
Diplomarbeit

Probing solid-state electron spin-phonon

interaction at the quantum limit

ausgeführt am Atominstitut der Technischen Universität Wien unter der

Anleitung von

Univ. Prof. Dr. Hannes-Jörg Schmiedmayer

Univ. Ass. Dr. Johannes Majer

Projektass. Dipl.-Ing. Thomas Astner

Projektass. Dipl.-Ing. Andreas Angerer

eingereicht an der

Technischen Universität Wien

Fakultät für Physik

von

Sebastian Wald

Matrikelnummer: 1026377

Hanuschstraße 30, 4400 Steyr

Wien, am 24. Oktober 2017

Die approbierte Originalversion dieser Diplom-/ 
Masterarbeit ist in der Hauptbibliothek der Tech-
nischen Universität Wien aufgestellt und zugänglich. 
 

http://www.ub.tuwien.ac.at 
 
 
 
 

The approved original version of this diploma or 
master thesis is available at the main library of the 
Vienna University of Technology. 
 

http://www.ub.tuwien.ac.at/eng 
 



ii



Abstract

Longitudinal relaxation, which is the interaction of quantum systems with their en-

vironment, gives a limitation of the lifetime of quantum states. Hence, the longitudinal

relaxation time T1 is a characteristic measure for quantum systems and their maximally

attainable coherence time (T2 ≤ 2T1).

A promising physical system for the realization of quantum technologies like quan-

tum communication, information processing and metrology is the negatively charged

nitrogen-vacancy color center (NV −) in diamond. The longitudinal relaxation of the

NV − electron spin ensemble is driven by spin-phonon interaction and has been studied

in a ’high’ temperature regime (4 K) only.

In this thesis, a cavity quantum electrodynamics measurement scheme for spin-

phonon relaxation of NV − ensembles in a temperature regime of 25-250 mK is presented.

We introduce a 3D microwave resonator design, which enables homogeneous single spin

coupling. Furthermore, we are able to measure the spin polarization indirectly in the

dispersive regime to observe longitudinal relaxation.

A maximum T1 ≈ 8 h indicates weak spin-phonon coupling. With temperature scans,

we determine the direct spin-phonon process as fundamental origin of this relaxation and

show that in a temperature regime of kBT < ~ωs, T1 is only limited by the spontaneous

emission of spin excitations into the phononic vacuum modes.

Furthermore, we compare four different diamond samples to investigate the influence

of lattice damage on the longitudinal relaxation. We are able to show that the measured

data of two samples almost show the calculated relaxation behaviour of a single NV −

in a perfect crystal.
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Zusammenfassung

Longitudinale Relaxation, der Zerfall eines Quantenzustandes durch die Wechselwir-

kung mit seiner Umgebung limitiert die Lebensdauer des Zustandes. Charakterisiert wird

dieser Zerfall durch die longitudinale Relaxationszeit T1. Diese Messgröße ist charakteris-

tisch für verschiedene Quantensysteme und beschreibt auch deren maximal erreichbare

Kohärenzzeit (T2 ≤ 2T1).

Ein vielversprechendes physikalisches System zur Realisierung von Quantentechno-

logien, wie Quantenkommunikation, Quanteninformationsverarbeitung und Quantenme-

trologie ist das negativ geladene Stickstoff-Fehlstellen Zentrum (NV −) im Diamanten.

Bisher wurde die longitudinale Relaxation der Elektronenspins eines NV − Ensembles,

die durch Spin-Phonon Wechselwirkung getrieben wird nur in Temperaturbereichen

höher als 4 K gemessen.

Diese Arbeit stellt eine Cavity Quantenelektrodynamik Messmethode vor, die es

ermöglicht Spin-Phonon Relaxation in einem Temperaturbereich zwischen 25 mK und

250 mK zu messen. Wir stellen einen 3D Mikrowellenresonator vor, der es ermöglicht

an jeden Spin des Ensembles homogen zu koppeln. Die dispersive Kopplung des Spin

Ensembles zum Resonator ermöglicht es uns, die Spin Polarisation indirekt zu messen

und so die longitudinale Relaxation zu bestimmen.

Die gemessene maximale T1 ≈ 8 h sind ein Indiz für schwache Spin-Phonon Kopp-

lung. Mittels Temperaturscans können wir den direkten Spin-Phonon Prozess als we-

sentlich für den longitudinalen Zerfall bestimmen. Weiters zeigen wir, dass in einem

Temperaturbereich für den kBT < ~ωs gilt, T1 einzig durch die spontane Emission von

Spinanregungen in phononische Vakuummoden bestimmt wird.

Schlussendlich vergleichen wir die Messungen meherere Diamantproben um den Ein-

fluss von Gitterschäden auf die longitudinale Relaxation zu untersuchen. Dabei können

wir auch zeigen, dass die Messdaten zweier Proben fast das berechnete Relaxationsver-

halten eines einzelnen NV − im perfecten Diamanten wiedergeben.
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Chapter 1

Introduction

In 1900, when Max Planck was able to find a description of black body radiation with

the introduction of quantized energy [1], the wide physical, technological and philosoph-

ical consequences of this discovery were not predictable. This ’Big Bang’ of quantum

physics paved the way for other game changing discoveries like the description of the

photoelectric effect by Albert Einstein [2], the postulation of the Schrödinger equation

[3], Heisenberg’s principle of uncertainty [4], the relativistic expansion of the quantum

theory by Paul Dirac [5] or the development of quantum electrodynamics by Richard

Feynmann [6]. All these scientific findings provide an insight into the structure and

behaviour of nature and enable applications which were unthinkable before.

Since then, technologies like the laser [7] and the semiconductor based information

technologies changed society and living of human significantly. Nowadays, physicists

do research on different physical systems to realize quantum computation, the next big

step of this technological evolution. Some of the most promising physical systems are

artificial atoms [8], trapped ions [9], ultracold neutral atoms [10], Rydberg atoms [11],

quantum dots [12] and nitrogen-vacancy center in diamond [13]. However, when we

compare all these systems, all show benefits and disadvantages for the realization of a

quantum computer.

Within this thesis, we focus on negatively charged nitrogen-vacancy center (NV −).

It is a point defect in diamond, which consists of a carbon substituting nitrogen lattice

atom and a neighbouring vacancy. Capturing an additional electron, the NV − builds a

localized spin S = 1 system. Due to zero-field splitting, the degeneracy of the ground

state is lifted by 2.88 GHz and the optical transition between the ground state and the
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first excited state corresponds to 637 nm. These properties enable experiments in the

microwave regime and optical read out of the spin state. Therefore, the NV − becomeas

of interest for quantum computation and other applications like magnetic sensing [14]

and fluorescence microscope [15].

A crucial parameter for all quantum systems is the longitudinal relaxation rate γ||,

or equvalently the characteristic longitudinal relaxation time T1. It is a measure for

the coupling of the system to its environment and, therefore, a limit for the maximum

achievable coherence time T2 ≤ 2T1.

So far, T1 of NV − was measured to a minimum temperature of 4 K [16, 17]. In this

thesis, we present a method to measure the longitudinal relaxation of a NV − ensemble

in a temperature range of 25-300 mK. The ensemble is homogeneously and collectively

coupled to a superconducting 3D lumped element microwave resonator and the
√
N

enhancement of the coupling strength is shown (N is the number of spins). Since the

resonator is far detuned to the spin transition, the measurement enters the dispersive

regime and a quantum non demolition (QND) measurement scheme of the collective

spin state is realized. Data for four different NV − ensemble samples were taken and

compared. Furthermore, we determine the basic processes of spin-phonon relaxation

and are able to show the limit of T1 as consequence of spontaneous emission of spin

excitations into phononic vacuum modes.

2



Chapter 2

The negatively charged

Nitrogen-Vacancy center in

diamond

Among more than hundred known luminescent defects in diamond, the negatively charged

nitrogen-vacancy center (NV −) has such unique properties that it becomes attractive

for utilization in quantum technologies [18, 19]. This chapter provides fundamental in-

formation about the NV − center necessary for an understanding of this thesis. First,

the crystalline structure of this point defect is discussed. Then electric and magnetic

properties are outlined. Good review papers of point defects in diamond and especially

NV − can be found in [20, 13].

2.1 Crystalline Structure

Diamond consists of a face-centred cubic lattice of carbon atoms. The Nitrogen-vacancy

center is a point defect of such a lattice, where a carbon atom is substituted with a

nitrogen atom and an adjacent lattice vacancy. Nitrogen which has five valence electrons,

forms a paramagnetic spin-half system with the vacancy, the neutral NV 0. If the NV 0

captures an additional electron from the lattice, the negatively charged NV − is created.

The NV axis is orientated along the 〈111〉 crystalline direction and therefore, it

has four crystallographical equivalent orientations in diamond. The electronic states of

the NV − are highly localized at the vacancy and the three carbon atoms in nearest-
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2.2. SPIN PROPERTIES OF THE NV −

N

V

Figure 2.1: Illustration of the unit cell of diamond containing a

NV −centre. The NV axis is pointing along the 〈111〉 orientation and the

iso-surface of the spin density shown in blue.[21]

neighbour position. Therefore, the NV has a C3v symmetry. Fig. 2.1 shows the unit-cell

of diamond containing a NV − center, illustrating its orientation and symmetry.

The synthesis of such NV − ensembles is discussed in Sec. 7.2

2.2 Spin properties of the NV −

The electronic structure of the NV − center is given by two S = 1 triplet states (3A2,

3E2) and two S = 0 singlet states (1A1,1E1), which are coupled via inter-system crossing

processes (Fig.2.2). Even in the absence of external magnetic or electric fields, the

degeneracy of the ground state, the 3A2 triplet state is lifted by the spin-spin interaction

of the two unpaired electron spins (dashed box in Fig. 2.2) [22]. This so-called zero-field

splitting (ZFS) can be described by the following Hamiltonian:

ĤZFS

h
= STDS = D(S2

z −
1

3
S2) + E(S2

x − S2
y) (2.1)

The zero-field splitting tensor D is traceless and, therefore, it is characterized by two fine

structure constants D and E. E describes the perturbation of the ms = ±1 states caused

by the local strain field. This effect is equal to the Stark effect of an external electric field
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2.2. SPIN PROPERTIES OF THE NV −

on a NV − and has a sample dependent strength of a few MHz. Furthermore, D describes

the splitting between the ms = 0 and ms = ±1 states as measure of the deviation

of the electron wave function from spherical symmetry. Hence, D = 2.88 GHz, this

|0〉 ↔ |±1〉 magnetic-dipole transition becomes attractive for coupling to a microwave

cavity, enabling cQED experiments like the experiment presented in this thesis or [23]

and [24]. For our purpose, E is rather small compared to D and is neglected. Although,

the existence of two excited states is significant for calculating the thermal population

(see Sec. 7.1).

3A2

3E2

637 nm

2.88 GHz

2E

1.42 GHz

+1
-1

0

+1

-1

1E1

1A1

1042 nm

0

55%

14%

70%

30%

Figure 2.2: Term scheme of the NV − center. In the shaded box is the zero-

field splitting of the triplet ground state illustrated. Straight arrows between

the triplet and singlet states symbolize electric dipole transitions. Wavy arrows

visualize magnetic dipole transitions between sub-levels. Inter-system crossing

processes are depicted as dashed grey arrows and the approximate branching

ratios from the initial state are given as percentages.

Zeeman splitting, the splitting of spin states due to an static external magnetic field

enables to tune the ground state spin transition |0〉 ↔ |±1〉. This interaction is given by

5



2.2. SPIN PROPERTIES OF THE NV −

the Hamiltonian,
ĤZ

h
= −µBext, (2.2)

where µ is the magnetic moment in dependence of the spin S:

µ = geµBS (2.3)

Here, ge ≈ 2 and µB ≈ 14 MHz
mT is the Bohr magneton. Thus, geµB ≈ 28 MHz

mT is a measure

for the energy shift per strength of the applied magnetic field.

Another property of the NV − is the hyperfine splitting by coupling of the electron

spin to Carbon isotopes and impurities present in the diamond. Thereby, the isotopes

13C and 14N are the most prominent. In this thesis hyperfine splitting will not be

discussed in detail. Proper papers discussing this topic can be found in [20].

The NV − ground state has an electric dipole transition to the excited 3E2 triplet

state, which has a lifetime of about 10 ns. This so called zero-phonon line (ZPL) cor-

responds to a wavelength of 637 nm. Another option to excite the NV − is to drive the

ZPL blue-detuned. Surplus energy is emitted to the phonon side band [22], due to the

coupling of the 3E2 state to local and global vibrational modes. The advantage of this

excitation method is that the bandwidth of the phonon side-band is much larger than

the linewidth of the direct transition. Therefore, it is not necessary to lock a excitation

laser at the transition frequency and the readout of the spin state is done via detection

of the fluorescence of the ZPL. Similar to the 3A2 ground state the degeneracy of the

3E2 state is lifted by ZFS corresponding to 1.42 GHz.

Since electrical dipole transitions are spin conserving, polarization in the ms = 0

state of the NV − can be reached via inter-system crossing processes between its triplet

states and intermediate metastable singlet states, 1A1 and 1E1. The ms = ±1 sub-states

preferentially decay non-radiative into the 1E1 singlet state, which has a lifetime lower

than 1 ns and decays via an electrical dipole transition into the 1A1 state, emitting a

photon with a wavelength of 1042 nm. Again, this state decays non-radiative, preferen-

tially into the ms = 0 sub-state of the 3A2 triplet ground state. The whole regime

enables to polarize into the ms = 0 ground state with off-resonant optical pumping.
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Chapter 3

3D Lumped Element Microwave

Resonator

For the readout of the spin ensemble in our experiment, the 3D lumped element mi-

crowave resonator is essential. The resonant mode has to create an oscillating magnetic

field, which interacts with the whole spin ensemble homogeneously.

After an introduction of general properties and the basic two types of microwave res-

onators, the more complex 3D ’bow tie’ design is discussed [25]. For further information

on microwave resonators and microwave engineering in general [26] can be recommended.

3.1 Fundamentals of Microwave Resonators

In general microwave resonators can be depicted as circuit composed of three funda-

mental, passive components. The resistor, R, describes the response to current and

is a dissipative element. The capacitor, C, stores electric energy in an electric field

and causes a negative phase shift between applied voltage and current. In conclusion,

the inductor, L, stores electric energy in a magnetic field and causes a positive phase

shift between applied voltage and current. (Eq. 3.1) quotes the impedance of the three

elements.

ZR = R ZC =
1

jωC
ZL = jωL (3.1)

Here, R,C and L are element specific parameter in units, [R] = Ω, [C] = F and [L] = H.

7



3.1. FUNDAMENTALS OF MICROWAVE RESONATORS

Resonance occurs if a system is periodically stimulated at or close to its eigenfre-

quency. The excitation energy is stored in different modes of the system, which transfer

energy between each other. Without the presence of dissipation processes, resonance

would lead to an increasing amplitude and subsequently to a resonance disaster, the

collapse of the system.

Resonance of a microwave resonator occurs when the average stored electric and

magnetic energy are equal (Wm = We). The eigenfrequency of the resonator (Eq. 3.2)

is dependent to its capacitance and inductance.

ω0 =
1√
LC

(3.2)

The circuits resistance has not any effect to the eigenfrequency, but is dissipating stored

energy. Thus, the energy loss caused by the resistance is Ploss = 1
2 |I|

2R and the complex

input power can be written as

Pin =
1

2
Zin|I|2 = Ploss + 2jω(Wm −We). (3.3)

An important characteristic for a resonator is its quality factor Q. It is a measure

for the energy dissipation of the resonator (Eq. 3.4), which can be determined with a

linewidth (∆ω) measurement.

Q = ω
Wstored

Ploss
= ω

We +Wm

Ploss
=

ω0

∆ω
(3.4)

In experiment, the resonator is coupled to an outer circuit, and, therefore the Q

factor of the whole circuit will be lowered. This so called loaded quality factor, QL is

given by (Eq. 3.5), where Qi is the quality factor of the resonator and the external Q is

Qe, which is dependent to the external load resistance.

1

QL
=

1

Qe
+

1

Qi
(3.5)

For the description of the coupling strength of a cavity to an external circuit, the coupling

coefficient g is defined as:

g =
Qi
Qe

(3.6)

Three different coupling regimes are distinguishable:

1. Undercouping (g < 1): The resonator is weakly coupled to the external circuit,

internal losses are dominant.

8



3.1. FUNDAMENTALS OF MICROWAVE RESONATORS

2. Critical coupling (g = 1): The maximum power transfer between resonator and

external circuit is achieved by impedance matching.

3. Overcoupling (g > 1): The resonator is strongly coupled to the external circuit,

external losses are dominant.

Close to resonance, every microwave resonator can be described as neither series nor

parallel RLC equivalent circuit. In the following subsection, we discuss basic properties

of these two fundamental resonant circuits.

3.1.1 Series Resonant Circuit

The schematic of the basic series RLC resonant circuit is shown in Fig. 3.1.

+

I
R

L

C

-

V

Figure 3.1: Series RLC circuit

Following Kirchhoff’s circuit laws, the input impedance can be calculated:

Zin = R+ jωL− j 1

ωC
(3.7)

The average magnetic energy stored in the inductor (Wm) and the average electric

energy in the capacitor (We) are given by

Wm =
1

4
|I|2L We =

1

4
|I|2 1

ω2C
(3.8)

Note that in resonance, the complex input power (Eq. 3.3) becomes real as well as

the input impedance (Eq. 3.7) and Q, which can be calculated with (Eq. 3.4) becomes

indirect proportional to R.

Q =
ω0L

R
=

1

ω0RC
(3.9)

9



3.1. FUNDAMENTALS OF MICROWAVE RESONATORS

Furthermore, we want to determine the input impedance near the circuits resonance.

Therefore, we let ω = ω0 + ∆ω, where ∆ω is small and get

Zin ' R+ j2L∆ω = R+ j
2RQ∆ω

ω0
. (3.10)

An detailed derivation of (Eq. 3.10) can be found in [26].

3.1.2 Parallel Resonant Circuit

The schematic of the basic parallel RLC resonant circuit is shown in Fig. 3.2.

+

I

C

-

R L

Figure 3.2: Parallel RLC circuit

Zin = (
1

R
+

1

jωL
+ jωC)−1 (3.11)

The average magnetic energy stored in the inductor (Wm) and the average electric

energy in the capacitor (We) are given by

We =
1

4
|V |2C Wm =

1

4
|V |2 1

ω2L
. (3.12)

Similar to the series circuit, the complex input power (Eq. 3.3) and the input impedance

(Eq. 3.11) become real when resonance occurs. However, the parallel circuits Q differs

from the series circuits Q and is direct proportional to R.

Q =
R

ω0L
= ω0RC (3.13)

Again, we evaluate the input impedance near the circuits resonance, where ∆ω is

small, to give

Zin '
R

1 + 2j∆ωRC
=

R

1 + 2jQ∆ω/ω0
. (3.14)

Like for the series circuit, an detailed derivation of (Eq. 3.14) can be found in [26].

10



3.2. BOW TIE RESONATOR

3.2 Bow Tie Resonator

As mentioned in the introduction of this chapter, interaction of a cavity with the spin

ensemble enables readout and also manipulation of the spin state (see Sec. 4.3.3). There-

fore, the resonance frequency of the cavity has to match the NV − spin transition of

2.88 GHz. For a collective, coherent coupling of the spins to the cavity, the resonant cav-

ity mode has to generate a homogeneous magnetic field in the area, where the diamond

is placed.

(a) (b)

Ccoupl

C2C1

Ccoupl

P
or
t 1

P
or
t 2L2

L2

(c)

(d)

Figure 3.3: (a) Manufactured aluminum ”Bow Tie” resonator. For illustrative

purpose, frame and top lid were removed. (b) Simulated results of the magnetic

field for the resonant mode used in experiment. Red and blue indicate zones

of high and low magnetic field density. The magnetic field gets focused in the

probe volume in the center of the cavity. (Image taken from [27] (c) Equivalent

circuit of the 3D lumped microwave resonator. (d) Schematic cross section of

the cavity perpendicular to the mode direction. Black arrows symbolize the

electric field and red arrows symbolize the current, inducing a magnetic field

(green circles), generated by the resonant mode. (Image taken from [25])

To meet these requirements, we came up with an resonator design, where two bow-tie

11



3.2. BOW TIE RESONATOR

shaped structures are place in the center of a closed box (Fig. 3.3a). The top surface

of each bow tie builds a capacitor with the lid. In resonance, a current at the bow

tie surface and a counter-propagating current at the lid surface are oscillating between

these capacitors, generating a focused homogeneous magnetic field in the cavity center

(Fig. 3.3b).

Figure 3.3c shows the equivalent circuit of our cavity which can be transformed to a

equivalent parallel resonant circuit with ω0 = 1√
LtotCtot

.

Ctot =
C1C2

C1 + C2
=
C

2
=

2ε0A

d
(3.15)

Ltot = L1 + L2 ≈ l ln
( l

w + t

)
+ 0.2235

( l

w + t

)
+ 0.5 (3.16)

If we consider (Eq. 3.15) and (Eq. 3.16), it is obvious that ω0 is solely dependent to

the cavity geometry and material. In (Eq. 3.15), A is the top area of one bow tie, d is

the separation between bow tie and top lid and ε0 is the dielectric constant. (Eq. 3.16)

shows that Ltot can be approximated by the inductance of a flat wire conductor [28],

where l is the current-carrying length, w the current width and t is the skin depth of

the oscillating current.

The cavity is capacitively coupled to a outer measurement circuit via two coaxial

ports below the bow ties. The coupling regime can be tuned with the length of the

couplers (grey spikes in Fig. 3.3d).

To increase the sensitivity of the measurement, the Q factor has to be as high as

possible. Therefore, the cavity was manufactured from aluminium, a type I supercon-

ductor with a highest transition temperature, TC = 1.20 K. As a result, Q = 517000 was

measured with an empty cavity and 1.5 mm coupler at 100 mK. Detailed information

about the resonator, used in experiment can be found in (see Sec. 7.3).

Note that design and fabrication of these resonators was not done within this thesis,

the reader is referred to [25] and the project thesis of Daniel Wirtitsch [27] for further

and detailed information.
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Chapter 4

Cavity QED

This chapter gives an introduction into the theoretical description of the in this thesis

presented experiment. First, we discuss the quantum mechanical description of the

two-level system and the quantized electromagnetic field. Second, introduce the Jaynes-

Cummings model to describe the two-level system-field interaction. We expand this

model for an ensemble of two-level systems to the Tavis-Cummings model and derive the

dispersive regime, which enables quantum non-demolition measurements. Conclusively,

we outline origins for non-unitary dynamics.

For a deeper introduction and more details on the concepts of quantum optics the

author recommends [29, 30, 31].

4.1 The two-level quantum system

An exact description of the interaction of any real quantum systems with electromagnetic

fields is impossible. However, the simplification of such systems to the simplest quantum

system, the two-level system is useful and enables the study of fundamental effects.

The two-level system consists of two non-degenerate eigenstates |i〉, (i = a, b) with

the eigenvalues

Ĥ0 |i〉 = ~ωi |i〉 . (4.1)

In its eigenbasis, the Hamiltonian is depicted as

Ĥ0 =
∑
i=a,b

~ωiσi =

~ωa 0

0 ~ωb,

 (4.2)
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4.2. ELECTROMAGNETIC FIELD

where σi = |i〉 〈i| are the projection operators, which describe the population probabili-

ties for each level.

Further, we introduce the Pauli operator

σz = σa − σb, (4.3)

which describes the population inversion of the system. Thus, we can rewrite the Hamil-

tonian as

Ĥ0 =
∑
i=a,b

(1

2
~ωiσi +

1

2
~ωabσz

)
, (4.4)

with the transition frequency ωab = ωa − ωb. For further simplification we set the zero

point energy in between of ~ωa and ~ωb to get

Ĥ0 =
1

2
~ωabσz (4.5)

with the eigenvalues 〈Ĥ0〉 = ±1
2~ωab.

To conclude, we define the raising and lowering operators in dependence of the Pauli

operators.

σ+ =
1

2
(σx + iσy) σ− =

1

2
(σx − iσy) (4.6)

4.2 Electromagnetic field

4.2.1 The classical free electromagnetic field

For the description of the free electromagnetic field, we have to apply the source free

Maxwell equations:

divE = 0 divB = 0 rotE = −∂B

∂t
rotB =

∂E

∂t
(4.7)

The second and third of Maxwell’s equation define the B and E field with the gauge free

vector potential A:

B = ∇×A E = −∂A

∂t
(4.8)

By applying the Coulomb gauge condition ∂A = 0 and substitute (Eq. 4.8) into the the

fourth of Maxwell’s equations, we obtain the differential equation

∇2A− 1

c2

∂2A

∂t2
= 0, (4.9)

14



4.2. ELECTROMAGNETIC FIELD

with the solution [31]

A(r, t) =

∫
k

∑
α=1,2

√
~

2ωkε0V
πα,k

[
Ak,αe

i(k·r−ωkt) + c.c.
]
dk . (4.10)

Here, we integrate over the continuous wave vectors k and the sum takes both orthogonal

polarization modes πα into account. V is the mode volume, ωk the eigenfrequency of

the mode k, ε0 is the dielectric constant and Ak,α a dimensionless complex amplitude.

To obtain B and E, (Eq. 4.10) is substituted into (Eq. 4.8).

The total energy of the free multi mode electromagnetic field is given by the Hamil-

tonian

H =
1

2

∫
(ε0E

2 +
1

µ0
B2)dr. (4.11)

4.2.2 Second Quantization / Fock state

To study the electromagnetic field in a cavity, we consider an electromagnetic field en-

closed by a box with reflecting walls. This boundary condition leads to discrete standing

waves as solution for the electromagnetic field. Therefore, the integral in (Eq. 4.10)

becomes a discrete sum. Furthermore, the vector potential A is quantized and the

amplitude Ak,α is substituted with the bosonic creation operator a† and annihilation

operator a.

A(r, t) =
∑
k,α

√
~

2ωkε0Vmode
πk,α

[
ake

i(k·r−ωkt) + a†ke
−i(k·r−ωkt)

]
(4.12)

The boson commutation relations are given by

[ak, ak′ ] = [a†k, a
†
k′ ] = 0 [ak, a

†
k′ ] = δkk′ . (4.13)

The relations in (Eq. 4.8) and (Eq. 4.12) are used to calculate the quantized solutions

of the electric and magnetic fields. For the evaluation of the Hamiltonian of the quan-

tized electromagnetic field we insert these solutions in (Eq. 4.11). With the bosonic

commutation relations the Hamiltonian reduces to

H =
∑
k

~ωk
(
a†kak +

1

2

)
, (4.14)

where a†kak is the number of photons in the mode k and 1
2~ωk is the zero point energy

of the mode. Each mode can be described as independent harmonic oscillator.
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4.3. THE JAYNES-CUMMINGS MODEL

The eigenstates |nk〉 of this Hamiltonian are also eigenstates of the number operator

Nk = a†kak and are known as Fock states.

a†kak |nk〉 = nk |nk〉 (4.15)

When we apply the creation or annihilation operator on a Fock state we get

ak |nk〉 =
√
nk |nk − 1〉 a†k |nk〉 =

√
nk + 1 |nk + 1〉 , (4.16)

where a†k adds one quantum of excitation to the system in contrast to the removal of an

excitation by a. Furthermore, the nth excited state can be generated by applying a†k on

the ground state |0〉 n-times.

|nk〉 =

(
a†k
)nk

√
nk!
|0〉 (4.17)

Since the Fock states are orthogonal, complete and can be normalized, they built a

complete set of basis vectors for the Hilbert space.

4.3 The Jaynes-Cummings model

The Jaynes-Cummings model [32] describes the interaction of a single two level quantum

system with a quantized electromagnetic field of a cavity. The Hamiltonian is given by

Ĥ = Ĥfield + Ĥ2level + Ĥint, (4.18)

where Ĥfield is the Hamiltonian of the free electromagnetic field, the second term de-

scribes the two level system and Ĥint is the interaction Hamiltonian.

4.3.1 The dipole approximation

Since the size of the two level system is considered to be orders of magnitude smaller

than the wavelength of the electromagnetic field, we can neglect the gradient of the

field amplitude and allows us to model Hint as a dipole interaction. The interaction

Hamiltonian has the form:

Ĥint = −µsB(t). (4.19)

We consider an electron as source of the magnetic dipole moment µs = geµB
S
~ , where

ge ≈ 2 is the gyromagnetic factor, µB is the Bohr magneton and S the spin vector. Note

that a magnetic field in quantization axis would lead to a Zeeman splitting [30] and only
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4.3. THE JAYNES-CUMMINGS MODEL

magnetic field components of this quantization axis lead to level mixing. However, Ĥint

for an in x-direction polarized magnetic field Bx = B0(a+ a†) is given by

Ĥint = −~geµB
2

σxBx = −~g0(σ+ + σ−)(a+ a†) (4.20)

Here, g0 is a constant dependent on the magnetic dipole moment and on the magnetic

field amplitude which describes the coupling strength of the two level system to the

cavity.

4.3.2 The rotating wave approximation

For studying the system dynamics we transform the operators in (Eq. 4.20) to the

interaction picture and get

σ±(t) = σ±e±iωabt a(t) = ae−iωkt a†(t) = a†eiωkt. (4.21)

We substitute these time dependent operators in Eq.4.20 to obtain the interaction Hamil-

tonian in the interaction picture:

Ĥint(t) = −~g0

(
σ−ae−i(ωab+ωk)t + σ+aei(ωab−ωk)t

+σ−a†e−i(ωab−ωk)t + σ+a†ei(ωab+ωk)t
) (4.22)

All four terms in the parenthesis represent different processes:

• σ−a: Each subsystem, the cavity and the two-level system emits a photon, this

process is non energy conserving.

• σ+a: The two-level system absorbs a cavity photon and gets excited. Hence, the

excitation number of the whole system is conserved, this process is unitary and

the total energy conserved.

• σ−a†: The two-level system emits a photon which is absorbed by the cavity. This

also is a unitary process and the total energy is conserved.

• σ+a†: This process describes the excitation of both, the cavity and the two-level

system. Like the first process, this process is non energy conserving because two

excitations are added to the system.
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4.3. THE JAYNES-CUMMINGS MODEL

In the regime of our interest, where ωk ≈ ωab, the amplitudes of the non energy

conserving processes oscillate fast compared to the slowly varying amplitudes of the

unitary processes. If g0 � ωab, we can neglect these fast oscillating processes. This well-

known approximation is called rotating wave approximation and leads to the interaction

Hamiltonian

Ĥint = −~g0

(
σ+a+ σ−a†

)
(4.23)

and the Jaynes-Cummings Hamiltonian of the total system

ĤJC =
1

2
~ωabσz + ~ωca†a− ~g0

(
σ+a+ σ−a†

)
. (4.24)

The first term in (Eq. 4.24) is the undisturbed Hamiltonian of the two-level system and

the second term is the Hamiltonian of a single mode cavity with eigenfrequency ωc.

4.3.3 Dispersive regime

In the following sector we want to study the previously discussed system in the dispersive

regime, where the detuning of the cavity eigenfrequency from the transition frequency

of the spin system is much larger than the coupling strength between these systems

(∆ = ωab − ωc � g0). We apply an unitary transformation to the Jaynes-Cummings

Hamiltonian [33]

Ĥdisp = Û †ĤJCÛ (4.25)

with

Û = e−
g0
∆

(σ−a†−σ+a). (4.26)

Since an exponential function can be written as power series, we can rewrite an

unitary transformation as

eÂB̂e−Â = B̂ + [Â, B̂] +
1

2

[
Â, [Â, B̂]

]
, (4.27)

neglecting higher than second order terms. By making use of the commutation relation

for boson operators and Pauli matrices (Eq. 4.28 and Eq. 4.29) this expansion yields to

an Hamiltonian given in (Eq. 4.30).

[a, a†a] = a [a†, a†a] = −a† (4.28)

[σ±, σ∓] = ±σz [σ±, σz] = ∓2σz σ±σ∓ =
1

2
(1± σz) (4.29)
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4.4. THE TAVIS-CUMMINGS MODEL

Ĥdisp =
(ωab

2
+

g2
0

2∆

)
σz +

(
ωc +

g2
0

∆
σz

)
a†a+

g2
0

2∆
1 (4.30)

When we compare the Hamiltonian for the dispersive regime with the Jaynes-Cummings

Hamiltonian (Eq.4.24) it becomes obvious that the two subsystems can not exchange ex-

citations anymore due to the missing interaction term. However, the resonance of the

two-level system is tuned and increases by
g2
0

∆ and the cavity obtains a shift dependent

to the spin state. This dependence is crucial for many QED experiments [18, 34] since

it enables a indirect and quantum non demolition (QND) measurement of the spin state

[35]. The fourth term is an energy offset and can be neglected.

4.4 The Tavis-Cummings model

For a proper description of an ensemble ofNV − center interacting with a cavity mode, we

have to consider collective effects. As Dicke showed in 1954 [36], an ensemble of molecules

or atoms interacting with a radiation field has to be described as single quantum system

to explain coherent processes in spontaneous emission. The Dicke model is valid if our

system fulfils the following requirements:

• The mode volume of the radiation field is large compared to the expansion of the

molecule or atom ensemble.

• All emitters are indistinguishable.

• The wavefunctions of the emitters do not overlap, dipole-dipole interaction can be

neglected.

• Coherence occurs due to the coupling of the emitters to the same radiation field.

For further information about recent developments of the Dicke model we can recommend

[37].

However, the Dicke model is a semiclassical model and does not consider a quantized

electromagnetic field. This extension was made by Tavis and Cummings [38, 39]. N two-

level systems are coupled via magnetic or electric dipole interaction to a single-mode of

the quantized electromagnetic field. For this system, the so called Tavis-Cummings

Hamiltonian is given by

ĤTC = ~ωca†a+
1

2
~ωab

N∑
i=1

σ(i)
z − ~

N∑
i=1

g(i)

(
σ

(i)
+ a+ σ

(i)
− a
†). (4.31)
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4.4.1 Tavis-Cummings in terms of the collective spin

In the following we assume that the coupling strength gi is homogeneous for all two-level

systems (gi = g0). Furthermore, we introduce the collective spin S = (Sx, Sy, Sz)
T with

the operators, given by

Sz =
1

2N

N∑
i=1

σ(i)
z S± =

1√
N

N∑
i=1

σ
(i)
± (4.32)

and their commutation relations, given by

[S±, S∓] = ±2Sz [Sz, S
±] = ±S±. (4.33)

These assumptions allow to rewrite the Hamiltonian in the following form:

ĤTC = ~ωca†a+ ~NωabSz − ~
√
Ng0

(
S+a+ S−a

†) (4.34)

When we compare this result with Eq. 4.24, we see that the effective coupling between

the collective spin and the cavity mode scales with geff =
√
Ng0.

This scaling of the coupling strength is crucial for cQED experiments with NV − in

the microwave regime. The coupling strength of the NV − to the external magnetic field

of the microwave cavity with bow tie design is g0 ≈ 30 − 70 mHz and, therefore, too

weak to resolve the coupling of a single NV −. Nevertheless, this collective effect enables

experiments with NV − ensembles, as presented in this thesis.

4.4.2 Eigenstates of the Tavis-Cummings model

To determine the eigenstates of the Tavis-Cummings Hamiltonian, we consider the eigen-

states of the subsystems, the spin ensemble and the cavity.

The eigenstates of the cavity, the so called Fock states were already discussed in

Sec. 4.2.2.

Eigenstates of the spin ensemble are called Dicke states and are denoted with |S,M〉.
These states are simultaneously eigenstates of the Ŝ2 and the Ŝz operators with the

eigenvalues

Ŝ2 |S,M〉 = S(S + 1) Ŝz |S,M〉 = M |S,M〉 , (4.35)

and are degenerate by (2S+1)N !
(N/2+S+1)!(N/2−S)! . The quantum numbers S and M can reach

values of 0 ≤ S ≤ N
2 and −S ≤M ≤ S.
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Within the Tavis-Cummings model the collective spin is conserved because of [Ŝ2, ĤCT ] =

0. Therefore, we can chose the product states of Dicke and Fock states as basis for the

Tavis-Cummings Hamiltonian. Another useful parameter of the given system is the ex-

citation number n∗ = M + n, which sums up the excitations of the spin ensemble and

the cavity. The excitation number operator (Ŝz +a†a) also commutes with ĤTC and the

excitation number is conserved.

In order to illustrate the Tavis-Cummings model, we give an example of a system

with one excitation (n∗ = 1). We will denote the ground Fock state as |0〉 and the

excited Fock state as |1〉. In the ground state of the spin system, all single spins are

polarized and we can write this state as

|ψ0〉 = |↓, ↓, ..., ↓〉 . (4.36)

The wavefunction of spin ensemble with one excitation is given by the fully symmetric

Dicke state [36],

|ψ1〉 =
1√
N

N∑
i=1

|..., ↓, ↑i, ↓, ...〉 . (4.37)

If there is no interaction, the product states |Ψ1〉 = |1〉⊗|ψ0〉 and |Ψ2〉 = |0〉⊗|ψ1〉 are

the degenerate eigenstates of the system. When interaction is present, the degeneracy is

lifted, and the two product states are mixing and generate two eigenstates with energies

given by

E± = ~
ωc + ωab

2
± ~

2

√
4Ng2

0 + ∆2. (4.38)

In the case of resonance (ωc = ωab) we see that the degeneracy is lifted by ∆E =
√
Ng0

and like in (Eq. 4.34) the coupling scales with the square root of the ensemble size.

When we reduce the ensemble size to N = 1, but allow higher excitations n∗ we gain

the eigenvalues of the Jaynes-Cummings Hamiltonian:

E± = ~n∗ωc ± ~
√

(n∗ + 1) (4.39)

For each excitation exist two eigenstates which are separated by an energy that scales

with
√
n∗ + 1.

Fig 4.1 compares the previously discussed models and illustrates the splitting of the

excitation eigenstates and the scaling of this splitting.
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±
√

2~g0

±
√
n∗ + 1~g0

±
√
N~g0

±
√
N~g0

N = 1 N > n∗

n∗ = 1

n∗ (n∗ + 1)

Figure 4.1: Comparison of the Tavis-Cummings model and the Jaynes-

Cummings model on resonance. The left hand side illustrates the eigen-

states of the Jaynes-Cummings model. The system has two eigenstates per

excitation n∗ which are separated by an energy which scales with the square

root of n∗ and g0. On the right hand side the eigenstates of the Tavis-Cummings

model are shown in a regime where the excitation number is small compared

to the ensemble size. The energy separation of the eigenstates per excitation

scales with the square root of the ensemble size. Furthermore, the system has

n∗ + 1 eigenstates for n∗ excitations.

4.4.3 Tavis-Cummings in dispersive regime

Similar to the Jaynes-Cummings Hamiltonian (see Eq. 4.30), the Tavis-Cummings Hamil-

tonian can be transformed into the dispersive regime. The applied transformation has

to be adjusted slightly because it has to consider collective effects:

Û = e
g0
√
N

∆
(S−a†−S+a) (4.40)

The expansion of the unitary transformation (see Eq. 4.27), the commutation relations

for bosons (see Eq. 4.28) and the commutation relations for the collective spin (see
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Eq. 4.33) yield the Hamiltonian:

Ĥdisp =
(
ωab +

Ng2
0

∆

)
Sz +

(
ωc +

2Ng2
0

∆
Sz

)
a†a (4.41)

This allows us to measure the spin state via spectroscopy of the cavity indirectly, as a

QND measurement.

4.5 Non-Unitary dynamics

In the final part of this theory chapter we want to discuss the influence of non-unitary

processes on our system. Thus far, we described the system as closed system where the

energy is conserved and its time evolution is unitary. However, real systems are coupled

to an environment which gives rise to dissipative processes.

We want to develop a theory which is capable to describe the dynamics of parameters

of the in experiment observed system. We can apply the Tavis-Cummings model for the

description of a NV − ensemble coupled to a cavity mode, even though we have to add

a term to include the external cavity probe field. We can write down the Hamiltonian.

ĤSys = ~ωca†a+ ~ωsS2
z − ~geff (S+a+ S−a†) + ~η(a†e−iωdt + aeiωdt) (4.42)

Where η is the probe field amplitude, ωd is the probe field frequency and S2
z = 1

N

∑N
j σ

2
z,j

is the measure of the spin polarization which takes the ms = ±1 degeneracy of the excited

NV − triplet state into account. Next, we transform into the rotating frame with the

unitary transformation operator

Û = e−iωd(a†a+S2
z ) (4.43)

which yields the Hamiltonian with the detunings ∆s = ωs − ωd and ∆c = ωc − ωd :

Ĥ = ~∆ca
†a+ ~∆sS

2
z − ~geff (S+a+ S−a†) + ~η(a† + a) (4.44)

This transforms the probe field term in (Eq. 4.42) into the frame of the ensemble-cavity

system.

Furthermore, we define ρ as the density operator of the complete system and we can

describe the dynamics of the system with the Liouville equation [40]:

d

dt
ρ = − i

~
[Ĥ, ρ] (4.45)
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However, this equation still describes an unitary evolution. To introduce non-unitary

processes we expand the Liouville equation with Lindblatt terms (L) and get the master

equation [40],
d

dt
ρ = − i

~
[Ĥ, ρ] +

∑
k

Lk. (4.46)

4.5.1 Lindblatt terms of the driven spin ensemble-cavity system

Each Lindblatt term describes a certain loss channel mediated by the system-environment

interaction. For the given system, three processes are essential:

• Longitudinal relaxation

Longitudinal relaxation occurs when energy determining system parameters (e.g.

collective spin) decay and energy is dissipated. It can be mediated via spontaneous

emission or other processes, that are dependent on the phase state of the system,

like spin-lattice relaxation in solid states. The Lindblatt term of such processes

can be written as

Llong(ρ) = γ||(2S
−ρS+ − S+S−ρ− ρS+S−), (4.47)

where γ|| is the relaxation rate and the inverse of the characteristic relaxation time

T1. Furthermore, 2T1 is the ultimate limitation for coherence in quantum systems

[41].

• Homogeneous broadening:

The term describing processes which lead to a destruction of the phase of a quan-

tum state is given by

Lhom(ρ) = γ⊥(2S2
zρS

2
z − S2

zρ− ρS2
z ). (4.48)

The relaxation rate γ⊥ and its inverse T2 are measures for the coherence of a quan-

tum system. An example for such a decoherence process is spin-spin interaction of

a qubit with its local spin environment.

In this context, inhomogeneous broadening and its characteristic time T ∗2 should

also be mentioned. It describes the distribution of the intrinsic resonance frequency

in an emitter ensemble and leads to dephasing, although it is unitary. However,

this process is not modelled with (Eq. 4.48), but rather included in the summation

over all spins in (Eq. 4.31).
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• Cavity damping:

The lifetime of a photon in a cavity is limited by the coupling to the environment

and internal losses. These losses can be described with the Lindtblatt term,

Lcav(ρ) = κ(2aρa† − a†aρ− ρa†a). (4.49)

Here, κ is the cavity loss rate given as the half width half maximum of the cavity.

Its inverse is the photon lifetime in the cavity.

For microwave cavities, sources of internal losses are e.g. ohmic dissipation, RF

losses in the superconducting phase and the coupling to the environment is deter-

mined by the length of the microwave coupler.

4.5.2 Dynamics of observables

In general, the equation of motion of the expectation value of an operator is given by

[29]
˙〈O〉 = Tr(Oρ̇). (4.50)

We can use this formula and (Eq. 4.46) to derive the equations of motion of the in

(Eq. 4.44) occurring operators.

˙〈a〉 = −i∆c

〈
a
〉
− igeff

〈
S−
〉
− κ
〈
a
〉

+ η (4.51)

˙〈S−〉 = −i∆s

〈
S−
〉
− 2igeff

〈
a
〉

+ 3igeff
〈
a
〉〈
S2
z

〉
− (γ∗⊥ + 2γ||)

〈
S−
〉

(4.52)

˙〈S2
z

〉
= −igeff

(〈
a
〉〈
S+
〉
−
〈
a†
〉〈
S−
〉)
− 2γ||

〈
S2
z

〉
(4.53)

Note that the equations of motion for 〈a†〉 and 〈S+〉 are given by the complex conjugate

of (Eq. 4.51) and (Eq. 4.52).

In experiment we measure the transmission of the drive field through the cavity,

which is proportional to 〈a†a〉. To derive an expression for this operator we consider

a steady state of the system and set the equations of motion to zero. Now, we use

(Eq. 4.52) to find an expression for 〈S−〉 yielding a term for 〈a〉. Its square of the

absolute value is given by

〈a†a〉 =
η2(

κ+
g2
eff (2−3〈S2

z 〉)(2γ‖+γ⊥)

(2γ‖+γ⊥)2+∆2
s

)2
+
(

∆c +
g2
eff∆s(2−3〈S2

z 〉)
(2γ‖+γ⊥)2+∆2

s

)2 . (4.54)

We see that the transmission is Lorentzian shaped and compared to an empty cavity,

the resonance frequency and the half-width of half-maximum is modulated by the spin
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ensemble. The dependence on γ|| and γ⊥ leads to a broadening of the Lorentzian and a

reduced maximum shift of the resonance frequency (Fig. 4.2).

Sz=0,ωs>ωc
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Figure 4.2: Simulated transmission spectra of a cavity loaded with a

NV − like spin ensemble. The black curve shows the transmission signal

for the spin ensemble in 〈S2
z 〉 = 2

3 state where the shift vanishes. The red

and orange curves indicate the transmission signals for in 〈S2
z 〉 = 0 polarized

ensembles with detuning of opposite sign. Due to the dependence on (2γ||+γ⊥),

the linewidth is broadened and the amplitude decreases. The parameters for

plotting were chosen arbitrary but have reasonable magnitudes.

However, in dispersive regime, where the cavity is far detuned to the spin transition

frequency, we can set ∆s ≈ ∆ because the probe field scanning range is around ωc and

orders of magnitude smaller than the detuning. Also, γ|| and γ⊥ are much smaller than

∆ and they can be neglected. These estimations give the expression:

〈a†a〉 =
η2

κ2 +
(

∆c +
g2
eff

∆ (2− 3〈S2
z 〉)
)2 (4.55)

For our purpose, we are interested into the states of spin polarization with maximal

and minimal shifts. The maximal shift emerges for T → 0 where 〈S2
z 〉 = 0. For T � ~ωs,

the spin polarization becomes 〈S2
z 〉 = 2

3 and the dispersive shift vanishes.
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〈a†a〉ground =
η2

κ2 +
(

∆c +
2g2
eff

∆

)2 (4.56)

Is the spin ensemble in its ground state, the resonance shift reaches its maximum value

of
2g2
eff

∆ . It should be mentioned that the direction of the shift is dependent of the

detuning. When ωs > ωc the shift is positive and for ωs < ωc the shift is negative.

In thermal equilibrium for T � ~ωs, the shift component in the Lorentzian vanishes,

the ensemble becomes transparent and (Eq. 4.55) transforms to the Lorentzian of the

empty cavity, given by

〈a†a〉therm =
η2

κ2 + ∆2
c

. (4.57)

To conclude, we specify a general expression for the dispersive cavity shift mediated

by an NV −-like spin ensemble:

χ =
Ng2

0

∆

(
2− 3

〈
S2
z

〉)
(4.58)

In accordance with the Tavis-Cummings model in dispersive regime, the coupling strength

g0 of a single spin is enhanced by
√
N and the shift is indirectly dependent on the de-

tuning ∆.
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Chapter 5

Spin-Phonon Relaxation

Processes

This chapter provides an overview of processes which mediate spin-phonon relaxation

of NV − spins in diamond. Thermal excitations of the crystal lattice can be described

as quasi-particles called phonons. These phonons generate spatial fluctuations of the

crystalline magnetic and electric fields which, in turn, affect the wavefunction of local

spin systems and can even induce spin flips.

In the thirties of the 20th century, the first efforts for the theoretical description

of such spin-phonon relaxation were made [42, 43]. The models of Kronig [44] and

Van Vleck [45] were able to match experimental data [46] for the first time. For low

temperatures (T < 4 K), a sufficient model was developed by Elliot [47], Orbach [48]

and Scott & Jeffries [49].

We want to depict a system consisting of an ensemble of N spins embedded in a

phonon bath of constant temperature (Fig. 5.1). The spin has three levels, where only

the ground state |a〉 and first excited state |b〉 are thermally populated. The second

excited states (|c〉) eigenenergy is far above the energy of |b〉 and its thermal occupation

is effectively zero. But its implementation is essential for the modelling of multi phonon

processes.

For the description of the phonon bath, we apply the well known Debye model

[50]. Within the Debye model, a phonon is seen as quantized collective crystal lattice
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|a〉
δ

|b〉

∆1

|c〉
N

Figure 5.1: Schematics of a spin ensemble relaxing into the phonon

bath. At the left hand side, the level structure of the spin system is shown.

The second excited state |c〉 is introduced for the description of higher order

spin-phonon decays. Furthermore, it is estimated that ∆1 � δ and |c〉 is not

thermally populated. The right hand side illustrates the phonon structure of

the Debye model. For the energy scales of our interest, the phonon structure

becomes continuous.

excitation with an excitation number ruled by the Bose-Einstein statistics:

p̄0(δ) =
1

exp( δ
kBT

)− 1
(5.1)

Here, p̄0(δ) is the excitation number of phonons with energy δ in thermal equilibrium,

kB is the Boltzmann constant and T the temperature.

Furthermore, the number of phononic modes in the crystal within a certain energy

range dδ is given by:

ρ(δ)dδ =
3V δ2

2π2~3v3
dδ (5.2)

It is a classical physical quantity and is dependent of the crystal volume V and of the

material specific speed of sound v.

To conclude, we determine an equation of motion which can be applied universally

for all spin-lattice relaxation processes to calculate the process specific relaxation rate

γi = γ‖,i = T−1
1,i . We define the population inversion n = Na −Nb, where Na, Nb are the

level population numbers and make a general ansatz for the equation of motion where
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n relaxes into the state of thermal equilibrium with the population inversion n0:

ṅ = −γ1,i(n− n0) (5.3)

5.1 The Direct Process

Direct spin-phonon interaction means, that a two-level system emits or absorbs a single

phonon. The phonon energy, corresponds to the transition energy δ of the two level

system.

For the evaluation of the relaxation rate, we assume an ensemble of N = Na + Nb

two-level systems in thermal equilibrium. The distribution of particles in ground and

excited state is given by the Boltzmann distribution:

Nb

Na
= e
− δ
kBT (5.4)

Similar to the emission and absorption of light by atoms, we can write the probabil-

ities for spin flips induced by phonon emission and absorption:

Pb→a = Bb→a
(
p̄0(δ) + 1

)
(5.5)

Pa→b = Bb→ap̄0(δ) (5.6)

Note that there are two typs of phonon emission, stimulated emission induced by the

presence of other phonons with energy δ and spontaneous emission. While the excited

state is not degenerated, we can assume Bab = Bba = B, where B is a system dependent

but temperature independent factor.

Now, we can use these probabilities to determine the rate equation for the level

population numbers, given by

Ṅa = −Ṅb = NbPb→a −NaPa→b = B
(
Nb(p̄0(δ) + 1)−Nap̄0(δ)

)
. (5.7)

Furthermore, we can apply this equation into (Eq. 5.3) and with the population inversion

in thermal equilibrium

n0 = N tanh
δ

2kBT
, (5.8)

we get the equation of motion which includes the relaxation rate of the direct process.

By solving (Eq. 5.3), a general expression for the relaxation rate is obtained:

γD = B coth
δ

2kBT
(5.9)
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However, when the system is in the regime of δ � 2kBT , we can apply the series

expansion of coth( δ
2kBT

) and get

γD ≈
2BkB
δ

T. (5.10)

It should be emphasized that if the direct spin phonon process is dominant, the relaxation

rate becomes linear dependent on the temperature.

5.2 The Orbach Process

To explain the Orbach process we have to consider a three level system. We assume that

the |a〉 ↔ |b〉 transitions do not occur directly but can be mediated via the transition

to the second excited state |c〉. First, the spin system in state |a〉 or |b〉 has to absorb a

phonon to get into state |c〉. Afterwards, |c〉 decays into either |a〉 or |b〉 by emitting a

phonon. Hence, the Orbach process is a two phonon process.

Like for the two-level system, the phonon emission and absorption probabilities for

the three-level system are given by

Pc→a = C1

(
p̄0(∆1 + δ) + 1

)
Pa→c = C1p̄0(∆1 + δ), (5.11)

for the |a〉 ↔ |c〉 transitions and

Pc→b = C2

(
p̄0(∆1) + 1

)
Pb→c = C2p̄0(∆1), (5.12)

for the |b〉 ↔ |c〉 transitions. Its important to mention that this process only occurs when

∆1 is less than the maximum phonon energy kBΘ, where Θ is the Debye temperature.

Now, we assume ∆1 � δ and we can consider C1 ≈ C2 ≈ C to find the rate equations:

Ṅa = C
(
Nc(p̄0(∆1 + δ) + 1)−Nap̄0(∆1 + δ)

)
(5.13)

Ṅb = C
(
Nc(p̄0(∆1) + 1)−Nbp̄0(∆1)

)
(5.14)

In a regime, where kBT � ∆1, the population number of |c〉, Nc can be neglected.

Furthermore, the assumption ∆1 � δ yield p̄0(∆1 + δ) ≈ p̄0(∆1) and the rate equations

are reduced to:

Ṅa,b = −Na,bp̄0(∆1) (5.15)

32



5.3. THE RAMAN PROCESS

We insert these rate equations into Eq. 5.3, which gives an expression for the relax-

ation rate:

γO = Cp̄0(∆1) ≈ Ce−
∆1
kBT (5.16)

If the Orbach process is dominant, the relaxation rate increases and saturates with

increasing temperature.

5.3 The Raman Process

If a spin flip is induced by a simultaneous absorption of a phonon with energy δ1 and an

emission of a phonon with energy δ2 = δ1 + δ, this process is called Raman process. In

distinction to the Orbach process, the spin flip occurs via a virtual phonon state instead

of a second excited state of the spin system.

The transition via an virtual phonon modifies the transition probabilities compared

to the previously discussed probabilities. The simultaneous absorption and emission is

modelled by the product of the probabilities for each process.

Pa→b = Dp̄0(δ2)
(
p̄0(δ1) + 1

)
Pb→a = Dp̄0(δ1)

(
p̄0(δ2) + 1

)
(5.17)

Again, we use these probabilities to construct Eq. 5.3 for the Raman process. Though,

we have to consider the continuity of the phonon spectrum. To do so, we have to integrate

over all possible virtual phonon states and, therefore, all possible decay channels. Hence,

we can write the rate equation:

Ṅb = D′
∫ [

Nap̄0(δ2)
(
p̄0(δ1) + 1

)
−Nbp̄0(δ1)

(
p̄0(δ2) + 1

)]
δ6

1 dδ1 (5.18)

Depending on temperature and spin structure, there are several solutions for the

Raman-induced relaxation [51]. We restrict ourself to two regimes:

• δ1 � δ and δ � kBT :

The exponential functions in the probabilities can be written as Taylor series which

yields the temperature dependence of the relaxation rate:

γR ∝ T 4 (5.19)

• δ1 � δ and δ � kBΘ:

In this regime, the integration in Eq. 5.18 leads to a temperature dependence of

the relaxation rate:

γR ∝ T 7 (5.20)
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5.4 The Phonon Bottleneck

For the description of the previously discussed relaxation processes, we assumed that

the spins decay into phononic modes in thermal equilibrium. However, in the experi-

ment, the phononic system has to be coupled to an external heat bath to conserve the

phonon population [49, 52]. If the phonon-bath coupling is weaker than the spin-phonon

coupling, the phonon temperature is greater than the bath temperature and a phonon

bottleneck occurs.

The total rate equation for the phonon excitation number is

dp̄

dt
=

1

2

ṅ

∆δ ρ(δ)
− τbath(p̄− p̄0). (5.21)

The first term represents the phonon alteration per spin variation, where ∆δ is the

bandwidth of the spins interacting with phonons and the second term describes the

phonon decay into the heat bath with rate τbath. A bottleneck only occurs when the

right hand side of (Eq. 5.21) is greater than zero.

Next, we have to consider τbath determining processes. In general, we can distinguish

two separate classes of phonon-bath relaxation processes.

Spatial relaxation means a spatial transport of the excitation into the bath, the

phonon is transmitted into the bath directly. The relaxation rate τbath ≈ vs
l is determined

by the speed of sound within the lattice, vs and the diameter of the crystal, l. A

bottleneck occurs when vs is slow compared to the spin relaxation rate or when l is large

and, therefore, the spatial transport into the bath is also too slow.

The second class are spectral relaxation processes. These processes scatter phonons

inelastically and reduce the excitation number p̄0(δ) of the phonon bands, which ex-

change excitations with the spin system. Examples for such processes are inelastic scat-

tering at the crystal surface, phonon-phonon collisions and scattering by lattice-defects

or impurities.

As we can see in the first term of (Eq. 5.21), also the present spin-phonon relaxation

process determines the occurrence of the bottleneck. Since we want to consider a system

where δ < kBT � kBΘ, we can neglect the Raman process as cause for a bottleneck.

Due to the wide bandwidth (∆δ) and high energy of the involved phonons, where p̄0 is

small, the term of the spin-phonon relaxation becomes small compared to the phonon-

bath relaxation term in (Eq. 5.21).

In this regime, also the Orbach process is negligible. We assumed that ∆1 � δ
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and, therefore, the excitation numbers of the involved phonons, p̄0(∆1) and p̄0(∆1 + δ)

become small again. The first term in (Eq. 5.21) becomes small as well and a bottleneck

can not occur.

At last, we discuss the direct spin-phonon relaxation in terms of a bottleneck. The

direct process is mediated by absorption and emission of a single phonon, which has

a energy equal to the spin transition energy. When δ < kBT , the thermal excitation

of these phonons can not be neglected and a bottleneck can occur. To determine the

temperature dependence of this bottleneck, we have to consider the real relaxation that

we are measuring in experiment. We are not able to measure the spin-phonon and

phonon-bath relaxation separately, instead we measure the total spin-bath relaxation.

Its rate can be approximately written as

γtot =
γD γ1

γD + γ1
, (5.22)

where γD ≈ AT , is the spin-phonon relaxation rate and γ1 is the real spin-bath relaxation

rate. Note that γ1 6= γbath because it is also dependent on the phonon-band energy (Eph)

and on the Zeeman energy of the spin ensemble (Es). Therefore, γ1 is given by

γ1 = γbath
Eph
Es
≈ DT 2, (5.23)

for the low spin-transition energy and low temperature regime.

If we put these results for the particular rates into (Eq. 5.22), we find that the

measured relaxation rate γtot becomes proportional to T 2 for a dominant bottleneck

(γ1 � γD):

γtot =
ADT 3

AT +DT 2
≈ DT 2 (5.24)

To summarize all previously discussed spin-phonon respectively spin-bath relaxation pro-

cesses, each process has a relaxation rate with distinct temperature dependence. Hence,

this temperature dependence allows to study and distinguish every single process in

experiment.

5.5 Considerations for the NV − system

We are interested into spin-phonon interaction of the 3A2 triplet state in a temperature

range of 35-300 mK. In this regime, the phononic modes with energy corresponding to
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the spin transition energy δ are weakly populated. Therefore, the probability for double

phonon processes becomes negligible and only the direct process can occur.

Since the NV − has a degenerate excited state we have to modify the rate equations

of the direct process. The probabilities for the |ms = 0〉 ↔ |ms = +1〉 and |ms = 0〉 ↔
|ms = −1〉 transitions are given by (Eq. 5.5) and (Eq. 5.6) and we can write the rate

equations for the level population numbers as

Ṅ0 = N+1P+1→0 +N−1P−1→0 −N0P0→+1 −N0P0→−1 (5.25)

and

Ṅ±1 = N0P0→±1 −N±1P±1→0. (5.26)

The degeneracy yields N+1 = N−1 = N±1 and the rate equations transform to

Ṅ0 = 2B
(
N±1

(
p̄0(δ) + 1

)
−N0p̄0(δ)

)
(5.27)

and

Ṅ±1 = −B
(
N±
(
p̄0(δ) + 1

)
−N0p̄0(δ)

)
. (5.28)

Furthermore, we have to redefine the population inversion as n = N0 − 2N±1 with

an expression for the thermal equilibrium given by

n0 = N
(

1− 2

exp( δ
kBT

) + 2

)
. (5.29)

Next, we apply the new defined population inversion and the rate equations into

(Eq. 5.3) to obtain an expression for the relaxation rate:

Γ(T ) = Γ0

(
1 + 3p̄0(δ, T )

)
(5.30)

Compared to the relaxation rate of the direct process for the two level system, the

relaxation rate for theNV − has a similar temperature dependence. For T � δ, the direct

process is linear dependent to T . In a regime where T � δ, the phonon population p̄0(δ)

becomes negligible and the process is dominated by spontaneous emission.
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Chapter 6

Experimental Set-up

In the previous chapters, we discussed diamond as spin ensemble host, microwave cavities

and the theoretical background of spin-cavity interaction. The following part of this the-

sis introduces the experimental set-up required for the measurement of the longitudinal

relaxation of a NV − ensemble at cryogenic temperatures. First, we discuss the opera-

tional mode of a pulse-tube driven adiabatic demagnetization refrigerator (ADR), which

enables to cool down and stabilize at temperatures in a range of 50 mK-1 K. Afterwards,

the set-up of the microwave transition spectroscopy is explained.

6.1 Pulse-Tube driven ADR Cryostat

In our laboratory, the cryostat ’Model 103 Rainier’ from High Precision Devices, Inc.

is installed. The refrigerator itself consists of two distinct cooling units. The two-stage

pulse tube cryocooler ’PT 407 RM’ from Cryomech, Inc. provides cooling for the 50 K

and 3 K stage. At the 3 K stage, the ADR itself is installed.

To prevent heat transfer and condensation and freezing of ambient gases, the cryostat

is evacuated, to a pressure of p ≤ 3 · 10−5mbar. Another measure to prevent radiative

heating is the installation of the 50 K and 3 K shields, which insulate stages with lower

temperatures. Fig. 6.1 shows a section view of the cryostat.

6.1.1 Pulse Tube Refrigerator

The purpose of the pulse tube refrigerator (PT) is to pre-cool the experiment to reduce

the heat load of the ADR and to transfer the heat which is dissipated during the ramping
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Pulse-Tube

50 K Stage

3 K Stage

FAA Stage

Vaccum mantle

50 K Shield

3K Shield

ADR

Figure 6.1: Section view of the Cryostat. (Picture taken from High Preci-

sion Devices, Inc. [53])

of the ADR magnet. Within this thesis, only the basic functional principle of a PT, which

was presented by Gifford & Longsworth in 1964 [54] will be discussed. For information

on more advanced concepts of PTs [55, 56, 57] is recommended.

The cooling by a PT is based on the effect, that a flow of a gas with constant

temperature into a volume V , leads to an increase or decrease of pressure dependent on

the direction of the flow. Hence, the inner energy of the gas varies by the caloric energy

Q = V∆p, (6.1)

where ∆p is the variation of pressure. When we consider a small volume element with
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a gas flow entering from the left, the release of the caloric energy leads to an increase of

temperature at the right hand side of the volume element. A temperature gradient within

the volume element builds up. In the case of gas streaming out of the volume element

at the left side, Q becomes negative and the temperature at the left side increases.

Figure 6.2: Schematic of a basic pulse tube refrigerator. (Figure taken

from [54])

A PT utilizes this heat transport for cooling. To illustrate its operating mode, we

discuss a complete cooling cycle based on Fig. 6.2. At the beginning, the rotary valve

opens the high pressure line and gas flows into the cylindric volume between the two

heat exchanger. The temperature at the right hand side increases. Yet, the water

cooling keeps the second heat exchanger at a constant temperature and transfers the

caloric energy. Next, the rotary valve switches to the low pressure line, consequently

the direction of the gas flow gets reversed and the first heat exchanger gets cooled. The

rotary valve switches again to the high pressure line and the next cycle starts. Due to the

regenerator, the entering gas gets cooled and does not heat up the first heat exchanger.

In our experimental set up, the two stage pulse tube cryostat ’PT 407 RM’ from

Cryomech, Inc. is installed. Two helium driven pulse tubes in series cool the 50 K and

3 K stage. In operational mode, the high pressure line is pressurized with ∼ 21.5−22 bar

and the low pressure line width ∼ 7.5− 8 bar. The pressure fluctuation is caused by the

additional pulse tube volume while switching.
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6.1.2 ADR -Adiabatic Demagnetization Refrigerator

Magnetocaloric effect

The alternation of the temperature of magnetic materials in dependence of the variation

of the applied magnetic field is called magnetocaloric effect. Warburg [58] observed this

effect for the first time in 1881. A theoretical description of the magnetocaloric effect and

the suggestion of its application in refrigerators was given by Debye [59] and Giauque

[60]. Since then, ADRs became an important tool for science as they enable to reach a

temperature regime of a few µK. Even commercial applications are in development since

ADRs are more energy efficient than classical gas compression refrigerators. The given

description of the magnetocaloric effect follows the review of Pecharsky & Gscheidner

[61], which is also recommended for further information.

The origin of this effect is the alteration of the magnetic entropy SM of magnetic

or paramagnetic materials in dependence on temperature and external magnetic fields.

The entropy S of a material at constant pressure is given by

S(T,H) = SM (T,H) + SLat(T,H) + SEl(T,H), (6.2)

where SLat is the lattice entropy and SEl is the electronic entropy which can be neglected

in the present consideration. In consequence of the constant entropy of the material,

the variation of the magnetic entropy SM causes a response of the lattice entropy SLat

and vice versa. When the magnetic moments get polarized, SM rises and SLat has to

decrease. Therefore, the lattice temperature has to rises. Nevertheless, when SM and the

polarization of the magnetic moments shrinks, SLat rises and we can observe a cooling

effect.

To find an theoretical description of the magnetocaloric effect, we have to consider

that T and SM are correlated with the magnetization and the external magnetic field.

We make use of Maxwell’s relations(∂S(T,H)

∂H

)
T

=
(∂M(T,H)

∂T

)
H

(6.3)

and integrate the right hand side over the alteration of the external magnetic field H to

get an expression for the variation of the magnetic entropy:

∆SM (T,∆H) =

∫ H2

H1

(∂M(T,H)

∂T

)
H

dH (6.4)
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Hence, we can see that an increase of H enhances SM and vice versa. From the relation

CdT = −TdS where C is the materials heat capacity, we are able to transform Eq. 6.4

to

∆T (T,∆H) = −
∫ H2

H1

( T

C(T,H)

)(∂M(T,H)

∂T

)
H

dH. (6.5)

Again, the negative sign of this equation elucidates the indirect proportionality between

∆SM and ∆T .

For the purpose of cooling devices, paramagnetic materials are used because their

heat capacity is very small, which increases ∆T . To generate adiabatic cooling, the

external field orientates the magnetic moments of the paramagnet. When the field is

ramped down, the magnetic moments randomize and cooling occurs.

Set-up of the ADR

In our set-up, the ADR is installed at the 3 K stage. Its core consists of two paramagnetic

salts. The Gadolinium Gallium garnets (GGG) purpose is to precool and reduce the heat

load for the second salt. Furthermore, the Ferric Ammonium Alum (FAA) enables to cool

down to a few tens of mK. Dependent on the heat load at the FAA stage, temperatures

below 50 mK can be reached temporarily.

These salts are enclosed by a superconducting coil which can be loaded with a current

of up to 9.2 A. The current and, therefore, the applied magnetic field can be controlled,

which enables temperature stabilization. Depending on the heat load, the FAA stage

can be stabilized at 50 mK for approximately 16 h. For higher temperatures the time at

which the temperature is stable increases massively.

To prevent distortions due to external magnetic fields and heat flow from the 3 K

stage, the paramagnetic salts and the coil are enclosed by a cylindric mu-metal shield.

6.1.3 Demagnetization Cycle

An important characteristic of ADRs is that they can not provide continuous cooling.

As soon the external magnetic field is ramped down completely, magnetization of the

paramagnetic salt reaches its minimum and no further cooling is possible. In order to

restart cooling, the external magnetic field and the magnetization of the paramagnetic

salt has to be reset. Therefore, the ADR can only cool in a cyclic mode.

Such a typical demagnetization cycle of the refrigerator used in this experiment is

shown in Fig. 6.3. When the FAA stage reaches 3 K at the first cooldown or a new
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Figure 6.3: Temperature progression during a complete cooldown. At

the start of the cooling cycle the magnet is ramped up and the temperature of

the FAA stage increases. Next, the heat switch closes and the soak time starts.

In the diagram, the heat switch closes at 0.5 h, the FAA stage is cooled and the

temperature of the 3 K stage increases briefly. For this cycle a soak time of 1 h

was chosen. Afterwards, the heat switch opens again and adiabatic cooling of

the FAA stage starts.

demagnetization cycle is started, ramping up of the coil current starts. The increase of

the magnetic field generates heating of the paramagnetic salts. Thus, the heat switch

is closed and the heat is transferred to the pulse tube cooled 3 K stage. The manually

adjustable time to get rid of the thermal discharge, where the FAA stage is connected

with the 3 K stage is called ’soak time’. For our set-up a soak time of one to two hours

is reasonable.

After this time, the heat switch is open and the coil current is ramped down and

the magnetocaloric effect cools the FAA stage. For temperature stabilization, the coil

current is PID controlled.
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6.2 Microwave Spectroscopy

Since we want to measure the dispersive shift of a microwave cavity induced by longitudi-

nal relaxation of aNV − ensemble in diamond, we have to build a microwave spectroscopy

set-up. In general spectroscopy is a well known and powerful tool of physics with a wide

range of applications.

Figure 6.4: Picture of the FAA stage with mounted Al cavity.

Microwave spectroscopy has an advantage towards e.g. optical spectroscopy, since

microwave components are robust and well developed due to their utilization in com-

mercial telecommunication networks.

The vector network analyzer (VNA) ZNB8 from Rhode & Schwarz is used for trans-

mission spectroscopy. It is capable to provide continuous coherent microwave signals

from 9 kHz to 8.5 GHz. For transmission spectroscopy, the VNA displays |S21|2, where

scattering parameter S21 = V +
2 / V −1 is defined as ratio between the incident signal am-

plitude at port 2 (V +
2 ) and the outgoing signal amplitude at port 1 (V −1 ).

In order to prevent saturation of the spins, the cavity is probed with an input power

of −110 dBm which corresponds to an average number of 1× 10−9 photons per spin in
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the cavity.

In order to measure at room temperature, the cavity transition signal is amplified

twice. At the 3 K stage the amplifier LNC 4-8A from Low Noise Factory for cryogenic

environment with a gain of +39 dB is integrated in the up-line. The ultra low noise

amplifier form MITEQ has a gain +30 dB and is installed at room temperature. To

prevent heat conduction via the coaxial cables, DC blocks and attenuators with −60 dB

are implemented into the up- and down-line between the FAA, 1 K and 3 K stage.

In Fig. 6.5 the schematic spectroscopy set-up and its thermal segmentation is shown.

FAA

1K

3 K

50 K

300 K

LNF

MTQ

Attenuator

Ampliefier

DC Block

-10dB

2x-10dB

-20dB

VNA

Figure 6.5: Schematics of the spectroscopic set-up. The VNA probes the

3D cavity with the diamond. DC blocks and attenuators in the down- and up-

line prevent heat conduction. Two amplifier are integrated in the up-line. Note

that the room temperature amplifier was not used for all measurements.
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Chapter 7

Measurements and Data Analysis

Previously, we presented the theoretical concepts and properties of NV − center in dia-

mond as solid state spin ensemble in a 3D microwave cavity. Furthermore, we discussed

spin-phonon relaxation processes and the experimental set-up available in our laboratory.

The first part of this chapter presents the measurement method to observe longi-

tudinal relaxation of a NV − ensemble in a temperature range of 25 − 300 mK. The

presented experimental design, where the spin ensemble is dispersively coupled to the

cavity enables us to measure the collective spin state indirectly. Hence, this method

is distinguished from previous measurements [16, 62], which measured the longitudinal

relaxation rate with a ODMR set-up down to a temperature of 4 K.

The second part introduces the properties of the measured diamond samples and

properties of the used cavities and in the final part, measurements of the longitudinal

relaxation rate Γ1 are presented. Further on, the temperature dependence of Γ1 and

the fundamental process is discussed. It is shown that the ultimate limit of Γ1 is the

spontaneous emission into phononic vacuum modes. Finally, the achieved data and

models are compared to a theoretical calculations of Johannes Gugler [63]. It shall be

mentioned that the presented experiment, measured data and the comparison with the

theoretical model are published in [21].
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7.1. MEASUREMENT SEQUENCE

7.1 Measurement Sequence

For measurement, the diamond samples are bonded with vacuum grease in between the

bow ties of a detuned cavity, where ∆ = ωs − ωc � gN . In order to initialize the

collective spin state, the spin ensemble is kept at 2.7 K during the soak time of an ADR

demagnetization cycle. At this temperature, the expectation value of the NV − spin

polarization is given by
〈
S2
z

〉
≈ 2

3 (see (Eq. 7.1) and Fig.7.2). Afterwards, we stabilize

the system at temperatures between 60-300 mK. The bottom limit of the temperature

is given by the ADR and the upper restriction is caused by the phase transition into the

superconducting phase of the aluminium cavity. When the temperature is stabilized, the

phonon population is well defined and we probe the transmission of the cavity with the

VNA continuously to measure the spin polarization decay into the thermal equilibrium

with the lattice, mediated by spin-phonon interaction. The spin polarization in thermal

equilibrium is given by 〈
S2
z (T )

〉
st

=
2

e
~ωs
kBT + 2

. (7.1)

The longitudinal relaxation process can be described with the following differential equa-

tion:

d

dt

〈
S2
z (t, T )

〉
= −Γ1

(〈
S2
z (t, T )

〉
−
〈
S2
z (T )

〉
st

)
, (7.2)

here
〈
S2
z (t, T )

〉
is the time dependent spin polarization and Γ1 is the relaxation rate.

In Fig. 7.1 the thermal spin polarization for NV − is shown. Because the magnetic-

dipole transition |ms = 0〉 ↔ |ms = ±1〉 corresponds to 138.2 mK, the spin polarization

varies stronger below 0.4 K compared to the spin polarization at higher temperatures.

This temperature dependent variation of the spin polarization is the foundation of the

measurement scheme which is presented here. The spin ensemble is initialized at a

certain temperature, then the temperature is changed and the spin ensemble relaxes

into thermal equilibrium via interaction with phonons.

The rate equation (Eq. 7.2) leads an exponential decay. Hence, Γ1 is only dependent

on the phonon population defined by the base temperature. The cooldown time of the

ADR in the order of 20-40 min is fast enough for the measurement because the spin-

phonon coupling is weak and it is a too short time for the spins to relax completely.

As previously discussed (Sec. 4.5.2), the resonance frequency of the cavity experiences
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7.1. MEASUREMENT SEQUENCE

Figure 7.1: Spin polarization of NV − below 0.5 K. The blue line illus-

trates the thermal spin polarization and the orange line illustrates the thermal

population of the |ms = 0〉 state.

a shift proportional to
〈
S2
z (t, T )

〉
given by

χ(t, T ) =
Ng2

0

∆

(
2− 3

〈
S2
z (t, T )

〉)
(7.3)

and the shift observed in experiment given by

∆χ(T, t) = χ(T, t0)− χ(T, t), (7.4)

where t0 is the time of the first transmission spectrum taken.

An example of measured transmission spectra (traces) of such a relaxation process

is given in Fig. 7.2. Because the cavity has an eigenfrequency above the spin transition,

we observe a negative resonance shift for relaxation to lower temperatures. Also the

broadening of the relaxed resonances corresponds to the description given in Sec. 4.5.2.
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7.2. DIAMOND SAMPLES

Figure 7.2: Transmission spectra taken during the relaxation of the N1

sample at 80 mK. The sample was measured with the aluminium cavity with

improved design.

7.2 Diamond samples

Beside a natural abundance of NV − in diamond, we can create dense NV − ensembles

with neutron or electron irradiation of diamonds and annealing. The particle impact

creates vacancies which pair with nitrogen impurities while annealing.

Four different diamond samples which differ in NV − density and irradiation type

were measured:

• Neutron irradiated sample N1:

The commercially available type-Ib diamond, bought from Element Six Ltd. is a

high-pressure, high-temperature (HPHT) diamond with initial nitrogen concentra-

tion of < 200 ppm and natural abundance of 13C. It was neutron irradiated at the

TRIGA Mark II reactor of the TU Wien. The sample was irradiated in a energy

range of 0.1-2.5 MeV with a total dose of 9× 1017 cm−2 for 50 h and afterwards

annealed for 3 h at 900 ◦C. The detailed sample preparation is given in [64] (sample
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7.2. DIAMOND SAMPLES

BS3-1b).

• Electron irradiated samples E1 and E2:

Both samples are type-Ib HPHT diamonds with initial nitrogen concentration of

100 ppm and 50 ppm. The samples were irradiated with with 2 MeV electrons

at 800 ◦C and annealed at 1000 ◦C several times at a Cockcroft-Walton acceler-

ator of the QST, Takasaki. The E1 sample was irradiated with a total dose of

1.1× 1019 cm−2 and has a NV − density of 40 ppm. The E2 sample was irradiated

with a total dose of 5.6× 1018 cm−2 and has a NV − density of 13 ppm.

• Electron irradiated samples E3:

Like the N1 sample, the sample originates from Element Six Ltd., is a type-Ib

HPHT diamond and has the same initial N and 13C concentration. The sample

was electron irradiated at the linear accelerator of the Instituto per la Sintesi

Organica e la Fotoreattivita in Bologna, Italy with an electron energy of 6.5 MeV

at 750-900 ◦C and a total dose of 1.0× 1018 cm−2. Its NV − density is 10 ppm.

Detailed information about the sample preparation is given in [64] (sample U5).

Sample N1 E1 E2 E3

NV − [ppm] 40 40 13 10

NV [ppm] < 200 100 50 < 200

Irradiation type n e− e− e−

Irradiation energy [MeV] 0.1-2.5 2 2 6.5

Irradiation dose [cm−2] 9.0× 1017 1.1× 1019 5.6× 1018 1.0× 1018

Mass [mg] 19.2 44.6 22.6 10.8

Table 7.1: Comparison diamond sample properties.
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7.3. 3D ALUMINIUM CAVITY

7.3 3D Aluminium cavity

We used two different 3D lumped element cavities machined out of aluminium (EN AW

6066) for the measurements. The data of the E1 sample was taken with the prototype

cavity and the data of the other samples was measured with a new designed cavity

with tunable bow tie distance and changeable frame. Compared to the new design, the

prototype has a fixed bow tie distance, a more massive body and consists of only two

aluminium parts. Pictures of both cavities can be found in App. A.

(a) (b)

Figure 7.3: Properties of the prototype cavity during cooldown. (a)

Transmission spectra of the superconducting cavity at 55 mK and of the normal

conductive cavity at 2.93 K. (b) Evolution of ωc and Q during a full cooldown.

Aluminium was chosen as cavity material because it is a type 1 superconductor with

a critical temperature of Tc = 1.14 K. In superconducting phase, the Q factor of the

cavity is remarkably enhanced and we were able to show that these bow tie cavities can

have Q factors of almost 1× 105. This is advantageous, because the high Q cavities

enables us to perform much more sensitive measurements of the dispersive shift due to

the higher resolution of the resonance frequency ωc. At the left panel of Fig. 7.3 we

show the transmission signal of the the prototype cavity at 55 mK and 2.93 K. Due

to the superconducting phase transition the cavity reaches Q = 8.8× 104 compared to

Q ≈ 600 in normal conductive phase. The plot in the right panel shows the evolution of

ωc and Q of the prototype during a full cooldown. At 1 K, the cavity starts to become

superconductive, we observe a small step in ωc. Afterwards, when the complete cavity
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7.3. 3D ALUMINIUM CAVITY

condensates into the superconducting phase, we observe a shift of ωc of 2.4 MHz. During

this phase, also Q rises.

Furthermore, we compare the properties of the prototype cavity during cooldown and

warm up (see Fig. 7.4). We can see that during warm up, ωc and Q are constant until the

starting phase transition at 0.3 K. The observed difference of temperature dependence

can be traced back to the cavity design. The prototype is machined out of a massive

aluminium body. Therefore, it could be that the heat load at the FAA stage is larger

and the real temperature of the cavity is higher than the temperature of the heat sensor

during cooldown. Another origin for the difference of temperature dependence could be

a design dependent phase transition time. During warm up, this is not an issue anymore

and the measurements taken during warm up display the true temperature dependence

of the prototype cavity.

(a) (b)

Figure 7.4: Comparison of ωc and Q of the prototype during cooldown

and warm up.

The observed shift of ωc illustrated in Fig. 7.5 at stabilized temperatures displays the

relaxation of the prototype cavity to the temperature of the FAA stage and corresponds

to the difference of ωc between cooldown and warm up. We also see that this relaxation

decreases with lower temperature. However, this resonance frequency and Q relaxation of

the empty cavity has to be considered for the measurement of the spin-phonon relaxation.
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7.3. 3D ALUMINIUM CAVITY

Figure 7.5: Prototyp cavity relaxation at stabilized FAA stage temperature.

(a) (b)

Figure 7.6: Properties of the cavity with improved design during

cooldown. (a) Transmission spectra of the superconducting cavity at 96 mK

and of the normal conductive cavity at 2.619 K. (b) Evolution of ωc and Q

during a full cooldown. Compared to the prototype the cavity becomes super-

conducting at higher temperatures. The broad distribution of Q is caused by

distortions of unknown origin.

Compared to the prototype, the cavity with new design has improved properties.

Due to the down-scaled body, the transition to the superconducting phase happens at
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7.3. 3D ALUMINIUM CAVITY

higher temperatures (see Fig. 7.6a) and we can not observe any different temperature

dependence of ωc during cooldown and warm up (see Fig. 7.7a). Therefore, the resonance

frequency relaxation of the empty cavity at stabilized temperature is small and can be

neglected.

(a) (b)

Figure 7.7: Comparison of ωc and Q of the improved cavity during

cooldown and warm up. (a) Due to the down-scaled cavity body, the tem-

perature dependence of ωc does not deviate for cooldown and warm up. (b)

Also Q does not deviate for cooldown and warm up. The unstable Q indicates

distortions of the cavity.

The measurements of the empty cavity with improved design were affected by dis-

tortions of unknown origin. These distortions showed up early summer 2016 and never

vanished since then. It seems that an other experiment at the facility creates strong

altering magnetic fields which penetrate our set-up. Time dependent magnetic fields

influence superconductors and can yield quenching. Therefore, we observe irruptions of

the cavity transmission which reduce the cavities Q. These reduction of Q is illustrated

in Fig. 7.7b. We measured a maximum Q of 4× 105 for the improved cavity, which is

less than the half of the result for the undisturbed prototype cavity.

Note that these distortions also occurred in measurements with the prototype cavity

and in measurements in a dilution refrigerator with a slightly different spectroscopic set-

up. Hence, we can exclude a systematic origin of the distortions and have to consider

an external source. In Fig. 7.8 further examples for the observed distortions are given.

53



7.3. 3D ALUMINIUM CAVITY

(a) (b)

Figure 7.8: Examples for traces with distortions.(a) Trace taken while

measuring the N1 sample. (b) Trace taken while measuring the E2 sample.

Both traces were taken when the sample was completely relaxed at 100 mK.

However, the results of the spin-phonon relaxation measurements were not affected

by these distortions because the cavities were still good enough to resolve the dispersive

shift and the distortion creating field is far too weak to effect the NV − level structure via

Zeeman splitting. Only distortion induced jumps of ωc would have affected the results.

Though, we generated a sufficient set of data without such jumps of ωc to generate valid

results. Furthermore, we were able to reduce the distortion by shielding the cavity with

a mu-metal cylinder with an inner lead cover.
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7.4. RELAXATION RATE MEASUREMENTS

7.4 Relaxation rate measurements

In order to evaluate the temperature dependent relaxation rate, we consider examples

for measurements with both cavities. Since the eigenfrequency of the improved cavity

is below the spin transition frequency, we observe a negative shift (see Fig. 7.9). On

the other hand has the prototype cavity a higher eigenfrequency compared to the spin

transition and, therefore, we observe a positive shift (see Fig. 7.10).

Figure 7.9: Observed shift of N1 at 80 mK. The measurement was taken

with the improved cavity.

Figure 7.10: Observed shift of E1 at 80 mK. The measurement was taken

with the prototype cavity.
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7.4. RELAXATION RATE MEASUREMENTS

However, Eq. 7.2 describes an exponential decay of the spin polarization. Thus, ∆χ

grows inverse exponentially and the temperature dependent relaxation rate Γ1(T ) can

be determined with exponential fits:

∆χ(T, t) = A ·
(

1− exp
(
− Γ1(T ) · t

))
, (7.5)

for positive shifts and

∆χ(T, t) = χ(T, t0)−A · exp
(
− Γ1(T ) · t

)
, (7.6)

for negative shifts.

Figure 7.11: Measurement of the temperature dependent cavity shift

induced by the E1 sample. The relaxation time increases for decreasing

temperatures. At 60 mK the cooling energy of the ADR was not sufficient for

the spin ensemble to relax completely in thermal equilibrium.

Next, we measure the spin-phonon relaxation for each sample stepwise in a tempera-

ture range from 60-300 mK to generate a set of temperature dependent relaxation rates
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7.4. RELAXATION RATE MEASUREMENTS

Γ1(T ). In Fig. 7.11, the complete set of data of the E1 sample is shown. The results of

the measurements of the other samples can be found in App. B. We observed remarkably

long spin lifetimes of up to 8 h yielding to the conclusion that the spin-phonon coupling

of NV − in diamond is weak and that spin-phonon coupling of NV − center is not a

collective effect, but intrinsic to the single NV −.

To show that Γ1 is only dependent to the lattice temperature and, therefore, depen-

dent to the phonon population, we measured inverse relaxations. Hence, the sample was

stabilized at low temperatures until thermal equilibrium was reached. Afterwards, the

temperature was increased and stabilized again. The occurring relaxation was measured.

Fig. 7.12 gives an comparison of both relaxation measurement schemes at 200 mK and

300 mK. Besides that the cavity relaxes into the same thermal equilibrium state for both

schemes, we were able to show that the measured relaxation rates correspond sufficiently.

At 200 mK the measured relaxation time is T1 = 130± 15 min for both schemes and at

300 mK we measured T1 = 80± 7 min. Thus, we showed that spin-phonon relaxation

is only dependent to the phonon population and that the here applied scheme of spin

polarization measurement is correct.
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7.4. RELAXATION RATE MEASUREMENTS

Figure 7.12: Comparison of measured relaxation of positive and neg-

ative polarized spin polarization in reference to the thermal equilib-

rium. The measured relaxation rate is only dependent to the phonon popula-

tion.

7.4.1 Dilution refrigerator measurements

In order to determine the underlying spin-phonon relaxation process, it was necessary

to measure the relaxation rate at temperatures below 50 mK, where the thermal phonon

population at the spin transition frequency is mostly suppressed. By reason of the limita-

tion of the minimum base temperature of 50 mK in the ADR, we took additional data in

a standard dilution refrigerator (Oxford DR-200). Since a dilution refrigerator has only

a certain cooling power, we had to adapt the measurement sequence. For the initializa-

tion of the spin ensemble at 1 K and temperature control, we used an integrated electric

heater. This measurement scheme enabled to take data at minimum base temperature

of ≈ 25 mK.

In Fig. 7.13, three measurements of the E1 sample taken in the dilution refriger-

ator are shown. The measurement showed the expected exponential behaviour, but

was strongly affected by distortions and it is reasonable to consider a higher system-
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7.4. RELAXATION RATE MEASUREMENTS

Figure 7.13: Measurements of the E1 sample in the dilution refriger-

ator. Compared to the measurements taken in the ADR (Fig. 7.11) the data

taken in the dilution refrigerator are stronger affected by distortions.

atic error compared to the measurements taken in the ADR. However, the taken data

match expected results and at higher temperatures, in the dilution refrigerator measured

relaxation rates correspond to the results of the ADR measurements.

7.4.2 Calculation of the collective coupling strength

Next, we want to determine the enhanced collective coupling strength. Therefore, we

calculate the difference of the dispersive shift for two steady states at temperatures T1

and T2, given by

∆χ (T2, T1) = χ (T2)− χ (T1) =
3g2
N

∆

(〈
S2
z

〉
(T2)−

〈
S2
z

〉
(T1)

)
(7.7)

We can transform this equation to get an expression for the collective coupling strength

gN :

gN =

√
∆χ ·∆
3 ∆
〈
S2
z

〉 (7.8)
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For the determination of the detuning ∆, we measured the resonance frequency of the

flooded cavity to get ωc and the values of ∆
〈
S2
z

〉
were calculated with (Eq. 7.1) . In

Table 7.2 the calculated coupling strengths for the diamond samples are presented.

Sample N1 E1 E2 E3

gN [MHz] 6.62± 0.20 9.11± 0.58 5.88± 0.20 2.85± 0.19

Table 7.2: Collective coupling strength. The enhancement of coupling

strength scales with the NV − density and the sample size.

7.5 Determination of the Spin-Phonon Relaxation Process

In Sec. 5.5 we already introduced direct spin-phonon relaxation for the NV − and found

an expression for the temperature dependent relaxation rate, given as

Γ1(T ) = Γ0

(
1 + 3p̄0(T )

)
, (7.9)

where

p̄0(T ) =
1

e
~ωs
kBT − 1

(7.10)

is the phonon population given by the Bose-Einstein distribution.

When we apply this model of direct spin-phonon relaxation on the taken data, we see

that the model and data correspond well. We observe the predicted linear dependence

for temperatures T ≥ 138.2 mK. Furthermore, we observe a temperature independent

relaxation rate Γ0 at T ≤ 50 mK. In this temperature regime, the thermal phonon

occupation is mostly suppressed. Only spontaneous emission of spin excitations into the

phononic vacuum can occur. The rate of spontaneous emission is only dependent to the

sample specific phononic vacuum fluctuations at ~ωs.
As we can see in Fig. 7.14 and in Tab. 7.3, Γ0 is strongly dependent to the lattice

damage caused by the NV − ensemble creation. For the neutron irradiated sample, Γ0 is

higher by one order of magnitude compared to the electron irradiated samples. Due to

the higher rest mass of neutrons compared to electrons, neutron irradiation causes higher

lattice damage and broadens the phonon band of the diamond lattice. If we compare

Γ1(T ) of sample E1 and E2 which were prepared identically, but have different NV −

densities (see Tab. 7.1), it appears that the relaxation rate is almost independent from
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the NV − density. Furthermore, when we take the sample E3 into account, we notice

that for electron irradiated samples, the relaxation rate is also determined by the lattice

damage, which is strongly dependent to the electron energy.

Figure 7.14: Temperature dependence of the spin-phonon relaxation

rate. Data points in different color represent the measured data for different

samples. Continuous lines indicate the fit of the relaxation rate corresponding

to (Eq. 7.9). In the regime of kbT < ~ωs the relaxation rate is only dependent

by spontaneous emission into the phononic vacuum modes. However, the rate

for spontaneous emission Γ0 is strongly dependent to the lattice damage caused

by the NV − ensemble creation method. The dashed line indicates ab initio

calculations.

We want to conclude the discussion of the spin-phonon relaxation process with a

comparison of the measurement results with theoretical calculations done by J.Gugler

[63]. In order to generate an interaction Hamiltonian for the spin-phonon interaction, the

Hamiltonian for dipolar spin-spin interaction was expanded for small ionic displacements.

In the low temperature regime, phonons induce only small ionic displacements and,

therefore, the Taylor expansion of the spin-spin interaction Hamiltonian is valid. For
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Sample N1 E1 E2 E3

Γ0[s−1] 3.17(10)× 10−4 4.76(26)× 10−5 3.47(16)× 10−5 7.86(60)× 10−5

Table 7.3: Comparison of spontaneous emission rates Γ0. The mea-

sured rate of spontaneous emission is strongly dependent to the NV − creation

method.

the calculation of the temperature dependent relaxation rate, Fermi’s golden rule for the

|ms = 0〉 ↔ |ms = ±1〉 transitions was applied only considering single spin-flip terms

of the interaction Hamiltonian. For the calculations of the spin orbitals and phononic

band, ab initio calculations using density functional theory was performed on a supercell

containing 64 lattice sites with a single NV −. The theoretical result for the relaxation

rate is illustrated as dashed line in Fig. 7.14. It is remarkably that the theoretical model

is consistent with the measured data of the electron irradiated samples. It appears

that samples E1 and E2, which were irradiated with a large dose and annealed at high

temperatures, almost show behaviour of a single NV − in a perfect diamond lattice.
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Chapter 8

Conclusion & Outlook

In this thesis, a new method for the measurement of solid-state electron spin-phonon

relaxation in a low temperature regime was presented. The resonant mode of the newly

designed 3D lumped element microwave resonator creates a homogeneous oscillating

magnetic field which is used for coupling to the spins provided by a NV − ensemble in

diamond. Collective effects enhance the coupling strength and enable the measurement.

The
√
N scaling of the enhancement was shown, we measured gN = 2.85 - 6.62 MHz

compared to g0 = 38 mHz of the single spin.

In dispersive regime, where ωs − ωc � gN , the cavity experiences a shift of the

resonance frequency dependent to the polarization of the NV − ensemble. Therefore, an

indirect, non destructive measurement of the spin polarization is realized. Furthermore,

this transmission spectroscopy does not utilize optical readout and enables to measure

spin-phonon relaxation in a temperature regime of 25-300 mK for the first time.

The observed relaxation rates are strongly dependent on the phonon density at the

spin-transition energy and, therefore, dependent on the NV − generation method. Char-

acteristic longitudinal relaxation times of up to T1 ≈ 8 h were measured, which indicate

weak spin-phonon coupling. A general estimation of the limit of the coherence time of

the NV − spin system is given.

The measurement of the relaxation rate at several temperatures in a range of 25-

300 mK enabled the determination of the fundamental processes of spin-phonon inter-

action. We showed that at temperatures where kbT < ~ωs, the population of phonons,

mediating spin-phonon interaction becomes negligible and the longitudinal relaxation

time is only limited by the spontaneous emission of spin excitations into the phononic
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vacuum modes. At temperatures where kbT ≥ ~ωs, we observed the direct single phonon

process with a linear temperature dependence of the relaxation rate. Furthermore, we

compared our experimental results with theoretical calculations and found that samples,

which were irradiated with a large dose of electrons and annealed at high temperatures

almost show the calculated relaxation behaviour of a single NV − in a perfect diamond

crystal.

Next, we want to give an outlook for possible projects in the future. In [65], a

proposal for a room-temperature diamond laser was presented. The presented system has

a long longitudinal relaxation time T1 and also superradiance was observed. Therefore,

it matches the affordable properties to build a diamond maser at cryo-temperatures.

Furthermore, the generated understanding of spin-phonon interaction can be used

to design materials with resonant phononic modes to provide spin ensemble cooling or

heating. On the other hand, also materials with designed phononic band gaps are of

interest and could be used for spin state insulation from environment or relaxation rate

engineering.

Finally, the adaptation of the presented cavity design could also be used for the

measurement of longitudinal relaxation of other solid-state spin systems like silicon-

vacancy center in diamond. In general, application of the bow tie resonator with other

quantum systems is possible and could be of interest.
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Appendix A

Cavities used in experiment

Figure A.1: Picture of prototype cavity. The E1 sample is attached to the

cavity between the bow ties. Compared to the cavity with improved design, the

prototype has a more massive body. The coin at the lid emphasizes the size of

the cavity.
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Figure A.2: Picture of the cavity with improved design. The E2 sample

is attached to the cavity. The lid is removed.
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Appendix B

Relaxation measurements

Figure B.1: Relaxation measurements of the N1 sample.
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Figure B.2: Relaxation measurements of the E2 sample.

Figure B.3: Relaxation measurements of the E3 sample.
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[64] Tobias Nöbauer, Kathrin Buczak, and Andreas Angerer. Creation of ensem-

bles of nitrogen-vacancy centers in diamond by neutron and electron irradiation.

arXiv:1309.0453, 2013.

[65] Liang Jin, Matthias Pfender, Nabeel Aslam, Philipp Neumann, Sen Yang, Jörg

Wrachtrup, and Ren-Bao Liu. Proposal for a room-temperature diamond maser.

Nature Communications, 6:8251, 2015.

78



Acknowledgement

When I decided to study Physics and moved to Vienna, I didn’t know what I should

expect and if I’m capable for it. But pretty soon, it became apparent that I made the

right choice, that I chose a path to expand my intellectual and personal horizon.

Now, a few years later my thesis is finished and the end of the studies is close. It

is time to reflect all these years and thank all those people, who made all this possible

with their support and commitment.

One and a half year ago, I joined the atomchip group at the Atominstitut. It is a

wonderful bunch of people and I appreciate every single day in the lab and every single

minute in the coffee corner with them. I want to thank especially,

Jörg Schmiedmayer, the head of the group for giving me the opportunity to work in

his field of study.

Hannes Majer, the head of our small NV − group for his warm welcome and his willing-

ness to answer all my questions and to help whenever I needed it.

Tom and Andreas, my supervisors for everything. Without you, I would not have been

able to do this work. I’m still wondering that you never lost patience with me and my

questions. Hope there will be a few drinks beside the coffee corner in the future!

Michael Trupke, who introduced me to the NV − and the atomchip group during my

bachelor thesis.

Beside these people from the group, I want to thank my family. Mom and Dad,

without your backup, your unrestricted support all this would not have been possible.

You with my little sis, even if you’re not little anymore Magdalena, you’re all just great

and I’m happy to have you.

Finally, I want to thank my friends, who accompany and enrich my life for many

years. To name you all per person would expand this scope, but you know who is meant.


	Abstract
	Zusammenfassung
	Introduction
	The negatively charged Nitrogen-Vacancy center in diamond
	Crystalline Structure
	Spin properties of the NV-

	3D Lumped Element Microwave Resonator 
	Fundamentals of Microwave Resonators
	Series Resonant Circuit
	Parallel Resonant Circuit

	Bow Tie Resonator

	Cavity QED
	The two-level quantum system
	Electromagnetic field
	The classical free electromagnetic field
	Second Quantization / Fock state

	The Jaynes-Cummings model
	The dipole approximation
	The rotating wave approximation
	Dispersive regime

	The Tavis-Cummings model
	Tavis-Cummings in terms of the collective spin
	Eigenstates of the Tavis-Cummings model
	Tavis-Cummings in dispersive regime

	Non-Unitary dynamics
	Lindblatt terms of the driven spin ensemble-cavity system
	Dynamics of observables


	Spin-Phonon Relaxation Processes 
	The Direct Process
	The Orbach Process
	The Raman Process
	The Phonon Bottleneck
	Considerations for the NV- system

	Experimental Set-up 
	Pulse-Tube driven ADR Cryostat
	Pulse Tube Refrigerator
	ADR -Adiabatic Demagnetization Refrigerator
	Demagnetization Cycle

	Microwave Spectroscopy

	Measurements and Data Analysis 
	Measurement Sequence
	Diamond samples
	3D Aluminium cavity
	Relaxation rate measurements
	Dilution refrigerator measurements
	Calculation of the collective coupling strength

	Determination of the Spin-Phonon Relaxation Process

	Conclusion & Outlook
	Cavities used in experiment
	Relaxation measurements
	List of Figures
	List of Tables
	Bibliography
	Acknowledgement

