
Visualization of
Computer-Generated 3D Cities

using GIS Data

DIPLOMA THESIS

submitted in partial fulfillment of the requirements for the degree of

Diplom-Ingenieur

in

Media Informatics and Visual Computing

by

BSc. Luca Maestri
Registration Number 0926939

to the Faculty of Informatics

at the TU Wien

Advisor: Ao.Univ.Prof. Mag. Dr. Horst Eidenberger

Vienna, 22nd September, 2017
Luca Maestri Horst Eidenberger

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.ac.at

Die approbierte Originalversion dieser Diplom-/
Masterarbeit ist in der Hauptbibliothek der Tech-
nischen Universität Wien aufgestellt und zugänglich.

http://www.ub.tuwien.ac.at

The approved original version of this diploma or
master thesis is available at the main library of the
Vienna University of Technology.

http://www.ub.tuwien.ac.at/eng

Declaration of Authorship

BSc. Luca Maestri
Stoebergasse 17/23, 1050 Wien

I hereby declare that I have written this Master Thesis independently, that I have
completely specified the utilized sources and resources and that I have definitely marked
all parts of the work - including tables, maps and figures - which belong to other works
or to the internet, literally or extracted, by referencing the source as borrowed.

Vienna, 22nd September, 2017
Luca Maestri

iii

Acknowledgements

I would first like to thank my thesis advisor Prof. Dr. Horst Eidenberger, without whom
this work would not have been possible. Prof. Eidenberger always endeavored to steer me
in the right direction over the past years, by lending me books, giving me feedback and
spurring me to constantly improve my work. I would also like to extend my appreciation
to my colleagues and friends Juri Berlanda and Tobias Froihofer, with all of whom I spent
countless hours in the laboratory while working on a common project. Their continuous
encouragement and valuable insight during that time helped me to come up with the idea
of this work. Many thanks also go to my dear friend Zeno Casellato who helped me to
further refine my writing during multiple everlasting feedback sessions. Finally I would
like to express my gratitude towards my family. Without their support and teachings
this whole undertaking would not have been possible in the first place.

v

Abstract

The constant performance increase of algorithms and hardware over the last decades
enabled new ways to collect data, which would have been unthinkable just a few years ago.
This is especially true in the sector of geodesy. The release of gps-tracking smartphones
enabled users from all over the world to easily collect and upload georeferenced data.
Additionally governments also started to make their georeferenced data available to
everyone. Through these phenomenons countless databases containing georeferenced
information appeared on the Internet. By accessing these databases numerous new
applications can be implemented. This thesis focuses on the creation of three-dimensional
models that can be easily integrated in a virtual reality environment. The practical part
of this thesis consists of four steps. The first step is the data acquisition.As mentioned
before nowadays there are various eligible data sources for such a project, however in this
work all the data is fetched from a public database of the Austrian government. This
database has been chosen because it already contains all required buildings’ footprints
and heights. In the second step the acquired data is analysed and pre-processed using
Matlab. By using the filters implemented in Matlab artefacts resulting from the noise
contained in the data can be removed. In the third step a suite capable of combining
the data-sets is presented. Quantum GIS offers a complete open source suite capable of
combining, displaying, processing and exporting georeferenced data. This tool contains
solutions for all the problems proposed during this step of the project. The final step is
the implementation of the web-application, which creates the three-dimensional models
by importing the files generated during the previous step. This web-application has
been implemented using WebGL so that most of the calculations are done on the client’s
graphics card. The three-dimensional models have been compared with the models
offered by the Austrian government for the sake of showing that the presented framework
is capable of producing similar models at a lower performance cost in a virtual reality
environment. Practically, the presented framework has been implemented and its results
have been tested during the course of another project, in which the city models were
used in order to create a skydiving experience over the city of Vienna in a virtual reality
environment. Over the course of the mentioned project the models were found satisfactory
by the users.

vii

Kurzfassung

Die ständige Leistungssteigerung von Algorithmen und Hardware in den letzten Jahr-
zehnten ermöglichte neue Wege, Daten zu sammeln, die vor wenigen Jahren undenkbar
gewesen wären. Dies gilt insbesondere im Bereich der Geodäsie. Die Freigabe von GPS-
Tracking-Smartphones ermöglichte es Benutzern aus der ganzen Welt, georeferenzierte
Daten zu sammeln und hochzuladen. Darüber hinaus begannen die Regierungen, ihre
georeferenzierten Daten öffentlich zugänglich zu machen. Durch diese Entwicklungen er-
schienen vielfältige Datenbanken mit georeferenzierten Informationen im Internet. Durch
den Zugriff auf diese Datenbanken können zahlreiche neue Applikationen implementiert
werden. Diese Masterarbeit konzentriert sich auf die Erzeugung von dreidimensionalen
Modellen, die sich leicht in beliebige Game-Engines integrieren lassen. Der praktische Teil
dieser Arbeit besteht aus vier Schritten. Der erste Schritt beinhaltet die Datenerfassung.
Wie bereits erwähnt, gibt es für ein solches Projekt verschiedene Datenquellen, aber in
dieser Arbeit werden alle Daten aus einer öffentlichen Datenbank der österreichischen
Regierung abgerufen. Diese Datenbank wurde gewählt, weil sie bereits alle Grundrisse
und Höhen der Gebäude Wiens enthält. Im zweiten Schritt werden die erfassten Daten
mit Matlab analysiert und vorverarbeitet. Durch die Verwendung von Filtern, die in
Matlab implementiert sind, können Artefakte eliminiert werden, die sich aus dem in
den Daten enthaltenen Rauschen ergeben. Im dritten Schritt wird eine Applikation
vorgestellt, die die Datensätze kombinieren kann. Quantum GIS bietet eine komplette
Open-Source-Applikation, die in der Lage ist, georeferenzierte Daten zu kombinieren,
anzuzeigen, zu verarbeiten und zu exportieren. Dieses Werkzeug enthält Lösungen für
alle Probleme, die während dieser Projektphase beschrieben wurden. Der letzte Schritt ist
die Implementierung der Web-Applikation, die die dreidimensionalen Modelle durch den
Import der im vorherigen Schritt erzeugten Dateien erzeugt. Diese Web-Applikation wur-
de mit WebGL implementiert, so dass die meisten Berechnungen auf der Grafikkarte des
Clients durchgeführt werden. Die dreidimensionalen Modelle wurden mit den Modellen
der österreichischen Regierung verglichen, um zu zeigen, dass das präsentierte Framework
in der Lage ist, ähnliche Modelle kostengünstig in einer beliebigen Game-Engine für
Virtual Reality zu produzieren. Tatsächlich wurden die Ergebnisse dieser Arbeit im
Rahmen eines weiteren Projektes getestet. Dabei wurden die Stadtmodelle eingesetzt,
um ein Skydiving-Erlebnis über die Stadt Wien in virtueller Realität zu schaffen. Die
Benutzer dieses Projekts fanden die vorgestellten dreidimensionalen Modelle der Stadt
sehr zufriedenstellend.

ix

Contents

Abstract vii

Kurzfassung ix

Contents xi

1 Introduction 1
1.1 Context . 1
1.2 Problem . 2
1.3 Roadmap . 3

2 Background 7
2.1 Geographic Information Systems . 7
2.2 Digital Elevation Model . 20
2.3 Geometry Modelling . 25
2.4 Polygon clipping . 28
2.5 Extrusion . 32
2.6 Web Graphics Library . 34

3 Methodology 37
3.1 Problem Description . 37
3.2 System Requirements . 38
3.3 Available Data . 38

4 Results 51
4.1 City Web Extruder . 51
4.2 Wall Texturing . 53
4.3 Game Engine Integration . 55

5 Conclusion 57

List of Figures 59

List of Tables 60

xi

Acronyms 61

Bibliography 63

CHAPTER 1
Introduction

Over the past decades the evolution of sensing technologies, as well as automation- and
database-systems created the possibility to easily accumulate and store huge amounts of
geographical information. "Geographical information" refers to any kind of data associated
with a geographic location on the earth’s surface [Law13]. However this information is
often not easy to use, because it requires knowledge from different disciplines in order
to access, interpret and elaborate it. The sole data acquisition process can already
apply knowledge from the fields photogrammetry, computer vision and geodesy [WL99].
Additionally the acquired data is stored in a database, either local or remote [Wes10],
which requires knowledge of IT systems. Depending on the complexity of the systems
using georeferenced data, knowledge of even more disciplines may be needed, making it a
non-trivial task.

In my work I elaborated a framework that eases the access to the required data for the
creation of 3D city models, which are optimized for the integration into game engines.
This is achieved by automating most processes and leaving the user the only problem
of choosing the buildings he or she wants to export into different 3D file formats of his
choosing as seen in Figure 1.1.

1.1 Context
As mentioned before working with georeferenced information is a task covered by many
disciplines. This work addresses the problem from the perspective of media-informatics
and results in a framework which creates 3D models that can easily be integrated into
any game engine. During interviews with urban planners, architects and civil engineers
we realized that the 3D rendering of highly detailed city patches is a common task in
order to create 3D simulations for their projects. [ZSP] presents a framework to create 3D
city models using georeferenced data and discusses further applications of the resulting
models. For example in Figure 1.2 the created 3D model is used to simulate efficient

1

1. Introduction

Figure 1.1: A patch of Vienna rendered in the browser using the presented framework.

lighting in an open space. Other applications mentioned in [ZSP] are flooding simulations
or visualizations of how planned buildings would integrate in a specific area of the real
world. However most of the researched solutions were either licensed, or resulted into
models that were not adequate for our virtual reality context which will be described
in Section 1.2. Hence this work will explain in detail which problems were encountered,
how they were solved and presents the results in form of a framework which can be used
to easily create 3D models of any chosen part of Vienna.

Figure 1.2: 3D model used for a light simulation as seen in [ZSP].

1.2 Problem

During a previous project [EM15] the idea was proposed to make use of the most recent
advances in virtual reality in order to build a simulator with the specific task of letting
people experience the thrill of the free fall. The most evident activity associated with
this concept was a skydiving experience over Vienna. In collaboration with experts which
created the hardware of the simulator, our task was focused on creating a credible and
immersive 3D environment. The users would enjoy the virtual world through a head
mounted display (HMI), allowing them the freedom of looking, moving around as well

2

1.3. Roadmap

as interacting with the virtual world. Initially there were two suggestions we took in
account to create the desired experience. The first proposal that came up was to use
360 degree videos of a skydiving experience to create the virtual reality environment.
However we decided to go with the second proposal, which was the use of geo-referenced
data for the creation of a 3D city model. We choose the second proposal over the first
because we realized that a versatile framework for the creation of the virtual environment
could be used to create many different flight experiences over Vienna, thus the additional
effort would pay off in the long run.

To overcome the posed challenge we had to get ourselves immersed in different, to us mostly
unknown disciplines. Therefore I started to analyse openly acquirable georeferenced data
from different sources. During this research I rapidly realized that getting a hold of and
combining the data from all the sources that were found would result in exactly the models
we were looking for. Hence a big part of this work is focused on the theories connecting
all the data sources, which are the coordinate systems geo-referencing the data and their
projections. Those topics will be covered in Section 2.1, giving the reader a first overview
of the utilized data structures. This thesis conveys most of the information necessary
to understand georeferenced systems. Additionally I apply the presented theories and
present the resulting framework used to model 3D environments of Vienna.

1.3 Roadmap

Large parts of this work will cover the theory behind geographic information systems
(GIS) and the data they encapsulate. The leitmotif of GIS are coordinates, coordinate
systems and projections which I am going to describe in detail in the next chapter. The
mentioned topics are important because the georeferenced data, as the name already
implies, are addressed by coordinates. I will first present the researched theories then
continue with the description of my framework. As the reader progresses trough the next
chapter of this work different concepts from the fields of geodesy and photogrammetry
will be explained. Through this I want to clarify that coordinates describing the world’s
surface are not as trivial as could be assumed. In Section 2.1.2 I will show that longitude
and latitude values are nearly meaningless if not combined with coordinate and projection
systems. This becomes especially important when the coordinates are used for complex
calculations. Thereby not only the results which will be presented in Chapter 4, but also
the necessity of simplification and automation trough the presented framework should
become easily comprehensible to the reader.

After covering the basics of geodesy and photogrammetry in Section 2.1, the reader will
eventually reach Section 2.4, in which the basics of vector graphics and simple boolean
operations with polygons will be discussed. These theories are important in order to
create the building footprints as seen in Figure 1.3. In this second part of the work I will
start to pivot away from geodesy and move towards 3D modelling (Section 2.3). In this
section I will discuss the reasons for the rejection of existing frameworks. Thereby I will
clarify how the existing models and the frameworks I analysed neglected the creation

3

1. Introduction

of clean footprints which later resulted in inconsistent geometry. This turned out to be
problematic when using these models in game engines causing various glitches in the
final visualization. Applying these rather simple concepts, that will be discussed in the
second chapter, not only avoids the glitches, but also drastically reduces the resulting
models’ file size.

Figure 1.3: A simple buildings footprint created using GIS data.

The third and last part of this work will go over 3D geometry, polygon extrusion, texturing
and Web Graphics Library (WebGL) which covers the last part of the frameworks pipeline.
I decided to use WebGL because it makes the framework platform-independent and easily
accessible as a web application [Cab]. In addition to increasing flexibility WebGL is a
relatively new technology which enables browsers to use the client-sided graphics card’s
power to perform calculations. These are the main advantages motivating the use of
WebGL.

Summarizing this work will give an overview of different disciplines needed to understand
GIS. Understanding the described basics is necessary in order to accumulate, access and
work with the data which is used by the framework. The presented framework enables

4

1.3. Roadmap

the user to automatically create 3D models of buildings of the user’s choosing. Finally
the reader will learn that the framework is only making use of of a small part of the data’s
potential, and that there is much space for improvement and further development.

5

CHAPTER 2
Background

In this chapter I will start with a short historical overview of Geographic Information
Systems (GIS). Section 2.1 will help the reader get a better grasp of GIS and clarify its
state of the art. After this introduction from Section 2.1.2 to Section 2.1.8 I will discuss
the basics of photogrammetry. Thenceforth I will explain the theories of the applied
solutions for the presented framework from Section 2.2 to Section 2.6. Hence by reading
this chapter the reader will understand the concepts applied for the implementation of
the presented framework.

2.1 Geographic Information Systems

GIS refers to any kind of information that is bound to geo-spatial coordinates, such
as longitude and latitude. The first documented approach of overlaying maps with
additional subject information was done by John Snow, an English physician, in 1855.
During his attempts to find the cause for the cholera outbreak of 1854 in London, Snow
came up with the idea of marking the single cases on a map as seen in Figure 2.1. His
idea expanded Charles Picquet’s work. In 1834 Charles Picquet created gray shaded
maps of Paris, to document the deaths by cholera during the outbreak of 1832. Opposed
to Picquets earlier work John Snow’s overlays were not only used for documentation. His
overlays established the connection between the outbreaks and the bad hygiene of the
water supplies in the city. This kind of map overlay was never seen before, as it was used
to visualize information and analyse clustered data. Since then geographic information
has come a long way.

2.1.1 GIS Roadmap

Nowadays we have many examples and different approaches to geographic information.
Simple examples in our daily lives are addresses, buildings, heights, demographic infor-

7

2. Background

mation, landmark types, or borders. It is clear that the usage of georeferenced data has
almost no limits and that the term can be applied to various systems.

Figure 2.1: John Snow’s map overlay.

The father of geographic information systems as we know them today was Roger Tomlin-
son, an English architect and geographer. As he was tasked by the Canadian government
to develop a methodology to evaluate a huge number of maps he came up with different
approaches. Eventually Tomlinson recognized that the data to process was bound to
grow even more over time. So he decided to look at a computer-based approach which
significantly reduced the time and costs of the data analysis [Tom74]. Over the following
years his idea evolved into the Canadian geographical information system, the first of its
kind.

Today the subject information bound to a specific location can often result in many
millions of data points. These vast possibilities originate from the development of newer,

8

2.1. Geographic Information Systems

more flexible and cheaper sensor systems, such as the Global Position Systems (GPS)
which nowadays are incorporated in most smartphones. This constant evolution over
the last decades made the acquisition of georeferenced data easier for firms, but most
importantly accessible to the public. An example of such a user-created result using just
the smartphone is seen in Figure 2.2. This change resulted in a drastic growth of GIS
information. During the second half of the 20th century experts, complex programs as
well as huge computers were needed to create even simple map overlays. Google was one
of the first to make complex GIS data accessible to everyone through simple interfaces
using Google Maps and Google Earth in 2005 [Wes10]. Collaborative projects like Open
Street Map (OSM), which was started 2004 by Steve Coast, are mostly supported by
open communities, accessible for anyone [HW08]. Still, the access being free does not
mean that the data is easy to access. The storage and provision of this huge amount
of information is mostly achieved by using dedicated databases [Law13]. Without the
strategic use of IT systems and the definition of standards it would be almost impossible
to get a hold of the data and to use it. For example institutions like the Open Geospatial
Consortium (OGC) or the Environmental Systems Research Institute (ESRI) helped
developing GIS by defining such standards.

After this short historical overview over GIS the reader should have noted why and
how it came to such a huge amount of information stored on the Internet. Furthermore
I mentioned OGC and ESRI which are important references because of their defined
standards and state of the art tools they present to work with GIS data (e.g. ESRI’s
ArchGIS or its open source alternative QuantumGIS).

2.1.2 Projections

In this subsection I am going to describe the basics of geodesy and photogrammetry. The
first and arguably most important step to use georeferenced data is to understand that
the world is not flat. Nowadays this is not a daring statement anymore, you may think,
but most of the media used to visualize the world’s surface in fact are flat. Notice how
printed world maps represent a spherical object on a flat surface. Such representations
are achieved through projections. Thereby the necessity of such projections for GIS
should slowly become apparent. Note that knowing the coordinates without knowing
their projection is useless. This becomes especially important when using coordinates for
calculations (e.g. distance between two points) [Sny87].

In our context projections are mostly subdivided into cylindrical, conical and azimuthal
projections. The cylindrical projections produce a visualization of the world’s surface on
a rectangular plane. This is the result of unwrapping the cylinder on which the surface
has been projected as we can see in Figure 2.3. This kind of projection is the most seen
on world maps. However multiple projection systems are necessary because each one
of them deforms the Earth’s surface when seen on the flat medium. In the case of the
cylindrical projection we get the biggest deformation over the poles. Opposed to this
example a polar aligned conic projection would result in a less stretched visualization of
the poles as seen in Figure 2.5.

9

2. Background

Figure 2.2: GPS data overlaid on a simple map.

Such a projection is mostly used to visualize wide and flat landmarks (e.g. Russia). The
third notable projection is the azimuthal projection. Azimuth is a term that comes from
the astronomy and it defines the horizontal angle of a position in a spherical coordinate
system. The equidistant polar aligned azimuthal projection’s biggest advantage is that
all points on the result are represented at the right azimuth angle. Thus its name
azimuthal projection. It is easy to see how reducing a three-dimensional visualization to
two dimensions by using projections will yield deformed results. Note that it is impossible
to use a unique projection for the whole world’s surface without any drawbacks [Sny87].

In order to minimize deformation errors the World Transverse Mercator (UTM), classifies
the world’s surface into sixty different sectors as seen in Figure 2.4. This makes working
with georeferenced data difficult. In order to create undeformed maps each sector has a
specific projection system assigned to it, which best suits the projected area. To know

10

2.1. Geographic Information Systems

Figure 2.3: Unwrapping a cylindrical projection [Law13].

Figure 2.4: The UTM raster from [Dom].

which projection has been applied to the coordinates is important when working with
projected coordinates. If we take Figure 2.6 we would use unprojected coordinates to
address a point on the sphere’s surface, but to address a point on the map (representing
the sphere’s surface after the projection) we would have to use projected coordinates.
Considering that the projection deforms the Earth’s surface, the distances between
points obviously are also affected by this deformation. Therefore in order to evaluate
georeferenced data with calculations, such as distance between two points on a map, the
right projection system has to be known.

Opposed to projected coordinates we have unprojected coordinates. The obvious approach
to locate a point on the world’s surface would be the spherical coordinate system. In
contrast to projected coordinates we can use the same unprojected coordinate system for
the whole world.

In the last Section 2.1.2 projection systems were explained as well as why georeferenced

11

2. Background

Figure 2.5: Unwrapping a conic projection [Sny87].

data makes use of many different projections and why it is important to know the
projection system when working with projected coordinates. Now we may think that
working with unprojected coordinates would solve all problems as long as we do not have
to visualize our results on a flat surface. In Section 2.1.3 I will show that even unprojected
coordinates are not easy to handle. This comes from the fact that the world is an oblate
sphere, rather than a perfect sphere. This makes comparing coordinates complicated,
even for unprojected coordinates. The coordinate system has to be mathematically
adapted to best describe the Earth’s shape. The world’s surface has also to be taken
into account, because just describing the shape neglects the differences in elevation given
by the different terrains. Think about how an ellipsoid describing the world’s shape can
not take the elevation difference between the highest point of the Mount Everest (7.5 km
over sea level) and the lowest point of the Mariana Trench into account(11 km under sea
level).

By using different mathematical models and reference points, multiple coordinate systems
have come to light, over the years. These different models are called datums. The World
Geodetic System (WGS), describes the current standard datum, addressed as WGS84.
The WGS84 datum is based on a projection system describing the world’s shape (oblate
spheroid) as seen in Figure 2.7, a surface describing the geoid and a set of fixed reference
points. Its most notable use is for GPS data [Law13].

12

2.1. Geographic Information Systems

Figure 2.6: From unprojected to projected coordinates [Law13].

2.1.3 Data acquisition

At this point we should understand how the georeferenced data is addressed using
coordinates, but we only presented a small overview of the lowest layer of a GIS. The
coordinates alone would be meaningless for this work if not associated with additional
information. As mentioned before a georeferenced data point can be associated with
various information like country outlines or landmark elevation. Populating a data point
with information is not as laborious a task as it used to be.

Given the advancements in sensor technology over the last decades most of the work is
done remotely. Remote sensing defines the process of acquiring data of an object without
having to physically interact with the object itself. Remote sensing has a long history in
the context of geographical data acquisition before becoming what we know today. The
oldest example of remote sensing in our context is aerial photography. Gaspard-Félix
Tournachon, also known as Nadar, took the first documented aerial photo from a hot
air balloon over Paris in 1858. However it was not until the Cold War that aerial
photography started to flourish. During that time the Americans started to take photos
of Russian landmarks for military purposes using the U2 plane, which flew out of range
of the anti-aircraft weapons. Opposed to the American U2 the Russians flew even higher
launching the Sputnik 1 into orbit [Law13]. Obviously the higher the sensor flies the
bigger the areas it can cover.

Taking this into account we can see that the start of the space race had a big impact
upon the evolution of remote sensing for geographical purposes. Nowadays depending on
the needed resolution data can either be collected with planes or with satellites.

The remote sensing method used for the data I utilized in this project is called Airborne

13

2. Background

Figure 2.7: Geoid describing the Earth’s surface from [NASa].

Laser Scan (ALS). In Figure 2.8 a simple sketch describing how ALS basically works
can be seen. On an urban scale the ALS achieves a great area coverage by flying over
landmarks in a height between 450 and 500 meters and by using high precision laser
scanning to create georeferenced point clouds. In this case the concentration of the used
data equals fifteen to twenty points per squared meter.

2.1.4 Raster data

If we interpret the point cloud as raster data we could visualize it as an image. To
achieve this we would have to map each height value on the raster to a gray value,
resulting in a gray scale image. ALS is more complex than it seems because in addition
to the projection and coordinate system transformation, the raw data from the laser scan
has to be adjusted to the perspective of the camera and the orientation of the plane.
Luckily this first technical preparation, which was the adjustment of the camera and
the plane orientation, was already done during the production of the ALS. Raster data
that contains elevation information about landmarks is called a Digital Elevation Model
(DEM) which is further described in Section 2.2. An example for the visualization of a
DEM can be seen in Figure 2.9.

2.1.5 Vector data

Opposed to raster data which is often visualized as an image vector data is represented by
geographical coordinates. These coordinates are used to describe positions, outlines, or
shapes of features on the Earth’s surface. To see the limitations of raster data compared

14

2.1. Geographic Information Systems

Figure 2.8: Simple visualization of Airborne Laser Scan (ALS) data acqusition [Mag16].

to vector data we could imagine a building layout. If we would like to create a 3D model
of a specific building using a layout from a raster image the task would be non-trivial if
not impossible. In this sense it is easy to see how a georeferenced vector representation
is much more exploitable than a raster image to analyse topographical features in detail.
Vector data is more costly in terms of acquisition, because it can only be acquired
manually or by complex algorithms which are often based on the raster data. All vector
data is either represented by points, lines or polygons. Points form the base for lines,

15

2. Background

Figure 2.9: DEM of Vienna visualized as a grayscale image.

which form the base for polygons. As simple as this concept may seems it comes with
many problems bound to polygon operations, which is going to be described in detail in
Section 2.4 of the thesis. A point is represented by a projected or unprojected coordinate
tuple, while a line is the result of a string of points. A line that ends on its starting
point is called a linear ring. The linear ring could be misinterpreted as a polygon, but a
polygon can be described as a set of linear rings. The first linear ring always describes the
outer bound of the polygon (exterior ring) while all other following linear rings (interior
rings), if any are defined, describe holes in the polygon. Simple examples of points, lines
and rings can be seen in Figure 2.10.

To store this vector data on computers different standards have emerged over the years.
All standards have in common that they convey information about the datum, projection
system and units in order to enable the work with the coordinates [Law13]. An example

16

2.1. Geographic Information Systems

Figure 2.10: The basic structures used for all geometries in GIS.

of a popular georeferenced vector data format is the shapefile format (SHP). Developed
by the Environmental Systems Research Institute (ESRI), shapefile is an open standard
used to exchange and store georeferenced information in the form of attributes associated
to a specific point, line or polygon [Ins98]. The Shapefile standard defines a list of files,
each describing a specific information as seen in Table 2.1. The heart of the whole
format of course is the .shp file, which contains all the geometric information, the .dbf
file containing all the attributes, associated with a specific point, line or polygon defined
in the .shp file and finally a .shx file defining an index cursor for faster lookup in the
tables. Also notable is the .prj file which stores the type of the projection system. There
are many other files described in the shapefile standard but the ones we mentioned are
the most important and relevant for this work.

The shapefile standard has to cover various aspects of the georeferenced data it stores.
Formats like shapefile are called macro formats. Simpler tasks or information exchange
tend to become cumbersome when working with macro formats. To exchange information
between formats more convenient smaller standards are used called micro formats. The
micro formats I mostly worked with are called Georeferenced JavaScript Object Notation
(GEOJSON) and Geography Markup Language (GML). As the names suggest they are
based on the JavaScript Object Notation (JSON) and the Extensible Markup Language
(XML). In contrast to macro formats the micro formats are not used to store the
information, but solely to ease the information exchange between different systems, for
example when transfer speed is essential.

2.1.6 OpenStreetMap

OpenStreetMap (OSM) was one of the first projects based on open communities working
together to collect all kinds of georeferenced data [HW08]. As such it defined its own
XML-based data format to make its contents exchangeable between users. Similar to
shapefile all geometries are described using nodes, ways and areas. The smallest unit in
the OSM standard is called node and it describes a single point. Next in size are the
paths which are represented by a string of connected nodes. Finally we have areas which
are closed paths which can be interpreted as polygons. Closed paths means that the

17

2. Background

File Description

.shp Contains the geometry itself.

.shx Contains a positional index for fast forward and backward lookup.

.dbf Database schema in dBase format.

.prj Describes the projection and coordinate system.

.sbn / .sbx Contains a spatial index for the features.

.fbn / .fbx Contains a spatial index for the read-only features.

.ain / .aih Contains an attribute index of the active fields.

.ixs Contains a geocoding index for data-sets.

.mxs Contains a geocoding index for data-sets in the ODB format.

.atx Contains an attribute index for the .dbf file.

.shp.xml Contains geospatial metadata.

.cpg Contains information to specify the code page for .dbf

.qix Contains an alternative spatial index.

Table 2.1: List of files of the SHP standard [Ins98].

starting node has the same coordinates as the ending node, thus closing the path. All
the coordinates in the OSM standard follow the WGS84 specification.

To access this information there are two possibilities. The first one is to load the data over
the OSM API. This gives access to the most up to date data, but restricts the number and
size of requests as described in [Law13]. The second approach is to download prepared
.osm dumps from specialized portals and in order to work locally on the downloaded data,
which is discussed in [Wes10] and [Law13]. Depending on the objective we can choose
between both, but for bigger applications the second suggestion is recommended. To
work locally on the downloaded data it can be loaded into a local spatial database such as
PostGIS for easier access. PostGIS is a optional extension based on PostgreSQL, which
adds location awareness and the possibility to run spatial queries on the database [C+15].
Being an open source project many community-based tools can be found online further
easing standard tasks. For example loading OpenStreetMap data into a PostGIS database
can be easily achieved using tools like osm2pgsql [Ope], which loads the downloaded .osm
files into a specified database.

2.1.7 Government databases

Nowadays OSM is not the only source for free georeferenced data. For example we used
data acquired by the Austrian government. This data was made accessible in the course

18

2.1. Geographic Information Systems

of the Open Government Data initiative. It can be downloaded using the government’s
official web application as seen in Figure 2.11 or using their Web Map Service (WMS)
which is a standard defined by the OGC. WMS are services especially defined to make
GIS data easily loadable as they make use of servers capable of converting data in specific
image file formats or even Scalable Vector Format (SVG) to export vector data from the
GIS.

Figure 2.11: A screenshot taken from the online tool to download GIS data for Vienna
[Mag16].

There are countless other possibilities to get georeferenced data depending on the quality
and task that have to be addressed. Nearly every platform defines its own standards for
the information interchange. Even though this formats are based on the same concepts,
there can be some variations between some conventions (like naming if we compare SHP
and OSM formats). This creates problems when trying to work with data from different
sources and has to be taken into account when comparing different datasets with each
other.

2.1.8 Challenges of georeferenced data

Even after having accessed the data, the huge amount of information contained in it
makes grasping specific contents difficult. Just to make an example the compressed dump
of the planet.osm, which is a dump containing the whole OSM database information,
has a size of 50 gigabytes. Once uncompressed into an XML file it reaches a size of 666
gigabytes. Even if loaded into a database to ease the information extraction the queries
needed to access a specific set of information (e.g. the boundaries of buildings) are not
easy to formulate, because fundamental knowledge of the tagging conventions for the
data-sets are needed. This mostly applies to the vector data. When considering the
raster data, the complexity is severely reduced. Most of the time raster data is stored as
georeferenced images. Even though the data has already been processed it is still affected
by noise and shadowing as seen in Figure 2.12. Hence, signal processing and filtering

19

2. Background

playes a big role for this work to improve the DEM’s in order to extract realistic heights
for the 3D models.

Figure 2.12: Imperfections of DSM’s showing a helicopters rotor in the final result.

2.2 Digital Elevation Model

Digital Elevation Models are created using the remote scanning technologies described
in Section 2.1.4. A DEM is raster data containing three-dimensional information of the
Earth’s terrain [TBB01]. I am going to discuss the theories behind DEM and how it can
be used to model the terrain’s roughness and to calculate the building’s heights. At this
point it should be clear why it was important to understand remote sensing technology
and how ALS works in order to understand how a DEM is created. Here I mention
DEM’s because I used them to calculate the buildings height when I could not find that
information already in OSM as discussed in [Wes10].

20

2.2. Digital Elevation Model

Figure 2.13: Difference between Digital Terrain Model (DTM) and Digital Surface Model
(DSM) [Mar].

Even though in most scientific literature there is no uniform usage of the following terms
I would like to differentiate between DSM and DTM, both of which are specialized DEM.
This terminology has been chosen following the documentation of the government’s data
used while developing the presented framework [Mag16]. By combining the information
contained in the DTM with the information contained in the DSM, as seen in Figure
2.13, it is finally possible to calculate the height of the buildings.

Figure 2.14: Example of DSM from the St. Othmar church in Vienna.

21

2. Background

Previously I already mentioned that DEM visualizes raster data. This is true for both
DTM and DSM. Opposed to the DTM which contains the terrain’s height, as seen in
Figure 2.14, I also mentioned the DSM which contains the surface height as seen in Figure
2.14. By looking at the figure it should become obvious that subtracting the heights
contained in the DTM from the heights contained in the DSM results in a raster image
containing zeros on ground level and the building’s height values at any other element of
the resulting raster. Working with raster data can be done with many different tools.
The tool of my choosing was Quantum Geographic Information System (QGIS).

Figure 2.15: Example of DTM of same area seen in Figure 2.14.

QGIS is an open-source GIS available for free under the GPL license, which is the main
reason I opted for it, in order to work on the data of the framework. In addition to its
availability QGIS offers many state of the art algorithms to process georeferenced data
natively. The most notable features for this section of my work are its ability to calculate
zone statistics and simple operations with raster images (e.g. the subtraction of two
raster images as was mentioned in the previous paragraph). The zone statistic makes it
possible to calculate the median over regions of the raster image defined by polygons in
the vector layer. Calculating the zone statistics is helpful for assigning a specific height
value to each building, because in most cases the buildings roofs are not flat which results
in different height values for one single building. This process could be improved by
adding algorithms to calculate roof models and merge them with the building in order
to create even more impressive city models. However in this work I focused on creating
only the basis of the framework, although it may be improved in the future.

My first attempts to create a high-quality city model consisted into directly calculating a
surface by interpolating each value contained in the DSM, as is done for raised relief maps
such as the example showed in Figure 2.17. As can be seen in Figure 2.16 the resulting

22

2.2. Digital Elevation Model

Figure 2.16: Textured surface created by interpolating raster data of DEM.

model was already a decent 3D surface model. However as good as the resolution may
be a surface model was not the result I was looking for. The models turned out to be
imprecise when looking on at them from the sides. However for the first version of the
virtual reality environment used in [EM15] we implemented the surfaces created this way.

I already mentioned before that a DEM representing raster data can be visualized as a
gray scale image, and at this point of my thesis I would like to go more into the details
of how this representation is created. This task may sound easy but there are some
thoughts behind the mapping that I would like to describe in order to make the reader
note some different causes of errors when working with gray scale images as well as the
parallels to the theories of projected coordinates explained in Section 2.1.2.

First of all gray scale images can have different bit depths depending on the data type
used to represent each pixel in the image. Considering the images bit depth means that
the height values of the observed DEM have to be normalized in order for them to be
comparable. To visualize the same point in a 8-bit gray scale image the data point has
to be mapped using an unsigned integer which is restricted to values between 0 and 255.
The mapping is carried out by taking the max and min values of the section into account.
Obviously the greater the terrain’s elevation range the more inaccurate the mapping
becomes. Depending on the task it may make sense to increase the bit depth of the gray
scale image, in order to increase the precision of the DEM.

The point here is that just taking the pixel values gray scale image as the height values
will result in incorrect heights. To calculate the right height the minimum, maximum
and bit depth of the gray scale image have to be taken into consideration. I think it is
important to understand the parallels between the projection discussed in this section
and the coordinate projection discussed in Section 2.1.2. Here I would like the reader to
notice that this process is a projection too and as such can be better comprehended after
reading Section 2.1.2.

23

2. Background

Figure 2.17: Three-dimensional surface which can be created using a DSM. [BRBM10]

One of the challenges when working with DEM, which I already mentioned in Section
2.1.8, were firstly the noisy results of ALS and secondly the artefacts that can occur,
as shown in Figure 2.12. A common method used to remove noise from images is to
apply a median filter. As described in [TM98] the median filter is a filter with edge
preserving qualities. Therefore using the median filter removes salt and pepper noise
from the DEM without compromising the building’s edge information contained in it.
To counter the second problem, which were the artefacts compromising the result, the
median value of an area is calculated as explained in [Wes10]. Previously I mentioned
the median value when discussing the features of QGIS. Basically calculating the median
over an area defined by the building’s footprint, as seen in Figure 2.19, avoids outliers
(e.g. the artefacts shown in Figure 2.12) in the area. Eventually this process could be
improved in order to calculate three-dimensional models of the roofs by using alternative
edge preserving filters presented in [TM98].

24

2.3. Geometry Modelling

Figure 2.18: Gray scale image of the world’s DEM. [NASb]

2.3 Geometry Modelling
Until now the process of extracting valuable GIS data from different sources was described.
From here on this work moves from the fields of geodesy and photogrammetry towards
the fields of computer graphics, 3D web development and game design thus building a
valuable bridge between these areas.

The information presented until now was necessary to understand the possibility to access
georeferenced data and to create more than maps and map-overlays with it. This idea
becomes more and more present in the current research and has been already pursued by
[ZSP] [DH07] [RV01]. However my thesis is mainly motivated by specific requirements
that originated during another project [EM15]. The 3D models created using GIS data
acquired and tested at that time, were not satisfying these requirements. Being created
by an automated process the tested models did not always present a clean geometry.
This may or may not be a problem depending on the context the model is used in or the
tools that are used to visualize it. However once I imported the researched models into
Blender, Meshlab and Unity, in order to test them, the resulting scene was plagued by
the visualization issues and glitches. An example of such glitches can be seen in Figure
2.20.

These issues were mostly caused by two circumstances. The first one was that the scene I
had to visualize for [EM15] was vast (Vienna’s area approximately amounts to 400 kms).
Jumping towards the city from the sky means that most of the city is in the skydivers
field of view for most of the time. As already discussed in [PS12] creating vast game
worlds already presents many problems for third person viewed games. It turned out that
these problems become even worse for vast virtual reality environments. This leads to
the second circumstance aggravating the situation; the use of virtual reality by the means
of a head mounted display (HMI). Using the HMI implies that the skydiver perceives the

25

2. Background

Figure 2.19: QGIS overlay of the DSM and the building footprints.

3D scenery in the first person. To ensure a good first person experience the viewer has
to be able to see and interact with very close objects (e.g. the avatars hands touching its
own face). Hence the scene had to render a very far horizon, while also rendering the
camera’s proximity.

In terms of computer graphics the near clipping plane (closest perceived objects) of
the scene was close to zero (the center of the camera/eye), while the far clipping plane
(farthest perceived objects) had to be moved beyond Vienna’s borders. Figure 2.21
visualizes the concept of clipping planes. These circumstances created a well known issue
named z-fighting [VF13]. The letter “z” of the name stands for the z-axis, which in the
context of computer graphics always describes the depth or distance. This information is
important because while visualizing a 3D scene the color of each pixel on the screen is
decided by checking the distance of an object to the camera. Figure 2.21 visualizes how
the occlusion is calculated by checking the object’s distance from the camera.

In other words this concept just implements a basic occlusion. Near objects occlude

26

2.3. Geometry Modelling

Figure 2.20: Showing z-fighting in Blender 2.5 (left) and Google SketchUp 8 (right) from
[VF13].

objects behind them and so the color value of the nearest object in the field of view
has to be written at the right pixel of the screen. So while looking in the distance the
horizon is occluded by nearer objects. As natural as this may sounds, in a digital scenery
the distance between two points has to be described by a countable amount of values.
Increasing the distance while keeping the size of the set describing it, results in a loss of
precision. Moving the near plane closer to the viewer has an even worse impact on the
precision loss. This is caused by the perspective divide which naturally causes the z-buffer
to be less precise in the distance. This phenomenon implemented trough perspective
divide can be observed while moving and looking towards the horizon. Closer objects
will appear to be moving by faster opposed to the mountains or trees in the distance.
Thus rendering a scene for virtual reality can result in a significant precision loss of the
z-buffer.

For [EM15] that loss of precision meant that the game engine could not keep the surfaces
of two close objects. This numeric error results in the planes overwriting each other
randomly over time, which is perceived as flickering of the object’s surface as seen in
Figure 2.20.

To oppose z-fighting various complex approaches are discussed in [VF13]. However in
most cases, depending on the given constraints, different simpler approaches can be
adopted instead. One of them is to increase the precision of the depth buffer. However this
approach can not be used when there is no option to access the depth buffer’s precision.
This is often the case when working with game engines, which abstract the access to the
graphics card, masking many options. The arguably most common solution to z-fighting
would be to move the clipping planes closer together in order to decrease the distance

27

2. Background

Figure 2.21: Visualization of the view frustum between clipping planes [Rea16].

that the depth buffer has to cover. As mentioned before, though, the requirements of
the virtual reality environment used in [EM15] would not allow these commonly adopted
solutions. Adapting the level of detail of the buildings is also a commonly used approach,
however z-fighting persisted even for the lowest found level of detail for the models. Given
the time constraint and available data it was decided to create, even simpler models from
scratch, purpose-built to avoid z-fighting for easy integration into game engines, and
further procedural improvement.

2.4 Polygon clipping

In this section the parallels between polygons and the vector data used in a GIS will be
drawn. As already described in Section 2.1.5 vector data stores two-dimensional polygon
information, mainly to describe streets, borders and areas, e.g. using markup language.
Obviously in a city, given the amount of streets, buildings and different areas (e.g. parks,
public transport, pedestrian areas, etc.), the density of vector data increases. Here I focus
on the buildings’ footprints which reduces the problem’s complexity. By extracting the
buildings’ footprints the clipping can be applied on simple polygons as already seen in
Figure 1.3. However as simple as the polygons may appear after this first filtering there
are still many special cases left, as seen in Figure 2.19, which have to be simplified using

28

2.4. Polygon clipping

Figure 2.22: Depth of the closest object to each pixel is stored in the z-buffer [LKR].

polygon operations. This figure shows how the buildings’ details are defined by further
inner polygons. In [RF00] different algorithms are presented to solve problems given by
polygons like the one that can be seen in Figure 2.23. By using the union operator on
Figure 2.23 the authors of [RF00] were able to create the polygon seen in Figure 2.24.

Basically clipping is defined as an operation between a subject polygon S and a clip
polygon C. When mentioning clipping this work mainly refers to the four basic boolean
operations which are Union, Intersection, Exclusive-Or and Difference. To clip two
polygons most times the first step consists in resolving which nodes of S are inside and
which are outside of C. Hence the supporting pillar of all the discussed operations is
the definition of the inside and outside of a polygon. This may be easy to define for
simple closed polygons but for self-intersecting polygons there is no intuitive solution. To
overcome this problem the winding number [GH98] can be used. The winding number
counts how many times a ray with origin at a specific point P completes a full turn
around P when following the contours of a polygon counterclockwise. This results in a
odd winding number when A is inside the polygon, in the winding number being 1 when
A is inside a simple closed polygon and in a even number when A is outside the polygon
as can be seen in Figure 2.25.

For these clipping operations Clipper [Joh] can be used which is an open source library
implementing a numerically robust algorithm for clipping, of both lines and polygons. The
algorithm implemented by the Clipper library is called Vatti Algorithm [Vat92]. Opposed
to other clipping algorithms, like Sutherland and Hodgeman’s algorithm [SH74] which

29

2. Background

Figure 2.23: Example showing difficulties of overlapping polygons [RF00].

is limited to convex clip polygons and that of Liang and Barsky [LB83] which require
the clip polygon being rectangular, the Vatti Algorithm does not have any constraints
on the polygons it can be applied to. This applies to self-intersecting polygons and
polygons with holes [Joh], both of which can be found in the vector data extracted from a
geospatial database. The library’s operations are mainly based on the concepts presented
in [Ago05], [Vat92] and [Joh]. Union has already been briefly shown in Figure 2.24 as an
introductory example of polygon clipping with boolean operations. In the following list
we will have a closer look at the definitions of different boolean operations.

1. Intersection : The Intersection between two polygons results in a (multi-)polygon
covering the overlappings of the two polygons.

2. Exclusive-Or: The Exclusive-Or between two polygons results in a (multi-)polygon
covering exclusively the areas that were not overlapping.

3. Difference: The Difference between, as the name implies, removes the overlapping
areas (if there are any) from the first polygon.

30

2.4. Polygon clipping

Figure 2.24: Simplified overlapping polygons using union from [RF00].

4. Union: The Union between the subject polygon and and clip polygon results in a
(multi-)polygon covering the areas of both polygons.

These operations can be utilized in the simplification process of the georeferenced vector
data as they can be applied to convey multiple overlapping polygons into one much
simpler and compact polygon. In this section I listed concepts that can be applied in order
to simplify the vector data on a two-dimensional coplanar space. However the sought
results are 3D models. Therefore in the next section I will present applied solutions
to transform polygons into 3D models and further elaborate the necessity of polygon
clipping in order to achieve clean topology during the extrusion of the footprints.

31

2. Background

Figure 2.25: Illustration of the winding number (ω) as shown in [GH98].

2.5 Extrusion
[LM11] mentions the idea of achieving a sound topology of the polygons in the two
dimensional coplanar space before moving on and creating 3D models, also adding that
this step is often omitted in GIS frameworks. The authors discuss extrusion as a mean
of transforming the polygons into prisms and address multiple problems that arise with
this seemingly simple idea. The main problem can be seen in Figure 2.26. Extruding
a coplanar polygon along its orthogonal axes results in a right prism. A right prism
has equal base and top and the sidewalls connecting base and top are rectangles. By
extruding the footprint of a building by its height the resulting prism can be used as a
basic three-dimensional representation of a building.

Figure 2.26: The polygons in (a) represent a building’s footprint which is extruded in (b)
and (c) shows the overlapping of two common sidewalls [LM11].

However to keep a clean topology further steps have to be considered during extrusion
as can be seen in Figure 2.26. The problem shown in the image is that the extrusion of
adjacent polygons results in walls which will overlap, thus leading to issues like z-fighting.
To counter this problem three key requirements are mentioned in [LM11] defining a

32

2.5. Extrusion

consistent topology for the polyhedrons, being:

1. No interior of two prisms intersect;

2. The set of faces is topologically consistent;

3. Each polyhedron is formed by a closed bounding surface, naming it watertight.

The first and third requirements should be self-explanatory, but the second requirement
has to be further explained. Here the faces of the polyhedrons are declared as topologically
consistent, referring to the definition of topological consistency for polygons, also defined
by the authors of [LM11]. There the topological consistency of polygons is described by
the following constraints, M being a set of two dimensional objects:

1. Every line segment in M is formed by two points also in M;

2. The intersection of two line segments L1 and L2, denoted L1 ∩ L2, is either empty or
is a point in M;

3. The intersection of a polygon P with another object in M called O, P ∩O, is empty.

Obviously the first set of constraints addresses objects in the three-dimensional space,
while the second set of constraints addresses objects in the two-dimensional space. In
order to adhere to the defined constraints the authors created their own algorithm for
polygon extrusion. At this point the structures used to represent and store the data
become important in order to explain the algorithm in a further section.

Commonly vector data is stored using a Node-Edge-Face (NEF) structure that describes
the boundaries of the model. The boundary representation is widely used for solid
modeling [Cha14], making it ideal for representation of the models that have to be
integrated into a game engine. In this case however the structures have to be adapted
from NEF in order to ease the extraction of relevant information for the extrusion
algorithm. In [LM11] the authors mention alternative structures empoyed in relation to
GIS data for specific use in a three-dimensional context. However they decide to move
from NEF to the Constraint Delaunay Triangulation (CDT). The CDT can adapt the
triangularization in order to fit a set of passed polygons, as seen in Figure 2.27. This
happens by relaxing the Delaunay condition, which tends to avoid sliver triangles in
the resulting structure. The CDT has been chosen because it naturally stores holes
without the need of additions to the structure. By comparison NEF would require
additional information to be added to the structure, in order to describe holes as can
be seen in Figure 2.27. By comparing (c) and (d) in Figure 2.27 this advantage of CDT
should become obvious. The set of triangles in (d) is aligned in a way that cuts out
the hole, but the NEF structure as seen in (c) just stores the boundary of a bigger and
a smaller polygon. In this case the smaller polygon is marked as a hole of the bigger
polygon. The CDT offers another advantage over NEF, which is the natural integration
into a game engine. This is because the well-known Graphics APIs OpenGL [Mica]
and DirectX [Micb] both use triangles as face primitives, therefore the triangularization
would be necessary anyway for the integration of the models into a game engine. Thus

33

2. Background

Figure 2.27: Boundary representation of different polygons comparing Node-Edge-Face
structure (left) and triangulated structure (right).

the conversion of the NEF polygons into a CDT structure is also the first step of the
extrusion algorithm presented by the authors of [LM11].

2.6 Web Graphics Library
With the improvement of the internet connections’ bandwidth and the development of new
APIs for browsers over the last years a new generation of web-applications has appeared.
Mwalongo et al. already mentioned and motivated the use of web applications as a tool
for interactive visualizations in [MKK+14]. The problem with remote visualizations until
a few years ago, was the missing possibility to run the rendering on the client side.

The Web Graphics Library (WebGL) is an API solving exactly this problem. Trough

34

2.6. Web Graphics Library

Figure 2.28: Structure of a WebGL application from [FWLL11].

the WebGL standard it is now possible to implement remote applications capable of
running the rendering of the sent data on the clients graphic cards as seen in Figure
2.28. Furthermore web applications can be accessed by any compatible browser, making
them cross-platform accessible and profit from the web’s ubiquity. WebGL is a standard
defined in 2011 by the Khronos group and is supported natively in most modern browsers,
opposed to alternative solutions which mostly require additional plug-ins to be installed
[Mar11]. Freely mixing HTML and 3D without concerns for latency, due to the client side
rendering poses a considerable advantage which is still under-utilized in GIS applications.

To further ease the application of WebGL a multitude of libraries can be found with a
quick search on the web. These libraries offer different levels of abstraction for WebGL,
hence enabling multiple approaches and different solutions depending on the task at hand.
One example of such libraries is three.js which is very easy to set up and use, but can
render complex scenes nonetheless [Cab]. Milner et al. already presented the possibility
to improve GIS applications specifically using three.js in [MWE14]. The authors show
the potential WebGL offers for GIS implementations by implementing basic geographic
calculations, based on actual 3D visualizations in the browser, as can be seen in Figure
2.29.

This chapter started with a historical overview of GIS, discussing its evolution over the
past decades. By discussing its origins I wanted to explain how and why GIS grew into
databases containing a humongous amount of free data. The reader should have noticed
that accessing and processing of geo-referenced data is a complex task, thus recognizing
the motivation for my work and the projects which have been mentioned in Section 2.1.2,

35

2. Background

Figure 2.29: Rectangle selection over buildings (left) and the resulting selection (right)
from [MWE14].

Section 2.4 and Section 2.5. The second half of this chapter focused on 3D modelling. By
listing the theories and concepts of different projects I wanted to describe how I came up
with the methodology for the framework that I am going to present in the next chapter.

36

CHAPTER 3
Methodology

This thesis mainly addresses problems encountered during another project [EM15]. The
goal of this former project was to build a skydiving simulator, which enabled the user to
feel the thrill of flying through virtual reality by the means of a Head Mounted Display
(HMD). In order to create an immersive skydiving experience we needed 3D models of
vast areas. Furthermore the jump had to happen over the city of Vienna. After different
interviews with urban planners, architects and the municipal authorities for urban surveys
it became clear that the creation of such a 3D environment was no trivial task. Thus
the research for this thesis started. In the previous chapter I presented the background
knowledge I acquired during my research. In this chapter I am going to describe the data
and discuss the methods I applied in order to develop the presented framework. This
chapter is going to include an in detail description of the framework’s requirements, of
the data, tools, libraries, and algorithms I used.

3.1 Problem Description

During the interview with the municipal authorities for urban surveys I was able to
acquire sources for DTM, DSM and even 3D models of Vienna. However after creating
a test scene in Unity3D, the acquired models resulted in a low frame rate at runtime,
since they were not optimized for game engines. Furthermore the scene was affected by
glitches due to z-fighting, as seen in Figure 2.20. Considering these problems I composed
requirements and constraints for a framework capable of creating simpler models. The
results are based on the data made available by the government and are used in a
game engine for a virtual reality context. Additionally this framework can be used in
combination with the tool presented in [EM15] in such a way that the creation of 3D
environments for the skydiving simulator is considerably simplified.

37

3. Methodology

3.2 System Requirements
In this section I am going to describe the four main requirements taken into consideration
while implementing the presented framework. First and foremost the resulting models
have to be optimized for use in conjunction with a HMD. As was explained in Chapter
2 z-fighting is caused by 2 major factors, the application of a HMD being the first one
and the second one being the context of the simulation which demanded a clear view
of a city’s skyline. This setup requires the near clipping plane of the scene to be close
to the viewers eyes and the far clipping plane to be at the horizon. Creating models
able to perform well under the these conditions constitutes the first requirement of the
framework. The second requirement derives from the fact that the simulator may be
applied at request from different customers asking for differing environments. Creating
scenes for different simulations may be a repetitive but still arduous task. Therefore the
tool has to be flexible in order create city models of any city just by inputting data in an
easy and fast way. Ideally the tool should be able to be run online for two reasons. The
first being the portability. By running the tool as a web application it can be accessed
from anywhere without having to take any compatibility issue into account. Furthermore
modern web applications can also run locally by using any browser just as a container.
The second reason is that by implementing these concepts as a web application the
load of the calculations can be distributed at least between the client and the server if
not even over a whole distributed system. Of course this last requirement is not going
to be fully implemented in our framework, but it is taken into account for its further
development. The next requirement addresses the size of the models created using the
framework. Keeping the scene as lightweight as possible is crucial, since rendering 3D
scenes in a virtual reality context always results in two frames, one for each eye, thus
doubling the rendering efforts for the application. Therefore the models created by this
framework need to be as small as possible. In this case I consider the size of the models
to be directly expressed by the amount of vertices used to render the scene.

Summarizing these four requirements the resulting framework should mostly address the
need for an easy to use and portable tool capable of automating most processes that are
required for the creation of 3D models of a city. Since the data plays a central role for
these processes, in the next section I am going to describe the data used, its sources, and
the statistical methods applied to it in more detail.

3.3 Available Data
The Vienna Open Government Initiative offers the possibility to retrieve various data
free of charge using their geodata viewer. This tool consents the online view of Vienna’s
surveys in form of district maps, multi-purpose maps, terrain maps, and aerial images
with the additional possibility to export the visualized data for specific areas of the
city. In order to reduce the requests on the government’s site I implemented scripts to
automatically download the data I needed during the development. By looking at the
data viewer it becomes obvious that the data is ordered on a grid. Due to the differences

38

3.3. Available Data

in complexity and size of the various downloadable data types, the grid’s granularity
changes depending on the selected data type. Therefore the higher the level of detail the
smaller the grid’s sectors become. By varying in size the sectors of the grid increase in
number thus are also addressed different ways. In order to script the data-acquisition
process I had to make following observations on the government’s geodata viewer.

3.3.1 Geodata Viewer Vienna

The lowest level of detail covers the biggest sectors which have a size of 5x5 kilometres
each. These sectors are ordered on a 10x5 grid covering the whole city of Vienna. The
sectors are addressed by a sequential index which starts at 11 and ends at 60. The first
sector lies on the upper left corner of the grid. This results in a grid enumerated as seen
in Figure 3.3.

Figure 3.1: Marked section is covered by LOD3 as seen in the geodata viewer for Vienna.

The next smaller level of detail is represented by splitting each sector of the previously
described grid into four equal quadrants. Thus each of these quadrants covers an area of
2.5x2.5 kilometers. These quadrants are again addressed by a sequential index which
starts at 1 and ends at 4, with the first quadrant being in the upper left corner of the
splitted sector. Therefore the sectors for this level of detail are addressed by using the
index of the upper level of detail’s sectors in conjunction with a number that goes from 1
to 4. In Figure 3.2 this concept can be seen as it is applied on a concrete example.

The sectors used to represent the smallest level of detail are calculated by applying the
same principle of splitting the sector of the upper level of detail into smaller sectors.
In this case the sectors are split into 5x5 sectors each one covering an area of 0.5x0.5

39

3. Methodology

Figure 3.2: Marked section is covered by LOD2 as seen in the geodata viewer for Vienna.

kilometers. Additionally the index used to address each sector is calculated differently.
Each of these sectors is addressed by two three-digit numbers. The first of which describes
the horizontal while the second describes the vertical position of the sector on the grid as
can be seen in Figure 3.3.

By adopting these observations to define the different iterators I implemented a script
which iterates over each sector and downloads the data provided by the viewer at each
level of detail and stores it in a folder structure that reflects the sequences used by the
geodata viewer.

3.3.2 Terrain Elevation Model

This section briefly reviews terrain elevation models. The terrain elevation models are
represented as raster information. Therefore the elevation models are stored in matrices
of pixels distributed on a regular rectangular grid. In most of our cases terrain elevation
models are handled as images as seen in Figure 3.4.

However the image alone describes only the elevation of the displayed landmark. In
order for the terrain elevation model to be complete each pixel in the image has to be
georeferenced. This is done by adding geospatial information to the raster. A concrete
example of such a terrain elevation can be seen by taking a look at the first few lines in
the ASCII files that can be downloaded from the geodata viewer.

As can be seen in Table 3.1 the first lines of the ASCII file describe the raster itself. This
information about the cell size, the raster’s width (ncols), the raster’s height (nrows) and

40

3.3. Available Data

Figure 3.3: Marked section is covered by LOD1 contained in the LOD2 patch with index
36/1.

First 6 lines of a georeferenced ASCII file:

ncols 5001
nrows 5001
xllcorner 4999.75
yllcorner 342499.75
cellsize 0.5
nodata_value -9999

Table 3.1: Example of header for a georeferenced ASCII file.

the rasters origin point (xllcorner and yllcorner) is used for the allocation of each pixel
on a map. Note that the projection is not mentioned in the ASCII file. Importing the
terrain elevation model with the wrong projection will result in a faulty allocation of each
pixel which will become a problem when data from different projection reference systems
combined, because the sets of information will not match. Therefore this information has
to be looked up. In case of Vienna’s geodata viewer the used coordinate reference system
can be looked up in the EPSG dataset online registry using the EPSG-code 31256.

In addition to the used coordinate reference system the documentation of the geodata
viewer mentions that all elevation measurements are expressed relative to the Viennas
zero-height (156,68 meters over the Adriatic mean sea level).

41

3. Methodology

Figure 3.4: Part of the patch’s 36/1 terrain elevation model as seen in QGIS after import.

3.3.3 Surface Elevation Model

The representation of building surfaces distinguishes the surface elevation model from
the terrain elevation model. However the basic concept remains the same. The geodata
viewer offers the download of the same ASCII files described in the previous section.
By subtracting the terrain elevation raster from the surface elevation raster the height
of each building can be calculated. Once the elevation models were downloaded I used
Matlab to preprocess them with a median filter. I chose the median filter because of two
well known properties. First of all the median filter is a widely used solution for noise
removal. Secondly the median filter functions as an edge preserving filter, which means
that applying it the elevation models will not influence the building’s structure. Hence
the median filter helps me to remove salt and pepper artifacts from the downloaded data
as seen in Figure 2.12.

3.3.4 Orthophoto

While the elevation models described in the previous two sections are used for modelling
the building structures the orthophotos are used for texturing the resulting 3D models.
In this section I will briefly describe the orthophoto’s main properties and why these
properties qualify orthophotos as textures for georeferenced 3D models.

In [Law13] orthophotos are defined as non distorted aerial photographs of the earth’s
surface. Major causes for distortion and occlusion in aerial photographs are the sudden
changes in the surface’s elevation, the camera’s lens and the camera’s orientation. The

42

3.3. Available Data

Figure 3.5: Here an aerial photography (a) can be compared with (b) an orthophoto of
the same scene [HKK07].

process of removing these mentioned distortions is called ortho-rectification and its product
is the orthophoto. In Figure 3.5 the reader can see how an orthophoto distinguishes
itself from a simple aerial photograph. Creating an orthographic top-down projection
of the earth’s surface is not a trivial task. The algorithms applied to remove distortion
from aerial photographies are explained in detail in [HKK07]. Because of the ortho-
rectification’s complexity I will not further describe it here, however the reader should
have noted the difference between a simple aerial photograph and an orthophoto. Because
the orthophoto represents an orthographic top-down projection of the earth’s surface I
simply applied it to the 3D models by transforming their two dimensional representations
(UV-coordinates) with the same top-down projection, as can be seen in Figure 3.5. The
orthophotos are also represented as raster information. As such the same concepts as for
the elevation models apply. This means that every orthophoto comes with additional
meta-information which has to be used to allocate each pixel of the image to a specific
point on the earth’s surface. In Vienna’s geodata viewer this information was included
in a .wld file which comes with the downloaded orthophoto. The .wld file contains the
parameters for the image to world projection of the raster. As we will see in the next
section most GIS will automatically apply the image to world transformation when
importing orthophotos by reading the .wld file.

43

3. Methodology

3.3.5 Combining Raster and Vector Data

Quantum GIS is a Python based framework which includes a multitude of tools for the
evaluation and processing of georeferenced data. I chose QGIS over other proprietary
frameworks because its tool set fully satisfied all my requirements, which were the support
for the file types of the data downloaded from the geodata viewer, statistical evaluation of
given areas over a raster and querying of the downloaded vector-data. As such it enables
me to create an overlay containing all the vector-layer and elevation models of Vienna,
as can be seen in Figure 3.6. In this section I will therefore describe how Quantum GIS
can be used to combine the information from the elevation models with the vector data
in a step-by-step guide.

Figure 3.6: DSM as seen after import into QGIS.

The first step after importing the city’s vector data, the terrain elevation model and the
surface elevation model into a new QGIS project, was to remove the superfluous polygons
from the vector-layer. Because the objective of my work is to create a simplistic 3D
model of the city’s skyline, I focus on the buildings alone. Therefore I remove everything
that is not a building from the vector-layer, using the query tool in QGIS. In Figure 3.7
the resulting filtered vector-layer can be seen. Now every polygon in the vector-layer
represents a building.

In the second step I let QGIS calculate the mean elevation over each polygon in the
previously filtered vector-layer using its “Zonal Statistic” tool. This was done once for
each elevation model. By executing this step the relative height of each polygons base
(terrain elevation model) and roof (surface elevation model) is calculated and the result is
added to the respective polygon in the vector-layer. Figure 3.8 can be observed to better

44

3.3. Available Data

Figure 3.7: DSM and vector layer overlay as seen in QGIS.

understand this step. In the third step, again by using the QGIS query tool, I calculate
the height of each building by subtracting the bases’ elevation from the roof’s elevation,
which were calculated in the previous step. Again the result is added to each respective
polygon’s meta-information. In the fourth and final step I export the vector-layer with
the newly calculated meta-information as a JSON file, which can easily be parsed by
modern browsers using JavaScript.

3.3.6 Import GeoJSON into City Web Extruder

In this section I am going to describe in detail how I handled the georeferenced JavaScript
notated object file, also called GeoJSON, by presenting 3 crucial JavaScript functions I
implemented during the development of the City Web Extruder. These three functions are
all used during the GeoJSON import and bring together ClipperJS, in order to simplify the
two-dimensional data as much as possible, and ThreeJS, in order to extrude the polygons
into three-dimensional models and visualize them. By following the steps described
in the previous section I was able to combine the raster data describing the building’s
footprints with approximate values of the building’s heights. GeoJSON is defined as a
geospatial data interchange format which uses JSON to represent georeferenced data, in
the structures that were described in Section 2.1.5, and their features (e.g. the buildings’
heights) [BDD+16]. The JavaScript Object Notation (JSON) is a lightweight, text-based,
language-independent data interchange format [Bra14].

45

3. Methodology

Figure 3.8: DSM with filtered vector layer overlay as seen in QGIS.

1 {
2 " type " : " Fea tu r eCo l l e c t i on " ,
3 " f e a t u r e s " : [{
4 " type " : " Feature " ,
5 " geometry " : {
6 " type " : " Polygon " ,
7 " c o o r d i n a t e s " : [
8 [1 . 0 , 0 . 0] ,
9 [2 . 0 , 2 . 0] ,

10 [3 . 0 , 0 . 0] ,
11 [1 . 0 , 0 . 0]
12]
13 } ,
14 " p r o p e r t i e s " : {
15 " Height " : " 5 "
16 }
17 }]
18 }

Listing 3.1: Simplified example of a GeoJSON file describing a triangle polygon.

46

3.3. Available Data

GeoJSON was chosen as the import format for the City Web Extruder, because it stores
the polygons in an easily parsable format, since JSON is perfectly integrated into the
JavaScript language. As can be seen in the example shown in Listing 3.1, the GeoJSON
file stores GIS related information using JSON objects. The geometry type "Polygon"
shown in the example GeoJSON on line 6 relates to the GIS data structures that have
been explained in Section 2.1.5. The field "Height", found in the "properties" object,
defined on line 9 in Listing 3.1, stores by how many units the polygon should be extruded.
The listed GeoJSON has been reduced to a few properties to better explain the concept
however in a real case scenario the GeoJSON would also store meta information, like
the used projection system of the coordinates used to represent the polygon, as has
been explained in Section 2.1.2, and different types of polygon as I will explain in the
following paragraphs.The GeoJSON importer I wrote for the ThreeJS library first loads
the GeoJSON file using the JavaScript native JSON parser, which can be seen on line 6
of Listing 3.2. After that the deserialized JSON information is passed as an object to the
parser function, which maps the acquired information onto the ThreeJS data structures
for further processing.

1 function (f i l e , onLoad , onProgress , onError) {
2 var scope = this ;
3 scope . r eader . onprogres s = onProgress ;
4 scope . r eader . onError = onError ;
5 scope . r eader . onload = function (e) {
6 var obj = JSON. parse (scope . r eader . r e s u l t) ;
7
8 onLoad (scope . parse (obj)) ;
9 } ;

10 scope . r eader . readAsText (f i l e) ;
11 }

Listing 3.2: JavaScript function which parses the data from a GeoJSON file.

The parser function shown in Listing 3.3 iterates over all the polygons listed in the
GeoJSON file. Depending on the defined polygon type the program simply maps the
data or applies additional operations before creating a ThreeJS "Shape" object out of the
two-dimensional information stored in the GeoJSON file. In the ThreeJS documentation
"Shape" is described as a structure which defines an arbitrary 2d shape using paths with
optional holes, thus perfectly fitting for the intended use. However note that depending
on the defined polygon type the base geometry is handled differently [Cab]. In the first
case the handled polygon type is defined as "Polygon" at line 14. In this case the polygon
data is directly mapped onto the ThreeJS "Shape" structure. However in the second case,
which is the mapping of the "MultiPolygon" polygon type, another step is adopted before
mapping the information onto the ThreeJS "Shape" structure. In this case the building’s
footprint is described using multiple polygons. Here is were the ClipperJS framework
comes into play in order to perform clipping operations on these multi-polygons.

47

3. Methodology

1 function (obj) {
2 var meta = obj . type ;
3 var c r s = obj . c r s . p r o p e r t i e s . name ;
4 var b u i l d i n g s = obj . f e a t u r e s ;
5 var totalGeometry = new THREE. Geometry () ;
6 conso l e . l og (b u i l d i n g s) ;
7 for (var b u i l d i n g o f b u i l d i n g s) {
8
9 var s u r f a c e = b u i l d i n g . p r o p e r t i e s .SURFACE;

10 var t e r r a i n = b u i l d i n g . p r o p e r t i e s .TERRAIN;
11 var ex t r ude Se t t i ng s = {
12 amount : b u i l d i n g . p r o p e r t i e s .HEIGHT,
13 bevelEnabled : f a l s e
14 } ;
15 var c o o r d i n a t e s = b u i l d i n g . geometry . c o o r d i n a t e s ;
16
17 i f (b u i l d i n g . geometry . type === ’Polygon’) {
18 var shapes = this . parsePolygon (c o o r d i n a t e s) ;
19 for (var shape o f shapes) {
20 var new_geometry = new THREE. ExtrudeGeometry (
21 shape ,
22 e x t rud eSe t t i ng s
23) ;
24 totalGeometry . merge (
25 new_geometry ,
26 new_geometry . matrix
27) ;
28 }
29 } else i f (b u i l d i n g . geometry . type === ’MultiPolygon’) {
30 for (var polygons o f c o o r d i n a t e s) {
31 var shapes = this . parsePolygon (polygons) ;
32 for (var shape o f shapes) {
33 var new_geometry = new THREE. ExtrudeGeometry (
34 shape ,
35 e x t rud eSe t t i ng s
36) ;
37 totalGeometry . merge (
38 new_geometry ,
39 new_geometry . matrix
40) ;
41 }
42 }
43 }
44 }
45
46 var mesh = new THREE. Mesh(totalGeometry , new THREE. MeshNormalMaterial

()) ;
47 mesh . geometry . computeBoundingSphere () ;
48 var cente r = mesh . geometry . boundingSphere . c en te r ;
49 mesh . geometry . t r a n s l a t e (−cente r . x , −cente r . y , −cente r . z) ;
50 mesh . s c a l e . s e t (0 . 1 , 0 . 1 , 0 . 1) ;
51
52 var group = new THREE. Object3D () ;//create an empty container
53 group . add (mesh) ;//add a mesh with geometry to it
54
55 return group ;
56 }

Listing 3.3: JavaScript function mapping the data from a GeoJSON onto the ThreeJS
data structures.

48

3.3. Available Data

In Listing 3.4 the application of ClipperJS can be seen from line 4 to line 20. Here
ClipperJS is used to apply the Union operation between the accumulated polygons in
order to avoid overlapping of multiple polygons, which would cause glitches as has been
explained in Section 2.3. After the clipping the function maps the data on the ThreeJS
"Shape" structure as I mentioned in the previous paragraph. The height found in the
properties of each polygon in the GeoJSON file is used as an extrusion setting as can
be seen on line 14 of the Listing 3.3. On lines 20 and 30 the extrusion settings are then
passed to the ThreeJS "ExtrudeGeometry" function in addition to the base shape of
the building. The result of the extrusion is a geometry structure, which stores vertices,
faces and colors of a three-dimensional model. Each extruded polygon is iteratively
accumulated in the total geometry variable on the lines 21 and 31. Finally the total
geometry is used to created a ThreeJS "Mesh" object which represents triangular polygon
mesh based objects [Cab]. The "Mesh" object’s origin point is also moved to the center
of the scene. Note that this translation transforms the coordinates. This means that
the three-dimensional model loses it’s georeference. In the show case presented in this
work the georeference is not that important after the extrusion, because the different city
patches can be reassembled by using the file’s name as has been described in Section 3.3.1.
In this section I described how the GeoJSON is handled in the City Web Extruder. By
presenting three JavaScript functions, crucial to the import process, I wanted to show how
the frameworks ThreeJS and ClipperJS were used together in the presented framework.
For an in depth explanation of the theories implemented by these two frameworks I
suggest reading Section 2.4 and Section 2.5. By reading this section the reader should
have gained a first impression of the City Web Extruders’s functionality. This section
also concluded the Methodology chapter. This chapter described how I adopted the
theories and frameworks presented in the previous chapter. By reading this chapter the
reader should be able to get an introspective view of the City Web Extruder. In addition
the reader should be able to replicate the methodology in order to further develop the
presented concepts and ideas for his/her own projects. In the next chapter I am going to
present and discuss the results of the City Web Extruder, their integration into a game
engine and how they perform in a virtual reality scene.

49

3. Methodology

1 function (c o o r d i n a t e s) {
2 var subj = [] ;
3 var c l i p = [] ;
4 var c = new Cl ipperLib . Cl ipper () ;
5 for (var i = 0 ; i < c o o r d i n a t e s . l ength ; i++) {
6 for (var point o f c o o r d i n a t e s [i]) {
7 i f (i < 1) {
8 subj . push (new Cl ipperLib . IntPo int (po int [0] , po int [1])) ;
9 } else {

10 c l i p . push (new Cl ipperLib . IntPo int (po int [0] , po int [1])) ;
11 }
12 }
13 i f (c l i p . l ength > 0) {
14 c . AddPath(subj , Cl ipperLib . PolyType . ptSubject , t rue) ;
15 c . AddPath(c l i p , Cl ipperLib . PolyType . ptClip , t rue) ;
16 c . Execute (Cl ipperLib . ClipType . ctUnion , subj) ;
17 c l i p = [] ;
18 }
19 }
20
21 shapes = [] ;
22 shp_points = [] ;
23
24 for (var r o f subj) {
25 i f (r instanceof Cl ipperLib . IntPo int) {
26 shp_points . push (new THREE. Vector2 (r . x , r . y)) ;
27 } else {
28 for (var point o f r) {
29 shp_points . push (new THREE. Vector2 (po int . x , po int . y)) ;
30 }
31 shapes . push (new THREE. Shape (shp_points)) ;
32 shp_points = [] ;
33 }
34 }
35
36 i f (shp_points . l ength > 0) {
37 shapes . push (new THREE. Shape (shp_points)) ;
38 }
39
40 return shapes ;

Listing 3.4: JavaScript function mapping a list of points onto the ThreeJS "Shape" data
structure.

50

CHAPTER 4
Results

By implementing the approaches described in the previous chapter a web framework was
built that is able to create three-dimensional models of buildings by parsing GeoJSON
files. These files contain the two-dimensional information of the buildings’ blueprints and
their respective heights. In Section 4.1 I am going to describe this resulting framework,
how the produced models were textured and how they were imported into a game engine
in order to use them in a virtual reality scene. The texturing of the resulting three-
dimensional models goes beyond the scope of my thesis, however in Section 4.2 I will
describe a fast and efficient method, in order to create a more realistic virtual reality
scene.

4.1 City Web Extruder
The City Web Extruder is the framework which was implemented during the course of my
master thesis and presented here. It is based on Javascript and WebGL for the automated
extrusion of polygons representing buildings’ footprints into three-dimensional models.
The City Web Extruder offers an import for GeoJSON files, which store georeferenced
polygons, representing building blueprints, as described in Section 3.3.6. Once uploaded
the file is parsed and the data is processed in order to assign the height to each building’s
polygon using the ClipperJS library [Joh] and the importer which was specifically written
for the import of GeoJSON files in order to use the ThreeJS framework for further
processing. During this step the data is read from the file and mapped to the ThreeJS’s
data structures in order to apply the extrusion functions to the polygons.

Once finished the center of mass for the resulting model is calculated. After that the
scene center and the model’s origin are both positioned to the calculated center of mass.
This step eases the visualization of the resulting model in the browser. By implementing
this step I enabled rotation and zoom controls around the created model. The user can
use these basic controls to check the resulting model before exporting it. Figure 4.1 shows

51

4. Results

Figure 4.1: View the user is confronted with after successfully importing a GeoJSON in
the City Web Extruder.

the described use case. The colors of the models that can be seen in the figure describe
the orientation of the faces relative to the camera. Notice how the roofs of the buildings
all have the same color. Due to the extrusion process all faces representing roofs look in
the same direction. Therefore all the roofs are represented by the same color which is
the result of mapping the orientation vector of the face onto the faces RGB values. The
ThreeJS library offers a material which can be applied on the model in order to created
this visualization automatically. The reader should keep in mind that all roofs of the
extruded geometry look in the same direction. In the next section a categorization by
this feature is used in order to easily apply textures to the model.

Figure 4.2: Status overview of the City Web Extruder, showing the frames per second
(a), the loaded GeoJSON file (b) and the export options (c).

The ThreeJS library also natively offers the .stl and .obj file export implementations.
Both file types can be used for the import into any arbitrary game engine. In Figure 4.2
the Web City Extruder handles the rendering of a 6,25 qm patch of Vienna at constant
60 FPS due to the simplified geometry. Even though at this point the textures are
still missing they will not cost much performance once integrated in the game engine.
However I am going to discuss how the textures were applied to the three-dimensional
models in the next section.

As I briefly mentioned before there are similar frameworks which can create three-
dimensional models out of blueprints. However at the time none were solving this
problem free of cost and as an online service. ArcGis [arc] and QGis [qgi] are probably

52

4.2. Wall Texturing

the most notable alternatives. Both frameworks bundle multiple features needed for
the evaluation of georeferenced data. ArcGis is the commercial alternative, while QGis
is an open source project. While QGis lacks features when compared to ArcGIS (e.g.
export of three-dimensional models and online service variant), the City Web Extruder
synergizes very well with QGis, as it can offer an online interface to QGis’s functionality.
Additionaly the City Web Extruder expands QGis by the three-dimensional model export
while using its ability to combine the raster and vector data as has been described in the
previous chapter.

4.2 Wall Texturing
In this section I am going to describe how I used the orthophotos to apply textures to
the city models produced using the Web City Viewer. This step was necessary in order
to create a credible and realistic scene in the virtual reality environment, and may be
automated in the future. However in the current framework the texturing is is not part of
the automated process. The approach I adopted to texture the models uses the simplicity
of their geometry. Due to the models being extrusions of two dimensional polygons the
orientation of their faces can only fall into one of the three following categories:

• Down-looking faces

• Up-looking faces

• Faces’ orientation is parallel to the floor

Figure 4.1 not only shows the City Web Extruder in action, but also visualizes the three
variations of the polygons’ faces orientation. Nowadays most computer graphics software
suites implement a function to select faces by their orientation. To implement this step I
used the Blender graphics suite. Blender offers the possiblity to select these three different
face types separately. By doing so I was able to categorize them as floor (down-looking
faces), roof (up-looking faces) and walls (faces’ orientation is parallel to the floor). This
categorization is crucial, because floors, roofs and walls are all texturized in different
ways. In this case the floor and roofs are handled the same way, because they are applied
in an outdoor visualization. The building’s interior is neglectable for the same reason.
However for the texturing of the floor and roofs Blender was used again to project the
orthophoto onto the models using an orthographic top-down projection, as Figure 4.3
demonstrates. Notice how this process replicates the mechanics used to produce the
orthophoto, as has been described in Section 3.3.4. Therefore the orthographic top-down
projection of the model perfectly matches the orthophoto, which means that the result of
the projection can be used as UV-Map of the orthophoto resulting in a perfect texturing
of the roofs and terrain.

The remaining walls were textured using a similar approach. In this case UV-coordinates
were projected using a front view projection. The resulting UV-coordinates distort the

53

4. Results

Figure 4.3: A perspective top-down view on the three-dimensional model (a) and an
orthographic top-down projection (b) of the same model using Blender.

texture along curved walls but the defects were not recognized by the users. In Figure
4.4 the final result can be seen with some textures applied onto it. The scene renders
Vienna’s center using a textured model created with the City Web Extruder however
some higher level-of-detail models where used in order to increase the recognizability of
Vienna’s more picturesque sites. Therefore the Stephan’s Cathedral in the middle of the
scene is a handmade model.

Figure 4.4: The textured models used in a scene which was created using Unity.

By following the steps described in this section the results of the City Web Extruder can
be textured in a fast and easiliy automatable process, however depending on the context
the models are going to be applied in their distortions on curved side walls, which can be
unsatisfactory. Implementing a procedural approach for the textures of the buildings’
facades would be ideal, but goes beyond the frame of this work. Due to the main focus
being the efficient rendering of a city in a virtual reality environment the texturizing of
the side walls was not a crucial feature. In the next section I am going to show how the
models performed once integrated in a game engine and show the final results as the

54

4.3. Game Engine Integration

models were used for [EM15].

4.3 Game Engine Integration
In this section I am going to discuss how the three-dimensional models performed once
integrated in a game engine and compare them to the models which are processed for the
integration into CAD programs instead of game engines. These files can be downloaded
in the *.dwg file format from Vienna’s geodata viewer [Mag16]. The models stored in
the *.dwg files are based on the same data as the models created using the City Web
Extruder. Comparing these files will show that the processes which produced them
implemented different constraints thus offering areas where one performs better than
the other. The game engine chosen for the comparison was Unity, the same engine used
for the creation of the virtual reality scene in [EM15]. The downloadable models come
without any texture therefore the comparison is done without taking them into account
for both models. Therefore except for the models both scenes are exactly the same,
containing one-directional light for the lighting and the default procedural skybox offered
by Unity.

Figure 4.5: Vienna’s city center rendered using the downloadable models from the geodata
viewer (a) and the same scenery visualized using the models created using the presented
framework (b).

Figure 4.5 shows the rendered images using the implemented direct comparison of the
models. Both models contain the exact same buildings in a 6.25x6.25 kilometers quadrant
around Vienna’s city center. The City Web Extruder results miss details on roofs due to
the union operations on the polygons of the same building, however the rendered scene
(b) runs at 82.8 FPS compared to the 64.2 FPS achieved by geodata viewer’s scene (a).
Joining all the buildings into one object also drastically reduced the draw calls from as
scene (a) uses up to 31 draw calls while scene (b) only uses 15 draw calls per rendered
frame, which also increases the performance. Finally I also compared the size of the
models. The geodata viewer’s model is stored in a *.fbx file of 340 MB while the model
created using the City Web Extruder has a size of 14.6 MB once also converted into a
*.fbx file using Blender for the comparison.

55

4. Results

Finally the figures 4.6 and 4.7 show the city models in action as seen by the user of
[EM15]. The reader may notice some additional models and effects (e.g. zeppelin, images,
day-night cycle, fireworks, ... etc.) in the shown images that were added to the scene for
story telling purposes.

Figure 4.6: The textured models as applied in the skydiving simulation described in
[EM15].

Figure 4.7: The textured models as seen during the landing phase of the skydiving
simulation described in [EM15].

56

CHAPTER 5
Conclusion

The research presented in this master thesis examined the possibilities to create three-
dimensional models of Vienna’s buildings using freely accessible georeferenced data.
Additionally the question whether the resulting models could be used in a virtual reality
oriented scene was answered. The resulting framework, a web application capable of
creating three-dimensional models out of a GeoJSON file storing building footprints and
their respective heights, has been documented in this work. By doing so it has been
shown that it is fully possible to recreate a full city model of Vienna by using free data
and without the use of any commercial service. Additionally the results showed that
using the three-dimensional buildings created using the Web City Extruder instead of
the prefabricated models or simple surface interpolations of the DSM, drastically reduced
the models size and improved the performance. The created models may have a lower
level-of-detail, when compared to the models created using commercial alternatives or
CAD suites, however this loss of detail was accepted during the implementation of the
presented framework in order to further improve the performance for a virtual reality
context. The loss of detail is caused by performing a union operation over all polygons of
the same buildings, which creates a single polygon for each building, but removes the
possibility to visualize different layers of the same building. The presented framework
serves as a proof of concept and can be further improved by adopting smarter algorithms
for the buildings’ extrusion and polygon clipping. Procedural texturing of the building’s
facades and automated roof creation are topics that expand the presented framework
reasonably, but would have gone beyond the scope of this work.

The main focus of this work lied on the optimization of the model’s geometry in order
to save computational power and reduce error-proneness during rendering for a virtual
reality experience. The concept has been further expanded by the idea of implementing
the service as a web application using the relatively young WebGL technology. Thus the
presented framework offers the first non commercial alternative for three-dimensional
model creation using georeferenced data. The City Web Extruder has opened a number

57

5. Conclusion

of development and research possibilities. For instance, in the future it may be possible
to fully automate the process. Additionally the framework could be expanded to a full
blown service-oriented web platform capable of processing the data on the client side by
using the client’s graphics card through WebGL. This way the workload on the servers
could be considerably reduced, making the whole web platform easily scalable. From
there on it would be possible to iteratively add services and features to the platform.
For example, procedural facade and roof creation could be added to the framework’s
pipeline. Until now the City Web Extruder has been used to easily create scenes for
experiments on virtual reality and motion sickness in a fast and easy way [EM15]. The
resulting scenes have also been applied in simulations which were presented during public
events. Still the City Web Extruder was mostly used by informatics students, however by
further automating and simplifying the whole process the framework could be used by
users of different disciplines like urban planners or architects, which often have the need
for three-dimensional models like for instance scene visualizations, lighting simulations
and flooding simulations [ZSP][DH07][RV01].

58

List of Figures

1.1 A patch of Vienna rendered in the browser using the presented framework. . 2
1.2 3D model used for a light simulation as seen in [ZSP]. 2
1.3 A simple buildings footprint created using GIS data. 4

2.1 John Snow’s map overlay. 8
2.2 GPS data overlaid on a simple map. 10
2.3 Unwrapping a cylindrical projection [Law13]. 11
2.4 The UTM raster from [Dom]. 11
2.5 Unwrapping a conic projection [Sny87]. 12
2.6 From unprojected to projected coordinates [Law13]. 13
2.7 Geoid describing the Earth’s surface from [NASa]. 14
2.8 Simple visualization of Airborne Laser Scan (ALS) data acqusition [Mag16]. . 15
2.9 DEM of Vienna visualized as a grayscale image. 16
2.10 The basic structures used for all geometries in GIS. 17
2.11 A screenshot taken from the online tool to download GIS data for Vienna

[Mag16]. 19
2.12 Imperfections of DSM’s showing a helicopters rotor in the final result. 20
2.13 Difference between DTM and DSM [Mar]. 21
2.14 Example of DSM from the St. Othmar church in Vienna. 21
2.15 Example of DTM of same area seen in Figure 2.14. 22
2.16 Textured surface created by interpolating raster data of DEM. 23
2.17 Three-dimensional surface which can be created using a DSM. [BRBM10] . . 24
2.18 Gray scale image of the world’s DEM. [NASb] 25
2.19 QGIS overlay of the DSM and the building footprints. 26
2.20 Showing z-fighting in Blender 2.5 (left) and Google SketchUp 8 (right) from

[VF13]. 27
2.21 Visualization of the view frustum between clipping planes [Rea16]. 28
2.22 Depth of the closest object to each pixel is stored in the z-buffer [LKR]. . . . 29
2.23 Example showing difficulties of overlapping polygons [RF00]. 30
2.24 Simplified overlapping polygons using union from [RF00]. 31
2.25 Illustration of the winding number (ω) as shown in [GH98]. 32
2.26 The polygons in (a) represent a building’s footprint which is extruded in (b)

and (c) shows the overlapping of two common sidewalls [LM11]. 32

59

2.27 Boundary representation of different polygons comparing Node-Edge-Face
structure (left) and triangulated structure (right). 34

2.28 Structure of a WebGL application from [FWLL11]. 35
2.29 Rectangle selection over buildings (left) and the resulting selection (right)

from [MWE14]. 36

3.1 Marked section is covered by LOD3 as seen in the geodata viewer for Vienna. 39
3.2 Marked section is covered by LOD2 as seen in the geodata viewer for Vienna. 40
3.3 Marked section is covered by LOD1 contained in the LOD2 patch with index

36/1. 41
3.4 Part of the patch’s 36/1 terrain elevation model as seen in QGIS after import. 42
3.5 Here an aerial photography (a) can be compared with (b) an orthophoto of

the same scene [HKK07]. 43
3.6 DSM as seen after import into QGIS. 44
3.7 DSM and vector layer overlay as seen in QGIS. 45
3.8 DSM with filtered vector layer overlay as seen in QGIS. 46

4.1 View the user is confronted with after successfully importing a GeoJSON in
the City Web Extruder. 52

4.2 Status overview of the City Web Extruder, showing the frames per second
(a), the loaded GeoJSON file (b) and the export options (c). 52

4.3 A perspective top-down view on the three-dimensional model (a) and an
orthographic top-down projection (b) of the same model using Blender. . . . 54

4.4 The textured models used in a scene which was created using Unity. 54
4.5 Vienna’s city center rendered using the downloadable models from the geodata

viewer (a) and the same scenery visualized using the models created using
the presented framework (b). 55

4.6 The textured models as applied in the skydiving simulation described in [EM15]. 56
4.7 The textured models as seen during the landing phase of the skydiving

simulation described in [EM15]. 56

List of Tables

2.1 List of files of the SHP standard [Ins98]. 18

3.1 Example of header for a georeferenced ASCII file. 41

60

Acronyms

ALS Airborne Laser Scan. 13, 14, 20, 24

DEM Digital Elevation Model. 14, 16, 20–25, 59

DSM Digital Surface Model. 21, 22, 24, 26, 59

DTM Digital Terrain Model. 21, 22, 59

GIS Geographic Information Systems. 7, 9, 13, 17, 19, 22, 25, 28, 32, 33, 35, 59

GPS Global Position Systems. 9, 10, 12, 59

HMD Head Mounted Display. 37, 38

OGC Open Geospatial Consortium. 9, 19

OSM Open Street Map. 9

QGIS Quantum Geographic Information System. 22, 24, 26, 44, 59

WebGL Web Graphics Library. 34, 35

WGS World Geodetic System. 12

61

Bibliography

[Ago05] Max K Agoston. Computer graphics and geometric modeling, volume 1.
Springer, 2005.

[arc] Arcgis. https://www.arcgis.com/features/index.html [Accessed: June 2017].

[BDD+16] Howard Butler, Martin Daly, Allan Doyle, Sean Gillies, S Hagen, and
T Schaub. The geojson format. Technical report, 2016.

[Bra14] Tim Bray. The javascript object notation (json) data interchange format.
2014.

[BRBM10] CARLO Baroni, ADRIANO Ribolini, GIUSEPPE Bruschi, and Paolo Man-
nucci. Geomorphological map and raised-relief model of the carrara marble
basins, tuscany, italy. Geografia Fisica e Dinamica Quaternaria, 33(2):233–
243, 2010.

[C+15] PostGIS Project Steering Committee et al. Postgis documentation, 2015.

[Cab] Ricardo Cabello. Three.js homepage. https://threejs.org/ [Accessed: May,
2017].

[Cha14] Kuang-Hua Chang. Product Design Modeling using CAD/CAE: The Com-
puter Aided Engineering Design Series. Academic Press, 2014.

[DH07] J Döllner and Benjamin Hagedorn. Integrating urban gis, cad, and bim data
by servicebased virtual 3d city models. R. e. al.(Ed.), Urban and Regional
Data Management-Annual, pages 157–160, 2007.

[Dom] Public Domain. The longitude and latitude zones in the universal transverse
mercator system. URL: http://goo.gl/5CMBIk [Accessed: August, 2016].

[EM15] Horst Eidenberger and Annette Mossel. Indoor skydiving in immersive
virtual reality with embedded storytelling. In Proceedings of the 21st ACM
Symposium on Virtual Reality Software and Technology, pages 9–12. ACM,
2015.

63

[FWLL11] Lei Feng, Chaoliang Wang, Chuanrong Li, and Ziyang Li. A research for
3d webgis based on webgl. In Computer Science and Network Technology
(ICCSNT), 2011 International Conference on, volume 1, pages 348–351.
IEEE, 2011.

[GH98] Günther Greiner and Kai Hormann. Efficient clipping of arbitrary polygons.
ACM Transactions on Graphics (TOG), 17(2):71–83, 1998.

[HKK07] Ayman F Habib, Eui-Myoung Kim, and Chang-Jae Kim. New methodologies
for true orthophoto generation. Photogrammetric Engineering & Remote
Sensing, 73(1):25–36, 2007.

[HW08] Mordechai Haklay and Patrick Weber. Openstreetmap: User-generated street
maps. IEEE Pervasive Computing, 7(4):12–18, 2008.

[Ins98] Environmental Systems Research Institute. Shapefile technical description.
http://www.esri.com, 1998.

[Joh] Angus Johnson. The clipper library. URL: http://goo.gl/RpfDB4 [Accessed:
September, 2016].

[Law13] Joel Lawhead. Learning Geospatial Analysis with Python. Packt Publishing
Ltd, 2013.

[LB83] You-Dong Liang and Brian A Barsky. An analysis and algorithm for polygon
clipping. Communications of the ACM, 26(11):868–877, 1983.

[LKR] Ph.D. Loren K. Rhodes. z-buffer algorithm. URL: http://goo.gl/Ju3qmy
[Accessed: August, 2016].

[LM11] Hugo Ledoux and Martijn Meijers. Topologically consistent 3d city models
obtained by extrusion. International Journal of Geographical Information
Science, 25(4):557–574, 2011.

[Mag16] Stadtvermessung Wien Magistratsabteilung 41. Geodatenviewer. URL:
https://goo.gl/vtTavi, January 2016.

[Mar] MartingOver. Surfaces represented by a digital surface model and digital
terrain model.

[Mar11] Chris Marrin. Webgl specification. Khronos WebGL Working Group, 2011.

[Mica] Microsoft. Direct3d primitives documentation. URL: http://goo.gl/GMh1Tp
[Accessed: September, 2016].

[Micb] Microsoft. Direct3d primitives documentation. URL: http://goo.gl/GMh1Tp
[Accessed: September, 2016].

64

[MKK+14] Finian Mwalongo, Michael Krone, Grzegorz Karch, Michael Becher, Guido
Reina, and Thomas Ertl. Visualization of molecular structures using state-
of-the-art techniques in webgl. In Proceedings of the 19th International ACM
Conference on 3D Web Technologies, pages 133–141. ACM, 2014.

[MWE14] James Milner, Kelvin Wong, and Claire Ellul. Beyond visualisation in 3d gis.
2014.

[NASa] NASA. Gravimetry map from the gravity recovery and climate experi-
ment—grace, a joint mission of nasa and the german aerospace center. URL:
http://goo.gl/54rrFZ [Accessed: August, 2016].

[NASb] NASA. Gravimetry map from the gravity recovery and climate experi-
ment—grace, a joint mission of nasa and the german aerospace center. URL:
http://https://goo.gl/FfZGZE [Accessed: May, 2017].

[Ope] OpenStreetMap. Openstreetmap data to postgresql converter. URL:
https://github.com/openstreetmap/osm2pgsql [Accessed: August, 2016].

[PS12] Emil Persson and Avalanche Studios. Creating vast game worlds: Experiences
from avalanche studios. In ACM SIGGRAPH 2012 Talks, page 32. ACM,
2012.

[qgi] Quantum gis. https://www.qgis.org/en/site/ [Accessed: June 2017].

[Rea16] Reallusion. Clipping planes of the camera. URL: https://goo.gl/94UeWz,
August 2016.

[RF00] Marilina Rivero and Francisco R Feito. Boolean operations on general planar
polygons. Computers & Graphics, 24(6):881–896, 2000.

[RV01] Ismo Rakkolainen and Teija Vainio. A 3d city info for mobile users. Computers
& Graphics, 25(4):619–625, 2001.

[SH74] Ivan E Sutherland and Gary W Hodgman. Reentrant polygon clipping.
Communications of the ACM, 17(1):32–42, 1974.

[Sny87] John Parr Snyder. Map projections–A working manual, volume 1395. US
Government Printing Office, 1987.

[TBB01] James A Thompson, Jay C Bell, and Charles A Butler. Digital elevation
model resolution: effects on terrain attribute calculation and quantitative
soil-landscape modeling. Geoderma, 100(1):67–89, 2001.

[TM98] Carlo Tomasi and Roberto Manduchi. Bilateral filtering for gray and color
images. In Computer Vision, 1998. Sixth International Conference on, pages
839–846. IEEE, 1998.

65

[Tom74] Roger F Tomlinson. The Application of Electronic Computing Methods and
Techniques to the Storage, Compilation and Assessment of Mapped Data.
PhD thesis, University College London (University of London), 1974.

[Vat92] Bala R Vatti. A generic solution to polygon clipping. Communications of
the ACM, 35(7):56–63, 1992.

[VF13] Andreas-Alexandros Vasilakis and Ioannis Fudos. Depth-fighting aware
methods for multifragment rendering. IEEE transactions on visualization
and computer graphics, 19(6):967–977, 2013.

[Wes10] Erik Westra. Python geospatial development. Packt Publishing Ltd, 2010.

[WL99] Aloysius Wehr and Uwe Lohr. Airborne laser scanning—an introduction and
overview. ISPRS Journal of photogrammetry and remote sensing, 54(2):68–82,
1999.

[ZSP] Peter Zeile, Ralph Schildwächter, and Tony Poesch. 3d-stadtmodell-
generierung aus kommunalen geodaten und benutzerspezifische echtzeitvisu-
alierung mithilfe von game-engine-techniken.

66

	Abstract
	Kurzfassung
	Contents
	Introduction
	Context
	Problem
	Roadmap

	Background
	Geographic Information Systems
	Digital Elevation Model
	Geometry Modelling
	Polygon clipping
	Extrusion
	Web Graphics Library

	Methodology
	Problem Description
	System Requirements
	Available Data

	Results
	City Web Extruder
	Wall Texturing
	Game Engine Integration

	Conclusion
	List of Figures
	List of Tables
	Acronyms
	Bibliography

