
DIPLOMA THESIS

Distributed synchronized measurement system in the
ARROWHEAD Internet of Things Framework

Submitted at the Faculty of Electrical Engineering and Information Technology,
Technische Universität Wien

in partial fulfillment of the requirements for the degree of
Diplom-Ingenieur (equals Master of Sciences)

under supervision of

Ao.-Prof. DI Dr. Thilo Sauter

Institute of Computer Technology (E384)
Technische Universität Wien

by

Jeronimo Govinda Mitaroff-Szécsényi
Matr.Nr. 0426219

Hetzendorfer Strasse 58-60/9/1 1120 Wien

November 4, 2017

Die approbierte Originalversion dieser Diplom-/
Masterarbeit ist in der Hauptbibliothek der Tech-
nischen Universität Wien aufgestellt und zugänglich.

http://www.ub.tuwien.ac.at

The approved original version of this diploma or
master thesis is available at the main library of the
Vienna University of Technology.

http://www.ub.tuwien.ac.at/eng

Abstract

With the development of communication in embedded systems, machine to machine communi-
cation becomes more and more important. The number of devices connected to the internet is
growing exponentially, and intelligent devices are reaching more application areas than before.
This leads to a fast growing complexity in all networked systems.

Demands on manufacturing are also growing. The ability to dynamically adapt a manufacturing
system to current needs has become a requirement to stay competetive. However, traditional
systems are designed top-down, with each component selected to fulfill its specific purpose. This
makes dynamic system reconfiguration a very challenging task that is proportional to the complex-
ity of the system. The Arrowhead Framework is a proposed solution to manage this complexity
by using a service oriented architecture.

In this work a distributed synchronous measurement system within the ARROWHEAD frame-
work [BFK+14], using the wireless 6LoWPAN MULLE platform [JVE+04] developed for this
framework, is implemented. While the ARROWHEAD framework focuses on communication
between devices, the main challenge remaining for a distributed measurement system is clock
synchronization, especially with low-cost Internet of Things devices.

Therefore the focus of this work is to analyze the unique challenges that arise from software
based clock synchronization, to develop mathematical error models and to propose methods to
compensate these errors. The implementation of this work is based on the PTP protocol [IS08],
however all the findings can be applied directly to all software based synchronization protocols.
Software only timestamping leads to undetectable jitter from network conflicts and interference
from other processes. Additionally the available timestamping points lead to transmission delay
asymmetry. It will be shown that, by understanding these errors in detail, software based clock
synchronization can be greatly improved.

II

Kurzfassung

Durch die Vernetzung von integrierten Systemen wird Maschinen zu Maschinen Kommunikation
immer wichtiger. Die Anzahl an Geräten die mit dem Internet verbunden sind wächst expo-
nentiell, und intelligente Geräte finden regelmäßig neue Anwendungsgebiete. Dies führt zu einer
rasch wachsenden Komplexität in vernetzten Systemen.

Anforderungen an die Industrie wachsen ebenfalls. In einem sich rasch ändernden Markt muss ein
Hersteller seine Fertigungsprozesse dynamisch anpassen können um konkurrenzfähig zu bleiben.
Traditionell werden Systeme allerdings Top-Down entworfen, mit jeder Komponente die ihren
speziellen Zweck erfüllt. Dies macht eine Neukonfiguration zu einer Herausforderung welche pro-
portional zur Komplexität des Systems ist. Das ARROWHEAD Framework ist eine vorgeschla-
gene Lösung dieses Problem durch eine serviceorientierte Architektur zu lösen.

In dieser Arbeit wurde ein verteiltes, synchrones Messsystem, basierend auf dem ARROWHEAD
Framework [BFK+14] und der dafür entwickelten 6LoWPAN MULLE Plattform [JVE+04], imple-
mentiert. Während das ARROWHEAD Framework die Kommunikation der Geräte untereinander
beschreibt bleibt Uhrensynchronisation, besonders bei günstigen Internet der Dinge Geräten, eine
große Herausforderung für verteilte Messsysteme.

Der Fokus dieser Arbeit ist daher die Analyse der besonderen Herausforderungen die durch soft-
warebasierte Uhrensynchronisation entstehen, die Entwicklung einer mathematischen Beschrei-
bung dieser Fehler sowie Methoden zur Fehlerkompensation zu entwerfen. Die Implementierung
der Uhrensynchronisation in dieser Arbeit basiert auf dem PTP-Protokoll [IS08], die Erkenntnisse
können allerdings direkt auf alle softwarebasierenden Uhrensynchronizationsprotokolle übertragen
werden. Durch die reine Software Implementierung entstehen nicht-erkennbare Synchronisations-
Fehlerquellen, z.B. variable Verzögerungen durch Netzwerkkonflikte oder Interferenz durch andere
Softwareprozesse. Weiters führt die Limitierung des Zeitstempelpunktes zu einer Asymetrie der
Übertragungsverzögerungen. Es wird gezeigt, dass durch genaue Verständnis dieser Fehler soft-
warebasierte Uhrensynchronisation stark verbessert werden kann.

III

Acknowledgements

This work has been supported by the Austrian Research Promotion Agency (FFG) under grant
number 853456 (FASAN: Flexible Autonome Sensorik in industriellen ANwendungen).

IV

Table of Contents

1 Introduction 1

1.1 Problem statement . 1

1.2 ARROWHEAD Framework . 2

1.3 Structure of the thesis . 5

2 State of the Art and Related Work 7

2.1 Basic Technologies . 7

2.1.1 Protocol Stack Models . 7

2.1.2 Wireless network technologies . 9

2.1.3 Communication Protocols . 11

2.1.4 Clock Synchronization . 14

2.2 Related Work . 19

2.2.1 IEEE 802.11 Clock Synchronization . 19

2.2.2 Wireless Mesh-Network Clock Synchronization 21

3 System Overview 27

3.1 Initial design decisions . 28

3.2 Hardware . 30

3.2.1 MULLE platform . 30

3.2.2 Extension board . 31

3.3 System description . 32

3.3.1 MULLE Client . 35

3.3.2 MULLE Master . 38

3.3.3 Raspberry Pi Router . 39

3.3.4 Leshan Server . 40

3.3.5 ARROWHEAD Server . 43

4 Challenges of Software based clock synchronization 44

4.1 Influence of timestamping point . 45

4.2 Offset due to asymmetric packet compression . 46

4.3 Interference from periodic, non-interruptable tasks 48

4.4 Interference from network conflicts . 52

V

5 Improving Software based clock synchronization 59
5.1 System specific solutions . 59
5.2 Compensation of Clock Frequency Offsets . 60
5.3 Filtering PTP data . 61

5.3.1 Averaging filter . 62
5.3.2 Outlier rejection averaging filter . 62
5.3.3 Median filter . 65
5.3.4 Uneven median filter . 65
5.3.5 Drift compensated uneven median filter . 66
5.3.6 Dual drift compensated uneven median filter 68

5.4 Selecting the right filter . 73

6 Evaluation 74
6.1 Synchronization Accuracy . 74

6.1.1 External measurement between PTP Master and PTP Slave 75
6.1.2 External measurement between two PTP Slaves 77
6.1.3 Analysis of voltage measurement data . 77

6.2 Synchronization Overhead . 80
6.3 ARROWHEAD . 80

7 Conclusion and Outlook 82

8 Appendix 85
List of Figures . 85
List of Tables . 87

Literature 89

VI

Abbreviations

6LoWPAN IPv6 over Low power Wireless Personal Area Network
ACK ACKnowledgement
ADC Analog to Digital Converter
AVL List Anstalt für Verbrennunskraftmaschinen List
CAN Controller Area Network
CENTOS Community ENTerprise Operating System
COAP COnstrained Application Protocol
CPU Central Processing Unit
CS Clock Synchronization
CSMA/CA Carrier Sense Multiple Access / Collision Avoidance
DAC Digital to Analog Converter
DNS-SD Domain Name Service - Service Discovery
ETFA International Conference on Emerging Technologies and Factory Automation
FPU Floating Point Unit
GND GrouND voltage level
GPIO General Purpose Input Output
HTTP HyperText Transfer Protocol
HW HardWare
I2C Inter-Integrated Circuit
ICMP Internet Control Message Protocol
IEEE Institute of Electrical and Electronics Engineers
IETF Internet Engineering Task Force
IoT Internet of Things
IPv4 Internet Protocol version 4
IPv6 Internet Protocol version 6
ISO International Organization for Standardization
ISR Interrupt Service Routine
LAN Local Area Network
MAC Media Access Control
NIC Network Interface Card
NTP Network Time Protocol
OMA-LwM2M Open Machine Alliance - LightWeight Machine To Machine protocol
ppm Parts Per Million
PTP Precision Time Protocol
RAM Random Access Memory
RBS Reference Broadcast Synchronization
RTC Real Time Clock
SLIP Serial Line IP
SOA Service Oriented Architecture
SPI Serial Peripheral Interface

VII

SW SoftWare
TCP Transmission Control Protocol
TSPN Timing-Sync Protocol for sensor Networks
UART Universal Asynchronous Receiver Transmitter
UDP User Datagram Protocol
uIP micro Internet Protocol
URI Uniform Ressource Identifier
USB Universal Serial Bus
USB-OTG Universal Serial Bus - On the Go
Vcc Voltage at the Common Collector
vs versus

VIII

1 Introduction

Embedded systems are becoming smaller, cheaper, more efficient and are used more and more.
A major development has been the fact that these devices are now incorporating wireless com-
munication solutions. Removing the need for cabling allows for cheap autonomous and flexible
distributed systems, and global connections allow for almost limitless applications. This has re-
sulted in the exponential growth of the Internet of Things.

This development has led to a fast growing complexity in networked systems. Rather than design-
ing a system once and using it for decades modern manufacturing systems require flexibility, the
ability to grow or change in accordance with their demands. With these requirements traditional
top-down design approaches do not work, as any major changes would require a complete redesign
of the system. Instead flexible architectures are used to manage the system, using machine to
machine communication to dynamically reconfigure the system.

One of these architectures is the Service Oriented Architecture, which flips the complexity prob-
lem. Instead of being configured for a specific purpose, each device offers its functions as so-called
services. In its basic state it is not important what it is used for, and where it will send its data.
Combined with a framework for discovery, configuration and security this approach allows for
very dynamic systems to assemble.

But not only communication needs to be managed. Distributed measurement or control networks
require a global notion of time. Clock synchronization is a major core service for such systems.
But synchronization can be influenced by the whole system, and providing high accuracy while
still keeping costs down can be a major challenge.

1.1 Problem statement

In a cooperation between the Technical University of Vienna and AVL List, an automotive en-
gineering firm, a distributed measurement system has to be developed. The goal is to make the
automotive measurement testbeds at AVL more flexible. To allow management and reconfigura-
tion within a larger scale the system has to be ARROWHEAD compliant. The system has to be

1

Introduction

able to integrate legacy systems, therefore a refit option is necessary.

For distributed measurements to be consistently aligned a global notion of time within the network
is necessary. Clock synchronization performance is hampered by delays and jitter accumulated
not only in the network, but also in the timestamping procedures of the devices being synchro-
nized. The resources available on such sensors are often constrained, both by cost and power
consumption. Software solutions on single processor systems are common. While the synchro-
nization process is critical, it usually has a supporting role and therefore cannot be assumed to
have the highest process priority.

To cope with these challenges, the following problems are tackled within this thesis:

• Development of a distributed, wireless measurement system within the ARROWHEAD
framework.

• Synchronizing the network, based on IEEE 1588-2008

• Identification, measurement and simulation of clock synchronization error sources.

• Development of strategies to improve clock synchronization.

The proposed implementation assumes a working communication between the network devices.
Wireless communications are a lot more sensitive to external interference than wired systems,
which may disrupt communication and cause the synchronization to fail. Dealing with external
interference is not part of this work, however network access conflicts by nodes on the same
network are evaluated. The Arrowhead-Framework was still in development during this work,
regular updates (so-called deliverables) were published by working groups around the world. To
provide a consistent environment the 1.9.2016 was chosen as a cutoff date after which no deliver-
ables would be incorporated into the test system.

1.2 ARROWHEAD Framework

A proposed solution to the growing complexity problem is the use of a service oriented archi-
tecture [Erl08]. This design pattern uses distributed services with loosely coupled interfaces to
provide the business logic. The service is the basic building block of the system, and can usually
be abstracted by a black box. Services are optimized for reusability instead of being specialized
solutions for specific applications. By managing the connections between the services, the sys-
tem can be reconfigured easily, and new services can be added without interfering with existing
applications.

The Arrowhead Framework represents an EU project focused on automation, generating a service
oriented reference architecture for interoperability. The goal is to have this reference architecture
provide a way for interoperability for common IoT target architectures. Therefore it focuses on
local clouds governed through common core services, which may be interconnected for global
collaboration (fig. 1.1). The project was started in 2013 and was in development during the

2

Introduction

creation of this thesis. In its current implementation this reference architecture should be seen as
a proof of concept [VBF+17]. It includes principles on how to design, implement and document
SOA, and offers a software framework to support implementations.

Figure 1.1: Interconnected local collaborative clouds [VBF+17]

A set of core services, which are mandatory for every ARROWHEAD compliant local cloud are
defined. These provide any application systems core functionality, providing the basic services
necessary for a loosely coupled event based automation cloud.

3

Introduction

Figure 1.2: ARROWHEAD Core Services [BFK+14]

Service Discovery To be able to dynamically configure a system, it is necessary to be able
to find services. This may be either for a management software to tie
services together, or for services themselves to search for other services
according to their current needs (e.g. a data format conversion service).
Therefore the ARROWHEAD framework includes a service registry which
allows registration and discovery of services based on various properties.
The service registry is based on the DNS-SD system which makes it scalable
even on a global level.

Authorization While total flexibility and access are good for a fast dynamic systems, not all
actors are beneficial to the system. Especially when systems get connected
to the internet security becomes a main concern. Therefore an authorization
system is implemented, providing rules and limitations to which services can
connect to each other. A service provider can check with the authorization
system for any connection requests it receives.

Orchestration After making themselves known to the Service Discovery the application
services are initially passive and on stand-by. The orchestration system
then connects and configures these services to fulfill a specific functional-
ity. Therefore the Orchestration System establishes all other systems by
providing coordination, control and deployment.

To enhance the local cloud, several additional services are considered important optional exten-
sions: Deployment service, User-System Registry service, Configuration service, Event Handler
service and Meta-Service Registry service. In addition a set of translation services may be em-
ployed, allowing the system to bridge divergent systems (fig. 1.3). Dynamically managing and

4

Introduction

cascading these translating services can provide interoperability, with each new translation ser-
vice added expanding the reach of all others.

Figure 1.3: Translation as a service [VBF+17]

These core services, coupled with unified documentation standards [BFK+14], ease integration
of different systems. Because it would be unrealistic that existing infrastructure would adapt
instantly, the ARROWHEAD framework additionally provides design rules for adapters, which
can be used to integrate legacy systems into a larger framework.

1.3 Structure of the thesis

Chapter 2 State of the Art and Related Work defines terms, provides an introduction into the
technologies used and discusses related work of clock synchronization in wireless networks.

In chapter 3 System Overview the implementation of the system is presented. The distributed
system consists multiple measurement nodes being synchronized by a PTP master node, a lo-
cal cloud providing core ARROWHEAD services and an orchestration server which uses the
ARROWHEAD services to discover measurement nodes and conduct distributed measurements.
The measurement application is presented in detail, global design decisions are discussed and all
components of the distributed measurement system are described in detail.

This implemented system is the basis for the challenges identified and analyzed in chapter 4 Chal-
lenges of software based clock synchronization. Here both measured PTP timestamping data and
simulations are used to analyze the synchronization offset due to asymmetric packet compression,
timestamping Interference from periodic non-interruptable tasks and the influence of network
conflicts. An overview how the possible timestamping points influence these kinds of errors is
given.

Chapter 5 Improving software based clock synchronization uses these analyzes information to deal
with these challenges. As these errors cannot be prevented during the timestamping itself they

5

Introduction

have to be compensated in postprocessing. This chapter analyzes different filtering strategies to
improve clock synchronization, documenting a filter evolution towards the dual drift-compensated
uneven median filter. How these filters can be optimized to work efficiently on resource constrained
platforms is discussed and the chapter concludes with guidelines how to select appropriate filters
for a measurement system.

Implementing these strategies allows for the measurements presented in chapter 6 Evaluation.
Here clock synchronization accuracy and precision is measured both externally by using an oscil-
loscope, and internally by performing a synchronized measurement and comparing the measured
data. It is shown that synchronization accuracy and precision below 100µs can be reached in
practical applications.

Finally, chapter 7 Conclusion and Outlook summarizes this work, provides an overview of the
contributions and an outlook on future works.

While this work can be read linearly, sometimes later chapters influence earlier ones. This is
especially true of the implemented system (chapter 3), which is influenced by the identified
challenges (chapter 4) and uses the filter strategies developed in (chapter 5).

The main contributions of this work can be found in the detailed analysis of the unique challenges
of software only timestamping and the development of the dual drift-compensated uneven median
filter to deal with these problems. The solutions developed in this work may allow simpler devices
to be used in measurement scenarios which previously required dedicated hardware. Because these
solutions can be implemented in software this allows portability, reducing both development effort
and cost of future devices. It is shown that even with software only timestamping, no tunable clock
and interferences from both network and other processes high clock synchronization accuracies
are possible. Parts of this work concerning the interference of periodic non-interruptable tasks
have already been published in [MSPS17].

6

2 State of the Art and Related Work

This chapter serves as an introduction to the technologies used and gives an overview of related
works. The first section starts by a quick introduction of protocol stack models to put the
technologies into perspective and then presents technologies used. Some alternatives, which
were considered in this project, are also shortly described. This is followed by an overview of
related work, presenting both analysis of the currently available solutions and published different
approaches to the problem.

2.1 Basic Technologies

Due to the distributed nature of the implemented measurement system several technology groups
need to be introduced. These are wireless network technologies, communication protocols and
the main focus of this work, clock synchronization. Working together, these technologies form
the basis for distributed, synchronized networks.

2.1.1 Protocol Stack Models

This section covers basic models of how communication between machines works and how it
might be implemented. While not directly used in this work, these models provide a reference to
understand how the technologies presented interact with each other.

The OSI model

The Open Systems Interconnection model [Sta96], short OSI, is an abstraction model to describe
communication between computing systems. Developed by the International Organization of
Standardization (ISO), its goal is to provide communication between different systems by using
standardized protocols. The model splits the communication process on each host into seven
abstraction layers, each one serving the layer above and using the layer below. Outgoing data is
encapsulated by each layer until it gets transmitted on the physical layer, and unpacked by the
corresponding layer on the receiving host. As each layer is providing abstracted functions, this
encapsulation results in each layer communicating directly with its counterpart on the receiving

7

State of the Art and Related Work

host, regardless of the protocols used on layers below. This allows for functionality to be split,
allowing specialized protocols on each layer which can work together to provide a wide range of
functions. The seven layers and their main functions are:

7. Application High level application interfaces

6. Presentation How data is presented, e.g. character encoding, compression and encryption

5. Session Managing continuous information exchange between nodes

4. Transport Reliable transmission of data

3. Networking Structuring and addressing on a multi-node network or multiple connected net-
works

2. Data Link Reliable data frame transmission between two nodes directly connected via a
shared medium

1. Physical Transmission of raw bits over a physical medium (e.g. radio waves)

Ideally this would result in protocols which only have to concern themselves with functions on
their own layer, and allow flexibility as protocols could be stacked and replaced interchangeably
while maintaining well-defined abstract interfaces. In practice, most communication systems do
not strictly adhere to this split. The OSI model expects functionality to be handled at specific
layers. However, technologies differ in functionality. If functions cannot be provided at the layer
they are expected, higher layers either have to provide this functionality themselves or accept
the limitation. This results in a technology dependence of the communication protocol stack,
preventing a unified model where protocols could be interchanged at will. Nevertheless, the OSI
model is widely used as a conceptual blueprint for network architectures and is very useful to
classify communication systems and protocols.

Internet protocol stack

The internet protocol stack, defined in RFC 1122 [Bra89] by the Internet Engineering Task
Force (IETF), predates the OSI model and forms the basis for the protocols used in internet
communication today.

Application layer The top layer of the internet protocol suite without subdivisions, combining
layers 6 and 7 of the OSI model. Two categories of application layer proto-
cols exist: user protocols that provide services directly to users and support
protocols that provide common system functions.

Transport layer This layer provides end-to-end communication services. The main protocols
used are TCP and UDP.

8

State of the Art and Related Work

Internet layer The internet layer provides connectionless datagram delivery services by using
the Internet Protocol (IP). While other supporting protocols exist for specific
functions (e.g. the Internet Control Message Protocol ICMP), all transport
layer protocols have to use the IP protocol for transmissions.

Link layer The interface to its directly connected network, wide varieties exist depending
on the type of network used.

Even though a physical network is assumed, the IP protocol stack does not concern itself with
the technologies used.

The IETF relies more on architectural principles than on strict layering of their protocols. The
update RFC 3439 [BM02] includes a section “Layering Considered Harmful”, where the limita-
tions of layering are discussed. Strictly adhering to layers results in each layer having to complete
its functions before passing data on. Therefore each layer can only be optimized separately. In
addition separation may hide information from lower layers which may be needed by those, in
turn leading to information or functionality being duplicated. Therefore it may be concluded that
horizontal separation (e.g. different protocols for different use cases) may be more cost effective
and reliable.

However, in the same document a corollary called “Optimizations Considered Harmful” is in-
troduced, which warns against optimizing systems too much as past a certain point further
optimization increases complexity while only providing diminishing returns. Therefore a balance
has to be reached.

2.1.2 Wireless network technologies

In this section current wireless networking technologies are discussed. These technologies form
the basis for communication between the devices. Technologies discussed are the widely used
IEEE 802.11, also known as WiFi, IEEE 802.15.4 which is used in low power sensor networks and
bluetooth with a focus on personal area networks.

IEEE 802.11

IEEE 802.11 is a set of standards for wireless local area networks, commonly known as WiFi. The
standard is being developed constantly, mainly to provide increased bandwidth. New versions
receive a letter combination to distinguish them from previous versions. The current standard
rollup, IEEE 802.11-2016 [77816], includes the amendments 802.11 a, b, g, n, ac and ad which
define the physical layer and media access control specification for the networks (OSI layers 1 &
2). Frequencies used are 2.4GHz and 5GHz with data rates up to 866Mbit/s and ranges up to
70m in an indoor environment, excepting the ad standard which is used for very high data rate
(6757Mbit/s) low range (3.3m) communication at 60GHz. In recent years, due to developments
for smartphones, significant reductions in power consumption were achieved but long term oper-
ation of battery powered devices is still not possible.

9

State of the Art and Related Work

Usually the network is set up as a star topology with an access point in the center, through which
all traffic is routed. Alternatively, peer-to-peer ad-hoc networks are possible which allow mesh
routing over multiple hops.

The newest version, IEEE 802.11ah [79217], released in 2017, uses 868MHz and 915MHz license
free bands and is geared toward low-rate, long range communication. Each of its regular channels
supports data rates of 100kbit/s, though data rates up to 347MBit/s are possible if a full 16MHz
channel can be used. With its reduced power consumption and range up to 1km this technology
may impact the IoT market over the next few years [ABB+14].

IEEE 802.15.4

Low-Rate wireless personal area networks, defined in IEEE 802.15.4 [74616], are used in many low
power sensor networks. It defines the encoding and media access control (OSI layers 1 & 2) for
radio transmissions at 868MHz, 915MHz or 2450MHz at data rates of 20, 40, 100 or 250kbit/s.
It is the basis for protocols like ZigBee, ISA100.11a, WirelessHART, MiWi, SNAP, Thread and
can be used with 6LoWPAN to interconnect with IPv6 networks. Data is encoded either by
binary or quadrature phase shift keying. It’s design goal is to provide low-cost and low-power
communication to a range of 10m. Multihop peer-to-peer networks are possible, negating the
need for additional infrastructure. It does include optional support for real-time communication
by reservation of guaranteed time slots.

Bluetooth

Bluetooth is a wireless networking standard introduced by the Bluetooth Special Interest Group
in 1994. Its main focus is to be a wireless personal area network, replacing cabling between sev-
eral devices, rather than a networking standard. Rather than just standardizing the media access
control and the physical radio connection, bluetooth standardizes a full protocol stack and several
application profiles, therefore covering OSI layers 1-7. Bluetooth uses a packet based protocol in
a master slave architecture, with a master controlling a synchronized network of up to 7 slaves.
To avoid interference it uses frequency hopping, using 80 1MHz channels in the 2.45GHz band
at 800 hops per second, reaching an application data rate of up to 2.1Mbit/s. Range is defined
by the transmission class of the host, with class I reaching up to 100m.

IEEE has standardized Bluetooth 1.2 as IEEE 802.15.1 [14905], newer versions however are only
standardized by the bluetooth special interest group. Due to different applications several vari-
ants are available. Introduced in Bluetooth 3.0 a high-speed link allows for fast data transfer.
The system uses bluetooth for negotiation and establishment of a 802.11 link for the actual data
transfer of up to 24Mbit/s. In contrast, Bluetooth Low Energy, introduced in version 4, uses a
reduced data rate of 270kbit/s, combined with faster wakeup times and an optimized protocol
stack to drastically reduce power consumption [GOP12].

10

State of the Art and Related Work

2.1.3 Communication Protocols

Wireless technologies allow devices to communicate with each other, protocols give this commu-
nication of devices structure. The protocols used for machine to machine communication in this
work are briefly explained.

IPv4 & IPv6

The Internet Protocol is a communication protocol for relaying packets across network bound-
aries. It encapsulates the data with a header with containing source and destination addresses,
which allow for delivery in a worldwide network. Its first mayor release in 1981, the Internet
Protocol version 4 [Pos81a], defined a connectionless protocol for best-effort delivery on packet-
switched network. It does not provide reliability, but it provides very robust and flexible routing
within its 32 bit address space. Its most recent version, the Internet Protocol version 6, uses
128 bit addresses, and was developed by the IETF when it became apparent that the addresses
available in IPv4 were not sufficient for the rapid growth in devices connected to the internet.

Besides the larger address space IPv6 supports hierarchical address allocation which reduces
routing complexity, improves multicasting, allows for stateless address autoconfiguration and
allows for simplified extensions using extension headers. Packet fragmentation was removed,
as fragmentation and reassembly are a big source of overhead in IPv4. Instead it requires the
maximum transmission unit to be at least 1280Bytes, and has mechanisms to detect the MTU
of a connection before data transmission begins.

6LoWPAN

6LoWPAN is the abbreviation of IPv6 over Low-Power Wireless Personal Area Networks, and is
also designed by the IETF. It was developed to allow IPv6 use in low power devices, which usually
have less processing power and are using low bandwidth connections. The standard assumes usage
on IEEE 802.15.4 wireless networks. Due to the limitations of IEEE 802.15.4, most notably its
frame size limit, several modifications have to be made:

Packet fragmentation Due to the 127Byte frame size limitation of IEEE 802.15.4, standard
IPv6 packets with a minimum size of 1280Bytes cannot be transmitted
in single frames. Therefore the minimum packet size is dropped and
6LoWPAN implements an adaption layer for packet fragmentation and
reconstruction to handle bigger packets.

Header compression To improve efficiency, 6LoWPAN offers optional header compression.
This is necessary as a full 40Byte IPv6 header can use over 30% of a
frame, a number that even increases when higher-layer headers are fac-
tored in. The compression methods used can reduce the IPv6 header
down to 2Bytes in the best case, and can additionally compress the
predominant OSI-layer 4 protocols UDP, TCP and ICMP.

11

State of the Art and Related Work

Address autoconfiguration 6LoWPAN also defines how the stateless address autoconfiguration
IPv6 addresses are generated from the IEEE 802.15.4 interface ad-
dresses. Defining this algorithm aids in address compression, as re-
dundant information from frame addresses can be avoided.

In addition, the 6LoWPAN protocol stack is also optimized for code size, energy efficiency and
routing in mesh topologies.

RIME

The RIME communication stack [DÖH07] consists of a set of communication primitives. It’s goal
is to completely abstract the network technologies used from the application to allow for ease of
portability. Its primitives consist of several methods for packet transmission including unicast,
multicast and broadcast, each consisting of several variants like best-effort, reliable, identified
and polite. Depending on the underlying architecture the RIME protocol stack it either uses the
underlying protocols to provide these functions, or it emulates them. Therefore the RIME stack
cannot be easily placed on the OSI-model as it can provide layers 2-5, but may also reduce itself
to upper layers if the methods necessary are provided by underlying protocols. It does not define
headers like most communication protocols, instead packets receive a set of attributes in addition
to their data.

Underlying the RIME primitives are the chameleon header transformation modules. These de-
pend on the network implementation and are tasked with generating appropriate headers from
the packet attributes provided. With these abstraction layers communication can be abstracted
from the network itself, allowing applications on heterogeneous wireless sensor networks to com-
municate with each other.

TCP

The Transmission Control Protocol [Pos81b] is used to provide reliable data transfer on con-
nectionless networks. Before data communication can occur, connections have to be established
using a three-way handshake. After this the connection is considered open, local buffers are
allocated and data transfer can commence. All TCP messages carry a sequence number, and
uses acknowledgments to signal received packets. Should an acknowledgment fail to arrive after
a timeout, data packets automatically get retransmitted. TCP additionally provides flow and
congestion control, to prevent faster connections to overwhelm slower ones. This is done by two
mechanisms: to provide flow control the receiver transmits its window size, the number of bytes
it can currently accept within its buffer. Once this window is full the sender stops transmitting
until it receives an acknowledgment with a new window size from the receiver. To avoid conges-
tion on the network between the sender and the receiver the data rate may also be throttled if
acknowledgments fail to arrive. This is to avoid congested networks, where no control messages
could be transmitted between sender and receiver.

12

State of the Art and Related Work

To identify sending and receiving applications TCP uses port numbers. Each communicating
application associates with (at least) one local 16-bit port. Connections are identified by their
sockets, which is the combination of the source host address, source port, destination host ad-
dress and destination port. This allows a host to provide several services simultaneously, and
distinguish between different connections to the same service.

A typical TCP header uses 20Bytes of data. This can be extended by the variable length option
header up to a total length of 60Bytes, however these optional extensions are rarely used.

UDP

The User Datagram Protocol [Pos80] is a simpler protocol for transmissions. Similar to TCP it
provides port numbers (and therefore sockets) and checksums, but no handshake or congestion
control. It is designed to limit overhead for applications where fast delivery and efficiency are
more important than reliable data transfer. Therefore it only needs 8Bytes for its header.

COAP - Constrained Application Protocol

The Constrained Application Protocol is an application layer protocol for resource constrained
devices, standardized in RFC 7252 [SHB14]. It is similar to HTTP which is used for the world
wide web, however it has been optimized for a very small footprint and less resource usage, both
of processing power and bandwidth. To save on both it is based on the connectionless UDP trans-
port layer protocol, to balance resource use with reliability it contains both confirmable (which
elicit acknowledgment messages) and non-confirmable messages.

COAP allows access to resources which are identified by an URI (uniform resource identifier). If
only the host is known available resources can be discovered by accessing the defined resource
/.well-known/core in the CoRE link format [She12].

It’s main methods for interacting with resources are

GET The GET method retrieves a representation of the resource specified in the URI.

POST The data attached in a POST message gets handled by the specified resource. How
that data gets handled depends on the resource itself.

PUT This method creates a new resource at the URI, or modifies an existing one.

DELETE DELETE requests for the specified resource to be deleted.

OBSERVE This optional extension added in RFC 7641 [Har15] greatly reduces overhead for
polling changing resource. If a resource gets observed data gets sent automatically
to the observing host. These can happen either on an event-basis (e.g. triggered by
changing resources) or time-based (e.g. regular intervals).

13

State of the Art and Related Work

These methods elicit response codes consisting of 3 digits (e.g. 200 OK), which can be piggybacked
onto responding data messages. The functions GET, POST, PUT and DELETE can be mapped
easily to HTTP which allows for interoperability with HTTP resources. By using proxies it is
possible for COAP hosts to interact with HTTP hosts while locally retaining the benefits of the
reduced resource usage (fig. 2.1).

Figure 2.1: COAP to HTTP communication with proxy

OMA-LwM2M

The Lightweight Machine-To-Machine protocol of the Open Mobile Alliance (OMA-LwM2M,
[Tia12]) is a device management protocol. It defines a communication protocol between a LwM2M
server and LwM2M clients, usually resource constrained IoT devices. Clients register themselves
at a LwM2M server, and can be monitored and managed from this central location. The LwM2M
protocol is built upon COAP and uses a standardized, but extensible, resource model for device
monitoring and configuration. It is optimized for cellular or sensor networks. Several open source
implementations, so called enablers, exist and are free to use.

2.1.4 Clock Synchronization

The goal of clock synchronization is to have a single global time-base for all involved nodes. This
is especially important for distributed measurement systems, as data from multiple devices needs
to be aligned properly to be able to analyze the data. Without proper clock synchronization it is
impossible to tell if an event on another device happened before, after or at the same time as an
event measured locally. Clock synchronization protocols specify how devices exchange messages
to synchronize their independent clocks.

A clock typically uses an oscillator as a source of a constant frequency which drives a counter.
Ideally the frequency of this oscillator would be constant over an infinite time. However the
frequency real oscillators like quartz crystals may change due to influences like temperature or
aging. If multiple clocks are considered it can also not be assumed that they started counting at
the exact point in time. Therefore a clock tj in a network, in regards to a reference clock t, can
be described by

tj(t) = aj ∗ t+ bj (2.1)

14

State of the Art and Related Work

As the goal of clock synchronization is to match clocks as closely as possible to a reference clock,
an error term which should be minimized can be defined:

εj(t) = tj(t)− t (2.2)

Important terms and properties include, but are not limited to,

Accuracy The mean difference between the local, synchronized clock and the reference clock
εj . The desired accuracy is dependent on the application. Measurement of slowly
changing properties (e.g. weather temperature) might only need a synchronization
accuracy of seconds, while measurements of fast changing processes (e.g. optical
effects) might need accuracies in the nanosecond range or even better.

Precision A measure of the variability of the clock synchronization, defined as the standard
deviation of the error ε.

Jitter One of the main challenges of clock synchronization protocols. Due to any number
of influences (message delay, different routing paths, limited timestamping accuracy,
etc.) not all synchronization messages take the same amount of time from one host
to another.

Clock drift All clocks have a limited accuracy. Even if at one point two independent clocks are
perfectly synchronized, if one clock ticks slower than another, the two clocks slowly
drift apart. Therefore continuous synchronization is necessary.

Precision Time Protocol

The precision time protocol, also called IEEE 1588, is used to improve clock synchronization
accuracy in local networks. Two standards exist: PTP version 1 (IEEE 1588-2002, [IS02]) and
the improved PTP version 2 (IEEE 1588-2008, [IS08]). Nodes can be connected in an arbitrary
topology. Neighboring nodes form a master-slave relationship with a master distributing its clock
to any number of slaves. A node can fulfill both roles at the same time, synchronizing itself to its
master while distributing its clock to its slave nodes. This leads to the clock being distributed in
a tree topology, with a so-called grandmaster clock at the top.

The protocol consists of two parts:

• The Best Master Algorithm is used on every sub-network to select the most accurate clock
as the master clock.

• The Clock Synchronization, where messages are exchanged to estimate the delay on the
transmission and to accurately synchronize the slave clock to the master clock.

The highly improved accuracy comes from the fact that transmission delays are measured both
ways, which allows the protocol to compensate all symmetric delays. It is also often combined with
hardware timestamping for even higher accuracies. PTP version 2 comes with several optional
annexes, for example to compensate for clock speed differences or handle security issues. Accuracy

15

State of the Art and Related Work

has additionally been improved by the introduction of transparent clocks, network devices which
measure packet reception and transmission timestamps and include a correction term into the
transmitted packets. This allows to compensate for the delays incurred by network devices like
routers or bridges. However, the security implementation (IEEE 1588-2008 Annex K, [IS08]) has
several compromising weaknesses [TH09][MLJ+15], which are one of the main reasons for the
currently developing PTP version 3 standard.

Figure 2.2: PTP synchronization messages, [IS08]

The synchronization process can be seen in figure 2.2:

1. The PTP-Master sends a SYNC message, which gets timestamped on reception by the
PTP-Slave. The message includes a sending timestamp. However, unless special hardware
is used that can change messages while transmitting, this included timestamp is set by
software in higher layers and therefore may be inaccurate. A more accurate timestamp may
be taken on transmission and sent with the FOLLOWUP message.

2. The PTP-Master sends a FOLLOWUP message (optional). The message includes the ac-
curate timestamp of the previous SYNC message. This message type is necessary as an
accurate sending timestamp can only be taken while sending the SYNC message, and to
change the data in the timestamp field while during transmission is only possible with
special hardware.

3. The PTP-Slave sends a DELAY-REQUEST message to the PTP-Master. This message gets
timestamped both by the PTP-Slave on transmission and the PTP-Master on reception.
No FOLLOWUP is needed for DELAY-REQUEST messages as it is not necessary for the
PTP-Master to know the precise origin timestamp of the message, however the accurate
sending timestamp has to be stored locally.

16

State of the Art and Related Work

4. The PTP-Master sends a DELAY-RESPONSE message to the PTP-Slave. This message
includes the reception timestamp of the DELAY-REQUEST message.

After these four messages, assuming symmetric delays, the slave has all the information to calcu-
late the offset of his clock to the PTP-Master clock. The local clock of the slave can be expressed
by a yet unknown offset to the clock of the master. All timestamps on the slave side have to
consider this offset.

tSlave = tMaster + offset (2.3)

The reception timestamp of the SYNC message includes both the offset and the transmission
delay.

t2 = t1 + offset+ delay (2.4)

With the origin timestamp included the SYNC message or the FOLLOWUP message the sum
of the offset and the delay can be calculated. As the transmission delay cannot be negative this
provides boundaries for the offset, however no exact offset estimation can be done yet.

∆tSY NC = t2 − t1 = offset+ delay (2.5)

The DELAY-REQUEST packet gets timestamped both by the slave and the master. As the
transmission is from the slave to the master, the offset has to be substracted from t3 to be in the
frame of reference of the master (2.3).

t4 = t3 − offset+ delay (2.6)

After the DELAY-RESPONSE message the slave knows all the timestamps needed to calcu-
late its offset to the master. Because the offset effects the transmission delays ∆tSY NC and
∆tDELAY−REQ with different polarities but the delay stays positive the exact offset and the
transmission delay can be calculated.

∆tDELAY−REQ = t4 − t3 = −offset+ delay (2.7)

offset = ∆tMS =
1

2
∗ (∆tSY NC −∆tDELAY−REQ) (2.8)

delay =
1

2
∗ (∆tSY NC + ∆tDELAY−REQ) (2.9)

with

tSlave The local clock time of the PTP-Slave

tMaster The local clock time of the PTP-Master

offset The clock offset between PTP-Master and PTP-Slave

delay The transmission delay between PTP-Master and PTP-Slave

t1 The transmission timestamp of the SYNC message, by the PTP-Master clock

t2 The receiving timestamp of the SYNC message, by the PTP-Slave clock

17

State of the Art and Related Work

Figure 2.3: PTP message timestamp points [45708]

t3 The transmission timestamp of the DELAY-REQUEST message, by the PTP-Slave clock

t4 The receiving timestamp of the DELAY-REQUEST message, by the PTP-Master clock

However, this assumes that the delay is both symmetric and constant, and that both clocks run
at exactly the same frequency. Due to limited accuracy and changing conditions like transmission
interference this assumption does not hold true. This is especially problematic if the timestamp-
ing cannot be done by specialized hardware on the physical layer (point A in fig. 2.3), but has
to be done at higher layers. Chapter 4 analyzes the challenges that arise from timestamping by
software at point B, while chapter 5 provides filter strategies to keep the synchronization accuracy
high.

Network Time Protocol

The Network Time Protocol (NTP) is designed to synchronize computer systems over variable
latency packet switched networks. Its goal is to synchronize all hosts to the Coordinated Univer-
sal Time. Its current version, NTP v4, is standardized in RFC 5905 [MMBK10]. However it is
designed to be backwards compatible to NTP v3.

Time servers across the world are available to accomplish this task, organized into a hierarchical
layout segmented into strata. At the top strata 0 high precision devices like atomic clocks or
GPS synchronized devices. Directly attached to them are primary time servers at stratum 1.
It would be impossible to let the whole world synchronize directly from these devices, therefore
each following strata synchronizes with the clocks above it, distributing the load and providing
globally distributed NTP servers.

18

State of the Art and Related Work

The protocol uses a client-server model. Round trip delay measurements, timestamped via soft-
ware, to multiple clock servers are measured. Outliers are discarded and the time offset to the
server estimated from the three best sources. A modified version of Marzullos algorithm [MO83]
is used to calculate the most likely current time and estimates the confidence interval. It does
this by analyzing the overlap of the clock results and their respective confidence intervals from
each NTP server, looking for intervals which are consistent with the largest number of sources.

NTP provides clock synchronization accuracies around 10ms over the internet, and can achieve
sub-ms accuracies on local networks.

2.2 Related Work

Due to limited availability of solutions for the specific scenario, related work is presented in two
parts:

IEEE 802.11 Clock Synchronization IEEE 802.11 is the most prevalent wireless net-
work technology used, therefore a lot of work has
been done on this technology. These solutions
often offer clock synchronization with software
only timestamping, however due to the network
technology the focus is on performance instead of
power efficiency.

Wireless Mesh-Network Clock Synchronization These are optimized solutions for wireless mesh
networks, developed either for the IEEE 802.15.4
network used in this work or based on similar
technologies.

2.2.1 IEEE 802.11 Clock Synchronization

While using a different base technology than this work, IEEE 802.11 wireless networks includes
most of the same basic challenges. As 802.11 is widely used both in industry and consumer areas,
more work exists on clock synchronization in these networks. [METS17] provides a recent survey
over clock synchronization protocols and methodologies.

19

State of the Art and Related Work

Figure 2.4: Various factors affecting packet-based synchronization [METS17]

Figure 2.4 shows the path a synchronization packet has to take in a sender-receiver clock syn-
chronization protocol. The possible timestamping points for outbound packets are shown. As
the sources of jitter are cumulative timestamping farther from the physical transmission greatly
increases jitter. However it can also be seen that one source of jitter, the oscillator itself, influ-
ences all timestamping points.

The evaluated protocols are classified by several characteristics:

Architecture Whether the system uses a centralized clock source or all clients synchronize
with each other using a peer-to-peer synchronization protocol.

Operation mode Depending on which node initiates the clock synchronization protocols can
be classified as Client-Server or Master-Slave protocols.

Origin Protocols which were developed for wired networks and ported to IEEE
802.11 or protocols which were developed for the wireless technology.

Clock source Clocks can either be synchronized either to an absolute clock source such as
the Universal Coordinated Time (UTC) or just use relative synchronization
to provide a synchronous network time.

Operation principle Sender-Receiver protocols synchronize their clocks to a reference node which
sends synchronization messages, while Receiver-Receiver protocols times-
tamp received broadcast messages and then exchange their information to
synchronize with each other.

Table 2.1 shows the result of the survey of current protocols. These protocols are grouped as either
being native to/part of IEEE 802.11, or into generic protocols which have been implemented on
this technology. The solutions included in the IEEE 802.11 standard used to be solely for physical
and MAC layer operations, however they can be accessed by higher layers since IEEE 802.11-
2012. They offer high accuracy due to hardware timestamping, however they do not compensate

20

State of the Art and Related Work

Table 2.1: Summary of Clock Synchronization Solutions for IEEE 802.11 [METS17]

Description HW/SW
Propagation
Delay Calc.

Over-
head

Accuracy Precision

IEEE 802.11-based solutions

TSF Scheme HW None None 4.0µs < 1.0µs
Timing Measurement (TM) method HW Two-way None NA NA
Timing Advertisement (TA) method SW None None 0.50µs 2.50µs

non-IEEE 802.11-based solutions

TSF with virtual clocks SW None None 10.0µs NA
SyncTSF SW None None 1.8µs 0.5µs
PTP using Windows driver SW Two-way Yes 5.5µs 6.3µs
PTP using Linux driver (1) SW Two-way Yes 2.3µs 4.4µs
PTP using Linux driver (2) SW Two-way Yes 6.6µs 0.59µs

PTP with optimized
parameters in Linux

SW
Two-way with
in-device delay
compensation

Yes 59ns 0.46µs

PTP with HW timestamping (1) HW Two-way Yes 1.1ns 3.1ns

PTP with HW timestamping (2) HW
Two-way with
PHY delay
compensation

Yes 240ps 531ps

NTP with application timestamping SW Two-way Yes 0.5ms 2.39ms
NTP with driver timestamping SW Two-way Yes 2.72µs 5.27µs
Application CS with Beacons SW None None NA 150µs
LS Algorithm for CS SW Two-way Yes 35µs 15µs
Infrastructure mode-based RBS SW None Yes 0.2µs 0.18µs

for any delays incurred on the transmission path. Hardware PTP timestamping offers the highest
accuracy by far, offering synchronization accuracies and precision at least one order of magnitude
better than all other solutions. Optimizing solutions so in-device errors can be compensated also
improves performance greatly, as the Linux implementation shows. However this requires exact
measurements of these errors, which make these solutions very hardware dependent.

2.2.2 Wireless Mesh-Network Clock Synchronization

Several specialized clock synchronization protocols exist for wireless mesh networks. In addition
to the synchronization they manage the distribution of the clock in the network, as it is assumed
that not all nodes are within communication range of each other. This is especially necessary
when dealing with geographically spread out, or extremely low power sensor networks. To save
power, some protocols do not synchronize nodes until it is needed, sometimes using post-facto
synchronization after an event occurs to determine their relative offsets during measurements.
Table 2.2 gives a short overview over different synchronization protocols.

21

State of the Art and Related Work

Table 2.2: Overview over wireless synchronization protocols (Expanded from [RAK10])

Name Accuracy Basic Method Compensates HW/SW

TPSN [GKS03] 16.9µs Round Trip Delay in Sync Tree Offset only SW
TS/MS [SV03] 945µs Round trip delay and line fitting Offset & Rate SW
RBS [EGE02] 1.85µs Reference broadcast detection Offset & Rate SW
TDP [AS05] 100µs Round trip delay measurement Offset only SW
Mod. PTP [WM10] 10µs Round trip delay measurement Offset only HW

Time Synchronization Protocol for Sensor Networks

The Time Synchronization Protocol for Sensor Networks (TSPN), introduced in [GKS03] assumes
that resource constricted nodes are arranged in an extended wireless network. A symmetric link
is assumed. Direct link quality between nodes may vary and therefore multihop communication
may be necessary. Therefore it builds a synchronization tree starting at a predetermined root
node before using pairwise synchronization along that tree to synchronize nodes. Only offset cor-
rection is performed, clock rate errors which are low enough to prevent serious drifting of nodes
within the synchronization interval are assumed.

Figure 2.5: Two-way message exchange between pair of nodes [GKS03]

The protocol works in two steps:

Level Discovery Phase The root node broadcasts a level discovery packet, at his own level 0.
Neighbors which receive a level discovery packet note the functioning
connection, assign themselves to the received level plus 1, and broadcast
level discovery packets themselves. Further received level discovery pack-
ets are ignored. This leads to a flooding of the network until every node
has a level and knows its nearest parent node.

Synchronization Phase In the synchronization phase each node regularly synchronizes itself with
its parent node. This is triggered by the parent node sending a TIME
SYNC broadcast. After a random delay to avoid congestion every child
node initiates a two way message exchange of synchronization messages.
This results in a round trip delay measurement to the parent nodes 2.5.
The offset to the parent node can be calculated according to 2.10.

22

State of the Art and Related Work

offset = ∆tMS =
1

2
∗ ((T2− T1)− (T4− T3)) (2.10)

Ganeriwal et al implemented this protocol on Berkeley Motes, a wireless node optimized for ex-
periments, using a modified TinyOS to access a 4MHz timer and timestamping sent and received
packets in software. Multi-Hop networks up to 5 hops were analyzed, leading to the results in
table 2.3 over 100 measurements. While one would assume that the clock synchronization ac-
curacy would linearly increase with every hop, that is not the case. Because synchronization
errors between pairs are derived from a normal distribution, on average synchronization errors of
opposite polarity can compensate each other. This is even more pronounced with errors due to
clock rate errors, as all clock quartzes are within a limited range of the base value. Therefore, ex-
cepting quantization errors due to clock resolution, all errors due to intermediate clock rates even
themselves out. Only the clock rate errors due to the first and the last node remain. Worst case
synchronization results however do increase, as errors due to other sources can get compounded.

Table 2.3: Statistics of synchronization error over multihop (only magnitude) [GKS03]

1 hop 2 hop 3 hop 4 hop 5 hop

Average error 17.61µs 20.91µs 23.23µs 21.436µs 22.66µs
Worst case error 45.2µs 51.6µs 66.8µs 64µs 73.2µs
Best case error 0µs 0µs 2.8µs 0µs 0µs

TinySync / MiniSync

TinySync and MiniSync are two variants of the same clock synchronization algorithm presented
in [SV03]. It’s goal is to provide deterministic bounds on any clock synchronization, even when
used in networks with highly variable packet transmission times and asymmetric transmission
paths. The basic method for clock synchronization is offset line fitting over delay measurements,
automatically compensating a linear clock rate error in the process. It assumes that a sensor
node has limited resources which prevent the calculation using all known measurements. Due to
the limited amount of transmitted information and no requirements on periodic synchronization
packets, both TinySync and MiniSync may be piggybacked on application traffic. While a hierar-
chical network for multihop clock synchronization similar to TSPN is used for extended networks,
no protocol for establishing this hierarchy is included in the base protocol.

To synchronize its clock a probe message is sent from the child node to its parent, which imme-
diately replies with its current timestamp (fig. 2.6a). The child node timestamps both the sent
and the received packet. This creates a set of three timestamps to, tb, tr for each datapoint. As
these timestamps can only be created in order a set of inequalities is created.

to(t) < a12 ∗ tb(t) + b12 (2.11)

tr(t) > a12 ∗ tb(t) + b12 (2.12)

While the exact values of a12 and b12 cannot be determined, by using line fitting algorithms on
multiple measurements (fig. 2.6b) upper and lower bounds for each value can be established.

23

State of the Art and Related Work

(a) Clock synchronization (b) Linear dependence

Figure 2.6: Probe message from node 1 is immediately returned and timestamped (a), Linear dependence
and constraints imposed on a12 and b12 by three data points (b) [SV03]

As solving these inequations for every datapoint is very computationally intensive TinySync and
MiniSync offer different optimizations to this algorithm. TinySync only keeps the two datapoints
which offer the most accurate results in memory, all other datapoints are discarded. This dra-
matically reduces memory usage and computing power. However, just because a datapoint does
not improve accuracy with the currently available data does not mean that it may not improve
accuracy with future timestamps. Therefore the MiniSync algorithm only discards datapoints
which do not contain any additional information and uses line-fitting on the best available set of
2 measurements. Additionally, big improvement to both algorithms is to compensate the mini-
mum delay. If for example the minimum packet transmission time is known periods where the
packet could not have arrived at the other node can be defined. By removing minimum delay
from the uncertainty window its size is reduced dramatically, improving synchronization accuracy
almost by a factor of 5.

Experiments were carried out on a 802.11b multihop ad-hoc network, using 256Byte packets to
mimic piggybacking. Over 5000 measurements it has been shown that while suboptimal, after
an initial uncertainty TinySync results are within 0.2% of MiniSync for a single-hop environment
(1.8% for 5 hops). Table 2.4 shows the final uncertainty for both a12 and b12. It has however
to be noted that this is only the maximum possible error, unfortunately actual synchronization
accuracy was not measured.

Reference Broadcast Synchronization

Jitter of synchronization packets can be generated at three sources: at the sender, on the medium

24

State of the Art and Related Work

Table 2.4: Results for TinySync with and without data preprocessing [SV03]

Raw Data Minimum delay removed
∆a12

2
∆b12

2
∆a12

2
∆b12

2

one hop 7.133e− 07 2.0941ms 2.768e− 07 0.9457ms
five hops 5.013e− 6 17.08ms 1.167e− 06 3.239ms

and at the receiver. Reference Broadcast Synchronization (RBS, [EGE02]) fundamentally differs
from traditional sender-receiver clock synchronization protocols in the fact that it synchronizes
a set of receivers with one another. This completely removes the sender as a source of jitter.
The RBS concept requires that at least 3 nodes share a broadcast domain, it does not work on
point-to-point connections.

Figure 2.7: A critical path analysis for traditional clock synchronization protocols (left) and RBS (right)
[EGE02]

The main challenge for clock synchronization is non-determinism. There are four sources of mes-
sage latency, which together form the critical path: send time, access time, propagation time
and receive time. RBS dramatically shortens the critical path by having nodes periodically send
broadcast packets which get timestamped by all receivers on reception 2.7. These packets do
not have to contain timestamps. Afterwards the receivers share their local reception timestamps.
Limiting the timestamping to reception removes the send time and the access time as sources of
non-deterministic errors. On a shared medium propagation speed can be assumed to be very high
(c for wireless links, 2

3c for wired connections), which means that even multipath propagation will
not result in significant jitter. Therefore only the receive time remains as the main source of jitter.

With the information of multiple such broadcasts this allows nodes to calculate their offset and
their clock rate difference to all other nodes in the broadcast domain. This was done by calculating
the best linear fit line of all the available data after rejection of outliers. This is shown in fig.
2.8a by using x = Tr1,k and y = Tr2,k − Tr1,k for each broadcast. By timestamping the packets
on Berkeley Motes in the reception interrupt RBS reached accuracies of 11µs. However only the
timestamp collection was done on the nodes itself, the computation for the clock synchronization
was done in simulations afterwards. By using multiple broadcasting nodes this method can be
extended to multihop networks (fig. 2.8b).

To prove the advantages of RBS are not dependent on the platform used Elson et al implemented
RBS in Linux, allowing for comparison with NTP. The timestamping itself was done at the

25

State of the Art and Related Work

(a) Clock synchronization (b) Multihop topology

Figure 2.8: An analysis of clock rate effect on RBS. Each point represents the phase offset between two
nodes as implied by the value of their clocks after receiving a reference broadcast. (a), a
more complex 3-hop multihop network topology (b) [EGE02]

Table 2.5: Synchronization error for RBS and NTP between two Compaq IPAQ using 802.11 [EGE02]

Load Protocol Mean Error Std Dev 50% Bound 95% Bound 99% Bound

Light RBS 6.29µs 6.45µs 4.22µs 20.53µs 29.61µs
Light NTP 51.18µs 53.30µs 42.52µs 131.20µs 313.64µs

Heavy RBS 8.44µs 9.37µs 5.86µs 28.53µs 48.61µs
Heavy NTP 1542.27µs 1192.53µs 1271.38µs 3888.79µs 5577.82µs

reception interrupt before the packet is transferred from the NIC, which significantly reduces
jitter and is a standard feature of the Linux kernel. The results in table 2.5 conclusively show
the resilience of RBS against most error sources.

26

3 System Overview

Figure 3.1: Basic system overview

The basic system design is in accordance with the ARROWHEAD framework (fig. 3.1). In it’s
basic configuration the goal is to provide a distributed voltage measurement system. The system
is split into 2 networks: a 6LoWPAN network consisting of several measurement nodes, and a
network for the local ARROWHEAD cloud where the core services and the service consumer
reside. The two networks are connected by a node which acts as a router and additionally offers
clock synchronization in the 6LoWPAN network.

First the initial design decisions which led to component selections (both hard- and software)
are briefly discussed, then the hardware platform (both commercially available and custom built
components) are described. After this introduction the system is described in detail, outlining
use-cases for the complete system and giving details of the inner workings of each component.

27

System Overview

3.1 Initial design decisions

Several major decisions had to be made initially to design the distributed system. Decisions on
a hardware platform and operating systems are necessary before any implementation can take
place. This section documents the reasoning for these initial decisions. The implementation itself
was a circular process, with both measurements and experiments leading to increased familiarity
with the platform and the discovery of limitations, which in turn influenced the structure of the
software.

Hardware platform

There exists a multitude of hardware platforms for embedded systems. Due to different wireless
standards (e.g. Zigbee, 6LoWPAN, WLAN), operating systems (minimal ones like TinyOS, to
IoT optimized systems like RIOT and CONTIKI, to full LINUX and Windows Embedded), pro-
cessing power, etc. a great range of possible hardware platforms was available.

One platform that stood out was the MULLE platform [JVE+04] v2, which was developed by
Eistec, a business spinoff of the Lule̊a University of Technology, which is very active in the AR-
ROWHEAD project. Due to this connection this was the only platform which provided software
support for the ARROWHEAD framework at the beginning of this thesis, with the supporting
functions expected to grow as the ARROWHEAD framework develops. As usage of the AR-
ROWHEAD framework was a constraint on the measurement system, this platform was chosen.
For details on the MULLE see section 3.2.1.

To connect the 6LoWPAN network to external networks a Raspberry Pi 3 was chosen. This Linux
based single board computer includes interfaces which can connect to the MULLE, to wired and
to wireless LAN networks. As this component was periphery to the whole system, familiarity of
the author with Raspberry Pi computers was the deciding factor to reduce development time.

Operating system

The MULLE platform supports two operating systems:

CONTIKI CONTIKI [DGV04] is an operating system for low-power wireless devices, optimized
for Internet of Things devices. It also offers a network simulator called COOJA.

RIOT RIOT [BHG+13] is based on a microkernel architecture, optimized for a tiny footprint
and real time abilities. It allows full C and C++ application programs and provides
multithreading capabilities.

28

System Overview

While the MULLE platform is an official platform for the RIOT operating system, most of the
available software environment is only available for CONTIKI. As the MULLE platform was
chosen to make use of the available software environment the RIOT operating system was no
valid choice, even if its design methodology of a real-time system through and through would
make it slightly better suited for synchronized measurement systems.

Network layer protocol

The CONTIKI operating system supports two main network layer protocols:

RIME RIME is a lightweight communication stack for wireless mesh networks [DÖH07].

6LoWPAN IPv6 over low power wireless personal area network [MKHC07], which is a modified
IPv6 implementation supporting header compression, fragmentation and routing in
mesh networks.

For a local sensor network only RIME would be a very efficient protocol, however due to the
service oriented nature of the ARROWHEAD framework global routing needs to be possible. To
accomplish this a lot of overhead, e.g. IPv6 encapsulation on RIME, would be necessary, negating
the benefits the protocol offers. Therefore 6LoWPAN, implemented in the uIP stack, was chosen
as the main network protocol.
This decision however sacrificed the available time synchronization implementation for RIME
[CON12]. However, as this synchronization was based on single direction clock updates, imple-
mented by appending timestamps to all outgoing packets, its accuracy was too limited for the
sub-ms synchronization needed.

Synchronization protocol

Under the assumption that all nodes are within communication range of each other, which can be
assumed in the proposed measurement application at AVL List, the general purpose clock synchro-
nization protocol PTP was chosen because it offered high synchronization accuracy, portability
and relative ease of implementation. As the underlying principle of most mesh clock synchroniza-
tion protocols (excepting the ones using special properties of the transmission like beacons) is the
round-trip delay measurement, any knowledge gained using this general principle is applicable to
other generic protocols.

The point of timestamping was chosen to be as close to the hardware as possible, without di-
rectly reprogramming the hardware itself. The point of using off-the-shelf hardware would have
been lost if the radio driver would need to be completely rewritten. This would also make the
implementation completely hardware dependent. Therefore it was decided to timestamp at the
interface between the radio driver and the uIP network protocol stack, allowing for portability to
any system using the CONTIKI operating system.

29

System Overview

(a) MULLE (b) MULLE programming board

Figure 3.2: MULLE platform and programming board

Application protocol stack

Due to the developing nature of ARROWHEAD, only a partial environment was available while
this work was being developed. However the ARROWHEAD framework can be used to tie differ-
ent technologies together, managing the system. Service Registration and Discovery according to
ARROWHEAD was implemented, however the applications it connected were using the OMA-
LWM2M protocol. To limit resource use on the MULLE nodes a COAP to DNS-SD bridge was
installed on the router, which meant that apart from PTP traffic all data packets were using the
COAP stack.

3.2 Hardware

As the hardware platform influences many aspects of the project, a quick overview of the MULLE
platform is presented below. The extensibility of the MULLE platform was further used to create
an interface board for voltage measurements as its ADCs were not designed for 230Veff input
voltages.

3.2.1 MULLE platform

The MULLE platform [JVE+04] (fig. 3.2a) is an miniature embedded internet system. It includes
a microcontroller fast enough to run a web server, 6LoWPAN communication, several sensors and
a power supply. A battery is not included by default, however it can be easily connected. A board
edge connector allows easy access to its interface. Due to its very small form factor it eases refit-
ting, as the whole platform may even be placed within an existing enclosure.

The MULLE platforms main features are:

30

System Overview

• ARM Cortex-M4 100MHz microcontroller with 512KByte flash and 128KByte RAM

• 2MByte flash memory

• IEEE 802.15.4 868MHz transceiver using 6LoWPAN or RIME

• microUSB connector

• LIS3DH 3-axis accelerometer

• Expansion header with 4x UART, 2x I2C, 2x SPI, 2x CAN, USB-OTG, 18x ADC, 1x DAC
and 42x GPIO pins

• On-Board voltage regulator

• ABS06 RTC quartz with 10ppm accuracy

• Compact design of 20.5x34x5.5mm

• Support for multiple IoT technologies, including ARROWHEAD.

It comes with an optional programmer board (fig. 3.2b), which is necessary unless an USB
bootloader is installed. The programmer board also offers a full pinout of the extension header
and allows debugging via USB or JTAG.

3.2.2 Extension board

(a) Foto

 1

 5

 9

13

17

21

25

29

33

37

41

45

49

53

57

3

7

11

15

19

23

27

31

35

39

43

47

51

55

59

 2

 6

10

14

18

22

26

30

34

38

42

46

50

54

58

4

8

12

16

20

24

28

32

36

40

44

48

52

56

60

R
E

S
E

T

1

60
2

R2

R
3

R4

C2

R
5

R
6

JP
2

JP
3

JP4

D1

B1

LE
D

1

LE
D

2

LE
D

3

R7 R8 R9

C3

U
$1

R
10

R
11

R
12

R
13

R14

R
15

R16

C
1

R
17R
18

JP5

D2

B2

C4

S
1

S
2

R
19

R20

R21

R
1

R
22

R
23

JP1

C5

C6

(b) Top

1

5

9

13

17

21

25

29

33

37

41

45

49

53

57

3

7

11

15

19

23

27

31

35

39

43

47

51

55

59

2

6

10

14

18

22

26

30

34

38

42

46

50

54

58

4

8

12

16

20

24

28

32

36

40

44

48

52

56

60

(c) Bot

Figure 3.3: MULLE extension board after assembly (a), Layout top (b) and bottom (c)

To allow 230Veff voltage measurements an extension board for the MULLE was designed and
produced, as the programmer board would not withstand such voltages without external voltage
level adjustments. As the programmer board additionally proved too expensive to provide for
multiple nodes a full extension board instead of a plug-in board was designed. The extension
board provided the following features:

31

System Overview

• 1 MULLE extension connector, to plug in the small MULLE board.

• 2 measurement inputs for 230Veff inputs, rectified and scaled to a maximum of 2.2V for
the MULLE ADC inputs. Optionally they can also act as low-pass filters, easing voltage
maximum measurements.

• 1 reset button

• 1 user button to control applications

• 3 status LEDs in the colors red, orange and yellow

• 1 USB connector, which can be used for power supply

• Full pinout of the MULLE for unforeseen applications

3.3 System description

Figure 3.4: Overview of communication in the distributed test system

Figure 3.4 gives an overview of the different components communicating within the full test
implementation. Each block represents a hardware component with different applications running
on it. The arrows represent the communication path between these applications, detailing the
protocols used for this communication. The components, from left to right, are as follows:

32

System Overview

MULLE Client The MULLE platform in Client configuration. This includes ARROWHEAD
registration, measurement and configuration resources and a PTP Client. The
MULLE Client communicates via 6LoWPAN to the MULLE-Master. Up to 5
clients were tested simultaneously. See 3.3.1 for details.

MULLE Master The MULLE platform in Master configuration. This includes acting as a router,
forwarding packets to the RaspberryPi with a wired SLIP connection, and acting
as a PTP Master for the 6LoWPAN network. See 3.3.2 for details.

RaspberryPi The Raspberry Pi forms the second half of the routing pair, connecting the
6LoWPAN network to a classical 802.11 wireless network. Being advertised as
a router it also provides an easily found COAP interface to the service discovery
on the arrowhead server.

Ubuntu A PC running end user software, most notably a Leshan OMA-LWM2M server
that is using the ARROWHEAD service discovery to find measurement nodes,
connects to them via COAP and stores the measurement results in a MySQL
database.

Server A PC running the ARROWHEAD CENTOS distribution, running a DNS-SD
based service discovery server.

Debug PC During development several debug tools were used to verify the system over the
network.

During operation, any nodes can register their services at the ARROWHEAD service discovery.
The Leshan server periodically searches the service registry for MULLE measurement devices,
and connects to them if new ones are found. The MULLE Clients, synchronized via PTP from
the MULLE Master, provide their measurement data, which gets stored in a MySQL database
for further use.

With this many interacting entities it is important to distinguish between parts which were
available, and which had to be implemented during this thesis. The following notations are used
in table 3.1:

Available The software/hardware was already available and had to be configured for the system.

Modified The software/hardware was already available, but had to be modified significantly.
Check the appropriate chapter for details.

Created The software/hardware had to be created by the author of this thesis.

33

System Overview

Table 3.1: Origin of entities

Name Status Chapter

Hardware

MULLE platform Available 3.2.1
MULLE programmer Available 3.2.1
MULLE extension Created 3.2.2

Software

CONTIKI Available
PTP Created 3.3.1, 3.3.2
Distributed measurement Created 3.3.1
Border Router Available 3.3.2
Tunslip Available 3.3.3
Simple Service Discovery Available/Modified 3.3.3
Leshan Modified 3.3.4
MySQL Available 3.3.4
Service Discovery Available 3.3.5

34

System Overview

3.3.1 MULLE Client

Figure 3.5: Internal dataflow of the MULLE client

The goal of the MULLE Client is to measure voltages across the network in a synchronized way,
and offer these as a service. To do this several software components are needed, figure 3.5 gives
an overview of the MULLE Client implementation. These are split into four running processes.
Several system drivers are also shown in the center.

PTP Client The Precision Time Protocol Client implementation handles the syn-
chronization of the internal RTC clock with the PTP Master. It is also
connected on a very low level to the radio chip driver to timestamp in-
and outgoing PTP packets.

Distributed measurement The measurement application for distributed synchronized voltage mea-
surement across the network.

35

System Overview

COAP & REST engine Decodes COAP messages and handles RESTful resources. In addition
to the custom measurement resources it manages multiple standard
RESTful resources and server registration used for the OMA-LWM2M
communication.

uIP stack The small IPv6 implementation available on CONTIKI

RF2330bb driver The low-level hardware driver of the radio transceiver on the MULLE
platform.

Not pictured Network initialization and router discovery process.

PTP Client

Figure 3.6: PTP timestamping

Because the uIP communication stack implemented in CONTIKI does not offer timestamping
support, and also has a non-deterministic delay built into it, timestamping packets had to cir-
cumvent the hierarchical structure to occur on the lowest level possible, the RF2330bb radio driver
(fig. 3.6). As the MAC layer was implemented in the RF2330bb chip itself, this meant times-
tamping happens at the interface between the MAC layer and the uIP network layer. First, all
packets are timestamped to provide a single common point before any branching occurs. Packets
of an appropriate length (120Bytes for single-cast, 76Bytes for multicast) are checked if they are
PTP packets. Then the PTP-packet number and the packet timestamp are saved in a ringbuffer.
Afterwards the packet is passed on to the uIP stack for received packets, or to the RF2330bb
radio for outgoing packets. If the PTP Client subprocess at the application layer later determines
that the timestamp information is necessary it can retrieve it with the PTP-packet number from
the ringbuffer. This way the timestamping algorithm is almost hardware platform independent,
only a few lines have to be inserted at the interface between the radio driver and the uIP stack.

The handling of the PTP messages is split into four distinct parts (see fig. 3.5):

36

System Overview

PTP Timestamping The low-level timestamping process, storing tags in a ringbuffer

PTP Client The message handling process, processes received PTP packets and period-
ically transmits DELAY-REQUEST packets. By itself PTP Client sends
out DELAY-REQUEST unicast packets to the PTP Master every 4 seconds
(PTP-standard). While SYNC and DELAY-RESPONSE packets are pro-
cessed immediately, the clock offset of the internal RTC clock to the PTP
Master is calculated at every FOLLOWUP packet. During this calculation
the data is filtered to deal with jitter, interference, timestamping errors and
RTC clock drift.

PTP Filter Applies filter algorithms to the clock synchronization, removing jitter and
measurement errors. Several filter algorithms were implemented and evalu-
ated, they are discussed in section 5.3.

PTP ISR This background task gets synchronized with each PTP packet. To allow
external evaluation of the synchronization, a square voltage signal can be
activated. The toggling of this signal gets shifted according to the measured
time difference between the PTP Master and the PTP Slave, allowing to
compare the synchronized signal with one generated by the PTP Master by
measuring it with an oscilloscope. Alternatively, external tasks can register
themselves to be triggered at specific points in time.

Distributed Measurement

Figure 3.7: Flowchart of the Registration of MULLE

The Distributed Measurement ties all the parts together for a measurement solution. It handles
the registration of the MULLE Client at the ARROWHEAD Service Discovery, sending its basic
properties (name, IP address, port, type) XML-Encoded as a COAP POST to the CROSSCOAP
interface. In addition it provides 2 dedicated resources:

• A configuration resource, which triggers the connection of the REST engine to an OMA-
LWM2M server if a server IP address is received.

37

System Overview

• A measurement resource, which measures the ADC voltage in defined bursts and stores
them in a ringbuffer. A burst measurement consists of 16 voltage measurements, equally
distributed within a 21ms window. The measurement bursts start time and interval between
bursts can be configured remotely by a configuration message, and the measured data can
either be read by COAP GET packets or simply OBSERVED for regular updates.

3.3.2 MULLE Master

Figure 3.8: Internal dataflow of the MULLE Master

The MULLE Master was implemented very similar to the MULLE Client configuration. However,
as the performance of the router affects the whole measurement system, no non-critical tasks were
implemented on the MULLE Master. This means that only the PTP Master and the border router
processes are active.

PTP Master

As the PTP Master only differs from the PTP Client (section 3.3.1) in its configuration, the sys-
tem is implemented in the same way (fig. 3.8). However, as its RTC is the reference clock for the
network no filtering of PTP data is necessary. The PTP Master regularly sends out SYNC and
FOLLOW-UP packets to the local multicast group. A synchronization interval of 1.1 seconds was

38

System Overview

chosen instead of the standard 1s PTP interval because it might encounter the same interference
from other processes using the network, as multiples or fractions of a second are very common for
a lot of processes. Offsetting the interval slightly allows the interference to be filtered out over
multiple SYNC intervals.

If the PTP Master receives a DELAY-REQUEST packet, it immediately replies with a DELAY-
RESPONSE packet including the receiving timestamp of the DELAY-REQUEST packet.

A background interrupt task which generates a square voltage signal has been implemented.
This signal is tied to the PTP Master internal clock and used for external evaluation of the
synchronization.

Border router

The border router process connects the 6LoWPAN measurement network to external networks,
allowing global routing to and from the network. Any packets needing to cross boundaries get
appropriate headers for their destination (6LoWPAN or IPv6) and are forwarded to the respective
interface.

The MULLE Master is connected to the Raspberry PI via an UART connection using the SLIP
(Serial Line IP) protocol [Rom88]. This protocol encapsulates IP packets for serial lines, and uses
very little overhead. Therefore it is still widely used on microcontrollers. This allows routing any
packets to and from an external network using the CONTIKI border router process.

3.3.3 Raspberry Pi Router

The main function of the Raspberry Pi is to forward packets to and from the 6LoWPAN net-
work. Its full Ubuntu implementation however made it a convenient point to provide translation
services which would have used extra resources on the CONTIKI operating system and to collect
debugging data via Wireshark [Com16] as all packets going through can easily be examined.

Router

By using the Tunslip tool from CONTIKI a virtual network adapter using the SLIP protocol is
created. This completes the connection by the MULLE Master border router process (3.3.2). By
changing the network configuration in Raspbian, the Linux version running on the Raspberry Pi,
routing between the SLIP interface and the external Ethernet network is activated.

Simple Service Discovery

The Simple Service Discovery [Mon16], provided by the ARROWHEAD framework, is a JAVA
program that offers a bridge between COAP or HTTP packets and the DNS-SD service discovery

39

System Overview

system. Requests are on ports 8045 (HTTP) or 5680 (COAP), and responses from the service
discovery are sent back to the originating IP. This allows small hosts like microcontrollers to save
on program code by just using a single protocol stack. The Simple Service Discovery was placed
on the Raspberry Pi as all traffic to the service discovery is routed through this node anyways,
and as the router the IP is automatically known by all other nodes.

However, lack of documentation of the required COAP message structure prevented the use of
this part. As the JAVA program crashed immediately if a malformed COAP packet arrived. With
no source code available and the possibility for malformed packets due to transmission errors on
the wireless 6LoWPAN network it was decided to only use the stable HTTP interface. However,
to keep the benefit of simplifying the code on the microcontrollers, CROSSCOAP [IBM16] was
used to provide a local COAP to HTTP bridge. While this implementation adds some extra delay
to any connection as two protocol translations are happening, these packets are not time-critical
and it greatly eases development on the microcontrollers.

3.3.4 Leshan Server

Figure 3.9: Internal dataflow of the LESHAN server

40

System Overview

LESHAN [Ecl16] is a JAVA implementation of the OMA-LWM2M protocol, based on the CALI-
FORNIUM COAP implementation. Both servers and clients are available, and can be modified
to suit the application. The LESHAN server acts both as a management server and a service
consumer in the ARROWHEAD network. It’s main tasks are:

• Maintain a list of active MULLE nodes. To do this the service discovery is scanned at
periodic intervals for registered MULLE nodes.

• Connect to all active MULLE nodes to perform measurements. Observe appropriate re-
sources to keep the overhead low.

• Save measurement data in a MySQL database.

• Maintain a clean service registry. This means to unregister any nodes which have stopped
responding (e.g. due to power failure) after a certain timeout. The alternative, using a short
time to live (TTL) period at the DNS-SD server to automatically remove the node there,
was discarded. A TTL-solution at the DNS-SD server would need to be renewed before the
entry expires, and for dynamic behavior of the system a short TTL is desired. This would
create a lot of overhead. Because the LESHAN server regularly receives measurement data
packets it can detect failure without any data overhead and within a short timeframe.

Figure 3.10: Tilt measurement of the MULLE, with history

Three different application scenarios were implemented:

Raw PTP data In this mode, raw PTP data is collected continuously and stored in the
database. The collected data includes the timestamp differences of the
SYNC and the DELAY-REQUEST messages (eq. 2.5 and 2.7) as well as
the calculated clock offset between the PTP Client and the PTP Master.
This made it possible to analyze raw PTP data in MATLAB, identify chal-
lenges (e.g. 4.3) and provide real data for filter development in MATLAB
(section 5).

41

System Overview

Voltage measurement During the synchronized voltage measurement each node sends the data
gathered during a 20ms burst measurement each second. The data consists
of 16 voltage measurements with their timestamps for each node. The Le-
shan server configures the nodes by selecting the measurement timestamp
and frequency, which is distributed to all nodes. By calculating the zero
crossing timestamp for each measuring node, the PTP synchronization ac-
curacy can be estimated (section 6.1.3). Each measurement cycle will be
displayed in a line plot (fig. 6.4) and saved in the MySQL database.

Tilt measurement For demo purposes and to test the service discovery, a tilt sensor appli-
cation was also developed. In this mode each MULLE node measures its
tilt by using the built-in accelerometer, and the data will be displayed in
a separate XY-plot for each connected node (fig. 3.10).

Figure 3.11: Flowchart of the Service Discovery

During start up, the Leshan server connects to the local MySQL database, and registers itself
with the ARROWHEAD service discovery. Then it periodically requests a list of all registered
MULLE Clients from the ARROWHEAD server. If a new client is found, the Leshan server
sends a registration request to the MULLE Client. With the IP of the server now known, the
MULLE Client registers at the Leshan Server. Once the registration is complete, the Leshan
server requests to OBSERVE the appropriate MULLE measurement resource. The observed
resource sends its data periodically to the Leshan server, which stores the data in a local MySQL
database for future use.
Should a MULLE Client stop sending measurements, the Leshan server will remove it from the
service registry after a short timeout.

42

System Overview

3.3.5 ARROWHEAD Server

Figure 3.12: Registration of a MULLE node

The ARROWHEAD server consists of a CENTOS 6.4 Linux version, running a DNS server with
service discovery extensions. By using the DNS-SD protocol, services can be registered, queried
or removed from the local registry. Properties are organized using XML, and queries can filter
by any properties. For each service the following top level tags are used:

domain The domain under which the service is available.

host The host name or IP address of the service.

name The name of the service. May be generated from different properties.

port The TCP or UDP port.

type The type of the service. Also includes the basic protocol required like udp or tcp.

properties A service might use additional properties to properly define itself. Here an arbitrary
number of < property > tags may be listed.

As this server was also accessible from the rest of the internet under jmavl.ddns.net, the security
configuration was tightened. The main improvement was a whitelist, only allowing local IP
addresses to create DNS entrys and to start recursive querys.

43

4 Challenges of Software based clock
synchronization

In this section challenges that only occur in software based time synchronization are discussed.
First the problems will be described as it can affect all software based solutions, then additional
details of how it affects the MULLE platform used will be given.

There are several areas where the synchronization uncertainty of a IEEE 1588 system can originate
[FFR+11]:

• Uncertainty of the master clock

• Ability to select the best master clock

• Ability to distribute the master clock among nodes

• Ability of slaves to follow the master clock

In the implemented system the router is set as the best master clock by default, and this clock is
assumed to be accurate. While this assumption only holds true within limits, as the router does
not perform any additional tasks its RTC is the most stable within the system. This is described
in detail in 4.3.

The ability to distribute the master clock among nodes can be influenced at several areas, each
contributing to the jitter of the timestamps[FFR+11]:

• The timestamping capability of the master

• The timestamping capability of the slave

• The timestamping capability of the infrastructure

• Variability and asymmetric behavior of frame propagation delay.

While the timestamping capability of the master works well, timestamping at a slave can be
influenced by non-interruptable tasks 4.3. As this work limits itself to a single-hop environment,
no transparent clocks are available and therefore no effects of infrastructure exist. However, due

44

Challenges of Software based clock synchronization

to the shared medium there is a non-deterministic variability to the frame propagation delay that
is dependent on the network usage that is analyzed in 4.4. In addition, due to 6LoWPAN header
compression asymmetric behavior exists 4.2.

The ability of the slaves to follow the master clock can be estimated by the accuracy of the RTC
quartz crystals. The ABS06 quartz used has an accuracy of ±10ppm, which of course effects
both the PTP master clock and the PTP slave clock, resulting in a relative worst case accuracy
of ±20ppm.

4.1 Influence of timestamping point

The accuracy of the packet timestamping process is crucial for the accuracy of the synchroniza-
tion. Timestamping should happen as close to the actual transmission as possible, as this results
in less processes that can interfere with the timestamping. However this includes a tradeoff as
these timestamping processes are platform dependent and therefore work against portability.

Figure 4.1: Timestamping points

The following timestamping points are available, beginning with the possibility closest to the
transmission itself:

1. hardware Timestamping is done by specialized hardware in the transceiver
at a defined point of the packet, both for sending and receiving

45

Challenges of Software based clock synchronization

packets. This allows for accurate timestamping without any inter-
ference both from other software (4.3) or the network (4.4). Due
to the defined timestamping point this also results in independence
from asymmetric message length (4.2)

2. external interrupt Some transceivers (including the RF2330bb used in the MULLE
platform), while not having specialized timestamping hardware do
have external interrupt lines which can be configured to trigger
at specific points, e.g. ”packet transmitted” and ”packet received”.
These may be used to trigger external software timestamping in the
CPU, therefore moving the timestamping point below the MAC
layer included in the transceiver. This prevents the interference
of the network (4.4), however interference from non-interruptable
software (4.3) will still apply. This external interrupt line will be
connected to the CPU in the next version of the MULLE platform.

3. software low level Timestamping happens at the interface between the uIP stack and
the MAC layer included in the external transceiver. This represents
the most accurate option available with the current hardware, and
is analyzed in detail in chapters 4 and 5.

4. software application layer Timestamping happens at the application layer. This method is
the easiest to port to different systems because the synchronization
software is far removed from the hardware used, however in addi-
tion to the errors previously analyzed both the uIP stack and all
other processes, not just non-interruptable tasks, will interfere with
timestamping in a non-deterministic way.

4.2 Offset due to asymmetric packet compression

Figure 4.2: Effect of different packet lengths

The transmission delay compensation of PTP assumes that transmission delays are symmetrical
between the PTP Master and the PTP Client. However, even with the same hardware, drivers
and transmission path this does not have to hold true due to differing packet length. This dis-
crepancy exists because SYNC packets from the PTP Master are sent out as multicast packets
to the local multicast group FF02::0181, while the DELAY-REQUEST packets from the client
are sent as unicast packets. Due to the header compression that 6LoWPAN uses (specified in
RFC6282 [TH11]), the multicast header can be compressed better than an unicast. This is a
result of the short number of relevant bits in the multicast group address.

46

Challenges of Software based clock synchronization

Figure 4.2 shows the offset error when timestamping occurs right at the beginning of the trans-
mission to the RF-chip, and right after a packet has been received from the RF chip. The bit
rates for the connections CPU-radio and for the RF-link are assumed to be the same, the delay
in the uIP stack is non-deterministic. The difference occurs in three places: first when the packet
is transmitted from the CPU to the radio chip and buffered there, second when the packet is
transmitted to the radio chip and buffered there and a third time when the data is transmitted
from the radio chip to the receiving CPU. This offset increases the farther from the hardware the
timestamping happens.

∆delay = (lengthSY NC − lengthDELAY−REQ) ∗ (
1

BWCPU−RF
+

1

BWRF
+

1

BWRF−CPU
) (4.1)

with

∆delay The error in the delay measurement

lengthSY NC The length of the SYNC packet in bits

lengthDELAY−REQ The length of the DELAY-REQUEST packet in bits

BWCPU−RF The bandwidth from the CPU to the RF-Chip in bits per second

BWRF The bandwidth of the RF-channel in bits per second

BWRF−CPU The bandwidth from the RF-Chip to the CPU in bits per second

Because of the way PTP compensates for transmission delays (Equation 2.8) this results in a
synchronization error of

∆t =
∆delay

2
=
lengthSY NC − lengthDELAY−REQ

2
∗ (

1

BWCPU−RF
+

1

BWRF
+

1

BWRF−CPU
)

(4.2)

This error does not occur with hardware timestamping if both sender and receiver timestamp
at the same place (beginning or end of the packet transmission) unless a buffering router or
switch exists on the transmission path. A simple solution would be to force disable the header
compression on all PTP-related packets, however this is not recommended as it would lead to
increased overhead on the network. Because networks that use compression usually have limited
bandwidth this could lead to increased conflicts. As this error is a static offset that can be
calculated beforehand it is far more efficient to compensate the asymmetry in software.

47

Challenges of Software based clock synchronization

Table 4.1: Communication delays on the MULLE

Communication Path Speed time SYNC time DELAY-REQUEST Difference
76Byte 120Byte 44Byte

K60 CPU - RF2330bb radio 6.076Mbps 100, 1µs 158µs 57, 93µs
6LoWPAN radio 100kbps 6080µs 9600µs 3520µs

K60 CPU - RF2330bb radio 6.076Mbps 100, 1µs 158µs 57, 93µs

Total 6280µs 9916µs 3636µs

Specific to the MULLE Platform

On the MULLE platform this offset error could be measured. The header compression for unicast
is turned off by default, while multicast packets are compressed. This results in a SYNC packet
length of 76Bytes, while the DELAY-REQUEST is sent as a unicast packet with 120Bytes, lead-
ing to an asymmetry of 44Bytes.

With the data rates the MULLE platform operates at (SPI-Connection 7.5Mbps with a 250ns
delay after each Byte, effective 6.076Mbps, 100kbps on the 6LoWPAN Connection) the resulting
delay difference is 3, 636ms, resulting in a static error offset of 1.818ms. A hardware interrupt
might be possible from the RF2330bb, however the pin that is used for the timestamping inter-
rupt is not connected in the current version of the MULLE platform. This change is planned by
the hardware manufacturer in the third version.

During experiments (section 6.1.1) a static offset error of 59RTC − Ticks = 1.8ms has been
measured, which is within 1 RTC-Clock LSB of the expected result. This value was obtained by
having both the PTP Master and the PTP Slave output a synchronized 16Hz rectangle signal
and measuring the average time difference between the nodes with an oscilloscope. Then a static
asymmetry correction factor was introduced, which brought the signals into sync. The asymme-
try had to be measured by external means as [FGK11] Theorem 1 proves that the asymmetry
cannot be measured by pairwise round-trip measurements.

While this is a worst case (uncompressed unicast vs. compressed multicast), this confirms the
correctness of the assumptions. The error is reduced by activating header compression for the
whole CONTIKI system, but the fact remains that the FF02::0181 multicast address will always
compress better than an unicast address. With a delay difference of 82, 63µs per Byte any length
difference remains relevant.

4.3 Interference from periodic, non-interruptable tasks

Periodic, non-interruptable tasks can present a problem for software clock synchronization. If a
SYNC-packet is received during a phase where the processor cannot be interrupted, the packet can
only be timestamped once the task ends. This adds a significant positive error to the timestamp,

48

Challenges of Software based clock synchronization

Figure 4.3: Measuring synchronization asymmetry with oscilloscope

and therefore to the synchronization. Fig. 4.4 illustrates this for a fixed-length non-interruptable
task

Figure 4.4: Non-interruptable task vs SYNC

with the period P and length L. The possible conflict with the SYNC-packets arriving with an
interval of K is clearly visible. To mathematically describe this conflict the conditions

n,m ∈ N, P,K > L (4.3)

m ∗ P ≤ n ∗K < m ∗ P + L (4.4)

have to be defined. For simplicity of the equations a common origin time for both the non-
interruptable task and the SYNC interval is assumed at t0 = 0. This can be refactored into

0 ≤ n ∗K −m ∗ P < L (4.5)

With these conditions it is possible to solve for

m = bn ∗ K
P
c (4.6)

49

Challenges of Software based clock synchronization

leading to a resulting synchronization packet timestamp

tSY NC(n) =

{
bn ∗ KP c ∗ P + L if (n ∗K) mod P < L

n ∗K otherwise
(4.7)

.

This results in a periodic error pattern which can be seen in Fig. 4.5. Because of the dis-
crete nature of the equation multiple error-patterns can overlap, with one conflict occurring
at the beginning of L and another at the end. The values chosen for this simulation are
P = 10000, L = 1016,K = 35842, which corresponds to the measurement of this error in section
4.3.

0.64 0.8067 0.9733 1.14 1.3067 1.4733 1.64

x 10
7

−50

150

350

550

750
Simulation timestamping with non−interruptable periodic task

R
X

T
im

es
ta
m
p
(T

ic
k
s)

Internal RTC Clock (Ticks)

Figure 4.5: Non-interruptable task vs SYNC simulation

Specific to the MULLE Platform

A peculiarity of the MULLE platform is that the real time clock becomes unstable if it is used to
generate interrupt timings where the last 9 Bits of the RTC are used. In this case the accuracy
of the RTC clock to the reference clock in the PTP Master is reduced from 7ppm to 0.6%. This
seems to be a side-effect of the RTC-implementation of CONTIKI, which uses a 512 tick grid
[CON16] to avoid scheduling conflicts. This is especially problematic because this clock drift is
unstable, depending on the number of interrupts called and their position. Therefore these states
were avoided by only triggering interrupts on exact RTC multiples of 512 and delaying inside
the interrupt until the desired clock position has been reached. However, this adds a dynamic
component LD to the length of the non-interruptable task (Fig. 4.6) before the desired execution
point of m ∗ P .

50

Challenges of Software based clock synchronization

Figure 4.6: Non-interruptable task with dynamic component vs SYNC

To calculate the offset errors equation (4.7) can be expanded to include the new dynamic length
of the interrupt. The new dynamic interference condition can be described by

n,m ∈ N, P > L, P > 512 (4.8)

m ∗ P − LD ≤ n ∗K < m ∗ P (4.9)

0 ≤ m ∗ P − n ∗K < LD (4.10)

LD = (m ∗ P) mod 512 (4.11)

Similar to the previous condition it is possible to solve

m = dn ∗ K
P
e (4.12)

resulting in the interference condition

dn ∗ K
P
e ∗ P − n ∗K < (dn ∗ K

P
e ∗ P) mod 512 (4.13)

.

Expanding the results from the non-dynamic case (4.7), the measured timestamp can finally be
described by

tSY NC(n) =


bn ∗ KP c ∗ P + L if (n ∗K) mod P < L

dn ∗ KP e ∗ P + L if dn ∗ KP e ∗ P − n ∗K < (dn ∗ KP e ∗ P) mod 512

n ∗K otherwise

(4.14)

.

Eq. (4.14) combines (4.7) and (4.13) to fully describe the interference. While not well suited
to analytical mathematics it allows numerical simulation, as can be seen in Fig. 4.7a, with
P = 10000, L = 1016,K = 35842 and a clock drift of 7ppm added as well. This compares well
to the measurements taken with the MULLE PTP Client (Fig. 4.7b) using a RTC frequency
of 32768Hz, with P = 10000

32768s = 305ms and KSY NC = 35842
32768s = 1.1s. The effect of the limited

accuracy of the quartz oscillators, causing the local clocks to slowly drift apart, is clearly visible
in the linear increase of the clock offset between the PTP Master and the PTP Slave.

This error is unlikely to occur with the DELAY-REQUEST message of the client because the
interrupting task has to be triggered in the small window between timestamping and the transmit
command, while it blocks received SYNC packets during its whole length. On the PTP Master
such a task would however interfere heavily with this communication.

51

Challenges of Software based clock synchronization

0.64 0.8067 0.9733 1.14 1.3067 1.4733 1.64

x 10
7

0

300

600

900

1200
Simulation timestamping with non−interruptable periodic task

R
X

T
im

es
ta
m
p
(T

ic
k
s)

Internal RTC Clock (Ticks)

(a) Simulation including drift

0.56 0.7433 0.9267 1.11 1.2933 1.4767 1.66

x 10
7

4.44

4.47

4.5

4.53

4.56
x 10

4 Measured offset data (Single Node)

D
el
ta
T
-M

S
(T

ic
k
s)

Internal RTC Clock (Ticks)

(b) Offset Measurement

Figure 4.7: Simulated (a) and measured offset error (c) on MULLE due to non-interruptable tasks

4.4 Interference from network conflicts

As the system uses the IEEE 802.15.4 unslotted mode, nodes do not have specific timeslots to
access the common medium. Therefore media access conflicts may occur. Because the timestamp-
ing is done before the packet enters the MAC layer, delays due to the shared medium cannot
be automatically corrected. This section analyzes the impact of these conflicts on timestamping,
section 5.3.6 will present filter improvements specifically to deal with the resulting timestamping

52

Challenges of Software based clock synchronization

errors.

The shared medium uses CSMA/CA for arbitration, which is based on monitoring the medium
for other transmissions and waiting until the medium is free. If conflicts occur, all parties employ
a random exponential backoff algorithm to avoid deadlocks. The backoff algorithm for IEEE
802.15.4 uses a basic backoff period of 20 symbols, encoded with offset-quadrature phase shift
keying of 4bits/symbol, resulting in backoff periods that are multiples of 80bits.

The simulated system is based on the following assumptions:

• One node is acting as a PTP Master, transmitting a SYNC packet every 1.1 + xs, starting
at t = 0. A random component x with a maximum of 21.4ms/700ticks has been added
to the period to avoid continuous conflicts with other periodic transmissions, leading to an
average period of 1.1107s. The maximum of the random component has been chosen to be
slightly larger than the longest packets to break persistent conflicts, but small relatively to
the period to keep the simulation consistent. The SYNC packet is immediately followed by
a FOLLOWUP packet.

• N nodes are acting as PTP Slaves, transmitting a DELAY-REQUEST packet every 4 +
xs, immediately followed by a DELAY-RESPONSE packet from the master, starting at a
random point within the first 4s. To avoid multiple nodes with a close starting time to
continuously interfere with each other the same random period x has been added, leading
to an average period of 4.0107s.

• Each PTP Slave in addition sends a data packet once per second, this represents the mea-
surement application data. Two variants of these data packet schedules are analyzed: one
where the data is sent from a random starting point, and one where after synchronization
has occurred virtual sending slots are imposed on these transmissions. Because a working
synchronization is a prerequisite for this conflict avoidance mechanism, no such slotting
system is assumed for the PTP packets themselves.

The conflict arbitration is modeled after [BV09] which conducts a performance analysis of IEEE
802.15. 4 non beacon-enabled mode. One of the results of their extensive network simulations is
that the cumulative transmission probability is close to an exponential function

FT = 1− e−j/τi (4.15)

with j representing the sending step and τi determined by the number of conflicting nodes, these
functions can be used to approximate the arbitration while being efficiently simulated. Curves
for up to 6 nodes in conflict at the same time were being generated (fig. 4.8). Each time a
conflict happens during simulation a random probability is generated and the formula is reversed
to calculate the corresponding successful sending step. For simulation efficiency, conflicts greater
than 6 nodes are using the 6 conflicting node function. This however is a simplification. The goal
of these simulations is to allow for error estimations, they do not simulate the full CSMA/CA
process. In addition, data communication is simulated as distinct nodes, while in reality the
slaves share their measurement data. This allows a node to conflict with itself, slightly increasing
conflict chances. While conclusions can be drawn from these imperfect models, this limitation
has to be explicitly stated. Especially at high duty cycles a full CSMA/CA simulation will return

53

Challenges of Software based clock synchronization

different results, however this was outside the scope of this thesis.

0 10 20 30 40 50 60 70 80
0

20

40

60

80

100
Cummulative transmission probability

T
ra
n
sm

is
si
o
n
p
ro
b
a
b
il
it
y
[%

]

Backoff periods

2 Nodes
3 Nodes
4 Nodes
5 Nodes
6 Nodes

Figure 4.8: CSMA/CA backoff probabilities

Table 4.2: Simulation Parameters

Bitrate 100kbps
Time Resolution 1/32768s
Unicast Length 120Byte 315ticks

Multicast Length 76Byte 200ticks
Data Packet Length 200Byte 525ticks

Simulations are being done with the network containing 1 to 23 slaves. To average the random
conditions, the data from 350 simulations, each consisting of an hour of data, are being merged.

Unslotted Mode

Figure 4.9 analyzes the delay distribution incurred by the master and the slaves. As can be ex-
pected due to the uncorrelated manner of the messages, the zero delay bar can be estimated by the
probability p = 1− dutycycle, the chance that the channel is free. The slight discrepancy to the
estimation stems from the fact that the lowest bar includes delays up to 50 ticks, which includes
the shortest possible backoff period. With the limited amount of data in each simulation (slightly
above 8 million packets at 23 slaves) the histogram becomes less readable if the bins get too small
because a lot of fluctuation between neighboring bins exists. Due to the backoff algorithms used
the delay distribution does not decrease monotonously, instead it experiences a slight maximum

54

Challenges of Software based clock synchronization

0 500 1000 1500 2000
0

50

100
Network conflict Histogram: 3 slaves, 7.4% duty cycle

D
el
ay

F
re
q
u
en

cy
(%

)

Delay (RTC Ticks)

(a) 3 slave nodes

0 500 1000 1500 2000
0

50

100
Network conflict Histogram: 9 slaves, 20.7% duty cycle

D
el
ay

F
re
q
u
en

cy
(%

)

Delay (RTC Ticks)

(b) 9 slave nodes

0 500 1000 1500 2000
0

50

100
Network conflict Histogram: 16 slaves, 37.4% duty cycle

D
el
ay

F
re
q
u
en

cy
(%

)

Delay (RTC Ticks)

(c) 16 slave nodes

0 500 1000 1500 2000
0

50

100
Network conflict Histogram: 23 slaves, 56.4% duty cycle

D
el
ay

F
re
q
u
en

cy
(%

)

Delay (RTC Ticks)

(d) 23 slave nodes

Figure 4.9: Unslotted mode delay distribution of network conflicts for 3 (a), 9 (b), 16 (c) and 23 (d)
slaves

between 300 and 500 ticks. This is dependent on the average number of nodes colliding, as mul-
tiple conflicts take longer to resolve. The increase in the last delay bar of the 23 slave scenario
is only due to the axis of the diagram, as all delays greater than 2500 are also included in this bar.

As can be seen in fig. 4.10d due to collisions the overhead (red line representing the overhead
compared to the channel bandwidth, the green line represents the overhead relative to the useable
data) increases in an exponential manner. This results in a rapid increase of both the average
delay (fig. 4.12a) and the average deviation (4.12c, which can be delayed by using median filters
(green and blue lines). As periods that do not share divisors were chosen and the packets are
uncorrelated, the difference between randomized and non-randomized SYNC periods are minute
(fig. 4.10b).

Once the median filter reaches a certain size the error patterns begin to repeat themselves. As
this results in data based on error probabilities, increasing the length of the filter does little to
affect the outcome. However it is possible to change the median algorithm to an uneven median
filter. Figures 4.12e and 4.10f analyze the effect of moving the selection point. In section 5.3.4
this kind of filter is analyzed in further detail. However it should be no surprise that moving the
selection point improves the filtering, as in this simulation only the current one-sided error model
is included. In this scenario a minimum delay selection algorithm, as is used in NTP [MMBK10],
would provide optimal results. However this would ignore other types of timestamping errors,
therefore a lower limit on the selection is imposed.

55

Challenges of Software based clock synchronization

0 5 10 15 20 25
0

100

200

300

400

500
Delay from network conflicts

D
el
ay

[R
T
C
-T

ic
ks
]

Number of slave nodes

Mean delay
Mean 17pt median
Mean uneven 17pt median

(a) Average delay of all timestamps

0 5 10 15 20 25
0

100

200

300

400

500
Delay from network conflicts

D
el
ay

[R
T
C
-T

ic
ks
]

Number of slave nodes

Mean delay
Mean 17pt median
Mean uneven 17pt median

(b) Average delay, all timestamps, no random SYNC pe-
riod

0 5 10 15 20 25
0

200

400

600

800
Half−normal delay standarddeviation from network conflicts

D
ev
ia
ti
on

[R
T
C
-T

ic
ks
]

Number of slave nodes

Deviation
17pt median
17pt uneven median

(c) Average deviation

0 5 10 15 20 25
0

20

40

60
Network utilization

N
et
w
or
k
u
ti
li
za
ti
on

[%
]

Number of slave nodes

Useable Data
Dutycycle
Overhead
Overhead Relative

(d) Duty Cycle

0 5 10 15 20 25
0

50

100

150
Filter average error

D
el
ay

[R
T
C
-T

ic
ks
]

Number of slave nodes

17 pt. median
8/17 uneven median
7/17 uneven median
6/17 uneven median
5/17 uneven median

(e) Filtered SYNC delay

0 5 10 15 20 25
0

50

100

150
Median half−normal standarddeviation

D
el
ay

[R
T
C
-T

ic
ks
]

Number of slave nodes

17 pt. median
8/17 uneven median
7/17 uneven median
6/17 uneven median
5/17 uneven median

(f) Filtered SYNC delay deviation

Figure 4.10: Unslotted mode delay, standard deviation and duty cycle

Slotted Data Mode

In slotted data mode, the background data traffic is scheduled to be sent at regular intervals. In
the simulation this is accomplished by only scheduling a single data source with a period of 1

N s,
where N represents the number of slaves. The delay increases almost linearly until 15 slaves are
reached, after that arbitration delays increase exponentially. While faring a lot better than the
unslotted mode, once multiple conflicts occur the delay increases sharply. In addition, even with
the randomized periods, a slight resonance can be seen in 4.12a when analyzing the performance

56

Challenges of Software based clock synchronization

0 500 1000 1500 2000
0

50

100
Network conflict Histogram: 3 slaves, 7.4% duty cycle

D
el
ay

F
re
q
u
en

cy
(%

)

Delay (RTC Ticks)

(a) 3 slave nodes

0 500 1000 1500 2000
0

50

100
Network conflict Histogram: 9 slaves, 20.2% duty cycle

D
el
ay

F
re
q
u
en

cy
(%

)

Delay (RTC Ticks)

(b) 9 slave nodes

0 500 1000 1500 2000
0

50

100
Network conflict Histogram: 16 slaves, 35.5% duty cycle

D
el
ay

F
re
q
u
en

cy
(%

)

Delay (RTC Ticks)

(c) 16 slave nodes

0 500 1000 1500 2000
0

50

100
Network conflict Histogram: 23 slaves, 51.7% duty cycle

D
el
ay

F
re
q
u
en

cy
(%

)

Delay (RTC Ticks)

(d) 23 slave nodes

Figure 4.11: Slotted mode delay distribution of network conflicts for 3 (a), 9 (b), 16 (c) and 23 (d) slaves

of the median filter. At 9 slaves the data period T = 1
9s = 0.1111s gets close to the average

SYNC period of 1.1107s with every tenth packet. The same happens at 18 slaves with double
the data packets interfering. A slight resonance can also be detected at 14 slaves, where every
31st data packet comes into conflict with every second SYNC packet. Because the data period
changes depending on the number of slave nodes this cannot be completely avoided unless the
SYNC period is dynamically adjusted at the same time.

Comparing with the resonance occurring without the randomized SYNC period (fig. 4.12b), the
improvement can clearly be seen. However, it is important not to lose sight of the SYNC path in
the aggregated timestamping errors. Even with a lot less of the traffic and therefore timestamps,
the SYNC path accounts for half of the synchronization process. Therefore it is important to
analyze the SYNC interference separately from the rest of the data. Fig. 4.12e and 4.12f show
that the resonance has serious effects on the synchronization. But if resonance can be avoided,
the timestamping errors due to network conflicts are seriously reduced.

Summary

In summary, transmission delays which are not detected can be a source of big timestamping
inaccuracies. Especially when network utilization rises the interference becomes common, which
can be a problem for filters to deal with. Synchronizing data transmissions greatly reduces the

57

Challenges of Software based clock synchronization

0 5 10 15 20 25
0

50

100

150

200

250
Delay from network conflicts

D
el
ay

[R
T
C
-T

ic
ks
]

Number of slave nodes

Mean delay
Mean 17pt median
Mean uneven 17pt median

(a) Average delay of all timestamps

0 5 10 15 20 25
0

100

200

300
Delay from network conflicts

D
el
ay

[R
T
C
-T

ic
ks
]

Number of slave nodes

Mean delay
Mean 17pt median
Mean uneven 17pt median

(b) Average delay, all timestamps, no random SYNC pe-
riod

0 5 10 15 20 25
0

200

400

600

800
Half−normal delay standarddeviation from network conflicts

D
ev
ia
ti
on

[R
T
C
-T

ic
ks
]

Number of slave nodes

Deviation
17pt median
17pt uneven median

(c) Average deviation

0 5 10 15 20 25
0

20

40

60
Network utilization

N
et
w
or
k
u
ti
li
za
ti
on

[%
]

Number of slave nodes

Useable Data
Dutycycle
Overhead
Overhead Relative

(d) Duty Cycle

0 5 10 15 20 25
0

50

100

150
Filter average error

D
el
ay

[R
T
C
-T

ic
ks
]

Number of slave nodes

17 pt. median
8/17 uneven median
7/17 uneven median
6/17 uneven median
5/17 uneven median

(e) Filtered SYNC delay

0 5 10 15 20 25
0

50

100

150
Median half−normal standarddeviation

D
el
ay

[R
T
C
-T

ic
ks
]

Number of slave nodes

17 pt. median
8/17 uneven median
7/17 uneven median
6/17 uneven median
5/17 uneven median

(f) Filtered SYNC delay deviation

Figure 4.12: Slotted mode delay, standard deviation and duty cycle

conflict potential, and therefore improves synchronization. However steps have to be taken that
no sources can continuously interfere with each other. In chapter 5.3.6 filters will be analyzed to
deal with this interference.

58

5 Improving Software based clock
synchronization

This chapter presents improvements to software based clock synchronization. It gives an overview
of the influence of the possible timestamping points, especially in relation to the challenges dis-
cussed in chapter 4 and explains briefly how the MULLE specific errors are compensated. The
main part of this chapter concerns itself with the filtering of PTP data, resulting in accurate
timestamps even if generated from erroneous data. These filters were both simulated in MAT-
LAB and implemented on the MULLE platform. In this chapter filter simulations based on Raw
PTP data measurements and network conflict simulations are conducted, while real world mea-
surements of clock synchronization are presented in chapter 6. A section providing guidelines for
filter selection rounds off this chapter.

5.1 System specific solutions

Peculiarities of the MULLE platform presented some unique challenges. This section presents a
quick overview of the solutions, the challenges themselves are discussed in detail in chapter 4.

Avoiding MULLE RTC instabilities

As the MULLE RTC becomes unstable if triggered outside of a 512-tick grid unstable values
were avoided. This is done by triggering on the closest valid clock value preceding the desired
timestamp, and then delaying action until the required time has arrived. This does however
result in increased interference by non-interruptable tasks (see section 4.3). Section 5.3 presents
filter algorithms which can compensate the increased interference. The extra delay also severely
limits the frequency where as tasks can be triggered. As in the current implementation only the
burst voltage measurement had to be triggered once per second, this limitation could be accepted.

59

Improving Software based clock synchronization

Compensating link asymmetry

As shown in chapter 4.2, with the timestamping point used limited link speed resulted in a static
offset between the PTP Master and the PTP Slave. This offset has been calculated precisely and
can be compensated by modifying the calculation of the offset

∆tMS,i = (∆tSY NC,i + ∆tDELAY−REQ,i)/2 + ∆tMESSAGE−LENGTH (5.1)

Due to this being a static offset error other calculation points are equally valid, as this compen-
sation can be included at any point of the PTP offset calculation. Should the link speed not be
known or other sources of asymmetry exist, [Exe14] gives an overview of methods that can be used
to estimate this asymmetry factor. These methods do however require additional information not
included in the basic synchronization messages, e.g. burst transmissions to estimate one-way link
speed.

5.2 Compensation of Clock Frequency Offsets

A method to compensate this clock frequency offsets is proposed in IEEE 1588 Annex L[IS08] by
calculating the frequency scale factor offset

Fn =
(T1,n − T1,n−1) + (T1,n + dn − T2,n)

T2,n − T2,n−1
(5.2)

δn = Fn − 1 (5.3)

with

δn the frequency scale factor offset on receipt of the nth followup message

Fn the frequency scale factor on receipt of the nth followup message

T1,n the precise origin timestamp contained in the nth followup message

T2,n the reception timestamp of the nth sync message

dn the sum of the current measured propagation time, the correction field of the nth sync
message, and the correction field of the nth followup message

In a single-hop environment dn can be reduced to the current measured propagation time. Un-
fortunately the jitter due to various reasons (see chapter 4) is far greater than the clock drift,
therefore scaling the clock directly results in the local clock beginning to oscillate. Therefore
this method is only applicable in implementations where a far better timestamping accuracy is
available. Section 5.3.5 proposes a compensation scheme to overcome this limitation. While the
basic compensation method used there is similar, it uses a packet based approach which can
be optimized and integrated directly into the uneven median filter, reducing calculation times
significantly.

60

Improving Software based clock synchronization

5.3 Filtering PTP data

In this section several filter strategies to deal with these errors are discussed. While the filters
presented make use of the unique properties of the errors models generated in chapter 4, they
are also designed to smooth the normal jitter of the PTP messages. The ability to calculate how
the errors occur does not allow the system to compensate automatically, as both the calculations
and the synchronization would be too calculation intensive for the low-cost devices used. It does
however greatly ease simulation to design and evaluate appropriate filters. As each filter builds
on the knowledge generated by the filters before this section can also be seen as an evolution of
filter techniques. The filters have been implemented on the MULLE devices, most evaluation has
however been done in MATLAB. The data used for the simulation has been measured on the
MULLE platform using the PTP raw measurement application.

As the filters use buffered previous timestamps to calculate their output, they require a certain
amount of timestamp measurements to be available. To simplify implementation and improve
the system reaction time, those buffers are filled with the first available measurement during filter
initialization. This value represents the best estimation available at that time. However, should
that measurement be erroneous that error is multiplied to the full buffer.

While it would be possible for some filtering schemes to dynamically scale both the buffer and
the filters with the measurements available until the nominal buffer size has been reached, this
would incur a big implementation overhead while only improving results during the startup phase.
As the application only required measurements in an already synchronized network, this startup
errors are accepted. At each filter it will be discussed how this startup error presents itself and
after how many steps filter values should be considered valid.

General Equations

The following basic equations are used throughout the filters.

∆tSY NC,i = (tSY NC,i − tFOLLOWUP,i)/2 (5.4)

∆tDELAY−REQ,i = (tDELAY−RESP,i − tDELAY−REQ,i)/2 (5.5)

∆tMS,i = (∆tSY NC,i −∆tDELAY−REQ,i)/2 (5.6)

with

tSY NC,i The local receiving timestamp of the ith SYNC packet

tFOLLOWUP,i The sending timestamp of the SYNC packet

tDELAY−RESP,i The receiving timestamp of the DELAY-REQUEST packet

tDELAY−REQ,i The local sending timestamp of the DELAY-REQUEST packet

61

Improving Software based clock synchronization

Figure 5.1: Averaging Filter

∆tSY NC,i The clock offset, calculated only from SYNC and FOLLOWUP i

∆tDELAY−REQ,i The clock offset, calculated only from DELAY-REQUEST and DELAY-RESPONSE
i

∆tMS,i The offset between the local RTC and the PTP Master, compensated for trans-
mission time

5.3.1 Averaging filter

The most basic filter, the averaging filter, filters data by collecting up to N datapoints and cal-
culating the average delay from them. This can be done very efficiently by using N=2n, n ∈ N,
as this reduces the division to a bit-shift operation.

∆tMS,i =
1

N
∗
N−1∑
k=0

∆tMS,i−k (5.7)

with

∆tMS,i The filtered clock offset at SYNC-interval i

N The size of the averaging filter

Unfortunately, as fig. 5.2 shows, this approach does not work well with the error models that
occur. While this filter does work well for a narrow-band gaussian error model, with the single
large error spikes that occur each spike immediately results in a jump of the filtered value.

During initialization of the buffer the first value recorded is used to prefill the buffer, as this
represents the best estimate available at the time. If this first measurement is erroneous the error
incurred will slowly be reduced by error

N by each step. Only after the whole buffer has been filled
with different measurements should the filter output be considered valid.

5.3.2 Outlier rejection averaging filter

To combat these kinds of errors, outlier rejection filters can be added. Here the unique property
that serious errors occur in spikes can be used. In a first step, outliers have to be identified. This
is done by calculating the arithmetic mean and the standard deviation of the sample size. A
similar algorithm is used as a popcorn spike suppressor in NTP [MMBK10].

62

Improving Software based clock synchronization

2.044 2.073 2.102 2.131 2.16 2.189 2.218 2.247 2.276

x 10
7

4.443

4.4457

4.4483

4.451
x 10

4

Internal RTC Clock (Ticks)

D
el
ta
T
-M

S
(T

ic
k
s)

Averaging, outlier rejection and median filter

unfiltered
averaging filter
outlier rejection
median filter

Figure 5.2: Comparison of averaging filter types

Figure 5.3: Outlier rejection averaging filter

µi =
1

N
∗
N−1∑
k=0

∆tMS,i−k (5.8)

σi =

√√√√ 1

N
∗
N−1∑
k=0

(∆tMS,i−k − µi)2 (5.9)

As the range of regular jitter, which gets smoothed by averaging, may vary it is necessary to
calculate both values. Afterwards an averaging filter, using only values which are within lσ of the
arithmetic mean, can be applied. This method allows the filter to dynamically adjust to varying
conditions.

sumi =
N−1∑
k=0

{
∆tMS,i−k if | ∆tMS,i−k − µi |< k ∗ σi
0 otherwise

(5.10)

Vi =
N−1∑
k=0

{
1 if | ∆tMS,i−k − µi |< k ∗ σi
0 otherwise

(5.11)

∆trMS,i =
sumi

Vi
(5.12)

63

Improving Software based clock synchronization

Figure 5.4: Median filter

with

µi The arithmetic mean of the offset-measurements

σi The standard deviation

l The rejection filter limit. Should be set at least to 1, otherwise scenarios are possible
where all measurements are rejected.

sumi The sum of the valid offset-measurements

Vi The number of valid offset-measurements

∆trMS,i The rejection-filtered clock offset at SYNC-interval i

N The size of the buffer

This solution offers significantly better results (fig. 5.2), however does not work well if multiple
spikes happen within the measurement period. Especially a combination of large and small spikes
allows the smaller spike to slip through, due to the changes in both the mean and the standard
deviation caused by the larger spike. These patterns can be generated regularly by interfering
non-interruptable tasks (4.3). Additionally the calculation time grew exponentially compared
to the simple averaging filter. Due to the variable number of values which do not get rejected
no optimization of the averaging division is possible, and the calculation of the square root is
especially CPU intensive if no floating point unit (FPU) is available.

While further optimizations would be possible (e.g. using a variable rejection filter limit, which
would keep the valid window as small as possible while still allowing multiple values for averaging)
this path of filtering was discontinued in favor of median filters which reject outliers by default
and are less CPU intensive.

The outlier rejection buffer is especially vulnerable to startup errors, as due to the erroneous
result being replicated in the buffer, all other values get rejected as outliers. Therefore this filter
will stay stuck at the erroneous value until, due to the new measurements, both mean and de-
viation have shifted to accept the new values. Normalization happens in 2 big steps, first when
new values get accepted and second once the initial erroneous measurements get rejected, with a
linear progression in-between due to the averaging nature.

64

Improving Software based clock synchronization

5.3.3 Median filter

With the limited resources available, it is a far better solution to use a filter which rejects outliers
by default. A running median smoother proves very effective in this regard [Arc05]. To filter the
offset a sorted, monotonously increasing dataset

∆tsMS,i = sortik=i−Nm+1(∆tMS,k) (5.13)

is created with each new measurement. As spikes are either minima or maxima, the middle values
of the dataset contain values unaffected by these kinds of errors. To calculate the median value
of the dataset

∆t̃MS,i =

{
∆tsMS,i(

N+1
2) if N is odd

1
2 ∗ (∆tsi(

N
2) + ∆tsi(

N
2 + 1)) if N is even

(5.14)

with

∆tsMS,i The set of the last N offset-measurements, sorted monotonously by increasing value

∆t̃MS,i The filtered clock offset at SYNC-interval i

N The size of the median filter

has to be selected. This filter type deals far better with the occurring errors, as can be seen in
fig. 5.2.

Calculation times can be reduced by using an uneven filter size, removing the need for averaging
the two values around the median. Maintaining a sorted list of values of size N by removing
the oldest element and inserting the new value at its appropriate place further optimizes the
calculation by eliminating the need for sorting the whole list at each step.

Similar to the outlier rejection filter, during startup a median filter might get stuck on an erroneous
measurement. Recovery however is usually rapid after N

2 steps, as all of the erroneous buffer values
will get rejected at once.

5.3.4 Uneven median filter

The one-sidedness of the errors can further be used to improve accuracy by ignoring the u max-
imum values of the dataset, which most likely represent erroneous measurements. This can be
implemented very simply by modifying the selection index of the median. If an additional factor
l = 2u is implemented this additionally allows the use of half-steps, allowing to switch between
the even and odd calculation cases of eq. 5.16.

∆tsMS,i = sortik=i−Nm+1(∆tMS,k) (5.15)

65

Improving Software based clock synchronization

2.044 2.073 2.102 2.131 2.16 2.189 2.218 2.247 2.276

x 10
7

4.443

4.444

4.445

4.446
x 10

4

Internal RTC Clock (Ticks)

D
el
ta
T
-M

S
(T

ic
k
s)

Drift−Compensated uneven median filter

unfiltered
uneven median
compensated

Figure 5.5: Comparison of median filter types

∆t̃MS,i =

{
∆tsMS,i(

Nm+1+l
2) if Nm + l is odd

1
2 ∗ (∆tsMS,i(

Nm+l
2) + ∆tsMS,i(

Nm+l
2 + 1)) if Nm + l is even

(5.16)

This allows for tailoring the filter to the expected errors without increasing the calculation time.
It is however important to note that moving the selection index too far greatly reduces the filtering
capability for errors of the opposite polarity. Therefore it is crucial to test this filter with real data.

For the practical implementation an uneven median filter selecting the 7th of Nm = 17 values
has proven a good tradeoff between calculation time and filter performance, resulting in a 15
datapoint median after the rejection of u = 2 largest values.

Like the median filter this filter stays stuck at its initial value, and will recover in a single big
jump from startup errors. Due to the unevenness it is however hard to predict the point when
measurements become valid as this is dependent on the offset used and the polarity of the error
in the initial measurement. Therefore measurements should only be considered valid after a full
Nm steps have passed.

5.3.5 Drift compensated uneven median filter

If the linear clock drift between master and slave is greater than the jitter on the timestamps,
the median filter can not work properly. To understand this limitation one has to analyze the
uncompensated internal buffer of the filter in fig. 5.7. While outliers get rejected, the drift forces
the median filter to select its results based on the slope and not based on the actual measurement
jitter. This further results in an erroneous offset based on the drift and the filter size (fig. 5.5).
By using a feedback loop to compensate the drift the measured offset values can be deskewed and
the results greatly improved. To compensate this error first the average drift

66

Improving Software based clock synchronization

Figure 5.6: Compensated median filter

1 5 9 13 17
4.5035

4.5038

4.504

4.5042

4.5045
x 10

4

n

T
im

es
ta
m
p
off

se
t

Median Filter Internal Buffer

uncompensated
compensated

Figure 5.7: Drift compensation of median filter data

di =
∆t̃MS,i −∆t̃MS,i−Nd+1

Nd
(5.17)

has to be calculated by comparing the current and a previous filter value. This simple approach
is possible because the quartz of the RTC clock can be assumed to be stable in the timescale of
the drift filter history size Nd. This allows the calculation of a compensated clock offset

∆tcMS,k = ∆tMS,k +
i−k−1∑
l=0

di−l (5.18)

which is represented in the compensated curve of fig. 5.7.

∆tcsMS,i = sortik=i−Nm+1(∆tcMS,k) (5.19)

∆t̃MS,i =

{
∆tcsMS,i(

Nm+1+l
2) if Nm + l is odd

1
2 ∗ (∆tcsMS,i(

Nm+l
2) + ∆tcsMS,i(

Nm+l
2 + 1)) if Nm + l is even

(5.20)

By integrating the summation (5.18) with the buffer of the uneven median filter (5.19), calcu-
lations can be reduced to Nm additions at each step. Because the same compensating value is
added to all elements in the buffer this operation does not break the sortedness of the buffer.
Selecting Nd = 2nd , nd ∈ N further reduces calculation time, as divisions by powers of 2 can be
done more efficiently by using bitshift operations.

In practice, compensating the clock offset (eq. 5.18) should only be enabled after at least Nm+Nd

calculation steps. Should the first measurement, used to prefill the buffer, be erroneous it takes up
to Nm steps for the uneven median filter to provide accurate results. As the drift compensation
should only be calculated from valid filter results, additional Nd steps are necessary for the com-
pensation buffer to be filled with valid results. Otherwise, jumps in the frequency compensation

67

Improving Software based clock synchronization

might lead to oscillating errors due to the feedback loop. While these errors are getting damped
by the filter over time it is far better to avoid these oscillations in the first place.

1.858 1.898 1.938 1.978 2.018 2.058 2.098

x 10
7

3.866

3.8697

3.8733

3.877
x 10

4

Internal RTC Clock (Ticks)

D
el
ta
T
-M

S
(T

ic
k
s)

Drift−compensated uneven median filter

unfiltered
compensated uneven
uneven median

(a) Unlimited drift rate

1.858 1.898 1.938 1.978 2.018 2.058 2.098

x 10
7

3.866

3.8697

3.8733

3.877
x 10

4

Internal RTC Clock (Ticks)

D
el
ta
T
-M

S
(T

ic
k
s)

Drift−compensated uneven median filter

unfiltered
compensated uneven
uneven median

(b) Drift rate limited

Figure 5.8: Oscillation after uncompensated error in feedback loop

Situations in which the filtering process fails may also trigger oscillations. These are usually
triggered by multiple consecutive erroneous measurements. Fig. 5.8a shows a situation in which
multiple consecutive DELAY-REQUEST measurements have failed, with the error getting mul-
tiplied as 3 or 4 filter calculations take place between DELAY-REQUEST packets due to the
more frequent SYNC packets. Because drift errors can be assumed to change slowly (e.g. due to
temperature effects on quartz crystals), these errors can be prevented by limiting the change of
the compensation factor to

di ∈ [di−1 − dmax, di−1 + dmax] (5.21)

As the average drift encountered in the experiments was around 10ppm, a maximum change of
dmax = 0.5ppm/step was used as a limit. This prevents the filter from oscillating (fig. 5.8b)
while allowing it to compensate an arbitrary drift. This comes at the cost of longer initial drift
compensation period, but this stabilizes before the feedback loop is activated. However, while
this solution is simple and efficient, it requires an estimation of the magnitude of the drift.

5.3.6 Dual drift compensated uneven median filter

Conflicts on the shared medium may delay packet transmission, and therefore reception times-
tamps. This leads to an erroneous increase in the delay measurement (see 4.4). While median
filters are very efficient at rejecting outliers, the fact that these errors are always positive can be
used to further improve filter efficiency. However, this property gets lost once

∆tMS,i =
1

2
∗ (∆tSY NC,i −∆tDELAY−REQ,i) (5.22)

gets calculated, as errors in the ∆tDELAY−REQ,i get counted negatively. Therefore the two delay
measurements have to be filtered separately for optimal rejection. While clock drift has to be
compensated the same way as in 5.3.5, it is only calculated from the more frequent SYNC packets,
as a separate calculation for each filter would cause the internal filters to drift apart.

68

Improving Software based clock synchronization

Figure 5.9: Dual drift compensated uneven median filter

dSY NC,i =
∆t̃SY NC,i −∆t̃SY NC,i−Nd+1

Nd
(5.23)

Due to the DELAY-REQUEST packets arriving with a different frequency as the SYNC packets,
this clock drift has to be scaled to conform with the average drift for DELAY-REQUEST packets.

dDELAY−REQ,i =
TDELAY−REQ

TSY NC
∗ dSY NC,i (5.24)

This allows the compensation of the time offset values in the buffers.

∆tcSY NC,k = ∆tSY NC,k +

i−k−1∑
l=0

dSY NC,i−l (5.25)

∆tcDELAY−REQ,k = ∆tDELAY−REQ,k +

i−k−1∑
l=0

dDELAY−REQ,i−l (5.26)

As with the previous uneven median filter, values offset from the median by an offset factor l
are selected. Due to the possibility that different filter sizes are used for SYNC and DELAY-
REQUEST, a separate offset factor lmr has to be defined for the second filter.

∆t̃SY NC,i =

{
∆tcSY NC,i(

Nm+1+l
2) if Nm + l is odd

1
2 ∗ (∆tcSY NC,i(

Nm+l
2) + ∆tcSY NC,i(

Nm+l
2 + 1)) if Nm + l is even

(5.27)

∆t̃DELAY−REQ,i =


∆tcDELAY−REQ,i(

Nmr+1+lmr
2)

if Nmr + lmr is odd
1
2 ∗ (∆tcDELAY−REQ,i(

Nmr+lmr
2) + ∆tcDELAY−REQ,i(

Nmr+lmr
2 + 1))

if Nmr + lmr is even

(5.28)

After filtering the current offset between PTP Master and Slave can finally be calculated.

69

Improving Software based clock synchronization

∆t̃MS,i =
1

2
∗ (∆t̃SY NC,i −∆t̃DELAYREQ,i) (5.29)

Due to the fact that SYNC and DELAY REQUEST have different periods two operating modes
for this filter can be defined:

asynchronous mode In asynchronous mode, filter results are updated as soon as new data is
available. This results in the best current offset estimation possible, but
leads to filter values which may change in quick succession.

synchronous mode In synchronous mode the final calculation (eq. 5.29) acts as a latch. Filter
result updates are tied to the more frequent SYNC packets, resulting in a
constant period of filter value updates.

Selecting filter sizes

To avoid any synchronization errors between the filters both filters should cover the same time
period.

T = (Nm − 1) ∗ TSY NC = (Nmr − 1) ∗ TDELAY−REQ (5.30)

By selecting the closest multiple

Nmr = round((Nm − 1) ∗ TSY NC
TDELAY−REQ

+ 1) (5.31)

we get an appropriate filter size, with an error

∆T =

{
modTDELAY −REQ

((Nm − 1) ∗ TSY NC) if <=
TDELAY −REQ

2

TDELAY−REQ −modTDELAY −REQ
((Nm − 1) ∗ TSY NC) otherwise

(5.32)

By adjusting the filter sizes to reflect the same period, equation 5.24 can also be simplified to
correspond to filter sizes.

dDELAY−REQ,i =
TDELAY−REQ

TSY NC
∗ dSY NC,i ≈

Nm

Nmr
∗ dSY NC,i (5.33)

With the values used in the implementation, TDELAY−REQ = 4s and TSY NC = 1.1s, the following
solutions are possible:

70

Improving Software based clock synchronization

Table 5.1: Filter Sizes

SYNC Filter Size DELAY-REQ Filter Size Period Period Difference
Nm Nmr T ∆T

5 2 4.4 0.4
8 3 7.7 0.3
12 4 12.1 0.1
16 5 16.5 0.5
19 6 19.8 0.2
23 7 24.2 0.2

2.044 2.073 2.102 2.131 2.16 2.189 2.218 2.247 2.276

x 10
7

4.443

4.444

4.445

4.446
x 10

4

Internal RTC Clock (Ticks)

D
el
ta
T
-M

S
(T

ic
k
s)

Drift−compensated dual median filters

unfiltered
dual uneven
dual min
uneven median

Figure 5.10: Comparison of dual median filter types

Simulation

For the simulation a synchronous mode filter, selecting the 7th value of Nm = 16 (SYNC path)
and the 2nd of Nmr = 5 (DELAY-REQUEST path) was chosen. This filter size solution is closest
to the filter parameters of the single-channel filters used previously. This minimizes differences
from the filter window size and selection, highlighting the differences in filter structure. In
figure 5.10 the performance of the dual filters can be seen in comparison to the single-channel
drift-compensated uneven median filter. Additionally the dual minima selection filter (see section
5.3.6) is shown. In this application scenario the difference to the single-channel drift compensated
uneven median filter (section 5.3.5) remains minimal. However, when confronted with network
traffic the advantages of the dual filter become apparent (fig. 5.11). The ability to filter both
channels separately allows it to be far more resilient to errors.

71

Improving Software based clock synchronization

1.797 1.8279 1.8587 1.8896 1.9205 1.9514 1.9823 2.0131 2.044

x 10
7

3.869

3.871

3.873

3.875
x 10

4

Internal RTC Clock (Ticks)

D
el
ta
T
-M

S
(T

ic
k
s)

Drift−compensated dual median filters

unfiltered
dual uneven
dual min
uneven median

Figure 5.11: Comparison of dual median filter types with network conflicts

Dual minima selection filter

A special case of the dual channel filter is the dual minima selection filter. This filter is based
on the assumption that, due to causality, all factors influencing delay can only increase the total
delay of a transmission. As non-deterministic effects get compounded on the transmission delay,
selecting the minimum delay measurement should remove all non-deterministic influences. This
is similar to the filtering algorithm used in NTP [MMBK10]. For simulation a dual filter selecting
the 1st value of Nm = 16 (SYNC path) and of Nmr = 5 (DELAY REQUEST path) was used,
shown in figures 5.10 and 5.11.

In regular cases the filter performs similar to both the regular dual drift-compensated uneven
median filter, and due to the minima selection can outperform the median filtering when the main
source of timestamping errors is heavy traffic on the shared medium. However, while all delays are
positive, compared to the average delay of a non-deterministic source negative spikes can occur.
Figure 5.11 begins its error pattern with a negative spike on the SYNC delay measurement of
17 ticks. The minima selection filter immediately responds and stays at an erroneous value until
the spike leaves its buffer of Nm = 16 values. Using only these spikes as a synchronization source
by increasing buffer length is not an option as they occur very rarely and randomly. The exact
source of this 500µs delay difference could not be determined, but filter types which do select an
(uneven) median are effective at compensating negative erroneous delay measurements.

72

Improving Software based clock synchronization

5.4 Selecting the right filter

While it has been shown that both accuracy and precision can be greatly improved by using ap-
propriate filters, there is always a tradeoff between resource usage (processing time and memory
usage) and accuracy. Therefore to select the right filter the intended system has to be evaluated.
As the median filter has been implemented with minimal extra overhead over the averaging filter
while providing greatly improved results only median filters are recommended. Because filter
selection is a multidimensional problem (required accuracy and precision, available resources, ex-
pected interfering processes and network conflicts, etc.) only general guidelines can be presented
here. For accurate predictions filter simulations have to be conducted.

One important factor to decide is whether the expected duty cycle on the network will lead to
significant conflicts, or if internal error sources are more likely. If network conflicts are a main
source of errors, then a dual-filter approach can improve results due to its splitting of the prob-
lem. This allows for uneven filters to effectively deal with the errors. However due to the need to
maintain two distinct filters this almost doubles resource usage. As DELAY-REQUEST errors
are highly unlikely to result from internal errors, if a low duty cycle is selected a single-channel
filter will provide good results.

Filter sizes should be chosen depending on the amount of erroneous timestamping measurements
that should be rejected. Here the longer period of DELAY-REQUEST measurements becomes
dominant, as less data is available. In a dual-filter, with the 4s DELAY-REQUEST period this
results in a minimum filter size of 8s, if only the lower value is considered. In a single-channel
filter it should be assumed that at least the lowest 3.64 measurements are due to an erroneous
DELAY-REQUEST measurement, therefore the minimum filter size is 7 for a median filter. This
minimum size however precludes the use of an uneven median filter. As unevenness improves
filter performance larger filter sizes are recommended.

Drift compensation becomes necessary if the accuracy error incurred due to filter sizes becomes
problematic. This problem is compounded by increasing filter size, as older values may be selected.
The maximum error due to drift can be estimated by ∆tDrift,max = 2 ∗ δClock ∗ TSY NC ∗NFilter,
as it is possible that 2 clocks with the accuracy δClock may drift into opposite directions.

73

6 Evaluation

While simulations are extremely useful during development, a system should also perform in the
real world. Therefore the developed compensation strategies have been implemented, and in this
chapter measurements of the synchronization accuracy are presented. Additionally a short section
evaluating the ARROWHEAD framework from a developers point of view is included.

6.1 Synchronization Accuracy

Synchronization accuracy was measured in different ways: An external synchronized toggling pin
allowed for external measurements with an oscilloscope between two nodes. Also, by calculating
the voltage zero crossing point of the distributed power line measurement multiple nodes could
be evaluated, provided they were measuring the same power line. This led to three scenarios:

• Accuracy between the PTP Master and the PTP Slave, measured by oscilloscope

• Accuracy between two PTP Slaves, measured by oscilloscope

• Accuracy over a distributed measurement network consisting of PTP Slaves, measured by
data

To describe synchronization accuracy, two factors have to be measured: The average offset be-
tween the nodes, and the standard deviation.

∆t =
1

n

n∑
i=1

t2,i − t1,i (6.1)

σ =

√√√√ 1

n− 1

n∑
i=1

(∆ti −∆t)2 (6.2)

74

Evaluation

Figure 6.1: Offset due to asymmetric packet length

6.1.1 External measurement between PTP Master and PTP Slave

These measurements were done with only the basic PTP software running, avoiding interference
from conflicting tasks. During initial measurements a static offset of 1.82ms was measured, but
could be compensated in software by an addition of 59 RTC ticks. Analysis of this offset error
led to the discovery of the inherent asymmetry described in section 4.2. A filtered version of the
uncompensated measurement can be seen in figure 6.1, all other measurements were taken with
the offset compensated.

The pictures were created by using the infinite afterglow display setting on the Tektronix TDS
2022B oscilloscope, starting the measurement after 60s to allow for initial filter convergence and
measuring for an additional 180s.

Table 6.1: Master Slave Accuracy

Min Max Offset Deviation Comment
min(∆t) max(∆t) ∆t σ

Unfiltered −3160µs 520µs 16.8µs 511.33µs No filter
Averaged 140µs 310µs 218.6µs 52.72µs 16 point averaging filter

Median −20µs 26.4µs 2.37µs 11.57µs
17 point drift-compensated

uneven median filter

The unfiltered PTP data has serious outliers, with errors in the millisecond range (fig. 6.2a).
The averaging filter fares a lot better, however it introduces a big offset. This is due to the
uncompensated RTC-clock drift of the averaging filter (fig. 6.2b). If a continuous clock drift of d
is assumed the averaging over multiple values results in an offset error of

∆tMS,drift = d ∗ N − 1

2
(6.3)

Due to the drift compensation integrated in the uneven median filter this error can be avoided,
resulting in a synchronization accuracy within 1 RTC tick of the master clock (fig. 6.2c).

75

Evaluation

(a) Master-Slave unfiltered (b) Master-Slave averaged

(c) Master-Slave median filter (d) Slave-Slave averaged

(e) Slave-Slave median filter (f) Slave-Slave median filter without asymmetry

Figure 6.2: Oscilloscope filter measurements

76

Evaluation

6.1.2 External measurement between two PTP Slaves

The simple expectation would be that due to multiple synchronization error sources the synchro-
nization would be worse. This assumption however does discount that some error sources affect
both slaves, therefore these errors are not uncorrelated. If both nodes are affected the same way
this error is compensated if only comparing the clocks of the slave nodes. Therefore slave-slave
synchronization in the unfiltered and the averaged measurements are better than the master-slave
accuracies with the same filters. In this configuration the averaging filter provided quite accu-
rate results fig. (6.2d). However, simulations and PTP raw measurements show that this holds
only true as long as the errors are correlated. Once the extra errors of the non-interruptable
measurement task (chapter 4.3) are included performance drops rapidly. Using the median filter
(fig. 6.2e), which effectively removes these errors present does the assumption of both nodes as
uncorrelated error sources hold true. As expected, turning off the asymmetry compensation (fig.
6.2f) does not change the results, as the same error occurs on both slave nodes.

Table 6.2: Slave Slave Accuracy

Min Max Offset Deviation Comment
min(∆t) max(∆t) ∆t σ

Unfiltered −982µs 640µs −10.09µs 306.54µs No filter
Averaged −16µs 52µs 13µs 19.87µs 16 point averaging filter

Median −18.4µs 49.2µs 13.59µs 16.02µs
8/17 drift-compensated

uneven median filter

6.1.3 Analysis of voltage measurement data

To simulate a realistic measurement environment the ADC of multiple MULLE nodes was used
to measure a rectified power line voltage Vin = |230V ∗

√
2 ∗ sin(50Hz ∗ 2π ∗ t)|. All nodes are

measuring the same voltage source which allows to calculate the clock synchronization accuracy
from the measured voltage data itself. Figure 6.3 shows the measurement setup, each MULLE
node uses the the extension board (see 3.2.2) to rectify the input and adjust the voltage level. To
provide realistic background traffic and collect the measurement data, each MULLE registered
itself at the ARROWHEAD service discovery, and is sending their data to the Leshan server in
the background where data is analyzed stored in the MySQL database. The measurement data
consists of a set of measured voltage values Vi and the measurement timestamps ti. The following
algorithm is used to calculate the zero crossing timestamp from the voltage data:

First a local minima has to be found

∃i|(Vi−1 > Vi) ∧ (Vi+1 > Vi) (6.4)

Near the zero crossing of the measured voltage sine signal, the following simplification can be
assumed

lim
t−>0

sin(t)

t
= 1 (6.5)

77

Evaluation

Figure 6.3: Distributed voltage measurement

Therefore linear interpolation is applicable to calculate the zero crossing time

tV=0 = ti +
vi
k

(6.6)

with the voltage differential

k = lim
t−>tV =0

dV

dt
=

{
Vi+1+Vi
ti+1−ti if Vi−1 ≥ Vi+1

V1+Vi−1

ti−1−ti if Vi−1 < Vi+1

(6.7)

With this algorithm the point of the zero crossing can be calculated for each measured dataset,
and synchronziation between the devices evaluated.

78

Evaluation

Figure 6.4: Zero crossing calculation at LESHAN server

Without a fixed reference clock all values are now calculated against the mean of each measure-
ment zero crossing set. Therefore an average offset statistic becomes meaningless. The other
values are calculated by:

tZERO,i =
1

N

N∑
k=1

tZERO,i,k (6.8)

∆tZERO,i = tZERO,i,k − tZERO,i; (6.9)

σi =

√√√√ 1

N − 1

N∑
i=1

(tZERO,i,k − tZERO,i)2 (6.10)

Table 6.3 shows the calculated synchronization accuracies. It has to be noted that due to the
calculation method any measurement errors of the analog measurement additionally influence
the calculation. The calculation method assumes perfect analog to digital conversion, however
real ADCs have non-linear errors, especially when approaching the GND or Vcc voltages, which
may skew results. Fig. 6.4 shows one such measurement, and while all 3 nodes are in sync it
can be seen that the ADCs are not evenly calibrated. One error that generated several outlier
measurements was due to the wrong selection of the zero crossing. As the measurement covered
a full sine period multiple zero crossings exist in the data and slight differences in the data may
result in a different selection of the first minimum. This resulted in the large maximum error
calculation of 6551µs where a detection error of a half-period resulted in one zero calculation
being 10ms apart from the other 2 results. As this does not constitute a clock synchronization
error, these measurement errors were compensated by moving the erroneous value by 10ms in
post-processing, resulting in the filtered values.

79

Evaluation

Table 6.3: Zero crossing measurement accuracy

Min Max Deviation Comment
min(|tZERO,i|) max(|tZERO,i|) σ

3 slaves 0µs 6551µs 220µs 8/17 point uneven median
3 slaves 0µs 468µs 98.9µs corrected zero crossing selection

6.2 Synchronization Overhead

Table 6.4: Synchronization overhead

Length Frequency Bits per Second Percent
Byte s bit/s %

SYNC multicast 76 1.1107 547.4 0.547
FOLLOWUP multicast 76 1.1107 547.4 0.547

DELAY-REQUEST unicast 120 4.0107 239.4 0.239
DELAY-RESPONSE unicast 120 4.0107 239.4 0.239

STATIC data 1094.8 1.0948
DYNAMIC per slave 478.7 0.4787

Table 6.4 shows the data used for synchronization. The percentage calculations are based on the
100kbit/s 6LoWPAN settings used in the current network. While the static data, resulting from
the multicast packets from the master, does not overly tax the network, the dynamic traffic per
PTP Slave can be troublesome. In chapter 4.4 the influence of network conflicts is discussed in
detail, and due to the impossibility to detect network conflicts with the available timestamping
point this can dramatically decrease synchronization precision. Therefore this limits both the
maximum number of slaves and the available bandwidth for application data.

6.3 ARROWHEAD

This section gives a short overview of the state of the ARROWHEAD framework. Many of the
problems stem from the developing nature of the framework at the 1.9.2016 cutoff date. This
led to the implementation of the system to be challenging, resulting in multiple workarounds.
However, once the whole system was up and running, even radical changes to the configuration
could be implemented relatively easily. Therefore the proof of concept is a success, but at the
time of implementation the framework was not yet at a mature development stage.

Challenges encountered include, but are not limited to:

• Because every team had their own focus, a somewhat insular design approach could be
discerned. For example the ARROWHEAD CENTOS server officially should run on IPv4
only, whereas the MULLE platform for measurements was using 6LoWPAN and therefore
using IPv6 only.

80

Evaluation

• The Service Discovery Proxy officially supported both COAP and HTTP. However, the
COAP implementation was unstable and crashed often, therefore a COAP-HTTP bridge
(CROSSCOAP) was used to keep the system stable.

• Due developing nature, even ARROWHEAD support on the MULLE platform was limited.
While an OMA-LwM2M client was implemented, at that development stage communication
with the Service Discovery had to be implemented by manually manipulating COAP/XML
packets.

Therefore, from a developer point of view the author agrees with the official statement: The
Arrowhead Framework is designed as a SOA Reference Architecture (RA). The current solution
of this RA should be seen as a proof of concept for the Arrowhead Framework (and its partner
applications) [VBF+17].

81

7 Conclusion and Outlook

Summary

A distributed measurement system according to the ARROWHEAD framework has been imple-
mented and evaluated. The hardware platform for this development was the MULLE platform,
which offers support for many ARROWHEAD functions for orchestration. This measurement sys-
tem consists of several measurement nodes, a router which connects them to an external network
where multiple servers are located, which handle service discovery and measurement orchestra-
tion. Due to the service oriented architecture employed, the nodes can automatically configure
themselves to work as a distributed measurement network.

The main challenge of the distributed measurement system was to accurately synchronize the
clocks within the network. The protocol used for synchronization was PTP, where the router
additionally acted as a PTP Master. Due to a lack of hardware support, software timestamping
had to be used. This led to multiple unique challenges, which are the focus of this work. These
challenges have been analyzed, simulated, and appropriate filters were designed to overcome these
limitations.

One limitation of software only timestamping is that sending and receiving packets cannot be
timestamped at exactly the same point. Due to the fact that they are buffered at the transceiver,
packets could only be timestamped before they were sent and after they were fully received.
Therefore sent packets are timestamped at the beginning of the frame, while received packets are
timestamped at the end. If all synchronization packets would have the same length that would
not constitute a problem as PTP would automatically compensate for any symmetric delays.
However due to the header compression used in 6LoWPAN this does not hold true, as the multi-
cast SYNC packets are compressed better than the DELAY-REQUEST unicast packets sent by
other nodes. It has been shown that this results in a static clock synchronization error, which
can be compensated.

Software solutions are also limited by the fact that the processor cannot be interrupted at all
times. Some high priority tasks (e.g. measurements) do not allow interrupts while they are per-
forming their work. This prevents software timestamping until the blocking high priority task

82

Conclusion and Outlook

is completed, leading to an erroneous timestamp. If these tasks occur regularly this creates an
interference pattern which can hamper synchronization accuracy. This error was analyzed and a
mathematical model for simulations was created, leading to the development of specialized filters
based on median smoothing. The results have already been published at the ETFA 2017 confer-
ence.

Finally, due to the fact that a packet can only be timestamped before it is passed to the transceiver,
transmission delays due to busy networks cannot be detected instantly. This results in erroneous
transmission timestamps. These problems increase with network utilization as packet transmis-
sion gets delayed more frequently and for longer periods of time. Simulations of the impact of
network utilization on clock synchronization accuracy have been conducted.

It has been discussed how these challenges would interact with different timestamping implemen-
tations and solutions for the challenges discovered have been presented. Multiple filter models
have been analyzed to find optimal solutions which can account for regular synchronization chal-
lenges like noise and clock drift as well as compensate these unique problems. These filters have
been optimized to reduce their calculation time. This led to the development of the dual uneven
drift-compensated median filter. Based on these improvements guidelines for filter selection, and
their limits, have been created.

With these solutions in place it has been shown that accurate distributed measurements can be
gathered without using specialized hardware. This has been done by conducting synchronized
measurements of a single voltage signal, with the data automatically gathered by a LESHAN
server to be analyzed. Due to calculation of the zero crossing of the voltage, synchronization
accuracy can be inferred. This clock synchronization accuracy has been independently verified
by using external oscilloscope measurements.

Conclusion and outlook

Synchronizing a network based solely on software timestamping includes several major unique
challenges. This work does not claim that hardware timestamping does not provide big advan-
tages. However, even without specialized hardware, high accuracy synchronized measurements
are possible. The unique properties of these timestamping errors can then be used for appropriate
filter design, allowing for accurate clock synchronization based on imperfect data. This allows
for software only solutions in many distributed applications. This reduces both cost and devel-
opment time, as software solutions can be ported far easier to different systems than hardware
solution. By using the models generated in this work it can also be estimated prior to imple-
mentation whether a software solution will be sufficient or if a hardware solution is necessary.
Therefore this work can be used to improve future synchronized systems, playing its small part in
the development of a networked world. As a first step towards this goal, parts of this work have
been published at the 22nd IEEE conference on Emerging Technologies And Factory Automation
[MSPS17].

The precision time protocol (PTP) was chosen as it was a generic synchronization protocol, whose
basic principle, the round trip delay measurement, is used in a multitude of clock synchroniza-

83

Conclusion and Outlook

tion schemes. However, it is not optimized for multi-hop wireless environments. It is therefore
recommended to combine the methods generated with available synchronization protocols, allow-
ing them to deal with imperfect conditions and removing the need for hardware timestamping.
TSPN would be a simple fit due to its similarities with the PTP protocol while its generated
synchronization tree is optimized for multi-hop networks. As this would additionally reduce the
synchronization packet length, overhead and network conflicts would also improve.

Alternatively, combining this work with a receiver-receiver synchronization protocol like RBS
would remove the most challenging influence of software timestamping errors: network access
conflicts. This would therefore be best suited to higher level timestamping. The line fitting
algorithm in RBS could be replaced by the filter techniques developed in this work, which have
both good performance and are optimized for resource constrained systems. This would allow
a real time implementation of RBS in IoT devices. The requirement however is that RBS only
works in broadcast domains with at least 3 nodes, therefore it would need to be complemented by
another synchronization protocol. Here PTP would be the best candidate for point-to-point links.

For use in general networks the PTP implementation would have to be extended to include the
full best clock selection algorithm. While the PTP implementation is written to be as generic
as possible, a few parts are rooted in the CONTIKI operating system. These would have to be
replaced by wrappers for true portability.

While the filters presented deliver very good performance they are still susceptible to packet
loss because they are designed as a per-step approach. An outlier detection algorithm on the
reception timestamps might detect these errors and allow the system to compensate for them by
interpolating. In addition, filter performance when dropping some conditions (e.g. periodicity
for the non-interruptable task) has to be evaluated.

Further work is necessary to study these possibilities.

84

8 Appendix

85

List of Figures

1.1 Interconnected local collaborative clouds [VBF+17] 3

1.2 ARROWHEAD Core Services [BFK+14] . 4

1.3 Translation as a service [VBF+17] . 5

2.1 COAP to HTTP communication with proxy . 14

2.2 PTP synchronization messages, [IS08] . 16

2.3 PTP message timestamp points [45708] . 18

2.4 Various factors affecting packet-based synchronization [METS17] 20

2.5 Two-way message exchange between pair of nodes [GKS03] 22

2.6 Probe message from node 1 is immediately returned and timestamped (a), Linear
dependence and constraints imposed on a12 and b12 by three data points (b) [SV03] 24

2.7 A critical path analysis for traditional clock synchronization protocols (left) and
RBS (right) [EGE02] . 25

2.8 An analysis of clock rate effect on RBS. Each point represents the phase offset
between two nodes as implied by the value of their clocks after receiving a reference
broadcast. (a), a more complex 3-hop multihop network topology (b) [EGE02] . . 26

3.1 Basic system overview . 27

3.2 MULLE platform and programming board . 30

3.3 MULLE extension board after assembly (a), Layout top (b) and bottom (c) 31

3.4 Overview of communication in the distributed test system 32

3.5 Internal dataflow of the MULLE client . 35

3.6 PTP timestamping . 36

3.7 Flowchart of the Registration of MULLE . 37

3.8 Internal dataflow of the MULLE Master . 38

86

LIST OF FIGURES LIST OF FIGURES

3.9 Internal dataflow of the LESHAN server . 40

3.10 Tilt measurement of the MULLE, with history . 41

3.11 Flowchart of the Service Discovery . 42

3.12 Registration of a MULLE node . 43

4.1 Timestamping points . 45

4.2 Effect of different packet lengths . 46

4.3 Measuring synchronization asymmetry with oscilloscope 49

4.4 Non-interruptable task vs SYNC . 49

4.5 Non-interruptable task vs SYNC simulation . 50

4.6 Non-interruptable task with dynamic component vs SYNC 51

4.7 Simulated (a) and measured offset error (c) on MULLE due to non-interruptable
tasks . 52

4.8 CSMA/CA backoff probabilities . 54

4.9 Unslotted mode delay distribution of network conflicts for 3 (a), 9 (b), 16 (c) and
23 (d) slaves . 55

4.10 Unslotted mode delay, standard deviation and duty cycle 56

4.11 Slotted mode delay distribution of network conflicts for 3 (a), 9 (b), 16 (c) and 23
(d) slaves . 57

4.12 Slotted mode delay, standard deviation and duty cycle 58

5.1 Averaging Filter . 62

5.2 Comparison of averaging filter types . 63

5.3 Outlier rejection averaging filter . 63

5.4 Median filter . 64

5.5 Comparison of median filter types . 66

5.6 Compensated median filter . 67

5.7 Drift compensation of median filter data . 67

5.8 Oscillation after uncompensated error in feedback loop 68

5.9 Dual drift compensated uneven median filter . 69

5.10 Comparison of dual median filter types . 71

5.11 Comparison of dual median filter types with network conflicts 72

6.1 Offset due to asymmetric packet length . 75

6.2 Oscilloscope filter measurements . 76

6.3 Distributed voltage measurement . 78

6.4 Zero crossing calculation at LESHAN server . 79

87

List of Tables

2.1 Summary of Clock Synchronization Solutions for IEEE 802.11 [METS17] 21

2.2 Overview over wireless synchronization protocols (Expanded from [RAK10]) 22

2.3 Statistics of synchronization error over multihop (only magnitude) [GKS03] 23

2.4 Results for TinySync with and without data preprocessing [SV03] 25

2.5 Synchronization error for RBS and NTP between two Compaq IPAQ using 802.11
[EGE02] . 26

3.1 Origin of entities . 34

4.1 Communication delays on the MULLE . 48

4.2 Simulation Parameters . 54

5.1 Filter Sizes . 71

6.1 Master Slave Accuracy . 75

6.2 Slave Slave Accuracy . 77

6.3 Zero crossing measurement accuracy . 80

6.4 Synchronization overhead . 80

88

Literature

[14905] IEEE Standard for Information technology– Local and metropolitan area networks–
Specific requirements– Part 15.1a: Wireless Medium Access Control (MAC) and
Physical Layer (PHY) specifications for Wireless Personal Area Networks (WPAN).
In: IEEE Std 802.15.1-2005 (Revision of IEEE Std 802.15.1-2002) (2005), June, S.
1–700

[45708] IEEE Standard for a Precision Clock Synchronization Protocol for Networked Mea-
surement and Control Systems. In: IEEE Std 1588-2008 (Revision of IEEE Std
1588-2002) (2008), July, S. 1–269

[74616] IEEE Standard for Low-Rate Wireless Networks. In: IEEE Std 802.15.4-2015 (Re-
vision of IEEE Std 802.15.4-2011) (2016), April, S. 1–709

[77816] IEEE Standard for Information technology–Telecommunications and information ex-
change between systems Local and metropolitan area networks–Specific requirements
- Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY)
Specifications. In: IEEE Std 802.11-2016 (Revision of IEEE Std 802.11-2012) (2016),
Dec, S. 1–3534

[79217] IEEE Standard for Information technology–Telecommunications and information ex-
change between systems - Local and metropolitan area networks–Specific require-
ments - Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer
(PHY) Specifications Amendment 2: Sub 1 GHz License Exempt Operation. In:
IEEE Std 802.11ah-2016 (Amendment to IEEE Std 802.11-2016, as amended by
IEEE Std 802.11ai-2016) (2017), April, S. 1–594

[ABB+14] Adame, Toni ; Bel, Albert ; Bellalta, Boris ; Barcelo, Jaume ; Oliver, Miquel:
IEEE 802.11 ah: the WiFi approach for M2M communications. In: IEEE Wireless
Communications 21 (2014), Nr. 6, S. 144–152

[Arc05] Arce, Gonzalo R.: Nonlinear signal processing: a statistical approach. John Wiley
& Sons, 2005

[AS05] Akyildiz, IW S. ; Su, IW: Time-diffusion synchronization protocols for sensor
networks. In: IEEE/ACM Transactions on Networking (2005), S. 1626–1645

[BFK+14] Blomstedt, Fredrik ; Ferreira, Luis L. ; Klisics, Markus ; Chrysoulas, Chris-
tos ; de Soria, Iker M. ; Morin, Brice ; Zabasta, Anatolijs ; Eliasson, Jens ;
Johansson, Mats ; Varga, Pal: The arrowhead approach for soa application de-
velopment and documentation. In: Industrial Electronics Society, IECON 2014-40th
Annual Conference of the IEEE IEEE, 2014, S. 2631–2637

[BHG+13] Baccelli, Emmanuel ; Hahm, Oliver ; Gunes, Mesut ; Wahlisch, Matthias ;
Schmidt, Thomas C.: RIOT OS: Towards an OS for the Internet of Things. In:

89

LITERATURE LITERATURE

Computer Communications Workshops (INFOCOM WKSHPS), 2013 IEEE Confer-
ence on IEEE, 2013, S. 79–80

[BM02] Bush, Randy ; Meyer, David: Some Internet architectural guidelines and philoso-
phy. (2002)

[Bra89] Braden, Robert: Requirements for Internet hosts-communication layers. (1989)
[BV09] Buratti, Chiara ; Verdone, Roberto: Performance analysis of IEEE 802.15. 4 non

beacon-enabled mode. In: IEEE Transactions on Vehicular Technology 58 (2009),
Nr. 7, S. 3480–3493

[Com16] Combs. Wireshark network protocol analyzer. https://www.wireshark.org/. 2016
[CON12] CONTIKI. timesynch.h. http://contiki.sourceforge.net/docs/2.6/a01741.

html. 2012
[CON16] CONTIKI. soc-rtc.c. https://github.com/contiki-os/contiki/blob/master/

cpu/cc26xx-cc13xx/dev/soc-rtc.c. 2016
[DGV04] Dunkels, Adam ; Gronvall, Bjorn ; Voigt, Thiemo: Contiki-a lightweight and

flexible operating system for tiny networked sensors. In: Local Computer Networks,
2004. 29th Annual IEEE International Conference on IEEE, 2004, S. 455–462

[DÖH07] Dunkels, Adam ; Österlind, Fredrik ; He, Zhitao: An adaptive communication
architecture for wireless sensor networks. In: Proceedings of the 5th international
conference on Embedded networked sensor systems ACM, 2007, S. 335–349

[Ecl16] Eclipse. Leshan. http://www.eclipse.org/leshan/. 2016
[EGE02] Elson, Jeremy ; Girod, Lewis ; Estrin, Deborah: Fine-grained network time

synchronization using reference broadcasts. In: ACM SIGOPS Operating Systems
Review 36 (2002), Nr. SI, S. 147–163

[Erl08] Erl, Thomas: SOA design patterns. Pearson Education, 2008
[Exe14] Exel, Reinhard: Mitigation of asymmetric link delays in IEEE 1588 clock synchro-

nization systems. In: IEEE Communications Letters 18 (2014), Nr. 3, S. 507–510
[FFR+11] Ferrari, P. ; Flammini, A. ; Rinaldi, S. ; Bondavalli, A. ; Brancati, F.: Evalu-

ation of timestamping uncertainty in a software-based IEEE1588 implementation. In:
2011 IEEE International Instrumentation and Measurement Technology Conference,
2011. – ISSN 1091–5281, S. 1–6

[FGK11] Freris, Nikolaos M. ; Graham, Scott R. ; Kumar, PR: Fundamental limits on
synchronizing clocks over networks. In: IEEE Transactions on Automatic Control
56 (2011), Nr. 6, S. 1352–1364

[GKS03] Ganeriwal, Saurabh ; Kumar, Ram ; Srivastava, Mani B.: Timing-sync protocol
for sensor networks. In: Proceedings of the 1st international conference on Embedded
networked sensor systems ACM, 2003, S. 138–149

[GOP12] Gomez, Carles ; Oller, Joaquim ; Paradells, Josep: Overview and evaluation of
bluetooth low energy: An emerging low-power wireless technology. In: Sensors 12
(2012), Nr. 9, S. 11734–11753

[Har15] Hartke, Klaus: Observing resources in the constrained application protocol
(CoAP). (2015)

[IBM16] IBM. Crosscoap. https://github.com/ibm-security-innovation/crosscoap.
2016

[IS02] Instrumentation, IEEE ; Society, Measurement: IEEE Standard for a Precision
Clock Synchronization Protocol for Networked Measurement and Control Systems.
In: IEEE Std 1588 TM -2002 (2002)

[IS08] Instrumentation, IEEE ; Society, Measurement: IEEE Standard for a Precision
Clock Synchronization Protocol for Networked Measurement and Control Systems.

90

https://www.wireshark.org/
http://contiki.sourceforge.net/docs/2.6/a01741.html
http://contiki.sourceforge.net/docs/2.6/a01741.html
https://github.com/contiki-os/contiki/blob/master/cpu/cc26xx-cc13xx/dev/soc-rtc.c
https://github.com/contiki-os/contiki/blob/master/cpu/cc26xx-cc13xx/dev/soc-rtc.c
http://www.eclipse.org/leshan/
https://github.com/ibm-security-innovation/crosscoap

LITERATURE LITERATURE

In: IEEE Std 1588 TM -2008 (2008)
[JVE+04] Johansson, Jonny ; Völker, Matthias ; Eliasson, Jens ; Östmark, Åke ; Lind-

gren, Per ; Delsing, Jerker: MULLE: a minimal sensor networking device: im-
plementation and manufacturing challenges. In: IMAPS Nordic Annual Confer-
ence: 26/09/2004-28/09/2004 International Microelectronics and Packaging Society,
Nordic chapter, 2004, S. 265–271

[METS17] Mahmood, Aneeq ; Exel, Reinhard ; Trsek, Henning ; Sauter, Thilo: Clock
Synchronization Over IEEE 802.11—A Survey of Methodologies and Protocols. In:
IEEE Transactions on Industrial Informatics 13 (2017), Nr. 2, S. 907–922

[MKHC07] Montenegro, Gabriel ; Kushalnagar, Nandakishore ; Hui, Jonathan ; Culler,
David: Transmission of IPv6 packets over IEEE 802.15. 4 networks. 2007

[MLJ+15] Moreira, Naiara ; Lázaro, Jesús ; Jimenez, Jaime ; Idirin, Mikel ; Astarloa,
Armando: Security mechanisms to protect IEEE 1588 synchronization: State of the
art and trends. In: Precision Clock Synchronization for Measurement, Control, and
Communication (ISPCS), 2015 IEEE International Symposium on IEEE, 2015, S.
115–120

[MMBK10] Mills, D ; Martin, J ; Burbank, J ; Kasch, W: RFC 5905: Network Time Protocol
Version 4: Protocol and Algorithms Specification. Internet Engineering Task Force
(IETF), 2010. ht tp. In: tools. ietf. org/html/rfc5905 (2010)

[MO83] Marzullo, Keith ; Owicki, Susan: Maintaining the time in a distributed system.
In: Proceedings of the second annual ACM symposium on Principles of distributed
computing ACM, 1983, S. 295–305

[Mon16] Montori, Federico. Simple Service Discovery. https://forge.soa4d.org/

svn/arrowhead/Common%20Design%20Repository/01.%20WORKING_PROPOSAL/05.

%20Prototypes/SimpleServiceDiscovery%5bproxy%5d/. 2016
[MSPS17] Mitaroff-Szécsényi, Jeronimo ; Priller, Peter ; Sauter, Thilo: Compensat-

ing Software Timestamping Interference from Periodic Non-Interruptable Tasks. In:
Proc. of the ETFA 2017 IEEE, 2017

[Pos80] Postel, Jon: User datagram protocol. 1980
[Pos81a] Postel, Jon: Darpa Internet Protocol Specification / STD 5, RFC 791, September.

1981
[Pos81b] Postel, Jon: Transmission control protocol. (1981)
[RAK10] Rahamatkar, Surendra ; Agarwal, Ajay ; Kumar, Narendra: Analysis and

comparative study of clock synchronization schemes in wireless sensor networks. In:
Analysys 2 (2010), Nr. 3, S. 536–541

[Rom88] Romkey, JL: RFC 1055: Nonstandard for transmission of IP datagrams over serial
lines: SLIP. In: Chapter 11 Networking (1988)

[SHB14] Shelby, Zach ; Hartke, Klaus ; Bormann, Carsten: The constrained application
protocol (CoAP). (2014)

[She12] Shelby, Zach: Constrained RESTful environments (CoRE) link format. (2012)
[Sta96] Standardization, I: ISO/IEC 7498-1: 1994 information technology–open systems

interconnection–basic reference model: The basic model. In: International Standard
ISOIEC 74981 (1996), S. 59

[SV03] Sichitiu, Mihail L. ; Veerarittiphan, Chanchai: Simple, accurate time synchro-
nization for wireless sensor networks. In: Wireless Communications and Networking,
2003. WCNC 2003. 2003 IEEE Bd. 2 IEEE, 2003, S. 1266–1273

[TH09] Treytl, Albert ; Hirschler, Bernd: Security flaws and workarounds for IEEE 1588
(transparent) clocks. In: Precision Clock Synchronization for Measurement, Control

91

https://forge.soa4d.org/svn/arrowhead/Common%20Design%20Repository/01.%20WORKING_PROPOSAL/05.%20Prototypes/SimpleServiceDiscovery%5bproxy%5d/
https://forge.soa4d.org/svn/arrowhead/Common%20Design%20Repository/01.%20WORKING_PROPOSAL/05.%20Prototypes/SimpleServiceDiscovery%5bproxy%5d/
https://forge.soa4d.org/svn/arrowhead/Common%20Design%20Repository/01.%20WORKING_PROPOSAL/05.%20Prototypes/SimpleServiceDiscovery%5bproxy%5d/

LITERATURE LITERATURE

and Communication, 2009. ISPCS 2009. International Symposium on IEEE, 2009,
S. 1–6

[TH11] Thubert, Pascal ; Hui, Jonathan W.: Compression format for IPv6 datagrams over
IEEE 802.15. 4-based networks. (2011)

[Tia12] Tian, Linyi: Lightweight m2m (oma lwm2m). In: OMA device management working
group (OMA DM WG), Open Mobile Alliance (OMA) (2012)

[VBF+17] Varga, Pal ; Blomstedt, Fredrik ; Ferreira, Luis L. ; Eliasson, Jens ; Jo-
hansson, Mats ; Delsing, Jerker ; de Soria, Iker M.: Making system of systems
interoperable–The core components of the arrowhead framework. In: Journal of
Network and Computer Applications 81 (2017), S. 85–95

[WM10] Wobschall, Darold ; Ma, Yuan: Synchronization of wireless sensor networks using
a modified IEEE 1588 protocol. In: Precision Clock Synchronization for Measure-
ment Control and Communication (ISPCS), 2010 International IEEE Symposium on
IEEE, 2010, S. 67–70

92

Erklärung

Hiermit erkläre ich, dass die vorliegende Arbeit ohne unzulässige Hilfe Dritter und ohne Be-
nutzung anderer als der angegebenen Hilfsmittel angefertigt wurde. Die aus anderen Quellen oder
indirekt übernommenen Daten und Konzepte sind unter Angabe der Quelle gekennzeichnet.

Die Arbeit wurde bisher weder im In- noch im Ausland in gleicher oder in ähnlicher Form in
anderen Prüfungsverfahren vorgelegt.

Wien, am November 4, 2017

Jeronimo Govinda Mitaroff-Szécsényi

	Titlepage
	Introduction
	Problem statement
	ARROWHEAD Framework
	Structure of the thesis

	State of the Art and Related Work
	Basic Technologies
	Protocol Stack Models
	Wireless network technologies
	Communication Protocols
	Clock Synchronization

	Related Work
	IEEE 802.11 Clock Synchronization
	Wireless Mesh-Network Clock Synchronization

	System Overview
	Initial design decisions
	Hardware
	MULLE platform
	Extension board

	System description
	MULLE Client
	MULLE Master
	Raspberry Pi Router
	Leshan Server
	ARROWHEAD Server

	Challenges of Software based clock synchronization
	Influence of timestamping point
	Offset due to asymmetric packet compression
	Interference from periodic, non-interruptable tasks
	Interference from network conflicts

	Improving Software based clock synchronization
	System specific solutions
	Compensation of Clock Frequency Offsets
	Filtering PTP data
	Averaging filter
	Outlier rejection averaging filter
	Median filter
	Uneven median filter
	Drift compensated uneven median filter
	Dual drift compensated uneven median filter

	Selecting the right filter

	Evaluation
	Synchronization Accuracy
	External measurement between PTP Master and PTP Slave
	External measurement between two PTP Slaves
	Analysis of voltage measurement data

	Synchronization Overhead
	ARROWHEAD

	Conclusion and Outlook
	Appendix
	List of Figures
	List of Tables

	Literature

