
Design and Implementation of
a Fog Computing Framework

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Software Engineering & Internet Computing

eingereicht von

Kevin Bachmann, BSc
Matrikelnummer 1126001

an der Fakultät für Informatik
der Technischen Universität Wien

Betreuung: Assistant Prof. Dr.-Ing. Stefan Schulte
Mitwirkung: Olena Skarlat, MSc

Wien, 10. Februar 2017
Kevin Bachmann Stefan Schulte

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.ac.at

Die approbierte Originalversion dieser Diplom-/
Masterarbeit ist in der Hauptbibliothek der Tech-
nischen Universität Wien aufgestellt und zugänglich.

http://www.ub.tuwien.ac.at

The approved original version of this diploma or
master thesis is available at the main library of the
Vienna University of Technology.

http://www.ub.tuwien.ac.at/eng

Design and Implementation of
a Fog Computing Framework

DIPLOMA THESIS

submitted in partial fulfillment of the requirements for the degree of

Diplom-Ingenieur

in

Software Engineering & Internet Computing

by

Kevin Bachmann, BSc
Registration Number 1126001

to the Faculty of Informatics
at the Vienna University of Technology

Advisor: Assistant Prof. Dr.-Ing. Stefan Schulte
Assistance: Olena Skarlat, MSc

Vienna, 10th February, 2017
Kevin Bachmann Stefan Schulte

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.ac.at

Erklärung zur Verfassung der
Arbeit

Kevin Bachmann, BSc
Lerchenfelder Straße 46/1/4, 1080 Wien

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 10. Februar 2017
Kevin Bachmann

v

Acknowledgements

At this place I want to use the opportunity to thank my advisor Assistant Professor Stefan
Schulte and co-advisor Olena Skarlat for the invaluable technical support, constructive
feedback, and honest comments throughout the actually pretty short time period of
about six months. Precisely this short period of time often made great demands of my
advisors that enabled me to finish my thesis in this time.

Beside the professional environment, I would also like to thank my friends for their
moral encouragements and my fellow students for the endless technical discussions and
valuable feedback. Finally, I would like to express my deepest gratitude to my family for
their financial and moral support.

vii

Kurzfassung

Die stetige Digitalisierung und Vernetzung von alltäglichen Gegenständen führte in den letzten
Jahren zu einem enormen Wachstum an datenproduzierenden Geräten. Das resultierende
Internet der Dinge (engl. Internet of Things, IoT) und dessen Verbreitung erfordern eine
Veränderung in der Verwendung eben solcher Geräte, um eine erfolgreiche Datenübermittlung
und Datenverarbeitung zu ermöglichen.

Aufgrund der Tatsache, dass diese Geräte nicht nur Daten generieren, sondern auch Rechen-
und Speicherkapazitäten aufweisen, entstand ein neues IT-Paradigma. Dieser dezentralisierte
Ansatz verlagert den Fokus von der zentralen Cloud-Computing-Umgebung and den Rand
des Netzwerks und führt zur Einführung einer neuen Zwischenebene - dem Fog Computing.
Die zentrale Idee von Fog Computing besteht darin, bestehende Ressourcen am Rande des
Netzwerks zu nutzen, indem IoT-Dienste auf verfügbaren Geräten ausgeführt werden.

Die Entwicklung einer dynamischen Fog-Computing-Softwareumgebung birgt folgende
Forschungslücken, die es zu lösen gilt: dezentrale Datenverarbeitung, Ressourcenvirtualisierung,
IoT-Geräteverwaltung und die Bereitstellung von Diensten und Ressourcen sowohl in der Cloud-
Umgebung als auch in der Fog-Landschaft. Das Schließen besagter Forschungslücken resultiert
in einer Softwareumgebung, fähig die dynamischen Ressourcen am Rande des Netzwerks zu
nutzen, den Datentransfer zu verringern und somit die Cloud zu entlasten und das IoT zu
unterstützen. Eine derartige dynamische Softwareumgebung ist ein Fog-Computing-Framework.

Der aktuelle Stand der Technik konzentriert sich hauptsächlich auf Cloud Computing, Fog-
Computing-Konzeptarchitekturen und Ansätze zur cloud-basierten Ressourcenbereitstellung.
Da sich nur wenige wissenschaftliche Beiträge mit der Entwicklung eines konkreten Fog-
Computing-Frameworks befassen, werden in dieser Arbeit IoT-Anwendungsfälle, verwandte
IoT-Frameworks und Best-Practices im Bereich verteilter Systeme analysiert. Basierend auf
dieser Analyse wird ein dynamisches und erweiterbares Fog-Computing-Framework entwickelt.

Das entwickelte Fog-Computing-Framework schafft die Vorraussetzungen für die Verwal-
tung zugehöriger IoT-Dienste in einer realen Fog-Landschaft. Darüber hinaus ermöglicht das
Framework die Verwaltung der Geräte, Kommunikation zwischen den Geräten und realisiert
die Bereitstellung von Ressourcen und IoT-Diensten in der Fog-Landschaft. Zusätzlich ist
das Framework in der Lage, auf verschiedene Systemereignisse, z. B. Gerätebeitritt, Geräte-
versagen und Geräteüberlastung, zu reagieren. Die Evaluierung des Frameworks befasst sich
neben der Handhabung besagter Ereignisse mit der Analyse weiterer Metriken, z. B. Kosten,
Ausführungszeiten und variierenden Dienstanfragen. So bietet das Framework die Möglichkeit,
die Dynamik der Fog-Landschaft zu bewältigen und führt zu geringeren Bereitstellungszeiten
von IoT-Diensten und erheblichen Kostenvorteilen.

Schließlich erlaubt die Gestaltung des Frameworks zukünftigen Forschern, die Komponenten
des Frameworks so zu konfigurieren, zu erweitern und zu verbessern, dass es den individuellen
Anforderungen und Forschungsproblemen gerecht wird.

ix

Abstract

The prevalence of ubiquitous computing devices encouraged by the expanding technology trend
of the Internet of Things (IoT) demands a change in how these devices are used and where
the generated data is processed. Since these computing devices not only generate data but
feature computational and storage capabilities, a new paradigm evolved. The decentralized
computing paradigm that shifts the focus of interest away from a centralized cloud computing
environment towards the edge of the network is called fog computing. The main idea of
fog computing is to utilize the processing and storage resources at the edge of network by
deploying IoT services on available edge devices to reduce latency and processing cost.

The research challenges to be tackled in order to develop a dynamic software environment
realizing the vision of fog computing are decentralized data processing, resource virtualization,
service deployment, IoT device orchestration, and resource provisioning in both the cloud
environment and the fog landscape. Such a dynamic decentralized software environment is a
fog computing framework.

State of the art approaches are mostly focusing on cloud computing, conceptual fog
computing architectures, and cloud-based resource provisioning approaches. Only few contri-
butions deal with the development of a concrete fog computing framework. Therefore, in this
work, IoT use cases, related IoT frameworks, and best practices in the area of distributed
systems are analyzed in order to design and implement a dynamic, extensible, and flexible fog
computing framework.

The fog computing framework provides the tools to manage IoT services in the fog
landscape by means of a real-world test-bed. Furthermore, the framework facilitates the
communication between the devices, fog device orchestration, IoT service deployment, and
dynamic resource provisioning in the fog landscape. In addition to these main functionalities,
the framework is able to react on various system events, e.g., device accedence, device failure,
and device overload. The consequent event handling and assessment of other important metrics,
e.g., costs, deployment times, and service arrival patterns, is performed in the evaluation of
the framework. As a result, the framework provides the utilities to deal with the dynamism
of the fog landscape and yields lower deployment times of IoT services and considerable cost
benefits.

Finally, the design of the framework allows future researchers to configure, extend, and
enhance the components of the framework to fit the individual requirements and research
challenges.

xi

Contents

Kurzfassung ix

Abstract xi

Contents xiii

1 Introduction 1
1.1 Motivation . 1
1.2 Aim of the Work . 2
1.3 Methodology and Approach . 4
1.4 Structure . 5

2 Background 7
2.1 The Internet of Things . 8
2.2 Cloud Computing . 10

2.2.1 Characteristics . 10
2.2.2 Service Models . 13
2.2.3 Deployment Models . 13
2.2.4 Virtualization . 14

2.3 Fog Computing . 16
2.3.1 Characteristics . 17
2.3.2 Mobile Edge Computing . 19
2.3.3 Mobile Cloud Computing . 20

2.4 Software Frameworks . 20
2.5 Resource Provisioning . 22

3 Related Work 25
3.1 Fog Computing Architecture and Concepts 25

3.1.1 Initial Fog Computing Concepts by Bonomi et al. 25
3.1.2 A Comprehensive Definition of Fog Computing by Vaquero and

Rodero-Merino . 26
3.1.3 Focusing on Mobile Users at the Edge by Luan et al. 27
3.1.4 A Fog Computing Platform including a Real-World Test-Bed by

Yi et al. 27

xiii

3.1.5 Principles, Architectures, and Applications of Fog Computing by
Dastjerdi et al. 28

3.1.6 A Theoretical Fog Computing Model to support IoT Applications
by Sarkar et al. 28

3.2 Programming Models . 28
3.2.1 A High Level Programming Model by Hong et al. 29
3.2.2 Incremental Deployment and Migration of Fog Applications by

Saurez et al. 29
3.3 Resource Provisioning . 30

3.3.1 A Resource Provisioning Approach for IoT Services in the Fog by
Skarlat et al. 30

3.3.2 Dynamic Resource Provisioning through Fog Micro Datacenters by
Aazam et al. 31

3.4 Discussion . 31

4 Requirements Analysis and Design 35
4.1 Functional Specification . 36

4.1.1 Functional Requirements . 36
4.1.2 Non-Functional Requirements . 38
4.1.3 Actors . 39
4.1.4 Use Case Scenarios . 39
4.1.5 Workflows . 41

4.2 Technical Specification . 43
4.2.1 Fog Computing Framework Architecture 43
4.2.2 Design and Technology Decisions 47
4.2.3 API Endpoints . 53

5 Implementation 59
5.1 Bird View . 59
5.2 Service Deployment . 60

5.2.1 Fog Service Deployment . 62
5.2.2 Cloud Service Deployment . 63

5.3 Component Requirements . 64
5.3.1 Cloud-Fog Middleware . 65
5.3.2 Fog Cells . 66
5.3.3 Fog Control Nodes . 66

5.4 Installation Instructions . 67
5.4.1 Raspberry Pi Setup . 67
5.4.2 Cloud Setup . 69
5.4.3 Environment Setup . 70

5.5 Execution . 70
5.5.1 Development, Testing, and Evaluation of an IoT Service 70
5.5.2 Execution of an IoT Application 72

5.5.3 Development, Testing, and Evaluation of a Resource Provisioning
Approach . 73

5.6 Resource Provisioning . 74

6 Evaluation 77
6.1 Evaluation Setup . 77
6.2 Evaluation Scenarios . 81

6.2.1 Device Failure . 81
6.2.2 Device Accedence . 81
6.2.3 Overload . 81
6.2.4 Cost Assessment . 82
6.2.5 Deployment Time Assessment . 82
6.2.6 Varying Service Deployment . 82

6.3 Results . 83
6.3.1 Metrics . 83
6.3.2 Discussion . 84

7 Conclusion and Future Work 97
7.1 Conclusion . 97
7.2 Future Work . 99

List of Figures 101

List of Tables 102

List of Algorithms 103

Acronyms 105

Bibliography 107

CHAPTER 1
Introduction

1.1 Motivation
Being an established paradigm, cloud computing allows customers to acquire on-demand
computational and network resources on a pay-per-use basis and enables vertical and
horizontal scalability [44]. In order to efficiently handle physical resources in cloud
environments, cloud computing uses the concept of virtualization. Virtualization creates
isolated virtual versions of physical resources enabling dynamic resource sharing amongst
customers and applications [60]. Theoretically infinite virtual resources offered by the
cloud along with a variety of distributed applications became a well-accepted practice in
various application domains.

The prospering technology of the Internet of Things (IoT) leads to the increased use
of IoT devices in various areas of private and industrial spaces. Such an expansion of
the IoT and according applications, i.e., IoT services, requires changes in the existing
approach of executing IoT services in a centralized cloud [8]. These changes result
from the characteristics of data generated by IoT devices and according data processing
services [15]. The required characteristics evolve from special IoT applications, e.g.,
augmented reality, smart grids, smart vehicles, and healthcare. An essential characteristic
of IoT services is the necessity of a very low and predictable latency for communication
purposes. Another noteworthy feature to be accounted for is that IoT devices are highly
geo-distributed and require location aware large-scale distributed control systems [15, 16].

Despite this nature of the IoT, cloud computing is still seen as the central computa-
tional backbone of the IoT. However, cloud computing is not able to comply with the
stated characteristics due to the lack of location-awareness, high latency, and missing
geo-distributed data centers close to the IoT devices. As IoT devices feature their own
computational and storage resources, it is a promising approach to virtualize these
resources and use them to execute IoT services [16, 61]. Having in mind that the amount
and capabilities of IoT devices is constantly increasing, neglecting these resources is
ineffective and leads to processing cost in the cloud and considerable delays. To enable the

1

1. Introduction

utilization of those resources at the edge of the network, a novel distributed computational
paradigm is required. Such a distributed paradigm is edge or fog computing. In the
remainder of this thesis, the term fog computing is used.

Fog computing aims to reduce the cloud involvement by filtering and preprocessing
data produced by the rising number of sensors and other IoT devices connected to
the fog computing environment, i.e., the fog landscape. This improved utilization of
edge resources leads to faster communication and task execution. A particular research
challenge is to provide mechanisms for decentralized processing of data and for virtualized
resource provisioning in fog landscapes. To address this challenge, a dynamic software
environment, i.e., a fog computing framework, is required. This framework has to
provide the functionality to execute, monitor, and analyze IoT services in addition to
the deployment and migration of the virtualized IoT resources. Furthermore, in case of
failure or violated service constraints, the framework has to be able to reconfigure the
fog landscape.

Cloud

Fog

Cloud-Fog
Middleware

Fog
Control Node

IoT
Devices

Fog
Cells

Fog Colony

IoT Devices

Bidirectional Communication
and Task Offloading

Fog Cell, Fog Control Node

Cloud-Fog Middleware

Fog Colony

Cloud Resources

Figure 1.1: High-Level View on a Fog Computing Framework Architecture

1.2 Aim of the Work

The objective of this thesis is to implement a fog computing framework that is a real-world
test-bed and serves as an environment to execute, monitor, and analyze IoT services in a
fog landscape. The fog computing framework consists of three levels of communications:
between IoT devices and the fog landscape, within the fog landscape, and between the
fog landscape and the cloud (see Figure 1.1).

2

1.2. Aim of the Work

IoT devices which do not possess any computational or storage capabilities, e.g.,
sensors and actuators, are located at the bottom of the architecture. These IoT devices
are connected to the fog landscape, i.e., to fog cells and fog control nodes. Fog cells are
software components deployed and running on rich IoT devices that feature computational
and storage resources and are able to process tasks. If a specific fog cell is not able to
process the incoming tasks itself or the data needs to be stored in the cloud, e.g., for Big
Data analysis, the fog cell propagates those tasks to a fog control node or the cloud-fog
middleware for further processing.

Such a hierarchical construct of IoT devices, i.e., fog cells connected to a fog control
node, is called fog colony. Fog control nodes are either directly connected to the cloud via
a cloud-fog middleware, or to another fog colony via its fog control node. This forms a
hierarchy of fog colonies. The task of the fog control node is to orchestrate the subjacent
fog cells and to perform dynamic resource provisioning and service placement. If no cloud
connection exists, fog colonies have to be able to work autonomously.

As already mentioned, the component on the top of the framework architecture is
the cloud-fog middleware. It is responsible for processing task requests from connected
fog colonies and managing cloud resources [56].

The major challenge of this diploma thesis is to develop a framework that enables the
management of available resources in a fog landscape as described above. This includes
the creation and destruction of virtual resources, providing a seamless on-demand task
execution environment. The resulting environment is expected to improve edge resource
utilization and to contribute to the extensibility and flexibility of the paradigm. This
is needed for the future integration of not yet excessively researched fields as security,
privacy, and reliability in the fog computing context.

Summarizing the described challenges, open questions are identified, which are of
primary interest in order to implement a fog computing framework. These topics define
specific problems to be solved in this thesis.

Requirements Analysis To develop a fog computing framework, a preliminary study
on current deployment mechanisms in the cloud and fog has to be performed. This will
allow to identify shortcomings of existing related work and to specify concrete software
requirements for the framework. The analysis has to be focused mainly on the topics:
cloud and fog computing architectures, component specification, communication, data
storage, service placement, and service deployment. In order to enable a convenient
technology selection for further work, the functional and non-functional requirements
of the framework have to be elicited. The corresponding research question can be
formulated as “What are the functional and non-functional requirements for a fog
computing framework?”

Fog Computing Framework Architecture The next step is the design of the fog
computing framework. During this step, a data model, architecture, and interfaces
between the framework and its components have to be specified. The research question
addressed here is: “What are the necessary components of a fog computing framework,

3

1. Introduction

and how can they be described in terms of their functional and technical specification?”
An important consideration when developing a software design is to keep the framework
loosely coupled, and thereby enable replaceability of the various components due to clearly
defined interfaces. The assessment of suitable technologies has to be done according to
the requirements analysis, i.e., the functional and non-functional requirements of the
framework.

Implementation of the Framework The framework implementation is the realiza-
tion of the functional and technical specifications defined in the previous step. The
project will be divided into separate packages and sub-projects according to the specified
components. Such a separation improves the replaceability and maintainability of the
project by the means of specified interfaces between different components. The source
code has to be readable and self explaining, hence state of the art code standards and
guidelines have to be applied. The according research question is: “How to realize a fog
computing framework that manages the fog landscape and executes IoT services?”

Evaluation of the Framework The last step in the thesis is an extensive evaluation
of the developed framework. The research question of this part of the work is “How
does the implemented fog computing framework improve the execution of IoT services
compared to the execution in the cloud?” The objective of the evaluation is to show how
the execution of IoT services in the fog landscape by the means of the developed fog
computing framework differs from the execution in the cloud. Important metrics in the
evaluation are amount of tasks deployed in the cloud and the fog environment, service
deployment times, resource utilization in terms of RAM and CPU, and cost of execution.

1.3 Methodology and Approach

The procedure on how to complete this thesis is divided into three steps. In the boundaries
of the individual steps, self control loops will help to estimate how the work conforms to
the defined requirements.

Analysis of Existing Approaches The first step is gathering information about
current research materials in the fields of cloud computing, fog computing, and the IoT in
combination with resource provisioning, service placement, and task offloading. After the
systematic gathering of the materials is done, the relevant information has to be extracted
and analyzed to build the theoretical state of the art background for the design of the
framework. The extraction of the information will be done by looking for predefined
topics mentioned in Section 1.1. Further, an analysis of functional and non-functional
requirements has to be performed.

Architecture Design As a next step, the design of the fog computing framework
architecture is done. The design is a crucial point in the development of a framework,

4

1.4. Structure

and therefore has to be self-checked and reviewed throughout the whole development
process. This will ensure the correctness of the design decisions. During the design a
suitable resource provisioning approach, as well as the software architecture including
technologies and patterns, will be selected. Technologies are assessed in regard to the
functional and non-functional requirements of the framework in combination with the
dependencies to already chosen tools. The same approach is applied for best practices,
patterns, and general design decisions.

Implementation and Evaluation As the implementation will be done within a one
person team and no specific predefined processes or workflows exist, some aspects of
well-known software development processes are extracted and tailored to manage the
workload. For example, the management of programming tasks will be performed by
means of an online workflow visualization tool, e.g., Kanban Flow1. In the course of the
implementation, the state of the art Oracle code standards2 will be followed. As the
evaluation and implementation are not strictly divisible, the output of the framework has
to be reviewed iteratively. After the implementation is finished, an extensive evaluation
of the fog landscape execution of IoT services has to be done to show the benefits of the
implemented framework.

1.4 Structure
The thesis is structured as follows.

In Chapter 2, the background knowledge, needed to understand the full extent of
the stated solution, is presented. The chapter starts off with the explanation of the IoT
technology and gets more fine grained over the course of the pages. In every section the
most important basics, driving forces, and applications of fog computing are described.

Chapter 3 covers the most relevant work done in related scientific areas. The related
work is classified according to several criteria specified at the end of the chapter. After
the summarized work is presented, the results are discussed and compared.

Chapter 4 introduces the requirements and the general design of the fog computing
framework. This chapter is split into functional and technical specifications and defines
the most important design decisions and functionalities of the framework.

Within Chapter 5 the implementation of the envisioned fog computing framework is
provided. After the requirements of the separate software components, the installation
and execution instructions are explained.

The implementation is then followed by Chapter 6 providing an evaluation of the
framework. The holistic evaluation aims to depict the benefits gained by the implemented
fog computing framework at hand.

Finally, Chapter 7 concludes the thesis with an outlook of the work done and gives
an insight into the future work in this area.

1https://kanbanflow.com/
2http://www.oracle.com/technetwork/java/codeconventions-150003.pdf

5

https://kanbanflow.com/
http://www.oracle.com/technetwork/java/codeconventions-150003.pdf

CHAPTER 2
Background

This chapter covers the background knowledge of this thesis and gives a general overview
on needed technologies enabling fog computing, and more specifically, enabling the fog
computing framework as specified in the introduction chapter.

As a starting point, the well-known Gartner Hype Cycle [64] is examined, as some
relevant background technologies are in a crucial phase in research. A hype cycle is a
predictive graph that shows currently trending research topics and their actual phase
in research. The hype cycle is separated into five different phases. It begins with an
innovation trigger, followed by a peak of inflated expectations, trough of disillusionment,
a slope of enlightenment, and finishes with a plateau of productivity. Gartner Inc. argues
that most of the innovations are forced to pass through these phases during their lifetime.

The annual hype cycle report, additionally, presents a mega trend analysis [19]
pointing out the major trends of the year. In this analysis, the fields of cloud and
mobile information technologies start to move out of the disillusionment phase, whereas
technologies such as the IoT, mobile Data Centers (DCs), and digital workplaces are
located around the peak of the inflated expectations. Consequently, cloud computing
and mobile information technologies have already been well-researched and have gained
importance in the market. On the other hand, technologies as the IoT, mobile DCs,
and digital workplaces are facing a crucial phase with lots of challenges tied to research
efforts [31].

Fog computing and related approaches, e.g., mobile cloud computing and mobile
edge computing, are situated close to the IoT and mobile DCs. The statement resulting
from this mega trend analysis is that these technologies are currently at the peak of
expectations, where a realistic assessment of the complete extent of the topics is difficult.
This peak is then followed by a discovery of connected challenges and current issues to
be tackled until first applicable solutions are successfully researched [31].

Due to the proliferation of data-producing IoT devices, e.g., sensors, mobile phones,
and wearables, the huge amount of data sent over the network is a growing challenge
for future applications. Not only the data processing gets demanding, but as well the

7

2. Background

data transmission from the devices to suitable DCs. Being able to transmit and process
the future abundance of data, received by widely distributed devices, a new computing
paradigm is needed. This evolving paradigm is fog computing. Fog computing supports
the centralized DCs by filtering, preprocessing, and caching data, beside executing task
requests at the edge of the network. The envisioned implementation of a dynamic,
extensible, scaling, and fault-tolerant system to execute IoT services in a fog landscape,
results in a fog computing framework. A fog computing framework provides the means
to tackle the mentioned challenges of future data and device abundance [23].

The following sections comprise the most important technologies enabling the design
and implementation of the fog computing framework. In Section 2.1, the prospering IoT
technology, enabling novel smart applications, is described. Section 2.2 gives the basic
background knowledge on cloud computing, including the empowering virtualization
technology. Section 2.3 provides the basic knowledge about the crucial fog computing
paradigm and related distributed computing paradigms. Section 2.4 introduces the general
functionality of software frameworks and presents two related IoT frameworks. Finally,
Section 2.5 briefly presents the most important aspects regarding resource provisioning.

2.1 The Internet of Things

The IoT is a currently prospering technology trend discussed all over the world. The term
“the Internet of Things” was first used in a presentation at Procter & Gamble1 in June
1999 [7]. In this presentation, Kevin Ashton combined Radio-Frequency Identification
(RFID) with the, at that point in time, up and coming Internet resulting in the term: the
Internet of Things. The vision of the IoT is to connect huge amounts of intelligent things
to the Internet. These intelligent things can range from sensors, actuators, wearables,
mobile phones over one-board computers to micro DCs. In the following, these things are
called IoT devices. In order to connect the mentioned IoT devices to the Internet many
technologies are applied, e.g., WiFi, Bluetooth, RFID, and Near Field Communication
(NFC) [8]. The last two mentioned technologies, RFID and NFC, both are used in close
proximity to IoT devices to identify, track, or authenticate them [31].

Looking back reveals that RFID was the first technology to draw attention to the
IoT [7, 10]. Even nowadays RFID is one of the most pushing forces with respect to the
appraisal of IoT applications. That is the case as the overall vision to connect everything
to the Internet is straightforwardly applicable by so-called RFID tags. RFID tags are
small uniquely identifiable and programmable microprocessors connected to an antenna
to communicate with RFID reading devices. Additional components, e.g., batteries,
GPS sensors, can be appended depending on application specifications [67, 10]. Tags
can be placed on every imaginable item, e.g., food packaging, shippable products, and
even animals or human bodies. The tagging of objects enables to identify, track, or
authenticate them [8]. Examples of RFID tag applications are library systems, logistic
product tracking, and access control systems. Aiming at a huge coverage of RFID tags on

1http://us.pg.com

8

http://us.pg.com

2.1. The Internet of Things

everyday items, the amount of needed tags is very high. With the huge amount of tags
required, the price becomes a crucial point of interest. Consequently, the rapidly falling
prices of RFID tags are a positive force in increasing the interest towards applications
using RFID [31, 58].

Beside RFID, the approach of Wireless Sensor Networks (WSNs) is an interesting
related technology concerning the future trend of the IoT. Although WSN and the IoT
seem to be competing technologies, many synergies exist. Sensor networks in a WSN
consist of wireless interconnected sensors able to communicate. A common communication
approach used in WSNs is the Peer-to-Peer (P2P) technology. Sensors need to discover
other sensors in close vicinity, and build a network to intercommunicate in a highly
geo-distributed sensor mesh. Examples for such WSNs are heat and smoke sensors in fire
endangered forests. In case of fire or smoke, sensors send an emergency call either to a
control middleware to recheck the emergency, or directly to a fire department [8, 62].

Another arising technology concept that is currently discussed in almost every company
with manufacturing background is Industry 4.0. The IoT is closely related to the concept
of Industry 4.0. Industry 4.0 is the vision of digitalizing and automating the manufacturing
process starting from the first draft of a product over the complete supply chains to the
final product. This includes the fields of Big Data analytics, digitalization, manufacturing,
self-adaptation, artificial intelligence, etc. [41].

In the current situation, the IoT consists not only of sensors and actuators but,
as previously mentioned, of a lot of heterogeneous devices connected to the Internet.
This stresses the necessity of a standardized communication technique between IoT
devices in order to control, monitor, and extract the accrued information. Additionally,
energy efficiency and computational resources have to be taken into account. These novel
requirements and application possibilities attract academies and industries to invest in the
research of the IoT. Hence, many well-known companies like Gartner Inc., Siemens AG,
SAP SE are researching to enable the realization of their own visions of the IoT [8, 10, 23].

Driving forces are crucial to novel technologies. In the case of the IoT, the most
important driving forces are the decreasing cost of processing and storage power, the
proliferation of IoT devices, elastic Big Data analysis in the cloud, and the convergence
of the digitalized and the operational industrial world [5]. Furthermore, one of the
more obvious driving forces is the usability gained by the new possible applications, e.g.,
smart cities, smart homes, smart cars, smart grids, smart healthcare, smart logistics,
autonomous cars and robots, and virtual and augmented reality applications [8, 62].
Regarding smart homes, the functionality to control a complete house with a smartphone,
tablet or wearable including the ability to close windows, change the temperature, monitor
what products are in low supply, or observe elderly people, fits for the demands and
activities of the future [62].

In a forecast, done by Cisco Systems Inc. [62], the extent of the IoT device proliferation
from the early 2000s until 2020 is depicted. Here the incredible growth of smart objects,
i.e., IoT devices, from 6.3 billion in 2003 to approximately 50 billion in 2020 points out
the extraordinary development of this sector [18].

The applications emerging of this steadily growing trend are distributed over diverse

9

2. Background

areas. In lots of application scenarios involving the IoT the word smart appears, indicating
a self-adaptive approach. A self-adaptive system readjusts itself dynamically according
to changes in the environment. In more detail, self-adaptation unifies the topics of
self-healing, self-management, self-configuration, and self-optimization [34].

In conclusion, the IoT is a very promising novel technology that is gaining a lot of
interest and research attention in many diverse areas. The possible applications and
resulting benefits make this technology very powerful. Finally, the visions and evolving
technologies coming with the IoT do not only affect specific products or industries,
but are able to substantially change the view and requirements towards systems and
applications [21].

2.2 Cloud Computing

Cloud computing is an extensively researched centralized computing paradigm [44] that
places emphasis on the dynamic provisioning of computational and storage resources.
These resources are located in centralized DCs. The selection of the DC location is
thereby tied to multiple factors, e.g., ambient energy cost, temperature, and land prices.
The resources provisioned by cloud providers include software services used via a web
browser, developer platforms to create and deploy cloud applications, and complete
server infrastructures handling Virtual Machines (VMs) running on cloud resources.
These three service models of cloud resource delivery are called Software-as-a-Service
(SaaS), Platform-as-a-Service (PaaS), and Infrastructure-as-a-Service (IaaS). Beside
these different service models, four different cloud deployment models have emerged:
(i) private cloud, (ii) community cloud, (iii) public cloud, and (iv) hybrid cloud. The
details of these deployment models are presented in Subsection 2.2.3. Aiming at the
dynamic provisioning of huge amounts of on-demand resources on a pay-per-use basis,
cloud providers use the Virtualization technology described in Subsection 2.2.4.

In the following, the cloud computing definition by NIST [44] is described. The
definition includes characteristics, service and deployment models (see Figure 2.1).

2.2.1 Characteristics

The essential characteristics of cloud computing were introduced in the definition of NIST
in 2011 and still cover the most important aspects of it [44]. In the following paragraphs
the mentioned characteristics are described.

On-Demand Self-Service Cloud services can be acquired on-demand and will be
provisioned without any human commitment as services and resources are provisioned
autonomously.

Broad Network Access As the cloud computing DCs are spread all over the world,
every device connected to the Internet can interact with the cloud and acquire the
proposed services. The devices include mobile devices, wearables, and proprietary servers.

10

2.2. Cloud Computing

APPLICATION
Business	Application,	Web	Services

PLATFORM
Software	Framework,	Storage

HARDWARE
CPU,	Memory,	Disk,	Bandwidth

INFRASTRUCTURE
Computation,	Storage

O
n-
De

m
an

d	
Se
lf-
Se
rv
ic
e

Br
oa

d	
N
et
w
or
k	A

cc
es
s

Re
so
ur
ce
	P
oo

lin
g

M
ea
su
re
d	
Se
rv
ic
e

Ra
pi
d	
El
as
tic
ity

SaaS

PaaS

IaaS

Characteristics Layers and Resources Service Models

Figure 2.1: Cloud Computing Overview (adapted from [17])

Nowadays a lot of smart devices are connected to the Internet using cloud services. This
is the case as lots of service providers already use centralized cloud resources, e.g., Netflix,
Airbnb, Slack, to benefit from the dynamic resource handling and the virtually infinite
resource capacity [9].

Resource Pooling Cloud computing customers want to acquire dynamic resources in
the constellation of the current demand in order to minimize over and underprovisioning.
Overprovisioning happens when the allocated resource capacity exceeds the current
demand, hence, resources are wasted. Underprovisioning, on the other hand, is the
scenario when there are too little resources available to serve the customers’ demand.
Clearly, one would like to avoid both situations and provide an optimal amount of
resources.

With the resource pooling concept it is possible to utilize the physical resources
according to the demand of customers. In Figure 2.2(a), a traditional DC with static
resources can be seen. Traditional DCs have static resources as the proprietary servers
cannot dynamically adjust without changing the infrastructure. On the opposite, Fig-
ure 2.2(b) shows a cloud computing DC with the capability to dynamically adjust the
allocated resources according to time-dependent demand [12].

Aiming at an elastic resource environment the cloud consists of a pool of resources,
i.e., servers with processing, and storage resources that can be configured to fit the

11

2. Background

requirements of demanding customers. The physical resources can be specified and
managed easily due to resource virtualization. The physical servers thereby are used
simultaneously by multiple costumers, i.e., in a multi-tenant way. The aim of having a
virtual pool of resources is to obfuscate heterogeneous aspects in order to ease the usage
and composition of generalized resources [6, 72].

Rapid Elasticity A very essential characteristic of the cloud computing paradigm is
the rapid elasticity of the cloud. As the pool of physical resources is used via a resource
virtualization technology, the resources can be scaled horizontally and vertically with
minimal configuration and management effort. Horizontal scaling is the deployment of
additional VM instances to simultaneously serve more clients, whereas vertical scaling
is the adaption of specific capabilities of existing VMs. With these dynamic scaling
capabilities the demand of customers can be handled more efficiently. Consequently, the
energy consumption, wasting of resources, and overall cost can be decreased [6, 12].

Measured Service As cloud services are used on a pay-per-use basis, the complete
communication and interaction is measured and monitored. This does not only serve
billing purposes, but also enables cloud providers and customers to measure the Quality
of Service (QoS). Before acquiring cloud resources, the customer and cloud provider agree
upon specific quality metrics of the service, i.e., Service Level Agreements (SLAs). If
these agreements are violated, the cloud provider may have to pay a penalty fee defined
in the SLAs beforehand [6, 71].

Re
so

ur
ce

s

Time

Re
so

ur
ce

s

Time

available Resources
(static)

Demand Demand

available Resources
(dynamic)

(a) (b)

Figure 2.2: Resource Provisioning in a Traditional DC Versus a Cloud Computing DC

12

2.2. Cloud Computing

2.2.2 Service Models

The service models describe how cloud resources located in the cloud environment can
be acquired and used. The location and ownership of resources is not considered in these
differentiations [12, 44].

Software-as-a-Service The first model is called SaaS and is the most restricted
possibility. SaaS customers access the service either via a web interface using a web
browser or a programming interface. The physical cloud resources of the service cannot
be managed or specifically configured by the customer. Examples for SaaS are Microsoft
Office 3652, and Google Apps3.

Platform-as-a-Service A more flexible model specialized for developers, is PaaS.
In this model, a development framework enabling developers to develop, test, and
deploy applications in the cloud environment is provided. Aiming at a flexible software
environment, the cloud deals with the management and control of the required physical
resources. In addition to the general management and control of the resources, the cloud
handles the dynamic scaling to ensure that the agreed SLAs are not violated at any point
in time. Examples for PaaS are Google App Engine4 and Windows Azure5.

Infrastructure-as-a-Service The last and most flexible service model, is Infrastruc-
ture as a Service. Here, the customer has complete control over the VM running on
physical cloud resources. The VM can be configured with the needed specifications as
RAM, CPU, storage, and network functions. On this VM the user is able to deploy any
kind of applications on a chosen operating system. Nevertheless, the user does not have
complete control over the physical resources, but only on the acquired VM. Examples for
IaaS are Amazon Web Services6 and Open Stack7.

2.2.3 Deployment Models

The previously introduced service models are hosted in several different deployment
models enlisted here [12, 44]:

Private Cloud The private cloud is an approach where an organization uses a cloud
environment explicitly dedicated to that very organization. The ownership, management,
and operation of cloud resources can be handled by the organization itself, by a third
party organization, or by a combination of the two of them. The advantage of this model

2https://outlook.office365.com
3https://apps.google.com
4https://cloud.google.com/appengine
5https://azure.microsoft.com
6https://aws.amazon.com
7https://www.openstack.org

13

https://outlook.office365.com
https://apps.google.com
https://cloud.google.com/appengine
https://azure.microsoft.com
https://aws.amazon.com
https://www.openstack.org

2. Background

is that the data sent to the private cloud is only stored in the environment used for that
specific organization, meaning, sensitive data is not shared with any other organization
associated to the environment. On the other hand, if that specific private cloud fails the
data could be locked in this single point of failure.

Community Cloud The community cloud is based on the same idea as the private
cloud, but the cloud environment is dedicated to the use within a specific community.
Also, the ownership, management, and operation can be carried out by one or more
organizations forming the community.

Public Cloud In a public cloud, the cloud environment is not dedicated to a specific
organization or community. Hence, it can be used by the general public. The owner-
ship, management, and operation can be handled either by the government, academic
organizations, any other organization, or a combination of them. The advantage of the
public cloud is the open accessibility for everyone without any restrictions to specific
organizations. The negative impact of the open accessibility, consequently, is data and
service security.

Hybrid Cloud The hybrid cloud is a combination between a private and public cloud.
Hence, some cloud resources can be owned, managed, and operated in a private cloud,
while others are used via an open accessible public cloud. For instance, sensitive data
could be stored in a private cloud and more general non-critical data in the public cloud.

2.2.4 Virtualization

In a nutshell, virtualization describes the abstraction of the physical hardware resources
of a computer system. The concept of virtualization is one of the major driving forces of
cloud computing out of the following two reasons. First, the physical hardware can be
shared across multiple customers in an isolated way. Thus, the advantages are that a
single physical hardware system can serve multiple customers as a basis of their processing,
storage and memory requests utilizing most of the machines hardware resources. This
enables an efficient use of the resources at hand and eliminates locking a complete physical
machine for a single customer.

There are different virtualization concepts [11], but in the course of this thesis only
full virtualization and operating system virtualization (container) are considered.

Full Virtualization The abstraction of a full virtualization results in a virtual copy
of the physical resources packed in a VM. Before deploying a VM, the user needs to
specify the amount of CPUs, RAM, and other capabilities the VM should possess.
Evidently, the amount of VMs created on one machine is restricted by its physical
resources [11]. As the VMs running on the physical resources are completely isolated via
a coordinating middleware, i.e., Virtual Machine Monitor (VMM), the systems remain
completely separated. Second, heterogeneous hardware components can be merged into

14

2.2. Cloud Computing

a homogeneous resource pool. This resource pooling mechanism is used to offer diverse
VM settings, e.g., CPU, RAM, and storage capacities [11, 60].

The complete virtualization of hardware resources, i.e., full virtualization, works as
follows. Aiming at an isolated environment, the hardware is managed by the mentioned
VMM. The VMM is responsible for monitoring, managing, and deploying VMs on top of
it, preventing the direct hardware access to the physical hardware. Each VM consists of
a separate operating system, i.e., a guest operating system, and arbitrary applications
running on it (see Figure 2.3(a)). The advantages coming with this way of virtualizing the
physical hardware resources are flexibility of deployment, simple provisioning of adaptable
resources, and the ability to compose heterogeneous hardware. The negative aspects of
this specific virtualization concept are the long starting times and the big amount of
storage space needed. Both of these negative aspects are caused by the necessity of a
separated operating system in every VM [11, 12]. A well-known enterprise, developing
virtualization solutions, is VMWare8.

Physical	Hardware

Virtual	Machine	Monitor

VM	1

Applications

Guest	OS

VM	2

Applications

Guest	OS

Physical	Hardware

Host	OS

Container	2

Applications

Container	1

Applications

a) Full Virtualization b) Container Virtualization

Figure 2.3: Virtualization Comparison (adapted from [12])

Operating System Virtualization (Container) In contrast to the previously men-
tioned virtualization concept, the operating system virtualization, or container virtualiza-
tion, is a very light-weight virtualization concept. The container virtualization concept
is built on top of the existing host operating system. The logically separated virtual
environments, i.e., containers, run on top of the same host operating system and use
the same kernel, and general physical hardware. Although these containers are running

8http://www.vmware.com

15

http://www.vmware.com

2. Background

on the same operating system, the virtual environment is completely isolated. In other
words, the container can just access storage spaces and processes associated to its own
container (see Figure 2.3(b)) [12].

One of the most used container technology solutions is Docker9. Docker differentiates
between Docker Images and Docker Containers. A Docker Image consists of several layers
saving a snapshot of a Docker Container. Docker then uses the union file system [68]
to merge these layers into one image. This image can be instantiated using the Docker
runtime and results in a deployed Docker Container. The Docker Container consists of a
base image (light-weight operating system), user-added files, and meta-data. This Docker
Container can be started, stopped, or a snapshot, i.e., Docker Image, can be saved and
used to deploy identical containers. Additional Docker orchestration tools to improve the
capabilities of simple Docker Containers include, for instance, Docker Machine, Docker
Swarm and Docker Compose10. Docker Machine helps to deploy Docker engines on the
local machine, cloud providers or other DCs. Docker Swarm is used to cluster Docker
Containers, and Docker Compose helps to run a distributed system consisting of multiple
Docker Containers [57].

The advantage of containers in comparison to VMs is that containers can be started in
no time as they do not need a separate operating system for every container. Containers
are light-weight and can be deployed, released, and updated very fast as due to the
special union file system only certain layers have to be updated [57]. Consequently, in
the case of a fog computing framework, containers better fit the needs.

Docker is often used in combination with the currently thriving Micro Services
Architecture (MSA). The MSA is a novel approach of designing small, light-weight,
independent, distributed software components. One separate software component is
called Microservice and is deployed in an independent container. Some of the most
important benefits gained by microservices are: technology heterogeneity, resilience,
scaling, ease of deployment, and optimization for replacement [45]. As microservices are
communicating using standardized formats like JavaScript Object Notation (JSON) and
Extensible Markup Language (XML), the technologies are completely independent. The
standard communication technology used in MSAs is Representational State Transfer
(REST) [45].

2.3 Fog Computing
In the last few decades the computational models switched back and forth between a
centralized and decentralized computing approach. Starting with a mainframe approach
in the 70s and 80s the model evolution was followed by a wave of decentralization by
the client-server model in the 90s. This first wave was triggered by the falling prices
of personal computers and the rising interest of possessing proprietary computational
power [39]. At the beginning of the 2000s the computational model again switched from
a decentralized to a centralized approach, namely the cloud computing paradigm [33, 66].

9https://www.docker.com
10https://docs.docker.com

16

https://www.docker.com
https://docs.docker.com

2.3. Fog Computing

Although cloud computing is prospering and is not going to be replaced in the nearest
future, there is a force pushing towards a novel decentralized approach to solve the
immanent problems of centralized systems, e.g., high latency, missing location-awareness.
The difference compared to the preceding paradigm is that this approaching paradigm
will not supersede the former one but extend it in order to improve specific capabilities.
This current shift from the centralized cloud computing paradigm towards a decentralized
computation paradigm marked the birth of fog computing [61].

Fog computing was introduced as a new technology for the IoT by Bonomi et al. in
2012 [16]. This novel distributed computing paradigm comprises the idea of providing
computational and storage capabilities closer to data-producing IoT devices at the edge
of the network. With the objective to decrease the distance between the end devices and
the closest processing unit, this paradigm introduces an additional layer of resource-rich
IoT devices, i.e., fog cells [61]. These fog cells possess their own computational and
storage capabilities to process task requests, filter, and preprocess data. This creates a
one-hop distance to the end devices and therefore decreases the latency and task execution
time. Another crucial extension of fog computing is the high geographical distribution of
these additional devices, aiming at a seamless and reliable service execution even when
connected to moving devices, e.g., smart cars, mobile phones [15, 16, 61].

In more detail, fog cells are located at the edge of the network, aiming to reduce the
latency, task execution time, and the amount of data sent over the network. Fog cells
then receive task requests from connected IoT devices, e.g., sensors and actuators, or
external initiators and decide where to process these requests. Depending on the fog
cells’ capabilities, a reasoning component decides whether the task request is processed
locally or propagated to the cloud [24].

The communication inside the fog computing environment, i.e., the fog landscape,
is not restricted to any form of communication and can therefore take place via WiFi,
cellular networks, Bluetooth, or ethernet [61]. Towards a redundant environment, the
fog landscape can also be connected to multiple cloud providers or use private clouds
inside the fog landscape.

Figure 2.4, depicts a graphical representation of the fog landscape. At the bottom of
the architecture diverse IoT devices are located, followed by routing devices connected
to fog cells. These routing devices symbolize the possibility to reuse existing network
devices, e.g., routers. Furthermore, fog cells can either be connected to other fog cells, or
to public or private clouds [24].

2.3.1 Characteristics

The main characteristics of the fog computing paradigm, helping the IoT to exploit its
potential, are the following [16]:

Low Latency and Location-Awareness As fog cells, located at the edge of the
network, reduce the distance between IoT devices and cloud resources, the latency
and task execution time can be reduced drastically. Furthermore, due to the location-

17

2. Background

Figure 2.4: Fog Computing Landscape (adapted from [24])

awareness of fog cells, location aware services can be provided, e.g., caching of location
dependent content. These services are able to preprocess, filter, or cache requested
content and thereby further reduce the latency and task execution time [61, 16].

High Geographical Distribution IoT devices are highly geographically distributed.
That is why the switch from centralized processing in the cloud to a decentralized
processing in a fog landscape is needed.

Large-Scale Sensor Networks Large-scale sensor networks communicating with fog
cells are one of the key scenarios of the fog computing paradigm. These sensors are able
to send task requests to fog cells. Depending on the available fog cell resources, it either
handles the requests itself or propagates them to other fog cells for further processing.

Mobility Support Beside the high distribution of IoT devices, one has to take into
account the mobility of the participating end devices. Moving devices demand dynamic
restructuring of the network topology according to the affected devices in the fog landscape.
This is enabled via dynamic hierarchical fog landscape that allows to restructure the
topology. Aiming at a high mobility support, the fog computing landscape needs to be

18

2.3. Fog Computing

able to communicate with mobile devices by mobile communication technologies, e.g.,
LISP11 [16].

Device Heterogeneity Diverse IoT devices connected to the network come along
with no standardized functionality, interfaces, or deployment types. Hence, many hetero-
geneous IoT devices need to be considered when handling requests in a fog landscape.
The fog landscape aims to enable the communication between different types of IoT
devices by the means of standardized communication and resource virtualization [16].

Being a very recent research topic, fog computing encounters a lack of methodologies
and concrete solutions. Hence, still a lot of research effort is needed to enable the charac-
teristics as stated above. An important association supporting and spreading the vision of
fog computing is the Open Fog Consortium12. The principle of the Open Fog Consortium
is to preserve an open fog computing architecture to enable the cooperative research
with multiple organizations. The collaboration of diverse organizations, specialized in
different areas, is a crucial point regarding the future of fog computing.

Fog computing is often mentioned as a provisioning technology for various applications
of diverse fields, e.g., healthcare, augmented reality, caching, and preprocessing [25]. Being
able to ensure the promising improvements arising with this paradigm, a lot of challenges
still need to be tackled. Crucial challenges in research include resource provisioning,
service placement, security and reliability, energy minimization, standardization, and
programming models [25, 61].

Beside fog computing, two slightly different paradigms called Mobile Edge Computing
(MEC) and Mobile Cloud Computing (MCC) have evolved [4, 29].

2.3.2 Mobile Edge Computing

MEC is based on a comparable idea as fog computing, but places an emphasis on mobile
devices at the edge of the network. The key features of the entire MEC environment are
task sharing between mobile devices and task offloading to the cloud. The mobile devices
are able to intercommunicate and take task requests from each other. Additionally,
so-called MEC servers are located at the edge of the network responsible for connecting
the mobile devices with the cloud. In this approach, the edge of the network is the edge
of the Radio Access Network (RAN). Hence, the base stations of the RAN represent
the MEC servers, i.e., the fog cells in fog computing. These MEC servers are owned by
telecommunication companies and are able to process task requests [4, 14, 13, 50]. Due
to the fact that most of the communication takes place in the RAN, the emphasized
communication technologies in MEC are the cellular communication generations 3G, 4G,
and 5G [47].

One of the major driving forces supporting the research in the area of MEC is
the European Telecommunications Standards Institute (ETSI) [27]. This driving force,

11http://www.lisp4.net/
12http://www.openfogconsortium.org/

19

http://www.lisp4.net/
http://www.openfogconsortium.org/

2. Background

obviously, is connected to the heavy use of the telecommunication resources and further
possibilities for the telecommunication industry.

Summarizing, the main goal of MEC is to reduce network latency and thereby improve
the quality of mobile applications, e.g., augmented and virtual reality, on-demand video
streaming, and mobile gaming [4].

2.3.3 Mobile Cloud Computing

MCC has emerged from the already well-researched technologies mobile computing
and cloud computing. The driving force of this technology is a resource-rich cloud
computing environment in combination with the proliferation of smart mobile devices.
Although the processing power of modern mobile devices is increasing, there is still no
satisfactory solution regarding the battery lifetime and data storage capacity. Hence,
resource-intensive tasks, e.g., image processing and natural language processing [29, 52],
need to be processed in the cloud to save energy and storage capacity. However, as
mobile phones with unused processing units are ubiquitous, the efficient utilization of
these resources is essential [29]. Currently, a huge amount of processing power is wasted
by neglecting idle mobile device processors. Especially, during specific time periods, e.g.,
in the night, many resources could be used without conflicts.

The general idea of MCC is to offload compute-intensive tasks, reduce power con-
sumption, and save storage space by propagating the data to the cloud, mobile cloud, or
powerful IoT devices [26, 29, 52].

Three different types of researched MCC environments exist. First, a mobile device
offloads a task request to the cloud and receives a solution in response. Second, several
mobile devices form a so-called mobile cloud and process task requests coming from other
mobile devices in need. Third, a resource-rich IoT device, located at the edge of the
network, processes task requests of the mobile devices and returns the solutions [29]. In
the following, the latter type is considered when talking about MCC, as this is the most
related type with respect to the fog computing paradigm.

Application scenarios of MCC include mobile healthcare, mobile commerce, and
mobile learning. These diverse application scenarios focus on different aspects of the
MCC paradigm. In a mobile healthcare scenario the data gathered by mobile devices
plays a crucial role because the data could contain life saving information that needs to
be processed instantly. In mobile commerce, on the other hand, the new communication
patterns and attainment possibilities are the most important prospects [26].

2.4 Software Frameworks

A software framework represents a base structure for application development and service
execution in a specific software environment. The reusable base structure serves the
purpose to enable a user to concentrate on a certain task to be developed instead of
implementing the environment basics. Software frameworks often are extensible and

20

2.4. Software Frameworks

configurable according to individual problems users want to solve by means of their
applications [49].

In more detail, software frameworks can be divided into white-box and black-box
frameworks [49]. Black-box frameworks are ready-to-use frameworks that do not need to
be extended or further developed to be executed. White-box frameworks, on the other
hand, demand to be configured by extending specific interfaces in order to execute the
framework in the chosen environment. The most common frameworks are a mixture
between white-box and black-box frameworks. In this thesis, this mixture is considered
when talking about frameworks [49]. In the following paragraphs related software
frameworks in IoT environments are presented.

In the work of Vögler et al. [63] a scalable large-scale IoT framework is introduced.
The focused environment of this large-scale IoT framework is a smart city. The framework
LEONORE, developed in this work, serves as an infrastructure and toolset for the deploy-
ment of IoT applications on IoT devices at the edge of the network. These functionalities
are enabled by a modular architecture with provisioning handlers, application package
repositories, application package management, IoT gateway management, dependency
management, load balancing, and many other components. The whole architecture is
built on light-weight microservices based on MSA principles. Beside these architectural
aspects, the work focuses on distributing mechanisms to provision applications at the
edge of the network in order to save bandwidth between the edge and the cloud, and
enable a distributed and scalable IoT service deployment. The framework is primarily
tested on a simulated IoT environment in a private cloud by deploying Docker Containers.
Some parts of the evaluation are tested on a real-world IoT deployment test-bed of an
industry partner of the authors.

Kim and Lee [38] developed an open source IoT framework to develop, provide, and
execute IoT services in open source IoT environments. Hence, the stakeholders are
developers, service providers, platform operators and general service users. The architec-
ture presented in this paper is based on five platforms: open Application Programming
Interface (API), planet platform, store platform, device platform, and mash-up platform.
The planet platform serves the purpose of managing the IoT device registration and
monitoring, while the mashup platform handles the services to collect the data received
from registered IoT devices. The collected data and developed services are stored in the
store platform. The device platform is an embedded software application including a tiny
web server to enable low-level devices to connect to the RESTful API and thereby to
the other platforms. For all of these platforms Kim and Lee developed web applications
to enable a convenient interaction. The work presented in this paper serves as a frame-
work for all kinds of stakeholders to develop, provide, and execute applications using
web-GUIs but does not take into account specific aspects like large-scale IoT landscapes
and distributed application provisioning.

21

2. Background

2.5 Resource Provisioning

Resource provisioning is a crucial topic in many diverse research areas. Obviously, it
is important to use the resources at hand as efficiently as possible. In this context,
efficiency is tied to various goals, e.g., optimization of cost, energy, runtime, and resource
utilization. Resource provisioning is the procedure to orchestrate, allocate, deallocate,
and monitor available system resources. These mentioned actions are crucial in order
to enable an efficient and QoS aware resource management, i.e., resource provisioning.
Hence, not only the time-dependent demand needs to be considered, but as well the
QoS metrics have to be monitored and cross-checked with the SLAs. Depending on
the workload fluctuation of the system, the resource provisioning procedure changes in
complexity. With increasing fluctuations the procedure gets more complex because the
resources need to be adapted increasingly [37]. In the following paragraphs the most
important aspects of resource provisioning are described [37].

Monitoring System monitoring is needed to keep track of the status of running services
and the software environment in general, e.g., CPU and RAM utilization, topology
changes, failures. The gathered data is stored in a database for further processing. For
the monitoring of a complete software environment, a system model is essential. It is
crucial to find a necessary level of abstraction to model the heterogeneous components of
the system [37].

Reasoning and Orchestration Reasoning and orchestration is the process where
system monitoring information is analyzed and a resource provisioning plan is computed.
A resource provisioning plan defines where specific services are deployed, and on which
services the incoming task requests are processed.

Allocation and Deallocation According to the calculated resource provisioning plan,
described in the previous paragraph, fog resources are allocated and deallocated.

The resource provisioning procedure can either be done in a proactive or reactive
way [37]. A proactive scenario implies periodical checking of the system status, and
according to the monitored data, the resource provisioning is done. Often, predictive
mechanisms are applied to forecast future resource demands and to act before the system
is stressed. A reactive provisioning scenario, on the other hand, deals directly with
events like failures, new appearance of devices, watchdog events etc., and handles the
provisioning accordingly. For instance, a watchdog component fires an overload event,
meaning, a specific service CPU utilization exceeds a defined threshold, and the system
reacts by deploying more instances of that very service [37].

Furthermore, the resource provisioning procedure can be done according to several
different approaches. Depending on the optimization problem resulting of the system
model, optimization goal, and further constraints, an adequate approach is chosen.
The optimization problem can be formulated in terms of dynamic programming, more

22

2.5. Resource Provisioning

specifically linear programming, and can be solved either by exact mathematical methods,
or by heuristic algorithms. Heuristics are algorithms close to real-world problems, that
look for near-optimal solutions. In order to improve the solution of heuristics, often
the problem scenario and environment need to be refined and described in more detail.
Example heuristic algorithms are greedy algorithms, and local search [20, 51].

In a fog computing landscape, the resource provisioning is even more complicated
compared to a cloud environment because the distributed heterogeneous devices need
to be provisioned with minimal latency and task execution times. Additionally, a fog
computing landscape contains a dynamic hierarchy. Thus, the device hierarchy can
change during runtime and therefore is not available at the beginning of the service.
Evidently, already very well-researched cloud computing resource provisioning approaches
cannot be directly applied in a fog computing landscape. It remains to extract the general
idea of these cloud computing approaches and use them for further specification in a fog
landscape.

With the background knowledge, presented in this chapter, the reader should be able
to understand the full extent of the concept, design, and implementation needs of the fog
computing framework.

23

CHAPTER 3
Related Work

In this chapter, the most important related work is presented and discussed. Selected
scientific papers are summarized and categorized in three major groups highlighting the
main focus of the papers included in the literature review. After the related work is
presented, some criteria to classify the papers in more detail are specified. This enables
a clear view on the most important aspects of the diverse research papers compared at
the end of the chapter.

3.1 Fog Computing Architecture and Concepts
This section provides a general overview on the current work done in the field of the fog
computing paradigm including architectures, concepts, challenges, opportunities, and
applications.

3.1.1 Initial Fog Computing Concepts by Bonomi et al.

A paper by Bonomi et al. [16] introduced the first concept of fog computing in 2012. In
their work, the importance of a new paradigm of fog computing is explained. According
to the authors, the main features of IoT environments which have to be accounted
for are (i) low latency and location-awareness, (ii) high geographical distribution, (iii)
large-scale sensor networks, (iv) mobility support, and (v) device heterogeneity. The
proposed fog computing architecture aims to deal with those features and therefore
consists of the following layers from the bottom to the top of the infrastructure: IoT
devices, multi-service edge, where the fog cells are located, the core network, and the
cloud.

The authors mention three main application scenarios suitable for the proposed
architecture. First, connected vehicles, where cars intercommunicate with smart traffic
lights and roadside units located along roads. The second mentioned scenario is smart
grids. A smart grid depicts an intelligent power supply system with lots of widely

25

3. Related Work

geographically distributed suppliers and consumers. Third, wireless sensor and actuator
networks consisting of widely geographically distributed sensor and actuator nodes. All
three scenarios demand real-time processing, low energy consumption and a fault-tolerant
distributed system, and would thereby profit by having a sophisticated fog computing
solution.

In further research [15], the architecture gets more specified with a detailed description
of functional and technical components and an abstract software architecture model.
In this software architecture model a fog abstraction layer, fog service orchestration
layer, and north-bound APIs are introduced. The abstraction layer creates an abstract
version of the heterogeneous devices, enabling a more generalized service execution.
The orchestration layer is responsible for service execution, task scheduling, and the
deployment and destruction of software agents, i.e., fog cells. In order to enable the
distributed communication between these software agents, north-bound APIs are specified.
North-bound API indicates that a component is allowed to communicate with another
component of a higher hierarchy level.

In another work, to which Flavio Bonomi contributed, the focus was on the per-
formance improvement of web sites using the fog computing paradigm. In this paper,
Zhu et al. [73] use a similar architecture and concept as in the aforementioned papers
to improve the performance of web sites. This improvement is gained by using the fog
landscape to reduce HTTP requests, minimize the size of web objects, and reorganize
the webpage composition.

3.1.2 A Comprehensive Definition of Fog Computing by Vaquero and
Rodero-Merino

Another idea regarding the architecture and the communication in an edge cloud, i.e., in a
fog colony, is presented by Vaquero and Rodero-Merino [61]. They suggest using Network
Function Virtualization (NFV) in combination with Software-Defined Networking (SDN)
at the edge of the network. This suggestion aims at improving the flexibility and dynamic
behavior of network services, as well as user services. NFV is a technology to virtualize
network resources and to provide them according to the current demand. Hence, network
resources as firewalls, databases, and routers can be deployed on-demand. The SDN is
needed to create virtual networks and run software services on the deployed devices. This
technique leads to a major flexibility improvement at the edge of the network.

Beside the adapted architecture, the authors address the topic of distributed manage-
ment of devices in edge clouds. Within this topic, the P2P communication, between the
devices in an edge cloud and between edge clouds, is mentioned.

Additionally, Vaquero and Rodero-Merino reveal a possible transition of trust, away
from cloud providers towards edge clouds. Nowadays privacy is a critical issue, and fog
computing leads to a crucial change concerning this topic. Fog computing enables a
new privacy approach by not transferring critical data to a centralized DC but to a DC
located at the edge of the network.

Finally, the work enlists current challenges in research including discovery and

26

3.1. Fog Computing Architecture and Concepts

synchronization of applications, resource handling, distributed management, security,
standardization, monetization, and programming models.

3.1.3 Focusing on Mobile Users at the Edge by Luan et al.

The work by Luan et al. [43] is another example for a concept using NFV in combination
with SDN. The presented architecture consists of the following layers (bottom to top):
5G wireless, fog computing, NFV, and cloud computing. As this paper concentrates on
mobile devices, the bottom most layer emphasizes on mobile technologies as 5G and
WiFi. The structure of the network and the participating network devices are managed
using a SDN approach. This enables the managing component located at a cloud to have
a global network overview and to adapt the devices and services according to the current
demand.

3.1.4 A Fog Computing Platform including a Real-World Test-Bed
by Yi et al.

In the first paper of Yi et al. [70] they survey existing fog computing approaches and
challenges, and summarize the most important facts. The mentioned approaches and
challenges are comparable to the findings of Bonomi et al. [16] and Vaquero and Rodero-
Merino [61].

In a follow-up paper [69] the authors introduce a simple three-layered architecture
with the layers: user, fog, and cloud. The fog layer, i.e., a fog platform, consists of
six components to handle task requests, service deployment, and network management.
The stated components are: authentication and authorization, offloading management,
location services, system monitor, resource management, and VM scheduling. The
top and bottom layer (cloud and user), are somewhat similar to the aforementioned
architectures.

After mentioning alike application scenarios as the previous authors, an experimental
proof-of-concept solution is presented. The experimental fog platform consists of two fog
sub-systems both connected to three separate servers in a Local Area Network (LAN).
These fog sub-systems are connected to a cloud (Amazon EC21) via a Wide Area Network
(WAN) connection. On both fog sub-systems separate Open Stack2 environments are
deployed. The evaluation of the test-bed is done by comparing the latency, bandwidth, VM
migration performance, and the task execution time of a face recognition application. The
results expose the significant improvement of the fog computing paradigm in comparison
to the general cloud computing paradigm.

1https://aws.amazon.com/de/ec2/
2https://www.openstack.org/

27

https://aws.amazon.com/de/ec2/
https://www.openstack.org/

3. Related Work

3.1.5 Principles, Architectures, and Applications of Fog Computing
by Dastjerdi et al.

A recent paper by Dastjerdi et al. [25] presents a layered fog computing architecture with
ideas comparable to the work done in the previous papers. In their architecture a layer
called software-defined resource management is introduced which is responsible for task
scheduling, profiling, monitoring, and resource provisioning, and is located in between
the cloud and the fog colonies. This newly introduced layer takes away the resource
management responsibility from the fog control nodes. In addition to the divergent
architecture concept, the authors mention important application sectors, and research
directions and enablers.

The described applications scenarios are healthcare, augmented reality, and prepro-
cessing and caching. In healthcare a fall monitoring system for stroke patients is the key
scenario. Augmented reality is mentioned in combination with cognitive assistance using
Google Glasses and brain interaction games. The last application scenario highlights
the preprocessing and caching of data at the edge of the network. Programming models,
security, resource management and energy minimization form the focused challenges in
this work and get backed up by examples.

3.1.6 A Theoretical Fog Computing Model to support IoT
Applications by Sarkar et al.

In this paper, Sarkar et al. [53] introduce a detailed theoretical model of a fog computing
landscape. Like in many other papers, fog computing is presented as a supporting
technology for IoT applications. First, a 3-tier architecture is introduced. Tier 1
represents IoT devices organized in clusters. Edge gateways, fog-cloud gateways, and
fog instances are located in tier 2 followed by the cloud in tier 3. In the very detailed
mathematical description of the model the authors take into account the status, type,
and location of the IoT devices and define every possible state of the system and its
components.

To measure the performance of the model, Sarkar et al. use two performance metrics:
service latency and energy consumption. The performance evaluation is simulated on a
specified scenario and shows the considerable improvements in comparison to a cloud
computing approach.

3.2 Programming Models

In this part, the related work on fog computing programming models is examined.
Regarding a programming model, it is important to investigate corresponding applications,
as not every type of application fits in a fog landscape. The corresponding applications
from the analyzed papers in this section are based on a distributed architecture and need
to be separated into several independent microservices. Furthermore, the components
have to be able to communicate via REST and need to be connected to the cloud.

28

3.2. Programming Models

3.2.1 A High Level Programming Model by Hong et al.

In the work of Hong et al. [35] a high level programming model is presented, including
APIs and an easy resource provisioning approach based on the utility thresholds of fog
resources. This high level programming model, i.e., Mobile Fog, is based on a PaaS
approach, meaning, the model is hosted on a cloud provider and developers can implement,
test, and deploy solutions on this platform. The presented model takes the responsibility
for the dynamic scaling of the executed applications during runtime. The main design
goals of the work at hand are the development of a high level programming model and
the support of dynamic scalability.

An application of mobile fog is built upon mobile fog processes mapped to distributed
computing instances. These instances are grouped in regions with respect to their
location and network hierarchy levels. Every mobile fog process handles the requests of
its dedicated region. A mobile fog process can be created by deploying an image, stored
at a shared registry, adding an unique identifier to unambiguously identify the process.

The dynamic scaling of the environment is done by generating on-demand computing
instances according to a specific scaling policy. This scaling policy depends on monitoring
metrics, e.g., CPU utilization and bandwidth, which trigger the concrete scaling actions.
To make dynamic transparent scaling possible, a spatio-temporal object store is needed
to share application-wide data. Spatio-temporal storage means that a storage container
stores and manages both space and time information.

Finally, the model is evaluated with a simulation using generated traffic patterns and
randomly moving vehicles in a specified traffic area. The results of the evaluation show
the enhancement of the model in comparison to a general cloud computing approach.

3.2.2 Incremental Deployment and Migration of Fog Applications by
Saurez et al.

Equally important is the work of Saurez et al. [54] where the previous work of Hong et al. [35]
is extended by implementing the envisioned APIs and adding algorithms regarding the
discovery, migration, and deployment of fog cells and services.

The implemented model is called Foglet programming model and consists of a foglet
runtime, and multiple foglets, i.e., fog cells. The foglet runtime consists of the following
components: discovery server, Docker Registry server, entry point daemon and the
worker processes. To create a new service a user has to save the developed Docker Image
into the Docker Registry server with a system unique application key. After that, the
application can be deployed via a application key, network region, network hierarchy level,
resource capacity, and QoS parameters. The registry then starts the novel application
in all available fitting foglet instances. The resulting foglet runtime contains four major
capabilities: (i) automatic fog resource discovery and deployment, (ii) multi-application
collocation, (iii) communication APIs, and (iv) resource adaptation and state migration.

Furthermore, an experimental real-world fog landscape was set up using Docker
Containers deployed on several server instances to perform the evaluation.

29

3. Related Work

3.3 Resource Provisioning

The most specific work classification in this chapter deals with resource provisioning.
Resource provisioning is an extensively researched topic in many scientific areas, e.g.,
cloud computing and MCC. Some relevant papers in research tackling the resource
provisioning problem in the environment of the mentioned areas are [55, 71] in cloud
computing and [26, 42] in MCC. These works describe resource provisioning approaches,
yet cannot be directly adopted for the usage in fog computing as fog landscapes consist
of a dynamic hierarchy of heterogeneous IoT devices which have the characteristic to
change during runtime. In addition to the dynamic behavior of the fog landscape, most
of the papers in the cloud computing and MCC area do not consider maximizing the
edge resource utilization in order to save cloud cost and decrease the network latency
due to close-range communication. Hence, the general ideas of the approaches can be
used to elaborate on resource provisioning approaches for fog landscapes.

3.3.1 A Resource Provisioning Approach for IoT Services in the Fog
by Skarlat et al.

In the work of Skarlat et al. [56], along with the framework architecture, an optimization
problem for resource provisioning in a fog landscape is introduced. The fog computing
framework introduced in this paper consists of four different device types.

• resource-poor IoT devices, e.g., sensors and actuators, sending task requests to
upper hierarchies

• resource-rich IoT devices, i.e., fog cells, to process task requests received from
connected IoT devices

• fog orchestration control nodes to orchestrate fog cells and to handle the resource
provisioning and task scheduling in associated fog colonies

• cloud-fog control middleware to act as a communication and control middleware for
fog orchestration control nodes and cloud providers

The resulting hierarchies of IoT devices, fog cells, and fog orchestration control nodes
are fog colonies.

In their work, the fog landscape is simulated by extending the CloudSim3 simulation
tool. In the evaluation, the default provisioning policies of CloudSim are compared to
the enhanced approach, and the whole fog landscape execution of tasks is compared to
the cloud execution showing the benefits of fog computing.

3http://www.cloudbus.org/cloudsim/

30

http://www.cloudbus.org/cloudsim/

3.4. Discussion

3.3.2 Dynamic Resource Provisioning through Fog Micro
Datacenters by Aazam et al.

Aazam and Huh [1, 2] proposed a fog computing architecture based on a similar idea
as has already been described in the introduction Chapter 1. The idea consists of three
layers namely the cloud, the fog landscape, and IoT devices with different control nodes
inside these layers able to orchestrate fog cells. The authors follow an approach of using
micro DCs orchestrated by a smart gateway. Additionally, a detailed theoretical resource
management model is included. The prediction of future resource demands is based
on types of accessing devices, relinquish probabilities which are generated by historical
access data, pricing models, and service types. This resource management model is not
able to react to dynamic changes in the fog landscape. In their further work, Aazam et al.
proposed an improvement of the theoretical resource management model in terms of
specification of utilization and QoS in the context of multimedia IoT devices [3].

3.4 Discussion

In this section the considered research papers are analyzed based on the fulfillment of
a selection of important criteria. In order to group and compare the research work
appropriately, the criteria include general aspects, e.g., the base technology of the work,
as well as specific topics tackled by the authors. The selected criteria for the classification
of the related work are the following.

1. The Internet of Things (IoT)
To fulfil this criterion, the research work needs to take the handling of the emerging
IoT devices into account. Hence, at some point of the concept, IoT devices connected
to the Internet need to be considered.

2. Fog Computing Architecture and Concept (FC)
This criterion is only satisfied when the authors present an architecture and concept
based on the general vision of the fog computing paradigm.

3. Dynamic Topology (DT)
In order to satisfy this criterion, the paper needs to consider the dynamic restruc-
turing of the system topology. In other words, the system needs to be able to
adapt to the underlying topology during runtime. Static topologies defined before
runtime, or topologies containing static centralized discovery services do not satisfy
this criterion.

4. Programming Model (PM)
The work needs to provide a programming model, stating how to implement a
distributed system to improve comparable characteristics as mentioned in the
introduction of a fog computing framework, e.g., latency, task execution time, edge
resource utilization.

31

3. Related Work

5. Resource Provisioning (RP)
The authors have to provide a resource provisioning approach in a distributed
environment to satisfy this criterion. A basic resource provisioning model is
sufficient.

The above stated criteria were selected according to relevant research topics concerning
a fog computing framework. As the IoT is a major driving force of fog computing it
straightforwardly follows that it is an important factor when developing a fog computing
framework. Hence, the IoT and IoT devices play an important role the related work
needs to take into account. Another very important yet often neglected aspect is
a dynamic topology. The criterion regarding dynamic topologies is chosen because
changing environments need to be considered when developing a flexible framework in a
fog landscape. Developing a framework is always based on a programming model and
therefore this criterion is considered important. Also, because the aim of fog computing
is to maximize the utilization of fog resources and reduce cost and latency, resource
provisioning is an essential aspect that needs to be tackled and analyzed.

To present the results of the contrasted related work, Table 3.1 visualizes the criteria
fulfillment of the analyzed papers. A field in the table is marked with a checkmark (X)
if and only if the paper in that line fulfills the criterion of the corresponding column.
Consequently, the paper is marked with (x) if the paper does not satisfy the criterion.
Out of reasons of space, the criteria acronyms, defined in the criteria specifications, are
used as column labels.

Table 3.1: Comparison of the Related Work. Legend: X: fulfilled, x: not fulfilled

IoT FC DT PM RP
Aazam et al. [1, 2, 3] X X x x X
Bonomi et al. [15, 16] X X x x x
Dastjerdi et al. [25] X X x x x
Hong et al. [35] X x x X X
Luan et al. [43] x X x x x
Sarkar et al. [53] X X x x x
Saurez et al. [54] X X x X X
Skarlat et al. [56] X X x x x
Vaquero et al. [61] X X x x x
Yi et al. [69, 70] x X x x x
Zhu et al. [73] x X x x x

Singh et al. [55], Zhan et al. [71] x x x x X
Dinh et al. [26], Lu et al. [42] x x x x X
Fog Computing Framework X X X X X

To the best of our knowledge, almost none of the related work in research cover all the
challenges of the fog computing framework envisioned in this thesis. To be more specific,
most of the related work covered in this section does not take into account dynamic

32

3.4. Discussion

network topologies that can change over time and resource provisioning approaches to
maximize the fog resource utilization and minimize the network latency. In addition to
the missing topology dynamics and resource provisioning aspects, only in a few papers
the focus was placed on a sophisticated and extensible programming model to execute,
test, and evaluate IoT services in a fog landscape. Beside the fact that almost none of
the contributions provided an extensible programming model, only very few facilitate a
real-world test-bed to evaluate and test their model. Consequently, the development of
an application solving the stated research gaps would be a novel contribution. Hence,
the envisioned fog computing framework is a not yet researched solution and would be a
contribution to technological research in this area.

33

CHAPTER 4
Requirements Analysis and

Design

This chapter presents the general idea of the fog computing framework followed by the
concrete requirements and design decisions. The fog computing framework implements an
architecture that enables the execution of arbitrary IoT applications in the fog landscape.

The fog computing framework enables developers, researchers, and general users
to create, deploy, test, evaluate, and execute IoT applications, and apply resource
provisioning approaches in a real-world fog computing test-bed. Because the framework
already provides the general functionality of a fog computing landscape, a developer
only needs the expertise and knowledge about the specific application scenario to be
implemented. In case the user is only executing IoT services in the fog landscape, no
specific expertise is required.

The envisioned fog computing framework developed in the course of this thesis provides
the basic functionalities including the device topology creation, device communication
APIs, a rudimentary resource provisioning and service placement approach, amongst
other fundamental tasks necessary for the fog landscape to work as intended. Additionally,
these stated functionalities can be adapted and extended to fit the need of the specific
application scenario. Beside these functionalities, the fog computing framework has to
conform to the following non-functional requirements: (i) scalability, (ii) extensibility, (iii)
maintainability, and (iv) portability. Additional non-functional requirements including
security, data integrity, usability, and reliability are not yet tackled but shall be considered
in future work.

This chapter comprises the functional and technical specification of the fog computing
framework. The functional specification in Section 4.1 describes the most important
functionalities of the framework. The technical specification in Section 4.2 covers essential
technical design and technology decisions, and describes the detailed architecture design,
and APIs of the framework. The functional and non-functional requirements, tools,
approaches, and general design decisions presented in this chapter are the result of the

35

4. Requirements Analysis and Design

analysis of existing software frameworks in related areas. The results of two analyzed
related software frameworks are described in the background chapter, in Section 2.4.

4.1 Functional Specification

The functional specification aims to define the functional and non-functional requirements,
use cases, actors, and workflows to be satisfied by the fog computing framework. This
part of the requirements analysis is crucial because sophisticated requirements ease
the development significantly and prevent very cost-intensive requirement errors at the
evaluation phase.

4.1.1 Functional Requirements

The enlisted functional requirements propose the overall functionality of the fog comput-
ing framework. Functional requirements, in contrast to non-functional requirements, state
specific functions and behaviors a system has to execute. The following functional require-
ments are divided into cloud management and fog colony management functionalities. In
every part, the functions of the according area are listed and briefly described.

1. Cloud Management
Device, task request, and resource handling in the cloud environment.

1.1. Parent Identification
Determine the closest possible parent to a requesting device and send back
the appropriate connection data.

1.2. Cloud Resource Provisioning
Deploy and release VMs and containers according to the resource demand of
the connected fog colonies in the cloud.

1.3. Service Placement
Handle incoming task requests by deploying containers on started VMs.

1.4. Task Request Execution
Execute the task requests in containers running on the started VMs and store
the resulting data for further analysis.

1.5. Service Data Storage
Store propagated service data in a beforehand specified database.

2. Fog Colony Management
Device, task request, and resource handling in fog colonies.

2.1. Device Identification and System Topology Creation
Create a digital system topology of the connected devices by periodically
pinging all children.

36

4.1. Functional Specification

2.2. Resource Provisioning
Orchestrate, allocate, deallocate, and monitor resources in the associated fog
colonies.

2.2.1. Reasoning
Compute a resource provisioning plan according to a specified resource
provisioning approach.

2.2.2. Service Placement
Handle task requests by deploying containers across fog devices. The
concrete service placement of this requirement depends on the developed
resource provisioning approach.

2.2.3. Service Deployment, Undeployment
Deploy and stop services according to the resource provisioning plan.

2.2.4. Monitoring
Monitor the subjacent devices, e.g., IoT devices, fog cells, fog control
nodes, and save monitoring data, e.g., CPU and RAM utilization, into
the local database.

2.2.5. Service Migration
Migrate services from the cloud to fog, fog to fog, or fog to cloud according
to changes in the fog landscape, e.g., if a new device appears.

2.2.6. Resource Replanning
Calculate a new resource provisioning plan according to the events (i)
device accedence, (ii) device failure, and (iii) device overload.

2.3. Shared Storage
A distributed data storage to share data, e.g., resource utilization, and service
images across multiple devices and topology levels.

2.4. Watchdog
Analyze the monitoring data and fire events when previously specified QoS
thresholds, e.g., 80% CPU utilization, are exceeded.

2.5. Task Request Handling
Listen for task requests in the network and send them to the responsible root
fog control node for reasoning purposes.

2.6. Task Request Execution
Execute the incoming task requests and return the result either to a fog control
node or directly to the cloud.

2.7. Task Request Propagation
Propagate task requests from fog control nodes to other fog control nodes or
the cloud-fog middleware.

2.8. Service Data Propagation
Propagate service data from the deployed services to parent fog control nodes
or the cloud-fog middleware for further processing or long-time storage.

37

4. Requirements Analysis and Design

2.9. Communication
Most of the components of the framework provide consuming and exposing
APIs to intercommunicate.

2.10. Service Registration
Register a service in the service registry for further usage, e.g., deployment on
a fog cell or fog control node. The registered service is also distributed to all
children fog control nodes.

2.11. Service Deployment
Pull a service from the service registry and deploy it on a compute unit of a
fog cell.

4.1.2 Non-Functional Requirements

Non-functional requirements describe how the system executes specific functionalities
and how the system should behave in specific situations. The following paragraphs define
the most relevant non-functional requirements of the fog computing framework [30].

Scalability

Scalability is the capability of a software system to adapt its resources according to the
volatile demand of the users.

Concrete non-functional requirements for the fog computing framework are: (i) scale
the system (resource provisioning and service placement) that the CPU utilization stays
beneath 80%, (ii) maximize the fog resource utilization to decrease cloud cost, (iii) enable
a fast service deployment.

Extensibility

A software system is extensible if its components can be extended without too much
effort. In other words, the system is built to be extended by loose coupling and clearly
defined APIs between diverse components.

The concrete requirements concerning this topic are that the software needs to be
built extensible. This aspect is achieved by defining a modular software component
structure with clearly specified APIs. Additionally, using standardized communication
technologies helps to make it easier to extend a software product.

Maintainability

Software maintenance is one of the most underestimated jobs in the software engineering
process, although it is a very time consuming, expensive, and tedious task [22]. Thus, it
is crucial to keep the software maintainable by documenting the code, writing readable
code, refactoring, and documenting the general functionality and interaction between
different parts of the system.

38

4.1. Functional Specification

Portability

Portability is the capability of a software product to be used across diverse system
environments, e.g., filesystems, operating systems, without the necessity to adapt the
software manually. In other words, the systems’ fundament should be built with platform-
independent technologies that preferably are quickly deployable and migratable. Fur-
thermore, platform independent communication technologies help to separate data from
concrete technologies.

4.1.3 Actors

Actors are different types of users interacting with a system. As the resulting system
is an open source software framework, the actors using the software are general users,
developers, and researchers. The fog computing framework provides the fog computing
environment to develop, test, deploy, and use IoT services in a fog landscape.

General users are actors using IoT services that already have been developed by
developers or researchers. Developers are actors that develop and test new IoT services
using the framework, and researchers develop novel approaches and extend the framework
to enable new use cases.

4.1.4 Use Case Scenarios

A use case aggregates multiple use case scenarios executed by an actor on a specific
system environment. Usually, use case scenarios describe actors executing a specific
action in order to receive predefined responses or benefits. For instance, a customer
requests several tasks to be executed in the fog landscape and gets back the result or a
message about the deployment status.

Some essential use case scenarios of the fog computing framework are presented in
the following paragraphs.

Use Case I: Development, Testing, and Evaluation of an IoT Service

• Actors: Developer, Researcher

• Preconditions: A developer downloads the fog computing framework from the
public git repository and creates a desired fog landscape, e.g., a distributed device
topology to test the needed functionality.

• Postconditions: A developer can deploy, test, and evaluate the created IoT service
in a created fog landscape.

• Scenario: A developer implements a new IoT service to be executed in the fog
computing framework and stores the created Docker Image in the service repository.
After the service is registered with a unique service key, the developer can send a
task request to the fog landscape. The responsible fog control node receives the
task request and issues the deployment of the requested service according to the

39

4. Requirements Analysis and Design

computed resource provisioning plan. After the deployment the developer gets
notified about the deployment status.

Use Case II: Execution of an IoT Application

• Actors: User, Developer, Researcher

• Preconditions: A user downloads the fog computing framework from the public
git repository and creates a desired fog landscape, e.g., a distributed device topology
to test the needed functionality.

• Postconditions: A user is able to request the execution of an IoT application in
the provided fog landscape and to receive the expected results.

• Scenario: A user connects several sensors, e.g., humidity, temperature, sound,
to the fog landscape and executes a specified amount of suitable sensor reading
services. After the sensors are connected and the responsible fog cell is paired to
a parent fog control node, the user can issue the corresponding task requests at
the parent fog control node by issuing the desired service types via an API call.
The fog control node creates a resource provisioning plan and deploys the services
according to the fog cells’ resource utilization. The resulting data of the sensors
are processed in the requested service and sent to the cloud for further analysis
and long-time data storage.

Use Case III: Development, Testing, and Evaluation of a Resource
Provisioning Approach

• Actors: Researcher

• Preconditions: A researcher downloads the fog computing framework from the
public git repository and creates a desired fog landscape, e.g., a distributed device
topology to test the needed functionality.

• Postconditions: A researcher can deploy, test, and evaluate the implemented
resource provisioning approach in a newly created fog landscape.

• Scenario: A researcher extends the resource provisioning module of the fog com-
puting framework by implementing the IResourceProvisioning interface with a more
sophisticated resource provisioning approach. This extended approach can then be
tested and evaluated within the provided fog landscape. As the framework is kept
extensible, even already existing resource provisioning approaches can be attached
and subsequently tested and evaluated.

40

4.1. Functional Specification

4.1.5 Workflows

In this part of the functional specification, essential workflows are described and presented
on the basis of Unified Modelling Language (UML) sequence diagrams. These UML
sequence diagrams show a chosen sequence of actions between the different system
components described in Subsection 4.2.1. In a sequence diagram, the time is visualized
in vertical direction while the communication between the specified components is
visualized horizontally.

Pairing and Service Deployment

In this first workflow depicted in Figure 4.1, the device pairing and subsequent service
deployment is visualized. At some point in time, a fog control node receives an asyn-
chronous pair request from a new device that actively wants to join the fog colony. This
device is instantiated as a fog cell and added to the set of children of the fog control node.
In the meantime, a task request arrives and while the reasoner component computes an
appropriate resource provisioning plan for the newly created fog cell. In this use case
scenario we assume that there are pending task requests fitting the exact service type of
the newly instantiated fog cell. The resulting plan specifies the service to be deployed on
the fog cell according to the current QoS metrics and resource provisioning approach.
After the fog control node deployed the service, the service is able to read, process, and
propagate the data from connected IoT devices. From this point, the fog cell works
autonomously without further controlling of the fog control node.

sd Service Deployment

device : IoTDevice

fogcell : FogCell

fogcontrol :
FogControlNode

cloud :
CloudFogMiddleware

new FogCell()

Deploy Service

… …

Pair Request
device : Device

reasoning()

Read Data

Data

Read Data

Data
…

Figure 4.1: Pairing and Service Deployment

41

4. Requirements Analysis and Design

Task Processing in a Fog Cell

Figure 4.2 represents a workflow where a new task request is issued at a fog control node
which then needs to reason about an appropriate fog cell to deploy the requested service
to. The task request is sent from a user via the REST API to the fog control node, where
the reasoning component calculates the resource provisioning plan to determine the first
fitting fog cell to deploy the needed service. After a fog cell is found, the fog control
node deploys the service on the fog cell which immediately starts executing intended
functionalities. For evaluation purposes, the fog cell sends back a message after the
service is successfully deployed.

device : IoTDevice fogcell : FogCell fogcontrol :
FogControlNode

processTask()

sd Task Offloading Fog Control Node

Task Request

reasoning()

Deploy Service

Read Data

Data

Read Data

Data

…
…

…

User

Figure 4.2: Task Processing in a Fog Cell

Task Offloading to the Cloud

The last workflow explains the sequence of actions needed to offload a task request to
the cloud-fog middleware (see Figure 4.3). As before, a user sends a task request to a
fog control node, which sends it to its parent fog control node for reasoning purposes.
As this specific task request is flagged as cloud task because it needs high processing
power, e.g., Big Data analytics, the fog control node decides to propagate the request to
the cloud. The cloud-fog middleware then deploys appropriate resources to handle the
task request appropriately and instantiates VMs in the cloud environment to process the
request. In every case, even if no task results exist, the component where the service is
deployed, sends back a status message whether the service is deployed successfully. The
detailed service deployment process in the cloud is described in Section 5.2.2.

42

4.2. Technical Specification

fogcontrol2 :
FogControlNode

cloud :
CloudFogMiddleware

Task Request
propagate()

servicePlacement()deploy()

sd Task Offloading Cloud

reasoning()

User

fogcontrol1 :
FogControlNode

startVM()

…deploy()

Figure 4.3: Task Offloading to the Cloud

4.2 Technical Specification

In the second part of this chapter, the essential technical specification is introduced.
The technical specification defines how the functional and non-functional requirements
of the system can be solved by the means of concrete design and technology decisions.
The elements used to define the technical requirements include a general overview of
the framework architecture, the most important design and technology decisions, and
concrete APIs between the described components.

4.2.1 Fog Computing Framework Architecture

The overall architecture is a crucial part of the design and development of the fog
computing framework. This section presents the fog computing framework architecture
and all the included components. The hereby introduced concept and architecture is an
adapted version of the conceptual architecture considered by Skarlat et al. [56].

In Figure 4.4, an overview of the fog computing framework architecture can be seen.
The visualized device hierarchy, i.e., device topology, consists of two major layers and
four distinct device types. The bottom layer, i.e., the IoT layer, consists of fog control
nodes, fog cells and IoT devices. The second layer, on the top of the topology, is the
cloud layer, and represents the cloud resources managed by the cloud-fog middleware. All
mentioned device types can occur multiple times in the the according layers. Additionally,
a structure consisting of a fog control node with an arbitrary amount of fog cells and IoT
devices connected to it, is called a fog colony.

To avoid ambiguity, the terms task request, service image, service, and application are
specified as follows. A task request is a computational job to be computed by fog resources.

43

4. Requirements Analysis and Design

Service images are not yet deployed service binaries stored in a shared storage component.
Services are deployed and running computational software instances to process task
requests in capable fog cells, fog control nodes or cloud VMs. Examples for such services
include MapReduce applications, stream processing, caching, and distributed storage [56].
An application is a set of services that need to be deployed in order to successfully execute
an application. The mentioned device types are described in more detail in the remaining
subsections.

 IoT

																				Fog	Colony			Fog	Colony											

Cloud

																																																																													Fog	Colony

Fog
Cell

Fog Control Node

Fog
Cell

IoT	
Device

IoT	
Device

IoT	
Device

IoT	
Device

IoT	
Device

IoT	
Device

IoT	
Device

Compute Units

Cloud–Fog Middleware

Fog
Cell

Fog
Cell

Fog Control Node Fog Control Node

Storage

R

R RRRRR

Figure 4.4: Fog Computing Framework Overview (adapted from [56])

Cloud-Fog Middleware

The cloud-fog middleware is deployed in the cloud and acts as a middleware between the
cloud and the fog landscape. The middleware handles the resource provisioning, task
request placement, and task execution in the specific cloud environment. Task requests
processed in the cloud environment most likely are delay-insensitive jobs requested from
subjacent fog colonies. These tasks often are resource-intensive, e.g., Big Data analytics,
or image processing, and therefore need to be executed in the cloud environment with
virtually infinite resources.

44

4.2. Technical Specification

 Fog Cell

Reasoner
R

Shared
Storage

Watchdog

Compute
Unit

Service
Registry

Fog Action
Control

 Computational
 Components
 Storage
 Components

 Networking
 Components

API

 Exposed
 Interfaces

 Consumed
 Interfaces

API

Monitor

Propagation
Component

 Fog
 Control Node
 ExtensionsR

R

R

RDatabase

Figure 4.5: Fog Cell Architecture (adapted from [56])

Fog Cell

A fog cell is a software component running on a resource-rich IoT device, having its
own computation and storage resources. Fog cells represent computing devices that
communicate with a parent control component, i.e., fog control node, and connected
IoT devices, e.g., sensors and actuators. The duties carried out by such fog cells include
monitoring of connected IoT devices, monitoring of proprietary resources, executing of
received task requests, and propagating service data to upper topology levels.

As can be seen in Figure 4.5, every fog cell features specific components. The fog
action control component pulls a service image from a shared storage, specifically from a
shared service registry, and deploys this service in the compute unit to read, process, and
propagate the data from connected IoT devices. Furthermore, the communication with
IoT devices and the complete data processing is done in the compute unit. Hence, the
compute unit is the actual task processing part of the fog cell. The deployment of services
is done according to a resource provisioning plan computed by a reasoning component
of a fog control node. The execution of the deployed services and the corresponding
resources are observed by the monitor. The gathered monitoring information is stored in
the local database for further processing. Being connected to IoT devices and fog control
nodes a fog cell needs an API for incoming as well as outgoing communication. The
API enables other connected devices to get and set fog cell data, e.g., utilization, and
empowers fog control nodes to deploy, release, start, stop, and delete services in the fog

45

4. Requirements Analysis and Design

cells’ compute unit. The exact API endpoint specifications are described in Section 4.2.3
Summarizing, fog cells are resource-rich IoT devices connected to multiple other

IoT devices and one parent fog control node. Fog cells receive task requests which are
processed locally. The result of the task request can then be propagated to the parent
fog control node for further processing.

 Fog Cell

Reasoner
R

Shared
Storage

Watchdog

Compute
Unit

Service
Registry

Fog Action
Control

 Computational
 Components
 Storage
 Components

 Networking
 Components

API

 Exposed
 Interfaces

 Consumed
 Interfaces

API

Monitor

Propagation
Component

 Fog
 Control Node
 ExtensionsR

R

R

RDatabase

Figure 4.6: Fog Control Node Architecture (adapted from [56])

Fog Control Node

A fog control node is a powerful fog cell with additional capabilities as visualized on the
left hand side of Figure 4.6.

Fog control nodes extend simple fog cells with the following components. The watchdog
analyzes the persisted monitoring data against expected QoS metrics and triggers events
accordingly, e.g., overload (CPU > 80%). The triggered events are consumed and
appropriately processed by the reasoner component of the fog control node. The reasoner
is a crucial component that handles the resource provisioning and task placement of the
entire fog colony. Note, fog colonies can recursively inherit other fog colonies. In tangible
terms, the reasoner computes a resource provisioning plan for associated fog colonies. A
resource provisioning plan defines where selected services are deployed, i.e., on which fog
cells, and in which service instance the incoming task requests are executed. Creating the
plan, the reasoner takes into account watchdog events, monitoring data of the system,
and additional aspects according to the implemented resource provisioning approach. The

46

4.2. Technical Specification

developed resource provisioning approach of this thesis is provided in Subsection 4.2.2.
Additionally, the reasoning component reacts on specific system events, e.g., device
accedence, device failure, overload, and immediately starts a resource replanning process.
This replanning process analyzes the whole infrastructure and migrates suitable services.
The shared storage component holds the service registry and additional information about
every fog cell that needs to be shared across multiple devices and topology levels. The
service registry holds service images to be deployed in fog cells. These service images have
a unique identifier used to identify the registered services. The propagation component
serves the purpose of propagating task requests and service data to higher levels, i.e.,
either to the cloud or to other fog control nodes in case a fog cell is not able to process a
task request itself.

In a nutshell, fog control nodes can be connected to multiple fog cells, IoT devices,
and a cloud-fog middleware. Fog control nodes receive task requests from users outside
the fog landscape and determine where these task requests are processed. Furthermore,
these components restructure and monitor the subjacent devices.

4.2.2 Design and Technology Decisions

The subsequent paragraphs explain the major design and technology decisions needed
to fulfil the functional and non-functional requirements of the fog computing frame-
work described in this work. The decisions range from deployment concepts over base
technologies to detailed technical issues.

Deployment Concept

As already discussed in the background chapter, specifically in Section 2.2.4, the two
relevant deployment concepts are full virtualization and operating system virtualization
(i.e., container virtualization).

The advantages of a full virtualization, in comparison to the container approach, are
(i) more secure system separation, (ii) more compatible operating systems and software,
and (iii) fault-safe system separation. Regarding full virtualization, the system separation
is more sophisticated because of the VMM which handles the separation in the virtual
environment. Specifically, VMs can not access any data, memory, or processes of other
VMs. Additionally, if one VM fails the others are not affected at all. This is crucial
when thinking about security-critical and fault-critical applications. The disadvantages
of VMs include huge storage and processing overloads due to the additional operating
systems, slow startup times, and a verbose setup. Concerning the container concept, the
resulting advantages are: (i) light-weight containers, (ii) fast startup time, and (iii) easy
deployment and migration. As containers do not need proprietary operating systems,
the needed storage space is substantially lower and the startup times are considerably
faster [12, 54].

The components of a fog landscape are easy separable into small independent com-
ponents and therefore suggest using a MSA. Consequently, in this specific application
scenario, the priority is to use the container concept, as the whole framework should be

47

4. Requirements Analysis and Design

Table 4.1: Dropwizard vs. Spring Boot [32, 59, 65]

Dropwizard Spring Boot
HTTP Server Jetty Tomcat, Jetty, Underflow
REST Support Jersey Spring, JAX-RS, Jersey
JSON Support Jackson Jackson, GSON, JSON-simple
Dependency Injection - Spring Framework
Metrics Dropwizard Metrics Spring Framework
Persistence Tools JPA Spring Data, JPA
Dependency Mgmt Maven Maven, Gradle, Ant
Community Support ∼2,000 StackOverflow posts ∼20,000 StackOverflow posts
Official Integrations around 10 more than 50 Maven Starters

kept light-weight, easily extensible, and on-demand scalable eliminating long starting
and migration times. The concrete container solution selected for this project is Docker.
The details regarding Docker have already been described in Section 2.2.4. It remains to
be said that even Docker is not an optimal solution for a real-world IoT system, because
even more light-weight solutions are needed. Nevertheless, Docker perfectly serves the
purpose of creating a real-world fog computing framework test-bed in this thesis.

Base Technologies

Due to the small and independent components, i.e., microservices, a light-weight base
technology to enable convenient application development is needed. As the microservices
in this specific project are implemented by means of Java 8 1, the further technology
assessment concentrates on Java Micro Frameworks. Java Micro Frameworks are light-
weight Java frameworks that enable a developer to easily develop small independent Java
microservices. In this specific case, the different components are coupled in microservices
that intercommunicate via the microservice standard communication technology REST.
More specific information on the communication technology is provided in the next
subsection. As a result, we can further restrict the assessment criteria to light-weight
Java Micro Frameworks enabling a RESTful application development.

There are numerous open source frameworks available that comply with most of the
requirements of this specific application scenario, e.g., Spring Boot2, Dropwizard3, Ninja
Web Framework4. In order to decide which framework fits best in this work, the two most
popular and sophisticated RESTful Java micro frameworks are analyzed and compared.
The selected two frameworks to be compared are Spring Boot (SB) and Dropwizard
(DW).

1https://docs.oracle.com/javase/8/docs/
2https://projects.spring.io/spring-boot/
3http://www.dropwizard.io/1.0.2/docs/
4http://www.ninjaframework.org/

48

https://docs.oracle.com/javase/8/docs/
https://projects.spring.io/spring-boot/
http://www.dropwizard.io/1.0.2/docs/
http://www.ninjaframework.org/

4.2. Technical Specification

Table 4.1 visualizes a few particularly crucial selected capabilities a Java Micro
Framework should have. Not all proposed capabilities are strictly needed to develop
microservices, but are convenient and widely used in this area, e.g., Dependency Injection
(DI). The follow-up paragraphs briefly discuss the capabilities and present relevant details
about the chosen frameworks.

Hypertext Transfer Protocol (HTTP) servers imply the ability to host a web server
and allow HTTP access via POST, PUT, GET, UPDATE, and DELETE commands. In
DW only Jetty is available, while SB offers Tomcat, Jetty and Underflow, depending on
the preference and requirements of the developer. REST, building the communication
part in a MSA, is enabled using Jersey 2 in both DW and SB. SB additionally supports
Spring and the Java API for RESTful Services (JAX-RS). JSON handling is supported
via Jackson in both tools, and in SB GSON and JSON-simple are available additionally.
The DI is a convenient capability used to dynamically initialize project dependencies. In
DW Google Guice is an often used light-weight DI solution that can be integrated but is
not embedded in the standard framework. SB uses the sophisticated Spring framework
as DI module that provides the developer with many convenient DI capabilities.

Regarding metrics, every tool uses its proprietary ones. Metrics serve the purpose
of measuring the systems status and event-based or optimization-based alerting. In
every framework, persistence tools are an essential topic. In DW only the well-known
Java Persistence API (JPA) is supported as official persistence integration, while SB
provides a very convenient persistence handling with Spring Data and JPA. Spring Data
provides very easy methods to save a lot of time and effort when developing persistence
functionalities [59, 65].

Dependency management is another crucial topic in distributed applications. In SB,
the dependency management is solved by well structured components, while DW works
with many community projects that can lead to compatibility problems. Furthermore, SB
can be used with Maven, Gradle, and Ant, while DW sticks to Maven. The community
support is sophisticated in both of the frameworks, although concerning StackOverflow5

posts DW is mentioned in around 2,000 posts, while SB is mentioned tenfold. Finally,
another important point is the availability of official integrations which help to solve
well-known problems by integrating official tools. Here, again, SB has a huge advantage
with the Spring environment and the accompanying community, while DW can provide
only about 10 official integrations.

Concluding, in almost every aspect compared in Table 4.1, SB is a better fit for this
work. The advantages of SB result from the well-known and sophisticated technology
base, i.e., the Spring framework. Thus, most of the tools and background technologies
are very well-developed and tested because they are also used in the Spring framework.
Furthermore, the experience of development in a Spring background enables a very easy
development start with Spring Boot.

5http://stackoverflow.com/

49

http://stackoverflow.com/

4. Requirements Analysis and Design

Communication

Since the deployment concept and architecture are already agreed upon, the selection of
the communication technology is straight forward. Due to the fact that microservices
are light-weight software components with heterogeneous technologies, the standard
communication technology in MSA is REST.

REST is an architectural style describing how to develop web services, or microser-
vices in this case, that communicate by the means of simple HTTP requests. The
communication between microservices has to comply four principles: (i) statelessness,
(ii) uniform interfaces, (iii) resource identification using Uniform Resource Identifiers
(URIs), and (iv) self-descriptive messages. Statelessness means that every communi-
cation between the components is independent and no specific state is stored in the
components. Uniform interfaces indicate that every action done on the components is
executed via clear well-defined GET, POST, PUT, and DELETE commands. These
commands are executed by calling unique URIs mapped to execution methods on the
component, i.e., the API. Finally, all messages exchanged with a RESTful server are
self-descriptive, meaning that the structure and content of these messages are separable.
Hence, messages can be delivered using different data types, e.g., XML, JSON, without
losing any information [46, 48]. An extensive comparison between REST and other WS*
technologies can be reviewed in a paper of Pautasso et al. [46].

Cloud Provider

In order to keep the framework as an open source project, an open source cloud technology
is selected. The requirements to elicit an adequate open source cloud infrastructure
provider are the following. The cloud provider needs to provide an open source API,
a convenient deployment model, efficient scalability, low cost, private and public cloud
support, large community support, and a reliable and well-tested system.

The currently most important open source cloud infrastructure providers with the
required capabilities are OpenStack6, Apache CloudStack7, and OpenNebula8. Concern-
ing this project, OpenStack is chosen for the following reasons: (i) modular architecture,
(ii) huge community support, (iii) well-known contributing companies as, e.g., NASA,
AT&T, CERN, Yahoo, (iv) mature system, and (v) interoperability of cloud services.
The stated reasons emphasize that OpenStack is a very sophisticated and mature cloud
infrastructure provider that even supports the interoperability of multiple different cloud
services. Besides, the framework is built on top of clearly specified interfaces in order to
keep it extensible and adaptable. Thus, the chosen OpenStack provider can be replaced
or extended by others with little effort.

6https://www.openstack.org/
7https://cloudstack.apache.org/
8http://opennebula.org/

50

https://www.openstack.org/
https://cloudstack.apache.org/
http://opennebula.org/

4.2. Technical Specification

Shared and Local Storage

The technology used for the shared and the local storage in fog cells and fog control nodes
of the fog computing framework should be light-weight, fast, and easy-deployable. As no
specific structure is needed, the architecture suggests using a fast key-value database.
Thus, a well-known in-memory data storage solution providing the needed non-critical
functionalities called Redis9 is chosen. Redis is fast, open source, light-weight, convenient
deployable and embeddable using Java, and therefore matches the setup of the project
perfectly.

Resource Provisioning

As a fog computing framework is responsible for the appropriate resource provisioning in
the fog landscape, a general approach needs to be designed. This work only presents a
basic resource provisioning approach as the resource provisioning is not in the focus of
this thesis and therefore should just give a broad insight on the possibilities in the fog
computing framework. The architecture of the framework is kept extensible and thereby
allows developers to implement their own improved resource provisioning approaches for
further usage. The hereby provided approach is a heuristic approach based on two major
actions: (i) threshold monitoring, and (ii) load balancing.

Due to the dynamic task request workload requested by IoT devices, the framework
needs to be able to dynamically orchestrate, allocate, release, and monitor the according
resources. System monitoring enables to keep track of the current system utilization,
and can trigger events according to predefined threshold rules. For instance, a fog cell is
well-utilized having 70% CPU utilization and then an additional service is deployed on
this very fog cell. As a result, the utilization exceeds a predefined 80% threshold and the
resource provisioning component stops deploying more services on that fog cell. This
approach makes sure that fog cells never get overloaded and the workload is balanced
among the available resources. In case there are no available fog cells to schedule the
task to, the fog control node sends the task request to the cloud-fog middleware which
provisions appropriate cloud resources to process the request [35].

Furthermore, when a user issues a task request, the fog control node propagates it to
the root fog control node for resource provisioning purposes. The root fog control node
then analyzes all the subjacent fog cells and propagates the task request to a fog cell
with available CPU and RAM resources. The algorithm used to select fog cells is the
first fit algorithm [36]. This algorithm selects the first fog device with available resources
to deploy the service. More details on the algorithm is presented in Section 5.6.

Due to the task distribution according to the monitored resource utilization, the
task load is balanced between subjacent fog cells of the fog control node. In Figure 4.7,
a scenario with two fog control nodes and two fog cells is visualized. In this specific
scenario, a user sends a task request to a fog control node (fogcontrol2) which is not the
root fog control node. Consequently, this fog control node propagates the task requests
to the root fog control node for reasoning and load balancing purposes. The requested

9http://redis.io/

51

http://redis.io/

4. Requirements Analysis and Design

tasks then are deployed on the first fitting fog cell (fogcell2) and a deployment status
information is sent back to the user. The user then sends another task request to the
same fog control node that again propagates that request to the root fog control node.
This time the reasoning decides to deploy the service on another fog cell (fogcell1) because
fogcell2 has not enough resources to deploy another service.

The concrete algorithm solving the mentioned approach is described in the implemen-
tation chapter, specifically in Section 5.6.

sd Reasoning and Load Balancing

fogcell1: FogCell fogcontrol2 :
FogControlNode

Task Request

fogcontrol1 :
FogControlNode

propagate()

fogcell2: FogCell

reasoning()

deploy()
processTask()

User

processTask()

Task Request propagate()
reasoning()

deploy()
deploy()

Figure 4.7: Reasoning and Load Balancing

Service Placement Replanning

In case the fog landscape changes, the service placement may have to change in order
to ensure the correct execution of the requested applications or to use the fog resources
efficiently. As already mentioned in the application definition, the deployment of an
application is only successful when all services within that application are deployed
successfully. Hence, if a device that runs a service of a specific application fails, this
service needs to be deployed somewhere else to ensure the correct application execution.
Another scenario, in case not all services can be deployed, the whole application fails and
all services are stopped.

In the fog computing framework three distinct cases are distinguished: (i) device
accedence, (ii) device failure, and (iii) device overload. A specific monitoring functionality
built in the reasoner component analyses the fog landscape and fires events in case a
new device joins the network, a paired device is not responding anymore, or a device is

52

4.2. Technical Specification

overloaded. This functionality provides the mechanism to react on such events and can
then be used for any kind of policy to react and handle the placement replanning.

In the course of this thesis a basic policy is implemented: Case (i), when a new
device joins the network, all connected devices are analyzed regarding the amount of
services deployed. First, all services currently deployed in the cloud are migrated to
the new device to reduce cloud cost. Second, all devices running the maximal amount
of deployable containers are considered for the remaining service placement replanning.
This replanning approach then migrates suitable services from the selected devices to the
new device until the new device is filled to a previously defined amount of containers.
Case (ii), when a paired device disappears, the reasoner checks in the service mappings
whether the device had any services running and deploys them somewhere else in the
fog landscape. Case (iii), when a device is identified as overloaded by the watchdog, the
event is triggered at the root fog control node and the replanning mechanism migrates
a random service from the overloaded device to a suitable substitute. This process is
continued until the device is not overloaded anymore.

4.2.3 API Endpoints

In this section the most important API endpoints between the cloud-fog middleware and
connected fog control nodes, a task requesting user and fog control nodes, and between
deployed services and the fog cell it is deployed on, are presented. Table 4.2 and Table 4.3
depict the endpoints to be used by an external user. Table 4.4, Table 4.5, Table 4.6,
Table 4.7, Table 4.8, and Table 4.9 are endpoints between the cloud-fog middleware and
fog control nodes. Finally, Table 4.10 shows the interface that enables deployed services
to propagate processed data to the fog cell and from there to fog control nodes and the
cloud.

This chapter presented the functional, and non-functional requirements, crucial design
decisions, the framework architecture, the component design, essential use cases, and the
API endpoints of the fog computing framework. Furthermore, the information written
on the previous pages answers two research questions: (i) “What are the functional and
non-functional requirements for a fog computing framework?” and (ii) “What are the
necessary components of a fog computing framework, and how can they be described in
terms of their functional and technical specification” stated in Section 1.2.

53

4. Requirements Analysis and Design

Table 4.2: Register Service Endpoint

Register Service
Description This endpoint enables users to register services in the shared service

storage, located on fog control nodes, for future deployment.
Request
URL POST http://fcn1:8080/shareddb/register

JSON
{ "serviceKey": "busy-image", "dockerfile": "FROM rpiBusybox\n ...",
"volumes": "/usr/lib/..:/usr/lib/...", "exposedPorts": ["8105"],
"privileged": true }

Response
Description Returns a status flag if the registration was performed successfully.

JSON
201: { "status": true } - successfully registered the service
200: { "status": false } - either the service key is already used or an error
occured

Table 4.3: Send Task Requests Endpoint

Send Task Requests
Description This endpoint enables users to send a list of task requests to a fog control

node.
Request
URL POST http://fcn1:8080/reasoner/taskRequests

JSON

{ "duration": 5, [
{ "serviceType": "t1", "serviceKey": "busy-image", "cloudTask": false,

"fogTask": false },
{ "serviceType": "t2", "serviceKey": "temp-hum", "cloudTask": false,

"fogTask": true }
] }

Response
Description Returns a status message that indicates whether the services, needed to

execute the task requests, could be deployed.

JSON
201: { "status": true } - successfully deployed the needed services
200: { "status": false } - either an error occurred, or the fog colony is
overloaded and no cloud-fog middleware is connected

54

4.2. Technical Specification

Table 4.4: Get Responsible Parent Endpoint

Get Responsible Parent
Description This endpoint enables new fog devices to request the closest parent device

of the fog colony to connect to. If no parent is in range, the cloud-fog
middleware returns itself.

Request
URL GET http://cfm1:8082/locator/parent/<latitude>/<longitude>

Name Description Example
latitude : Long North-South geographical

coordinate of the requesting
device

48210033

Parameters
longitude : Long West-East geographical

coordinate of the requesting
device

16363449

Response
Description Returns a fog-device object in JSON format that at least contains IP

address and port of the parent to connect to.

JSON

200: { "id": "...", "ip": "192.168.1.105", "port": "8080",... } - successfully
found an appropriate parent
200: { "id": "...", "ip": "192.168.1.101", "port": "8082", ... } - the fog-device
object corresponding to the cloud-fog middleware is returned

Table 4.5: Fog Control Node Propagator Endpoint

Propagate Service Data and Task Requests
Description This endpoint enables fog control nodes to propagate task requests and

general data to parent fog control nodes. In case of service data this
endpoint can also be used with the cloud-fog middleware.

Request
URL POST http://fcn1:8080/propagator/propagate

JSON
{ "sender": "<device : FogDevice>",
"key": "<key : String>", "data": "<list : List<HashMap> >"
"requests": "<requests : List<TaskRequests> >, ..." }

Response
JSON 200: empty

55

4. Requirements Analysis and Design

Table 4.6: Cloud Fog Middleware Propagator Endpoint

Propagate Task Requests to Cloud
Description This endpoint enables fog control nodes to propagate task requests to

the cloud-fog middleware.
Request
URL POST http://cfm:8082/propagator/propagateTaskRequests

JSON

{ [
{ "serviceType": "t1", "serviceKey": "busy-image", "cloudTask": false,

"fogTask": false },
{ "serviceType": "t2", "serviceKey": "cloud-service", "cloudTask": true,

"fogTask": false }
] }

Response
JSON 200: empty

Table 4.7: Cloud Fog Middleware Stop Service Endpoint

Stop Service in the Cloud
Description This endpoint enables fog control nodes to request the stopping of a

service in the cloud.
Request
URL POST http://cfm:8082/cloud/stopService/<containerId>

Name Description Example
Parameters containerId : String Unique Docker Con-

tainer Id

asd9ewaf-awf6ixiy-
d33ksa

Response
JSON 200: empty

Table 4.8: Get Children Endpoint

Get Children Devices
Description The fog control nodes and cloud-fog middleware use this endpoint to get

the connected child devices of a connected child device. This is needed
to build the topology and provision resources for the tasks. This call
works recursively to the bottom of the hierarchy.

Request
URL GET http://fcn1:8080/localdb/children
Response
JSON 200: [] - device without children

200: [{fogdev1: Fogdevice}, {fogdev2: Fogdevice}]

56

4.2. Technical Specification

Table 4.9: Get Resource Utilization Endpoint

Get Resource Utilization
Description Enables the fog control node and cloud-fog middleware to get the resource

utilization of a specified device.
Request
URL GET http://fc1:8081/localdb/utilization
Response
JSON 200: { "cpu": 0, "ram": 0, "storage": 0 } - not yet monitored device

200: { "cpu": 12.34, "ram": 45.23, "storage": 10.87 } - monitored utiliza-
tion

Table 4.10: Fog Cell Propagator Endpoint

Propagate Service Data
Description This endpoint enables deployed services to propagate service data to fog

cells which then can propagate it to fog control nodes.
Request
URL POST http://fc1:8081/compunit/serviceData
JSON { "key": "<key : String>", "data": "<list : List<HashMap> >" }
Response
JSON 200: empty

57

CHAPTER 5
Implementation

This chapter serves the purpose of explaining the concrete implementation of the fog
computing framework. The next pages cover a general overview of the developed system
followed by specific requirements of the necessary software components of the system,
installation instructions, exemplary use case scenario executions, and the explanation of
the implemented resource provisioning approach. The first section gives a general overview
of the system including the technologies, design decisions, and the communication between
its components. Section 5.2 describes the concrete service deployment mechanisms used
in the cloud and the fog landscape. In Section 5.3, the requirements of the diverse
subcomponents are described and explained, enabling a reproducible setup of the system
and all its corresponding components. Section 5.4 explains the most important installation
instructions in order to get the developed framework up and running. These steps include
the installation of the required Raspberry Pis, the cloud environment, and the general
system environment. Section 5.5 explains the concrete execution of three described
use case scenarios from the design chapter (Section 4.1.4). Including concrete sample
commands and files, the execution can be reproduced. In the last part of this chapter, a
basic resource provisioning approach including the general idea and the concrete first fit
algorithm is explained in more detail.

5.1 Bird View

This first section in the implementation chapter provides a broad overview on the
implementation of the fog computing framework. In more detail, the class diagrams of
the cloud-fog middleware and of the fog control node are presented. Because the complete
fog cell class diagram is included in the fog control node class diagram (Figure 5.1), a fog
cell diagram is omitted. The following class diagrams provide an overview on the concrete
implemented software components and the interfaces which these components implement.
The class diagrams provide future developers the main structure of the implementation at

59

5. Implementation

a glance. Furthermore, these diagrams illustrate the extensibility of the software by using
interfaces to replace specific components or approaches, e.g., the resource provisioning
service. For the sake of clarity and simplicity, the succeeding diagrams only model the
most important classes without attributes and methods.

In class diagrams, the naming of entities is self-descriptive. Services represent compo-
nents or separable tasks, e.g., ReasonerService. Controllers contain the API endpoints of
specific services, to enable the communication with other devices or listen to task requests
from outside the systems’ environment, e.g., ReasonerController. Software interfaces are
recognizable by a preceding letter "I" in the entity name, e.g., IReasonerService. The
different components and classes are not described in detail, as the selected class names
already point out the related components described in Section 4.2.1.

Figure 5.1 depicts the fog control node application with all its components and inter-
faces. The separate components are the ReasonerService, PropagatorService, FogAction-
ControlService, ComputeUnitService, DatabaseService, MonitorService, WatchdogService,
SharedDatabaseService, and CommunicationService. Most of these services come with an
interface to easily extend or replace them with substituting source code implementing the
specified interface methods. In the system, general-purpose services are envisioned, e.g.,
the DatabaseService, which introduce an additional level of inheritance. The added level
of inheritance empowers these components to be exchangeable by classes implementing
the specified Java interfaces, e.g., to be used by different database technologies.

As already mentioned, the fog cell class diagram is contained within the fog control
node class diagram. However, the classes PropagatorService, SharedDatabaseService,
and the WatchdogService belong only to the fog control node class diagram.

The cloud-fog middleware, visualized in Figure 5.2, consists of a DatabaseService,
CloudService, LocationService, and CommunicationService. The CloudService introduces
an additional level of inheritance with the OpenStackService. This class provides the
possibility to exchange the implemented OpenStack solution with any other cloud provider
solution by implementing the depicted ICloudProviderService interface.

In addition to these classes, the components share a fogdata module with generally
used models and utility functions. This is kept in a separate model in order to avoid
code repetition and empower the developer to change the model at a central point for all
components.

5.2 Service Deployment

A crucial task of the designed and implemented fog computing framework is the deploy-
ment of the received task requests resulting in running software services. The requested
task is mapped to a service that is deployed on an elicited device. All services are deployed
in Docker Containers on calculated host devices. Due to two different environments,
cloud and fog, we have to differentiate between fog service deployment and cloud service
deployment. The stated environments differ in terms of processor architecture, host
resource possibilities, and deployment mechanisms.

60

5.2. Service Deployment

Figure 5.1: Fog Control Node Class Diagram
61

5. Implementation

RedisServiceRedisService

CommunicationControllerCommunicationController

LocationControllerLocationController

IDatabaseServiceIDatabaseService

ICommunicationServiceICommunicationService

DatabaseServiceDatabaseService

IRequestServiceIRequestService

LocationServiceLocationService

CommunicationServiceCommunicationService

RequestServiceRequestService

ILocationServiceILocationService

DatabaseControllerDatabaseController

ICloudProviderServiceICloudProviderServiceICloudServiceICloudService

CloudControllerCloudController

CloudServiceCloudService

OpenStackServiceOpenStackService

1

1

11

1

1

1

1

11

1
1

1 1

11

11

1 1

11

1
1

1

1

Figure 5.2: Cloud-Fog Middleware Class Diagram

5.2.1 Fog Service Deployment

In the fog landscape, services are deployed on fog cells and fog control nodes. These
components are assumed to be running on Raspberry Pis1 with an ARM processor
architecture2. Although the chosen programming language Java is platform-independent,
the base images of the Docker Containers to deploy still depend on the processor
architecture they run on. Hence, to deploy Docker Containers in the fog landscape,
special ARM-compatible base images are required.

The service deployment setup in the fog landscape is the following. Every fog device,
i.e., fog cell or fog control node, runs on a Raspberry Pi with an operating system called
Hypriot3. Hypriot runs a Docker runtime that enables the service deployment in Docker
Containers. The fog cell and fog control node applications run as Docker Containers in
the Docker runtime provided by the host operating system. In order to empower these
main applications to start and stop further Docker Containers on the host, a specific
Docker hook is needed (see Figure 5.3 and 5.4). This hook enables the main applications,
i.e., the fog cell or fog control node application, to use the host Docker runtime. As a
result, the fog cell and fog control nodes are able to start and stop containers on the same
operating system using the same Docker runtime. Therefore, the main applications can
start and stop neighbouring Docker Containers from inside their own Docker Container.

1https://www.raspberrypi.org/
2arm.com/products/processors/instruction-set-architectures/index.php
3https://blog.hypriot.com/

62

https://www.raspberrypi.org/
arm.com/products/processors/instruction-set-architectures/index.php
https://blog.hypriot.com/

5.2. Service Deployment

Furthermore, we have to differentiate between fog cells and fog control nodes. The
difference between these two device types are the deployed database containers. Figure 5.3
visualizes the fog cell having an additional Container called Redis FC running a Redis
database to persist and read locally needed data, e.g., device utilization as RAM, CPU,
and storage. On the other hand, concerning the fog control node in Figure 5.4, there are
two database containers Redis FCN and Redis Shared. Redis FCN is the local database
similar to the one in the fog cell, while Redis Shared is the shared database holding the
Docker Images of the deployable services of the corresponding fog landscape. The fog
control node database containers are intentionally kept separately to preserve flexibility
and replaceability. As a consequence, the shared database could be replaced by any other
database technology hosted anywhere, due to direct IP communication.

Monitoring of the Raspberry Pi resources is an important task, since the service
deployment depends directly on the requested monitoring data stored in the local Redis
database. To be able to monitor the resource utilization of the Raspberry Pi instead of
the separated containers, a monitoring application directly running on the host system is
needed. This light-weight monitoring application running on the Raspberry Pi operating
system periodically monitors the systems’ resources and saves the resulting utilization
data into the local Redis database for further processing.

Hardware	(Raspberry	Pi	3)

Operating	System	(Hypriot)

Fog	Cell Service
1 …

Docker Hook

Redis
FC

Service
n

Figure 5.3: Fog Cell Deployment on the Raspberry Pi

5.2.2 Cloud Service Deployment

In the cloud environment, the service deployment is different due to several reasons.
First, the services are deployed on dynamic VMs that need to be deployed, managed,
and stopped according to dynamic cloud resource demand. Second, the VMs in the cloud
are based on an Intel processor architecture [40]. Third, all the Docker Images, needed to
deploy services in the cloud environment, have to be pushed to the Docker Hub4 image
repository before requesting deployment.

4https://hub.docker.com/

63

https://hub.docker.com/

5. Implementation

Hardware	(Raspberry	Pi	3)

Operating	System	(Hypriot)

Fog	
Control	
Node

Service
1

…

Docker Hook

Redis
FCN

Service
n

Redis
Shared

Figure 5.4: Fog Control Node Deployment on the Raspberry Pi

The developed policy to create and release VMs in the cloud is performed as follows.
When a task request reaches the cloud-fog middleware and no VM is running yet, the
cloud service starts a new VM. The VMs are based on a light-weight CoreOS5 operating
system running a Docker environment for service deployment by default. When a VM is
running, it is filled with Docker Containers until a defined maximum number of containers
is reached. If there is no free space for another container, a new VM is created. The
same policy in the other direction. Hence, if some containers are stopped, resulting in a
VM with no deployed containers, the VM is released to save cloud resources.

Figure 5.5 visualizes a possible scenario where the cloud-fog middleware receives two
task requests from a fog control node located in the fog landscape. At the time the first
service is requested, no VM is running in the cloud environment. Consequently, the
cloud-fog middleware needs to start a new VM to deploy the requested service container
on. After the VM booted, and the service is deployed successfully, the second task request
appears. Due to the fact that a VM is already running and this VM has enough resources
to deploy another service, the second service also is deployed on the same VM. Finally,
after both services are finished, the cloud service stops the VM and releases its resources.

5.3 Component Requirements

The next sections comprise the requirements for the installation of the diverse software
components working together in the fog computing framework. The three layers of
operations, i.e., fog, cloud, and IoT, have varying setup requirements that need to be
considered when deploying the components required for the fog computing framework.

To enable the developer to change implementation-specific parameters without editing
source code, a standard property file, i.e., application.properties, is used. In addition
to this executable embedded property file to change more advanced settings, e.g., con-

5https://coreos.com/

64

https://coreos.com/

5.3. Component Requirements

sd Cloud Service Deployment

vm1: Virtual
Machine

processTask()

cloud :
CloudFogMiddleware

servicePlacement()

startVM()

deploy()

processTask()

stopVM()

…

servicePlacement()

deploy()

fogcontrol :
FogControlNode

reasoning()

deploy()

reasoning()

taskRequest()
…

taskRequest()…

deploy()

…

Figure 5.5: Cloud Service Deployment

nection timeout, network port, there exists an additional property file to change more
flexible implementation independent data, e.g., device IP. This second property file,
i.e., main.properties, is not embedded in the executable and therefore enables the de-
veloper to change settings without the requirement of rebuilding the whole application.
The additional requirements depending on the diverse components are described in the
following.

5.3.1 Cloud-Fog Middleware

The cloud-fog middleware can either be deployed on a cloud VM, or locally on any device
connected to the root fog control node and the cloud. Due to the fact that the cloud-fog
middleware needs to be empowered to start and release VMs in the cloud environment,
the application needs to authenticate itself with corresponding cloud credentials. In case
of the implementation setup with an OpenStack cloud, the OpenStack credentials are
required. The credentials need to be added to the credential.properties file located in
the cloud directory in the resource folder of the cloud-fog middleware Java project. A
sample credentials file specifying the needed keys is provided.

Before running the application, it is crucial to start a Redis database on the same
host using the port specified in the property file. The standard port defined is 6382.
A script to deploy a Redis container is provided in the root directory of the cloud-fog
middleware Java project. Another important requirement includes the look up of the
host IP and the subsequent definition in the application.properties file for further usage.

65

5. Implementation

5.3.2 Fog Cells

In the case of fog cells, several other properties make sure the application works as
intended. The additionally required property file for fog cells is called main.properties
and needs to be located in the same directory as the Java executable. The exact location
and setup description is described in Section 5.4. The property file has to contain the
following information: cloud IP, cloud port, fallback parent IP, fallback parent port,
device IP, latitude, longitude, service types. A sample property file is provided in the
project files.

The cloud IP and port are needed to connect to the cloud-fog middleware and
dynamically request the responsible parent to pair to. In the case when the cloud does
not respond, or the system does not consist of a cloud endpoint, the fallback parent
property is needed. The fallback parent embodies a fallback mechanisms used either if no
cloud exists, or the returned parent does not respond. This mechanism enables the fog
cell and fog control node to keep operating even though the cloud does not work or the
returned responsible parent does not exist. In the case when the fallback parent does not
respond as well, the application can not be successfully started and is terminated with an
error message explaining the concrete error scenario. The device IP property obviously
states the IP address of the host, i.e., Raspberry Pi, the corresponding application is
running on. This property needs to be specified with the IP address of the network
interface that connects the host with the network connecting all the fog components. To
enable a location-aware framework, the latitude and longitude of the device need to be
considered. The last property required to run a fog cell is a list of service types the fog
cell is able to process.

In addition to the mentioned properties, a fog cell requires a running Redis database
on the same host. A Redis container is started automatically when executing the run.sh
startup script provided and explained in Section 5.4.

5.3.3 Fog Control Nodes

Concerning fog control nodes, most of the requirements are similar to the requirements of
fog cells, yet some additional properties are specified in the main.properties file: location
range upper limit and location range lower limit. These two additional properties define
the location range a fog control node covers and is responsible for. Hence, if a device in
the fog landscape requests a parent at the cloud-fog middleware, the location service of
the cloud-fog middleware returns the parent device that covers the location range the
requesting device fits into. More details on the location service and a visualization of the
location grid is provided in Section 6.2.

Also, fog control nodes need two running databases. The local Redis database and
the shared Redis data storage. As described in the fog cell requirements, prepared Docker
Containers get started automatically via a fog control node-specific startup script.

66

5.4. Installation Instructions

5.4 Installation Instructions
This section includes the setup of the developed fog computing framework, its environment,
and all the needed components to execute the framework as intended. The next subsections
describe the Raspberry Pi setup, the cloud setup, and the setup of the whole environment
around the specific devices.

5.4.1 Raspberry Pi Setup

Aiming at a fast and reliable Raspberry Pi setup, all technologies have been selected with
respect to the capabilities of these small one-board computers. In more detail, due to
rather low CPU, RAM, and storage resources of the Raspberry Pi, the light-weight Linux-
based operating system Hypriot was chosen. Hypriot was one of the first Debian-based
operating systems that enabled the execution of Docker on a Raspberry Pi.

An important first setup step regarding the operating system is to register the wireless
network in the device-init.yaml after flashing the operating system to the memory card.
Once the operating system is flashed successfully, the Raspberry Pi is running and
connected to the WiFi, the next task is to make sure the system is up to date. Meaning,
the already installed packages, package lists, and tools need to be updated to the newest
stable versions. Furthermore, the open source developer kit Open JDK 8 has to be
installed to enable the execution of Java Archive (JAR) files. A JAR is a compressed Java
archive file format used to execute Java programs including meta data and dependencies.

In case of fog cells, an additional sensor setup is required. The sensor setup activates
the ports and tools needed to communicate with the connected sensor board. Specifically,
the needed package is called i2c-tools. After successfully installing these tools, the I2C
bus needs to be activated by enabling the I2C field in the raspi-config menu. To finish
the sensor setup, the system requires a reboot to reinitialize the changed settings and
enable a correct communication with the connected sensor board.

Listing 5.1 visualizes an example setup script of a fog cell. In case of a fog control
node only lines 1 to 3 are required.

Listing 5.1: Fog Cell Setup Script
1 #!/usr/bin/env bash
2 sudo apt-get update -y
3 sudo apt-get install openjdk-8-jdk -y
4 # additional fog cell sensor setup commands
5 sudo apt-get install i2c-tools -y
6 sudo raspi-config
7 sudo reboot

Beside this basic setup, some more specific settings need to be taken into consideration.
Being able to communicate and update the files on the Raspberry Pi in a more convenient
way, a SSH public key authentication needs to be set up. As the Docker Image to deploy
the device dependant Docker Container is created locally on every Raspberry Pi, the

67

5. Implementation

files required to create the image and deploy the containers need to be copied to the
device. The necessary files to deploy the application are the following: hostmonitor.jar,
Dockerfile, main.properties, run.sh. Depending on the device type an additional JAR file
called fogcell.jar or fogcontrolnode.jar has to be added. This last file is the executable
for the main application on the corresponding device.

Starting the base containers, i.e., fog cell or fog control node container, and the
database containers, is done by running the already mentioned run.sh script. An example
script of a fog control node is presented in Listing 5.2.

Listing 5.2: Fog Control Node Run Script
1 #!/usr/bin/env bash
2 docker run -d -p 6380:6379 \
3 --name redisFCN hypriot/rpi-redis:latest
4 docker start redisFCN
5
6 docker run -d -p 6383:6379 \
7 --name redisShared hypriot/rpi-redis:latest
8 docker start redisShared
9

10 nohup java -jar hostmonitor.jar > hostmonitor.log &
11
12 docker build -t fogcontrolnode .
13 docker rm -f fogcontrolnode
14 docker run -ti -p 8080:8080 \
15 --name fogcontrolnode \
16 -v /usr/bin/docker:/usr/bin/docker \
17 -v /var/run/docker.sock:/var/run/docker.sock \
18 --link redisFCN fogcontrolnode

Line 1 marks the script as a bash file for execution purposes. In lines 2 to 4, a
Redis Docker Container with port 6380, name redisFCN, and base image hypriot/rpi-
redis:latest is created and started in background. Line 4 is needed in case the container
was already created before and just has to be started. Lines 6 to 8 serve the same purpose
for the shared database. On line 10, the host monitor application is started and its
output is redirected to the specified log file. Line 12 builds a Docker Image with the
tag fogcontrolnode by interpreting and executing the Dockerfile in the current working
directory. The mentioned Dockerfile is explained in the next paragraph. The remaining
lines remove possibly available old containers and start a container with the previously
created Docker Image. In more detail, the last three lines of the same command add the
Docker Hook by defining two volume commands, and links the database to the container.

To build the Docker Image, a construction plan, i.e., Dockerfile, is needed. The
Dockerfile to create the fog control node image is stated in Listing 5.3. The differences
between the fog cells’ Dockerfile and the fog control nodes’ Dockerfile are the name of the

68

5.4. Installation Instructions

JAR file and the ports to expose. In case of a fog cell, the exposed port would be 8081.

Listing 5.3: Fog Control Node Dockerfile
1 FROM hypriot/rpi-java
2 ADD fogcontrolnode-0.0.1-SNAPSHOT.jar .
3 ADD main.properties .
4 EXPOSE 8080
5 ENTRYPOINT ["java","-jar","fogcontrolnode-0.0.1-SNAPSHOT.jar"]

The base image hypriot/rpi-java builds the basis for the main application Docker
Containers running on the Raspberry Pis. This very image was chosen due to its light-
weight Java runtime based on the ARM processor architecture. After the base image
definition in the first line, the next two lines add the JAR executable and the needed
property file to the container. Making the container accessible from outside the container,
port 8080 is exposed. At the end of the file, the initial entry point command that is
executed right after the deployment of the service is defined.

5.4.2 Cloud Setup

The cloud requires a few setup steps to work as described in the previous chapters. Since
this project utilizes an OpenStack private cloud, only the setup of this very cloud software
is covered. The basic setup of the OpenStack project is described in a tutorial provided
by the cloud environment providers, i.e., the Distributed Systems Group Vienna. This
tutorial explains how to create a key pair to connect the cloud, configure security groups,
download cloud credentials, and manually start instances and assign a public IP, i.e., a
floating IP.

In the use case scenario applied to evaluate the developed framework, it is needed to
manually deploy a CoreOs instance and assign a floating IP to it. After connecting to
the VM via SSH, a Redis database needs to be started. An example command to easily
start a Redis database without further downloads is stated in Listing 5.4.

Listing 5.4: Start Redis DB Container
1 docker run -d -p 6385:6379 --name redisCloud redis:latest

To make the service and cloud database accessible from outside the VM, one needs
to add the ports 6385 and 8200 to the used security group of the just started VM. This
VM embodies the cloud database used for the fogframe/cloud-service Docker Image. A
crucial point regarding the setup of this fogframe/cloud-service is to make sure the image
utilizes the correct floating IP of the created cloud database in the properties file.

Beside the OpenStack setup, we need to configure and start the cloud-fog middleware.
Having fulfilled the requirements described above, only the database container has to be
started before starting the Java application. The provided bash script startDB.sh starts
the database containers.

69

5. Implementation

5.4.3 Environment Setup

The environment setup is a crucial installation part, since the whole device communication
and interaction relies on it. The environment consists of a wireless Access Point (AP)
and the connected fog and cloud devices, resulting in an interconnected environment
that enables the communication in the set up network topology. First, an AP has to be
configured correctly. The most important points when configuring the AP are the WiFi
security that needs to be set to WPA2 to ensure no external intruder can penetrate the
network, and the static IP mapping of the connected devices. The static IP mapping is
needed to simplify the connection and setup of the diverse devices. Having set up the AP
successfully, all the devices can be booted and connected to the newly created wireless
network. To make sure every device is correctly connected to the network, the IP table
of connected devices in the web interface of the AP can be investigated.

After all the Raspberry Pis are running and connected to the network, one needs to
manually start the corresponding application containers. When starting the applications,
it is substantial to start the containers from top to bottom according to the topology.
This condition is required because the devices need to pair with their parent during
the application startup before executing anything else. Hence, in an example scenario
consisting of the cloud-fog middleware, one fog control node, and two connected fog cells,
the order would be as follows: cloud-fog middleware, fog control node, fog cell1, fog cell2.
The order of the bottom-most children is not relevant though. In the case when a device
with any connected children fails, the failing device and all connected children have to be
restarted or manually repaired to ensure correct operation.

5.5 Execution

The subsequent sections provide detailed information on how to use the developed fog
computing framework with the three use case scenarios described in Section 4.1.4. These
exemplary execution samples give an insight on how to use or extend the framework for
future work.

5.5.1 Development, Testing, and Evaluation of an IoT Service

The first use case scenario explains how to register a newly developed service in the fog
landscape and execute it without further knowledge of the infrastructure, communication,
and service deployment. The fog computing framework enables users to develop services
by providing a service key, Dockerfile, Docker Volumes, ports to expose, and a flag
indicating whether the container requires privilege rights. The service key is a unique
identifier to unambiguously identify a Docker Image. Docker Volumes empower the
container to use resources located in the host file system. Privilege rights equip the
Docker Container with the almost same capabilities as the host. This enables such use
cases as using Docker within Docker.

70

5.5. Execution

After the elicitation of the Docker Image information, a JSON file to register the
service has to be created. The JSON file needs to be well formed as the example JSON
in Listing 5.5 demonstrates.

Listing 5.5: Docker Image JSON Sample
1 {
2 "serviceKey": "temp-hum",
3 "dockerfile": "FROM jonasbonno/rpi-grovepi\n
4 RUN pip install requests\n
5 RUN git clone https://github.com/keyban/fogservice.git\n
6 ENTRYPOINT [\"python\"]\n
7 CMD [\"fogservice/service.py\"]",
8 "volumes": "/dev/i2c-1:/dev/i2c-1",
9 "exposedPorts": ["8105"],

10 "privileged": true
11 }

This example JSON registers a service with service key temp-hum that pulls a specific
git repository and executes the included service.py file. Additionally, a volume mapping
is listed, the port to get exposed is 8105, and the service requires privilege rights to
operate correctly. This stated Docker Image is the construction plan for the temperature
and humidity reading service used in the evaluation chapter.

Enabling the execution and evaluation of this service requires the registration of the
Docker Image in the fog landscape. Therefore, the user needs to send a POST HTTP
request to a fog control node in the system. To make this possible, the user requires IP
address information of a fog control node running in the fog landscape. With the IP ad-
dress and the API URL, the URL is built as follows: http://<IP>:8080/shareddb/register.
When sending the request, it is essential to add the content type as header and the
created JSON file as body. An example request, using curl6 as HTTP data transferring
tool, can be seen in Listing 5.6.

Listing 5.6: Docker Image Request Command
1 curl -H "Content-Type: application/json; charset=UTF-8" -X \
2 POST -d @image.json http://<IP>:8080/shareddb/register

In case the URL was correct and the corresponding fog control node was up and
operating correctly, the response contains a header with the URL and a status flag
indicating if the service could be created or not. If the flag is false there could be several
problems, either the service-key is already assigned, or some other error occurred. For
more detailed error information the console output of the specified fog control node needs
to be checked.

Assuming the registration worked correctly, it is now possible to request the execution
of the just registered service. To achieve the deployment of the registered service, one

6https://curl.haxx.se/

71

https://curl.haxx.se/

5. Implementation

needs to create an application JSON and send it to a fog control node. An application
consists of a total service duration to define when the services have to be stopped,
and a list of task requests defining the services to be deployed. The duration field is
specified in minutes and can be set to infinity by setting it to -1. A task request has
to contain the service type, service key, and two flags indicating whether the service
can only be executed in the cloud or the fog. The URL to send this request to is
http://<IP>:8080/reasoner/taskRequests. The Listings 5.7 and 5.8 provide an example
command and the corresponding JSON file required to execute the request.

Listing 5.7: A Command to Send the Task Requests for Execution
1 curl -H "Content-Type: application/json; charset=UTF-8" -X \
2 POST -d @app.json http://<IP>:8080/reasoner/taskRequests

Listing 5.8: Single Task Request Application JSON Sample
1 {
2 "duration": "-1",
3 "requests": [
4 {"serviceType:"t1", "serviceKey":"temp-hum",
5 "cloudTask":false, "fogTask":true}
6]
7 }

The successful deployment of the service is confirmed with a JSON response containing
a status flag indicating the deployment success, a header with the URL, and a payload
with the deployment time in seconds. To check whether everything worked as intended,
either the command lines of the running devices, or the HTML status web page of
every component can be investigated. The status web page contains device-dependent
information including IP, port, device type, children, parent, registered Docker Images,
and running Docker Containers. To visit the status web page of a device, the following
URL with the corresponding device IP and device port have to be entered in a web
browser: http://<IP>:<PORT>/

5.5.2 Execution of an IoT Application

Another use case scenario is the execution of an IoT application consisting of several
already registered Docker Images. To achieve the deployment of several services, a JSON
file representing the application needs to be built and sent to the same URL as in the
previous use case scenario. A sample JSON file consisting of four task requests, forming
the application, is presented in Listing 5.9.

72

5.5. Execution

Listing 5.9: Multiple Task Requests Application JSON Sample
1 {
2 "duration": "5",
3 "requests": [
4 {"serviceType:"t1", "serviceKey":"temp-hum",
5 "cloudTask":false, "fogTask":true},
6 {"serviceType:"t1", "serviceKey":"temp-hum",
7 "cloudTask":false, "fogTask":true},
8 {"serviceType:"t2", "serviceKey":"busy-image",
9 "cloudTask":false, "fogTask":false},

10 {"serviceType:"t4", "serviceKey":"cloud-service",
11 "cloudTask":true, "fogTask":false},
12]
13 }

The response is equal to the one explained in the previous use case scenario. An
important difference to the previous use case scenario is the execution condition an
application has to follow. An application is only successfully deployed if all consisting
task requests are deployed without error. Meaning, if one task request can not be
deployed, the whole application fails and all the already deployed services are stopped.

The result of the application deployment can be checked on the status web pages
and console outputs of the different devices, and the database contents of the cloud
database. The contents of the cloud database can be requested by calling the following
URL: http://<IP>:8200/db/. The exemplary curl request is stated in Listing 5.10.

Listing 5.10: Get Cloud Database Contents
1 curl -X GET http://<IP>:8200/db/

5.5.3 Development, Testing, and Evaluation of a Resource
Provisioning Approach

The last and most advanced use case scenario is the development, testing, and evaluation
of a resource provisioning approach. To improve, exchange, or extend the currently
implemented resource provisioning approach, the developer or researcher needs to create
a new Java class implementing the following interface in Listing 5.11.

Listing 5.11: Resource Provisioning Java Interface
1 public interface IResourceProv i s i on ing {
2 Appl icat ionAss ignment handleTaskRequests (
3 Set<Fogdevice> ch i ld r en , Set<TaskRequest> reque s t s)
4 throws InterruptedExcept ion , Exception ;
5 }

Further conditions the implementation must conform to are: (i) the developer needs
to make sure the MAX_CONTAINERS constant is set, the method needs to return

73

5. Implementation

an application assignment consisting of (ii) the successful task assignments, and (iii)
the open task requests that could not be deployed. The open task requests then are
propagated to the cloud for deployment.

The new resource provisioning approach can be tested and evaluated by sending
several task requests into the system using the same commands described in the previous
scenarios. The reasoner will execute the implemented resource provisioning approach
and deploy the services accordingly. The service deployment resulting of the newly
implemented resource provisioning approach can be checked by investigating the status
web pages or the console output of the running devices.

5.6 Resource Provisioning

The basic resource provisioning approach implemented in the course of this work, is a
first fit heuristic algorithm. Since the resource provisioning is not in the focus of this
work, the approach is kept simple and extensible to be improved or replaced by further
resource provisioning approaches. The general idea of the developed resource provisioning
algorithm stated in Algorithm 5.1 is to loop over the sorted children fog devices and
sorted incoming task requests, check whether the child is able to host another service
and deploy it to the first fitting child.

The algorithm takes a set of children fog devices, which can be fog control nodes or
fog cells, and the incoming task requests as input. Lines 1 and 2 initialize the needed
assignments and the round counter field. In lines 3 and 4 the requests and children
are sorted according to the service type in order to improve the loop performance and
deployment time. Lines 5 to 7 start the loops over the sorted children followed by the
loop over the children’s service types and the sorted requests. Hence, iteration over all
children and all their service types followed by all requests. Thus, every child iterates
over all its service types and gets assigned all the suitable requests before continuing to
the next child.

To make sure a child only gets assigned services with the correct service type, line
8 checks if the child service type fits the request service type. In lines 9 and 10, the
RAM, storage, and CPU utilization, and the amount of already deployed containers is
requested from the child. With this information, line 11 checks if the utilization conforms
the defined watchdog rules, e.g., CPU < 80%, and if the maximum amount of deployable
containers is not exceeded.

In case the child is able to host another service, a deployment request is sent to the
child. In the event of successful service deployment, the child sends back detailed data
on the deployed Docker Container needed to stop or migrate it. Being able to keep track
of all the deployed services and their location, an assignment consisting of the child, task
request, and the deployed container is created and returned at the end of the algorithm.
Line 14 removes the successfully executed task request from the input set making sure a
task request is deployed only once.

Line 19 is reached after a child looped through all its service types and all input
task requests. This if-condition is only valid if the outer most children loop is finished,

74

5.6. Resource Provisioning

the provisioning round counter is smaller than the maximal defined rounds, and if there
are still unhandled task requests. If this is the case, the round counter is increased and
the children iterator is re-initialized to restart the provisioning with the remaining task
requests. This fault tolerance mechanisms serves the purpose of avoiding utilization and
other reading errors.

After all the requests are handled or the maximum amount of provisioning rounds is
exceeded, the created assignments and the still open requests are returned. The open
requests are the remaining task requests in the sorted request set, since all the handled
requests are removed from the set after successful deployment.

The information presented in the current chapter gives an overview on the designed
and developed fog computing framework, explains essential component requirements
and setup steps to execute the framework, and describes exemplary use case executions
followed by the implemented resource provisioning algorithm. This content includes the
answer of the third research question “How to realize a fog computing framework that
manages the fog landscape and executes IoT services?” stated in Section 1.2.

75

5. Implementation

Algorithm 5.1: First Fit Resource Provisioning Algorithm
Input: Set<Fogdevice> children, Set<TaskRequest> requests
Output: List<TaskAssignment> assignments, List<TaskRequest>

openRequests
// init fields

1 assignments← [];
2 round = 0;
// sort children and task requests according to the service type

3 sortedRequests← sortByServiceType(requests);
4 sortedChildren← sortByServiceType(children);
// loop over children, service types, and task requests

5 for child ∈ sortedChildren do
6 for serviceType ∈ child.serviceTypes do
7 for request ∈ sortedRequests do
8 if serviceType == request.serviceType then
9 utilization← getUtilization(child);

10 containers← getContainerCount(child);
11 if checkRules(utilization) and

containers< MAX_CONTAINERS then
// deploy container and save the assignment

12 container ← sendDeploymentRequest(child, request);
13 assignments.add(child, request, container);
14 sortedRequests.remove(request);
15 end
16 end
17 end
18 end

// check if the iterator is finished, the max rounds is not yet

reached, and not all requests are assigned

19 if !sortedChildren.hasNext() and round< ROUNDS
and sortedRequests.size() > 0 then

// increase the round counter and reinitialize the children

iterator

20 round = round+ 1;
21 sortedChildren.reStart()
22 end
23 end

// return the assignments and the still open requests

24 return assignments, sortedRequests

76

CHAPTER 6
Evaluation

Evaluation is the process to assess whether a subject, tool, or general outcome serves the
aimed purpose and fulfils the goals according to accurately defined measurement metrics.
This chapter covers the evaluation of the designed and developed fog computing framework
based on an evaluation setup and specified evaluation scenarios. These scenarios are
evaluated with respect to the chosen metrics discussed and supported by generated plots
and data tables.

The chapter starts off with the definition of the evaluation setup in Section 6.1 followed
by the definition of diverse evaluation scenarios in Section 6.2. Section 6.3 presents the
metrics to evaluate the scenarios and critically discusses the results of the corresponding
scenarios.

6.1 Evaluation Setup

In order to thoroughly evaluate this project, an evaluation setup with clearly specified
boundaries, metrics, and included devices needs to be defined. The realized evaluation
setup in this work is a network topology including the required devices to properly analyze
the developed fog computing framework. Figure 6.1 gives an overview on the established
real-world evaluation setup used to conduct the experiments. In more detail, the topology
consists of four distinct devices, a cloud-fog middleware, fog control nodes, fog cells, and
sensors. The cloud-fog middleware builds the top level of the topology and is executed
on a Macbook Pro Early 2011 connected to the OpenStack cloud environment used to
upload and resolve task requests. The rest of the components included in the setup
are deployed on Raspberry Pis as has already been described in the previous chapter.
Furthermore, fog control node 1 (FCN1) is directly connected to the cloud-fog middleware
(CFM) and embodies the root fog control node for the subjacent fog devices. The fog
colony controlled and orchestrated by FCN1 consists of FCN2 and FCN3. Both, FCN2
and FCN3, supervise connected fog cells which process data from connected IoT devices.

77

6. Evaluation

The connected IoT devices, in this setup, are sensor modules consisting of a temperature
and humidity sensor. These sensor modules are connected to the respective Raspberry
Pis by sensor modules called GrovePi1.

Figure 6.1: Evaluation Setup

The topology network is set up as a wireless LAN network provided by a powerful
Linksys wireless AP. This AP is connected to the Internet and works as a gateway to
connect every Raspberry Pi to the Internet as well. In the developed real-world test-bed

1https://www.dexterindustries.com/grovepi/

78

https://www.dexterindustries.com/grovepi/

6.1. Evaluation Setup

every component needs to be connected to the Internet since the fog services require the
ability to download Docker Image data in order to create and deploy dynamic services.

In the network topology to evaluate the framework, every device in the fog layer
contains various information (from top to bottom): (i) device name, (ii) IP address and
port, (iii) device location, (iv) location range, and (v) the list of service types the device is
able to process. The last line of the device information can differ according to the device
type, e.g., only fog control nodes have a location range. The device location and location
range are necessary to assess the responsible parent for newly joining fog devices. The
location range parameter defines the geographical area a fog control node is responsible
for. Hence, every device requesting a parent with its own device location gets the parent
returned that covers the area the requesting device is located in. Figure 6.2 presents the
location grid of the evaluation setup.

FCN3

FC2

FC1

FCN1

FC3

FCN2

20

20

10

100
Latitude, °

Longitude, °

Figure 6.2: Device Location Grid for Parent Assessment

To empower a reproducible evaluation, we predefine application requests consisting
of a set of task requests and an application duration, to be requested at a fog control
node and deployed in the system. The chosen applications are designed to show the
implemented functionalities and mechanisms, and to evaluate the system with respect
to the metrics defined in Section 6.3.1. The application requests sent to the system
have to comply with the following conditions: (i) the requested service types of the fog
services need to conform to the service types of the fog devices, (ii) the requested cloud
services need to be pushed to the Docker Hub repository with the prefix “fogframe/”

79

6. Evaluation

before requesting, and (iii) all required application fields have to be filled according to
the exemplary execution of the use case scenarios provided in Section 5.5. Even if the
application execution complies with these stated conditions, an application may fail.
Possible reasons are (i) the OpenStack cloud environment is overloaded, (ii) the floating
IP addresses are exhausted, (iii) the fog landscape is overloaded, or (iv) the heuristic
does not place the services optimally, resulting in overloaded fog devices. The amount
of deployable cloud VMs is theoretically unlimited, however, in practice is limited by
available cloud resources and the floating IP limitation of three assignable floating IPs.
The concrete applications to be used in the remaining evaluation are:

1. Data processing application with sensor readings (A1)
Task Requests:

(Service Key: temp-hum, Service Type: t1, Amount: 5),
(Service Key: busy-image, Service Type: t2, Amount: 8),
(Service Key: busy-image, Service Type: t3, Amount: 26)

Duration:
5 minutes

2. Data processing application (A2)
Task Requests:

(Service Key: busy-image, Service Type: t3, Amount: 5 to 80)
Duration:

5 minutes

3. Cloud-fog data processing application (A3)
Task Requests:

(Service Key: busy-image, Service Type: t3, Amount: 15),
(Service Key: cloud-service, Service Type: t4, Amount: 15)

Duration:
1 minute

4. Varying data processing application (A4)
Task Requests:

(Service Key: busy-image, Service Type: t1,
Amount: according to input function),

(Service Key: busy-image, Service Type: t3,
Amount: according to input function)

Duration:
varying between 1 and 5 minutes

All evaluation scenarios described in the next section utilize these defined applications.
The used applications in the respective scenarios are specified in the scenario description.

80

6.2. Evaluation Scenarios

6.2 Evaluation Scenarios

Aiming at a holistic evaluation of the developed fog computing framework, well-elaborated
evaluation scenarios are required. To cover the evaluation of the whole range of functions
the framework provides, six evaluation scenarios are investigated. These six experimental
evaluation scenarios range from the evaluation of specific functionalities and mechanisms
to more specific assessments of processing cost, deployment time, and varying service
deployment.

6.2.1 Device Failure

The first experimental scenario evaluates the situation when a connected and successfully
paired fog cell loses its connection to the fog landscape due to a device failure. The
device failure can be a hardware, software, or communication problem. The device failure
is simulated by stopping the main fog cell application container at the chosen failing
device. In this experiment, the data processing application A1 is used, and the device to
fail is FC1. This setting enables the investigation of specific device failing events and
the resulting replanning mechanisms. The reason FC1 has been chosen is because of its
service types. FC1 is the only fog cell with the capability of processing service type t2
and is therefore unique in its capabilities. If this fog cell fails, the requested services
with service type t2 can not be deployed in the fog landscape anymore and need to be
propagated to the cloud. As a result, this scenario shows the device failure event and its
according service migration mechanisms in the cloud and fog environment.

6.2.2 Device Accedence

In order to show the device accedence event and its coherent mechanisms and service
migrations, a new fog cell that is not yet in the fog colony is added. The selected fog cell
to join the fog landscape is FC1. It was chosen because of the same reasons stated in the
previous scenario. Furthermore, this scenario also uses application A1. What happens in
this experiment is that the new device is joined and able to have these special t2 services
deployed. Consequently, the t2 services which were previously deployed in the cloud are
stopped and migrated to the newly started FC1. Additionally, the VM hosting these
services remains with no running services and can therefore be stopped.

6.2.3 Overload

This scenario shows the developed mechanisms of how the framework reacts when a fog
device is overloaded. Again, the topology setup and the application to be deployed are
similar to the first scenario. Since the fog control nodes are in charge of both deploying
services and handling the communication traffic coming from connected fog devices,
the fog control node is the likeliest device to overload. Especially FCN2 is endangered
to overload because of two connected fog cells. The overload of FCN2 is simulated by
opening several SSH connections and running a small but resource-intensive script that

81

6. Evaluation

prints out a random String infinitely. After some parallel executions of this script, the
resource utilization exceeds at least one defined utilization rule and thereby triggers
the overload event. This overload event executes the following overloading policy. The
reasoner migrates a random service from the overloaded device to another one. With
this mechanism services are migrated to suitable devices until the overloaded device is
not overloaded anymore.

6.2.4 Cost Assessment

Since the scenarios are not only used to analyze and evaluate specific functionalities of
the fog computing framework, but to show other benefits and planned outcomes, the
service deployment cost, depending on the number of deployed services, is assessed. In
other words, this scenario uses the second predefined application type A2 and issues this
application with a service amount ranging from 10 up to 80 services of type t3. This
specific service type is applicable in both cloud and fog environment, and thereby enables
a suitable comparison. Regarding cost calculation, the cost is calculated by the number of
deployed VMs in the cloud environment and the Billing Time Unit (BTU). The assumed
BTU and cost used for this scenario are one hour and 0.30$ per BTU. In addition, we
assume the ownership of the fog devices. Therefore, the fog cost can be neglected.

6.2.5 Deployment Time Assessment

This scenario investigates the service deployment times in the different environments.
Aiming at an expressive evaluation scenario, the deployment times, split into cloud
and fog service deployment times, are compared and discussed. The deployment times
are automatically calculated by the framework and are statistically processed over five
evaluation rounds. The application used for this scenario is A3 with an equal amount of
task requests deployed in the cloud and the fog landscape. This application setting shows
the enormous deployment time differences between deploying services in the contrasting
environments.

6.2.6 Varying Service Deployment

To show the service deployment distribution in time, different input functions of requested
applications are applied, i.e., constant and pyramid input functions. In this experiment,
the A4 application is used with varied application durations and service amounts depend-
ing on the input function. In general, A4 consists of two types of services deployable in
the cloud as well as in the fog landscape. Additionally, the duration of the application
varies according to the input specifications. In this scenario the aim is to demonstrate
how services are distributed on running devices over time.

82

6.3. Results

6.3 Results
After specifying the relevant evaluation metrics, this section includes the concrete evalua-
tion results of the previously described evaluation scenarios.

6.3.1 Metrics

Evaluation metrics serve the purpose of measuring the performance and applicability of
the provided outcome, and to show whether the results fulfil the stated goals and success
criteria. An essential information regarding the evaluation metrics is that the cost of the
upfront building of the fog landscape and all its devices and resources is omitted. Hence,
it is assumed that these resources are owned by the users of the framework. The crucial
metrics to evaluate the fog computing framework are described in the following list:

• Number of deployed services in the cloud environment
Let servicescloud be the number of deployed services in the cloud environment.

• Number of deployed services in the fog landscape
Let servicesfog be the number of deployed services in the fog landscape.

• Total number of deployed services
The total number of deployed services is the sum of the deployed cloud and fog
services formalized in equation (6.1).

servicestotal = servicesfog + servicescloud (6.1)

• Cloud service deployment time
The cloud service deployment depends on several conditions. First, the deployment
time depends on whether there have already been free VMs running, or if a new VM
has to be started. Let resV M be the amount of free VMs in the cloud environment.
Furthermore, the deployment time depends on the condition whether the required
Docker Image is locally available or not. Let di be a Docker Image with a service
key i. Equation (6.2) describes the three cases to differentiate. First, in case no
free VM is available, the cloud service deployment time equals the sum of the VM
booting time tboot, of the time to pull the Docker Image tpull_di

, and the startup
time of the Docker Container tstart. Second, a free VM is available but the Docker
Image has to be pulled. Third, both, a free VM and the required Docker Image are
available.

tcloud =

tboot + tpull_di

+ tstart, if resV M = 0
tpull_di

+ tstart, if resV M > 0 and di is not available
tstart, if resV M > 0 and di is available

(6.2)

• Fog service deployment time
The fog service deployment time differs from the cloud deployment time since

83

6. Evaluation

in the fog landscape no VMs have to be started before deploying the service
containers. Hence, equation (6.3) includes the cases when the Docker Image is not
locally available on the according fog device, and when the Docker Image is locally
available.

tfog =
{
tpull_di

+ tstart, if di is not available
tstart, if di is available

(6.3)

• Total service deployment time
The total service deployment time is the sum of the cloud and the fog service
deployment time.

ttotal = tfog + tcloud (6.4)

The deployment time is a time interval between the point in time when the task
request is issued until all requested services are deployed. This metric is then reduced to
a service deployment time per request differentiating between the deployment time in the
cloud and the fog landscape. Additionally, the measured values are statistically analyzed.

6.3.2 Discussion

In this part of the thesis the results of the defined evaluation scenarios are analyzed and
discussed. In the following evaluation, the efficiency of the fog computing framework
performing in various situations is shown and supported by visualization and interpretation
of the received results.

Scenario I: Device Failure

The experiment of the first evaluation scenario analyzes the case when a fog device
connected to a second-level fog control node fails. The setup of this evaluation is the
following. The whole network topology visualized in Figure 6.1 is set up and operating
correctly. After all services of the requested application A1 are successfully deployed,
the failure of FC1 is simulated. The expected result involves the migration of all services,
deployed on the failing device, to other fog devices or a cloud VM with suitable capabilities.
Since in this case no other host in the fog landscape has the suitable capabilities to
deploy services with service type t2, the services need to be migrated to a cloud VM.
Consequently, a VM is started in the OpenStack cloud environment and the services are
migrated.

The concrete result of the experiment is visualized in Figure 6.3 that depicts the
number of deployed services in correlation with specific time events. In Figure 6.3 there
are six different service processing devices. Event 1 embodies the request of the predefined
application A1. After all services are deployed successfully, Event 2 takes place. Event
2 symbolizes the failing of FC1 and is followed by the activation of the device failure
mechanisms, described in Section 4.2.2, in Event 3. Event 4 shows the automatic stopping
of the application after the specified application duration of 5 minutes is over. The root
fog control node (FCN1) is not depicted in the plot since it would be overloaded by
additional services due to the reasoning, replanning, and communication processes.

84

6.3. Results

0 1 2 3 4

0

2

4

6

8

10

Events

N
um

be
r
of

D
ep

lo
ye
d
Se

rv
ic
es

Cloud FCN2 FCN3 FC1 FC2 FC3

Figure 6.3: Device Failure over Time Events and Number of Deployed Services

As a result of the resource provisioning, one can observe that after the first event, the
placement is as follows: FCN2=9, FCN3=0, FC1=10, FC2=10, and FC3=10. Because
of the failing FC1 in Event 2, the service count of FC1 decreases to 0. At Event 3, the
system starts the replanning mechanism and migrates the failed services of FC1 to other
devices. Consequently, FCN2 and FCN3 get one service of service type t3 assigned, and
the rest of the services with the service type t2 are deployed in the cloud because no
device in the fog landscape has the capability to deploy them. After the specified period
of 5 minutes, Event 4 shuts down all the services.

This mechanism shows how the implemented framework reacts, when a device with a
specific set of running services fails. The framework makes sure that all failed services
are deployed on new devices, and the fog resource utilization is maximized. Meaning, the
cloud resources are used only if the fog resources are fully utilized or do not have the
required capabilities.

85

6. Evaluation

Scenario II: Device Accedence

In this evaluation scenario, a new device joins the evaluation network during the execution
of the predefined application A1. It is essential that all services of the requested application
are successfully deployed at the time the new device joins the fog landscape. The setup
for this scenario is similar to the setup in the previous scenario, but the fog cell FC1 is not
running and joined later on. The expected result of this scenario is that the migration of
services takes place from the cloud to the acceded FC1. In more detail, it is expected that
the services of service type t2, which are currently running in the cloud, are migrated to
FC1. Moreover, the developed policy is expected to iterate over fog devices having the
maximum amount of services deployed and migrate one from every affected device to
FC1. Finally, due to the fact that there are no remaining services running in the cloud,
the VM is expected to be stopped after the successful service migration.

The actual result of the execution of this evaluation scenario is presented in Figure 6.4.
The axes of the diagram are similar to the one used in the first scenario. Event 1, again,
is the initial application request at the root fog control node. Event 2 symbolizes the
joining of the new device followed by the device accedence mechanisms depicted in Event
3. Event 4 shows the planned shutdown of the application after 5 minutes.

After the successful deployment of the application, the service placement looks as
follows: FCN2=1, FCN3=10, FC1=0, FC2=10, FC3=10, and Cloud=8. The placement
remains the same for Events 1 and 2 as the device accedence mechanisms take place
between Event 2 and 3. Due to the accedence of FC1, the system starts to replan the
current service placement in order to save cloud resources and maximize the fog resource
utilization. Consequently, since the device accedence policy migrates one service from
every device having the maximum amount of containers to FC1 and tries to migrate all
cloud services, the subsequent steps are initiated. First, the cloud services are migrated
to the new FC1 resulting in a deployed service count of eight services. Second, the fog
devices with the maximum amount of deployable containers are considered. The current
situation of three devices with the maximum amount of containers, FCN3, FC2, and
FC3, indicates that the replanning mechanism does not only take into account the joined
device but as well the already existing topology. Hence, the reasoner migrates one service
from FC2 and FC3 to FC1, and one service from FCN3 to FCN2. Thus, at the end of the
service migration, the final service placement is: FCN2=2, FCN3=9, FC1=10, FC2=9,
FC3=9, and Cloud=0.

This experiment shows the device accedence mechanism of the developed fog com-
puting framework. As visualized and described in this evaluation scenario we can sum
up that the framework is able to adapt its service placement according to the current
demand and available devices in the topology, resulting in cost saving operations because
of releasing unnecessary cloud resources. A noteworthy point for future work in this
scenario is to account for BTUs in order to fully use the time of the VMs that already
have been started.

86

6.3. Results

0 1 2 3 4

0

2

4

6

8

10

Events

N
um

be
r
of

D
ep

lo
ye
d
Se

rv
ic
es

Cloud FCN2 FCN3 FC1 FC2 FC3

Figure 6.4: Device Accedence over Time Events and Number of Deployed Services

Scenario III: Overload

The third evaluation scenario investigates the condition when a fog control node, specifi-
cally FCN2, is overloaded due to the deployed services plus the communication handling
of subjacent child nodes. The setup for this scenario is completely similar to the scenario
setup of Scenario I. Hence, all devices need to be up and running and the application
A1 is required to be successfully deployed. The expected result the overload mechanism
should provide is the migration of enough services of the overloaded device until the
device is not overloaded anymore. Since the overload is manually simulated by an endless
resource intensive task, the mechanism is expected to migrate services until FCN2 has no
deployed services anymore. The six events visualized in Figure 6.5 show the course of
the mechanisms handling the device overload. Like in the previous two scenarios, the
first event visualizes the initial application request of A1. Event 2 is the point when the
overload of FCN2 is determined by the system followed by the overload handling and
replanning in Events 3, 4, and 5. Between Event 4 and 5, the remaining services are
migrated from the overloaded device to a suitable substitute. Event 6, again, is just the

87

6. Evaluation

0 1 2 3 4 5 6

0

2

4

6

8

10

Events

N
um

be
r
of

D
ep

lo
ye
d
Se

rv
ic
es

Cloud FCN2 FCN3 FC1 FC2 FC3

Figure 6.5: Device Overload over Time Events and Number of Deployed Services

planned termination of the running application. Since fog control nodes are responsible
for the communication and service data propagation of the subjacent fog devices, it is
obvious that deployed services can overload such devices. In this case, the affected FCN2
is the fog control node with the most child nodes and deploys three services. After a
specific amount of time, in Event 2, the fog control node issues the overload event at the
root fog control node FCN1 which starts to migrate services from FCN2 to FCN3. Since
the overload on FCN2 is simulated manually, the migration does not stop. Consequently,
the affected fog control node is overloaded until all services have been migrated to another
suitable device, resulting in three migrated services from FCN2 to FCN3. In case the
overloaded device does not have any services to migrate anymore, the mechanism prints
out a warning and the framework continues with its normal operations.

This evaluation scenario depicted in Figure 6.5 illustrates the overloading policy
implemented in the framework. The result shows that the framework is able to handle
not only events like device failures and device accedence, but also more specific and
demand-dependent events like the overload of a device. This mechanism enables early
preventive overload detection and improves service enactment in the fog landscape.

88

6.3. Results

10 20 30 40 50 54 60 70 80

0

10

20

30

0 0 0 0 0
4

10

20

30

Requested Services

D
ep
lo
ye
d
C
lo
ud

Se
rv
ic
es

(a) Cloud Services per Requested Services

10 20 30 40 50 54 60 70 80

0

0.2

0.4

0.6

0.8

0 0 0 0 0

0.3 0.3

0.6

0.9

Requested Services

C
os
t,
$

(b) Cloud Cost per Requested Services

Figure 6.6: Cost Assessment Results

Scenario IV: Cost Assessment

A crucial and omnipresent problem in systems using cloud resources is cost minimization.
In order to minimize the cost, a lot of conditions need be taken into account, e.g., BTU,
service placement constraints. In this work, we reduce the use of the cloud whenever
it is possible and aim to maximize the fog resource utilization and thereby save cost
by releasing unneccessarry cloud resources. Furthermore, we concentrate on service
placement and fast resource releasing, yet do not consider the full exploit of a BTU.
Hence, if an application is finished before other services are requested, the VM is stopped
no matter if the BTU is fully used or not. Nevertheless, the consideration of the BTU
utilization has to be a part of resource provisioning approaches to be researched in future
work.

In this concrete cost assessment scenario, we present the cost benefit by primarily
using the fog resources. Since the fog resources are assumed to be already available
network devices, the cost for the fog resources is neglected. Additionally, this scenario is
only valid for services that can be deployed both in the cloud and the fog environment.
For this, the application A2 is used. This application was varied in terms of the amount
of task requests sent. Figure 6.6a visualizes the tested amount of requested services with
the deployed services in the cloud. The plot shows that 50 services can be deployed in the
fog landscape without the necessity of leasing any cloud resources. The increase above
50 services demands the start of the first cloud VM. Due to the fact that the maximal
amount of service containers is limited to 10, every eleventh service above 40 requires
the start of a VM in the cloud environment, e.g., 51st, 61st.

The resulting cost of the cloud resource leasing is depicted in Figure 6.6b. As it
has already been defined in the scenario description, we assume the BTU to be one
hour with cost of 0.30$. Consequently, the resulting cost match the amount of VMs

89

6. Evaluation

required to deploy the requested services in the cloud. So the cost of 0.30$ for 54 and 60
services result from the single necessary VM, whereas 70 services require two, and 80
services require three VMs to deploy the according amount of services. The results of
the experiment were tested with application A2 consisting of 10 to 80 services of type t3.
This type embodies a service to be deployed in the cloud as well as in the fog landscape.
The maximum amount of 80 services was chosen due to the fact that we are limited by
three floating IPs in the OpenStack cloud environment. Therefore, only three VMs can
be started, resulting in 30 service deployment possibilities in the cloud in addition to the
50 service deployment possibilities of the five fog devices FCN2, FCN3, FC1, FC2, and
FC3.

The presented cost assessment provides the results of up to 80 deployed services and
the resulting cost. In a nutshell, with the provided evaluation setup every eleventh service
request above 40 services requires the start of an additional VM in the cloud. Hence,
the first 50 services are deployed in the fog, resulting in no additional cost, whereas the
51st service request requires the start of the first VM in the cloud. Consequently, the
developed framework helps to reduce the cost by primarily using fog resources free of
charge, before leasing costly cloud resources.

Scenario V: Deployment Time Assessment

Beside functionality and cost evaluation, the service deployment time is an essential metric
to take into consideration when evaluating the fog computing framework. The service
deployment time defined in Section 6.3.1 consists of the VM startup time, Docker Image
download (pull) time, and the starting time of the Docker Container. Obviously, the VM
startup time does not exist in the fog landscape thanks to the container virtualization
technology. Nevertheless, the assessment also recorded the container startup times,
enabling further analysis. In addition to the startup times, the VMs come with another
disadvantage. Newly-started VMs do not have previously stored or cached data, e.g.,
previously used Docker Images, and therefore need to download them every time again.
Fog devices, on the other hand, download these Docker Images once and then reuse them
in future service deployments. Again, to empower further analysis, the Docker Image
download times of the VMs were recored and are presented in the course of this scenario.

The statistically interpreted data is presented in Table 6.1 and Table 6.2 followed
by diverse plots visualizing the outcome of the assessment. The computed statistical
evaluation data used to analyze the deployment time in the contrasting environments
include the minimum, first quartile, average, median (second quartile), third quartile,
maximum deployment time, and the standard deviation σ. The data result from five
similar application executions of the application A3 performed in the full evaluation
setup. Additionally, the data is refined by calculating the deployment times per request
to give an overview on the times relative to the deployed requests. Table 6.2 depicts the
same statistical information for the cloud VM startup times and Docker Image download
times for further analysis.

In Figure 6.7, the deployment times of the fog and cloud environment are compared.
The y-axis on the left-hand side is used for fog results and the y-axis on the right-hand

90

6.3. Results

Table 6.1: Deployment Time Assessment Data

Metric Amount
Deployed Cloud Services 15

Deployed Fog Services 15
Total Deployed Services 30

Metric Min Q1 Avg Median Q3 Max σ

Fog Deployment Time 27.56 28.09 28.87 28.52 28.99 31.20 1.26
Cloud Deployment Time 257.22 258.01 262.09 262.50 265.68 267.05 3.95
Total Deployment Time 285.57 286.21 290.96 290.59 295.57 296.88 4.65
Fog Deployment Time

per Request 1.84 1.87 1.92 1.90 1.93 2.08 0.08

Cloud Deployment Time
per Request 17.15 17.20 17.47 17.50 17.71 17.80 0.26

Total Deployment Time
per Request 9.52 9.54 9.70 9.69 9.85 9.90 0.15

Table 6.2: Additional VM Startup and Image Download Times

Metric Min Q1 Avg Median Q3 Max σ

VM Startup Time 36.29 37.52 39.69 38.22 40.36 46.41 3.35
Image Download Time 64.32 65.68 67.05 66.61 67.96 71.00 1.95

side for cloud results. In this plot one can see the considerable difference between fog
and cloud deployment times. The maximum fog deployment time is at about 31 seconds,
whereas the maximum cloud deployment time is about 267 seconds. The maximum
cloud deployment time is approximately nine times higher than the fog deployment
time. Obviously, the VM startup and Docker Image download take a huge responsibility
in this case (see Figure 6.8b). Due to the fact that the fog devices do not have to
download the Docker Images as they have already been cached, the result can seem
mis-interpreted. Nevertheless, one can subtract the maximum Docker Image download
time from the maximum startup time, resulting in 31 seconds in the fog and 196 seconds
in the cloud. The remaining cloud deployment time of 196 seconds is about seven times
the fog deployment time. This considerable difference gets illustrated in Figure 6.8a
which shows the total deployment time in comparison to the cloud deployment time.

Summing up this scenario one can conclude that the deployment times in the cloud
are a lot higher than the deployment times in the fog landscape. Of course, one needs to
keep record of the VM startup times and the Docker Image download times, and that
fact can also be considered as a disadvantage of the cloud environment. The result of this
scenario manifests the clear benefits of the IoT service deployment in the fog landscape
compared to the cloud.

91

6. Evaluation

Fog Cloud

27.5

28

28.5

29

29.5

30

30.5

31

31.5

Environment

To
ta
lD

ep
lo
ym

en
t
T
im

e,
s

258

260

262

264

266

268

To
ta
lD

ep
lo
ym

en
t
T
im

e,
s

Figure 6.7: Boxplot of the Total Fog and Cloud Deployment Times with 15 Services each

Cloud Total

260

270

280

290

300

Environment

To
ta
lD

ep
lo
ym

en
t
T
im

e,
s

(a) Cloud and Total Deployment Times

VM Startup Image Download

40

50

60

70

Action

T
im

e,
s

(b) VM Startup and Image Download Times

Figure 6.8: Deployment Time Assessment Results

92

6.3. Results

0 2 4 6 8

9

10

11

12

Time, min

R
eq
ue
st
ed

Se
rv
ic
es

(a) Constant Input Function

0 2 4 6 84

6

8

10

12

14

16

Time, min

R
eq
ue
st
ed

Se
rv
ic
es

(b) Pyramid Input Function

Figure 6.9: Input Functions

Scenario VI: Varying Service Deployment

The last scenario emphasizes on the effects of application request variation in the fog
computing framework over time. Hence, this experiment defines two diverse input
functions visualized in Figure 6.9a and Figure 6.9b. These plots illustrate input functions
of application A4. Every mark in the plots represents an application request with a
service amount specified on the y-axis. Hence, for example in Figure 6.9a, every two
minutes an application with 10 services is issued.

The results of this experiment were assessed by the script presented in Listing 6.1 that
automatically sends an application request, sleeps the specified 2 minutes, and continues
sending the next defined application requests. This specific script in the listing below is
requesting the pyramid input function as can be investigated by the changing amount of
requested services of service type t3.

In this script, another HTTP command line client called HTTPie2 is used. The bash
keyword of this tool is http and it enables the convenient sending of HTTP requests. In
this case we send a POST request to a testing endpoint. The endpoint takes the following
URL path arguments: (i) amount of task requests of type t1, (ii) amount of task requests
of type t2, (iii) amount of task requests of type t3, (iv) amount of task requests of type
t4, and (v) the application duration in minutes. Additionally, a –timeout argument is
set to one second, in order to control the exact time of requesting the next application.
As a result, the sleep duration between the application requests is not 120 seconds as
expected, but 119 seconds because the missing second is consumed by the connection
timeout of the HTTP request. The optional descriptive date command is used to show
the starting time of every request making sure the process works as intended.

2https://httpie.org/

93

https://httpie.org/

6. Evaluation

Listing 6.1: Fog Control Node Run Script
1 #!/usr/bin/env bash
2 # reasoner/test/{countT1}/{countT2}/{countT3}/{countT4}/{min}
3 date
4 http post http://192.168.1.105:8080/reasoner/test/2/0/3/0/5

--timeout=1
5 sleep 119
6 date
7 http post http://192.168.1.105:8080/reasoner/test/2/0/8/0/2

--timeout=1
8 sleep 119
9 date

10 http post http://192.168.1.105:8080/reasoner/test/2/0/13/0/5
--timeout=1

11 sleep 119
12 date
13 http post http://192.168.1.105:8080/reasoner/test/2/0/8/0/1

--timeout=1
14 sleep 119
15 date
16 http post http://192.168.1.105:8080/reasoner/test/2/0/3/0/1

--timeout=1

Out of reasons of simplicity and relevance the deployment and stopping times were
measured and mathematically rounded in order to use them in the figures. The measured
and rounded deployment time per request is 2 seconds (rounded from 1.92 seconds),
whereas the stopping time results in 0.5 seconds (rounded from 0.47 seconds). In the
following graphs the red line depicts the input function, i.e., the requested services, and
the blue line visualizes the number of deployed and running services. The service startup
times are visible in the short delay between requesting the services and the visible rise
of the function in the resulting diagram. The stopping time is visible at the end of
Figure 6.10 where two applications finish at the same time.

Figure 6.10 shows the results of the experiment using the constant input function of
Figure 6.9a drawn in red. In this case, all issued applications consist of two task requests
of service type t1 and eight of service type t3. The durations range from 1 to 5 minutes.
At the beginning of the experiment, the A4 application with 5 minutes duration, i.e.,
A4/5, is issued, followed by A4/2 at minute two, i.e., 2:00, A4/5 at 4:00, A4/1 at 6:00,
and A4/1 at 08:00. The second line, drawn in blue, depicts the deployed services over
time. At 0:00, A4/5 is requested and after the startup time of about 20 seconds, the 10
requested services are up and running. At 2:00, A4/2 is issued without extraordinary
events. The first interesting point is at about 4:20. What happens there is that the
input function requests A4/5 to start 10 more services, while a short period after the
application request A4/2 is finished and shuts down, leaving 20 deployed services. At
about 5:20, the first A4/5 is stopped as well. In minute 6:00, the first A4/1 starts and

94

6.3. Results

0

5

10

15

20

25

30
D
ep

lo
ye
d
Se

rv
ic
es

0 1 2 3 4 5 6 7 8 9 100

5

10

15

20

25

30

Time, min

R
eq
ue

st
ed

Se
rv
ic
es

Figure 6.10: Service Deployment over Time with a Constant Input Function

finishes at around 7:20. The last request in minute 8:00 starts another A4/1 that finishes
at around 09:20 at the same time as the second request of A4/5. The visible step at
around 09:25 shows the stopping of A4/1 and A4/5.

Regarding the pyramid input function assessment presented in Figure 6.11, the
experiment setup is the same as for the constant arrival scenario. The only difference is
the varying number of task requests. The amount of task requests with service type t1
remains at two per application, whereas the task request amount of service type t3 fills
up to the needed amount of task requests to achieve the total amounts of 5, 10, and 15
task requests per application.

Investigating the results of the experiment, the focus is placed on the essential points
in this second experiment of this evaluation scenario. In the first two minutes A4/5 and
A4/2 are requested and deployed without noteworthy events. Shortly after 4:00, the
simultaneous starting of A4/5 and stopping of A4/2 results in a compensation phase.

The results of the last evaluation scenario present the dynamics of the framework
and the possibility of handling several diverse applications with different durations and
service types. Even simultaneous starting and stopping of services or whole applications
does not affect the successful operation of the framework.

95

6. Evaluation

0

5

10

15

20

25

D
ep

lo
ye
d
Se

rv
ic
es

0 1 2 3 4 5 6 7 8 9 100

5

10

15

20

25

Time, min

R
eq
ue

st
ed

Se
rv
ic
es

Figure 6.11: Service Deployment over Time with a Pyramid Input Function

In this chapter, the overall functionality of the developed fog computing framework
was evaluated. The first three evaluation scenarios were aimed to evaluate the func-
tionality of the framework and to analyze the essential functions and events the fog
computing framework provides and handles. The other three evaluation scenarios, i.e.,
cost assessment, deployment time assessment, and the analysis of varying service deploy-
ment according to constant and pyramid input functions, presented the considerable
benefits this framework accrues. To conclude, this chapter includes the answer for the last
research question presented in Section 1.2, “How does the implemented fog computing
framework improve the execution of IoT services compared to the execution in the cloud?”.
The answer to this question is expressed by the obtained results of the corresponding
experiments.

96

CHAPTER 7
Conclusion and Future Work

7.1 Conclusion
The IoT is an expanding technology trend that promises a substantial economic and
scientific value for industry and academia in the upcoming years. A novel computing
paradigm to support and unleash the full extent of the IoT is fog computing. Fog
computing itself was introduced in the last couple of years, meaning, the corresponding
research is still in its very beginning. Even though some theoretical aspects of fog
computing have already been introduced, there is a lack of concrete implementation
solutions that fulfill the full stack of volatile IoT requirements, e.g., topology dynamics
and real-time service execution.

For this reason, in the course of this thesis, a comprehensive background and related
work analysis was conducted before starting to design and implement a dynamic, ex-
tensible, and scalable real-world fog computing framework. The reviewed background
technologies included cloud computing, the IoT, fog computing, virtualization technolo-
gies, and resource provisioning in cloud-based environments. The related work analysis
revealed the fact that in the area of fog computing frameworks only few contributions
have been made so far. To be more precise, this fact unfolds the necessity of further
research in specific areas of fog computing frameworks and of supporting mechanisms for
IoT service executions.

Consequently, the requirements of a potential fog computing framework were analyzed
by investigating IoT use cases and two already existing IoT frameworks. The first
investigated IoT framework is the work of Vögler et al. [63], who introduced a scalable
large-scale IoT framework focusing on the use case of smart cities. The second work by
Kim and Lee [38] presented an open source IoT framework that provides the means to
develop and execute IoT services for all kinds of stakeholders, i.e., device and software
developers, service providers, platform operators, and service users. With the ideas of
these frameworks and the best practices of general distributed system designs [28], the
architectural design of the dynamic, extensible, and scalable fog computing framework

97

7. Conclusion and Future Work

was constructed and technical decisions were made. During the design phase, the
components of the framework were developed loosely coupled to facilitate the replaceability
and extensibility of the framework. These non-functional requirements empower the
researchers to further improve the developed framework.

Within the design phase not only the overall architecture of the framework but as
well the technological design decisions have been made. A technology empowering the
overall service deployment is Docker. Docker is a container virtualization technology used
to deploy services in light-weight containers. The major benefits of Docker in comparison
to common VMs is the omission of long VM start up times and the convenient storage
and building of Docker Images used to deploy the containers. Another crucial technology
decision is the Java Micro Framework to be used as microservice development basis,
namely Spring Boot. Spring Boot is a slimmed Java framework making it possible to
develop light-weight Java applications to be used as microservices. With this technology
at hand, the huge Spring community, rich set of libraries, and third party integrations,
there are endless possibilities for further implementation and improvements of developed
components.

After constructing a holistic design, including identification of functional and technical
requirements, the implementation phase took place. During this phase, the emphasis
was put on light-weight technologies, loosely-coupled components, and on creating a
stable and fault-tolerant distributed system. The extensible modules were implemented
using Java interfaces, enabling a convenient substitution by implementing the specified
interface methods. Stability was achieved by the use of stable and well-tested third party
libraries making a thread-safe operation execution possible.

Lastly, the developed framework was evaluated according to six evaluation scenarios,
including the analysis and assessment of the functionality and involved mechanisms, cost,
deployment times, and the behavior of the fog computing framework in the dynamic
volatile fog landscape. In more detail, in Scenario I the device failure mechanism was
evaluated by running a predefined application and simulating a device failure by stopping
the main application of the device. The result showed the successful migration of all
services deployed on the failing device to suitable devices in the fog and cloud environment.
Scenario II analyzed the device accedence event by running a similar application and
adding a new fog cell to the system. As a result, all cloud services and several services
running on fog devices were migrated to the newly acceded device. In Scenario III,
a device overload was simulated and the overload policy was analyzed. The outcome
was that the mechanism successfully and piece by piece migrated the services from the
overloaded device until it was not overloaded anymore. Scenario IV assessed the service
deployment cost and showed that with the fog computing framework 50 services can be
deployed in the specified evaluation setup without the necessity of leasing costly cloud
resources. Scenario V analyzed the service deployment times of 15 services both in the
cloud and in the fog environment. The conducted values show a maximum deployment
time of 31.20 seconds in the fog landscape and 267.05 seconds in the cloud environment.
Thus, the fog deployment times are about nine times lower than the deployment times in
the cloud. In the last scenario, Scenario VI, the behavior of the fog computing framework

98

7.2. Future Work

with a constant and pyramid input function was investigated. The conducted experiment
shows the essential dynamics of the framework with the possibility to simultaneously
start and stop several services and quickly react to the volatile service demand. As a
result, the evaluation revealed the various benefits in the IoT service execution using the
fog landscape.

In conclusion, this thesis provides a detailed functional and technical view on the
fog computing framework and its components. The contribution of this work serves as
a methodological basis and an evaluation toolset for further research in the area of fog
computing.

7.2 Future Work
Since fog computing is a recent and emerging research field, there are many open research
questions and promising research areas which are challenging for the future work. In
this work, a prototype of the fog computing framework was designed, implemented and
evaluated. Apart from the functionality of this prototype, there are lots of approaches,
boundary conditions, special cases, and general improvements which require attention from
the research community. The listing below presents some possible future improvements
of the fog computing framework and gives an insight into according approaches to be
applied.

Advanced Policies: This work provides a real-world fog computing framework and
aims to satisfy the most important fog computing requirements, i.e, effective event pro-
cessing in the case of device accedence, device failure, and overload. These events require
sophisticated event handling policies. Since this work was focused on the development of
the framework itself, specifically on the setup, communication, service deployment, and
other mechanisms in the fog landscape, the implemented policies can be reconsidered
and enhanced in future contributions. To be more specific, the Resource Provisioning,
Device Accedence, Device Failure, and Overload policies can be extended or substituted
by new policies. The architecture of the implemented prototype allows development and
easy integration of new policies by using provided APIs.

Fault Tolerance Mechanisms: Another promising research challenge is to further
improve fault tolerance and failure handling mechanisms. Specific ideas of improvement
are the following: First, the creation of a timeout handler responsible for retrying requests
several times before emitting a failure event. This would improve the fault tolerance in
case a device is down for just a short period of time or is overloaded and can not answer
in the defined connection timeout. Second, attention can be drawn to further pairing
mechanism improvements. Currently, the pairing is performed in a way that at start-up
of the main application, the device requests a responsible parent from the cloud-fog
middleware. The device uses its fallback parent saved in its properties in case when
the cloud-fog middleware is either not available, or does not respond, or the requested
parent returned from the cloud-fog middleware does not respond. Though, assuming the

99

7. Conclusion and Future Work

parent fails during its operation, the child device is disconnected from the topology since
it is not able to re-connect to another parent. Consequently, a re-pairing and additional
parent searching mechanism in the fog landscape is another research challenge.

Fog Landscape Device Rearrangements: The device rearrangement in the fog
landscape is another topic to be considered in the future work. After a specific amount of
devices in the fog landscape fail, it is likely that the resulting new topology constellation
is not optimal in terms of latency, bandwidth, network hops, location mapping, and
connection preservation. Therefore, the rearrangement of fog devices to build a new
effective device topology is a noteworthy aspect for future work. Such a rearrangement
problem can be solved either locally within each fog colony, or globally, by providing the
cloud-fog middleware with according optimization mechanisms.

Cloud Cost Consideration: The currently implemented cloud VM handling operates
in a way that every time a VM does not contain any services, it is terminated. Due to the
clearly defined cost of the leased VMs, the termination before a BTU is fully exploited
leads to a waste of cloud resources and money. Thus, in future work, cost optimization
methods have to be introduced into resource provisioning mechanisms.

Automated Device Discovery: In addition to the dynamic requesting of the respon-
sible parent from the current cloud-fog middleware, the automated discovery of new
devices, e.g., by scanning the network, is a promising research area. The automated
device discovery would replace the manual pairing mechanism and improve the stability
and fault tolerance of the fog computing framework.

100

List of Figures

1.1 High-Level View on a Fog Computing Framework Architecture 2

2.1 Cloud Computing Overview (adapted from [17]) 11
2.2 Resource Provisioning in a Traditional DC Versus a Cloud Computing DC . . 12
2.3 Virtualization Comparison (adapted from [12]) 15
2.4 Fog Computing Landscape (adapted from [24]) 18

4.1 Pairing and Service Deployment . 41
4.2 Task Processing in a Fog Cell . 42
4.3 Task Offloading to the Cloud . 43
4.4 Fog Computing Framework Overview (adapted from [56]) 44
4.5 Fog Cell Architecture (adapted from [56]) . 45
4.6 Fog Control Node Architecture (adapted from [56]) 46
4.7 Reasoning and Load Balancing . 52

5.1 Fog Control Node Class Diagram . 61
5.2 Cloud-Fog Middleware Class Diagram . 62
5.3 Fog Cell Deployment on the Raspberry Pi . 63
5.4 Fog Control Node Deployment on the Raspberry Pi 64
5.5 Cloud Service Deployment . 65

6.1 Evaluation Setup . 78
6.2 Device Location Grid for Parent Assessment 79
6.3 Device Failure over Time Events and Number of Deployed Services 85
6.4 Device Accedence over Time Events and Number of Deployed Services 87
6.5 Device Overload over Time Events and Number of Deployed Services 88
6.6 Cost Assessment Results . 89
6.7 Boxplot of the Total Fog and Cloud Deployment Times with 15 Services each 92
6.8 Deployment Time Assessment Results . 92
6.9 Input Functions . 93
6.10 Service Deployment over Time with a Constant Input Function 95
6.11 Service Deployment over Time with a Pyramid Input Function 96

101

List of Tables

3.1 Comparison of the Related Work . 32

4.1 Dropwizard vs. Spring Boot [32, 59, 65] . 48
4.2 Register Service Endpoint . 54
4.3 Send Task Requests Endpoint . 54
4.4 Get Responsible Parent Endpoint . 55
4.5 Fog Control Node Propagator Endpoint . 55
4.6 Cloud Fog Middleware Propagator Endpoint 56
4.7 Cloud Fog Middleware Stop Service Endpoint 56
4.8 Get Children Endpoint . 56
4.9 Get Resource Utilization Endpoint . 57
4.10 Fog Cell Propagator Endpoint . 57

6.1 Deployment Time Assessment Data . 91
6.2 Additional VM Startup and Image Download Times 91

102

List of Algorithms

5.1 First Fit Resource Provisioning Algorithm 76

103

Acronyms

AP Access Point. 70

API Application Programming Interface. 21

BTU Billing Time Unit. 82

DC Data Center. 7

DI Dependency Injection. 49

ETSI European Telecommunications Standards Institute. 19

HTTP Hypertext Transfer Protocol. 49

IaaS Infrastructure-as-a-Service. 10

IoT Internet of Things. 1

JAR Java Archive. 67

JPA Java Persistence API. 49

JSON JavaScript Object Notation. 16

LAN Local Area Network. 27

MCC Mobile Cloud Computing. 19

MEC Mobile Edge Computing. 19

MSA Micro Services Architecture. 16

NFC Near Field Communication. 8

NFV Network Function Virtualization. 26

105

P2P Peer-to-Peer. 9

PaaS Platform-as-a-Service. 10

QoS Quality of Service. 12

RAN Radio Access Network. 19

REST Representational State Transfer. 16

RFID Radio-Frequency Identification. 8

SaaS Software-as-a-Service. 10

SDN Software-Defined Networking. 26

SLA Service Level Agreement. 12

UML Unified Modelling Language. 41

URI Uniform Resource Identifier. 50

VM Virtual Machine. 10

VMM Virtual Machine Monitor. 14

WAN Wide Area Network. 27

WiFi Wireless Connection Technologie. 8

WSN Wireless Sensor Network. 9

XML Extensible Markup Language. 16

106

Bibliography

[1] Mohammad Aazam and Eui-Nam Huh. Dynamic Resource Provisioning through
Fog Micro Datacenter. In Pervasive Computing and Communication Workshops,
PerCom’15, pages 105–110, Sydney, NSW, Australia, March 2015. IEEE.

[2] Mohammad Aazam and Eui-Nam Huh. Fog Computing Micro Datacenter Based
Dynamic Resource Estimation and Pricing Model for IoT. In 29th IEEE International
Conference on Advanced Information Networking and Applications, AINA’15, pages
687–694. IEEE, March 2015.

[3] Mohammad Aazam, Marc St-Hilaire, Chung-Horng Lung, and Ioannis Lambadaris.
MeFoRE: QoE based Resource Estimation at Fog to enhance QoS in IoT. In
23rd IEEE International Conference on Telecommunications, ICT’16, pages 1–5,
Thessalonica, Greece, May 2016. IEEE.

[4] Arif Ahmed and Ejaz Ahmed. A Survey on Mobile Edge Computing. In 10th IEEE
International Conference on Intelligent Systems and Control, ISCO’16, pages 1–8,
Coimbatore, Tamilnadu, India, January 2016. IEEE.

[5] Shahid Ahmed. The Six Forces Driving the Internet of Things - Digital Revo-
lution Summit, PricewaterhouseCoopers AG. https://www.pwc.com/gx/en/
technology/pdf/six-forces-driving-iot.pdf, 2016. Accessed: 2016-09-
29.

[6] Michael Armbrust, Armando Fox, Rean Griffith, Anthony D. Joseph, Randy Katz,
Andy Konwinski, Gunho Lee, David Patterson, Ariel Rabkin, Ion Stoica, and Matei
Zaharia. A View of Cloud Computing. Communications of the ACM, 53(4):50–58,
April 2010.

[7] Kevin Ashton. That Internet of Things Thing. RFiD Journal, 22(7):97–114, June
2009.

[8] Luigi Atzori, Antonio Iera, and Giacomo Morabito. The Internet of Things: A
Survey. Computer Networks, 54(15):2787–2805, October 2010.

[9] Amazon Web Services (AWS). Fallstudien und Kundenerfolge mit der AWS Cloud
- Warum Kunden sich fuer AWS entscheiden. https://aws.amazon.com/de/
solutions/case-studies/, 2016. Accessed: 2016-09-29.

107

https://www.pwc.com/gx/en/technology/pdf/six-forces-driving-iot.pdf
https://www.pwc.com/gx/en/technology/pdf/six-forces-driving-iot.pdf
https://aws.amazon.com/de/solutions/case-studies/
https://aws.amazon.com/de/solutions/case-studies/

[10] Alessandro Bassi and Geir Horn. Internet of Things in 2020: A Roadmap for the
Future. European Commission: Information Society and Media, 2008.

[11] Christian Baun, Marcel Kunze, and Thomas Ludwig. Servervirtualisierung.
Informatik-Spektrum, 32(3):197–205, June 2009.

[12] Christian Baun, Marcel Kunze, Jens Nimis, and Stefan Tai. Cloud Computing:
Web-Based Dynamic IT Services. Springer Publishing Company, Incorporated, 1st
edition, 2011.

[13] Till Michael Beck, Sebastian Feld, Claudia Linnhoff-Popien, and Uwe Pützschler.
Mobile Edge Computing. Informatik-Spektrum, 39(2):108–114, April 2016.

[14] Till Michael Beck, Martin Werner, Sebastian Feld, and Thomas Schimper. Mobile
Edge Computing: A Taxonomy. In 6th International Conference on Advances in Fu-
ture Internet, AFIN’14, pages 48–54, Lisbon, Portugal, November 2014. International
Academy, Research, and Industry Association.

[15] Flavio Bonomi, Rodolfo Milito, Preethi Natarajan, and Jiang Zhu. Fog Computing:
A Platform for Internet of Things and Analytics, volume 546 of Studies in Com-
putational Intelligence, pages 169–186. Springer International Publishing, Cham,
Switzerland, March 2014.

[16] Flavio Bonomi, Rodolfo Milito, Jiang Zhu, and Sateesh Addepalli. Fog Computing
and Its Role in the Internet of Things. In 1st ACM SIGCOMM Workshop on Mobile
Cloud Computing, SIGCOMM’12, pages 13–16, Helsinki, Finland, August 2012.
ACM.

[17] Alessio Botta, Walter de Donato, Valerio Persico, and Antonio Pescape. Integration
of Cloud Computing and Internet of Things: A Survey. Future Generation Computer
Systems, 56:684 – 700, 2016.

[18] Joseph Bradley, Joel Barbier, and Doug Handler. Embracing the Internet of Ev-
erything to Capture your Share of $14.4 trillion. White Paper, Cisco, February
2013.

[19] Betsy Burton and David Willis. Gartner Mega Trends 2016. https://www.
gartner.com/doc/3407820, 2016. Accessed: 2016-09-20.

[20] Sivadon Chaisiri, Bu-Sung Lee, and Dusit Niyato. Optimization of Resource Pro-
visioning Cost in Cloud Computing. IEEE Transactions on Services Computing,
5(2):164–177, April 2012.

[21] Michael Chui, Markus Löffler, and Roger Roberts. The Internet of Things. McKinsey
Quarterly, 2(2010):1–9, March 2010.

[22] Don Coleman, Dan Ash, Bruce Lowther, and Paul Oman. Using Metrics to Evaluate
Software System Maintainability. Computer, 27(8):44–49, August 1994.

108

https://www.gartner.com/doc/3407820
https://www.gartner.com/doc/3407820

[23] National Intelligence Council. Six Technologies with Potential Impacts on US
Interests Out to 2025. Disruptive Civil Technologies 2008, April 2008.

[24] Amir Vahid Dastjerdi and Rajkumar Buyya. Fog Computing: Helping the Internet
of Things Realize Its Potential. Computer, 49(8):112–116, August 2016.

[25] Amir Vahid Dastjerdi, Harshit Gupta, Rodrigo N. Calheiros, Soumya K. Ghosh,
and Rajkumar Buyya. Fog Computing: Principles, Architectures, and Applications,
chapter 4, pages 61–75. Elsevier, Burlington, MA, USA, January 2016.

[26] T. Hoang Dinh, Chonho Lee, Dusit Niyato, and Ping Wang. A Survey of Mobile Cloud
Computing: Architecture, Applications, and Approaches. Wireless Communications
and Mobile Computing, 13(18):1587–1611, February 2013.

[27] European Telecommunications Standards Institute (ETSI). Mobile Edge Computing -
ETSI. http://www.etsi.org/technologies-clusters/technologies/
mobile-edge-computing, 2016. Accessed: 2016-10-15.

[28] Mohamed E. Fayad and Douglas C. Schmidt. Lessons Learned Building Reusable
OO Frameworks for Distributed Software. Communications ACM, 40(10):85–87,
October 1997.

[29] Niroshinie Fernando, Seng W. Loke, and Wenny Rahayu. Mobile Cloud Computing.
Future Generation Computer Systems, 29(1):84–106, January 2013.

[30] Martin Glinz. On Non-Functional Requirements. In 15th IEEE International Re-
quirements Engineering Conference, RE’07, pages 21–26, New Dehli, India, October
2007. IEEE.

[31] Jayavardhana Gubbi, Rajkumar Buyya, Slaven Marusic, and Marimuthu
Palaniswami. Internet of Things (IoT): A Vision, Architectural Elements, and
Future Directions. Future Generation Computer Systems, 29(7):1645 – 1660, Septem-
ber 2013.

[32] Coda Hale, Yammer Inc., and Dropwizard Team. Dropwizard User Manual. http:
//www.dropwizard.io/1.0.2/docs/manual, 2016. Accessed: 2016-11-05.

[33] Bryan Hayes. Cloud computing. Communications of the ACM, 51(7), July 2008.

[34] Philipp Hoenisch, Stefan Schulte, Schahram Dustdar, and Srikumar Venugopal.
Self-Adaptive Resource Allocation for Elastic Process Execution. In 6th IEEE Inter-
national Conference on Cloud Computing, CLOUD’13, pages 220–227, Washington,
DC, USA, June 2013. IEEE.

[35] Kirak Hong, David Lillethun, Umakishore Ramachandran, Beate Ottenwälder, and
Boris Koldehofe. Mobile Fog: A Programming Model for Large-Scale Applications
on the Internet of Things. In 2nd ACM SIGCOMM Workshop on Mobile Cloud
Computing, SIGCOMM’13, pages 15–20, Hong Kong, China, August 2013. ACM.

109

http://www.etsi.org/technologies-clusters/technologies/mobile-edge-computing
http://www.etsi.org/technologies-clusters/technologies/mobile-edge-computing
http://www.dropwizard.io/1.0.2/docs/manual
http://www.dropwizard.io/1.0.2/docs/manual

[36] David S. Johnson. Near-Optimal Bin Packing Algorithms. PhD thesis, Massachusetts
Institute of Technology, 1973.

[37] Evangelia Kalyvianaki. Resource Provisioning for Virtualized Server Applications.
PhD thesis, University of Cambridge, 2009.

[38] Jaeho Kim and Jang-Won Lee. OpenIoT: An Open Service Framework for the
Internet of Things. In 2014 IEEE World Forum on Internet of Things, WF-IoT’14,
pages 89–93, Seoul, Korea, March 2014. IEEE.

[39] John Leslie King. Centralized Versus Decentralized Computing: Organizational
Considerations and Management Options. ACM Computing Surveys, 15(4):319–349,
December 1983.

[40] Rob Kowalczyk. Introduction to Intel R© Architecture - The Basics. White Paper,
Introduction to Intel, 2014.

[41] Jay Lee, Behrad Bagheri, and Hung-An Kao. A Cyber-Physical Systems Architecture
for Industry 4.0-Based Manufacturing Systems. Manufacturing Letters, 3(1):18–23,
January 2015.

[42] Zongqing Lu, Jing Zhao, Yibo Wu, and Guohong Cao. Task Allocation for Mobile
Cloud Computing in Heterogeneous Wireless Networks. In 24th IEEE International
Conference on Computer Communication and Networks, ICCCN’15, pages 1–9, Las
Vegas, NV USA, August 2015. IEEE.

[43] Tom H. Luan, Longxiang Gao, Zhi Li, Yang Xiang, and Limin Sun. Fog Com-
puting: Focusing on Mobile Users at the Edge. Computing Research Repository,
abs/1502.01815(1), March 2015.

[44] Peter M. Mell and Timothy Grance. The NIST Definition of Cloud Computing.
Technical report, National Institute of Standards and Technology, Gaithersburg,
MD, USA, September 2011.

[45] Sam Newman. Building Microservices. O’Reilly Media, Inc., 1st edition, 2015.

[46] Cesare Pautasso, Olaf Zimmermann, and Frank Leymann. Restful Web Services
vs. ’Big’ Web Services: Making the Right Architectural Decision. In 17th ACM
International Conference on World Wide Web, WWW’08, pages 805–814, New York,
NY, USA, April 2008. ACM.

[47] Theodore S. Rappaport, Shu Sun, Rimma Mayzus, Hang Zhao, Yaniv Azar, Kevin
Wang, George N. Wong, Jocelyn K. Schulz, Mathew Samimi, and Felix Gutierrez.
Millimeter Wave Mobile Communications for 5G Cellular: It Will Work! IEEE
Access, 1:335–349, May 2013.

[48] Leonard Richardson and Sam Ruby. RESTful Web Services. O’Reilly Media, Inc.,
2008.

110

[49] Dirk Riehle. Framework Design. PhD thesis, Technische Wissenschaften ETH Zürich,
2000.

[50] Rodrigo Roman, Javier Lopez, and Masahiro Mambo. Mobile Edge Computing,
Fog et al.: A Survey and Analysis of Security Threats and Challenges. Computing
Research Repository, abs/1602.00484, November 2016.

[51] Franz Rothlauf. Design of Modern Heuristics: Principles and Application. Springer
Publishing Company, Incorporated, 1st edition, 2011.

[52] Zohreh Sanaei, Saeid Abolfazli, Abdullah Gani, and Rajkumar Buyya. Heterogeneity
in Mobile Cloud Computing: Taxonomy and Open Challenges. IEEE Communica-
tions Surveys and Tutorials, 16(1):369–392, January 2014.

[53] Subhadeep Sarkar and Sudip Misra. Theoretical Modelling of Fog Computing: a
green Computing Paradigm to Support IoT Applications. IET Networks, 5(2):23–29,
March 2016.

[54] Enrique Saurez, Kirak Hong, Dave Lillethun, Umakishore Ramachandran, and Beate
Ottenwälder. Incremental Deployment and Migration of Geo-distributed Situation
Awareness Applications in the Fog. In 10th ACM International Conference on
Distributed and Event-based Systems, DEBS’16, pages 258–269, Irvine, CA, USA,
June 2016. ACM.

[55] Sukhpal Singh and Inderveer Chana. QoS-Aware Autonomic Resource Management
in Cloud Computing: A Systematic Review. ACM Computing Surveys, 48(3):42:1–
42:46, December 2015.

[56] Olena Skarlat, Stefan Schulte, Michael Borkowski, and Philipp Leitner. Resource
Provisioning for IoT Services in the Fog. In 9th IEEE International Conference
on Service Oriented Computing and Applications, SOCA’16, pages 32–39, Macau,
China, November 2016. IEEE.

[57] Stephen Soltesz, Herbert Pötzl, Marc E. Fiuczynski, Andy Bavier, and Larry Peterson.
Container-Based Operating System Virtualization: A Scalable, High-Performance
Alternative to Hypervisors. SIGOPS Operating Systems Review, 41(3):275–287,
March 2007.

[58] Victor Sower, Kenneth Green, Pamela Zelbst, and Morgan Thomas. U.S. Manufac-
turers Report Greater RFID Usage - RFID Journal. http://www.rfidjournal.
com/articles/view?9589/3, 2016. Accessed: 2016-10-02.

[59] Krishna Srinivasan. Dropwizard vs. Spring Boot: A Comparison by JavaBeat.
http://javabeat.net/spring-boot-vs-dropwizard/, April 2016. Ac-
cessed: 2016-11-05.

111

http://www.rfidjournal.com/articles/view?9589/3
http://www.rfidjournal.com/articles/view?9589/3
http://javabeat.net/spring-boot-vs-dropwizard/

[60] Jeremy Sugerman, Ganesh Venkitachalam, and Beng-Hong Lim. Virtualizing I/O De-
vices on VMware Workstation’s Hosted Virtual Machine Monitor. In General Track:
2001 USENIX Annual Technical Conference, USENIX’01, pages 1–14, Berkeley, CA,
USA, June 2001. USENIX Association.

[61] Luis M. Vaquero and Luis Rodero-Merino. Finding Your Way in the Fog: To-
wards a Comprehensive Definition of Fog Computing. ACM SIGCOMM Computer
Communication Review, 44(5):27–32, October 2014.

[62] Ovidiu Vermesan and Peter Friess. Internet of Things: From Research and Innovation
to Market Deployment. River Publishers Aalborg, 2014.

[63] Michael Vögler, Johannes M. Schleicher, Christian Inzinger, and Schahram Dust-
dar. A Scalable Framework for Provisioning Large-Scale IoT Deployments. ACM
Transactions on Internet Technology, 16(2):11:1–11:20, March 2016.

[64] Mike J. Walker, Betsy Burton, and Michele Cantara. Gartner Hype Cycle 2016.
https://www.gartner.com/doc/3383817, 2016. Accessed: 2016-09-20.

[65] Phillip Webb, Dave Syer, Josh Long, Stephane Nicoll, Rob Winch, Andy
Wilkinson, Marcel Overdijk, Christian Dupuis, and Sebastien Deleuze. Spring
Boot Reference Guide. http://docs.spring.io/spring-boot/docs/
current-SNAPSHOT/reference/htmlsingle/, 2016. Accessed: 2016-11-05.

[66] Aaron Weiss. Computing in the Clouds. netWorker - Cloud computing, 11(4):16–25,
December 2007.

[67] Evan Welbourne, Leilani Battle, Garret Cole, Kyla Gould, Kyle Rector, Samuel
Raymer, Magdalena Balazinska, and Gaetano Borriello. Building the Internet of
Things Using RFID: The RFID Ecosystem Experience. IEEE Internet Computing,
13(3):48–55, May 2009.

[68] Charles P. Wright and Erez Zadok. UnionFS: Bringing Filesystems Together. Linux
Journal, 2004(128):1–8, December 2004.

[69] Shanhe Yi, Zijiang Hao, Zhengrui Qin, and Qun Li. Fog Computing: Platform
and Applications. In Hot Topics in Web Systems and Technologies, 2015 3rd IEEE
Workshop, HotWeb’15, pages 73–78, Washington, DC, USA, November 2015. IEEE.

[70] Shanhe Yi, Cheng Li, and Qun Li. A Survey of Fog Computing: Concepts, Applica-
tions and Issues. In 2015 Workshop on Mobile Big Data, Mobidata’15, pages 37–42,
Hangzhou, China, June 2015. ACM.

[71] Zhi-Hui Zhan, Xiao-Fang Liu, Yue-Jiao Gong, Jun Zhang, Henry Shu-Hung Chung,
and Yun Li. Cloud Computing Resource Scheduling and a Survey of Its Evolutionary
Approaches. ACM Computing Surveys, 47(4):63:1–63:33, July 2015.

112

https://www.gartner.com/doc/3383817
http://docs.spring.io/spring-boot/docs/current-SNAPSHOT/reference/htmlsingle/
http://docs.spring.io/spring-boot/docs/current-SNAPSHOT/reference/htmlsingle/

[72] Qi Zhang, Lu Cheng, and Raouf Boutaba. Cloud Computing: State-Of-the-Art and
Research Challenges. Journal of Internet Services and Applications, 1(1):7–18, April
2010.

[73] Jiang Zhu, Douglas S. Chan, Mythili S. Prabhu, Preethi Natarajan, Hao Hu, and
Flavio Bonomi. Improving Web Sites Performance Using Edge Servers in Fog
Computing Architecture. In 2013 IEEE 7th International Symposium on, SOSE’13,
pages 320–323. IEEE, March 2013.

113

	Kurzfassung
	Abstract
	Contents
	Introduction
	Motivation
	Aim of the Work
	Methodology and Approach
	Structure

	Background
	The Internet of Things
	Cloud Computing
	Characteristics
	Service Models
	Deployment Models
	Virtualization

	Fog Computing
	Characteristics
	Mobile Edge Computing
	Mobile Cloud Computing

	Software Frameworks
	Resource Provisioning

	Related Work
	Fog Computing Architecture and Concepts
	Initial Fog Computing Concepts by Bonomi et al.
	A Comprehensive Definition of Fog Computing by Vaquero and Rodero-Merino
	Focusing on Mobile Users at the Edge by Luan et al.
	A Fog Computing Platform including a Real-World Test-Bed by Yi et al.
	Principles, Architectures, and Applications of Fog Computing by Dastjerdi et al.
	A Theoretical Fog Computing Model to support IoT Applications by Sarkar et al.

	Programming Models
	A High Level Programming Model by Hong et al.
	Incremental Deployment and Migration of Fog Applications by Saurez et al.

	Resource Provisioning
	A Resource Provisioning Approach for IoT Services in the Fog by Skarlat et al.
	Dynamic Resource Provisioning through Fog Micro Datacenters by Aazam et al.

	Discussion

	Requirements Analysis and Design
	Functional Specification
	Functional Requirements
	Non-Functional Requirements
	Actors
	Use Case Scenarios
	Workflows

	Technical Specification
	Fog Computing Framework Architecture
	Design and Technology Decisions
	API Endpoints

	Implementation
	Bird View
	Service Deployment
	Fog Service Deployment
	Cloud Service Deployment

	Component Requirements
	Cloud-Fog Middleware
	Fog Cells
	Fog Control Nodes

	Installation Instructions
	Raspberry Pi Setup
	Cloud Setup
	Environment Setup

	Execution
	Development, Testing, and Evaluation of an IoT Service
	Execution of an IoT Application
	Development, Testing, and Evaluation of a Resource Provisioning Approach

	Resource Provisioning

	Evaluation
	Evaluation Setup
	Evaluation Scenarios
	Device Failure
	Device Accedence
	Overload
	Cost Assessment
	Deployment Time Assessment
	Varying Service Deployment

	Results
	Metrics
	Discussion

	Conclusion and Future Work
	Conclusion
	Future Work

	List of Figures
	List of Tables
	List of Algorithms
	Acronyms
	Bibliography

