
An Overview of Distributed Big
Data Frameworks

DIPLOMA THESIS

submitted in partial fulfillment of the requirements for the degree of

Diplom-Ingenieur

in

Software Engineering & Internet Computing

by

Moritz Becker, Bsc
Registration Number 1026241

to the Faculty of Informatics

at the TU Wien

Advisor: Prof. Dr. Reinhard Pichler

Vienna, 15th August, 2017
Moritz Becker Reinhard Pichler

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.ac.at

Die approbierte Originalversion dieser Diplom-/ 
Masterarbeit ist in der Hauptbibliothek der Tech-
nischen Universität Wien aufgestellt und zugänglich. 
 

http://www.ub.tuwien.ac.at 
 
 
 
 

The approved original version of this diploma or 
master thesis is available at the main library of the 
Vienna University of Technology. 
 

http://www.ub.tuwien.ac.at/eng 
 





Erklärung zur Verfassung der
Arbeit

Moritz Becker, Bsc
Am Steindl 7
3500 Krems an der Donau

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 15. August 2017
Moritz Becker

iii





Acknowledgements

Ich danke meiner Familie, meinen Freunden und all jenen, die mich auf meinem Weg
unterstützen. Ohne euch wäre ich nicht so weit gekommen.

Besonderen Dank möchte ich an dieser Stelle an Herrn Prof. Dr. Reinhard Pichler für die
hervorragende, freundliche sowie unkomplizierte Betreuung meiner Diplomarbeit richten.

v





Abstract

The ever increasing amount of data that the modern internet society produces poses
challenges to corporations and information systems that need to store and process this
data. In addition, novel trends like the internet of things even adumbrate a prospectively
steeper increase of the data volume than in the past, thereby supporting the relevance
of big data. In order to overcome the gap between storage capacity and data access
speed while maintaining the economic feasibility of data processing, the industry has
created frameworks that allow the horizontal scaling of data processing on large clusters of
commodity hardware. The plethora of technologies that have since been developed makes
the entrance to the field of big data processing increasingly hard. Therefore, this thesis
identifies the major types of big data processing along with the programming models that
have been designed to cover them. In addition, an introductory overview of the most
important open source frameworks and technologies along with practical examples of
how they can be used is given for each processing type. The thesis concludes by pointing
out important extension projects to the presented base systems and by suggesting the
conduction of a performance-centric comparison of Apache Spark and Apache Hadoop
that can help to establish a more profound understanding of the nature of these systems
and to identify potential novel research topics.

vii





Contents

Abstract vii

Contents ix

1 Introduction 1
1.1 Technology overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 The AirQuality Inc. example domain . . . . . . . . . . . . . . . . . . . 6

I Batch Processing 9

2 The MapReduce Programming Model 11
2.1 Combiners . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2 Extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.3 Complexity & costs in MapReduce algorithms . . . . . . . . . . . . . . 14
2.4 Running example: Air quality threshold monitoring . . . . . . . . . . . 17

3 Apache Hadoop 19
3.1 The Hadoop Distributed File System (HDFS) . . . . . . . . . . . . . . 19
3.2 Hadoop Classic MapReduce [Whi12] . . . . . . . . . . . . . . . . . . . 28
3.3 Yet Another Resource Negotiator (YARN) / MapReduce 2.0 . . . . . 29
3.4 Air quality threshold monitoring with Hadoop . . . . . . . . . . . . . . . 31

4 Apache Spark 37
4.1 Resilient Distributed Dataset (RDD) . . . . . . . . . . . . . . . . . . . 39
4.2 Job scheduler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.3 Memory management . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.4 Shuffle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.5 Air quality threshold monitoring with Spark . . . . . . . . . . . . . . . 45

II Graph Processing 47

5 The Pregel programming model 49

ix



5.1 Complexity & costs in Pregel algorithms . . . . . . . . . . . . . . . . . 53
5.2 Running example: Improving the availability of AirQuality Inc.’s sensor

network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

6 Apache Giraph 63
6.1 Sharded aggregators . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
6.2 Fault tolerance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
6.3 AirQuality Inc. WWAN station placement with Apache Giraph . . . . 68

7 Apache Spark GraphX 79
7.1 Graph partitioning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
7.2 Graph representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
7.3 From graph-parallel to data-parallel . . . . . . . . . . . . . . . . . . . 82
7.4 GraphX optimizations . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
7.5 AirQuality Inc. WWAN station placement with Apache Spark GraphX 87

IIIStream Processing 91

8 Stream Processing Principles 93
8.1 Data streams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
8.2 Querying data streams . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
8.3 Load management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
8.4 Memory requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
8.5 Fault-tolerance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
8.6 Running example: Real time air quality statistics . . . . . . . . . . . . 103

9 Apache Storm 107
9.1 Tuple processing guarantees . . . . . . . . . . . . . . . . . . . . . . . . 109
9.2 Fault tolerance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
9.3 The aggregation of streaming air quality data with Apache Storm . . . 113

10 Apache Spark Streaming 121
10.1 DStreams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
10.2 Fault-tolerance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
10.3 The aggregation of streaming air quality data with Apache Spark Streaming 125

11 Conclusion 131

List of Figures 133

List of Tables 135



Bibliography 137





CHAPTER 1
Introduction

Along with the steadily rising number of internet users and the increasing bandwidth of
connections also the amount of data that is produced, transferred and stored is advancing
rapidly. Moreover, people are not the only entities that are producing data. Novel
technological perspectives like the internet of things (IOT) are just starting to gain
traction and promise an explosive increase in the number of connected devices which
clearly goes hand in hand with a further increase in the volume of data.

The storage capacity of modern IT infrastructure has followed a steady upward trend
since its ignition and the storage costs have declined. At the same time huge progress has
been made in terms of the computing capability of IT systems. The advancements in this
area even initiated a shift towards novel storage media based on flash memory that allow
for data access speeds that are several orders of magnitudes higher than traditional hard
disks can provide and that prevented storage access from becoming a real bottleneck for
data processing. Nevertheless, data access remains a problem. Around 1990, the content
on a typical hard drive with a capacity of 1,370 MB and read access of 4.4 MB/s could
be read in about 5 minutes. Today, over 25 years later a typical 256 GB solid state drive
(SSD) provides read access of 550 MB/s resulting in almost 8 minutes for the entire drive
to be read [Whi12]. So even when considering the fastest storage available today, the
ratio between storage capacity and access speed has clearly deteriorated. Moreover, the
cost of SSD storage is still fairly high compared to HDD which is why SSDs tend to be
used exclusively for performance applications and hardly for any offline data processing.
For example, Google is currently not interested in widespread use of SSDs in its data
centers due to the higher costs per gigabyte [BYG+16]. But a 600 GB enterprise-grade
HDD only delivers read access of just around 220 MB/s. In this scenario, reading the full
disk takes well over 45 minutes! Under this impression it is unsurprising that companies
such as Google started to struggle with the data load well over a decade ago and began
to build their own solution to this problem in the form of distributed big data processing
frameworks which will simply be referred to as big data frameworks for the remainder

1



1. Introduction

of this thesis. Since reading data from a single disk is so slow the simple idea is to use
computer clusters to distribute the data across in oder to be able to read from multiple
disks simultaneously during data processing.

Since then, a whole new research field has evolved around this topic and many systems
were created, often simultaneously and by different actors, be it industry or academia.
Some of them were built from scratch while others were created to improve on the
shortcomings of their predecessors. Many of them are not in use any more while others
are unabated popular and lead the field. Moreover, there are various types of applications
dealing with big data that demand different programming models and abstractions to
facilitate the creation of applications that conduct their tasks efficiently.

The high research and development activity in big data processing have resulted in a
level of complexity and variety in the field that makes it increasingly hard for newcomers
to enter and catch on. The goal of this thesis is to provide a broad and rather high
level overview of big data processing. This involves the identification of the relevant
types of big data processing along with the programming models that support these
processing types. The thesis should further identify and describe key technologies in the
field and provide the reader with knowledge of how they work and how they can be used
in practice. To sum up, this work sets out to constitute a comprehensive introductory
guide to big data processing that provides the required orientation and knowledge that
allows the reader to further specialize as desired. It is not the purpose of this thesis to
extensively compare or rate the presented technologies and systems against each other.
Moreover, due to the availability of technical insight and information this thesis only
considers open source software.

Three major types of big data applications are identified by this thesis along with the
programming models that are targeting these application types. These models are
discussed in detail and an overview of some of the most popular big data processing
frameworks implementing the respective model is provided. The framework descriptions
not only present a software architectural view of the system but they also contain concrete
examples including source code that follows a common fictional scenario presented in
Section 1.2 that attempts to mimic real world big data use cases. The structure of this
thesis is organized around the identified application types:

1. Batch Processing

2. Graph Processing

3. Stream Processing

Every application type is discussed in a separate part that is independent from the other
parts. Each part presents a programming model that suits the respective application
type along with two relevant big data frameworks that support these models. The
programming model descriptions contain a separate section that introduces a problem

2



1.1. Technology overview

statement drawn from the AirQuality Inc. example domain and illustrates how this
task can be solved in theory using the respective programming model. After that, each
framework’s description lays out the system architecture and provides insights to the
practical use of the framework by presenting the implementation of the theoretical
solution contained in the preceding programming model chapter.

As part of the introduction a short technology overview is presented in the following
Section 1.1. After that, Section 1.2 presents the running example scenario that is used
throughout the remainder of this thesis to showcase the use of the frameworks presented.

1.1 Technology overview
Figure 1.1 provides an overview of some of the available technology concerning big data
frameworks. Note that this illustration is concentrated on the systems that are presented
in this paper and gives by no means a complete picture of the ecosystem.

3



1. Introduction

A
cc
es
s
an

d
In
te
rf
ac
es

Pr
oc
es
sin

g
En

gi
ne

St
or
ag

e

R
es
ou

rc
e
vi
rt
ua

liz
at
io
n

Sp
ar
k

St
re
am

in
g

SQ
L,

D
at
aF

ra
m
es

G
ra
ph

X
M
Ll
ib

H
iv
e

Pi
g

G
ira

ph

Sp
ar
k
(C

or
e)

H
ad

oo
p
M
ap

R
ed

uc
e
v2

A
pe

x
St
or
m

Fl
in
k

H
D
FS

,A
m
az
on

S3
,C

ep
h

A
llu

xi
o

Su
cc
in
ct

H
B
as
e

M
es
os

H
ad

oo
p
YA

R
N

Fi
gu

re
1.
1:

B
ig

da
ta

te
ch
no

lo
gy

ov
er
vi
ew

4



1.1. Technology overview

Mesos 1 and Hadoop YARN are cluster management systems that provide means to
deploy third party applications to a cluster by allocating the required resources. Hadoop
YARN is discussed in more detail in Section 3.3.

HDFS was originally developed as part of Hadoop and is a distributed file system that is
used to reliably store data in a cluster to later access it for distributed processing. HDFS
is further discussed in Section 3.1.

Amazon S3 2 is a popular storage service provided by Amazon Web Services (AWS) and
can be used as an alternative to HDFS for Hadoop installations that run on AWS.

Ceph 3 is another cluster storage system that allows for different types of storage
abstractions like object, block and file system storage simultaneously.

Alluxio 4 a transparent distributed storage system that is deployed on top of any supported
underlying storage system such as HDFS. The main idea of Alluxio is to speed up storage
access by keeping data in-memory as much as possible. The concepts used by Alluxio
are similar to the concept of resilient distributed datasets in Apache Spark as discussed
in Section 4.1.

Succinct 5 is a storage system that allows the execution of a restricted set of queries on
compressed data without decompressing the data first by using a compression scheme that
facilitates random access to the compressed data. The benefit is an order of magnitude
of reduction in required storage space for many tasks.

HBase 6 is a database that works on top of HDFS and is modeled after Google’s BigTable
database [CDG+08]. It is targeted to hosting huge tables in commodity clusters and to
provide random, real time read/write access to the data.

Apex 7 is a big data framework that combines stream processing and batch processing
and can be operated on top of a Hadoop YARN managed cluster.

Storm and Flink 8 are both distributed stream processing systems. Storm is discussed in
more detail in Chapter 9.

Spark and Hadoop MapReduce are big data frameworks primarily focused on batch
processing. They are further discussed in Chapter 4 and Section 3.3, respectively.

Spark Streaming is a Spark extension that allows to perform stream processing. Chapter
10 contains more detail about it.

1http://mesos.apache.org/
2https://aws.amazon.com/de/s3/
3http://ceph.com
4http://www.alluxio.org
5http://succinct.cs.berkeley.edu
6https://hbase.apache.org/
7https://apex.apache.org
8https://flink.apache.org/

5

http://mesos.apache.org/
https://aws.amazon.com/de/s3/
http://ceph.com
http://www.alluxio.org
http://succinct.cs.berkeley.edu
https://hbase.apache.org/
https://apex.apache.org
https://flink.apache.org/


1. Introduction

Spark SQL 9 allows to apply SQL queries to DataFrames which are based on Spark
resilient distributed datasets.

GraphX facilitates distributed graph processing on top of Spark. This extension is further
discussed in Chapter 7.

MLlib 10 provides machine learning primitives for use on top of Spark.

Hive 11 provides a query language called Hive QL that is similar to SQL. The queries are
translated to Hadoop MapReduce jobs to be executed on a Hadoop cluster.

In contrast to the declarative SQL-like interface that Hive provides, Pig 12 comes with a
more procedural abstraction for writing Hadoop MapReduce called Pig Latin.

Giraph implements a programming model for distributed graph processing runs on top of
Hadoop. Chapter 6 contains more details about it.

Core components of this ecosystem are described in the upcoming chapters of this thesis.

1.2 The AirQuality Inc. example domain

For each big data task type covered in this thesis, one real world problem from a common
domain is presented and later solved using concrete means of the big data frameworks
discussed. The proposed solutions are analyzed with respect to costs, complexity and
framework specific characteristics. Most real world applications require big data frame-
works targeted for different task types to complement each other in order to provide a
valuable service. To illustrate such a scenario, a common, fictional problem domain is
defined in the following.

AirQuality Inc. is an internet of things (IOT) business that sells access to fine grained
air quality data and also offers a range of customer facing services based on this data.
The company collects the data from specialized sensor devices that it sells to both public
and private entities.

Such a sensor is solar-powered and can be mounted to almost any kind of structures like
a house walls, for example. In regular intervals, the sensor analyzes the air quality at its
location and transmits the measurements to a back-end system running in a data-center
that is operated and maintained by AirQuality Inc. The transmitted data are considered
to be tuples containing the following fields:

• Air quality indicator

• Region
9https://spark.apache.org/sql

10https://spark.apache.org/mllib
11https://hive.apache.org
12https://pig.apache.org

6

https://spark.apache.org/sql
https://spark.apache.org/mllib
https://hive.apache.org
https://pig.apache.org


1.2. The AirQuality Inc. example domain

Region
Region A
Region B
Region C

Table 1.1: Regions that air quality data is received from

Indicator Range
CO2 0 - 500
Fine dust 0 - 200
Radiation 0 - 50
Pesticides 0 - 100

Table 1.2: Measured air quality indicators and their value range

• Timestamp indicating the time of measurement

• Value

Tables 1.1 and 1.2 define the regions and air quality indicators that incoming data tuples
may contain. Note that in reality, the air quality sensors would most likely transmit their
GPS coordinates instead of region strings. However, the coordinates may be mapped to
discrete regions in a pre-processing step that is not covered in this thesis.

The back-end system utilizes big data frameworks to process the received information.
Preferably, the data is transmitted via one of the wireless wide area network (WWAN)
stations operated by AirQuality Inc. While such a station provides a signal range of
several miles/kilometers, many rural regions exist where this communication channel
is not available. At the same time, the countryside represents an important customer
segment because the local people are increasingly aware of the health risks posed by
pesticides that are used by local farmers. Many of them are willing to install air quality
sensors on their property to be notified when the wind blows pesticides onto their
property. For this reason, AirQuality Inc. implements a secondary, peer-to-peer based
data transmission functionality in their sensors. This technique establishes a sensor
network by allowing nearby sensors to be used as message relays. As soon as a message
reaches a sensor that is connected to a WWAN station, the relaying is terminated. Figure
1.2 illustrates the resulting topology.

For the problem statements derived from the AirQuality Inc. domain, refer to Sections 2.4,
5.2 and 8.6 for batch processing, graph processing and stream processing, respectively. The
source code of the presented solutions is publicly available under https://bitbucket.
org/mobe1991/master-thesis-examples.

7

https://bitbucket.org/mobe1991/master-thesis-examples
https://bitbucket.org/mobe1991/master-thesis-examples


1. Introduction

Station

Figure 1.2: AirQuality Inc. sensor network topology

8



Part I

Batch Processing

9





CHAPTER 2
The MapReduce Programming

Model

The MapReduce programming model was initially published by researchers from Google
in 2004 and due to its conceptual simplicity and its applicability to a wide range of
problems and applications it quickly emerged as the state of the art for doing distributed
big data processing [DG04].

A MapReduce program consists of a map function and a reduce function. Such a program
is executed on dataset, which is stored in chunks on a file system which, in practice, is a
distributed file system. The map function turns a chunk into a sequence of key-value
pairs. On the other hand, the reduce function combines all values with the same key to a
result value.

An appropriate runtime environment provides an execution controller that allocates map
tasks and reduce tasks which invoke the map and reduce operations, respectively. Apart
from that, the controller steers the dataflow in the MapReduce program. It applies the
map function to each chunk of the dataset and partitions the resulting key-value pairs by
the reducer they are destined for. Once a map task is completed, the controller moves
each partition to the responsible reducer task. Once all map tasks are finished and all
data has been moved to reducer tasks, the partitions at each reducer task are combined
and grouped by key. The reducer task then invokes the reducer function for each key.
The procedure that the controller performs in between map and reduce is often referred
to as the shuffle which is considered the heart of any MapReduce runtime environment.

Figure 2.1 schematically shows the functioning of a MapReduce program that counts
word occurrences.

The MapReduce programming model is targeted towards cluster computing where node
failures can happen any time. When a node fails, the map tasks and reduce tasks hosted

11



2. The MapReduce Programming Model

My house
Your house

My house

Your house

Chunks
Map

Map

(My, 1)

(house, 1)

(Your, 1)

(house, 1)

(My, 1)

(house, 1)

(house, 1)

(Your, 1)

shuffle

Reduce

Reduce

(My, 1)

(house, 2)

(Your, 1)

Figure 2.1: High-level view of a MapReduce program for word count

on the failed node are recreated on a healthy node by the execution controller. This
is possible because the tasks implement a so-called blocking property, i.e. results are
forwarded only once all work is finished. This prevents partial results from arriving at
successive tasks which would be duplicated by the results delivered by recreated tasks
[ABC+11].

2.1 Combiners
For reduce functions that are associative and commutative it is possible to pre-reduce the
output of the map functions before the grouping takes place. In distributed environments
where map and reduce functions run on different nodes, this pre-reduction can happen
on the map node and is an important optimization since it minimizes the amount of data
that needs to be transferred to the reduce node.

Example 1 To illustrate the purpose of combiners, assume a MapReduce
program that aims to calculate the sum of each customer’s purchases.

----- Chunk 1 -----
(customer1, EUR 43)
(customer2, EUR 21)
(customer1, EUR 33)
(customer2, EUR 102)
(customer2, EUR 10)
----- Chunk 2 -----
(customer1, EUR 13)
(customer2, EUR 4)
(customer1, EUR 73)

The result of the map function are the following key value pairs which would
need to be transferred to the reducers if no combiner is utilized:

12



2.2. Extensions

----- Chunk 1 -----
(customer1, [EUR 43, EUR 33])
(customer2, [EUR 21, EUR 102, EUR 10])
----- Chunk 2 -----
(customer1, [EUR 13, EUR 73])
(customer2, [EUR 4])

By applying a combiner function that sums up the output values, the data
can be reduced to:

----- Chunk 1 -----
(customer1, [EUR 76])
(customer2, [EUR 133])
----- Chunk 2 -----
(customer1, [EUR 86])
(customer2, [EUR 4])

In contrast to example 1, if the program would aim to calculate the median of each
customer’s purchases, it would not be possible to utilize a combiner.

2.2 Extensions

Numerous extensions have been developed for the basic MapReduce programming model
described so far. This section covers some of them briefly.

Not every problem is expressible in a single MapReduce program. Thus, extensions have
been developed to allow the definition of MapReduce workflows where the output of one
MapReduce task is used as the input of a successor task and so on. The sequence of
operations can basically take the form of arbitrary directed acyclic graphs.

This workflow extension is crucial for the applicability of MapReduce for real world
problems. Especially for more complex applications, the creation of MapReduce solutions
by hand is time consuming and sometimes incomprehensible. Thus, systems have been
developed on top of MapReduce that allow to create a declarative definition of a problem
which is then translated into MapReduce workflows for execution. This approach is
similar to relational database management systems that accept declarative SQL queries
which are internally translated into a sequence of relational operations, the query plan.
In fact, many systems such as Apache Hive 1 have been developed that translate SQL to
MapReduce workflows.

Acyclic workflow extensions are of little help when dealing with algorithms that are
recursive in nature such as:

1https://hive.apache.org/

13

https://hive.apache.org/


2. The MapReduce Programming Model

• Fixpoint iterations as needed in the PageRank algorithm

• Calculating the transitive closure of a relation

Experimental systems like HaLoop have been created which support iterative MapReduce
by iteratively invoking a job [BHBE10]. Hence, such systems can be used to emulate
recursion via iteration. However, this approach is not very efficient since all MapReduce
tasks must finish before the next iteration can commence which results in idle nodes.
For real recursion, a task would need be able to produce output before all its input is
consumed and the task ends. However, this contradicts the blocking property of tasks
which is relied on for independent restart of failed tasks (see Section 2). Therefore
additional methods for failure recovery would have to be introduced as discussed in
[ABC+11].

2.3 Complexity & costs in MapReduce algorithms

For analyzing the quality of MapReduce algorithms it is important to define an appropriate
cost model that is adapted to the operating conditions of the systems running those
algorithms. Since the programming model is targeted towards computer clusters it is
necessary to integrate the performance characteristics of such environments into the cost
model.

A computer cluster is a set of computers or nodes that are connected via a network link.
The bandwidth of these connections is slow compared to the processing speed of the
individual nodes. Since map and reduce tasks can be independently executed on any
cluster node, data consumed and produced by these tasks needs to be transferred over the
network links. Therefore, the low bandwidth becomes a bottleneck for most applications.

As a consequence, a cost model for MapReduce algorithms must account for the cost of
communication between nodes and can disregard the execution speed or computational
complexity of the map and reduce functions which, in fact, tend to be very simple in
practice and often run in linear time [LRU14].

Afrati et al [AU10] consider a MapReduce algorithm to be a DAG of map and reduce
operations or processes. They define the communication cost of a process to be the size
of its input. The cost of an algorithm is then the sum of the communication cost of all
processes. Process outputs are not considered because every output is assumed to be the
input to another process, hence outputs are already covered when considering inputs only.
The size of the algorithm’s overall output is not considered because it usually cannot be
optimized anyway and, in practice, the output size is small compared to the input size
because the output frequently is some form of aggregation.

However, this notion alone is insufficient as it tempts to assign all the work to a single
process which would result in minimal communication cost but which would also greatly
increase the wall-clock time, i.e. the actual execution time of the algorithm, because any

14



2.3. Complexity & costs in MapReduce algorithms

parallelism is eliminated. So some kind of balancing between communication cost and
parallelism is required for achieving optimal results [LRU14].

For expressing the balancing of communication against parallelism, Afrati et al [SASU13]
introduced a different model based on reducer size and replication rate:

• The reducer size q represents the maximum number of values per key, i.e. the
maximum size of a reducer input. A small reducer size results in an increased
number of reducer invocations. With many reduce tasks in place, this can increase
the parallelism of the MapReduce program execution. By choosing a sufficiently
low reducer size it is possible to ensure that reducers can hold the data in memory
which greatly improves the performance.

• The replication rate r is the average number of key-value pairs to which each input is
mapped by the map function. At the same time, this is the average communication
cost between map and reduce tasks per input.

The tradeoff between communication cost and parallelism can then be described by
expressing r as a function of q, i.e. r = f(q). Examples 2 [SASU13] and 3 [LRU14]
illustrate the tradeoff in concrete scenarios.

Example 2 Consider a cloud provider that charges users for communication
and processor time. It is evident that the communication cost is proportional
to r and the processor cost is a function of q. Hence, the computation cost
for an algorithm on this cloud platform can be expressed as ar + bq for some
provider dependent constants a and b. For r = f(q), this becomes af(q) + bq.
Minimizing this expression results in some concrete value for q which can be
used to look up the cost-optimal algorithm for some problem lying along the
curve r = f(q).
In case wall-clock time is more important than execution cost, the target
function can be refined for some concrete problem. Assume an algorithm
where the reducer has to perform pair-wise comparisons of its input values.
The computational complexity of the reducer for a maximum of q input values
trivially is in O(q2). Thus, the cost function can be extended to ar+ bq+ cq2

for expressing the computational complexity of a reducer. This modification
emphasizes a low reducer size q which results in higher parallelism and
lower wall-clock time on the one hand but in potentially higher processor or
communication cost on the other hand.

Example 3 To illustrate the tradeoff between reducer size q and replication
rate r, the similarity join problem fits well. Given a domain D, a large set X
of elements from D and a similarity function s(a, b) : D×D → [0, 1] returning

15



2. The MapReduce Programming Model

a similarity measure for each element pair in the domain. The task is to find
{(a, b) : a, b ∈ X, s(a, b) > t} for some user defined threshold t ∈ [0, 1].
For example, an instance of this problem is to find similar images in a large
set - assume 1 million images and 1 MB per image, so 1 TB in total. One
way to do this using MapReduce is to map the input data to one pair of
images per key so each reducer would compute the similarity of two images
by applying s and would then decide if the similarity is above the concrete
threshold t.
While this algorithms looks fine on the first glance, it is, in fact, impractical
because it requires an insane amount of communication between map tasks
and reduce tasks. Each input image is mapped to 999.999 key-value pairs,
hence the replication rate is 999.999. So the total number of bytes that needs
to be transferred is 1.000.000 images times a replication rate of 999.999 times
2 MB for the size of each key-value pair containing 2 images. This is about
2 × 1012 MB or 2 exabytes. Transmitted over a single gigabit (128 MB/s)
ethernet link would take 2×1012

128×86400 = 1012

64×86400 = 180.844 days or 495 years.
A better approach is to form g groups and distribute the image set evenly
accross the groups so that each contains 106

g elements. The map function
produces g − 1 key-value pairs for each image Ii:

• The key is {u, v} where u is the id of the group of Ii and v is any other
group.

• The value is Ii.

It should be noted that the keys are considered to be unordered sets, i.e. a
key {u, v} is processed by the same reducer as {v, u}. Input to the reducer
therefore consists of a key {u, v} and an associated value list of size 2× 106

g
containing images Ii that belong to either group u or v. A reducer compares
each pair of images (Ii, Ij) where the group of Ii is different from the group
of Ij . To also cover the comparison of images residing in the same group, a
reducer handling key {u, (u+ 1) mod g} additionally compares image pairs
where both elements belong to group u. Figure 2.2 illustrates the idea. The
red lines indicate the comparisons of images in the same group that each
reducer carries out in addition to the inter-group comparison.
The replication rate of this algorithm is g − 1 and the reducer size is 2× 106

g .
The data that needs to be communicated between the map layer and the
reduce layer is therefore 106 ∗ (g − 1) ∗ 1MB. Choosing g = 1000, this results
in roughly 109 MB or 1 Petabyte of data which is 1000 times less than in the
previous approach.

MapReduce extensions as detailed in Section 2.2 allow algorithms to be composed of
multiple MapReduce job invocations. Therefore it is often required to extend the notion

16



2.4. Running example: Air quality threshold monitoring

I1 (g1)

I2 (g2)

I3 (g3)

I4 (g1)

I5 (g2)

I6 (g3)

Map

({g1, g2}, I1)

({g1, g3}, I1)

({g2, g1}, I2)

({g2, g3}, I2)

({g3, g1}, I3)

({g3, g2}, I3)

({g1, g2}, I4)

({g1, g3}, I4)

({g2, g1}, I5)

({g2, g3}, I5)

({g3, g1}, I6)

({g3, g2}, I6)

(<key>,<value>)
Reducer {g1, g2}

Reducer {g1, g3}

Reducer {g2, g3}

I1 I2 I4 I5

I1 I3 I4 I6

I2 I3 I5 I6

Figure 2.2: Illustration of MapReduce algorithm for similarity join

of MapReduce costs and complexity as presented so far to topologies of MapReduce jobs.
Especially for iterative algorithms the number of job iterations needs to be incorporated
into the costs and complexity analysis.

2.4 Running example: Air quality threshold monitoring
The following problem is used as illustrative real world example in the course of discussing
Apache Hadoop and Apache Spark.

Suppose that national authorities ordered AirQuality Inc. to perform air quality mea-
surement on their behalf to comply with international environmental protection treaties.
Primarily, this involves the yearly creation of a report containing the number of days
with threshold violations broken down by indicator and region.

The solutions to this problem are described in Sections 3.4 and 4.5 for Apache Hadoop
and Apache Spark, respectively.

In general, this task can be accomplished using a pipeline of MapReduce jobs that operate
on a set of air quality tuples as shown in Figure 2.3.

17



2. The MapReduce Programming Model

CO2, A, 01/01 00:06, 13.5
CO2, A, 01/01 04:05, 19.3
CO2, B, 02/01 15:00, 14.2
CO2, B, 03/01 16:00, 9.8
RAD, A, 04/01 17:00, 1.2
CO2, A, 02/01 13:00, 16.7

〈CO2, A, 1〉, 13.5
〈CO2, A, 1〉, 19.3
〈CO2, B, 2〉, 14.2
〈CO2, B, 3〉, 9.8
〈RAD, A, 4〉, 1.2
〈CO2, A, 2〉, 16.7

〈CO2, A, 1〉, 19.3
〈CO2, B, 2〉, 14.2
〈CO2, B, 3〉, 9.8
〈RAD, A, 4〉, 1.2
〈RAD, A, 2〉, 16.7

〈CO2, A〉, 1
〈CO2, B〉, 1
〈CO2, B〉, 0
〈RAD, A〉, 0
〈CO2, A〉, 1

〈CO2, A〉, 2
〈CO2, B〉, 1
〈RAD, A〉, 0

Ma
p

Re
d.
(M
ax
)

Ma
p

Re
d.
(Su

m)

Figure 2.3: Pipeline of MapReduce jobs for generating air quality violation reports

The first job computes the maximum measurement values grouped by indicator, region
and day producing output tuples of the form 〈indicator, region,dayGroup,maxValue〉. A
subsequent job compares the maximum values per group against the thresholds and sums
up the violations grouped by indicator and region producing a set of end results of the
form 〈indicator, region, violations〉.

In terms of complexity, the only interesting part in the above algorithm is the maximum
computation because this is where most of the data is reduced. Depending on the sensor
sampling rate there might be thousands of measurements per indicator, region and day
resulting in quite a big dataset that needs to be processed at this point in the pipeline.
Since the output of this stage merely contains a single value per indicator, region and
day, the remaining stages are negligible. Given an equal sampling size across the sensor
topology and an evenly distributed amount of sensors per region and indicator, the
reducer size for computing the maximum per indicator, region and day over 1 year is
|T |/(|R| ∗ |I| ∗ 365) for the set of tuples T , the set of regions R and the set of indicators
I. Hence the job is very well parallelizable in practice and should be able to make good
use of a large cluster of nodes because up to |R| ∗ |I| ∗ 365 may run in parallel.

18



CHAPTER 3
Apache Hadoop

Hadoop emerged out of the Apache Nutch project, a subproject of Apache Lucene, started
by Doug Cutting and Mike Cafarella which aimed to build an open source web search
engine. After starting Nutch in 2002, the project was soon inspired by Google’s GFS
and MapReduce papers. This resulted in the development of the Nutch Distributed File
System (NDFS) and the porting of existing algorithms in Nutch to run on MapReduce
and NDFS. In 2006, the MapReduce and NDFS parts were extracted from Nutch to
form a separate subproject of Lucene called Hadoop and NDFS was renamed to Hadoop
Distributed File System (HDFS). At that time, Cutting was hired by Yahoo! who
assigned a dedicated team of developers to advance Hadoop and to incorporate it into
Yahoo!’s web search infrastructure. By 2008, Yahoo!’s web search index was entirely
generated by an Hadoop cluster [Whi12].

The remainder of this chapter describes the core components of Hadoop:

• HDFS. A distributed file system which is used to store large datasets in clusters of
commodity machines.

• Classic MapReduce. Hadoop’s original implementation of the MapReduce program-
ming model (see 2).

• YARN. Hadoop’s next generation MapReduce implementation.

The focus is put on HDFS since the majority of persistence layers of today’s big data
frameworks is based on it.

3.1 The Hadoop Distributed File System (HDFS)
In contrast to ordinary file systems, a distributed file system manages storage across
multiple machines that are connected via a network.

19



3. Apache Hadoop

3.1.1 Architecture

The architecture and design of HDFS is based on a set of assumptions and goals [hdfb]:

• HDFS is a distributed system targeted to operate on large server clusters. In
such environments hardware failure is the norm rather than the exception.
Therefore, fault detection and automatic recovery is a central goal.

• The target application for HDFS is batch processing and therefore, HDFS clients
need streaming data access to datasets. This maximizes data access throughput
rather than low latency access.

• HDFS applications typically work on very large datasets, i.e. many gigabytes or
terabytes in size. HDFS is tuned to support such large files and to provide high,
scalable bandwidth for accessing files.

• In a complex distributed system such as HDFS it is important to reduce failure
modes. For this reason, HDFS offers a simple coherency model for files which
restricts access to a write-once-read-many model. This restriction is also an enabler
for high throughput access. Updates can, however, be appended to the end of a file.

• Moving computation is cheaper than moving data. The awareness of net-
work speed as the most limiting factor for throughput is at the core of many of
today’s distributed systems. This becomes especially true in the case of HDFS
when dealing with huge amounts of data. Thus, HDFS provides interfaces for
applications to move themselves closer to the data they are operating on rather
than instructing HDFS to move data.

• HDFS is designed to be portable to allow it to spread many platforms and to be
used by a wide range of applications.

Basically, the HDFS architecture consists of two types of actors or nodes:

• NameNode (NN) - manages file system metadata

• DataNode (DN) - manages file contents

An HDFS cluster is a set of machines managed by HDFS to form a single coherent file
system. Traditionally, there was only one NN per HDFS cluster and for the sake of
simplicity we will carry on this assumption for the general illustration of HDFS in the
following sections. In a later release of HDFS, a feature called ’HDFS high-availability’
was added which alleviated the restriction on the number of NNs (see Section 3.1.6).

Figure 3.1 schematically shows the architecture of HDFS and how clients interact with it.

20



3.1. The Hadoop Distributed File System (HDFS)

NameNode

Datanode 3Datanode 2Datanode 1 Datanode 4 Datanode 5

Rack 1 Rack 2

Client Client

Read Write
Write

Replicate

Block ops

Figure 3.1: HDFS architecture

NameNode

A NameNode (NN) manages what is called the HDFS namespace which is nothing else
than the directory tree in traditional file systems - a hierarchy of directories and files.
These are represented via inodes which hold metadata such as permissions, modification
and access timestamps. In addition, the NN also holds the block identifiers and the block
locations for each file.

The content of files in HDFS is organized and stored in blocks of equal size. In contrast
to traditional file systems, the block size in HDFS is much larger, typically 128 MB.
The reason for this is to reduce the seek times when reading from the disk in order to
utilize the disk transfer rate well and to maximize data throughput - one of the design
goals of HDFS. The seek time is the time it takes for the hard disk’s reader head to be
placed before the start of the target block on the disk. Since large files are likely to touch
multiple blocks it is possible to reduce the share of the seeks in the overall data access
time by increasing the block size. Of course, this assumes that the content of an HDFS
block is stored sequentially on disk. However, this argument does not apply for solid
state drives (SSD) because the concept of a seek does not exist in this context. Although
HDFS was designed in the pre-SSD age there are still good reasons for large block sizes
even with SSDs:

• The NN keeps the block locations for each file in memory. Since a block size
reduction implies an increase in the number of blocks it also implies an increase in
memory consumption of the NN.

• File blocks read from HDFS by remote applications need to be transferred over
a network link which involves a lot of overhead for setting up the connection etc.
Thus, it makes sense to transfer larger blocks.

21



3. Apache Hadoop

Conversely, because Hadoop MapReduce jobs operate on block level, pushing block sizes
too hard impacts parallelism and thus the speed of job execution [Whi12].

The NN keeps the inode data, the block list and the block locations in memory to allow
fast serving of clients requesting this information. The combination of inode data and
block list is called image. The information contained in the image is the heart of the
file system - if it is corrupted or lost, all data stored in HDFS is lost. Thus, there are
persistent snapshots of the image called checkpoint or fsimage along with a persistent
write-ahead-log called edit log. The edit log contains the history of file system changes
since the last checkpoint. Every operation that modifies the file system is persisted in
the edit log before being committed to the client. Checkpoints are created by replaying
all edit log entries on the previous checkpoint. After creating a new checkpoint, the old
one is deleted and the edit log is cleared. Checkpoint creation takes place:

• when the NN starts up

• on explicit request by an administrator

• via a CheckpointNode

On startup, the NN reads the current checkpoint and applies the history of changes from
the edit log to it which results in the working image kept in memory. HDFS allows to
store the checkpoint and the edit log in multiple storage locations such as NFS and other
volumes. This is a recommended practice to protect from single volume and node failures.

By default, checkpoints are only created on NN startup. For long running HDFS clusters,
this poses the risk of edit logs growing indefinitely and eating up all the disk space on
the NN which endangers its stability. Moreover, large edit logs increase the startup time
of NNs. For these reasons, HDFS provides the concept of a CheckpointNode (CN). The
one and only purpose of such a node is to periodically create namespace checkpoints by
downloading the current checkpoint and edit log from the NN, merging them locally and
uploading the new checkpoint back to the NN. While HDFS does not prevent a single
node from taking on both the roles of a NN and a CN, a separate node is usually chosen
as a CN in practice because both roles impose the same memory requirements.

The HDFS user guide [hdff] also mentions the Secondary NameNode (SNN) along with
the CN and a lot of confusion seems to be going on as to the differences between SNN
and CN. It was suggested that the upload of new checkpoints back to the NN does not
take place in the SNN scenario and that this is the essential difference [blo]. In fact, both
SNN and CN perform exactly the same operations but the SNN has been deprecated
in favour for CN when efforts were started towards providing a hot standby to the NN
in order to pave the road for automatic NN failover. The original plan was to convert
the SNN to a Standby NameNode but things have evolved differently leading to the
introduction of CN and BackupNode and to the deprecation of SNN [hdfa].

The BackupNode (BN) maintains an in-memory, up-to-date copy of the namespace. The
NN streams all edit log changes to the BN which applies the changes to its namespace

22



3.1. The Hadoop Distributed File System (HDFS)

copy and also appends them to its own edit log. Thus, the NN’s and BN’s namespaces
are always synchronized. This allows the BN to create new checkpoints simply from its
own locale state without the need for fetching the latest checkpoint and the edit log from
the NN. Having a BN in place also allows to operate the NN without any persistent
storage.

DataNode

While an HDFS cluster can contain only a single NN (except for HDFS HA), it may
comprise thousands of DataNodes (DNs) which hold the actual HDFS blocks that make
up the content of files managed by HDFS. Each file block is independently replicated in
HDFS and the number of copies or replicas per block is determined by a file’s replication
factor. The default replication factor is three, i.e. three copies of each block are stored in
the cluster.

A block on a DN is represented by two files:

• Data file - contains the actual data

• Metadata file - contains metadata about a block including a checksum and the
generation stamp

When an HDFS file system is formatted, a namespace ID is created for the file system
which is persistently stored on all nodes in the cluster. A newly initialized DN receives
the namespace ID when it joins a cluster. On startup, a DN contacts the NN and a
handshake is performed where the DN compares its namespace ID and its software version
with the NN. In case of any mismatch, the DN shuts itself down so that the integrity of
the file system is not endangered.

After a successful handshake, the DN registers itself with the NN and receives a unique
storage ID from the NN when the DN registers for the first time. The registration process
also involve sending a block report to the NN which identifies all the HDFS blocks that
are managed by the DN. Further block reports are sent periodically during the operation
of the DN in order to keep the NN’s view of block locations up to date.

DNs periodically send heartbeats to the NN that serve a multitude of purposes. First, a
heartbeat signals to the NN that the sending DN and all the block replicas managed by
it are still alive. A heartbeat message also carries data about the storage capacity and
the I/O load of a DN. This information is used by the NN for decisions concerning space
allocation and load balancing. Finally, a NN never communicates with DNs directly but it
sends its commands as replies to heartbeat messages. Since such commands are important
to protect the file system integrity it is essential to allow for frequent heartbeats.

The cluster administrator can order the removal or decommissioning of DNs. Once a DN
is marked for decommissioning, it is not selected as replication target by the NN any
more and the NN schedules the replication of blocks to other DNs. During this process,

23



3. Apache Hadoop

the DN being decommissioned continues to serve read requests. Once the NN detects that
all pending replications for the DN are completed, it marks the DN as decommissioned
at which point it can safely be removed from the cluster.

3.1.2 File I/O

User applications access HDFS via an HDFS client library. This allows to make the
access to the file system completely transparent, hence the user application requires no
knowledge about the distributed nature of the system. Like ordinary file systems, HDFS
allows to read, write and delete files and to create and delete directories.

For reading a file, the client contacts the NN to request the list of block identifiers for
the file along with the DNs that host replicas of these blocks. Next, the client contacts
the DNs directly to fetch the required blocks. The client does not only read the block
content but also the block metadata containing a checksum and it performs a verification
of the fetched block by comparing the received checksum with the checksum calculated
from the received block content. When the client detects a corrupted replica, it notifies
the NN and fetches a different replica instead.

While a client can read multiple blocks of a file in parallel, file writes take place one block
at a time. For each block, the client requests DNs from the NN where the block replicas
should be hosted. Then the client establishes a pipeline among the returned DNs in an
order that minimizes the total network distance among the nodes and writes the block
content along with a block checksum to the pipeline.

For example, let’s assume a pipeline of 3 DNs DNa, DNb, DNc. The client sends the
block content to DNa which persists the data and sends it to DNb. DNb, in turn, persists
the data and sends it to DNc which also persists the data.

HDFS implements a single-writer, multiple-reader access model for files, i.e. only on
client at a time can write to a file while multiple clients can read from it concurrently,
even while it is written.

3.1.3 Block placement, replication & integrity

The placement of block replicas in a distributed file system is important since it influences
data reliability and availability as well as data access performance.

Computer clusters are commonly composed by racks of nodes where all nodes in a rack
share a single switch and the rack switches are connected via a set of core switches. Thus,
communication between nodes of different racks needs to go through multiple switches.
More importantly, network links among nodes within the same rack sometimes provide
higher bandwidth. For these reasons, intra-rack communication is generally considered
faster than inter-rack communication.

HDFS relies on a heuristic for estimating network distances based on this assumption
when it comes to block placement decisions. The placement policy is also configurable

24



3.1. The Hadoop Distributed File System (HDFS)

and administrators can add rack-awareness by supplying a script which returns the rack
number for a given node.

The default placement policy guarantees:

• No DN hosts more than one replica of a block

• No rack contains more than two replicas of a block (provided that there are enough
racks in the cluster)

The NN constantly checks block replications when block reports from DNs arrive and if
it detects any over- or under replicated blocks it issues commands to restore the desired
replication factor.

In case of over replication the NN selects a replica to remove and in doing so, it attempts
to balance storage utilization across the cluster without reducing a block’s availability.

In case of under replication, the respective block is inserted into the replication priority
queue where a block’s priority is determined by its availability. I.e. a block which has
only 1 replica left has a higher priority than a block with 2 replicas. The NN chooses a
target DN for replication with the goal to minimize the cost of replication while keeping
availability high.

The NN also detects when all block replicas end up on the same rack without actually
falling below the replication factor. In this case it first treats the block as under replicated
which causes the creation of a new replica on a different rack. This results in the block
becoming over replicated which in turn triggers the removal of one of the replicas in the
same rack.

Cluster balancing

The core components of HDFS do not guarantee the storage utilization to be uniformly
distributed accross the cluster. The default block placement strategy does not take
storage utilization of individual DNs into account and empty DNs might be added to the
cluster at any time introducing a great skew to the block distribution.

For this reason, HDFS provides a standalone balancing tool which runs in the background
and continuously checks if the cluster requires balancing based on a user defined threshold.
The balancer moves replicas from nodes with higher storage utilization to nodes with
lower utilization and in doing so, it maintains a replica’s availability by guaranteeing
that neither the number of racks hosting a replica nor the number of replicas for the
same block is reduced.

Block monitoring

HDFS does not leave the detection of corrupted blocks solely to the checksum verifications
performed by clients when reading files. Each DN runs a background process that

25



3. Apache Hadoop

periodically scans the hosted blocks and compares a freshly computed checksum with
the checksum stored in the block metadata. When a corrupted block is detected, the NN
is notified which marks the respective replica as corrupted and schedules the replication
of an intact replica. Once completed, the NN schedules deletion for the corrupted replica.
This way, the invalid data is preserved for inspection through the user in case all other
replicas are corrupt as well.

3.1.4 Snapshots

HDFS provides a snapshot mechanism which records that state of namespace and storage
and allows to return to this state at a later point in time. This is especially helpful
when applying software upgrades of HDFS components. To protect the file system from
data loss in case of software bugs in the new version, a snapshot can be created before
applying the update.

The snapshot creation can be triggered via an option on NN start up. In this case, the
NN creates a new checkpoint and stores the it along with an empty edit log in a new
location without overriding the old checkpoint. During DN handshake, the NN instructs
the DNs to snapshot their locally stored blocks. If implemented trivially by copying each
block, this would result in doubling the occupied storage of the whole cluster which is, of
course, impractical. Instead, a DN creates a new storage directory where it only creates
hard links to the blocks residing in the old storage directory. Thus, on block removal,
only the hard link is deleted but the block remains in the old directory. The DN only
create a copy of a block in the new directory when content is to be appended. Likewise,
a snapshot restore can be triggered via an option when restarting the NN.

3.1.5 HDFS federation [hdfc]

The original architecture of HDFS allows only one NN per cluster. However, this prevents
the namespace from being scaled horizontally. This can be an issue for large file systems
where the memory requirements of the NN can become enormous because all information
is kept in memory.

HDFS federation was introduced in a later release of HDFS for the purpose of making
NN horizontally scalable. It allows for multiple NNs in the cluster where each NN is
independently managing a distinct namespace. The NNs share all the DNs in the cluster
for storage and each DN registers with each NN when starting up.

DNs contain blocks grouped in block pools which are managed independently and where
each block pool belongs to a single namespace. This allows NNs to generate block IDs
without the need for coordination with other NNs.

The namespace ID that is used as a cluster identifier in HDFS without federation becomes
insufficient in HDFS federation. Thus, a separate cluster ID is introduced to supplement
the namespace ID.

The summarized benefits offered by HDFS federation are:

26



3.1. The Hadoop Distributed File System (HDFS)

• Scalability

• Performance
The file system’s I/O throughput can be improved by scaling across multiple NNs.

• Isolation
A single NN failure does not take down the entire file system.

3.1.6 HDFS high-availability [hdfe] [Whi12]

While HDFS federation improves cluster scalability, it does nothing to improve the
availability of individual namespaces. In the event of NN failure or maintenance operations
such as software or hardware upgrade, a namespace or the whole cluster would become
unavailable.

HDFS high-availability tackles this shortcoming by allowing to run two redundant NNs
per namespace where one NN serves as hot standby for the primary/active node which
serves all client requests in the cluster. Each NN runs a lightweight background process
that monitors the NN process and initiates failover when necessary.

To allow for a fast failover it is important that both NNs hold the locations of HDFS
blocks. This is realized by registering both NNs at the DNs resulting in block reports
being sent to both NNs.

Apart from the block locations, also the remaining namespace data needs to be synchro-
nized between the active and the standby NN. HDFS provides two distinct solutions for
this which are explained in the following.

Shared Storage [hdfe] [Whi12]

The shared storage based snychronization requires the active NN and the standby NN to
have access to a shared storage such as an NFS mount.

The active NN logs any namespace changes to an edit log stored in a directory on the
shared storage while the standby NN monitors this edit log and applies any changes to its
own namespace state. In the event of a failover, the standby node applies all outstanding
changes from the edit log and enters the active state.

Special care needs to be taken for avoiding a split-brain scenario with this solution. There
are basically two kinds of failover scenarios: graceful and ungraceful.

The former case is triggered manually by an administrator and allows to perform an
ordered transition for the NNs to switch roles leaving no room for a split-brain situation
to develop.

On the other hand, in an ungraceful scenario, failover is triggered by a sudden, unexpected
unavailability of the active NN. However, it is not certain if the active NN process did
indeed halt or if a temporary network slow down or partition has occurred, for example.

27



3. Apache Hadoop

Therefore, when the standby NN enters the active state there are potentially two active
NNs in the cluster. This situation leads to the divergence of namespace states managed
by both NNs independently and results in file system inconsistencies and data loss. As a
consequence, it is crucial to put fencing mechanisms in place to reliably cut of access to
the shared storage for the unavailable NN.

Quorum Journal Manager [hdfd]

The active NN streams the namespace changes to a group of separate JournalNodes
(JNs) instead of writing them to a shared storage. The standby NN monitors the JNs
and applies the modifications to its own namespace state.

To prevent a split-brain scenario, the JNs only allow one NN as a writer. In the event
of a failover, the standby NN takes over the role of writing to the JNs. So even if the
previously active NN remains running, it is not able to write any changes to the JNs.

3.2 Hadoop Classic MapReduce [Whi12]
Hadoop Classic MapReduce is the initial implementation of MapReduce in Hadoop. It
was later supplemented by YARN (see Section 3.3) but is still supported.

The unit of work in Hadoop’s classic MapReduce implementation is called a job. It
consists of the input data, the MapReduce program and a job configuration. Hadoop
divides a job into two types of tasks: map tasks and reduce tasks.

For steering the job execution, a single job tracker and one task tracker per task is
deployed. The job tracker is responsible for scheduling tasks for execution on task
trackers which execute the task and send progress reports back to the job tracker. When
a task fails, the job tracker will reschedule the task.

Task trackers have a fixed number of slots for map tasks and reduce tasks depending on
the node resources. This limits the simultaneous work loads that can be executed by a
task tracker.

Figure 3.2 illustrates the general data flow in Hadoop MapReduce jobs. Red lines indicate
data being moved over the network while transitions on the same node are outlined by
dashed arcs. A job’s input data is divided into fixed-size splits by Hadoop where each
split consists of records. For each split, one map task is scheduled which receives the
split as an input and runs the user defined map function on each record in the split.
Small split sizes lead to a better load-balancing on computation nodes. On the other
hand, the smaller the split size, the higher the overhead fraction becomes for scheduling
and processing the split. Apart from that, the data locality optimization performed by
Hadoop should be considered for choosing the block size.

As detailed in Section 3.1, the input data for a MapReduce job is stored on HDFS which
distributes the corresponding data block replicas across the cluster. Since bandwidth
is considered the scarcest resource in such an environment, tasks are scheduled as close

28



3.3. Yet Another Resource Negotiator (YARN) / MapReduce 2.0

to the data as possible. Considering that one input split might be composed of several
blocks, this means that the scheduler attempts to move the computation to a node which
hosts the largest fraction of required blocks. In case of a real world cluster, the probability
of one node hosting all split blocks is very low, hence some movement of data almost
certainly has to take place for a split size spanning multiple blocks. This is the reason
why the optimal split size equals the HDFS block size for most applications since this
choice maximizes the likelihood of processing a split without data movement.

The output of map tasks is locally sorted by key to later allow efficient merging of results
from different mappers on the reducer side. All sorted mapper outputs are stored on a
node’s local file system since they only represent a temporary result and are deleted after
being processed by the reduce task. Storing the data in HDFS would involve too much
overhead and would not pay off. When the result of a map task is lost due to a node
failure, for example, the map task is rescheduled by the job task on a different node to
reproduce the lost data.

The reduce tasks cannot exploit data locality because the map tasks are usually run in
parallel on different nodes in the cluster storing the map results at these nodes. Once
the mapper results have been moved to the responsible reduce tasks, the map outputs
are merged to form one input chunk grouped by key for each reducer. This step also
involves sorting the chunks by key because Hadoop guarantees the reducer invocations to
be ordered by key. Finally, a reducer’s result is stored in HDFS for reliability.

Hadoop MapReduce jobs may also be defined without any reducer. In this case, the map
output is directly persisted to HDFS.

To minimize the amount of data that needs to be transferred to the reduce tasks, Hadoop
MapReduce supports combiner functions which can be thought of as reduction pre-
processors that are executed on the output of map tasks before the data is transferred to
the reducer nodes (see Section 2.1).

3.3 Yet Another Resource Negotiator (YARN) /
MapReduce 2.0

Hadoop’s classic MapReduce implementation has some major shortcomings that impact
the scalability and agility of the system in large clusters. These issues were brought
up by Yahoo! engineer Arun C. Murthy in 2007 [hada]. Development on a redesigned
implementation began in 2010 and was finished in 2011 [Whi12] [hada]. Figure 3.3 depicts
the architecture of YARN.

Although MapReduce 2.0 introduces new APIs for writing MapReduce jobs, most existing
compiled MapReduce jobs should be binary compatible and should thus run fine on
YARN. However, there may be source incompatibilities depending on the APIs used. Also,
the MapReduce command line interface remains compatible with Classic MapReduce
[yar].

29



3. Apache Hadoop

split1 map
sort

block1

block2

block3

split2 map
sort

block4

block5

block6

split3 map
sort

block7

block8

block9

merge

reduce result 1

merge

reduce result 2

copy

HDFS in

HDFS out

Figure 3.2: Hadoop MapReduce data flow

Figure 3.3: YARN architecture [hadb]

30



3.4. Air quality threshold monitoring with Hadoop

The groundbreaking change in MapReduce 2.0 is the reorganization of the job tracker
responsibilities into two separate entities. Resource management is taken over by a
global ResourceManager (RM) in conjunction with NodeManager (NM) daemons running
on the cluster nodes and job scheduling/monitoring is handled by a per-application
ApplicationMaster (AM). The AM requests resources for job executions from the RM
and works together with the NMs to execute and monitor the tasks [hadd].

In this new setting, the RM is very generic and, in fact, independent from the applications
running on the cluster, thereby facilitating programming models beyond MapReduce
[mur].

With classic MapReduce, software updates had to be applied for the whole Hadoop
cluster at once which posed problems for operability. MapReduce 2.0 uses new wire
protocols for network communication which allows different versions of clients and servers
to work together and thereby eliminating the need for big bang software updates [mur].

As mentioned in Section 3.2, task trackers have a fixed number of map and reduce slots.
In practice, this turns out as a major drawback for cluster utilization because either map
slots or reduce slots are scarce in a cluster at different times, wasting node resources that
are locked up in empty slots for the under-utilized task type [mur].

MapReduce 2.0 takes a more abstract approach to resource allocation by treating each
node as a set of isolated containers each occupying a fraction of the node resources
without statically allocating quotas to specific task types [mur].

YARN also brings great improvements in terms of availability. In classic MapReduce,
the job tracker is a single point of failure - if it fails, any job that was running needs to
be re-submitted so all the results that were produced are lost. MapReduce 2.0 allows
for manual or automatic RM failover by using an Apache Zookeeper cluster for storing
its state. Thus, in case of failure, a secondary RM can quickly take over by reading the
state from Zookeeper. Still, all previously running applications need to be re-submitted
but this is not as tragic as in MapReduce 1.0 since AMs are able to create checkpoints of
their work that are stored on HDFS. This way, not all work is lost and has to be redone
as it would be the case with classic MapReduce [mur] [hadc].

3.4 Air quality threshold monitoring with Hadoop
This section describes an implementation of the solution to the air quality monitoring
problem statement from Section 2.4 using Apache Hadoop.

In essence, a job in Apache Hadoop is represented by a Java archive (JAR) file containing
any external classes that are required for executing the job as well as a class with a
main method that acts as a client for the Hadoop cluster. It defines the job structure,
initializes the required datasets in HDFS, submits the job to the Hadoop cluster, waits
for its completion and retrieves the results from HDFS. The Hadoop distribution provides
a command line utility that can be used to invoke an Hadoop JAR. Listing 3.1 shows the
main method for the air quality report generation.

31



3. Apache Hadoop

1 public stat ic void main ( St r ing [ ] a rgs ) throws Exception {
2 Path hdfsMaxPath = new Path ( " data/max" ) ;
3 Path hdfsViolat ionsSumPath = new Path ( " data/ vio lat ionSum " ) ;
4 java . n io . f i l e . Path localMaxPath = Paths . get ( " data " , "max" ) ;
5 java . n io . f i l e . Path loca lVio lat ionsSumPath = Paths . get ( " data " , "

↪→ vio lat ionsSum " ) ;
6
7 St r ing hadoopClusterIp = System . getProperty ( " hadoop . c l u s t e r . address " , "

↪→ l o c a l h o s t " ) ;
8 Conf igurat ion conf = new Conf igurat ion ( ) ;
9 conf . s e t ( " f s . de faul tFS " , " hdfs : // " + hadoopClusterIp + " :9000 " ) ;
10 conf . s e t ( "mapreduce . framework . name" , " yarn " ) ;
11 conf . s e t ( " yarn . resourcemanager . address " , hadoopClusterIp + " :8032 " ) ;
12 conf . s e t ( "mapreduce . app−submiss ion . c ros s−plat form " , " t rue " ) ;
13 conf . s e t ( "mapreduce . output . textoutput format . s epa ra to r " , " ; " ) ;
14
15 Fi leSystem f s = FileSystem . get ( conf ) ;
16 f s . copyFromLocalFile (new Path ( " data/ tup l e s " ) , new Path ( " tup l e s " ) ) ;
17
18 i f ( f s . e x i s t s ( hdfsMaxPath ) ) {
19 f s . d e l e t e ( hdfsMaxPath , true ) ;
20 }
21
22 Job job1 = Job . g e t In s tance ( conf , "Max" ) ;
23 job1 . setJarByClass ( AirQual ityReportJob . class ) ;
24
25 job1 . setMapperClass (MaxMapper . class ) ;
26 job1 . setCombinerClass (MaxReducer . class ) ;
27 job1 . setReducerClass (MaxReducer . class ) ;
28 job1 . setOutputKeyClass ( AirQualityDayGroup . class ) ;
29 job1 . setOutputValueClass ( DoubleWritable . class ) ;
30 job1 . setInputFormatClass ( AirQualityTupleInputFormat . class ) ;
31 job1 . setOutputFormatClass (MaxOutputFormat . class ) ;
32 TextInputFormat . addInputPath ( job1 , new Path ( " tup l e s " ) ) ;
33 TextOutputFormat . setOutputPath ( job1 , hdfsMaxPath ) ;
34
35 job1 . waitForCompletion ( true ) ;
36
37 copyAndMerge ( f s , hdfsMaxPath , localMaxPath ) ;
38
39 i f ( f s . e x i s t s ( hdfsViolat ionsSumPath ) ) {
40 f s . d e l e t e ( hdfsViolationsSumPath , true ) ;
41 }
42
43 Job job2 = Job . g e t In s tance ( conf , " V i o l a t i on s ␣Sum" ) ;
44 job2 . setJarByClass ( AirQual ityReportJob . class ) ;
45 job2 . setMapperClass ( ThresholdMapper . class ) ;
46 job2 . setCombinerClass ( SumReducer . class ) ;
47 job2 . setReducerClass ( SumReducer . class ) ;
48 job2 . setOutputKeyClass ( AirQualityGroup . class ) ;
49 job2 . setOutputValueClass ( IntWritab le . class ) ;
50 job2 . setInputFormatClass (MaxInputFormat . class ) ;
51 TextInputFormat . addInputPath ( job2 , hdfsMaxPath ) ;

32



3.4. Air quality threshold monitoring with Hadoop

52 TextOutputFormat . setOutputPath ( job2 , hdfsViolat ionsSumPath ) ;
53
54 job2 . waitForCompletion ( true ) ;
55
56 copyAndMerge ( f s , hdfsViolationsSumPath , loca lVio lat ionsSumPath ) ;
57 }

Listing 3.1: Hadoop air quality report job definition

Lines 8 - 13 define the configuration to use for running the Hadoop job. In line 9,
the endpoint for the HDFS file system is set. The job makes use of the newer YARN
architecture rather than the classic MapReduce implementation as specified in line 10.
To this end, an endpoint for talking to the YARN resource manager is configured in line
11. The configuration property specified in line 12 enables cross platform support for job
submission and makes it possible to submit a JAR from a Windows host to a Hadoop
cluster running on Linux. Line 13 merely specifies that a semicolon should be used in
outputs generated by Hadoop to separate key-value pairs.

Hadoop expects the data to operate on to be present in HDFS. Thus, it is required to
manually upload the respective files in the main method before submitting the job which
happens in lines 15 - 16. First, a handle for HDFS is created using the previously defined
configuration. The copyFromLocalFile method is then used to copy the local dataset
located in data/tuples to a file tuples on HDFS.

The output of a single Hadoop job is stored as a file in HDFS and it is necessary to specify
the HDFS path that should be used to store output. E.g. for Job 1 this is done in line 33.
However, when the same job is executed repeatedly, old outputs from previous job runs
might still be present in HDFS. In such a case, Hadoop does not simply overwrite old
results but terminates the job execution with an error. Thus, in lines 18 - 20 we delete
any existing outputs prior to starting the job.

The job definition itself consists of specifying the classes for mapper, combiner and
reducer that implement the business logic of the MapReduce job. For Job 1, this is done
in lines 25 - 27. It is also necessary to specify the types of output keys and values as
shown in lines 28 - 29. For reading and writing input and output files it is possible to
specify custom formats as done in lines 30 - 31. Finally, the input and output HDFS
file paths are set in lines 32 - 33. A Hadoop job is submitted and started by calling
the waitForCompletion method with a boolean parameter that indicates whether job
progress should be logged to the console or not. This method blocks until the job is
completed or failed.

The output that is produced by a Hadoop job on HDFS consists of a directory containing
a separate file per reducer containing the reducer’s output. To obtain a view of the
overall job results on the client it is required to manually copy the reducer files to the
client and to merge them into a single file which is what the call to copyAndMerge on
line 37 does.

33



3. Apache Hadoop

In contrast to Spark, Hadoop requires a lot of configuration work to yield a working job
and also the manual interactions with HDFS increase the complexity of creating a job as
demonstrated in the preceding paragraphs. However, the implementation of the mappers
and reducers remains very straightforward as shown in the following. A mapper class in
Hadoop needs to be a subtype of org.apache.hadoop.mapreduce.Mapper and likewise,
a reducer class needs to be a subtype of org.apache.hadoop.mapreduce.Reducer. A
map or a reduce method needs to implement the respective business logic. Both methods
receive a context object that can be used to emit new key-value pairs.

Listing 3.2 shows the implementation of the mapper for computing the maximum
measurements per indicator, region and day.

1 public stat ic class MaxMapper extends Mapper<NullWritable , AirQualityTuple ,
↪→ AirQualityDayGroup , DoubleWritable> {

2 @Override
3 protected void map( Nul lWritable key , AirQual ityTuple value , Context

↪→ context ) throws IOException , Inter ruptedExcept ion {
4 context . wr i t e (
5 new AirQualityDayGroup (
6 value . g e t I nd i c a t o r ( ) ,
7 va lue . getRegion ( ) ,
8 va lue . getTimestamp ( ) . query (MaxMapper : :

↪→ queryDayOfYearGroup )
9 ) , new DoubleWritable ( va lue . getValue ( ) )
10 ) ;
11 }
12
13 private stat ic int queryDayOfYearGroup ( TemporalAccessor

↪→ tempora lAccessor ) {
14 return tempora lAccessor . get ( ChronoField .MONTH_OF_YEAR) ∗ 31
15 + temporalAccessor . get ( ChronoField .DAY_OF_MONTH) ;
16 }
17 }

Listing 3.2: Hadoop mapper for maximum computation

The map method barely constructs and emits one new key-value pair per input tuple
where the key constructed as an instance of com.bitlawine.bigdatathesis.examples
↪→ .hadoop.AirQualityDayGroup.

Listing 3.3 depicts the corresponding maximum reducer.
1 public stat ic class MaxReducer extends Reducer<AirQualityDayGroup ,

↪→ DoubleWritable , AirQualityDayGroup , DoubleWritable> {
2 @Override
3 protected void reduce ( AirQualityDayGroup key , I t e r ab l e <DoubleWritable>

↪→ values , Context context ) throws IOException ,
↪→ Inter ruptedExcept ion {

4 OptionalDouble max = StreamSupport . stream ( va lue s . s p l i t e r a t o r ( ) ,
↪→ fa l se )

5 . mapToDouble ( DoubleWritable : : get )
6 .max( ) ;

34



3.4. Air quality threshold monitoring with Hadoop

7
8 i f (max . i sP r e s en t ( ) ) {
9 context . wr i t e ( key , new DoubleWritable (max . getAsDouble ( ) ) ) ;
10 }
11 }
12 }

Listing 3.3: Hadoop reducer for maximum computation

It is passed the reducer key and and all corresponding values that it iterates through to
compute the maximum which is then emitted on line 9.

Listing 3.4 shows the implementation of the mapper for the second MapReduce job that
indentifies and sums up the threshold violations per indicator and region. It receives its
input from the maximum reducer and creates new key objects stripping the day number
from the key. Moreover, the measured maximum value is compared against the threshold
and either 1 or 0 is assigned as value to the new key depending on whether the threshold
is violated or not.

1 public stat ic class ThresholdMapper extends Mapper<AirQualityDayGroup ,
↪→ DoubleWritable , AirQualityGroup , IntWritable> {

2 @Override
3 protected void map(AirQualityDayGroup key , DoubleWritable value ,

↪→ Context context ) throws IOException , Inter ruptedExcept ion {
4 context . wr i t e (
5 new AirQualityGroup ( key . g e t I nd i c a t o r ( ) , key . getRegion ( ) ) ,
6 new IntWritab le ( va lue . get ( ) > key . g e t I nd i c a t o r ( ) .

↪→ getThreshold ( ) ? 1 : 0)
7 ) ;
8 }
9 }

Listing 3.4: Hadoop mapper for threshold violations

Finally, Listing 3.5 shows the reducer that sums up the threshold violations that were
emitted in the mapper from Listing 3.4 and emits the existing key along with the
computed sum.

1 public stat ic class SumReducer extends Reducer<AirQualityGroup , IntWritable
↪→ , AirQualityGroup , IntWritable> {

2 @Override
3 protected void reduce ( AirQualityGroup key , I t e r ab l e <IntWritable> values

↪→ , Context context ) throws IOException , Inter ruptedExcept ion {
4 int sum = StreamSupport . stream ( va lue s . s p l i t e r a t o r ( ) , fa l se )
5 . mapToInt ( IntWritab le : : get )
6 . sum( ) ;
7 context . wr i t e ( key , new IntWritab le (sum) ) ;
8 }
9 }

Listing 3.5: Hadoop reducer for summing up threshold violations

35





CHAPTER 4
Apache Spark

Spark was started by Matei Zaharia at the University of California Berkeley in 2009 and
presented in a research paper in 2010[ZCF+10]. In 2013, the project was donated to the
Apache Software Foundation and it became a top-level project in 2014.

The motivation for creating Spark was to better support MapReduce algorithms that
reuse a working set of data across multiple parallel operations. For example, this includes
any algorithm using iterations and is often the case in machine learning. Another problem
in traditional MapReduce implementations like Hadoop is the high latency of operations
which is impractical for a range of applications like ad-hoc interactive analytics or serving
web client requests. The reason for this is the invocation of a new MapReduce job for each
request which potentially needs to load data from across a cluster every time [ZCF+10].

The basic primitive introduced by Spark to alleviate these shortcomings is called a
resilient reliable dataset (RDD). It represents a read-only object collection that can be
distributed in partitioned form across a cluster and can be cached in memory to be
reused in multiple parallel operations. Availability is achieved via lineage, i.e. enough
information is maintained about how a particular RDD has been derived from other
RDDs which allows the selective recreation of lost partitions [ZCF+10].

Spark is cluster agnostic, i.e. it does not rely on being able to manage cluster resources
itself but relies on a third party cluster manager to integrate with [spaa] [spab]. This
architecture prevents reinventing the wheel and, more importantly, it allows Spark to
operate alongside other cluster applications by sharing the cluster manager [ZCD+12].
Spark supports the following managers [spaa] [spab]:

• Spark Standlone
This is the default cluster manager that comes with Spark. It is good for getting
started fast or for operating Spark on clusters where no other applications ought to
run [spab].

37



4. Apache Spark

Driver Program
SparkContext s c =
new SparkContext ( . . . ) ;
RDD rdd1 = s c . load ( . . ) ;
RDD rdd2 = s c . load ( . . ) ;
rdd1 . j o i n ( rdd2 ) ;

Target RDD

Lineage graph

p1

p0

p2

p0

p1

p2

p0

p1

p1

p0

DAG

SparkContextSpark Application

Cluster Manager (Master)

Worker (Slave)

Executor

Task

Figure 4.1: Apache Spark execution workflow

• Apache Mesos 1

• Hadoop YARN (see Section 3.3)

Spark programs are created in the form of drivers that create a SparkContext and define
the computation using RDDs [ZCF+10]. The computation plan gets passed to the job
scheduler that transforms it into a task set which, in turn, is passed to a task scheduler
that interacts with the cluster manager to allocate resources and to spawn the required
task executors [ZCD+12] [spal]. Figure 4.1 illustrates the execution workflow. While
Hadoop spawns a new JVM for each task that is executed on a node, a task in Spark
is just a pooled thread in an already running JVM, hence Spark jobs are much more
lightweight than Hadoop MapReduce jobs [spah].

The remainder of this chapter covers RDDs in detail before Spark’s job scheduler is
described subsequently.

1mesos.apache.org

38

mesos.apache.org


4.1. Resilient Distributed Dataset (RDD)

4.1 Resilient Distributed Dataset (RDD)
RDDs are read-only, partitioned collections of records. They can only be created from

• another RDD

• data in stable storage

by applying a set of predefined operations, called transformations, like map, filter or join
[ZCD+12].

The partitions of an RDD can be distributed across a cluster, thus allowing different
nodes to operate on distinct fractions of the data. Since RDDs are designed to be held in
memory and to be evaluated lazily, mechanisms are required to cope with lost partitions
due to failures of nodes holding a partition in memory [ZCD+12].

This is done by ensuring that every partition of an RDD is independently recomputable
if necessary. Part of the information stored in any RDD describes how this RDD has
been constructed. This property is also called lineage and includes a set of dependencies
- other RDDs - and a function for computing the current RDD from its dependencies.
Spark distinguishes between two types of dependencies [ZCD+12]:

• Narrow dependency: Each partition of the parent RDD is used by at most one
partition of the child RDD

• Wide dependency aka shuffle dependency: Partitions of the parent RDD are used
in multiple child partitions

Dependency types can be used to classify transformations into narrow or wide transforma-
tions depending on what kind of dependencies a transformation introduces. For example,
map transformations lead to narrow dependencies whereas shuffle style operations like
reduce result in wide dependencies (see Figure 4.2). The distinction of dependency types
has an important impact on planning and scheduling the computation of an RDD because
narrow transformations are considered eligible for pipelining by Spark whereas wide
transformations are treated as pipeline breakers [ZCD+12] [spac]. The details of the
scheduling process are discussed in Section 4.2.

The dependencies between RDDs result in a directed acyclic graph, the lineage graph,
that allows every RDD and each of its partitions to be transitively recomputed based on
data in stable storage [ZCD+12]. See Figure 4.3 for an illustration of the lineage graph for
a slightly extended instance of the word count problem. The basic word count problem
assumes a given text corpus and the task is to count the number of appearances of each
distinct word in the corpus. To make the example more interesting, the complexity of
the problem is slightly raised by reading the corpus from two input files rather than one
and by applying some sort of filtering on sentence level prior to counting.

39



4. Apache Spark

Narrow

RDD0 RDD1Map

Wide

RDD0 RDD1
Reduce

Figure 4.2: RDD dependency types

joined sentences RDD4

filtered sentences1 RDD1

sentences1 RDD0

corpus1.txt Storage

filtered sentences2 RDD3

sentences2 RDD2

corpus2.txt Storage

words RDD5

word counts RDD6

load

filter

join

load

filter

map

reduce

Figure 4.3: Lineage with RDDs

40



4.1. Resilient Distributed Dataset (RDD)

The left branch of the lineage graph represents the input from the first file named
corpus1.txt in this example and the right branch stands for the input from the second
file named corpus2.txt. RDD0 and RDD2 are the root RDDs created from the sentence-
tokenized contents of the respective files. Whenever either of these RDDs is lost they can
be recreated by reading in the input files again. Clearly, this assumes that the corpus
data is stored on a reliable storage such as HDFS. RDD1 and RDD3 are created by
applying a filtering operation on each of the two sentence RDDs. The filtered RDDs are
then joined creating another RDD before a map and a reduce operation is performed to
produce the final word count result which, again, is represented as RDD.

Since the lineage graph keeps track of an RDD’s parent and the operation that has
been applied to the parent to create the RDD, it is possible to recompute an RDD
whenever needed given that the parent RDD is still available. If this is not the case,
the recovery procedure needs to follow the lineage graph backwards until an available
RDD is discovered and recompute the whole chain of RDDs. For example, when RDD5
and RDD4 are lost the recovery procedure follows the lineage back until it encounters
RDD1 and RDD3 that are still available and recomputes RDD4 by reapplying the join
operation. Once RDD4 has been recovered, RDD5 can be reconstructed from it.

This lineage approach can unfold its full potential when used in a pipeline of successive
transformations. In such a scenario, systems like Hadoop, for example, need to create
checkpoints or write results back to HDFS after each step. This not only makes a
successive read from disk necessary to retrieve the input for the next transformation but
it also incurs overhead for creating replications. In contrast, due to the independent
re-computability of RDD partitions there is no need to immediately write to disk. This
is clearly the most important benefit the RDDs provide since it helps to greatly speed up
the process [ZCD+12] [spac].

The partitioning strategy of an RDD is configurable by the user. For example, this can
be used to apply data locality optimizations in case of a join transformation of two RDDs
by ensuring that two partitions getting joined reside on the same node [ZCD+12].

The user can also influence the persistence of RDDs which is useful in case the same
RDD is reused across multiple passes to circumvent the need of recomputing it each time.
For this purpose, Spark provides several persistence strategies like in-memory or on-disk
persistence or mixtures of both [ZCD+12].

Finally, RDDs support operations called actions that trigger the computation and
materialize the results [spac].

Spark provides specialized RDD implementations for data sources such as HDFS, for
example. As shown in Figure 4.4, this type of RDD establishes a 1:1 mapping between
HDFS blocks and RDD partitions, thus providing optimal data locality properties when
working with datasets stored in HDFS [ZCD+12] [spac].

41



4. Apache Spark

block0

block1

block2

HDFS

p0

p1

p2

RDD

Figure 4.4: RDD implementation optimized for HDFS

4.2 Job scheduler

A job in Spark is submitted by the SparkContext to the job scheduler when an action is
called on an RDD in the driver program. It consists of a single target RDD, a placeholder
for the end result, and the action that should be executed on the parent of the target in
order to actually obtain the result. The job scheduler is part of the driver process. It
transforms the lineage graph of the target RDD, also called the logical execution plan,
into a physical execution plan, also called DAG for directed acyclic graph, consisting of
multiple stages, the physical unit of execution in Spark, each operating on partitions of a
single RDD. A stage consists of a set of parallel tasks, one task for each partition of the
stage’s RDD and each task containing a sequence of narrow transformations. It is valid to
view a stage as a set of parallel pipelines where each task executes one pipeline. Pipelining
has a positive impact on performance since there is no need for storing intermediate
results between successive pipelined transformations. The stage boundaries are marked
by wide transformations, i.e. shuffle operations. The physical execution plan is therefore
the result of introducing stage boundaries at wide transformations in the logical execution
plan. Figure 4.5 illustrates a DAG for the filtered word count lineage graph from Figure
4.3 [ZCD+12] [spac] [spaj].

When a job is submitted to the scheduler, it builds the physical execution plan for the job
and creates the stages if they do not exist. Whenever possible, the scheduler reuses stages
that have been created by other jobs [spag]. It also tracks which RDDs have been cached
on user request and avoids recomputing them. The scheduler then launches tasks to
compute missing partitions for each stage until the target RDD has been fully computed.
This approach of starting at the target RDD guarantees that only such partitions get
evaluated that are required for the result [ZCD+12]. Figure 4.6 illustrates this effect
using the example of a spark program that joins two RDDs but only returns the first
element of the joined RDD. The red lines mark the partitions that are evaluated by Spark
to produce this result.

A stage might depend on the output of some preceding stage to be available in order
to compute its output partitions. When a task fails it is recreated on a different node
as long as the dependencies of the task’s stage are still available. In case the output of
a required stage has been lost, tasks are launched to re-compute the missing partitions

42



4.3. Memory management

r0

r1

r2

p0

p1

p2

p0

p1

p2

p0

p1

p2

p0

p1

p2

p0

p1

p2

p0

p1

p2

p2

p1

p0p0

p1

p2

p0

p1

p2

Stage 0

Stage 1

Figure 4.5: DAG for lineage graph from Figure 4.3

p0

p1
r

p0

p1

p1

p0

first

Figure 4.6: Lazy computation of partitions in Spark

[ZCD+12].

4.3 Memory management
Spark provides different storage or persistence modes for RDDs:

• In-memory deserialized

• In-memory serialized

• On-disk

The in-memory deserialized storage is the fastest option because the JVM is able to
natively access any requested parts of an object without prior deserialization. Serialized

43



4. Apache Spark

Storage memory

Execution memory

User memory

Reserved memory

Heap

Figure 4.7: Memory model used by Spark’s Unified Memory Manager

storage reduces the memory footprint but increases the data access time. Spark is also
able to transparently spill data to disk when it runs out of memory [ZCD+12].

For this purpose, Spark employs its own memory management on top of the JVM’s
heap in order to control the amount of heap space consumed and to decide when to
spill data to disk. Originally Spark managed a single static memory area for storage
of RDDs but it did not do explicit bookkeeping for temporary memory consumption
induced by operations such as joins or aggregations. In practice, this was often the cause
for memory exhaustions during memory intensive operations. This shortcoming was
resolved by introducing the Unified Memory Manager with Spark 1.6.0 which provides
a separate, managed memory area for exactly the purpose of storing temporary data
during transformations [ADD+15] [spak]. The memory model, as depicted in Figure 4.7,
allows the two managed memory areas to dynamically borrow memory from each other.

Both the execution memory and the storage memory are organized in blocks and grow
dynamically towards each other.

The execution memory holds objects like shuffle buffers, for example, that are required
for the execution of spark tasks. It automatically consumes any free space from the
storage memory and can also trigger eviction of blocks in the storage memory in case it
needs to grow but no free memory is available. Spilling to disk when low on memory
is the execution memory’s own responsibility and forceful eviction by other tasks is not
allowed because the stored data represents intermediate state that is required by ongoing
computations.

The storage memory can borrow free memory from the execution memory and is used to

44



4.4. Shuffle

store RDD data. Eviction is performed according to a least recently used (LRU) policy
[ZCD+12].

The user memory can be used by the computations supplied by the driver program to
store data. It is not managed by Spark and the user application is responsible for not
violating the memory bounds.

A fixed size reserved memory space is budgeted for the purpose of running the Spark
worker process along with the task executors which also requires some memory to be
available.

4.4 Shuffle

The shuffle operation is performed at stage boundaries and Spark supports two flavors of
it:

• Hash shuffle

• Sort shuffle

For the sake of simplicity, the following explanations of the shuffle algorithms rely on the
MapReduce naming convention for the two sides of the shuffle, namely the mapper and
the reducer. In reality, Spark performs shuffle for a more diverse set of transformations
than just MapReduce.

The hash shuffle is the naive way of performing the shuffle. Each mapper task creates
one file for each reducer where it writes the corresponding records to. The algorithm
works well for small reducer sizes but in practice, this method is problematic because of
the large number of files created. Spark provides an optimization for this approach by
pooling output files and reusing them across mapper tasks but this only eases symptoms
[spai].

Due to the shortcomings of the hash shuffle, Spark 1.2.0 introduced the sort shuffle which
is similar to the algorithm used by Hadoop MapReduce. Records are written sorted by
reducer id to a single output file per mapper task. By maintaining an index of file offsets
for each reducer id, the appropriate chunk can be read quickly when a reducer queries
it. Because hashing is generally faster than sorting, there is a threshold on the number
of reducers below which the records are hashed to separate files and then merged to a
single file [spai].

4.5 Air quality threshold monitoring with Spark

This section describes an implementation of the solution to the air quality monitoring
problem statement from Section 2.4 using Apache Spark.

45



4. Apache Spark

Listing 4.1 shows the really compact implementation of the report generation job using
Spark. Line 3 starts by reading in the raw air quality data in textual form which is
then parsed to a tuple format by applying the parse method shown in Listing 4.2. This
method also transforms the timestamps to distinct numbers per day that become part
of the tuple key. The subsequent reduction operation scheduled in line 5 computes the
maximum tuple values per indicator, region and day. Another map operation is then
used to perform the threshold comparison with the maximum values per day. Each value
is either mapped to 1 or 0 depending on whether it violates the threshold or not. Also the
tuple key is changed in this step by dropping the day number. Hence, only the indicator
and the region remain as tuple key components. Finally, reduceByKey sums up the
violations per indicator and region. The end results are collected via the collectAsMap
method and printed to the console.

1 JavaSparkContext sc = new JavaSparkContext ( conf ) ;
2
3 Map<Tuple2<Ind i ca to r s , Regions >, Integer> counts = sc . t e x tF i l e ( " data/ tup l e s

↪→ " )
4 . mapToPair ( SparkRunner : : parse )
5 . reduceByKey ( ( t1 , t2 ) −> t1 . getValue ( ) > t2 . getValue ( ) ? t1 : t2 )
6 . mapToPair ( t −> Tuple2 . apply (
7 Tuple2 . apply ( t ._1( ) ._1( ) , t ._1( ) ._2( ) ) ,
8 t ._2( ) . getValue ( ) > t ._2( ) . g e t I nd i c a t o r ( ) . getThreshold ( ) ?

↪→ 1 : 0
9 ) )
10 . reduceByKey ( ( v1 , v2 ) −> v1 + v2 )
11 . col lectAsMap ( ) ;
12
13 System . out . p r i n t l n ( counts ) ;

Listing 4.1: Air quality violations report with Spark

1 private stat ic Tuple2<Tuple3<Ind i ca to r s , Regions , Integer >, AirQualityTuple
↪→ > parse ( S t r ing s ) {

2 St r ing [ ] par t s = s . s p l i t ( " ; " ) ;
3 I nd i c a t o r s i nd i c a t o r = Ind i c a t o r s . valueOf ( par t s [ 0 ] ) ;
4 Regions r eg i on = Regions . valueOf ( par t s [ 1 ] ) ;
5 Double va lue = Double . valueOf ( par t s [ 2 ] ) ;
6 ZonedDateTime t s = ZonedDateTime . parse ( par t s [ 3 ] ) ;
7
8 return Tuple2 . apply (
9 Tuple3 . apply (
10 ind i ca to r ,
11 reg ion ,
12 t s . query ( SparkRunner : : queryDayOfYearGroup )
13 ) , new AirQual ityTuple ( i nd i ca to r , reg ion , value , t s )
14 ) ;
15 }

Listing 4.2: Air quality tuple parsing

46



Part II

Graph Processing

47





CHAPTER 5
The Pregel programming model

While the MapReduce programming model is a good fit for a variety of applications, large
scale graph processing is one domain that is inherently a bad fit for MapReduce style
processing since graph algorithms are mostly iterative in nature. As described in Section
2.2, MapReduce iterations are possible in principle and it has been demonstrated [Coh09]
that graph algorithms can indeed be implemented using iterations over MapReduce jobs.
However, this approach is highly inefficient when used with systems such as Hadoop
because the graph data needs to be stored and reloaded at each iteration, potentially in
different cluster locations. Projects like Surfer [BCR06] and GBASE [KTS+11] attempted
to optimize MapReduce for graph processing but with limited success. Apart from the
downside with respect to performance, implementing graph algorithms on top of the
MapReduce model is not intuitive because it usually comes down to manipulating
adjacency matrices.

In 2010, Google presented Pregel - their solution to large-scale graph processing [MAB+10].
Pregel stands synonymous for an abstract programming model as well as Google’s C++
implementation of a runtime environment for Pregel programs. This thesis does not cover
the latter and focuses on describing the theoretical programming model and open source
implementations of it.

Pregel is a vertex-centric programming model and allows the user to "think like a vertex"
by creating programs or functions that define the behavior of a single vertex. The
execution of a Pregel program is organized in a sequence of supersteps, each concluding
with a synchronization barrier. This is inspired by the bulk synchronous parallel (BSP)
model of Valiant [Val90]. During each superstep S the runtime executes the user defined
program on all active vertices of a graph. A vertex can read messages received from other
vertices during superstep S − 1, send messages to other vertices that will be received in
superstep S + 1, modify its state and alter the topology of the graph by deleting and
creating edges and vertices. Moreover, a vertex can vote to halt whereby it transitions
into the inactive state causing the runtime to stop invoking the vertex in upcoming

49



5. The Pregel programming model

supersteps. However, when messages are received by a vertex it is invoked and put
back into the active state by the runtime. A Pregel execution terminates when all
vertices are simultaneously inactive and no more messages are pending. The output of a
Pregel program is the set of values that is returned by each vertex which might form a
transformed graph or some aggregation, for example [MAB+10].

The big conceptual advantage of Pregel over MapReduce is that graph data does not
need to be moved across the cluster. Each vertex along with its state resides at the same
node for the entire execution of a Pregel program and the invocation of a vertex function
is co-located. Hence, network transfer is only required for message passing.

A vertex in Pregel holds a unique identifier, the set of outgoing edges and modifiable
user defined properties [MAB+10].

Example 4
For this example, assume that each vertex is assigned an integer number and
that the vertex identifiers are ordered alphabetically. Moreover, assume that
each vertex is passed the minimum vertex id in the graph. This information
can be precomputed with a separate Pregel algorithm, for example. Given a
strongly connected graph, an algorithm is presented for computing the sum
of the vertex numbers among all connected vertices. Listing 5.1 shows an
implementation with pseudo code.

sum (Vertex v, Integer minimumVertexId, List msgs) {
// Compute message sum and update stored value
for (Integer msg : msgs) {

v.number += msg
}
// Update counter for total messages received
v.totalMessagesReceived += msgs.size

if ( v.number > 0 AND
v.totalMessagesReceived > 0 AND
v.id != minimumVertexId) {

// Send stored value to adjacent vertex
// with minimum id
sendMessage(v.minNeighbor, v.number)
v.number = 0
voteToHalt()

} else if (msgs.isEmpty) {
voteToHalt()

}
}

Listing 5.1: Sum algorithm

50



A(4) B(2)

C(1) D(3)

A(4) B(2)

C(1) D(3)

S1 3

1

A(4) B(5)

C(0) D(1)

S2 1

5

A(9) B(1)

C(0) D(0)

S3

1

A(10) B(0)

C(0) D(0)

S4

A(10) B(0)

C(0) D(0)

Figure 5.1: Pregel sum algorithm for strongly connected graphs

A vertex V receives messages from directly connected vertices containing
partially aggregated numbers si. During each superstep, a vertex V sends
one message whenever all of the following conditions are met:

1. The stored number V.num is greater than 0
2. V has received at least one message from all its direct predecessors V ′

with V ′.id > V.id

3. V.id is not the minimum id in the graph. Each vertex can easily check
this condition independently because it has the minimum vertex id stored
by assumption.

Condition 1 implies that vertices without any predecessors V ′ with V ′.id >
V.id send their values immediately during the first superstep. The message’s
target vertex is the direct successor of V with minimum id. After sending
a message, V sets its stored number to 0 and votes to halt. V also votes to
halt when it has not received any messages during the last superstep. When
the algorithm terminates, the sum resides at the vertex with minimum id.

Figure 5.1 illustrates the algorithm. It shows the initial graph, the intermediate
vertex states at the end of each superstep, the messages sent during each
superstep and the final state of the graph after the algorithm has terminated.

51



5. The Pregel programming model

Gray nodes denote inactive vertices and dashed edges indicate messages. The
course of action is briefly explained in the following.
During S1 vertex C sends message M1(1) to its only successor, vertex D,
because it does not have any predecessors with higher id. It then sets
C.num = 0 and votes to halt. For the same reasons vertex D sends message
M2(3) to vertex B, sets D.num = 0 and votes to halt. Vertex A and B stay
inactive because condition 1 is not satisfied for them.
In superstep S2 vertex D is reactivated because it M1(1) received from vertex
C. It updates D.num = 0 + 1, sends another message M3(1) to vertex B, sets
D.num = 0 and votes to halt. At the same time, vertex B receives M2(3) and
updates B.num = 2 + 3. In addition, condition 1 is now satisfied for vertex
B so it sends M4(5) to vertex A (because A < C), sets B.num = 0 and votes
to halt. Vertex A also votes to halt because it has not received any messages
during S1.
In superstep S3 vertex A receivesM4(5) and updates A.num = 4+5. However,
vertex A does not send any messages because condition 3 is not satisfied.
Vertex B is reactivated because it receivesM3(1) and it updates B.num = 0+1.
After that it immediately sends out M5(1) to vertex A and votes to halt.
In superstep S4 vertex A receives M5(1) and updates its value to A.num =
9 + 1.
In superstep S5 vertex A votes to halt because it has not received any new
messages in S4. At this point, all vertices are simultaneously inactive and the
algorithm terminates.

Similar to MapReduce, Pregel supports combiners to reduce the number of messages that
need to be sent over the network. The user can define an associate and commutative
combiner function to be applied by the runtime to multiple messages destined for the
same target node in order to form a single, aggregated message instead.

For purposes like global coordination, monitoring etc., Pregel supports aggregators
that allow each vertex to provide a value for each superstep. The supplied values
are aggregated via some reduction operator and made accessible to the vertices in the
successive superstep.

Fault tolerance in Pregel can be achieved by creating checkpoints at superstep boundaries.
After a defined number of supersteps, each vertex saves a copy of its state to distributed
storage. In addition each vertex also logs its outgoing messages. When a cluster node fails
during superstep S, graph partitions that were located on the failed node are recreated
on a healthy node using the latest snapshot S′. The supersteps in between S′ and S
need to be redone for the lost partition which also requires replaying the messages to lost
vertices that were logged by healthy vertices.

In Pregel, a graph is partitioned across cluster nodes via an edge-cut, so each vertex is
uniquely assigned to a cluster node. The interaction of a vertex with other vertices on

52



5.1. Complexity & costs in Pregel algorithms

the same node is cheaper than with vertices on remote nodes because no intermediate
network access is required. However, Pregel does not expose partitioning information to
the user via its API which leaves no room for locality optimizations targeting the node
interactions in Pregel algorithms. For this reason, researchers have suggested a divergence
from a vertex centric to a more coarse-grained graph centric [TBC+13], sub-graph centric
[SKW+14] or block centric [YCLN14] model. Such an approach makes partitioning
information accessible to a user program and is able to yield a vast reduction in network
communication and execution speedup for algorithms that utilize this information.

Likewise, the choice of the algorithm for partitioning a graph has a big performance
impact. While Pregel allows the communication between vertices regardless of the
existence of a connecting edge, most practical algorithms evaluate graphs or edges in
the context of their neighborhood and send messages along graph edges only. Thus, the
number of edges between graph partitions directly correlates with the communication
overhead. Minimizing the number of non-local edges, i.e. edges between vertices that lie
on different nodes, is therefore important for the performance of Pregel algorithms or
distributed graph algorithms in general [XGFS13].

5.1 Complexity & costs in Pregel algorithms
Since Pregel closely follows the BSP model, the BSP cost model is adoptable for the
purpose of estimating the costs of Pregel algorithms.

A Pregel execution consists of a sequence of supersteps, hence the total execution cost is
simply the sum of the costs of each superstep. The costs for an individual superstep are
composed of

• the computational cost of the longest running vertex function

• the communication cost of message passing and other global data exchange

• the synchronization cost at the end of the superstep

The execution cost of a single superstep is therefore expressed by

v +mg + l

where v is the vertex function cost, m is the number of messages sent, g is the communi-
cation cost per message and l is the synchronization cost per superstep.

Consequently, the cost of a Pregel execution is

S∑
s=0

vs + g
S∑
s=0

ms + Sl

53



5. The Pregel programming model

where S is the number of supersteps [HCB96].

Yan et al [YCX+14] define characteristics of efficient or balanced, practical Pregel
algorithms (BPPA), as they call it. A BPPA needs to fulfill the following requirements:

• Linear space usage in O(d(v)) per vertex v where d(v) is the degree of v

• Linear computation cost in O(d(v))

• Linear communication cost in O(d(v))

• Number of supersteps in O(logn)

The balancing property is lost when the above per-vertex requirements are relaxed such
that merely overall linear space usage, computation and communication usage remains.
This class of algorithms is referred to as PPA.

5.2 Running example: Improving the availability of
AirQuality Inc.’s sensor network

The following problem is used as illustrative real world example in the course of discussing
Apache Giraph and Apache Spark GraphX.

As mentioned in Section 1.2, AirQuality Inc. provides a peer-to-peer based secondary
communication channel to connect sensors in rural areas without dedicated WWAN
stations. However, the resulting topologies tend to be weakly connected and thus fragile.
The failure of single sensor devices can cause many other sensors to be disconnected
because the relay chain is interrupted. This problem is illustrated in Figure 5.2. When
sensor 3 fails, sensors 4 and 5 lose connection to the back-end system.

Therefore it is important for the business of AirQuality Inc. to continuously expand
the coverage of the WWAN network in order to reduce the single point of failures. For
this reason, the infrastructure planners at AirQuality Inc. continuously identify eligible
placement points for new WWAN stations. In order to choose the best locations for
new stations from the candidate spots a special algorithm is required that analyzes the
current sensor network topology and performs placement optimization. The number of
WWAN stations that can be selected is restricted by a yearly budget. Facilities that
query the current topology from the field sensors and store the resulting toplogy graph
in the data-center are already in place. Since the topology is too big to be processed
by a single machine, the use of a big data graph processing framework is required to
distribute the computations across multiple nodes. The only additional information that
each vertex carries is its node type which is one of

• SENSOR - an existing sensor node

54



5.2. Running example: Improving the availability of AirQuality Inc.’s sensor network

WWAN1

2

3

4 5

Figure 5.2: Fragility of sensor connectivity in long peer-to-peer chains

• STATION - an existing station node

• ELIGIBLE_NEW_STATION - a potential new station node

• NEW_STATION - a new station node that has been selected by the optimization
algorithm

The proposed algorithm performs brute-force optimization against some metric designed
to capture a topology’s quality with respect to sensor connectivity. The algorithm’s input
consists of the current network topology along with the eligible placement points and the
number of stations that the budget allows to be created. First, the algorithm generates
the set of permissible permutations of new station placements. Each permutation is then
used to update the current topology by connecting existing field sensors to every new
station when they lie within the station’s reception range. The resulting topology is
rated against the quality metric. Finally, the algorithm outputs the topology with the
highest rating. Note that in practice, the use of heuristic optimization techniques like
simulated annealing would be desirable for this task in order to reduce the number of
solutions that need to be evaluated.

For quantifying the quality of a topology a variation of the graph compactness metric
[BRS92] is used. The compactness Cp ∈ [0; 1] of a graph is a global metric that was
originally used to rate the complexity of hypertext in terms of connectivity. A compactness
of 0 indicates a fully disconnected graph whereas a compactness of 1 indicates a fully
connected graph. Compactness metric is defined as follows:

Cp =
Max−

∑
i

∑
j Cij

Max−Min

55



5. The Pregel programming model

A

B

C

D

(a) Graph G1

A

B

C

D

(b) Graph G2

Figure 5.3: Example graphs for illustrating the compactness metric.

In the above formula, Cij denotes the shortest path between node i and node j in the
graph. Max and Min represent an upper and a lower bound to the sum of the length
of the shortest paths between any two nodes, respectively. Intuitively, the denominator
represents the maximum gap between a maximally weakly connected and a fully connected
graph. On the other hand, the counter represents the gap between the same maximally
weakly connected graph and the graph under consideration. Hence, the more connected
a graph is the larger the counter becomes which results in a compactness closer to 1.
Example 5 illustrates the compactness metric.

Example 5 Consider the two example graphs shown in Figure 5.3. It is
easy to see that G1 is stronger connected than G2.

For calculating the compactness of graphs G1 and G2 it is first necessary to
identify upper and lower bounds Max and Min for the sum of shortest path
lengths. In general, a lower bound can be given assuming a fully connected
graph where the shortest path length Cij is 1 for all vertices i and j with
i 6= j. Since there are up to n ∗ (n− 1) connected vertex pairs in a graph, a
possible lower bound is given by:

Min = n× (n− 1)

A safe upper bound can be formulated by introducing a constant k holding
the length of the "longest" shortest path between any two vertices. The final
upper bound is then obtained by multiplying with the number of vertex pairs
analogous to the lower bound.

k = max∀i,j i6=j(Cij)

Max = n× (n− 1)× k

56



5.2. Running example: Improving the availability of AirQuality Inc.’s sensor network

A B C D
A 0 1 1 1
B 1 0 1 2
C 1 1 0 1
D 1 2 1 0

Table 5.1: Shortest paths G1

A B C D
A 0 1 1 1
B 1 0 1 2
C 1 1 0 2
D 1 2 2 0

Table 5.2: Shortest paths G2

Apart from the upper and lower bounds it is required to calculate the shortest
paths between all node pairs in the graph as shown in Tables 5.1 and 5.2.
The concrete upper and lower bounds can now be calculated.

Min = 4× (4− 1) = 12

Max = 4× (4− 1)× 2 = 24

Given the above results it is now possible to calculate the compactness CG1

and CG2 of the given graphs.

CG1 = 24− 14
24− 12 ≈ 0, 83

CG2 = 24− 16
24− 12 ≈ 0, 66

As expected, CG1 is higher than CG2 because G1 is more connected than G2.
Note that the upper bound chosen in this example is a theoretical one because
it is impossible to construct a graph where the sum of the shortest path
lengths equals this bound. As a result, the compactness value cannot fall
below a certain threshold which may or may not pose a problem depending
on the application.

While the original compactness metric considers the pair-wise connectivity of all nodes
in the graph, the interest for the WWAN station placement optimization solely lies on
the connectivity between each sensor node and its closest WWAN station node. Thus, a
variation of the compactness metric is defined as follows:

Cvar =
Maxvar −

∑
i∈Ns

minj∈Nw Cij

Maxvar −Minvar

Maxvar = |Ns| ×max
i∈Ns

min
j∈Nw

Cij

Minvar = |Ns|

57



5. The Pregel programming model

In the above formula, Ns and Nw represent the set of sensor nodes and the set of WWAN
station nodes, respectively. Since the new metric only considers the single minimum
shortest path from each sensor node to some station node, the definitions of the upper
and lower bounds are revised accordingly as shown.

It is easy to see that the core of the whole optimization algorithm is the shortest path
computation required for the compactness metric. This task requires knowledge about
the structure of the whole graph which is assumed to be too large to be processed by a
single machine. Thus, the shortest path computation is performed using a big data graph
processing framework. A distributed shortest path algorithm that computes the shortest
path from every graph node to a set of target nodes can be expressed very concisely
using Pregel as explained in the following.

Each vertex v maintains a list of key-value pairs (u, l) that contain the length l of the
current shortest path from v to u. Before the first round of the algorithm, the key-value
pair lists are initialized by inserting (v, 0) for all v ∈ NT where NT is the set of target
nodes. During the superstep iterations, key-value pairs are propagated along the reverse
edge directions starting at the target nodes. When a vertex receives a key-value pair
list it merges the list with its own state. Before passing on a list of key-value pairs, the
shortest path lengths in the list are incremented by 1 and the sending node performs a
preliminary merge of the the list that is to be sent with the state of the receiving node
to check if the transmission will have any effect on the receiving node’s state. In case no
changes are detected, the message is not sent. As a result, no more messages are sent
when all vertex states have converged to the true shortest path lengths and the algorithm
terminates. Figure 5.4 illustrates an execution of this algorithm.

The single target node E is marked as green. Before the first superstep, the vertex states
are initialized. Because E is a target node, its key-value pair list is initialized with E →
0. In superstep S1 E increments its state and sends it to B and D which update their
state with E → 1 based on the information received from E. Next, B and D send their
incremented state to A and C in superstep S2. Note that node E does not send any
message at this point because it recognizes that the states in B and D would not change
anyway. At this point, the state at all nodes has converged to the real shortest path
lengths. Thus, no more messages are sent and the algorithm terminates.

Section 5.1 discusses the notion of a BPPA and we now evaluate the shortest path
algorithm presented above against the characteristics of a BPPA:

• Linear space usage in O(d(v)) per vertex v where d(v) is the degree of v
The upper bound on the size of the key-value pair list that makes up the vertex
state in the shortest path algorithm is given by the number of target vertices which
is a constant for each execution of the algorithm. Hence, this property can be
considered satisfied.

• Linear computation cost in O(d(v))
The computation performed by each vertex consists of the merging of the messages

58



5.2. Running example: Improving the availability of AirQuality Inc.’s sensor network

A

B

C D
E

{}

{}

{} {}
{E → 0}

A

B

C D
E

{}

{E → 1}

{} {E → 1}
{E → 0}

S1

A

B

C D
E

{E → 2}

{E → 1}

{E → 2}{E → 1}

{E → 0}

S2

Figure 5.4: Pregel shortest path algorithm

received and the sending of new messages. The computational complexity of the
latter task clearly is in O(din(v)) as argued in the next point. The number of
messages to merge is in O(dout(v)) and the merge operation itself only depends on
the size of the key-value pair list which is a constant as argued in point 1. Hence,
this property is satisfied.

• Linear communication cost in O(d(v))
During each superstep each vertex sends at most 1 message along each incoming
edge. Moreover, the message size is constant and depending on |NT |, hence the
communication cost per vertex is in O(din(v)) which satisfies this property.

• Number of supersteps in O(logn)
Consider the extreme case when the graph takes the shape of a linked list with
the target node at the very end of the list. In this scenario, the algorithm requires
|N | − 1 supersteps to terminate. Hence, this property is not satisfied.

Except for the number of supersteps, the presented shortest path algorithm fulfills all
characteristics of a BPPA.

Figure 5.5 shows an example input topology and the optimized topology that is output
by the optimization algorithm:

• Sensor nodes are black

59



5. The Pregel programming model

• Existing WWAN stations are red

• Eligible positions for new WWAN stations are green

• Selected new WWAN stations are violet

The implementations of the optimization algorithm described above are detailed in
Sections 6.3 and 7.5 for Apache Giraph and Apache Spark GraphX, respectively.

60



5.2. Running example: Improving the availability of AirQuality Inc.’s sensor network

(a) Input topology

(b) Optimized topology

Figure 5.5: Example input topology and the corresponding optimized output topology as
produced by the optimization algorithm.

61





CHAPTER 6
Apache Giraph

Initially developed at Yahoo!, Apache Giraph 1 was designed to mimic Google’s Pregel
but has received numerous extensions to this model over time. It is closely related to
Apache Hadoop since it can utilize YARN or Hadoop classic MapReduce to run Giraph
applications on a cluster and it supports many I/O integrations with systems related to
Hadoop such as HDFS or Hive [MSL15].

The execution of a Giraph application requires 3 different types of actors [MSL15]:

• Coordinators

• Masters

• Workers

Coordinators are simply an ensemble of Apache ZooKeeper nodes that merely serve as a
central point for storing various types of coordination data but they do not run any logic
specific to Giraph [MSL15].

Giraph employs a configurable amount of master nodes to ensure high availability. At
most one master can be active at a time and the active master is determined during a
bidding process at startup using the coordinator service. The role of a master node is
to coordinate execution of a Giraph application. It starts by creating the input splits
by establishing a mapping from worker nodes to input files that determines which files
containing portions of the graph are to be loaded by each worker. The mapping is stored
in the coordination service to guarantee its availability even if the active master dies.
After the input split has been created, the master node enters the superstep loop and
coordinates the execution of supersteps on the workers. This involves the following tasks
[MSL15]:

1giraph.apache.org

63

giraph.apache.org


6. Apache Giraph

• Worker nodes periodically report their health status to the coordinator service.
The master node listens to these reports and initiates corrective actions in case of
worker failures.

• In each superstep, the master node may decide to re-balance the graph data
partitioning based on considerations like worker load and resource availability,
for example. When a partition is assigned to a worker that does not hold the
corresponding graph data, the data is copied from the source worker.

• The master node fetches aggregated values from the aggregator owners and makes
them available to the master computation. Before the next superstep, the master
redistributes the aggregated values back to the worker owners (see 6.1).

• The enforcement of the synchronization barrier at the end of a superstep is also
carried out by the master service.

• When the checkpoint condition is met, the master waits for all workers to checkpoint
their state and then finalizes the checkpointing process.

• It is another responsibility of the master to invoke the so called master computation
which is a custom function supplied by the user to be centrally executed on the
master.

Worker nodes are used to run the user supplied vertex functions for all vertices in the
assigned graph partitions. The lifecycle of a worker consists of two phases. During the
first phase, each worker loads the input files that were assigned to it by the master when
creating the input splits. Once every worker has loaded its data the master signals to
enter the second phase which is the superstep loop. During a superstep a worker first
handles any API requests that were received during the last superstep. This may involve
graph topology changes, for example. After that, each worker handles any partition
assignment changes ordered by the master and fetch the latest aggregator state from the
master before entering the execution of the vertex functions [MSL15].

Giraph only comes with primitive hash based and id range based graph partitioning
algorithms that construct edge-cuts. Depending on the application it might thus be
necessary to implement appropriate strategies manually.

Example 6 Giraph has been used at Facebook to answer queries on
Facebook’s social graph. Frequently, such queries involve an aggregation
touching all friends of a user, i.e. a user’s neighborhood. If vertices were
assigned to partitions randomly using hash based or id range based algorithms
as provided by Giraph, such a query would hit almost all partitions in a
cluster inducing high communication overhead and increased latency [gir].
At Facebook, this issue was solved by implementing a custom partitioning
strategy that aims to create uniform or balanced graph partitions [gir] [AR04].

64



Given an undirected graph G = (V,E) and a natural number k an algorithm
for balanced graph partitioning splits the vertex set V into k subsets of
equal size while minimizing the weight of edges in between the subsets. The
balancing constraint is important to antagonize the extreme case of all vertices
being assigned to the same subset which would result in zero non-local edges
but would eliminate any parallelism [gir]. Also, creating balanced partitions
maximizes the likelihood that each Giraph worker is able to keep its graph
partitions in memory.
Since the problem of balanced graph partitioning is NP-complete, it is infeasi-
ble to optimally solve this problem for real world graphs [GJ02]. Apart from
the computational complexity, large-scale graphs that require distributed
processing certainly do not fit in memory on a single machine which would
further complicate the search for an optimal solution [gir].
Facebook’s solution for this difficult situation was to create the graph par-
titioning using a separate Giraph application that applies probabilistic hill
climbing to iteratively reduce the number of non-local edges while maintain-
ing the balancing of the solution. The idea is illustrated in Figure 6.1. The
algorithm initially starts with a randomly balanced partitioning established
by one of Giraph’s built-in primitive algorithms [gir].
In superstep 2i, all vertices communicate their current partition assignment
to their neighbors so each vertex obtains a view of the partition assignment
of its neighborhood. When a vertex discovers that many of its neighbors
belong to a different partition than the vertex itself, it can choose to relocate
to one of the neighboring partitions. To prevent the algorithm from getting
stuck, the choice of the target partition is constructed probabilistically with a
bias towards partitions with a higher number of edges to the vertex. Vertices
that strive for a relocation send a signal to the master which decides needs
to coordinate and restrict the graph-wide movements of vertices between
partitions in order to maintain the balance. Depending on the signaled
movement intentions, the master computes a movement probability for each
pair of partitions and distributes these values back to the vertices [gir].
In superstep 2i + 1, each vertex that signaled for relocation in superstep
2i tosses a coin biased towards the probability received by the master and
implements the desired movement only on favorable outcome [gir].
The Facebook engineers were also able to find a better starting configuration
than a randomly balanced assignment based on special features of the social
graph. That is, users tend to be friends with other geographically close
users. Hence, initializing the partitions based on geographical proximity
yielded a starting point with much less non-local edges compared to a random
assignment [gir].

Example 6 illustrates that choosing an appropriate method for graph partitioning is

65



6. Apache Giraph

v1
v2

v3

v4

v6

v7

v8

v1
v2

v3

v4

v6

v7

v8

Figure 6.1: A graph partitioning heuristic that iteratively moves vertices between parti-
tions to reduce non-local edges

vital for the performance of distributed graph algorithms. Moreover, application specific
features can sometimes be exploited to find a better partitioning in less time.

The remainder of this chapter describes the non-trivial implementation of aggregators in
Giraph and discusses fault tolerance.

6.1 Sharded aggregators

Aggregators in Giraph are realized as sharded aggregators, i.e. they are not exclusively
managed by the master to prevent overloading it. Instead, the master randomly assigns
each aggregator to a worker making it the aggregator’s owner. Each worker performs the
aggregation of values supplied by vertices within its own partitions and sends the result
to the aggregator owner which performs the final aggregation of all the partial results
received from the workers before sending the ultimate result to the master [CEK+15].
Figure 6.2 illustrates this process.

The reverse direction works analogously. After invoking the master computation, the
master sends the aggregation values back to the assigned worker owners which, in turn,
distribute them to the remaining workers [CEK+15].

66



6.2. Fault tolerance

Standby Master
Active Master

Worker1

Agg1 Agg2

(1)

Worker2

Agg1 Agg2

(1)

(2)
(3) (3)

Figure 6.2: Sharded aggregators in Apache Giraph

6.2 Fault tolerance

This section discusses the different failure modes that Giraph is exposed to an how it
recovers from them.

When a master fails, the coordination service will trigger one of the standby master
nodes to immediately take over. A master node is stateless because all the relevant state
is either stored in the coordinators or in HDFS. Hence, there is no internal state that
needs to be recovered by a standby node [MSL15].

In contrast to a master node, a worker node holds the current state of its graph partitions
as well as the state from owned aggregators. Failures during the initial loading phase of
a worker are not recovered. In this case the master simply aborts the entire application.
To be able to recover from worker failures during the superstep loop, Giraph periodically
creates checkpoints at superstep boundaries via a cooperative effort of master and worker
nodes and stores them in HDFS. When a worker fails during the superstep loop, the
coordination service notifies the master which marks the current superstep as failed and
restarts the superstep loop from the last checkpoint for the entire application. This
means that all healthy worker nodes load the state from the last checkpoint and continue
the execution from there [MSL15].

The coordinators represent an ensemble of ZooKeeper instances. Such a configuration
provides high availability but it is out of the scope for this thesis to elaborate on the
design of ZooKeeper in more detail.

Giraph itself does not have any mechanisms in place to recover from disk failures. Instead
it trusts on the reliability of the underlying storage layer like HDFS, for example [MSL15].

67



6. Apache Giraph

Shortest
path job

Join vertex
details

Min path
reducer

Max reducer

Sum reducer

Graph

Figure 6.3: Structure of computation in Giraph based topology optimizer

6.3 AirQuality Inc. WWAN station placement with
Apache Giraph

This section describes an implementation of the solution to the air quality WWAN station
placement problem statement from Section 5.2 using Apache Giraph. It relies on the
notations introduced in Section 5.2.

The implementation consists of 5 different components as illustrated in Figure 6.3.

First, a Giraph job computes the shortest paths Cij to the given set of station nodes with
i ∈ Vs ∪ Vw and j ∈ Vw. The output produced by the shortest path step only consists of
vertex IDs and path lengths, i.e. all vertex detail information is stripped.

Since information like the node type (see Section 5.2) is needed to carry out the subsequent
processing steps, a join is performed that populates the shortest path dataset with the
required vertex information. This join is implemented with two MapReduce jobs, one
joining the source vertex details and the other one joining the target vertex details for
each path.

The output produced by the shortest path step may contain paths between two station
nodes. Such routes are not of interest and need to be filtered out. Moreover, this step
may produce multiple paths from a single sensor vertex to multiple station vertices that
need to be reduced to a single path to the closest station vertex. These tasks are carried
out by a subsequent MapReduce job.

To compute the compactness of the input graph, the maximum shortest path among
all sensor/station pairs as well as the sum of the shortest path lengths is required for
computing the upper and lower bounds for the compactness metric as detailed in Section
5.2. Thus, two subsequent MapReduce jobs consume the output of the filtering and
minimization step and carry out the respective global aggregations.

The following paragraphs discuss the client side application that invokes the MapRe-
duce/Giraph jobs.

The essential part of the client implementation is located in the GiraphCompactnessOptimizer
↪→ class which contains the maximizeCompactness method shown in Listing 6.1.

68



6.3. AirQuality Inc. WWAN station placement with Apache Giraph

1 public Graph maximizeCompactness (Graph graph , I t e r a t o r <Graph>
↪→ s o l u t i o n I t e r a t o r ) {

2 try {
3 this . f s = Fi leSystem . get ( hadoopConf ) ;
4
5 Set<Vertex> baseVer t i c e s = new HashSet<>() ;
6 for ( Vertex v : graph . g e tVe r t i c e s ( ) ) {
7 i f (EnumSet . o f ( Vertex . NodeType .SENSOR, Vertex . NodeType .STATION)

↪→ . c onta in s ( v . getNodeType ( ) ) ) {
8 ba s eVer t i c e s . add (v ) ;
9 }
10 }
11 Set<Edge> baseEdges = graph . getEdges ( ) ;
12
13 Graph bestExtens ion = null ;
14 double maxCompactness = 0 . 0 ;
15 while ( s o l u t i o n I t e r a t o r . hasNext ( ) ) {
16 Graph extens i on = s o l u t i o n I t e r a t o r . next ( ) ;
17
18 double compactness = compactness ( extendBaseGraph ( baseVert i c e s ,

↪→ baseEdges , ex tens i on ) ) ;
19 i f ( compactness > maxCompactness ) {
20 maxCompactness = compactness ;
21 bestExtens ion = extens i on ;
22 }
23 }
24
25 this . f s . c l o s e ( ) ;
26 return bestExtens ion ;
27 } catch ( IOException e ) {
28 throw new RuntimeException ( e ) ;
29 }
30 }

Listing 6.1: Implementation of the MapReduce/Giraph client application

The method takes the full input graph and a solution iterator that produces extension
graphs representing subsets of eligible station vertices. On lines 5 - 11 the full input graph
is reduced to a base graph by removing all nodes of types ELIGIBLE_NEW_STATION
and NEW_STATION and any attached edges. The loop on lines 15 - 23 represents the
main optimization loop. In each round it uses the solution iterator to produce a new
extension graph which is the applied to the base graph using the extendBaseGraph

↪→ method to form a new solution graph which is then passed to the compactness

method computing a solution rating on line 18. After the method returns, the obtained
rating is compared with the rating of previous solutions. The current solution is only
accepted when the rating is better than the rating of any solutions before. When no
more extensions are available the method returns the best extension on line 26.

Listing 6.2 shows the implementation of the compactness method.
1 private double compactness (Graph graph ) throws IOException {

69



6. Apache Giraph

2 Path shor t e s tPaths = new Path ( " data/graph−paths " ) ;
3 i f ( f s . e x i s t s ( shor t e s tPaths ) ) {
4 f s . d e l e t e ( shortes tPaths , true ) ;
5 }
6
7 Path hdfsGraphPath = new Path ( " data/graph " ) ;
8 Path ve r t exDe ta i l = new Path ( " data/ v e r t i c e s " ) ;
9 try ( HdfsGraphWriter graphWriter = new HdfsGraphWriter (new

↪→ OutputStreamWriter ( f s . c r e a t e ( hdfsGraphPath ) ) ) ) {
10 graphWriter . wr i t e ( graph ) ;
11 }
12 try ( Buf feredWriter bw = new Buf feredWriter (new OutputStreamWriter ( f s .

↪→ c r e a t e ( v e r t exDe ta i l ) ) ) ) {
13 for ( Vertex v : graph . g e tVe r t i c e s ( ) ) {
14 bw . wr i t e ( S t r ing . format ( "%d;%s " , v . ge t Id ( ) , v . getNodeType ( ) . name

↪→ ( ) ) ) ;
15 bw . newLine ( ) ;
16 }
17 }
18
19 St r ing landmarksOption = graph . g e tVe r t i c e s ( ) . stream ( )
20 . f i l t e r ( v −> EnumSet . o f ( Vertex . NodeType .STATION, Vertex .

↪→ NodeType .ELIGIBLE_NEW_STATION) . conta in s ( v . getNodeType ( ) )
↪→ )

21 .map(v −> Long . t oS t r i ng (v . ge t Id ( ) ) )
22 . c o l l e c t ( Co l l e c t o r s . j o i n i n g ( "−" ) ) ;
23
24 GiraphConf igurat ion g i raphConf i gura t i on = new GiraphConf igurat ion (

↪→ hadoopConf ) ;
25 g i raphCon f i gura t i on . setVertexInputFormatClass (
26 VertexInputFormat . class ) ;
27 g i raphCon f i gura t i on . setVertexOutputFormatClass (
28 ShortestPathVertexOutputFormat . class ) ;
29 g i raphCon f i gura t i on . s e t S t r i n g s ( ShortestPathAlgor ithm .TARGET_IDS. getKey

↪→ ( ) ,
30 landmarksOption ) ;
31 g i raphCon f i gura t i on . setWorkerConf igurat ion (1 , 2 , 100 .0 f ) ;
32 g i raphCon f i gura t i on . setYarnLibJars ( j a rLoca t i on ) ;
33 g i raphCon f i gura t i on . setComputationClass ( ShortestPathAlgor ithm . class ) ;
34 GiraphFileInputFormat . addVertexInputPath ( g i raphConf igurat ion ,

↪→ hdfsGraphPath ) ;
35 g i raphCon f i gura t i on . s e t ( FileOutputFormat .OUTDIR, shor t e s tPaths . t oS t r i ng

↪→ ( ) ) ;
36
37 GiraphYarnClient g i raphYarnCl ient = new GiraphYarnClient (

↪→ g i raphConf igurat ion , ge tC la s s ( ) . getName ( ) ) ;
38 try {
39 i f ( ! g i raphYarnCl ient . run ( true ) ) {
40 throw new RuntimeException ( " Giraph␣ job ␣ f a i l e d . " ) ;
41 }
42 } catch ( YarnException e ) {
43 throw new RuntimeException ( e ) ;
44 }

70



6.3. AirQuality Inc. WWAN station placement with Apache Giraph

45
46 Path joinOutput = new Path ( " data/ joinOut " ) ;
47 Path shortestPathToStat ion = new Path ( " data/ shortestPathToStat ion " ) ;
48 j o i nVe r t exDe ta i l s ( shortes tPaths , ve r t exDeta i l , jo inOutput ) ;
49 reduceShortestPathToStat ion ( joinOutput , shortestPathToStat ion ) ;
50
51 int k = getMaxShortestPathLength ( shortestPathToStat ion ) ;
52 int shortestPathSum = getShortestPathLengthSum ( shortestPathToStat ion ) ;
53
54 long numSensors = graph . g e tVe r t i c e s ( ) . stream ( ) . f i l t e r ( v −> v .

↪→ getNodeType ( ) == Vertex . NodeType .SENSOR) . count ( ) ;
55 long max = k ∗ numSensors ;
56 long min = numSensors ;
57 return (double ) (max − shortestPathSum ) / (max − min) ;
58 }

Listing 6.2: Implementation of the MapReduce/Giraph client application

The first part of the method writes data to HDFS that is needed for the computations
such as the input graph on lines 9 - 11 and the vertex details on lines 12 - 17 that are
joined to the shortest paths later on.

At this point it should be noted that Giraph only supports directed graphs and a vertex
is only aware of its outgoing edges by default. However, the input graph structure only
contains at most one edge between to vertices that is considered undirected. In order to
not lose the undirected semantics when using the graph within a Giraph algorithm it
is necessary to write out and inverse duplicate of every edge in the input graph. This
duplication is performed in the course of writing the graph to HDFS using the custom
HdfsGraphWriter.

Lines 19 - 22 extract all nodes of type ELIGIBLE_NEW_STATION from the input
graph and create a dash-separated string of their vertex IDs that is used as an input to
the Giraph job. Lines 19 - 35 set up the required configuration for running the Giraph
job. This involves specifying a vertex input and output format on lines 25 and 27 so
that Giraph knows how to extract the graph data from the input file specified on line
34 and how to write the final state of the graph to the output path specified on line
35 once the computation has finished. On line 29 the configuration is populated with
the landmark vertex IDs that were previously converted to a string form. Line 31 sets
some configuration on the number of workers and before line 32 designates the location
of the JAR file on the client that contains the required artifacts for running the job.
Giraph needs to be aware of the entry point to the algorithm which is designated on
line 33 by setting the ShortestPathAlgorithm class reference. Giraph supplies the
GiraphYarnClient to submit Giraph jobs to the cluster. This client is instantiated on
line 37 and the job is started shortly thereafter on line 39.

Once the shortest path job has finished, the client schedules the MapReduce join
jobs that populate the generated shortest paths with the node types of the start
and end vertices. This is done inside the joinVertexDetails method called on line

71



6. Apache Giraph

48. After that, the path filtering and reduction is carried out by the invocation of
reduceShortestPathToStation on line 49. Finally, the maximum shortest path length
and the shortest path length sum are computed on lines 51 and 52. The results are
immediately used to calculate the compactness metric for the input graph which is
returned on line 57.

The rest of this section examines the implementation of each MapReduce/Giraph job
illustrated in Figure 6.3 in sequence.

6.3.1 Giraph shortest path algorithm

The implementation of the shortest path algorithm as shown in Listing 6.3 exactly follows
the approach described in Section 5.2.

1 @Algorithm (name = " sho r t e s t ␣path " )
2 public class ShortestPathAlgor ithm extends BasicComputation<LongWritable ,

↪→ ShortestPathMap , Nul lWritable , ShortestPathMap> {
3 private stat ic f ina l Logger LOG = LoggerFactory . getLogger (

↪→ ShortestPathAlgor ithm . class ) ;
4 public stat ic f ina l StrConfOption TARGET_IDS =
5 new StrConfOption ( " shor te s tPath . t a r g e t I d s " , " " ,
6 "The␣ ta r g e t ␣ ver tex ␣ i d s ␣ to ␣compute␣ the ␣ sho r t e s t ␣paths ␣ to

↪→ " ) ;
7
8 private Set<Long> targe tVer t ex Id s ;
9
10 @Override
11 public void i n i t i a l i z e ( GraphState graphState ,

↪→ WorkerCl ientRequestProcessor<LongWritable , ShortestPathMap ,
↪→ NullWritable> workerCl ientRequestProcessor ,
↪→ Centra l i zedServ iceWorker<LongWritable , ShortestPathMap ,
↪→ NullWritable> serviceWorker , WorkerGlobalCommUsage
↪→ workerGlobalCommUsage ) {

12 super . i n i t i a l i z e ( graphState , workerCl ientRequestProcessor ,
↪→ serviceWorker , workerGlobalCommUsage ) ;

13
14 ta rge tVer t ex Id s = Arrays . stream (TARGET_IDS. get ( getConf ( ) ) . s p l i t ( "−"

↪→ ) )
15 . f i l t e r ( s −> ! s . isEmpty ( ) )
16 .map(Long : : valueOf )
17 . c o l l e c t ( Co l l e c t o r s . toSet ( ) ) ;
18 }
19
20 @Override
21 public void compute (
22 Vertex<LongWritable , ShortestPathMap , NullWritable> vertex ,
23 I t e r ab l e <ShortestPathMap> messages ) throws IOException {
24 i f ( getSupers tep ( ) == 0) {
25 i n i t S t a t e ( ver tex ) ;
26 LOG. debug ( " I n i t i a l ␣ s t a t e ␣ ver tex ␣ " + vertex . get Id ( ) + " : ␣ " +

↪→ ver tex . getValue ( ) ) ;
27 }

72



6.3. AirQuality Inc. WWAN station placement with Apache Giraph

28
29 // s h o r t e s t path computation
30 ShortestPathMap updatedState = vertex . getValue ( ) ;
31 for ( ShortestPathMap msg : messages ) {
32 updatedState = mergeMaps ( updatedState , msg) ;
33 }
34
35 i f ( ( getSupers tep ( ) == 0 && ! updatedState . isEmpty ( ) ) | |
36 ! updatedState . equa l s ( ver tex . getValue ( ) ) ) {
37 ver tex . setValue ( updatedState ) ;
38 ShortestPathMap incrementedState = increment ( updatedState ) ;
39 sendMessageToAllEdges ( vertex , incrementedState ) ;
40 }
41
42 ver tex . voteToHalt ( ) ;
43 }
44
45 private ShortestPathMap mergeMaps ( ShortestPathMap map1 , ShortestPathMap

↪→ map2) {
46 Set<Long> combinedKeySet = new HashSet<>(map1 . keySet ( ) ) ;
47 combinedKeySet . addAll (map2 . keySet ( ) ) ;
48 return combinedKeySet . stream ( )
49 . c o l l e c t ( Co l l e c t o r s . toMap(
50 Function . i d e n t i t y ( ) ,
51 ver t ex Id −> Math . min (map1 . getOrDefault ( vertexId ,

↪→ I n t eg e r .MAX_VALUE) , map2 . getOrDefault (
↪→ vertexId , I n t eg e r .MAX_VALUE) ) ,

52 (a , b ) −> a ,
53 ShortestPathMap : :new
54 ) ) ;
55 }
56
57 private ShortestPathMap increment ( ShortestPathMap shortestPathMap ) {
58 return shortestPathMap . entrySet ( )
59 . stream ( )
60 . c o l l e c t ( Co l l e c t o r s . toMap(
61 Map. Entry : : getKey ,
62 entry −> entry . getValue ( ) + 1 ,
63 (a , b ) −> a ,
64 ShortestPathMap : :new
65 ) ) ;
66 }
67
68 private void i n i t S t a t e ( Vertex<LongWritable , ShortestPathMap ,

↪→ NullWritable> ver tex ) {
69 ShortestPathMap newState = new ShortestPathMap ( ) ;
70 i f ( i sTarge t ( ver tex ) ) {
71 newState . put ( ver tex . get Id ( ) . get ( ) , 0) ;
72 }
73 ver tex . setValue ( newState ) ;
74 }
75
76 private boolean i sTarge t ( Vertex<LongWritable , ? , ?> ver tex ) {

73



6. Apache Giraph

77 return ta rge tVer t ex Id s . conta in s ( ver tex . get Id ( ) . get ( ) ) ;
78 }
79 }

Listing 6.3: Implementation of the shortest path algorithm with Giraph

A Giraph job or algorithm is created by implementing the org.apache.giraph.graph.
↪→ Computation interface. In the case of the shortest path algorithm the implementation
class derives from the abstract org.apache.giraph.graph.BasicComputation class
that provides some basic functionality like message sending assuming that incoming and
outgoing messages are of the same type. The type parameters on line 2 specify the vertex
id type, the vertex state type, the edge state type and the message type, in that order.

Since the shortest path algorithm takes a set of target vertex IDs as input, a respective
configuration option is defined on line 4 that facilitates the transmission of this parameter
from the client application as part of the Giraph job configuration.

On line 11 the initialize method is overridden to read and parse the supplied target
vertex IDs aka landmarks and to make them available to the main algorithm.

The compute method starting on line 21 represents the per-vertex logic that is invoked
by the Giraph framework and contains the essential algorithmic logic. At the beginning
of the first superstep, each vertex invokes the initState method which initializes the
vertex state depending on whether it encounters a target vertex or not. On line 31
any received messages are read and merged into the local state using the mergeMaps

function on line 32. The method combines the entries of both passed shortest path
maps and uses the minimal path lengths when clashing entries are encountered. After
processing the received messages from the last superstep, each vertex checks if it needs
to propagate its state by comparing the newly updated state against its old state on
line 35. Superstep 0 represents a special case since every landmark vertex needs to send
out its state irrespective of any state changes. Before the actual sending of the state
on line 39 the path lengths need to be incremented by calling the increment method
on line 38 to reflect the additional edge on the path when the state is received by a
neighboring node. As a last action in each superstep, every vertex votes to halt on line 42.
Recall that vertices that receive messages in the upcoming superstep will be reactivated
automatically by the framework even if they have previously voted to halt.

6.3.2 Joining vertex details

The MapReduce join job is capable of combining the records of multiple input files based
on a common key. The input for the job consists of the input file paths to join apart
from configuration entries containing a common column separator string and the number
input files to join. Moreover, for each input file, two configuration entries need to be
supplied:

• keyIndex - Column index of the join key

74



6.3. AirQuality Inc. WWAN station placement with Apache Giraph

• joinOrder - Ordering index that indicates for a file at which position its record
columns should be placed in the resulting joined records

The join operation consists of a mapper and a reducer. It is the job of the JoinMapper
to separate the join key from the record and to emit it as MapReduce key along with
the remaining record columns as value. Listing 6.4 shows the map method that performs
these steps. Also note that on line 4 the input file dependent join order is prepended to
every emitted tuple value. This information is later used by the reducer to construct the
combined tuples with the correct column order.

1 protected void map( LongWritable key , Text value , Context context ) throws
↪→ IOException , Inter ruptedExcept ion {

2 List<Str ing> va lues = new ArrayList <>(Arrays . a sL i s t ( va lue . t oS t r i ng ( ) .
↪→ s p l i t ( s epa ra to r ) ) ) ;

3 S t r ing joinKey = va lues . remove ( keyIndex ) ;
4 va lue s . add (0 , I n t eg e r . t oS t r i ng ( jo inOrder ) ) ;
5 S t r ing valuesWithOutKey = va lues . stream ( ) . c o l l e c t ( Co l l e c t o r s . j o i n i n g (

↪→ s epa ra to r ) ) ;
6 keyWrapper . s e t ( joinKey ) ;
7 data . s e t ( valuesWithOutKey ) ;
8 context . wr i t e ( keyWrapper , data ) ;
9 }

Listing 6.4: map method of the JoinMapper

Listing 6.5 shows the implementation of the corresponding reducer.
1 public class JoinReducer extends Reducer<Text , Text , Nul lWritable , Text> {
2
3 private Text jo inedText = new Text ( ) ;
4 private St r i ngBu i l d e r bu i l d e r = new St r i ngBu i l d e r ( ) ;
5
6 @Override
7 protected void reduce (Text key , I t e r ab l e <Text> values , Context context )

↪→ throws IOException , Inter ruptedExcept ion {
8 St r ing s epa ra to r = context . g e tCon f i gura t i on ( ) . get ( " s epa ra to r " ) ;
9 int j o i n S i t e s = context . g e tCon f i gura t i on ( ) . g e t In t ( " j o i n S i t e s " , −1) ;
10 Map<Integer , L i s t<Str ing>> jo inTup l e sPe rS i t e = StreamSupport . stream

↪→ ( va lue s . s p l i t e r a t o r ( ) , fa l se )
11 .map( value −> value . t oS t r i ng ( ) . s p l i t ( s epa ra to r ) )
12 . c o l l e c t ( Co l l e c t o r s . toMap(
13 va lueParts −> Int eg e r . pa r s e In t ( va lueParts [ 0 ] ) ,
14 va lueParts −> new ArrayList <>(Co l l e c t i o n s .

↪→ s i n g l e t o nL i s t ( Arrays . a sL i s t ( va lueParts ) .
↪→ subLi s t (1 , va lueParts . l ength ) . stream ( ) .
↪→ c o l l e c t ( Co l l e c t o r s . j o i n i n g ( s epa ra to r ) ) ) ) ,

15 ( a , b ) −> { a . addAll (b) ; return a ; }
16 ) ) ;
17
18 j o i n ( jo inTuple −> {
19 bu i l d e r . append ( key . t oS t r i ng ( ) ) . append ( s epara to r ) ;
20 for ( S t r ing value : jo inTuple ) {

75



6. Apache Giraph

21 bu i l d e r . append ( value ) . append ( s epara to r ) ;
22 }
23 bu i l d e r . setLength ( bu i l d e r . l ength ( ) − 1) ;
24 jo inedText . s e t ( bu i l d e r . t oS t r i ng ( ) ) ;
25 try {
26 context . wr i t e ( Nul lWritable . get ( ) , jo inedText ) ;
27 } catch ( IOException e ) {
28 throw new UncheckedIOException ( e ) ;
29 } catch ( Inter ruptedExcept ion e ) {
30 Thread . currentThread ( ) . i n t e r r up t ( ) ;
31 throw new RuntimeException ( e ) ;
32 }
33 bu i l d e r . setLength (0 ) ;
34 } , j o inTup le sPerS i t e , j o i n S i t e s , 0 , new ArrayList <>( j o i n S i t e s ) ) ;
35 }
36
37 private void j o i n (Consumer<List<Str ing>> joinTupleConsumer , Map<Integer

↪→ , L i s t<Str ing>> jo inTup le sPerS i t e , int j o i n S i t e s , int
↪→ cu r r en tJo inS i t e , L i s t<Str ing> currentJo inTuple ) {

38 i f ( cu r r en t Jo i nS i t e < j o i n S i t e s ) {
39 i f ( j o inTup l e sPe rS i t e . containsKey ( cu r r en t Jo i nS i t e ) ) {
40 for ( S t r ing tup l e : j o i nTup l e sPe rS i t e . get ( cu r r en t Jo i nS i t e ) )

↪→ {
41 currentJo inTuple . add ( tup l e ) ;
42 j o i n ( joinTupleConsumer , j o inTup le sPerS i t e , j o i n S i t e s ,

↪→ cu r r en t Jo i nS i t e + 1 , currentJo inTuple ) ;
43 currentJo inTuple . remove ( currentJo inTuple . s i z e ( ) − 1) ;
44 }
45 }
46 } else {
47 joinTupleConsumer . accept ( currentJo inTuple ) ;
48 }
49 }
50 }

Listing 6.5: Implementation of the JoinReducer

On line 4 the reducer uses the join order that has been prepended to each input value
by the mapper to group the input values accordingly. After that, the joined tuples are
created and emitted by recursively combining the values of each join order using the
join method on line 18.

6.3.3 Path filtering and minimization

The filtering and minimization step removes any shortest path entries between station
nodes and reduces multiple path entries for a single sensor node to the path entry with
minimum length.

Listing 6.6 shows the implementation of the mapper.
1 public class FilteringMinPathMapper extends Mapper<LongWritable , Text ,

↪→ LongWritable , Text> {

76



6.3. AirQuality Inc. WWAN station placement with Apache Giraph

2
3 private LongWritable keyWrapper = new LongWritable ( ) ;
4
5 @Override
6 protected void map( LongWritable key , Text value , Context context )

↪→ throws IOException , Inter ruptedExcept ion {
7 Lis t<Str ing> columns = new ArrayList <>(Arrays . a sL i s t (
8 value . t oS t r i ng ( ) . s p l i t ( " ; " )
9 ) ) ;
10 Vertex . NodeType nodeType1 = Vertex . NodeType . valueOf ( columns . get (1 ) )

↪→ ;
11 Vertex . NodeType nodeType2 = Vertex . NodeType . valueOf ( columns . get (4 ) )

↪→ ;
12
13 i f ( nodeType2 == Vertex . NodeType .SENSOR) {
14 keyWrapper . s e t (Long . parseLong ( columns . get (2 ) ) ) ;
15 context . wr i t e ( keyWrapper , va lue ) ;
16 }
17 }

Listing 6.6: Mapper implementation for path filtering and minimization

On lines 13 - 16 the mapper uses the joined node type information to only emit paths with
the starting vertex being a sensor node. The ID of the sensor vertex is used as reducer
key resulting in any path entries originating from the same sensor being processed by the
same reducer which can then perform the required minimization as shown in Listing 6.7.

1 protected void reduce ( LongWritable key , I t e r ab l e <Text> values , Context
↪→ context ) throws IOException , Inter ruptedExcept ion {

2 St r ing minValue = StreamSupport . stream ( va lue s . s p l i t e r a t o r ( ) , fa l se )
3 .map( Object : : t oS t r i ng )
4 . min (Comparator . comparingInt (
5 v −> Int eg e r . pa r s e In t ( v . s p l i t ( " ; " ) [ 3 ] )
6 ) ) . get ( ) ;
7
8 valueWrapper . s e t (minValue ) ;
9 context . wr i t e ( Nul lWritable . get ( ) , valueWrapper ) ;
10 }

Listing 6.7: Reducer implementation for path filtering and minimization

6.3.4 Global reductions

The reduction jobs for computing the maximum shortest path and the shortest path
length sum share a common mapper that is shown in Listing 6.8. The index of the record
column that is to be reduced is provided via a configuration option. Since the goal is
to reduce all path entries to a single value the mapper just emits the reduction column
value without any key causing all entries to be processed by the same reducer.

1 valueWrapper . s e t ( va lue . t oS t r i ng ( ) . s p l i t ( " ; " ) [ reduceColumn ] ) ;
2 context . wr i t e ( Nul lWritable . get ( ) , valueWrapper ) ;

77



6. Apache Giraph

3 }
4 }

Listing 6.8: Common global reduction mapper

The maximum and sum reducers are very straight-forward as shown in Listings 6.9 and
6.10, respectively.

1 protected void reduce ( Nul lWritable key , I t e r ab l e <Text> values , Context
↪→ context ) throws IOException , Inter ruptedExcept ion {

2 Opt iona l Int optionalMax = StreamSupport . stream ( va lue s . s p l i t e r a t o r ( ) ,
↪→ fa l se )

3 . mapToInt ( t ex t −> Int eg e r . pa r s e In t ( t ex t . t oS t r i ng ( ) ) )
4 .max( ) ;
5
6 i f ( optionalMax . i sP r e s en t ( ) ) {
7 valueWrapper . s e t ( In t eg e r . t oS t r i ng ( optionalMax . getAsInt ( ) ) ) ;
8 context . wr i t e ( Nul lWritable . get ( ) , valueWrapper ) ;
9 }
10 }

Listing 6.9: Reducer for maximum shortest path reduction

1 protected void reduce ( Nul lWritable key , I t e r ab l e <Text> values , Context
↪→ context ) throws IOException , Inter ruptedExcept ion {

2 int sum = StreamSupport . stream ( va lue s . s p l i t e r a t o r ( ) , fa l se )
3 . mapToInt ( t ex t −> Int eg e r . pa r s e In t ( t ex t . t oS t r i ng ( ) ) )
4 . sum( ) ;
5
6 valueWrapper . s e t ( I n t eg e r . t oS t r i ng (sum) ) ;
7 context . wr i t e ( Nul lWritable . get ( ) , valueWrapper ) ;
8 }

Listing 6.10: Reducer for shortest path length sum reduction

78



CHAPTER 7
Apache Spark GraphX

Graph-parallel abstractions such as Pregel are based on iterative vertex-centric transfor-
mations. A user-defined vertex program iteratively changes vertex properties based on
messages received from adjacent vertices, i.e. the neighborhood. Parallelism is produced
by concurrently executing the vertex program on different vertices. While this works well
for iterative graph algorithms like PageRank that rely on static neighborhood structures,
it is problematic in case non-adjacent vertices need to interact or when the graph struc-
ture needs to be changed, for example. In contrast, a data-parallel abstraction adopts
a record-centric view and derives parallelism by processing multiple records in parallel
[XCD+14].

GraphX does not directly adopt graph-parallel paradigms like Pregel but builds on
Spark’s existing general-purpose distributed dataflow model (see Chapter 4). In order to
deliver performance comparable to systems like Apache Giraph that directly implement a
graph-parallel execution model the general dataflow model is extended by optimizations
that specifically target graph processing. In addition, GraphX also manages to provide
a Pregel API that utilizes the extended distributed dataflow framework. This allows
GraphX to cover a wider range of computations than purely graph-parallel systems
because it intuitively supports neighborhood-centric algorithms via Pregel as well as
graph-wide, neighborhood-independent algorithms via MapReduce-style data-parallel
transformations. Moreover, it facilitates the flexible reuse and combination of datasets by
allowing the same physical data to be exposed as graph or collection and by supporting
joins of graph-structured data with unstructured or tabular data. This enables powerful
analytics pipelines that reduce data movement and duplication to a minimum which is
not possible in graph-parallel systems [XCD+14] [GXD+14].

The remainder of this chapter discusses

• the graph partitioning strategy of GraphX

79



7. Apache Spark GraphX

• the representation of graphs in GraphX

• the implementation of Pregel programming model on top of data-parallel operators

• essential optimizations like indexes that GraphX employs for efficient graph-
processing

7.1 Graph partitioning
Pregel and most other graph-parallel programming models assume edge-cut based graph
partitioning which ensures that each vertex is uniquely assigned to a partition. As
detailed in Section 5, a balanced edge-cut is the optimal configuration for distributed
graph processing because it minimizes the communication overhead. However, this
problem is NP-complete and thus infeasible for large real-world graphs [GJ02]. While, in
practice, heuristics can be used to find good partition assignments in reasonable time,
they do not provide any guarantees or bounds with respect to the quality of the solution
(see example 6). Also, real world graph-parallel systems such as Apache Giraph only
come with primitive algorithms that effectively create random edge-cuts. While optimally
balancing the vertices across nodes, this approach has been shown to result in nearly
worst-case communication overhead because most edges are cut [GLG+12].

Contrary to edge-cuts, vertex-cuts evenly assign edges to partitions and allow vertices to
span multiple partitions (see Figure 7.2). In this model, the communication overhead
correlates with the number of split vertices. An optimal configuration for distributed
graph processing can therefore be achieved by balancing edges across cluster nodes
while minimizing the vertex splits [XGFS13]. Like with edges-cuts the computation of
vertex-cuts is infeasible for large graphs [XGFS13]. However, it has been shown that a
simple random vertex-cut can be shown to reduce the communication overhead by orders
of magnitudes for power-law graph compared to random edge-cuts [GLG+12]. But also
for ordinary graphs, vertex-cuts are a better option for partitioning because it can be
shown that for any edge-cut can be converted to a strictly better vertex-cut [GLG+12].

Another argument in favor of vertex-cut is the fact that most real world graphs have a
power-law degree distribution [GLG+12], i.e. vertex degrees are power-law distributed
which results in graphs composed of hubs as illustrated in Figure 7.1. While this is known
to be a problem for edge-cuts [XCD+14], percolation theory suggests that power-law
graphs have good vertex-cuts [AJB00].

For the above reasons, GraphX uses vertex-cut based graph partitioning. By default,
the edge partitioning is inherited from the input collection, e.g. HDFS blocks. GraphX
supplies four different algorithms for repartitioning which are described in the following.

The RandomVertexCut algorithm partitions edges by computing a combined hash value
for the source and destination vertex.

The CanonicalRandomVertexCut algorithm works like RandomVertexCut but treats edges
as undirected, i.e. edges (i, j) are assigned to the same partition as edges (j, i).

80



7.2. Graph representation

(a) Random degree distribution (b) Power-law degree distribution - also referred
to as scale-free

Figure 7.1: Illustration of power-law distributed graphs

Figure 7.2: Edge cut versus vertex cut [graa]

The EdgePartition1D algorithm partitions edges based on their source vertex id.

The EdgePartition2D algorithm adopts a the graph adjacency matrix to perform the
partitioning. Given M partitions for assigning edges, the adjacency matrix is divided
into

√
M ×

√
M regions, each corresponding to one partition. See Figure 7.3 for an

illustration of the idea. This division allows to express an upper bound of 2
√
M on the

replication factor of any vertex in the graph [XGFS13].

7.2 Graph representation
The data model adopted by GraphX is the property graph G(V,E, P ) consisting of a
vertex set V , and edge set E and a property set P = (PV , PE) of vertex properties PV
and edge properties PE . An important characteristic of this model is the independence

81



7. Apache Spark GraphX

0 0 1 1 0 1

1 0 0 0 1 1

0 1 0 0 0 1

1 1 0 0 1 0

0 1 0 0 0 1

1 0 1 1 0 0

v1

v2

v3

v4

v5

v6

v1 v2 v3 v4 v5 v6

P1 P2 P3

P4 P5 P6

P7 P8 P9

Figure 7.3: Illustration of the 2D graph partitioning algorithm in GraphX

of graph structure and properties. This allows GraphX to join an existing graph with
additional data resulting in extended properties but retained graph structure [XCD+14].

Internally, a property graph is represented by two RDDs (see Section 4.1), one vertex RDD
and one edge RDD containing records (i, PV (i)) with i ∈ V and tuples ((i, j), PE((i, j)))
with (i, j) ∈ E, respectively [XCD+14]. This representation is also referred to as resilient
distributed graph (RDG). An RDG inherits the fault tolerance properties from its
constituent RDDs, including immutability. Hence, any transformation performed on an
RDG produces a new graph [XGFS13].

For efficient lookup and access to edges, GraphX provides a clustered index on source
vertex ID and an unclustered index on target vertex id. The vertex RDD is hash
partitioned by vertex ID and the vertices are stored alongside a vertex ID based, clustered
hash index in each partition. Every vertex partition also contains a bitmask and has a
corresponding routing table. The former is used to exclude specific vertices from graph
operations while the latter is required for optimizing distributed joins and for index
sharing (see Section 7.4). The routing table is a map from vertex ID to the set of edge
partitions containing adjacent edges [XCD+14]. Figure 7.4 illustrates the RDG layout.

7.3 From graph-parallel to data-parallel

GraphX provides graph-parallel APIs like Pregel on top of Spark’s data-parallel com-
putation model. This is possible by using gather-apply-scatter (GAS) decomposition
[GLG+12] to decompose graph-parallel vertex programs supplied by the user into three
data-parallel stages:

82



7.3. From graph-parallel to data-parallel

Figure 7.4: Illustration of the RDG layout [grab]

• Gather - aggregate incoming messages (edge-parallel operation)

• Apply - update vertex state (vertex-parallel operation)

• Scatter - compute outgoing messages (edge-parallel operation)

Instead of executing a vertex program independently for each vertex, the above decom-
position allows each stage to be performed in a data-parallel fashion for the whole graph
[GXD+14]. In an abstract sense, the gather and scatter phases replace the active message
passing performed by each vertex in the graph-parallel model by a pull-based approach.
The runtime fetches the messages destined for any vertex in the graph along a vertex’
incoming edges and applies the gather function to perform a reduction. Finally, the
scatter phase computes the new messages to be gathered in the successive round or super-
step. One implication of this decomposition is that the range of possible communication
patterns is more restricted because messaging is only allowed between adjacent vertices.
In contrast, the original Pregel model also allows communication between non-adjacent
vertices [XCD+14].

Example 7 For illustration purposes, the GAS decomposition is applied
to the Pregel sum algorithm from Example 4. Listing 7.1 shows the resulting
algorithm.

83



7. Apache Spark GraphX

class Message {
Integer number = 0
Integer messageCounter = 0

}

gather (Message msg1, Message msg2) {
msg1.number += msg2.number
msg1.messageCounter += msg2.messageCounter
return msg1

}

apply (Vertex v, Message aggregatedMsg) {
v.number += aggregatedMsg.number;
v.totalMessagesReceived += aggregatedMsg.

↪→ messageCounter
}

scatter (Vertex v, Vertex adjacentVertex) {
Message msg;
if ( v.number > 0 AND

v.totalMessagesReceived > 0 AND
v.id != minimumVertexId AND
adjacentVertex == v.minNeighbor) {

// Send stored value to adjacent vertex
// with minimum id
msg.number = v.number
msg.messageCounter = 1
v.number = 0
voteToHalt()

} else if (msgs.isEmpty) {
voteToHalt()

}
return msg

}

Listing 7.1: GAS sum algorithm

The gather function receives two messages and aggregates them without
making any assumptions with respect to the ordering of the message pa-
rameters. It is necessary to introduce a compound message type Message

because the number sum as well as the number of received messages need to
be aggregated.

The apply function receives the current vertex and the corresponding aggre-
gated message and trivially updates the vertex state.

84



7.3. From graph-parallel to data-parallel

Most of the logic in the sum algorithm is concerned with message passing and
is thus moved to the scatter function which generates an outgoing message
for every edge (v, adjacentVertex).

From a system perspective, the basis for executing a GAS algorithm in GraphX is the mr-
Triplets operator. It is based on the triplets operator that joins edges with adjacent vertices
and produces a collection of key-value items of the form ((i, j), (PE(i, j), PV (i), PV (j))).
The mrTriplets extends this functionality by additionally performing a MapReduce
operation on the produced triplets. This can be used to construct messages in the map
phase that are then grouped and reduced by destination vertex id in the reduce phase.

The Pregel programming model can be implemented on top of this operator as listing 7.2
shows. The code wraps the user defined sendMsg function in a send function because
the GraphX mrTriplets API expects a scatter function of the form Triplet[V, E]

↪→ => Iterator[(VertexId, M)].

In line 13, the mrTriplets operator is called on the input graph. It produces triplets for
the graph and then applies the send function on the triplets which in turn calls the user
defined sendMsg function. This produces a collection of messages, one for each triplet,
which is then subject to reduction via the user defined gather function. The outcome of
this sequence of operations is a collection of aggregated messages, one for each connected
vertex in the graph.

At the beginning of line 15, the messages are actually s̈entẗo the vertices by joining the
graph with the messages. A left join is used in order to retain unconnected vertices that
do not receive any messages. Immediately after, the vertex program is applied on the
join result using the mapV operator.

Also observe that this implementation actually performs a scatter-gather-apply sequence
of operation. Otherwise there could not possibly be any messages in the first iteration
for the vertex program to operate on since the first messages would only be sent after
the vertex program invocation. Hence, this reordering makes sense in practice.

1 def pregel(g: Graph[V,E],
2 vprog: (V, M) => V,
3 sendMsg: Triplet[V, E] => M,
4 gather: (M, M) => M):
5 Graph[V, E] = {
6 def send(t: Triplet[V, E]) = {
7 Iterator(t.dstId, sendMsg(t))
8 }
9 var live = g.vertices.count
10 // Loop until convergence
11 while (live > 0) {
12 // Compute the messages
13 val msgs = g.mrTriplets(send, gather, Out)
14 // Receive the messages and run vertex program
15 g = g.leftJoin(msgs).mapV(vprog)

85



7. Apache Spark GraphX

16 // Count the active vertices
17 live = g.vertices.filter(v=>!v.halt).count
18 }
19 return g
20 }

Listing 7.2: Implementation of Pregel using mrTriplets [XCD+14]

7.4 GraphX optimizations

This section describes some of the special optimizations that are employed in GraphX.

As detailed in Section 7.2, the graph representation used in GraphX contains indexes
for edge and vertex RDDs to allow fast lookups. The immutability of graphs in GraphX
allows such indexes to be shared and reused across structurally equal graphs. This not
only reduces memory consumption but it also accelerates local graph operations like
joins and aggregations with custom RDDs. Graphs resulting from only restrictive graph
structure modifications like edge or vertex removal can also share the index with the
original graph by using the bitmaps stored in the vertex partitions to selectively disable
vertices. As a result, such vertices are no longer considered by operations on the new
graph although they are still present in the shared index [GXD+14].

For the graph-parallel operations, GraphX employs special optimizations in order to meet
the performance of purely graph-parallel systems. Because the mrTriplets operator is the
heart of all graph-parallel functionality in GraphX, speedups in this area have the largest
overall impact. Building the triplets involves a three-way join between an edge and its
source and destination vertices which requires data movement in one of two possible
ways: move edge data to the vertex partitions or move vertex data to the edge partitions.
Since real world graphs have much more edges than vertices and because there is a
chance that an edge partition contains multiple edges adjacent to a single vertex, GraphX
uses the edge partitions as join sites. The shipment of vertex data to edge partitions is
also referred to as vertex replication. To further optimize the process, GraphX utilizes
the routing table to move individual vertices exclusively to edge partitions containing
adjacent edges.

In theory, for iterative graph-parallel algorithms, the mrTriplets operator needs to be
invoked in each superstep. However, GraphX supports two important join optimization
techniques called incremental view maintenance and automatic join elimination that
both exploit the nature graph-parallel applications to reduce the amount of data that
needs to be communicated when constructing the triplets [XCD+14].

As graph-parallel computations converge, more and more vertices become inactive and
change their state. Incremental view maintenance prevents the shipment of unchanged
vertices for constructing the triplets by tracking changes in a separate bitmap [GXD+14]
[XCD+14].

86



7.5. AirQuality Inc. WWAN station placement with Apache Spark GraphX

A graph-parallel computation might not access vertex attributes of both the source
and the target vertex inside the mrTriplets’ map function. Automatic join elimination
analyzes the Java Virtual Machine (JVM) bytecode comprising the map function and
rewrites the three-way join to prevent joining vertices which are not required in the map
function. Thereby, the original three-way join can sometimes be reduced to a two-way
join or eliminated altogether [GXD+14] [XCD+14].

The mrTriplets operator invokes the map function only on triplets containing active
vertices, i.e. vertices that have not yet finished their processing. This requires a sequential
scan over all vertices which is wasteful in late iterations of graph-parallel computations
when a large majority of vertices is usually inactive. For this reason, depending on the
remaining fraction of active vertices, GraphX enables index scanning for iterating over
the active vertices to reduce the overhead [GXD+14] [XCD+14].

7.5 AirQuality Inc. WWAN station placement with
Apache Spark GraphX

This section describes an implementation of the solution to the air quality WWAN station
placement problem statement from Section 5.2 using Apache Spark GraphX. It relies on
the notations introduced in Section 5.2.

Because GraphX does not provide a Java API at the time of writing the Scala API is
used instead to implement this example. In contrast to the implementation of the air
quality WWAN station placement problem using Apache Giraph described in Section 6.3
the GraphX implementation is very compact though it follows the exact same approach.
Listing 7.3 contains the full source code of the implementation.

1 class GraphXCompactnessOptimizer extends CompactnessOptimizer {
2
3 def maximizeCompactness ( graph : Graph ,
4 e x t e n s i o n I t e r : u t i l . I t e r a t o r [ Graph ] ) : Graph = {
5 val conf = new SparkConf ( )
6 . setAppName( "WWAN␣Stat i on ␣ Po s i t i on i ng " )
7 . setMaster ( " l o c a l [ 2 ] " )
8 val sc = new SparkContext ( conf )
9
10 val vertexRdd = sc . p a r a l l e l i z e (
11 JavaConvers ions . c o l l e c t i o nA sS c a l a I t e r a b l e ( graph . g e tVe r t i c e s )
12 . f i l t e r ( v => u t i l . EnumSet . o f (
13 NodeType .SENSOR,
14 NodeType .STATION
15 ) . conta in s ( v . getNodeType )
16 )
17 .map(v => ( v . getId , v . getNodeType ) ) . toSeq
18 )
19 val edges = JavaConvers ions . a sSca laSe t ( graph . getEdges )
20 val edgeRdd = sc . p a r a l l e l i z e (
21 ( edges .map( e => org . apache . spark . graphx . Edge (

87



7. Apache Spark GraphX

22 e . getVertex1 . getId ,
23 e . getVertex2 . get Id )
24 )
25 ++
26 // add r e v e r s e d i r e c t i o n edges
27 edges .map( e => org . apache . spark . graphx . Edge (
28 e . getVertex2 . getId ,
29 e . getVertex1 . get Id )
30 )
31 ) . toSeq
32 )
33
34 var maxCompactness = 0 .0
35 var bestExtens ion : Graph = null
36 for ( ex t ens i on : Graph <− JavaConvers ions . a s S c a l a I t e r a t o r ( e x t e n s i o n I t e r )

↪→ ) {
37 val extensionVertexRdd = sc . p a r a l l e l i z e (
38 JavaConvers ions . c o l l e c t i o nA sS c a l a I t e r a b l e ( ex tens i on . g e tVe r t i c e s )
39 .map(v => ( v . getId , v . getNodeType ) )
40 . toSeq
41 )
42 // no need to add r e v e r s e d i r e c t i o n edges because the ex t ens ion edges
43 // always po in t towards the s t a t i o n v e r t e x and we are not i n t e r e s t e d
44 // in paths s t a r t i n g at s t a t i o n v e r t i c e s anyway
45 val extensionEdgeRdd = sc . p a r a l l e l i z e (
46 JavaConvers ions . a sSca laSe t ( ex tens i on . getEdges )
47 .map( e => org . apache . spark . graphx . Edge (
48 e . getVertex1 . getId ,
49 e . getVertex2 . ge t Id
50 ) )
51 . toSeq
52 )
53
54 val extendedGraph = org . apache . spark . graphx . Graph . apply [ NodeType ,

↪→ Nothing ] (
55 vertexRdd ++ extensionVertexRdd ,
56 edgeRdd ++ extensionEdgeRdd
57 )
58 val compactness = this . compactness ( extendedGraph )
59 i f ( compactness > maxCompactness ) {
60 maxCompactness = compactness
61 bestExtens ion = extens i on
62 }
63 }
64 sc . stop ( )
65 bestExtens ion
66 }
67
68 def compactness ( graph : org . apache . spark . graphx . Graph [ NodeType , Nothing ] ) :

↪→ Double = {
69 val landmarks = graph . v e r t i c e s
70 . f i l t e r ( v => u t i l . EnumSet . o f (
71 NodeType .STATION,

88



7.5. AirQuality Inc. WWAN station placement with Apache Spark GraphX

72 NodeType .ELIGIBLE_NEW_STATION
73 ) . conta in s ( v ._2)
74 ) .map(v => v ._1)
75 . c o l l e c t ( )
76
77 val shor t e s tPaths = ShortestPaths . run [ NodeType , Nothing ] (
78 graph ,
79 landmarks
80 )
81 val shortestPathLengths = shor t e s tPaths . v e r t i c e s
82 . inne rJo in ( graph . v e r t i c e s ) ( ( id , spmap , nodeType ) => ( spmap , nodeType )

↪→ )
83 . f latMap ( key => key ._2 ._1 .map( value => ( key ._1 , key ._2 ._2 , va lue ._1 ,

↪→ value ._2) ) )
84 . keyBy ( t => t ._3)
85 . j o i n ( graph . v e r t i c e s )
86 // f i l t e r out s t a t i o n−to−s t a t i o n paths
87 . f i l t e r ( t =>
88 t ._2 ._1 ._2 == NodeType .SENSOR | |
89 t ._2 ._2 == NodeType .SENSOR
90 )
91 .map( t => ( t ._2 ._1 ._1 , t ._2 ._1 ._4) )
92 // only cons ider the l e n g t h o f the path to the c l o s e s t s t a t i o n
93 . reduceByKey ( ( d i s t1 , d i s t 2 ) => Math . min ( d i s t1 , d i s t 2 ) )
94 .map( t => t ._2)
95
96 val k = shortestPathLengths .max( )
97 val shortestPathSum = shortestPathLengths . sum( )
98
99 val numSensors = graph . v e r t i c e s

100 . f i l t e r ( v => v ._2 == NodeType .SENSOR)
101 . count ( )
102 val max = k ∗ numSensors
103 val min = numSensors
104 val compactness = (max − shortestPathSum ) / (max − min)
105
106 p r i n t l n ( " Shor t e s t ␣Path␣Landmarks : ␣ " + landmarks . l ength )
107 p r i n t l n ( " Shor t e s t ␣Path␣Lengths : ␣ " + shortestPathLengths . count ( ) )
108 p r i n t l n ( " Compactness : ␣(%d␣−␣%.2 f ) ␣/␣(%d␣−␣%d) "
109 . format (
110 max ,
111 shortestPathSum ,
112 max ,
113 min
114 )
115 )
116 p r i n t l n ( " Compactness : ␣ " + compactness )
117 compactness
118 }
119 }

Listing 7.3: Implementation of the compactness optimization algorithm using GraphX

89



7. Apache Spark GraphX

The SparkContext is created at the beginning of the maximizeCompactness method
on line 8 so the same context can be reused across all optimization passes. On the lines
10 - 34 the base graph is created. This involves the filtering of vertices on line 10 so that
only nodes of type STATION and SENSOR remain in the graph. The filtered vertex
collection is passed to the parallelize method provided by the SparkContext that
turns returns an RDD representation of the collection. Like Apache Giraph, GraphX
also respects the edge directions so it is necessary to duplicate each existing edge in the
graph and reverse its direction which is done on lines 20 - 32. Again, the processed edge
collection is converted into an RDD.

The main optimization loop starts on line 36 and pulls graph extensions from the solution
iterator until no more extensions exist. Each edges and vertices of each extension
graph are extracted and converted into RDDs on the lines 37 - 52. Finally, on line
54, the base RDDs and the extension RDDs are combined converted into a GraphX
graph representation which is then passed to the compactness method on line 58. The
returned compactness metric is compared against the currently best compactness metric
observed. The method finally returns the best extension on line 65.

The compactness method starts by extracting all vertices with station and eligible
station node types on lines 69 - 75 to later use them as target vertices aka landmarks in
the shortest path computation. Fortunately, GraphX comes with a built-in shortest path
algorithm that works exactly as described in Section 5.2. The shortest path computation
is invoked on line 77 and returns an RDD containing the shortest paths in multi-map
layout like (s, 〈(t1, l1), (t2, l2), ...〉) where s is the source vertex ID, ti is a landmark vertex
ID and li is the length of the shortest path from s to ti, i.e. Csti . On lines 81 - 94
this result is further processed. First, the vertex properties are joined to the source
vertices on line 82 resulting in the layout (s, 〈〈(t1, l1), (t2, l2), ...〉, ns〉) where ns is the
node type of s. The nested layout is flattened to (s, ns, t1, l1), (s, ns, t2, l2), ... in line 83.
In lines 84 - 85 the vertex details for the landmark vertex are joined resulting in tuples
(s, ns, t1, l1, nt1), (s, ns, t2, l2, nt2), .... Paths in between stations should not be regarded
for the compactness computation so they are filtered out in lines 87 - 90. On line 91 the
tuple layout is prepared for the path minimization by only retaining the source vertex ID
and the path length. Hence, the tuple layout changes to (s, l1), (s, l2). A reduction by
source vertex ID is performed by choosing the minimum path length on line 93. Finally,
only the path length is retained on line 94. The remainder of the compactness method
simply calculates and returns the metric based on the formula presented in Section 5.2.

90



Part III

Stream Processing

91





CHAPTER 8
Stream Processing Principles

While the main application of batch processing and graph processing lies in analytical
computation and query evaluation over an existing, limited dataset, stream processing,
on the other hand, is concerned with acting on unbounded streams of data entering
a system. It is an increasingly important requirement for modern applications to act
on incoming data in a timely manner, for example to trigger alerts in real time based
on certain stream patterns or to filter out irrelevant aspects before persisting the data.
Similar to batch processing and graph processing, it is infeasible to perform large scale
stream processing on a single node due to technical limits. For this reason, distributed
stream processing frameworks are capable of leveraging multiple cluster nodes for their
purpose.

In contrast to the fields of batch processing (MapReduce) and graph processing (Pregel),
no dominant, general purpose, high-level programming model for stream processing has
emerged so far [ZDL+12]. Thus, existing frameworks offer different and often incompatible
paradigms like DStreams in Spark Streaming or topologies of spouts and bolts in Storm
to express stream processing tasks. However, there are common underlying principles,
characteristics and limitations that are important to be aware of in order to understand
the design of practical frameworks. This chapter attempts to provide an overview of
the essential aspects in stream processing systems or data stream management systems
(DSMS), as they are commonly referred to in the research literature.

8.1 Data streams
This section formalizes the notion of a data stream and points out important differences
to traditional datasets.

A data stream S is a possibly infinite bag (multiset) of elements (s, τ), where s is a tuple
of the schema of S and τ ∈ T is a timestamp associated with the element. (s, t) denotes

93



8. Stream Processing Principles

that element s arrives on stream S at time τ [AW04].

A relation R is a mapping from T to a finite but unbounded bag of tuples belonging
to the schema of R. R(τ) denotes the set of tuples in R at instant τ . This definition is
different from the traditional relational one which does not have a notion of time [AW04].

Data streams differ from traditional stored data in important points [BBD+02]:

• Data elements arrive online

• The order in which the data elements arrive is unpredictable and uncontrollable

• Streams are unbounded

• Data points that have been processed are usually either dropped or persisted and
are not easily accessible any more

However, stream processing does not entirely preclude stored data because stream
elements frequently need to be enriched by joining them with e.g. traditional relational
data to process them in a meaningful way [BBD+02].

8.2 Querying data streams

In general, there are two types of queries that can be applied to data streams [BBD+02]:

• One-time queries are evaluated once on a bounded snapshot of stream elements
that were received in the past. This class of queries is comparable to traditional
relational queries expressible in SQL, for example.

• Continuous queries on streams run forever and produce new or updated results
over time as new elements arrive on the stream. Output produced by such queries
can be stored or can form a new data stream.

Since continuous queries are more interesting in the context of stream processing, the
remainder of this section focuses on this type of query.

Another discrimination of queries can be made with respect to the definition time of the
query [BBD+02]:

• Predefined queries are defined prior to the arrival of stream elements and can be of
both one-time or continuous type.

94



8.2. Querying data streams

• Ad-hoc queries are created dynamically at any point during the lifecycle of stream
processing and can again be of either one-time or continuous type. This query
category poses big challenges to the design of stream processing systems because the
computation of the precise result could possibly require stream elements that have
already been received and discarded by the system. However, for many applications
it is sufficient to apply ad-hoc queries to future data only. Alternatively, systems
might periodically store compacted summaries of the received data that allow the
subsequent answering of a wide range of ad-hoc queries.

Since data streams are generally unbounded in size the computation of exact query
results might require unbounded memory space as well. This could either be due to
an unbounded result size or because of an unbounded amount of stream elements that
need to be buffered in order to compute the result. The fall back to off-memory storage
is impractical because of the high throughput requirement of usual stream processing
systems. There are two common approaches to deal with this issue. One way is to restrict
the expressiveness of queries such that a bounded answer size or a bounded buffer size
can be guaranteed. Alternatively, the requirement for the query result precision can be
relaxed and the query could return approximate results [BBD+02] [BW01]. For more
details about the memory requirements of continuous queries refer to Section 8.4.

An intuitive technique for approximate query answering are sliding windows that restrict
the scope of a query to a specific range based on time or sequence numbers. For example,
by choosing a window size of 1 day, a continuous query would only consider stream
elements received in the last 24 hours and any older data would be discarded. In many
real world applications scenarios, such a restriction makes sense because recent data tends
to be more informative than old data. However, the use of sliding windows presumes
that stream elements arrive in chronological order which is not necessarily the case in
practice due to environmental conditions like network latency [BBD+02]. Moreover, this
method relies on window sizes small enough so that the containing stream elements fit in
memory. The window size may be time-based, specifying to only include elements within
a certain time range, or row-based, specifying to include a fixed number of elements that
have arrived most recently [ABB+04].

Blocking query operators like aggregations or sorting pose special challenges to stream
processing systems as they need to consume the entire input before producing any output.
As such, they do not fit well with the stream computation model. Depending on the
placement of blocking operators in the query tree, there are different approaches to
mitigate this conceptual incompatibility [BBD+02].

When a blocking operators is placed at the query root, it is the last building block that
is invoked to produce the final query result. As long as the operator produces a small
amount of output, updates to the query result can be streamed out as new input arrives.
This is usually the case for aggregations, for example. However, when the output of the
blocking operator is larger in size, continuously streaming a new versions of the output

95



8. Stream Processing Principles

Operator Blocking Unbounded state
select No No
project No No
dupelim No Yes
join No Yes
merge No No
intersect No Yes
difference Yes Yes
group-by Yes Yes
sort Yes Yes

Table 8.1: Non-exhaustive assembly of query operators and their blocking or unbounded
stateful nature [TMSF02]

would be too costly. In cases like sorting, for example, applying incremental updates to
an output data structure is a more efficient way of realizing the operator [BBD+02].

These approaches are inadequate for blocking operators that occur as intermediate nodes
in the query tree because their output can change when new input arrives and thus,
successive operators cannot rely on stable input [BBD+02]. One possible solution is
to replace blocking operators by approximative non-blocking versions. For example,
stream local sorting operators have been suggested to approximate a complete ordering of
stream elements [RRH99]. Another approach is to enrich data streams with punctuations
that provide certain guarantees to consuming operators with regard to the remaining
stream content [TMSF02]. For example, when grouping by a stream element field year,
a punctuation year > 2012 indicates that the remaining stream does not contain any
more elements with a year smaller or equal to 2012. A group by operator can use this
information to emit results for the years 2012 and before.

Contrary to blocking operators, unbounded stateful operators do not need to consume the
complete input to produce precise results but instead, they require unbounded memory
for state tracking in order to perform their function. For example, the purpose of the
dupelim operator is to remove duplicates from a stream. In order to do so, it needs to
store all stream elements that it ever witnessed which requires an unbounded amount of
memory for an unbounded stream. Again, a punctuated stream can help to mitigate the
theoretical unbounded memory requirements. For example, when applying the dupelim
operator to the previously illustrated data stream containing year fields, the same
punctuation year > 2012 can trigger the purge of operator state for the years 2012 and
before [TMSF02].

Timestamps in stream elements can be either explicit or implicit. Explicit timestamps
are stream element data attributes provided by the stream data source. This is usually
the case for real-world events that take place at a specific time. On the other hand,
implicit timestamps are provided by the stream processing system when the incoming
tuples do not have any timestamp attribute attached or when the point in time associated

96



8.3. Load management

with a tuple is is not important for further processing. The disadvantage of explicit
timestamps is that the ordering cannot be guaranteed as tuples may not arrive in the
order of their timestamps. This poses a problem for timestamp based sliding window
computations. However, as long as the stream is almost sorted because the order of the
arriving tuples roughly corresponds to the chronological order, limited buffering and
reordering of incoming tuples is sufficient to correct the order [BBD+02].

Nevertheless, a stream processing system needs to know when buffered elements can
finally be propagated further. For this purpose, the use of heartbeats has been proposed
[SW04]. This concept is similar to punctuations as the stream is enriched with heartbeat
elements τ . The receipt of such a heartbeat guarantees that all subsequent tuples have
a timestamp greater than τ . Heartbeats can either be sent by the stream source or by
the stream processing system via an algorithm that takes environmental parameters like
clock skew and network latency into account to calculate a bound for element buffering.
These parameters can be supplied manually but they may also be estimated based on
previous stream data received [SW04].

Timestamp related problems also arise when merging or joining multiple streams to
form a new stream because it is unclear what timestamp to attach to the joined stream
elements. A simple approach is to associate each element with an implicit timestamp
corresponding to the time of its creation. The advantage is that the resulting stream is
implicitly ordered by timestamp. However, this order is now implementation dependent as
it is influenced by the algorithm of how the underlying streams are joined. Consequently,
this prevents deterministic reasoning about the query semantics [BBD+02].

Another approach is to leave the appointment of the timestamp to use for joined stream
elements to the user as a part of the query definition. Clearly, the drawback in this case
is that the resulting stream is unordered and needs to be buffered and sorted if an exact
order is required for further processing. As already pointed out, such a reordering is only
possible if the join inputs are bounded by a sliding window [BBD+02].

8.3 Load management

Stream processing systems are exposed to varying load when handling continuous queries.
Due to environmental factors like changing network latencies or capacity changes at
stream sources, the rate of incoming stream elements may vary over time. A skewed ratio
between the rate of incoming stream elements and the time it takes for a continuous
query to process the elements leads to overloading of the node running the query. This
section covers techniques that can be used to deal with such situations.

While sliding windows provide a means to limit the memory requirements for continuous
queries, similar approximative query answering techniques can be applied to reduce load.
For illustration, suppose an incrementally maintainable data structure that is operated
on by the query and that supports two operations: update(element) and compute.
The update operation adds a new stream element to the data structure and the compute

97



8. Stream Processing Principles

operation computes the query result based on the current state of the data structure.
There are no issues as long as both operations are fast relative to the rate of incoming
stream elements but recall the two problematic scenarios:

1. The rate of incoming stream elements is too high. This is equivalent with the
update operation that is called for each arriving stream element being too slow.

2. The update operation is fast but the compute operation is slow.

In scenario 1, sampling can be applied to skip a fraction of the incoming elements in order
to keep the pace. As a consequence, query results are an approximation only [BBD+02].

On the other hand, to mask slow compute operations, batch processing can be applied.
This way, the compute operation is not invoked for every stream element added to the
data structure which results in batches of new stream elements processed at once in
regular intervals. As long as the update operation is invoked for every stream element,
this technique results in accurate query output. However, because the output comes with
some latency it is also considered approximative [BBD+02].

Synopsis can often server as an alternative technique to sampling and batch processing.
The idea is to create compacted summaries from incoming stream elements in order to
reduce the computation per element [BBD+02] [BW01].

Obviously, the above techniques can arbitrarily be combined in theory. Figure 8.1 provides
an illustrative comparison of sampling, batch processing and synopsis. Note that the
stream elements 2 and 4 have been dropped by sampling in Figure 8.1a. In contrast,
batch processing produces less outgoing elements since it performs result computation
for a set of buffered elements. In Figure 8.1b, just 2 results have been produced by the
operator and element 5 has been buffered. The next output is produced once element
6 has been received. The idea of synopsis is visualized in Figure 8.1c with a separate
Syn stage that buffers and summarizes elements before it streams the summaries to the
query operator. Result r1 is based on summary s1 which is a summary of inputs 1 and 2.
Summary s2 is currently being streamed to the operator and input element 5 has been
buffered to be summarized with element 6 upon its arrival.

Load shedding is a technique similar to sampling since it drops tuples to reduce load. As
such, this technique also results in approximative query results. While sampling is usually
part of the query processing, load shedding is applied by the stream processing system at
an earlier point and transparent to queries consuming a stream. This allows the dynamic
adjustment of shedding strategies in order to adapt to changing loads. When multiple
nodes take part in query processing in distributed stream processing systems, transparent
load shedding gains importance because coordination is required among all participating
nodes. The reason for this is that different nodes may differ in terms of capacity and
thus, load shedding decisions at one node can lead to over- or underutilization at other
nodes. Hence, load shedding in distributed environments without global coordination

98



8.4. Memory requirements

Op678910
r3

5
r2

3
r1

1
(a) Sampling with probability 0.5

Op

5

678910

Buffer

r2

3, 4
r1

1, 2

(b) Batch processing with batch size 2

Syn
s2

3, 4
Op

5

678910

Buffer

r1

s1

(c) Synopsis, producing summaries for every 2 elements

Figure 8.1: Illustration of load management techniques. The boxes represent stream
elements. The lower half of divided boxes indicates the original stream elements which
are used to compose the current element.

leads to suboptimal shedding an arbitrary changes in query output quality [CÇC+02]
[MWA+02] [TZ06] [TÇZ07].

8.4 Memory requirements
As mentioned earlier, continuous queries on unbounded data streams potentially need to
consume unbounded memory to produce correct results and one common approach to
mitigate this problem is to limit the expressiveness of queries. This section elaborates on
query characteristics that lead to unbounded state requirements. It further investigates
stream characteristics that can be exploited to limit the memory consumption.

A notation for continuous queries closely related to relational algebra is first defined for
later use in illustrative examples.

• π - the duplicate-eliminating projection

• π̇ - the duplicate-preserving projection

• σ - the selection operator

99



8. Stream Processing Principles

Query Bounded-state computable
Π = π Π = π̇

Q1 ΠA(σA>10(S)) No Yes
Q2 ΠA(σA=D(S × T )) No No
Q3 ΠA(σA=D∧A>10∧D<20(S × T )) Yes Yes
Q4 ΠA(σB<D∧A=10(S × T )) Yes No
Q5 ΠA(σB<D∧C<E∧A=10(S × T )) No No
Q6 ΠA(σB<D∧C<E∧B<E∧C<D∧A=10(S)) Yes No

Table 8.2: Examples of continuous queries along with indications about their bounded
memory computability depending on duplicate eliminating and duplicate preserving
projection [ABB+04]

• × - the cross product operator

Π is used as a placeholder for either π or π̇. Consider the example queries listed in Table
8.2 that use two data streams S(A,B,C) and T (D,E) [ABB+04].

Q1 is a simple filter query on a single stream. For duplicate-preserving output, the query
can check each element independently and output it if A > 10, hence no state needs
to be maintained. In the duplicate-eliminating case, the query needs to keep track of
all tuples with A > 10 that it has output so far. Thus, there is no finite bound to the
consumed memory.

Q2 joins stream S and T on the equality of attributes A and D. For the duplicate
preserving case it is necessary to store every received attribute A and D to correctly
evaluate the join. Note that storing the whole tuple is not required because the final
projection only selects attribute A. With duplicate-elimination elements A and D
matched once can be removed from memory but nevertheless, there is no specific bound
on how long elements are stored in memory.

Q3 is similar to Q2 as it performs an equi-join of streams S and T on attributes A and
D but in addition, it includes more restrictive selection constraints. Thus, it is possible
to bound the state that needs to be held for both streams irrespective of duplicate-
elimination. For both attributes A and D only values in the range [11; 19] need to be
stored.

Q4 joins stream elements on the condition B < D but only if A = 10. To evalu-
ate the duplicate-eliminating projection it is sufficient for the query to store Bmin =
min{s∈S(τnow)|s.A=10}(s.B) and Dmax = maxt∈T (τnow)(t.D) where S(τ) and T (τ) denote
the set of stream elements received on streams S and T until time τ and τnow refers to
the current time. On arrival of a new tuple tnew on stream T it is easy to check if any
tuple received on stream S in the past is joining with tnew by evaluating tnew.D > Bmin.
Likewise, for any new tuple snew on stream S it is possible to check for past match-
ing tuples on stream T by evaluating snew.B < Dmax. In contrast, for answering the

100



8.4. Memory requirements

duplicate-preserving projections correctly, it is necessary to know the exact number of
past matching tuples which cannot be done in finite memory without further constraints.

Q5 extends Q4 by adding an additional predicate C < E. On first sight, it might seem
apparent that further restricting the query should not worsen the memory requirements.
However, when taking a closer look it becomes clear that applying the same method
for the new predicate as in Q4 does not lead to correct results because it is invalid
to independently compare the aggregates for S.B/T.D and S.C/T.E since it is not
guaranteed that matching aggregates stem form the same tuple.

Q6 further extends Q5 by two more predicate B < E and C < D. In combination with
the old predicates, the requirements for a join are now:

• C < D and B < D

• C < E and B < E

• A = 10

Since both C and B must now be lower than bothD and E it is valid to use a strategy anal-
ogous to that ofQ4. The query needs to storeBCmin = min{s∈S(τnow)|s.A=10}(max(s.B, s.C))
and DEmax = maxt∈T (τnow)(min(t.D, t.E)). With these aggregations, the handling of
arriving element works the same way as in Q4 and also the inability of providing memory
bounds for the duplicate-preserving projection remains.

The above examples show that determining the bounded memory computability of
continuous queries is nontrivial. Yet, an algorithm has been proposed that is capable of
determining bounded state computability for conjunctive queries with optional aggregation
and which also outputs an appropriate evaluation strategy [ABB+04].

Apart from query characteristics also stream-specific properties can be exploited to limit
memory requirements of otherwise unbounded state queries. For example, techniques
like punctuations and timestamps as mentioned in Section 8.2 are based on this idea as
they provide certain guarantees to queries with respect to the arrival of stream elements.
Such assertions can be used to construct bounded state evaluation strategies.

The concept of k-constraints is inspired by the same motivation [BSW04]. In this model,
k serves as adherence parameter that specifies the degree to which a stream satisfies
the strict interpretation some constraint. Babu et al identify 4 types of constraints
that are useful for memory reduction: stream-based referential integrity on many-one
joins, ordering and clustering. Each type is discussed briefly in the following assuming
row-based parameter k. However, the same principle can be applied with time-based
models.

A many-one join is a join of multiple elements in a stream S1 with unique join elements
in another stream S2. I.e. one element of S1 joins with at most one element in S2 but
multiple elements in S1 may join with the same element in S2. The referential integrity

101



8. Stream Processing Principles

constraint with adherence parameter k for a stream element s1 ∈ S1 and its unique
joining element s2 ∈ S2 is defined such that s2 arrives within k elements on S2 after s1.
For k = 0 this constraint is called strict referential integrity as s2 is assumed to always
arrive before s1. The application of this constraint allows the query processor to buffer
elements from S1 for at most k tuple arrivals on S2 [BSW04].

As mentioned in Section 8.2, the out-of-order arrival of elements on a stream with
defined order can be problematic. The ordered-arrival constraint addresses this issue.
It guarantees that for any element s in stream S and for all elements x that arrive at
least k + 1 elements after s, x ≥ s holds. Hence, this constraint limits the buffer size for
reordering elements [BSW04].

Sometimes there is no ordering relation on stream elements but it is often the case that
elements arrive clustered on specific attributes. For example, assume some sensor units
deployed in different timezones and all units continuously send data for some hours per
day to a single data center. While there is no defined ordering for data elements within a
timezone, they are going to roughly arrive clustered by timezone. The clustered-arrival
constraint is therefore similar to the ordered-arrival constraint and guarantees for two
elements in stream S belonging to the same cluster at most k elements belonging to
different clusters arrive in between them. This constraint can be used to limit the buffer
size for continuous queries that group by cluster, for example [BSW04].

The concrete value for k is implementation dependent and determining it manually would
be unmanageable. Moreover, the value may change over time along with environmental
conditions like network latency. However, it is possible to determine the appropriate values
algorithmically on the fly by continuously analyzing incoming stream data [BSW04].

8.5 Fault-tolerance
This section discusses fault tolerance strategies in distributed stream processing systems.
Such systems typically distribute continuous query handling by placing query tree
operators on different nodes in order to facilitate the processing of high volume streams.
Hence, the failure of individual nodes can cause downstream query operators to not
receive input any more and consequently, the query as a whole seizes to produce output.
In order to provide high-availability of continuous queries, a distributed stream processing
system must therefore employ precautions to gracefully react to node failures.

Possible solutions involve the use of backup servers to take over the processing when
primaries fail. However, in order to guarantee the same outcome of a query regardless of
failures, backup and primary serves need to be synchronized so that no stream elements
are duplicated. However, this involves high runtime overhead and is neither always
practical nor required in every application. Thus, it makes sense to support various
recovery strategies with nuanced guarantees to trade runtime overhead against recovery
consistency [HBR+05] [BBMS08].

To give an example, Hwang et al [HBR+05] suggest three recovery levels:

102



8.6. Running example: Real time air quality statistics

Time range Step size
Last hour 5 minutes
Last day 2 hours
Last 7 days 12 hours

Table 8.3: Required time range and step size aggregates

• Precise recovery provides fully consistent recovery.

• Rollback recover prevents information loss but the output in the failure case may
differ from output without failure because duplicated stream data is possible.

• Gap recovery is the weakest recovery as some data may be lost during recovery.

When failing nodes cannot be replaced by replicas there are still scenarios where query
processing may continue with incomplete information. For example, when a query
operator like a join consumes multiple streams and some of them fail, the query might
still be able to produce meaningful output. Balazinska et al [BBMS08] describe a proposed
system that marks outputs created with incomplete inputs as tentative. Such output
may be corrected later on when missing upstream nodes have been fixed.

8.6 Running example: Real time air quality statistics
The following problem is used as illustrative real world example in the course of discussing
Apache Storm and Apache Spark Streaming.

Users can view rich air quality statistics for specific regions and time ranges via the
website of AirQuality Inc. It is a requirement that a large number of users must be
able to view the statistics concurrently and that real time data must be incorporated as
well. Therefore, the incoming streaming data needs to be pre-aggregated for all possible
combinations of time ranges, regions and air quality indicators to allow fast data access
and short response times.

Among statistical figures like minimum, maximum and average the website should also
support the display of trend diagrams. Hence, sub-aggregates need to be stored in regular
intervals as defined in Table 8.3 that serve as steps for rendering the diagrams.

The solution implementations are designed to deliver timely output for all time ranges
while minimizing the memory consumption for tuple buffering. For minimum and
maximum over the past hour, the tuple stream is aggregated over a 1 hour sliding window.
While this approach works fine for relatively short time ranges it would most certainly not
work for a time range of 1 week or even 1 day, depending on the rate of incoming tuples.
The reason for this is that all stream elements need to be buffered for the duration of
the window. With a rate of 100 tuples per second this would mean that over 60 million
messages need to be held in memory for a sliding window over 1 week. For this reason,

103



8. Stream Processing Principles

5 3 2 1 4

1 hour average

5 3 2 1 4

2.75

2.50
1 day average

2.6253 6=

Figure 8.2: Invalid use of sliding window results for average computation

the min/max aggregations over 1 day and 1 week do not directly consume the raw source
tuple stream but instead, the elements are received from a derived 1 hour aggregate
stream and a 1 day aggregate stream, respectively. It is important to note that the
units that produce the aggregate streams are designed to only emit state changes, i.e.
for received tuples that do not change the current min/max, no new tuples are emitted.
Assuming an hourly min/max change for the 1 day range, the number of tuples that
need to be buffered for the 1 week sliding window decreases to just 84. This approach
does not impact the timeliness of results produced by the 1 day or 1 week aggregation
unit since any change produced by the 1 hour aggregator is immediately propagated to
the downstream aggregators.

While the above strategy works well for min/max aggregation, it cannot be adopted for
computing sliding averages because this would cause repeated inclusion of the same tuples
into the average calculation when using sliding windows leading to incorrect results. In
Figure 8.2, the second member of the 1 day average window is partly based on the same
tuples as the first member which results in an incorrect average aggregation for the 1 day
window.

For generating a stream of sliding averages in a timely and precise manner there is no way
around storing the entire set of received tuples for the observed time range. While it is
possible to produce timely but approximative results with reduced memory consumption
using statistical tools such as stratified sampling, it does not seem to be desirable for the
application presented in this section. Typically, the longer the time range the larger the
set of values included in the range. Additionally, the more values an average computation
includes the less impact single values have on the overall outcome even in cases of extreme
outliers. Hence, for average aggregations over the range of days or weeks, it does not
make much of a difference if results are produced once a minute or once an hour because
they will likely be very similar. For this reason, the suggested solution chooses to abandon
timely average results in favor of memory consumption and to produce precise results
once an hour.

For this purpose, the solutions compute the 1 hour average over a tumbling window. This
is a specialization of a sliding window with a sliding interval equal to the window size and
ensures that adjacent windows do not contain overlapping elements. However, this also

104



8.6. Running example: Real time air quality statistics

5 3 2 1 4 9 11 7Tumbling Window

4 1.5 6.5 9 4

4 1.5 6.5 9 2.75

4 1.5 6.5 9 6

4 1.5 6.5 9 10.5

Sliding Window

Figure 8.3: Sliding window over tumbling window results for reduced memory average
computation

means that a tumbling window is not continuously evaluated but only once new elements
exceed its bounds. For example, a 1 hour tumbling window starting at time 01:00 is
only evaluated once an element with timestamp greater or equal to 02:00 is encountered.
The 1 day and 1 week average aggregations are then performed using a sliding window
with the respective duration over the 1 hour tumbling window result stream. Since the
tumbling window only emits one new element per hour, the amount of stream data that
needs to be buffered in the successive sliding window is negligible. This approach is also
illustrated in Figure 8.3. When the first tumbling window result is ready, the sliding
window begins and emits the first result equal to the tumbling window result. Once the
next tumbling window is evaluated, the sliding window produces a combined output.

The solutions to this problem are described in more detail in Sections 9.3 and 10.3 for
Apache Storm and Apache Spark Streaming, respectively.

105





CHAPTER 9
Apache Storm

Storm is a distributed stream data processing system that was initially created by
Nathan Marz at BackType. After Twitter acquired BackType in 2011, Storm was further
developed and put to use within Twitter. Finally, Storm became an Apache top-level
project in 2014 [TTS+14] [stoa].

The top-level abstraction in Storm are topologies. A topology is a directed graph
representing the flow of stream tuples. Edges stand for data flow and vertices represent
one out of two types of components: spouts and bolts. Spouts serve as stream sources and
typically pull data from third party queuing software like Apache Kafka 1. On the other
hand, bolts perform the actual processing of stream tuples and may produce new stream
elements as output. One can think of a topology as an execution plan for a continuous
query where the bolts represent query operators [TTS+14].

Figure 9.1 contains a view on the high level system architecture of Storm. Topologies are
executed on a cluster of worker nodes running worker processes. Each worker process
represents a JVM instance that runs one or more executors, each executing a set of tasks
that represent a single component, i.e. a spout or a bolt. There is a single master node,
called Nimbus, which is comparable to the JobTracker in Hadoop as it distributes and
coordinates the execution of topologies on the available cluster nodes. It creates at most
one worker process per node and topology and each worker process only executes tasks
for the same topology. Apart from the executors, a worker process runs a worker receive
thread and a worker send thread that handle the receiving of all ingoing tuples destined
for any of the tasks executed in the worker process and the sending of all outgoing tuples
produced by those tasks.

Each worker node runs a supervisor program that acts as an agent for Nimbus. The
supervisor uses a timer to periodically schedule events that trigger three types of synchro-
nization actions. Regular heartbeats are sent to the Nimbus to signal the liveness of the

1https://kafka.apache.org/

107

https://kafka.apache.org/


9. Apache Storm

Worker Node

Supervisor

Worker Process
Executor

Task

Nimbus

Zookeeper

Figure 9.1: Storm system architecture

worker node. Upon a synchronize supervisor event, any assignment changes for existing
topologies or the creation of new topologies is handled. The synchronize process event
triggers the health status check of worker processes running on the same node [TTS+14].

Spouts or bolts are instantiated as sets of tasks running in executors across a cluster. An
executor corresponds to a single JVM thread and only runs tasks of the same component.
The number of tasks created for individual components can be defined by the user and
never changes throughout the lifetime of a component. A component’s parallelism is
adjustable at runtime by altering the number of executors per component. The message
flow inside worker processes is illustrated in Figure 9.2. Each executor has dedicated in
and out queues assigned. The receive thread of a worker process inserts arriving tuples
into the appropriate in queue of the executor running component targeted by the tuple.
Tasks consume tuples from this queue and insert any outgoing tuple into the out queue
of their containing executor. Apart from the user logic thread that executes component
logic, each executor runs a separate send thread that consumes tuples from the out queue
and moves them to a global transfer queue that summons the outgoing tuples produced
by all executors of a worker process. The worker send thread is responsible for consuming
the contents of the global transfer queue and propagates the tuples to their destination
worker process [stof].

As detailed above, stream data is shuffled from producer spouts/bolts to consumer bolts.
Data shuffling follows a specific partitioning strategy that is customizable by that user.
However, Storm pre-defines the following strategies [TTS+14]:

• Shuffle - partitions stream tuples randomly

• Fields - partitions stream tuples based on a set of tuple fields

• All - replicates all stream tuples to all consumer tasks

• Global - sends all stream tuples to a single consumer task

• Local - sends tuples to the consumer task running in the same executor

108



9.1. Tuple processing guarantees

Worker Receive
Thread

Executor 1

Executor 2

Executor 3

User Logic
Thread

User Logic
Thread

User Logic
Thread

Send Thread

Send Thread

Send Thread

Global Transfer
Queue

Worker Send
Thread

Figure 9.2: Stream tuple flow inside worker processes

Users submit storm topologies to the Nimbus for deployment on the Storm cluster. A
topology is represented as Apache Thrift 2 object and can thus be created with any
programming language [TTS+14].

9.1 Tuple processing guarantees
Storm basically supports two types of tuple processing semantics: at-least-once and
at-most-once. At-least-once semantics ensures that each stream tuple is processed at
least once which implies that a tuple might be processed multiple times. In contrast, at-
most-once semantics makes no guarantees that a tuple is processed at all but it certainly
is not getting processed multiple times. User applications that use Storm output as well
as Storm component implementations need to be designed with the concrete processing
semantics in mind [TTS+14].

Storm relies on the delivery semantics provided by transactional spout stream sources to
provide the mentioned processing guarantees. To enforce at-least-once semantics, Storm
must ensure that each incoming tuple is fully processed, i.e. the initial tuple itself, also
called spout tuple, as well as any intermediary tuples created from the spout tuple have to
be processed. In principle, this involves the tracking of any derived tuple and its lineage
to the spout tuple as it traverses the topology. Whenever a tuple leaves the topology a
backflow mechanism would need to acknowledge the processing of lineage tuples. This
leads to the spout tuple being acknowledged last at which point an acknowledge must be
sent to the transactional stream source to prevent the tuple from being resent. Figure
9.3 illustrates this idea. Since tuple B and C have been acknowledged, their common

2https://thrift.apache.org/

109

https://thrift.apache.org/


9. Apache Storm

S

A
B

C

D
E

F

X
X

X

X
Figure 9.3: Backflow mechanism for acknowledging tuples, S is the spout tuple

ancestor A is acknowledged as well. On the other hand, tuple D cannot be acknowledged
because an acknowledgment for tuple E is outstanding. Considering that every spout
tuple might trigger the creation of thousands of derived tuples, keeping track of each
tuple’s lineage would become very memory intensive. This is the point where one of the
major breakthroughs introduced by Storm comes into play.

A storm topology is augmented with a set of separate Acker tasks that track each spout
tuple and notify the originating spout task when a tuple completion is registered. Storm
assigns a random 64-bit ID to each new tuple, whether it is originating from the spout or
created in a bolt. When a spout task emits a tuple it determines a responsible Acker
task based on mod hashing of the tuple ID. It then sends a message to the Acker task
containing the spout task ID and the tuple ID. The Acker task maintains a map data
structure that maps a spout tuple ID to the originating spout task ID and a corresponding
ack value of small constant size that is used to keep track of the state of the tuple tree
irrespective of its size. The ack value is the result of an XOR operation over all tuple
IDs that have been created or acknowledged so far and it is initialized with 0. Each
tuple ID is included twice in the XOR aggregation, once at the time of creation and
once again when it is acknowledged. This results in the ack value eventually becoming
0 once all tuples have been acknowledged. Due to the random selection of tuple IDs
from the ID space, there is a tiny chance of the ack value becoming 0 before all tuples
have been acknowledged. Example 8 illustrates the algorithm. In practice, this error rate
is negligible since it statistically only happens after 50 million years of operation with
10.000 tuple acknowledgments per second. Moreover, such an error causes harm when
the processing of the respective spout tuple fails because in this case, no resubmission of
the tuple would take place [TTS+14] [stod].

Example 8 This example illustrates the application of XOR on the ack
value in Storm Acker tasks to track the acknowledgment status of tuple trees.
Assume a tuple tree as shown in Figure 9.4 containing the assigned tuple IDs

110



9.1. Tuple processing guarantees

Event XOR operation New ack value
Initialization 0000
NEW(S) 0000⊕ 1110 1110
NEW(A) 1110⊕ 1011 0101
NEW(B) 0101⊕ 1001 1100
NEW(C) 1100⊕ 0110 1010
NEW(E) 1010⊕ 0100 1110
NEW(D) 1110⊕ 1010 0100
ACK(C) 0100⊕ 0110 0010
ACK(D) 0010⊕ 1010 1000
ACK(A) 1000⊕ 1011 0011
NEW(F ) 0011⊕ 0010 0001
ACK(E) 0001⊕ 0100 0101
ACK(F ) 0101⊕ 0010 0111
ACK(B) 0111⊕ 1001 1110
ACK(S) 1110⊕ 1110 0000

Table 9.1: Sequence of tuple creations and acknowledgments and the change of the ack
value triggered by them

S

A
C

D

B
E

F

1011

1001

0110

1010

0100

0010

1110

Figure 9.4: Exemplary tuple tree with tuple IDs

and, for the sake of compactness, further assume that the tuple ID space is
shrunk to 4 bits instead of 64 bits.
Table 9.1 contains an arbitrary sequence of tuple creation and acknowledgment
events in the example tuple tree and it describes the triggered updates to the
ack value. Note that the ack value is indeed reduced to zero after the final
acknowledgment of spout tuple S.

When disabling the acknowledgment mechanism described above, Storm can only guar-
antee at-most-once semantics by immediately sending an acknowledgment message to the

111



9. Apache Storm

stream source when a tuple is received in the spout. This way it is guaranteed that the
same tuple is not retransmitted by the stream source. When an error happens during
tuple processing in the Storm topology, the tuple is lost [TTS+14].

A Storm extension with a more high-level API called Trident exists that also supports
exactly-once semantics. With Trident, stream tuples are not processed one-by-one but
instead, small batches of stream elements called transactions are logically processed at
once. Trident provides a batch processing interface similar to Apache Spark to express
batch computations that are applied to each transaction. To enable aggregates across
transactions, Trident allows the persistence of state and it guarantees exactly-once
semantics for updates to this state. It does so by issuing a unique transaction ID for each
transaction and by storing the transaction ID in the state along with the state updates.
This allows Trident to prevent duplicate updates by checking for existing transaction IDs
in the state. However, both a transactional store for the state and a transactional spout
is required to facilitate exactly-once semantics [stoe].

Note that the exactly-once semantics provided by Trident has a different meaning than
the tuple processing guarantees provided by Storm as the exactly-once guarantee only
relates to state updates.

9.2 Fault tolerance

There are a number of failure modes that can impact the functionality of a Storm cluster.
However, Storm is designed to resist and isolate such failures in order to minimize the
impact on ongoing operations.

When a worker process terminates unexpectedly, the supervisor process running on the
same node restarts the failed worker process. Moreover, a worker process regularly sends
heartbeat messages to the Nimbus to signal its liveness. Thus, when a worker process
fails to be restarted, the Nimbus notices a timeout and reassigns the worker process to a
different node. This mechanism also applies when a whole worker node fails. In this case,
all worker processes that were running on the failed node are reassigned [stob].

In order to cater for failures in the supervisors or in the Nimbus, a continuous process
monitoring needs to be setup for these components that is responsible for immediately
restarting a process if it terminates. All cluster state is stored in a Zookeeper cluster
or on disk so the supervisor and the Nimbus are practically stateless services. Hence,
no state needs to be recovered on failure. Crucially, a failure of the Nimbus does not
impact running topologies. This is different from Classic Hadoop, for example, where a
failing JobTracker causes all currently running Hadoop jobs to be terminated. However,
in absence of a running Nimbus process, no new topologies can be submitted and worker
node failures are not handled any more [stob].

112



9.3. The aggregation of streaming air quality data with Apache Storm

9.3 The aggregation of streaming air quality data with
Apache Storm

This section describes a solution to the problem statement from Section 8.6 using Apache
Storm.

For producing stream data, the solution relies on the spout implementation for producing
randomized tuples of the form 〈indicator, region, value, timestamp〉. In reality, the spout
would pull these tuples from an external data source but this does not impact the general
function and applicability of the presented solution. A spout is defined by implementing
the org.apache.storm.spout.ISpout interface or one of its supplied subtypes. The
essential part of the spout implementation is the nextTuple method as shown in listing
9.1 that is called by Storm and produces the next tuple in the stream.
public void nextTuple ( ) {

St r ing r eg i on = reg i on s . get (ThreadLocalRandom . cur rent ( ) . next Int ( r e g i on s
↪→ . s i z e ( ) ) ) ;

int i nd i c a t o r I dx = ThreadLocalRandom . cur rent ( ) . next Int (
↪→ a i rQual i tyInd icatorNames . s i z e ( ) ) ;

S t r ing indicatorName = airQual i tyInd icatorNames . get ( i nd i c a t o r I dx ) ;
I n t eg e r indicatorMaxVal = a i rQua l i t y I nd i c a t o r s . get ( indicatorName ) ;
Double nextVal = ThreadLocalRandom . cur rent ( ) . nextDouble (0 ,

↪→ indicatorMaxVal + 1) ;
Values tup l e = new Values (

indicatorName ,
reg ion ,
nextVal ,
In s tant . now( ) . toEpochMi l l i ( )

) ;
c o l l e c t o r . emit ( tup l e ) ;
try {

Thread . s l e e p (250) ;
} catch ( Inter ruptedExcept ion e ) {

Thread . currentThread ( ) . i n t e r r up t ( ) ;
throw new RuntimeException ( e ) ;

}
}

Listing 9.1: nextTuple method of the RandomAirQualitySpout producing random air quality
tuples

The nextTuple method depends on the following external parameters:

• regions - a set of region name strings

• airQualityIndicatorNames - a set of air quality indicator name strings, e.g.
CO2, pesticides

• airQualityIndicators - maps air quality indicator names to a maximum value
for the respective indicator

113



9. Apache Storm

The method starts by randomly choosing a region and an indicator name. It then
retrieves the value range for the indicator by using the selected indicator name to access
the airQualityIndicators map. After that, a random value in the range [0,maxVal]
is generated and the tuple instance is constructed. Finally, the tuple is emitted using
collector.emit and the spout thread is sent to sleep for a while in order to reasonably
limit the tuple production rate.

Figure 9.5 illustrates the Storm topology of the solution. The print bolt on the right side
simply logs the incoming tuples to the console. In a real application scenario, the print
bolt may be replaced by a bolt that stores tuples to a database or supplies it to a web
service. Similarly, the diagram step bolt just logs the steps to the console that would
otherwise be written to an external data store.

The topology design follows the approach of reducing memory consumption for tuple
buffering described in Section 8.6. Consequently, the bolts for min/max aggregation over
1 day and 1 week do not directly consume the tuple stream from the spout but instead,
the elements are received from the 1 hour aggregation bolt and the 1 day aggregation
bolt, respectively. Averages for longer durations such as a day or a week are generated
using bolts that perform sliding average aggregation over a stream produced by a of 1
hour tumbling window average bolt. This results in less timely but precise long-term
averages.

There are different types of bolt and each type provides a separate interface to imple-
ment for creating a custom bolt. For example, a windowed bolt like the maximum
aggregation bolt in this example needs to implement the org.apache.storm.topology
↪→ .IWindowedBolt interface. Essentially, this interface prescribes an execute method
that gets a org.apache.storm.windowing.TupleWindow as parameter, representing
the tuples of the window that should be evaluated by the method. Apart from the
execute method there are the prepare and declareOutputFields methods that need
to be implemented. The prepare method is invoked between the initial creation of the
bolt and the first invocation of the execute method and is designated to carry out
initialization tasks. The declareOutputFields method is responsible for declaring the
schema of the tuples that are produced by the bolt.

Listings 9.2 and 9.3 show the implementation of the maximum bolt - the minimum bolt
is analogous. Some of the details that MinBolt, MaxBolt and AvgBolt have in common,
are moved to the common supertype AbstractWindowAggregateBolt in Listing 9.2
to prevent code duplication. The only thing the MaxBolt effectively does is to iterate
over the tuple window and to emit the tuple with the maximum value. In general,
Storm allows the windowing details like duration and sliding interval to be configured
independent of the bolt implementation, hence the same maximum bolt can be used for
all time ranges in this example.

1 public abstract class AbstractWindowAggregateBolt extends BaseWindowedBolt
↪→ implements WindowAggregateBolt {

2 private f ina l F i e l d s f i e l d s ;
3 private OutputCol lector c o l l e c t o r ;

114



9.3. The aggregation of streaming air quality data with Apache Storm

Spout

1h min
Bolt

1d min
Bolt

1w min
Bolt

1h max
Bolt

1d max
Bolt

1w max
Bolt

1h avg Bolt

1h avg Bolt
Tumbling

1d avg Bolt
Sliding

1w avg Bolt
Sliding

1d combine
avg Bolt

1w combine
avg Bolt

Print Bolt

Scheduler
Spout

Diagram Step
Bolt

5min trigger

2h trigger

12h trigger

Figure 9.5: Storm topology for generating continuous air quality statistics

4
5 public AbstractWindowAggregateBolt ( F i e l d s f i e l d s ) {
6 this . f i e l d s = f i e l d s ;
7 }
8
9 @Override

10 public void prepare (Map stormConf , TopologyContext context ,
↪→ OutputCol lector c o l l e c t o r ) {

11 this . c o l l e c t o r = c o l l e c t o r ;
12 }
13
14 @Override
15 public void execute (TupleWindow inputWindow ) {
16 Lis t<Object> aggregate = aggregate ( inputWindow . get ( ) ) ;
17 i f ( aggregate != null ) {

115



9. Apache Storm

18 c o l l e c t o r . emit ( aggregate ) ;
19 }
20 }
21
22 @Override
23 public void dec la reOutputF ie lds ( OutputFie ldsDec larer d e c l a r e r ) {
24 d e c l a r e r . d e c l a r e ( f i e l d s ) ;
25 }
26 }

Listing 9.2: AbstractWindowAggregateBolt

1 public class MaxBolt extends AbstractWindowAggregateBolt {
2 private f ina l St r ing numberField ;
3
4 public MaxBolt ( F i e l d s f i e l d s , S t r ing numberField ) {
5 super ( f i e l d s ) ;
6 this . numberField = numberField ;
7 }
8
9 @Override
10 public List<Object> aggregate ( Li s t<Tuple> tup l e s ) {
11 Tuple max = tup l e s . stream ( ) .max(Comparator . comparingDouble ( t −> t .

↪→ getDoubleByField ( numberField ) ) ) . o rE l s e ( null ) ;
12 return max == null ? null : max . getValues ( ) ;
13 }
14 }

Listing 9.3: MaxBolt

The AbstractWindowAggregateBolt class just provides default implementations of
common methods that would otherwise need to be duplicated in every concrete ag-
gregation bolt. On line 16 it passes the contents of the tuple window to the ab-
stract aggregate method that is provided by the WindowAggregateBolt interface
which the AbstractWindowAggregateBolt implements. Concrete bolts extending the
AbstractWindowAggregateBolt define the aggregation semantics by implementing this
method. The MaxBolt implementation shown in Listing 9.3 does exactly this. On line
10 it provides an implementation of the aggregate method that just returns the tuple
with the maximum field value.

Section 8.6 mentions that change detection is crucial for preventing unnecessary buffering
of repeated tuples in downstream aggregator units. In the Storm implementation of this
example, change detection is performed transparently in a custom OutputCollector

implementation.

Both the sliding and the tumbling average window use the same average bolt imple-
mentation shown in Listing 9.4 that is very similar to the maximum bolt from Listing
9.3. However, the implementation is not as compact as for the MinBolt and MaxBolt

because it is insufficient to just emit one of the existing tuples in the input window.
Instead, it is required to create a new tuple with the calculated window average. In this

116



9.3. The aggregation of streaming air quality data with Apache Storm

implementation, the first tuple in the window is chosen as a template for constructing
the new tuple. The value of the new tuple is set to the computed window average and
all remaining fields are copied from the template.
public List<Object> aggregate ( Li s t<Tuple> tup l e s ) {

i f ( tup l e s . isEmpty ( ) ) {
return null ;

}
Tuple f i r s tTup l e = tup l e s . get (0 ) ;
Double avg = tup l e s . stream ( ) . mapToDouble ( t −> t . getDoubleByField (

↪→ numberField ) ) . average ( ) . o rE l s e (0 ) ;
L i s t<Object> tup l e = new ArrayList <>( f i e l d s . s i z e ( ) ) ;
for ( S t r ing f i e l d : f i e l d s ) {

i f ( f i e l d . equa l s ( numberField ) ) {
tup l e . add ( avg ) ;

} else {
tup l e . add ( f i r s tTup l e . getValueByField ( f i e l d ) ) ;

}
}
return tup l e ;

}

Listing 9.4: AvgBolt

For generating diagram steps, no window-based aggregation is required. The only
requirement is to store snapshots of the current spout stream at regular intervals, e.g.
every 5 minutes. Since the execution of some action on a stream in regular intervals is a
often recurring requirement for Storm applications, Storm provides a feature called tick
tuples for this purpose [stoc]. This allows a bolt to receive special tuples in configurable
intervals from the Storm runtime which it can use to trigger custom actions. However,
the problem with this approach is that the exact point in time when a snapshot is taken
depends on the start time of the scheduler that produces the tick tuples. This prevents
the generation of consistent diagram steps with fixed interval starting points, e.g. for
every full hour.

For this reason, the presented solution takes a different approach that employs a separate
spout to produce custom scheduling tuples. The tuple generation in the spout is triggered
via a Quartz 3 scheduler job as shown in Listing 9.5. The scheduler job uses a shared
queue to communicate with the spout. The spout itself is periodically invoked by the
Storm runtime and polls the queue for new trigger elements as shown in Listing 9.6.
When a new element is encountered, the spout emits a respective tuple to its output
stream. Otherwise, the spout thread is sent to sleep for a while to not waste processor
resources. Note that the Storm interface forbids the spout to access the queue in a
blocking way.

The output of the Quartz spout is consumed by a bolt that is responsible for storing the
diagram steps. Additionally, this bolt also consumes the air quality spout stream. Listing

3http://www.quartz-scheduler.org/

117

http://www.quartz-scheduler.org/


9. Apache Storm

9.7 shows the implementation of the diagram step bolt. It stores the latest air quality
tuples for each tuple group in lines 13 - 14 and upon the receipt of a scheduling tuple, it
imitates storing the latest tuple of every group by writing a message to the console in
lines 3 - 11. In a real application, this part can be replaced by storing the values to a
database, for example.
public stat ic class SchedulerJob implements Job {

@Override
public void execute ( JobExecutionContext jobExecutionContext ) throws

↪→ JobExecutionException {
Queue<Instant> queue = (Queue<Instant >) jobExecutionContext .

↪→ getJobDeta i l ( ) . getJobDataMap ( ) . get ( " queue " ) ;
queue . o f f e r ( jobExecutionContext . getFireTime ( ) . t o In s t an t ( ) ) ;

}

}

Listing 9.5: SchedulerJob

public void nextTuple ( ) {
In s tant t r i g g e r = t r i g g e r s . p o l l ( ) ;
i f ( t r i g g e r == null ) {

try {
Thread . s l e e p (500) ;

} catch ( Inter ruptedExcept ion e ) {
Thread . currentThread ( ) . i n t e r r up t ( ) ;
throw new RuntimeException ( e ) ;

}
} else {

c o l l e c t o r . emit (new Values ( triggerName , t r i g g e r . getEpochSecond ( ) ∗
↪→ 1000) ) ;

}
}

Listing 9.6: QuartzSpout

1 public void execute ( Tuple input , Bas icOutputCol l ector c o l l e c t o r ) {
2 i f ( i sTr igge rTup le ( input ) ) {
3 St r ing triggerName = input . ge tSt r ingByFie ld ( " t r i g g e r " ) ;
4 In s tant tr iggerTime = Ins tant . o fEpochMi l l i ( input . getLongByField ( "

↪→ timestamp " ) ) ;
5 S t r i ngBu i l d e r sb = new St r i ngBu i l d e r ( " \n " ) ;
6 for ( Tuple storedTuple : currentValues . va lue s ( ) ) {
7 sb . append ( ’ \ t ’ ) ;
8 sb . append ( storedTuple ) ;
9 sb . append ( ’ \n ’ ) ;
10 }
11 LOG. i n f o ( " Store ␣ tup l e s ␣ f o r ␣ t r i g g e r ␣ " + triggerName + " / " +

↪→ t r iggerTime + " : ␣ " + sb ) ;
12 } else {
13 Lis t<Object> groupValues = input . s e l e c t (new F i e l d s ( " f i e l d " , " r eg i on

↪→ " ) ) ;

118



9.3. The aggregation of streaming air quality data with Apache Storm

14 currentValues . put ( groupValues , input ) ;
15 }
16 }

Listing 9.7: DiagramStepBolt

Finally, this section discusses in excerpts how to construct the storm topology illustrated
in Figure 9.5 to configure and wire the various components discussed so far. Listing 9.8
shows the registration of the air quality stream spout and the subsequent attachment
of the bolt that computes a 1 hour minimum sliding window. The desired window is
configured via the call to withWindow in line 7. It is necessary to designate the tuple
field to use as a timestamp for time based window processing which is done by the call
to withTimestamp in line 8. Finally, the fieldsGrouping in line 9 method performs
the wiring with the air quality spout identified by spoutId.

fieldsGrouping is one of the shuffling mechanisms supported by Storm that defines how
tuples output by one component shall be distributed to the consuming components.
Recall that a Storm component, i.e. a spout or a bolt, may consist of multiple tasks that
are potentially executed in parallel. Hence, there are different ways of how to distribute
a single incoming element stream to this set of tasks. The fieldsGrouping strategy allows
to specify a set of grouping fields. This guarantees that all tuples with the same grouping
field values end up at the same task which is crucial for the correctness of the custom
window grouping carried out inside the aggregation bolts.

1 // hour min
2 topo logyBui lde r . s e tBo l t ( hourMinBoltId , new GroupedWindowAggregatorBolt (
3 groupFie lds ,
4 ( S e r i a l i z a b l e & Suppl ie r<WindowAggregateBolt>) ( ) −> new

↪→ ChangeDetectingWindowAggregateBoltWrapper (new MinBolt (
↪→ RandomAirQualitySpout .AIR_QUALITY_TUPLE_FIELDS, " va lue " )
↪→ , RandomAirQualitySpout .AIR_QUALITY_TUPLE_FIELDS.
↪→ f i e l d I nd e x ( " va lue " ) )

5 ) . withWindow(BaseWindowedBolt . Duration . hours (1 ) , BaseWindowedBolt .
↪→ Duration . seconds (10) )

6 . withTimestampField ( " timestamp " ) )
7 . f i e l d sGroup ing ( spoutId , new F i e l d s ( " f i e l d " , " r eg i on " ) ) ;
8 // hour max
9 topo logyBui lde r . s e tBo l t ( hourMaxBoltId , new GroupedWindowAggregatorBolt (

Listing 9.8: Air quality spout wiring

Listing 9.9 shows the definition of the scheduling spouts and the wiring with the diagram
step generation bolt. In total, three scheduling spouts are defined for the three different
intervals that require diagram step generation.

1
2 topo logyBui lde r . s e tBo l t ( p r in t e rBo l t Id , new Pr in t e rBo l t ( ) )
3 . shu f f l eGroup ing ( hourMinBoltId )
4 . shu f f l eGroup ing ( hourMaxBoltId )
5 . shu f f l eGroup ing ( hourAvgBoltId )

119



9. Apache Storm

6 . shu f f l eGroup ing ( dayMinBoltId )
7 . shu f f l eGroup ing ( dayMaxBoltId )
8 . shu f f l eGroup ing ( dayAvgBoltId )
9 . shu f f l eGroup ing ( weekMinBoltId )
10 . shu f f l eGroup ing (weekMaxBoltId )

Listing 9.9: Wiring of scheduling spouts with the diagram step generation bolt

Lines 7 - 10 connect the diagram step bolt with the spout stream and the different
quartz spout trigger streams. Note the usage of the allGrouping shuffling strategy for
distributing the trigger streams. This ensures that every trigger element is sent to every
task of the consuming bolt.

120



CHAPTER 10
Apache Spark Streaming

Spark Streaming is an add-on to the Spark batch processing engine that reuses Spark’s
core abstraction of RDDs for fault-tolerant distributed stream processing. It introduces
the novel concept of discretized streams (DStreams) that are internally represented as a
set of RDDs and therefore inherit the fault tolerance properties that come with RDDs.
However, this design restrains Spark’s ability to only perform batched stream processing
in contrast to frameworks like Apache Storm that support both a batched model via its
Trident API and record-at-a-time processing of streams.

This chapter first discusses DStreams in more detail before covering the extensions to
Spark’s system architecture to enable stream processing. Finally, this chapter covers the
fault-tolerance and recovery strategies used in Spark Streaming.

10.1 DStreams
The key idea behind the concept of DStreams is the unification of the business logic
of stream processing and batch processing jobs. By treating a stream as a sequence
of micro batches, the same computational model applies for stream processing as for
batch processing. This allows the combination of DStreams with static RDDs holding
historical data, for example. Moreover DStream applications can be executed on stored
data without any change which alleviates the traditional burden of duplicating common
business logic when working on both real time stream data and historical data in a batch
processing fashion.

Another important conceptual benefit of DStreams is the fast fault-recovery that they
facilitate as described in Section 10.2.

Figure 10.1 provides a high level overview of the Spark Streaming system. Incoming
streams are divided into batches and saved as RDDs. The user defines stream processing
programs on top of the DStream abstraction. The resulting computation graph is

121



10. Apache Spark Streaming

Save batches
of incoming
stream data
as RDDs

RDD1 RDD2 RDD3

DStream
based

user program

RDD based
spark jobs

Spark Engine

Figure 10.1: High level view of the Spark Streaming system

transformed to RDD level transformation and executed by the Spark batch processing
engine on the batch RDDs representing the stream. Each transformation can output a
new RDD and the stream of output RDDs can again be treated as a DStream [ZDL+13].
Thus, DStreams represent an execution strategy for RDD based batch operations rather
than a completely new technology.

While stream processing systems such as Apache Storm allow the the use of stream
supplied, explicit timestamps for tuple ordering, Spark Streaming always uses the arrival
time of a tuple for placement in the produced batch datasets. Likewise, Spark currently
does not provide any means to perform sliding window computations based on explicit
timestamps [ZDL+13]. This can pose challenges to applications that need intend to use
Spark Streaming but need to base their computations on explicit timestamps and rely
on exact window boundaries. For example, consider an application that simply counts
the number of incoming stream tuples over a 1 hour tumbling window and assume the
current window to range from 01:00 to 02:00. Since the window is based on tuple arrival
time it may potentially includes a late tuple with timestamp 00:59:55 but arrival time
01:00:05 from the previous window. Likewise, if the clock of the stream source happens to
be out of synchronization with the system running Spark it may happen that tuples with
timestamp 00:02:05 arrive at system time 00:01:59:55 and would therefore also be illegally
included in the 01:00 to 02:00 window. For a large fraction of real world applications, such
a minor imprecision is certainly negligible but it still needs to be factored in. On the one
hand, the authors of Spark argue that techniques for order-independent processing can be
applied on the application level to ensure the correctness of results if required [KFD+10].
On the other hand, the lack of support for explicit timestamp based processing also
effectively reduces the complexity and increases the efficiency of Spark as it does not
need to cope with late tuple arrivals.

The DStream API supports standard stateless batch operations such as map, reduce,
group by and join but it is enriched with stateful operations specific to stream processing
such as windows and incremental aggregation. Incremental aggregation can be used to
perform efficient reduction over sliding windows for invertible aggregate functions. For
example, when summing up values over a sliding window, instead of recomputing the

122



10.1. DStreams

sum for all window tuples again every time the window slides, it is a better approach to
add new elements entering the window and deduct old elements falling out of the window
[ZDL+13]. Other stateful operations such as mapWithState or updateStateByKey allow
the user to specify stateful stream operations with custom state that is transparently
managed and distributed by Spark in a fault-tolerant way using RDDs [spae]. Finally,
DStreams support output operations to write DStream RDDs to external systems like
databases or file systems [ZDL+13].

Since Spark manages any state related to the stream processing operations transparently,
the task scheduler has greater freedom when assigning tasks to executors. For example,
when scheduling operations on a partitioned stream there is not strict requirement for the
same partition to always be processed on the same executor. Tasks for the same partitions
in different batches may be assigned to different executors on potentially different cluster
nodes which can be used for dynamic load balancing of unevenly partitioned streams.
To further illustrate this, consider the air quality statistics problem described in Section
8.6. Assume an air quality tuple stream that is partitioned by region. When the number
of tuples for region A is much larger than for region B, the processing of the region A
partition is going to take longer than for region B unless more executors are utilized
for scheduling the processing tasks for region A [spad]. This is only possible when the
state used by the stream operations can be made available on multiple nodes in a way
that is transparent to the user. In contrast, the effect of partitioning a stream in Apache
Storm is that each partition is processed by the same task on the same node hence
intra-partition load balancing is not possible.

Another advantage with regard to skewed workloads resulting from the discretized
processing of streams is the clear consistency semantics that Spark provides. When
processing a partitioned streams on a record-at-a-time basis it is possible that particular
partitions fall behind because they encounter more load than others. With each partition
producing output independently, inconsistencies may arise when viewing the stream of
results that have been produced up to a single point in time. For instance, when counting
the number of events received from region A and region B, the count for region B may
be inconsistent with the count of region A because the latter one lags behind. In order
to avoid this problem in record-at-a-time stream processing systems it is necessary to
introduce task synchronization mechanisms. With Spark’s discretized stream model there
is no need for synchronization because every output RDD reflects all the tuples contained
in the input RDD regardless of the partitioning. Hence, the computational model itself
prevents inconsistencies among partitions and the semantics are clear [ZDL+13].

Spark Streaming builds on the Spark batch processing engine but it introduces certain
extensions to allow stream processing.

As mentioned before Spark Streaming transforms input streams into DStreams by batching
incoming tuples over a constant time interval. Because stream input can be received
at multiple worker nodes it is necessary to communicate the contents of the interval or
timestep to the master node so that it can schedule the required tasks. For this purpose,
Spark Streaming assumes the system clocks on worker nodes to be synchronized, e.g. via

123



10. Apache Spark Streaming

the network time protocol (NTP). As described in Section 4.3, the Spark worker nodes
store data in the form of blocks either in-memory or spilled to disk. At the end of an
interval, each worker node sends the identifiers of the blocks received in the last interval
to the master node [ZDL+13].

10.2 Fault-tolerance

For providing fault-tolerance, Spark relies on the source data for the RDD lineage graph
to be available at any time in case RDD partitions need to be recomputed. While this
is a reasonable assumption for static data stored in fault-tolerant storages like HDFS
it does not generally apply in the case of input streams that often originate directly
from unreliable clients. Thus, Spark Streaming replicates received data across multiple
nodes before acknowledging the receive to the client. Alternatively, Spark Streaming can
periodically load new data from reliable external storage systems such as HDFS in which
case no replication is necessary [ZDL+13].

An input receiver in Spark Streaming can either be reliable or unreliable. While a
reliable receiver acknowledges the reception and replication of stream data in Spark
Streaming to the input source, an unreliable receiver performs no acknowledgment.
Reliable receivers allow the guarantee of certain delivery and processing guarantees for
stream data depending on their implementation and on the reliability of the input source
[spaf].

When a worker node fails, Spark Streaming allows the recovery of state RDD partitions
and all tasks that were running on the failed node by recomputing them in parallel on
healthy nodes. Checkpoints of state RDDs are periodically stored to cut off the lineage
graph and to prevent long dependency chains which would lead to long recovery times.
During re-computation of lost RDD partitions, Spark Streaming exploits parallelism
across partitions and also across timesteps for operations that do not depend on the
results of previous timesteps. The high degree of parallelization is important to utilize a
large number of cluster nodes for recovery. This is especially critical in the context of
stream processing systems as new data continues to arrive at worker nodes even during
the recovery phase hence the processing throughput of the system should be large enough
to allow it to perform the recovery along with processing the current data [ZDL+13].

Spark Streaming also detects and mitigate stragglers, i.e. tasks that run slower than
comparable tasks potentially due to node faults, by scheduling speculative backup copies
of tasks that can take over the computation [ZDL+13].

Another important requirement of Spark Streaming to be useful as a stream processing
system is the recoverability of the master node. To allow this, Spark Streaming stores the
state of computation reliably in HDFS at the start of each timestep. This information
includes the DStream graph, the driver programs, the time of the last checkpoint and
the identifiers of stream data RDDs that were received since the last checkpoint. On
recovery, the new master reads this data, reconnects to the worker nodes and registers

124



10.3. The aggregation of streaming air quality data with Apache Spark Streaming

the partitions that are currently held by each worker. After that, the master schedules
the processing of the timesteps that were missed during recovery [ZDL+13].

10.3 The aggregation of streaming air quality data with
Apache Spark Streaming

This section describes a solution to the problem statement from 8.6 using Apache Spark
Streaming.

For demonstration purposes, stream data is produced by a custom input receiver implemen-
tation that produces random air quality tuples in a similar fashion as the implementation
of the Apache Storm Spout described in Section 9.3. For implementing an input receiver
the generic supertype org.apache.spark.streaming.receiver.Receiver needs to
be extended. This also involves the specification of a type parameter that designates
the tuple types to allow the creation of stream processing driver programs in a type-safe
way. This is an important difference to Storm which does not support typed tuples.
The receiver implementation needs to define the onStart and onStop methods that are
responsible for starting and stopping the production of stream tuples. However, the
actual receipt and emission of stream tuples needs to take place in a separate thread
that is managed by the receiver implementation. The onStart and onStop methods are
dedicated for starting and stopping this thread. Listing 10.1 shows the implementation
of these methods for the random air quality input receiver.
@Override
public void onStart ( ) {

thread = new Thread ( ( ) −> {
while ( ! stop ) {

St r ing r eg i on = reg i on s . get (ThreadLocalRandom . cur rent ( ) . next Int
↪→ ( r e g i on s . s i z e ( ) ) ) ;

int i nd i c a t o r I dx = ThreadLocalRandom . cur rent ( ) . next Int (
↪→ a i rQua l i t y I nd i c a t o r s . s i z e ( ) ) ;

S t r ing indicatorName = airQual i tyInd icatorNames . get (
↪→ i nd i c a t o r I dx ) ;

I n t eg e r indicatorMaxVal = a i rQua l i t y I nd i c a t o r s . get (
↪→ indicatorName ) ;

Double nextVal = ThreadLocalRandom . cur rent ( ) . nextDouble (0 ,
↪→ indicatorMaxVal + 1) ;

AirQual ityTuple tup l e = new AirQual ityTuple (
indicatorName ,
reg ion ,
nextVal ,
In s tant . now( )

) ;
s t o r e ( tup l e ) ;
try {

Thread . s l e e p (250) ;
} catch ( Inter ruptedExcept ion e ) {

Thread . currentThread ( ) . i n t e r r up t ( ) ;
throw new RuntimeException ( e ) ;

125



10. Apache Spark Streaming

}
}

}) ;
thread . s t a r t ( ) ;

}

@Override
public void onStop ( ) {

stop = true ;
try {

thread . j o i n ( ) ;
} catch ( Inter ruptedExcept ion e ) {

Thread . currentThread ( ) . i n t e r r up t ( ) ;
throw new RuntimeException ( e ) ;

}
}

Listing 10.1: Input receiver for creating a random air quality stream

The onStart method simply creates and starts a new receiver thread. The thread
consists of a while loop producing a tuple of type AirQualityTuple with random air
quality indicator, region, value and the current timestamp. Note that Spark Streaming
can actually not make any use of this timestamp as detailed in Section 10.1. Once
the tuple is constructed, the thread submits it to Spark Streaming via the store

method that is provided by the org.apache.spark.streaming.receiver.Receiver
supertype. After producing a tuple, the thread is sent to sleep for a short period of time
to limit the tuple production rate. The onStop method just sets a flag that causes the
while loop in the receiver thread to exit and waits for the thread to end.

Like in ordinary Spark, the driver program that defines the Spark Streaming computation
can be a simple Java main method. The first thing to do is to set up the spark streaming
context that provides the entry points to the D-Stream API. Listing 10.3 shows the
corresponding source code fragment.
SparkConf conf = new SparkConf ( ) . setMaster ( " l o c a l [ 2 ] " ) . setAppName( "

↪→ AirQual i ty ␣ S t a t i s t i c s " ) ;
JavaStreamingContext s s c = new JavaStreamingContext ( conf , Durations . seconds

↪→ (10) ) ;
JavaSparkContext sc = s s c . sparkContext ( ) ;

s s c . checkpo int ( Paths . get ( System . getProperty ( " user . d i r " ) , " . spark " ) .
↪→ toAbsolutePath ( ) . t oS t r i ng ( ) ) ;

Listing 10.2: Creation of the stream context in Spark Streaming

For creating the context, a configuration object of type org.apache.spark.SparkConf
is required like in ordinary Spark. The example implementation specifies a Spark configura-
tion with a local master with 2 threads. After the context configuration is created, the pro-
gram creates a org.apache.spark.streaming.api.java.JavaStreamingContext which
is the Java pendant to the Scala org.apache.spark.streaming.StreamingContext.

126



10.3. The aggregation of streaming air quality data with Apache Spark Streaming

Besides the configuration object, it is possible to specify the batch duration that should
be used for stream discretization as a second parameter. The choice of this parameter
is application dependent and determines the minimum latency between the arrival of a
stream tuple and its processing by Spark Streaming. In order to perform stateful stream
operations like mapWithState it is necessary to also configure the creation of checkpoints
for the created stream context. This comes down to specifying a directory for storing the
checkpoints as shown in line 31. In a real world scenario the directory should reside on a
reliable file system like HDFS.

Once the stream context is available it is possible to create a DStream from the
RandomAirQualityReceiver as shown in Listing 10.3. This can be done using the
receiverStream method provided by the stream context that accepts an instance of the
RandomAirQualityReceiver. When instantiating the receiver it is also required to pass
a storage level that indicates how Spark Streaming should store the incoming stream data.
The example uses the MEMORY_AND_DISK_SER storage level which stores RDDs
as serialized objects in memory and spills to disk when no more memory is available.
Storing RDDs in serialized form is more space efficient but it also is computationally
more expensive. After creating the stream, the checkpoint interval is specified in line 2.

1 JavaReceiverInputDStream<AirQualityTuple> stream = ss c . r ece ive rSt ream (new
↪→ RandomAirQualityReceiver ( StorageLeve l .MEMORY_AND_DISK_SER_2( ) ,
↪→ a i rQua l i t y Ind i c a t o r s , r e g i on s ) ) ;

2 stream . checkpo int ( Durat ions . minutes (1 ) ) ;

Listing 10.3: Creation of a DStream from the input receiver

Once a DStream object is acquired it can be used to define further stream operations
using the DStream API. Listing 10.4 shows the definition of the 1 hour minimum stream.

1 JavaDStream<AirQualityTuple> hourMinStream = detectChanges ( sc ,
2 stream
3 . mapToPair ( t −> Tuple2 . apply (new AirQualityTupleGroup ( t .

↪→ g e t I nd i c a t o r ( ) , t . getRegion ( ) ) , t ) )
4 . reduceByKeyAndWindow ( ( t1 , t2 ) −> t1 . getValue ( ) < t2 . getValue ( ) ?

↪→ t1 : t2 , Durations . minutes (60) , Durations . seconds (10) )
5 ) ;
6 p r i n t ( " 1hMin" , hourMinStream ) ;

Listing 10.4: Definition of the 1 hour minimum stream

The listing is discussed in evaluation order starting at line 2. First, the mapToPair opera-
tion is performed that extracts a group key out of the stream of AirQualityTuple objects
and produces a stream of key-value pairs where the key is of type AirQualityTupleGroup
and the original AirQualityTuple objects remains as value. The AirQualityTupleGroup
↪→ type includes the fields by which the stream should be grouped in the following
reduction operations, namely the indicator name and the region. mapToPair returns a
org.apache.spark.streaming.api.java.JavaPairDStream which offers operations
that use the key for grouping. In this example, the reduceByKeyAndWindow operation

127



10. Apache Spark Streaming

is applied to the pair stream along with a reducer function that specifies how two tuples
with the same key should be reduced to form a single output tuple. In this concrete
case, the reducer function simply returns the tuple with the smaller value. Moreover, the
method allows to specify a window size and a sliding interval which is 60 minutes and 10
seconds, respectively in this example. I.e. the stream tuples of the last 60 minutes take
part in the reduction and updated results are produced every 10 seconds. Up to this
point no change detection is performed, i.e. the stream would be enriched with a new
tuple every 10 seconds regardless of whether the actual minimum has changed or not.
For this reason, the custom detectChanges method is applied to the resulting stream.
It applies further stream operations that handle the change detection as shown in Listing
10.5.

1 i f ( ! s t a t e . e x i s t s ( ) | | ! s t a t e . get ( ) . equa l s ( tup l e . get ( ) ) ) {
2 s t a t e . update ( tup l e . get ( ) ) ;
3 return Optional . o f ( tup l e . get ( ) ) ;
4 } else {
5 return Optional .<V> empty ( ) ;
6 }
7 }) . i n i t i a l S t a t e ( sc . p a r a l l e l i z e P a i r s ( Co l l e c t i o n s . emptyList ( ) ) )
8 ) . f i l t e r ( Optional : : i sP r e s en t )
9 .map( Optional : : get ) ;
10 }
11
12 private stat ic void pr in t ( S t r ing streamName , JavaDStream<?> stream ) {
13 stream . foreachRDD( rdd −> {

Listing 10.5: Change detection in Spark Streaming

The method applies the mapWithState operation to the passed stream which allows to
provide a stateful function for mapping tuples. On line 4 this mapping function checks
for existing states and state changes and either updates the state and returns the new
tuple or returns an empty value. The returned values form the new stream that is output
by the mapWithState method. The subsequent filter and map operations are used to
filter out the empty values from the stream and to unwrap the non-empty values.

Listing 10.4 continues by simply printing the stream contents to console. The stream
definitions for aggregation over the other time ranges is analogous.

For the computation of diagram steps, a different approach has to be taken compared
to the Storm implementation. Because Storm performs record-at-a-time processing the
latency between the creation of a trigger event via a Quartz scheduler task and the actual
processing of the event is negligibly low. However, in the case of Spark Streaming, such
events would be batched over a duration of 10 seconds as configured in the example.
Hence a trigger event for the 5 minute diagram step would only be processed up to 10
seconds later. Moreover, it is not enough to have a tumbling window with the desired
interval length because the window is started at a random point in time depending on
the start of the scheduling time of the stream processing job. E.g. with the window
starting at 01:08, the produced diagram step tuples for a 5 minute interval would be

128



10.3. The aggregation of streaming air quality data with Apache Spark Streaming

01:13, 01:18 etc instead of 01:10, 01:15 etc. More importantly, Spark Streaming cannot
use tuple timestamps for windowing which might further impact the precision of emitted
tuples. Thus, a different approach is required in the case of Spark Streaming for timing
the emission of diagram step tuples. Listing 10.6 shows the implementation for the 5
minute diagram steps. The implementation for the other intervals is analogous.

1 JavaDStream<AirQualityTuple> fiveMinStream = stream
2 . mapToPair ( t −> Tuple2 . apply (new AirQualityTupleGroup ( t .

↪→ g e t I nd i c a t o r ( ) , t . getRegion ( ) ) , t ) )
3 . mapWithState ( StateSpec . f unc t i on ( ( AirQualityTupleGroup group ,

↪→ Optional<AirQualityTuple> optionalTuple , State<
↪→ AirQualityTuple> s t a t e ) −>

4 updateAirQual i tyStepState ( opt iona lTuple . get ( ) , s ta te , 1 , 10)
5 ) . i n i t i a l S t a t e ( sc . p a r a l l e l i z e P a i r s ( Co l l e c t i o n s . emptyList ( ) ) ) )
6 . f i l t e r ( Optional : : i sP r e s en t )
7 .map( Optional : : get ) ;
8 p r i n t ( " 5min " , f iveMinStream ) ;

Listing 10.6: 5 minute diagram step generation with Spark Streaming

The stream definition starts by directly consuming the input source stream and by
carrying out the same pair mapping as in the 1 hour minimum aggregation described
earlier. Then a mapWithState operation is applied to the stream with the purpose of
ensuring that only such tuples are emitted that correspond to the desired interval borders.
As shown in Listing 10.7, the used mapping function uses the modulo operation on the
epoch seconds of the tuple timestamp to filter out such tuples that do not fit the desired
interval. After the mapWithState operation it only remains to filter out empty tuples
and unwrap the remaining ones before the stream is printed.

1 private stat ic Optional<AirQualityTuple> updateAirQual i tyStepState (
↪→ AirQual ityTuple tuple , State<AirQualityTuple> state , double
↪→ secondToUnitFactor , int s t epS i z e InUn i t s ) {

2 i f ( ! s t a t e . e x i s t s ( ) ) {
3 i f ( ( ( int ) ( tup l e . getTimestamp ( ) . getEpochSecond ( ) ∗

↪→ secondToUnitFactor ) ) % s t epS i z e InUn i t s == 0) {
4 s t a t e . update ( tup l e ) ;
5 return Optional . o f ( tup l e ) ;
6 } else {
7 return Optional . empty ( ) ;
8 }
9 } else {
10 i f ( s t a t e . get ( ) . getTimestamp ( ) . i sB e f o r e ( tup l e . getTimestamp ( ) ) ) {
11 int s t a t eUn i t s = ( int ) ( s t a t e . get ( ) . getTimestamp ( ) .

↪→ getEpochSecond ( ) ∗ secondToUnitFactor ) ;
12 int tup l eUn i t s = ( int ) ( tup l e . getTimestamp ( ) . getEpochSecond ( ) ∗

↪→ secondToUnitFactor ) ;
13 i f ( s t a t eUn i t s != tup l eUn i t s && tup leUn i t s % s t epS i z e InUn i t s ==

↪→ 0) {
14 s t a t e . update ( tup l e ) ;
15 return Optional . o f ( tup l e ) ;
16 }

129



10. Apache Spark Streaming

17 }
18 return Optional . empty ( ) ;
19 }
20 }

Listing 10.7: Stateful tuple filtering for diagram step creation

All in all the example implementation with Spark Streaming is much more concise
compared to Storm and the different processing models sometimes require different
implementations for yielding the same outcome.

130



CHAPTER 11
Conclusion

Distributed big data processing frameworks have evolved around the skewed ratio between
storage capacity and storage access speed. While the capacity of storage mediums like
HDDs has experienced a steady growth over the years, companies in the early 2000s
increasingly struggled with writing and reading fast enough the ever growing amount
of data that today’s society produces. Since that time, a plethora of frameworks has
been created as a solution to this problem. Their main principle is to scale storage access
horizontally by distributing it across large clusters of cost effective commodity hardware.

Early systems like Hadoop were initially targeted to perform offline batch processing
tasks. But soon, other types of applications emerged that were covered well by the
existing batch processing frameworks. For example, graph algorithms operating on
distributed graphs are hard to express using programming models for batch processing.
Also, graphs exhibit different locality constraints than other datasets and thus require
special treatment with respect to partitioning in order to allow for efficient execution of
algorithms. The processing of continuous, high-volume data streams is another important
task that inherently differs from traditional batch processing and which is fueled by the
trend towards the internet of things.

Programming models that abstract away the fallacies induced by distributed nature of
big data frameworks and that facilitate the development of comprehensible algorithms
to be executed by such systems play a critical role in their success. With the early
introduction of MapReduce and Pregel, Google has taken over a pioneering position in
the field of big data processing. Subsequent open source frameworks like Hadoop, Giraph
and Spark have adopted these programming models and have opened big data processing
to a wider audience.

This thesis has covered the state-of-the-art programming models in the various fields of
big data processing and has given a comprehensible introduction to the inner workings
of some of today’s most popular big data frameworks across the before mentioned

131



11. Conclusion

application types. It has further provided the reader with concrete examples of how
to use each of the presented technologies in practice by introducing selected problem
statements from a realistic application domain and by presenting the corresponding
solution implementations.

Many extension products and systems have been developed on top of the basic technologies
presented in this thesis that further simplify the development of solutions for certain
problems. Since these technologies are out of the scope of this paper it remains to future
work to provide insights on them. In conclusion, some of these extensions are pointed
out:

SQL is a powerful tool for querying data and many developers are familiar with using it.
Extensions to Hadoop and Spark such as Hive and Spark SQL, respectively, that bring
SQL support to these frameworks can therefore be considered an important cornerstone
for their wide adoption. While Hive is rather targeted for data warehousing tasks and
for issuing ad-hoc queries in a declarative way, Pig is another platform targeted towards
data preparation that also provides an abstract but more procedural way to express
computation tasks in Hadoop.

Other projects aim to improve the performance of applications running on big data
frameworks by transparently augmenting lower system layers. For example, Alluxio is a
tiered storage that sits on top of other storage systems such as HDFS and aims to keep
data as close to memory as possible by utilizing a tiered storage architecture.

Based on usage examples presented in this thesis it appears that the Spark suite of
tools is simpler to use and allows for a more concise expression of big data processing
program logic than it is possible with Hadoop. Also, Spark eases the creation of type-safe
processing pipelines which results in more robust and more maintainable programs. While
performance benchmarks suggest that Spark performs considerably better than Hadoop
for a large set of workloads, a detailed performance analysis of both systems under
realistic conditions certainly is an interesting topic for a follow-up work as it helps to
establish in-depth understanding of the peculiarities of both frameworks. After all, such
understanding is the key to identify and develop approaches to further advance and
optimize these systems.

132



List of Figures

1.1 Big data technology overview . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2 AirQuality Inc. sensor network topology . . . . . . . . . . . . . . . . . . . 8

2.1 High-level view of a MapReduce program for word count . . . . . . . . . . 12
2.2 Illustration of MapReduce algorithm for similarity join . . . . . . . . . . . 17
2.3 Pipeline of MapReduce jobs for generating air quality violation reports . . 18

3.1 HDFS architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.2 Hadoop MapReduce data flow . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.3 YARN architecture [hadb] . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.1 Apache Spark execution workflow . . . . . . . . . . . . . . . . . . . . . . . 38
4.2 RDD dependency types . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.3 Lineage with RDDs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.4 RDD implementation optimized for HDFS . . . . . . . . . . . . . . . . . . 42
4.5 DAG for lineage graph from Figure 4.3 . . . . . . . . . . . . . . . . . . . . 43
4.6 Lazy computation of partitions in Spark . . . . . . . . . . . . . . . . . . . 43
4.7 Memory model used by Spark’s Unified Memory Manager . . . . . . . . . 44

5.1 Pregel sum algorithm for strongly connected graphs . . . . . . . . . . . . . 51
5.2 Fragility of sensor connectivity in long peer-to-peer chains . . . . . . . . . 55
5.3 Example graphs for illustrating the compactness metric. . . . . . . . . . . 56
5.4 Pregel shortest path algorithm . . . . . . . . . . . . . . . . . . . . . . . . 59
5.5 Example input topology and the corresponding optimized output topology as

produced by the optimization algorithm. . . . . . . . . . . . . . . . . . . . . 61

6.1 A graph partitioning heuristic that iteratively moves vertices between parti-
tions to reduce non-local edges . . . . . . . . . . . . . . . . . . . . . . . . 66

6.2 Sharded aggregators in Apache Giraph . . . . . . . . . . . . . . . . . . . . 67
6.3 Structure of computation in Giraph based topology optimizer . . . . . . . 68

7.1 Illustration of power-law distributed graphs . . . . . . . . . . . . . . . . . . 81
7.2 Edge cut versus vertex cut [graa] . . . . . . . . . . . . . . . . . . . . . . . . 81
7.3 Illustration of the 2D graph partitioning algorithm in GraphX . . . . . . 82

133



7.4 Illustration of the RDG layout [grab] . . . . . . . . . . . . . . . . . . . . . 83

8.1 Illustration of load management techniques. The boxes represent stream
elements. The lower half of divided boxes indicates the original stream
elements which are used to compose the current element. . . . . . . . . . 99

8.2 Invalid use of sliding window results for average computation . . . . . . . 104
8.3 Sliding window over tumbling window results for reduced memory average

computation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

9.1 Storm system architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
9.2 Stream tuple flow inside worker processes . . . . . . . . . . . . . . . . . . 109
9.3 Backflow mechanism for acknowledging tuples, S is the spout tuple . . . . 110
9.4 Exemplary tuple tree with tuple IDs . . . . . . . . . . . . . . . . . . . . . . 111
9.5 Storm topology for generating continuous air quality statistics . . . . . . 115

10.1 High level view of the Spark Streaming system . . . . . . . . . . . . . . . 122

134



List of Tables

1.1 Regions that air quality data is received from . . . . . . . . . . . . . . . . 7
1.2 Measured air quality indicators and their value range . . . . . . . . . . . . 7

5.1 Shortest paths G1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
5.2 Shortest paths G2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

8.1 Non-exhaustive assembly of query operators and their blocking or unbounded
stateful nature [TMSF02] . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

8.2 Examples of continuous queries along with indications about their bounded
memory computability depending on duplicate eliminating and duplicate
preserving projection [ABB+04] . . . . . . . . . . . . . . . . . . . . . . . . 100

8.3 Required time range and step size aggregates . . . . . . . . . . . . . . . . 103

9.1 Sequence of tuple creations and acknowledgments and the change of the ack
value triggered by them . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

135





Bibliography

[ABB+04] Arvind Arasu, Brian Babcock, Shivnath Babu, Jon McAlister, and Jennifer
Widom. Characterizing memory requirements for queries over continuous data
streams. ACM Transactions on Database Systems (TODS), 29(1):162–194,
2004.

[ABC+11] Foto N Afrati, Vinayak Borkar, Michael Carey, Neoklis Polyzotis, and Jef-
frey D Ullman. Map-reduce extensions and recursive queries. In Proceedings
of the 14th international conference on extending database technology, pages
1–8. ACM, 2011.

[ADD+15] Michael Armbrust, Tathagata Das, Aaron Davidson, Ali Ghodsi, Andrew
Or, Josh Rosen, Ion Stoica, Patrick Wendell, Reynold Xin, and Matei
Zaharia. Scaling spark in the real world: Performance and usability. PVLDB,
8(12):1840–1843, 2015.

[AJB00] Réka Albert, Hawoong Jeong, and Albert-László Barabási. Error and attack
tolerance of complex networks. nature, 406(6794):378–382, 2000.

[AR04] Konstantin Andreev and Harald Räcke. Balanced graph partitioning. In Pro-
ceedings of the sixteenth annual ACM symposium on Parallelism in algorithms
and architectures, pages 120–124. ACM, 2004.

[AU10] Foto N Afrati and Jeffrey D Ullman. Optimizing joins in a map-reduce envi-
ronment. In Proceedings of the 13th International Conference on Extending
Database Technology, pages 99–110. ACM, 2010.

[AW04] Arvind Arasu and Jennifer Widom. A denotational semantics for continuous
queries over streams and relations. ACM Sigmod Record, 33(3):6–11, 2004.

[BBD+02] Brian Babcock, Shivnath Babu, Mayur Datar, Rajeev Motwani, and Jennifer
Widom. Models and issues in data stream systems. In Proceedings of the
twenty-first ACM SIGMOD-SIGACT-SIGART symposium on Principles of
database systems, pages 1–16. ACM, 2002.

[BBMS08] Magdalena Balazinska, Hari Balakrishnan, Samuel R Madden, and Michael
Stonebraker. Fault-tolerance in the borealis distributed stream processing
system. ACM Transactions on Database Systems (TODS), 33(1):3, 2008.

137



[BCR06] Avrim Blum, TH Hubert Chan, and Mugizi Robert Rwebangira. A random-
surfer web-graph model. In 2006 Proceedings of the Third Workshop on
Analytic Algorithmics and Combinatorics (ANALCO), pages 238–246. SIAM,
2006.

[BHBE10] Yingyi Bu, Bill Howe, Magdalena Balazinska, and Michael D Ernst. Haloop:
Efficient iterative data processing on large clusters. Proceedings of the VLDB
Endowment, 3(1-2):285–296, 2010.

[blo] Hadoop - namenode, checkpoint node and backup
node. http://morrisjobke.de/2013/12/11/
Hadoop-NameNode-and-siblings/. Accessed: 2017-03-12.

[BRS92] Rodrigo A Botafogo, Ehud Rivlin, and Ben Shneiderman. Structural analysis
of hypertexts: identifying hierarchies and useful metrics. ACM Transactions
on Information Systems (TOIS), 10(2):142–180, 1992.

[BSW04] Shivnath Babu, Utkarsh Srivastava, and Jennifer Widom. Exploiting k-
constraints to reduce memory overhead in continuous queries over data
streams. ACM Transactions on Database Systems (TODS), 29(3):545–580,
2004.

[BW01] Shivnath Babu and Jennifer Widom. Continuous queries over data streams.
ACM Sigmod Record, 30(3):109–120, 2001.

[BYG+16] Eric Brewer, Lawrence Ying, Lawrence Greenfield, Robert Cypher, and
Theodore T’so. Disks for data centers. White paper for FAST, 1(1):p4, 2016.

[CÇC+02] Don Carney, Uǧur Çetintemel, Mitch Cherniack, Christian Convey, Sangdon
Lee, Greg Seidman, Michael Stonebraker, Nesime Tatbul, and Stan Zdonik.
Monitoring streams: a new class of data management applications. In
Proceedings of the 28th international conference on Very Large Data Bases,
pages 215–226. VLDB Endowment, 2002.

[CDG+08] Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C Hsieh, Deborah A
Wallach, Mike Burrows, Tushar Chandra, Andrew Fikes, and Robert E
Gruber. Bigtable: A distributed storage system for structured data. ACM
Transactions on Computer Systems (TOCS), 26(2):4, 2008.

[CEK+15] Avery Ching, Sergey Edunov, Maja Kabiljo, Dionysios Logothetis, and
Sambavi Muthukrishnan. One trillion edges: Graph processing at facebook-
scale. Proceedings of the VLDB Endowment, 8(12):1804–1815, 2015.

[Coh09] Jonathan Cohen. Graph twiddling in a mapreduce world. Computing in
Science & Engineering, 11(4):29–41, 2009.

138

http://morrisjobke.de/2013/12/11/Hadoop-NameNode-and-siblings/
http://morrisjobke.de/2013/12/11/Hadoop-NameNode-and-siblings/


[DG04] Jeffrey Dean and Sanjay Ghemawat. Mapreduce: Simplified data processing
on large clusters. In Proceedings of the 6th Conference on Symposium on
Opearting Systems Design & Implementation - Volume 6, OSDI’04, pages
10–10, Berkeley, CA, USA, 2004. USENIX Association.

[gir] Large-scale graph partitioning with apache giraph. https:
//code.facebook.com/posts/274771932683700/
large-scale-graph-partitioning-with-apache-giraph/.
Accessed: 2017-03-31.

[GJ02] Michael R Garey and David S Johnson. Computers and intractability, vol-
ume 29. wh freeman New York, 2002.

[GLG+12] Joseph E Gonzalez, Yucheng Low, Haijie Gu, Danny Bickson, and Carlos
Guestrin. Powergraph: Distributed graph-parallel computation on natural
graphs. In OSDI, volume 12, page 2, 2012.

[graa] Spark graphx edge cut versus vertex cut diagram. http://spark.apache.
org/docs/latest/img/edge_cut_vs_vertex_cut.png. Accessed:
2017-04-07.

[grab] Spark graphx rdg layout diagram. https://spark.apache.org/docs/
latest/img/vertex_routing_edge_tables.png. Accessed: 2017-
04-07.

[GXD+14] Joseph E Gonzalez, Reynold S Xin, Ankur Dave, Daniel Crankshaw, Michael J
Franklin, and Ion Stoica. Graphx: Graph processing in a distributed dataflow
framework. In OSDI, volume 14, pages 599–613, 2014.

[hada] Issues with classic mapreduce. https://issues.apache.org/jira/
browse/MAPREDUCE-278. Accessed: 2017-03-15.

[hadb] Mapreduce 2.0 - resourcemanager high availability. http://hadoop.
apache.org/docs/current/hadoop-yarn/hadoop-yarn-site/
YARN.html. Accessed: 2017-03-16.

[hadc] Mapreduce 2.0 - resourcemanager high availability. http://hadoop.
apache.org/docs/current/hadoop-yarn/hadoop-yarn-site/
ResourceManagerHA.html. Accessed: 2017-03-16.

[hadd] Mapreduce 2.0 proposal. https://issues.apache.org/jira/
browse/MAPREDUCE-279. Accessed: 2017-03-15.

[HBR+05] J-H Hwang, Magdalena Balazinska, Alex Rasin, Ugur Cetintemel, Michael
Stonebraker, and Stan Zdonik. High-availability algorithms for distributed
stream processing. In Data Engineering, 2005. ICDE 2005. Proceedings. 21st
International Conference on, pages 779–790. IEEE, 2005.

139

https://code.facebook.com/posts/274771932683700/large-scale-graph-partitioning-with-apache-giraph/
https://code.facebook.com/posts/274771932683700/large-scale-graph-partitioning-with-apache-giraph/
https://code.facebook.com/posts/274771932683700/large-scale-graph-partitioning-with-apache-giraph/
http://spark.apache.org/docs/latest/img/edge_cut_vs_vertex_cut.png
http://spark.apache.org/docs/latest/img/edge_cut_vs_vertex_cut.png
https://spark.apache.org/docs/latest/img/vertex_routing_edge_tables.png
https://spark.apache.org/docs/latest/img/vertex_routing_edge_tables.png
https://issues.apache.org/jira/browse/MAPREDUCE-278
https://issues.apache.org/jira/browse/MAPREDUCE-278
http://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-site/YARN.html
http://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-site/YARN.html
http://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-site/YARN.html
http://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-site/ResourceManagerHA.html
http://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-site/ResourceManagerHA.html
http://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-site/ResourceManagerHA.html
https://issues.apache.org/jira/browse/MAPREDUCE-279
https://issues.apache.org/jira/browse/MAPREDUCE-279


[HCB96] Jonathan MD Hill, Paul I Crumpton, and David A Burgess. Theory, practice,
and a tool for bsp performance prediction. In European Conference on
Parallel Processing, pages 697–705. Springer, 1996.

[hdfa] Discussion on secondary namenode, checkpointnode and backupnode in
hdfs. https://issues.apache.org/jira/browse/HADOOP-4539.
Accessed: 2017-03-12.

[hdfb] Hdfs architecture. http://hadoop.apache.org/docs/stable/
hadoop-project-dist/hadoop-hdfs/HdfsDesign.html. Accessed:
2017-03-10.

[hdfc] Hdfs federation. http://hadoop.apache.org/docs/stable/
hadoop-project-dist/hadoop-hdfs/Federation.html. Accessed:
2017-03-13.

[hdfd] Hdfs high-availability with quorum journal manager. http:
//hadoop.apache.org/docs/stable/hadoop-project-dist/
hadoop-hdfs/HDFSHighAvailabilityWithQJM.html. Accessed:
2017-03-13.

[hdfe] Hdfs high-availability with shared storage. http://hadoop.apache.
org/docs/stable/hadoop-project-dist/hadoop-hdfs/
HDFSHighAvailabilityWithNFS.html. Accessed: 2017-03-13.

[hdff] Hdfs user guide. http://hadoop.apache.org/docs/stable/
hadoop-project-dist/hadoop-hdfs/HdfsUserGuide.html. Ac-
cessed: 2017-03-12.

[KFD+10] Sailesh Krishnamurthy, Michael J Franklin, Jeffrey Davis, Daniel Farina,
Pasha Golovko, Alan Li, and Neil Thombre. Continuous analytics over dis-
continuous streams. In Proceedings of the 2010 ACM SIGMOD International
Conference on Management of data, pages 1081–1092. ACM, 2010.

[KTS+11] U Kang, Hanghang Tong, Jimeng Sun, Ching-Yung Lin, and Christos Falout-
sos. Gbase: a scalable and general graph management system. In Proceedings
of the 17th ACM SIGKDD international conference on Knowledge discovery
and data mining, pages 1091–1099. ACM, 2011.

[LRU14] Jure Leskovec, Anand Rajaraman, and Jeffrey David Ullman. Mining of
massive datasets. Cambridge University Press, 2014.

[MAB+10] Grzegorz Malewicz, Matthew H Austern, Aart JC Bik, James C Dehnert, Ilan
Horn, Naty Leiser, and Grzegorz Czajkowski. Pregel: a system for large-scale
graph processing. In Proceedings of the 2010 ACM SIGMOD International
Conference on Management of data, pages 135–146. ACM, 2010.

140

https://issues.apache.org/jira/browse/HADOOP-4539
http://hadoop.apache.org/docs/stable/hadoop-project-dist/hadoop-hdfs/HdfsDesign.html
http://hadoop.apache.org/docs/stable/hadoop-project-dist/hadoop-hdfs/HdfsDesign.html
http://hadoop.apache.org/docs/stable/hadoop-project-dist/hadoop-hdfs/Federation.html
http://hadoop.apache.org/docs/stable/hadoop-project-dist/hadoop-hdfs/Federation.html
http://hadoop.apache.org/docs/stable/hadoop-project-dist/hadoop-hdfs/HDFSHighAvailabilityWithQJM.html
http://hadoop.apache.org/docs/stable/hadoop-project-dist/hadoop-hdfs/HDFSHighAvailabilityWithQJM.html
http://hadoop.apache.org/docs/stable/hadoop-project-dist/hadoop-hdfs/HDFSHighAvailabilityWithQJM.html
http://hadoop.apache.org/docs/stable/hadoop-project-dist/hadoop-hdfs/HDFSHighAvailabilityWithNFS.html
http://hadoop.apache.org/docs/stable/hadoop-project-dist/hadoop-hdfs/HDFSHighAvailabilityWithNFS.html
http://hadoop.apache.org/docs/stable/hadoop-project-dist/hadoop-hdfs/HDFSHighAvailabilityWithNFS.html
http://hadoop.apache.org/docs/stable/hadoop-project-dist/hadoop-hdfs/HdfsUserGuide.html
http://hadoop.apache.org/docs/stable/hadoop-project-dist/hadoop-hdfs/HdfsUserGuide.html


[MSL15] Claudio Martella, Roman Shaposhnik, and Dionysios Logothetis. Giraph
architecture. In Practical Graph Analytics with Apache Giraph, pages 137–162.
Springer, 2015.

[mur] The next generation of apache hadoop mapreduce.
http://yahoohadoop.tumblr.com/post/98210076241/
the-next-generation-of-apache-hadoop-mapreduce. Accessed:
2017-03-15.

[MWA+02] Rajeev Motwani, Jennifer Widom, Arvind Arasu, Brian Babcock, Shivnath
Babu, Mayur Datar, Gurmeet Manku, Chris Olston, Justin Rosenstein, and
Rohit Varma. Query processing, approximation, and resource management
in a data stream management system, 2002.

[RRH99] Vijayshankar Raman, Bhaskaran Raman, and Joseph M Hellerstein. Online
dynamic reordering for interactive data processing. In VLDB, volume 99,
pages 709–720. Citeseer, 1999.

[SASU13] Anish Das Sarma, Foto N Afrati, Semih Salihoglu, and Jeffrey D Ullman.
Upper and lower bounds on the cost of a map-reduce computation. In
Proceedings of the VLDB Endowment, volume 6, pages 277–288. VLDB
Endowment, 2013.

[SKW+14] Yogesh Simmhan, Alok Kumbhare, Charith Wickramaarachchi, Soonil Na-
garkar, Santosh Ravi, Cauligi Raghavendra, and Viktor Prasanna. Goffish:
A sub-graph centric framework for large-scale graph analytics. In European
Conference on Parallel Processing, pages 451–462. Springer, 2014.

[spaa] Apache spark cluster managers: Yarn, mesos, or standalone? http:
//spark.apache.org/docs/2.1.0/cluster-overview.html. Ac-
cessed: 2017-03-24.

[spab] Apache spark cluster managers: Yarn, mesos,
or standalone? http://www.agildata.com/
apache-spark-cluster-managers-yarn-mesos-or-standalone/.
Accessed: 2017-03-24.

[spac] Apache spark: core concepts, architecture
and internals. http://datastrophic.io/
core-concepts-architecture-and-internals-of-apache-spark/.
Accessed: 2017-03-24.

[spad] Diving into apache spark streaming’s execution
model. https://databricks.com/blog/2015/07/30/
diving-into-apache-spark-streamings-execution-model.
html. Accessed: 2017-05-14.

141

http://yahoohadoop.tumblr.com/post/98210076241/the-next-generation-of-apache-hadoop-mapreduce
http://yahoohadoop.tumblr.com/post/98210076241/the-next-generation-of-apache-hadoop-mapreduce
http://spark.apache.org/docs/2.1.0/cluster-overview.html
http://spark.apache.org/docs/2.1.0/cluster-overview.html
http://www.agildata.com/apache-spark-cluster-managers-yarn-mesos-or-standalone/
http://www.agildata.com/apache-spark-cluster-managers-yarn-mesos-or-standalone/
http://datastrophic.io/core-concepts-architecture-and-internals-of-apache-spark/
http://datastrophic.io/core-concepts-architecture-and-internals-of-apache-spark/
https://databricks.com/blog/2015/07/30/diving-into-apache-spark-streamings-execution-model.html
https://databricks.com/blog/2015/07/30/diving-into-apache-spark-streamings-execution-model.html
https://databricks.com/blog/2015/07/30/diving-into-apache-spark-streamings-execution-model.html


[spae] Faster stateful stream processing in apache spark stream-
ing. https://databricks.com/blog/2016/02/01/
faster-stateful-stream-processing-in-apache-spark-streaming.
html. Accessed: 2017-05-14.

[spaf] Input dstreams and receivers. https://spark.apache.
org/docs/2.1.1/streaming-programming-guide.html#
input-dstreams-and-receivers. Accessed: 2017-05-16.

[spag] Mastering apache spark. https://jaceklaskowski.gitbooks.io/
mastering-apache-spark/. Accessed: 2017-03-24.

[spah] Spark architecture. https://0x0fff.com/spark-architecture/.
Accessed: 2017-03-24.

[spai] Spark architecture: Shuffle. https://0x0fff.com/
spark-architecture-shuffle/. Accessed: 2017-03-24.

[spaj] Spark internals. https://github.com/JerryLead/SparkInternals.
Accessed: 2017-03-24.

[spak] Spark memory management. https://0x0fff.com/
spark-memory-management/. Accessed: 2017-03-24.

[spal] Spark taskscheduler. https://jaceklaskowski.gitbooks.io/
mastering-apache-spark/content/spark-TaskScheduler.
html. Accessed: 2017-03-24.

[stoa] History of apache storm and lessons learned. http://nathanmarz.com/
blog/history-of-apache-storm-and-lessons-learned.html.
Accessed: 2017-04-28.

[stob] Storm fault tolerance. http://storm.apache.org/releases/
current/Fault-tolerance.html. Accessed: 2017-05-03.

[stoc] Tick tuples within storm. http://kitmenke.com/blog/2014/08/04/
tick-tuples-within-storm/. Accessed: 2017-05-07.

[stod] Trident tutorial. http://storm.apache.org/releases/current/
Guaranteeing-message-processing.html. Accessed: 2017-05-02.

[stoe] Trident tutorial. http://storm.apache.org/releases/current/
Trident-tutorial.html. Accessed: 2017-05-01.

[stof] Understanding the parallelism of a storm topology.
https://storm.apache.org/releases/current/
Understanding-the-parallelism-of-a-Storm-topology.html.
Accessed: 2017-05-01.

142

https://databricks.com/blog/2016/02/01/faster-stateful-stream-processing-in-apache-spark-streaming.html
https://databricks.com/blog/2016/02/01/faster-stateful-stream-processing-in-apache-spark-streaming.html
https://databricks.com/blog/2016/02/01/faster-stateful-stream-processing-in-apache-spark-streaming.html
https://spark.apache.org/docs/2.1.1/streaming-programming-guide.html#input-dstreams-and-receivers
https://spark.apache.org/docs/2.1.1/streaming-programming-guide.html#input-dstreams-and-receivers
https://spark.apache.org/docs/2.1.1/streaming-programming-guide.html#input-dstreams-and-receivers
https://jaceklaskowski.gitbooks.io/mastering-apache-spark/
https://jaceklaskowski.gitbooks.io/mastering-apache-spark/
https://0x0fff.com/spark-architecture/
https://0x0fff.com/spark-architecture-shuffle/
https://0x0fff.com/spark-architecture-shuffle/
https://github.com/JerryLead/SparkInternals
https://0x0fff.com/spark-memory-management/
https://0x0fff.com/spark-memory-management/
https://jaceklaskowski.gitbooks.io/mastering-apache-spark/content/spark-TaskScheduler.html
https://jaceklaskowski.gitbooks.io/mastering-apache-spark/content/spark-TaskScheduler.html
https://jaceklaskowski.gitbooks.io/mastering-apache-spark/content/spark-TaskScheduler.html
http://nathanmarz.com/blog/history-of-apache-storm-and-lessons-learned.html
http://nathanmarz.com/blog/history-of-apache-storm-and-lessons-learned.html
http://storm.apache.org/releases/current/Fault-tolerance.html
http://storm.apache.org/releases/current/Fault-tolerance.html
http://kitmenke.com/blog/2014/08/04/tick-tuples-within-storm/
http://kitmenke.com/blog/2014/08/04/tick-tuples-within-storm/
http://storm.apache.org/releases/current/Guaranteeing-message-processing.html
http://storm.apache.org/releases/current/Guaranteeing-message-processing.html
http://storm.apache.org/releases/current/Trident-tutorial.html
http://storm.apache.org/releases/current/Trident-tutorial.html
https://storm.apache.org/releases/current/Understanding-the-parallelism-of-a-Storm-topology.html
https://storm.apache.org/releases/current/Understanding-the-parallelism-of-a-Storm-topology.html


[SW04] Utkarsh Srivastava and Jennifer Widom. Flexible time management in data
stream systems. In Proceedings of the twenty-third ACM SIGMOD-SIGACT-
SIGART symposium on Principles of database systems, pages 263–274. ACM,
2004.

[TBC+13] Yuanyuan Tian, Andrey Balmin, Severin Andreas Corsten, Shirish Tatikonda,
and John McPherson. From think like a vertex to think like a graph.
Proceedings of the VLDB Endowment, 7(3):193–204, 2013.

[TÇZ07] Nesime Tatbul, Uǧur Çetintemel, and Stan Zdonik. Staying fit: Efficient
load shedding techniques for distributed stream processing. In Proceedings
of the 33rd international conference on Very large data bases, pages 159–170.
VLDB Endowment, 2007.

[TMSF02] Pete Tucker, David Maier, Tim Sheard, and Leonidas Fegaras. Enhancing
relational operators for querying over punctuated data streams. Unpublished
manuscript, 2002.

[TTS+14] Ankit Toshniwal, Siddarth Taneja, Amit Shukla, Karthik Ramasamy, Jig-
nesh M Patel, Sanjeev Kulkarni, Jason Jackson, Krishna Gade, Maosong
Fu, Jake Donham, et al. Storm@ twitter. In Proceedings of the 2014 ACM
SIGMOD international conference on Management of data, pages 147–156.
ACM, 2014.

[TZ06] Nesime Tatbul and Stan Zdonik. Dealing with overload in distributed stream
processing systems. In Data Engineering Workshops, 2006. Proceedings. 22nd
International Conference on, pages 24–24. IEEE, 2006.

[Val90] Leslie G Valiant. A bridging model for parallel computation. Communications
of the ACM, 33(8):103–111, 1990.

[Whi12] Tom White. Hadoop: The definitive guide. " O’Reilly Media, Inc.", 2012.

[XCD+14] Reynold S Xin, Daniel Crankshaw, Ankur Dave, Joseph E Gonzalez, Michael J
Franklin, and Ion Stoica. Graphx: Unifying data-parallel and graph-parallel
analytics. arXiv preprint arXiv:1402.2394, 2014.

[XGFS13] Reynold S Xin, Joseph E Gonzalez, Michael J Franklin, and Ion Stoica.
Graphx: A resilient distributed graph system on spark. In First International
Workshop on Graph Data Management Experiences and Systems, page 2.
ACM, 2013.

[yar] Migrating from mapreduce 1 (mrv1) to mapreduce 2 (mrv2, yarn).
https://www.cloudera.com/documentation/enterprise/
5-3-x/topics/cdh_ig_mapreduce_to_yarn_migrate.html#
concept_xfg_cmy_xl. Accessed: 2017-04-11.

143

https://www.cloudera.com/documentation/enterprise/5-3-x/topics/cdh_ig_mapreduce_to_yarn_migrate.html#concept_xfg_cmy_xl
https://www.cloudera.com/documentation/enterprise/5-3-x/topics/cdh_ig_mapreduce_to_yarn_migrate.html#concept_xfg_cmy_xl
https://www.cloudera.com/documentation/enterprise/5-3-x/topics/cdh_ig_mapreduce_to_yarn_migrate.html#concept_xfg_cmy_xl


[YCLN14] Da Yan, James Cheng, Yi Lu, and Wilfred Ng. Blogel: A block-centric
framework for distributed computation on real-world graphs. Proceedings of
the VLDB Endowment, 7(14):1981–1992, 2014.

[YCX+14] Da Yan, James Cheng, Kai Xing, Yi Lu, Wilfred Ng, and Yingyi Bu. Pregel
algorithms for graph connectivity problems with performance guarantees.
Proceedings of the VLDB Endowment, 7(14):1821–1832, 2014.

[ZCD+12] Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave, Justin
Ma, Murphy McCauley, Michael J Franklin, Scott Shenker, and Ion Stoica.
Resilient distributed datasets: A fault-tolerant abstraction for in-memory
cluster computing. In Proceedings of the 9th USENIX conference on Net-
worked Systems Design and Implementation, pages 2–2. USENIX Association,
2012.

[ZCF+10] Matei Zaharia, Mosharaf Chowdhury, Michael J Franklin, Scott Shenker,
and Ion Stoica. Spark: Cluster computing with working sets. HotCloud,
10(10-10):95, 2010.

[ZDL+12] Matei Zaharia, Tathagata Das, Haoyuan Li, Scott Shenker, and Ion Sto-
ica. Discretized streams: An efficient and fault-tolerant model for stream
processing on large clusters. HotCloud, 12:10–10, 2012.

[ZDL+13] Matei Zaharia, Tathagata Das, Haoyuan Li, Timothy Hunter, Scott Shenker,
and Ion Stoica. Discretized streams: Fault-tolerant streaming computation
at scale. In Proceedings of the Twenty-Fourth ACM Symposium on Operating
Systems Principles, pages 423–438. ACM, 2013.

144


	Abstract
	Contents
	Introduction
	Technology overview
	The AirQuality Inc. example domain

	Batch Processing
	The MapReduce Programming Model
	Combiners
	Extensions
	Complexity & costs in MapReduce algorithms
	Running example: Air quality threshold monitoring

	Apache Hadoop
	The Hadoop Distributed File System (HDFS)
	Hadoop Classic MapReduce white2012hadoop
	Yet Another Resource Negotiator (YARN) / MapReduce 2.0
	Air quality threshold monitoring with Hadoop

	Apache Spark
	Resilient Distributed Dataset (RDD)
	Job scheduler
	Memory management
	Shuffle
	Air quality threshold monitoring with Spark


	Graph Processing
	The Pregel programming model
	Complexity & costs in Pregel algorithms
	Running example: Improving the availability of AirQuality Inc.'s sensor network

	Apache Giraph
	Sharded aggregators
	Fault tolerance
	AirQuality Inc. WWAN station placement with Apache Giraph

	Apache Spark GraphX
	Graph partitioning
	Graph representation
	From graph-parallel to data-parallel
	GraphX optimizations
	AirQuality Inc. WWAN station placement with Apache Spark GraphX


	Stream Processing
	Stream Processing Principles
	Data streams
	Querying data streams
	Load management
	Memory requirements
	Fault-tolerance
	Running example: Real time air quality statistics

	Apache Storm
	Tuple processing guarantees
	Fault tolerance
	The aggregation of streaming air quality data with Apache Storm

	Apache Spark Streaming
	DStreams
	Fault-tolerance
	The aggregation of streaming air quality data with Apache Spark Streaming


	Conclusion
	List of Figures
	List of Tables
	Bibliography

