
Reasoning Capabilities for a
Cognitive-Assistive Assembly

System

MASTERARBEIT

zur Erlangung des akademischen Grades

Master of Science

im Rahmen des Studiums

Computational Intelligence

eingereicht von

Ardian Koltraka
Matrikelnummer 1229395

an der Fakultät für Informatik

der Technischen Universität Wien

Betreuung: Univ.Prof. Dipl.-Inf. Dr.rer.nat. Jens Knoop
Mitwirkung: Dipl.-Ing.(FH) Dr.techn. Dietmar Schreiner

Wien, 28. Juni 2017
Ardian Koltraka Jens Knoop

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.ac.at

Die approbierte Originalversion dieser Diplom-/
Masterarbeit ist in der Hauptbibliothek der Tech-
nischen Universität Wien aufgestellt und zugänglich.

http://www.ub.tuwien.ac.at

The approved original version of this diploma or
master thesis is available at the main library of the
Vienna University of Technology.

http://www.ub.tuwien.ac.at/eng

Reasoning Capabilities for a
Cognitive-Assistive Assembly

System

MASTER’S THESIS

submitted in partial fulfillment of the requirements for the degree of

Master of Science

in

Computational Intelligence

by

Ardian Koltraka
Registration Number 1229395

to the Faculty of Informatics

at the TU Wien

Advisor: Univ.Prof. Dipl.-Inf. Dr.rer.nat. Jens Knoop
Assistance: Dipl.-Ing.(FH) Dr.techn. Dietmar Schreiner

Vienna, 28th June, 2017
Ardian Koltraka Jens Knoop

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.ac.at

Erklärung zur Verfassung der
Arbeit

Ardian Koltraka
Mooslackengasse 21/406, 1190

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 28. Juni 2017
Ardian Koltraka

v

Acknowledgements

Hereby, I would like to express my very profound gratitude to my advisers Prof. Dr.
Jens Knoop and Dr. Dietmar Schreiner, for their enthusiastic encouragement, fruitful
critiques, and the patient guidance. They have gone beyond their duties to instil great
confidence in both myself and my research work.

Moreover, I would like to thank the members of Profactor company for their support,
valuable provided tools and materials. Here I have to give a special thank to Matthias
Plasch who was my thesis-supervisor at Profactor GmbH, I am forever indebted to him.

I would express a deep sense of gratitude to my parents and my brother for being such
a huge support all my life along. This accomplishment would not have been possible
without them. Thank you.

I am also very thankful to my fiancée, for her continuous encouragement, support, and
patients that she has given to me. I have never met anyone who believes in me more.
Thank you for making me stronger than I am.

Finally, I would like to thank Almighty God for giving me the strength, knowledge,
ability and opportunity to undertake this research work and to pursue and complete it
satisfactorily. Without his blessings, this achievement would not have been imaginable.

vii

Abstract

Modern production systems have to meet the challenges of changing market trends, high
flexibility in product types and variants, and short innovation cycles in order to stay
competitive. In this context, Human-Robot-Cooperation is considered as a key technology
to improve efficiency and to reduce operating costs. In order to realize a cooperative and
effective relationship between a human and a robot, e.g. when performing an assembly
task together, concepts for communication and coordination among the actors, as well
as for the representation of domain knowledge are required. Such a robotic assistant
must do the right thing to the right object in the right way and reason about the task
that it has to do in cooperation with the human. The ability of the robot to recognize
and learn the current state of an assembly task is crucial, because it will be applied for
further reasoning, e.g. establishing the next actions to be done by the robot or by the
human and to derive assembly task variants. The overall aim of this master thesis is to
develop a reasoning system which hypothesizes the current state of the assembly task
by integrating and combining a knowledge base task model with the input from sensing
and actuating components. A general task model which represents the task states has to
be build, were each task state consists of a human state, robot state and a set of object
relations. Having such a model whose construction conforms to the information received
by sensing and actuating components enables the capability to predict the current state
of the assembly task with the help of supervised machine learning algorithms.

ix

Kurzfassung

Rasch veränderliche Marktsituationen, hohe Variantenvielfalt und Flexibilität sowie immer
kürzer werdende Innovationszyklen, erfordern häufig eine schnelle Anpassung moderner
Produktionssysteme an die neuen Gegebenheiten. Mensch-Roboter-Kollaboration (MRK)
wird in diesem Zusammenhang als Schlüsseltechnologie zur Effizienzsteigerung und Kos-
tenreduktion betrachtet. Zur Umsetzung effizienter MRK, z.B. in Montageprozessen, sind
durchdachte Konzepte für die Kommunikation und Koordination unter den Akteuren,
sowie die Abstraktion von domänenrelevantem Wissen notwendig. Die wesentliche Her-
ausforderung an derartige Roboterassistenzsysteme ist das Setzen korrekter Handlungen
zum richtigen Zeitpunkt und in nahtloser Kollaboration mit dem Menschen. Dabei sind
das Lernen und Identifizieren von Zuständen in einem Montageprozess unverzichtbare
Fähigkeiten, um auf nachfolgend auszuführende und zielführende Handlungen schließen
zu können. Ziel dieser Masterarbeit ist die Entwicklung eines Reasoning-Systems um
Hypothesen über den aktuellen Zustand des Montageprozesses aufstellen zu können. Als
Informationsquellen für den Reasoning-Prozess sollen das vorhandene Domänenwissen und
erfasste Daten von Sensor- und Aktuator-Systemen in kombinierter Weise herangezogen
werden. Zur Wissensrepräsentation wird ein generisches Datenmodell zur Beschreibung
des Montageprozesses aus Prozesszuständen entwickelt. Jeder Prozesszustand ist durch
erfasste Zustände von Mensch und Roboter sowie der räumlichen Anordnung der rele-
vanten Objekte (z.B. Bauteile) beschrieben. Dieses Datenmodell ist konform mit den
Datenformaten der Sensor- und Aktuator-Systeme und ermöglicht qualitative Hypothesen
über den aktuellen Prozesszustand unter Verwendung von Algorithmen zum überwachten,
maschinellen Lernen.

xi

Contents

Abstract ix

Kurzfassung xi

Contents xiii

1 Introduction 1
1.1 Motivation . 2
1.2 Problem Statement . 4
1.3 Research Goal . 4
1.4 Contributions . 5
1.5 Structure of thesis . 6

2 Theoretical Background 9
2.1 Description Logics . 9
2.2 OWL Ontologies . 15
2.3 Application of Machine Learning to identify the task state 16

3 Implementation Environment 31
3.1 KnowRob knowledge processing system 31
3.2 Knowledge Processing for Autonomous Personal Robots 32
3.3 Unified Representation for Reasoning 33
3.4 RoboEarth Action Recipe Execution 33
3.5 Human activity analysis . 34
3.6 Mental Model and Shared Grounds in Human-Robot Interaction . . . 34

4 Modeling the assembly task description in OWL 37
4.1 Modeled classes . 38
4.2 Modeled individuals . 42
4.3 Modeled properties . 42

5 Implementation of the reasoning system 47
5.1 Architecture of the reasoning system 47
5.2 RosJava package implementation . 48

xiii

5.3 KnowRob package implementation . 50

6 Experimental validation of the implementation 53
6.1 Experiments based on the first data set 54
6.2 Experiments based on the second data set 55
6.3 Experiments based on the third data set 57
6.4 Concluding remarks on the evaluation results 59

7 Conclusions and Future Work 63

List of Figures 67

List of Tables 69

Bibliography 71

CHAPTER 1
Introduction

Contemporary production systems have to be designed to deal with the growing challenges
of market trends, high flexibility in product types and variants, and short innovation cycles
in order to stay competitive. As in these production systems, robots are gradually getting
more familiar with the human populated environments, they need to possess more complex
reasoning abilities. Also cooperative robots are receiving greater acceptance in the human
populated environments because the typical advantages provided by manipulators are
combined with an intuitive usage. In this context, Human-Robot-Cooperation (HRC)
is considered as a key technology to improve efficiency and to reduce operating costs.
The goal of these robot systems is not only to operate efficiently and safely in natural,
populated environments, but also be able to achieve higher levels of cooperation and
communication with humans. The robotic assistant must do the right thing to the right
object in the right way and reason about the task that it has to do in cooperation with
the human. In such production systems, the focus is on a proximate cooperation where
the human and the robot are co-located. In order to realise a cooperative and effective
relationship between a human and a robotic system, e.g. the process of working together
to accomplish an assembly task, concepts for communication and coordination among
the actors, as well as for the representation of domain knowledge are required. The idea
of combining an assembly robot behaviour with cognitive skills is highly challenging, and
requires interdisciplinary cooperation between classical robotics, cognitive sciences, and
psychology. Humans as nondeterministic factors make cognitive sciences and artificial
intelligence important research fields in HRC (BWB08). The robot may learn from the
task activity performed correctly by the human user. The ability of the robot to recognize
and learn the current state of an assembly task is crucial, because it will be applied for
further reasoning, e.g. deducing the next actions to be done by the robot or by the human
and to derive assembly task variants. The overall aim of this master thesis is to develop
a reasoning system which hypothesizes the current state of the assembly task. The main
idea is to integrate and combine an assembly task knowledge with the input from sensing

1

1. Introduction

and actuating components and to consider the human and the robot capabilities in the
assembly task execution. The reasoning system should be able to make a reliable analysis
about the human states, the robot states and also to the object relations. A model which
represents the states of the assembly task has to be build, were each task state consists
of a human state, a robot state and a set of object relations. Such a meta model should
express the information received by sensing and actuating components which also is used
for the prediction of the current state of the assembly task with the help of supervised
machine learning algorithms. A fast and a reliable classification of the task states is
required, as well as strategies to conclude with the best assembly task state prediction.

1.1 Motivation
Although robot technology was primarily developed in the mid and late 20th century,
it is important to note that the notion of robot-like behaviour and its implications for
humans have been around for centuries in religion, mythology, philosophy, and fiction
(GS07). "Robot" appears to have first been used in Karel Chapek’s 1920’s play Rossum’s
Universal Robots, though this was by no means the earliest example of a human-like
machine. Indeed, Leonardo da Vinci sketched a mechanical man around 1495, which has
been evaluated for feasibility in modern times (Ros06). The first assembly robot which
was a die casting machine was invented by George Devol and was a prototype Unimate
industrial robot, which worked on a General Motors assembly line at the Inland Fisher
Guide Plant in Ewing Township, New Jersey, in 1961 (Tza00). It was a fairly simple
robot, compared to the ones we have nowadays, because it was designed to perform
only one task. In Europe the first industrial robots were installed in Sweden in 1967 at
Svenska Metallverken in Upplands Väsby (Wal08). The robots did monotonous jobs like
picking in and out. In 1969 Unimation installed its first robots for spot-welding, they
were 26 robots for spot-welding car bodies. In 1972, Europe followed by setting up a
spot-welding line with robots at Fiat (Wes00). The aim of the very first robots were to
perform simple tasks such as pick and place, since they had not external sensing yet.
Robots replaced humans in monotonous, repetitive, heavy and dangerous tasks. Industrial
robots nowadays are divided in three different groups namely: material handling, process
operations and assembly. In the end of the 1970s and the beginning of the 1980s when the
robots started to manage both a more complex motion and had external sensor capacity,
the robot development was mainly concentrated on assembly. On this time more complex
robot applications followed, like welding, grinding, deburring (Wal08). Assembly robots
were used to reduce costs, increase productivity, improve product quality and eliminate
harmful tasks. As the robots are leaving factory environments and gradually moving to
human populated environments, they need to have more complex cognitive abilities. They
do not only have to operate efficiently and safely in natural, populated environments,
but also be able to achieve higher levels of cooperation and communication with humans.
Human-Robot-Collaboration is a research field with a wide range of applications, future
scenarios, and potentially a high economic impact (BWB08).

To have an effective collaboration, recent research in the field of psychology has focused

2

1.1. Motivation

on cognitive processes of joint-action among humans (PvSB09). Psychological studies
(GS03) show that collaborating in human teams, requires an effective coordination between
participants that plan and execute their actions in relation to what they anticipate from
the other team members, and not just react on the others current activities. A concept
of a profitable working environment which is designed to support joint action of humans
and industrial assembly robots is given where a safe collaboration is possible. The system
anticipates human behaviour, based on knowledge databases and decision processes,
ensuring an effective collaboration between the human and robot (LNR+08). In this
work we focus on a very specific HRC scenario that is realized at Profactor GmbH. The
scenario is depicted in Figure 1.1, where the robot is in a cooperation with the human
agent performing a steam cooker assembly task. The robotic system is equipped with a
perception system, which recognizes human states (with the help of Kinect 2 sensor),
robot states and spatial relations between objects (with the help of Asus Xtion sensor).
The steam cooker assembly task consists of four objects, namely: Tray, Base, Ring, and
Heater.

Figure 1.1: HRC in performing a steam cooker assembly task (APPR16).

The robotic system performs manipulations by using a gripper and a robotic arm combined
with a manipulation planner software component. An important challenge of this robotic
system is the recognition of the current state of the assembly task. In this work we
address this particular challenge and propose a methodology based on machine learning
techniques in order to solve it.

3

1. Introduction

1.2 Problem Statement
Modern production systems have to meet the challenges of changing market trends, high
flexibility in product types and variants, and short innovation cycles in order to stay
competitive. In this context, Human-Robot-Cooperation is considered as a key technology
to improve efficiency and to reduce operating costs. In order to realize a collaborative and
effective relationship between a human and a robot, e.g. when performing an assembly
task together, concepts for communication and coordination among the actors, as well as
for the representation of domain knowledge are required. Such a robotic assistant must
do the right thing to the right object in the right way and reason about the task that
it has to do in cooperation with the human. The ability of the robot to recognize and
learn the current state of an assembly task is important, in order to decide on the next
actions to be done and to derive assembly task variants. The overall aim of this work is
to develop a reasoning system which hypothesizes the current state of the assembly task
by integrating and combining a knowledge base with the input from the perceived sensor
and by considering its own capabilities in the assembly task execution.

1.3 Research Goal
The aim of this work is to develop a reasoning system, which reasons about the current
state of an assembly task that is to be carried out by a robotic system collaborating with
a human. The current state of the assembly task is composed of human state, robot
state, and object relations.

The robotic system which is presumed for this thesis is equipped with sensing and
actuating components, to perceive what is happening in the environment (Object Recog-
nition and Human Action Recognition systems) and to perform manipulations using a
Gripper and a Robotic arm combined with a manipulation planner software component.
Figure 1.2 provides a high level overview of how an assembly task execution is carried out.
Each state of an assembly task is characterized by a stable configuration of the involved
objects and stable states of the Human Action Recognition, Manipulation planner and
Gripper. There are some Pre/Post conditions for a task step to be satisfied that will lead
to the next assembly task state (stable configuration). If the conditions are not met then
there must be some deviation state. So it has to be a list of assembly task execution
descriptions given to the robot and achieved by it. Since the robot actions are limited,
the system needs an intelligent way to manage the data with the purpose of checking the
robot capabilities for a given task. Based on our findings we eventually aim at answering
the following two questions:

1. How does the reasoning system should be able to check the current state of an
assembly task? By considering:

– robot states,
– object locations, and

4

1.4. Contributions

– human states perceived by the robotic systems.

2. Which Machine Learning classifier is the most appropriate one for this problem?

The contribution in answering the above two questions regarding its usefulness for
Profactor and more generally for the HRC problem is evaluated. Moreover, possible ideas
and proposals for further research will be recommended concerning the perspectives of
being able to extend the reasoning system.

Figure 1.2: Assembly task execution sequence.

1.4 Contributions

The main contribution in this master thesis is the design, implementation, and evaluation
of a reasoning system that is used in a proximate cooperation. The reasoning system is
able to predict the current state of an assembly task, and consists of two main developed
modules namely:

1. a module that provides the use of machine learning (ML) classifiers,

2. and another module in which:

a) an ontology is constructed to model the assembly task description,

5

1. Introduction

b) reasoning about the constructed ontology with the help of Prolog queries is
made,

c) the service provided by the ML module is called in order to predict the
unknown class (task state) of the fetched data from the perception system.

The constructed ontology model that represents the task description is crucial in our
work. The ontology model consists of human states, robot states, object relations and
task states of the assembly task. Object relations are given by a binary predicate. The
developed reasoning system is initially used for a steam cooker assembly task at Profactor,
which fully meets our expectations. In considering more general HRC at Profactor our
contribution is suited to be applied on those assembly tasks where their ontology model
evolves as an extension of the base ontology model proposed by us. The extended ontology
model must conform to the base ontology model. Our contribution can also be applied
in a more general HRC problem as long as the ontology model of the assembly task can
be constructed by extending the base one developed by us, and again the constructed
ontology model must conform to the base one. Thus, to use our contribution as a
"model for the world" the essential constraint is that the constructed ontology model
of the intended assembly task must conform to the ontology model developed in our
contribution.

After the reasoning system is designed and implemented, our focus is put on ML classifiers
evaluation, in order to have a feeling, which classifier should be used to predict the task
state of an assembly task.

1.5 Structure of thesis
Figure 1.3 shows the structure of the thesis and the motivation behind it is elaborated.
Before the various sections and their content are presented, a general remark concerning
the overall structuring of this specific work is necessary.

As specified in the previous sections and detailed thereafter, the goal of this thesis is
to design, implement and evaluate a reasoning system which hypothesizes the current
state of an assembly task. In Chapter 1 we illustrate the general motivation behind the
conducted research, outline the research problem statement, the research goal and our
contributions. In Chapter 2 and 3 we introduce the basic concepts and systems that are
needed to accomplish the goal of this work and also existing methods and approaches
that are dealing with similar problems. In Section 2.3 we introduce existing ML methods
which are used in manufacturing that also can be used to predict the current state
of the assembly task. In Chapter 4 the ontology model is developed, which is spread
in three sections, namely modeling classes (Section 4.1), individuals (Section 4.2) and
properties (Section 4.3). In Chapter 5 we describe the design and implementation of the
reasoning system that will take the task model concept introduced in Chapter 4 and use
it for further processing and reasoning. Chapter 6 gives an overview on performance
evaluation between the classifiers that will be used to make the task state prediction.

6

1.5. Structure of thesis

Structure of
work

I. Introduction

II. Research
foundation

III. Concept
development

IV. Evaluation
and

discussions

V. Conclusions

Motivation
(Section 1.1)

Modeling assembly tasks description in
OWL

(Chapter 4)

Experimental validation of the implementation
(Chapter 6)

Conclusions and future work
(Chapter 7)

Theoretical Background
(Chapter 2)

Problem statement
(Section 1.2)

Research goal
(Section 1.3)

Implementation of the reasoning system
(Chapter 5)

Contributions
(Section 1.4)

Implementation Environment
(Chapter 3)

Figure 1.3: Structure of this thesis.

Chapter 7, structured in two parts summarizes the research work, concludes the findings,
and gives an outlook into potential future directions in this research domain. It reviews
the achieved results and knowledge gained by this work and puts it in the greater context,
and it presents an outlook that identifies further research areas related to the findings.

7

CHAPTER 2
Theoretical Background

In the previous chapter we showed the general motivation in this research, outlined the
research problem, the research goal and our contribution. Therefore the basic concepts
and systems that are needed in the accomplishment of our goal should be introduced.
In this chapter, we summarise the basic concepts of Description Logics (DLs), Web
ontology Language (OWL), and some applications of ML techniques that will be applied
to identify the current state of an assembly task. DLs and OWL are important for this
work because as we noted earlier the task model of the assembly task will be represented
by an ontology. The simplified examples that are used to illustrate the concepts in this
chapter are taken from our constructed ontology model, which is described in Chapter 4.

2.1 Description Logics
This section is based on (BCM+03). It recapitulates the basic notions of DL as a formal
language for representing knowledge and reasoning about it. DL is the most modern
name used in knowledge representation (KR) formalisms which represents the knowledge
of an application domain by first defining the relevant concepts of the domain, and then
specify properties of objects and individuals which occur in the domain based on the
defined relevant concepts. Most DLs are fragments of classical first order logic (FOL)
and are very closely related to modal logic. But in contrast to FOL, DLs are decidable,
their syntax is well-suited for representing structured knowledge etc. The design space of
DLs is seen as an interval which ranges from lightweight DLs (not expressive enough) to
very expressive DLs. The language of a DL is based on:

1. A vocabulary consisting of concept names, role names, and individuals.

2. A set of concept constructors and role constructors, to build more complex concepts
and roles from the basic names.

9

2. Theoretical Background

3. Rules for writing Knowledge Bases (KBs) which comprises two components, the
TBoxes (terminological boxes) and the ABoxes (assertional boxes).

Concepts names intention is to denote atomic classes, unary predicates (Student, Robot
etc). Individuals are constants. Role names, denote binary relationships between
individuals. More complex concepts and roles can be build by the help of available
constructors. There are two types of constructors namely concept constructors and role
constructors. An example which represents the construction of more complex concepts
and roles is given as follows by the use of (see Table 2.3 for the Syntax and Semantics of
DL):

1. Concept constructors:

RobotStates u HumanStates TaskObjects t RobotStates
TaskObjects u ¬ HumanStates ≥ 2 toTheLeftOf.TaskObjects
RobotStates u ∀ hasHumanState.Idle ∃toTheRightOf.{Tray}

2. Role constructors:

inCenterOf ∪ toThesideOf hasHumanState ∩ ¬ hasRobotState

Elementary descriptions are atomic concepts and atomic roles. Complex descriptions
can be built from them inductively with concept constructors. A KR system based on
Description Logics provides facilities to set up knowledge bases, to reason about their
content, and to manipulate them. Figure 2.1 sketches the architecture of such a system.

The TBox is a set of terminological axioms that state how concepts or roles are related
to each other, i.e., the vocabulary of an application domain, while the ABox contains
concept membership assertions and role membership assertions about named individuals
in terms of this vocabulary. Two main kinds of terminological axioms are:

1. General concept inclusions (GCIs): C v D.

2. Definitions: A ≡ D, where A is a concept name.

The semantics of the KBs is given in terms of interpretations, similar to the ones used in
FOL. The interpretation consists of:

1. A non-empty domain.

2. An interpretation function.

• It gives meaning to the basic symbols in the vocabulary.

10

2.1. Description Logics

KB

TBox

ABox

Description
Language

Reasoning

Application
 Programs

Rules

Figure 2.1: Architecture of a knowledge representation system based on Description
Logics.

• It is extended to complex concepts and roles, following the rules that define
the different constructors.
• It is used to determine satisfaction of axioms in the TBox and assertions in
the ABox.

An interpretation satisfies a knowledge base (is a model of the knowledge base), if it
satisfies both the ABox and the TBox. We will give formal definitions of the syntax and
semantics of the basic DL called ALC which is the most widely used DL reasoning service.
The name ALC stands for "Attributive concept Language with Complements" (BCM+03).
The meaning of theALC is formed by starting from a basic DLAL (Attributive Language),
the addition of a constructor is indicated by appending a corresponding letter, ALC is
obtained from AL by adding the complement operator (¬). The DL that consists only
of the following set of constructors (i.e., conjunction, disjunction, negation, existential
restriction and value restriction) is called ALC. The ALC syntax consists of a countable
set NC of concept names, a countable set NR of role names and a countable set NI of
individual names. The sets of ALC-concept descriptions is the smallest sets such that:

1. Every concept name A ∈ NC is an ALC-concept.

2. > and ⊥ are ALC-concepts.

3. If C is an ALC-concept, then ¬C is a ALC-concept.

4. If C1 and C2 are ALC-concepts, then C1 u C2 and C1 t C2 are ALC-concepts.

11

2. Theoretical Background

5. If R ∈ NR is a role and C is an ALC-concept, then ∀R.C and ∃R.C are ALC-
concepts.

In ALC we only have concept constructors. An ALC Knowledge Base K is a pair
K = (T ,A) where T is a TBox and A is an ABox. The TBox T is a finite set of GCIs
(C1 v C2), and the ABox A is a finite set of concept and role membership assertions (C(a),
R(a,b)). TBox can be used for assigning names to complex descriptions. Terminological
axioms in TBox have the form:

C v D (R v S) or C ≡ D (R ≡ S)

where C, D are concepts (and R, S are roles). The first type of axioms are called inclusions,
and the second type of axioms are called equalities. An equality in which the left-hand
side is an atomic concept is a definition. Definitions are used to introduce symbolic
names for complex descriptions. For instance, the axiom

RobotStates ≡ HumanState u ¬∃hasHumanState.{Rotate}

associates on the left hand side of the description we associate the name RobotStates, the
only difference between the robot and the human is that the robot is not able to rotate
objects. For example, define HumanState analogously to RobotStates as following:

HumanState ≡ RobotStates t ∃hasHumanState.{Rotate}

The TaskStates is defined as:

TaskStates ≡ HumanStates tRobotStates tObjectRelations t TimeStamp

We call a finite set of definitions T a terminology or TBox if no symbolic name is defined
more than once, that is, if for every atomic concept A there is at most one axiom in
T whose left-hand side is A. The inclusion whose left-hand side is atomic is called a
specialization. For example to define the concept "RobotStates" in detail, it means that
every "RobotStates" concept is a "TaskStates" concept with specialisation

RobotStates v TaskStates.

A concept D subsumes a concept C if CI ⊆ DI in every interpretation I, we write it
as |= C v D. In Table 2.1 a TBox with assembly task state relation is given. Some of
the concept and role atoms in the ABox may be defined names of the TBox. In the
ABox, individuals are introduced, by giving them names, and then properties of these
individuals are asserted. Using concepts C and roles R, assertions of the following two
kinds can be made in an ABox:

12

2.1. Description Logics

C(a), R(b,c).

The first kind which is called concept assertions, the meaning is that "a" belongs to (the
interpretation of) C, the second kind is called role assertions, the meaning is that "c" is a
filler of the role R for "b".

RobotStates v TaskStates RobotStates ≡ HumanState u ¬∃hasHumanState.{Rotate}
RobotStates v TaskStates HumanState ≡ RobotStates t ∃hasHumanState.{Rotate}

ObjectRelations v TaskStates TaskStates ≡ HumanStates tRobotStatest
ObjectRelations t TimeStamp

TimeStamp v TaskStates

Table 2.1: A terminology (TBox) with concepts about assembly task states relationships.

Table 2.2 shows an example of an ABox, in which Tray, Base, Heater and Ring are
individual names, then TaskObjects(Heater) means that Heater is a an assembly task
object, and toTheLeftOf(Heater,Ring) means that Ring is at the left of Heater. An
ABox, denoted as A, is a finite set of such assertions and can be seen as an instance of a
relational database with only unary or binary relations.

toTheLeftOf(Heater, Ring) TaskObjects(Heater)
inFrontOf-Generally(Ring, Base) TaskObjects(Tray)
inFrontOf-Generally(Heater, Tray) TaskObjects(Ring)
toTheRightOf(Base, Tray) TaskObjects(Base)

Table 2.2: A world description (ABox).

The semantics of ALC is given by an interpretation I = (MI , ·I) where MI is a non empty
set called domain and ·I is the interpretation function. The interpretation function ·I
maps

1. every concept name A to a subset of MI , AI ⊆ MI

2. every role name R to a set of pairs from MI , RI ⊆ MI × MI

3. every individual a to an element of MI , aI v MI

To illustrate the meaning of the interpretation for atomic symbols we consider the
following:

1. Consider the domain: {b, h, t, r}

2. Each individual is interpreted as one element
HeaterI = h, TrayI = t, RingI = r, BaseI = b ...

13

2. Theoretical Background

3. Concepts are interpreted as a set of elements
TaskObjectsI = {b, h, t, r}, ...

4. Roles are interpreted as sets of pairs
toTheLeftOfI = {(h, r)}, toTheRighttOfI = {(b, t)},
inFrontOf −GenerallyI = {(r, b), (h, t)} ...

In Table 2.3 it is shown how the interpretation function is extended to all concepts.

Constructor Syntax Semantics
top/verum > >I =MI

bottom/falsum ⊥ ⊥I = ∅
negation ¬C MI \CI
conjunction C1 u C2 CI1 ∩ CI2
disjunction C1 t C2 CI1 ∪ CI2
universal rest ∀R.C {d1|∀d2 ∈MI .(RI(d1, d2)→ d2 ∈ CI)}
existential rest ∃R.C {d1|∃d2 ∈MI .(RI(d1, d2) ∧ d2 ∈ CI)}

Table 2.3: Interpretation function extended to all concepts.

With the help of Table 2.3 and the example for atomic symbols, we make an example for
complex concepts in the following way:

1. Consider the domain: {b, h, t, r}

2. Each individual is interpreted as one element
HeaterI = h, TrayI = t, RingI = r, BaseI = b ...

3. Concepts are interpreted as a set of elements
TaskObjectsI = {b, h, t, r}, ...

4. Roles are interpreted as sets of pairs
toTheLeftOfI = {(h, r)}, toTheRighttOfI = {(b, t)},
inFrontOf −GenerallyI = {(r, b), (h, t)} ...

5. The atomic expressions fix the meaning of all the complex ones, e.g.,

(∃toTheLeftOf.TaskObjects)I = {h}
(∃toTheRighttOf.TaskObjects)I = {b}
(∃inFrontOf −Generally.TaskObjects)I = {r}
(∀toTheLeftOf.TaskObjects)I = {b, h, t, r}
(∀toTheRighttOf.TaskObjects)I = {b, h, t, r}
(∀inFrontOf −Generally.TaskObjects)I = {b, h, t, r}

14

2.2. OWL Ontologies

OWL 2 that will be used by the ontology model construction is based on SROIQ.
Therefore we will present the features of SROIQ, which is formed by taking ALC and
extend it as following:

1. ALC extended with transitivity axioms that are expressions of the form trans(R)
for a role R, asserting that R is transitive, forms DL S,

2. S extended with limited complex role inclusion axioms; reflexivity (Ref(R)), ir-
reflexivity (Irr(R)), Symmetry (Sym(R)) and role disjointness (Disj(R; S)) R forms
SR,

3. SR extended with nominals (allows to build concepts from a set of individuals
{a1, ..., an} whose semantics is given by {aI1 , ..., aIn}) O forms SRO,

4. SRO extended with inverse properties (R−, the semantics of R− is given by
{(d2, d1)|(d1, d2) ∈ RI}) I forms SROI,

5. SROI extended with qualified cardinality restrictions (≥ nR.C, the semantics of
≥ nR.C is {d1|#({d2|(d1, d2) ∈ RI ∧ d2 ∈ CI}) ≥ n} and ≤ nR.C, the semantics
of ≤ nR.C is {d1|#({d2|(d1, d2) ∈ RI ∧ d2 ∈ CI}) ≤ n}) Q forms SROIQ .

2.2 OWL Ontologies
In this section the relevant concepts for this work regarding OWL ontology are introduced,
which are taken from (HKR+09). An ontology is a conceptualisation of the domain, which
separates the conceptual level from the actual data. It provides a common view of possibly
heterogeneous data sources, and can be shared by different task-specific applications. DLs
are used as prominent languages for writing ontologies. Complex concepts can therefore
be built up in terms of simpler concepts. The most recent development in standard
ontology languages is OWL from the World Wide Web Consortium (LÖ09). An OWL
ontology consists of Individuals, Properties, and Classes. A short description for them is
given next:

1. Individuals, represent objects in the domain in which we are interested. OWL does
not use the Unique Name Assumption (UNA), the meaning of UNA is that two
different names could refer to the same individual. Individuals are also known as
instances. Individuals can be referred to as being ’instances of classes’.

2. Properties, are binary relations which link two individuals together. For example
the property toTheLeftOf links the individual Heater and individual Ring and
property toTheRightOf links individual Base to individual Tray as are shown
at Table 2.2. Properties can have inverses, can be limited by having a single value
(being functional), they can also be either transitive or symmetric. Properties may
also have domains and ranges. In OWL there are two main types of properties
namely object property and datatype property. A datatype property gives a relation

15

2. Theoretical Background

between instances of classes and RDF literals or XML schema datatypes. An object
property gives the relations between individuals of two classes. Properties are
known as roles in description logics.

3. OWL classes, are interpreted as sets that contain individuals. Classes are described
using formal descriptions that state precisely the requirements for membership of
the class. For example the class TaskObjects in Table 2.2 contains all individuals
that are assembly task objects in our domain of interest. Classes may be organised
into a superclass-subclass hierarchy, which is also known as a taxonomy. Subclasses
are subsumed by their superclasses. For example consider the classes TaskStates
and HumanStates, HumanStates is a subclass of TaskStates, which means
that all human states are task states (all members of class HumanStates are
members of class TaskStates). Being a HumanStates implies that it is a
TaskStates. In OWL classes are constructed from descriptions that specify the
conditions which must be satisfied by an individual to be a member of the class.
Classes are also known as concepts in description logic.

The languages of the OWL family use the open world assumption, which means the
following: if a statement cannot be proven to be true with current knowledge, it is
concluded that the statement is false.

2.3 Application of Machine Learning to identify the task
state

ML has been successfully used multiple times in various process optimization, monitoring
and control applications in manufacturing industries (Alp14), since manufacturing indus-
try nowadays is experiencing with a never seen increase in available data (WWIT16). It
is argued that supervised learning is a good fit for most manufacturing applications due
to the fact that the majority of manufacturing applications can provide labelled data
(WWIT16).

ML is not only a problem which is related to databases, it is also a topic related to
artificial intelligence (AI). ML helps to find solutions to many problems in robotics, vision
and speech recognition. It programs machines to optimize a performance criterion using
synthetic data or experience data of the past. We have a defined model, and learning is
related to a program that optimizes the parameters of the model by usage of training
data or past experience. The model is used to make predictions in the future, or it can
be descriptive to gain knowledge, or both. ML uses the statistics theory in building
mathematical models, since the task is to train a model from the given data. Additionally
to predictive accuracy, the efficiency of learning or inferring information (knowledge) is of
great interest, due to space and time complexity which are very related to manufacturing
problems (Alp14).

16

2.3. Application of Machine Learning to identify the task state

Supervised ML may benefit from the generated data in manufacturing tasks related to
statistical process control purposes and the fact that this data is labelled (HSSK06),
this also holds for the problem which is considered in this thesis. The general process
of Supervised ML is shown in Figure 2.2. The very first step is collecting the dataset,
where it is very helpful to have a domain expert available which is aware of the most
informative attributes. If such a support is not available then the data are taken by a
brute force method which considers all the provided features.

Figure 2.2: The process of supervised ML(Kot07).

But brute force methods require significant preprocessing (ZZY03). The second step is
about the data preparation and preprocessing, where depending on the circumstances of
application a lot of methods needs to be considered (deal with missing values, instance
selection, feature selection). After the data preparation and preprocessing step is fin-
ished then a training set is defined on which the learning algorithms should be trained.

17

2. Theoretical Background

The choice of a learning algorithm is a very critical step. The classifier evaluation is
usually based on the prediction accuracy. For calculating the classifier accuracy different
techniques are available (Kot07).

When the ML model is learned, then the error rate is calculated and if its value is not
satisfiable, we have to go to a previous step of supervised ML process. Multiple factors
have to be checked. It can happen that most related features are not used, a training set
is required, the selected classifier does not fit with the dataset etc.

Since the constructed task model in this work is presented by nominal values, we will
recapitulate the definition of categorical data taken from (Agr06). A categorical variable
has a measurement scale consisting of a set of categories. Categorical variables have two
main types of measurement scales, namely: nominal and ordinal. Categorical variables
having ordered scales are called ordinal variables.

Categorical variables having unordered scales are called nominal variables. There are
different supervised ML algorithms which can be used, each of these algorithms has its
advantages and disadvantages to a particular application as it is sketched in Table 2.4.
Based on Table 2.4 and on the further properties of classifiers that can fit to our problem
better, we choose four supervised ML algorithms which can handle nominal data, namely:
Decision Trees, Naïve Bayes, k-Nearest Neighbors (kNN), and Support Vector Machine
(SVM). For each of the classifiers a short description will be provided in the following
subsections.

Naive Bayes and kNN classifiers can be easily used as incremental learners (the model’s
knowledge that is defined in this thesis may be extended time to time). Naive Bayes
requires little storage space during both the training and classification stages: the strict
minimum is the memory needed to store the prior and conditional probabilities. Decision
trees classifier has a highly flexible hypothesis space, as the number of nodes (or depth)
of the tree increase, decision tree can represent increasingly complex decision boundaries.
Decision trees are capable of handling datasets that may have errors. With the recent
growth in the amount of data model collected by assembly task experts, decision trees
classifier provides methods that can deal with this problem (RM14). SVMs provide
sparseness of solution when dealing with large data sets.

As the Chapter 6 gives an overview on performance evaluation between the chosen classi-
fiers, the need to describe the concepts that are considered in the performance evaluation
arises. Precision and Recall are the measures that measure how well an information
retrieval system fetches the relevant requested documents. Precision (SW11) is defined
as a ratio of true positives (TP) over the total number of positives predicted by a model,
therefore it can be defined in terms of true positives and false positives (FP) as follows:

Precision = TP

(TP + FP) . (2.1)

Recall (SW11) is a measure of information retrieval performance. Recall is the total
number of documents retrieved that are relevant/Total number of relevant documents in

18

2.3. Application of Machine Learning to identify the task state

the database, and it is defined as:

Recall = TP

(TP + FN) , (2.2)

were FN is the abbreviation for false negative. F-measure (SW11) is a measure of
information retrieval performance, and it is given as:

F −measure = 2 ∗Recall ∗ Precision
(Recall + Precision) . (2.3)

2.3.1 Decision trees

A decision tree (SW11) is a tree-structured classification model that can be efficiently
induced from training data. Each node in the decision tree represents a feature in an
instance to be classified, and each branch represents a value that the node can assume.
Leaf nodes represent events/outcomes, other nodes represent decisions. Figure 2.3 shows
a decision tree sample for an assembly task states dataset, where an example of assembly
task state conditions (ObjRelations, RobotState, HumanState) is considered, and the
class is to define whether the conditions are appropriate to the InitialTaskState or to the
FinalTaskState. To classify a new instance the work starts at the top node which is the
root, and the value which is corresponding to this node is considered (in this example is
ObjRelations). Then it moves to the descendants that correspond to a particular value
of the attribute, arriving at a new node with a new attribute. This process is repeated
until the classification reaches the leaf node, which is labeled with the class value, that
stands for being in the initial task state or at the final task state. For all instances
for which the classification reaches a particular leaf, the leaf value will be considered
as the predicted class value of that instance. In Figure 2.3 leaf nodes are shown as
rectangular boxes, and the inner nodes are shown as ellipses. It can happen that not all
training data are used for training the classifier, and this leads to not include particular
attributes in the construction of the decision tree. Attributes which are close to the
root of the tree are more important. And important attributes have a stronger influence
when the classification work is moving across the tree until it reaches the class values
(e.g., ObjRelations will always be tested, whereas RobotStates and HumanStates will
only be tested under particular conditions). In decision trees there is a concept called
pruning, and it is used to remove nodes from the decision tree after the training has
finished. Pruning is especially used when there is noisy or useless data. There are some
stopping criteria on the pruning method that is called pre-pruning. The use of pruning
helps to remove redundant nodes and sometimes leads to a remodeled tree.

Learning Algorithm

The decision tree is learned in a top-down fashion, the Algorithm 2.1 is known as Top-
Down Induction of Decision Trees (TDIDT), recursive partitioning, or divide and-conquer
learning. The algorithm selects the attribute from which the best split is gained as the

19

2. Theoretical Background

ObjRelations

FinalTaskState HumanStates

FinalTaskStateInitialTaskState

RobotStates

InitialTaskStateFinalTaskState

above-G
enerally(B

ase:R
ing)

in
Fr

on
tO

f-G
en

er
all

y(
Rin

g:T
ra

y) above-Generally(Base:Heater)
ha

sR
ob

ot
St

at
e(

Id
le

)

hasR
obotState(H

oldingO
bj)

hasH
um

anState(H
oldingO

bj)

ha
sH

um
an

St
at

e(
Id

le
)

Figure 2.3: A decision tree describing the assembly task states dataset.

root node of the decision tree, splits the set of instances into disjoint sets, and adds the
corresponding branches and nodes to the tree. The most simplest splitting criterion is
for discrete attributes, in which each test is formed as follows:

t← (A = ν),

where ν is one value of the attribute A. The corresponding set St contains all training
examples for which the attribute A has the value ν.

After the first split of the dataset is accomplished and it is partitioned according to the
value of the attribute which is split on, then the procedure is recursively applied to each
of the resulting datasets. A particular node is not split if all matching records have the
same output value, if not then add an interior node and associate to it the best splitting
attribute for the particular set where that attribute is included in, as it is described
previously. Therefore, the dataset is separated into non overlapping smaller datasets up
to the point were each particular sub-dataset contains samples of the same class which is
called pure node. Once the decision tree is constructed it does not have to store all the

20

2.3. Application of Machine Learning to identify the task state

Algorithm 2.1: TDIDT(S)
Input: S, a set of labeled examples.
Output: Tree

1 Tree = new empty node
2 if all examples have the same class c or no further splitting is possible then
3 // new leaf
4 Label(Tree) = c

5 else
6 // new decision node
7 (A, T) = FindBestSplit(S)
8 for each test t ∈ T do
9 St = all examples that satisfy t

10 Nodet = TDIDT (St)
11 AddEdge(Tree →t Nodet)
12 end
13 end
14 return Tree

training set but only use the structure of the tree, the parameters of the decision nodes
and the leaves. Decision trees use the tree structure, were the leaf is found in a fast way
with a small number of comparisons.

Attribute Selection

An important step in decision tree algorithm is the choice of the right attribute to perform
the split. Most of the leafs contain a single training example, therefore the termination
criterion in many cases is trivial to be satisfied. The tree in Figure 2.3 is a simple one
and it classifies the training data correctly. Sometimes it can be observed that simple
trees are more accurate than more complex trees.

A typical criterion takes use of a function that measures the impurity of a node. Two
impurity measures are:

1. Entropy(Qui86),

Entropy(S) = −
c∑
i=1

|Si|
|S|
· log2

(|Si|
|S|

)
(2.4)

2. Gini index (BFOS84),

Gini(S) = 1−
c∑
i=1

(|Si|
|S|

)2
(2.5)

S is the set of training examples, Si is a subset of training examples that corresponds to
class ci. Both equations reach the maximum when the classes are equally distributed,

21

2. Theoretical Background

and they reach the minimum when a particular Si contains all examples s.t. |Si|/|S| = 1.
A good split divides the data set into subsets that are as pure as possible, the ideal case
is when all the subsets contain examples of only one class. High entropy and high Gini
implies that their value has to be reduced in order to achieve a better prediction. To
achieve a better prediction the so-called gain is used,

Gain(S,A) = Impurity(S)−
∑
t

|St|
|S|
· Impurity(St) (2.6)

which is the amount by which the original impurity can be reduced by splitting into
subsets. The value of gain ranges from at least zero up to the impurity value. A stands
for an attribute, and t is a test on A that partitions the set S into non overlapping disjoint
subsets St. The term Impurity(S) is a constant that is considered for all attributes.

2.3.2 Naïve Bayes

Naïve Bayes classifier treats the classification problem in terms of probabilities and the
definitions are taken mainly from (SW11). Naïve Bayes is a simple learning algorithm
that utilizes the Bayes rule together with a strong assumption that the attributes are
conditionally independent, given the class. Naïve Bayes classifier has three main concepts,
namely: conditional probability, Bayes Theorem, and the Bayes decision rule.

1. The conditional probability P (E|H) is used to define independent events (MM07),
is given by:

P (E|H) = P (E ∩H)
P (H) , (2.7)

where P (E|H) is the probability of event E given evidence H. In the same way we
define P (H|E):

P (H|E) = P (H ∩ E)
P (E) , (2.8)

where P (H|E) is the probability of event H given evidence E. It follows that:

P (H ∩ E) = P (E)P (H|E). (2.9)

22

2.3. Application of Machine Learning to identify the task state

2. The Bayes Theorem starts with an initial degree of belief that an event will occur,
and then with new information this degree will be "updated" (MM07). These
degrees are represented by the prior probability event H, P (H) (probability of
event before evidence is seen) and posterior probability of H, P (H|E) (probability
of event after evidence is seen), whose relation is given by :

P (H|E) = P (E|H)P (H)
P (E) . (2.10)

3. The Bayes decision rule states that based on the posterior probabilities, it is possible
to assign an element x to a class that has the largest probability.

Then Naïve Bayes for classification is used to answer the question "what is the probability
of the class given an instance?" where instance is Evidence E and the class value for
instance is the event H. Naïve Bayes for classification uses the naïve assumption which
states that evidence is split into parts (i.e. attributes) that are independent. And Naïve
Bayes for classification is defined as follows:

P (H|E) = P (E1|H)P (E2|H)...P (En|H)P (H)
P (E) . (2.11)

Naïve Bayes’s desirable properties:

• Computational effciency: Training time is linear with respect to both the number
of training examples and the number of attributes, and classification time is linear
with respect to the number of attributes and unaffected by the number of training
examples.

• Low variance: It does not utilize search but at the cost of high bias.

• Incremental learning: Naïve Bayes operates on estimates of low order probabilities
that are derived from the training data. These can readily be updated as new
training data are acquired.

• Direct prediction of posterior probabilities.

• Robustness in the face of noise: Naïve Bayes always uses all attributes for all
predictions and hence is relatively insensitive to noise in the examples to be
classified, also it is insensitive to noise in training examples.

• Robustness in the face of missing values: Because naïve Bayes always uses all
attributes for all predictions, if one attribute value is missing, information from
other attributes is still used, resulting in graceful degradation in performance.

23

2. Theoretical Background

2.3.3 k-Nearest Neighbors

This section is based on the definitions in (DHS00). The k-Nearest Neighbors (kNN)
classifier classifies a given instance x by assigning to it the most frequently class of the k
nearest samples, in other words by examining the classes of the k nearest neighbors and
by majority vote a decision is made to assign the class to x. In Figure 2.4 it is illustrated
a two-class problem with an odd value of k (to avoid ties), as can be seen in the case were
k = 1 and k = 5 the class for x is blue, and when k = 3 the assigned class for x is black.

x1

x2
k = 1
k = 3
k = 5

x

Figure 2.4: Polynomial projection.

The kNN classifier is very sensitive to noise and provides no generalisation. The effect of
noise is reduced by taking large values of k, because it makes boundaries between classes
less distinct. If k = 1, kNN is the same as the nearest neighbour algorithm. The value of
k has to be specified by the user and the best choice depends on the data. The value of k
can be arbitrary increased when the training data set is large in size. It can handle non
linear separation and no training time is needed which means that computation is made
on the classification step. Memory consumption depends on the training data. kNN is
computationally expensive when it is faced with many items to classify.

2.3.4 Support Vector Machine

The content of this section is based on (SW11). Support Vector Machine (SVMs) are part
of linear algorithms that are used for classification, regression, and other applications.
When a two class classification problem is considered, the work of SVMs is to find a
hyperplane that separates the data in two classes with as wide as possible margin. Margin
is the width that the boundary between the classes could be increased to, before hitting
any data-point as shown in Figure 2.5. This method offers a good generalization accuracy
on unknown data. The funded hyperplane is based on the data points lying in the margin
that are called support vectors. In most cases of the real data linear separation is not
possible, but SVMs can be extended to handle this nonlinearity by the use of kernels.
SVMs can be trained by quadratic programming that:

24

2.3. Application of Machine Learning to identify the task state

1. makes theoretical analysis easier, and

2. provides much convenience in designing efficient solvers that scale for large datasets.

In real-world data, SVMs often have performance in accuracy, flexibility, robustness, and
efficiency. To find the optimal hyperplane for separating the data points in two classes,
an example is considered where the training set is {(xi, yi)}ni=1, xi is the input feature
vector for the i−th example that belongs to a binary class yi ∈ {1,−1}, the example is
positive (yi = +1) or negative (yi = −1). We assume that the set of positive and negative
examples are linearly separable, therefore there exists a function f(x) = 〈w, x〉+ b (w is
the weight vector, and b determines offset from origin (intercept/bias)) such that:

〈w, xi〉+ b > 0 for yi = +1
〈w, xi〉+ b < 0 for yi = −1.

y

x

w
· x

+
b =

0

w
· x

+
b =

1

w
· x

+
b =
−1

H1

H2

2‖w‖

b‖w‖

w

Figure 2.5: Largest Margin.

The 〈w, xi〉+ b = 0 is called decision plane and there can be multiple such planes that
separate class 1 and class −1, see Figure 2.5. The aim of SVM is to find a particular
hyperplane which maximizes the margin. Mathematically, it is easy to check that the
distance from a point xi to a hyperplane 〈w, xi〉+ b = 0 is ||w||−1|〈w, xi〉+ b|. SVM is
looking for the optimal w, b of the following optimization problem:

maximize
w∈Rp,b∈R

min
1≤i≤n

|〈w, xi〉+ b|
||w||

, s.t.

{
〈w, xi〉+ b > 0 if yi = +1
〈w, xi〉+ b < 0 if yi = −1

∀i. (2.12)

25

2. Theoretical Background

Therefore, to fix the scale, the numerator of the objective min
1≤i≤n

|〈w, xi〉+b| is equivalently
set to 1, and minimize the denominator ||w||:

minimize
w∈Rp,b∈R

||w||2, s.t.
{
〈w, xi〉+ b ≥ 1 if yi = +1
〈w, xi〉+ b ≤ −1 if yi = −1

∀i. (2.13)

This constrained quadratic program can be solved efficiently. Hence it becomes the most
commonly used form of SMV for linear separable case. Some properties of SVM classifier
are listed below:

• A SVM may be viewed as a binary classifier. It abstracts a linear decision boundary
from the data and uses it to classify unknown data belonging to the two classes.

• SVMs learn from data, by considering the maximum constructed margin.

• If two classes are linearly separable, then it does not have to implement any
additional feature, it just computes the corresponding maximum margin by given
data and uses it.

• To have a better generalization model, SVM uses soft margins which will be
introduced in 2.3.4.

• If the data are not linearly separable, the SVM classifier uses Kernel function to
deal with this problem as introduced in 2.3.4.

• If the data contain more than two classes, then the SVM classifier reduces them to
multi binary problems as will be shown in 2.3.4.

Soft Margins

Sometimes linear separation is not possible, or it can happen that linear separation would
lead to a badly generalising model. This is also applied to the application scenario on
this master thesis, since big assembly tasks can have a very large number of assembly
task states, therefore the linear separation might not be possible. To avoid such cases
the usage of soft margins can be considered whose main goals are that to construct a
hyperplane that splits "as cleanly as possible/desirable" and to maximise the margin
value. As it is shown in Figure 2.6 the cyan circle (◦) is not considered as −1 class
because the idea is to have a better generalization model. The constraints in 2.13 can be
equivalently written as yi(〈w, xi〉+ b) ≥ 1. An introduction to the slack variables is made,
their goal is to penalise misclassification and adapts constraints yi(〈w, xi〉+ b) ≥ 1− ξi,
and incorporate a penalty into the original objective to derive the soft margin SVM:

minimize
w,b,ξi

λ ||w||2 + 1
n

n∑
i=1

ξi s.t. yi(〈w, xi〉+ b) ≥ 1− ξi, and ξi > 0 ∀i. (2.14)

26

2.3. Application of Machine Learning to identify the task state

y

x

w
· x

+
b =

0

w
· x

+
b =

1

w
· x

+
b =
−1

H1

H2

2‖w‖

b‖w‖

w

Figure 2.6: Soft Margin.

λ > 0 is a trade-off factor, and ξi can be written as ξi = max{0, 1 − yi(〈w, xi〉 + b)},
which is called hinge loss and is depicted in Figure 2.7. Using soft margins does not
mean to have necessarily 100% classification accuracy on the training set but it is used
to achieve a better generalization model.

y

x

max{0, 1− yi(〈w, xi〉+ b)}

yi(〈w, xi〉+ b)

1

1

Figure 2.7: Graph of hinge loss (Qui86).

Non linear separation

SVMs so far have been presented as a classifier for linearly separable data with the
addition of slack variables. However, some data can not be linearly separated, then the
idea of SVMs is to project the data into a higher dimensional space with the assumption
that projection of data may be linear separable in this space.

27

2. Theoretical Background

x

y

(a) Original data.

x

y

z

(b) Polynomial projection.

Figure 2.8: Projection from two dimensional input space with non linear separable classes
into a linear separable feature space.

Projection in the higher space is achieved as the multiplication result of vectors by the
kernel matrix, were the kernel matrix gives the shape of possible separators. Figure 2.8
depicts a projection that maps a two dimensional input space with non linear separable
classes (Figure 2.8a) into a linear separable feature space (Figure 2.8b). Some common
kernels are: quadratic, polynomial, radial basis function sigmoid etc. To select the best
kernel function, it requires a check of all functions for a particular data that might faced
with. So the choice of the kernel function is made by taking the model and train it
with different kernels and pick the best performing one. Working with high dimensional
data is computationally expensive, but a SVM depends only on the dot product between
vectors. It uses the kernel trick to replace the dot product by the kernel function, this is
computationally inexpensive.

Multi class SVM

The standard SVM classifier is used for binary problems (i.e. two classes). Multi class
problems deal with three or more classes. SVMs can be used for multi class problems by
reducing them to multi binary problems, like described below:

1. One of the labels to the rest (one versus all), where a binary classifier is used that
distinguishes between a particular class i and the rest (i = 1, ...,#numClasses).
The classifier with highest output function is the winner that is done by using a
winner-takes-all strategy.

2. Between every pair of classes (one versus one), again a binary classifier for each
pair of classes is made. Classification is done by a max-wins voting strategy, in

28

2.3. Application of Machine Learning to identify the task state

which every classifier assigns the instance to one of the two classes. Then the vote
for the assigned class is increased by one vote, and finally the class with most votes
determines the instance classification.

29

2. Theoretical Background

Decision
Trees

Neural
Networks

Naïve
Bayes kNN SVM Rule-

learners
Accuracy in
general ** *** * ** **** **

Speed of
learning with
respect to
number of
attributes
and number
of instances

*** * **** **** * **

Speed of
classification **** **** **** * **** ****

Tolerance to
missing values *** * **** * ** **

Tolerance
to irrelevant
attributes

*** * ** ** **** **

Tolerance
to redundant
attributes

** ** * ** *** **

Tolerance
to highly
interdependent
attributes
(e.g.parity
problems)

** *** * * *** **

Dealing with
discrete/binary/
continuous
attributes

**** ***(not
discrete)

***(not
continuous)

***(not
directly
discrete)

**(not
discrete)

***(not
directly
continuous)

Tolerance
to noise ** ** *** * ** *

Dealing with
danger of
overfitting

** * *** *** ** **

Attempts for
incremental
learning

** *** **** **** ** *

Explanation
ability/
transparency
of
knowledge/
classifications

**** * **** ** * ****

Model
parameter
handling

*** * **** *** * ***

Table 2.4: Comparing learning algorithms (**** stars represent the best and * star the
worst performance) (Kot07).

30

CHAPTER 3
Implementation Environment

In the last chapter we have summarised the basic concepts that are needed in the
accomplishment of our goal. This chapter provides a short overview about the topic of
this thesis and analyzes existing notions and systems concerning knowledge processing
and presentation. These knowledge processing and presentation systems are based on
the concepts introduced in the previous chapter. A Knowledge Processing Infrastructure
for Cognition-enabled Robots (KnowRob) is used which employs DLs as a formalism to
represent encyclopedic and common sense knowledge, in particular the OWL. Approaches
and systems will be introduced, that are targeting similar goals in the domain of cognitive,
assistive, robotic systems and human robot collaboration.

3.1 KnowRob knowledge processing system

The robotic system at Profactor uses KnowRob as a processing tool, thus our reasoning
system is designed and implemented on top of KnowRob. Therefore an overview about the
KnowRob system is needed, the overview is based on (TB13). KnowRob is a knowledge
processing system and it is implemented in SWI-Prolog (WSTL12). SWI-Prolog is
also used as central knowledge store. In KnowRob, all knowledge is represented in the
Web Ontology Language (OWL) (LÖ09). OWL is a XML-based format that allows to
formally describe relational knowledge in a Description Logics (DLs) dialect. To formally
model the knowledge, it is very useful to distinguish between general relations and
environment-specific information. In OWL, this is reflected by the distinction between
classes and instances. Class knowledge is described in the so-called TBox, knowledge
about instances of these classes is contained in the ABOX. The relation between classes
and instances is similar to object-oriented programming. In the KnowRob system, Prolog
is used for loading, storing and reasoning on the knowledge base which is represented
in OWL. Content and functionality of KnowRob can be extended to different modules.
The system structure is given at Figure 3.1. The central component of KnowRob is the

31

3. Implementation Environment

knowledge base that provides the mechanisms to store and retrieve information about
actions, objects, processes, temporal events, their properties, and relations.

Figure 3.1: The KnowRob system provides several components for knowledge acquisition
and representation, for reasoning about this knowledge, and for grounding it in the
robot’s perception and action system (TB13).

The KnowRob ontology is used in this system and presents the general vocabulary and
representation into which other representations and inference methods can be incorporated.
The core system is able to be extended by using extensions for a particular functionality.

3.2 Knowledge Processing for Autonomous Personal
Robots

In order to obtain an ontology model that represents task states in our work, an approach
which is focused on knowledge representation and processing for autonomous personal
robots is considered.

In this approach which is proposed by Tenorth and Beetz (MM09) the knowledge is
modeled in description logics using OWL, they use both modeling levels of DLs, namely:
concepts and instances. Classes contain terminological knowledge like: events, types of
objects and actions that are organized in a taxonomic way. Instances contain concrete
and physical objects or actions that are performed actually. The relations are represented
in triples (Subject, Predicate, Object).

This approach is used by the Autonomous Personal Robots to achieve a more flexible
and general behaviour and better performance.

32

3.3. Unified Representation for Reasoning

This system integrates encyclopedic knowledge, environment model, human observations
and action based models. In this system queries of continuous data observed in a real-
world environment can be applied. The concept of computable classes and properties
that are used to create instances from observed data and action models is introduced.
Components and mechanisms introduced in this work are applied in a practical knowledge
processing system that is designed for autonomous robots. The main contributions of
this work are:

1. It introduces a complete knowledge processing system that combines encyclopedic
knowledge, an environment model, action-based reasoning, and human observations.
This information is accessed in a symbolic and uniform way.

2. The system offers symbolic queries in the continuous data received by the sensor in
real-world environment.

3. It introduces computable classes and properties that are used to create instances
from observed data and action models as a powerful means for discovering a class
structure among action-related concepts.

3.3 Unified Representation for Reasoning
In the modeled ontology, we developed a class that represents the object relations and
a class that represents robot states of an assembly task execution. The development
of these two classes is inspired by Tenorth and Beetz who give a unified representation
for reasoning about robot actions, processes and their effects on objects (TB12). They
provide a way how the robot can be equipped with sufficient knowledge when there
might be some knowledge gaps in the action descriptions. They give a system that
integrates several sources of knowledge and combines them for filling knowledge gaps
in instructions for manipulation tasks. A representation called "object transformation
graph" is given that semantically describes how objects are transformed during a task
and allows to reason about these transformations. They present methods to project the
results of processes and actions, for including processes into the action planning procedure.
They illustrate their approach by showing how a task description that can be generated
by natural-language instructions (which leads to incomplete task descriptions) can be
completed by the proposed methods. The approach gives from where the additional
information that makes task completion possible is obtained from.

3.4 RoboEarth Action Recipe Execution
Since in our contribution the need for a base ontology model that can be further extended
to model a particular assembly task is crucial, the idea of a globaly base model comes from
Marco, Tenorth, Häussermann, Zweigle and Levi (dMTH+12) who present an approach
which proposes a way how to reuse task execution plans by introducing the concept of

33

3. Implementation Environment

a globally accessible database. In this approach knowledge reasoning and processing
are essential for planning and decision making. The globally accessible database stores:
action recipes, object detection models, navigation maps, etc. Generated data can be
taken from humans, robots or processor programs which are running in the database.
To interpret and execute an abstract task description they have developed an execution
engine which serializes and triggers all command executions, supervises them, manages
incoming events and handles failure states. Every file of this database is annotated with
an OWL description for the sake of allowance of semantic queries. Recipes are stored
in description logic. This approach takes into account the robot capabilities for recipes
stored in the globally accessible database and checks if the robot is appropriate for a
specific recipe. In this approach KnowRob is used as a knowledge processing framework
which is able to access the global database and the world model as well that is used
for answering object positions queries. The execution engine makes requests to the
KnowRob framework for retrieving information like plans and object positions. In order
for KnowRob framework to have a generated plan, it queries the database and gives a
matching task plan to the execution engine. KnowRob is used as an interlingua framework
to exchange knowledge between different components in the RoboEarth system. When
the execution engine sends a query request to KnowRob for a particular recipe, then
KnowRob queries the global shared database and downloads the recipes, checks if there
are missing components and then triggers their downloads. Our developed ontology
model can serve as a global model in a HRC with respect to assembly tasks. Their
approach can be further extended by taking our contribution into account, and have an
ontology model for each assembly task description.

3.5 Human activity analysis

The developed ontology model in our work must represent the human activities, therefore
a class that expresses the human states is constructed. The motivation in contructing
this class comes from an approach that represents human activity analysis (AR11). In
this approach Aggarwal and Ryoo provide a complete overview of the state-of-the-art
of human activity recognition methodologies. Here various types of methodologies for
recognition of different levels of activities are discussed. They are focused on simple
human actions and on high-level activity recognition methodologies designed for the
analysis of human actions, interactions, group activities, and discuss recent research
trends in activity recognition.

3.6 Mental Model and Shared Grounds in Human-Robot
Interaction

Mental models and shared grounds in HRC must be taken in consideration when con-
structing the ontology model. To do so we have treated an investigation by Hwang, Lee,
and Kwon at (HLK05). They have investigated the role of mental model and shared

34

3.6. Mental Model and Shared Grounds in Human-Robot Interaction

grounds in Human-Robot interaction in order to achieve an efficient collaboration between
human and robot. They conceptualize a three way relationship through human, robot
and world, and connect them in terms of construction of shared grounds. They develop
a mediate interface which provides a communication and a coordination between the
human and the robot by using multimodal icon symbols. By using this mediate interface
they carry out a pilot experiment that is used to evaluate the role of a mental model
in constructing the shared grounds. They have shown that a mental model helps users
to understand what a robot is able to do, which commands need to be used to operate
the robot, how the robot works, and determine how users interact with the robot. They
have shown that these mental models have a big effect in constructing shared grounds
between a human and a robot.

35

CHAPTER 4
Modeling the assembly task

description in OWL

In the preceding chapter we have analysed existing notions and systems concerning knowl-
edge processing and presentation, this analysis is mainly considered on the development
of the ontology learning model. In this chapter, we introduce the learning model of the
assembly task. The main goal is to provide a core ontology assembly model that can be
imported and extended for different assembly tasks. This step is crucial for interpreting
the task model in an appropriate manner in order to identify the state of a task during
the task execution by applying ML classifiers. The concept of this constructed model
incorporates object relations, human states, robot states and the time stamp on which a
specific task state is identified. Since KnowRob will be used as a knowledge processing
system where the knowledge is represented in OWL, the learning task model has to
be represented in OWL as well. The ontology model was constructed using Protégé
(Mus15), which is a feature rich ontology editing environment with full support for the
OWL 2, and direct in-memory connections to description logic reasoners. An assembly
task execution sequence is formed by a set of states as shown in Figure 4.1. On the
constructed ontology model each task state must have information about a robot state, a
human state, object relations and a time stamp that corresponds to the time on which
the task state is asserted in the model.

The natural way of the assembly task execution sequence will be used in order to give
the constructed ontology task model. As mentioned in (HKR+09) the proposed ontology
assembly task model will also have individuals, properties and classes, which are going to
be presented in the following sections of this chapter. To have a better understanding
of the constructed ontology model, we describe the developed ontology model for the
Steam Cooker assembly scenario that is realized at Profactor GmbH which is depicted in
Figure 1.1.

37

4. Modeling the assembly task description in OWL

State1 State2 ... Staten

task execution sequence

Figure 4.1: Assembly task execution sequence formed by states.

4.1 Modeled classes
Now we introduce the constructed classes of one ontology task model. OWL classes
are interpreted as sets that contain individuals. The proposed ontology assembly task
model defines five different classes that will contain, robot states, human states, time
stamps, task objects and task states. Each defined class will be explained in the following
subsections. The classes will be represented by circles by help of Venn diagrams (ven).
The base class of all ontology classes is the class Thing.

4.1.1 Robot States

The given robot states are represented as individuals and they are grouped together in a
class called RobotStates.

Idle

HoldingObj

PlacingObj

RobotStates

Figure 4.2: Representation of RobotStates class.

Figure 4.2 gives an abstraction of the RobotStates class formed by three individuals
namely Idle, HoldingObj, PlacingObj.

4.1.2 Human states

Human states are represented as individuals and all of them are part of a class that is
called HumanStates.

Figure 4.3 gives an abstraction of the HumanStates class formed by three individuals
namely Idle, HoldingObj, PlacingObj. In Figure 4.3 the defined individuals are the same

38

4.1. Modeled classes

Idle

HoldingObj

PlacingObj

HumanStates

Figure 4.3: Representation of HumanStates class.

as the robot states individuals, but this does not mean that the robot states have to be
the same as the human states.

4.1.3 Time Stamp

The TimeStamp class covers all time stamp individuals of an assembly task. Each task
state is assigned exactly one time stamp individual. A time stamp individual gives
the number of seconds between a particular date and the Unix Epoch (Thursday,
January 1, 1970, 00:00 UTC). For example individual 1484736563.1557156
is equivalent to Wednesday, 18-Jan-17 10:49:23 UTC.

1484736563.1557156

1484736563.1557157

TimeStamp

Figure 4.4: Representation of TimeStamp class.

An abstraction of the TimeStamp class is given in Figure 4.4.

4.1.4 Objects of the task

To collect all the objects that are participating in a specific assembly task, a class is
constructed for this reason and it is named TaskObjects. Figure 4.5 illustrates an example
of TaskObjects class used in a steam cooker assembly task.

39

4. Modeling the assembly task description in OWL

Base

Tray

Ring

Heater

TaskObjects

Figure 4.5: Representation of TaskObjects class.

4.1.5 Task States

In this subsection the task state concept and its development is illustrated by using a
class-instance relation as introduced in Section 3.1. The class TaskStates in the ontology
task model is the class that will include all the states of an assembly task. Task states
that represent an assembly task description are defined as subclasses of TaskStates class.
Based on the location of objects and relations between them, the same task state could
have various numbers of configurations that represent object relations which have to be
defined as different instances of the task description model. Each configuration of objects
together with the human state, robot state and time stamp will be defined as an instance
of a particular state class that represents them. Figure 4.6 sketches an abstraction of the
TaskStates class that has a sub class which is called InitialTaskState. InitialTaskState
class is one of the task states that is used to construct the learning model. As described
above, a task state can have more than one configuration between objects (e.g. in one
configuration of initial state Obj1 is in front of Obj2 and in another configuration of initial
state Obj1 is to the left of Obj2), to handle this situation it should be constructed a sub
class of that task state for each such configuration. For example Figure 4.6 illustrates
this idea by FCOfInitialTaskState class that stands for first configuration of the initial
task state. Since Prolog is used in KnowRob, and a program in Prolog consists of one or
more predicates, the object relations are defined as predicates. In first-order theories,
predicates are often associated with sets. For each positive integer n, a denumerable list
of symbols called n− ary predicates, or predicates of degree n (Smu95). In Prolog, the
arity of a predicate is the number of arguments that the head of the clause has.

FCOfInitialTaskState class which is a subclass of InitialTaskState class is created by:

1. Instances (i.e. FCOfInitialTaskStateObjRel1 in Figure 4.6 that stands for the first
object relation of the first configuration of the initial task state) representing the
object relations. For each task state there must be n(n− 1)/2 such relations as
explained in Section 4.3.4 therefore n(n− 1)/2 instances, n is the number of objects
of the task. To define such relations (role assertions in DLs dialect), properties as
listed below, are used:

40

4.1. Modeled classes

TaskStates

InitialTaskState

FCOfInitialTaskState

FCOfInitialTaskStateObjRel1

OARInFCOfInitialTaskState

Figure 4.6: Representation of TaskStates class.

a) one object property (i.e. inFrontOf), which will be used as a predicate of arity
two to represent the object relation, i.e. inFrontOf(Obj1, Obj2) which means
that Obj2 is in front of Obj1.

b) and two sub-properties of the object property 1a, namely:
i. lhsObject, which is an object property and will be used to take the value

of the first argument of its super-property, i.e. lhsObject(Obj1),
ii. rhsObject, which also is an object property and will be used to take the

value of the second argument of its super-property, i.e. rhsObject(Obj2).

Such an instance in the Protégé environment is defined as follows:

a) in the equivalent class section the object relations are defined as:

(lhsObject value Heater)
and (rhsObject value Ring)
and (toTheLeftOf value Heater)
and (toTheLeftOf value Ring)

This defined instance is formulated on a steam cooker assembly ontology
model.

b) In the subclass section the corresponding name of its super-class should be
placed, an example is:

FCOfInitialTaskState

2. And another instance (i.e.OARInFCOfInitialTaskState in Figure 4.6 that stands for
the one arity relation (a set) in the first configuration of the initial task state) which
will be described only by unary predicates (concept assertions). This instance will
be used to represent human state, robot state and timestamp for this particular
state configuration, an example of such an instance is given as follow:

41

4. Modeling the assembly task description in OWL

(hasHumanState value Idle)
and (hasRobotState value Idle)
and (hasTimeStamp value 1478854453.4594500)

4.2 Modeled individuals

OWL allows the definition of individuals and to assign properties about them. Assume
that human states of a task have to be specified, first all the human states have to
be asserted to the constructed ontology. For example, let us say that human states
are: ’Idle’, ’HoldingObj’, ’PlacingObj’ and all of them have to be asserted into the
ontology model. To do so, the previously created HumanStates class is populated with
the given individuals. The individual insertion is in the same manner for the RobotStates,
TaskObjects and TimeStamp classes.

4.3 Modeled properties

Based on (HKR+09) it is known that there are two main types of properties, namely:
Object properties and Datatype properties. The properties in the proposed ontology
model will be mainly object properties since object properties link individuals of different
classes. There is also another property which is called Annotation property, and it will
be used to provide metadata about classes, individuals and object properties. In the
developed ontology model we have used OWL object properties in order to represent
relationships by considering human states, robot states, time-stamp and object relations,
these relations are explained in the following subsections.

4.3.1 Human state property

An object property is defined which is called hasHumanState. Its goal is to provide
information about a human state to the task state when the assembly task state is defined
by the assembly task expert. The range of hasHumanState object property will be the
class HumanStates.

4.3.2 Robot state property

Also another object property is asserted in the ontology which is called hasRobotState. Its
goal is to provide information about the robot state to the task state when it is defined
by the assembly task expert. The range of hasRobotState object property will be the
class RobotStates.

4.3.3 TimeStamp property

Learning the assembly task model can be extended from time to time and the provided
results of classifiers at a latter point in time will change for sure as the task model will

42

4.3. Modeled properties

be updated. To keep track on classifier results and also on the updated versions of
the ontology model, an object property is constructed that is called hasTimeStamp, its
goal is to timestamp each state of the assembly task model and its value will be the
time when the task state is constructed (the task state’s timestamp has to be defined
as an individual at TimeStamp class). The range of hasTimeStamp will be the class
TimeStamp.

4.3.4 Object Relations

We have given the OWL properties that represent human states, robot states and time-
stamp, to complete our job in defining the OWL object properties we are left with the
property that will represent object relations. This is accomplished in this subsection. To
represent a relation between two objects the naming conventions as they are given in
KnowRob are used (i.e. aboveOf, belowOf, inCenterOf etc). An assembly task can have
a various number of objects that have to be dealt with. And the way how the object
relations concept is constructed comes from the definition of complete graphs.

Figure 4.7: A complete graph example.

A complete graph is a simple graph in which any two vertices are adjacent (BM07). A
complete graph formed by n vertices is denoted by Kn, and Kn has n(n− 1)/2 edges.
Figure 4.7 shows an example of a complete graph formed on 4 vertices (K4). Based on
the definition of a complete graph it is made a mapping from objects that are used in
the assembly task to the vertices in the complete graph and a mapping that maps the
relation between objects in the assembly task to edges on the complete graph. Therefore
this formulation implies that there have to be n(n− 1)/2 object relations in the assembly
task, where n is the number of objects of the assembly task. To illustrate the idea of
mapping it is constructed a complete graph that represents the relation of objects in
the steam cooker assembly task as sketched in Figure 4.8. In a steam cooker assembly

43

4. Modeling the assembly task description in OWL

task there are four objects namely: Base, Tray, Ring and Heater. Hence there must be
six relations between these four objects as shown in Figure 4.8. The relation between
the assembly task objects are defined as object properties in Protégé, which represents
the relationships between two individuals (in the assembly task case it represents the
relationships between two objects of the assembly task).

Tray Heater

Ring

Base

inFrontOfGenerally
toTheRightOf toTh

eLeft
Of

toTheRightOf to
T
he

Le
ft
O
f

toTheSideOf

Figure 4.8: A complete graph representing object relations in the steam cooker assembly
task.

Figure 4.9 depicts the hierarchy of object properties that will represent the relations
between objects in an assembly task. The naming conventions for such relations are taken
from the KnowRob comp_spatial (TB13) package, in order to have the same names
with the data perceived from the KnowRob system. As it was shown in Section 4.1.5,
two sub-properties (lhsObject, rhsObject) of object relation properties are presented
in the hierarchy of the object relations. The range of all these object properties is the
TaskObjects class. Object property hasObjectRelation is defined as a super-property of
all object properties that will be needed to describe the object relations in the assembly
task model.

44

4.3. Modeled properties

t

rhsObject

lhsObject

above-Generally

below-Generally

center

inCenterOf

in-ContGeneric

hasObjectRelation

inFrontOf-Generally

on-PhysicaltoTheLeftOf
toTheRightOftoTheSideOf

Figure 4.9: Object relation properties, ∀ t ∈ Thing.

45

CHAPTER 5
Implementation of the reasoning

system

While the last chapter dealt with the ontology modeling of the assembly task, the focus
of this chapter is to describe the design and implementation of our reasoning system that
will take the ontology model and use it for further processing and reasoning. This chapter
is structured into three main parts, the first one gives how the system architecture is
designed, the second one presents the development of a ML package and the third one
provides the development of a reasoning package that will operate with the services
provided by the ML package.

5.1 Architecture of the reasoning system
The reasoning system architecture is build up according to three modules, namely: The
Perception system module, the KnowRob (komoprod_task_reasoning) module and
the RosJava (komoprod_reasoning) module as shown in Figure 5.1. The Perception
system module is not within the scope of this master thesis, it is simply used here to give
the idea from where are the perceived data coming from. The RosJava module provides
the services of ML techniques, namely: train different classifiers on the given training
data model, use the trained model to make prediction, classifier evaluation, and data
preprocessing. The ontology assembly task model is placed in the KnowRob module, also
the Prolog ontology processing predicates in order to construct the data in a right format
(list of lists). The KnowRob module provides the knowledge processing for the fetched
data as well. A detailed explanation of both modules will be given in the following two
sections. Perceived data that are provided by the perception module should be in the
same format as the extracted data from the ontology assembly task model. Perceived
data are fed into the KnowRob module and together with the training data are sent
into the RosJava module. In RosJava module they are preprocessed and converted to

47

5. Implementation of the reasoning system

nominal data. And the last step is that the given classifier which is defined in a Prolog
predicate in the KnowRob module is used to train the ML model, and from the ML
trained model the prediction of the unknown task state on perceived data is achieved.

OWL model ML classification

Pe
rc
ei
ve
d
D
at
a

Learning Model &
Perceived Data

Predicted Task State

KnowRob module

Perception System

RosJava module

Figure 5.1: Architecture of the reasoning system.

The predicted class (task state) is returned to the KnowRob module as a string value.

5.2 RosJava package implementation

In Section 2.3 it has been established that ML classifiers may be generally suitable for
the prediction of the current state of an assembly task. The success of the predicted task
state by considering human state, robot state, and object relations is essential in this
work. To reach the goal of the master thesis, a ML classifier package will be mainly used
with the help of those classifiers that are introduced in Section 2.3. In this section the
application of ML techniques will be presented by building a Rosjava (Con) package that
will operate with Weka (WFH11) (the weka version is 3-9-0) Application Programming
Interface (API) in order to be able to access the modeled assembly task ontology and
to use it for further processing. RosJava represents the Java implementation of the
Robot Operating System (ROS) (QCG+09) framework. ROS is an open-source, meta
operating system for robots. Weka workbench is a collection of ML algorithms and data
preprocessing tools. Since the work in this master thesis is part of the KnowRob system,
and KnowRob is implemented in SWI-Prolog and SWI-Prolog also is used as the central

48

5.2. RosJava package implementation

knowledge store, a connection between Weka and SWI-Prolog is required. Therefore it
is decided to adjoin Java Interface to Prolog (JPL)(DW) into the developed package.
JPL is a set of Java classes and C functions providing an interface between Java and
Prolog. The constructed package is placed in the KnowRob work space in order to be
able to extend its functionality. Prolog predicates are developed in this package in order
to make use of the constructed Java classes that operate with Weka API. The developed
predicates will then be called by other packages that will need the ML services obtained
by this package. The work of Weka classifiers in this package is constrained to only those
classifiers that can deal with nominal values, since the processing of ontology knowledge
will be focused on nominal data. As explained in Section 2.3 in the operation with Weka
we will consider only four of its classifiers.

We developed the following main prolog predicates in RosJava package:

trained_classifier(Classifier, TrainingData),
classify_data(TrainingData, TestData, Pred),
directly_classify(Classifier, TrainingData, TestData, Pred),
evaluate(Classifier, TrainingData),
save_data(Data).

The very first step of classification is to provide the classifier with the training data,
to handle this step the trained_classifier predicate is developed. Predicate
trained_classifier has arity two. Its first argument is the classifier that will
be used and the second argument represents the training data. This predicate will
be called for the training step of the classifiers. In order to use the trained model for
classification a classify_data predicate is developed and it has arity three. The at-
tributes of the classify_data predicate are: training data, test data, and the returned
predicted class value (predicted assembly task state). Both training data and testing
data are given in the classify_data predicate because testing data is represented
as a two dimensional string array and it has to have the same attribute values as the
training data. The TestData corresponds to the perception data which is provided by the
robotic system. The predicted value for the unknown class is returned at Pred variable.
Another predicate that combines training and testing together to provide a quicker way
of using the classification is the directly_classify predicate, like the previous one
it returns the predicted value that is mapped to Pred variable by feeding with respective
information the other three arguments namely: Classifier, TrainingData, and
TestData. The intention of the evaluate predicate is to evaluate the classifier by
showing the evaluation results, it has to be fed with the classifier (Classifier) and
training data (TrainingData). The save_data predicate is made to save the data
in Attribute-Relation File Format ARFF (arf), that allows to use the model outside the
KnowRob tool.

49

5. Implementation of the reasoning system

5.3 KnowRob package implementation

This section introduces the development of a KnowRob (TB13) package in which the main
developed predicates of the previous section will be called to predict the current state of
an assembly task. Some of the so called computables (MM09) are developed, which
serve for computing relations that would otherwise be manually asserted or inferred using
logical inference in the constructed ontology learning model. The constructed ontology
model will be queried from this package from which a list with model instances will be
generated. The ontology model is placed on this package, which is used as a core model
and it can be imported to other specific assembly task models. The most important Prolog
predicate used for this package is the training_data(TrainingData) predicate,
which returns all training data (as a list of lists) that are specified in the modeled ontology
assembly task.

The idea of applying ML classifiers to predict the current state of an assembly task will
be illustrated by making some Prolog queries. Figure 5.2 represents the abstraction of
applying the ML classifiers to the task state prediction problem.

The first step is to start by training the classifiers on training data using a Prolog query.
Therefore a ML model will be produced, and then another Prolog query will be applied
to predict the task state of fetched data.

ML modelTrain

Use to predict

ObjRelations HumanState RobotState TimeStamp TaskState
toTheleftOf ...

toTheRightOf ...
aboveOf ...

...

Idle Idle 1484421010 InitialState
Picking HandingOver 1484421120 SecondState
Holding PlaceObj 1484422120 ThirdState

...

ObjRelations HumanState RobotState TimeStamp TaskState
toTheleftOf ...

toTheRightOf ...
aboveOf ...

...

Idle Idle 1484421010 InitialState
Picking HandingOver 1484421120 SecondState
Holding PlaceObj 1484422120 ThirdState

...

ObjRelations HumanState RobotState TimeStamp TaskState
toTheleftOf ... Idle Idle 1484421010 ?
ObjRelations HumanState RobotState TimeStamp TaskState

toTheleftOf ... Idle Idle 1484421010 ?

Fetched data, unlabeled state

Training Model

Figure 5.2: Abstraction of the reasoning system.

So to realise a training and a prediction there are two steps that have to be performed,
as following:

1. train the classifier by using the query:

training_data_array(FArrayArray),
jpl_new(’weka.classifiers.trees.J48’, [], Classifier),
trained_classifier(Classifier, FArrayArray).

50

5.3. KnowRob package implementation

The purpose of the above query is to train the J48 (Decision Trees) classifier on
the given data model FArrayArray by the help of the trained_classifier
predicate. A new instance (Classifier) of a classifier is created by the jpl_new
predicate and given as the first attribute in the trained_classifier predicate.
After the execution of this query a learned model is saved in the RosJava package
and is ready to be used for classification.

2. predict the unknown state on the fetched data:

training_data_array(FArrayArray),
TestFeatures = [list of fetched data],
fetched_data_array(FTestArray, TestFeatures),
classify_data(FArrayArray, FTestArray, Pred).

The predicate fetched_data_array, converts the list of the fetched data (TestFeatures)
into a two dimensional string array and binds it to FTestArray variable. Therefore
the classify_data(FArrayArray, FTestArray, Pred) predicate will re-
turn the predicted state at the Pred variable.

This two steps approach gives only one example how to train and then use the trained
model for prediction, but once the training model is learned it does not have to be
updated (re-execute the first step Prolog query) until some changes to the ontology model
are made. In case of a big data model, the training step may require a lot of time and
therefore it is not practical to make it frequently. But the second step Prolog query can
be executed as many times as it is needed for any fetched data that has the same format
as the data model.

For situations where the data model is small and the use of train and predict by
one predicate is practical, as shown in the previous section a predicate is constructed
that is able to do this job. An example of such a Prolog query that does training and
predicting by one predicate is given as follows:

training_data_array(FArrayArray),
jpl_new(’weka.classifiers.trees.J48’, [], Classifier),
TestFeatures = [list of fetched data],
fetched_data_array(FTestArray, TestFeatures),
directly_classify(Classifier, FArrayArray, FTestArray, Pred).

As it can be observed from the query, first training data are loaded, then a new instance
of the J48 (Decision Trees) class is created by the jpl_new predicate. The fetched data
list has to be assigned to the TestFeatures variable which is converted to an array by
calling the fetched_data_array(FTestArray, TestFeatures) predicate. At

51

5. Implementation of the reasoning system

the end the directly_classify predicate is called that is fed with the classifier,
training data and fetched data, and returns the predicted state to the Pred variable.

Another example will be shown that is used to evaluate a ML classifier, to do so a Prolog
query as follows is needed:

jpl_new(’weka.classifiers.trees.J48’, [], Classifier),
eval_classifier_10FCVLD(Classifier).

The above Prolog query creates an instance of the decision trees classifier and feeds it
to the eval_classifier_10FCVLD predicate. The eval_classifier_10FCVLD
predicate makes the evaluation based on 10 fold cross validation.

52

CHAPTER 6
Experimental validation of the

implementation

It is known that there are many different ML methods, tools and techniques available,
each with distinct advantages and disadvantages. The domain of ML has grown to an
independent research domain. After the reasoning system is designed and implemented
the focus is put on classifier evaluation. In this chapter we discuss our experimental
performance evaluation of learning algorithms and summarize our findings, performance
evaluation is made between suitable classifiers introduced in Section 2.3. The performance
evaluation is based on experiments with the chosen classifiers on three data sets, which
are constructed by an assembly task human expert. The first data set consists of 24
instances, and all the attributes have nominal values (as explained in Section 5.2). The
second data set consists of 48 instances, and all attributes have nominal values. The
third data set consists of 80 instances, and again all attributes have nominal values.
Since our work at Profactor GmbH dealt with a very specific assembly task scenario, the
constructed datasets are based on a steam cooker assembly task description model. The
knowledge represented by the assembly task model is given by the number of samples
per dataset, which varies from too weak (3 configurations for each state) to too strong
(10 configurations for each state, approximately all combinations of object relations).
The initial data set has 8 states and 3 configurations for each state (24 instances), the
second data set has 8 states and 6 configurations for each state (48 instances), and the
third data set is based on 8 states and 10 configurations for each state (80 instances).
Except taken time to build the model and correctly classified instances the interest is
on precision, recall and F-measure to evaluate the classifiers performance. To
perform the experiments, we use the following machine/software:

Intel Core i7-3687U CPU @ 2.10GHz x 4
8GB RAM

53

6. Experimental validation of the implementation

Ubuntu 14.04 LTS (64 bit)
OpenJDK RTE (build 1.8.0_111-8u111-b14-3~14.04.1-b14)
WEKA 3.9.0
ROS indigo

6.1 Experiments based on the first data set

In the first experiment we evaluate the performance of the chosen classifiers in 10 fold
cross validation test mode. These results (see Table 6.1) are obtained by running the
algorithms on the default input parameters. As it can be seen the used time to build the
model is negligible for all classifiers. The best performance with respect to the correctly
classified instance is achieved by Decision Trees followed by kNN and Naïve Bayes. What
is surprising in this first experiment is that the run of SVM classifier implies that the
number of correctly classified instances on 10 fold cross validation test mode is 0 (as it
will be seen later this is not the case when kernel type estimator is changed to linear). Its
best performance on the first data set by using the function is on 3 fold cross validation
test mode where the number of Correctly Classified Instances is 22 (91.6667 %).

Classifier

Time taken
to build
the model
(seconds)

Correctly classified
instances

Precision
(avg)

Recall
(avg)

F-measure
(avg)

Decision Trees 0.01 19 (79.1667 %) 0.844 0.792 0.788
Naïve Bayes 0 14 (58.3333 %) 0.698 0.583 0.615
kNN 0 18 (75 %) 0.845 0.750 0.754
SVM 0 0 (0 %) 0.000 0.000 0.000

Table 6.1: Evaluation of classifiers on first dataset with 10 fold cross validation.

6.1.1 Optimizing parameters of classifiers on the first dataset

Now, the achieved results reported in Table 6.1 are considered, to improve the classifiers
performance by changing their input parameters.

Decision Trees

In experimenting with the Decision Trees classifier to check if the performance of the
classifier can be improved, the minimum number of objects and the confidence factor
are changed. The minimum number of objects is the minimum number of instances in
the leaf nodes, the confidence factor gives a relation between the pruning and the error
on each decision node. Default parameters are: minNumObj = 2, confidenceFactor =
0.25. By changing minNumObj to 1 and changing the confidenceFactor to 0.5 and 0.1
the same results as in the default parameter values are produced. When minNumObj is

54

6.2. Experiments based on the second data set

increased to 3 and 4 while the confidenceFactor was changed again to 0.5, and 0.1 the
performance is getting worse than in the default parameter configuration.

kNN

In the kNN case the parameter k is changed in order to see if are achieved better results.
To avoid ties an odd distance is used. The experiment presented here tries to find the
best distance. As sketched in Table 6.2 the best results for the kNN classifier are achieved
when the distance is 1 (default configuration). One can observe, that an increased
distance leads to worse results. The time taken to build the model is 0 seconds on all
three cases.

Distance
Correctly
Classified
Instances

Precision
(avg)

Recall
(avg)

F-Measure
(avg)

1 18 (75 %) 0.845 0.750 0.754
3 14 (58.3333 %) 0.573 0.583 0.515
5 8 (33.3333 %) 0.254 0.333 0.240

Table 6.2: kNN results on different distance parameters.

SVM

To improve the results of the SVM classifier different kernel estimators are used. The
results are summarised in Table 6.3.

kernelType estimator
Correctly
Classified
Instances

Precision
(avg)

Recall
(avg)

F-Measure
(avg)

Linear 23 (95.8333 %) 0.969 0.958 0.957
Polynomial 0 (0 %) 0.000 0.000 0.000
Radial 0 (0 %) 0.000 0.000 0.000
Sigmoid 0 (0 %) 0.000 0.000 0.000

Table 6.3: SVM results on different kernel functions.

By the use of the linear kernel estimator the best result achieved so far in the first dataset
is gained. The time used to build the model with the linear kernel estimator is 0.02
seconds and with the other ones is 0 seconds.

6.2 Experiments based on the second data set
The classifier performance is again evaluated in 10 fold cross validation test mode. These
results (see Table 6.4) are achieved by running the algorithms on the default input

55

6. Experimental validation of the implementation

parameters. As shown in Table 6.4 the time taken to build the model is negligible for
all classifiers. The best performance with respect to the correctly classified instance is
achieved by Naïve Bayes followed by kNN and Decision Trees. Again, as in the previous
section in the case of the SVM classifier the number of correctly classified instances is 0.
Later it is shown that this is not the case when the kernel type estimator is changed to
linear. But again changing the test mode to 3 fold cross validation the best performance
of SVM is gained in which the number of Correctly Classified Instances is 46 (95.8333
%).

Classifier

Time taken
to build
the model
(seconds)

Correctly classified
instances

Precision
(avg)

Recall
(avg)

F-measure
(avg)

Decision Trees 0.01 43 (89.5833 %) 0.915 0.896 0.898
Naïve Bayes 0 46 (95.8333 %) 0.964 0.958 0.958
kNN 0 45 (93.75 %) 0.951 0.938 0.936
SVM 0.01 0 (0 %) 0.000 0.000 0.000

Table 6.4: Evaluation of classifiers on second dataset with 10 fold cross validation.

6.2.1 Optimizing parameters of classifiers on the second dataset

Similar to Section 6.1.1, this section provides a description on how to improve the
performance of the classifiers based on the results shown in Table 6.4 by changing their
input parameters.

Decision Trees

For the experiments we change the minimum number of objects and the confidence factor.
The results are shown in Table 6.5. Note that there are some minor improvements when
the minNumObj value is set to 1. The experiments are performed for three values of
confidenceFactor starting from 0.1, 0.25 (which is the default), and 0.5 but the results
do not change. On this dataset the best performance of Decision Trees is made for
minNumObj = 1, and confidenceFactor = 0.25.

minNumObj\
confidenceFactor

0.5 0.25
Precision
(avg)

Recall
(avg)

F-measure
(avg)

Precision
(avg)

Recall
(avg)

F-measure
(avg)

1 0.958 0.938 0.939 0.958 0.938 0.939
2 0.915 0.896 0.898 0.915 0.896 0.898
5 0.915 0.896 0.898 0.915 0.896 0.898
7 0.464 0.417 0.387 0.468 0.438 0.394

Table 6.5: Decision tree results for different parameter settings.

56

6.3. Experiments based on the third data set

kNN

To achieve better performance of the kNN classifier, experiments where parameter k is
changed are performed. Odd values of k are considered in order to avoid ties. In the
applied experiments the attempt is to find the best distance. As sketched in Table 6.6
the best results for the kNN classifier are achieved when the distance is 1 (default
configuration). It can be noted that increasing the distance leads to worse results. The
time taken to build model is 0 seconds on all three cases.

Distance
Correctly
Classified
Instances

Precision
(avg)

Recall
(avg)

F-Measure
(avg)

1 45 (93.75 %) 0.951 0.938 0.936
3 44 (91.6667 %) 0.940 0.917 0.918
5 41 (85.4167 %) 0.920 0.854 0.854

Table 6.6: kNN results on different distance parameters for the second data set.

SVM

The experiments using the SVM classifier are carried out with different kernel estimators.
The results are shown in Table 6.7.

kernelType estimator
Correctly
Classified
Instances

Precision
(avg)

Recall
(avg)

F-Measure
(avg)

Linear 48 (100 %) 1.000 1.000 1.000
Polynomial 0 (0 %) 0.000 0.000 0.000
Radial 0 (0 %) 0.000 0.000 0.000
Sigmoid 0 (0 %) 0.000 0.000 0.000

Table 6.7: SVM results for different kernel functions.

Again, the best results are achieved by using the linear kernel estimator. The time used
to build the model on linear kernel estimator is 0.04 seconds and for the other ones is
0.01 seconds.

6.3 Experiments based on the third data set

Similar to Section 6.1 and 6.2, the classifier performance is evaluated in 10 fold cross
validation test mode. The results (in Table 6.8) are achieved by running the algorithms
on the default input parameters. The time taken to build the model is again negligible
for all classifiers. The best performance with respect to the correctly classified instance
is achieved by Naïve Bayes and SVM followed by kNN and Decision Trees. In contrast

57

6. Experimental validation of the implementation

to the previous uses of SVM with the default kernel function configuration, on this data
set the SVM classifier has achieved one of the best results.

Classifier

Time taken
to build
the model
(seconds)

Correctly classified
instances

Precision
(avg)

Recall
(avg)

F-measure
(avg)

Decision Trees 0.01 75 (93.75 %) 0.945 0.938 0.938
Naïve Bayes 0 79 (98.75 %) 0.989 0.988 0.987
kNN 0 77 (96.25 %) 0.968 0.963 0.962
SVM 0.01 79 (98.75 %) 0.989 0.988 0.987

Table 6.8: Evaluation of classifiers based on third data set with 10 fold cross validation.

6.3.1 Optimizing parameters of classifiers for the third dataset

This section gives an overview on the performed experiments whose purpose is to improve
the classifiers performance based on the results shown in Table 6.8 by changing their
input parameters.

Decision Trees

For the experiment based on Decision Trees, the minimum number of objects and the
confidence value are changed to try to improve performance. The tests are performed for
three values of confidenceFactor starting from 0.1, 0.25 (which is the default), and 0.5
but the results are the same. On this dataset the best performance of decision tree is
made for minNumObj = 1, and confidenceFactor = 0.25 where the number of correctly
classified instances is 77 (96.25 %).

kNN

In the case of the kNN classifier experiments start again by changing parameter k in
order to see if better results are achieved. Odd distance is used in order to avoid ties.
The goal of the experiments is to find the optimal distance. As shown in Table 6.9 the
best results for the kNN classifier are achieved if the distance is 1 (default configuration).
By increasing the distance to 3 and 5, similarly worse results are obtained. The time
taken to build the model is 0 seconds on all three cases.

SVM

Experiments using the SVM classifier are performed with different kernel estimators.
The results are shown in Table 6.10. The best results for the third dataset from the
SVM classifier, are achieved by using the linear kernel estimator (correctly classified
instances are 100 %). The time taken to build the model for the linear kernel estimator
is 0.05 seconds and for the other ones is 0.03 seconds. Compared to applying SVM on

58

6.4. Concluding remarks on the evaluation results

Distance
Correctly
Classified
Instances

Precision
(avg)

Recall
(avg)

F-Measure
(avg)

1 77 (96.25 %) 0.968 0.963 0.962
3 76 (95 %) 0.960 0.950 0.951
5 76 (95 %) 0.960 0.950 0.951

Table 6.9: kNN results for different distance parameters for the third data set.

the previous data sets, the SVM performance in this data set is generally better for each
kernel function.

kernelType estimator
Correctly
Classified
Instances

Precision
(avg)

Recall
(avg)

F-Measure
(avg)

Linear 80 (100 %) 1.000 1.000 1.000
Polynomial 76 (95 %) 0.953 0.950 0.950
Radial 79 (98.75 %) 0.989 0.988 0.987
Sigmoid 79 (98.75 %) 0.989 0.988 0.987

Table 6.10: SVM results for different kernel functions.

6.4 Concluding remarks on the evaluation results

SVM classifier usually requires a large data model in order to achieve maximum prediction
accuracy. This behaviour is observed in our experiments as well. In the very first two
experiments the correctly classified instances on SVM run with the default kernel function
configuration are 0 (0 %), this happens because the training sets are too small. Since
the projection of all three training sets to higher dimensional space leads to linearly
separable classes, therefore in the run of SVM with linear kernel function, the best
percentage of correctly classified instances is achieved in all three training sets. And the
best performance of SVM is achieved for the second and third training sets with linear
kernel function. In the second training set the correctly classified instances are 48 (100
%), and in the third training set the number of correctly classified instances is 80 (100 %).
The worst performance of SVM is made on the first and the second training sets with
Polynomial, Radial and Sigmoid kernel functions where the number of correctly classified
instances is 0 (0 %), such a failure can happen because the training sets are too small.

Whereas Naïve Bayes performs better in case of rather small models, and as it can be
seen along our experiments the performance of Naïve Bayes is one of the best ones. The
Naïve Bayes classifier is one of the classifiers that is considered to have a high bias value,
because it summarises the dataset by a single probability distribution and implies that
this model is sufficient to discriminate between classes. The training time that is needed

59

6. Experimental validation of the implementation

by the Naïve Bayes classifier is very short, since it needs only one pass through the model
to count the frequency of the discrete values. Concerning the memory space for the Naïve
Bayes classifier, it needs a little memory during the training and classification stage, the
minimum required is to store prior and conditional probabilities. The best performance
of the Naïve Bayes classifier is achieved for the third training set where the number of
correctly classified instances is 79 (98.75 %). The worst performance of Naïve Bayes is for
the first training set in which the number of correctly classified instances is 14 (58.3333
%).

On classifiers with a high variance it is usually the case that complex models are generated
that fit data variations more strictly. Based on the performed experiments the classifiers
which have high variance are decision trees and SVM. The best performance of decision
trees is reached for the last training set where the minNumObj = 1, the confidenceFactor
= 0.25 and the number of correctly classified instances is 77 (96.25 %). Decision trees
in the first training set performs significantly better compared to the other classifiers.
The decision trees performance on the first training set is the worst one compared to the
decision trees performances on the second and third training sets.

There is general agreement that kNN is very sensitive to irrelevant features. In the
constructed ontology model introduced in Chapter 4 the most irrelevant attribute is
time-stamp which can be removed from the model as a preprocessing step. The kNN
classifier requires zero training time because the training instances are simply stored.
The kNN memory consumption depends on training data and becomes computationally
expensive with many items to classify. The best performance of kNN is achieved for
the third training set where the distance parameter (k) is 1 and the correctly classified
instances are 77 (96.25 %). The basic kNN has usually only a single parameter (k) which
is relatively easy to tune, but SVMs have more parameters.

Based on (Kot07) and on our experimental results of Sections 6.1, 6.2 and 6.3, Table 6.11 is
constructed in order to give a compact view of comparison between the chosen classifiers.

Our experimental results indicate that for ontology models that have less than 24 instances
the best classifier is decision trees, for ontology models that have more than 24 instances
and less than 48 instances the best classifier is Naïve Bayes, and for models that have
more than 48 instances the best classifier is SVM.

60

6.4. Concluding remarks on the evaluation results

Decision Trees Naïve Bayes kNN SVM
Accuracy in small data sets *** **** *** ***
Accuracy in general ** ** ** ****
Speed of learning with respect to
number of attributes and the
number of instances

*** **** **** *

Speed of classification **** **** * ****
Dealing with danger
of overfitting ** *** *** **

Attempts for incremental
learning ** **** **** **

Model parameter handling *** **** *** *

Table 6.11: Comparison of algorithms (**** stars represent the best and * star the worst
performance)

61

CHAPTER 7
Conclusions and Future Work

This chapter, structured in two parts summarizes the research work and concludes the
findings before giving a short outlook into potential future directions in this research
domain.

Conclusions

As initially stated, modern production systems have to be designed to deal with
the growing challenges of market trends, high flexibility in product types and variants,
and short innovation cycles in order to stay competitive. In this context, Human-
Robot-Cooperation is considered as a key technology to improve efficiency and to reduce
operating costs. The research problem of this thesis is focused on improving the quality of
the Human-Robot-Cooperation, by designing, implementing and evaluating a reasoning
system that makes a robot able to hypothesize the current state of an assembly task.
The design and implementation of the reasoning system is based on two modules, namely:
one module that does the Machine Learning reasoning task, and the other module which
provides the ontology model of the assembly task and also provides a mechanism to
access and process the ontology model.

The first developed module is a RosJava package, on which a Machine Learning RosJava
project is build. Since KnowRob is used as a knowledge processing system and it is
developed in SWI-Prolog, the need of a Java Prolog communication rises. For this
purpose it is used the JPL interface, and by using JPL a Prolog module is developed in
the constructed package. The aim of this Prolog module is to provide some constructed
predicates that can interact with the developed ML Java code, therefore the learning
algorithms can be called and evaluated from these constructed predicates.

The second developed module is a KnowRob package. This package provides a mechanism
for storing an ontology that expresses the assembly task model, and also provides a

63

7. Conclusions and Future Work

mechanism for accessing and processing the constructed ontology model. The stored
ontology represents an assembly task model and will be written by the assembly task
expert. The provided ontology model describes the information about the human states,
the robot states, and object relations as initially declared as the research question, and
also for the task states. Each task state consists of a specific human state, a robot state,
a time stamp and a number of relations between objects.

The second developed package together with the first developed package reasons about
the constructed ontology model and uses the derived Machine Learning model for making
class (task state) prediction on the fetched data taken from the perception system.

Since the prediction of the current state of an assembly task is achieved, the successful
implementation of the reasoning system is indicated. The developed reasoning system
will serve as a valuable extension to the task execution tool of a robotic assembly system,
and it can be used as a demonstrator in research projects dealing with human robot
collaboration.

Finally, chosen ML classifiers are evaluated and compared to the established requirements
in order to suggest the most appropriate classifier.

Concluding, the presented ontology model allows us to identify assembly task states of an
assembly task in robotic assembly systems. The ontology model is able to be utilized by
different assembly tasks in assembly robot applications. This fits nicely with the robot
systems that uses the KnowRob processing tool. It can be safely said that the proximate
cooperation between the human and the robot in an assembly task execution will be
improved by applying our contribution in this master thesis. This work can be used by
manufacturing companies and manufacturing research.

This Human-Robot-Cooperation improvement is not constraint to a specific assembly
task, but it can be applied to any assembly task to which an ontology can be modeled
by extending our developed ontology model. This way, knowing the current assembly
task state indirectly contributes to a sustainable growth of knowledge in human robot
cooperation.

To the best of our knowledge there is no similar work that is targeting the same problem.
Therefore, we do not discuss the related work explicitly, but instead we provided Chapter
3 an implementation environment which gives a short overview about the topic of this
thesis and analyzes existing notions and systems concerning knowledge processing and
presentation. The most relevant work found so far is the one which presents the design
of a joint-action assembly demonstrator that is used in cooperation between humans
and robots in a shared workspace ((LNR+08)). The main idea given by this work is to
achieve an efficient peer-to-peer collaboration, and the only similar work mentioned on
their research is that the information which is perceived by the perception system is used
in the decision making process to decide the next action step on the assembly task. It is
given no clear explanation on how this decision making process is implemented and it has
no similarities with our work in reasoning about the current state of an assembly task.

64

Future Work

The research presented in this thesis raises many more questions of both general
and technical nature.

One of the bigger aspects of future research is the possibility to extend the reasoning
system to a version that is capable to give a prediction on what the next state should be
in the assembly task execution sequence. This is expected to strengthen the focus on a
learning model that represents the assembly task states on a sequential mode.

The remaining lines of research follows from Chapter 4 where the development of a
complex assembly task model is performed manually by a human assembly expert.

How to implement a user friendly interface in which the development of the ontology
model will be easier? Since the Protégé environment might be too complex for the
assembly task expert, it is definitely valuable to have a less complex user interface for
constructing the ontology model.

Lastly, how to extend the reasoning system to a version that is able to validate the
correctness of the modeled ontology? Because missing validation can lead to wrong
asserted data in constructing the ontology model, e.g. Obj1 is to the right of Obj1 (
toTheRightOf(Obj1, Obj1)).

65

List of Figures

1.1 HRC in performing a steam cooker assembly task (APPR16). 3
1.2 Assembly task execution sequence. 5
1.3 Structure of this thesis. 7

2.1 Architecture of a knowledge representation system based on Description
Logics. 11

2.2 The process of supervised ML(Kot07). 17
2.3 A decision tree describing the assembly task states dataset. 20
2.4 Polynomial projection. 24
2.5 Largest Margin. 25
2.6 Soft Margin. 27
2.7 Graph of hinge loss (Qui86). 27
2.8 Projection from two dimensional input space with non linear separable classes

into a linear separable feature space. 28

3.1 The KnowRob system provides several components for knowledge acquisition
and representation, for reasoning about this knowledge, and for grounding it
in the robot’s perception and action system (TB13). 32

4.1 Assembly task execution sequence formed by states. 38
4.2 Representation of RobotStates class. 38
4.3 Representation of HumanStates class. 39
4.4 Representation of TimeStamp class. 39
4.5 Representation of TaskObjects class. 40
4.6 Representation of TaskStates class. 41
4.7 A complete graph example. 43
4.8 A complete graph representing object relations in the steam cooker assembly

task. 44
4.9 Object relation properties, ∀ t ∈ Thing. 45

5.1 Architecture of the reasoning system. 48
5.2 Abstraction of the reasoning system. 50

67

List of Tables

2.1 A terminology (TBox) with concepts about assembly task states relationships. 13
2.2 A world description (ABox). 13
2.3 Interpretation function extended to all concepts. 14
2.4 Comparing learning algorithms (**** stars represent the best and * star the

worst performance) (Kot07). 30

6.1 Evaluation of classifiers on first dataset with 10 fold cross validation. . . . 54
6.2 kNN results on different distance parameters. 55
6.3 SVM results on different kernel functions. 55
6.4 Evaluation of classifiers on second dataset with 10 fold cross validation. . 56
6.5 Decision tree results for different parameter settings. 56
6.6 kNN results on different distance parameters for the second data set. . . . 57
6.7 SVM results for different kernel functions. 57
6.8 Evaluation of classifiers based on third data set with 10 fold cross validation. 58
6.9 kNN results for different distance parameters for the third data set. . . . 59
6.10 SVM results for different kernel functions. 59
6.11 Comparison of algorithms (**** stars represent the best and * star the worst

performance) . 61

69

Bibliography

[Agr06] Alan Agresti. An Introduction to Categorical Data Analysis, pages 1–20.
John Wiley, Sons, Inc., 2006.

[Alp14] Ethem Alpaydin. Introduction to Machine Learning. The MIT Press, 2014.

[APPR16] Sharath Chandra Akkaladevi, Matthias Plasch, Andreas Pichler, and Bern-
hard Rinner. Human robot collaboration to reach a common goal in an
assembly process. pages 1–12, September 2016.

[AR11] J. K. Aggarwal and Michael Ryoo. Human activity analysis: A review.
ACM Comput. Surv., 43(3):16:1–16:43, 2011.

[arf] Attribute-Relation File Format (ARFF). Available at http://www.cs.
waikato.ac.nz/ml/weka/arff.html (Accessed: 2017/01/15).

[BCM+03] Franz Baader, Diego Calvanese, Deborah L. McGuinness, Daniele Nardi,
and Peter F. Patel-Schneider, editors. The Description Logic Handbook:
Theory, Implementation, and Applications. Cambridge University Press,
2003.

[BFOS84] Leo Breiman, Jerome Friedman, Richard Olshen, and Charles Stone. Clas-
sification and Regression Trees. Wadsworth and Brooks, Monterey, CA,
1984.

[BM07] Adrian Bondy and U. S. R. Murty. Graph theory. Graduate texts in
mathematics. Springer, New York, London, 2007. OHX.

[BWB08] Andrea Maria Bauer, Dirk Wollherr, and Martin Buss. Human-robot
collaboration: a survey. I. J. Humanoid Robotics, 5(1):47–66, 2008.

[Con] Kohler Conley. Rosjava. Available at http://wiki.ros.org/rosjava
(Accessed: 2017/01/14).

[DHS00] Richard Duda, Peter Hart, and David Stork. Pattern Classification (2Nd
Edition). Wiley-Interscience, 2000.

71

http://www.cs.waikato.ac.nz/ml/weka/arff.html
http://www.cs.waikato.ac.nz/ml/weka/arff.html
http://wiki.ros.org/rosjava

[dMTH+12] Daniel di Marco, Moritz Tenorth, Kai Häussermann, Oliver Zweigle, and
Paul Levi. Roboearth action recipe execution. In 12th International Con-
ference on Intelligent Autonomous Systems, 2012.

[DW] Paul Singleton Fred Dushin and Jan Wielemaker. Java prolog interface
(jpl). Available at http://www.swi-prolog.org/packages/jpl/
(Accessed: 2017/01/14).

[GS03] Knoblich Günther and Jordan Scott. Action coordination in groups and
individuals: learning anticipatory control. J Exp Psychol Learn Mem Cogn,
29(5):1006–1016, September 2003.

[GS07] Michael Goodrich and Alan Schultz. Human-robot interaction: A survey.
Foundations and Trends in Human-Computer Interaction, 1(3):203–275,
2007.

[HKR+09] Matthew Horridge, Holger Knublauch, Alan Rector, Robert Stevens, and
Chris Wroe. A Practical Guide To Building OWL Ontologies Using Protégé
4 and CO-ODE Tools, 2009.

[HLK05] Jung-Hoon Hwang, KangWoo Lee, and Dong-Soo Kwon. The role of mental
model and shared grounds in human-robot interaction. In ROMAN 2005.
IEEE International Workshop on Robot and Human Interactive Communi-
cation, 2005., pages 623–628, Aug 2005.

[HSSK06] Jenny A. Harding, Muhammad Shahbaz, Srinivas, and Andrew Kusiak. Data
Mining in Manufacturing: A Review. Journal of Manufacturing Science
and Engineering, 128(4):969–976, 2006.

[Kot07] Sotiris Kotsiantis. Supervised machine learning: A review of classification
techniques. In Proceedings of the 2007 Conference on Emerging Artificial
Intelligence Applications in Computer Engineering: Real Word AI Systems
with Applications in eHealth, HCI, Information Retrieval and Pervasive
Technologies, pages 3–24, Amsterdam, The Netherlands, The Netherlands,
2007. IOS Press.

[LNR+08] Claus Lenz, Suraj Nair, Markus Rickert, Alois Knoll, Wolfgang Rösel, Jürgen
Gast, Alexander Bannat, and Frank Wallhoff. Joint-action for humans and
industrial robots for assembly tasks. In The 17th IEEE International
Symposium on Robot and Human Interactive Communication, RO-MAN
2008, Munich, Germany, August 1-3, 2008, pages 130–135, 2008.

[LÖ09] Ling Liu and Tamer Özsu, editors. World Wide Web Consortium, pages
3559–3559. Springer US, Boston, MA, 2009.

[MM07] Wendy Martinez and Angel Martinez. Computational Statistics Handbook
with MATLAB, Second Edition (Chapman & Hall/Crc Computer Science &
Data Analysis). Chapman & Hall/CRC, 2007.

72

http://www.swi-prolog.org/packages/jpl/

[MM09] Tenorth Moritz and Beetz Michael. KNOWROB - knowledge processing for
autonomous personal robots. In 2009 IEEE/RSJ International Conference
on Intelligent Robots and Systems, October 11-15, 2009, St. Louis, MO,
USA, pages 4261–4266, 2009.

[Mus15] Mark Musen. The protégé project: a look back and a look forward. AI
Matters, 1(4):4–12, 2015.

[PvSB09] Edita Poljac, Hein van Schie, and Harold Bekkering. Understanding the
flexibility of action–perception coupling. Psychological Research PRPF,
73(4):578–586, 2009.

[QCG+09] Morgan Quigley, Ken Conley, Brian Gerkey, Josh Faust, Tully B. Foote,
Jeremy Leibs, Rob Wheeler, and Andrew Y. Ng. ROS: an open-source robot
operating system. In ICRA Workshop on Open Source Software, 2009.

[Qui86] Ross Quinlan. Induction of decision trees. Machine Learning, 1(1):81–106,
1986.

[RM14] Lior Rokach and Oded Maimon. Data Mining with Decision Trees - Theory
and Applications. 2nd Edition, volume 81 of Series in Machine Perception
and Artificial Intelligence. WorldScientific, 2014.

[Ros06] Mark Elling Rosheim. Leonardo’s lost robots. Springer, 2006.

[Smu95] Raymond M. Smullyan. First-order Logic. Dover books on advanced
mathematics. Dover, 1995.

[SW11] Claude Sammut and Geoffrey Webb. Encyclopedia of Machine Learning.
Springer Publishing Company, Incorporated, 1st edition, 2011.

[TB12] Moritz Tenorth and Michael Beetz. A unified representation for reasoning
about robot actions, processes, and their effects on objects. In IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), Vilam-
oura, Portugal, October, 7–12 2012.

[TB13] Moritz Tenorth and Michael Beetz. Knowrob: A knowledge processing
infrastructure for cognition-enabled robots. I. J. Robotics Res., 32(5):566–
590, 2013.

[Tza00] Spyros Tzafestas. Handbook of Industrial Robotics, Shimon Y. Nof (ed.),
volume 28. 2000.

[ven] Venn diagram. Encyclopedia of Mathematics. Available at
https://www.encyclopediaofmath.org//index.php?title=
Venn_diagram&oldid=32575 (Accessed: 2017/01/28).

73

https://www.encyclopediaofmath.org//index.php?title=Venn_diagram&oldid=32575
https://www.encyclopediaofmath.org//index.php?title=Venn_diagram&oldid=32575

[Wal08] Johanna Wallén. The history of the industrial robot. Linköping: Linköping
University Electronic Press, 2008.

[Wes00] Lars Westerlund. The Extended Arm of Man: A History of Industrial Robot.
Informationsförlaget, 2000.

[WFH11] Ian Witten, Eibe Frank, and Mark Hall. Data Mining: Practical Machine
Learning Tools and Techniques. Morgan Kaufmann Publishers Inc., San
Francisco, CA, USA, 3rd edition, 2011.

[WSTL12] Jan Wielemaker, Tom Schrijvers, Markus Triska, and Torbjörn Lager. Swi-
prolog. TPLP, 12(1-2):67–96, 2012.

[WWIT16] Thorsten Wuest, Daniel Weimer, Christopher Irgens, and Klaus-Dieter
Thoben. Machine learning in manufacturing: advantages, challenges, and
applications. Production & Manufacturing Research, 4(1):23–45, 2016.

[ZZY03] Shichao Zhang, Chengqi Zhang, and Qiang Yang. Data preparation for data
mining. Applied Artificial Intelligence, 17(5-6):375–381, 2003.

74

	Abstract
	Kurzfassung
	Contents
	Introduction
	Motivation
	Problem Statement
	Research Goal
	Contributions
	Structure of thesis

	Theoretical Background
	Description Logics
	OWL Ontologies
	Application of Machine Learning to identify the task state

	Implementation Environment
	KnowRob knowledge processing system
	Knowledge Processing for Autonomous Personal Robots
	Unified Representation for Reasoning
	RoboEarth Action Recipe Execution
	Human activity analysis
	Mental Model and Shared Grounds in Human-Robot Interaction

	Modeling the assembly task description in OWL
	Modeled classes
	Modeled individuals
	Modeled properties

	Implementation of the reasoning system
	Architecture of the reasoning system
	RosJava package implementation
	KnowRob package implementation

	Experimental validation of the implementation
	Experiments based on the first data set
	Experiments based on the second data set
	Experiments based on the third data set
	Concluding remarks on the evaluation results

	Conclusions and Future Work
	List of Figures
	List of Tables
	Bibliography

