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Abstract

Cardiovascular diseases are one of the leading causes for morbidity and mortality. It is therefore

of crucial importance to identify indicators for these diseases at an early stage to find proper

treatment, prevent fatal outcome and launch preventive actions. There are many parameters

describing the health condition of the cardiovascular system, the most popular being systolic

and diastolic blood pressure (BP). Nevertheless, hypertension is only able to predict 40% of

coronary heart diseases. Therefore, further indicators have to be found.

The Mobil-O-Graph (I.E.M., Stolberg, Germany) is an oscillometric brachial-cuff based sphyg-

momanometer which allows to perform 24 hour (24h) ambulatory blood pressure monitoring

(ABPM) including pulse wave analysis (PWA). The recording involves the measurement of

standard ABPM parameters as well as the estimation of central aortic pressures and other sys-

temic cardiovascular parameters, such as augmentation index (AIx) and cardiac output (CO),

at regular time intervals throughout the day. The resulting time series often show a diurnal

profile. Therefore, the analysis of these profiles and their variability is of interest in the field

of biomedical engineering and medical pathophysiology. The aim of this thesis is to identify

suitable mathematical models and indices to quantify this profile and the variability of the time

series. Furthermore, algorithms which are applicable to the data sets and provide these indices,

need to be implemented. In this context, the analysis of diurnal BP profiles serves as a model.

In this thesis, the methods used in literature to assess blood pressure variability (BPV) are

researched and documented in detail. These methods, which have been used in clinical studies

for 24h BP profiles for considerable time, are adopted for other parameters of the PWA in order

to mathematically quantify the variability of a time series regardless of the parameter. Addi-

tionally, other indices, which have not yet been analysed at all in the context of BP and PWA

parameter, but are rather general measures of variation within a time series, are presented.

The considered methods include simple variability indices, such as the standard deviation (SD),

average real variability (ARV), successive variation (SV) and the coefficient of variation (CV).

Other methods aim to assess the diurnal profile of the parameter time series. In general, this is

achieved by curve fitting methods. An ansatz function of a specific from is fitted to the data set

by a least squared error criterion. One of the most popular models is the fourier fit. The sum

of cosine waves with different period lengths builds the ansatz function. If only one cosine wave

with a period of 24h is used, the method is called cosinor fit. Another model, the square-wave

(SW) fit, assumes that the profile can be described by two constant plateaux. These and fur-

ther models provide indices quantifying the profile. There are also simple indices which capture

certain aspects of the profile. The nocturnal fall (NF), for instance, quantifies to what extent

values at night differ from day measurements on average.

As a next step, the methods are implemented in MATLAB (The MathWorks Inc., Natick,

Massachusetts, USA) to allow the application of the approaches on data sets recorded by the

Mobil-O-Graph. Some of the methods impose conditions on the data sets to be computable,

such as a minimum number of valid recordings in a given time period. Therefore, an algorithm

is created to test data sets for the required quality.
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The variability indices provided by the methods are calculated for a selection of the ABPM

and PWA parameters of a healthy population as well as a patient group suspected to suffer

from left ventricular hypertrophy (LVH) in order to test them for significant differences. Be-

forehand, data sets of insufficient quality are excluded with the help of the above mentioned

quality algorithm. The demanded quality is thereby based on common settings in literature.

The parameters analysed are heart frequency (Hf), peripheral systolic blood pressure (pSBP),

central systolic blood pressure (cSBP), peripheral pulse pressure (pPP), central pulse pressure

(cPP) andAIx.

The results show that pSBP, cSBP and AIx have significantly different 24h average values

among the two cohorts. In contrast, Hf as well as the PP average values are not statistically

different for the two groups. However, for Hf, several variability indices provide statistically

different values, among them SD, ARV and SV. For each of the PP parameters only one index

is significantly different - the NF for cPP and the CV at night for pPP. Even if pSBP, cSBP and

AIx have 24h average values, which have a statistical difference, additional information might

be obtained by the variability indices. The NF and the indices of the cosinor fit are significantly

different for cSBP as well as pSBP. Indices of several methods, for instance, SD, ARV and NF

are significantly different for the AIx.

The large amount of indices gives a wide-ranging number of aspects to be considered. Even if

not all of the PWA parameters have been analysed in the frame of this work, the findings are

of interest in the context of identifying indices with possible prognostic relevance. The mathe-

matical models prove to be adequate to assess the diurnal profile and variability of 24h PWA

parameters and the implemented algorithms are feasible to be applied to the data sets. This

enables further investigation of clinical questions based on variability analysis.
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Kurzfassung

Kardiovaskuläre Erkrankungen sind eine der häufigsten Ursachen für Morbidität und Todesfälle.

Es ist daher von größter Wichtigkeit, Indikatoren zu identifizieren, welche diese Krankheiten in

einem möglichst frühen Stadium diagnostizieren können, um geeignete Behandlungen einzuleiten,

Todesfolgen zu vermeiden und präventive Maßnahmen zu setzen. Es gibt viele Parameter, die

den Gesundheitszustand des Herz-Kreislaufsystems beschreiben. Unter diesen sind der systolis-

che und der diastolische Blutdruck die Bekanntesten. Bluthochdruck kann jedoch nur etwa 40%

der Koronarerkrankungen vorhersagen. Daher müssen weitere Indikatoren gefunden werden.

Der Mobil-O-Graph (I.E.M., Stolberg, Deutschland) ist ein oszillometrisches Blutdruckmess-

gerät mit Oberarmmanschette, welches ambulatorische Blutdruckmessung mit zusätzlicher Pul-

swellenanalyse über einen Zeitraum von 24 Stunden ermöglicht. Die Aufzeichnungen finden

in regelmäßigen Zeitabständen statt und beinhalten sowohl die Messung der üblichen Werte

der ambulatorischen Blutdruckmessung als auch die Berechnung zentraler Drücke und anderer

systemischer kardiovaskulärer Parameter, wie Augmentationsindex und Herzminutenvolumen.

Die resultierende Zeitreihe zeigt oft einen tageszyklischen Verlauf. Deshalb ist die Analyse

dieses Profils beziehungsweise der Variabilität der Aufzeichnungen im Bereich der Biomedi-

zinischen Technik und der medizinischen Pathophysiologie von großem Interesse. Ziel dieser

Arbeit ist es, geeignete mathematische Modelle und Indizes zu bestimmen, um den Verlauf und

die Variabilität zu quantifizieren. Des Weitern sollen Algorithmen entwickelt werden, die auf

die Datensätze anwendbar sind und jene Indizes berechnen. In diesem Zusammenhang ist die

Analyse von 24-Stunden-Profilen des Parameters Blutdruck vorbildgebend.

In dieser Arbeit werden die Methoden, die in der Literatur verwendet werden, um Blutdruck-

variabilität zu quantifizieren, recherchiert und detailiert dokumentiert. Diese Methoden, die

schon seit geraumer Zeit Gegenstand klinischer Studien zur Untersuchung des Tagesprofils von

Blutdruck sind, werden für andere Pulswellenanalyseparameter adaptiert. Damit soll die Quan-

tifizierung von Variabilität unabhängig vom Parameter ermöglicht werden. Zusätzlich werden

noch weiter Methoden für die Variabilitätsanalyse von Zeitreihen aufgeführt, welche noch nicht

im Zusammenhang mit Blutdruck- oder Pulswellenparametern untersucht wurden. Die in dieser

Arbeit betrachteten Methoden beinhalten simple Variabilitätsindizes, wie die Standardabwe-

ichung, mittlere reale Variabilität, sukzessive Variation und den Variationskoeffizienten. Andere

Herangehensweisen versuchen den tageszyklischen Verlauf der Parameterzeitreihe zu erfassen.

Im Allgemeinen wird das mit der Lösung eines Ausgleichsproblems erreicht. Eine Ansatzfunk-

tion mit einer speziellen Form wird mittels der Methode der kleinsten Fehlerquadrate an den

Datensatz angepasst. Das bekannteste Model ist die Fourieranalyse. Dabei bildet die Summe

von Kosinusfunktionen mit verschiedenen Periodenlängen die Ansatzfunktion. Wird nur eine

einzelne Kosinusfunktion mit einer Periodenlänge von 24 Stunden verwendet, so spricht man

von der Kosinusmethode. Ein anderes Modell, der Square-Wave-fit, geht davon aus, dass das

Profil durch zwei konstante Plateaus beschrieben werden kann. Dieses und noch weitere Modelle

liefern Indizes zur Quantifizierung des Profils. Des Weiteren gibt es auch simple Indizes, die

gewisse Aspekte des Tagesverlaufs erfassen. Der nächtliche Rückgang beispielsweise sagt aus,
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in welchem Ausmaß sich die in der Nacht gemessenen Werte von den tagsüber gemessenen im

Mittel unterscheiden.

Anschließend werden die Methoden in MATLAB (The MathWorks Inc., Natick, Massachusetts,

USA) implementiert, um deren Anwendung auf vom Mobil-O-Graphen erhobene Daten zu

ermöglichen. Für die Berechenbarkeit einiger Indizes müssen die Datensätze gewisse Bedin-

gungen erfüllen, beispielsweise eine minimale Anzahl von vorhandenen Messdaten in einem

bestimmten Zeitintervall. Es wird daher ein Algorithmus enwickelt, welcher die Datensätze auf

die geforderte Qualität testet.

Die von den Methoden abgeleiteten Variabilitätsindizes werden für eine Auswahl von Param-

etern der ambulatorischen Blutdruckmessung und der Pulswellenanalyse sowohl für eine Ko-

horte gesunder Probanden als auch für eine Gruppe von Patienten mit Verdacht auf linksven-

trikuläre Hypertrophie berechnet, um diese auf signifikante Unterschiede zu testen. Zuvor wer-

den mit Hilfe des oben erwähnten Algorithmus Datensätze mit unzufriedenstellender Qualität

ausgeschlossen. Die geforderte Qualität ist dabei gestützt auf übliche Anforderungen in der Lit-

eratur. Die analysierten Parameter sind Herzfrequenz, peripherer systolischer und diastolischer

Blutdruck, peripherer und zentraler Pulsdruck und der Augmentationsindex.

Die Ergebnisse zeigen, dass für die beiden Kohorten das 24-Stunden-Mittel des peripheren und

zentralen systolischen Blutdrucks sowie des Augmentationsindex signifikant unterschiedlich sind.

Im Gegensatz dazu kann für die Herzfrequenz und den peripheren und zentralen Pulsdruck kein

signifikanter Unterschied im 24-Stunden-Mittel festgestellt werden. Allerdings liefern für die

Herzfrequenz einige der Variabilitätsindizes Werte, welche signifikant unterschiedlich für die

beiden Gruppen sind. Dazu gehören beispielsweise die Standardabweichung, die mittlere reale

Variabilität und sukzessive Variation. Für die Pulsdruckparameter ist jeweils nur ein Index

signifikant unterschiedlich - der nächtliche Rückgang für den zentralen und der Variationsko-

effizient in der Nacht für den peripheren Pulsdruck. Auch wenn mit dem 24-Stunden-Mittel

bereits ein signifikanter Unterschied für zentralen und peripheren systolischen Bludruck und den

Augmentationsindex festgestellt werden kann, wird mit Hilfe der Variabilitätsindizes zusätzliche

Information gewonnen. Der nächtliche Rückgang sowie die Indizes der Kosinusmethode sind

signifikant unterschiedlich für beide Blutdruckwerte. Für den Augmentationsindex liefern einige

Methoden signifikant unterschiedliche Indizes, zum Beispiel die Standardabweichung, mittlere

reale Variabilität und der nächtliche Rückgang.

Die Vielzahl an Indizes ermöglicht die Betrachtung breitgefächerter Aspekte. Auch wenn im

Rahmen dieser Arbeit noch nicht alle Pulswellenanalyseparameter analysiert wurden, sind die

Ergebnisse im Zusammenhang mit der Identifikation von Indikatoren mit möglicher Vorher-

sagekraft von kardiovaskulären Krankheiten von Interesse. Die mathematischen Modelle er-

weisen sich als geeignet, um den tageszyklischen Verlauf und die Variabilität von Pulswellenanal-

yseparametern zu quantifizieren und die implementierten Algorithmen sind auf die Datensätze

anwendbar. Das ermöglicht die Untersuchung von weiterführenden klinischen Fragestellungen

basierend auf einer Variabilitätsanalyse.
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Chapter 1
Introduction

1.1 Motivation and Physiological Background

Cardiovascular diseases (CVDs) are one of the leading causes for morbidity and mortality. In

2015, approximately 31% of all global deaths occured due to CVDs [89]. It is therefore of crucial

importance to identify indicators for these diseases at an early stage to find proper treatment,

prevent fatal outcome and launch preventive actions.

There are many parameters describing the health condition of the cardiovascular system, the

most popular being systolic and diastolic blood pressure (BP). The practice of 24 hour (24h)

ambulatory blood pressure monitoring (ABPM) is the automated assessment of these peripheral

BP values during a whole day. The measurements are made by a brachial-cuff based sphyg-

momanometer which can be programmed to initiate recordings at regular time intervals (for

instance every 15 minutes). The possibility to assess the diurnal profile of BP is important,

since it is a strongly varying value [21], [22], [31], [46]. The variations are partly explained by

behavioural reasons (e.g., exercise and rest) but they occur to a large extent because of central

cardiovascular control. The heart and the blood vessels are modulated by the central nervous

system to act as an intrinsic regulatory mechanism [46] which causes different pressure values

but also varying heart frequency (Hf). A detailed summary of physiological aspects concerning

blood pressure variability (BPV) can be found in [31]. Due to these physiological fluctuations,

the meaningfulness of a single measurement is limited and it has already been shown that the

correlation of hypertensive end-organ damage is higher with ABPM readings than with clinical

brachial BP readings [84]. Each recording is also influenced by inaccuracy of measurement,

which adds to a variable signal.

Nevertheless, hypertension based on brachial measured BP values is only able to predict 40%

of all coronary heart diseases [15]. Therefore, further indicators have to be found.

Many studies have been done to investigate the ability of other haemodynamic parameters, such

as central (i.e., aortic) systolic and diastolic BP, pulse wave velocity (PWV) and pulse pressure

(PP), to predict cardiovascular events [2], [5], [20], [35]. Considering systolic BP and PP, which

is the difference of systolic and diastolic BP [88], it is reasonable to distinguish between central

1



Figure 1.1: Change of the pressure wave when traveling from the aorta to the distal ar-
teries ([40], p. 570): The systolic pressure increases. As a consequence PP
values are higher as well.

and peripheral values. Brachial measured values are higher than the central pressures measured

at the aorta (cf. figure 1.1). The amplification of pressure is physiologically explained by the

diameter reduction and stiffness increase as one moves from the heart to the distal end of the

arterial tree [84]. Furthermore, studies have confirmed the superiority of central values, when is

comes to the predictability of cardiovascular diseases [52], [80]. However, these central values are

difficult to assess. Either an invasive measurement is required, which is not feasible for practical

usage, or non-invasive devices assessing these parameters require trained personnel [82], [84].

The Mobil-O-Graph (I.E.M., Stolberg, Germany) is an oscillometric brachial-cuff based sphyg-

momanometer which allows to perform 24h ABPM including pulse wave analysis (PWA). The

recording involves the measurement of standard ABPM parameters, such as peripheral systolic

and diastolic BP. Subsequently, for a duration of ten seconds, the pulse wave is recorded. With

the ARCSolver method (tranfer-function like algorithm), developed by the Austrian Institute

of Technology (AIT), central aortic pressures are estimated from these brachial recordings (cf.

figure 1.2) [81], [84], [85]. The PWA includes the calculation of several other parameters, such

Figure 1.2: The validated ARCSolver algorithm uses a general transfer function to obtain
a central pressure wave from the brachial measured curve [81].

as peripheral resistance (Rp), cardiac output (CO) and the PWV. The augmentation pressure

(AP) is computed as well. It is the difference of systolic BP and inflection pressure [27], [82].

The latter one is determined as follows. When the heart contracts, it ejects blood into the

2



aorta. The pulse wave propagates through the arterial tree, but it is also reflected back to the

proximal aorta. The inflection pressure is the pressure at the time point when the backward

wave meets the forward wave [27], [81]. Another parameter, the augmentation index (AIx), is

defined as the percentage ratio of augmentation pressure (AP) and PP. As mentioned before,

PP is the difference of systolic and diastolic BP.

Some of these parameters have been found to be of prognostic value. The AIx and PWV, for

instance, can be seen as surrogates for arterial wall stiffness. The consequences of this artery

property on cardiovascular mortality are notable [27], [81].

However, the impacts of these parameters have not yet been analysed in a diurnal variability

frame like BP. When considering their definitions (cf. PP and AIx), it becomes clear that they

are varying as well. With the availability of non-invasive measurements of central haemody-

namic parameters of the PWA in regular time distances throughout a whole day, a variability

analysis is made possible for more than just peripheral BP data.

1.2 Aim of the Thesis

In order to analyse the diurnal profile of PWA parameters, methods established for ABPM

data serve as a model. The aim of this work is to collect a wide range of these methods and

prepare a detailed documentation of the derived variability indices. Furthermore, the models

are implemented in MATLAB to be applicable to parameter time series which were previously

collected by the Mobil-O-Graph and to study their feasibility. To assess the practicability of

the indices, another aim is to identify advantages and disadvantages. The indices gathered

are calculated for a selection of PWA parameters of a healthy population as well as a patient

group suspected to suffer from left ventricular hypertrophy (LVH) in order to test them for

significant differences. This may contribute to the task of determining pathologies by the use

of haemodynamical parameters.

1.3 Thesis Outline

This thesis is structured in six chapters including this introduction as the first one. The moti-

vation for this work is laid out and the aim is presented. Chapter 2 builds the core of this thesis

as it contains the collection of a wide range of methods and models assessing the variability

and the diurnal profile of PWA parameters. In addition to a detailed description and exam-

ples, advantages and disadvantages of each index are gathered. As the methods impose certain

conditions on the data sets to be computable, the third chapter is dedicated to a quality assess-

ment algorithm for the data sets. The indices collected in chapter 2 are applied on a selection

of PWA parameter profiles for a control group of healthy individuals and for a patient group

suspected to suffer from LVH. After these data under investigation are introduced in chapter 4,

the indices are tested for statistical significance. In chapter 5 the results are presented. Finally,

the findings are discussed in chapter 6 and an outlook for possible future work is given.
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Chapter 2
Methods Assessing Variability

The present chapter deals with a range of different methods to calculate mathematical indices

quantifying the variability of measurements assessed at more or less equidistant time points over

a period of 24h. Many of the following indices have been developed to analyse the variability

and the profile of 24h BP data and have already been examined in a wide range of studies

concerning 24h BPV, in certain cases also 24h Hf variability. Other indices have not yet been

analysed at all in the context of BP and PWA parameters, but are rather general measures of

variation within a time series. The calculation itself as well as the advantages and disadvantages

- if known - will be discussed. The aim is to optimize the algorithms calculating these indices

by gathering their technical limits as well as the restriction they force onto the given data set,

for instance the availability of a minimum number of data points. Eventually, the aim is to

apply these algorithms to 24h PWA parameter data which are considered in this work.

2.1 Crude Standard Deviation cSD

2.1.1 Definition of cSD

One of the most widely used methods for the quantification of the variability of a data set is

the calculation of the (crude) standard deviation (SD) [3], [13], [28], [46], [55], [90]. Interpreting

the data set as a random sample allows the calculation of the SD as the square root of the

second empirical moment (= random sample variance). It is a consistent estimator, but not

unbiased [86].

Definition 2.1. The crude standard deviation (cSD) is calculated as

cSD :=

√√√√ 1

n− 1

n∑
i=1

(xi −X)2, (2.1)

where xi and n indicate the measured value at time point ti and the number of available
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measurements, respectively. Furthermore X denotes the mean of measurements

X =
1

n

n∑
i=1

xi. (2.2)

2.1.2 Advantages of cSD

This parameter is very simple to implement. Furthermore, there are little to no restriction on

the data set to make its calculation reasonable. The only requirement is, of course, the presence

of at least one data point.

This index has been used in several (rat and human) studies to show the existence of an

association between BPV and different kinds of heart diseases, target organ damage (TOD)

and even mortality [21], [32], [58], [61].

2.1.3 Disadvantages of cSD

In some articles, it is pointed out that an unweighted SD such as cSD other than the later

mentioned weighted standard deviation (wSD) (cf. 2.2) overestimates the variability [3], [14].

On one hand this overestimation is due to the ignorance of cSD of the so called nocturnal blood

pressure fall (NBPF) (cf. section 2.12). Another aspect which needs to be taken into account is

the following: if different measurement intervals are chosen (e.g., at night time every 30 minutes

and at day time every 15 minutes), day time variations are proportionally more represented in

cSD. To overcome both these issues one introduces a weighting. This is futher described in

section 2.2 which deals with the index wSD.

Furthermore, it is mentioned that other parameters, such as wSD or average real variability

(ARV) (cf. 2.3), have a better performance in predicting cardiovascular disease than cSD [36],

[48], [49], [60]. In [14] and [83], it is stated that, since cSD as well as wSD only indicate to

what extent the measurements spread from the mean, they both lack to differentiate random

variation from physiological or systematic variation of BP. This is specially an issue, if BP

follows a trend over time (for instance as a reaction to drug treatment), or if there is a high

correlation between the variability of the signal and its mean, which usually is the case. However,

the first mentioned issue is more relevant, if measurements are taken over a long-time period,

such as weeks or months. In this case, cSD will provide large values due to the trend over time,

but not necessarily due to variability [83]. Moreover, cSD has to be questioned as a reliable

parameter, since some contradicting results have been found when using cSD as an experiment

variable [36], [48]. Furthermore, since cSD is independent of the order in which measurements

are given, it does not reflect the time series structure of the signal considered, which may erase

important information [21], [36], [61], [92].

Another issue which has to be stressed, is the fact that SD correlates strongly with the mean

value of the data set. Prognostic value of variability might therefore be due to the significance

of mean. Either this correlation has to be taken into account in the statistical model evaluating

the relevance of the index or the index has to be transformed appropriately to obtain the
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independence of the mean (cf. section 2.6). In some studies, SD lost its predictive value after

adjusting the model, while in others it did not [61].

Even if the number of measurements is not relevant to make the calculation of SD reasonable,

many authors point out that this index is sensitive to a low frequency of measurements per

day [21], [36], [49]. Thijs et al. [70], for instance, claim that an accurate determination of this

index is only then obtained, if measurement are available every 30 minutes.

2.1.4 Implementation - Restrictions on the Data Set and Features of the

Algorithm

The algorithm allows to calculate the standard deviations of the whole 24h and of the sub-

periods day time and night time, which can be defined individually. It is also optional to obtain

a plot of the data which includes vertical lines for the beginnings and endings of day and night

time, respectively. The time axis (= abscissa) can be chosen to be presented as decimal numbers

or as hours of the day (cf. figure 2.1).

Since this index is algebraic, the only restriction to make the calculation itself reasonable is the

presence of ,enough’ data points in each of the periods. The code gives a warning, if the number

of data points is below a user defined threshold number.

However, it has to be stressed that even if the simple calculation in fact only requires a single

measurement, a certain larger number of measurements is needed to obtain a value for the SD

which is reliable when used in statistical tests (cf. 2.1.3).

2.2 Weighted Standard Deviation wSD

2.2.1 Definition of wSD

For a refinement of the cSD, one may include a weighing. Commonly this is done by a day-night

distinction. In particular, this means that one calculates the cSDs for all measurements during

day time and during night time separately and builds the arithmetic average afterwards [3],

[4], [38], [46], [61]. ,Day time’ and ,night time’ are of course no fixed time intervals and have

to be determined as two disjoint periods within the 24h. The corresponding formula reads as

follows.

Definition 2.2. The weighted standard deviation (wSD) can be calculated as

wSD =
(cSDday · k) + (cSDnight · l)

k + l
, (2.3)

where cSDday and cSDnight indicate the cSDs of measurements during day time and night

time. Furthermore, k and l denote the number of measurements which were recorded during

these periods.
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Figure 2.1: Output of the function calc cSD.m in MATLAB. (The threshold number of
12 measurements has been choosen arbitrarily to provoke the output of the
warning message and should not be seen as a scientific value.) This figure
nicely shows the approximate transition periods between the higher level day
values and the lower level night values.

Comment 2.3. Note that, if the defined day and night intervals are a cover of [0, 24), the

formula reads as

wSD =
(cSDday · k) + (cSDnight · (n− k))

n
, (2.4)

where n is the number of all valid measurements. However, typically the hours of the transitional

periods between day and night will be excluded. [3]. �

2.2.2 Advantages of wSD

This method is easy to implement and applicable to practically all possible data sets without

any restrictions as long as there are measure points available. Additionally, the weighing leads

to a more sophisticated estimation of the variability compared to the cSD [3]. This is due to the

fact that the weighing takes into account a well known pattern in the BP behaviour. That is to

say, BP tends to vary around a higher level during wakefulness than during night while being

asleep in healthy patients [10], [31], [39], [59]. The key component for this behaviour is in fact

a matter of being asleep or awake, since it has been shown that 24h BP profiles of shift workers

being on duty at night and going to sleep in the morning show a reversed pattern [8], [31].
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Taking this into account, wSD circumvents an overestimation of variability such as detected in

the calculation of cSD [3], since differences of day- or night measurements to the corresponding

means will be smaller than to the 24h mean. When considering BPV as a risk factor for

cardiovascular events (CEs), but simultaneously being aware of the fact that dipping at night is

a proven healthy behaviour [3], one needs to exclude this effect in the calculation of BPV [61].

The phenomena of the decrease of BP when going to sleep and also the rise of BP when waking

up, have been given the names nocturnal blood pressure fall (NBPF) and early morning surge

(EMS). These effects will be discussed in the following sections (cf. 2.12 and 2.13).

According to the studies in [3], [46], [61] and [60], wSD can be considered as a superior index to

measure BPV compared to cSD, since it correlates better with TOD and is a better predictor

of cardiovascular risk.

In general, it might give a more detailed insight in the study of BPV, when looking at day

time and night time SDs separately [60]. This is for instance supported by studies, where it has

been shown that only one of the indices cSDday and cSDnight was affected by a certain drug

treatment for hypertensive patients [21].

Comment 2.4. The weighting is a method primarily introduced to overcome the overestimation

of variability with cSD due to the ignorance of the NBPF. There is also another effect responsible

for this overestimation. Usually there will be a lower number of usable measurements during

night time then during day time either because measurements during sleep are more difficult

to asses (due to technical reasons [71]) or simple because a lower number of measurements is

scheduled [43]. The weighting partly compensates this bias. Other possibilities to overcome this

issue, are, of course, to schedule the same number of measurements during day time and night

time or to weight the whole dataset by the time intervals between consecutive measurements.

In [43], another approach is used. To obtain values for BP throughout 24h, each hour during

day time and during night time is assigned with the mean value of the measurements within this

hour. They compared this time-weighted approach to asses BP over 24h with other possible

measurement schedules and concluded that overestimation was lowest with the time-weighted

method and reliable analysis of the data set should include approximately the same number of

measurements at each period of the day. If this is not possible, a weighting should be included.

The weighting methods can of course not compensate for the physiological effect, that one is

awake for a longer period than asleep [43].

2.2.3 Disadvantages of wSD

It has already been mentioned that cSD does only quantify to what extend the data points

are spread from the mean and does not account for the order in which the measurements are

taken [21], [92]. Therefore, the data sets of two individuals may exhibit the same SDs, even if

the profiles show a completely different behaviour (cf. fig. 2.2) [1], [36].

Comment 2.5. In figure 2.2, it is said, that cSD is equal to 10 in both cases. This calculation

included the normalization factor 1
n instead of 1

n−1 which appears in formula 2.1 under the

square root. Otherwise the cSDs in both cases would be approximately 10.54. �
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Figure 2.2: Illustration of ,ARV vs. SD’ in the context of the sequential structure of the
data set (adapted from [16]).

Besides the studies in favour of the index wSD, there have also been studies such as the one by

Bjelakovic et al. [4], which found that wSD was not a reliable index to predict the risk for left

ventricular hypertrophy (LVH) in children.

The weighted SD does partly account for the factor ,time’ in the calculation as it differs between

measurements taken during day and during night. Still it does not fully capture the time series

structure of the given data. This may erase information about variability.

As mentioned previously, wSD lacks to distinguish between variation contributed by physiolog-

ical processes and random variability in BP [14] (cf. 2.1.3). An improvement for this challenge

will be presented in section 2.15 using another index called personalized SD, which aims to math-

ematically exclude physiological variation such that only random variation is measured [14].

A further inconvenience is the fact that wSD similar to cSD strongly depends on the overall

level (mean) of the data, as it has been shown that variability measured with SD, whether

crude or weighted, increases and decreases with the level of mean [32]. An improvement can be

achieved, when using indices such as variation independent of mean (VIM) or the coefficient of

variation (CV) [1], [32]. Both will be discussed in following sections (cf. sections 2.10 and 2.6).

2.2.4 Implementation - Restrictions on the Data Set and Features of the

Algorithm

The features of the algorithm to calculate the wSD are similar to those of the algorithm cal-

culating the cSD. The same data queries for quality are performed and warnings are given if a

data set fails the requirements (cf figure 2.1). Day time and night time are input parameters

of the program, but in order to exclude the physiological effects of NBPF and EMS, an initial

square wave or fourier fit could be performed to properly define these periods [22] (cf. sections

2.14.1, 2.14.3 and 2.12.2).
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2.3 Average Real Variability ARV

2.3.1 Definition of ARV

ARV is the sum of the absolute values of differences between consecutive readings, normalized

by the number of measurement gaps. Thus, it is an estimator for the average change of values

between readings and therefore can reflect beat-to-beat variability [90]. The background for this

index is the mathematical concept of total variation commonly used in the analysis of functions

[36], [83], [90].

Definition 2.6. Average real variability is defined as

ARV =
1

n− 1

n−1∑
i=1

|xi+1 − xi|, (2.5)

where xi indicates the measurement at time point i and n is the number of valid measure-

ments.

2.3.2 Advantages of ARV

ARV provides a lot of advantages especially compared to SD, while the calculation complexity

stays equally simple.

It has been suggested in several studies, that BP variability indices, which are sensitive to the

sequential structure of the given data show a better performance in predicting cardiovascular

disease than those ignoring it. The main advance of ARV compared to previously mentioned

indices is precisely that it takes the order of the given data into account [21], [36], [49], [61].

With this feature, ARV is a more elaborate index for variability as it excludes such issues as

observed for the SD in section 2.2.3 figure 2.2. While SD fails to capture the differences in

the two profiles, ARV does not. In general, several authors state that ARV is a superior index

compared to SD to prove association between BP variability and the risk for CEs, TOD or

other complications [16], [21], [36], [46], [48]. For instance, Schillaci et al. [60] were able to show

an association between large-artery stiffness and BPV assessed with ARV independent of BP

level, age and heart rate. Although the relationship was notable for wSD and SD as well, the

association was strongest with the index ARV. Artery stiffness was measured by calculating the

carotid-femoral pulse wave velocity (cfPWV). However, since the relation between BPV and the

latter index might be bidirectional, the causality is not clarified. It might as well be the case

that increased artery stiffness leads to an increased BPV, instead of high BPV predicting less

artery distensibility and therefore TOD. There have been animal studies, identifying BPV as

an independent marker for artery-stiffness, but such studies are not feasible with humans [60].

A similar study by Xiong et al. trying to relate BPV with carotid intima-media thickness - an

indicator of atherosclerosis and therefore a predictor for CEs and stroke - also found ARV as

the index with the best association of these two variables in consideration [90]. It should be

stressed that in both studies systolic BPV was the significant index.
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Another example is the study of Mena et al. [36], in which ARV, in contrast to SD, was found

to be an independent risk factor for cardiovascular events compared to factors such as age,

smoking status, cholesterol, systolic BP and others.

Furthermore, this index is also suggested to be a useful tool to represent variability of other

time series parameters, such as heart rate.

Another improvement of ARV is that it is not as influenced as SD by a low frequency sampling

number of ambulatory monitoring [21], [83]. This index is also used to assess visit-to-visit BP

variability [41].

2.3.3 Disadvantages of ARV

Even if ARV was found to be a more reliable index than SD, it has been claimed that BP

variability measured with ARV also has limitations as a predictor for cardiovascular risk. BP

variability quantified with ARV does improve the ability to predict cardiovascular events com-

pared to indices measuring the level of BP such as systolic BP mean values (sBP), but only by

0.1% [66]. Thus BPV assessed with ARV is considered a significant risk factor, but only in a

statistical frame and not for clinical practice [1].

Another study, with the aim to predict the risk for children with hypertension to suffer from

left ventricular hypertrophy, found both, wSD and ARV as unreliable indices [4].

Although ARV has been a considerable improvement in many aspects of the quantification

of variability compared to SD, there is a certain limitation, when it comes to the prognostic

value of ARV. It has been mentioned, that this index is less sensitive to a lower number of

measurements. However, to avoid the loss of prognostic information, a minimum amount of

data points is required. One of the observation of the study in [37] is, that ARV increases,

when fewer readings are used in the calculation. This may veil the differences between subjects

with high and low variability. The number of readings affects not only the predictive power,

but also the reproducibility of BPV, when calculated with ARV. With the aim to determine

a minimal quantity of readings necessary to guarantee the reliability of ARV as a variability

index, they found 48 measure points over 24h to be an appropriate amount to calculate ARV

without loosing any significant information. Despite this possible limitation the study supports

the predictive relevance of ARV for cardiovascular and cardiac mortality, while concomitantly

questioning its independence from other risk factors. Nevertheless, they recommend a minimum

of 48 measure points when prospectively analysing BPV with ARV.

Another aspect, in which ARV does not improve compared to SD deviation is the fact, that it

strongly depends on the mean level of BP as well [1].

Comment 2.7. In [66] and [37] a weighted form of ARV was used (cf. 2.4) . �

2.3.4 Implementation - Restrictions on the Data Set and Features of the

Algorithm

The requirements on the data set stay essentially the same as for the before mentioned indices.

The only difference is, that the number of desired measurements within 24h is set to 48 as sug-
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gested by [37] as the minimum number, which is needed to prevent loss of statistical significance

of this index.

The plot features are the same as for the previous indices.

2.4 Weighted Average Real Variability wARV

2.4.1 Definition of wARV

To compensate for the loss of data or generally a low number of measurements in the calculation

of the index ARV itself, one may include a weighting with the time intervals between consecutive

readings as the weighting factors [37], [66].

Definition 2.8. Weighted average real variability (wARV) is defined as

ARVw =
1∑n−1

i=1 (ti+1 − ti)

n−1∑
i=1

|xi+1 − xi| · (ti+1 − ti), (2.6)

where xi indicates the measurement at the time point ti and n is the number of valid

measurements.

2.4.2 Advantages and Disadvantages of wARV

The advantages and disadvantages of the index ARV have been discussed before in the sections

2.3.2 and 2.3.3. Specific focus on the weighted version of ARV was present in the publications

of Stolarz-Skrzypek et al. [66] and Asayama et al. [1]. The findings of this studies have as well

already been mentioned in these sections.

2.4.3 Implementation - Restrictions on the Data Set and Features of the

Algorithm

Since the main problem in the calculation of ARV is the possible loss of significance due to a

low number of measurements, the request of a minimum number of readings is reasonable. The

weighting aims to compensate for this. Therefore the query of a minimum number is dropped.

Nevertheless, a large gap between two consecutive readings is still undesirable. It may be of

interest to state other quality requests for the data set such as, within one hour there should

be at least two valid readings.

2.5 Successive Variation SV

2.5.1 Definition of SV

Another index measuring variability is the so called successive variation (SV). It is closely related

to ARV as the calculation concept is very similar [83], [92].
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Definition 2.9. Successive variation (SV) is calculated as

SV =

√√√√ 1

n− 1

n−1∑
i=1

(xi+1 − xi)2, (2.7)

where xi indicates the measurement at the time point ti and n is the number of valid

measurements.

SV is highly correlated with ARV, but it will usually be larger and is more sensitive to more

prominent differences between consecutive readings [83].

2.5.2 Advantages and Disadvantages of SV

Similar to ARV, SV as well captures the time sequence of the measurements [92]. The authors

of the study of Yong et al. [92] emphasize that this is an important aspect, when studying the

profile of BP. They analysed 72h BP profiles of patients after they suffered from acute ischemic

stroke. Among other profile indices they found decreased SV of dyastolic BP during the 72h

after stroke as an independent predictor of a convenient outcome for the patient, i.e. no relevant

symptoms affecting everyday life.

Comment 2.10. As the two indices correlate strongly disadvantages (as well as advantages)

of ARV can be seen as equivalently valid for SV. �

Comment 2.11. SV was used as reference value for BPV in the validation analysis of CUSUM

(cf. section 2.16) as an index for quantifying the circadian pattern of the BP profile [65]. The

results and findings are of course only then favourable, if SV is seen as a suitable index to

adequately quantify variation.

It was also used as the index measuring variability, when showing that an increased systolic BP

variability independently predicts deep and infratentorial cerebral microbleed (CMB) progres-

sion and diastolic BP variability is associated with CMB development in deep regions [28]. It

has to be mentioned, that visit-to-visit variability was examined.

Another study tried to find an association between albuminuria variability and progression in

patients with type 2 diabetes and visit-to-visit variability. Among other indices SV was found to

be an independent predictor. Interestingly, ARV, did not perform likewise despite their notable

resemblance [41]. �

2.5.3 Implementation - Restrictions on the Data Set and Features of the

Algorithm

The quality queries as well as the plot features are exactly the same as for ARV (cf. section

2.3.4).
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2.6 Coefficient of Variation CV

2.6.1 Definition of CV

Previously mentioned indices were often dependent on the mean of the time series under consid-

eration. This is an issue since higher variability measured with these indices might only appear

due to a trend of mean, but not due to real variability. A range of indices already mentioned can

be slightly transformed to overcome this trouble. The first one to be discussed is the coefficient

of variation. A simple division of the SD by the mean value of the data yields to the sought for

independence [46], [83], [90].

Definition 2.12. The coefficient of variation is a normalized form of the standard deviation.

It is defined as

CV =
SD

X
· 100%, (2.8)

where SD is the standard deviation and X indicates the mean (cf. def. 2.1, equ. 2.2).

Comment 2.13. The multiplication by 100 is optional. It defines whether the CV is given

as decimal number or as a percentage. The division by the mean is the essential operation to

non dimensionalize. This is an often used technique in modelling with differential equations to

identify dominant terms of the equation. �

2.6.2 Advantages of CV

The CV was found to indeed fulfil its purpose to correct for the correlation of SD and mean

level of 24h ABPM data [1], [23], [55]. While the SD of the data grows proportional to the

rise in their mean value, CV does not do so. This was observed even when the mean value

increased solely in subperiods of the 24h measurement period [46]. For visit-to-visit variability

analysis this is not valid as correlation (partly) remains. In this case other transformations of

SD are required to obtain independence of mean (cf. section 2.10) [13], [55], [56], [83]. Similar

to SD the CV is a widely used index and has been proven helpful to show associations between

different cardiovascular diseases and BPV [7], [21], [61], [74], [90], [91]. In the study of Wenhong

et al. [28], which was already mentioned in section 2.5.2, besides SV, CV of BP was also related

to CMB progression. CV was used to assess variability. However, visit-to-visit variability

was analysed. In two studies by Rothwell et al. [55], [56] as well visit-to-visit variability was

analysed. On one hand, systolic BPV assessed with CV was shown to be an independent risk

factor for stroke (independent of mean systolic BP) and on the other hand, the results suggest

that BP lowering drugs as treatment to reduce stroke risk should not only avoid to increase

(visit-to-visit) BPV, but ideally even lower it concomitantly. However, both studies classified

CV as a minor index compared to VIM since correlation to mean BP partly remained.
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Figure 2.3: Illustration of ,SD vs. CV’ in the context of the dependence on the mean of
the data set [36]. The data on the left show a higher mean value. While the
cSD gets smaller as the mean level decreases, the CV is almost the same for
both data sets. The index variation independent of mean (VIM) is discussed
in section 2.10.

2.6.3 Disadvantages of CV

Some of the issues regarding the index SD remain for CV. Again this index ignores the sequential

structure of the data [92]. Therefore, the problem discussed in section 2.1.3 illustrated by figure

2.2, that SD can be the same for observable different data profiles, remains [32]. Likewise the

primary determination of SD by the NBPF and the resulting overestimation of variability is

an issue unresolved by CV [23]. Also the sensitivity to the low frequency of measurements

per day remains [21]. Since SD and CV are both influenced by changes that occur during a

relatively long period (hours to one day), extreme values weight stronger [55]. Thus, instability

in BP due to certain stress factors, contributes stronger to these values more likely resulting

in overestimation. Although CV is an often used index to assess and analyse visit-to-visit

variability and has lead to favourable results, there have also been studies, in which, in contrast

to other measures for BPV such as SD or VIM (cf. section 2.10), CV was not a predictor of

certain diseases which are believed to be associated with BPV [41].

2.7 Higher Empirical Moments HEM

2.7.1 Definition of HEM

Definition 2.14. For a random variable X the moment of order k with k ∈ N and the

k−th central moment are defined as

mk := E(Xk) and Mk := E((X − µ)k), (2.9)

where µ = E(X) is the expected value of the random variable. [86]

The interpretation of the data set in consideration xi, . . . , xn as a random sample of a random
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variable suggests the calculation of the SD (cf. section 2.1), which is the square root of the

second central empirical moment. However, the computation of higher empirical moments,

which can be seen as estimators of the (unknown) moments of the random variable, is possible

as well as they always exist for a random sample.

Definition 2.15. The k-th empirical moment is defined as

m̂k =
1

n

n∑
i=1

(xi)
k or in central form as M̂k =

1

n

n∑
i=1

(xi −X)k, (2.10)

where xi indicates the i-th measure value and X is the (empirical) mean value.

Comment 2.16. These moments are sometimes given as absolute empirical moments. This

means that xi is replaced by |xi| and (xi −X)k by |xi −X|k, respectively.

The calculation of the first four empirical moments seems reasonable, since they can be in-

terpreted as sample mean (1st), sample variance (2nd) (cf. section 2.1), skewness (3rd) and

kurtosis (4th). To be precise, if X indicates a random variable, the latter two are defined as the

central moments of order three and four respectively, normalized by the corresponding power

of the SD [86]

S =
E(X −X)3

SD(X)3
, W =

E(X −X)4

SD(X)4
, (2.11)

where E is the expected value.

The empirical moments defined in definition 2.15 divided by the corresponding power of the

SD estimator (cf. def. 2.1) are precisely estimators for S and W obtain from x1, . . . , xn, when

interpreting these measurement values as a random sample of a random variable.

Definition 2.17. For a random sample, empirical skewness and empirical kurtosis are

defined as

Ŝ :=
1
n

∑n
i=1(xi − X̄)3√

1
n−1

∑n
i=1(xi −X)2

3 and Ŵ :=
1
n

∑n
i=1(xi − X̄)4√

1
n−1

∑n
i=1(xi −X)2

4 . (2.12)

Note, that the used estimator for the SD is normalized by (n− 1). As mentioned in section 2.2,

normalization by n is possible as well (cf. comment 2.5).

2.7.2 Advantages and Disadvantages of HEMs

These indices, except for the SD, which is basically the square root of the variance, have not

yet been discussed in studies regarding the association of the variability of a PWA parameter

and cardiovascular outcome.
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2.7.3 Implementation - Restrictions on the Data Set and Features of the

Algorithm

The algorithm calculates empirical skewness Ŝ and empirical kurtosis Ŵ for day time, night

time and for 24h. The Matlab built in functions skewness and kurtosis are used. It has to be

mentioned that these function use the normalization by n for the SD. If precisely the formula

of definition 2.17 is desired the calculation has to be done ,manually’ (cf. function description

of calc HEM.m).

2.8 Functions of Order Statistics OSs

Definition 2.18. Let x1, ..., xn be the recorded measurement values. Define

Y1 := min{x1, . . . , xn} (2.13)

Y2 := min{{x1, . . . , xn}\{Y1}} (2.14)

...

Yi := min{{x1, . . . , xn}\{Y1, . . . , Yi−1}} (2.15)

...

Yn := max{x1, . . . , xn}. (2.16)

Then there holds Y1 < Y2 < · · · < Yn and Yi is called the i−th order statistic . The sorted

random sample values Y1, . . . , Yn are also called rank list [86].

It appears that certain functions of order statistics provide a proposition about the 24h profile

of the data set x1, . . . , xn and its variability.

2.8.1 Maximum max and Minimum min

The simplest indices obtained from the order statistics are the maximal and the minimal value

of the data set.

Definition 2.19. For the measurement values {x1, . . . , xn}, the maximum (max) and the

minimum (min) are defined as

max = max{x1, . . . , xn} = Yn, (2.17)

min = min{x1, . . . , xn} = Y1. (2.18)

Advantages and Disadvantages of max and min

Probably because of the simplicity of these indices, at least max is widely used and (despite

the low complexity) favourable results have been achieved. For instance Matsui et al. showed
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that the maximal value of home systolic BP is a strong predictor of TOD. The correlations

of left ventricular mass index and carotid intima-media thickness (as measures for TOD) were

significantly larger with the maximum than with mean systolic BP [33]. However, It has to be

mentioned that maximum was defined in some sense differently than above. For 14 days, there

were taken three BP measurements in the morning and in the evening, respectively. Each triple

was averaged and the maximum among these mean values was defined as maximum. Similar

studies by Rothwell et al. and Matsui et al. showed the predictive importance of maximal

systolic BP in association with cardiovascular events and the development of brain hemorrhagic

transformation [33], [56].

A major disadvantage of this index is that it is very sensitive to outliers. In the above mentioned

studies this was alleviated by taking the mean of the triplicate assessed BP value. Another study

found that maximum BP and maximum PP did not have any effect on cardiovascular mortality

in hemodialysis patients, where BP and PP was assessed over three months at each dialysis

treatment session [11], [21].

It has to be emphasised that in the above mentioned studies, the time series of which the maxi-

mum is taken of, extend over more prolonged time periods than 24h ranging from 72h to several

months. So the definition of ,maximum’ can differ from the one given in 2.19.

Regardless of the advantages and disadvantages maximum as well as minimum are two param-

eters among several others often used to assess the 24h BP profile [92] as done in the study

of Yong et al., when the profile of patients after an ischemic stroke was aimed to be assessed.

The maximum value showed a significant difference between the groups of favourable and un-

favourable outcome after 90 days after the stroke, in a group receiving drug treatment as well

as in a placebo group.

Wenhong et al. [28] as well used the maximum value to assess BPV.

Comment 2.20. In [63] and [71] the time point of the appearance of the maximum systolic

and diastolic BP is mentioned. This might therefore be an interesting index as well. �

2.8.2 Range

The range is the simplest measure of dispersion in statistics [57], [86]. Interpreting the discrete

dataset as node points, the performance of a linear interpolation allows to identify the range

with the oscillation of the resulting continuous function f .

Definition 2.21. The range can be calculated as

range = osc(f) = max
y∈Ω

f(y)−min
y∈Ω

f(y) = Yn − Y1, (2.19)

where n is the number of measurements, Yn is the maximal value xmax, i.e. the n-th order

statistic, and Y1 is the minimal value xmin, i.e. the first order statistic. The set Ω is the

24h interval.

Comment 2.22. If one is interested in the range of the values within another time interval
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than 24h, Ω will be a subinterval of [0, 24), for instance, the day time interval. To calculate the

range, one has to determine the maximal and minimal value within this time period - typically

these will not be Y1 and Yn - and compute the difference. �

Advantages and Disadvantages of range

On one hand, this index is very suitable for small random samples, hence it is not sensitive to a

low frequency of sampling [57]. On the other hand, the range is not robust against outliers and

looses its meaningfulness if the amount of data gets too big [86]. This index might therefore be

more suitable for data sets with a notable loss of readings than others.

This index is somehow closely related to the NBPF, which will be discussed in section 2.12.

This is loosely speaking the difference between the mean day time and the mean night time

values. Since the largest value is typically expected to appear during wakefulness and the lowest

typically during sleep at night, NBPF and range should be correlated. Such as wSD also other

indices, for instance personalized standard deviation (cf. section 2.15), try to exclude this effect

in the measurement, since it is a physiological phenomenon considered to be healthy [14], [32].

2.8.3 Interquartile Range IQR

As an alternative to the range the interquartile range can be chosen. It is a measure of the

range of the medial 50% of the data points [86].

Definition 2.23. The interquartile range (IQR) is defined as

IQR = Q3 −Q1 = 75%-percentile− 25%-percentile

≈ Yk − Ym

(2.20)

with the following labels:

i) Q3 indicates the 3rd (or upper) sample quartile, which can be estimated by the k−th

order statistic Yk with k = b0.75 · (n− 1)c.

ii) Q1 stands for the 1st (or lower) sample quartile, which can be estimated by the m−th

order statistic Ym with m = b0.25 · (n− 1)c.

iii) The number of measurements is indicated by n.

Advantages and Disadvantages of IQR

In contrast to the ordinary range, IQR is robust and therefore not as sensitive to outliers, since

the upper as well as the lower 25% of the data points are not taken into account.
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2.8.4 Midrange MR

Another possible measure is the midrange, which gives the mid point of the range and therefore

measures central tendency [12].

Definition 2.24. The midrange (MR) is defined as

MR =
Y1 + Yn

2
(2.21)

with the following labels:

i) Yn = xmax is the maximal value of all measurements.

ii) Y1 = xmin is the minimal value of all measurements.

iii) The number of measurements is indicated by n.

Advantages and Disadvantages of MR

The calculative advantages and disadvantages can be seen as equivalent to those of the ordinary

range (cf. section 2.8.2). It is highly sensitive to outliers, and therefore not robust as the change

of one single data point can change its value randomly. It takes into account only two values,

namely the minimum and the maximum. If either of these values are changes by x, the midrange

changes by x
2 . In comparison, the mean of a data set of length n would change only by x

n [75].

2.8.5 Median

The median is a commonly used measure of central tendency.

Definition 2.25. The median is calculated as

median = Q2 = 50%− percentile =


Yn

2
+Yn

2 +1

2
, for n even,

Yn+1
2
, for n odd,

(2.22)

where Yi indicates the i-th order statistic [86].

Advantages and Disadvantages of median

Unlike the range, the median is robust against outliers [86]. The median is a common used

tool in descriptive statistics to assess the profile of the time series [4]. Often it is just used to

separate cohorts in 2 groups, for instance those with high BP (> median) and those with low

BP (< median) [56], [86].
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2.8.6 Peak and Trough

Peak can be defined as the difference between the maximal value and the mathematical mean

value [41]. Trough measures the distance of the mean to the minimal value [56].

Definition 2.26. The formulas for peak and trough are

peak = Yn −X (2.23)

trough = X − Y1, (2.24)

where Yn = xmax is the maximal value, Y1 = xmin is the minimal value of all measurements

and X indicates the mean value.

Advantages and Disadvantages of peak and trough

In the study of S. Noshad et al. [41] peak was one of the indices to assess the BP profile of type

2 diabetes patients. Visit-to-visit variability of BP was measured with different indices and it

was shown that among them, peak was the one with the highest predictive value to show that

systolic BPV contributes to the progression of microalbuminuria in diabetes patients.

The index trough was mentioned in an article by Rothwell et al. They investigated which indices

perform better in predicting stroke in patients who had already suffered an ischaemic attack.

Among many other results they found peak to be a better predictor than trough [56].

Peaks and troughs interpreted in the actual meaning of the words, namely simple sharp rises

and drops in the time series profile, lead to a detailed description of the profile. White [87]

dissected the BP profile and tried to identify periods of the day with the highest risk for a

cardiovascular event.

2.9 Runs

2.9.1 Runs-test

Employing a runs test (Wald-Wolfowitz) enables the examination of the randomness of a se-

quence [6], [71]. Since the runs test in general analyses a sequence with only 2 attributes, the

first step is to obtain such a sequence from the original data.

Definition 2.27. The procedure of a runs test according to [71] reads as follows

i) Calculate the weighted mean value wX (cf. 2.12.2) of the data set.

ii) Assign each data point with either the attribute 1 or 0 according to the instruction

ak := a(xk) :=

1, xk ≥ wX

0, xk < wX.
(2.25)
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iii) The test hypotheses are

H0: The sequence (ak) is random. vs. H1 The sequence (ak) is not random.

iv) Calculate the number of runs. These are subsequences of identical elements of the

sequence (ak). The runs counter is increased by 1 whenever the sequence changes from

0 to 1 or from 1 to 0, respectively.

r := |{01− changes}|+ |{10− changes}| (2.26)

v) Let n1 be the number of 1s and n2 the number of 0s. The test statistic is given by

Z =
r − µ
SD(r)

, (2.27)

with µ being the expected number of runs according to the null hypothesis

µ =
2n1n2

n1 + n2
+ 1 (2.28)

and SD(r) being the SD of r

SD(r) =

√
2n1n2(2n1n2 − n1 − n2)

(n1 + n2)2(n1 + n2 − 1)
. (2.29)

vi) Finally the null hypothesis is rejected at a significance level of α = 0.05, if

|Z| > z1−α
2

= 1.96, (2.30)

where z1−α
2

is the (1− α
2 )-quantile of the standard normal distribution.

Comment 2.28.

• Provided, that the number of data points is sufficiently large (> 40), the Z-statistic is

approximately normally distributed with an expected value of 0 and a variance of 1.

Therefore the above rejection rule is used.

• According to [6], a continuity correction should be included, if the number of attributes

is small (n1, n2 < 30) . This means that the test statistic is given by

Z =
|r − µ| − 0.5

SD(r)
(2.31)

instead of the one given by formula 2.27.

• The version of the runs test in definition 2.27 is the so called non-sequential form. In [6]

also a sequential form is described. Since this test works under the assumption that

the alternatives 0 and 1 appear equally often, it is appropriate to use the median value
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to separate all data points in two alternatives to guarantee this requirement without

assuming normal distribution. Therefore also a median - dichotomization in formula 2.25

seems reasonable. �

Mathematical Background [69], [79]

The starting point of the runs test is the null hypothesis, in particular this is the assumption

that the sequence was generated completely random. This means that the distributions for the

elements with the first attribute has to be the same as for the ones with the second attribute.

The test seeks to determine a number of runs for which this hypothesis is rejected. Therefore,

the distribution R of the runs hat to be ascertained. Due to symmetry reasons, the probability

for each 01-sequence has to be the same and there are(
n1 + n2

n1

)
=

(
n1 + n2

n2

)
=

(n1 + n2)!

n1!n2!
(2.32)

possibilities to create a sequence from the n = n1 + n2 elements. These are the possible cases.

To determine the probability P (R = r) one needs to calculate the number of sequences with

precisely r runs. These favourable cases are obtained by2
(
n1−1
k−1

)(
n2−1
k−1

)
, for n = 2k even,(

n1−1
k−1

)(
n2−1
k

)
+
(
n1−1
k

)(
n2−1
k−1

)
, for n = 2k + 1 odd.

(2.33)

Division of 2.33 by 2.32 gives P (R = r).

2.9.2 Sequence-Sign Iteration Test of Wallis and Moore

With the help of this statistical test one can check, whether variation of the signs of differences

of consecutive readings is random (H0) or systematic (H1) [6]. In contrast to the runs-test

this test does not assume that the two features (here positive and negative signs respectively)

appear with constant probability at any time, since for instance the maximum value can only

be followed by a smaller value. Hence the sign of difference has to be negative. This test gives

the motivation to investigate the index updownups (cf. def. 2.29).

2.9.3 Definition of Runs

The number of runs itself might as well be a measure for variability since it counts how often the

sequence switches between values above and beneath the median. This suggests the assumption

that a higher number of runs indicates a more pronounced variability.

Another possible way to count runs is to identify changes in the trend of the data set. Therefore,

one calculates the differences between consecutive readings and stores their signs. If zeros appear

in the sequence of differences, they are erased since they do not indicate a real trend change. The

counter for these runs is increased, whenever there is a change of sign. A graphical illustration

is given in figure 2.4.
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Definition 2.29. The two kinds of runs are defined as

runs := r := |{01− changes}|+ |{10− changes}| (2.34)

updownups := |{changes of sign}| (2.35)

Figure 2.4: Illustration of the two kinds of runs. The legend in the top left corner is the output of the algorithm
(calc runs.m). In the night period (light blue data points) the calculation of updownups can be
comprehended. The lines connecting two consecutive measurement values are assigned with + or
- considering the sign of the difference of each measure point and the preceding one. Every sign
change adds to the index updownup which results in 2 updownups during night time. To count
runs, one has to count intersections between lines connecting data points (within the period in
consideration) and the median value line of the according period. The 3 day time runs are marked
with black star symbols (?). Analogously, runs and updownups are calculated within all 3 periods.

2.9.4 Advantages and Disadvantages of Runs

The runs test was applied to 24h BP readings in healthy men to prove the presence of a diurnal

pattern in the profile [71]. It is stated that the independence if the runs-test of the sleep time

and wakefulness is an important advantage of this method. Additionally, in contrast to the

periodogram test which is frequently used to test for a periodic rhythm, it can be applied to

non - equidistant data.

2.9.5 Implementation - Restrictions on the Data Set and Features of the

Algorithm

The reference value in the implementation is chosen as the median. The weighted mean or the

mean value are also possible, but since the distribution of the data is not known beforehand

and might not be a normal distribution, it seems reasonable to chose the median. The function
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calc runs.m allows an to chose, if for subperiod calculations the reference value is the 24h

median (option = 1) or the subperiod median (option = 0, default, cf. figure 2.4).

2.10 Variation Independent of Mean V IM

2.10.1 Definition of V IM

As it has been mentioned before, many authors emphasize the issue that some mathematical

indices such as SD or ARV quantifying variability, strongly depend on the mean value of the

data set in consideration [1], [83]. One possible way to circumvent this problem, is to divide the

index by the mean as it is done in section2.6, when SD was transformed to the CV. Another

modification of the SD is the so called variation independent of mean (VIM) , which represents

a refined transformation of SD compared to the CV [13], [83], for which it was observed that

independence is only achieved on short term scale [83].

Definition 2.30. Variation independent of mean (VIM) is defined as

V IM = k ·
SD

X
p , (2.36)

where X is the mean value of the data set, k is a certain constant and p is a parameter to

be determined.

It remains to specify, how to determine the variables k and p. VIM can only be obtained for

an individual as part of a cohort. Therefore it is not feasible to measure variability with VIM

in an individual independent of a group.

The calculation procedure is the following [1], [13], [83]:

i) The first step is to plot the mean value of each individual in the cohort (x-axis) against

the SD of each individual (y-axis).

ii) A curve of the form y = kxp is considered.

iii) Finally a curve fitting of this curve is performed to obtain the parameter p.

iv) The constant k can (optionally) be chosen such that the scales for VIM and SD are on the

same scale. If M is the mean value of the cohort, then k = Mp. Thus the curve y = (Mx)p

has to be fitted.

v) VIM for each individual of the cohort is then calculated as V IM = kSD
X
p .

2.10.2 Advantages and Disadvantages of V IM

The desired independence of the mean value is obtained, but another dependence, the one on

the cohort, appears. To obtain the parameter p the data of a whole group have to be available.

This index should be seen more as a statistical tool than a clinical measure [13]. Nevertheless,
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it was used as an index for BPV in a study by Rothwell et al. [55] when investigating the effects

of different drugs on variability and the risk of stroke.

Comment 2.31. In a similar fashion also ARV and SV can be made independent of the

mean level to obtain the indices average real variability independent of mean (ARVIM)[41] and

successive variation independent of mean (SVIM)[28]. �

2.11 Approximate Entropy ApEn

2.11.1 Definition of ApEn

Approximate entropy (ApEn) is a statistical technique to test a time series for irregularities or

unpredictability of its fluctuation. Many previously mentioned parameters such as the mean or

the SD would not capture the differences of the two series

(1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, . . . ) (2.37)

(1, 1, 2, 2, 2, 2, 1, 1, 2, 1, 2, 2, 1, 2, 1, 1, 1, 2, 1, 2, 1, 1, . . . ), (2.38)

even if the first one is perfectly regular and the second one is random with a probability of 1
2 for

the appearance of 1 or 2, respectively [50]. The ApEn is supposed to measure irregularity in the

data set. To be precise, ApEn(m, r) indicates the logarithmic frequency, with which vectors of

the length m, that are similar with a threshold r stay similar, when one further component is

added to each of them [34], [51]. This method has already been used to measure irregularities

in BP [44] and heart rate [34] sequences.

Definition 2.32. For a given data set x1, . . . , xN , and fixed values for m ∈ N and the

threshold r ∈ R the following procedure gives the value for ApEn[34].

i) Separate the data set x1, . . . , xN in overlapping sequences {Xm
1 , . . . , X

m
N−m+1} of length

m with Xm
i := {xi, . . . , xi+m−1}.

ii) Define

Cmi := |{1 ≤ j ≤ N −m+ 1 : d(Xm
i , X

m
j ) < r}| (2.39)

with

d(~a,~b) := max
i
|ai − bi| (2.40)

the Chebyshev-Norm, thus the maximal distance between elements of ~a und ~b.

iii) Repeat everything for the fixed length m+ 1 to obtain Cm+1
i .
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iv) Define

φm :=
1

N −m+ 1

N−m+1∑
i=1

ln

(
Cmi

N −m+ 1

)
(2.41)

φm+1 :=
1

N −m

N−m∑
i=1

ln

(
Cm+1
i

N −m

)
(2.42)

v) ApEn is then defined as

ApEn(m, r) := lim
N→∞

(φm − φm+1), (2.43)

which is estimated by

ApEn(N,m, r) := φm − φm+1. (2.44)

Typical choices for m and r are (m, r) = (2, SD(X) · 0.2) or (m, r) = (3, SD(X) · 0.2), when X

is the data set of one single individual. The reason for r to be chosen as a percentage of the

SD is that one wishes ApEn to be a regularity index uncorrelated to SD [34], [51]. In general a

smaller value for ApEn indicates regularity, while larger values suggest, that the time series is

more irregular [44].

2.11.2 Advantages and Disadvantages of ApEn

The non-linearity of the method enlarges the complexity and makes it more difficult to imple-

ment. On the other hand this might allow for deeper insights in the sequences profile.

2.12 Nocturnal Blood Pressure Fall NBPF

The phenomenon of BP to decrease after going to bed and falling asleep is well known. As

previously mentioned (section 2.2.2) this is a fairly healthy mechanism which might influence

other variability indices in an unfavourable fashion as variability is overestimated.

2.12.1 Definition of Nocturnal Fall NF

There are different terminologies used in different scientific articles to describe similar events

concerning NBPF to be measured. The quantification of (BP) decline during sleep can be

accomplished by a rather wide range of possible indices. Without raising claim to completeness

the following definitions give an overview of them. Since the indices are aimed to be used for

other parameters as well than only BP, the term nocturnal fall (NF) is used instead of nocturnal

blood pressure fall (NBPF).

Definition 2.33. The night-to-day ratio (NDR) measures the rate of the night time mean
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value Xnight of the day time mean value Xday and is given by

NDR =
Xnight

Xday

, (2.45)

which can be expressed as percentage as

NDRp = NDR · 100% (2.46)

To express the actual fall, or to be precise, the percentage decline from day to night the

definition

NF = 100−NDRp%. (2.47)

is appropriate [62], [63].

Definition 2.34. The absolute day-night-difference (ADND) gives the absolute difference

between the mean day value Xday and the mean night value Xnight

ADND = Xday −Xnight. (2.48)

Additionally, the rate of this value of the mean day value is of interest

ADNDtoDratio =
ADND

Xday

. (2.49)

Both values can be expressed as percentages as well [3], [38], [63], [70].

Comment 2.35. From the parameters in definition 2.34 one as well obtains the same value for

the NF as in equation 2.47 by calculating [38]

NF = ADNDtoDratio · 100%. (2.50)

�

Comment 2.36. The indices NDR and ADND (NBPF, respectively) are often used to classify

subjects as so called ,extreme or strong dippers’ , ,(intermediate) dippers’, ,non-dippers’ or

,inverted dippers’ according to the degree of BP profile differences between day time and night

time. The following excerpts serve as examples. In [63] subjects were classified as strong dippers,

if their night-day ratio (NDR) was less than 0.78, as non-dippers, if the ratio was greater than

0.87 and as intermediate dippers, if their night-day ratio ranged between those two values.

In terms of NBPF in [3] subjects were rated as ,extreme dippers’, if their NBPF was ≥ 20%, as

,dippers’, if the percentage was ≥ 10% but < 20% and as ,non-dippers’, if the fall was < 10%.

The same classification was done in [38] with an additional category of ,inverted dippers’ which
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contained readings with a NBPF of less then 0%. These classification are done for systolic as

well as for diastolic BP.

All values need to been seen as vague references, since they depend on the cohorts mean values of

BP as well on the definitions of day time and night time periods. However, the above mentioned

classification in terms of NBPF with a daytime period from 8a.m. to 10p.m and a night time

from midnight to 6a.m. is more or less standard. To get an impression, in the study of Staessen

et al. [63] the size of the nocturnal decline defined as ADND in a randomly chosen group of 399

subjects of a small town expressed in absolute numbers of mmHg (mean±SD) is about 16 ± 9

for systolic and 14 ± 7 for diastolic BP. In the study by Metoki et al. [38] baseline values for

NF are 12.8± 7.9/15.7± 7.8% for systolic and diastolic BP, respectively. Those were the mean

values in a group of 1430 subjects. �

Comment 2.37. In some studies, the insight in the studys issue might be clearer, if the day

time mean is subtracted from the night time mean. The proposition of the index does not

change. Therefore, this can be seen more or less as a matter of taste.

,Nocturnal BP fall was calculated by subtracting daytime from night time BP, such

that a more negative difference indicated a larger BP fall at night. Night-day BP

ratios were multiplied by 100, therefore expressing nighttime BP as a percentage of

the daytime level. A ratio of 100% or higher signified the absence of a BP fall at

night.’ [62]

�

2.12.2 Advantages and Disadvantages of NF

The motivation to investigate this index is present, because some studies have suggested, that

there is a correlation between the fall of BP during sleep and the prognosis of cardiovascular

events [42], [63]. However, the discussion, whether the decline of BP is associated with a higher

risk of stroke is very controversial. According to study of Metoki et al. the total risk is not

associated with the NBPF, but non-dippers and extreme dippers had a higher risk of cerebral

infarction and intracerebral hemorrhage, respectively [38].

It has to be emphasized that the periods ,day’ and ,night’ are no given quantities, but have

to be defined. This leads to several issues. If one wants to quantify the NBPF, this value

strongly depends on the time, when a subject goes to sleep, since in general, this is the time

point, when BP starts to decrease. It has to be guaranteed that the transition times ,going

to bed’ an ,arising’ are excluded when calculating the day time and night time mean values.

There are several methodological approaches in the studies to accomplish that. Patients may

for instance keep a journal and consequently take notes when they go to sleep and get up [3],

[38], [45]. Another possibility is, that patients are instructed to do so at fixed prespecified times.

The latter approach may, however, interfere in their natural rhythm. If one wants to identify

and afterwards exclude the transition times from the raw data without any feedback from the

patient, the yet to be mentioned curve fitting methods (cf. section 2.14) might be a useful tool.
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Nevertheless, there have been studies, which identified 0h to 6h as night time and 10h to 20h

as day time to be the best choices to exclude the periods with the most rapid and considerable

BP changes [3], [71] (cf. figure 2.1 and table 3.1). This index keeps of course being dependent

on these defined intervals.

Another difficulty is again the possible disturbed estimation of the NBPF due to an imbalance

of readings during sleep and during wakefulness. In general the amount of readings during day

time is higher that during night. It is therefore advisable to calculate weighted mean values for

the two periods when computing NDR and ADND to not distort these values because of an

overestimation [43]. The weights are simply the time periods between consecutive readings.

Let xd1 , . . . , xdk be the consecutive readings taken during the period ,day’. Let tdj and tnj be

the corresponding time points. Then the weighted mean of the day can be calculated as

wXday =
1

tdk − td1

dk∑
i=1

xdi · (tdi+1
− tdi). (2.51)

Analogously, the mean over the night and over 24h values can be calculated.

Another positive aspect of this index is that there is no correlation to the BP mean level of the

individual. However, there was found that NBPF is reduced by about 0.7 mmHg per ten years

of life [63].

Even if the presence itself of a diurnal BP rhythm is an undoubted and reproducible observation

(cf. section 2.9.4), the parameters describing the NBPF show a rather poor reproducibility. So

the differences between day and night levels vary pretty much, which influences 24h average

values [63]. In the publication of Thijs et al. [70] the objective of the study was to investigate

precisely the number of measurements needed to assess parameters describing the diurnal BP

profile without loss of information. One of those parameters was NBPF. They found that at

least 2 readings per hour are needed to obtain a value for NBPF, which is reproducible with an

relative repeatability coefficient < 25% (favourable value).

The NBPF is also strongly connected to standard deviation calculations. It almost solely

determines the difference of SD and wSD as shown in [3]. This relationship between wSD and

NBPF has already been discussed in section 2.2.2.

2.13 Early Morning Surge EMS

2.13.1 Definition of EMS

The terminology for this index is not uniform, similar as for NBPF. The EMS (sometimes

just morning surge (MS)) or morning pressor surge (MPS) is an abrupt rise of BP (in the

morning) after waking up. Although the significance of this index concerning its predictive

power in the context of cardiovascular disease is not uniformly rated [38], [76], it is a frequently

used value, especially in association with stroke [26], [38]. Nevertheless, on one hand, the risk of

cardiovaskular events can be associated with an abrupt rise or a high level of BP in the morning,

on the other hand it is to a certain degree healthy if BP rises in the morning as Staessen et al. [64]
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found an increase of 1 mmHg per hour to decrease the risk of all cardiovascular events by 8%.

However, one has to stress that, depending on the subtype of stroke and on the definition of MPS

used, several ,dipping to stroke’ or ,surge to stroke’ associations could be proven and falsified,

respectively [26], [38]. Characteristic values for the surge are 3 and 2 mmHg per hour in systolic

and diastolic BP, respectively for 4− 6 hours after waking up [87]. The following terms can be

found in literature: sleep-through MPS, rising BP surge, morning-evening (ME) difference and

pre-awaking MS. The latter is sometimes also called sleeping-to-waking MPS [38]. In order to

properly define those indices, a couple of help parameters defined as follows are required.

Definition 2.38. [25], [26], [76]

• Morning BP := mean of the first 4 measurements after awaking (2h mean of four

30-min measurements)

• Lowest night time/nocturnal BP := mean of the lowest value during night time,

the preceding and the subsequent reading (1h mean of three 30-min measurements)

• Pre-awake BP := mean of the four measurements immediate before waking up (2h

mean of four 30-min measurements)

• Morning BP on rising := first value after arising

• BP on supine := last value before getting up (in supine position, less than 30 min

before rising)

• Evening BP := mean of the last 4 measurements before going to bed (2h mean of

four 30-min measurements)

(cf. figure 2.5)

Comment 2.39. The parameters in definition 2.38 are often defined as an average value of a

certain number of measurements preceding or following a specific event. It is important to no-

tice that these definitions are only than equivalent to the temporal definitions (given in brackets

in def. 2.38), if there is a valid measurement every 30 minutes. Because of the loss of readings,

this is not very realistic and it might be more reasonable to work with fixed time intervals and

calculate mean values, other than to use ,the first 4 measurements after waking up’ (in case of

the parameter morning BP), since these readings might stretch over several hours. If so, they

would not be related any more to the event of waking up. Furthermore, definitions of the help

parameters by means of measurement numbers after a certain event may be problematic, if the

measurements are scheduled in different time distances in different studies. To gain compara-

bility, it would be better to take the mean value of all readings taken within a certain time

window after the event. Nevertheless, in this case a minimum number of measurements in this

time period should be demanded. �
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Figure 2.5: Illustration of the different definitions of surges with the help of the parameters
defined in definition 2.38 [25]

With the help of these parameters, the above mentioned indices found in literature can be

defined.

Definition 2.40. [1], [25], [38], [87]

• Sleep-trough MPS := morning BP - lowest night time BP

• Pre-awaking MS := morning BP - pre-awake BP

• Rising BP surge := morning BP on rising - BP on supine

• ME difference := morning BP - evening BP

Another definition of morning surge can be found in [56].

Definition 2.41. Morning surge with fixed time (ft) intervals is defined as the highest

value between 09:00-11:00 minus the lowest value between 06:00-08:00 [56]

MSft := max
ti∈[9,11]a.m

xi − min
ti∈[6,8]a.m

xi, (2.52)

where xi is the reading value at the time point ti.

Comment 2.42. ,Normal values’ for MPS when defined as pre-awaking MS are 13.9±13.9/9.9±
8.4 mmHg for systolic and diastolic BP, respectively. Those were the mean values in a general
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group of 1430 subjects without any history of symptomatic stroke in the follow-up study of

Metoki et al.[38]. �

2.13.2 Advantages of EMS

Kario et al. [26] were able to show that sleep-through MPS in systolic BP is associated with

risk of stroke, while the association with pre-awaking MS was not found.

2.13.3 Disadvantages of EMS

Likewise, as for NBPF, Metoki et al. [38] did not find an association between the total risk for

stroke or the risk of cerebral infarction and the MPS. However, a MPS of more than 25 mmHg

significantly increased the risk of cerebral haemorrhage.

This index cannot be understood completely independent of the NBPF. A higher BP in the

morning - which is associated with the occurence of a cardiovascular events - might be due to

a humble or even missing decline of BP during sleep, i.e. a small NBPF. In [38] they mention

a significant correlation between the amplitude of the morning pressor surge (= preawaking

surge) and the nocturnal blood pressure fall. They found a dual relationship between extreme

dippers and subjects with a large MS. It is therefore important to report possible interactions

between the two indices [38].

One faces similar problems in the calculation of MS as in the computation of NBPF as the

more or less variable periods of day and night time influence the value. It has been discussed

in section 2.12.2, how to deal with such issues.

Additionally, missing readings in rather short time periods (e.g. 2h after ’arising’) required a

high schedule frequency (cf. table 3.1).

2.13.4 Implementation - Restrictions on the Data Set and Features of the

Algorithm

The calculation of surge values is highly sensitive to the time points of ,going to bed’ and

,arising’. The resulting difficulties of such dependence has been discussed before (cf. section

2.12.2). To obtain a certain flexibility the code calc surge.m allows to define the time point

for these events. Additionally it is possible to adjust the interval length in the calculation of

morning BP and pre-awake BP. The default value for this time duration is 2 hours.

The reasonability of the user defined input parameters is tested and warnings are given if

possibly unwanted results appear such as if the time of going to bed is earlier in the day than

waking up.

2.14 Curve Fitting Methods

Since the diurnal pattern, i.e. the change of the parameters over the day, is of interest, it seems

reasonable to draw a (not yet specified) curve through the discrete dataset. This enables to

appoint some sort of 24h profile. It has been frequently shown that especially the characteristics
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of this profile highlight the presence of different kinds of cardiovascular diseases [22]. It is part

of the following subsections to find out, how to obtain these curves and which indices can be

derived from them. The different kinds of curves can be grouped into two methods with respect

to the underlying ansatz.

• Interpolation:

In this method new data points are added to the discrete data set. Stated simply, the

given data points are connected with lines. How these lines behave precisely depends on

the used method of interpolation. Some examples are

– piecewise constant

– linear

– polynomial interpolation

– spline interpolation

– Gauß-interpolation

– interpolation with rational or trigonometric functions

• Smoothing:

In contrast to the interpolation method, the curve does in general not go through the

given dataset. The ansatz function has a lower amount of degrees of freedom compared

to the number of given values. The task is then to determine these degrees of freedom (=

variables) in a way such that the discrepancy to the data set in consideration is minimal.

Here as well numerous possibilities for the ansatz functions are used.

– ,Best-fit curve’

– ,Square-wave-fit’

– ,(Weighted) (Spectral) Fourier Analysis’

– ,Gauss-Newton Algorithm’

– ,Minnesota Cosinor Method’

– ,Double-logistic analysis’

– A related topic is regression analysis.

The ansatz functions should be chosen in a manner, such that they fit the data. The methods

discussed in the following section do so (with some restrictions). The mathematical formulation

of this requirement will be part of the following subsections, in which several smoothing curve

methods will be presented.

2.14.1 Square Wave Fit

A square-wave (SW) is a piecewise constant function attaining only two different values a

and b on two disjoint complementary neighbouring segments of the considered domain. These

segments are determined such that they fit the data, while the periods have to cover the interval

(cf. figure 2.7). This is usually realised with a least squared error criterion [22].
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Motivation

The presence of a diurnal BP profile with two levels, those basically being sleep time and time

awake, has been discussed before (cf. section 2.2.2). Additionally the transitions from night-time

to day-time levels and reverse seem to be rather abrupt, although high to low level descent is

more gradual. Also the length of the two periods are in general different from subject to subject.

A SW as depicted in figure 2.7 captures these features to a large extend while the degrees of

freedom are essentially limited to two, the two time points, when the level changes [22].

Calculation of the SW according to [22]

Without loss of generality let a > b from now on. The ansatz for the curve is a discrete function,

which is only defined at points where measurement values are given. It attains the value a at

all points within an interval and the value b at all time points of measurements within the

complementary interval.

Definition 2.43. Let {t1, . . . , tn} be the time points within the 24h interval corresponding

to the measurement points {x1, . . . , xn}. The ansatz for the square-wave (SW) is then given

by

SW (t) :=

a, for t ∈ {ti, ti+1, . . . , ti+k}, 1 ≤ k < n

b, for t ∈ {t1, . . . , tn}\{ti, . . . , ti+k},
(2.53)

where a and b are chosen constants and the parameters i and k remain to be determined.

Comment 2.44. The fact, that a and b can be chosen arbitrarily becomes clear in the next

steps, when all possible SWs are standardised, such that they fit the plateaus levels. �

Figure 2.6: Ansatz for the square-wave.

In the procedure the next step is to calculate all possible SWs of the above form with fixed a

and b, but all possible values for i and k.
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Theorem 2.45. For a data set of n measurements there exist n · (n− 1) SWs.

Proof. Given n data points, the 24h interval can be divided into n intervals from one corre-

sponding time point to the adjacent, where the last to the first time point as well form an

interval. In order to chose the segment, where the value a is attained, there are n possible

choices to fix the left interval boundary. For the right boundary n− 1 possible choices remain

since interval lengths of 0 or n are forbidden. Otherwise one would not obtain 2 segments. Since

the determination of the segment for a automatically fixes the segment for b, precisely n ·(n−1)

SWs are obtained.

Subsequently, the SW of the n·(n−1) possible ones, which fits the data the best, is identified. In

order to do so, the measurement values as well as the curves are standardized (or to be precise

studentized, since the distribution of the data is not known). This is precisely the reason why

a and b can be chosen arbitrarily (e.g. as the mean value of the data). The aim is to obtain a

mean of zero and a standard deviation of 1 in order to receive outcomes for the cross correlation

values ranging from −1.0 to 1.0.

The data are transformed

x1, . . . , xn 7−→ x̃1, . . . , x̃n (2.54)

with

x̃i :=
xi −X
cSD

. (2.55)

The curve is transformed

SW (t) 7−→ SWst(t) (2.56)

with

SWst(t) :=

a−SW
σSW

, for t ∈ {ti, ti+1 . . . , ti+k}, 1 ≤ k < n

b−SW
σSW

, for t ∈ {t1, . . . , tn}\{ti, . . . , ti+k}
(2.57)

and with

SW =
k · a+ (n− k) · b

n
(2.58)

σ2
SW =

1

n− 1

(
k · (a− SW )2 + (n− k) · (b− SW )2

)
(2.59)

For each of the standardized SWs the cross-correlation coefficient is calculated as the average

product of corresponding values of the curve and the original data, i.e.

ccj =
1

n

n∑
i=1

SWstj (ti) · x̃i. (2.60)

These n · (n− 1) values are between −1.0 and 1.0, where a low value stands for a poor fit and

1.0 means that the curve is a perfect fit. Therefore the curve with the highest cross-correlation

value is chosen to be the best fit curve. It is an optimal curve with respect to the residual sum
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of squares (or squared error). Let ccmax denote the according correlation coefficient.

Definition 2.46. Let {t1, . . . , tn} be the time points within the 24h interval corresponding

to the measurement points {x1, . . . , xn}. Let X(t) be the model function. Then the squared

error or residual sum of squares (RSS) is defined as

RSS =

n∑
i=1

(xi −X(ti))
2. (2.61)

The mean squared error is calculated in the same manner divided by the number of measure

points.

Parameters characterizing the SW according to [22]

Basically the SW is characterized by 4 parameters, with the help of which profile indices can

be calculated [22].

Definition 2.47.

• PMhigh . . . ,period mean high’; mean value of the measurements in the segment, that

was determined to be the higher level period (previously indicated as the a-period)

• PMlow . . . ,period mean low’; mean value of the measurements in the segment, that

was determined to be the lower level period (previously indicated as the b-period)

• tup . . . time point of the transition from the PMlow-period to the PMhigh-period

• tdown . . . time point of the transition from the PMhigh-period to the PMlow-period

From these parameters, further indices can be deduced [22], [70].

Definition 2.48.

• TDhigh . . . ,time duration high’; time duration of the high level period

TDhigh := tdown − tup (2.62)

• TDlow . . . ,time duration low’; time duration of the low level period

TDlow := tup − tdown = 24h− TDhigh (2.63)

• M . . . overall mean value of 24h measurements

M :=
PMhigh · TDhigh + PMlow · TDlow

24
(2.64)
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• LD . . . ,level difference’; difference between the levels of the high period and the low

period

LD := PMhigh − PMlow (2.65)

The three values LD, tup and tdown are considered as the characterizing indices of the circadian

variation around the overall mean level.

Figure 2.7: Parameters and indices of the square wave (cf. definitions 2.47 and 2.48)
adapted from [70]. The time of day is given in decimal numbers.

Another index obtained from this method, is a measure for the variability of the signal. The

value of cc2
max expresses to what extend the model accounts for the total variation of the 24h

profile. This leads to the following definition.

Definition 2.49. The percentage of the total 24h variability (PVA) captured by the square

wave fit can be expressed as

PV A = 100 · cc2max. (2.66)

Advantages and Disadvantages of the SW

This method of capturing the profile of the dataset is a refinement to the approach NBPF

discussed in section 2.12. There, the averaging is done over defined day time and night time

periods which includes a subjective component in the analysis. The SW is advanced in the

sense of objectivity and correctness since is is a method based on a mathematical model and the

periods are implicitly determined [22]. On the other hand this fact might affect comparability
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of the data sets when day time and night time differ from individual to individual depending

on the purpose of the study.

The SW method has been applied to invasive BP measuring with a catheter, but it has been

pointed out that it is as well suitable for ABPM data [22]. In [45] it is further stated that the

SW approach performs better in fitting the BP as well as the heart rate changes than the yet

to be discussed Cosinor method (cf. 2.14.2).

One drawback of this approach is that the ansatz assumes that the transitions between night

time and day time values are extremely abrupt. This does not reflect the fact that these

transitions vary strongly from subject to subject [45].

Implementation - Restrictions on the Data Set and Features of the Algorithm

The algorithm offers the opportunity to fix a minimal period duration for the high level and

the low level period. This seems reasonable since some data sets would lead to a square wave,

where one of the periods is essentially one data point (cf. figure 2.8).

Figure 2.8: The figure on the left side was obtained by the MATLAB function
calc squarewave2neu.m without any restrictions on the period length. The
figure on the right side was obtained with the same function including the re-
striction that each period should at least include 6 data points. (Considering
a data set with ideal recording quality (i.e. no missing measurement) this is
a time period of approximately 3 hours.) The correlation coefficient for the
square wave on the left side is approximately 0.6707 while it is about 0.6608
for the one on the right side, which seems to be an acceptable decrease.

Due to methodological/algorithmic reasons this approach, to ask for a minimum number of

measurements, is sensitive to the time gaps between consecutive readings. With a schedule

of one reading every 30 minutes during 24h, the demand of 40 readings within a period for

instance would mean a demand of 20 hours for each period, which is not possible. The code

gives a warning if the input parameter mindur indicating this minimum number of measurements

is greater than half the number of all readings.
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2.14.2 Cosinor Method

Motivation

As the name of this method indicates, a single cosine curve or a linear combination of cosine

waves with different amplitudes and acrophases but known period (24h in case one single cosine

wave is used) are fitted to the data. The motivation for this ansatz is the fact that circadian

signals can be seen as smooth rhythms with noise [53]. In this section, the ,single component

cosinor’ method will be discussed. The ansatz with multiple cosine waves (,multiple component

analysis’ ) is part of section 2.14.3.

Single Component Cosinor

In this case the ansatz is a single cosine function. It is fitted to the data set by a least squared

error criterion. Since for circadian signals the period of the cosine function can be assumed to

be known, namely one oscillation during 24h [9].

Calculation of the Cosine Wave

Definition 2.50. The ansatz for the cosinor method is given by a cosine function of the

form[9], [53]

X(t) = M +A · cos

(
2πt

P
+ ϕ

)
(2.67)

where M , A and φ are the unknown variables which are obtained by the fitting and P is

the period which is assumed to be known.

The variables of this function can be interpreted as follows.

• M . . . MESOR (’midline estimating statistic of rhythm mean’ ); This value is an estimation

for the average value of the variable under investigation. If the data are not equidistant

and/or the number of cycles in the data is not an integer number, the value for the MESOR

differs from that for the arithmetic mean value [53].

• A . . . amplitude of the oscillation; This is a measure for the predicted variation of the signal.

It indicates half of the extend of the variation within a cycle [9]. Without loss of generality

one can assume that A ≥ 0, where A > 0 indicates the presence of a rhythm [72].

• ϕ . . . acrophase; This value is a measure of the time frame, when high level values will recur

in each cycle, so it should predict the period of high level values [9]. It is the phase of the

maximum in relation to a fixed reference time [53]. Typically the reference point of 0◦ is

set as midnight [72]. Sometimes simply the time point, when the maximum occurs is called

acrophase [63].

• P . . . period; This is the duration of a single cycle. This period is assumed to be (at least

approximately) known. Since the data points appear in a time period of about 24h, the
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period can be assumed to be equal to 24h [9]. The linear regression model for data points xi

and corresponding time points ti can be written as

xi = M +A · cos(ϑi + ϕ) + ei, (2.68)

where ei is an unknown error term and ϑi = 2πti
P are the trigonometric angles [53]

• 2π
P = ω . . . angular frequency; Since P is assumed to be known, so is ω. Assuming ω = 1 [72]

means that the period length is 2π and thus the frequency is 1
2π i.e. one oscillation in an

interval of 2π. This needs to be rescaled such that one oscillation within 24h is obtained [72].

This leads to

-) rad: scale t 7−→ π
12 t

-) deg: scale t 7−→ 15t

Figure 2.9: Parameters of the cosine function (adapted from [9]). The MESOR M is an
approximation to the mean value of the data, adjusted for the rhythm of the
signal. The amplitude A is a measure for half of the extend of the expected
variation within one cycle. The acrophase ϕ measures when overall high values
recur within a cycle and it is expressed in (negative) degrees as the relation
to a reference time which is set to 0◦. The period P is the duration of a single
cycle and it is equivalent to 360◦.
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Definition 2.51. According to the previous remarks and definitions a legitimate ansatz

for the curve is given by [9], [72]

X(t) = M +A · cos(ωt− ϕ) (2.69)

with

ω =

 π
12 , for rad

15, for deg
, (2.70)

with M , A and ϕ as the three degrees of freedom.

For convenience reasons the following analysis is done in the previous notation.

Comment 2.52. In the implementation calculations are done within the interval [ 0
24 ,

24
24) thus

[0, 1) instead of [0, 24). Accordingly the period length P = 1 and therefore the scaling for ω

reads as

ω =

2π, for rad

360, for deg
. (2.71)

�

With the help of the following identities

β = A cos(ϕ), γ = −A sin(ϕ), y = cos

(
2πt

P

)
, z = sin

(
2πt

P

)
(2.72)

and the addition theorems, formula 2.67 can be transformed to

X(t) = M + βy + γz. (2.73)

The idea is now to minimize the RSS. This is the sum of the squared differences between each

measure point xi at the time point ti and the estimated values given by the model at the same

time point [9] (cf. definition 2.46). Adapted to the model under consideration the RSS reads as

RSS =
n∑
i=1

(xi − (M + βyi + γzi)︸ ︷︷ ︸
=X(ti)

)2. (2.74)

The task is now to determine the unknown variables M , β and γ in a way that the above value

is minimal. This is achieved when its first derivatives with respect to the three variables vanish.

Based on this observation one obtains the so called normal equations. Solving them leads to
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the optimal combination of the variables M , β and γ with respect to the RSS.

∂

∂M
RSS =

n∑
i=1

2(xi − (M + βyi + γzi)) · 1
!

= 0 (2.75)

∂

∂β
RSS =

n∑
i=1

2(xi − (M + βyi + γzi)) · yi
!

= 0 (2.76)

∂

∂γ
RSS =

n∑
i=1

2(xi − (M + βyi + γzi)) · zi
!

= 0 (2.77)

Dividing the equations by 2 and rearranging some terms yields

n∑
i=1

xi = Mn+ β
n∑
i=1

yi + γ
n∑
i=1

zi (2.78)

n∑
i=1

xiyi = M
n∑
i=1

yi + β
n∑
i=1

y2
i + γ

n∑
i=1

ziyi (2.79)

n∑
i=1

xizi = M
n∑
i=1

zi + β
n∑
i=1

yizi + γ
n∑
i=1

z2
i . (2.80)

This can be expressed in matrix - vector form as
∑n

i=1 xi∑n
i=1 xiyi∑n
i=1 xizi

 =

 n
∑n

i=1 yi
∑n

i=1 zi∑n
i=1 yi

∑n
i=1 y

2
i

∑n
i=1 yizi∑n

i=1 zi
∑n

i=1 yizi
∑n

i=1 z
2
i


Mβ
γ

 (2.81)

which can be written in compact from as

~b = S ·~l. (2.82)

Estimates for M , β and γ are then obtained by calculating

~̂l = S−1~b. (2.83)

Finally, the solutions β and γ are used to estimate the amplitude A and the acrophase φ given

by

A =
√
β2 + γ2 (2.84)

ϕ = tan−1

(
−γ
β

)
+Kπ, (2.85)

where K ∈ N is determined by the signs of β and γ. For the exact calculation of K see equation

2.87 in the following comment.

Comment 2.53. [53] The calculation of the variables is simpler, if the data points are equidis-

tant and the cycle number is an integer. In this case, the MESOR M is simply the arithmetic
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mean of the data (M = X), while A and ϕ are estimated by

A =
√
β2 + γ2 (2.86)

ϕ =



− tan−1 | γβ | γ > 0 ∧ β ≥ 0

−π + tan−1 | γβ | γ ≥ 0 ∧ β < 0

−π − tan−1 | γβ | γ < 0 ∧ β ≤ 0

−2π + tan−1 | γβ | γ ≤ 0 ∧ β > 0

, (2.87)

where in this case

β =
2

n

n∑
i=1

cos

(
2πti
P

)
xi (2.88)

γ =
2

n

n∑
i=1

sin

(
2πti
P

)
xi. (2.89)

�

Comment 2.54. At this point, statistical test can be performed to ,rate’ the obtained variables

and therefore the signal profile. It is for instance interesting to decide, whether the amplitude

is significantly different from 0 so a rhythm is present [53]. The significance of the model itself

as well can be tested with an F-test [9]. �

Figure 2.10: While in the plot on the left hand side displaying Hf data the cosine wave
seems to fit the data well, the data in the figure on the right hand side
showing AIx values create a profile not predestined for a cosinor fit. Both
figures were obtained by the MATLAB function calc cosinorfit.m.

Advantages and Disadvantages of the Cosinor fit

One advantage of this method is that, since it is conceived as a regression problem, it is suitable

for non-equidistant data, what will usually be the case at hand [9]. Furthermore the appli-
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cation is rather simple [45] and the meaning and interpretation of the parameter obtained is

intuitive [67]. The method provides useful information about the amplitude of the oscillation

and its phase [18].

The method operated under the assumption that TDhigh = TDlow, so the duration of the pe-

riod with higher values is as long as the duration of the period with lower values, which affects

the correctness of the model. In general many assumption have to be made, which can not

necessarily be justified. Besides the already mentioned assumption that day time and night

time period are of equal length, it is additionally supposed that the transitions between the

periods can be modelled smoothly and symmetrically. Both assumptions are often not too close

to reality [45], [71].

2.14.3 Truncated Fourier Analysis

Motivation

The considered data set can simply be seen as a time series. In the field of time series analysis

the Fourier analysis or spectral analysis is a pervasive tool. The idea is based on the following

,Fourier analysis (also called “spectral analysis”) is based on Fourier’s revolutionary

insight that any time series, regardless of its shape or regularity, can be described by

a series of sine and cosine waves of various frequencies (Fourier 1822).’ [53]

Calculation of the Fourier Curve - Multiple Component Analysis

The general ansatz in a fourier analysis is given by a fourier series

F (t) = a0 +
∞∑
k=1

(ak · cos(kt) + bk · sin(kt)) (2.90)

Definition 2.55. The model curve which is desired to describe the 24h data profile is given

by [71]

f(t) = M + C1 cos

(
2πt

24
− φ1

)
+ · · ·+ Ck cos

(
2πkt

24
− φk

)
, (2.91)

where M is the mesor, C1, . . . , Ck are constants representing the amplitudes of the cosine

components (= max−min
2 ). The acrophases (given in rad) are indicated by φ1, . . . , φk. The

model curve f is a function of the time t given in hours with decimal fractions as minutes.

For detailed interpretation of the variables cf. section 2.14.2.

Comment 2.56. For k = 1 one obtains the single component cosinor method (2.14.2). �

As a first observation one sees that a finite number of ansatz functions instead of the infinite

series is used (,truncated’). Further it is sufficient to solely use cosine functions, since a sine

function can always be replaced by a cosine function due to the relation sin(x) = cos(x − π
2 ).

Furthermore, all constants C1, . . . , Ck can be assumed to be greater or equal to zero, since the
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sign of the cosine can be changes by a phase shift: − cos(x) = cos(x − π). The period of the

i−th harmonic is equal to 24
i hours. The reference time is here as for the single component

cosinor method usually set to midnight.

Comment 2.57. Again it has to be noted, that for the implementation the time from midnight

to midnight of the following day is converted to the interval [0, 1). Accordingly, in the formula

for the truncated fourier series (and also in the following formulas), 24 is substituted by 1. For

convenience reasons the previous notation is retained in the following analysis. �

As a next step the ansatz from definition 2.55 is transformed and some terms are renamed.

Using the addition theorem cos(A−B) = cos(A) cos(B) + sin(A) sin(B) yields

f(t) = M + C1 cos

(
2πt

24

)
cos(φ1) + C1 sin

(
2πt

24

)
sin(φ1)+

+ C2 cos

(
2π2t

24

)
cos(φ2) + C2 sin

(
2π2t

24

)
sin(φ2)+ (2.92)

+ · · · +

+ Ck cos

(
2πkt

24

)
cos(φk) + Ck sin

(
2πkt

24

)
sin(φk).

The substitutions

Xi(t) = cos

(
2πit

24

)
, ai = Ci cos(φi) (2.93)

Zi(t) = sin

(
2πit

24

)
, bi = Ci sin(φi) (2.94)

for i = 1, . . . , k then leads to the linear regression model

f(t) = M + a1X1(t) + b1Z1(t)+

+ a2X2(t) + b2Z2(t)+

+ · · · +

+ akXk(t) + bkZk(t)

(2.95)

The independent variables are here Xi and Zi, i = 1, . . . , k. The variables M , ai and bi,

i = 1, . . . , k have to be determined employing a (weighted) least square analysis. The (optional)

weights are the lengths of the intervals between two consecutive measurements. The distance

is seldom constant [70].

Finally, one obtains the sought for values for the amplitudes and the phases by calculating

Ci =
√
a2
i + b2i , i = 1, . . . , k (2.96)

φi =


24
2πi arctan

(
bi
ai

)
, for ai > 0

24
2πi arctan

(
bi
ai

+ π
)
, for ai < 0

, i = 1, . . . , k (2.97)
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In the case, that φi < 0, the value 24
i has to be added to φi to obtain a value between 0h and

24h.

Comment 2.58. This calculation for the acrophases is taken from the scientific article [71].

When implementing this method, it becomes apparent that it is not fully correct, since the curves

do not fit the data. Appropriate curves are obtained when the calculation of the acrophases

is done in the same manner as in formula 2.87, dependent on both signs. The calculation can

only be done exactly as for the cosinor method if the ansatz is made with ’+ϕi’ and accordingly

cos(A+B) = cos(A) cos(B)−sin(A) sin(B). Further the regression model in formula 2.95 holds,

if bi is defined as −Ci sin(ϕi). If the value of ϕi is needed one has to pay attention to that in

the calculations.

Alternatively, as done in the implementation, ai and bi as obtained from the regression model

can be used directly to set up the model function (cf. formula 2.95). �

Implementation - Least Square Method [68]

Similar as for the cosinor method the values for ai, bi und M have to be determined in a way,

that the RSS is minimal. In the following, the case is studied, where the sum of squared errors

is extended by a weight wi for each data point xi. Therefore the following expression has to be

minimized

RSS =
n∑
i=1

wi(xi − f(ti))
2 =

n∑
i=1

wi

(
xi −

(
M +

k∑
j=1

(ajXj(ti) + bjZj(ti))
))2

, (2.98)

where xi is the measurement value at the time point ti and f(ti) is the value of the model curve

at ti as the approximation by the model of xi. The variables wi indicate (optional) weights.

A mentioned before, in our case, these weights can be chosen as the time intervals between

consecutive readings. If calculations should be done without any weighting, all wi can be set to

1 in the whole scheme.

The above error estimate is minimal, if all the derivatives with respect to each parameter are

equal to zero. Consider therefore

∂

∂M
RSS =

n∑
i=1

2 · wi
(
xi −

(
M +

k∑
j=1

(ajXj(ti) + bjZj(ti))
))
· (−1) (2.99)

By setting this expression equal to zero, dividing by (−2) and rearranging the terms leads to

the first equation:

n∑
i=1

wixi = M ·
n∑
i=1

wi +
n∑
i=1

wi

( k∑
j=1

ajXj(ti)
)

+
n∑
i=1

wi

( k∑
j=1

bjZj(ti)
)

(2.100)

The last two sums can be rearranged such that the variables of interest, namely aj , bj and M ,

are made ,explicit’. This is required to properly set up the linear equation system.
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n∑
i=1

wixi = M ·
n∑
i=1

wi +

k∑
j=1

aj

( n∑
i=1

wiXj(ti)
)

+

k∑
j=1

bj

( n∑
i=1

wiZj(ti)
)

(2.101)

The derivative with respect to one of the as, 1 ≤ s ≤ k yields

∂

∂as
RSS =

n∑
i=1

2 · wi
(
xi −

(
M +

k∑
j=1

(ajXj(ti) + bjZj(ti))
))
· (−Xs(ti)) (2.102)

Again, zeroing the equation, dividing by (−2) and rearranging the terms leads to

n∑
i=1

wixiXs(ti) = M ·
n∑
i=1

wiXs(ti) +

k∑
j=1

aj

n∑
i=1

wiXj(ti)Xs(ti)+

+

k∑
j=1

bj

n∑
i=1

wiZj(ti)Xs(ti)

(2.103)

Analogously, the derivatives with respect to the bs, 1 ≤ s ≤ k provides k equations

n∑
i=1

wixiZs(ti) = M ·
n∑
i=1

wiZs(ti) +
k∑
j=1

aj

n∑
i=1

wiXj(ti)Zs(ti)+

+
k∑
j=1

bj

n∑
i=1

wiZj(ti)Zs(ti).

(2.104)

For the 2 · k + 1 unknown variables, the equally many equations can be written as a linear

equation system in matrix form

S ·~l = ~b (2.105)

with

S =



wi wiX1 wiX2 · · · wiXk wiZ1 · · · wiZk

wiX1 wiX
2
1 wiX2X1 · · · wiXkX1 wiZ1X1 · · · wiZkX1

wiX2 wiX1X2 wiX
2
2 · · · wiXkX2 wiZ1X2 · · · wiZkX2

...
...

...
. . .

...
...

...
...

wiXk wiX1Xk wiX2Xk · · · wiX
2
k wiZ1Xk · · · wiZkXk

wiZ1 wiX1Z1 wiX2Z1 · · · wiXkZ1 wiZ
2
1 · · · wiZkZ1

...
...

...
...

...
...

. . .
...

wiZk wiX1Zk wiX2Zk · · · wiXkZk wiZ1Zk · · · wiZ
2
k


, (2.106)

where in front of each entry of the matrix stands a sum
∑n

i=1, and each X and each Z has ti
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as argument. Further

~b =



∑n
i=1wixi∑n

i=1wixiX1(ti)∑n
i=1wixiX2(ti)

...∑n
i=1wixiXk(ti)∑n
i=1wixiZ1(ti)

...∑n
i=1wixiZk(ti)


and ~l =



M

a1

...

ak

b1
...

bk


. (2.107)

This linear equation system can be written as

(XT ·W ·X)~l = (XT ·W )~x, (2.108)

where W = diag(w1, . . . , wn) is a diagonal matrix containing the weights, ~x = (x1, . . . , xn) is

the vector containing the given data and X is the matrix

X =


1 X1(t1) · · · Xk(t1) Z1(t1) · · · Zk(t1)

1 X1(t2) · · · Xk(t2) Z1(t2) · · · Zk(t2)
...

...
...

...
...

...
...

1 X1(tn) · · · Xk(tn) Z1(tn) · · · Zk(tn)

 . (2.109)

This representation is simpler to implement. The solution is now given by

~l = (XT ·W ·X)−1 · (XT ·W )~x. (2.110)

Indices obtained from the Model

Basically the model provides two indices [70], which are defined in definition 2.59 and are

graphically shown in figure 2.11.

Definition 2.59. (cf. figure 2.11)

• AMP . . . ’overall amplitude’; half of the difference between the maximal and the

minimal value of the model curve

AMP :=

max
x∈[0,24]

f(x)− min
x∈[0,24]

f(x)

2
(2.111)

• AP . . . ’overall acrophase’; time point, at which the first global maximum occurs
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Figure 2.11: Indices of the ’truncated fourier analysis’ (adopted from[70]); AMP =overall
amplitude; AP =overall acrophase (cf. definition 2.59). The plot was ob-
tained by the MATLAB function calc weightedfourier.m, but the optional
weighting was excluded. Three harmonics were used.

Comment 2.60.

• There is no distinct statement which number of harmonics is the best choice. It is con-

jectured that various numbers of harmonics are possible ’best choices’ depending on the

(temporal) distance between two measurements [22]. Other authors hold that the model

is better the more harmonics are used [71]. However, their recommended number is 4

harmonics, since the method performed best for different data sets and the influence of

added harmonics on the indices of the model were negligible.

• As well as the square wave also the fourier analysis can be used to segment the 24h interval

in a lower level and a higher level period. However, using this model for segmentation is

rather onerous. Idema et al. [22] found at least ten harmonics to be needed for adequate

segmentation. In general the authors claim the square wave method to perform better

considering segmentation. �

Advantages and Disadvantages of the Fourier Analysis

This method captures the complexity of the signal better than previously mentioned approaches

of this section. Furthermore, up to 11 indices can be derived from the model. However, for

some of them the biological interpretation is unclear. Also the smoothing effect might lead to

an ’over-modelling’ of the measurements. However, this is (only) an issue, if one is interested

in short time fluctuations [45]. Another advantage of this method is that it is applicable to
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Figure 2.12: The above plots were produced with the MATLAB function compare.m. The
number in the top left corner within each plot indicates the number of har-
monics used for the fourier fit, where weighted (green) as well as unweighted
(blue) regression analysis curves are depicted.

non-equidistant data sets same as the cosinor method. Additionally it overcomes the flaw of

the latter mentioned assuming symmetrical period transitions and equal period durations [71].

Although some parameters might not be biologically interpretable, the amplitude and the

acrophase are. Therefore these values might be of interest in statistical studies, where dif-

ferent groups are compared or one tries to predict cardiovascular diseases [71].

Implementation - Restrictions on the Data Set and Features of the Algorithm

The algorithm offers the opportunity to chose the number of used harmonics as well as whether

weighting should be included. Figure 2.12 shows the influence of added harmonics as well as

the differences between weighted and unweighted fourier fits. The time axis can be chosen as

decimal numbers or as hours of the day.

2.14.4 Double Logistic Analysis

Motivation

Considering previously mentioned curve fitting methods, each of them, except the fourier model,

works under at least one of two non legitimate assumptions.

i) The parameter profile is perfectly symmetric. The assumption is that the decline of the

parameter (in the evening) shows exactly the same characteristics as its surge (in the

morning) (cosinor method and SW fit).
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Figure 2.13: Example of a double logistic curve.

ii) The periods in which the considered parameter is higher respectively lower have the same

length (cosinor method).

Both assumptions do not reflect reality - at least not for BP, for which the models were de-

veloped. The method of the double logistic analysis does not include any of these hypotheses.

Therefore, this model excels with a better or at least equally good performance - also in com-

parison to the fourier fit - in different aspects of the analysis of the parameter profile [18], [45].

Head et al. developed this method for heart rate and BP data of rats [18]. In [19] they applied

the method to heart data of humans.

,We [...] developed a new analysis method which would be applicable to circadian

changes of blood pressure and HR and which would not make a priori assumptions

about the abruptness or symmetry of changes.’ [18]

Calculation of the Double Logistic Curve according to [18], [19]

Definition 2.61. The model curve which is desired to describe the 24h profile is given by

y(t) = P1 +
P2

1 + eP3(P4−t)
+

P2

1 + eP5(P6−t)
, (2.112)

where P1 to P6 have to be determined.

Such curves can, depending on the choice for P1 to P6, among others take a form like shown in

figure 2.13. The parameters P1 to P6 represent the following qualities.
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• P1 +P2 ... ,baseline’, ,night - time - plateau’; This value is approximately the mean of the

data measured during the lower level period.

• P2 ... ,amplitude’; This represents the range of the data, the difference between the lower

level and the higher level period, respectively.

• Accordingly, P1 is the lower level value minus the difference of the two plateaus. Therefore,

to obtain the approximation of the mean value of the high level period, one has to add

the difference of the plateaus P2 to the lower level plateau P1 +P2, which equals P1 +2P2.

• P3 and P5 serve the modelling of the transitions between the plateaus. They indicate

the extend of steepness of the change between the levels. While P3 is the slope from the

higher to the lower plateau, P5 gives the slope of the reverse transition.

• The values P4 and P6 are the time points at which 50% of the transition is reached.

Therefore, they are the middle time points within the transition periods.

The curve is then fitted to the data with a least squared error criterion.

Implementation by Head et al. [18], [19]

The model descibed in [18], [19] proceeds more complex as the authors add 4 terms to the

model curve in equation 2.112 to obtain a quasi periodic function. These additional terms are

related to the preceding and the following day. Another term P2 · q is added as a compensation

parameter. The parameter q is equal to −2, if the data begin with the transition from high to

low. Otherwise q is chosen as 2. The actual fitting curve therefore takes the form

y(t) = P1 +
P2

1 + eP3(P4−t)
+

P2

1 + eP5(P6−t)

+
P2

1 + eP3(P4−t−24)
+

P2

1 + eP5(P6−t−24)

+
P2

1 + eP3(P4−t+24)
+

P2

1 + eP5(P6−t+24)
+ P2 · q.

(2.113)

This double logistic ansatz function is then fitted by a specially developed computer program

written in Labview. It makes use of the Marquardt algorithm, which optimizes the parameters

by the least squared error criterion. This requires adequate start values for the variables P1 to

P6. By iteration the parameters are optimized by minimizing the squared error. To obtain first

approximations for these values, another fitting method, namely the cosinor model, is used. For

instance, a first approximation for P2 is taken as two times the amplitude of the cosinor fit.

Furthermore, for the parameters several constraints are made. The limits for P1 and P2 are

determined from the SW fit. Mean values and standard deviations of the higher level period as

well as of the lower level period, according to the SW, are calculated. Define ymax as the mean

of the higher level values plus two times the according standard deviation and ymin as the mean

of the lower level values minus two times the according standard deviation. The constraints for
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P1 and P2 can then be chosen as

ymin ≤ P1 + P2 < ymax

P2 > 0

ymin ≤ P1 + 2P2 < ymax.

(2.114)

Constraints for the curvature parameters were chosen in a way that transition phases lasted for

at least 30 minutes. Plateaus should be at least 5 hours long. Details to the algorithm can be

found in [18], [19].

Figure 2.14: The plots were obtained by the MATLAB function
calc doublelogisticfit.m. As can be seen, the double logistic func-
tions take reasonable forms. For the data in the top right corner, nlinfit
and lsqcurvefit provide different curves. Nevertheless, both seem
comprehensible.

Implementation - Restrictions on the Data Set and Features of the Algorithm

The approach to obtain a double logistic curve fit in this work is a simplified version of the one

described above. It is done by the use of two different MATLAB built in functions, namely

nlinfit and lsqcurvefit, which fit the function given in formula 2.112 to the data set by the

least squared error criterion. These two functions as well require start values for the parameters
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P1 to P6. These are obtained from the cosinor fit. The slopes at the two inflection points

and their according time points are the initial values for P3 to P6. The level difference P2 is

chosen as the difference between the high level and the low level period as determined according

to the cosinor method. P1 is approximated by the difference of the low level mean and the

approximation of P2. This approach often yields favourable results for both of the functions as

can be seen in figure 2.14 at pSBP as well as heart frequency (Hf) data. However several issues

occur, when applying this algorithm. These will be discussed in the following.

One of the observations when applying the algorithm to different data sets is, that the curve

does rise to the higher level but fails to fully return to the lower level plateau as can be seen in

figure 2.15. To avoid this unfavourable effect, two approaches are made.

Since the start of the sleep time lies approximately within the interval (22h,2h), (BP) values

begin to fall rather close to the end of the 24h monitoring period. This might hinder the curve

to perceive another low level period. To obtain enough lower values, the data set may be

extended by a certain number of measurements of the following day. In the absence of these

measurements, simply the first couple of hours of the same day with the according measurements

are added. The MATLAB function calc doublelogisticfit.m provides an optional parameter

extension, which is the number of hours the user wishes to add to the data set. Applying the

MATLAB function calc doublelogisticfit.m with an extension of 6 hours to the same data

sets as in figure 2.15 leads to the desired return to the lower level plateau. This can be seen in

figure 2.16

The second option is to shift the time point of the beginning of the measurements such that

transition periods are most likely not close to the beginning or the end of the observation period.

The MATLAB function calc doublelogisticfit2.m includes the parameter start which is

the time point when measurements should start. Applying this function again to the same data

sets as in figure 2.15 and 2.16, respectively, with the start time set to 4 p.m. yields to the double

logistic curves depicted in figure 2.17. However, the shape of the curve is rather sensitive to the

starting time, since the fitted functions in 2.16 and 2.17 show - at least for the data set on the

left - notably different characteristics.

Despite the presented favourable results, some further observations have to be mentioned. The

implementation of this method by Head et al. is rather complex and the design of the curve in

general seems to be only applicable to data sets with a specific shape. This can be seen in figure

2.18. The data sets do not show a typical diurnal BP tenor, which leads to a rather unfamiliar

double logistic fit. The same could be said about the SW or the cosinor method and they do

indeed not provide perfect fits for every data set, but the number of variables in these models is

much smaller and therefore can be controlled easier. Head at al. include a lot of restrictions on

the parameters of the model. This inclusion might improve the approach presented in this work.

Another observation made when applying the function calc doublelogisticfit.m on the data

sets is, that the resulting curve is rather sensitive to the initial values. The improvement of

the calculation of adequate initial values presents another field of investigation to obtain a solid

method. As the two MATLAB function often provide different results for the data sets, they

require further analysis to find distinct quality criteria for the decision in favour of one of them.
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Figure 2.15: The plots were obtained by the MATLAB function
calc doublelogisticfit.m. They show the unfavourable effect, that
the double logistic curve does not return to the lower level plateau.

Figure 2.16: Applying the MATLAB function calc doublelogisticfit.m with an exten-
sion of 6 hours to the same data sets as in figure 2.15 leads to the desired
return to the lower level plateau.

Figure 2.17: This double logistic curve was obtained by the MATLAB function
calc doublelogisticfit2.m with a shift of the starting time of the obser-
vations to 4 p.m.
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Advantages and Disadvantages of the Double Logistic Analysis

The method is said to improve the modelling of the surge of BP in the morning, which is known

to be a risk factor for stroke [18], [26]. The crucial innovation of this method is the possibility

to consider BP decline when going to sleep and BP rise when getting up separately [19].

Figure 2.18: This double logistic curve was obtained by the MATLAB function
calc doublelogisticfit2.m. The shape seems unfamiliar.

2.15 Personalized Standard Deviation

In [14] another variant of the SD called personalized standard deviation (pSD) is described. In

contrast to the cSD, which calculates the variance around the mean value, here the variance

around the ,expected’ value is calculated. This ,expected’ value is obtained using the ,smooth-

curve method’ (,curve-fitting’). To the piecewise linear curve F (with Fi = F (ti) = xi), which

results from linear interpolation of the measurements (a), a smooth curve f (=̂ X in previous

fitting models) is fitted (b). The calculation of the pSD is similar to the one for cSD, but

normalization is done by the number of measurements and the expression (Fi −X) is replaced

by (Fi − fi) (with fi = f(ti)). This ,difference curve’ is shown in (c) (cf. figure 2.19).

Figure 2.19: Curves for the calculation of pSD
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Definition 2.62. The personalized standard deviation (pSD) is calculated using the for-

mula

pSD =

√√√√ 1

n

n∑
i=1

(Fi − fi)2, (2.115)

where Fi = xi is the measured value at the time point ti and fi = f(ti) is the expected

value at ti given by the model function f .

Comment 2.63. In the paper [14] no specification is made which particular curve fitting

method is used. However, according to the plots in the paper, it seems reasonable to use a

fourier fit (cf. section 2.14.3). �

Comment 2.64. This index can be calculated for 24h, only day time or only night time data.

The algorithm returns these 3 values. �

2.15.1 Advantages and Disadvantages of pSD

This index takes random variation and physiological variation into account. In contrast to other

afore mentioned methods, such as cSD or wSD this method eliminates physiological variation

mathematically and consequently extracts random variation [14]. (Although wSD at least partly

takes physiological variation into account by excluding the NBPF (cf. section 2.12)) In their

study, the authors were able to find an association between BPV measured by cSD, wSD as

well as pSD and lacunar infarction (LACI), but the correlation was strongest when pSD was

used to quantify BPV.

2.16 Cumulative Sum Analysis

2.16.1 Definition of Cusum

General Method

The method of cumulative sums is a statistical tool to analyse the changes in sequential data

or time series. It is especially powerful when trying to detect abrupt changes [17]. Through

the data an arbitrary but relevant [65] line is drawn. Successively the deviations from the data

points to this line are calculated, summed (= cumulative sum) and plotted afterwards [65],

[70]. If the values lie continuing above the reference line, positively leant curves are generated.

Likewise the cusum plot shows a decreasing behaviour, if values keep lying below the reference

line. The extend of the deviations is reflected by the more or less prominent slope of the curve.

The changes in the trend of the data are much more revealed in the cusum plot than in the

data [65].

As the name indicates, cumulative sums are calculated, which gives this technique a sequential

structure [17]. The values from the measurements xi are assigned with values ωi - commonly ω
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is a likelihood function - and summed according to the rule

S+
0 := 0 (2.116)

S+
n := max(0, S+

n−1 + xn − ωn), n ≥ 1 (2.117)

where Sn indicates the n-th cumulative sum.

If a given threshold value s+ is exceeded by Sn, a change in the data is found. Considering

the formula from above (cf. 2.116), changes are only recognized in the positive direction. For

changes with negative sign, the maximum has to be replaced by a minimum. Changes are then

present, if the sum drops below the given negative threshold value s−. Sums are then indicated

by S+
n and S−n respectively. In an overall cumulative sum indicated by Sn both trends are

considered. This means that in every step the difference between the next data point and the

reference value (xn − ωn) is added to the current sum [17]. The formulas read as follows.

S0 = S+
0 = S−0 := 0 (2.118)

S+
n := max(0, S+

n−1 + xn − ωn) (2.119)

S−n := −min(0,−(S−n−1 − xn + ωn)), n ≥ 1 (2.120)

Sn := Sn−1 + (xn − ωn) (2.121)

Modified Method for the Data in Consideration

This general model of CUSUM can be applied to the time series under consideration in this

work. Stanton et al. adopted this idea and proceeded as follows [65]. When analysing the

variability of BP, heart rate and other parameters of interest, the above mentioned reference

line can be chosen as the mean value of the parameter under consideration. This corresponds

to ωn from before, which is now constant for every n [65].

2.16.2 Construction of the CUSUM-Plot

The following (pseudo code) algorithm constructs the CUSUM-plot

Definition 2.65. Let x1, . . . , xn be the measurement values at the corresponding time

points t1, . . . , tn.

(1) Within each interval between two consecutive measurements the parameter value is

assumed to be the constant mean value of the measurements at the left and right

interval limit (xi = xi+1+xi
2 ).

60



Figure 2.20: Data plot (left) and corresponding CUMSUM plots obtained by the MAT-
LAB function calc cusum classic.m (right). While the data plots on the
left side in both cases do not reveal any trend, the cusum plots differ a lot.
The top right figure is rather confuse, while the right bottom figure shows a
cusum plot of certain trend. The reference line is simply chosen as the mean
value of the data. Adapted from [17]

(2) By use of these ’local mean values’, the reference value

Xw =
1

D

n−1∑
i=1

xi+1(ti+1 − ti), (2.122)

the weighted 24h mean value, can be calculated, where D =
∑n−1

i=1 (ti+1 − ti) is the

duration of the measurements (here approximately 24h) and xi is the mean value of

xi and xi+1.

(3) i = 1. Set Si = 0.

(4) Subtract the reference value Xw from the interval mean xi

Ri := xi −Xw. (2.123)

(5) Multiply the resulting remainder Ri with the corresponding interval length (ti+1−ti).
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(6) Add this product to the current sum

Si+1 = Si +Ri(ti+1 − ti) (2.124)

(7) Set i := i+ 1.

(8) While i ≤ n repeat steps (4)− (7).

(9) The CUSUM-plot is finally obtained by plotting Si against ti.

Figure 2.21: Cusumplot created with calc cusum option.m in MATLAB. The beginning
of the plot is set to 0h and the weighted version is chosen (cf. section 2.16.5).
Vertical lines leading from the circled data point The CPH as well as the
output of the function calc cusum option.m are also shown in the figure.

2.16.3 Significant Indices obtained from the CUSUM Model

The following 5 indices can be obtained from the CUSUM model curve [30], [65], [70].

i) ,CUSUM plot height (CPH)’: This is defined as the difference between maximum and

minimum of the plotted curve. One one hand it reflects the extend and on the other hand

the duration of the NBPF .

ii) ,CUSUM plot slope (CPS)’: For a given time period this is defined as the change in the

CUSUM within this period, divided by the time change of this period. (To make cal-
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culations easier, an interval has to have integer numbers as left and right limit.) This

corresponds to the temporally weighted mean of the data within this period and the 24h

mean of the data.

iii) ,CUSUM derived crest value (CCV)’: This is defined as the largest temporally weighted

mean value in a period of at least 6 hours. This value of 6 hours was determined empirically

to quantify continuing and not random changes. It measures the highest continuing value

in a 6 hour period.

iv) ,CUSUM derived trough value (CTV)’: This is defined as the smallest temporally weighted

mean value in a period of at least 6 hours.

v) ,CUSUM derived circadian alteration magnitude (CCAM)’: The CCAM quantifies the ex-

tend of the circadian change and it is defined as the difference of the latter two indices.

Definition 2.66. Calculation of the parameters [65]:

• CUSUM plot height (CPH)

CPH =
∣∣∣ ik∑
i=i1

(xi −Xw)di

∣∣∣ = max
i
Si −min

i
Si, (2.125)

with di being the length of the i-th interval (ti − ti−1). Further i1, . . . , ik denotes the

indices of the intervals between the maximum and the minimum of the CUSUM (or

between minimum and maximum, if the minimum occurs first).

• CUSUM plot slope (CPS)

CPS =
CSE − CSB

dp
, (2.126)

where CSE and CSB indicate the cumulative sums at the end, respectively the be-

ginning of the period and dp stands for its duration.

• CUSUM derived crest value (CCV)

CCV = CPScrest +Xw (2.127)

Here, CPScrest denotes the largest among all CPS-values obtained for all possible

6h-periods. The calculation in this manner is explained by the fact that the CPS

value over a given time period is equal to the difference between the mean value for

that period and the mean 24h value.

• CUSUM derived trough value (CTV)

CTV = CPStrough +Xw (2.128)
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Here, CPStrough denotes the smallest among all CPS-values obtained for all possible

6h-periods.

• CUSUM derived circadian alteration magnitude (CCAM)

CCAM = CPScrest − CPStrough (2.129)

Comment 2.67. The authors of [65] stress that it is crucial to plot the products of parameter

deviations and corresponding time intervals instead of only using the CUSUM of the parameter

differences to ensure that the mathematical relation is correctly interpreted. The multiplication

overcomes missing readings as well as different interval durations. �

2.16.4 Advantages and Disadvantages of the CUSUM Method

Stanton et al. [65] state that the CUSUM method is one of the simplest statistical tools. Since

normally for BP data higher values during day and lower values during night are measured,

CUSUM-derived mean values, such as CCV and CTV, approximate day time and night time

mean values. The authors claim that these CUSUM derived mean values are superior to those

obtained by fixed day time and night time intervals, because awake time and sleep time differs

from subject to subject. Therefore, the values are still interpreted correctly for instance if data

from shift workers are analysed.

Parati et al. [45] claim that the CUSUM method circumvents some of the limitations of the

square wave fit as it does not model transition periods as abruptly. Additionally, the derived

parameters are not influenced by short-term oscillations. However, one limitation of the method

is the fact that it ,over-models’ the actual parameter cycle. This smooths away all other indices

(except the ones considered in the CUSUM).

The study by Thijs et al. [70] investigated the influence of measurement frequency on the

parameters on several methods, amongst them the CUSUM method. By stepwise reducing

measurement frequencies starting from every 7.5 minutes during day time (8 a.m. to 8 p.m.) and

15 minutes during night time (8 p.m. to 8 a.m.), they concluded that at least 2 measurements per

hour are required to accurately determine CUSUM derived indices. (The same was concluded

for the cSD, the NBPF and the amplitude of the fourier model.)

2.16.5 Implementation - Restrictions on the Data Set and Features of the

Algorithm

The Matlab function calc cusum option.m calculates the CUSUM plot and the parameters

mentioned in definition 2.66. The CPS is calculated over the period from the maximum to the

minimum. The algorithm allows two options. First, the start time of the plot can be set to

any full hour of the day. Second, it can be chosen if weighting should be included or excluded

(cf. definition 2.65). Then the reference value is simply the mean value of the data and the
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Figure 2.22: Both figures were produced by the Matlab function calc cusum option.m

with the start time set to 0h. For the left figure no weighting was included,
while the right figure shows the weighted CUSUM plot for the same data
set. As can be seen, the weighting, which should overcome missing readings,
does change the characteristic of the plot.

calculation is done in the fashion of section 2.16.1, where the general method is described. In

figure 2.22 the difference between the weighted and the unweighted version can be seen.
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Chapter 3
Quality Assessment

As mentioned in chapter 2, some of the indices impose certain conditions on the data set, such

as a minimum total number of measurements or a minimum number of measurements within

an hour. Some are due to technical reasons, some are required to guarantee the statistical

reliability or reproducibility of the index. For a model to be of practical use, as few limitations

as possible are desired.

3.1 Collection of Settings in Literature

In several publications, different quality requirements have been established including distinct

intervals for day time and night time. It is important to distinguish between the definitions of

day and night for recording purposes - this fixes the recording frequency during certain periods

of the 24h - and the definitions of day and night for calculation reasons concerning the indices.

While the day and night intervals for schedule purposes are always intervals covering the whole

24h period, the day and night periods for calculations purposes are possible (disjoint) subperi-

ods of the 24h interval, since it is sometimes of interest to exclude transition phases (e.g., day

9 a.m. to 9 p.m., night 1 a.m. to 6 a.m.).

Table 3.1 gives an overview of different possible settings, but does not raise claim to complete-

ness based on literature. The models variation independent of mean (VIM) and approximate

entropy (ApEn) were not implemented. Therefore, they are missing in table 3.1. The indices

higher empirical moments (HEM), runs (and updownups) have not been analysed in literature

so far. Thus, they are not included in the table as well.

The publication by Mena et al. [37] gives a summery over the settings of several studies.

In general, these studies scheduled readings at time points every 15 to 30 minutes during day

time and every 30 to 60 minutes during night time. At least 70% of the readings throughout

the 24h period had to be valid for a data set to be included in the studies. Other exclusion

criteria were less than 32, 57 or 59 measurement points during 24h. In one of the studies, at
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least 10 day time and at least 5 night time readings were stipulated. Additionally, data sets

were excluded if readings were missing in a period of three consecutive hours [16]. The purpose

of their own study was to determine the minimum number of measurements needed such that

the index ARV does not loose its prognostic significance, which they concluded to be 48.

Parati et al. [47] published a scientific article, which aims to define practice guidelines for am-

bulatory blood pressure monitoring (ABPM). They claim that there is no distinct answer to

the question how many measurements are required to obtain a satisfactory ABPM recording.

However, if recordings are taken at least every 30 minutes throughout the whole 24h period

and a minimum of 70% of the scheduled data should remain, at least 20 readings during day

time and at least 7 readings during night time are acceptable. These day time and night time

periods are best determined using the reported ’going to bed’ and ’waking up’ time points by

the patients. If fixed periods have to be chosen without the subjects’ journal, transition periods

should be excluded (e.g., day time from 9 a.m. to 9 p.m. and night time from 1 a.m. to 6 a.m.).

A repetition of the recording is recommended if either less than the above mentioned readings

are available or if less than two valid readings per day time hour or less than one valid reading

per night time hour are present.

When considering all these settings in literature, it has to be mentioned that they are all

established for ABPM data and not for ABPM and PWA data. The latter data assessment pro-

cedure is more prone to error due to a longer-lasting recording and more complex calculations

of the parameters (cf. section 4.1.2).

3.2 Algorithm for Quality Test

Based on the above listed (partly similar) settings in literature basically two features are desired:

I) a minimum number of readings in total and in the subperiods day and night.

II) regularly distributed readings, which means that gaps between consecutive readings should

be limited.

The MATLAB function quality.m outputs whether a data set does or does not fulfil the user

defined requirements.

1 function qua l i tycheck = q u a l i t y ( time , data , day , night , day schedule , n i ght s chedu l e ,

2 schedule , percent , num day , num night , num total , cons , mis s ing )

INPUT arguments

• time . . . vector containing the time points of valid readings

• data . . . vector containing the measurement values corresponding to the time points

• day . . . defined day period (e.g., [ 9
24 ,

21
24 ])
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• night . . . defined night period (e.g., [ 1
24 ,

6
24 ])

• day schedule . . . defined interval for day time schedule (e.g., [ 8
24 ,

23
24 ])

• night schedule . . . defined interval for day time schedule (e.g., [23
24 ,

8
24 ])

• schedule . . . 1×2 vector, the first argument is the reading frequency during day schedule,

the second argument is the reading frequency during night schedule expressed in min-

utes, (e.g., [15, 30] means, measurements were recorded every 15 minutes during day sched-

ule and every 30 minutes during night schedule’)

• percent . . .

-) if percent > 0, this is the aimed percentage of valid readings in total (during 24h),

during day and during night relative to the number of expected readings in these

periods according to the reading schedule specified by schedule (e.g., percent 70 =̂

70%)

-) if percent = 0 the aimed number of measurements during day, night and 24h is

given by num day, num night and num total respectively

• num day (e.g., 20)

• num night (e.g., 6)

• num total (e.g., 50)

• cons . . . number of allowed consecutive hours without any valid reading (e.g., 3)

• missing . . . allowed total number of hours without any valid reading throughout the 24h

period (e.g., 6)

OUTPUT arguments

The output is a 1× 5 vector qualitycheck = [dq, nq, tq, crq, mhq] containing zeros and

ones indicating whether the quality criterion is fulfilled (’1’) or not fulfilled (’0’). These quality

criteria precisely are

I) a minimum number of readings

• dq . . . the number of readings during day is sufficient

• ng . . . the number of readings during night is sufficient

• tg . . . the number of readings during 24h is sufficient

II) regularly distributed readings

• crq . . . the maximal number of consecutive hours without any readings is not greater

than cons

• mhq . . . the total number of hours without any readings is not greater than missing
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The feature sufficient is either specified by the input argument percent or by the input argu-

ments num day, num night and num total (in this case percent has to be set to 0).

3.2.1 Percentage Quality vs. Absolute Number Quality

The use of the input parameters concerning the percentage quality test (day schedule, night s-

chedule, schedule and percent> 0) is only reasonable, if the reading schedule of the device,

which provided the data sets, is known, since only then the expected number of readings is

calculated appropriately. The percentage criterion is rather a quality test for the reading device

- the quality might be tested with the algorithm by setting day = day schedule, night =

night schedule and percent as the aimed percentage rate. For the purposes of this work,

absolute numbers of present readings are more relevant. Therefore, the requirement of suffi-

ciently many readings will be tested by the absolute number criterion (num day, num night and

num total).

3.3 Setting

Based on section 3.1 the setting for the statistical analysis will be chosen. Nevertheless, certain

observation as described as follows have to be taken into account.

Since the number of indices under investigation is rather large (≥ 50), it is difficult to choose a

quality test which is perfectly attuned for each of them. Furthermore, it is also a quality feature

of an index whether it works for a wide range of data sets. If the index can only be calculated

under very strict constraints on the data set, it may not be relevant for practical use.

Additionally, since the reading schedule of the hereinafter used data sets is not known, the qual-

ity query is chosen to be made with absolute numbers instead of percentage values (cf. section

3.2.1). As a consequence the input parameters day schedule, night schedule, schedule do

not have to be specified.

As mentioned before (cf. section 3.3), the settings in literature are made for BP data. Since

the assessment of the data in consideration in this work, namely PWA data, is more prone to

errors, in general milder constraints are chosen.

Furthermore, no reports are available when patients were awake and asleep. According to lit-

erature [47], day and night should be defined by excluding transition periods.

The general setting is finally given by

• day = [ 9
24 ,

21
24 ], night = [ 0

24 ,
6
24 ]

• num day = 10, num night = 5, num total = 25

• cons = 6, missing = 10

The only index highly sensitive to missing data points is EMS (cf. section 2.13). Further setting

adjustments are possible, probably even necessary. If so, the specifications will be explained in

the according statistical analysis parts.
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method
scheduled schedule day (d) night (n) exclusion

literature
day (d/n)[min] period period criteria

cSD

06:00 - 22:00 30/60 06:00 - 22:00 22:00 - 06:00 < 75% total Duan et al. [14]

30 09:00 - 21:00 01:00 - 06:00 - Rothwell et al. [55]*[56]*

15 07:00 - 24:00 00:00 - 07:00 - Cay et al. [7]

07:00 - 23:00 30/60 07:00 - 23:00 23:00 - 07:00 - Xiong et al. [90]

- - 08:00 - 22:00 00:00 - 06:00 < 70% total

< 2/dayhour

< 1/nighthour

Bilo et al. [3]

15 10:00 - 20:00 00:00 - 06:00 < 80% total

cons. h w/o read.

> 4 h w/o read.

Schillaci et al. [60]

wSD

06:00 - 22:00 30/60 08:00 - 22:00 00:00 - 06:00 < 75% total Duan et al. [14]

06:00 - 24:00 15/30 - - < 70% total Bjelakovic et al. [4]

- - 08:00 - 22:00 00:00 - 06:00 < 70% total

< 2/dayhour

< 1/nighthour

Bilo et al. [3]

15 10:00 - 20:00 00:00 - 06:00 < 80% total

cons. h w/o read.

> 4 h w/o read.

Schillaci et al. [60]

ARV

06:00 - 23:00 15/30 06:00 - 23:00 23:00 - 06:00 < 70% total Mena et al. [36]

06:00 - 24:00 15/30 - - < 70% total Bjelakovic et al. [4]

07:00 - 23:00 30/60 07:00 - 23:00 23:00 - 07:00 - Xiong et al. [90]

15 10:00 - 20:00 00:00 - 06:00 < 80% total

cons. h w/o read.

> 4 h w/o read.

Schillaci et al. [60]

CV

30 09:00 - 21:00 01:00 - 06:00 - Rothwell et al. [55]*[56]*
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15 07:00 - 24:00 00:00 - 07:00 - Cay et al. [7]

07:00 - 23:00 30/60 07:00 - 23:00 23:00 - 07:00 - Xiong et al. [90]

NBPF

15 diary diary - Verdecchia et al. [76]

08:00 - 22:00 20/45 10:00 - 20:00 00:00 - 06:00 - Staessen et al. [63]

08:00 - 20:00 7.5/15 10:00 - 20:00 00:00 - 06:00 < 80% total Thijs et al. [70]

06:00 - 24:00 20/30 08:00 - 22:00 00:00 - 06:00 < 15 during day

< 5 during night

Lurbe et al. [30]

- - 08:00 - 22:00 00:00 - 06:00 < 70% total

< 2/dayhour

< 1/nighthour

Bilo et al. [3]

EMS

15 diary diary - Verdecchia et al. [76]

30 diary diary missing morning

values

Metoki et al. [38]

30 diary diary < 80% awake

< 80% asleep

Kario et al. [26]

SW 08:00 - 20:00 7.5/15 10:00 - 20:00 00:00 - 06:00 < 80% total Thijs et al. [70]

fourier
08:00 - 22:00 20/45 10:00 - 20:00 00:00 - 06:00 - Thijs et al. [71]

08:00 - 22:00 20/45 10:00 - 20:00 00:00 - 06:00 - Staessen et al. [63]

logistic 30 07:00 - 22:00 22:00 - 07:00 - Head et al. [19]

CUSUM 08:00 - 20:00 7.5/15 10:00 - 20:00 00:00 - 06:00 < 80% total Thijs et al. [70]

30 - - > 1 h w/o read. Stanton et al. [65]

Table 3.1: Collection of settings in literature: Horizontal lines indicate missing information in the publication. The scheduled day period indicates the time
period within which recordings were scheduled with a frequency as indicated in the first argument of the column schedule. The scheduled night
period is always given by the remaining hours of the 24h period. The frequency is indicated by the second argument of the column schedule. A
single value in the column schedule indicates that this is the recording frequency throughout the whole 24h. The publications marked with a *
investigated visit to visit variability. Whenever one of the criteria in the column exclusion was fulfilled, the data set was excluded. Percentage
specifications have to be interpreted as relative to the expected number of readings according to the reading schedule. Absolute numbers always
indicate reading numbers (e.g., ’< 2/dayhour’ means ’data sets were excluded, if day hours with less than two readings were present’). The
expression ’cons. h w/o read.’ means that data sets were excluded whenever there were at least 2 consecutive hours without readings.
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Chapter 4
Statistics and Data Description

The previously collected models, or to be precise the derived indices quantifying the diurnal

profile and variability of PWA parameters, require further analyses to test their performance

in predicting cardiovascular diseases. The aim is to identify those indices which provide signif-

icantly different values for a control group of healthy subjects compared to a group of patients

suffering from a certain cardiovascular condition. The current chapter describes the data of two

cohorts for which the variability indices are compared as well as the statistical tools used for

the comparison.

4.1 Data

4.1.1 Study Design - Groups to be Compared

The data of the patient group (further termed Wels) consists of 63 subjects (47 male, 16 female)

aged between 16 and 84 (median [IQR-limits]: 53 [45.25, 63]). These data were assessed through

the Cardiology department at the Klinikum Wels-Grieskirchen in Wels (Austria) to be part of

a multicenter study investigating the relationship between 24h central blood pressure and left

ventricular mass [84]. For patients to be included, they had to fulfil certain criteria. Subjects in

this group suffer from an enlargement of their left ventricle (left ventricular hypertrophy (LVH))

suspected due to hypertension, which must not be treated with antihypertensive medication.

The detailed study design is described in [84].

The data of the control group (further termed Lübeck) were acquired in Lübeck (Germany).

The cohort consists of 91 healthy subjects (36 male, 55 female) aged between 20 and 68 (median

[IQR-limits]: 33 [24, 49.5]). Subjects in this group stated not to suffer from dyslipidemia, mental

disorders, electrocardiography abnormalities, diabetes or hypertension. They were also free from

drug intake.

4.1.2 Data Assessment

From each subject of both groups 24h ABPM including PWA was assessed with an oscillometric

brachial-cuff based sphygmomanometer (Mobil-O-Graph NG, I.E.M., Stolberg, Germany; ARC-
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Solver Version 172; diastolic/systolic calibration). The recordings involved the measurement of

standard ABPM parameters such as peripheral systolic and diastolic BP at time points sched-

uled every 15 to 30 minutes during a period of 24h. Subsequently, for a duration of ten seconds,

the pulse wave is recorded. With the ARCSolver method, developed by the AIT, central aortic

pressures and other systemic cardiovascular parameters are estimated from these recordings.

The recording device as well as the ARCSolver method have been validated successfully [81],

[84], [85]. A total of 20 parameters are derived from the measurements, namely

peripheral systolic blood pressure (pSBP) augmentation pressure (AP)
peripheral diastolic blood pressure (pDBP) cardiac output (CO)
peripheral pulse pressure (pPP) reflexion magnitude (RM)
peripheral mean arterial pressure (pMAP) peripheral resistance (Rp)
central systolic blood pressure (cSBP) heart index (HIx)
central diastolic blood pressure (cDBP) amp. of the early syst. peak pressure (P1)
central pulse pressure (cPP) amp. of the late syst. peak pressure (P2)
heart frequency (Hf) backward pressure wave amplitude (Pb)
augmentation index (AIx) forward pressure wave amplitude (Pf )
augmentation index at 75 bpm (AIx@75) pulse wave velocity (PWV)

4.2 Statistical Tests

The statistical analysis is done with MATLAB R2014a (The MathWorks Inc., Natick, Mas-

sachusetts, USA). Since the data are derived from two different independent groups, unpaired

statistical tests are used. Whenever NaNs (not a number values) occurred in the calculation of

an index, they are treated as missing values.

For each group the index values are tested whether they are normally distributed. This is done

with the help of the one-sample Kolmogorov-Smirnov test. If so, the two-sample F-test is em-

ployed to decide, whether both value sets come from a normal distribution with equal variances.

The two-sample (Student’s) t-test is then applied in the case of equal variances, but the Welch

test is used if different variances are given.

If (at least) one of the index data sets is not normally distributed and both data sets include only

values > 0 a logarithm transformation is applied to both sets. If still not both (transformed)

sets are normally distributed the Mann-Whitney U test (also called two-sided Wilcoxon rank-

sum test) is employed. If the data sets are normally distributed after the log-transformation,

the transformed data are further processed in the same way as normally distributed data (cf.

first paragraph).

For all statistical tests the significance level is chosen as α = 5%. If the p-value p ≤ 0.05, the

null hypothesis is rejected.

Data are presented as mean (SD), if they are normally distributed for both groups otherwise

the median (IQR-limits) is given.
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Chapter 5
Results

5.1 Exclusion of Data Sets

As a first step, measurements are only then included, if the recording quality, which is returned

by the ARCSolver algorithm alongside the PWA parameters, is 1 or 2. Recorded values with

quality 3 or unsuccessful measurements (NaN) are excluded. This guarantees a certain accuracy

of the measured values which are taken into account for the calculations of the indices. Fur-

thermore, this provides that, per subject, the number of data points for an ABPM parameter

is equal to the number of data points for a PWA parameter. This is relevant when comparing

the central with the peripheral parameters (e.g., cSBP vs. pSBP). Subsequently, for all indices

the setting determined in section 3.3 is chosen. Essentially this equals the function call

1 qua l i tycheck = q u a l i t y ( time , data , [ 9 /24 , 21/24 ] , [ 0 / 2 4 , 6 / 2 4 ] , day schedule ,

2 n ight s chedu l e , schedule , 0 , 10 , 5 , 25 , 6 , 1 0 ) ;

Note, that here the input variables day schedule, night schedule and schedule do not have

to be specified, since they will not be used in the algorithms’ calculations (percent = 0).

Applying this quality test to all data sets of both groups results in the remaining of 80 out

of 91 (Lübeck) and 58 out of 63 (Wels) data sets. Table 5.1 shows some characteristics of the

remaining data sets in the two groups, which are tested for significant differences.

Lübeck Wels p-value test

male/female 32 (40%)/48 (60%) 44 (75.9%)/14 (24.1%) - -

age (years) 31 [24,47.5] 52.5 [46,62] < 0.001 3

weight (kg) 73 (12.9 SD) 82.8 (13.1 SD) < 0.001 1

height (m) 1.74 (0.0852 SD) 1.76 (0.0855 SD) 0.12 1

BMI (kg·m−2) 24.1 (3.88 SD) 26.6 (3.49 SD) < 0.001 1

Table 5.1: Absolute numbers and percentage ratios of male and female individuals within the groups are shown
in the first row. BMI stands for ’Body Mass Index’ and is the weight divided by the squared height.
The numbers in the column test indicate the used test for the statistical analysis: 1 t-test, 3 Mann-
Whitney U test (Wilcoxon ranksum test). Significant p-values are highlighted in green.
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5.2 24h Averages

For each subject the 24h mean value of every parameter is calculated. These 24h average values

are tested for significant differences between the two groups. Table 5.2 shows the results.

Lübeck Wels p-value test

pSBP 116 (8.51 SD) 123 (9.1 SD) < 0.001 1

pDBP 73 (7.21 SD) 81.5 (9.17 SD) < 0.001 2

pPP 43.3 (6.35 SD) 41.8 (6.9 SD) 0.17 1

pMAP 92.9 (7.15 SD) 101 (8.46 SD) < 0.001 1

cSBP 106 (8.13 SD) 115 (8.79 SD) < 0.001 1

cDBP 74.5 (7.27 SD) 82.9 (9.17 SD) < 0.001 1

cPP 31.9 (4.6 SD) 31.9 (5.2 SD) 0.99 1

Hf 70.3 (7.91 SD) 68.7 (9.47 SD) 0.28 1

AIx 20.4 (6.51 SD) 23.8 (7.43 SD) 0.005 1

AIx@75 17.9 (8.16 SD) 20.2 (7.01 SD) 0.08 1

AP 7.01 (2.61 SD) 8.33 (3.42 SD) 0.02 2

CO 4.73 (0.382 SD) 4.66 (0.392 SD) 0.29 1

RM 60.8 (5.67 SD) 62.8 (5.16 SD) 0.04 1

Rp 1.21 (0.108 SD) 1.32 (0.107 SD) < 0.001 1

HIx 2.54 (0.261 SD) 2.33 (0.242 SD) < 0.001 1

P1 99.4 (7.58 SD) 106 (9.03 SD) < 0.001 1

P2 106 (8.13 SD) 115 (8.79 SD) < 0.001 1

Pb 12.9 (2.07 SD) 13.1 (2.4 SD) 0.64 1

Pf 20.9 (2.94 SD) 20.5 (3.16 SD) 0.42 1

PWV 5.32 [4.9, 6.5] 7.41 [6.49, 8.68] < 0.001 3

Table 5.2: Significant differences of the 24h mean values of all parameters. The numbers
in the column test indicate the used test for the statistical analysis: 1 t-test,
2 Welch test, 3 Mann - Whitney U test (Wilcoxon ranksum test). Significant
p-values are highlighted in green.

5.3 Variability Indices

In the following subsections for six parameters are chosen from the list in table 5.2 (cf. also

section 4.1.2). All variability indices are calculated for these parameters. The results include

the mean values or median values for the two groups and the p-values. If additional settings for

the calculation of the index had to be made (e.g. number of harmonics chosen for the fourier

analysis), this is also stated. All values are rounded to three significant digits.

The choice of the parameters and the settings will be explained in the discussion chapter 6.
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5.3.1 Heart Frequency (Hf)

Table 5.3 shows the results for the parameter Hf. All variability indices are calculated and tested for significant differences. In addition to

the mean (or median) values, the p-values and the used tests are given. Possible additional settings are stated as well.

method index Lübeck Wels p-value test add. sett.

cSD

cSDday 9.82 (3.49 SD) 8.53 (3.4 SD) 0.03 1a -

cSDnight 4.96 [3.52, 6.45] 4.17 [2.63, 5.85] 0.05 2b -

cSD24h 11.5 (3.64 SD) 10.1 (3.09 SD) 0.02 1a -

wSD wSD 8.66 (2.82 SD) 7.57 (2.64 SD) 0.02 1a -

ARV

ARVday 7.89 (2.82 SD) 6.63 (2.92 SD) 0.01 1a -

ARVnight 4.68 [3.18, 5.75] 3.71 [2.44, 5] 0.04 2b -

ARV24h 7.29 (2.11 SD) 6.08 (1.91 SD) < 0.001 1a -

wARV wARV 8.41 (2.72 SD) 6.81 (2.34 SD) < 0.001 1a -

SV

SVday 10.6 (4.12 SD) 8.98 (4.25 SD) 0.03 1a -

SVnight 5.7 [3.99, 7.56] 4.39 [2.93, 6.09] 0.03 2b -

SV24h 10.2 (3.23 SD) 8.58 (3.13 SD) 0.003 1a -

CV (%)

CVday 13 (4.11 SD) 11.7 (4.34 SD) 0.07 1a -

CVnight 8.3 [5.86, 10.7] 6.96 [4.53, 9.63] 0.06 2b -

CV24h 16.3 (4.56 SD) 14.6 (4.12 SD) 0.03 1a -

HEM

skewday 0.584 (0.744 SD) 0.546 (0.678 SD) 0.76 1a -

kurtday 3.04 [2.44, 4.25] 2.72 [2.41, 3.59] 0.40 1b -

skewnight 0.468 (0.647 SD) 0.286 (0.683 SD) 0.11 1a -

kurtnight 2.17 [1.86, 2.94] 2.15 [1.78, 2.71] 0.49 1b -
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skew24h 0.674 (0.601 SD) 0.577 (0.576 SD) 0.34 1a -

kurt24h 2.92 [2.27, 4.1] 2.78 [2.38, 3.44] 0.56 1b -

OS

range 49.3 (16.6 SD) 43.1 (15.3 SD) 0.03 1a -

IQR 16.1 (6.64 SD) 13.7 (4.91 SD) 0.01 2a -

midrange 77.3 (10.2 SD) 74 (11.4 SD) 0.08 1a -

median 69.3 (8.3 SD) 67.4 (9.54 SD) 0.21 1a -

peak 31.6 (13.4 SD) 26.8 (12.6 SD) 0.04 1a -

trough 17.7 (5.3 SD) 16.3 (4.42 SD) 0.10 1a -

max 102 (17.4 SD) 95.5 (17.7 SD) 0.04 1a -

tmax (dec) 0.593 (0.198 SD) 0.597 (0.184 SD) 0.91 1a -

min 52.6 (6.61 SD) 52.4 (7.88 SD) 0.88 1a -

tmin (dec) 0.208 [0.167, 0.359] 0.188 [0.127, 0.271] 0.27 3 -

runs

runsday 8.32 (3.78 SD) 7.9 (3.34 SD) 0.49 1a subperiod median

runsnight 3 [1, 4] 3 [1, 4] 0.89 3 (cf. sec. 2.9.5)

runs24h 10.4 (4.67 SD) 10.2 (4.54 SD) 0.79 1a

UDUsday 13.9 (5.61 SD) 14.6 (5.38 SD) 0.46 1a (UDUs not

UDUsnight 4 [3, 6] 4 [3, 5] 0.13 3 affected)

UDUs24h 26.5 (8.34 SD) 26.1 (7.65 SD) 0.77 1a

runs

runsday 6.06 (3.61 SD) 5.93 (2.68 SD) 0.81 2a 24h median

runsnight 1 [0, 2] 0 [0, 1] 0.07 3 (cf. sec. 2.9.5)

runs24h 10.4 (4.67 SD) 10.2 (4.54 SD) 0.79 1a

NBPF

NDR 0.816 (0.0934 SD) 0.826 (0.101 SD) 0.53 1a -

NDRp 81.6 (9.34 SD) 82.6 (10.1 SD) 0.53 1a -
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ADND 14.1 (8.14 SD) 13.1 (7.72 SD) 0.46 1a -

ADNDtoDR 0.184 (0.0934 SD) 0.174 (0.101 SD) 0.53 1a -

NF 18.4 (9.34 SD) 17.4 (10.1 SD) 0.53 1a -

NDR 0.801 (0.0911 SD) 0.808 (0.11 SD) 0.67 1a

weighted NDRp 80.1 (9.11 SD) 80.8 (11 SD) 0.67 1a time

NBPF ADND 15.3 (8.08 SD) 14.7 (8.82 SD) 0.65 1a weighted

ADNDtoDR 0.199 (0.0911 SD) 0.192 (0.11 SD) 0.67 1a

NF 19.9 (9.11 SD) 19.2 (11 SD) 0.67 1a

cosinor

mesor 70.3 (8.19 SD) 68.2 (9.26 SD) 0.17 1a -

amplitude 10.3 (5.02 SD) 9.66 (4.09 SD) 0.46 1a -

acrophase -3.99 (0.701 SD) -3.77 (0.759 SD) 0.08 1a -

tmax (dec) 0.636 (0.112 SD) 0.6 (0.121 SD) 0.08 1a -

fourier
amplitude 16.5 (5.76 SD) 14.9 (5.68 SD) 0.12 1a 4 harmonics

tmax 0.587 (0.193 SD) 0.58 (0.171 SD) 0.82 1a no weighting

weighted amplitude 17.4 (6.18 SD) 15.3 (5.59 SD) 0.04 1a 4 harmonics

fourier tmax 0.564 (0.191 SD) 0.6 (0.171 SD) 0.26 1a time weighted

SW

LD 18 (7.75 SD) 15.9 (5.8 SD) 0.08 2a

TPPmax 0.375 [0.297, 0.45] 0.345 [0.292, 0.471] 0.44 1b minimal

TPPmin 0.845 [0.657, 0.922] 0.813 [0.667, 0.903] 0.31 3 number of

PDhigh 0.456 (0.207 SD) 0.451 (0.182 SD) 0.87 1a read. per

PDlow 0.544 (0.207 SD) 0.549 (0.182 SD) 0.87 1a period = 5

PV A 47.1 (14.3 SD) 49.6 (12.5 SD) 0.30 1a

pSD

pSDday 7.11 (3 SD) 6.19 (2.88 SD) 0.07 1a fourier
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pSDnight 4.47 (1.75 SD) 3.91 (2.11 SD) 0.09 1a 4 harmonics

pSD24h 6.72 (2.35 SD) 5.78 (2.3 SD) 0.02 1a no weights

CUSUM

CPH 180 (97 SD) 163 (72.9 SD) 0.22 2a

CPS 12.6 [7.47, 19.9] 13.1 [9.42, 17.4] 0.78 3 no weights

CCV 81.7 (11.5 SD) 78.7 (11.6 SD) 0.13 1a start of

CTV 58.6 (7.37 SD) 57.6 (8.18 SD) 0.42 1a plot = 0h

CCAM 23 (9.12 SD) 21.1 (7.42 SD) 0.19 1a

CPH 89 (38.1 SD) 84 (32.8 SD) 0.42 1a

weighted CPS 6.54 [4.35, 10.4] 6.92 [5.12, 9.86] 0.67 3 time weighted

CUSUM CCV 82.8 (11.8 SD) 79.3 (11.8 SD) 0.09 1a start of

CTV 57.8 (7.52 SD) 56.7 (8.03 SD) 0.41 1a plot = 0h

CCAM 25 (9.65 SD) 22.6 (8.35 SD) 0.13 1a

EMS

STS 16.3 (11.5 SD) 14.6 (9.17 SD) 0.35 1a going to bed = 9 p.m.

PS 1.94 (12 SD) 0.0461 (10.2 SD) 0.37 1a arising = 9 a.m.

RS 0.45 (14.1 SD) -1.33 (10.9 SD) 0.41 2a duration = 2h

MED -0.742 (13.6 SD) 2.22 (11.1 SD) 0.20 1a (MSft not

MSft 22.7 (15.6 SD) 17.7 (15.2 SD) 0.08 1a affected)

Table 5.3: Indices calculated for the parameter Hf. The column Lübeck contains the mean values of the indices for the control group,
the column Wels contains the mean values for the patient group. If data are not normally distributed, median and IQR are
denoted instead. Significant p-values are highlighted with a green background. If additional settings have to be chosen for the
calculations of an index, these are mentioned in the ’additional settings’ (add.sett.) column. Time points are given in decimal
(dec) numbers. Multiplication by 24 yields hours. UDUs stands for ’updownups’ (cf. section 2.9.3). The numbers in the column
test indicate the used test for the statistical analysis: 1a t-test, 1b t-test applied on log - transformed data, 2a Welch test, 2b
Welch test applied on log - transformed data, 3 Mann - Whitney U test (Wilcoxon ranksum test).
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Exemplary Illustrations regarding the Results for Hf

As can be seen in figure 5.1, the data of a representative of the control group (Lübeck, left figure)

spread in a wider range than in the plot for the representative of the patient group (Wels, right

side plot). Therefore, it seems reasonable that the index amplitude of the weighted fourier fit

is significantly larger for the control group. Consistently, also the index range is significantly

different.

Figure 5.1: The left figure shows the weighted fourier fit for one subject from the Lübeck
cohort. The plot on the right side depicts the weighted fourier fit for a repre-
sentative of the Wels group.

The index wARV of the Hf is significantly lower for the patient group than for the control group.

This can be seen in the boxplot shown in figure 5.2.

Boxplot for wARV of Hf

Figure 5.2: Boxplot for the index wARV of the Hf.
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Remarks on Early Morning Surge (EMS)

The calculations for EMS have been done with the same settings for the data sets as for the

other indices. Since time periods of up to six consecutive hours without any valid readings

can appear, the calculation of some EMS indices is not possible in some of the data sets and

NaN is stored instead. Nevertheless, since NaN values are ignored in the statistical analysis (cf.

section 4.2) the evaluation is still possible. The only difference to the other indices is that not

all 80 (Lübeck) and not all 58 (Wels) data sets may be taken into account. To be precise, the

remaining numbers of data sets are shown in table 5.4. This is valid for all parameters due to

the choice of the required recording quality (cf. section 5.1).

Lübeck Wels

STS 77 54
PS 74 46
RS 80 58
MED 75 52
MSft 75 49

Table 5.4: Remaining data sets for the calculation of the EMS indices.
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5.3.2 Peripheral Systolic Blood Pressure (pSBP)

Table 5.5 shows the results for the parameter pSBP. All variability indices are calculated and tested for significant differences. In addition to

the mean (or median) values, the p-values and the used tests are given. Possible additional settings are stated as well.

method index Lübeck Wels p-value test add. sett.

cSD

cSDday 11.2 (3.46 SD) 11.7 (3.14 SD) 0.35 1a -

cSDnight 9.27 (3.64 SD) 9.81 (4.59 SD) 0.44 1a -

cSD24h 13.3 (3 SD) 13.5 (2.86 SD) 0.61 1a -

wSD wSD 10.7 (2.99 SD) 11.3 (2.85 SD) 0.26 1a -

ARV

ARVday 10.5 (3.75 SD) 10.5 (3.66 SD) 0.99 1a -

ARVnight 8.65 [6.67,11.1] 9.01 [6.78,12.3] 0.42 1b -

ARV24h 10.1 (2.65 SD) 10.4 (3 SD) 0.55 1a -

wARV wARV 11 (3.15 SD) 11.3 (3.8 SD) 0.62 1a -

SV

SVday 13.7 (4.91 SD) 13.8 (4.75 SD) 0.90 1a -

SVnight 10.5 [8.23,13.8] 11.1 [8.5,14.5] 0.51 1b -

SV24h 13.4 (3.63 SD) 13.7 (4.04 SD) 0.62 1a -

CV (%)

CVday 9.17 (2.55 SD) 9.24 (2.45 SD) 0.88 1a -

CVnight 8.88 (3.25 SD) 8.66 (3.99 SD) 0.71 1a -

CV24h 11.4 (2.27 SD) 11 (2.15 SD) 0.28 1a -

HEM

skewday 0.136 (0.745 SD) 0.045 (0.703 SD) 0.47 1a -

kurtday 3.51 (1.6 SD) 3.34 (1.39 SD) 0.52 1a -

skewnight 0.094 (0.655 SD) 0.2 (0.575 SD) 0.32 1a -

kurtnight 2.58 (0.954 SD) 2.4 (0.731 SD) 0.22 2a -
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skew24h -0.0594 (0.556 SD) -0.0231 (0.582 SD) 0.71 1a -

kurt24h 3.05 [2.56,3.73] 2.85 [2.53,3.5] 0.40 1b -

OS

range 60.7 (15.5 SD) 60.1 (13.7 SD) 0.83 1a -

IQR 17.2 (5.28 SD) 17.8 (5.33 SD) 0.47 1a -

midrange 116 (11 SD) 124 (11.5 SD) < 0.001 1a -

median 117 (8.29 SD) 124 (9.4 SD) < 0.001 1a -

peak 30.4 (10.9 SD) 30.8 (9.87 SD) 0.81 1a -

trough 30.3 (8.49 SD) 29.3 (8.18 SD) 0.50 1a -

max 147 (16.2 SD) 154 (15.7 SD) 0.009 1a -

tmax (dec) 0.625 (0.192 SD) 0.562 (0.198 SD) 0.06 1a -

min 86.1 (10 SD) 94 (10.7 SD) < 0.001 1a -

tmin (dec) 0.215 [0.121,0.422] 0.366 [0.104,0.694] 0.20 3 -

runs

runsday 9.28 (3.82 SD) 9.79 (3.84 SD) 0.43 1a subperiod median

runsnight 3 [3,5] 3 [2,5] 0.31 3 (cf. sec. 2.9.5)

runs24h 13.6 (5.11 SD) 14.2 (4.6 SD) 0.50 1a

UDUsday 14.9 (5.28 SD) 15 (5.43 SD) 0.90 1a (UDUs not

UDUsnight 4 [3,5.5] 4 [3,5] 0.72 1b affected)

UDUs24h 27.6 (6.93 SD) 27.9 (7.56 SD) 0.75 1a

runs

runsday 8.39 (4.14 SD) 8.48 (3.45 SD) 0.89 1a 24h median

runsnight 1 [0,2] 2 [0,3] 0.03 3 (cf. sec. 2.9.5)

runs24h 13.6 (5.11 SD) 14.2 (4.6 SD) 0.50 1a

NBPF

NDR 0.862 (0.0629 SD) 0.893 (0.0832 SD) 0.02 2a -

NDRp 86.2 (6.29 SD) 89.3 (8.32 SD) 0.02 2a -
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ADND 17 (8.39 SD) 14 (11 SD) 0.09 2a -

ADNDtoDR 0.138 (0.0629 SD) 0.107 (0.0832 SD) 0.02 2a -

NF 13.8 (6.29 SD) 10.7 (8.32 SD) 0.02 2a -

NDR 0.854 (0.063 SD) 0.891 (0.0905 SD) 0.009 2a

weighted NDRp 85.4 (6.3 SD) 89.1 (9.05 SD) 0.009 2a time

NBPF ADND 18 (8.58 SD) 14.4 (12 SD) 0.05 2a weighted

ADNDtoDR 0.146 (0.063 SD) 0.109 (0.0905 SD) 0.009 2a

NF 14.6 (6.3 SD) 10.9 (9.05 SD) 0.009 2a

cosinor

mesor 116 (8.4 SD) 123 (8.92 SD) < 0.001 1a -

amplitude 10.5 (4.55 SD) 10.2 (4.87 SD) 0.66 1a -

acrophase -4.19 (0.543 SD) -3.57 (1.02 SD) < 0.001 2a -

tmax (dec) 0.668 (0.0864 SD) 0.568 (0.162 SD) < 0.001 2a -

fourier
amplitude 17.8 (5.24 SD) 18 (6.03 SD) 0.87 1a 4 harmonics

tmax 0.633 (0.178 SD) 0.563 (0.218 SD) 0.04 1a no weighting

weighted amplitude 19.5 (5.87 SD) 20 (6.78 SD) 0.64 1a 4 harmonics

fourier tmax 0.663 (0.184 SD) 0.538 (0.216 SD) < 0.001 1a time weighted

SW

LD 19.6 (5.89 SD) 20.5 (6.22 SD) 0.42 1a

TPPmax 0.359 [0.292,0.455] 0.334 [0.271,0.481] 0.63 2b minimal

TPPmin 0.891 [0.458,0.943] 0.839 [0.604,0.917] 0.62 3 number of

PDhigh 0.542 (0.212 SD) 0.535 (0.252 SD) 0.86 1a read. per

PDlow 0.458 (0.212 SD) 0.465 (0.252 SD) 0.86 1a period = 5

PV A 43.1 (14.6 SD) 40.4 (16.8 SD) 0.32 1a

pSD

pSDday 9.05 (2.99 SD) 9.21 (2.7 SD) 0.74 1a fourier
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pSDnight 7.53 (2.8 SD) 8.09 (3.45 SD) 0.30 1a 4 harmonics

pSD24h 8.74 (2.16 SD) 9.07 (2.34 SD) 0.39 1a no weights

cusum

CPH 191 (82.6 SD) 192 (92.9 SD) 0.92 1a

CPS 13.3 [7.24,20.9] 12.7 [8.16,24.3] 0.58 3 no weights

CCV 127 (10.1 SD) 135 (10.6 SD) < 0.001 1a start of

CTV 102 (8.57 SD) 109 (8.67 SD) < 0.001 1a plot = 0h

CCAM 25 (7.91 SD) 25.6 (8.54 SD) 0.67 1a

CPH 93.8 (31.7 SD) 92.1 (38 SD) 0.77 1a

weighted CPS 6.58 [-4.55,8.47] 6.32 [1.75,10.2] 0.57 3 time weighted

cusum CCV 127 (10.3 SD) 135 (11.2 SD) < 0.001 1a start of

CTV 100 (9.59 SD) 105 (10 SD) 0.003 1a plot = 0h

CCAM 27.1 (9.55 SD) 30 (10.7 SD) 0.09 1a

EMS

STS 20.1 (12.6 SD) 22.5 (13.9 SD) 0.31 1a going to bed = 9 p.m.

PS 5.03 (13.5 SD) 3.89 (10.4 SD) 0.63 1a arising = 9 a.m.

RS 2.55 (18.4 SD) 4.36 (13.2 SD) 0.50 2a duration = 2h

MED -3.7 (13.5 SD) 5.56 (13.6 SD) < 0.001 1a (MSft not

MSft 25.7 (16.2 SD) 24 (14.4 SD) 0.55 1a affected)

Table 5.5: Indices calculated for the parameter pSBP. The column Lübeck contains the mean values of the indices for the control group,
the column Wels contains the mean values for the patient group. If data are not normally distributed, median and IQR are
denoted instead. Significant p-values are highlighted with a green background. If additional settings have to be chosen for the
calculations of an index, these are mentioned in the ’additional settings’ (add.sett.) column. Time points are given in decimal
(dec) numbers. Multiplication by 24 yields hours. UDUs stands for ’updownups’ (cf. section 2.9.3). The numbers in the column
test indicate the used test for the statistical analysis: 1a t-test, 1b t-test applied on log - transformed data, 2a Welch test, 2b
Welch test applied on log - transformed data, 3 Mann - Whitney U test (Wilcoxon ranksum test).
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Exemplary Illustrations regarding the Results for pSBP

Figure 5.3 shows the cosinor fit for one subject from the Lübeck cohort (left side plot) and

for one individual of the Wels group (right side plot). In the mean, the predicted maximum

according to the model appears approximately 2.5 hours later for individuals of the control

group than for subjects of the group Wels. Therefore, it seems reasonable that the index tmax

of the cosinor fit is significantly larger for the control group.

Figure 5.3: The left figure shows the cosinor fit for one subject from the Lübeck cohort.
On the right side the cosinor fit of a patient of the Wels cohort is plotted. The
time point of the predicted maximum tmax is marked as well.

Consistently, the time points of the predicted maximum derived from the weighted as well as

the unweighted fourier fit are as well significantly later for the control group than for the patient

group (cf. figure 5.4).

Figure 5.4: The plots show the weighted as well as the unweighted fourier fits for the same
subjects as in figure 5.3. The time points of the predicted maxima tmax and
tmax weighted are marked as well.
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5.3.3 Central Systolic Blood Pressure (cSBP)

Table 5.6 shows the results for the parameter cSBP. All variability indices are calculated and tested for significant differences. In addition to

the mean (or median) values, the p-values and the used tests are given. Possible additional settings are stated as well.

method index Lübeck Wels p-value test add. sett.

cSD

cSDday 10 (2.85 SD) 10.8 (2.73 SD) 0.10 1a -

cSDnight 9.71 (3.42 SD) 10 (4.24 SD) 0.62 1a -

cSD24h 12 (2.73 SD) 12.7 (2.71 SD) 0.10 1a -

wSD wSD 9.97 (2.48 SD) 10.6 (2.51 SD) 0.13 1.00a -

ARV

ARVday 9.53 (3.15 SD) 9.53 (2.78 SD) 1 1a -

ARVnight 10.2 (4.23 SD) 10.6 (4.21 SD) 0.56 1a -

ARV24h 9.61 (2.29 SD) 9.78 (2.5 SD) 0.68 1a -

wARV wARV 10.4 (2.7 SD) 10.7 (3.1 SD) 0.47 1a -

SV

SVday 12.2 (4.01 SD) 12.5 (3.83 SD) 0.73 1a -

SVnight 12.3 (4.85 SD) 13.1 (5.5 SD) 0.35 1a -

SV24h 12.6 (3.08 SD) 12.9 (3.49 SD) 0.60 1a -

CV (%)

CVday 9.05 (2.33 SD) 9.19 (2.39 SD) 0.73 1a -

CVnight 10.1 (3.5 SD) 9.5 (4.13 SD) 0.34 1a -

CV24h 11.2 (2.34 SD) 11.1 (2.27 SD) 0.74 1a -

HEM

skewday 0.118 (0.681 SD) -0.0214 (0.648 SD) 0.23 1a -

kurtday 3.36 (1.25 SD) 3.28 (1.14 SD) 0.68 1a -

skewnight 0.038 (0.575 SD) 0.208 (0.612 SD) 0.10 1a -

kurtnight 2.42 (0.657 SD) 2.45 (0.664 SD) 0.74 1a -
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skew24h -0.157 (0.475 SD) -0.131 (0.528 SD) 0.76 1a -

kurt24h 3.18 (0.941 SD) 3.1 (0.914 SD) 0.60 1a -

OS

range 54.3 (12.9 SD) 56.8 (12.6 SD) 0.27 1a -

IQR 15.4 (4.49 SD) 16.8 (5.65 SD) 0.11 1a -

midrange 106 (9.66 SD) 114 (10 SD) < 0.001 1a -

median 107 (8.11 SD) 115 (9.26 SD) < 0.001 1a -

peak 26.4 (7.93 SD) 28 (7.7 SD) 0.23 1a -

trough 27.9 (7.8 SD) 28.8 (8.45 SD) 0.55 1a -

max 133 (13.6 SD) 143 (12.6 SD) < 0.001 1a -

tmax (dec) 0.642 (0.206 SD) 0.585 (0.202 SD) 0.10 1a -

min 78.4 (9.28 SD) 86.1 (11 SD) < 0.001 1a -

tmin (dec) 0.208 [0.104, 0.36] 0.418 [0.106, 0.719] 0.07 3 -

runs

runsday 9.76 (4.11 SD) 9.55 (3.97 SD) 0.76 1a subperiod median

runsnight 3.5 [3, 5] 3 [2, 5] 0.33 3 (cf. sec. 2.9.5)

runs24h 14.9 (5.12 SD) 14 (4.85 SD) 0.29 1a

UDUsday 15 (5.59 SD) 15.1 (5.63 SD) 0.91 1a (UDUs not

UDUsnight 4.55 (2.21 SD) 4.41 (1.62 SD) 0.68 2a affected)

UDUs24h 27.7 (7.78 SD) 28.1 (8.02 SD) 0.74 1a

runs

runsday 8.81 (3.8 SD) 8.09 (3.32 SD) 0.25 1a 24h median

runsnight 1.5 [0, 3] 2 [1, 3] 0.54 3 (cf. sec. 2.9.5)

runs24h 14.9 (5.12 SD) 14 (4.85 SD) 0.29 1a

NBPF

NDR 0.877 (0.0685 SD) 0.901 (0.087 SD) 0.09 2a -

NDRp 87.7 (6.85 SD) 90.1 (8.7 SD) 0.09 2a -
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ADND 13.8 (8.2 SD) 12.2 (10.7 SD) 0.35 2a -

ADNDtoDR 0.123 (0.0685 SD) 0.0991 (0.087 SD) 0.09 2a -

NF 12.3 (6.85 SD) 9.91 (8.7 SD) 0.09 2a -

NDR 0.871 (0.0701 SD) 0.901 (0.095 SD) 0.05 2a

weighted NDRp 87.1 (7.01 SD) 90.1 (9.5 SD) 0.05 2a time

NBPF ADND 14.5 (8.47 SD) 12.3 (11.7 SD) 0.23 2a weighted

ADNDtoDR 0.129 (0.0701 SD) 0.0992 (0.095 SD) 0.05 2a

NF 12.9 (7.01 SD) 9.92 (9.5 SD) 0.05 2a

cosinor

mesor 106 (8.01 SD) 114 (8.64 SD) < 0.001 1a -

amplitude 8.48 (4.34 SD) 9.24 (4.67 SD) 0.33 1a -

acrophase -4.08 (0.894 SD) -3.56 (1.15 SD) 0.005 2a -

tmax (dec) 0.65 (0.142 SD) 0.567 (0.183 SD) 0.005 2a -

fourier
amplitude 15.8 (5.39 SD) 17.1 (5.89 SD) 0.21 1a 4 harmonics

tmax 0.646 (0.211 SD) 0.58 (0.209 SD) 0.07 1a no weighting

weighted amplitude 17.2 (5.6 SD) 19 (6.77 SD) 0.08 1a 4 harmonics

fourier tmax 0.661 (0.212 SD) 0.56 (0.233 SD) 0.009 1a time weighted

SW

LD 17.2 (5.58 SD) 19 (5.96 SD) 0.08 1a

TPPmax 0.367 [0.271,0.536] 0.334 [0.25,0.53] 0.66 1b minimal

TPPmin 0.88 [0.292,0.938] 0.844 [0.583,0.917] 1.00 3 number of

PDhigh 0.532 (0.24 SD) 0.531 (0.247 SD) 0.99 1a read. per

PDlow 0.468 (0.24 SD) 0.469 (0.247 SD) 0.99 1a period = 5

PV A 38.4 (14.5 SD) 39.6 (16.2 SD) 0.63 1a

pSD

pSDday 8.1 (2.46 SD) 8.4 (2.18 SD) 0.47 1a fourier
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pSDnight 7.86 (2.81 SD) 8.28 (3.31 SD) 0.42 1a 4 harmonics

pSD24h 8.21 (1.84 SD) 8.55 (2.08 SD) 0.32 1a no weights

cusum

CPH 159 (72.7 SD) 179 (87.4 SD) 0.14 1a

CPS 10.7 [-5.11,17.4] 13.2 [5.5,20.3] 0.26 3 no weights

CCV 115 (9.38 SD) 125 (10.2 SD) < 0.001 1a start of

CTV 94 (8.65 SD) 102 (8.53 SD) < 0.001 1a plot = 0h

CCAM 21.5 (8 SD) 23.5 (8.12 SD) 0.14 1a

CPH 77.6 (30.7 SD) 84.6 (36.3 SD) 0.22 1a

weighted CPS 5.73 [-5.53,7.22] 6.12 [1.48,8.97] 0.27 3 time weighted

cusum CCV 116 (9.22 SD) 126 (10.7 SD) < 0.001 1a start of

CTV 92.5 (9.01 SD) 98.1 (10.3 SD) < 0.001 1a plot = 0h

CCAM 23.8 (8.94 SD) 27.7 (11.1 SD) 0.02 1a

EMS

STS 18 (11.4 SD) 19.5 (13.8 SD) 0.48 1a going to bed = 9 p.m.

PS 3.47 (11.9 SD) 2.59 (10.1 SD) 0.68 1a arising = 9 a.m.

RS 2.48 (16.2 SD) 3.59 (12.2 SD) 0.65 2a duration = 2h

MED -3.05 (11.9 SD) 4.82 (13.9 SD) < 0.001 1a (MSft not

MSft 22.5 (15.2 SD) 21.7 (13.7 SD) 0.78 1a affected)

Table 5.6: Indices calculated for the parameter cSBP. The column Lübeck contains the mean values of the indices for the control group,
the column Wels contains the mean values for the patient group. If data are not normally distributed, median and IQR are
denoted instead. Significant p-values are highlighted with a green background. If additional settings have to be chosen for the
calculations of an index, these are mentioned in the ’additional settings’ (add.sett.) column. Time points are given in decimal
(dec) numbers. Multiplication by 24 yields hours. UDUs stands for ’updownups’ (cf. section 2.9.3). The numbers in the column
test indicate the used test for the statistical analysis: 1a t-test, 1b t-test applied on log - transformed data, 2a Welch test, 2b
Welch test applied on log - transformed data, 3 Mann - Whitney U test (Wilcoxon ranksum test).
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Exemplary Illustrations regarding the Results for cSBP

The plot on the left side of figure 5.5 shows the diurnal cSBP data of an individual from the

Lübeck cohort. The dipping behaviour at night can clearly be observed. The representative of

the Wels group on the right side has a different cSBP profile. The decline of the values at night

is less prominent. Therefore, the NF is notable different among the two groups, although only

the weighted form is significantly different. This distinction among the groups is even sharper

for pSBP (cf. table 5.5).

Figure 5.5: The plots show the diurnal cSBP data of an individual from the Lübeck cohort (left) and of a
representative of the patient group (right). Vertical lines indicate the beginning and end of day
(09:00 - 21:00) and night (00:00 - 06:00).

Considering the weighted NF method, 10 out of 58 individuals of the Wels group even show an

inverted dipping behaviour. The data set of one of them can be seen in the right plot of figure

5.6. This phenomenon of a rise in BP at night does only appear in 3 out of 80 subjects of the

control group. Nevertheless, the most steep nocturnal rise observed among those is only about

3.2% (left plot in figure 5.6), while the top value was about 15.6% for the Wels group (right

plot in figure 5.6).

Figure 5.6: The plots show inverted dipping behaviours of an individual of the control group (left) and a subject
of the patient group (right). Vertical lines indicate the beginning and end of day (09:00 - 21:00)
and night (00:00 - 06:00).
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5.3.4 Augmentation Index (AIx)

Table 5.7 shows the results for the parameter AIx. All variability indices are calculated and tested for significant differences. In addition to

the mean (or median) values, the p-values and the used tests are given. Possible additional settings are stated as well.

method index Lübeck Wels p-value test add. sett.

cSD

cSDday 8.31 (2.15 SD) 9.15 (2.43 SD) 0.04 1a -

cSDnight 10.8 (4.99 SD) 12.6 (5.21 SD) 0.04 1a -

cSD24h 10.1 (2.46 SD) 11.2 (2.34 SD) 0.01 1a -

wSD wSD 9 (2.39 SD) 10.1 (2.36 SD) 0.007 1a -

ARV

ARVday 8.4 (2.19 SD) 9.21 (3.27 SD) 0.10 2a -

ARVnight 11.2 (6.18 SD) 13.3 (6.68 SD) 0.05 1a -

ARV24h 9.33 (2.64 SD) 10.6 (2.69 SD) 0.007 1a -

wARV wARV 9.64 (2.78 SD) 11.2 (2.82 SD) 0.002 1a -

SV

SVday 10.8 (2.77 SD) 11.8 (4.01 SD) 0.12 2a -

SVnight 14.8 (7.54 SD) 17.1 (7.66 SD) 0.09 1a -

SV24h 12.8 (3.34 SD) 14.2 (3.35 SD) 0.02 1a -

CV (%)

CVday 44.5 (14.6 SD) 44 (14 SD) 0.83 1a -

CVnight 57 (26.6 SD) 55.4 (25.3 SD) 0.73 1a -

CV24h 52.3 (15.4 SD) 50.8 (15 SD) 0.57 1a -

HEM

skewday 0.403 (0.68 SD) 0.0792 (0.821 SD) 0.01 1a -

kurtday 2.55 [2.16, 3.24] 2.7 [2.1, 3.58] 0.46 1b -

skewnight 0.669 (1.02 SD) 0.0909 (1.05 SD) 0.001 1a -

kurtnight 2.53 [1.7, 3.34] 1.94 [1.55, 2.99] 0.10 1b -
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skew24h 0.717 (0.821 SD) 0.226 (0.787 SD) < 0.001 1a -

kurt24h 2.67 [2.14, 4.3] 2.63 [2.11, 3.48] 0.10 2b -

OS

range 38.9 (7.37 SD) 41.9 (5.56 SD) 0.007 2a -

IQR 14.2 (5.74 SD) 16 (5.65 SD) 0.08 1a -

midrange 26 [23.8, 28.3] 26.5 [25, 27.5] 0.35 3 -

median 18.6 (8.46 SD) 23.1 (9.31 SD) 0.004 1a -

peak 24.3 (6.39 SD) 23.2 (6.22 SD) 0.30 1a -

trough 14.6 (5.96 SD) 18.8 (6.33 SD) < 0.001 1a -

max 47 [43, 49] 49 [47, 50] 0.004 3 -

tmax (dec) 0.313 [0.135, 0.678] 0.314 [0.125, 0.833] 0.58 3 -

min 6 [3.5, 9] 5 [4, 7] 0.13 3 -

tmin (dec) 0.495 (0.305 SD) 0.516 (0.294 SD) 0.69 1a -

runs

runsday 10.9 (4.56 SD) 10.9 (4.53 SD) 1.00 1a subperiod median

runsnight 4 [2, 5] 3 [3, 5] 0.96 3 (cf. sec. 2.9.5)

runs24h 18.2 (6.43 SD) 19.1 (5.49 SD) 0.36 1a

UDUsday 14.8 (5.56 SD) 16.1 (6.38 SD) 0.21 1a (UDUs not

UDUsnight 4 [3, 6] 4 [3, 5] 0.03 3 affected)

UDUs24h 28.1 (7.51 SD) 28.8 (8.38 SD) 0.59 1a

runs

runsday 10.2 (4.42 SD) 10.5 (4.48 SD) 0.68 1a 24h median

runsnight 3 [2, 4] 3 [2, 4] 0.40 3 (cf. sec. 2.9.5)

runs24h 18.2 (6.43 SD) 19.1 (5.49 SD) 0.36 1a

NBPF

NDR 0.942 [0.769, 1.16] 1.1 [0.909, 1.34] 0.08 1b -

NDRp 94.2 [76.9, 116] 110 [91, 134] 0.08 1b -
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ADND -0.448 (7.77 SD) -3.48 (8.46 SD) 0.03 1a -

ADNDtoDR 0.0584 [-0.164,0.231] -0.102 [-0.345, 0.0908] 0.01 3 -

NF 5.84 [-16.4,23.1] -10.2 [-34.5, 9.08] 0.01 3 -

NDR 0.981 [0.719, 1.35] 1.11 [0.838, 1.52] 0.25 1b

weighted NDRp 98.1 [71. 9,135] 111 [84, 152] 0.25 1b time

NBPF ADND -1.35 (8.62 SD) -3.77 (9.29 SD) 0.12 1a weighted

ADNDtoDR 0.0191 [-0.35, 0.281] -0.107 [-0.519, 0.162] 0.07 3

NF 1.91 [-35, 28.1] -10.7 [-51.9, 16.2] 0.07 3

cosinor

mesor 20.6 (6.59 SD) 23.9 (7.34 SD) 0.006 1a -

amplitude 4.62 (3.09 SD) 5.29 (3.49 SD) 0.23 1a -

acrophase -2.86 (1.69 SD) -2.43 (2.01 SD) 0.17 1a -

tmax (dec) 0.456 (0.27 SD) 0.387 (0.32 SD) 0.17 1a -

fourier
amplitude 11 (4.42 SD) 12.1 (4.6 SD) 0.16 1a 4 harmonics

tmax 0.36 (0.263 SD) 0.377 (0.298 SD) 0.73 1a no weighting

weighted amplitude 12.9 (5.13 SD) 14.7 (5.28 SD) 0.05 1a 4 harmonics

fourier tmax 0.327 [0.175, 0.582] 0.216 [0.0722, 0.58] 0.20 3 time weighted

SW

LD 12.8 (5.09 SD) 13.6 (4.25 SD) 0.30 1a

TPPmax 0.385 [0.22, 0.792] 0.75 [0.252, 0.861] 0.04 3 minimal

TPPmin 0.493 (0.28 SD) 0.481 (0.301 SD) 0.81 1a number of

PDhigh 0.378 (0.263 SD) 0.439 (0.277 SD) 0.19 1a read. per

PDlow 0.622 (0.263 SD) 0.561 (0.277 SD) 0.19 1a period = 5

PV A 22.3 [17.4, 27.9] 23.5 [15.2, 30.8] 0.80 1b

pSD

pSDday 7.11 (1.84 SD) 7.78 (2.21 SD) 0.06 1a fourier
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pSDnight 9.13 (4.14 SD) 10.3 (4.69 SD) 0.11 1a 4 harmonics

pSD24h 8.18 (2.01 SD) 9.12 (2.06 SD) 0.008 1a no weights

cusum

CPH 86.9 [67.4, 121] 104 [81, 126] 0.05 1b

CPS 6.73 [-7.32, 11.9] -6.09 [-13.5, 6.99] 0.003 3 no weights

CCV 27.7 (8.5 SD) 31.6 (8.75 SD) 0.009 1a start of

CTV 14.5 (6.11 SD) 16.8 (6.89 SD) 0.04 1a plot = 0h

CCAM 12.1 [9.1, 16] 14 [10, 17.8] 0.10 1b

CPH 50.8 (22.4 SD) 55.7 (24 SD) 0.22 1a

weighted CPS 2.03 (7.17 SD) -2.77 (5.51 SD) < 0.001 2a time weighted

cusum CCV 29.7 (9.5 SD) 34.1 (10.1 SD) 0.01 1a start of

CTV 12.6 (6.9 SD) 14 (8.09 SD) 0.28 1a plot = 0h

CCAM 17.1 (7.25 SD) 20.1 (8.26 SD) 0.03 1a

EMS

STS 2.33 (10.5 SD) 3.35 (11.2 SD) 0.59 1a going to bed = 9 p.m.

PS -1.63 (8.91 SD) -0.966 (9.68 SD) 0.70 1a arising = 9 a.m.

RS -1.91 (12.9 SD) 1.86 (13.5 SD) 0.10 1a duration = 2h

MED 0.652 (8.46 SD) -0.121 (9.64 SD) 0.63 1a (MSft not

MSft 14.1 (11.3 SD) 15.4 (11.8 SD) 0.53 1a affected)

Table 5.7: Indices calculated for the parameter AIx. The column Lübeck contains the mean values of the indices for the control group,
the column Wels contains the mean values for the patient group. If data are not normally distributed, median and IQR are
denoted instead. Significant p-values are highlighted with a green background. If additional settings have to be chosen for the
calculations of an index, these are mentioned in the ’additional settings’ (add.sett.) column. Time points are given in decimal
(dec) numbers. Multiplication by 24 yields hours. UDUs stands for ’updownups’ (cf. section 2.9.3). The numbers in the column
test indicate the used test for the statistical analysis: 1a t-test, 1b t-test applied on log - transformed data, 2a Welch test, 2b
Welch test applied on log - transformed data, 3 Mann - Whitney U test (Wilcoxon ranksum test).
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Exemplary Illustrations regarding the Results for AIx

The figures below show boxplots for the index CUSUM plot slope (CPS) of the unweighted (cf.

figure 5.7) and the weighted (cf. figure 5.8) CUSUM method. As can be seen, both indices are

significantly larger for the Lübeck than for the Wels group.

Boxplot for CPS of AIx

Figure 5.7: Boxplot for the index CPS of the CUSUM method.

Boxplot for weighted CPS of AIx

Figure 5.8: Boxplot for the index CPS of the weighted CUSUM method.
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5.3.5 Peripheral Pulse Pressure (pPP) and Central Pulse Pressure (cPP)

For each of the parameters cPP and pPP only one of the methods provided significant indices

- NF for cPP and CV for pPP. Therefore, the following tables (5.9 and 5.8) do not contain the

results for the other methods.

Peripheral Pulse Pressure (pPP)

method index Lübeck Wels p-value

CV (%)

CVday 25.1 (7.48 SD) 24.7 (6.93 SD) 0.76

CVnight 16.5 (6.7 SD) 19 (7.86 SD) 0.05

CV24h 23 (4.95 SD) 23.5 (4.78 SD) 0.57

NBPF

NDR 1 (0.119 SD) 0.987 (0.13 SD) 0.50

NDRp 100 (11.9 SD) 98.7 (13 SD) 0.50

ADND 0.354 (5.26 SD) 0.661 (5.39 SD) 0.74

ADNDtoDR -0.0017 (0.119 SD) 0.0126 (0.13 SD) 0.50

NF -0.17 (11.9 SD) 1.26 (13 SD) 0.50

Table 5.8: Indices calculated for the parameter pPP. The column Lübeck contains the
mean values of the indices for the control group, the column Wels contains the
mean values for the patient group. Significant p-values are highlighted with a
green background. All data were normally distributed and analysed with the
t-test.

Central Pulse Pressure (cPP)

method index Lübeck Wels p-value

CV (%)

CVday 28.3 (7.42 SD) 27.3 (7.64 SD) 0.43

CVnight 21 (8.32 SD) 23.3 (9.31 SD) 0.14

CV24h 27.2 (4.99 SD) 27.1 (5.35 SD) 0.84

NBPF

NDR 1.13 (0.191 SD) 1.07 (0.197 SD) 0.05

NDRp 113 (19.1 SD) 107 (19.7 SD) 0.05

ADND -3.49 (5.34 SD) -1.67 (5.82 SD) 0.06

ADNDtoDR -0.133 (0.191 SD) -0.0674 (0.197 SD) 0.05

NF -13.3 (19.1 SD) -6.74 (19.7 SD) 0.05

Table 5.9: Indices calculated for the parameter cPP. The column Lübeck contains the
mean values of the indices for the control group, the column Wels contains the
mean values for the patient group. Significant p-values are highlighted with a
green background. All data were normally distributed and analysed with the
t-test.
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Chapter 6
Discussion

In the following, the results and findings of chapter 5 will be discussed. Due to the large

amount of data (20 different parameters and more than 50 indices) a detailed discussion of all

parameters and all different settings for the indices would go beyond the scope of this work.

Therefore, a selection of aspects will be considered. Attention will be paid to parameters

which have already been mentioned in literature as important to be investigated in the context

of cardiovascular prognostics (BP [3], [7], [14], [45], [71], Hf [31], [34], [45], [54], PP [78], [84],

AIx [81], [82]) and on parameters which could not be determined as significantly different for the

two groups by comparing their 24h averages (cf. section 5.2). The possible additional settings

for the calculation of the indices are primarily chosen as the default values of the MATLAB

algorithms. They are deduced from literature and are mentioned in detail in chapter 2. To

obtain better comparability, the same setting was used for each of the parameters.

6.1 Sensitivity of the Indices to the Data Set Quality

The calculation of all indices was possible with the chosen setting of section 3.3. The setting

is reasonable in consideration of literature related to similar studies as the one presented in

this work. Even if data quality was chosen less restrictive than in other publications, still no

problems occurred, when indices were calculated for different parameters. The only index for

which not all preselected data sets were included was EMS (cf. section 5.3). The sensitivity of

this index to the loss of readings has been discussed in section 2.13.3. In table 3.1, it can be

seen that this index requires short time gaps between scheduled (and in the following successful)

readings as well as very strict exclusion criteria. Nevertheless, on one hand, the sensitivity of the

presented indices to the quality of recordings is satisfying (apart from EMS). On the other hand,

it has to be mentioned that a fairly low schedule frequency and consequently a smaller number

of valid measurements might influence the statistical meaningfulness of one or the other index.

Thijs et al. [70], for instance, point out that an accurate determination of cSD is only obtained,

if measurement are available every 30 minutes. They observed the same for the amplitude of

the fourier model, the parameters of the CUSUM method and NF. Mena et al. [37] concluded
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that ARV can only be assessed without loss of prognostic significance, if at least 48 readings

are available. Both studies investigated 24h BP data. It seems likely that similar results could

be observed for other parameters and indices.

6.2 Indices Considered for the Analysed Parameters

6.2.1 24h Averages

As can be seen in table 5.2, quite a few of the 24h averages of the ABPM and PWA parameters

differ significantly in the mean among the control and the patient group. All BP values, central

as well as peripheral systolic and diastolic values, are significantly different for the cohorts. This

is to be expected, since various studies have shown that the level of BP is a strong indicator and

predictor of cardiovascular or cerebrovascular conditions and even mortality [13], [24], [70], [78],

[82]. It especially appears natural that the two cohorts analysed in this work have unlike BP

average values, since patients of the group Wels are suspected to suffer from an enlargement of

their left ventricle, which was found to be triggered by hypertension [4], [29], [84]. However, the

relation between left ventricular mass and central BP values is not so well investigated at the

present time, although some results have already been published. Protogerou at al. [52] found

that LVH in hypertensive patients is better associated with 24h central pressure than with 24h

peripheral pressure values.

Nevertheless, not all parameters attain significantly different 24h average values for the two

groups including Hf (ABPM), central and peripheral PP and AIx@75 (PWA), which can be

abstracted from table 5.2.

6.2.2 Variability Indices

Heart Frequency (Hf)

Hf is one of the parameters for which the 24h average was not significantly different among

the two groups (cf. table 5.2). There are several variability indices, however, which show a

statistical difference, such as unweighted and weighted SD, unweighted and weighted ARV and

SV. Each of them is significantly different for all three time periods day, night and the whole

24h period and in every case the value for the Lübeck group is higher. Since ARV and SV

are strongly correlated, it is consistent that both indices show the same behaviour considering

the absence of presence of statistical significances. As expected, SV is larger in all three time

periods (cf. section 2.5). The latter two observations can be made for all other parameters as

well. The only exception is AIx, for which significance was different for the night period.

Interestingly, the difference between the groups can not be explained by the index CV. Only

the 24h value is statistically significant. Since the above mentioned indices (SD, ARV and

SV) depend on the average value (cf. chapter 2), which was not found to be significantly

different, but CV is independent of the average value, one would expect CV to perform at least

equally good.
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The methods modelling the 24h profile do not provide indices which show a significant difference

among the groups, the weighted fourier model being the single exception. These models (cosinor,

fourier, SW and CUSUM) have been developed for BP and Hf profiles, which show a similar

diurnal behaviour. Nevertheless, the indices obtained from them are not significantly different.

On one hand, this might be due to the limitations of the models which have been summarized

in chapter 2 (cf. also [45]). On the other hand, some indices are expected not to be significantly

different, such as the mesor of the cosinor model as this is an approximation of the 24h average.

In figure 5.1, the weighted fourier profiles of two subjects - one of each group - is depicted. The

amplitude is significantly different. Consistently, also the index range is significantly different.

Peripheral Systolic Blood Pressure (pSBP) and Central Systolic Blood Pressure

(cSBP)

These parameters attain significantly different 24h average values for the two groups. As has

been mentioned before in section 6.2.1, this is not surprising. Other than for Hf the indices

SD, ARV, SV and CV are not statistically significant. Controversial results have been found,

when analysing BPV assessed with these indices (cf. chapter 2). In some studies associations

with cardiovascular diseases have been found [21], [60], while in others their reliability has been

questioned [3], [4].

Since mean values and median values were found to be normally distributed for pSBP as well as

for cSBP, it seems reasonable that also the index median is significantly higher for the patient

group. Likewise, the mesor of the cosinor method, which represents an approximation of the

24h mean value, shows statistical significance.

The significant difference of the indices obtained by the NBPF method are supported by findings

in literature [65]. Verdecchia et al. [77] found an inverse relation between left ventricular mass

and the decline of BP at night. Since individuals of the Wels group are believed to suffer from

an enlargement of the left ventricle, it is in accordance with this observation that their NF in

BP is significantly smaller. This is true for the peripheral as well as for the central systolic BP,

but for cSBP only the weighted form was found to be significantly different. In the light of this

reflections, it appears consistent that the ME difference is significantly different as well, not

only for peripheral but also for central systolic BP, since this index is closely related to NBPF

as has been discussed in section 2.13.3. Nevertheless, this index has to be treated with caution

as additional data sets had to be excluded. Furthermore, the fixed time points ’arising’ and

’going to bed’ can not meet reality for each individual. The dependence of this index on the

definition of these events has already been discussed (cf. section 2.13.3).

Augmentation Index (AIx)

It has been suggested to analyse this PWA parameter alongside BP itself to obtain an optimized

hypertension drug treatment [82]. Furthermore, it has been shown that an increased AIx is

an independent predictor of mortality for patients suffering from end-stage renal disease and

coronary heart disease [81]. This supports its consideration in this work, especially since AIx
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was found to be correlated with left ventricular mass in normotensive as well as hypertensive

men [81]. However, in contrast to BP and Hf, the 24h variability of AIx or the diurnal profile

has not yet been analysed in literature. AIx has a significantly different 24h average among the

groups with a p-value of 0.005. One would expect this difference to be even stronger considering

the highly significant BP values. The relatively large p-value might be explained by the different

ratios of male and female individuals within the groups. AIx values have been found to be higher

for women than for men [73]. Therefore, since the percentage of women in the control group

is notable larger than in the patient group (cf. table 5.1), this might mask differences between

the control and the patient group.

There is also a fair amount of variability indices which differ between the two cohorts (cf.

table 5.7). Again, the median, and the mesor of the cosinor method are statistically significant

which is consistent with the significantly different 24h average. The NF is again appropriate

to observe differences among the two cohorts, although the weighted form is not significantly

different. Another method, which seems to provide indices to distinguish the patient from the

control group is the CUSUM method. This might be a better choice for modelling the diurnal

profile, since the CUSUM plot - contrary to the cosinor method, the SW or the double logistic

model - does not assume a certain diurnal profile. Such profiles with a lower plateau at night and

a higher plateau during day time with differently steep transition periods have been determined

to be present in BP and Hf data [45], but might not be suitable for AIx. This can be seen in

figure 6.1. The top three plots and the bottom three plots each belong to the same subject

denoted by A and B, respectively. For subject B the SW model seems appropriate for the AIx

as well as the pSBP data. Considering subject A, the AIx data do not show a profile, such that

the SW seems to fit, but the pSBP data approximately follow the typical pattern. The CUSUM

method can be seen in the third column. A certain different behaviour of the CUSUM plot can

be observed between the two individuals. Nevertheless, both plots show specific features.

Peripheral Pulse Pressure (pPP) and Central Pulse Pressure (cPP)

In several studies, PP was found to be an indicator for cardiovascular risk [78]. However, neither

peripheral nor central PP is statistically different among the two groups considering 24h mean

values (5.2). Even if cPP was found to have a stronger association with LVH than pPP in

several studies [84], the mean differences between the groups Lübeck and Wels are larger for

pPP. Nevertheless, for both parameters the 24h average values as well as a large number of

variability indices are not significantly different (cf. tables 5.8 and 5.9). The NF again provides

a significantly different index, but only for cPP. Peripheral PP only has a significantly higher

CV at night for the patient group than for the control group. However, significance in both

cases is borderline (p-value = 0.05).
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Figure 6.1: The above plots were produced with the MATLAB functions
calc squarewavefit2neu.m and calc cusumoption.m. The top three
plots and the bottom three figures each belong to the same subject denoted
by A and B, respectively.

6.3 Weighted vs. Unweighted

For several indices there exists a weighted version, which basically means that not only measure-

ment values alone are considered, but also the time gaps between consecutive readings are taken

into account. This is achieved as each data point is weighted by the time period to the preced-

ing measurement (wARV, weighted CUSUM, weighted fourier, weighted NF). This approach

tries to overcome the loss of readings and, as a results, varying interval durations. Another

possibility which aims to compensate the lower number of readings at night is to weight by the

number of hours within day and night time periods (cSD).

Several publication are in favour of the weighted indices compared to the unweighted version.

Bilo et al. [3] and Duan et al. [14], for instance, claim that wSD is superior to cSD as the

latter one overestimates variability. Stanton et al. [65] stress the crucial importance to weight

measurements by the time intervals between readings to correct for missing recordings and dif-

ferences of the time periods between them. They analysed the CUSUM method. Octavio et

al. [43] as well support the use of weighted mean values as they determined an overestimation

of BP mean values due to a higher number of day time readings. This effect was largest in

subjects with a pronounced NBPF. This motivates the calculation of wNBPF.

Considering the results in this work, for some parameters and indices the weighting had an

influence on the significance. For the parameter Hf, for instance, the index amplitude of the

fourier method is only significantly different among the groups, when the weighted form is cal-

culated. For the CUSUM method the weighting does not make any difference. The indices of

the NBPF method as well as of the fourier model have a smaller p-value, when weighting is
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included - for pSBP and cSBP. The same is true for the CUSUM method, but only for cSBP.

These results may be interpreted as supportive for the above mentioned publications in favour

of the weighted methods. However, considering the parameter AIx, contradicting results are

given. While the amplitude of the weighted fourier method has a smaller p-value than of the

unweighted fourier model, the significant difference of the NBPF is lost when weighted indices

are calculated. The results for the CUSUM method are as well indefinite as some parameters

gain significance while for others it declines. For cPP the single significantly different index is

NF, which is no longer statistically significant, if calculations are done with weighting.

It has to be mentioned that the comparison of p-values is only reasonable, if the same statistical

test was used. This was the case for all above mentioned indices. Only CPH for Hf and CPS

for AIx were analysed differently.

6.4 Central vs. Peripheral

Scientific studies have determined that peripheral systolic as well as peripheral pulse pressures

are higher than the according central values. It has also been shown that central pressures have a

stronger association with LVH than the peripheral values [84], [85]. Associations of indices with

LVH were not considered in this work, but one might expect to find differences in the results

for central and peripheral pressures. These expectations are not fulfilled. Considering systolic

BP values, the indices show an almost identical significance pattern (cf. tables 5.2, 5.5 and

5.6). PP values are not significantly different among the patient and the control group, neither

peripheral nor central values. The p-values for 24h averages are far above the significance level.

For each PP parameter only one of the variability indices is significantly different among the

two cohort. However, significance is weak in both cases (p-value = 0.05).

6.5 Conclusion

The indices gathered in this work require further analysis. Nevertheless, interesting observations

have been made. It appears that for systolic BP values the 24h averages provide a significantly

different index among patients suspected to suffer from LVH and healthy individuals. However,

not all PWA parameters have a significantly different average value among the groups. For

some of them variability indices might provide an improvement, others like cPP and pPP

remain nearly indistinguishable by the indices provided.

The NF turned out to be the most ’stable’ index for the parameters considered in this work as

it is significantly different for all parameters, but Hf and pPP. Additionally, it is the only index

with a p-value ≤ 0.05 for the parameter cPP, for which 24h average values are not significantly

different and which was determined to be closely associated with LVH. The significance of NF

concerning BP values might be due to the non dipping tendency of LVH patients. Since PWA

parameters have an influence on each other this might explain the statistical significance in the

other cases.

The large amount of indices gives a wide-ranging number of aspects to be considered. Even
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if not all of the PWA parameters have been analysed in the frame of this work, the findings

are of interest in the context of identifying indices with possible prognostic relevance. The

mathematical models prove to be adequate to assess the diurnal profile and variability of 24h

PWA parameters and the implemented algorithms are feasible to be applied to the data sets.

6.6 Outlook

The large amount of possible methods to assess variability leaves room for some more aspects

to consider in future analysis.

Several methods allow different settings - the fourier analysis can be calculated with different

numbers of harmonics, a different number of minimal period durations is possible for the SW

and pSD might be analysed with different best fit curves to name a few.

The method EMS and the double logistic curve fit require deeper analysis. The challenges

regarding these methods have been discussed before (cf. section 2.13.3 and 2.14.4). For the first

mentioned, the time points of ’arising’ and ’going to bed’, for instance, might be identified with

curve fitting methods such as the SW.

Another interesting aspect which was only tangentially treated is the comparison of different

models which aim to calculate identical indices. The expected time point of the maximum,

for example, is obtained by the models cosinor and weighted as well as unweighted fourier.

Furthermore, they could be compared with the actual time point of the maximal value.

One of the methodological issues which occur when investigating BPV is reproducibility [1].

Thijs et al. [71] emphasize that indices of BPV can only be of clinical relevance, if they are

reproducible when ABPM is repeated under standardized circumstances. For several indices

considered in this work reproducibility was already analysed for example the cSD, the fourier

model, the CUSUM method and the NBPF [70]. Reproducibility of these variability parameters

was found to be more sensitive to the number of available readings than the 24h blood pressure

mean. Lurbe et al. [30] investigated the same methods except cSD and concluded as well the

relatively poor reproducibility compared to 24h average values. This aspect definitely leaves

room for further investigations and improvements.

Finally, the algorithms which were implemented in the course of the formation of this thesis

to assess the variability and the diurnal profile of PWA parameters might be used in studies

investigating clinical questions based on variability analysis to determine risk factors predicting

cardiovascular diseases.
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Index

absolute day-night-difference, 29

approximate entropy, 27

average real variability, 6, 11, 13

cardiovascular events, 11

central moment, 16

coefficient of variation, 10, 15

cosinor method, 41

crude standard deviation, 5

curve fitting, 34

cusum plot method, 59

dipper, 29

double logistic analysis, 52

early morning surge, 9, 31

empirical moment, 16, 17

fourier analysis, 46

heart rate, 12

interquartile range, 20

kurtosis, 17

left ventricular hypertrophy, 10, 12

maximum, 18

mean, 6

median, 21

midrange, 21

minimum, 18

morning evening difference, 32

morning pressor surge, 31

night-to-day ratio, 28

nocturnal blood pressure fall, 9, 28, 30, 31, 62

nocturnal fall, 29

order statistic, 18, 19

peak, 22

personalized standard deviation, 10, 58

pre-awaking morning surge, 32

range, 19

rising blood pressure surge, 32

runs, 24

runs test, 22

skewness, 17

sleep-through morning pressor surge, 32

square wave, 35

square wave fit, 35

successive variation, 13, 14

target organ damage, 6, 9, 11

trough, 22

variation independent of mean, 10, 26

weighted average real variability, 12, 13

weighted mean, 31

weighted standard deviation, 6, 7

107



108



Acronyms

Symbols

P1 amp. of the early syst. peak pressure. 74, 76

P2 amp. of the late syst. peak pressure. 74, 76

Pb backward pressure wave amplitude. 74, 76

Pf forward pressure wave amplitude. 74, 76

Rp peripheral resistance. 2, 74, 76

A

ABPM ambulatory blood pressure monitoring. 1–3, 15, 40, 68, 73–75, 100, 105

ADND absolute day-night-difference. 29–31

AIT Austrian Institute of Technology. 2, 74

AIx augmentation index. 3, 45, 74, 76, 93, 96, 97, 99–102, 104

AIx@75 augmentation index at 75 bpm. 74, 76, 100

AP augmentation pressure. 2, 3, 74, 76

ApEn approximate entropy. 27, 28, 67

ARV average real variability. 6, 11–14, 26, 27, 68, 71, 77, 83, 88, 93, 100, 101

B

BP blood pressure. 1–3, 5, 6, 8–12, 14–16, 19, 21, 22, 25, 27–34, 36, 40, 53, 56, 58, 60, 64, 70,

74, 92, 99–104

BPV blood pressure variability. 1, 5, 6, 9, 11, 12, 14–16, 19, 22, 27, 59, 101, 105
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C

CCAM CUSUM derived circadian alteration magnitude. 63, 64

CCV CUSUM derived crest value. 63, 64

cDBP central diastolic blood pressure. 74, 76

CEs cardiovascular events. 9, 11

CMB cerebral microbleed. 14, 15

CO cardiac output. 2, 74, 76

CPH CUSUM plot height. 62, 63, 104

cPP central pulse pressure. 74, 76, 98, 102, 104

CPS CUSUM plot slope. 62–64, 97, 104

cSBP central systolic blood pressure. 74–76, 88, 91, 92, 101, 104

cSD crude standard deviation. 5–10, 16, 58, 59, 64, 71, 77, 83, 88, 93, 99, 103, 105

CTV CUSUM derived trough value. 63, 64

CV coefficient of variation. 10, 15, 16, 26, 71, 77, 83, 88, 93, 98, 100–102

E

EMS early morning surge. 9, 10, 31, 70, 72, 80, 82, 86, 91, 96, 99, 105

H

HEM higher empirical moments. 67, 77, 83, 88, 93

Hf heart frequency. 1, 5, 45, 56, 74, 76, 77, 80, 81, 99–104

HIx heart index. 74, 76

I

IQR interquartile range. 20, 73, 80, 86, 91, 96

L

LACI lacunar infarction. 59

LVH left ventricular hypertrophy. 3, 10, 73, 100, 102, 104

M

110



max maximum. 18

ME morning-evening. 32, 33, 101

min minimum. 18

MPS morning pressor surge. 31–34

MR midrange. 21

MS morning surge. 31–34

N

NBPF nocturnal blood pressure fall. 6, 9, 10, 16, 20, 28–31, 34, 39, 59, 62, 64, 72, 78, 79, 84,

85, 89, 90, 94, 95, 98, 101, 103–105

NDR night-to-day ratio. 28, 29, 31

NF nocturnal fall. 28–30, 92, 98, 99, 101–104

O

OS order statistics. 78, 84, 89, 94

P

pDBP peripheral diastolic blood pressure. 74, 76

pMAP peripheral mean arterial pressure. 74, 76

PP pulse pressure. 1–3, 19, 99, 100, 102, 104

pPP peripheral pulse pressure. 74, 76, 98, 102, 104

pSBP peripheral systolic blood pressure. 56, 74–76, 83, 86, 87, 92, 101, 102, 104

pSD personalized standard deviation. 58, 59, 79, 85, 90, 95, 105

PVA percentage of the total 24h variability. 39

PWA pulse wave analysis. 2, 3, 5, 17, 68, 70, 73, 75, 100, 101, 104, 105

PWV pulse wave velocity. 1–3, 74, 76

R

RM reflexion magnitude. 74, 76

RSS residual sum of squares. 38, 43, 44, 48
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S

SD standard deviation. 5–7, 9–12, 15–18, 23, 26–28, 30, 31, 58, 100, 101

SV successive variation. 13–15, 27, 77, 83, 88, 93, 100, 101

SW square-wave. 35–40, 52, 54, 56, 72, 79, 85, 90, 95, 101, 102, 105

T

TOD target organ damage. 6, 9, 11, 19

V

VIM variation independent of mean. 10, 15, 16, 26, 67

W

wARV weighted average real variability. 13, 77, 81, 83, 88, 93, 103

wSD weighted standard deviation. 6, 7, 9–12, 20, 31, 59, 71, 77, 83, 88, 93, 103

112



Bibliography

[1] K. Asayama, F.-F. Wei, A. Hara, T. W. Hansen, Y. Li, and J. A. Staessen, “Response to

prognosis in relation to blood pressure variability: Con side of the argument”, Hyperten-

sion, vol. 65, no. 6, pp. 1170–1179, 2015.

[2] Y. Ben-Shlomo, M. Spears, C. Boustred, M. May, S. G. Anderson, E. J. Benjamin, P.

Boutouyrie, J. Cameron, C.-H. Chen, J. K. Cruickshank, et al., “Aortic pulse wave veloc-

ity improves cardiovascular event prediction: An individual participant meta-analysis of

prospective observational data from 17,635 subjects”, Journal of the American College of

Cardiology, vol. 63, no. 7, pp. 636–646, 2014.

[3] G. Bilo, A. Giglio, K. Styczkiewicz, G. Caldara, A. Maronati, K. Kawecka-Jaszcz, G.

Mancia, and G. Parati, “A new method for assessing 24-h blood pressure variability after

excluding the contribution of nocturnal blood pressure fall”, Journal of Hypertension, vol.

25, no. 10, pp. 2058–2066, 2007.

[4] B. Bjelakovic, S. Lukic, V. Vukomanovic, S. Prijic, N. Zivkovic, K. Vasic, V. Ilic, and S.

Ilic, “Blood pressure variability and left ventricular mass index in children”, The Journal

of Clinical Hypertension, vol. 15, no. 12, pp. 905–909, 2013.

[5] J. Blacher, J. A. Staessen, X. Girerd, J. Gasowski, L. Thijs, L. Liu, J. G. Wang, R. H.

Fagard, and M. E. Safar, “Pulse pressure not mean pressure determines cardiovascular risk

in older hypertensive patients”, Archives of Internal Medicine, vol. 160, no. 8, pp. 1085–

1089, 2000.

[6] J. Bortz and G. A. Lienert, Kurzgefasste Statistik für die klinische Forschung: Leitfaden

für die verteilungsfreie Analyse kleiner Stichproben. Springer, 2008.

[7] S. Cay, G. Cagirci, A. D. Demir, Y. Balbay, A. R. Erbay, S. Aydogdu, and O. Maden,

“Ambulatory blood pressure variability is associated with restenosis after percutaneous

coronary intervention in normotensive patients”, Atherosclerosis, vol. 219, no. 2, pp. 951–

957, 2011.

[8] N. P. Chau, J. M. Mallion, R. de Gaudemaris, E. Ruche, J. P. Siche, O. Pelen, and G.

Mathern, “Twenty-four-hour ambulatory blood pressure in shift workers.”, Circulation,

vol. 80, no. 2, pp. 341–347, 1989.

113



[9] G. Cornelissen, “Cosinor-based rhythmometry”, Theoretical Biology and Medical Mod-

elling, vol. 11, no. 1, p. 16, 2014.

[10] J.-P. Degaute, P. Van De Borne, P. Linkowski, and E. Van Cauter, “Quantitative analysis

of the 24-hour blood pressure and heart rate patterns in young men”, Hypertension, vol.

18, no. 2, pp. 199–210, 1991.

[11] B. Di Iorio, L. Di Micco, S. Torraca, M. L. Sirico, P. Guastaferro, L. Chiuchiolo, F. Nigro,

A. De Blasio, P. Romano, A. Pota, et al., “Variability of blood pressure in dialysis patients:

A new marker of cardiovascular risk”, Journal of Nephrology, vol. 26, no. 1, pp. 173–182,

2013.

[12] Y. Dodge, D. Cox, D. Commenges, P. J. Solomon, and S. Wilson, The Oxford dictionary

of statistical terms: Oxford University Press. PMID, 2003.

[13] E. Dolan and E. O’Brien, “Editorial blood pressure variability–clarity for clinical prac-

tice”, Hypertension, vol. 56, pp. 179–181, 2010.

[14] J.-L. Duan, C.-N. Hao, W. Lu, L. Han, Z.-H. Pan, Y. Gu, P.-J. Liu, R. Tao, Y.-Q. Shi,

and Y.-Y. Du, “A new method for assessing variability of 24 h blood pressure and its first

application in 1526 elderly men”, Clinical and Experimental Pharmacology and Physiology,

vol. 36, no. 11, pp. 1093–1098, 2009.

[15] G. Gerstenblith and S. Margolis, “Coronary heart disease”, The John Hopkins White

Papers, 2007.

[16] T. W. Hansen, L. Thijs, Y. Li, J. Boggia, M. Kikuya, K. Björklund-Bodeg̊ard, T. Richart,

T. Ohkubo, J. Jeppesen, C. Torp-Pedersen, et al., “Prognostic value of reading-to-reading

blood pressure variability over 24 hours in 8938 subjects from 11 populations”, Hyperten-

sion, vol. 55, pp. 1049–1057, 2010.

[17] D. M. Hawkins and D. H. Olwell, Cumulative sum charts and charting for quality im-

provement. Springer Science and Business Media, 2012.

[18] G. A. Head, E. V. Lukoshkova, D. N. Mayorov, and M. van den Buuse, “Non-symmetrical

double-logistic analysis of 24-h blood pressure recordings in normotensive and hypertensive

rats”, Journal of Hypertension, vol. 22, no. 11, pp. 2075–2085, 2004.

[19] G. A. Head, C. M. Reid, and E. V. Lukoshkova, “Nonsymmetrical double logistic analysis

of ambulatory blood pressure recordings”, Journal of Applied Physiology, vol. 98, no. 4,

pp. 1511–1518, 2005.

[20] A. Heim, L. Liaudet, B. Waeber, and F. Feihl, “Pulse wave analysis of aortic pressure:

Diastole should also be considered”, Journal of Hypertension, vol. 31, no. 1, pp. 94–102,

2013.
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