝑖 = ℎ𝑚 (𝑝𝐹,⟨𝑖⟩, 𝑇𝐹,⟨𝑖⟩, 𝑥 # ”𝐹𝑃,𝑃,1,𝑖, ⋯ , 𝑥 # ”𝐹𝑃,𝑃,𝑚,𝑖) (3.83)

ℎ𝑚
”𝑃𝐹,𝑃,𝑖 = ℎ𝑚 (𝑝𝑃,⟨𝑖⟩, 𝑇𝑃,⟨𝑖⟩, 𝑥 # ”𝑃𝐹,𝑃,1,𝑖, ⋯ , 𝑥 # ”𝑃𝐹,𝑃,𝑚,𝑖) (3.84)

33

3 Numerical Approach

𝑥 # ”𝐹𝑃,𝑃,𝑗,𝑖 =
�̇� # ”𝐹𝑃,𝑃,𝑗,𝑖

�̇� # ”𝐹𝑃,𝑃,𝑖
𝑥 # ”𝑃𝐹,𝑃,𝑗,𝑖 =

�̇� # ”𝑃𝐹,𝑃,𝑗,𝑖

�̇� # ”𝑃𝐹,𝑃,𝑖
(3.85)

In order to calculate heat transfer, the intermediary temperatures are required.
First the intermediary enthalpy flows are calculated:

�̇�𝐹,𝑖,𝑖𝑛𝑡𝑒𝑟 =
⎧{
⎨{⎩

�̇�𝐹,𝑖−1 − ̇𝑞𝐹,𝑖,𝑖𝑛𝑡𝑒𝑟 for 2 ≤ 𝑖 ≤ 𝑛 − 1
�̇�𝐹,𝑖−1 for 𝑖 = 𝑛

(3.86)

�̇�𝑃,𝑖,𝑖𝑛𝑡𝑒𝑟 =
⎧{{
⎨{{⎩

�̇�𝑃,𝑖−1 + ̇𝑞𝑃,𝑖,𝑖𝑛𝑡𝑒𝑟 for 2 ≤ 𝑖 ≤ 𝑜𝑢𝑡 − 1
�̇�𝑃,𝑖−1 − �̇�𝑃,𝑖+1 + ̇𝑞𝑃,𝑖,𝑖𝑛𝑡𝑒𝑟 for 𝑖 = 𝑜𝑢𝑡
�̇�𝑃,𝑖+1 − ̇𝑞𝑃,𝑖,𝑖𝑛𝑡𝑒𝑟 for 𝑜𝑢𝑡 + 1 ≤ 𝑖 ≤ 𝑛 − 1

(3.87)

with

̇𝑞𝐹,𝑖,𝑖𝑛𝑡𝑒𝑟 = ̇𝑞 # ”𝐹𝑃,𝐹,𝑖 − ̇𝑞 # ”𝑃𝐹,𝐹,𝑖 ̇𝑞𝑃,𝑖,𝑖𝑛𝑡𝑒𝑟 = ̇𝑞 # ”𝐹𝑃,𝑃,𝑖 − ̇𝑞 # ”𝑃𝐹,𝑃,𝑖 (3.88)

Then, using molar enthalpies, the intermediary temperatures can be calculated:

ℎ𝑚
𝐹,𝑖,𝑖𝑛𝑡𝑒𝑟 =

�̇�𝐹,𝑖,𝑖𝑛𝑡𝑒𝑟

̇𝑛𝐹,𝑖
ℎ𝑚

𝑃,𝑖,𝑖𝑛𝑡𝑒𝑟 =
�̇�𝑃,𝑖,𝑖𝑛𝑡𝑒𝑟

̇𝑛𝑃,𝑖
(3.89)

𝑇𝐹,𝑖,𝑖𝑛𝑡𝑒𝑟 = 𝑇 (𝑝𝐹,𝑖, ℎ𝑚
𝐹,𝑖,𝑖𝑛𝑡𝑒𝑟, 𝑥𝐹,𝑖,1, ⋯ , 𝑥𝐹,𝑖,𝑚) (3.90)

𝑇𝑃,𝑖,𝑖𝑛𝑡𝑒𝑟 = 𝑇 (𝑝𝑃,𝑖, ℎ𝑚
𝑃,𝑖,𝑖𝑛𝑡𝑒𝑟, 𝑥𝑃,𝑖,1, ⋯ , 𝑥𝑃,𝑖,𝑚) (3.91)

The product of overall heat transfer coefficient and membrane area (3.58) is dis-
cretized for a specific cell as:

(𝛼𝐴)𝑖 =
Δ𝑙 𝑛𝑓 𝜋

(𝛼𝑏,𝑖𝐷𝐼)
−1 +

ln (𝐷𝑂/𝐷𝐼)
𝜆𝑓

+ (𝛼𝑠,𝑖𝐷𝑂)−1
(3.92)

For bore side feed, heat transfer coefficients 𝛼𝑏,𝑖 and 𝛼𝑠,𝑖 are defined as

𝛼𝑏,𝑖 =
Nu 𝑏𝜆𝐹,⟨𝑖⟩

𝐷𝐼
𝛼𝑠,𝑖 =

Nu 𝑠𝜆𝑃,⟨𝑖⟩

(𝐷𝑀 − 𝐷𝑂)
(3.93)

and for shell side feed as:

𝛼𝑏,𝑖 =
Nu 𝑏𝜆𝑃,⟨𝑖⟩

𝐷𝐼
𝛼𝑠,𝑖 =

Nu 𝑠𝜆𝐹,⟨𝑖⟩

(𝐷𝑀 − 𝐷𝑂)
(3.94)

Under the flow conditions outlined in section 3.5.1, the Nusselt numbers are con-
stant and can be taken directly from (3.53) and (3.54).

34

3 Numerical Approach

The limit of heat transfer described above is applied by correcting the temperature
difference with a factor Θ. The details are described in Chapter C1 of VDI-Wärmeatlas
(VDI 2013, pp. 37 sqq.) using multiple variables and equations. For the assumptions
made in the algorithm (constant properties in each cell), the equivalent model is a
two-sided stirred tank. Using equations 8, 11, 13, 16 and Table 2 of Chapter C1 of
VDI-Wärmeatlas, a compact equation for a cell specific Θ is:

Θ𝑖 =
1

1 +
(𝛼 𝐴)𝑖

�̇�𝐹,⟨𝑖⟩
+

(𝛼 𝐴)𝑖

�̇�𝑃,⟨𝑖⟩

(3.95)

with
�̇�𝐹,𝑖 = 𝑐𝑚

𝑝 𝐹,𝑖 ⋅ ̇𝑛𝐹,𝑖 (3.96)

�̇�𝑃,𝑖 = 𝑐𝑚
𝑝 𝑃,𝑖 ⋅ ̇𝑛𝑃,𝑖 (3.97)

In contrast to the enthalpies transported with mass, the overall heat transfer is
equal for both the feed and permeate side and can be calculated as:

̇𝑞ℎ,𝑖 = (𝛼𝐴)𝑖 ⋅ Θ𝑖 ⋅ (𝑇𝐹,⟨𝑖⟩,𝑖𝑛𝑡𝑒𝑟 − 𝑇𝑃,⟨𝑖⟩,𝑖𝑛𝑡𝑒𝑟) (3.98)

As now all expressions in equations (3.63) to (3.66) are defined, the enthalpy flows
can be calculated. Using the relations in equations (3.67) to (3.71), these enthalpy
flows can be converted back to the corresponding temperatures. Thus the dis-
cretization is complete.

3.6 Full Algorithm

3.6.1 Definition of the Problem

As stated in section 2.2 and further described in section 3.3.1, the governing des for
transmembrane flux are a system of nonlinear first order odes. Although the simple
case of co-current flow (without any pressure drop calculation) would result in an
ivp, in general a bvp has to be solved. Section 3.1.1 shows that a bvp cannot be solved
directly and that some sort of iterative solution method has to be applied. For
the des describing pressure drop and energy balance, the case is similar. Pressure
drop is nonlinear due to the fact that the volume flow �̇� depends on the pressure
in a nonlinear way even for ideal gases. The energy balance equations, actually
could result in linear equations in the simplest case (constant heat capacities, linear
correlation of enthalpy and temperature), but in general a nonlinear system has to
be assumed as well.

To summarize, a bvp on a complex set of generally nonlinear des has to be solved.
This algorithm employs the fdm as described in section 3.1.4 to discretize the

35

3 Numerical Approach

problem into a defined number of cells. In order to solve the resulting (nonlinear)
equation system, the Jacobi method is used (see section 3.1.6). As the underlying
equation system is nonlinear in nature, it is typically required to under-relax the
iteration in order to achieve a stable solution. The process of under-relaxation is
straightforward and applied as described in section 3.1.6. In terms of nomenclature,
the direct results of the evaluation are marked with a hat (e.g. ̂ ̇𝑛𝑘+1) whereas the
relaxed results are written without additional accents (e.g. ̇𝑛𝑘+1).

Additionally, it has to be noted, that the calculation is split into the three sep-
arate parts transmembrane flux, pressure drop, and energy balance. This was
implemented mainly due to practical reasons, as this way the calculations are
independent entities that can be called individually. The choice of separating the
three parts has some implications on the solution behavior though: Each of the
three calculations generally depends on all basic properties (molar flows, pressure,
and temperature). While the first performed calculation (in the reference imple-
mentation this is transmembrane flux) uses the actual values at the start of any
given iteration, the other subsequent calculations do not use the “virgin” values,
but rather the ones already updated by the previous calculation(s). It is assumed
that this situation is actually beneficial for the convergence speed, but this could
not be validated so far.

3.6.2 Initialization

The initialization procedure of the algorithm defines that every cell on the feed
side is initialized with the molar flows, pressure, and temperature of the feed. The
cells on the permeate side are initialized with the pressures and temperature of
the permeate outlet. For the molar flows on the permeate side, the values of the
“left” (feed side) sweep gas are used in the co-current part, whereas the flows of
the “right” (permeate side) sweep gas are used to initialize the counter-current
part. If no sweep gas is configured, the permeate side is initialized with zero molar
flows for each component.

Early advances to find better initializations by, e.g., using simple formulas to
estimate the transmembrane flux or interpolating based on the solution of a case
with very few cells did not improve the convergence behavior. Both trivial and
more sophisticated initialization procedures led to a converged result in a very
similar time. As trials have also shown that the algorithm is fairly robust regarding
the initial state, the decision was made to implement a very simple initialization
procedure.

3.6.3 Solution Procedure

Based on the single calculation steps defined in the previous sections, now a
complete solution procedure can be assembled. The full procedure is visualized in

36

3 Numerical Approach

Fig. 3.4. Two different starting conditions are possible:

• Initial calculation without previous results

• Continuing a previous calculation calculation with possibly changed bound-
ary conditions

The first case is typical when starting new calculations. There it is required to
initialize the grid based on the boundary conditions before the actual solution
process starts. An approach for initialization is described in section 3.6.2.

The second case can occur when a previous calculation exited, but not necessarily
with the final results. This may be the case when it is desirable to limit the number
of iterations in one run. A typical situation where this happens is the simulation
of multi-stage processes where multiple single membrane modules have to be
simulated (see e.g. section 4.8). It is possible that the boundary conditions have
changed since the previous calculation. As long as these changes are not substantial,
it is probably faster to continue with the result of the previous calculation while
enforcing the new boundary conditions during the following iterations. Therefore,
it is required to update the boundary conditions based on the external values.

Once the model is in a state that reflects the currently applicable boundary
conditions, the first step is to calculate the fluxes as described in in section 3.3.
Based on the results of the step, the current convergence value is updated:

𝛿 (̇𝑛𝐹,𝑗,𝑖) = | ̂ ̇𝑛𝑘+1
𝐹,𝑗,𝑖 − ̇𝑛𝑘

𝐹,𝑗,𝑖| 𝛿 (̇𝑛𝑃,𝑗,𝑖) = | ̂ ̇𝑛𝑘+1
𝑃,𝑗,𝑖 − ̇𝑛𝑘

𝑃,𝑗,𝑖| (3.99)

Afterwards, relaxation (see section 3.1.6) is applied to the results.
Next, pressure drop calculation as described in section 3.4 is performed if it is

enabled. Also for the updated pressure values the convergence value is calculated:

𝛿 (𝑝𝐹,𝑖) = |�̂�𝑘+1
𝐹,𝑖 − 𝑝𝑘

𝐹,𝑖| 𝛿 (𝑝𝑃,𝑖) = |�̂�𝑘+1
𝑃,𝑖 − 𝑝𝑘

𝑃,𝑖| (3.100)

Relaxation is also applied to the results of the pressure drop calculation.
The following step is calculating the energy balance as defined in section 3.5 if

enabled. Convergence is also updated for the resulting temperatures:

𝛿 (𝑇𝐹,𝑖) = |�̂�𝑘+1
𝐹,𝑖 − 𝑇𝑘

𝐹,𝑖| 𝛿 (𝑇𝑃,𝑖) = |�̂�𝑘+1
𝑃,𝑖 − 𝑇𝑘

𝑃,𝑖| (3.101)

The results of the energy balance calculation are then also relaxed. Once all values
are calculated, it is checked whether defined convergence criteria 𝜀 are fulfilled for
all calculations:

𝜀 (̇𝑛) ≥ max
2≤𝑖≤𝑛−1

1≤𝑗≤𝑘

(𝛿 (̇𝑛𝐹,𝑗,𝑖) , 𝛿 (̇𝑛𝑃,𝑗,𝑖)) (3.102)

𝜀 (𝑝) ≥ max
2≤𝑖≤𝑛−1

(𝛿 (𝑝𝐹,𝑖) , 𝛿 (𝑝𝑃,𝑖)) (3.103)

𝜀 (𝑇) ≥ max
2≤𝑖≤𝑛−1

(𝛿 (𝑇𝐹,𝑖) , 𝛿 (𝑇𝑃,𝑖)) (3.104)

37

3 Numerical Approach

Figure 3.4: Flowchart of the Solution Procedure

38

3 Numerical Approach

Additionally, a check for a relative convergence of the flux (compared to the feed)
is possible as well as a check for a closed mass balance:

𝜀 (̇𝑛𝑟𝑒𝑙) ≥ max
2≤𝑖≤𝑛−1

1≤𝑗≤𝑘

⎛⎜⎜
⎝

𝛿 (̇𝑛𝐹,𝑗,𝑖)
̇𝑛𝐹,𝑗,1

,
𝛿 (̇𝑛𝑃,𝑗,𝑖)

̇𝑛𝐹,𝑗,1

⎞⎟⎟
⎠

(3.105)

𝜀 (̇𝑛𝑏𝑎𝑙) ≥ max
1≤𝑖≤𝑘

|(̇𝑛𝑃𝑒𝑟𝑚,𝑗 + ̇𝑛𝑅𝑒𝑡,𝑗) − (̇𝑛𝐹𝑒𝑒𝑑,𝑗 + ̇𝑛𝑆𝑤𝑒𝑒𝑝0,𝑗 + ̇𝑛𝑆𝑤𝑒𝑒𝑝1,𝑗)|

= max
1≤𝑖≤𝑘

|(̇𝑛𝑃,𝑗,𝑜𝑢𝑡 + ̇𝑛𝐹,𝑗,𝑛) − (̇𝑛𝐹,𝑗,1 + ̇𝑛𝑃,𝑗,1 + ̇𝑛𝑃,𝑗,𝑛)|
(3.106)

If all criteria are fulfilled, the algorithm exits with a converged solution. Otherwise,
it is checked whether the maximum number of iterations has been reached. If
this is the case, the algorithm exits without a converged solution. If not, the next
iteration is started by returning to the calculation of transmembrane flux.

39

4 Implementation Details

4.1 Adaption of Under-Relaxation

As stated in section 3.6.1, the underlying des are nonlinear and therefore the Jacobi
method typically requires under-relaxation to reach convergent solutions. The
algorithm implements this as a core feature and allows for a custom selection of
the under-relaxation factor. This comes with a trade-off, though, as low relaxation
factors typically lead to stable solutions, but at the same time drastically reduce the
convergence speed (see section 3.1.6). It is therefore advisable to select the highest
possible relaxation factor that still leads to a stable and convergent solution. The
choice of such a value is not trivial, though, as the maximum stable value depends
heavily on the specific case and varies greatly with different input parameters.

An example of unfavorable convergence behavior can be observed in a simple
gas permeation calculation (with disabled pressure drop and energy balance calcu-
lation). Changing the module area (in order to reach a target stage cut) and keeping
all other parameters constant, the solution procedure might easily converge with a
relaxation factor of 𝜔 = 0.9 for target stage cuts of 0.4 and 0.6. For a target stage
cut of 0.5, though, a lower relaxation factor (around 𝜔 = 0.5) might be required
to reach a target convergence criterion. The reasons for this behavior might be
manyfold and often not directly observable. One effect could be identified though:
In (partial) counter-current flow configurations, regions with oscillating molar
fractions can occur. A generic version of the impact of this effect is shown in Fig. 4.1.

Looking only at the results of one iteration, it can be observed that while the
molar fraction for this component generally decreases along the module (with
increasing cell numbers), there are alternating cells with high and low molar
fractions in the downstream part of the module. Even more so, with every single
iteration, the highs and lows switch positions. This behavior definitely does not
represent the reality — there are no sudden jumps of molar fractions in real gas
permeation modules. In an attempt to explain the behavior, it can be assumed
that substance circulates numerically between cells. In cells with a high partial
pressure on the feed side and low partial pressure, the substance permeates from
the feed to the permeate side. The neighboring cell shows exactly the opposite
behavior: a low molar fraction (and therefore partial pressure) on the feed side and
a high one on the permeate side, thus resulting in permeation from the permeate

41

4 Implementation Details

5 10 15 20

Cell Number

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

M
o

la
r

F
ra

c
ti
o

n
 C

o
m

p
o

n
e

n
t

1
 (

-)

iteration n

iteration n+1

Figure 4.1: Exemplary Oscillation of Molar Fractions in a Two-Component Case

42

4 Implementation Details

to the feed side. It can easily be reasoned, that by “dampening” the amount of
substance permeating, this numerical misbehavior can be suppressed. This is
where under-relaxation comes into play, as it does provide exactly this numerical
“dampening”.

It can be observed though, that there is a rather sharp threshold value for the
under-relaxation factor. As long as the factor is higher than the threshold, the con-
vergence behavior is not significantly improved. After setting an under-relaxation
factor below the threshold, though, the oscillating behavior disappears within few
iterations. In order to reach optimal calculation speeds, the main challenge is to
find this threshold value.

Ideally, the relaxation factor would be calculated analytically from the parameters
of the case to calculate. As stated above, though, this is not easily possible, as small
changes of the input parameters can lead to largely differing threshold values of
the relaxation factor. Another approach would be to reduce the under-relaxation
factor after a set number of iterations if convergence could not be reached. While
this approach leads to convergent solutions eventually, there is an efficiency issue:

• When setting the number of iterations too high, cases with numerical issues
may iterate “on the spot”, i.e. without any significant progress, for many
iterations.

• Setting the number too low adversely affects well-behaved cases. These cases
would reach convergent solutions with the higher under-relaxation factor, but
due to the factor being lowered, convergence speed is reduced significantly.

In order to circumvent these issues, the reference implementation (denoted as
vecgp) uses heuristic measures to identify situations where convergence is stalled.
Only if this is the case, the under-relaxation factor is reduced. Then the reduction
happens rather quickly, until a favorable convergence behavior is reached again.
The indicator used to determine whether a system is converging accurately or
running into numerical issues (like the oscillating molar fractions) is the rate of
change of the convergence values. The rate of change is the difference between the
convergence values (as defined in section 3.6.3) of two consecutive iterations. As
long as the convergence values decrease with iterations, the system converges well.
Increasing convergence values, in contrast, indicate issues in the calculation and
are a sign that the chosen under-relaxation factor is too high.

There are, though, situations where temporarily increasing convergence values
have to be tolerated: Both during the first iterations after initialization and after
changing the under-relaxation factor, properties in the cells may change signifi-
cantly. In these cases, using a single increasing convergence value as trigger to
reduce the relaxation factor would lead to premature reduction. Therefore, a min-
imum number of iterations without changing the under-relaxation factor after
initialization and after relaxation factor changes can be set.

43

4 Implementation Details

Figure 4.2: Flowchart of the Algorithm for Reducing the Under-Relaxation Factor

44

4 Implementation Details

The full algorithm for deciding whether a reduction of the under-relaxation
factor is required is shown in Fig. 4.2. First it is checked if a minimum number
of iterations has passed since initialization and since the last reduction of the
under-relaxation factor. If both conditions are fulfilled and the convergence value
has increased compared to the previous iteration, the under-relaxation factor is
decreased and the number of the iteration where the last reduction occurred is
updated.

Vecgp treats under-relaxation separately for flux, pressure drop, and energy
balance calculations. All three sets of calculations can use different under-relaxation
factors and parameters to configure the reduction. Trial runs have shown that this
approach leads to reliably converging solutions even for complex cases involving
e.g. multiple components with real gas properties and enabled pressure drop and
energy balance calculation.

Recently proposals have been made to define formalized patterns for changing
under-relaxation factors using analytical reasoning. Yang and Mittal (2014) pro-
posed a Scheduled Relaxation Jacobi method that attempts to find optimal schedules
for the under-relaxation factor. This approach was further improved by Adsuara
et al. (2016). Both publications focus on linear equations and employ far more
sophisticated mathematical methods to determine optimal under-relaxation factors
than used in the algorithm presented in this thesis. While both these approaches
are not directly applicable to the cases handled in this thesis, they still show that
changing the under-relaxation factor between iterations can significantly improve
convergence speeds.

4.2 Calculation of Mixed Gas Properties

4.2.1 Basics of Property Calculation

As stated in Chapter 3, the only properties permanently stored by the algorithm
are molar fractions, pressures, and temperatures. All other properties that are
required by calculations have to be somehow derived from these basic properties.
As gas permeation operations typically involve more than one substance, the calcu-
lations have to use properties of the mixed gases. The means by which to calculate
properties are manyfold, and there are standard works like The Properties of Gases
and Liquids (Poling et al. 2000) and Prediction of Transport and Other Physical Proper-
ties of Fluids (Bretsznajder 1971) that cover this topic thoroughly. For a practically
usable implementation, some choice has to be made, how to implement property
calculations.

In light of the fact that property calculations will be called thousands of times in
typical calculation scenarios (properties are required for every cell in every itera-
tion), it is required that the retrieval of a single property value is computationally

45

4 Implementation Details

cheap. Therefore, the decision has been made to support two distinct ways of
calculating properties in the reference implementation: very simple equations as-
suming ideal gas behavior and interpolation in a given table of properties. Detailed
descriptions of the equations used for the simple case are given in the following
sections. When using the interpolation method, a table of property values for all
possible combinations of molar fractions, pressures, and temperatures is required.
Vecgp is agnostic to the source of this data, as long as it is provided in the correct
format. Possible sources are described in section 4.2.2. The size of the table varies
greatly depending on the amount of data points. It severely depends on the num-
ber of pure substances and the resolution of the molar fractions, as all possible
combinations have to be covered. The reference implementation extracts the data
points from the property table and builds axes for each dimension (molar fractions
of all but one component, pressure, temperature) as well as a grid for interpolation.
The interpolation itself is performed by MATLAB’s own griddedInterpolant
class based on the defined axes and grid. This class allows for various settings
like choosing the interpolation method (linear or spline-based) and whether to
enable extrapolation or not. Additionally, it facilitates querying multiple points
at once efficiently, which allows for fast calculations. This is described in detail in
section 4.5.

4.2.2 Sources of Real Gas Properties

In general, there are to possible ways to obtain real gas properties: property
databases and property models. Whereas databases typically provide access to a
large set of measured data points, property models typically involve sets of equa-
tions using various parameters that can be fitted to optimally represent the real
behavior of a substance. As gas permeation often deals with multiple components
in various compositions it cannot be assumed that all these data points are available
in a property database. While single component properties might be available,
it is required to employ some kind of interaction model to calculate mixed gas
properties based on the pure component properties.

While Poling et al. (2000) and Bretsznajder (1971) provide many different models
to calculate various properties, these are not considered as state of the art today.
A software package using state of the art equations is REFPROP by the National
Institute of Standards and Technology (Lemmon et al. 2013). The open source
library CoolProp (Bell et al. 2014) provides data of similar quality, but does not
reliably cover as many substances, mixtures, and properties yet. One advantage
of CoolProp is that it can either use its own property model or use REFPROP as a
backend. Therefore, implementing an interface to CoolProp gives access to both
property models. Vecgp includes a Python script that systematically queries data
points in CoolProp in order to generate a table of property values that can be used
by the algorithm.

46

4 Implementation Details

4.2.3 Fugacity Coefficients and Partial Pressures

Fugacity coefficients are different from all the other properties covered in the
reference implementation. While they do depend on the composition of the mixture
(i.e. the molar fractions of all components), they are not properties of the mixture
itself, but rather properties of every single component in a mixture.

The simple case assumes ideal gas behavior where fugacity coefficients are
defined as 1. Therefore the partial pressures are just calculated according to Dalton’s
law as the product of molar fraction and pressure:

𝑝𝑗 = 𝑝 ⋅ 𝑥𝑗

When using the interpolation variant, the fugacity coefficients are queried from
the interpolation table and the resulting partial pressure is calculated as a product
of the ideal gas partial pressure and the fugacity coefficient:

𝑝𝑗 = 𝑝 ⋅ 𝑥𝑗 ⋅ 𝜑𝑗,𝑖𝑛𝑡 (𝑝, 𝑇, 𝑥1, ⋯ , 𝑥𝑚)

As shown in section 3.3, partial pressures play a central role in the calculation
of transmembrane flux. Therefore, varying fugacity coefficients might have a
significant impact on the overall results (e.g. stage cut, recoveries). The deviation
of real gas fugacity coefficients from the ideal value of 1 depends heavily on the
specific substances as well as temperature and pressure. In general, the deviation
is low for low pressures and high temperatures. As an example, the fugacity
coefficients (calculated using REFPROP) for mixtures of methane and hydrogen
and mixtures of methane and carbon dioxide are shown in Fig. 4.3 and Fig. 4.4.
Note that for the system of methane and carbon dioxide, only mixtures with a
molar fraction of methane greater than 0.5 are shown, as pure carbon dioxide
would be liquid at 25 ∘C and 100 bar.

It can be observed that the deviations reach significant values at high pressures,
especially for hydrogen and carbon dioxide. In section 7.5, the differences between
calculations with ideal partial pressures and real gas data are shown in some
examples.

4.2.4 Molar Volume and Density

Molar volumes are required to calculate volume flows from mole flows and there-
fore needed for pressure drop calculations (section 3.4). For the simple case as-
suming ideal gases, the molar volume can be directly calculated from the ideal gas
law:

𝑣𝑚 =
𝑅 ⋅ 𝑇

𝑝

47

4 Implementation Details

0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00

Molar Fraction of Methane (-)

0.80

0.85

0.90

0.95

1.00

1.05

F
u

g
a

c
it
y
 C

o
e

ff
ic

ie
n

t
(-

)

p = 1 bar, T = 25 °C

p = 1 bar, T = 50 °C

p = 10 bar, T = 25 °C

p = 10 bar, T = 50 °C

p = 50 bar, T = 25 °C

p = 50 bar, T = 50 °C

p = 100 bar, T = 25 °C

p = 100 bar, T = 50 °C

(a) Fugacity Coefficients of Methane

0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00

Molar Fraction of Methane (-)

1.00

1.05

1.10

1.15

1.20

1.25

1.30

F
u

g
a

c
it
y
 C

o
e

ff
ic

ie
n

t
(-

)

p = 1 bar, T = 25 °C

p = 1 bar, T = 50 °C

p = 10 bar, T = 25 °C

p = 10 bar, T = 50 °C

p = 50 bar, T = 25 °C

p = 50 bar, T = 50 °C

p = 100 bar, T = 25 °C

p = 100 bar, T = 50 °C

(b) Fugacity Coefficients of Hydrogen

Figure 4.3: Fugacity Coefficients for Mixtures of Methane and Hydrogen

48

4 Implementation Details

0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00

Molar Fraction of Methane (-)

0.84

0.86

0.88

0.90

0.92

0.94

0.96

0.98

1.00

F
u

g
a

c
it
y
 C

o
e

ff
ic

ie
n

t
(-

)

p = 1 bar, T = 25 °C

p = 1 bar, T = 50 °C

p = 10 bar, T = 25 °C

p = 10 bar, T = 50 °C

p = 50 bar, T = 25 °C

p = 50 bar, T = 50 °C

p = 100 bar, T = 25 °C

p = 100 bar, T = 50 °C

(a) Fugacity Coefficients of Methane

0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00

Molar Fraction of Methane (-)

0.50

0.60

0.70

0.80

0.90

1.00

F
u

g
a

c
it
y
 C

o
e

ff
ic

ie
n

t
(-

)

p = 1 bar, T = 25 °C

p = 1 bar, T = 50 °C

p = 10 bar, T = 25 °C

p = 10 bar, T = 50 °C

p = 50 bar, T = 25 °C

p = 50 bar, T = 50 °C

p = 100 bar, T = 25 °C

p = 100 bar, T = 50 °C

(b) Fugacity Coefficients of Carbon Dioxide

Figure 4.4: Fugacity Coefficients for Mixtures of Methane and Carbon Dioxide

49

4 Implementation Details

When using interpolation, molar volume is evaluated as the reciprocal value of
molar density which is stored as part of the interpolation table:

𝑣𝑚 =
1

𝜌𝑚
𝑖𝑛𝑡 (𝑝, 𝑇, 𝑥1, ⋯ , 𝑥𝑚)

Given the molar volume, the volume flow can be calculated as:

�̇� = ̇𝑛 ⋅ 𝑣𝑚

Additionally, the density might be of interest. It is derived by dividing the molar
mass of the mixture by the molar volume.

𝜌 =

𝑚
∑
𝑗=1

𝑥𝑗𝑀𝑗

𝑣𝑚

When using interpolation, the molar mass of the mixture is stored in the table
and therefore can be used directly:

𝜌 = 𝑀𝑖𝑛𝑡 (𝑝, 𝑇, 𝑥1, ⋯ , 𝑥𝑚) ⋅ 𝜌𝑚
𝑖𝑛𝑡 (𝑝, 𝑇, 𝑥1, ⋯ , 𝑥𝑚)

4.2.5 Viscosity

Viscosities are required for the pressure drop calculation (section 3.4) as well.
For the simple case it is assumed that the pure component viscosities 𝜇𝑗 are

constant, neglecting temperature and pressure dependency. These constant values
have to be defined manually. It has to be noted, that the viscosity is a function of
temperature even under ideal gas assumptions (White 2005, p. 25). Therefore, the
model of constant viscosities will only lead to acceptable results when no large
variations of temperature are expected.

Based on the constant pure component viscosities, the viscosity of the mixed gas
is calculated using the mixing formula of Wilke as described in equations 9-5.13
and 9-5.14 of The Properties of Gases and Liquids (Poling et al. 2000). In this formula a
mixing coefficient 𝜙𝑗1,𝑗2 is used which is defined as:

𝜙𝑗1,𝑗2 =

⎡⎢⎢
⎣
1 + ⎛⎜

⎝

𝜇𝑗1

𝜇𝑗2

⎞⎟
⎠

1
2 ⎛⎜
⎝

𝑀𝑗2

𝑀𝑗1

⎞⎟
⎠

1
4 ⎤⎥⎥
⎦

2

⎡⎢
⎣
8 ⎛⎜

⎝
1 +

𝑀𝑗1

𝑀𝑗2

⎞⎟
⎠

⎤⎥
⎦

1
2

(4.1)

Using (4.1), the mixed gas viscosity is then calculated as:

𝜇 =
𝑚

∑
𝑗1=1

𝑥𝑗1𝜇𝑗1
𝑚
∑

𝑗2=1
𝑥𝑗2𝜙𝑗1,𝑗2

(4.2)

50

4 Implementation Details

When using interpolation, the mixed gas viscosities can be taken directly from
the interpolation table:

𝜇 = 𝜇𝑖𝑛𝑡 (𝑝, 𝑇, 𝑥1, ⋯ , 𝑥𝑚)

4.2.6 Thermal Conductivity

Thermal conductivities are required to calculate the heat transfer through the
membrane (see section 3.5).

The simple calculation uses the formula of Eucken to calculate the pure com-
ponent thermal conductivities based on the pure component viscosities. The
formulation given in equation 10-3.3 of The Properties of Gases and Liquids (Poling
et al. 2000) can be transformed into:

𝜆𝑗 =
𝜇𝑗 ⋅ 𝑅
𝑀𝑗

⋅ ⎛⎜
⎝

1
𝜅𝑗 − 1

+ 2.25⎞⎟
⎠

(4.3)

The pure component heat capacity ratios 𝜅𝑗 are assumed to be constant and have to
be specified manually.

The mixed gas thermal conductivities are then calculated according to the mixing
formula of Mason and Saxena as given in equations 10-6.1 to 10-6.4 of The Properties
of Gases and Liquids:

𝜆 =
𝑚

∑
𝑗1=1

𝑥𝑗1𝜆𝑗1
𝑚
∑

𝑗2=1
𝑥𝑗2𝜙𝑗1,𝑗2

(4.4)

The mixing coefficient 𝜙𝑗1,𝑗2 is the same as for the calculation of the mixed gas
viscosity and is specified in (4.1).

When using interpolation, the mixed gas thermal conductivities are again part
of the interpolation table and can therefore be taken directly from there:

𝜆 = 𝜆𝑖𝑛𝑡 (𝑝, 𝑇, 𝑥1, ⋯ , 𝑥𝑚)

4.2.7 Enthalpy and Heat Capacities

Enthalpies and heat capacities are used throughout the energy balance calculation
(section 3.5).

For the simple calculation, ideal gases with constant heat capacity ratios 𝜅𝑗 are
assumed. The molar heat capacities can then be calculated as:

𝑐𝑚
𝑝 =

𝑚
∑
𝑗=1

⎛⎜
⎝

𝑥𝑗 ⋅ 𝜅𝑗

𝜅𝑗 − 1
⎞⎟
⎠

⋅ 𝑅 (4.5)

𝑐𝑚
𝑣 =

𝑚
∑
𝑗=1

⎛⎜
⎝

𝑥𝑗

𝜅𝑗 − 1
⎞⎟
⎠

⋅ 𝑅 (4.6)

51

4 Implementation Details

Based on the heat capacity at constant pressure 𝑐𝑚
𝑝 , the enthalpy can be simply

calculated as:

ℎ𝑚 = 𝑐𝑚
𝑝 ⋅ 𝑇 (4.7)

In order to calculate the temperature from a given enthalpy, the calculation just
has to be inverted:

𝑇 =
ℎ𝑚

𝑐𝑚
𝑝

(4.8)

When using interpolation, the heat capacities as well as the molar enthalpy are
stored in the interpolation table:

𝑐𝑚
𝑝 = 𝑐𝑚

𝑝 𝑖𝑛𝑡 (𝑝, 𝑇, 𝑥1, ⋯ , 𝑥𝑚)

𝑐𝑚
𝑣 = 𝑐𝑚

𝑣 𝑖𝑛𝑡 (𝑝, 𝑇, 𝑥1, ⋯ , 𝑥𝑚)
ℎ𝑚 = ℎ𝑚

𝑖𝑛𝑡 (𝑝, 𝑇, 𝑥1, ⋯ , 𝑥𝑚)

Calculating the temperature from a given molar enthalpy is not that trivial though,
as the molar enthalpy cannot be looked up in the interpolation table. Using the
fact that the partial derivative of the molar enthalpy in regard to the temperature
is the molar heat capacity at constant pressure

𝜕ℎ𝑚

𝜕𝑇
= 𝑐𝑚

𝑝

and given a guess for the target temperature 𝑇𝑘
𝑔𝑢𝑒𝑠𝑠, a refined guess for the target

temperature can be acquired by using the method of Newton:

𝑇𝑘+1
𝑔𝑢𝑒𝑠𝑠 = 𝑇𝑘

𝑔𝑢𝑒𝑠𝑠 −
ℎ𝑚

𝑖𝑛𝑡 (𝑝, 𝑇𝑘
𝑔𝑢𝑒𝑠𝑠, 𝑥1, ⋯ , 𝑥𝑚) − ℎ𝑚

𝑐𝑚
𝑝 𝑖𝑛𝑡 (𝑝, 𝑇𝑘

𝑔𝑢𝑒𝑠𝑠, 𝑥1, ⋯ , 𝑥𝑚)
(4.9)

In vecgp, the temperature of the previous iteration (or the initialization temperature
in the first iteration) is used as initial guess. If the initial guess is not too far off,
this iteration typically leads to accurate results in very few (1-3) iterations.

4.3 Delayed Activation of Pressure Drop and Energy Balance
Calculation

While all three modes of calculation (transmembrane flux, pressure drop, and en-
ergy balance) are interrelated, the dependency of the latter two on the first is much
higher than the other way round. The transmembrane flux calculation is directly
responsible for calculating the flows in each cell and this has a direct impact on the

52

4 Implementation Details

volume flows used in the pressure drop calculation and the enthalpy flows used in
the energy balance calculation. As long as permeances are assumed pressure and
temperature independent, the effect of changed pressures and temperatures on the
flux calculation is limited.

This leads to the situation that both the pressure drop and the energy balance
calculation require reasonably correct molar flow values in order to deliver sensible
results. Therefore, it might be practical to approach a calculation case by first
only solving the transmembrane flux equations and only activating the other
calculations once convergence has been reached for the molar flows. Furthermore,
it can be argued that the effect of the pressure drop calculation is greater than
that of the energy balance calculation, as it directly affects the driving force in the
flux calculation. The energy balance calculation, on the other hand, only affects
the other calculations indirectly via the used properties. In light of this “order
of dependency”, a calculation in three steps might show favorable convergence
behavior:

1. Only transmembrane flux calculation

2. Transmembrane flux and pressure drop calculation

3. Transmembrane flux, pressure drop, and energy balance calculation

4.4 Numerical Effects

When dealing with numerical methods, one always has to consider numerical
effects that might lead to unexpected solution behavior. Two situations that com-
monly appear are divisions by zero and effects of the numerical accuracy. Divisions
by zero often appear when a quantity is divided by a sum of quantities, as it is the
case for the calculation of the molar fractions based on molar flows:

𝑥𝑗 =
̇𝑛𝑗

𝑚
∑
𝑗=1

̇𝑛𝑗

(4.10)

In the case that all ̇𝑛𝑗 are zero, this equation leads to a 0
0 which is mathematically

undefined. If one tries to evaluate this in MATLAB, the result is NaN (Not a Number).
The calculation is adversely affected by the appearance of NaN values, as they spread
virally, i.e. every mathematical operation that involves a NaN also results in a NaN.
This means that once a single NaN appears, after a few iterations typically all values
become NaNs. Therefore it can easily be seen that these NaNs have to be avoided
by any means possible. For equations such as (4.10), the desired result is typically
zero when all values are zero. In vecgp checks are implemented throughout the
code that detect these 0

0 cases and replace them with zero.

53

4 Implementation Details

The other case where positive or negative numbers are divided by zero typically
does not lead to as severe problems, as these calculations result in values of positive
or negative infinity which are mostly handled fine by subsequent mathematical
operations.

The second big area of unexpected behavior is due to the limited numerical
accuracy present in calculation environments. Typical double precision float rep-
resentations have a relative accuracy of around 10−16. This means that for any 𝑥,
values between 𝑥 ⋅ (1 − 10−16) and 𝑥 ⋅ (1 + 10−16) cannot be differentiated by the
numerical representation. This is especially important where values have to obey
exact limits.

One example is the flux limiting applied as part of the transmembrane flux
calculation as described in section 3.3.4. When applying the soft limit according to
(3.29), it is not possible for the limited flux to reach a value higher than the reference
value as long as exact mathematics can be assumed. Due to numerical effects,
though, the result may be larger by a small margin within the numerical accuracy.
This might lead to the situation that subtracting the soft-limited flux from the
reference value results in a negative value. If this shift of sign happens, it adversely
affects all subsequent calculations. Therefore, this situation has to be avoided. In
the described situation, the case is handled in the reference implementation by also
applying a hard limit after the soft limit.

Another case where numerical accuracy plays a role is the energy balance cal-
culation as described in section 3.5. This calculation mainly operates on enthalpy
flows which are calculated based on the molar flows, pressure, and temperature
in the beginning. After the calculation, the resulting enthalpy flows are divided
by the molar flows in order to obtain molar enthalpies which are subsequently
converted back to temperatures. One problem that could arise is division by zero if
the original molar flows are zero. Additionally, though, molar flows that are very
small — to be exact: indistinguishable from zero within numerical accuracy using
the largest volume flows as reference — can lead to problems when dividing the
enthalpy flows by them. Therefore, in these cells the energy balance calculation has
to be overridden. The phenomenological reasoning behind this is straightforward:
if no mass is transported through a cell, then there is nothing that could transport
enthalpy.

4.5 Performance Optimization

In order to optimize the performance of any code, the environment in which
it is executed has to be taken into account. As the reference implementation is
implemented in MATLAB, the specifics of this programming environment have to
be considered. MATLAB is optimized for performing calculations on matrices and
vectors, whereas loops are comparatively slow (MathWorks 2016). Therefore a goal

54

4 Implementation Details

of vecgp was to vectorize the code as much as feasibly possible — hence the name.
As a result, all the properties are not only stored in arrays covering all cells

and components, but calculations are also performed on all cells simultaneously
using matrix operations. Due to this vectorization it is not possible to use the
Gauss-Seidel method as described in section 3.1.5, as this would require the cells
to be calculated one after the other. Thus, vecgp only uses the Jacobi method.

Additionally, all the code dealing with mixed gas properties is vectorized as well.
This means that the properties can also be calculated simultaneously for all cells.
This also applies to the interpolation method, as a vector of query points can be
passed to the used griddedInterpolant class.

Other means of performance optimization that are implemented are preallocation
of memory for variables, caching of frequently repeated calculations, and inlining
of frequently called code.

4.6 Structure of Code

The primary aim of vecgp is to allow easy, robust, and fast calculations of gas
permeation processes in hollow fiber membrane modules. Additionally, it was a
goal to make the helper routines (properties, handling of streams, etc.) reusable
outside the pure calculation of gas permeation processes. In order to allow an easy
set up of multi-stage calculations, vecgp was also designed to allow easy connection
of single gas permeation modules. The code is self contained and does not have
any external dependencies besides MATLAB. Most of the testing has been done
with MATLAB R2016b, but to best knowledge it should also work with versions
back to at least R2015a.

Vecgp is coded as an object oriented library consisting of seven classes, each of
which performs distinct tasks:

Component represents a single pure component and holds its properties like name,
molar mass, (constant) viscosity, and constant heat capacity ratio (isentropic
exponent).

Components represents a set of components. Therefore, it holds all the pure
components that the set of components is made up from. The main use
of this class is to provide an easy way to access mixed gas properties. As
described in section 4.2, the properties can be derived in two ways:

• Calculation from constant properties of the pure components assuming
ideal gases and using simple semi-empirical equations.

• Interpolation of properties in a provided grid. This allows for easy use
of real gas properties for all parts of the calculation.

55

4 Implementation Details

AbstractStream is an abstract class (which means that it just serves as a parent
for inheritance) that provides methods to access properties of streams. It
accesses Components to calculate said properties. Classes inherited from
AbstractStream (Stream and CalculationStream) make use of these
generally defined methods.

Stream represents a single stream, defining components, composition, flow, pres-
sure and temperature. As the methods from AbstractStream are available,
various properties of the stream can easily be accessed. Additionally, addi-
tion and subtraction of Streams is possible as well as multiplication with a
scalar.

CalculationStream is used internally by Calculation and represents a stream
with multiple cells. Rather than storing total flows and composition, a
CalculationStream stores the flows for each component for fast calcula-
tions. Total flow and composition are calculated by calling a caching method.
Additionally, convergences of component flows, pressure, and temperature
are stored.

Module represents a membrane module with all properties necessary to fully
describe it. Besides storing the module geometry, the connected streams,
and providing a method to calculate permeances, this class also allows easy
access to module level properties like stage cut, recoveries, and mass balances.
Besides setting streams, components, and parameters for calculation of per-
meances, the two important properties for regular flux calculations are the
total membrane area and the location of the permeate outlet. As described
in section 3.2.2, the outlet can be set as 0 (at feed side, counter-current), 1
(at retentate side, co-current), and all values in between. Values other than
0 and 1 are only possible when bore side feed is specified, as an outlet in
the middle of the module is physically impossible with shell side feed. For
the calculation of pressure drop and energy balance, additional geometry
parameters (diameters, etc.) can be set.

Calculation actually performs the calculation. It holds a Module object, stores
all settings necessary for calculation, and provides methods for initialization,
single calculation steps, automated iteration loops, and status displays.

4.7 Sanitization of Inputs

In order to increase user-friendliness of the reference code, measures have been
implemented to ensure “sane” inputs. This is typically done using the MATLAB
method validateattributes. The checks include minimal and maximal values,

56

4 Implementation Details

especially positivity or non-negativity conditions. Additionally, it is enforced
whether a number has to be an integer or can be a floating point number. The
dimension of inputs is also checked to conform with the target value to be set.

All these measures are there to ensure, that attempted misconfigurations of the
calculation fail early and loudly instead of silently returning wrong results. While
input sanitization is applied for all class constructors and most exposed methods,
internal interfaces often do not check their input parameters due to performance
reasons.

4.8 Usage Examples

4.8.1 Basic Setup of a Calculation

This section shows which steps are required to perform a basic calculation. It has
to be noted, that this is not a full documentation of the code and does not show all
possible configuration options.

Components

At first, the used Component objects have to be defined. As this involves man-
ual input of data (component names, molar masses, ...) which usually stays the
same over multiple calculations, a script is provided that creates components for
the currently most used substances: hydrogen, methane, carbon dioxide, carbon
monoxide, and water (vapor).

define_components

This script creates a struct array with one field for each of the five components.
Single components can easily be accessed by their short name (formula), e.g.

cmp.h2

For all further calculations, a Components object with all currently used compo-
nents has to be created. In order to do that, the constructor has to be called with a
vector of Component-objects. For a simple case of methane and hydrogen this can
be achieved as:

components = Membrane.Components([cmp.ch4; cmp.h2]);

Permeances

The next step is to define the parameters for the calculation of permeance. As the
reference implementation uses constant permeances, the only “parameter” for each
component is the permeance itself. There are two variants how the permeances
can be passed to the constructor of the Module class:

57

4 Implementation Details

• A struct with a field for each component

• A column vector with the values in the order of the components

The struct-variant typically is less prone to errors because it does not depend
on the order of the components. So if the permeance for hydrogen is given as
5 × 10−8 mol m−2 s−1 Pa−1 and a selectivity hydrogen/methane of 100:

permeances = struct();
permeances.h2 = 5e-8;
permeances.ch4 = permeances.h2 / 100;

Streams

Next, the streams for the calculation have to be defined. The parameters are mostly
scalars, composition being the exception, which has to be passed values for every
component. The composition shall be given as molar fractions. A feed composition
of 10 % (mol/mol) hydrogen and 90 % (mol/mol) methane can be set as:

x = struct();
x.h2 = 0.1;
x.ch4 = 1 - x.h2;

For the other properties of the stream a pressure of 50 bar, a temperature of 300 K,
and a flow of 0.01 mol s−1 is assumed.

feed = Membrane.Stream(components, ’name’, ’Feed’, ...
’p’, 50*1e5, ’T’, 300, ’n’, 0.01, ’x’, x);

It can be seen that the first parameter is always the Components object. The stream
has to “know”, which components it is made up from.

For the permeate and retentate not that many parameters have to be defined.
The main important parameter for the permeate is the pressure (here: 1 bar). The
retentate does not require any parameters at all, but setting a name is nice anyway:

permeate = Membrane.Stream(components, ’name’, ’Permeate’, ...
’p’, 1*1e5);

retentate = Membrane.Stream(components, ’name’, ’Retentate’);

In general, the feed has to be fully defined and for the permeate, the pressure has
to be defined. All other values are not necessary and will be overwritten by the
calculation afterwards.

58

4 Implementation Details

Module

Using the previously defined objects, a Module object can now be created. Required
parameters are the total membrane area of the module and the location of the
permeate outlet. For 0.2 m2 and counter-current configuration the setup can be
made as:

module = Membrane.Module(components, permeances, ...
’A’, 0.2, ’outlet’, 0, ...
’feed’, feed, ’permeate’, permeate, ’retentate’, retentate);

Calculation

The final step is to create a Calculation object based on the defined Module.

calc = Membrane.Calculation(module);

As this Calculation-object is initialized with somewhat sensible defaults, the
calculation can instantly be initialized:

calc.initialize();

This by default shows a summary of the calculation settings as well as a semi-
graphical representation of the configured module. After the calculation is initial-
ized, the iteration can be started:

calc.iterate();

While the code is iterating, some status lines are displayed. These include basic
calculation information like elapsed time, current convergence values, stage cut,
and flows and compositions of the permeate and retentate streams. Additionally,
information is given about the change of under-relaxation parameters (as described
in section 4.1). After reaching convergence, information about mass balance and
possible issues with the result (due to e.g. the limitation of flux as described in
section 3.3.4) are shown.

4.8.2 Using Real Gas Properties

As stated above and described in section 4.2, the class Components provides two
modes for calculating required properties. Changing between these two modes
is easily possible by setting a property of the Components object. The following
seven properties / groups of properties can be set to the simple calculation or
interpolation mode separately.

• Partial Pressure / Fugacity

59

4 Implementation Details

• Molar Mass

• Molar Volume

• Density

• Viscosity

• Thermal Conductivity

• Enthalpy / Heat Capacities

In order to use the interpolation mode, well defined axes and a grid are required.
The easiest way to generate these from a given properties table is the included
script load_interpolation_grid.

4.8.3 Using External Loops to Solve for Non-Default Parameters

Usually, the library performs calculations as described in section 3.6: Input param-
eters that have to be defined are a fully specified module and feed as well as the
permeate pressure. Output values are the permeate and retentate.

Many cases exist where this is not the desired direction of calculation. A fre-
quently used case for this is varying some parameters (e.g., membrane area, feed
flow, permeances) to achieve a defined stage cut. These types of calculation require
an outer loop to solve for the given target. A suitable way to achieve this is the
MATLAB function fzero, which takes a function of one variable and tries to find
the value for the input variable so that the output becomes zero. In order to use
fzero, one has to write a wrapper function that takes the value to vary as input
and returns the difference between the actual and the target output value. This is
described in detail in the tutorial accompanying the code.

4.8.4 Example of a Two-Stage Process

Actual technical applications typically use more complex separation setups than a
single gas permeation stage. Pathare and Agrawal (2010), Xu and Agrawal (1996a),
and Agrawal and Xu (1996) show examples of possible multi-stage membrane
cascades. While calculating complex multi-stage processes is possible with the
reference code, a detailed description of the setup of such a case is out of scope of
this work.

The basics of calculating multi-stage processes are shown, though, in the fol-
lowing simple two-stage example: The system consists of two identical membrane
modules, where the permeate of the first module is used as the feed for the second
stage.

The setup of components and permeances is the same as for a simple example.

60

4 Implementation Details

define_components
used_cmp = [cmp.ch4; cmp.h2];
components = Membrane.Components(used_cmp);

permeances = struct();
permeances.h2 = 5e-8;
permeances.ch4 = permeances.h2 / 100;

For the definition of the streams, permeate and retentate have to be defined for both
modules. The main additional parameter required is the intermediate pressure
between the two modules. Assuming a intermediate pressure of 5 bar, the streams
can be defined:

x = struct();
x.h2 = 0.6;
x.ch4 = 1-x.h2;

feed = Membrane.Stream(components, ’name’, ’Feed’, ...
’p’, 50*1e5, ’T’, 300, ’n’, 0.01, ’x’, x);

permeate1 = Membrane.Stream(components, ’name’, ’Permeate 1’, ...
’p’, 5*1e5, ’T’, 300);

permeate2 = Membrane.Stream(components, ’name’, ’Permeate 2’, ...
’p’, 1*1e5, ’T’, 300);

retentate1 = Membrane.Stream(components, ’name’, ’Retentate 1’);
retentate2 = Membrane.Stream(components, ’name’, ’Retentate 2’);

As the example consists of two modules, both have to be defined:

module1 = Membrane.Module(...
components, permeances, ’name’, ’Module 1’, ...
’A’, 0.2, ’outlet’, 0);

module1.feed = feed;
module1.permeate = permeate1;
module1.retentate = retentate1;

module2 = Membrane.Module(components, permeances, ...
’name’, ’Module 2’, ’A’, 0.2, ’outlet’, 0);

module2.feed = permeate1;
module2.permeate = permeate2;
module2.retentate = retentate2;

After defining the Calculation objects and initializing them, the iterations can
be started:

61

4 Implementation Details

% Module 1
calc1.initialize();
calc1.iterate();

% Module 2
calc2.initialize();
calc2.iterate();

As Module 2 depends on the Module 1 in this example, it is important, that the
iterations are performed on Module 1 before Module 2. This example does not
contain recycles, therefore the solution process is straightforward. If streams are
recycled, an outer loop is required.

62

5 Validation of Algorithm

5.1 Comparison with Existing MATLAB Code

5.1.1 Description of Existing MATLAB Code

As the algorithm presented in this thesis is new, the correctness of its results
has to be assessed. Therefore, it is validated against an implementation of the
algorithm described by Makaruk and Harasek (2009). This implementation is
already validated against experimental data and is actively used in research and
industry.

In order to simplify nomenclature, the algorithm presented in this thesis and
its reference implementation are referred to as vecgp from now on, whereas the
algorithm presented by Makaruk and Harasek is referred to as makaruk. As vecgp
is based on the algorithm published by Makaruk and Harasek, the general approach
to the problem is inherently similar. When comparing both algorithms, though,
differences in various parts clearly exist. One main difference is that makaruk uses
a Gauss-Seidel iteration, whereas vecgp uses a Jacobi iteration. Both algorithms
use under-relaxation and have features to reduce the relaxation factor, but these
work very differently.

While the underlying algorithm of vecgp is based on the makaruk-algorithm, the
actual code of vecgp, is completely independent of the makaruk-code. Therefore,
the existing implementation of makaruk serves as an ideal reference to validate
vecgp against.

5.1.2 Definition of Test Cases

In order to compare various approaches to solve the transmembrane flux equa-
tions, a set of test cases has been defined at the research division Thermal Process
Engineering & Simulation of the Institute of Chemical, Environmental & Biolog-
ical Engineering at TU Wien. These test cases are also used to validate the new
algorithm. They consist of two parts:

• A set of 16 two-component (hydrogen and carbon dioxide) cases which are
derived from a base case by changing various parameters.

• A set of 4 five-component (methane, carbon monoxide, carbon dioxide, hy-
drogen, and water) cases which are derived from a base case by changing

63

5 Validation of Algorithm

the target stage cut.

The cases are described in detail in Table 5.1 and Table 5.2. Note that as the case IDs
were defined in an arbitrary order, the tables are not fully sorted by these values.
Rather, a more “logical” sorting is applied.

The two-component are split into two groups. In the first group, various physical
parameters are changed (feed composition, feed pressure, target stage cut, and
permeances). In the second group, only the number of cells is varied, while the
physical parameters stay the same. As in these cases the same physical conditions
are calculated with different settings, the impact of discretization error can be
observed. This topic is also covered in more detail in section 7.2. As case C011
served as the base case for the variation of cell numbers, it fits in both groups and
is therefore listed twice in the table.

As can be seen in the tables, the units that were used to define the test cases are
not consistent with the units used throughout this thesis: Nm3 instead of mol, ∘C
instead of K, and bar instead of Pa.

For the calculations with vecgp, a script was used that calculated all test cases in
a batch. This script automatically converted the input values from these units into
the ones used by the reference implementation and also converted the results back
to the units used in the test cases.

It has to be noted that the test cases were initially defined with a stage cut as
input parameter. In both algorithms the stage cut is not a direct input parameter,
but rather a value that is calculated based on the inputs. Therefore, some input
parameter has to be varied in order to reach the target stage cut. For the test cases
this variable input parameter is the membrane area.

In order to actually compare the algorithms themselves and not the external
loops that perform the parameter variation, the required membrane areas were
calculated upfront using vecgp. These calculated areas are included in Table 5.1
and Table 5.2.

The actual reference calculations were done using the pre-calculated areas as
inputs for both algorithms. This means that the results can only vary in terms of
the calculated streams, but not in terms of the membrane area.

For both algorithms, the configuration options were set to the same values where
possible. This includes:

• a convergence criterion of 10−10 (applied for each component)

• pure counter-current configuration

• no pressure drop calculation

Configuration options that are only present in vecgp were set so that they most
closely match the assumptions made in makaruk. This includes:

64

5 Validation of Algorithm

Table 5.1: Specification of Two-Component Test Cases

(a) Constant Parameters

̇𝑛𝐹𝑒𝑒𝑑 𝑇𝐹𝑒𝑒𝑑 𝑝𝑃𝑒𝑟𝑚 Π𝐻2

(Nm3 s−1) (∘C) (bar) (Nm3 s−1 m−2 bar−1)

1 25 1 2.5 × 10−4

(b) Case-Specific Parameters

Case 𝑥𝐹𝑒𝑒𝑑,𝐻2
𝑥𝐹𝑒𝑒𝑑,𝐶𝑂2

𝑝𝐹𝑒𝑒𝑑 Π𝐶𝑂2
𝑆𝐶 𝐴 𝑛

(−) (−) (bar) (Nm3 s−1 m−2 bar−1) (−) (m2) (−)

C001 0.5 0.5 10 2.5 × 10−3 0.5 60.092 100
C002 0.2 0.8 10 2.5 × 10−3 0.5 30.135 100
C003 0.8 0.2 10 2.5 × 10−3 0.5 144.801 100
C004 0.5 0.5 7 2.5 × 10−3 0.5 93.392 100
C005 0.5 0.5 4 2.5 × 10−3 0.5 204.086 100
C006 0.5 0.5 3 2.5 × 10−3 0.5 327.771 100
C007 0.5 0.5 10 2.5 × 10−3 0.2 19.001 100
C008 0.5 0.5 10 2.5 × 10−3 0.8 155.741 100
C009 0.5 0.5 10 7.5 × 10−4 0.5 123.403 100
C010 0.5 0.5 10 6.3 × 10−3 0.5 34.005 100
C011 0.5 0.5 10 2.5 × 10−2 0.5 15.560 100

C017 0.5 0.5 10 2.5 × 10−2 0.5 17.177 10
C018 0.5 0.5 10 2.5 × 10−2 0.5 15.740 50
C011 0.5 0.5 10 2.5 × 10−2 0.5 15.560 100
C019 0.5 0.5 10 2.5 × 10−2 0.5 15.452 250
C020 0.5 0.5 10 2.5 × 10−2 0.5 15.416 500
C012 0.5 0.5 10 2.5 × 10−2 0.5 15.397 1000

65

5 Validation of Algorithm

Table 5.2: Specification of Five-Component Test Cases

(a) Constant Parameters

̇𝑛𝐹𝑒𝑒𝑑 𝑥𝐹𝑒𝑒𝑑,𝐶𝐻4
𝑥𝐹𝑒𝑒𝑑,𝐶𝑂 𝑥𝐹𝑒𝑒𝑑,𝐶𝑂2

𝑥𝐹𝑒𝑒𝑑,𝐻2
𝑥𝐹𝑒𝑒𝑑,𝐻2𝑂 𝑇𝐹𝑒𝑒𝑑 𝑝𝐹𝑒𝑒𝑑 𝑝𝑃𝑒𝑟𝑚 𝑛

(Nm3 s−1) (−) (−) (−) (−) (−) (∘C) (bar) (bar) (−)

1 0.5630 0.0064 0.0807 0.3489 0.0010 25 10 1 200

Π𝐶𝐻4
Π𝐶𝑂 Π𝐶𝑂2

Π𝐻2
Π𝐻2𝑂

(Nm3 s−1 m−2 bar−1) (Nm3 s−1 m−2 bar−1) (Nm3 s−1 m−2 bar−1) (Nm3 s−1 m−2 bar−1) (Nm3 s−1 m−2 bar−1)

2.775 × 10−6 2.885 × 10−6 6.976 × 10−5 2.175 × 10−4 7.500 × 10−4

(b) Case-Specific Parameters

Case 𝑆𝐶 𝐴
(−) (m2)

C015 0.05 82.56
C013 0.50 3578.43
C014 0.80 15 088.16
C016 0.90 19 090.06

66

5 Validation of Algorithm

• no relative convergence or mass balance criteria

• no calculation of the energy balance

• usage of simple ideal gas properties (no interpolated real gas data — this is
the default setting of the implementation)

• a hard flux limit as described in section 3.3.4 (this is the default setting of
the implementation)

• the evaluation location for cell properties (as described in section 3.2.4) is set
to downstream (this is the default setting of the implementation)

5.1.3 Comparison of Results

The results are shown in Table 5.3 to Table 5.6. For both the two-component and
the five-component cases, there are nearly no visible differences in the first three
digits of the flows and composition of permeate and retentate. Only in case C017,
there is a slight deviation of the stage cut and the retentate composition. C017 is
the case with only 10 cells, which is subject to large discretization errors anyway.

The difference between both algorithms is typically in the order of 10−5, which in
terms of concentrations corresponds to 10 ppm. No plots of the results are shown,
as there would be no visible differences between vecgp and makaruk. Even for
the comparatively large deviation of case C017 (which is in the order of 10−3), the
difference would only be around 0.1 mm when using bars of 100 mm length. Given
the conceptual differences between vecgp and makaruk, these small variation of
the results are well within an expected range of uncertainty.

Mass balance is closed up to at least an order of 10−8 for all cases and both
algorithms.

5.1.4 Comparison of Calculation Performance

As stated above, both vecgp and makaruk calculate very similar results. They
do, however, show a very different behavior in terms of results. There are two
parameters that can be compared:

• calculation time

• number of iterations

Whereas the number of iterations remains constant when performing the same
calculation multiple times, the calculation time is dependent on various factors
like system utilization and other running programs. In order to minimize external

67

5 Validation of Algorithm

Table 5.3: Key Simulation Results of Two-Component Test Cases – vecgp

Case ̇𝑛𝑃𝑒𝑟𝑚 𝑥𝑃𝑒𝑟𝑚,𝐻2
̇𝑛𝑅𝑒𝑡 𝑥𝑅𝑒𝑡,𝐻2

𝐵𝑎𝑙𝐻2
𝐵𝑎𝑙𝐶𝑂2

(Nm3 s−1) (−) (Nm3 s−1) (−) (Nm3 s−1) (Nm3 s−1)

C001 0.500 0.189 0.500 0.811 −3.55 × 10−10 3.55 × 10−9

C002 0.500 0.040 0.500 0.360 −2.41 × 10−10 2.41 × 10−9

C003 0.500 0.613 0.500 0.987 −5.33 × 10−10 5.33 × 10−9

C004 0.500 0.200 0.500 0.800 −4.06 × 10−10 4.06 × 10−9

C005 0.500 0.229 0.500 0.771 −5.74 × 10−10 5.74 × 10−9

C006 0.500 0.253 0.500 0.747 −7.59 × 10−10 7.59 × 10−9

C007 0.200 0.126 0.800 0.593 −2.81 × 10−10 2.81 × 10−9

C008 0.800 0.376 0.200 0.998 −3.53 × 10−10 3.53 × 10−9

C009 0.500 0.333 0.500 0.667 −1.24 × 10−9 3.71 × 10−9

C010 0.500 0.118 0.500 0.882 −1.31 × 10−10 3.28 × 10−9

C011 0.500 0.061 0.500 0.939 −3.45 × 10−11 3.45 × 10−9

C017 0.500 0.068 0.500 0.932 2.27 × 10−13 −2.27 × 10−11

C018 0.500 0.061 0.500 0.939 −1.69 × 10−11 1.69 × 10−9

C011 0.500 0.061 0.500 0.939 −3.45 × 10−11 3.45 × 10−9

C019 0.500 0.060 0.500 0.940 −8.70 × 10−11 8.70 × 10−9

C020 0.500 0.060 0.500 0.940 −1.75 × 10−10 1.75 × 10−8

C012 0.500 0.060 0.500 0.940 −3.50 × 10−10 3.50 × 10−8

C001 C002 C003 C004 C005 C006 C007 C008 C009 C010 C011
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

C
a

lc
u

la
ti
o

n
 T

im
e

 (
s
)

VECGP

MAKARUK

Figure 5.1: Comparison of Calculation Performance – Calculation Time
Two-Component Cases with Constant Number of Cells

68

5 Validation of Algorithm

Table 5.4: Key Simulation Results of Two-Component Test Cases – makaruk

Case ̇𝑛𝑃𝑒𝑟𝑚 𝑥𝑃𝑒𝑟𝑚,𝐻2
̇𝑛𝑅𝑒𝑡 𝑥𝑅𝑒𝑡,𝐻2

𝐵𝑎𝑙𝐻2
𝐵𝑎𝑙𝐶𝑂2

(Nm3 s−1) (−) (Nm3 s−1) (−) (Nm3 s−1) (Nm3 s−1)

C001 0.500 0.189 0.500 0.811 1.96 × 10−10 −1.80 × 10−9

C002 0.500 0.040 0.500 0.360 1.39 × 10−10 −1.30 × 10−9

C003 0.500 0.613 0.500 0.987 −3.02 × 10−10 2.68 × 10−9

C004 0.500 0.200 0.500 0.800 2.32 × 10−10 −2.13 × 10−9

C005 0.500 0.229 0.500 0.771 3.17 × 10−10 −2.93 × 10−9

C006 0.500 0.253 0.500 0.747 4.14 × 10−10 −3.83 × 10−9

C007 0.200 0.126 0.800 0.593 1.98 × 10−10 −1.76 × 10−9

C008 0.800 0.376 0.200 0.998 −1.93 × 10−10 1.73 × 10−9

C009 0.500 0.333 0.500 0.667 6.75 × 10−10 −1.96 × 10−9

C010 0.500 0.118 0.500 0.882 7.66 × 10−11 −1.65 × 10−9

C011 0.500 0.061 0.500 0.939 2.57 × 10−11 −1.67 × 10−9

C017 0.499 0.068 0.501 0.930 4.54 × 10−12 −1.01 × 10−10

C018 0.500 0.061 0.500 0.938 1.61 × 10−11 −8.05 × 10−10

C011 0.500 0.061 0.500 0.939 2.57 × 10−11 −1.67 × 10−9

C019 0.500 0.060 0.500 0.940 5.27 × 10−11 −4.30 × 10−9

C020 0.500 0.060 0.500 0.940 9.70 × 10−11 −8.71 × 10−9

C012 0.500 0.060 0.500 0.940 1.92 × 10−10 −1.83 × 10−8

69

5 Validation of Algorithm

Table 5.5: Key Simulation Results of Five-Component Test Cases – vecgp

Case ̇𝑛𝑃𝑒𝑟𝑚 𝑥𝑃𝑒𝑟𝑚,𝐶𝐻4
𝑥𝑃𝑒𝑟𝑚,𝐶𝑂 𝑥𝑃𝑒𝑟𝑚,𝐶𝑂2

𝑥𝑃𝑒𝑟𝑚,𝐻2
𝑥𝑃𝑒𝑟𝑚,𝐻2𝑂

(Nm3 s−1) (−) (−) (−) (−) (−)

C015 0.050 0.026 0.000 0.083 0.885 0.005
C013 0.500 0.162 0.002 0.142 0.692 0.002
C014 0.800 0.456 0.005 0.101 0.436 0.001
C016 0.900 0.516 0.006 0.090 0.388 0.001

Case ̇𝑛𝑅𝑒𝑡 𝑥𝑅𝑒𝑡,𝐶𝐻4
𝑥𝑅𝑒𝑡,𝐶𝑂 𝑥𝑅𝑒𝑡,𝐶𝑂2

𝑥𝑅𝑒𝑡,𝐻2
𝑥𝑅𝑒𝑡,𝐻2𝑂

(Nm3 s−1) (−) (−) (−) (−) (−)

C015 0.950 0.591 0.007 0.081 0.321 0.001
C013 0.500 0.964 0.011 0.019 0.006 0.000
C014 0.200 0.989 0.011 0.000 0.000 0.000
C016 0.100 0.989 0.011 0.000 0.000 0.000

Case 𝐵𝑎𝑙𝐶𝐻2
𝐵𝑎𝑙𝐶𝑂 𝐵𝑎𝑙𝐶𝑂2

𝐵𝑎𝑙𝐻2
𝐵𝑎𝑙𝐻2𝑂

(Nm3 s−1) (Nm3 s−1) (Nm3 s−1) (Nm3 s−1) (Nm3 s−1)

C015 −3.72 × 10−11 −4.41 × 10−13 −1.04 × 10−9 3.68 × 10−9 8.66 × 10−9

C013 −3.83 × 10−11 −2.49 × 10−13 −4.58 × 10−9 1.71 × 10−8 1.34 × 10−9

C014 2.04 × 10−12 −1.30 × 10−11 1.15 × 10−10 −4.37 × 10−11 4.39 × 10−9

C016 −5.21 × 10−9 5.44 × 10−9 1.87 × 10−10 2.81 × 10−9 1.04 × 10−9

70

5 Validation of Algorithm

Table 5.6: Key Simulation Results of Five-Component Test Cases – makaruk

Case ̇𝑛𝑃𝑒𝑟𝑚 𝑥𝑃𝑒𝑟𝑚,𝐶𝐻4
𝑥𝑃𝑒𝑟𝑚,𝐶𝑂 𝑥𝑃𝑒𝑟𝑚,𝐶𝑂2

𝑥𝑃𝑒𝑟𝑚,𝐻2
𝑥𝑃𝑒𝑟𝑚,𝐻2𝑂

(Nm3 s−1) (−) (−) (−) (−) (−)

C015 0.050 0.026 0.000 0.083 0.885 0.005
C013 0.500 0.162 0.002 0.142 0.692 0.002
C014 0.800 0.456 0.005 0.101 0.436 0.001
C016 0.900 0.516 0.006 0.090 0.388 0.001

Case ̇𝑛𝑅𝑒𝑡 𝑥𝑅𝑒𝑡,𝐶𝐻4
𝑥𝑅𝑒𝑡,𝐶𝑂 𝑥𝑅𝑒𝑡,𝐶𝑂2

𝑥𝑅𝑒𝑡,𝐻2
𝑥𝑅𝑒𝑡,𝐻2𝑂

(Nm3 s−1) (−) (−) (−) (−) (−)

C015 0.950 0.591 0.007 0.081 0.321 0.001
C013 0.500 0.964 0.011 0.019 0.006 0.000
C014 0.200 0.989 0.011 0.000 0.000 0.000
C016 0.100 0.989 0.011 0.000 0.000 0.000

Case 𝐵𝑎𝑙𝐶𝐻2
𝐵𝑎𝑙𝐶𝑂 𝐵𝑎𝑙𝐶𝑂2

𝐵𝑎𝑙𝐻2
𝐵𝑎𝑙𝐻2𝑂

(Nm3 s−1) (Nm3 s−1) (Nm3 s−1) (Nm3 s−1) (Nm3 s−1)

C015 4.38 × 10−11 5.06 × 10−13 3.16 × 10−10 −9.43 × 10−10 −4.39 × 10−9

C013 2.12 × 10−12 2.90 × 10−14 1.36 × 10−11 −9.21 × 10−11 3.63 × 10−12

C014 −3.50 × 10−11 7.87 × 10−11 −1.22 × 10−9 −9.08 × 10−11 8.71 × 10−10

C016 8.76 × 10−11 −3.63 × 10−11 −1.36 × 10−9 −9.16 × 10−11 8.08 × 10−10

71

5 Validation of Algorithm

C017 C018 C011 C019 C020 C012
0

5

10

15

20

25

C
a

lc
u

la
ti
o

n
 T

im
e

 (
s
)

VECGP

MAKARUK

10 Cells 50 Cells 100 Cells 250 Cells 500 Cells 1000 Cells

(a) Wide Y-Axis Range

C017 C018 C011 C019 C020 C012
0.0

0.2

0.4

0.6

0.8

1.0

C
a

lc
u

la
ti
o

n
 T

im
e

 (
s
)

VECGP

MAKARUK

10 Cells 50 Cells 100 Cells 250 Cells 500 Cells 1000 Cells

(b) Narrow Y-Axis Range

Figure 5.2: Comparison of Calculation Performance – Calculation Time
Two-Component Cases with Varying Number of Cells

72

5 Validation of Algorithm

C015 C013 C014 C016
0

5

10

15

20

25

30

C
a

lc
u

la
ti
o

n
 T

im
e

 (
s
)

VECGP

MAKARUK

SC 0.05 SC 0.50 SC 0.80 SC 0.90

(a) Wide Y-Axis Range

C015 C013 C014 C016
0.0

0.5

1.0

1.5

2.0

2.5

3.0

C
a

lc
u

la
ti
o

n
 T

im
e

 (
s
)

VECGP

MAKARUK

SC 0.05 SC 0.50 SC 0.80 SC 0.90

(b) Narrow Y-Axis Range

Figure 5.3: Comparison of Calculation Performance – Calculation Time
Five-Component Cases

73

5 Validation of Algorithm

C001 C002 C003 C004 C005 C006 C007 C008 C009 C010 C011
0

200

400

600

800

1000

1200
N

u
m

b
e

r
o

f
It

e
ra

ti
o

n
s
 (

-)

VECGP

MAKARUK

Figure 5.4: Comparison of Calculation Performance – Number of Iterations
Two-Component Cases with Constant Number of Cells

impacts, all calculations were run 100 times and average calculation times were
calculated.

The calculation times are shown in Fig. 5.1 to Fig. 5.3. As the calculation times
vary in large ranges, the two-component cases with varying cell numbers and the
five-component cases are shown twice with different scales on the y-axis.

It can bee seen that for the two-component cases with a constant number of cells
of 100, makaruk is typically slower by a factor of 1.5 to 2. The notable exception is
case C011, which is defined with a relatively high selectivity (100) compared to the
other cases (10 for C001 to C008, 3 for C009, and 25 for C010). In this case, makaruk
is only about 18% slower.

For the two-component cases with varying numbers of cells, this picture changes
slightly. While makaruk is faster by a factor of 10 for the case with only 10 cells,
this advantage disappears with increasing numbers of cells. For the 1000-cells case,
vecgp is faster by a factor of around 4.5. This means that vecgp spends more time
calculating independent of the number of cells, which probably can be attributed
to overhead introduced by the object oriented code structure and a high number of
function calls. With growing cell numbers, though, the required calculation time
grows much faster for makaruk than for vecgp. This effect is explained in more
detail further down when taking into account the iteration numbers.

With the five-component cases, the speed advantage of vecgp increases further.
For these cases, makaruk is 7 to over 60 times slower than vecgp.

Fig. 5.4 to Fig. 5.6 show the number of iterations required to reach the set conver-
gence criterion. For the two-component cases with a constant number of cells, both
algorithms require a similar number of iterations to reach convergence, except for
case C011, where makaruk requires about 40% less iterations. For the cases with

74

5 Validation of Algorithm

C017 C018 C011 C019 C020 C012
0

2000

4000

6000

8000

10000

N
u

m
b

e
r

o
f

It
e

ra
ti
o

n
s
 (

-)

VECGP

MAKARUK

10 Cells 50 Cells 100 Cells 250 Cells 500 Cells 1000 Cells

Figure 5.5: Comparison of Calculation Performance – Number of Iterations
Two-Component Cases with Varying Number of Cells

C015 C013 C014 C016
0

5000

10000

15000

N
u

m
b

e
r

o
f

It
e

ra
ti
o

n
s
 (

-)

VECGP

MAKARUK

SC 0.05 SC 0.50 SC 0.80 SC 0.90

Figure 5.6: Comparison of Calculation Performance – Number of Iterations
Five-Component Cases

75

5 Validation of Algorithm

varying cell numbers based on C011, this 40%-advantage in number of iterations
stays mostly constant, except for the 10-cell case, where makaruk requires only
around a third of the iterations required by vecgp.

For the five-component cases, the situation changes again, as can be seen in
Fig. 5.6. Especially for high stage cuts (cases C013, C014, and C016), makaruk
requires 2 to 10 times more iterations than vecgp.

This significant difference in the number of iterations can be explained by two
factors. One is the general conceptual difference between the algorithms. Makaruk
uses Gauss-Seidel iteration, whereas vecgp uses Jacobi iterations. In general, a
Gauss-Seidel iteration reaches convergence in fewer iterations than a Jacobi iteration.
(Bärwolff 2016, p. 200) Taking into account only this difference, makaruk should
consistently require fewer iterations than vecgp, which is not the case. The second
factor affecting the number of iterations is the different approach to reducing
the relaxation factor. As vecgp limits transmembrane flux (see section 3.3.4), the
algorithm can typically start with a higher initial relaxation factor (0.9 by default),
whereas in makaruk typically a rather low relaxation factor is selected to avoid
overshooting flux calculations. Additionally, makaruk reduces the relaxation factor
linearly over a large number of iterations, whereas vecgp makes few discrete steps,
as described in section 4.1. It can therefore be assumed, that in the “easy” two-
component cases, makaruk generally performs well, whereas vecgp can make up
its conceptual disadvantage by using higher relaxation factors in most cases. For
the “difficult” five-component cases, though, makaruk requires a high number of
iterations until a relaxation factor is reached which allows convergence.

The difference in the number of iterations alone cannot fully explain the signifi-
cant difference in calculation time that can be observed in many cases. In order to
further investigate this issue, the average time per iteration was calculated. This is
shown as time per 1000 iterations in Fig. 5.7 to Fig. 5.9.

It can be observed that the time per iteration for makaruk is influenced far more
by the number of cells and the number of components than for vecgp. This can be
explained by the difference of the per-cell handling between the two algorithms.
While makaruk loops over all cells and components, vecgp uses vectorized com-
putation as described in section 4.5. Additionally, the object oriented approach of
vecgp leads to some overhead. This is especially visible in case C017, where the
time per iteration for makaruk is significantly lower than for vecgp. With higher
cell numbers (or more components), the time advantage of vectorized calculation
over looping increases significantly.

76

5 Validation of Algorithm

C001 C002 C003 C004 C005 C006 C007 C008 C009 C010 C011
0.00

0.10

0.20

0.30

0.40

0.50

T
im

e
 p

e
r

1
0

0
0

 I
te

ra
ti
o

n
s
 (

s
)

VECGP

MAKARUK

Figure 5.7: Comparison of Calculation Performance – Time per Iteration
Two-Component Cases with Constant Number of Cells

C017 C018 C011 C019 C020 C012
0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

4.00

T
im

e
 p

e
r

1
0

0
0

 I
te

ra
ti
o

n
s
 (

s
)

VECGP

MAKARUK

10 Cells 50 Cells 100 Cells 250 Cells 500 Cells 1000 Cells

Figure 5.8: Comparison of Calculation Performance – Time per Iteration
Two-Component Cases with Varying Number of Cells

77

5 Validation of Algorithm

C015 C013 C014 C016
0.00

0.50

1.00

1.50

2.00

2.50

3.00
T

im
e

 p
e

r
1

0
0

0
 I

te
ra

ti
o

n
s
 (

s
)

VECGP

MAKARUK

SC 0.05 SC 0.50 SC 0.80 SC 0.90

Figure 5.9: Comparison of Calculation Performance – Time per Iteration
Five-Component Cases

5.2 Comparison with CFD

5.2.1 Description of CFD Code

In section 5.1, the core functionality of vecgp was validated against a conceptually
similar code. The following Section will, in contrast, compare the results of vecgp
with an algorithm based on cfd, as described by Schretter (2016) and Haddadi
Sisakht et al. (2016). As this cfd based algorithm is conceptually very different, it
is expected that the results will not be as close as with makaruk.

The approach taken in the cfd based algorithm is to use well established and
tested cfd solvers in order to simulate the flow in the feed and permeate channels.
As these solvers typically do not cover mass transport through solid walls, they were
extended to support transmembrane flux which lead to the OpenFOAM solvers
membraneFoam and LTSMembraneFoam which are both developed at TU Wien.

5.2.2 Definition of Test Cases

Schretter (2016) and Haddadi Sisakht et al. (2016) describe a variety of cases. For
this comparison, the seven fiber module with five different permeate outlets will
be used. This allows for comparison of both the variable permeate outlet and the
pressure drop calculation of vecgp.

The module is shown in Fig. 5.10 and described in Schretter (2016, p. 36). It
contains seven fibers with a diameter of 1 mm and a length of 500 mm. The inner
diameter of the module is 6 mm. The five possible outlets are distributed evenly
between the feed side and the retentate side every 125mm.

78

5 Validation of Algorithm

Figure 5.10: Module used for Comparison with cfd code (Schretter 2016, p. 36,
Figure 13)

As the approach in the cfd based solver is rather different, the used units and
parameters differ significantly. For example, vecgp users molar fractions, whereas
the cfd based solver uses mass fractions. Many of the necessary conversions could
be performed by the variable interface that vecgp provides, as it for example allows
to use mass fractions as input variables which are automatically converted to the
internally used molar fractions. In the cases where this automatic conversion was
not possible, the values were converted manually.

Table 5.7 shows the case definition both in the original units defined in Schretter
(2016, p. 37) and in the base units used by vecgp.

For vecgp, the number of cells was specified as 500. Pressure drop calculation was
turned on and the property calculation was configured to use ideal gas behavior
and simple equations (as described in section 4.2). The constant pure component
viscosities were obtained from REFPROP for a temperature of 316.5 K and a pressure
of 9 bar. The different outlet positions are modeled in vecgp by setting the outlet to
0, 0.25, 0.5, 0.75, and 1 respectively.

5.2.3 Comparison of Results

Fig. 5.11 to Fig. 5.14 show the results of the comparison. It can be seen that in its
default configuration (hard limit), vecgp calculates a slightly higher stage cut than
the cfd based algorithm. The 𝐶𝑂2 mass flow in the permeate (Fig. 5.11) is higher
for vecgp than for the cfd based code, whereas the 𝐶𝑂2 mass fraction (Fig. 5.13) is
very similar.

It is assumed that this difference can be attributed to the different approach
that the cfd based algorithm uses. More specifically, cfd also models changes in
concentration across the feed and permeate channel cross sections, and therefore
inherently calculates concentration polarization effects. A definitive verification of
this assumptions is not possible based on the available data, though.

As described in section 3.3.4, the default setting of vecgp is to use a hard flux
limit, but it may be possible to emulate concentration polarization effects by setting
low values for the soft limiting exponent. In the second result by vecgp shown in

79

5 Validation of Algorithm

Table 5.7: CFD Test Cases

(a) Original Parameters

�̇�𝐹𝑒𝑒𝑑 𝑤𝐹𝑒𝑒𝑑,𝐶𝑂2
𝑤𝐹𝑒𝑒𝑑,𝐶𝐻4

𝑤𝐹𝑒𝑒𝑑,𝑂2
𝑇𝐹𝑒𝑒𝑑 𝑝𝐹𝑒𝑒𝑑 𝑝𝑃𝑒𝑟𝑚

(kg s−1) (−) (−) (−) (K) (bar) (bar)

6.2 × 10−6 0.582 0.406 0.012 316.5 9.0 1.1

Π𝐶𝑂2
Π𝐶𝐻4

Π𝑂2

(Nm3 s−1 m−2 Pa−1) (Nm3 s−1 m−2 Pa−1) (Nm3 s−1 m−2 Pa−1)

5.91 × 10−10 1.59 × 10−11 1.36 × 10−10

(b) Converted Parameters

̇𝑛𝐹𝑒𝑒𝑑 𝑥𝐹𝑒𝑒𝑑,𝐶𝑂2
𝑥𝐹𝑒𝑒𝑑,𝐶𝐻4

𝑥𝐹𝑒𝑒𝑑,𝑂2

(mol s−1) (−) (−) (−)

2.412 × 10−4 0.340 0.651 0.010

Π𝐶𝑂2
Π𝐶𝐻4

Π𝑂2

(mol s−1 m−2 Pa−1) (mol s−1 m−2 Pa−1) (mol s−1 m−2 Pa−1)

6.071 × 10−9 7.098 × 10−10 6.071 × 10−9

80

5 Validation of Algorithm

0 0.25 0.5 0.75 1

Permeate outlet

0.0

0.5

1.0

1.5

2.0

C
O

2
 m

a
s
s
 f

lo
w

 i
n

 p
e

rm
e

a
te

 (
k
g

 s
-1

)

10
-6

VECGP hard limit

VECGP soft limit 0.45

CFD

(a) Wide Y-Axis Range

0 0.25 0.5 0.75 1

Permeate outlet

1.70

1.75

1.80

1.85

1.90

1.95

2.00

C
O

2
 m

a
s
s
 f

lo
w

 i
n

 p
e

rm
e

a
te

 (
k
g

 s
-1

)

10
-6

VECGP hard limit

VECGP soft limit 0.45

CFD

(b) Narrow Y-Axis Range

Figure 5.11: Comparison of Results – 𝐶𝑂2 Mass Flow in Permeate

81

5 Validation of Algorithm

0 0.25 0.5 0.75 1

Permeate outlet

0.0

0.5

1.0

1.5

2.0

C
O

2
 m

a
s
s
 f

lo
w

 i
n

 r
e

te
n

ta
te

 (
k
g

 s
-1

)

10
-6

VECGP hard limit

VECGP soft limit 0.45

CFD

(a) Wide Y-Axis Range

0 0.25 0.5 0.75 1

Permeate outlet

1.70

1.75

1.80

1.85

1.90

1.95

2.00

C
O

2
 m

a
s
s
 f

lo
w

 i
n

 r
e

te
n

ta
te

 (
k
g

 s
-1

)

10
-6

VECGP hard limit

VECGP soft limit 0.45

CFD

(b) Narrow Y-Axis Range

Figure 5.12: Comparison of Results – 𝐶𝑂2 Mass Flow in Retentate

82

5 Validation of Algorithm

0 0.25 0.5 0.75 1

Permeate outlet

0.0

0.2

0.4

0.6

0.8

1.0

C
O

2
 m

a
s
s
 f

ra
c
ti
o

n
 i
n

 p
e

rm
e

a
te

 (
-)

VECGP hard limit

VECGP soft limit 0.45

CFD

(a) Wide Y-Axis Range

0 0.25 0.5 0.75 1

Permeate outlet

0.90

0.92

0.94

0.96

0.98

1.00

C
O

2
 m

a
s
s
 f

ra
c
ti
o

n
 i
n

 p
e

rm
e

a
te

 (
-) VECGP hard limit

VECGP soft limit 0.45

CFD

(b) Narrow Y-Axis Range

Figure 5.13: Comparison of Results – 𝐶𝑂2 Mass Fraction in Permeate

83

5 Validation of Algorithm

0 0.25 0.5 0.75 1

Permeate outlet

0.0

0.1

0.2

0.3

0.4

0.5

C
O

2
 m

a
s
s
 f

ra
c
ti
o

n
 i
n

 r
e

te
n

ta
te

 (
-)

VECGP hard limit

VECGP soft limit 0.45

CFD

(a) Wide Y-Axis Range

0 0.25 0.5 0.75 1

Permeate outlet

0.40

0.42

0.44

0.46

0.48

0.50

C
O

2
 m

a
s
s
 f

ra
c
ti
o

n
 i
n

 r
e

te
n

ta
te

 (
-) VECGP hard limit

VECGP soft limit 0.45

CFD

(b) Narrow Y-Axis Range

Figure 5.14: Comparison of Results – 𝐶𝑂2 Mass Fraction in Retentate

84

5 Validation of Algorithm

Fig. 5.11 to Fig. 5.14, a soft limit with an exponent of 0.45 was used. This value was
fitted in order to closely resemble the results of the cfd based algorithm.

While it can be argued that setting parameters arbitrarily to fit the results does not
validate the fitted results, it has to be noted that adjusting this single parameter led
to significantly closer matches for all observed variables in all five cases. Whereas
the results with the hard limit differed by about 8 %, the adjusted soft limit led to
results of vecgp that match the results of the cfd based code within 0.5 %.

It can also be observed that the 𝐶𝑂2 mass flow matches very closely at the
permeate outlet (Fig. 5.11) between soft limited vecgp and the cfd based algorithm,
whereas there are visible differences at the retentate outlet (Fig. 5.12). In order to
fulfill the 𝐶𝑂2 mass balance, both results should actually match, as the amount of
𝐶𝑂2 in the feed is the same for both algorithms. This means that the cfd based
algorithm shows visible mass balance errors.

For the calculation of pressure drop, the results differ significantly more, as can
be observed in Fig. 5.15 and Fig. 5.16. As the data for the results of the cfd based
algorithm is shown neither in Schretter (2016), nor in Haddadi Sisakht et al. (2016),
the comparison is solely based on the shown figures. Figures that closely resemble
the ones published in Schretter (2016) have been produced with the results of vecgp
(using a hard limit). The results of vecgp with hard limit and soft limit do not differ
significantly from each other, therefore the soft-limited results are excluded for
this comparison.

In general, it can be observed that the pressure drop calculated by vecgp is
significantly smaller than the one calculated by the cfd based code, both in the
feed and in the permeate channel. For both channels, the results look qualitatively
similar. In the feed channel the maximum pressure drop is 25 Pa for vecgp and
around 34 Pa for the cfd based algorithm. As the cfd based algorithm calculates
the pressure difference compared to the actual value at the permeate outlet and not
compared to the outlet location in the permeate channel, there is a constant “base”
pressure drop of approximately 4 Pa that can be attributed to the outlet nozzle itself
and is therefore not considered for the comparison with vecgp. Disregarding the
outlet nozzle pressure drop, the maximum pressure difference is 1.4 Pa for vecgp
and around 2.2 Pa for the cfd based code and therefore still substantially different.

Providing a clear explanation for these differences is not easily possible, as the
details of the pressure drop calculation (e.g. which viscosities were used) are not
described in Schretter (2016) and Haddadi Sisakht et al. (2016). Reasons for the
observed discrepancies could be differently assumed viscosities, the cfd calculation
leading to unequal distribution of flow between the seven fibers, or other differing
underlying assumptions. Further investigation and/or experimental validation are
required to determine the causes for the observed differences.

85

5 Validation of Algorithm

0 50 100 150 200 250 300 350 400 450 500

Cell

0

5

10

15

20

25

30

P
re

s
s
u

re
 d

if
fe

re
n

c
e

 t
o

 r
e

te
n

ta
te

 (
P

a
)

outlet 0

outlet 0.25

outlet 0.5

outlet 0.75

outlet 1

(a) vecgp with hard flux limit

(b) cfd based algorithm (Schretter 2016, p. 72, Figure 37)

Figure 5.15: Comparison of Results – Pressure Difference in Feed Channel

86

5 Validation of Algorithm

0 50 100 150 200 250 300 350 400 450 500

Cell

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

P
re

s
s
u

re
 d

if
fe

re
n

c
e

 t
o

 p
e

rm
e

a
te

 (
P

a
)

outlet 0

outlet 0.25

outlet 0.5

outlet 0.75

outlet 1

(a) vecgp with hard flux limit

(b) cfd based algorithm (Schretter 2016, p. 72, Figure 37)

Figure 5.16: Comparison of Results – Pressure Difference in Permeate Channel

87

6 Parameter Variation

6.1 Description of Test Cases

In order to understand how changes of the algorithm parameters affect the calcu-
lation results, a common test case has been defined that represents the setup of
the HylyPure test facility at the Institute of Chemical, Environmental & Biological
Engineering at TU Wien. While validation against experimental data is out of scope
for this thesis, this common case allows for easier comparison with experimental
results in further research. The case selected for evaluation is a feed composed
of 95 % (mol/mol) methane and 5 % (mol/mol) hydrogen and a membrane with a
higher permeance for hydrogen (selectivity 50). The simulated module is used in
counter-current configuration with shell-side feed and also the selective layer of the
membrane on the shell-side. Sweep gas flows were not simulated. To distinguish
these cases from the ones used in chapter 5, the case IDs are starting with C100,
which is the base case. Additionally, the IDs are not numbered consecutively, but
grouped by the type of variation that is performed which is visible in the tens digit.

The full stream parameters for the base case are given in Table 6.1a and the
module permeances and geometry are described in Table 6.1b. These parameters
remain constant in all the following test cases except for C151-C156 where the feed
pressure is varied. All other variations described in this chapter are based on
changing the calculation parameters of vecgp, with the defaults for the base case
listed in Table 6.1c.

The variations are listed in Table 6.2a to Table 6.2e, where the changes compared
to the base case are shown.

All calculations in this chapter are performed in the standard direction, i.e., with
a fully defined module and solving for the permeate and retentate flows. No outer
search loops (as described in section 4.8.3) are used.

6.2 Variation of Cell Numbers

The first parameter variation to consider is the number of cells, which is done
in cases C111-C115. This is similar to some of the 2-component cases used for
validation against makaruk in section 5.1. In the validation cases, though, the stage
cut was defined and kept constant by varying the total membrane area, while here
the area remains constant and leads to possibly different stage cuts.

89

6 Parameter Variation

Table 6.1: Base Case

(a) Stream Configuration

̇𝑛𝐹𝑒𝑒𝑑 𝑥𝐹𝑒𝑒𝑑,𝐻2
𝑥𝐹𝑒𝑒𝑑,𝐶𝐻4

𝑇𝐹𝑒𝑒𝑑 𝑝𝐹𝑒𝑒𝑑 𝑝𝑃𝑒𝑟𝑚
(mol s−1) (−) (−) (K) (Pa) (Pa)

2.9 × 10−3 0.05 0.95 300 51 × 105 5 × 105

(b) Module Parameters

Π𝐻2
Π𝐶𝐻4

𝐴 𝑑𝑓 𝐷𝐼 𝐷𝑀 𝑛𝑓 𝜆𝑓
(mol s−1 m−2 Pa−1) (mol s−1 m−2 Pa−1) (m2) (m) (m) (m) (−) (W m−1 s−1)

2.5 × 10−8 5.0 × 10−10 0.17 1 × 10−4 1.34 × 10−4 0.02 750 0

(c) Calculation Settings

Parameter Value

Number of Cells 200
Flux Limit hard
Property Calculation ideal
Pressure Drop Calculation off
Energy Balance Calculation off
Cell Property Evaluation Mode

(Flux, Pressure, and Energy Balance) downstream (0)
Under-Relaxation Factor

(Flux, Pressure, and Energy Balance)
Start Value 0.9
Reduction Factor 0.9
No. of Iterations Before First Reduction = Number of Cells (200)
No. of Iterations Between Reductions = 1

2 × Number of Cells (100)
Convergence Criterion

Absolute (Flux) 10−9

Relative (Flux) 10−9

Absolute (Pressure) n/a
Absolute (Temperature) n/a

Balance Criterion
Absolute (Flux) 10−7

Relative (Flux) 10−7

90

6 Parameter Variation

Table 6.2: Parameter Variation Cases

(a) Variation of Cell Numbers

Case Number of Cells

C111 10
C112 50
C113 100
C114 500
C115 1000

(b) Variation of Flux Limit Application

Case Flux Limit

C121 off
C122 soft (𝑞 = 0.2)
C123 soft (𝑞 = 0.5)
C124 soft (𝑞 = 1)
C125 soft (𝑞 = 2)
C126 soft (𝑞 = 4)
C127 soft (𝑞 = 8)

(c) Variation of Cell Property Evaluation Mode

Case Number
of Cells

Property
Evaluation

C131 10 arithmetic avg.
C132 50 arithmetic avg.
C133 100 arithmetic avg.
C134 500 arithmetic avg.
C135 1000 arithmetic avg.

Case Number
of Cells

Property
Evaluation

C141 10 logarithmic avg.
C142 50 logarithmic avg.
C143 100 logarithmic avg.
C144 500 logarithmic avg.
C145 1000 logarithmic avg.

(d) Ideal and Real Gas Properties at Dif-
ferent Pressure Levels

Case 𝑝𝐹𝑒𝑒𝑑
(Pa)

Property
Calculation

C151 11 × 105 ideal
C152 11 × 105 real
C153 51 × 105 ideal
C154 51 × 105 real
C155 91 × 105 ideal
C156 91 × 105 real

(e) Pressure Drop and Energy Balance
Calculation

Case Pressure
Drop

Energy
Balance

C161 off off
C162 on off
C163 off on
C164 on on

Case Property Calculation

C161-C164 real

91

6 Parameter Variation

The considered numbers of cells are 10, 50, 100, 500, 1000, and 200 in the base
case. First trials have shown that some of the parameters for the reduction of the
relaxation factor (as described in section 4.1) should be linked to the number of
cells for best calculation performance — this is also reflected in the definition of
the base case in Table 6.1c. Therefore, these parameters are scaled with the cell
numbers. This subsequently also applies for cases C131-C135 and C141-C145.

As with higher cell numbers the discretization errors shrink and therefore the
results become more accurate, the aim of this variation is to identify the degree of
error imposed by using lower numbers of cells. Taking into account that higher cell
numbers significantly increase the computational effort, there is always a trade-off
between accuracy and speed.

6.3 Variation of Flux Limit Application

Vecgp includes different methods of flux limitation. The reasoning why this flux
limitation is necessary and how it is applied is described in detail in section 3.3.4.
Additionally, using soft limiting with low values for the limiting exponent might
allow emulation of concentration polarization effects, which are otherwise currently
not considered mathematically in vecgp. section 5.2 shows that using a low limiting
exponent allows fitting the simulation results nicely to those of a cfd based code
that inherently includes concentration polarization effects.

It is therefore of interest to investigate the effect of different limiting exponents
on the simulation results. This is done in cases C121-C127. The base case C100
represents the simulation with hard flux limit, C121 is calculated with disabled flux
limit, and cases C122-C127 use a soft flux limit with increasing limiting exponents
(0.2 to 8).

6.4 Variation of Cell Property Evaluation Mode

This parameter variation is similar to the variation of the cell numbers covered in
section 6.2, the main difference being that now the cell property evaluation method
is also varied. The different possibilities and the mathematical background for
cell property evaluation methods are described in section 3.2.4. What is decided
here is basically which value is used to represent the “contents” of a cell. This is
especially important for, e.g., the calculation of transmembrane flux as this is a
function of the cell contents on both sides of the membrane. As vecgp is based
on the finite difference method (fdm), property values are only stored at nodes
(between two cells), but not for cells. The default setting is to use the value of
the downstream node for the cell, but it is also possible to select other evaluation
modes within vecgp. Both arithmetic (cases C131-C135) and logarithmic (cases

92

6 Parameter Variation

C141-C145) averaging between the downstream and upstream node is covered
in this variation and compared to the calculations with the default downstream
evaluation (cases C111-C115). Each of the cases is calculated with cell numbers
ranging from 10 to 1000 as described in section 7.2.

6.5 Ideal and Real Gas Properties at Different Pressure Levels

As described in section 4.2, vecgp allows the calculation to be performed with
real gas properties by using interpolation tables. The main properties where real
gas properties affect flux calculations (when exempting conversions to other units
like volume flows) are the component partial pressures or fugacities. To better
understand the degree of impact of these real gas properties, a comparison between
calculations with ideal and real properties is performed in cases C151 to C156. As
the non-ideality of gas properties is heavily dependent on the total pressure, the
comparison is made at three feed pressure levels: 11 bar (C151 and C152), 51 bar
(C153 and C154), and 91 bar (C155 and C156).

6.6 Pressure Drop and Energy Balance Calculation

The final parameter variation is enabling pressure drop and energy balance cal-
culation, as described in detail in sections 3.4 and 3.5. As both these calculations
require various properties of the gases, these calculations were only performed
with enabled real gas properties. It has to be noted though, that simulations with-
out real gas properties are possible as well, as vecgp allows calculating the required
properties with simple empirical formulae (see section 4.2).

Case C161 serves as the reference here with only the flux calculation enabled
(and thus being essentially the same as case C154). In case C162, pressure drop
calculation is enabled, whereas in case C163, energy balance calculation is enabled.
Finally, case C164 shows the results with all calculations enabled.

It has to be noted, that pressure drop and energy balance calculation are enabled
delayed, as is described in section 4.3. Specifically, this means that first solely the
flux calculation is performed and once this reaches convergence, the additional
calculations are enabled. This allows for a more stable calculation. In the case with
both pressure drop and energy balance calculation, they are enabled successively:
first just flux, then flux and pressure drop, and finally all three calculations.

93

7 Results and Discussion

7.1 Overview

The relevant calculation results (stage cut, hydrogen recovery, flow and composition
of permeate and retentate) as well as some performance characteristics (calculation
time and number of iterations) for all cases defined in chapter 6 are listed in Table 7.1
and will be referenced in the following sections. Additionally, Fig. 7.1 to Fig. 7.3
visually show the required calculation times and numbers of iterations to reach
convergence as well as time per 1000 iterations.

Case C100 represents the base case as defined in chapter 6 — all the results in
the following sections should be compared to this case.

7.2 Variation of Cell Numbers

The variation of cell numbers was described in section 6.2. It can be seen in Ta-
ble 7.1 that both the permeate flow as well as the hydrogen fraction in the permeate
increase with higher cell numbers leading to higher stage cuts and hydrogen re-
coveries. This means that by using small cell numbers, the separation performance
of the module is underestimated. Compared to 1000 cells, the calculated hydrogen
recovery is around 6 % lower when using 10 cells and 0.6 % lower when using 100
cells. The stage cut is affected as well but to a lesser extent.

From a performance perspective, it can clearly be seen in Fig. 7.1 and Fig. 7.2
that higher cell numbers significantly increase the required computational effort.
Going from 100 to 1000 cells increases the required time by a factor of nearly 20.
As already identified in section 5.1.4, the calculation itself scales very well with
increasing cell numbers. The required time per iteration only roughly doubles
when increasing the number of cells from 100 to 1000 even though ten times more
calculations are required. The main factor driving the longer overall calculation
times is the higher number of iterations required to reach convergence. As cell
values can only “travel” by one cell per iteration, an increased number of cells
means it takes more iterations for information to propagate from one end to the
other. Therefore, the required number of iterations scales mostly linear with the
number of cells.

In light of the significant impact of the cell number on the performance, it has to
be once more emphasized that before performing a large number of calculations

95

7 Results and Discussion

Table 7.1: Simulation Results – Base Case and Parameter Variation

Case 𝑆𝐶 𝑅𝑒𝑐𝐻2
̇𝑛𝑃𝑒𝑟𝑚 𝑥𝑃𝑒𝑟𝑚,𝐻2

̇𝑛𝑅𝑒𝑡 𝑥𝑅𝑒𝑡,𝐻2
Time Iterations

(−) (−) (mol s−1) (−) (mol s−1) (−) (s) (−)

C100 0.179 0.910 5.20 × 10−4 0.254 2.38 × 10−3 0.005 2.21 6814

C111 0.177 0.859 5.13 × 10−4 0.243 2.39 × 10−3 0.009 0.15 508
C112 0.179 0.901 5.19 × 10−4 0.252 2.38 × 10−3 0.006 0.54 1925
C113 0.179 0.907 5.20 × 10−4 0.253 2.38 × 10−3 0.006 1.11 3697
C114 0.180 0.912 5.21 × 10−4 0.254 2.38 × 10−3 0.005 8.26 17 064
C115 0.180 0.913 5.21 × 10−4 0.254 2.38 × 10−3 0.005 21.76 34 217

C121 0.179 0.910 5.20 × 10−4 0.254 2.38 × 10−3 0.005 2.55 8549
C122 0.065 0.382 1.89 × 10−4 0.293 2.71 × 10−3 0.033 0.57 1411
C123 0.170 0.871 4.94 × 10−4 0.256 2.41 × 10−3 0.008 1.87 4920
C124 0.179 0.908 5.20 × 10−4 0.253 2.38 × 10−3 0.006 2.26 6372
C125 0.179 0.910 5.20 × 10−4 0.254 2.38 × 10−3 0.005 2.48 6604
C126 0.179 0.910 5.20 × 10−4 0.254 2.38 × 10−3 0.005 2.73 6742
C127 0.179 0.910 5.20 × 10−4 0.254 2.38 × 10−3 0.005 2.66 6814

C131 0.180 0.912 5.21 × 10−4 0.254 2.38 × 10−3 0.005 0.18 523
C132 0.180 0.913 5.21 × 10−4 0.254 2.38 × 10−3 0.005 0.61 1939
C133 0.180 0.913 5.21 × 10−4 0.254 2.38 × 10−3 0.005 1.25 3762
C134 0.180 0.913 5.21 × 10−4 0.254 2.38 × 10−3 0.005 9.47 17 146
C135 0.180 0.913 5.21 × 10−4 0.254 2.38 × 10−3 0.005 25.11 34 277

C141 0.179 0.911 5.20 × 10−4 0.254 2.38 × 10−3 0.005 0.20 515
C142 0.180 0.913 5.21 × 10−4 0.254 2.38 × 10−3 0.005 0.70 1938
C143 0.180 0.913 5.21 × 10−4 0.254 2.38 × 10−3 0.005 1.45 3761
C144 0.180 0.913 5.21 × 10−4 0.254 2.38 × 10−3 0.005 11.20 17 147
C145 0.180 0.913 5.21 × 10−4 0.254 2.38 × 10−3 0.005 29.36 34 277

C151 0.020 0.042 5.70 × 10−5 0.107 2.84 × 10−3 0.049 2.27 6917
C152 0.019 0.042 5.58 × 10−5 0.108 2.84 × 10−3 0.049 7.78 6948
C153 0.179 0.910 5.20 × 10−4 0.254 2.38 × 10−3 0.005 2.21 6814
C154 0.169 0.927 4.89 × 10−4 0.275 2.41 × 10−3 0.004 8.52 7530
C155 0.301 1.000 8.73 × 10−4 0.166 2.03 × 10−3 0.000 0.90 2836
C156 0.265 1.000 7.69 × 10−4 0.188 2.13 × 10−3 0.000 2.79 2517

C161 0.169 0.927 4.89 × 10−4 0.275 2.41 × 10−3 0.004 8.57 7530
C162 0.169 0.927 4.89 × 10−4 0.275 2.41 × 10−3 0.004 18.20 12 169
C163 0.169 0.927 4.90 × 10−4 0.275 2.41 × 10−3 0.004 45.31 14 628
C164 0.169 0.927 4.89 × 10−4 0.275 2.41 × 10−3 0.004 66.47 20 039

96

7 Results and Discussion

C
1
0
0

C
1
1
1

C
1
1
2

C
1
1
3

C
1
1
4

C
1
1
5

C
1
2
1

C
1
2
2

C
1
2
3

C
1
2
4

C
1
2
5

C
1
2
6

C
1
2
7

C
1
3
1

C
1
3
2

C
1
3
3

C
1
3
4

C
1
3
5

C
1
4
1

C
1
4
2

C
1
4
3

C
1
4
4

C
1
4
5

C
1
5
1

C
1
5
2

C
1
5
3

C
1
5
4

C
1
5
5

C
1
5
6

C
1
6
1

C
1
6
2

C
1
6
3

C
1
6
4

 0

 10

 20

 30

 40

 50

 60

 70

C
a

lc
u

la
ti
o

n
 T

im
e

 (
s
)

(a) Wide Y-Axis Range

C
1
0
0

C
1
1
1

C
1
1
2

C
1
1
3

C
1
1
4

C
1
1
5

C
1
2
1

C
1
2
2

C
1
2
3

C
1
2
4

C
1
2
5

C
1
2
6

C
1
2
7

C
1
3
1

C
1
3
2

C
1
3
3

C
1
3
4

C
1
3
5

C
1
4
1

C
1
4
2

C
1
4
3

C
1
4
4

C
1
4
5

C
1
5
1

C
1
5
2

C
1
5
3

C
1
5
4

C
1
5
5

C
1
5
6

C
1
6
1

C
1
6
2

C
1
6
3

C
1
6
4

 0

 1

 2

 3

 4

 5

C
a

lc
u

la
ti
o

n
 T

im
e

 (
s
)

(b) Narrow Y-Axis Range

Figure 7.1: Comparison of Calculation Performance – Calculation Time

97

7 Results and Discussion

C
1
0
0

C
1
1
1

C
1
1
2

C
1
1
3

C
1
1
4

C
1
1
5

C
1
2
1

C
1
2
2

C
1
2
3

C
1
2
4

C
1
2
5

C
1
2
6

C
1
2
7

C
1
3
1

C
1
3
2

C
1
3
3

C
1
3
4

C
1
3
5

C
1
4
1

C
1
4
2

C
1
4
3

C
1
4
4

C
1
4
5

C
1
5
1

C
1
5
2

C
1
5
3

C
1
5
4

C
1
5
5

C
1
5
6

C
1
6
1

C
1
6
2

C
1
6
3

C
1
6
4

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

N
u

m
b

e
r

o
f

It
e

ra
ti
o

n
s
 (

-)

(a) Wide Y-Axis Range

C
1
0
0

C
1
1
1

C
1
1
2

C
1
1
3

C
1
1
4

C
1
1
5

C
1
2
1

C
1
2
2

C
1
2
3

C
1
2
4

C
1
2
5

C
1
2
6

C
1
2
7

C
1
3
1

C
1
3
2

C
1
3
3

C
1
3
4

C
1
3
5

C
1
4
1

C
1
4
2

C
1
4
3

C
1
4
4

C
1
4
5

C
1
5
1

C
1
5
2

C
1
5
3

C
1
5
4

C
1
5
5

C
1
5
6

C
1
6
1

C
1
6
2

C
1
6
3

C
1
6
4

 0

 2000

 4000

 6000

 8000

 10000

N
u

m
b

e
r

o
f

It
e

ra
ti
o

n
s
 (

-)

(b) Narrow Y-Axis Range

Figure 7.2: Comparison of Calculation Performance – Number of Iterations

98

7 Results and Discussion

C
1
0
0

C
1
1
1

C
1
1
2

C
1
1
3

C
1
1
4

C
1
1
5

C
1
2
1

C
1
2
2

C
1
2
3

C
1
2
4

C
1
2
5

C
1
2
6

C
1
2
7

C
1
3
1

C
1
3
2

C
1
3
3

C
1
3
4

C
1
3
5

C
1
4
1

C
1
4
2

C
1
4
3

C
1
4
4

C
1
4
5

C
1
5
1

C
1
5
2

C
1
5
3

C
1
5
4

C
1
5
5

C
1
5
6

C
1
6
1

C
1
6
2

C
1
6
3

C
1
6
4

 0.0

 0.5

 1.0

 1.5

 2.0

 2.5

 3.0

 3.5

T
im

e
 p

e
r

1
0

0
0

 I
te

ra
ti
o

n
s
 (

s
)

(a) Wide Y-Axis Range

C
1
0
0

C
1
1
1

C
1
1
2

C
1
1
3

C
1
1
4

C
1
1
5

C
1
2
1

C
1
2
2

C
1
2
3

C
1
2
4

C
1
2
5

C
1
2
6

C
1
2
7

C
1
3
1

C
1
3
2

C
1
3
3

C
1
3
4

C
1
3
5

C
1
4
1

C
1
4
2

C
1
4
3

C
1
4
4

C
1
4
5

C
1
5
1

C
1
5
2

C
1
5
3

C
1
5
4

C
1
5
5

C
1
5
6

C
1
6
1

C
1
6
2

C
1
6
3

C
1
6
4

 0.0

 0.1

 0.2

 0.3

 0.4

 0.5

T
im

e
 p

e
r

1
0

0
0

 I
te

ra
ti
o

n
s
 (

s
)

(b) Narrow Y-Axis Range

Figure 7.3: Comparison of Calculation Performance – Time per Iteration

99

7 Results and Discussion

(especially when using outer search loops), a sensible cell number has to be chosen.
It should be suitable for the required level of accuracy but not unnecessarily large.

Finally, it has to be noted that here the evaluation of cell properties (as described in
detail in section 3.2.4) is always performed on the downstream node. In section 7.4,
the variation of cell numbers is performed with different methods of cell property
evaluation which shows somewhat different results.

7.3 Variation of Flux Limit Application

The calculation results for the variation of flux limit application (described in
section 6.3) can be seen as cases C121-C127in Table 7.1. The first observation to be
made is that for this case, flux limit is not required to reach a convergent solution, as
both case C100 (hard limit) and C121 (no limit) lead to identical results (within the
shown precision). As the recovery of the faster permeating component (hydrogen)
is less than 1 and the stage cut is moderate at around 0.2, no component runs
“empty” in either the feed or permeate channel. It can be seen, though, that the
hard limit leads to a significantly lower number of iterations and also an overall
shorter calculation time. Thus it can be concluded that the computational effort
required for the hard flux limit also pays off in easy cases, which means that leaving
(at least) the hard limit on by default is recommended for all cases.

Taking into account the soft limit as well, it can be observed that cases with
an exponent smaller than 1, namely C122 and C123, show significantly different
results, whereas exponents greater than 2 (C125-C127) lead to essentially the same
results as with hard limiting (or without any limit).

While leading to the same results with higher exponents, the soft limit is com-
putationally slightly more expensive per iteration, as can be seen in Fig. 7.3. The
additional “dampening” applied by the soft limit on the other hand leads to a
lower number of iterations, which can partially compensate for the additional effort.
Given that the results are very close, no universal recommendation can be given
whether a hard or soft limit is more favorable. The decision has to be made on a
case to case basis, but as a general starting point the hard limit seems to provide
overall good and fast results.

7.4 Variation of Cell Property Evaluation Mode

The results for the variation of cell property evaluation modes are shown as cases
C131 to C135, C141 to C145 and for reference C111 to C115 of Table 7.1. It can be
observed, that the results between 50 and 1000 cells are indistinguishable at the
shown level of precision if any kind of averaging is applied. Compared to the
results of the downstream evaluation, a significantly higher level of accuracy can

100

7 Results and Discussion

be reached with low cell numbers.
While the averaging leads to a somewhat increased calculation time at the same

number of cells, this disadvantage is far outweighed by the fact that lower cell
numbers can be used. Given that arithmetic averaging is computationally less
expensive than logarithmic averaging while providing the better results, it is safe
to say that arithmetic averaging with a rather low number of cells (in the range of
50 to 100) provides for a reasonably accurate and fast default setting.

7.5 Ideal and Real Gas Properties at Different Pressure Levels

Cases C151-C156 of Table 7.1 show that at 11 bar (C151 and C152), the differences
between ideal and real gas properties are very small, with the permeate flow being
reduced by around 2 % when using real gas properties. At 51 bar (C153 and C154),
this difference grows to approximately 6 % and at 91 bar (C155 and C156) to 12 %.

For this specific system of hydrogen and methane, the recovery of hydrogen
typically increases when using real gas properties, as the fugacity coefficients
are greater than 1 for hydrogen and smaller than 1 for methane. Therefore, the
actual driving force through the membrane compared to the ideal case is higher
for hydrogen and lower for methane. As the majority of the feed is methane, this
also explains the lower overall stage cut when using real gas properties.

From a performance perspective, enabling real gas properties significantly in-
creases the required computational effort, as the properties have to be looked up
for every single cell in every iteration. Overall, this leads to 3 to 4 times longer
computation times, whereas the impact on the required number of iterations does
not show a clear trend. Iteration numbers can both increase or decrease by a small
margin.

The experimental validation of makaruk was only performed at relatively low
pressure levels of 9 bar (Makaruk and Harasek 2009) where, as can be seen above,
real gas effects do not play a big role. As vecgp has so far only been validated
against makaruk, these results have to be considered unvalidated. Therefore,
further comparison with experimental data at high pressures will be required in
subsequent work.

7.6 Pressure Drop and Energy Balance Calculation

The results for pressure drop and energy balance calculation are shown as cases
C161 to C164 in Table 7.1. It can be seen that the additional enabled calculations
do not change the main results within the shown order of accuracy for this case.
Enabling energy balance calculation does change the permeate temperature sig-
nificantly though. Instead of just “copying” the 300 K from the feed, a value of

101

7 Results and Discussion

288 K is calculated for the permeate outlet. At the retentate end of the module,
an even lower temperature of 281 K is calculated in the permeate channel. As the
current permeance model does not employ temperature dependency, though, these
changes in temperature do not really affect the flux. The sole impact of the changed
temperature on the fluid properties (e.g., viscosities and densities) has only very
little effect on the calculated results.

The observations from this case might not be applicable in general, though, as
the effect of the additional calculations depends heavily on the specific case. For
example, small changes to the module geometry like making the fiber walls slightly
thicker and the inner fiber diameter smaller severely affect the calculated pressure
drop in the fiber. As there are a large number of geometry parameters, a thorough
evaluation of how the calculation is affected by different module geometries would
go beyond the scope of this thesis.

It can be clearly observed, though, that enabling pressure drop and energy
balance calculation significantly increases both the required computation time
and number of iterations. While pressure drop calculation roughly doubles the
required calculation time, energy balance alone leads to an increase of the required
time by a factor of 5. With all calculations enabled, this factor grows to over 7.

In Figures 7.2 and 7.3 it can be seen that the time increase for pressure drop
calculation is mainly driven by the higher number of required iterations, whereas
the energy balance drastically increases the time per iteration.

102

8 Conclusion and Outlook

In chapter 5 it is shown, that vecgp with basic settings (without enabled real gas
properties, pressure drop, or energy balance calculation), delivers results practically
identical to the existing makaruk. As the existing code is experimentally validated,
it can be concluded, that vecgp is validated within the same limits. In terms of
calculation performance, vecgp is significantly faster than makaruk for complex
cases and its advantage generally increases with higher complexity (that is higher
numbers of cells or components).

Compared to the cfd-based code, there are noticable differences between the
calculated mass fractions and mass flow rates when using vecgp with the default
flux limit settings. These are assumed to be attributable to the significantly dif-
ferent calculation approach (as described in section 5.2). By setting the flux limit
parameter to rather low values, it is possible to closely match the calculated results
for the specific case.

The pressure drop calculated by vecgp was, though qualitatively similar, sub-
stantially lower than the one obtained by the cfd-based code. The reasons for this
difference are not yet fully clear and further investigation is required.

The most notable conclusion that can be drawn from the parameter variation
is, that the number of cells drastically impacts calculation performance and that
choosing a suitable value is essential to ensure efficient calculation. Using aver-
aging within cell property evaluation allows setting far lower cell numbers while
still resulting in good accuracy. In the defined test case, 50 cells with arithmetic
averaging led to results as accurate as 1000 cells without averaging.

In terms of advanced calculation, the test cases show that using real gas properties
can significantly change the results. The impact of the pressure drop and energy
balance calculation was low, but it was established that these depend strongly on the
specific parameters. The findings from this single common base case can therefore
not be assumed to cover all possible results. All these additional calculations do
drastically increase the required computational effort and should therefore only be
enabled when required.

Looking forward, quite a few areas can be identified, where further research and
(code) development is desirable. Additional validation of the algorithm is required
for the substantial new features of the code (real gas properties, pressure drop, and
energy balance calculation) as well as many of the small elements (e.g., flux limit,
evaluation of cell properties, variable permeate outlet, convergence settings). These
validations will most likely have to involve comparisons with other simulation

103

8 Conclusion and Outlook

results and experimental data.
For adapting or expanding the algorithm there are a few logical next steps, for

which the groundwork has already partly been laid in this work. The consideration
of real gas properties and the calculation of pressure drops and energy balances
all enable or simplify the inclusion of advanced permeance models. These models
could include temperature and pressure dependencies as well as flux coupling (de-
pendency of the permeance for one substance on the presence of other substances).
The strict focus on calculation stability in vecgp also acts as an enabler here, as it
has been observed that reaching a stable calculation becomes more challenging
when increasing the complexity of the simulation.

Additionally, the models for pressure drop and especially energy balance calcu-
lation are still rather rudimentary, and slight expansions might be required to allow
for versatile calculations. Further modifications might be required if additional
issues can be identified during more extensive validation.

In terms of adaption and expansion of the code, some ideas for improvements
have also been identified. Many of these are in the area of usability. Currently, the
implementation consists mostly of a library of classes that perform the calculations.
The front-end is just a few example files that describe possible ways how to use
these libraries. In order to allow easier use, a significant expansion of the front-end
might be desired, especially considering the calculation of multi-stage processes
and networks of multiple differently linked stages.

Overall, the main objectives of this have been reached clearly: Many new features
have been implemented and are in various states of maturity. The core of vecgp,
the simulation of membrane separation, is well tested and serves as a stable and
fast solution for the calculation of multi-component cases. The code is clearly
structured and can be expanded easily.

104

List of Figures

2.1 Scheme of a Hollow Fiber Module (adapted from Melin and Raut-
enbach 2007, p. 163) . 4

2.2 Concentration Polarization: Concentration gradients exist in the
fluid phases (Baker 2012, p. 180) . 6

3.1 Possible Flow Regime Configurations in the Modeled Module . . . 15
3.2 Location of Grid Points in Discretization 16
3.3 Effect of Different Settings for Flux Limit on the Calculated Flux . . 24
3.4 Flowchart of the Solution Procedure 38

4.1 Exemplary Oscillation of Molar Fractions in a Two-Component Case 42
4.2 Flowchart of the Algorithm for Reducing the Under-Relaxation Factor 44
4.3 Fugacity Coefficients for Mixtures of Methane and Hydrogen 48
4.4 Fugacity Coefficients for Mixtures of Methane and Carbon Dioxide 49

5.1 Comparison of Calculation Performance – Calculation Time Two-
Component Cases with Constant Number of Cells 68

5.2 Comparison of Calculation Performance – Calculation Time Two-
Component Cases with Varying Number of Cells 72

5.3 Comparison of Calculation Performance – Calculation Time Five-
Component Cases . 73

5.4 Comparison of Calculation Performance – Number of Iterations
Two-Component Cases with Constant Number of Cells 74

5.5 Comparison of Calculation Performance – Number of Iterations
Two-Component Cases with Varying Number of Cells 75

5.6 Comparison of Calculation Performance – Number of Iterations
Five-Component Cases . 75

5.7 Comparison of Calculation Performance – Time per Iteration Two-
Component Cases with Constant Number of Cells 77

5.8 Comparison of Calculation Performance – Time per Iteration Two-
Component Cases with Varying Number of Cells 77

5.9 Comparison of Calculation Performance – Time per Iteration Five-
Component Cases . 78

5.10 Module used for Comparison with cfd code (Schretter 2016, p. 36,
Figure 13) . 79

5.11 Comparison of Results – 𝐶𝑂2 Mass Flow in Permeate 81

105

List of Figures

5.12 Comparison of Results – 𝐶𝑂2 Mass Flow in Retentate 82
5.13 Comparison of Results – 𝐶𝑂2 Mass Fraction in Permeate 83
5.14 Comparison of Results – 𝐶𝑂2 Mass Fraction in Retentate 84
5.15 Comparison of Results – Pressure Difference in Feed Channel . . . 86
5.16 Comparison of Results – Pressure Difference in Permeate Channel . 87

7.1 Comparison of Calculation Performance – Calculation Time 97
7.2 Comparison of Calculation Performance – Number of Iterations . . 98
7.3 Comparison of Calculation Performance – Time per Iteration 99

106

List of Tables

5.1 Specification of Two-Component Test Cases 65
5.2 Specification of Five-Component Test Cases 66
5.3 Key Simulation Results of Two-Component Test Cases – vecgp . . . 68
5.4 Key Simulation Results of Two-Component Test Cases – makaruk . 69
5.5 Key Simulation Results of Five-Component Test Cases – vecgp . . . 70
5.6 Key Simulation Results of Five-Component Test Cases – makaruk . 71
5.7 CFD Test Cases . 80

6.1 Base Case . 90
6.2 Parameter Variation Cases . 91

7.1 Simulation Results – Base Case and Parameter Variation 96

107

List of Symbols

Symbol Unit Description

̇𝑛 mol s−1 mole flow rate
�̇� mol s−1 transmembrane mole flow rate
�̇� m3 s−1 volume flow rate
�̇� kg s−1 mass flow rate
�̇� J s−1 enthalpy flow rate

̇𝑞 J s−1 transmembrane enthalpy flow rate
𝑝 Pa pressure
𝑇 K temperature
𝑥 − molar fraction
𝑤 − mass fraction
𝑐 mol m−3 concentration
𝑀 kg kmol−1 molar mass
𝜑 − fugacity coefficient
𝑣𝑚 m3 mol−1 molar volume
𝜌𝑚 mol m−3 molar density
𝜌 kg m−3 density
ℎ𝑚 J mol−1 molar enthalpy
𝑅 J mol−1 K−1 universal gas constant
𝑐𝑚

𝑝 J mol−1 K−1 heat capacity at constant pressure
𝑐𝑚

𝑣 J mol−1 K−1 heat capacity at constant volume
𝜅 − heat capacity ratio
𝐷 m2 s−1 diffusion coefficient
𝐾 mol m−3 Pa−1 diffusion coefficient
Π mol s−1 m−2 Pa−1 permeance of membrane
𝑙 m length of module
𝐴 m2 total membrane area
𝐷𝐼 m inner fiber diameter (lumen)
𝐷𝑂 m outer fiber diameter
𝐷𝐴 m active layer diameter of fiber
𝐷𝐻 m shell side hydraulic diameter
𝐷𝑀 m inner module diameter
𝑑𝑓 m thickness of fiber
𝑛𝑓 − number of fibers

109

List of Symbols

Symbol Unit Description

𝐴𝑥 m2 cross sectional area
𝜆𝑓 W m−1 s−1 thermal conductivity of fiber
𝜇 Pa s dynamic viscosity
𝜆 W m−1 s−1 thermal conductivity of fluid
𝜙 − mixing coefficient
𝛼 W m−2 K−1 heat transfer coefficient
Nu − Nusselt number
Re − Reynolds number
Pr − Prandtl number
𝑆𝐶 − stage cut
𝑅𝑒𝑐 − recovery
𝐵𝑎𝑙 mol s−1 mass balance
𝛿 − convergence
𝜀 − convergence criterion
𝜔 − relaxation factor

Sub-/Superscript Description

𝐹 value at feed side
𝑃 value at permeate side
𝑏 bore side value
𝑠 shell side value
𝐹𝑒𝑒𝑑 value of feed
𝑃𝑒𝑟𝑚 value of permeate
𝑅𝑒𝑡 value of retentate
𝑆𝑤𝑒𝑒𝑝0 value of co-current sweep gas
𝑆𝑤𝑒𝑒𝑝1 value of counter-current sweep gas
𝑖 cell index
𝑗 component index
𝑘 iteration index
𝑛 total number of cells
𝑚 total number of components
𝑜𝑢𝑡 index of permeate outlet cell
′ length specific
″ area specific
𝑖𝑛𝑡 value taken from interpolation table

110

List of Acronyms

bvp boundary value problem

cfd computational fluid dynamics

de differential equation

fdm finite difference method

ivp initial value problem

lhs left-hand side

makaruk refers to the algorithm presented by Makaruk and Harasek (2009)

ode ordinary differential equation

pde partial differential equation

rhs right-hand side

stp standard temperature and pressure

vecgp refers to the algorithm presented in this thesis and its reference implemen-
tation (vectorized gas permeation)

111

References

Abels, C. et al. (2013). “Membrane processes in biorefinery applications”. In: Journal
of Membrane Science 444, pp. 285–317. doi: 10.1016/j.memsci.2013.05.030.

Adsuara, J. E. et al. (2016). “Scheduled Relaxation Jacobi method: Improvements
and applications”. In: Journal of Computational Physics 321, pp. 369–413. doi: 10.
1016/j.jcp.2016.05.053. url: http://linkinghub.elsevier.com/
retrieve/pii/S002199911630198X.

Agrawal, R. and Xu, J. (1996). “Gas separation membrane cascades II. Two-
compressor cascades”. In: Journal of Membrane Science 112.2, pp. 129–146. doi:
10.1016/0376-7388(95)00273-1.

Ahmad, F. et al. (2013). “Temperature and pressure dependence of membrane
permeance and its effect on process economics of hollow fiber gas separation
system”. In: Journal of Membrane Science 430, pp. 44–55. doi: 10.1016/j.memsci.
2012.11.070.

Ahmad, F. et al. (2015). “Hollow fiber membrane model for gas separation: Process
simulation, experimental validation and module characteristics study”. In: Journal
of Industrial and Engineering Chemistry 21. doi: 10.1016/j.jiec.2014.05.041.

Ahsan, M. and Hussain, A. (2015). “Mathematical Modeling of Helium Recovery
from a Multicomponent Fuel Gas with Polymeric Membrane”. In: International
Journal of Chemical Engineering and Applications 6.3, pp. 173–178. doi: 10.7763/
IJCEA.2015.V6.476.

Alkhamis, N. et al. (2013). “Gas Separation Using a Membrane”. In: ASME 2013
International Mechanical Engineering Congress and Exposition. ASME, V07AT08A039.
doi: 10.1115/IMECE2013-62764.

Alkhamis, N. et al. (2015). “Computational study of gas separation using a hollow
fiber membrane”. In: International Journal of Heat and Mass Transfer 89, pp. 749–759.
doi: 10.1016/j.ijheatmasstransfer.2015.05.090.

Baker, R. W. (2012). Membrane Technology and Applications. 3rd ed. Chichester: Wiley.
doi: 10.1002/0470020393.

Baker, R. W. and Low, B. T. (2014). “Gas Separation Membrane Materials: A Per-
spective”. In: Macromolecules 47.20, pp. 6999–7013. doi: 10.1021/ma501488s.

Bärwolff, G. (2016). Numerik für Ingenieure, Physiker und Informatiker. 2. Aufl. Berlin
Heidelberg: Springer Spektrum, S. 364. doi: 10.1007/978-3-662-48016-8.

Bell, I. H. et al. (2014). “Pure and Pseudo-pure Fluid Thermophysical Property
Evaluation and the Open-Source Thermophysical Property Library CoolProp”.

113

https://doi.org/10.1016/j.memsci.2013.05.030
https://doi.org/10.1016/j.jcp.2016.05.053
https://doi.org/10.1016/j.jcp.2016.05.053
http://linkinghub.elsevier.com/retrieve/pii/S002199911630198X
http://linkinghub.elsevier.com/retrieve/pii/S002199911630198X
https://doi.org/10.1016/0376-7388(95)00273-1
https://doi.org/10.1016/j.memsci.2012.11.070
https://doi.org/10.1016/j.memsci.2012.11.070
https://doi.org/10.1016/j.jiec.2014.05.041
https://doi.org/10.7763/IJCEA.2015.V6.476
https://doi.org/10.7763/IJCEA.2015.V6.476
https://doi.org/10.1115/IMECE2013-62764
https://doi.org/10.1016/j.ijheatmasstransfer.2015.05.090
https://doi.org/10.1002/0470020393
https://doi.org/10.1021/ma501488s
https://doi.org/10.1007/978-3-662-48016-8

References

In: Industrial & Engineering Chemistry Research 53.6, pp. 2498–2508. doi: 10.1021/
ie4033999.

Binns, M. et al. (2016). “Strategies for the simulation of multi-component hollow
fibre multi-stage membrane gas separation systems”. In: Journal of Membrane
Science 497, pp. 458–471. doi: 10.1016/j.memsci.2015.08.023.

BMVIT – Bundesministerium für Verkehr, Innovation und Technologie, Hrsg. (2015).
HylyPure - Grünen Wasserstoff energieeffizient rückgewinnen. url: http : / / www .
energy-innovation-austria.at/wp-content/uploads/2015/07/eia_
02_15_D_FIN.pdf.

Bornemann, F. (2016). Numerische lineare Algebra. Springer Spektrum, S. 145. doi:
10.1007/978-3-658-12884-5.

Bounaceur, R. et al. (2017). “Rigorous variable permeability modelling and process
simulation for the design of polymeric membrane gas separation units: MEMSIC
simulation tool”. In: Journal of Membrane Science 523, pp. 77–91. doi: 10.1016/j.
memsci.2016.09.011.

Bretsznajder, S. (1971). Prediction of Transport and Other Physical Properties of Fluids.
1st ed. Oxford: Pergamon Press.

Chen, X. Y. et al. (2015). “Membrane gas separation technologies for biogas upgrad-
ing”. In: RSC Adv. 5.31, pp. 24399–24448. doi: 10.1039/C5RA00666J.

Crank, J. et al. (1947). “A practical method for numerical evaluation of so-
lutions of partial differential equations of the heat-conduction type”. In:
Mathematical Proceedings of the Cambridge Philosophical Society 43.01, p. 50. doi:
10.1017/S0305004100023197. url: http://www.journals.cambridge.
org/abstract%7B%5C_%7DS0305004100023197.

Dahmen, W. und Reusken, A. (2008). Numerik für Ingenieure und Naturwissenschaftler.
2. Aufl. Berlin Heidelberg: Springer. doi: 10.1007/978-3-540-76493-9.

Deuflhard, P. and Hohmann, A. (2003). Numerical Analysis in Modern Scientific Com-
puting. New York: Springer. doi: 10.1007/978-0-387-21584-6.

DVGW – Deutscher Verein des Gas- und Wasserfaches e.V. (2013). G 260.
Feichtinger, A. et al. (2014). “Collocation method for the modeling of membrane gas

permeation systems”. In: International Journal of Nonlinear Sciences and Numerical
Simulation 15.5, pp. 307–316. doi: 10.1515/ijnsns-2013-0113.

Freund, R. W. und Hoppe, R. H. (2007). Stoer/Bulirsch: Numerische Mathematik 1.
10. Aufl. Berlin Heidelberg New York: Springer.

Grossmann, C. et al. (2007). Numerical Treatment of Partial Differential Equations. Berlin
Heidelberg New York: Springer.

Haddadi Sisakht, B. et al. (2016). “Designing Better Membrane Modules Using
CFD”. In: Chemical Product and Process Modeling 11.1, pp. 57–66. doi: 10.1515/
cppm-2015-0066.

Hosseini, S. S. et al. (2016a). “Gas permeation and separation in asymmetric hollow
fiber membrane permeators: Mathematical modeling, sensitivity analysis and

114

https://doi.org/10.1021/ie4033999
https://doi.org/10.1021/ie4033999
https://doi.org/10.1016/j.memsci.2015.08.023
http://www.energy-innovation-austria.at/wp-content/uploads/2015/07/eia_02_15_D_FIN.pdf
http://www.energy-innovation-austria.at/wp-content/uploads/2015/07/eia_02_15_D_FIN.pdf
http://www.energy-innovation-austria.at/wp-content/uploads/2015/07/eia_02_15_D_FIN.pdf
https://doi.org/10.1007/978-3-658-12884-5
https://doi.org/10.1016/j.memsci.2016.09.011
https://doi.org/10.1016/j.memsci.2016.09.011
https://doi.org/10.1039/C5RA00666J
https://doi.org/10.1017/S0305004100023197
http://www.journals.cambridge.org/abstract%7B%5C_%7DS0305004100023197
http://www.journals.cambridge.org/abstract%7B%5C_%7DS0305004100023197
https://doi.org/10.1007/978-3-540-76493-9
https://doi.org/10.1007/978-0-387-21584-6
https://doi.org/10.1515/ijnsns-2013-0113
https://doi.org/10.1515/cppm-2015-0066
https://doi.org/10.1515/cppm-2015-0066

References

optimization”. In: Korean Journal of Chemical Engineering 33.11, pp. 3085–3101. doi:
10.1007/s11814-016-0198-z.

Hosseini, S. S. et al. (2016b). “Mathematical Modeling and Investigation on the
Temperature and Pressure Dependency of Permeation and Membrane Separation
Performance for Natural gas Treatment”. In: Chemical Product and Process Modeling
11.1, pp. 7–10. doi: 10.1515/cppm-2015-0051.

Kundu, P. K. et al. (2013). “Modelling of multicomponent gas separation with
asymmetric hollow fibre membranes-methane enrichment from biogas”. In: The
Canadian Journal of Chemical Engineering 91.6, pp. 1092–1102. doi: 10.1002/cjce.
21721.

Kundu, P. et al. (2013). “Analysis of permeate pressure build-up effects on separa-
tion performance of asymmetric hollow fiber membranes”. In: Chemical Engineer-
ing Science 104, pp. 849–856. doi: 10.1016/j.ces.2013.10.003.

Larsson, S. and Thomée, V. (2009). Partial Differntial Equations with Numerical Methods.
Berlin Heidelberg: Springer. doi: 10.1007/978-3-540-88706-5.

Lassmann, T. G. (2015). “The purification of fermentatively produced hydrogen
using gas permeation: A practical and simulative approach”. PhD thesis. TU
Wien. url: http://www.ub.tuwien.ac.at/diss/AC13025950.pdf.

Lassmann, T. et al. (2016). “The purification of fermentatively produced hydro-
gen using membrane technology: a simulation based on small-scale pilot plant
results”. In: Clean Technologies and Environmental Policy 18.1, pp. 315–322. doi:
10.1007/s10098-015-0997-7.

Lemmon, E. W. et al. (2013). NIST Standard Reference Database 23: Reference Fluid
Thermodynamic and Transport Properties - REFPROP, Version 9.1. Gaithersburg. url:
https://www.nist.gov/srd/refprop.

Liemberger, W. et al. (2016). “Extraction of green hydrogen at fuel cell quality from
mixtures with natural gas”. In: Chemical Engineering Transactions 52, pp. 427–432.
doi: 10.3303/CET1652072.

Liemberger, W. et al. (2017). “Experimental analysis of membrane and pressure
swing adsorption (PSA) for the hydrogen separation from natural gas”. In: Journal
of Cleaner Production 167, pp. 896–907. doi: 10.1016/j.jclepro.2017.08.012.

Lindfield, G. R. and Penny, J. E. T. (2012). Numerical Methods using MATLAB. 3rd ed.
Academic Press, p. 552.

Lock, S. S. M. et al. (2015a). “Effect of recycle ratio on the cost of natural gas pro-
cessing in countercurrent hollow fiber membrane system”. In: Journal of Industrial
and Engineering Chemistry 21, pp. 542–551. doi: 10.1016/j.jiec.2014.03.017.

Lock, S. S. M. et al. (2015b). “Modeling, simulation and economic analysis of CO2
capture from natural gas using cocurrent, countercurrent and radial crossflow
hollow fiber membrane”. In: International Journal of Greenhouse Gas Control 36,
pp. 114–134. doi: 10.1016/j.ijggc.2015.02.014.

Lock, S. S. M. et al. (2014). “Mathematical Modeling of the Radial Crossflow Hollow
Fiber Membrane Module for Multi-Component Gas Separation”. In: Applied

115

https://doi.org/10.1007/s11814-016-0198-z
https://doi.org/10.1515/cppm-2015-0051
https://doi.org/10.1002/cjce.21721
https://doi.org/10.1002/cjce.21721
https://doi.org/10.1016/j.ces.2013.10.003
https://doi.org/10.1007/978-3-540-88706-5
http://www.ub.tuwien.ac.at/diss/AC13025950.pdf
https://doi.org/10.1007/s10098-015-0997-7
https://www.nist.gov/srd/refprop
https://doi.org/10.3303/CET1652072
https://doi.org/10.1016/j.jclepro.2017.08.012
https://doi.org/10.1016/j.jiec.2014.03.017
https://doi.org/10.1016/j.ijggc.2015.02.014

References

Mechanics and Materials 625, pp. 726–729. doi: 10.4028/www.scientific.net/
AMM.625.726.

Magnanelli, E. et al. (2016). “Enhancing the understanding of heat and mass trans-
port through a cellulose acetate membrane for CO2 separation”. In: Journal of
Membrane Science 513, pp. 129–139. doi: 10.1016/j.memsci.2016.04.021.

Makaruk, A. and Harasek, M. (2009). “Numerical algorithm for modelling mul-
ticomponent multipermeator systems”. In: Journal of Membrane Science 344.1-2,
pp. 258–265. doi: 10.1016/j.memsci.2009.08.013.

Makaruk, A. et al. (2010). “Membrane biogas upgrading processes for the pro-
duction of natural gas substitute”. In: Separation and Purification Technology 74.1,
pp. 83–92. doi: 10.1016/j.seppur.2010.05.010.

Mathew, J. H. and Fink, K. D. (2004). Numerical Methods using MATLAB. Pearson
Prentice Hall, p. 680.

Melin, T. und Rautenbach, R. (2007). Membranverfahren. 3. Aufl. VDI-Buch. Berlin
Heidelberg: Springer. doi: 10.1007/978-3-540-34328-8.

Ohenoja, M. and Sorsa, A. (2015). “Simulation as a Tool for Evaluating Biogas
Purification Processes”. In: Proceedings of the 56th SIMS, pp. 55–61. doi: 10.3384/
ecp1511955.

ÖVGW – Österreichische Vereinigung für das Gas- und Wasserfach (2001). G 31.
Pathare, R. and Agrawal, R. (2010). “Design of membrane cascades for gas sep-

aration”. In: Journal of Membrane Science 364.1, pp. 263–277. doi: 10.1016/j.
memsci.2010.08.029.

Poling, B. E. et al. (2000). The Properties of Gases and Liquids. 5th ed. New York:
McGraw-Hill, p. 793. doi: 10.1036/0070116822.

Scholz, M. et al. (2013a). “Modeling Gas Permeation by Linking Nonideal Effects”.
In: Industrial & Engineering Chemistry Research 52.3, pp. 1079–1088. doi: 10.1021/
ie202689m.

Scholz, M. et al. (2013b). “Transforming biogas into biomethane using membrane
technology”. In: Renewable and Sustainable Energy Reviews 17, pp. 199–212. doi:
10.1016/j.rser.2012.08.009.

Scholz, M. et al. (2015). “Dynamic process simulation and process control of biogas
permeation processes”. In: Journal of Membrane Science 484, pp. 107–118. doi:
10.1016/j.memsci.2015.03.008.

Schretter, P. (2016). “Simulation of Membrane Modules with OpenFOAM”. Mas-
ter thesis. TU Wien. url: http : / / www . ub . tuwien . ac . at / dipl / 2016 /
AC13009611.pdf.

Sharifian, S. et al. (2016). “Simulation of Membrane Gas Separation Process Using
Aspen Plus® V8.6”. In: Chemical Product and Process Modeling 11.1, pp. 67–72. doi:
10.1515/cppm-2015-0067.

Szwast, M. and Szwast, Z. (2015). “A Mathematical Model of Membrane Gas
Separation with Energy Transfer by Molecules of Gas Flowing in a Channel to

116

https://doi.org/10.4028/www.scientific.net/AMM.625.726
https://doi.org/10.4028/www.scientific.net/AMM.625.726
https://doi.org/10.1016/j.memsci.2016.04.021
https://doi.org/10.1016/j.memsci.2009.08.013
https://doi.org/10.1016/j.seppur.2010.05.010
https://doi.org/10.1007/978-3-540-34328-8
https://doi.org/10.3384/ecp1511955
https://doi.org/10.3384/ecp1511955
https://doi.org/10.1016/j.memsci.2010.08.029
https://doi.org/10.1016/j.memsci.2010.08.029
https://doi.org/10.1036/0070116822
https://doi.org/10.1021/ie202689m
https://doi.org/10.1021/ie202689m
https://doi.org/10.1016/j.rser.2012.08.009
https://doi.org/10.1016/j.memsci.2015.03.008
http://www.ub.tuwien.ac.at/dipl/2016/AC13009611.pdf
http://www.ub.tuwien.ac.at/dipl/2016/AC13009611.pdf
https://doi.org/10.1515/cppm-2015-0067

References

Molecules Penetrating this Channel from the Adjacent Channel”. In: Chemical
and Process Engineering 36.2, pp. 151–169. doi: 10.1515/cpe-2015-0012.

The MathWorks, Inc. (2016). MATLAB Documentation on Vectorization. url: https://
www.mathworks.com/help/matlab/matlab_prog/vectorization.html.

VDI – Gesellschaft Verfahrenstechnik und Chemieingenieurwesen, Hrsg. (2013).
VDI-Wärmeatlas. Berlin Heidelberg: Springer. doi: 10.1007/978-3-642-19981-
3.

White, F. M. (2005). Viscous Fluid Flow. New York: McGraw-Hill.
Xu, J. and Agrawal, R. (1996a). “Gas separation membrane cascades I. One-

compressor cascades with minimal exergy losses due to mixing”. In: Journal of
Membrane Science 112.2, pp. 115–128. doi: 10.1016/0376-7388(95)00272-3.

Xu, J. and Agrawal, R. (1996b). “Membrane separation process analysis and de-
sign strategies based on thermodynamic efficiency of permeation”. In: Chemical
Engineering Science 51.3, pp. 365–385. doi: 10.1016/0009-2509(95)00262-6.

Yang, X. I. and Mittal, R. (2014). “Acceleration of the Jacobi iterative method by
factors exceeding 100 using scheduled relaxation”. In: Journal of Computational
Physics 274, pp. 695–708. doi: 10.1016/j.jcp.2014.06.010. url: http:
//linkinghub.elsevier.com/retrieve/pii/S0021999114004173.

117

https://doi.org/10.1515/cpe-2015-0012
https://www.mathworks.com/help/matlab/matlab_prog/vectorization.html
https://www.mathworks.com/help/matlab/matlab_prog/vectorization.html
https://doi.org/10.1007/978-3-642-19981-3
https://doi.org/10.1007/978-3-642-19981-3
https://doi.org/10.1016/0376-7388(95)00272-3
https://doi.org/10.1016/0009-2509(95)00262-6
https://doi.org/10.1016/j.jcp.2014.06.010
http://linkinghub.elsevier.com/retrieve/pii/S0021999114004173
http://linkinghub.elsevier.com/retrieve/pii/S0021999114004173

	Abstract
	Kurzfassung
	Acknowledgement
	Contents
	1 Introduction
	1.1 Motivation and Problem Statement
	1.2 Objectives of this Work

	2 Basics of Gas Permeation
	2.1 Principles of Membrane Separation
	2.2 Mathematical Description
	2.3 Concentration Polarization

	3 Numerical Approach
	3.1 Basics of Numerical Modeling
	3.1.1 Classes of Differential Equations
	3.1.2 Initial Value Problems and Boundary Value Problems
	3.1.3 Solutions for Differential Equations
	3.1.4 The Finite Difference Method
	3.1.5 Iterative Solvers
	3.1.6 Relaxation

	3.2 General Approach
	3.2.1 Basics of Algorithm
	3.2.2 Flow Regimes
	3.2.3 Discretization
	3.2.4 Application of Finite Difference Schemes

	3.3 Transmembrane Flux and Mass Balance
	3.3.1 Governing Equations
	3.3.2 Boundary Conditions
	3.3.3 Discretization
	3.3.4 Ensuring Mass Balance by Limiting Flux

	3.4 Pressure Drop Calculation
	3.4.1 Governing Equations
	3.4.2 Boundary Conditions
	3.4.3 Discretization

	3.5 Energy Balance
	3.5.1 Governing Equations
	3.5.2 Boundary Conditions
	3.5.3 Discretization

	3.6 Full Algorithm
	3.6.1 Definition of the Problem
	3.6.2 Initialization
	3.6.3 Solution Procedure

	4 Implementation Details
	4.1 Adaption of Under-Relaxation
	4.2 Calculation of Mixed Gas Properties
	4.2.1 Basics of Property Calculation
	4.2.2 Sources of Real Gas Properties
	4.2.3 Fugacity Coefficients and Partial Pressures
	4.2.4 Molar Volume and Density
	4.2.5 Viscosity
	4.2.6 Thermal Conductivity
	4.2.7 Enthalpy and Heat Capacities

	4.3 Delayed Activation of Pressure Drop and Energy Balance Calculation
	4.4 Numerical Effects
	4.5 Performance Optimization
	4.6 Structure of Code
	4.7 Sanitization of Inputs
	4.8 Usage Examples
	4.8.1 Basic Setup of a Calculation
	4.8.2 Using Real Gas Properties
	4.8.3 Using External Loops to Solve for Non-Default Parameters
	4.8.4 Example of a Two-Stage Process

	5 Validation of Algorithm
	5.1 Comparison with Existing MATLAB Code
	5.1.1 Description of Existing MATLAB Code
	5.1.2 Definition of Test Cases
	5.1.3 Comparison of Results
	5.1.4 Comparison of Calculation Performance

	5.2 Comparison with CFD
	5.2.1 Description of CFD Code
	5.2.2 Definition of Test Cases
	5.2.3 Comparison of Results

	6 Parameter Variation
	6.1 Description of Test Cases
	6.2 Variation of Cell Numbers
	6.3 Variation of Flux Limit Application
	6.4 Variation of Cell Property Evaluation Mode
	6.5 Ideal and Real Gas Properties at Different Pressure Levels
	6.6 Pressure Drop and Energy Balance Calculation

	7 Results and Discussion
	7.1 Overview
	7.2 Variation of Cell Numbers
	7.3 Variation of Flux Limit Application
	7.4 Variation of Cell Property Evaluation Mode
	7.5 Ideal and Real Gas Properties at Different Pressure Levels
	7.6 Pressure Drop and Energy Balance Calculation

	8 Conclusion and Outlook
	List of Figures
	List of Tables
	List of Symbols
	List of Acronyms
	References

