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e01325045

Stettnerweg 24
2100 Korneuburg

Wien, im September 2017

Die approbierte Originalversion dieser Diplom-/ 
Masterarbeit ist in der Hauptbibliothek der Tech-
nischen Universität Wien aufgestellt und zugänglich. 
 

http://www.ub.tuwien.ac.at 
 
 
 
 

The approved original version of this diploma or 
master thesis is available at the main library of the 
Vienna University of Technology. 
 

http://www.ub.tuwien.ac.at/eng 
 



Eidestattliche Erklärung
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Abstract

Expansion properties of graphs and, in particular, bounded degree expander graphs,
are a central research topic in combinatorics and theoretical computer science, with
many applications and connections to other areas of mathematics. In recent years,
there has been a concerted effort to generalize and extend this rich and fruitful
theory to higher dimensions. In this thesis, some of these recent developments and
results are surveyed. Several notions of higher-dimensional expansion, in particu-
lar coboundary expansion (introduced in the work of Linial–Meshulam [LM06] and
Gromov [Gro10]) on the one hand and spectral expansion formulated in terms of the
eigenvalues of higher-dimensional Laplacians (going back to the work of Eckmann
[Eck45] and Garland [Gar73]) on the other hand, are described and connections and
differences between these are discussed. Moreover, several applications of higher-
dimensional expansion, e.g., Gromov’s topological overlap theorem are presented.

Kurzfassung

Expansion als Eigenschaft von Graphen und im Besonderen Expander-Graphen mit
beschränktem Knotengrad sind ein zentrales Forschungsthema in der Kombinatorik
und in den theoretischen Computerwissenschaften mit vielen Anwendungen und
Verbindungen zu anderen Gebieten der Mathematik. In den letzten Jahren gab
es gemeinsame Bemühungen, diese reichhaltige und fruchtbare Theorie auf höher-
dimensionale Fragestellungen zu erweitern und zu verallgemeinern. In dieser Ar-
beit werden einige der aktuellen Entwicklungen und Ergebnisse beschrieben. Ver-
schiedene Begriffe von höherdimensionaler Expansion, speziell Coboundary Expan-
sion (zurückgehend auf die Arbeiten von Linial–Meshulam [LM06] und Gromov
[Gro10]) einerseits und spektrale Expansion, definiert mithilfe der Eigenwerte höher-
dimensionaler Laplace-Operatoren (eingeführt in den Arbeiten von Eckmann [Eck45]
und Garland [Gar73]), andererseits, werden näher beschrieben und die Unterschiede
zwischen den einzelnen Ansätzen werden diskutiert. Zusätzlich wird eine Auswahl
aus der Vielzahl an Anwendungen von höherdimensionaler Expansion, beispielsweise
das Topological Overlap Theorem von Gromov, präsentiert.
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1 Introduction

High-dimensional expansion is a generalization of edge expansion of graphs. It was
introduced in the works of Mikhail Gromov ([Gro10]) and independently in the work
of Nathan Linial and Roy Meshulam ([LM06]) and has inspired a great amount of
research since then.

The original notion of edge expansion describes a property of connectivity of a
graph. By partitioning the graph into two subsets, a graph can be said to be highly
connected, if there are many edges between the subsets. Highly connected graphs are
called expander graphs. The technical definition of expansion (for details see defini-
tion 3.1.1 on page 25) leads to many interesting properties, which are very helpful for
applications. Graph expansion, and in particular bounded-degree expander graphs,
are also of central importance in the theory of error-correcting codes and in theoreti-
cal computer science, both for the design of algorithms and for complexity-theoretic
lower bounds (e.g., the PCP theorem, probabilistically checkable proofs).

In recent years, it was felt that the concept of graph expansion should be gen-
eralized to higher dimensional analogues of graphs, simplicial complexes, in the
hope that high-dimensional expansion yields as many possibilities of applications as
graph expansion and that it is helpful to increase our general knowledge about
discrete models like simplicial complexes and graphs. The first to define high-
dimensional (combinatorial) expansion were Mikhail Gromov ([Gro10]) and inde-
pendently Nathan Linial and Roy Meshulam ([LM06]). Gromov was inspired by
isoperimetric inequalities that appear in geometry as well as in discrete mathemat-
ics, whereas Linial and Meshulam introduced expansion as a tool to prove vanishing
cohomology of random subcomplexes of the complete simplicial complex. In both
cases, the definition of edge expansion is rewritten in terms of simplicial cohomology,
which allows an easy and direct generalization to higher dimensions.

Starting from these definitions, the three main questions are:

• Are there simplicial complexes that are high-dimensional expanders?

• How can we prove that a simplicial complex is an expander?

• What can we deduce from high-dimensional expansion?

As a step towards answering the first question, Gromov and Linial and Meshulam
proved that the complete simplicial complex is expanding. However, the main ques-
tion is whether there are infinite families of high-dimensional expanders that are
locally bounded analogously to bounded-degree expander graphs that play such an
important role in applications. The search for such examples is still going on with
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1 Introduction

high effort. The second question is tightly linked with the first one as there are many
examples of simplicial complexes which may be prototypes for expanders. Research
in this direction is mainly inspired by the huge reservoir of known results from graph
theory. The third question, though, is the one that is inspiring a lot of research.
There are already numerous applications of expansion known, see Chapter 4. Dif-
ferent applications led to a vast number of variations of the original definitions, each
of them geared towards applications to a different mathematical problem.

It is in the nature of things that all this research leads to the field of high-
dimensional expansion being very complex and confusing. As the field is very young,
research is still in the phase of developing new ideas and concepts and it is unclear
which of all these concepts is fruitful and usable and which is not. The author of
this thesis knows of at least six different definitions of high-dimensional expansion,
in a phase of consolidation of the field many of these concepts will be replaced by
better ones.

In the course of this thesis, the author will try to give an overview and discuss
some of the main concepts of high-dimensional expansion. The thesis is structured
to fit the questions asked above. Namely, after giving some preliminaries for read-
ers who are not familiar with simplicial complexes and cohomology in Chapter 2,
we give the definition of two main notions of high-dimensional expansion in Chap-
ter 3: coboundary expansion and spectral expansion. Then we want to survey some
of the applications of expansion in Chapter 4, among them the famous topologi-
cal overlap theorem by Mikhail Gromov, the appearance of expansion in the field
of property testing, and how expander complexes can be used to construct error
correcting codes. After motivating high-dimensional expansion we turn towards
examples of high-dimensional expanders in Chapter 5. As presenting examples of
expanders includes the proof of their expansion properties, this chapter also includes
three methods to prove expansion. Starting with the method of “random co-filling”
(Section 5.1), we show that standard complexes like the complete complex and the
complete multipartite complexes are expanding. Although these proofs only work
for these special complexes, they inspire methods using the local structure (the links)
of the complex in consideration. The next section continues this train of thought
to present so-called “local to global” methods (Section 5.2), which are described in
detail for the case of 2-dimensional simplicial complexes. In the tradition of edge
expansion for graphs the last section of this chapter addresses the field of random
methods (Section 5.3). Using tools from probability theory, it is possible to prove
expansion for a large variety of simplicial complexes. This method is also used in
the original paper of Nathan Linial and Roy Meshulam ([LM06]), which brings the
discussion full circle. Lastly, in the final Chapter 6, we discuss the latest open ques-
tions in research and give an overview of notions that were beyond the scope of this
thesis.

8 c© Georg Hofstätter 2017



2 Preliminaries

In the course of this thesis, several prerequisites from different fields are needed. For
the sake of being self-contained, the most important (and maybe not so well-known)
definitions and concepts will be introduced in this chapter. However, it is impossible
to include all necessary definitions. In these cases, references are given and only the
notation is defined.

2.1 Graphs

The first and easiest concept is that of a “graph”. Graphs and graph expansion
are the prototypes for the theory of high-dimensional expansion and expanders,
which evolves as a generalization of these concepts. As a consequence, many ideas
from graph expansion can be adopted for the high-dimensional case. Although
graph expansion cannot be considered an “easier” field, it is older and therefore
better understood. Moreover, graphs may appear as links (to be defined later in
Section 2.2.3) of high-dimensional complexes, so the theory for graphs can be directly
applied, too.

In this thesis, we will consider only finite, simple, undirected graphs (i.e., there are
no loops or multiple edges, and the edges do not carry an orientation). Such a graph
is given as G = (V,E), where V is a finite set whose elements are called vertices, and
E ⊆

(
V
2

)
is a set of pairs of vertices, called edges. Two vertices u 6= v ∈ V are called

adjacent or neighbours if they form an edge, i.e. {u, v} ∈ E. The set of neighbours
of v is denoted by Γ(v), and the degree of v is defined as deg(v) := |Γ(v)|.

A graph is called d-regular, if every vertex has the same degree d. It is called
bipartite or, more generally, k-partite, if the set of vertices V can be partitioned into
two (or k, respectively) distinct sets and there are no edges between vertices of the
same subset. We refer to [Die10] for further background on graphs.

The following definition is explicitly needed:

Definition 2.1.1. Let S and T be disjoint subsets of the set of vertices V of a graph
G = (V,E). Then the set of edges between S and T , denoted E(S, T ), is defined to
be:

E(S, T ) := {e = {u, v} ∈ E |u ∈ S, v ∈ T} (2.1.1)

Moreover, the adjacency matrix is defined as:

c© Georg Hofstätter 2017 9



2 Preliminaries

Definition 2.1.2 (Adjacency Matrix). The adjacency matrix A = A(G) of a graph
G = (V,E) is the |V | × |V |-matrix indexed by the vertices of G with the entries:

(A(G))u,v =

{
1 if {u, v} ∈ E
0 else

(2.1.2)

The adjacency matrix is symmetric as G is undirected and thus possesses a real
spectrum with orthogonal eigenspaces (spectral theorem for self-adjoint operators,
two eigenvectors to different eigenvalues are orthogonal with respect to the standard
scalar product in Rn).

If the underlying graph is d-regular, all the sums of the columns and the rows
are equal to d. So, if we apply A(G) to the vector containing only ones, we get the
vector containing only d’s. Hence, for d-regular graphs, d is always an eigenvalue of
A(G) with the all-one-vector as eigenvector.

2.1.1 Laplacians of Graphs

Apart from the adjacency matrix, there is another matrix that can be associated to
a given graph G, called the Laplacian matrix or, shorter, Laplacian. The definition
and motivation presented here is taken from [HLW06].

The Laplacian matrix of a graph picks up the idea of the Laplacian operator from
differential calculus and transfers it to a discrete setting. In differential calculus the
Laplacian operator is defined as the composition of the gradient and the divergence
operator. The gradient operator applied to a scalar function on Rn is defined via
its derivative and maps the function to a vector field that represents the best linear
approximation of the function and points in the direction of its largest ascent. By
taking the scalar product of the gradient and a vector the directional derivatives of
the function can be calculated. The divergence, on the other hand, can be applied
to vector fields and is linked to the sources and sinks of vector fields (cf. Gauß’
integral theorem).

Back in the setting of graphs, scalar functions are functions on the vertices that
take real or complex values. The change of such a function can only be calculated
with respect to two vertices that are adjacent. Inspired by the difference quotient,
we have the definition of the gradient of a scalar function on the vertices:

Definition 2.1.3 (Discrete Gradient). Let G = (V,E) be a graph and choose an

(arbitrary) orientation of the edges. Let ~E be the set of oriented edges (with the
chosen orientation). Let f : V → R be a scalar function on the vertices.

The (discrete) gradient grad f of f (with respect to this orientation) is defined as
the function:

grad f :

{
~E → R
e = (u, v) 7→ (grad f) (e) := f(u)− f(v)

(2.1.3)

10 c© Georg Hofstätter 2017



2.1 Graphs

Thus, the discrete gradient of a function is just the function evaluating as the
differences of the original values on the endpoints of the edges. The discrete gradient
takes a positive value on the edge (u, v) directed from u to v if the value of f at u
is larger than the value at v and hence “points” along the edge to the lower value.
Unlike the continuous gradient, the discrete gradient defined here “points” in the
direction of descent and not ascent, but this is just a matter of sign.

The definition of a discrete divergence is yet more straightforward. We consider
scalar functions on the edges that are interpreted as “flows along the edges”. The
source strength or divergence of a vertex v is defined as the net flow coming from this
vertex, that is the difference of the cumulated out-flow and the cumulated in-flow:

Definition 2.1.4 (Discrete Divergence). Let G = (V,E) be a graph and choose

an (arbitrary) orientation of the edges. Let ~E be the set of oriented edges. Let

g : ~E → R be a scalar function on the edges.
The (discrete) divergence div g of g (with respect to this orientation) is defined as

the function:

div g :


V → R
u 7→ (div g) (u) :=

∑
e∈ ~E

e=(u,v)

g(e)−
∑
e∈ ~E

e=(v,u)

g(e) (2.1.4)

As the discrete gradient returns functions on the edges and the discrete divergence
takes functions on the edges, gradient and divergence can be composed (just as for
the continuous case) to get the discrete Laplacian:

Definition 2.1.5 (Discrete Laplacian). Let G = (V,E) be a graph and choose an
(here indeed arbitrary) orientation of the edges. Let f : V → R be a scalar function
on the vertices.

The (discrete) Laplacian ∆f of f is defined as the function:

∆f :

{
V → R
u 7→ (∆f) (u) := (div(grad f))(u),

(2.1.5)

where divergence and gradient are taken with respect to the same orientation of the
edges.

This definition is independent of the chosen orientation, as the following calcula-
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2 Preliminaries

tion shows:

(∆f) (u) = (div grad f)(u) =
∑
e∈ ~E

e=(u,v)

(grad f)(e)−
∑
e∈ ~E

e=(v,u)

(grad f)(e) (2.1.6)

=
∑
e∈ ~E

e=(u,v)

(f(u)− f(v))−
∑
e∈ ~E

e=(v,u)

(f(v)− f(u)) (2.1.7)

=
∑
u∼v

f(u)︸ ︷︷ ︸
=deg(u)f(u)

−
∑
u∼v

f(v) (2.1.8)

= deg(u)f(u)−
∑
u∼v

f(v) (2.1.9)

As linear operators between the (finite dimensional) linear spaces of scalar func-
tions on edges or vertices, respectively, the gradient, divergence and Laplace opera-
tors possess matrix representations. We consider the bases (1u)u∈V and (1e)e∈ ~E of
indicator functions, respectively. The matrix representations with respect to these
bases make use of the so-called incidence matrix:

Definition 2.1.6 (Incidence Matrix). The incidence matrix K = K(G) of a graph

G = (V,E) with respect to a given orientation is the |V |× | ~E|-matrix indexed by the
vertices and edges of G with the entries:

(K(G))u,e =


+1 if e = (u, v)

−1 if e = (v, u)

0 else

(2.1.10)

A short calculation, interpreting f and g as functions and simultaneously as vec-
tors written in the above bases, shows:

(grad f)(e) = (Kf)e and (div g)(u) =
(
KTg

)
u

(2.1.11)

Hence, K and KT are the matrix representations of grad and div, respectively. As
a consequence, grad and div are adjoint operators, if we equip the spaces with the
standard scalar product which makes the bases orthogonal. This is in accordance
with the continuous case, where (− grad) and div are adjoint via the L2-scalar
product (and appropriate spaces to apply Gauß’ integral theorem, because this is a
corollary of it)1.

1In the definition of the discrete gradient the sign is reversed. Thus, in comparison with the
continuous case we consider − grad and −∆ instead of grad and ∆. However, in the continuous
case often −∆ appears as it is positive semidefinite.

12 c© Georg Hofstätter 2017



2.1 Graphs

The matrix representation of the Laplacian can be calculated as the product of
the representations of divergence and gradient:

∆ ∼= KTK (2.1.12)

Alternatively, equation 2.1.9 on the preceding page can be used to determine the
matrix representation:

∆ ∼= D − A, (2.1.13)

where D is the diagonal matrix containing the degree of the vertices in the diagonal,
that is:

Du,v =

{
deg(u) if u = v

0 else
(2.1.14)

Using the first representation, it is obvious, that ∆ is symmetric and positive
semidefinite, while the second one is useful for calculating the spectrum of ∆, espe-
cially when G is a d-regular graph (D = d·id, id denotes the identity matrix).

The following lemma summarizes some properties of the Laplacian:

Lemma 2.1.1. Let G = (V,E) be a graph with adjacency matrix A and Laplacian
(matrix) ∆. Then the following holds:

(i) ∆ is symmetric and positive semidefinite.

(ii) The spectrum σ(∆) of ∆ lies in the following interval

σ(∆) ⊆ [0,max
v∈V

deg(v) + ρ(A)], (2.1.15)

where ρ(A) denotes the spectral radius of A, that is, ρ(A) is the maximum of
the absolute values of the eigenvalues of A:

ρ(A) = max
λ∈σ(A)

|λ| (2.1.16)

(iii) ρ(A) ≤ maxv∈V deg(v)

(iv) 0 is an eigenvalue of ∆.

If G additionally is d-regular:

(v) σ(∆) = d− σ(A)

(vi) ρ(A) = d

(vii) The spectrum of ∆ is contained in the interval [0, 2d].

c© Georg Hofstätter 2017 13



2 Preliminaries

Proof. As mentioned above, (i) follows from the form KTK from equation 2.1.12 on
the preceding page. By the symmetry and positive semidefiniteness, the spectrum
of the Laplacian is contained in the non-negative real numbers. (ii) follows from
equation 2.1.13 on the previous page by using the induced matrix norm ‖·‖2 and the
fact, that the spectrum of an operator T is contained in a ball with radius ‖T‖2:

‖∆‖2 = ‖D − A‖2 ≤ ‖D‖2 + ‖A‖2 = max
v∈V

deg(v) + ρ(A) (2.1.17)

=⇒ σ(∆) ⊆ [0,max
v∈V

deg(v) + ρ(A)] (2.1.18)

The first inequality uses the triangle inequality of the norm, while the last equality
uses the fact that the spectral radius and the ‖·‖2-norm coincide for symmetric
matrices.

The same trick can be played with any norm that generates the Euclidean topology
on Rn. If we pick for example the matrix norm induced by the maximum norm ‖·‖∞
we obtain that the spectrum of A is contained in the ‖·‖∞-ball with radius ‖A‖∞
intersected with the real line. We thus need to bound:

ρ(A) ≤ ‖A‖∞ (2.1.19)

But the matrix norm induced by the maximum norm has the easy interpretation as:

‖A‖∞ = max
u∈V

∑
v∈V

|Au,v|, (2.1.20)

which is less than max deg(u), since for every u only deg u of the summands on the
right side are non-zero (and thus 1). This gives (iii).

(iv) can be seen from the representation ∆ ∼= D −A by applying it to the vector
containing only ones. The component corresponding to the vertex u of the result-
ing vector can then be calculated as the difference of the degree of u (from the
multiplication with D) and the sum over the row of A corresponding to u (from
the multiplication with A), which evaluates to zero, as the sum over a row in the
adjacency matrix gives exactly the degree. Hence, 0 is an eigenvalue of ∆ with the
all-one-vector as eigenvector.

If G is d-regular, the matrix representation of the Laplacian simplifies to:

∆ ∼= d · id− A, (2.1.21)

where id denotes the identity matrix (of appropriate dimensions). Hence, the spec-
trum transforms likewise, giving point (v). (vi) follows from point (iii) (Using the
remark below the definition of the adjacency matrix, we know that d is indeed an
eigenvalue, hence ρ(A) = d.) and (vii) follows from (vi) and (ii).

Laplacians of graphs play an important role in analyzing random walks and ex-
pansion for graphs (cf. Section 3.2) as they allow to use tools from linear algebra in
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2.2 Simplicial Complexes and Cohomology

graph theory. Moreover, the Laplacians can be analyzed probabilistically for random
graphs, giving results of concentration of eigenvalues (cf. [Fri91, Fri07, FK14]).

Sometimes Laplacians are defined slightly different, giving “normalized Lapla-
cians” (cf. for example [GW16]). These definitions are qualitatively equivalent,
however, the spectrum changes, so speaking of “eigenvalues of the Laplacian” be-
comes ambiguous. In this thesis, we will not use normalized Laplacians for the sake
of simplicity of notation and presentation.

2.2 Simplicial Complexes and Cohomology

Graphs can be naturally generalized to simplicial complexes :

Definition 2.2.1 (Simplicial Complex). A (finite, abstract) simplicial complex X
is a set of subsets of a given (finite) set V with the property:

∀F ∈ X,G ⊆ V : G ⊆ F =⇒ G ∈ X, (2.2.1)

i.e., that it is closed under taking subsets. The elements of V are called vertices.
The elements of X are called faces or simplices of X. The dimension of a face

F is defined to be:

dimF := |F | − 1, (2.2.2)

where |F | denotes the cardinality of F as a set. F is then called a dimF -dimensional
face or just dimF -face. The empty set ∅ is the unique (−1)-dimensional face. The
maximum dimension of a face in the complex defines the dimension of the complex:

dimX := max{dimF |F ∈ X} (2.2.3)

The set of d-faces X(d) and the d-skeleton X(d) are defined as:

X(d) := {F ∈ X| dimF = d} d = −1, . . . , dimX (2.2.4)

X(d) :=
d⋃

k=−1

X(k) d = −1, . . . , dimX (2.2.5)

The set of 0-faces X(0) (containing singletons) is identified with the vertex set V
in a natural way and hence, 0-simplices {v} are abbreviated by v.

The faces of X are naturally partially ordered by inclusion. If F ⊆ G, we say that
F is a subface of G.

Among all subfaces of a given face F , the facets (with relation symbol b) are
defined to be the subfaces of co-dimension 1 (that is, the subface has dimension 1
less than the surrounding face):

G b F ⇐⇒ G ⊆ F and dimG = dimF − 1 (2.2.6)

Moreover, if all the faces that are maximal with respect to this partial order have
the same dimension d, the complex X is called pure of dimension d.
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Graphs are examples for 1-dimensional simplicial complexes. If there are no iso-
lated points, the graph is a pure complex and the maximal faces correspond to the
edges of the graph.

It is sometimes necessary to define orientations on the simplices. To this end, the
set of vertices X(0) ∼= V of the simplicial complex is equipped with a linear ordering
X(0) = {v1, v2, . . . , vn} and v1 < v2 < · · · < vn. Every k-simplex F is a subset of
X(0), hence F = {vi0 , vi1 , . . . , vik}, i0 < i1 < · · · < ik ∈ {1, . . . , n}. Suppose now
that G is a facet of F . Then (as sets) F\G consists of a single element vij . Using
the index j, the oriented incidence number [F : G] can be defined:

Definition 2.2.2 (Oriented Incidence Number). Let F = {vi0 , vi1 , . . . , vik} (i0 <
i1 < · · · < ik ∈ {0, 1, . . . , n}) be a k-simplex of a simplicial complex X and let G be
a (k − 1)-simplex of X. Then the oriented incidence number [F : G] ∈ {−1,+1} is
defined as:

[F : G] :=

{
(−1)j ifF c G and F\G = {vij}
0 else

(2.2.7)

If X is a graph, these incidence numbers are just the entries of the incidence
matrix from definition 2.1.6 on page 12 (with respect to the orientation coming
from the chosen ordering of the vertices). Due to the connection (via the Laplacian)
to the adjacency matrix, the incidence numbers play an important role in defining
higher-dimensional adjacency matrices.

The aim of the incidence numbers is to describe the connection between a simplex
and its facets. Another idea is to count how many (higher-/top-dimensional) faces
in the complex contain a fixed simplex. This leads to the notion of the degree of a
face:

Definition 2.2.3 (Degree of a Face). Let F be a k-dimensional face of the simplicial
complex X, −1 ≤ k ≤ dimX, and k ≤ l ≤ dimX. The l-degree degl(F ) of F is
defined as:

degl(F ) := |{G ∈ X(l) |F ⊆ G}| (2.2.8)

The degree deg(F ) of F is defined as the top-dimensional degree of F :

deg(F ) := degdimX(F ) (2.2.9)

The most important degrees are the top-dimensional degree and the (k+1)-degree.

For an infinite family (Xi)i∈I of simplicial complexes (with I an infinite index
set) we can distinguish whether the maximum degrees (in a specified dimension) of
all simplicial complexes Xi are bounded uniformly or not. If yes, we are speaking
of a family of bounded degree. The two most important cases are that of families,
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where the maximum degree of (d− 1)-dimensional faces (d = dimXi, all complexes
are assumed to have the same dimension) is bounded uniformly by a constant not
depending on i ∈ I, and families of totally bounded degree, where every possible
degree is bounded uniformly by a constant not depending on i ∈ I and the dimension
of the face.

2.2.1 (Reduced) Cohomology of a Simplicial Complex

Associated to a simplicial complex there is its (augmented) chain complex inducing
the (reduced) cohomology (with coefficients in a group G) of the complex.

Definition 2.2.4 (Cochains). Let G be an (additively written) Abelian group and
let X be a simplicial complex.

In every dimension k, the (Abelian) group of cochains (with G-coefficients) of the
complex X is defined as:

Ck(X;G) := {f : X(k)→ G} k = −1, . . . , dimX, (2.2.10)

together with the group operation of pointwise addition in G:

(f + g)(F ) := f(F ) + g(F ) ∀F ∈ X(k) (2.2.11)

Using the convention Ck(X;G) = {0} for other choices of k, this definition can
be extended to all k ∈ Z, giving an assignment of a simplicial complex X to graded
Abelian groups

(
Ck(X;G)

)
k∈Z.

In this thesis, we will mostly take the group G to be Z2 or R. For the sake of
simplifying notation, the group of k-dimensional cochains Ck(X;G) is often denoted
as Ck(X), if the choice of the coefficients is clear from the context.

For the case G = Z2, the cochains have a simpler representation: Every cochain
f takes only values in Z2 = {0, 1} (as a function). Hence, it can be identified with a
subset of X(k), namely its support supp f . On the other hand, a subset A ⊆ X(k)
can be identified with its indicator function 1A:

f : X(k)→ Z2 −→ supp f := {F ∈ X(k)| f(F ) 6= 0} (2.2.12)

A ⊆ X(k) −→ fA := 1A (2.2.13)

The indicator function 1A is defined as:

1A(F ) :=

{
1 if F ∈ A
0 else

(2.2.14)

It is therefore equivalent to speak of cochains (with Z2-coefficients) as functions
or as subsets. Sometimes, it will be more convenient to use one representation,
sometimes the other.

The cochain groups of different dimension are connected by the coboundary map
δXk :
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Definition 2.2.5 (Coboundary Map). The coboundary map δXk of a simplicial
complex X in dimension k ∈ Z is defined as:

δXk :

{
Ck(X) → Ck+1(X)

f 7→ δXk f,
(2.2.15)

with: (
δXk f

)
(F ) :=

∑
GbF

[F : G] · f(G) ∀F ∈ X(k + 1) (2.2.16)

The product [F : G] · f(G) is defined using the natural group action of Z on every
Abelian group, i.e., 1 · g = g and (−1) · g = −g (the inverse of g in the additively
written Abelian group G), for every g ∈ G.

The coboundary map obviously is a homomorphism between Abelian groups. A
short computation also shows that δXk+1 ◦ δXk = 0. If it is clear from the context, the
indices denoting the simplicial complex and/or the dimension will be omitted.

For G = Z2 the definition of δXk can be simplified, because the orientations of the
simplices are irrelevant as “−1 = 1” in Z2.

The cochain groups together with the coboundary map define the following chain
complex (0 denotes the Abelian group {0} consisting only of the neutral element):

0
δ−2−−→ C−1(X)︸ ︷︷ ︸

∼=G

δ−1−−→ C0(X)
δ0−→ C1(X)

δ1−→ · · · δd−2−−→ Cd−1(X)
δd−1−−→ Cd(X)

δd−→ 0

(2.2.17)

Now the groups of cocycles and coboundaries can be defined:

Definition 2.2.6 (Cocycles and Coboundaries). The cocycles Zk(X;G) are defined
as the kernel of the kth coboundary map δk, whereas the coboundaries Bk(X;G) are
defined as the image of the (k − 1)st coboundary map δk−1:

Zk(X;G) := ker δXk (2.2.18)

Bk(X;G) := im δXk−1 (2.2.19)

Both Zk(X;G) and Bk(X;G) are subgroups.

Since δXk+1◦δXk = 0, it is clear that Bk(X;G) ⊆ Zk(X;G). Both groups are Abelian
groups, therefore it is well-defined to consider their quotient:

Definition 2.2.7 (Cohomology Groups). The kth cohomology group Hk(X;G) (with
G-coefficients) of the simplicial complex X is defined as the quotient of the cocycle
group by the coboundary group:

Hk(X;G) := Zk(X;G)�Bk(X;G) (2.2.20)
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In particular, the cohomology group vanishes (Hk(X;G) = 0) if and only if the
cocycles and the coboundaries coincide (Zk(X;G) = Bk(X;G)). Again, if there is
no possibility for misinterpretation, the cohomology group will be abbreviated as
Hk(X).

We are working with reduced cohomology, where we include the empty set as
(−1)-dimensional face to obtain (−1)-dimensional cochains. In comparison with
unreduced cohomology, where the empty set is not included, this only makes a
difference in dimension 0.

The elements of Hk(X) will be denoted as f+Bk(X), f ∈ Zk(X). The coboundary
subgroup defines a projection [.] to the cosets (modulo coboundaries):

[.] :

Ck(X) → Ck(X)�Bk(X)

f 7→ [f ] := f + Bk(X)
(2.2.21)

In the lowest dimension k = 0 this projection is very simple. There is only one
face of dimension −1, namely the empty set ∅ and a cochain can take only one value
in G. Hence, the (-1)-cochains can be identified with the group elements of G. As
every 0-dimensional face contains the empty set as its only facet, the coboundary
cochains are precisely the cochains that are constant, that is:

B0(X;G) =
{
g · 1X(0) | g ∈ G

}
(2.2.22)

Hence, the projection yields:

[f ] =
{
f + g · 1X(0) | g ∈ G

}
, (2.2.23)

(2.2.24)

and for the special case G = Z2:

[f ] =
{
f, f + 1X(0)

}
(2.2.25)

2.2.2 Norms on Cochains

The last ingredient to be able to define expansion for simplicial complexes is the
notion of a norm on the set of cochains Ck(X;G).

Definition 2.2.8 (Norm of Cochains). A norm ‖.‖ of cochains for a given simplicial
complex X is a function

‖.‖ :
dimX⊔
k=−1

Ck(X;G)→ [0,∞), (2.2.26)

that assigns to a cochain on X of arbitrary dimension a non-negative real number
and that satisfies the following conditions:
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• Positive Definiteness: ‖f‖ = 0 ⇐⇒ f = 0 ∀f ∈ Ck(X;G)

• Triangle Inequality: ‖f + g‖ ≤ ‖f‖ + ‖g‖ ∀f, g ∈ Ck(X;G)

For the case G = Z2 it is sometimes useful to additionally assume:

• Monotonicity : supp f ⊆ supp g =⇒ ‖f‖ ≤ ‖g‖ ∀f, g ∈ Ck(X;Z2)

Actually, all Z2-norms that are used in this thesis are monotone since this is a quite
natural property.

For some applications it is not necessary to include positive definiteness in the
definition (e.g. for topological overlap, see Section 4.1), but sometimes this property
is very useful (see for example the proofs in Section 5.2.1).

One may ask, however, whether the term “norm” is appropriate for this concept.
Indeed, for the Z2-case the group of cochains can be viewed as a linear space over
the field Z2 with (obviously) trivial scalar multiplication. Hence, the here defined
“norm” satisfies the properties of a (general) norm on linear spaces over Z2 (positive
definiteness, absolute homogeneity under scalar multiplication and triangle inequal-
ity), because the second condition is trivially fulfilled and the other two conditions
are part of the definition of a norm on cochains.

Over R or C, we also want to assume absolute homogeneity (‖αf‖ = |α| ‖f‖,
where α is a number and f a cochain). Indeed, for these choices of coefficients G,
the group of cochains forms a (finite dimensional) linear space overG (with pointwise
operations) and a norm on cochains then defines a norm on this linear space. The
restriction to the real or complex numbers is necessary to give the term “absolute”
a meaning, that is, because C and R possess a norm for themselves.

In analogy to linear spaces, norms on cochains also induce norms on quotient
spaces (for appropriate equivalence relations). The relevant application is the quo-
tient space of cochains modulo coboundaries, where the resulting norm reads:

‖[f ]‖X := inf
b∈Bk(X)

‖f + b‖X ∀f ∈ Ck(X) (2.2.27)

In the following the coefficient group G will be either R or Z2.
As if to emphasize the relations to vector space norms, the most important norms

for cochains (with R-coefficients) are the `p norms, which are some of the “standard
norms” for function spaces:

Definition 2.2.9 (Weighted `p-Norms for Cochains with Real Coefficients). Let p
be a real number, p ∈ [1,∞], X a simplicial complex and let w : X → (0,∞) be a
positive weight-function.

Then the (weighted) `p-norm of a cochain f ∈ Ck(X;R) is defined as:

‖f‖p :=


(∑

F∈X(k) w(F )|f(F )|p
) 1
p

if p <∞
maxF∈X(k) w(F )|f(F )| if p =∞

(2.2.28)
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The proof that ‖.‖p really is a norm follows from the fact that the original `p-norms
are norms.

As for function spaces, the case p = 2 is special, because the `2-norm is induced
by a scalar product:

‖f‖2 =
√

(f, f)2, (2.2.29)

where

(., .)2 :

{⊔dimX
k=−1 Ck(X;R)× Ck(X;R) → R

(f, g) 7→ (f, g)2 :=
∑

F∈X(k) w(F )f(F )g(F )

(2.2.30)

denotes the `2-scalar product. Sometimes it is convenient to extend this to pairs
of cochains of different dimensions by just setting the scalar product of different-
dimensional cochains to zero. Using this scalar product it will be possible to define
adjoint operators on the cochains. This is necessary to define a generalization of
Laplacians for simplicial complexes.

Interpreting Z2 = {0, 1} as a subset of R, the `p norms (p <∞) can be extended
to Z2-cochains. However, these norms are independent of p and just reduce to the
(weighted) counting or Hamming norm:

Definition 2.2.10 (Weighted Counting or Hamming Norm). Let w : X → (0,∞)
be a positive weight-function. The weighted counting or Hamming norm is defined
as:

‖f‖ :=
∑

F∈X(k),f(F )=1

w(F ) ∀f ∈ Ck(X;Z2) (2.2.31)

As one easily checks, the weighted counting norm is indeed a norm on cochains
that is monotone due to the condition that w(F ) > 0 for all faces F .

For the trivial weight function w ≡ 1, the weighted counting norm reduces to the
cardinality of the support, denoted by |.|:

|f | := | supp f | (2.2.32)

Following [Gar73], [KKL14a] and [EK15], the following weight function turns out
to be very useful for proving expansion (d = dimX):

wt(F ) :=
|{G ∈ X(d) |F ⊆ G}|(

d+1
k+1

)
|X(k)|

=
deg(F )(

d+1
k+1

)
|X(k)|

for F ∈ X(k), k ∈ {−1, 0, . . . , d}

(2.2.33)

In the top dimension (k = d), this is just the uniformly weighted Hamming
norm, while on lower dimensions it depends on the complex and especially the top-
dimensional degrees of the faces. The constants in the denominator ensure that the
cochain f ≡ 1 always has norm 1.

c© Georg Hofstätter 2017 21



2 Preliminaries

2.2.3 Links of a Complex

Just as the neighbours of a vertex in a graph, it is often useful to consider a local
view of a simplicial complex. Indeed, the notion of neighbours can be generalized to
the notion of the link of a simplex in a simplicial complex. The link is a local view
from a simplex:

Definition 2.2.11 (Link of a Simplex). Let X be a simplicial complex with vertex
set V ∼= X(0) and let σ ∈ X be an arbitrary simplex.

The link Xσ of σ in X is defined as the following simplicial complex:

Xσ := {τ ⊆ V \σ | τ ∪ σ ∈ X} (2.2.34)

The set of neighbours Γ(v) of a vertex v in the graph case is the link of v in
the graph viewed as 1-complex. By definition, any k-simplex τ̃ that contains σ
corresponds bijectively to a (k − |σ|)-simplex in the link Xσ. The link with respect
to the empty set is just the complex itself, while the link with respect to a maximal
face is empty. It is also obvious from the definition that the link is again a simplicial
complex, which is contained in the original complex (simplicial complexes are closed
under taking subsets). Thus, it is possible to define norms on the link, usually
denoted by ‖·‖σ.

Moreover, as cochains are just functions on the simplices, they can be “localized”
to links as well:

Definition 2.2.12 (Localization of Cochains). Let X be a simplicial complex and
Xσ the link of a simplex σ ∈ X, 0 ≤ k ≤ dimX.

The localization with respect to σ is defined as the map:

(·)σ :

{
Ck(X) → Ck−|σ|(Xσ)

f 7→ fσ,
(2.2.35)

where

fσ(τ) := f(σ ∪ τ) (2.2.36)

As with Xσ ⊆ X, the cochains of Xσ can be embedded into the cochains of X in
the same dimension by setting the functions to zero for all simplices in X\Xσ. This
embedding is often suppressed if it is clear from the context.

2.3 Rayleigh Quotients and Eigenvalues

Rayleigh quotients are a concept from linear algebra that is very useful for calculat-
ing or estimating eigenvalues of matrices and they are used for this purpose in this
thesis. They allow connections between the eigenvalues of, for example, the Lapla-
cian matrix or the adjacency matrix of a graph and “combinatorial” properties of the
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graph. Moreover, Rayleigh quotients use a variational approach to eigenvalues, that
fits well together with the combinatorial definitions. An introduction to Rayleigh
quotients can be found, for example, in [HJ12, section 4.2].

We consider here only real, symmetric n × n-matrices. By the spectral theorem
they possess n real eigenvalues with eigenvectors that form an orthonormal basis
(with respect to the standard scalar product on Rn). For such a matrix, the Rayleigh
quotient is defined as:

Definition 2.3.1 (Rayleigh Quotient). Let A be a real, symmetric n×n-matrix and
let x ∈ Rn be an arbitrary vector. The Rayleigh Quotient RA(x) is defined (using
the standard Euclidean scalar product (., .)2 and norm ‖·‖2) as:

RA(x) :=
(Ax, x)2

‖x‖2
2

(2.3.1)

Using the Rayleigh quotients, the eigenvalues of A can be characterized as minima
or maxima, respectively, of certain expressions, written down in the theorem by
Courant and Fischer:

Theorem 2.3.1 (Courant-Fischer). Let A be a real, symmetric n × n-matrix with
real eigenvalues λ1 ≤ λ2 ≤ · · · ≤ λn. Let 1 ≤ k ≤ n and let S denote a subspace of
Rn.

Then the eigenvalues can be calculated by:

λk = min
S:dimS=k

max
06=x∈S

RA(x) = min
S:dimS=k

max
06=x∈S

(Ax, x)2

‖x‖2
2

, (2.3.2)

or

λk = max
S:dimS=n−k+1

min
06=x∈S

RA(x) = max
S:dimS=n−k+1

min
0 6=x∈S

(Ax, x)2

‖x‖2
2

. (2.3.3)

Proof. See [HJ12, Theorem 4.2.6] for a proof.

The theorem by Courant and Fischer contains the following characterization of
minimum and maximum eigenvalues as a special case, called the theorem of Rayleigh.
However, the proof of Courant and Fischer uses Rayleigh’s theorem in the proof.

Theorem 2.3.2 (Rayleigh). Let A be a real, symmetric n× n-matrix and let λmin
and λmax be its smallest and largest eigenvalue, respectively.

Then:

λmin = min
x 6=0

RA(x) = min
x 6=0

(Ax, x)2

‖x‖2
2

(2.3.4)

λmax = max
x 6=0

RA(x) = max
x 6=0

(Ax, x)2

‖x‖2
2

(2.3.5)

(2.3.6)
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Proof. See [HJ12, Theorem 4.2.2] for a proof.

For the sake of being self-contained we state an easy corollary of Rayleigh’s the-
orem. It is used to calculate the second smallest eigenvalue and therefore can be
(and is) used to calculate the eigenvalue gap (defined in Section 3.2).

Corollary 2.3.1. Let A be a real, symmetric n × n-matrix with real eigenvalues
λ1 ≤ λ2 ≤ · · · ≤ λn. Let x1 be the eigenvector associated with the smallest eigenvalue
λ1.

Then:

λ2 = min
06=x⊥x1

RA(x) = min
0 6=x⊥x1

(Ax, x)2

‖x‖2
2

(2.3.7)

(2.3.8)

Proof. By restricting to the subspace orthogonal to x1, A can be interpreted as a
matrix on Rn−1 with smallest eigenvalue λ2. The characterization now follows from
Rayleigh’s theorem for this restricted matrix.

Rem. 2.3.1. We can prove an analogous result for the eigenvalue λk, 2 ≤ k ≤ n, by
considering only vectors x orthogonal to the first k − 1 eigenvectors x1, . . . , xk−1 in
the minimum.
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and their Interplay

Expansion was defined originally as a property of graphs. There are two (at least
qualitatively) equivalent approaches to this property: purely graph-theoretical (com-
binatorial) and via spectral theory. Sometimes a third approach is mentioned,
namely the approach via the probabilistic properties of a random walk on the graph.
However, this approach is linked tightly to the spectral theory.

As graphs can easily be generalized to high-dimensional (simplicial) complexes,
the question arises whether the notion of expansion can be generalized as well.
Indeed, this is possible – and in no way unique. A particularly important gen-
eralization goes back to Nathan Linial and Roy Meshulam ([LM06]) and Mikhail
Gromov ([Gro10]). This generalization is very strong, which motivates alternative
definitions that are considerably weaker but sufficient for many purposes. To make
things more complex (and also more interesting) high-dimensional expansion also
yields geometric properties that are trivial in the lowest dimension. These geometric
expansion properties are defined and discussed in Chapter 4.1.

There are several slightly different definitions of expansion for simplicial com-
plexes, that are specially tailored to the known theorems and mirror the various
viewpoints. In the following, some of the most important concepts are presented
and compared.

3.1 Combinatorial Expansion

Starting with the most intuitive concept, formulated in a purely graph-theoretical
notation, we define:

Definition 3.1.1 (Edge Expansion for Graphs). A graph G = (V,E) is said to be
ε-edge expanding, ε ≥ 0, if:

∀S ⊆ V : ε
min {|S|, |V \S|}

|V |
≤ |E(S, V \S)|

|E|
(3.1.1)

The edge expansion of G is defined as the maximum ε for which the inequality from
above is fulfilled.

In the definition the factors |V | and |E| are just for scaling and denote a choice
of “norm”, if we view the graph as a simplicial complex.
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Rem. 3.1.1 (Cheeger Constant). Edge expansion as defined here corresponds – if we
neglect the scaling factors – to the Cheeger constant or edge-isoperimetric constant
h(G) of the graph G:

h(G) := min

{
|E(S, V \S)|
|S|

∣∣∣∣S ⊆ V, 0 < |S| ≤ |V |
2

}
(3.1.2)

The concept of the Cheeger constant originated in Riemannian geometry (see for
example [Bus82], where it is introduced as an isoperimetric constant) and was trans-
lated to graph theory. See Section 3.1.3 for further explanations.

What is happening here intuitively is that we pick a subset of the vertices and
separate it from the others (cf. Fig. 3.1). Then we look at the edges that run between
these two groups of vertices, count them and compare the result with the size of the
subset. Hence, a good (meaning high) edge expansion says that there are “many
edges”, where “many” depends on the size of the subset. Conversely, the expansion
constant is limited by the existence of so-called “bottlenecks”, that is, two relatively
big subsets of the vertices that are connected by relatively few edges.

S V\S

E(S,V\S)

Fig. 3.1: Illustration of Edge Expansion

From the inequality it is clear, that – for a fixed vertex set V – we get good
expansion, if the graph is highly connected (i.e. |E(S, V \S)| is big compared to
|E|).

If the edge expansion of a graph is zero, |E(S, V \S)| must be zero for some S ⊆ V ,
since there are only finitely many choices for S. Keeping the above picture in mind,
this means that the graph consists of at least two disconnected components, namely
S and V \S. On the other hand, if the graph is disconnected, there exists a nonempty
proper subset ∅ 6= S ⊂ V such that |E(S, V \S)| is equal to zero. Hence, ε must be
zero as well.

The connection still goes deeper: If the edge expansion of a graph is greater
than zero, it takes at least a share of ε |S||V | (|S| ≤ |V |

2
) of all edges to be removed to

disconnect a given subset S from the rest of the graph. Thus, a good edge expansion
already implies “classical” graph-theoretical notions like edge-connectedness (that
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is, it answers questions like: How many edges do we have to remove to make the
graph disconnected?).

Now let us think about G as a 1-dimensional simplicial complex X. Choosing
a subset of the vertices S ⊆ V translates (by the comment in equation 2.2.12 on
page 17) to choosing a 0-dimensional cochain f ∈ C0(X;Z2). The edges between
S and its complement V \S in V are precisely those that are incident to one vertex
in S = supp f and one vertex in V \S = X(0)\ supp f . As the coboundary map
δX0 maps the 0-dimensional chain f to a 1-dimensional chain that evaluates on the
edges as Z2-sum of the values of f at the incident vertices, we have:

E(S, V \S) = supp
(
δX0 f

)
(3.1.3)

The defining inequality now translates to:

ε · min {‖f‖X ,
∥∥f + 1X(0)

∥∥
X
} ≤

∥∥δX0 f∥∥X , (3.1.4)

where ‖·‖X denotes the Hamming norm of definition 2.2.10 on page 21 with weights
1

|X(0)| and 1
|X(1)| , respectively. The second term f + 1X(0) is just an abbreviation

for the cochain that is complementary to f , that is, the cochain that takes the
value 0 whenever f takes the value 1 and vice versa. Using the characterization of
0-dimensional coboundaries from equation 2.2.22 on page 19 and the factor norm
from equation 2.2.27 on page 20, this yields:

ε ‖[f ]‖X ≤
∥∥δX0 f∥∥X (3.1.5)

We can now reformulate definition 3.1.1 on page 25:

Definition 3.1.2 (Edge Expansion for Graphs – Reformulated). A 1-dimensional
simplicial complex X is said to be ε-edge expanding in dimension 0, ε ≥ 0, if:

∀f ∈ C0(X;Z2) : ε ‖[f ]‖X ≤
∥∥δX0 f∥∥X , (3.1.6)

or, equivalently:

ε ≤ min
f∈C0(X;Z2)\B0(X;Z2)

∥∥δX0 f∥∥X
‖[f ]‖X

(3.1.7)

This definition motivates a generalization to high-dimensional complexes: co-
boundary expansion.

3.1.1 Coboundary Expansion

Definition 3.1.3 (Coboundary Expansion). Let X be a d-dimensional simplicial
complex. The coboundary expansion parameters hk(X) of X with respect to a norm
‖·‖X on X are defined as:

hk(X) := min
f∈Ck(X)\Bk(X)

∥∥δXk f∥∥X
‖[f ]‖X

, k = 0, . . . , d− 1, (3.1.8)

c© Georg Hofstätter 2017 27



3 Different Notions of Expansion and their Interplay

or, equivalently, hk(X) is the maximum constant such that:

∀f ∈ Ck(X) : hk(X) ‖[f ]‖X ≤
∥∥δXk f∥∥X (3.1.9)

This definition depends mainly on the coboundary map and does not use any geo-
metrical or combinatorial property of the simplicial complex. Hence, this definition
is also valid for any cochain complex. The choice of coefficients (and of the norm)
is relevant for the application, but not for the statement of the definition.

If we forget about the underlying structure of a simplicial complex for some time,
the coboundary map just becomes a linear map between two “normed” linear spaces,
namely Ck(X) and Ck+1(X). As there appears the quotient norm ‖[·]‖X in the def-
inition, it is reasonable to consider the induced map (denoted by the same symbol):

δXk : Ck(X)�Bk(X)→ Ck+1(X) (3.1.10)

This map is well-defined, because the coboundaries are a subspace of the cocycles
which is defined as the kernel of the coboundary map.

For positive hk(X) > 0 equation 3.1.9 immediately implies the injectivity of the
induced map. Since the induced map is injective if and only if the quotient is taken
by a subspace which contains the kernel, the coboundary group and the cocycle
group must coincide. If, on the other hand, these two groups coincide, the minimum
in equation 3.1.8 on the preceding page is taken among finitely many, strictly positive
values. Hence, the coboundary expansion parameter is positive as well. We have
proved:

Lemma 3.1.1. The coboundary expansion parameter hk(X) and the kth cohomology
group Hk(X) satisfy, k = 0, . . . , d− 1:

hk(X) > 0 ⇐⇒ Bk(X) = Zk(X) ⇐⇒ Hk(X) = 0 (3.1.11)

This is the direct analogue of the fact, that the expansion parameter of a graph
is positive if and only if the graph is connected. Just as for the graph case, the kth

coboundary expansion also gives a lower bound on the number of (k + 1)-simplices
that one has to remove from the complex to get non-vanishing cohomology. However,
this bound depends critically on the choice of norm. In higher dimensions vanishing
cohomology is quite a strong requirement – a complex with non-zero coboundary
expansion necessarily has vanishing cohomology. This leads to the notion of cocycle
expansion, which will be described later on.

But first, we will give another interpretation of coboundary expansion. As we
have seen, a positive expansion parameter implies that the induced map of the
coboundary map is injective. If we restrict its co-domain to the image of the map,
that is, the coboundary group of one dimension higher, we get a bijective map δ:

δ : Ck(X)�Bk(X)→ Bk+1(X), (3.1.12)
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for which we can look at the inverse map δ−1:

δ−1 : Bk+1(X)→ Ck(X)�Bk(X). (3.1.13)

As a linear map between finite-dimensional, “normed” linear spaces δ−1 is bounded
in the following sense1:

C := max
06=g∈Bk+1(X)

‖δ−1g‖X
‖g‖X

<∞ (3.1.14)

The constant C, called the operator norm of δ−1, is positive, since δ−1 is not zero
and well-defined. Using the fact that every g ∈ Bk+1(X) corresponds (via δ) to an
equivalence class [f ] ∈ Ck(X)/Bk(X), we can compute:

C = max
0 6=g∈Bk+1(X)

‖δ−1g‖X
‖g‖X

(3.1.15)

= max
0 6=[f ]∈Ck(X)/Bk(X)

‖[f ]‖X
‖δ [f ]‖X

( 6= 0) (3.1.16)

=

(
min

06=[f ]∈Ck(X)/Bk(X)

‖δ [f ]‖X
‖[f ]‖X

)−1

(3.1.17)

=
1

hk(X)
(3.1.18)

Hence, the coboundary expansion parameter is nothing else than the inverse of
the operator norm of the map δ−1.

3.1.2 Cocycle Expansion

As mentioned above, the (necessary) condition Bk(X) = Zk(X) often is too strong,
especially if we want to construct complexes with good expansion properties. The
easiest way to weaken this condition is to consider the quotient space by the cocycle
group instead of the coboundary group and the induced coboundary map on this
quotient space. By definition, the induced map is now injective (fundamental the-
orem of homomorphisms) and we cannot argue with the injectivity anymore. This
leads to the concept of cocycle expansion. Unfortunately, the notation becomes a
bit more complex:

Definition 3.1.4 (Cocycle Expansion). Let X be a d-dimensional simplicial com-
plex. The cocycle expansion parameters hkz(X) of X with respect to a norm ‖·‖X
on X are defined as:

hkz(X) := min
f∈Ck(X)\Zk(X)

∥∥δXk f∥∥X
minz∈Zk(X) ‖f + z‖X

, k = 0, . . . , d− 1 (3.1.19)

1This definition of boundedness of a linear map normally appears in the theory of infinite-
dimensional normed linear spaces, where it is not trivial that this expression is bounded.
However, as we are interested in quantitative statements, this value can be interesting.
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From the definition it is clear, that hkz(X) is always strictly positive. Moreover, the
notions of coboundary expansion and cocycle expansion coincide, if the cohomology
group vanishes:

Lemma 3.1.2. If Hk(X) = 0, then hkz(X) = hk(X) > 0.

The converse is not true already for the simplest case of graphs and Z2-coefficients,
as the following example shows:

Example 1. Let X be the 1-dimensional simplicial complex defined by, see Fig. 3.2:

X = {∅, {a}, {b}, {c}, {d}, {a, b}, {c, d}} ⊆ 2{a,b,c,d} (3.1.20)

Fig. 3.2: Illustration to example 1

X consists of two connected components, namely {a, b} and {c, d}. A short cal-
culation (and the remarks to equation 2.2.22 on page 19) shows, that the homology
does not vanish and there are three non-zero types of cochains modulo cocycles:

H0(X;Z2) =
{

[0], [1{a,b}]
} ∼= Z2 6= 0 (3.1.21)

C0(X;Z2)�Z0(X;Z2) =
{

[0], [1{a}], [1{a,c}], [1{d}]
}

(3.1.22)

We choose the cochains with minimal Hamming norm from the three non-zero cosets:

f1 := 1{a} (3.1.23)

f2 := 1{a,c} (3.1.24)

f3 := 1{d} (3.1.25)

The cocycle expansion parameter with respect to the Hamming norm with trivial
weights can then be computed by:

h0
z(X) = min

{∣∣δX0 f1

∣∣
|f1|

,

∣∣δX0 f2

∣∣
|f2|

,

∣∣δX0 f3

∣∣
|f3|

}
(3.1.26)

= min

{
1

1
,
2

2
,
1

1

}
= 1 6= 0 (3.1.27)

But the coboundary expansion parameter h0(X) is zero, because the cohomology
group does not vanish.

In the graph case, cocycle expansion is linked (up to some constant factors) to
the coboundary expansion of the single connected components (viewed separately as
independent graphs), because these are exactly the supports of the different cocycles.

30 c© Georg Hofstätter 2017



3.1 Combinatorial Expansion

3.1.3 Co-filling or Co-isoperimetric Inequalities

Although it is a weaker property than coboundary expansion, cocycle expansion
permits a relatively intuitive interpretation, which reveals astonishing analogies to
geometry. To see this connection, it is useful to define the notion of a co-filling or
co-isoperimetric inequality in the setting of simplicial complexes (which turns out to
be an equivalent concept to cocycle expansion, c.f. lemma 3.1.3 on the next page):

Definition 3.1.5 (Co-filling or Co-isoperimetric Inequality). Let X be a d-dimen-
sional simplicial complex. X is said to satisfy a co-filling or co-isoperimetric in-
equality in dimension k, 0 < k ≤ d, with constant Lk > 0, if:

∀β ∈ Bk(X)∃α ∈ Ck−1(X) : δXk−1α = β and ‖α‖X ≤ Lk ‖β‖X (3.1.28)

The first condition (existence of α) is trivial, since this is exactly the definition of
the coboundary group. Thus, the second condition is the relevant one, which needs
to be checked.

So, what does this definition mean? We take an arbitrary coboundary β and
search for a cochain α that (co-)“fills” it, that is, the first is the coboundary of
the later. Then we compare the “size” (that is, the norm) of the cochain and its
coboundary. The maximal ratio of the size of a cochain (chosen minimal) to the size
of its coboundary is the co-isoperimetric constant Lk.

This concept of co-filling or co-isoperimetric inequalities is dual to the concept of
filling or isoperimetric inequalities, which is going back to ancient times. Instead of
co-boundaries, (geometric) boundaries are considered for filling inequalities. If we
take, for example, a closed curve β (or more generally a k-dimensional manifold)
in some surrounding Euclidean space, then the “filling” α would correspond to a
surface (or a (k+1)-dimensional manifold, respectively) that has the curve β as
its (geometric) boundary. Thus, comparing the “sizes” of α and β has the intuitive
interpretation of comparing the area of α to the length of β (or the high-dimensional
intrinsic volumes). To find the optimal constant for this similar problem is equivalent
to finding an answer to the question:

How do the closed curves look, where the minimal (in terms of area)
filling surfaces have the biggest area relative to the length of the bound-
ary curve (i.e. to its perimeter), that is, what are the closed curves that
make a high isoperimetric constant in the inequality necessary?

This is the classical isoperimetric problem, also called “Dido’s problem”, named
after the founder of antique Carthage.

In the abstract setting of simplicial complexes this geometric interpretation is
somehow lost. However, the structure remains the same, giving a reason why such
questions are asked altogether. Sometimes, there are methods of proof which use
duality results to switch from cohomology to homology, replacing “coboundary” by
“boundary”. In homology, the boundary map has the same interpretation as the
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geometric boundary. Hence, the intuition and the real structure coincide to some
extent. The classical isoperimetric problem is a “continuous” problem, though,
meaning that we have to deal with surfaces and area definitions, while in the sim-
plicial complex setting only discrete analogies appear and we just have to “count”.

The last link between the (co-)isoperimetric problem and (cocycle) expansion
is established with the next lemma, stating that co-isoperimetric inequalities and
cocycle expansion are the same, qualitatively and quantitatively.

Lemma 3.1.3. Let X be a simplicial complex with cocycle expansion parameter
hkz(X), which satisfies a co-filling inequality in dimension k+1, with optimal (mean-
ing minimal) constant Lk+1 > 0, 0 ≤ k < d. Then we have:

hkz(X) =
1

Lk+1

(3.1.29)

Proof. The proof splits into two parts:

1. “Cocycle expansion yields a co-filling inequality.”

Assume that X has cocycle expansion parameter hkz(X) > 0 and let β ∈
Bk+1(X) be a given, arbitrary coboundary.

Thus, there exists a cochain c ∈ Ck(X) which “co-fills” β, that is, δXk c = β.
Now we use the definition of cocycle expansion for the cochain c to get:

hkz(X) ≤
∥∥δXk c∥∥X

minz∈Zk(X) ‖c+ z‖X
=

‖β‖X
minz∈Zk(X) ‖c+ z‖X

(3.1.30)

Let α = c+z ∈ Ck(X) be the cochain where the minimum in the denominator
is attained. Then this inequality is equivalent to:

‖α‖X ≤
1

hkz(X)
‖β‖X and δXk α = β, (3.1.31)

which is a co-filling inequality in dimension k+ 1 with constant 1
hkz (X)

, because
the constant is independent of the chosen β. Lk+1 is – by assumption – the
optimal constant for the inequality to be satisfied, hence:

Lk+1 ≤
1

hkz(X)
(3.1.32)

2. “A co-filling inequality implies cocycle expansion.”

We now want to find a lower bound on hkz(X) in terms of Lk+1. For this
reason, let f ∈ Ck(X)\Zk(X) be a possible candidate for the minimum in
the definition of cocycle expansion. δXk f is a (k+1)-dimensional coboundary
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and as such valid for the co-filling inequality. Hence, there exists a cochain
α ∈ Ck(X), such that:

δXk α = δXk f and ‖α‖X ≤ Lk+1

∥∥δXk f∥∥X (3.1.33)

As the coboundary map is linear, the first equality translates to:

δXk (α− f) = 0, (3.1.34)

which is equivalent to α and f being in the same equivalence class modulo
cocycles. As a result, we get:

min
z∈Zk(X)

‖f + z‖X ≤ ‖f + (α− f)‖X = ‖α‖X (3.1.35)

Putting together equations 3.1.33 and 3.1.35 yields:

min
z∈Zk(X)

‖f + z‖X ≤ Lk+1

∥∥δXk f∥∥X , (3.1.36)

or, equivalently,

1

Lk+1

≤
∥∥δXk f∥∥X

minz∈Zk(X) ‖f + z‖X
. (3.1.37)

The left side is independent of the choice of f , so we can replace the right side
by the minimum over the choices of f , which is exactly hkz(X), hence:

1

Lk+1

≤ hkz(X) (3.1.38)

The inequalities of both steps together give the claimed equality.

Due to this lemma, co-filling inequalities do not imply coboundary expansion.
This is not surprising, if we look at the proof. Relative to the situation for cobound-
ary expansion, co-filling inequalities “live one level higher”, that is we need to first
apply the coboundary map to “get to the higher level” and then apply the inequality
there. In the first step, we loose any information about cocycles, because they are
all mapped to zero, and we cannot restore it.

However, using co-filling inequalities (in combination with vanishing cohomology)
is a feasible method to prove coboundary expansion, since they are very intuitive and
suggest a relatively straight-forward way to prove. The method of random co-filling
described in Section 5.1 uses this idea.

c© Georg Hofstätter 2017 33



3 Different Notions of Expansion and their Interplay

3.1.4 Cosystoles and Cosystolic Expansion

As mentioned above, there is a gap between coboundary and cocycle expansion,
if the cohomology does not vanish. Sometimes vanishing cohomology cannot be
guaranteed (and is not necessary for the results), but cocycle expansion alone is too
weak for some theorems. What seems to be missing here, is some “control” over the
discrepancy between cocycles and coboundaries, that is, control over the cocycles
that are not coboundaries. This gives rise to the definition of cosystoles:

Definition 3.1.6 (Cosystoles). Let X be a d-dimensional simplicial complex with
non-vanishing cohomology in dimension k, 0 ≤ k ≤ d− 1. The cosystole parameter
systk(X) with respect to a norm ‖·‖X in dimension k is defined as:

systk(X) := min
{
‖f‖X | f ∈ Zk(X)\Bk(X)

}
<∞ (3.1.39)

X is said to have ϑ-large cosystoles in dimension k, with ϑ > 0 a constant if

systk(X) ≥ ϑ, (3.1.40)

that is,

∀f ∈ Zk(X)\Bk(X) : ‖f‖X ≥ ϑ (3.1.41)

The direct motivation for the name comes from the mathematical field of systolic
geometry, where “systole” denotes the minimal length of a closed curve, which is not
contractible (cf. [Kat07]).2 Thus, the definition presented here is the same definition
with “length” replaced by an arbitrary norm on cochains.

Bounds on cosystoles are needed for example in the proof of theorem 4.1.3 on
page 48 (Gromov’s topological overlap theorem) to show that a cocycle is indeed a
coboundary by bounding the norm of the cocycle to be smaller than the cosystole
parameter.

The combination of cocycle expansion and large cosystoles appears very often,
thus, it gets its own name:

Definition 3.1.7 (Cosystolic Expansion). Let X be a d-dimensional simplicial com-
plex with non-vanishing cohomology in dimension k for k ∈ {0, . . . , d− 1}, and co-
cycle parameter hkz(X), which has ϑ-large cosystoles in dimension k, ϑ > 0. Then
X is said to possess cosystolic expansion or said to be a cosystolic expander in
dimension k.

2The name “cosystoles” is a combination of “co” (for cohomology) and “systoles”, which is a
term from medicine describing a part of the cardiac cycle and appears in the name systolic
blood pressure (in contrast to diastolic blood pressure). Systolic blood pressure denotes the
maximal value of blood pressure during a cardiac cycle and is linked to the difference between
maximal and minimal/average blood pressure. Likewise, the cosystole parameter is linked to
the difference of norms of cocycles (corresponds to maximal blood pressure) and of coboundaries
(corresponds to minimal/average blood pressure), which explains the name “(co)systole”.

34 c© Georg Hofstätter 2017



3.2 Spectral Expansion

3.1.5 Families of Expanders

For a given simplicial complex X, there are now several constants regarding and
describing expansion, which have to be determined. In some applications the exact
quantitative values are important, but sometimes only qualitative statements (e.g.
that the constants are strictly positive) are needed. However, all these constants
are strictly positive (for the coboundary expansion we need to additionally assume
vanishing cohomology). Thus, qualitative statements can only be made, if we con-
sider infinite families of simplicial complexes and want to regard their expansion
constants as a whole:

Definition 3.1.8 (Families of Expanders). An infinite family (Xi)i∈I of d-dimen-
sional simplicial complexes, where I is an arbitrary infinite index set, is called a
family of (coboundary, cocycle, etc.) expanders in dimension k if there exists a
constant ε > 0 that uniformly lower-bounds the (coboundary, cocycle, etc.) expansion
parameters of the complexes in dimension k.

Hence, families of expanders consist of simplicial complexes that possess “compa-
rably good” expansion properties. In recent years, the construction of such families
was an important topic in research, especially regarding families with additional
conditions on the simplicial complexes such as bounded degree (cf. definition 2.2.3
on page 16, asked in [Gro10, DK10]).

3.2 Spectral Expansion

Apart from the combinatorial definition of expansion presented in the last section,
there is a definition using “spectral properties” of the graph or simplicial complex
in consideration. Again, we want to start with the definition for graphs and then
show a way to generalize it to any simplicial complex.

As introduced in Section 2.1 there are (among others) two matrices associated
with a graph: the adjacency matrix and the Laplacian. Speaking of matrices it is a
natural question to ask for their eigenvalues and what properties of the graph can
be deduced from them. Indeed, the graph’s expansion is qualitatively equivalent to
the so-called eigenvalue gap, as is shown in lemma 3.2.1 on the following page. The
eigenvalue gap of the Laplacian and associated with it the spectral expansion of a
graph is defined as:

Definition 3.2.1 (Eigenvalue Gap and Spectral Expansion for Graphs). Let G =
(V,E) be a graph on n vertices with Laplacian ∆ and let 0 = λ1 ≤ λ2 ≤ · · · ≤ λn be
the eigenvalues of ∆.

The eigenvalue gap (or spectral gap) λ = λ(G) of G is defined as the distance
between the smallest eigenvalue λ1 = 0 and the second-smallest eigenvalue λ2, that
is:

λ(G) = λ2 − λ1 = λ2 (3.2.1)
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The graph G is said to be spectrally expanding, if λ(G) > 0, and λ(G) is called
its spectral expansion parameter.

For a d-regular graph, the eigenvalue gap can also be calculated from the spec-
trum of the adjacency matrix using the connection of the spectra as observed in
lemma 2.1.1 on page 13. If we denote the eigenvalues of the adjacency matrix A as
d = µ1 ≥ µ2 ≥ · · · ≥ µn, the eigenvalue gap can be calculated as:

λ(G) = µ1 − µ2 = d− µ2 (3.2.2)

The connection between spectral expansion of a graph and its combinatorial
Z2coboundary expansion parameter h0(G) is established by the following lemma:

Lemma 3.2.1 (Discrete Cheeger Inequality). Let G = (V,E) be a d-regular graph,
let λ(G) be its eigenvalue gap and denote by h0(G) its coboundary expansion param-
eter (with respect to the normalized Hamming norm).

Then the following inequality holds:

λ(G)

d
≤ h0(G) ≤

√
8
λ(G)

d
(3.2.3)

The name “Cheeger inequality” is originated in Riemannian geometry, where Jeff
Cheeger ([Che70], right inequality) and Peter Buser ([Bus82], version of the left
inequality) proved inequalities connecting the Cheeger or isoperimetric constant
(cf. remark 3.1.1 on page 26) and the eigenvalue gap of the continuous Laplace
operator. Following the same analogy as in Section 2.1.1 this result was proved in
the discrete setting by Dodziuk ([Dod84, Theorem 2.3]) and by Alon and Milman
([AM85, Alo86]). The lemma above can be generalized to non-regular graphs, cf.
[Chu97].

A complete proof of the discrete Cheeger inequality can be found for example in
[HLW06, Theorem 4.11, p. 474ff] or in [Lub94, Propositions 4.2.4 and 4.2.5]. In the
proof, the eigenvalues of the adjacency matrix are estimated using Rayleigh quotients
(cf. Section 2.3), which then can be bounded by the expansion parameters. This
utilizes that multiplying the adjacency matrix with 0-1-vectors from both sides can
be interpreted as counting the edges between two vertex sets with these “indicator
functions” (that is: a vertex is in the set, if the corresponding vector has a one at
this position). The lower bound on h0(G) is given by lemma 3.2.2 on the next page.

The main statement of the Cheeger inequality is that spectral and combinatorial
expansion for graphs are qualitatively the same. However, the values of the different
expansion parameters need not be equal, which can be problematic in estimates
using them. To understand the difference between the two definitions it is useful to
look at the estimates on graph properties that arise “naturally”.

On the one hand, this is already clear from the definition of the combinatorial
expansion parameter: h0(G) is the biggest constant such that the number of edges
between two complementary sets |E(S, V \S)| can be lower-bounded by a linear
function in |S| with slope h0(G) (up to some normalizing constants).
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The eigenvalue gap, on the other hand, turns out to establish a lower bound by
a quadratic function in |S|! This can be seen by – following [Tre11] – defining the
notion of the minimal sparsity of a cut:

Definition 3.2.2 (Minimal Sparsity of a Cut). Let G = (V,E) be a d-regular graph.
The minimal sparsity (of a cut) φ(G) is defined as:

φ(G) = min
∅6=S(V

|E(S, V \S)|
d
|V | · |S| · |V \S|

(3.2.4)

If G is not regular, then d can be replaced by the average degree (cf. handshake
lemma):

d =
2|E|
|V |

(3.2.5)

By applying the handshake lemma for d-regular graphs (2|E| = d|V |) and by
rewriting the eigenvalue gap using Rayleigh quotients, a connection between minimal
sparsity, combinatorial expansion and the eigenvalue gap can be drawn. This already
gives one direction of the Cheeger inequality, called the “easy one”.

Lemma 3.2.2. Let G = (V,E) be a d-regular graph with minimal sparsity φ(G),
combinatorial expansion parameter h0(G) and eigenvalue gap λ(G). Then we have:

λ(G)

d
≤ φ(G) ≤ h0(G) (3.2.6)

For a non-regular graph, this chain of inequalities holds, if we replace d by the
average degree:

d =
2|E|
|V |

(3.2.7)

Indeed, φ(G) and λ(G) can be calculated by minimizing the Rayleigh quotients for
the adjacency matrix (up to some normalization, or for the Laplacian matrix) among
all 0-1-vectors (indicator functions of subsets of V ) or all real vectors, respectively.
Hence, the eigenvalue gap is a “continuous relaxation” of the minimal sparsity and
the first inequality follows directly.3

The first inequality immediately gives the claimed quadratic lower bound on the
number of edges:

∀S ⊆ V : |E(S, V \S)| ≥ φ(G) · d · |S| · |V \S|
|V |

≥ λ(G) · |S| · |V \S|
|V |

(3.2.8)

Neither of the two lower bounds (linear or quadratic) is better than the other
and both have their applications. The following two examples visualize these lower
bounds in the case of the complete graph and for some arbitrary graph. In one case,
the spectral lower bound holds with equality, in the other case, the combinatorial
lower bound is better.
3This gives the hint, that the eigenvalue gap is linked to the expansion parameters for cochains

with coefficients from R instead of Z.
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Example 2 (Complete Graph). Let Kn = (V,E) be the complete graph on n
vertices, that is, the graph containing all possible edges. We have:

|V | = n, |E| =
(
n

2

)
=
n(n− 1)

2
(3.2.9)

As the graph is complete, every vertex set S of size |S| = s has the same amount of
edges to its complement:

|E(S, V \S)| = |S| · |V \S| = |S|(|V | − |S|) = s(n− s) (3.2.10)

The combinatorial expansion parameter hence can be calculated by:

h0(Kn) =
|V |
|E|

min
∅6=S(V
|S|≤ |V |

2

|E(S, V \S)|
|S|

(3.2.11)

=
2

n− 1
min

0<s≤n
2

s(n− s)
s

(3.2.12)

=

{
n
n−1

if n ∈ 2N
n+1
n−1

if n ∈ 2N+ 1
(3.2.13)

A short calculation shows that λ(Kn) = n, hence the spectral lower bound turns
out to be exact (|S| = s):

s(n− s) = |E(S, V \S)| ≥ n
s(n− s)

n
= s(n− s) (3.2.14)

Fig. 3.3 on the facing page illustrates the combinatorial lower bound.

Example 3. This example shows the lower bounds for a randomly generated graph.
Fig. 3.4 on the next page shows the graph and illustrates the expansion properties.
As in this case the explicit choice of the subset S is relevant for the amount of edges,
here |E(S, V \S)| is minimized over all subsets of a given size. On the x-axis the
size of the subset is plotted. The subset of vertices, where the minimum for the
calculation of h0(G) is taken, is marked red in the illustration of the graph.

As we can see here, the combinatorial lower bound is better than the spectral one
for all choices of subsets.

3.2.1 High-Dimensional Laplacians

To generalize the definition of spectral expansion or eigenvalue gap to higher dimen-
sions it is first necessary to define “high-dimensional Laplacians”. In this thesis we
will follow the construction sketched in [GW16].

In the case of graphs the eigenvalues of the Laplacian could be linked to Z2-
expansion using Rayleigh quotients. As remarked at that point, in the calculation
of the Rayleigh quotients all real vectors are considered, while for Z2-expansion only
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Lower Bounds by Expansion

|E(S,V\S)|

by h 0(G)

Fig. 3.3: Illustration of the combinatorial lower bound for the complete graph Kn

(n = 10). The size of the subset S is plotted on the x-axis, the relative
size of the set of edges between the set and its complement and the lower
bounds are plotted on the y-axis. The spectral lower bound coincides with
the number of edges here.
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|S|
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0.4
Lower Bounds by Expansion

|E(S,V\S)|

by h 0(G)

by λ(G)

Graph

Fig. 3.4: Illustration of the lower bounds for a specific randomly generated graph.
The size of the subset S is plotted on the x-axis, the relative size of the
set of edges between the set and its complement and the lower bounds are
plotted on the y-axis.
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cochains with Z2-coefficients (corresponding to subsets of vertices) are important.
It is therefore reasonable to work with coefficients in R to define high-dimensional
eigenvalue gaps. Moreover, the Rayleigh quotients need a scalar product, thus the
(weighted) `2-norm is the preferable choice. Hence, in this chapter, we will work
with the Hilbert spaces

(
Ck(X;R), (., .)2

)
.

Graph Laplacians were introduced using discrete analogies of gradient and diver-
gence. However, it is not obvious, how these should look like in higher dimensions.
Here the approach for the matrix representation is easier. Recall, that the matrix
representation of the graph Laplacian is KTK with the incidence matrix K. The
incidence matrix can now be generalized using the oriented incidence numbers:

Definition 3.2.3 (High-Dimensional Incidence Matrix). Let X be a d-dimensional
simplicial complex and let 0 ≤ k < d be a natural number. The k-dimensional
incidence matrix Kk is defined as the |X(k + 1)| × |X(k)|-matrix indexed by the k-
and (k + 1)-faces of X with the entries:

(Kk)F,G := [F : G] (3.2.15)

This definition depends on a choice of orientation/ordering of the vertices (as the
incidence numbers do). Kk can be interpreted as the representation matrix of a
linear map between Ck(X;R) and Ck+1(X;R) with respect to the (standard) basis(
1{F}

)
F∈X(k)

of indicator functions. Equation 2.2.16 on page 18 shows that this map

is exactly the kth coboundary map δXk .
Using the incidence matrix the Laplacian could be defined just as for graphs as

KT
k Kk. However, as we allow the weighted `2-scalar product we have to be more

general here. In the unweighted Hilbert space, KT
k is just the matrix representation

of the Hilbert space adjoint of Kk with respect to the standard `2-scalar product,
but in the weighted case we have to take the adjoint with respect to the weighted
scalar product. That is, we need to find a linear map δ∗k that satisfies:

(δkf, g)2 = (f, δ∗kg)2 ∀f ∈ Ck(X;R), g ∈ Ck+1(X;R) (3.2.16)

δ∗k can be calculated evaluating this equation for example by substituting f and g
by indicator functions to get, for any f ∈ Ck+1(X;R) and G ∈ X(k):

(δ∗kf) (G) =
∑

F∈X(k+1)

w(F )

w(G)
[F : G] f(F ) (3.2.17)

In the graph case with trivial weights this is just the definition of divergence, as
expected. In the homology theory of simplicial complexes this map is also known as
the boundary map ∂k+1 (with trivial weights, after identifying chains and cochains
in a natural way).

The high-dimensional Laplacian can now be defined in the same manner as for
graphs:
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Definition 3.2.4 (High-Dimensional Laplacians). Let X be a d-dimensional sim-
plicial complex and let 0 ≤ k < d be a natural number.

The up-Laplacian ∆up
k , the down-Laplacian ∆down

k and the Laplacian ∆k of X are
defined as:

∆up
k := δ∗kδk (3.2.18)

∆down
k := δk−1δ

∗
k−1 (3.2.19)

∆k := ∆up
k + ∆down

k (3.2.20)

All Laplacians are linear maps from Ck(X;R) to itself, where the up-Laplacian
first goes “up” in dimension and then “down” and the down-Laplacian first goes
“down” and then “up”. The up-Laplacian is the most important Laplacian for our
purposes and generalizes the definition of Laplacians for graphs. In this thesis,
mainly the up-Laplacian will be used.

From the definition and the properties of adjoint maps we get the following proper-
ties of the Laplacians:

Lemma 3.2.3 (Properties of the Laplacians). Let X be a simplicial complex with
up-Laplacian ∆up

k . Then:

(i) ∆up
k is self-adjoint (i.e. (∆up

k )∗ = ∆up
k ).

(ii) ∆up
k is positive semidefinite (i.e. (∆up

k f, f)2 ≥ 0, for all f).

(iii) Bk(X;R) ⊆ Zk(X;R) ⊆ ker ∆up
k , hence 0 is an eigenvalue of ∆up

k , 0 ∈ σ(∆up
k ).

Proof. (i) and (ii) follow directly from the definition and (iii) follows from the fact
that already δkf = 0, hence ∆up

k f = δ∗kδkf = 0 for all f ∈ Zk(X;R) = ker δk.

The up-Laplacian (and similarly the down-Laplacian) for trivial weights can be
calculated directly from the definition, which yields a representation ∆up

k
∼= Dk−Ak

with a degree matrix Dk and a high-dimensional analogue of the adjacency matrix
Ak. Starting with an arbitrary cochain f ∈ Ck(X;R) and a face G ∈ X(k), we
compute:

(∆up
k f) (G) =

∑
F∈X(k+1)

[F : G] (δkf)(F ) (3.2.21)

=
∑

F∈X(k+1)

[F : G]

 ∑
H∈X(k)

[F : H] f(H)

 (3.2.22)

=

 ∑
F∈X(k+1)

[F : G] [F : G]

 f(G) (3.2.23)

+
∑

G 6=H∈X(k)

∑
F∈X(k+1)

[F : G] [F : H] f(H) (3.2.24)
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The incidence number [F : G] is zero if and only if the face G is no facet of F .
Thus, the first sum counts just the faces F that contain G and is therefore equal to
degk+1(G). The second term looks more complicated, but the double sum reduces
to a single sum, because:

[F : G] [F : H] 6= 0 =⇒ F = G ∪ {u} = H ∪ {v}, u 6= v ∈ X(0) (3.2.25)

=⇒ G ∩H = F\{u, v}, F = G ∪H (3.2.26)

As a consequence, the only term in the sum over all F that does not vanish is the
term F = G ∪H. The set G ∪H need not be a face in X, so we need to condition
on that:

(∆up
k f) (G) = degk+1(G)f(G) +

∑
G 6=H∈X(k)
G∩H∈X(k−1)
G∪H∈X(k+1)

[G ∪H : G] [G ∪H : H] f(H) (3.2.27)

From this equation it is clear how a degree matrix Dk and an adjacency matrix
Ak has to look like to guarantee ∆up

k
∼= Dk − Ak:

Definition 3.2.5 (High-Dimensional Degree and Adjacency Matrix). Let X be a
d-dimensional simplicial complex and let 0 ≤ k < d be a natural number.

The degree matrix Dk of dimension k is defined as the |X(k)| × |X(k)|-diagonal
matrix indexed by the k-faces of the complex with the entries (F ∈ X(k)):

(Dk)F,F = degk+1(F ) (3.2.28)

The adjacency matrix Ak of dimension k is defined as the |X(k)| × |X(k)|-matrix
indexed by the k-faces of the complex with the entries (G,H ∈ X(k)):

(Ak)G,H =

{
− [G ∪H : G] [G ∪H : H] if G ∩H ∈ X(k − 1), G ∪H ∈ X(k + 1)

0 else

(3.2.29)

To get back to expansion, we now want to define the spectral gap for the up-
Laplacian:

Definition 3.2.6 (Trivial Eigenvalues and Spectral Gap of up-Laplacian and Spec-
tral Expansion). Let X be a d-dimensional simplicial complex with up-Laplacian
∆up
k , 0 ≤ k < d, and let λ1 ≤ λ2 ≤ · · · ≤ λ|X(k)| be the eigenvalues of ∆up

k .
The eigenvectors of ∆up

k to the eigenvalue 0 that belong to Bk(X;R) are called
trivial eigenvectors.

The eigenvalue gap (or spectral gap) λk = λk(X) of X is defined as the smallest
non-trivial eigenvalue λdim Bk(X;R)+1:

λk(X) := λdim Bk(X;R)+1 (3.2.30)

If λk(X) > 0, the complex X is said to be spectrally expanding in dimension k
with spectral expansion parameter λk(X).

42 c© Georg Hofstätter 2017



3.2 Spectral Expansion

The spectral gap λk(X) can be calculated using the Rayleigh quotient:

λk(X) = min
f⊥Bk(X;R)

(∆up
k f, f)2

(f, f)2

, (3.2.31)

where the minimum is taken among all cochains that are orthogonal (with respect
to the weighted `2-scalar product) to the coboundaries. From this equation the
connection to R-coboundary expansion can be seen. Using the property of an adjoint
map we have:

(∆up
k f, f)2 = (δ∗kδkf, f)2 = (δkf, δkf)2 = ‖δkf‖2

2 (3.2.32)

Moreover, the condition f ⊥ Bk(x;R) immediately implies that ‖f‖2 = ‖[f ]‖2, be-
cause in the Hilbert space case the projection to equivalence classes modulo cobound-
aries becomes the orthogonal projection to the orthogonal complement of the sub-
space of coboundaries. As a result, we have the equation:

λk(X) = min
f⊥Bk(X;R)

‖δkf‖2
2

‖f‖2
2

(3.2.33)

= min
f∈Ck(X;R)\Bk(X;R)

‖δkf‖2
2

‖[f ]‖2
2

(3.2.34)

= hkR(X)2, (3.2.35)

where hkR(X) denotes the coboundary expansion parameter with respect to R-coeffi-
cients and the weighted `2-norm.

This also shines a different light on spectral expansion for graphs and the Cheeger
inequality there: The Cheeger inequality shows the (qualitative) equivalence of
coboundary expansion with Z-coefficients and Hamming norm to coboundary ex-
pansion with R-coefficients and (weighted) `2-norm.
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High-dimensional expansion allows many fields of applications, which makes it very
interesting for research. Already the historical ancestor “graph expansion” could be
applied in many fields like algorithms and communication networks (cf. [HLW06] for
a survey). High-dimensional expansion extends the applications further, leading to
a rich field for research. In this thesis we will only survey some of the applications
to give the reader a feeling of what is possible. We will give an introduction of
the geometric properties of expansion established by Gromov’s theorem, show the
connection between expansion and property testing and give a hint how expansion
can be used in quantum computing as well as to construct good error correcting
codes.

For further information we refer to the literature cited in the corresponding sub-
sections.

4.1 Topological Overlapping – Gromov’s Theorem

As already remarked in the last chapter 3, high-dimensional expansion yields geo-
metric properties of the simplicial complex. Thus, the first application of expansion
that we want to discuss is the connection between combinatorial expansion and the
geometry of the complex.

We start with an arbitrary simplicial (or polyhedral cell) complex X. Although
it is defined as an abstract combinatorial structure, a simplicial complex can be
identified with a topological space, called its geometric realization. Indeed, a k-
dimensional face can be viewed as the convex hull of (k+ 1) points in an Euclidean
space RN , that is, the vertex set of the simplicial complex is identified with points
in the Euclidean space and subsets of the vertex set correspond to the convex hulls
of these subsets. If we take for example a 2-dimensional simplex σ, then we have a
subset of three points σ = {v0, v1, v2} that lie for example in R2. This corresponds
to a triangle like in Fig. 4.1 on the next page. The facets of σ are the three subsets
consisting of two of the vertices, corresponding to the edges on the boundary of the
triangle, and likewise for the vertices of the triangle.

If we pick the vertices from an Euclidean space of sufficiently large dimension (one
dimension for every vertex in X(0) is enough), we can guarantee that there are no
intersections between different disjoint simplices. As a subset of RN , the geomet-
rical realization of the simplicial complex is equipped with the subspace topology
of the Euclidean topology and hence a topological space on its own. An embedding
of the simplicial complex into an Euclidean space Rd is a continuous map from the
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{v0, v1, v2}

{v0, v1}

{v1, v2}
{v0, v2}

v0

v1

v2

Fig. 4.1: Illustration of a 2-dimensional simplex

geometric realization (all geometric realizations are homeomorphic) to Rd that is a
homeomorphism (i.e. the map is bijective and its inverse map is also continuous)
onto its image. As a finite simplicial complex always has a compact geometric real-
ization, the image under a continuous map is also compact. Moreover the Euclidean
space is a Hausdorff space, hence if we assume injectivity of the map, then it is
already a homeomorphism.

The natural question in this context now is the following:

For a given simplicial complex X and a given Euclidean space Rd, is
there an embedding of X into Rd? If not, what are the obstructions?

This general question can be specialized to:

Is there an embedding of a given d-dimensional simplicial complex into
Rd?

As the question before, this question can be very difficult and has inspired a lot
of research. In this setting, it is helpful to consider the following, slightly different
question:

For a given continuous map from the geometric realization of a d-dimen-
sional simplicial complex X to Rd, is the map injective? If it is not
injective, how far is it from being injective?

This leads to the notion of intersection, heavily covered or overlap points. These
are points that have a preimage that consists of more than one point and thus the
existence of such points can be used for quantitative non-embeddability results.

Simplifying the problem further, we only consider affine maps at first, that is,
we consider only functions that map the vertices of the simplicial complex into Rd
and interpret the convex hulls of the images of a subset of vertices as the image
of the corresponding face. For the complete simplicial complex (consisting of all
possible subsets of the vertex set) we can forget about the simplicial complex and
only consider points in Rd and their convex hulls.

The following theorem of Endre Boros and Zoltan Füredi solves this problem for
points in the plane:
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Theorem 4.1.1 (Boros, Füredi, [BF84]). Let P = {P1, P2, . . . , Pn} be a family of
n points in the plane R2 such that no three of them lie on a line (hence, every three
of them form a triangle). These points form

(
n
3

)
triangles in the plane.

Then there exists a point X ∈ R2 that lies in the interior of at least

n3

27
+O(n2) =

2

9

(
n

3

)
+O(n2) (4.1.1)

of the triangles. We say that X is covered by these triangles.

The proof uses elementary geometric arguments. It can be found in [BF84].
Formulated in terms of simplicial complexes, the theorem implies that the 2-

skeleton X(2) of the complete complex on n vertices cannot be affinely embedded
into R2.

The theorem of Boros and Füredi was generalized to higher dimensions by Imre
Bárány:

Theorem 4.1.2 (Bárány, [Bá82]). Let P = {P1, P2, . . . , Pn} be a family of n points
in Rd. These points form

(
n
d+1

)
(maybe degenerated) d-simplices in Rd.

Then there exists a point X ∈ Rd that lies in at least

1

(d+ 1)d+1

(
n

d+ 1

)
+O(nd) (4.1.2)

of the d-simplices.

The proof uses the theorems of Carathéodory and of Tverberg about convex hulls
of points in Rd. It can be found in [Bá82].

Again, there is a point that is covered by a fixed fraction of all d-simplices. Thus,
the d-skeleton of the complete complex cannot be embedded into Rd. But what about
other complexes that are sparser? The answer to the question depends critically on
the complex, of course. A single triangle, for example, can certainly be embedded
into the plane, whereas the skeletons of complete complexes definitely cannot. To
distinguish between these cases, the notion of geometric expansion was introduced:

Definition 4.1.1 (Geometric Expansion). Let X be a d-dimensional simplicial com-
plex.
X is said to be geometrically ε-expanding or geometrically ε-overlapping, if for

every affine map f from the geometric realization of X into Rd there is a point
x ∈ Rd that is in the image of at least an ε-fraction of all d-simplices of X, that is:

|{σ ∈ X(d) |x ∈ f(σ)}| ≥ ε |X(d)| (4.1.3)

(f(σ) denotes the image of the subset of the geometric realization that corresponds
to the face σ.)
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Following this definition, the skeletons of complete complexes possess “good”
geometric expansion properties, while the triangle for example does not. Logically,
the name “geometric expansion” seems quite arbitrary as the connection to high-
dimensional expansion as introduced in Chapter 3 is far from obvious. Indeed, the
link is established by Gromov’s topological overlap theorem. In the proof of this
theorem a new method is used that utilizes coboundary expansion to prove the
stronger property of topological expansion:

Definition 4.1.2 (Topological Expansion). Let X be a d-dimensional simplicial
complex.
X is said to be topologically ε-expanding or topologically ε-overlapping, if for

every continuous map f from the geometric realization of X into Rd there is a
point x ∈ Rd that is in the image of at least an ε-fraction of all d-simplices of X,
that is:

|{σ ∈ X(d) |x ∈ f(σ)}| ≥ ε |X(d)| (4.1.4)

(f(σ) denotes the image of the subset of the geometric realization that corresponds
to the face σ.)

Of course, every affine map is continuous but not vice versa. Hence, to be topo-
logically expanding is a much stronger condition. By the following theorem it is a
consequence of high-dimensional expansion! The next theorem is the reason for the
name “topological expansion” and a big motivation to study coboundary/cosystolic
expansion:

Theorem 4.1.3 (Gromov, [Gro10], [DKW15]). Let X be a d-dimensional simplicial
complex with normalized Hamming norm ‖·‖X on the cochains.

Let L, ϑ > 0 be constants. Then there exists a constant ε0 = ε0(L, ϑ, d) used in
the statement of the theorem for technical purposes.

Assume X fulfills the following properties:

• X is a cosystolic expander with respect to ‖·‖X in every dimension 0 ≤ k ≤ d,
that is, it has ϑ-large cosystoles in every dimension and fulfills a co-filling
inequality with constant L.

• X is locally ε-sparse with ε ≤ ε0, that is, for every face τ ∈ X and every
0 ≤ k ≤ d we have:

|{σ ∈ X(k) | τ ∩ σ 6= ∅}| ≤ ε |X(k)| (4.1.5)

Under this conditions there exists a constant µ = µ(L, ϑ, d, ε) > 0 such that for
every continuous map f from the geometric realization of X to Rd there is a point
p ∈ Rd that is “overlapped” by at least a µ-fraction of the d-faces, that is:

|{σ ∈ X(d) | p ∈ f(σ)}| ≥ µ |X(d)| (4.1.6)

(As before, f(σ) denotes the image of the subset of the geometric realization that
corresponds to the face σ.)
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A proof of this theorem would need several new notions to be introduced and
leads too far from the core of this thesis. It will thus be omitted. A proof can be
found in [DKW15].

The theorem stated here is not the most general form of Gromov’s overlap theo-
rem. Indeed, X need only be a general cell complex with an arbitrary (normalized)
norm on the cochains and the co-domain of the map under consideration may be
any compact connected d-dimensional piecewise-linear manifold. The theorem then
yields a result in terms of the chosen norm (in our case the norm is the normal-
ized Hamming norm). If the chosen norm is an `p-norm, the result may not give
estimates on the number of simplices overlapping the point p, but it still gives the
qualitative statement that the complex cannot be embedded into Rd.

Gromov’s theorem is insofar surprising as it establishes a connection between the
(purely) combinatorial concept of coboundary/cosystolic expansion and a geometric
property like topological overlapping. However, it is plausible that the structure of
the complex has a strong influence on its embeddability and coboundary expansion
seems to be a good/the right measure to quantify this behaviour.

Indeed, Gromov’s theorem can be checked (and is trivial) for the lowest dimension,
namely for the embeddability of a 1-dimensional complex (a graph) into the real line:

Example 4 (Topological Overlapping in the Graph Case). Let G = (V,E) be an
arbitrary connected graph and f an arbitrary map from the geometric realization
of G into the real line as illustrated in Fig. 4.2 on the following page. Now consider
the images of the vertices under f , {f(vi) | vi ∈ V }, and choose an arbitrary point
p ∈ R\{f(vi) | vi ∈ V } such that there is at least one point f(vi) left from (smaller
than) p and at least one point right from (larger than) p. The point p now partitions
f(V ) = {f(vi) | vi ∈ V } into two subsets f(S) and f(S̄), S, S̄ ⊆ V , namely the set
of points smaller than p and that larger than p, respectively. We thus have:

V = S t S̄ and f(V ) = f(S) t f(S̄) (4.1.7)

The number of (images of) edges that overlap p is now – due to the intermediate
value theorem – greater or equal to the number of edges |E(S, S̄)| between S and
S̄. Indeed, any edge that is incident to a vertex from S and one from S̄ gives rise to
a path (the image of the edge under f) in R that starts left from p and ends right
from p. By the intermediate value theorem the point p must lie on the path and
thus in the image of the edge. Moreover, there may be other edges inside S or S̄
that “hit” p, thus greater or equal. Hence, we have:

|{e ∈ E | p ∈ f(e)}| ≥ |E(S, S̄)| (4.1.8)

The right-hand side of the inequality can now be estimated by the coboundary
expansion h0(G) (with unnormalized Hamming norm) of the graph and the minimal
size of S and S̄:

|{e ∈ E | p ∈ f(e)}| ≥ |E(S, S̄)| ≥ h0(G) min{|S| ,
∣∣S̄∣∣} (4.1.9)
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If we now pick a point p ∈ R such that |S| ≈ |V |
2
≈ |S̄|, we get one of the points

promised by Gromov’s theorem with the constant:

µ ≈ h0(G)

2

|V |
|E|

(4.1.10)

G

v0

f

f(v0)p

ℝ

Fig. 4.2: Illustration of topological overlapping in the case of a graph (example 4 on
the preceding page)

Due to Gromov’s theorem, there are great efforts to find families of bounded degree
cosystolic expanders, because these families are automatically topologically expand-
ing. The question whether there exist infinite families of topological expanders was
posed by Gromov in [Gro10] and (partially) answered in the work of Tali Kaufman,
David Kazhdan, Alexander Lubotzky and Shai Evra ([KKL14a, KKL14b, EK15]).
In [LM13] and [LLR15] other examples are given by Alexander Lubotzky, Roy
Meshulam, Zur Luria and Ron Rosenthal.

4.2 Property Testing

Beside the geometric/topological application, high-dimensional expansion also ap-
pears in the theory of property testing (as observed in [KL13]). Indeed, it can be
shown that Z2-coboundary expansion is just a reformulation of testability of the
subspace of coboundaries inside the space of cochains. In this section we follow the
discussion in [KL13] on this topic.

In property testing we have given an element from a certain space and want to
develop a (random) test that asserts whether the element is in a given subspace or
not. If the element is contained in the subspace, then we want to give the correct
answer “yes”, while in the other case we want to give the answer “no” with a
certain probability. This probability should be bounded or estimated in terms of
the “distance” of the element to the subspace, that is, we allow more errors if we
are close to the subspace and less if we are far away. In this thesis we only want to
consider linear bounds as these are the cases linked to expansion.
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The easiest test fulfilling this property is to take every element of the subspace
and compare it with the given element. However, this will not be very efficient
especially for big subspaces. Thus, a very important quality attribute of a test is
its complexity, that is, how expensive it is to perform the test. This leads to a
compromise, as low complexity can sometimes only be obtained by allowing bad
error probabilities.

Altogether, this leads to the following definition of testability (cf. [KL13]):

Definition 4.2.1 (Testability). Let A be a finite set of “values”, let Wn ⊆ An be
a subset of “tuples of values” and let Pn ⊆ Wn be the subset of “tuples possessing
a property”. We want to test the property, that is, whether an element x ∈ Wn is
element of Pn or not. Let q ∈ N and ε > 0 be constants independent of n.

This property is said to be (q, ε)-testable, if there exists a (randomized) algorithm
(called the tester) that – given x ∈ Wn – queries at most q of the n coordinates and
then answers “yes” or “no” with the following two conditions :

P(algorithm answers “yes”|x ∈ Pn) = 1 (4.2.1)

P(algorithm answers “no”|x 6∈ Pn) ≥ ε
dist(x, Pn)

n
(4.2.2)

Here, P(·) denotes the probability measure for the randomized algorithm and by
dist(x, Pn) we denote the Hamming distance of x to the set Pn, i.e., for the co-
ordinates xi and pi of x and p, respectively:

dist(x, Pn) = min
p∈Pn
|{1 ≤ i ≤ n | pi 6= xi}| (4.2.3)

A popular example of a testable property is the linearity of functions (interpreting
elements from AB

n
as functions from Bn to A). We want to show another example,

namely the testability of the property “to be a coboundary” in the set of cochains
of a simplicial complex, which turns out to be equivalent to coboundary expansion.

4.2.1 Testability and Coboundary Expansion

Proving testability requires the definition of a testing algorithm. Thus, we introduce
the so-called cocycle tester:

Definition 4.2.2 (Cocycle Tester). Let X be a d-dimensional simplicial complex
and let 0 ≤ k ≤ d− 1. We consider values from Z2, that is, A = Z2, and the space
Ck(X;Z2) of cochains with Z2-coefficients, interpreted as Z|X(k)|

2 in a natural way.
The cocycle tester works in the following way when given an arbitrary cochain

f ∈ Ck(X;Z2):

1. Choose a (k + 1)-simplex τ uniformly at random from X.

2. Evaluate δkf(τ).
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3. If δkf(τ) = 0 answer “Yes, f is a cocycle”, else answer “No, f is no cocycle”.

In the second step, the cocycle tester queries exactly k + 2 simplices in X(k),
namely the facets of τ , to calculate the value of δkf . If the tested cochain f is
indeed a cocycle, then the cocycle tester will always answer “yes”. The next lemma
gives an answer for the other case:

Lemma 4.2.1. Let X be a d-dimensional simplicial complex and let 0 ≤ k ≤ d− 1.
Let hk(X) be the coboundary expansion parameter in dimension k with respect to
the normalized Hamming norm ‖·‖X .

Then we have that hk(X) > 0 is equivalent to the property of being a coboundary
(that is, Pn ∼= Bk(X;Z2) and Wn

∼= Ck(X;Z2)) is (k + 2, hk(X))-testable using the
cocycle tester.

Observe that we use a cocycle tester to test the property of being a cobound-
ary. Testability thus already implies vanishing cohomology. Indeed, if there were
a cocycle that is no coboundary, then the tester would give the wrong answer with
probability one. Hence, the algorithm would not qualify as a tester.

Proof. We start by reformulating the definition of testability. When does the cocycle
tester fail? – If we got a cochain f , that is no cocycle, and we evaluate its coboundary
on a simplex that is not in the support of the coboundary. On the other hand, the
cocycle tester gives the correct (negative) answer if – by coincidence – we sample a
simplex that is in the support of δkf . Among all (k + 1)-simplices these simplices
make the tester work correctly. Hence, we have:

P(algorithm answers “no”|f 6∈ Bk(X;Z2)) =
|δkf |

|X(k + 1)|
= ‖δkf‖X (4.2.4)

Moreover, the Hamming distance of a cochain f to the subset of coboundaries is
nothing than the Hamming norm on the quotient space modulo coboundaries:

dist(x,Bk(X;Z2)) = |[x]| (4.2.5)

Putting this together, we obtain that the property of being a coboundary is (k+2, ε)-
testable if and only if:

‖δkf‖X ≥ ε
|[f ]|
|X(k)|

= ε ‖[f ]‖X (4.2.6)

But this is exactly the defining inequality for the coboundary expansion parameter
and thus the two concepts are equivalent.

We see that testing this property and high-dimensional expansion are just differ-
ent viewpoints on the same problem. However, there is also a connection between
(graph) expansion and more general property testing as the next section shows.
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4.2.2 Testability and Constraints

Expansion also appears if we test properties that are defined by constraints. Take
for example the cocycle tester from the last section: A cochain f is a cocycle if its
coboundary δf evaluates to zero on every face in one dimension higher. Every such
face τ poses the constraint that δf(τ) = 0. If f meets all these constraints then it
is indeed a cocycle.

A constraint-defined property now corresponds to a subset Pn that is defined
likewise by a set of constraints. Every constraint can be seen as a function depending
on a subset of coordinates that evaluates to one if an element x ∈ An meets the
constraint and zero else.

For a given constraint-defined property it is simple to define a candidate for a
tester. Namely, we could define a tester that makes the following steps to test an
element x ∈ Wn:

1. Choose a constraint uniformly at random (or distributed according to a chosen
probability distribution) from the set of all constraints.

2. Check if x meets the constraint and answer accordingly.

The cocycle tester from above is such a “constraint tester” where the constraints
are indexed by the (k + 1)-dimensional faces.

Besides the simplicity of defining a tester, constraint-defined properties allow quite
a nice illustration/description in terms of graphs. Namely, we can consider a graph
G (called the constraint graph) that contains a vertex for every coordinate in An.
As edges we choose the sets of two coordinates such that there exists a constraint
which uses both of the coordinates.1

Back in the example of the cocycle tester, we would get a graph which has the
k-simplices of X as vertices and two k-simplices are connected by an edge if and
only if there is a (k + 1)-simplex in X that contains both of them.

For the easiest case that all constraints depend on exactly two coordinates, the
constraint graph G allows to interpret the probability of rejection by this tester in
graph-theoretical terms, namely the fraction of edges rejecting the element.

If we assume that the property is testable by this tester, we can already deduce
(under some technical preconditions) graph-theoretical properties of the constraint
graph (following [DK12]):

Lemma 4.2.2. Let Pn be a constraint-defined property such that every constraint
depends on exactly two coordinates and let G = (V,E) be its constraint graph. De-

note by d = 2|E|
|V | its average degree and let ∆ be the relative distance of Pn, that is

(using the Hamming distance dist):

∆ :=
minp1 6=p2∈Pn dist(p1, p2)

n
> 0 (4.2.7)

1One could also define a hypergraph on the same vertex set with hyperedges for all constraints.
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Moreover, let Pn be non-degenerate, that is (using the projection πA onto the
coordinates defined by A):

∀A ⊆ {1, . . . , n} : ∃x 6= y ∈ πA(Pn) : dist(x, y) >
|A|
3

(4.2.8)

If Pn is (q, ε)-testable by the tester described above the lemma (and arbitrary,
unimportant q), then the graph G is edge expanding on small sets:

∀S ⊆ V, |S| < 3∆

4
|V | : |E(S, V \S)| ≥ ε

3

d

2
|S| (4.2.9)

Proof. We want to prove the lemma by contraposition, i.e. we have to show for any
subset S ⊆ V :

|E(S, V \S)| < ε

3

d

2
|S| =⇒ |S| ≥ 3∆

4
|V | (4.2.10)

Let S be an arbitrary subset of V and define γ := |S|
3|V | . Since Pn is non-degenerate

we can find two elements a, a′ ∈ πS(Pn) that have a large distance:

dist(a, a′) >
|S|
3

= γ|V | (4.2.11)

The element a is in the projection of Pn to the subset S of coordinates. Hence, there
exists an element b ∈ πV \S(Pn) such that w := (a, b) ∈ Pn (just pick any point in the
preimage of a under the projection and project it onto the other coordinates). Let
w′ ∈ Pn be the point that is closest to (a′, b) with respect to the Hamming distance.
We have w 6= w′. Indeed, if we would have w = w′, then:

dist((a′, b), Pn) = dist((a′, b), w) = dist(a′, a) > γ|V | (4.2.12)

As Pn is testable we thus obtain:

P(algorithm rejects (a′, b)|(a′, b) 6∈ Pn) ≥ ε
dist((a′, b), Pn)

n
> εγ (4.2.13)

This leads to a contradiction if we think about what it means that the algorithm
rejects (a′, b): We know that a′ ∈ πS(Pn) and b ∈ πV \S(Pn). They are coordinates
of points that already lie in Pn. Hence, the constraints that depend only on co-
ordinates in S and only on coordinates in V \S are fulfilled. The only constraints
that may reject (a′, b) are those that depend on coordinates both from S and V \S,
corresponding to edges between S and V \S:

P(algorithm rejects (a′, b)|(a′, b) 6∈ Pn) =
|E(S, V \S)|
|E|

(4.2.14)
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This is the point, where the connection to expansion is established. Assuming that
there are few edges between the two parts (as we do) we get a contradiction on
w = w′:

P(algorithm rejects (a′, b)|(a′, b) 6∈ Pn) =
|E(S, V \S)|
|E|

<
ε

3

d

2

|S|
|E|

= εγ (4.2.15)

Using the definition of the testability property we further obtain:

dist((a′, b), w′) = dist((a′, b), Pn) (4.2.16)

≤ P(algorithm rejects(a′, b)|(a′, b) 6∈ Pn)|V |
ε

< γ|V | (4.2.17)

From this we can deduce a lower bound on the size of S. By the inverse triangle
inequality for the Hamming distance, we get:

|S| ≥ dist(a, a′) = dist((a, b), (a′, b)) ≥ dist(w,w′)︸ ︷︷ ︸
≥∆|V |

− dist(w′, (a′, b))︸ ︷︷ ︸
<γ|V |

≥ (∆− γ)|V |

(4.2.18)

Altogether, using γ = |S|
3|V | :

|S| ≥ 3∆

4
|V |, (4.2.19)

and that proves expansion for small sets.

This lemma is not the last connection between expansion and testing. Indeed,
it can be shown that (another) generalization of expansion to higher dimensions
(linked with the convergence of high-dimensional random walks) implies a property
called agreement expansion that is defined in a quite similar way and is used for
so-called agreement tests. These tests work with functions that are partially defined
on subsets and check whether these functions can be extended to a global function
or not. For more information see [DK17].

4.3 Error Correcting Codes

Another application of expanders is the construction of codes. Technically speaking,
a code is a subset C ⊆ Zn2 of binary words that is used to transmit information. In
the trivial code we have C = Zn2 , where every word is used as code word. However,
if there is any noise or other sources of errors, codes also allow to implement error
correcting algorithms. For this reason, bits are added which leads to a code C ( Zn2 .
Two code words have a Hamming distance, that is, we can count the number of
coordinates where they differ. By choosing a code where the minimal Hamming
distance of two code words is big, we can correct small errors by taking the code
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word that is next to the perturbed word. This leads to the definition of the distance
d of a code C, namely the minimal Hamming distance of two code words.

As adding more bits (and thus getting a higher distance) leads to more bits that
have to be transferred, a quality attribute of codes is the so-called rate. If the code
is a k-dimensional linear subspace of Zn2 , the rate is defined as R = k

n
, that is, the

ratio of information bits to transferred bits.
To obtain good codes we thus have to search for codes that have a high distance

(and thus a high ability to suppress errors) and also a high rate. Moreover, we want
to construct codes of any arbitrary size such that the relative distance d

n
and the

rate R is bounded away from zero by a constant independent on n. This is the point
where expanders come into play.

Moreover, in the construction in Section 4.2.2 the property that is tested can be
seen as a code itself, that is, Pn = C. Indeed, the discussion in [DK12] uses the
notion of “locally testable codes” instead of that of property testing.

4.3.1 Expander Codes

The first kind of codes that uses/leads to expanders are the so-called expander
codes. These are codes that work with parity checks, that is, we add bits that are
calculated from the information bits by linear operations (addition modulo 2). The
easiest example is the parity bit, which is added at the end of the word and is zero
if there is an even number of ones in the information bits and one else. We now
consider the bipartite graph which has a vertex for every bit in the code word in
one block and one vertex for every parity bit in the other block. There is an edge
between a code bit vertex and a parity bit vertex if and only if the code bit is
used to calculate the parity bit. Every parity check code has thus a bipartite graph
associated to it. This graph is called the factor graph of the code.

If the factor graph of a code is some kind of expander, we call the code expander
code:

Definition 4.3.1 (Expander Code). Let C ⊆ Zn2 be a parity check code and G =
(L ∪R,E) its factor graph (with code bits L and parity bits R).
C is called an expander code, if G is a one-sided expander graph, that is:

∃ε > 0 : ∀S ⊆ L : |Γ(S)| ≥ ε|S| (4.3.1)

( Γ(S) denotes the set of neighbours of vertices in S, that is, all vertices in R that
are adjacent to a vertex in S.)
ε is called the one-sided expansion constant.

The following lemma (cf. [Gur10]) shows that good one-sided expander graphs
give codes with good distance:

Lemma 4.3.1. Let G = (L ∪ R,E) be a one-sided expander graph that is D-left-
regular, that is the degree of any vertex in the left set L is equal to D, and let
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C = C(G) be the corresponding parity check code. Let D(1 − ε) be the one-sided
expansion constant of G.

Then the distance d of C fulfills:

d ≥ 2(1− ε)|L| (4.3.2)

A proof and deeper going discussion can be found in [Gur10].
By this lemma, a good code can be constructed from a good expander.
Further constructions of codes using expansion are presented in [SS06]. [Lub11,

Ch. 3.1] includes an introduction on codes as well.

4.3.2 Quantum Codes

The second type of codes where expansion appears are the so-called quantum codes.
Quantum codes are codes that are designed to be used in quantum computing.
The principle of quantum computers is quite different from “normal” computers,
because they are following quantum laws. However, quantum computers are also
very vulnerable to the effects of noise. Quantum codes may help to stabilize quantum
computers by reducing the influence of noise to the result. In [NC11, Ch. 10.1.1]
Michael Nielsen and Isaac Chuang survey some of the critical differences between
quantum coding and normal coding that influence the design of quantum codes:

• Quantum states may not be cloned or duplicated. Hence, the easiest type of
code (just repeating the bits several times) does not work.

• There is a continuum of errors that may affect a single quantum bit. It may
not be possible to determine the error that occurred.

• By measuring a quantum state it is destroyed irreproducably. This makes
decoding difficult.

One of the first and most important quantum codes are the CSS-Codes, named
after their inventors Arthur Calderbank, Peter Shor and Andrew Steane. CSS-Codes
are given by two classical codes that lie in orthogonal spaces of Zn2 with respect to
the following bilinear form (similar to the `2-scalar product restricted on 0-1-valued
vectors, but taken modulo 2), x and y are 0-1-valued vectors with components xi
and yi:

(x, y) :=
∑
i

xiyi mod 2 (4.3.3)

Definition 4.3.2 (CSS-Code). A quantum CSS-code C consists of a pair (C1, C2)
of (linear) subspaces of Zn2 that are orthogonal, that is ((·)⊥ denotes the orthogonal
space):

C1 ⊆ C⊥2 and C2 ⊆ C⊥1 (4.3.4)
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The rate of C is defined by k
n

, using the dimension k:

k = dimC⊥2�C1
= dimC⊥1�C2

(4.3.5)

The distance d of C is defined as:

d = min
{
|x| |x ∈ (C⊥1 \C2) ∪ (C⊥2 \C1)

}
(4.3.6)

(|·| denotes the Hamming norm.)

As in the classical case we want to construct a code that possesses a high rate
and high distance. It turns out that topology and expansion can be used for that,
leading to the so-called Homological codes.

Let X be a given simplicial complex that may be obtained by a triangulation of
a high-dimensional manifold, covers or likewise. The cohomology of X yields the
associated CSS-code. Indeed, in every dimension we have the subgroup of cobound-
aries Bi(X;Z2), which is the candidate for one of the subspaces in the definition.
For the other subspace we have to consider the adjoint map δ∗ (= ∂ in the terms of
homology that was not introduced in this thesis) of the coboundary map with re-
spect to the restricted `2-scalar product. Denote by Zi(X;Z2) the kernel of δ∗i−1 (the
set of cycles) and by Bi(X;Z2) the image of δ∗i . As a consequence of the definition
of the adjoint map, we can conclude that:

(Bi(X;Z2))⊥ = Zi(X;Z2) and
(
Bi(X;Z2)

)⊥
= Zi(X;Z2) (4.3.7)

Thus, the pair (Bi(X;Z2),Bi(X;Z2)) defines a CSS-code. The rate of this code
has the following nice description:

k

n
=

1

n
dim Zi(X;Z2)�Bi(X;Z2) =

1

n
dim Hi(X;Z2) (4.3.8)

Moreover, the distance of the code is the cochain in Zi(X;Z2)�Bi(X;Z2) or in

Zi(X;Z2)�Bi(X;Z2) of minimal Hamming weight. This corresponds to the minimum

of the cosystole parameter systi(X) and the so-called systole parameter (defined ac-
cordingly for the sets of cycles and boundaries). To find cosystolic expanders on the
one hand is a way to find CSS-codes with high distance. On the other hand, many
of the results that are known for high-dimensional expanders (the specific definitions
are varying as the need varies) can be translated to the theory of quantum codes or
may help as suggestions.

A deeper-going discussion of the connection of high-dimensional expansion and
CSS-codes and important results can be found in [EOT16]. [Zém09] presents several
constructions of homological codes and discusses some limits. In [GL14] and [Fet12]
a good introduction to homological codes can be found as well as an explanation
of their connections to manifolds and systoles. Finally, [BMD07] gives an overview
and compares classical and quantum codes.
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Examples

After introducing the definition of high-dimensional expansion in Chapter 3, we
now want to give examples for expanders and show methods to prove expansion.
The field of high-dimensional expansion is still very young and there are only a few
methods known. Many of these methods are designed to fit just the complex in
consideration, while other methods may be generalized.

In the following sections we want to present several strategies to prove expansion
and try to extract the ideas behind them. We will determine bounds on the ex-
pansion parameters of some “standard” complexes which can be found in Table 5.1
and develop methods to “lift” expansion from low dimensions to high dimensions by
so-called local to global methods. Finally, some random methods are introduced.

Hamming Norm Normalized Hamming Norm

h0(Kn)
⌈
n
2

⌉
1 +O

(
1
n

)
h0(Kn,n) n

2
+O

(
1
n

)
1 +O

(
1
n2

)
hk(∆n−1) ≥ n

k+2
≥ n

n−k−1

≤
⌈

n
k+2

⌉
≤ k+2

n−k−1

⌈
n
k+2

⌉
hk−1(Λk

n) ≥ nk(n−2)
(3n−4)(2n−2)k−1−nk

knk−1(n−2)
(3n−4)(2n−2)k−1−nk

≤ n ≤ k

Table 5.1: Expansion parameters for selected complexes

5.1 Random Co-filling

The first method to prove expansion that we will discuss is called “random co-
filling”, although there is no “real randomness” involved. As the name is saying,
the aim is to prove a co-filling inequality and thus cocycle expansion. If in addition
the complex under investigation has vanishing cohomology, then we already proved
coboundary expansion with this construction.

The method of random co-filling appeared in [MW07] and independently in [Gro10]
where it was used to prove the expansion of complete complexes.
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In this section we first want to explain the general idea of random co-filling and
then apply it to prove expansion for standard complexes like simplices and k-partite
complexes.

5.1.1 General Idea

We consider the following problem: Given a simplicial complex X we want to show
a co-filling inequality (in dimension k + 1) and thus cocycle expansion (in dimen-
sion k). Together with vanishing cohomology this would already imply coboundary
expansion.

Hence, we start with an arbitrary coboundary β ∈ Bk+1(X) and need to find a
small cochain α ∈ Ck(X) that co-fills β. Every choice of α gives an upper bound
on the co-filling constant. To obtain the optimal constant we must therefore find
the smallest of these cochains, that is, with the minimal upper bound. However, it
is not easy to explicitly write down the minimal co-filling cochain for all different
choices of β. This problem may be avoided if we can write down and analyze
“enough” cochains, that is, if we are able to write down a large family of co-fillings
for the given β. Next, we try to analyze all these co-fillings together, for example
by calculating the mean of all upper bounds on the co-filling constant. Using this
calculation, we deduce a bound for the optimal co-filling, for example by the fact
that the minimum of a set of values is less than the mean of these values.

This is where the name “random co-filling” comes from. The process of choosing
the optimal cochain can be seen as a random process where we pick a cochain from
the family uniformly at random. Calculating the mean translates to calculating the
expected upper bound from this random variable. From this we can deduce that the
probability for the upper bound to be low is non-zero, hence there exists a cochain
which gives rise to this upper bound.

Summarizing, for a given cochain β we make the following steps:

1. Find a family of co-fillings α that we know or hope includes the optimal or a
very good co-filling. For every α in this family denote the co-filling constant

by cα =
‖α‖X
‖β‖X

. We want to find the α with minimal cα.

2. Calculate the mean of the family (cα)α, e.g. by double counting arguments.
This yields an upper bound on minα cα and hence on the co-filling constant.

In this method there are two critical points. First, how can we find such a family?
The more cochains there are in the family, the higher is the probability to include
the right one. However, if the percentage of “really bad cochains” is too high, the
estimates using the mean do not give a good bound. Hence, this method gives
good results and is easy to apply if we can find many co-fillings that usually do not
vary much in size. It is often used when there are already good co-fillings known
for special cases of coboundaries, but these co-fillings depend on the form of the
coboundary. By the “random process” the best fitting co-filling is chosen. In the
next sections some examples of such families are given.
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The second critical point is the calculation of the mean. Here, the main tool is
double counting of the right quantities. For example many families of co-fillings use
local views of the coboundary. Counting all simplices in the support of a coboundary
and counting it locally gives the same result (up to a factor because some simplices
may be counted more than once).

Finally, it has to be pointed out, that random co-filling just gives an upper bound
on the co-filling constant (and hence a lower bound on the cocycle expansion param-
eter). This bound need not be sharp in any way. Actually, the sharpness depends
on the chosen family of co-fillings. Sharpness of the result can be proven by giving
examples of critical coboundaries.

5.1.2 The Simplex ∆n−1

The first example, where random co-filling works pretty well, is the complete complex
or simplex on n vertices, that is, the complex that contains all possible faces. We
denote by ∆n−1 the (n− 1)-dimensional complete simplicial complex on n vertices.
For the sake of simplicity we choose the vertex set by V = [n] = {1, 2, . . . n}.

To keep the notation simple and to make the idea clear we use coefficients from
Z2, hence, we do not have to deal with orientations. However, the idea of proof does
not change for other coefficients. Moreover, we calculate the expansion parameters
for the counting norm. The results for the normalized Hamming norm follow easily
by multiplying the norms with the number of k-simplices:

|∆n−1(k)| =
(

n

k + 1

)
(5.1.1)

The 0-dimensional expansion parameter in the 1-dimensional case was already
given in example 2 on page 38 (up to the normalizing constant n−1

2
):

h0(∆n−1) =

{
n
2

if n ∈ 2N
n+1

2
if n ∈ 2N+ 1

=
⌈n

2

⌉
(5.1.2)

We start now with a detailed discussion of the proof of expansion in the 2-
dimensional case, as all the important ideas already appear here, while sketches
and illustrations are still possible and it is quite easy to imagine, what is happening.
The results for higher dimensions follow in a similar way. The proof discussed here
appeared in [LM06] and [MW07]. Another proof can be found in [Gro10] using a
somewhat different notation.

Lemma 5.1.1. We have:

n

3
≤ h1(∆n−1) ≤

⌈n
3

⌉
(5.1.3)

Proof. We follow the steps from Section 5.1.1 for the random co-filling method to
prove the lower bound on the expansion parameter. Using the same idea (just one
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dimension lower), we show that the first cohomology group vanishes, which is needed
to obtain coboundary expansion. Finally, we give an example that shows the upper
bound on h1(∆n−1).

Let β ∈ Z2(∆n−1;Z2) be an arbitrary cocycle1.

1. Construction of a family of co-fillings

We need to find a family of 1-cochains that have β as its coboundary. Assume
α ∈ C1(∆n−1;Z2) is such a cochain: δ1α = β. This means that α evaluates to
one for an odd number of edges, that is, one or three edges, in each triangle
in the support of β. We are looking for a co-filling with minimal Hamming
norm, hence, we want that there is only one non-zero edge in most of these
triangles. One strategy may be to choose/mark for every triangle in supp β an
edge and define α by adding all marked edges to suppα. Then try to correct
any “errors“ in the coboundary by ”skillfully“ adding further edges.

u

 su
pp β

∉
 supp β

∈ supp βu

∉ supp βu

Fig. 5.1: Illustration of βu

However, there is an easier strategy. Choose an arbitrary vertex u ∈ [n] ∼=
∆n−1(0). Now for any triangle that contains u there is a natural choice of an
edge to mark, namely the edge that is opposite to u. The value of β associated
with the triangle is “pushed” to the edge in the link of u (cf. Fig. 5.1). For
all the other triangles that do not contain u we do nothing – it turns out
(using that β is a cocycle) that this is already enough. Going through the
definitions, the cochain α(u) that is defined in this way is just the localization
βu (cf. definition 2.2.12 on page 22) of β to the link of u in ∆n−1, which we
denote by (∆n−1)u (cf. definition 2.2.11 on page 22), embedded into the space

1For the (general) random co-filling method we would start with an arbitrary coboundary, but
we may as well start with a cocycle as every coboundary is a cocycle. In the course of the proof
we only use that β is a cocycle, so we prove more than needed.
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of cochains on the whole complex, that is, α(u) := βu:

α(u)({v, w}) =

{
0 if u ∈ {v, w}, i.e., {v, w} 6∈ (∆n−1)u
β({u} ∪ {v, w}) if {v, w} ∈ (∆n−1)u

(5.1.4)

A short calculation evaluating both sides for any {a, b, c} ∈ ∆n−1(2) with
b, c 6= u shows that δ1α

(u) = β:

δ1α
(u)({a, b, c}) = α(u)({a, b}) + α(u)({b, c}) + α(u)({a, c}) (5.1.5)

=

{
α(u)({b, c}) = β({a, b, c}) if a = u

β({u, a, b}) + β({u, b, c}) + β({u, a, c}) else

(5.1.6)

= β({a, b, c}) (5.1.7)

In the last equality, we use that β is a cocycle, namely (addition is mod 2):

δ2β({u, a, b, c}) = β({u, a, b}) + β({u, b, c}) + β({u, a, c}) + β({a, b, c})
(5.1.8)

=⇒ β({u, a, b}) + β({u, b, c}) + β({u, a, c}) = β({a, b, c})
(5.1.9)

This calculation is illustrated in Fig. 5.2.

The family we use for the random co-filling method is
(
α(u)

)
u∈∆n−1(0)

.

u
c

b

a

Fig. 5.2: Illustration of δ2β({u, a, b, c})

The construction of this family of co-fillings is independent of the specific di-
mension. Indeed, we can consider the localization of an arbitrary-dimensional
cocycle with respect to any vertex and obtain a co-filling. The last ingredient
to show coboundary expansion is that the first cohomology group H1(∆n−1;Z2)
is vanishing. Hence, we use the construction in this dimension. In the high-
dimensional case (cf. lemma 5.1.2 on page 67) this step is not necessary/already
included, but for dimension 1, formally, we have not proved it yet. The proof
is included for the sake of completeness, but it has no further benefit:
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2. The first cohomology group is vanishing.

Let α ∈ Z1(∆n−1;Z2) be a 1-dimensional cocycle, that is, a set of edges in
the complete graph with the property that in every triangle there are either
zero or two edges. Let u ∈ ∆n−1(0) be an arbitrary vertex and consider the
localization αu of α to the link of u. For any edge {a, b} ∈ ∆n−1(1), b 6= u, we
calculate:

δ0αu({a, b}) = αu({a}) + αu({b}) (5.1.10)

=

{
α({u, b}) if a = u

α({u, a}) + α({u, b}) if a 6= u
(5.1.11)

= α({a, b}) (5.1.12)

In the last equality it is again used that α is a cocycle. Thus, we have
shown, that α is indeed a coboundary, Z1(∆n−1;Z2) = B1(∆n−1;Z2) and that
H1(∆n−1;Z2) vanishes.

3. Calculation of the mean co-filling constants

As the family of co-fillings consists of “local views” of the cochain β, it is
reasonable to use double counting. Namely, we have that the Hamming norm
of the support of each α(u) is equal to the count of triangles in supp β that
contain u. Every triangle contains three vertices, hence, it is counted three
times: ∑

u∈∆n−1(0)

∣∣α(u)
∣∣ = 3 |β| (5.1.13)

4. Lower Bound on the expansion parameter

Using the calculation above, we get the following inequality for any co-filling
α of β, that is δ1α = β:

min
z∈Z1(∆n−1;Z2)

|α + z| ≤ min
u∈∆n−1(0)

∣∣α(u)
∣∣ ≤ 1

n

∑
u∈∆n−1(0)

∣∣α(u)
∣∣ =

3

n
|β| (5.1.14)

This yields an upper bound on the optimal co-filling constant L2 and hence a
lower bound on the cocycle expansion parameter h1

z(∆n−1):

L2 ≤
3

n
and h1

z(∆n−1) ≥ n

3
(5.1.15)

As we have already shown that H1(∆n−1;Z2) = {0}, we have:

h1(∆n−1) = h1
z(∆n−1) ≥ n

3
(5.1.16)
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5. The lower bound on the expansion parameter is almost sharp.

To show the approximate sharpness of the lower bound we give an explicit
example of a critical cochain. This example is taken from [MW07].

First suppose that n is divisible by 3. Then we can partition the vertex set
∆n−1(0) into three equal-sized sets:

∆n−1(0) = V0 t V1 t V2 and |Vi| =
n

3
(5.1.17)

Now we define a cochain φ ∈ C1(∆n−1;Z2) that has a “small” coboundary
(illustrated in Fig. 5.3):

φ(F ) :=

{
1 if |F ∩ Vi| = 1, ∀i = 0, 1

0 else
∀F ∈ ∆n−1(1) (5.1.18)

complete bipartiteV0

V1

V2

Fig. 5.3: Illustration of φ

Thus, the support of φ consists of all edges that run between V0 and V1, but
no other edges. Each of these edges induces n

3
triangles in the coboundary of

φ, namely the triangles that consist of the edge and a vertex from V2. All the
other triangles contain either none of the edges in the support of φ or they
contain two of them. It is not possible for a triangle to contain three edges,
as this means that two vertices of the triangle have to be either in V0 or in V1,
but there are no connections inside V0 or V1 in the support of φ. Hence, the
coboundary δ1φ calculates to:

δ1φ(F ) =

{
1 if |F ∩ Vi| = 1, ∀i = 0, 1, 2

0 else
(5.1.19)

The Hamming norms of φ and δ1φ can easily be calculated using this repre-
sentation:

|φ| =
(n

3

)2

|δ1φ| =
(n

3

)3

(5.1.20)

c© Georg Hofstätter 2017 65



5 Methods to Prove Expansion and Examples

To calculate an upper bound on the coboundary expansion, it is necessary to
find the cochain that has minimal norm in the equivalence class of φ modulo
coboundaries. Actually, we have |φ| = |[φ]|. Indeed, adding an arbitrary
coboundary to φ does not increase the Hamming norm. A 1-dimensional
coboundary consists of the edges of a cut (S,∆n−1(0)\S) of the 1-skeleton.
That is, we partition the vertex set into two subsets S and ∆n−1(0)\S to get
a 0-dimensional cochain which has all the edges E(S,∆n−1(0)\S) between S
and ∆n−1(0)\S in its coboundary. Minimal norm modulo coboundaries thus
means, that for every cut (S,∆n−1(0)\S) there are at most half of the edges
in suppφ. As all the edges can be counted immediately and φ contains less
than half of them (this can be shown in a short elementary calculation), φ
is a cochain with minimal Hamming norm modulo coboundaries and we can
finally deduce our result for the special case:

∀n ∈ N, 3|n : h1(∆n−1) ≤ |δ1φ|
|[φ]|

=

(
n
3

)3(
n
3

)2 =
n

3
(5.1.21)

If n is not divisible by 3, however, this construction can be adapted, but the
analysis is not very beautiful. We need to partition the vertex set into three
approximately equal-sized parts V0, V1 and V2 (without loss of generality we
assume that

⌊
n
3

⌋
≤ |Vi| ≤ |Vi+1| ≤

⌈
n
3

⌉
, i = 0, 1). The definition of φ and

the calculation of δ1φ carries over, the proof that φ has minimal Hamming
norm becomes nasty. Indeed, if we took the edges between V1 and V2 instead
of V0 and V1, we could add the edges of the cut (V0 ∪ V2, V1) to decrease the
Hamming norm (if this would not be the case, we would get a contradiction
to the claim we proved in the first part). We now have:

|δ1φ| = |V0| · |V1| · |V2| and |[φ]| = |V0| · |V1|, (5.1.22)

and hence:

h1(∆n−1) ≤ |δ1φ|
|[φ]|

=
|V0| · |V1| · |V2|
|V0| · |V1|

= |V2| =
⌈n

3

⌉
, (5.1.23)

and that is, what we wanted to show.

Why does this example give a critical cochain? If we look deeper into the proof,
we see that for this special choice φ of a cochain and its coboundary δ1φ, the link
of each vertex u ∈ V0 can be restricted (as if the complex were multipartite) to the
link inside V1 t V2, as all other vertices in V0 are already adjacent to two edges.
This restricted link is a complete graph on 2n

3
vertices. The localization φu with

respect to the same vertex restricted to this subset then has half of the vertices in
its support. Considering the restricted link as its own complex (as we will later for
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the complete k-partite complexes) we can calculate the size of the coboundary of
φu in the restricted link. The size of this coboundary depends on the coboundary
expansion of the complete graph, which is limited by the 0-cochain that contains
half of the vertices (cf. example 2 on page 38). The cochain φ hence is already
“critical” in the restricted link of each vertex in V0, by construction, making it a
“natural” candidate for a critical cochain of the whole complex. Moreover, for this

special coboundary the co-fillings given by α(u) all have the same size
(
n
3

)2
and there

is nothing lost when estimating the minimum by the mean. All co-fillings are equally
good.

Further examples of critical cochains can be found in [Koz16]. There, it is proved
that h1(∆n−1) = n

3
for all n that are no power of 2. The complexes where n is

a power of 2 do not fulfill this equation, however, the error is of order O
(

1
n

)
as

n→∞.

The expansion parameters for dimensions k with n− 2 ≥ k ≥ 2 can be calculated
using the same method. The only thing that changes is that the notation becomes
more complicated:

Lemma 5.1.2. For any 0 ≤ k ≤ n− 2, we have:

n

k + 2
≤ hk(∆n−1) ≤

⌈
n

k + 2

⌉
(5.1.24)

Proof. As for the 1-dimensional case, the random co-filling method works fine for
the complete complex. Indeed, we can use a similar family of co-fillings, namely
the localization of the cochain to the link of a vertex. One may ask whether the
cochain has to be localized to the link of a vertex and not to the link of any other
simplex, but this can be explained by considering the dimensions: By localizing
a k-dimensional cochain to the link of a vertex, we automatically get a (k − 1)-
dimensional cochain after re-embedding, which is the candidate for the co-filling.
If we would localize to the link of an l-dimensional simplex, the result would be a
(k − l − 1)-dimensional cochain and to get a co-filling, we would need to “lift” the
cochain to higher dimensions in some sense. In any way, localizing with a vertex
already yields the wanted result.

Let β ∈ Zk+1(∆n−1;Z2) be an arbitrary cocycle. We define the family of co-fillings(
α(u)

)
u∈∆n−1(0)

indexed by the vertices u ∈ ∆n−1(0) by setting the values for any

k-simplex σ:

α(u)(σ) := βu(σ) =

{
β({u} ∪ σ) if σ ∈ (∆n−1)u
0 else

(5.1.25)

c© Georg Hofstätter 2017 67



5 Methods to Prove Expansion and Examples

Calculating the coboundary of α(u) evaluated at a simplex τ ∈ ∆n−1(k + 1) shows:

δkα
(u)(τ) =

∑
σbτ

α(u)(σ) (5.1.26)

=

{
β(τ) if u ∈ τ∑

σbτ β({u} ∪ σ) else
(5.1.27)

The sum in the last term can be rewritten using the definition of the coboundary
of β: ∑

σbτ

β({u} ∪ σ) = δk+1β({u} ∪ τ) + β(τ), (5.1.28)

which yields, using δk+1β = 0 (the addition is modulo 2):

δkα
(u)(τ) + β(τ) =

{
0 if u ∈ τ
δk+1β({u} ∪ τ) if u 6∈ τ

(5.1.29)

= 0 (5.1.30)

Hence, every α(u) is a co-filling of β. This argument (applied to different dimensions)
proves that ∆n−1 has vanishing cohomology in any dimension lower than n− 1.2

The mean can be calculated again by double counting: Every (k + 1)-simplex τ
in the support of β is counted k + 2 times as u runs through the vertices of τ :∑

u∈∆n−1(0)

∣∣α(u)
∣∣ = (k + 2) |β| (5.1.31)

This yields the bounds on the optimal co-filling constant and the expansion pa-
rameters:

Lk+1 ≤
k + 2

n
and hk(∆n−1) = hkz(∆n−1) ≥ n

k + 2
(5.1.32)

To show the upper bound, a similar construction as in the case k = 1 is used. If n is
divisible by k+2, we can partition the vertex set into k+2 equal-sized sets and define
a cochain φ ∈ Ck(∆n−1;Z2) by adding all k-simplices to its support that contain
vertices from the first k + 1 vertex sets. Every such simplex induces n

k+2
different

simplices in the coboundary of φ and φ can be shown to have minimal Hamming
norm, but the argument is more complicated. Hence, the expansion parameters are
bounded by n

k+2
. Again, the part where n is not divisible by k+ 2 is messy, but uses

the same idea, and will be omitted here.

2The cohomology of ∆n−1 in dimension n − 1 can be calculated directly as there is only one
simplex of this dimension, i.e. Cn−1(∆n−1;Z2) ∼= Z2.
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5.1.3 The Complete k-Partite Complex Λk
n

The next example for random co-filling we want to present is the complete k-partite
complex Λk

n. It is a direct generalization of the concept of a complete bipartite graph
and is defined as follows:

Definition 5.1.1 (Complete k-Partite Complex). Let n and k be natural numbers
and let V0, V1, . . . , Vk be k + 1 disjoint sets of cardinality n, that is, Vi ∼= [n] :=
{1, 2, . . . , n}.

The complete (k+1)-partite complex Λk
n on n× (k + 1) vertices is defined as the

(k + 1)-fold join of the vertex sets V0, . . . , Vk, that is:

Λk
n := V0 ∗ V1 ∗ · · · ∗ Vk :=

{
F ⊆

k⊔
i=0

Vi

∣∣∣∣ |F ∩ Vi| ≤ 1, ∀i = 0, . . . , k

}
(5.1.33)

Λk
n is a k-dimensional simplicial complex.

We aim to prove lower bounds on the (k− 1)-dimensional Z2-coboundary expan-
sion hk−1(Λk

n) of Λk
n by random co-filling. Therefore, we need two ingredients: an

appropriate family of co-fillings and vanishing cohomology Hk−1(Λk
n;Z2). As the

proof will use induction, we will also prove coboundary expansion separately for the
easiest case Λ1

n, namely the complete bipartite graph Kn,n.
We will start with proving that the complete (k + 1)-partite complexes Λk

n have
vanishing cohomology in co-dimension 1:

Lemma 5.1.3. Let Λk
n be the complete (k + 1)-partite complex and n, k ≥ 1.

Then:

Hk−1(Λk
n;Z2) = {0} (5.1.34)

Proof. The proof uses induction on the dimension k of the complexes for fixed n.
Indeed, the proof method is very similar to the one used later to define the family
of co-fillings, but it is in a different dimension.

1. Induction Hypothesis

As induction hypothesis in step k we assume that:

Hl−1(Λl
n;Z2) = {0} ∀1 ≤ l < k (5.1.35)

2. Initial Step

For k = 1, we get that Λ1
n = Kn,n, the complete bipartite graph and we

want to show that the cohomology in dimension zero is vanishing. As Kn,n is
connected, this is trivial. Indeed, if β is a 0-dimensional cocycle, this means
that for every edge the values of β on both sides are equal and hence the value
of β does not change along any path. By choosing a path from any point
to any other point, we can show that β is constant and thus a coboundary
(cf. equation 2.2.22 on page 19).
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3. Induction Step

Now let k > 1 be an arbitrary number and assume that the induction hypoth-
esis holds. Let β ∈ Zk−1(Λk

n;Z2) be an arbitrary cocycle, we have to show that
β is a coboundary, that is, there exists a co-filling of β.

We choose two arbitrary vertices u, u′ ∈ V0 from the first set V0 (the first factor
of the join), if n = 1 we can choose u = u′ and if n > 1 we need to choose
u 6= u′. u and u′ give rise to two cochains on the link of u and u′, respectively,
namely the localizations βu and βu′ of β. The link of any vertex of the first
set V0 consists of all simplices containing only vertices from the last vertex
sets. Hence, the link is isomorphic to the k-partite complex Λk−1

n and we can
consider βu and βu′ as cochains of this complex.

a) As cochains in Ck−2(Λk−1
n ;Z2), the cochain βu + βu′ is a cocycle.

Indeed, we can calculate the coboundary for any simplex σ ∈ Λk−1
n (k−1):

δk−2(βu + βu′)(σ) =
∑
τbσ

(βu + βu′)(τ) (5.1.36)

=
∑
τbσ

β({u} ∪ τ)︸ ︷︷ ︸
=δk−1β({u}∪σ)+β(σ)

+
∑
τbσ

β({u′} ∪ τ)︸ ︷︷ ︸
=δk−1β({u′}∪σ)+β(σ)

(5.1.37)

= β(σ) + β(σ) = 0 (5.1.38)

For the second last equality, we used that β is a cocycle, that is, it has
vanishing coboundary. This shows that βu + βu′ is a (k − 2)-dimensional
cocycle in Λk−1

n and we can apply the induction hypothesis to obtain that
it is already a coboundary. Let α(u,u′) ∈ Ck−3(Λk−1

n ;Z2) be a co-filling of
βu + βu′ .

b) We can define a candidate for a co-filling of β by setting its values for
any simplex σ ∈ Λk

n(k − 2):

α(σ) :=

{
βu(σ) if σ ∩ V0 = ∅
α(u,u′)(σ\{u′}) if σ ∩ V0 = {u′}

(5.1.39)

c) This candidate α is indeed a co-filling for β, that is, δk−2α = β.

We need to calculate the coboundary of α, σ ∈ Λk
n(k− 1). Therefore, we

consider the following two cases.

Case 1: We have σ∩V0 = ∅, hence any facet τ of σ has empty intersection,
as well:

δk−2α(σ) =
∑
τbσ

α(τ) (5.1.40)

=
∑
τbσ

β({u} ∪ τ) (5.1.41)

= δk−1β({u} ∪ σ) + β(σ) = β(σ) (5.1.42)
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Case 2: We have σ ∩ V0 = {u′}:

δk−2α(σ) =
∑
τbσ
u′∈τ

α(τ) + α(σ\{u′}) (5.1.43)

= βu(σ\{u′}) +
∑

τbσ\{u′}

α(u,u′)(τ) (5.1.44)

= βu(σ\{u′}) + δk−3α
(u,u′)︸ ︷︷ ︸

=βu+β
u′

(σ\{u′}) (5.1.45)

= βu′(σ\{u′}) = β(σ) (5.1.46)

Altogether we have δk−2α = β and the induction step is complete.

In the proof, we use that the complete (k+1)-partite complex Λk
n is a composition

(join) of the complete k-partite complex Λk−1
n and another set of vertices V0. This

gives a hint, why we use induction: We can reduce the problem to the part of the
complex without V0 and then we apply the induction hypothesis.

In the next step we need to lay the basis of the induction for the coboundary
expansion parameters. Thus, we prove:

Lemma 5.1.4 (Coboundary Expansion of the Complete Bipartite Graph). The (un-
normalized) coboundary expansion h0(Kn,n) of the complete bipartite graph Kn,n =
Λ1
n on 2n vertices is:

h0(Kn,n) =

{
n
2

if n ∈ 2N
n
2

+ 1
2n

if n ∈ 2N+ 1
(5.1.47)

Proof. This result can be proved elementarily by calculating the number of edges
|E(S, V \S)| (V denotes the vertex set Kn,n(0)) between any subset S of vertices
and its complement.

Let S be any subset of vertices of size less than n = |V |
2

and denote Si := S∩Vi, i ∈
{0, 1}, the parts of S that lie in the different components V0 and V1. With si := |Si|
and s := |S| = s0 + s1 we can calculate:

|E(S, V \S)| = s0(n− s1) + s1(n− s0) = sn− 2s0(s− s0) (5.1.48)

The last term on the right-hand side is maximized when s0 = s1 = s
2
, if s is even,

and for |s0 − s1| ≤ 1, if s is odd, that is, the set is “levelled out left and right”
(approximately for odd s). Hence, we have:

|E(S, V \S)| ≥ sn− s2

2
= s(n− s

2︸︷︷︸
≤n

2

) ≥ s
n

2
=
n

2
|S| (5.1.49)
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The first inequality is sharp if n is even, the second one is always sharp. If n is odd,
the critical set is partitioned into subsets of size s0 =

⌊
s
2

⌋
and s1 =

⌈
s
2

⌉
. Substituting

these values for s0 and s1 yields:

|E(S, V \S)| ≥ sn− s2 − 1

2
≥ s

(
n

2
+

1

2n

)
=

(
n

2
+

1

2n

)
|S| (5.1.50)

The last term is of order O
(

1
n

)
. Putting everything together we obtain:

h0(Kn,n) =

{
n
2

if n ∈ 2N
n
2

+ 1
2n

if n ∈ 2N+ 1
(5.1.51)

The last step to prove coboundary expansion is to find a co-filling inequality for Λk
n.

In the proof of the following lemma we will orient ourselves by the work of Dominic
Dotterrer and Matthew Kahle ([DK10, Dot12]). However, the author of this thesis
was able to improve the constants. The constants given here are optimal in the
sense that for this proof (with this family of co-fillings and these estimates) there
are no better results. Indeed, the proof yields a linear recursion for the expansion
parameters of Λk

n which has the solution given in this thesis. Dominic Dotterrer and
Matthew Kahle did not solve this recursion but gave an estimate on the solution.
By varying the family or the estimates, however, there may be space for further
improvements.

Lemma 5.1.5. For any k ≥ 1 and any n ≥ 1, we have:

hk−1(Λk
n) ≥ nk(n− 2)

(3n− 4)(2n− 2)k−1 − nk
(5.1.52)

≈ n− 2

3 · 2k−1 − 1
if n� 1 (5.1.53)

In [DK10], the result is:

hk−1(Λk
n) ≥ n

2k+1 − 1
(5.1.54)

Before we give a proof of this lemma, we want to discuss two special cases. First
we observe that for k = 1 we get the bound from lemma 5.1.4 on the previous page:

h0(Λ1
n) ≥ n(n− 2)

(3n− 4)− n
=
n

2
(5.1.55)

Secondly, if we take n = 1, as one can easily check, we obtain the k-dimensional
simplex as “complete (k + 1)-partite complex”, that is, Λk

1 = ∆k. Comparing the
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results from lemma 5.1.2 on page 67 to the result from the lemma above, we can see
that in this special case the lower bound is sharp:

from lemma 5.1.2: 1 =

⌈
k + 1

(k − 1) + 2

⌉
≥ hk−1(∆k) ≥

k + 1

(k − 1) + 2
= 1 (5.1.56)

from lemma 5.1.5: hk−1(Λk
1) ≥ 1(−1)

0− 1
= 1 (5.1.57)

Now we want to prove lemma 5.1.5:

Proof. As mentioned before, the proof will use induction on the dimension k with n
being fixed. We only need to show a co-filling inequality, because we already showed
that Λk

n has vanishing cohomology in the right dimension.

1. Induction Hypothesis

We assume in step k, that we have:

hl−1(Λl
n) ≥ nl(n− 2)

(3n− 4)(2n− 2)l−1 − nl
∀1 ≥ l < k (5.1.58)

To simplify notation, we abbreviate the term on the right-hand side and the
corresponding co-filling constant by:

ck−1 :=
nk(n− 2)

(3n− 4)(2n− 2)k−1 − nk
(5.1.59)

Lk :=
1

ck−1

(5.1.60)

2. Initial Step

The initial step for k = 1 is already taken in lemma 5.1.4 on page 71, cf. the
discussion above the proof.

3. Induction Step

For the induction step we use quite a similar technique as for showing that the
cohomology vanishes. However, this proof works in a different dimension and
we also need to introduce some “randomness” by finding a lot of co-fillings.

To show the co-filling inequality, let β ∈ Bk(Λk
n;Z2) be an arbitrary cobound-

ary which we want to find a small co-filling for. As β is a coboundary, we also
know that there exists a co-filling α ∈ Ck−1(Λk

n;Z2).

a) Find a family of co-fillings for β

As in the proof for the complete simplicial complexes, we will provide a
family of co-fillings indexed by a set of vertices, in this case the vertices
in the first subset V0. Let u ∈ V0 be an arbitrary vertex and consider the
localization βu to the link of this vertex. As this link (Λk

n)u is isomorphic
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to Λk−1
n it is natural to use the induction hypothesis there and try to lift

the result to Λk
n.

However, the localization βu is (in general) no coboundary in Λk−1
n . Thus,

we consider βu + βu′ ∈ Ck−1(Λk−1
n ;Z2) for any (other) vertex u′ ∈ V0. To

show that this sum is a coboundary, we consider the localization αu+αu′ ∈
Ck−2(Λk−1

n ;Z2) of the co-filling α of β and show that it is a co-filling.
Indeed, for any σ ∈ Λk−1

n (k − 1) we have:

δk−2(αu + αu′)(σ) =
∑
τbσ

α({u} ∪ τ) + α({u′} ∪ τ) (5.1.61)

= δk−1α︸ ︷︷ ︸
=β

({u} ∪ σ) + α(σ) + δk−1α︸ ︷︷ ︸
=β

({u′} ∪ σ) + α(σ)

(5.1.62)

= βu(σ) + βu′(σ) (5.1.63)

Hence, we can apply the induction hypothesis to βu + βu′ to obtain a
minimal co-filling α(u,u′) ∈ Ck−2(Λk−1

n ;Z2) with the property:∣∣∣α(u,u′)
∣∣∣ ≤ Lk−1 |βu + βu′ | (5.1.64)

As α(u,u′) is minimal, this definition includes that α(u,u′) = 0 if u = u′ as
βu + βu = 0 (modulo 2).

Using α(u,u′) we can construct a co-filling of β, depending on u. For any
σ ∈ Λk

n(k − 1) we define:

α(u)(σ) :=

{
βu(σ) if σ ∩ V0 = ∅
α(u,u′)(σ\{u′}) if σ ∩ V0 = {u′}

(5.1.65)

This definition really gives a co-filling, because for any σ ∈ Λk
n(k), σ ∩

V0 = {u′}, we have:

δk−1α
(u)(σ) =

∑
τbσ

α(u)(τ) (5.1.66)

= α(u)(σ\{u′}) +
∑
τbσ
u′∈τ

α(u)(τ) (5.1.67)

= βu(σ\{u′}) +
∑

τbσ\{u′}

α(u,u′)(τ)︸ ︷︷ ︸
=δk−2α(u,u′)(σ\{u′})

(5.1.68)

= βu(σ\{u′}) + δk−2α
(u,u′)︸ ︷︷ ︸

=βu+β
u′

(σ\{u′}) (5.1.69)

= βu′(σ\{u′}) = β(σ) (5.1.70)
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b) Calculate the average “co-filling parameter” for this family

To calculate the average, we first observe that the support of each α(u)

can be partitioned into disjoint subsets:

suppα(u) = supp βu t
⊔

u6=u′∈V0

suppα(u,u′) (5.1.71)

Hence, we have: ∣∣α(u)
∣∣ = |βu|+

∑
u6=u′∈V0

∣∣∣α(u,u′)
∣∣∣ (5.1.72)

Moreover, we observe:

|β| =
∑
u∈V0

|βu| , (5.1.73)

because every face in the support of β contains exactly one vertex from
V0 (since it has to contain a vertex from every subset Vi and the complex
is multipartite) and |βu| counts the faces in the support that contain u.

We may now calculate, using the co-filling inequality for the α(u,u′)’s and
the triangle inequality for norms on cochains:

∑
u∈V0

∣∣α(u)
∣∣ =

∑
u∈V0

(
|βu|+

∑
u6=u′∈V0

∣∣∣α(u,u′)
∣∣∣) (5.1.74)

= |β|+
∑

u,u′∈V0
u6=u′

∣∣∣α(u,u′)
∣∣∣︸ ︷︷ ︸

≤Lk−1|βu+β
u′ |

(5.1.75)

≤ |β|+ Lk−1

∑
u,u′∈V0
u6=u′

|βu + βu′|︸ ︷︷ ︸
≤|βu|+|βu′ |

(5.1.76)

≤ |β|+ Lk−1

∑
u,u′∈V0
u6=u′

|βu|+ |βu′| (5.1.77)

Collecting all terms and using equation 5.1.73, we finally get (|V0| = n):

1

|V0|
∑
u∈V0

∣∣α(u)
∣∣ ≤ 1

n
(|β|+ Lk−1 ((n− 1) |β|+ n |β| − |β|)) (5.1.78)

= |β| 1 + Lk−1(2n− 2)

n
(5.1.79)

c) Estimate the co-filling constant of Λk
n
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By random co-filling, we thus get the following co-filling inequality (using
that we have already proved vanishing cohomology):

min
b∈Bk−1(Λkn;Z2)

|α + b| ≤ min
u∈V0

∣∣α(u)
∣∣ ≤ 1

|V0|
∑
u∈V0

∣∣α(u)
∣∣ ≤ |β| 1 + Lk−1(2n− 2)

n

(5.1.80)

The optimal co-filling constant hence is less or equal than 1+Lk−1(2n−2)

n
.

However, the best constant we can get from this method fulfills the re-
cursion:

Lk =
1 + Lk−1(2n− 2)

n
and L1 =

2

n
(5.1.81)

This linear recursion can be solved to obtain3:

Lk =
(3n− 4)(2n− 2)k−1

(n− 2)nk
− 1

n− 2
(5.1.82)

By lemma 3.1.3 on page 32 we thus get a lower bound on the coboundary
expansion parameter:

hk−1(Λk
n) ≥ 1

Lk
=

nk(n− 2)

(3n− 4)(2n− 2)k−1 − nk
(5.1.83)

Hence, the induction step is complete and the result follows.

The last step in the proof clarifies, why the special case k = 1 gives a sharp
estimate – it is defined that way. If we look further into the proof, the other special
case n = 1 is also not very surprising as the definition of α(u) reduces to the co-filling
from the proof for the complete complex if there is no u′ 6= u ∈ V0.

In the rest of this chapter we want to give some kind of intuition why the proof
works as it does and we give an example of a cochain that gives an upper bound on
the expansion parameters.

The first intuition was already hinted at beneath the proof of vanishing cohomo-
logy, namely the special structure of the complexes in consideration. The (k + 1)-
partite complex Λk

n consists of k + 1 equal subsets V0, . . . , Vk. If we remove the
first subset V0 and all the simplices containing a vertex from V0, what is left is
an isomorphic copy of Λk−1

n , which certainly has the same expansion properties as
Λk−1
n . Thus, we want to apply induction by reducing the given coboundary to a

coboundary on the last k vertex sets. If we recall the proof for the simplex (and the
fact that ∆k = Λk

1), our first attempt is to take a vertex u from V0 and for every face
σ containing u we “push” the value on σ to the facet σ\{u} in the link of u – this

3This is the point were the proof varies from that in [DK10, Dot12].
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is exactly the construction of the localization of the coboundary. For the simplex,
this was enough as there was only one vertex in the first set and we had enough
high-dimensional faces to conclude that the values are correct on all the other faces
(using that we have a cocycle). For the general (k + 1)-partite complex, however,
there is neither a canonical choice of vertex from V0 nor is there a “connection”
between two vertices of V0. Indeed, if we do this construction for two different
vertices u, u′ ∈ V0, we get two values for every simplex of co-dimension 1, which
need not be equal. On the other hand, we also have more freedom to define the
values of the co-filling on simplices that are containing a different vertex from V0,
and we use this freedom. The values on these simplices only affect the values of
the coboundary on top-dimensional simplices that contain the same vertex from V0.
From the proof for the simplex we already saw, that our definition as localization
works for simplices that contain u (the multipartite complexes look locally similar to
the simplex), problems only arise for the other simplices. Hence, we have to set the
values there to compensate for the value from the localization and then enforce the
right value, which is for example given by the localization with respect to u′ ∈ V0.
As we work with Z2 coefficients, we add both shares: βu + βu′ (in the notation of
the proof from above). This cochain has values on simplices in the link of u (or
u′, which is the same), but we want to get values on simplices containing u′ in one
dimension lower that produce the same behaviour as βu + βu′ . Thus, we go one
dimension down by co-filling βu + βu′ (in a minimal way) and then “pull it back” to
simplices containing u′, giving the definitions of α(u,u′) and α(u).

The co-filling constants for α(u,u′) (from the induction hypothesis) then are used
to deduce a linear recursion for the new co-filling constant. In this process, also
the triangle inequality for norms of cochains is used and there are possibilities to
improve this estimate for large coboundaries by a double counting argument (idea
due to Kristóf Huszár, IST Austria). This yields a co-filling constant that depends
on the norm of β, that is, we have a quadratic co-filling inequality.

In the light of this improvement, the question arises whether the result proved in
this thesis is good. This can be checked by giving upper bounds on the expansion
parameters (just as for the complete complex). Finding upper bounds is not easy,
as they require a very good understanding of the complex. Nevertheless, there is a
trivial upper bound:

Lemma 5.1.6 (Trivial Upper Bound). For any k ≥ 1 and n ≥ 1, we have:

hk−1(Λk
n) ≤ n (5.1.84)

Proof. Let σ ∈ Λk
n(k − 1) be any (k − 1)-dimensional simplex in Λk

n and define the
cochain α ∈ Ck−1(Λk

n;Z2) as the indicator function 1{σ}. α certainly has minimal
norm modulo coboundaries, because it is no coboundary (indeed, it is no cocycle,
as the following calculation shows) and the Hamming norm only takes non-negative
integer values. The support of the coboundary δk−1α of α consists of all k-simplices
that contain σ. There are exactly n such simplices (corresponding to the n vertices
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in the unique vertex subset that has empty intersection with σ). We thus have:

|[α]| = |α| = 1, |δk−1α| = n =⇒ hk−1(Λk
n) ≤ |δk−1α|

|α|
= n (5.1.85)

Rem. 5.1.1. An upper bound of n
4

can also be achieved for complexes with n divisible
by 4 and k = 2 by giving an example for a critical cochain. Lemma 5.1.5 on page 72
yields a lower bound of n

5− 4
n

. Altogether, we can determine the expansion parameter

of Λ2
n, for n divisible by 4, to be in the interval:

n

5− 4
n

≤ h1(Λ2
n) ≤ n

4
(5.1.86)

This example is due to Kristóf Huszár and Uli Wagner (both IST Austria).

5.2 Local to Global Methods

In the last chapter about random co-filling we had to construct a family of co-fillings
which we were able to analyze with respect to its expansion properties. In the special
cases of the complete complex and the complete multipartite complexes a local view
of the complex proved to be very useful. Indeed, for both complexes the co-fillings
were defined starting from the localization of the coboundary to the link of a vertex
with some structural modifications. This leads to the question that is discussed in
this chapter:

Can we use properties of the local structure of the complex (for example
of its links) to deduce expansion in higher dimensions?

However, local properties are mostly not enough, we also need to assume some
global “connectedness” property as well. Together with this assumptions there are
methods to prove expansion in higher dimensions, which will be presented in the
following sections. The following concepts appeared in [LM13] and (more elaborate)
in [KKL14a, KKL14b, EK15]. In both works similar ideas are used. However, in
this thesis we are using a different norm. Thus, the core concepts are adopted, while
the calculation is adjusted to fit the different norm.

The size of the co-filling of a coboundary depends very much on the special struc-
ture of the coboundary in consideration. As we want to estimate the size of the
minimal co-filling for any coboundary we are not always able to use this special
structure (random co-filling is a try to overcome this issue by introducing random-
ness). Thus, we have to use the structure of the simplicial complex as a whole,
that is, from a global and local view. By concentrating on the local views of the
coboundary, we might not find the optimal co-filling as this co-filling may utilize the
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global structure. As a consequence, the conditions on the links have to be stronger
to get a good expansion of the complex, or otherwise, we only get weaker results.

In this chapter, we usually have two differences to normal expansion. First, we
only get expansion for small cochains, that is:

‖δα‖X ≥ ε ‖[α]‖X (5.2.1)

only for cochains with small norms ‖[α]‖X ≤ µ.

Rem. 5.2.1. In [GW16] it is shown that link-based methods (for expansion with re-
spect to the normalized Hamming norm) can only work for cochains with normalized
Hamming norm ‖α‖X bounded away from 1

2
. Indeed, Anna Gundert and Uli Wag-

ner give an example of a complex and a cochain with normalized Hamming norm
tending to 1

2
that has a small coboundary. This cochain bounds the coboundary ex-

pansion parameter from above by O(log n/n), but the complex has good expansion
properties in the links (they are random graphs). For more details, see [GW16].

Bounding the norm is an easy way to obtain some kind of “local sparsity” of the
cochains which then leads to improvements in the estimates. These improvements
can be seen for example in the (edge) expansion of the complete graph. Here, the
critical 0-cochains have large support. Hence, if we restrict ourselves to cochains
with small support we get a better constant in the estimate. Of course, we only get
improvements if the critical and the large cochains coincide up to some extent. This
need not be the case, however.

The second difference is that we show cocycle expansion for so-called “locally min-
imal cochains” (cf. definition 5.2.1). This is again a property of “local sparsity”. By
further assuming that the complex has bounded degree in the right dimension these
restrictions can be removed and we can prove cocycle expansion for all cochains.

5.2.1 Expansion for Small Cochains

We now want to start with introducing the necessary notions and discuss the results
we can deduce from them.

First we define so-called minimal and locally minimal cochains. Informally, a
minimal cochains is one of minimal norm modulo coboundaries, while a locally
minimal cochain is minimal in every localization:

Definition 5.2.1 (Minimal and Locally Minimal Cochains). Let X be a simplicial
complex with norm ‖·‖X and 0 ≤ k ≤ dimX. Let α ∈ Ck(X) be a cochain.

• α is called minimal if ‖α‖X = ‖[α]‖X = minb∈Bk(X) ‖α + b‖X .

• α is called locally minimal if for every ∅ 6= σ ∈ X(k−1) the localization ασ is
minimal in Xσ with respect to a norm ‖·‖Xσ on the link.4

4Usually, there is a connection between ‖·‖X and ‖·‖Xσ
, for example both can be the Hamming

norm.
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Note, that there is also a slightly different definition appearing in [KKL14b],
namely that in the definition of locally minimal cochain the localization only has to
be with respect to vertices and not arbitrary-dimensional simplices. In this thesis,
we will not use this definition. Moreover, in 2-dimensional complexes these two
definitions coincide.

Obviously, we only have to check coboundary expansion for minimal cochains.
Locally minimal cochains appear, because we want to apply coboundary expansion
in the links.

From now on, we only consider the Hamming norm and Z2-coefficients. At least for
1-dimensional cochains this allows a picturesque characterization of locally minimal
cochains:

Example 5 (Locally minimal 1-cochains). Let X be an arbitrary simplicial complex
and α ∈ C1(X;Z2) be a locally minimal cochain in dimension 1. Hence, if we take
any v ∈ X(0), we know that αv is a minimal 0-dimensional cochain in Xv. As
observed earlier, there are only two elements in the coset modulo coboundaries,
namely αv and αv + 1Xv(0), which corresponds to the complement. We thus have:

|αv| ≤
∣∣αv + 1Xv(0)

∣∣ , (5.2.2)

which implies:

|suppαv| ≤ |Xv(0)\ suppαv| = |Xv(0)| − |suppαv| (5.2.3)

=⇒ |αv| = |suppαv| ≤
|Xv(0)|

2
(5.2.4)

So local minimality in dimension 1 means that if we count all edges that emanate
from an arbitrary vertex at most half of them belong to the support of α. Fig. 5.4
illustrates this situation.

∈ supp αv∉ supp αv

v

≥

Fig. 5.4: Illustration of a locally minimal 1-cochain

Now the question arises whether “minimal” and “locally minimal” are different
properties and if yes, what is their relation? Is it enough for a cochain to be locally
minimal to be already minimal in the global sense? The next example shows that
this is not the case:
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Example 6 (“Locally minimal” does not imply “minimal”). Let X be the 1-
dimensional simplicial complex illustrated in Fig. 5.5 (left picture), that is:

X = {∅, {a}, {b}, {c}, {d}, {a, b}, {b, d}, {c, d}, {a, c}} ⊆ 2{a,b,c,d} (5.2.5)

Let α be the cochain 1{{a,b},{c,d}}. We show that α is locally minimal, but not
minimal. Indeed, if we take any vertex v ∈ {a, b, c, d} we always have the picture
on the right in Fig. 5.5. Every vertex v is incident to two edges in X, one of these
is in the support of α, the other one is in its complement:

|αv| = 1 ≤ 1 =
∣∣αv + 1Xv(0)

∣∣ (5.2.6)

But α is also a coboundary, since:

α = δ01{a,c} (5.2.7)

Hence, α is not minimal:

|[α]| = 0 < 2 = |α| (5.2.8)

a b

c d

v

 supp 

∉ supp α

Fig. 5.5: Illustration of the complex from example 6

On the other hand, every minimal cochain is locally minimal as well, as the
following lemma shows.

Lemma 5.2.1. Let X be a simplicial complex and let α ∈ Ck(X;Z2), 0 ≤ k ≤
dimX. We consider the Hamming norm on the cochains.

Then there exists a cochain γ ∈ Ck−1(X;Z2) such that α + δk−1γ is a locally
minimal cochain and we have:

|α + δk−1γ| ≤ |α| (5.2.9)

Equality (for the construction in the proof) holds if and only if α is already locally
minimal.

Thus, if α is minimal, then α is also locally minimal.
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Proof. Let α ∈ Ck(X;Z2) be an arbitrary cochain. If α is locally minimal, then
there is nothing to do, we can choose γ = 0 and the inequality holds with equality.

If α is not locally minimal, we can find a face ∅ 6= σ ∈ X(k−1) such that:

|ασ| > |[ασ]| (5.2.10)

Hence, we can choose a minimal cochain c′ ∈ Ck−|σ|−1(Xσ;Z2) with the property:

|ασ + δc′| < |ασ| (5.2.11)

We want to lift this cochain to the complex X. Therefore, we define a cochain c ∈
Ck−1(X;Z2) that fulfills cσ = c′ by setting its value on every simplex τ ∈ X(k − 1):

c(τ) :=

{
c′(τ\σ) if σ ⊆ τ

0 else
(5.2.12)

We can now calculate α+ δk−1c for any face τ ∈ X(k). We distinguish between two
cases:
Case 1: σ ⊆ τ :

(α + δk−1c)(τ) = α(τ) +
∑
κbτ

c(κ)︸︷︷︸
=0, if σ 6⊆κ

(5.2.13)

= α(τ) +
∑
κbτ\σ

c(σ ∪ κ)︸ ︷︷ ︸
=c′(κ)

(5.2.14)

= α(τ) + (δc′)(τ\σ) (5.2.15)

Case 2: σ 6⊆ τ , then every facet of τ does not contain σ as well.

(α + δk−1c)(τ) = α(τ) +
∑
κbτ

c(κ)︸︷︷︸
=0

(5.2.16)

= α(τ) (5.2.17)

Thus, by adding this coboundary we only change α on simplices containing σ. Hence,
we have:

supp (α + δk−1c) = (supp (α + δk−1c) ∩ {τ ∈ X(k) |σ ⊆ τ}) (5.2.18)

t (supp (α + δk−1c) ∩ {τ ∈ X(k) |σ 6⊆ τ}) (5.2.19)

= (supp (α + δk−1c) ∩ {τ ∈ X(k) |σ ⊆ τ}) (5.2.20)

t (suppα ∩ {τ ∈ X(k) |σ 6⊆ τ}) (5.2.21)

This can be translated to the Hamming norms on cochains since α+ δk−1c evaluates
on simplices containing σ the same as ασ + δc′ does on Xσ:

|α + δk−1c| = |ασ + δc′|+ |suppα ∩ {τ ∈ X(k) |σ 6⊆ τ}| (5.2.22)
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The first term is strictly smaller than |ασ| by assumption, hence, we obtain by
reversing the calculation:

|α + δk−1c| < |α| (5.2.23)

By adding a coboundary to α, we thus decreased the Hamming norm by at least
one. We can now repeat this argument to decrease it further and in at most |α|
steps we obtain a locally minimal cochain (the cochain 0 is locally minimal) and the
inequality is automatically fulfilled. By summing up all added coboundaries we get
the claimed γ.

Finally, if we start with a minimal cochain α, α has to be locally minimal as
well, because if not, we could decrease the Hamming norm by adding a coboundary.
Since α is a representative of the coset modulo coboundaries with minimal Hamming
norm, this is not possible, which yields a contradiction.

The above lemma contains more than stated. Indeed, we can also bound the norm
of the “correcting” coboundary γ:

Lemma 5.2.2. Beside the conditions of the previous lemma we further assume that
the degree of each lower-dimensional simplex is bounded by a constant Qk−1 > 0,
i.e.:

∀σ ∈ X(k−1) : degk−1 σ ≤ Qk−1 (5.2.24)

Then we can bound the Hamming norm of γ (from the previous lemma) linearly
in terms of the Hamming norm of α:

|γ| ≤ Qk−1 |α| (5.2.25)

Proof. We consider the same step-by-step process to construct γ as in the previous
proof. Over-all, we obtain γ as a sum of cochains ci from each step (we have to take
m steps):

γ =
m∑
i=1

ci (5.2.26)

Every cochain ci is constructed as a lift of a cochain from the link of a simplex
σi ∈ X(k−1). The support of ci is contained in the subset of simplices that contain
σi as a face. By definition, there are exactly degk−1 σi of them, thus:

∀i = 1, . . . ,m : |ci| ≤ degk−1 σi ≤ Qk−1 (5.2.27)

Using this estimate and the triangle inequality for the Hamming norm, we obtain:

|γ| ≤
m∑
i=1

|ci| ≤ m ·Qk−1 (5.2.28)
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Last, the number m of steps is certainly bounded by the Hamming norm of α,
because in every step the Hamming norm is reduced by at least one:

|γ| ≤ Qk−1 |α| (5.2.29)

However, this estimate may be far from optimal. Indeed, in every step the size of
suppα may be reduced by much more than one, which reduces the number of steps
drastically. Moreover, the estimate on the size of ci is really the worst-case estimate.
A better estimate may be possible using the fact that we can choose ci minimal.
The following continuation of example 6 on page 81 illustrates this situation:

Example 7. Let X be the simplicial complex defined in example 6 on page 81 and
let α = 1{{a,c},{c,d}} be the cochain from which we want to find a locally minimal
representation. As the localizations with respect to the vertices a, b and d are already
minimal, we have to modify the cochain in the link of c by adding the coboundary
of the cochain:

c = 1{{c}} ∈ C0(X;Z2), (5.2.30)

which yields the cochain:

α + δ0c = 0 (5.2.31)

Hence, we are finished after one step in which we obtain a cochain c of size |c| = 1,
whereas our cochain has size 2.

If we assume that for every simplex ∅ 6= σ ∈ X(k−1) the link Xσ is a cocycle

expander in dimension (k − |σ| − 1) with h
k−|σ|−1
z (Xσ) ≥ ε > 0, we can also find

a better estimate on |c| = |c′| using the improvement dc := |α| − |α + δk−1c| =
|ασ| − |ασ + δc′|:

|c| = |c′| ≤ 1

ε
|δc′| (5.2.32)

=
1

ε
|ασ + (ασ + δc′)| (5.2.33)

≤ 1

ε
|ασ|+

1

ε
|ασ + δc′| (5.2.34)

=
1

ε
(2 |ασ| − dc) (5.2.35)

However, this estimate can only be useful for a large cocycle expansion parameter
ε > 2 > 0. Sadly, we cannot give a better estimate on dc and thus we obtain the
following quadratic bound (|ασ| ≤ |α|):

|γ| ≤ |α|
(

2

ε
|α| − 1

ε

)
(5.2.36)
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This bound is good for small cochains α, but may be worse than the original one
for larger cochains.

We now want to discuss how expansion for small and locally minimal cochains
can be used to prove general expansion. This is necessary as expansion for small
cochains can be proved by looking at links.

The key to the conclusion is that the complex has bounded degree.5 Indeed,
using a bound on the degree we can deduce a good cocycle expansion from cocycle
expansion on small cochains in one dimension higher.

Lemma 5.2.3. Let X be a simplicial complex with the Hamming norm |·| and
0 ≤ k ≤ dimX − 2. We assume that:

• X has degree bounded by a constant Qk, that is:

∀σ ∈ X(k) : degk σ ≤ Qk (5.2.37)

• X fulfills “expansion for small, locally minimal cochains” in dimension (k+1),
that is, there exist constants µ̄k+1, ε̄k+1 > 0 such that for any locally minimal
cochain α ∈ Ck+1(X;Z2):

|α| < µ̄k+1 |X(k + 1)| =⇒ |δk+1α| ≥ ε̄k+1 |α| (5.2.38)

Then the cocycle expansion parameter hkz(X) of X is bounded by a constant εk > 0:

hkz(X) ≥ εk > 0 (5.2.39)

The constant εk can be chosen as:

εk := min

{
µ̄k+1

|X(k + 1)|
|X(k)|

,
1

Qk

}
(5.2.40)

The specific value of ε̄k+1 is irrelevant as long as it is strictly positive.

Proof. We define εk as in the statement of the lemma. Now, let α ∈ Ck(X;Z2) be
an arbitrary cochain. We want to prove that:

|δkα| ≥ εk min
z∈Zk(X;Z2)

|α + z| (5.2.41)

To show this, we distinguish between the following two cases:

5This is a vacuous condition if we only consider a single complex. However, we mainly consider
families of expanders and we want to uniformly bound their expansion parameters. To do this,
we need that the complexes have uniformly bounded degree.
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• Case 1: |δkα| ≥ µ̄k+1 |X(k + 1)|
Continuing the inequality we can deduce what we want to show for this case:

|δkα| ≥ µ̄k+1 |X(k + 1)| (5.2.42)

= µ̄k+1
|X(k + 1)|
|X(k)|

|X(k)|︸ ︷︷ ︸
≥|α|

(5.2.43)

≥ µ̄k+1
|X(k + 1)|
|X(k)|

|α| (5.2.44)

≥ εk |α| (5.2.45)

• Case 2: |δkα| < µ̄k+1 |X(k + 1)|
We can apply lemma 5.2.1 on page 81 and lemma 5.2.2 on page 83 to the
cochain δkα to obtain a cochain γ ∈ Ck(X;Z2) that makes δkα a locally
minimal cochain. Furthermore, we get:

|δkα + δkγ| ≤ |δkα| < µ̄k+1 |X(k + 1)| (5.2.46)

|γ| ≤ Qk |δkα| (5.2.47)

As δkα + δkγ is locally minimal, we may apply the assumption that X is
expanding on small cochains to obtain (δk+1δk = 0):

0 = |δk+1δk(α + γ)| ≥ ε̄k+1 |δk(α + γ)| (5.2.48)

ε̄k+1 is positive, hence the right-hand side is zero:

δk(α + γ) = 0, (5.2.49)

which means that α and γ are in the same coset modulo cocycles: γ = α +
(γ + α) ∈ α+ Zk(X;Z2). Using the estimate on the norm of γ we get cocycle
expansion:

|δkα| ≥
1

Qk

|γ| ≥ εk min
z∈Zk(X;Z2)

|α + z| , (5.2.50)

and this is what we wanted to show.

The result of the lemma (that is εk) can be improved by proving expansion for big-
ger cochains (that is to increase µ̄k+1) or by improving the estimate from lemma 5.2.2
on page 83. The later restriction seems to be the one where big improvements may
be possible, because the estimate in the lemma seems not to be very strict. The
first restriction may be loosened by making ε̄k+1 very small as the specific value is
irrelevant.
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The content of this lemma is quite amazing as we can prove expansion from two
conditions that are quite vacuous like bounded degree and positive “cocycle expan-
sion”. One could say that the second condition is trivial, because every complex
has a strictly positive cocycle expansion parameter. However, we need a stricter
result in the way that we do not lower-bound the norm of the coboundary in terms
of the minimal norm modulo cocycles but in terms of the norm of a locally minimal
cochain. As we stated earlier, a locally minimal cochain need not be minimal mod-
ulo coboundaries and hence also not minimal modulo cocycles. As a consequence,
the condition of “expansion for small and locally minimal cochains” also includes
that there is no non-trivial locally minimal cocycle, which is small. This is the only
thing that we use in the proof. We could thus restate the lemma in the following
way:

Lemma 5.2.4. Let X be a simplicial complex with Hamming norm |·| and 0 ≤ k ≤
dimX − 2. Denote by Qk the maximum degree of a face of dimension less or equal
than k − 1, that is:

Qk := max
σ∈X(k)

degk σ (5.2.51)

Let µ̄k+1 be the minimum of the norms of the non-trivial locally minimal cocycles in
dimension k + 1:

µ̄k+1 := min
{
|α| | 0 6= α ∈ Zk+1(X;Z2), α locally minimal

}
(5.2.52)

Then there exists a constant εk > 0, such that:

hkz(X) ≥ εk > 0 (5.2.53)

The constant εk can be chosen as:

εk := min

{
µ̄k+1

|X(k + 1)|
|X(k)|

,
1

Qk

}
(5.2.54)

Proof. The definition of µ̄k+1 implies that for any µ < µ̄k+1 we can find a con-
stant ε̄k+1 such that the complex is expanding on locally minimal cochains which
have norm smaller than µ |X(k + 1)| (we can take the minimum over finitely many
positive values). Apply lemma 5.2.3 on page 85 with this constant to obtain
hkz(X) ≥ εk(µ). We can do this for any µ < µ̄k+1, hence hkz(X) ≥ εk.

Expansion on small locally minimal cochains can also be used to obtain a lower
bound on the cosystole parameter systk(X) of a complex:

Lemma 5.2.5. Let X be a simplicial complex which fulfills expansion on small
locally minimal cochains in dimension k, 0 ≤ k ≤ dimX − 1, that is, there are
constants ε̄k, µ̄k > 0 such that for any locally minimal cochain α ∈ Ck(X;Z2) we
have:
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|α| < µ̄k |X(k)| =⇒ |δkα| ≥ ε̄k |α| (5.2.55)

Then X has µ-large cosystoles in dimension k with µ ≥ µ̄k |X(k)|:

systk(X) ≥ µ ≥ µ̄k |X(k)| (5.2.56)

Proof. Let α ∈ Zk(X;Z2)\Bk(X;Z2) be a cocycle that is not a coboundary. We
have to bound the Hamming norm of α from below.

If we already have that |α| ≥ µ̄k |X(k)|, then there is nothing to prove. Thus, we
assume that |α| < µ̄k |X(k)| in the following.

By lemma 5.2.1 on page 81 we can find a cochain γ ∈ Ck−1(X;Z2) such that
α + δk−1γ is locally minimal and:

|α + δk−1γ| ≤ |α| < µ̄k |X(k)| (5.2.57)

(5.2.58)

Now we can apply the condition of expansion on small locally minimal cochains to
α + δk−1γ, which is still a cocycle (this is the same trick as in the previous two
lemmas):

0 = |δk(α + δk−1γ)| ≥ ε̄k |α + δk−1γ| =⇒ α + δk−1γ = 0 (5.2.59)

The last equality implies that α is equal to δk−1γ (modulo 2) and hence a coboundary.
This is a contradiction to the assumption we started with. Hence, there cannot be
such an α that has small norm and we proved that the complex has large cosystoles.

Putting together the previous lemmas, we obtain cosystolic expansion:

Corollary 5.2.1. Let X be a simplicial complex which fulfills the conditions of
lemma 5.2.3 on page 85 and lemma 5.2.5 on the previous page.

Then X is a cosystolic expander in dimension k.

5.2.2 Local to Global Results in Dimension 2

We are now starting with the main part of this section: the proof of “global ex-
pansion” from “local expansion”. The principal idea can already be seen in the
two-dimensional case, while in this case the technicalities are still not overwhelm-
ing. We thus restrict ourselves to the proof for dimension two and only give a rough
idea how it can be generalized to higher dimensions (see section 5.2.3 on page 103).

In this section we mainly use two properties: coboundary expansion of the links
of vertices (which are graphs) and a measure of expansion of the 1-skeleton (which is
also a graph). As both are graphs, we have two (equivalent) possibilities to describe
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their expansion properties: spectrally by the eigenvalue gap or combinatorially by
the edge expansion. Spectral expansion is mostly easier to prove, however, edge
expansion seems to be the concept that fits naturally in. In this chapter we will
discuss both approaches.

Key to the proof is a double counting argument that allows to write the cobound-
ary expansion in terms of expansion in the links.

Let X be a 2-dimensional simplicial complex where we want to prove expansion.
We consider a locally minimal 1-cochain α ∈ C1(X;Z2) and we want to find a lower
bound on the Hamming norm of the coboundary of α. Therefore, we define:

ti := |{σ ∈ X(2) | |suppα ∩ {τ ∈ X(1) | τ b σ}| = i}| , i = 1, 2, 3 (5.2.60)

ti denotes the number of 2-simplices in X that have exactly i of its 3 facets in the
support of α. Moreover, as the localization αv, v ∈ X(0), is a zero-dimensional
cochain, we abuse notation and use the name αv for the support of αv as well as for
the cochain. To simplify notation we also use:

ᾱv := αv + 1Xv (5.2.61)

for the complementary cochain as well as for the complement of the support.
By double counting we find:

Lemma 5.2.6. Using the notation from above:

• |δα| = t1 + t3

•
∑

v∈X(0)

∣∣EXv(αv, ᾱv)∣∣ = 2t1 + 2t2

(EXv(·, ·) denotes the edges in the link Xv interpreted as a graph.)

If the 2-degree of each edge in X is bounded by d̂, we also have:

d̂ |α| ≥ t1 + 2t2 + 3t3 (5.2.62)

Equality holds if all edges have degree equal to d (that is, the link of each vertex
is a d-regular graph).

Proof. The first point is just the definition spelled out as the coboundary contains
exactly the simplices in its support that are counted for t1 and t3.

For the second point consider Fig. 5.6 on the next page, which illustrates the three
types of triangles that may appear. These triangles appear in the link of its vertices.
Depending on the chosen vertex, the opposing edge runs between αv and ᾱv or not.
Hence, the number of these edges counts the number of triangles with at most 2
edges from suppα and every triangle is counted twice as there are two choices of
vertices.

For the last point we use double counting as well. The right-hand side counts
every triangle (2-simplex) according to the number of edges from suppα that it
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t1t2t3
Fig. 5.6: Illustration of the double counting argument of lemma 5.2.6 on the previous

page (dashed: not in suppα)

contains as facets. Every edge is contained in at most (in exactly, if all edges have
equal degree) d̂ triangles. d̂ |α| counts the triangles as seen from the edges in suppα.
Hence, we have the inequality (equality, respectively):

t1 + 2t2 + 3t3 =
∑

e∈suppα

deg2 e ≤ d̂ |α| (5.2.63)

This lemma already allows a lower bound on |δα|:

|δα| = t1 + t3 ≥ t1 − 3t3 = (2t1 + 2t2)− (t1 + 2t2 + 3t3) (5.2.64)

≥
∑

v∈X(0)

∣∣EXv(αv, ᾱv)∣∣− d̂ |α| (5.2.65)

In this estimate we neglect t3. It seems plausible that t3 is small as we will consider
only small cochains α later on. In any way, this may be a starting point for further
improvements.

Now, we have to find a lower bound on the sum in terms of the Hamming norm of
α. This is where we use expansion of the links Xv. Speaking in terms of cohomology
we just have to lower bound the Hamming norm of δαv:∣∣EXv(αv, ᾱv)∣∣ = |δαv| (5.2.66)

Moreover, this lower bound has to sum up to a value larger than d̂ |α| to get a valid
result.

Assume for one moment that every link has coboundary expansion with constant
h0(Xv) ≥ η, v ∈ X(0), with respect to the unnormalized Hamming norm, that is:

∀β ∈ C0(Xv;Z2) : |δβ| ≥ η |[β]| (5.2.67)

We can apply this estimate to every summand and obtain (|αv| ≤ |ᾱv|):∑
v∈X(0)

|δαv| ≥ η
∑

v∈X(0)

|αv| (5.2.68)

= 2η |α| (5.2.69)
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The last equality holds since the sum counts every edge in suppα twice. If η is large
enough, we get coboundary expansion for any locally minimal cochain α:

η >
d̂

2
=⇒ |δα| ≥ (2η − d̂)︸ ︷︷ ︸

>0

|α| (5.2.70)

As it turns out, this condition on η is quite a restriction. We calculated earlier the
expansion parameters for the complete graph Kn and the complete bipartite graph
Kn,n (cf. the results in Table 5.1 on page 59). Kn is (n − 1)-regular and Kn,n is
n-regular. Both graphs have expansion parameters that are only slightly larger (or

not larger at all) than d̂
2
. Hence, for these special cases our first try does not yield

very good results.
Thus, the method has to be refined. In the complete graph Kn the edge expansion

parameter is determined by the large sets (with size close to n
2
). Indeed, if we allow

only sets with size less than, for example, (1 − ε)n
2

we can improve the parameter
from approximately n

2
to (1 + ε)n

2
. This improvement then helps us to finish the

argument from above. Inspired from the complete graph, we introduce so-called thin
and thick vertices;

Definition 5.2.2 (Thin and Thick Vertices). Let X be a 2-dimensional simplicial
complex and α ∈ C1(X;Z2) a locally minimal 1-cochain. Let ε > 0 be a constant.

A vertex v ∈ X(0) is called ε-thin with respect to α, if:

|αv| ≤ (1− ε) |Xv(0)|
2

(5.2.71)

v is called ε-thick otherwise.
We denote the set of ε-thin and ε-thick by R and S, respectively:

R = Rε := {v ∈ X(0) |αv 6= 0, v ε-thin} (5.2.72)

S = Sε := {v ∈ X(0) |αv 6= 0, v ε-thick} (5.2.73)

As α is locally minimal we always have:

|αv| ≤
|Xv(0)|

2
(5.2.74)

To abbreviate notation we also use:

r = rε :=
∑
v∈R

|αv| (5.2.75)

s = sε :=
∑
v∈S

|αv| (5.2.76)

=⇒ r + s =
∑

v∈X(0)

|αv| = 2 |α| (5.2.77)

Furthermore, we need this technical lemma:
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Lemma 5.2.7. Let X and the other notation be as above.
If the number of internal edges of S (in the graph X(1)) is bounded from above,

the value of r and s can be bounded as well:

|EX(1)(S)| ≤ (1− ξ) |α| =⇒ r ≥ ξ |α| and s ≤ (2− ξ) |α| (5.2.78)

Proof. By double counting we get:

r =
∑
v∈R

|αv| = |Eα(S,R)|+ 2 |Eα(R)| (5.2.79)

(Eα(A,B) denotes the the edges in suppα between the sets A and B.)
Moreover, the support of α can be separated into edges going between thick

vertices and thin vertices and edges going between vertices of the same kind:

|α| = |Eα(S,R)|+ |Eα(R)|+ |Eα(S)| (5.2.80)

Putting this together, we obtain the desired result (|EX(1)(S)| ≥ |Eα(S)|):

r ≥ |α| − |Eα(S)| ≥ (1− (1− ξ)) |α| = ξ |α| (5.2.81)

The statement for s follows directly, since r + s = 2 |α|:

s = 2 |α| − r ≤ (2− ξ) |α| (5.2.82)

The strategy is to find a better estimate on the thin vertices and to simultaneously
bound the number of thick vertices (here we use expansion properties of the 1-
skeleton of X). This is the point where it makes a difference if we use spectral or
combinatorial expansion for the links.

Using Spectral Expansion in the Links

In this subsection we assume that every link is a “good” spectral expander. We
prove the following theorem

Theorem 5.2.1 (Local to Global Theorem – Using Spectral Expansion). Let X
be a 2-dimensional simplicial complex as in the beginning of this section and let
α ∈ C1(X;Z2) be a locally minimal cochain. Let d̂ be the maximum 2-degree of an
edge in X.

We assume that the link Xv of every vertex v ∈ X(0) is a spectral expander with
eigenvalue gap λ(Xv) ≥ d̂(1− ε1).

Furthermore, we assume that the 1-skeleton X(1) is a k-regular graph with eigen-
value gap λ(X(1)) ≥ k(1− ε2).

Under the following technical conditions:
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• Choose ε, ε′ > 0, ξ ∈ (0, 1), such that:(
ε2
k

2

1− ε
+

1

(1− ε)2(1 + ε′)

k − ε2
k

)
≤ 1− ξ (5.2.83)

• Using this ξ and ε, we need:

(ε(1− ε1)ξ − 2ε1) > 0 (5.2.84)

There exists a constant η > 0 independent of α (as long as α is locally minimal)
such that:

|α| ≤ 1

1 + ε′
|X(1)|

4
=⇒ |δα| ≥ η |α| (5.2.85)

η can be chosen as:

η :=
d̂

2
(ε(1− ε1)ξ − 2ε1) (5.2.86)

Proof. One of the two main ingredients is the quadratic lower bound from equa-
tion 3.2.8 on page 37:

∀S ⊆ V : |E(S, V \S)| ≥ φ(G) · d · |S| · |V \S|
|V |

≥ λ(G) · |S| · |V \S|
|V |

, (5.2.87)

where d denotes the average degree. For subsets S with |S| ≤ |V |
2

we can continue
by:

|E(S, V \S)| ≥ λ(G) · |S| · |V \S|
|V |︸ ︷︷ ︸
≥ 1

2

≥ λ(G)

2
|S| (5.2.88)

This estimate can be improved for small subsets S with |S| ≤ (1− ε) |V |
2

:

|E(S, V \S)| ≥ λ(G) · |S| · |V \S|
|V |︸ ︷︷ ︸
≥ 1+ε

2

≥ (1 + ε)
λ(G)

2
|S| (5.2.89)

Fig. 5.7 on the following page illustrates what we are doing here. The quadratic curve
comes from the quadratic lower bound on the edges which we normally estimate
from below by drawing a straight line (dashed in the figure). If we only consider
small subsets (corresponding to thin vertices) we may draw a line with higher slope,
thus getting better results. The value at the maximum of the quadratic curve is
proportional to the spectral gap and thus smaller than the maximum degree d̂. By
increasing the slope we may find a linear curve that takes a value larger than the
maximum degree at that point – this is what we need. Note, that this improvement
is not possible for the linear lower bound

With this tool we can now start the proof:
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|S|

Estimate for Thin Vertices

quadratic

normal

thin

|S| = |V\S||S| = 0 |S| = |V|

ǫ |V|/2

gain

Fig. 5.7: Illustration of the improvement in the lower bound for thin vertices

1. Estimate for thin vertices

For an ε-thin vertex v ∈ R we can use the better estimate, because |αv| ≤
(1− ε) |Xv(0)|

2
by definition:

∣∣EXv(αv, ᾱv)∣∣ ≥ (1 + ε)
λ(Xv)

2
|αv| ≥ (1 + ε)

d̂(1− ε1)

2
|αv| (5.2.90)

Altogether, we obtain:

∑
v∈R

∣∣EXv(αv, ᾱv)∣∣ ≥ (1 + ε)
d̂(1− ε1)

2
r (5.2.91)

2. Estimate for thick vertices

We can do the normal estimate for thick vertices:∑
v∈S

∣∣EXv(αv, ᾱv)∣∣ ≥ d̂(1− ε1)

2
s (5.2.92)

3. General estimate
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By continuing the estimate from the beginning of this section we get:

|δα| ≥
∑

v∈X(0)

∣∣EXv(αv, ᾱv)∣∣− d̂ |α| (5.2.93)

≥ (1 + ε)
d̂(1− ε1)

2
r +

d̂(1− ε1)

2
s− d̂ |α| (5.2.94)

= d̂(1− ε1) |α|+ ε
d̂(1− ε1)

2
r − d̂ |α| (5.2.95)

= ε
d̂(1− ε1)

2
r − ε1d̂ |α| (5.2.96)

In the second last equality we used that r + s = 2 |α|.

4. Estimate on r in terms of |α| – “There are many thin vertices.”

For this point we need the condition on the 1-skeleton of X. Indeed, we
estimate r by bounding the amount of edges between two thick vertices. As
a subset of the k-regular graph X(1) the edges E(S) are connected with the
expansion properties:

|EX(1)(S)| = 1

2
(k|S| − |EX(1)(S,X(0)\S)|︸ ︷︷ ︸

≥λ(X(1))
|S||X(0)\S|
|X(0)|

) (5.2.97)

≤ |S|
2

k − λ(X(1))︸ ︷︷ ︸
≥k−ε2

|X(0)\S|
|X(0)|

 (5.2.98)

≤ |S|
2

k − (k − ε2)
|X(0)\S|
|X(0)|︸ ︷︷ ︸

=1− |S|
|X(0)|

 (5.2.99)

=
|S|
2

(
ε2 + (k − ε2)

|S|
|X(0)|

)
(5.2.100)

This can be further estimated by bounding |S| in the following way: Every

vertex in S is by definition ε-thick, that is, we have |αv| > (1 − ε) |Xv(0)|
2

. By
counting every vertex in S we thus get (X(1) is k-regular, |Xv(0)| = k):

|S| =
∑
v∈S

1 ≤
∑
v∈S

|αv|
(1− ε)k

2

(5.2.101)

≤ 2 |α|
(1− ε)k

2

=
4 |α|

(1− ε)k
(5.2.102)
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Plugging this into the equation from above yields (after some calculation using
also the handshake lemma: k |X(0)| = 2 |X(1)|):

|EX(1)(S)| ≤ |α|

(
ε2
k

2

1− ε
+

1

(1− ε)2

k − ε2
k

|α|
|X(1)|

4

)
(5.2.103)

By assumption, the Hamming norm of α is smaller than 1
1+ε′

|X(1)|
4

(we only
consider such cochains), hence:

|EX(1)(S)| ≤ |α|
(
ε2
k

2

1− ε
+

1

(1− ε)2(1 + ε′)

k − ε2
k

)
(5.2.104)

≤ (1− ξ) |α| (5.2.105)

By lemma 5.2.7 on page 92 this yields the following bound on r:

r ≥ ξ |α| (5.2.106)

5. Completion of the argument

The estimate now reads:

|δα| ≥ ε
d̂(1− ε1)

2
r − ε1d̂ |α| (5.2.107)

≥ d̂

2
(ε(1− ε1)ξ − 2ε1)︸ ︷︷ ︸

=η>0

|α| (5.2.108)

≥ η |α| , (5.2.109)

which finishes the proof.

What we did in step 4 of the proof is, that we showed a property of local sparsity
of α. Indeed, for our argument we only need that there are “enough” thin vertices
so the improvement of the estimate is good. Actually, the theorem states that
locally sparse cochains are expanding. We can enforce local sparsity by bounding
the Hamming norm of α giving only expansion for small cochains. If we could find
a property that can be checked easily (unlike local sparsity), we could strengthen
this theorem. However, by proving expansion for large cochains separately we get
expansion for all cochains. In [LM13] expansion for large cochains is proved by a
probabilistic method. It remains unclear whether it is possible to prove expansion
for “locally dense” cochains in the same way.
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Using Combinatorial Expansion in the Links

A similar argument can be carried through using only combinatorial properties of the
complex in consideration. As the trick with thin and thick vertices uses that we have
a quadratic lower bound, which we can improve by suitable linear approximations,
we have to adopt the conditions of the theorem a little bit. We require again (now
combinatorial) expansion of the links and some kind of expansion of the 1-skeleton,
but we also need better (edge) expansion of the links for small cochains. This leads
to the definition of edge expansion for small cochains:

Definition 5.2.3 (Edge Expansion for Small Cochains). Let X be a 1-dimensional
simplicial complex with Hamming norm |·| and let ε > 0.

We say that X has edge expansion parameter η(X) for ε-small cochains, if for
any α ∈ C0(X;Z2) we have:

|α| < (1− ε) |X(0)|
2

=⇒ |EX(suppα,X(0)\ suppα)| = |δ1α| ≥ η(X) |α|
(5.2.110)

To replace spectral expansion of the 1-skeleton we define the notion of skeleton ex-
pansion. This is defined to yield a similar structure of estimate as in equation 5.2.98
on page 95 and is inspired by the concept with the same name in [EK15].

Definition 5.2.4 (Skeleton Expansion). Let X be a simplicial complex with nor-
malized Hamming norm ‖·‖X and let β > 0.

We say that X fulfills skeleton expansion with parameter β, if:

∀A ⊆ X(0) : ‖EX(1)(A)‖X ≤ ‖A‖
2
X + β ‖A‖X (5.2.111)

(Here, we do not distinguish between subsets of vertices or edges and 0- or 1-
dimensional cochains with these supports, which the norms are defined for. EX(1)(A)
denotes the set of edges in X(1) with both endpoints in A.)

In terms of the Hamming norm (or cardinality of sets) this can be rewritten as:

|EX(1)(A)| ≤ |X(1)|
|X(0)|2

|A|2 + β
|X(1)|
|X(0)|

|A| (5.2.112)

=
k̄

2 |X(0)|
|A|2 + β

k̄

2
|A| (5.2.113)

In the last equality we used the average degree k̄ of the graph X(1):

k̄ :=
2 |X(1)|
|X(0)|

(5.2.114)

Using these two definitions we can now state and prove:
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Theorem 5.2.2 (Local to Global Theorem – Using Combinatorial Expansion). Let
X be a 2-dimensional simplicial complex and let α ∈ C1(X;Z2) be a locally minimal
cochain.

We assume that:

• The link Xv of every vertex v ∈ X(0) is an edge expander with expansion
parameter h0(Xv).

• The link Xv of every vertex v ∈ X(0) has edge expansion for ε-small cochains
(ε > 0) with parameter η(Xv).

• The 1-skeleton X(1) is a graph that fulfills skeleton expansion with parameter
β < 1

2
.

We use the following notation:

• d̂ = maxσ∈X(1) deg2 σ, the maximum 2-degree of an edge in X.

• k̄ = 2|X(1)|
|X(0)| , the average degree of the 1-skeleton of X.

• kv = deg1 v = |Xv(0)|, the degree of a vertex v ∈ X(0).

The expansion parameters have to fulfill the following conditions, ε1 > 0, ε2 ≥
0, c > 0 are constants:

• η(Xv) ≥ d̂
2
(1 + ε1), for every v ∈ X(0).

• h0(Xv) ≥ d̂
2
(1− ε2), for every v ∈ X(0).

• 1 ≤ k̄
minv∈X(0) kv

≤ c

• βc < 1
2

Under the following technical conditions:

• Choose ε, ε′ > 0, ξ ∈ (0, 1), such that:

ε < 1− 2βc (5.2.115)

and

c2 1

(1− ε)2(1 + ε′)
+

2βc

1− ε
≤ 1− ξ (5.2.116)

• Using this ξ, we need (this condition vanishes if ε2 = 0):

ε1
ε2
>

2

ξ
− 1 (5.2.117)
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There exists a constant η > 0 independent of α (as long as α is locally minimal)
such that:

|α| ≤ 1

1 + ε′
|X(1)|

4
=⇒ |δα| ≥ η |α| (5.2.118)

η can be chosen as:

η :=
d̂

2
(ξ(ε1 + ε2)− 2ε2) (5.2.119)

In principle, we require edge expansion that is only a little bit (ε2) worse than d̂
2
,

which is compensated by edge expansion for small cochains that is a little bit (ε1)

better than d̂
2
. The rest of the conditions are just technicalities that are necessary

for the proof.
The theorem can also be stated for the special case of k-regular 1-skeleton and

uniform 2-degree d. This makes notation a little bit less messy.

Proof. We separate the proof into the same steps as before:

1. Estimate for thin vertices

For an ε-thin vertex v ∈ R we use the improved estimate from expansion for
small cochains: ∣∣EXv(αv, ᾱv)∣∣ ≥ η(Xv) |αv| (5.2.120)

≥ (1 + ε1)
d̂

2
|αv| (5.2.121)

2. Estimate for thick vertices

For ε-thick vertices the only thing we can do is to use edge expansion:∣∣EXv(αv, ᾱv)∣∣ ≥ h0(Xv) |αv| (5.2.122)

≥ (1− ε2)
d̂

2
|αv| (5.2.123)

3. General Estimate

We again continue the estimate from the beginning of the section by applying
the estimates from the previous points to obtain:

|δα| ≥
∑

v∈X(0)

∣∣EXv(αv, ᾱv)∣∣− d̂ |α| (5.2.124)

≥ (1 + ε1)
d̂

2
r + (1− ε2)

d̂

2
s− d̂ |α| (5.2.125)

= d̂ |α|+ ε1
d̂

2
r − ε2

d̂

2
s− d̂ |α| (5.2.126)

= ε1
d̂

2
r − ε2

d̂

2
s (5.2.127)
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4. Estimate on r and s in terms of |α| – “There are many thin vertices.”

As in the spectral case, we have the bound on the size of S in terms of |α|.
However, there we used that we have a k-regular 1-skeleton to replace the size
of the link by a constant. We cannot do this anymore, thus we estimate by
the minimal size of a link:

|S| ≤ 4 |α|
(1− ε) minv∈X(0) kv

(5.2.128)

Along with skeleton expansion and using the fact that α is small, this estimate
gives (we omit the tiresome calculation):

|EX(1)(S)| ≤ |α|

(
c2 1

(1− ε)2

|α|
|X(1)|

4

+
2βc

1− ε

)
(5.2.129)

≤ |α|
(
c2 1

(1− ε)2(1 + ε′)
+

2βc

1− ε

)
(5.2.130)

≤ (1− ξ) |α| (5.2.131)

By lemma 5.2.7 on page 92 this gives the desired bounds on r and s:

r ≥ ξ |α| and s ≤ (2− ξ) |α| (5.2.132)

5. Completion of the argument

The only thing left is the following computation:

|δα| ≥ ε1
d̂

2
r − ε2

d̂

2
s (5.2.133)

≥ d̂

2
(ε1ξ − ε2(2− ξ))︸ ︷︷ ︸

=η>0

|α| (5.2.134)

This theorem is quite nice as it shows a way to prove expansion using only (graph-
theoretical) expansion in the links and 1-skeleton. However, there is one flaw: How
do we prove expansion for small cochains for a complex we do not know very well?
The normal way to prove expansion is via spectral expansion and the analysis of
eigenvalues of matrices, which is relatively well-understood. The Cheeger inequal-
ity (in a non-normalized version) then gives a lower bound on the combinatorial

expansion. This lower bound always is smaller than d̂
2
, because the eigenvalue gap

is bounded by the maximum degree of a vertex. By taking the intermediate step
with the sparsity of a cut, we can also deduce expansion for small cochains from the
eigenvalues and thus make the theorem usable. This uses exactly the same trick as
the spectral local-to-global theorem.
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Lemma 5.2.8 (Cheeger Inequality for Small Sets). Let G = (V,E) be a graph with

eigenvalue gap λ(G), minimal sparsity φ(G) of a cut and average degree d = 2|E|
|V | .

Then the expansion parameter η(G) for ε-small cochains (ε > 0) satisfies:

η(G) ≥ (1 + ε)
d

2
φ(G) ≥ (1 + ε)

λ(G)

2
(5.2.135)

Proof. As |S| ≤ (1− ε) |V |
2

, then we can conclude from the definition of the minimal
sparsity:

|E(S, V \S)| ≥ φ(G)d|S| |V \S|
|V |︸ ︷︷ ︸
≥ 1+ε

2

≥ φ(G)(1 + ε)
d

2
|S| (5.2.136)

This immediately implies the first inequality, while the second one is just a conse-
quence of the “normal” (unnormalized) Cheeger inequality.

As it turns out, the requirements of the local-to-global theorem can also be loos-
ened a little bit. The skeleton expansion is only used for the special subset S of
thick vertices. Since |α| is required to be small, we can bound the size of S as well:

|S| ≤ |{v ∈ X(0) |αv 6= 0}| ≤ 2 |α| ≤ 1

1 + ε′
|X(1)|

2
(5.2.137)

Hence, skeleton expansion is only needed for smaller sets. Note, that this bound
can be vacuous, if there are much more edges than vertices in X.

Application to the Complete 3-Partite 2-Complex

We want to apply the theorem to the complete 3-partite 2-complex6 Λ2
n that was

already analyzed in Section 5.1.3. This complex has the nice property that its
1-skeleton is a complete 3-partite graph, which is 2n-regular, and every link is a
complete bipartite graph, which is n-regular. Thus, we do not have to mess around
with the degrees.

To prove skeleton expansion we take an arbitrary subset A ⊆ Λ2
n(0), which we

split into three subsets A0, A1 and A2 according to parts of the vertex set. Using
Maclaurin’s inequality we obtain:

|E(A)| = |A0||A1|+ |A0||A2|+ |A1||A2| ≤
1

3
(|A0|+ |A1|+ |A2|)2 =

1

3
|A|2

(5.2.138)

Λ2
n has 3n vertices and average degree 2n, hence, we can choose β = 0:

|E(A)| ≤ 2n

2 · 3n
|A|2 + 0 · |A| (5.2.139)

6We want to assume that n is even to make calculations easier.
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We already know that the link Kn,n is expanding with constant n
2
. An easy calcu-

lation shows that for ε-small cochains this constant can be improved to (1 + ε)n
2
.

Hence, the first conditions on the expansion parameters are satisfied with ε1 = ε
and ε2 = 0. We may choose any ε < 1 and ε′, ξ > 0 such that:

1

(1− ε)2(1− ε′)
≤ 1− ξ (5.2.140)

The other condition is vacuous as ε2 = 0. For valid choices of ε, ε′ and ξ by the
theorem we get for a locally minimal cochain α ∈ C1(Λ2

n;Z2):

|α| ≤ 1

1 + ε′
|Λ2

n(1)|
4

=⇒ |δα| ≥ n

2
ξε |α| (5.2.141)

Application to a Ramanujan Complex

We consider the 2-dimensional Ramanujan complex Y that is used in [KKL14b]. As
the theory of Ramanujan complexes is far beyond the scope of this thesis, we only
recall the properties of Y that are used:

• The 1-skeleton Y (1) is a k-regular graph with k = 2(q2+q+1) (q is a sufficiently
large prime power). Y (1) is a spectral expander with eigenvalue gap λ(Y (1)) ≥
k − 6q = k −O(

√
k).

• The link Yv of every vertex v ∈ Y (0) is a d-regular graph with d = q + 1. The
eigenvalue gap of Yv is λ(Yv) = q + 1−√q.

The construction of Ramanujan complexes can be found for example in [Lub13].
We want to apply the spectral version (or equivalently the combinatorial version

and the Cheeger inequality for small cochains) of the theorem. As both eigenvalue
gaps converge to the degree as q →∞, we may choose ε1 and ε2 arbitrarily small if
q is just large enough. Thus, the technical conditions can be fulfilled by choosing ε
small enough and ε′ large enough. Thus, we can conclude:

Corollary 5.2.2. There are constants ε′ > 0 and η > 0 such that the 2-dimensio-
nal Ramanujan complex Y from [KKL14b] is expanding on small locally minimal
cochains α ∈ C1(Y ;Z2) for q large enough:

|α| ≤ 1

1 + ε′
|Y (1)|

4
=⇒ |δα| ≥ η |α| (5.2.142)

As it can be seen, the application of the theorem is relatively easy, one has only
to take care of the constants.
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5.2.3 Local to Global in High Dimension

In [EK15] the idea of thin and thick vertices was generalized to arbitrary dimensions
by Shai Evra and Tali Kaufman. This needs quite a technical effort that conceals
the idea behind it. In this thesis, we will cite the theorem ([EK15, Theorem 3.1])
for the sake of completeness and because it is a nice structural result. The proof,
however, is quite lengthy and thus we will refer to the original work for it.

The result of Evra and Kaufman uses the norm ‖·‖ defined as the weighted Ham-
ming norm with the weights from equation 2.2.33 on page 21.

Theorem 5.2.3 (Evra, Kaufman). Let d ∈ N, β > 0 and Q ∈ N be constants.
There exist ε = ε(d, β,Q) > 0, µ = µ(d, β) > 0 and α = α(d, β) > 0.

Let X be a d-dimensional simplicial complex that satisfies:

• The degree of every simplex is bounded. We have maxv∈X(0) |Xv| ≤ Q.

• The link Xσ of any simplex σ with 1 ≤ |σ| ≤ d− 1 has coboundary expansion
parameter hk(Xσ) ≥ β, 0 ≤ k ≤ dimXσ − 1.

• The link Xσ of any simplex σ with 0 ≤ |σ| ≤ d − 1 is a so-called skeleton
expander with parameter α, that is:

∀A ⊆ Xσ(0) : ‖E(A,A)‖ ≤ 4(‖A‖2 + α ‖A‖) (5.2.143)

(We consider A and E(A,A), the set of edges with both endpoints in A, as a
subset as well as as a cochain with this support.)

Then the cocycle expansion and cosystole parameters of X satisfy for any 0 ≤ k ≤
d− 2 and any 0 ≤ s ≤ d− 1:

hkz(X) ≥ ε and systs(X) ≥ µ (5.2.144)

Hence, the (d− 1)-skeleton of X is a cosystolic expander.

Proof. In the proof of this theorem, the authors of [EK15] consider generalizations
of thin and thick vertices, which they call “fat faces” (in every dimension). Then
they look at the coboundaries of the localization of fat faces, which they estimate
by the required coboundary expansion of the links. The coboundary of the cochain
in consideration can then be estimated by the coboundaries of the localizations and
some error term, which they show to be small.

5.3 Random Methods

The last method to prove expansion that we are discussing is the so-called random
method. Unlike the first two methods, we are not dealing with a given complex
and are trying to prove (coboundary) expansion for this special complex, but we
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consider a large variety of different complexes and want to make general statements.
The random method is the historically oldest method, as well for high-dimensional
expansion as for graph expansion. Indeed, the first appearance of the concept of
graph expansion was in the work of Kolmogorov and Barzdin ([KB93]) and of Pinsker
([Pin73]). In these works the concept of expansion was defined and it was shown by
probabilistic arguments that there exist expander graphs. Explicit constructions of
expander graphs are much more difficult and involve among others deep concepts of
group theory.

A random approach also was one of the starting points of high-dimensional ex-
pansion (in contrast to the approach of Gromov in [Gro10] from the viewpoint of
co-filling inequalities). Nathan Linial and Roy Meshulam introduced the concept
of coboundary expansion in [LM06] in order to prove that a random 2-dimensional
simplicial complex (sampled according to a random distribution that is explained
later on) has vanishing Z2-cohomology “with high probability”.

An introduction to random methods for graphs can be found in [AS16] and in
[JLR00].

5.3.1 General Idea

The general idea of random methods is that we are mostly unable to analyze a given
complex in detail, because it is simply too large, but we can analyze a family of
complexes better by concentrating on general structures or properties. If we take
for example a graph and want to know whether it is connected or not, we can only
check whether every vertex is connected to the rest – which is quite a complex task
if there are many vertices. On the other hand, if we consider all graphs on a given
vertex set, we can make a statistical statement such as “a certain fraction of all
graphs is connected”. So, by sampling a graph uniformly at random from these
graphs, we know that we have a certain probability for it to be connected.

In general, we do not consider “all” graphs or simplicial complexes, but just a
subfamily which we want to call a random model here. An example of such a model
is presented in Section 5.3.2. A model normally is connected with a method of
random sampling, that is, we want to equip the family with a probability measure.
Thus, we consider the model as a random process with a certain distribution that
outputs a simplicial complex of the family. Usually, this distribution is either quite
easy (and hence easy to analyze) or appears in a natural way (from a natural graph-
theoretical/combinatorial construction).

Introducing this “random structure” seems rather arbitrary. However, it is a
useful viewpoint, because many tools from probability theory and statistics can be
(and definitely were) applied. Moreover, it allows natural statements like “it is very
likely that a graph is an expander”.

Given the random model, we can consider properties of the simplicial complexes
or graphs as random variables with expected value, variance etc. Using these prop-
erties, which are sometimes very easy to compute (this depends highly on the model,
of course), we can find bounds or estimates for the probability of the random vari-
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able to take specific values. If, for example, the edge expansion parameter of a graph
has expected value strictly larger than zero, we may bound the probability of it to
be zero and thus obtain examples for expander graphs7.

The steps of the random method can thus be summarized as follows:

1. Define a “fitting” random model of simplicial complexes.

2. Consider the desired property of the simplicial complex as a random variable.

3. Analyze the distribution, probabilistic properties, etc. of this random variable.

4. Deduce probability estimates for the property.

Written down like this, the random method seems to be quite easy. However,
the devil is in the details. First of all, what is a “fitting” model? This depends on
the property that we want to analyze. The right definition of a model sometimes
needs very much knowledge of the complexes in consideration and the choice of the
model influences the other steps strongly. Depending on the model, the random
variable may have a different distribution that is easier or harder to analyze and the
probability estimates depend on this distribution.

Some of the most useful tools from probability theory are listed in the following
section.

Tools from Probability Theory

Probability theory provides a great variety of estimates that concern the distribution
of a random variable, namely its deviation from its expected value. These estimates
are sometimes called tail estimates, as they estimate the tails of the probability den-
sity function. They are normally written as inequalities, named after their inventor.

The first inequality that we want to present is Chebyshev’s inequality:

Lemma 5.3.1 (Chebyshev’s inequality). Let X be a random variable and denote
by µ = E(X) < ∞ and σ2 = E(X − µ)2 6= 0 its expected value and variance,
respectively.

Then for any ε ∈ R, we have:

P(|X − µ| ≥ ε) ≤ σ2

ε2
(5.3.1)

(P(·) denotes the probability measure associated with the distribution of X.)

A proof of Chebyshev’s inequality can be found in any textbook on probability
theory.

The Chernoff bound is also very important and will be used later on:

7To be exact: We only prove the existence of such examples, but the proof is not constructive.
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Lemma 5.3.2 (Chernoff Bound, [Che52]). Let X1, X2, . . . , Xn be n independent,
identically distributed random variables and denote by Sn the sum of the random
variables, that is:

Sn :=
n∑
i=1

Xi (5.3.2)

Let M(t) denote the moment generating function of Sn, that is (h > 0):

M(t) := E(exp(tSn)) ,−h < t < h (5.3.3)

(exp denotes the exponential function.)
Let −∞ < µ = E(Sn) <∞ be the expected value of Sn.
If a ≤ µ, then we have:

P(Sn ≤ a) ≤ inf
−h<t<h

exp(−at)M(t) (5.3.4)

If all Xi are independent Bernoulli variables, Sn is binomially distributed and we
can conclude:

P(Sn ≤ (1− ε)µ) ≤ exp

(
−ε

2

2
µ

)
(5.3.5)

This is the form we will use. We will normally apply it to several random variables
and use a so-called union bound, that is, we use the subadditivity of the probability
measure:

P

(⋃
i

Ai

)
≤
∑
i

P(Ai) (5.3.6)

Other important inequalities that deserve mentioning are the Markov inequality
and the Hoeffding inequality. As we will not use these two inequalities (at least
not directly) we will not state them here and refer to the classical literature about
probability theory.

A second big tool of probability theory is the approximation using “standard dis-
tributions”. By approximation it is possible to estimate the occurring distributions
by a distribution where we can calculate the probability density function easily. A
natural candidate for the approximation is the normal distribution (argued by the
central limit theorem), but there are also other examples like the Poisson approx-
imation of the binomial distribution. There are many such approximation results,
one has just to find the fitting one.

5.3.2 The Linial–Meshulam Model

We now want to discuss one of the “standard” random models of simplicial com-
plexes, the Linial–Meshulam model, named after Nathan Linial and Roy Meshulam
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who introduced it in [LM06]. The Linial–Meshulam model is a generalization of the
well-studied Erdös–Rényi model for graphs ([ER59]).

In the Erdös–Rényi modelG(n, p) we consider the family of all graphs on n vertices
that are sampled by the following rule: Every possible edge between two points of
the vertex set is added independently with probability p. Hence, every edge can be
represented by an independent Bernoulli random variable and if we want to count
the edges between two given subsets of vertices, we just have to add up these random
variables and get a binomially distributed random variable.

The Linial–Meshulam model Xk(n, p) of k-dimensional simplicial complexes on n
vertices uses a similar construction. Here, we start with a complete (k−1)-skeleton,
that is, the (k − 1)-skeleton of the complete complex on n vertices (k < n), and
add every k-simplex from ∆n−1(k) (a subset of cardinality (k+ 1) of the vertex set)
independently with probability p. The probability for a given simplicial complex
∆

(k−1)
n−1 ⊆ Y ⊆ ∆

(k)
n−1 to be sampled can be calculated by:

P(Y ) = p|Y (k)|(1− p)(
n
k+1)−|Y (k)| (5.3.7)

As we can see, the Erdös–Rényi model appears as the special case of the 1-dimensio-
nal Linial–Meshulam model: G(n, p) = X1(n, p). Moreover, random variables that
count k-simplices are distributed binomially, which makes an analysis easy.

Simplicial complexes generated by the Linial–Meshulam model have a complete
(k− 1)-skeleton. Thus, every simplex in X(k−2) has unbounded degree as n tends to
infinity. A (k−1)-dimensional simplex has a k-degree that is binomially distributed
with expected value p(n − k) (there are n − k simplices in the complete complex
that contain a given (k−1)-simplex). However, the maximal k-degree is unbounded
as n tends to infinity. Hence, the Linial–Meshulam model need not yield families of
expanders with bounded degree.

Nathan Linial, Roy Meshulam and Nolan Wallach showed in [LM06, MW07] that
a sampled simplicial complex Y has vanishing cohomology in dimension k − 1 with
high probability if the parameter p is large enough and non-vanishing, if p is small,
that is:

lim
n→∞

P
(
Y ∈ Xk(n, p) : Hk−1(Y ;Z2) = 0

)
=

{
0 if p = k logn−ω(n)

n

1 if p = k logn+ω(n)
n

,
(5.3.8)

for a function ω that satisfies limn→∞ ω(n) =∞.
If p = 1, we have the complete k-dimensional complex, which has a vanishing

cohomology group (cf. Section 5.1.2). By choosing p large, we can expect to get a
simplicial complex that is “dense” and thus will inherit some of the properties of
∆n−1. On the other side, if we remove enough k-simplices we can generate cocycles
that are no coboundaries and thus a “sparse” subcomplex is likely to have non-
vanishing cohomology.

As the cohomology of a simplicial complex Y from Xk(n, p) is asymptotically
almost surely vanishing for large p (that is, with probability tending to one for n
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tending to infinity), the complex Y also has a strictly positive coboundary parameter
hk(Y ). Moreover, there is an asymptotic lower bound on hk(Y ) (cf. [DK10]):

Lemma 5.3.3. Let Y be a random simplicial complex sampled from the Linial–
Meshulam model Xk(n, p). Let ε > 0 and let ω be a function with limn→∞ ω(n) =∞.

If the parameter p is large enough:

p ≥ 2 log(|∆n−1(k − 1)|) + ω(n)

ε2hk−1(∆n−1)
, (5.3.9)

then with probability tending to 1 the coboundary expansion parameter hk−1(Y ) is
bounded by:

hk−1(Y ) ≥ (1− ε)p · hk−1(∆n−1) (5.3.10)

Proof. The lemma is a special case of theorem 5.3.2 on page 111 and the proof will
be postponed until then.

As we will see later, the proof is a straightforward application of the Chernoff
bound and a union bound. Using methods that are technically more evolved, it
is also possible to show spectral expansion (with high probability) for the Linial–
Meshulam model. In [GW16] Anna Gundert and Uli Wagner prove the following
theorem that is based on results of Howard Garland ([Gar73]).

Theorem 5.3.1 (Concentration of Eigenvalues for the Linial–Meshulam Model,
[GW16]). Let Y be a random simplicial complex sampled from the Linial–Meshulam
model Xk(n, p), k ≥ 2. For every c > 0 and every γ > c there exists a constant
C > 0. Assume that:

p ≥ (k + γ)
log n

n
(5.3.11)

Denote by ∆up
k−1 the up-Laplacian of Y with respect to the weighted `2-scalar pro-

duct with the weight-function w(F ) = degk F , and by Ak−1 the adjacency matrix of
Y in dimension k − 1.

We use d = p(n− k) for the expected k-degree of a (k − 1)-face.

Then the following statements hold with probability greater than 1− n−c:

• The eigenvalues of the adjacency matrix Ak−1 can be separated as follows (this
statement even holds for p ≥ γ logn

n
):

– The largest
(
n−1
k−1

)
eigenvalues lie in the interval [d−C

√
d, d+C

√
d] around

d.

– The remaining
(
n−1
k

)
eigenvalues lie in the interval [−C

√
d, C
√
d] around

0.

• The eigenvalues of the up-Laplacian ∆up
k−1 can be separated as follows:
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– The smallest
(
n−1
k−1

)
eigenvalues are zero (trivial eigenvalues from the co-

boundary group).

– The remaining
(
n−1
k

)
eigenvalues lie in the interval [1− C√

d
, 1+ C√

d
]. (This

also implies vanishing cohomology group Hk−1(Y ;R) = 0.)

Proof. A proof of this theorem can be found in [GW16]. We will omit it here, as
it is very technical and beyond the scope of this thesis. The proof uses the links of
(k − 2)-faces to obtain random Erdös–Rényi model graphs and then known results
for these graphs are applied to estimate the “global” eigenvalues.

The above theorem states that the eigenvalues of the up-Laplacian or the adja-
cency matrix are concentrated around two values with high probability for large
parameter p. Compared to the eigenvalues of the complete complex ∆

(k)
n−1, the

general structure of the spectra remains the same, whereas single eigenvalues are
distorted by an additive error of order at most

√
d (for the adjacency matrix) or 1√

d

(for the normalized up-Laplacian):

Lemma 5.3.4 (Eigenvalues for the Complete Complex). Let ∆
(k)
n−1 be the complete

k-dimensional complex on n vertices. Denote by ∆up
k−1 the normalized up-Laplacian

as in the previous theorem and by Ak−1 the adjacency matrix in dimension k − 1.
Then their eigenvalues can be calculated:

• The adjacency matrix Ak−1 has the eigenvalue n − k with multiplicity
(
n−1
k−1

)
and the eigenvalue −k with multiplicity

(
n−1
k

)
.

• The normalized up-Laplacian ∆up
k−1 has the eigenvalue 0 with multiplicity

(
n−1
k−1

)
and the eigenvalue n

n−k with multiplicity
(
n−1
k

)
.

Proof. Every (k − 1)-dimensional simplex σ in the complete complex ∆
(k)
n−1 is con-

tained in exactly n− |σ| (= n− k) k-dimensional simplices. Using the matrix repre-
sentation of the unnormalized up-Laplacian Lup

k−1
∼= Dk−1−Ak−1, we can immediately

deduce one spectrum from the other:

Lup
k−1
∼= (n− k) · id− Ak−1 =⇒ σ(Lup

k−1) = (n− k)− σ(Ak−1) (5.3.12)

To obtain the spectrum of the normalized up-Laplacian ∆up
k−1, we observe that the

adjoint of the coboundary map (with respect to the weighted `2-scalar product) is

given by (f ∈ Ck−1(∆
(k)
n−1;R), G ∈ ∆n−1(k − 1), cf. equation 3.2.17 on page 40):

(δ∗kf) (G) =
∑

F∈∆n−1(k+1)

degk F

degkG︸ ︷︷ ︸
1

n−k

[F : G] f(F ) (5.3.13)

=
1

n− k
∑

F∈∆n−1(k+1)

[F : G] f(F ) (5.3.14)
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Here, we use that every simplex has the same degree. With this calculation, the
normalized and the unnormalized up-Laplacian only differ by a constant factor:

∆up
k−1 =

1

n− k
Lup
k−1 =⇒ σ(∆up

k−1) =
1

n− k
σ(Lup

k−1) (5.3.15)

Thus, we only have to determine the spectrum of the unnormalized up-Laplacian
and we automatically get the spectra of the normalized up-Laplacian and the adja-
cency matrix.

To calculate the spectrum of the unnormalized up-Laplacian, we first observe that
the up-Laplacian Lup

k−1 and the down-Laplacian Ldown
k−1 satisfy the following equality:

Lup
k−1 + Ldown

k−1 = n · id (5.3.16)

This can be seen by evaluating the left-hand side for indicator functions. The up-
Laplacian gives a term (n− k)· id and a second term which cancels out with a part
of the down-Laplacian, the remaining part gives a term k· id. In this calculation we
use, that we consider a complete complex.

From the equation we can see, that any cochain in the kernel of δ∗k−2 is an eigen-
vector to the eigenvalue n:

α ∈ ker δ∗k−2 ⊆ kerLdown
k−1 =⇒ Lup

k−1α = n · α (5.3.17)

The kernel of the adjoint map can be calculated using the following property of
adjoint maps (orthogonal complement is taken with respect to the standard `2-scalar
product):

ker δ∗k−2 = (im δk−2)⊥ =
(

Bk−1(∆
(k)
n−1;R)

)⊥
(5.3.18)

In lemma 3.2.3 on page 41 we have already seen that the coboundaries are eigen-
vectors to the eigenvalue 0, hence we have written the space Ck−1(∆

(k)
n−1;R) as the

orthogonal sum of ker δ∗k−2 and Bk−1(∆
(k)
n−1;R), which are both eigenspaces, hence,

we have determined the spectrum.
To calculate the multiplicities of the eigenvalues, we have to determine the dimen-

sion of the eigenspaces. In this course, we write down a basis of Bk−1(∆
(k)
n−1;R) (we

write the vertex set of ∆n−1 as {1, . . . , n}, as usual):

B :=
{
δk−21{F} | 1 6∈ F ∈ ∆n−1(k − 2)

}
(5.3.19)

As the coboundary group is generated by the images of all indicator functions of
(k − 2)-simplices, we have to show that B spans the coboundary group and that
B is linearly independent in order to prove that B is a basis. For the first point,
it is enough to prove that the images of indicator functions of (k − 2)-simplices
containing 1 lie in the span of B. Indeed, the image of an indicator function 1{F},
1 ∈ F ∈ ∆n−1(k − 2) can be calculated by:

δk−2( δk−31{F\{1}}︸ ︷︷ ︸
=1{F}+1{F\{1}∪{j} | j∈{1,...,n}\F}

) = 0 (5.3.20)

=⇒ δk−21{F} = −δk−21{F\{1}∪{j} | j∈{1,...,n}\F} ∈ span B (5.3.21)
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The linear independence of B is equally simple: Let
∑

j cjδk−21{Fj} = 0 be a linear
combination of 0, 1 6∈ Fj ∈ ∆n−1(k − 2). The sum has to evaluate to zero for every
G ∈ ∆n−1(k − 1), so we can choose G = Fi ∪ {1} for any i and evaluate:

0 =
∑
j

cj δk−21{Fj}(G)︸ ︷︷ ︸
=0 if j 6=i

= ci (5.3.22)

Hence, the linear combination is trivial and thus, B is a basis of Bk−1(∆
(k)
n−1;R). The

cardinality of B is equal to the number of (k − 2)-simplices that do not contain 1,
that is:

|B| =
(
n− 1

k − 1

)
(5.3.23)

As Bk−1(∆
(k)
n−1;R) and ker δ∗k−2 are orthogonal complements, the dimension of the

eigenspace to eigenvalue n can be calculated by subtraction, which gives the stated
result.

Rem. 5.3.1. Equation 5.3.16 on the facing page can be used likewise to calculate
the spectrum of the down-Laplacian.

5.3.3 Random Subcomplexes

The Linial–Meshulam model can be generalized to the (binomial) model of random
subcomplexes, as was done in [DK10]. For the Linial–Meshulam model Xk(n, p),
we start with a complete (k − 1)-skeleton and add every possible k-simplex inde-
pendently with probability p. Thus, we automatically obtain a random subcomplex
of the simplicial complex ∆

(k)
n−1. This construction is generalized to obtain a ran-

dom subcomplex of any given simplicial complex X with complete (k− 1)-skeleton.
Therefore, we start again with a complete (k − 1)-skeleton and add each k-simplex
of X independently with probability p. We call the random model with this sam-
pling algorithm the model of “random subcomplexes of X”. More generally, we may
allow a sequence (Xn)n∈N of simplicial complexes to be able to consider asymptotic
properties.

As in the case of the Linial–Meshulam model, a random subcomplex Y of a
simplicial complex X inherits some of the properties of X. By a simple Chernoff
bound, we can prove that Y is a coboundary expander with a given probability,
assuming that X is already expanding:

Theorem 5.3.2 (Coboundary Expansion of Random Subcomplexes). Let (Xn)n∈N
be a sequence of k-dimensional simplicial complexes that have a complete (k − 1)-
skeleton and Z2-coboundary expansion parameter hk−1(Xn) > 0. Let ε > 0 be a
constant and let ω be a function satisfying limn→∞ ω(n) =∞.
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Let Yn be a random subcomplex of Xn for any n ∈ N with parameter p = pn that
is large:

pn ≥
2 log |Xn(k − 1)|+ ω(n)

ε2hk−1(Xn)
(5.3.24)

Then the probability that Yn also has positive Z2-coboundary expansion parameter
hk−1(Yn) > 0 tends to 1 as n tends to infinity, that is:

lim
n→∞

P(hk−1(Yn) ≥ (1− ε)pn · hk−1(Xn)) = 1 (5.3.25)

Proof. Let α ∈ Ck−1(Yn;Z2) be an arbitrary cochain in Yn. Without loss of general-
ity, we can assume that α has minimal Hamming norm modulo coboundaries, that
is, |α| = |[α]|. We already know, that the complex Xn has coboundary expansion
parameter hk−1(Xn) (as the (k−1)-skeletons of Xn and Yn coincide, we can interpret
α as cochain in Xn as well): ∣∣δXnk−1α

∣∣ ≥ hk−1(Xn) |α| (5.3.26)

Starting from this equation, we want to derive a bound (with high probability) in
the complex Yn. Therefore, we look at the differences of the coboundaries of α in
the two complexes. The calculation is exactly the same, but the cochains δYnk−1α and

δXnk−1α have different domains. Every k-simplex in the domain of δYnk−1α has to be in

Yn and hence in Xn. On the other hand, every k-simplex in the domain of δXnk−1α
is contained in Yn independently with probability pn by the sampling process. By
counting the simplices in the support of δYnk−1α we thus evaluate the sum of random

Bernoulli variables corresponding to the simplices in the support of δXnk−1α. The

Hamming norm
∣∣δYnk−1α

∣∣ is a binomially distributed random variable with parameters

n =
∣∣δXnk−1α

∣∣ and p = pn. The expected value is:

E(
∣∣δYnk−1α

∣∣) = pn
∣∣δXnk−1α

∣∣ (5.3.27)

By the Chernoff bound from lemma 5.3.2 on page 106 we can calculate the proba-
bility for

∣∣δYnk−1α
∣∣ to be much smaller than its expected value:

P
(∣∣δYnk−1α

∣∣ ≤ (1− ε)pn
∣∣δXnk−1α

∣∣) ≤ exp

(
−ε

2

2
pn
∣∣δXnk−1α

∣∣) (5.3.28)

It turns out that this estimate is enough to prove what we want. To prove the
statement, we have to show that the probability for the complex to have a small
coboundary expansion parameter is tending to zero as n tends to infinity, that is:

P
(
hk−1(Yn) < (1− ε)pn · hk−1(Xn)

)
→ 0 (n→∞) (5.3.29)
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From the definition of coboundary expansion it is clear that the coboundary expan-
sion is small if and only if there is a cochain which has a small coboundary. We can
then apply a union bound to obtain:

P
(
hk−1(Yn) < (1− ε)pn · hk−1(Xn)

)
(5.3.30)

=P
(
∃0 6= α ∈ Ck−1(Yn;Z2) :

∣∣δYnk−1α
∣∣ < (1− ε)pn · hk−1(Xn) |α|

)
(5.3.31)

≤
∑

06=α∈Ck−1(Yn;Z2)

P
(∣∣δYnk−1α

∣∣ < (1− ε)pn · hk−1(Xn) |α|
)

(5.3.32)

The coboundary expansion of Xn implies that:∣∣δYnk−1α
∣∣ < (1− ε)pn · hk−1(Xn) |α| =⇒

∣∣δYnk−1α
∣∣ < (1− ε)pn ·

∣∣δXnk−1α
∣∣ ,

(5.3.33)

what we use to estimate further (probability measures are monotone) to obtain a
form where we may apply the Chernoff bound from above:∑

06=α∈Ck−1(Yn;Z2)

P
(∣∣δYnk−1α

∣∣ < (1− ε)pn · hk−1(Xn) |α|
)

(5.3.34)

≤
∑

06=α∈Ck−1(Yn;Z2)

P
(∣∣δYnk−1α

∣∣ < (1− ε)pn
∣∣δXnk−1α

∣∣)︸ ︷︷ ︸
≤exp

(
− ε2

2
pn|δXnk−1α|

) (5.3.35)

The rest of the proof is just rewriting this estimate to show that the probability
tends to zero. The bound for the parameter pn is chosen in a way that we get the
desired result. In the following we use the estimate from the coboundary expansion
of Xn and the binomial formula:

∑
06=α∈Ck−1(Yn;Z2)

exp

−ε2
2
pn

∣∣δXnk−1α
∣∣︸ ︷︷ ︸

≥hk−1(Xn)|α|

 (5.3.36)

≤
∑

06=α∈Ck−1(Yn;Z2)

exp

(
−ε

2

2
pnh

k−1(Xn) |α|
)

(5.3.37)

=

|Xn(k−1)|∑
i=1

∑
α∈Ck−1(Yn;Z2)

|α|=i

exp

(
−ε

2

2
pnh

k−1(Xn)i

)
(5.3.38)

=

|Xn(k−1)|∑
i=1

(
|Xn(k − 1)|

i

)
exp

(
−ε

2

2
pnh

k−1(Xn)i

)
(5.3.39)

=

(
1 + exp

(
−ε

2

2
pnh

k−1(Xn)

))|Xn(k−1)|

− 1 (5.3.40)
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Now, we can plug in the bound for pn and use the well-known estimate log(1+x) ≤ x:(
1 + exp

(
−ε

2

2
pnh

k−1(Xn)

))|Xn(k−1)|

− 1 (5.3.41)

≤

1 +
exp

(
−ω(n)

2

)
|Xn(k − 1)|

|Xn(k−1)|

− 1 (5.3.42)

= exp


|Xn(k − 1)| log

1 +
exp

(
−ω(n)

2

)
|Xn(k − 1)|


︸ ︷︷ ︸

≤
exp(−ω(n)2 )
|Xn(k−1)|


− 1 (5.3.43)

≤ exp

(
exp

(
−ω(n)

2

))
− 1

n→∞→ 0 (5.3.44)

We thus have proved that the probability of Yn to have a “good” coboundary ex-
pansion parameter tends to 1 as n tends to infinity.

Rem. 5.3.2. The above proof contains lemma 5.3.3 on page 108 as a special case by
taking Xn = ∆

(k)
n−1. Moreover, we observe that the size of Xn need not be unbounded

(as it is for the Linial–Meshulam model). However, the statement becomes vacuous,
if the value of the coboundary expansion parameter hk−1(Xn) grows slower than
log |Xn(k − 1)|. In this case, there is no possible choice of ω to not obtain a bound
pn ≥ 1.

5.3.4 Random Latin Squares

The last example for the random method that we want to discuss deals with 2-di-
mensional simplicial complexes that are induced by so-called random Latin squares.
The construction is due to Alexander Lubotzky and Roy Meshulam ([LM13]) and
yields (under some assumptions) examples8 for 2-dimensional complexes where the
2-degree is bounded for every 1-simplex, a question that was asked by Mikhail
Gromov ([Gro10]) and Dominic Dotterrer and Matthew Kahle ([DK10]).

The construction (that is, the sampling method of this random model) of random
Latin squares uses special tuples of permutations. In the following, we will fix n
and denote by Sn the symmetric group, consisting of all permutations of the set
{1, 2, . . . , n} (a permutation is a bijective map). A Latin square is an n-tuple of
permutations with a special property:

8The proof is existential and not constructive, though.
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Definition 5.3.1 (Latin Square). Let n ∈ N. An n-tuple L = (π1, π2, . . . , πn) ∈ Snn
of permutations is called a Latin square (of order n), if:

∀i 6= j ∈ {1, . . . , n} : πiπ
−1
j has no fixed points, i.e., (5.3.45)

@k ∈ {1, . . . , n} : πiπ
−1
j (k) = k (5.3.46)

The set of all Latin squares is denoted by Ln.

There are two possible illustrations of Latin squares. First, if we write the per-
mutations as row vectors of its values, that is:

π ∼= (π(1), π(2), . . . , π(n)), (5.3.47)

then we can write the Latin square L as a matrix consisting of all these row vectors:

L = (π1, π2, . . . , πn) ∼= (πi(j))
n
i,j=1 =


π1(1) π1(2) · · · π1(n)
π2(1) π2(2) · · · π2(n)

...
...

. . .
...

πn(1) πn(2) · · · πn(n)

 (5.3.48)

The Latin square condition now reduces to the condition that there are no two equal
values in every column. This gives a hint to the origin of the name “Latin square”.

The other way to visualize a Latin square is by drawing a bipartite graph. The
graph consists of two vertex sets V1

∼= {1, . . . , n}, V2
∼= {1, . . . , n} of size n and two

vertices u ∈ V1 on the left side and v ∈ V2 on the right side are connected by an
edge, if and only if there is a permutation πi in L such that:

πi(u) = v (5.3.49)

The Latin square condition ensures that none of these edges coincide for different
πi 6= πj.

Example 8. An example for a Latin square of order 3 can be given by:

L = (π1, π2, π3) :∼=

1 3 2
3 2 1
2 1 3

 (5.3.50)

Fig. 5.8 on the next page shows the second method of illustrating L.

We can make Ln a probability space by defining the probability measure to be
uniform. That is, we may sample from Ln a random Latin square with the uni-
form distribution. Using this distribution, we observe that the permutations in the
sampled Latin square are not independent, but one permutation alone is distributed
uniformly in the space of all permutations:
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1

2

3

1

2

3
Fig. 5.8: Illustration of the Latin square L from example 8 on the previous page

(blue: π1, red: π2, green: π3)

Lemma 5.3.5. Let Ln be the space of Latin squares with the uniform probability
measure. Let L = (π1, . . . , πn) be a Latin square sampled randomly from Ln.

Then the random variable obtained by sampling L and picking πi (i ∈ {1, . . . , n}
arbitrary) is distributed uniformly (in the space Sn of all permutations).

Moreover, the maps:

i 7→ πi(j), j ∈ {1, . . . , n} fixed, and (5.3.51)

i 7→ (πi)
−1(l), l ∈ {1, . . . , n} fixed, (5.3.52)

are permutations by themselves and the random variables induced by these maps are
distributed uniformly as well.

Proof. • First, let π 6= π′ ∈ Sn be two different permutations. Without loss of
generality, we will show the first statement just for π1 since by permuting the
entries of the Latin square L we can switch πi to the front9. We have to show
that:

|{L = (π1, . . . , πn) ∈ Ln | π1 = π}| = |{L = (π1, . . . , πn) ∈ Ln | π1 = π′}|
(5.3.53)

In order to prove this equality, we observe that by composing a Latin square
with an arbitrary permutation σ ∈ Sn in the following way, we obtain another
Latin square:

L = (π1, . . . , πn) 7→ σL := (σπ1, . . . , σπn) (5.3.54)

σL is indeed a Latin square as can be seen easily from the second illustration
of L, pictured in Fig. 5.9 on the facing page. The condition that no two edges
induced by different permutations are equal is already fulfilled in the left part
and it will not be perturbed by the right part. This can be seen directly from
the definition, too.

9The proof would be the same for arbitrary i, we restrict to i = 1 to simplify notation.
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We can now write down a bijection between the two sets, namely:

f :

{
{L = (π1, . . . , πn) ∈ Ln | π1 = π} → {L = (π1, . . . , πn) ∈ Ln |π1 = π′}
L 7→ π′π−1L

(5.3.55)

f is well-defined and has the natural inverse L̃ 7→ π(π′)−1L̃, hence it is a
bijection and both sets have the same cardinality. This shows that every
permutation π ∈ Sn appears in an equal number of cases as π1. π1 is thus
uniformly distributed.

• For the second and the third statement we have to show that these maps are
indeed permutations. This follows directly from the Latin square condition,
which implies injectivity:

πi(j) = πi′(j) =⇒ ∃j′ : j′ = πi′(πi)
−1(j′) =⇒ i′ = i (5.3.56)

As we are dealing with finite and equal-sized sets, injectivity implies bijectivity
and the map is a permutation. A similar argument can be applied to the second
map.

We may now repeat the argument from the first point, as we get a similar bijec-
tion between the sets defined in the fitting way by composing the Latin square
with the right permutations. The maps in consideration are transformed by
this operation as follows:

(i 7→ πi(j)) 7→ (i 7→ (σπi)(j)) (5.3.57)(
i 7→ (πi)

−1(j)
)
7→

(
i 7→ (πiσ

−1)−1(j)
)

(5.3.58)

By choosing the permutation σ correctly, we obtain the claimed bijection.

Fig. 5.9: Illustration of the composition of a Latin square L with a permutation

With this preparatory work done, we are now ready to define the simplicial com-
plex induced by a Latin square:
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Definition 5.3.2 (Latin Square Complex). Let L = (π1, . . . πn) ∈ Ln be an arbitrary
Latin square and let Λ2

n be the complete 3-partite complex, where we want to denote
the vertex sets by:

V0 = {a1, a2, . . . , an} (5.3.59)

V1 = {b1, b2, . . . , bn} (5.3.60)

V2 = {c1, c2, . . . , cn} (5.3.61)

The Latin square complex Y (L) induced by L is defined as the 2-complex with
(Λ2

n)(1) ⊆ Y (L) ⊆ Λ2
n, which has the 2-simplices:

{ai, bj, cπi(j)}, 1 ≤ i, j ≤ n (5.3.62)

For a d-tuple L = (L1, . . . , Ld) ∈ Ldn, we denote by Y (L) :=
⋃d
i=1 Y (Li) the

union of the Latin square complexes and by Y(n, d) we denote the space of all these
complexes obtained with the probability measure induced by the product measure on
Ldn (that is, Li and Lj are independent for i 6= j).

We directly obtain that Y (L) consists of 3n vertices, 3n2 edges and n2 triangles.
Every edge is contained in exactly one triangle by the Latin square condition. Hence,
in Y (L) ∈ Y(n, d), every edge has 2-degree less or equal to d.

The next aim is to show that a Latin square complex Y (L) is expanding on small
locally minimal cochains with high probability by applying theorem 5.2.2 on page 98.
Therefore, we have to discuss the structure of links of vertices. There are essentially
three types of links:

• v = ai ∈ V0:

Y (L)ai(1) =
{
{bj, cπki (j)} | 1 ≤ j ≤ n; 1 ≤ k ≤ d

}
(5.3.63)

• v = bj ∈ V1:

Y (L)bj(1) =
{
{ai, cπki (j)} | 1 ≤ i ≤ n; 1 ≤ k ≤ d

}
(5.3.64)

• v = cl ∈ V2:

Y (L)cl(1) =
{
{ai, b(πki )−1(l)} | 1 ≤ i ≤ n; 1 ≤ k ≤ d

}
(5.3.65)

By lemma 5.3.5 on page 116 all of these links are bipartite graphs that are con-
structed by sampling d permutations independently and uniformly and adding edges
from i (on the left side) to π(i) (on the right side) for every of these permutations.10

If we assume that all these links are “good” spectral expanders, we can prove the
necessary ingredients for theorem 5.2.2 on page 98:

10This random model of constructing graphs is a special case of a model called Broder–Shamir
model and was analyzed by Joel Friedman and David-Emmanuel Kohler in [FK14] as well as
by Doron Puder in [Pud12].
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5.3 Random Methods

Lemma 5.3.6. Let Y (L) ∈ Y(n, d) be a Latin square complex, d large enough.
If the link Y (L)v of every vertex v ∈ Y (L)(0) has an eigenvalue gap that satisfies:

λ(Y (L)v) ≥ d−O
(√

d
)
, (5.3.66)

with probability 1− o
(

1
n

)
, then the link fulfills with probability 1− o(1):

• h0(Y (L)v) ≥
d
2

(
1−O

(
1√
d

))
and

• η(Y (L)v) ≥
d
2

(
1 + ε−O

(
1√
d

))
for ε-small cochains,

that is:

lim
n→∞

P(∀v ∈ Y (L)(0) : the link is expanding with above estimates) = 1 (5.3.67)

Proof. By the normal Cheeger inequality (lemma 3.2.1 on page 36, unnormalized
version) and the Cheeger inequality for small sets (lemma 5.2.8 on page 101) we
obtain for an arbitrary vertex v ∈ Y (L)(0) with probability 1− o

(
1
n

)
:

h0(Y (L)v) ≥
1

2

(
d−O

(√
d
))

=
d

2

(
1−O

(
1√
d

))
(5.3.68)

η(Y (L)v) ≥
1 + ε

2

(
d−O

(√
d
))

=
d

2

(
1 + ε−O

(
1√
d

))
(5.3.69)

This proves the claim for every single vertex. However, the links of the vertices
are not independent (they are all dependent on the choice of the Latin square and if
we take the links of all vertices from the first set together, we already can reproduce
the Latin square). Nevertheless, we can estimate the probability of all links to be
expanding by a union bound on the complements. Here we use that there are 3n
vertices.

P(∃v ∈ Y (L)(0) : Y (L)v is not expanding with these constants) (5.3.70)

≤
∑

v∈Y (L)(0)

P(Y (L)v is not expanding with these constants) (5.3.71)

≤ 3n · o
(

1

n

)
= o(1) (5.3.72)

By switching to the complements we obtain the claimed bound for the probability.

Rem. 5.3.3. In [LM13] Alexander Lubotzky and Roy Meshulam argue that a theorem
of Joel Friedman can be applied to yield the eigenvalue gap with high probability.
See [Fri91, Fri07] for this theorem. Newer articles by Joel Friedman ([FK14]) and
Doron Puder ([Pud12]) also deal with similar models and results.
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5 Methods to Prove Expansion and Examples

Theorem 5.3.3 (Expansion for Small Cochains). Let Y (L) ∈ Y(n, d) be a random
Latin square complex and assume that the condition of lemma 5.3.6 on the preceding
page regarding the eigenvalue gap holds.

Then there exists a d0 ≥ 5 such that for d ≥ d0 we have that Y (L) is expanding on
small locally minimal cochains with probability tending to 1 as n tends to infinity.
That is, there exists ε′ > 0, η > 0 such that for a locally minimal cochain α ∈
C1(Y (L);Z2) with high probability:

|α| ≤ 1

1 + ε′
|Y (L)(1)|

4
=⇒ |δα| ≥ η |α| (5.3.73)

Proof. We want to apply theorem 5.2.2 on page 98. As the 1-skeleton of Y (L) is a
complete 3-partite graph, we have already seen in Section 5.2.2 that it is a regular
graph and a skeleton expander with β = 0. The previous lemma 5.3.6 on the
preceding page (which is by assumption applicable) implies the needed expansion
properties of the links of vertices with high probability. We can now choose ε, ε′ > 0
and ξ ∈ (0, 1) such that:

1

(1− ε)2(1 + ε′)
≤ 1− ξ (5.3.74)

The condition on ε1 = ε −O
(

1√
d

)
and ε2 = O

(
1√
d

)
can be fulfilled by choosing d

large enough as:

ε1
ε2

=
ε−O

(
1√
d

)
O
(

1√
d

) →∞, (d→∞) (5.3.75)

The local to global theorem in its combinatorial version now yields the claimed
result.

We thus have proved (under the condition of a good spectral gap for the links)
that a majority of all Latin square complexes are expanding on small locally minimal
cochains. In [LM13] it is proved that they are also expanding for large cochains.
The proof there uses the special structure of Latin squares and the Chernoff bound
to obtain a probability bound. As the proof is very technical we refer to the original
work for the details and just state the theorem ([LM13, Theorem 1]):

Theorem 5.3.4 (Expansion for Random Latin Squares). Let Y(n, d) be the random
space of Latin square complexes and assume that the condition of lemma 5.3.6 on
the previous page regarding the eigenvalue gap holds.

Then there exist ε > 0 and d <∞ such that:

lim
n→∞

P(Y ∈ Y(n, d) : h1(Y ) > ε) = 1 (5.3.76)

Random Latin squares thus yield (under this assumption) examples for 2-dimen-
sional expanders that have bounded 2-degree for every edge. Higher-dimensional
examples can be found for example by considering so-called random Steiner systems
presented in [LLR15] by Alexander Lubotzky, Zur Luria and Ron Rosenthal.
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6 Open (or just interesting)
Questions – Conclusio

In the course of the previous chapters, we discussed some of the definitions, appli-
cations and examples of high-dimensional expansion. Although the field of high-
dimensional expansion is still very young, we could only hope to present a small
part of what is already known. Depending on the mathematical background of
the researchers, there is a tremendous amount of variations of the definitions and
results presented in this thesis. There are at least three more definitions of high-
dimensional expansion that we were not able to include for they are far out of scope.
According to the desired application, there are several examples for expanders and
proofs. It is therefore hard (or simply impossible) to give a complete list of open
questions. We will thus try to give an overview of interesting questions and refer to
other specialized literature for more detail.

Examples for (bounded-degree) Expanders – Can we give examples of families of
high-dimensional expanders beside the “standard examples” of the complete
complex and the complete multipartite complexes? This is a very important
question for the application of expansion, for example in (theoretical) computer
sciences. For these applications, we also need special properties like bounded
degree. The random Latin squares, presented in Section 5.3.4, give (under
some assumptions) examples for 2-dimensional complexes with bounded 2-
degree of edges. Random Steiner systems ([LLR15], linked with the theory of
designs) give examples for arbitrary-dimensional complexes with bounded de-
gree of the co-dimension 1 simplices. Both examples have complete skeletons.
Thus, lower-dimensional simplices have unbounded degree. This leads to the
question:

Can we find families of expanders where all simplices have bounded
degree?

Such complexes are needed in many applications. Moreover, both construc-
tions give only existence of expanders, but no way of constructing them (which
is necessary for the application). Similar to the development in graph theory,
there are two lines of research:

Probabilistic – Here, we are searching for random models that give families
of expanders with high probability. Random Latin squares and random
Steiner systems are first examples which may be extended. This approach
worked very well for graph-theoretical expansion and may be “lifted” to
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6 Open (or just interesting) Questions – Conclusio

high-dimensional expansion. There are many results in the graph case
that may be used (cf. [Fri91, Fri07, FK14]).

Constructive – Beside the mathematically interesting question whether there
exist families of expanders, it is also very important to find explicit ex-
amples. In the graph case, there are several constructions (Ramanujan
graphs, zig-zag-product, lifts of graphs) that can be used. With Ra-
manujan complexes there are already approaches to generalize Ramanu-
jan graphs to higher dimensions (cf. [Lub13, KKL14a, KKL14b, EK15]).
However, some of the expansion properties of these complexes are still
unclear.

This leads to the next question:

Methods to prove expansion – Given a simplicial complex, how can we prove that
it has some expansion properties? There are already seemingly probabilistic
methods like “random co-filling” (described in Section 5.1), that work for
special complexes, and there are methods that use the local structure of the
complex (“local to global” methods, described in Section 5.2, cf. [KKL14a,
KKL14b, EK15]). How can these methods be refined and extended? As these
methods are mainly used to prove expansion for complexes that were just
constructed, can we find rules how some construction steps affect the expansion
properties? If we could, for example, understand what is happening if we take
the join (as simplicial complexes, see the literature for a exact definition)
of two “good expanders”, we may be able to construct large expanders by
taking the n-fold join of some prototype expander. Another example of such
a construction method is the wedge product. For spectral expansion (and
Laplacians) this was studied by Danijela Horak and Jürgen Jost in [HJ11].

In general, we could also ask:

Are there other methods, where we maybe use the knowledge of a
different field of mathematics?

In the graph case, for example, there is a really powerful tool: the Cheeger
inequality. By spectral expansion we are able to use linear algebra to analyze
expansion. This leads to the question, whether this can be generalized:

Generalizations of the Cheeger Inequality – Is there a connection between spec-
tral expansion and combinatorial (Z2-)expansion in high dimensions? Sadly,
if there is a connection, it is not as easy as in the case of graphs. Anna
Gundert and Uli Wagner ([GW16]) gave an example for a simplicial complex
(generated by a random process) that has strong spectral properties (that is,
a large spectral gap of the high-dimensional Laplacian), but there exists a
cochain with small coboundary. Hence, the coboundary expansion parameter
tends to zero as the size of the complex grows. This contradicts a (conjec-
tured) linear lower-bound of the coboundary expansion parameter in terms
of the spectral gap. In [SKM12], John Steenbergen, Caroline Klivans and
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Sayan Mukherjee give a counterexample for the second part of the conjectured
Cheeger inequality, namely an example of a complex that has non-vanishing
coboundary expansion, but the eigenvalue gap tends to zero. In the same ar-
ticle, further results on a high-dimensional Cheeger inequality are discussed.
For example, one could ask whether the structure of the inequality has to be
changed or whether we need other conditions like a complete skeleton. Ori
Parzanchevski, Ron Rosenthal and Ran Tessler prove Cheeger-like statements
in [PRT12], using a different notion of high-dimensional expansion.

Further Generalizations of Expansion – As the field of expansion is still develop-
ing, it is not clear whether the definitions of expansion presented in this thesis
are the “best ones”. Indeed, there are several other approaches which have
different benefits. We can only give a few examples:

Cheeger-type Expansion – As defined in [PRT12] and in [Par13], this type of
expansion is a try to generalize the definition of edge expansion without
using cohomology. Like in the 1-dimensional case, the vertex set is par-
titioned into several (depending on the dimension) subsets and instead
of edges between the subsets we count the number of simplices that have
one vertex in every subset. For a complete skeleton, this definition allows
to prove one part of the Cheeger inequality in high dimension.

Colorful Expansion – This notion of expansion was defined in [KM16a] and
[KM16b] by Tali Kaufman and David Mass. It uses a similar structure as
coboundary expansion, but they replace the definition of a coboundary
by another construction. Namely, for a cochain in dimension k they take
a cochain ψ(k) in dimension k + 1 that has a support that consists of all
simplices that contain neither no simplex of the original cochain nor all
of them. In comparison to the Z2-coboundary, we add more simplices,
because only those simplices are not taken that contain all facets or no
facet in the support of the original cochain, whereas for Z2-coboundary
expansion we do not take simplices with an even number of facets from
the original cochain.

As it turns out, the notion of “colorful expansion” is linked with the
convergence of high order random walks.

Agreement Expansion – The last notion of high-dimensional expansion, that
we want to discuss, aims in a completely different direction. It is a con-
tinuation of the application of expansion that is described in Section 4.2
and describes the usefulness of a complex for so-called agreement tests.
It was defined by Irit Dinur and Tali Kaufman in [DK17], where they
also give explicit examples of bounded-degree agreement expanders using
Ramanujan complexes.

The list presented here can only be a short extract of all possible trails of research.
For more information we refer to the literature at the end of this thesis.
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[BF84] Endre Boros and Zoltan Füredi. The number of triangles covering the
center of an n-set. Geometriae Dedicata, 17(1), October 1984.

[BMD07] Hector Bombin and Miguel A. Martin-Delgado. Homological Error Cor-
rection: Classical and Quantum Codes. J.Math.Phys., 48:052105, 2007.

[Bus82] Peter Buser. A note on the isoperimetric constant. Annales scientifiques
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error correcting codes, 55–58
CSS-code, 57
distance, 56
expander code, 56
factor graph, 56
homological code, 58
quantum code, 57
rate, 56

expander code, 56
expander graph

one-sided, 56
expanders

families of, 35
expansion

agreement expansion, 55, 123
applications, 45
Cheeger constant, 26
Cheeger inequality, 36
Cheeger-type expansion, 123
co-filling inequality, 31
co-isoperimetric inequality, see co-

filling inequality
coboundary expansion, 27
cocycle expansion, 29
colorful expansion, 123
cosystoles, 34
cosystolic expansion, 34
discrete Cheeger inequality, 36
edge expansion for graphs, 25, 27
edge expansion for small cochains,

97
eigenvalue gap for graphs, 35
expansion for locally minimal cochains,

79
expansion for small cochains, 79
families of expanders, 35
geometric expansion, 47
high order random walks, 123
large cosystoles, 34
link-based methods, see local to global

methods
local to global methods, 78
local to global theorem

combinatorial version (2-dim.), 98
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locally minimal cochain, 79
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minimal sparsity of a cut, 37
skeleton expansion, 97
spectral expansion, 42
spectral expansion for graphs, 35
spectral gap, 42
spectral gap for graphs, 35
thick vertices, 91
thin vertices, 91
topological expansion, 48

expansion for locally minimal cochains,
79

expansion for small cochains, 79–88,
97

face, 15
facet, 15
factor graph, 56
families of expanders, 35
family of co-fillings, 60

geometric expansion, 47
geometric overlapping, 47

theorem of Bárány, 47
theorem of Boros and Füredi, 47

geometric realization, 45
geometric simplicial complex, 45
gradient

discrete, 10
graph

adjacency matrix, 9
adjacent, 9
bipartite, 9
Cheeger constant, 26
complete bipartite, 71
degree, 9
edge expansion, 25, 27
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incidence matrix, 12
k-partite, 9
lifts, 122

neighbour, 9
regular, 9
vertices, 9

Gromov
topological overlap theorem, 48

Hamming distance, 51
Hamming norm

weighted, 21
heavily covered points, see overlap points
high order random walks, 123
homological code, 58

incidence matrix
graphs, 12
simplicial complexes, 40

incidence number, see oriented incidence
number

intersection points, see overlap points
isoperimetric problem, 31

k-partite, 9

Laplacian
discrete, 11
down-Laplacian, 41
high-dimensional, 41
up-Laplacian, 41

large cosystoles, 34, 87
Latin square, 114

distribution, 116
random, 114

Latin square complex, 118
expansion, 120
links, 118

lifts of graphs, 122
Linial–Meshulam model, 106

concentration of eigenvalues, 108
expansion, 108

link, 22
link-based methods, see local to global

methods
local to global methods, 78–103, 122

dimension 2, 88–102
combinatorial, 97–101
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local to global theorem
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localization, 22
locally minimal cochain, 79

1-cochains, 80
locally sparse, 48
locally testable codes, 56
`p-norm

weighted, 20

methods to prove expansion, 122
minimal cochain, 79
minimal sparsity of a cut, 37

n-simplex, see complete complex
neighbour, 9
norm

counting norm, 21
Hamming norm, 21
`p-norm, 20
of cochains, 19

one-sided expander graph, 56
oriented incidence number, 16
overlap points, 46

Poisson approximation, 106
property testing, 50–55

agreement tests, 55, 123
cocycle tester, 51
constraint graph, 53
constraint tester, 53
constraint-defined property, 53
locally testable codes, 56
testability, 51
tester, 51
testing algorithm, 51

pure, 15

quantum code, 57

quantum CSS-code, 57

Ramanujan complex, 122
expansion, 102

Ramanujan graph, 122
random co-filling, 59–78

family of co-fillings, 60
random Latin squares, 114, 121

distribution, 116
expansion, 120

random methods, 103–120
Broder–Shamir model, 118
Chebyshev’s inequality, 105
Chernoff bound, 106
Erdös–Rényi model, 106
Latin square, 114
Latin square complex, 118
Linial–Meshulam model, 106
Poisson approximation, 106
random Latin squares, 114
random model, 104
random subcomplexes, 111
tail estimates, 105
union bound, 106

random model, 104
Broder–Shamir model, 118
Erdös–Rényi model, 106
Linial–Meshulam model, 106

random Steiner systems, 121
random subcomplexes, 111

expansion, 111
random walks

high order, 123
rate

code, 56
CSS-code, 58

Rayleigh
theorem of, 23

Rayleigh quotient, 23
theorem of Courant-Fischer, 23
theorem of Rayleigh, 23

regular, 9

simplices, 15
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bounded degree, 16
complete complex, 61
complete k-partite complex, 69
d-faces, 15
d-skeleton, 15
degree matrix, 42
degree of a face, 16
dimension, 15
dimension of a face, 15
down-Laplacian, 41
embedding, 46
face, 15
facet, 15
finite, 15
geometric realization, 45
incidence matrix, 40
Laplacian, 41
link, 22
localization, 22
locally sparse, 48
n-simplex, see complete complex
pure, 15
simplices, 15
subface, 15
trivial eigenvalues, 42
up-Laplacian, 41
vertices, 15

skeleton expansion, 97
spectral expansion

for graphs, 35
for simplicial complexes, 42

spectral gap
for graphs, 35
for simplicial complexes, 42

subface, 15
systolic geometry, 34

tail estimates, 105
testability, 51
tester, 51
testing algorithm, 51

theorem of
Bárány, 47
Boros and Füredi, 47
Carathéodory, 47
Courant-Fischer, 23
Gromov, 48
Rayleigh, 23
Tverberg, 47

thick vertices, 91
thin vertices, 91

improvement, 93
topological expansion, 48
topological overlap theorem, 48
topological overlapping, 45–50

for graphs, 49
trivial eigenvalues, 42
Tverberg

theorem of, 47

union bound, 106
up-Laplacian, 41

vertices
graph, 9
simplicial complex, 15

zig-zag-product, 122
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