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Kurzfassung

Schatten helfen dabei, räumliche Zusammenhänge zu begreifen, und sind aus modernen
Echtzeitvisualisierungen nicht mehr wegzudenken. In der Echtzeitgrafik werden häufig
Shadow-Mapping Verfahren in Kombination mit Tiefpassfiltern verwendet um visuell
ansprechende Schatten zu erzeugen. Der weichzeichnende Effekt dieser Filter hat den
Vorteil, dass Fehler, die bei beim Abtasten der Szenengeometrie entstehen, versteckt
werden können, was wiederum die visuelle Qualität der erzeugten Schatten erhöht.

Ziel dieser Arbeit ist es, diese Filter auszunutzen, um eine Funktion aus dem Radius des
Weichzeichnungsfilters und der Abtastrate der Shadow Map herzuleiten, die es ermöglicht,
Rechenleistung einzusparen, während der optische Eindruck der Schatten erhalten bleibt.
Im Verlauf dieser Arbeit werden wir ergründen, wie diese Fehler entstehen und wie
man sie vermeiden kann. Eine Studie hilft uns dabei, ein optimales Verhältnis zwischen
der Abtastfrequenz der Shadow Map und dem Radius des Filters zu finden. Aus den
Ergebnissen der Studie leiten wir dann eine Formel ab und entwickeln einen Algorithmus,
mit dem sich bestehende Shadow-Mapping Algorithmen erweitern lassen können. Anhand
der Implementierung eines Prototyps können wir zeigen, dass sich mit unserer Methode
in vielen Fällen die Sampling Frequenz reduzieren lässt und Rechenleistung eingespart
werden kann.
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Abstract

Shadows are an indispensable aid for understanding spatial relations of objects in
natural scenes, which is why they are very important for real-time rendering applications.
Combining filtering techniques with shadow mapping is a common tool to simulate
visually pleasing shadows in interactive applications. A positive effect of such approaches
is that filtering blurs aliasing artifacts caused by sampling the discretized geometric data
stored in the shadow map, thereby improving the visual quality of the shadow.

The goal of this thesis is to exploit common filtering algorithms in order to find a
function of blur radius and shadow-map sampling frequency, which allows for optimized
computational performance while mostly preserving the visual quality of the shadow.
In the course of this work, we investigate how shadow artifacts arise and how to hide
them. We set up and execute a user study to find the optimal relation between the
shadow-map sampling frequency and the filter radius. From the results of the user study,
we derive a formula and develop an algorithm that can be incorporated into existing
shadow-mapping algorithms. We evaluate our results by applying the algorithm to a
custom-made rendering framework and observe an increase in processing speeds.
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CHAPTER 1
Introduction

1.1 Motivation

Shadows are an indispensable aid for understanding spatial relations of objects in natural
scenes. While we are used to them in nature, without shadows it would be hard to infer
an object’s position in a virtual scene projected onto an image. Figure 1.1 illustrates
this by showing the same scene rendered with different shadow features. Our ability to
interpret spatial relations and sometimes shapes from them also helps artists to transport
information and aesthetics. Hence, shadows are crucial for realistic image synthesis.

“Where there is light, there must be shadow ...” [Mur12]

Figure 1.1: Shadows help us infer spatial relations between objects. While shading helps
us understand what he objects’ surfaces look like (e.g., that the circular shape is a sphere),
the shadows indicate the objects’ elevations relative to the other surfaces.

1



1. Introduction

The concept of shadows is very simple to grasp since it is intuitively just the absence
of light. Despite their simple nature, they still pose a challenging problem in real-time
rendering applications.

In computer graphics we generally distinguish between simulating physically correct light
transport and emulating the visual phenomena caused by light. If we would simulate
light rays, shadows would appear automatically due to the lack of light rays reaching a
surface. Unfortunately, light transport simulations (the interested reader might take a
look at Pharr’s excellent book on physically based rendering [PH04]) are very complex
and infeasible to compute in real-time.

When we emulate phenomena caused by light in real-time rendering, we distinguish
between shading and shadowing. Shading techniques like the widely employed “Blinn-
Phong shading” [Bli77] basically determine a surface’s color based on the its orientation
in relation to viewer and light source. This means that light is not treated as rays but
rather as an environmental feature affecting the color of each visible surface. Since each
surface is treated independently, shading approaches do not offer capabilities to detect
occlusions of light by other surfaces. In order to emulate shadows, shadowing calculations
have to be performed separately.

Attempts at emulating plausible shadows in computer graphics have kept many researchers
busy over the past decades and are still a challenging research field today. In the next
paragraphs, we give a short historic introduction to this topic and dig deeper in the
upcoming chapters, as real-time shadowing is in the focus of this thesis.

Shadow rendering dates back to 1968, when Appel et. al. [App68] created an algorithm
which used ray casting to compute hard shadows. This algorithm was aimed at working
with digital plotters and used plus signs (“+”) to draw shadows. Two years later,
Bouknight and Kelley [BK70] introduced a rasterization-based algorithm to draw scenes
on CRT displays. This approach was already very similar to modern shadow mapping
algorithms as it combined rasterizing operations for the light source and viewer in order
to evaluate whether a polygon lies in shadow or not.

20 years ago, when real-time 3D applications started to gain popularity (especially
through computer games), developers and researchers came up with simple solutions
which were not strongly focused on realism, but were aimed at assisting the user in
spatial orientation. One of the earliest wide-spread approaches were approximate shadows
(often called blob shadows, see Figure 1.2a), where the shadows of dynamic objects were
approximated by very simple geometry (e.g., a circle drawn on the surface beneath the
player). Other applications used projected shadows [Bli88], which projected occluder
geometry from the light source onto the receiving plane, thus covering the shadowed area.
However, the projective shadow approach is not capable of computing self shadowing
and was – due to the geometric processing routines involved and the lack of dedicated
hardware to compute them efficiently at the time – only practical for scenes with very
few and large receivers. Also, it potentially produces wrong shadows when objects lie
behind the light source or behind the receiving surface.
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1.1. Motivation

(a) Super Mario 64 (1996) (b) Doom 3 (2004)

(c) Grand Theft Auto V (2013)

Figure 1.2: Evolution of shadows in the last two decades. 20 years ago shadows in
real-time rendering were primarily focused on spatial cues like blob Shadows in “Super
Mario 64” (a). Only a few years later they evolved to become much more complex.
“Doom 3” (b) employed stencil Shadows to feature shadows accurately representing object
silhouettes. Recently soft shadows as in “Grand Theft Auto V” (c) are employed more
frequently with the focus on adding realism to shadows.
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1. Introduction

(a) Low resolution (b) High resolution (c) Low resolution, filtered

Figure 1.3: Side-by-side comparison of the same shadow silhouette rendered with low
and high shadow map resolution. The blocky artifacts (a) can be mitigated by using a
higher resolution (b) or proper filtering (c).

With the rise of more powerful graphics processing hardware, more sophisticated ap-
proaches based on shadow volumes [Cro77](sometimes referred to as stencil shadows, see
Figure 1.2b) and shadow mapping [Wil78] were developed. In this thesis, we are going
to cover shadow volumes briefly in Chapter 2 and focus on the more wide-spread and
versatile algorithms based on shadow mapping. We start by introducing the method and
our contributions to it.

1.2 Problem Definition

Currently, the most widely used techniques for computing shadows in interactive applica-
tions are based on shadow mapping [Wil78], which is intended to provide a reasonably
good trade-off between computational performance and realism. The basic principle
behind shadow mapping is to render the scene from the point of view of the light source
and save the distance a light ray travels before it hits a surface in a buffer, called the
shadow map. Later in the rendering process, this information is used to determine
whether a point on a surface seen by the viewer was ever hit by a light source or lies
in shadow. Although the size of a shadow map is limited, proper filtering techniques
compensate lack of detail to some degree and allow softening of shadow silhouettes which
further support realistic shadow appearance. The improvement in realism simply occurs
based on the fact that in nature no light sources with an infinitesimally small area exist,
hence there are no point light sources and no strictly hard shadow silhouettes.

All shadow-mapping approaches rely on a proper selection of the underlying shadow-map
resolution. If the resolution is chosen too low, staircase artifacts appear. Choosing
a high resolution prevents such artifacts, but also increases the computational effort.
Fortunately, proper filtering can hide artifacts with the downside of reducing silhouette
detail. Figure 1.3 illustrates the visual impact of increasing the shadow-map resolution
versus a growing filter radius.
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1.3. Contributions

In general terms, a good shadow map is one that has a small resolution, while being
perceived as artifact-free by the user. We want to exploit the low-pass filtering property
of soft shadow outlines to introduce a function that allows us to compute the minimal
shadow-map size that produces artifact-free results.

1.3 Contributions

In this thesis we want to find out which shadow-map resolution is sufficient to create
perceptually plausible shadows in real-time rendering. In order to reach our goal, we
investigate common shadow-map filtering algorithms and make the following contributions
to this field of research:

• We investigate the relatively complex problem of artifacts generated by arbitrarily
aligned shadow maps in soft-shadow algorithms and break down the huge parameter
space, which can be hardly investigated in a user study, into a simplified version.

• We design a perceptual user study that allows us to analyze the impact of under-
sampling artifacts on shadow perception.

• We develop a novel approach to dynamically adjusting shadow-map sizes for real-
time soft shadowing algorithms. By reducing the number of depth samples in a
shadow-map, we can increase performance in shadow-map generation since there
are less fragments to process and fewer texture lookups. This also improves cache
efficiency because shadow samples are tightly packed and redundant samples are
being avoided.

• Our generic method is adaptable and can be applied to several existing soft shadow-
mapping algorithms.

1.4 Overview

The aim of this thesis is to investigate and optimize existing shadow-map filtering
algorithms. We therefore will go on and discuss literature related to real-time shadowing
in Chapter 2 which serves as the foundation for our research.

We continue with an introduction to real-time shadow rendering, with the focus on
shadow-mapping techniques and soft shadow extensions related to our work. While
only being a small subset of the existing research in this field, Chapter 3 supplies the
theoretical foundations which are necessary to understand our methods.

In Chapter 4 we will introduce our own research by investigating the behavior of shadow
mapping with respect to visual artifacts. Therefore, we will analyze the impact of
shadow-map resolution and filter sizes on the perceived visual quality.

5



1. Introduction

Since defining visual quality is a perceptual problem, we argue for setting up an empirical
experiment based on a user study. We will use this experiment to find out which shadow-
mapping configurations successfully hide visual artifacts from the participants. Therefore,
we will discuss the relevant variables involved in order to set our user study up and
describe how we evaluated the user study results.

We continue with discussing the study results in Chapter 5. They allow us to formulate
a generic method to estimate shadow-map resolutions which perceptually hide artifacts.
Afterwards, we provide a detailed description on the algorithmic approach used in our
implementation and provide results and benchmarks.

We then conclude by summarizing the major findings and drawbacks in this thesis and
present an outlook on possible future research directions.

6



CHAPTER 2
Related Work

In this chapter we are going to take a look at literature dedicated to real-time shadow
rendering. The literature we present is quite extensive and provides an overview of
research done in this field. Subsequently, Chapter 3 will explain the most relevant subset
of theoretical foundations needed for our research.

2.1 Shadow Mapping
A vast amount of publications describing real-time shadow algorithms have been published
in the last years, especially during the last two decades.

Most of these algorithms are extensions to shadow mapping which was first introduced
by Williams [Wil78] in 1978. They all follow the same principles (already outlined in
Section 1.2) of projecting the light-source’s field-of-view onto a discretized texture. This
texture (i.e. the shadow map) is then used to determine whether a point on a surface is
illuminated by the light source or not by comparing the distances from both points-of-view
(we refer to this as the shadow-test).

Nowadays a variety of filter based extensions to the traditional shadow mapping algorithm
exist. Not only are they aimed at softening the rough and jagged silhouettes produced
by the original approach, they also increase realistic look of shadows by emulating a
penumbra region (where the light is partially visible). The added realism is due to the
fact that in nature nearly all shadows have soft boundaries because there is no such thing
as a point light source. In the following paragraphs we will name popular extensions and
briefly address their porpuse. We will discuss details about these approaches in the next
chapter.

Percentage Closer Filtering (PCF) [RSC87] addresses the problem of anti-aliasing in
shadow maps which we saw in Figure 1.3(a). The goal of PCF is to get a smooth
transition on the shadows silhouette by blurring the binary result of the shadow test.

7



2. Related Work

However, traditional shadow maps contain depth information, hence pre-filtering cannot
be achieved directly. The solution is a screen space averaging approach.

Variance Shadow Maps [DL06] approximate the depth values by storing mean and
variance of the depth distribution. Instead of averaging multiple samples like in PCF, the
probability of a fragment being lit is calculated by approximating the depth’s distribution
through the moments. Storing mean and variance of the depth distribution instead of
the actual depth values allows pre-filtering of the shadow map.

Convolution Shadow Maps [AMB+07] use Fourier expansion to store and reconstruct
depth values. This approach allows shadow maps to be pre-filtered but requires a lot of
memory and expensive memory transfers to retrieve the Fourier coefficients.

Exponential Shadow Maps [AMS+08] adopt an exponential function to approximate the
shadow test. The main benefits are the possibility to pre-filter and cheap memory- and
computational costs.

2.2 Soft Shadows
Some algorithms can further increase the physical plausibility by trying to take the
distance from the light source to the occluder into account thereby generating variable
penumbra sizes. These variable sized shadows are often referred to as Soft Shadows.

Percentage Closer Soft Shadowing (PCSS) [Fer05] extends the capabilities of PCF by
evaluating the filter radius for each fragment based on the distance from the shadow
occluder to the receiver. This approach features a more plausible penumbra behavior in
regions where occluder and receiver merge (contact hardening).

Schwärzler et. al. [SMSW12] compute Soft Shadows by using use multiple shadow maps
distributed over the area of the light source. They employ a custom strategy to find
important sampling points and blend the sample together. While their method is very
accurate it is far more costly than less accurate methods such as PCSS.

Several papers [GBP06], [GBP07], [AHL+06], [ASK06], [SS07] have been published,
which propose variants of a technique called backprojection. The idea is to render a
discretized representation of the scene from the light source’s view and project the
resulting texels into world space. When the scene is drawn from the viewer’s point of
view the corresponding texel gets reprojected onto the light source where the amount of
occlusion can be estimated. While these approaches potentially produce more accurate
results than PCSS they are prone to artifacts due to overlapping occluders, objects being
too close to the light source or when the penumbra is extremely large. In addition to
that, it can become very costly in terms of computational effort when a huge number of
texels have to be reprojected.

In Penumbra Maps [WH03], in addition to a shadow map a so-called Penumbra Map is
generated by analyzing the objects silhouettes from the position of the light source. This
allows a penumbra region to be estimated during the shading pass.

8



2.3. Shadow Volumes

2.3 Shadow Volumes
The approaches presented in the preceding paragraphs were image based. In contrast,
Shadow Volumes [Cro77] rely on a geometric approach for solving the shadowing problem.
Instead of transforming the scene into a shadow map, Shadow Volume algorithms describe
shadows by attaching new geometric elements to the scene. These algorithms basically
extrude geometry, which makes them ineffective with increasing scene complexity under
dynamic lighting conditions. Since Shadow Volumes are geometric entities they produce
very crisp silhouettes. Penumbra Wedges [AAM03], [FBP06] offer support for more
realistic looking shadows by providing penumbra effects.

2.4 Comparisons and State of the Art Reports
Hecher et al. [HBM+14] present a comparison of some of these algorithms using a
comprehensive perceptual study. They have come to the conclusion that Percentage
Closer Soft Shadows provide a sufficient amount of realism for most users and does not
perform significantly worse among experts.

For further reading the reader is referred to the excellent book on real-time shadows by
Eisemann et. al. [ESAW11]. It covers many aspect of real-time shadow computation and
extensively analyzes the shadow mapping algorithms and its various extensions.

Insight on the history and evolution of shadowing algorithms can be found in the
overview by Woo et. al. [WPF90] and in the outdated but more recent report by
Hasenfratz et. al. [HLHS03] which focuses on real-time shadowing.

2.5 Summary
In this thesis we will focus on PCF and PCSS as representative examples of filter based
methods, but our findings can potentially be applied to any of the filtering techniques
named above. We chose PCF based shadow map filtering approaches because they
are widely used in modern applications, provide good quality, are very robust and are
fairly easy to implement. Ashu Rege, who is currently vice president of engineering at
NVIDIA’s computer vision department, stated back in his 2004 whitepaper on Shadow
Considerations [Reg04] that, when comparing shadow volumes with shadow mapping
algorithms: “Long term, however, we expect shadow maps to be more widely used”. This
outlook proved to be valid, since currently all major industrial game engines use filtered
shadow maps.

9





CHAPTER 3
Theoretical Foundations

Recall our goal: We want to investigate the relation between resolution and filtering
of shadow maps and their impact on the visual quality. This will help us find the
optimizations we claim to contribute. That’s why it is required to know the technical
background of shadow mapping and its basic filtering techniques. In this chapter we
will recap all knowledge necessary. We will talk about generating shadow maps and
how to evaluate them. Afterwards, we present the basic filtering techniques necessary to
reproduce our research work.

3.1 Shadows in Nature
Shadows are an omnipresent phenomenon in nature. In order for us to emulate them in
software applications, we need to understand their basic concepts and how they appear
and effect us.

What is a shadow? Consider a scene consisting of a light source and receivers.
Receivers are surfaces in the scene which are potentially illuminated by the light source.
A point on a receiver is considered to be in the umbra if it does not receive any light
directly from the light source. In contrary a point on a receiver is considered to be in
the penumbra if only receives part of the light emitted from the light source. To better
understand what this means imagine a solar eclipse where you can only see part of the
sun’s surface. In this imaginary model you are the point on the earth’s surface and the
sun is the light source. During the solar eclipse a part of the light source is occluded by
another object (i.e. the moon). In this case you are standing in the penumbra region of
the shadow cast by the sun and the ground you are standing on is not completely dark,
but dim lit. What we generally call a shadow is the union of the umbra and penumbra
and objects that hide a point from the light source are called occluders. Figure 3.1
illustrates the concepts of umbra and penumbra.

11



3. Theoretical Foundations

(a) Point Light Source (b) Area Light source

Figure 3.1: The left image illustrates how a hard shadow forms from a point light
source. No point on the gray surface has a direct line of sight to the light source, because
they are blocked by the occluder (in blue). A more sophisticated concept is to model
the area light sources. The image on the right illustrates this concept. Points on the
inner (crosshatched) shadow region have no line of sight to the light source and therefore
completely lie in shadow. This region is referred to as the umbra. However, Points in
the outer shadow region (dashed outline) have direct line of sight to a fraction of the light
sources area. This region is referred to as the penumbra.

Importance of shadows Definitions and analysis of the geometry of shadows date
back to research by Da Vinci (see Figure 3.2) and further. Since Da Vinci’s times,
not only geometry has been analyzed deeper but also the importance of shadows in
human perception. Today we know, that shadows impact our our perception in multiple
ways, most importantly they give us visual cues about a scene. They convey important
information about the scene such as the position and size of the occluder, geometry of
the occluder and about geometry of the receiver. They also help us in understanding
spatial relations between occluder and receiver. This is especially useful for our ability of
estimating the movement trajectories of occluders in animated scenes.

Hard shadows vs. soft shadows Probably the easiest way to think of a shadow is
by considering a binary status, if a point is either in shadow or not. This corresponds to a
hard shadow which is a shadow that has no penumbra. Such a shadow could theoretically
be cast by the light emitted from the infinitely small surface of a point. Infinitely small
surfaces do not exist in nature, as light-bulbs, the sun and even fireflies have a considerable
surface emitting light. And because they are unnatural we get a unrealistic feeling from
them. Still these hard shadows play a big role in computer-graphics, as they are fairly
easy to compute which we will see in Section 3.3.

Realistic light sources have a finite surface and realistic shadows have a penumbra. The

12



3.2. Real-Time Shadows

Figure 3.2: Da Vinci observed the gradation of shadow very carefully. His sketch
demonstrates how the light on the surface turned to the light gradually turns into shadow.
Further, it demonstrate the shadow/light gradation on surfaces beneath the sphere. (Source:
Leonardo da Vinci, Notebooks, drawing of gradation of light and shadow)

penumbra can in the simplest form be interpreted as a blurred (soft) outline, which is
why they are called soft shadows in general. These soft shadows are obviously more
realistic than hard shadows (see Figure 3.4 for an example of a natural shadow) but they
are more complicated. In general the degree of blurring varies considerably with the
distances involved between light source, occluder and reciever. We will demonstrate a
common method for the computation of soft shadows later in this chapter (Section 3.4.3).

3.2 Real-Time Shadows
Simulating physically realistic shadows, as they appear in nature, requires very complex
computations and is impractical for real-time use. The aim of real-time rendering is
to provide fast methods that are not necessarily physically accurate, but convey the
impression of physical accuracy to the user as good as possible. Projecting geometry

13



3. Theoretical Foundations

onto a view plane alone is usually not sufficient for creating a human interpretable scene.
Rather, humans get information about complex surface compositions from light being
transported through the scene and it’s interactions with surfaces. While physically-based
rendering (the interested reader is referred to Pharr’s book [PH04]) simulates the flow of
light from the light source via surface interactions to the camera, in real time rendering
we are computationally bound to keep the effort for light computation very low. The
Blinn-Phong Shading Model [Bli77] is a representative method for calculating a light-
source’s impact on a surface, based on the light’s direction and its distance relative to
the light source. However, in real-time rendering, shading does not cover higher order
reflections, refractions, nor light occlusions. Instead, these complex interactions between
light and surfaces are being split into separate approximations as it is illustrated in
Figure 3.3.

(a) Material only (b) Shaded scene (c) Shadowed scene

Figure 3.3: In Real time rendering, complex lighting simulations are calculated step-
by-step. While the color (3.3a) conveys information about the object’s material, we
gain information about it’s geometric composition through shading (3.3b) and the spatial
relations between objects through shadowing (3.3c).

In the following section we will start with a very simple but efficient solution to create
shadows called shadow mapping. Shadow mapping produces simple shadows, with hard
silhouettes on arbitrary geometry. However, if we observe shadows in nature, we see that
shadow silhouettes tend to be softer the further the receiver is away from the occluding
surface. Figure 3.4 illustrates this phenomenon. This leads us to more sophisticated
shadow mapping extensions (so called “soft-shadow” algoritms), such as Percentage
Closer Soft Shadows, which will be discussed in more detail later in this chapter.

3.3 Shadow Maps

3.3.1 Basic Principle

Shadow mapping is based on a very simple observation: What the light source cannot
see should not be lit by it. This implies that if we have a representation of the scene
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3.3. Shadow Maps

Figure 3.4: In nature purely hard shadows do not exist. Instead, shadow silhouettes
feature complex transitions. This figure illustrates that shadow transitions are very slim
at the base of the occluding geometry and extend when further away.

as it is seen by the light source we can determine which surfaces are lit. Hence, the
remaining unseen parts lie in shadow. Fortunately modern consumer graphics processing
hardware is designed for massive parallel processing of geometric transformations. They
allow us to project objects from a three dimensional Cartesian coordinate space into a
projective space which can be rasterized (or rather discretized) onto a view plane (i.e. the
computer’s screen) in real-time. Shadow mapping utilizes this feature by treating the light
source as a camera and uses the graphics pipeline to draw a discretized representation
of the camera’s view into a buffer. This buffer is called shadow map and stores depth
values which allow us to infer how far a light ray reaches into the scene before it hits a
surface (see Figure 3.5).

When the scene is drawn from the point of view of the eye we can transform the depth
of each fragment from the viewer’s perspective into the light’s perspective space and
compare its depth values. In order to determine whether the light reaches a fragment or
not, we simply compare the depth of the surface point we see with the depth of the light
ray shot in the direction of the surface point. If the depth of the light ray is smaller than
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(a) Camera View (b) Light’s View (c) Shadow map

Figure 3.5: The same process which is used for rasterizing a scene from the viewer’s
point of view (a) can be used to draw the scene from the light source’s point of view
(b). The depth values resulting from such a projection convey information about how
far the light rays reach into the scene before they hit a surface. This discretized-depth
representation is called a shadow map (c).

the depth of the fragment the ray must have hit a surface before it reached the fragment,
hence the fragment must lie in shadow (see Figure 3.6).

In the following paragraphs we will describe the steps necessary to create and evaluate a
basic shadow map. Afterwards, we will introduce selected extensions to the basic shadow
mapping algorithm which allow us to influence the shadow’s silhouettes and enhance the
visual quality. These extensions will later be used in our experiments.

3.3.2 Generating a Shadow Map

Graphics hardware allows us to generate shadow maps at very little cost because we
can use the same technique which is used to resolve visibility during standard rendering.
Just like in the standard rendering process we use a camera matrix ML

V P = ML
PM

L
V

(where ML
P is the projective transformation matrix and ML

V transforms the scene into a
coordinate frame originating at the light source) to transform the scene’s geometry.

Usually a perspective camera (see Figure 3.8) is used to draw a shadow map for spotlights
(in order to emulate point lights six cameras facing all axes have to be set up). Such
a perspective matrix can be set up by defining the shape of the view frustum. The
view frustum can be specified using near- and far plane distances (znear and zfar) as
well as the screen’s extents (height and width), as referred in Equation 3.1. Figure 3.7a
illustrates the geometric properties associated with such a matrix.
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3.3. Shadow Maps

Figure 3.6: When the scene is drawn from the viewer’s point of view, we use each
fragment’s distance to the light source and compare it to its corresponding depth texel in
the shadow map. The fragment is in shadow if its depth is greater than the shadow-map’s
depth (red ray) or lit if less or equal (green ray).

MP =


2znear
width 0.0 0.0 0.0
0.0 2znear

height 0.0 0.0
0.0 0.0 − zfar+znear

zfar−znear

2zfarznear

zfar−znear

0.0 0.0 −1.0 0.0

 (3.1)

An orthographic camera (Equation 3.2, Figure 3.7b) may be used for directional lights.

MO =


2

width 0.0 0.0 0.0
0.0 2

height 0.0 0.0
0.0 0.0 − 2

zfar−znear
− zfar+znear

zfar−znear

0.0 0.0 0.0 1.0

 (3.2)

Once the camera matrix is set up properly, the scene geometry can be drawn. A vertex
shader transforms all vertices into the lights’s perspective space. The GPU’s rasterizer
then automatically generates a discretized depth-map (a.k.a. the shadow map) of the
scene from the light’s point of view. Each pixel of this depth-map then holds the distance
from the light source to the first visible surface.
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Figure 3.7: The Frustum of the (light’s) camera defines which part of the scene is
projected onto the view plane. While a perspective projection (a) is usually used for
drawing spotlights, an orthographic projection (b) is suited for directional lights.

3.3.3 Evaluating a Shadow Map

The shadow map is evaluated during the lighting process when drawing the scene from
the eye’s point of view. When vertices are transformed in the vertex processing stage
of the drawing pipeline we compute an additional vertex position in the light-source’s
clip space v′ = ML

PM
L
V v using the same transformation matrix used to generate the

shadow map. This will later aid us in looking up the corresponding surface positions in
the shadow map. Light clip-space vertex positions have to be shifted from [−1, 1]2 to
[0, 1]2 in order to match the texture coordinates of the shadow map. This can be done
by pre-multiplying with a shifting matrix resulting in Equation 3.3.

v′ =


0.5 0.0 0.0 0.5
0.0 0.5 0.0 0.5
0.0 0.0 0.5 0.5
0.0 0.0 0.0 1.0

ML
PM

L
V v (3.3)

Once we process the viewer’s fragments we homogenize it’s light clip space position
pL by multiplying it with 1

vw
resulting in p̂L = pL 1

vw
. We then use ˆpL

xy to look up the
depth samples stored in the shadow-map and compare them to p̂L

z . If p̂L
z is greater than

the stored value, the fragment is occluded by another surface closer to the light source,
meaning that it is in shadow.

3.4 Shadow Aliasing

The image-based depth representation used in shadow mapping has some serious draw-
backs: One of them is, that due to the shadow map’s limited resolution, artifacts
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(a) Frustum in Scene

(b) Perspective projection (c) Screen space view

Figure 3.8: A perspective transformation matrix transforms scene geometry into a
projective coordinate system. Geometry that was contained in the frustum (a) is now
contained in a unit cube (b). This allows us to directly draw the transformed scene onto
the view plane (c). Image Source: http://www.opengl-tutorial.org

can appear, which means that shadow boundaries will often contain visible jagged-line
artifacts. Figure 3.9 gives an example of such artifacts.

One major cause for these artifacts is called undersampling. It means that several
view samples project into the same shadow map texel and they all receive the same
shadow response. While this is no problem for areas inside of the shadow (they are all
unlit anyway), the falsely shadowed pixels are well visible on the shadow’s silhouette.
Figure 3.10 demonstrates this unwanted effect by showing a shadow map being projected
onto the screen. The shadow map samples the shadow caster’s contour. When projected
to the screen, the sample size of the shadow map will most likely not correspond to
the sample size of the screen. Once the shadow tests are finished, the resulting shadow
silhouette hardly corresponds to the original curve sampled by the shadow map.

The most obvious approach of limiting this problem is by increasing the shadow map’s
resolution. This would reduce the amount of view samples covering a projected shadow-
map texel. For arbitrary scene setups however, the required resolution would grow
towards infinity. Also, increasing the shadow-map size comes at a high cost in terms of
memory consumption and an increasing amount of computations. One way to limit these
artifacts is to filter the computed shadow. In general, shadow-map filtering algorithms
can be categorized into pre-filtering and post-filtering algorithms. While pre-filtering
algorithms filter the entire shadow map right after its generation, post-filtering algorithms
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3. Theoretical Foundations

Jagged-line artifacts Anti-aliased shadows

Figure 3.9: Jagged-line artifacts appear due to the shadow map’s limited resolution (a).
After filtering is applied the picture (b) is more appealing due to its smooth anti-aliased
shadow boundaries.

apply filtering during each shadow evaluation of a viewport fragment. In this section we
are going to discuss one common approach for each category. The interested reader is
referred to the book by Eisemann et. al [ESAW11], which dedicates a whole chapter on
shadow-map aliasing and discusses the topic extensively.

3.4.1 Shadow Mapping as a Signal-Reconstruction Process

To understand and analyze shadow-map aliasing in detail, it is helpful to view the process
from a signal-processing point of view:

The signal-reconstruction pipeline starts with a function of the depth of the scene geometry
(transformed to the light-source’s view plane) as a continuous input signal. The goal is to
store the input signal in a discrete form (shadow map), which can later be reconstructed
and compared to the depth function of the geometry seen by the camera.

The first stage of this process is referred to as “initial sampling”. In traditional signal
reconstruction, the input signal would be bandlimited first, and then sampled. Ban-
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(a) Shadow map projected to viewport (b) Shadow test result

Figure 3.10: Simplified setup of a shadow-map being projected onto the screen. Here
the shadow-camera’s view direction is assumed to be perpendicular to the screen’s view
direction. In the common case in which the camera orientations are not perpendicular
the projected shadow map pixels would also be perspectively distorted. The shadow map
(illustrated as a blue grid) samples the shadow casters contour which is represented by the
red curve. When projected onto the screen the shadow-map’s pixels will most likely not
correspond to the sample size of the screen pixels. Figure (b) shows that many boundary
pixels are shadowed wrongly, resulting in a silhouette that does not preserve the original
shadow-caster’s contour well.

dlimiting removes frequencies higher than half the sampling frequency, which allows
accurate reconstruction of the (bandlimited) signal (Nyquist-Shannon sampling theorem).
Later the sampled signal is resampled for a particular output resolution: The signal gets
reconstructed by interpolating the samples from its discretized representation and trans-
forming it to the output domain. After that, the signal is bandlimited to accommodate
the output resolution and finally gets resampled.

In shadow mapping, however, since we sample and reconstruct geometric signals, ban-
dlimiting cannot be used, because it would reshape and obfuscate the geometry. This
lack of bandlimiting introduces aliasing when the signal is reconstructed. The signal-
reconstruction pipeline can be used to define various types of errors:

Initial Sampling Error Since a signal with unlimited frequencies is discretized and no
opportunity exists to bandlimit the signal, the discretization introduces artifacts.

Undersampling Occurs when the initial sampling frequency is lower than the screen
sampling frequency. This means that details can be lost completely and the inital
sampling error gets magnified.
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Reconstruction Error Occurs due to incorrect interpolation between the sampled
values. This error can be avoided by utilizing a proper filter kernel.

Resampling Aliasing This error occurs due to the lack of bandlimiting when the
frequency of the shadow-map samples is higher than the screen sampling frequency.
Reconstruction filters (which will be described in Section 3.4.3) can be used to
reduce resampling aliasing. For pre-filtering algorithms, mip-mapping can be used.

In the following sections, we introduce basic strategies to lessen the impact of these
errors.

3.4.2 Reducing the Initial Sampling Error

Apart from increasing the sampling resolution, there are other ways to reduce the
initial sampling error. The methods described in this section aim at maximizing the
use of available resolution and depth precision. Fitting minimizes the light’s viewing
frustum by fitting it exclusively to geometry which is visible by viewer and light source.
Warping distorts the geometry drawn to the shadow map in order to cover more detail in
close proximity to the viewer’s near plane and less detail for distant geometry. Finally,
partitioning algorithms combine both aspects of fitting and warping by dividing the
light’s view frustum into separate partitions depending on their distance to the viewer.

Fitting A powerful way of approaching the problem is to optimize the distribution of
the shadow samples. We can achieve this by adjusting the light’s view frustum by fitting
it to expand across necessary data only.

This idea was introduced by Brabec et. al. [BAS02]. Their approach is to extract a
bounding rectangle from the scene’s view camera which is then used to determine the
light source’s view frustum. While Brabec’s method results in a very accurate light view-
frustum it suffers from negative performance impacts. This is due to the circumstance
that they need an extra rendering pass, an extra buffer and a costly memory transfer
when reading out the buffer.

Eisemann et. al. [ESAW11] propose a basic fitting method which efficiently fits the view
frustums extends to the geometry involved in shadow computation. They begin by
finding a volume enclosing all potential shadow receivers. The volume of potential shadow
receivers (PSR) can be described with equation 3.4, where S is a bounding box of the
objects contained in the scene, L is the light’s cone of influence and V represents the
observer’s view frustum.

PSR = L ∩ V ∩ S (3.4)

This volume’s projective space bounding box can be used to resize the projective frustum.
Appending the fitting matrix F (Equation 3.5) to the view-projection matrix allows us to
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3.4. Shadow Aliasing

map the bounding rectangle to [−1, 1] post projective space. By doing so all irrelevant
polygons are clipped and the shadow map fits the potential shadow receivers. Due to
the circumstance that in post-projective space all light rays are parallel to the z-axis, we
automatically include all potential shadow casters.

F =


2

xmax−xmin
0 0 −xmax+xmin

xmax−xmin

0 2
ymax−ymin

0 −ymax+ymin
ymax−ymin

0 0 1 0
0 0 0 1

 (3.5)

The frustum now fits the PSR’s bounding box in x- and y direction.

While this allows us to optimize the distribution of the depth samples available (which is
governed by the resolution of the shadow map) it does not affect the samples’ precision.
In order to optimize precision, we need to minimize the range in which depth values can
appear. This range is governed by the distance between near and far plane. The far
plane’s distance can be extracted from the PSR’s z-extents. Finding a suitable value for
the near plane’s distance is more complicated, since shadow casters might lie outside of
the PSR-volume. By computing a volume of potential shadow casters (PSC) one can
extract the near plane’s distance. Wimmer et. al. [WS06] describe how this can easily be
done suing Equation 3.6.

PSC = (PSC + L) ∩ S (3.6)

Nowadays the computation of the PSC volume can be omitted by enabling the Depth
Clamping feature supported by graphic processors. Instead the PSR’s z-extents can be
used for the near plane as well. Due to Depth Clamping, shadow casters will still be
drawn with their depth clamped to the near frustum. This guarantees that shadow
casters are evaluated as being closer to the light source than the receivers.

Warping A category of techniques called warping goes one step further: in addition to
fitting the light’s view frustum warping aims at reducing the error originating from the
eye’s perspective projection by varying the sampling density. This idea grounds on the
observation that due to perspective projection more detail is needed near the camera’s
near plane, than further away.

The idea was first introduced and used by Marc Stamminger and George Drettakis in
Perspective Shadow Maps [SD02]. The approach used in this method is to perspectively
distort (hence the term warp) the scene before drawing the shadow map. While living
up to its terms in reducing the perspective error, PSM had the downside of changing the
lights source’s intended direction. The original perspective shadow mapping approach
made way for more research in this field and more variations appeared, namely trapezoidal
shadow maps [MT04] (TSM) and light space perspective shadow maps [WSP04] (LiSPSM).
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Fortunately, these techniques can be implemented efficiently and offer great potential for
optimizing shadow maps in complex scene setups. Equation 3.7 shows how the shadow
matrix is build up in the case of LiSPSM. The right-hand side of the equation is already
known from the standard shadow-mapping algorithm: At first, the model matrix M is
transformed into perspective light space by multiplying with the light’s view matrix ML

V

and its projection matrix ML
P . In order for the warping to be effective, the orientation of

the shadow map (x- or y-axis) has to be aligned with the viewers orientation (z-axis).
This alignment is then described using a rotation matrix LR. The warping matrices
WV and WP describe a perspective projection. The projections parameters for near and
far plane can be calculated by transforming the PSR bounding box Fitting matrix as
described in the previous section. However, finding a good focal point of the warping
matrix is not trivial and the LiSPSM article proposes various methods for it. Finally, a
fitting matrix as described in the previous section is used to fit the shadow map to the
view-port.

SW = FWPWV LRM
L
PM

L
V M (3.7)

Warping can be beneficial in many cases, but unfortunately it has some downsides as well.
The main problem of algorithms like LiSPSM is that their effectiveness depends heavily
on the relative alignment of the viewer’s and the light’s frustums. Using LiSPSM is not
always possible (e.g. light source parallel to view direction) or suitable (e.g. lightsource
is behind the viewer). The partitioning techniques described in the next section offer a
robust alternative to warping.

Partitioning Another promising and very practical approach to reduce the initial
sampling error is to use multiple equally sized shadow maps to represent a single light
source. This can be achieved by subdividing the view frustum along its z-axis and by
then calculating a shadow map for each sub-frustum. This partitioning idea has been
proposed by different authors as cascaded shadow maps [Eng06] (CSM), parallel split
shadow maps [ZSXL06] (PSSM) and z-partitioning [LTYM06]. Using partitioning the
sampling density decreases over subsequent partitions. Figure 3.11 demonstrates that
the shadow map partition next to the near plane covers a smaller area than the partition
next to the far plane. Therefore, the sampling density and the perceived resolution is
higher near the viewer, which is an effect similar to warping.

The algorithm for constructing these split shadow maps is fairly simple. According to
a split rule, the view frustum is split into n partitions along the z-axis. For each of
the partitions a shadow view frustum is fit in the same manner as explained in Sec-
tion 3.4.2. In order for partitioning to work well, the placement of splits is very important.
Lloyd [LTYM06] argues, that an optimal warping function would be logarithmic and
therefore proposes Equation 3.8 to define split positions C log

i (where n is the number of
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Figure 3.11: Cascaded shadow maps work by dividing the light-source’s view frustum
into different sections aligned with the camera’s view frustum. This results in more detail
close to the viewer and less detail in far away regions.

partitions, i is the partitions index, and znear, zfar are the view frustum planes).

C log
i = zNear

(
zF ar

zNear

) i
n

(3.8)

The logarithmic splitting scheme allocates most resolution to an area close to the near
plane. In practical scenarios this area is often not populated with objects. Two notable
extensions exist in order to counter this problem: Zhang et. al. [ZSXL06] propose
practical splits where the split positions are computed as a weighted average between a
linear- and the logarithmic split distribution:

Cpract
i = αC log

i + (1− α)
(
zNear + i

m(zNear − zF ar)

)
Lloyd et. al. [LGQ+08] suggest to replace the distance of the near plane zNear in
Equation 3.8 with an adapted value z′Near that is adjusted to the PSRs for all splits
except the first.

Depending on the targeted hardware the partitioned shadow maps can either be stored
in separate textures (old hardware support), texture arrays (faster) or in a texture atlas
(often impractical because of limited resolution).

Special care has to be taken for filtering transitions from one partition to the next as
they will be visible in most cases. This effect can be reduced by combining z-partitioning
with warping.

3.4.3 Reducing Undersampling and Reconstruction Errors

Undersampling occurs when the (initial) sampling frequency of the shadow-map samples
is lower than the screen-space sampling frequency (assuming the shadow map is projected
to the screen). This means that the pixel structure of the shadow map will be visible
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Figure 3.12: Side-by-side comparison of the same shadow silhouette rendered with
different shadow map resolutions. The blocky artifacts tend to disappear with increasing
shadow-map resolution.

Figure 3.13: Side-by-side comparison of the same shadow silhouette rendered using
different filter radii. The radius increases from left to right. The blocky artifacts resulting
from the resampling error can be blurred with a filtering radius.

as blocky staircase artifacts, i.e., the initial sampling error is revealed. In the worst
case, details of the original shadow caster’s structure can be lost entirely. Figure 3.12
demonstrates the impact of increasing the resolution of the shadow map (i.e., the initial
sampling frequency). We can see that staircase artifacts shrink with increasing resolution
up to a point where they are not perceivable anymore.

Increasing the sampling frequency, however, comes at a high cost in terms of computational
effort, memory- and bandwidth usage. Using a properly chosen filter algorithm to
reconstruct the shadow’s silhouette, like Percentage Closer Filtering, helps to blur
staircase artifacts caused by undersampling. Figure 3.13 shows the impact of different
filter radii on the shadow’s silhouette.

Percentage Closer Filtering

Ordinarily, one would filter a texture (or any image) by accessing a region of it and
applying some sort of filter kernel. Unfortunately, this process is more complicated with
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shadow maps since they contain spatial information. While properly filtered color values
can be used without drastically altering shapes or other features of images, the geometric
meaning of a filtered depth value might bear no relation to the original geometry of the
scene (image blurring the geometry of a cube). Another problem arises during the shadow
test, where the filtered depth value stored in the shadow map is compared against a
depth value of a point on the surface. The shadow test results in a binary value indicating
whether the pixel is lit or not. This binary result would make soft anti-aliased shadow
contours impossible because there would be no gradations between a point on the surface
being lit or unlit. This means that unlike color textures, shadow-map textures cannot
simply be pre-filtered to remove aliasing.

Instead of filtering the depth values, the desired softening effect can be accomplished
by performing multiple shadow-map comparisons per pixel and averaging the binary
results, resulting in nuanced shadowing factors. This technique is called Percentage-Closer
Filtering (PCF) because it calculates the percentage of the surface near a point that is
closer to the light and, therefore, not in shadow. Figure 3.14 demonstrates the principle
of PCF by applying a 3× 3 averaging kernel to the results of the shadow test. While the
resulting image still cannot reconstruct the contour of the shadow caster in full detail, it
offers an improvement by suppressing the artifacts.

Besides defining the density and size of a filter window, the method of accessing samples
is also relevant. In the example shown in Figure 3.14, the spacing between neighboring
samples matches the texel size and nearest-neighbor sampling can be applied. However,
for arbitrary kernel sizes, bilinear sampling improves visual results. In contrast to
nearest-neighbor sampling, bilinear sampling linearly interpolates values of the neighbors
adjacent to the sample center. Fortunately, modern graphics processing units are capable
of performing bilinear sampling without negatively impacting lookup performance. They
even support bilinear PCF sampling, where the user supplies the transformed depth
and the process of lookup, comparison and bilinear combination is performed by the
hardware.

Filter Kernels

The choice of the filter kernel is crucial and allows for powerful improvements in the
reconstruction of shadow contours and in suppression of artifacts. Figure 3.15 demon-
strates the visual effects of using different filter kernels. In general, filter kernels define
the neighborhood incorporated in a sampling operation. Just like in image processing,
filter kernels can be chosen in arbitrary shapes, sizes and sample distributions. However,
unlike the countless applications of filtering in image processing, shadow filtering solely
aims at achieving smooth and plausible transitions between lit and unlit surfaces. For
PCF this means that filtering operations are limited to blurring (low pass) operations.
These are performed by averaging sample values and optionally weighting them by the
distance to their center.

When designing a kernel used for PCF filtering, three parameters are relevant: filter radius,
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(b) Shadow after filtering

Figure 3.14: In this example PCF is performed by applying a 3× 3 filter kernel to the
shadowed pixels after the shadow test. The effects can be seen by comparing both shadow
contours to the actual shadow caster’s boundary (red curve): Artifacts are being suppressed
and the shadow’s contour has a closer resemblance to the actual shadow caster’s contour.

sample density and sample distribution. radius of the kernel allows the adjustment of the
blur range and is usually chosen in shadow-map texture space for signal reconstruction.
Changing the sampling density allows the adjustment of the blur granularity.

In Figure 3.14, a 3× 3 filter kernel which consisted of nine samples evenly distributed on
a regular grid was averaged for each pixel.

Using a uniform, regular distribution of samples might lead to repeating visual patterns
in the resulting image. However, repeating patterns do not appear often in nature and
are therefore rarely perceived as natural by human observers. Unlike regular sampling
techniques, non-uniform sampling techniques help turning regular aliasing patterns into
less structured transitions. Hence, in computer graphics, non-uniform sampling is often
preferred over uniform sampling as its results are more representative of the unstructured
geometry in natural phenomena and therefore more appealing.

A simple and efficient non-uniform sampling technique is Poisson-disk sampling. Unlike
regular sampling strategies, Poisson-disk sampling results is an even, but random distri-
bution of samples. In a Poisson disk kernel samples are distributed on a unit disk and are
tightly packed, meaning that the distance between neighboring samples is uniform and
minimal for all samples. Figure 3.16 visualizes these properties and compares a regular
kernel with a Poisson-disk kernel.

Poisson disks can be created naively using a “dart-throwing” technique introduced by
Cook [Coo86]. The algorithm continuously calculates uniformly distributed points and
only keeps them if they satisfy a minimum distance to all of the already existing points.
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Nearest Neighbor Bilinear Filter Poisson Disk Filter

Figure 3.15: The choice of a proper filter kernel and sample size allows for a broad
range of quality and performance improvements.

Besides being slow (speed improvements exist [DH06, Jon06]), this algorithm has many
downsides. For example, if aborted prematurely, the distribution of the points might be
non-uniform. The outcome of the algorithm can only be defined by the desired distance
between points. Since we need to control the amount of samples taken by a kernel, this
algorithm is usually unfavorable. Despite all of its disadvantages the algorithm’s natural
way of generating a Poisson-disk makes it an often-used candidate for a ground-truth set.

A fairly simple extension to the dart-throwing approach is called“Relaxation Dart Throw-
ing [MF92]. It starts by dart throwing points at a large radius and – after a large number
of attempts fail – reduces the radius by some fraction. The relaxation algorithm is faster,
termination is guaranteed and, most importantly, the number of points can be controlled.

Over the last three decades, many more algorithms were proposed. However, it lies
beyond the scope of this thesis to investigate all of them. The interested reader is referred
to the comprehensive comparison of Poisson disk algorithms by Lagae et. al. [LD08].

Instead of calculating a unique, separate kernel for each processed pixel, shadow filtering
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(a) Regular Kernel (b) Poisson Disk Kernel (c) Rotated Poisson Disk Kernel

Figure 3.16: A regular sampling kernel (Figure 3.16a) distributes samples evenly over
a rectangular area. Due to its rectangular area of influence the regular kernel produces
banding artifacts. In contrast to this a Poisson disk kernel (Figure 3.16b) distributes
samples randomly and evenly spaced inside a circle. Repetitive patterns in the filtered
image can be mitigated by randomly rotating the filter kernel (Figure 3.16b).

applications require a more practical way of using Poisson-disk kernels. A practical and
efficient method of sampling non-uniformly is to pre-calculate the Poisson-disk kernel,
and randomly rotate it every time it is utilized.

Poisson-Disk sampling as well as other techniques used in PCF are foundations for many
other shadow-filtering methods. The shadow-filtering methods described in the next
pages benefit from the same considerations in terms of kernel choice.

Variance Shadow Maps

PCF’s filtering performance is limited because the kernel window has to be sampled
for each viewport fragment. While this performance issue is relatively insignificant for
small kernel windows with few samples, it increases exponentially when more samples
are required. Instead of sampling lots of shadow-map samples as in PCF, Donnelly and
Lauritzen [DL06] observed that the depth sample partitioning can be estimated using
simple statistic measures and then be used to determine the amount of light reaching
a point on the surface. They suggest a different approach to shadow mapping called
Variance Shadow Mapping (VSM). Their idea is to store information in one shadow-map
sample that allows for restoring mean and variance estimates of the depth’s sample
distribution. The key benefit over PCF is that the variance shadow map can be pre-
filtered like a normal texture. This ability to pre-filter allows for a feasible bandlimiting
option, using the GPU’s hardware mipmaping [Wil83] capabilities.

In addition to storing depth values, a variance shadow map also stores squared depth. By
applying a simple box (or gaussian-) filter, the resulting texture then contains the first
moment M1 and the second moment M2 for the underlying depth distribution. These
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3.4. Shadow Aliasing

moments allow us to estimate mean (µ = M1) and variance (σ = M2 −M2
1 ). We can

easily vary the size of the filter window to adapt the shadow transition-radius, because
the moments can be averaged while still preserving the original depth distribution. By
choosing an appropriate window size, VSM can achieve very similar results as PCF while
only taking a single sample from the pre-filtered shadow map for determining whether a
fragment lies in shadow. In order to perform shadow testing, Equation 3.9 is used to
compute an upper bound for the probability that a receiver point with light-space depth
z̃ is smaller than a randomly drawn depth value from the distribution. This probability
P (z̃) is then used to vary the shadows intensity. A visual comparison between PCF and
VSM is demonstrated in Figure 3.17. Unfortunately, in cases where the variance is high
VSM suffers from an effect which the author calls light bleeding. The author proposes an
effective solution named layered VSM [LM08] to counter such situations.

p(z̃) = σ2

σ2 + (z̃ − µ)2 (3.9)

Percentage Closer Soft Shadowing

Methods like PCF and VSM allow us to generate smooth shadow silhouettes, but if we
recall the natural scene from Figure 3.4 we see that shadow boundaries become sharper
as objects get closer together and softer as they grow apart, because the light is emitted
from a finite area, rather than from a point. This phenomenon is referred to as soft
shadowing and the previously mentioned approaches do not cover it, because they soften
the shadows boundary solely based on a predefined size of the filter window.

Fernando [Fer05] presents a method to generate perceptually accurate soft shadows,
called Percentage Closer Soft Shadows (PCSS). In contrast to fixed kernel size algorithms,
PCSS takes the area of the light source into account. In Figure 3.18 we can easily see
that increasing the area of the light source increases the penumbra width. Also, it is easy
to imagine that the penumbra shrinks the closer the occluding surface (i.e. the Blocker)
moves to the receiving surface (i.e. the receiver).

PCSS is based on this observation and for the sake of reducing computational complexity,
it assumes that blocker and receiver are parallel to each other. The actual filter window
size is computed per fragment using the relation between the fragment’s (receiver-) depth,
the average blocker depth and the with of the area light source. While receiver distance
z̃ and the width of the light source are already known, the average blocker depth zBlocker

has to be computed by averaging the neighboring shadow map samples. The search radius
rSearch for the lookup window can be computed using Equation 3.10 which is derived
from the geometric relation between near plane and receiver shown in Figure 3.19a using
the parallel planes equation.

rSearch = wLight
zReceiver − zNear

zReceiver
(3.10)
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PCF VSM

Figure 3.17: Variance Shadow Mapping (VSM) produces very similar results as Per-
centage Closer Filtering (PCF) while being less computationally expensive for large filter
kernels.

Once the average blocker depth zBlocker is calculated the penumbra width wP enumbra can
be determined by using Equation 3.11 derived from the relations depicted in Figure 3.19b.

wP enumbra = wLight
zReceiver − zBlocker

zBlocker
(3.11)

Once the penumbra size is estimated, PCF can be used for the actual filtering process. A
visual comparison between PCF and PCSS is demonstrated in Figure 3.20.

The interested reader might want to have a look at Summed Area Tables Variance Shadow
Mapping [LM07], which is an effective method for integrating variance shadow maps
into PCSS. Also, there is an excellent presentation giving an overview on soft shadow
algorithms by Bavoil [Bav08].

For a detailed description on how to implement the PCSS algorithm see Chapter 5.
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Point Light

Receiver

Blocker

Umbra

(a) Hard Shadow

Area Light

Receiver

Blocker

Penumbra Umbra Penumbra

(b) Soft Shadow

Figure 3.18: Hard Shadows vs. soft shadows. The decision whether a point lies in
shadow can be answered by “yes” or “no” only for point lights. For area light sources the
decision is more complicated. The region of the shadow’s silhouette where only parts of
the light source are occluded is called the penumbra.

3.4.4 Incorrect Self-Shadowing

Recall that a shadow map is a discretized representation of the scene from the light’s
point of view. Because of the shadow-map’s limited resolution, we will encounter some
kind of error in almost all cases when we compare a screen fragment’s depth to a shadow
map sample. When sample points from the viewer are compared to shadow map samples
the view sample will rarely project exactly to the location that was actually sampled
in the shadow map, but will instead compare to the nearest neighboring points. As
an example imagine a shadow being cast on a tilted plane. Within each shadow map
pixel depth values of the view samples covering that pixel would vary, some of them
being higher an some of them lower. Those being higher would then be declared to lie
in shadow while the others are being lit causing unpleasant Moiré patterns in shadows.
Figure 3.22 illustrates this problem.

If we were to apply a depth bias to all of our view samples, the depth comparisons would
become more robust. Figure 3.21 illustrates this technique which is often called z-Bias.

Instead of finding a suitable constant bias only (which would be impossible for most
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Figure 3.19: In Percentage Closer Soft Shadows the penumbra width varies for each
fragment. The figure on the right shows that the penumbra width wpenumbra depends on
the average blocker distance zblocker, the fragment’s distance zreceiver and the width of the
light source. The average blocker distance itself has to be determined by examining the
shadow map neighborhood of the search radius rsearch defined by the relation shown in
the figure on the left.

scenes) we apply an additional bias that depends on the slope of the fragment’s surface.
If the bias is chosen too high, shadows get shifted away and get disconnected from their
casters or might disappear entirely. This problem is also known as Peter Panning (see
Figure 3.23).

Fortunately, OpenGL and DirectX both support depth-biasing natively. In case of
OpenGL the biasing can be enabled by enabling the GL_POLYGON_OFFSET_FILL
functionality. Its behavior can be controlled by setting the glPolygonOffset parameters.
While the first parameter operates on a surface’s change in depth and scales the maximum
Z slope, the second parameter scales the minimum resolvable depth value. The actual
depth offset is added before the GPU performs the depth test, which allows us to resolve
z-fighting issues during shadow computation. In practice the parameters have to be
chosen manually. Adjusting near and far plane of the light’s frustum and using linearized
depth in shadow maps helps to decrease the need for large biases by maximizing the
usable depth resolution.

34



3.4. Shadow Aliasing

PCF PCSS

Figure 3.20: Percentage Closer Soft Shadows (PCSS) produces more realistic shadows
as Percentage Closer Filtering (PCF). While PCF produces a penumbra of constant
radius, in PCSS the penumbra radius grows with distance to the occluder.
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receiver

false shadow
(a) without z-bias

receiver

bias bias

(b) with z-bias

Figure 3.21: Due to the limited resolution of a shadow map, sampling depth at arbitrary
positions leads to erroneous results. Picture (a) illustrates a naively sampled shadow
map. The shadow map stores the depth as evaluated at the texel center (yellow arrow).
If we were to sample the depth in the region marked with “false shadow” (blue arrow) the
shadow test would result in the region being falsely occluded. This happens because the
depth value stored in the shadow map would be closer to the surface than the depth value
obtained by the projection to light space. In picture (b) this can be avoided by introducing
a bias (i.e. by shifting all values stored in the shadow map).

Figure 3.22: Moiré patterns known as Shadow Acne appear due to limited shadow map
resolution and numerical errors. They can be removed by using a depth bias.
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Figure 3.23: While choosing a higher depth bias removes Shadow Acne it has to be
chosen carefully, because shadows might get disconnected from their casters if it is chosen
too high. This problem is also known as Peter-Panning.
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CHAPTER 4
Experiment

Now that we discussed the theoretical foundations for shadow-mapping algorithms and its
common problems and remedies, we can further investigate the behavior of shadow-map
filtering. Let us therefore recall the shadow-mapping process described in the last chapter:

Shadow maps are generated per frame by sampling depth values of a scene from the light
source’s perspective. The sampling process makes use of the hardware graphics pipeline
by transforming scene geometry into the perspective view space of the light source and
storing the nearest depth values per pixel fragment.

Later, when the scene’s per-pixel lighting is calculated, the fragment shader projects
each fragment to light space and queries the shadow map to compare depth values. In
case of filtered shadows, multiple queries are performed in the vicinity of the fragment in
question and the comparison results are filtered by averaging in order to achieve a blur
effect on shadow borders.

If configured properly, this blurring filter can be used to hide undersampling artifacts on
the shadow boundary by substituting missing bandlimiting of the original signal with a
blur during reconstruction. This leads us to the hypothesis that with increasing softness
of the shadow (i.e., a larger filter size) a less detailed shadow-map resolution (i.e., a lower
initial sampling-frequency) is required to produce visually sound results.

Figure 4.1 demonstrates this observation by comparing the visual impact of varying
filter sizes with different resolutions of the same shadow silhouette. We can see that the
resolution required for displaying a perceptually sound shadow silhouette seems to be
directly affected by the size of the reconstruction filter.

These observations suggest that an optimal ratio between shadow-map resolution and
filter radius exists. Since optimizing these two parameters is supposed to result in an
optimal visual quality, we have to analyze the correlation between them from a perceptual
point-of-view. Therefore, we will set up a perceptual user study in which the participants
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Figure 4.1: By doubling the size of the reconstruction filter we can reduce the shadow
map’s resolution by half without noticeable negative impact on the visual quality.
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have to evaluate the visual impact of undersampling artifacts. This study allows us to
investigate how the reconstruction-filter radius and the initial-sampling frequency have
to be chosen in order to hide undersampling artifacts from the human observer. In this
chapter we are going to investigate the parameters involved to set up such a user study.
With the results obtained from the user study we should then be able to formulate a
reliable function describing the optimal ratio, which enables the user to select a resolution
for a given blur size or vice-versa.

4.1 Designing the Study
In order to properly set up a user study, we need to discuss our goal and the parameters
we want to test.

We already know the two parameters we want to investigate (shadow-map resolution
and filter radius) and that our goal is to optimize them while preserving the perceptual
quality of shadow silhouettes. In order to set up a proper user study, we need to consider
other parameters that could influence our findings.

4.1.1 Parameter Space

In Chapter 3 we saw that shadow-mapping algorithms are a versatile tool, as they can
be applied to almost every scene setup imaginable. The visual result on the screen
depends on more parameters than simply a combination of shadow-map resolution and
reconstruction-filter radius.

In the next paragraphs we will enumerate parameters which could potentially influence
the visual appearance of filtered shadows.

Shadow-Map Resolution The shadow map is a discretized representation of the part
of the scene as it is seen from the light-source’s point-of-view. Its resolution corresponds
to the initial-sampling frequency and it governs the amount of detail captured by the
shadow map. The size of the projected undersampling artifact depends on the resolution,
since it corresponds to a cell in the shadow maps’s pixel grid.

Reconstruction-Filter Radius The filter radius governs the radius used for recon-
structing a shadow signal from the discrete shadow map. It is relative to the size of the
shadow frustum’s view plane. If the filter radius is chosen big enough, sampling errors
caused by the shadow map’s discretization can be hidden (at the cost of increased blur).

Scene Setup We need to consider several important parameters related to the viewer’s
camera, placement and orientation of the light source, objects in the scene casting or
receiving shadows etc. If we take a filtered shadow-map texel projected onto a surface
for example, we would have to consider its orientation with respect to the viewer and its
orientation with respect to the light source.
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Contrast The shadow quality might also be affected by the hue of the surface’s texture
and the intensity of light reflected by the surface. If the contrast between the shadow’s
silhouette and the surrounding surface is high, artifacts become more emphasized.

4.1.2 Refining the Parameter Space

Before we can define the user study in detail, we need to determine which parameters
are relevant.

Shadow-map resolution and filter radius are obviously indispensable, since we focus our
investigation around them.

Since we want to analyze properties of filtering artifacts, we will approach our in-
vestigations by looking at the way filtered artifacts can be propagated through the
shadow-mapping process.

Contrast and Scene Setup Changing the scene setup might impact the perceivability
of shadow artifacts, as it can influence the projected artifact in the scene (by changing
light source, shadow caster and/or shadow receiver position), the projection of the artifact
onto the viewer’s image plane (by changing the viewer’s position) or the contrast of the
produced artifacts (by changing the surface color and/or intensity of the light source).

So the problem can be separated into three parts. The first part involves the artifact
projected from the light source into the scene, the second part how the artifact is projected
onto the image plane of the viewer and the third part the contrast and color of the
artifact.

1. Looking at the first part from an analytical standpoint, we make the following
observation: The result of computing the shadow from a shadow map using filter-
based approaches can be basically seen as a set of iso-contours representing the
filtered hard shadow. Figure 4.2 shows an example of these iso-contours. While
the artifact-free curve is perfectly straight, the artifact-prone image has an uneven
curve, which results from discretized shadow-map pixels being filtered with a radius
being slightly too small. The patterns formed from these iso-contours depend on
the shape of the occluding objects, the angle of the light source and the structure
of the shadow-receiving surface. Artifact-prone and artifact-free solutions will have
different contour patterns and we argue that the user evaluates the dissimilarity in
their curvature to identify artifacts. We can use the iso-contours as an indicator for
how clean straight features will appear to the user. Since the orientation of viewer
and receiving surface only affect the projection of these iso-contours, we assume
that it does not make a difference to the observer, from which angle the projected,
filtered shadow is viewed.

2. For the observer, a planar shadow receiver exposes insufficiently filtered artifacts
the most. Imagine a shadow being cast on a stair: the uneven structure of the stair
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Figure 4.2: A comparison of soft-shadow iso-contours produced by an artifact-free
shadow map (left) and a shadow map with a regular artifact pattern (right).

makes it harder to evaluate the shape of the cast object. Therefore we assume that
it is sufficient to use a planar receiver for our experiment.

3. Since shadows represent the absence of light, we can safely assume that their color is
very dark and close to black. We can make maximize an artifact’s distinguishability
by drawing a black shadow on a perfectly white surface.

Conclusion We argue that we do not need to consider an arbitrary scene setup for
investigating the perceivability of filtered shadow-artifacts. It is sufficient to consider a
simplified setup, where the viewer is parallel to a white surface onto which the filtered
shadow is projected in black. If the relation between filter radius and shadow-map
resolution is indeed linear (recall Figure 4.1), the projected iso-contours of the same
artifact will always be proportional in size, no matter how the scene is set up.

4.1.3 Dependent and Independent Variables

Now that we were able to greatly simplify the problem, we have to sample the remaining
parameters in a meaningful way.
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Filter Size We treat the filter size as the dependent variable in our experiments. Our
goal is to understand how much an artifact has to be blurred so users cannot recognize it
anymore.

Artifact Size / Shadow-Map Resolution Using the scene considerations from
Section 4.1.2, we see that the artifact size corresponds to a shadow-map texel and is
therefore indirectly coupled to the shadow-map resolution. In order to confirm and
identify the linear behavior we expect from the results, we need to test more than one
artifact size. Selecting meaningful artifact sizes is actually not that trivial, as we have to
consider that the monitors the experiments will be conducted on have a specific pixel
resolution. In order not to influence the study, the screen resolution has to be much
higher than the artifact size. Choosing the artifact size too big or too small can bias
the user in his or her decision in whether the original stimulus actually was an artifact
(e.g., if the artifact is below pixel size or so big that the filter necessary to hide it needs
to be bigger than the screen). We therefore choose the minimal artifact size to be at
least five pixels on the screen and at most 5% of the screen size (in our case 30 pixels).
In-between we set two additional sample points at 10 and 20 pixels, resulting in four
conditions in total (In the final study, the largest artifact sample was discarded due to
time restrictions).

Silhouette Patterns The patterns formed by the shadow map depend on the angles
of the object’s silhouette on the shadow map. If a silhouette is horizontally or vertically
aligned with the shadow map, artifacts are not visible. In the case of a diagonal 45 degree
silhouette, artifacts are visible at regular intervals, to which we will refer as stair pattern.
Cases in-between result in irregular or a mixture of irregular and regular patterns. We
decided to investigate cases where a single artifact (which we will call step pattern) is
generated and the 45 degree case. Figure 4.3 illustrates these patterns.

Light-Shadow Contrast The last independent variable we want to investigate is the
contrast between lit and shaded areas. We decided to include the worst-case scenario,
which is the contrast between completely black and white screen pixels. Additionally, we
reduce the intensity of the lit part by 50% to have another sample case.

To summarize, we need to find the right filter size for all artifact size, artifact pattern
and light-shadow contrast combinations (12 in total).

4.2 Task Definition

Finding the “right size” means that we need to investigate these physical stimuli and
determine the thresholds for our dependent variable (the filter size) at which they are
perceived as artifact-free. Such a threshold can be found by conducting an adaptive
psychophysical experiment.
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Figure 4.3: An illustration of the two silhouette artifact patterns used in our user study.
The left image shows a single step, the right image a regular stair pattern. The red lines
represent the actual silhouette of the sampled geometry.

We decided to use the QUEST procedure [WP83] to find the threshold at which users can
no longer infer from the filtered stimuli whether the original had artifacts in it or not. We
used the Matlab Psycho Toolbox to control the QUESTs. The threshold guess was set to
3% of the artifact size, which is also used as an initial guess and the standard deviation
guess. As a probability threshold we used 0.82. These parameters were optimized by
the authors performing the experiment in advance. As recommended in [WP83], the
gamma parameter was set to 0.5 (for a two-alternative forced choice), delta to 0.01 (the
probability of a mistake by the user) and for beta we used 3.5 (controlling the slope of
the psychometric function).

4.3 User Study Execution
Due to limited time and resources, the study was conducted with a relatively small
population of ten users (nine male, one female). All of them were experts in computer
graphics, aged 28.2 years on average (standard deviation 3.1 years).

Environment All participants were trialed under the same conditions. The trials took
place in the students’ laboratory at the Institute for Computer Graphics and Algorithms.
During each trial the room was sealed off from sunlight and lit by dim light emitted by a
common LED lightbulb. Each of the trials took place on the same monitor.

Software Interfaces We designed a minimalistic graphical user interface for study
participants featuring the question “Is the original image a line?”, a big picture of the
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(a) User Screen High Contrast (b) User Screen Low Contrast

Figure 4.4: Two examples of the tasks presented to the participants. The task “Was the
original image a line?” is visible in the heading during the entire trial.
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Figure 4.5: The administrator’s interface allows us to track progress of the study during
the trials. The three charts indicate the status of convergence for each quest. In these
charts the horizontal axes represent the number of trials which were already completed by
the participant and the vertical axes represent the filter radius applied in each trial.

trialed shadow contour and two clickable buttons for “yes” and “no” answers. The user
interface for the study administrator was shown on a seperate monitor and was not visible
to the participant. See Figure 4.4 and Figure 4.5.

Execution Trials were conducted in four rounds per participant. Each round tested
for a different combination of artifact type (i.e., “stair” and “step”) and shadow contrast
(i.e., 100% and 50%). Per round, we observed three quests for three different artifact
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Figure 4.6: A comparison between reference filter size and perceptual filter size for
the investigated artifact patterns (stair and step). The filter size necessary to hide
artifacts from users (perceptual filter) is significantly lower than for the reference filter
size. Reducing the contrast (b) makes it slightly harder to spot artifacts as can be seen in
comparison to the results in Figure (a)

sizes. In total a full trial lasted about 25 minutes.

During a trial the administrator carefully examined the progress of the three quests, and
finished the round once all quests were tried at least 10 times each and all three quests
converged.

4.4 User Study Evaluation

After all trials ended, mean filter radii for each combination of artifact type and artifact
size were computed from the collected data. A graphical representation of the results is
provided in Figure 4.6.

Based on the user study’s results, we can analyze the impact of the different parameters
on the optimal filter size.

Impact of Artifact Size As already indicated by our observations (recall Figure 4.1),
the artifact size proportionally corresponds to the filter radius that is required to hide
them. Figure 4.6 shows a dependence between filter size and artifact size that is nearly
linear. While the stair artifacts of size 10 are hidden using a filter size of ∼ 25 pixels or
larger, the 20-pixel artifacts, on the other end, require a filter of at least 50 pixels.

Since the function is linear it reinforces our claim from Section 4.1.2 that the relation
of artifact size to filter size can be evaluated independently of the scene setup: If the
artifact seen by the observer on the screen requires a certain blur radius, an artifact that
appears larger on the screen due to projective transformations requires a proportionally
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larger blur radius, which, when projected back to shadow-map space, equates to the
identical artifact size and blur radius. In other words, the filter size spans a constant
amount of shadow-map texels. In our case, the filter radius is 3.47 shadow-map texels. It
is important that the blur radii selected by the users correspond to the linear relationship
implied by scene transformations, since this allows us to ignore changes in the scene
setup, in particular the projected size of an artifact to the screen, and choose the filter
radius solely depending on the shadow-map resolution, i.e., proportional to the texel size.

Impact of Patterns The study shows that the step pattern needs a larger filter size
compared to the stair pattern to be hidden from the user. Figure 4.6 shows that the stair
patterns of size 10 pixels are perceived as a straight contour when the filter size is at
or above 25 pixels. Using the same filter size, single-step artifacts of the same size are
still identifiable by the users. We assume that the regularity of the 45 degree pattern is
beneficial to the user’s perception of a straight contour.

Comparison to Reference Filter Size In order to measure the actual benefits of
the perceptual approach, we need to compare it to a reference solution. We decided to
use the same setup we employed in our user study, with the assumption that in the worst
case, artifacts will still be noticed if at least one pixel differs from the expected outcome.
In other words, if the rasterization of two filtered solutions, one with and one without
artifacts (drawn using Bresenham’s line algorithm at high resolution), produces the same
image (assuming a typical 8-bit representation for intensities), even a perfect user will
not be able to spot any artifacts. This corresponds to finding the minimal filter size
where this condition is met. We will refer to this filter size as the reference filter size.

Impact of Light-Shadow Contrast Reducing the contrast between the lit- and the
umbra region makes it slightly harder for the user to identify artifacts, as can be seen in
Figure 4.6b.

In the next chapter we will use the data gathered by the user study to fit a linear function
that describes the perceptually optimal relation between filter- and artifact size.
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CHAPTER 5
Algorithm

In this chapter we are going to propose the steps necessary in order to integrate our
findings into a real-time setup based on our own implementation. Furthermore, we will
demonstrate visual results and benchmarks generated using our approach.

While the previous chapters investigated the impact of changes of given parameters on
the optimal filter radius, real-time shadowing setups often need to approach the problem
from the opposite direction, that is, to calculate the optimal parameters for a certain
filter radius. Usually, designers want to define the visual appearance, i.e., the general
softness, of a shadow by adjusting the filter radius (in case of PCSS, the designer adjusts
the light size, which also affects the filter radius).

5.1 Integrating our Results into Shadow-Mapping
Algorithms

5.1.1 Filter to Resolution Relation

Given an arbitrary scene, we have to assume the worst cases of artifact patterns and the
worst cases of light-shadow intensity to appear, hence the only parameter left to find is
the right artifact size. During shadow-map evaluation, the shadow map gets projected
into the scene. If we recall our findings from Chapter 4, we can see that we are trying to
maximize the projected shadow-map texels’ size to a degree where we still get pleasant
results after blurring it with a specific filter size. Since we are investigating undersampling
artifacts, the artifact size is governed by the shadow map’s sampling resolution (i.e., the
initial sampling frequency).

Fitting a linear function to the results shown in Figure 4.6 (blue line) we get Equation 5.1,
which allows us to calculate the optimal filter radius r for a shadow map by multiplying
the artifact size a with the slope c of the linear function. More intuitively, this can be
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interpreted as calculating the filter radius proportional to the texel size of the shadow
map.

r = a · c (c = 3.47) (5.1)

Based on our assumption from Section 4.1.2 that the function is independent of the
scene (i.e., camera) setup, we can incorporate it into shadow mapping algorithms. In this
section, we want to compute the shadow-map resolution for a user-defined filter radius,
so we have to invert Equation 5.1.

There are two ways how to calculate the shadow-map resolution, depending on which
space the filter radius is defined in:

Assuming that the desired blur radius rUV is already defined in shadow-map texture
space, we can calculate the artifact size aUV :

aUV = rUV

c
(5.2)

Since we want to be able to hide one shadow-map texel, we substitute the relative artifact
size for the reciprocal of the shadow-map’s resolution, yielding equation 5.3:

sres = 1
aUV

= c

rUV
(5.3)

If, on the other hand, the desired blur radius is defined in world space as rW S , we can
calculate the artifact size aW S (in world space):

aW S = rW S

c
(5.4)

Using the extents of the light’s view plane LW S , we calculate the artifact size relative to
it:

arel = aW S

LW S
(5.5)

sres = 1
arel

= LW S

rW S
c (5.6)

Equations 5.3 or 5.6 can be directly incorporated into algorithms which support a constant
filter size (such as PCF or VSM).

Soft-shadow algorithms require additional considerations which will be discussed in
Section 5.1.3.
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5.1.2 Shadow-Map Generation

Before computing the shadow map, we limit the view frustum of the shadow-casting light
source. By doing so we can concentrate our shadow samples to surfaces which potentially
cast shadows and get rid of redundant depth information.

The fitting algorithm described in Section 3.4.2 fulfills this purpose. However, there are
a few things to consider when implementing shadow-map fitting:

Fitting scales the portion of the scene that is projected to the viewport. We want the
filter radius to cover the same area of the scene as it would do without fitting. So we
need to account for the scaling. We can do so by incorporating the scaling coefficients
sxy of the fitting matrix into our computations. Since the fitting matrix enlarges the
portion of the viewport we need to scale the filter radius by multiplying it by sxy:

rUV = rW S

LW S
sxy

For soft shadows we need to adapt the light source’s area in a similar fashion:

wLight = wLightW S

LW S
sx,y

Later on, we can use wLight to scale the filter radius independently from the light’s actual
view-plane size.

Figure 5.1 demonstrates the effects of shadow-map frustum fitting. Recall Equation 5.1:
by increasing the filter radius, we can further reduce the shadow map’s resolution.
Therefore, fitting has great potential in combination with our method. These benefits can
be seen in Figure 5.1, where the shadow-map size for the fit frustum is substantially lower
than in the unfit case. The visual result is very similar despite the reduced resolution.

The scene can now be rasterized using the previously defined adaptive view frustum.
The target framebuffer’s depth attachment then holds the shadow map. Its depth values
range from 0 to 1, where 0 is mapped to the near plane and 1 is mapped to the far plane.

5.1.3 Shadow-Map Evaluation

Now that the shadow map contains the sampled distances from the light source, the
scene is drawn from the viewer’s camera. As explained in Section 3.3.3, we additionally
need to project each vertex into shadow-map space using the view projection matrix
from the previous section and shift the resulting values into the same [0, 1] interval as
the shadow-map values are ranging in.

During fragment shading, the perspective division (Equation 5.7) is performed to map
the fragment into shadow map space.

51



5. Algorithm

(a) unfit at 237x237 px (b) fit at 55x60 pixels

Figure 5.1: We use fitting to focus the shadow map on relevant geometry only. By
doing so the filter radius grows with respect to the near plane size. This allows us to
further reduce the shadow map’s resolution.
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U

V

wLight

Figure 5.2: When Poisson disk sampling is used, sampling points are distributed inside
a circle. Randomly rotating the disks per fragment adds noise to our filter, which further
obfuscates sampling artifacts.

Pshadow = Pshadow.xyz

Pshadow.w
(5.7)

At this point, a simple binary shadow evaluation could already be performed by comparing
the fragment’s projected shadow map space depth Pshadow to the corresponding value
stored inside the shadow map.

Percentage Closer Filtering

The results obtained by Percentage Closer Filtering depend on the filter size, which is
governed by the desired blur width (corresponds to light with rUV or rW S defined in
Section 5.1.1) and the sampling kernel used.

A common approach to reduce the amount of shadow-map samples needed to compute
smooth shadow contours is to utilize randomly rotated Poisson disk kernels (an example
is shown in Figure 5.2). We will shortly discuss why we expect our findings to be usable
in Poisson disk based algorithms as well.

Let’s first consider that Poisson disk sampling introduces noise in the soft shadow, which
makes it harder for the user to perceive the iso-contours discussed in Section 4.1.1 (the
noise obfuscates the contours). We therefore expect our findings to be compatible with
such algorithms, as artifacts should be even less noticeable when they are used.

We used a sample size of 25 to produce the results shown in Figure 5.7 and Figure 5.8.

Percentage Closer Soft Shadows

We also aimed to apply our adaptive resolution to the Percentage Closer Soft Shadows
(PCSS) algorithm. The PCSS algorithm determines the shadow’s penumbra size by
relating the distance from an area light source to the surface point blocking the light and
the point on the surface receiving the light as shown in Figure 3.19b. Since the blocker
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distance is unknown, it has to be estimated using the mean distance from samples taken
from the shadow map inside a potential blocker range as shown in Figure 3.19a. In order
to achieve this, distances inside a region of rsearch (see Equation 5.8) have to be averaged
as show in Equation 5.9.

rsearch = wLight
zReceiver − zNear

zReceiver
(5.8)

zBlocker =
∑
zSample

nSamples
(5.9)

The resulting average blocker distance zBlocker can be used to estimate the penumbra
radius rP enumbra (see Equation5.10) for the point on the receiving surface.

rP enumbra = rLight
zReceiver − zBlocker

zBlocker
(5.10)

Subsequently, the amount of light received can be determined conventionally by applying
PCF with a radius of rfilter as shown in Equation 5.11.

rF ilter = rP enumbra
zNear

zReceiver
(5.11)

Due to the penumbra size being variable, our optimizations cannot be applied without
considering some caveats. Consider the typical case of a three-dimensional object being
placed on a flat surface and a light source that shines light in a slanted angle to the
surface. The shadow would start out with an infinitesimally small penumbra and
grow with increasing distance. Obviously, our algorithm cannot deal with a penumbra
radius tending towards zero because the resolution would skyrocket towards infinity. By
limiting the penumbra radius using a minimum threshold, we are still able to apply our
optimizations. This has the downside of losing sharp shadow silhouette features in those
situations where surfaces are very close to each other and especially when the angle
between light source and shadow receiver is very shallow.

We can also compute the truly required minimum resolution using the AtomicMin
operations supported by modern GPUs to evaluate Equation 5.12 on a per-pixel basis.

resMinimal = max
F ragments

∣∣∣∣ c

rF ilter

∣∣∣∣ (5.12)

5.2 Evaluation Framework
In order to conduct a practical evaluation of our observations, we implemented a real-time
rendering environment and applied Equation 5.1 to dynamically resize the resolution of a
shadow map. We demonstrate the effectiveness of the reduced shadow-map resolution by
applying PCF as well as PCSS filtering.
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5.2.1 Software Requirements

The software was written in Visual C++ 14 with the following aspects in mind:

Scene Content The application needs to offer functionality to load meshes and textures,
cameras and lights from file. We achieved this by using well-established third-party
software. Models and materials were created using the modeling software Blender [Ble15].
Assimp [AG15] was used for reading the data produced by Blender in our framework.

Shadow Mapping In order to test our algorithm, the application needs to support
custom shadow-map filtering algorithms (i.e., none, PCF, PCSS, VSM). We therefore
implemented a custom rendering engine utilizing the OpenGL 4.4 API.

User Interface Mouse and Keyboard can be used for interactive placement and
orientation of cameras and light sources. The AntTweakBar library [Dec13] is used
to supply a user interface for changing the filtering algorithm and for tweaking its
parameters.

1. Additional light-source parameters

• Enable or disable shadow-map fitting.

• Select which shadow-mapping algorithm to use.

• Manipulate parameters specific to the selected shadow-mapping algorithm
(i.e., blur radius, light size, etc.).

2. Data visualization

• Display current shadow-map resolution.

• Run benchmark (including average frame-generation timings) and print the
results to a file.

• Overlay a visualization of the shadow-map contents.

Benchmarking Using Opengl timer queries, the application offers an accurate bench-
mark environment to measure GPU computation times and cache efficiency.

5.2.2 Application Showcase

The application we developed includes all the functionality discussed above. Figure 5.3
shows a screenshot of the actual evaluation framework.

All 3D-rendered images depicting real-time shadows used in this thesis were generated
using this application.
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Figure 5.3: Screenshot of the application used to evaluate our algorithm. The user
interface offers access to all the important parameters.

5.2.3 Quality and Performance Evaluation

Results rendered with the new algorithm are shown in Figures 5.7 and 5.8. For each
filtering method we show two situations, in particular small and large filter size, and
compare the reduced shadow-map resolution rendering to the unreduced reference ren-
dering side-by-side. While the results look almost identical, we observe an increase in
frame-rates on a Geforce GTX 960 GPU by up to 100%.

Diagram 5.4 shows detailed GPU computation times (times for shadow-map generation
and times for drawing the image) at different resolutions and radii for our algorithm.

We can observe an overall improvement in computation times using the reduced resolution
in our prototype, especially during the shadow evaluation. This benefit also increases
for larger filter sizes. In the following paragraphs, we will analyze the causes for the
performance gains.

Shadow-mapping computations take place almost entirely on the dedicated graphics
processing hardware (a.k.a. the GPU). The sole responsibility of the client program
running on the CPU is issuing memory allocations, draw calls and to set parameters on
the GPU. This narrows the investigation of performance impact down to processes run
on the GPU.

The first task issued to the GPU by our algorithm is to allocate memory for storing the
shadow map. For PCSS, we expect our shadow-map size to vary for dynamic scenes
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Figure 5.4: Detailed benchmark results for computing the images depicted in Figures 5.7
and 5.8 from a slightly different light angle. Notice, that due to the fitting algorithm and
a different positioning of the light source, the resolutions slightly differ from the results
in figures 5.7 and 5.8 A 25-tap Poisson-disk kernel was used in all instances. Since
timings slightly differ from one frame to another, the timings of 10 sequential frames
were averaged.

because the receiver and blocker distances change each time the camera of either the
viewer or the light source is moved. If the fitting algorithm is used, frequent changes
in the shadow map’s resolution are expected for PCF as well. This means that the
memory footprint of the shadow map potentially changes from one frame to another.
Theoretically one could reallocate shadow-map memory each time the PCF filter radius
changes. For real-time applications, however, we prefer processing performance over
memory consumption and therefore we allocate a generous amount of memory beforehand
and just fill up the chunk of data as needed. Figure 5.5 demonstrates how we adjust the
shadow-map resolution by using a portion of the reserved memory.

Because of the preliminary memory allocation, we would not actually gain memory
that could be used otherwise by resizing the shadow map. Smaller shadow maps can
theoretically be computed faster than larger ones, because less fragment shader operations
are needed when they are generated. Although the same amount of operations are
needed during the evaluation stage, the key benefit of a smaller shadow map lies in the
PCF-filtering step (plus blocker search for PCSS). The PCF and PCSS filter samples
and averages multiple shadow-map texels per fragment. This causes lots of memory
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Full memory footprint Optimized memory footprint

Figure 5.5: Reducing the resolution of a shadow map potentially yields considerable
performance benefits. When a shadow map is generated, a shader routine has to be issued
for each pixel in the shadow map. By reducing the size of the shadow map, we reduce the
number of pixels to be written into the buffer and therefore reduce the number of shader
invocations.

transfers on the GPU’s memory-pipeline. When a memory fetch is requested from a
certain shadow-map location, the GPU transfers not only the one texel requested, but
additionally fetches a whole bunch of neighboring texels. This process is called texture
caching and is designed to offer fast access to adjacent values, which is exactly what we
need for filtering applications (see Figure 5.6).

This caching strategy assumes that multiple fragments that are processed by the GPU
in parallel request data from memory regions in close proximity. Here lies the benefit
of small buffers. We can store relevant data densely and thereby increase the cache
efficiency and reduce memory transfers (see Figure 5.6).
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dense sparse

Figure 5.6: During the shadow-evaluation stage, shader routines constantly fetch samples
from the shadow map. The GPU internally manages cached memory (usually a block
of adjacent pixels in a 2D buffer), which allows a much faster access to the required
data. Performance is drastically increased when cached data is hit more often. Therefore,
reducing the shadow map’s density, we can increase the probability of cache hits because
the chance of a requested sample being adjacent to an already cached sample is higher.
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PCF 2048× 2048, 0.44ms and 7.47ms

PCF 368× 387, 0.17ms and 3.62ms

PCF 2048× 2048, 0.40ms and 10.94ms

PCF 184× 193, 0.20ms and 3.59ms

Figure 5.7: Side-by-side comparison of the same scene rendered with large and reduced
shadow-map resolution using two different blur sizes. The shadow-map resolutions and
achieved frame rates can be seen in the respective captions.
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PCSS 2048× 2048, 0.48ms and 8.51ms

PCSS 734× 773, 0.23ms and 4.01ms

PCSS 2048× 2048, 0.47ms and 10.68ms

PCSS 271× 285, 0.14ms and 3.83ms

Figure 5.8: Side-by-side comparison of the same scene rendered with large and reduced
shadow-map resolution using two different light sources with different surface area. The
shadow-map resolutions and achieved frame rates can be seen in the respective captions.
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CHAPTER 6
Conclusion

6.1 Synopsis
In this thesis, we demonstrated how shadow filtering can be exploited to hide shadow
mapping related artifacts.

Shadow artifacts appear due to various reasons and are influenced by many parameters
(such as position, orientation and material of the surface, position, orientation and intensity
of the light source, position and orientation of the viewer, shadow-map resolution, filter
size). We were able to break down the huge parameter space, which can be hardly
investigated in a user study, into a simplified version consisting of four features that
impact the shadow’s perceptual quality. Reducing the complex feature space of shadow
perception allowed us to design a user study which helped us to find out at which point
filtered artifacts become unnoticeable to users.

By interpreting the results of the user study, we were able to describe the connection
between shadow filter width and shadow-map resolution from a perceptual point-of-view.
The resulting linear function can be used in practical shadow-mapping setups. It can be
used to dynamically adjust shadow-map resolution in real time, or to calculate a feasible
shadow-map resolution tailored to a desired penumbra width. By reducing the number
of depth samples in a shadow map, we can increase the performance of shadow-map
generation, since there are fewer fragments to process. Also, the performance of shadow-
map evaluation is increased, because reducing the number of depth samples also increases
the performance of shadow lookups, since it increases cache efficiency because shadow
samples are tightly packed. Due to its generic nature, our method is adaptable and can
be applied to several existing shadow-mapping algorithms (such as PCF, PCSS, VSM,
CSM, etc.).

In order to demonstrate our method’s effectiveness, we applied it to common shadow
filtering algorithms. We offer a detailed description of a practical implementation. We
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were able to save resources by using our perceptually optimized algorithm (as can be
seen by comparing the shadow-map resolutions and fps-timings in Figures 5.7 and 5.8).

6.2 Limitations and Future Work
Although our implementation shows promising results, there are some noticeable limita-
tions.

In cases where the blur width is large, high-frequency geometry details might be omitted.
An example is shown in Figure 6.1. While this loss in detail is partially owed to the
low-pass filtering characteristic of the blur, the reduced sampling-frequency might miss
entire details such as small gaps in the geometry.

In case of PCSS, our method also requires the programmer to define lower bounds for the
penumbra size. In cases where the penumbra width is very small, i.e., for contact shadows,
the penumbra width has to be enlarged, because otherwise the required resolution would
tend to be infinitely large. One possible solution could be the adaptive light-source
subdivision approach, described by Schwärzler et al. [SMSW12]. They dynamically
subdivide the light’s view plane and compute multiple shadow maps of varying sampling
density to cover it. While this approach would cover the problems on contact shadows, it
is not well suited for real-time applications.

Due to limited resources, we conducted our user study on a small group of ten expert
users. However, we do not expect significant differences to our linear fitted function if
more users were to be questioned.

Adjusting the shadow map’s resolution in-between frames introduces problems with
temporal coherence, making shadow silhouettes appear wobbly during animations. We
tried to alleviate this problem by restricting the rate of resolution change over time.
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Figure 6.1: Lowering the resolution might have the unwanted side-effect of detail being
omitted. In the lower-left detail, the shadow map was sampled at a higher resolution than
in the lower-left detail. The gap in the crane’s geometry features high-frequency detail,
which gets lost when using a larger blur radius and a lower sampling frequency.
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