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Kurzfassung

Viele praktisch relevante Probleme befinden sich auf der zweiten Stufe der Polynomiel-
len Hierarchie und sind daher von sehr hoher Komplexität; dennoch sind Programme,
die solche Probleme lösen, in der Praxis oft überraschend effizient – sogar auf großen
Probleminstanzen. Einer der Gründe ist, dass in der Realität auftretende Instanzen
häufig besondere strukturelle Eigenschaften haben, durch die sich manchmal die theo-
retisch schlimmsten Laufzeiten vermeiden lassen. Das Ziel dieser Arbeit ist es, neue
Erkenntnisse über das Lösen solcher schwierigen Probleme durch das Ausnutzen des
strukturellen Parameters Baumweite zu erhalten.

Ein beliebtes Werkzeug, um Probleme bis hin zur zweiten Stufe der Polynomiellen
Hierarchie zu lösen, ist Answer Set Programming (ASP), welches durch eine komfortable
Sprache und effiziente Implementierungen hervorsticht. Der übliche Arbeitsablauf in
ASP ist, eine Problemspezifikation in ASP zu schreiben und diese zusammen mit einer
Instanz in ein sogenanntes grundiertes Programm umzuwandeln, dessen Ergebnisse
anschließend von einem Lösungsprogramm berechnet werden. Neueste Untersuchungen
ergaben, dass die Leistung moderner ASP-Lösungsprogramme massiv davon profitiert,
wenn das grundierte Programm kleine Baumweite aufweist. Leider ist das Grundieren
– also die Umwandlung einer Instanz in ein grundiertes Programm – ein komplizierter,
implementierungsabhängiger Prozess, weshalb es unklar ist, unter welchen Umständen
das grundierte Programm kleine Baumweite besitzt. Der Einfluss des Grundierens auf
die Baumweite wurde in bisherigen Untersuchungen weitgehend vernachlässigt.

Eine für die ASP-Forschung besonders interessante Klasse an Graphproblemen sind Al-
lianzprobleme. Diese suchen nach Gruppen von Knoten, die einander auf eine bestimmte
Weise Beistand leisten können. Einige Allianzprobleme sind auf der zweiten Stufe der
Polynomiellen Hierarchie und benötigen fortgeschrittene Modellierungstechniken, um
in ASP ausgedrückt werden zu können. Wichtige Allianzprobleme entbehrten bisher
jedoch einer Komplexitätsanalyse, insbesondere in Bezug auf Baumweite.

Unsere Forschungsbeiträge sind die Folgenden: Wir zeigen auf, wie kleine Baumweite
implizit in ASP genutzt werden kann – das bedeutet, ohne ein Programm schreiben
zu müssen, welches Baumweite bewusst ausnutzt. Zu diesem Zweck definieren wir
Klassen nichtgrundierter ASP-Programme, welche garantieren, dass das Grundieren
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beschränkte Baumweite beibehält. Außerdem stellen wir eine Methodik vor, mit welcher
Algorithmen entworfen werden können, die explizit Baumweite berücksichtigen. Diese
Methodik zielt eigens auf Probleme auf der zweiten Stufe der Polynomiellen Hierarchie
ab und kann die Leistung im Vergleich zu naiven Ansätzen wesentlich steigern. Wir
veranschaulichen einige unserer Techniken anhand von Allianzproblemen, für welche
wir ferner verschiedene lange bestehende Komplexitätsfragen beantworten.



Abstract

Many practically relevant problems are at the second level of the polynomial hierarchy
and thus highly intractable; yet programs solving them are often surprisingly efficient in
practice even on large instances. One of the reasons is that problem instances occurring
in the real world frequently have certain structural properties that sometimes allow us
to avoid the worst-case running times. The goal of this thesis is to gain new insights
into solving such hard problems by exploiting the structural parameter treewidth.

For solving problems up to the second level of the polynomial hierarchy, Answer Set
Programming (ASP) has become popular due to its convenient language and efficient
solvers. In ASP, the usual workflow is to write an ASP encoding for a problem and
transform it together with a problem instance into a so-called ground program, which
is then given to a solver that computes the solutions. Recent work has shown that the
performance of state-of-the-art ASP solvers benefits greatly from the ground program
having small treewidth. Unfortunately grounding, that is, the transformation of the
instance into a ground program, is a complicated, implementation-dependent task, so
it is not clear under which circumstances the ground program has small treewidth. The
influence of grounding on the treewidth has largely been neglected in research so far.

A particularly interesting class of graph problems for research on ASP are alliance
problems. These ask for groups of vertices that help each other out in a certain way.
Some alliance problems are at the second level of the polynomial hierarchy and require
advanced modeling techniques for encoding them in ASP. However, important alliance
problems lacked a complexity analysis, in particular with regard to treewidth.

Our contributions are the following: We show how ASP users can take advantage of
small treewidth implicitly, that is, without having to write a program that deliberately
exploits treewidth. For this, we define classes of non-ground ASP programs that
guarantee that grounding preserves bounded treewidth. Moreover, we present a
methodology for designing algorithms that explicitly take treewidth into account. This
is especially targeted at problems at the second level of the polynomial hierarchy and
can substantially improve performance compared to naive approaches. We illustrate
some of our techniques for alliance problems in graphs, where we also settle several
long-standing questions regarding complexity.
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CHAPTER 1
Introduction

In the face of vast amounts of data that are being generated and stored every day,
many systems that process this data meet their limits. This is not only an issue of
implementation details. Indeed, many practically relevant problems are NP-hard and,
as is well known, there is strong evidence that it is impossible to write a tractable
algorithm for any such problem. Yet we still need to solve hard computational tasks on
large amounts of data.

One problem solving paradigm that has become quite popular for tackling computation-
ally hard problems is Answer Set Programming (ASP) (Brewka, Eiter and Truszczyński
2011; Gebser et al. 2012; Marek and Truszczyński 1999; Lifschitz 2008). ASP is a
declarative language that is especially attractive due to the fact that highly efficient
systems are available (Gebser, Kaufmann and Schaub 2012; Gebser et al. 2007; Gebser
et al. 2015; Alviano et al. 2013; Alviano et al. 2015; Leone et al. 2006; Alviano et al. 2011;
Elkabani, Pontelli and Son 2005). These systems allow us to encode problems in a very
convenient and succinct way.

The impressive performance increase of ASP systems in recent years now allows us to
solve many hard problems also on quite large inputs. Indeed, ASP has been successfully
employed for solving a great variety of computationally hard problems. However, there
are several computational problems where even sophisticated state-of-the-art ASP
systems struggle.

To see why ASP systems may perform quite well in practice on one problem whereas
the performance on another problem of the same complexity can be significantly worse,
it helps to consider the parameterized complexity of the problems (Downey and Fellows
1999; Flum and Grohe 2006; Cygan et al. 2015; Niedermeier 2006). This theoretical
framework investigates the complexity of a problem not only in terms of the input size,
but also of other parameters. The core idea of parameterized complexity theory is that
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1. Introduction

a problem is fixed-parameter tractable (FPT) w.r.t. a parameter k of the instances if the
problem admits an algorithm that runs in time O( f (k) · nc), where f is an arbitrary
computable function that only depends on k, n is the input size and c is an arbitrary
constant. By assuming that a certain parameter of the instances is bounded by a
constant, many NP-hard problems become tractable in this sense.

In this work, we are particularly interested in the effect of structural parameters on the
performance of ASP solvers, that is, parameters that take the relations between different
parts of the input into account. We focus on the parameter treewidth (Robertson and
Seymour 1984), which is a measure of the cyclicity of a graph. Intuitively, the smaller
the treewidth of a graph, the closer the graph resembles a tree. It is well known that
many graph problems become easy if we restrict the input to trees and it has turned
out that for many important problems this even holds for the more general class of
instances of bounded treewidth (cf., e.g., Arnborg, Lagergren and Seese 1991). Luckily,
it has been observed that real-world instances exhibit small treewidth in many cases
(Bodlaender 1993; Thorup 1998; Kornai and Tuza 1992). Moreover, treewidth is not
only relevant for graph problems. It can also be applied to instances of all kinds of
problems by choosing a suitable representation of the instance as a graph.

There have already been some investigations concerning treewidth and ASP (Gottlob,
Pichler and Wei 2010a; Pichler et al. 2014; Fichte et al. 2017; Morak and Woltran 2012).
These have mainly concerned ground ASP (i.e., ASP programs without variables, also
known as propositional programs). Sadly, the case where ASP programs may contain
variables has largely been neglected so far. Although treewidth plays a role in some
work on decomposing non-ground ASP rules (Bichler, Morak and Woltran 2016; Bichler,
Morak and Woltran 2017), there have been hardly any results on the effect of treewidth
on ASP solving in the presence of variables. This is especially unfortunate as variables
form the basis of the convenient language features provided by ASP systems, which
are one of the main advantages of ASP from a user’s perspective when compared to
related approaches such as Boolean satisfiability (Sat).

To see why there are so far no investigations of the effect of treewidth on non-ground
ASP programs, consider the typical workflow when using ASP to solve a problem:
Once an encoding for a given problem is written in non-ground ASP, answer set
solving is usually a two-step process. First the encoding, together with a set of input
facts representing the problem instance, gets passed to a grounder, which transforms
it into an equivalent propositional ASP program. In the second step, this ground
program is evaluated by a solver. Since grounding can in most cases be seen as a rather
simple preprocessing step whereas solving is usually the main workhorse, theoretical
investigations have mainly focused on the task of solving propositional programs.

An important result regarding the complexity of ground ASP solving parameterized by
treewidth is the fixed-parameter tractable algorithm by Jakl, Pichler and Woltran (2009)
for deciding whether a program has an answer set. This algorithm follows the principle
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of dynamic programming on tree decompositions, which is very common for FPT algorithms
parameterized by treewidth (Bodlaender 1997). The basic idea is the following: Given
a graph G, a tree decomposition of G is a tree whose nodes correspond to subgraphs
of G in such a way that certain conditions are fulfilled. (The exact conditions are not
important for now and will be presented in detail in Chapter 2.) If the treewidth of a
graph is bounded by a constant, then we can find (in linear time) a tree decomposition
whose nodes correspond to subgraphs of constant size (Bodlaender 1996). We can then
solve many problems by first applying brute force at each subgraph in order to solve a
subproblem corresponding to this subgraph and then trying to combine the obtained
partial solutions. If the treewidth of the graph is bounded, then we can afford this brute
force approach because each of the considered subgraphs has bounded size.

The FPT algorithm by Jakl, Pichler and Woltran (2009) thus specifies a different way of
ASP solving than the standard approaches, which implement a version of a concept
called conflict-driven clause learning (Gebser, Kaufmann and Schaub 2012). This solving
procedure was originally introduced for Sat solving and proved to be very successful
also when adapted to ASP solving, where it now constitutes the heart of state-of-the-
art solvers. Indeed the algorithm by Jakl, Pichler and Woltran (2009) has also been
implemented and proposed as an alternative solver for ground ASP (Morak et al. 2010).
For certain problems, this dynamic-programming-based solver was able to outperform
state-of-the-art ASP solvers if the instances had a very small treewidth and the sizes of
the instances were very large.

Although the encouraging results by Morak et al. (2010) confirmed that small treewidth
can be successfully exploited for ASP solving in experimental settings, the restrictions
on problems and instances that make this approach perform well were still too severe
for most practical applications. The main obstacles that prevented this approach from
being useful for a broad range of applications were the facts that, on the one hand, the
naive dynamic programming approach involves an enormous overhead and, on the
other hand, state-of-the-art ASP solvers often perform so well that the fixed-parameter
tractability only pays off for instances of tremendous size. In fact, experiments in the
work of Bliem et al. (2017) indicated that state-of-the-art ASP solvers are “sensitive” to
the treewidth of their input in the sense that smaller treewidth strongly correlates with
higher solving performance.

The limitations of the basic dynamic-programming-based approach hint at interesting
research challenges. In particular, two approaches seem promising for successfully
exploiting small treewidth for ASP solving in practice:

• The first research challenge is to improve the dynamic-programming-based
methodology in order to avoid some of its overhead and redundant compu-
tations.

3



1. Introduction

For solving ground ASP, these issues are especially severe compared to other
problems because the corresponding computational problems are even harder
than NP under standard complexity-theoretic assumptions. (In fact, deciding if a
ground ASP program has an answer set is at the second level of the polynomial
hierarchy.) This high complexity of ground ASP is mirrored in the dynamic
programming algorithm (Jakl, Pichler and Woltran 2009), which uses brute force
to first of all find all models of all parts of the decomposed program, and it
subsequently uses brute force again for each such partial model to find all potential
counterexamples that may cause the candidate to be discarded.

This pattern also frequently occurs in dynamic programming algorithms for other
problems that search for solutions satisfying some form of subset minimality.
Besides ground ASP, this is the case, for instance, for the problem of finding
subset-minimal models of a propositional formula. Such algorithms typically
store a great number of redundant objects because the subsets that may invalidate
a solution candidate are themselves solution candidates. Moreover, the specifica-
tions of such algorithms themselves contain redundancies because the potential
counterexamples are usually manipulated in almost the same way as the solution
candidates.

• The second research challenge is to find out which ASP encoding techniques
preserve bounded treewidth. Since problems are usually encoded in non-ground
ASP, some language constructs may significantly blow up the treewidth of the
grounding when compared to the treewidth of the input facts. Knowledge
about treewidth-preserving encoding techniques would allow us to solve ASP by
not doing dynamic programming at all but instead exploiting small treewidth
implicitly by relying on the assumption that state-of-the-art solvers perform better
when given ground programs of small treewidth (as indicated by the experiments
in the paper by Bliem et al. (2017)).

In addition to leveraging treewidth for ASP solving, we are interested in several
variants of a graph problem called Secure Set. It belongs to the class of so-called
alliance problems, which are problems that ask for groups of vertices that help each other
out in a certain way. Intuitively, a set S of vertices in a graph is secure if every subset of
S has as least as many neighbors in S as neighbors not in S. The Secure Set problem
asks whether a given graph contains a secure set at most of a certain size.

Alliance problems like Secure Set have various applications in practice. For instance,
we could be interested in finding groups of nations, companies or individuals that
depend on each other, but alliances also appear in less obvious contexts like groups
of websites that form communities (Flake et al. 2002). Furthermore, alliances can be
applied to computer networks in order to satisfy simultaneous requests (Haynes, S. T.
Hedetniemi and Henning 2003).
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The reason why we are concerned with Secure Set is that this problem has quite inter-
esting properties, especially for ASP researchers: Attempts of encoding this problem
in ASP have resulted in very involved specifications indicating that Secure Set may
require the full expressive power of ASP (Abseher et al. 2015).1 However, it is unfortu-
nately unclear whether this is really necessary because its complexity has still remained
unresolved although the problem has been introduced already in 2007 (Brigham, Dutton
and S. T. Hedetniemi 2007). Moreover, there have been no investigations of treewidth
as a parameter for this problem.

One of the variants of Secure Set that we consider in this work is the Defensive

Alliance problem (Kristiansen, S. M. Hedetniemi and S. T. Hedetniemi 2002; Kris-
tiansen, S. M. Hedetniemi and S. T. Hedetniemi 2004). This problem has received
quite some attention in the literature (Fernau and Rodríguez-Velázquez 2014; Yero and
Rodríguez-Velázquez 2013). It is known to be NP-complete, but the question of whether
it is fixed-parameter tractable when parameterized by treewidth has remained open.

In this thesis, we investigate these research challenges. Our contributions are the
following:

1. By restricting the syntax of non-ground ASP, we define two classes of programs
called guarded and connection-guarded programs. Guarded programs guarantee
that the treewidth of any fixed program stays small after grounding whenever
the treewidth of the input facts is small. We formally prove this property and
show that, despite their restrictions, guarded programs can still express problems
that are complete for the second level of the polynomial hierarchy.

Connection-guarded programs are even more expressive than guarded programs.
We show that the treewidth of the grounding of any fixed connection-guarded
program is small whenever the treewidth and the maximum degree of (a graph
representation of) the input facts is small.

These results bring us closer to the goal of implicitly taking advantage of the
apparent sensitivity to treewidth exhibited by modern ASP solvers because they
give us insight into what happens to the treewidth of the input during grounding.
Thus, by writing a program in guarded ASP, we can be sure that the grounder
does not destroy the property of bounded treewidth. In the case of connection-
guarded ASP, the same holds for the combination of treewidth and maximum
degree.

1In particular, the ASP encodings for Secure Set by Abseher et al. (2015) not only make use of the
so-called saturation technique, which requires disjunction, but also of non-convex, recursive aggregates
(Alviano, Faber and Gebser 2015; Faber 2006; Liu and Truszczyński 2006), which push ASP systems to
their limits because such aggregates have not even been supported by some state-of-the-art systems until
recently. The reason for this is that the semantics of such aggregates has not been agreed upon.
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2. We present a complexity analysis of computational problems corresponding to
guarded and connection-guarded programs, when the parameter is the treewidth
of the input, the maximum degree of the input, or the combination of both. The
results of this analysis show that, for any fixed guarded ASP program, answer
set solving is FPT when parameterized by the treewidth of the input; moreover,
for any fixed connection-guarded ASP program, answer set solving is FPT when
parameterized by the combination of treewidth and maximum degree. This is
not obvious because our ASP classes support weak constraints and aggregates,
which are not accounted for in the FPT algorithms (Jakl, Pichler and Woltran
2009; Fichte et al. 2017) for ground ASP. Furthermore, we prove hardness results
showing that for connection-guarded ASP both the treewidth and the maximum
degree must be bounded for obtaining fixed-parameter tractability.

3. As a side-product of the investigations on ASP classes, we obtain metatheorems
for obtaining FPT results. That is, our results on guarded ASP allow us to prove
that a problem is FPT when parameterized by treewidth by simply expressing
the problem in guarded ASP. We compare this metatheorem to the common
approach of proving fixed-parameter tractability by expressing a problem in
monadic second-order logic and invoking the well-known theorem by Courcelle
(Courcelle 1990; Courcelle 1992). Similarly, we can prove that a problem is FPT
when parameterized by the combination of treewidth and maximum degree
by expressing the problem in connection-guarded ASP. This result is appealing
because we are not aware of any metatheorems that allow us to obtain FPT results
for the combination of treewidth and degree as the parameter.

4. We illustrate the use of our ASP classes as FPT classification tools by presenting
simple encodings for alliance problems in graphs. By encoding the NP-complete
Defensive Alliance problem in connection-guarded ASP, we easily obtain the
already known result that the problem is FPT when parameterized by the com-
bination of treewidth and maximum degree. More importantly, we obtain the
new result that the co-NP-complete problem of deciding whether a given set is
secure in a graph is FPT for the parameter treewidth by encoding the problem in
guarded ASP.

5. We settle the complexity of the Secure Set problem by proving that the problem,
along with several variants, is ΣP

2 -complete (that is, at the second level of the
polynomial hierarchy).

6. We prove that both Defensive Alliance and Secure Set, as well as several
problem variants, are not FPT when parameterized by treewidth alone (under
commonly held complexity-theoretic assumptions). These questions have been
open since the problems have been introduced in 2002 and 2007, respectively.
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They have explicitly been stated as open problems by Kiyomi and Otachi (2017)
(for Defensive Alliance) and by Ho and Dutton (2009) (for Secure Set).

7. We show that the Secure Set problem can still be solved in polynomial time for
instances of bounded treewidth although the degree of the polynomial depends
on the treewidth.

8. We present an improvement of the tree-decomposition-based dynamic program-
ming methodology for problems that involve subset minimization (like, for
instance, finding subset-minimal models of a propositional formula). Specifically,
for any problem P whose solutions are exactly the subset-minimal solutions of
some base problem B, we formalize how a dynamic programming algorithm for
B can automatically be transformed into a dynamic programming algorithm for
P. We prove that, under certain conditions, the resulting algorithm is correct if
the base algorithm is correct, and it runs in FPT time if the base algorithm does.
The resulting algorithm has two advantages compared to solving P directly in
a naive way: first, it is usually easier to specify because we only need to design
an algorithm for the base problem and need not care about subset minimization;
second, it is potentially more efficient because it stores fewer redundant items.
We also show how our approach can be extended to more general settings than
simple subset minimization.

Indeed, this methodology has been empirically shown to lead to significant
performance benefits for several problems (Bliem et al. 2016a). An improved
version of the classical dynamic programming algorithm for ground ASP has been
implemented using these ideas (Fichte et al. 2017) and proved to be significantly
more efficient than the algorithm by Jakl, Pichler and Woltran (2009). Our result
formalizes the common scheme that underlies these algorithms. We thus provide
a formal framework that makes it possible to transfer the mentioned optimizations
easily to other problems. Thereby we make the impressive performance benefits
that have been reported by Bliem et al. (2016a) and Fichte et al. (2017) accessible
to algorithm designers working on related problems. This is primarily useful for
problems on the second level of the polynomial hierarchy as subset minimization
is a recurring theme in many such problems.

Research that is related to our work will be discussed in dedicated sections of our main
chapters.

This work is structured as follows. We start off with the necessary background for
our investigations in Chapter 2. In Chapter 3 we then introduce and analyze classes
of non-ground ASP programs with the goal that grounding such programs together
with an input preserves bounded treewidth of the input. This is followed by our
study of alliance problems in graphs in Chapter 4. Next, in Chapter 5, we present
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1. Introduction

our improvements to the algorithmic technique of dynamic programming on tree
decompositions, which helps us solve problems involving subset minimization more
efficiently. Finally, we summarize and discuss our results in Chapter 6.

Publications

Parts of this thesis have been published in several articles. Moreover, there are also
some publications that developed as side-products during the work on this dissertation
but were not included in it as they are not directly related to the core topics. We briefly
list all related articles. If a paper has been superseded by a newer publication, we only
mention the improved work.

Treewidth-preserving ASP classes. A paper containing a preliminary version of a
part of this chapter has been accepted at IJCAI 2017 (Bliem et al. 2017). This thesis
substantially extends the results from that paper as discussed in Chapter 3.

Alliance problems in graphs. Parts of this chapter have been presented at WG 2015

(Bliem and Woltran 2016a). An extended version of this paper is currently under review
for a journal. Still, this thesis contains further significant extensions that have not yet
been published as discussed in Chapter 4.

Advanced dynamic programming methodologies. A large part of the work in Chap-
ter 5 has been published in Fundamenta Informaticae (Bliem et al. 2016a).

Other publications. The following publications are not part of this dissertation but
developed during the work on the thesis.

• Bliem et al. (2016b): This work describes an algorithmic framework for executing
tree-decomposition-based dynamic programming algorithms using lazy evalu-
ation. In contrast to classical dynamic programming, this allows for anytime
optimization algorithms, that is, algorithms that can report solutions before the
optimum is found. This paper was presented at IJCAI 2016.

• Bliem, Ordyniak and Woltran (2016): This paper was presented at ECAI 2016

and studies the parameter clique-width as well as directed width measures for
ground ASP solving.

• Bliem and Woltran (2016b): In this work, we investigated under which conditions
ASP programs are rule-equivalent, that is, equivalent under the addition of rules
that are not facts. The paper was presented at FoIKS 2016.
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• Abseher et al. (2015): This article contains ASP encodings for the Secure Set

problem and an experimental evaluation. The paper was accepted for publication
in the Journal of Logic and Computation (JLC).

• Bliem, Hecher and Woltran (2016): This work studies a ΣP
2 -complete problem

from abstract argumentation. It presents an FPT algorithm for the parameter
treewidth and evaluates the performance using the techniques formalized in
Chapter 5. The paper was presented at COMMA 2016.

• Abseher et al. (2014): This paper was presented at JELIA 2014 and describes
the D-FLAT system for rapid prototyping of tree-decomposition-based dynamic
programming algorithms. Users of the system can specify such algorithms in ASP.
The paper was a continuation of work in the Master’s thesis of the author of this
dissertation.

• Bliem, Pichler and Woltran (2017): This is a JLC paper that shows how monadic
second-order (MSO) model checking can be implemented in D-FLAT, which
proves that this framework can be used for solving all MSO-definable problems
in FPT time when parameterized by treewidth.

• Bliem, Bredereck and Niedermeier (2016): This work was presented at IJCAI 2016

and contains a parameterized complexity analysis of the ΣP
2 -complete problem

of finding a Pareto-efficient and envy-free allocation of indivisible resources to
agents.
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CHAPTER 2
Background

In this chapter, we present preliminaries for our results. In Section 2.1, we define
concepts from graph theory. Section 2.2 contains preliminaries from complexity theory.
This is followed by background on logic in Section 2.3. Finally, we give an overview of
Answer Set Programming in Section 2.4.

2.1 Graphs

Unless stated otherwise, we assume graphs to be undirected, simple and ordered,
where ordered means that there is an arbitrary but fixed total order over the vertices.
We denote the set of vertices and edges of a graph G by V(G) and E(G), respectively,
and we denote an undirected edge between vertices u and v as (u, v) or equivalently
(v, u). We thus abuse the pair notation even though undirected edges are, strictly
speaking, sets. It will be clear from the context whether an edge (u, v) is directed or
undirected.

Given a graph G, the open neighborhood of a vertex v ∈ V(G), denoted by NG(v),
is the set of all vertices adjacent to v, and NG[v] = NG(v) ∪ {v} is called the closed
neighborhood of v. Let S ⊆ V(G). We abuse notation by writing NG(S) and NG[S] to
denote

⋃
v∈S NG(v) and

⋃
v∈S NG[v], respectively. If it is clear from the context which

graph is meant, we write N(·) and N[·] instead of NG(·) and NG[·], respectively.

Given a graph G and a set of vertices S ⊆ V(G), we say that S induces a subgraph H of
G if V(H) = S and E(H) = E(G) ∩ S2. Similarly, we call H the subgraph of G induced by
S.
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2. Background

2.1.1 Treewidth

For problems whose input can be represented as a graph, treewidth is an important
structural parameter. Intuitively, the smaller the treewidth of a graph, the closer the
graph resembles a tree. The definition is based on the concept of tree decompositions,
which have originally been introduced by Robertson and Seymour (1984). The intuition
behind tree decompositions is to obtain a tree from a (potentially cyclic) graph by
subsuming multiple vertices under one node and thereby isolating the parts responsible
for cyclicity.

Definition 2.1. A tree decomposition of a graph G is a pair T = (T, χ) where T is a
(rooted) tree and χ : V(T) → 2V(G) assigns to each node of T a set of vertices of G
(called the node’s bag), such that the following conditions are met:

1. For every vertex v ∈ V(G), there is a node t ∈ V(T) such that v ∈ χ(t).

2. For every edge (u, v) ∈ E(G), there is a node t ∈ V(T) such that {u, v} ⊆ χ(t).

3. For every v ∈ V(G), the subtree of T induced by {t ∈ V(T) | v ∈ χ(t)} is
connected.1

We call maxt∈V(T)|χ(t)| − 1 the width of T . The treewidth of a graph is the minimum
width over all its tree decompositions.

It is not hard to see that trees have treewidth 1. At the other extreme, a complete graph
with n vertices (often denoted as Kn) and a complete bipartite graph with n vertices in
each part (often denoted as Kn,n) have treewidth n.

In general, constructing an optimal tree decomposition (i.e., a tree decomposition with
minimum width) is intractable (Arnborg, Corneil and Proskurowski 1987). However,
the problem is solvable in linear time on graphs of bounded treewidth (specifically in
time wO(w

3) · n, where w is the treewidth Bodlaender 1996) and there are also heuristics
that offer good performance in practice (Dermaku et al. 2008; Bodlaender and Koster
2010; Bodlaender 2005).

In this work we will consider so-called nice tree decompositions.

Definition 2.2. A tree decomposition T = (T, χ) is nice if each node t ∈ V(T) is of one
of the following types:

1. Leaf node: The node t has no child nodes.

1Equivalently, if a vertex is contained in the bags of two nodes a, b at the same time, then it must be
contained in all bags of nodes between a and b.
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G:

a

b

c

d T : ∅ {a}

tTa

{a, c}

tTc {a, c} {a, b, c}

tTb

{a, b} {a} ∅

{a, c} {a, c, d}

tTd

{c, d} {d} ∅

Figure 2.1: A graph G and a nice tree decomposition T of G rooted at the leftmost node

ϕEx: (u ∨ v) ∧ (¬v ∨ w ∨ x) ∧ (¬w) ∧ (¬x ∨ z) ∧ (¬x ∨ y ∨ ¬z)

GEx: u

v

w

x

y

z

TEx: ∅n6

{x}n5

{v, w, x}n2

{u, v}n1

{x} n4

{x, y, z} n3

Figure 2.2: A propositional formula ϕEx, the primal graph GEx of ϕEx and a tree
decomposition TEx for GEx.

2. Introduce node: The node t has exactly one child node t′ such that χ(t′) ⊂ χ(t)
and |χ(t) \ χ(t′)| = 1.

3. Forget node: The node t has exactly one child node t′ such that χ(t) ⊂ χ(t′) and
|χ(t′) \ χ(t)| = 1.

4. Join node: The node t has exactly two child nodes t1 and t2 with χ(t) = χ(t1) =

χ(t2).

Additionally, the bags of the root and the leaves of T are empty.

A tree decomposition of width w for a graph with n vertices can be transformed into
a nice one of width w with O(wn) nodes in linear time if w is bounded by a constant
(Kloks 1994).

For any tree decomposition T and an element v of some bag in T , we use the notation
tTv to denote the unique “topmost node” whose bag contains v (i.e., tTv does not have a
parent whose bag contains v). Figure 2.1 depicts a graph and a nice tree decomposition,
where we also illustrate the tTv notation.

Example 2.3. Let us introduce a running example based on the Boolean satisfiability
problem (Sat). Given a propositional formula ϕ in conjunctive normal form (CNF,
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2. Background

i.e., a conjunction of disjunctive clauses), we first have to find an appropriate graph
representation. Here, we construct the primal graph G of ϕ, that is, vertices in G
represent atoms of ϕ, and atoms occurring together in a clause form a clique in G. An
example formula ϕEx, its graph representation GEx and a possible tree decomposition
TEx are given in Figure 2.2. The width of TEx is 2. Note that T contains unnecessarily
many nodes: We could obtain another valid tree decomposition for ϕEx by arranging n3,
n2 and n1 in a path. However, we chose T to serve for our example because it is more
suitable for illustrating dynamic programming algorithms like in Example 2.4. 4

2.1.2 Dynamic Programming on Tree Decompositions

Tree decompositions have the important property that, for any tree decomposition T
of a graph G, removing an edge (a, b) from T corresponds to a separation of G into
two parts G1, G2. Each part is the subgraph of G induced by the vertices in the bags
of the respective part of T after removing (a, b). In fact, χ(a) ∩ χ(b) is a separator of G,
which separates G into G1 and G2. This means that by removing χ(a) ∩ χ(b) from G,
there is no path from a vertex that is only in G1 to a vertex that is only in G2 or vice
versa. Indeed, it is easy to verify by Definition 2.1 that there can be no edges between
elements of V(G1) \V(G2) and elements of V(G2) \V(G1).

This separation property is crucial for a certain way of solving problems that follows
the principle of dynamic programming. We briefly sketch the basic intuition. Assume
we are given a graph G along with a separation into two parts G1, G2, and we want to
decide if G has a certain property. Furthermore, suppose that we are lucky and this
problem can be solved by an algorithm with the convenient property that, intuitively,
the “decisions” on the status of a vertex can only affect the status of neighboring
vertices (possibly in a transitive way). First we try out and record all possible decisions
on the status of the vertices in G1. In a way, we now “know everything” about the
vertices in V(G1) \V(G2) because we have considered the effects of our decisions on
these vertices and all their neighbors. Hence we can now forget all information that
we have stored about V(G1) \ V(G2) and just keep the information concerning the
separator V(G1) ∩V(G2). Using this information, we can now consider V(G2) \V(G1).
Intuitively, the influence of the now forgotten part on V(G2) is all captured by the
information we stored about V(G1) ∩V(G2).

This dynamic-programming-based approach allows us to solve many problems, but the
running times are clearly infeasible in general. However, in many cases this idea leads
to linear-time algorithms under the condition that the graph can be separated into parts
whose sizes are bounded by a constant. In particular, dynamic programming on tree
decompositions is a common technique for obtaining algorithms whose running times
are often linear if the treewidth of the instances is bounded by a constant.

In tree-decomposition-based dynamic programming algorithms, we usually traverse
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r D P
61 (51), (52)

n6

r D P
51 x (21, 41), (22, 41)

52 (23, 42)

n5

r D P
21 v, x (11), (13)

22 x (12)

23 (12)

n2

r D P
11 u, v ()

12 u ()

13 v ()

n1

r D P
41 x (31)

42 (32), (33), (34), (35)

n4

r D P
31 x, y, z ()

32 y, z ()

33 y ()

34 z ()

35 ()

n3

Figure 2.3: Dynamic programming computation for Sat

the tree decomposition in post-order. At each node, we compute partial solutions for
the subgraph induced by the vertices encountered so far and we store them in a table
associated with the node. For many problems, the time to compute the table of a tree
decomposition node only depends on the treewidth. Albeit this running time may
be exponential in the treewidth, it is still constant if the treewidth is bounded by a
constant. As we may assume that the size of a tree decomposition is linear in the size of
the input, we can thus compute all tables in linear time and finally decide the problem
by just inspecting the table at the root node.

For some problems, we may be slightly less lucky and obtain an algorithm where
the time for computing a table depends on the treewidth and the input size, but the
dependence on the input size is only polynomial. In this case, even though the running
time is not linear anymore, such an algorithm may still be attractive for intractable
problems because it solves the problem in polynomial time on instances of bounded
treewidth.

To illustrate dynamic programming with an example, we now describe an algorithm
for the Sat problem (Samer and Szeider 2010).

Example 2.4. Figure 2.3 illustrates a dynamic programming computation for the Sat

instance from Figure 2.2. We compute the tables as follows. For a tree decomposition
node n, each table row r consists of a set D(r) and a set P(r). The set D(r), where D
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2. Background

stands for “data”, stores partial truth assignments over atoms in χ(n). We represent a
truth assignment as the set of atoms it sets to “true”. Hence D(r) contains the atoms
that get assigned “true”, whereas atoms in χ(n) \D(r) get assigned “false”. We only
store a row r if all clauses covered by χ(n) are satisfied by the respective partial truth
assignment. The set P(r) contains so-called “extension pointer tuples” (EPTs) that
denote rows in the child tables that we used for constructing r.

First consider node n1. Here, χ(n1) = {u, v} covers the clause (u ∨ v), which yields
three partial assignments for ϕEx. In n2, the child rows are extended, the partial
assignments are updated (by removing atoms not contained in χ(n2) and guessing
truth assignments for atoms in χ(n2) \ χ(n1)). Here, the clauses (¬v ∨w ∨ x) and (¬w)

have to be satisfied. Observe that row 21 is constructed from two different child rows.
In n3 we proceed as described before. In n4, data concerning the removed vertices y
and z are projected away. In n5, we additionally only join partial assignments that agree
on the truth assignment for common atoms. We continue this procedure recursively
until we reach the root of the tree decomposition.

To decide whether the formula is satisfiable, it suffices to check if the table in the root
node is non-empty. The overall procedure runs in linear time on instances of bounded
treewidth because the number of nodes in the tree decomposition is bounded by the
input size (i.e., the number of atoms), and each node t is associated with a table of size
at most O(2|χ(t)|) (i.e., the number of possible truth assignments).

In our example, ϕEx is satisfiable due to existence of row 61. Solutions (i.e., models of
ϕEx) can even be enumerated with linear delay by starting at the root and following the
EPTs while combining the partial assignments associated with the rows. For instance,
we can obtain the model {u, v, x, y, z} by starting at row 61 and following the EPTs
(51), (21, 41), (11) and (31), thereby combining D(61)∪D(51)∪D(21)∪D(11)∪D(41)∪
D(31). 4

2.2 Computational Complexity

We assume basic familiarity with complexity theory and only recapitulate concepts
that are important for this work. For a detailed introduction, we refer to the book by
Papadimitriou (1994).

The polynomial hierarchy consists of the classes ΣP
k , ΠP

k and ∆P
k of decision problems, for

every nonnegative integer k. These classes are inductively defined as follows:

ΣP
0 = ΠP

0 = ∆P
0 = P

ΣP
k+1 = NPΣP

k

ΠP
k+1 = co-NPΣP

k

∆P
k+1 = PΣP

k

16



2.2. Computational Complexity

P
(equal to ΣP

0 , ΠP
0 , ∆P

0 and ∆P
1 )

ΣP
1(equal to NP) ΠP

1 (equal to co-NP)

∆P
2

ΣP
2 ΠP

2

∆P
3

· · · · · ·

Figure 2.4: Inclusion of classes in the polynomial hierarchy

For any complexity class C, the class PC contains all decision problems that can be
solved in polynomial time by a deterministic Turing machine with access to an oracle for
C. Such an oracle can be seen as a subroutine that runs in constant time and can solve
all problems in C. The class NPC is defined in an analogous way for nondeterministic
Turing machines. It is known that the following relationship holds.

ΣP
0 ⊆ ΣP

1 ⊆ · · · ⊆ PSPACE

The class PSPACE consists of all problems solvable in polynomial space. All inclusions
are widely believed to be proper. We also get an analogous chain of inclusions for the
complementary classes. Figure 2.4 depicts the relationship between the classes in the
polynomial hierarchy, where an edge from class A to B denotes that A is a subclass of
B. When we speak of the k-th level of the polynomial hierarchy, we mean the classes
ΣP

k , ΠP
k and ∆P

k+1.

For any level k of the polynomial hierarchy, the following problem over quantified
Boolean formulas is the canonical ΣP

k -complete problem:

Qsatk

Input: A formula ∃X1∀X2 · · ·QXk ϕ, where each Xi is a set of proposi-
tional atoms, ϕ is a propositional formula over these atoms, Q is ∀
if k is even and Q is ∃ otherwise.

Question: Is there a truth assignment to the variables in X1 such that for all
truth assignments to the variables in X2 there is a truth assignment
to the variables in X3 such that for all . . . such that ϕ evaluates to
true?
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2. Background

In parameterized complexity theory (Downey and Fellows 1999; Flum and Grohe 2006;
Niedermeier 2006; Cygan et al. 2015), we study the complexity of problems not only in
terms of the input size but also of some parameter of the input that is represented as
an integer.

Definition 2.5. First we fix a finite alphabet Σ and denote the set of all finite strings
over Σ by Σ∗. A parameterized problem is a subset of Σ∗ × N. We call each element
(x, k) ∈ Σ∗ ×N an instance of the problem and we call k the parameter of the instance.

We say that an algorithm solves a parameterized problem P if, for any instance (x, k) of
P, it correctly decides if (x, k) ∈ P.

The central concept in parameterized complexity theory is called fixed-parameter tractabil-
ity (FPT).

Definition 2.6. A parameterized problem is in the class FPT if it can be solved in time
f (k) · nc, where n is the input size, k is the parameter, f is a computable function that
only depends on k, and c is a constant. We call a running time of this form FPT time
and we say that such problems and algorithms are fixed-parameter tractable (FPT). An
FPT algorithm is fixed-parameter linear if c = 1.

The nice thing about FPT algorithms is that they run in polynomial time if the parameter
is bounded by a constant. This assumption may reasonable in practice because, for
some parameters, real-world instances usually have small parameter values and thus
do not represent the worst case. Clearly every problem in P is in FPT for any choice of
parameter.

A similar class, which also offers polynomial running times for fixed parameter values,
is called XP, which stands for “slice-wise polynomial”.

Definition 2.7. A parameterized problem is in XP if it can be solved in time f (k) · ng(k),
where n is the input size, k is the parameter, and f and g are computable functions that
only depend on k.

Note that here the degree of the polynomial may depend on k, so such algorithms
are generally slower than FPT algorithms. Still, membership in XP is good news for
problems that are NP-hard in the classical sense.

If we have a problem that is complete for a classical complexity class C, then bad news
would be if we could prove that this problem is also C-hard for a fixed value of the
parameter. In such a case, we say that the problem is para-C-hard, which means that
the parameter is useless in terms of complexity. Consider the following well-known
NP-complete problem for example.
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Graph Coloring

Input: A graph G and an integer k

Question: Is there a proper k-coloringa of G?

aA proper k-coloring of a graph G is a mapping V(G) → {1, . . . , k} such that any two
adjacent vertices have different colors.

Since this problem is NP-hard for k = 3, it is para-NP-hard when we parameterize it
by the number of colors. Thus assuming that the number of colors is bounded by a
constant (of at least three) clearly does not help us in lowering the complexity of this
problem.

The class FPT is included in XP, and there are several classes in between. In this
work, we only require the class W[1]. It holds that FPT ⊆ W[1] ⊆ XP, and it is
commonly believed that the inclusions are proper. This means that W[1]-hard problems
presumably do not admit FPT algorithms.

We can show that a problem is W[1]-hard by reducing from a known W[1]-hard problem.
However, for parameterized hardness results, we need slightly different reductions
than the usual polynomial-time reductions that we encounter in classical complexity
theory. Intuitively, we require that a reduction is not only correct but also that it runs
in FPT time (as opposed to classical polynomial-time reductions) and that it does not
lead to an “excessive” increase in the parameter value.

Definition 2.8. An algorithm that transforms each instance (x, k) of a parameterized
problem P into an instance (x′, k′) of a parameterized problem Q is an FPT reduction if
it satisfies the following conditions:

1. It holds that (x, k) ∈ P if and only if (x′, k′) ∈ Q.

2. The algorithm runs in FPT time.

3. There is a computable function f such that k′ 6 f (k).

2.3 Logic

In this thesis, we will use monadic second-order logic (MSO) to express properties of
relational structures. In particular, we will use the notion of MSO transductions to
formally characterize mappings that transform a structure to another structure. We
define relevant concepts about structures, MSO and MSO transductions in Sections 2.3.1,
2.3.2 and 2.3.3, respectively.
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2.3.1 Relational Structures

Relational structures are a basic concept in mathematical logic, (finite) model theory
and databases (Libkin 2004; Abiteboul, Hull and Vianu 1995). First-order logic and its
extensions, such as MSO, allow us to express properties of relational structures, which
are used as interpretations for formulas. In order to state a formula in such a language,
it is necessary to first fix a signature, which determines the vocabulary that we may
use in the formula alongside the logical symbols. That is, we need to fix a certain set
of relation symbols over which we can then define formulas and relational structures,
which may or may not satisfy these formulas.

Definition 2.9. A relational signature (or just “signature”) is a finite set σ of relation
symbols, where each symbol R ∈ σ has a corresponding arity ρσ(R), which is a
nonnegative integer. We write ρ(σ) to denote the maximum arity of any relation
symbol in σ.2

Signatures allow us to define relational structures over them.

Definition 2.10. A relational structure (or just “structure”) A over a signature σ consists
of a finite domain dom(A) and, for every R ∈ σ, a relation RA ⊆ dom(A)ρσ(R). When-
ever a relation RA contains a tuple a, we say that R(a) is a fact in A, and we say that
the elements of a are the arguments of that fact.

Example 2.11. For representing directed graphs, it is customary to use the signature
σ = {E} with ρσ(E) = 2. We can now represent a directed graph G as a relational
structure G over σ by choosing dom(G) = V(G) and EG = E(G).

Alternatively, we can also represent G in a slightly more complex way as an “incidence
structure”: For this, we use the signature τ = {E, in1, in2}, where ρτ(E) = 1 and
ρτ(in1) = ρτ(in2) = 2. The intended meaning of the abbreviation “in” is “incident”.
Now we can define the structure S over τ via dom(S) = V(G) ∪ E(G), and for each
edge e from vertex a to b it holds that e ∈ ES , 〈e, a〉 ∈ inS1 and 〈e, b〉 ∈ inS2 . 4

Generalizing this example, an incidence structure is a relational structure that in turn
represents a relational structure in a certain way. Namely, the domain of an incidence
structure is a superset of the domain of the base structure that additionally contains
all facts of the base structure (each as an “atomic element”). Each relation symbol of
the base structure, regardless of its arity, is a unary relation symbol in the incidence
structure, and can be used to express that a domain element is a fact from the respective
relation of the base structure. To associate facts with their arguments, incidence
structures possess binary relations ini, which contain a pair 〈 f , a〉 whenever f is a fact
in the base structure that has a as its i-th argument. We now define this formally.

2Note that signatures are usually defined to also contain function symbols including constants, but we
only require relation symbols for our purposes.
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Definition 2.12. Let A be a relational structure over a signature σ. We define the
signature Inc(σ) = σ ∪ {in1, . . . , inρ(σ)}, where ρInc(σ)(R) = 1 for every R ∈ σ, and
ρInc(σ)(ini) = 2 for 1 6 i 6 ρ(σ). We call Inc(σ) the incidence signature of σ. Now the
incidence structure of A is the structure Inc(A) over Inc(σ) whose domain is dom(A) ∪
{R(a) | R ∈ σ, a ∈ RA}, where each R ∈ σ is interpreted as RInc(A) = {R(a) | a ∈ RA},
and each inInc(A)

i is the set of all pairs 〈R(a), b〉 such that R(a) is a fact in A and b is
the i-th element of a. We call A the base structure of Inc(A), and σ the base signature of
Inc(σ).3

In order to apply some graph-theoretic concepts (like, e.g., treewidth) to structures, we
use the following common way of representing a structure as a graph.

Definition 2.13. The Gaifman graph of a structure A is the undirected graph whose
vertices are the domain elements of A and that has an edge between two different
elements if they occur together in a fact of A.

This notion can be used to define several parameters of structures, which is important
because computational tasks may become easier if these parameters are bounded.

Definition 2.14. The degree of a domain element of a structure A is its degree in the
Gaifman graph of A, and the degree of A is the maximum degree of its Gaifman graph.

Definition 2.15. The distance between two domain elements of a structure is the their
distance in the Gaifman graph of the structure.

Definition 2.16. The treewidth of a structure is the treewidth of its Gaifman graph.

2.3.2 MSO

Monadic second-order (MSO) logic is an extension of first-order logic by quantification
over unary relations, that is, sets. We briefly state its syntax and semantics. For this, we
assume familiarity with first-order logic. Detailed accounts of MSO can be found in the
books by Libkin (2004), Flum and Grohe (2006) and Courcelle and Engelfriet (2012).

All logical symbols from first-order logic are also available in MSO, that is, logical
connectives (¬, ∧, ∨ and →), first-order quantifiers (∀, ∃), parentheses, commas, the
equality symbol and infinitely many individual variables, which are usually written in
lower case. In addition, MSO has logical symbols for second-order quantifiers (which we

3Note that we concealed a detail in this definition: Name clashes may occur when the base signature
contains a relation symbol of the form ini. For this reason, relation symbols in a signature σ can be thought
of technically containing σ as an additional subscript. However, we will refrain from overburdening the
notation in this way. Instead we appeal to the intuition of the reader, since it will be clear from the context
which signature we are referring to when we use a relation symbol.
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also write as ∀ and ∃) and set variables, which are usually written in upper case. The
available relation symbols are given by a signature as defined in Definition 2.9.4

Definition 2.17. Let σ be a relational signature. We inductively define the set of MSO
formulas over σ (or just “formulas” if no confusions arise) as follows:

• The expression x = y, where x and y are individual or set variables, is a formula.

• The expression x ∈ X, where x is an individual variable and X is a set variable, is
a formula.

• An expression of the form R(x1, . . . , xρσ(R)), where R ∈ σ and x1, . . . , xρσ(R) are
individual variables, is a formula.

• If ϕ and ψ are formulas, then also ¬ϕ, ϕ ∧ ψ, ϕ ∨ ψ, ϕ→ ψ, ∃x ϕ, ∀x ϕ, ∃X ϕ and
∀X ϕ are formulas, where x and X are individual and set variables, respectively.

As in first-order logic, we say that a variable is free in a formula if it has an occurrence
that is not bound by a quantifier.

Next we state the semantics of MSO by defining a satisfaction relation |=.

Definition 2.18. Let ϕ be an MSO formula over a signature σ, A be a relational structure
over σ and α be a variable assignment that maps each free individual variable in ϕ to
an element of dom(A) and each free set variable in ϕ to a subset of dom(A). To define
when (A, α) |= ϕ holds, we distinguish the different forms that ϕ can have:

• We write (A, α) |= x = y, where x and y are individual or set variables, if
α(x) = α(y).

• We write (A, α) |= x ∈ X if α(x) ∈ α(X).

• We write (A, α) |= R(x1, . . . , xn) if 〈α(x1), . . . , α(xn)〉 ∈ RA.

• We write (A, α) |= ¬ψ if (A, α) |= ψ does not hold.

• We write (A, α) |= ψ1 ∧ ψ2 if both (A, α) |= ψ1 and (A, α) |= ψ1.

• We write (A, α) |= ∃X ψ if (A, α′) |= ψ holds for some assignment α′ of the free

variables occurring in ψ such that α′
X∼ α.

Here, α′
X∼ α denotes that α′(y) = α(y) for all individual or set variables y

different from X, and α′(X) is an arbitrary subset of dom(A).
4In general, MSO also allows for function and constant symbols, but we omit these because we will

not need them.
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• We write (A, α) |= ∃x ψ if (A, α′) |= ψ holds for some assignment α′ of the free
variables occurring in ψ such that α′

x∼ α.

Here, α′
x∼ α denotes that α′(y) = α(y) for all individual or set variables y

different from x, and α′(x) is an arbitrary element of dom(A).

The semantics for formulas involving the symbols ∨,→ and ∀ can be derived from the
cases for ∧, ¬ and ∃ just as in first-order logic. If (A, α) |= ϕ holds for all α, then we
also write A |= ϕ and say that ϕ is true under A. We write A |= ϕ(a), where a is a
tuple of elements or subsets of dom(A), to denote (A, α) |= ϕ, where α is the variable
assignment that sets the free variables x in ϕ to a.

It is well known that for any fixed MSO (and even first-order) formula ϕ without free
variables, the problem of deciding whether A |= ϕ holds for a given structure A is
PSPACE-complete.

The following result, which is known as Courcelle’s theorem, states a useful connection
between MSO and the complexity of problems parameterized by treewidth.

Theorem 2.19 (Courcelle (1990) and Courcelle (1992)). Let ϕ be a fixed MSO formula
without free variables over a signature σ. There is an algorithm that decides in fixed-parameter
linear time whether A |= ϕ holds for a given relational structure A over σ, where the parameter
is the treewidth of A.

Thus, if we can express a problem in MSO, then it is FPT when parameterized by
treewidth.

2.3.3 MSO Transductions

MSO can not only be used for deriving FPT results via Courcelle’s theorem, but also
for studying how the treewidth changes when we transform a structure into another
structure. MSO transductions (Courcelle and Engelfriet 2012) are such transformations
on structures that guarantee that the treewidth of the “output structure” is always
bounded by the treewidth of the “input structure”.5

Definition 2.20 (Courcelle and Engelfriet (2012, Definition 7.2)). A definition scheme
from a signature σ to a signature σ′ is a tuple 〈∆, Θ〉 whose elements are tuples of MSO
formulas of the following kind, where I denotes a finite set of arbitrary objects:6

5Actually Courcelle and Engelfriet (2012) define MSO transductions in much greater generality than
we do here. We restrict ourselves to a special case because it suffices for our purposes.

6We do not specify the exact order of the elements of ∆ and Θ for the following reason: We assume
that the subscripts that we use in the definition of the contained formulas are ordered in an arbitrary way.
From this we can obtain the order of the elements from the order of their subscripts.
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• For each i ∈ I, the tuple ∆ contains a formula δi with one free variable x. We call
these formulas domain formulas.

• For each R′ ∈ σ′ of arity k and all 〈i1, . . . , ik〉 ∈ Ik, the tuple Θ contains a formula
ϑR′,i1,...,ik with k free variables x1, . . . , xk. We call these formulas relation formulas.

The intended meaning of the formulas in a definition scheme 〈∆, Θ〉 is that they define
how to transform an “input structure” A into an “output structure” A′ in the following
way: For every element a ∈ dom(A) and each formula δi such that A |= δi(a), we put
a copy of a called (a, i) into dom(A′). The domain formulas thus define the domain of
the output structure. The relation formulas in turn define the relations in the output
structure by determining which of the copies of the old domain elements are together
in a relation.

Definition 2.21. A function that maps a structure A over a signature σ to a structure
A′ over a signature σ′ is an MSO transduction from σ to σ′ if there is a definition scheme
〈∆, Θ〉 that satisfies the following conditions:

• For each a ∈ dom(A) and δi contained in ∆, if A |= δi(a), then dom(A′) contains
an element (a, i).

This condition exactly characterizes the domain of A′, that is, dom(A′) only
contains such elements of the form (a, i) and no others.

• For each R′ ∈ σ′ of arity k, all δi1 , . . . , δik occurring in ∆ and all 〈a1, . . . , ak〉 ∈
dom(A)k, if A |= ϑR′,i1,...,ik(a1, . . . , ak) holds in addition to A |= δij(aj) for every j,
then R′A

′
contains a tuple 〈(a1, i1), . . . , (ak, ik)〉.

This condition exactly characterizes each relation of A′.

We call A an input structure of the transduction and A′ is the corresponding output
structure.

Thus an MSO transduction allows us to copy an input structure a fixed number of
times, to filter those domain elements that satisfy a domain formula, and to define the
relations of the output structure in terms of the relations of the input structure via the
relation formulas. It is time for some examples (taken from the book by Courcelle and
Engelfriet (2012), which contains several more).

Example 2.22. The following definition scheme formalizes an MSO transduction that
transforms a structure G representing a directed graph into a structure G ′ representing
the same graph but without without loops and isolated vertices. We represent directed
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graphs as structures as in Example 2.11 using the signature consisting just of the binary
relation symbol E.7

δ1(x) ≡ ∃y
(
(E(x, y) ∨ E(y, x)) ∧ x 6= y

)
ϑ1,1(x, y) ≡ E(x, y) ∧ x 6= y

As there is only one domain formula, we make at most one copy for each vertex in G.
In fact, by δ1, we put a copy (v, 1) into G ′ for each vertex v that is adjacent to another
vertex. This removes isolated vertices. The relation formula ϑ1,1 then makes sure that
we draw an edge from a copy (v, 1) to a copy (w, 1) if and only if G contains an edge
from v to w and v 6= w. 4

Example 2.23. We define an MSO transduction that makes two copies of a directed
graph and, for each vertex v with copies (v, 1) and (v, 2), draws an edge from (v, 1) to
(v, 2).

δ1(x) ≡ δ2(x) ≡ >
ϑ1,1(x, y) ≡ ϑ2,2(x, y) ≡ E(x, y)

ϑ1,2(x, y) ≡ x = y

ϑ2,1(x, y) ≡ ⊥

The domain formulas unconditionally make two copies of each vertex. The formula ϑ1,1

then draws an edge from (v, 1) to (w, 1) if there was an edge from v to w, and ϑ2,2 does
the same for the copies with number 2. So far we get two copies of the input graph.
Now ϑ1,2 draws an edge from (v, 1) to (v, 2) for any vertex v. 4

Not all transformations on structures are MSO transductions. In fact, the following
observation, which follows from the definition of MSO transductions, gives us an
indication of when it is not possible to find an MSO transduction for a transformation
on structures.

Proposition 2.24 (Courcelle and Engelfriet (2012, Fact 1.37)). For every MSO transduction
τ there is an integer k such that every input structure A of τ satisfies |dom(τ(A))| 6
k · |dom(A)|.

Conversely, if we have a transformation on structures that leads to a more than linear
increase in the domain size, then this transformation is no MSO transduction.

The following theorem follows from Courcelle and Engelfriet (2012, Theorem 7.47).8

7Since there is only a single relation symbol E in the signature, we write ϑi,j instead of ϑE,i,j.
8Theorem 7.47 in that work is stated for transductions on (incidence) graphs, but generalizes to

(incidence) structures by the following observations (Bruno Courcelle, personal communication): From
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Theorem 2.25. Let σ and σ′ be relational signatures and let τ be a fixed MSO transduction
from Inc(σ) to Inc(σ′). For every relational structure A over σ, the treewidth of A′ depends
only on the treewidth of A, where A′ denotes the structure such that τ(Inc(A)) = Inc(A′)
holds.

What this theorem says is that a transformation that turns A into A′ preserves bounded
treewidth if we can find an MSO transduction that turns Inc(A) into Inc(A′).

Example 2.26 (based on Courcelle and Engelfriet (2012, Example 7.44)). Consider a
mapping f that turns a directed graph G into a directed graph G′ such that each edge
(v, w) in G is replaced by the path (v, e, w), where e is a new vertex corresponding to
(v, w). Formally, V(G′) = V(G) ∪ E(G) and E(G′) = {〈v, (v, w)〉, 〈(v, w), w〉 | (v, w) ∈
E(G)}. We will show that f preserves bounded treewidth, that is, for each element G
of a class of graphs of bounded treewidth, f (G) also has bounded treewidth.

We will use Theorem 2.25, but it applies to MSO transductions that transform incidence
structures, so we must present a definition scheme for a transduction that operates on
incidence structures of directed graphs (cf. Definition 2.12). To this end, we represent a
directed graph G as a structure G over the signature {E, in1, in2} as follows, where E
is unary, and in1 and in2 are binary relation symbols: We use dom(G) = V(G) ∪ E(E),
EG = E(G), inG1 = {〈(v, w), v〉 | (v, w) ∈ E(G)} and inG2 = {〈(v, w), w〉 | (v, w) ∈
E(G)}.

The transduction given by the following definition scheme makes three copies of a
graph G and constructs the desired graph G′ from these copies by filtering vertices and
drawing appropriate edges.

δ1(x) ≡ >
δ2(x) ≡ δ3(x) ≡ E(x)

ϑE,1(x) ≡ ⊥
ϑE,2(x) ≡ ϑE,3(x) ≡ >

ϑin1,2,1(x, y) ≡ in1(x, y)

ϑin1,3,1(x, y) ≡ ϑin2,2,1(x, y) ≡ E(x) ∧ x = y

ϑin2,3,1(x, y) ≡ in2(x, y)

every MSO transduction that transforms Inc(A) into Inc(A′) we easily get an MSO transduction that
transforms G into G′, where G and G′ are the incidence graphs of A and A′, respectively. Thus the
clique-width of G′ depends only on the clique-width of G by Courcelle and Engelfriet (2012, Theorem 7.47).
Since incidence structures are uniformly q-sparse (see Courcelle and Engelfriet 2012, Definition 9.36),
where q depends on the signature, bounded clique-width coincides with bounded treewidth by Courcelle
and Engelfriet (2012, Theorem 9.62). We thus get that the treewidth of Inc(A′) depends only on the
treewidth of Inc(A). Since the treewidth of a structure is linearly related to the treewidth of its incidence
structure, the treewidth of A′ depends only on the treewidth of A.
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2.4. Answer Set Programming

All other formulas ϑini ,j,k are defined as ⊥.

For each vertex or edge in G, we have a vertex in G′. The formula δ1 creates these
elements and by ϑE,1, which is defined as ⊥, these elements are not edges but vertices.

For each edge e from v to w in G, we have two edges in G′, namely (v, e) and (e, w).
Since δ2(e) and δ3(e) are true (under G), we correctly create these elements, and they
are indeed edges as ϑE,2(e) and ϑE,3(e) are true. The formulas ϑini ,j,k make sure that
these edges are incident to the correct vertices.

For instance, let e be an edge from v to w in G. Since δ1(e), δ1(v) and δ2(e) are true, we
create the elements (e, 1), (v, 1) and (e, 2). The elements (e, 1) and (v, 1) are the vertices
in G′ corresponding to e and v, respectively. The element (e, 2) shall represent the edge
from (v, 1) to (e, 1) in G′, and indeed ϑin1,2,1(e, v) and ϑin2,2,1(e, e) are true. The former
dictates that the edge (e, 2) starts at (v, 1), and the latter makes this edge go to (e, 1).

Note that we would not have been able to define this graph transformation without
incidence signatures: We had to create a vertex in the output for every edge in the
input, but without using an incidence signature the edges of the input would not have
been available in the domain. The only possibility of obtaining vertices in the output
would have been to copy vertices of the input – but the number of edges in a graph can
be quadratic in the number of vertices. Since MSO transductions can only copy each
domain element a constant number of times, there would have been no way to make
enough copies. Indeed, Proposition 2.24 tells us that this transformation is not an MSO
transduction if we only have vertices in the domain of the input structure. 4

2.4 Answer Set Programming

Answer Set Programming (ASP) (Gelfond and Lifschitz 1988; Marek and Truszczyński
1999) is a declarative problem solving paradigm that enjoys considerable popularity for
solving computationally hard combinatorial problems. Introductions can be found in
works by (Brewka, Eiter and Truszczyński 2011; Gebser et al. 2012; Lifschitz 2008). ASP
offers a convenient, powerful language for encoding problems in a succinct way. Its
main feature is that the user only needs to write a formal specification of the problem,
whereas the actual computation is delegated to dedicated systems (see, e.g., Gebser
et al. 2007; Alviano et al. 2013; Alviano et al. 2015; Leone et al. 2006; Elkabani, Pontelli
and Son 2005). ASP has been used in many areas. Prominent applications include
problems in bioinformatics (Gebser et al. 2011), product configuration (Soininen and
Niemelä 1998) and decision support systems for space shuttle controllers (Nogueira
et al. 2001).

When solving a problem in ASP, we specify a set of rules that formalize conditions that
the solutions must fulfill. As we will see, this allows us to solve problems on a very
high level of abstraction. The high declarativity is amplified by the fact that the order of
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the rules (and the order of the elements within a rule) is irrelevant. This is in contrast
to related languages such as Prolog, where order does matter in general.

2.4.1 Historical Influences on ASP

Rules in ASP in fact look very similar to logic programs in Prolog. It is important to
note, however, that the two languages are quite different. Although one of the roots
of ASP is indeed logic programming as understood by Prolog, the focus of the latter
is on finding proofs of certain goals (Lloyd 1987), whereas with ASP the focus is on
finding models of logical expressions. In this respect, ASP resembles more Boolean
satisfiability (Sat) solving (Biere et al. 2009). Indeed, state-of-the-art solvers for ASP
use techniques that are heavily influenced by Sat solvers and often perform quite well
on very hard problems even on instances of considerable size. Moreover, ASP solvers
have also been influenced by techniques from constraint satisfaction (Rossi, Beek and
Walsh 2006; Dechter 2003).

Beside logic programming (as understood by Prolog), Sat solving and constraint
satisfaction, ASP also has roots in knowledge representation (Harmelen, Lifschitz
and Porter 2008) – in particular in non-monotonic reasoning. In fact, ASP has a non-
monotonic semantics, that is, solutions may be invalidated by adding new information.

Finally, one of the major influences of ASP have been deductive databases and especially
the well-known query language Datalog (Ceri, Gottlob and Tanca 1990; Abiteboul, Hull
and Vianu 1995). Indeed, Datalog can be seen as a restricted version of ASP. The
restrictions of Datalog compared to ASP guarantee that a Datalog program always has
exactly one solution, whereas ASP programs may have zero, one or many solutions.

2.4.2 Examples for Problem Solving in ASP

The fact that ASP programs may have many solutions in general can actually be
considered a very useful feature. This typically allows us to write ASP programs in
such a way that solution candidates may be non-deterministically guessed and, by
subsequently enforcing the constraints that solutions of the problem must obey, the
solutions of the problem correspond exactly to the solutions of the ASP program. In
ASP, we can thus solve many problem with a guess-and-check approach, which allows
for succinct specifications that are easy to understand.

Example 2.27. Even though we yet have to define the syntax and semantics of ASP, we
present a program to give an intuition of problem solving with ASP. Consider the fol-
lowing ASP program, which encodes the NP-complete 3-Colorability problem, which
is a special case of the Graph Coloring problem that we considered in Section 2.2.
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red(X) ∨ green(X) ∨ blue(X)← vertex(X).
⊥ ← edge(X,Y), red(X), red(Y).
⊥ ← edge(X,Y), green(X), green(Y).
⊥ ← edge(X,Y), blue(X), blue(Y).

In the first line, we guess a color for each vertex. The remaining lines enforce that
adjacent vertices do not have the same color. We can give this program to an ASP system
together with an input graph specified using the vertex and edge predicates, and the
system will print all proper 3-colorings of the graph. (As we will see, solutions of ASP
programs must satisfy a certain kind of minimality as per the answer-set semantics.
This ensures that a vertex cannot have two colors.) 4

Next we give an example containing advanced ASP language constructs called weak
constraints and aggregates. With weak constraints, we can compute solutions that
minimize a certain function. Intuitively, weak constraints specify conditions that, when
violated, incur a penalty on the cost of a solution, and we are looking for solutions
of minimum cost. Aggregates are constructs that, for instance, allow us to compare a
value to a certain sums of integers.

Example 2.28. Suppose we want to solve a knapsack problem where we are given a
capacity c as a positive integer, a set S of objects, and for each object x ∈ S, a positive
integer wx for the weight of x and a positive integer vx for the value of x. The objective
is to find a subset K of S such that ∑x∈K wx 6 c and the sum ∑x∈K vx is maximal
over all such subsets. The following ASP program encodes this problem. We assume
that each object x is declared in the input as object(x), its weight and value are
given by weight(x, wx) and value(x, vx), respectively, and the capacity c is given by
capacity(c).

take(X) ∨ leave(X)← object(X).
⊥ ← #sum{ W,X : take(X), weight(X,W) } > C, capacity(C).

 take(X), value(X,V). [−V,X]

In the first line, we guess for each object if we take it into our subset K or not.

The constraint on the second line enforces the capacity bound. Intuitively, the : sym-
bol can be read as “such that”. In natural language, the aggregate #sum{ W,X :
take(X), weight(X,W) } > C expresses “the sum of all weights W of objects X such
that we take X into K and X has weight W is greater than C”. The reason that we write
W,X and not just W is that otherwise duplicate weights would be eliminated; this is not
what we want because multiple objects may have the same weight. The #sum aggregate
always sums over just the first element in each tuple (in the set of tuples satisfying the
condition to the right of the : symbol) while the remaining elements of the tuples are
just for avoiding elimination of duplicates.
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The third line is a weak constraint, indicated by the  symbol. Intuitively, it says that
“if we take an object X of value V into our solution candidate K, then add −V to the
cost of K”. Thus the cost of K will always be −∑x∈K vx. Since solutions of the program
minimize the total cost of the solution candidates, this only gives us solutions K where
∑x∈K vx is maximal. Note that again we use −V,X instead of just −V for the same
reason as before. 4

2.4.3 Syntax and Semantics

We now briefly present syntax and semantics of ASP as defined in the ASP-Core-
2 language specification (Calimeri et al. 2015).9 This specification is based on the
semantics defined in the paper by Faber, Pfeifer and Leone (2011), which extends
the classical ASP semantics (Gelfond and Lifschitz 1988) to programs containing
aggregates.10 Moreover, the specification (Calimeri et al. 2015) includes weak constraints.
To keep the presentation clear, we will first introduce ASP without weak constraints
and then note how this concept can be added.

Syntax

A program in ASP is a set of rules, which have the following form:

a1 ∨ . . . ∨ an ← b1, . . . , bk, not bk+1, . . . , not bm.

The head of a rule r is the set denoted by H(r) = {a1, . . . , an}, the positive body
of r is the set B+(r) = {b1, . . . , bk}, and the negative body of r is the set B−(r) =

{not bk+1, . . . , not bm}. The body of r is now defined as B(r) = B+(r) ∪ B−(r).

If the head of a rule is empty, then we call the rule a constraint. When writing a
constraint, we may write ⊥ before the ← symbol or we may just omit ⊥. If the body
of a rule is empty, then we we may omit the ← symbol. If the body of a rule is empty
and the head consists of a single atom, then we call the rule a fact. A program Π is
called positive if the negative body of each rule in Π is empty.

All elements of the heads or the bodies of rules are called atoms. An atom can either
be a predicate atom or an aggregate atom. In rule heads, we only allow predicate atoms.
A predicate atom has the form p(t1, . . . , tn), where p is called a predicate. The elements
t1, . . . , tn in a predicate atom are called terms. A term is either a constant or a variable.

9We reuse substantial parts of the language specification (Calimeri et al. 2015) in our statement of the
syntax and semantics, and we also base parts of our exposition on a paper by Faber, Pfeifer and Leone
(2011). In order to keep the presentation as clear as possible, however, we make some slight simplifications
by omitting some constructs that are allowed by the language specification but not used in this work.

10Many other semantics have been proposed for aggregates in ASP (see., e.g., Pelov, Denecker and
Bruynooghe 2004; Pelov, Denecker and Bruynooghe 2007; Ferraris 2011; Simons, Niemelä and Soininen
2002), but the semantics in the language specification (Calimeri et al. 2015) defines the language such that
various important semantics are in agreement.
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It is customary to write predicates and constants as (strings starting with) lower-
case symbols and variables as (strings starting with) upper-case symbols. Moreover,
constants may be integers. We call a program or a part of a program (like atoms, rules,
etc.) ground if it contains no variables. A predicate is called extensional in a program Π
if it only occurs in rule bodies of Π. A literal is an atom a or its negated form not a.

An aggregate atom has the form

#sum{ e1; . . . ; en } ≺ u,

where e1, . . . , en are aggregate elements, ≺ is either <, 6 =, 6=, > or >, and u is is a
term.11 An aggregate element has the form

t1, . . . , tm : l1, . . . , ln,

where t1, . . . , tm are terms and l1, . . . , ln are predicate atoms (possibly negated by putting
not in front). We call a predicate atom nested if it occurs in an aggregate element, and
we call it unnested otherwise.

We say that a variable occurring in a rule r is global if it occurs in an unnested predicate
atom in r, otherwise it is local.12

A rule r is safe if it satisfies the following conditions:13

1. Every global variable that occurs in r occurs in an unnested predicate atom a in
the positive body of r.

2. Every local variable in an aggregate element t1, . . . , tm : l1, . . . , ln of r occurs in a
positive atom li.

A program is safe if all its rules are safe. We only admit ASP programs that are safe.

Semantics

We define the semantics of ASP in terms of ground programs. For this, we first show
how arbitrary programs can be transformed into ground programs.

11The ASP language specification (Calimeri et al. 2015) also allows for other aggregate functions than
#sum, namely also #count, #max and #min. We will only describe #sum because it is the only aggregate
function that we use in this work.

12Local variables that appear in different aggregate elements of the same rule are different objects even
if we use the same symbol for them.

13Actually Calimeri et al. (2015) use a less restrictive version of safety by also allowing variables to be
bound by aggregate atoms involving equality as the comparison operator, but we omit this to keep the
presentation clearer. Such aggregates do not appear in this thesis. Moreover, the language specification
allows variables to be bound by so-called built-in atoms, which we also omitted because we do not use
them.
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The Herbrand universe of a program Π, denoted by UΠ, is the set of all constants
occurring in Π. The Herbrand base of Π is the set of all predicate atoms that can be
constructed using predicates occurring in Π and constants in UΠ. We denote this set by
BΠ. Subsets of BΠ are called interpretations and intuitively correspond to the predicate
atoms that we set to true while all other predicate atoms are set to false.

A substitution σ in a program Π maps a set of variables to UΠ. For any object x that is Π
itself or part of Π (like atoms, aggregate elements, rules, etc.), we write σ(x) to denote
the result of replacing each variable v in x by σ(v) if σ is defined for this variable. We
say that a substitution γ in Π is a global substitution for a rule r if the domain of γ is
exactly the set of global variables in r. A substitution λ in Π is a local substitution for an
aggregate element e in some rule if the domain of λ is exactly the set of local variables in
e.

Given a set E of aggregate elements from a rule without global variables, we write
inst(E) to denote the following set: For each aggregate element e ∈ E and each local
substitution λ for e, the ground aggregate element λ(e) is in inst(E). Now, for any
global substitution γ for a rule r, we can obtain a corresponding ground instance of r by
the following two steps:

1. We first replace r with γ(r).

2. We replace each aggregate atom #sum{ e1; . . . ; en } ≺ u occurring in γ(r) by the
ground aggregate atom #sum{ inst({e1, . . . , en}) } ≺ u.14

We now define the ground instantiation Ground(Π) of a program Π as the set of all
ground instances of all rules in Π. It is easy to see that Ground(Π) is indeed a ground
program.

The following example of ground instantiations is from Faber, Pfeifer and Leone (2011,
Example 2.7).

Example 2.29. Let Π be the following program:

q(1) ∨ p(2, 2).
q(2) ∨ p(2, 1).
t(X)← q(X), #sum{ Y : p(X,Y) } > 1.

The Herbrand universe UΠ is {1, 2} and the ground instantiation Ground(Π) is the
following ground program:

q(1) ∨ p(2, 2).
q(2) ∨ p(2, 1).
t(1)← q(1), #sum{ 1 : p(1, 1); 2 : p(1, 2) } > 1.
t(2)← q(2), #sum{ 1 : p(2, 1); 2 : p(2, 2) } > 1. 4

14For this, we write the resulting aggregate elements in any order and separate them with ; symbols.
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Given an interpretation I of a program Π, we say that a ground predicate atom a is true
under I if a ∈ I, otherwise it is false. Similarly, we say that a negated ground predicate
atom a, written as not a, is true under I if a /∈ I, otherwise it is false. Before we define
the conditions under which aggregate atoms are true, we define eval(E, I), where E is a
set of ground aggregate elements, as the set consisting of those tuples 〈t1, . . . , tm〉 such
that E contains an element t1, . . . , tm : l1, . . . , ln and all of l1, . . . , ln are true under I. Now
we define that a ground aggregate atom #sum{ e1; . . . ; en } ≺ u is true under I if s ≺ u,
where s is the sum of all integers in the multiset {t1 | (t1, . . . , tm) ∈ eval({e1, . . . , en})}.

An interpretation I of a program Π satisfies a rule r in Ground(Π) if B(r) being true
under I implies H(r) being true under I. We say that I is a model of Π if it satisfies
every rule in Ground(Π).

Only models satisfying a certain minimality condition are answer sets of a program.
For this, we define ΠI , called the reduct of a program Π w.r.t. an interpretation I, as the
set of those rules in Ground(Π) whose body elements are all true under I. Now I is an
answer set of Π if I is a model of Π and no proper subset of I is a model of Π. Given an
answer set I and a predicate p, we say that the set {〈t1, . . . , tn〉 | p(t1, . . . , tn) ∈ I} is the
extension of p under I.

Weak Constraints

Beside rules, ASP programs may contain weak constraints. These are expressions of the
following form:

 b1, . . . , bk, not bk+1, . . . , not bm. [w @ l, t1, . . . , tn]

All definitions about the syntax of rules also apply to weak constraints except for the
fact that weak constraints always have an empty head and they contain the expression
[w @ l, t1, . . . , tn], where w and l are terms called the weight and level of the weak
constraint, respectively, and t1, . . . , tn are terms. We may omit the expression @ l if
l = 0, so by default we assume that a weak constraint has level 0.

It is straightforward to extend our earlier definition of the ground instantiation of a
program to programs with weak constraints. Answer sets of programs with weak
constraints are defined in the same way as without weak constraints, that is, weak
constraints are not taken into account for determining whether an interpretation is an
answer set.

For any interpretation I of a program Π, we define viol(Π, I) as the set of all elements
(w @ l, t1, . . . , tn) such that [w @ l, t1, . . . , tn] occurs in a weak constraint r in Ground(Π)

and every body element of r is true under I. Intuitively, these are the weights (and
levels, etc.) of the weak constraints violated by I.

The idea behind the levels is that minimizing the sum of the weights from weak
constraints with higher levels has priority over minimizing that sum for lower levels.
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We formalize this by defining costl(Π, I) for every integer l as the sum of all integers
in the multiset {w | (w @ l, t1, . . . , tn) ∈ viol(Π, I)}.

Now we say that an answer set I of Π dominates an answer set J of Π if costl(Π, I) <
costl(Π, J) holds for some integer l and at the same time costl′(Π, I) = costl′(Π, J)
holds for all l′ > l. An answer set I of Π is optimal if no answer set of Π dominates it.
We also call optimal answer sets the solutions of Π.

Example 2.30. Consider the following ground program Π, which has three weak
constraints at priority level 2 and one weak constraint at level 1.

p∨ q.
q∨ r.
r∨ p.
 r. [6@2,a]
 p. [3@2,b]
 q, not r. [3@2,c]
 not p. [8@1,d]

For computing the three answer sets {p,q}, {q,r} and {p,r} of this program, the
weak constraints play no role. We now determine the costs of these answer sets.

• The answer set {p,q} violates the second and the third weak constraint, so
cost1(Π, {p,q}) = 0 and cost2(Π, {p,q}) = 6. Note that here it is important that
the two different constants b and c are present in order two distinguish the two
summands, which are both 3. Otherwise the cost at level 2 would only be 3 due
to the discussed elimination of duplicates.

• The answer set {q,r} violates the first and the last weak constraint, so we get
cost1(Π, {q,r}) = 8 and cost2(Π, {q,r}) = 6.

• The answer set {p,r} violates the first two weak constraints, so cost1(Π, {p,r}) =
0 and cost2(Π, {p,r}) = 9.

Clearly {p,r} is dominated by the other two answer sets because its cost at level 2
is higher. The answer sets {p,q} and {q,r} have the same cost at level 2, but {p,q}
dominates {q,r} because its cost at level 1 is lower. Hence {p,q} is the unique optimal
answer set of Π. 4

Although weak constraints are substantially different from rules, in the following we
often say “rules” when in fact we mean “rules or weak constraints”. We thus regard
weak constraints as a special kind of rules in the remainder of this work.
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2.4.4 Complexity

There have been numerous investigations about the complexity of ASP under various
restrictions. For a survey of important results (but without regard to aggregates), see
the work by Dantsin et al. (2001). Here, we only mention those results that are of direct
relevance for our work.

We are mainly interested in the complexity of the following decision problem.

Answer Set Existence

Input: An ASP program Π

Question: Does Π have an answer set?

Sometimes it makes sense to also consider a slightly different problem:

Brave Reasoning

Input: An ASP program Π and a ground predicate atom p

Question: Does an optimal answer set of Π contain p?

First we consider the special case where the programs in the input of these problems
are ground. According to classical results by Eiter and Gottlob (1995), Answer Set

Existence and Brave Reasoning are at the second level of the polynomial hierarchy,
namely complete for ΣP

2 , if the programs are ground and contain neither weak con-
straints nor aggregates. Faber et al. (2008) showed that adding a restricted version
of aggregates does not increase the complexity. This has been extended by Faber,
Pfeifer and Leone (2011), where the same result was obtained without this restriction.
If we add weak constraints (that support different priority levels as we defined them
here), then the complexity of Brave Reasoning increases slightly, namely from ΣP

2
to ∆P

3 (Buccafurri, Leone and Rullo 2000) – but note that this class is still part of the
second level of the polynomial hierarchy. Also note that the complexity of Answer Set

Existence remains the same with or without weak constraints because weak constraints
do not play a role for the question of whether an answer set exists.

Next we consider ASP programs with variables. Note that the size of ground instantia-
tions can be exponential. It is thus not surprising that generally the complexity increases
in the presence of variables. Indeed, Eiter, Gottlob and Mannila (1997) showed that then
the problems are NEXPTIMENP-complete, but they did not consider weak constraints or
aggregates. For the case where aggregates are allowed, the same completeness results
were obtained by Faber et al. (2008). The same work also showed that additionally
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allowing weak constraints leaves Answer Set Existence complete for NEXPTIMENP,
but it makes Brave Reasoning complete for EXPTIMEΣP

2 .

In this work, we are more interested in the data complexity of ASP. The term data
complexity comes from the study of query languages, where we are faced with problem
instances consisting of a query and data, and the question is whether the query holds
on the data (or, more generally, to evaluate the query on the data). Indeed, ASP fits well
into this framework since it is commonly used for encoding a problem as a non-ground
program and then combining this encoding with ground facts describing an actual
instance of that problem. When we are dealing with the data complexity of Answer Set

Existence or Brave Reasoning, we mean the complexity of a variant of the respective
problem where the program in the input is the union of a non-ground part, which is
fixed, and input facts, which may vary.

As the non-ground part Π is fixed and only the input facts F vary when we consider data
complexity, the size of ground instantiations of Π ∪ F is always polynomial in the size
of F. The reason is that then each rule in Π∪ F contains a bounded number of variables,
so each rule can only generate a polynomial number of ground instances. Eiter, Gottlob
and Mannila (1997) and Faber et al. (2008) showed that the data complexity of Answer

Set Existence and Brave Reasoning is in fact the same as the complexity in the
ground case. We summarize this in the following theorems.

Theorem 2.31 (Eiter, Gottlob and Mannila (1997) and Faber et al. (2008)). It is ΣP
2 -

complete to decide for a fixed ASP program Π and a given set F of input facts whether Π ∪ F
has an answer set.

Theorem 2.32 (Eiter, Gottlob and Mannila (1997) and Faber et al. (2008)). It is ∆P
3 -

complete to decide for a fixed ASP program Π and a given set F of input facts whether a given
ground atom is true in an optimal answer set of Π ∪ F.

There have also been some investigations about the expressive power of ASP. Eiter, Got-
tlob and Mannila (1997) showed that ASP captures ΣP

2 (even without weak constraints
or aggregates). This means that ASP, when viewed as a database query language, can
express all queries whose corresponding evaluation problem is in ΣP

2 .

2.4.5 Treewidth of Ground ASP Programs

We can easily apply the parameter treewidth to ground ASP programs by defining a
suitable representation as a graph. For this, we use a notion that is quite similar to the
primal graph of Sat instances that appeared in Example 2.3.

Definition 2.33. The primal graph of a ground ASP program Π is the graph whose
vertices are the predicate atoms occurring in Π and that has an edge between two
atoms if they appear together in a rule in Π.
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On ground ASP programs, the problems Answer Set Existence and Brave Reasoning,
parameterized by the treewidth of the primal graph, are fixed-parameter tractable
(Gottlob, Pichler and Wei 2010a; Pichler et al. 2014; Fichte et al. 2017). In fact, these
problems can even be solved in linear time when the treewidth is bounded by a constant.

2.4.6 Input Facts as Relational Structures

Every set of input facts for a program Π can be represented as a relational structure in
various ways. The straightforward way is to choose the extensional predicates in Π as
the signature and to interpret each such predicate as its extension in the input facts.
In addition, since ASP systems always assume that the Herbrand base is ordered (in
an arbitrary way), we can assume that the signature also contains a binary successor
relation denoted by succ, which is interpreted according to an arbitrary order of the
domain elements.

Definition 2.34. Let Π be an ASP program whose set of extensional predicates we
denote by τ. For every set F of input facts for Π, we define the fact structure of F to be
the structure F over τ ∪ {succ} where dom(F ) consists of all ASP constants occurring
in F, and for every predicate p ∈ τ it holds that pF is the set of all k-tuples a such that
p(a) is a fact in F. We interpret the succ relation as an arbitrary, fixed successor relation
of the ASP constants. By slight abuse of notation, we sometimes write F in place of
F. For instance, we may write Ground(Π ∪ F ) instead of Ground(Π ∪ F) to denote
the ground instantiation of Π together with the input facts F. The input structures of a
program Π comprise the fact structures of all sets of input facts for Π.

Example 2.35. Let Π be an ASP program whose only extensional predicate is p, and
let F be the set of input facts for Π consisting of p(a, b) and p(a, c). The fact structure
F of F contains the domain elements a, b and c, and it interprets the binary relation
symbol p as {〈a, b〉, 〈a, c〉}. Moreover, it contains an arbitrary interpretation of the succ
relation, for instance succF = {〈a, b〉, 〈b, c〉}. 4

In this work, we are also interested in representing input facts as incidence structures
(Definition 2.12) of fact structures. Now we choose the extensional predicates (and the
successor relation succ) as a base signature for our incidence structures.

Example 2.36. Continuing Example 2.35, we denote the facts 〈a, b〉 and 〈a, c〉 in pF by
abp and acp, respectively, and we denote the facts 〈a, b〉 and 〈b, c〉 in succF by absucc and
bcsucc, respectively. Now the domain of Inc(F ) is {a, b, c, abp, acp, absucc, bcsucc}. The
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relations are interpreted as follows:

pInc(F ) = {abp, acp}
succInc(F ) = {absucc, bcsucc}

inInc(F )
1 = {〈abp, a〉, 〈acp, a〉, 〈absucc, a〉, 〈bcsucc, b〉}

inInc(F )
2 = {〈abp, b〉, 〈acp, c〉, 〈absucc, b〉, 〈bcsucc, c〉} 4
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CHAPTER 3

Treewidth-Preserving Classes of
Answer Set Programs

The performance of modern ASP solvers is heavily influenced by the treewidth of the
given ground input program. Indeed, an empirical evaluation in a paper by Bliem et al.
(2017) revealed that the solving time increases drastically when the treewidth of the
input increases but the size and the manner of construction of the programs remain the
same. The objective of this chapter is to take advantage of this insight by leveraging the
treewidth-sensitivity of ASP solvers when designing ASP encodings.

To solve a non-ground ASP program, ASP systems usually first invoke a grounder that
transforms an ASP program into an equivalent set of ground rules. A “naive” grounder
blindly instantiates variables in a program Π by all possible ground terms and thus
produces the complete ground instantiation Ground(Π) as defined in Section 2.4.3.
Grounders in practice, on the other hand, employ sophisticated techniques in order to
keep the resulting ground program as small as possible. As these techniques differ
between systems, we define a simplified notion of grounding that is easier to study.
Intuitively, our notion of grounding omits rules whose positive body contains an atom
that cannot possibly be derived, and it also omits aggregate elements whose condition
cannot possibly be satisfied.

It is usually possible to model the same problem in different ways as a non-ground
ASP program. For some problems, we may be able to come up with an encoding that
behaves nicely in the sense that the treewidth of the grounding is small whenever the
input has small treewidth. We illustrate this with the following example.

Example 3.1. Reachability can be modeled in different ways using ASP. One way
would be to use the transitive closure of the edge relation of a graph as follows (where
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3. Treewidth-Preserving Classes of Answer Set Programs

e is the predicate representing graph edges and r the predicate to mark reachable
vertices):

t(X,Y)← e(X,Y).
t(X,Z)← t(X,Y), e(Y,Z).
r(Y)← t(X,Y), start(X).

Such an encoding, however, causes any two (connected) vertices in the input graph
to appear together in a rule after grounding (in place of the variables X and Z in the
second rule). This then causes the primal graph of the ground program to contain a
clique whose size equals the number of vertices of the original input graph, resulting
in a high treewidth. It is more advisable to use the following encoding instead:

r(X)← start(X).
r(Y)← e(X,Y), r(X).

Here, not only is the grounding smaller, but also the treewidth decreases dramatically.
In fact, it now solely depends on the treewidth (and not the size) of the input graph. 4

Hence, the way a problem is encoded can influence the treewidth of the ground program
considerably, and as the experiments in the work by Bliem et al. (2017) have shown,
this also has a massive impact on the solving performance. Due to the grounding
step, however, it is not obvious at the time of writing a non-ground ASP encoding how
to achieve a low-treewidth grounding and the benefits that come with it. This is in
contrast to, for example, Sat formulas that can be generated directly while keeping
treewidth in mind.

The contribution of this chapter is a study of the following two classes of non-ground
ASP programs in terms of the effect of grounding on the treewidth.

Guarded ASP Programs: Programs from this class guarantee that the treewidth of the
program after grounding does not increase arbitrarily but only depends on the
treewidth of the input facts.

Connection-Guarded ASP Programs: This class is more general than guarded ASP,
but it only preserves bounded treewidth if, in addition, also the degree of the
input is bounded.

This chapter defines these classes and contains the following contributions:

1. We prove that the grounding process has the claimed effect on the treewidth for
these classes.

2. We discuss why the restrictions imposed by our classes cannot be dropped
without generally “destroying” bounded treewidth by grounding.
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3. We show that guarded programs are, despite their rather restrictive syntax,
expressive enough to encode relevant problems from the second level of the
polynomial hierarchy. Since every guarded program is connection-guarded, this
clearly also holds for connection-guarded ASP.

This chapter is structured as follows: First, in Section 3.1, we formally define a notion
of grounding that performs simplifications that can be assumed to be done by all
state-of-the-art grounders. In Section 3.2, we express some basic properties of relational
structures in MSO, which we will need for our transductions. Next, in Section 3.3, we
define the class of guarded ASP programs and prove that grounding them preserves
bounded treewidth of the input. This is followed in Section 3.4 by our definition
of connection-guarded ASP and the proof that grounding such programs preserves
bounded treewidth of the input if additionally the degree is bounded. In Section 3.5,
we analyze the complexity of ASP solving in our classes. Finally, we discuss our results
in Section 3.6 and investigate how they relate to existing research.

3.1 Program Simplifications in Grounding

The naive ground instantiation Ground(Π) of a program Π, as defined in Section 2.4.3,
is useful for the definition of the ASP semantics, but grounders in practice may omit
large parts of Ground(Π) in order to keep the grounding as small as possible while
preserving equivalence to Ground(Π). The techniques performed by state-of-the-art
grounders are quite sophisticated and differ between systems, so we define a simplified
notion of grounding for our study.

For a meaningful investigation of the relationship between the treewidth of input facts
(as defined in Section 2.4.6 via fact structures) and the treewidth of the grounding (as
defined in Section 2.4.5 via the primal graph), we need to assume that the grounder
performs some basic simplifications. These simplifications are so basic that they can be
assumed to be implemented by all reasonable grounders. The intuition is that a rule
from the “naive” grounding is omitted in our grounding whenever its positive body
contains an atom that cannot possibly be derived. Moreover, we also omit an aggregate
element t1, . . . , tm : l1, . . . , ln if some li cannot possibly be satisfied.

Definition 3.2. Let Π be an ASP program, let Π+ denote the positive program obtained
from Π by removing the negative bodies of all rules, removing all aggregate atoms
and replacing disjunctions in the heads with conjunctions (that is, we replace a rule r
whose head is h1 ∨ · · · ∨ hk by rules r1, . . . , rk such that H(ri) = {hi} and the body of ri
is B+(ri) without the aggregate atoms). We say that an atom is possibly true in Π if it is
contained in the unique minimal model of Π+.
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take(X) ∨ leave(X)← object(X).
overburdened← #sum{ W,X : take(X), weight(X,W) } > C, capacity(C).

okay← not overburdened.
← not okay.
 take(X), value(X,V). [−V,X]

capacity(3). object(a). object(b). object(c).
weight(a, 1). weight(b, 2). weight(c, 3). value(a, 5). value(b, 6). value(c, 9).

Listing 3.1: A knapsack problem encoding together with an instance

take(X)← object(X).
leave(X)← object(X).

overburdened← capacity(C).
okay.

capacity(3). object(a). object(b). object(c).
weight(a, 1). weight(b, 2). weight(c, 3). value(a, 5). value(b, 6). value(c, 9).

Listing 3.2: The positive program Π+ obtained from the program Π from Listing 3.1

In the following definition of grounding, we now formalize the idea that reasonable
grounders will not produce rules whose body is obviously false under every answer
set.

Definition 3.3. Let Π be an ASP program. For any rule r in the ground instantiation
Ground(Π) as defined in Section 2.4.3, we write r∗ to denote the rule obtained from r
by removing each aggregate element t1, . . . , tm : l1, . . . , ln that contains a positive atom
li that is not possibly true. Now we define the grounding of Π, denoted by gr(Π), as
the set of all rules r∗ such that r is a rule in Ground(Π) and every predicate atom in
B+(r) is possibly true.

Example 3.4. Recall the encoding of the knapsack problem from Example 2.28. The
program Π shown in Listing 3.1 is a variation of that encoding together with input facts.
This encoding is deliberately more complicated than necessary in order to illustrate
what happens to negation and aggregates. We obtain the program Π+, which is
depicted in Figure 3.2, from Π as described in Definition 3.3.

The unique minimal model M+ of Π+ contains, for each object x, the atoms object(x),
take(x), leave(x) as well as the atoms indicating its weight and value. Furthermore,
M+ contains the atoms overburdened, okay and capacity(3).

This now allows us to construct the grounding gr(Π), which is the program shown in
Figure 3.3. Observe that, for instance, the rule involving the aggregate has only one
ground instance in gr(Π), namely the one where we instantiate the variable C with the
actual capacity. In contrast, the complete, naive ground instantiation Ground(Π) would
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take(a) ∨ leave(a)← object(a).
take(b) ∨ leave(b)← object(b).
take(c) ∨ leave(c)← object(c).

overburdened← #sum{ 1,a : take(a), weight(a, 1);
2,b : take(b), weight(b, 2);
3,c : take(c), weight(c, 3) } > 3, capacity(3).

okay← not overburdened.
← not okay.
 take(a), value(a, 5). [−5,a]
 take(b), value(b, 6). [−6,b]
 take(c), value(c, 9). [−9,c]

capacity(3). object(a). object(b). object(c).
weight(a, 1). weight(b, 2). weight(c, 3). value(a, 5). value(b, 6). value(c, 9).

Listing 3.3: The grounding of the program from Listing 3.1

contain as many instances of this rule as there are elements of the Herbrand universe –
in this case nine. Also observe that the aggregate elements in every ground instance
of that rule in Ground(Π) would contain literals like, e.g., take(1) or weight(3, a),
which are not possibly true. 4

3.2 Basic Properties of Relational Structures

In this section, we shall use MSO logic to express properties of arbitrary structures. In
order to do this for any signature upon which the structures are based, we actually
present schemata for producing MSO formulas in the following way: By a signature-
parameterized MSO formula we mean an expression with a parameter σ, which can
be instantiated by a relational signature subject to certain conditions, such that any
permissible instantiation of the parameter yields an MSO formula over this particular
signature. In our case, every incidence signature is a permissible instantiation of σ

under the condition that the base signature contains a successor relation denoted by
succ, which is used to specify an order on the domain elements. In this way, we can
express properties of incidence structures of fact structures, as defined in Definition 2.34.
The condition that the base signature contains a successor relation is reasonable because
we express properties of ASP programs and ASP solvers automatically assume an order
of the elements of the Herbrand universe (cf. Section 2.4).

We first define several signature-parameterized formulas that express properties of
incidence structures in general (as long as the base structure contains a successor
relation). These formulas will be used later, when we apply incidence structures for
representing input facts of ASP programs. In the following, we write ρmax to denote
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ρ(Base(σ)), i.e., the maximum arity of a relation in the base signature.

We present our formulas in two groups. Both groups of formulas serve the same
purpose: to represent certain tuples of domain elements as a combination of a single
domain element with an element of a certain countable set.

The formulas in the first group, presented in Section 3.2.1, will allow us to extract
from every fact R(a) all tuples constituted of elements of a. Subsequently, we can
identify certain tuples 〈a1, . . . , ak〉 of domain elements by a fact and a tuple of integers
〈i1, . . . , ik〉 such that each aj is the ij-th argument of that fact.

The second group, presented in Section 3.2.2, concerns tuples 〈a1, . . . , ak〉 of domain
elements such that there is a domain element from which every ai is reachable. Here
we can identify such a tuple 〈a1, . . . , ak〉 by a “source” element d together with a tuple
of objects 〈π1, . . . , πk〉, where each πj determines a path from d to aj. (By “reachable”
and “path” we mean the straightforward generalizations of the graph-theoretic terms
to structures.)

The motivation for representing tuples of domain elements in such a way is the
following: The class of guarded ASP programs, which we will define in Section 3.3,
will have the property that, for every atom p(a) in the grounding, the tuple a can
be identified by a single domain element of the input together with an element of
a certain set S, which has constant size whenever the program is fixed, by virtue
of the restrictions that guardedness imposes on the ASP language. For any fixed
guarded program Π, given input A, we can thus represent each atom p(a) that occurs
in gr(Π ∪A) as one of constantly many copies of some element of dom(A). Hence, for
fixed guarded programs, the number of different atoms in the grounding can only be
linear in the input. This is important because it allows us to formalize the grounding
process as an MSO transduction, as transforming an input structure I into an output
structure O is only possible via an MSO transduction if |dom(O)| is linear in |dom(I)|
by Proposition 2.24.1

The input structures for our transductions will be incidence graphs of fact structures,
as defined in Definition 2.34. Recall that fact structures contain a successor relation
succ. In our MSO formulas, we will use the symbol < as shorthand for the strict total
order on the domain elements of the input structures given by the succ relation.2

1For the class of connection-guarded ASP programs, which we will define in Section 3.4, we will
additionally require the degree of the input to be bounded in order to ensure linear grounding size. We
will explain this in detail when we introduce the class.

2We can easily define < from the succ relation because transitive closure can be defined in MSO
(Courcelle and Engelfriet 2012, Section 1.3.1). Moreover, note that succ only gives us an ordering on the
ASP constants but not on the facts, which are also present in the domain of the input structure (as it is an
incidence structure). This is not a problem, however, because we can define a lexicographical order on
tuples of constants based on the ordering on the individual constants.
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3.2.1 Extracting Tuples From Facts

The following formulas will allow us to identify certain tuples 〈a1, . . . , ak〉 of domain
elements by a fact and a tuple of integers 〈i1, . . . , ik〉 such that each aj is the ij-th
argument of that fact.

We begin with the formula fact(x), which is true under a structure Inc(A) if x is a fact
in the base structure A. Recall that the domain of Inc(A) consists of the domain of A
and the facts in A, and that the relation symbols in the base signature Base(σ) are all
unary in σ.

fact(x) ≡
∨

R∈Base(σ)

R(x)

The following formula expresses that x is a fact that contains y as some argument.

in(x, y) ≡ in1(x, y) ∨ · · · ∨ inρmax(x, y)

If a fact in a base structure A contains every element of a tuple a of elements of
dom(A), then we say that this fact covers a. For each nonnegative integer k, we define
the following formula, which states that x is a fact that covers 〈y1, . . . , yk〉.

coversk(x, y1, . . . , yk) ≡ fact(x) ∧ in(x, y1) ∧ · · · ∧ in(x, yk)

Furthermore, if some fact of a base structure A covers a, then we define the first cover of
a in A to be the smallest fact covering a according to the order of the domain elements,
which we can construct from the successor relation that is guaranteed to be present in
the input structure. For each nonnegative integer k, we therefore define a formula to
express that x is the first cover of 〈y1, . . . , yk〉:

fcovk(x, y1, . . . , yk) ≡ coversk(x, y1, . . . , yk) ∧ ¬∃z
(
z < x ∧ coversk(z, y1, . . . , yk)

)
We say that a tuple 〈i1, . . . , ik〉 of integers extracts a tuple 〈a1, . . . , ak〉 of domain elements
from a fact R(d1, . . . , d`) if both 1 6 ij 6 ` and aj = dij hold for every j. Clearly there
is a tuple of integers that extracts a tuple a of domain elements from a fact x if and
only if x covers a. For each nonnegative integer k and every tuple 〈i1, . . . , ik〉 of integers
between 1 and ρmax, we define the following formula to express that 〈i1, . . . , ik〉 extracts
〈y1, . . . , yk〉 from x:

extract〈i1,...,ik〉(x, y1, . . . , yk) ≡ ini1(x, y1) ∧ · · · ∧ inik(x, yk)

If a fact x covers a, then we define the first tuple extracting a from x as the lexicograph-
ically smallest tuple of integers between 1 and ρmax that extracts a from x. For this we
first define the relation ≺ρmax among tuples of integers between 1 and ρmax such that
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a ≺ρmax b holds if a is lexicographically smaller than b. For every nonnegative integer
k and every k-tuple i of integers between 1 and ρmax, we now define the following
formula, which is true if and only if i is the first tuple extracting 〈y1, . . . , yk〉 from x:

fexti(x, y1, . . . , yk) ≡ extracti(x, y1, . . . , yk) ∧
∧

j≺ρmax i

¬ extractj(x, y1, . . . , yk)

If a fact in a base structure A covers a tuple a of domain elements, we define the
cover-based identifier of a in A to be the unique combination of a fact x and a tuple i of
integers such that x is the first cover of a in A and i is the first tuple extracting a from x.
For each nonnegative integer k and every k-tuple i of integers between 1 and ρmax, we
now define the following formula to express that x together with i is the cover-based
identifier of 〈y1, . . . , yk〉:

cidi(x, y1, . . . , yk) ≡ fcovk(x, y1, . . . , yk) ∧ fexti(x, y1, . . . , yk)

Whenever a fact covers a, the cover-based identifier of a clearly exists because then a
has a first cover and a can be extracted from this cover. For every fact x and each tuple
i of integers, the combination of x and i is the cover-based identifier of at most one
tuple of domain elements. Hence there is a bijection between the set of all tuples that
have a cover-based identifier and the set of all cover-based identifiers.

Example 3.5. Let A be a structure over a signature consisting of the binary relation
symbols R and succ such that dom(A) = {a, b}, RA = {〈a, a〉} and succA = {〈a, b〉}.
We denote the domain elements of Inc(A) corresponding to the facts 〈a, a〉 in RA and
〈a, b〉 in succA by aa and ab, respectively. We assume that the ordering of the domain
elements of Inc(A) that we extracted from succA is a < b < aa < ab. The following
formulas are true under Inc(A):

• fact(aa), fact(ab).

• in(aa, a), in(ab, a), in(ab, b).

• covers1(aa, a), covers2(aa, a, a), covers3(aa, a, a, a), . . .

covers1(ab, a), covers1(ab, b). covers2(ab, a, a), covers2(ab, a, b), covers2(ab, b, a),
covers2(ab, b, b). covers3(ab, a, a, a), . . .

• fcov1(aa, a), fcov2(aa, a, a), fcov3(aa, a, a, a), . . .

fcov1(ab, b). fcov2(ab, a, b), fcov2(ab, b, a), fcov2(ab, b, b), fcov3(ab, a, a, b), . . .

But note that, e.g., fcov1(ab, a) is not true even though ab covers a, since a is also
covered by aa, which is less than ab.
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• extract〈1〉(aa, a), extract〈2〉(aa, a), extract〈1,1〉(aa, a, a), extract〈1,2〉(aa, a, a),
extract〈2,1〉(aa, a, a), extract〈2,2〉(aa, a, a), extract〈1,1,1〉(aa, a, a, a), . . .

extract〈1〉(ab, a), extract〈2〉(ab, b), extract〈1,1〉(ab, a, a), extract〈1,2〉(ab, a, b),
extract〈2,1〉(ab, b, a), extract〈2,2〉(ab, b, b), extract〈1,1,1〉(ab, a, a, a), . . .

• fext〈1〉(aa, a), fext〈1,1〉(aa, a, a), fext〈1,1,1〉(aa, a, a, a), . . .

fext〈1〉(ab, a), fext〈2〉(ab, b), fext〈1,1〉(ab, a, a), fext〈1,2〉(ab, a, b), fext〈2,1〉(ab, b, a),
fext〈2,2〉(ab, b, b), fext〈1,1,1〉(ab, a, a, a), . . .

But note that, e.g., fext〈2〉(aa, a) is not true even though the tuple 〈2〉 extracts the
tuple 〈a〉 from aa, since we can also extract 〈a〉 from aa with the tuple 〈1〉, which
is lexicographically smaller than 〈2〉.

• cid〈1,1〉(aa, a, a), cid〈1,2〉(ab, a, b), cid〈2,1〉(ab, b, a), cid〈2,2〉(ab, b, b),
cid〈1,1,1〉(aa, a, a, a), cid〈1,1,2〉(ab, a, a, b), . . .

But note that, e.g., cid〈1,1〉(ab, a, a) is not true since ab is not the first cover of 〈a, a〉.
Also, cid〈2,2〉(aa, a, a) is not true since 〈2, 2〉 is not the first tuple that extracts 〈a, a〉
from aa. 4

3.2.2 Tuples Reachable From a Starting Element

We now present formulas that enable us to identify certain tuples 〈a1, . . . , ak〉 by
a “source” element s together with a tuple of objects 〈π1, . . . , πk〉, where each πj
determines a path from s to aj.

First we define a formula to express that x and y are neighbors in the sense that they
are adjacent to each other in the Gaifman graph of the base structure.

neigh(x, y) ≡ x 6= y ∧ ∃z
(

in(z, x) ∧ in(z, y)
)

The order of the domain elements of a structure induces an order on the neighborhood
of each domain element. For each positive integer i, the following formula expresses
that y is the i-th neighbor of x according to this order.

neighi(x, y) ≡ neigh(x, y) ∧ ∀z
(
z < y ∧ neigh(x, z)→

∨
16j<i

neighj(x, z)
)

A relative path of length k is a k-tuple of positive integers. It is called a relative d-path
if each integer in the tuple is less than or equal to d. Moreover, we say that a relative
d-path is a relative (`, d)-path if its length is at most `. A path of length k between two
domain elements x and y of A is a sequence of domain elements a0, a1, . . . , ak such
that a0 = x, ak = y, and aj is a neighbor of aj−1, for 1 6 j 6 k. Each path can be
uniquely identified by a relative path π together with a starting point s ∈ dom(A) in
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the obvious way, and we also write sπ to denote the end point of this path. For a tuple
π = 〈π1, . . . , πk〉 of relative paths, we write sπ to denote 〈sπ1 , . . . , sπk〉. We say that a
path p is a d-path if its corresponding relative path is a relative d-path, and we call p an
(`, d)-path if it is a d-path of length at most `.

For every integer k and each relative path π = 〈i1, . . . , ik〉, we define the formula
reachπ(x, y) to express that xπ is defined and equal to y. We write ε to denote the
relative path of length 0.

reachε(x, y) ≡ x = y

reach〈i1,...,ik〉(x, y) ≡ ∃z
(

reach〈i1,...,ik−1〉(x, z) ∧ neighik
(z, y)

)
for k > 1

Since two domain elements can be connected via more than one path, we next describe
how we can designate a single representative among them. We define the strict total
order ≺d over relative d-paths such that π ≺d ψ if π is shorter than ψ or they have the
same length but π is lexicographically smaller than ψ. If there is a d-path from a to b in
A, we define the first relative d-path from a to b as the smallest relative d-path π such
that aπ = b, where “smallest” refers to ≺d. For each nonnegative integer d and every
relative d-path π, we now define the formula frpd

π(x, y) to represent that π is the first
relative d-path from x to y. (Note that the intended meaning of the abbreviation “frp”
is “first relative path”.)

frpd
π(x, y) ≡ reachπ(x, y) ∧

∧
ψ≺dπ

¬ reachψ(x, y)

Let `, d and k be arbitrary nonnegative integers, and a be a tuple of domain elements
such that there is a domain element from which there is an (`, d)-path to each element
of a. We want to be able to identify a by a combination of a domain element s and
a tuple π of relative (`, d)-paths such that sπ = a. Of course, there may be multiple
choices for s and π that identify a in such a way, so we want to single out a unique
representative. To this end, we define the (`, d)-path-based identifier of a as the unique
combination of a domain element s and a tuple of relative (`, d)-paths π that satisfies
the following properties:

1. For every i, the i-th element of π is the first relative d-path from s to the i-th
element of a.

2. There is no domain element t smaller than s for which there is a tuple ψ of relative
(`, d)-paths such that tψ = a.

We now define the formula pid`,d
〈π1,...,πk〉

(x, y1, . . . , yk) to express that x together with

〈π1, . . . , πk〉 is the (`, d)-path-based identifier of 〈y1, . . . , yk〉. For this, let Pk
`,d denote the
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set of all k-tuples of relative (`, d)-paths. (Note that this set is finite.)

pid`,d
〈π1,...,πk〉

(x, y1, . . . , yk) ≡
∧

16i6k

frpd
πi
(x, yi)∧¬∃z

(
z < x∧

∨
〈ψ1,...,ψk〉∈Pk

`,d

∧
16i6k

frpd
ψi
(z, yi)

)

Note that for the empty tuple ε, the formula pid`,d
ε (x) becomes ¬∃z (z < x), which is

true if and only if x is the smallest domain element.

Any tuple a of domain elements has an (`, d)-path-based identifier whenever there is a
domain element s and a tuple of relative (`, d)-paths π such that a = sπ : Then for each
a ∈ a, there is an (`, d)-path from s to a, so there is also a first relative (`, d)-path from
s to a. Moreover, for every domain element s and each tuple π of relative (`, d)-paths,
the combination of s and π is the (`, d)-path-based identifier of at most one tuple of
domain elements. Hence there is a bijection between the set of all tuples that have an
(`, d)-path-based identifier and the set of all (`, d)-path-based identifiers.

Example 3.6. Let A be a structure over a signature consisting of the binary relation
symbols R and succ such that dom(A) = {a, b, c, d}, RA = {〈a, b〉, 〈a, d〉, 〈b, c〉, 〈d, c〉}
and succA = {〈a, b〉, 〈b, c〉, 〈c, d〉}. We assume that a < b < c < d holds for the ordering
of the domain elements of Inc(A), and that the domain elements corresponding to facts
are all greater than d – their exact order is irrelevant for this example. The following
formulas are true under Inc(A):

• neigh(a, b), neigh(a, d), neigh(b, c), neigh(d, c).

neigh(b, a), neigh(d, a), neigh(c, b), neigh(c, d).

• neigh1(a, b), neigh2(a, d), neigh1(b, a), neigh2(b, c), neigh1(c, b), neigh2(c, d).
neigh1(d, a), neigh2(d, c)

• reachε(a, a), reach〈1〉(a, b), reach〈2〉(a, d), reach〈1,1〉(a, a), reach〈1,2〉(a, c),
reach〈2,1〉(a, a), reach〈2,2〉(a, c), reach〈1,1,1〉(a, b), . . .

reachε(b, b), reach〈1〉(b, a), reach〈2〉(b, c), reach〈1,1〉(b, b), . . .

reachε(c, c), reach〈1〉(c, b), reach〈2〉(c, d), reach〈1,1〉(c, a), . . .

reachε(d, d), reach〈1〉(d, a), reach〈2〉(d, c), reach〈1,1〉(d, b), . . .

• frp1
ε(a, a), frp1

〈1〉(a, b).

But note that, e.g., frp1
〈1,1〉(a, a) is not true even though 〈1, 1〉 is a relative 1-path

and it leads to a when starting from a, since so does ε, which is lexicographically
smaller than 〈1, 1〉. Moreover, neither frp1

π(a, c) nor frp1
π(a, d) are true for any

relative 1-path π, since going from a to c or d requires visiting the “second
neighbor” of at least one element.

49



3. Treewidth-Preserving Classes of Answer Set Programs

frp1
〈1〉(b, a), frp1

ε(b, b).

frp1
〈1,1〉(c, a), frp1

〈1〉(c, b), frp1
ε(c, c).

frp1
〈1〉(d, a), frp1

ε(d, d).

frp2
ε(a, a), frp2

〈1〉(a, b), frp2
〈2〉(a, d), frp2

〈1,2〉(a, c).

But note that, e.g., frp2
〈2,2〉(a, c) is not true even though 〈2, 2〉 is a relative 2-path

and it leads to c when starting from a, since so does 〈1, 2〉, which is lexicographi-
cally smaller than 〈2, 2〉.
. . .

• We only illustrate the formulas concerning (`, d)-path-based identifiers for ` =
d = 1.

pid1,1
ε (a).

pid1,1
〈ε〉(a, a), pid1,1

〈ε〉(b, b), pid1,1
〈ε〉(c, c), pid1,1

〈ε〉(d, d).

pid1,1
〈ε,ε〉(a, a, a), pid1,1

〈ε,〈1〉〉(a, a, b), pid1,1
〈〈1〉,ε〉(d, a, d).

. . .

Even though b〈〈1〉,ε〉 = 〈a, b〉, the (1, 1)-path-based identifier of 〈a, b〉 is not consti-
tuted by b and 〈〈1〉, ε〉 because a < b and there is a tuple ψ of relative (1, 1)-paths
such that aψ = 〈a, b〉, namely ψ = 〈ε, 〈1〉〉. Moreover, 〈a, c〉 has no (1, 1)-path-
based identifier because the distance between a and c is 2 and for all elements that
are within distance 1 of both a and c (namely b and d), there is no path leading to
c that only visits the first neighbor.

This already suggests a property that we will exploit later: A tuple a of domain
elements of A is guaranteed to have an (`, d)-path-based identifier if the distance
between any two elements of a is at most ` and the degree of A is at most d. 4

3.3 Guarded Answer Set Programs

In this section, we define the class of guarded ASP programs and show that they lead
to groundings whose treewidth depends only on the treewidth of the input structure.

Definition 3.7. Let Π be an ASP program. A guard of a rule r in Π is an extensional
predicate atom in the positive body of r that contains every variable occurring in r. We
call Π guarded if every rule has a guard. We designate an arbitrary guard of r as the
guard of r.

We next show an important property for guarded ASP programs without constants:
For each possible input and every tuple a of constants that can occur in an atom of the
grounding, a has a cover-based identifier.
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Π ∪A

Grounder

gr(Π ∪A)

Inc(A)

Transduction γΠ

Inc(A′)=̂

treewidth of A bounded

treewidth of A′ bounded

Theorem 2.25

Figure 3.1: Strategy for proving that grounding a fixed guarded program Π together
with an input structure A preserves bounded treewidth of A

Proposition 3.8. If Π is a guarded ASP program without constants, A is an input structure
of Π and p(a) is a predicate atom that occurs in gr(Π ∪A), then the tuple a has a cover-based
identifier in A.

Proof. By our observations in Section 3.2, we have seen that a has a cover-based
identifier in A if a fact covers a. Since the atom p(a) is part of the grounding, it occurs
in one of its rules. Let r be a rule in the grounding such that p(a) occurs in r, and
let r′ denote the corresponding non-ground rule. The atom p(a) occurs in r as an
instantiation of a non-ground atom p(X) in r′. Moreover, the positive body of r contains
an atom g(b) as an instantiation of the guard g(Y) of r′. Since g(Y) is the guard of r′,
each variable in X also occurs in Y . Hence each element of a is also an element of b.
Since the fact g(b) thus covers a, the latter has a cover-based identifier in A.

We can also prove the related result that for all tuples a and b of constants that can occur
in two atoms of the same rule in the grounding, the joint tuple ab has a cover-based
identifier.

Proposition 3.9. If Π is a guarded ASP program without constants, A is an input structure
of Π and both p(a) and q(b) are predicate atoms that occur together in a rule of gr(Π ∪A),
then the joint tuple ab has a cover-based identifier in A.

Proof. Since p(a) and q(b) occur together in a rule r of the grounding, the fact that
instantiates the guard in r covers both a and b, and therefore it also covers ab.

We now state the main result of this section.

Theorem 3.10. Let Π be a fixed guarded ASP program, and A be an input structure of Π. If
A has bounded treewidth, then the primal graph of gr(Π ∪A) also has bounded treewidth.

Proof. Our proof strategy is illustrated in Figure 3.1. In order to formally represent
the grounding process and investigate its influence on the treewidth, we use MSO
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transductions as defined in Section 2.3.3. Our methodology for proving that grounding
Π∪A preserves bounded treewidth of A is the following: We study the transformation
of A into the primal graph of gr(Π∪A). We do this by providing an MSO transduction
γΠ that transforms Inc(A) into the incidence structure of the primal graph of gr(Π∪A).
By constructing the transduction in such a way that it only depends on Π (and is thus
fixed as Π is fixed), we obtain the desired result by virtue of Theorem 2.25.

We will, for the moment, assume that Π is constant-free; we will show later how to
handle the general case. Note that the primal graph is undirected, but we assume
that for representing undirected graphs as structures we use symmetric edge relations,
so we treat an undirected edge as two directed edges of opposing orientation. Thus,
when we speak of the primal graph in this proof, we refer to a directed graph with a
symmetric edge relation. The signature of the output structure of our transduction is
thus {E, in1, in2}, where E is unary and the other relations are binary.

We call the domain elements in the output structure that correspond to vertices and
edges of the primal graph vertex elements and edge elements, respectively. In the following,
we define γΠ by the definition scheme〈∆, Θ〉, where the tuple ∆ is the concatenation
of tuples ∆v and ∆e, which contain domain formulas that generate the vertex and
edge elements, respectively, and Θ contains relation formulas that state which vertex is
incident to which edge.

Formulas in ∆v. These formulas shall produce the vertex elements. For each predicate
p of arity k, we first define Op to be the following set of objects: If a rule r in Π
is guarded by an atom g(X1, . . . , X`) and contains an atom p(Xi1 , . . . , Xik), then Op

contains 〈g, i1, . . . , ik〉. With this, we define a formula occursp(x), where x is a k-ary
tuple of variables, to express that the ground atom p(x) occurs in gr(Π ∪A).3

occursp(x) ≡
∨

〈g,i1,...,ik〉∈Op

∃y
(

g(y) ∧ extract〈i1,...,ik〉(y, x)
)

We now put this auxiliary formula to use: We define the following formula δp[i](x) to
be an element of ∆v, for every predicate p of arity k and each k-ary tuple i of integers
between 1 and ρmax.

δp[i](x) ≡ ∃y
(

cidi(x, y) ∧ occursp(y)
)

3We slightly abuse notation by sometimes using tuples where actually lists are required. Each tuple,
when used like this, stands for the comma-separated list of its elements without the tuple delimiters
〈 and 〉. Thus, for any formula ϕ with free variables x = 〈x1, . . . , xk〉, we write ϕ(x) as an abbrevi-
ation for ϕ(x1, . . . , xk). Similarly, for tuples x = 〈x1, . . . , xk〉 and y = 〈y1, . . . , y`〉 and any formula ϕ
whose free variables we may denote by 〈x1, . . . , xk, y1, . . . , y`〉, we write ϕ(x, y) as an abbreviation for
ϕ(x1, . . . , xk, y1, . . . , y`). Moreover, when we use a tuple after a quantifier, we mean that each element of
the tuple is quantified as specified; for instance, ∃x denotes ∃x1 · · · ∃xk for any tuple x = 〈x1, . . . , xk〉. We
may use a tuple x in a formula without specifying its arity explicitly if the required arity is clear from the
context (i.e., from the other occurrences of x in the formula).
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This formula is true if and only if x together with i is the cover-based identifier of some
tuple a of domain elements and p(a) occurs in gr(Π ∪A); the resulting copy of x in
the output structure then corresponds to the atom p(a).

For each predicate atom p(a) in the grounding, we thus produce a vertex element,
since a has a cover-based identifier by Proposition 3.8. Moreover, different predicate
atoms produce different vertex elements: If they have different arguments, they have
different cover-based identifiers, and otherwise they differ in their predicate symbol. In
both cases, they clearly produce different copies. Finally, every vertex element that we
produce corresponds to an atom in the grounding by our construction of the occursp

formulas. This proves that there is a bijection between the atoms in the grounding and
the vertex elements.

Formulas in ∆e. These formulas shall produce the edge elements. Before we define
them, we introduce an auxiliary formula. For all predicates p and q of arity k and `,
respectively, we define Tp,q to be the following set of objects: If there is a rule r in Π
guarded by an atom g(X1, . . . , Xm) such that r contains two atoms p(Xi1 , . . . , Xik) and
q(Xj1 , . . . , Xj`), then Tp,q contains 〈g, i, j〉, where i = 〈i1, . . . , ik〉 and j = 〈j1, . . . , j`〉. With
this, we now define a formula togetherp,q(x, y), where x and y are tuples of variables
with arity k and `, respectively. This formula expresses that the two ground atoms p(x)
and q(y) occur together in some rule of gr(Π ∪A).

togetherp,q(x, y) ≡
∨

〈g,i,j〉∈Tp,q

∃z
(

g(z) ∧ extracti(z, x) ∧ extractj(z, y)
)

With this auxiliary formula in hand, we define the following formula δp[i]q[j](x) to be
an element of ∆e, for all predicates p and q, and all tuples i and j of integers between 1
and ρmax, such that the arities of i and j are the same as those of p and q, respectively.

δp[i]q[j](x) ≡
{
⊥ if p[i] = q[j]

∃y∃z
(

cidij(x, y, z) ∧ togetherp,q(y, z)
)

otherwise

This formula is true if and only if there are tuples a and b of the same arity as p and
q, respectively, such that (1) x together with ij is the cover-based identifier of ab, and
(2) the atoms p(a) and q(b) are different and occur together in some rule of gr(Π ∪A).
The resulting copy of x in the output structure then corresponds to the edge from p(a)
to q(b) in the primal graph. Due to symmetry, we can see that then also an edge in the
other direction will be created. Since both atoms are different if the formula is true, we
do not introduce loops.

For each pair of different predicate atoms p(a) and q(b) that jointly occur in a rule
of the grounding, we thus correctly produce two edge elements, since ab has a cover-
based identifier by Proposition 3.9. Moreover, different such pairs of atoms produce
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different edge elements, and every edge element that we produce corresponds to a joint
occurrence of two different atoms in a rule of the grounding by our construction of the
togetherp,q formulas.

Formulas in Θ. These formulas shall ensure that each edge element is incident to the
two appropriate vertex elements. First, let p and q be predicates occurring in Π, and let
i and j be tuples of integers between 1 and ρmax such that i and j have the same arity
as p and q, respectively. We define a formula eqp[i],q[j](x, y) to express that the atoms
p(a) and q(b) are equal, where a is the tuple extracted from x by i, and b is the tuple
extracted from y by b.

eqp[i],q[j](x, y) ≡
{
∃z
(

extracti(x, z) ∧ extractj(y, z)
)

if p = q

⊥ otherwise

Let p, q and q′ be predicates occurring in Π, and let i, j and j′ be tuples of integers
between 1 and ρmax with the same arity as p, q and q′, respectively. We define the
following formulas to be elements of Θ:4

ϑin1, p[i], q[j]q′[j′](x, y) ≡ eqp[i],q[j](x, y)

ϑin2, p[i], q[j]q′[j′](x, y) ≡ eqp[i],q′[j′](x, y)

We only explain the first of these formulas, as the other case is symmetric; instead of
outgoing edges (due to in1 in the subscript) it concerns incoming edges (due to in2 in
the subscript).

The formula ϑin1, p[i], q[j]q′[j′](x, y) is true if and only if the atom p(a) is equal to q(b),
where a is the tuple extracted from x by i, and b is the tuple extracted from y by j.
If this formula is true, it makes the edge represented by the respective copy of y an
outgoing edge of p(a) because of the subscript in1.

We first show that, whenever this formula causes an edge element to be incident to a
vertex element, the corresponding edge in the primal graph is indeed an outgoing edge
of the appropriate vertex. Suppose there are predicates p, q and p′, tuples i, j and j′,
as well as domain elements x and y such that (1) δp[i](x) is true, (2) δq[j]q′[j′](y) is true,
and (3) ϑin1, p[i], q[j]q′[j′](x, y) is true. As observed in our definition of ∆v, (1) means that x
together with i is the cover-based identifier of some tuple a, and the grounding contains
an atom p(a). From (2) we get that there are tuples b and b′ such that y together with
jj′ is the cover-based identifier of bb′. We have also seen that by (2) there is a rule in the
grounding that contains both q(b) and q′(b′), hence there is an edge from q(b) to q′(b′)
in the primal graph. By (3) and the definition of cover-based identifiers (in particular

4If we do not explicitly mention relation formulas like the remaining relation formulas for defining in1
and in2 (those having subscripts of different forms than the shown formulas), then these are defined as ⊥.
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those of a, b and b′), we know that p(a) is equal to q(b). Hence the edge in the primal
graph from q(b) to q′(b′) is indeed an outgoing edge of p(a).

Finally we prove the other direction: Whenever an edge in the primal graph is an outgo-
ing edge of a vertex, a formula in Θ defining the relation in1 causes the corresponding
edge element to be an outgoing edge of the appropriate vertex element. Suppose that
the primal graph contains an edge from atom p(a) to atom q(b). Then these atoms
occur together in a rule of the grounding, so there is a non-ground rule r guarded by an
atom g(X1, . . . , Xm) such that r contains both p(Xi1 , . . . , Xik) and q(Xj1 , . . . , Xj`), and A
contains a fact g(c1, . . . , cm) such that a = 〈ci1 , . . . , cik〉 and b = 〈cj1 , . . . , cj`〉. Moreover,
we have seen in our definition of ∆v and ∆e that then our transduction produces a
vertex element v for p(a) and an edge element e for the edge from p(a) to q(b). Now
let x and y be domain elements of A, and let i, j and j′ be tuples of integers, such
that x together with i is the cover-based identifier of a, and y together with jj′ is the
cover-based identifier of ab. By definition of cover-based identifiers, i extracts a from
x; moreover, j and j′ extract a and b from y, respectively. Since a can be extracted
from x by i, as well as from y by j, the formula eqp[i],p[j](x, y) is clearly true. Hence
the formula ϑin1, p[i], p[j]q[j′](x, y) is true, which correctly makes the edge element e an
outgoing edge of the vertex element v.

We are still missing the relation formulas for defining the remaining unary relation E,
which identifies the edge elements. This is easy: We can just set ϑE, p[i] to ⊥ (for all p[i]
as before) and ϑE, p[i]q[j] to >.

This completes the construction of the MSO transduction γΠ. Let A be an input
structure for Π of bounded treewidth. We have argued that γΠ(Inc(A)) yields the
incidence structure of the primal graph of gr(Π ∪ A) as desired. By Theorem 2.25

and the fact that A, by assumption, has bounded treewidth, this proves our claim for
constant-free programs.

It is tedious, but straightforward, to generalize this proof to programs with constants,
and we will only give the general idea here. For each constant occurring in Π, we add
a constant symbol to our MSO signature. Then we adapt our definitions of the MSO
formulas in the following ways: (1) We need to change the notion of “covering” such
that a fact x covers a tuple a of domain elements if each element a occurs in x or is
equal to any constant. (2) Whenever we use a tuple of integers, any element of such
a tuple can also be a constant symbol. For instance, we need to define the formula
extracti(x, y) not only for each tuple of integers between 1 and ρmax, but for each tuple
i where every element of i is either such an integer or a constant symbol. (3) We need to
change the definition of “extracting” such that constants can always be extracted from
any fact; that is, we remove from the formula extract〈i1,...,ij〉(x, y1, . . . , yk) all conjuncts
inij(x, yj) where ij is a constant. It is easy to generalize Propositions 3.8 and 3.9 to
programs with constants, and to verify that the resulting transduction is correct.
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We now illustrate this transduction for an example program.

Example 3.11. Let Π be the following guarded program for solving the 2-Colorability

problem on directed graphs, where the input graph is given via the binary edge
predicate e, and the colors are r and g:

r(X) ∨ g(X)← e(X,Y).
r(Y) ∨ g(Y)← e(X,Y).

← e(X,Y), r(X), r(Y).
← e(X,Y), g(X), g(Y).

Next, let G be the input structure for Π that represents a graph consisting of vertices
a and b, with an edge from b to a. Moreover, we assume that the order on the
domain elements is such that a < b. That is, dom(G) = {a, b}, succG = {〈a, b〉} and
eG = {〈b, a〉}. We denote the domain element of Inc(G) for the fact 〈b, a〉 in eG and for
〈a, b〉 in succG by ba and ab, respectively, and we assume the ordering a < b < ab < ba.
We show how γΠ transforms Inc(G) into the incidence structure of the primal graph of
gr(Π ∪ G).

For the vertex elements, first observe that all of the formulas occurse(b, a), occursr(a),
occursr(b), occursg(a) and occursg(b) are true. For instance, to see that occurse(b, a) is
true, observe that Oe = {〈e, 1, 2〉} (under the assumption that the first variable of each
rule is X and the second is Y); now clearly the subformula e(ba) ∧ extract〈1,2〉(ba, b, a)
is true.

Next we show that we correctly construct vertex elements corresponding to the atoms
e(b, a), r(a) and r(b) in the grounding. Since the cover-based identifier of 〈b, a〉 is ab
in combination with 〈2, 1〉, we can conclude that δe[2,1](ab) is true, which produces the
vertex element for e(b, a). Similarly, Or = {〈e, 1〉, 〈e, 2〉}, and the cover-based identifier
of 〈a〉 and 〈b〉 is ab together with 〈1〉 and 〈2〉, respectively. This makes δr[1](ab) and
δr[2](ab) true and produces the vertex elements for r(a) and r(b), respectively.

We illustrate the edge elements just by the construction for the edge from atom r(a)
to atom e(b, a). Note that togetherr,e(〈a〉, 〈b, a〉) is true because Tr,e contains the
tuple 〈e, 〈2〉, 〈1, 2〉〉 and clearly e(ba) ∧ extract〈2〉(ba, a) ∧ extract〈1,2〉(ba, b, a) is true.
Moreover, observe that ab together with 〈1, 2, 1〉 is the cover-based identifier of 〈a, b, a〉.
This allows us to conclude that δr[1]e[2,1](ab) is true, which produces the desired edge
element.

Finally we show that our transduction indeed makes the edge that should go from r(a)
to e(b, a) an outgoing edge of r(a). Recall that the vertex element for r(a) exists due to
δr[1](ab) being true, and the edge element exists due to δr[1]e[2,1](ab) being true. Clearly
eqr[1],r[1](ab, ab) is true, so ϑin1,r[1],r[1]e[2,1](ab, ab) is also true, which makes the vertex
incident to the edge element as desired. 4
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We can also prove that guarded encodings preserve bounded treewidth in a more
direct way by modifying a tree decomposition of the input so that the result is a tree
decomposition of the grounding. This gives us a simpler, more elementary proof
and it also allows us to derive an explicit bound on the treewidth of the grounding.
Nevertheless, the preceding proof based on MSO transductions may be of interest
because it facilitates the understanding of the MSO transduction in Section 3.4, which
is more complex.

Theorem 3.12. If Π is a fixed guarded ASP program containing c constants and k predicates
of arity at most `, and A is an input structure of Π having treewidth w, then the treewidth of
the primal graph of gr(Π ∪A) is at most k · (w + c + 1)` − 1.

Proof. Let T be a tree decomposition of A having width w, and let C denote the
constants in Π. We construct a tree decomposition T ′ having width k · (w + c + 1)` − 1
of a supergraph of the primal graph of gr(Π ∪A). Since the treewidth of a subgraph is
at most the treewidth of the whole graph, the statement follows.

We define the tree in T ′ to be isomorphic to the tree in T . Let N be a node in T and
B be its bag. We define the bag B′ of the corresponding node N′ in T ′ to consist of
all atoms p(x) such that p is a predicate occurring in Π and x is a tuple of elements
of B ∪ C. The size of B′ is then at most k · (w + c + 1)`. It remains to show that T ′ is
indeed a tree decomposition of a supergraph of the primal graph of gr(Π ∪A).

For every predicate atom p(x) in a rule r of the grounding, we know from guardedness
that there is a ground atom g(y) in the positive body of r such that g is extensional and
every element of x that is not a constant is also an element of y. Since g is extensional,
there is a node in T whose bag contains all elements of y. By our construction, the bag
of the corresponding node in T ′ contains p(x).

If two predicate atoms p(x) and q(y) occur together in a rule r of the grounding, then
from guardedness we infer that r also contains an atom g(z) in the positive body of r
such that g is extensional and every element of x or y that is not a constant is also an
element of z. As before, it follows that the bag of a node in T contains all elements of
x and y that are not constants, and the bag of the corresponding node in T ′ contains
both p(x) and q(y).

If the bags of two nodes N′, M′ of T ′ both contain an atom p(x), then the bags of
the corresponding nodes N, M in T contain all elements of x that are not constants.
By the connectedness condition, every bag of each node between N and M in T
contains all elements of x that are not constants. Hence, by our construction, the
bags of all nodes between N′ and M′ in T ′ contain p(x). This proves that T ′ is a tree
decomposition of a supergraph of the primal graph of gr(Π ∪A), and its width is at
most k · (w + c)` − 1.
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Since the guarded program Π and thus c, k and ` are fixed, this shows that the treewidth
of the primal graph of gr(π ∪A) is polynomial in the treewidth of the input A.

3.4 Connection-Guarded Answer Set Programs

In this section, we define the class of connection-guarded ASP programs and show
that they lead to groundings whose treewidth depends only on the treewidth and the
degree of the input structure. We first require the following concept.

Definition 3.13. The join structure of a set S of predicate atoms is the following relational
structure J over the signature consisting of the predicate symbols occurring in S, with
the same respective arities as in S. The domain of J consists of the variables and
constants occurring in S and for each predicate symbol p it holds that pJ = {t | p(t) ∈
S}. The join graph of S is the Gaifman graph of the join structure of S.

With this notion in hand, we can define our ASP class of interest.

Definition 3.14. Let Π be an ASP program. A connection-guard of a rule r in Π is a set G
of extensional predicate atoms occurring positively in B+(r) (nested or unnested) such
that all variables that occur in r also occur in G and the join graph of G is connected.
We call Π connection-guarded if every rule has a connection-guard. We designate an
arbitrary connection-guard of r as the connection-guard of r.

The following proposition is rather obvious but crucial:

Proposition 3.15. Let Π be a connection-guarded program without constants, let r be a rule
in Π and let A be an input structure of Π. For any two constants a and b in any ground rule
r′ ∈ gr(Π ∪ A) obtained from r during grounding, the distance between a and b in A is at
most the number of variables in r minus one.

Proof. If Π is connection-guarded, the distance between any two variables in the join
structure of a rule r with n variables is at most n− 1. By the nature of grounding,
a ground instance of r is only produced if there is a homomorphism from the join
structure of r to the input structure A. Hence the distance between a and b in A is at
most n− 1.

We next show an important property for connection-guarded ASP programs without
constants: For each possible input and every tuple a of constants that can occur in an
atom of the grounding, a has an (`, d)-path-based identifier.

Proposition 3.16. Let Π be a connection-guarded ASP program without constants, let ` be
the maximum number of variables in any rule of Π, let A be an input structure of Π, let d be
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the degree of A, and let p(a) be a predicate atom that occurs in gr(Π ∪A). The tuple a has an
(`, d)-path-based identifier in A.

Proof. By Proposition 3.15, the distance between any two elements of a = 〈a1, . . . , ak〉
is at most `, so there is a domain element s such that, for each i, there is a relative
(`, d)-path πi satisfying sπi = ai. By our observations in Section 3.2, we have seen that
then a has an (`, d)-path-based identifier in A.

We can again generalize this as follows.

Proposition 3.17. Let Π be a connection-guarded ASP program without constants, let ` be
the maximum number of variables in any rule of Π, let A be an input structure of Π, let d
be the degree of A, and let p(a) and q(b) be predicate atoms that occur together in a rule of
gr(Π ∪A). The joint tuple ab has an (`, d)-path-based identifier in A.

Proof. Since p(a) and q(b) occur together in a rule r of the grounding, the distance
between any two elements of ab is at most ` by Proposition 3.15. Hence there is an
element s of dom(A) whose distance to each element of ab is at most `, so there is a
relative (`, d)-path from s to each element of ab. As we have observed in Section 3.2
when we have defined (`, d)-path-based identifiers, this means that ab has an (`, d)-
path-based identifier in A.

The intention of connection-guarded programs is to guarantee that the treewidth of
the grounding remains bounded, provided that the treewidth and degree of the input
instance is also bounded. The following theorem is the main result of this section and
states this formally.

Theorem 3.18. Let Π be a fixed connection-guarded program and let A be an input structure
of Π. If A has bounded treewidth and degree, then the primal graph of gr(Π ∪A) has bounded
treewidth.

Proof of Theorem 3.18. Our proof is similar to that of Theorem 3.10 for guarded ASP
(cf. Figure 3.1), but here we use the bound d on the degree of input structures in our
construction of an appropriate MSO transduction κΠ,d. In this case the transduction
thus depends on both Π and the degree bound d, and it is only defined for input
structures of degree at most d. Since both Π and d are fixed, we get the desired result
by Theorem 2.25.

The incidence structure Inc(A) will be an input structure of κΠ,d, and the incidence
structure of the primal graph of gr(Π ∪A), which we again consider directed, will be
the corresponding output structure. By Theorem 2.25, this shows our claim. Let ` be
the maximum number of variables in any rule of Π. Furthermore, assume that A has
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bounded treewidth and degree, and let d denote the degree of A. For each rule r of Π,
we denote the set of variables of r by Var(r), and we assume that these variables are
denoted by X1, . . . , X|Var(r)|. We will, for the moment, assume that Π is constant-free;
we will show later how to handle the general case.

We call the domain elements in the output structure that correspond to vertices and
edges of the primal graph vertex elements and edge elements, respectively. In the following,
we define κΠ,d by the definition scheme 〈∆, Θ〉, where the tuple ∆ is the concatenation
of tuples ∆v and ∆e, which contain domain formulas that generate the vertex and
edge elements, respectively, and Θ contains relation formulas that state which vertex is
incident to which edge.

Formulas in ∆v. These formulas shall produce the vertex elements. First we define a
formula instr(x) for every rule r to express that the tuple x is an instantiation of the
variables in r such that the instantiated connection-guard of r indeed appears in the
input facts. To this end, let r be a rule in Π. We first define Ir to be the following set of
objects: If the connection-guard of r contains an atom g(Xi1 , . . . , Xik), then Ir contains
an element 〈g, i1, . . . , ik〉.

instr(x1, . . . , x|Var(r)|) ≡
∧

〈g,i1,...,ik〉∈Ir

∃y
(

g(y) ∧ in1(y, xi1) ∧ · · · ∧ ink(y, xik)
)

For convenience, we now define the following formula for all nonnegative integers k
and m, and for each tuple 〈i1, . . . , ik〉 of integers between 1 and m:

select〈i1,...,ik〉(x1, . . . , xm, y1, . . . , yk) ≡ y1 = xi1 ∧ · · · ∧ yk = xik

The formula selecti(x, y) is true if and only if the elements of y are those elements of x
given by the indices in i.

Next, for each predicate p, we define Op to be the following set of objects: If a rule r in
Π contains an atom p(Xi1 , . . . , Xik), then the set Op contains 〈r, i〉, where i = 〈i1, . . . , ik〉.
With this, we define a formula occursp(x) to express that the ground atom p(x) occurs
in gr(Π ∪A).

occursp(x) ≡
∨

〈r,i〉∈Op

∃y
(

instr(y) ∧ selecti(y, x)
)

We now put this auxiliary formula to use: For each predicate p of arity k occurring
in Π and for each k-tuple π of relative (`, d)-paths, we define the following formula
δp[π](x) to be an element of ∆v.

δp[π](x) ≡ ∃y
(

pid`,d
π (x, y) ∧ occursp(y)

)
This formula is true if and only if x together with π is the (`, d)-path-based identifier
of some tuple a of domain elements and p(a) occurs in gr(Π ∪A); the resulting copy
of x in the output structure then corresponds to the atom p(a).
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For each predicate atom p(a) in the grounding, we thus produce a vertex element, since
a has an (`, d)-path-based identifier by Proposition 3.16. Moreover, different predicate
atoms produce different vertex element and every vertex element that we produce
corresponds to an atom in the grounding by our construction of the occursp formulas.
This proves that there is a bijection between the atoms in the grounding and the vertex
elements.

Formulas in ∆e. These formulas shall produce the edge elements. We again define a few
auxiliary formulas. For each rule r in Π, we use Gr to denote the set of all integers i
such that Xi is a global variable in r. Now we define the following formula to express
that two instantiations x and y of the variables in r agree on the values for the global
variables.

compatr(x1, . . . , x|Var(r)|, y1, . . . , y|Var(r)|) ≡
∧

i∈Gr

xi = yi

Next, for all predicates p and q of arity k and m, respectively, we define Tp,q to be the
following set of objects: If there is a rule r in Π such that r contains atoms p(Xi1 , . . . , Xik)

and q(Xj1 , . . . , Xjm), then Tp,q contains 〈r, i, j〉, where i = 〈i1, . . . , ik〉 and j = 〈j1, . . . , jm〉.
With this, we now define a formula togetherp,q(x, y), where x and y are tuples of
variables with arity k and m, respectively. This formula expresses that the two ground
atoms p(x) and q(y) occur together in some rule of gr(Π ∪A).

togetherp,q(x, y) ≡
∨

〈r,i,j〉∈Tp,q

∃z∃z′
(

instr(z) ∧ instr(z′) ∧ compatr(z, z′) ∧

∧ selecti(z, x) ∧ selectj(z, y)
)

The idea is that p(x) and q(y) appear together in r if the variables in r can be instantiated
by tuples z and z′ that agree on the global variables such that p(x) appears when
applying z and q(y) appears when applying z′.5

With these auxiliary formulas in hand, we define the following formula δp[π]q[ψ](x) to
be an element of ∆e, for all predicates p and q, and all tuples π and ψ of relative (`, d)-
paths, such that the arities of π and ψ are the same as those of p and q, respectively.

δp[π]q[ψ](x) ≡
{
⊥ if p[π] = q[ψ]

∃y∃z
(

pid`,d
πψ(x, y, z) ∧ togetherp,q(y, z)

)
otherwise

This formula is true if and only if there are tuples a and b of the same arity as p and
q, respectively, such that (1) x together with πψ is the (`, d)-path-based identifier of

5If r contains no aggregates, then this is equivalent to checking if there is a single instantiation of
the variables in r such that both atoms appear. However, we must be more careful due to rules like
← p(X), #sum{ 1,Y : q(X,Y) }, where atoms like q(a,b) and q(a,c) may appear together in the

grounding.
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ab, and (2) the atoms p(a) and q(b) are different and occur together in some rule of
gr(Π ∪ A). The resulting copy of x in the output structure then corresponds to the
edge from p(a) to q(b) in the primal graph. Due to symmetry, we can see that then
also an edge in the other direction will be created. Since both atoms are different if the
formula is true, we do not introduce loops.

For each pair of different predicate atoms p(a) and q(b) that jointly occur in a rule of
the grounding, we thus correctly produce two edge elements, since ab has an (`, d)-
path-based identifier by Proposition 3.17. Moreover, different such pairs of atoms
produce different edge elements, and every edge element that we produce corresponds
to a joint occurrence of two atoms in a rule of the grounding by our construction of the
togetherp,q formulas.

Formulas in Θ. These formulas shall ensure that each edge element is incident to the
two appropriate vertex elements. First we define the formula meetπ,ψ(x, y) for each
integer k and all k-tuples π and ψ of relative paths. The formula is true if and only if
xπ = yψ.

meet〈π1,...,πk〉,〈ψ1,...,ψk〉(x, y) ≡
∧

16i6k

∃z
(

reachπi(x, z) ∧ reachψi(y, z)
)

Now let p and q be predicates occurring in Π, and let π and ψ be tuples of relative
(`, d)-paths. We define a formula eqp[π],q[ψ](x, y) to express that the atoms p(xπ) and
q(yψ) are equal.

eqp[π],q[ψ](x, y) ≡
{

meetπ,ψ(x, y) if p = q

⊥ otherwise

Let p, q and q′ be predicates occurring in Π, and let π, ψ and ψ′ be tuples of relative
(`, d)-paths with the same arity as p, q and q′, respectively. We define the following
formulas to be an element of Θ:

ϑin1, p[π], q[ψ]q′[ψ′](x, y) ≡ eqp[π],q[ψ](x, y)

ϑin2, p[π], q[ψ]q′[ψ′](x, y) ≡ eqp[π],q′[ψ′](x, y)

We only explain the first of these formulas, as the other case is symmetric.

The formula ϑin1, p[π], q[ψ]q′[ψ′](x, y) is true if and only if the atom p(a) is equal to q(b),
where a = xπ and b = yψ. If this formula is true, it makes the edge represented by the
respective copy of y an outgoing edge of p(a) because of the subscript in1.

We first show that, whenever our transduction causes an edge element to be incident to
a vertex element, the corresponding edge in the primal graph is indeed an outgoing
edge of the appropriate vertex. Suppose there are predicates p, q and p′, tuples π, ψ
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and ψ′, as well as domain elements x and y such that (1) δp[π](x) is true, (2) δq[ψ]q′[ψ′](y)
is true, and (3) ϑin1, p[π], q[ψ]q′[ψ′](x, y) is true. As observed in our definition of ∆v, (1)
means that x together with π is the (`, d)-path-based identifier of some tuple a, and the
grounding contains an atom p(a). From (2) we get that there are tuples b and b′ such
that y together with ψψ′ is the (`, d)-path-based identifier of bb′. We have also seen
that by (2) there is a rule in the grounding that contains both q(b) and q′(b′), hence
there is an edge from q(b) to q′(b′) in the primal graph. By (3) and the definition of
(`, d)-path-based identifiers (in particular those of a, b and b′), we know that p(a) is
equal to q(b). Hence the edge in the primal graph from q(b) to q′(b′) is indeed an
outgoing edge of p(a).

Finally we prove the other direction: Whenever an edge in the primal graph is an outgo-
ing edge of a vertex, a formula in Θ defining the relation in1 causes the corresponding
edge element to an outgoing edge of the appropriate vertex element. Suppose that the
primal graph contains an edge from atom p(a) to atom q(b). Then these atoms occur
together in a rule of the grounding and, as we have seen in our definition of ∆v and ∆e,
our transduction produces a vertex element v for p(a) and an edge element e for the
edge from p(a) to q(b). Now let x and y be domain elements of A, and let π, ψ and
ψ′ be tuples of relative (`, d)-paths, such that x together with π is the (`, d)-path-based
identifier of a, and y together with ψψ′ is the (`, d)-path-based identifier of ab. By
definition of (`, d)-path-based identifiers, xπ = a; moreover, yψψ′ = ab, which entails
yψ = a. Since both a = xπ and a = yψ, the formula eqp[π],p[ψ](x, y) is clearly true.
Hence the formula ϑin1, p[π], p[ψ]q[ψ′](x, y) is true, which correctly makes the edge element
e an outgoing edge of the vertex element v.

For the remaining relation formulas, which define the relation E, we proceed in the
same way as in the proof of Theorem 3.10.

This completes the construction of the MSO transduction κΠ,d. Let A be an input
structure for Π with degree bounded by d. Clearly, since Π, d and ` are fixed, so is
κΠ,d. We have argued that κΠ,d(Inc(A)) yields the incidence structure of the primal
graph of gr(Π ∪A) as desired. By Theorem 2.25 and the fact that A, by assumption,
has bounded treewidth, this proves our claim for constant-free programs.

It is tedious, but straightforward, to generalize this proof to programs with constants,
and we will only give the general idea here. For each constant occurring in Π, we
add a constant symbol to our MSO signature. Then we adapt our definitions of the
MSO formulas in the following ways: (1) We need to extend our definition of the MSO
formulas in such a way that every relative path can also be a constant symbol instead.
(2) We define reachπ(x, y) as y = π whenever π is a constant symbol. Intuitively, we
can “reach” every constant from every domain element. (3) For the formula frpd

π(x, y),
we adjust the definition of ≺d such that each constant is smaller than all relative d-paths,
and the constants are ordered in an arbitrary way. (4) The set Ir in the definition of
instr(x) shall contain a tuple 〈g, e1, . . . , em〉 whenever the connection-guard of r contains
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a predicate atom of the form g(a1, . . . , am), where each aj is either a variable Xi, in
which case ej = i, or aj is a constant symbol, in which case ej = aj. In the formula
instr(x), we then replace a conjunct inj(y, xij) by inj(y, ij) whenever ij is a constant. We
also change the definition of the sets Op and Tp,q in the definitions of occursp(x) and
togetherp,q(x, y) to account for constants in a similar way as in our adjusted definition
of Ir. (5) In the definition of selecti(x, y), every element ij of 〈i1, . . . , ik〉 can also be a
constant symbol, in which case the corresponding conjunct in the formula is yj = ij.
It is easy to generalize Propositions 3.16 and 3.17 to programs with constants, and to
verify that the resulting transduction is correct.

We now illustrate this transduction for the same program as in Example 3.11.

Example 3.19. Let Π be the connection-guarded program from Example 3.11. We
denote the rules by r1, . . . , r4 from top to bottom. Again let G be the input structure for
Π satisfying dom(G) = {a, b}, succG = {〈a, b〉} and eG = {〈b, a〉}, and whose degree is
bounded by some integer d. We denote the domain element of Inc(G) for the fact 〈b, a〉
in eG and for 〈a, b〉 in succG by ba and ab, respectively, and we assume the ordering
a < b < ab < ba. We show how κΠ,d transforms Inc(G) into the incidence structure of
the primal graph of gr(Π ∪ G).

For the vertex elements, first observe that the formula instr(b, a) is true for every rule r
because each rule has the guard e(X,Y) and the only input fact is e(b, a). Now observe
that all of the formulas occurse(b, a), occursr(a), occursr(b), occursg(a) and occursg(b)
are true. For instance, observe that Oe = {〈r1, 1, 2〉, 〈r2, 1, 2〉, 〈r3, 1, 2〉, 〈r4, 1, 2〉} (under
the assumption that the first variable of each rule is X and the second is Y); now
clearly the subformula instr(b, a) ∧ select〈1,2〉(b, a, b, a) is true for every rule r. Hence
occurse(b, a) is true. Since the (2, d)-path-based identifier of 〈b, a〉 is b in combination
with 〈ε, 〈1〉〉, we can conclude that δe[ε,〈1〉](b) is true, which produces the vertex element
for e(b, a).

Similarly, Or = {〈r1, 1〉, 〈r2, 2〉, 〈r3, 1〉, 〈r3, 2〉}, by which we can see that both occursr(a)
and occursr(b) are true due to the elements of Or containing 2 and 1, respectively. The
(2, d)-path-based identifiers of 〈a〉 and 〈b〉 are a together with 〈ε〉 and b together with
〈ε〉, respectively. This makes δr[ε](a) and δr[ε](b) true and produces the vertex elements
for r(a) and r(b), respectively.

We illustrate the edge elements just by the construction for the edge from atom r(a)
to atom e(b, a). Note that togetherr,e(〈a〉, 〈b, a〉) is true because Tr,e contains the tu-
ple 〈r1, 〈2〉, 〈1, 2〉〉 as well as 〈r3, 〈2〉, 〈1, 2〉〉, and clearly both subformulas instr1(b, a) ∧
instr1(b, a) ∧ compatr(b, a, b, a) ∧ select〈2〉(b, a, a) ∧ select〈1,2〉(b, a, b, a) and instr3(b, a) ∧
instr3(b, a) ∧ compatr(b, a, b, a) ∧ select〈2〉(b, a, a) ∧ select〈1,2〉(b, a, b, a) are true. More-
over, observe that b together with 〈〈1〉, ε, 〈1〉〉 is the (2, d)-path-based identifier of
〈a, b, a〉. This allows us to conclude that δr[〈1〉]e[ε,〈1〉](b) is true, which produces the
desired edge element.
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Finally we show that our transduction indeed makes the edge that should go from
r(a) to e(b, a) an outgoing edge of r(a). Recall that the vertex element exists due to
δr[ε](a) being true, and the edge element exists due to δr[〈1〉]e[ε,〈1〉](b) being true. Clearly
eqr[ε],r[〈1〉](a, b) is true, so ϑin1,r[ε],r[〈1〉]e[ε,〈1〉](a, b) is also true, which makes the vertex
incident to the edge element as desired. 4

Obviously every guarded ASP program is also connection-guarded. The other direction,
however, is not true. Consider, for example, the connection-guarded program consisting
of the rule p(X,Z) ← e(X,Y), e(Y,Z). As an input for this program, consider a path
of length 2. The extension of p in the unique answer set contains both endpoints of
the path. However, there can be no equivalent guarded program since answer sets of
groundings resulting from guarded programs have the property that the extension of
any predicate can only be a subset of the extension of an extensional predicate.

While connection-guarded ASP is a strict superset of guarded ASP in the sense that
each guarded program is connection-guarded but not vice versa, there seems to be a
price to pay for the higher generality when the objective is to keep the treewidth of
the grounding low: Comparing Theorem 3.10, which concerns guarded ASP programs,
with Theorem 3.18, which concerns connection-guarded programs, we notice that we
rely on the input having bounded degree for showing that grounding connection-
guarded programs preserves bounded degree of the input, whereas there is no such
assumption for guarded programs.

It is natural to ask whether this additional condition is necessary for connection-guarded
programs. Unfortunately it is, as witnessed by the rule p(X,Z) ← e(X,Y), e(Y,Z),
where e is extensional: When given a tree of height 1 with n vertices (and thus of
treewidth 1 and maximum degree n− 1), the primal graph of the grounding has linear
treewidth, as the complete bipartite graph Kn−1,n−1 is a subgraph of it.

Also the restrictions in Definition 3.14 cannot easily be relaxed without destroying
bounded treewidth already with very simple programs: If we allow “unconnected”
rules like p(X,Y)← v(X), v(Y), then the complete graph Kn is a subgraph of the primal
graph of the grounding for any n-vertex instance.

Moreover, if we change the definition of the extensional join graph by drawing edges
also for intensional atoms, then the first encoding in Example 3.1 is allowed, which
generates Kn for any connected graph.

3.5 Complexity

We have seen that most restrictions of connection-guarded ASP cannot be lifted without
losing the property that grounding preserves bounded treewidth of the input when the
degree is also bounded. On the other hand, guarded ASP does not require the bound

65



3. Treewidth-Preserving Classes of Answer Set Programs

t(T)← verum(T).
f(F)← falsum(F).

t(X) ∨ f(X)← exists(X).
t(Y) ∨ f(Y)← forall(Y).

w← term(X,Y,Z,Na,Nb,Nc), t(X), t(Y), t(Z), f(Na), f(Nb), f(Nc).
t(Y)← w, forall(Y).
f(Y)← w, forall(Y).

← not w.

Listing 3.4: An encoding of Qsat2 in guarded ASP

on the degree, but it is syntactically even more restrictive. This raises suspicions about
whether the classes are too restrictive to be useful.

Luckily, straightforward encodings for problems like Graph Coloring or Hamiltonian
Cycle even fall into the class of guarded ASP (cf. the second encoding in Example 3.1),
and consequently also into connection-guarded ASP. Moreover, it turns out that the
restrictions imposed by guardedness and connection-guardedness do not alleviate the
complexity of deciding answer set existence when the program is fixed:

Theorem 3.20. It is ΣP
2 -complete to decide for a fixed guarded or connection-guarded ASP

program Π and a given input structure A whether Π ∪A has an answer set.

Proof. For membership, we guess an interpretation I and then check by calling a co-NP
oracle whether I is a minimal model of gr(Π∪A)I . For hardness, we present a guarded
encoding for the well-known ΣP

2 -complete problem Qsat2. We are given a formula
∃x1 · · · ∃xk∀y1 · · · ∀y` ϕ, where ϕ is a formula in 3-DNF (i.e., a disjunction of conjunctive
terms, each containing at most three literals), and the question is whether there are
truth values for the x variables such that for all truth values for the y variables ϕ is true.
We assume that each disjunct in ϕ contains exactly three literals, which can be achieved
by using the same literal multiple times in a disjunct.

Consider the ASP program in Figure 3.4, which is based on the encoding in Sec-
tion 3.3.5 of the paper by Leone et al. (2006). The Qsat2 formula is represented as
a structure A as follows: The domain of A consists of all variables in ϕ and two
special elements > and ⊥. We choose verumA = {>} and falsumA = {⊥}. The
relations existsA and forallA consist of all existentially and universally quantified
variables, respectively. Finally, for each disjunct l1 ∧ l2 ∧ l3 in the formula, we put an
element 〈p1, p2, p3, q1, q2, q3〉 into termA, where pi denotes vi if li is a positive atom vi,
otherwise pi = >, and qi denotes vi if li is an atom of the form not vi, otherwise qi = ⊥.
The element 〈p1, p2, p3, q1, q2, q3〉 thus represents p1 ∧ p2 ∧ p3 ∧ ¬q1 ∧ ¬q2 ∧ ¬q3, which
is equivalent to the original disjunct. This program is clearly guarded and indeed
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strat(Y) ∨ strat(Z)← prod_by(X,Y,Z).
strat(W)← contr_by(W,X,Y,Z), strat(X), strat(Y), strat(Z).

 avoid(Sell,Keep,P), not strat(Sell), strat(Keep). [1 @P,Sell,Keep]

Listing 3.5: An encoding of Preferred Strategic Companies in guarded ASP

treewidth degree treewidth + degree
guarded FPT (3.22) ΣP

2 -complete (3.28) FPT
connection-guarded NP-hard (3.26) ΣP

2 -complete FPT (3.23)

Table 3.1: Parameterized complexity of answer set existence for our considered classes
when the program is fixed. In parentheses: Number of the theorem proving the result.
Results without parentheses are implied by other results.

encodes the Qsat2 problem, as can be seen by the arguments in the work by Leone
et al. (2006).

Note that weak constraints have no effect on whether a program has an answer set, but
they do have an effect on which answer sets are admitted. Thus, if we consider a slightly
different reasoning problem, we see that weak constraints increase the complexity of
ASP. This fact is well known for general ASP, and it also holds for our ASP classes.

Theorem 3.21. It is ∆P
3 -complete to decide for a fixed guarded or connection-guarded ASP

program Π and a given input structure A whether a given ground atom is true in an optimal
answer set of Π ∪A.

Proof. Membership follows from the fact that the same problem on general ASP pro-
grams is ∆P

3 -complete (Buccafurri, Leone and Rullo 2000; Leone et al. 2006). To show
hardness, we present a guarded encoding of the Preferred Strategic Companies

problem, which is also known to be ∆P
3 -complete. We omit a description of the problem,

which can be found in Section 3.3.7 of the paper by Leone et al. (2006). The encoding in
Figure 3.5 is also taken from there (with slight adaptations). The input predicates are
prod_by, contr_by and avoid. Clearly this program is guarded.

We now turn to the parameterized complexity of the answer set existence problem for
fixed guarded and connection-guarded ASP programs. The parameters we consider are
the treewidth and the degree of the input structures, as well as the combined parameter
treewidth + degree. Our most important results are summarized in Table 3.1. In the
following we prove these results (and more) individually.

When we consider the treewidth of the input structures as the parameter, we will see
that answer-set solving for fixed guarded programs is in fact fixed-parameter tractable.
It is also fixed-parameter tractable if we consider fixed connection-guarded programs
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and the combination of treewidth and degree as the parameter. In other words, the ASP
classes we defined are not only useful for encoding problems in such a way that we
implicitly benefit from the treewidth-sensitivity inherent to state-of-the-art ASP solvers
due to the results in Theorem 3.10 and Theorem 3.18, but they are also amenable to
algorithms that explicitly exploit small treewidth.

As we have shown in Theorem 3.10, grounding a fixed guarded ASP program together
with an input structure A leads to a grounding whose treewidth only depends on
the treewidth of A. This is of particular interest when we consider the fact that the
problem of deciding whether a ground ASP program admits an answer set is FPT when
parameterized by treewidth (Gottlob, Pichler and Wei 2010a). This even holds when the
language is augmented by additional constructs such as optimization rules and weight
rules, which are similar to weak constraints and aggregates, respectively (Fichte et al.
2017).6 Moreover, the algorithm by Fichte et al. (2017) clearly also works in FPT time
for deciding Brave Reasoning and it can even print the cost of optimal answer sets.
By combining these results, we obtain the following theorem:

Theorem 3.22. For every fixed guarded ASP program Π the problem of deciding for a given
input structure A whether a given ground atom is true in an optimal answer set of Π ∪A is
fixed-parameter tractable when parameterized by the treewidth of A.

Proof. Let Γ denote gr(Π ∪A) in the following. First note that the size of Γ is linear
in the size of A, since every rule in Π is guarded and thus has at most one ground
instance in Γ for every fact in A. Moreover, by Theorem 3.10, the treewidth of Γ only
depends on the treewidth of A.

To prove the statement, we show how we can transform the weak constraints and
aggregates that occur in Γ into optimization rules and weight rules (as defined in the
paper by Fichte et al. (2017)). We first turn weak constraints into optimization rules
and thus obtain a program Γo. Then we transform Γo into a program Γo,w by turning
aggregates into weight rules. Our transformations make sure that the size of Γo,w is
polynomial in the size of Γ, and the treewidth of Γo,w is linear in the treewidth of Γ.
This in turn implies by our initial observations that the size of Γo,w is polynomial in
the size of A, and that the treewidth of Γo,w only depends on the treewidth of A. The
statement then follows from a direct application of the fixed-parameter linear algorithm
from Theorem 2 of the paper by Fichte et al. (2017).

First we transform weak constraints into optimization rules. Ground weak constraints
have the form  b1, . . . , bn [w @ l, t1, . . . , tm], where b1, . . . , bn are literals, w and l are
integers and t1, . . . , tm are terms. An optimization rule has the form  b[w], where b is

6Note that weight rules make the problem W[1]-hard when the parameter is the treewidth of the
incidence graph of the ground program (Pichler et al. 2014). Here we deal with the treewidth of the primal
graph, where the problem is in FPT even in the presence of weight constraints.
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a literal and w is a nonnegative integer. Similar to weak constraints, the meaning of
optimization rules is to restrict the solutions to those answer sets that have minimum
cost, where the cost is determined by adding the weight w of each optimization rule
whose body is true. In contrast to weak constraints, optimization rules only have a
single literal in the body, there is no possibility to specify different priority levels l and
the weights w cannot be negative. We first make the following assumptions about Γ:

1. All levels l in our weak constraints are nonnegative. If there are negative levels,
we can achieve this condition by adding the absolute value of the smallest level to
each level.

2. There are no negative weights w in our weak constraints. If there are negative
weights, we add the absolute value of the smallest weight to each weight.

3. Each level number is at most the number of weak constraints in the grounding.
This is easy to achieve: Suppose there are two level numbers a and b that both
occur in the ground program such that a < b but there is a “gap” between them;
that is, b− a > 1 and there is no level number occurring in the program that
is between a and b. It is easy to see that, by the semantics of weak constraints,
we can replace each occurrence of the level number b in the grounding by a + 1
without changing which answer sets are optimal. Hence we may assume that
each level number is linear in the size of the grounding.

Now we rewrite Γ into an equivalent ground program Γo such that only a single
(nonnegative) level l appears in the weak constraints of Γo. To achieve this, we replace
each expression w @ l by w · (s + 1)l @ 0, where s is the sum of all weights in Γ. Note
that s is at most the number of rules in Γ times the highest weight. Hence the value of
s is in O(n · 2n), where n is the size of Γ. As we have seen, l is in O(n). So w · (s + 1)l

is in O(2n · (n · 2n)n). We can represent this number with O(n2) many bits. Since the
size of Γ is linear in the size of A, the size of Γo is thus still polynomial in the size of A.

For each expression [w @ l, t1, . . . , tm] that appears in a weak constraint, we now add an
optimization rule  addw @ l,t1,...,tm [w], where addw @ l,t1,...,tm is a new atom. Finally, we
replace each weak constraint  b1, . . . , bn [w @ l, t1, . . . , tm] by the rule addw @ l,t1,...,tm ←
b1, . . . , bn. Note that this increases the treewidth at most by one, and the size of Γo

clearly stays polynomial in the size of A.

Next we turn aggregates into weight rules. A weight rule has the form a ← w 6
{b1 = w1, . . . , bn = wn}, where a is an atom, b1, . . . , bn are literals and w, w1, . . . , wn are
nonnegative integers. The body of a weight rule is true if w is less than of equal to the
sum of all wi such that bi is true. To turn the ground program Πo, which may contain
aggregates, into an equivalent ground program Γo,w that uses weight rules instead, we
follow the rewriting technique from the paper by Alviano, Faber and Gebser (2015).
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This rewriting is rather involved and we do not reiterate it here. We only sketch why
each of its steps preserves bounded treewidth.

1. We first apply some transformations that turn all aggregates into sum aggregates
with just the comparison operators > and 6=. This can be done by splitting an
aggregate into at most three aggregates,7 performing some arithmetic on the
weights and bounds, and possibly changing comparison operators. This only
increases the size of Γo,w by at most a factor of three. Moreover, for any rule r, this
does not change the atoms that occur in r, so it has no impact on the treewidth.
These claims can be easily verified by looking at the equivalences in Section 3.1 of
the paper by Alviano, Faber and Gebser (2015).

2. We then replace each aggregate A containing the comparison operator > with
a new atom auxA, and we add a rule auxA ← A′, where A′ is an aggregate
containing only nonnegative weights, the same atoms as A and, for certain atoms
p that occur in A, a copy pF. This is formalized in rule (4) of the paper by
Alviano, Faber and Gebser (2015). Adding the atoms pF clearly increases both the
program size and the treewidth at most by a factor of two. Since its weights are
nonnegative, the new rule auxA ← A′ can be seen as a weight rule.

3. For each new atom pF added in the previous step, we add a constant number
of new rules into the program, but these new rules only involve p, pF and auxA.
This is formalized in rules (5)–(7) of the paper by Alviano, Faber and Gebser
(2015). After rewriting an aggregate A in this way, the size of Γo,w only increases
by a constant factor. Moreover, the treewidth of the primal graph of Γo,w is at most
the treewidth of the graph that results from the primal graph of Γo by adding one
new atom vertex pF for every atom p that occurs in A, adding an atom vertex
auxA, and constructing a clique among auxA and all atom vertices p and pF such
that p occurs in A. Hence this transformation only increases the treewidth at
most by a factor of two.

For the aggregates over the comparison operator 6=, the procedure is slightly different,
but the bounds on program size and treewidth can be established in the same way.

We can now apply the fixed-parameter linear algorithm described in Section 3.3 of the
paper by Fichte et al. (2017) to obtain the desired result.8

7Note that in the presence of #even and #odd aggregates this bound of three does not hold. However,
we can still give a linear bound, which is fine for obtaining fixed-parameter tractability. Moreover, #even
and #odd predicates are not part of the ASP language specification (Calimeri et al. 2015) anyway, so we
just mention this in passing here.

8Actually Fichte et al. (2017) prove the correctness of two algorithms: one works on the incidence
graph of the grounding and the other works on the primal graph. Neither of these algorithms accounts
for optimization rules. The authors do show how to extend the incidence-graph algorithm to optimization
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This proves that the size of Γo,w is polynomial in the size of Γ and that the treewidth
of Γo,w is linear in the treewidth of Γ, which only depends on the treewidth of A by
Theorem 3.10.

Unsurprisingly, an analogous statement can be shown for connection-guarded ASP.

Theorem 3.23. For every fixed connection-guarded ASP program Π the problem of deciding
for a given input structure A whether a given ground atom is true in an optimal answer set of
Π ∪A is fixed-parameter tractable when parameterized by the combination of the treewidth and
degree of A.

Proof. Since Π is connection-guarded, observe that the size of gr(Π ∪A) is in O(n · d`),
where n and d denote the size and degree of A, respectively, and ` is the maximum
number of variables in a rule of Π. Hence, for bounded d and `, the size of the ground-
ing is linear in n. We can now prove the statement in the same way as Theorem 3.22,
with the modification that we invoke Theorem 3.18 instead of Theorem 3.10.

If we restrict the program a little bit further, we can even obtain fixed-parameter linear
algorithms:

Corollary 3.24. For every fixed guarded ASP program Π there is a fixed-parameter linear
algorithm that decides for every input structure A whether a given ground atom is true in an
optimal answer set of Π∪A, when the parameter is the treewidth of A, if the levels and weights
of all weak constraints in Π are bounded by a fixed constant.

Proof. We use the same algorithm as in the proof of Theorem 3.22 and observe that it
becomes fixed-parameter linear for the following reason: If the levels and weights of all
weak constraints are fixed, then our “flattening” of the weights w@l to w · (s + 1)l@0
leads to integers that can be represented with a logarithmic number of bits, and these
numbers can be computed in constant time under the assumption of the uniform-cost
model. The size of the program Γo is then linear in the size of A. Hence the size of Γo,w

is still linear in the size of A.

For connection-guarded ASP programs, the same restrictions also lead to fixed-parame-
ter linearity. We omit the proof for the following corollary, as it is analogous to that of
Corollary 3.24.

rules, but they omit such a discussion for the primal-graph algorithm. Nevertheless, it is clear that the ideas
also work for primal graphs as the authors claim. The running time of their algorithm for primal graphs is
in fact O(log(m) · f (k) · n2), where m is the sum of all weights of optimization rules, k is the treewidth of
the primal graph, n is the size of the grounding and f is a computable function. The logarithmic factor is
due to the cost of arithmetic and the square is due to the fact that their algorithm also performs counting
of answer sets. Here we assume the uniform-cost model, where all arithmetic operations take constant
time, and are only interested in answer set existence, so this simplifies to O( f (k) · n).

71



3. Treewidth-Preserving Classes of Answer Set Programs

Corollary 3.25. For every fixed connection-guarded ASP program Π there is a fixed-parameter
linear algorithm that decides for every input structure A whether a given atom is true in an
optimal answer set of Π∪A, when the parameter is the combination of the treewidth and degree
of A, if the levels and weights of all weak constraints in Π are bounded by a fixed constant.

Clearly our FPT results concerning Brave Reasoning carry over to Answer Set

Existence.

We obtained our positive results on connection-guarded ASP by parameterizing the
problem by the combination of treewidth and degree, whereas guarded ASP for any
fixed non-ground encoding is already FPT when parameterized by treewidth only. It is
thus natural to ask whether, for fixed encodings, connection-guarded ASP is FPT when
parameterized only by either treewidth or degree.

Recall that in Section 3.4 we pointed out that grounding a connection-guarded encoding
together with an input structure of arbitrary degree may lead to unbounded treewidth
of the grounding. It is therefore not very surprising that the degree bound is indeed
necessary for obtaining fixed-parameter tractability (unless P = NP):

Theorem 3.26. The problem of deciding whether a fixed connection-guarded program Π
together with a given input structure A has an answer set is NP-hard. This even holds if the
treewidth of A is at most three and Π contains neither disjunctions nor aggregates nor weak
constraints.

Proof. We reduce from the following NP-complete problem.

Subgraph Isomorphism

Input: Graphs G and H

Question: Is there a subgraph of G that is isomorphic to H?

This problem remains NP-hard even if the treewidth of both G and H is at most two
(Matoušek and Thomas 1992).

Let 〈G, H〉 be an instance of Subgraph Isomorphism. We will present an ASP encoding
for Subgraph Isomorphism using the signature σ = {vg,vh,eg,eh,bridge,eq},
where vg and vh are unary predicates used to represent the vertices of G and H,
respectively; eg and eh are binary predicates for the respective edges; the binary
predicate bridge is used to connect each vertex of G with a new “bridge element”,
which is in turn connected to each vertex of H also via the bridge predicate; and the
binary eq predicate contains all pairs of equal vertices. According to this intended
meaning, we define a structure A over σ by dom(A) = V(G) ∪V(H) ∪ {b} (where b
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% Guess a subgraph S of G using predicates vs/1 and es/2.
vs(X)← vg(X), not not_vs(X).

not_vs(X)← vg(X), not vs(X).
es(X,Y)← eg(X,Y), vs(X), vs(Y), not not_es(X,Y).

not_es(X,Y)← eg(X,Y), vs(X), vs(Y), not es(X,Y).
% Guess a relation representing an isomorphism using predicate iso/2.

iso(G,H)← vs(G), vh(H), not not_iso(G,H), bridge(G,B), bridge(B,H).
not_iso(G,H)← vs(G), vh(H), not iso(G,H), bridge(G,B), bridge(B,H).
% The guessed relation must be a bijection from V(S) to V(H).

← iso(G,H1), iso(G,H2), not eq(H1,H2),
bridge(G,B), bridge(B,H1), bridge(B,H2).

← iso(G1,H), iso(G2,H), not eq(G1,G2),
bridge(G1,B), bridge(G2,B), bridge(B,H).

used(G)← iso(G,H), bridge(G,B), bridge(B,H).
used(H)← iso(G,H), bridge(G,B), bridge(B,H).

← vg(G), vs(G), not used(G).
← vh(H), not used(H).

% The guessed relation must be an isomorphism.
← iso(G1,H1), iso(G2,H2), es(G1,G2), not eh(H1,H2),

bridge(G1,B), bridge(G2,B), bridge(B,H1), bridge(B,H2).
← iso(G1,H1), iso(G2,H2), eh(H1,H2), not es(G1,G2),

bridge(G1,B), bridge(G2,B), bridge(B,H1), bridge(B,H2).

Listing 3.6: An encoding of Subgraph Isomorphism in connection-guarded ASP

is a new element), vgA = V(G), vhA = V(H), egA = E(G), ehA = E(H), bridgeA =

{(g,b), (b, h) | g ∈ V(G), h ∈ V(H)} and eqA = {(v, v) | v ∈ V(G) ∪ V(H)}. Note
that for every pair (x, y) in egA or ehA there is also (y, x) in egA or ehA, respectively,
since the graphs are undirected. The connection-guarded program in Figure 3.6 encodes
Subgraph Isomorphism.9 It is easy to verify that this encoding is correct, so H is
isomorphic to a subgraph of G if and only if Π ∪A has an answer set.

The treewidth of A is the maximum of the treewidth of G and of H plus one: Given tree
decompositions TG and TH of G and H, respectively, we can obtain a tree decomposition
of A by taking the disjoint union of TG and TH, adding the bridge element b to every
bag and drawing an edge between an arbitrary node from TG and an arbitrary node
from TH.

9In practice, we could simplify this encoding substantially by using convenient language constructs
provided by ASP systems. For the purpose of this proof, we use our rather restrictive base language.
Moreover, note that the positive body of many rules contains atoms whose only purpose is to make the
rules connection-guarded. Such redundant atoms could be omitted in practice.
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3. Treewidth-Preserving Classes of Answer Set Programs

Clearly hardness for Answer Set Existence carries over to Brave Reasoning.

Since the answer set existence problem is in NP when Π contains neither disjunctions
nor weak constraints and only contains a restricted form of aggregates called convex
aggregates, we immediately get a completeness result from Theorem 3.26. (We omit a
discussion of convex aggregates and refer to works by Liu and Truszczyński (2006) and
Alviano and Faber (2013) for this.)

Corollary 3.27. It is NP-complete to decide, for a fixed connection-guarded program Π without
disjunctions or weak constraints and where all aggregates are convex, whether Π together with
a given input structure A has an answer set. Hardness even holds if the treewidth of A is at
most three and Π contains no aggregates.

ASP solving for connection-guarded programs thus stays hard if only the treewidth of
the input is bounded. In fact our result not only rules out fixed-parameter tractable
algorithms but even polynomial-time algorithms when we consider the treewidth of
the input as a constant (unless P = NP).

By Corollary 3.27, the answer set existence problem is NP-complete for a fixed con-
nection-guarded program without disjunctions, weak constraints and non-convex
aggregates when the treewidth of the input is bounded. Since the problem is also
NP-complete if the treewidth is unbounded, the bound on the treewidth offers no
advantage at all in this case.

If we allow disjunctions, weak constraints and arbitrary aggregates, answer set existence
for fixed programs becomes ∆P

3 -complete in general, whereas we have shown in
Theorem 3.26 that the problem is NP-hard when the program is connection-guarded and
the input has bounded treewidth. Since this is only a hardness result, there might still be
hope for disjunctive ASP with arbitrary aggregates that bounded treewidth lowers the
complexity by one level of the polynomial hierarchy. However, we consider this unlikely
and we suspect that answer set existence for fixed connection-guarded programs is
∆P

3 -complete for bounded treewidth (and ΣP
2 -complete when weak constraints are not

allowed). Since we are not aware of any problems that have been shown to be complete
for these classes on instances of bounded treewidth, we leave this as an open question.

We now prove that the degree alone is also not sufficient for obtaining fixed-parameter
tractability, even if the fixed program is guarded.

Theorem 3.28. It is ΣP
2 -complete to decide for a fixed guarded program Π and a given input

structure A whether Π ∪A has an answer set even if the degree of A is at most 15.

Proof. Membership follows from the general case. For hardness, we present a re-
duction from the well-known ΣP

2 -complete problem Qsat2. We are given a formula
∃x1 · · · ∃xk∀y1 · · · ∀y` ϕ, where ϕ is a formula in 3-DNF, and the question is whether
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3.5. Complexity

there are truth values for the x variables such that for all truth values for the y variables
ϕ is true.

We may assume that every variable occurs at most three times in ϕ. To see this, first
observe that, for each sequence of variables z1, . . . , zm, saying that two variables in
this sequence have different truth values is equivalent to saying that (a) some variable
zi is false but zi+1 is true, or (b) zm is false but z1 is true. With this in mind, we
obtain a formula ϕ′ from ϕ by replacing every occurrence of an (either existentially or
universally quantified) variable z by a new variable zi, where i is the number of the
respective occurrence in ϕ. (That is, the first occurrence of z in ϕ is replaced by z1, the
second by z2, and so on.) To establish the connections between the copies of an old
variable, we observe that the following statements are equivalent:

1. There are truth values for the x variables such that, for all truth values for the y
variables, ϕ is true.

2. There are truth values for the x variables such that, for all truth values for the y
variables and for all truth values for the new copies, the following holds: If every
old variable z has the same truth value as all of its copies, then ϕ′ is true.

3. There are truth values for the x variables such that, for all truth values for the y
variables and for all truth values for the new copies, the following holds: The
formula ϕ′ is true or, for some old variable z with copies z1, . . . , zm, two variables
in the sequence z, z1, . . . , zm have different truth values.

4. There are truth values for the x variables such that, for all truth values for the y
variables and for all truth values for the new copies, the following formula is true,
where Var(ϕ) denotes the variables occurring in ϕ:

ϕ′ ∨
∨

z∈Var(ϕ) with m copies

(
(¬z∧ z1)∨ (¬z1 ∧ z2)∨ · · · ∨ (¬zm−1 ∧ zm)∨ (¬zm ∧ z)

)
Thus we obtain an equivalent formula where each variable occurs at most three times.
(This result has also been shown in a paper by Peters (2017).)

We can now use the same ASP encoding as in the proof of Theorem 3.20, but we need
to choose a slightly different input structure because the domain elements > and ⊥
from that construction have unbounded degree. Recall that the old construction puts an
element 〈p1, p2, p3, q1, q2, q3〉 into termA for each disjunct in ϕ and that some pi or qj
may be > or ⊥ in order to represent the equivalent term p1 ∧ p2 ∧ p3 ∧¬q1 ∧¬q2 ∧¬q2.
The only thing that matters for > and ⊥ is that they are always interpreted as true and
false, respectively, which the old construction ensures by putting them in verumA and
falsumA, respectively. We can thus just use a certain number of copies of > and ⊥
such that every copy occurs exactly once in termA and every copy is in the respective
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3. Treewidth-Preserving Classes of Answer Set Programs

verumA or falsumA relation. Clearly this reduction to ASP is still correct. The degree
of A is at most 15 because every domain element has at most five neighbors in each
tuple of termA and every variable occurs in at most three tuples.

3.6 Discussion

In our investigation of the effect of grounding on the treewidth, we rely on the rather
primitive notion of grounding from Definition 3.3. State-of-the-art grounders, on the
other hand, produce groundings whose primal graphs are generally subgraphs of the
output of our transductions. However, since degree and treewidth of a graph can only
decrease for a subgraph, our results apply also to state-of-the-art grounders.

Moreover, state-of-the-art grounders are capable of solving problems without needing to
call an ASP solver if the program has an answer set that is a deterministic consequence
of the input, i.e., if no non-deterministic guessing is involved. This is the case, for
instance, for Horn programs (that is, ASP programs without negation, disjunction and
aggregates). Our notion of grounding, on the other hand, assumes that the grounder
does not propagate deterministic consequences and thus cannot solve such simple
problems by itself. This is in fact a reasonable assumption: The question we are
concerned with in this work is which form a non-ground rule may have so it does not
“destroy” bounded treewidth of the input. Any encoding can be made “nasty” in the
sense that a grounder cannot solve the problem, namely by forcing atoms to be guessed.
This prevents the grounder from eliminating atoms from rule bodies, and it does not
change the form of rules.

Parts of this chapter have been published in the paper by Bliem et al. (2017). That
paper contains a preliminary version of the transduction for connection-guarded ASP
programs. The current work additionally contains the result on guarded ASP, improves
some methodological details of the existing result on connection-guarded ASP, and
contains a complexity analysis as well as a comparison to related formalisms such as
MSO. Moreover, the transductions in this chapter can be considered more appealing
than the one in that paper because they exactly produce the (incidence graph of the)
primal graph of the grounding, whereas the transduction in the paper by Bliem et al.
(2017) produces a supergraph. Thus the transductions in this chapter reproduce the
grounding process more accurately. Finally, in contrast to the work of Bliem et al. (2017),
the results of the current chapter also apply to programs containing weak constraints
and aggregates.

Related Work

Investigations on treewidth for ASP solving. There have been some investigations
concerning treewidth in the context of ASP. Beside parameterized complexity results
(Gottlob, Pichler and Wei 2010a; Pichler et al. 2014) for ground programs, there was
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also work on tree-decomposition-based dynamic programming algorithms (Jakl, Pichler
and Woltran 2009) and their implementations (Morak et al. 2010; Fichte et al. 2017).
However, in contrast to the current work, most studies of treewidth in ASP solving
only considered the ground case.

Tree decompositions have been applied in the context of non-ground ASP for rule
decomposition techniques (Bichler, Morak and Woltran 2017; Bichler, Morak and
Woltran 2016). The goal of this, however, is improving efficiency without explicitly
aiming at fixed-parameter tractability. Hence those efforts go in a different direction
than the current work.

FPT classification tools. The FPT result in Theorem 3.22 (or Theorem 3.23) has the
side effect that (connection-) guarded ASP can also serve as a tool for establishing that
a problem is fixed-parameter tractable when parameterized by treewidth (or by the
combination of treewidth and degree). Using our ASP classes in this way is similar to a
very established technique for classifying a problem parameterized by treewidth as FPT:
If the problem can be expressed in MSO, then by Courcelle’s theorem (Theorem 2.19)
the FPT membership follows. It is therefore a natural question how our ASP classes
relate to MSO.

It is well known that MSO model checking, just as first-order model checking, is
PSPACE-complete (Stockmeyer 1974; Vardi 1982), and it is PSPACE-hard even if the
input structure is fixed and contains only two domain elements (Kreutzer 2012). In
contrast, we know that we cannot express problems harder than ∆P

3 in ASP unless the
polynomial hierarchy collapses to the second level. Hence there are problems that can
be expressed using MSO but not in our ASP classes.

Nevertheless, there are also problems that can be expressed in our ASP classes but
not in MSO. One of the reasons is that our ASP classes provide us with aggregates
and weak constraints. Additionally, in connection-guarded ASP we intuitively have
the possibility to define relations of arity greater than one that are not already present
in the input explicitly. (For instance, in the encoding for Subgraph Isomorphism we
derived a binary relation with the iso predicate.) The expressive power of MSO and
either of our ASP classes is therefore incomparable.

In fact, connection-guarded ASP allows us to express problems that cannot be expressed
with MSO even if we disallow weak constraints and aggregates (unless P = NP): As we
have seen in Theorem 3.26, answer set existence for fixed connection-guarded programs
is NP-hard for instances of bounded treewidth even if there are neither aggregates nor
weak constraints. But by Courcelle’s theorem, a reduction to MSO would imply FPT
membership.

Of course, the fact that connection-guarded ASP allows us to define some problems that
we cannot define with MSO is only of limited significance because connection-guarded
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ASP allows us to obtain FPT results when the parameter is the combination of treewidth
and degree, whereas we only need treewidth as the parameter for an FPT result using
MSO. Still, the class of connection-guarded programs may be of interest for algorithmic
purposes because it allows us to classify a problem as FPT when parameterized by
treewidth plus degree, as we have shown in Theorem 3.23. We are not aware of any
extensions of MSO that allow us to obtain new FPT results using this more restrictive
parameter. Hence our result may lead to an extension of MSO that can be used for
classifying problems as FPT when the parameter is treewidth + degree. This is subject
of future work.

MSO has been extended in several ways to increase its expressive power while retaining
FPT (or at least XP) membership of model checking when parameterized by treewidth.
(For overviews, see the works of Knop et al. (2017) and Langer et al. (2014).)

Specifically of interest to us is the extension EMSO (extended monadic second-order
logic), which makes it possible to specify a linear function α(z1, . . . , zk) along with
an MSO formula ϕ with free variables X1, . . . , Xk. In addition to deciding whether
a structure is a model of the formula, it is now also possible to find the maximum
or minimum of α(|X1|, . . . , |Xk|) for any value of the free variables such that ϕ is
satisfied. This can be done in fixed-parameter linear time (under the uniform-cost
model, otherwise there is a logarithmic factor) as shown by Arnborg, Lagergren and
Seese (1991). We next compare the mentioned unique features of ASP with EMSO.

Weak constraints compared to EMSO. It is easy to see that weak constraints allow
us to express problems in ASP that cannot be expressed in plain MSO: For instance,
given a graph G and an integer k, deciding if G admits a vertex cover of size at most
k cannot be done in MSO unless k is fixed, whereas this is possible in guarded ASP
using weak constraints.

The EMSO extension is an analogue to weak constraints as it allows us to define also
optimization problems like this. A notable difference is that the weight and level of
a weak constraint may depend on the input, whereas in EMSO the coefficients in the
linear function have to be constants. As an example, consider the following problem.

Weighted Minimum Vertex Cover

Input: A graph G and a weight function w : V(G)→ N+

Task: Compute the minimum weight of a vertex cover in G. The weight
of a set S of vertices is ∑v∈S w(v).

This can easily be expressed in guarded ASP by the following encoding, where a vertex
v is represented by vertex(v, w(v)) and an edge (x, y) by edge(x, y):
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s(X) ∨ ns(X)← vertex(X,W).
← edge(X,Y), not s(X), not s(Y).
 s(X), vertex(X,W). [W@ 1,X]

In ASP the domain of input structures may contain integers, which are treated accord-
ingly by the semantics. Since EMSO is ignorant of numbers and only considers set
cardinalities, it cannot express this problem on the same class of input structures.

Weak constraints compared to EMSO with unary numbers. We can in fact express
problems like Weighted Minimum Vertex Cover above in EMSO if we represent the
instances as relational structures in a different way. However, this requires us to encode
the weights in unary, which exponentially increases the instance size. For example, we
could represent a Weighted Minimum Vertex Cover instance 〈G, w〉 as the structure
A where dom(A) = {v, v1, . . . , vw(v) | v ∈ V(G)}, vertexA = {(v, v1), . . . , (v, vw(v)) |
v ∈ V(G)}, edgeA = E(G), and write an MSO formula expressing “S is a vertex cover
and W consists of all ‘weight elements’ that belong to a vertex in S”.

Using such a technique we can of course also write an ASP encoding for the problem
such that the weights of weak constraints do not depend on the input. In the encoding
above, we merely need to change the weight W of the weak constraint to 1.

Even if numbers are encoded in unary, weak constraints offer more expressive power
than the linear functions of EMSO in general. This is because the levels of weak
constraints may still depend on the input. Even if the value of each level is thus linear
in the input size, “flattening” all weight specifications to a single level leads to weights
of exponential size, as we have seen in Section 3.5. A possible solution would be to
extend EMSO so as to support different priority levels.

A note about numbers in the domain. If the treewidth or the degree of instances
is important, we must be careful when the domain of the input structures contains
integers such as the weights in the previous example. The reason is that every integer
occurring in an input structure A is an ordinary vertex in the Gaifman graph of A.
Therefore, if A contains facts weight(a1, 0), . . . ,weight(ak, 0) for example, then the
Gaifman graph of A contains a vertex 0 that is adjacent to every ai. In general, we thus
lose bounded treewidth and bounded degree compared to the case where we simply
omit integers from the Gaifman graph. However, we may not omit integers from the
Gaifman graph because it may well be the case that, for example, we want to derive
every pair of elements that have the same weight. In such a case the integers indeed
play a structural rule and thus all occurrences of the same integer should correspond
to a single vertex in the Gaifman graph.

To escape this predicament, we propose to evaluate the arithmetic for optimization or
counting tasks (as in weak constraints, aggregates or the linear functions of EMSO)
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in a slightly different way than commonly defined. For each input structure A, we
additionally supply an integer assignment α : dom(A) → Z. We then use this in the
definition of the semantics of the respective language constructs: We modify the notion
of the grounding of a weak constraint so that we do not generate ground rules of the
form  β [tw @ tl , t1, . . . , tm] but instead  β [α(tw)@ α(tl), t1, . . . , tm]. For aggregates,
we proceed in a similar way by replacing terms t in places where integers are expected
by α(t). This idea also works for EMSO: Instead of passing the cardinality of a set X as
an argument of the linear function, we use ∑x∈X α(x). The traditional cardinality-based
semantics of EMSO is then the special case where α(x) = 1 for all domain elements
x. This in fact extends EMSO so that it “gains awareness” of integers in the sense that
weights can be given in the input, as it is possible in ASP. We will not pursue these
modified semantics any further in this work though.

Weak constraints compared to EMSO when the input contains no numbers. We
conjecture that it is possible to prove that EMSO is strictly more expressive than
guarded ASP for any class of input structures that do not contain numbers. In this
case there can only be a bounded number of levels in the weak constraints, and each
weight is also bounded. The formulas in our MSO transduction from Section 3.3 may
then allow us to translate a program from this class into an EMSO specification. This
should even be possible in the presence of aggregates: We suspect that aggregates do
not add expressive power to guarded ASP because the strict requirement that each rule
be guarded seems to make aggregates basically useless. We leave a closer examination
of this for future work.

We expect that such a proof would most likely imply that guarded ASP without weak
constraints is in fact strictly less expressive than plain MSO.

Aggregates. Aggregates are a feature that is also not present in EMSO.10 Consider the
following problem, for instance, which gives a taste of the things to come in Chapter 4.

Defensive Alliance Verification

Input: A graph G together with a set S ⊆ V(G)

Question: Does |N[v] ∩ S| > |N[v] \ S| hold for every v ∈ S?

The following connection-guarded ASP program encodes this problem, where the
instance is given via the binary predicate e for the edges and the unary predicate s for
the set S.

10There are, however, extensions of MSO that support certain statements about cardinalities of sets like
MSO-LCC (Szeider 2011a) or CardMSO (Ganian and Obdrzálek 2013). These only allow for rather limited
expressions of such a sort and we leave investigations of these extensions for future work.
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← s(X), #sum{ 1,Y : e(X,Y), s(Y); -1,Y : e(X,Y), not s(Y) } < -1.

Clearly this program together with an input has an answer set if and only if the instance
is positive. In MSO we cannot express this problem as it is well known that MSO does
not allow us to compare the cardinality of two sets, and neither does EMSO. It also does
not seem obvious that this problem can be expressed in any of the known extensions of
MSO. We leave further investigations for future work.

Final remarks. The considerations in this section have been rather theoretical: Even
though in many cases a problem can also be expressed in (an extension of) MSO,
this is mostly interesting from a theoretical perspective, whereas the actual solving
performance of algorithms based on MSO model checking is usually clearly worse than
that of dedicated tools (cf. Cygan et al. 2015, pp. 184–185) even though there have been
considerable advances in this effort (e.g., Langer et al. 2012). Even for rather simple
problems, MSO formulas can unfortunately be quite complex. For many problems
in ∆P

3 , expressing a problem in one of our classes not only yields a result about its
complexity by Theorems 3.22 and 3.23, but it should in most cases also give quite good
performance in practice due to the efficiency of ASP systems.
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CHAPTER 4

Alliance Problems in Graphs

The objective of many problems that can be modeled as graphs is finding a group of
vertices that together satisfy some property. In this respect, one of the concepts that
has been quite extensively studied is the notion of a defensive alliance (Kristiansen,
S. M. Hedetniemi and S. T. Hedetniemi 2004; Kristiansen, S. M. Hedetniemi and S. T.
Hedetniemi 2002), which is a set of vertices such that for each element v at least half of
its neighbors are also in the alliance. The name “defensive alliance” stems from the
intuition that the neighbors of an element v that are also in the alliance can help out in
case v is attacked by its other neighbors.

Notions like this can be applied to finding groups of nations, companies or individuals
that depend on each other, but also to more abstract situations like finding groups
of websites that form communities (Flake et al. 2002). Another possible application
for defensive alliances are computer networks, where a defensive alliance represents
computers that can provide a certain desired resource; any computer in an alliance
can then, with the help of its neighbors that are also in the alliance, allow access to
this resource from all of its neighbors simultaneously (Haynes, S. T. Hedetniemi and
Henning 2003).

The Defensive Alliance problem can be specified as follows: Given a graph G and an
integer k, is there a defensive alliance S in G such that 1 6 |S| 6 k? It is known that
this problem is NP-complete (Jamieson 2007; Jamieson, S. T. Hedetniemi and McRae
2009) However, if we restrict ourselves to trees, Defensive Alliance becomes trivial
and in fact the corresponding problems for several non-trivial variants become solvable
in linear time (Jamieson 2007).

There has also been some work on the parameterized complexity of alliance problems.
In particular, determining whether a defensive alliance of a given (maximum) size exists

83



4. Alliance Problems in Graphs

is fixed-parameter tractable when parameterized by the solution size (Fernau and Raible
2007; Enciso 2009). Also structural parameters have been considered to some extent.
Kiyomi and Otachi (2017) recently proved that the Defensive Alliance problem can be
solved in polynomial time if the clique-width of the instances is bounded by a constant.
The authors also provided an FPT algorithm when the parameter is the size of the
smallest vertex cover. Moreover, Enciso (2009) showed that Defensive Alliance is
fixed-parameter tractable when parameterized by domino treewidth, which is a parameter
that is equivalent to the combination of treewidth and maximum degree. Despite these
advances, the question of whether or not Defensive Alliance parameterized by
treewidth is fixed-parameter tractable has so far remained open.

The primary focus of this chapter will be a natural variant of defensive alliances called
secure sets, which have been introduced by Brigham, Dutton and S. T. Hedetniemi (2007).
While defensive alliances make sure that each element of an alliance can defend itself
against attacks from its neighbors, they do not account for attacks on multiple vertices
at the same time. To this end, we can employ a stronger concept: A set S of vertices is
secure if for each subset X ⊆ S at least half of the vertices adjacent to some element of
X are also in S. The Secure Set problem can now be stated as follows: Given a graph
G and an integer k, does there exists a secure set S of G such that 1 6 |S| 6 k?

It is known that the problem of deciding whether a given set S is secure in a graph
is co-NP-complete (Ho 2011), so it would not be surprising if finding (non-trivial)
secure sets is also a very hard problem. Moreover, Abseher et al. (2015) have reduced
the problem to Answer Set Programming, which proves that it is in the class ΣP

2 .
Unfortunately, the exact complexity of this problem has so far remained unresolved.

As for the parameterized complexity, it has been shown by Enciso and Dutton (2008)
that Secure Set can be solved in linear time if the solution size is bounded by a
constant. In a paper by Ho and Dutton (2009) it has been shown that a certain variant
of Secure Set becomes easy on trees, but the complexity of Secure Set parameterized
by treewidth is listed as an open problem in that work and has not been settled since.

The first main contribution of this chapter is to show that Secure Set is ΣP
2 -complete.

Unlike the existing co-NP-hardness proof (Ho 2011), which uses a reduction from
Dominating Set, we base our proof on a reduction from a problem in the area of logic.
To be specific, we first show that the canonical ΣP

2 -complete problem Qsat2 can be
reduced to a variant of Secure Set, where vertices can be forced to be in or out of every
solution, and pairs of vertices can be specified to indicate that every solution must
contain exactly one element of each such pair. In order to prove the desired complexity
result, we then successively reduce this variant to the standard Secure Set problem.
At the same time, we show ΣP

2 -completeness for variants of these problems where we
are interested in secure sets exactly of a certain size. We thus complete the picture of
the precise complexity of the Secure Set problem, and we also provide completeness
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results for variants of the problem that have already been proposed (Ho and Dutton
2009) but for which no complexity analysis has been performed so far.

The second main contribution of this chapter is a parameterized complexity analysis
of Defensive Alliance and Secure Set with treewidth as the parameter. For both
of these problems, the question of whether or not they are fixed-parameter tractable
when parameterized by treewidth has so far been unresolved (Ho and Dutton 2009;
Kiyomi and Otachi 2017). In the current chapter, we provide a negative answer to
this question: We show that both problems are hard for the class W[1], which rules
out fixed-parameter tractable algorithms under commonly held complexity-theoretic
assumptions. Beside these parameterized hardness results, we also give upper bounds
by showing that Defensive Alliance and Secure Set are in the class XP, which means
that they can be solved in polynomial time on instances of bounded treewidth. We do so
by providing an algorithm for Secure Set (where the degree of the polynomial depends
on the treewidth) and presenting a reduction from Defensive Alliance to Secure

Set that preserves bounded treewidth, which allows us to employ this algorithm also
for Defensive Alliance. Finally, we present a positive result for the co-NP-complete
problem of checking whether a given set of vertices is secure in a graph: We provide an
algorithm that solves the problem in linear time for graphs of bounded treewidth.

This chapter is organized as follows: First we introduce our problems of interest in
Section 4.1. Then we analyze the complexity of Secure Set in Section 4.2, where we
show that this problem, along with several variants, is ΣP

2 -complete. We discuss the
relationship between Secure Set and Defensive Alliance in Section 4.3 and we also
present a reduction from Defensive Alliance to Secure Set. In Section 4.4, we show
that both problems are W[1]-hard when parameterized by treewidth. This is followed
by our positive results in Section 4.5, where we present an FPT algorithm for Secure

Set Verification when parameterized by treewidth, as well as an algorithm for Secure

Set that runs in polynomial time if the treewidth is bounded by a constant. Section 4.6
concludes the chapter with a discussion of our results and related work.

4.1 Secure Sets and Defensive Alliances

We start with the definition of secure sets, which have the following intuition: If we
consider a set S of vertices as “good” vertices and all other vertices as “bad” ones, then
S being secure means that each subset of S has at least as many “good” neighbors as
“bad” neighbors.

Definition 4.1. Given a graph G, a set S ⊆ V(G) is secure in G if for each X ⊆ S it holds
that |N[X] ∩ S| > |N[X] \ S|.

We often write “S is secure” instead of “S is secure in G” if it is clear from the context
which graph is meant. By definition, the empty set is secure in any graph. Thus, in the
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a b

c d e

Figure 4.1: A graph with a minimum non-empty secure set indicated by circled vertices

following decision problems we ask for secure sets of size at least 1. The following is
one of the main problems for this chapter:

Secure Set

Input: A graph G and an integer k with 1 6 k 6 |V(G)|

Question: Is there a set S ⊆ V(G) with 1 6 |S| 6 k that is secure?

Figure 4.1 shows a graph together with a minimum non-empty secure set S = {a, b, c}.
Observe that for any X ⊆ S the condition |N[X] ∩ S| > |N[X] \ S| is satisfied.

Defensive alliances are very similar, but for checking whether a set is a defensive
alliance, we do not consider all subsets but only the singletons.

Definition 4.2. Given a graph G, a set S ⊆ V(G) is a defensive alliance in G if for each
v ∈ S it holds that |N[v] ∩ S| > |N[v] \ S|.

For example, in Figure 4.1, the set S = {a, b} is a defensive alliance as |N[v] ∩ S| >
|N[v] \ S| holds for each v ∈ S, but S is not a secure set, since for X = S it holds that
|N[X] ∩ S| < |N[X] \ S|. Conversely, every secure set is also a defensive alliance.

We define the Defensive Alliance problem analogously to Secure Set.

Next we introduce several variants of Secure Set that we require in our proofs. For
every such problem, we also implicitly define an analogous variant of Defensive

Alliance.

The problem Secure Set
F generalizes Secure Set by designating some “forbidden”

vertices that may never be in any solution. This variant can be formalized as follows:

Secure Set
F

Input: A graph G, an integer k and a set V� ⊆ V(G)

Question: Does there exist a set S ⊆ V(G) \ V� with 1 6 |S| 6 k that is
secure?
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Secure Set
FN is a further generalization that, in addition, allows “necessary” vertices

to be specified that must occur in every solution.

Secure Set
FN

Input: A graph G, an integer k, a set V� ⊆ V(G) and a set V4 ⊆ V(G)

Question: Does there exist a set S ⊆ V(G) \V� with V4 ⊆ S and 1 6 |S| 6 k
that is secure?

Finally, we introduce the generalization Secure Set
FNC. Here we may state pairs of

“complementary” vertices where each solution must contain exactly one element of
every such pair.

Secure Set
FNC

Input: A graph G, an integer k, a set V� ⊆ V(G), a set V4 ⊆ V(G) and a
set C ⊆ V(G)2

Question: Does there exist a set S ⊆ V(G) \V� with V4 ⊆ S and 1 6 |S| 6 k
that is secure and, for each pair (a, b) ∈ C, contains either a or b?

For our results on the parameters treewidth, we need a way to represent the structure
of a Secure Set

FNC instance by a graph that augments G with the information in C:

Definition 4.3. Let I be a Secure Set
FNC instance, let G be the graph in I and let C the

set of complementary vertex pairs in I. By the primal graph of I we mean the undirected
graph G′ with V(G′) = V(G) and E(G′) = E(G) ∪ C.

When we speak of the treewidth of an instance of Secure Set, Secure Set
F or Secure

Set
FN, we mean the treewidth of the graph in the instance. For an instance of Secure

Set
FNC, we mean the treewidth of the primal graph.

While the Secure Set problem asks for secure sets of size at most k, we also consider the
Exact Secure Set problem that concerns secure sets of size exactly k. Analogously, we
also define exact versions of the three generalizations of Secure Set presented above.

When the task is not to find secure sets but to verify whether a given set is secure, the
following problem is of interest:
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a b 6= c

d� e

Figure 4.2: Illustration of forbidden, necessary and complementary vertices

Secure Set Verification

Input: A graph G and a set S ⊆ V(G)

Question: Is S secure in G?

This problem is known to be co-NP-complete (Ho 2011). It is easy to see that the
analogous problem of verifying whether a given set is a defensive alliance can be solved
in polynomial time.

In the figures of this chapter, we often indicate necessary vertices by means of a
triangular node shape, and forbidden vertices by means of either a square node shape
or a superscript square in the node name. If two vertices are complementary, we
often express this in the figures by putting a 6= sign between them. For example, in
Figure 4.2, the vertices b and c are complementary and occur in no solution together; a
and the “anonymous” vertex adjacent to c are necessary and occur in every solution;
d� and the “anonymous” vertex adjacent to e are forbidden and occur in no solution.
In this figure, the unique minimum non-empty secure set satisfying the conditions of
forbidden, necessary and complementary vertices consists of a, b and the “anonymous”
necessary vertex adjacent to c.

The following terminology will be helpful: We often use the terms attackers and defenders
of a subset X of a secure set candidate S. By these we mean the sets N[X] \ S and
N[X] ∩ S, respectively. To show that a subset X of a secure set candidate S is not a
witness to S being insecure, we sometimes employ the notion of a defense of X w.r.t. S,
which assigns to each attacker a dedicated defender: If we are able to find an injective
mapping µ : N[X] \ S→ N[X] ∩ S, then obviously |N[X] \ S| 6 |N[X] ∩ S|, and we call
µ a defense of X w.r.t. S. Given such a defense µ, we say that a defender d repels an
attack on X by an attacker a whenever µ(a) = d. Consequentially, when we say that a
set of defenders D can repel attacks on X from a set of attackers A, we mean that there
is a defense that assigns to each element of A a dedicated defender in D.

To warm up, we make some easy observations that we will use in our proofs. First,
for every set R consisting of a majority of neighbors of a vertex v, whenever v is in a
defensive alliance, also some element of R must be in it:
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Observation 4.4. Let S be a defensive alliance in a graph, let v ∈ S and let R ⊆ N(v). If
|R| > 1

2 N[v], then S contains an element of R.

Proof. Suppose that |R| > 1
2 |N[v]| and S contains no element of R. Since all elements of

R attack v, |N[v] \ S| > 1
2 |N[v]|. Hence 2|N[v] \ S| > |N[v]| = |N[v] ∩ S|+ |N[v] \ S|,

and we obtain the contradiction |N[v] \ S| > |N[v] ∩ S|.

Clearly this also holds if S is a secure set because every secure set is also a defensive
alliance.

Next, if one half of the neighbors of an element v of a defensive alliance attacks v, then
the other half of the neighbors must be in the defensive alliance:

Observation 4.5. Let S be a defensive alliance in a graph, let v ∈ S and let N(v) be partitioned
into two equal-sized sets A, D. If A ∩ S = ∅, then D ⊆ S.

Proof. Since N(v) is partitioned into A and D such that A ∩ S = ∅, we get N(v) ∩ S =

D∩ S. If some element of D is not in S, then D∩ S ⊂ D and A ⊂ N[v] \ S. By |D| = |A|,
we get |D ∩ S|+ 2 6 |N[v] \ S|. From |N[v] ∩ S| = 1 + |N(v) ∩ S| = 1 + |D ∩ S| we
now obtain the contradiction |N[v] ∩ S| < |N[v] \ S|.

In particular, if half of the neighbors of v are forbidden, then v can only be in a defensive
alliance if all non-forbidden neighbors are also in the defensive alliance.

4.2 Complexity of the Secure Set Problem

This section is devoted to proving the following theorem:

Theorem 4.6. Secure Set and Exact Secure Set are both ΣP
2 -complete.

We prove hardness by providing a chain of polynomial reductions from Qsat2 to the
problems under consideration. Membership is easy to see and in fact follows from the
reduction from Secure Set to Answer Set Programming by Abseher et al. (2015). It
is actually quite easy to generalize that algorithm so that it also supports forbidden,
necessary and complementary vertices. As a consequence, clearly also all problem
variants that we consider in this work are ΣP

2 -complete.

4.2.1 Hardness of Secure Set with Forbidden, Necessary and
Complementary Vertices

Lemma 4.7. Secure Set
FNC and Exact Secure Set

FNC are ΣP
2 -hard.
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6= t′1
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6= t′3
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(nt)

(nt + 1)
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Figure 4.3: Graph corresponding to the Qsat2 formula ∃x1∃x2∃x3 ∀y1∀y2
(
(¬x1 ∧

x2 ∧ y1) ∨ (x3 ∧ ¬y1 ∧ y2) ∨ (x3 ∧ ¬y1 ∧ ¬y2)
)
. To avoid clutter, we omit labels for the

vertices from Y4, Y′4, Y�, T4, T′� and T′�, and we draw some edges in a dashed style.

Proof. We reduce from Qsat2 to Secure Set
FNC. This also proves ΣP

2 -hardness for
the exact variant because our reduction makes sure that all solutions of the Secure

Set
FNC instance have the same size. We are given a quantified Boolean formula

ϕ = ∃x1 . . . ∃xnx∀y1 . . . ∀yny ψ, where ψ is in DNF and contains nt terms of exactly three
literals. We assume that no term contains both a variable and its complement (since
such a term can never be satisfied) and that each term contains at least one universally
quantified variable (since ϕ is trivially true otherwise).

We construct an instance (G, k, V4, V�, C) of Secure Set
FNC in the following. For an

illustration, see Figure 4.3. We define a graph G by choosing the union of the following
sets as V(G):

X = {x1, . . . , xnx} X = {x1, . . . , xnx}
Y = {y1, . . . , yny} Y = {y1, . . . , yny}

Y4 = {y4i,j , yi,j
4 | 1 6 i 6 ny, 1 6 j 6 nt} Y′4 = {y4j | 1 6 j 6 nt − 1}

Y� = {y�i,j | 1 6 i 6 ny, 1 6 j 6 nt + 1} H = {d�1 , d�2 , t�}
T = {t1, . . . , tnt} T = {t1, . . . , tnt}

T� = {t1
�, . . . , tnt

�} T4 = {t1
4, . . . , tnt

4}
T′ = {t′1, . . . , t′nt

} T′ = {t′1, . . . , t′nt
}

T′� = {t′�1 , . . . , t′�nt
} T′� = {t′1

�
, . . . , t′nt

�}

Next we define the set of edges. In the following, whenever we sloppily speak of a
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literal in the context of the graph G, we mean the vertex corresponding to that literal
(i.e., some xi, xi, yi or yi), and we proceed similarly for terms. Furthermore, when we
are dealing with a (vertex corresponding to a) literal l, then l shall denote the (vertex
corresponding to the) complement of l. For any term ti, let LX(ti) and LY(ti) denote
the set of existentially and universally quantified literals, respectively, in ti.

E(G) =
{
(ti, t�), (ti, ti

4
), (t′i, t′�i ), (t′i, t′i

�
) | ti ∈ T

}
∪
(
T′ × (Y ∪Y)

)
∪
{
(l, ti

�
), (l, ti) | ti ∈ T, l ∈ LX(ti)

}
∪
{
(l, t′i) | ti ∈ T, l ∈ LY(ti)

}
∪
{
(d�1 , ti) | ti ∈ T, |LX(ti)| 6 1

}
∪
{
(d�2 , ti) | ti ∈ T, LX(ti) = ∅

}
∪
{
(yi, y4i,j), (yi, yi,j

4) | 1 6 i 6 ny, 1 6 j 6 nt

}
∪
{
(yi, y�i,j), (yi, y�i,j) | y�i,j ∈ Y�

}
∪
(

Y′4 × (Y ∪Y)
)

Finally, we define

V4 = Y ∪Y ∪Y4 ∪Y′4 ∪ T4, V� = Y� ∪ T� ∪ T′� ∪ T′� ∪ H,

C = {(xi, xi) | 1 6 i 6 nx} ∪ {(ti, ti), (ti, t′i), (t
′
i, t′i) | 1 6 i 6 nt},

and k = |V4|+ nx + 2nt.

The following observations are crucial: Elements of X ∪ X are only adjacent to vertices
from T� (which are forbidden) and T. For any i, each element of X ∪ X is adjacent to
ti
� ∈ T� if and only if it is adjacent to ti ∈ T. Furthermore, for any i, j, if xi or xi is

adjacent to tj, then setting the variable xi to true or false, respectively, falsifies the term
tj. Finally, for any i, j, if yi or yi is adjacent to t′j, then setting the variable yi to true or
false, respectively, falsifies the term tj.

The intuition is that the complementary pairs (xi, xi) guess a truth assignment to the
existentially quantified variables. We now need to check if such a truth assignment
has the property that the formula ψ is true for all extensions of this assignment to
the universally quantified variables. Trying out all these extensions amounts to going
through all subsets of a solution candidate and comparing the numbers of attackers
and defenders.

To illustrate, let S be a solution candidate (i.e., a set of vertices) and suppose S satisfies
the conditions on forbidden, necessary and complementary vertices. We denote the
truth assignment to x1, . . . , xnx encoded in S by IS. Moreover, let R be a subset of S
containing either yj or yj for each universally quantified variable yj. We denote the
extension of IS to y1, . . . , yny encoded in R by IS,R. For any term ti that is falsified
already by IS, the vertex t′i attacks all vertices yj and yj. At the same time, for any term
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ti that is not falsified by IS, the vertex t′i attacks yj or yj if setting the variable yj to true
or false, respectively, falsifies ti. Hence, the number of attacks from vertices of the form
t′i or t′i on R is exactly the number of terms that are falsified by IS,R. With the help of
the vertices in Y′4, we can afford up to nt − 1 falsified terms, but if we falsify all nt

terms, then R is a witness that S is not secure.

The Secure Set
FNC instance (G, k, V4, V�, C) can be constructed in time polynomial

in the size of ϕ. We claim that ϕ is true if and only if (G, k, V4, V�, C) is a positive
instance of Secure Set

FNC.

“Only if” direction. If ϕ is true, then there is an assignment I to x1, . . . , xnx such that, for
all assignments extending I to y1, . . . , yny , some term in ψ is satisfied. We define a set

S = V4 ∪ {xi ∈ X | I(xi) = true} ∪ {xi ∈ X | I(xi) = false}
∪ {ti ∈ T, t′i ∈ T′ | there is some l ∈ LX(ti) such that I 6|= l}
∪ {ti ∈ T, t′i ∈ T′ | for all l ∈ LX(ti) it holds that I |= l}.

We observe that |S| = k, V� ∩ S = ∅, V4 ⊆ S, and that for any (a, b) ∈ C it holds that
a ∈ S if and only if b /∈ S. By construction, whenever some element of X ∪ X is in S,
then all its neighbors in T are in S; and whenever some ti is in S, then some neighbor
of ti in X ∪ X is in S.

We claim that S is a secure set in G. Let R be an arbitrary subset of S. We show that R
has at least as many defenders as attackers by constructing a defense, which assigns to
each attacker of R a dedicated defender in N[R] ∩ S. We distinguish cases regarding
the origins of the attacks on R.

• We repel each attacker ti
� ∈ T� using ti. Since ti

� attacks R, R must contain
some element of X ∪ X that is adjacent to ti

� and thus also to ti, so ti ∈ N[R] ∩ S.

• Each attacker from X ∪ X ∪ {d�1 , d�2 } is adjacent to some ti ∈ T ∩ R. We repel that
attacker using ti

4, which is adjacent to ti. Note that it cannot be the case that ti is
attacked by more than one vertex in X ∪ X ∪ {d�1 , d�2 } because ti has exactly two
neighbors from that set and would not be in S if neither of these neighbors was
in S.

• If t� attacks R, then it attacks at least one element of T ∩ R, which is adjacent to
some element of X ∪ X that is also in S. We repel t� using any such element of
X ∪ X.

• Any attack from some ti ∈ T on R must be on ti
4. Since ti /∈ S, ti

4 is not
consumed for repelling an attack on ti, so we repel ti with ti

4.

• If some t′�i ∈ T′� attacks R (by attacking t′i), we repel t′�i with t′i.
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• Analogously, we repel each attacker t′i
� ∈ T′� with t′i.

• If, for some i with 1 6 i 6 ny, the vertices y�i,j for 1 6 j 6 nt + 1 attack R, then

we distinguish the following cases: If yi is in R, then the adjacent vertices y4i,j for

1 6 j 6 nt are in the neighborhood of R, too. We then repel each y�i,j with y4i,j for
1 6 j 6 nt, and we repel y�i,nt+1 with yi. Otherwise, yi is in R, and we proceed
symmetrically using yi,j

4 and yi as dedicated defenders.

• In order to account for attacks from T′ ∪ T′ on R, we distinguish two cases.

– If, for some i with 1 6 i 6 ny, both yi and yi are in R, then, in the step before,
we have repelled each y�i,j with the respective y4i,j or yi, but all yi,j

4 are still

free. These vertices can repel all attacks from T′ ∪ T′, as there are at most nt

such attacks.

– Otherwise we show that there are at most nt − 1 attacks from T′ ∪ T′, and
they can be repelled using Y′4. Consider the (partial) assignment J that
assigns the same values to the variables x1, . . . , xnx as the assignment I above,
and, for any variable yi, sets yi to true or false if R contains the vertex yi or
yi, respectively. By assumption we know that our assignment to x1, . . . , xnx

is such that for all assignments to y1, . . . , yny some term ti in ψ is true. In
particular, it must therefore hold that J falsifies no existentially quantified
literal in ti. Then, by construction of S, the vertex t′i is not in S. We also know
that J falsifies no universally quantified literal in ti. But then the vertices
from Y ∪Y adjacent to the vertex t′i are not in R due to our construction of J,
so t′i does not attack any vertex in R. From this it follows that there are at
most nt − 1 attacks from T′ ∪ T′ on R. We can repel all these attacks using
the vertices y41 , . . . , y4nt−1.

This allows us to conclude |N[R] ∩ S| > |N[R] \ S|. Therefore S is secure.

“If” direction. Suppose S is a secure set in G satisfying the conditions regarding forbid-
den, necessary and complementary vertices. First observe that |S| = k because the
complementary vertex pairs make sure that S contains exactly half of V(G) \ (V4 ∪V�).

If S contains some l ∈ X ∪ X, then N(l) ∩ T ⊆ S by Observation 4.5. If S contains
some ti ∈ T, then ti must be adjacent to some element of X ∪ X that is also in S by
Observation 4.4.

We construct an interpretation I on the variables x1, . . . , xnx that sets exactly those xi to
true where the corresponding vertex xi is in S, and we claim that for each extension
of I to the universally quantified variables there is a satisfied term in ψ. To see this,
suppose to the contrary that some assignment J to all variables extends I but falsifies
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all terms in ψ. Then we define a set R consisting of all vertices yi such that J(yi) = true,
all vertices yi such that J(yi) = false, and all vertices in (T′ ∪ T′) ∩ S that are adjacent
to these vertices yi or yi. We show that this contradicts S being secure: Clearly, R is a
subset of S and has |R| defenders due to itself, nt − 1 defenders due to Y′4, and ny · nt

defenders due to N(R) ∩ Y4. This amounts to |N[R] ∩ S| = |R|+ nt − 1 + ny · nt. On
the other hand, there are nt attacks on R from T′ ∪ T′. This is because for any term ti
in ψ one of the following cases applies:

• The term ti is falsified already by I. Then t′i ∈ S and thus t′i /∈ S. The vertex t′i,
however, is adjacent to every element of Y ∪Y, so it attacks R.

• The term ti is not falsified by I but by J. Then t′i /∈ S, and LY(ti) contains some
literal l with l ∈ N(t′i) and J |= l, so l is in R and attacked by t′i.

In addition to these nt attackers, R has |R ∩ (T′ ∪ T′)| attackers in N(R) ∩ (T′� ∪ T′�),
as well as ny · (nt + 1) attackers in Y�. As |R| = ny + |R ∩ (T′ ∪ T′)|, we obtain in total

|N[R] \ S| = nt + |R ∩ (T′ ∪ T′)|+ ny · (nt + 1) = |R|+ nt + ny · nt > |N[R] ∩ S|.

This contradicts S being secure, so for each extension of I to the universally quantified
vertices, ψ is true; hence ϕ is true.

4.2.2 Hardness of Secure Set with Forbidden and Necessary Vertices

Next we present a transformation τFNC that eliminates complementary vertex pairs by
turning a Secure Set

FNC instance into an equivalent Secure Set
FN instance. Along

with τFNC, we define a function σFNC
I , for each Secure Set

FNC instance I, such that the
solutions of I are in a one-to-one correspondence with those of τFNC(I) in such a way
that any two solutions of I have the same size if and only if the corresponding solutions
of τFNC(I) have the same size. We use these functions to obtain a polynomial-time
reduction from Secure Set

FNC to Secure Set
FN as well as from Exact Secure Set

FNC

to Exact Secure Set
FN.

Before we formally define our reduction, we briefly describe the intuition behind
the used gadgets. The gadget in Figure 4.4 adds neighbors a1, . . . , an, a�1 , . . . , a�n to
every vertex a, which are so many that a can only be in a solution if some of the
new neighbors are also in the solution. The new vertices are structured in such a
way that every solution must in fact either contain all of a, a1, . . . , an or none of them.
Next, the gadget in Figure 4.5 is added for every complementary pair (a, b). This
gadget is constructed in such a way that every solution must either contain all of
an, aab, aab

1 , . . . , aab
n2+n or none of them, and the same holds for bn, bab, bab

1 , . . . , bab
n2+n. By

making the vertex 4ab necessary, every solution must contain one of these two sets. At
the same time, the bound on the solution size makes sure that we cannot afford to take
both sets for any complementary pair.
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a

a1 a2 · · · an

a�1 a�2 · · · a�n

Figure 4.4: Gadget for each vertex a of the original graph in the reduction from
Secure Set

FNC to Secure Set
FN. The vertex a may have additional neighbors from the

original graph, and the vertices an and a�n may have additional neighbors as depicted
in Figure 4.5.

aab

an aab
1 aab

2 · · · aab
n2+n

a�n aab�
1 aab�

2 · · · aab�
n2+n

4ab bab

bab
n2+n · · · bab

2 bab
1 bn

bab�
n2+n

. . . bab�
2 bab�

1 b�n

Figure 4.5: Gadget for each pair of complementary vertices (a, b) in the reduction
from Secure Set

FNC to Secure Set
FN. The vertices an, a�n , bn and b�n have additional

neighbors as depicted in Figure 4.4.

Definition 4.8. We define a function τFNC, which assigns a Secure Set
FN instance to

each Secure Set
FNC instance I = (G, k, V�, V4, C). For this, we use n to denote |V(G)|

and first define a function

σFNC
I : x 7→ x · (n + 1) + |C| · (n2 + n + 2).

For each v ∈ V(G), we introduce the following sets of new vertices.

Y
c

v = {v1, . . . , vn} Y�v = {v�1 , . . . , v�n }

Next, for each (a, b) ∈ C, we introduce new vertices aab, bab and 4ab as well as, for any
x ∈ {a, b}, the following sets of new vertices.

Zab
x c= {xab

1 , . . . , xab
n2+n} Zab

x� = {xab�
1 , . . . , xab�

n2+n}

We use the notation u⊕ v to denote the set of edges {(u, v), (u, u�), (v, v�), (u, v�),
(v, u�)}. Now we define the Secure Set

FN instance τFNC(I) = (G′, k′, V ′�, V ′4), where
k′ = σFNC

I (k), V ′� = V� ∪
⋃

v∈V(G) Y�v ∪
⋃

(a,b)∈C(Zab
a� ∪ Zab

b�), V ′4 = V4 ∪
⋃

(a,b)∈C{4ab}
and G′ is the graph defined by

V(G′) = V(G) ∪
⋃

v∈V(G)

(Y
c

v ∪Y�v ) ∪

∪
⋃

(a,b)∈C

(
{4ab, aab, bab} ∪ Zab

a c∪ Zab
b c∪ Zab

a� ∪ Zab
b�
)
,
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E(G′) = E(G) ∪
⋃

v∈V(G)

(
({v} ×Y

c
v ) ∪ ({v} ×Y�v ) ∪

⋃
16i<n

vi ⊕ vi+1
)
∪

∪
⋃

(a,b)∈C

⋃
x∈{a,b}

(
{(4ab, xab)} ∪ ({xab} × Zab

x c) ∪
∪ xn ⊕ xab

1 ∪
⋃

16i<n2+n

xab
i ⊕ xab

i+1
)
.

We illustrate our construction in Figures 4.4 and 4.5.

Lemma 4.9. Let I = (G, k, V�, V4, C) be a Secure Set
FNC instance, let A be the set of

solutions of I and let B be the set of solutions of the Secure Set
FN instance τFNC(I). There is

a bijection f : A→ B such that | f (S)| = σFNC
I (|S|) holds for every S ∈ A.

Proof. We use the same auxiliary notation as in Definition 4.8 and we define f as
S 7→ S∪⋃v∈S Y c

v ∪
⋃

(a,b)∈C, x∈S∩{a,b}({4ab, xab} ∪ Zab
x c). For every S ∈ A, we thus obtain

| f (S)| = σFNC
I (|S|), and we first show that indeed f (S) ∈ B.

Let S ∈ A and let S′ denote f (S). Obviously S′ satisfies V ′� ∩ S′ = ∅ and V ′4 ⊆ S′. To
see that S′ is secure in G′, let X′ be an arbitrary subset of S′. Since S is secure in G and
X′ ∩V(G) ⊆ S, there is a defense µ : NG[X′ ∩V(G)] \ S→ NG[X′ ∩V(G)] ∩ S. We now
construct a defense µ′ : NG′ [X′] \ S′ → NG′ [X′] ∩ S′. For any attacker v of X′ in G′, we
distinguish four cases.

• If v is some x�i ∈ Y�x , then we set µ′(v) = xi. This element is in NG′ [X′] since v is
only adjacent to xi or neighbors of it.

• If v is some xab�
i ∈ Zab

x� for some (a, b) ∈ C and x ∈ {a, b}, we set µ′(v) = xab
i .

This element is in NG′ [X′] since v is only adjacent to xab
i or neighbors of it.

• If v is aab or bab for some (a, b) ∈ C, its only neighbor in X′ can be 4ab and we set
µ′(v) = 4ab.

• Otherwise v is in NG[X′ ∩ V(G)] \ S (by our construction of S′). Since the
codomain of µ is a subset of the codomain of µ′, we may set µ′(v) = µ(v).

Since µ′ is injective, each attack on X′ in G′ can be repelled by S′. Hence S′ is secure in
G′.

Clearly f is injective. It remains to show that f is surjective. Let S′ be a solution of
τFNC(I). First we make the following observations for each v ∈ V(G):

• If v ∈ S′, then Y c
v ∩ S′ 6= ∅ due to Observation 4.4, since Y c

v ∪ Y�v contains a
majority of neighbors of v, and the vertices in Y�v are forbidden.
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• For each vab ∈ S′, where (a, b) ∈ C such that v = a or v = b, it holds that
Zab

v c∩ S′ 6= ∅ again due to Observation 4.4.

• If S′ contains an element of Y c
v , then {v} ∪ Y c

v ∪
⋃

(v,z)∈C Zvz
v c∪ ⋃(z,v)∈C Zzv

v c ⊆ S′

by repeated applications of Observation 4.5. To see this, note in particular that
N(vn) can be partitioned into the two equal-sized sets {v, vn−1} ∪ {vvz

1 | (v, z) ∈
C} ∪ {vzv

1 | (z, v) ∈ C} and {v�n−1, v�n } ∪ {vvz�
1 | (v, z) ∈ C} ∪ {vzv�

1 | (z, v) ∈ C},
and all vertices in the latter set are forbidden.

• If S′ contains an element of Zab
v c, where (a, b) ∈ C such that v = a or v = b, then

{vab} ∪Y c
v ∪

⋃
(v,z)∈C Zvz

v c∪⋃(z,v)∈C Zzv
v c⊆ S′ for similar reasons.

It follows that for each v ∈ V(G), S′ contains either all or none of {v} ∪ Y c
v ∪⋃

(v,z)∈C
(
{vvz} ∪ Zvz

v c) ∪⋃(z,v)∈C
(
{vzv} ∪ Zzv

v c).
For every (a, b) ∈ C, S′ contains aab or bab, since 4ab ∈ S′, whose neighbors are
aab and bab. It follows that |S′| > |C| · (n2 + n + 2) even if S′ contains only one
of each (a, b) ∈ C. If, for some (a, b) ∈ C, S′ contained both a and b, we could
derive a contradiction to |S′| 6 σFNC

I (k) = k · (n + 1) + |C| · (n2 + n + 2) because then
|S′| > (|C|+ 1) · (n2 + n + 2) > σFNC

I (k). So S′ contains either a or b for any (a, b) ∈ C.

We construct S = S′ ∩ V(G) and observe that S′ = f (S), V4 ⊆ S, V� ∩ S = ∅, and
|S ∩ {a, b}| = 1 for each (a, b) ∈ C. It remains to show that S is secure in G. Let X
be an arbitrary subset of S. For each x ∈ X, the set X has n additional defenders in
G′ compared to G (namely x1, . . . , xn), and X has n additional attackers in G′ (namely
x�1 , . . . , x�n ); so |NG′ [X] ∩ S′| − |NG[X] ∩ S| = |NG′ [X] \ S′| − |NG[X] \ S|. Clearly X is
a subset of S′, so |NG′ [X] ∩ S′| > |NG′ [X] \ S′| as S′ is secure in G′. We conclude that
|NG[X] ∩ S| > |NG[X] \ S|. Hence S is secure in G.

As τFNC is clearly computable in polynomial time, we obtain the following result:

Corollary 4.10. Secure Set
FN is ΣP

2 -hard.

The instances of Secure Set
FNC are identical to the instances of the exact variant, so

τFNC is also applicable to the exact case. In fact it turns out that this gives us also a
reduction from Exact Secure Set

FNC to Exact Secure Set
FN.

Lemma 4.11. Exact Secure Set
FN is ΣP

2 -hard.

Proof. Let I and I′ = τFNC(I) be our Exact Secure Set
FNC and Exact Secure Set

FN

instances, respectively, and let k and k′ denote their respective solution sizes. By
Lemma 4.9, there is a bijection f between the solutions of I and the solutions of I′ such
that, for every solution S of I, f (S) has σFNC

I (k) = k′ elements, and for every solution
S′ of I′, f−1(S′) has k elements since σFNC

I is invertible.
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a

ga

ha a′

b

Figure 4.6: Result of the transformation τFN applied to an example graph with two
adjacent vertices a and b, where b is necessary. Every solution in the depicted graph
contains a′, ha and b.

4.2.3 Hardness of Secure Set with Forbidden Vertices

Now we present a transformation τFN that eliminates necessary vertices. Our trans-
formation not only operates on a problem instance, but also requires an ordering
� of the non-forbidden vertices of the graph. For now, we can consider this as an
arbitrary ordering. It will become more important in Section 4.4, where we reuse this
transformation for showing W[1]-hardness w.r.t. treewidth.

Before formally defining the transformation τFN, we refer to Figure 4.6, which shows
the result for a simple example graph with only two vertices a and b, of which b is
necessary. The basic idea is that the vertex a′ must be in every solution S: If a or any
vertex to the left of a is in S, it eventually forces a′ to be in S as well. Likewise, if
b or any vertex to the right of b is in S, it also forces a′ to be in S. Once a′ ∈ S, the
construction to the right of a′ makes sure that b ∈ S. We will generalize this to instances
containing more vertices so that every necessary vertex as well as the primed copy of
each non-necessary vertex is in every solution.

Definition 4.12. We define a function τFN, which assigns a Secure Set
F instance to each

pair (I,�), where I = (G, k, V�, V4) is a Secure Set
FN instance and � is an ordering of

the non-forbidden elements of V(G). For this, let Vc denote V(G) \ (V� ∪V4). We use
n to denote |V(G)|, and we first define a function σFN

I : x 7→ (n + 3) · (x + |Vc|)− |V4|.
We use H to denote the set of new vertices {v′, gv, hv, g�v , h�v | v ∈ Vc}. The intention is
for each g�v and h�v to be forbidden, for each v′ and hv to be in every solution, and for
gv to be in a solution if and only if v is in it at the same time. We write V+ to denote
V4 ∪Vc∪ {v′ | v ∈ Vc}; for each v ∈ V+, we use Av to denote the set of new vertices
{v1, . . . , vn+1, v�1 , . . . , v�n+1}, and we use shorthand notation A c

v = {v1, . . . , vn+1} and
A�v = {v�1 , . . . , v�n+1}. The intention is for each v�i to be forbidden and for each vi to be
in a solution if and only if v is in it at the same time. We use the notation u⊕ v to denote
the set of edges {(u, v), (u, u�), (v, v�), (u, v�), (v, u�)}. For any vertex v ∈ Vc∪ V4,
we define p(v) = v if v ∈ V4 and p(v) = v′ if v ∈ Vc. Let P be the set consisting
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a

a1 a2 · · · an an+1

a�1 a�2 a�n a�n+1

ga

g�a h�a

ha

a′

Figure 4.7: Illustration of the gadget that makes sure that every solution containing a
also contains fa, ga and a′. The vertex a is a non-necessary, non-forbidden vertex from
the Secure Set

FN instance and may have other neighbors from this instance. The vertex
a′ additionally has the neighbors depicted in Figure 4.8.

x

x1 x2 · · · xn xn+1

x�1 x�2 x�n x�n+1

y

y1 · · · yn+1

y�1 y�n+1

a′

a′1 · · · a′n+1

a′�1 a′�n+1

b′

b′1 · · · b′n+1

b′�1 b′�n+1

Figure 4.8: Illustration of the gadget that makes sure that every solution contains all
necessary vertices if it contains some necessary vertex or if it contains v′ for some
non-necessary vertex v. Here we assume there are the four vertices a, b, x, y, among
which x and y are necessary, and we use the ordering x � y � a � b.

of all pairs (p(u), p(v)) such that v is the direct successor of u according to �. Now
we define τFN(I,�) = (G′, k′, V ′�), where V ′� = V� ∪ {g�v , h�v | v ∈ Vc} ∪ ⋃v∈V+ A�v ,
k′ = σFN

I (k), and G′ is the graph defined by

V(G′) = V(G) ∪ H ∪
⋃

v∈V+

Av,

E(G′) = E(G) ∪ {(v, vi), (v, v�i ) | v ∈ V+, 1 6 i 6 n + 1}
∪

⋃
v∈V+, 16i6n

vi ⊕ vi+1 ∪
⋃

(u,v)∈P

un+1 ⊕ v1

∪
⋃

v∈Vbvn+1 ⊕ gv ∪ {(v′, gv), (v′, hv), (gv, hv), (gv, h�v ) | v ∈ Vc}.
We illustrate our construction in Figure 4.7 and 4.8.

We now prove that τFN yields a correct reduction for any ordering �.

Lemma 4.13. Let I = (G, k, V�, V4) be a Secure Set
FN instance, let � be an ordering of

V(G) \ V�, let A be the set of solutions of I and let B be the set of solutions of the Secure

Set
F instance τFN(I,�). There is a bijection f : A → B such that | f (S)| = σFN

I (|S|) holds
for every S ∈ A.
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Proof. We use the same auxiliary notation as in Definition 4.12 and we define f as

f (S) = S ∪
⋃
v∈S

A
c

v ∪ {v′, hv | v ∈ Vc} ∪ ⋃
v∈Vb A

c
v′ ∪ {gv | v ∈ S ∩Vc}.

For every S ∈ A, we thus obtain | f (S)| = |S| + |S|(n + 1) + 2|Vc| + |Vc| · (n + 1) +
(|S| − |V4|) = σFN

I (|S|), and we first show that indeed f (S) ∈ B.

Let S ∈ A and let S′ denote f (S). Obviously S′ satisfies V ′� ∩ S′ = ∅. To see that S′ is
secure in G′, let X′ be an arbitrary subset of S′. Since S is secure in G and X′ ∩V(G) ⊆ S,
there is a defense µ : NG[X′ ∩ V(G)] \ S → NG[X′ ∩ V(G)] ∩ S. We now construct a
defense µ′ : NG′ [X′] \ S′ → NG′ [X′] ∩ S′. For any attacker a of X′ in G′, we distinguish
the following cases:

• If a is some v�i ∈ A�v for some v ∈ V+, then a can only attack either vi or a
neighbor of vi, all of which are in S′, and we set µ′(a) = vi.

• Similarly, if a is g�v for some v ∈ Vc, then we set µ′(a) = gv.

• If a is h�v for some v ∈ Vc, then a attacks gv and we set µ′(a) = hv.

• If a is gv for some v ∈ Vc, then it attacks v′ or hv, which is not used for repelling
any other attack because h�v cannot attack X′, so we set µ′(a) = hv.

• Otherwise a is in NG[X′∩V(G)] \S (by our construction of S′). Since the codomain
of µ is a subset of the codomain of µ′, we may set µ′(a) = µ(a).

Since µ′ is injective, each attack on X′ in G′ can be repelled by S′. Hence S′ is secure in
G′.

Clearly f is injective. It remains to show that f is surjective. Let S′ be a solution of
τFN(I,�). We first show that V4 ∪ {v′, hv | v ∈ Vc} ⊆ S′:

• If S′ contains some v ∈ V+, then S′ contains an element of A c
v by Observation 4.4.

• If S′ contains an element of A c
v for some v ∈ V+, then {v} ∪ A c

v ⊆ S′ by Observa-
tion 4.5.

• If vn+1 ∈ S′ for some v ∈ Vc, then gv ∈ S′ for the same reason.

• Furthermore, if S′ contains an element of A c
v for some v ∈ V4 ∪ {v′ | v ∈ Vc},

then also A c
u ⊆ S′ for every u ∈ V4 ∪ {v′ | v ∈ Vc} for the same reason.

• If gv ∈ S′ for some v ∈ Vc, then {hv, v′, vn+1} ⊆ S′ by Observation 4.5.

• If hv ∈ S′ for some v ∈ Vc, then a′ ∈ S′ because at least gv or v′ must be in S′ and
the former implies v′ ∈ S′ as we have seen.
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• Since S′ is nonempty, the previous observations show that for every v ∈ V4 ∪ {v′ |
v ∈ Vc} it holds that {v} ∪ A c

v ⊆ S′. Finally, we show that {hv | v ∈ Vc} ⊆ S′.
Suppose, for the sake of contradiction, that there is some v ∈ Vc such that hv /∈ S′.
We have seen that the latter can only be the case if gv /∈ S′, and we know that
v′ ∈ S′. We obtain the contradiction that v′ is attacked by gv, hv and A�v′ , whereas
its only defenders are v′ itself and A c

v′ .

Let S = S′ ∩ V(G). By the previous observations, it is easy to see that S′ = f (S). It
remains to show that S is secure in G. Let X be an arbitrary subset of S. Observe that
the number of additional defenders of X in G′ compared to G is equal to the number of
additional attackers; formally |NG′ [X] ∩ S′| − |NG[X] ∩ S| = |NG′ [X] \ S′| − |NG[X] \ S|.
Since S′ is secure in G′, it holds that |NG′ [X′] ∩ S′| > |NG′ [X′] \ S′|. Consequently
|NG[X] ∩ S| > |NG[X] \ S|. Hence S is secure in G.

Given an ordering �, clearly τFN(I,�) is computable in polynomial time. We can thus
easily obtain a reduction from Secure Set

FN to Secure Set
F by first computing an

arbitrary ordering � of the non-forbidden vertices. This also gives us a hardness result
for the exact case, analogous to Lemma 4.11.

Corollary 4.14. Secure Set
F and Exact Secure Set

F are ΣP
2 -hard.

4.2.4 Hardness of Secure Set

We now introduce a transformation τF that eliminates forbidden vertices. The basic
idea is that we ensure that a forbidden vertex f is never part of a solution by adding
so many neighbors to f that we could only defend f by exceeding the bound on the
solution size.

Definition 4.15. We define a function τF, which assigns a Secure Set instance to each
Secure Set

F instance I = (G, k, V�). For each f ∈ V�, we introduce new vertices
f ′, f1, . . . , f2k. Now we define τF(I) = (G′, k), where G′ is the graph defined by

V(G′) = V(G) ∪ { f ′, f1, . . . , f2k | f ∈ V�},
E(G′) = E(G) ∪ {( f , fi), ( f ′, fi) | f ∈ V�, 1 6 i 6 2k}.

Lemma 4.16. Every Secure Set
F instance I has the same solutions as the Secure Set

instance τF(I).

Proof. Let I = (G, k, V�) and τF(I) = (G′, k). Each solution S of I is also solution of
τF(I) because the subgraph of G induced by NG[S] is equal to the subgraph of G′

induced by NG′ [S]. Now let S′ be a solution of τF(I). For every f ∈ V�, neither f nor f ′

are in S′ because each of these vertices has at least 2k neighbors, and S′ cannot contain
any fi because NG′( fi) = { f , f ′}. Hence S′ is also a solution of I as the subgraphs
induced by the respective neighborhoods are again equal.
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Since k 6 |V(G)|, the function τF can clearly be computed in polynomial time. This
immediately yields the following result.

Corollary 4.17. Secure Set and Exact Secure Set are ΣP
2 -hard.

4.3 Relationship Between Secure Set and Defensive Alliance

In this section, we present a reduction from Defensive Alliance to Secure Set that
also works for our considered variants and in fact preserves bounded treewidth. This
serves as preparation for Section 4.4, where we prove a hardness result for Defensive

Alliance when parameterized by treewidth. This result will then carry over to Secure

Set by virtue of the reduction that we present in this section. First we briefly discuss
the relationship between those two problems in order to argue that it is not trivial that
hardness results for the seemingly easier problem carry over to the other problem.

It is sometimes stated (Ho and Dutton 2009) that Secure Set is a generalization of
Defensive Alliance as the latter only consider subsets of size 1 of a set S of vertices
for checking whether S is a solution, whereas the former considers all subsets of S.
Indeed every secure set is also a defensive alliance, so that is a reasonable statement. It
is also hardly surprising that Secure Set is at least as hard as Defensive Alliance, as
we proved in Section 4.2. However, we would like to emphasize that, although these
problems are clearly related, the relationship between the two problems is not as simple
as it may seem. Clearly there are problems where hardness results trivially carry over
from the special case to the more general problem (and conversely for algorithms). This
is the case, for example, for the 3-Colorability problem and its generalization Graph

Coloring, where the number of colors is part of the input.

In the case of Secure Set, hardness results do not immediately carry over from
Defensive Alliance but require some additional work. This becomes especially
apparent when we consider the exact problem variants or parameterized complexity
results, where it is important that reductions preserve small parameter values. Due to
the strong likeness of these two base problems, it makes sense to study them in the
framework of a more general problem that encompasses them both. Hence we will
shortly define the more general problem Generalized Secure Set of which Secure

Set and Defensive Alliance are special cases. For this, we first define the following
notion.

Definition 4.18. Given a graph G and an integer s, a set S ⊆ V(G) is s-secure in G if for
each X ⊆ S of size at most s it holds that |N[X] ∩ S| > |N[X] \ S|.

Obviously a set S is secure if and only if it is |S|-secure, and a set S is a defensive
alliance if and only if it is 1-secure. We now use this notion to define the generalized
problem.
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Generalized Secure Set

Input: A graph G and integers k, s both at least 1 and at most |V(G)|

Question: Does there exist a set S ⊆ V(G) with 1 6 |S| 6 k that is s-secure?

Both Defensive Alliance and Secure Set are special cases of this problem. The former
is the case where the parameter s has the fixed value of 1; in the latter the dual parameter
|V(G)| − s has a fixed value of 1. Hence we suggest to consider Defensive Alliance

as a dual problem to Secure Set and not as a special case.

In the following, we present a reduction from Defensive Alliance to Secure Set

that also works for the considered variants and is in fact an FPT reduction when the
problems are parameterized by treewidth. To simplify this reduction, we first define
the following auxiliary problem and show that it can be reduced to Secure Set

FNC and
subsequently, as we have seen, to Secure Set. Our new problem adds the possibility of
specifying pairs of equivalent vertices. The idea is that equivalent vertices are “glued
together” in the sense that for each solution S and every vertex v, either all vertices that
are equivalent to v are together with v in S, or none of them is.

Secure Set
FNCE

Input: A graph G, an integer k, a set V� ⊆ V(G), a set V4 ⊆ V(G), a set
C ⊆ V(G)2 and a set Q ⊆ V(G)2

Question: Does there exist a set S ⊆ V(G) \V� with V4 ⊆ S and 1 6 |S| 6 k
that is secure, contains either a or b for each pair (a, b) ∈ C and,
for each pair (x, y) ∈ Q, contains either both or none of x and y?

The treewidth of a Secure Set
FNCE instance is the treewidth of its primal graph, which

is defined as follows:

Definition 4.19. Let I be a Secure Set
FNCE instance, let G be the graph in I, let C the

set of complementary vertex pairs in I and let Q be the set of equivalent vertex pairs in
I. By the primal graph of I we mean the undirected graph G′ with V(G′) = V(G) and
E(G′) = E(G) ∪ C ∪Q.

We also define the problem Exact Secure Set
FNCE as the exact version of Secure

Set
FNCE in the obvious way.

Now we present our reduction from Secure Set
FNCE to Secure Set

FNC.
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Definition 4.20. We define a function τFNCE, which assigns a Secure Set
FNC instance

to each Secure Set
FNCE instance I = (G, k, V�, V4, C, Q). For this, we first define a

function

σFNCE
I : x 7→ |V(G)|+ x.

Now we define the Secure Set
FNC instance τFNCE(I) = (G′, k′, V�, V4, C′), where

k′ = σFNCE
I (k) and G′ is the graph defined as follows:

V(G′) = {v, v̄, v′ | v ∈ V(G)}
E(G′) = E(G)

The pairs of complementary vertices are given by

C′ = C ∪ {(v, v̄), (v̄, v′) | v ∈ V(G)} ∪ {(x, ȳ) | (x, y) ∈ Q}.

Lemma 4.21. Let I = (G, k, V�, V4, C, Q) be a Secure Set
FNCE instance, let A be the set of

solutions of I and let B be the set of solutions of the Secure Set
FNC instance τFNCE(I). There

is a bijection f : A→ B such that | f (S)| = σFNCE
I (|S|) holds for every S ∈ A.

Proof. We define f as S 7→ {v, v′ | v ∈ S} ∪ {v̄ | v ∈ V(G) \ S}. For every S ∈ A, we
thus obtain | f (S)| = σFNCE

I (|S|), and we first show that indeed f (S) ∈ B.

Let S ∈ A and let S′ denote f (S). Obviously S′ satisfies V ′� ∩ S′ = ∅ and V ′4 ⊆ S′.
Observe that S is secure in G′ because it is secure in G and the subgraph of G induced
by NG[S] is equal to the subgraph of G′ induced by NG′ [S]. Moreover, S′ consists of the
vertices in S and additionally only vertices v̄ or v′ that have no neighbors. Hence S
being secure in G′ implies that S′ is secure in G′.

Clearly f is injective. It remains to show that f is surjective. Let S′ be a solution of
τFNCE(I). Note that for each pair of equivalent vertices (x, y) ∈ Q, S′ contains x if and
only if it contains y since x and ȳ, as well as ȳ and y, are complementary.

We construct S = S′ ∩ V(G) and observe that S′ = f (S), V4 ⊆ S, V� ∩ S = ∅,
|S ∩ {x, y}| = 1 for each (x, y) ∈ C, and either {x, y} ⊆ S or {x, y} ∩ S = ∅ for
every equivalent pair (x, y) ∈ Q. It is easy to see that a set is secure if and only if this
set restricted to vertices that have at least one neighbor is secure. Hence S is secure in
G′. Since the subgraph of G induced by NG[S] is equal to the subgraph of G′ induced
by NG′ [S], S is also secure in G.

Lemma 4.22. There is an FPT reduction that runs in polynomial time from Secure Set
FNCE

to Secure Set
FNC as well as from Exact Secure Set

FNCE to Exact Secure Set
FNC when

all problems are parameterized by treewidth.
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Figure 4.9: A graph (left) and the result of applying the transformation τDA to it (right).
Equivalent vertex pairs are drawn as dashed lines.

Proof. Let I = (G, k, V�, V4, C, Q) be a Secure Set
FNCE instance and let I′ denote the

Secure Set
FNC instance τFNCE(I). By Lemma 4.21, τFNCE yields correct reductions.

Clearly we can also compute τFNCE in polynomial time. We show that the treewidth of
I′ depends only on the treewidth of I. We can obtain a tree decomposition T ′ of I′ by
modifying an optimal tree decomposition T of I as follows: To each bag containing a
vertex v ∈ V(G), we add the elements v̄ and v′. The width of T ′ is at most three times
the treewidth of I. Moreover, every pair of complementary vertices of I′ is covered
by a bag: The pairs already in C are already covered by a bag in T , the pairs (v, v̄)
and (v̄, v′) are covered by our construction, and the pairs (x, ȳ) for (x, y) ∈ Q are also
covered by a bag since T contains a node whose bag contains both x and y. The same
reasoning also works for reducing Exact Secure Set

FNCE to Exact Secure Set
FNC by

Lemma 4.21.

Now we present our reduction from Defensive Alliance to Secure Set
FNCE. The idea

is to form the disjoint union of all neighborhoods in the original graph G and require
all copies of the same vertex to be equivalent to each other.

Definition 4.23. We define a function τDA, which assigns a Secure Set
FNCE instance to

each Defensive Alliance instance I = (G, k). For this, we first define a function

σDA
I : x 7→ |V(G)| · x.

Now we define the Secure Set
FNCE instance τDA(I) = (G′, k′, ∅, ∅, ∅, Q), where k′ =

σDA
I (k) and G′ is the graph defined as follows:

V(G′) = {xy | x, y ∈ V(G)}
E(G′) = {(xx, yx) | (x, y) ∈ E(G)}

The pairs of equivalent vertices are given by

Q = {(xx, xy) | x, y ∈ V(G)}.
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We illustrate this construction in Figure 4.9.

Lemma 4.24. Let I = (G, k) be a Defensive Alliance instance, let A be the set of solutions
of I and let B be the set of solutions of the Secure Set

FNCE instance τDA(I). There is a bijection
f : A→ B such that | f (S)| = σDA

I (|S|) holds for every S ∈ A.

Proof. We define f as S 7→ {xy | x ∈ S, y ∈ V(G)}. For every S ∈ A, we thus obtain
| f (S)| = σFNCE

I (|S|), and we first show that indeed f (S) ∈ B.

Let S ∈ A and let S′ denote f (S). Obviously either {x, y} ⊆ S′ or {x, y} ∩ S′ = ∅ holds
for every equivalent pair (x, y) ∈ Q. We next show that S′ is secure in G′. For this we
assume that S′ does not contain vertices from different components of G′ because a
set is secure if and only if each of its restrictions to vertices from the same component
is secure. Let X′ be an arbitrary subset of S′. Suppose that X′ contains a vertex xy

such that x 6= y. Such a vertex only has one neighbor in G′, so the set Y obtained by
removing xy from X′ would decrease the number of attackers at most by one. In fact,
if this decreases the number of attackers by one, then it also decreases the number
of defenders by one. Hence, if we can show that |NG′ [Y] ∩ S′| > |NG′ [Y] \ S′|, then it
follows that |NG′ [X′] ∩ S′| > |NG′ [X′] \ S′|. We may thus assume that X′ only contains
a single vertex xx. Note that x is an element of S and any neighbor y of x in G is in S if
and only if yx ∈ S′. Since S is a defensive alliance in G, it follows that S′ is secure in G′.

Clearly f is injective. It remains to show that f is surjective. Let S′ be a solution of
τFNCE(I). We construct S = {x ∈ V(G) | xx ∈ S′} and observe that S′ = f (S). Since
S′ is secure in G′, each xx ∈ S′ has at least as many defenders as attackers in G′. The
subgraph induced by NG′ [xx] is isomorphic to the subgraph induced by NG[x], and any
neighbor yx of xx in G′ is in S′ if and only if y is a neighbor of x in G and y ∈ S. Hence
S is a defensive alliance in G.

Lemma 4.25. There is an FPT reduction that runs in polynomial time from Defensive

Alliance to Secure Set
FNCE as well as from Exact Defensive Alliance to Exact

Secure Set
FNCE when all problems are parameterized by treewidth.

Proof. Let I = (G, k) be a Defensive Alliance instance and let I′ denote the Secure

Set
FNCE instance τDA(I). By Lemma 4.24, τDA yields a correct reduction. Clearly it is

also computable in polynomial time.

Let P denote the primal graph of I′. We show that the treewidth of P depends only
on the treewidth of G. We can obtain a tree decomposition T ′ of P by modifying an
optimal tree decomposition T of G as follows:

1. We replace each bag element x by xx.
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2. For each edge (x, y) ∈ E(G), we pick an arbitrary node in T whose bag contains
both x and y. The bag of its corresponding node in T ′ contains both xx and yy.
We add to the children of this node in T ′ a new node with bag {xx, yy, xy, yx}.

3. For each pair (x, y) of non-adjacent vertices in G, we pick an arbitrary node in T
whose bag contains x. The bag of its corresponding node in T ′ contains xx. We
add to the children of this node in T ′ a new node with bag {xx, xy}. (Since G is
undirected, this also takes care of y.)

It is easy to see that T ′ is a valid tree decomposition of P. Moreover, its width is the
maximum of three and the treewidth of G.

By our other reductions, we immediately get the following result as well.

Corollary 4.26. There is an FPT reduction from Defensive Alliance to Secure Set as
well as from Exact Defensive Alliance to Exact Secure Set when all problems are
parameterized by treewidth.

Note that this FPT reduction does not run in polynomial time. While the FPT reductions
from Defensive Alliance to Secure Set

FNCE, from Secure Set
FNCE to Secure Set

FNC

and then from Secure Set
FNC to Secure Set

FN do work in polynomial time, the FPT
reduction from Secure Set

FN to Secure Set
F does not. The reason is that there we have

to compute an appropriate ordering of the non-forbidden vertices, which really requires
“FPT power”. However, we can still get a polynomial-time reduction by choosing an
arbitrary ordering of the non-necessary vertices, as we have shown in Lemma 4.13. This
will not be an FPT reduction because it does not preserve bounded treewidth in general,
but if we are just interested in a polynomial-time reduction, then this is fine.

Corollary 4.27. There is a polynomial-time reduction from Defensive Alliance to Secure

Set as well as from Exact Defensive Alliance to Exact Secure Set.

4.4 Complexity of Alliance Problems Parameterized by
Treewidth

We now turn to the parameterized complexity of the Secure Set and Defensive

Alliance problems, as well as their variants, when treewidth is the parameter. This
section is devoted to proving the following theorem:

Theorem 4.28. Secure Set, Exact Secure Set, Defensive Alliance and Exact Defen-
sive Alliance are all W[1]-hard when parameterized by treewidth.
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As a consequence, clearly also all problem variants that we considered in this work
are W[1]-hard. Under the widely held assumption that FPT 6= W[1], this rules out
fixed-parameter tractable algorithms for these problems.

First we show hardness for Defensive Alliance
FNC. Then we successively reduce this

problem to Defensive Alliance by reusing some reductions from Section 4.2. We have
originally defined these reductions for variants of Secure Set, but we will prove that
they also work for the respective variants of Defensive Alliance. Furthermore, we
will we show that they preserve bounded treewidth.

4.4.1 Hardness of Defensive Alliance with Forbidden, Necessary and
Complementary Vertices

To show W[1]-hardness of Defensive Alliance
FNC, we reduce from the following

problem (Asahiro, Miyano and Ono 2011), which is known to be W[1]-hard (Szeider
2011b) parameterized by the treewidth of the graph:

Minimum Maximum Outdegree

Input: A graph G, an edge weighting w : E(G)→ N+ given in unary and
a positive integer r

Question: Is there an orientation of the edges of G such that, for each v ∈
V(G), the sum of the weights of outgoing edges from v is at most
r?

Lemma 4.29. Defensive Alliance
FNC and Exact Defensive Alliance

FNC, both param-
eterized by the treewidth of the primal graph, are W[1]-hard.

Proof. Let an instance of Minimum Maximum Outdegree be given by a graph G, an
edge weighting w : E(G)→ N+ in unary and a positive integer r. From this we construct
an instance of both Defensive Alliance

FNC and Exact Defensive Alliance
FNC.

An example is given in Figure 4.10. For each v ∈ V(G), we define the set of new
vertices Hv = {hv

1, . . . , hv
2r−1}, and for each (u, v) ∈ E(G), we define the sets of new

vertices Vuv = {uv
1, . . . , uv

w(u,v)}, V�uv = {uv�
1 , . . . , uv�

w(u,v)}, Vvu = {vu
1 , . . . , vu

w(u,v)} and

V�vu = {vu�
1 , . . . , vu�

w(u,v)}. We now define the graph G′ with

V(G′) = V(G) ∪
⋃

v∈V(G)

Hv ∪
⋃

(u,v)∈E(G)

(Vuv ∪V�uv ∪Vvu ∪V�vu),

E(G′) = {(v, h) | v ∈ V(G), h ∈ Hv}
∪ {(u, x) | (u, v) ∈ E(G), x ∈ Vuv ∪V�uv}
∪ {(x, v) | (u, v) ∈ E(G), x ∈ Vvu ∪V�vu}.
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Figure 4.10: Result of our transformation on a sample Minimum Maximum Outdegree

instance with r = 3 and two vertices a, b that are connected by an edge of weight 3.
Complementary vertex pairs are shown via dashed lines. Necessary and forbidden
vertices have a 4 and � symbol next to their name, respectively.

We also define the set of complementary vertex pairs C = {(uv
i , vu

i ) | (u, v) ∈ E(G), 1 6
i 6 w(u, v)} ∪ {(vu

i , uv
i+1) | (u, v) ∈ E(G), 1 6 i < w(u, v)}. Finally, we define

the set of necessary vertices V4 = V(G) ∪ ⋃v∈V(G) Hv, the set of forbidden vertices
V� =

⋃
(u,v)∈E(G)(V�uv ∪ V�vu) and k = |V4| + ∑(u,v)∈E(G) w(u, v). We use I to denote

(G′, k, C, V4, V�), which is an instance of Defensive Alliance
FNC and also of Exact

Defensive Alliance
FNC.

Clearly I can be computed in polynomial time. We now show that the treewidth of
the primal graph of I depends only on the treewidth of G. We do so by modifying an
optimal tree decomposition T of G as follows:

1. For each (u, v) ∈ E(G), we take an arbitrary node whose bag B contains both u
and v and add to its children a chain of nodes N1, . . . , Nw(u,v)−1 such that the bag
of Ni is B ∪ {uv

i , uv
i+1, vu

i , vu
i+1}.

2. For each (u, v) ∈ E(G), we take an arbitrary node whose bag B contains u and
add to its children a chain of nodes N1, . . . , Nw(u,v) such that the bag of Ni is
B ∪ {uv�

i }.

3. For each (u, v) ∈ E(G), we take an arbitrary node whose bag B contains v and
add to its children a chain of nodes N1, . . . , Nw(u,v) such that the bag of Ni is
B ∪ {vu�

i }.

4. For each v ∈ V(G), we take an arbitrary node whose bag B contains v and add to
its children a chain of nodes N1, . . . , Nr−1 such that the bag of Ni is B ∪ {hv

i }.

It is easy to verify that the result is a valid tree decomposition of the primal graph of I
and its width is at most the treewidth of G plus four.

It remains to show that our reduction is correct. Obviously I is a positive instance of
Defensive Alliance

FNC if and only if it is a positive instance of Exact Defensive

109



4. Alliance Problems in Graphs

Alliance
FNC because the forbidden, necessary and complementary vertices make sure

that every solution of the Defensive Alliance
FNC instance I has exactly k elements.

Hence we only consider Defensive Alliance
FNC.

The intention is that for each orientation of G we have a solution candidate S in I
such that an edge orientation from u to v entails Vvu ⊆ S and Vuv ∩ S = ∅, and the
other orientation entails Vuv ⊆ S and Vvu ∩ S = ∅. For each vertex v ∈ V(G) and every
incident edge (v, u) ∈ E(G) regardless of its orientation, the vertex v is attacked by the
forbidden vertices V�vu. So every vertex v ∈ V(G) has as least as many attackers as the
sum of the weights of all incident edges. If in the orientation of G all edges incident
to v are incoming edges, then each attack on v from V�vu can be repelled by Vvu, since
Vvu ⊆ S. Due to the fact that the helper vertices Hv consist of exactly 2r− 1 elements, v
can afford to have outgoing edges of total weight at most r.

We claim that (G, w, r) is a positive instance of Minimum Maximum Outdegree if and
only if I is a positive instance of Defensive Alliance

FNC.

“Only if” direction. Let D be the directed graph given by an orientation of the edges of
G such that for each vertex the sum of weights of outgoing edges is at most r. The
set S = V4 ∪ {vu

1 , . . . , vu
w(u,v) | (u, v) ∈ E(D)} is a defensive alliance in G′: Let x be an

arbitrary element of S. If x is an element of a set Hv or Vuv, then the only neighbor
of x in G′ is a necessary vertex, so x can trivially defend itself; so suppose x ∈ V(G).
Let the sum of the weights of outgoing and incoming edges be denoted by wx

out and
wx

in, respectively. The neighbors of x that are also in S consist of the elements of Hx

and all elements of sets Vxv such that (v, x) ∈ E(D). Hence, including itself, x has
2r + wx

in defenders in G′. The attackers of x consist of all elements of sets Vxv such that
(x, v) ∈ E(D) (in total wx

out) and all elements of sets V�xv such that either (v, x) ∈ E(D)

or (x, v) ∈ E(D) (in total wx
in + wx

out). Hence x has wx
in + 2wx

out attackers in G′. This
shows that x has at least as many defenders as attackers, as by assumption wx

out 6 r.
Finally, it is easy to verify that |S| = k, V� ∩ S = ∅, V4 ⊆ S, and exactly one element of
each pair of complementary vertices is in S.

“If” direction. Let S be a solution of I. For every (u, v) ∈ E(G), either Vuv ⊆ S or Vvu ⊆ S
due to the complementary vertex pairs. We define a directed graph D by V(D) = V(G)

and E(D) = {(u, v) | Vvu ⊆ S} ∪ {(v, u) | Vuv ⊆ S}. Suppose there is a vertex x in D
whose sum of weights of outgoing edges is greater than r. Clearly x ∈ S. Let the sum of
the weights of outgoing and incoming edges be denoted by wx

out and wx
in, respectively.

The defenders of x in G′ beside itself consist of the elements of Hx and of wx
in neighbors

due to incoming edges in D. These are in total 2r + wx
in defenders. The attackers of x

in G′ consist of 2wx
out elements (of the form xv

i as well as xv�
i ) due to outgoing edges

in D and wx
in elements (of the form xv�

i ) due to incoming edges. These are in total
2wx

out + wx
in attackers. But then x has more attackers than defenders, as by assumption

wx
out > r.
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4.4.2 Hardness of Defensive Alliance with Forbidden and Necessary
Vertices

Now we reduce from Defensive Alliance
FNC to Defensive Alliance

FN to show
W[1]-hardness of the latter problem. Since Secure Set

FNC and Secure Set
FN have the

same instances as Defensive Alliance
FNC and Defensive Alliance

FN, respectively,
we can reuse the function τFNC from Definition 4.8. First we show that τFNC indeed
specifies a correct reduction from Defensive Alliance

FNC to Defensive Alliance
FN.

Lemma 4.30. Let I = (G, k, V�, V4, C) be a Defensive Alliance
FNC instance, let A be the

set of solutions of I and let B be the set of solutions of the Defensive Alliance
FN instance

τFNC(I). There is a bijection f : A→ B such that | f (S)| = σFNC
I (|S|) holds for every S ∈ A.

Proof. We use the same auxiliary notation as in Definition 4.8 and we define f as
S 7→ S∪⋃v∈S Y c

v ∪
⋃

(a,b)∈C, x∈S∩{a,b}({4ab, xab} ∪ Zab
x c). For every S ∈ A, we thus obtain

| f (S)| = σFNC
I (|S|), and we first show that indeed f (S) ∈ B.

Let S ∈ A and let S′ denote f (S). Obviously S′ satisfies V ′� ∩ S′ = ∅ and V ′4 ⊆ S′. To
see that S′ is a defensive alliance in G′, let x be an arbitrary element of S′. If x /∈ S, then
x clearly has as least as many neighbors in S′ as neighbors not in S′ by construction of
f , so suppose x ∈ S. There is a defense µ : NG[x] \ S→ NG[x] ∩ S since S is a defensive
alliance in G. We use this to construct a defense µ′ : NG′ [x] \ S′ → NG′ [x] ∩ S′. For any
attacker v of x in G′, we distinguish two cases.

• If v is some x�i ∈ Y�x for some x ∈ V(G), we set µ′(v) = xi. This element is in
NG′ [x] by construction.

• Otherwise v is in NG[x] \ S (by our construction of S′). Since the codomain of µ is
a subset of the codomain of µ′, we may set µ′(v) = µ(v).

Since µ′ is injective, each attack on x in G′ can be repelled by S′. Hence S′ is a defensive
alliance in G′.

Clearly f is injective. It remains to show that f is surjective. Let S′ be a solution
of τFNC(I). As in the proof of Lemma 4.9, for every (a, b) ∈ C, we can see that S′

contains either a or b, and that for each x ∈ {a, b}, S′ contains either all or none of
{x, xab} ∪Y c

x ∪ Zab
x c. Moreover, S′ contains either all or none of {v, v1, . . . , vn} for every

v ∈ V(G).

We construct S = S′ ∩ V(G) and observe that S′ = f (S), V4 ⊆ S, V� ∩ S = ∅, and
|S ∩ {a, b}| = 1 for each (a, b) ∈ C. It remains to show that S is a defensive alliance in
G. Let x be an arbitrary element of S. We observe that NG′ [x] ∩ S′ = (NG[x] ∩ S) ∪Y c

x
and similarly NG′ [x] \ S′ = (NG[x] \ S) ∪ Y�x . Since the cardinality of each set Y c

x is
equal to the cardinality of Y�x , this implies |NG′ [x] ∩ S′| − |NG[x] ∩ S| = |NG′ [x] \ S′| −
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|NG[x] \ S|. Since S′ is a defensive alliance in G′ and x ∈ S′, it holds that |NG′ [x] ∩ S′| >
|NG′ [x] \ S′|. We conclude that |NG[x] ∩ S| > |NG[x] \ S|. Hence S is a defensive alliance
in G.

To obtain the hardness result for Defensive Alliance
FN parameterized by treewidth,

it remains to show that the reduction specified by τFNC preserves bounded treewidth.

Lemma 4.31. Defensive Alliance
FN, parameterized by the treewidth of the graph, is

W[1]-hard.

Proof. Let I be a Defensive Alliance
FNC instance whose primal graph we denote by

G. We obtain an equivalent Defensive Alliance
FN instance τFNC(I), whose graph

we denote by G′. This reduction is correct, as shown in Lemma 4.30. It remains to
show that the treewidth of G′ is bounded by a function of the treewidth of G. Let T
be an optimal nice tree decomposition of G. We build a tree decomposition T ′ of G′

by modifying a copy of T in the following way: For each vertex v ∈ V(G), we add
vn and v�n to every bag containing v. Then we pick an arbitrary node t in T whose
bag contains v, and we add new children N1, . . . , Nn−1 to t such that the bag of Ni is
{v, vi, v�i , vi+1, v�i+1}. Next, for every pair (a, b) of complementary vertices, we pick an
arbitrary node t in T whose bag B contains both an and bn, and we add a chain of
nodes N1, . . . , N2n2+2n−1 between t and its parent such that, for 1 6 i < n2 + n, the bag
of Ni is B∪ {aab, aab

i , aab�
i , aab

i+1, aab�
i+1 }, the bag of Nn2+n is B∪ {aab, bab,4ab}, and the bag

of Nn2+n+i is B ∪ {bab, bab
n2+n+1−i, bab�

n2+n+1−i, bab
n2+n−i, bab�

n2+n−i}. It is easy to verify that T ′
is a valid tree decomposition of G′. Furthermore, the width of T ′ is at most three times
the width of T plus five.

Just like before, we get an analogous result for the exact variant. It can be proved in the
same way as Lemma 4.11.

Lemma 4.32. Exact Defensive Alliance
FN, parameterized by the treewidth of the graph,

is W[1]-hard.

4.4.3 Hardness of Defensive Alliance with Forbidden Vertices

We next show W[1]-hardness of Defensive Alliance
F by reducing from Defensive

Alliance
FN reusing the function τFN from Definition 4.12. This function maps a Defen-

sive Alliance
FN instance, together with an ordering � of the non-forbidden vertices,

to a Defensive Alliance
F instance. We show that by choosing � appropriately, this

gives us a reduction that preserves bounded treewidth. First we show that τFN indeed
specifies a correct reduction from Defensive Alliance

FN to Defensive Alliance
F for

any ordering �.
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Lemma 4.33. Let I = (G, k, V�, V4) be a Defensive Alliance
FN instance, let � be an

ordering of V(G) \ V�, let A be the set of solutions of I and let B be the set of solutions of
the Defensive Alliance

F instance τFN(I,�). There is a bijection f : A → B such that
| f (S)| = σFN

I (|S|) holds for every S ∈ A.

Proof. We use the same auxiliary notation as in Definition 4.12 and we define f as

f (S) = S ∪
⋃
v∈S

A
c

v ∪ {v′, hv | v ∈ Vc} ∪ ⋃
v∈Vb A

c
v′ ∪ {gv | v ∈ S ∩Vc}.

For every S ∈ A, we thus obtain | f (S)| = |S| + |S|(n + 1) + 2|Vc| + |Vc| · (n + 1) +
(|S| − |V4|) = σFN

I (|S|), and we first show that indeed f (S) ∈ B.

Let S ∈ A and let S′ denote f (S). Obviously S′ satisfies V ′� ∩ S′ = ∅. To see that S′ is
a defensive alliance in G′, let x be an arbitrary element of S′. If x ∈ S, then there is
a defense µ : NG[x] \ S → NG[x] ∩ S since S is a defensive alliance in G. We use this
to construct a defense µ′ : NG′ [x] \ S′ → NG′ [x] ∩ S′. For any attacker a of x in G′, we
distinguish the following cases:

• If a is some v�i ∈ A�v for some v ∈ V+, then x is either vi or a neighbor of vi, all
of which are in S′, and we set µ′(a) = vi.

• Similarly, if a is g�v for some v ∈ Vc, then we set µ′(a) = gv.

• If a is h�v for some v ∈ Vc, then x = gv and we set µ′(a) = hv.

• If a is gv for some v ∈ Vc, then x is either v′ or hv, which is not used for repelling
any other attack because h�v cannot attack x, so we set µ′(a) = hv.

• Otherwise a is in NG[x] \ S (by our construction of S′). Since the codomain of µ is
a subset of the codomain of µ′, we may set µ′(a) = µ(a).

Since µ′ is injective, each attack on x in G′ can be repelled by S′. Hence S′ is a defensive
alliance in G′.

Clearly f is injective. It remains to show that f is surjective. Let S′ be a solution
of τFN(I,�). As in the proof of Lemma 4.13, we can see that V4 ∪ {v′, hv | v ∈
Vc} ⊆ S′. Let S = S′ ∩ V(G). By the previous observations, it is easy to see that
S′ = f (S). It remains to show that S is a defensive alliance in G. Let x be an arbitrary
element of S. We observe that NG′ [x] ∩ S′ = (NG[x] ∩ S) ∪ A c

x and similarly NG′ [x] \
S′ = (NG[x] \ S) ∪ A�v . Since |A c

x | = |A�x |, this implies |NG′ [x] ∩ S′| − |NG[x] ∩ S| =
|NG′ [x] \ S′| − |NG[x] \ S|. Since S′ is a defensive alliance in G′ and x ∈ S′, it holds that
|NG′ [x] ∩ S′| > |NG′ [x] \ S′|. We conclude that |NG[x] ∩ S| > |NG[x] \ S|. Hence S is a
defensive alliance in G.
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To obtain the hardness result for Defensive Alliance
F parameterized by treewidth,

it remains to show that we can compute an ordering � in FPT time such that the
reduction specified by τFN together with � preserves bounded treewidth.

Lemma 4.34. Defensive Alliance
F, parameterized by the treewidth of the graph, is W[1]-

hard.

Proof. Let I = (G, k, V�, V4) be a Defensive Alliance
FN instance and let T be an

optimal nice tree decomposition of G. We can compute such a tree decomposition in
FPT time (Bodlaender 1996). Let � be the ordering of the elements of V4 ∪Vc that is
obtained in linear time by doing a post-order traversal of T and sequentially recording
the elements that occur for the last time in the current bag. We obtain the Defensive

Alliance
F instance τFN(I,�), whose graph we denote by G′. This reduction is correct,

as shown in Lemma 4.33, and computable in FPT time. It remains to show that the
treewidth of G′ is bounded by a function of the treewidth of G. To this end, we use T
to build a tree decomposition T ′ of G′. We initially set T ′ := T and modify it by the
following steps:

1. For each v ∈ Vc, we add gv, g�v , hv, h�v and v′ to the bag of tT
′

v . Note that
afterwards tT

′
v = tT

′
v′ . After this step we increased the width of T ′ by at most five.

2. For each v ∈ V+, we use Bv to denote the bag of tT
′

v and replace tT
′

v by a
chain of nodes N1, . . . , Nn, where Nn is the topmost node and the bag of Ni is
Bv ∪ {vi, v�i , vi+1, v�i+1}. After this step we increased the width of T ′ by at most
nine. Note that the bag of the new node tT

′
v now contains vi+1 and v�i+1. We have

so far covered all edges except the ones connecting elements of two different sets
Ax and Ay for (x, y) ∈ P.

3. For every (u, v) ∈ P, we add v1 and v�1 into the bag of every node between (and
including) tT

′
u and tT

′
v1

. Note that this preserves connectedness and afterwards
the bag of tT

′
u contains ui+1, u�i+1, v1 and v�1 , thus covering the remaining edges.

After this step we increased the width of T ′ by at most 13. (Since the number of
children of each tree decomposition node is at most two, this step enlarges every
bag at most twice.)

It is easy to verify that T ′ is a valid tree decomposition of G′. Furthermore, the width
of T ′ is at most the width of T plus 13.

We again get an analogous result for the exact variant.

Corollary 4.35. Exact Defensive Alliance
F, parameterized by the treewidth of the graph,

is W[1]-hard.
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4.4.4 Hardness of Defensive Alliance

Next we show W[1]-hardness of Defensive Alliance by reducing from Defensive

Alliance
F while preserving bounded treewidth.

Lemma 4.36. Defensive Alliance, parameterized by the treewidth of the graph, is W[1]-
hard.

Proof. Let I = (G, k, V�) be a Defensive Alliance
F instance, let G′ denote the graph of

τF(I), where τF is the function from Definition 4.15, and let T be an optimal nice tree
decomposition of G. We build a tree decomposition T ′ of G′ by modifying a copy of T
in the following way: For every f ∈ V�, we pick an arbitrary node t in T whose bag B
contains f , and we add a chain of nodes N1, . . . , N2k between t and its parent such that,
for 1 6 i 6 2k, the bag of Ni is B ∪ { f ′, fi}. It is easy to verify that T ′ is a valid tree
decomposition of G′. Furthermore, the width of T ′ is at most the width of T plus two.
Finally, we can prove that τF(I) indeed specifies a correct reduction from Defensive

Alliance
F to Defensive Alliance in the same way as in the proof of Lemma 4.16.

We again get an analogous result for the exact variant.

Corollary 4.37. Exact Defensive Alliance, parameterized by the treewidth of the input
graph, is W[1]-hard.

4.4.5 Hardness of Secure Set and Its Variants

Finally, hardness of Secure Set (and its variants) carries over from our hardness result
for Defensive Alliance (Lemma 4.36) by our reduction from Defensive Alliance to
Secure Set (Corollary 4.26). All of these reductions preserve bounded treewidth, as we
have seen. We also get a result for Exact Secure Set by an analogous argument.

Corollary 4.38. Secure Set and Exact Secure Set are both W[1]-hard when parameterized
by the treewidth of the input graph.

This proves Theorem 4.28.

4.4.6 Fixed-Parameter Tractability of Secure Set Verification

We have seen that treewidth does not lead to fixed-parameter tractability for finding
secure sets. Now we prove an FPT result for the co-NP-complete problem of checking
whether a given set is secure. We do this by providing an encoding to guarded ASP
(see Chapter 3) and invoking Theorem 3.22.

Listing 4.1 presents a guarded ASP program that encodes an optimization variant of
Secure Set Verification. It finds subsets X of a given set S of vertices in a graph G
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x(S) ∨ nx(S)← s(S).
neighbor(V)← x(X), e(X,V).

good(V)← v(V), x(V).
good(V)← neighbor(V), s(V).
bad(V)← neighbor(V), v(V), not s(V).

 v(V), good(V). [1,V]
 v(V), bad(V). [-1,V]

Listing 4.1: A guarded ASP encoding for an optimization variant of Secure Set

Verification

such that |NG[X] ∩ S| − |NG[X] \ S| is as small as possible. The graph G is specified as
follows: For each vertex v of G there is an input fact v(v), for each edge (a, b) of G there
are input facts e(a, b) and e(b, a), and for each element x of S there is an input fact s(x).
First the encoding guesses a subset X of S, indicated by the x predicate. Then it defines
N(X) using the neighbor predicate, and it defines N[X] ∩ S and N[X] \ S using the
good and bad predicates, respectively. Finally, it instructs the ASP solver to minimize
the value of |N[X] ∩ S| − |N[X] \ S| via the weak constraints. If the solver produces
an answer set where this value is negative, then clearly the answer set witnesses that
the set S is not secure in G. Otherwise for any X ⊆ S this value is nonnegative, which
means that S is secure.

Since this ASP encoding is clearly guarded, the treewidth of the primal graph of the
grounding given an input graph G only depends on the treewidth of G by Theorem 3.10.
Furthermore, by Theorem 3.22 this proves that Secure Set Verification is fixed-
parameter tractable when parameterized by the treewidth of the input graph. In fact,
we get the following fixed-parameter linearity result from Corollary 3.24:1

Theorem 4.39. Secure Set Verification parameterized by the treewidth of the graph can be
solved in fixed-parameter linear time.

It is also possible to obtain this FPT result by expressing the problem in EMSO (extended
monadic second-order logic; see Section 3.6) using the same idea. For this, consider the
following formula ssv(X, G, B), which is true if X ⊆ S, G = N[X]∩ S and B = N[X] \ S.
We assume that the input is given as a relational structure G, where the edges of the
graph are specified using the edge relation E and the vertices in S are indicated by the

1Strictly speaking, Corollary 3.24 considers the Brave Reasoning problem, whereas here we consider
a slightly different problem where we want to check if the cost of optimal answer sets is nonnegative.
However, the algorithm used in the proof of Theorem 3.22, upon which Corollary 3.24 is based, can clearly
be adapted to this variant.
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s(V) ∨ ns(V)← v(V).
← v(V), s(V), #sum{ 1,X : e(V,X), s(X); -1,X : e(V,X), ns(X) } < -1.
 s(X). [1,X]

Listing 4.2: A connection-guarded ASP encoding for Defensive Alliance

unary S relation.

ssv(X, G, B) ≡ ∀v
(
v ∈ X → S(v)

)
∧ ∀v

(
v ∈ G ↔ v ∈ X ∨ ∃x

(
x ∈ X ∧ E(v, x)

))
∧ ∀v

(
v ∈ B↔ ¬S(v) ∧ ∃x

(
x ∈ X ∧ E(v, x)

))
If we combine this formula with the function α(|X|, |G|, |B|) = |G| − |B|, then by a
result of Arnborg, Lagergren and Seese (1991) we can find the minimum of this function
for any X, G and B such that ssv(X, G, B) is true under G in FPT time. As before, we
can thus decide Secure Set Verification by checking if this value is negative.

4.4.7 Fixed-Parameter Tractability of Defensive Alliance Parameterized by
Treewidth and Degree

In Section 4.4.6, we have proved that Secure Set Verification is fixed-parameter
tractable when parameterized by treewidth by expressing the problem in guarded
ASP. We have also seen that the same result can be shown with extended monadic
second-order logic (EMSO), which is not surprising since we suspect that guarded ASP
is strictly less expressive than EMSO if the input structures do not contain numbers,
as we explained in Section 3.6. Next we briefly give an example of a problem where
connection-guarded ASP allows us to obtain an FPT result (for the combination of
treewidth and degree as the parameter) that cannot be achieved from any extension of
MSO that we are aware of.

Listing 4.2 presents a connection-guarded ASP encoding of the Defensive Alliance

problem. We have shown this problem to be W[1]-hard when parameterized by
treewidth alone in Section 4.4.4. It is already known (Enciso 2009) that this problem
is FPT when parameterized by the combination of treewidth and degree. Hence the
following theorem is not new, but it serves as an example of FPT results that can
be obtained by connection-guarded ASP but not, to the best of our knowledge, with
extensions of MSO found in the literature.2

Theorem 4.40. Defensive Alliance parameterized by the combination of the treewidth and
the degree of the graph can be solved in fixed-parameter linear time.

2Here the same remarks as for Theorem 4.39 apply: Theorem 3.23 and Corollary 3.25 actually concern
the Brave Reasoning problem, but again we can easily adapt the algorithm so that it allows us to check
the cost of optimal answer sets.
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4.5 Algorithms for Alliance Problems on Graphs of Bounded
Treewidth

In this section, we present some positive results in the form of algorithms that exploit
bounded treewidth to obtain (fixed-parameter) tractability.

First, we provide a fixed-parameter linear algorithm that solves the Secure Set Verifi-
cation problem via dynamic programming on a tree decomposition of the input graph.
We have already seen in Theorem 4.39 that this problem is solvable in fixed-parameter
linear time, but we obtained this result by metatheorems that, when implemented,
yield algorithms with practically quite bad running time. Indeed, Courcelle’s theorem
is widely considered to be primarily useful as a classification tool, but if efficiency is a
concern, manually crafted algorithms are to be preferred (Cygan et al. 2015). Hence our
dynamic programming algorithm for Secure Set Verification is likely much more
efficient than the algorithm implicit in proofs of Courcelle’s theorem.

Second, we show that all the variants of both Secure Set and Defensive Alliance

considered in this paper are solvable in polynomial time on instances whose treewidth
is bounded by a constant. We again do this by providing a polynomial-time dynamic
programming algorithm, but this time the degree of the polynomial depends on the
treewidth.

4.5.1 A Fixed-Parameter Tractable Algorithm for Secure Set Verification

While we have seen in Section 4.4 that Secure Set parameterized by treewidth is most
likely not FPT, we now present a positive result: The co-NP-complete (Ho 2011) Secure

Set Verification problem, which consists of checking whether a given set Ŝ is secure
in a graph G, is FPT parameterized by the treewidth of G. We show this by giving a
fixed-parameter linear algorithm that follows the principle of dynamic programming
on a tree decomposition T of G. The core idea is the following: For each node t of
T and each X ⊆ Ŝ ∩ χ(t), we store an integer cŜ,t(X), which indicates that X can be
extended to a set X̂ ⊆ Ŝ using “forgotten” vertices from further down in T in such
a way that the difference between defenders and attackers of X̂ is cŜ,t(X) and X̂ is
the “worst” subset of Ŝ that can be obtained in this way. To compute these values, we
traverse T from the bottom up and use recurrence relations to compute the values for
the current node t of T based on the values we have computed for the children of t. If
we then look at the values we have computed at the root of T , we can decide if there is
a subset of Ŝ that is “bad enough” to witness that Ŝ is not secure.

Dynamic programming algorithms like this are quite common for showing FPT mem-
bership w.r.t. treewidth and some examples can be found in the book by Niedermeier
(2006). Proving their correctness is a usually rather tedious structural induction ar-
gument along the tree decomposition: At every node t of T , we have to prove that
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the recurrence relations indeed characterize the value they are supposed to represent.
Examples of such proofs can be found in the book by Cygan et al. (2015).

We now formally define the values that we will compute at each tree decomposition
node. Let G be a graph with a nice tree decomposition T and let Ŝ ⊆ V(G) be the
candidate for which we want to check if it is secure. For each node t of T and each
set of vertices A, we define At = {a ∈ A | a ∈ χ(t′), t′ is a descendant of t}. For any
X̂ ⊆ Ŝ, we call |NG[X̂]t ∩ Ŝ| − |NG[X̂]t \ Ŝ| the score of X̂ w.r.t. Ŝ at t (or just the score of
X̂ if Ŝ and t are clear from the context) and denote it by scoreŜ,t(X̂). Furthermore, we
call |NG[X̂] ∩ χ(t) ∩ Ŝ| − |(NG[X̂] ∩ χ(t)) \ Ŝ| the local score of X̂ w.r.t. Ŝ at t and denote
it by lscoreŜ,t(X̂). Finally, for each X ⊆ Ŝ ∩ χ(t), we define the value

cŜ,t(X) = min
X̂⊆Ŝt, X̂∩χ(t)=X

{scoreŜ,t(X̂)}.

When r is the root of T , both Ŝr = Ŝ and χ(r) = ∅ hold, so Ŝ is secure if and only if
cŜ,r(∅) is nonnegative.

We now describe how to compute all such values in a bottom-up manner by distinguish-
ing the node type of t, and we prove the correctness of our computation by structural
induction along the way. In this correctness proof, we use additional terminology: We
say that a set X̂ is an extension of X w.r.t. Ŝ at t if it is one of those sets considered in
the definition of cŜ,t(X) that has minimum score; formally X̂ ⊆ Ŝt, X̂ ∩ χ(t) = X and
scoreŜ,t(X̂) = cŜ,t(X). We may omit Ŝ or t if they are clear from the context.

Leaf node. If t is a leaf node, then its bag is empty and obviously cŜ,t(∅) = 0 holds.

Introduce node. Let t be an introduce node with child t′, let v be the unique element
of χ(t) \ χ(t′), let X ⊆ Ŝ ∩ χ(t) and let X′ = X \ {v}. We prove that the following
equation holds:

cŜ,t(X) =


cŜ,t′(X′) + 1 if v ∈ NG[X] ∩ Ŝ

cŜ,t′(X′)− 1 if v ∈ NG[X] \ Ŝ

cŜ,t′(X′) otherwise

First consider the case where v ∈ NG[X] ∩ Ŝ. Let X̂ be an extension of X at
t, so scoreŜ,t(X̂) = cŜ,t(X). From v /∈ NG[X̂ \ {v}]t′ and v ∈ NG[X̂]t ∩ Ŝ we
infer scoreŜ,t(X̂) = scoreŜ,t′(X̂ \ {v}) + 1. Moreover, the set X̂ \ {v} is one of
the candidates considered for an extension of X′ in the definition of cŜ,t′ , so we
obtain cŜ,t′(X′) 6 scoreŜ,t′(X̂ \ {v}). In total, this gives us cŜ,t(X) > cŜ,t′(X′) + 1.

Conversely, let X̂′ be an extension of X′ at t′, so scoreŜ,t′(X̂′) = cŜ,t′(X′). We
distinguish two cases.
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1. If v ∈ X, then from v /∈ NG[X̂′]t′ and v ∈ NG[X̂′ ∪ {v}]t ∩ Ŝ we infer
scoreŜ,t(X̂′ ∪ {v}) = scoreŜ,t′(X̂′) + 1. Since X = X′ ∪ {v} and X′ = X̂′ ∩
χ(t′), it holds that X = (X̂′ ∪ {v}) ∩ χ(t). Hence the set X̂′ ∪ {v} is one of
the candidates considered for an extension of X in the definition of cŜ,t and

we obtain cŜ,t(X) 6 scoreŜ,t(X̂′ ∪ {v}).

2. Otherwise v /∈ X. In this case X = X′, v /∈ X̂′ and X = X̂′ ∩ χ(t). Hence
the set X̂′ is considered in the definition of cŜ,t(X) and we get cŜ,t(X) 6

scoreŜ,t(X̂′). Since v is adjacent to an element of X, we infer scoreŜ,t(X̂′) =
scoreŜ,t′(X̂′) + 1.

In both cases, we obtain cŜ,t(X) 6 cŜ,t′(X′) + 1, so indeed cŜ,t(X) = cŜ,t′(X′) + 1.

Next consider the case where v ∈ NG[X] \ Ŝ. Clearly v /∈ X. Let X̂ be an extension
of X at t, so scoreŜ,t(X̂) = cŜ,t(X). From v /∈ NG[X̂]t′ and v ∈ NG[X̂]t \ Ŝ we now
infer scoreŜ,t(X̂) = scoreŜ,t′(X̂)− 1. Similar to before, by definition of cŜ,t′(X′)
we obtain cŜ,t′(X′) 6 scoreŜ,t′(X̂). In total, this gives us cŜ,t(X) > cŜ,t′(X′)− 1.

Conversely, let X̂′ be an extension of X′ at t′, so scoreŜ,t′(X̂′) = cŜ,t′(X′). Since

v /∈ X̂′ and X = X̂′ ∩ χ(t), X̂′ is considered in the definition of cŜ,t(X) and

we get cŜ,t(X) 6 scoreŜ,t(X̂′). Since v is adjacent to an element of X, we infer

scoreŜ,t(X̂′) = scoreŜ,t′(X̂′) − 1. We obtain cŜ,t(X) 6 cŜ,t′(X′) − 1, so indeed
cŜ,t(X) = cŜ,t′(X′)− 1.

Finally consider the remaining case where v /∈ NG[X] and, in particular, v /∈ X
holds as well as X = X′. Using elementary set theory with Ŝt \ {v} = Ŝt′ and
χ(t) = χ(t′) ∪ {v} in mind, we can prove that {X̂ ⊆ Ŝt | X̂ ∩ χ(t) = X} is equal
to {X̂ ⊆ Ŝt′ | X̂ ∩ χ(t′) = X′}. Hence a set X̂ is considered in the definition
of cŜ,t(X) if and only if it is considered in the definition of cŜ,t′(X′). For every
X̂ ⊆ Ŝt such that X̂ ∩ χ(t) = X, observe that v /∈ NG[X̂]t, since v is not adjacent to
any element of X and if it were adjacent to some element of X̂ \ X, then T would
not be a valid tree decomposition. This proves that every such X̂ has the same
score at t and t′. Hence cŜ,t(X) = cŜ,t′(X′).

Forget node. Let t be a forget node with child t′, let v be the unique element of
χ(t′) \ χ(t) and let X ⊆ Ŝ ∩ χ(t). We prove that the following equation holds:

cŜ,t(X) =

{
min{cŜ,t′(X), cŜ,t′(X ∪ {v})} if v ∈ Ŝ

cŜ,t′(X) otherwise

Clearly Ŝt = Ŝt′ and all scores at forget nodes are identical to those in the
respective child node. The case where v /∈ Ŝ is trivial as then Ŝ ∩ χ(t) = Ŝ ∩ χ(t′),
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i.e., the domains of cŜ,t and cŜ,t′ are equal, and the sets considered in the definitions
of cŜ,t(X) and cŜ,t′(X) are the same. Hence we consider the case where v ∈ Ŝ.

Let X̂ be an extension of X at t, so cŜ,t(X) = scoreŜ,t(X̂) = scoreŜ,t′(X̂). If
v /∈ X̂, then X̂ ∩ χ(t′) = X, so we obtain cŜ,t′(X) 6 scoreŜ,t′(X̂) by definition of
cŜ,t′(X). On the other hand, if v ∈ X̂, then X̂ ∩ χ(t′) = X ∪ {v}, so we obtain
cŜ,t′(X ∪ {v}) 6 scoreŜ,t′(X̂). As one of these two inequalities applies, we get
cŜ,t(X) > min{cŜ,t′(X), cŜ,t′(X ∪ {v})}.

Conversely, every extension X̂′ of X at t′ is considered in the definition of
cŜ,t(X), so cŜ,t(X) 6 scoreŜ,t(X̂′) = scoreŜ,t′(X̂′) = cŜ,t′(X). Moreover, every

extension X̂′ of X ∪ {v} at t′ is also considered in the definition of cŜ,t(X), so

cŜ,t(X) 6 scoreŜ,t(X̂′) = scoreŜ,t′(X̂′) = cŜ,t′(X ∪ {v}). If we combine these two
inequalities, we get cŜ,t(X) 6 min{cŜ,t′(X), cŜ,t′(X ∪ {v})}. Hence cŜ,t(X) =

min{cŜ,t′(X), cŜ,t′(X ∪ {v})}.

Join node. Let t be a join node with children t′, t′′ such that χ(t) = χ(t′) = χ(t′′), and
let X ⊆ Ŝ ∩ χ(t). We prove that the following equation holds:

cŜ,t(X) = cŜ,t′(X) + cŜ,t′′(X)− lscoreŜ,t(X)

Let X̂ be an extension of X at t, so scoreŜ,t(X̂) = cŜ,t(X). The set X̂′ = X̂ ∩ Ŝt′

satisfies X̂′ ∩ χ(t′) = X, so cŜ,t′(X) 6 scoreŜ,t′(X̂′). Symmetrically, for X̂′′ =
X̂ ∩ Ŝt′′ it holds that cŜ,t′′(X) 6 scoreŜ,t′′(X̂′′).

There is no element of V(G)t′′ \ χ(t) that is adjacent to an element of X̂′ \ X,
otherwise T would not be a valid tree decomposition. Hence NG[X̂′]t = NG[X̂′]t′ ,
and symmetrically NG[X̂′′]t = NG[X̂′′]t′′ . This entails scoreŜ,t(X̂′) = scoreŜ,t′(X̂′)
and scoreŜ,t(X̂′′) = scoreŜ,t′′(X̂′′).

Since NG[X̂]t ∩ Ŝ is the union of NG[X̂′]t ∩ Ŝ and NG[X̂′′]t ∩ Ŝ, and these latter two
sets have NG[X] ∩ χ(t) ∩ Ŝ as their intersection, we can apply the inclusion-
exclusion principle to obtain |NG[X̂]t ∩ Ŝ| = |NG[X̂′]t ∩ Ŝ| + |NG[X̂′′]t ∩ Ŝ| −
|NG[X] ∩ χ(t) ∩ Ŝ|. In a similar way, we get |NG[X̂]t \ Ŝ| = |NG[X̂′]t \ Ŝ| +
|NG[X̂′′]t \ Ŝ| − |(NG[X] ∩ χ(t)) \ Ŝ)|. We now can establish scoreŜ,t(X̂) =

scoreŜ,t(X̂′) + scoreŜ,t(X̂′′) − lscoreŜ,t(X) by putting these equations together.
The inequalities we have derived before now allow us to conclude cŜ,t(X) >
cŜ,t′(X) + cŜ,t′′(X)− lscoreŜ,t(X).

Now let X̂′ and X̂′′ be extensions of X at t′ and at t′′, respectively. We have
that cŜ,t′(X) = scoreŜ,t′(X̂′) and cŜ,t′′(X) = scoreŜ,t′′(X̂′′). The set X̂ = X̂′ ∪ X̂′′

is clearly considered in the definition of cŜ,t(X), so cŜ,t(X) 6 scoreŜ,t(X̂). Fol-

lowing the same reasoning as before, we obtain scoreŜ,t(X̂) = scoreŜ,t(X̂′) +
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scoreŜ,t(X̂′′) − lscoreŜ,t(X). This allows us to conclude cŜ,t(X) 6 cŜ,t′(X) +

cŜ,t′′(X)− lscoreŜ,t(X). Hence cŜ,t(X) = cŜ,t′(X) + cŜ,t′′(X)− lscoreŜ,t(X).

Using these recurrence relations, we can traverse the tree decomposition T in a bottom-
up way and compute at each node t of T the value cŜ,t(X) for each X ⊆ Ŝ∩ χ(t). Hence
for each node of T we compute at most 2w values, where w is the width of T . By
choosing the right data structure for adjacency tests (Cygan et al. 2015, Exercise 7.16),
each value can be computed in time O(w3). Since T has O(w · |V(G)|) many nodes
and T can be computed in fixed-parameter linear time (Bodlaender 1996) (in fact in
time 2O(w

3) · |V(G)| as observed by Bojańczyk and Pilipczuk (2017)), we thus get an
algorithm with fixed-parameter linear running time for checking whether a given set Ŝ
is secure.

Theorem 4.41. Given a graph G, a tree decomposition of G of weight w and a set Ŝ ⊆ V(G),
we can decide in time O(2w · w4 · |V(G)|) whether Ŝ is secure in G.

Our algorithm can easily be adjusted to find a witness if Ŝ is not secure, i.e., to print
a subset of Ŝ that has more attackers than defenders. After cŜ,t has been computed
for each t, this can be done via a final top-down traversal by a standard technique in
dynamic programming on tree decompositions (Niedermeier 2006): Alongside each
value cŜ,t(X), we store the “origin” of this value and recursively combine the origins of
cŜ,r(∅), where r is the root of T .

In our definition of the Secure Set Verification problem, we were only concerned with
checking whether a set is secure, but we did not mention the additional constructs that
we consider in this paper, like complementary vertex pairs or necessary or forbidden
vertices. However, these additions pose no difficulty at all because we can just check
the respective conditions in linear time.

4.5.2 A Polynomial-Time Algorithm for Secure Set on Bounded Treewidth

We now present an algorithm for finding secure sets, not just verifying whether a given
set is secure. Our algorithm works by dynamic programming on a tree decomposition
of the input and extends the algorithm from Section 4.5.1. For graphs of bounded
treewidth, the algorithm presented in this section runs in polynomial time. However,
in contrast to the algorithm in Section 4.5.1, it is not an FPT algorithm since the
degree of the polynomial depends on the treewidth. This is to be expected since the
problem of finding secure sets of a certain size is W[1]-hard when parameterized by
treewidth, as stated in Corollary 4.38. Our algorithm provides an upper bound for
the complexity of this problem, namely membership in the class XP. As Defensive

Alliance can be reduced to Secure Set in FPT time while preserving bounded
treewidth by Corollary 4.26, our algorithm also shows that Defensive Alliance is
solvable in polynomial time on instances of bounded treewidth.
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Let G be a graph with a nice tree decomposition T , and let t be a node of T . In
Section 4.5.1, we were given one particular secure set candidate Ŝ that we wanted to
check, so we only computed one value for each X ⊆ Ŝ ∩ χ(t), namely the lowest score
of any X̂ ⊆ Ŝt whose intersection with χ(t) is X. Here, in contrast, we cannot restrict
ourselves to only one secure set candidate, and multiple candidates may have the same
intersection with χ(t). We therefore compute multiple objects for each subset of χ(t),
since two subsets of V(G)t that have the same intersection with χ(t) may have to be
distinguished due to their subsets having different scores.

Let S ⊆ χ(t). By FS we denote the set of functions from 2S to an integer. Let c ∈ FS
and let k be an integer. We say that a set Ŝ ⊆ V(G)t is (S, t, c, k)-characterized if |Ŝ| = k,
Ŝ∩ χ(t) = S and, for each X ⊆ S, it holds that c(X) = cŜ,t(X), where cŜ,t is the function
defined in Section 4.5.1. For each S ⊆ χ(t), we now define the set

CS,t = {(c, k) | there is a (S, t, c, k)-characterized set}.

When r is the root of T , there is a secure set of size k in G if and only if there is an
element (c, k) ∈ C∅,r such that c(∅) > 0. To see this, first suppose there is a secure
set Ŝ of size k in G. Then there is a function c : {∅} → Z such that Ŝ is (∅, r, c, k)-
characterized, so (c, k) ∈ C∅,r and c(∅) = cŜ,r(∅), which means that c(∅) is the lowest
score of any subset of Ŝ. Since Ŝ is secure in G, this number is nonnegative. For the other
direction, let (c, k) ∈ C∅,r such that c(∅) > 0. Then there is a (∅, r, c, k)-characterized set
Ŝ, obviously of size k. Since c(∅) > 0, the lowest score of any subset of Ŝ is nonnegative,
which proves that Ŝ is secure in G.

We now describe how to compute all such values in a bottom-up manner.

Leaf node. If t is a leaf node, its bag is empty and obviously C∅,t = {(c, 0)} holds,
where c maps ∅ to 0.

Introduce node. Let t be an introduce node with child t′ and let v be the unique
element of χ(t) \ χ(t′). For each S ⊆ χ(t) and each function c ∈ FS\{v}, we define
a function c⊕S,t v : 2S → Z. Its intended purpose is to obtain a version of c that
applies to t instead of t′. If v ∈ S, we need to increase scores where v can serve as
an additional defender, and otherwise we need to decrease scores where v can
serve as an additional attacker. We now make this formal. Let S ⊆ χ(t), X ⊆ S,
X′ = X \ {v} and c ∈ FS\{v}.

(c⊕S,t v)(X) =


c(X′) + 1 if v ∈ NG[X] ∩ S

c(X′)− 1 if v ∈ NG[X] \ S

c(X′) otherwise

For each S ⊆ χ(t) and each function c ∈ FS there is a unique function c′ ∈ FS\{v}
such that c = c′ ⊕S,t v, and we denote c′ by originS,t(c).
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The following statements can be proved by arguments similar to those in Sec-
tion 4.5.1: Let Ŝ ⊆ V(G)t′ , S = Ŝ ∩ χ(t′) and (c, k) ∈ CS,t′ such that Ŝ is (S, t′, c, k)-
characterized. The set Ŝ ∪ {v} is (S ∪ {v}, t, c ⊕S∪{v},t v, k + 1)-characterized
and Ŝ is (S, t, c⊕S,t v, k)-characterized. Hence (c⊕S∪{v},t v, k + 1) ∈ CS∪{v},t and
(c⊕S,t v, k) ∈ CS,t. Conversely, let Ŝ ⊆ V(G)t, S = Ŝ ∩ χ(t) and (c, k) ∈ CS,t such
that Ŝ is (S, t, c, k)-characterized, and let c′ = originS,t(c) and k′ = k− |S ∩ {v}|.
The set Ŝ \ {v} is (S \ {v}, t′, c′, k′)-characterized. Hence (c′, k′) ∈ CS\{v},t′ .

From these observations, the following equation follows for every S ⊆ χ(t):

CS,t = {(c⊕S,t v, k + |S ∩ {v}|) | (c, k) ∈ CS\{v},t′}

Forget node. Let t be a forget node with child t′ and let v be the unique element of
χ(t′) \ χ(t). For each S ⊆ χ(t) and each function c ∈ FS∪{v}, we define a function
c	∈S,t v, and for each S ⊆ χ(t) and each function c ∈ FS, we define a function
c	/∈

S,t v. Each of these functions maps every subset of S to an integer.

(c	∈S,t v)(X) = min{c(X), c(X ∪ {v})}

(c	/∈
S,t v)(X) = c(X)

Next we define functions origin∈S,t and origin/∈
S,t that map each element of FS to a

set of elements of FS∪{v} and FS, respectively:

origin∈S,t(c) = {c
′ ∈ FS∪{v} | c = c′ 	∈S,t v}

origin/∈
S,t(c) = {c

′ ∈ FS | c = c′ 	/∈
S,t v}

The following statements can be proved by arguments similar to those in Sec-
tion 4.5.1: Let Ŝ ⊆ V(G)t′ , S = Ŝ ∩ χ(t′) and (c, k) ∈ CS,t′ such that Ŝ is
(S, t′, c, k)-characterized. If v ∈ Ŝ, then Ŝ is (S \ {v}, t, c	∈S,t v, k)-characterized
and (c 	∈S,t v, k) ∈ CS\{v},t; otherwise Ŝ is (S, t, c 	/∈

S,t v, k)-characterized and
(c	/∈

S,t v, k) ∈ CS,t. Conversely, let Ŝ ⊆ V(G)t, S = Ŝ ∩ χ(t) and (c, k) ∈ CS,t such
that Ŝ is (S, t, c, k)-characterized. If v ∈ Ŝ, then there is some c′ ∈ origin∈S,t(c) such
that Ŝ is (S ∪ {v}, t′, c′, k)-characterized and (c′, k) ∈ CS∪{v},t′ ; otherwise there is
some c′ ∈ origin/∈

S,t(c) such that Ŝ is (S, t′, c′, k)-characterized and (c′, k) ∈ CS,t′ .

From these observations, the following equation follows for every S ⊆ χ(t):

CS,t = {(c	∈S,t v, k) | (c, k) ∈ CS∪{v},t′} ∪ {(c	/∈
S,t v, k) | (c, k) ∈ CS,t′}

Join node. Let t be a join node with children t′, t′′ such that χ(t) = χ(t′) = χ(t′′). For
each S ⊆ χ(t), and each c′, c′′ ∈ FS, we define a function c′ ⊗S,t c′′, which maps
each subset of S to an integer.

(c′ ⊗S,t c′′)(X) = c′(X) + c′′(X)− lscoreS,t(X)
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Next we define a function originS,t that maps each element of FS to a subset of
FS × FS:

originS,t(c) = {(c
′, c′′) ∈ FS × FS | c = c′ ⊗S,t c′′}

The following statements can be proved by arguments similar to those in Sec-
tion 4.5.1: Let Ŝ′ ⊆ V(G)t′ , Ŝ′′ ⊆ V(G)t′′ , S = Ŝ′ ∩ Ŝ′′, (c′, k′) ∈ CS,t′ and
(c′′, k′′) ∈ CS,t′′ such that Ŝ′ is (S, t′, c′, k′)-characterized and Ŝ′′ is (S, t′′, c′′, k′′)-
characterized, and let c = c′ ⊗S,t c′′ and k = k′ + k′′ − |S|. The set Ŝ′ ∪ Ŝ′′ is
(S, t, c, k)-characterized and (c, k) ∈ CS,t. Conversely, let Ŝ ⊆ V(G)t, S = Ŝ ∩ χ(t)
and (c, k) ∈ CS,t such that Ŝ is (S, t, c, k)-characterized. There is some (c′, c′′) ∈
originS,t(c) as well as integers k′, k′′ such that k = k′ + k′′ − |S|, the set Ŝ ∩V(G)t′

is (S, t′, c′, k′)-characterized and Ŝ ∩V(G)t′′ is (S, t′′, c′′, k′′)-characterized. Hence
(c′, k′) ∈ CS,t′ and (c′′, k′′) ∈ CS,t′′ .

From these observations, the following equation follows for every S ⊆ χ(t):

CS,t = {(c′ ⊗S,t c′′, k′ + k′′ − |S|) | (c′, k′) ∈ CS,t′ , (c′′, k′′) ∈ CS,t′′}

We can now traverse the tree decomposition T in a bottom-up way and at each node
t of T compute the set CS,t for each S ⊆ χ(t). Let n denote the number of vertices
of G and w denote the width of T . Every element of CS,t is a pair (c, k), where c is
a function that maps each subset of S to an integer between −n and n, there are at
most 2w subsets of S, and k is an integer between 0 and n. Hence there are at most
(2n + 1)2w · (n + 1) elements of CS,t. Each individual element of CS,t can be computed
in time O(2w). Finally, there are at most 2w possible values for S and O(wn) many
nodes in T . We thus get an algorithm that takes as input an integer k together with a
graph G whose treewidth we denote by w, and determines in time f (w) · ng(w) whether
G admits a secure set of size k, where f and g are functions that only depend on w.

This algorithm for Exact Secure Set obviously also gives us an algorithm for Secure

Set by checking all solution sizes from 1 to k. By keeping track of the origins of our
computed values during our bottom-up traversal of the tree decomposition, we can
even adapt the algorithm without much effort to find solutions if they exist. Finally,
we can easily extend it to accommodate complementary and equivalent vertex pairs as
well as necessary and forbidden vertices. Hence we get the following XP membership
result:

Theorem 4.42. All of the following problems can be solved in polynomial time if the treewidth
of the input is bounded by a constant: Secure Set, Exact Secure Set, Secure Set

F,
Exact Secure Set

F, Secure Set
FN, Exact Secure Set

FN, Secure Set
FNC, Exact Secure

Set
FNC, Secure Set

FNCE and Exact Secure Set
FNCE.
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We have seen in Corollary 4.26 that Defensive Alliance can be reduced to Secure

Set in FPT time while preserving bounded treewidth. Hence our algorithm can also
be used for solving Defensive Alliance, which proves XP membership also for this
problem (and the variants we considered). Note, however, that Defensive Alliance

is in fact known to be solvable in polynomial time already on instances of bounded
clique-width (Kiyomi and Otachi 2017), which is an even stronger result. We leave
the question of whether our XP membership result for Secure Set can be extended to
instances of bounded clique-width for future work.

4.6 Discussion

One of the central results of this chapter was the proof that the Secure Set problem is
ΣP

2 -complete. This means that Secure Set is among the few rather natural problems
in graph theory that are complete for the second level of the polynomial hierarchy
(like, e.g., Clique Coloring (Marx 2011) or 2-Coloring Extension (Szeider 2005)).
Moreover, ΣP

2 -hardness of Secure Set indicates that an efficient reduction to the Sat

problem is not possible (unless the polynomial hierarchy collapses).

Beside showing that Secure Set is ΣP
2 -complete, we also proved ΣP

2 -completeness
for variants where we are looking for solutions having exactly a given size. Note
that a secure set may become insecure by adding or removing elements, so these are
non-trivial problem variants. Indeed, exact versions of alliance problems have also been
mentioned as interesting variants in Fernau and Raible (2007) because some algorithms
that work in the non-exact case stop working in the exact case: A graph has a secure
set of size at most k if and only if it has a connected secure set of size at most k since
every component of a secure set is itself secure. Algorithms that exploit this by looking
only for connected solutions hence fail for the exact versions. (In fact, for some of the
problem variants that we introduced in this work, this connectedness property does
not apply even in the non-exact case.)

Another important contribution of this chapter was the proof that both Defensive

Alliance and Secure Set are hard for the class W[1], which rules out fixed-parameter
tractable algorithms under commonly held complexity-theoretic assumptions. This
result is rather surprising for two reasons: First, the problems are tractable on trees
(Ho and Dutton 2009) and quite often problems that become easy on trees turn out to
become easy on graphs of bounded treewidth.3 Second, this puts Defensive Alliance

and Secure Set among the very few “subset problems” that are fixed-parameter
tractable w.r.t. solution size but not w.r.t. treewidth. Problems with this kind of behavior
are rather rare, as observed by Dom et al. (2008).

3To be precise, Ho and Dutton (2009) showed that a slight variant of Secure Set is tractable on trees,
since Secure Set on trees is trivial. Our results, however, also imply W[1]-hardness for this particular
variant.
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4.6. Discussion

x(S) ∨ nx(S)← s(S).
neighbor(V)← x(X), e(X,V).

good(V)← v(V), x(V).
good(V)← neighbor(V), s(V).
bad(V)← neighbor(V), v(V), not s(V).

← #sum{ 1,V : good(V); -1,V : bad(V) } > 0.

Listing 4.3: An ASP encoding for the co-problem of Secure Set Verification

In Listing 4.1, we presented a guarded ASP encoding for the Secure Set Verification

problem and thus showed that the problem is solvable in linear time on instances
whose treewidth is bounded by a constant (Theorem 4.39). This ASP program relied
on weak constraints to count the number of defenders and the number of attackers.
To illustrate the importance of these weak constraints, we compare this to a slightly
different encoding, which is presented in Listing 4.3. This encoding has an answer set
if and only if there is a witness that the given set S is not secure. In contrast to our
approach from Listing 4.1, where we compute the minimum difference of “good” and
“bad” neighbors and then inspect this value, this encoding produces an answer set if
and only if there is a subset of S such that the difference of “good” and “bad” neighbors
is negative. Thus Listing 4.3 encodes the co-problem of Secure Set Verification.

When comparing the two ASP encodings for verifying whether a set is secure, the
crucial observation is that the program in Listing 4.3 is not guarded due to the last
line. The extensions of the good and bad predicates cannot be determined by the
grounder because they depend on the extension of the x predicate, which is subject to
a non-deterministic guess. Hence the grounder is forced to instantiate the variables in
the last rule with each element of S, which results in a single ground rule containing a
linear number of atoms (instead of a linear number of ground weak constraints, each
containing two atom, as in Listing 4.1). This illustrates that it sometimes pays off to
consider alternative encoding techniques in order to obtain a program that is in one of
the ASP classes we defined in Chapter 3.

The present chapter extends a conference paper (Bliem and Woltran 2016a), which
proved ΣP

2 -completeness of Secure Set and its variants but did not contain any results
about the parameterized complexity of these problems. To obtain our W[1]-hardness
results for the parameter treewidth, we modified some of the reductions that prove
ΣP

2 -hardness so that they preserve bounded treewidth, which allowed us to reuse them
for our parameterized hardness proofs. We also added a reduction (that eliminates
necessary vertices), which made one of the reductions (from the exact variant of the
problem to the non-exact variant) from the conference paper (Bliem and Woltran 2016a)
redundant. A paper resulting from these changes is currently under review for a
journal and has also been made publicly available (Bliem and Woltran 2017).
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The current chapter contains some additional changes that were still not present in the
extended paper by Bliem and Woltran (2017). There, we only considered (variants of) the
Secure Set problem, whereas in the current chapter we showed W[1]-hardness not only
for Secure Set (and variants) when parameterized by treewidth, but also for Defensive

Alliance (and variants). Additionally, this chapter showed how Defensive Alliance

can be reduced to Secure Set, and we proved that the Secure Set Verification

problem is solvable in linear time for instances of bounded treewidth by expressing
the problem in guarded ASP and extended monadic second-order logic (Section 4.4.6).
Finally, we added Section 4.4.7, which illustrates the use of connection-guarded ASP
for showing the known result (Enciso 2009) that Defensive Alliance is solvable in
linear time for instances of bounded treewidth and degree.

Related Work

In the literature, several variants of defensive alliances have been studied. The papers
that originally introduced defensive alliances (Kristiansen, S. M. Hedetniemi and S. T.
Hedetniemi 2002; Kristiansen, S. M. Hedetniemi and S. T. Hedetniemi 2004) also
proposed related notions like offensive and powerful alliances. An offensive alliance is
a set S of vertices such that every neighbor of an element of S has at least half of its
neighbors in S, and a powerful alliance is both a defensive and an offensive alliance.
Any of these alliances is called global if it is at the same time a dominating set.

For offensive and powerful alliances, it has been shown that deciding if such an alliance
of a given (maximum) size exists is fixed-parameter tractable when parameterized by
the solution size (Fernau and Raible 2007; Enciso 2009). Kiyomi and Otachi (2017)
proved that not only Defensive Alliance but also the corresponding problems for such
other alliances can be solved in polynomial time if the clique-width of the instances
is bounded by a constant. Furthermore, they provided an FPT algorithm for these
problems when the vertex cover number is the parameter.

For global defensive alliances, Cami et al. (2006) showed that the respective decision
problem is NP-complete. Moreover, in the work by Enciso (2009), we can find an FPT
algorithm for finding global defensive alliances when the parameter is the domino
treewidth.

Another variant is to consider alliances S where, for each vertex v ∈ S, the difference
between the number of neighbors of v in S and the number of other neighbors of v is
at most a given integer (Shafique and Dutton 2003). For comprehensive overviews of
different kinds of alliances in graphs, we refer to the surveys by Yero and Rodríguez-
Velázquez (2013) and Fernau and Rodríguez-Velázquez (2014).
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CHAPTER 5

Advanced Dynamic Programming
Methodologies

Many problems on the second level of the polynomial hierarchy involve some sort of
subset minimization. For instance, a ΣP

2 -complete variant of Sat asks for subset-minimal
models of a propositional formula, and in ground ASP we are looking for models I of
a program Π that are subset-minimal models of the reduct ΠI (cf. Section 2.4). Many
of these problems can be solved via dynamic programming on tree decompositions.
However, algorithms for this often suffer from bad performance due to the fact that a
lot of computations for subsets of the solution candidates have to be done that are often
quite similar to the computations for the solution candidates themselves. Hence such
algorithms often perform a great deal of redundant work, and they are also typically
more difficult to specify than algorithms that do not involve subset minimization. In
this chapter, we present a methodology that alleviates these issues.

There is a close relationship between the polynomial hierarchy and quantifier alterna-
tion: The canonical ΣP

k -complete problem is Qsatk, that is, the problem of deciding
whether a quantified Boolean formula of the form ∃A1∀A2 · · ·QAk ϕ is true, where
each Ai is a set of propositional atoms, Q is ∀ if k is even and Q is ∃ otherwise. Another
indication of the connection to quantifier alternation is the fact that we can also define
the k-th level of the polynomial hierarchy as consisting of those problems that an
alternating Turing machine can solve in polynomial time with k alternations between
∃ and ∀ states. This definition is equivalent to the classical one in terms of oracle
machines.

In this work, we are particularly interested in the second level of the polynomial
hierarchy, where we can find many problems from artificial intelligence such as ASP,
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circumscription, abduction or problems from abstract argumentation (e.g., see the
papers by Jakl, Pichler and Woltran (2009), Jakl et al. (2008), Gottlob, Pichler and Wei
(2010b) and Dvořák, Pichler and Woltran (2012)). Due to the connection of ΣP

2 with (a
single) quantifier alternation, the question asked by decision problems in this class can
always be stated in the following pseudo-formal way for illustration:

∃S
(

P(S) ∧ ¬∃X
(

Q(X) ∧ R(S, X)
))

Intuitively, P(S) expresses that S is a solution candidate, Q(X) expresses that X is
a counterexample candidate, and R(S, X) expresses that X is a counterexample, which
witnesses that S is in fact not a solution.1

For example, we can state the question for Qsat2 in such a way as follows:

P(S) . . . S is a truth assignment for the variables in A1.

Q(X) . . . X is a truth assignment for the variables in A2.

R(S, X) . . . ϕ is false under the truth assignment given by S and X.

In this chapter, we will focus on search problems, that is, problems that require us to
actually produce a solution and not just decide if one exists. This will make presentation
easier and the results of this chapter can also be applied to decision problems. For
search problems, we are looking for a value for the variable S such that the following
subformula of the pseudo-formal expression from before is true.

P(S) ∧ ¬∃X
(

Q(X) ∧ R(S, X)
)

We illustrate this using the following search problem, which will play an important
role in this chapter.

Subset-Minimal Sat

Input: A Boolean formula ϕ

Task: Compute a model S of ϕ such that no proper subset X of S is a
model of ϕ.a

a We identify a truth assignment with the set of atoms it sets to true.

The decision variant of this problem (where we ask if there is a subset-minimal model
that sets a given atom to true) is ΣP

2 -complete.

1Actually we could dispense with P and Q in this expression and let R take over their duties, but
separating these parts better captures the intuition of many problems.
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We represent Subset-Minimal Sat as follows:

P(S) . . . S is a model of ϕ.

Q(X) . . . X is a model of ϕ.

R(S, X) . . . X is a proper subset of S.

In this case, the solution candidates are actually the same as the counterexample
candidates. Also for many other problems, the counterexample candidates are related
to the solution candidates in a certain way. For instance, in ASP a solution candidate
S is a model of the program Π and a counterexample candidate X is a model of the
reduct ΠS. Even though S and X intuitively refer to different programs, the set of
models of Π has a nonempty intersection with the set of models of ΠS in general. The
point that we would like to make is that for many problems solution candidates and
counterexample candidates are not entirely different things.

Algorithm 5.1: A naive algorithm for Subset-Minimal Sat

Input: A Boolean formula ϕ and a variable z
Output: A subset-minimal model containing z if there is one, or “no” otherwise
for each set S of variables that occur in ϕ do

if S |= ϕ then
counterexample← false;
for each set X of variables that occur in ϕ do

if X |= ϕ and X ⊂ S then counterexample← true;

if counterexample = false then return S;

return “no”;

We now illustrate a consequence of this relationship between solution candidates
and counterexample candidates. A very naive way of finding solutions for a Subset-
Minimal Sat instance is outlined in Algorithm 5.1. Note that in general the inner loop
considers a set X of variables many times during the execution and solves the same
model checking problem X |= ϕ over and over again. Moreover, note that the algorithm
also checks X |= ϕ if it has already checked this for a solution candidate equal to X.
Thus, due to the similarity of solution candidates and counterexample candidates, the
algorithm performs many redundant tasks.

Usually dynamic programming algorithms use a naive brute-force approach similar to
this in every tree decomposition node to produce all partial solution candidates (by
which we mean the information needed at the current node to eventually compute all
solutions). Moreover, for ΣP

2 -hard problems like Subset-Minimal Sat, such algorithms
then typically proceed by storing all partial counterexample candidates for each partial
solution candidate from the previous step. Generally the number of objects computed
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by such an algorithm at every tree decomposition node is thus doubly exponential in
the treewidth. Theoretically this is not an issue for fixed-parameter tractable algorithms
because the treewidth is considered a constant. In practice, however, the redundant
computations lead to an enormous overhead in terms of running time and memory
(Bliem et al. 2016a).

Beside these performance issues, also the design and implementation of such dynamic
programming algorithms is often quite tedious. Especially for problems where coun-
terexample candidates are very similar to solution candidates (or even exactly the
same), care must be taken to avoid redundancies in the code, which make the programs
difficult to maintain.

In this chapter, we show how we can automatically generate tree-decomposition-
based dynamic programming algorithms from simpler principles. For this, we first
introduce a formal model of dynamic programming computations, which allows us to
abstract from concrete algorithms and makes our results generally applicable to many
problems instead of just to a particular problem. We show how our model captures
typical dynamic programming computations for problems on the second level of the
polynomial hierarchy, and we discuss how we can ensure fixed-parameter tractability.
This formal framework is the basis for the main contribution of this chapter: We give a
formal definition of a transformation that turns computations for a simpler problem into
computations for a derived, more complex problem. Moreover, we identify conditions
under which this procedure is sound, and we give a formal correctness proof.

To facilitate presentation, we restrict ourselves to subset-minimization problems such
as Subset-Minimal Sat. We thus assume that the solution candidates are exactly
the same as the counterexample candidates, and we assume that checking whether
X is a counterexample to S being a solution amounts to checking whether X ⊂ S.
After presenting our main contribution, we will discuss how we can generalize the
results by allowing for more complex relationships between solution candidates and
counterexample candidates.

Subset-minimization problems such as Subset-Minimal Sat can be seen as derived
from a base problem, by which we mean a problem whose solutions are exactly the
solution candidates of the derived problem. In the case of Subset-Minimal Sat, the
base problem is Sat: The solution candidates for Subset-Minimal Sat are exactly the
solutions of Sat, and for determining if such a candidate is a solution, we just need to
check for minimality.

The core idea of our transformation that generates an algorithm for the derived problem
from an algorithm for the base problem is the following: We first run the algorithm for
the base problem to compute all partial solution candidates. Then we discard all partial
solution candidates that do not lead to solutions. Finally, we automatically obtain
the relevant partial counterexample candidates from the remaining partial solution
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candidates.

This chapter is organized as follows. In Section 5.1, we present a formal framework for
tree-decomposition-based dynamic programming algorithms. Next, in Section 5.2, we
define conditions on dynamic programming computations under which the solutions
produced by the computation are exactly the subset-minimal solutions of the base
problem. We then show in Section 5.3 how we can compress our data structures, which
is important for obtaining fixed-parameter tractability. In Section 5.4, we present the
conditions that a dynamic programming algorithm for a base problem must fulfill in
order to be eligible for our automatic transformation to an algorithm for the respective
derived problem. The heart of this chapter is Section 5.5, where we present our
transformation for such algorithms and prove its correctness as well as running time
guarantees. Finally we discuss extensions of our results and relationships to other
approaches in Section 5.6.

5.1 A Formal Account of Dynamic Programming on Tree
Decompositions

In this section we formally describe dynamic programming on tree decompositions for
subset optimization problems. First, we define our data structure, called computation,
which is a tree of tables resulting from the bottom-up traversal of the tree decompo-
sition. We then define the extensions of table rows, which are used to obtain (partial)
solution candidates for the problem at hand. Additionally, we define their relation to
counterexamples. Finally, we state how solutions are obtained and define properties
that have to be fulfilled by the tables in a computation in order to yield correct results.

Definition 5.1. A computation is a rooted ordered tree whose nodes are called tables.
Each table R is a set of rows and each row r ∈ R possesses

• some problem-specific data D(r),

• a non-empty set of extension pointer tuples (EPTs) P(r) such that each tuple is of
arity k, where k is the number of children of R, and for each (p1, . . . , pk) ∈ P(r) it
holds that each pi is a row of the i-th child of R,

• a subtable S(r), which is a set of subrows, where each subrow s ∈ S(r) possesses

– some problem-specific data D(s),

– a non-empty set of EPTs P(s) such that for each (p1, . . . , pk) ∈ P(s) there is
some (q1, . . . , qk) ∈ P(r) with pi ∈ S(qi) for 1 6 i 6 k,

– an inclusion status flag inc(s) ∈ {eq,⊂}.
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For rows or subrows a, b we write a ≈ b, a 6 b and a < b to denote D(a) = D(b),
D(a) ⊆ D(b) and D(a) ⊂ D(b), respectively. For sets of rows or subrows R, S we
write D(R) to denote

⋃
r∈R D(r), and we write R ≈ S, R 6 S and R < S to denote

D(R) = D(S), D(R) ⊆ D(S) and D(R) ⊂ D(S), respectively.

The reason that each row possesses a subtable is that we consider subset optimization
problems, and we assume that algorithms for such problems use subtables to store
potential counterexamples to a solution candidate being subset-minimal. The intuition
of a subrow s for a row r is that s represents solution candidates that are subsets of the
candidates represented by r. If one of these subset relations is proper, we indicate this
by inc(s) = ⊂.

Example 5.2. We return to Example 2.3 and recall the propositional formula ϕEx defined
as (u ∨ v) ∧ (¬v ∨ w ∨ x) ∧ (¬w) ∧ (¬x ∨ z) ∧ (¬x ∨ y ∨ ¬z), its primal graph GEx and
a tree decomposition TEx as depicted in Figure 2.2. Now we consider Subset-Minimal

Sat (i.e., finding models that are subset-minimal w.r.t. the set of atoms that get assigned
“true”). Figure 5.1 illustrates the computation performed by a dynamic programming
algorithm for Subset-Minimal Sat at nodes n3 and n4 of TEx. At n3, the table R is
computed as before (as depicted in Figure 2.3). For any r ∈ R, each subrow s ∈ S(r)
represents a partial assignment that is a subset of the one in r (i.e., D(s) ⊆ D(r)) and
that also satisfies all clauses covered by the bag (in this case the clauses (¬x ∨ z) and
(¬x ∨ y ∨ ¬z)). Moreover, inc(s) is set appropriately. Now consider n4, where y and z
are removed. As in the dynamic programming algorithm for Sat, we simply project
away data related to the removed vertices. Observe that for instance 41 now contains
redundant subrows 41

2, 41
3, 41

4 and 41
5 in the sense that they contain the same data and

inclusion flag (and only different EPTs). We overcome this problem in Section 5.3,
where tables are compressed in order to remove such redundancies. 4

The EPTs of a table row r are used for recursively combining the problem-specific data
D(r) with data from “compatible” rows that are in descendant tables. The fact that
each set of EPTs is required to be non-empty entails that for each (sub)row r at a leaf
table it holds that P(r) = {()}. We disallow rows with an empty set of EPTs because
in the end we are only interested in rows that can be extended to complete solutions,
consisting of one row per table. For this we introduce the notion of an extension of a
table row.

Definition 5.3. Let C be a computation and R be a table in C with k children. We
inductively define the extensions of a row r ∈ R as E(r) =

{
{r} ∪ A | A ∈ ⋃(p1,...,pk)∈P(r)

{X1 ∪ · · · ∪ Xk | Xi ∈ E(pi) for all 1 6 i 6 k}
}

.

Note that any extension X ∈ E(r) contains r and exactly one row from each table that
is a descendant of R. If r is a row of a leaf table, E(r) =

{
{r}
}

because P(r) =
{
()
}

.
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R S(r)
r D P s D P inc

41 x (31) 41
1 x (31

1) eq
41

2 (31
2) ⊂

41
3 (31

3) ⊂
41

4 (31
4) ⊂

41
5 (31

5) ⊂
42 (32) 42

1 (32
1) eq

42
2 (32

2) ⊂
42

3 (32
3) ⊂

42
4 (32

4) ⊂
43 (33) 43

1 (33
1) eq

43
2 (33

2) ⊂
44 (34) 44

1 (34
1) eq

44
2 (34

2) ⊂
45 (35) 45

1 (35
1) eq

n4

R S(r)
r D P s D P inc

31 x, y, z () 31
1 x, y, z () eq

31
2 y, z () ⊂

31
3 y () ⊂

31
4 z () ⊂

31
5 () ⊂

32 y, z () 32
1 y, z () eq

32
2 y () ⊂

32
3 z () ⊂

32
4 () ⊂

33 y () 33
1 y () eq

33
2 () ⊂

34 z () 34
1 z () eq

34
2 () ⊂

35 () 35
1 () eq

n3

Figure 5.1: (Partial) dynamic programming computation for Subset-Minimal Sat

without compression

While the extensions from the root table of a computation represent complete solution
candidates, the purpose of subtables is to represent possible counterexamples that
would cause a solution candidate to be invalidated. More precisely, for each extension
X that can be obtained by extending a root table row r, we check if we can find an
extension Y of an element s ∈ S(r) with inc(s) = ⊂ such that every element of Y is
listed as a subrow of a row in X (i.e., we check if for every y ∈ Y there is some x ∈ X
with y ∈ S(x)). If this is so, then Y witnesses that X represents no solution because Y
then represents a solution candidate that is a proper subset. For this reason, we need to
introduce the notion of extensions (like Y) relative to another extension (like X).

Definition 5.4. Let C be a computation, R be a table in C with k children, r ∈ R be a row
and s ∈ S(r) be a subrow of r. We first define, for any X ∈ E(r), a restriction of P(s) to
EPTs where each element is a subrow of a row in X, as PX(s) =

{
(p1, . . . , pk) ∈ P(s) |

ri ∈ X, pi ∈ S(ri) for all 1 6 i 6 k
}

. Now we define the set of extensions of s relative to
some extension X ∈ E(r) as EX(s) =

{
{s} ∪ A | A ∈ ⋃(p1,...,pk)∈PX(s){Y1 ∪ · · · ∪Yk | Yi ∈

EX(pi) for all 1 6 i 6 k}
}

.

We can now formalize that the solutions of a computation are the extensions of those
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rows that do not have a subrow indicating a counterexample.

Definition 5.5. Let R be the root table in a computation C. We define the set of solutions
of C as sol(C) =

{
D(X) | r ∈ R, X ∈ E(r), @s ∈ S(r) : inc(s) = ⊂

}
Example 5.6. If n4 in Figure 5.1 were the root of the tree decomposition, only 45 would
yield a solution (namely {}, i.e., the interpretation where x, y, and z are all set to
false) since all other rows contain a subrow where inc(s) = ⊂. This is indeed the only
subset-minimal model of the formula consisting of the clauses encountered until n4,
i.e., (¬x ∨ z) ∧ (¬x ∨ y ∨ ¬z). 4

For this example, the computation of our Subset-Minimal Sat algorithm yields solu-
tions as intended. Other algorithms, however, may not be so well-behaved. We are still
missing a criterion to distinguish algorithms that indeed produce computations whose
solutions are minimal from algorithms that use subtables in an unintended way. The
following section presents such a criterion.

5.2 Normal Computations

In this section, we formalize requirements on subrows and their inclusion status to
ensure that subrows correspond to subsets of their parent row, that each potential
counterexample is represented by a subrow and that inc(·) is used as intended. We call
a computation normal if it is well-behaved in this sense.

Definition 5.7. A table R is normal if the following properties hold:

1. For each r ∈ R, s ∈ S(r), X ∈ E(r) and Y ∈ EX(s), it holds that Y 6 X, and Y < X
holds if and only if inc(s) = ⊂.

2. For each r ∈ R, s ∈ S(r) and Y ∈ E(s) there is some r′ ∈ R and X′ ∈ E(r′) such
that s ≈ r′ and Y ≈ X′.

3. For each q, r ∈ R, Z ∈ E(q) and X ∈ E(r), if Z 6 X holds, then there is some
s ∈ S(r) and Y ∈ EX(s) with s ≈ q and Y ≈ Z.

A computation is normal if all its tables are normal.

This definition ensures that it suffices to examine the root table of a normal computation
in order to decide a subset-minimization problem correctly, provided that the rows
represent all solution candidates.
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Example 5.8. The table of node n4 in Figure 5.1 is normal. We only check the conditions
for some of the (sub)rows. Let r = 42 and s = 42

2. Observe that E(r) =
{
{r, 32}

}
and

EX(s) =
{
{s, 32

2}
}

. Let X and Y be the unique elements of E(r) and EX(s), respectively.
Now D(X) = {y, z} and D(Y) = {y}, so Y 6 X holds as required by condition 1. In
fact, even Y < X, and inc(s) = ⊂ as required. As for condition 2, observe that Y is
also in E(s), so we must find a row r′ and extension X′ of r′ that “mirror” s and Y,
respectively. Indeed, r′ = 43 and X′ = {r′, 33} (for which X′ ∈ E(r′) holds) satisfy s ≈ r′

and Y ≈ X′. As for condition 3, let q = 43 and Z = {q, 33}. It holds that Z ∈ E(r′)
and Z 6 X, so we must find a subrow s of r and extension Y of s (relative to X) that
“mirror” q and Z, respectively. Indeed, s = 42

2 and Y = {s, 32
2} (for which Y ∈ EX(s)

holds) satisfy s ≈ q and Y ≈ Z. 4

We will later show how a non-minimizing computation (i.e., one with empty subtables)
satisfying certain properties can be transformed into a normal computation. In this
transformation, we must avoid redundancies lest we destroy fixed-parameter tractability.
For this, we first introduce how tables can be compressed without losing solution
candidates.

5.3 Table Compression

In this section, we show how the tables can be compressed such that their sizes are
bounded by the width of the tree decomposition and do not become exponentially
large in the input size. The idea is to compress tables by merging equivalent (sub)rows.
For this, we first define an equivalence relation on rows as well as one on subrows.

5.3.1 Compressing Subtables

Definition 5.9. Let R be a table and r ∈ R. We define an equivalence relation ≡r over
the subrows of r such that s1 ≡r s2 if s1 ≈ s2 and inc(s1) = inc(s2).

We use this notion of equivalence between subrows to compress subtables by merging
equivalent subrows.

Definition 5.10. Let R be a table and r ∈ R. We define a subtable S∗(r) called the
compressed subtable of r that contains exactly one subrow for each ≡r-equivalence class.
For any s ∈ S(r), let [s] denote the ≡r-equivalence class of s and let s′ denote the
subrow in S∗(r) corresponding to [s]. We define s′ by s′ ≈ s, inc(s′) = inc(s) and
P(s′) =

⋃
t∈[s] P(t).

Example 5.11. Let r be the row 31 in Figure 5.1. Since all subrows of r have different
data, each ≡r-equivalence class is a singleton, so we cannot merge any equivalent
subrows of r (i.e., S∗(r) contains as many subrows as S(r)). Now let r = 41. There are
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two ≡r-equivalence classes: one containing just 41
1, the other containing 41

2, 41
3, 41

4 and
41

5. Hence S∗(r) contains two subrows, each corresponding to a ≡r-equivalence class
and having the same data and inclusion status as all the members of this class. Thus 41

2,
41

3, 41
4 and 41

5 are merged into a single subrow s ∈ S∗(r) such that D(s) = ∅, inc(s) = ⊂
and P(s) = {(31

2), (3
1
3), (3

1
4), (3

1
5)}. 4

5.3.2 Compressing Tables

Once subtables have been compressed, we can compress the table by merging equivalent
rows. For this, we first need a notion of equivalence between rows that takes compressed
subtables into account.

Definition 5.12. We define an equivalence relation ≡R over the rows of a table R such
that r1 ≡R r2 if r1 ≈ r2 and there is a bijection f : S∗(r1) → S∗(r2) such that for any
s ∈ S∗(r1) it holds that s ≈ f (s) and inc(s) = inc( f (s)).

When rows are equivalent, their compressed subtables only differ in the EPTs. We now
define how such compressed subtables can be merged.

Definition 5.13. Let R be a table, r ∈ R, and let [r] denote the ≡R-equivalence class of
r. For any r′ ∈ [r] , let fr′ : S∗(r) → S∗(r′) be the bijection such that for any s ∈ S∗(r)
it holds that s ≈ fr′(s) and inc(s) = inc( fr′(s)). (The existence of fr′ is guaranteed by
Definition 5.12.) We define a subtable mst([r]) (for “merged subtable”) that contains
exactly one subrow for each element of S∗(r). For any s ∈ S∗(r), let s′ denote the
subrow in mst([r]) corresponding to s. We define s′ by s′ ≈ s, inc(s′) = inc(s) and
P(s′) =

⋃
r′∈[r] P( fr′(s)).

We use these equivalence relations to compress tables in such a way that all equivalent
(sub)rows (according to the respective equivalence relation) are merged.

Definition 5.14. Let R be a table. We now define a table compr(R) that contains exactly
one row for each ≡R-equivalence class. For any r ∈ R, let [r] denote the ≡R-equivalence
class of r and let r′ be the row in compr(R) corresponding to [r]. We define r′ by r′ ≈ r,
P(r′) =

⋃
q∈[r] P(q) and S(r′) = mst([r]). For any computation C, we write compr(C)

to denote the computation isomorphic to C where each table R in C corresponds to
compr(R) in compr(C).

Example 5.15. Figure 5.2 illustrates the complete dynamic programming computation
for our running example, including compression. Root node n6 contains two rows,
61 and 62. The row 62 represents the subset-minimal models of our running example,
since it is associated with a single subrow 62

1, where inc(62
1) = eq. Opposed to that,

models represented by 61 are not subset-minimal, due to inc(61
2) = ⊂. We obtain the

solutions by following the EPTs and combining P of the respective rows: We have
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P(62)∪P(54)∪P(23)∪P(12)∪P(43)∪P(35) = {u} and P(62)∪P(55)∪P(24)∪P(13)∪
P(41) ∪ P(31) = {x, v, y, z}. Thus the solutions are {u} (i.e., u set to true, and v, x, y, z
set to false) as well as {v, x, y, z} (with u set to false). Indeed, these are exactly the
subset-minimal models of ϕEx.

Regarding compression, consider the table stored at node n4 in Figure 5.2 in comparison
to the non-compressed table for n4 in Figure 5.1. For instance, due to Definition 5.13,
41 now has subrow 41

2 that contains a set of EPTs, i.e., P(41
2) = {(31

2), (3
1
3), (3

1
4), (3

1
5)}.

Additionally, due to Definition 5.14 we can merge complete rows. As an example, the
single row 42 is obtained by compressing rows 42, 43 and 44 of Figure 5.1, since the
data of these rows as well as the data and the inclusion flags of all subrows coincide,
i.e., they are contained in the same ≡R-equivalence class. 4

We spend the rest of this section proving some properties of table compression. In
particular, we show that there is a one-to-one correspondence between extensions of
a table and extensions of its compressed version such that the respective data are the
same. Moreover, we show that compressing a table according to the definitions above
preserves normality.

5.3.3 Correspondence Between Extensions

We now show that the extensions from rows in a table R are in a one-to-one correspon-
dence to the extensions of rows from compr(R) such that the data of corresponding
extensions is the same.

Lemma 5.16. Let R be a table. For any r ∈ R and X ∈ E(r) there are r′ ∈ compr(R) and
X′ ∈ E(r′) such that r′ ≈ r and X′ ≈ X. Also, for any r′ ∈ compr(R) and X′ ∈ E(r′) there
are r ∈ R and X ∈ E(r) such that r ≈ r′ and X ≈ X′.

Proof. Let R be a table and R′ = compr(R). For the first statement, let r ∈ R and
X ∈ E(r). There are (r1, . . . , rk) ∈ P(r) and Xi ∈ E(ri) such that X = {r} ∪X1 ∪ · · · ∪Xk.
By definition of compr(·), there is r′ ∈ R′ with r′ ≈ r and (r1, . . . , rk) ∈ P(r′). Now
X′ = {r′} ∪ X1 ∪ · · · ∪ Xk is in E(r′) and X′ ≈ X. The second statement is proved
symmetrically.

We can also obtain a similar lemma for subrows instead of rows.

Lemma 5.17. Let R be a table. For any r ∈ R, X ∈ E(R), s ∈ S(r) and Y ∈ EX(s) there are
r′ ∈ compr(R), X′ ∈ E(r′), s′ ∈ S(r′) and Y′ ∈ EX′(s′) such that r′ ≈ r, X′ ≈ X, s′ ≈ s
and Y′ ≈ Y. Also, for any r′ ∈ compr(R), X′ ∈ E(r′), s ∈ S(r′) and Y′ ∈ EX′(s′) there are
r ∈ R, X ∈ E(r), s ∈ S(r) and Y ∈ EX(s) such that r ≈ r′, X ≈ X′, s ≈ s′ and Y ≈ Y′.
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R S(r)
r D P s D P inc

61 (51), (52), (53) 61
1 (51

1), (5
2
1), (5

3
1) eq

61
2 (51

2), (5
1
3), (5

2
2), (5

3
2) ⊂

62 (54), (55) 62
1 (54

1), (5
5
1) eq

n6

R S(r)
r D P s D P inc

51 x (21, 41) 51
1 x (21

1, 41
1) eq

51
2 x (21

2, 41
1), (2

1
4, 41

1) ⊂
51

3 (21
3, 41

2) ⊂
52 x (22, 41) 42

1 x (22
1, 41

1) eq
52

2 (22
2, 41

2) ⊂
53 (23, 42) 53

1 (23
1, 42

1) eq
53

2 (23
1, 42

2) ⊂
54 (23, 43) 54

1 (23
1, 43

1) eq
55 x (24, 41) 55

1 x (24
1, 41

1) eq

n5

R S(r)
r D P s D P inc

41 x (31) 41
1 x (31

1) eq
41

2 (31
2), (3

1
3), (3

1
4), (3

1
5) ⊂

42 (32), (33), (34) 42
1 (32

1), (3
3
1), (3

4
1) eq

42
2 (32

2), (3
2
3), (3

2
4), (3

3
2), (3

4
2) ⊂

43 (35) 43
1 (35

1) eq

n4

R S(r)
r D P s D P inc

31 x, y, z () 31
1 x, y, z () eq

31
2 y, z () ⊂

31
3 y () ⊂

31
4 z () ⊂

31
5 () ⊂

32 y, z () 32
1 y, z () eq

32
2 y () ⊂

32
3 z () ⊂

32
4 () ⊂

33 y () 33
1 y () eq

33
2 () ⊂

34 z () 34
1 z () eq

34
2 () ⊂

35 () 35
1 () eq

n3

R S(r)
r D P s D P inc

21 v, x (11) 21
1 v, x (11

1) eq
21

2 x (11
2) ⊂

21
3 (11

2) ⊂
21

4 v, x (11
3) ⊂

22 x (12) 22
1 x (12

1) eq
22

2 (12
1) ⊂

23 (12) 23
1 (12

1) eq
24 v, x (13) 24

1 v, x (13
1) eq

n2

R S(r)
r D P s D P inc

11 u, v () 11
1 u, v () eq

11
2 u () ⊂

11
3 v () ⊂

12 u () 12
1 u () eq

13 v () 13
1 v () eq

n1

Figure 5.2: Dynamic programming computation for Subset-Minimal Sat
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Proof. Let R be a table and R′ = compr(R). For the first statement, let r ∈ R, X ∈ E(r),
s ∈ S(r) and Y ∈ EX(s). Moreover, let (s1, . . . , sk) ∈ P(s) and Yi ∈ EXi(si) be such that
Y = {s} ∪ Y1 ∪ · · · ∪ Yk. By Lemma 5.16, there are r′ ∈ R′ and X′ ∈ E(r′) such that
r′ ≈ r and X′ ≈ X. By definition of compr(·) and mst(·), there is s′ ∈ S(r′) with s′ ≈ s
and (s1, . . . , sk) ∈ P(s′). Now Y′ = {s′} ∪ Y1 ∪ · · · ∪ Yk is in EX′(s′) and Y′ ≈ Y. The
second statement is proved symmetrically.

5.3.4 Preservation of Normality

Next we show that compressing a table according to the definitions above preserves
normality.

Lemma 5.18. If a table R is normal, then so is compr(R).

Proof. Let R be a normal table and R′ = compr(R). We denote the child tables of
R (which are also the child tables of R′) by R1, . . . , Rk. We prove conditions 1–3 of
normality of R′ separately.

1. Let r′ ∈ R′, s′ ∈ S(r′), X′ ∈ E(r′) and Y′ ∈ EX′(s′). By Lemma 5.17, we can find
r ∈ R, s ∈ S(r), X ∈ E(r) and Y ∈ EX(s) such that r ≈ r′, s ≈ s′, X ≈ X′ and
Y ≈ Y′. As R is normal, Y 6 X holds, which proves that Y′ 6 X′. By definition of
compr(·), it holds that inc(s) = ⊂ if and only if inc(s′) = ⊂. Furthermore, due to
normality of R, Y < X holds if and only if inc(s) = ⊂. This proves that Y′ < X′

holds if and only if inc(s′) = ⊂. We have thus proved condition 1.

2. Let r′ ∈ R′, s′ ∈ S(r′) and Y′ ∈ E(s′). As a consequence of Lemma 5.17, we can
find r ∈ R, s ∈ S(r) and Y ∈ E(s) such that r ≈ r′, s ≈ s′ and Y ≈ Y′. As R is
normal, there is a row t ∈ R and an extension T ∈ E(t) such that t ≈ s and T ≈ Y.
By Lemma 5.16, now there is a row t′ ∈ R′ and an extension T′ ∈ E(t′) such that
t′ ≈ t and T′ ≈ T, which proves condition 2.

3. Let q′, r′ ∈ R′, Z′ ∈ E(q′) and X′ ∈ E(r′) such that Z′ 6 X′. By Lemma 5.16, we
can find q, r ∈ R, Z ∈ E(q) and X ∈ E(r) such that Z ≈ Z′ and X ≈ X′, which
implies Z 6 X. As R is normal, now there is a subrow s ∈ S(r) and an extension
Y ∈ EX(s) such that s ≈ q and Y ≈ Z. By Lemma 5.17, this implies existence of a
subrow s′ ∈ S(r′) and an extension Y′ ∈ EX′(s′) such that s′ ≈ s and Y′ ≈ Y. This
proves condition 3.

We use table compression in our transformation from algorithms for the base problem
to algorithms for the derived problem. Before we introduce this transformation, we
need to define to which algorithms for the base problem it can be applied.
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5.4 Augmentable Computations

In this section, we introduce conditions that make a computation without minimization
eligible for transformation into a “minimizing” one. We call such a computation
augmentable.

First we define some “forbidden” properties that may prevent a computation from
being eligible for our transformation. In particular, when an element d occurs in a table,
then rows from this table that do not include d must not be extended by rows that
include d. Intuitively, once some row contains d, all rows in the same table also have to
“decide” whether they want to include d, and this decision must not be revoked later
on.

We now formalize the idea that for each table R and each element d ∈ D(R) we regard
all rows in R whose data does not include d as having irrevocably decided against
including d. We will use this to enforce that each extension X that includes such a row
must satisfy d /∈ D(X).

Definition 5.19. Let X be an extension of a row in a table of a computation C. We
define D−(X) as the union of all sets D(R) \D(r) such that r is a row in X and R is the
table containing r in C.

We use this to define the notion of an inconsistent extension. The intuition is that the
data of such an extension contains an item d, but at the same time some row in this
extension “decided against” including d.2

Definition 5.20. Let r be a row in a table of a computation and X ∈ E(r) be an extension
of r. We say that X is inconsistent if the intersection of D(X) and D−(X) is nonempty.

We now define the notion of an augmentable computation, i.e., a computation that can
be used in our transformation.

Definition 5.21. We call a computation C augmentable if the following conditions hold
for all tables R in C:

1. For all rows r ∈ R it holds that S(r) = ∅.

2. For all r, r′ ∈ R with r 6= r′ it holds that D(r) 6= D(r′).

3. No row in R has an inconsistent extension.

2Note that in a previously published version of our results (Bliem et al. 2016a) different concepts were
used instead of inconsistent extensions. The proof of Theorem 3.24 in that work unfortunately contained
an error, which we now corrected by introducing the notion of an inconsistent extension.
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These requirements are satisfied by many reasonable tree-decomposition-based dynamic
programming algorithms. In particular, condition 2 is usually satisfied by reasonable
FPT algorithms because they avoid redundancies in order to stay fixed-parameter
tractable. To understand the motivation of condition 3, note that usually dynamic
programming algorithms do not put arbitrary data into the rows. Rather, the data in
a row is typically restricted to information about bag elements of the respective tree
decomposition node. Often every data element can be associated with a unique bag
element that this element “speaks about”. By the definition of tree decompositions, if
an element is contained in two bags, then it must be contained in all bags between those.
Similarly, if a data element is contained in two tables, then it is often also contained in
all tables in between.

Indeed many dynamic programming algorithms follow the scheme of assigning some
status to a bag element once it is introduced, keeping that status the same as long as
that element is in the current bag and forgetting the status when the bag element is
removed. Moreover, it is often the case that join nodes are processed in such a way that
only rows that agree on the status of common bag elements are combined. Algorithms
that work in this simple way can easily be shown to only produce computations without
inconsistent extensions. Thus many dynamic programming algorithms only produce
augmentable computations.

Example 5.22. The computation depicted in Figure 2.3 is augmentable. In the figure,
we omitted the subtables since all of them are empty, which is what condition 1 requires.
Condition 2 is also clearly satisfied. As for condition 3, consider the three extensions of
51 for example:

• For the extension X = {51, 21, 41, 11, 31}, we have D(X) = {u, v, x, y, z} and
D−(X) = ∅.

• For X = {51, 21, 41, 13, 31}, we have D(X) = {v, x, y, z} and D−(X) = {u}.

• For X = {51, 22, 41, 12, 31}, we have D(X) = {u, x, y, z} and D−(X) = {v}.

None of these extensions violates condition 3. 4

5.5 From Augmentable to Normal Computations

Now we describe how augmentable computations can automatically be transformed
into normal computations that take minimization into account. For any table R in
an augmentable computation, this allows us to compute a new table aug(R) if for
each child table Ri the table aug(Ri) has already been computed and compressed to
compr(aug(Ri)).
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5.5.1 Augmenting Tables

We now define the function aug(·), which is our desired transformation from “non-
minimizing” to “minimizing” computations.

Definition 5.23. We inductively define a function aug(·) that maps each table R from an
augmentable computation to a new table. Let the child tables of R be called R1, . . . , Rk.
For any 1 6 i 6 k and r ∈ Ri, we write res(r) to denote {q ∈ compr(aug(Ri)) | q ≈ r}.
We define aug(R) as the smallest table that satisfies the following conditions:

1. For each r ∈ R, (r1, . . . , rk) ∈ P(r) and (c1, . . . , ck) ∈ res(r1)× · · · × res(rk), there
is a row q ∈ aug(R) with q ≈ r and P(q) = {(c1, . . . , ck)}.

2. For all q, q′ ∈ aug(R) such that q′ 6 q, we denote the unique element of P(q) as
(q1, . . . , qk) and the unique element of P(q′) as (q′1, . . . , q′k), and we require that
the following holds: If for each 1 6 i 6 k there is some si ∈ S(qi) with si ≈ q′i,
then there is a subrow s ∈ S(q) with s ≈ q′ and P(s) = {(s1, . . . , sk)}. Moreover,
inc(s) = ⊂ if q′ < q or inc(si) = ⊂ for some si, otherwise inc(s) = eq.

For any augmentable computation C, we write aug(C) to denote the computation
isomorphic to C where each table R in C corresponds to aug(R).

Example 5.24. In this example, for integers i and j, we use Ti to denote the table of
node ni in Figure 2.3, we use ij to denote the respective row in Figure 2.3, and we use īj

to denote the row that is called ij in Figure 5.2. Suppose that we have already computed
compr(aug(T2)) and compr(aug(T4)), which are depicted in Figure 5.2. Now we want
to compute aug(T5).

The idea behind condition 1 of Definition 5.23 is that each row in T5 gives rise to
(possibly several) rows in aug(T5) in the following way: For each row in T5, we look at
each EPT, and for each element ri of this EPT we find out which rows res(ri) resulted
from ri in the respective compressed augmented table. For each combination of one
resulting row per EPT element, we add a row to aug(T5). For instance, let r = 51

(i.e., the row in T5 with D(r) = {x}), and let (r1, r2) = (21, 41), which is an element
of P(r). It holds that res(r1) = {2̄1, 2̄4} (i.e., the two rows in compr(aug(T2)) whose
data is {v, x}), whereas res(r2) = {4̄1} (i.e., the row in compr(aug(T4)) whose data
is {x}). Let c1 = 2̄1, and let c2 = 4̄1. Since (c1, c2) ∈ res(r1) × res(r2), condition 1

of Definition 5.23 forces us to put a row into aug(T5) having the same data as r and
extending (c1, c2). In this way, we proceed with all other rows in T5, EPTs of these
rows, etc., until we have added all rows to aug(T5) that condition 1 requires. This
results in rows of aug(T5) like those we see in Figure 5.2, except that their subtables
are still empty. (Actually, Figure 5.2 shows compr(aug(T5)) and not aug(T5), but the
compression does not merge any rows of aug(T5).)
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Now let q be the row in aug(T5) with D(q) = {x} and P(q) = {(2̄1, 4̄1)}, and let q′

be the row in aug(T5) with D(q′) = {x} and P(q′) = {(2̄2, 4̄1)}. It holds that q′ 6 q.
Condition 2 now checks if q′ gives us reason to add an entry to the subtable of q. Indeed
this is the case: Let (q1, q2) denote the unique element of P(q), and let (q′1, q′2) denote
the unique element of P(q′). There is a subrow s1 in S(q1) that has the same data as
q′1 (i.e., {x}). Likewise, there is a subrow s2 in S(q2) that has the same data as q′2 (i.e.,
{x}). Condition 2 forces us to add a subrow s into S(q) that has the same data as q′

and extends (s1, s2). Since inc(s1) = ⊂ and inc(s2) = eq, we have to set inc(s) = ⊂.
We continue like this for all other pairs of rows from aug(T5) until we have added all
subrows that condition 2 requires. 4

We spend the remainder of this section proving some properties of aug(·). In particular,
we still need to show that the transformation leads to correct algorithms and that it
does not destroy fixed-parameter tractability of base algorithms.

5.5.2 Correspondence Between Extensions

Tables in augmentable computations never have two different rows r, r′ with r ≈ r′.
Moreover, we defined aug(R) in such a way that for all r ∈ R there is some q ∈ aug(R)
with r ≈ q. In the compression compr(aug(R)), we only merge rows and subrows
having the same data. So with each row and subrow in aug(R) or compr(aug(R)) we
can associate a unique originating row in R. In fact, the extensions from a table R in
an augmentable computation are in a one-to-one correspondence to the extensions of
rows from aug(R). To show these claims we need some additional formal machinery.

Definition 5.25. Let R be a table in an augmentable computation, let Q = aug(R) and
Q′ = compr(Q). We define a function origR(·) that maps each row or subrow in Q or
Q′ to a row in R. For q ∈ Q ∪Q′ we define origR(q) to be the unique r ∈ R with r ≈ q.
For s ∈ S(q) we define origR(s) to be the unique r ∈ R with r ≈ s.

Let R be a table from an augmentable computation. We want to establish that for each
extension in aug(R), we can also obtain one in R having the same data and vice versa.
The following lemma will be helpful for this. It formalizes that for each (sub)row q in
aug(R) with (q1, . . . , qk) ∈ P(q), the originating row origR(q) in R has a corresponding
EPT (r1, . . . , rk) such that each qi is resulting from ri.

Lemma 5.26. Let R be a table from an augmentable computation and let the child ta-
bles of R be called R1, . . . , Rk. For each q ∈ aug(R) and (q1, . . . , qk) ∈ P(q), we have(

origR1
(q1), . . . , origRk

(qk)
)
∈ P(origR(q)). Furthermore, for every s ∈ S(q) and for each

(s1, . . . , sk) ∈ P(s) it holds that
(

origR1
(s1), . . . , origRk

(sk)
)
∈ P(origR(s)).

Proof. Let R be a table in some augmentable computation such that R1, . . . , Rk denote
the child tables of R, and let Q = aug(R) with child tables Qi = compr(aug(Ri)).
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Moreover, let q ∈ Q and (q1, . . . , qk) ∈ P(q). By construction of aug(R), there are r ∈ R
and (r1, . . . , rk) ∈ P(r) such that r ≈ q and qi ∈ res(ri) for each 1 6 i 6 k. From this
we get qi ≈ ri, so origRi

(qi) = ri holds. Furthermore, origR(q) = r holds since q ≈ r.
Because of (r1, . . . , rk) ∈ P(r), this entails

(
origR1

(q1), . . . , origRk
(qk)

)
∈ P(origR(q)).

As for the second statement, let s ∈ S(q) and (s1, . . . , sk) ∈ P(s). By construction of
aug(R), there are q′ ∈ Q and (q′1, . . . , q′k) ∈ P(q′) such that q′ ≈ s and q′i ≈ si for each
1 6 i 6 k. We know that this entails

(
origR1

(q′1), . . . , origRk
(q′k)

)
∈ P(origR(q

′)) by
the first statement of this lemma. As we have seen that q′i ≈ si and q′ ≈ s, it must
hold that origR(s) = origR(q

′) and origRi
(si) = origRi

(q′i), which proves the second
statement.

Now we can show that the extensions from a table R in an augmentable computation
are in a one-to-one correspondence to the extensions of rows from aug(R).

Lemma 5.27. Let R be a table from an augmentable computation and Q = aug(R). For any
r ∈ R and Z ∈ E(r) there are q ∈ Q and X ∈ E(q) such that r ≈ q and Z ≈ X. Also, for any
q ∈ Q and X ∈ E(q) there are r ∈ R and Z ∈ E(r) such that q ≈ r and X ≈ Z.

Proof. Let R be a table in an augmentable computation such that R1, . . . , Rk denote
the child tables of R, and let Q = aug(R) with child tables Qi = compr(aug(Ri)).
We prove the lemma by induction. First suppose R and Q are leaf tables. It can be
easily verified using the definition of Q that the rows in Q and R are in a one-to-one
correspondence. Formally, |Q| = |R| holds and for each r ∈ R there is a q ∈ Q with
q ≈ r. As the EPTs in R and Q always consist of just the empty tuple, the data of any
extension of a row in R or Q coincides with the data of that row.

Now suppose R and Q are arbitrary tables and both statements from the lemma hold
for all Ri. We first attend to the first statement. Let r ∈ R and Z ∈ E(r). There are
(r1, . . . , rk) ∈ P(r) and Zi ∈ E(ri) such that Z = {r} ∪ Z1 ∪ · · · ∪ Zk. By the induction
hypothesis and Lemma 5.16, there are qi ∈ Qi and Xi ∈ E(qi) such that ri ≈ qi and
Xi ≈ Zi. As ri ≈ qi, it holds that qi ∈ res(ri). Hence condition 1 from the construction
of Q ensures that there is a row q ∈ Q with q ≈ r and P(q) = {(q1, . . . , qk)}. Now
clearly X = {q} ∪ X1 ∪ · · · ∪ Xk is contained in E(q), and X ≈ Z.

As for the second statement, let q ∈ Q and X ∈ E(q). There are (q1, . . . , qk) ∈ P(q)
and Xi ∈ E(qi) such that X = {q} ∪ X1 ∪ · · · ∪ Xk. By Lemma 5.16 and the induction
hypothesis, there are ri ∈ Ri and Zi ∈ E(ri) such that qi ≈ ri and Xi ≈ Zi. Now
origRi

(qi) = ri holds because of qi ≈ ri. Let r = origR(q), so obviously q ≈ r. By
Lemma 5.26, (q1, . . . , qk) ∈ P(q) entails

(
origR1

(q1), . . . , origRk
(qk)

)
∈ P(origR(q)), i.e.,

(r1, . . . , rk) ∈ P(r). Now clearly Z = {r} ∪ Z1 ∪ · · · ∪ Zk is contained in E(r), and
X ≈ Z.
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We can state a similar lemma for subrows instead of rows.

Lemma 5.28. Let R be a table from an augmentable computation and Q = aug(R). For any
q ∈ Q, s ∈ S(q) and Y ∈ E(s) there are r ∈ R and Z ∈ E(r) such that s ≈ r and Y ≈ Z.

Proof. Let R be a table in an augmentable computation such that R1, . . . , Rk denote
the child tables of R, and let Q = aug(R) with child tables Qi = compr(aug(Ri)). We
prove the lemma by induction. First suppose R and Q are leaf tables. By definition of
Q, for each subrow s in Q there is some q′ ∈ Q with s ≈ q′. Obviously, q′ ≈ origR(q

′)

and origR(s) = origR(q
′), so s ≈ origR(s), which proves the base case.

Now suppose R and Q are arbitrary tables and the statement holds for all Ri. Let q ∈ Q,
s ∈ S(q), Y ∈ E(s) and r = origR(s). Now there are (s1, . . . , sk) ∈ P(s) and Yi ∈ E(si)

such that Y = {s} ∪Y1 ∪ · · · ∪Yk. By Lemma 5.17 and the induction hypothesis, there
are ri ∈ Ri and Zi ∈ E(ri) such that si ≈ ri and Yi ≈ Zi. Then origRi

(si) = ri. By
Lemma 5.26, (s1, . . . , sk) ∈ P(s) entails

(
origR1

(s1), . . . , origRk
(sk)

)
∈ P(origR(s)), so

(r1, . . . , rk) ∈ P(r). Now clearly Z = {r} ∪ Z1 ∪ · · · ∪ Zk is contained in E(r), and
Y ≈ Z.

5.5.3 Correctness

The following lemma is central for showing that aug(·) works as intended.

Lemma 5.29. Let R be a table from an augmentable computation. Then the table aug(R) is
normal.

Proof. Let R be a table in an augmentable computation such that R1, . . . , Rk denote the
child tables of R and let Q = aug(R). We use induction. If Q is a leaf table, then rows
and extensions coincide and the construction of Q clearly ensures that Q is normal.
So suppose that Q has child tables Qi = compr(aug(Ri)) and that all aug(Ri) are
normal. By Lemma 5.18, the latter implies that all Qi are normal too. We prove that
Q is normal by considering the three conditions of normality separately. For this, let
q ∈ Q, s ∈ S(q), P(q) = {(q1, . . . , qk)}, P(s) = {(s1, . . . , sk)}, Xi ∈ E(qi), Yi ∈ EXi(si),
X = {q} ∪ X1 ∪ · · · ∪ Xk and Y = {s} ∪Y1 ∪ · · · ∪Yk.

As for normality condition 1, the construction of Q ensures s 6 q and normality of
Qi ensures Yi 6 Xi, so Y 6 X. To show that inc(s) has the correct value, first suppose
Y < X and inc(s) = eq. The latter would entail Yi = Xi, so s < q, but this would
yield the contradiction inc(s) = ⊂. So suppose X ≈ Y and inc(s) = ⊂. If s < q, then
D(q) \D(s) would contain an element d that is also present in D(Y) because d ∈ D(X)

and X ≈ Y. Since d ∈ D(Y) but at the same time d /∈ D(s) and d ∈ D(Q), the origin
of s in R would have an inconsistent extension by Lemma 5.28, contradicting that the
computation is augmentable. So s ≈ q; thus the reason for inc(s) = ⊂ must be that for
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some j there is a d ∈ D(Xj) \D(Yj). Due to X ≈ Y, we get d ∈ D(s) or d ∈ D(Yh) for
some h 6= j. In both cases, the origin of s in R has an inconsistent extension.

For condition 2, let Zi ∈ E(si) and Z = {s} ∪ Z1 ∪ · · · ∪ Zk. As s ∈ S(q), there are p ∈ Q
and (p1, . . . , pk) ∈ P(p) with p ≈ s and pi ≈ si. This entails existence of r ∈ R and
(r1, . . . , rk) ∈ E(r) with r ≈ p and ri ≈ pi. By hypothesis and Lemma 5.16, there are
q′i ∈ Qi and X′i ∈ E(q′i) with q′i ≈ si and X′i ≈ Zi. Each q′i originates from the unique
row in R having the same data as q′i. Hence q′i ∈ res(ri) holds and there are q′ ∈ Q and
X′ ∈ E(q′) with q′ ≈ r ≈ s and X′ ≈ Z.

For condition 3, let q′ ∈ Q, P(q′) = {(q′1, . . . , q′k)}, X′ ∈ E(q′) and X′i ∈ E(q′i) for all
1 6 i 6 k. Suppose X′ 6 X. First we show that X′i 6 Xi for all i. Suppose, for the
sake of contradiction, that for some j there is a d ∈ D(X′j) \D(Xj). Since X′ 6 X, it
must then hold that d ∈ D(q) or d ∈ D(Xh) for some h 6= j. In both cases, the origin
of q in R has an inconsistent extension. So X′i 6 Xi for each i. By hypothesis there are
ti ∈ S(qi) and Ti ∈ EXi(ti) with ti ≈ q′i and Ti ≈ X′i . So there is a t ∈ S(q) with t ≈ q′

and P(t) = {(t1, . . . , tk)}. Now T = {t} ∪ Ti ∪ · · · ∪ Tk is in EX(t) and T ≈ X′.

We can now state the main theorem of this chapter, which says that exactly the subset-
minimal solutions of an augmentable computation are the solutions of the augmented
computation.

Theorem 5.30. Let C be an augmentable computation. Then sol(aug(C)) = {S ∈ sol(C) |
@S′ ∈ sol(C) : S′ ⊂ S}.

Proof. Let R be the root table of an augmentable computation C and R′ be the root table
of C ′ = aug(C). By Lemma 5.29, C ′ is normal. We prove both directions of the equality
separately by showing that each side of the equality is included in the other.

For the first direction, let S ∈ sol(C ′). There are r′ ∈ R′ and X′ ∈ E(r′) such that
D(X′) = S and for all s′ ∈ S(r′) it holds that inc(s′) = eq. By Lemma 5.27, there are
r ∈ R and X ∈ E(r) such that X ≈ X′. As C is augmentable, S(r) is empty, so S ∈ sol(C)
by Definition 5.5. We must now show that there is no solution in C that is a proper
subset of S. For the sake of contradiction, suppose there is some T ∈ sol(C) with T ⊂ S.
Now there are q ∈ R and Z ∈ E(q) such that D(Z) = T, hence Z < X′. By Lemma 5.27,
there are q′ ∈ R′ and Z′ ∈ E(q′) such that Z′ ≈ Z. As R′ is normal, due to Z′ < X′,
there is some s′ ∈ S(r′) such that inc(s′) = ⊂. This contradicts inc(s′) = eq, which we
have seen earlier.

For the other direction, let S ∈ sol(C) be such that there is no S′ ∈ sol(C) with S′ ⊂ S.
There are r ∈ R and X ∈ E(r) such that D(X) = S. By Lemma 5.27, there are r′ ∈ R′

and X′ ∈ E(r′) such that X′ ≈ X, and there are no q′ ∈ R′ and Z′ ∈ E(q′) with Z′ < X.
Hence, as R′ is normal, there cannot be a s′ ∈ S(r′) with inc(s′) = ⊂. This proves that
S ∈ sol(C ′).
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5.5.4 Fixed-Parameter Tractability

Finally, we sketch that aug(·) does not destroy fixed-parameter tractability.

Theorem 5.31. Let A be an algorithm that takes as input an instance of size n and treewidth w
along with a tree decomposition T of width w. SupposeA produces an augmentable computation
C isomorphic to T in time f (w) · nO(1), where f is a function depending only on w. Then
aug(C) can be computed in time g(w) · nO(1), where g again depends only on w.

Proof. We assume w.l.o.g. that each node in T has at most 2 children, as any tree
decomposition can be transformed to this form in linear time without increasing the
width (Kloks 1994). As A runs in FPT time, i.e., in f (w) · nO(1) for a function f ,
no table in C can be bigger than f (w) · nc for a constant c. To recursively compute
Q = aug(R) for some table R in C with child tables R1, . . . , Rk (k 6 2), suppose we have
already constructed each Qi = aug(Ri) in FPT time. Then |Qi| = fi(w) · nci for some
fi and ci. We can clearly compute Q′i = compr(Qi) in time polynomial in |Qi|. Then
|Q′i| = f ′i (w) · nc′i for some f ′i and c′i. Definition 5.23 suggests a straightforward way of
computing Q in time polynomial in |R| and ∑16i6k |Q′i|. So we can compute Q in FPT
time. As T has size O(n), we can compute aug(C) in FPT time.

5.6 Discussion

In this chapter, we presented a way of constructing tree-decomposition-based dynamic
programming algorithms from simpler principles. In particular, we showed how an
algorithm that produces solution satisfying a subset-minimality condition can automat-
ically be obtained from a “non-minimizing” algorithm. This can greatly simplify the
specification of dynamic programming algorithms, and it leads to algorithms whose
performance is much better in terms of both running time and memory compared to
naive dynamic programming implementations (Bliem et al. 2016a).

In presenting our transformation from an algorithm for a base problem into an algo-
rithm for a derived problem, we assumed that the solutions of the derived problem are
exactly the subset-minimal solutions of the base problem. Although some problems
from the second level of the polynomial hierarchy are that simple, many problems are
related to a base problem in a more complicated way. Our approach can, however, be
easily extended in several directions. For instance, it is straightforward to generalize
our transformation so that it supports problems where only a certain part of the data
(instead of all data) is subject to minimization. Several problems can be handled using
this generalization, for instance propositional circumscription (McCarthy 1980).

Our approach is based on the idea that counterexample candidates are also solution
candidates. For many problems this is not the case. For example, when we want to
compute the answer sets of a disjunctive ASP program, then solution candidates are
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models of the program while counterexample candidates are models of the respective
reduct of the program and not the program itself. A quick and dirty way of dealing with
this is to put all such counterexample candidates also among the solution candidates
and mark them with a special flag. In the end, we suppress all solutions extending a
counterexample candidate.

Finally, our approach clearly also works for finding maximal subsets instead of minimal
ones by just reversing the directions of the set inclusion checks.

The discussed extensions have been implemented in the D-FLATˆ2 system (Bliem et al.
2016a). Moreover, our extended approach is the theoretical basis for the DynASP2
system (Fichte et al. 2017), which is a solver for ground disjunctive ASP programs.
The performance of both of these systems is greatly enhanced by the optimizations
analyzed in this chapter.

Related Work

There seems to be only little research in the direction of improving tree-decomposition-
based dynamic programming algorithms by using specialized modules for certain
tasks. One example is the D-FLAT system (Abseher et al. 2014), which allows for rapid
prototyping of such algorithms by offering users to specify them in ASP. This framework
provides a few facilities that take care of cost minimization or of an automatic handling
of join nodes. As the name suggests, the D-FLATˆ2 system mentioned above is an
extension of D-FLAT.

Another related approach is called Autograph (Courcelle and Durand 2016). This tool
makes it possible to combine pre-defined components called fly-automata and thus
piece together an automaton that solves the problem at hand.

The motivation for our approach is slightly different and is inspired more by metapro-
gramming techniques for ASP. For exploiting the full expressive power of ASP, we
often need to employ a sophisticated encoding technique called saturation (see, e.g., the
paper by Leone et al. (2006)) in order to solve co-NP subproblems. As such encodings
are quite error-prone and difficult to understand, several approaches try to relieve
ASP users from this task (see, e.g., the papers by Eiter and Polleres (2006), Gebser,
Kaminski and Schaub (2011) and Brewka et al. (2015)). For instance, we can compute
minimal models of a propositional formula by simply expressing the Sat problem
in ASP together with a special minimize statement, which is recognized by systems
like metasp (Gebser, Kaminski and Schaub 2011). In this way, we obtain a program
computing subset-minimal models. Our approach presented in this chapter clearly
resembles this research.

Faber et al. (2016) follow an interesting different line of research on improving the
performance of subset optimization problems: For finding optimal solutions w.r.t. set
inclusion, they use repeated calls of algorithms that produce solutions having optimum
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cardinality, based on the observation that cardinality-minimal solutions are also subset-
minimal (and similarly for maximization). The authors implement this idea using
different declarative programming systems (among them ASP). That work does not
aim at fixed-parameter tractability, however.
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CHAPTER 6

Conclusion

6.1 Summary

The goal of this thesis was to advance the field of solving problems at the second
level of the polynomial hierarchy via algorithms that exploit bounded treewidth. A
focus of this work was on Answer Set Programming (ASP), which is a popular tool for
solving hard combinatorial problems, in particular on the second level, and on alliance
problems in graphs, among which we can find interesting cases of problems that are
also on the second level.

Our contributions include complementary techniques for taking advantage of small
treewidth: On the one hand, we showed how we can take advantage of small treewidth
implicitly, that is, without consciously writing a program that deliberately exploits
treewidth. On the other hand, we presented improvements to the methodology of
designing algorithms that explicitly take treewidth into account.

We briefly summarize the main contributions of this work grouped into our three
thematic areas.

Treewidth-preserving ASP classes. We defined and analyzed classes of non-ground
ASP programs called guarded and connection-guarded programs. These classes provide
ASP users with an effective means of encoding their problems in such a way that
small treewidth of the input is preserved in grounding. This is attractive because
treewidth has been shown to have a massive impact on the solving performance
of state-of-the-art ASP systems (Bliem et al. 2017). Our results enable ASP users
to implicitly take advantage of the improved performance on groundings of small
treewidth. Furthermore, our results provide insights into what happens to the treewidth
of the input during grounding.
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Alliance problems in graphs. We investigated a family of showcase problems from
the area of alliance problems in graphs, which are of particular interest for ASP re-
searchers due to their tricky encodings that require advanced techniques. We provided
a thorough complexity analysis, which settled several long-standing questions. In
particular, we proved that the Secure Set problem is ΣP

2 -complete and that the De-
fensive Alliance problem is W[1]-hard when parameterized by treewidth. On the
positive side, we showed an FPT result for the Secure Set Verification problem and
a polynomial-time algorithm for Secure Set on bounded treewidth. Moreover, we
illustrated the use of guarded and connection-guarded ASP programs by encoding
alliance problems in these ASP classes.

Advanced dynamic programming methodologies. We formalized an advanced meth-
odology for obtaining dynamic programming algorithms that explicitly exploit bounded
treewidth, and we proved correctness and fixed-parameter tractability. This approach
is tailored to problems whose solutions must be subset-minimal in some way, which is
the case for many problems on the second level of the polynomial hierarchy. Specif-
ically, for any problem P whose solutions are exactly the subset-minimal solutions
of some base problem B, we formalized how a dynamic programming algorithm for
B can automatically be transformed into a dynamic programming algorithm for P.
Furthermore, we showed how this approach can be generalized so that it is applicable
to several problems at the second level of the polynomial hierarchy. This allows us
to avoid a substantial amount of the overhead and redundant computations done by
naive dynamic programming algorithms. Implementations of this approach have been
shown to yield significant performance benefits in practice (Fichte et al. 2017; Bliem
et al. 2016a).

6.2 Future Work

Our work opens up several interesting directions for future research in each of the
considered areas.

Treewidth-preserving ASP classes. In Chapter 3, we compared our ASP classes to
monadic second-order logic (MSO) and some of its extensions, which are often used
for obtaining FPT results for problems parameterized by treewidth. By our results,
the class of connection-guarded programs can be used to classify a problem as FPT
when parameterized by the combination of treewidth and maximum degree. We are
not aware of extensions of MSO for this more restrictive parameter, so our work may
pave the way to such an extension.

From a more practical perspective, it is promising to look closely into what ASP solvers
and in particular their heuristics are doing when they are presented with a grounding
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of small treewidth. This could provide us insight into why state-of-the-art ASP solvers
perform better on instances of small treewidth even though they do not “consciously”
exploit this fact. With the gained understanding, we may be able to improve their
performance by explicitly taking information from a tree decomposition into account
during solving. This could perhaps lead to a hybrid ASP solving approach that uses
classical conflict-driven clause learning in combination with techniques employing tree
decompositions.

Finally, for some of the problems considered in Section 3.5, we only obtained complexity
bounds that are not tight, in particular for variants of the Brave Reasoning problem.
Obtaining exact complexity results for these cases is a task for future work.

Alliance problems in graphs. We showed that Secure Set is not FPT when parame-
terized by treewidth under common complexity-theoretic assumptions. It is an open
question which additional restrictions beside bounded treewidth need to be imposed to
achieve fixed-parameter tractability. In particular, we do not know whether the problem
becomes FPT when we use the combination of treewidth and maximum degree as
the parameter. Conversely, we showed that Defensive Alliance is FPT on bounded
treewidth, but perhaps we could obtain FPT results for parameters that are even less
restrictive.

We proved W[1]-hardness and XP-membership of Secure Set, so a tight bound is still
lacking, albeit perhaps more of theoretical interest due to the fact that problems at
a certain level of the weft hierarchy generally do not admit faster algorithms than
problems at higher levels. As for the polynomial-time algorithm on instances of
bounded treewidth, it would be interesting to investigate if we can obtain a similar
result for less restrictive parameters like clique-width.

When comparing Defensive Alliance to Secure Set, we see that the problem state-
ments only differ in the size of the subsets of solution candidates that need to be
checked. Hence it may be interesting to study the complexity of Generalized Secure

Set, which generalizes both of these problems, where also the size of the subsets can
be investigated as a parameter. This may be interesting because even lowering the
complexity to NP would be good news due to the fact that Secure Set is ΣP

2 -complete.

Finally, we only considered secure sets and defensive alliances, but there are also other
variants of alliance problems in the literature. We leave it for future work to investigate
if some of our reductions and algorithms can help in the study of such related problems.

Advanced dynamic programming methodologies. Our approach of transforming
an algorithm for a base problem into an algorithm for a derived problem, as we
described it in Chapter 5, only supports problems that have a rather simple relationship
between their solution candidates and their counterexample candidates. Although
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we have sketched how straightforward extensions of the presented transformation
can be achieved, these extended transformations still only apply to algorithms that
employ some variant of subset minimization (or maximization). One possibility for
future research is to investigate different relationships between solution candidates and
counterexample candidates.

Another way of extending our work is to consider problems higher in the polynomial
hierarchy than the second level. Such problems usually require additional levels of
nesting for the dynamic programming tables.

There is also recent work on lazy evaluation of tree-decomposition-based dynamic
programming (Bliem et al. 2016b), which turned out to bring substantial performance
benefits. It may be worth considering if the approach presented in this thesis can be
combined with lazy evaluation.
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Marek, Victor W. and Mirosław Truszczyński (1999). “Stable Models and an Alternative
Logic Programming Paradigm”. In: The Logic Programming Paradigm: A 25-Year
Perspective. Ed. by Krzysztof Apt, Victor W. Marek, Mirosław Truszczyński and
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